The institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reprociuction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couieur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, t?-子se have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans ie texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canadian Engineer
 INDEX TO VOL. VII.

\& Gasoline Motor Co......... 134
Axes and Saws, An Exhibition of... 70
Hatery. The Improved Samson...... 82
Bearings, Ball and Roller 320
Bicycie Combination, The Canadian. 140
Bit. An lmproved
40
Blue Process Praper 329
Boiler Compounds. The Use of. .307, 317
Bricf but Interesting
Building Regulations
Laws, Toronto
Catin Canke Toronto 330
Calcium Carbide at Chicontimi 3.30
Canadian Engineer, Good Work Appreciated

Fngincer
Abroad, A
Mining Institute
5 Pacific Ry., New Windsor street Station oi Rani Dill Co., N'ew Slious of the ashestos Co, The 322
Canal, Otawa Valley 4
Canals of Canada, The245. 260
Carbide Works, Otana, Exiplosion at the Dominion

253
Carbon datics, Discrimination in..... 195
Catalogues. New 45. 112, 192. 232, 256. 276
Citch I3asin, The Robertson 230
Cement Industry. The
:27
\qquad
Some Experiences with Portland
Contral Siation Accounting from a Business Standpoint .237. 255
.......... ${ }^{10}$
Clanin Plocks. Yale
Civil Engincers. Canadian Socicty of14. 42. 230. 278. 294, 32
City Enginecr, Victoria. B.C.
Clutch. Arnold Magnetic 30
Coal Seams. Notes on the Deposition and Development of the Glace
Bay
Coke Works. The Evercti 202
Combustion 273
Concrete. The Compressive Streagh as Determined loy Tests made at McGill Univer:ity
Compressed dir Fizzle. That
156
Coupling. The Dart Union itr
Coke from Nova Scotia for Usc on Railways

231
Copper Co.. The Great I.akes......... 165
Correspondence Schools in Toronto.
The International
Cranes, Electric Traveling

Electric Currents, The Protection of Low Tension Wiring against Dangerous Iligh Potential 95 Power, Possibilities of the Ottawa Valles

Railway, A Revolution of the Present System ly the Adrent of the Elevated

Railway, Isle of Man Tramways . 137 Co.s Works on the Chandicre River, Canadian..... 159 Lighting and Power Plant of the Victoria Hospital, London. Ont. The

Flashes 28, 54. 77, 117, 142, 175 [208, 234, 260, 284
Felectrical Association, Second Anmual
Consention of Maritime 20
Canadian.60, 84
Enginc. The Peerless Self-Oiling Antomatic

The McEwen dutomatic. .. 319
large Compound
319
Fingineer, Toronto, Report of the City 180
Engincers' and Electricians' Handl3ook. Reference Directory. The 201 Club, Toronto. The....39, 301 Enginecring and Maintenance of Way Association. American
Estimates, The17. 301 of the Dominion, Supplementary
Exhaust Head. A New Form of...... 189
Firc, The Tall Building Under the Test of
Fires of the Month.. 30, 60, 83, 112 ,46, 250. 232, 262, 277
Fircproofing: A New Syst moi...... 30
Firemen's Association, Ontario Voluntecr
Fire Prevention Committec, The British
Fly Whed Design, Improvement in. Cast Iron
Gas Encine, Gencral Principles of 22
Gas Works. The Roston 323
Generating Set. A Sulistantial Type of Marine
Good Roads
222
... 251
Grate Bar, The Cyclonc............... . 250
Grand Trunk Rnilway, Portland Terminus of the
. . 127

* Trunk Railway Locomotive... 51

Great Britain. Hatred of, in Europe. 276 " Markets of Canadian Goods in
Greening Wire Co., Ltd., 'Origin of
the B..............................

Hanger. Brantiord Adjustable Drop. with Roller Bearings 323
Heating. Hot Water17. 38, 113 and Ventilation. School.... 278

Page:
IIudson Bay 156
Ice Breaking 163
Imperial Oil Co 156 and the Standard
Oil Co 18
Industrial Notes 23, 53, 75, 115, 141,
[173, 203, 233, 256, 281, 308, 331
Indicators, Speed 321
Iron Bounties, The 83
Iron and Steel, Canadian 65

Production

Methods, Swedish vs. Canadian. II Lachine Rapids Hydraulic and Land Company

123
Lake Levels 264
Liquefaction of Air, The 5
Literary Notes $30,52,112,140,165$, [108, 231, 256, 278, 312
Lubricators for Compound Engines.. 19 McDonald's Gencrosity, Sir Willian. 210 McGill Prizemen in Applied Science
'99...
45
Mamual Training in the Public Schools 270
Marine Engineers, The 278
News 26, 57, 81, 118, 145. 177
[205. 262, 286, 310, 335
Measures and Rules 288
Metal Imports irom Great Britain... 7
$60,83,114,148,165,197,237,238,304$
Polish 14
Mechanical Drait, A test of 229
" Upon the Ultimate
Efficiency of Steam Boiler, The
Infuence of
138
Meters and Meter Rates 66
Metric System, The 190
Mechanical Trades, Mathematics in the 241
Mineral Wealth of Newfoundland.... 221
Mincrals, Ontario 277
Mincral Productions in 1808. U.S.... 135 " of Nova Scotia..... 41
Industries of Ontario. The. . 160
Mining Matters 27, 56, 80, 118,144 ,
[177, 205. 236, 287. 311. 33')
Mica in Quebec 46
Motor, The Deisel Heat 186
AIotors, Direct Connected to Machine
Tools, Slow Speed
321
Navigation in Canada, Lake 6
Nernst Lamp. The Proper Efliciency
of Incondescent Lamps for
Central Stations, Including a
Description of the
99
Nickel Production, Canadian 33
" Extraction by the Mond Process 166
" Stcel. Canadian 292
" "The Properties of.......... 304
Oil Stones. How to Use and Select Them

275
Ontario, A New 213
Patents. Canadian 312
Pavements Between Street Railway Tracks

199
Peat as Fucl in Canada............... . 292
Pcrsonal 29. 57, 81. 119. 145. 178, 206.
[237. 259. 284, 335
Plumbers and Steam Fitters of Can-
adn. The Nat. Asso. of Master 84
Power 158
Power Question. The Niagara 35
-Practical Man, The 22. 53. 96. 163.
[191, 232, 248, 271

Pulp Grinder, Λ New. 330

P＇unping Machinery ．．．．．．．．．．．．．．．．．．． 254
Pumps，Interchingeable（il
Railway Building in Mantob：a．
274
Enginecring ．．．．．．．．111，1．11，e．f）
Matters 27，57，79，119．1．t．
［170），206，230，201，2※2．312，3．3．3 Subsidies ．．．．．．．．．．．．．．．．． 1111 ．1，37 Reed Mnfg Co．vi lirne l＇：The．．los Kichelien and Ontarno Complans： Steamer＂Toronto＂
Rosal lilectric Co．，I．td．．The
St．Lawrence Icechs
2．10． 204
Route，The Regıming of the． raticial
Sandstone：Arrmital
Sanitary Decenties
Sanitation in Schools，Modern
Scales．Suspension
．．．．．．．．．．．

Separaturs，The Anstin Steam
Sewage Disponal，The Royal Comma：－ sion on ．

Divposal Borks．Brocliton，
Mass．
Treatment，Scptic T：mk Sys－ tem of
Sewers of the City of Lomdon．Ont．
The Construction of the Main
Intercepting
Smelter for Toronto
Smoke Consumption
South Arica：Its leopic and lts
Trade ．．．154，1S2，211，205．291．31．4
Stationary Enginecrs，Canadian Asso－
ciation of．．．．．84．103．2．31．276．301
＂Engineers．Tenth Inmal Con vention of Can．Asso ．．．．1t．4．12S Enginecrs．Ontario Ason．ai 83
Steam Trip
Steam．Adrantages of Coke over Conl as a Fucl for Gemerating．．．．．．． Turbine．Direct Connected． Parson＇s
Sted．Overstrain in For Building Construction，The Mannfacture oi ．
Stoker Co．．American iv General Engincering Co ．．．．．．．i8o 27
Surveyors，New land ． ．． 306
Ontario Asso．of Land．．．． 304
Technical School，The Toronto ．．．．． 312

Temperature

248， 277
Toronto Exhibition Notes
Tornional Strains．Instrume：ats ior Measuring Small
Transformer Economy
．89． 102
Trap．The Interception
Trust Formations athe Eimted States i！
Turbme Steamers，The
Vats，I．caking
Ventilating．Jleating and
One Stor：

Buildings

Fanc．A New Type of Flec． oric Propeller
Vise．Hough＇s Extra Heavy Com－ bination Pipe
Water Curtain．The
Watermain Scraping
Waterpower and lit filet．．．．．．．． 231 power and lts Flectrical Pro
duction in Relation to the C＂n． developed Resources of the Do minion．Canadian ．．．．．．．．．．．．91． 124
Water Supplics ．．．．．．．．3．3．36．151．2．30． 263 Sand Filtration oi
Public．．．．．．．．．39．71．148．171．196 Wiorks．Toronto
Witwatersrand．Milling the Gold Ores of the

Hurlamen：Pompanmion ior lajurie dets．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Wrench．The V．太 B．Pipe．．．．．．．． 111

CORRESIPONDIENCE．

Banlturge，Chas－＂Dam Buildug＂．．is Correspondent－＂Water Pressure＂．．os
Diamond Saw and Stampng Works－ －Canadian Engmeer＂
Fingincer－＂Excersme Heating in ． Corliss Engine＂ Ficlding，Juhn S－＂Dam Bubling＂．． 51 Fordyce，Jat．－＂Camadtan linghteer＂2－5d Ciren Fuel Economizer Co．－＂Green＇s Eiconomizer＂
Ilamiton，G．A．－＂Camadian Vagı－ neer＂．．．．．．．．．．．．．．．．．．．．．．． 306 Hexan．James B．－C Cimadian Fingi－ neer＂．．．．．．．．．．．．．．．．．．．．．．．．． 2 Hodgms．J．George－＂Red Cross Fund ${ }^{\circ}$
． 307
Mahngren，Henry－＂Heirs Wanted＂ 277 Murphy．J．F．－＂Canadian Enginecr＂2．t． Nitional Carbon Co－－＂Discrimina－ tion in Carbon Dutice＂．．．．．．
I＇etrolian－－P＇etrolia and the Stand ard Oil Co．＂
Robhbs．J．M．－\because in lmpoweriched Philosopher＂
Romald J．1）－Canadian Eusine Ros．Alex．－Canatian I：ngineer＂．．． 54 Versot．S．\＆Co－＂Canadian Engi：neer＂2．f．

IORTRAITS．

Reckell．1：C ${ }_{3}$
Bertram，Surgoon－Licut．「．I
illact． 10 m A
Colpitis．IV：W
Dion，A A
Esford．Capt．I
Gildersleeve．C．F．
Gowler．P G．
Grier．A．G．
Hutchicon．W：S．
Hyde．Geo．T．
K゙irkpatrick．S．F．
Mcl．can，WV．B．
Moseles：Chas．
Oclichlager． $15:$
Smith，Archihald 1 V
Tronern．P．

BIOGRAPIICAL SKETCIIES．

Beckett．F．G
Bertram．Surgeon－I＿ient．T．A．
Black．Wian．A．
75
…．．．． 18
Durley．R J．B．Sc．（I．ondon）
EVhord，Capt llenry
Giddersleeve．C．IF．
Gossler．P．G．
Killey，Thc l．ate J．H
Moscley．C．
Oclschlager，W．
Smith．Archibald IV．
Trowern，P

CONTRIBUTORS OF SIG：ED ARTICLES．

Anderson，W．B．－＂The Compressive Strength of Coucrete as Deter－ mined by Tests made at McGill University
Ardagh．A．G．－＂Peat as Fucl in Can－ ada．＂
Ashbridge．IV．T．＿－＂The Construction of the Dlan Interecpting Sewers of the City of London．Ont．＂43， 70
Bailairge，C．－＂The Boston Gas Works．＂

Banlairge，C．－＂The Asphalt Block＂ 140
Cary，Albert A．－．＂The Use of Boiler Compounds．＂

27， 317
Cirry，l：I：．－＂The Proper Eficiency of Incindescemt Lamps，Includ－ Ing a Description of the Nerust Limp．＂

99
Campbell，a W．－Cuberts and Bridges．＂

7
Coker，I：．G．－－＂Instrmments for Meas－ uring Smali Tornonal Strains＂
1）：lいい． \boldsymbol{A}－\cdot Revolution of the Presem laihway System by the Advent of the Elevated Electric Ky．11．12
Detwiler，J．13．－•Roller and Ball Bearings．＂．．．．．．．．．．．．．．．．．．．． 3
Dion，A．A．－＂Meters and Meter Rates．＂．．．．．．．．．．．．．．．．．．．．．．．．．
Drummond，Geo．E．－＂Iron Produc－ tion．＂．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Eldridge，W．K．－＂Some Experiences with Portland Cement．＂．．237， 255
Ireeman，Arihur C．－．Advantages of Coke over Coal as a Fuel for Gencrating Steam．＂

195
Hartrantt．Wim．G．－＂Beaver Port－ land Cement．＂

251
llart．P．H．－＂Central Station Ac－ counting from a Business Stand－ point．＂

102
Kindl，IF H．－＂The Manufacture of Steel for Building Construction＂ 225 Kirkpatrick，S．F．－＂Notes on the Deposition and Development of the Glace Bay Coal Seams．＂ 30.3
Kecfer，Thos．C－－Canadian Water Power and Its Electrical Pro－ duct in Relation to the Unde－ veloped Resources of the Do－ minion．＂
12.4

Lea，R．S．－＇Sand Filaration of Pub－ lic Wiater Supplies．＂ ．．．．．．．．．．．．．．．39．71，148，171， 196
l．conard．F．H．．jr．－＂Transformer Economy：＂
．89． 102

Parsons．II．del3．－－The Tall Build－ mg Under the Test of Fire．＂．． 218
Plaskett．J．S．－＂Mathematics in the Mechanical Trades．＂
$24 i$
Pews．W．J．－－＂The Protection of Low Tension Wiring Against Danger－ ous Iligh Potential Currents＂．9
Rust．C．II．－＂Brockton．Mass．．Sew－ age Disposial Works．＂
．． 34
Rust，C．H．－＂Pavements Between Strect Railway Tracks．＂

1x）
Robert－Austen，Sir William Chandler． ＂Nickel Extraction by the Mond Process．＂

160
Suow．Walter B．－＂The Influence of Mechanical Drait Upon the Liltimate Efficiency of Steam Boilers．＂
．．48． 138
Trowern．P．－＂Measures and Rules．＂ $28 \$$
Trowern，P．－＂Power．＂．．．．．．．．．．．． 158
Trowern．P．－＂Hot Water Heating＂
17，38． 113
Turbaync，Wm．A．－＂I．ong Burning Enclosed Arc L．amps．＂

97
Watson，W．M．－CThe Interception Trap．＂
$2 \mathrm{~S}_{9}$
Watson，W．M．－＂Sanitary Necessi－ iics．＂．．．．．．．．．．．．．．．．．．．．．．．．．．．．．is
Watson，W．AL．－＂Water Supplies．＂ ．．3．36，151，239． 263
Weir，Drthur．－－The Begmnings of the St．Lawrence Route．＂1，31，6t

The Canadian Engineer

The Canadian Engíneer.
 ISSUED MONTHEY IK THE INTERESTS OF THE

CIVIL, MECHANICAL, ELECTRICAL, LOCOMOTIVE, STATIONARY, MARINE, MINING AND SANITARY ENGINEER, THE SURVEYOR. THE KIANUPACTURER, THE CONTRACTOR AND THE MERCHANT IN THE METAL TRADES.

Subscription-Canada and the United States, 81.00 per year; Grcat Britaln and foreign, 6s. Advertising rates on application.

Orpices-62 Church Street, Toronto : and Fraser Bullding, Monereal.
E. B. Bloonk

BIGGAR, SABIUEL \& CO., Publishers,
R. R. Samuzl Address-Fraser Building,

Toronto Tolephone, 1892. A'ontreal Tolophono, 2589.
All basiness correspondence shonid wo addresed to our lxontraal ofico. Eilitorial mattor, cutn, olectros and drawinge should bo mudressed to the Toronto Otlec, and hhould be eent whenever possible, by mall, not by axpress. Tlio publishers do not nindertako to pay duty on cuta from abroad. Cinanges of adverticomente should be in our hande not lator than the lat of each month to ensure insertion.

CONTENTS OF THIS NUMBER:

the beainnings of the st. Lawrence route.
There is a river which contains more salt water than fresh, which has a seaport almost a thousand miles from any ocean, a river that twice in the day flows backwards. At one season it affords navigation to the largest vessels, and at another it has upborne upon its crystal surface a train of loaded cars, with busy locomotives. It flows past virgin woodland, past cultivated fields, and past cities, is sentinelled for hundreds of miles by the oldest mountains in the world, expands into vast lakes, swept by sudden storms, and contracts in narrow gorges, toothed with rock, where its wrath and strife are titanic. It penetrates a continent like a wedge, and makes a maritime people where the phenomenon of the tides is wanting. It has been the haunt of pirates, of smugglers, the route of heroes and of savages, the scene of wreck and the arena of glory. It is to the Canadian what the Tiber is to the Roman, the Nile to the Egyptian, the Rhine to the German; for that river is the St. Lawrence.

The St. Lawrence gives the Province of Quebec a seacoast of 2,500 miles or 500 miles more than that of England. From the Straitsof Belleisic to Duluth it has a length of 2,384 statute miles. Montreal, at the head of ocean navigation, is 986 miles from Belleisie, and the river is salt as high as
\bullet Abridged by tho avthor, Aribur Veir B.Sc, from ${ }^{2}$ lecture dellvesed

St. Thomas, 766 miles from the ocean, while the tides are regular as high as Three Rivers. The great lake system with connecting waterways has an area of 98,000 square miles, a coast of 2,112 miles and the basin area of the system is 330,000 square miles, a generally fertile country capable of accommodating $108,500,000$ inhabitants if as densely populated as the United Kingdom. From the ocean to Quebec the river varies from seventy to ten miles, in width, with a proportionate depth. It is, however, dotted with reefs and islands and subject to fluctuating currents and summer fogs, which render necessary the present magnificent system of lighthouses, sirens and buoys. From Quebec to Montreal the river is rarely less than two miles in width, and its depth is never less than thirty feet, except where a score of shoals aggregating fifty miles in length have had to be dredged, giving at present a navigable channel of 27.5 feet.

The current of the river is usually gentle, but in its descent of 235 feet from Lake Ontario it traverses a series of steps creating about forty miles of rapids, which have had to be overcome by the construction of some seventy odd miles of canals. The continuity of navigation on the great lakes is interrupted by the Niagara Falls, to overcome which a canal nearly 28 miles long has been constructed, and by the Sault Ste. Marie, where there is a canal, short, but otherwise on a gigantic scale, to accommodate vessels almost as large as those that brave the tumult of the Atlantic.

The St. Lawrence route in whole or in part is the natural outlet of the interior of the continent to the Atlantic seaboard. Its headwaters are equi-distant between the Atlantic and the Pacific, and engineering work of an easy nature might render continuous navigation possible from the foot of the Rockies to Montreal. The old canoe route by way of Georgian Bay, Lake Huron, French River, Lake Nipissing and the Ottawa, while studded with difficulties, is even shorter than the Great Lakes and St. Lawrence route for traffic originating west of Lake Huron, but would use the St. Lawrence from the mouth of the Ottawa downwards. A short distance below Montreal the Richelicu enters the St. Lawrence, giving access to Lake Champlain and the Hudson Valley, and to New York, the distance from Montreal to the United States metropolis being 457 miles by this route, of which 372 miles would be natural navigation. The present objections to the St. Lawrence route are several. In the first place there is no Canadian lake harbor sufficiently equipped or deep enough to compete for trade with the United States lake ports, many of which have been deepened at large expense. Secondly, the river cannot be said to be open more than seven or eight months in the year. And thirdly, the existence of toils militates against the natural advantages of the route. The competition of railroads and of the Erie Canal, which is free of tolls, render the advantages of the St. Lawrence route almost useless to stay the tide of traffic by way of the United States. Of course, the Erie Canal is not navigable in winter.

Champlain's escapade on the lake named after him, in which he shot an Iroquois chief, closed the St. Lawrence
against the French until 1653 , and in that year it was open only for a short time.

In Champlain's day, Tadousac was the leading harbor of Canada, subsequently being displaced by Qunbec and then by Montreal, for it is a rule of trade that it will ever go to the head of navigation.

During the French regime the St. Lawrence was the centre and not the boundary of Canada. Her trappers had over-run the country south to the Gulf of Mexico, had skirted the flanks of the Rocky Mountains, and d'Iberville had performed feats of valor against the British posts on Hudson's Bay. Lake Mistassini was known, and there was scarcely a pellucid stream west of the Alleghanies which had not rippled to the paddle of the courier de bois. The trade of Canada was chiefly in furs, and but for the expenditures from the military chest the country would have been in a state of chronic bankruptcy. Foreign trade was prohibited, and anyone engaged in it was treated as a pirate. Huguenots were forced to leave the country every fall, the more important trades were always in the hands of a monopoly, prices of commodities were fixed by Government officials; as also were freight rates. Nonresident merchants were not permitted to trade with the Indians, and could do business only below Quebec, and then only during three months of the year. But there was nevertheless some traffic in the country. The fur trade just before the outbreak of the war of the Conquest averaged from 200.000 to 300,000 livres per annum, and in 1615 there were, according to the Jesuit Biard, fully 500 French ships engaged in the fur, whale and codfish trade. Licenses for the fur trade were ultimately issued, costing from 500 to 1,000 livres at first hand, and good for one canoe. In 1754 the trade with the western posts amounted to 90 canoes. According to Lt. Gov. Miles the beaver trade never exceeded \mathcal{L} r 40,000 stg. per annum, and it was not half that in 1754 and 1755 . In 1688 Canada produced 101,000 bushels of wheat, increased by 1734 to 738,000 bushols. The exports of wheat at the latter period were about 60,000 bushels. At the close of the French period the exports were still only raw materials, furs of all kinds, porpoise oil, cod, salmon, eeis, lumber, and such hike, while even bacon and flour were imported, the imports amounting to about $8,000,000$ livres, against $2,500,000$ of expotts. During 1759 the requirements of the colonists were met by $: 2,000$ tons of shipping, although they were in the throes of war and depending almost entirely upon external support. I may here remark that these figures are not entirely reliable. The science of statistics did not come to anything like perfection in Canada until after Confederation. The imports of 1765 are placed by a memorial of the time at $4,000,000$ livres and the exports at $1,500,000$. I give the figures I find to hand, merely because they will in a measure give some idea of the early trade via the St. Lawrence.

The intendant Talon, to whom all honor, came to Canada in 1605 and may be looked upon as the father of commerce in Canada. He established a brewery that the money the people spent on liquor might at least be kept at home, a principle which is at the root of commercial progress. In 1667 he built the first Canadian built ship at Quebec, the beginning of a very important trade, carried to particular extent in the Maritime Provinces. This ship he sent to the West Indies to open a trade with those islands. It carried out salt cod, pease, salmon, eels, fish oil, staves and planks, and brought back sugar. Later, wheat was exported, of which 54,000 bushels were sent out in 1685 . Attempts were also made to establish an export trade to France, exclusive of peitry. The season of navi-
gation on the St. Lawrence has been placed at about eight months. During the French regime it was only four months, the ships from France arriving in July, August and September, and sailing again in November. The duration of a voyage in those days was uncertain. The Jesuits Biard and Masse were four months between France and Canada, from January to May. Talon himself was 117 days en route, and de Levis was to be congratulated in crossing the ferry in 56 days in 1756. Sometimes the ships were blown back to France after sighting America, as was de la Roche in 1598; sometimes they became plague stricken, as was the "Rubis" in 1740 ; and wrecks were frequent, that of "la Providence" in 1718 , "le Chamean" in 1725, "l'Elephant" in 1729, the "Beauharnois" in 1731 , "la Trinite" in 1752, and the "Chamelion" in 1753 . The ships of the day rarely equalled 200 tons, and Champlain crossed in one of 12 tons. One could wash in the sea from the deck of the vessel of "la Roche."

The cost of a passage in one of these ships was 33 livres in 1664, increased to 40 livres by 1672 . In 1740 freight charges were 25 francs per ton. Every ship coming to Canada from France, and it might come only from a French port, had to conform to the tariff of prices in selling its cargo, had to bring out, if desired, one immigrant for every ton of its burden, refrain from trade with the Indians, and carry a certain proportion of salt, iron and coal, although the St. Maurice forges were in operation and the outcrops of coal in Acadia were utilized by the French in that district. From the Gulf of St. Lawrence to Quebec during the French regime there was not a single friendly light to guide the mariner through the sometimes tortuous channels. And the Gouffre and the Traverse, still somewhat boisterous at certain stages of the tide, were then as dangerous as the maelstrom. These once dangerous spots, a little below Quebec, have now been largely silted in, and are of small consequence to vessels of to-day. In the days of sailing vessels, however, many a wreck took place there and the first buoying of the St. Lawrence was done at the Traverse.

As already stated, the lower portion of the St. Lawrence is a seacoast with all the dangers of one; and it was early charted. There is a chart of the river in the Archives Department at Ottawa, bearing date 1695. It was, however, between 1717 and 1737 that the charting of the St. Lawrence was first developed to any extent. In 1723. 1'Hermite, the father of charting on the river, began his labors. He and Richardiere, harbor master at Quebec, took soundings in the Gulf and river, and in 1737 the latter was busy cutting landmarks for the mariner. In the same year was first lit the fire tower of Louisburg, the only beacon that flamed along thuse shores for maritime purposes during the French regime. In passing, I may mention that the Indians in early times in crossing from Cape North to Newfoundland and back were wont to light beacons upon that towering mass, which they called Sakpeediah or Smoky Point in consequence.

