CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /

Couverture de couleur

Covers damaged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

\square
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées etlou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of prir ${ }^{+}$varies /
Qualité ir: - l'impression
Includes .. \because Enticntary material /
Compreric ci.s ratériel supplémentaire
Pages whilly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library.
Geological Survey of Canada
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Originel copies in printed paper covers are filmed beginning with the front cover and endling on the last page with a printed or illustrated impression, or the back cover when appropriete. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microtiche shall contain the symbol - Imeaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, otc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire fi!mé fut reproduit grice à la générosité de:

Bibliothèque.
Commission Géolr gique du Canada

Les images suivantes ont ded reproduites avec le plus grand soin, compte tenu de la condition et de le netterd de l'exemplaire filmb, et en conformité avec les conditions du contrat de fllmage.

Les exemplaires originaux dont la couverture en papier eat imprimbe sont filmós en commencant par le premier plat ot en terminant soit par la dernidre page qui comporte une empreinte d'impression ou dillustration, soit par le second plat. selon le cas. Tous les autres axemplaires originaux sont filmés on commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration ot en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux. etc.. peuvent être filmés à des taux de réduction différenis. Lorsque le document est trop grand pour ètre reproduit on un seul clichd. il est filmd à partir de l'angle supérieur gauche. de gauche à droite. ot de haut en bas, on prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la máthode.

Single Copy Pamphlet Covers

Cover Size	Photo Mi unt		Leatherbuard	
	Maximum Capacity $1 / 2^{\prime \prime}$	Maximum Capacity 1"	Maximum Capacity $1 / 2^{\prime \prime}$	Maximum Capacity 1"
7" \times 5"	No. 4340	No. 4360	No. 4380	No. 4400
8" $\times 6^{\prime \prime}$	4341	4361	4381	4401
$9^{\prime \prime} \times 6{ }^{\prime \prime}$	4342	4362	4382	4402
$91 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$	4343	4363	4383	4403
$10^{\prime \prime} \times 7^{\prime \prime}$	4344	4364	4384	4404
$10^{\prime \prime} \times 8^{\prime \prime}$	4345	4365	4385	4405
11 " $\times 81 / 2^{\prime \prime}$	4346	4366	4386	4406
$12^{\prime \prime} \times 8^{\prime \prime}$	4347	4367	4387	4407
12" $\times 10^{\prime \prime}$	4348	4368	4388	4408
$13^{\prime \prime} \times 81 / 4^{\prime \prime}$	4349	4369	4389	4409
$131 / 2^{\prime \prime} \times 10^{\prime \prime}$	4350	4370	4390	4410
$14^{\prime \prime} \times 81 / 2^{\prime \prime}$	4351	4371	4391	4411
14" $\times 10^{\prime \prime}$	4352	4372	4392	4412
15" $\times 11^{\prime \prime}$	4353	4373	4393	4413
16" $\times 12^{\prime \prime}$	4354	4374	4394	4414
$17^{\prime \prime} \times 11^{\prime \prime}$	4355	4375	4395	4415
$18^{\prime \prime} \times 12^{\prime \prime}$	4356	4376	4396	4416

Also made in other cover sizes, capacities and bindings MacMILLAN OFFICE APPLIANCES COMPANY

Westboro, Ont., Canada
Manufacturers of Office and Library Filing Supplies
Loose Leaf Devices and Specialties

An Investigation into the Elastic Constants of Kocks, More Especially with Reference to Cubic Compressibility

(!

PRANK L) ADAMS ANLERNEST G. COKER

An Investigation into the Elastic Constants

 of Rocks, More Especially with Reference
to Cubic Compressibility

FRANK I). AIJAMS AND F.RNEST G. COKER

CARNIGIl: INGTITUTION OF WASHIINGTON
Bum ication Nu. fo

IRESS OF GIRSON BROS.
WASHINGTON, D. C.

CONTENTS

Ifitruduction I'age.
 5
 pressibility of Rencks.
The Methonl of Me:surement1.5
Marbles and Limentancen -

1. Hack Belқi.an Marble " Nuir fin"")2. White Corrara Marble3. 4
2. White Vermont Marble 211
3. Tennessee Marble (" Pink örennestee") sis
4. Fimailiferona Trenton I.intestone, Mont real, Cindult 29
He Eilastic Conatants of Rocks Commamed of mote thon ante MineralAeid Mntm!ic Racks -
Granite -
5. (iranite-Mavenos Italy.
6. Ciranite-I'ctenlemal, Sondlant 3.3
7. Grante- Lily lake, New Hommswiek, Cathonl: 36)
 37 37
 10
 42
Nepleline Svenite: 1;
8. Nepheline Syenite, Montreal, Citnou...
Basic l'htranic Rasek
513

 52
 55
Sedimentary liock (Clastic) -- 57

60
The labstie Constants of Glass
62
62
Summary of Resilts 66

LIST OF PLATE

Plate I. Black Ikelgian MarbleVucta
II. Carrara Marble 21
111 Vernumt Barble 211
IV. Marlile-Tennessee ' Pink l'ennesse") 2.
V. Trenton Limeston Vontreal, Cinadia. 41)
VI. Granite-l bavero, Italy 3
VII. Cranite I,ify I,ake, Cinnala. i 1
V'll G Gramite Westerly, Rloule Istand s.
IS. Granite Guincy, Dassachurelts. 14
X. Cranite Stanstead, Cintadia 1
XI. Nepleline Svenite Buntreal, Cinnadit 4. 8
XII. Anorthosite-New Cilasgow, Cimmita $5(1$
 51
※IV. Green Gabbro-New Cilagow, Cialala 85
XV. Olivine Dialome -: "ury, Cinalat s. 4
XV'. Sandatune-Cleve Ohi, (N)

AN INEESTGATION INTO THE FLASTIC COXSTANTS OF ROCKS, MORE ESPl:CDALIY WTH RFFFERENCI: TO CUBIC COMIPRESSIBILITY.

INTRODUCTION.

The question as to the amount of eubic compression which roeks may undergo muler the stresses to which they are subjeeted in the earth's crist is one which has a direct bearing on many very important problems in geoplissics. It is, however, a subject which has heen but litte insestigated as the experimental dilfienties connected with it are very eonsiderable The importance of a series of determinations of the cubic compresibility of a few tepical platonic igneons rocks was some time since impresserl upon the authors by. Mr. G. K. Gilloert, with a reenest that if pessible they should make such determinations in comnection with the researeltes min rock deformation which are now being carried ont at Me Gill University mater the anspices of the Carnegic Instintion of Washimgom An examination of all the direct methods propused or atopted for the measurement of the cubic compressibility of solids slowed that none of these could be satisfictorils applicel to such materials as rocks, lont the indireet methoots based om llow, s law and which have been applied to metals and otherempact ish ropic lowlies having an approximately pericel elasticity promised to give satisfactory re sults if applied to certain rocks, more especially to the clase of rocks refered to above, viz, the acid and basic phatomic rocks, which form the sreater part at least of the onter portions of the earth's ernst 'lise present paper sets forth the methonls ardoped and the results whatinerl
The work which was carried out in the laboratorics of AleCill thiversit? was eommened by the athors whose nume appear on the title pitse amd was carried well towards completion when Dr coker was called to take the
 of London, Eanghat Ite was aceordingls obliged to sive יp the work oi the researel and his place was taken by Mr. Charles MeKergew, lecturer in mechanical engincering in McGill University, but who immerliately on the completion of the work was appointed to the professorship in mechanieal engenering in the Unisersity of Virginia A large manler of the very careful measurements of clastic constants which are given in the paper were mate by the latter gentleman.

METHODS WHICH MAY BE USED IN THE DETERMINATION OF THE ELASTIC CONSTANTS OF MATEKIALS.

The determination of the cubie compressibility of solid substances is as abose mentioned, beset with serions ditionties. On the one hand, every diret mether which has been shggested prencots experimental diffenties which tend to impatir its acenracy, while on the other hand the indirect methods are based ont asmmptinn ats to the isotro? of the materials, which are mot warramed in the ease of eertain rocks 'lpe indirect methods depending on the theory of elasticity are capable of considerable variation, and it is of interest to examine them in some detail in order to see whether certain of then at least may not be depended nom to give reliable and satisfactory revilts.

Fife determination of the elastic constants of metals has engaged the
 mation exints as for the values of thene constants for varions metals.
 sinn stress eatusen a lateral strain, which bears a tixed ration to the compression strain for ang particular substance within the limit of elasticity. If, then,* we call p, the stress on a plane perpendicular tor x in the direction $x_{\text {, and }} e_{x}$ the correbponding strain, then for at direet compression stress pe there will be at stranin the direction of this streat amount p, E, where E is Vonng's modnlas, and lateral stran of matyitude $p, m l i$, where m is the ratio of the hongitudinal compresion to the lateral extension per mit of lengeth

If we - 1 ppose further that a borly is subjected to cubical stress of intensity p, we easily see that for small and thercore superposable strains the cubical straill \cdot is

$$
\epsilon=3 p_{x}^{m} m I^{2}
$$

and since the modnhe of cubical compressibility l) is the ratio of the stress per mit of areato the enbical strain prodned, we have

$$
D=\frac{p_{s}}{c_{s}}=\begin{aligned}
& 1 \quad m \\
& 3 m-2
\end{aligned}
$$

Hence if we know E :and m we can callenlate the vathe of
Further, it is shown in treatises on clasticity that if \mathcal{C}° is . . me modnlus of shear, then

$$
C=\begin{gathered}
1 \\
2 m+1 \\
m
\end{gathered}
$$

[^0]and since C and E are quantities which can be aseertained by experiment, we can from them ealculate m and l)

In an important paper by . Nagaoka* this latter method has been used to determine the elastic eonstants of a series of rocks. The value of E was determinet be smporting a bar at the ends and measuring the angular change at the support due to a given load applied at the eenter; the value of E is then obtaned by the formulis $I=$, 3at' qhed "ll $^{\prime}$. where l is the length of the bar between the supperts, h is the breadth of the bar, d the depth, and 1 the angulat change at the ends for a loat, if' In order to determine the value of m, a specimen of rectangular section was t wisted by a given torque, T, and the amount of the strain measured. It has been shown by St Venant that for such a case the value of C is given by the formula

$$
T=C H h^{3} h\left[\begin{array}{cc}
16 & 32 b^{\prime} \\
3 & -1
\end{array} \begin{array}{c}
\tanh h(2 n+1)^{-h} \\
2 h \\
(2 n+1)^{\prime}
\end{array}\right]
$$

where"is the angular ehange, and fron this formula values of C were ealentated from the observations

This metlod appears to as to be open to some minor objeetions in that the formula for determiniter E is based upon at theory of flexure, which althongh sufficient for many purposes is nevertheless only approximate, and it is well known that vahes of E, whtaind by flexire experiments in this mamer often differ from the values of l obtaned by direct compression experiments by not inconsiderable amontits.

