The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers;
Couverture de couleur

Covers damaged/
Couverture endommagèe

Covers restored and/or laminated/
Couverture restaurée et/ou pe!liculèeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relid avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lare liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the :ext. Whenevar possible. these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dians ie troxte. mais. lorsque cela était possible. ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplèmentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagèesPages restored and/or laminated/
Pages restaurées et/ou pelliculees
Pages discoloured. stained or foxed;
Pages décolorees, tachetées ou piquè as

Pages detached/
Pages détachèes

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues. etc.. have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc.. crit été filmées à nouveau de facon a obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Conmadian grgrifulutixt,

or

TRNAL AND TRANSACTIONS OF THE BOARD OF AGRICULTURE

OF UPPER CANADA.
XIV.

TORONTO, OCTOBER 16, 1862.
No. 20.

Hanagement of Dairy Stock.

lech of the profit of a dairs cow depends on pentiful supply at all times of nutritious The variety in the cuantity of mill they Sis principally owing to the difference in matitive quality of the food they receive. it is well known, receivino food poor in exial matter. fall away in millk. Add to the ©ire properties of their foud, and thes diately incredse their flow. The quantity ds, then, djes not depend on giving a parar hand of food, but on giving a quantits to the support of the natural waste of the sand a remainder to be converted into milk. kserr very much when they undertake to more cattle than they have means to susthe best condition, especially in winter. Msalt is, their cows come out of the stable St Spring weak and feeble, and strugrle igh half the summer before they are in a Hion to yield milk in quantity mure than To paying expenses Dairy cows should times be in good condition. They should fetheir food at regular intervals; their milk Wbedrawn at stated hours, and by quiet genshers; and they should be treated at all Faith the greatest kindness. In short every Hin the power of the dairy farmer should ma to insure their tranquility.
thtreatment also exacts a very injurions to the mill, rendering it less buttery, pre liable to acidity. Bespiration is a
tepecies of combustion. At every breath, we inhale exygen of the atmosphere, which unites with and consumes the fatty matter of che food. When cows are worried or driven too rapidly, they breathe more îrequently, inhale more oxy ${ }^{-}$ sen, and more of the buttery portion of their food is consumed, leaving less to be converted into mill. Warmth is a substitute, to a certain extent, for foud. Hence the importance, in cold weather, of tight buildings avoiding culd draughts, with proper attention, huwever, to effective ventilation. Impare sir acts as iujuriously on the animal frame as impure or insufficient fuod. Cows, when warm and cumfurtable, will consume proportionately less food, and it is weil known to all experienced dairymen, that their cuas yield more milk in warn pleazant days, or when they have the ran of warm well sheltered pasture, than on cold rainy days, or when they run in cold bleak pastures. When cold they inhale more oxygen; the result is a combustion of more of the carbon or cily part of the foud, and less remains to supply the lacteal vessels with rich mills.

Draining and Ashes.

Editors of the Agriculturist, -In myformer letter to you, which you noticed in the Agriculturist of the lst inst., making inquiries respecting irrigation, where I said, "How near together should the drains be where I could not make them more than 16 or 18 inches deep'" You have mistaken my meaning, I ought to have
said underdrains. I had an idea that that part of the ground might be made dry by putting underdrains pretty near to each other, and thes compensate for the want of depth, and I wanted information as to how near they ought to be in order thus to compensate. Would it be any use attempting to underdrain it at all? It is nearly, level and lies next the creek, and the flat limestone is very little higher than the bottom of the creek, so that there would be no chance of the water sinking down through any opemmgs that might be in the rock. If the drains were made whenever there would be a flood in the creek the water would go up the drams. Most of the ground appears dry on the top, but it don't grow very much; it is in pasture: another part is in meadow, and lies a little higher, I am making a few underdrains in a part of it, but I cannot get them deeper than about 20 to 33 inches. I intend to try the water on it this Fall.
I am cleariner a piece of new land for turnips, to be followed with spring wheat, and grass for the meadow or pasture till the stumps are rotten; is it better to sell the ashes, or spread them on the gromid where they are, or rake them up to apply to old cleared land? If the latter be best, to what erops would it be best to apply them? and how,-mised with other substances or by themselves? Although the seaso:a is over tor this year for sowing, yet your answers would be borne in mind by all interested in the subject.
I am, yours \&c.,
J. W.

Cambray, 22nd Sept, 1562.

REMARKS.

Drains that for want of outfall cannot be made aeeper than 16 or 18 inches will require to be near each other; say from 20 to 30 feet accord̀ing to the nature of the soil and seneral character of the land. At the above depths drains would be liable to injury by ordinary cultivation, but if well made might be quite secure in pasture. Where stone is of easy access, five or six inches of broken stone placed inmediately over the conduit of the drain will be found beneficial. We would suggest to our correspondent the desirableness of having a fey surface drains at regular intervals in addition to the underdrains, so as to prevent the accumulation of surface water in spring, when the underdrains cannot fully act till the frost is sufficiently out of the ground.

With reference to the selling of ashes mach of course depends on the price they will fetch. As a general rule we think farmers had better apply them to their older lands, which have been deprived bs frequent cropping of the in-
gredients which wood ashes possess, and whic are essential to the healthy growth and maturit of plants. Ashes may be beneficially sor broadcast on meadow or pasture, or mixed wit the compost heap and applied to any of th cultivated crops of the farm. We shall be ha; py to hear from our correspondent agaim on th results of his irrigation.

The Field Bean and Rotation of Crops.

Thi Enitors of the Agricclterist.-C: you favour me with some information alue beans. If it be the case, as I am told, that th cummon bean does not pod in this Province, 1 you think any of those kinds that are lart: impouted into England from climates much be ter tham Cunada, such as Eypyt, Sicily, Brazi d.c., would answer. By a short experience farming I find I want a drill crop to found rotation upon, and as turnips, except to a limit lextent, are out of the question, I have thought I could find a suitable bean it would come in a substitute for a more elegrible green cro Indian corn has been sugrested to me fort purpose instead, but from its requiring the sar food as the other cereals, it appears to be 0 jectionable. I do not see meh said in 4 Journal about rotation of crops, a subject, jui ing from the little attention paid to it in geate: practice, mioght I think be profitably impress upon the mind of the farmer.

1 would like much to know from some of t more intelligent agriculturists of the Provit what kind of rotation they find best, the suly is of so much consequence that a thorough cussion of it would prove hichly instructi A short experience tells me that our great w: is manure, both in quantity and quality; and, order to obviate the pril in some measure, course must be had to a scientific and judici arranyement of the crops, and the application what manure we have at the best time and the most proper mode. This latter suby seems at present to be engaging macb of attention of the agricaltural chemists in Eurc and as we in the wilds of Canada have not advantares of reading the important arti which are appearing in the various agricult journals of the three lingdoms, we mast 1 to the conducts of this journal and similiar (published on this continent for an accoon. the fast progress which is going on in ag: ture in the old world, for there the greates mount of mind is engaged ana the most im tant results are effected.
"Nos. Wsst,
October, 1862.
Remarks.-The common feld or hoise $ᄂ$ cannot, it would seem, be profitably cariti
allestern Canadi. It is raised, however, to ame extent in the Lower Province, and also in Sowa Seutia and Prince Edward Island, we mieve, but with what success we do not know. Tre have tried, on a small scale, several varietiof the bean from different parts of Buroje, Truling the southern portica, and also E.sypt, tathe results were not encoraraing. Our soil, saeere, was too dry and samdy for the bean, thich auceceds best in Earupe, on heavs, moist ind. In Canadia our summer heat seems to ra: on too suddenly and intensely for this das of plants; the blossoms premtarcly fall \approx and consequently do not fiuctify. This is a.e or less the case with the broud or Windsor man, culnated in gardens, where, under the Getadrantages of snil and treatmnnt, it is racly tertain or productive crop. If aty of our whes have had experiense in the matters retat to by our correspondent we shall be hapny ate made acquainted with the recolts. The pation of Rotation is indeed of stait iniportan, and we purpose hereafiur to treat it with sidable fullness.

Now York State Agriculutural Show.

The amual Exhibition of this important winty took place at Rochester the first wach fintober, and we are happy to say, considergthe disadvantares of bad weather and the setted state of the country, was a decided mas. A considerable number of CanaTis was present, including Mr. Burnham, Cobourg, the President clect of the Prowial issociation, Mrr. R. L. Denison, TreasaHon. D. Christic, \&c. We find that Mr. mige Miller, and other Canadian breeders, tikd off several first class prizes. The Hher of entries was somewhat below the trige, but the quality of the stock, particu-rshecp,-notwithstanding the absence of se of the best herds of the State, was : idedly good. The locality of Rochester mquestionably among the very best for ding the State Fair. The Rural New hef thus sums up:-
The twenty second Annual Exhibition of Y. X. State Agricultural Society was held ing one of the most unpropitious weeks of season-the morning of every day of the

Fair (and even of the day preceding its ojening) being stormy or portentous of rain, just the weather or indication, to keep people at home. The sum was visible but a few hours from r ronday morning until the close of the Fair on Friday, and more or less rain fell on every day of tine cxhibition. And yet the Fair was a grand success-an unparalleled trimph, in all respects, considering the unfavorahle weatuer and condition of the country. The result is the more gratifying from the fact that many had predicted a failure, even with fair weather, and had seriously urged a postponement. Cnder the circumstames the Agricultural Society and People of the Empire State may well send cordial grecting to brother Producers and Unionists of the Lnyal States, and also cite Secessionists everywhere to the result-as cvidence that New York can not only do its full share to wards suppressing the rebellion, but also exhihit undiminished zeal and energy in maintaining and advancing her Ilome Interests. Had the weather been fitiourable we doubt not the Fair would have proved the most succoseful, in ecery respect, ever held in the Statr-and that is equiralent to saying in the Trion. The simple fact that the receipts were abot $\$ 11,000$-some 3,000 more than last year-tells the whole story as to the location oi the Fair and the effects of the war upon the material interests of the State."

In iruits and flowers this exhibition far excecded any of its preflecesors, arising no doubt from the peculiar adrantages of the locality, and the great abundance of the season. The vegetable department appears to have been comparatively neglected, a serious imperfeo tion, which our New York friends should, as they readily can, correct for the future. The arrangements for the fruit were somewhat novel, and appear to have been both convenient and attractive. We subjoin from the Rural a description:-

The fruits and flowess w are exhibited in a fine oval tent, 85 feet il width by 110 in length. About twenty fect at one end was left for entrance and exit, and from this a table four and a half feet in width extended entirely around, making some 300 feet in length, containing about 1400 square feet, and this was devoted to fruit entirely. Fifteen feet inside of this was another table of the same width forming an oval, designed for flowers. This table was covered with moist sand four inches deep, and over this was placed shects of moss, covering the whole surface. In this was placed cut flowers, so that there was no necessity for vials, which are constantly falling over, and are always a
great annoyance. Plants will keep well in sand and moss any reasonable time, and a slight sprinkling may le given if the weathershould prove dry and warm. As guards around these tables a nerat rustic fence was made of white cedar poles, with necessary gates for exhihitors, \&e. This left a space in the center about forty by sixty feet, in which were the two masts or poles that sustained the top of the tent. These masts were covered with bark, so as to give them the appearance of trees, and pots of climbing plants in llower sunk at the base, while their branches extended nearly to the top. At the base of these poles octagon stands were made for the display of pot plants, covered with moss, and when filled with plants, produced a very fine effect. In the centre of the oval was a large bod of Cannas and Celadiums, and nothing in the whole exhibition was more ardmired than the splendid foliage of these plants. This bed was raised something like a fort, and surrounded with moss-covered rocks selpeted from the river bank. Scattered around where a few fine plants, such as the Sagn, Palm, Century Plant, Euphorbia, dec., the pors and boxes cuncealed by rocks and moss. The turf was short and of grood color, and the whole appearance was that of a fine lawn.

We are glad to learn that the able and courteous Secretary, B. P. Johnson, Esq., had returned from his visit and duties ronnected with the great International Exhibition in good health and spirits, full of hope and generous feelings both as regards the old world and the new. Although, as undirthe eircumstances was to be expected, the amount of the United states contributions to that magnificent display of the world's art and industry, has been comparatively small, it must be gratifying to her enterprising and intelligent citizens that their importance and particular value have been appreciated in an unmistakeable manner. Let us hope, ere another New York State Show occurs, that swords will be transformed into ploughshares! We gladly make room for the following lecture and discussion in connection with the State Fair.

Insecits injerious to Agriculture.-The Gaain Aphis, Wheat Midge \&c..

Dr. Asa Fitch, Entomogist of the State Agricultural Society, opened the discussion by reading the following Essay, on the Grain Aphis.

Mr. Chairman and Gentlemen,-I ana requested to preface the discussion, this even:
ing, by presenting to the auclience some account of the Grain Aphis-an inseet new to us in America, and which during the past and the present year, has heen more prominent in the public regard than any other insect.

In the grain ficlits of Europe this grair aphis has existed from time immemorial. It was scientifically named and deseribed eightyone years ago, hy the distinguisherl German entomologiat, Fatricina, who met with it in fields of nata, and therefore mamen it the Iphis Arenc, or the oat aphis, he heing unaware that it occurrerl equally common upon other kinds of grain also.
But our European accounts of it are quite mager and imperfert. Shout all that we gather from them is, that it is an insect which shows itself upon the grain about the time o" harvest, and that in some instanees it has bern hnown to be so multiplied, in particular places, is to literally swarm upon and cover the luads of the grain in many of the fields.

These few general facts, are all the informa. tion which the world has hitherto had of this insect. What hecomes of it during the remainder of the year, where, and in what condition it lurks after harrest time, ans until harrest time again approaches, bai never been investigated. It was remaining for us in this country to trace out its abidin? place and habits during the autum, winte. and sprine, and thus complete its listory th. year romm, as we later heen ahle to do within the past eighteen months-under the instrue tions of this Soclety, and under the auspiec. of the Siate of New York.
In this country, this grain aphis has nere been oliserverd, and it was not known that w had such an insect here, until last year, when it suldenly appeared in excessire number over all the New England States, and th: State of New York, execept here in its wester. section, and also in the adjoining districtso Canada and of Pennsylvania. Throughon all this vast extent of country epery grai field was invaded by it ; many of these fiel. were thronged and a portion of them wet literally coversel and sninthered by this insce

This year it has moved westward, makin its appearance in the same manner all ort Westein New York, Canada West, Norther Ohio, and at least a portion of Michigan as judge, from the numerous letters which har been sent me with grain-heads contanning th insect, and from the notices of it in the pu lic prints- whilst at the East, where it mas. numerous last year, it has measurably disa peared this year, so that, except in a ferl calities, it would not have been noticed h. not every body been:so. cagerly searchi for it.

But though this insect has only: been no.
d in this country the past and the present jears, we do not suppose it has newly arrived upon this Continent. It has no doubt been present in our grain fields heretofure; but in such limited numbers, and so scattered about upon the growing grain, that it. failed to be obecrued. It is seventeen years ago that I began to examine the wheat midge, and in looking at that and other insects upon the wheat. I recollet I have occasionly seen this aphis. But as only two or three individuals of this kind were to be found at a time, I supposed it to le of no importance, and thus gave no attention to it, until it began to appear in nocn abundance the past year.
Although it is a common habit of plant lice to become extremely numerous, at times, upon the particular kinds of vegetation whic, thay reppectively infest, we meet with no recorded instance in which one of these metets hats been hnown to become so suddenly and excessively multiplied over such a vast estult of territory as has happened in our country with this grain aphis the past and present years.
I suppuse almost every person in this audience hats seen these insects, crowded together upon the heads of wheat, oats, barley or rye, and has observed that they are a kind of plant-louse, similar to what w : frequently see upon the leaves of cabbages in our garclens, and on the apple, the cherry, and other trees, As it resembles these common and well-known insects so closely in its form, its motions, and habits, it will not be necessary for me to give any particular description of it.

With regard to the mode in which it injures the grain, I would observe that it has a slender, sharp-pointed bill or trunk, which it bolds under its breast when this implement is not in use. With this it punctures the leaves and stalks of the grain and sucks their juices. It thercfore has no occasion to leave the particular plant on which it is born, as it alrays has an ample store of nourishment directly under its teet. Fence, it has no use for wings to carry it, like other insects, from place to place in search of food. It needs wings for caly one purpose, namely, to enable it to emigrate to fields of grain which are unoccupied, in order to start colonies in them. Only a small portion of these insects, therefore, acquire wings; and these fly away from the winter grain to plant their race upon the spring-sowod wheat and oats.
The latter part of June, vhen the grain has adranced so that the heads or ears begin to putforth, two most remarkable changes occur in this insect, whereby it appears to become another creature, a different, species, in the middle of summer from that, wich is seen in the spring and autumn.
Oae of these changes is in its habits: Be-
fore the heads appear, it lives singly, scattered about upon the leaves and stalks of the grain and the young lice, as fast as they are born, leave their parents and wander away. But no sooner are the heads protruded from their sheaths preparatory to blooming and growing the kerncls of the grain, than this aphia wholly fursakes all the other parts of the plant and becomes congregated upon the headsevidently because the juices which the plant elaborates for the growth of its flowers and secds are much more nutritious, mpre dainty and palatable to these insects, than are the juices which circulate in the leaves and stalks. They here fix themselves upon the base of the chaffs which envelope the kernels, and insert ing thir buaks, they suck out the juices Which should go, first, to grow the flowers, and after that to fill and perfect the kernels. And now, the young lice which are born, instead of scattering themselves and travelling away, settledown closely around their parent, crowting as compactly together as they can stow themselves. Thus it comes to pass, that when these insects are numerous, as we have recently had them, in many of ourgrain fields, scarcely an ear can be found which has not a cluster of these lice around the base of almost evory kernel, all with their tiny bills inserted therein, punping out the juices which should go to swell and perfect the seed. Thus, this grain aphis from being a solitary insect, wandering about singly upon the leaves and stalks, becomes a gregarious insect, clustered together in flocks, and remaining fixed and stationary upan the lower or butt ends of the kernels.