Above Quebec there were no impediments to the vessels of the day, as far as Montreal, although Jacques Cartier ran aground in Lake St. Peter. The usual means of conveyance was by canoe and subsequently by rude batteaux, which were days and sometimes weeks upon the trip. The usual duration of a voyage between Quebec and Montreal was six days, Three Rivers being the midway point. It was customary to land eạch night and billet upon some seignory. The luxurious Bigot had a most sumptuous barge with silken awnings when he made his customary visits to the future metropolis.

The only important engineering work begun in
connection with the St. Lawrence route during the French regime was the attempt to construct a canal between Montreal nnd Lachine, to overcome the Sault St. Louis or Lachine Rapids. In 1700 a contract was signed by Dollier du Casson on the one part and Sieur de Catalogne on the other to construct a canal some twelve hundred feet long and twelve feet wide from Lachine to connect with a little lake, called St. Pierre, which in turn connected with two streams, one of which ran through what is now Craig street. The work was interrupted in ryor by the death of Du Casson, and although many attempts were made to complete it, the Seminary spending some 20,000 francs in work begun in 1717, a heavy rock cutting that was encountered finally brought all operations to a standstill.

It may be interesting to remark in view of the present endeavor to find a winter outlet for the St. Lawrence that during the French regime the harbor of Bic was designed to be improved and fortified to make it what Louisburg was to Acadia and what Halifax is to-day, a naval depot and winter port for trade. French shipping on the great lakes began as we all know with the journey of LaSalle, who built a vessel to navigate Lake Ontario, left it at the upper end of the lake, passed Niagara and on Lake Erie built the "Griffon" in 1679 . She made one trip into Lake Michigan, and was lost on her return journey. As early as 1700 there were two or three brigantines on Lake Ontario, and in 1756 from six to ten schooners and brigs, as well as a number of large batteaux.

I will close this sketch of the French regime by remarking that the priesthood, who do all things decently and in order, had a series of regulations regarding travel which read quaintly to day. They were to tuck up their robe on getting into a canoe, and were not to wear their shoes or stockings, though they might don these when portaging. Above all, they were to be careful that they took no sand into the canoe upon their feet and that the brim of their hat should not annoy the savages, an item which might bear quotation to-day in theatres, although the alternative that they should wear their nightcaps because there is no such thing as impropriety among savages, might be asking too much of the ladies.
(To be continued.)

WATER.

by w. M. watson, toronto.
On page 39 of the June issue of this paper for 1897 I discussed public water supplies and their construction, and now propose to continue the subject in a more detailed form. No doubt it is generally known that Henry Cavendish, an English chemist, in 1781 proved that rain water, the source of all water supplies, was a composition of two parts of hydrogen and one part of oxygen gases. Thresh states that pure water may be classed as a chemical curiosity, because when it becomes exposed to the atmosphere, or when passing over rocks, earth, vegetation, or when it comes in contact with any oxidizable metals or ores it becomes partly incorporated with them. Water will attract foul gases from the air, and often attract such a quantity of chemicals or metals as to change its taste and make it unsafe to use for drinking or indeed for any domestic purpose. Bacteriology has proved that both food and water contain microbes. Professor Richardson shows in his lectures that a single grain of good cheese contains 300,000 living germs. Microbes are useful and necessary to carry out the laws of creation. There are a large number of classes, each class having its appointed duty. Several varieties assist the growth of things. These are some-
times referred to as friendly bacteria, because all their work is done for the benefit of mankind. There are also numerous classes of microbes whose duty it is to rnt, to destroy, to decompose, and help everything to decay.

Strictly pure water contains very few microbes, eithes friendly or unfriendly, on that account it may be taken to be a risky kind of water to distribute, because just as soon as it comes in contact with air, it will rapidly absorb any foul gases that may be in the surrounding atmosphere, which also means that it aitracts microbes whether friendly or unfriendly, so that if the volume of water be surrounded by uncleanliness or foul atmosphere, the water itself becomes the receptacle of dangerous germs, and unfit for use for domestic purposes. Dangerous germs are always found in connection with decaying matter, they are discharged through the pores of the skin, by the intestines, and sent into the arr by the respiratory organs. A few drops of sewage that has had dirty clothes washed in it may contaminate water sufficiently to pass a quantity of deadly germs into many human systems. But we have a safeguard provided, but that safeguard is not in pure water, because pure water does not contain a sufficient quantity of the friendly bacteria to protect it from bécoming the hunting ground or receptacle of the dangerous and unfriendly microbes. On the above grounds it will be obvious that it is necessary to break up into small particles and thoroughly areate all deep well water, and in many cases spring water in a pure atmosphere as quickly as possible after it is received from the springs or wells, so that the water can attract a large number of the friendly microbes from the pure air. The germs of the friendly class enter water to seek carbonaceous substances, of nitrogenous substance (which Parks says is reduced to nitrite by their growth), which they devour fot food. They are rated as high breed bacteria because (they similar to man) cannot live without air. They can live in fluids as long as the fluids contain oxygen, which almost all waters do, but if the fluid be not repeatedly aerated, then they will die for want of air, which they should never be allowed to do until the supply of water intended for consumption in the town finally enters the closed water mains, and it becomes impossible for any dangerous death-dealing germs to enter the fluid and contaminate the supply. This shows the necessity of aerating all drinking water in a clean and pure atmosphere as often as the circumstances and arrangements of a waterworks plant will permit. The families of unfriendly and dangerous bacteria, as a rule, exist without air or oxygen, and when exposed for a time to the atmosphere will be destroyed. The more a town's water supply secures clean, pure aeration the better the quality and the clearer the color, therefore the more suitable for manu. facturers and dyers.

To make this subject easily understood I may say that I can point out two large towns whose boundaries join each other, both collect their water from the same table land, their reservoirs and conduits are similarly built and constructed, but when the water reaches the consumer there is a marked difference in the quality, because they. had different engineers. One engincer had conveyed the water without break or interruption the whole fifteen miles, the other took advantage of the high level of the collecting ground and the-broken state of the land between the large collecting reservoir and the well where the head of water was established for distributino the water to the town. Between these two points two or three miniature cascades were established which aerated the water. Then when the water entered the air-tight distributing mains it was necessarily of a superior quality to the water of the
neighboring town that received no aeration. As the majority of places needing waterworks contain a population of about 5,000 inhabitants I will confine my subject to the necessities of such places.

The waterworks plant of a small town will cost more per capita than larger towns, but those who have yet to secure a supply have the advantage of avoiding the mis. takes of previous towns which have already got their plants constructed. We find that several of our older cities are in the hopeless condition of water wasters, and the quality of water delivered would have been consider. ably superior had the plants been properly constructed and managed from their commencement. The waste and misfortunes of the large cities can be avoided, and the cost per head largely decreased by usung reasonable judgment and engineering shill. The improvements made in pumping appliances lately have so far reduced the cost of lifting water, that the cost of pumping a town's water supply need not form much of an objection. In fact a good engineer might supply all the heat necessary to work the pumps from the refuse and garbage thrown away by the water consumers, and by so doing would not only pump the water without buying any fuel, but also dispose of a very grave nuisance at the same time by cremating the garbage. When pumps are used to secure a water supply, the carrying pipe from the pump-house to the water tower, or to the point where the distributing mains commence to branch off, should be laid on a rising grade the whole way, avoiding any dips where grit or dirt may accumulate, or bending over small hills, thus creating hogbacks in the line of pipes where pockets of air will lodge and cause a resisting pressure that jars the pipes, loosens the joints, producing sudden water hammers, vibrations, etc., which sometimes damage the line of pipes, besides taking more fuel to drive the pumps. If a waterworks plait be well constructed and designed twenty-five imperial gallons per head per day is abundant for strictly domestic purposes. For trade purposes, for public baths and other extraordinary requirements an extra supply should be provided. Probably a daily supply of 150,000 gallons would answer for all purposes for a population of 5,000 .

It has often been proved a greater economy to tunnel or bore a road for the water mains under small hills, than to bend the pipes over the crown of the hilltop, also to bridge over a narrow ravine, and construct a frost-proof viaduct to pass the water mains over, than to make a quick and sudden depression. Because the extra cost is afterwards more than covered by the reduction in the general repairs and the smoothness that is established in working the appliances throughout the whole plant. When water mains are placed under shallows and a depression is made in the line of supply pipes a proper cleanout valve placed at the lowest point is essential, and when the main pipe is bent over the crown of a hill it is absolutcly necessary to place an automatic air-escape valve at the very highest point, or the water will not always flow freely through the pipes, because pockets of atmospheric air will repeatedly lodge.

There is no advantage in placing supply pipes down in the streets larger than is necessary to carry the maximum quantity of water to serve the section or district at any hour of the day for domestic purposes, because the water creates a growth of calcarcous formation all around the walls inside the pipe, that will continue to reduce the size of the bore until it becomes reduced to the size neces. sary to easily pass the maximum quantity used. By using good judgment in arranging the position of the main pipes, cleanout valves, and air escape valves, and if the
supply be afterwards intelligently cared for, the formation of obstruction can be avoided. The 8 and ro-inch pipes may be dispensed with where 6 -inch pipe is ample to serve for domestic purposes, because the whole force of the water supply of the town may be made to concentrate to any part of the town when necessary to extiajuish a large fire. We dwelt fully on the subject of laying pipes in our article of June, 1897 , and need not repent it here. It is a wise policy to secure a supply of water that will serve the town by gravitation if possible, even if it should cost fifty per cent. mose to provide the plant. I gave several reasons for this statement in 1897 and may here repeat that it saves the cost of pumping and the risk of a breakdown of the machinery just when a supply is most nceded. There are also sanitary grounds that weigh in favor of gravitation schemes, besides the works are always cheaper to manage after they are fully completed. The rainfall is the source of all water supplies, though the supply may be secured in the indirect way of being drawn from wells, springs, rivers, or fresh water lakes. If the substance of the water is changed by passing through moss and other vegetation, it is called surface water, and often moorland water, thus the quality of water is generally named by the chemical or mineral strata it passes through and which it incorporates. The water from springs is not always suitable for a town's water supply on account of its hardness or because it is impregnated with chemicals or minerals. It is possible by mechanical means to remove the hardness, and often by processes of aeration to remove the chemical or mineral gases the rain water may have absorbed. When rain falls on to high table land and hills it percolates through the soil and the rocky strata to a depth often of over 100 fett to hollow caverns, with large reservoirs holding in store inmense quantities of water that has filtered through. If the reservoirs had no overflow outlet to keep them from rising beyond a certain level, then the whole :avern would fill with water, and form such a heavy hydraulic pressure that an earthquake or shock would occur as soon as the water and the pressure of the water was able to weaken the side walls of the hill. Generally, each underground water-collesting reservoir has an overflow, and many of these overflows travel a great many miles before they burst forth out of the land and secure the name of spring water; of course, the point where the water issues forth is at a lower level than the surface of the water in the underground reservoir. Spring water is often far superior in quality to dcep well water, because it has gone through similar processes of filtration by passing through the carth's stratums, and also got further improved by a thorough aeration in the draughty caverns under the hills.

There are two counties in England that possess such water-bearing caverns that fortunately have a passage from the outside to the interior. I have been over a mile into the heart of those caves, I found that they contained flow. ing rivers, water falls, numerous small cascades spraying water, and domes and massive arches forming the roof that extended beyond what my eye could see with the aid of a torch, and many of the domes would exceed in height any of our tallest towers. Hanging from the roof were thou. sands of stalactites, each delivering a large drop of water at short periods. Our guides assured us that the caves could be traversed for many nore miles, but a novice on his first attempt of exploring the bowels of the earth is generally fully satisfied with going one mile and spoiling his clothes. But there was plenty of air in rapid circulation in both the caves. I have spent considerable time down at the bottom of deep coal mines, where the best of
appliances are kept going to provide the workings with fresh air, and once was within five minutes' time of losing my life for the want of air, having wandered into an old working void of air currents, but I never felt the air of a coal mine to be so fresh, so swect, and so much of it as there was in each of the caves I visited, yet no artificial means was used to supply it. Each cave gave a lasting and high-class object lesson showing how spring water was secured and why it is generally so wholesone to drink. A few weeks after I visited the cave I went to the foot of the same mountain at the east end, and witnessed a large volume of water gushing from an opening between two rocks. This volume of water forms the head of that noble river called the Aire in England. Might not the water be a portion of the broad river which I saw in the cave. When a town is fortunate enough to possess a good spring of water it may be accounted rich, because it will form a constant supply even in the driest seasons. It is a storage reservoir, a filtering plant, and an aerating apparatus all combined, that cannot possibly be injured or tampered with. If a spring can be secured, say about 300 feet above the level of the town, the water may be piped direct to the consumers, because the pressure will be about right for working, viz., about ifo lbs. to the square inch; if the level be higher then the pressure would need reducing, and the water might be conveyed to a small well or reservoir situated at the proper level, to ereate the pressure of water called for by t'e council of the town, to be placed in the mains, and ari ngements could be made so that as the water travels f.om the spring to the well head (or reservoir placed at the head of the distributing mains) to break up the stream of water, and give it another and further aeration before it enters the closed pipes.

The pressure of water should not be less than 100 lbs . to the square inch, and need not be over 150 lbs . A town having a working pressure of 150 lbs . to the square inch, and possessing a plentiful supply, may run all the small machinery, such as hoists, turning lathes, sewing machines, washing machines, the bellows of organs, and any machine not requining more than 10 -horse power, with their water supply at a nominal cost. The chief difficulty with towns' water supplies is to arrange and manage them so that they are not damaged by frost. We have often read items stating that during the past winter large fires occurred because the hydrants were frozen, which delayed the firemen and prevented them from extinguishing the fire while it was confined to limited area. Then several of our cities and towns have provided steam boilers on wheels that have gone from street to street thawing out house services that would become hard frozen again immediately if the water was not allowed to run during the time the cold snap continued, thereby wasting more value of water than would be paid for, for the whole year's supply. This is certainly a ridiculous state of things that can be avoided by using practical judgment and paying proper attention to the small details during the installati•n, and intelligent management after the works are completed. Few men, however clever, can correct errors of construction. Our present pattern of hydrants could be improved, because they are heavy and clumsy, often so given to leaking that they keep the earth which surrounds the vertical column always wet, and many of them leak enough to keep the interior of the column filled with water to the street line, and when that is the case the slightest frost afiects them and they become useless. The valve arrangement at the bottom should be improved. But if the hydrants were always perfect and tight they would be subject to freeze if
the vertical columns were surrounded with wet earth and there were no drain at the foot to remove the surplus water.

It is almost idle to believe that any town or village, wherever situated, cannot have a good supply of water at a reasonable cost. If the waters of lakes, rivers or springs supplying wholesome water are not to be secured at a reasonable cost, then take advantage of the water-bearing strata under the earth, they exist in abundance, and mechanical skill has provided reliable means at a triffing cost to bring the water to the surface. Some fifteen years ago I got a + -inch hole bored down through the earth's crust to a depth of thinty yards, when water of the very best quality for domestic use rushed up through the bore hole to a height of twenty feet into the air, and it cost me quite as much to bring that stream under control and provide a drain to remove the surplus as it did to bore the hole through the earth. I lowered a 3 -inch galvanized iron pipe through the earth to the depth the drill had cut then puddled round the outside and fixed a turnover bend on the top that I could attach a fire hose to, and a grated gully underneath to carry off the water, which completed the expense, and from that time to the present the flow continues the same. But a force of water similar to that can be met with but very seldom. There are persons that have the gift of pointing out the exact place where suitable water can be found, and if the bore hole is cut down as little as five yards from the place pointed out perhaps not a drop of water could be secured. Persons used to visiting mines and caves deep down in the earth can easily understand why.

THE LIQUEFACTION OF AIR.

A great deal of attention has recently been attracted to C. E. Tripler's experiments with liquid air. These have been extensively described in more or less popular magazines and yellow journals. We have not yet, however, been given any clear statement of the case by Mr . Tripler himself, nor has his process of liquefaction been made public to any degree. We have been pleased to receive from Norman W. Henley \& Co., New York, a new volume on liquid air and the liquefaction of gases, by T. O. Sloane, Ph.D., which contains a great deal of interesting information on the subject. A general discussion of the physics and chemistry of air, etc., together with an outline of previous experiments in liquefaction, take up the first 300 pages of the book, and these chapters are a most interesting resume of progress in this direction. A very full description, with illustrations of Mr. Tripler's experiments with liquid air, is given and they are very varied and most interesting, but chiefly from the spectacular standpoint. A description of the laboratory in which the air is liquefied is given, and while complete details of the air compressor, which is a Norwalk straight-line compressor, are to be obtained, there is no information practically as to the construction of the liquefiers, which, as the author remarks, " has not been fully divulged." We quote that, " they appeared as long felt -covered cylinders. Inside the felt wrappings are cylindrical cases containing coils of copper pipe. At the bottom of the coil of pipe is a special valve, the invention of Mr. Tripler. The compressed arr escapes from the valve, and, expanding suddenly, experiences a drop in temperature. Some of the cooled air works its way up through the chamber and cools the coil of pipe. Thus there is established an intensive or accumulating action. The air entering the liquefier at a normal temperature is cooled by the reverse flow of expanded air. It escapes from the valve at the bottom at a temperature which constantly grows lower until air begins to liquefy
and collects in the bottom of the liquefying chamber. Now all is in working order, air is liquefying and collecting, and in a short time liquid air can be drawn off by the gallon just like water. Three or four gallous of hquid air are produced in an hour in the esual operation of the plant."

The chief interest is not in Mr. Tripler's experiments, however, but in the economy or lack of it which character$i_{z e s}$ his production of liquid air. He seems to claim to be able to operate his apparatus with a portion of the liquid air which be produces. This is not perpetual motion, but its amplification would be unlomited power at mfinitely small expense. We await whit interest a complete demonstration of Mr. Tripler's methods. In the meantime it would seem that a mysterious motor is about to occupy that position in the public regard which was so long and successfully filled by the famous l:eeley motor.

LAKE NAVIUATION IN CANADA.

The first move in the direction of constructing ships suited to the changed conditions of lake navigation in Canada caused by the enlarging of the St. Latwrence canals, has been taken by the organization of the Canadian Inland Transportation Company, whose application for incorporation is now before the Dominion GovernmentAmong the promotes of this company are Geo. H. Bertram, president of the Bertram Engine Works, Ltd.; J. K. Osborne, vice-president of the Massey-Harris Company, Ltd.; Senator Forge, president of the Richelien and Ontario Navigation Company. The proposed capital is $\$ 4.000,000$, and the company will carry grain. For this purpose it is proposed to buld tell steam barges, each of which will be capable of carrying 75,000 to 80,000 bushels of wheat, as well as to erect adequate terminal facilities in the shape of elevators, etc., at Port Colborne. Montreal, and Quebec. Pending arran;ements for the completion of the organization, one steel barge of 78,000 bushels capacity will be built; in fict the work of construction has already begun at the shipyard of the Bertram Engine Works Company, Lid.

BORROWED PLUMES.

There is something larking in our municipal system. The aldermen are allowed too complete control of the professional heads of departments during their tenancy of office and they have too great latitude in dismissing and appointing. The recent amazing performance of the city council of Victoria, B.C., which appointed a Toronto carpenter to the most important office in us gift, that of city engineer, is a complete demonstration of the folly of present methods. The aldermen of Victoria dismissed the former engineer, A. E. Wilmott, a member of the council of the Canadian Society of Civil Engineers, without a moment's warning. Such a dismissal by such an aggregation is a testimonial to Mr. Wilmott's ability and integrity which is the more complete when viewed in the hight of the fact that out of twenty five applicants for his position the first chore of the council was a carpenter, whose friends insist that mental disturbance is the cause of his actions, not a deliberate desire to defraud. Be that as it may, W: B. Ferguson obtained the appointment through copies of testimonals whore originals have never so far as we are aware been seen by mortal eye. As will be seen from his most extraordinary letters to this journal which we pubist: herewith, he claims to be a graduate of the Royal Military College, Kingston. There is no such name, however, on the books of that institution, nor could
anyone be persuaded that the writer of these letters had graduated even from the public school.

The day before his departure for Victoria, Mr. Ferguson called on the editor of Tue Canabian Enginebr, and stated that he had been appointed city engineer of Victoria, B.C. His statements were so various that they roused more than usual interest. He had been appointed sole arbitrator in the Point Ellice bridge claims; he was going to speud $\$ 300,000$ on harbor improvements in Queen Charlotte lslands; he had spent the last five years in travelling in the United States and South America examin. ing engineering works.

Of course when the new city engineer arrived at Victoria and failed to produce the originals of his testimonials, even the Victoria aldermen thought there was something wrong. Had he been possessed of some papers to show those sagacious judges he would have been loosed upon the city to work his own sweet will upon the public works so far as the aldermen would permit it. Just how far that would be may be seen when the clause in his letter is considered in which he states that he has not been twenty-four hours in the city and every alderman has explained the situation to him.

One very peculiar feature of the affair is that Mayor Shaw, of Toronto, wrote a letter introducing Mr. Ferguson to Mayor Redfern. Now, Mayor Shaw has a right to introduce anyone to anyone else if he sces fit and even if he himself knows neither of the parties implicated in the ceremony, but he should be more careful in the language employed in these valued communications. In his favor to Mr. Ferguson Mayor Shaw stated that he "understwod Mr. Ferguson was recommended" by a certain engineer, Now, Mr. Shaw understood nothing of the sort. Mr. Ferguson stated that such was the case and Mayor Shaw had no other reason for any understanding in the matter than that. What a basis that was for any statement we believe we have already shown. It should be stated that Mr. Ferguson had some years ago heen employed as a foreman on street paving work in Toronto, and also that he unblushingly assured the editor of this paper that he had been the engineer-in-charge of the conversion of the Toronto Railway from horse-cars to an electric trolley system. We append the letters referred to :-

$$
\text { Victoria, B.C., Mar. } 30,1899 .
$$

Office Canadian Engineer Toronto
Messrs Sir
I promised to write to you when I arrived here-well I got here last night very tired-for I was one weth on the road- but as comfortable as can be under the circumstancesI visited His Worship, the Mayer of Victoria - Chas. E Redfern, Esq. -a very plesant nice person-an he took me-through the Hall and introduced me to the City Officiols -and also explained to me an outline of proposed works in contemplation there will be a great amount of work here in strect paving and reconstruction there has been very little of that line done here then the drainage is inadequate and will be entirely remodelled as well as the present Water Supply. I have not had any chanct to examine into the present existing systim My self for I am not 24 hours here as yet-but as you know every one of the City Alderman has their story to tell-about what it is and the remedy-well I have got to histen to all and say nothing untill I examine everything myself I will have a very busesy time of it this season-but will find time to write you a few lines now and again how things are going here and how it is done lhere is one thing here which will need a thorough reform and that is the present method of collecting and disposal of the city Garbish the method here now in use is for every person 10 get it away the best he can-And it looks rather Ancient to see a number of Chinaman with long swecp over their shoulders and two large baskets one at each end of the sweep or pole filled with the Garbage of the city carring it on their shoulders away to the dump-and no person to look after or direct the disposal of them -or direct the affairs of that denartment. In some of the yards of the Chineese Portion of the City the accumulation of Garbage are considerable-the Water here is not the Best. Victoria is a very Beautiful City Easily drained some very

Gine Buildings but the streets all need completely remodelling. They have a very good Electric car service and Electric light system. Victoria is a Stiring City in fitting out parties going to the Gold Region and it is a very fine climate-the coldest time last winter was 10° Frost and now the Grass is green-the Flowers are out in full bloom and trees partly out in leaf most of the Grain is sown now and some are coming up through the ground. Please send Canadian Engineer to Wm. B. Ferguson, City Engineer Victoria B.C. and oblige-I will write you mor later on.

Yours

W. B. Ferguson.
P.S.-1 enclose cliping from a local Yaper-the gentleman says the he freguently had occasion to see me in my earilier days when I was working hard at my calling and also-when I was attending the Military College-and that he will be here in about a month and call on me Iam given to understand that my appointment was unanimous in the council.
W. B. F.
" Among the arrivals from the East who registered at the Dominion last evening was W. B. Ferguson, C.E., of Toronto, Victoria's newly elected city engineer. Mr. Ferguson is a veteran in his profes. sion and has had long experience in sewerage, waterworks and kindred municipal problems. He is prepared to enter upon the duties of his new position immediately."

Victoria, April 5th, 1899.
Editor Canadian Engineer

Toronto

Dear Sir

Things are not what I would like here and so I sent in a commucation to the council declining to accept the Position of City Engineer here under the Existing Conditions unless the Conditions are greatly modified and changed-the terms are such that-an Engineer to have charge of the work must have controll of the men and here he has not, when I declined to accept the position every one was down on me then-because-by me wanting to have entire control of the mendeprived the alderman from power of putting on men whenever they wished so I seen I was going to have trouble so I quit-so post nothing up here to me at present I am now going north up the Island and will write you then-later on-I remain you
W. B. Ferguson.

METAL IMPORTS FROM OREAT BRITAIN.