Forther, in experiments upent the offlection of beams ent irom rocke, it is diffent to obtain comsistemt realings, hecause of the time effeet of tie loading, and this diffienty is notied in the paper eited.

As an example of the results obtained in this way, we mav quote the results of certain experiments made by us with a pure white marble from Vermont.

Lath-shaped pieces of the marble were earefully prepared and were suspended on two wedge shaped supports and then loaded in the middle. The weights were plated in a light brass pan, hanging from a thick wire which passed over the midrle of the lath and lay flat upon it.

Each experiment occupied about half an hour, and the deflection was measured by attaching in seale to the tharbie and reading it with reference to a thin wire streteled in front of the specimen, a properly momed teleseope being employedfor this purpose. Tle marble was in all cases placed so that its broader surface rested on the terninal supports.

* Itasic Constans of Rocks and the Velocity of Seismic Waves. H. Nagaoka. Phil. Mag, Vol. I., 190, p. 53.

Of the several experiments maue two may be selected．The pan and wire in each ease weighed 3 ommes

In the first experiment the marble hat the following dimensions：Iength，
 ness， 0.284 t1 0.298 inch．

The figures obtaned are as follows：

Load with pan onfy（takenas zero point）．	$\begin{gathered} \text { Inch. } \\ 0.4^{86} \end{gathered}$
with pan phis f ounces．．．．．．	$.4^{87}$
Sinnnces	．488
1：minces	． 488
16 chltes	－ 400
20 ＇मlttec	－40t
21 chmes	＋01
	1\％2
S2 uttle＇es	193：
3\％［1llices	194
fouttlees	197
$t+$ H11700	19 s
	Sor
5－ 911 max	901
	らいい
（0） 6 Hnces	－5ハ5
	51\％
	515
	511
i，finmer	517
	514
	520
	5：1
72 allucis	ミッ
	5：2
－\％mathers	526
F\％chllees	92．
	$5: 1$
－6 0．mbeem．	5．i3
	－\％+
	510
	$5+1$
	i＋3
－2 muners（weight reduced，hare permanent－ll	．542
Sf mmees	．557
－6 milter	5.40
	．55．${ }^{\text {d }}$
Ton tl dellachins fore bre：sking	Oth 1

Tou th deflectant fore breakiner
in the second experiment the marble lath wa: longer and at the same time somewhat thicker. Its alimensions were as follows: Length, 16 inehes; length between stupports, $: 5$ inches; breadth, 1.229 to $1.28+$ inches; thickness, .347 to .356 inch.

1nch.
h.nad with pan only . $3+3$
with pan plus \& wunces. 349
16 onnces. 368
24 orinces. 389
24 ounces (after $1 \frac{1}{2}$ minntes) . 392
28 ounces. 101
$3 \pm$ ounces. 16
.32 ounces (afler $1 \frac{1}{2}$ mintules) 3
36 cunces.
to ounces

it wheres.
.+92

Tol al dellect'ai...
Here it will be notieed that when a certith load is reached a listinet movement sets in and is mantaned withont any further increase of load, the movenent growing in anmont as the limit of the strensth of the rock is approtehed and prorlacing a permanent set.

Experaments on the determination of the elastic constants of rocks when smbjected to twist were ako fumbl to be frequently unsatisfactory, owing to the low ultimate shearing values of many rocks

While a glane at the list of rocks whose elostic comstants have been measured by Nagana will at anc? show that mose of them are rocks whose elasticity must be of a very impericet kind, ε. \quad., weathere l clay slate, ichalstein, tuff, cie.; the method which he has emploved ior the determination of loung's moduhus gives very low results, even in the case of rocks sush as marble and granite, where the chstieity might be supposed to be of a ligh order, andi enmparable io that ehich these roeks have been shwon to possess in the ease of the tupes selected for investigation in the present paprer. 'This is shown by the followiak figures comprising the values obtatued by him for each of the marbles and granites eonnained in his list.

Of these marbles No. 11 , if a mean of the two darlings be taken, has about the same modulus as the average of those on our inst, while No 12 is very much lower The highest value givenformy granite in Nag......a's list, viz, No. Go, is somewhat higher than that of the lowest of the gr: mites in one series, that from Stansteal The other granites examined by Nagaoka have values for f assigned to them which are wow that they ate cony arable only to that of
 list the Iambi sandstone of the Mesozoic lats modulus of $1,322,000$, while

Ind so when at attempt is mate to calculate the cubic compression \mid) from the values given in Nagooka's list and obtained by his method, it is famed that ancgative value is actually obtained inabont one third of the rocks when he has examined lis figures, however, were intended chiefly for the purpose of calculating the velocity of the propagation of earthquake shocks.

Ibis. A. Inst ramen for determining the martins of a simple at rain.
In consequence of the somewhat masatisfactory results obtained in on r pres limitary experiments with this method, as well as the facts with regard to Nasonka s figures just mentioned, it wis decided to adopt a somewhat different met hor l and one which avoided both torsion atm flexure and depended simply on strain produced by simple compressive stress. This will be termed the "method of simple compression "
dater the possible indirect methods, this seems to be the most satisfactort, as the assumptions necessary in the calculation of compressibility are redhead to a minimum, and the range of stress for which the ratio of stress to strain is practically constant is great W0 were able to measure the striation obtained very atemrately, by means of an apparatus forming part of the equipment of the testing laboratory of MeGill University, for the use of which we are indebted to Dean Buyer

This is an instrument designed by Professor living, and of which a diagrammetic representation is given in figure 1 , in which A is a specimen of the rock
gripped by ocrews passing through a pair of collars, B, which are 1.25 inch apart, to which latter metal rods, C, are att tached. The upper rod earries a ghass plate, D, with a fine ine scrat hed upmin it, the position of which can be adjusted by a screw, E, while the tower rod carries a mierometer microsenpe. F. The upper and lower collurs, B, are connected by a stud, G, the upper on engaging with the conical hole of the swivel picce il in the fower, and contact is maintainet by al spring, I, while the weights of the microsenpe and projecting arms are balanced by lead cylinders, J. A buzzer was attached to the upper lead eylinder which, when operated, caused a slight vibration in the instrument, producing a perfect adjustment as the pressure was appliterl.

Fig. 2.-Perspective view of lateral extensometer.
The proportions of this instrument were so adjusted that one division on the micrometer scale errresponded to $\frac{1}{2 \pi, w n}$ of an inch, and before using it the instrument was calibrater by aid of a Whitworth measuring marhine and was found to be in correct aljustment. This instrument enabled us to determine the modulns of simple eompression with great accuracy.
The linear strain perpendicular to the length of the specimen was measured byan instrument which had beendesigned by E. G. Coker some time previously for experiments on the lateral strains developed in metals.* Figure 2 is

[^1]a diagrammatic vicw of the apparatas, which consibls of a pair of brass tables, B, B^{\prime}, provided with set serews, . 1 , I^{\prime}, for , tht.tehnent to the specement, and connecterl together by at texible steel plate, \mathscr{F}°, formins the fulermm. The ends of the tubes near the finlerman plate are pressed apart by an adjustable ipring S, to insure a milurm presinte on the sorew pointa gripping the specinten. On the opposite end of the tubes is a spring finger, $/$, wif clony, pressing aramet a domble knife edge, K, seated in a slatlow V notely cut in the
 that if any change in the diancter of the specinton oevars the two tabes Howe relatively to one : mother in a horiantal planc and therebs catune the knife edge mirror to rotate; the rotation of this latter is observed and measited be a telescope and sate placed at a suitable distance.

For convenience in adjustanent there is a screw, l, for tilting the apparatus abont the axis of the gripping serews, and the tubes $13, B^{\prime}$ are trassed to prevent vibrttion. Dhis instrment was ealibrated by aid of a Whitworth me:suring machite athe the seate atlusted so that one division corresponderd to one-millionth of an inch.

APYI.ICATION OF THE METHOD OF SIMPLE COMPRESSION TO THE DETERMINATION OF THE CUBIC COMPRESSIBILITY OF METALS.

The behavior of sueh metals as wrought irou and stel over a wide range of strest shows that these metals may be considered as almost perfectly dintie 'The rexalts of the theory of chastic bedies matherefore be appled in thair cants with great eonfitence.

As a typical example of the behavior of such materials we mate consider

 potmes, aftervarth rethaing to the original laad
 111 suth al cetse that erpaal increments or decrements of bad produce strans which are very exactly proportiental theretn This is charly shown in at plat of these reatings, where the ordinates represent the total lond and the abseis.e repreo.ent strains. In both cases the relation of strese to strain is represented by at staisht line retarning renen itself. "I races which vary bat little from the athal straight line are given byblack Belgian marlse, as will be socell oll pitge 25

Such results affurd aturbitarystandard by whela can be judged the degree of approximation to perfect clasticity exhibited by other unctals and by rocks under similin eonditions.

If we now ealeulate the value of the molulus E for simple compressiont since this is the relation of the compressionstress p to thestrain e, we have

$$
p=E e
$$

If we eall A the cross-sectional area of the specinen when stressed by a load, P, and x the decrease of length over a measured length, L, gripjed between the serew puints of the measuring apparatts, we obtain

$$
E=\frac{P I}{x \cdot 1}
$$

Which, in case of a spectuen of wronght iron examined for a range of 8,000

The ratio m of the longotudiat strain to the lateral strain in the same case was 365 athe usimg the formmha

$$
I=\frac{1}{3 m} \quad E
$$

we obtain for the modulus of eubical compression (or butk mondulas) I). the
 the decrease in volume of 1 cubic inth for a potand of presture

While certain rocks, stoll as many of the marbles, hate a strueture identical with that of wrought iron, most of the rocks eonstitutiner the earth's ernst are eomposed of several minerals, and thas resemble cast iron in character, the gray variety of this substance being an agesregate of erystats or individ uats of the metal iron (wronght ironi, graphite, etc

It will therefore be of interest to asertain how a spedinen of east iron be$\mathrm{l}_{\text {atere }}$ amder compression stress, and how far its elasticity fals short of that Which would be exhibited by a perfectly elastic boly

Ear this parpose a line gratued specimen of somewhat hard east iron was faced and tested The results of this lest are given in the following table, alud the stress-strain curves are plotlod in figure s. I represents longitudinal compressiou athi 11 lateral extension.

The behavior of cast irnna as exhbited by the ex experimentat resalts, shows - falling away from the theoretieal stambard of perfeet elasticity, but even in the most perfeetly elastic bothes there is probsibly a tight hysteresis effect. so that we are justifed in mang the resnits obtanded thealentate the mondulus of eompressibility, it the errer int ratuced thereby is negligible ar very small

It may be pointed out that this methon and others of the indireet type have
 of bike eharacter, and it will be shown that the enomposite erystalline roeks are very similar to east iron in their behavior under stress, although generally more perfeetly elastic.