At the same time, snother change, equally remarkable, takes place in the color of these insects. So lone as they nourish thsmselve on the course juices of the stalks and leares, their bodies are all of a grass-green color. But when they come to feed on the more delicate juices of the flowers, they begin to bear young of an orange color. One of the grass-green insects having stationed herself at the base of a kernel, the next day, in the group of little ones around her, a yellow one will occur, all the others being green like their parent. A day or two later, as the nourishment she dorived from the leaves becomes more dissipated from her body and replaced by that now obtained from the kernels, half the young she produces will be of this yellow color. And still later, all the young are yollow, no green ones being any longer born. And the oldar ones after a time dying and disappearing, all these insects some weeks before harvest time. become changed to a yellow cclor, their hue inclining more to red in some and to jellow in others.

It is truly curious that this groen insect, thus, on coming to feod on the juicee which
grow the flowers, begins to produce young of a gray yellow color similar to that of the llowers.
By depriving the kernels of a portion of the milky juice which should go to swell and mature them, this insect causes the ripeneal grain to be more or less shrunken and light of weight.
Rye, however, grows so rapilly and ripens so carly, that it uutstrips this aphis in its increase, and thus sustains no material injury from it. Winter wheat, ripening more slowly, experiences more injury. But the crops which ripen latest, and when this aphis hats leecome multiplied to the greatest eatent, mamely, spring wheat and vats, become the most thronged and sust in the greatest injuy.
Let us next inquire how it is that this inscet is able to become so suddenly and so excessively multiplied as we have had it, in the Eastern part of our State last year, and here in its Western part this year.
I inay observe that a huudred years atro it was a current opinion among men of seience, that certain insects and other creatures pertaiaing to the lowe: orders of the animal kingdom were generated spontaneously. But, more recently, when these instauces of supposed sipontancous gencration came to be closely investigated, one after another of them were found not to be such. So that at this day the scientific world wholly discards the theory that there is or can be any such thing as spontaneous generation. All living things descend from parents; and it is by a pairing of the.sexes that young are produced and that each species is continued in existence-some clasees of animals bringing forth their young alive, others laying eggs from which their young hatch.
Insects are of this latter kind. They are all produced from eggs. But in the generation of the plant lice, we meet with one of the most remarkable anomalies which we anywhere find in the works of nature. These insects brin。 forth their young alve, at one time, and they lay eggs at another time. All the plant lice which we see upon our fruit trees during the summer are females; and these do not produce eggs, but living young, which nature in a few days, and (wonderful to tell I) they are fertile without any intercourse of the sexts. It is only when cold weather and frosty nights arrive, that males are produced. The insects then pair, and the females thereupon lay eggs. These eggs remain through the winter, to be hatched by the warmth of the following spring. The young from these eggs grow up aud commenee bearing living young, no males and no oggs being produced, except as the closing act of their operations in autumn.

Süch are the general facts with regard to the generation of the insects of this aphis group. And.I had supposed it would be the same with
this grain aphis. Some of gou may have been present and heard the remarks which 1 made on this subject at our Fair at Watertown a gear ago. 1 stated that the egss of this insect would privbably be found late in autumn, stattered about upen the leaves of the sowed wheat and rye-which errss would hateh with the warmth of the following spring, to start the insect upon the grain agaun this year. But when frosty nights arrived lest autumn, and when the aphs on the apple trees was found paired, and the females were busy depositing their eggrs, to my surprise, nuthing of this kiad occurred with this aphis upon the grain. The mature lice continued to produce young ones, until they and their young became consealed uyon the leaves of the yount graia ly the advancing coid of the season. And in this state they were buried bencath the snows of winter, and with the warmth of the ensuing sprins they were thawed, and returned to life again.
To be better asswed upon the subject, I phaced some of these insects on grain growing in fivwer-pots and kept during the winter ma warm troum. In this situation they ic tinued aline atad continued to b,ar young through the whole winter season.
Thus. I have watched thrs grain aphis for a year round so closely, that I am perfectly assured no ests were laid and no males were produced. Occusionally an individual was notreed, varying somewhat from the others, and which I have therefore suspected might be a male; but, on imprisoning such specimens an vials over night I have invarrably found young lice with them next morning.
When, and under what circumstances males occur, is yet remaining to be discovered. At present it seems as though these insects might go on forever, produciug young, without any intercourse of the sexes.

Finally, with regard to the fecundity of these insects, I would state that those which have no wings, aud which remain on the stalks of grain on which they are born, are nuch more prolific than those which have wings and wander abroad. By enclosing them separately in vials, I found the winged females qnite uniformly gave birth to two yount lice in a single night, whilst the wing. less ones produced four in the same time. We frequently see young lice produced in the day time, but fewer appear to be boin then than during the night. The winged ones are also much slower in coming to maturity. I placed several young lice the moruing after they were born upon some grain growing in a flower-pot, and on the thiri morning afterwards I found four littie ones around each of them, showing that the wingless ones come to maturity in three days. It will thus be seen with what prodigions rapidity these creatures multiply. They almoot double their numbers daily. A single one piroducing four young daily, and these becoming equally prolific when they are three dayi old,
ber deserndants in twenty days if all alive, will aumber upwards of two millions. This will erve to explain to us how it is that this insect becomes so excessively numerous upon the grain at harvest time as we have seen it.
As thry multiply so mapidly, it is evident no epretation which they infest would escape destruction from these plant lice, if nature had not terself provided most efficient means for check ing aud subduing them. We accordingly find titt these insects are preyed upon and consumad hy other insects, to a greater extent than are any other kinds of injurious insects wherewith we are molested. There are whole groups and wibes of predaceous insects which subsist exmusively upon the plant lice of different kinds.
A tribe of very small Ichneumon flies, named Aphrius, are parasitic destroscrs of these in-sectis-puncturing and thrusting an crat into the bods of the auhis, from which hatches a minute worm whic! feeds within the aphis till it kills it. Ihave found two species of these parasities detroying the grain aphis.
luother most efficient destroyer is the Lady lug or Coccinella, of which there are numerous enecies all of which are continually searchingt plant lice to feed upon, these being rhe soie bourishment of the lady bug, both in its larva and its perfect state.
In addition to these are the Synphus flies, the zolden-eged flies, and the lacer? wiag flies, all mortal enemies to the different kinds of Aphis.
By such means is it that these plant lice upon the grain as on other verctation, are usually that a transitory evil-these their foes and deit:oyers, always gathering around them wherfer they become namerous, and multiplying ontil they overbalance and subdue them.

Some ons asked for a description of the Lady Bug. Dr. Fitch described it as follows :-It is ahout the size and shape of half of a small pea, of a gellowish red color, with round black spots apon it.

Question.-Is it poisonous to animals?

Dr Fitch kners a single instance when swine kad been pastured in a field where the lady bug mas numerous. All of the herd were taken sick snd some of them died. The swine were removed from the field to another, and such as zere so removed recovered. Dr. F. said that it was possible that the swine were poisoned by large quantites of the lady bug; for if it is atben on the fingers and crushed, an acrid juice is emitted, which is doubtiess poisonous, nasmuch as it is the insect's only means of defence. He had thought it possible that this particular herd of swine might have been poisoned by it
Question.-Is there any prospect of the A. phis beroming a permanent pest in the conntry? Answer.-I think not. Its enemies are too rumcrous for that. Not more than a single marata time, will they be likely to ravage in'
a single locality. As before said, they seem to be cmigrating Westward.

Question.-Is the midge a permanent pest; is it plenty here at all seasons?

Rnswer.-There is no doubt that the midge is plenty in all parts of the country. The character of the season governs its ravages. If the latter part of June is wet, look out for the midge; if dry, there is no danger. In dry weather it cannot subsist on the uplands; it returns to the lowlands.
T. C. - eters-We are fast reaching the maximum of former years, in the amount of wheat sown in Western New York, and it is an important matter to us to know how to avoid the ravages of the midge. Do you recommend thorourh culture?

Dr. Fith-Struns growing wheat will prodace despite the midre. Yes, I do recommend thorou ch culture as one of the preventives of the ravares of the midge; also of the Hessian fly and other insects.

Question-What is the effect of the work of the Aphis upon the grain-upon the kernel?

Answer-The insect extracts the juices from the plant, which aid in developing and maturng the lenel. This diminishes the size of the grain-sometimes virtually destroying it, for the substance is almost gone.

Mr. Geddes, of Onondara, does not agree with Dr. Fitch conceraing his theory, with reference to the existence of the midge. He doubts if the midge exist in as erreat numbers one year as another, or if they are present at all; for prior to the last six years he had failed to get a crop of wheat for some years on their account; while the past six years he had grown it successfully. His success, he thinks, is not due to dry Junes, but to the fact that the midge had disappeared. He doubts, too, if his success is due to superior culture; for he used to summer fallow all his land; now he turns it over and seeds after barley, and oats \&c. \&c.
T. C. Peters-So far as white wheat is con. cerned, the theory of the effect of the season upon the ravages of the midge upon it, is correct. But the Mediterranean is the only variety that can be grown now safely, He thinks thewhite wheat has very much degenerated.

Other gentlemen present coincided with himin this matter and united in asserting that thebest mode of redeeming white wheat was to change the seed. It was further agreed thatthe Mediterranean had greatly improved by cultivation-that it was "bleachng out."

Mr. Bishop, of Wyoming, asked if early or late sowing had not had to do with checking. the ravages of the Aphis?

Dr. Fitch replied, yes. Its ravages are greatest on the late sown wheat. Late sowing is not advised, if the object is to avoid its ravages. The same remark applies conversely to the midge. It does not so seriously affect the lato, as the early sown wheat.

Pres't Cornell-Have you observed the $A p$ his in the groand around the roots of the barleg? Dr. F. had so discovered it.
Mr. Geddes-Why is it that the midge should have appeared one sear, and not doubled the second and tripled the third, \&c., \&c. He Hhought the midge was disappearir g .
Dr. Fitch suid there were two s.cessive years when the midge disappeared, and then the third year appeared again, and was very destructive. He does not think it was because the midge passed away from the country, but because the aenson was not favorable to its developmentor at least not favoraile to its operations on wheat-it passed to some other grain.

At this.point there was a rambling conversa. tional discussion upon the relative value of different varities of wheat. Much of this the reporter was unable to hear. But he heard enough to establish the fact that there were many present who believed the Mediterranean the safest and best wheat to sow ; that it was improving in character, while the white wheat of the Genesee Valley was deteriorating. A few claimed that better flour could be made from the Mediterrancan than from any other wheat.

Fat versus Lean; or the Obese System of Feeding Caitle.
In this article we propose offering a few desultory observations on the question, Has the obese system of fattening cattle, as practiced for upwards of half a century, and which is still the fashion, a tendency to increase the normal proportions of fat, but decrease that of lean, and without increasing the carcase-weight of animals? Speaking from memory, the object of the Smithfield Cattle Club is 'To produce the greatest possible amount of meat of the best quality at the lowest price." Such being their proposition, the remarks we are about to make will show, that by encouraging the production of an excess of fat, the greater portion of which goes to the tallow chandler, the lean meat, available for the food of man, has been decreased below the normal standard, both as to weight and quality. And if we shall succeed in proving this, the reader will readily perceive that the Smithfield Cattle Club are not performing the functions for which they were constituted. The Royal Agricaltural Society of Eng. land, the Highland Society, and the other societies, both for breeding and fat stock, are in a similar position, the genoral practice parsued having a tendency to increase fat, but decrease the weight and quality of lean.

It may be as woll in this place to mention, that our object is to induce the Smithfield Club, sud: other fat-stook Clubn and Bocieties, to take the necessary practical steps for encouraging the opposite practice, viz., the growth of rich juieg lean meat in greater abundence, with no
more fat than is necessary for health and domes. tic economy. In other words, Lean versus Fat; or the natural system of feeding cattle. Bat to the solution of this latter problem we shall have to return in a subsequent article. Lor the present we have enough on hand to disyose of the opposite problem at the head of our paper, viz., fat versus heani; or the onese systim of peeding cattle.

What is fat? The printer has one answer to this interrogatory and the farmer has another; but we shall have to take up the question in a somewhat different light from cither, with a view to determine the function fat perfurms in the animal economy, and the purpose it scrves in the dieary of man and cattle.

Although corsiderable attention has already been paid to the chemistry of animal fats, as of the ox, sheep, and pig, yet much remains to be dune to supply the growing demands of physiology. These fats are regarded as having a true saline compusition, consisting of stearic, marseric, and olcic acide, and a common base glycerine, thus forming stearine, marcarine, and oleine. But it is a well-known fact, that each of the above fats, viz., ox-fat, multun-suct, and hog's lard, is associated with other proximate principles, and that a knowledge of these would be of more importance to the physiologist and armer, and also to the physician, than a knowledge of those usually specified by chemists. Thus "mutton-suet consists of stearine, margarine, oleine, hircine, and hircic acid" (Reveira, and most probably other flavouring matter than the latter two, as the taste of the suet is always more or less affected by the quality of the food on which the sheep had been fed. Thus the suet of the sheep fed on rich down or hill pasture is finely flavoured, while that fed on oilcake is the reverse. Similar diversities in the quality of food produce corresponding effects upon the taste and flavour of ox fat and hog'slard.
"The fat, considered physiologically," says Dewglison, "has for its function to protect the organs, maintain their temperature, and to serve for nutrition in case of need, as is observed in torpid animals." According to this writer, its functions is thus of a threefold character. In a normal state of health and weight, for example -first, so much fat is necessary to protect the organs; und, secondly, 80 much is required, to keep up the temperature of the body.For both these purposes a daily consumption of fatty matter may take place, and such will be procared directly from the food if it contains 80 much. Bai, in the third place, when the food containg more fat forming ele. ments than are required for the above two par: poses, a reserve of fat is stored up in the adit. pose tissue to supply the demands of the aystem in the emergency of none being, obiained from food, as in the case of hybernstion when atr. mals sleep during. winter in a torpid state io
in the case of fasting öuring seasons of scarcity, as in winter iti inis country, and in periods of drought experienced by the fat-tailed sheep and hamped-ox of East Africa, where we see nature making ample provision for peculiar exigencies of this kind.
In the case of fat-ailed sheep and hybernating snimals, the accumulation of fat is natural ; so that the normal health is not injuriously interfered with. But the reader must be well aware that umnatural practices are resorted to, in urder to produce an accumulation of fat in our domesticated animals-as in the cramming of zees., blinding quadrupeds, \&c., \&c., when an anormal state of health is experienced in varians forms; as, for example of obesity, rot, \&e., \&c., \&x. It is to the principles involved in the abnormal cases that our observations will te chielly confined, viz., to an excess of unbeithy fat, a decrease of 'ean, and an excess of nater and bad fat, as in tle fatty stage of sheep :ot , ive., \&c.
In the process of fattening geese (to obtain the foie gras of the French) by cramming with furt foud, in that of fattening women for barems in Turkey on flour and honey, in seway up the eyes of the cattle in the East, or in tateng them in dark warm places and on improper fiood in this country, similar principles ate involved. Sleep, or a state of the system amilar to it, for instance, is induced. The nomber of respirations ma given time is thus lasered, and consequently the consumption of at-furming element. The active functions thus concentrate their energies, as it were, amost wholly to the formation of fat of in infrior quality. And as the rule holds good in this as in all other mechanical questions, it conmanontly follows that nervous and muscular ation cannot take place but at the expense of mitter. Now, in the case before us, the expense of matter is reduced to its natural minimsm; thus leaving a much greater surplus than a ordinary cases to be stored up in the adipose tsule. And more than even this surplus goes ω increase the weight of the carease; for in cises of obesity the excretory functions seldom rave the whole of the refuse of the system that does take place; so that this has also to be added to the coarse fat, to swell the total raght of inferior meat sent to the shambles.
In the forcing system of oilcake-feeding cattle is the shambles now generally pursued, the dove principles are carried out, although not prapaps to the same extent as in cramming geese ifiul fattening some special animals for Christins fatstock shows In the former case, howter, the principle is as objectionable as in the 3ther, for a very large proportion of the heavg reat about this seison is by far too fat, even liter the butcher has pared of tubfuls of rough bif for the tallow-chandler; while the fat that pes with the lean is of a very inferior quality, Figg oiten unfit for human food. Turcips and
oilcake are not the natural feeding materials of our cattle; and when animals are allowed, and even induced to eat large allowances of either, the appetite being depraved or yoracious, but especially of the latter, oilcake for oxen and sheep, and barley-meal for pigs, \&c., ©c., under confinement, and with a hmited amount of light and fresh air, sleep is induced; while the same abstraction of certain functions, and contraction of others, take place, in order to liberate the blood of fat-forming element, and to deposit it in layers and patches separately from the lean, as in the case of geese, Turkish women, or other examples of obesity. In the case of breeding stock it is much worse than this, obesity having a stronger tendency to become hereditary in the breed. So that the obese system as exhibited at and encouraged by the summer meetuggs of the Royal Agricultural Society is tenfold more objectionable than it is at our Christmas fat-stock shows; for when obesity becomes hereditary in breeding stock, it is hardly possible to prevent even milch cows from becoming too fat when full fed, whileif they or ther offspring are stinted in their daily allowance, shin and lung diseases are the inevitable results.