The following are the sterling values of the imports into Canada from Great Britain of interest to the metal trades for the month of March and the three months to March, 1898 and 1899 :-

Gardware	$\underbrace{\text { Month of Marcli, }}$		Three Montis to March,	
	1899.	1899.	1899.	S5so.
	£2,032	\{1.733	£5,270	¢ +1387
Cutlery	2.947	3.368	9.559	11,188
Pig iron	689	28.4	2,541	1,0.46
Bar, etc.	411	545	1,823	1,791
Railroad	6.922	..
Hoops, sheets, etc.	697	2,287	3.450	4,030
Galvanized sheets	1,875	741	4.393	1,56r
Tin plates.	6.722	9.658	24,598	21.205
Cast, wrought, etc., iron	1,981	1.904	5.552	4,344
Old (for re-manufacture,	323	..	403	..
Steel	5.295	2.774	15.922	8,763
Lead	1,090	1.505	2,608	2.527
Tin, unwrought	1,838	2,274	2.758	4.907
Alkali	2.593	1,924	5.457	4.320
Cement	81	508	1.955	759

CULVERTS AND BRIDGES. ${ }^{-}$

by A. W. CAMPBELI.

The majority of Canadians, when visiting Europe, are imbpressed with the durability and solidity which characterizes the structures of that country. Private residenecs are built to withstand the wear of centuries. Cathedrals, public halls, librarics, and similar civic institutions are constructed, not merely for the present, but for future generations. Among the works marked by this durability are to be classed the public highways with all that pertains to them. Canada, in this regard presents a very unfortunate contrast.

It can justly be argued that Canada is a very young country, and that England is a very old country; that Canada is not a wealthy country, and that England is a very wealthy country. While England is, in a way, a very old country, yet it is not so

[^0]much older than this country in the arts of civilization, which should teach our citizens and municipal councils the necessity for and the means of wisely spending money in permanent improvements. And while England is a richer country than Canzada, that greater degree of wealth has been brought about, to some extent, by the very durability which we have so long avoided. Permanent improvements are the cheapest. Structures which need props and repairs within a year or two after they have been built, seem to be in a cluronic state of starvation, with a ravenous appetite for moncy. Canadians have not yet outgrown the idea that they live in a pioneer land where the needs of the present entirely overwhelm the future. In nothing is this temporary building more apparent than in our highways; and in no detail of our highways is it more striking than in the matter of bridges and culverts. At the same time there is no portion of the making of a road that offers more scope to the road maker than in providing substantial and permanent waterways. Instead of the handsome stone and concrete arches that sjan so many of the streams intersecting the highways of England, there are to-day in this country scores of wooden boxes and trusses-flimsy, disjointed, unsaic; the constant source of accident, and the bottomless pit into which councils are annually throwing money in a vain endeavor to keep them in repair.

Considerable attention is generally paid to the selection of a good site for a bridge, and an effort is made to decide in the interest of economy, usually with a considerable measure of success. There is, how $:$ a tendency to cling to the line of original survey, rather tu...n deviate the road slightly, waen by doing so, much would be gained in lessening the dimensions of the bridge, securing firm foundations for piers and abutments, reducing cuts and fills of the approaches of the bridge; all of which, while they may not decrease materially the first cost, very fiequently are of the utmost consequence with regard to maintenance, and may decide for good or bad, the usefulness of the entire roadway. The utility of a road with respect to hauling leavy loads, is not governed so much by the condition of the best section as by the worst; not so much by the level portion as by the steepest grade. Bridges, forming, as they do, a means of crossing valleys, are intimately associated with the probiem of judiciously choosing between directness of route, casy igradients, and details of construction. The location of culverts is a matter of very common error. Water should be disposed of in small quantities, along natural watercourses, before it gathers force and headway. Instead of this principle being followed, water is frequently carried long distances by the roadside, past watercourse after watercourse, rother than build a culvert or culverts to carry it away without injury to the road. Where culverts are needed, they should pass directly across the road and carry the water ar iy from it.

The size of bridge or size of culvert involves nice discrimination, in which local circumstances and the class of construction introduce various factors. For the size of waterway, no hard and fast rule can be given. Many existing culverts and bridges were at one time of sufficient size, but the clearing and draining and cultivating of the land now permits the water, after a rainfall, to reach the watercourse in a shorter time with increased volume, causing submerged roadway and flooded roadsides, while culverts and bridges are swept away. The best guide to a proper size of waterway, is an intimate acquaintance with the locality or the evidence of others who are, with respect to maximum rainfall, height of water line, previous experience as to floods. form and inclination of the stream and area to be drained. kind and condition of the soil, and similar details. Talbot's formula, proposed more as a guide to the judsment than as an unalterable rule, is at times very useful:
Area of waterway in sq. ft. $=\mathrm{C} 4 \overline{(\text { Drainage area, in acres) }}{ }^{3}$ C. is a variable co-efficient, and the values given are: "For stcep and rocky ground, C varies from $2-3$ to I , etc. For rolling agricultural country subject to floods at times of melting snow. and with the length of valley three or four times its widih, C is about 1-3: and if the stream is longer in proportion to the area, decrease C. In districts not affected by accumulated snow and where the length of the valley is several times the width, 1-5 or 1-6, or ceen less, may be used. C should be increased for: steep side slopes, especially if the upper part of the valley has a much greater fall than the channel at the culvert."

Waterways shoula be neither needlessly large, nor of too small dimensons, involving on the one hand unnecessary expense fo: first construction, and on the other hand, injury to the rcad, washonts, expenne repairs, and delay to trattic.

The materials available for colvert construction in addition to umber, are sewer pipe, concrete pipe, iron pipe, brick, stone. and concrete. Culverts are sometmes made of one of these materials atome, or of two or more in combination. When the dimensions of a bridge are reached, conerete and stone abutmonts and piers, with iron or sted superstracture; or stone. bisek or concrete, alone or in combination, are the materiats faning fivor.

For the small culverts, sewer pipe is very economical and durable if well laid. To render them secure against the test of a Canadan chmate, they should be haid with a nood grade, and the ends protected with concete. stonte or brick headwalls with decp aprons. The joints shoult be made water tight wath cement. These presamtions will provide againit the action of fros. and will pretem the culven being undermined by water fassing along the outside of the pipe, either from the ends or throngh the juints. Care should be taken to excavate a concine bed tor the pipe to rest in. always laying the spigot ends uf grade. The pipe at the outlet should be set hush with the surface of the ground. If set higher than the suriace the fall oi water will wash out a depression and wal! in time andermine the end oi the culvert. A too rapid grade will cause the same revilt. It is ireguenty well to cobble-pave the outlet, where this undeamining action is likely to occur.

Excellemt cultert pipe of concrete can be manuiactared chaply in any gravel pit under the immediate direction of the manicipal engineer. The pipes are three or four inches in thickness according to diancter; which latter may saiely -ud conveniently reach ihrec iect. The implements required are ei the simplest kind. The most important are two stecl, sprints cylinders, one to set inside the other. leaving a space between the two equal to the thiekness of the tinished conctete pipe. By " spinf.cylinder." it may be exphaned, is meant such a cylinderas would be iormed by rolling an iron plate into a tube without sealing the joint. With the smaller oi these eylinders the edges overlap or coil slighty: but are so manniactured thet the elges may be forced back and set into a pericet cylinder.

These two elinders with ioints flush. are set on end, the one centrally inside the olfer, and on a firm board bottom. The concrete mide oi first-class cement and well sereened grasel. is then tamped firmly but lightly into the space or mould between the two cylinders. The tamping-iron used to press the concrete into place is so shaped as to it ciosely to the cylunders. The concrete is allowed to stand in the mould ior a few hours. when the eylinders are removed; the outer and larioer cylinder by inserting an iron wedge into the joint. and iorcing the edges ajout; the inner celinder, by inserting the wedge into the jomt and turning the edges so as to allow them in again over!ap. returning to the shape of a coil. The outer cylinder having thas heen made larger, and the inner one smaller, they can readily be taken away, and the concrete pipe is then leit until thoroughly hardened. Just such a number of pipes as aee actually required for the seasern's work need be manuiactured; the implements required are inexpensive and the pine may be made by the manicipahty ior actuai cost, which, aiter a litle experience, can be reduced in a vory small amount. Culverts of concrete jipe are laid is 2 manner similar to those of sewer pine.

There is no departure which would more enrich the highways than the general use of stone and conerete ior the consituction of bridecs and culverts. They cost more in the tirst itstance. but the longer life, the iewer repairs needed, the greater ecnuenience. the lesser inabihty to aceident, render them in every way desirable. Conercte and stone are the only materials with which really permanem work oi this namine can be constructed. Hriciges and culveras oi rubble masonry han e existed in Scothand and Ircland with scarcely any repairs for more than a century. since beiore the sime of Teliord and Macadam. Concrete Mridges and roadieds lituit by the Ramans nearly $=000$ years ago are still in use in spite of efforts in destroy. them in military operations. The coct ni this class of work is constantly decreasing thenugh the elienpening amd improving of coment, through the lesecned expense oi proctuine stone and crushing it, and theragh growing experience in the use oi cement. In Sentiand
it is common for farmers to contract for rubble concrete bridges, provide the stone, and hire masons to do the work. In this way the entire expenditure is kept in the locality, among the people who pay the taxes, and is therefore, in spite of a slightly greater cost, not unpopular. Up to forty foot spans, this construction is not dificult.

In the construction of a stone arch, the first consideration is the foundation. The depth to which the excavation must be made will depend chielly upon the span of the arch, and the nature of the natural suil on which it will rest. The cince object is that it shatl be secure. If bed-rock comes to the surface it may be safe to rest the base oi the arelt upon it without any fiurther excavation. A firm hardpan may exist a short distance below the surface of the ground. But a quicksand, or other insecure footing, may necessitate the sinking of piles, or the placing of a wide, and perhaps deep. concrete base. But the foundation must be sufficient to provide that the washing of water carnot undermine it, that the lateral thrust of the embarkments camot move it, nor that the weight of loads camot cause it to simk. No more definite rule can safely be given than to make the most of local circumstances, with always a fair margin for saiety. Full-centre arches, that is, entire semi-circles, are tasily formed, possess areat strength, and have little lateral thust. but with wide spans, they necessarily rise to a correspondingly great height, and cannot always be employed. it segmental or that arch will lessen the rise, but has a considerable lateral thrust which necessitates very strong abutments. A compound arch, made up of a number of different circles, when rightly proportioned, combines the advantages of the two, reducing the height, and at the same time having an excellent appearance. The thickness of the arch and abuan ats depends on a number oi details, the chicf of which are: I de form and sioe of the arch, the quatity of the material composing at, and the character of the workmanship. The haunches or shoulders sleceld be buite from the spring oi the arch half way to the top.

With regard to the masonry, first-class hydraulic cement should be used. The arch stones should be full-bedded in coment, and cach course afterwards thorouginy groutcd. Each stone should be cleaned and dampened beiore beins placed in the arch. Improperly dressed stones should be re-cut, as no hammering should be allowed aiter the stones are set. The ring-stones should be dressed moto a wedge sizape, so that they will radiate truly from the centre ni the circle, and should be so dressed that the joints need not exceed thrececighths of an melh in width. The ring-stone should be of such thickness as tu cxpuse ten mehes on the mside or iace oi the arch. The extersur oi the arch should be thushed whth a one inch coat of cenicm and surface then smoothed off.

Arcih-culverts and bridges oi cement-conerete can be more clecaply constructed than can masontr arches, and, if carcful werkmanshuy is employed, are quite as serviceable. They are iorned by consiructung a curbing and thoroughly ramming the cuncrete moto it in successive layers. The manner oi mixing the concrete depends on the character of the cemem used, some centents beang slow setting, others quek setmes; some will set "cll in water, while others will not; some will allow a considcriable proportion of water to be used in iorming the mortar, whic other cements should be but sitghty motstened. One foature in connection with concrete culvert work is that, wath the curbing and centres m place, any mtelligent workman can, by iollowing the mstructions of the engineer, lay the concrete. Manulacturers complain that masons, in the great inajurity oi cascs. cutirely distegard the instructions given them with respect to the mixing of cement, and iollow their own methods oi mixing common mortar; while a man totally maccustomed to work of this description will obey instructions carciully and minutely. Concrete canmot be mixed and put in place like common mortar, and by overlooking this fact, much concre:c work has iailed, and has brought the material into disfepute in some lecalitics.

The most substantial substructures oi bridges are oi cither stonc or cuncrete. In their construction sullicient creavation must at first be made to properly contain the abutment, and this carth may be refilled again so as to form approaches to the bridge. The excavation completed, when concrete is used in whole or in part. the portion thus constructed must be boxed and curbed in a substantial manne: the cxact size and s!age
reguired. After the concrete has set this boxing is removed and earth filled in solidly around the face of the abutments. Hammer dressed stone should crown the concrete to form it bridge seat.

Concrete should be composed of first-class cement; a retan sharp silicious sand, entireiy free from earthy particles and coarne encugh to pass through a twenty mesh and be retatned on a thirty mesh sieve; clean screened gravel, the largest not to be more than wo and one-lall inches in diameter; or in place of gravel, broken stone that will pass through a two inch ring These materials should be mixed in the proportion of one oi cement, two of sand, and thres of gravel or broken stone, witljust sufficient water to form a plastic mass. The sand and cement should first be thoronghly mixed when dry, then water added to make a thick paste, and this thoroughly mixed again Th:is mortar is then spread olt, and the stone or gravel added. when the whole is mixed together until every stone is thoroughly coated with mortar. When this is done the concrete nasy be put in place and should be spread out and pounded until the excessive moisture appears on the surface.

The design of iron or stecl bridges commonly erected may be classified under: The plain beam or girder; the bean truss; the suspension truss, and the bowstring or arch truss. The first of these is well understood; the second comprises those trusses in which both bottom and top chords are essentiat; the third meludes those in which the upper chord only is necessary. in which the horizontal tie takes the place of fixed abutments. The style chosen should be governed by circumstances and cconomy; but apart from this any design is good so long as it can be accurately analyzed as to the character and amount oi strain in all its parts. On the other hand any design which carrot be so analyzed shoukl not for a moment receive consideration. The course pursued by some, indeed most municipalities, in crecting iron bridges is likely, however, to result disastrously, and throw iron and steel into disrepute. A council advertises for tenders. The companies responding supply their own plans and specifications. Thus far the procedure is entirely satisfactory. The difficulty arises when the councils accept the lowest tender without obtaining the advice of an experienced builder of iron bridges as to the plans and specifications submitied. Cases have occurred in which a difference oi five dollars has influenced a council to accept a tender for a bridge which maniestly, 10 a man of expericnce. was worth less than the other by several hundred dollars: and which was indeed umsafe. offering every likelihood of failure, with attendant loss of life, and great cxpense for reconstruction. It is difficult to understand the action oi conncillors. shrewd in other matters, in the construction oi bridges and other public works procceding with such apparcut disregard for the true interests oi those whom they represent. A small sum in securing reliable advice is as mach a matuc: of conomy in public as in private affairs.

instruminnts for measurina small torsional STRAINS.*

fi: e. G. COKER, J.A., b.SC., 3f.i.N.E.,
(Late Scholar oi Peterhouse. Cambridge)
The advances made within recent years in tise scientific testing of enginecring materials have caused great attention to be paid to the design of instruments for measuring small strains. By. far the greater number of such instruments have been devised for measuring the small strains oi extension or compression in bars subjected to a direct pull or push, and but little attention has been paid to instruments, for the use of engineers. in the measurement of the small strains in a bar subjected to twist. The object of the present paper is to describe two armagements of apparatus intended for use in enginecrin. laboratories and testing houses for measuring such strains. and for the determination of the modulus of rigidity. Each instrument is wholly supported by the test bar. being secured thereto by screws. which grip the bar at two transterse sections separated by 2 known interval, and the relative angular displacement between these two sections is measured directly. The instruments are adapted to measure both large and small strains. and are self-contained, white they can be used in a horizon:al. vertical. or inclined position.

A papersead belore the Brithh daso ciatlenferitendar cirtent of Scierce.

One form of the apparatus is shown by Fig. I, and consists of a graduated circle λ, mounted upon a cluck plate B, provided with three centering screw; adjustable by hand. A ring C. secured to the test bar by set serews at a known distance away, carries a swivel arm D in which slides a tube E, so that

the contact ball F at its outer end can be brought into position souching the centre of the faced end oi a serew micrometer sauge Il provided with a divided head. This micrometer screw is mounted upon a vernier plate J of the graduated circle, aad can be clamped in any position, the final adjustment being effected by a serew N. A silk covered wire connects an iusulated binding serew K upon the ring with the contact ball, and this wire is joined up in circuit with a simple form of galvanometer L and cell M to a second uninsulated binding screw on the ring. If the contactiag pieces are touching, a circuit is completed through the test bar, and the galvanometer needle is deflected. If now a twisting movement is applied to one end of the test bar, the contacting pieces are separated, and the micrometer screw must be advaneed until the circuit is again completed as indicated by the galvanometer needie. The mumber of divisions through which the serew has been turned afineds a measure of the angular displacement. and it only remains to calibrate these readings in terms of angular measurement.

The calibration is effected by reference to the graduated ci:cle and vernier plate. The micrometer serew is set taingentially to the radial arm, and thercfore its indications are nearly proportional to the tangent oi the angle moved through but if the faced end oi the serew is always maintained it or abrut its central position. the crror introduced by taking the readings as directly proporional to the angular displacement is relatively small compared with the quantity under measurement. and may be neglected. To calibrate the instrument it is therefore only necessary to measure the number of divisions corresponding to a small ancular displacement of say 10°. and this is easily accomplished by setting the instrument in position with the circuit complete and afternards following up a known angular displacement of the vernier plate by the micrometer serew. A simple form of deiector galvanometer, in. circuit with a single dry cell. has been found to be a convenient arrangement for indicating when contact takes place, and the fecble current required does not injure the contacting surfaces. It is essential that the graduated circle be set accurately upon the bar. with its plane perpendicular thereto. and its centre coinciding with the longitudinal axis oi the bar. An arrangement
has bern devised to elleet this, consisting of two smular and egual clamp bars, the eyed ends of wheli tate over outwardly projecting cones arranged diametrally ujon the chnck plate and ring. bach main piece has one degree ol ireedom with respect to the clamp bars, and therefore two degrees of free dom whin respect to the ohther. these degrees of ireedum atre supprowed by propecting plates fitting againit correspondut mogections on the main peees, and this connection nakes the if baratus a hagel whole. The bar is now insertel. and the erewo adiusted by hand as accurately as posiable.

The clamp bars are afterwards removed. leaving the two main puese accurately spaced on the bar, while the graduated citcle remains perpendicular thereto. and ver: approximately comed. The hafin contactug arm is then clamped in postion. and the bar may mow be set in the testing machinc. An innproved elamp deseribed with reference to the second iurm of apparatus may be used inctead of the arrangement described above, and the hand operated chnck plate may be rephaced by a icrm of seli-centering chuck described below: An example oi tests made with this apparatu, is given below. The test bar was adjustably secured at one end. and a balanced lever of fined length secured upon the iree end. and hang irom the arm of a seale beam. The load was applied by placeng equal weights in the suspended pans oi the balanced lever and scale beam. so that bending movement was as iar as possible climinated. Before making a reading. the torston arm was brought to a horizomal position by aid oi a spmrtt level The mean of the calibration tests gave iS6 divisions oi the merometer acrew as cor:esponding to an angular displacement oi 1 mintute of are. Liurned bar of lessemer steel. length under measurement $=10.25$ inches, diameter $=0.747$ inches. torsion arm $=15$ inches, a constant. The figures in the first column give the load in the pan at the end of a constant arm-

Load-lbs.
 Reading.
 Differences.

0	0	\therefore
1	26	-5
2	51	-0
3	77	\pm
4	10.9	$\therefore 5$
5	125	\cdots
6	154	$\square 5$
7	179	26
8	205	26
9	231	25
10	556	27
11	283	27
12	307	26
1.3	3.3	25
14	35 S	26
15	3 S	26
16	410	25
17	435	25
IS	460	25
19	485	35
-0	\$10	-5

Ii 1 - leagth oi the bar. $d=$ dameter.
Ty = twising movement. $\theta=$ relative angular displacement.
$\mathrm{C}=$ momiulus of rigidity.
Then ior bars oi wniform circular section-
and we have ior this tect bar
$\mathrm{C}=11.800 .000 \mathrm{lbs}$ per square inch.
A secrond text gate almost identically the same resulis The periormane oi the instrament is linited by the accuracy oi the micrometer sercu: and in the present insirument the snallest angular displacement capable of measurement is about fe ate secomle oi are: As the contracting bar is not heary, no difficulty in reperienced in balancing it. and therefore its length may be considerable. This form ni instrument is therefere aliaped in measuriag the strains in long test bars. The sccond iorm of apparatus differs irom the preceding in empleying a reading microscope to observe the relative angular diaplacenent ai a radial line upon the vernier plate. The edge of a thick wire is a very convenient line ior observation, and
has been used with notable success in an extensometer designed by Professor liwng (Proc. Roy. Suc., May, 1895). The instrument is shown by lig. 2 . in whelh 1 is the graduated circle mounted upon a chuck B, and furmshed with a vernier plate J. an arm () of which carries a wire P. A realing microscope is carried in the slece R of an arm S mounted apon

Fic. 2.
the short celinder C. which latter is gripped upon the test bar by screws. The reading microscope has an eye-piece T provided with a glass scalc, and a right-angled prism \dot{U} is interposed between this and the objective W, so that readings can be easily taken. The tube Q is iree to slide or rotate in ats guide R, but, in order to readily iocus the wire, this latter is carried in a frame \mathcal{X}, pivoted upon the vernier plate J, and adjusted by a screw. The microscope arm S is secured to the cylinder C b; a divided collar, the two halves oi which are pivoted on: one side and the free ends are clamped by screws. If it is desirable that the telescope be turned reund or released altogether the screw may be thrown out of engagement. Since the difference between an are and its corresponding chord is an infinitely small quantity oi the third order. when the are is an infmitely small ctuatity oi the first. the readings of the microscope scale may be taken as directly proportional to the angular displacement, and tite calibration is effected by moving the wire through a definite angle sif so'. and noting the equivalent reading of the micrometer eye-piece.

Fig. 3.
This instrmant is furnished with an improved iorin of clamp. Fig. 3 . concisting oi a pair of divided collars a. the halves lieing pivoted together at b. and secured by muts c. Tho crllars are wedge- haped in radial section to enzage with correapondin: wide-anpled gronves upon the chack plate and cylinder. emly the angled sides being in eontact. so that the eollare are readily fised when required. The lowe halies d of the divided collars are connected by one or more distance pieces e. so that when the former grip their respective grooves each piece has me degree of freedom with respect in the clamp. and thiv can be suppressed by a pin or by the irictional wip of the collars. therely causing the parts to act as one rigid whole ine selting the instrument on the bar.

The fraduated circle of this instrument is earricel by a selicrricring chuck of somewhat novel form. and a section through lhis is shown by Fig. q, while a perspective view of the ar-
raugement is shown by Fig. 5. There are three centering serews Λ^{2}, the outer cylindrical ends of which are supported in guides B^{\prime}, and prevented from rotating by pins C^{\prime} engaging with slots S^{1}, cut in the screws. The screw; work in rotating

Fic. 4.
nuts D^{2}, provided whth bevel pinons E^{2}. gearing with a hand operated bevel ring G^{3}. so that all the screws are advanced or receded together. in additional pinion H^{2} is provided. operated by a key fitting on its squared spindle J^{\prime}. so that the screws are firmly gripped upon the bar. The inner ends of the nuts have a collar bearing $\mathrm{K}^{\mathbf{3}}$. so that the stresses are borne by the body L^{2} of the cluck. and the bevel ring is prevented from seizing by bearing-plates and an adjustable rintr Ma^{1} at the back. This bevel ring can be slid back to allow any screw to be separately adjusted. Other modified arrangements

Fic. 5.
of the chuck have been tried. in which the guide pins have passed bodily through siots eut through the inner ends of the screw, and the serew pairs have been inverted, but these modifications have not answered well. An exampic oi tests made with this form of apparatus is appended. the same Bessemer steel bar being used. Mean value oi calibration test-t minnte of are corresponds in in 6 divisions oi scale. length under measurement $\$$ inches. diameter 0.747 inches, torsion arm 15 inches. a constant.

L.oad-lbs.	Reading.	Differences.
0	800	41
1	759	$4:$
2	718	41
3	677	$4!$
4	630	40
5	596	41
0	555	42
7	513	42
8	471	41
9	430	41
10	389	40
11	349	40
12	309	42
13	267	42
14	225	42
15	283	40
16	143	40
17	103	41

and we have for this test bar $C=11,850,000 \mathrm{lb}$. per square inch. A second test gave very approximately the same result. Angis lar displacements of inch can be measured with this form of apllaratus. As the overhanging arm carrying the microscope is necessarily heavy, to afford the requisite stiffness, the length under measurement is linited.

For the purpose of making the angular displacements visible to an audience a magniying arrangement is used. consisting of a tilting mirror, supported upon a tripod. Two legs of th: tripod are supported by a hole and slot carried upon the vernier plate, and the third leg is supported upon a plane attached to the other main piece. The spot of light rettected from the mirror is caused to move over a fixed graduated scale. and the angular displacement is thereby made visible.

SWEDISH VERSUS CANADIAN IRON METHODS.

Iron, its production and its manuiacture, is even more essential to the industrial progress oi a nation than sulphuri: acic. The iormer is the bone and sinew of the mechanical arts, the later of the chemical. The vitality oithe nations of the world may be gauged by the amount of these they can absorb and assimilate. Tried by this standard. Canada is certainly not conspicuous ior energy. The most cogent apology for the inicrior position she occupies in the list oi iron producers is found in the absence oi coal in Quebec and Onterio. But, as these sections are supposed to contain iro: ore oi exceptional purity, to be covered with almost boundless iorests, and to possess sulphur ores rich enough for export, a comparison is irresistibly suggested with Sweden. where exactly similar conditions exist, and whici is, nevertheless, ote of th: most notable iron-producing and manuiacturing centres oi the world.