 1.y + for 10(lithitlis).

Laml (in pounds).	side $\stackrel{\mu}{\mu}$	side I.
1,1000 \ldots	0	0
2,0xx,	19	20
	10	37
$4,(x \times) \ldots .$.	60	58
5,000...	so	-4
$6,0 \times 1$	I(x)	1(x)
- 600	120	120
- (\%K)	119	$1+1$
1),40x	1 ICP	1f,
-icmi	14.5	143
	12.3	12\%
f, (xx) ...	107	116
F, (xx) .	-	(1)
t, (x)	6 ;	(1)
2, (MW)	it	(1)
$\therefore(\mathrm{MN})$	21)	$\therefore 1$
1,(Wx) . .	11	0

Sicle J'.	side U.
0	0
12	11
26	21
41	32
56	48
72	6.5
86	\$.3
102	4) $)^{4}$
114)	110
I $1 \times$	10\%
103	4.5
76	70
(\%)	110
+ 4	50
(1)	31)
1.3	$\therefore 1$
6	9

Fitg, 3.-Cast iron Stress-strain curse

APPLICATION OF THE METHOD OF SIMPLE COMPRESSION TO THE DETERMINATION OF THE COMPRESSIBILITY OF ROCKS.

It habeen moted in the come of marble whe shbected to hemeling strens

 -hasicil: of the rock is of a very inierint arter

If, hewwer, the rock be subjected to cieret compression, strains in which

 keat as great as those emploved in the experintent itself This prelininary stressins brimge the material the "a state of ease." athd is also eommonly alopted when the elastic eonstants wi metals are determined.

It is crident, therefore, that this direet compression methed maty with confidence beappleyt to the measurement of the cubic compression wif roeks, althongh as mentomed below the accuracy of the result so obtained will differ with different classes of rucks

If the rock be massive, compate omderystalline (or glassy) the method ean be safely emplowed and gend results will be obtained If, on the other hatid.
 nature of the case be very mud less satisfaterys.

The platomie igneons rocks as a class most nearly resemble the metals in structure, being holocrystalline and massive, and therefore present the

[^2]

 -

A series of -isterel twpical ronhs representhtive of these two clisses were

 of twpes of the gebbro comexite series were selected as representiag the basic

 topical marhles almh limenomes, alst perfootly massive in eharateter, were

 elabicity ant exhbit fers laterenic thatl cat iron some of them, as for

 purpere as exprenile periex daviats

 showlt be the wilth of the how
 of the diverserme from Howh' - h. wheh the miterial exhitits this hew

 renilt

 the reanlt are ker certain, ming to the greater hysteresis af the rock

It anisht at first sisht appear that while the methed emplosed is timereticalle perten :r: applef to the measirement of the compressihility of vitrens
 intrenterel when the recks are coarner in gratu In the case of all the conmon crystalline rocks, the individhal grains of which the rock is composed

 oever in the rack with ath abollttolv irregalar orient.ation and would in the

 might be compuselof graims whose asis of greater elanticily approximated

 graned rocks an eveeptionally great variation in the readins obtaine froms different speciatens of the s.mere reks, d, well an from the different seetime in the satme specimen

But such is bot the ease as will be seen be an examination of the lignore
 ments of the compreaibility of Baveno granite, whielt is coarse in grann, I ten of Sulbury diabase, which is vers fime ing grait, together with dight meanarenents on Temessee limestane, whicin is ratherearse grain, and seven on plate glass They were mate in eath case on two wr more specintens ent from the same mass and the measmrements of the expansion were mate on several different planes through each, so that in every case the meashrement was effected in al different line thromgh the rock, all of these, however, of conrse being at right angles to the direction of the eompressive stress ant lying in the medial plane of the colmonn
linll detaik concerning vall meaburement will be form in the tables
 rocks in gucition Floce size if aran and the texture of the reck ean alsobe seeth by examining the pla... aicrosraphe and color prints of the polished strfiaces of the respective rochs
th: verne gramite for,iree) in irits Sulthry diabose (tery fithe) wide trids f.e ghass. 1.3 trials

Tennesset marthe (rather crarse) ; irials

Max	Min	tliff.
	4.ind.(4x)	$5(x), 4 x)$
11.170.6m	4.659.twx	1.71,5, 6×0
6.913 .600	6,020, (6)	- $10,1 \times x)$
$6.1 .56 .6 \times 0$		$3(x),(x)$

It will thas be seon that there is no eorespombence between the erarseness of grain and the magnitule of the variations in the readings obtained The differences in erloss, wheh isan isotropie material in whiel the elasticity is erpalal in all directions, are greater than in the femmessee anarble, whith is rather coarse in grain, and in Baveno granite, which is the corerew: . . .
the wet The serateat differenem mhatued are those foumd in the finest gramed rexk ith the werico. vi\%, the Sulbury diabsace.

It is e iflemt, therefore, that the different modnli of elasticity or the eonstit

These expriments also shas that in the cease of rocks composed of several minerals it makes far pereptible difference whether the puints of attachment of the instrment are embedded in the grains of one mineral or of atunther
 for the most part to be atributerl steme to be a meelanical ome, viz, the

 dimension of the moveltent to be theastred.

The question mithe inducherof temperature on the elasticity and conpressi

 K゙ashbibe * In thene the tors:on methoul was employed. and the experi-

 the allthors in the followither words

 the mote tireet and simple methot which hat been emplowed in the preatit p:iper. Thear ranth he:ariag on the variation of elasticity indacedbye thages of temperature, capecially in viow of the fact that they are stated by the

[^3]investigators to be "preliminary: " can as vet hardly be taken as of general application toall rocks, even if correct for the specimen of sandstone examined

In our own invertigitions the laboratory was maintaned at at temperathere
 the effect of temperature was mot mulertaken, as this womld te vers difternt
 cult! consisting in heating the specine it octi withont in ant wat afferting the measuring apparathe attached to it

 by abont wo and another erele of readings were takern It wat then raised
 exisive Was reached The intial realine of the instrment before the applicetton of

 and the results whtained when the specimen was subjecter to a eretain

 the same load these two lines shombl lated divereded, but iss a mater af fate they were practically parallel The diferences between the reatingasiven bu the same loid at different temperatures were an ereater than those obtained

 emplowed by Mr McKergow
 information concerning the effeet prodneed lo a rise in temperathre on the
 affeeted br the same changes of temperiture, the serve to show that in the cise of the masiocersistalline rocks the indluenceof temperature is probshby

THE METHOD OF MEASUREMENT.

 colt and ground with smosth fitcos. but were not polivhed In these two

 alhose alld below the eenter of

 the prismes These holes were champlered at the onter end, as shown in figure t, and were iomblel tofford the moss perfeet attachment which cond be secoured for the points of the matrmment. Bymeans of there priams two sets of measmements of the vertical conn-

I'ti: S liumul tev -pecimen,

earefully faced and absolutely parallel to one another. Before the actual measurements were mate, the rock in everyense was bronght to a "state of e:1se" in the matmer alreatly describerl.
 machince, which wits we carcially adjusted that it was sencilive to a batd of 4 ponimes.

The specimen, hating been placed in the press and redited to at state of ease,

 being taken at each increment and decrement of botd. The maximman load employed in the case of most rocks was moon potmels, equivalent to
 whether a mpare or rombl prisin was cmployed lathe case, Jowerer, of some of the stronger rocks a load of as mach as 1.5 owo pomints per somare inch was employed.

In the determination of the lateral strati, which was materyputhe sime
 was takent that the theoretienl conditions were realized, and that the mattotial

 rathe was set as nearly is possible 1 pent the eentral section of the lest piece,

 int order to bring it to astate of reat Fhene are recombed in the ease of

 from 10 to 15mintites
 mincrals differences of realing mis..t result from the attichment of the extensonneter to different protions of the rock, the paint wif the instris

 describet, or ont the fomer planes interseeting the vertical colnmens, where these hat been provided with eight patios of hales, showed that in the cise of the racks exatmined the differences between the several mensurements

(1) The differenes between the measureinents thas made on rocks eomposed

 the lus, itarlinal compreman

 crore side

m The ration of lomitaclinal compresion to lateral extension per mat of leweth.
 irmin llatil.

These walnes in the cuse of each roek are given in the respeetive tables, repressed in inch and pound mits, :und the results athe smmmarized in a gelleral table out pige (ox)

The measurements were made in the me mits on aecome of the fact of the

 on pige 6o.
 the batr and determining the valne of the longitarlinal extemsion div:ded ber

 determitation be eompresing athort bar or enlarm, and determinity the
 giver the vallie dewighated ats m, of which brosson's ratio is the feciprocal

 of the cohblati wan practieally ar great ats at the eenter, where the measure ment wis taken, the diferences being son small that ne serions discrepaney was introndiced

In the tahbes the first transerse line designates the speciand emploved as a, h. c, or d The sedond line sives the diameter of the specimen, which is eften shehtly different in the two directions the length of the eolmmen in all ease was almat ; inches. but this is not stated in the table ats the compression is mot meashere on the lotal length of the ewhmm, but on the length of that portion of it which lies between the points witachenent of the instrament

The third line gives the area, which is approximately t spume inch in the eise of a square prism and three-quartere wit square inch in the ease ni a round collamm

In the fonr sueceding lines the four elastic constants $l \therefore=\pi, I)$, and C, are given, as determined bye ench meantrement

Another transwerse line eontains the letters I^{\prime} ar I^{\prime}, which designite the two dimmeters of the eolmm when two measmements were mathe on the same sfatare prism. these two directionc begity alwas at right angles to
 frequenth made in several planes, thene are dexignated is "first holes." "secoud holes," cete.

In each table there follows the valnes obtained for successive loadings of 1.1אn) potmats in the ease of each speciment, first for compression, when the figntes malliplied be funt give milliontles of am inch, and then for lateral
 calentatiner the constants and for photing the enrxes which accompany wery table
lat the figntes for the constants of innan and oncor two of the rocks, which are the resint of meabitements whell were mate at the begimbing withe
 bration oi the extencometer, which will explata al ertatn diserepaney which will appear if the higures are recalenhated

THE ELASTIC CONSTANTS OF ROCKS COMPOSED OF A SINGLE MINERAL.
 MARBLES AND LIMESTONES

 ther breakints allume like gl:

 (\quad m!
 ant sputs of a black colar

 mintle glamsor crobal-of i: it priten

 oll patge 25.

Hhack Relgian Marble.