This extra-fat system is, in the second place, diametrically opposed to the growth of lean meat. The sleepy dulness and peculiar state of the nervous system generally attending the daposition of extra quantities of fat urder obesity, in any of its stages, not only prevents the do. velopment of muscle or laan ment, but even has a tendency to produce atrophy, o: wasting of the lean. Indeed it always does so, when animals are allowed to lie too much with over loaded stomachs. And such is the extent of atrophy produced in some animals that, when they continue to lie upon one side for a length of time they frequently become unable to rise and stand upon their feet. The details of the physiological rationale of this we must postpone to another artucle. At present it will be sufficient if we merely mention that this waste indrectly arises from the want of the necessary amount of exercise, light, and pure air, with a proper supply of natural food to maintain the equilibrium of live mussle. The lears of meat undergoes changes ia the animal economy, to which the fat is not sloject. The latter is doposited in small vesicles, or sacs, there to roman in store until required for use when the supplies from without (in the food) begin to fail; but the forner is subject to a contiruous pull-ing-down and building-up, or reparative, process; and unless both these processes take place in a proper manner, the healthy development of lean meat cannot take place. The blood, (both venous and arteriai), lymph, and juice of the flesh must also be in a normal stato of richness and purity. Now in the case of obesity under this example, where the excess of water is ramoved from the system, in contradistinction to
the next, or third, example, where an excess of water, along with an excess of fat, is formed, the aoove conditions necessary to the healthy development of lean meat arc not present, but the contrary; for the blood, Jymph, juice of the flesh, and the pulling-(uown and building-up) process of the tissucs, are all in an abnormal state, being more favourable to atrophy than to growth of tissue and the filling up the thesh with rich juice. Under such circumstances, it is not, therefore, surprising that extra-fat a.imals are devoid of muscular enerigy, and mable to endure fatigue; for all those museles engraged in their locomotion are reduced in tone and stragth to what they were at a previous period, when carrying less superthous fat. 'the exim weight of fat is sometimes erroneously said to be the cause of this muscular debility; and no doubt, to a certain extent it is so, white it at the same time unfits animals from walking long distances, owing to the mamer in which it affects respration. But this is not the real cause, for the heaviest ammal does not alwars experience the greatest amount oi mascular deblity. On the contrary, it will be foma, when pactically examined, that museles have actually lust volume and contractile force, being thus less able to perform their respective functions.
In the ihird cxample, water accumulates in the system as well as fat. The fatty period of sheep-rot is a familiar instance of this kind; but an extreme one Amonsis the extra fat stock exhibited at our fat siows, and also at our weekly mathets, there are numerous examples of this lind. The colour of the meat depends something upon hew the mima! "dies," technically syeaking: 'unt generally it has a florid red and watery appearance. the per centase of water may not perhaps much exceed what was found in the lean of beef, by bramde 7.i, Schlossberger and Berectius it; in mution 71: by Brande. But the juice of the flesh is thin:, boing deficient of osmazome, allumen, and other elements, that give it consistency and richness of flavour; consequently, although it may be tender, it is soft, watery, and insipid, requiring lots of artificial sauce and condiments to season it in the cooking and eating. Jhe blood and lymphare in a similar state of temity. When the several Ruids lose there normal state of equilibrium, endosmoses and exosmoses tathe place, as seen in the adranced stages of sheeprot.

This abnormal condition is evidently a species of disease, and when amimals labour under it, they have a very dull and languid appearance, while their meat is very unwholesome, and unfit to be used as fond. Obese barley-meal fed pork may be white, and so may the fat of the ox and sheep; bit this is only an evidence of its unwholesone character, for meat deprived of its colouring matter is indigestible.

We have thins arrived at not a very faroura ble conclusion relative to the quality of the
extra fat meat now exhibited at our Christmas fat stock shows, and of the breeding stock erhibited at our summer meetings. In short, thio forcing system of feeding cattle is objectionable. Had the animals shown in Baker Street, for es ample, at Christmas, 1:61, been slaughered oni the spot, and their carcases exhibited, as they gencrally have by this time been by the butchers who bought them, would not the exhibitors have been ashamed of the quality of the meat? And would not the vast concourse of visitors have turned up their noses at the smell, and vid. culed the very idea of using for twelve montlis consecutively no other quality of animad fond? And, if an affimative answer most be given to yuestions so plain, the conclusion, as to the general principles which such a practice of fartomind and breeding stock involves, need not be repeated in this place. Many important ad. vances nave been made in every branch of applied Science since our Agricultural Societies and Clubs first entered upon the dischare of their respective functions, and we hope they will, during the current season enter upon one of interuational signiiicance with an lonourable sense of the fresh duties which the progress of things thus calls upon them to perform. During the past half century we have leaned to grow fiat in ovenfowing abundance; bat, wh. fortmately at a very heavy sacrfice of lean meat, and even of the quality of the fat itseit. This reduction in the growth of lean has, oi course, greatly increased the proportion of fat; for, had the growth of the former liept pace with that of the latter, then there would hate been but small reason for complaint. And, be sides this, a great waste of the most valuabis elements of food takes place under the obese system of feeding cattle; but to this we mus. return.-Farmer's Magazine.
W. B.

Directions for the Cultivation of Flax.

The Jacques Cartier Agricultural Societ of Canadia East, have issued the followin: directions for the cultivation of flax:-

Soil.-The best land for flax is a dan coloured loam with a clay subsoil: it wi. grow on almost any soil, but such as contai a large portion of veretable matter in the. composition are undoubtedly the mosi prope for flax; but whatever be the kind of seil,: ought to be in neither too poor nor too ricl but what is called in grood condition.

The place of flave in the rotation of crop If the crop is to be allowed to ripen its see it should be considered as a grain or exhaus ing crop, and as a green crop when the pla is pulled green: if intended to ripen itssi it should follow potatoes, tumips, or son other green crop; ; if to be pulled green, shoudd then be sown upou liand from whit ouc crop of grain only has been taken aft
haring been several years in pasture; in either case this will cause no derangement on a farm where a six or seven years' rotation is practised in the first case, grass seed should be sown with the flax and in the second glould take the place of a green crop, and maty be followed hy barley or wheat, it :lllowed is slight dressing or manure atier remoring the har.
Preparation of the Soil.-In all cases the land should be decply ploughed in autumn into ridges ten or twelve feet wide, well mater-fitrowed; this done in the proper seaison. in a proper mamer, the frost of the wimter will put the land in a finer state of pitrerization than any other implement man can employ; the lami should be well harrow© 4 before the seed is sown, then cover the seed hy passing the harrow a couple of times wer it, water-fiurow the land, and remowe allstones which remain on the surfice; this linishes the seed process.
Time of Sowing.-From the 10th to the 20tio of May is the best time in this locality; if sam earlier, the seeds of ammal weets will griug up with the flas, and will cither injure bie crop, or caluse more labour in weeding it, vhereas if sown about the middle of May, is geat number of the seeds of weeds will have dready germinated, which the process of seeding will kill, and consequently save lalour in weeding.
The Quantity of Seed.-This will depend ypon the intention of the crop; when a crop di seed is intended to be taken, thin sowing ispreferable, but it is a mistake to sow thin when flax is to be tilken for the crop; it will trou conase and less productive; from a fuakel and a hallf to a bushel and three quarters siould be sown per acre.
The Choice of Sced.-It should be weighty, fa liright brownish colour, and slipyery to tef feel in putting the hand among the seed.
The Munner of Sowing.-It is always sown troadecast, but if seed is the main object, crilling misy he adopted.
iffer Culture.-This consists chinefly in reding, but sometimes should commence mith rolling the surface when the soil is very in. the season adranced, or the earth rery bigh and porous. The weeding, if required, tould he done when the crop is about four afire inclacs light ; there is no danger of inbring the plants by walking over them to pall out any weed that maty have grown up) ith them, or even by turning a flock of sheep mongstit, as the shcep will nottaste the young tryphants, and a fine dewy night will put ail songs right; the rest, until harvest, is in the tud of a bencficient Providence, who alone sye bring to a successful issue the work of mhands.
Harcesting the Crop.-The flax crop is Wjen by pulling; this should never be done
before it comes into flower, when fibre is the sole object; or before seed in the pod acquires a brownish colour, when fibre and seed jointly are required.

Rippling.-This is the next operation, and may be quickly done hy presenting the seed end of the flax to the cylinder of ia threshing mill, withdrawing the stalks, and binding themi \ln bundes for the purpose of stecping. The beet water for steceping iliax, is clear, solt, and in standing pools; the time it should remain in the water will depend upon the nature and temperature of it; the most certain rule by which to jadge when hax is sufficienily watered is when the reed becomes bittic. and the bark separates easily from it; it must then be taken out of the water and spread very thiniy on the gromed in regular rows: when it has become perfectly dry, it may then be bound up in bundles and either carried to the scutching mill, or stored away moder cover, where it may remain for years without injury to the fibre, if kept dry. The other processes to which flas is subjected hefore it is converted into thread or linen, helong rather to the manuacturer than to the farmer.

Short-Horn Brecding.

We have frequently in these notes had occas10 n to sjealk of the princyple of selection exhibited in mixed blood, or in other words, the combination of good families of all sorts, as lying at the very root of sound breeding, and as being its real purpose; we have alloo stated, as a fact at once arising out of this fundamental law and proving, that what, is expressively donominated "distiact blood," of which the sinorthoms of Bates and Booth are signal but not exclusive examples, is the result of persevering selection, which ever has been and cver will be associated with the cuitivation of the finest amimals. "Distinct biood" is selected blood which has become distinguished in the hands of certain successful breeders. "Anybody" (as it was observed in these columns a tew weeks ago) "may be a follower of a distinguished breeder; but to be a successful imitator of him not only impliss a recosnition of the great principle of selection by which all eminent breeders have invariably shaped their course, but involves the necessity of occasionally deviating from the most satisfactory practices; just as they deviated ; in order cither to maintain what has been accomplished, or to accomplisis and secure somothing still better. It is thus that ourleading short horn breeders, without exception, acted, in their best days. Careful selections and thought ful combinations of materials that seemed worthy, whatever their source, preceded success, and were among the chiff conditions of it.* The history of Killerby and Warlaby coufirms the geueral practice. We propose, on the pro-
sent occasion, to trace that history, with as much particularity and attention as time and space will permit, with reference to selection as the chief means of attaining excellence; and ahall avail ourselves of an early opportunity to enter upon a similar engagement with respect to the blood of the Kirklevington shorthorns. Neither Mr. John nor Mr. Richard Bootn achjeved renown by ways that are inaccessible to other breeders, nor did either of them achieve renown by methods that are not deseriing of universal imitation. The servile sulmission of will and judyment of the authority of a name and the imperious demand of tashion, by which the fitful and frivolous career of scme of their admirers has been more or less characterised, is not to be charged against them. They adopted the labors of predecessors and contemporaries, cheerfully and fieely; but they adopted them at the same time deiiberately and independently, using them, not as denoting finality, but as conducing instrumentally to unattained results. Thes were no snappers up of unconsidered animals. The bait of a pedigree etpraterea nilhil failed to catch them. Something more than other men's learings, or the sweepings of weeded herds, was demanded by these august exemplars of a noble science. They looked before and after ; they examined, considered, com pared, selected; and their careful and patient operations issued in eflects which have been long before us, stamjed with the approbation not of a nation only, but of the world. In prosecuting our pronosed inquiry we assume at the outset that the Warlaby and Killerby blood is properly designated now by the term "distinct;" the man question to which we invite the attention of the reader being, not so much the character of Booth blood, which we are glad to admit is as fine as blood well can be, but in what way this blood arrived at its present state.

So far back as aboat the year 1810, upwards of fifty years ago, we find Mr. Thomas Booth, the frather of the late John Bonth, of Killerly, and Mr. Ruchard Booth, of Warlaby, using, in addition to his own bulls, sires from the Collings. Charles and Robert; and among the principal bulls used as crosses within the last fifly tuo year: but not bred by the Booths (that is, by Mr. Thos. Booth, the father, or Messrs. John and Richard l3ooth, the sons), are Albion (14), bred by Mr. C. Colling; Pilnt (496), bred by Mr. R. Colling : Rubens (5027), bred by Mr. J. Colling White Hotse; Remus (550), bred by Mr. Wright; Stephen (1456), bred by Mr. Charge ; Matchem (2.281), bred by Mr. Mason; Lord Lieutenant (4260), bred by Mr. Raine; Mussu'man (4525), bred hy Col. Cradock, and afterwards the property of Mr. Lax; LordStanley 4269), brid by Lord Carlisle : Exquisite (004 P), bred hy Earl Specer; anid Water King (11,024), bred by Mr Torr. Among the bulls which cannot with propriety be cilled principal bulls, bat we e abundantly used, though not bred by
the Booths, are sir Alexander (591), bred by Mr. J. C. Maynard; Scipio (1421), bred by Mr. Donkìn ; Ambo (1636), breeder's name not recorded, but his dam was bred by Mr. Poole; Francisco (2032) and Velocipede (5552), bred by Mr. J. C. Maynard ; and Burley (766), bred by the same gentlemen, and out of and by a son of Venilia by Mr. Bates's Enchanter.

These details are far from being supplied in a spirit at all depreciatory of the Messrs. B3ooth. Un the contray, they are offered as affording very strong proofs of their sagacity and wisdom, and as a precedent which camot be fullowed without immense advantage to ail who adont it. We have omited several bulls intentionalls, and some ate, no doubt, omitted inadvertevtly; but this list, defective as it is, is sufficiently complete to assme the reader that the practice of the Booths convincingly illustrates the principle of selection, and estabishes the general pros. positions we have advanced in its favour. It does not, of comse, follow from the fact of so many bulls from various quarters having beea used that a great variety of blood has been resorted to, for the several sires might have been related by allinities more or less near; but a somen hat cruel examination of the composition of the pedigrees of the bulls whose services were engaged at Killerby and Warlaby shous that such was not the case, and that not only were many bulls used, but much blood of a dwersified character was sought and adopted. We do not ask which of these crosses the Messrs. Booth liked best, or whether they ever regreted having adopted any n_{1} them: our present busmess being chiefly to set before the reader some evidence bearing upon the allega. tion, that the Booths, in attaining reputation, in no wise discarded the principle and practice of mixing blood from different sources and of different strains. More recently, the pinciple upon which Mr. Booth has proceded, in resorting to a new cross. has evidently been to adopt a eross nearls allied to his own blood, tha avoiding abruptness of trausition whilst he obtained the impulse of a fresh element. In tro of the latest of the Warlaby crosses with other blood, the Water King and Lord Stanley crosses, this is strikingly apparent. Water King was out of a pure Bates cow, and by Baron Warlaby, a pure Booth bull; and the granddam of Lord Stanley was Lady Sarab, bred by Mr. Richard Booth, and own sister to Isabella by Pilot.