By all accounts Camada has large deposits of mangamicrous iron on Hudson Bay, and still liarger deposits oi higher grade ore on Ungava Bay. The Newioundland iron ore beds are nctable ior size and accessibility. If ores from the hyperborean forests oi Sweden can be profitably procured to iced the furnaces oi Europe why not the Canadian as well? For. to the modern sailor, the Atlantic is no wider than the Baltic Sea or German Occan.

It is not to those iron ores which Sweden exports. but io these she treats at home. and to the methods she employs for overeoming her metallurgical deficiencies that I want to draw ycur attention. Through Central Sweden with a general trent to southwest and northeast is a band of szoic rocks. the equivalent of our lluronian. about 100 miles wid and 200 long Fores: covers most of this tract. Within it are the mine. which. during the 17 th and isth centuries. producet the ore that made Sweden one of the most important factors in the jron and copper markets oi the world. When cheap coal and coke became the fuels oi the iron and steel makers. Sweden's preminence wanct. For a time alter Bessemer's great inverr tion was introducel. Sweden's yure manganiferous pig iron was almost the only material to which it could be successfully ap.
 Amerifan Inviture ef Mining Engineere, before tre Mi-ing Convention. Monteral
plied. But improsements in the process, and subsequenty the adoption of basic converter lining. deprised Sweden of the ad vantages which, in this respect, her ores offered. Yet nothing daunted, Swedish industry and metallargical skill prevailed. and today she has reswed, not her former position as one on the largest of iron and steel mannacturers, but her iormer importance, as the mannacturer on a large scale of the purent grades of those metals in the world. The intelligenee and the fexbbility with which Swedish ironmasters have adjus:ed themselves to new condtions and new requirements, is one of the most interesting phenomena of modern industrial life, and one well worth studying by Cauadan metallurgists Again and again Sweden has led the way in certain directions, and been dheerted from that path by the invasion of her markets by more favorably situated compenors, and yet she has often found a new outlet for her energies and her wonderiul products. Today. more than ever, quality, not quantity, is the aim of her irorimasters.

The ore in the ecmeral zone of Sweden is not all of exceptis mal purity, or equally low in low sulphur and phosphorus. and high in iron. Moreover, the mines which yield the present ores are not the largest, and the exceptional execllence of the product is secured. not only through the purity of the raw material, but also by dint of intinite care in the manufacture. The mining and metallurgical operations of even the largest concerns are conducted on what would be regarded on this side of the Atlantic as an insignificant scale. The furnace and plants generally are on a comparatively diminutice seale. The charecal firnaces are small. the height being from it to 18 meters. o: 36 to 59 feet. The average ammal product of each blast furnace is 4,800 tons. or only 13.1 tons a day, and that of the largest 40 to 45 tons daily. It speaks well ior the steady growth in production of the country that the tigures for every decade since 1830 show not only a gain in production. but a reduction in exports, and, therefore, a healthy development of its internal resources. All the furnaces in Sweden make yearly only as mush pig iron as one oi Carnegic's great Duquesne stack, pours forth weckly. And yet. so intimately interwowen is the iron trade of Sweden with other of her staple industries. that the weath of that thrifty little land, with a population (4.524 .150 on December 31, iS93). rather less than that of Canada, depends in no small measure upon it.

Sweden's present prosperity is in great measure due to the association oi three great branches of industry under common management, namely: 1. Iron and steel making; 2. Lumbering, and 3. Wood pulp manuiacturing. Dissimilar as these pursuits seem they are in reality closely allice. The high character which the product of the furnace possesses, is attributable to the use of wood fucl alone. Not a breath of sulphur gas is allowed to taime the iron and stecl during its reduction or subsequent manuiacture. The iron companies which treat the purest ores find it more profitable to make a moderate output of extraordmary qualisy with wood as fuch, than to treat large quantities with mineral fucl. But in arder to secure wood gond crough for metallurgical purposes at a permissible cost, the iton companies own large iorest reserves and convert the better grade and larger sizes oi timber into dimension lumber and wood pulp. As an example: The largest works in Sweden are those oi the Kopparberg Co. (the Stora Kopparherg Bergstags Akticbolag) whose property is situated in the province oi Dalicorlia The congmay produces alone t-to ai the what ourput of iron and steel oi Sweden. The iorests cover an area of 736.000 actes. It, sawmalls are on the Baltic at Shutskar These the highest grade of lumber goes to the pulp mills, the sece nd quality to the lumber mills, and only inierior and small lumber to the chareoni kilas ior use in the blast furnaces, white mill refuse and sawdust are converted into gas for other metallurgical purposes. In isgo the company's mills turacd ont 57.36 St . Petershurg standard $=113.500 .620$ iect hroad measure and 5.500 tons oi pulp. The pulp is made by both the culphite and mechanical precesses, the later being possible through the. possession of water power of 15.000 hp . capacity The sulpharnus acid for the sulphite process. comes from the nlit Falun copper mines. irom whose ores. in addition to the sulphurous acid for the pulp mills, over 2.000 tons of sulphuric acid are made annuailly

But the lumber trade of the enmpanys activities is insig.
niticant compared with its iron and sted operations. These are best described in the companys own areular. prepared for the Stockholm Exhibition in 1807:

In the year 1733 the company built their first iron works. Sarmas, based on the then discosered iron mines at Vintaurn. One iron work after the other was, hater ont, added. cach intended tor its own particular specialty. so that the company has manufactured iron at some 20 places in all. So many diliticultics met, however, in ceonomie:lly carrying on the mannfacture at so many places, on accoum of the expensive com munications existing, that an was decided about 1870 to concentrate the iron manufacture, and for that purpose build new works, for which a place was selected at one of the big waterfalls of Dala river. This new works is Dommarfoet, wheh in the largest iron works in Scandinavia, and the largest in the world, based on charcoal as fuel. To it belongs 160 iron mines and a number of waterfalls, together capable of developing abcut 50.000 h.p., of which, however, only a small part at present is utilized. The works consist of the following departments:

Charcoal-making plant, cight large kilns. Blast furnace plamt, with five blast furnaces, six Westman's roasting furnaces, reged erative blast heating stoves, etc. Bessemer works with five converters, ete. Siemens-Martin works with four furnaces of 15 tens cach. Rolling-mill plant for sheet iron and plate, wire rods, rails, beams, channels, angles and all kinds oi merchant iron. Forge for hammering tool steel and miscellaneous tonls. Plate-pressing works for boiler heads and similar articles. Horse nail factory. The whole iron and steel manufacture, as stated, is based on charcoal, by the aid of which it is produced from the parest ores. The highest grade of steel for cutting and other tools, for springs. coining dies. etc.

The principal manufactures at Domnarfoct are: Pig iron. extra purc. Ingots, blooms, billets, and slabs of Bessemer and Siemens-Martin steel. Billets specially made for scamiess cold drawn tubes. Projectile steel in large quantities for the Eng. lish and other armies and navies. Bars in various shapes and steel and wire nail rods, wire rods, rivet rods oi Bessemer and Siemens-Martin seeel and Swedish Lancashire iron. Hammered bars of Swedish Lancashire iron. Rails. Boiler and ship plates. Sheet iron, corrugated and smooth. Pressed and langed work of plate. Machine-strengthened shafting. Hanmered steel (miners' drill stecl, tool steel. shear steel, spring steel, file stecl, pin steel, machine stecl, file blanks, etc). Stone-cutting tools, hammers, anvils, ete. Horseshot: nails, etc.

The products of Domnarioct are. to a large extent, exported to the great countrics of Europe. to America. Austria. the East Indies. China and Japan.

The company also own two other works. Korsa and Ag. where especially soit Swedish wrought iron is made. The annual production of iron and stecl is: 55.000 tons pig iron; 35.000 tens Bessemar ingots; 20.000 tons Siemens-Martin ingot:; 4,000 tons charcoal iron blooms: 47,005 tons rolled and hammered iron and steel of all kinds; 1.000 tons horseshoc nails, be.lts, nuts, spikes, etc.

The works yearly use 450.000 cubic metres of charenal. 150,000 cubic metres of this being made in the kilns at Domnarfoct and Shutskar. It is by thus combining these reciprocally related interests that it is possible to make all three remunerative. Yet. even thus. the life of all would be short: in fact. the iron trade would have been extinguished long ago. but for the practice of strict comomy in the countumption of the vegetable fucl and the application of the rule of scientis: forestry: Only about is per cemt oi the total area i, muder cultuation and yet she exports to Britain $\$ 9.000 .003$ worth of dairy pro duce In tronsling through the conatry the firms are so scarec and so hidden away in the valleys of the vast iorest clad ranges. that one womders where even the $\mathbf{5 0 . 0 0 5}$ kilometers of agricul tural land are. and still more. how what there is can be made to yield such a balance of agricultural exports. Considering how large a proportion of the population is magaged in mining and manafacturing pursuit, and is therefore a home consumer. By far the most evtensive forests are in the north. and are not evailable for the fuel supply oi the great metallurgical estab lishments of the middie gone.

The forsest within reach oi the iurnaces have. therefore. been rephaned and recut many time over during the centuries
of minns and metallurgical activity. It is found that the most cconomical life of the coniferous trees is 40 years, within which period they attain a diameter of from ciglit to ten inches; you seldom or never see a larger tree in Siveden or Norway. Calculating from the statistics alone, to make 55,000 tons of pig iron and charcoal blooms at the Kopparberg furnaces, there are consumed 450,000 cubic metres of charcoal, or approximately n:ne cubic metres to the ton of ore, or one ton of charcoal to the ton of iron of both grades; for one cubic foot of pine charcoal weighs five lbs. to seven lbs., say six lbs., therefore, one cubic metre weighs 210 lbs ., and if 55,000 tons of iron ore are made at the Domnarfoct worke with 450,000 cubic metres of charcoal, each ton of iron consuming 8.2 cubic metres of charcual, or 1.722 lbs , one cubic foot of pine weighs 18.9 lbs ., and therefore, a cubic foot of charcoal weighs approximately 33 per cent. of the weight of one cubic foot of the same wood, but. taking the reduction of bulk into account, the charcoal from one cubic foot of wood weighs only from 20 to 25 per cent. of the weight of the original wood. or 5.04 lbs. Akerman (in Swedish Mining Industry Iron and Steel Institute, 180 $)$, gives the consumption of charcoal per ton of pig iron at from 4.8 to 8.2 cubic metres, a very large margin of difference for different ores. different charcoals, and different establishments.

Only in very favorably situated districts can large guantities of iron be niade with charcoal. Such a district would seem to be the original seat of the iron smelting industry of the old regime on lide St. Maurice, Province of Quebec, whose waters are said to drain 200,000 square miles of forest land, and at the same time literally breed bog ore, so that the mineral and the fucl to reduce it grow simultancously side by side. (Griffen T. of A. I. of M. E., XXI., 974). Yet, if there be pure iron ore accessible to a territory covered by good timber, and intersected by waterways and provided with abundant waterpewer, the establishment of such a combination of enterprises would confer a national benefit and should be profitable, for the value of such iron and steel is not to be measured by the price of common pig or ordinary steel. At present, the price of most Ressemer pig in the United States has been about \$10 at the furnace, whereas Swedish charcoal pig iron is worth f_{5} c.i.i., Swedish malleable iron bars are quoted $£ 9$ ss. c.i.f., and hollew steel ingots, such is are used for bicycle-tube making, are quoted at $\$ 1=0$ duty paid into the United States.

But such complicated enterprises as those of Sweden can newhere be carried out profitably unless the same economical methods are adopted as those applied in Sweden. If they can be duplicated, it is surely in Canada, for Canada, like Sweden,

This, therefore. rather conforms to above calculations of 8.2 cubic metres per ton of pig and charcoal blooms, at the works of the Kopparberg Co. American practice agrecs with these figures, for instance: 1,922 lbs. of charcoal is consumed to the ton oi pig in the Bay Farm Furnace, Michigan; $1 . g 1$ I lbs. of charcoal to the ton of pig on the Morgan Farm, Michigan; 2,456 lbs. of charcoal to the ton of pig on Decr Lake. Michigan; 1,760 lbs., or So bushels of 22 lbs. each, make one ton of iron at the Hinkle furnace. Birkenbine in T. of A. I. of M. E. VII., I49, trics to reduce the consumption of charcoal to the standard of cordwood and arrives at the conclusion that four cords of soft wood will make one ton of pig iron. If therefore, only one cord of wood, as he states, is the yield from an acre of replanted timber land. and four cords are considered as making one ton of pig. to make the output of 500.000 tons of pig $2,000,000$ acres must be cut over aunually. In fact. hewerer, when a large quantity of charcoal iron was made in the United States the forest lands around the furnaces were stripped and yielded about 30 cords to the acre. Forest conservation and carcful cutting and replanting are not practised.
pessesses boundless forcsts, intricate waterways. immense water-power, pure iron ores and sulphur mines. But, should the fuel or iron ore not be available for work on such a scale as the operations of the Kopparberg Co., there are ores accessible to the Ottawa, in treating which the sawdust and waste lumber of that river might be used. Whether the iron ores 0 i Untario and Quebec within easy reach of the Ottawa are as abundant as some claim, I cannot, of course, decide, but the aralysts published certainly represents ores of such remarhable purity that they compare favorably, not with the best, but with th: average of Sweden's and Bessemer ores. In the annexed tible, $1,2,3$ are examples of the Domnarfoct Bessemer ores; $4,5,6,7$ of good Swedish ores of second grade, and 8 to 16 are cxamples of Canadian ores from Quebec and Ontario:

Analyses are given of other ores. They indicate ores even lower in phosphorus. The amonnt of pyrites in these ores secms to be well within the limit of Swedish practices, where owing to the methods of firing in charcoal hearths, the percentage of S must, nevertheless, be small. This is attained by roasting. The gas calcining furnace of ixestman is largely used.

The Canadian ores represented by the above analysis come nearly up to the standard of Swedish ores from the Norbergs district. Vestmanlands, and are purer than much which is sold as Bessemer ore from lake Superior, taking the following as cxamples:

	Fe.	Ph.
Mountain iron	6	. 045
Homer	64	. 055
Tubal	62	. 065

It is estimated that 700 to 800 tons of vegetable mater go to waste daily at the mills on the Ottawa, or, say, 450 tons of dry wood. If hall of this, or say, 200 tons, could be comerted into charcoal, in the Ljungberg kiln, it would yield 55 tons of charcoal and make over 60 tons of pig iron, white the sawdust would make gas enough to convert the pig imo stecl and to manufacture the steel into specialized forms. This amount of iron may seem insigmificant, yet, it is more than one-tenth of Sweden's output. At present it is costly disposing of this valuable matter as waste. yet. in Sweden, every grain of sawdust, all the bark. and whatever will smonlder is carefully collected and turned into gas. Fish are abundant in rivers whech turn hali a hundred sawmills. Even if the law permitted of the pollution of the riers, seli-mterest would forbd. Attempts have already becn made in the Cimted States to uthize sawmill waste in iron makng. The Plattsburg. or Norton iurnace, was built in 1877. as an anxaliary to Norton's sawmills, for the treatment of Chateauguay ore, but whour much success. The appliances and metallurgical expericnce were at that date, however, vastly inferior to those now avalabie. The Kopparberg company: for instance, now uses the Ljengherg continuous kiln. in which refuse wood is burnt moto charcoal at 33 per cent. less cost them in lieaps, and with 22 per cent. higher yicld. The company reports that the yearly output per kiln is 200.000 liectoliters ($=550.000$ bushels) of charcoal. The kila is charged by means of hoisting and conveying machinery. The work is mechanically discharged into pockets. when it is conveyed by rope tiansportation to the top of the blast furnace. The company exhibited at Stockhoim, tar, acetate of lime, methylated alcohol. and other by-products of-charcoal kiln.

Waste such as sawdust. shavings. bark, etc., too small or unft for conversion into charcoal, is gasified in producers of peculiar construction. Ii the charge be sufficiently open to allow the free passage of air, the charge in the producer is I_{2} ieet deep, if compact, as when sawdust is being burut, six feet in depth. In the latter case, foreed blast is introduced, on a tevel with the solid hearth. for no grates are neeessary. there being clinkers, but very little ash. Formerly it was considered neees sary to condense the moisture and the tar beiore the gas was burnt; but now the ligncous fuel is dried before being thrown into the producer, and the gas, if the producer be no firther than 50 feet from the furnace. is burnt as it is made. The introduction of the wood gas producer enables charcoal iron to be made into open hearth steel, and this to be manuiactured intu artucles which require high or accurately controlled heas. and the gas is made out oi material whose disposal clsewhere entails cost and serious inconvenience to the lumberers.

If the circumstances in Canada be as suppored the methods pursued in Sweden are certamly well worthy oi study by Camadian lumbermen and iron miners. To the combuntion of the two great industrics of iumbering and iron smetting is largely due the prosperous condition of both in Scandinavia. To practice conservative forestry is what every enhightened cconomist and lumberman on both sides the line preaches, and what tho one practices on a large scale, no- I fear will anyone practise it umtil obliged by law to do so. It requires an argument to prove that a peremnial blessing is better than an annual one; but before the iull benefit of scientific forestry can be achicved a large immediate sacrifice must be made, and afterwards the lumberman would. I suppose. have to be satusfied with a lower average seale of profits To associate pulp mai:ing with sawmilling is doing no violence to cither industry: but it would certainly strain the versatility of our most enterprisine lumher merchanta. were they to undertake as an adjunct the delicate task of iron emelting. stect making and tonl manufacturing Such comples industries must be the ,roduct
of growth. But the first step towards the realization of such a system of exhaustive and cconomical utilization of mature's resources might be the establishment, if necessary under independent management, of iron and steel works, conventently situated to the sawmills of the Ottawa, and under contract with the sawmill owners to supply mill waste. The failure of such old enterprises as the Hull furnace need not deter the promoters of such an enterprise, if they are satisfied of an abundant supply of pure ore; ior a revolution in iron and steel making has taken place within the last 25 years. Moreover, charcoal. iron and steel are even rarer products than they were then; for, in 1875, the Unted States produced 515.700 tons of charcoal pig, whereas the output fell to 255,21 tons in 1897

The production is never likely to be in exeess of the demand. Such iron furnaces and mills need not be on the immense scale of the great coke and coal iron and steel plants. The famous Saidvik works, of Sweden, which supply the United States with the finer bieycle steel for tubing. turn out only 20.000 tons of finished product annually. Another company which exhibited its products in a separate pavilion at Stockholm, the Finspong. makes ouly 6.000 tons of open hearth steel ingots. 6,000 tons of open hearth steel castings. 600 tons oi wrought iron blooms and 2.500 tons of manufactured articles. Cempared with the enormons production of the United States. for example, whose blast furnaces made, in 1898, 11.900,000 tens of pig. :he largest stacks touching joo tons per day, Sweden's output, if measured by quantity, is alinost inappreciable. Nevertheless, by adhering to the principle of never sacrificing quality to quautity. her comparatively small contribution of iron and steel to the world's total, owing to its unique excellence and its wonderful properties, maintains Sweden in a pominemt position among the metallurgical powers. Her enviable position and bright example are, therefore. worthy of being taken to heart by Canadian miners, metallurgsts and lumbermen.

METAL POLISH.

The makers of the U.S. Metal Polish state that it is the only polish that does not shrink. become rancid, gumm, tough, sticky or hard. They have the contract for furnishing the U. S. Government. and the polish was awarded iour highest medials at the World's Farr. Chicago. The polish is claimed to be a perfect, easily-appled and non-injurious metal polish, producing a quick, brilliant and lasting lustre; warranted free of acid or grit. It removes stains and produces a brilliancy equal to new. It is unequalled for polishing and cleansing gold, silver and plated ware, show cases, scales and store fixtures. brass, nickel, copper, zinc and tinware, band instruments, locomotive and machine mountings, headlight reflectors. carriage and harness mountings, dairy and kitchen utensils, metal strect signs and everything in planished metai. This polish paste is nen-injurious to the metals or other substances it comes in contact with, or the person using it, and quickly produces, with litte effort, the highest and most lasting brilliance. "U.S." Metal Polish Paste is put up in 3 oz . boxes, I lb, boxes. 5 lb . buckets, or in bulk, at lower prices, and on gross, great gross, bucket and bulk lots at large discounts. Trial sample sent on receipt oi 2 ce stamp by the Aikenhead Hardware Co., Toronto.

the canadian society of civil. enaineers.

At a regular mecting of the Canadian Society of Civil En:ginecrs, under the presidency of Duncan McPherson, H. Irwin read a paper written by W. T. Ashbridge, on the construction of the main intereepting sewers of the city of London, Ont. It proved very interesting to those present, and a vote of thanks was unanimously adopted to both the writer and reader.

Mr. Irwin also criticized a paper read at a previous mecting, and writuen by W. B. Anderson. student. Mr. Irwin said that tests on the compressive strength of concrete were irteresting, especially as concrete was so often used in foundations, though even where used for that purpose it was seldom subject to its full capacity for resistance to compression execpt on rock. There were some instances in the paper where a fullicr explanation would save trouble in getting
at its exact meaning. For instance, the method of measuring the proportions of the cement, sand and stone should be given, and in the column headed "percentage of water," it should be stated whether this percentage is of weight or volume. As regards the "first assumption." the cost of sand and stone could hardly be ignored under any conditions, since the sand would have to be handled, and the stone, if broken, could not well cost less than $3^{1 / 2}$ cents per cubic foot, or 95 eents per cubic yard. The remarked decrease in strength of the samples with three of sand and 1 of cement must be noted-as the voids in sand amount to about half its volume, such a result is to be expected. It does not seem quite clear that the compressive strength increases as the proportion of stone inereases beyond the proportion of one of cement to five of stone, to such an extent as to warrant adding more stone to get greater strength. As ne engineer would like to strain concrete up to the yielding point it would be more interesting to give the load at this point also.

THE LATE F. a. BECKETT.

By the death of F. G. Beckett, which occurred, as noted in our last issue, at the residence of his daughter in Inglewood. New Jersey. Mamilton. Ont., loses a valued and esteemed cattzen. Mr. Beckett, who was always very active and energetic, left home in January to spend a short time for rest and recreation with his relatives in the United States, and was ready to come home when he contracted a severe cold, which

F. G. Вескеtт.
specelily descloped into pheumonta and proved fatal after a short illness. He was born in Manchester. England, 68 years ago, where he served his apprenticeship as a machinist, coming to Canada about 45 years since, and locating in IIamilton. IIe obtained a position in the enginecrit.g shops of the old Great Western Railway. llis ability was readily recognized, and he soon rose to a prominent place. After serving the raiway for a few years he started in business in a small way at the corner of Macnab and Simcoc strects, on part of the site now occupied by the Canadian Colored Cotton Mills Co., where he mat ufactured engines and boilers. At that time there was very litte enginecring work done in Ontario, and Mr. Beckett was one of the most instrumental as well as one of the pioncers in introducing many improvements in engines and boilers. He was also the first to introduce and mannfacture the portable threshing machine engines now so generally used in this country. Horse power was then almost universally used for thresaling purposes. The business grew and prospered, and in 1865 the factory at present occupied by the Canadian Colored Cetton Mills Co. was built. The firm then employed some 300 nien, and was one of the largest engineering establishments in the province. After that came a great depression in trade, and this, logether with several heavy losses, seriously cml arrassed the company. Mr. Beckett then removed to San Francisco. California. In a few years he was appointed chief engineer in the United States Mint. He was compelled to resign this position in consequence of an order from Washington, which prevented the employment of any but American citizens. Being too lojal a British subject to become a naturalized American he resigned and returned to Hamilton, and again went into the
elrginzering business in partnership with J. H. Killey, under the firm natme of the Killey-Beckett Engine Co., by whirh name it is still known. While Mr. Beckett was well known in engineering circles he was probably better known to the citizens of Hamilton as the originator of the Beckett Mommtain Drive, and the promoter of the Hamilton, Ancaster and Brantford Electric Railway. Just prior to his death it was generally understood that arrangements had been made for financing and constricting the line to Brantiord. The drive, which extends along the face of the mountain from Fiamilton to Chedoke Falls is admitted to be one of the most picturesque in America. Socially on account of his high moral character Mr. Beckett was greatly respected, and by reason of his kind-hearteduess and genial disposition was liked by all with whom he came in contact.

THE ROYAL COMMISSION ON SEWAOE DISPOSAL.

Enquiries are heard from time to time as to the progress which is being made by the Royal Commission on Sewage Disposal. The commission has had over twenty-five expert witnesses before them, including chemists, bacteriologists. biologists, medical officers of health, and engincers, some of these witnesses having occupied the lime of the commission for two days each. Members of the commission have visited the works of sewage disposal at the following places: Exeter, Yeovil, Manchester. Rochdale, Chorley. Sutton. Doncaster. Dewsbury, Bradford and Leeds. They have also been engaged in determining a number of important questions relating to the desirability or not of laying down chemical and bacteriological standards which should be obtained by effluents, whether in the ease of domestic sewage only or of such sewage combined with trade refus:. For this purpose they have employed experts of their own. and it is understood that the stafi of chemists and bacteriologists has just been increased, so that the effluents from works of different character can be systenatically studied almost hourly by day and by night under varying conditions of temperature and rainfall. No statemen: can as yet be made as to the term over which these experiments must extend, but it is quite clear that they are at present only in an initial stage, and that, in so far as bacteriological results are concerned, the commission are dealing with a subject as to which little expert evidence is available, and that the matter will have to be examined very deliberately and exhausiively before useful inferences can be drawn. These experiments are being carried out under the supervision of a committee oi the Royal Commission, consisting of Sir Richard Thorne, F.R.S. Proiessor Michael Foster, F.R.S., and Professor Rainsay, F.R.S.-The " Lancet."

a New amaloamating apparatus.