The elastic constants were fomal to be as follows:

$$
I=10,0-0,(\mu \mu) ; \quad \pi=4,3,30,0 \times 0
$$

Ifı: 6.- Black lidgia: Marble. Stresshatrain curves.
A plot of the readings is given in tigure 6 , from which it is elearly seen that the rock is practically Iree from hysteresis, and that within the range of pressures emphoed its elasticity is almost perfen I represents longituntand eompression and II lateral extension.

 l.1
 IGい *

 -
 is inllow-
 purnme

 is about the same on amount as tiat simsu by in. Virmont marbic and the Trenton linestone fron Montreal

CI ARAKA VAKiRLE

Cistura Mishle

				4 NHK	Misi MiNfry
｜ $0.31 \mid 10$ ｜x mutaly	i_{i}	mill	Nicko	sinfe	sids
1． 1 Mm ，	11	11	11	17	11
2，（xx）	15	11	35	96	511
6，MM1	－ 5	－ 11	－11	1143）	1101
1，10x｜	1い	1.21	1.15	151	15ヶ
	$1+5$	（ H ）	1／4）	（\％）	20）
（1，MM）	1＊1	215	2140	－¢11	－59
T：（ NM ）	21f1	21）	2\％		
－，MM，		$\therefore 75$	271		
13．（\％）${ }^{(1)}$		110	3 Kl		
－（\％M）		Sth	$\therefore 5$		
	216	$\therefore 17$	$\therefore 101$		－
（1，4KM）	1－5	210	219	ご1	359
5，（MM）	152	1；1	1－9	2111	211
f，（MM）	119	125	130	（fx）	16
（14x）	92	＊	（1）1	いす。	111
$\therefore(\mathrm{XN)}$	$+1$	＋5	3	5	55
I，（x）	1	5	5	（）	11

Sio．

1．（MM）	11	（）	1	0
2，（1）0］	31	i． 5	． 27	1.5
3， $3 \times 1 \times 1$	612	7.5	73	18.5
＋19M）	11.9	1113	10）	1.30
S．＇AM，	1.311	147	$1+1$	17.5
	1f15	1.3 .3	175	21\％
	$\therefore(\mathrm{N})$	．	．．	\cdots
			．	
リ，11\％			．	－．
S，（xx）		－	．	．．
\％（19）	21 ml		\ldots	．．
（5，1ME）	1711	1.33	177	217
5，（Mm）	$15+$	150	1 ho	180
4，（\％x）	117	129	112	137
3．（4x）	71	，i	75	1 cal
2．（xW）	35	41）	35	53
$1, \mathrm{MOO}$	3	4	2	4

 int tie direction of the hanser axis of the prinnt It is prabable that this foliat

 process photegraplo whe lat prepared wise the rock in such a photograph womld be identical in appearance with the ciarrara marble, of which stel a plotograph has already bean gibell

I', m, Mt Vabls.

$$
t
$$

A spate pricm of the marble was empleyed in meataring the ela tic con-
 represented in graphie fonm in fignte \& I reprenent langithelinal eompres sion and II lateral extemsion.

The following ate the values ohtatimed:

This is a marble knewn in trate as "Pink Temmence." and is laresty nsel for decorative work it has a brownish piok eoler and when polished shows an mencwhat motthed marface
 sad witen distinctly rombled individuals of ealeite, whel are fitted chosely turether alomg harp and in some cases cremblted lines These individnals are almost invariable trasersed bs row lamelle, due to polvishthetic
 tinetion Between these larse ealcite. . Itividnals there are irequently present masses of what is ipparenty a tabulate eoral, showing sheave of tubes which in erons section are approximately eitenlar in mithe The ealeite individmals ate witen embediled in thin eoralline material, as if they harl deen

 well as the interspaces of the tube if aly exinted, are how filled with calcite,
 Fragmentsof the rock dionser reatile in cohblilute hedrocharie acid, leaving onlla a very trilling rewhe, which has the color of the rock it self.

A endor proces plotegraph of a polished surface of the rock is stown in
 nary light and magnified 27 dianteters, is shown in liate $1 \begin{aligned} & \text { a } \\ & \text { a }\end{aligned}$ In this plotomicrugraph a fragment of the coralline material is seen in the center of the field, while the border is formed chiefly of individual calcite grains.

＇	1
－	
12	97
219	258
テ．ごす．0010）	（1）， 1311.1111
1． V － 11010	$3.5+10.160$

$1, \ldots, 41 \text { II }$ I"
1，11101
$\therefore 1{ }^{1117}$
1，11141
$5,1 \mathrm{~mm}$ ，
$(1,1 \mathrm{tra)}$
न（11）${ }^{(1)}$
－（ther
＊，¢10）
$=.1410$
1．10101
\therefore ， $1 \times \times 1$
$\therefore 1 \times+1$
1.1841

－in！
sille
silk

sinl
\bigcirc
（1）
70
11%
$1+11$
141
$\therefore 15$
これい
ごハ！
－
ごき
1181
16
126
（11）
（II）
；

OM FROGRAFH OF THIN SECTIUN, ($\times 27$ OAN,-ORDINARY 1 IGMT)

Three spuare prismb of the reck were employed in measuring the sastic constants, and on these seven sets of meatsmemento of vertical compression and six of lateral extencion were mate, as shown in the tathe on page 30

The averases of the renill, obtained are as follows:

The difference between the highest and lowest valnes obtained for 1) is 360,0 on . As will be secoll bensulting figure of the rack is alnost free from husteresis In this tignre I represents the longitndinal compression and II lateral extension.

Fin. 9.-Tennesee Marlde. Siress-strain curves.
FOSSHIFERUUS LIMESTUNL: (TRIENTON FORMATION), NHEEEND OUARRV,

This is a twpical fossiliferme limentone of the Trenton formation (Ordovician). It was taken from a massive bed 2 feet in thickness known at the "Lower Bed' at :he quarry from which the creater part of the building stone for the city of Montreal is whtamed lowe roek is dark graty in color, and is compaet and soli+l ind datrater

Under the microseope it is seen to be eomposed of fragments of fissils which are in some eases amgular and in others more or less rombled They are chienty bits of Nonticulipora and of crinoids and show the strncture of these organisms perfectly: These fragment c lie embedded in clear transparent calcite, oceurring as large individuals which form a continuous mosaic, giving rise in this way to a perfectly compaet rock

A color-process photograple of a puli: ued surface of this rock is given in Plate VA. A photomierograph of athin section of the rock, taken in ordinary
 grath a fragment of a Monticulipurid is seen in the center of the field, white the darker areatabnt the peripherv of the field are Crinom agnatits, eath with aseondary endargement, eonsisting of pure calcite, surrmanding it.

Fit. 10, -Trenton linestone. Stress-strain curves.

E FHJTOMICROGRAFH OF THA SFCTION, 1×27 D.AM-ORDINAKY LIOMTI
TFENTOIN LIMERTUNE, VJNTFEAI, CA:ADA

THE ELASTIC COISTANTS OF KOCKS COMPOSED OF MORE: THAN
ONE MINERAL.

ACBD PLUTONIC KOCKS.

 althonel it is a little liner in Lrata
 portion of biotite; the biotite is in plates sumewhat altered theltorite, athed

 photomicrograpla was developerl dariner the grimbing of the thin sectom
 of the rock it colf
 elastice comstants of this grathite for -perimen b at domble set of me:tsine -

 nade in two plithes, also at right amgles to ome another (roferred to as "first

The differene between the highest and lowest athle whtalited for $1 /$ almontits to 5 (\%), (\%)

As mentinned in the chapper on the ${ }^{\prime}$. Appliation of the Me thonl af simple
 revilt - the eperimeth of the rewh amd for that matter the same is trae of the

 Which the sperimen in tu he vibjected, when tre measurements are subace quentle matle

 four croles of compression, whelt this state of ease was being indhed, athi the results are presented griphically in figure 12.

Granite. Bazeno, Italy.

 be seen, after the tirat eycke of compresion the rack dich not retarn fuite to its

 the 116 a-tire

 prowion ant 11 lateral extolnsion

 is very efoce the dexcriptiont given of the lik i atke granite wo.

 part af the rock have evilently ersotallized ont at about the same tame,

 madnlators extinction

Owing to its practient ident ity with the file lathe eranite, in appearance and
 of the polished suriace of the roch on a pimhomicragripla of athin section

Those given for the Lily Iake gramite may be considered as representing this rock also Two spuare prisms of the rock were prepared and on these five sets of measitements of vertical compressiom and two of lateral expansion were made These are given in the aceompanying table, and the curves

Gilamif, l'firhat, Scolland.

Fili. 1.3.-Peterhead granite. Sitess-strain curves.
given by b are shown in figure 1,3 . Of these curves, I represents longitudinal compression and II lateral extension.

The averages of the results obtained are as follows:

$$
I=8,295,000 ; \quad \pi=02112: \quad J=4,792.000 ; \quad C=3.309,000
$$

The difference beween the highest and lowest values obtained for $/$) amomits to 3 So, om, or if one abmomally lew determination be omitted the difference is 110,0 oro

A typieal rather conarse-grained pink granite. Fuder the microseope it is sectr (0) present the ustall hypidiomorphicutracture of this roch, and tw be eomposed of biotite, microperthite, and quartzascosential comstitnents Amallamont of plagioclase necurs anallaceconorveonstitucht Fhere are also afew minute ervistals of a highty domble refatetug mineral which has alona high index of reiraction, and apparently ersstallizes in spuare prisms This is probably zircon or possibix mon:azite.

The ieldspars and guartz preponderate largely. The microperthite, which is the mont abmand emstitnent in the rech, is emmposed of a minute inter growth of two feldspars, in neither of which can twiming be detected One is. in all probabilits, ortheclase and the otlore albite The former is more or fess turbid irom the presence of alteration profluets, such as are commontre fontud in this mineral upecies, while the latter is elear and fresh The quartz shows marker malalatorve extinction as in the case of the Westerly granite. The biotite is iresh and deep brown in color

Thic rock is, as stated abose, a topieal granite, rather coarse in grain, and Which hats undergonle hat word litte alteration

A color process photograph of a polished surface of the rect is seen in Plate V'Il A atul a photomierograph of a thin section magnitied so diameters and

'lwo square prisma of the rock were prepared and their clastic constants determiated The resalts are given in the tatheo om page 39

The stress stratecurves given bespecinen a areslann in figure it Inthis figure I rep. entsts longitudinal coapression and Il lateral extension

The means of the resultsobtainerl are as follows:

$$
I=8,165,000 ; \quad \pi=01982 ; \quad I)=4,517,500 ; \quad C=3,380,000 .
$$

The difference between the two determinations of D is only 105,000 .

GRANITE, LILY LAKE, CAFIADA.