So far, then, from the Booths forming any exception to the principle of selection they art very prominent examples of it, and we mas add, of its beneficial tendencies. It was during th. time when this principle most largely prevala with them ther best families were consolidatod The partral reader may acknowledge the genera truth of our observations, but may meet the by Hlleging that Mr. Booth's shorthorms beid: now perfect, the necessity for occasionally π
sorting to other blood is removed. We sloould dispute, upon physiological data, the inference ,thus imagined; for we believe the conclusion which cannot fail to be deduced from such data is altogether in an opposite direction, and enfrees most distinctly the indispensability of formint new ailiances in btood, if the health and gren glin and fertility of the old stock is to be pryetuated. Escessive in-and-112 breeding ob thins almost unavoidably in the early stares of the improvement of a species, and contributes reatly to the specdy attainment of that purpose, be condensing and intensifying in one animal propertes that are desimable; but it by no mrins follows that what answered at one end of aprocess will answer equally well at the other; and we believe the concurrent testimony of the chief physiolo rists is hostile to the practice. Gince Mr. Riehard Booth has succeeded in lettint his hulls for preat prices, and the discriminatire expression "Booth blood" has come to be aticed to the blood of the Warlaby animals, the habit of drawing upon other herds for new cmises has been discontinued, and the Warlaby hed is maintained entirely by sires bred upon the premises. Mr. Booth still ad pts the systan of selection, but not in the sime way in wheh he adopted it when engaged in building up bis reputation. His selections are no lonrer from the herds of other breeders, but from his own. He selects, apparently with thought and care, from his numerous bulls those which may seem to him best calculated to propagate the characteristic qualities of this far-fimed shorthorus: but it is said to be evident to almost grerybody who considers the subject, not excluding the warmest admirers of Warlaby blood, that a policy of thes sort contains within it the seeds of self-drstruction: that it is merely a question of time; that it is the heginning of the end; and that, sooner or later the end will come. Such a result must be held to be inevitable, if it is according to the laws of nature that a persevering adhereuce to the same strain of blood without interruption impairs the enersy and power which are absolutely indispensable to perpetuate with regularity an improved species.-Bell's Messenger.

Steam Cultivation at Woolston,

On Friday last we paid our annual visit to Wooiston, to see the results of steam cultivation, and to mark its progress in that chosen ypot of its inauguration. Like all true pilgrims to the object of our study, we are happy to record that cultivation by steam is is not only a grand recognized fact in that now renowned locality, but that it is gradually extending itself into a wider area, and is promising to become as general as horse and hand power in the tillage of the soil. We find, in short, that steam is no longer an
auxiliary to horse culture, but that horses are the auxiliary to that power. To show this we will just take a glance at the Woolston Firm.

In unison with our usual details of this highly interesting farm, we will take the heavy land first. Field number 1-wheat stubble: The corn was just cleared away, the stubble was remarkably clean, and by its strength showed that the crop must have been very good. It is also right to state that this wheat had been sown broadcast, therefore it had never been hoed, nor any other costly operation bestowed upon iteto have produced the cleanly appearance which it presented. This field of stubble is sown with clover, and will require no operation this autumn. Field number 2 is beans, which is a fine, strong, and full-corned crop, and is estimated by Mr: Smith to produce forty-five bushels per acre. The men were cutting the beans, which enabled us to see the remarkably clean state the land was in. This will enable Mr. Smith to use his combined machine to cultivate and drill in the wheat at one operation. No horse labour will, therefore, be required here. Number 3 field is swedes-half a crop, the flies having destroyed the other half.They have been horse-hoed four times, giving six days' employment to three horses. The land is clean, and will require no operation until the turnips are eaten off, and it is time to plant the barley in the spring. Field number 4 is barley, being cut; had been harrowed three times, giving two days' employment for horses; it is a fine, strong-strawed, and lons-cared crop, and will produce, according to Mr. Smith's estimate, seven quarters per acre. This land, after the barley is carted, will be smashed up by steam, and cross-cultivated with horses, giving the three horses only two days' work.

We next come to the light land. Field number 1 is a fine healthy crop of beans, the stalks being from six to seven feet in height, and well corned. The produce from this tield is estimated at not less than sixty bushels per acre. On looking under the beans we could quickly sec that the land was perfectly clean, and that the combined machine could be easily used, cultivating the land and drilling the wheat at one operation; therefore, no horse labour would be required here. Nutiber 2 is in roots-swedes and mangels. The latter is an average crop, Mr. Smith having had to sow his swedes as second time, the fily destroying the first plant. The roots have been horsc-hoed four times, giving six days' employment to his horses during summer.Number 3 was part oats and part wheat, both being carted; the oats were a fine crop, harrowed three times, giving one day's work for the three horses, and yielding at least ten
quarters per acre; and the wheat was an avcrage crop, the wire worm having damaged a portion of it. The stubbles are very clean. One smashing and one cross cultivating, with he ridging and subsoiling, will be enough for the next root crop. Here we get two days' work with cross cultivating, four days work with ridging, and four days' with subsoiling. Number 4 field is wheat stubblerery stroug in the straw, and the crops taken from it will produce 50 bushels per acre.The stubble is very clem, and when cleared off will be smashed up by steam and cross cultivated with horses, ready for beans in the spring. This will give two days' work to the horses. Number $\overline{0}$ fiche is a clorer lea fed oll; will be ploughed with horses for wheat, and will give 12 days work for three horses. Number 6 field is barley; has becu harrowed three times, giving two days (mployment to three horses, the men cutting it. It is a very strong crop, the sheaves, where cut, lying thickly on the ground, and promises, according to Mr . Smith's estimate, a produce of 70 bushels per acre. There is a very good plant of clover upon it, and, thercfore, it will require no operation this autumn.

In conclusion, we can state that the horse labour on the farm has been till the present time as follows: On number 3 , havy land, six days; on number 4, heary land, two days; on number 2 , light land, sis dajs; on number 3. light land, one day; and on mumber 6 , light land, two days. The work to le clune this autumn will be-On number 4 , heavy land, two days; on number 3 , light land, ten days; on number 4 , light land, D^{2} days; and on number 5 , light land, twe? ve days, giving a total for the ycar, 43 days, wilh thee horses, on the Woolston Farm. Here we have stean versus horse power demonstrated in the culture of our heary clay soils.-Bell's Messenger.

On the Feeding Value of Strew.

The wet weather which prevailed during the greater portion of the late hay-maling season has, we fear, in many places greatly deteriorated that crop. In a recent ramble through the counties of Kildare, Carlow, and Wicklow, we saw but too plainly the ravages which the humid element had made on hundreds of portly cocks of hay. We were present at the sale by anction of the produce of a meadow of cight acres, which realized little more than ls. Bd. per cut. This is by no means a solitary example, as we have been informed by several auc. tioneers that large quantities of mferior hay hare been disposed of this season at exceedingly low prices.

Very inferior hay is generally purchased by the hay dealars, and is mixed by them with a good article; and so skilfully, too, that the
misiture of the good and bad is often sold at the price commanded by the good, when disposed of per se.

We are clearly of opinion that inferior, fibrous washed-ous hay is dear almost at any price, and that the moncy pad for such an article would be much better expended if invested in oats and straw.

Very discrepant indeed are the opinions relative to the nutritive and the fertilizing value of stati. In Geameny and many parts of britan it is hedd in such hifo cetmation as a manure that its sale is suicily mohibitud in must kases. In our own country many farmers believe it to be almost valieless as a feeding substance, whilst whets entertain a high opinion of its ali. mental value.
The result of the expe:imente of Lawes and IIUr:fall pruse that straw cho.fi is: as an adjunct ive anticle of liowd descring of the farmers at'ention. We thin, tuo, they demumate very cleat! the wastefuless of practice which provaibo en sum.יy fams of consutills all the straw intu litter, sulely fur the fripose of inceasing the manure heap.
That stan, in a chopped, or "hat is still befter, thurumghy brused state, i., a most useful fictiog sulotatue, the result of its chumeal exammation, and of actual feeding expetiments with it, place beyond doubt ; and as its pice is compataively lun, it will be fund at more ecunumical fetling stuff than the Waslruut conse hay to which we have reierred.

The atalyses of hay which from time to time are 1 ublished, exh:bit every thins but wifurmty. This aists rom the cumplex and unconsta:t n.ture of the aticle, which, as is well kn-wn, is a vaiable mixture of vanious grasses and clovers.

Grod hay, carefully saved. has, on an average the following composition :-

Coarse hay, which had been subjected to the influence of heavy and constantly recurring ran, will probably have the following composition:
Water 14
Flesh-forming substances. 4
Woody fibre 40
Ash 5

The following table, compiled by Voelckss, exhibits the composition of the straw of the cereals; and by comparing the analyses. st forth in it, with those above given, a tolerable accurate estimate, for practical purposes, of the

Native value of both classes of feeding subwnces may be realized.

> Wheat Rye Barley Oat Straw. Straw. Straw. Straw.

mater	14.23	14.30	14.30	12.06
Mreshformers	179	2.29	1.68	1.63
fatformers	31.06	31.15	39-98	37.86
Coody fibre.	45.45	43.18	39.30	43.60
din.	7-37	3.08	4.24	4.85
	100.00	100.00	00.00	100.00

From these tables it will be seen that the waly very important difference between hay ondstraw, is the high percentage of Hesh-formin substances in the former. But it should be bone in mind, when comparing the relative wale of the two articles, that the amount, of teal fumers in a substance is no longer taken a the absulute criterion of its nutritive value. iase is sood reason to lead us to assume that aithe fot-forming substances in the on-caise aen to ammals are assimilated, whilst a large aprition of the nitrogenous or flesh-forming alstances pass through the animal's body unalarel. This fact-for so we believe we may wrait-is of importance to farmers who use teer struw chielly for cattle. The straw is sufment in flesh-fommiar matters and abounds in fatioming elements. In all oil-cake there is adescess of the flesh-forming substances. It is cear, then, that by a mixture of the two articles de "happy mean" would be attained.
Many of the best feeders in England employ arge quantities of straw as food. It is stated thit some of them adopt a peculiar and secret zude of preparing the sulstance, whereby its ralue is greatly enhanced. If we might venture wopinion on the subject, we would say that the secrec" consists in using only good straw, chopping it finely, and adding it in proper propation to the other articles of the animal's diet. As straw includes a considerable proportion froody fibre, which is hardly if at all digestible, is mechanical preparation is a point of great aportance. By chopping finely or thoroughly trasing the article, its fibrous structure is disitergrited in a degree proportionate to the msunt of violence to which it is subjected. The nutritious particles are for the most part emeloped by the fibre, which to a great extent potects them from the action of the juices of the stomach. By breaking up the fibre the astric juice is allowed to come in contact with the direstible portions of the straw ; and, consepuently, a larger amount of these substances is asimiiated. Straw is one of those substances which may be cooked or fermented with advantare, as loy either of these processes the fibrous matter is softened and broken up to such an extent as no longer to protect the albuminous, oilf, gummy, and in other useful matters from the action of the solvents in the stomach Prof. Cameron, Editor of the Irish Agriallural Review.

Steam Cultivation.

[We take the following notice from a recent number of the Bucks Merald, (English) Mr. Lewis Taylor, who seems to have taken up steam cultivation in Eugland as an avocation, is brother to Mr. Edwin Taglor, lanscape gardaner, both of whom were late residents of this city. The progress of steam as a motive power in agricultural operations, if not rapid, is, at least, constantly progressing and increasingly satisfactory.-EDs.]

To the enterprise of Mr. Fowler, of the prebendai Farm, many persons in Aylesbury aud the surrounding neighborbhood-whose knowledge of the cultivation, or rather the turning up of the soil, by means of steam power, entirely rested upon what they heard and read-have this week had the oppoitunity of seeing for them. selves the practical working of a system which there can be no doubt will, ere many years elapse, entirely revolutionise the most important of farming operations. On Mr. Fowler's farm "ILoward's New Patent Double Action Steam Cultivator" has been at work for several days, accomplishing its task to the satisfaction and admiration of all who have been attracted to the spot. Mr. Lewis Taylor, the gentleman who owns the cultivator, and superintends the opesations, with the most cheerful courtesy and kindness gives to the spectator any information as to the cost, capabilites, \&c., of his beautfiul apparatus, answers any question which may be suggested by its working, and generally, after a sholt conversation, puts one quite au fait with the cultivation of the soil. It is not necessary that we should enter into a long and technical description of the working of the apparatus which constitutes either a steam plough or cultivator. This has been done repeatedly in our columns, but as this "New Patent Doable Action Steam Cultivator" is upon a new principle, a fev words are necessary. The desideratum in other cultivators (and this applies to steam ploughs as well) was the very thing which in this one is accomplished-namely, its double action, thereby giving increased facilities for easily working and saving time, considerable trouble, and some expense. It is a very neat and easily handled implement. It is made with a ribbed wroughtiron frame, combining great strength with comparatively little weight, and is fitted with five tines or legs, but can be used with four, three, two or one, according to the depth, the tenacity, and the heaviness of the soil. On Mr. Fowler's farm three tines are being used. The shares are made of various widths -from two up to ten inches-this too, as a matter of course, depending on the strength which in the judgment of a purchaser the implement
should have, and the amount of work it is expected to accomplish. The tines rock on the frame, so that the points, when working, are depressed, and the hinder ones slightly raised. The wheels are stecred by the ploughman, who rides on the implenent, alternately at each end, according to the direction in which he is proceeding. When a stoppage occurs, or should occur, either from the soil being extra hatd or foul, the steerer can stop it instantly by giving a signal to the man attending the engine; it can then be drawn back and again driven at full speed. The "poiters" upon which the wire rope runs in the line of the soil being turned up -or in other words, "the porters" which require constant shifting as the cultnvatur does its work-act very efficiently, and can be attended to by the most inexperienced bos. The anchors at each end of the line traversed by the implement require, of course. to be shifted each journey, and this too, is easily accomplished, and without more than a momentary stoppage. As a cultivator, the implement performs its worls in first-rate style. The soil is as effectually as it is rapidly torn up and turned over, at a depth which can be varied according to circumstances from six to twelve inches. The whole apparatus -engine (which is a portable one, and of 10 horse-power), "porters," ana implement-can be attended to by four men and two hoys, and, eight acres per day can be easily accomplished, at a cost we beheve, of 15 s . per acre if the soil is once turned over, and 25 s . per acre if twice or cross cultivated. From these figures farmers can make their own calculations as to the economy of the implement, and as to its efliciency they will, we think, be satisfied the moment they see it at work. As will be seen by an advertisement in another column, Mr. Taylor intends making Aylsbury his head quarters, so that the farmers of the Vale will have the opportunity of doing what Mr. Fowler is doing-practically testing the cheapness of steam cultivation.

The Autumnal Fallow.

In the subjoined article from the Marls Lani' Express, written by a "Practical Farmer," will be found much that is applicable to our condition and wants in Canada. We have now, gang ploughs, horse-hoes, scarifiers, \&c., well adapted for fall culture, opening up the soil to the influences of air, light and moisture, and for eradicating weeds. The latter is an object of paramount importance, as is well known to every practical agriculturist. The practice of autumn cultivation in some form or other has been ateadily gaining ground at home for many years,
and may now be said to form a distinctive fealr of Brit:sh Agdiculture : -

Amongst the many modern improvements agricutural practice none has received mo favor or becume more general than autumn cultivation. Wherever we travel at the close September or the begimine of October, in th country, "e find the patatice miversally ador ed, and being canicd out in a variety of mode In ordinary practice, the sheletom pluagh, ar broadshate plough, and ever the commo plunch, are brousht into requisition; but th more modern cousse is to lesurt to the ret many cultivaturs and scarifiess lately introduce the malufacturets of which are to numeroust mention: but the implements which have r cessed most patronare are the "Bentall" th "Biddell," the "Clay," the "Cason," th "Culeman," the "Howads," the "Ransomes" -scanifiers and cultivaturs named after thei res;ective makers-bosides uthets of conside ahle nete, and also many of jocal constructio -in fact, any and every implement competen to break or "smash" up the suil.