When a stamp or other mill crushes ores to a pulp that will pass through sereens of a given number of meshes to the inch. the maximum size of the particies is indicated, but much of the mineral is reduced to smaller sizes, and amongst this is the fine and leaf gold generally known as float gold. Much of this is catised by abrasion, which talies place during the crushing ui the ore, as can be readily demonstrated. If a ring or any metatlic article be taken and rubbed across a ptece of quartz or stone, it will be found that a streak of metal is leit thereon. Ujon examining this with a magnifying glass this will be found to consist of small particles, which, when liberated, are so fine that it is practically impossible for them to settle through the pulp, as they leave the battery and rush over the plates, the agitation of the water alone being sufficient to keep these small particles in suspension. Hence they are lost. All practical mill men are aware that great loss is caused by failure to catrla this float and flake gold, and to overcome it R. H. Ahn, MI. E. proposes the following treatment: After the ore leaves the stamps and passes over the mercury tables, by winich means all the coarser particles of gold are collected, the pulp is to be conveyed to a pulverizing barrel. which reduces it to a much greater degrec of fineness. from 100 to 150 mesil. The object in grinding to ${ }^{\circ}$ this fineness is to liberate from the coarser particles of rock and sulphuretes (concentrates) all the very fine particles of geld. By using the pulverizing barrel, invented and patented
by Mr. Ahn, it is chamed that all the concentrates, or sulphurwh:, are ground much fincr than the ruck matter betore thes are discharged, thus liberating any gold they may contain and placing it in a condition to be readily amalgamated. By this means separate cuncentrating plants ane made unnecessary.
and two and one-half hours is the time necessary for il:e treatnuent of cach charge. Allowing half an hour for the discharging and charging of each lot it will be seen that one barrel will treat about six tons of ore per day of ten hours. The largest sace barrel is four fect in diancter, and is made to revolve fifteen

also chlorination and cyaniding plants, the whole of the ore and its contents being subject to only one treatment. As the finely pulverized ore leaves the grinding barrel it passes into small bins or hoppers, each containing the exact charge for the amalgamating barsel. These bins. or hoppers. are so constructed and arranged as to receive their charge automatically and filter off any water above what is necessary for the proper consistency of the pulp when charged to the bartel. Any water so filtered frem the bins or hoppers is conveged into a receiving tank from which it is pumped into the tank supplying the stamps. thus saving the possibility of losing any fine gold that may be carried through the filters. The ore is crushed and ground diry. the bins require no filters and the moisture, either chemical or plain water, is added while the amalgamating barrel is in motion.

When the ore is ground to the desired degree of fineness it is charged into the amalgamating barrels from a bin containing the right amount for each charge. through a small circular opening at one end of the barrel, and when this is done the opening is fastencel up by a plug which is held in place by a clamp. in the centre of which is a screw, thus making a water tight joint. The barrel is then started in motion by a friction clutel, carrying a pinion which works into the bevel gear fastened at one end of th." shait running through the barrel. At the opposite end of this shaft is attached an apparatus by means of which cither water. steam. mercury or chemicals can be added in any quantitics while the barrel is in motion. and if necessary the barrel can be so constructed so as to reccive the ore without stopping To empty the charge from the barrel. when it is sufficiently tieated. the platg is removed from the opening, and the barrel turted down so that the npening is at the bott 2 m : the openines being placed at such a point as not to allow any of the frec mercury or amalgam that may be at the bottom of the barrel in escape. When the barrel is emplied it is so turned that the opening is again at the ton and a iresh charge inserted The charge for a full sized barrel. $8 \mathrm{x}+\mathrm{fect}$. is one and one-hali tons.
tumes per minutc. A quantity of free mercury, specially prepared, is placed in the barrel, and as the barrel revolves, the mercury stays at the bottom of the barrel and thus gives an exposed suriace of mercury during the two and one-half hours

equ al, it is said, to ten miles. The amalgamated cylinder, which is part of the invention, is inserted in the barrel and revolves as the barrel revolves, gives an exposed amalgamated surface cqual to that of the inside of the barrel, so that during two hours and one-hali an amalgamated surface of over ten miles
for cach charge is eaposed. By reference to the illustrations it will be seen thit by the revolution of the barrel and the cylinder, the pulp is drawn down between the cylinder and that part of the barrel where the free mercury is, so that the pulp con taining the gold is practically rolled into the mercury, or in otter words. the puip of cach charge is expused to an amal gamated suriace of over ten miles, under pressure.

section throlgil the centre of the amalgamating barrel.

The second part of my invention is so constructed as to give a slight rub to the pulp as it passes under the cylinder jutit sefticient to break the surface of any small globules of mereury or amalgam that may have become coated, and thus render them more liable to be collected either by the free mercury at the bottom of the barrel or the amalgamated surface of the cylinder. The frec mercury can be wathdrawn from the bottom of the barrel at any time through the serew plug in the centre of the lid of the barrel. The eylunder can be taken out of the barrel, by removing the lid, and thus allow of the amatgam adhering theneto being removed, in a similar manner to the inside plates, or the outside apron plates of a stamp battery. The pulp is only mostened sufficiently during the early part of its treatment to allow to to flow easily, but not so as to allow anything to float theren, by this means all the pulp must be diawn down under the cylinder and forced into the mercury. A short time before the barrel is emptied, an extra supply oi water can be added through the shaft at one end, without stopping the barrel, thus thiming the pulp sufficiently to allow any small particles of mercury that may be separated and carried up with the pulp to settle. By the arrangements at one end of the shaft running through the barrel, steam, water, mercury or any chemicals can be added to the pulp under treatment while the barrel is in motion. By reference to the drawing, which is a cross section through the centre of the barrel, the action of the pulp in connection with the cylinder will be readily understcod.

This apparatus is to be placed on the market by Jas. Ccoper, Montreal, and Fraser \& Chalmers, Chicago.

THE ESTIMATES.

The estimates were laid before the House of Commons April 24th. The following are the amounts to be voted for various public works:

Cavials.

Soulanges Canal-Construction . $\$ 334.000$
Satult Ste. Maric Canal-Construction. 20,000
Lochine Canal-Enlargement 126,000
$\begin{array}{lr}\text { Lake St. I_ous Channet-Deepening and straightening. } & \mathbf{1 2 6 , 0 0 0} \\ \end{array}$
Grenville Canal-Enlargement 25,000
Lake St. Francis-Hamilton Island Channel, St. Regis Channel
35.500

Farran's Point Canal-Enlargement....................... . . . 90,000
Rapide Plat Canal-Fnlargement 90.92 .500
Galops Canal-Enlargement 688,400
North Channel-Decpening and straightening............ . . 55,000
Galops Rapids-Removing obstructions 50.000
St. Lawrence River and reaches-River, reaches, canals 50,000
Trent Canal-Construction 845,000
Welland Canal-Deepening entrance at Port Colborne. 350,000 Ontario Hariors, Etc.
Bowmanville harbor
. 5.000
Bruce Mines wharf .. 10.000
Burlington channel, repairs to piers..
Ccllingwood harbor 60.000
Goderich-Reconstruction of breakwater 46.500
Goderich-Dredging 20.000
Hawkesbury-Dredging 20.000
Kincardine-Repairs to pier and dredging............... 1.500
Kingston-Harbor and dredging........................... 10,000
Little Bear Creck-Dredging 2,000
North Bay-Pile wharf 8,000
Oakville-Repairs to piers and dredging.............. 45.000
Oslawa-Repairs to piers, providing harbor is transferred to municipal corporation. who will maintain
it in future (revote) 8.000
Cuen Sound-Dredging and pile work \$ $19.6 n 0$
Picton-Dredging

5.000
Port Burwell-Harbor 45,600
Port Elgin-Construction of Groync. 25.e.00
Port Hope-Repairs to pier and dredgung
l'gri Stanley-Repairs to pier and dredging 13,000
Rainy River-Improvements to chamel. 1,500
Ottava River-Improvements to steambor biannel.. 7,200
Southampton-Dredging 2,000
Sydenham River-Dredging 5,000
Thornbury-Dredging 3,000
$75.00:$
Quebec Rivers and Harbors.
Anse a Beaufils-Improvement of entrance to harbor... \$ 7,000
Anse all Gascons (Iurt Daniel East)-Breakwater. $+500$
Anse St. Jean-Pier repairs. 500
Baic St. Paul, Cap aux Corbeaux-Extension and repairs to whart 10,030
Berthier (en bas)-Heary repairs to whari and recon- struction of 470 fect of superstructure 5.001)
Cap Sante-Removal of boulders 800
Grosse Isle-Repairs to whars 2,000
General repairs and improvements to harbor, river and bridge works 10,000
Iberville-Whari 2,000
Lake St. John-Piers, including improvement of ap- proaches 2,500
Rivicre a la Pipe-Whari on Lake St. Joinn near month of siver 2,50n
Les Eboulements-Repairs to wharf. 2,800
L'Islet-Whari 1,150
Lower St. Lawrence-Removal of rocks. 3.000
Magdalen Islands-Breakwater 10,000
Maria-lVharf 10.000
Matane-Extension of training pier southwardly. 4,000
River Cap de Chatte-Pier 2,000
River . Chateauguay-Dredging 5,000
Riviere du I.oup (en bas)-Wharf, repairs and shed.. 3,600
Riviere du I.oup (en haut)-Dredging channel from Lake St. Peter to Louiscville. 6.000
Riviere Richelicu-Belocil channel-Guide piers 4.000
Riviere Saguenay, below Chicoutimi-Dredging. 8.000
Riviere St. Maurice-Channel between Grandes Piles and La Tuque-Dredging 3.500
St. Alcxis, Baic de Ha ! Ha!-Pier. 4.000
St. Alphonse (Bagotville)-Landing pier repairs; shed 600
Ste. Anne de Sorel-Ice piers and connecting one pier with the shore 1.000
St. Anne du Saguenay wharf-Works of construction. etc 1.500
St. Fulgence-Pier and improvements. 1.500
St. Iean des Chaillons-Improvement of harbor 5.000
St. Laurent-Repairs to whari. 4,500
St. Nicolas-Construction of a public whari. 1,300
St. Roch des Aulnaics-Whari. 3.50)
Sillery Cove-Wharf at Pointe a Pizean 5.000
hOT WATER HEATING.*

BY P. TROWERN

This is a very important mechanical subject. heating with warm and hot water. I hope to be able to impress it on your minds with sufficient clearness. The elements involved in this aic, air, water and heat. The third element cannot be resolved into its component parts as can air and water. We know by feeling that it warms us, but we cannot see it nor can we scparate it from any substance as a gas or liquid; neither can we weigh it as air or water, we can measure it by the thermotneter, but not by the gallon. Take 220 lbs . of water, i.e.. 22 gallons, and heat it with fire, up to 212°, then weigh it again. and you will find it weighs the same as before. but now measures 23 gallons owing to the expansion caused by heating. It has therefore gained one gallon. You have all proved this by filling your kettle and not allowing room for the water to cri-pand. then it runs over. the heat expands each molecule or grain. for nearly all substances. gas and matter. is composed of

[^1]grains; take a piece of iron, weigh it when cold, make it red hot, then weigh it again, it has not increased in weight but it has in size. Heat is always present and a porton of it is fonand in every substance; latent or hidden heat it is called, and is said to be a form of motion, or life in fact. Our thinking men are at a loss to know how to describe it or undertand its nature, it must have come from the sum, and at first the world took it in. but now gives it out again by the conl. wood. onl. and other substances. the same as the light is given to the moon to be imparted to us for our benetit. white the sum is giving us hight and heat to the other part of the wortd.

A knowledge of the elements we have to deal with should guide us in our choice of the bese material. and plans to bring about or produce the best article for heating our houses. We are told that in Piedmont, in Italy, in the year 1347, fireplaces with overmantels were built in the houses. much the same as in our country houses oi to-day. in which they burned wood on andirons, and the heat given out into the rooms was not more than 6 per cent.. so much was allowed to escape up the large chimney. In the year toza chimneys were greatly improved so that they gave out to per cent., and it was found that it took 15 cubic feet of air to burn one pound of wood: it was also found that a room 20 fect long. 16 feet wide and to feet high. containing 3.200 cubic fect of air. required 20 lbs . of wood to raise its temperature $21 / 2^{\circ}$. In the year 1713 it was found that a sheet-iron stove placed in the fireplace with six pounds of wood in it greatly raised the temperature, and that a cast-iron stove with four pounds of wood in it did the same as the shect iron one. Each one had a pipe connected $t 0 \mathrm{it}$. and put into the chimncy hole to prevent the leat oi the room irom passing away up the chimner:

In the year 1716 Sir Martin Friewald, a Swede, residing at Neweastle, England. made a boiler and pipes to heat his gicenhouses with warm water. In the year 1777 brick flues and funaces were introduced. the bricks would keep warm through the night. but soon gave way for cast and wrought-iron boilers: in some places copper was put into pipes and boilers lum was found not to answer as well as cast-iron. and was more erpensive.

Peat. charcoal and wood were the principal fucls used in carly days. as coal made too much smoke. In the year 1620 Sir John Hacket made a basket to be put into the chimney to burn sea coal or coal that was brought by vessels over the seat irom Wales and Seotami. Abnut this time coke was made and

the gas was used for many thugs. the coke was put into an iron: basket and hung in a chimney that had a pipe hole oi s inches diameter, closed with a valve at will of the user In 1678 Prance Rupert made a basket. standing on brass legs in the chimney, with brass handle, pooker and tongs to stir the tire and keep it going; in lG50 a fire pot was made like a tea cill. small in the bottom with bars in it. so that the smoke conld pass through. it was placed in an iron ash bon with an iro: door to take oun the ashes. the are entered the fire from the top and passed down through the coke into the ash box. and then Ieft the box at the iar end through a pipe up the chimney: this plan was called the down-draught fire-basket. the fire bellews was brought into use about this time. In 1744 Dr. Franklin invented different plans with the downward draught In 1733 Mr. Durns made a furmace or siove for burning conal.

It was a round iron basket with bars of iron 15 inches wide, $5^{3 / 2}$ ine:hes deep and $51 / 2$ inches wide; this kept a room 14 feet sefu': e at a temperature of about 62° for 13 hours, with one feck of coal; while it was 4° below freczing outside. In the year 185 a Mr. Cutler made a stove and put it into the chimney to heat the room. In a few years from this time Dr. Arnott calculated that it cost the inhabitants of London more than two and a half millions of pounds for keeping their heuses as clean as before coal was introduced.

In isis the Marquis of Chabonne, in France, found that . , warm his greenhouse a 4 -inch cast-iron pipe expanded one and one-half inches per 100 fect, and that a tinch pipe has foul times more friction than a 4 -inch pipe, and that water raised from 100° to 150° will expand from 30 to 40 h part of itself, which must be provided for when setting the boiler and putting them together, and that one foot of surface in the beiler over the fire will supply so fect of finch pipe. Isaac Watt tried an experiment at heating his room by having a coil of copper pipes made and put into his fire basket; the pipes connecting it were put around his room. with an expansion vessel up near the ceiling: it worked well for a time. but the copper pipes and joints were not strong enough, and besides. it became likely to freeze some cold night. In the year 1822. the year in which the writer was born. Mr. Bacon introduced his plan for a house two or threc stories high: he found that a pipe $34^{2 k}$ feet high would give a pressure of 15 libs. to the square inch. and that a boiler 3 feet long and 2 feet wide and 2 fect deep. with a pipe 28 fect high above the boiler weuld have a pressure of 30 tons. which led him to see that it must be strong and not have flat sides. to contain 75 gallons of watcr: he also found that two pipes, standing up i8 inches above the boiler. the hot or flow pipe would be 178^{3}. and the return one at 170°. the difference of 8° will keep up a good circulation of water and heat the room. In the year $18,30 \mathrm{Mr}$. Perkin invented this plan, and when the Asylum for the Insane in L.ondon was built this plan for heating the building was put inte practice, and when the Toronto Asylum was ready Mr. Howard. the architect. copied the plan, and put it in to that buiding. In 185i the British Museum was heated with it, as Well as the Bank of England. postoffices and other large buildings in London. Two of the cottages in connection with the Teronto Asylum are now heated with this plan. I put them in about the year 186\%. I do not think that this plan can be found in any other building in Canada: it has done good duty during the last cold winter; it is a little more expensive than our improved plans in the main building. Some 43 years ago I was appointed to take charge of this plant; it was working very badly, but since then it has done well. About zo years ago I salw great improvement could be made. I laid my plans beiore the Government. which after scrious consideration granted the necessary funds to earry them out: about twelve years ago I took out cight of the furnaces and put in two boilers in their places, which have done well. The four furuaces now in the cottages we intend to move and replace with one beiler ior each. soon.

DAM BUILDING.

Editar Canadian Engineer :

Referring to Mr. Fieding's views re construction of dams. as courtcously expressed at page 349 of yont April issue, this gentleman is no doubt right. that in computing for factors to cicise section of dam wall. some consideration should be due to length of structure: as a short dam would evidently derive some resistance to its giving, by friction at its abutting ends. Looking around in my mind's cye for some abetting theory or prooi of the correctucis of Mr. Fielding's holding in the premises. it occurs to me that he might predicate his assertion as to length of dam, on the fact that the cutting up of the length into two shorter stretches evidently adds to the efficiency as exemplified in the lock gates of a canal, where with the same thickness. the half dam or wall across the lock makes it sufficiently strong is stand the pressure, which it certainly would not do if a wall of the same size or thickness ran straight across from side in side, with almost double the iength of struchure. But this very mode of construction of a lock gate is also an argument in favor of the arched structure as compared with the rectilineal: and notwithstanding that thic up stream arching or its
efficiency is disputed, and was so in the discussion by engineers relating to the proposed "Quaker Dam" at New Yorli; still would it seem that there must be something suggestive in the fact of a lock-gate-dam being thus arched up stream as it is, or thrown into a truss to stand the pressure, which it could not do if built strabght across, and in a single flap or section from wall to wall, unless made considerably thicker. This is another fitting matter of enquiry, never as yet theoretically or practically discussed, for our friend Bovey, and the McGill faculty to exercise their mgenuity on, with request that he will air them.

Cinas. Bathaikge.
Quebec. April tath, 18 en.

LUBRICATOR FOR COITPOUND ENGINES.

The accompanying cuts show front and side views of the double sighi feed lubricator made by the Detroit Lubricato: Co.. Detroit, Mich., ior ue on compound engines. Each sight feed is "equalized." that is, it is furnished with an equalizing pipe S. which supplies a current of stean to carry the drop of oil, as soon as it rises through the glass to the steam chest. They are also cquipped with features which prevent siphoning or unsteady fecding, and a regular feed is maintained, it is claimed, under all circumstances, to both the high pressure and

the low pressure cylinders. The long experience of the makers in the manufacture of locomotive cylinder lubricators. in which, oi course, both cylinders are supplied with oil from the one lubricator, has enabled them to mect and overcome all contingencies liable to arise with this class of engines: They also make triple sigit ieed, and quadruple sight feed lubricators for use on triple expansion and quadruple expansion engines. Any further data that may be desired will be furnisited by the manufacturers on application.

IMPROVEMENT IN CAST-IRON FLY-WHEEL DESION.

There are a great many fly-whecls built by the makers of medium and low speed engines that are made in balves with the jeints placed midway between the adjacent arms, and these wheels are often run at a higher rim speed than are the larger built-up wheels, which as now gencrally made have the joints in the rims at the ends of the arms, says F. W. Salmon, in a recent issue of The Strect Railway Review. The radial centrifugal force acting uniormly round the sim like a fluid pressure tends to separate the rim. and the joints, no matter where placed. must resist this stress. The centrifugal force of the portiun between the arms acts to load that portion as a beam and thus additional stresses are introduced. The point in this portion at which the joint is placed greatly affects the stress placed
on the joint. Considering the solid segment in Fig. I, we have a beam fixed at both ends and uniformly loaded. The maximum bending monent under such conditions is WL $\div 12$, where W is the total tmiformly distributed load and L the distance between supports. This naximum bending moment occurs at the two supports; midway between the supports the moment is WL $\div 2.4$. There are two points, about one-fifth way from each support, where the moment is zero, these being the points of contrary flexure.

If we place midway between the arms a joint of the type shown (with inward projecting lags to receive bolts) in the cut. we practically have two beams fixed at one end. The maximum bending moment in each of these beams, fixed at one end and

uniormiy loaded, would be W L $-:-8$, where W is the total load on both beanss and L is the total length of both beams. This. it is seen, is $\mathbf{j 0}$ per cent. greater than in the solid segment.

If the joint be placed, as shown in Fig. 2, about one-fifth from the end of the segment at the point of contrary flexure, the bending moment, Mr. Salmon shows, at that joint has to resist only the stress tending to separate the rim in halves. Clanging the position as here suggested does not add in any way to the cost of manufacture, nor docs it make the joint as strong as the solid rim, nor does it climinate the stress the rim bolts are generally computed to stand, that of holding the two halves together; but as the joint lugs are usually made, piacing them nearer the arms lessens the stress in the section of rim where the joint occurs, conduces largely to cause the wheel to revolve at a high velocity as a true circle (instead of as an ellipse, with the joint on the major axis), and reduces the stress in the bolts from the joint "giving" or "opening" slightly, as is so often the case.

IRON PRODUCTION.*

BY GEO. E. DRUMMOND.

Canada. like the rest of the world. has produced unusual quantities of pig iron in 1898 . Following the usual course and reviewing brietly the iron markets of the world, we have first the United States, showing a most remarkable record for 1803 as far as production is concerned. and a wonderful rate of consumption that already, in February, 1899. indicates almost a fan:ine in iron and products of iron. Figures for 1898 show that the United States produced $11,773,934$ tons of pig iron, and this cnormous production goes on at an increasing ratio. The gicat revival of trade in the United States. brought about by two successive years of splendid crops and consequent increase in railway carnings, which enabled the railroad companies to undertake vast expenditures for new rolling stock. is the cause, no doubt, of a great deal of the revival. but everywhere most satisfactory expansion is marked in all lines of manufacture of which iron is the basis. The lessons of the war with Spain will probably result in a great expenditure being made by the Ancrican Government in periecting their coast defences, and all this is in the direction of an increased utilization of iron. The export trade in the Pinited States in 1898 . in all kinds of metals, reached the enormous sum of $\$ 120.000 .000$. In the item of pig iron they exported 250,000 tons. With the scarcity of iron for home requirements at the present moment, it is not likely that they will press the export trade unduly in 1899, and the iron producers of other countries (and not least of all Canada) will have a chance to gain strength to meet future competition from the United States.

[^2]Great Bratan.-The British arommasters hold second place as the iron producers of the world to-day. The total records of iron produced in Great Britain in 1898 are not yet to hand, but: it is pretty safe to estimate an output aggregating 9.500.000 tons. as against a production in 1897 (revised figures) of 8.796 .465 tons. The use of British iron has almost ceased in Canada. and while that does not mean that Britain is not holding her own in other markets, still the situation is a somewhat grave one for British iton producers, inasmuch as their ore supply is growing more precarious every day. The life of the Spanish iron mines, upon which Britain draws heavily for supplics. is already well understood to be but short. The product of the home mines grows steadily less, and it will be well for Great Britain to look to her colonies, wheh as Canada and Newfoundland, for her future source of ore supply. The indications are that this course alone will enable her to hold the position that she has held for so many years. The British home trade in i:on has been very prosperous in 1898, exceeding that of any previous year. In shipyard and railway work, and in all branches of the iron trade, matufacturers have been exceedingly busy, and, with more or less frecdom from strike dificulties, Great l? itain emerges at the close of the year with a splendid record. but Canadians regret to note how very much "out of touch" they are to-day with the British ironmasters, who formerly supplicd this country, and who have been replaced to a very great extent during the past few ycars by the iron producers of the Linited States.

Germany and Luxemburg - Enormous strides have been made by the Germans during the last three or four years in their non industry, and the figures of production for 1898 (Germany and Luxemburg), $7,403,717$ metric tons, come so close to the records of the British ironmasters that there is grave cause to fear that unless most vigorous measures, political and economic. be taken by Great Britain, her rank as an iron producing nation may be displaced by Germany, as it has been by the United Stites.

Canada.-The output of the Canadian iurnaces for 18,8 enceeds that of 1897 . Adsices iecersed from Hamilton, Onl., New Glasgow, N.S, and Radnor Forges, Que., report a combined gross tomnage produced of 75,920 net tons of pig iron. $2,3,541$ tons of stecl, and 2,276 tons of forgings. The combined tomage of pig iron in 1897 was 57.904 net tons. The works at Lundonderry, N.S., were closed down throughout the year, the company being in liquidation. but this not because the market could not absorb their full ouput had the works been runnung. Everywhere the product of these Canadian furnaces has given entire satisfaction, so far as the quality of metal produced is coucerned. The work of developing the Canadian munes has been carried on quietly, but steadily, and the new year opens with splendid prospects for a very much larger productoon of Canadian metal in 1899 . The new charcoal furnace constructed at Deseronto, during 1808 , has just been put into blast, with an average output of 30 tons of charcoal inetal per day, practucally doubling the daily production of charcoal iron in Canada. A new charcoal furnace is prujected for Midland. Ont., by the Canada Iron Furnace Co., Limited, of Montreal, and Radnor Forges, this being a branch of their business at the latter poimt, but the intention being to manufacture at Medland an iron similar in quality to Lake Superior charcoal, and wheh is required for mixture with the special charcoal metal now made at Radnor irom the bog and lake iron ores of the district of Three Rivers. The new Midland furnace will have a dally capacity of from σ to So tons of charcoal irou. A four-furnace coke iron plant, of large capacity. is prujected by American and Canadian capitalists at Sydney, C.B.. where the ores of Newfoundland will be smelted with Canadian coal.

Other furnaces are talked of. but those already mentioned will turn out sufficient iron to meet all the immediate wants of Canadian ironfounders. and doubtless a considerable quantity of the metal produced will be exported to Europe. especially, perhaps, from the proposed Cape Breton plant. The time is rapidly approacining when the product of the Canadian furnaces will have to be carried (on a larger scale than the present) to the finished stage of iron and steel of all descriptions, there being an ample and increasing home market for such products. The following are the records of the furnaces at Hamilton. Ont., New Glasgow, N.S., and Radnor Forges, Que., for 1808 :
the himmlton blast yurnace co., ltd., iamilton, ont.
Ore smelted (tons of $2,000 \mathrm{lbs}$)................ 77,023
Scrap and mill cinder (tons of 2,000 lbs)....... 8,014
Limestonc (tons of 2,000 lbs.).................... $13,7(9)$
Coke (tons of 2,000 lbs.)........................... 50,407
fig iron product (tolls of $2,000 \mathrm{lbs}$.) 48.253
Average number of werkmen...................... 130
Wages paid for labor. $\$ 51,470$
Value of pig iron at furnace. 530,789
The coke used at this furnace is all of American make and the same applies to a considerable proportion of the iron ore smelted.
the nova scotia stelel company, ltd., new glasgon, n.s. Production for 18 gi:

Steel made (t.et tons)................................... . 23.541
Forgings made (net tons)............................ 2,276
The materials used being as follows:
Coal (net tons) . 107,000
Canadian ure (net tons)............................. . . . 19,000
Newfoundland ore (net tons)..................... . 15,000
Spanish or Cuban ore (net tons)................ 6,030
Coke (net tons) 32.000
Limestone (net tuns) 18.000
Average number of men employed............... 750
Wages paid-about . $\$ 280,000$
These figures do not take into account the men employed in mining coal, nor do they include the various parties employed prefessionally and otherwise and not paid directly by the company.

In addition to the operations carricd on by this company. they have, during the year, been working their Newfoundland iron ore property more extensively than ever before, having shipped to Germany and Scotland about 75.090 gross tons. besides bringing over 30.000 tons to their own works at Ferrona.

The Canada Iron Furnace Co., Lid., Montreal and Radnor Forges-Owing to the plants being overhauled and improved during the yuar, only about eight months' is to be considered. The production during that time was:

Special charcoal pig iron6.040-420-2,000 tuns
Charcoal made580.100 bush.
Ore made 14,400 net tons
Limestone flux made 1,432 net tons
Average number of men employed 600
This company used Canadian material entirely. As usual. the labor in connection with this furnace was principally drawn from the farming class, and the field work is. therefore, of a more or less intermittent character, being performed at seasons of the year when the farmer is not engaged in his usual agricuitural pursuits. A very large number of horses are also employed in teaming the ore and wood necessary for the supply of the furnace.

- The product at Radnor Forges continues to attract most favorable consideration from engineers abroad. as well as at home During the year, shipments of "C.I.F." special charcoal metal were made from the furnace to leading establishments in Great Britain, France, Germany, and the United States, and the demand for this special iron is an increasing one. The furnaces in blast show a healthy, strong, business growti, and the projected furnaces (all in strong hands) now coming into the field is good evidence of the fact that we are on the eve of a very considerable expansion of the native iron industry. A great factor in bringing this about is the settled condition with regard to the Governmental policy of encouragement. If that policy is steadily maintained for a few years to come, Canada will have an industry that she may well be proud of. one that will strengthen and build up every other kindred industry in the Dominion, and an industry, too. that will be useful in an Imperial sense, making for the independence of the Empire in so innortant a commodity as iron.

THE SECOND ANNUAL CONVENTION OF THE MARITIME ELECTRICAL ASSOCIATION.

The second annual convention of the Maritime Electrical Association was held. pursuant to announcement, at the New Victoria Hotel, Halifax, on Tuesday, April 18th. The Exceutive Committec met at $9 \mathrm{a} . \mathrm{m}$. to transact business relative to
the admittance of new members to the association and its financial condition. The opening session of the convention was held at to a.m. whth the president, I: A. Bowman, in the char. There were present the following members: J. H. Winfield, ie. A. Hunter, G. M. Mac Donald, J. W. Crosby, W. A. Wintield. H. P. Archibald, I. H. Smith, G. C. Seibert, R. T. MacKeen. F. A. Hamilton, W. L. MacDonald, W. Luke, I'. A: Free man, S. G. Clambers. I'. R. Colpitt, Jas. Graham, C. E. Harris. J. D. Briggs, A. Miller, A. E. Souliss, J. A. Anderson, W. ㅅ. l'ickles, J. L. Macl)onald.

After a few opening temarks, the president called upon the secretary to read the minutes of the last meeting, held in Halifax, September $27 \mathrm{th}, 1808$. Upon motion the minuter were adopted.

The presidem then delivered his annual address as follows: "We have nuw passed through the first year of our existence, and hase found out what are our powers and what out limitations. We held a couvention during Exhbition week, last Septeriber, which was a fairly successful one, and would have been much more so had not the weather interfered with it. as it did with pretty much all arrangements of that week. In sfite of this, one of the objects of the association was distinctly advanced by the meeting. Several of the out of town members made the acquaintance of each other and the town members. One feature of this meeting was most valuable, and will. I hope, be repeated this time. Several matters were brought up and discussed that were of direct interest to the members present, and personal experiences on these were freely exchanged. With a view to encourage this, we issued a circular to, the members asking if there was any question that they would like to bring forward. The response to this request was not as full as I would like to have seen, but we must not expect too much at first. We have a few questions that will be iriticduced for discussion as opportunity arises, and hope that some of these who did not answer the circulars have brought ruestions with them, and will bring them up for disctission. It is the discussion of the smaller and more local issues that I wish to encourage in this association. As I think I have said before, we can depend on the larger associations and the techrical journals :o fuinish us with valuable papers on the main principles of the industry. We should, therefore, devote our attention more to smaller details. Steady progress has been made in the electrical industries in these provinces during the past year. While we camot expect to see the very large transmiesion scheme undertaken among us just at present, some smaller ones have been well worked out on modern lines, and some steps have becn taken in comection with larger projects. All this going to show that our people have grasped the great possibilities of electrical power. Amnng the many steps in advance that the industry has made during the past year, one that should be most seriously studied by the smaller stations. is the question ni foreed draft in the furnaces. While this matter has been coming steadily to the fromt for some years, it has lately been pushing itself into notice most markedly. Sume ren arks on this suhiect were made at our meeting last September that showed that our members were studying the subject and stand ready to adopt new ideas when it becomes apparent that they will pay. I hope that further information may be breught out at this meeting from those who have had practical experience in this matter or who have given it study."

Mr. Hamilton expressed his pleasure in listening to so able an address. In the course of his remarks he also stated that the suggestions made by the president were good. After some filling remarks upon the zeal and untiring efforts displayed by the president during his term of office, Mr. Hamilton moved that a vote of thanks be tendered Mr. Bowman. This was seconded by Mr. Colpitt and heartily approved of by the nembers.

The president, replying, expressed his thanks to the meeting. He felt that ine had done what he could, being hampered tna large extent in his duties on account of living at such a distarce from the majority of the members. In the course of his ren arks he again referred to the advisability of electing the members resident in Halifas to the ofices of president. vicepresident and secretary, also suggesting that a sufficient number of Halifax members be elected to the Executive Commitec. in order that a quorum could be formed at short notice, if necessary, without difficulty.

The secretary, J. H. Winfield, then read his report, as follows: At the mecting of organization held last April m Halifax, we had the names of fifty-six persons who were interested ill the formation of this association. and had expressed their wish to become members. That meeting was a success. and the prospects secmed good for the formation of a very useful society. Since that time every effort has been put forth by the officers to further increase the membership list, though ald.arently with not any great degrec of success. Circulars ot information have been sent to all persons in the province whose names we conld obtain, that were cligible for membersl:ij. Only three new members have been added during the year, but we trust that our efforts have at any rate broken the get tund, and that the fruits of our labors will appear later. Two meetings of the Executive Committee were held during the year, and varous plans were discussed for rendering the association oi as much value as possible to its members. The following statement will show the financial condition of the association at the close of the year, Marchi 31st, 1899:
heceiprs.
 B:NiENDITURE.
Rent of room for meeting, April, $1898 \$ 5 \infty$
Books, ctc., for scerctary............................ +35
Membership certificates 620
Printing .. 3450
Rent of room for meeting, September, $1898 . . .$. . 500
75 copies of report of meeting, September, 1898.. 375
Fxpressage and telephone 150
Postage .. 1000
Cash in hand .. 2170
$\$ 9200$
The total membership list at the close of the year was $\mathbf{5 g}$. There were four new members elected at the executive meeting this morning, bringung the number up to 63 . There are thirteen fees for last year still remanning unpaid.

Mr. Anderson moved, scconded by Mr. Chambers, that the report be adopted, which was carried. A short time was then devoted to a general dissussion as to the standing and fintancial condition of the association, the general opinion being that, althot:gh the record of the association during the past year had not been particularly bright, yet the present year pucmised better success. The election of officers for the ensuing year was then proceeded with. For the office of president Mr. Chambers nominated P. R. Colpitt, of Halifax, the retiring vice-president. Mr. Colpitt, however, feeling that it wo uld be impossible for him to accept the nomination, nominated F. A. Huntress, of Hahfax, for the office. This was seconded by Mr. Anderson, and met with the universal approval oi the members. For the office of vice-president, R. T. Mackeen me ved. seconded by Mr. Chambers, that Mr. Colpitt retain his office as vice-president. This motion also met with the approval of the members. Mr. Chambers nominated Irving Smith, of Halifax, as secretary-treasurer. Mr. Smith declining the nemination, Mr. Chambers nominated Mr. R. T. Mackeen. who was ciected to the office.

The following members were then elected to the Excentive Committec: H. Brown, St. John, N.B.; J. Eddington, Moncton, N.B.; J. A. Weddel, Charlottetown. P.E.I.; S. G. Chambers, Truro, N.S.; W. Pickles, Trving Smith and J. A. Anderson, Halifax.

Mr.-Miller moved that a vote of tiannks be tendered to J. F. Winfield, the retiring secretary-treasurer. This was seconded and carricd unanimously. Mr. Winfield expressed his gratitude to the members for their token of regard. In the ceurse of his remarks he referred to the suggestion made by Mr. Bowman in regard to the difficulty experienced by the officers in fulfilling their respective duties, owing to their living at such a distance from the majority of the members. He the ught that for the first few years the principal officers. it least, should be so located that they would be in touch with mest of the members, thus increasing their opporitrities for developing the association. It was then mored and carried that the selecting of place and date of next mecting be left to the newly-elected Executive Committee.

During ane convention the following papers were read and discussed: Iron-armoured Conduit Installation at New Drill

Shed, J. R. Grithin; Fire Alarm Telegraph Systems, 1'. R. Colpht, city clectrician, llalifax; Remmiscencers. I. A. It:milon: Church Wiring whis Iran-armoured Condut, J. A. Anderson:
 way; Electric meters, N. \%. Mackeen; Telephomes, J. II. Wm-
 II. lickles.

AUTOMOBILE PROGRESS

Une strining feature of the developments oi the past few mombe is the comstaon that has permeated all classes that the horseless velucle is a success. Viven the "compressed aur" e.pploitation, which is louked on wah suspicion be most soberminded people, and is a stock speculation in whel Rechard Croker and the Tammany leaders are to make large protite.even this scheme has been passed upon as ieavble meelhanically. and as likely to be a dinancial suceess ii only donce mon a sutheiently large scale. Everywhere, inded. the same note is being somded-the horseless vehicle has come.

A large factor in this sound public opinion is the businew. like developments of the past few months in the matter oi the manniacture of horseless vehicles. It would be impossible to. trace all the lines of effort that are being made in all parts oi the world in this direction. France is forging abead. and holdmg the long lead obtained at the start. The English are following neat. The people of the United States are waking up. but the Dew Jerscy law winch allows a company to be iormed with So.01 in the treasury and $\$ 9.099 .899 .09$ to be "fluated" out a gullible public. is bound to do great damage to the busmesis. as similar "flotations" did in Englated "ree years ago. As a matter oi fact, there is not to-day on the Cnited States market a thoroughly workable, nechanically dependable motor, althengh there are 65 manaiacturers at work. The clectross ate all tremendously heavy and at the came time comparatively meficient, white the gasoline is still in the expermental stage to a large extent. One of the astounding things to a reader of the autocar journals is that so far no American company has made arrangements to push the French automohales. wheh have proven so successiul in actual runnugg, although unsighty able heave. Oi course the Americaus explan thes by saying

that the Freach antocar, are too ugio, aad ant in aceordance with the L'anted Staces desire for neat and matye velucle of all kimh. ior wioch they have a reputaion which sa acred whem as a nation. The American rubber and batser! trust ate ghan mak large thus and pmoms down a havy fows on all compertors.
 oi the movement in Canada. has evtabliched work an the firfory premiocs. gio-je4 lönge strect. Toromio. and are al. reads crowded with erders ber ciectric moicts. delicery vans and rarrages. The Moter appears to be popular already. Since our former menteon ni n. veceril improvements have been introduced in its construction. wotably in the frame and wheds. so as to makr it mach stronger. and provision has heen made for the same frame to carry cither a 30 -mile or $50-\mathrm{mile}$ equip.
ment-the bowes of cells being instantly removable from the side, as shown it the illustration presented herewith. With this construction it will be possible, by use of duplicate battery, to keep a motet out constantly, making a total of 100 miles per day-thus doing the work of five horses on light loads such as butchers and grocers carry.

The Fischer Equipment Company, of Chicago, are represented in Canada by the Motor Carriage Company; of Ontario, in which large shareholders of the Canadian General Electric Cc., are interested, I. I. Dwight being president, and Fred. Nichols, manager. The company propose to manniactuec under the Woods' patemt in Peterboro, at the works of the Can adian General Electric Co.. and their charter covers all lines of antocar development. A line of electric hansoms was promised for May Day: Mr. Nichols, Mr. Dwight, and some othor Canadians are organizing an American company for $\$ 3,000,000$ in New Jersey, and will have factories in Chicago and in the cast for exploiting the Woods' electric patents.

The autocar journals are enjoging the boom. The Horseless Age of Niew lork las changed from monthly to weekly issuc; in England the Autocar has enlarged its weekly issucs; the Automotor is regularly published in enlarged form; and a new Motor Car Journal, weekly, has been established it London. England.

THE PRACTICAL MAN.

Boring Holes in Bricks.-Holes may be very quickly drilled in brick or stone walls by making the cutting end of the drill in the form of a cross with four cutting edges, says The Building World. The drill is held in one hand and rotated while be:ng struck with a hammer. When the holes are required to be deep. a projection may be made on the outer end. by which it can be knocked out of the hole quickly. The cutting end should be larger than the shank, so as to allow for clearance, and the shisnk should be sufficiently long to allow a hammer to be used fo: knocking it out of a decp hole. An old twist bit also makes a good boring tool for the purpose required, also a piece of steel tube. such as bicycles are made with. will, if jagged at the end, answee very well. These tools are only suitable where the bricks are fairly soft.

Tabic of decimal equivalents of Sths, r6ths, 3 nads, and Giths oi an inch:

Sths.	$5-32=.15625$	$17-G_{4}=.265625$
	7-32 $=.21 \mathrm{~S} 75$	$19 \cdot 64=.296575$
$1-8=.125$	9-32 $=.28125$	$21.64=.328125$
$1-4=.250$	$11-32=.34375$	$23-64=.359375$
$3.8=.375$	$13-32=.40625$	25-64 $=.390625$
$1-2=.500$	15-32 $=.46875$	27-64 $=.421875$
$5.8=.625$	17-32 $=.53125$	$29.64=.453125$
$3.4=.850$	19-32 $=$. 59375	$31-64=.454375$
$7.8=.875$	$21-32=.65625$	$33-64=.515625$
	23-32 $=.71875$	$35-64=.546975$
16 ths.	$25-32=.78125$	$37-a_{4}=.578125$
	$27-32=.84375$	$30-64=.609375$
1-16 $=.0625$	$29.32=.90025$	$41-64=.640625$
.3-16 $=.1875$	31-32 $=$. 93575	$43.64=671875$
$5-16=.3125$		$45-64=.703125$
$7-16=.4 .375$	Giths.	$47-64=.734375$
$9.16=.5625$		$49 \cdot 64=.765625$
15-86 $=6.655$	1-64 $=.015625$	$51-61=.796855$
13.16 $=.8125$	$3-64=.046875$	$53-64=.828125$
15-16 $=.9375$	$5-64=.078125$	$55.64=.859375$
	$7.64=.109375$	$57 \cdot 64=.890625$
32nds.	9.64 $=.140625$	$59-64=.921875$
	$11-64=.171875$	$61.64=.953125$
$1-32=0.03125$	13-64 $=.203125$	$63-64=.984375$
$3-32=.09375$	$15.64=.234375$	

To find the number of gallons relivered per minute by a double-acting pump at ino fect per minute piston speed. square the diameter of the water piston or planger and multiply the result by 4 . This gives a result less than 1 per cent. greater than the full displacement. It might generally be well to use a multiplier a little smalicr. say. 3.5 or 3.8. which would give seme allowance for slip, leakage, etc.

In Germany, machine shops are irequently paved with wood blocks sct in tar and sand upon concrete as in the best
practice in street paring. This is found to be more lasting than a plank thoor, and one or more blocks can be replaced at atly time whont :hsturbing any but the very small areat of the ficor under reparar.

SUSPENSION SCALES.

Exery maclaine shop handling castings or machinery should have a Compound Suspension Seale. These scales ate very compact. and omply act as a part of the chain comnecting the eathe look whit the article to be weighed. John Bertram \&

Sobis. oi Dumdia. Ont., have just put in a thirty thousand pround mathne in their works; Boivin. Wilson \& Co., oi Berthier one ai tuenty thousand pounds. and I. Matheson \& Co.. oi New cilasen. N.S., one of ten thousand. All oi these were made by the Farbanks Company, who carry sizes from 400 (1) 10000 llh, in sock in their warchouse, 749 Crisig strect. Montreal.

Industrial $\sqrt{\text { otes. }}$

The lisable. Que.. ioundry has been leased to M. McDonald. A nell tathon for the C.P.R. at Woodstock. Ont.. is mader way.

1. Bransied $\&$ Co. will install a creamery plant at Portage la Praurie. Wan
l.ongucul. Que.. is negotiating with a company which pro. poses to buld a large abatooir.

The Michary Mafg. Co. I.ondon. Ont., is puting up a larse addit:on to its stove works.

Plans have been passed for a new Anglican church in Sheribruhe. Que. to cost $\$ 30.000$.

The I'murrity of New Brunswick. Fredericton. N.B., will lumh an engmecriag building to cost Sif,000.

The cieneral Ilospital. St. Jolun. N.lB., requires a new he:rung atel womilating plant. Estimated cost $\$ 5.000$.
F. J.enard \& Sons. Lomdon, are installing a 500 h.p. cagine in the puwer house oi the I-ondon Electric Co.. Led.
l.onden. Ont.. will shorty let contracts for engines and dyu:mos ior the Vietoria llospital now in course oi crection.
C. Khupier. M.P.. has bought the Guelph. Ont.. rollines mill- properts It is possible Mir. Klocpier mas start the mill again.

The M.C li. is placing a third truss in the cantilever liridge acocss the ㅅiagara River. This will greatly strengthen the bidge.

The Gas and Gasoline Fngine Co.. Toronto Junction. is being formod to make gas and sasoline engines. The company mi:poses turnitig out engines from 3̂́h.p. in so h.p. R. Hunter. Joa. Murchey. Dr. Periect. A. W. Royce and B. B. Hendersna are the incorjorators.
J. Cimpbell is building a new sawmill at Springhill, N.S.

A 250 h.p. self-oiling engine, built by E. l.conard \mathbb{N} Sons, I.ondon, Ont., has just been put in for the Bennet Furnishins Cu., I.ondon, Ont.

The Massey-Harris Company is building a 4 -story stone and brick paint shop. 55×178, situated west of their bicycle factory, Tormato, 10 cost $\$ 12,000$.

The farmers in some townships bordering on Lake Simeoe are urging on the Government a project to lower the lake level and recham a large amount of land.
S. K. Gamelet. of Memrameook, N.B., is adding to his present power plant a 100 h.p. Robb-Armstrong engine with hoiler, sapplied by the Robb Enginecring Co.

Truro. N.S. has decided io purchise a 100 h.p. Mumiord improved boiler from the Robl Engineering Co., to replaice the beilers at present in use in the bumping station.
W. Partlow \& Son. Ingersoll. Ont.. fiour millers. have bought the King flour mill. which has been idle for some years. and will equip it with an entire new plant. including steam power.

Work has been commenced on the enlargement of the buidings of the Sin, ooe Canning Co.. at Simeoc. Ont. This combany recenty had a mammoth storehouse erected near Simeoc.

A new power plant is to be installed in the premises no: occupied by Garncau, Fekert \& Co.. spice merchants, London. Onk., and the building will be used by the London Printing \& Lithographing Co., Lid.

The contract for rebuilding the Union Bank bailding. Wellington strect. Toronto. has been let to J. E. Webb. including het water heating. and electric ligiting. Bond \& Smith. Temple Building. Toronto. were the architects.
W. F. Grant \& Co., Toronto, have the contract for the abituments ior the Eastern alenue bridge, Toronto, at \$4,070.96. City Engineer Rust's estimate was $\$ \$.800$. The other tenderers asked respectively $\$ 7.649 . \$ 8.895 . \$ S .1$ S9 and $\$ 7.558$.

Geo. Clayton. Who has been employed by the Standard Drain Pipe Co.. St. Johns. Que., for 15 years. together with his sens. has moved from St. Johns to St. Henry, where they are going into manuiacturing as the Montreal Fire Brick \& Terra Ccita Works.

Winnipeg has accepted the following tenders for waterworis supplies: The National Meter Co.. ior Empire meters at contant price. for straight reading dials, at $\$ 36.355$: John McDungall. Montral. for Worthington pumping engine. at \$Sy.0.So: Jas. Robertson Co., for supply of pig lead, at \$So.So per ton.

Tue capacity of the works of the Detroit Lithricator Cu.. oi Detroit. Mich., has been overtaxed during the past iew menths by the quantity of orders reccived from iorcign and domestic firms. They are now installing a large number oi new lathes and viber machinery, so as to be able to ensure prompt ieliveries on luture orders.
1.a Compagnie Savoic Guay has been incorporated with a total capital stock of $\$ 50,000$. headguarters at Plessistille. Que. ior the fabrication oi acetylene gas apparatus. thermic wotors, cte. The incorporators are: F.T. Savoic. J. Z. Triganne, M.D.. C. Ed. Gossclin: G. Savoic. J. B. Gosselin. Plessisville: G. R. Smith, artisan. Thetiord Mines, and G. E. Tanguay, Quchec.

The projec: of connecting the mainland with the Island oi Orleans by a bridge is now being seriously agitated. The proposition is to crect a cantilever bridge from the Icland to tlie lecauport shore, and to utilize it, not only ior vehicies and innt passengers. but for clectric cars. The shoals run out so far both from the island and from the Cois de Beampre, that the distance to be bridged would not be tery great.

Montral reccived permission to spend $\$ 30,000$ on repairing its water supply system. from last session of the Quebec legislature. The city council now proposes to ciuploy only part of this sum at present-ithe intention being, no doubt, to let the ren:ainder leak into clannnels where it will " do the most good." In the meantime the city is threntened every moment with the failure of the reservoirs (which are in an indescribable condifien), and a fearial loss of life and property.

Belleville, Ont., is buying a steam road roller.
The Sturgcon loalls, Ont., Pulp Co., L-td., is going to buld a large mull it once.

A large school bulding is to be erected in Chathan, Ont., at once. J. Dunn is the architect.

Rosslam. B. C.. has two new machme shops-itblett \mathbb{N} Canliffe. and that oit the Butioh Americ:an Co., Lad.

Much damage hats been dothe to brilges, dams, thames, ctc. at I:Iora, Gilt. Hespeler, Hrantord, Ont., by recent thoods.
C. A. Mathesin. Verth. Wme, is Foing to manaiacture peat fuel on lis farm :a lormmond lownship. Lanark County.

The iarmers in the neqghborhood of Stuht Ste. Marte. Ont.. are arranging with \mathfrak{F}. 11 . Clergue to buid a flour mill at that point.

The aron moulders m Montreal are demandmg a mammun rate of $\$ 2.30$ per day, and that those now making more shall not be redured.

An iron bridee wer the Grand Racer at Paris, Ont., was undermined by the hifh water, and tell April 2ath. The danage to the bridge will be at least $\$ 5.000$.

Bond \mathbb{N} Smuth, archatects, Temple Bublding. Toronto. hase recently let the contracts ior tour dwellang houscs on St. Clarens amentue. loromo, ior T. W. Murras.

The Farmers' I:levator and Shippong Co., of Kincardine. Lid. has been formed to prowic an clevator at Kincardane. Cr:t., and do a general produce business: :apital. $\$ 5.000$.

It is statud that capualists, oi whom I C. Robertson and T. Me ivity 太 Sons. St. Johm, N.iB. are mentoned, are considering the establishment of a rolling mill at Courtenay Bay

The Reeves Pulley Manumeturing Company. I.ti.. has been incorporated with \$1000 capital: head office. Toronto, and provisional directors. D. T. McNicl. A. W. Johnston. and Maggic M. Johnston.

The Montreal lipe Foundiry Company. Letd. will mamiarture the pipes rejuired ior the water-service that the town of Liverpool. XS. is about to inaugurat. About tive hundred tons oi pipa will be required.
H. Curby, M.P., proposes to buld at Belleville. Ont., an cletator with a cajacnty of from 500.000 to 1.000 .000 bushels. provided connection can be established for northwestern grain to be transhipped via that point.

St. Louis. Quc., has decided to aecept Mr. Bernier's offer to establish a fuundry in St. I.ouis. employng at least futern workmen during nine months in the year, and to cxempt the establishment irom taxes for ten years.

The action of David Menzies against the Bertram Engine Works Co.. Toronto, for damages ior iniuries received while in the emplos oi the firm. was settled recently by the plaintifi accepting an award of si,012 and costs.

Watcrloo. Ont., carricd a by-law. April zth. to devote $\$ 10.000$ to watenvorks purposes. The company will receive $\$ 3.000$ for the present plant. and the balance will make necessary improvements and build a stand pipe

The Standard Mica Company of Toronto. Ltd. has been inrorporated: eapital. $\$ 90.000$. The charter members are C. M. Clark. Cape Vincent. NV: II A Clark. E. Mickenzie. E. W. Klotr. Toronto. and E. I. Sition. of I.ondon.
R. Hadden and J. C. North. J. H. Nllan, W. FE. Vanvlack. W Sineaton. R. II Mrkenna. C. H. Widdifield. Picinn. On:.. and J F. Clapp. Hallowell. have been incorpnotated as the Prince Filward Prat Fucl Company. I.dl. e capital. $\$=0.000$.

In view oi the conduion if the Toronto waterworks pump. ing plan: it has been decoried in have an exper investipation inte the cost of pumpine The investigation of the Green's Fernomizer reports, prepareif by Engineer Pink. is still procceding heicore Judge Macdnugall.

The wooden bridge ouer the Misciscippi river at Appleton. Ont., gave way recently, having been weakened by an iec shove. and threw three men. a carriage and pair of borses into the river. One man was drowned and anolier badly iniured. The bridge bad been unsaie for some time. A new bridge will pechably be huilt at onec

Belleville, Ont., is offering $\$ 177.351$ to the waterworks company for the plant supplying the town.

The Aylmer, Ont., Iron Works has recently had a large amoum of new machinery placed in position.

The town of Uxbridge. Ont., has bought a large rotary pump from Young Bros., Amonte, Ont., the Mississippi Iron Works.
E. Simpson © Co., Moose Jaw, N.W.T., have made an agrecment with the farmers in the neighborhood to build a hour mill there.

The town of Windsor, N.S. has decided to purchase a stcam fire engine at a cost of $\$ 4.000$. It will also crect a town hall to cost $\$ 7,000$, including the site.

The Burrill-Johnston Iron Co., Yarmouth, N.S.. ceased work and dismissed all its hands. lpril 25 th. Among the hands dismissed were some who had been working constantly there fot 42 years. It seems the company has not made moncy for its sharchoiders for some years, though there was a time when ró per cent. dividends ware paid.

Toronto has given the contract for the abutments of the Queen strect bridge at $\$ 13.900$, to W. S. Gibson. There were six tenders for this work, ranging from $\$ 13.000$ to $\$ 17.027$. For Humber river bridge abutments, the city engineer's tender was the lowest, at $\$ 4.500$, and he was directed to do the work. Rathbun \& Co. got the contract for Portland cement.
C. W. Adams. W. W. Ramsey. president Expanded Metal Fi:cproofing Company. Chicago: C. J. Root, J. H. Barnard. Clicago; E. F. B. Johnston, C. S. Spencer. Toronto, are applying for incorporation as the Expanded Mictal Company of Canada. I.td. to make expanded metal fireproofing, and to do a general fireproof construction business: chief place of business, Toronto; capital. $\$ 100,000$.
W. G. Smart, ior the past two years chief engineer of the Jenckes Machine Co., Sherbrooke. Que., has resigned, and has sene into the machine business in Hamiton. Ont; the SmartFby Machine Co., having been formed. It has taken over the plant. machnery and patterns belonging to the Osborne estate. which were recently used by it. J. Nic, many oi which fatterns are for machinery used by local manniacturers. The new company is oterinaling the plant. and is to extend the business very largely.

The company which has been formed for the purpose of mambacturing bar iron and other products of iron, at Bellesille, and removing the Abbott \& Co.'s Iron Works of Montreal, is known as the Abbott-Mitchell Iron and Steel Co. Ottario. Led. The execuave officers are F. A. Mitchell, Thames Iron Works. Norris. Comn., president and managing director: William Abbott, Montreal, vice-president and secre-tary- Henry Pringle. Belletille, treasurer. The company will procecl at once to erect buildings and install its plant.

The Sun Oil Refining Company has applied to the city for land and the privileges of establishing a distributing depot in St. John. It proposes going extensively into the business through the Maritime Provinces in opposition to the Standard Oil monopoly. The city has promised it the same privileges it has given the Standard. The Cornplanters' Refinmg Company. of Warren. Penn., is backing the operation. Warehouses and tanks will be crecied and all necessary plant provided to carry on the larrelling business. The oil will be brought here in tanks and be means of a pipe line irom the ballast whari it will be pumped to the tanks and then barrelled. The site granted is just south of the exhibition grounds.

The Gencral Calcium Carbide Company is applying for a Deminion charter for the purpose oi utilizing and converting waste wood. chips, shavings. sawdust and other wood products inte calcium earbide; and also for recoveriang all other byproducts thercirom; and for scparating. distilling and refiming the same: for the production of wood-tar. acid and gases; and also fo- acquiring, owning and operating iron mines, and for mining. disfing and quarrying iron ore, and lor the smeling and reduction of iron ore. and for the manufaclure of steel for manuiacturing and producing gases: and for inamufacturing. conveying and disposing of gas for lighting and heating purposes; and for the reducing, treating and production of phosphates, cic.

A grist mill is to be built at Agnes，Lake Megantic，Que．
Stayner，Omt．，is issuing debentures anounting to $\$ 24,000$ to provide a system of waterworks．

Bathic \＆McLarty，machinists，Ilartncy，Man．，have bought the business of Watson \＆Whimster，Portage la Prairie，and will move there．

R．M．Beal，tanner，Toronto，is to be granted a ten years＇ exemption from taxes if he erects a tannery this year in Lindsay． and employs 20 adults．

L．McGlashan offers to move the Ontario silver works from Stenebridge to Thorold，Ont．，for a bonus of $\$ 10,000$ and ten years＇exemption from taxes．

Corbeil \＆Leveille，sash and door manufacturers，Montreal． have filed consent to assign．In 1897 they compromised liabil－ ities of $\$ 2 \mathrm{~s} .500$ at 30 cents on the dollar．

The Alpha Chemical Co．．Berlin．Ont．，will build a new factory if Berlun gramts a bonus，and if not will move to some town offering greater inducements．

A company has secured an option on a large tract of land on the New York and Ottawa Railway，near Newington，where there are valuable peat bogs．They will turn the product into peat，and place it on the market．

Lachine town council considered a bonus of $\$ 15.000$ for a beot and shoe factory，and $\$ 20,000$ ior a furniture factory．The bonus industry continues to be one of the most profitable in Canada for the manufacturers．

The extensive water power on the Bonnechere river at Renirew，belonging to the estate of the late M．L．Russell，has been sold to Thos．R．Lowe．and will，it is said，be developed at once for industrial purposes．

The William Rutheriord \＆Sons Company，limited，have been incorporated：capntil．$\$ ⿴ 囗 ⿱ 一 一 心^{500000}$ ，at St．Cunegonde oi Montreal；to manniacture and deal in lumber and woodwork of every description，to take building contracts．

Recent strikes among the moulders in London．Brantiord． Hamilton and Toronto．have been settled it is said by the foundrymen，in addition to granting an advance of ic per cent． agrecing to recognize shop committees．The moulders entered into an agrecment for a year．

A New Brunswick charter has been granted to George F ． Baird．J．Manchester，J．Mlisun，T．H．Bullock．D．J．Purdy，J． F．Robertson and R．C Eikin．St．Join，N．B．，to purchase the property formerly owned by the Portand Rolling Mills Com pany，Lid．，and to carry it on under that name．with a capital of $\$ 90,000$ ．

A delegation of Buffalo aldermen recently examined the gas plant in Toronto，and wire so much interested by the sight that they went home and stated that it was a municipal plant．As Toronto has more than the usually vigorous monopoly wheh is owned by a few of the wealthicst citizens a great deal oi specth－ lation has been indulged in as to what the visitors really saw．

The constantly increanag demands for its goods has made it necessary for the Garlock Packing Co．，Hamilton．Ont．，to copen a branch in Montrill at 103 Common street．as well as to nove into larger premanes in Hamiton at 22 John strect nerth．The past four momeths business has been much the most plosperous in the history oi this enterprising and progtessive company．

Among the acts passed by the Nova Scotia legislature at its last session were Acts to cupply the town of Sydney with water： to incorporate the Winds．rs Calcium Carbide Company，Ltd．；to amend Chapter 157 of the lits of 1893，entitied＂An Act to in－ corporate the Pcople＇s Mrat and Light Company，Ltd．＂and ihe Acts in amendment ther－：．to incorporate the Dominion Fire Brick and Tile Company．I：d：to incorporate the Consolidated Graphite Company，Lid．

The activity ：n manuiacturing in Canada is evidenced by the amount and varicty oi orders which our belting manuiac－ turers have on hand．The firm of Sadler \＆Howarth is par－ ticularly busy，and at their Toronto office alone have a large number of orders yet untiiti，for double and single leather belt－ ing of all widths to forty ivehes wide，from sawmill owners． cotton，woolen and fiour mill owners，foundries and other factorics．

R．J．Matheson has elected a flour mill at Dartmonth，N．S．
Brockville，Ont．，is enforcing a wide tire by－law in its streets this season．

A project to erect a creanery at Melbourne，Que．，is said to be assured of success．

It is expected that the G．T．R．office building in Montreai will be begun early this month．

13．E．Doolitte，Toronto，is promoting a project for estab－ lishing a gas plant in Rossland，B．C．

Corbeil \＆Leveille，manufacturers of doors，sashes，etc．． Mentreal，have assigned with liabilities of $\$ 44.752$ ．
C．Douglas \＆Son，foundrymen，Berwick．N．S．，have dis－ solved partnership，Howard Douglas continuing under the old style．

The British Timber and Manuacturing Company，of Lon－ dent．England，is said to be looking into the question of erecting a pulp mill in Canada．

Some square timbers of Douglas fir have been shipped orer the C．P．R．from British Coiumbia to Montreal which measured 36×36 inches and 60 ieet long．

The Canadian Rand D－in r_{n} ．is now building new work－ shcps in Sherbrooke，Que are building will be of brick． 90×200 iect，and will be floored with conerete．

The compressed air method of painting，which was describet in The Canadian Engineer a couple of years ago，has just been put into use in the C．P．R．car shops at Perth，Ont．

Inness，Hemeon \＆Co．，Liverpool，N．S．，are building a large rotary saw mill．The engine boiler and other machinery have been ordered from the Robb Engincering Co．

Baxter \＆Galloway，Burlington．Ont．，it is said，orderell from the Goldic，McCulioch Co．，Galt，Ont．，the equipment for a hundred－barrel flour mill，which will be erected shortly．

The Stearns Bicycle Co．will，it is said，establish a large factory at an carly date，a large part of whose output will be tools，as is the case in the company＇s works in the United States．

The Ottawa Building Company，Ltd．，of which Edward ivallace．T．Ahearn and W．Y．Soper are leading members． has been incorporated to buy land and buildings；capital． $\$ 200.000$ ．

The Algoma Brick Co．has been orgamized at Rat Portage． Ont．，with Jacob Hose，T．R．Deason，J．W．Humble，R． Dewsett，J．Brenchley and J．Dauphin as provisional directors． It is the intention to supply the Manitoba market with pressed bick．

The Montreal city attorneys have now definitely repurted that the proposed tax of one per cent．per annum on ma－ clinery，ctc．，would only apply to machinery that is practically－ and permanently affixed to buildings．

The building of the new waterworks system at Prescott． Ont．，is now going on．W．M．Watson，whose articles on Sanitation in The Canadian Enginecr have attracted so much attention，is superintendent of construction．

M．H．Bissell，R．A．McLelland，J．Bissell，Brockwille． Ont．，and C．H．Bissell，J．B．Bissell，Augusta，Ont．，have been incorporated as the Algonquin Milling Lo．，Ltd．；capital． \＄ro，000；chicf place of business，Algonquin．Ont．

Peck，Benny \＆Co．gave a large luncheon to their em－ ployees and iriends on the opening of their new building lately． The feast was a secognition of the good work done in saving the buildings in the disastrous fire of some months ago．

The firm of Connell Bros．，Woods：ock，N．B．，iron founders． etc．，is to become a joint stock company with the following disctors：H．A．Connell，R．B．Ketchum，John Graham，D． Muaro，R．M．Gabel，Woodstock，N．B．；capitel，$\$ 60,000$.

The actions for smoke nuisance，taken recently in Mont－ seal by the city boiler inspector against the Canadian Pacific Railway Company for its power house，Robert White，factory； W．Macdonald，tobacco fictory；the Montreal Steam Laundry． and the Laval University，have been setted．All pleaded guilty belore the Recorder of neglecting to install smoke consumers when so ordered by the boiler inspector．and were allowed time by the Court to introduce them．

Wibon \mathbb{N} George will erect a Hour mill at ladtan Heat． N．W．I．The contract for the millaty machanery hats been gisen to the Vorth American Mhlong Company，of Seratiford． Ont．In addition to the milling machinery ath electrac light plant will be added．The whole will cost in the neighborhoed oiss．000．

Tenders will be called for an eigitt－day cluck for the Tor

 bib．in weigin 3.000 and 2.000 pounds respectively．The ex will als，be reguired nearly one hundred small clocks for vazums othices．

Frederic W：Whelphey，Greonwich．N．B．：Wilham T．Fan－ ing．St．Johu．A B．：Damel R．Whetpley．Aberta E．Wheiphey and Edgar D Whelplev．Grevawich．太．B ．have been ineor－ perated as the I．A．Whepley Combans．I．th．iron foumbers and shate maniacturers：capital．S20．000：chici place of lusi mes Gremwich．© 11

Gee．F．Baird．James Mancheiter．Joseph Allivol．Thos H． Bu！lock．D．J Purde，las F Robersonn，R C Fikia and 1. II．Haningion．St．Iohn． $\mathcal{C} R$ ，are cecking incorporation，as the Portand Revling Mill：Co．．I．td．in operate the rolling mill，formerle rontrolled by the Jatmes Harric Co．．I．di．Tine capial is in be Sonono．in \＄100 shares．

The B．Greening Wire Co．Hamikon．Ont．，ba－ciosed a compract for haiding a new wire－cleaning howse，which will enable them to greatlv increace tike outhut of the wir we－drawins mit？Duing the buiding of this addition thes will add hirte fert in their emoke－tact：it being their insention to increase the power ly the addition oi ion horse－power．

The terms of amalyamation of the Hamihom Blan Furnace Company and the Ontario Rolling Mills Company late been agreed on，ami amakamation will be proceded with as sonn as possible．The new company will have．it is said，a capitai of $\$ 2.000,000$ ．It is the imtention on cestablish a sted plant ior tine mamiacture of all kinds oi hillets．hars：ele Amone thoie who have stoct in the now combans are：A T Wendi．M．P．．
 Col．Melaren．R A l．ucse John Milne． 1° ．Southam．A．F： Carpenter．Hon I．il Gibsu：．Alexamber Turner，II：i． Wood．John Mombic and S．F．Mekinnon amd G B．Smith oi Taronto．

J「arine $\sqrt{\text { ews．}}$

The R．\＆O．steamer＂Aherian＂will run whth the sicamer ＊Hamilton ${ }^{-\cdots}$ irom Montreal to Hamilton．（Mnt．this season．

J．\＆T．Colson．Thorold．Ont．Cave apponted to thet： stamer＂Erin．＂master．Caph．I＇．Sullivan：enginecr．P．J．Kerr．

Myle：Sons．Thomas．Hambon．Om．，have appointed to the steamer＂Myles．＂Caph Join S．Moore：engineer．James Smeaton．

J．B．Fairgrave．Hamilom．Ont．las apponinted（o）his steamer＂．Arabian．＂mavter．Ohacr latemade：engincer．Wim． liarsernd．

The late Ontario Navigation Co，l．td．，．．WV．Hepburn． matager．Pieton，Ont．．has appointed to the sieamer＂Argyte．＂ Caph．G．GMrien：engineer，John llayelette．

The steamer＂Bohemian＂oi the R．\＆O．Heet will meet the wew steaner＂Tormono＂at l＇resoont，and ake the pavien－

The Wetrois，Wiabsor \＆Sno Navigation Company has do． cided to place the stidewhecter＂Majentic＂and＂City oi Col－
 and the Son．

The railway swing bridge per．which has been an ohorucumb in trallic in the Salt Ste．Maric canal since it comataction．is bow bemp removed，and a new brmpe．fis iect long whathins： The whole work will cost in the neighborheond ai $\$ 70.000$ ．
－Corthwest Tranaportation Co．．Sarnia．Ont．．hac appointed to the steamers＂l＂nited Fimpire：＂Caph．Jno．MeNiab：engi－ necr．S．Mrishan：＂Mramel．．＂Capt．E．Robertsnn：ensincer． F．W．Mcken．

The boats and interests of the Latie Temiscamingue Navi－ gation Co．have been purchased by Alexamer Lumsden， M．1．．A．．Ottawa．

The Lake labelle Navigation Cor．lad．，has been incor－ porated with a capital of $\$ 10,000$ to do business in the town－ shij）of l．abelle，Sue．

The fold deposits in the River Gilhert in Beanece con：at： bue．．are attracting athention at present．One man in St． Francis recemty brought $\$ 1 . \mathrm{SoO}$ ．

Aphocanom has been made to the New Bramswick Lexbsta－ ture for the incorporation of the Imperial Dry Dock Company． with a capnital of Si．000．000．Geoo．Robertson．St．John，is the prome morer in the enterprise．

D．D．Glasier \＆Son have hough irom the Grand Manan Steambont Company the stamer＂linshing．＂which has for ットme jears run betwen Gramd Manan and St．John．St． Stephen and St．Andrews．

The steamer＂Swiit．＂Capt．D．Noonan，is being emarked for the seaton：run on the Kideam．The Davis Dry Dock Co．， Kingston，is buidling a sister boat to the＂Swift，＂which will later on make the Ounwa－Kingston service，wia the Ridem，a dely one．

I：．C．Walker，Walkerville：F．II．Walker．J．II．Walker． Detroit．U．S．：S．A King．M．D．．Kingsville．Ont．，and W． Wgollatt．Walkerville，will be incorporated as the Lake Erie Navigation Co：capital．\＄40．000：chici place of business． Watlicrville．Ont．

The anmual meeting oi the Westcott Wrecking Company was held at Sarnia．Ont．，recently．The election of officers re－ sulted as follows：President and manager．J．Wn．Westcott， Detroit：directors．F．F．Pardec．M．P．P．．Sarnia：Isaac Watt． Windsor，and J．W＇．Westeont．

Pbayiair Barge of Tug line，Midiand，Ont．，has made these appointment：－Steamer．＂St．Andtew：＂Capt．W．H．Feather－ donaugh：engineer，Jno．McRae．Tugs．＂Magnolia．＂Capt． R H．Gilbertson．Fuginecr A．E．House；＂Metamora．＂Capa． Jan．Timdall．Fnginecr Geo．Smith：＂Minitaga．＂Capt．Ed． Burke．Finineer J．MeGregor．

The clectric light plan：on board the steamship＂Mul－ सrate．＂of the I．C．R．ierry service of the Strait oi Canso．was supplied and installed by John Starr．Son \＆Co．．Lad．．Maliaxa． i．S．It consists oi a 110 volt dircet currem compound wombl dynamo，adjusting its own voltage on an increased load．and directly connected with a Robb engine．

It is usideritond that Jno．Ross amd Jno．McRace have un－ dertaken to complete the Great Northern Railuay．from the ead of the presemt rack at Shawincgan to the town of Hawkec． bury．exclusive oi a 20 －mile section alseady built．or a distance oi about is miles．J．M．MeCarthy and J．MI．Shanley have been appointed joint engineers of constraction．

The two well－known steamship companies on the Georgian Pies，iamiliarly known as the Black and the White lines，inave been amalkamated．The new company will be known as the Cormhers Ciavigation Company．oi Ontario．I，de．，and will have a capital of a million dollars．The provisional officers are： President．James Scott．Toronto：vice－president．J．J．S．ong． Collingword：directors．11．E．Smith．Owen Smund：W．J．Shep－ pard．Waulausione：M．Burton and F．A．Lati．Barria．

The Canada ．Ithantic Kailway has Ieaced from the Kings－ ton and Montreal Forwarding Co．its line of barges to run be ineon Cotean and Montreal with the C．A．R．Transit Companys brisiness．Thin will give a grain route direct from Chicago and Dubulh in Montreal．I．act year the C．A．R．paid the Forward－ mag Company an much per hashel for imnsporation：now they have the liarges．some 12 or 15 in number．leased for three years

Montreal is to bave another line oi coal－carrying stem－ shige Vackeroie．Manm．Perer Kran and nthers have pitr－ a hased the exiensive conl fields ai Inverness County．diova Sresin．Incated at Port IInod．Broad Cove and Clamncy Corner． and embrace what is called the largest singele coal－bearine area in Cabada The man is io base a Neet of stemmere which will carry coal to Montreal，Boston and Priuce Edward Ishond．In this manner it is said that the new company will become a iremidable rival ot the Dominion Coal Commans：Thic syndi－ rate recenty acquired the Invermess and Richonond Railway：

Capt. J. F. Carmbell has bought the passenger steamer "Ontario" from the N.W. Trausportation Co., Sarnia. Ont . and hats taken it to Sombra, where he will remove the cabins and comert it into a limber carrier.
W. Russ, I:. W. Brydges, Rat Portage; C. G. Neilsen. Sanduliy, Ohio: G. H. Bertram, Toronto, Ont., and A. E: Bart-
 Kiver Navigation Company, Lid.; capital, \$99.000; chief place of business, Kat Portage, Ont.
A. Mackenzic, who was last year with the Pioneer Steamboat company, has bought the steamer "Sir W. C. Van Horne." and feet of barace, from Boucher, Langstaff \& Holmes, and will run an madependent massenger and freight line on the Rat Portane-lort liances route this scason.

The Toromo Ferry Company, Lid., W. Galt. manager. ha. appointed the following captains-". Maylower." Capt. G. Mouhon: " Primrose," Capt. R. Wiliams; "Shamrock:" Capt. T. Jeminks: "Thistle," Capt. A. Martin; " Kathleen," Capt. J. Forrike: "Island Queen," Capt. M. Corcoran; " Lavella." Citje. C. Tufford.

Canadian Transit Co. has made these appointments-Steamer " Briton," master, James B. Watts: engineer. W. R. Donaldson: "German," master, D. Carrier: engineer, II. J. Gilbo: "Crectan." master, William Baxter; engineer, Chomas Kelly: "Saxon." master, Alex. Birnic; engineer, George E. Averill: " Reman," mäster, A. J. Greenlay; engincer, S. A. Wells.

The lew lork State advisory board, appointed by Governor Remevelt. - Bond. state engineer and surveyor, and J. \therefore. Partridge, state sumerintendent of public works, will inaugurate the investi;ation of the canal problem on May 10. It is their purpose to commence their work by an inspection of the canals of the Dommion of Canada. They will investigate the constraction, improvement and commerce of those waterways.

Montreal Transportation Co., Kingston. Ont., has ma.le these appuintmemts-Steamers, "Activc." Capt. Edward Bennett: " Mru:mon." Capt. Joseph Murray, Engincer Robt. Hepburn: " (Jheke:" Capn. Thos Murphy, Engineer Jas. Conley; "Glengarry:" Cajn. Gordon Kean. Engineer Gco. Tunle: "Jessic Hall." Capt. Chas. Martin, Engineer Gco. Tuetle: "Jas. A. Watker." Capt. John Boyd, Enginecr Gco. Boyd: "D. C. Thomsom." Caph. Jas, Murray, Engincer Gco. Henderson: " Manoockbarn," Capt. Jolnn Irving. Enginecr R. Ti:ylor: "• Limemount," Capt. J. W. Mawdesley. Engineer John Evans.

Ore -higumbts from the " Payne" silver mine for the week erding $l_{\text {pril }}$ \& were 300 tons. For the month of March the total ore shipments were 1,100 tons.

The Mribnan gold mine at Parry Sound, comprising 159 acres. has lo. in sold. according to the Parry Sound Star, ior Silo.000. The purchasers have also bougit the Smith, Virgo and Laies knatsons.

The dumery oi what promises to develop into a valuable coal propert! w reported at Sandy Cove, B.C.. on the mainland. facing Quern Corarlotte Sonnd, and just above the northern extremity oi Vismeouser Island.

The divenery of the presence of platinum and xold in the black sand iound at the confuence of the Hootalinqua and Lewis rivers N very important and valuable, since it opens up a wew mimng industry. Black sand is found pretty much in all these and has been hitherto considered of no value. The sand has been assayed and found to consist oi about 75 per cent. oi iron and 25 per cent. oi copper, tin, silver. gold and platinum.

The manganese deposits which are located about five miles from New knw. Laneniurg county, N.S., hisve been worked to a limited extent last season, but more work will probahly lie done this. The ore occurs in the limestone formation and requires to be sorted, washed, dried and dressed by hand. aiter
which it is hated to Chester Basin, thence to Matian by a chooner and by steaner to New lork. The ore contains about ou per cent. metallic manganese.

The Payne Mine is to be Canadianized, it is said. A Cimatdian charter is being asked for, and the American company will be taken over. The provisional dirertors of the reorgat ized mine are to be James Ross. Hon. L. J. Forget. Edwan Hanson and C. J. MeCuaig. It is understood that the cargital of the Payne will not be increased, but the shares will be reduced to one dollar.