Fig. \ddagger-Lily I.ake Granite. Stress-strain curves

 finer in grain than the other aranites referred to in this piper

 prodhets

The felfypars form the getater gart aif the meh, mictoclinc being by far the must abmalat of thewe It hows in :1 striking matmer the elaracteristie
 clase in untwinned individuals is irequently dintinctly thrbid fonm the development of hablin, ath in al fow place mancowite in larerer individuals ean be seen inconsed in it, :pparently developing ats asemelary prodnet at its "(vernse
 extinction, and some yranh have beell an strand that they fall into areats with
 corners hetwern the idelspar individnats, nsablly ocemes ats subangular or more ur less romaded grains atsociated with the feldspar, and apparently more nearly contemperancons with this mincral in its erstallization than
 tare, shatl romaled gratus or vermiform inchasions of ghartz. bexing sometimes seen in the mierocline. The strmetnre otherwise is of the normal granite type. Flie botite is vary smborlinate in amonnt and is more or less danged into cllarite

Whangh these decomposition prodactsare present the rock can not be consiflered ab one which has matergone math alteration It has, as a matter ol fact, undergonte very little, and is to be clabed ats a distinctly fresh rock - mand frentuer than granites asmally :are

A color process photugriph of the rock isseen in Pate VIII A aldd a photomicrogriphl of a thin section taken between erossed nienls in pularized light

 woremadeon eablaf the lirst three specimens, the instruments being attached to different pairs of sides in catele case, and four sets of determinations were made on specimen l in planes making angles at 4.5° with one another Ten determinations of rertieal eompression and three of lateral extension were thas mate the resalts of which are given in the following table:

4. PMOTCGHAPM OL POLISMED S. RFACE, (NATLHA S:CE)

B PHOTOMEROTHADM OF AM SECTION, (A 3J OAV.- CO:S CRESSED)

1，（Hx）	11	＊	13	11	11	1	11	11	0	0
$\therefore(H \mathrm{C})$	311	111	54							
8， 14 mm	いう	$\cdots 1$	\1\％	しラす			$1+2$	115	$1+9$	1.11
f，（x＊）	117	1211	1 （1）							．
¢，（xu）	1901	1111	bic）							
fi，（x）	ここち	－11）	3 3i	？1！			\therefore－	3 i 11	3132	313，3
Jinut	－145	23｜ 1	－79						．	
－，0nmo	315	（11）	ふ19						（	
	． 315	，1\％	ifil	¢〒	135	155	1101	$+5.5$	46.9	f（H）
9.8 Hm	ill		4－61					．．．	．	，．
J（An）	$\therefore 1$		こい		．	－	．	－••		－．．
（1，CMK）	－\ddagger		？ 11	31.			3N\％	305	.369	．30．5
$8,4 \mathrm{mm)}$	－4 41		いご					．	－．	
l．＇Mm）	（f1）								－	＊．
	151			1%			117	114	180	14）
	（11）									
1，（mx）	5			；			3	11.	15	12
			1 \＄11	ばいい	M	N144．				
N				－	．			17	b	11
$\therefore 176$								1102	929	975
1．14111		．			．．			11	11	11
2 ，114）	．．	．	．．	．	．．			≥ 5	310	30
S， 14 cm ．	，		．．．．	．．．	．．			51）	50	Mr）
4．11ヶ4．	－	．	．．．	．．	．．	．．．		－．7	$\therefore 5$	120
5, 1164,	．		．．．	．	．			16 HI	125	175
（1．1114］								1．31）	17	2（x）
T．17世1	．．	－		．．．	．．			1 （1）		．
¢，（1）（1）	．．．	．	．．．．		．			110）		
9．014			．．．	．．．	．	，		－－ 19	．	
¢，1116）	－			．．．			．．．．	11.5	．	．．．
; А"॥".	．		．．．		．．		．．	16.5		
$\begin{aligned} & (5,(11+1) \\ & 5,1(111) \end{aligned}$	．							141	17	$\begin{aligned} & \text { 2(K) } \\ & \text { I(b) } \end{aligned}$
\＆．1146）		．．	．		．．			（1）	I＇x）	1.30
3.11401								fic）	70	90
$\therefore 17111$		．．	－		．．	．．	．	［ 3	30	$+5$
1,10061	－	．．．．	．．	．．	．．	．．．	．．．	（）	0	5

The stress－strain corses ohtained from specimen atre given int te 15

$$
\text { f: } \quad \text {.... } 14 \times 1:
$$

もりま，1）\＆．30こち（x）：

＂thluetion The rock is lfe－h ath．lafters
A color process photograph of liat 1 hain．ranite is down in Plate 1． 1 ，amp aphere mentiph or the tween

llate ifis
 appearance were setated and exat ol Three et the prisms，a, o

Gumite, (uincy, Massachuretts. I'mital Situter.

,	litst crocimun.						Cocoidy apecimen.	
No.	11	11	r	r	11	1	1	h
size	9891.071		1380.3895		1011 .954		$945 \quad .842$	
Area	1 nk	110.	111	1111	$4 \mathrm{HCH}_{5}$	976. 5	$\mathrm{N}+3$	81.3
f.	$0.5(0)$ (60)	0.41010601	$0.0,30,0000$	6.e. 20.00000	6. 820.00 mm	7,06\%)(10\%	8.1 (15169)	\$,3603,(6\%)
σ	18.5	1025	21	21	244	25	1915	204
$1)$	3, 7 (1), (196)	3,710,600	3.810 .0060	3.810 .096	+.4+0. $4 \mathrm{Hh4}$	4.enter.06K)	4, 890,106	4.720,060
c.	2,765,(0) 0	2.86, 5, (mse)		2,760,(H6)	$2.7+0 .($ K ()	2.800.6\%K1	$3 .+10.006$	3, + H), (M00
Longhtidnal combrisitos Multhly Reabings hy + for Mideionths.								
Load (in pounds).	side U.	side r.	tide U.	side P.	side U.	side l.	side U.	side P.
1,000	0	0	0	-	-	0	-	0
2,000	60	50	56	4.5	. .		50
3,000	110	95	109	. . .	100	100
4,000	160	145	161		150		. . .	142
5,000	200	185	206	-. .	198	. . . \cdot	. . .	193
6,600	240	2.30	259	. . .	246			225
7,000	250	270	291	. . .	290			260
8,000	. 320	310	3,34	-...	3.30	\cdots	\cdots	310
9,100	360	345	374	374	3.40	370	365	355
8,000	321	31.5	325		340	314
7,000	282	280	290		298			274
6,000	245	2.35	$2(9)$		2.50	. . .		235
5,000	203	195	210		210			190
4,000	162	140	16.5		115			145
3,6003	112	on	110		115	.		100
2,000	63	[${ }^{\prime}$	60	0	(10)	5	3	50
1,000	4	-	5	0	5	5	3	5
i,ateral tixthnsien - Milmontug.								
				First specimen.			Semod smecimett.	
No..				a	i'	1	b	b
Site		-		.989	95.5	1111	892	945
1,(6m)		.	. .	0	"	0	11	0
2,(M4)		\cdots		.	25	35	$2+$	20
3, (xx)	5.5	70	51	45
+, (x)k		(\%)	110	\% 6	\%
Sirxa).				.	115	150	101	(6)
(, (xx)			\cdots.	. . .	1.45	10%	125	12.5
7,(Kx)	. . .		- ${ }^{\text {- }}$.	17.5	2,0	157	1,5.5
- ¢\%M		2\%	270	$17+$	156
(\%) (16)	.			2111	2411	(10\%)	20\%)	219
S.(nx)				. .	205	275	175	192
万, (\%и).	.		- .		INO	210	1.53	16.4
(1, (x, $)$.	1.	\cdots	11.55	11.5	127	1.14
$5,(x x)$					120	1.55	10.3	105
4 , (hx)			- .		45	120	7	As
. $3, \mathrm{ckO}$				60	75	50	50
2,060				,	30	40	25	25
1,006		.		5	5	10	2	3

－pecoment whith wis rather darker in eotor fown series of eompression

戶川いかく：

 alul 11 lateral extension

 abla dimentions，for the mot part growing in the fellopar and apparemtlo

tains a considerable percentage of mioroclite athe of a plagioclase of the soda fime series flo miea is relatively more abomdath tham in the other granites described in the preseltt paper The quartz shows marked modnlatory extinetion and in sonte cases evoll an incipient grantlation. The size of the gratin of this roch is intermediate between that of the Wiesterly and the other gramites, which latter are themselves abont egmally coarse

The elastice constants were measured on three stghare prisms, four sets of measurements of verticai eontpression athd three of lateral extension being made The results are given in tle following table:

The arerages of the results ohtained are as follows:

$$
E=5.685,000 ; \quad \pi=0.25 .45 ; \quad L=2,940,000: \quad C=2,258,700 .
$$

This rock, as will be seen, has a low modulus of elaticity, and like other rocks of which this is true, the lateral extension varies considerably in different specimens and the rock does not come readily to a state of ease. This is seen
from figure 17 , whelt shows the reanta obtained in the first three eycles of

 presumb and it lateral extomion The variation in the results obtanted for

F1'. 17. Sirescontain eurven ohtaned in the first three cyede of compression, from

()n acconnt of its defetive elanticity the reant of the measurement of
 gramites. fromb whicl it differs considerabls in the value obtained for 1), althongh the valuen obtamed in the case of the other granites agree pretty chosely among themathen 'flote canse of this defective clasticity in the Stanstead gramite is not elear, althomeln it may be commected with a lack of strength in the ruck, which in it harn maty be connected with the presence in the rock of so latge all amonut of mica

It is a weak rock empared withother granites or with the essexite from
 Tentine Laboratury of Mefill Vniverate, and given in the table on page 47 A colar procese photographof of polished surface of the rock is shown in Plate XA, and the plotomicrograph of athinsection of it in Plate \mathcal{X} b. This
cles of wn is rocks duced, 1 from 1 com ned for

GRANITE STANSTEAE, CANACA.

latter is taken in ordinary light and magnified 27 diameters The faet that this photomicrograph is taken in ortinary light, while those of other grinites just described are taken between crossed nicols, gives this rock an appearanec of heing eoarserin grain thin it really is, owing to the boundaries of the eolorless constituents being ill definet. The size of the grain may be seen, however, byemparing tite dimensionsof the irom-magnesia constituents of the rocks or still better be comparing the gtain of the several rocks as shown in the photographs of the polished surfaces.

Fig. IR, -Stanstead Granite. Stress-strain curves

NEPHELINF SYENITE

This is a typieal nepheline syenite whieh forms a portion of Mount Royal, one of the Monteregian Hills and which cuts an carlier intrusion of essexite like that to be deseribed later from Mount Johnson

It is a hard and tough rock used as road metal on the streets of the city of Montreal. It is rather light gray in color and oiten shows lucally a more

 che ell

Fhi, 19-Nepheline Syenite. Stress-strain curves.
flaidal structure above montioned renults Associated with the feldepar is thepheline itt rather small ablombt, and also nosean often in well-fembed individuthe These one int int we cases as inchasons in the feldspar in other "ase they lie in the cormer hetween the latter. The dark ("fomic")

The rock is fresh, there being no signs of decomposition . Whangh the neplactine and the moseall are in most eanes somewhat altered, the ehanges

 a photomicrograph taken betweret cros...' nicols and magnitied 3) diamcters is shown in Plate Nis.