The great benefits derived from autuma cultivation are mainly the acration of the soil the cradication of ro wceds, the promoting 0 the grow th of all annuals, and their subsequen destruction, the injury done to, aud ahnost annihilation of the insect tibe, and the aid tbo: given to more sipedy subsuil draiuage-all ver important, and demateding the prompt attention: of evers farmer. The aeration of the soil a this precisn period is of much greater impor: tance than is generally attibuted to it. It is a this season that all vergetation has pretty nearly arrived at its full growth. The cereale, of course, all are ripe; and the decay of straw and stubble is very gieat. The green crons are also at their tull erouth, and decay in leat is rapisly proceedng. The putato crops, cloverleys, de., are bare of leaf also. The foliage of the tres and hedgerows is all giving way; the ditches and ponds give out their odours, unmistakeably manifesting the decay of vegetable matter; the dews and foys of sutumn are many and heary. All this combired must produce, elininate, and diffuse a vast amount of vegetable effluvia, with which the atmosphere is, in my humble opinion, beavily charged, and which, to unscientific observers, is sufficiently proved by the malarias which commonly prevail at this season. Nor the great thing is to break up, "smash up," and prepare the soil as mimutely as posible, for the reception of these fertilizing vapours, this floating effuvia. If it is not thus broken up, the deposit by the night-dew is speedily taken up by the day's sun. and no benefit arises: it canoot penetrate the hardened soil. Bnt if it is properly, prepared, these fertilising influences are receired, and at once appropriated by the soil; and the advantage of an autumnal fallow and in a great measure of a real or dead. fallow, is.ex-
inced; the old adage, "One nutumn ploughti worth two summer ones," is verified.
ke eradication of root weeds is very imporyit,and in a fine autumn is often effected satisbtolly. It is particularly requisite on lands cot gite prepare for wheat-sceding. The present jasm is a peculiarly favorable one, aid no time bard be lost. The land should be broken up Wa cousiderable depth-at least, below the wiets of the weeds-by a competent impleEn, and ought then to be well-worked by krows, rollers, \&c. The weeds on some stiff wiswill dry up and die; hut on the far ereater sixity of soils they should be collected, parred up, and burnt, or be carried to a foldwfor mixing and treading down with the ymard manure. In this way it is most serixale; but if burnt, it is almost valueless. Ife promotion of the growth of aunual seeds of ribl is another imporiant consequence attendinstiumn culture, as by the various processes folifivation they are brought into contact with ia soil, and made to vegutate. The young ants are then easily destroyed by subsequent diure. Another benefit is the wholesale de oction of innumerable insects, slugs, worms, th, \&c., \&c., both in their larvee state and at hrowth. The repeated disiurbance of some ithese insects has a marvellous effect. The fre beetles of the wireworm tribe, by some tuet or other means, know this, and will not Whit their eggs where such operations are nar on. The chosen abodes of the various de, wreworms, dic., \&c., are broken up, and at mumbers become the prey of the feathered it; others are exposed out of season, and :refore die.
fnother benefit is, that this pulverization conbites greatly to facilitate the passage of the zmal rains through the soll into the subsoil ans, thus giving it a quick riddance of supervos water, and at the same time procuring Eve copious supply of ammonia from the \because that fall. It is by the passing through of imater that the soil receires its chief supply smmonia, which is so condacive to the full relopment of the wheat plant, and conseatly it is one of the great acquisitions atjed bo autumn fallowing. Taking then oconsideration these principal items of the .ject, it will, I trust, be manifest that auwal fallows are of immense value, and canbetoo highly recommended.
The mindes of cultivation are almost as varias the soils cultivated. The greatest puision in modern times, for this purpose the application of steam to cultivation. It Honderful improvement, and worthy of ption wherever it can be carried on with.obstructions from stones or roots; and it srived at that height or degree of perfec-- which renders it available to men of jerate means. The process can proceed ir almost any circumstances. No soon-
er is a field cleared than the steamscultivator may commence its operations, the horses of the farm continuing the cartage; besides, it reguires so few hands, under its best phases, that no difficulty can arise in that respect, and no mode of cultivation yet practised can equal it in the effective power and correct application. The breaking or "smashing up" by it in beyond the power of horses or animal life; the depth reached is so great, the work done is so regular, both in depth and fulness, and the whole is in such a business like chargeter, that hitherto nothing has equalled it, notwithstanding the great advance made in agricultural mechanics as applied to cultivating implements. Steam cultivation then will undoubtedly be invaluable for effecting the autumnal fallow.

It would seem superfluous for me to point out any course of management best adapted to secure a good autum fallow; but it must be remembered that we do not always write to experienced farmers, nor do we presume to instruct them, Our aim is more to inform the inexperienced and youthful farmer. We would then say, that as soon as possible after the crop is led or carried, the land should be harrowed or well raked, in orter to get off all shaw and stubble likely to impede the working of implements. The scaritier should then be passed through it at as great a depth as appears desirable, and in this way it should irrst take the furrows lengthwise, and then tabe the whole transversely across the field: by this means the furrows get well broken up. After an interval of a few days, a drag or heavy harrow should follow the scarifier, to be succeeded by light harrows and roller, to pulverize thorongiliy, that all may obtain a thorough cleansing. The interval named in to allow time while in its roughest state for atmospheric iufluences to operate. When seed time arrives, it should receive the ordinary ploughing and subsequent management necessary to complete a good seeding.

One other great, but collateral advantage derived from this course is, that it will not be requisite to drill in so much seed. The slug and noxious insects being destroyed or greatly thinned, the occupier may depend upon securing a full plant, at least from their depredations; besides, the land is in a far better state for promoting the rapid growth of the wheat plant. Moreover, it has been proved to demonstration that a good or strong plant from a thin seeding is more prolific than a thick planting from thicker sceding. In my own business, after these processes I do not drill in .more than from five to nine pecks of wheat per acre, and the scason must be bad indeed that will induce me to drill so much as nine pecks. I make six pecks suffice if all is favourable. The state of the soil, the condition in which I am able to get in the sead,
the state of the weather, and the time of year, all rule me, in their turn. The better the land works the more favourable the season, the less seed I drill; but vice versa, the more Idrill, but never to eaceed nine peeks per acre of good seed.

Pastures for Milch Cows.

In the last volume of the Transactions of the New York State agricultural Society is an excellent paper on Dairy Farming from the pen of Mr. Willard of Herkmer County, from which we select the following:

Old pastures that have a liac thick herlage of several kinds of grasses adapted to the soil, and coming to maturity at different seasons, will generally be found to produce more milk and fiona which a richer, betrer flavored, and finer quality of butter and cheese are manufactured, than from the rank growth of grasses on newly seeded lands. Again, new!y seeded lands will not bear that close cropping, nor will they endure drouth like permanent pastures.

Doubless when the land has been underdeained, decply subsoiled, enriched, and then seeded with a judncious admixture of grasses of the several species best adapted to the soil and climate, a permanent pasture of the best character may be soon obtained, and would amply pay all earienses for such cultivation. Yet few, comparatively, can be mduced to enter upon this system of farming, and the next best course is to be considered.

In the treatment of old pasture lands injured from close cropping or other causes, but not wholly run out, it will generally be better not to break up, but to leave them for a part of the season to resuscitate, ruming a harrow over the ground in early spring, and sowing a mixture of timothy, blue errass, red top, the clovers, red and white, and orchard grass, making an application of plaster, pulverized bones, ashes, salt, or other stimulating fertilizers. Ashes, leached or othervise, remove mosses and are a valuable appiication to grass lands.
There are pastures in Herkimer county which have not been broken for more than forty years -many that have never been plowed perhaps but once or twice, years ago, when the country was new, that are yielding an abundance of nutritious food, enduring year after year close cropping and drouth, without any perceptible imjury or tendency to run out, and yet have received no top-dressings, beyond the usual ap plication from time to time of gypsum. The grass of these lands spring up green and fresh, with a thick fine bottom, a marked contrast throughout the season to occasional patches on the same soil recently re-seeded Stock too, it will be observed, are to be more frequently found on these pastures, thus showing that the grass is sweeter or more nutritious than on the newly seeded parts.

To plow and cultivate such lands, would to destroy the original grasses, and after rese ing, many years must intervene before the n grasses can obtain that firm possession of soil, and the enduring vigor and variety of old sod.

The reasons for the successful growh these natural grasses need not here be discus -the decomposition of leaves, wood roots, $:$ other veretable matter, for centuries, seems have accumulated a surface soil, capabie supplying the best possible food for gros these plants in perfection, which, intermised they are with artificial grasses, timothy, dos Sc., form a more closely matted sward, a produce an herbage more nutritious, and ter adapted to the animal sfstem, than 1 from newly sown seeds on recently cullira lands.

There are large tracts of country, the soil which is unsuited to hold the grasses of ang proved lind, for any great length of time.

They are not natural to grass, and theref unreliable, and cannot be prolitably cupplo: in stock farms. The character of the soit usually of a light tèsture, sandy or graveli they will require to be frequently plowed : re-sceded with clover, timothy, or other rap: maturing grasses, and for short periods is yield good crops. But such soils do not se to contain the elements necessary for the est lishment of permenent pastures and meado bemor more suited to the growing of grain: other crops.
These lands stretch away through the midi western and southern States, leaving comp tively but narrow belts and patches of lan. dapted to the dairy. So far, experience shown that the real dary soils are very limi in extent, and this fact while it gives assura that the constantly mereasing growth of country renders certain a constantly increa home demand for the products of the dairs, while the nature of the country itself preclu any great or extended competition, shonld the same time stimulate those who have t so fortunate as to be in possesion of the fa, ed soil, to bring it up to its highest capac and make their staple products of the best choicest quality.

As a top-dressing for grass lands, the at cation of gypsum, salt, ashes, bone.dust, li decomposed urine, well rotted manure app in fall, composts of manure, river mud, 1 scrapings, or muck; each and all have a mar influence in promoting the growth of grass.
Λ more general use of bone-dust, it \mathbb{F}. seem, should be adopted, in order. to te back to the soil the phosphates which are nually taken from it in considerable quant! by milch cows. So large an amount is t. taken off in the milk of cows, and for the s at production of their young, that the ust bone-dust on the older dairy farms, it is belie
soon become a necessity. Wherever emrd as a top-dressing for grass lands, its rethare been highly beneficial, and its applica--on dairy farms should be as universal as :of eypsum.

\therefore Lwer Canada Provincial Exhibition.

FeProvincial Exhibition opened at Shertie on Wednesday last. The day was as :a yould be desired but as a Provincial Fit can hardly be pronounced a great suc

The leading feature was the cattle ferticularly the working oxen. Several djuges from abroad said that the show of owas the best ever exhibited in the Pro?. The Townships have no occassion to shamed of the specimens of cattle they had ta reound. Stanstead took the lead in catither team of ten oxen was avarded the 1st \therefore Compton the 2nd, and Ascot came in No. incse three teams of ten oxen each was a trorth looking at by a lover of good cat-
Whatentle there were not a large number, sme splendid animals. Sianuel Towser, of *e, exhibited a pair of fat oxen, girt 9ft. -15 h. high, and said to weigh over 6,000 - he had also a fat cow, a perfect mass of the measures 31 in ., across the hips, girt 8 ti in. The oxen were recently sold for a. They are good samples of what can be zhe high feeding, but we should fancy not exh profit.
fare was a good display of shcep, the Leiis taking the lead.
Fie swine were not very numerous, but comjiome very handsome animals.
Eere was a very good display of horses of Einds.
is was perhaps the most important article bited. There were several specimens of shted, which was necessarily coarse; some inens of steeped were much finer. There a sample of flas rotted under the snow. results are as satisfactory as steeping; this fe ras exhibited by Mr. Knox, of Lachine. tas a good sample shown by Mr. Boa, the seed from it, showing that this crop jied both seed and fibre of a fair quality at ame time. Mr. Boa also exhibited a samof hemp in the stock, about 12 feet high, :asample of the fibre made from it which das well as flax.
tso implements and mauufactures were not 1 anmerous, among them were:-ploughs, : pans, fanning mills and cultivators, by is Brooks, Lennoxville; cast steel and Floughs, cultivators and harrows, by Jas. son, Montreal; Sugar boilers and ploughs, ismucl Tuck, Sherbrooke, among them was -tiful finished breaking up plough. R. is of Melbourne, exhibited an ingenious
churn on the principle of the common dasher, moved up and down by a crank of a saw mill,: also a farm gate hung upon rollers. C. P. Parks, of Waterville, a dasher churn moved by crank, wheh gives the dasher a twisting motion; Badon, Wyatt \& Co., of Montmorenci, a mantre for ironing clothes, carrying a pressure of 1,200 lbs.j-aliso a washng machine and matagle combined, also faminer mill and churn; M. Capel, of dscot, a chain barrow or pulverizer. and a light adjusting harrow; Hemry Rose, of Stanstead, iVood's mowing machine ; Hathew Moody, of Terrebome, a one and a two horse power thrashing mathine, horse rake, clod crusher, and a combined reaping and mowing machine ; St. Germain \& Refus, of St. Hyacinthe. a horse rake; John Gulmall, Stanstead, a roller; C. P. Mallory, Huntingville, a large cylinder roller.
S. T. Rose, of Sherbrooke, exhibited a very beantiful side-board made of bird's cye maplo, and chiffomier of the same material, both of which for beauty of workmanship were much admired.

The total number of horses on the ground numbered 175 ; cattle 354 ; sheep 136 ; swine 40; agricultural implements 90 ; besides the producis of the field.-Montreal News.

Facts from the Census for Upper Canada,

The quantity of butter made in 1861 amunted to $26,528,26 \pm \mathrm{lbs}$., and of checse to 2,657, 172 lbs.

In 1851 there were $16,064,532 \mathrm{ibs}$. of butter, and $2,292,600 \mathrm{lbs}$. of cheese made, or

1861	26,828,264 lbs. butter.
1851	16,064,532 "
Increase in 1861..	10,763,732 lbs. butter.
1861	2,688,172 lbs. cheese.
1851	2,293,600
Increase in 1861.	394,572 lbs. cheese.

Beef in barrels:

1851.	113,445
1861.	67,50S

Decrease in 1861. . 45,937 bbls. beef.
Pork in barrels :

1861	336,744
1851	317,010
Increase in 1861	19,734

The increase in berrelled beef and pork, and consequently in the export of these articles, is very small in ten years, and shows that in this branch of the provision trade Upper Canada has not made such progress by comparison with the jears 1851 and 1861.
The exports from the Province of beef, pork
butter, and cheese, for the years 1859,1860 , and 1861, were as follows:

	16.	1809.	181.
Derf	3,235 cwt	1.346 cwt	1,598 cwt
Purk	36,984 "6	6.3,109 "	81,032 ${ }^{6}$

Butter 3,750.296 Ibs. 5,512,500 lbs. 7,275, 426 lbs . Cheese $323 \mathrm{cwt} \quad 1,100 \mathrm{cwt}$. $2,628 \mathrm{cwt}$

The Fisheries of the Upper Province do not show that increase which might be expected from the valuable resources of the great lakes,

In IS5l there were 11,sis6 barrels of fish cored; in $1801,10,013$ barrels; 20517 quintals, and $170,744 \mathrm{lbs}$. of fiesh tish sold.

In Michigar, wheh is the largest inland fish producing state, the valae of whe fish returned in 18601 . mounting to $\$ 250,467$. There is yet a: vast lield open for remunerative enterprise in the fisheries of Lakes Huron and Superior. The whole of the north shore of Lake Huron with its million stands will yet gield great weath to the country from its clear and cold waters. The art of the preservation of tish is as yet unknown in Canada, or rather it is not practised. In Germany, liance, and Britain, Plscecalture is now an acknowled.red departinent of national amportance. It would be a wise economy on the pait of the Government to examine into the working of fishong regulations and Pisciculture now in operation in Europe. A tew skilled emirrants from France, (iermany, or Britam, would soon enable Cadadans to rejoice m the possession of the finest to sh -water tisheries in the world.Journul of Bourd of Arts and Munufuctures.

The Radish as a Field Crop.

"Once upon a time" the leaves of the radish were boiled and eaten, but in these days they are subjected to neither oue nor the other of those processes. The root is, however, in its raw state, as all our readers are aware, one of the daintics of the table.

Many of those who devote themselves to the important study of dietetics consider the use of raw vegetables as objectionable; but, be their abjections groundless or the reverse, it is certain that a vecetable which admits of being eaten raw with advantage must certainly be a grood nutritious article of foud when cooked. We ance tried the experimant of eating matured radishes, not as salad, but cooked as any other boiled vegetable, and we found the flavour rather ayreeable than otherwise. Boiled radishes, roots and tops, furm excellent feeding for pigs -how conld it be othenwise! for what is good food for the family of man must surely be a luxwiy for the swine tribe. Horses, too, we have known to eat radishes, as they would carrots, with avidity; and, andeed, we have no doubt but that these plants would be found on trial to be readily eaten by every kind of farm animal. But it may be asked why we recommend the use
of radishes as food for man and his "su" in creation" when there are so many ' articles in common use-potatocs, turnips, gels, et hoc genus omne? We will try to a satisfactory answer to this question.

Between the departure of the turnips an udvent of the new grass there is a hiud of cultural interregnum. We want a good tube bulbous, or tap-rooted plant to fill up this: regnum, and such a plant we have to som tent in the radish. The root is eertainly a one; but, then, it is so rapidly developed 1 good supply can be had thirty days afte sown's of the seed. Two crops may easi ootained from land under potatoes; one b the cops covered the ground in spring, an other in autumn, after the tubers have beer out. If the land be altogether devoted to ishes, four crcps m the year is the least nu that way be reckoned upon, and if sprin: late autumn be mild, six crops are not only sible, but highly probable.
The gicld of radishes, when cultivated F grarden, is about 2,j0i) plants per perch; a on an average each radish weighs about on a-half ounces, the weight per perch wil neariy 230 lb ., which is at the rate of n nine tons per statute acre, of which one will be tops. These firgures relats to the es cultivation of the plant, under the most, ia able conditions of growth. We must not, t fure, expect to get so large a return if the le cultivated in the field; but keeping within bounds we may assume that a single crop of radishes yields :-

$$
\begin{aligned}
& \text { Of roots....................... } 5 \text { tons. } \\
& \text { Of tops and leaves......... } 2 \frac{1}{2} \text { " }
\end{aligned}
$$

Total.... $7 \frac{1}{2}$ tons.
Now, although we believe no loss woul incurred by devoting a portion of the farms to the cultivation of the radish, still it is no object to recommend the appropriation of part of the farm to such a purpose. Wh.
want to bring under the notice of our read. simply the desirability of cultivating a root which may be perfectly matured before tme to sow turnips.

And now $\&$ word or two on the mode ot tivating this plant, and we dismiss the subje present.