With regard to Outario's mineral production for 1808 nickel is still her most extensively developed industry. The copper and nickel mines of the Sudbury country gave employmem to an average of 610 men during 1808 , and the wages paid to them amounted to $\$ 315.500$; as against $\$ 253.256 \mathrm{in} 1897$, and $\$ 2.40 .15 \mathrm{l}$ in 1896 . All the ore prodaced was smelted, reduced to matte. and then exported to the United States to be refined: 8.373 .500 pounds of refined copper were produced, valued at $\$ 268.080$, and the produce of fine nickel was 5.567 .690 pounds, valued at $\$ 514,220$. These valuations are based on the selling price of the matte, which is figured to be onethird of the market price of the refined metal. The total value oi both metals produced in $180 S$ was $\$ 782.300$, and in 1897 was bitt $\$ 559.710$. In 1806 it stond at $\$ 247.15 \mathrm{t}$. The gold bullion picoduced during 1808 was 16,075 ounces, valued at $\$ 271,906$. but this does not include the product of one mine on the Seine River. In 1897 the bullion product was 11,412 ounces; in 1800 . 7.154 ounces; and in 1805 it was but 3.038 ounces. It is expected that the present year will show a much heavier increase. beth relatively and positively than the past four years. The ircn product during 1808 was as follows: Pig iron. 48,253 short tons. valued by the selling price at $\$ 530.789$. The industry comployed 130 men. and the total wages paid was $\$ 6 t_{n+7}$. During the present year the product will be increased by the recent estabiishment of the Descronto smelter, no returns frow which are included in the above figures.

Railway] [atters.

The C.P.R. at its ammal meeting approved two extensions in Manitoba; one the Stonewall branch, Borthward to Foxton. and the other the Pipestone branch, westward.

The spur line from the main line of the O.A. \& P.S. Ry. in Parry Sound is to be hait by Mackenzie \& Mann. It will be sominally a part of the Janes' Bay Railway, whose charter would expire if no work was done this year.

A bill was recently put through the Nova Scotia legishature incorporating the Halifax and Colchester Railway Co., a company that proposes to buidd a railway through the Stewiack: valley from Brookficld curling at Eastville.

The C.P.R. is about to inmagurate the " Empire limated" tri.in from coast to coast. This train. it is said, is to average 45 miles an hour in its iranscontinemial passage, and will make no stops. save to change engines and take on water. The fast t:ain will carry mails, ceppress and baggage.

The C.P.R. will make the following expenditures on improvements this year: Permanent way. Si.150.979: for additicnal station, yard, and terminal facilities at Montreal, Vancouver and other points, $\$ 785.187$: ior the completion oi air brake and atitomatic coupler equipment. $\$ 305.010$: ior bianch lines to mines in connection with Crow's Nest Pass line. $\$ 300.000$, and rolling stock. $\$ 1.000 .000$, as the tratic of the company may require.

Mackenzic $\&$ Mann have received the iranchise for the construction of a railway over a hundred miles in length fro:i Ercoad Cove. Cape Breton, to the Strats of Canso, amd live work on the building of the line will commence as sonn aweather permits. The price which Mackenzic \& Mann paid for the franchise is stated to be in the neighthorhnod of $\$ 110.000$, ni which $\$ 50.000$ has been paid to geniemen connected with former projects, while Thomas MeMillan, who owns the Gladwyn Coal Mining preperty and franchises, reccived $\$ 50.033$.

A great deal of reconstruction has taken place along the Grand 'lrunk system during the past year, under F. H. McGuigan, general superintendent; 255 miles of sted rals of the standard So lbs. were latd. The $80 \cdot 1 \mathrm{l}$. rauls just referred to replaced others from 05 to 70 lbs ., and 240 mites of the latter were telaid on lines earrying lighter trattic. There were also a fraction over 66 miles of new side-track. 54 of these being at stations. etc.. and 12 for the unc of manufacturng establishments in difterent parts of the cututry. Nou less than 85 light irun, steel and wouden bridges were replaced by new steel bridges of the hest modern description, therr total length being 21,236 feet. or 116 feet over four miles. The number of running feet includes the 25 spans, equal to 6,592 fect of the new Victoria, but it does not include the Niagara bridge, which was completed in 1897 . The record for the year also shows that 35 wooden pile bridges and irectles. possessing a total lengih of 2.361 feet. as well as 10 wooden overinead wagon bridges, the whole being 1.108 feet long, were completely rebuilt, most of these being on the branch lines. The Grand Trunk laid during 189 S no less than 1.759 .833 cross-ties. being an increase of half a million over $1 \mathrm{~S}_{\mathrm{g}} \mathrm{F}$.

Electric Tlashes.

The Royal Electric Co. is installing in the premises of the Hudson's Bay Co. at Winmpeg, a complete electric lighting plant.

The Canadian General Electric Co. has sold D. Manehester, woolen manuiacturer oi Ottawa, Ont., one of its latest type 1.5 h.p. motors.

The Hamilton Brass Mnig. Co., of Hamiton, is mstalling in its factory a $30 \mathrm{~h} . \mathrm{p}$. ${ }^{*}$ S.K.C." mduction motor to drive its shafting. The premises are also being lit throughout by electricity:

The Cataract Power Co., of Hamilton, is installing in the premises of the Nerton Ming. Co. three $15 \mathrm{~h} . \mathrm{p}$. and one $20 \mathrm{~h} . \mathrm{p}$. "S.K.C." induction motors to operate the entire factory by clectricity.

The Royal Electric Co. is installing in the works of the Hamilton Bridge Co. a 40 h.p. two-phase induction motor for perating the cranes and machinery. The works are also being lit throughout by electricity.

The Ottawa Journal recently published fac-similies of leticts from the president of the Metropolitan Electric Cu., Otuwa. offering it for sale at $\$ 40,000$ to the Ottawa Electric Co. The Metropolitan charter was granted on condition that no such sale should take place.

The solid masonry of the dam across the Jacques Cartier River at St. Catherines, Que. has been completed, and rour tifty-four inch water whecls of the most modern type are to be used to develop power. It is proposed to deliver in Quebee ior electrical purposes 5.000 h.p. The work will probably be completed by about July, at a cost of $\$ 275.000$.

Barrie, Ont. has just gone into the electric lighting busibese. and the first schedule of rates which it has issued fixes tia: rate, at a very low point. Store lights are $\$_{5}$ per single light and $\$ 2$ per light for twenty and over; residences, $\$ 4$ for one light. and $\$ 1.50$ each for twenty or over. Churches are given lights at $\$ 1.50$ each per year. Meter rates for ten lights and whr have been fined at to cents per thousand volts. There are at present three thousand lights installed, and applications for more are coming in rapidly.

Winuipeg. Man., has carricd a by-law in favor of municipal ov: ucrship oi electrical lizhting plant, and April 18th tenders were received for a 300 h.p. cross compound engine. with plimps. condensers ar.d fittings for electric lighting purposes, as inllows: Polson Iron Works Co.. Toronto, $\$ 8,550$; Goldic \& McCulloch, Galt, $\mathbf{S}_{9.350 \text {; Rolb Engincering Company, Am- }}$ herstburg. N.S.. $\$ 7.400$. For electrical plant and supplicsWestern Electrical Company, Chicago; Canadian General Electric Company. Toronto; Royal Electric Company, Montreal; L'nited Electric Company, Toronfo.

The 'I. Eaton Co., of Toronto, is installing in their new factory two Canadian General Electric Co. motors.

The Chambers Electric Co., of Truro, N.S., has purchased a 10 hp . motor from the Canadian General Electric Cu.

The Montreal Street Railuay Co. has placed another order with the Canadian General Electric Co. for twenty "C.G.E." 1,000 railway motors.

The C. T. Wright Co., of Iamulton, manulacturers of tin and stamped ware, are lating their steann engme replaced by a 36 h.p. "S.K.C." two-phase mutor, receiving its current from the lines of the Cataract Power Co.

- The Dowsell Ming. Co., Hamilton, Ont., is having installed in its works, one $30 \mathrm{~h} . \mathrm{p}$. wo-phase motor of the Royal Electric Company's make. The current for this installation is to be taken from the Cataract Yower Company's service.

It is said that the prospects are encouraging for the completion of the Windsor, N.S., Calcium Carbide Co.'s works in the near future. The engineers have been engaged and a survey will be made at once. It is proposed to have the plant completed within ten months. The power will be obtained from the West Branch of the Avon river.

The B. Greening Wire Co., Hamilton, Ont., had installed in its works, about three months ago, a $40 \mathrm{~h} . \mathrm{p}$. " S.K.C." twophase motor, by the Royal Electric Co. It reccives its current from the Cataract Power Co. This has worked so satisfactorily that it has placed an additional order for one 50 h.p., one $30 \mathrm{~h} . \mathrm{p}$. and one so h.p. motor of the same type, to operate its entire works by clestricity.

The Gurney Tilden Company, of IIamilton, is having installed in its works by the Royal Electric Company; one 30 h.p., three 15 h.p., and one 7 h.p. "S.K.C." two-phase motors, which are to drive the machincry and clevators in their entire works, entirely replacing stcam. At this rate, Hamilton will soon be a smokeless city, as the engines of the Hamiton Electric Light \& Power Co. were closed down on March 5th, and have not been in operation since, everything being driven by the large "S.K.C." motors, with power from DeCew Falls.

Judge Carman, Cornwall, gave a verdict for $\$ 100$ in Miller vs town of Cornwall and the Cornwall Electric Street Railway Co This was an action for $\$ 200$ for injuries sustained by the plaintiff falling off his wagon and striking his head on a rail. It was held that the accident was due to the rails of the street railway track being higier than the roadway. His Honor in giving the verdict for $\$ 100$ held both defendants liable. The suit was brought against the town, which had the Strect Raylway Company added as defendants. The case is said to be the first of the kind in Ontario and the third in Canada.

The International Traction Company took over the Canadian property at Niagara Falls, Ont., April 19th. A mecting was heid in Toronto and officers and directors for the Niagara Falls Park \& River Railway were elected as follows: W. C. Ely, president; Danicl S. Lamont, vice-president; Richard Rankine, secretary and treasurer, and B. Van Horne, general matager. The property acquired is the trolley line from Chippewa, Ont., to Queenston, a distance of twelve and a half miles. This completes the acquisition of the propertics embraced in the title of the International Traction Company. They comprise six electric railway lines, including the Buffalo city and suburban system, and two bridges spanning the Niagara river.

The water commisstoners of Fort Willami have bought fiom the Royal Electric Co., an addutional "S.K.C." two-phase gencrator, having a capacity of $2 \infty \mathrm{k} . \mathrm{w}$. Their lighting has increased so rapidly that the $75 \mathrm{k} . \mathrm{w}$. plant. which was put in a year ago, was not sufficiently large to supply the demand. They are also revamping a portion of the city and extending their lights. About 500 lights capacity of "S.K.C." transformers are bring put in The changes will be made, and the additional plant in operation about the middle of June, after which it is proposed to supply the C.P.R. station, the clevators, freight sheds. round houses and the Kaministiquia Hotel. The growth of the lighting has been phenomenal. and has been taken care of by T. E. Oakley. secretary of the commissioners. The waterworks and electric light plant are in charge of W. H. Smith, formerly of Goderich, Ont.

The John McPherson Co., Ltd., manufacturers of boots and shoes, Hamilton, Ont., has placed its order for a $40 \mathrm{~h} . \mathrm{p}$. "S.K.C." two-phase induction motor, which is to be used to cperate the entire plant, replacing its present steam equipment. The company is also having its factory lit throughout by electricity.

The Canadan Pacific Ralway Co. has found it necessary to merease the power plant at the Tran Smelter works, Tranl. 73.C., uway to the large cuntracts thas undertaken, and has plates an urder with the Canadian General Electric Co. tor another 75 l.p. mduction motor and a 75 h.p. three-phase synclironous motor.

The B. Greening Wire Co., of Hamilton, has placed an order ior another 30 h.p. "S.K.C." Hwo-phase motor, which is to be installed about the moddle oi May, and will complete the ccatcrsion of their manufactory from a steam driven to electrically driven plant, and adds another smokeless chimney to Hamilon factorics.

During the past thirty days the Canadian General Electric Cempany has received many orders for its standard threc-phase induction motors; among which are: Three 150 h.p. to the Uritish America Corporation, Rossland, B.C.; one $50 \mathrm{~h} . \mathrm{p}$. to the Trail Smeiter, Rossland. B.C.; one $200 \mathrm{~h} . \mathrm{p}$. , one $100 \mathrm{~h} . \mathrm{p}$. and onte $20 \mathrm{~h} . \mathrm{p}$. to the Montreal Cotton Co., Valleyficld, Que.; one $100 \mathrm{~h} . \mathrm{p}$. , four 5 h.p., two $3 \mathrm{~h} . \mathrm{p}$. and two 2 h.p. to the Lachine Rapids Co., of Montreal: one 50 h.p. to the West Kootenay Power \& ' ight Co., and one 5 h.p. to the Miller Bros. \& Jones, Dontreal.

The West Kootenay Power \& Light Co., Rossland, B.C., has nuet with such success in its power transmission undertaking that it has found it necessary to increase its plant to double the present capacity. About a year ago this company commenced supplyng current to its customers at Rossland and Trail. a distance of nearly fo miles from the power house, which is located at Bonnington Falls on the Kootenay River, and to-day has more orders for power than it can supply. The present gercrating plant consists of two $1,000 \mathrm{~h} . \mathrm{p}$., three-phase revolving bield dynamos of the Canadian General Electric Co.'s make, and the company has just placed an order for a $2,000 \mathrm{~h} . \mathrm{p}$. gencrator of the same type with the company. The Canadian Gereral Electric Co. is also supplying a complete equipment of marble pancl switchboards, and 3,000 k.w. capacity in high putential step-up and step-down transformers. When this additiot:al installation is complried the West Kootenay Co. will have one of the largest power plants in Canada, and the distance of transmission is the greatest in operation in Canada.

Dersonal

C. H. Topp, city engincer, Chatham, Ont., has accepted the festion of city engineer, Victoria, B.C.

The Canadian representative of Holiand's Mnig. Co., vises. machinists' and plumbers' tools, Eric, Pa., A. Younghans. called at the Toronto office of The Canadian Engineer recently.
N. J. Ker, C.E., assistant city engincer, Ottawa, Ont., hats lad a considerable addition made to his salary in Ottawa to induce him to decline the position of city engineer of Victoria, B.C.
W. A. Dube, formerly cmployed as train despatcher by the Grand Trunk Railway in its Montreal office, has been appounted superintendent of the Intercolonial Railway for the Ste. Flavie and Montreal districts. The new superintendent has been in the Grand Trunk service for twenty-five years, rising from the pesition of telegrapher to that oi train despatcher, and at as early an age as 18 years having charge of the running of trains between Montreal and Island Pond, being made chicf train despatcher at the age of 23 . Whicl: position he held for fifteen years.

Jno. Inglis, senior member of the firm of J. Inglis \& Sons, engine and boiler-makers. died suddenly last month at his home in Toronto. HIc was a Scotchman, and \&ame from that country

47 years ago. IIe was a millwright by trade, and worked for a time at Chippawa. From there he moved to Simeoc, and shortly afterwards to Dundas. Ie only remained a short time in the latter place, going from there to Guelph, where he went into the manufacturing business on a comparatively small seale with Mair and Evatt, the firm name being Mair, Evatt and Inglis. After a time it became Evatt and Inglis, and funally Inglis and Hunter. The business developed into pretty much the same line as that at present carried on in Toronto, though not of the same proportions. About 18 years ago, when manufacturers of all kinds began to gravitate towards Toronto, the firm made their headquarters in this city. Some eight yea s ago Mr. Hunter went out of the business, and Mr. Inglis' sons were admitted to partnership.

Brief, but Gnteresting.

The fireproof curtain of the Paris Opera House is made of aluminum plates, each about 13 fect long, $393 / 8$ inches wide and $3-32$ inch thick. The exposed area of the curtain is $\mathbf{3 . 2 2 9}$ square fect, and the curtain weighs 1.8 tons.

The latest use of electricity is the seasoning of wood. A current drives out all the sap from a piece of timber in about six hours. The second process is the injection of a septic solution into the pores by an electro-capillary method, and the timber is seasoned. Such inventions lessen the necessity for anticipating future necds.

In the factory of the Grant Ball Company, Cleveland, large quantitics of oil and emery are used for grinding, and the oil finally becomes so thickened with particles of enery and steel as to make it of the consistency of mud. In the city where this material accumulated no other way of disposing of it could be found except to pay for its removal outside of the city limits, for it was of such a character as to make it practically impossibic to dispose t it in any other way. Finally the managers hit upon the plan of running it through a centrifugal cream separator, which completely separates the particles of emery and steel and runs the oil out at a separate spout, so that it can be used over again, while the mixed emery and steel can be disposed of much more readily than when, as formerly, mixed with oil-American Machinist.

A Parliamentary return has recently been issued giving particulars of the water, gas, tramway, electric lighting and other reproductive undertakings carricd on by municipal boroughs in England. The total capital invested in such undertakings amounted at the end of March. 1898 , to $£ 88,152,600$. oi which $£ 83,379.300$ had been borrowed. Of this borrowed money, however, about $£ 11,250,000$ had been paid of at the date of the return, leaving $£ \neq 1,883.200$ outstanding, against which there had been accumulated sinking and loan funds to the amount of $£ 3,203,600$. The Economist summarizes this decument. It appears that the average annual income from all the undertakings in the five years ending March 31, 1898, was $£ 8,808,400$ or 10.09 per cent., the average annual net profit for the same period $\pm 3.613 .700$ or 4.04 per cent., and the average ammual amount paid in respect of principal and interest on capital borrowed $£_{3,171.300 \text {. Water and gas works are the }}$ two chicf undertakings in which the municipal boroughs have cmbarked, the capital invested by them in the former amounting to $£ 48,434,900$, and in the latter to $£ 20,175,800$. Tramways figure in the investments to the amount of $£_{3.213 .700 \text {, electric }}$ lighting undertakings for $£ 3,416.700$, markets for $£ 4.770 .300$. and piers, quays, ctc. for $£_{4.797 .500}$.

The London (Eng.) Times recently publishes the report of the Departmental Comnittee appointed to enquire into the manufacture and use of water gas and other gases containing a large preportion of carbonic oxide which has just been issued as a Blue Book. It shows that we can both learn from and teach the British gas consumer. The committec was appointed by the Home Secreiary on February 2, 1893, and it consisted of Lord Belper (chairman). H. H. S. Cunynghame, assistant Under Secretary for the Home Department; I. S. Haldane, M.D., F.R.S.; H. F. Parsons, M.D., assistant medical officer
of the Local Government Board, and William Ramsay, Ph.D., F.R.S.. professor of chemistry. University College, London. with Johm Pedder, of the flome Onfee, as secretary. The committee was to enquice into and report (1) on the extent th which water gas and other gases comaining a large proportion of carbonic oxide are manufactured and used for heating, light ing. and other purposes; (2) the danger attending such manafacture and use; (3) the means by which such dangers maty be remoled or dimmished. either by the discontmanace of the use of such gas or gases or otherwise. and what regulations for the prevention of danger should be established. The summary and the recommendations of the comb:atee are as follows: Yo sum up, we have come to the conclusion that, if the accidents attributable to water gats are not yet very numerous in Great Britain, the reasun is that the proportion in wheh thes fas has been used hits not hithertu. except in a iew mstances. been high. A large increase in the use of the gas is, however. to be eapected in seseral localities, and in some places the use of pure carburetted water gas is contemplated, in the absence of legislative restriction. We therefore thank the present time opportune for dealing with the matter beiore the manufacture of water gas is established on a large seale, and we berg to submit the following recommendations, to which, if approved. etfect should, in our opinion, be given by a public bill: 1. That it should be illegal for aty person to make and distribute for beating and lighting purposes any poisonous gas which does not possess a distinct and pungent smell. 2. That all persons applying for statutory powers to make and distribute gas should be iequired to state in their application the kind of gas whic:t they propose to sell, viz. whether ordinary coal gas, carburetted water gas, plain water gas, or other variety of gas. scparately or mixed 3 That before any kind of water gas is distributed in any place due public notice of the proposal shonld be required to be given; and that. so long as there is any water gas in a gas supply: that fact should be stated on every demand note. \&. That where water gas is distributed. records should be kept by the producer, showing the respective abommes oi the gases issued day by day, distinguishing the gas supplied to cach area (if more than one and separately sersed). and the day and night supply; that these records should at all times be upen to inspection by any gas consumer or ratepayer of the district, and should be published quarterly in a local newspaper, and that a new column should be added to the annual returns made to the Board of Trade giving the total amennt of water gas issucd, as compared with coal gas. 5 That power should be conierred upon a central department to make regulations, conforceable by adequate penalties, lumitug the proportion of carbonic oxide in the public gas supply at night to 12 per cent, or such greater amon:u as the department may consider desirable. These regulations might be applicable either generally over the Linited Kingdom or to any perticular locality. and might contain such conditions. if any, as appeared necessary. 6. That powers should aiso be given for the regulation of the distribution and use of gas by ineans of by-laws. made subject to the approval of a central department and administered under local control. The matters to be so dealt with might include the following: The hours during which, or the arrangements by which, the limit imposed upon carbonic oxide should be enforced, the use in emergencies of more than the authorized proportion of carbonic oxide, the character of the gas burners, fittings and apparatus to be used. having regard to the circumstances of their employment, the testing of the gas, and other similar questions. 7. That the provisions of Sections 28 to 34 of the Gasworks Clanses Act. 1875, should be made applicable to the testing of gas for carbonic oxide, and that in all cases where a limit has been placed upon the carbonic oxade in the gas supply of a locality there should be some person empowered and required to test for carbonic oxide and publish the results periodically.

The incorporators of lise Linion Match Company, organiced at Trenton. N J , with ass anthorized capital of $\$ 10.000 .000$. are Erskine Licary Bronson and Levi Crannell of the Bronsou \& Weston Lumber Company, Ottawa, Ont.; William M. Ivins of New York, Camillus G. Kidder of Orange, N.J.; W. E. Cook of the Adirondack Match Company, Ogdensburg, and G. H. Williams of New York.

LITERARY NOTES.

William 'T. Lancefied, Hamilton, has published "A Century of Achievement." by James H. Coyne, B.A. Mr. Coyne is president of the Ontario Mistorical Society. White necessarily condensed, the reader is piven a most interesting account of the achievements of this century.

Williams' Official British Columbia Directory, 1899 , is a particularly timely and valuable addition to the business man's library, as it includes not only the Oinenica, Cassiar and Atlin mining districts in British Columbia, but also the Yukon district of the Northwest Territory, which is now the centre of so much interest and commercial activity.

The publishers of The American Artisan, Chicago, have iscued a very valuable Manual of Receipts, compiled by Sydney P Jolucton, largely from material that has appeared in the celumns of The Artisnn, and the new volume makes a book of over 241 pages, and contains over 1,600 receipts and processes relating to metal working and allied subjects. From a hasty glat ce at the volume, we should say that this is the most complete budget of receipts and formulac ever put together in one book.

FIRES OF THE MONTH.

April 7 th. The Cariboo Lumber Company's sawmill at $10 n$ Mile House, B.C., was partially destroyed by fire.—April 7th. The Langmuir Mnig. Co.'s trunk factory, Toronto; loss, $\$ 60,000$; partially insured.-April 7h. The Dominion Metal Works, Montreal, owned by C. Garth \& Co., was totally dertioyed by fire; loss about $\$ 60,000$.-April 14 h. Reid Bros., Tcronto, makers of billiard tables; loss about $\$ 4,000 .-$ April 18th. C.P.R. round-house, Fort William, Ont., seven locometives destroyed.—April 20th. McComb \& Stanley's oatmeal mill. Lucan, Ont.; loss about $\$ 10,000$ ——April zolh. Bcaudry buildings, Montreal, containing Vinette \& Co.'s shoc factory, New York steam laundry, Kieffer Bros., shoe machinery, Benard \& Magor, earriage makers; the Umversal Patent Developmem Co., and I.ymburner \& Mathews, brass noulders; loss about \$100,000.

NEW SYSTEM OF FIREPROOFING.

Fier since the first fire took place in a building fitted with Lanfer Prisms, it has been recognized that, glazed as it is in fett inch squares by electrolytically-applied copper, the prism panels form an efficient fire screen. Expernmentally it is said to have proved that this was due to the small size of the lights, and the extraordinary strength of the metallic glazing. with the additional fact that continuous and in.ercommumeated support was afforded to the glass panel, throughout its area, by the electrically-toughened copper. In short, small squares of plate glass, glazed by the new copper process, were found to be similarly efficacious. Plate glass panels so made were fitted in an iron box 6 feet high. and 4 feet square. Open iron bars admitted air freely at the bottom, and a vent at the top permitted the requisite dranght. The box was then fired wath pine sticks soaked in kerosene, and an intense heat was maintained; cold water meantime being applied externally. Although shivered in every direction the glass panels withstood all persuasion to escape from the network of copper I bars binding them together. The result of this and other similar tests is that the Chicago and New York underwriters have highly commended the new Luxfer fire-proofing, and the Reokery, and several other of the largest builaings in those cities have adopted the system. Two great advantages are that windows furnished with Luxier fire-proofing admit light at all times, while every chance of diszster from neglect to close the ordinary fire-proof shutter is precluded.

WANTED- Agents in Montreal and Tornnto to push the sale of a hich.grado ply " X.L." caro of The Canadian finglneer.
 FOR SALE

A Rood Water Power, 500 horse, situated one ialf milo from sallway, every tacility for making sidigg to pgiver. Address J. D. THEUNISSON, Cookshite, Que.

[^0]: -Extracted from a paper read beford the Associat ion of Ontario Land Surveyors.

[^1]: -From a paper reat before the Canadlan Associvinn-f St tionary Engincers.

[^2]: -From a paper sead before the Canadian Miaing Institute.