B EHOTOM CROGRAPH OF TH:N SECTION, (X 30 DAM,-N:COLS CROSSED) NEPHELINE SYENITE, MONTREAL, CANADA

The stres-strain curves ohtaind in the first set of meabirements are sectl in fis 1., (p) fis), in which 1 represents longitudinal compresion and II hows laterat extension formatation of these will show that the rock thibit- very little hinteresis, the viltes for longitadinat eonpression giving a traight hime, an in the case of wromght irem and other metals
The arerages of the rectult obtained are as fotlows:

$$
民=9,1,77,5(x) ; \quad \pi=0256, \quad l=6,2,37,500 ; \quad C=3,6,35,0 \times x)
$$

The differences between the wodederminations for the vathe of I amounted to only 225.0×0 poumls As will be wh, rect, the watue of D for this rock is much higher than that for alny of the granites.

HASIC PLUTONIC ROCKS

 rove. combined with at mesement of this spamblated mattorial minder the

 some of the street ill the city of Jontreal, where there is an especially heavy trallic

Bost of the Xorin intrasion comsists alonost exelusivele of plagioclase fellopar, which has the composition of habralorite, with onld a vers small
 "anortlomite"

The -pecimen med for the determination of the elastic eomstants of the
 maghewit comstittonts athl whith entweque:tly might be more propery
 : Ther in these darker eomstituents 11 has al rutel wreaked structure, as
 Phate Xll 1 This atracture crossed the vertical face of the test piece diag. onall! so that if there be a variation in the volues of the elastic constants dependent on the direction of the streahing, the readlings attaned will represent a mean, or at any rate animermediate value

IValer the microsenge the rock is seen to be eont posed chiedty of plagioela ee. assuciated with which is a pale green angite, a decp green bornblende, with a few grains of ibnenite. and an oeeasional individual of loper-thene, now altered to serpentine, and of perite

The plagindase forms a thosice of well twinned grabs, throngh which are diveributed the other emstituents in little irregular-shaped grains of rounded or subromaled antline of these the angite in the most abouclant With the exception of the alteration which has owertaken the few livpersthene grains

[^4]

ANOHIHOSITE, iNE GLASUON, CAVAIA
the roek is absolntely fresh. The strueture is allotriomorphie, and there is a tendeney to a paralled arrangement among the grains of the darker eonstituents.

A photomierograph of a thin section of the roek taken between erossed nicols in polarized light and magnified zodiameters is shown in Plate XII B .

The clastic constants were determined on a sphare prisin of the rock, and as the rock is very strong, the loading was earried itp 10 15.000 pounds instead of 9,0 or phunds, as in the other rocks

The fignres obtained are set forth as in the following table:

The averages of the values found are as follows:

$$
E=11,960,000 ; \quad \sigma=0.262 ; \quad D=8,368,000 ; \quad C=4.750,000
$$

The stress-strain eurves of the rock are shown in figure 20, in whieh I represents longitudinal compression and II lateral extension.

 Johnooll, which in a typieal butte arisime from the Pallozone phan to the sunth of the city of Montreal and forming one of the Monteregian lills * The rock is massive and miform in charaterer and dark grat in enfor, and

 brown hornhlembe, and a biotite abo ver deep brewn in eolor, the first men tionter being the mon abourtant and all the being frepuently intimately intergrown The tight entared emotitumb are plagioelase and nephetine,

 in the feldypar. a considerable propertion of it is mombune a separation
 there 1 eing wo orthocline in the wed Magntite in the form of small

Essexite, Mount Johnson. Protince of Quebec, Canada

0
28
50
40
115
1.50
1.40
210
24.5
210
140
1.50
115
60
50
28
0

to assume a more lath-shaped development than in the ease of the granites. The lathes ruming as they doin all dircetions through the rock, probably have a tembency to bind the rock more firmly wegether than when the feldspar has
 hypidionmophice strmeture, and, like the granites dese. .eed in this paper, is perfectly massive

A color procese photograpla of a polished surface of this rock is shown in Plate Clll 1 , ant a photomicrograplı of a thin seetint taken between evossed nienls in polariad light and magnified , 3 diamuters is tobeseen in I'late X11I B.

Three spatire prisms of the rok were userl, and five determinations of vertieal eompression with thee of lateral extension were made. The results are given in the table on page 5.3

The averages of the results obtanderlare a follows:

$$
\Gamma=1,-740,0 x ; \quad \pi=0=58: ; \quad 1) \quad 0,-50,04 \pi ; \quad(=3,872,600 .
$$

 identical lobe figures ubtained for the enmpres ibitite of are little higher athe those for hare comsiderably lower The differeme betwen the highest and the lowest valites obtained for $/ 1$ ammants 10 1,1 10 , (wx) pounds, but the difference, if the rebilts of the single me:mranent on b be onitted from

 priall a are givent in hgrare 21, athl Show that the dasticit of the rock is of a verv-lighorder In this figure I represints vetical eompression and 11 lateral extension

[^5]

Fhis rock forms a large dyke* enting the anorthosite from the beality described above It is a rock which is darker in color than the anorthosite owing toa muth higherentent of irnm-magnesia constituents, mat which, like that rock, is quarried and hsed for pating sets

Vulder the microseope this rock is seen to differ entirely in strmeture from - he other ignemes rocke examined It is eomponed of a very pate green anmite, a rhoubic proweme of the same color, athd plagioct:se, the two former minerals being present in abont equal amoment and the plagioclase wot forming more thath abont once (pharter of the rock: there is also preseltt a small amonnt of a pale green spinel.

The rock is seen to have been crushed in a most extranolinary manamer and (1) present a most striking catachastic strmetare 'fhe phagoclase oents in gronps of individnals which are well twinned, and are fregnently very mach bent and twisted -the individnal being bent throngla an angle of 65°. The mineral is also filled with very minnte romeded inchsions, which give to it a green eolor. These plagioclase grains, quite irregular in form, lie embedded in a mass of little irregnar-shaped grains of angite and rhombie pyroxence. 'These vary smewhat in size The two proxemes are sometimes intimately intermixed and at other times separated into gromps of grains of their respective species, which are distinguiched from ond another bye the elifferent Fahtes of their donble refraction and by the faet that one has paralled and the other inclined extinction. The spinel is associated with this minntelv grammated pyroxene

The original structure of the roek las been entirely Eatoken down, and it now presents an assemblage of grains of the minerals varying in size and differing in arrangement from place to place in the slide. The pyroxenes are granulated.the plagioclase twisted, and the whole presents a perfect cataclas. tic appearance, differing entirely in this respect from that of the anorthosite just described. This cataclastic structure is combined in some specimens of the rock with a more or less distinet parallel arrangenent of the constituent minerals, although this is not very distinct in the specinen shown in the color-process plotograpli of a polished surface (Ilate XIV A)

To this irregularity in structure may be attributed the irregularities in the elastic deportment of the rock.

A photomicrograph of a the: section of the rock taken between erossed nicols in polarized light and magnified 30 diameters is given in Plate NIV

It is found that satisfactory measnrements of the elastic constants conld mot be nuade in the case of this rock, the same specimen giving a great variation

[^6]

 one which is stitable for the application of the metore if accurate result are repuired

The figures obtained from the mensurement of two speeimens are given in the following table:

 It is (fate probable that both are corred int liwir respective specimens

A. PHOTOGHAPH OF DC:ISHED S QFACE, INAI URM S'ZEI

In the table giving a smmmary of results (see page 69), the valus givelt for this rock represent the mean of these highly divergett reatlings and shombt be "acel only in the light of the explathation givelt almoe.

This is a very typiall freah olivince dialbate, which oceurs in the form of a large dyke, cutting rocks of Inaronian age juat morthwest of the Marraly Mine uear sudburs. It is one of a mumber of similar diabsise dykes, which ocent in this district of geent nickel-bearing gabloro intrnsions it is rather coarse ingrain for: diabase, hat hevertheless much finer in grain than amy of the gramites deseribed in this paper, exeept that from Westerls. Rhorle Islanel, these two rocks being approximately eqnal in coarseness of grain, althongh differiug entirely in structure the rock is composed of violetbrown angite. pale green olivine, colorless plagioclase, and opatpe black iron ore There is also a very small amomen of aceessory biotite a few minnte acicular crystals of apatite, and an wecasional minnte grain of prite The angite presents the nstal microscopical elaracters of this specios, and is very fresh, searedy a trace of decomposition being anywhere discernible in it The olivine, which ersstallized before the angite, and therefore oftell oceurs as inclusions in it, white for the most part fresh, is in many places partially altered to a deep green serpentine It is much less abmadant than the angite fle plaginclase ocenrs in the usial sharp, well defined, lath like form, always showing polvinthetic winning according to the ablite law, which in the same individual is ofter combincel with twiming according to the pericline or carlsbad law. It is fresle and brillianty polarizing The irnu ore, which is black atnd opalute, is abmblant, owerring in well-defined more or less angular grains.

The rock is perfectly massive and possesses a typioal "ophitic" or "diabase" structure, the plagioclase laving the form of well-detined laths
penetrating the augite and even the iron ore, but not the olivine so far as can be observed. Many little seams apparently of the nature of joints traverse the rock, and care had to be exercised to secure prisms of the roek free from these, on which to determine the elastic eonstants.

I color-process photograph of a pulished surface of the roek is shown in lhate $X V$. and a photomicrograph of a thin section of the roek tak $\cdot n$ in ordinary light and magnified 27 dianteters is seen in Plate XV'B

Four test pieces were used in determining the clastie eonstants of the roek, viz, three round cohmms and one nearly square prisnt They are designited as a, b, c, and d. The three rountl columis were ent out of a block of the diabase by means of an annular diamond drill. For these we are indebted to Dr. Logan Waller Page, of the Agrieultural Department at Washington. Two ineasurements were made on each of these in planes at right angles to onte another, in each ease. white four measurements were inade on the prism d, using two pairs of faces. In this way ten sets of measurements were made for the clastie eonstants of this diabase.

The values obtained are given in the following tables:

A Dhorograph of polishfo surface. (natural size)

HINE MATASE, SIDBURY, CANADA.