There are several varieties of the radish. long-white, whte Russian, red necked white purple, are kinds adapted for spring. The nip-ruoted radish, adapted for summer, $\mathrm{com}_{\mathrm{t}}$ several varieties, of which the following at principal:-Early. white turnip, white it purple turnip, pink turnip, and new yellowi topped. The autumn and winter varietie, brace the yellow turnip, white Spanish, ol brown, large purple, and winter Spanish. turnip-rooted, or Spanish kinds, alone shou. grown is the field.
radish can be cultivated on any kind of Tsoil, but it appears to delight in a light ross loam, containing a moderate amuunt man mauter. Except for early and late -sa open situation is the, most desirable. -sed may be sown either broadcast or in : the latter is by fir the preferable mode, sthe seed is large there is no difficulty in ma: distribution. The seed is cheap; but :bopid not induce thick suwing, which, if -id, causes an excessive development of mand a consequent hardness and toughif the roots. The seeds should be placed rer of an inch below the surface, and care - If be taken to protect them from the ar, which, indeed, should not be appled at me of sowing. The drills for the spindle $\$$ hinds should be about three inches as. : thuse for the turnip rooted, drills about -isches apart.
.nt the seedlings exhibit half-a dozen leaves -they nust be thimed; a space of three should intervene between the long-rooted : fuur for the turnip-rooted, and six for the thand other large varactics. The latter hare best adapted for high cultivation.
cunclusion, we would suggest that this :hould at once get a fair trial as a stolen If it succecds as such, it will not be the ift of the yarduner to the hushandman. \because nut the red beet and the mangel-wurzel - why hown as the produce of the garden tie commend, therefore, the radish as㔽 the attention of farmers in general, of f farmers in particular, and cottars espe-B-Dublin Agricultural Reciew.

Rot in Cattle.

Te sear muck about rot in sheep, and not jut good cause. We know extensive dis\therefore where a loss of 15 or 20 per ceut. must : been sustained this season. Ewes and sare being sold now in apparently blooming Lhon, but in reality "rotten," and to keep :on would only amount to the loss of the radvage procurable for their use. These resconcern more the English and the Irish the Scotch farmer ; nevertheless, a season EMessant wet brings in its tran disease of a aid kind; and though some parts are more mred than others, still, very generally distri\cdots over the United Kingdom we notice the ds of an unusual period of constant rains. thave had ample opportunities of late to see condition of stock in different parts of the titr after three months and more grazing. the must fertile district of Scotland, and on rich grazing lamls of England and Ireland, feare nany instances of animals not inprovsthe least in condition since the lst May. Balso wo:thy of notice that any weakly or mstock, especially in ill drained districts,
has suffered severely from the very miserable condition of grass. Wherever the mouth and foot disease has appeared-and where has it note -the number of doaths has been unusually large, in consequence of the starved condition of all lean stock. It is well kuown that this disease is nut a very deadly one, but we have to record losses of 5 and 10 per cent., and sometimes far more, amongst calves and year old's. There are parts where deaths have been fewer, but all hnuw how low in conditiun cattle get with this disease; and where the grass has been bad, the chances have been small of restoring the animala evein to the state in which they were before boing placed on pisture land, Lut it is our objeet to day to allude t. a disease concerning which little has heer said in this country, vix., rot in cattle. It is especially prevalent in low, damp, situations, and on the ina:shes scattered throughout the continent of Eurone; and also in America herds of cattle are much injured by attacks of the rot.
It is the same malady as the "sheep rot," but sheep certainly suffer more certainly and more severely from feeding on damp plains than cattle. The low condition which we have said may be witnessed very generally amongst grazing cattle has been most favorable to the development of parasitic disease; and the fluke has perhips been amougst the most busy of the destruet:ve entozoa. A rourh coat, dry skin, prominent ribs, sunken flanks, arched back, pallid membranes, all incidate an unhealthy state A small and frequent pulse, capricious appetite. yellownes of the cyes and mouth, coldness of the extremities, sand the absence of symptoms of acute fever, establish, with the other signs mentioned, that the animal is suffering from that slow, lingering, and destructive disease, "rot." Swellings of the extremities, and especially an accumulation of fluid about the throat, supervene as the animal grows weaker and wealer. We have seen cattle with the worst symptoms of rot attacked by parasites which develop in the orbits, and may be seen rolling over the front of the eyeflall Lice and the parasitic fungi which frequently infect the slins of young cattle abound in rotten animals; and this season many cases have been complicated by the accumulation of strongyli in the lungs and wind-pipe.

The loss amongst cattle suffering from the disease is considerable, especially in consequence of the difficulty of feeding them even when the malady is mild. It is not so deadly as amongst sheep, and as amenable to treatment. Ârtificial food should be given freely with common salt and preparations of iron. No tonics are so effectual as the ferruginous compounds, and if parasites abound in the skin, it ip indispensable to clean the latter thoroughly by repeated washings with soap and water, and the application of washes to destroy the animalon-les.-Scottish Farmer.

Agritultural 3 Intlligutuc.

Sale of Stock at Guelph.

On Wudncslay last an important sate of stoc!: touk place on the farm of Mr. F. W. Ston, President of the Agricultural Association, Guclph. . The attendance was not very large, and only a few stuck-breeders trom a dis. tance were present. Mit. Stunces splendal stock of cattle was first orered, but as the bidding was far from spirited, only a port on of the lot was sold. Lady Cramer, a red and white cow, calved 2 th July, 1950, was knoched down to Mr. Thmmas, McCrae, for $\leqslant 100$. Yumng Velvet, enlved ifth Juac, leai3, was sold to Mr. F. Lowell, of Galt, for Siso. Satiphren, a two-ycar ohd heifer, ras soid to the Hon. David Christie for \$1s0. Sampaneil, Juh, calved 13 th Februany $1^{\circ} 60$, was suld to Mr. Walter Raikes, of Barrie, for \$ 180 . Walter West honght Goldfinder, a yearling heifer, for s:20, and Mra Arthur Hoare, buyht the seconl Duchess of Oxford, calved 12th December, 1 ?: 0 , for $\$ 205$. Hon. David Christie bought Mess Margaret, calved 2 th November, 1s61, for \$135. Unly one aged bull was sold-President, to Mr. Jas. Carter, Puslineh, for $\$ \mathbf{S} 0$. Ruyal Duke, calved 5th December, 1861, was sold to Mr. Thomas Clarke, Eramosa for $\$ 120$. Mr. Arthur Hogie bought Earl of Gloucester, calved 10th Lecember, 1^{961}, for 8100 . The sheep did not go off well. A rentleman from Connecticut bought one Cotswold two shear ram fur st5. A Leicester two shear ram was sold to Mr. James Cowan for the same sum. The others sold-6 or 7ware bought by persons in the district at prices averaging $\$ 15$ each for Southdowns.Leader.

The agricultural statistics of Ireland, just published for the current year, show a decrease in the live stock of the country since 1861 by nearly 10,000 horses, 220,000 cattle, and 100,000 sheep. Pigs have increased $50,000$. The value of the live stock is on the whole less by $£ 1,500,000$. This is attributed to the dis. tress consequent on scarcity, which has induced excessive sales. The average in grain of all kinds is less by 72,000 , that in Potatoes alone being less by 116,000 acres.

Compositition of Sea 'Weed.-Sea-weeds, in the condition of mixture generally, contain in 100 parts of ash, silicic acid 3.00, carbonic acid, 13.58 , phosphoric acid 4.59 , sulphuric acid 6,22 , peroxide of iron 2.53 , lime 18.15 , magnesia 6.48 , potash 12.77 chloride of potassium 0,10 solide of potassium 1.68, chloride of sodium 22.08 .

forticultural.

Hamilton Horticultural Society

The third and last Exhibition of thesea the Familton IIonticultural Society, was $\}$ the Mechanics' Instituie on Friday the 19 t Selinm have we seen a finer display of Tho lot-hnuse, and upen air or hardy grapes well worthy of the notice they recesved. Black and Muscate Hamburiss, Muscate of andria, azd Bowood Muscate, Greely Fr naro, Rnyal Muscadine, and Black St.P were all excellent. Amongst the hardy vari Hartfords, Prolific, Clmton, Delaware, Con Diana, and Rebecca, all good specimens, very creditable to the growers. The Pe , and Nectarines were beautiful. The earls (ford and Kensington, exhibited by Mr. F were the finest wo have seen fur a long 1 Plums: Apiles and Pears wete all in abund: also some Damsons, Quinces, Crals Sibe mammoth and other Tomatoes, Meloas se and green fleshed, Water Melons, Citrons Squashes of various kinds, Capsicums as lare pepier boxes and hot as fire.

Flord-in hot and Green-house plants not so well represanted as we have seen former occasions at this time of the year. hot and green-Houses of W. P. McLaren F produced some Fuchsias. Fine plants of C ceres reflexum, Bouvardia Hogarth, Boura leiantha, a spendid plant of Stephanoth L bunda, and a tine lot of Cockscombs. There a gond display of cut flowers, comprising Dah. Piloves, Asters, Hollyhocks, French and Afri Marigolds, Verbenas, Stocks. Two collecti of native plants, oue of 12 varieties by Mr. Fre the other of 24 by Mr. Sanderson, juar. I quets for the ladies, and Bouquets by the lad hand and table, of all shapes and sizes, m. up of the prettiest flowers that could be g such as the Princes' Feather, Rue and lii Forget-me-not, and other sweet things, s: Love-lies-bleeding; amongst the rest, one native flowers by Mr. Sanderson, junr., was F . mach admired.

The Vegetable-department was well ref sented, but not so largely as we have seen hefore at this time of the season. All the p ductions were good; Cabbages and Cuulifor large and excellent, Brussels Sprouts, Carro horn, orange and Altringham ; Turnips, wh and yellow, Corn sweet, Celery sed and whi Onions and Musselbough Leeks, Potatos, P_{2} nips, Salsifys, Scotch Kal and Mushrooms, wi two large collections of vegetables, by Ness. Taylor and Sinclair.

The amateurs came out well in all the partments.

In the afternoon an interesting ceremony toc place in the presentation of two meddals, 0 . given by Adam Brown, Esq., President of $:$

If, to the Gentleman's Gardener who keeps gitden and grounds in the best order, and :owerbed most tastefully arranged during esson; the other, by the Directors, to the Ett Gardener who, during the season, keeps greunds in the neatest order and best state s.nration. The first medal was a mudel of If and good taste, bordered by the Maple and surmounted by a Deaver emblema. -io Canada, with the insignia of Horticul. ion the ribbon, the spade, hoe and rake. ris manufactured by Millidge \&Son, Princess at, Edinburgh, and bore the following inSiun: "Presented by Adam Brown, Escy., Geat of the Hamiton Herticultural Socicty, ${ }^{n}$, for the best hept and most tastefully ar.aGarden and Grounds." "On the other side :bscribed. "Gained by Hugh Shaw, Gardener 3.Juson, Esq." The Directors' Medal was of duste, and bore the following inseription: Be Ditectors of the Hamilton Horticultural Sty, 1562, to the Narket Gardener who has this, grounds in the best order during the sa.", On the other side. "Awarded to James as."
Ie presentation was made by the President, Topurupriately addressed the succesoful cumtus, very specially remarhing on the ezood aind by well organized systems. Mexsrs in and Wildes responded.
Sced actions by a socicty are not only stimu\because, but also very bencficial to all partics. :arcefure hope that as a good bermning has a made by the Hamilton Horticulturists I mill continue to bear i up, and that other witics will follow their example.

> Geo. Laing.

Hamilton, 6th Oct., 1862.

Idvice on Planting Fruit Trees.

dierery season for setting out trees approachmany begin to lurn their attention to the yper selection of varieties to occupy their inled fruit-gardens. A few general hints may nefore be useful at the present time, and serve an answer to the many inquiries which we reTe on this subject.
There are two prom.inent objects with tree. 'aters, namely, raising fruit for market, and wing a family supply. The present snggesins refer more particularly to the latter, and shall endeavor to show in a general way how family may best attain this luxury at all seani, or in other words, how the complete circle fraits may be obtained. It is however not rels a luxury-for nothing in the form of \rightarrow contributes better to the preservation of alth during the heat of summer and the strges of autumn, than a regular and constant pply of good well-ripened fruit, partaken in Nerate quantities. It also has economy to commend it-because the table that is furEbed with fresh or cooked fruit needs butlittle
of the more costly provisions from the butcher's : and confectioner's.

The first question that occurs with many, is, what fruits will give fresh fruits to the best advantage throughout the sear, and the second is, how many trees and plants will be necded, and how much land for their successful growth. A third question is not unimportant, hamely, how lows after we lave prepared the ground may wo expect to oltain good crops.

To answer the first question, ne would name those sorts fist that ripen carliest in sunaner. These are all exciusively small fruits. The cuiy strawberries take the lead in the list, givint in the Nurthen States ripe berices in the fist two weehs of summer, but vaging in seasun uearly one month with Northren Licw. York and Southen Pemasyvania. A locality well sheitered from winds, tard wheae t!. sun's rays are not impeled, will ripen the beries some days sounce than a mure expusud place. Unhle trees, there is no fear of losing the crop by the cold of winter-and if there is any danger of the plants leing injured, this is easiiy remuved by covering the plants with straw, or spreading a coar ing of evergreen buughe or leares over them.
Next to straw berres, and withon a few days of them are the early chenics-such surts, for example, as the Early Purple Guigne, May Bigarreau, Delle d'Orleans, de. We have nothing to compete at all with chenies and statwberries, currants and rasplearres, the next on the list, being sevenal weeks behind them. The best valicties of these four, if planted in sufficient quantities and well cultivated, will give an admirable and deliciuns repast for every table for six weeks or more from the first until after the m:ddle of summer.

About the usual "harvest time," some im portant additions are made in the larger fruits. The Primodian plum, the early apricots, and the earliest apples and pears then begin to iipen. These are again succeeded by the first peaches, and the many sorts of pears, apples, plums, \&c., which continue to mature sucessively through the whole of autumn. The first half of autumn is marked by the most profuse abundance; as winter approaches, the number becomes smaller, and special cure is needed to procure plenty of good winter pears, and with ordinary management very few are ever found towards spring. Well cultivated and well ripened hardy grapes, however, are very easily kept through winter, and these and winter apples may be best relied on at this season of the year. The only fruit that can be depended on for a good supply in spring until straw berries again appear, are winter apples; although such late pears as the Easter Beurre, may with extra pains be had at that time, but families with moderate incomes will hardly care to live on such luxuries as bring quickly in market three dollars a dozen, or twenty os thirty dollars per bushel.
In thus pointing out how the yearly circle can
be secured, we have omitted hot and cold house grapes, which of themselves have been made to give ripe crops every month in the year. The expenditure required for such a supply, like that of Easter Beurres in spring, is beyond the meams of moderate families.

The next question is, how many trees and plants will be required to give the yearly supply, and how much land must they occupy. The sim lest way to answer, will be to observe the usual amount yielded per acre, and reduce the amount to a fammly supply. Strawberrics of the most productive varieties, such for example as the Wilson, Downer, and under the most favor able auspices, the Hovey and 'riomphe d" Gand, will yield 200 bushels per acre, if cuitivated as well as good gardeners do the work. A family wants half a peck per day, for a month or more of time-equivalent to a bushol in eight days, orl about six bushes for the season. One thittieth pant of an acre, or five square rods wonld be enough. Very few families provide so much as this, and wery fow have a quat or mute of berries on each table. It will be cobsersed that as the strawherry crop scarcely ever fails, such :n estimate mry be made with cothiderable accuracy. As soon as we come to trees, we are in great uncertainty, and a tree oi B.wly Purple Guigne my five us two or thrce bushels, or nut a tenth of this guantity. Where this fruit usually succeeds, two or theer early treers will commonly afford ail that a family may desire in connection with the strawherrics-to be followed of course by succeedmy kiuds, such as Governor Wood, Coe's 'Trans;arent, Black 'Tartarian \&c., and the best latter sorts If these are ataudard trees, each one will occupy at least a square rod or more of ground, and a dozen trees will need more than twice the land needed for the strawberries, - muless an equal number of dwarf cherries are chosen, which would reguire only about one-fourth the space. Raspberries gield half as good a crop as strawherries, and if each stool occupies four feet square, a rod will contain sixteen plants, and six square rods a hundred, which, if of such varicties as the Doolittle and Orange, will give a copious supply to a family. Currants will yield more; but as they continue longer, the same number, one hundred, may be planted, requiring one-fourth less ground. or three square rods. Two square-rods, planted with New Bochelle blackberries, or two dozen plants, kept in compact form by pinching in, will give a quart or two daily for several weeks, about midsummer. Onesixth of an acre of dwarf pears or a hundred trees, if properly selected and well managed, will afford searly from lifty to a hunded bushels of fruit, after allowing far occasional death and replacem int of trees. An equal supply of summer and autumn apples may be obtained from one-ha!f this ground, if planted with dwarf apples, which are more certain to grow and flourish, and less liable to accidents. Slow-growing sorts may be worked on the Doucain stock, and the stronger growers
on the paradise. This estimate is m actual experiment, extending through an of years. Two dozen peach trees, kep cultivated and properly shortened-in, wil ample crops every favorable season, ani not occupy when thus managed more than' feet square each, or about one-tenth of an If dwarf appie trees are omitted, standar summer and autumn crops, will need fours rods to a tree, and half a dozen trees or a at most, will give abundant supplies in years for an ordinary family. T'wentyfi fifty trees of winter and spring sorts will u afford plenty till the small fraits of summer their appearance.