ELASTIC CONSTANTS OF ROCKS.
Olivine Diabase, Sudbury, Proiince of Ontario, Canada-Continued,

No.	a	a	b	b	c	C
Size.	981	981	983	983	18.3	983
Area	756	756	758	758	758	758
E	13,250,000	13,780,000	14, 920,000	$14,320.000$	14,020,000	14,320,000
σ	286.5	281	291	277	291	283
D	10,340,000	10,460,000	11, 170,000	10,720,000	11,170,000	11.0041000
C	5,160,000	5,380,000	$5,430,000$	5,620,000	5,430,000	5,580,000

Lungitudinal Comiression - Multiply Readings of 4 fuk Millionths

laad (in mounds).	Side U	Side P.	side U.	Side P.	Side U.	Side P.
1,000..	0	\bigcirc	0	\bigcirc	0	0
2,000..	30	30	30	25	30	,30
3,000.	60	60	60	5.5	60	(\%)
+,000	90	$9{ }^{0}$	90	9.5	90	8,5
5,000.	12.5	120	115	110	120	11.5
6,000..	15.5	150	$1+5$	140	150	14.5
7,000	185	180	175	170	180	175
8,000	225	215	210	200	210	205
9,000	2.50	240	2.35	2,30	23.5	230
8,000	220	210	210	200	210	20.5
7,000.	100	185	1,0	17.5	180	175
6,000 .	16.5	15.5	145	140	1.50	145
5.0000.	1,30	125	115	115	120	115
\$,000	10.5	100	85	95	O0	8.5
3,000 .	75	60	5.5	. 5.5	(il)	16
$2,000)$	45	25	30	25	30	30
1,000	15	0	0	0	0	0
Lateral lixtension - Millionths.						
No.	a	a	b	b	c	c
Size.	981	981	98.3	98.3	983	983
Load (in pounds).	Side U.	Side P.	Side U.	Side P.	Side U.	Side f.
1,000	0	0	0	0	0	\bigcirc
2,010	38	28	28	25	21	27
$3,0000$.	54	51	54	49	49	5.3
4,600 .	8,3	74	82	73	78	79
S,000.	111	10.3	110	100	10.5	107
6,000	170	1,30	1,36	122	1,31	1.30
$7,0 \times 0$	169	156	164	$1+1)$	160	1.5 .8
8,000	198	18.3	191	172	1.65	1.83
9,000	22.5	210	215	2 (0)	215	235
8,000	$2(0)$	185	10\%	1:1	10.5	180
7,000 .	172	1.55	1,13	1 ¢!	1-0	166
f,(wx)	1.11	1.\%	11^{11}	12\%	1.15	130
-, (x)	115	1 101	11\%	(17)	115	110
4,000	¢.5	7	, 48	75	85	3
3,000. .	52	54	56	50	55	55
2,000 . .	22	26	30	2.5	25	26
1,000	0	-	0	0	0	0

As will be seen, the valnes obtained for 17 in this rock are eonsiderably higher than those velded by any other rock of the series examined In the six infependent measmrements carried ont on the first three specimens. the
 poninds, while on the fonr measurements made on speeimen d there is a rather greater difference amonnting th :5,on) pounds.

The averages of the determinations male on each of these eolmuns are as fullows:

The stress-strain curves given by a speeimen this rock are shown in figure 23. As will be seen from these curces, in its approach to perfect clasticity the rock is comparable to plate glass.

Fル. 23.-Sudbury Diahiace, Stres-strain curves.
SINDSTUNE, CIFVEI, IVD, OHWO, UNITI:D STATES.
Hais is a tine an leven graned yellowish sandstone used vervextensively for buillins purp ses. The bedding is marked by a slight variation in color in different beds. The prisn of the rock ased in determining its elastic ennstants was ent from as single bed of mionom character and eolor, and was t.tken in the phane of the bedding. A eolor-process plotograph of a smooth surlace of the rock is shown in letate XVI A.
Under the microseope it is seen to be a typical highly feldspathie sandstone. The eonstituent minerals are present in grains which are, approximately

 tho

 (4) an WN
 CH2

 ar
 sembxtanh

uniform in size and of rudely rounded or subangular outlinc. The guartz grams are clear and fresh; the fellepar individuals, which are abmandat, on the other hamd, are for the mest part in an alduaned stage of alteration, being
 products bone few grains of eomparatively unaltered plagioclase are, bowever, prescent, and scattered throught the rock there is al considerable amonnt of hẹdrated oxide of iront, which often lies between the gratins, forming at eement The rock, fowerer, also contains at mot inconsiderable amount of calcite, which emses it to ffervesce slightle when treated with dilute hiviroehlorie acid, and which is atso seem la lie between the clastic gratins also forming a centelnt, often in the form of individuals of a size comparable to those of the other minerals

The roek, however, is not a ervstalline rock, but a typical elastic one. There is unt a continuous crystalline web or mosaic, but a mass of roundedorsub angular grains which are in part comented together as abowe deseribed, but in part are separated by minute open spaces. It is tobe expeeted, therefore, that the rock whil show scrious defects in clasticity, as proves to be the ease when attempt is made to determine its chastic eonstants a plotomicrograph of the rock taken in ordinary light and multiplied 27 dianteters is shown in Plate XVI B .

A square prism of the roek was employed, and it was found to be damgerous to submit it to a load of over f^{\prime} (xoo ponnds, the ernshing weight of the rock being much lower than that of the other rocks, whieh are crystalline in texture.

The figures obtained are given in the following table:

The stress-strain eurves are showr in figure 24
As will be seen, the rock displays at matred hysteresis and is mot therefore an illeal material for the appleation of this methol of determining eomepressibility

The results obtained are as follows:

Fig. 24.-Sandstone. Stress-strain curves.
THE ELASTIC CONSTANTS OF GLASS.
As ingeophysieal speculations, the earth in lespeet to its rigidity and eompressibility is often compared to a globe of glass, it seemed advisable to determine as aceurately as possible the elastic constants of glass, for the purpose of comparing them with the results obtained in the ease of the varions rocks considered in this paper, employing the same methods and earrving out the work moderexactly the same conditions. This material lends itself excellently to this muthod of measuring these constants, provided the glass is free from all irregularities in its substance and is isotropie in character he first difficulty experienced was that of obtaining sueh a glass. At the outset it was thought that thick glass rods snch as are used for varions purposes in the chenical and plesical labiratory might be employed, but atthongh several lits of the purest varietyof this material were procured, the glass constituting it was found in all cases to contain minute air bubbles, and when examined between crossed nicols in polarized light, slowed brilliant colors-red, yellow, and blue. This indicated a state of marked tension in the glass, evidently due to the rod hat ving been drawn when the grass was in a viscous state, which was also shown by the circular arrangement of the little bubbles in the rod, following the direction of its surface. Short lengths of this rod, moreover, when tested in eompression, so soon as the maximm:i load had been exceeded, instead of splitting frons top to bottom, broke as if composed of a series of melely eoneentric sherls. All attenpts on the part of the various glass makers to whom this glass wa submitted for a thorough anuealing, failed to remove or in fact to redur to any considerable extent this anisotropic condition.

The figures obtained fron one of these glass rols approxinately an ineh in dianeter are given in the E(nllowing table:

That the tension in this glass seriously affected the results olbtained-as might te expected - is clearly seen in the value for D being 1114ch ton low, as will be shown late:.

The stress-strain curves plotted from these values are shown in figure 25 . As will be seen, the material oxhibits a distinet hysteresis.

Dfler a prolonged seareh for whtropic glass in masses of sufficient size to mesure the clastie ennstints, it wids fomm that plate glass answered the
 aceorlingly socmed and was cot intostrips and inch wide, and these again into Here indilengths "thesplatre prisun thas produced were then propr rly faced
 Gupmriticesmel when examine between rosod uicols the prisms, althongh ant inels thick, Whowed in ome direction at right angles to vertical axis aboshte
 right angles th this there was during a revolution att itternation of blackness with a pale grayish illmination This chamge was so slight that, eonsidering the thickiness of the glass and the semsitiveness of the test, the material may

lin. 26, - Plate fitass. Siress-strain curves.
be eonsidered to be practically free from internal tension and to be isotropic in eharacter

In order to get a suod aterage aml to eliminate chanee errors as far as possible, seren of these prismb were taten, and two complete sets of determinations were made on eath of them, wing in every case different pairs of faces Fourteen determinations were thas made of each of the elastic eonstants. The figures abtatned are set forth in the table on page 6.5.

In this table a complete series of values obtained from each specinen are given in double rows When the :abage of all these results is taken, the values olbtained for the st ser ' constants of plate glass are as follows:

$$
E=10.500,000 ; \quad \pi=0227.3 ; \quad D=6,448,000 ; \quad C=4,290,000 .
$$

The stress-strain eurves given by one of the prisms is shown in figure 26. In this figure I represents longitudinal compression and II lateral extension.

Plate Ciluse．

Vir	11	1	C	1	C^{\prime}	f	1）
Mire	9\％45＊111		194＊ 1015				1325：．934
Areat	1 ［M097	（8）${ }^{\text {\％}}$	1ヵ）	1 111	1.117	＋11．1	1 116，
	（1）（6）（6M）	1019 ¢11（MW）			$110+56.1461$	［19，INITIMM	
1	（i）（＇H）（HM）	10.9 （3）（\％M）	（1）．＋91），MMM	$1110 \times 9.110 \times 1$			
＊	$\begin{aligned} & 22 \mathrm{NI} \\ & 2: 4 \end{aligned}$	216	2．f6	211	1	214 224	$\begin{aligned} & 2111 \\ & 215 \end{aligned}$
	6 17011 Hm	1．106，（1）			111．01711	P ：\％U，cald	4，146， 46×1
11	f．f（41）．（ma）	（1， 8 （x），（mm）	f1． $3^{3} \mathbf{1 1} 1 \mathrm{~mm}$	（1，1411，（1）．4）	（1）Al｜l	1， $10,1 \times 1)$	filletimm
	－$\therefore 10.0 \mathrm{MmI}$	＋111．6M11）	＋2911， 10 Mms	4 210，	\＄（1）．06 61	4．220，（6）	4，fris）inm
C．．．\cdot	4．（IU， 1 mm$)$	＋． 250 trm	$4.19016(10)$	4.241 .410 Cl		4． $3.16,14 \times 1$	－ $\tan (1,4 \mathrm{~mm})$

			（ritu）	t．	E．＊＊）	MI	H＇LY	（1v	いと +	H ${ }^{\text {d }}$	NTH			
I．．n．ul（in ｜xhtuly	sille 1	Snld 1	Sult 1	Mals 1	inull 1	$\begin{array}{ll} \mathrm{Ni} \\ \mu \end{array}$	situle 1	sinte I＇	sille $1!$	Sicte 18	Sinle	sinte	sinfe （I）．	sivile I＇
1，（xx）	0	13	11	1.	1	（1）	11	0	11	11	11	0	$(1$	13
$2,(x) 0$	3	4）	27	30	311	W	311	（1）	（1）	311	3 s	－5	36	36
	（u）	55	55	（\％）	(3)	（II）	（11）	（x）	（3）	55	こう	5.5	（x）	（w）
f，（MM）	131）	V5	4.5	（1）	（H）	（16）	（1）	（1）：	（M）	＊ 5	＊	＊S	\cdots	（1）：
S．1\％\％：	130	115	115	120	1211	121）	$1 \therefore 1$	115	115	110	＋	111	115	125
（B，（MK）	115	$1+5$	145	115	1511	151	1501	14.5	$1+5$	1\％	1.5	1111	11.5	11.5
$7,(x)$	17.5	175	17．5	175	$1 \mathrm{INO}_{1}$	INe，	141	17.7	17%	1；い	1，5	1711	1.60	17.5
$\left.X_{0}(x) x\right)$	2110	2115	2い5	2111	210	3111	205	ご）	－15	1リ゙	If $\mathrm{m}^{\text {a }}$	195	205	310
1）．000	210	215	2.3	21）	± 10	$\pm 1+3$	235	23	± 3	－ 2.5	2.35	230	2.35	210
\＄，0001	210	205	20．5	2101	210	3111	い5	205	ご5	1リ5	205	105	2119	110
7.001	liso	IN：	175	（Si）	140	1801	－4	175	17.5	170	1－5	1：11	1\％．	190
	1.511	115	145	1\％	176	15	1511	1\％	$1+5$	135	115	$1+6$	$1+5$	1511
$5,(x)$	126	115	115	1，（1）	12	121	1211	1：5	115	いい	115	115	115	1261
1 （ \times（ x ）	（x）	N：	N5	（x）	（x）	（H）	（1）（1）	（a）	内	M\％	4	人	$\cdots 5$	141
$3 .(1)$	（x）	เร	55	（iv）	（6）	（n）	（1）	－	5\％	（H）	（H）	（1，	（16）	（11）
3,1000	30	31	2.5	36	（4）	311	30	（0）		31	\％ 11	30	311	30
$1,(x)$	0	（1）	い	d）	\bigcirc	0	（）	0	11	（）	0	0	0	0
LATHRAL．HXTEVSI，v－Y LLbuntis，														
1，OCS）	0	0	0	0	${ }^{13}$	0	11	$1)$	＂	0	（）	(1)	0	（）
2，（\％x）	22	22	21	：2	11）	22	213	111	＇1？	11）	20）	14）	21	211
3，（10x）	＋4	4.5	42	45	ぶ	16	！ 2	［1）	（1）	41	11	14	12	12
$4(x)$	6，${ }^{\text {H }}$	f， 5	（16）	6x	（6）	（11）	fi	（1）		\％ 11	15	（a）	（H）	61.
50×3	S1）	Si）	88	W1）	Ni	リ）	\cdots	－ 1		M1	－11）	74	（s）	$\therefore 3$
（1，1x）	111	111	$1(\mathrm{Cl}$	111	103	115	1 ＇	16%	［1］${ }^{1}$	（1）	101）	（18）	（1m）	1013
7，0x］	132	133	129	1.3 .1	121	136	$1{ }^{1}$	120	121	1：2	1.3	12？	122	122
8,000	153	156	151	1513	$1 \downarrow^{\prime}$	［（190）	17	145	11.5	112	15ミ	$1+7$	$1+1$	$1+1$
9.000	173	175	172	171）	1－1）	［St）	17	1（11）	（111）	11.5	1：10	165	117	1 1， 7
$8,(0) 0$	155	15.5	152	157	1＋4	163	159	1 1＇）$^{\text {（ }}$	111	＋1．5	15.5	147	$14{ }^{14}$	147
7,000	1.15	1.33	130	1.35	125	1.41	1.15	129）	120	12.5	1313	125	125	12.5
$6,0 \mathrm{~mm}$	11.3	112	110	115	103	11.5	163	1183	105	1195	112	115	10.3	116
5，（x）${ }^{\text {a }}$	1） 3	101	90）	（r）	M，	10	St）	85	88	4.8	（\％）	N5	82	No
	71	71	－0	70	1.1	6.5	61	62	612	6.2	（11）	6.5	62	（14）
$3.1 \times(0)$	19	4.5	4.5	（1）	f1	12	$4{ }^{10}$	42	11	11	＋ 5	$+3$	42	19
2,000	22	2.3	2.	2.5	21	20	20	21	：1	－1	22	22	22	28
1，000	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Determinations of the cubic compressibilityonglass, I ' have been marle by other observers using various methods The results go to show that different valieties of glas vary comsiderably in their eompressibility 'lhesedeterminations may be tabulated as follows:*

As will be seen, the figures obtaine for plate glass in the present investigat tion lic a little above the average of the varions values here given, and re nearly those of the highest value ohtained by liverett

SUMMARY OF RESULTS.

The table on page for wives a smmantr of the arerage values obtaned
 With these are placed, ion purpuses of comparionh, the rebults obtained for these eonstants in the case of wronght irm, cast iron and glass lin the secomal table an parge oy these vahes are arain presented, recalenated into C. (; stults
 compressibility, but the several member, of each gromp igrering liarly closely allongy themselves.

These thate gromps show al corresponding difference in composition

 which is vere nuth fincer in qrain than the others and breaks almost like a piece of elacs, has al vervemelh higher value ior /f than that posisesed by the other rocks which amones thembelses are nearly incotical fif we onit this Belgian

The second group ermprise the eramites These atsan show al close agree-
 Which rock, as already mentiond shows a defoctive clasticity. The arerage

The third gronpembraces the basic int rasives (gabbro, anorthosite, essexite,

 therefore properly speaking ann acid rock: in its freedom irom quartz, and its richness in fodepar (althomgh the feldspar is largely orthochase bustead of placioclas(9), in mincralogrical componition bedongs with these basie rocks rather than with the granites It alsapproachesthe essexite most nowry in its compressibility

 thave been there recalenatited into inch-prund values.

If the nepheline srenite be included with the basie rocks, an average value of I is obtained of 8.308 , (xom.

This omits from consideration the sandstone, it being a rock of an entirely different elass from the others, and furthermore one which shows so nuth hesteresis that the application of this methen to it is less satisfatery than in the case of the ather rocks of the series.

These results may be presented as fotlows:

The canse of the much greater eompressibility of granite as empared with the marbles and basie intrusives is not clear. but would seem to be comeeted with the presence of quartz. The only determination of the cubic eompressibility of quartz, \& far as ean be ascertancel, is one by Voigt,* the value whtaned being $5.50+100$ pounds (387×10^{6} grams per sif emi) This compressibility, is will be secol, is moll greater that that fomed in the ease of either the limestones or the basie intrusioes, and while not in itself suffiecontly great to aceome for the high compressibility of the granites, goes to show that in the quartz we have a minerat which is more compressible than the ordinary rock making minerals which form the chicf constituents in the roeks of the series examined

The marbles and the limestones of the earth's crist are confined to its most superficial portion. resulting as they do from the process of sedintentation. There is evere reason to believe, however, that what we may term the substructure of the earth's ernst is emmposed of acid and basie plutonic igneons rocks These make up the lowest part of the crnst to which we have access and are found eoming up from the still greater depths.
The enbie compressibility D of the earth's crust must lie between the values given above for the granites and the basic intrnsives, approaching one or other of these values aecording to the relative proportion in it of one or other of these elasses of rocks.
If we take the average of the values obtained from these two elasses of rocks at re presentel by the seven granites and the five basic intrusives (including the nepheline ssenite) the values obtained for D of $6,3.53 .500$.

This, as will be seen, differs but little from the valne of D obtained for plate glass which i!s $6,448,000$

If, therefure, the earth's ernst be composed of granite and basic igneous roeks in approxinately equal proportions, its compressibility witl be that of glass If it be composed almost exchsively of granite, the earth's crust will be more

[^7]compressible than glass, and if the basic rocks preponderate very largely it will be less compressible than this substance.

It is, however, in any ease mueh more compressible than steel, which has

The compression to which the roeks were subjected in this investigation
 however, were subjeeted to a load of from 9, (ox) to $15,0(x)$ pounds per square inch, and their bulk compresion was determined for these loads as maxima Higher pressures could not be employed without rmaning the risk of breaking the speeinen and at the same time of destroving the measuring apparatus. One apparatus was in fact so destroyed

The questinin ariss as to whe ther muler still higher pressures, if rupture eonld be awoded, the ratio of load to compression would be maintained Judging from the deportuent of much stronger substances such as steel, when similarly testerl, it is inferrel that this ratio of bulk emupression will remain eonstant ior very much highor presiures, or until deformation sets in and the rock begins to flow.

With reyarel to the accuraer of the results obtained by this method as compared with those obtainable byany methon in whel eubie eompression is actually produced and meisured, it may be observed that by far the best method of this kiad hitherto suggested seems to be that proposed by Rehards and Stull \dagger We have endeavored to make use of this method in order to obtain results for purposes of comparison with those given in the present paper but havenot hithertos suce eded in owereming certain experimentaldifieulties. The experimental errors in this method, thongh apparently small, still exist, and in applyins, it to rocks, which are much less compressible than the sub)stanees examined be Rechards and stull, these errors beeme proportionately more serious Moreoser, higher pressures than those need in the method emplowel in the perent paper contd sarecty be emplosed in this diret method, while difficula.s depentent on the possible lack of absohnte contin nity in the subitance of the roek and the dauger of minnte air-fithed spaces wont probable present the onselves in the catie of most rocks It seems that, all thiugs being emsidered. the indireet method here employed is probably as aceurate as any direct method which can be used The attempt to apply Richards and stull's mothon to rocks is still being eontianed, howerer. and it is loped that satisfactory remoles may be eventuaty obtained by: its use

[^8]Ela stic Constants of Rockr.
SUMM RY OF RESULTS (AVERAGE) IixPRESSED IN INCHPPOUND (iNITA.

SUMmary of Results (Average) Expreserd in c. C. S. Units.

[^9]

[^0]:

[^1]: *See Proceedings Royal Soc., Edinburgh, Session 1904-5. Vol. xxv, pt. vi.

[^2]: FIolistic Constants of Rocks amb the Velocity of sciomic Wares. II. Nugama, Phil. Mag., vol L, syoo, p. 5%.

[^3]:

[^4]: North of the Istand of Montreal. Annual Report of the Geolugical Survey of Canada, Part J, vol, viti, 1896, p. 111 .

[^5]:

[^6]: *Adams F D. Op. cit., p. 121.

[^7]: *Gumed in Hecker: lixperiments on Schistosity and Shaty Cleavage, Bulletin $z+1$, U. S. Geol Survey, p. 32.

[^8]: *llustrations of the C. C. s S. System of thits, with lobles of Plysical comstants. Mas Millath \& Cor , 1902, p. fos.
 \dagger New Melthod of Determining Compressibility. Publicherl by we Carnegie Institution of Washington, December, $100,3$.

[^9]: -See pake 57