To recapitulate-the following will be the required number, cost and area, in ta form:

To which may be added a dozen graperine: 5 rods. 263 rods are about an acre and thirds-two acres would be ample room. 0 ing the 40 standard apples, an acre would than contain all. In every locality favorabl the growth of fruit, there is no way in whe equal amount of profit, wholesome food, an sirable lusury may be obtained from the s area.

But before going any further it is neces to discriminate between the effects of good bad cultivation. The results here peiuted could not be obtained by neglect. Unless soil is kept clean and mellow ; the small it generally and the dwarf trees will be an o failure; and it would be better not to waste time and labor for setting them. 'Those cannot be induced to give proper attentio. their trees, should plant the whole ground, apple trees, some of which may possibly live bear, after a long and feeble growth. The. gestions here made are for the purpose of sh ing what may be accomplished under goode. agement, and with a view of furnishing, n. mere occasional supply, but an abundante fresh fruit at all times. Intelligent cultiva. will of course altar and modify these numt to suit their own local circumstances and p crences.
The third question may be briefly answer. namely, how long after planting may we oh. crops 9 Strawberries set in spring will 6 some the same season, and profusely the sec. year; dwarf pears, apples, and cherries, theti ycar and onwards, currants in a year or t. with an increasing amount for several succe years, and ramperries and blackberrics the .
:hird year. Grapes and peach trees besiford fruit in three years, and standard d pear t.ees in every four or five years, resular increase for many years subseThe time at which all fruit trees begin mill be greatly controlled by the varie1, locality, and treatment received.-Cul.

Che 㽗airy.

How to make Good Butter.

an from the report of the Committee on of the Franklin Co. (Mase.) Ag. Socieie at their last winter meeting.
adse the best of butter, requires many :ites; but for all practical purposes, ? wo wiats cover the whole ground, viz., .st, ; 20d, Skill. If any dairy-woman exin make nice butter without the most 'ous neatness, she will find hersulf greatly sited. From the moment when the rich sous fluid is first drawn from the cow's to the time when the butter is ready for te of the connoisseur, the least dirt, the nas or unpleasant flavour in the aimosdithe room, and the least speck of foreign of any kind, must be absolutely and persept from it, during all its stages of 'rore. In fact, neainess is the sine qua 'fte butter-maker's art. As well may we bat any of the laws that regulate the
rorld will be reversed, as to suppose Ad butter can be made without the most ..ns neatness in every particular.
zcond indispensab!e qualification of the batter-maker, is skill-a word of quite re signafication when applied to this subTo acquire that skill requires a clear and inting judgment, a well elacated and iced mind, and a minate and accurate are of all the physical laws which regurarious conditions of the milk and the . .hile undergoing the transtormation into
To be a successful butter-maker, theremaires no inconsiderable degree of eduiotellect, and ingenuity. Let ns , then, this skill of the butter manafacture, and 1 are its most important elements. begin, then, we mast'irst have good milk, hare good milk, we must have good cows, lure good cows, requires a selection of .. breeds.and of the best milkers from the ands, for that parpose. But that carries nothei department of agricalture, which too time bere to discuss.
-ing, then, that we have good milk, the ming is to place it in shallow pans, T tin is ipreferred,) and in a degree of tempera-- ther very warm nor very. cold. Aboute Fahrenheit is sapposed to be the
stete of the air in which cream will rise most perfectly. And here let os remark. that every housewife who aims to make the best of butter, should bave a thermometer constantly at hand, and should be a frequent observer of its condition.
If milk is kept in a temperature much below 62 degrees, the cream will not riseso rapidly and so perfectly. If kept in a state of the air much above 62 degree, the milk will become acidulated too quickly, and the quality of the cream will thus be injured. Equalization of tempergtare and a free circulation of pure air, are among the important elements of the butter-maker's skill. The time requisite for cream to rise naturally and perfectly, varies with the temperature, from 24 to 40 hours. As soon as the cream has all risen to the surface, it should be separated from the milk, and with much care; forthe less milk that is taken up with the cream, the better will be the butter.

Cburning is the next operation, and it is one that determines in n a small degree the quality of the batter. If cream is put into the churn in a state much colder than 62 degrees of the thermometer, it will require mach more time and labour to convert it into batter, and the butter will neser be of as good quality. Let the cream then be brought to an even temperature of 62 degrees, and the often laborions operation of charning, especially in the winter, will become comparatively easy. If the cream is much warmer than 62 degrees the butter will be too soft, too white, and in most particulars, quite poor.

As soon as there is a perfect eeparation of the particles of the cream which make the butter, from the more watery parts"of the milk, let the batter be taken from the charn, and then comes the quite dificult and delicate operation of working over and salting it, both of which require great accuracy and judgment. For if the milk is left and mixed in with the butter, one thing is sure-the butter will never have that compact and smooth appearance that is one of the sure indications of good butter; and what is get more important, butter left in that condition will not keep long without becoming masty or frowy. Every one then that aims at making the best of bu:ter, must separate entirely the particles of milk from butter, immediately after churning. Wasbing the batter vith cold water is practised by some, bat the most skilful bat-ter-makera completa tue separation of the solid from the fuid portions by manipularlabor alone.

The form in which butter is prepared: for the table or for market, is one indication of the skili of the maker. Butter pat ap in small cakes oi oval form, and stamped with a device of flowers, leaves or diamond figares, is the most beantiful, and seemingly, adds to the good fisvor of the: axticle In,order to sell for tho highent priop

It should always be pat up in that form, or in oblong picces of about a pound each.

Such are the maia requisites of the skilful manufucture of good tuiter, without which we ventire to assert with great confidence, that the best of buster cinnot be male.

Does auy good bousewif., when she has road this report, say "I knew all taai belure ?" If she does, thea we ask her with no small degree of assurance, Madarn, do you practice all these rules for metking good butter? If you do, why is it that s., large a proportio. of the butter that is sent to our inarkets is so very poor?

Henry W. Cushman, Charinan.

©ly $\mathfrak{A p i m e x}$.

The fullowisg remarks on Foulbrood, a not uncommon, and often fatal disease among Bees, are taken from "Western Editorial Notices," in the last number of the Rural Mew Yorker.

Bee.k epers, and among them the most emi. nent, unite in regarding and characterizing Fon'brood as the most grievous evil that affects the apiary. It is doubtless the case that most of your readers-especially sach as keep bees, know the character of this dreaded clisease amony lecs, but there may be some whe ds not.

Dzierzon says there are two kinds of Foulbrood. One is curable and rather imnoxious; the other is pestilential and incarable. Both are contarious. The curable kind has this character. The unsealed larva die while yet lying coiled on the bottom of the cell, become putrid, and dry up on the bottom into a crustlike substance, which may be easily removed. Such of the brood in the cells intermised with those diseased, as does not perish before cap. ping, for the most part remaias healthy and matures in due time; though it is a fact that cx. ceptional instances of putrid nymphs in such cappel cells are found.
The incurable foulbrood is said to be the converse of that described above. The brood does not perish until after it has been capped and begun to undergo its metamorphosis. The putrid mass is not then found at the bottom of the cell, but on the horizontal portion of the cell walls. It is ibrownish and viscid; and in consequence of the heat of the hive and the admission of the air through a small orifice in the sumken cap, it dries up as a hard black crust which the bees cannot detach, and which they can only remove by totally destroying the cell.

INDICATIONS OE TTS PRESENCE.

The author quoted above says, when among a healthy brood a few cells are found here and there, containing a smeary, viscid matter, or a grayish-brown or black, crust-like substancethe dried remains of larve or nymphs-it may be regarded as the unmistakeable evidence of
the existence of foulbrood. If the larger ber of cells are in this condition, this di must have prevailed in the hive for some and have attained an aggravated stage. I agrecable foetid odor issues from the entran the hive, where this is the case.

Colonies affected with this disease do not new comb in the spring, when other col are engraged in such labor, or do so only if are populous, and pasturage is abundant. combs be pressed asunder we shall see tha brood is not placed regularly and uniformif; on cutting ont a piece of such comb, 0 proof of the existence of the disease wi found in the putnid matter contained in the

It IS CONT.AGIOUS.

Merein lies its danyer ; therefore this cau And I give this caution regardlesss of th terest C. any one who may have long-bitte any other kinds of bees to sell, and whose a may have been, or may be affected by this ease; or who may be near an apiary that has been affected. This cantion is given especial reference to such cases. For all men know that this disease is contagiousit spreads from hive to hive, and from apir apiary; that, once having a foothold, it re it and extends its influence, if effectual a are not properly taken to eradicate it. brood is not only destroyed by this diseast the cells are contaminated and the cont: spreads rapidly thereafter. This diseas lnown to exist in the Eastern States-is h: to have destroyed many large and prof apiaries-is known to have increased the ris and diminished the number engaged in beeinr. In some localittes this husbandry has abindoned because of this disease.
The point is, then, that the bee-keepe. the West are in danger of importing it their importations of Italian bee. For it is known that these bees, with formidable continue to be sent hither in large numbe. the rate of five to eight dollars per queen. with each shipment is usually more or honey; and with the honce, if it happens from infected colonies, comes this foulbro sure as fate. Is it not a pretty large When it is asserted that the bee-keeper may vey it from hive to hive, it after perfor some operation on a diseased stock he pro to work at a healthy one, without first car washing his hands and sucn instrument may have been using, it is safe to distrast ever comes from apiaries that have been ati with this disease.

It is proper for me to say, that I do not this caution for the purpose of injuring anyl business, nor with a view to build up any n class of men dealing in the long:billed be ferred to, but simply to urge that the most care be taken to prevent the introduction. disease among the apiaries of the Weet:

Was become too large an interest here to tho be shipwrecked by the carelessness dsinness of any man or body of men. ane it brings to the Western husbandsunally increasing. Let it be guarded :apect.
ps our Eastern brethren to be careful send in response to orders; and let men know that they are ordering where laet only what they want.
at To get mid of the diselise.
at and bury the bees, and burn the hive ${ }_{-t}$ the colony and its contents. as soo.s tiased is discovered. There are remezares recommended to be taken; but a fficient and saie if as cheap as the

Wax and Honey.

peralent opinion respecting the origin eot wax and honey, as expressed in suises on bee-culture, and as implied in tion of the terms as given by the dicare essentially erroncous. The curaision derived from these sources, is, -is contained in the honey or pollen, and eestracted by some process in the stothe bee; while honey is supposed to be in the nectar of flowers. Preesely the of this is the fact.
stis a product elaborated by the bees. Eerporiment will suffice to demonstrate saisely. If bees be fed with a concentation of loaf sugar and then confined :Te shall, in the course of twenty-four djetween their abdominal rings thin \because plates of wax, such as they use in their combs. Now, probably no one stake to maintain that loaf sugar con\therefore It contains only the elementary in:of that substance, carbonic acid, hydro? oxsen-which become separated in jof the bee, and re-combined in differmions and relations, thus resulting in sion of wax.
sotherwise in the case of honcy. This proper sense the product of the bees, fasubstance collected by them from thes stores supplied by nature.
matter collected by the bees undertsange before it is deposited in the cells. sf of flowers and freshiy gathered sin all their constituents and propersod the same substance. Both have a tand an aromatic flavor. If we sip) a the calyx of the honeysuckle, we that it has precisely the taste of fresh. Ahoney. When I amalysed the wax - ya tituya, which exades in large is the calyx of the flower, I found it ssed of sugar, gluten, and an aromatic -which are the constituents of com-- finits pure state.

I fed a colony with a solution of sugar colored with indigo, scented with lavender, and diluted with milk. Wien the bees hed carried this into the cells of a new comb, no difference could be perceived between the contents of the cells and those of the feeding-box-they had the same color, the same taste, and the same smell.
b. If honey or the nectar of flowers remain in the cells, it will in process of time undergo a change. Jut this change is produced spontaneously, and not by the intervention of the bees, except merelyso far as the internal heat of the hive may tend to accelerate it. It results, first, from the gradual evaporation of the aqueous particles contaned in the nectar of fresh honey, till a certatn degree of consistence is attained; secondly, fircm the still more gradual dissipation and loss of its agreeable aroma; and, thirdly, from the ultimate conversion of the more saccharine cane sugar, which constitutes an ingredient of tCe nectar of flowers, into the more insipid grape sugar-a change which all honey undergoes with the lapse of time.

Doximff.

niscellamons.

Benefit of Books.-The great moltiplication of books is sometimes spoken of as an evil, but this is true only in one sens?-viz., so far as they are saperficial or trushy. When there is a prevalent propensity to authorship, it is a natural incident that there will be a great deal of frivolous writing, or that the same ideas will be often reprodnced. The effect of the periodical literature of the present day on the pablic mind is, in my judgment, not favorable to a muscular tone. Newspapers, litrerary magazines, and the like, must, in order to please popular taste, consist of light but various material. They are suggestive of many interesting inquiries; but this is of very little value to any but esstema.ic thinkers; and generally the effect is only to distract the mind and impair a habit of consecutive thought. It is true that those who think much are also great readers, even of this fugitive sort of productions. This is partly for relaxation, but also for the new jdeas which may be derived from a heterogeneous soarce, when there is a strong power of assimilation. Such reading may be compared :o a conversation of the gossiping kind, which may be supposed to be of no gr:at advantage; yet Sir Walter Scott said he never met with any man from whom he could not learn something in convesation. So of books: it nas become almost a proverbial saying that there is none that does not? contain something that is val uable. Macauley's History of England indicates an omniverons habit of mind; materials are tarned to valuable account which we should hardly have supposed would have attracted the
attention of any one but a frivolous autiquarian: old songs, c bsulcte plays, pamphlets, newspapers, traditional proverbs-and these not hunted up merely for the occasion (for t at would have been impossible), but constituting a familiar lote. The chief value of Plutarch's Lives I consider to be the affluence of anecdotes, apoph hegms and slight incitituts, which were contemued by stately historians, aud which he was comptled to obtain by a process of filtration, involvirg research into a vast amount of gossiping produc.ions, or what were so esteemed, aud had not eufficient merit to reach us, except in the excerpts peuned by this must erudite of ancient writers.-d. II. Dana.

Introduction of time Potato into ten Uniten Slates-Messes Liditors-To answer the inquiry of "A Co. Gent," of New Britain; Ct., as it is put, would be to say that the potato was introduced into America by the Creator "in the be, inning" as it is one of the indigenous productions of Soull America. But the question probably is, winen it was introduced into the United States? Answeriug that question in full will also explain why it is celled the Irish potato, as was perhaps the case years ago more than it is now with us, and still is at the South in distinction from the sweet potato.

The oilly authority I know of in relation to the matter is B Jkoip's History of New Hampshire, and as the book is not common, I will give, as brielly as possible, the substance of that historian, and if there is further or other informatiou upon the matier, we shall be glad to receive it.

In 1719 a large number of emigrants came to this country from the nath of Irelaud and settled a to wuship which they called Loudonderry. They were called lrish, and there was no litue antipathy felt toward them, which would have been very foolish even if they had been natives of Ireland, but they were from a colony of Scoteh Presbyteriaus that had settled in the proviace of Ulater, Ireland, in the reign of King Jamed I. They had a thirst for civil and religivas liberty which their situatian in Ulster did not satusfy, and nearly the whole colong removed to America. About one hundred and trenty familios came. One hundred families came to Buston, and the rest landed on the coast of Maine. Of the former, about sixteen families were those who made the settlement of the town of Londonererg. The historian referred to says: "These people brought with them the necessary material for the manufacture of linen; and their apinning wheels, turned by the foot, were a novelty in the country. They also introducea' the culture of potatoes, which were first planted in the garden of Nathaniel Walker of Andover. They were an indastrious, fragal, and consoquently thriving people." Hence these people being called Irish, the potatoes which they introduced were called Irioh potatoes-A. B.

Scarcity of Pure Arabian Mares Arabs' love for their mares, aud the jeulo with which such animals are treasured Eust, have formed che subjects of mapy teresting story. There is no dilficulty in ing any number of Arab stallions, for ex of the very purest blood; but it is next possible to procure an Arabian mare o high reputation. A modern writer on t^{2} ject tells us that it is even considered ac s:ll one uuder any circumstancts; and r of the resolute opposition to the practice. is related as haviug lately occurred in C: where some Aravian dealers had solf horses, aud in consequence of a heevg bri was induced to part with his mare. Some af er, when the dealers had alieady grone ward, the senior of his party vas obser have retarned to the ciry, a distance of huudred miles; he lurked about fur some subsequently it was discovered that bp quineu for the stables where the mare ma she was found puisoned, and he had dis ed.

A Rain Glass.-The following may pended upon as a rainglass: I buye use montus. Get a cummua pickle bottle, s" suld at any Itahan warebouse ; fill It w lind of water, to within two or three ir the top ; pluage the ueck of an empty F on flasir into we pickle buttle. Berore. water will rise $\tau_{w o}$ or three inches in t of the inverted llask-ufien 10 threa hours. If the weather is settied for fairth wiil reman not more than half an ioc for days, in the neck of the flask. It at to furetell rain; and to-day, Jaly lí, bigh as the rim of the prekie bottle, in t of the flask. It may stand in or out o in sun or shade, and the water nere chauging so lung as it can be seen. Mine is now green through long staudio. oll Hask must be cleapsed belore the plunged into the water. Soda and war. will cleause it of oil.-Tin mas Zulle. Cottage, Kenuingtou-cruss.-Alhenaun.

Maraudina Cattle.-Cattle maj 4 ted to do altoost auything. A quiet. be converted into a qkilfil jumper in season. The first requisite fur sach ts short feed, resulting trow uver swckit second is low tences; and the third, crops of corn begond these low fences spring, grass is usually good, corn a crops are small and uninviting; batd midsumaner periods, when the pasture ap, the process often begins. One or are accidentally blown frum the fence; and orderly animals stretch their bem reach a moreel of the tall grion; 4 down accidentally two or three more finally leap over. The owider drives B_{4} in Country Gertleman.

To as they have learned the difference be ${ }^{-}$; delicious food on one side and short -ons on the other, and puts up a rail. They aready learned to leap a little, and the - day they improve and go a rail higher. ther rail is added, and the process is repeatutil they become quite expert.-Country Ieman.
hidel-Kader's Rules for a Horse.-The xirg are the rules laid down by Abd el.Kaof iadicating the points of a horse of pure
He ought to have three things long, :short, three broad, three pure. The three are the ears, the forehead, and the fore-legs; Wree short are the bone of the tail, the Reg, and the back ; the three broad are webead, the chest, and the quarters; and brae pure are the skid, the eges, and the - He should have the withers high, the is fine, not fleshy, the tail well furnished -the root, the cye inclining as if to look at pase, the forelock full, the nostrils wide their lies entirely black (if partly white it is a of inferiorits), the fetlocks small, the hoof In ond hard, the frogs hard and dry. He ald be able to drink from a streau level hise surface ou which he stands without fing the forelegs. The colours most prized dark bay or chestnut (the latter esteemed brest) brown or black. Black are, how; thought less safe on rocky ground; white cusidered soft. Roan, dun, and iron gray little esteemed. A blaze, if ali down the is approved, so are three white legs; but rates on this matter are very fanciful. All z doctrines are supported by an infinity porerbs, poetical quotations, and religious ins, but it will be seen that they accord raly with our own ideas. Mach importis attached to a well lying shoulder; and madh of chest, both as a security againsi fring and as giving room for the lungs. A tical rule for recognising the development te forehead is to measure the distance from extremity of the bone of the tail, along the to the centre of the withers, then from -along the neck and crest, dium the face to opper lip. If the two measurements are \rightarrow the horse will prove good, but of middling . If the length is greater bebind than be, the animal wants power. If it is greater in than behind, he is excellent, and the rice in measurement the greater his superF. The count d'Aure, late chief of the Jl of cavalry, and now inspector-general of imperial studs, assures Gen. Danmas that 4 tested this rule in more than a hundred , sand found it unfailing.-London Review. busac Newton and bis Catis.-A human Beighing a general principle, mast call belore his mind all that is to be said for and \rightarrow it. And he may quite everlook some
important reason, on ove side or other. Le may quite forget something so obvious and familiar, that a child might have remembered it. Or he may fail to discern that some cunsideration which mainly decides his judgment is open to a fatal objection which every one can see is fatal the instant it is stated. Was it not Sir Isaac Newton who had a pet cat and kitten ? And did not these avimals annoy him while busy in his study, by frequently expressing their desire to be let out and in. The happy thonght struck him that he might save himselt the trouble of often rising to open his study door for their passage by providing a way that should always be practicable for their exit or entrance. And accordingly the great man cut in his door a large hole for the cat to go out and in, and a small hole for the kitten. He failed to remembir what the stupidest bumpkin would bave rememberef, that the large hole through which the cat passed might be made use of by the kitten tor. And the illastrions philosopher disecrned the error into which be had fallen, and the fatal objection to the priccirle on wich be had ac ed, orily when trught it by the logic of facts. Having provided the holes already mentoned. he waited with pride tn $\mathrm{s}^{r e}$ the creatures pass through them for the first time. And as they arose from the rug befor the fire, where they had been lying, and evinced a disp sition to roam to other scenes, the great mind stopped in some sublime calculation; the pen was laid down; and all but the greatest man watched them intently. They approached the door, and discerned the provisicm made for their comfort. The cat weat through the door by the large hole provided for her, and inatantly the kitten followed her through the same hole! How the great man must have felt his error. There was no resieting the objection to the course be had puraned, that was brougbt forward by the act of the hitten. And it appears almost certam that if Newton, before commiting himself by action, had argued the case; if he had stated the argaments in favour of the two holes, and if he had heard the honsemaid on the other side, the error would have been averted.-A. K. H. B. in Good Words.

Tar Great Grex Shirkx - Fierce aud powerful as this bird is, it holds the falcot in the greatest terror, and is gifted with eo true an eye for its cnemy, that it can perceive a falcon when at an immense distance. Taking advantage of this peculiarity; the fowlers who set their nets for falcons always take with them a grey shrike, and after setting their nets, fasten the string to which the bird is tied to a peg near the nets.A little tarf hat is built as a place of refage for the shirke, and a small monnd or hillock raised, on which it perches. The fowler then reties to his own little hat, places the strings. which dram the net nithih reach of his bind,
and watches the shrike out of a small window which commands the mound where it is perched. Feeling secure that the shrike will not suffer a hawk to come within sight without giving notice, the fowler takes out his netling or other sedentary work. Hundreds of birds may pass over the net without the shirke giving the lenst alarm, but as soon as it can see a falcon, it flutters about, gets uneasy, and at last begius to kick and squall with terror. Roused by the sounds, the fowler jerks some strings commanicating with perches on which living pigeons are perched, and the futter thus occasioned attracts the falcon's attention, and induces him to stoop for a prey that appears so easy. As the foe approaches nearer, the shirke s terror inereases, and as the falcon swoops at the pigeons, the shrike screams for fear and runs for shelter under the ting hut. The movement is a signal for the fowler, who draws the strings of his net and then closes the falcon as he makes his dart on the pigeons.-Routledge's Illustrated Natural History.

Taife Care of your Harness.-More damage is done to a haruess during the rainy wea ther of early and late winter, than daring all the rest of the year. Saturated with water covered with mud, and often frozen stiff, so as to almost break when bent, in necessary hand'ing. Unusual care should be taken to keep it well oiled and hung up in proper shape when not in use. Thus treated, it will not only last many times longer, but look infinitely better than when neglected in the usual manner. As to the kind of oil we know nothing better than ncat's fout or the daubing resed by tanners. To give the black color characteristic of new leather, a little lamp black nay oe added, without detriment. though it is better not to use this second going over. Before patting on the oil, however. there are two important considerations which must be observed-cleanliness and dampness. The necassity of the first is obvious, and the last is not less important, since the oil cannot penetrate the leather and make it sof and pliable if put on when it is dry and hard. Que of the best ways to give the leather the required degree of moisture is to wrap up the several parts of the harness in wet cloths previous to oiling. But this trouble is naecessary where whshing has been resorted to for cleaning, as the oil masy be applied before the leather is entirely dry. The oil should be rabbed in briskly with a brosh or cloth, so as to ensure its absorption. Varnish should never be used as it closes the pores and renders the penetration of the oil more difficult. Vegetable oils are hardenitg in their effects and should never be ased for that reason. Finally let the application of oil be as frequent as needed, not once a year as is the rale with some, or almost never, as is the practice of maing.

Eril mot a necrseitr.-As surely as God is good, so surely there is no auch thing es necess-
ary evil. For by the religious mind, sick: and pain, and death are not to be accour evils. Noral evils are of your own makir and undoubted!y, the greater part of them r be preven ${ }^{4}$ ed. 1)cormities of mind, as of bo will sometimes occur. Some voluntary car ways there will alwreys be, whom no foster tin liess and no parental care can preserve fr sulf.d struction ; but, if any are lost for v. of cure and enlure, there is a sin of omssinn the cociaty to which they beloug.-Rot Southey.

Deatia of the Hon. Adam Fergusson.

It is our painful duty to record the dea of this estimable gentleman and distinguish agriculturist, which took place suddenly, So tember 24ih, at his residence, Woodhill, uf IIamilton. For the last two years Mr. F gusson was unable to take any active part pablic life in consequence of an attack paralysis, bat he was not incapacitated fic inspecting the operations of his farm, as what he always took a particular liki. in , the progress of his live stock, and t . 'inict enjoy ment of the company of a frieni
Mr. Fergusson was a native of Scotland a. descended from a family of great respec. bility and infuence. Me studied for the la in the Cniversity of Edinburgh, and becar a writer to the signet. Maving however strong propensity for country life, and cor ing into possession of landed property, soou distinguished himself as an carnt student and promoter of agriculture. I have often heard him relate the pleasure a advantage he derived from the lectures of I Coventry, the first professor of agriculture that distinguished seat of learning, also fro those of Professor Dick, the founder of t. world-renowned reterinary school of Edi burgh. Mr. Fergusson also spent some ti. with two or three extensive farmers and $b r$ ders in the counties of Northumberland at vurham, where he formed an acquaintanc which ripened into an intimate friendshi with that celebrated agriculturist Jolin Gre Esq., of Dilston, extending over a lengthen. period of more than half a century. It r.
\therefore that Mr. Fergusson acquired a taste for tham Cattle, or, as they are now usually "ed, "improved short horms;" a departat of husbandry to which he devoted himimith distinguished success, both in Scotdand in Canada.
la 1 s 31 , Mr. Fergusson came to Canada, dpurchased an extensive tract of wild land :the Wellington District, now forming the erishing and well-faumed township of Fer: IIs clear and penctrating mind foresaw : advantages which that part of Canada. anthen offered to enterprising inclustry, and :accordingly wrote a series of letters, which af published by Messrs. Blackwood of Manergh, a book that clicitud nuch enyuiry deonvered raluable information to such as reeseling new homes in the then literal dis of Canada. In 1842 he was ap\therefore merl hy the Cromn to a seat in the Leeriswer Conencil, where by his frank and straightimard course he commanded the respect, if the confidence, of all partics. In 1840, th Fergusson, in comnection with Colonel iK. Thomson, and a few others, succeeded ifoming the Agmicilitchal Association a Cpper Canada; the first exlibition of wimh worc held in Torouto, in the fall of that ars: Ifr. Thomson, with whom the idea first Einaterl, being President, and Mr. Furgusson Airered the Address. Of that association 'in its commencement to the period of his with, he was a constant and zealous supwher. Ire was also a member of the Board idgriculture from its formation, and the rignator of a scheme for giving to young frucrs sound practical instruction in the derinary art, with an ultimate view of estabKing in Upper Canada, a veterinary school; iproject that has already been commenced iflr. Smith, a licentiate of the Edinburgh wlege, under the patronage of the Board of qriculture.
Ir. Fergusson was one of the oldest mernins of the Highland and Agricultural Wiely of Scotland, having been elected, we bleliere, as early as the year 1806. He was mong the first to introduce pure bred cattle ito this province, and he always had, to the ${ }^{4} 5$ of his death, a select herd of Short horns, 1 breed to which he was, we may say, enthu-
siastically attached; and for the disesmina:tion of which he had bred and sold upwards of sixty male animals, exclusive of cows and heifers. Among the many proofs of his ardent love of rural improvement, particularly of cattle, it may be mentioned that he gave annually a silver cup, and two medals, the former for the best grade cow from a Short horn bull, and the latter for the two best pair of Domestic Fowls, exhibited at the Provincial Show.

Oui good and venurable friend has been removed from a sphere of action, which by his virtues he adorned, and blessed. The writer of this hasty notice had the pleasure of spending a day with him at his picturesque retreat, Woodhill, only a fortnight before his decease, and found him as usua! full of desire and hope in the great work of agricultural and social improvement. He was looking with anxious interest to the results of our fortheoming Provincial Show, during the holding of which he was summoned to another and, there is good reason for hoping, a better world. The members of the Provincial Agricultural Association gare expression, at the ammal meeting on the show ground, to their estecm for his memory, by passing in sulemn silence an appropiliate resolution. Mr. Fergusson had entered, we belicie, on his 7ath year. The memory of the just is blessed.

FOR SA工E!

Avrshire Cattle, Leicester Sheep, and Berlshire Pigs.
THE Subscriber offers several Young Eulls, Hrifers and Cows, on very Liberal Terms. Specimens from his Prize Herd will be on Ex. hibition at 'l'oronto, if all's well.
P. R. Wrigit, Cobourg: C. W.

Aug. 30th, 1862.
6 -mos.
THOROUGH-BRED STOCK FOR SALE.
THE Subscriber has for sale DURHAM and GALLOWAY CATTLE, LEICESTER, COTSWOLD, and LINCOLNSHIRE SHEEP, Male and Female 10 Durham and Galloway Bull Calves-price from $\$ 100$ to $\$ 200 ; 30$ Shearling Rams, weighing from 230 to 285 lbs. each-Price from $\$ 5 u$ to $\$ 100$ each.

JOHN SNELL,
Edmonton P.O., C: W
Four miles from Brampton Station G.T.R.

Horse Infirmary and Veterinary Eatablishment, Corner of Bay and Temperance Streets, Toronto, C. W.

ASMITH, Licentiate of the Edinburgh Veterinary College, and Veterinary Surgeon to the Board of Agriculture of U. C., begs to return bis thanks to the Public senerally for their sup. port since opening the above mentioned establishment, and respectully solicits a continuance of the same.
And also begs to announce that Veterinary Medicines of every deseription are cunstantly kept on hand:-Such as, Physic, Diuretic, Cough Cordial, Tonic Condition, and Worm Balls and Powders. The constituents composing the Cough-balls, have been found (by Professor Dick, of Edinburgh) most serviceable in alleviating many of the symptoms of Brokenwind or Heaves in Horses. Colic Draughts, \&e., a mixture which owners of Horses should always have beside them.

Liniments for Sore throat, Sprain, Curb, Spavin, Kingbone.

Blistering Ointments. Liquid and sweating: Blisters.

Horses bought and sold on commission.
Toronto, Aug. 30th, 1862.

TO BE SOLD BY AUCTION,

> On Thursday, Oct. 16, 1862,

THE well-known Herd of NORTH DETON CATTLE, consisting of more than forty head of Cows, Bulls, and Heifers; one hundred and seventy West and Southdown Ewes and Rams; pure blooded Essex Pigs, in pairs fit for breeding.
Catalogues of description, with pedigrees, may be had fourteen days before the sale, on application at the office of the Galt Reporter, if by letter, prepaid. Credit of 12 months may be had oit approved endorsed paper.

THE SPLENDID FARM,

Ocossisting of upwards of Triers Hendred Acres, to be sold by private bargain, on accommodating terms.

DANIEL TYE.
County Waterloo, Wilmot, August 1862. td

(s) BOARD OF AGRIGULTURE:

Office,in the Né Agricultural-Hall; Cornavor Youge and Queen streets, Toronto.

HUGH C. THOMSON,
Tonopto:Auguiti:1862.
Sceratace

Contents of this Number.

Management of Dairy Stock

Draining and Ashes.
The Field Bean and Rotation of Cropa New York State Apriotal Crops.
The Grain Aphis, Dr Fitch on W........
Fat versus Lean, or the Obese system of
Feeding Cattle
Directions for the Cultivation of Flar.................
Short Horn Breeding...........................
Steam Cultivation at Woolston
On the Feeding Value of Straw
Steam Cultivation
The Autumnal Fallow
Pastures for Milch Cows
The Lower Canada Provincial Exhibition
The Radish as a Field Crop.
Rot in Cattle
Sale of Stock at Guclph.
Horticulimurai :
Hamilton Horticultural Society
Advice on Planting Fruit 'Trecs
The Dairy :
How to make good Butter
Tae hpiary:
Foulbrood, its indications, and how to get rid of it.
Wax and Honey

Miscellaneous:

Bencfit of Books, Introduction of the Potato into the United States, Scarcity of pure Arabian Mares, \&c., \&c................
Enitcriar Notices :
Death of the Hon. Adam. Ferguson
Advertisements. \&c.

The Agricnlturist,

Oa Juurnal and Transactions of trie: of Agriculture of Upper Cartiot

IS published in Toronto on the 1st and each month.
Subscription-Half a dollar per anin Single copies; Eleven copies for Fire Twenty-two copies for Ten Dollars, tyet

Editors-Profesisor Buckland, of On College, Toronto, and Hugh O. Thomson tary of the Board of Agriculture, Tor whom all orders and remittancos areo deessed.

Printod as the-"Gtardian" Stecim Pixe
 Streot irint, Tomonto:

