

SIXTH ANNUAL REPOḰRPRTO
 OF THE
 ONTARIO
 AGRICULTURAL COLLEGE
 AND

 EXPERIMENTAL FARM,

 EXPERIMENTAL FARM,
 FOR 'THE YEAR ENDING 31sT DECEMBER,
 1880.
 Eyrinted by order of the gegistative gssembly.

©raronto:
PRTNTED BY O. BLAOKETT ROBINSON, 5 JORDAN STREET. 1881.

CONTENTS.

I. THE PRESIDENT'S REPORT.

Page.

Bill of Incorporation 1

The Course of Instruction in the College 4
Work of Winter Term 14
" Spring " 20
" Summer " 22
" Fall ". 28
The Boarding House and College Buildings 28
The Business Department... 30
Recommendations 34
Ground plans and description of the College Buildings, prepared by the Architect of the Department of Public Works 36

Appendicks :
Appendix A. Copy of Circular for 1880 38
". B. Time Table for Fall Term 49
" C. 1. College Roll for the year 1880 58
" " 2. College Roll for the Winter Session (1st Oct. to 31st Mareh) 56
D. 1. Examination Papers, Easter, 1880 58
" " 2 " June, " 74
" " 3. Matriculation Examination Papers, October, 1880 ... 81
" E. Class Lists, Easter Examination... 83
" F. 1. Appropriation Expenditure for 1880... 89
" " 2. Statement of Revenue for 1880 89
" " 3. Estimated Expenditure for 1881 90
" " 4. The College Account with Farm and Garden 91
" G. Agrieultural Education in Germany and the United States... 92

40941

II. REPORT OF PROFESSOR OF AGRICULTURE AND FARM SUPERINTENDENT
Introduction.
L.-The Weather Pagr.I. Diagram of daily Temperature, Atmospheric Pressure and Rainfall, Summer1880
2. Chart showing Temperature, Atmospheric Pressure and Rainfall of 1880 4
II.-The Firld.

1. Farm Plan and Cropping

$\begin{array}{llllllllll}\text { Hay ... } & \text {... } & . . & . . & . . & . . & . . & \ldots & \ldots & 6,12,15 \\ \text { Potatoes... } & & & 6,11,12,16\end{array}$
Carrots 6, 12
Oats
, 18, 14,
Barley ...
... 8
... 8
Summer Fallow
8
8
Corn Fodder 8
Turnips
9, 15
Fall Wheat
10
10
Tare and Oat Fodder..
13
13
Peas
Peas 18, 14, 15
2. Oropping Results-abstract 14
3. Discussion on results of Farm Cropping 16
4. The cost of producing crops during the last five years 17
5. Abstract of cost, produce and profit per acre 18
III.-Thr Live Stock.
What a Model Feeding Steer should be.. 22
6. Illustrations of a Model Steer. 23
7. Public Sale of Surplus Live Stoek 26
8. Comments on average prices realized 26
9. Public patronage to our varions Rams 28
10. Increase to Live Stoek.. 29
IV.-The Garden.
11. Vegetables
12. Fruit 30
13. Flowers 30
14. The Arboretum 31
15. The New Orehard 81... ..
16. Tree Clumps and Shade Trees 32
V.-Ter Mrohanical34VI.-Farm Instruction84
VII. -The E
17. Fatten
18. Fatton
19. Cream
20. Di
21. Milk a
22. The eff phate
23. Three
24. The eff
25. The eff
26. Five ye
27. Apatite
28. Produe
29. An earl
30. Grasses
31. Potatoe
32. Green F
33. Lue
34. Pri
35. Spr
36. Tar
37. Sair
38. Indi
39. Rap
40. Tho
41. Permane
42. Barley-
43. Oats- 30
44. The gro
VIII.-Arboric
45. The Onta
46. Replantir
47. Tree Seei
IX.-General
48. The Soili
49. The pract of Live
50. Hand-Bo
51. The prese
X.-Estimates

The Ontario
XI.-Concluding

Appendix-I
VII. -The Experimental.

1. Fattening of young eattle Page.
2. Fattening of young sheep\quad... 86
3. Cream and Butter from different breeds 40
4. Diagraras of cream and Buttereads of cows 48
5. Milk 48
6. The effects of bone dust, Gypsum, Nitrate of Sow... 48
phate applied in 1878... Syada and Mineral Superphos-
7. Three years' cropping after Farm-yard Manure and three $\begin{array}{lllllll}\text { Special } & \ldots & \ldots & . . . & & 50 \\ \text { Fertilizers... } & 51\end{array}$
8. The effects of manures upon wheat 54
9. The effects of 19 varieties of manures on wheat ... $\quad .$.
10. Five years' experience of 83 forms of fertilizers...\quad... $\quad .$.
11. Apatite upon Fall Wheat 63
12. Produce of Roots at various distances apart on the drill ... $\quad . .$.
13. An early eatch of Mangolds and Carrcis 65
14. Grasses and Clovers\quad......
15. Potatoes
16. Green Fodders 67
17. Lucerne 67
18. Prickly Comfrey 67
19. Spring Rye
20. Tares and Oats 68
21. Sainfoin 68
22. Indian Corn... 68
23. Rape 68
24. Thousand-headed Kale, or Tree Cabbage $\quad . .5 \quad$... $\quad .$.
25. Permanent Pasture

VIII.-Arboricultural.
26. The Ontario Farmers' Text Book
27. Replanting uncultivated land with bush trees 77
28. Tree Seeds 79
IX.-General Subjects.
29. The Soiling of Cattle in Canada
30. The practical application of scientific knowledge to the feeding and fattening
of Live Stock 80
88
31. Hand-Book to Canadian Cereals...
32. The present importance of different grades of wool...
X.-Estimates and Recomméndations for 1881 97

The Ontario Agricultural and Experimental Union 97
XI.-Concluding Remarks 99

Appendix-Inventory and Valuation

0 NTAR

YEAR COM

To the Honourab Commi

Sir,-I hav done in the Ont nual Report of t

On the 11th the College a leg somewhat minut tario Agricultura

No. 60.]

Her Majesty, by bly of the Proviz

1. The Schoo Wellington, in t agriculture, hort ments relating th name of the "On

REPORT OF THE PRESIDENT

0NTARIO AGRIOULTURAL COLLEGE,

 GUELPH,FOR THE
Year commencing 1st Jandary and ending 31st December,
1880.

> Ontario Agricultural College, Guelph, 31 st December, 1880.

To the Honourable S. C. Wood, Commissioner of Agriculture for the Province of Ontario.

Sir,-I have the honour to submit for your consideration a brief report on the work done in the Ontario Agricultural College during the year 1880, which is the Sixth Annual Report of the institution.

On the 11th February last the Legislature of the Province finally decided to give the College a legal status ia the country by passing the following Act, which defines somewhat minutely the objects and scope of what is henceforth to be known as the "Ontario Agricultural College and Experimental Farm ":-

No. 60.]
BILL.
[1880.
An Act respecting the Agricultural College.
Her Majesty, by and with the advice and consent of the Legislative Assembly of the Province of Ontario, enacts as follows :-

1. The School of Agriculture, heretofore established in the county of School of Wellington, in this Province, for instruction in the theory and practice of Agriculture agriculture, horticulture and arboriculture, and the conducting of experi- continued. ments relating thereto, is hereby continued, at its present site, under the Site. name of the "Ontario Agricultural College and Experimental Farm."

Nature of instruction.
2. The said college shall be furnished with all applianoes, sach as land buildings, implements, tools and apparatus generally, as may be necessary for theoretical and practical education in agriculture, hortioulture and arboriculture, and the course of instruction tharoin shall be with reference to the following subjeets :-
(1) The theory and practice of agriculture;
(2) The theory and practice of horticultur9;
(3) The theory and practice of arboriculture;
(4) The elements of the various sciences, especially chemistry, (theoretical and practical), applicable to agricultare and horticulture;
(5) The technical English and mathemstical branches requisite for an intelligent and successful performance of the business of agriculture and horticulture ;
(6) The anatomy, physiology, and pathology, of the ordinary farm animals; with the characteristics of the different varieties of each kind; with the management thereof in the breeding, raising, fattening, and marketing of each, and with a knowledge of the cheese and butter factory systems ;
(7) The principles of construction and skilful use of the different varieties of buildings, fences, drainage systems, and other permanent improvements, machinery, implements, tools and appliances necessary in agricultural and horticultural pursuits ;
(8) And such other subjects as will promote a knowledge of the theory and practice of agriculture, hortieulture and arboriculture.

Practical edueation insisted upon.
3. The education and instruction shall be at once theoretical and practical, the former known as a course of study and the latter as a course of apprenticeship; and a time, not less than three and not more than five hours daily, on a yearly average, shall be spent in undergoing the latter, and for the encouragement of such labours, an allowance in part liquidation of expenses may be made; yet, notwithstanding, the course of apprenticeship may be dispensed with, if a satisfactory examination be previously passed in all the operations therein required.

Nature of experiments.
4. Experiments with the different varieties of cereals, grasses, anu roots ; of trees, plants, shrubs, flowers, and fruits; with different modes of cultivation; with different manures ; with the breeding, raising, and fattening of animals; with the products of the dairy; and with whatsoever else may be of practical berefit in adding to the knowledge of the facts, principles and laws of the science and art of agriculture, horticulture, and arboriculture under the climatic conditions of this Province, shall be carried out on the experiPublication of mental farm; and the modes of procedure and results published from time proeedure and to time.
results.

Rules, regulations and curriculum of the College.
5. The government of the college shall be under and according to cuch rules and regulations as the Lientenant-Governor in Council may from time to time prescribe ; snd such rules and regulations shall contain provisions for thestandard and mode of admission, the course ofstudy, and apprenticeship in each branch in which instruction is given, and may authorize diplomas, certifica/es of proficiency, scholarships, or other rewards to be given, after examination, in any of such subjects ; and may also imposereasonable fees for attendance.

[^0]7. There sh sion; the winter the thirty-first teenth day of A time between ti stitute the regul
8. The Lieute Toronto for the only to the exter the examination scholarships, dil under its statute lowed to confer.
9. In connecti and horticulture, ting thereto, in o of the agricultura botanical and che manures may sen inspection and tes fit and protection
10. It shall be of the Province to personal or real p for the purposes o
11. The Lieute my be deemed ext tendance on public religious worship, tive ministers, ac every facility shall
12. Full reports nually returned an shall, amongst oth
(1) A tabular sta tending in each ses occupation of the p dent attended, and
(2) A return of t of the instruction g
(3) A copy of the and the results ther
(4) A summary
(5) A clear and s
the various experim
(6) A detailed ste farm for the year ;
(7) A copy of all tenant-Governor in the course of study
(8) A comparativ farm from year to y
oes, sach as land may be necessary ieulture and arboth reference to the
emistry, (theoretiure ;
requisite for an inriculture and hor-
rdinary farm anif each kind ; with g , and marketing ctory systems ; different varieties nt improvements, a agricultural and
lge of the theory
retical and practiter as a course of re than five hours he latter, and for liquidation of exof apprenticeship pviously passed in
asses, anủ roots ; modes of cultivaand fattening of ever else may be cinciples and laws boriculture under ut on the experilished from time
coording to cuch il may from time ntain provisions nd apprenticeship thorize diplomas, o be given, after ereasonable fees
o time appoint a its, and servants y for the efficient s , and may pass
7. There shali be two sessions in ench year, and two terms in each ses- Seassions,terms sion ; the winter cession shall open on the first day of October, and close on and vacations. the thirty-first day of March; the summer session shall open on the sixteenth day of April, and close on che thirty-first day of August ; and the time between the closing and opening of the respective sessions shall constitute the regular vacations.
8. The Lieutenant-Governor in Council nlay agree with the University of Affliation of Toronto for the affiliation of the said Collega with the said University, but we collegg of only to the extent of enabling the students of the said college to obtain at wersity of nithe examinations of the said university such rewards, honours, standing, Toronto. scholarships, diplomas and degrees in agriculture as the said university, Coronto. under its statutes and the Acts of the Legislature in that behalf, manersity, lowed to confer.
9. In connection with the college there shall be a museum of agriculture Museum and and horticulture, together with the scientific and technieal branches rela- Laboratory. ting thereto, in order to afford aids io practical instruction, snd illustrations of the agricultural and horticultural products of the Province; as well as a botanical and chamical laboratory to which vendors of seeds and artificial manures may send such seeds and manures, in order that after the proper inspection and tests their purity and strength may be reported for the benefit and protection of the agricultural community.
10. It shall be lawfui for the Lieutenant-Governor in Council on vehalf Gifts, be of the Province to acuept, hold and enjoy any gifts, bequests, or devises of quests, \&e., to personal or real property or effeets shich any person may think fit to make soum or or Mufor the purposes of the said college, museum or laboratory.
11. The Lieutenant-Governor in Council may make such regulations as No religious my be deemed expedient touching the conduct of the students, and their at- test or profes. tendance on public worship in their respective churches or other places of tion required; religious worship, and respecting their religious instruetion by their respec- ties given for tive ministers, according to their respective forms of religious faith, and acquiring relievery facility shall be afforded for such purposes.
12. Full reports of the progress of the said college and farm shall be an- Reports and nually returned and submitted to the Legislative Afsembly, which reports returns to the shall, amongst other things, contain :-
(1) A tabular statement with the name and residence of each student at Assembly. tending in each session of the year, together with the name, residence and occupation of the parent or guardian, the number of classes that each student attended, and his progress and efficiency therein ;
(2) A return of the professors, instructors and assistants, with a summary of the instruction given by each;
(3) A copy of the examination papers used in the sesaional examinations, and the results thereof;
(4) A summary of the operations in the various departme :ts of the farm;
(5) A clear and succinct account of the modes of procedure and results of the various experiments carried on during the year; farm for the year ;
(7) A copy of ail rules and regulations made during the year by the Lieu-tenant-Governor in Council, regarding the standard and mode of admission, (8) A comparative statemense of apprenticeship; farm from year to year.

In pursuance of the objects stated in the Bill, the work has been carried on conjointly by the Farm Superintendent and myself, each of us being the independent manager of certain departments. The outside departments are-

$$
\begin{aligned}
\text { I. } & \text { The Farm Departagent. } \\
\text { I. } & \text { The Live Stock Departaget. } \\
\text { III. } & \text { The Horticultural Departigent. } \\
\text { II. } & \text { The Mechaidal Department. } \\
\text { V. } & \text { The Experimental Department. }
\end{aligned}
$$

These are entirely under the control of the Farm Superintendent, and for a full account of the year's operations in each, I have pleasure in referring to Mr. Brown's exhaustive Report in the second part of this volume. The inside departments comprise-

$$
\begin{aligned}
& \text { I. } \text { The Course of Instruction in the College. } \\
& \text { II. } \\
& \text { IIfe Boarding House and College Buidings. } \\
& \text { Iti. } \text { The Business Deparvient. }
\end{aligned}
$$

For all these I am directly responsible, and having had full charge of them during the past year, I shall now proceed to report briefly under each head.

I. The Course of Instruotion in the College.

The regular course of study is one of two years, and embraces the following subjects:

First Year.-Agriculture, Live Stock, Inorganic Chemistry, Organic Chemistry, Veterinary Anatomy, Veterinary Materia Medica, Zoology, Structural nnd Physiological Botany, Geology and Physical Geography, English, Book-Keeping, Arithmetic, and Mensuration.

Second Year.-Agriculture, Live Stock, Agricultural Chemistry, Veterinary Pathology, Veterinary Surgery and Practice, Systematic and Economic Botany, Entomology, Meteorology, English Literature, Political Economy, Book-Keeping, Mechanics, Levelling and Surveying.

During the past year, these subjects were taught by a staff of five lecturers, as follows:-

1. James Mills, M.A., President. $\begin{cases}\text { (1) } & \text { English. } \\ \text { (2) } & \text { Poortical Econ } \\ \text { (3) } & \text { Strucural and } \\ \text { (4) } & \text { Zoology. }\end{cases}$
2. William Brown, Esq., Gold
Medalist of the Highand and $\begin{aligned} & \text { (1) }\end{aligned}$ Agriculture.
Agricultural Society of Scot-
(and.
(1) Chemistry-Inorganic, Organic, and Agricultural.
3. J. Hoyes Panton, M.A.
(2) Geology, Physical Geography, and Meteor-
ology.
(3) Systematic and Economic Botany.
(4) Entomology.
4. E. A. A. Grange, V.S.-Veterinary Anatomr, Pathology, and Materia Medica, with the Practical Handling and Judeing of Horses.
5. Alexander McTavish-1st Class
Provincial Certificate. $\left\{\begin{array}{l}\text { (1) Arithietic, Mensuration, Meghanics, Levv- } \\ \text { Elling, and Surveying. }\end{array}\right.$
(2) Book-Keeping.

The scholastic eaph session into tr
$\tau_{\text {eectures comm }}$ terms-from the 1 st were engaged in clas ing been spent at th hours in two weeks f of the Wellington Fi Course was-
making from nine to farm work. While second year students noon, came in for le inside and the practi spring terms.

In order to pla correct outline of the syllabus of the lectur departments during ending the 31st Augu of the first and the s year, being devoted syllabus, but will be t

Introductory.-An sciences affecting agri
carried on conthe independent
or a full account own's exhaustive prise-
of them during
the following
Chemistry, Vetersiological Botany, Mensuration.
rinary Pathology, logy, Meteorology, and Surveying.
five lecturers, as
cal Botany.
anic, and Agrihy, and MeteorBotany.

Tateria Medica, Mechanics, Lev-

The scholastic year, which begins on 1st October, is divided into two sessions, and each session into two terms :

> Sessions.
> Winter Session (1st October to 81st March). Summer Session (16th April to 81st August).

Termb.

Fall Term (1st October to 22nd December). Winter Term (5th Jan. to 81st March). Spring Term (16th April to 30th June). Summer Term (1st July to 31st August).
$J_{\text {iectures commenced on the } 1 \text { st October and continued throughout the first three }}$ terms-from the 1st October to the 30th June. During that time all regular students were engaged in class-room work and manual labour alternately-three hours a day having been spent at the former and from four to five at the latter. To this were added five hours in two weeks for set-up drill and gymnastics under the very efficient drill sergeant Course was- Sillington Field Battery. So that the daily routine of every student in the Regular

> Lectures, three hours a day (excepting Saturday),
> Manual labour, four to five hours a day,
> Study under a master, two hours a day,
> Drill, one hour a day (for five days of every alternate week),
making from nine to ten hours a day, for nine months of the year, devoted to college and farm work. While the first year students were attending lectures in the College, the second year students were engaged outside. Those that went out to work in the forenoon, came in for lectures in the afternoon, and vice versa. Thus the theoretical work inside and the practical work outside went on simultaneoukly during the fall, winter, and spring terms.

In order to place systematically and clearly before the readers of this report a correct outline of the literary work done in the institution, I have drawn up the following syllabus of the lectures delivered by the professors in the several departments and subdepartments during the scholastic year commencing on the 1st October, 1879, and ending the 31st August, 1880. The work of each term is given separately, and also that of the first and the second year students. The summer term, which is the last in the year, being devoted entirely to work in the outside departments, is omitted from this syllabus, but will be treated of further on.

> Outline of Class-Room Work.
> (1st October to 30th June.)

First Year.
Fall Term-1st October to 22nd December.
Department 1.-Agriculture.
Introductory.-Ancient and modern agriculture ; agricultural literature ; arts and sciences affecting agriculture; different kinds of farming.

Reclamation of Land.-Clearing, stumping, stoning, fallowing, etc.
Soils.-Origin and distribution of soil ; natural conditions of soil and plant; examination and classification of soils ; physicel and chemical properties of each kind.

Rotation in Cropping.-Importance and necessity of rotation ; principles underlying it ; rotations suitable to different kinds of soil; examination and criticism of different systems of rotation.

Buildings.-Location of house, barn and stables ; framing a building; stables for horses, sheep and cattle ; arrangement of farm buildings.

Implements and Machinery.-Principles in construction of implements and machinery ; points to be aimed at ; classification, examination, and description of the same.

Miscellaneous.--Roads, lanes, fences, wells, etc.

Department 2.-Science.

Cheinical Physics.-Matter, accessory and essential properties of matter ; attraction, various kinds of attraction-cohesion, adhesion, capillary, electrical, and chemical; specific gravity; weights and measures ; heat, measurement of heat, thermometers, pyrometers, specific and latent heat; sources, nature, and laws of light; spectrum analysis.

Inorganic Chemistry.-Scope of subject; elementary and compound substances ; chemical affinity ; symbols; nomenclature ; combining proportions by weight and by volume ; atomic theory ; atomicity of the most important elements ; oxygen and hydrogen ; water-its nature, functions, decomposition and impurities ; nitrogen; the atmos-phere-its composition, uses, and impurities ; ammonia-its sources and uses ; nitric acid and its connection with plants; carbon; combustion ; carbonic acid and its relation to the animal and the vegetable kingdom; sulphur and its compounds; manufacture and uses of sulphuric acid; phosphorus; phosphoric acid and its importance in agriculture ; chlorine-its bleaching properties ; bromine; iodine; silicon, etc.

Natural History. - Nature of life; vital force; difference between animals and plants; morphology and physiology; homology and analogy ; definition of species ; classification; subdivisions of the animal kingdom; characters of the classes and most important orders of Invertebrates ; general characters of Vertebrates ; classes and orders, with a brief description of each.

Department 3.-Veterinary Science.

Anatomy and Physiology of the horse, ox, sheep and pig; osseous system, muscular system, syndesmology, plantar system, and odontology.

Department 4.-English.

- Lectures on Composition.-The sentence, the paragraph, and the period; capitals and punctuation; style-its qualities and varieties. Exercises in Composition.

English Classics.-Committing to memory, and critical study of "Gray's Elegy in a Country Church Yard."

Department 5.-Mathematics.

Arithmetic.-Review of subject, with special reference to farm accounts; tables of weights and measures discussed; compound proportion, interest, discount, stocks and partn ${ }^{\text {orship. }}$

Mental Arithmetic.-Calculations in simple rules, fractions, and compound rules.

Breeding, rear what kind of anima

Horses.-Differ horse required for f

Cattle.-Histor shires, Jerseys, Dev milch cow ; breedin

Sheep.-Breeds sheep; short-woole quality, quantity, an

Swine.- Sharac curing, etc.

Inorganic Chem
Organic Chemist and their derivative tannic acids. Const albuminoids, or flesh quinine ; classificati

Natural Histor Insecta. General ch and physiological dis of the families of t Mammalia containing

Veterinary Anat digestive system, circ sensitive system, gen

Lectures on Com discussed and correct

Exercises in Com and essays ; letter wr

English Classics. "Traveller."

Arithmetic.-Equ ship; alligation; exel

Book-Keeping-B field, and garden acco
plant ; examikind. les undérlying m of different
g ; stables for nts and man of the same.
r ; attraction, nd chemical; hermometers, ht ; spectrum

1 substances ; eight and by en and hydroa; the atmos; nitric acid its relation to ufacture and agriculture ;
animals and of species ; ses and most sand orders, t, stocks and and rules.

First Year.

$$
\text { Winter } \text { term-5th } J_{A n u a r y ~ t o ~}^{\text {to }} \text { 81st March. }
$$

Department 1.-Agriculture.

Breeding, roaring, and feeding of animals. Points to be considered in deciding what kind of animals to keep.

Horses.-Different breeds of horses, and leading characteristics of each; type of horse required for farm work; breeding, feeding, and general management.

Cattle.-History and characteristics of Shorthorns, Herefords, Polled Angus, Ayrshires, Jerseys, Devons, Galloways, etc.; grade cattle ; milch cows-points of a good milch cow ; breeding generally, cross-breeding, in-and-in breeding ; pedigree.

Sheep.-Breeds of sheep generally considered; long-wooled sheep ; medium wooled sheep; short-wooled sheep; crosses between different breeds compared; texture, quality, quantity, and uses of different kinds of wool.

Slvine.- Oharacteristics of various breeds ; management of sows; stores ; bacon
ing, etc. curing, etc.

> Department 2.-Science.

Inorganic Chemistry.- Subject continued from Fall Term.
Organic Chemistry.- Constitution of organic compounds; alcohols, aldehydes, acids and their derivatives; formie, acetic, oxalic, tartaric, citric, lactic, malic, urio and tannic acids. Constitation of oils anて̉ fats-saponification; sugars, starch, cellulose ; albuminoids, or flesh formers, and their allies ; essential oils; alkaloids-morphine and quinine ; classification of organic compounds.

Natural History.-Subject contirued-Special study of Infusoria, Scolecida and Insecta. General characters of the Vert:brates- -the various orders, with morphological
and physiological distinction and physiological distinctions of each, illustrated by common examples. Special study of the families of the Aves containing the insectivorous birds, and the families of the
Mammalia containing the farm animals.

Department 3.-Veterinary Science.

Veterinary Anatomy.-Anatomy and physiology of the horse, ox, sheep, and pigdigestive system, circulatory system, respiratory system, urinary system, nervoris system, sensitive system, generative system, tegumental system.
Department 4.-English.

Lectures on Composition continued.-Common mistakes in speaking and writing discussed and corrected ; most important figures of speech defined and illustrated.

Exercises in Composition continued.-Exercises in synthesis ; abstracts of speeches and essays ; letter writing.

English. Classics.-Committing to memory and critical study of Goldsmith's "Traveller."

Department 5.-Mathematics and Book-keeping.

Arithmetic.-Equation of payments ; percentage; profit and loss ; stocks ; partnerehip; alligation; exchange.

Book-Keeping-Business forms and correspondence ; general farm accounts ; dairy, field, and garden accounts.

Frigt Yrak.
 Spring Term.-16th April to 30 th Jumb.

Dapartment 1.-Agrioulture.

Preparution of Soil-Modes of preparation for different orops, as wheat, barley, oats, rye, peas, maize ; modes suited to various kinds of soil.

Seeds and Sowing.-Testing the quality of seed; changing seed; quantity of seed per acre; methods of sowing.

Improvement of Lands.-Ordinary cultivation; subsoiling in some eases; fallowing ; draining ; manuring. Farm yard manure, and management of the same ; the properties, application and uses of artificial manures-lime, plaster, salt, bone-dust, superphosphates, etc.

Roots.-Cultivation of roots and tubers-turnips, mangolds, carrots, potatoes; eflects of each kind on soil.

Green Fodders.-Tares, lucerne, sainfoin, prickly comfrey, olovers, grasses; the cultivation and management most appropriate for each.

Management of pastures ; harvesting and preparing crops for market or one's own use ; crops of current year examined.

> Department 2.-Soience.

Geology.-Connection between geology and agriculture ; classification of rookstheir origin and mode of formation, changes which they have undergone after deposition; fossile-their origin, inferences from their presence in rocks; geological periods and the characteristics of each. Geology of Canada, with special reference to the nature and economic value of the rock deposits; glacial period and its influence in the formation of soil. Lectures illustrated by numerous diagrams and specimens.

Physical Geography.-Scope of the subject-earth's place in space, external and internal conditions, atmosphere, ocean, land ; superficial configuration of Ontario ; theory of springs ; classification of lakes ; zones of animal and vegetable life.

Botany.-Structural and physiological botany; internal structure of plants-cells and vessels ; structure and development of the external parts of piants-root, stem, leaf, flower, seed, fruit ; physiology of cells and vessels-chlorophyll, starch, gum, sugar, crystals, etc. ; movements of fluids in plants, respiration, nutrition, reproduction ; hybridization; modes of propagation ; propagation of varieties by grafting, budding, layering, and division ; diseases of plants-smut, rust, mildew, etc.

Department. 3.-Veterinary Science.

Materia Medica.-The preparation, doses, action, and uses of about one hundred of the principal medicines used in veterinary practice.

> Department 4.-English.

Lectures on the subject, and class-room exercises in business correspondence, etc.
English Classics.-Committing to memory and critical study of Scott's "Lady of the Lake."

Department 5.-Mathematics.
Mensuration.-Mensuration of surfaces-the square, rectangle, triangle, trapezoid, regular polygon, circle, sector, segment, etc. Special application to the measurement of lumber. Mensuration of solids-tetrahedron, cube, prism, oylinder, spherical segment, spherical zone, parabolid, frustum of parabolid, spheroid, circular segment of spheroid, etc. Special application to the measurement of timber, earth, etc.

Experimen pease, grasses, ferent crops ; g

Farm Man ferent kinds of crops; fall plou

Stock-Feed ing, feeding, an feeding experin ture ; value of 8

Agricultura ous compounds changes which the decompositi contrasted ; foo of soils ; causes plants in relatic development, an res on different the action of lim cation of foods ; sidered in order

Meteorology of the atmosphe casting the w in its measurem of forests on cli ments used in m fecting climate;

Pathology.bone, as splint,

Muscular S_{3}
Syndesmolog other diseases of

Plantar Sysi
founder, and oth
Odontology

Lectures.-E
history of its forr use and abuse ; \mathbf{p}

Composition.
English Clas.

Sbcond Year.
 Fall Term-1st October to 22nd December.
 Department 1.-Agriculture.

Experimental Plots.-The results of last season's experiments with wheat, oats, barley, pease, grasses, clovers, roots, etc.; liability to disease ; effects of various manures on different crops ; growth of plants, ete.

Farm Management.-Detailed account of the treatment of eachfield ; resultsfrom different kinds of seed and soil; effects of manure ; harvesting, storing, and threshing of crops; fall ploughing; subsoiling, ete.

Stock-Feeding-Value of feedingmaterials; estimate for winter keep of live stook; housing, feeding, and fattening ; points to be observed in selecting animals for fattening; feeding experiments; common diseases of animals ; management of animals on pasture ; value of green fodder. Dairy management and cheese-making.

Department 2.-Science.

Agricultural Chemistry.-Connection between chemistry and agricultare; the various compounds which enter into the composition of the bodies of animals; the chemical changes which food undergoes during digestion; chemical changes which occur during the decomposition. of the bodies of animals at death; the functions of animals and plants contrasted; food of plants, and whence derived; origin and nature of soils; classification of soils ; causes of unproductiveness in soil and how detected; composition of different plants in relation to the soils upon which they grow ; rotation of crops; preservation, development, and renovation of soils ; manures classified, the chemical action of manures on different soils; chemical theories in reference to the action of superphosphates; the action of lime in the decomposition of double silicates; feeding of animals; classification of foods ; chemical results in the use of different foods ; points necessary to be considered in order to obtain the full value of artificial and natural foods.

Meteorology.-Relation of Meteorology to Agriculture ; composition and movements of the atmosphere; nature and manipulation of the barometer, its importance in forecasting the weather; temperature, description of the various instruments used in its measurement and how to use them ; solar and terrestrial radiation; the influence of forests on climate ; mists, fogs, clouds, rain, hail, and snow ; description of instruments used in measuring rain and snow fall ; velocity and direction of wind; causes affecting climate; influence of climate on vegetation.

Department 3.-Veterinary Soience.

Pathology.-Osseous System-Nature, causes, symptoms, and treatment of diseases of bone, as splint, spavin, ringbone, ete.

Muscular System-Nature, causes, and treatment of flesh-wounds, etc.
Syndesmology-Nature, causes, symptoms, and treatment of bog-spavin, curb, and, other diseases of the joints.

Plantar System-Nature, causes, symptoms, and treatment of corns, sand-orack, founder, and other diseases of the foot.

Odontology-Diseases of the teeth and treatment of the same.

> Department 4.-English.

Lectures.-Etymological, syntactical, and rhetorical forms of the English language; history of its formation, its connection with other languages; rhetorical fgures ; their use and abuse ; prose and poetic diction.

Composition.-Essay writing; familiar and business correspondence.
English Classics.-Critical study of Shakespeare's "Julius Cæsar."

Department 5.-Mathematics.

Statics.-The mechanical powers ; friction; the steam engine ; strength of materials ; units of work; etc.

Drainage.-General principles; discharging water-ways; how, where, and when to commence draining ; depth of drains and distance apart ; furrow drains ; draining followed by other improvements; drainage implements ; levelling.

Second Year.

Winter Term.-5th January to 81 st March.

Department 1.--Agriculture.

Laws offecting agriculture ; capital required in farming ; laying out of farm ; general management and economy ; measuring, levelling and draining ; permanent pastures ; inventory and valuation ; cost of production; buying, selling, and marketing ; field experiments.

Management of cattle, sheep and other animals in winter; breeding generally considered; special management of ewes before, during, and after the season of lambing ; treatment of other animals in parturition; rearing of lambs, calves, and pigs ; washing and dipping sheep, etc., etc.,

Arboriculture.-Planting and attendance of forest trees, shade trees, etc.

Department 2.-Science.

Agricultural Chemistry.-Subject continued from Fall Term.
Entomoloy.-Anatomy of insects ; geographical distribution and classification of insects ; metomorphosis of insects; insectsinjurious to vegetation, their habits and the best methods of checking and preventing their ravages-allillustrated by a good collection of specimens.

Department 3.-Veterinary Science.
Digestive system-nature, causes, symptoms and treatment of spasmodic and flatulent colic, inflammation of the bowels, acute indigestion, tympanitis in cattle, impaction of the rumen, and many other common diseases.

Circulatory system-description of the diseases of the heart and blood vessels.
Respiratory system-nature, causes, symptoms, and treatment of catarrh, nasal-gleet, roaring, bronchitis; pleurisy, inflammation of the lungs, etc.

Urinary system-nature, causes, symptoms, and treatment of inflammation of the kidneys, etc.

Nervous system-nature, causes, symptoms, and treatment of lock-jaw, string-halt, etc. and ear.

Generative system-nature, causes, symptoms, and treatment of abortion, milkfever, etc.

Tegumental system-nature, causes, symptoms, and treatment of scratches, sallenders, mallenders, parasites, and other diseases of the skin.

Department 4.-English and Political Economy.

Lectures.-Lectures on accuracy, purity, propriety, clearness, precision, strength, and grace; varieties of style described ; false syntax discussed and corrected.

Composition.-Exercises in impromptu composition and letter writing continued.
English Classics-The critical study of Shakspeare's "Hamlet,"
labour; distr sycles; funct

Dynamic Hydrosta sity; pumps,

Road-Ma

Review of ment, etc.

Systematic classification importance to value for food, collection of w

Practical gases and reag tion, distillatio substances by manures ; inju

Quantitati

Materia M from the Sprin 'pneumonia, the

Lectures. nation-their so beautiful ; wit, Composition English Cla

Surveying. by the theodolite

Political Economy.-Utility; production of wealth-land, labour, capital; division of labour; distribution of wealth; wages; trades-unions; co-operation; money; credit, credit sycles ; functions of government ; taxation; eto.

Department 5.-Mathematics.

Dynamics.-Motion, forces producing motion, momentum, etc.
Hydrostatics.-Transmission of pressure ; the hydraulic press; specifiegravity, density ; pumps, siphons, ete.

Road-Making.
of farm ; geneanent pastures ; keting ; field ex-
g generally conson of lambing ; 1 pigs ; washing

etc.

ssification of inits and the best ood collection of
odic and flatutttle, impaction
vessels.
rh, nasal-gleet,
tion of the kid-
string-halt, etc. pases of the eye
bortion, milk-
atches, sallen-

Second Year.
Spring Term.-16th April to 30th June.

Department 1.-Agriculture.

Review of all past lectures with special drill on outside work. Reasons for manage-

> Department 2.-Science.

Systematic and Economic Botany.-Subject defined; principles considered in the classification of plants-plants classified; orders containing the plants of greatest importance to the agrioulturist described; plants classified in regard to their economic value for food, medicine, fabrics, forage, timber, etc. The course illustrated by a large colleetion of well preserved plants.

Practical and Analytical Chemistry.-Chemical manipulation, preparation of common gases and reagents ; operations in analysis-solution, filtration, precipitation, evaporation, distillation, sublimation, ignition, and the use of the blow-pipe; testing of substances by reagents ; impurities in water; adulterations in foods and artificial manures ; injurious substances in soils.

Quantitative analysis of soils, manures, and farm produce.

Department 3.-Veterinary Seience.

Materia Medica.-The preparation, actions, uses, and doses of medicines-continued froni the Spring Term of the first year. Lectures on special subjects, such as pleuro'pneumonia, the rinderpest, tuberculosis, etc.

Department 4.-English.

Lectures.-Taste, characteristics of taste, standard of taste ; pleasures of the imagi-nation-their sources, viz., the novel, the wonderful, the picturesque, the sublime, the beantiful ; wit, humour, ridicule, etc.

Composition.-Business forms and correspondence ; general letter-writing, etc.
English Classics.-The critical study of Milton's "L'Allegro" and "Il Penseroso."

Department 5.-Mathematics and Book-keeping.

Surveying.-Fields surveyed with chain and cross-staff ; heights and distances found

Book-Keeping.-Review of previous work ; laws relating to farming-deeds, mortgages, notes, etc., with laws relating thereto.

The College Roll, which will be found in Appendix C, gives the names and postoffice address of all students who have been in attendance during the year- 176 in number-some from Quebee and Nova Scotia, and others from Britain; but the great majority from Ontario. Now, as applicants from Ontario have at different times been refused for want of accommodation, the question is asked why any from abroad have been admitted. This I consider a very reasonable question ; and hence I shall explain the why and the wherefore. When applications from Ontario are sent in, I answer them at once, accepting such as are prepared to comply with the terms of admission as laid down in the circular, a copy of which will be foand in the first appendix to this report. As regards applications from other provinces or countries, a different course is pursued. They are generally placed on file, and the question of acceptance or refusal postponed till within a few weeks of the entrance examination. If at that time the applicants from Ontario are not sufficient to fill all vacancies, I admit some from abroad, selecting as far as possible those who intend to buy land and settle here. Thus you see our own people always, and in my opinion very properly, get the preference. Vacancies are kept for them till the time arrives when non-residents must have a definite answer-yes, or no. If after that-within a few days of the entrance examination, or when it is over-some apply for admission and find all vacancies filled̃, I think they should not complain.

I may be wrong, but the following reasons seem to me to justify the course pursued:-

1st. It is generally admitted that if a new country would grow and develop its resources rapidly, it must encourage immigration, and even spend a portion of the public funds in order to secure it.

2nd. The Dominion of Canada, and nearly every province in the Dominion, recognizing this fact, has spent, and is still spending large sums of money to induce emigrants from Europe to come and settle here.

3rd. The eyes of Europe are now turned towards this country, and many young men of good standing with moderate means in England, Ireland, Scotland and Wales are disposed to purchase land and settle among us; but before doing so they wish to acquire some knowledge of Canadian farming and the manners and customs of the Canadian people. Hence they apply for admission to the Ontario Agricultural College.

Now, if these propositions are true, and if such young men are a valuable acquisition to our country, I maintain, that in admitting a few of them from time to time, we have in no way injured, but rather benefited the Province of Ontario, especially since according to present regulations they pay cost price for their board and washing, and a fee of $\$ 50$ a year for tuition.

From the following list it will be seen that the Ontario students are from all parts of the Province. Thirty-one counties and five cities are represented. Of the counties Wellington has the largest number, and Oxford next, while Ottawa has more than any other city, having no less than fifteen representatives. Some, no donbt, will view this as not altogether satisfactory, because they have serious doubts about city boys ever settling down to the life of a Canadian farmer; but to all such I am bound to say that we have no more faithful students than many of the young men from our cities. Their whole work inside and outside shows that they intend to be practical farmers-men who know how both to rule and to be ruled, to work and to superintend.

Counties,
Bruce.
Brant.
Carleto
Durhan
Elgin.
Fronten
Glengar
Grey...
Hamiltc
Halton.
Huron.
Haldim
Kingsto
Lanark
Lincoln
London
Middles
Norfolk.

To this denomination the institutio

From thi one scholastic the minds of

rames and post-

 year-176 in ; but the great rent times been om abroad have I shall explain answer them at on as laid down his report. As rse is pursued. fusal postponed applicants from selecting as far our own people ies are kept for er-yes, or no. t is over-some somplain.tify the course nd develop its on of the public
minion, recogduce emigrants many young and Wales are wish to acquire the Canadian ege.
aluable acquime to time, we specially since ashing, and a

rom all parts

 the counties ore than any will view this ity boys ever nd to say that cities. Their rs-men who| Counties, \&c. | Students. | Counties, ¢c. | Students. |
| :---: | :---: | :---: | :---: |
| Bruce. . . Brant | | Northumberland.. | .. 1 |
| Carleton. | | Ottama City. | 15 |
| Durham. | 1 | Ontario. | 2 |
| Elgin | . 1 | Oxiord......... | 11 |
| Frontenac | 3 | Prescott.... | . ${ }_{1}^{4}$ |
| Glengarry | 2 | Perth | . 6 |
| Hamilton | 5 | ${ }^{\text {Peel }}$ | - 2 |
| Halton.. | | Peterboro | . 1 |
| Huron.. | . 7 | Simeoe. | - 1 |
| Haldimand | 2 | Toronto City | ${ }_{8}^{2}$ |
| Kingston | 1 | Vietoria.... | ${ }_{2}^{8}$ |
| Linanark | | Waterloo. | 4 |
| London City | 1 | Wellang.. | 17 |
| Middlesex | 1 | Wentwor | ${ }_{8}^{1}$ |
| Norfolk. | ... 8 | York.. | ${ }^{7}$ |

$$
\begin{aligned}
& \text { Total number in attendance during } 1880 . . . \ldots \ldots \ldots \ldots . .{ }_{81}^{176} \\
& \text { Number of Ontario counties represented.. } 8 \text {. }
\end{aligned}
$$ 31

To this may be added a statement showing the extent to which the different religious denominations of the Province, are availing themselves of the advantages offered by the institution.

Religious Denoninations.

Episcopalian 60
Presbyterian 55
Canada Methodist 81
Canada Baptist... 7
Congregationalist.
7
7
Roman Catholic. 6
Primitive Methodist. 4
Plymouth Brethren 3
Quaker 2
Lutheran 1
Total 176

Having spoken briefly of the year's operations as a whole, I shall now take the liberty of asking your attention for a short time to the work of each torm separately. As already stated, the scholastic year began on the 1st October, 1879, and ended on the 31st August, 1880; but the financial year, on which I have to report, began on 1st January and ends to-day, the 31st December, 1880. Owing to this fact, it is difficult to make our reports intelligible to ordinary readers. The following will, perhaps, illustrate what I mean :-

$$
\text { Scholastic Year- }\left\{\begin{array}{l}
\text { Fall Term (1879) } \\
\text { Winter Term (1880) } \\
\text { Spring Term } \\
\text { Summer Term } \\
\text { Fall Term } \\
\text { F. }
\end{array}\right\} \text { Financial Year. }
$$

From this it can be seen that the financial year embraces the last three terms of one scholastic year and the first term of another. Hence the confusicn which arises in

The Fall Term of 1879-the first of the scholastic year, was treated of in last year's report. I shall, therefore, commence with the second term, viz.:

THE WINTER TERM.

5th January to 81st Marce, 1880.
The students in attendance were those who had entered at the commencement of the Fall Term in October, 1879, or previous to that date-92 in number ; and the work was to some extent a continuation of the subjeets begun at that time. The first year students received 180 lectures of one hour cach on the subjects prescribed for the term -38 on Agriculture and Live Stock, 44 on Organic and Inorganic Chemistry, 22 on Veterinary Anatomy, 24 on English Literature and Composition, 22 on Natural History, 24 on Arithmetic, and 11 on Book-Keeping. At the same timethe second year students had a course of 156 lectures and spent 22 hoursin handling and judging cattle, sheep, and horses, under the supervision of a professor. The lectures were-20 on Agriculture and Live Stock, 4 on Arboricolture, 33 on Agricultural Chemistry, 22 on Veterinary Pathology, 11 on Entomology, 22 on English Literature, 22 on Political Economy, and 22 on Statios and Drainage. In reference to the "Course of Apprenticeship" in practical work, I may say that the students were sent in rotation to the different departments, i.e., to the Farm, the Live Stock, the Garden, the Carpenter-shop, and the Experimental Department, so that it was in the power of every one to get a fair knowledge of all that is to be learned in each department. During the Winter Term it is always more difficult than at any other time in the year to find enough outside work of a kind suitable for the purposes of instruction; but to meet the difficalty, as much prominence as possible was given to the Mechanical and Live Stock Departments.

Live Stock.

In this department, three hours a week were devoted to the study of cattle, sheep, and pigs. First, the students were taught to point out and name the different parts of an animal, such, for example, as the brisket, crops, loins, flank, hooks, and twist; and for this purpose, a cow or steer was brought into the class-room at almost every lecture, so that each student saw the animal handled and described by the lecturer, and afterwards had the opportunity of handling it himself in presence of his fellow students. The lecturer then proceeded to explain and illustrate what are considered the good points of an animal for beef and for milk, comparing and contrasting Shorthorns, Herefords, Aberdeen Polls, Galloways, Devons, and Ayrshires-breed with breed, in regard to shape of frame, quality, beefing, milking, and other properties. Thus the instruction was made in the strictest sense definite and practical. Much the same course was pursued with the different breeds of sheep-Cotswalds, Leicesters, Southduwns, Oxford Downs, and Shropshire Downs. They were frequently compared with one another as regards carcass, constitution, wool, mutton, feeding, hardiness, etc. Considerable attention was also paid to the feeding, cleaning, and general management of stock in the winter season. In this way the College furnishes a good opportunity for aequiring a thorough knowledge of this very important department.

The Mechanical Department.

Under this head nothing very ambitious has yet been attempted. As you are aware, we have quite a plain shop, with three or four work-benches and an outfit of such tools as are required for repairing and general carpenter-work. Students are sent regularly to this department as to all the others. They are at first taught the use of the different tools, and afterwards employed in doing a variety of work such as is constantly needed on a farm-making gates, waggon tongues, whipple-trees, etc., and repairing a countless number of things about the College and farm buildings. Such is the regular rou-
tine of the depa department of
considerable pr more satisfactor laboratory and a a part of the in did all that any of our eight by t after completing Term, took up full course of lec special attention minoids or flesh on agrioulture a professor on Zoo animal kingdom ticular parts of While the studer attending lecture they had learned knowledge they and properties of unproductiven tion of various fo they were occupi mens of the vari known means of

As will be se Term in the Vete ology of what we the first year stu illustrated by the delivered to the s ment, especially such like. Here cal as possible, h the professor in the Veterinary Su derstood by those say, was heartily

The Ontario agricalture, live dollar-and-cent, ar standing the exam strictly and persis what direct bearin think, is right, an the institution-a instruction in tho
tine of the department, and last winter was no exception to the general rule. In the
department of

Natural Science

considerable progress was made, but the results would have been better and much more satisfactory to all concerned, if the institution had been provided with a good laboratory and apparatus suitable for making the experiments which constitate so large a part of the instruction in this important department. The Professor of Chemistry did all that any chemist could do, but he was much hindered by the utter insufficienoy of our eight by twelve laboratory and its scanty equipment. The first year students, after completing the Inorganic Chemistry which they had studied throughout the Fall Term, took up the somewhat difficult but interesting subject of Organic Chemistry. A full course of lectures was delivered, embracing all the important organic compounds ; but special attention was paid to the nature and sources of sugar, starch, oils, fats, the albuminoids or flesh-formers, and other substances which have a more or less direct bearing on agrioulture and stock-raising. At the same time they received lectures from another professor on Zoology, the object of which was to give them a general view of the whole animal kingdom, and thus make them more intelligent and appreciative students of partieular parts of that kingdom under the heads of Entomology and Veterinary Science. While the students of the first year were thus employed, those of the second year were attending lectures on Agricultural Chemistry and Entomology. During the previous term they had learned the close connection between Chemistry and Agriculture, and with this knowledge they now proceeded to stady the nature and sources of plant food, the origin and properties of the different kinds of soil, their preservation and renovation, the causes of unproductiveness, artificial fertilizers and farm-yard manure, the chemical composition of various fodders, and the nutritive value of each. With such subjects as these, they were occupied three hours a week, and spent one hour a week in examining specimens of the various insects which infest our crops and fruits, and in studying the best known means of preventing their ravages.

Veterinary Science.

As will be seen from the syllabus of lectures given on a previous page, the Winter Term in the Veterinary Department is devoted to the anatomy, physiology, and pathology of what we call the farm animals-the horse, ox, sheep and pig. The lecturesto the first year students were on the anatomy and physiology of these animals, and were illustrated by the complete skeleton of a horse and portions of other skeletons.| Those delivered to the students of the second year, discussed various diseases and their treatment, especially of the horse; as, spavin, ringbone, curb, founder, inflammation, and such like. Here again, for the purpose of making the instruction as definite and practical as possible, horses were regularly brought into the class-room and examined, first by the professor in presence of the class, and afterwards by some of the students. Thus the Veterinary Surgeon was each day enabled to see whether his lectures were really understood by those to whom they were delivered. This part of the work I am pleased to say, was heartily entered into and much appreciated by the second year men.

English and Political Economy.

The Ontario Agricultural College has never failed to give special prominence to agriculture, live stook, and one or two other branohes, whioh some would call the dollar-and-cent, and hence, the only important subjects in a farmer's eduoation. Notwithstanding the example set by most of the American agricultural institutions, our College has strictly and persistently confined its course of study to those branches which have a somewhat direct bearing on the ordinary duties of the average Canadian farmer. This, I think, is right, and may fairly be urged as one of the reasons for the existence of the institution-a place where any young man who intends to follow farming can get instruction in those subjects which he constantly requires in the discharge of the neces-
u are aware, of such tools nt regularly the different antly needed ing a countregular rou-
sary duties of his occupation, and that, too, without being compelled to spend a large portion of his time in studying foreign languages, or anything else which has only a very remote bearing on his life work. While speaking thus, I am not amongst those who would confine a farmer's education within too narrow limits; and my reason for introducing the matter here is to enter an emphatic protest against the vicious idea which has somewhere been instilled into a number of the young men who come here to studythat even English should be excluded from our programme. Some, when they first arrive, are not only unable to speak or write correet English, but have apparently made up their minds that they will not study it or any other subject, unless you can first prove to them that it will put so many dollars into their pockets within a given time.

We want a broader culture for the farmers of this country-something that will raise them above the level of mere drudges, and fit them for filling respectable and influential positions in the state.

> "For just experience tells, in every soil,
> That those who think must govern those that toil."

Hence, we insist on their sons devoting a portion of their time to the study of English literature and composition, as well as to the bread-and-butter subjects of the curriculum; and not unfrequently, I am sorry to say, we do so in the face of very marked and provoking indifference. During the winter term of last year all our students wrote letters, essays, and impromptu compositions; and spent two hours a week in the critical study of English classics-the first year men having read Goldsmith's "Traveller," and the second year, Shakespeare's "Julius Cæsar." Towards the end of the term the indifference gave way, and the subjeet was entered into with considerable interest and profit.

During this term also, the second year students gave considerable attention to the study of Political Economy. I believe there was not one in the class who did not enter into the subject with an earnest desire to learn at least some of the great problems connected with land, labour and capital. Nearly every one entered heartily into the discussion of such questions as the division of labour, protection and free trade, the functions of government, etc.; and the result was that the subject proved to be one of much interest and not a little profit to all concerned.

Mathematics and Book-Keeping.

In this department, the first year students commenced the study of book-keeping on the 5th oi January, and continued that of arithmetic from the Fall Term. In the former, the master in charge having devoted special altention to the subject, gave several valuable lectures and a number of important exercises on what may be called farm book-keeping-farm, field, garden and dairy accounts; in the latter, particular stress was laid on the commercial part of the subject, and the solution of such problems as are required in the buisness of the farming community. At the same time, the second year students were engaged in the study of dynamies, hydrostaties, and road-making. The principles learned in hydraulics were applied in studying the construction and working of pumps, siphons, hydraulic rams and presses; and under the head of road making, several matters of importance were discussed, such as road materials, the construction of various kinds of roads, lanes, and walks-macadamized, gravel, plank, ete.; also the relative cost and value of each, under a variety of conditions. In this way the young men were interested in what might appear a very common place subject, and were led to see how our country roads might be much improved, without any additional expenditure, if the principles of grading and drainage were generally understood and acted upon.

Special Course.

During the first three terms of the year, 1st October to 30th June, as already explained, the students in the regular course had lectures and manual labour alternately ;
during the last te manual labour. wish to attend lec April, in time for outside work, are in three terms.

Fall Term Winter Ter Spring Term Summer Ter

Fall TermWinter Ter Spring Tern Summer Ter

Last fall and year men. One b year ; the other ha lectures by themsel work, they were en of those terms, but " Special Time-tab second year special the same appendix Fall Term.

Just before Chr on the work of the The latter examinat month. The questi are sufficiently close at the same time giv the candidates arran

> per ce 49 "

For the results There, a full record or obtained honours and nineteen per cen

One feature of manifest importance the practical examina first year had spent out answers to questi oral examination on c
to spend a large h has only a very nongst those who reason for introus idea which has e here to study, when they first parently made up can first prove to iven time. nething that will spectable and in-
me to the study d-butter subjeets do so in the face erm of last year ; and spent two men having read æsar." Towards entered into with
e attention to the who did not enter at problems cony into the discusade, the functions one of much in-
book-keeping on 1 Term. In the subject, gave sevay be called farm particular stress problems as are the second year ad-making. The uction and workhe head of road naterials, the conavel, plank, ete.; In this way the subject, and were ny additional exorstood and acted
, as already exour alternately ;
during the last term, embracing the months of July and August, they had nothing but manual labour. There is also a special course for the convenience of farmers' sons who wish to attend lectures during the fall and winter months, and return home about the 1st April, in time for the spring work on their own farms. Such students, doing little or no outside work, are able to take in two terms all the lectures that the regular students get in three terms. The following will, perhaps, show what I mean :-

Regular Students.

Fall Term-1st Oct. to 22nd Dee. Winter Term-5th Jan. to 31st Mar. Lectures half-day and work halfSpring Term-16th April to 30th June. $\}$ day, alternately. Summer Term-1st July to 31st Aug.-Work all day on "Experimental Farm."

Special Students.

Fall Term-1st October to 22nd December Winter Term-5th January to 81st March Spring Term-16th April to 30th June Summer Term-1st July to 31st August

Lectures six hours a day.
Work at home.
Last fall and winter we had ten young men in this course-five first and five second year men. One half of the day, they took lectures with the regular students of their year; the other half, when the regulars were engaged outside, they (the specials) had lectures by themselves on the work of the Spring Term. Thus, by omitting the practical work, they were enabled, during the fall and winter terms, to take not only the lectures of those terms, but also the lectures of the Spring Term as well. In appendix B, the "Special Time-table" will be found, shewing the lectures delivered to the first and the second year specials on the work of the Spring Term. The "Regular Time-table" in the same appendix, shows the work which they did with the ordinary students in the
Fall Term.

Easter Examination.

Just before Christmas, 1879, we held a written examination with printed questions on the work of the preceding term, and at Easter on that of the two preceding terms. The latter examination commenced on the 18th March, and continued till the end of the month. The questions set on that occasion will be found in appendix D. I think they are sufficiently close and comprehensive to test the knowledge of the best student, and at the same time give all a fair chance to pass. The answers were carefully valued, and the candidates arranged in three classes according to the percentage of marks taken.

For the results of the examination, I wonld refer to the class-lists in appendix E. There, a full record of all the candidates will be found-not only those who passed or obtained honours, but also those who failed. About ten per cent. of the first year and nineteen per cent. of the second, got first-class honours. A small percentage failed.

One feature of this examination was, I believe, entirely new; and owing to its manifest importance I beg leave to call your attention to it more particularly-that is, the practical examination in the Department of Live Stock. After the students of the first year had spent eight hours, and those of the second year seven hours, in writing out answers to questions on Agriculture and Live Stock, they were all subjected to an oral examination on cattle and sheep, which lasted for three days. The examination of
the first year students on cattle occupied a day, and that on sheep a day ; the second year students, being less numerous, got through both cattle and sheep in one day. Three cattle of different breeds were taken into a room which was provided with fodder and bedding for the purpose. Mr. Brown and myself took charge of the examination. The students were sent in one by one from an adjoining room. Each was allowed a certain number of minutes to handle the animals and answer the questions found in appendix D, under the head of "Practical Examination on Live Stock.' When his time was up, he passed out and another took his place. The same course was pursued with the sheep; and though it was fatiguing to both students and examiners, nevertheless all felt satisfied that no other part of the session's work was so well adapted to fit young men for discharging intelligently and promptly the duties of a buyer in a stock-yard, or a judge in a show-ring.

In order that our readers may the more clearly understand the nature of this practical examination, I shall quote the questions from the appendix before referred to-

SESSIONAL EXAMINATIONS-EASTER, 1880.
Practical Examinations in Live Stock.
Examiners: Wm. Brown, Esq., and James Mills, M.A.
First Year.
Cattle.
Animals examined: $\left\{\begin{array}{l}\text { Shorthorn Bull } \\ \text { Ayrshire Cow. }\end{array}\right.$
Shorthorn Grade Cow.

1. Show the weak points of the Shorthorn.
2. What are his best points?
3. What are the indications in this bull of good beefing properties ?
4. Judge the Ayrshire cow as a milker.
5. Which of the cows would mate best the bull for beefing purposes, and why ?

Sheep.
Avimals examined : $\left\{\begin{array}{l}\text { Leicester Ram. } \\ \text { Cotswold Ram. } \\ \text { Southdown Ram (1). } \\ \text { Southdown Ram (2). } \\ \text { Oxford Down Ram. } \\ \text { Oxford Down Grade Wether. }\end{array}\right.$

1. Distinguish the characteristic points of the Leicester and Cotswold.
2. Which is the best long wooled fleece of the lot as regards density and soundness?
3. Which is the oldest and youngest sheep of the lot?
4. Compare the wether with the Oxford Down, and say wherein they agree or differ as regards carcass and wool.
5. Judge the oldest Southdown by the standard used for the breed.

Second Year.
Cattle.
Animals examined: $\left\{\begin{array}{l}\text { Shorthorn Steer. } \\ \text { Galloway Steer. } \\ \text { Grade Cow. }\end{array}\right.$

1. Describe the Shorthorn with reference to five most important qualities for fattening purposes.
2. Point o 3. Handle Galloway for es
3. Judge and evenness o
4. Show th
5. Show w
6. Which is
7. Judge th of points.
8. Explain that of the Leice
9. Which is

As a fitting and the surround others present Johnston, M.A., number of gentle feature of the exe did us the honour himself more full to those assemble ing, were much Government are

Agriculture an

Chemistry and
Geology and B
Veterinary An
Veterinary Mc
English Litera
Arithmetic and
Mensuration.
General Profic
day ; the second one day. Three with fodder and tamination. The allowed a certain ound in appendix his time was up, d with the sheep; ss all felt satisfied young men for -yard, or a judge
ture of this pracreferred to-
orn Bull ire Cow. orn Grade Cow.
es, and why?

am (1).

am (2).
Ram. Grade Wether. old. y and soundness? y agree or differ horthorn Steer. alloway Steer. rade Cow.
nt qualities for
2. Point out the four greatest defects in the same animal.

Galloway folle and describe the weakest point and the best point of the frame of the
4. Judge anding beef. and evenness of flesh.
5. Show the five best indications in this cow as a milker.

Sheep.

> Animals examined. $\left\{\begin{array}{l}\text { Leicester Ram. } \\ \text { Cotswold Ram. } \\ \text { Souther }\end{array}\right.$
> Southdown Ram (1).
> Southdown Ram (2). Oxford Down Grade Wether.

1. Show wherein one Southdown is superior to the other.
2. Which is the oldest and the youngest sheep of the lot?
3. Judge the Oxford grade wether, and compare him with of points.
4. Explain the principal points of difference betwer standard that of the Leicester.
5. Which is the best wooled sheep of the lot, as regards uniformity and lustre ?

Closing Exercises.

As a fitting conclusion to the work of the session, a number of friends from Guelph and the surrounding country met at the College to witness the closing exercises. Among others present were James Laidlaw, M.P.P.; Thos, Ballantyne, M.P.P.; and Wm. Johnston, M.A., ex-president of the College. Short addresses were delivered by a number of gentlemen, and the honour certificates presented by others; but the chief feature of the exercises was the presentation of the prizes by the Hon. Oliver Mowat, who did us the honour of coming to Guelph for that purpose, and also, no doubt, to acquaint himself more fully with the working of the College. I need scarcely add that his address ing, were much appreciated by all who words of counsel to the young men in the evenGovernment are undoubtedly a benefit to the institution. Such visits by members of the

PRIZE LIST.

Ontario Agricultural College.
Easter Examination, March, 1880.
First Year.
Agriculture and Live Stock.-1st, W. Howitt ; 2nd, W. Motherwell,
Chemistry and Zoology.-1st, W. Motherwell ; 2nd, J. G. Ross.
Geology and Botany.-1st, W. Howitt ; 2nd C. S. Dickinson.
Veterinary Anatomy.-1st, R. J. Phin ; 2nd W. Motherwell.
Veterinary Materia Medica.-1st, J. G. Ross.
English Literature and Composition.-1st, W. Howitt ;
Arithmetic and Book-Keeping.-1st, W. Motherwell ; 2nd, J. G. Ross.
Mensuration.-1st, W. Howitt and J. G. Ross ; 3rd, W Horn. Ross.
General Proficiency.-1st, W. Motherwell and; 3rd, W. Horne.
J. Phia ; 5th, W. E. Phin.

Second Year.

Agriculture and Live Stock.-1st, W. Ash; 2nd, R. F. Holterman; 8rd, H. Joyce. Agricultural Che iistry, Meteorology, and Geology.-1st, J. L. Webster ; 2nd, R. K.
pman. Chapman.

Practical Chemistry and Economic Butany.-1st, J. L. Webster ; 2nd, R. K. Chapman.

Veterinary Pathology.-1st, W. Ash and A. H. Clutton.
English Literature, Composition, and Political Economy.-1st, J. L. Webster and H. R. Macaulay ; 3rd, R. F. Holterman.

Mechanics, Levelling and Surveying, Book-Keeping.-1st, J. L. Webster ; 2nd, H. R. Macaulay.

General Proficiency.-1st, J. L. Webster ; 2nd, R. F. Holterman and H. R. Macaulay ; 4th, J. Lomas.

Speclal Prize.
Sheep-Shearing.-1st, W. Ash ; 2nd, A. H. Clutton ; 3rd, M. A. Dawes.

THE SPRING TERM.

16th April to 80 th June.

Those in the special course, and generally a few others, leave at Easter. Hence it has been found necessary heretofore, to hold two entrance examinations in the year, one on the first of October and another on the 16th of April. To fill the places of those who left last Easter, sixteen were selected from a large number of applicants. They were examined on the 16th and 17th of April. Lectures commenced on the 18th.

As the spring term affords special opportunities for practice in the outside departments, the class-room work did not receive quite so much attention as during the winter term. Every one had to attend lectures three hours a day as usual; but a little less time was occupied in study than during the winter months. Five hours a day were devoted to practical work outside, a part of which was spent under the instructor, and the balance with the foremen of the several departments. By the instructor, I mean one of our men who spends his whole time in taaching the students how to perform such operations as they require to understand before taking full charge of a farm-harnessing and driving horses, ploughing, sowing, harrowing, rolling, mowing with seythe, driving a mower, and such like. The young men are sent to him in rotation, according to our knowledge of what they require; and while under his instruction they get no wages. Hence they are generally anxious to learn as quickly as possible, so that they may be in a position to claim the promised pay for their work.

While particular prominence was given to practical work outside, the theoretical work inside was by no means neglected. In the department of Agriculture the cultivation of the various crops was taken up; seeds were examined and judged; the different modes of sowing diseussed and exemplified; the principles underlying rotation, and the rotations suitable to different soils, climates, and circumstances were explained ; also the improvement of land by ordinary cultivation, subsoiling, fallowing, manuring, and laying down to grass. At the same time, under the head of Practical and Analytical Chemistry, the second year men were employed three to four hours a week in the laboratory, examining and testing waters, soils, foods, manures, and samples of farm produce. They now saw the practical value of what they had already learned in inorganic, organic, and agricultural chemistry. They had opportunities for putting their knowledge to a practical test; and hence they entered cheerfully and heartily into the work. So far all right ; but the more earnest and anxious the students became, the more Mr. Panton, our Professor of Chemistry, felt himself hampered by the want of accommodation and proper appliances in the little room which has been dignified with the name of "Laboratory." In Systematic and Economic Botany they received lectures on the general classification of plants, and studied more particularly those orders which contain the most important agricultural and economic plants-cereals, grasses, roots, and plants used in the manu-
rd, H. Joyce. ter ; 2nd, R. K.

d, R. K. Chap-

Webster and
ter ; 2nd, H. R.
H. R. Macau-
wes.
ster. Hence it a the year, one ss of those who s. They were th. outside departing the winter at a little less urs a day were nstructor, and ructor, I mean o perform such m-harnessing seythe, driving cording to our get no wages. hey may be in
the theoretical re the cultiva; the different ation, and the ined ; also the ng , and laying cal Chemistry, ratory, exame. They now organic, and ge to a practifar all right ; Panton, our on and proper Laboratory." assification of ost important in the manu-
facture of fabrics, oils, medicines, and other articles of commerce. At the same time the first year students were attending lectures on Geology and Botany. In the former they learned something about the formation, composition, and character of the soils
found in the country. atmosphere-its form; in the latter, they studied the plant in relation to the soil and the zation, the different modes of propans, and diseases, giving special attention to hybridiThe lectures of the class-room were illon, and such diseases as smut, rust, mildew, etc. garden foreman while the students were and lawns. In the departments of Vere at work with him in the hot-houses, gardens, work was carried on as during the winter term. Science, English, and Mathematies, the lectures on the preparation, action, and doses of about fifty year students had twenty-four used in veterinary practice ; read critically three about fifty kinds of medicine commonly the Lake;" wrote familiar and business letters ; cantos of Sir Walter Scott's "Lady of continued that of Book-keeping from the lers; began the study of Mensuration; and second year men took lectures on twenty-five prious term. During the same time, the therapeutics of the veterinary art read She five or thirty additional medicines and the memory the best passages ; gave some attention to ${ }^{\text {res }}$ "Macbeth," and committed to a week into the fields with the master in charge to farm book-keeping ; and went twice taught under the heads of levelling, survering and dry what they had previously been four days' written examination on the class-room and drainage. The term closed with a various operations in the outside departments.

The time had now arrived when it was ne silver medal which His Excellency the Goveessary to decide who was entitled to the previous, for competition among the students of the second year. offered nine months

The Governor-General's Silver Medal.

The terms of competition were as follows :-
" 1 . All competitors must be second year students.
" 2 . They shall compete-
(1) By a written examination at Easter on all the class-room work of the Fall and Winter Terms.
" (2) By a similar written examination at the end of June on all the classroom work of the Spring Term.
"(3) By practical examinations at the above dates on cattle, sheep horses, and the various operations taught or performed on the pigs, in the garden or in the carpenter shop. " 3. The successful competitor must reach the ther shop.
the Outside Departments separately, that is, must make at standard in the Inside and the marks in each subject, and an aggregate of not lat least thirty-three per cent. of the total number of marks in all the subjects prescribed for sixty-seven per cent. of

Three competitors strove vigorously for the prize tor second year students." keen and close between J. L. Webster, of Yarmouth, The competition was particularly of Toronto, but without any sign of ill-feeling orth, Nova Scotia, and R. F. Holterman, honourable. The final tests in the outside or any disposition to do aught but what was Summer Term. Mr. Webster came outside work took place about the middle of the presented on the 26th day of August by Professor Buad and won the medal, which was

Side-walk to the City.

The College is distant a little over a mile from the city of Guelph. The road leading thereto is muddy and unpleasant during the fall and spring. The officers and students not a side-walk has d long attend church and Sabbath-school in the city. Hence the want of of the citizens who frequently visit the connected with the College, and also by many formal request to the City Oouncil, asking theme and Farm. Knowing this, I sent a I called on several of the leading aldermen privately, the walk. Before the meeting,
before them. The result was that they agreed to lay a four-foot walk to the city limits, if we would lay it from that point to the Coliege. The offer was accepted with your consent, and in about two weeks from the commencement of the Spring Term the work was completed. The College and the Council met at the city limits. We have been on better terms ever since; and the unanimous verdiet is that the money was well spent.

Visitors.

There is not, I believe, another public institution in the country that has so many visitors as the Ontario Agricultural College. We have them from near and from far, from home and abroad, from this land and other lands. I am safe in saying that between 8,000 and 9,000 people visited us last year. Some came from curiosity, some to learn what they could, and others to inquire into our course of study and the modus operandi of the institution. Ordinary visitors average not less than twenty a day, and occasionally we have large parties from different sections of the Province. On the 22nd, 23rd and 24th of June last we had four excursions, numbering 2,600 people, from the counties of Perth, Huron, Bruce, Ontario and York, under the auspices of the Prince Albert, Lucknow, North Bruce, and Ontario Division Granges. Such visits from the farming community show clearly that the interest in the College and Farm throughout the Province is increasing. Some criticised severely, and others professed to be well pleased; but all united in saying that the Government should support the institution liberally and make it as efficient as possible. Not only so, but without either hint or solicitation every one of the four excursions passed resolutions to that effect.

Many erroneous notions about the College exist among some of our farmers ; and one is that regarding their relation to the maintenance of the institution. They are quite willing that the Government should vote hundreds of thousands for the support of asylums, prisons, and reformatories; and they do not seem to enquire very closely whether the money voted for such institutions is properly expended or not. But every dollar spent on the Ontario Agricultural College and Experimental Farm they regard as a direct addition to their taxes, and hence oppose the whole concern, whatever it may do or leave undone. They are surprised and incredulous when told that it has not affected their taxes to the amount of one cent in the last five years, and that they would not pay a farthing less, if it were blotted out of existence to-morrow. Gradually, however, the idea is gaining ground that the interest of the country at large and especially of the farmers is, not to destroy, injure, or cripple the College, but to correct what needs correction and make it thoronghly efficient in every particular. Personally, I have no objection whatever to fair and honest criticism; it is always helpful. If we were not criticised we might grow careless. The Farm was purchased and the College established to promote the interests of Agriculture and Stookraising in the Province. Therefore, farmers more than any other class have a right to visit the institution, inquire into its working, criticise, and make suggestions from time to time. Those who have done so are generally our best f ends. Mistakes have been corrected and prejudices removed.

THE SUMMER TERM.

1st July to 31st August.

At the close of the Spring Term (30th June), when the year's lectures were over, several farmers' sons were allowed to return home to labour on their own or their fathers' farms in haying and harvest. Some forty-five remained with us to work ten hours a day during the Summer Term (July and August). As at all other times, they were sent in rotation to the several departments, giving, of course, the largest share of their time where it was most needed, i.e., on the Farm. I shall not weary you with a detailed account of the routine in each department, but simply say that the young men received instruction in the fields, the yards, the gardens, and the shop. They spent a portion of their time in a special class for the purpose, learning how to dig, ploagh, harrow, sow, shear sheep, mow, cradle, drive a reaper, bind, shock, and such like ; and in addition
did all that is t in the managen

Our visitor as might be ex dred Masons an took a hasty ru with what is bei

The term e have come to b the institution. their evenings o much to give ch banks of the Al the most fastid over 1,000 of the the afternoon it came the Harves the prizes by Pr President of the ful year in the h

The question the Government payers and bona fee of $\$ 25$ a year entered the Colle cants for admiss whether they wisl feared that the i attendance, for a groundless; for in vacancies, and fro of accommodation time in the year. work in all parts watched the job la washed, and cleane forty and fifty addi very slowly. I ap became evident th So I wrote to the your decision to p time I purchased a the dining-room; to heat the build contract.

On the 30th for the matriculat the evening of the will be found in the than a year ago. noticeable. On the matriculation exam
the city limits, pted with your Term the work Ve have been on was well spent.
t has so many d from far, from g that between ne to learn what operandi of the occasionally we , 29rd and 24th unties of Perth, bert, Lucknow, ing community the Province is well pleased; tution liberally t or solicitation
rmers ; and one They are quite support of asyclosely whether at every dollar ey regard as a n , whatever it told that it has years, and that ace to-morrow. the country at he College, but very particular. ; it is always arm was purure and Stockave a right to ions from time akes have been rk ten hours a 1es, they were share of their with a detailed men received int a portion of , harrow, sow, and in addition
did all that is to be done in the summer months on a large grain and stock farm, and in the management of a large vegetable garden, flower garden, orchard, and lawn.

Our visitors in the month of June were chiefly farmers; but in July and August, as might be expected, they were largely of other classes. Between six and seven hun. dred Masons and Oddfellows did us the honour of spending a short time with us. They took a hasty run over tae premises and generally expressed themselves as well pleased

The term closed on the 26th day of August with the Annual Atheletic Sports, which have come to be regarded as one of the most interesting exercises in connection with the institution. For several weeks before the day fixed upon, the young men occupied their evenings on the college campus in practising those manly exercises which did so much to give character and muscle to the ancient Greeks at Olympia on the far-famed banks of the Alpheus. Everything objectionable was excluded from the games, so that the most fastidious could not find fault. The day was rather cold, but nevertheless the afternoon in viewing people from Guelph and the surrounding neighbourhood spent came the Harvest Home Procession around the strength and speed. After the games the prizes by Professor Buckland around the College grounds, and the presentation of President of the College. Thus terminated what I think, Wm. Johnston, M.A., and the ful year in the history of the Ontario Agricultut I think I may venture to call a success-

THE FALL TERM.

1 st October to 22 nd December,

The question of charging a fee for admission to the College was formally laid before the Government on the 21st July ; and in \& few days thereafter it was decided that ratepayers and bona fide residents of the Province of Ontario should henceforth pay a tuition entered the Coll, and non-residents $\$ 50$ a year in advance, students who had already cants for admission were at wed to complete their course without payment. All appliwhether they wished their applications to and requested to inform me without delay feared that the imposition of the foess to stand on the changed terms of admission. I attendance, for a time at least. I am glad to a small one, would materially affect the groundless; for in the month of August alone say, however, that my fears proved to be vacancies, and from that till the August alone, I received applications enough to fill all of accommodation. During the month of Septemg I had to refuse quite a number for want time in the year. Carpenters, month of September we had as much to do as at any other work in all parts of the building, tearing dasterers, steam-fitters, and plumbers were at watched the job late and early. The old parts of building up, and making additions. I washed, and cleaned ; and the new parts parts of the building were to be repaired, whiteforty and fifty additional students. Narts to be fitted up, scrubbed, and furnished for between very slowly. I appealed, urged and enitretanding my best efforts, things seemed to move became evident that we could not get enteated, till about the 24th September, when it So I wrote to the old students and get possession of the building on the 1st of October. your decision to postpone the opening from applicants for ad:aission, informing them of time I purchased an additional range for the the 1st to the 30th October. In the meanthe dining-room ; beds, bedding, and furnituren ; chairs, tables, and table-ware for to heat the building till the steam-fitters world the new dormitories; and ten stoves contract.

Matriculation Examination.

On the 30th of October, 62 old students returned, and 68 new ones came up for the matriculation examination, which commenced on the 1st and continued till the evening of the 2 nd of November. The papers set were not difficult ; copies of them will be found in the third part of Appendix D. The answers generally were much better than a year ago. Especially in the matter of spelling a decided improvement was noticeable. On the whole, I feel free to say that the candidates who wrote at our last matriculation examination were in every way a very superior lot of young men; /and hence
there were only a few who failed to pass. Their work and conduct since the examination have justified our first impressions. The total number in attendance during the term has been 126. The following list shows where they come from, and the religious denominations to which they belong. The names will be found in the second part of Appendix 0 .

Counties, dc.	Students.	Counties, dc.	Students.
Bruce...	2	Ottawa City.	. . 10
Brant	9	Ontario... .	.. 10
Darleton	1	Oxford.	- 8
England.	1	Prince Edward	- 1
Frontenae	2	Perth	6
Glengarry.	4 1	Peel.. ...	2
Grey.	4	Quebec Province.	- 1
Hamilton City.	2	Renfrew......	5
Halton.	2	Simcoe.	1
Huron. .	4	Scotland.	1
Haldimand.	1	Toronto City	6
Ireland.	1	United States.	6 1
Lanark.	8	Vietoria.....	1
Lincoln.	1	Wales.	1
London.	1	Waterloo.	1
Montreal City.	8	Wellington.	3 10
Middlesex. .	1	Wentworth.	10
Norfolk.	3	Welland.	1
Northumberland	1	York. . .	5
Nova Scotia.	. 2		5

Total number in attendance during Fall Term.. 126
Number of Ontario Counties represented 29Religious Denominations.
Presbyterian 44
Episcopalian. 48
Canada Methodist. 21
Congregationalist 5
Canada Baptist. 4
Roman Catholic. 4
Primitive Methodist 2
Plymouth Brethren 2
Lutheran 1
Total 126

As questions are frequently asked about the age of our students, I may say that some sessions the ages have varied considerably from fifteen years upwards. In the fall term of 1880 , the range was from fifteen to twenty-six-five at fifteen, twelve at sixteen, four at twenty-four, and two at twenty-six ; leaving 103 between the ages of seventeen and twenty-three. The majority were eighteen or nineteen. The following table gives the exact number at the different ages :-

The Fall Te the staff went to last year. I beli College all that tl of the kind in eitl was carried on wi Having lost a mo scribed work, to c

The first yea embraced the reel classification of so equipped farm; r stock which is to 1 lectures, with expe the subject of Nat ology of the hors two cantos of " Th and reviewed por farming.

The attention ing, Farm Manage the housing, feedin green fodder; resu vious season's expe Meteorology, and a plants in relation t soils, the chemical double silicates, an a week at lectures amining horses for eye and direction of memory a great por some time to the st following outline qu of the term's work i

Ages of Students at the Ontario Agricultural College in the Fall Term of 1880

Students.
2
8
1
\ldots
..... 2
....
....
....
.....
....
. . .
..... 1
3
10
5
1
5
may say that ls. In the fall lve at sixteen, s of seventeen ing table gives

OUTLINE OF CLASS-ROOM WORK.

Fall Term.

First Year.

Department 1.-Agriculture.

Introductory.-Ancient and modern agriculture; agricultural literature; arts and sciences affecting agriculture; difierent kinds of farming.

Reclamation of Land.-Clearing, stumping, stoning, fallowing, ete.
Soils.-Origin and distribution of soil; natural conditions of soil and plant; examination and classification of soils ; physical and chemical properties of each kind.

Rotation in Cropping.-Importance and necessity of rotation ; principles underlying it ; rotations suitable to different kinds of soil ; examination and criticism of different systems of rotation.

Buildings.-Location of house, barn and stables; framing a building; model stables for horses, sheep and cattle ; arrangement of farm buildings.

Implements and Machinery.-Principles in construction of implements arfd machinery ; points to be aimed at ; classification, examination and description of the same.

Miscellaneous.-Roads, lanes, fences, wells, etc.

Department 2.-Science.

Chemical Physics.-Matter, accessory and essential properties of matter ; attraction, various kinds of attraction-cohesion, adhesion, capillary, electrical, and chemical ; specific gravity; weights and measures ; heat, measurement of heat, thermometers, pyrometers, specific and latent heat; sources, nature and laws of light; spectrum analysis.

Inorganic Chemistry.-Scope of subject; elementary and compound substances; chemical affinity; symbols; nomenclature ; combining proportions by weight and by volume ; atomic theory ; atomicity of the most important elements; oxygen and hydrogen ; water-its nature, functions, decomposition, and impurities; nitrogen ; the atmo-sphere-its composition, uses and impurities; ammonia-its sources and uses; nitric acid and its connection with plants; carbon ; combustion ; carbonic acid and its relation to the animal and the vegetable kingdom; sulphur and its compounds; manufacture and uses of sulphuric acid; phosphorus; phosphoric acid and its importance in agriculture ; chlorine-its bleaching properties; bromine; iodine; silicon, etc.

Zoology.-Nature of life; vital force; difference between animals and plants phology and physiology; homology and analogy ; definition of species ; classification ; subdivisions of the animal kingdom; characters of the classes and most important orders of Invertebrates; general characters of Vertebrates; classes and orders, with a brief description of each.

Department 3.-Veterinary Science.

Anatomy and Physiology of the horse, ox, sheep and pig; osseous system, muscular system, syndesmology, plantar system, and odontology.

Department 4.-English.
Lectures on Composition.-The sentence, the paragraph, and the period; capitals and punctuation; style-its qualities and varieties. Exercises in Composition.

English Classics.-Committing to memory, and critical study of Scott's "Lady of the Lake."

Arithmetic. weights and me partnership.

Mental Arit

Kxperimenta barley, pease, gr on different crop

Farm Mana different kinds of of crops; fall plo

Stock-feeding. housing, feeding, feeding experim pasture ; value of

Meteorology.-

 of the atmosphere casting the weath measurement and forests on climate used in measuring climate ; influenceAgricultural 0 compounds which changes which foo the decomposition contrasted ; food od of soils; causes of plants in relation t development and re on different soils ; action of lime in th of foods; chemical in order to obtain t

Veterinary Path diseases of bone, as Muscular Systen Syndesmologyother diseases of the Plantar System founder, and other Odontology-dis

Department 5.-Mathematics.

Arithmetic.-Review of subject, with special reference to farm accounts ; tables of weights and measures discussed ; compound proportion, interest, discount, stocks and partnership.

Mental Arithmetic.-Caleulations in simple rules, fractions and compound rules.

Second Year.

Department 1.-Agrioulture.

Kxperimental Plots.-The results of last season's experiments with wheat, oats, barley, pease, grasses, clovers, roots, etc. ; liability to disease ; effects of various manures on different crops; growth of plants, ete.

Farm Management.-Detailed account of the treatment of each field, results fro:n different kinds of seed and soil ; effects of manure; harvesting, storing, and threshing of crops ; fall ploughing; subsoiling, \&c.

Stock-feeding.-Value of feeding materials ; estimate for winter keep of live stock; housing, feeding, and fattening; points to be observed in selecting animals for fattening : feeding experiments; common diseases of animals; management of animals on pasture; value of green fodder. Dairy management and cheese-making.

Department 2.-Science.

Meteorology.-Relation of Meteorology to Agriculture ; composition and movements of the atmosphere ; nature and manipulation of the barometer, its importance in forecasting the weather; temperature, description of the various instruments used in its measurement and how to use them; solar and terrestrial radiation; the influence of forests on climate ; mists, fogs, clouds, rain, hail, and snow ; description of instruments used in measuring rain and snow fall; velocity and direction of wind; causes affecting climate ; influence of climate on vegetation.

Agricultural Chemistry.-Connection between chemistry and agriculture; the various compounds which enter into the composition of the bodies of animals; the chemical changes which food undergoes during digestion; chemical changes which occur during contrasted; food of plants and whanimals at death; the functions of animals and plants of soils ; causes of unproductwence derived ; origin and nature of soils ; classification plants in relation to the soils upon in soil and how detected; composition of different development and renovation of soil which they grow; rotation of crops; preservation, on different soils ; chemical thois; manures classified; the chemical action of manures action of lime in the decer thes reference to the action of superphosphates; the of foods ; chemical results in thition of double silicates; feeding of animals ; dassification in order to obtain the fult in the use of different foods; points necessary to be considered in order to obtain the full value of artificial and natural foods.

Department 8.-Veterinary Science.

Veterinary Pathology.-Osseous System-nature, causes, symptoms, and treatment of diseases of bone, as splint, spavin, ringbone, etc.

Muscular System-nature, causes, and treatment of flesh wounds, etc.
Syndesmology-nature, causes, symptoms, and treatment of bog spavin, curb, and other diseases of the joints.

Plantar System-nature, causes, symptoms, and treatment of corns, sand-crack, founder, and other diseases of the foot.

Odontology-diseases of the teeth and treatment of the same.

Department 4.-English.

Lectures.-Eımological, syntactical, and rhetorical forms of the English language;
ter ; attraction, and chemical; thermometers, ght; spectrum
nd substances ; weight and by gen and hydrogen ; the atmond uses ; nitric and its relation ; manufacture rtance in agric.
d plants
classification ; nost important orders, with a
stem, muscular
history of its formation ; its connection with other languages ; rhetorical figures ; their use and abuse; prose and poetic diction.

Composition.-Essay writing, familiar and business correspondence.
English Classics.-Critical study of Shakespeare's "Julius Cæsar."

Department 5.-Mathematics.

Mental Arithmetic,-Calculations in reduction, fractions and analysis.
Mensuration.-The mensuration of surfaces, including lumber, etc.; the measurement of solids, including contents of tanks, ditches, wells, etc.

Land Snrveying. - With chain and cross-staff.

II.-The Boarding House and College Buildings.

The college building, as shown on frontispiece, is a plain substantial structure without much claim to architectural beauty. Like the institution itself, it was built little by little without any very definite idea of the shape it might ultimately assume. When the Government first bought land and determined to establish an agricultural college, the architect drew plans for a building which would have suited the purpose exactly, but the cost seemed too great and the country was not prepared for it, consequently it was decided six years ago to commence work with a few students in Mr. Stone's farm. house. Additions and alterations were made from time to time as the number of students increased, till the result is, the building which you see outlined and described on page 56 -something different from what was ever intended ; and though it is not what we would like, it nevertheless affords considerable accommodation, and serves the purpose very well.

In my last report I recommended among other things, that increased accomodation be provided, and that the college be heated by steam, and lighted by gasolene. I am now happy to say that under each of these heads the Legislature did even more than I ventured to ask. The building is very different from what it was a year ago. The extensive additions and alterations made during the last eight months, have not only increased the accommodation, but changed the whole aspect of tho place. The raising of the centre portion has removed the flat appearance which formerly characterized the building, while the erection of the new building in the rear of the left wing, and the filling up of the space between the centre, and the class-room in the right wing, has furnished thirty-four new dormitories, a large dining-hall, a reading room, a library, a sitting-room and a bed-room for the Assistant Resident Master, a wash-room, and two class-rooms.

In the building, as it now stands, there are one hundred and twenty-two roomsthree class rooms, a reading room, a library, a room to be fitted up for a museum, a laboratory, two offices, a public reception-room, sixty-two students' dormitories, a large dining-hall, a servants' dining-room, a store-room, pantry, kitchen, scullery, laundry, drying-room, eight bath-rooms, nine bed-rooms for servants, the messenger's room, a parlor and bed-room for the Matron, a sitting-room and bed-room for the Assistant Resident Master, nine rooms in the left wing occupied as a dwelling house by the Professor of Agriculture, six rooms in the centre occupied by the President and his family, three wash-rooms, an engine-room and a coal house. The size, position, and use of each room can be better understood from an examination of the plans above referred to than from a verbal description. Hence I shall not attempt anything more elaborate under this head.

Provision has been made for heating the building with steam; and every room in it is now lighted, not by gasolene, but by ordinary coal-gas from the city of Guelph. The gas company laid the pipes out to the college and the contractor extended them through the building. So that now we not only have good light, but are free from the danger connected with the use of coal oil in so large an institution.

In the boar past, the duties previous. The number of stude Resident Master painters, gas-fit to January, in e amount of worr Matron discharg Assistant Reside me in looking af the supplies; an dents was good; course, did not w and then; but th and troubiesome kindness; and th For a better unde and the duties req bediding, bureaus, two in a room, an and spring terms,

They rise at fifteen minutes aft At seven the stude employ their time are at drill or gym divisions then retur The bell rings at he goes out to work in to five it attends les to prepare for tea, eight o'clock, they g and from eight to ha in one of the class-r they proceed to rollclosed at half-past te allowed out one ever will appear late ; bu the college, any earl leaves his name with return, that we may night.

Such is the rout students therein, dur are devoted entirely little from those of ar

I served an appr practically how to eh afterwards taught and last year did I attemp entirely a new phase i like to say that it is t gaged-a business wh the associations of ho absent-minded--in a prepared to abandon al
al figures ; their
; the measure-
antial structure t was built little assume. When cultural college, purpose exactly, consequently it r. Stone's farm. the number of d and described hough it is not , and serves the d accomodation y gasolene. I did even more it was a year eight months, ect of the place. which formerly rear of the left om in the right reading room, a , a wash-room,
ty-two roomsor a museum, a nitories, a large allery, laundry, enger's room, a the Assistant ase by the Proand his family, and use of each eferred to than laborate under
very room in it Guelph. The them through m the danger

In the boarding house, things have gone on much as of old ; but for some months past, the duties in connection with it have been much more arduous than at any time number of The large additions to the building, and the corresponding increase in the Resident Master, and the added not a little to the work of the President, the Assistant painters, gas-fitters, and steam-fittwile the presence of masons, carpenters, plasterers, to January, in every hall and roers pacing to and fro, and plying their tools from June amount of worry, anxiety and com from cellar to garret, has given rise to an unusual Matron discharged faithfully the many duties face of such difficulties as these, the Assistant Resident Master took charge of the students in with her department; the me in looking after them in the halls, dormitories ands in the dining room, and assisted the supplies ; and altogether the work went on satisfeters.rooms; the Bursar provided dents was good; no serious cases of discipline satisfactorily. The conduct of the stucourse, did not work so well as they should, and others serce my last report. Some, of and then ; but the great majority were quiet, thoughtful ane inclined to give trouble now and troublesome ones were kept in their place by the kindness; and the result, on the whole, was by the exercise of vigilance, firmness and For a better understanding of the surroundings of work and good order in every hall. and the duties required of them, I may say that their bed-roonts in the boarding house, bedding, bureaus, mirrors, wash-stands, study-tables, and chooms are furnished with beds, two in a room, and in a few instances three. The daily chairs. They sleep separately, and spring terms, is as follows :-

They rise at a fifteen minutes after six they go to mornineir beds and put their rooms in order. At At seven the students of one division and prayers, and at half-past six to breakfast. employ their time as they feel disposed, till sent to work outside, and those of the other are at drill or gymnastics, and from nine to twelve divisions then return to the boarding house, and at lectures in the class-room. Both The bell rings at half-past one, and the division that prepare for dinner at half-past twelve. goes out to work in the afternoon. The other division was in at lectures in the forenoon, to five it attends lectures ; and at five both divisions is free till two o'clock. From two to prepare for tea, at half-past five. From tea time to seven to the boarding-house eight o'clock, they generally rest or take exercise . Fro to seven o'clock, and in spring to and from eight to half-past nine in spring, they siudy in seven to nine in fall and winter, in one of the class-rooms. At nine or half-pey study in their rooms, or under a master, they proceed to roll-call and evening prayers. nine, according to the season of the year, closed at half-past ten. Every student whers ; all lights are put out at ten, and doors allowed out one evening in the week, till half-past ter ban for some misdemeanour, is will appear late ; but, as it takes not less half-past ten. To some parents perhaps this the college, any earlier hour would scarcely give suity minutes to come from the city to leaves his name with the master in charge, give sufficient time. When going out, each return, that we may know whether all are in or is required to report himself on his night.

Such is the routine in the beore the doors are closed for the students therein, during nine boarding house, and such are the duties required of the are devoted entirely to work in the of the year. As the months of July and August little from those of an ordinary boarding house on a large, the duties inside differ but

I served an apprenticeship of twenty-one years a large scale.
practically how to chop and clear, dig and plough, sow ang in this country-I learned afterwards taught and governed young men and women for and reap, and ali the rest ; I last year did I attempt to manage a large boarding house eleven years ; but never till entirely a new phase in my experience, and I scarcely house and a college together. It is like to say that it is the most thankless and scarcely know how to describe it. I would gaged-a business which takes one wwa from anning business in which a man ever enthe associations of home, which worries a person tall he is and night, which destroys absent-minded--in a word, a business which person till he is apt to become peevish and prepared to abandon all hope of comfort and happiness whileuld undertake, unless he is
what I would like to say. What I do say, is that the duties involved in the management of a large boarding house are onerous and trying under any circumstances, but especially so when there is added thereto the work of lecturing from two to three hours a day, superintending the studies and conduct of one hundred and thirty young men from six in the morning till half-past ten at night, waiting on a large number of visitors, and attending to the correspondence and general business of a college. Put all these together, add the item of no holidays, and you have a concentration of labour and anxiety sufficient to test the mettle of any man-at least, you have evidence sufficient to prove that the presidency of the Ontario Agricultural College is not a sinecure.

III.-The Business Department.

The first thing to be noticed under this head relates chiefly to the President of the College, that is,

The Correspondence.

The Ontario Agricultural College is not yet understood so well as it should be either in the Province or outside of it. There is ample evidence that it is fast growing in favour at home and becoming pretty well known abroad ; but there is still an endless number of inquiries about the terms of admission, course of study, duties of students, cost, books used, books recommended-and many other questions which require to be carefully answered. Add to this the correspondence growing out of the ordinary business of the institution, and you have work enough to keep one a couple of honrs a day throughout the whole year. Some letters are simply answered and no further note taken of them ; others, being more or less important, are copied, and the names, post-office address, and business recorded in a book kept for the purpose. Of the latter kind, I wrote about 1,700 last year. Over 2,100 circulars and 1,800 copies of our annual report were sent out. Eleven hundred reports were distributed among the Subordinate and Division Granges, and the balance sent chiefly to those who applied for them.

Books and Accounts.

Most of the work in this branch of the business department is done by the Bursar. Every month he receives the accounts against he College and the Farm, examines them, checks them by invoices and requisitions, arranges them in due form, makes out separate statements for the College and the Farm, submits the former to the President and the latter to the Farm Superintendent for approval, and then sends both to the Treasury Department for payment. He receives and accounts for all moneys from the Treasury Department, the students, and the farm ; and pays all accounts that have been approved by the President or the Farm Superintendeat, and passed by the Auditor in Toronto. In addition to a cash book and memorandum books of various kinds, he keeps three distinet sets of books-

No. 1, showing the monthly expenditure under each head of the appropriation for salaries, wages, and college expenses.

No. 2, giving in detail the income and expenditure of the outside departments under three heads-the farm and carpenter-shop, the garden, and the experimental department.

No. 3, which shows the account of every student from the day he enters the College till he leaves it-fees, board and washing, amounts allowed for labour in the outside departments, and cash balances paid to the College for board and washing.

The second set involves considerable work, and the third a great deal. "Printed sheets containing the names of all the students are furnished each foreman daily, who fills in the blanks with the description of work done that day by the students
in his departm work. These financial mon the ledger, whi for that mont the end of the session." Fro to be kept dur have no concep

Owing to of students, th tion with the C wait on visitors, purchase a larg reading-room, 1 boarding-house, room-examine delivered, in ord intendent and hi ments-the farm the Bursar had forward them to

In making o to interfere witha Mr. Brown. Her College and boar in 1880 , the seco estimate of the with the farm, ga

The sum of expenditure unde for maintenance amount might ha but as we intende felt bound to cut on the part of the diture down to \$2 Province. It may

Amc
Amo

Table 2 is a ve students for board This subtracted fro twelve months :-

Expe
Reve
in his department, the number of hours each has worked, and the estimated value of such work. These are filed daily in the office, and journalized weekly. At the end of the financial month these sums are posted to the credit side of each student's account in for that month, on the debit side is placed the exact cost of the board and washing the end of the stained from the books of the store-room and the laundry. At session." From this it will sheets are bound together and make the day-book for that to be kept during the past year, involving hundred and seventy-six such accounts had have no conception.

General Business.

Owing to the large additions to the building, and the increase in the number of students, there was an unusual amount of general business to do in connecwait on visitors, College during the year 1880. The President had not only to lecture, purchase a large amount of to the ordinary business of the institution, but to select and reading-room, library, and class-rooms. boarding-house, and with the aid of the Me Bursar looked after the supplies for the room-examined, checked and weighed metron took full charge of the college storedelivered, in order to see that all contracts were groceries and other articles as they were intendent and his foremen made all pucts were faithfully carried out. The Farm Super-ments-the farm, garden, carpenter shop, and experimentenance of the outside departthe Bursar had nothing to do, except arrand experimental department. With these forward them to Toronto for payment.

The Finances.

In making out statements under this head, as everywhere else, I have endeavoured not to interfere withanything which properly comes under the report of my friend and colleague,
Mr . Brown. Heared not Mr. Brown. Hence my financial tables, which will be found in Appendix F, refer to the in 1880, the second is a statement of the first table shows the appropriation expenditure estimate of the expenditure in 1881 the revenue for the same time, the third gives an with the farm, garden and carpenter shop the fourth is a copy of the college account

The sum of $\$ 2,000$ was voted expenditure under that head will be found at the end for furniture and furnishing. The for maintenance was $\$ 22,850$. This is no more tha of Table 1 . The amount allowed amount might have been profitably la no more than was actually needed. The whole but as we intended to ask a large sum for the under the heads for which it was voted; felt bound to cut down expenses at every point. Hection of a new laboratory this year, we on the part of the Matron, the Bursar and mye Hence, by special care and economy diture down to $\$ 21,822.15$, which leaves a balance succeeded in keeping the expenProvince. It may be stated thus:-

Amount voted for 1880 ..

> Amount expended in 1880
> $\$ 22,85000$
> 21,822 15

Balance to credit of Province.............. $\$ \overline{\$ 1,02785}$

Table 2 is a very brief statement of the revenue for the
students for board and washing, and $\$ 1,625$ revenue for the year- $\$ 2,407.02$ paid by This subtracted from the exp onditure, shows the net fees, making a total of $\$ 4,026.02$. twelve months :- \quad lhe last

Most agricultural institutions have found difficulty in combining the practical work of apprenticeship with the theoretical instruction of the lecture-room. To avoid this difficulty as far as possible, the Ontario Agricultural College adopted the plan of paying all students for their work. The intention was to vary the rate of wages according to the character and amount of the work done; but the fact is, we are forced by the circumstances of the case, not unfrequently, to pay for work that is really worth nothing. Notwithstanding this difficulty, however, the marked success of the College in securing attention to practical as well as theoretical work, proves conclusively the wisdom of the plan adopted. If the students were allowed little or nothing for their work, we could present a better balance sheet; but the College would be much less efficient, and, as often happens, the gain in money would be more than counterbalanced by a loss in another direction. By turning to the last item in Table 4, Appendix F, you will see that the allowance to students for labour last year amounted to $\$ 4,347.28$. If this were deducted from the net outlay for the year the expenditure would be a comparatively small sum to run a college with :-

$$
\begin{aligned}
& \text { Net outlay for } 1880 \text {. } \\
& \text { Amount of the above sum allowed students for labour.. } \\
& \$ 17,89618 \\
& \text { Balance } \\
& \text { 818,548 } 90
\end{aligned}
$$

In the right hand column of Table 3, you will find the estimated expenditure for 1881. The increase under this head will, doubtless, give rise to some inquiries ; so a word of explanation may be necessary. First of all, I have asked for small additions to the salaries of two or three officers who, in my opinion, should have more than they got last year; but the increase is nearly all due to three things :-
(1) The increase in the number of students, which is over one-third greater than it ever was before.
(2) The change from coal-oil to coal-gas for lighting the College.
(3) The heating of two additional buildings, which adds quite an amount to the outlay for fuel.
Apart from the last two items, the increase is not in proportion to the increase in numbers. The amount voted last year for furniture and furnishing was not nearly sufficient; hence I am forced to ask for $\$ 2,000$ more. I have several times spoken and written about a new laboratory for the Institution; but I have not yet presumed to ask any definite sum for that purpose. I leave it to yourself and the arohitect to name the amount required.

IV.-Conclusion.

Instruction in Agriculture.
Success in agriculture ensures success in every other occupation; failure in agriculture means failure everywhere else. No argument is necessary to prove that it is the foundation on which the prosperity of this country has been built. If it gives way, the whole fabric is sure to fall. Hence the necessity of using the accumulated wisdom of the ages to secure the best results in this pursuit. If specific, technical instruction is a needful preparation for law, medicine, dentistry, or pharmacy, why not for farming? If a young man intends entering the legal profession, he spends from three to five years in the study and practice of law ; if he desires to become a physician, he attends lectures on medicine and enters a doctor's office to learn the first principles of the practice; or if he aims at being a druggist, he studies the pharmacopœia and serves an apprenticesinp in a drug store. But in farming, the most important of all, it is expected that a young man should go to work and make a fortune without any special training whatever. I am glad to say, however, that this idea is being exploded; our people are beginning to realize
that special prep industry. The

As Presiden ciency so freely little blind," if n but admitting all Ontario Agricult one that should class that seeks tl gives instruction is the only place discussed. The direct bearing on in combining prad and the whole ten but to educate the of the agriculturi pare with it ; and there is scarcely stock-raising distr Galloway herds in these herds from t mas and Easter and afterwards dr In the time of my we are now doing the past year some and the old one ve the whole premises from the College to

An excellent room for a library; of books, magazines reports, herd-books, eral reading. We zines, furnished by

Daily Globe.

Daily Mail.

Weekly Globe.
Weekly Mail.
Guelph Mercury.
Guelph Herald.
Canadian Farmer
Farmers' Advocate. Canadian Horticult North British Agric Irish Farmer's Gaze Mark Lane Express. National Live Stock Boston Journal of C
practical work To avoid this plan of paying es according to e forced by the worth nothing. ege in securing wisdom of the work, we could at, and, as often oss in another ill see that the were deducted vely small sum ked for small uld have more
greater than
an amount to
he increase in as not nearly tes spoken and esumed to ask hitect to name vay, the whole m of the ages 1 is a needful ? If a young s in the study on medicine if he aims at up in a drug gg man should I am glad to ing to realize
that special preparation is needed no less for the pursuit of agriculture than for any other industry. The existence of the Ontario Agricultural College is a proof of this.

The College.

As President of the College, I cannot discuss the question of its efficiency or inefficiency so freely as I would under other circumstances. No doubt to our faults we are "a little blind," if not to our "virtues very kind"-we do not see ourselves as others see us; but admitting all past errors and present defects, I think it is not too much to say that the Ontario Agricultural College is an institution of which the Province may be proud, and class that seeks the supported, not only by the farming community, but by every other gives instruction in agriculture the country. It is the only school in the Province which is the only place whère questions relating to suchstry, horticulture, and stock-raising ; it discussed. The course of study is cong to such subjects are systematically studied and direct bearing on the duties of the agriculturist those branches which have a somewhat in combining practical work with theoretiearist, horticulturist, and stock-raiser; its success and the whole tendency of the training given instruction has not been surpassed anywhere ; but to educate them to the belief that given is not only to make more intelligent farmers, of the agriculturist ; that socially, politically is more honourable occupation than that pare with it ; and that in the matter of independence financially, there are few to comthere is scarcely one equal to it. The positiondence, contentment, and real happiness, stock-raising district, containing a number of the the College in the centre of a large Galloway herds in the Dominion, is a mer of the best Shorthorn, Hereford, Devon, and these herds from time to time, and attend the fam some importance. The students visit mas and Easter Last year each was required to exat-cattle shows in Guelph at Christand afterwards draw up and read a special report examine the different animals exhibited, In the time of my predecessor the foundation of tho them, and on the show as a whole. we are now doing our best to strengthen that of the institution was laid broad and deep; the past year some progress has been made ; a large thrion and to build upon it. During and the old one very much enlarged and improved ; three-storey building has been erected, the whole premises with steam, and lighting every ; provision has been made for heating from the College to the city; and the number room with gas; a sidewalk has been laid

Reading-Room and Library.

An excellent reading-room has also been provided, and a very nice and commodious: room for a library; and all we now require to make this department complete is a full supply of books, magazines, and papers. We already have 475 volumes in the library, consisting of reports, herd-books, books of reference in all the subjects taught, and a fair supply of general reading. We also have on file in the reading- room the following papers and maga-
zines, furnished by the College and the Literary Society :

Furnished by the College.

Daily Globe.
Daily Mail.
Weekly Globe.
Weekly Mail.
Guelph Mercury.
Guelph Herald.
Canadian Farmer and Grange Record.
Farmers' Advocate.
Canadian Horticulturist.
North British Agriculturist.
Irish Farmer's Gazette.
Mark Lane Express.
National Live Stock Journal.
Boston Journal of Chemistry.

Scientific American.
Scientific Amer. Supplement.
Cultivator and Country Gentleman.
American Agriculturist.
Aberdeen Free Press.
Grip.
Bystander.
Canadian Monthly and National Review.
Leisure Hour.
Sunday at Home.
Good Words.
Quiver.
Sunday Magazine.

Provided by the Literary Society.

Canadian Illustrated News. Punch.

Rural New Yorker.
Frank Leslie's Illustrated Paper. The Graphic.

When visiting the Michigan Agricultural College, over a year ago, I was pleased to find that nearly every editor of any note in the State sent a copy of his paper free to the readingroom of that institution. I might here say that similar donations from the editors of Ontario and other parts of the Dominion would be appreciated by the students of the Ontario Agricultural College. The public spirit and princely munificence of our neighbours across the line, as manifested in the erection and endowment of schools and colleges in their country, are known all over the world. The people of Canada have as yet done very little in this direction; they do not seem to think that it is either a privilege, an honour, or a benefit, to contribute money for such objects. I am pleased to say, however, that there are occasional exceptions ; there is now and then one whose liberality deserves special mention. A couple of months ago a very nice outfit for a gymnasium, worth about $\$ 200$, was purchased for the Ontario Agricultural College by our old and tried friend, Captain McCrae, of Guelph. A portion of that outfit has been placed in a vacant class-room, and is already in use. The young men appreciate it very much; and I hereby take the liberty of thanking the Captain on their behalf for so handsome a gift ; and in this connection, I may add, that since the appointment of Sergeant-Major Clarke as instructor in drill and gymnastics, the exercises under these heads have been a source of unusual pleasure and profit to the students as a whole.

Literary Society.

The young men have formed themselves into a Literary Society, with a regular constitution and by-laws. This Society meets every Friday evening at half-past seven, in one of the class-rooms, to practise declamation, read essays, and debate questions relating to agriculture, stock-raising, and other matters of interest to the yeomen of this country. These discussions are often quite spirited; and there is no doubt that the work done in such societies is a valuable addition to the educational appliances of an institution. In the performance of such work the young men bave an opportunity of measuring their strength and testing their armour before they set out in the warfare of life ; they gradually learn to speak in public ; their wits are sharpened, their reasoning powers developed, and their manners improved. The regular meetings of the Society are open to the members only; but once a year they give a literary and musical entertainment to their friends in Guelph. The only difficulty in connection with these entertainments and other public gatherings on stated occasions is, that we have no room half large enough to accommodate those who come ; and this brings me to the question of wants and

Recommendations.

In connection with my estimates for next year, I took the liberty of calling your attention to what appears to me to be the most pressing wants of the institution at the present time, I shall now venture to repeat some of the requests then made.

Salaries.-Most people are working for a living, and some few for a reputation. Hence it is not to be expected in the civil service, more than anywhere else, that a man will long continue to do the best that he is capable of doing, unless he receives suitable remuneration for his services. He may put in his time and do fairly well; but he will r ot work late and early, and exert every energy to secure success, so long as he feels that no one will thank him for his extra trouble, and that he cannot make a cent a year more than by the perfunctory discharge of the time-honoured routine. Poor pay generally means poor service, and very properly so. Therefore it seems evident that the wise and economical policy for either a Government, or a private individual, is to pay good salaries and insist on good work. From Table 3, Appendix F, it will be seen that I have recommended a small increase in the salaries of three or four of our staff; and,
without prejudi my assistant, M are at the prese less to look af long (5.45 in th about three ho Book-keeping. year. Our Prc the College whi of the Science 1 and the School is no less schola library, superint hours a day o Physical Geogre yet the estimato what is paid in recommending t any other Scienc

The Horticu taken to reorgani almost any porti impress upon the of home as tidy great lack in this erable prominend small, but the h growth, and a few has lately been al ing with various and to publish th new hot and props be appointed to te lecture on Botany and publish annus

A Laboratory ing books for the hall and two or of a laboratory. say anything mor the present time. progress in a labo less than a farce t I think no one w the best apparatu men could work u soil, manure, and f of the farming com $\$ 12,000$ be placed requirements of the

Paper.
vas pleased to find ree to the readingom the editors of e students of the nce of our neighhools and colleges have as yet done a privilege, an to say, however, ose liberality deor a gymnasium, our old and tried laced in a vacant h ; and I hereby a gift ; and in Major Clarke as been a source of
h a regular conpast seven, in one tions relating to of this country. e work done in institution. In measuring their fe ; they graduowers developed, pen to the memt to their friends and other public to accommodate

of calling your

 astitution at the e. or a reputation. else, that a man eceives suitable ell; but he will as he feels that make a cent a tine. Poor pay evident that the idual, is to pay ill be seen that our staff; and,without prejudicing the case of any, I beg leave to press the claims of one or two. When my assistant, Mr. Mactavish, was appointed, his duties were not nearly so onerous as they less to long (5.45 in the morning to 1030 . His hours of duty in the boarding house are about three hours a day on Arithmight), his responsibility is heavy, and he lectures Book-keeping. I therefore rechmetic, Mensuration, Mechanics, Levelling, Surveying, year. Our Professor of Chemistry. J. Hat his salary be raised from $\$ 500$ to $\$ 600$ a the College which seems to say that his servis Panton, M.A., does an amount of work in of the Science Masters in the other Gorvices are worth as much to the country as those and the School of Practical Science. Our is no less scholarly; his work and respur institution is no less important ; Mr. Panton library, superintends all practical work in the lare no lighter. He takes charge of the hours a day on Inorganic Chemistry, Organic and Practical lectures from four to five Physical Geography, Systematic and Erganic and Practical Chemistry, Geology and yet the estimates of last year show that his salary is from Meteorology and Entomology ; what is paid in the other institutions. In view of thom $\$ 300$ to $\$ 600$ a year less than recommending that Mr. Panton's salary be raised these facts I think I am justified in any other Science Professor in the service of the Province, which is the lowest sum paid

The Horticultural Department
taken to reorganize the Horticultural Department of the institution when steps should be almost any portion of the Province will convince the institution. A short trip through impress upon the minds of our young people the importance of effort should be made to of home as tidy, tasty, and cheerful as possible Importance of making the surroundings great lack in this respect; and therefore I think the Coll country districts there is a erable prominence. Our present hot-houses are be college should give the matter considsmall, but the heating apparatus is so defective behind the times; they are not only too growth, and a few of the best destroyed every winter with sme of the plants are stunted in has lately been allotted to the Fruit Growers' Ainter with smoke. A portion of the farm ing with various fruit and forest trees; and somsciation for the purpose of experimentand to publish the results from year to year. Therson is needed to take charge of it, new hot and propagating houses be built, and that a Professeg leave to recommend that be appointed to take charge of the experimental a Professor of Botany and Horticulture lecture on Botany, Horticulture, Fruit-culture, Floriculture, and Fawns, and gardens; to and publish annual reports on the work done.

A Laboratory.-I shall not trouble you by
ing books for the library, the fitting up ou repeating what I have already said regardhall and two or three cottages; but content myself, or the building of a convocation of a laboratory. And I have so often spoken of this referring briefly to our need say anything more. It is undoubtedly the most pressing want of seems useless to the present time. When we had from fifty to ninety students we could make some progress in a laboratory eight feet wide by fourteen feet long, but with 130 , it is little less than a farce to attempt any practical work in the department of chemistry. Hence, I think no one will deny that we very much need a large laboratory, equipped with the best apparatus that money can purchase-a place where at least eighty young men could work under the direction of our chemist, and where, at small cost, samples of soil, manure, and fodder could be analyzed, and the results publःshed for the information $\$ 12,000$ be placed community. Therefore, I not only recommend, but urge that the sum of requirements of the College and the country.

I have the honour to be, Sir,
Your obédient Servant,

JAMES MILLS,
President.

AGRICULTURAL COLLEGE, AND EXPERIMENTAL FARM, GUELPH, ONTARIO.

Description of the Buildings, etc., Prepared by the Architect of the Public Works Department.

The Farm, containing 550 acres, was purchased from Mr. F. W. Stone, Guelph, in 1873 , for the sum of $\$ 75,000$, and is situated on the Dundas road, about one mile from the City of Guelph.

The buildings have been erected on an elevated portion of the Farm, on the north side of the Dundas road, commanding an extensive view of the surrounding country, and the City of Guelph. The principal entrance is from the Dundas road, at the south-west angle of the grounds in front of the buildings, which have been skilfully planted; the hot-houses and horticultural gardens being in the south-east part of the premises, and having a separate entrance on the Dundas road.

The original building, to which additions have been made according to the requirements of the College, as the number of pupils increased, consisted of a stone dwelling house, 53 feet by 39 feet, with addition in the rear for kitchen, laundry, etc., 60 feet by 24 feet, the whole being two storeys in height.

Commodious farm buildings of stone and wood, with enclosed yards, also stone, brick, and wood farm houses, were also on the premises when purchased, and the lots were surrounded by good post and rail fences. The greater portions of the lots were cleared and well cultivated, the remaining portions being wooded and retained for ordinary farm requirements.

The following additions were made from time to time to the original dwelling house:Dining, reading, and class rooms, also a lavatory, laundry, steam heating apparatus, and apartments for the domestics were constructed in 1873-4, the College having been opened in the latter year. Apartments for twenty-eight pupils were fitted up in the stone farm house, in the front portion of the grounds. This building-was burnt down in February last year, and the walls were so much injured that it has not been re-constructed.

In 1875 a mansard roof was constructed over the front portion, and at a distance of 50 feet on the south-east side, the College authorities erected a building 40 feet by 50 feet, two storeys in height, with mansard roof, for lecture and class rooms.

An addition, 94 feet in length by 50 feet in width, two storeys in height, with mansard roof, was made on the north-west side in 1877, affording accommodation for thirty additional pupils, with a new dining-room, also apartments for the Professor of Agriculture. A cheese factory was also erected south of the Dundas road. Further additions were made in 1879 and 1880, consisting of store rooms, Matron's and domestic apartments, also a larger dining room, 62 feet by 40 feet, and dormitories for sixty additional pupils, making, in all, apartments for 130 pupils, with larger reading room and library, baths and wash rooms, all being heated by steam, on the direct low pressure principle, by means of coils and radiators, a new boiler house, 38 feet by 24 feet, containing two large steam boilers, with coal house attached, having been constructed for the purpose.

The water supply at present is from wells and tanks on the premises; and the water is pumped into a large tank in the centre tower, from whence it is distributed to the several baths, wash-rooms, and sinks, the baths and sinks being also supplied with hot water. Arrangements will probably be made with the city water works of Guelph to extend their máins to the buildings during 1881, when water will not only be supplied for the requirements of the College, thereby saving the cost of pumping, according to present arrangements, but the buildings will be protected from fire by means of hydrants in the grounds.

The City Gas Company of Guelph, extended their mains to the buildings during 1880, and all the apartments are now supplied with gas light. The buildings now completed

D1

1873
the $($
side .
the C
angle
hot-h
havis
ment
hous:
24 fe
and.
roun
well
quire
Dini
apart
open
stont
Febr
50 f
feet,
man:
thirt
cultu
were
also:
makj
wash
coils
boile
is pr
sever
wate
tend
the r
arrat
grou:
and ,
occupy a space of 240 feet in front by 180 feet in depth, and contain a reception-room and office, four large class and lecture-rooms, with dining and reading-rooms, library, dormitories for 130 pupils, bath-rooms and lavatories, and apartments for the President, Professor of Agriculture, Assistant Master, and Bursar, also Matron's and servants' rooms.

The perspective view shown on frontispiece and the accompanying plans which have been prepared in the Department, will explain the arrangement, dimensions, and relative position of the various apartments, also the external appearance of the building, which now presents more of a public character than might have been expected, considering the basis on which the various superstructures were erected.

Further inprovements will have to be made in 1881, to complete the furnishing and other internal arrangements, and render the buildings suitable in all respects for the requirements of the College.

The total cost of land and buildings, furniture, live stock, implements, drainage, etc., to the end of 1880 , amounts to $\$ 198,029.51$.

APPENDIX A.

CIRCULAR OF THE ONTARIO AGRICULTURAL COLLEGE FOR 1880.

Staff.

James Mills, M.A., President, Professor of English Literature and Natural History.
William Brown (Gold medallist of the Scottish Arboricultural Society and of the Highland and Agricultural Society of Scotland), Professor of Agriculture and Farm Superintendent.
J. Hoyes Panton, M.A., Professor of Chemistry. E. A. A. Grange, V.S., Professor of Veterinary Science.

Alexander MoTavish (First-Class Prov. Certificate), Assistant Resident and Mathematical Master.
P. J. Woods, Instructor in Farm Department.

James Forsyth, Instructor in Horticultural Department.
James McIntosh, Instructor in Mechanical Department.
Thomas Johnston, Bursar.

Introduction.

The institution known as the "Ontario Agricultaral College and Experimental Farm," is situated about a mile to the south of the City of Guelph, in the centre of an extensive agricultural and noted stock-raising district, readily accessible by rail from all parts of the Province. The Farm consists of 550 acres, about 400 which are cleared. It is composed of almost every variety of soil, and is therefore well suited to the purposes for which it was selected.

Immediately upon taking possession, the Government appointed a Commission to inquire and report regarding "the manner of adapting the said farm and management and control thereof to the purpose of a Model and Experimental Farm." A few extracts from the Report of this Provincial Farm Commission will show clearly the basis upon which the institution is at present established.
" The objects of the institution should be-First, to give a thorough mastery of the practice and theory of husbandry to young men of the Province engaged in Agricultural or Horticultural pursuits, or intending to engage in such; and, second, to conduct experiments tending to the solution of questions of material interest to the Agriculturists of the Province, and publish the results from time to time.
"That the Farm should be separated into five distinct departments, namely :-
"1. Field Department.
"2. Horticultural Department.
" 3. Live Stock Department.
"4. Poultry, Bird and Bee Department.
" 5. Mechanical Department.
"All pe developed sy of the most convenience for adoption

In order ernment mad utilize it for a Principal a partments eng

Work co made. There and it is hope increase the a A considerabl vided, and a v sheep, and thr lished, and is institution.

1. Each c
2. He mu
3. He mu
4. If a rate fee of $\$ 25$ a yea

The subjec

Candidates 16th of April or

First,Secon cates of Entrane Majesty's domin tending student examination for to return home i

Heretofore young men who Matriculation Ey of qualified appli

Abstract

"All permanent improvements on the Farm should be carried out on a gradually developed system, and in such a manner as to exhibit and test the comparative values of the most approved methods of executing the several works; and to test the cost, convenience and durability of the several appliances from time to time recommended for adoption on the farms of the Province."

In order to carry out the suggestions of the Provincial Farm Commission, the Government made such improvements on the residence found on the place as would best a Principal present purposes. Accommodation was provided for about twenty-five pupils, partments engaged, viz.: were appointed, and a Foreman for each of the following de-

> 1. Farm Department. 2. Live Stock Department. 4. Horticultural Department. Mechanical Department.

Work commenced in May, 1874. Since that time considerable progress has been made. There are now ninety-two students in attendance-all boarding in the institution; and it is hoped that our Parliament, at its next session, will make an appropriation, to increase the accommodation at once. Many improvements have been made on the Farm. A considerable portion of it has been well drained, suitable implements have been provided, and a very fair representation of stock secured-seven breeds of cattle, five of sheep, and three of pigs. The Horticultural Department has been thoroughly established, and is now cre of the most efficient means of education in convection with the
institution.

TERMS OF ADMISSION.

1. Each candidate must be at least fifteen years of age.
2. He must produce satisfactory certificates-
(1) As to moral character.
(2) As to physical health and strength.
(3) As to the assent of his parents or guardian.
(4) As to his intention to follow Agriculture or Horticulture as an occupation.
3. He must pass the Matriculation Examination.
4. If a ratepayer or a bona fide resident of the Province of Ontario, he must pay a fee of $\$ 25$ a year in advance ; if not, he must pay a fee of $\$ 50$ a year in advance.

The subjects for matriculation are as follows:
(a) Reading, writing and dictation.
(b) English Grammar-parsing and analysis.
(c) Arithmetio-to the end of Simple Proportion.
(d) The outlines of General Geography, and the Geography of Canada.

Candidates for admission are required to present themselves for examination on the 16th of April or the 1st of October, at 9 a.m., in the Lecture Room of the College.

First,Second and Third Class Teachers, holders of Intermediate Certificates or Certificates of Entrance to High Schools,Graduates or Undergraduates of any University in Her Majesty's dominions, will be admitted on presentation of certificates or diplomas. Intending students who do not hold any such certificate or diploma are advised to pass the examination for admission to High Schools, to save the expense and annoyance of having to return home in case of their failing to pass our Matriculation Examination.

Heretofore there has been a Preparatory Class in connection with the College for young men who understood the ordinary routine of farming, but could not pass the Matriculation Examination. In future, such candidates will be admitted if the number of qualified applicants be not sufficient to fill all vacancies.

Farmers' sons, or others following the occupation of farming, will be allowed to attend the Classes during the winter session, which shall count as a year, under conditions hereinafter specified.

COURSE OF INSTRUCTION.

The instruction given at the institution is embraced under two heads : a Course of Study and a course of Apprenticeship.

1.-COURSE OF STUDY.

The regular course of study for matriculated students is one of two years. There is a special course for those attending during the winter session only, whereby, no apprenticeship being undertaken in that time, additional studies are possible, and the whole two years' course is completed in two winter sessions.

First Year.
 subjects :

Practical Agriculture.
Veterinary Anatomy.
Veterinary Materia Medica.
Physical Geography. English.

Chemistry.
Botany.
Zoology.
Geology.
Mathematics.

Second Year.
subjects :

Agriculture.

Veterinary Pathology
Veterinary Surgery and Practice.
Book-Keeping.
Levelling and Surveying.
Agricultural Chemistry.

Economic Botany.
Entomology.
Meteorology.
English Literature.
Political Economy.

DEPARTMENTS OF INSTRUCTION.

1.-Agriculture.

Introduction.-History of Agriculture-Ancient, mediæval, modern ; Literaturestandard works, reports of societies, periodicals ; Varieties of Farming-dairy, stock, ordinary mixed husbandry.

Solls.-Origin, distribution, physical properties and classification of soils ; Reclamation of lands-Forest clearing-stumping, stoning, fallowing, etc.

Preparation of the Land for Crops.-Ordinary operations of tillage, ploughing, harrowing, cultivating, rolling, subsoiling, levelling, general cultivation most appropriate
for the various kinds of soils.

Succession of Crops.-Importance and necessity of rotation, principles thereof, rotations suitable for various soils; crops-root, forage, cereal-treated with reference thereto.

Cultivation of Crops.-The various crops ; Cereals-wheat, oats, barley, etc.; Legu-minous-peas, beans, etc.; Roots-turnip, carrot, potato, etc.; Forage or Herbage-tare, lucerne, clovers, grasses, flax, hemp-cultivation most appropriate for each; Seeds -purchasing, testing, preparing, changing ; Soiving-kind and quantity of seed, method of sowing ; After cultivation-harvesting-consumption, or preparing for market, cost of production, laying land down to grass, management of grass and pasture land.

Improve subsoiling; D elling for, m manuring ; a bones, superp

Bregding poses, various istics of the v breeding, cros fattening proc management, long wools, me and spring fee tity and quality of the various increase, bacon ment.

Implement ploughs, harrov manure distrib machines, thres straw cutters, t steaming ; impl

General E roads and lanes fences, hurdles , dwellings, out-b specifications.

General Bu implements and ing of stock and affecting them, m tion of agricultur

Arboricultit occurrence, habit bed, what parts large trees, enclos shelter and econo

Miscellaneo

Occasional lec of practical work,

Chemical Ph gravity, cohesion, gases.

Inorganic Che non-metallic elemen and decomposition, oxides of nitrogen, sulphuric acid, its phosphoric acid, ca

Improvement of Soils and Lands.-Improvement by thorough ordinary cultivation, subsoiling ; Draining-its value, principles, various methods of draining, formation, levelling for, materials used in formation, cost and remuneration; Manuring-farm-yard bones, superppication, uses, and properties of artificial manures-lime, plaster, salt, Breeding Phate, nitrate of soda, etc.; etc. poses, various breeds, breeding, feeding animals.- Horses suited for agricultural puristics of the various breeds-Shoreeding, and general management; Cattle-characterbreeding, cross-breeding, in-Shorthorns, Herefords, Devons, Ayrshires, etc.; methods of fattening process, relation of food toeding, pedigree system, rearing young stock, the management, the factory system, realincrease, dairy management,* butter and cheese long wools, medium wools, short wealization; Sheep-characteristics of various breeds, and spring feeding, rearing of lambs, r, breeding and management of ewe flock, winter tity and quality, dipping and salving, quantity of food to increase ; Wool-texture, quanof the various breeds, breeding ang, quantity maintained per acre ; Swine-characteristics increase, bacon curing ; Poultry-charanagement of sows, fattening, relation of food to ment.
of the various breeds, general manageploughs, harrows, manure distributors; mowing and rge implements, sowing machines, grass seed and machines, threshing and dressing and reaping machines; hay-making and harvesting straw cutters, turnip cutters and pulpers ; barn implements ; waggons, sleighs, carts ; steaming ; implements of less general use.

General Economy oreral use.
roads and lanes; Fences-varieties, -Laying out a farm, formation and management of fences, hurdles ; Hedges-varieties, methon, mode of construction, materials, movable dwellings, out-buildings, stables, methods of planting, after cultivation; Buildings, oarns, sheds-principles of construction, plans and
General Business of the Farm,-Capital necessary, values and prices of land, stock, implements and improvements, value of all kinds of labour, making of inventories, keeping of stock and produce registers ; Markets-economical laws regulating them, customs affecting them, modes of buying and selling, common laws relating to agriculture, relation of agriculture to the other industries.

Arboriculture,-Application to the American continent, differen' kinds of treesoccurrence, habits, uses, values-value of timber as a crop, raising of trees from the seed large trees, enclosing ene country should be planted, planting operations, transplanting shelter and economy.

Miscellaneous Subjects.

2.-Ho. hiculture.

Occasional lectures are all that are yet given in this important department. The course of practical work, however, is extensive.

8.-Sciente.

I.-Chemistry.

Chemical Physics.-Force and matter, correlation of force, properties of matter, gravity, cohesion, heat-light, magnetism-electricity ; forms of matter, liquids, solids, gases.

Inorganic Chemistry. - Scope of chemistry, atomic theory, chemical affinity, the non-metallic elements-oxygen, hydrogen, water-its nature, occurrence, functions, states oxides of nitrogen, nitrogen, the atmosphere, ammonia, its sources and important uses, sulphuric acid, its manufad and its importance to plants, sulphur and its compounds, phosphoric acid, carbon, silicon and uses, phosphorus, the agricultural importance of , sand, silicates, chlorine, bromine, iodine, ete.;

The metals-the alkalies, sodium, potassium, soda, salt ; calcium, lime, plaster; lead and its compounds; iron-its ores and manufactures ; arsenic-its compounds and detectiongold, silver, platinum, tin, etc., etc., occurrence and uses, alloys.

Organic Chbmistry.-Scope of the divisions of the science, organic compounds derived directly or indirectly from plants and aniimals, artificial formation of organic compounds, classification of organic bodies and their complexity, determination of the empirical and rational formulæ of organic bodies. Wood Spririt and its derivatives, methyl compounds, chloroform, acetic acid and its compounds, alcohol and the process of fermentation, constitution of oil and fats, manufacture of soap and candles ; starch and sugar, and the other amyloids and glucoids-manufacture of sugar, tartaric, lactic, citric, and malic acids. The flesh-formers or albuminoids and their congeners ; Essential oils and resinsvarnishes, petroleum ; Vegetable Alkaloids-quinine, strychnia ; aniline dyes ; urea and uric acic ; Animal Chemistry. Vegetable Chemistry.

Agricultural Chemistry.-History of the connection between agriculture and chemistry, the food of plants, the origin and nature of soils, analysis of soils, relation of different plants to the soil, composition of different crops, chemical changes during the growth of different plants, rotation of crops, manures-special and general, the composition of farmyard mannre, nature and analysis of guanos and superphosphates, other manures, feeding of animals, foods, ingredients of foods, relation of increase to composition of food, economy of food.

Praotical Chemistry.-Chemical manipulation-the practical testing of waters, soils, foods, superphosphates, and other manures, and the preparation of the common gases, and the common acids.

Analytical Chemistry.-Qualitative and quantitative analysis, especially the analysis of soils, manures and farm produce.
(a) Through all the courses, bath of laboratory and experimental lectures, a constant endeavour is made to illustrate the principles of the pure science of Chemistry, on which the whole teaching is based, by Agricultural examples.

II.-Natural History and Entomology.

Botany.-Structural and Physiological-internal structure of plants, cells and vessels, construction and development of the external parts of plants, root, stem, leaf, flower, seed, fruit, physiology of cells and vessels, chlorophyll, starch, gum, sugar, crystals, etc., movement of fluids and gases, nutrition and respiration, reproduction, methods of fertilization, hybridization, varieties, propagation, budding, division; diseases of plants, smut, rust, mildew, etc.

Systematic and Economic Botany. -Special morphology and general classification of plants, flowerless plants, mosses, ferus, fungi, etc.; flowering plants, characters of larger divisions. The orders containing important agricultural and economic plants, the cereals, grasses, roots with geographical distribution, agricultural seeds and fruits.

Zoologr.-Nature of life, vital force, differences between animals and plants, differences between different animals, morphology and physiology, definition of species, origin of species, classifisation, characters of the general classes and orders of the Invertebrates, with examples. Special study of Infusoria, Scolecida, Annelida, and Insecta. General haracters of the Vertebrates-the various orders, with morphological and physiological distinctions of each, illustrated by common examples. Special study of the families of Aves, containing the insectivorous birds, and the families of the Mammalia, containing all the various farm animals. Comparative anatomy and physiology of farm animals.

Entomology.-Structure and physiology of insects, metamorphoses of insects, senses of insects, insects injurious to vegetation, to growing plants; to fruits, the apple, plum, pear, peach, small fruits, etc.

III.-Geology, Physical Geography and Meteorology.

Geology.-Geological epochs, classification of rocks, structure, stratification, cleavage, foliation, dip, fault, denudation ; elevation and depression of land ; disintegration of rocks by aqueous and atmospheric agencies, formation of soils, Canadian geology.

Physical geology, distr wells and spri barometer-val thermometerterrestrial rad winds and sto vegetation.

> Anatony
> Osseous systen system, circula tive system, ge

> V̄terinar treatment of th

> Muscular
> Syndesmolo other diseases

> Plantar Sy:
> other diseases o
> Odontology
> age of the anim
> Digestive S_{y}
> lent colic, inflan
> the rumen, and
> Circulatory
> Respiratory
> roaring, bronchi
> Urinal Syste
> kidneys, etc.
> Nervous Syst
> Sensitive Sys

and ear.
Generative S milk fever, etc.

Tegumental δ
mallenders, para Matrbia Mei the principal med Grekral Su hunters, harness selection of anim bones, ring-bones, general maizagem natural presentatic ing, method of pr stabling. The inf Demonstratio

English,-Re rical forms of the E its connection with of extracts from so the sentence, the p

Physionl Geography and Meteorology.-Conneetion between physical geography and geology, distribution of land and water, superficial configuration of Ontario, theory of wells and springs. History andscope of meteorology-weight of atmosphere, how ascertained, barometer-various kinds, manipulation ; Temperature-how observed and calculated-thermometer-varieties, Fahrenheit, centigrade, etc., use of each, manipulation ; solar and terrestrial radiation, moisture of the atmosphere ; mists, fogs, clouds ; rain, snow, hail ; winds and storms ; miscellaneous, causes affecting the climate, influence of climate on

4.-Vkterinary Scignoe.

Anatony and Physiology of the Domestic Animals. - Horse, ox, sheep, pig. Osseous system, muscular system, syndesmology, plantar system, odontology, digestive, system, circulatory system, respiratory system, urinary system, nervous system, sensitive system, generative system, tegumental system.

Veterinary Pathology.-Osseous system, giving the nature, causes, symptoms, and treatment of the various diseases of bone as splint, spavin, ringbone, ete.

Muscular System-nature, causes, symptoms, and treatment of flesh wounds, eto.
Syndesmology-nature, causes, symptoms, and treatment of bog spavin, curb, and other diseases of joints.

Plantar System-nature, causes, symptoms, and treatment of corns, sand-crack and other diseases of the foot.

Odontology-describing the diseases 0 . the teeth; also the mode of determining the age of the animals by the same.

Digestive System-nature, causes, symptoms, and treatment of spasmodic and flatulent colic, inflammation of the bowels, acute indigestion,tympanitis in cattle, impaction of the rumen, and many other common diseases.

Circulatory System-describing the diseases of the heart and blood vessels.
Respiratory System-nature, causes, symptoms, and treatment of catarrh, ne.sal gleet, roaring, bronchitis, pleurisy, inflammation of the lungs, etc.

Urinal Syster-nature, causes, symptoms, and treatment of inflammation of the kidneys, etc.

Nervous System-nature, causes, symptoms, and treatment of lock-jaw, string-halt, etc.
Sensitive System-nature, causes, symptoms, and treatment of the diseases of the eye
Generative System - nature, causes, symptoms, and treatment of abortion, parturition, milk fever, etc.

Tegumental System-nature, causes, symptoms, and treatment of scratches, sallenders, mallenders, parasites, and other diseases of the skin.

Materia Medica.-Giving the prepartion, actions, uses, doses, of over one hundred of the principal medicines used in Veterinary practice.

General Subjeots.-The external form of the horse, thorough-breds, half-bred hunters, harness animals, draught animals. The external forms of stock, breeding, selection of animals, crosses, transmission of hereditary diseases; spavin, splints, side bones, ring-bones, grease, blindness, roaring, etc., and their remedies, sterility, abortion, general maiagement to produce successful gestation, parturition, natural and pretering, method of priss, their treatment. The management of young stock, weaning, feedstabling. The influence of climate upon animals,

Demonstration of An climate upon animals.

5.-English and Politioal Eoonomy.

English.-Review of past school work.-study of etymologieal, syntactical and rheto rical forms of the English language, history of its formation, elements entering into it, its connection with other languages. Analytical study of one of Shakspeare's plays, and of extracts from some of the other English classics each year. English compositionthe sentence, the paragraph, rhetorical figures, their use and abuse, species of compo-
sition, qualities of style, varieties of style. Essay writing, familiar and business correspondence.

Political Economy.-Wealth, labour, capitai. Production, distribution, exchange, government, and the position that agriculture holds in each; relation of agriculture to all the other industries of a nation.

6-Mathematics.

Mathematics.-Arithmetic-Review of past work in arithmetic, with special view to farm accounts-tables of weights and measures, proportion, interest, discount, partnership, square and cube roots ; Mental Arithmetic ; Mensuration-the mensuration of every kind of surface, including the quantity of land cultivated by various machines, the surface occupied by different crops, the measurement of solids, including the contents of tanks, ditches, wells, manure heaps, walls, the materials for roads, timber, etc. Surveying in its commoner branches, fields surveyed with the chain and cross-staff, heights and distances found by the use of the theodolite, levelling practised. Mechanics-methods for calculating the weights of different materials, the units of work performed by various agents in the execution of particular works, the strength of materials, the mechanical powers, friction, the steam engine, etc. Those parts of dynamics which have reference to agricultural machinery, such as centrifugal force, accumulated work.

II.-COURSE OF APPRENTICESHIP.

The pupils are daily distributed to each of the following departments:

1. The Live Stock Department.
2. The Field Department.
3. The Horticultural Department.
4. The Mechanical Department.
5. The Experimental Department.

They are taught the manner of performing the various operations in each department by the instructor or his assistants in that department ; and being distributed alternately to each, it is expected that at the end of two years a thorough apprenticeship will have been served.

The instruction received in the class-room is, as far as possible, illustrated and exemplified in the fields, yards and shops. The following may be taken as a few of the operations, in the performance of which apprenticeship is served:

Firid Departarent.-Cleaning, harnessing and management of horses, ploughing, harrowing, cultivating, drilling, subsoiling, sowing, broadcast and by drill, planting, hoeing and grubbing, haying-by seythe and mower, harvesting by cradle and reaper, stoning, threshing, winnowing, marketing, draining, levelling, land measuring, stumping, logging, chopping, etc., etc.

Live Stock Depparturnt.-Cutting, pulping, steaming, mixing, feeding, cleaning, and general management of cattle. Feeding, lambing, shearing, castration, dipping, salving, hurdling, and general management of sheep. Feeding and general management of other stock.

Horticultural Department.-Digging, ploughing, raking, seeding, planting, hoeing, mowing, harvesting, storing', and general management of vegetables, flowers and lawn. Pruning, grafting, budding, mulching, cleaning, harvesting and storing, and general management of an orchard. General management of propagating-houses, greenhouses, vinery, nursery, hedges, walks and rords, etc., etc.

Mrchanical Departarent.- Planing, sawing, nailing, grooving, matching, mortising, framing and general use of commoner mechanical tools. Fencing, hurdle making, gate making, and management of general farm improvements. Repairs of all farm buildings, implements, machines, etc., etc.

SESSIONS AND EXAMINATIONS.

For those taking the regular course there are two Sessions in the year-a Winter and a Summer Session. The former commences on the first of October, the latter on the 16th of April.

There is a vacation at the end of each Session.
Examinations, which every student is required to pass, are held at the close of the Session-in each inside Department, on the subjects of Lectures in that Department, for the Session; and in each outside Department, on the work of that Department for

For those taking the special course there is but one Session-the Winter Sessionextending from the first of October to the end of March. To those who pass the requisite examinations, not only in the regular studies, but in the special ones likewise, this Session counts as a year, and is so designated.

DIPLOMAS.

A diploma is given to each student who completes his course of study, and passes satisfactorily all examinations, both on the subjects contained in the curriculum, and on
the work of his apprenticeship.

> RESIDENCE, LABOUR, FEES, REMUNERATION.

> 1.-Regular Course.

It is desirable that all students taking the regular course should reside in the building. As the city, however, is distant but a mile and a half, students may board in it and attend lectures.

The number of hours of labour for regular students varies with the season of the year, but the arrangements are such that an annual daily average of not more than five hours is enforced.

Tuition, $\$ 25$ a year for ratepayers and bona fide residents of the Province of Ontario; for all others, $\$ 50$ a year.

Board and washing charged at cost.
all other in proportion. faithfully and zealously performed, ten cents an hour is paid-for
By this arrangement the cost of education is reduced to a minimum :
1st. The entire cost to an Ontario farmer's son, able and willing, with considerable experience in farm work, is $\$ 35$ to $\$ 50$ a year for board, washing, and tuition.
2nd. To an Ontario student without any previous knowledge of farming, $\$ 45$ to $\$ 65$ a year.
8rd. To non-residents, $\$ 65$ to $\$ 85$ a year.

2.-Speglal Course,

The special course, as stated above, commences on the 1st of October and ends 1st of April. It is intended for farmers' sons, or others engaged in that occupation, who on heir own farms. Such lectures during the winter, and return home in time for the spring work a whc'e year's lectures in students doing little or no manual labour, are enabled to take

Tr ition $\$ 25$ for the the Winter Session, which counts as a year. Ontario; to all others, $\$ 50$.

Boait and washing charged at cost- $\$ 2.18$ to $\$ 2.20$ a week.

No opportunity of defraying expenses can be promised to students taking this course, but if work be required of them they will be paid at the same rates as other students.

GENERAL RULES.

I.-Students are Required

1. To render cheerful and willing obedience to orders.
2. To conduct themselves in a gentlemanly and orderly manner at all times.
3. To avoid all noisy or boisterous conduct in or about the building.
4. To observe neatness of dress at prayers, meals and lectures, and tidiness in their rooms.

II.-The Following Practices are Absolutely Forbidden :-

1. Swearing, improper language, and gambling.
2. Use of intoxicating liquors, cards, or fire-arms.
3. Use of tobacco while on detail, in or about the building, or in any place except in the smoking room.
4. Entering domestic or private apartments without permission.
5. Absence without leave.
6. Cutting, marking, or in any way defacing the College buildings or furniture.

GENERAL REGULATIONS.

1. All students who reside in the building are under the charge of the President.
2. A register is kept of the attendance of students at prayers, work and lectures.
3. All students must attend morning and evening prayers, unless exempted from doing so in consequence of the objection of their parents and guardians.
4. They are required regularly to a tend their respective places of worship on Sabbath forenoon.
5. No student is allowed to be absent from the institution after seven o'clock in the evening, except by permission of the President.
6. Students are provided with everything in the shape of furniture, bedding, towels, etc., that may be requisite, but each is accountable for every such article placed at his disposal.
7. Every student damaging or breaking anything is required to report the same, that the value of the repairs may be charged to his account.
8. The morning bell is rung at 5.45 a.m.; bell for morning prayers, at 6 a.m. ; breakfast, at 6.30 a.m. ; farm bell, at 7 a.m.; school bell, at 9 a.m. ; farm bell, at 12 noon; dinner, at 12.30 p.m. ; farm and school bells, at 1.30 p.m. ; farm and school bells, at 5 p.m.; tea, at 5.30 p.m. ; school bell, at 7 p.m. ; bell for evening prayers, at 9 p.m. ; lights out at 10 p.m., and doors locked at 10.30 p.m.
9. The President is authorized to impose fines and other penalties, for the infraction of rules and regulations.
10. No student whose moral conduct, industrial or intellectual progress is unsatisfactory to the staff, will be allowed to remain at the institution.

GENERAL REMARKS.

A few general remarks on the appliances and advantages possessed by this instiution for training young men for agricultural pursuits may be given in conclusion.

There ar whom an inst cities and to command, de sons, or the s their educatio our regular co who desire to summer mont they can do a commence the

The farm assist in these are used. The in itself an im in the immedi students. In t are held. All have observed.

A portion systematic expe and different m as far as pract feeding of live comparative val Province need n wheat, oats or p couple of years will be seen the experiments.

These are numerous as mig Professor of Che with the instituti five teachers-m

This most im A complete skelet been provided for ailment, it is diss ence of the classes

The library is The reading-room some half-dozen g United States and Society.

Classes of Students.

There are in our Province, as a general rule, at least three classes of young men whom an institution of this kind can benefit. The first class are those who, from our command, desire to from other countries, with or without a small capital at their sons, or the sons of those closely appriceship at farm work. The seeond class is farmere' their education before commencing their lif with that occupation, who wish to complete our regular course. And lastly, there are farmers. Both of these are provided for in who desire to obtain an agricultural education, but sons or others engaged in farming summer months. These are provided for in the special cot remain with us during the they can do a year's work in the winter session, becial course. By taking that course, commence their spring work, and return to college again in their own farms in time to

Teaching Appliances on the Farm.

The farm itself is being gradually laid out, cleaned, and drained, and the students assist in these operations. The best and most approved farm implements and machinery are used. The possession of seven breeds of cattle, five of sheep, and three of swine, is in the immediate neighbantage for the purposes of instruction. Besides this, there are students. In the adjacent city, several herds which are frequently inspected by the are held. All of these are visited by the students, who shows, and a central exhibition have observed.

Experiments.

A portion of the farm has been laid out in experimental fields and plots, and regular systematic experiments with varieties of grasses, cereals and roots, with different mauures and different modes of cultivation, are carried on. In these the second year students, feeding of live stock are made during the wintese field experiments, others in the comparative values of different kinds of food. Tinter, to test the several breeds and the Province need not be pointed out. The dis. The benefit of such experiments to the wheat, oats or pease would not only cover all avery of one or two really good varieties of couple of years by their value to the country, West, but pay for the place itself in a will be seen that second years' students are trainent mentioning this, however, it experiments.

Teaching Appliances in the Sohool,

These are constantly being added to, although in the meantime they are not so numerous as might be desired. Especially is the want felt in the department of the Professor of the institution. Anstry, for as yet there is but a small working laboratory in connection five teachers-masters of their subje a school are usually the growth of years, and with

Veterinary Departaient.

This most important department has been fully organized and is doing good work. A complete skeleton of a horse and all the principal bones of ordinary farm animals have been provied for the class-room. When an animal dies from diseare or any other
ailment, it is dissected, the cause ence of the classes. Thus the work isuses of death sought for and pointed out in pres-

Library and Reading Room.

The library is well selected, and, though small, is being constantly augmented. The reading-room is furnished by the College with daily and weekly newspapers, with some half-dozen general periodicals, and the leading agricultural papers of Canada, the
United States and Great Britain. Society.

Advantages of the Course.

Besides becoming fairly skilled in the work of a farm, the student takes part in the cultivation of a garden, and thus increases his knowledge and improves his taste in a very important direction. He also acquires skill in the use of tools, so that afterwards he is not only able to make his own repairs, but knows when such work is properly done. He sees for himself the effects of various rotations and different modes of cultivation, and becomes acquainted, on the experimental ground, and in the class-room, with many varieties of grasses, grains, roots, and manures. The different breeds of cattle, sheep and swine, of common use in Canada, become familiar to him from daily contact with them; and the excellencies and defects of each he learns by lectures in the class-room, and by reference in the yards. He is taught how to keep live stock registers, accounts of field cropping, and regular farm accounts. By personal observation he learns the routine of auction sales, of ordinary fairs and stock markets, and of the common grain market. He becomes acquainted with the prices of stock, implements and produce, with the cost of building and improvements-in a word, he is prepared to transact the business of a farm. He obtains in the.Veterinary Department a knowledge of the structure and functions of farm animals, and the most approved methods of treating and preventing the ordinary diseases to which such animals are liable. The study of the relations of the plant, the soil, and the animal to each other, and to his profession, under the heads of Botany, Chemistry, etc., not only shows him the reasons for the rules of the best farm practice, and enables him afterwards to discover other such rules, but likewise forms in him habits of reasoning closely, systematically and correctly, which cannot fail in after life to make him a better citizen. And, lastly, by this, as well as by the teaching in the class-room, by reading the standard works in the library, and the newspapers and periodicals in the reading-room, by contact with his fellow students, and by discussions carried on with them in their Literary Society, his mind is sharpened and strengthened, his views widened, and his power of thinking and his ability to express his thoughts greatly increased.

If the student be careless, thoughtless, or lazy, few of those advantages will be reaped ; but if he be attentive, energetic and diligent the majority of them will undoubtedly be secured.

Time table N week; time table No. 1 and No. 2 h

4*

APPENDIX B.

TIME TABLES FOR FALL TERM (1st October to Christmas), 1880.

Time table No. 1 gives the routine of the different years and divisions for the first week; time table No. 2, the routine of the same years and divisions divisions for the first No. 1 and No. 2 having been followed alternately, for a week each, throughout the term,

TIME TABLE No. 1.-1st WEEK.
1st Year.-Division I.

1st Yeár-Division II.

2nd Year．

	Hours．	Monday．	Tuesday．	Wednesday．	Thursday．	Friday．	Saturday．
${ }_{4}$	7－12	Work．	Work．	Work．	Work．	Work．	Work．
$\begin{aligned} & \text { 立 } \\ & \text { ot } \\ & \text { 药 } \end{aligned}$	2－3	Agricultural Chemistry．	Levelling and Surveying．	Statics．	Meteorology．	Agricultural Chemistry．	
	3－4	Veterinary Pathology．	Agriculture．	Agricultural Chemistry．	Agriculture．	English Literature．	\％
	4－5	Handling and Judging Horses．	English Literature．	Hand．\＆Judging Cattle or Sheep．	Levelling and Surveying．	Veterinary Pathology．	－

TIME TABLE No．2．－2nd WEEK．
1st Year．－Division I．

	Hours．	Monday．	Tuesday．	Wednesday．	Thursday．	Friday．	Saturday．
	7－12	Work．	Work．	Work．	Work，	Work．	Work．
	2－3	Arithmetic．	Arithmetic．	Natural History．	English Composition．	English Literature．	
	3－4	Inorganic Chemistry．	Agriculture．	Inorganic Chemistry．	English Literature．	Agriculture	
	4－5	Natural History．	Inorganic Chemistry．	Veterinary Anatomy．	Agriculture．	Veterinary Anatomy．	

1st Year．－Division II．

	Hours．	Monday．	Tuesday．	Wednesday．	Thursday．	Friday．	Saturday．
	7－8	Study or Recreation．					
	8－9	Drill or Gymnastics．					
	$9-10$	Arithmetic．	English Composition．	Natural History．	Natural History．	Arithmetic．	
	10－11	Agriculture．	English Literature．	Agriculture．	Inorganic Chemistry．	Inorganic Chemistry．	
	11－12	Inorganic Chemistry．	Veterinary Anatomy．	Veterinary Anatomy．	English Literature．	Agriculture．	
产茹	1．30－5	Work，	Work．	Work．	Work．	Work．	Work．

2ND Year.

TIME TABLE No. 3.-SPECIAL COURSE.

1st Year.-Special

2nd Year.-Special.

| Hours. | Monday. | Tuesday. | Wednesday. | Thursday. | Friday. | Saturday. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Work. | Work. | Work. | Work. | Work. | Work.'. |

Anderson, Henry Anderson, John P Ash, Wm. E.
Atkinson, Geo. M.
Armstiong, Christi
Armstrong, Franci Ballantyne, $W \mathrm{~m}$.
Barclay, Edmund
Batty, Jonathan
Bignell, Edward .
Bethune, Kenneth .
Begg, Pobert A.
Bell, James
Beaudet, George
Beaudet, George....
Blake, Oliver C....
Blanchard, Monson
Bowman, Byron
Brown, William
Cushing, George
Chipman, Percy H.
Charlton, Geo. A...
Clark, Donald......
Cuppage, Alexander
Condell, Geo
Cross, A. Ernest
Chapman, Richard
Chapman, Richard ..
Clutton, John G
Campbell, D. P. L....
Craig, William.
Corwin, Arthur J .
Chase, Oscar
Carpenter, Chas
Duthie, James
Denman, Arthur W...
Dickinson, Charles S.
Dickinson, Samuel....
Danne, Peter
Dawes, Mark
Dennis, James F
Davis, Robert A

APPENDIX C.

1.-COLLEGE ROLL FOR THE YEAR 1880 .

2.-COLLEGE ROLL FOR THE SESSION 1880 - 81 (1st Oct. то 31st March.)

1.-COLLEGE ROLL FOR THE YEAR 1880.-Continued.

Name.
 P. O. Address.

Douglas, Joseph
Dunlop, Jo
Dawson, John
Egleston, George
Elworthy, Robert
Fenton, James
Fotheringham, James
Futheringham, William
File, John J
Ferguson, G zorge A.
Ffolkes, E:'ward
Gilpin, William
Green, Harry
Gibson, Robert
Gibson, William J
Gordon, William
Grindley, Arthur W
Grant, Peter
Grant, Robert, H
Glass, William
Gibb, J. Gordon
Gaw, w. W
George, Alexander
Grant, William M
Goold, George E.
Hermon, Eruest B
Horne, William II
Hill, James L
Howitt, William
Hogarth, George
Holterman, Richard F
Hogarth, Stephen J
Hallesy, Frederick
Henderson, Daniel
Irving, Christopher H
Jackson, Charles S.
Joyce. Henry G
Joy, Harold H.
Job, John
Jones, George F. B.
Jones, George
Jones, Frank C.
Kippen, Horace B
Law, F. E.
Landsborough, John
Leask, John
Lindsay, William D
Lindsay, Samuel J
Lomas, Joseph W.
Lang, William
Lewis, William
McNaughton, James M.
Motherwell, William R.
McIlquham, John J
McIlquham, William
Minard, James H.
McLachlan, Danie
Mylne, Robert C.
McClelland, Henry
Maguire, Alexander
Macaulay, Herbert R.
McLaren, Harry
McLaren, Peter
Macfarlane, David
MeArthur, John.
McDonald, Robert
Macleod, Martin D
Myers, William

Blake

Tiverton
Woodstock
South Zorra
Anćaster
Norwich
Rochdale
St. Mary's
St. Mary's
Brantford
Kingston
Hillington Lynn.
Ottawa
W aterford
Glen Allan
Ottawa
Guelph
Wolfe's Island.
Thornyhurst.
Ottawa
East Zorra
Ottawa
Leadville
Keith
Woodville
Kingston
Rednersville
North Keppel
Ottawa.
Guelph.
Hespeler
Toronto
Exeter
Merthyr Tidif
Loch Winnoch
Hamilton
Brantford
Toronto
Grimsby
Waterdown
Hillier
Guelph
Guelph
Lennoxville
Stratford
Clinton
Pinkerton
Woodstock
Woodstock
Yorkville
Ottawa.
Montreal
Laggan
Lerth
Lanark
Sparta
Toronto
Smith's Falls
Hornby
Sheldon
Hamilton
Montreal
Perth
Montreal
Ailsa Craig
Dunvegan.
Oak Ridges
Guelph.

Countr, \&c.

Huron.
 Bruce.

Oxford.
Oxford.
Wentworth
Oxford.
England.
Perth.
Perth.
Brant.
Frontenac.
England.
Carleton.
Norfolk.
Wellington.
Carleton.
Wellington.
Frontenac.
Lambton.
Carleton.
Oxford.
Carleton.
Colorado.
Scotland.
Victoria.
Frontenac.
Prince Edward.
Grey.
Carleton.
Wellington.
Waterloo.
York.
Huron.
Wales.
Renfrew.
Wentworth.
Brant.
York.
Lincoln.
Wentworth.
Prince Edward.
Wellington.
Wellington.
Quebec.
Perth.
Huron.
Bruce.
Oxford.
Oxford.
York.
Carleton.
Montreal.
Glengarry.
Lanark.
Lanark.
Lanark.
Elgin.
York.
Lanark.
Halton.
Simcoe.
Wentworth.
Montreal.
Lanark.
Montreal
Middlesex.
Glengarry.
York.
Wellington,

Moere, Charles,
Matthewman, Er
McPhsil, Ernest.
Mahonv, E. C
Nicol, George
Newton, John
Nelson, Jas. R....
Noble, Frederick
Nurse, Frank J.
Ord, William
Pope, Albert L. .
Pope, Edward
Pope, Herbert
Phin, Richard $\mathrm{J}^{\text {J. }}$
Phin, R1chard
Phin, Williaim E.
Perry, Herbert E.
Patton, William Philbin, Thomas.
Poe, James P
Petapiece, Williar
Robins, William)
Ross, James G. .
Ross, william J.
Reymond, Andrew
Rastrick, Alfred.
Rae, William L.
Ramsay, Robert A
Rogers, Frederick
Roblin, Adelbert
Redmond, Samuel
Snyder, Elias
Surtees, William S
Stinson, Lewis A.
Small, Alexander
Sutherland, Alexal
Silverthorn, Newn
Scott, Archie
Segsworth, Freder
Stubbs, William H Skaife, John
Switzer, William
Stover, John W...
Shaver, Charles B.
Schüll, Charles
Stonehouse, Marsh
Smith, Miles H...
Shuttleworth, Art
Sherer, Edward ..
Torrance, W. Perc
Templer, William
Tronson, Harold
Terhune, Fredericl
Willis, Thomas
Wilson, Samuel J.
Wilson, William A
Webster, Lindsay
Watt, James M...
Watt, D. A.
Ward, Thomas M.
White, William G
White, Charles
Wettlaufer, Freder
Williams, Albert
Woodley, Francis $]$
Wyndham, Walter
Total.

1.-COLLEGE ROLL FOR THE YEAR 1880.-Continued.

Name.	P. O. Address.	County, \&c.
Moore, Charles, J.	Toronto	
Matthewman, Ernest	Ottawa.	Cork.
Mahonv, E. C .	Taronto .	York.
Newton, John	Cataraqui	Frontenac.
Nelson, Jas, R....	Weston	York.
Noble, Frederick	Sorel	Richelieu.
Nurse, Frank J. Ord, William	Hamilton	York.
Pope, Albert L	Toronto	York.
Pope, Edward	Sarawak Sarawak	Grey.
Pope, Herbert	Sarawak	Grey.
${ }_{\text {Phin, Rechard }}$ Phin, Williain E	Hespeler	Grey.
Perry, Herbert E.	Hespeler	Waterloo.
Patton, William	${ }_{\text {Montreal }}$	Wellington.
Philbin, Thomas. Poe, James P.	Ottawa..	Montreal.
Poe, James P Petapiece, William	Callan	Carieton.
Pobins, William P	Manotick.	Carleton.
Ross, James G.	Beamsville Montreal	Lincoln.
Ross, William J..	Smitr's Falls	Montreal.
Reymond, Andrew Roberts, Percy	Ottawa	Lanark.
Rastrick, Alfred	Toronto .	Yarleton.
Rae, William L.	Fitz-William Road	Wentworth.
Ramsay, Robert A	Fitz-W Milliam Road	London, Eng.
Rogers, Frederick	Deans	Wellington.
Roblin, Adelbert G	Reanserville	Haldimand. Prince Edward.
Redmond, Samuel Snyder, Elias	Peterboro'	Peterboro'.
Surtees, William S	Burgessville Ottawa....	Oxford.
Stinson, Lewis A.	Bloomfield	Carleton.
Small, Alexander T	Ottawa...	Prince Edward.
Sutherland, Alexande	Bennington	Oxford.
Scott, Archie	Summervil	Peel.
Segsworth, Frederick	Hastings Monck	Northumberland.
Stubbs, William H.		Wellington.
Skaife, John.		Wellington.
Switzer, William G	Palermo	Montreal.
Stover, John W.	Norwich	Halton.
Shaver, Charles B.	Stratford	Perth.
Schull, Charles	Guelph.	Werth.
Stonehouse, Marshall	Shirley	Ontario.
Shith, Miles H......	Oakville.	Halton.
Sherer, Edward	Mount Alb	York.
Torrance, W Percy	Ottawa.	Carleton.
Templer, William .	Jerseyville	Wellington.
Tronson, Harold.	Oakville	Wentworth.
Terhune, Frederick	Brantford	Halton.
Willis, Thomas	Whitby	Orant.
Wilson, William A.	Bosworth	Wellington.
Webster, Lindsay	Ottawa	Carleton.
Watt, James M.	Montreal	Nova Scotia.
Watt, D. A.	Montrea	Montreal.
Ward, Thomas M	Stanhope	
White, William	Lanark	Prov. of Quebec.
White, Charles.	Lanark	Lanark.
Wettlaufer. Freder	Tavistock	Perth.
Woodley, Francis E	Culloden Quebec	Oxford.
Wyndham, Walter..	Roach's Point	Quebec. York.
Total..		

2.-COLLEGE ROLL FOR THE SESSION 1880-81 (1st Oct. тo 31st March).

\qquad

McFarlane, David
McArthur, John.
Macleod, Martin I
Myers, William.
Moore, Charles J. Matthewman, Ern McPhail, Ernest. . McLaren, Peter Mahony, E. C. Nicol, George
Newton. Jonn
Newton, Jonn....
Noble, Frederick
Ord, William...
Pope, Edward
Pope, Herbert E...
Phin, Richard J.
Phin, William E.
Patton, William Philbin, Thomas Poe, James P
Petapiece, Willian
Robins, William Robins, William 1 Ross, William J. Ross, James G
Rae, William L
Ramsay, Rober: A Rogers, Frederick Roblin, Adelbert G Redmond, Samuel. Surtees, William S . Small, Alexander T Silverthorn, Newma Scott, Archie
Segsworth, Frederic Skaife, John
Stover, John W,
Shaver, Charles B. ${ }^{\prime}$
Schüll, Charles
Stonehouse, Marsha Smith, Miles H
Shuttleworth, Ar
Sherer, Edward
Torrance, W. Percy Templer, William Tronson, Harold Terhune, Frederick Willis, Thomas Woodley, Francis E Wilson, William A. Watt, James M.
Watt, D. A.
Ward, Thomas M
White, William G. White, Charles
Wyndham, Walter Wettlaufer, Frederic Williams, Albert

Total
2.-COLLEGE ROLL FOR THE SESSION 1880-81.-Continued.

Namb.	P. O. Address.	County, \&o.
McFarlane, David	Montreal	
MeArthur, John	Ailsa Craig	Montreal.
Myers, William.	Oak Ridges	York.
Moore, Charles J....	Tuelph.	Wellington.
Matthewman, Ernest	Otlawa.	York.
McLaren, Peter	Toronto	Yark.
Mahony, E. C..	Perth Hamilton	Lanark.
Nicol, George	Cataraqui	Wentworth.
Nowton, Frederick	Weston ..	Yrontenac.
Ord, William...	Toronto	York.
Pope, Edward	Saronto	York.
Pope, Herbert E	Sarawak	Grey.
Phin, William E	- Hespeler	Waterloo.
Patton, William.	Hespeler Montreal	Waterloo.
Philbin, Thomas.	Montreal	Montreal.
${ }_{\text {Poe, James }} \mathrm{P}$ P..	Callan	Carleton.
Petapiece, William	Manotick	Carleton.
Ross, William J.	Beamsville	Lincoln.
Ross, James G	Smith's Falls Montreal....	Lanark.
$\xrightarrow{\text { Rae, William L. }}$ Ramsay, Rober:	Fitz-William Road	Montreal.
Ramsay, Robers, ${ }^{\text {R }}$	Eden Mills	London, Eng.
Roblin, Adelbert	Deans...i	Haldimand.
Redmond, Samuel	Rednervill	Prince Edward.
Surtees, William S.	Ottawa..	Peterboro'.
Small, Alexander T.	Ottawa	Carleton.
Silverthorn, Newman	Summerville	Parleton.
Segsworth, Frederick	Hasting	Northumberland.
Skaife, John..	Montreal	Wellington.
Stover, John W,	Norwich	Montreal.
Shaver, Charles	Stratford	Oxford.
Stonehouse, Marsh	Guelph.	Wellington,
Smith, Miles H.	Shirley Oakville	Ontario.
Shuttleworth, Arthur		Halton.
Sherer, Edward ...	Ottawa......	York.
Torrance, W. Percy	Guelph.	Carleton.
Templer, William	Jerseyville	Wentworth.
Tronson, Harold	Oakville	Halton.
Willis, Thomas ...	Brantford Whitby	Brant.
Woodley, Francis E	Whitby	Ontario.
Wilson, William A	Quebec	Quebec.
Watt, James M.	Montreal	Carleton.
Watt, D. A.	Montreal	Montreal.
Ward, Thomas M	Stanhope	
White, Whilliam G	Lanark	
W yndham, Walter	Lanark	Lanark.
Wettlaufer, Frederick	Roach's Point. Tavistock	York.
Williams, Albert	Tavistock	Perth.
Total		

APPENDIX D.

ONTARIO AGRICULTURAL COLLEGE.

EXAMINATION PAPERS.
I. Papers set at sessional examinations, Easter, 1880.
II. Papers set at sessional examinations, june, 1880.
III. Papers set at matriculation examination, october, 1880.
I. Papers set at the sessional examinations, easter, 1880.
first year. - (first paper.)

AGRICULTURE.

Examiner: W. Brown.

1. Give a full description of the accompanying samples of wheat as regards plumpness, structure, form, quality and evenness of sample.
2. What is considered to be the most approved mode of making and preserving farm-yard manure; and by what principles and facts should we be guided in its application to varous crops ?
3. Sketch the general management of a root crop in a system of mixed farming.
4. In the fattening of cattle, what regulates the kind, quantity and condition of the food, and by what circumstances are the results influenced?
5. Tell all you know about the kinds of crops best suited for green fodders, and briefly explain the plan of cattle feedıng called "soiling."
6. Enumerate the various points to be attended to in securing and maintaining permanent pastnres.
7. What are our principal special manures, and their most important properties ?

FIRST YEAR.

AGRICULTURE : THE FIELD.

Examiner: Wm. Brown.

1. Explain why rotation in cropping is necessary, how it is generally conducted on soils of average texture in Ontario, and show the changes in the systems to suit lighter and heavier lands.
2. The arr economy of lab servation. Sho
3. The con secure certain o
4. Land is other advantage
5. Lay off herring-bone, an
6. By what certain breeds, purposes?
7. How are pedigree of cattl
8. When w of beef and mutt uals of them sel
9. Take the deen Polled cattl milking properti
10. We wan medium wool of the breeds on ou brought about?
11. We wan trot 12 miles an

Cattle.

1. Show the
2. What are
3. What are
4. Judge thi
5. Which of

Sheer.

2. The arrangement of details in farm buildings should embrace, among others, economy of labourin management, ventilation, drainage, light, warmth and manure preservation. Show by illustration how these may best be secured.
3. The construction of roals and ferces is conducted upon certain principles to secure certain objects. Explain these fully by illustrations and notes.
4. Land is under-drained primarily for the removal of saperfluous water. What other advantages invariably follow this operation?
5. Lay off a fiel l and illustrate by a sketch the meaning of the terms main, lateral, herring-bone, and outlet.

FIRST YEAR.

AGRICULTURE—LIVE STOCK.

Examiner: W. Brown.

1. By what circumstances shoull the Onturio farmer be guided in the selection of certain breeds, and what particular breeds of cattle, sheep, horses and swine, for specific
2. How are Britain and the American continent at present regulated in respect to edigree of cattle and the marking of Berkshire swine?
3. When we wish to obtain the quickest returns for our field produce in the shape of beef and mutton, what breeds do we choose, and by what circumstances are individuals of them selected ?
4. Take the Shorthorn, Hereford, Devon, Ayrshire, Alderney, Galloway, and Aberdeen Polled cattle, give 10 marks for each, and make a comparative table of beofing and milking properties.
5. We want a kind of sheep combining size of frame, with points, hardiness, medium wool of good quality, good flesh, and with powar to improve others; which of the breeds on our farm come nearest these essentials, and in what way have they been brought about ?
6. We want a horse to drive to market, plough, jump a fencs under saddle, and trot 12 miles an hour; what special form should such an animal possess?

FIRST YEAR.
Practical examination on Live stock.

Cattle.
Examiner: W. Brown.
Subjects to be examined : $\left\{\begin{array}{l}\text { Shorthorn Bull. } \\ \text { Ayrshire Cow. } \\ \text { Shorthorn Grade Cow. }\end{array}\right.$

1. Show the weak points of the bull.
2. What are his best points?
3. What are the indications in this bull of good beefing properties?
4. Judge this cow as a milker.
5. Which of the cows would mate best with the bull for beefing purposes, and why ? Sheep.
Subjects to be examined : $\left\{\begin{array}{l}\text { Leicester Ram. } \\ \text { Sotswold Ram. } \\ \text { Southdown Ram (1) } \\ \text { Southdown Ram (2) } \\ \text { Oxford Down Ram. } \\ \text { Oxford Down Grade Wether. }\end{array}\right.$
6. Distinguish the characteristic points of the Leiccester and Cotswold.
7. Which is the best long-wooled fleece of the lot as regar density and soundness ?
8. Which is the oldest and the youngest sheep of the lot ?
9. Compare the Wether with the Oxford Down, and say wherein they agree or differ, as regards carcass and wool.
10. Judge the oldest Southdown by the standard used for the breed.

FIRST YEAR.

INORGANIC CHEMISTRY.

Examiner: J. Hoyes Panton, M.A.

1. Distinguish between an atom and a molecule, giving examples of each. Name the results which occur when chemical affinity takes place, and by what means can it be assisted.
2. Vessels are placed before you containing elements and compounds represented by the symbols- $\mathrm{H}, \mathrm{H} \mathrm{Cl}, \mathrm{N}, \mathrm{N}_{2} \mathrm{O}, \mathrm{Co}_{2}, \mathrm{H} \mathrm{N} \mathrm{O}, \mathrm{Na}_{2} \mathrm{C} \mathrm{O}_{3}, \mathrm{CaS} \mathrm{O} \mathrm{O}_{4}$. Classify these into solids, liquids, gases, and indicate which are bases, acids and salts.
3. Give the preparation and properties of the elements found in the atmosphere.
4. Explain what takes place when potassium is burnt on water. How would you distinguish the resulting compound from that formed by sodium burnt on water?
5. Explain the action of the Bunsen burner.
6. Give the sources of phosphorus and the formulas for the different phosphates of lime, stating which is the superphosphate.
7. Classify the metals of greatest importance in Agricultural Chemistry, and write notes on those which enter into the composition of clay and marly soils.
8. Name the different kinds of galvanic batteries used in the generation of electricity. What are the common errors made in the erection of lightning rods?

9 How do the following occur in nature:-ammonia, silver, potash, phosphoric acid and iron?

FIRST YEAR.

ORGANIC CHEMISTRY.

Examiner: J. Hoyes Panton, M.A.

1. What is meant by the carbon compounds ? Contrast them with those of Inorganic Chemistry.
2. Explain what is meant by saturated compounds, fractional distillation. How is the latter applied in the manufacture of coal oil?
3. What compounds do the following symbols represent:-

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}, \mathrm{COHH}_{4} \mathrm{~N}_{2}, \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} .
$$

From what sources are these compounds derived ?
4. Name the organic acids occurring in the vegetable kingdom, and state in what plants they are found.
5. Into what divisions are the hydrocarbons usually arranged? Name six of the most important hydrocarbons and give the compounds derived from them.
6. State the changes which occur in acetous fermentation. What compound must be present before it can take place?
7. Define a fat, and illustrate by symbols the effect of an alkali upon it. Name the compound that results.
8. Name compounds formed by the substitution of the radical of nitric acid for three atoms hydrogen and give the properties of one.
9. Name the principal organic compounds formed in wheat, barley, potatoes, apples, lemons, grapes and wood.
10. Give notes on Opium, Urea, Chloroform and Morphine.

1. Distingui ferences which ce
2. Name th two. What peri Age of Cycads, a
3. Name for obtained :-build iron.
4. Describe these occur.
5. Explain deposition. Nan
6. How do
7. What is features of a plac
8. How doe country? Name
9. Classify 1 dian lakes with r
10. Identify
11. Describe
(a) D
12. Write exp sitic plants, stolon
13. What is t
14. Distingui genous plants.
15. Describe pistillate and diace
16. Give the angioxpermous, ph
17. Explain
(a) T
18. Describe
(a) H
(b) L
(c) G
19. What is t istics which distin (a) N

FIRST YEAR.

GEOLOGY AND PHYSICAL GEOGRAPHY.

Examiner: J. Hoyes Panton, M.A.

1. Distinguish between aqueous and metamorphic rocks, and state some of the inferences which can be drawn from the presence of aqueous rocks in a district.
2. Name the ages into which rocks are divided, and give the periods of at least two. What periods are known as Age of Mollusks, Age of Reptiles, Age of Mammals, Age of Cycads, and Age of Cryptogams?
3. Name formations in Canada from which the following economic materials are obtained :-building stone, lead, graphite, gypsum, salt, petroleum, lime, apatite and iron.
4. Describe a crinnid, trilobite, belemnite, and an ammonite. Name rocks in which these occur.
5. Explain how rocks are formed, and state the changes which they undergo after deposition. Name the different kinds of valleys, and distinguish them from each other.
6. How do you account for the absence of whole formations in some places?
7. What is meant by a glacier? How is it formed? How may it affect the physical features of a place?
8. How does the presence of a lofty range of mountains affect the climate of a country? Name the currents of the ocean, and the places where they occur.
9. Classify lakes, and give a diagram illustrating the relative positions of the Canadian lakes with reference to the level of the sea.
10. Identify the fossils before you.

FIRST YEAR.

STRUCTURAL BOTANY.

Examiner: James Mills.

1. Describe the structure of the cell, and its mode of reproduction.
(a) Distinguish vascular tissue from the other kinds of vegetable tissue and explain its formation.
2. Write explanatory notes on axillary buds, aerial roots, root stocks, air-plants, parasitic plants, stolons, tubers.
3. What is the ordinary potato-a root or branch? Give reasons for answer.
4. Distinguish procumbent, decumbent, and creeping stems; exogenous and endogenous plants.
5. Describe the different parts of a flower, and explain what is meant by staminate, pistillate and dicecious flowers.
6. Give the common classification of fruits, and state what is meant by the terms angiospermous, phenogamous, and dehiscent.
7. Explain how plants grow, and give their most important chemical constituents.
(a) Tell what you know about the functions of chlorophyll.
8. Describe the following processes :
(a) Hybridization.
(b) Layering.
(c) Grafting and budding.

FIRST YEAR.

NATURAL HISTORY.

Examiner: James Mills, M.A.

1. What is the relation of organization to life? Enumerate the chief characteristics which distinguish animals from plants.
(a) Name the sub-kingdoms, and describe any one of them.
2. Give a brief deseription of the two great sections of the animal kingdomVertebrata and Invertebrata.
3. What is taken as the basis of classification in Zoology? Describe and illusrate the meaning of the terms, species, varicty and race.
4. Name the sub-kingdoms and classes to which the following belong:-jellyfishes, corals, tape-worms, the lobster, spider, grasshopper, housfly, oyster, trout, ox and dog.
5. Describe the different stages in the life of an insect, and compare them with somewhat similar changes in another class.
6. Write as full notes as you can on the tape-worm, the bee, and the silk-moth.
7. Give the classes of Vertsbrates; and the orders of Birds and Mammals, with at least one example of each.
8. Tell what you know about the Ungulata and the Carnivora.

FIRST YEAR.

VETERINARY ANATOMY AND PHYSIOLOGY.

Examiner : E. A. A. Grange, V.S.

1. Name the different processes of digestion, and the organs concerned in performing each process.
2. Describe the difference between the digestive organs of the horse and ox, taking the horse as the standard.
3. Name the organs which carry on the circulation of the blood.
4. Name the compartments the heart is divided into.
5. What kind of muscular tissue is the heart composed of?
6. Name the layers and glands entering into the formation of the skin.
7. Name the organs which compose the nervous system.
8. Name the three classes nerves are divided into.
9. Name the twelve pairs of cranial nerves, their function and distribution.
10. Describe the circulation of the blood through the heart and luugs.
11. What change takes place in the blood in the lungs?
12. Describe the mode in which the chyle passes into the blood.
13. Describe the organs of rerpiration.
14. Describe the urimary orgaus.
15. Describe the difference between the urethra of the ox and horse.

FIRST YEAR.

VETERINARY MATERIA MEDICA.

Examiner: E. A. A. Grange, V.S.

1. What is Materia Medica?
2. Mention the circumstances which modify the actions of medicines.
3. Mention the four classes medicines are divided into, and give an example of each class.
4. Give a definition for each of the following terms, viz: Antispasmodic, Tonic, Diaphoretic, Sedative, Vesicaut.
5. Mention three medicines which act as Diuretics.
6. Mention three medicines which act as Disinfectants.
7. Name the actions and doses fir the horse, ox, sheep, and pig, of Aconite.
8. Name the actions and doses for the horse, ox, sheep, and pig, of Arsenic.
9. Name the actions and deses for the horse, ox, sheep, and pig, of Carbolic Acid.
10. Name the actions and doses for the horse, ox, sheep, and pig, of Castor Oil.
11. Write parayraph.

2 . "In det fully what is me
3. Enumer
4. Describe
5. What d under each head
6. Wr.te a

FIRST YEAR.

COMPOSITION.

Examiner: James Mills, M.A.

1. Write explanatory notes on the meaning of the terms, sentence, clause, and parayraph.
2. "In determining the laws of style, we must be guided by usage"_-Explain fully what is meant.
3. Enumerate what you consider the essential properties of a good style.
4. Describe aud distinguish the Simple and the Elegant Strle of writing.
5. What do Purity and Perspicuity prescribe? Name the corresponding errors under each head.
6. Write a composition on one of the following subjects :-
(a) Farming.
(b) " - just experience tells, in every soil, That those who think must govern those that toil."
(c) "Full many a gem, of purest ray serene,

The dark unfathomed caves of ocean bear ;
Full many a flower is born to blush unseen,
And waste its sweetuess on the desert air."
FIRST YEAR.

ENGLISH LITERATURE.

Examiner: James Mills, M.A.
1.-(1) " Some village Hampden, that with dauntless breast

The little tyrant of his fields withstood;
Some mute inglorious Milton here may rest, Some Cromwell, guiltless of his country's blood.
"The applause of listening senates to command, The threats of pain and ruin to despise, To scatter pleuty o'er a smiling land, And read their history in a nation's eyes, "Their lot forbade."
(2) "Remote, unfriended, melancholy, slow, Or by the lazy Scheldt, or wandering Po; Or ouward, where the rude Carinthian boor Against the houseless stranger shuts the door ; Or where Campania's plain forsaken lies, A weary waste expanding to the skies; Where'er I roam, whatever realms to see, My heart untravelled fondly turns to thee."
(3) "Pride in their port, defiance in their eye, I see the lords of human kind pass by, Intent on high designs, a thoughtful band, Fireree in their native hardiness of soul, True to imagined right, above coutrol."
(a) Explain the meaning and the allusions in the first four lines of the first extract.
(b) Change the lavt five lines of the first extract into prose.
(c) Parse the word slow, and write notes on the geographical allusions in the second extract.
(d) Paraphrase the last extract, and parse the words pride and above.
2. Pride in their port"-What is the meaning of the word port? Give other meanings, and account for them etymologically.
3. Derive the words melancholy, boor, molest, wanton, hamlet, debauch, coward and shrine.
4. Quote from the "Elegy" or "Traveller," two examples of Metaphor, Simile, Oxymoron, Onomatopeia, and Hypallage.
5. "Her useful sons exchanged for useless ore."
"Laws grind the poor, and rich men rule the law "
"And talent sinks, and merit weeps unknown."
"By forms unfashioned, fresh from Nature's hand."
Comment on each of these lines.
6. Compare Italy and the Italians with Switzerland and the Swiss, according to Goldsmith. Point out anything which you think incorrect or unjust in his description.
7. Write a note on the metre of the "Traveller," and scan the last two lines of the second extract.
(a) Quote examples of assonance nnd alliteration.
8. Compare the styles of Gray and Goldsmith ; and write a short life of each.
first year.

ARITHMETIC.

Examiner: A. A. Mactavish.

1. A farmer had a field of corn, consisting of 129 rows, and each row contained 95 hills, and each hill had on an average 5 ears of corn; if it takes 8 ears of corn to make a quart, what is the produce of the field worth at 50 cts. per bushel ?
2. A and B lend each $\$ 248$ for 8 years at $3 \frac{1}{2}$ per cent.-one at simple and the other at compound interest. Find the difference of the amount of interest which they respectively receive.
3. Wm. Henry Warden

Bought of Smith, Jones \& Co.
1879. Jan. 15, Mdse. on credit at 6 months, $\$ 400$

| June 25, | " | 4 months, |
| :--- | :--- | :--- | :--- |
| July | $\$ 150$ | |
| 5, | " | 4 months, $\$ 300$ |

Aug. 10, " for cash 3 months, $\$ 300$
When did the preceding account become due?
4. What will be the premium of insurance on buildings valued at $\$ 3,000$ @ $\frac{1}{8}$ per
5. A Board of Trustees borrowed $\$ 3,000$, and agreed to pay it in 10 equal annual instalments. Determine the amount of each instalment, money being worth 10 per cent.
6. If 14 men can mow 35 acres of grass in 6 days of 10 hours each, in how many days of 12 hours each can three men mow 24 acres?
7. A person having $\$ 9,790$ in the Toronto city 6 per cent. bonds, sells out at $98 \frac{1}{2}$, and invests the proceeds in Bank of Montreal stock at $177 \frac{1}{2}$, which pays a dividend of 12 , per cent. per annum; find the change in his income, brokerage in each transaction being $\frac{1}{2}$ per cent.
8. Barley, at 45 c , is mixed with peas, at 55 c per bushel, in the ratio of one of the former to two of the latter. What is a bushel of the mixture worth?
9. A merchant in Guelph wishes to remit $\$ 2,767.80$ to Manchester, England, exchange being at 108 ; what will be the face of his bill in pounds, shillings, and pence?
10. Extract the equare root of 1550025 , also the cube root of 14641 , and determine the value, true to two places of decimals, of $(1.1)^{20}$.
11. In a constituency in which each elector may vote for two candidates, half of the constituency vote for A, but divide their votes between B, C, D, and E in the proportions of $4,3,2,1$; of the remainder, half vote for B, and divide their votes among C, D, E in the proportions of $3,1,1$, ; $\frac{2}{3}$ of the remainder vote for D and E, and 540 do not vote at all. Find the order on the poll, and the whole number of electors.
2. What fri cube?
3. How ma
4. How far
knife being 5 fee
5. Which w or three 8 inche
6. How ma hold?
7. Neal Th having one drivi
8. Find the of one half milesills (4 in. x 4 in.
9. A farmer contains two acre

Determine th

1. Write an
2. What are
3. A father be and provided with to be the most jud
4. Bought of my note at three n are affected, and in

FIRST YEAR.

MENSURATION.

Examiner: A. A. Mactavish.

1. How many square chains in the following :-
(a) An equilateral triangle whose base is 18 chains.
(b) A square whose side is 13 chains.
(c) A circle whose radius is 18 chains.
2. What fraction of a sphere must be cut away to reduce it to the largest possible cube?
3. How many cords of wood in a pile 64 feet long, 8 feet wide, and 6 feet high ?
4. How far must a team of horses travel in cutting an acre of wheat-length of knife being 5 feet?
5. Which will carry off the greatest amount of water, one tile 6 inches diameter, or three 3 inches in diameter?
6. How many bushels (Imperial) will a bin, 12 feet long, 6 feet wide, and 5 deep,
7. Neal Thorp's barn is 60 feet long, 48 feet wide, and 16 feet high, ridge 12 feet, having one driving floor 12 feet wide. Find
(a) The storage capacity.
(b) The length of rafter (1 foot over plate).
(c) The number of bunches of shingles necessary to cover roof (carpenter's rule).
8. Find the cost of building a sidewalk from the farm to the city limits, a distance of one half mile-walk made of two-inch plank, to be 4 feet wide, and resting on two sills ($4 \mathrm{in} . \times 4 \mathrm{in}$.) running lengthwise-cost of lumber, $\$ 10$ per M.
9. A farmer's experimental field is in the form of a rectangle 16 rods long, and contains two acres. It is divided into plots, thus :-
$\frac{3}{4}$ acres are set apart for wheat (three varieties).
$\frac{1}{2}$ acre is set apart for oats (two varieties).
acres are set apart for grasses (three varieties).
The rest of the field is set apart to solve the question, "Can permanent pastures be had in Ontario?"
Determine the width of these four plots.
10. Supposing them to lie across the field.
11. " " lie along "

FIRST YEAR.
BOOK-KEEPING.

Examiner: A. A. Mactavish.

1. Write an accepted time draft; a joint note ; a receipt.
2. What are the conditions uuder which a personal account shows an asset ?
3. A father bequeaths to his son 100 acres of good land-well drained, well fanced, and provided with the necessary buildings; also $\$ 1,500$ in money. Show what you think to be the most judicious manner of using this money.
4. Bought of Henry Worden, a team of horses for $\$ 300$. Paid eash $\$ 200$, and gave my note at three months for balance. Write such a note, and show what ledger accounts are affected, and in what manner, by the above transactions.
5. What are the two most important points to be keptin view in framing an advertisement? A heifer has strayed from your premises. Give the form of advertisement for her recovery.
6. 1878-May 1st.-One day's labour-ploughing and harrowing potato field at $\$ 2.00$ per day.

May 2nd. Bought 12 bushels of potatoes for seed at $37 \frac{1}{2}$ c. per bushel ; also paid for two days' labour planting the field at $\$ 1.00$ per day.

June 20th.-One day's labour ploughing, \$1.50 ; also two days' labour, hoeing at $\$ 1.00$ per day.

July 7th.-One day's labour, ploughing, \$1.50.
September 15th.-Digging and covering potatoes $\$ 5.00$; also, sold 12 bushels of potatoes for cash at 25 c . per bushel, and 25 bushels small potatoes at 20 c . per bushel.

1879-March 17th.-Paid for 3 days' labour, marketing, at $\$ 2.00$ per day; also received cash for 300 bushels of potatoes at 35 c . per bushel.

Determine profits from the above potato field.

second year.

AGRICULTURE-THE FIELD.

(First Paper).

Examiner: W. Brown.

1. Divide a farm of a 100 acres into suitable fields for a seven course rotation in mixed husbandry, and show the annual produce, in quantity and value, on an average of seasons, under good management, in Ontario.
2. Criticize the conduct of mineral superphosphate, gypsum, and bone dust, in our experience, upon roots and grain during the last two years.
3. State what is the proper position of the growing of green fodders in connection with "soiling," and estimate results on a hundred-acre farm in this country.
4. Give your opinion upon the present and the future of pastures in Ontario.
5. Were you in possession of what is called an exhausted farm (clay loam), by what means would you most rapidly and thoroughly restore its fertility?

SECOND YEAR.

AGRICULTURE.

(Second Paper).

Examiner: W. Brown.

1. Last season The Ontario Experimental Farm produced 3,598 bushels of grain, of kinds; 203 tous straw; 234 tons hay. and 20,684 bushels roots, of sorts. Approximate the quantity of beef these would make during six months of winter.
2. Make a close estimate of the cost of the crop of spring wheat, from field 14, showing every detail item up to the bagging for market.
3. Draft ground plan of dwelling house for an average farmer, giving sizes of parts.
4. Sketch a section of levelling for the proposed drainage of field 14, showing undulations of surface, distances, cuttings, intorsections, and estimate the cost of completing the drain with-four inch tiles.
5. It is proposed to alter the cropping of the \mathbf{O}. E. Farm to a more exhaustive one. Say how this should be gradually brought about, and justify it upon scientific and practical facts.
6. Sketch br
7. Give deta
8. Specify al

the objects sougl

4. Explain a our Shorthorn B_{1}
5. Make a st of a yearling bull,
6. Give an results of a steer

AGRICUL

Cattle.

1. Describe t tening purposes.
2. Point out
3. Handle an

Galloway for carry
4. Judge and
and evenness of fle
5. Show the f Sheep.

1. Show wher
2. Which is th
3. Judge the of points.
4. Explain the that of the Leiceste
5. Which is th
6. What are th
7. What kind
8. How/would planting, and subse
9. Detail the e
10. Give your ol

SECOND YEAR.

AGRICULTURE: LIVE STOCK.

Examiner: W. Brown.

1. Sketch briefly the management of a ewe flock from 1st September to 1st July.
2. Give details of the duties of a shepherd during the lambing season.
3. Specify all particulars in regard to the time, management, materials used, and the objects sought for in the dipping of sheep.
4. Explain all the reasons by which we were guided in the selection and purchase of our Shorthorn Bull, "Prince Hopewell."
5. Make a statement showing the various items that go to make up the actual cost of a yearling bull, without reference to profit.
6. Give an example of the purchase, feeding, management, progress, and financial results of a steer during six months of winter and spring.

SECOND YEAR.
AGRICULTURE : PRACTICAL EXAMINATION ON LIVE STOCK.
Cattle.
Examiner: W. Brown.

$$
\text { Subjects to be examined: }\left\{\begin{array}{l}
\text { Shorthorn Steer } \\
\text { Galloway Steer. } \\
\text { Grade Cow. }
\end{array}\right.
$$

1. Describe the Shorthorn with reference to five most important qualities for fattening purposes.
2. Point out the four greatest defects in the same animal.
3. Handle and describe the weakest point and the best point of the frame of the Galloway for carrying beef.
4. Judge and decide upon the relative merits of the two steers as regards quality and evenness of flesh.
5. Show the five best indications in this cow as a milker.

Sheep.

Subjects to be examined : $\left\{\begin{array}{l}\text { Leicester Ram. } \\ \text { Cotswold Ram. } \\ \text { Southown Ram (1). } \\ \text { Southdown Ram (2). } \\ \text { Oxford Down Grade Wether. }\end{array}\right.$
Othdown is superior to the other.

1. Show wherein one Southdown is superior to the other.
2. Which is the oldest and the youngest sheep of the lot ?
3. Judge the Oxford Grade Wether, and compare him with the Leicester standard of points.
4. Explain the principal points of difference between the frame of the Cotswold and that of the Leicester.
5. Which is the best wooled sheep of the lot, as regards uniformity and lustre.

second year.

ARBORICULTURE.

Examiner: W. Brown.

1. What are the four main objects in the maintenance of trees in a country ?
2. What kind of trees are best adapted for replanting in Ontario ?
3. How would you attend to the selection, removal, preparation of the ground, planting, and subsequent management of a clump of trees ?
4. Detail the cost of planting one aere, seven feet apart, by trees from our own bush.
5. Give your opinion on the whole question of replanting in this country.

SECOND YEAR.

AGRICULIURAL CHEMISTRY.

Examinar: J. Hores Panton, M.A.

1. Name the constituents present in the food of animals. Which of these go to the formation of fat, bone, muscle? Contrast the comparative amount of these ingredients in magnolds, barley, pease, linseed cake and lucerne.
2. Where and by what reagents are the following changes in the digestion of food effected? Starch convarted into sugar, albuminous compounds rendered soluble, fats broten up, and fibrinous substances dissolved.
3. Name the proximate principles and ultimate elements in plants, and mention plants in which some of the former predominate.
4. What chemical compounds are characteristic of the grasses, roots, and grains ? -Contrast sand, clay and loam as affording food for plants.
5. What changes does carbon undergo in plants after its abstraction from the atmosphere, ard by what means are these effected?
6. From what sources have the alumina, potash, soda, silica, phosphoric acid and lime of Canadian soils been derived?
7. Give causes for unproductiveness in soils; the means by which they can be detected and overcome.
8. What is tri-calcic phosphate? Show the reaction which takes place on the addition of acids, and name the sources from which this mineral can be obtained.
9. Name the double silicates in soils. What compound has a beneficial effect in their decomposition? Show bow this takes place.

SECOND YEAR

ANALYTICAL AND PRACTTCAL CHEMISTRY.

Examiner: J. Hoyes Panton, M.A.

1. Give an outline of the different steps followed in ascertaining the base which enters into the composition of the salt under examination.
2. Gypsum in a ground form sometimes contains crystalline limestone in a finely divided condition. How would you detect this? Give the composition of gypsum.
3. Name the adulterations usually found in white lead, and state how you would detect them.
4. Outline the method pursued in testing a portion of linseed cake for impurities likely to be present when the cake is adulterated.
5. How would you make a quantitative analysis of soil for lime and organic matter? Give an example illustrating the calculations necessary to be made.
6. Give a qualitative analysis of each of the substances before you.

SECOND YEAR.
ECONOMIC BOTANY.

Examiner: J. Hoyes Panton, M.A.

1. Name the different points to be considered in making a natural classification of plants, and distinguish between Angiospermous and Gymnospermous plants.
2. Give the life-history of the common mushroom (Agaricus campestris), and contrast its structure with that of a fern.
3. What peculiarity occurs in the flowers of the pumpkin and Indian turnip? Name three others in which the same exists.
t. Give the characteristics of the orders Umbeliferce, Cruciferce, Labiata, Cupulifere, Conifera.
4. To what orders do the following plants belong :-mangold, squash, barley, bean, kale, carrot, parsley, spinage, sage and tomato?
5. Write notes on Tilletia caries, Claviceps pupura and Podophyllum peltatum.
6. Name ten plants used for economic purposes, and the orders to which they belong.
7. What peculiarity exists in the following fruits :-apple, pineapple, strawberry, pea, melon, pear, elm seed, currant and corn?
8. Give the distribution in time of the following plants :-Calamites, Lepidodendron, Cycads and Sigillaria.
9. Identify the specimens before you.

SECOND YRAR.

ENTOMOLOGY.

Examiner: J. Hoyes Panton, M.A.

1. Describe what is called the suctorial mouth in insects, and give the orders in which it occurs.
2. Explain the terms, larva, imago, pupa, chrysalis, cocoon, grub, bug, and caterpillar, as applied to insects.
3. Name the different ways in which insects are injurious to vegetation, and give the orders to which the most injurious belong.
4. To what orders do tha following insects belong; canker worm, the borer, aphides, apple-tree pruner, fall web worm, midge, tomato worm, apple curculio, locust, potato bug, squash bug, and currant worm.
5. Give notes on Anisopteryx vernata, and mention the best remedies to prevent its increase.
6. Describe the larva of the forest tent caterpillar (Clisiocampa sylvatica), and give remedies for its destruction
7. Contrast the apple curculio (Anthonomus quadrigibbis) with the plum curculio (Conotrachelus nenuphar).
8. Describe the imago of the pea-weevil (Bruchus pisi), and give remedies.
9. Give remedies to prevent the increase of the currant worm.
10. Identify the specimens before you, and name the plants affected by them.

SECOND YEAR.

METEOROLOGY.

Examiner: J. Hoyes Panton, M.A.

1. Describe the following meteorological instruments: Maximum thermometer, Barometer, and Anemometer.
2. Give notes on the reading of barometers, and the corrections sometimes necessary to be made. Expain how the barometer is of great use in foretelling the approach of storms.
3. Distinguish between convection and conduction of heat, and account for the more rapid increase in temperature of some soils as compared with others.
4. In the graduation of a thermometer, why is the boiling point made last ? Distinguish between Fahrenheit and Centigrade thermometers. Reduce $42^{\circ} \mathrm{F}$. to C., 16° C. to F., $24^{*} \mathrm{C}$. to R.
5. What is meant by the "specific heat" of a substance? Compare the specific heat of mercury with that of water. What influence has the specific heat of water on climate?
6. Give the causes of radiation fogs, and state how they can be prevented.
[^1]SECOND YEAR.

PATHOLOGY-(HORSE).

Examiner: E. A. A. Grange, V.S.

1. Describe the nature, causes, symptoms, and treatment of Spasmodic colic.

2.	$"$	$"$	$"$	$"$	Enteritis.
3.	$"$	$"$	$"$	$"$	Catarrh.
4.	$"$	$"$	$"$	$"$	Bronchitis.
5.	$"$	$"$	$"$	$"$	Lymphangitis.
6.	$"$	$"$	Nephritis.		

7. Name the diseases of the skin.
8. Describe the causes, symptons, and terminations of Inflammation.
9. Describe the various modes for the treatment of Hernia.
10. Describe the operation of Lithotomy.

SECOND YEAR.

PATHOLOGY (CATTLE).

Examiner: E. A. A. Grange, V.S.

1. Describe the nature, causes, symptoms and treatment of Choking.

| 2. | $"$ | $"$ | $"$ | " |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | $"$ | $"$ | Tympanitis. | |

4. " " " Inpaction of the Rumen.
5. Describe the nature, causes, symptoms and treatment of contagious PleuroPneumonia, and the best means of prevention.
6. Describe the nature, causes, symptoms and treatment of Scab in Sheep.

7.	$"$	$"$	$"$	$"$	Foot-rot.
8.	$"$	$"$	$"$	$"$	Sturdy.
9.	$"$	$"$	$"$	$"$	Maggots or Fly.
10.	$"$	$"$	$"$	$"$	Ticks in Sheep.

second year.

VEterinary materia medica.

Examiner: E. A. A. Grange, V.S.

1. What classes are tonics divided into? Give an example of each class; state when and how they are used.
2. Mention the medicine which is most commonly used as a purgative for the horse, ox, sheep, pig and dog; and give the dose for each animal.
3. Name diseases in which diuretics should not be given.
4. Name diseases in which purgatives should not be given.
5. Mention the actions and doses for the horse, ox, sheep and pig, of Tincture of Opium.
6. Mention the Magnesia.
7. Mention the Potash.
8. Mention the Zinc
9. Mention th Lead.
10. Mention t Turpentine.
11. Enumerate composition.
12. Explain an
13. What is m
14. Distinguis
15. What is co important differenc
16. Write a col
17. When was
18. Give in cl period over which $42 \mathrm{~B} . \mathrm{C}$.
19. Which is
20. Compare
21. "The qual this by quotations
22. Sketch th
23. Write a sl
24. Mention the actions and doses for the horse, ox, sheep and pig, of Sulphate of Magnesia.
25. Mention the actions and doses for the horse, ox, sheep and pig, of Nitrate of Potash.
26. Mention the actions and doses for the horse, ox, sheep and pig, of Sulphate of Zinc.
27. Mention the actions and doses for the horse, ox, sheep and pig, of Acetate of Lead.
28. Mention the actions and doses for the horse, ox, sheep and pig, of Oil of Turpentine.

SECOND YEAR.

COMPOSITION

> Examiner: James Mills, M.A.

1. Enumerate what you consider the most important characteristics of good composition.
2. Explain and illustrate the difference between a "period " and a "loose sentence."
3. What is meant by style? What are the essential properties of a good style?
4. Distinguish the neat and the elegant style of writing.
5. What is comprised under the head of diction? Name and account for the most important differences between prose and poetic diction.
6. Write a composition on one of the following subjects :
> (a) "

> That noble minds keep ever with their likes; For who so firm that cannot be seduced."
> (b) " lowliness is young ambition's ladder, Whereunto the climber upward turns his face; But when he once attains the utmost round, He then unto the ladder turns his back, Looks in the clouds, scorning the base degrees By which he did ascend."
> (c) Canada.

second year.

SHAKSPEARE'S "JULIUS CÆSAR."

Examiner: James Mills, M.A.

1. When was this tragedy written? Criticise the name.
2. Give in chronological order the most noted events which occurred during the period over which the action of the play extends-from February 44 B. C. to autumn, $42 \mathrm{~B} . \mathrm{C}$.
3. Which is the best drawn character in the play, and why?
4. Compare the following:-
(1) Shakspeare's character of Julius Cæsar with that given in Roman history.
(2) Brutus and Cassius.
(8) The speeches of Brutus and Antony after the assassination.
5. "The quarrel between Brutus and Cassius is managed in a masterly way"-Show this by quotations and comments.
6. Sketch the character of Portia.
7. Write a short article on the Elizabethan period of English literature.
8. " $\mathrm{I},-$ as Æneas, our great ance tor, Did from the flames of Troy upon his shoulder The old Anchises bear,-so from the waves of Tiber Did I the tired Cæsar."

Explain the simile; point out any irregularity in the syntax ; accent the word ancestor according to the requirements of the metre ; scan the Alexandrine line and account for its use in this passage.
9. Explain and illustrate Shakspeare's use of the words an, given, envious, factious and favour.
10. (a) "The quarrel will bear no colour for the thing he is."
(b) "The genius and the mortal instruments are then in council."
(c) "The insuppressive metal of our spirits."
(d) "Cæsar, I never stood on ceremonies."
(e) "Set a huge mountain between my heart and tongue."
(f) "You yourself are much condemned to have an itching palm."
Explain the connection and meaning of each of these extracts.
11. Derive the words blaze, rheumy and brooked.
12. "You have ungently stole from my bed"; "that have spuke the word"-Point out peculiarities in syntax, and account for Shakspeare's use of such forms.
18. Quote some of the best passages in the play.

SECOND YEAR

POLITICAL ECONOMY.

Examiner: James ${ }_{\text {¿ Mills, }}$ M.A.

1. Explain what you mean by Political Economy. Give the divisions of the subject.
2. Define Wealth and Utility, giving suitable illustrations.
3. What are the requisites of Production? Distinguish and illustrate.
(a) Enumerate the advantages and disadvantages of the Division of Labour.
4. State and defend your views on-
(1) Free Trade generally.
(2) Free Trade in Canada.
5. Give reasons why every person should save something when possible.
6. Is any Government justified in forcing-
(a) A farmer to sell a railway company the right of way?
(b) The wealthy landlords of Ireland to sell a portion their land to the tenants ? Answers must be supported by reasons.
7. Discuss-
(1) The Distribution of Wealth.
(2) Paper Currency, including the " Rag Baby" question.
(3) Credit Cycles.
(4) Functions of Government.

SECOND YEAR.

NATURAL PHILOSOPHY.

Examiner: A. A. Mactavish.

1. Define force, and show how it is measured.
2. What is meant by work? What is its unit of measurement? How many units of work are expended in ploughing an acre of land-draught of plough 414 lbs ., width
of furrow 81 inches?
3. Enunciat between the pow by a separate cor
4. A grocer respectively. A really get, the te
5. What for mized road) risin
6. In railwa the higher, and
7. A rope-w regain his equilib
8. A pebble Which side does
9. A beam three feet from th feet. Find the w
10. Tell wha
11. Plan and
L. Orfsets.

D, 180
2. In a hundr of 20 acres, simile
3. The follow

Bacl
3. Enunciate the principle of "Virtual Velocity," and apply it to find the relation between the power and weight in a system of pulleys where each movable pulley hangs by a separate cord.
4. A grocer uses a false pair of balances in which the beams are $9 \frac{1}{2}$ and $9 \frac{1}{4}$ inches respectively. A customer has bought what seemed 20 lbs . of tea; how much did he really get, the tea having been weighed in the pan of the longer beam?
5. What force must a team exert to draw a load of one ton up an incline (macadamized road) rising 1 in 50 , friction estimated at one-thirty?
6. In railway curves, one side of the track is higher than the other. Which side is the higher, and why?
7. A rope-walker is about to fall to the right. Which way will he shift his pole to regain his equilibrium, and why?
8. A pebble is dropped into a very deep well ; it strikes against one of the sides. Which side does it strike, and why ?
9. A beam wéighing 200 lbs . is carried by two men, one being at a distance of three feet from the centre of gravity of the beam, and the other at a distance of two feet. Find the weight borne by each man.
10. Tell what you know of the action of the suction pump.

SECOND YEAR.

SURVEYING AND LEVELLING.

Examiner: A. A. Mactavish.

1. Plan and find the area of field from the following notes-

Scale-64 links to an inch.
2. In a hundred-acre farm, whose length is 160 rods, it is required to make a field of 20 acres, similar to it ; find its length and breadth.
3. The following is a running level from station A to station B-

Back Sight.
Fore Sight.

4.23	8.15	Peg 1, distance 100 feet.				
1.66	2.48	Peg	2 ,	"		0 feet.
3.09	4.89		3,	"		0 feet.
2.47	1.25	"	4 ,	"		00 feet.
7.21	3.45	"	5 ,	"		0 feet.
6.24	9.08	B	,			8 feet.

Complete the field book.
4. Show how to measure the distance across a wide river
5. Show how to test the accuracy of a cross staff

Note.-In addition to the above, candidates will be examined as to their ability in handling instruments for levelling and surveying.

> SECOND YEAR.

BOOK-KEEPING.

Examiner: A. A. Mactavish

1. Enumerate the ledger accounts requisite in the business of an average farmer in Ontario
2. Give an example of a completed imaginary ledger account with a wheat field of twenty acres.
3. Give an inventory, with values of stock and implements, for a farm of 100 acres,
4. Bought on 1st December, 1878, sixteen head of cattle, mostly Durham Grades, fourteen of which were two and a half year old stsers, and two three-year old heifers. Paid $3 \frac{1}{2}$ c. per pound-Total weight being 17,528 pounds. The food consumed and the cost for five months were as follows :

Swede Turnips	162,480 lbs. @ 8c. per 60 lbs
Mangolds	54,480 lbs.@ 10c. per 60 lbs
Pea Meal	12,960 lbs. @ 1c. per 1 lb .
Corn Me	10,448 lbs. @ 45c. per 56 lbs
The cost of at	$24,000 \mathrm{lbs}$ @ \$4 per 2000 lbs .
The cost of bedding	$\$ 5250$ 15

At the end of five months the animals weighed 22,122 pounds, and were disposed of at $5 \frac{1}{2}$ e. per pound. The commercial value of the manure was estimated at $\$ 269$.

Determine financial results from the above experiment, by posting into ledger in proper technical form and language.
5. Write (1) a "joint and several note."
(2) a non-negotiable note.

II. Papers set at the sessional examinations-June, 1880.

first year.

AGRICULTURE.

Examiner: W. Brown.

1. Give a full description of the accompanying sample of wheat.
2. What are the best conditions for the germination of seeds?
3. Give a concise sketch of the best method of preserving farm-yard manure, suitable
4. Name our principal special fertilizers, and say to what crops they are particularly
5. Give a general idea of the management of cereal crops.
6. What is the usual mode of cultivating root crops?
7. What are our principal green fodders, and at what time of the year are they usually available?
8. Give a full description of the orchard and rye grasses, and of alsike and lucerne clovers.
9. Classify the various kinds of wheat, barley and mangolds.
10. Indicate briefly the management and importance of permanent pastures.
11. Give the tant minerals fou
12. Give reas cooled slowly un 3. Name ex? large deposits of
13. Explain t
14. What fos boniferous, Juras
15. Describe
(a) N
(c) S
16. In what
17. Identify t
18. What cau
19. Give the deepest?
20. Describe direction.
21. Name the state by what mea
22. What pec year?
23. Draw diag ence in structure
24. Explain tl epiphyte, legume
25. Contrast t
26. Distinguis
27. Classify le
28. Name the duction of the plas
29. What peet pear?
30. Give a de
31. Name the scribe how each ci
32. Give a Eliminative, Astri

FIRST YEAR.

GEOLOGY AND PHYSICAL GEOGRAPHY:

Examiner: J. Hoyes Panton, M.A.

1. Give the characteristics of metamorphic rocks. Name some of the most important minerals found in them, and state where these rocks occur.
2. Give reasons for inferring that granite has once been in a molten condition, and cooled slowly under great pressure.
3. Name examples of chemically formed rocks, and mention formations in which large deposits of them occur.
4. Explain the terms tilting, dip, fault, denudation, stalactite, unconformability.
5. What fossils predominate in the following periods :-Silurian, Devonian, Carboniferous, Jurassic and Post-pliocene?
6. Describe what is known as the Erie and Huron geological district.
(a) Name the different formations which occur in it.
(b) Give its economic deposits and the formations in which they are found.
(c) State the general composition of the soil.
7. In what formations do graptolites and trilobites disappear?
8. Identify the fossils before you.
9. What causes the trade winds, and where do they occur ? Classify regional winds.
10. Give the characteristics of the North Atlantic Ocean. In what locality is it deepest?
11. Describe fully the equatorial current with reference to cause, locality and direction.

FIRST YEAR.

STRUCTURAL AND PHYSIOLOGICAL BOTANY.

Examiner: J. Hoyes Panton, M.A.

1. Name the parts of a plant which appear during the early stages of its growth, and state by what means you can know the class to which the plant belongs.
2. What peculiarity is observed in the growth of biennial plants during the first year?
3. Draw diagrams illustrating five different forms of inflorescence, and the difference in structure between an exogenous and endogenous stem.
4. Explain the terms, plumule, tuber, bulb, stolon, axil, key, monœcions, deciduous, epiphyte, legume as applied to plants.
5. Contrast the parts of an endogenous plant, with those of an exogenous.
6. Distinguish between a prickle and thorn and illustrate by exampies.
7. Classify leaves with reference to position, outline, venation and margin.
8. Name the parts of a flower, and state the function each performs in the reproduction of the plant. Give examples of what are termed monœcious and diœcious plants.
9. What peculiarity exists in the fruit of the apple, rose, strawberry, pineapple and pear?

FIRST YEAR.

MATERIA MEDICA.

Examiner : E. A. A. Grange, V.S.

1. Give a definition for Materia Medica.
2. Name the various circumstances which modify the action of medicines, and describe how each circumstance modifies the action of the medicine.
3. Give a definition for each of the following terms, viz: Hœmatic, Neurotic, Eliminative, Astringent.
4. Describe the actions, uses, and doses, for the domestic animals, of Aloes.

5.	"	"	،		,	"			Tinctic
6.	"	"	"	"	،	'	,	"	Finct. of Ac
7.	"	"	${ }^{\prime}$	"	،	"	"	"	Linseed Oil.
8.	"	"	"	"	"	"	"	"	Cantharides.
9.	"	"	"	"	"	"	"	"	Cinchona.
10.	"	"	"	"	"	"	"	"	Sulphate of Iron.

FIRST YEAR.

ENGLISH LITERATURE,

The Lady of the Lakg.
Examiner: James Mills, M.A.

1. Describe the Spencerian stanza.
2. Write a composition giving a synopsis of the first canto,
3. What historical person does Scott intend to pourtray in Fitz-James?
4. Give a short history of the Douglas family.
5. "State your views as to the points of difference between the men of the 'Lady of the Lake' and the actual men of the period which Scott iritended to describe."
6. Quote or refer to passages which illustrate Scott's narrative, descriptive, and lyrical powers
7.

> "I little thought when first thy rein
> I slacked upon the banks of Seine," etc., etc.
(a) Explain the allusion.
(b) Complete the quotation.
8. Explain the terms, idiom, alliteration, rhythm, onomatopoia, and paragoge.
9. Derive quarry, buluark, bugle, canopy, falchion, weird, and stalwart.
10. Write notes on Knight-errantry, Tine-man, and Clan-Alpine.

11, Frontlet-Give as many examples as you can of other diminutive endings used in English.
12. Explain the meaning of linn, dingle, ken, whinyard, cupola, snood, brook, and pibroch
13. Draw an outline map of Scotland or a portion of it, marking the position of Katrine, Achray, Vennachar, Lomond, Trossachs, Benvenue, Forth, and Teith.
14. (a)

> "Huntsman, rest ! thy chase is done,
> While our slumberous spells assail ye, Dream not with the rising sun,
> Bugles here shall sound reveille."
(b) 4. "Row, vassals, row, for the pride of the Highlands !

Stretch to your oars for the ever-green pine.
0 ! that the rosebud that graces yon islands Were wreathed in a garland around him to twine."
(1) Scan these passages, giving the names of the metres.
(2) What is peculiar in the use of "ye"?
(3) Explain the allusions in the "ever-green pine" and "the rose-bud."
16. Name Sir Walter Scott's most noted contemporaries, and write a short article
(1) N
(2) Pr
(3) P
(4) A
(5) C

FIRST YEAR.

MENSURATION.

Examiner: A. McTavish.

1. Define circle, sphere, trapezoid, heptagon, square.
2. How many square feet in \& rectangle whose sides are 15 and 20 yards respectively?
3. Find the area of a square field whose diagonal is 40 chains.
4. Find the area of the equilaterial triangle inscribed in a circle whose diameter is 12 feet.
5. How many bunches of shingles will be required to eover a barn roof ; length of roof 75 feet, length of rafter 25 feet?
6. How far must a team of horses travel in ploughing a field of one acre-width of furrow 8 inches?
7. How many cubic yards in a frustum whose dimensions are as follows : length of the lower edge 40 feet, length of upper edge 30 feet, height of frustum 5 feet?
8. Find the solid contents of a cone whose base has a diameter of 10 feet and height 12 feet.
9. How many cubic feet must be excavated in digging a cellar 40 feet long, 30 wide and 8 deep?
10. How many gallons of water will a cistern whose diameter is 12 feet and depth 16 feet hold?

SECOND YEAR.

AGRICULTURE.

Examiner: W. Brown.

1. What was the nature and general result of our past winter's cattle-feeding experiment. ?
2. Give in full the reasons by which we selected cows for experiment in grazing versus soiling this season.
3. Sketch the arrangement and general management of our farm this season, in regard to hay and pastures.
4. Take our farm as one to compete for the Modal of the Agriculture and Arts Association, and report upon its merits according to the accompanying points :
(1) Nature of farming suitable to circumstances
Full Value.
(2) Proper portion of bush and permanent pasture 50 50
(3) Position and character of buildings in relation to farm. 50
(4) Attention to preservation of timber and tree planting 50
(5) Condition of private roads and fences 50
(6) Improvements by removal of obstacles to cultivation, in- cluding drainage 100
(7) Management, character, suitability, condition, and num- ber of live stock kept. 150
(8) Number, condition, and suitability of implements and ma- chinery 50
(9) Management of farm-yard manure. 50
(10) Culcivation of crops, embracing manure, cleaning, produce per acre in relation to management, and character of soil and climate. 100
(11) General order, economy and water supply 100
(12) Cost of production, and relative profits. 150

SECOND YEAR.

PRACTICAL AND ANALYTICAL CHEMISTRY.

Examiner: J. Hoyes Panton, M. A.,

1. Describe fully the preparation of hydric sulphide and ammonic sulphide,
2. Give the tests for lime, silver, iron and copper
3. Find the specific gravity, the percentage of organic matter, and the moisture in the soil given you for analysis.
4. How can you distinguish mica, gold, copper pyrites, and iron pyrites from each other?
5. Detect the adulterations present in the samples before you.
6. Analyze, and give the composition of the compounds marked 1, 2, 3, 4, 5.
second year.

SYSTEMATIC AND ECONOMIC BOTANY.

Examiner: J. Hoyes Panton, M.A

1. Name the characters usually considered in making a natural classification of plants. Classify the cryptogams.
2. To what orders do the following belong : lucerne, blue weed, thistle, daisy, beet, onion, cedar, Indian turnip, rhubarb ?
3. Give examples of cryptogamous plants which are of economic value, and name the classes to which they belong.
4. Name the orders of which the following are the characters :
(a) Irregular corolla (papilionaceous), leaves alternate, five irregular petals, exogenous stem.
(b) Herbs with square stems and opposite leaves, irregular two-lipped corolla, 4 stamens, 2 long, 2 short, leaves dotted with small glands, which
contain a volatile oil.
5. Contrast Trifolium repens with T. pratense.
6. Give the characters of the orders, conifera, and graminea. Name two genera in each.
7. Describe the flower of the Indian turnip, and of the Begonia.
8. Analyze the flowers before you. Give the name and order to which each belongs.

second year.
 MATERIA MEDICA.

1. Enume land during the the literature o
2. Comme
" a supernature
3. "Did S of illusions with such a state o. did he intend to
4. Explain different readin
(3)
5. Quote ex
6. Write g Colmes-kill.
7. Derive
8. Sketch t
9. "There contemplation in

Quote a pas

Examiner: E. A. A. Grange, V.S.

1. Describe the actions; uses and doses for the domestic animals of

2.	"	"	"	"	"	"	Sulphate of Magnesia. Opium.
3.	"	"	"		"		
4.	"	"	"	"	،	"	Calomel
5.	"	"	"	"	"	"	Croton 0
6.	،	"	"	"	"	"	Nitrate of Pota
7.	"	"	"	"	"	"	Wrate of Potash.
8.	"	"	"	"	"	"	
9.	"	"	"	"	"	"	Nitrate of Silver.
10.	"	"	"	*	'	"	Acetate of Lead.

SECOND YEAR.

ENGLISH LITERATURE: MACBETH.

Examiner: James Mills, M.A.

1. Enumerate the influences which caused the outburst of literary activity in England during the latter part of Queen Elizabeth's reign, and write a short composition on the literature of the period.
2. Comment on Macbeth, and name another play into which Shakespeare introduces "a supernatural element."
3. "Did Shakespeare intend to depict Macbeth as naturally prone to be the subject of illusions with regard to supernatural appearances; or as having been brought into such a state of mind that he was disposed to become the subject of such illusions; or did he intend to represent the various appearances as real ? Discuss the question fully."
4. Explain the meaning of the following, point out the peculiarities, and notice different readings :
(1) "There's daggers in men's smiles ; the near in blood

The nearer bloody."
(2) "Ere human statute purged the gentle weal."
(8) "If trembling I inhabit then, protest me

The baby of a girl."
(4) "The apparition of a bloody child arises."

That two-fold balls and treble sceptres carry."
" This push
Will chair me ever or unseat me now."
" Boundless intemperance
(8) " Now minutely revolts upbraid his faith-breach."
5. Quote examples of metaphor, simile, and hypallage from Macbeth.
6. Write geographical notes on Forres, Cawdor, Glamis, Scone, Dunsinane and Colmes-kill.
7. Derive caldron, foisons, surcease, chalice, vizards, plague.
8. Sketch the character of Lady Macbeth.
9. "There is an entire absence of comedy, nay, even of irony and philosophic contemplation in Macbeth."-Coleridge.

Quote a passage to prove that this statement is incorrect.
10. "If it were done when 'tis done then 'twere well

It were done quickly if the assassination
Could trammel up the consequence and catch
With his surcease success that but this blow
Might be the be-all and the end-all here
But here upon this bank and shoal of time
We'd jump the life to come but in these cases We still have judgment here that we but teach Bloody instructions which being taught return To plague the inventor this even-handed justice. Commends the ingredients of our poison'd chalice
(a) Punctuate this passage.
(b) Write a paraphrase of the passage, showing clearly what you conceive to be the meaning.
(c) Explain particularly the expressions " bank and shoal of time " and "jump the life to come,"
11. Quote what you consider the finest passages in the play.

GECOND YEAR.

NATURAL PHILOSOPHY.

Examiner: A. A. Maotavish.

1. Define force. Give three examples.
2. Define acceleration, and tell what is meant by saying that $\mathrm{g}=32$.
3. A train uniformly accelerated with an acceleration of 10 ft . a second, passes two stations with velocities of 8.8 and 44 ft . per second. How far is it between the two stations ?
4. How far will a body fall in 5 seconds, gravity being 32 ?
5. A body is projected upwards with a velocity of 640 ft . a second. How high will it rise? What will be its velocity at the end of the 20th second, also at the end of the 30th second?
6. Describe Atwood's machine.
7. A weight of 2 lbs . hangs over the edge of a smooth table and draws a weight of 50 lbs . laid on the table. What velocity will be acquired in $\mathbf{3}$ seconds ?

SECOND YEAR.

LAND SURVEYING.

> Examiner: A. A. Mactavish.

1. Describe Gunter's chain.
2. Describe the cross-staff, and show the method of determining its accuracy.
3. Show how to place a line at right angles to another, using the chain only.
4. Plan the field from the adjoining notes, and determine its area, scale $\frac{1}{2}$ chain to an inch.

5. Analyz3 th
6. Define the
7. Distinguish be, of maid, marqui
8. What is the of good, bad, beautif
9. Decline I, s
10. Give the p sit, set.
11. Combine th

The g It is These In tir These
8. Correct the
(a) Thes
(b) I sav
(c) As n
(d) Mind
(e) Hed

1. Name the pr and state where they
2. Sketch a map
3. Where, and

Emerson, Yarmouth,
4. Name the diff
5. Name some of are found.
6. Explain the te
7. Name the prir

III. Papers set at the matriculation examination,

OOTOBER, 1880.

ENGLISH GRAMMAR.

Examiner: James Mills, M.A.

1. Analyzs the following passage and parse the words in Italics.

There at the foot of yonder nodding beech That wreathes its old fantastic roots so high, His listless length at noon-tide would he stretch, And pore upon the brook that babbles by.
2. Define the terms gender, case, voice, relative pronoun, and give an example of each.
8. Distinguish gender from sex, and write the masculine or feminine as the case may be, of maid, marquis, dame, nepheve, widow, boy, actor, earl.
4. What is the use of the adjective? Write down the comparative and superlative of good, bad, beantiful, much, near, old.
5. Decline I, she and which.
6. Give the past tense and perfect participle of eat, feel, last, lose, loose, leap, sell, sit, set.
7. Combine the following statements into compound sentences :

The great Southern Ocean is crowded with coral islands. It is crowded with submarine rocks of the same nature. These rocks are rapidly growing up to the surface. In time these rocks will rise above the ocean. These rooks will at length form new habitations for men.
8. Correct the mistakes in-
(a) These sort of arguments are out of date.
(b) I saw a black and white deg running together.
(c) As neither Janes nor George are going, let you and I go.
(d) Mind who you are talking to.
(e) He didn't ought to have broke the window.

GEOGRAPHY.

Examiner: J. Hoyes Panton M.A.

1. Name the principal rivers of Ontario. Give the direction in which they flow, and state where they empty.
2. Sketch a map showing the positions of the various Provinces of Canada.
3. Where, and what are the following: Mobile, Vienna, Ouse, Tasmania, Clyde,
Emerson, Yarmouth, Rimouski, Goderich, Suez ?
4. Name the different railroads that lead into Toronto. are found.
5. Explain the terms : estuary, cape, delta, watershed, plateau.
6. Name the principal lakes of North America. 6*

ARITHMETIC.

Examiner: A. A. Mactavish.

1. The product is 92,465 , the multiplier is 5 . What is the multiplicand ?
2. If $\frac{7}{B}$ of a ship be worth $\$ 14.000$, what is the value of $\frac{3}{5}$ of it ?
3. Sold two coits at $\$ 75$ and $\$ 85$ respectively, and received $\frac{1}{5}$ in cash, and the rest in flour at $\$ 5$ per barrel. How many barrels of flour were received?
4. Add together $\frac{1}{2}, \frac{3}{4}, \frac{3}{5}, .05, .123$ and $42 \frac{1}{5}$.
5. Multiply .00124 by 42.368 .
6. Simplify $\frac{1 \frac{1}{2}+2 \frac{1}{3}}{3 \frac{1}{4}+4 \frac{1}{6}}$ of $\frac{.5}{.25}$
7. $\$ 120$ is divided smong A, B and C. As often as A gets one dollar, B gets two and C gets three. How much does each receive?
8. How many more revolutions will the front wheel of a carriage make over that made by the hind wheel in going a distance of one mile, circamference being 10 and 12 feet respectively?

READING, DICTATION, AND COMPOSITION.

Examiner: J. Hoyes Panton, M.A.
Reading.

1. Fourth Book, page 182. Read the last four stanzas. Beginning on page 247, read twenty lines.

Diotation.

2. Page 208. Write from "having——surrender."

Composition.
8. Contrast a professional life with that of an agriculturist.
nd the rest
B gets two
e over that 10 and 12
n page 247,

APPENDIX E.

ONTARIO AGRICULTURAL COLLEGE.

Class Lists.
Easter Examination, 1880.
FIRST YEAR.

CLASS LISTS-FIRST YEAR-Continued.

Names unnumbered are those of students who failed to pass.
CLASS LISTS-FIRST YEAR-Continued.

CLASS LISTS--FIRST YEAR-Continued.

CLASS LISTS-FIRST YEAR-Continued.

	Class.	Arithmetic.	Mensuration.	Book-Keeping.	General Proficiency.
	I.	1 Motherwell. 2 Dickinson, S. 3 Phin, R. 4 Ross, J. 5 Phin, W. 6 Ballantyne. 7 Torrance.	$\begin{aligned} & 1 \text { Ross, J. G. } \\ & \text { 3 Howitt. } \\ & \text { 3 Horne. } \\ & 4 \text { Fotheringham. } \\ & 5 \text { Dickinson, C. } \\ & 6 \text { Phin, W. } \end{aligned}$		1 \{ Motherwell, W. Howitt, J. 3 Ross, J. G. 4 Phin, R. J. 5 Phin, W. 6 Dickinson, C. S.
	II.	1 Nichol. 2 Dickinson, C. 3 Howitt. 4 \{ Pope, L. Horne. 6 Sutherland. 7 Leask. 8 Landsboru. 9 Crops. 10 Ross, W. 11 Denman. 12 Wilson.	1 Cross. 2 Wilson. 3 Dickinson, S. 4 Noble.	$\begin{aligned} & 1\left\{\begin{array}{l} \text { Newton. } \\ \text { Horne. } \end{array}\right. \\ & 3\left\{\begin{array}{l} \text { Robins. } \\ \text { Denman. } \\ \text { Footheringham. } \end{array}\right. \\ & 6\left\{\begin{array}{l} \text { Ballantyne. } \\ \text { Sutherland. } \end{array}\right. \\ & 8 \text { Cuthipman. } \\ & 9\left\{\begin{array}{l} \text { Phin, W. } \end{array}\right. \\ & \text { Ward. } \\ & 11 \text { Hogarth. } \\ & 12 \text { Leask. } \end{aligned}$	
	III.		1 R Ross, W. Ward. 3 Roberts. Gibson. 5 Watt. 6 Landsboro. 7 Macfarlane. 8 f Patton. Glass. 10 Minard. Lindsay, S. Lind\& $\sim \mathbf{y}$, \mathbf{W}. Jones. Woodley.	1 \{ Dickinson, S. Cuppage Grindley. Роре, H. Jones. Gordon. 8 Patton. 9 Cross. 0 Skaife. Mylne. $\left\{\begin{array}{l}\text { Noble. } \\ \text { McNaughton. } \\ \text { Small }\end{array}\right.$ Small. Hermon. Segsworth. Woodley. Surtees. Duthie. Charlton. Willis. Glass. Gibson. Landsboro. Irving. McIlquham. McIlquham. 29 Anderson. 30 Jackson. Lindsay, S. McLachlan. Fenton. Roberts. Watt. Lindsay, W. Jarvis. 	1 Robins, W. P. Segsworth, F. 3 McFarlane, D. G.rdon, W. Sutherland, A. Paton, W. Grindley, A. W. Ross, W. Ward, T. Small, A. F. Skaife, J. Chipman, P. H. Cross, A. Minard, J. H. McNaughton, J. Denman, A. W. MeIlquham, \mathbf{W}. Lindsay, S. Surtees, W. S. Gibbon, W. J. Mylne, R. C. Anderson, H . Noble, F. Jones, G. Duthie, J. Roberts, \mathbf{P}. Woodley, F. E Irving, C. E. Willis, J. McLachlan, D. Lindsay, \vec{W}. Watt, J. McIlquham, J. Jackson, C. Jarvis, C . Hill, J. 38 Fenton, J.

[^2]
NERAL
 FICIENCY.

erwell, w.
 tt, J.
 J. G.

 ,

\qquad
n, J.
tyne, \mathbf{w}.
G.
ingham, J.
W. H.
ce, W. P.
ge, \mathbf{A}.
coro \mathbf{J}.
H.
$\mathrm{n}, \mathrm{E}, \mathrm{B}$
J.
on, G. A.
W. P.
rth, F .
lane, D .
and, A.
w.
y, A. W.
W.
A. F .
$\mathrm{J}, \mathbf{P}, \mathbf{H}$.
J. H.
ghton, J.
n, A. W.
ham, \mathbf{w}.
, S.
w. s.
W. J.
R. C.

F,
J.
y, ㄷ. E
C. E.
lan, \mathbf{D}
W.
am, J.
c.
J.
…...........
CLASS LISTS.-Continued.
SECOND YEAR.

Names unnumbered are those of Students who failed to pass.
CLASS LISTS-Contimued.

> $=$ h

APPENDIX F.

FINANCIAL TABLES.

1.-Appropriation Expenditure for 1880.
2.-Statement of Revenue for 1880.
3.-Estimated Expenditure for 1881.
4.-College in account with Farm and Garden.

Ontario Agricultural Collgge.
1.-APPROPRIATION EXPENDITURE FOR 1880.

2.-STATEMENT OF REVENUE FOR 1880.

Balances on board accounts paid by students (over and above labour - done in outside departments)

Tuition Fees

	Voted for 1880 (92 Students).	Required for 1881 (130 Students).
1.--Salaries. A. Maintenance. President, Professor of Natural History and English, and Resident iascer Professor of riculture and Farm Superintendent Professor of Culstry and Practical Chemist Professor of Vcterinary Science Mathenatical und Assistant Resident Master. \qquad Bursaic an Field and Liva stock Foreman- Foreman of Horticultural Department Meman of Mechanical Department \qquad Matron an Engineer Assistant Engineer (for 6 months) J anitor and Messenger Instructor in Drill and Gymnastics Temporary assistance	8 c. 2,0000 2,000 2,000 1,000 600 500 500 500 300 300 600 600 600 600 600 400 500 150 150 150 00 100 100	
II.-Expenses of College. Meat, fish and fowl Bread and biscuit General groceries and butter Fuel Laundry, soap, and cleaning Light Furniture and furnishing Repairs Maintenance of chemicals Advertising, postage and stationery Unenumerated Women servants' wages (12 in 1880,16 in 1881)		
B.-Capital Account.	22,850 00	29,030 00
1.-Furniture and Furnishing.	2,000 00	2,000 00
	24,850 00	31,030 00

By students' 1
Farm Sup
By
4.-THE COLLEGE IN AGCOUNT WITH THE FARM AND THE GARDEN
FOR THF YEAR 1880. FOR THF YEAR 1880.
uired for 1881 0 Students).

APPENDIX G.

After entering on my duties as President a little over e year ago, I endeavoured to get from Europe and the United States, such information as would enable me to give the latest statistics on the subject of agricultural education in those countries ; but having received answers from only a portion of the agricultural institutions, I prefer to postpone the matter till next year, and copy the following from the report of 1878 , written by my predecessor, rather than give only partial information of a later date.

AGRICULTURAL EDUCATION IN GERMANY AND THE UNITED STATES.

"What I desire to do in this very brief Appendix is to give an outline of the manner in which agricultural education is carried out in Germany and the United States. I toke those two as examples, although only four European countries are now without similar institutions. I will not rehearse the arguments used by the advocetes of this species of education when claiming support for their colleges from the State ; those have already been used here, and acted upon in the establishment and annual support of this institution by our Province.

> A.-Germany.

This country is, as usual, ahead of all the rest of the world in this matter of agricultural education. There are four steps in her system, viz :-

1. Agricaltural Farm Schools.
2. Agricultural Middle Schools.
3. Agricultural Colleges.
4. Agricultural Courses in Universities.

The course of instruction in the first two classes embraces even more than is found in the curriculum of our own Agricultural College, including as it does, a thorough grounding in a continued literary education, in the elements of the sciences, in veterinary lessons, in theoretical and practical agriculture, and in all kinds of farm work, learned on the farms, which are attached to both those classes of schools. Besides those under the charge of some of the oid States, there are 156 of the two classes of schools under the direct control of the Empire ; though 42 of them are devoted to the study of specialities, such as vine and grape culture, horticulture, bee-keeping, etc. The third step is the Agricultural Colleges, of which there are six in the German Empire, situated at Eldend, Proskau, Popplesdorf, Munich, Thorau and Hohenheim. In these, the elementary scientific education already obtained is applied directly to agriculture in extensive laboratories and dissecting rooms, fitted up with all the necessary apparatus and appliances, and on large farms of from 800 to 1,500 acres. Besides this practical application, the theoretical instruction is greatly widened, including all the departments of agriculture, agricultural science, veterinary science, agricultural statistics, finance, laws, taxation, etc., etc.,-in other words, the curriculum of each is wonderfully complete. Having finished his course,
the stude after whi great Na tions ; an State,
"I h
Agricultu communi tioned, so what has lands to t Agricultu domain w sent by ar right of a which req
"shall be this Act leading ob such bran ner as Lee liberal and fessions in

Almo
contempla
cal College tween the Act. It or universi its departn teen oi the leges were table the s the agricul sity-any tural depar extremely been fully

The to sors in each salary of a Of course those figure of the presi \$3,000.
department from them. leges of the students 4 , counting th equipment first class to oppose that to get the e stances very
avoured to to give the ut having o postpone ten by my 8. I toke ut similar species of ve already is institu
of agricul-
is found thorough eterinary earned on under the under the ecialities, the Agrind, Prosscientific poratories s , and on heoretical ricultural etc.,-in is course,
the student is required to enter the ranks of agriculturists and prove himself successful, after which he can attend, thoroughly equipped, agricultural departments of nine of the great National Universities. Besides these schools and colleges, are 43 experimental stations; and the cost of all-schools, colleges and experimental stetions-is borne by the
State.

B.-Uniten States.

"I have in the accompanying table grouped together the facts regarding 32 out of $\Sigma 9$ Agricultural Colleges of the neighbouring Republic. During 1877 I placed myself in communication with each of those Colleges,'and received the Reports of the numbers mentioned, so that the table is absolutely correct for the year 1876. In 1862, Congress passed what has been usually referred to as the Land Script Act, entitled "An Act doneting lands to the several States and Territories which may provide Colleges for the benefit of Agricultural and the Mechanic Arts." By this Act, some 9,600,000 acres of the public domain were set aside for this purpose on the basis of 30,000 acres for every Senator sent by any State or Congress to the Senate, such State or Territory having, of course, the right of acceptance or refusal ; but the acceptance bound by the conditions of Sec. 4, which required that the interest of all moneys derived from the sale of lands donated "shall be inviolably appropriated by each State which may take and claim the benefit of this Act to the endowment, support and maintenance of at least one College, where the leading object shall be, without excluding other scientific and classical studies, to teach such branches of learning as are related to agriculture and the mechanic arts, in such manner as Legislatures of the States may, respectively p escribe, in order to pronote the liberal and practical education of the industrial classes, in the several pursuits and pro-
fessions in life."

Almost every State has now tak $\in \mathrm{n}$ advantage of this liberal offer. The Act ϵ vidently contemplated the erection and maintenance in each State of an Agricultural and Mechanical College ; but as it did not expressly say so, a contest arose in many of the States between the advocates of existing colieges and those desiring to carry out the spirit of the Act. It has resulted, in twenty States, in the endowment of some already existing college or university, which, in order to comply with the conditions, bought a farm, and added to its departments of instruction e well equipped agricultural department. In some nineteen oi the States honesty won the day, and separate Agricultural and Mechanical Colleges were erected, and receiver' the endowment, of which I have given in the accompanying table the statistics of sixteen. Only two or three of the former class have heen successful, the agricultural department being overshadowed by the other departments of the univer-sity-any exception being caused by the noted excellecice of the professors in the agricultural department. Of the latter class, the great majority have been successful-many been fully in Fourteen of the nineteen are as yet quite young, however, having only The table needs no comg the last decade. sors in each college is usually six or sevs largely self-explanatory. The number of professalary of a professor is' $\$ 2,000$-many being of assistants about the same. The average Of course in the agricultural departmeng above that figure, and oniy three below it. those figures, but these are professors of a ree universities, the salaries are often double of the president is about $\$ 3,200$, many a regular university, as well. The average salary $\$ 3,000$. As before, that $\$ 3,200$, many receiving above that and none less than departments receive, of course from of the universities in wuich there are agricultural from them. The total number of the $\$ 4,000$ to $\$ 6,000$; but no precedent can be taken leges of the United States, during the professors and assistants in the Agricultural Colstudents 4,211 . The former numbear mentioned was 473 , and the total number of counting their regular prossors wimber is a third too large, owing to the aniversities equipment and attendance to the maint agricultural department. Turning from the first class to obtain any assistance oppose that on the grounds that from the State, for the rival colleges or universities to get the endowment; but the second agricultural departments have only been attached stances very liberally, by yearly stances very liberally, by yearly grants from the State. The interest on the lands sold
by each State will be seen to be very variable, arising partly from the size of the State but main!y from the favourable or unfavourable location of the lands. The interest received by all the Colleges during 1876 was $\$ 525,745$, or an average of about $\$ 13,500$ to each. Many of them have been additionally endowed by individuals, by subscriptions, or by counties, and the annual maintenance expenditure of those of them from which I could get a financial statement was for the year given somewhere between $\$ 25,000$ and $\$ 38,000$. And that is outside of any expenditure on capital account. And lastly, turning from equipment, attendance and maintenance, to a consideration of the several courses of study, it may simply be said that neither our space nor our time would allow even a synopsis of them. The great faults of the majority of them are the attempt to teach too many subjects superficially, to give too many optional courses, to leave out a course of farm appre ticeship, and to make their curriculum too literary, and not sufficiently technical."

The following table requires no further explanation.
JAMES MILLS,
President.

AGRICULTURAL COLLEGES OF THE UNITED STATIS, 1876.

REPORT
 OF THE

 PROFESSOR 0F AGRICULTURE

 PROFESSOR 0F AGRICULTURE}

AND

FARM SUPERINTENDENT.

Ontario Agricultural College and Experimental farm,

 31st October, 1880.To the Honourable S. C. Wood
Commissioner of Agriculture:

Sir,-I have again the honour of reporting upon the Field, the Live Stock, Horticultural, Mechanical, Experimental, Practical Instruction, and allied subjects under my charge here, and on this occasion I shall preface with some remarks on what is at once a matter of great national value as well as one that has largely brought our School to its
present status.

It is now four years since we imported the animals that still principally coropose the various herds and flocks of the farm. Their conduct and standing during these years are well known to all who take an interest in the progress of education and the main source of the future wealth of the Dominion. Nationally, and in the eye of the world, we are now articled to a business in beef and mutton that may reach, even in our time, as far as the wealth of any other country, and certainly much farther than any other, proportionmaintenance of bas been the duty of this institution to take a prominent part in the reference to success in mostess of the leading breeds of cattlo and sheep, and with the increasing importance of thitials it has no reason to be dissatisfied. Having in view upon our herds and flocks, as well as the very largely extenuos annual drain by the public the same thing, I am again called upon to advise extended educational demands upon should be obtained for our Farm.

In the first place, I must point out that whatever is done by the Government in the matter of importations to this Farm, can be but a small thing compared with what is done by other breeders in the Province, who do so, almost regularly, annually. All the surplus cattle and sheep that can be produced from this farm annually is not one-hundredth part of what is done by others, and not one-thousandth of what is required throughout the Province,

Secondly, in place of our being in opposition to other breeders, as some may contend, we are actually doing the advertising for them. It is a fact in my own personal knowledge, and also given me from many farmers, and some breeders themselves, that the prominence given the question of Live Stock in our annual reports, and the distribution of our surplus animals during the last five years, bave very largely increased the demand
for such stock, so that many of the sales by breeders can be directly traced to our connection. It is also a fact that the hundreds from long distances who call and do not obtain from us, at once proceed to other herds and flocks, and purchase what they would not otherwise have done had the Experimental Farm not been in tsistence,

Thirdly, the many young men who have been educated here and who took keen interest in the Live Stock department, are not only returning or writing for certain animals for themselves, but have sent many others for the same purpose, who otherwise were indifferent to improved stock ; the most of those had to call upon other breeders, by reason of our own want of supply .

Fourthly, the score of direct breeders who may be jealous of our limited efforts are an unit to the thousands now demanding the continuance and extention of our Live Stock department ; the latter say, you have opened up to the average farmer what exactly suits him; he knows that on the second week of September every year he has the opportunity of obtaining a choice from several breeds of cattle, sheep and swine, at prices entirely at his own making, for no reservations are made and few private sales have been allowed, even at much higher figures than were offered in very many instances.

Fifthly, farmers are now satisfied in regard to the judiciousness of our moderate system of feeding breeding stock; the four years' proof has been extensive and severe.

Sixthly, there is also manifest satisfaction at the greater care bestowed upon the culling of young animals ; offering only the best the first season and preparing the inferior for next by a gradual plan of careful feeding, -for example, the shearling rams that brought an average of $\$ 49.35$ on the 10th September last, were the culls of 1879 , such animals that, though sound in constitution, were not of that stamp which I considered should be offered by the Government to their'own people, and which certainly would not have fetched $\$ 10$ each.

Seventhly, the situation of the Farm does not make it one of local interest in regard to the service of new animals to other herds and flocks; ewes have been sent from over 200 miles, and sows from 100 miles distant, besides the fact that we have had to refuse several by reason of crowding. As to this see details in chapter on "public patronage to our
various rams."

In short it may be asked, is it possible in these times to have too much stock in the country, whether by the agency of private or of public means? In saying no, I must point out that we cannot compare ourselves with such an older and more wealthy condition of things as obtain in the United States. Our average farmer yet needs help in respect to placing, for example, the essence for beef and mutton production within his easy reach. It is too risky for him to import the one or two animals he needs, and he is not prepared to give the regular breeder a large profit for such e transaction. But the Government wants no direct profits as does the special breeder, and here I must confess to regret that the Government has been obtaining profits from the sale of their Live Stock here. While this may be gratifying to the management, it need not be so to the Government that is earnestly striving for the development of all branches of its rural economy.

When, therefore, it is now matter of practical history that a Government can be a farmer and obtain direct profits from the transactions thereof, there cannot possibly be any objections to increasing the number and raising the standard of several of our breeds of cattle and sheep here. The thousands want it, whatever the score of special breeders may say to the contrary. If we cannot offer more in future than we have been doing, prices are likely to rule high, and the lower and slower will be the character of our agriculture.

In order to meet the increased demand it has been suggested to us by several leading farmers that besides the material of the Ontario Experimental Farm, the Government should appropriate $\$ 100,000$ for the purpose of importing cattle and sheep next year. This, they consider, would be acting in the spirit of the times, and subserve more actual good than all the agricultural shows, or agricultural inquiries on foot. I am not prepared to discuss this point at present, but shall proceed to submit sone advice regarding the educational aspect of the proposed new importations for the College and Farm.

All the public are not aware that I have been gradually extending the plan by which students are familiarized with the different breeds of Live Stock ; the actual lecturing now
takes up being de mals of t we are any part where, in out wher thing, gil generally kind of one comp result of time, on report.
both of te must be s: and judgi acquire th months in is very des sion, in pl: prejudice of the Gov farmers, te be replete Canada at Our impor as a matter others who should forn sale of abou old bulls, c we have sol propriation include all

These sh tine, by the 1
to our connecd do not obtain they would not
who took keen ing for certain who otherwise er breeders, by ited efforts are our Live Stock t exactly suits e opportunity ces entirely at allowed, even
moderate sysad severe. wed upon the paring the inling rams that of 1879 , such I considered aly would not
rest in regard rom over 200 efuse several ronage to our
stock in the 3 no, I must ealthy condieeds help in thin his easy nd he is not the Governess to regret Stock here. Government omy.
ment can be possibly be f our breeds ial breeders been doing, acter of our
eral leading tovernment next year. more actual ot prepared arding the
n by which turing now
takes up but one-third of the whole time allowed for this division of my duties, the rest being devoted to practical examination of points, handling and comparing different animals of the same breed and of different breeds, and judging generally. When we think we are conversant with the history, characteristics and standard of points appertaining to any particular breed, we take a bull, or cow, or ram, or ewe to the class-room platform, where, in the presence of all the students, I first of all name and handle all its parts, point out wherein it is good, wherein poor ; and thereafter every student is made to do the same thing, give reasons for what he advances, answer questions put to him by his fellows, and kind of work one complaint being thatm interest taken in it by every student, without exception-the result of their own final examination had enough of it. The complaint is sound if the time, on which question I beg to refer evidence of acquirements under allowance of short report. But whether for that reason, or for those introductory remarks of last year's both of teacher and scholar, I am convinced those of but ordinary ability, on the point must be supplemented by regular monthly and the ordinary lessons in this connection and judging of all breeds of cattle and sheep. Wusly drill during winter in the handling acquire the art of systematic teaching so it need nust as my older head had to get years to months in place of weeks to carry the ground-wot be surprising that younger ones require is very desirable that judging of Jive Stock at exk of this branch of their profession. It sion, in place of being a complinentary positiontions should be brougit to a profesprejudice and unskilled dictum. It is part of in the hands of the few, liable thus to of the Government, I have no fear of part of our duty to make judges, and with the help farmers, ten years hence, as shall be a creditg such a staff in the hands of the Ontario be replete with animals of the leading breeds any country. To do this, our College must Canada at least, and opportunity must be given for cattle, horses and sheep, suitable for Our importations of 1876 have now served their for repeated lessons as already explained. as a matter of profit or the same value educationally with us and cannot longer be kept others who do not possess blood from the educationally. They will, however, be good to should form part of the public sale in September source, and I therefore propose that they sale of about $\$ 3,000$ of surplus Live Stock, we would ; so that, in addition to the ordinary old bulls, cows, rams and ewes-say $\$ 5,000$, for certain receive something like $\$ 2,500$ for we have sold over $\$ 10,550$ of surplus Live Stock. Finally. I may also state that since 1876 propriation of $\$ 15,200$ for the importation of the folly, I beg to recommend the apinclude all expenses delivered here, and the very best to bing animals-the estimate to

I.-THE W EATHER.

As usual, we present a $W_{\text {eather }}$ Table from April to September, inclusive, embracing the season of growth and maturing in connection with farm crops in this country. This should always receive a careful study before reading, or criticism, of results of field cropping or of plot experiments.

During April the lowest mean temperature of any day occurred on the 11th, when the thermometer ranged in the neigl:bourhood of 24°, and four days afterwards, or on the 15 th, we had the highest mean for April, 58°. As the barometric pressure is not now, or long afterwards, a fact for a farmer's use, except in association with rainfall and temperature, I shall leave its study to the more scientific. Rain fell on ten separate days, and altogether to the depth of $3 \frac{1}{2}$ inches during April.

May was characturized by a low mean temperature of 34° on the 1 st, and of 74° as the highest on the 25 th, while rain fell on no fewer than sixteen days, and to the depth of $3 \frac{1}{\mathrm{f}}$ inches. As a reeding month, therefore, May was eomewhat unpropitious, though good for germination towards the end of it.

June had no higher mean than May (on the 23rd), and the lowest mean reached only 53° on the lst ; the rainfall was also small, not 3 inches, though spreading over twelve days. This important month for germination and growth was in most respects a good one, with the exception of a drought-warm high winds and no rain-from the 14th to the 22 nd, which was directly responsible for the blight that came over most of our cereal crops.

During July the highest mean temperature of the season- 81°-occurred on the 9 th, and the lowest kept up to $59 \frac{1}{2}^{\circ}$. The unusual drizzling of 1880 was upheld by this warm month as well as others, rain falling on as many as fifteen days, but only to the depth of $\frac{1}{8}$ inch over all, and at no time consecutive was fresh moisture wanting for more than three days. This association of much heat and much continuous moisture, in June and now, was responsible for the large extent of rust on cereals.

The heaviest rainfall came in August, yet distributed over sixteen days, mostly towards the end of the month, while the mean temperatures were, 77° on the 9 th, and 58° on the 26th.

September came with a reduction to 73° on the 2 nd and 47° on the 23 rd, with a rainfall of $41-5$ inches during nine days.

So then, altogether, we had rain during no fewer than 78 days out of the 182 , though only to the depth of $19 \frac{1}{2}$ inches. The periods of drought were from the 14 th to the 22 nd June, and from the 4th to the 17 th September. The mean range of temperature for the season was $59 \frac{1}{2}^{\circ}$; the highest mean record of barometric pressure was $29 \cdot 948$ on the 22 nd July, the lowest, 28.190 on the 10th April ; the mean of the barometer for the season was 28.897 inches.

As another form of weather record, I beg to submit chart showing the agreement, or disagreement, of barometer, thermometer and rain-gauge.

lusive, embracing s country. This lts of field crop-
the 11th, when fterwards, or on ssure is not now, ainfall and tema separate days,
t, and of 74° as ad to the depth opitious, though
ean reached only ing over twelve respects a good om the 14th to sst of our cereal
rred on the 9 th, ld by this warm to the depth of for more than re, in June and
n days, mostly he 9 th, and 58°
e 23 rd , with a
the 182, though 4 th to the 22 nd erature for the 48 on the 22 nd the season was
e agreement, or
the Onta

Rain, Temperature, and Atmospheric Pressure, during Season of Growth and Maturing, at the Ontario Experimental Farm.

Chart showing Barometric pressure Temperate and Rainfall during season of growth and maturing at The Ontario Experimental Farm 1880.

Temperahure is calculated oy vi is pack of the Pixiturcil whikes

In the dock; D, the Arboretum,

Fields 6 proved fencir Reclamation $2,5,8,11$, 1 where root c Looking to a of bare summ help, given as can we recom respectfully b the re-seeding

Succeedi account of the from each fiel the items of

Spring average produ fodder, manur

Cost per Fall Sprir
Harr
Seed Seedi Grass Rolli, Cutti Gathe Harv

Debit

Credit

II.-THE FIELD.
 1.-Farm Plan and Cropping.

In the accompanying plan fields A and C are the experimental plots; B , the paddock; D , the garden ; and E , the College grounds. Part of E is now laid aside for an Arboretum, begun this year

Fields 6, 12, 14, 16 and 17 require underdrainage to a considerable extent, and improved fencing is needed to as much as three miles at different places, over the whole. Reclamation from stumps and stones is rapidly proceeding in Nos, 6, 12, 14 and 15. Nos. where root cultivation has been the possession of the original stock of thistles, and even Looking to an early and more complete riddance eradication has not been satisfactory. of bare summer fallowing, which will have to e this weed, we have begun a rotation help, given as the work proceeds, because tho be debited to future crops, and credit, or can we recommend such a method of farming soil does not require such manurial aid, nor respectfully beg that all interested in our successcept in these circumstances. I would the re-seeding of this farm with thistles.

Succeeding the usual cropping abs account of the cost of cultivation, the gross , have pleasure this year in giving a full from each field. The management of gross value realized, and the net profit obtained the items of expenditure.

Field No. 1.

Spring Wheat-White Russian, Lost Nation and White Fife varieties ; 8 acres ; average produce 15 bushels grain, and $3,000 \mathrm{lbs}$ straw. After potatoes and Indian corn fodder, manured with 15 loads farm-yard manure per acre.

Cost per acre :
Fall ploughing
Spring ploug' ing (gang) ... \$150
Harrowing, twice ... 075
Seed .. 040
Seeding .. 175
Grass seeds.. 025
Rolling ... 175
Cutting thistles . 020

Harvesting . 115
Threshing and preparing for market $\ldots \ldots \ldots \ldots \ldots \ldots$.................................. 25
Debit unexhausted manure (see chapter on "cost of producing $\$ \overline{\$ 1160}$
crops") "cost of producing
800
Total cost

" 2 months' fall grazing 900
150
2775

$12 \frac{1}{2}$ acres first year's pasture, less cost of cutting thistles $\$ 6520$

Field No. 2.

Second year's pasture ; 19 acres, two-thirds thistles.
Credit grazing part of season, $\$ 2$ per acre
Cost of machine mowing thistles $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
" Three ploughings, summer fallow, at $\$ 2$ per acre for first and $\$ 1.50$ for others............ 9500 10400
Total debit on field $\$ 6600$

Field No. 3.
First years Hay, 22 acres ; $2 \frac{1}{4}$ ton per acre on an average.

Rolling

Cost of mowing, making and hauling 050
" Unexhausted manure...................... 150
Value of $2 \frac{1}{4}$ tons hay at $\$ 10 \ldots \ldots \ldots$........ 88
Hay profit per acre . 81380

Acres
$\$ 1480$ 22
$\$ 32560$
Field No. 4

Potatoes-

$7 \frac{1}{2}$ acres ; average produce, 170 bushels.
Fall ploughing
Spring ploughing (gang) $\$ 150$
Grubbing, twice 075
Harrowing," 100
Rolling, 040
Manure, 15 loads farm-yard 040
Bone dust $\$ 1950$
Salt 270
Gypsum 085
Superphosphate 106330
Distributing manure $\$ 2661$400
Credit 4 -5ths of farm-yard manure, and $\frac{1}{2}$ of specials, $\$ 3061$
applied to following crop 2050
Carried forward

Drilli
Hors

Fall plou
Gang plo
Harrowin
Seed and
Rolling
Harvestin
Threshing
Average of $\$ 1.30$
Proportion

Value of 1

Field No. 6.
Summer-fallow, 12 acres.
Cost of two ploughings, at $\$ 2$ (rough land)
". $\$ 4800$
Gathering stones, roots, 'etc.
" Gathering stones, roots, 'etc.
Debit... $\overline{\$ 60 \quad 00}$
Barley-13 acres; 33 bushels grain and 3,000 lbs. straw, per acre, sown with grasses
Fall ploughing
Spring ploughing (gang) ... $\$ 150$
Harrowing, twice.
075
Seed (barley) . 0. . 40
Seeding
150
Grass and clover seeds. . .. 025
Rolling ... 175
Harvesting ... 020
Threshing and preparing for market ... 20
Debit unexhausted manures $\$ 945$
De... 25
Credit 33 bushels grain at $60 \mathrm{c} . \ldots$.
" $2,000 \mathrm{lbs}$. straw at $\$ 4$ per ton $\ldots . . .81980$
" Fall grazing (light)
600
150

Acres 13
$\$ 13780$
Field No. 7.

Corn Fodder-
Corn fodder, $8 \frac{1}{2}$ acres ; Turnips, 12 acres.

Fall ploughing	
Spring ploughing (gang)	$\$ 150$ 075
Carried forward	\$2 25

Brought forward

Harrowing, once . 1 . 100
Seed, 3 bushels . . 10
Seeding (drill) . 0 . 0 . 20

Manures: -

Bone | \$9 40 |
| :--- |

Gypsum . 0 . 85
Superphosphate . 120
660
Distributing manure $\overline{\$ 1405}$
030
Credit $\frac{1}{2}$ for future crops................
717
718

TURNIPS-(Swede) 12 acres.
Fall ploughing

Harrowing, twice . 100
Rolling, twice
10
Rolling, twice
040
Manures-Farm-yard, 15 loads . 0 . 40

Salt, 250 . 480

Superphosphate, 300 . 50
480
Distributing manure $\ldots \ldots . \ldots$.
400
Credit 4-5 farm-yard manure, and $\frac{1}{2}$ of specials. $\overline{\$ 33 \quad 30}$
Horse-hoeing, twice. 1030
Hand-hoeing, " . 10 . 100

Seed and seeding . 0 . 0 . 75
Carried forward 15
$\$ 2175$

15 loads farm-yard manure $\$ 1950$
Qredit 4-5 for future crops 1450
Fall ploughing $\$ 500$
Seed and seeding 150
Harvesting 200
Threshing and preparing for market 225 125
Value of 27 bushels grain at $\$ 1$ $\$ 1200$ $\$ 2700$1000
3700
Fall Wheat profit per acre $\$ 2500$10
$\$ 25000$
Spring Wheat-
Fall ploughing
Spring ploughing (gang) $\$ 150$
Seed and Seeding 075
Harrowing 200
Rolling 020
Harvesting 020
Threshing and preparing for market 225
Carried $\overline{\text { forward }}$ $\$ 815$
Brought forward
Credit 17 bushels grain at $\$ 1$ $\$ 815$
" $1 \frac{1}{2}$ tons straw at $\$ 5$ $\$ 1700$750
Spring Wheat, profit per acre
Acres 2450$\$ 1635$$\$ 20028$
$11 \frac{1}{4}$ acres White Russian Spring Wheat, and 9. Fall ploughing Spring ploughing (gang)
$\$ 150$
Harrowing
075
075
Seed and seeding
020
020
Grass and clover seeds 200
Rolling
Rolling
175
175
Harvesting
Harvesting
020
020
Threshing and preparing for market 225 125
Debit half of unexhausted manure given in previous root crops $\$ 990$ I1 50
Cost per acre Value of 22 bushels grain at $\$ 1$ $\$ 2140$
" 2 tons straw at $\$ 7$
" 2 tons straw at $\$ 7$ $\$ 2200$ $\$ 2200$Fall grazing .. 1400100
Profit per acre 3700
Acres$\$ 1560$
Value of 10 acres rented to Experimental Department $11 \frac{1}{4}$ $\$ 17160$ 3500
$\$ 20660$
Field No. 10.'Gathering stones, per acre
Rolling $\$ 030$
Mowing, making and housing 020Unexhausted manures given four$\$ 200$300
Value Cost per acre $\$ 500$
Fall grazing $\$ 2000$ 125
Profit per acre 2125
Acres $\$ 1625$
Carried forward $15 \frac{1}{4}$
$\$ 26281$

Potatoes-

Brought forward
$\$ 26281$
See details in No. 4 Field, but adding extra cost of cultivat-
ing in hills, and less produce per acre by reason of place in sod up with new orchard trees, and no manure, being 20500
$\$ 46781$
Field No. 11.
Second year's pasture ; $21 \frac{1}{4}$ acres.
Credit grazing 10 cattle at $\$ 1.50$ per month, for six months. . $\$ 9000$ Cost of cutting thistles $\$ 300$ 4150

4450
$\$ 4550$
Field No. 12.
Uncultivated pasture, surface drained ; $18 \frac{1}{2}$ acres.
Grazing valued at $\$ 1$ per acre
\$18. 50
200
$\$ 1650$
Field No. 18.
Second year's Hay ; 23 acres, $2 \frac{1}{8}$ tons per acre.
Gypsum, 200 lbs
Mowing, making and hauling . $\$ 0$. 50
Unexhausted manures 130 300

Value of $2 \frac{1}{8}$ tons hay at $\$ 10 \ldots 80$

Value of fail pasture.	$\$ 1640$ 130
Acres	\$17 70
	\$407 10

Field No. 14.
First years' Hay ; 23 acres ; unreclaimed and wet, 3 acres.

> Gypsum, 200 lbs. per acre

Mowing, making and housing
$\$ 050$
Unexhausted manures
Carried forward

V Brought forward	
Value of 21 tons hay at $\$ 10$	
Value of fall pasture............. $\frac{2250}{814}$	
Profit per acre Acres \qquad	120
	\$15 40
	23
Field No, 15, $\$$	

$21 \frac{1}{2}$ acres- $-3 \frac{1}{2}$ acres unc

Fall ploughing

Harrowing

Credit 5 tons green fodder
lons green fodder $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
$\$ 715$
3000
$\mathrm{O}_{\mathrm{ats}}$
82285

Harrowing 200

V.

Value of
"
13 8 bushels grain at 35 c
$\$ 910$
8980
$10 \quad 50$
2030
Acres $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
$\begin{array}{r}14 \\ \$ 16750 \\ \hline\end{array}$

Harvesting ... 020
Carried forward. ... 8565
Value of 26 bushels peas at $60 \mathrm{c} . \ldots \ldots \ldots \ldots \ldots \ldots . .$. " $1 \frac{1}{4}$ tons straw at $\$ 5$ $\$ 1560$
$\$ 65$
Field No. 16.
3 acres Peas; 7 acres pasture and bare fallow ; Oats, 7 acres; $4 \frac{1}{4}$ acres uncultivated, 5 OAts-
Spring ploughing, sod
Seed and seeding . $\$ 2$. . 00

Rolling
Harvesting
020
Threshing and preparing for market .. 25
125
Value of 15 bushels grain at 35 c $\$ 830$

600

Peas-

$\$ 2065$
Spring ploughing, sod
$\$ 200$
Seed and seeding
150
Harrowing, thrice
060
Harvesting

1. 75
Value of 30 bushels grain at $60 \mathrm{c} \ldots \ldots \ldots \ldots .{ }_{\text {u }} \$ 1800$
" $\quad 1 \frac{1}{2}$ tons straw at $\$ 5$
$\$ 585$
750
2550
Acres
$\$ 1965$
3
$\$ 7960$

Field No. 17.
Mangolds-
10 acres Mangolds; 10 acres Turnips.

$$
\begin{aligned}
& \text { Debit as detailed in Field No. } 7 \\
& \text { Value of } 790 \text { bushels at } 10 \text { cents } \\
& 7900 \\
& \text { Carried forward } \\
& \$ 5125
\end{aligned}
$$

Turnips

Pasture-

D
U_{1}

Deb
Val

Debit
Value

Brought forward
Acres. 851 . 25

Turnips-

Debit as in No. 7
Value of 675 bushels at 8 cents
$\$ 51250$
$\$ 2775$
5400
Acres
$\$ 2625$
10
Credit leaves left on ground, 20 acres at $\$ 5 \ldots \ldots \ldots \ldots \ldots \begin{array}{r}86250 \\ 877500 \\ 10000 \\ \$ 87500 \\ \hline\end{array}$
Field No. 18.
Pasture- $\quad 12$ acres first year pasture; 7 acres uncultivated pasture. (1st year) 12 acres; 1 cattle beast for every $1 \frac{1}{2}$ acres, at Debit unexhausted manures from roots, 3 years ago, at $\$ 5.50$
per acre $\ldots \ldots$. 3 years ago, at $\$ 5.50$ 6600

Field No. 19.
OATs- Oats, 14 acres; Peas, 16 acres ; after old pasture. Debit as detailed in No. 16 Field. Value of 10 bushels grain at 35 c.
" $1 \frac{1}{2}$ ton straw at $\$ 6 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
900
1250
Acres $\ldots \ldots \ldots$
Peas-
Debit as detailed in No. 16 Field $\quad \$ 5880$
Value of 25 bushels No. 16 Field
" of 25 bushels grain at 60 c $\$ 585$
$1 \frac{1}{2}$ ton straw at $\$ 5$ $\$ 1500$

750
2250
$\$ 1665$
16

Field No. 20.
11 acres very old uncultivated pasture, worth............... $\$ 1500$
Field No. 21.
$16 \frac{1}{2}$ acres, third year's Hay.

2.-Cropping Results, 1880.

$\begin{aligned} & \text { d } \\ & \text { 㤩 } \end{aligned}$	CROPS.	+						"exวะ xad 子yox
				8 c.	8 c.	8 c.	\$ c.	8 c.
1	Spring Wheat	8 121	120 B .	15640	22200	6520	052	815
2	Pasture, 2nd year. 2nd year Pasture	$12 \frac{1}{2}$			31975	3975		350
3	1st-year Hay . . .	22	491 ${ }^{\text {T }}$	10400 19140	3800 51700	-6600 3.660		350
4	Potatoes . . .	7 t	1275 B.	191 2357	51700	32660	650	1500
4	Carrots. .	1.	870	235 24417	44625	21068	1817	2800
5	Oats . .	72	135 "	24417 7762	13050	8633	010	5700
6	Barley	6^{2}	126 "	7762 6210	10500 9960	2738	O 20	370
6	Bare Fallow. .	12	126	6210	9960	3750	029	625
6	Barley	13	429 B.'.		34190	3780		-5 00
7	Corn Fodder .	$8 \frac{1}{2}$	22 T	14093		13780	032	1060
6	Turnips...	12	9300 B .	133300		14117	665	1700
8	Fall Wheat.	10	270	$120 \% 0$	80400 370	47100	005	3925
6	Spring Wheat	127	2084	12984		25000	$\bigcirc 93$	2500
9	Spring Wheat.	114	2534	9984 24610	30012 425	20028	096	1600
6	Rented to Experimental	10	25.3	24610	$\begin{array}{r}425 \\ 350 \\ \hline\end{array}$	20660	082	1840
10	Hay, 2nd year.	$15 \frac{1}{4}$	3017	7625	3500	3500 2781	$8^{\circ} 10^{\prime \prime}$	350
4	Potatoes, part Orchard.	5	750 B.	4000	24500	21781	810	1625
11	Pasture, 2nd year.	214	750 B .	4450	24500 9000	20500	033	4100
12	l'asture, uncultivated........	$18 \frac{1}{2}$		4450 200	9000 1850	4550 1650	,	214
13	Hay, 2nd year.	$23{ }^{2}$	*48i 'T, ${ }^{\prime \prime}$	11040	51750	$\begin{array}{r}1650 \\ 4177 \\ \hline 10\end{array}$	840	090
14	Hay, lst year.	23	518	19090	51750 54410	41710	840	1770
15	Tares and Oats	1	51 ${ }^{5}$	19090 715	54410 3000	35420 93	680	1540
4	Oats	14	392 B ,	12740	3000 284	2385 15750	475	2385
6	Peas.	14 4	104 ¢	127 2260	28420 8840	15750	040	1125
16	Oats.	7	105 6	2260	8840	6580	063	1645
"	Peas	3	105 90	5810 1755	7875	2065	020	300
6	Pasture	8	See deta	1755	7650	5895	065	1965
17	Mangolds	10	7900 B.	27750	79000			
6	Turnips. .	10	6750 :	27750	54) 00	51250 26950	$006 \frac{1}{2}$	5125
18	Pasture, 2nd year, and old ..	19	6750	27750 6600	54) 8600	26250 2000.	004	2625
19	Oats	14	$140 . \mathrm{B}^{\prime \prime}$	60 11620	8600 17570	2000. 5950	049	105
64	Peas	16	400^{4}	11660 9360	17570 36000	5950 26640	042 0	425
20	Pasture, uncultivated.	11			360 1500	26640	066	1660 165
21	Hay, 3rd year	$16 \frac{1}{2}$	12 T	3000	13500	10500	'875'	135 640

B. for Bushels ; T. for Tons.

Abstract of Average Results of 1880 Cropping．

CROP．					$\begin{aligned} & \text { 4. } \\ & 4 \\ & \text { む } \\ & \text { di } \\ & \text { 4 } \end{aligned}$
Fall Wheat	c．	8 c.	8 c．	8 c．	8 c．
Spring Wheat． Hay	60000686				
Oay ．．．．．．．．．．		$\begin{aligned} & 1200 \\ & 3000 \end{aligned}$	3700	0093	2500
Barley	3160049	600 600	1500 2000	0077	25001400
Peas ．		900 1400	1500		
Potatoes	0048			\％ 00 00	550842
Carrots	0024 00 00		13005500	0030	
Mangolds	${ }^{0} 027$	2200 1600		0064 0025	1750
	$\begin{aligned} & 00 \\ & 00 \\ & 07 \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 \\ & 28 \\ & 28 \\ & 28 \\ & 00 \end{aligned}$	$\begin{aligned} & 8700 \\ & 6100 \\ & 7900 \end{aligned}$	$\begin{array}{ll} 00 & 10 \\ 00 & 04 \frac{1}{2} \\ 00 & 06 \frac{2}{2} \end{array}$	$\begin{array}{r}3400 \\ 5700 \\ \\ \hline 3300\end{array}$

With reference to this table of of Results of Farm Cropping．
first of all，to draw attention to cropping results of season 1880 from 400 acres，I beg， ject under the heading of＂The Cost difference between it and that on the like sub－ mean of several years from the same farm Producing Crops，＂herewith．The latter is the necessarily gives a higher average；the other is thly the principal field crops thereof，which if 1880 was an averasture，and such like，along with the ling of but one year，and includes what profits can be realized fon as whole，the general meas and bare fallowing，so that， As I place considerable value from land under systematic rotation we a better criterion of tion of the details will not be this mode of exhibiting a farmer＇s in our circumstances．

On a farm of 400 be out of place．
bare fallow，act 400 acres，rotating with peas the root division inere much farm－yard manure，with speat，oats，roots，hay，pasture，and seems to be $\$ 12.50$ per acre，years＇course，the average net profitilizers，is applied only to

Were we in E per acre， the proprietor，England，as tenants，the disposal of this would Canadian farmer being in maintenance，and one for the farm take the shape of：－One for own household and up－keep of more independent circumstancer，or $\$ 4.17$ each；but the this subject，interest on in of his own property．As explain，has only to think of his this $\$ 12.50$ ，for the reanvested capital is not necessarily lained in the other chapter on place of the Englishmeasons stated，and thus we have，as it were forming a debit upon to its further disposal tos three．Of course we are to has it were，four rents on hand in profits，and which will be diseuseck and household keep，which profit without reference the lands of an ordinary farmersed on another occasion．This revent to draw increased Paid labour or may thus be apportioned ：

Taxes ．． 1,000
Incidentals ．． 1,000
Which balance of $\$ 520$ may be called a clean bank deposit ready for $\frac{\$ 4,280}{200}$
2

But, it is interesting to note how profits vary with different crops, depending (1) upon the stage in the rotation as affected by value, or proportion, of unexhausted manures, (2) by the individual market importance of the crops, and (3) by preparing for succeeding crops. Wheat, with straw, at 15 bushels per acre, upon land recently manured, gives a profit of no less than $\$ 1.25$ per bushel, because it is debited with only one-fourth of these manures, while wheat of the same kind producing as much as 22 bushels per acre, gives only 82 cents per bushel of profit by reason of getting the immediate benefit of all cultivation and manuring. Under a variety of conditions, you will observe that Wheat -fall and spring varieties-gives a profit of 99 cents per bushel, which means that in selling his wheat at $\$ 1$ per bushel, the transaction is all profit-it has left no debt behind. The average profit on oats is 31 cents per bushel, even with the very low produce of 18 bushels per acre. Our oat divisions this season were very exceptional, as evidenced by the fact, on another page, that our mean for five years has been 41 bushels per acre. Barley this year was also somewhat under our average of 30 bushels per acre ; but even with 27 bushels, the profit is but the half of its market value, 30 cents as against 60 . If this be correct of barley in all cases, one-half of the selling price should be brought back to the farm. Peas take the same position as wheat and oats in this respect. Including under the term roots-mangolds, turnips, carrots, and potatoes, we obtain an average profit of $8 \frac{1}{2}$ cents per bushel of sixty pounds ; this agrees very closely with what we have been charging our cattle and sheep with such keep, and is also in agreement with the rate of their progress when fed with these roots, as shown in previous reports. When Hay is put on the market at $\$ 10$ per ton, $\$ 2.50$ have to be taken home to square up accountsthe mean profit being $\$ 7.50$. In order of profit per acre, I have to submit the following
list:

Carrots	$\$ 5700$
Mangolds	\$57 00
Potatoes	4100
Turnips	4100
Fall Wheat	9500
Tare and Oat Fodder	2385
Spring Wheat	1770
Corn Fodder	1700
Hay...	1415
Pasture (crop only)	235

These make a mean of $\$ 28$ per acre, but of course do not include bare fallowing and losses, as shown in Fields 2 and 6, along with the uncultivatd portions.

4.-The Cost of Producing Crops During the Last Five Years.

We should now be able to say something in regard to the cost of producing certain crops under a given system of rotation, upon certain soils, by special management, during a series of years. To do this reliably, requires careful figuring, and a sound handling of the facts that now guide the science and practice of our profession, especially with reference to the conduct of plants and their food as regulated by weather, soil, and management. There can be no more unsound method of arriving at this than the common one of debiting-cultivation, seed, manuring, and cost of harvesting and marketing, and then crediting the realized quantity of crop. The only case in which such a method can be reasonably applied is that of cropping upon virgin land which is insensibly impoverished during a number of years, and which requires no form of manuring; but even in this example, the economist must recognise the fact that the soil does diminish in power. We have, however, to deal with land that has been regularly cultivated for the past twenty years at least-land therefore now regularly yoked to systematic rotation of crops, and supposed to be representative of the older cultivated lands of. Ontario, both as regards physical condition, natural richness, and modes of cultivation.

Peas
(1) upon ures, (2) ceeding gives a of these or acre, it of all Wheat that in behind. e of 18 nced by Baren with If this back to cluding average we have he rate Hay is untslowing

The first thing is to show the rotation and tab from a number of fields during the last five years, as abulate the average quantity of crops Rotation of Cropping Adopted on the Ontario Experin previous annual reports: 1st year-Peas. 2nd " -Fall Wheat or Oats. 4th " - Roots-manured.
5th " - Barley or Wheat (seeded with grasses and clovers).
6th " Hay. 6th " -Pasture or Hay.
7th " -Pasture.
 seven years, is given with the crops. By the rotation, all the at the cost of producing
needed for the vanion and potatoes with theirs, but must the item of manure iod. In charging the turnips supply all that is feeding volume be apportioned accord, therefore, it is plain thurnips, mangolds, carrots If there be any each, proportionately to what experiment has she whole bill is not of land from such residue of manurial value time, soil, season, and man to the average wheat and oats management on the or what may be management thereof. sheet, either in are removed-the same expiry of the seventh called increased value of land) or increasing inventory of capital should be considered in year-or when the pared to allow dinging the credit of the catal account (original in the future balance I am not prepared to for superior brain coming succession of cropsent in purchase argued that any of theave the management of a in the management of a am not prenote that the generese crops should be debit a farm to brains alont of a farm, because ventory indicated tion and cleaning of tredit must also be this in the septennial balanagement, I beg to

Our task is of the land, the same allowed the root divisionance sheet by the insion, it being und now therefore very simple so much more manure for the extra cultivaimplements.
les allowance is made for tear and wear of of operations will conveniently precede.
Cost of Work on Various Farm Crops, Per Acre.
Common ploughing of stubble $\$ 150$ 200
Gang ploughing 075
Harrowing, one tine 020
Cultivating, once 100
Rolling, once 020
Horse-hoeing, once 050
Hand-hoeing, once (average) 225
Drilling, with single plough 075
Root sowing, drill 035
Grain sowing, drill 025
Hauling and spreading farm-yard manure, 15 loads 375
Sowing artificial manures 025
Harvesting Wheat, Oats, or Barley, including mowing, binding, shocking, and hauling 225
Harvesting Peas, pulling and hauling 175
Topping, harrowing, and hauling Mangolds and Turnips 850
Pulling, topping and hauling Carrots
800
800
Ploughing, gathering and hauling Potatoes 550
Cost of producing Roots per acre.
Fall ploughing, once $\$ 150$
Spring ploughing, gang, once 075
Grubbing, twice 100
Harrowing, twice 040
Rolling, twice 050
Manure :-Farm Yard, 15 loads $\$ 1950$
Bone Dust, 300 lbs 400
Salt, 200 lbs 050
Gypsum, 200 lbs 050
M. Superphosphate, 300 lbs. 480
Distributing Manures. 400
Horse-hoeing, twice $\$ 100$3330$\$ 405$
Hand-hoeing
Drilling 450
075Cost of seed and seeding
115
Harvesting 850

Total cost

Oredit ε_{8} of unexhausted Farm Yard Manure $\$ 1560$
" $\frac{1}{2}$ of Special Manures 690
allowance for extra cultivation, etc
450
450
" half cost of distributing 200
Actual cost of producing one acre of Mangolds and Carrots 2900
Value of average crop of these roots, 670 bushels at 9 c $\$ 2425$
Profit per acre $\$ 3605$
Credit tops and leaves left on land-said to be equal to whathas been removed from the soil, say500
Cost of producing Grain Crops (Wheat, Oats, Barley) per acre
Fall ploughing
Gang ploughing
$\$ 150$
$\$ 150$
Harrowing
075
075
Rolling 040
Harvesting 200
Thres'ing and preparing for market 020 225
Wheat -
125
Debit value of Manures, half of residue $\$ 835$
Total cost 1250
Valu $\$ 2085$
$1 \frac{1}{2}$ ton straw at $\$ 5 \ldots$ bushels Wheat at $\$ 1.15$ $\$ 2760$ 750
Wheat profit per acre 3510
OAts- $\$ 1425$
Debit work as above for Wheat
$\frac{1}{3}$ proportion of Manure residue $\$ 835$ 833
Total cost
Total cost
Value of average cr $\$ 1668$
2 tons straw. 40 c. per bushel . . $\$ 1640$1200
Oat profit per acre 2840
BARLEY- $\$ 1172$
Debit work as above for Wheat " $\frac{1}{4}$ proportion of Manure res$\frac{1}{4}$ proportion of Manure residue$\$ 835$
Total cost 625
 $\$ 1460$ $\$ 1920$
Barley profit per acre. 2270
$\mathrm{H}_{4 Y}$ $\$ 8 \quad 10$
Mowing, making and hauling Debit unexhausted Manures. $\$ 150$
Total cost 650
Value of 1_{6} ton Hay at $\$ 10$ $\$ 800$
Hay profit per acre 1800
$\$ 1000$
Potatoes-
Cost of cultivation as in other root crops harvesting . .. 8488655025
Credit unexhausted Manures $\$ 5436$
Total actual cost $\$ 2936$Value of average crop of 165 bushels Potatoes at 35 c.5775
Potato profit per acre $\$ 28 \quad 39$
Carrots-
Cost of cultivation as for Mangolds and Turnips $\$ 4886$
" harvesting 800
Credit Manures unexhausted, etc $\$ 5686$
Actual cost $\$ 3186$
Value of average crop of 540 bushels 8100
Carrot profit per acre $\$ 4914$
Peas-
Ploughing sod $\$ 200$
Seed and sowing
150
150
Harvesting 175
Unexhausted Manures $\$ 525$
Total cost $\$ 825$
Value of 30 bushels Peas at 60 c
1800
1800
" $\quad 1 \frac{1}{2}$ ton straw at $\$ 5$ 750
Pea profit $\$ 1725$
Abstract of Cost, Produce, and Profit, per Aqre.

-	Cost.	Produce.	Profit.
Mangolds and Turnips	\$ c .		\$ 0.
Wheat ...	24 20 85	6030 3510	36 14 14
Bats ${ }^{\text {Batey }}$.	1668	2635	1425 967
Hay ..	1460 800	2080	970
Peas	800	1800	1000
Carrots Potatoes $. ~ . ~$	8125 3186	25 8100	1725
	2936	5775	2814 89
s	\$19 23	\$40 60	\$21 81

So that w the manu from \$11. rotation a From the ten kinds dollar for Wha place it is and horses skill. W have to do debiting " already ha because th the origina loss in the live stock various an household the farmer acre with

We sh ten acres of To do this things, shou they are air " probable Ontario, aft

In the case of growing mangolds and turnips, fully one-half the cost of establishing them lies in the value of the manure, and one-seventh of the whole cost consists in harvesting. The total value of the crop is equal almost exactly to the gross cost of production when unexhausted manures are not credited, and when these are credited the actual cost is reduced one-half, so that we have a net profit nearly equal to this bona fide cost. With other roots the facts are the same, but a very high figure in favour of carrots.

With grain proper we have :

So that were we not to charge the succeeding crops after roots with part of the value of the manures, the profits would be nearly double in the case of Wheat, Oats and Barleyfrom $\$ 11.36$ to $\$ 20.38$. But we shall discuss the subject from its whole course of a rotation and the mean of the results of each class of crops, and not from a particular crop. From the Abstract it appears that the actual profits from one acre over seven years by ten kinds of crops is $\$ 20.38$, and that it costs $\$ 17.38$ to produce this profit, or say nearly dollar for dollar.

What then is the application of this supposed profit of $\$ 20.38$ per acre? In the first place it is the natural outcome of the sum of $\$ 75$ originally invested in land, implements and horses, and consequently of the use of labour, implements, horses, manures, seed and skill. We have already debited all these, with the exception of the latter, so that all we have to do is to distribute this profit of $\$ 20.38$. When the regular accountant begins by debiting "interest on original investment," and follows with the various charges we have because the total result, whe to see why it should form an actual item in such a form, the original investment, and in our prone or loss, is just the interest, or no interest, upon loss in the management of a farm as tho producing crops, may not be all the profit or live stock thereof, has to run ano the producer, being also the owner and feeder of the various animals, whether for labour, household maintenance ; he does not pay the farmer is now in possession of crop rent or interest on capital, and thus altogether acre with which to make further inver aluing in the market an average of $\$ 20.38$ per

III.-THE LIVE STOCK.

We should never rest satisfied until the Province produces a $1,500 \mathrm{lb}$. steer: for every ten acres of its cultivated surface, along, of course, with the proper modicura of wheat. To do this well, in every respect up to the present times, and even anticipatory in suma things, should be the duty and pride of all our yeomen. It is now a matter of fact that they are aiming at this pretty thoroughly, but it is with a much larger measure of the "probable effects and consequences" in their eye than many of us like to discuss calmly. Ontario, after all, is not so American as England would make it, and certainly is less
speculative than the one, and as cautious as the other. We are in the enviable position of being able to maintain herds and flocks vastly superior in health to either Britain or the States, and at less cost than the former, and more certainty of up-keeping the characteristics of various breeds than the latter. While for many years we will have to bow to the Americans in regard to the number of cattle per country, we never will, nor do we now, have to do so per hundred acres of arable land, or per capita of the population. So also, just as much as we are in advance of England for cheap production, we are ahead of our neighbours in quality of material produced. With all these important facts in our favour, the world is naturally looking for some more energy, and some more capital in this big field of our profession.

Believing that a good story will stand more than one telling, and that many of our farmers are still but indifferently well up in what guides us in the selection of cattle beasts for beefing purposes, I beg their acceptance of the following as my own likings in the particular line of steer feeding.

I am of opinion there is too much a seeking after size of frame than is desirable for rapidity, economy, and quality of growth of flesh. Bone weighs well, of course, particularly when it is coarse, but it takes longer to cover the field, more money to do it per square foot-if it ever does it-by reason of the coarsenesss in question. Commend me to the average sized animal with a tendency to fineness all over, no roughness anywhere, no big hooks, and certainly no big head. I am such a believer in a certain head, that, given the and lips rather large chance what is behind it in the majority of cases. Have the mouth joins the beginning of the facere with a distinct concave to the top of the muzzle that the line between the nostrils half way up the bridge if there be even a slight dishing from kind on each side immediately above the nostrils. ane amp of the same giving room enough for breathing. The wedgy face from the muzzle to the eyes must be distinct as such ; that is without being rounded on to the cheek or laid with any prominence of muscle or flesh where it drops to the cheek, and the thin end of the wedge must be a wedge and not a club. Good depth of cheek or jaw bone is advisable, both for eating and breathing. Have a clean jaw, little muscle and no flesh to speak of. Avoid close set, small, sunken eyes in every case ; the prominent large calm eye, but yet with a spark of liveliness, is the best one for our purpose ; a clean broadish rim round the eye, or at best with but few hairs, and then a gradual lengthening of thick hair all round, with a decided looseness of skin, is my fancy for the eye of a good feeder. The lash should be long, but not thick necessarily. Above the eye line, the head should not only scoop to the horns, but stand somewhat narrower, have a thick mat of soft hair with a tendency to curl, and rather long than very short. A concave face is better than a dished one, when we speak of beef as against milk, and at present I am only upon beef. The difference is quite distinct, and without elaborating meantime it will suffice to note that a dish will hold water, while a concave won't. There is as much objection to a short as a long distance between the eye and the horn-the one savours of meanness, want of intelligence, and a corresponding type everywhere else, the other betokens a coarseness, and a little more dourness when accompanied with a sunken eye. A rather prominent poll (which has no connection with length from eye to horn) is a good point-with or without horns, -as being the cope stone or crown to our beefing head. And then, the horn? In a state of nature, it is a good weapon and a thing of beauty; to our ox it is much as you wish it. Its flatness and strength is lost in the altered male, but it can be made more or less so by timing the alteration, and altogether bred out if desired. A medium horn, as regards strength, is a safe criterion of pliability of character so far as it goes. I am of opinion there is more in the ear than the horn. It should be slightly attached, and rather bare of hair at the attachment to the head, but the hair must be profuse, silky and long all over the inside and out to the edge, with nothing behind but what is found on the neck. Flabbyness and a blunt point is not allowable, though a fair breadth is well liked, and in every case demand thinness without delicacy.

Such then is my beau ideal of the head of a splendid beefing steer. It can be contended that every point in such a head represents a characteristic throughout the frame. The open nostril tells of heart and girth ; the large lips of a long, roomy, deep barrel ; the
wide fore (assisted head sent frame wa

The where a n silky mell and hair tl seen. Th line of the of neek an seen in th perpendic frame so n too much of its easy point in t many case and theref area when row should parts as be itself, from the should both, tying in the case behind. inducing sl be part and well down, large, flat b narrow
space betwe agreement

And n It may be a made by ma and the imp paratively o Shall we co barrel, or is mid-rib ?
The girth sh and chest. doubt of the purpose, and very commo often gives of such fore the case tha disproportio to ensure str equal to the dished ones important be carried br fore-and-aft,
wide forehead and placid eye of good loins and corresponding hindquarters ; and the ear (assisted by the horn, it may be) of a fine bone throughout. I repeat that were such a head sent to any student of this line of judging, he would, to 80 per cent., tell what the frame was, and getting the tail in addition, he should almost complete the description.

The model neck is full on the sides, tucking in and up sharply below to the throat, where a moderate amount of loose skin is better than much of it. There is a grand, firm, silky mellow handling here, difficult to describe-no flabbyness, but a curly crispness of skin and hair that fitly underlies and forms the prow of the vessel so nobly headed, as we have just seen. The neck top is fine, not too flat nor narrow, the back-half level with all the top line of the body, and the forepart drooping somewhat to the head. A clean, fine joining of neck and head is always best. Neck and shoulders join easily but not necessarily unseen in the store animal. I have no particular liking to the very deep forward brisket; perpendicular from the joining of neck and chest; no doubt it fills up the rectangular frame so much loved by the older breeders, but just as it is easy to give a ship or a plough too much dip, so our feeding steer can have too much forward keel, something in the way of its easy grazing, and at the same time portending a sluggish disposition. An important point in the get-up of the forequarters is the space between the tops of the shoulders ; in many cases there is too much width here-space which the spine does not fully take up, and therefore making a looseness that affects other parts-giving no more flesh-carrying area when the chest is otherwise right. I do not wish to be thought as advocating narrow shoulders at any point, or a contracted chest-much the reverse, but bad packing of parts as between these and the spine and crops is certainly objectionable. The shoulder itself, from top to point and from point to arm should not be flat nor too perpendicular ; the shoulder blade must be more of the bridge than of the tie type, in fact it should be both, tying the chest, spine and crops together, and standing as a bridge to resist weight in the case of draught, and keep the forequarters from overloading or pressing upon those behind. A fair or medium slope is better than the upright form of shoulder, because of inducing sluggishness and an awkward grazing animal. The top of the fore arm should be part and parcel of the shoulder, full and even with it in every respect, the beef coming well down, but yet not encumbering the knee, and there consisting of muscle. A rather large, flat but clean knee is the best, with a fine, clean leg and medium hoofs, not flat nor narrow. As in the case of the shoulder top with the spine, it is not good to have much space between the elbow and girth, or such a width as horsemen like, but a nice even agreement of chest, arm and girth-fulness without looseness.

And now what shall we say of the prominent Shorthorn weakness-the slack crops ? It may be asked why is this the case in all beefing breeds that have been, so to speak, made by man? Besides the Shorthorn it is rather characteristic of the Aberdeen Polls and the improved Longhorn of England, while it is not so much so of any of the comparatively original breeds, such as the Herefords, Devons, Sussex, Irish and Argyleshire. Shall we conclude that man's interference has contracted the space between heart and barrel, or is it but an external defection consequent on a superior shoulder and better sprung mid-rib? We all like it full at any rate, which implies, I think, a well sprung fore-rib. The girth should be told by a broad, strong spine, full crops and a deep round fore-flank and chest. All the ribs should spring, arch and lengthen well down. There is also no doubt of the value of the hinder ribs and hooks keeping close acquaintance for our present purpose, and they also regulate the flank and plate spaces. It is not only possible but very common to have too wide loins and very rough hooks ; such a style of hindquarters often gives a wedgy rump and apparently narrow hams. No doubt, the accompaniment of such forequarters and barrel, as we have sketched, is a corresponding loin, and it is more the case that the hocks are much too large-unnecessarily large-than that the loins are disproportionate to any part of the body. The loins themselves should be slightly arched to ensure strength, secure the long hind-quarters, the rump proper, therefore, being about equal to the length of the barrel ; a slightly drooping rump, well filled, is preferable to dished ones with a high standing tail. Width at the pin-bones, or tail attachment, is very important-carrying out the corresponding style of loin and rump, and enabling beef to be carried broad and deep towards the hocks. We must have a deep full twist, going well fore-and-aft, and not afraid of encumbering the hocks. Choose the hind leg of a horse
for the hind leg of a beefing steer-straight, clean and not in-kneed. Never neglect a fine tail without much hair, and strongly attached to the body. The full prominent purse is an indication of strength of constitution, of sappyness, and of a good doer. I am no beof skin is a bur of hair, except as a matter of fancy, but I think that a milk-giving colour and sub-soil. I am almost a foll thick crop of fine, soft silky hair is evidence of good soil nounce judgement on quality. Quality is the who, with shut eyes, will handle and problood and breeding as exhibited in hair, skin, and surfated essence of all the virtues of itself.
2.-Public Sale of Surplus Live Stock, 10th September, 1880.

A MODEL STEER, with Parts Named (as taught at the Ontario Experimental Farm).

1. Mouth.	11. Horns.
2. Nostrils. 12. Ears. 3. Lips. 13. Neck. 4. Muzzle. 14. Throat. 5. Face. 15. Dewlap. 6. Eyes. 16. Shoulders. 7. Cheeks. 17. Shoulder Point. 8. Jaws. 18. Shoulder Vein. 9. Forehead. 19. Elbows. 10. Poll. 20. Arm..	

=
f
t
a
li
o
a
n
b
it

2.-Public Sale of Surplus Live Stock, 10th Skptember, 1880.-Continued.

Public Sale of Surplus Live Stock, 10th September, 1880.-Continued,

2.-Comments and Average Prices Realized.

Much comment on this sale is unnecessary by me. It is sixty per cent. over my valuation to you in August last, and fifty per cent over all previous sales. The reasons are not difficult to find in a wider and keener demand to meet the changing conditions of more flesh and less flour production for the foreign market, the reliability of the stock, and the unrestricted character of the sale. It is a very encouraging fact for the Government that not one animal went over our borders this year. The one point insisted uponby our farmers now is, that the breeding must be kept up by new importations. Following find average price realized for each class of animals.
Shorthorn calves RACH
Aberdeen polles 3 $\$ 76$
Aberdeen polled calves
68
68
Ayrshire calves
Ayrshire calves 69 69
Cotswold, shearling rams
58
58
" ram lambs
27
27
" aged ewes
" aged ewes
" aged ewes 17 17
" ewe lambs 18
Leicester shearling rams
45
45
" ram lambs
27
27
" aged ewes 11
Southdown, two-shear ram 22
" one 27
6 ram lambs 53
" ewe lambs 27
66 aged ewes. 30

Oxford Down, two ram lambs.	2	$\begin{aligned} & \text { عлОн. } \\ & \$ 36 \end{aligned}$
Berkshire Boars	9	18
" Sows	12	11
Suffolk Windsor Boars.	6	9
" Sow	1	5
Scotch Collie Dogs	8	12

Cattle.

9th Nov., 1879.-Lady Campbell, Shorthorn, out of Ury 11th, by Duke of Bedford $(36,466)$.
14th Feb., 1880.-Beauty of Wellington, Ayrshire, out of Beauty of Drumlanrig, by Sir Walter.
16th April, " -Heather Belle 2nd, Hereford, out of Heather Belle, by Duke of Connaught ().
26th April, " -Flora of Waterloo, Ayrshire, out of Flora 3rd of Drumlanrig, by Sir Walter.
22nd May, " -Sir Walter 2nd, Ayrshire, out of Juno 2nd of Drumlanrig, by Sir Walter.
5th June, " -Duke of Bedford 2nd, Shorthorn, out of Louan of Brant 5th, by Duke of Bedford $(36,466)$.
15th July, " -Lady Bedford, Shorthorn, out of Lady Elizabeth, by Duke of - Bedford (36,466).

23rd July, " -Earl of Fife, Aberdeen Poll, out of Lochiel Lass 4th (1864), by Gladiolus (1161).
19th Oct., " - Shorthorn, out of Cambridge 10th, by Duke of Bedford $(36,466)$.
 Cotswold ewe; $1 \frac{1}{2}$ each from case of sheep, the very large average of $1 \frac{1}{3}$ lamb from every each Oxford Down ewe.
ns, and no less than 24 lambs from tion at Chicago, where he toek was again at the great American fat stock competisheep, many of which were bred and fed at the 0 , six firsts, and two second prizes, with

By invitation of the Toronto Industrial Ontario Experimental Farm. tural and Arts Association of Ontario, we sent exhibition Association, and of the Agricultheir shows this year, at Toronto and Hamilton, specimens of all our herds and flocks to been prepared, by feeding, for such a purpose, and respectively. None of the animals had show condition to please the few tens, their healthy while, therefore, not in what is called more reasonable and common sense hundreds. We and vigorous tone was admired by the in cattle and sheep, but as regards management acknowledge to several wants, both regards flesh.

IV.-THE GARDEN.

1.-Vegetables.

The whole produce of 1 liable at all times. While we haven has been unusually good-things in season and reing cabbage of all sorts to perfection-large, firm, and sound have never failed in bringbe unusually hardy. Cauliflower were not equal to the sound-red especially, seeming to nips, particularly the former, were good, and carrots gave 800 e this year ; beets and turwere more than good-being also large, prolific, sound, and bushels per acre. Onions toes were other kitchen fair in quality, somewhat on the small side, thou, solid, and sappy. Potamushrooms. In the difficulty was to the difficulty was to get people to take them for nothing.

The apple crop was abur 2.-Fruit.
edly wormy. Grapes, as usual, were our new gardener, Mr. Forsyth, is preparing crop, and I have pleasure in notifying that characteristics, and general conduct of some fifteen next season, an account of the habits, in our possession. The culture of this valuable fre the most hardy and reliable sorts and anything tending to instruct in its successfuruit is now one of provincial interest, Pears are, as yet with us, not plentiful enough to spread, cannot fail to be appreciated, ever, a goodly number of young thriving trees. Wemand much notice; we have, howEnglish fame ; mildew, and louse, beat us on all hands dannot grow the gooseberries of are invariably a fair crop.

3.-Flowers.

The area of these was not so large as usual, because of being confined to their proper domain. Terrace potted geraniums, as well as those in beds, gave a regular succession of plentiful blossom from June to October. Annuals of all kinds made a fine show. Our English visitors gave praise to our roses-fact enough without comment from us, and thus I leave them.

4.-The Arboretum.

We are now in the satisfactory position of being able to speak of "Our Arboretum." A very good beginning has been made, and it has also been a very successful one as regards a safe summer catch and some growth. The spot selected for this interesting educational display, lies to the north and east of the main approach to the College, being the triangular part of the pleasure grounds between this approach and the public road, extending to about three acres. Here, it is proposed to establish individual specimens of every tree and shrub from any country, that is found to succeed in our climatic conditions. This means time, some money, patience, and a thorough interest on the part of all concerned.

It gives me much pleasure to acknowledge the interest taken in this branch of our rural economy by the Fruit Growers' Association of Ontario, as represented by Messrs. Beadle, Saunders, Arnold, Dempsey, Beall, and Leslie.

It will be enough, meantime, to place on record the names of those trees and shrubs planted here. All have been properly labelled at considerable expense. Those marked * are in the arboretum.

List of Ornamental Trees.

*Acer Dasycarpum laciniatum, or Cut-leaved Maple.
Acer Pseudo Platanus, or European Sycamore.
Acer Saccharinum, or Sugar Maple.
Acer Rubrum, or Scarlet Maple.
*Acer Platanoides, or Norway Maple.
*Æsculus Hippocastanum, or Horse Chestnut.
*Alnus Glutinosa, or European Alder.
Alnus Glutinosa Laciniata, or Cut-leaved Alder.
*Betula Alba, or White Birch.
*Betula Pendula Laciniata, or Cut-leaved Weeping Birch.
*Betula Lenta, or Sweet Birch.
Cerasus Pumila Pendula, or Dwarf Weeping Cherry.
*Cleditschia Triacauthos, or Three-thorned Honey Locust.

Enonymus Europius, or European Spindle Tree.

Fraxinus Americana, or White Ash.
Fraxinus Nigra, or Black Ash.
Fagus Sylvatica, or Common Beech.
Fagus Purpurea, or Purple-leaved Beech.
*Gymnocladus Canadensis, or Kentucky Coffee Tree.
*Juglans Nigra, or Black Walnut.
*Juglans Cenerea, or Butternut.
Juglans Regia, or European Walnut.
*Koelreuteria Paniculata, or Panicled Koelreuteria.
*Liriodendron Tulipifera, or Tulip Tree.
*Magnolia Acuminata, or Cucumber Tree.
Nyssa Villosa, or Sour Gourd.
*Pyrus Aucuparia, or European Mountain Ash.
Pyrus Aucuparia Americana, or American Mountain Ash.
*Salisburia Adiantifolia, or Maiden's Hair Tree.
*Salix Caprea Pendula, or Kilmarnock Weeping Willow.
*Tilia Europea, or European Lime Tree. Tilia Americana, or American Basswood. Taxodium Destichum, or Deciduous Cypress.
Viburnum Lantiana, or Wayfaring Tree.

List of Evergreen Trees and Shrubs,
${ }^{*}$ Abies Excelsa, or Norway Spruce.
${ }^{*}$ Pica Balsamea, or Balsam Spruce.
*Abies Nigra, or Black Spruce.
*Abies Alba, or White Spruce.
*Abies Canadensis, or Hemlock Spruce.

Pinus Sylvestris, or Scotch Pine

*Pinus Austriaca, or Austrian Pine.
*Pinus Pumilio, or Dwarf Mountain Ash.
*Taxus Canadensis, or Canadian Yew.
*Retinispora Plumeosa, or Plum-like Retinispora.
*Retinispora Pisifera, or Pea-fruited Retinispora.
Retinispora Squanosa.
Thuja Occidentalis, or American Arborvite.
*Thuja Siberica, or Siberian Arborvite.
*Bioata Orientalis, or Chinese Arborvite.
*Thuja Orientalis, or Rollissin's Arborvite.
*Thuja, or Parson's Dwarf Arborvite Thuja, or Booth's Arborvite.

Spirea Prunifolia, or Plum-leaved Spirea.
*Spirea Opulifolia, or Golden-leaved Spirea. Spirea Ulmifolia, or Elm-leaved Spirea. Spirea Sorbifolia, or Service Spirea.
Spirea Chamaedrifolia, or Germander Spirea. Spirea Billiardii, or Billiard's Spirea. Spirea Callosa, or Large-flowered Spire Spirea Fortunii, or Fortune's Spirea. Spirea Ruvesii, or Lance-leaved Spirea. *Spirea Thunbergii, or Thunberg's Spirea. *Spirea Semperflorens?
Symphoria Glomerata, or Indian Currant. Symphoria Racemosa, or Snowberry.
Rosa Canina, or Dog Rose.
Rosa Micrantha, or Sweet Briar.
Viburnum Opulus, or Guelder Rose.
*Weigelia Rosea or Rose-coloured Weigelia.
*Weigelia Varigata, or Variegated Weigelia.
*Weigelia Arborea.
Weigelia Van Hontii.
*Weigelia Hortensis.
high lyin when all lessons, a than ours barns-h gravelly 1 duty of tl thereof, subject is already tive, prac

It is
for what gether a wants and no servile fostering climatic in even now tural Cor pushed to alike in over the o simply m without it.

Work but under begun the kinds acco and shade is high lyi clump in t

By th quired in e
high lying and exposed situstions in the growth of such fruit; anybody can do a great deal when all nature is propitious, but to attain success under difficulties means many good lessons, and such lessons as always lead to much greater success in more favoured districts than ours. The ground chosen is part of Field 10, adjoining the cheese factory and south barns-holding a north-eastern as well as a southerly aspect, with a light clay loam, gravelly loam, and a deeper and somewhat heavier clay loam, on parts. It will be the duty of the Committee to report to you in regard to kinds already planted and the success thereof,-it is simply mine to make this acknowledgment, and the assurance that the subject is in safe hands,-Messrs. Beadle, Saunders, Arnold, Dempsey, Beall, and Leslie, already command the confidence of the Province, and what they do shall be unspeculative, practical, scientific, thorough, and reliable.

6.-Tree Clumps and Shade Trees.

It is some comfort to be able to tell of increased respect, on the part of our farmers, for what was once one of their hindrances to field culture. That a tree is not now altogether a mass of so much rubbish, even in the more uncleared districts, is due to felt wants and persistant teaching. I cannot overstate, and I think you will testify I do so from no servile motives, how much the Government, and especially. yourself, are desirous of fostering the knowledge and practice of tree culture with a view to immediate shelter, climatic influences, and ornament. The subject is simply immeasurable in its effects, and even now absolutely one of dollars and cents. In our recent evidence before the Agricultural Commission, you will remember that even the plain matter-of-fact farmers, when pushed to the point of saying what difference they would make in the choice of two farms, alike in every respect, except tree shelter, and how much they would give for the one over the other, agreed that such shelter was not limited by at least one-third; which simply means that a $\$ 10,000$ farm with sufficient tree shelter is reduced to $\$ 6,700$ without it.

Working up to this, we are not only experimenting, as explained in another chapter, but under the direction of the Fruit Growers' Association of Ontario, we have this year begun the planting of tree clumps and shade trees throughout the farm, with a variety of kinds according to soil and situation. A leading idea in such work is immediate shelter and shade for live stock in the cultivated fields, and as the line between Fields 17 and 18 is high lying and exposed to the north and west, we have laid off a one-acre Black Walnut clump in the following form and position :

By this arrangement it will be observed that from whatever direction shelter is required in either of the fields, the animals can obtain it. We are mulching and cultivating 3

Field. 18.

Field.1n.
around the plants, and, to date, most of them have done well. Plants, six feet apart all over. A few Austrian pine occupy the north-west boundary.

With the view to screen an old gravel pit in Field 2, as well as to secure a shelter clump, we planted European larch around and in this gravel pit similarly to the aboveresult, almost an entire failure by reason of three things: (1) heated plants on a long journey from the States ; (2) a summer of much drought; and (3) want of sufficient soil among the gravel and stones. Austrian Pine were also placed here as a wind break upon the north-west ; some of them have struggled through the severe weather and poor conditions.

As a variety to our road-side and field-fence-side shade trees, we planted this year several hundreds of horse chestnut and European linden, alternating with each other and with our own maple, at thirty feet apart. They are all doing well, though we expect some deaths next year.

V.-THE MECHANICAL.

In the application of improved appliances to farm operations, we have made consid erable progress during the past year. While it is our duty to teach and show the management of horse power in all its details, it is also ours to be up to the times, when what is otherwise available has been thoroughly tested either by ourselves or others. In this respect I have to acknowledge the introduction of steam power on our farm in the form of Waterous' (of Brantford) well-known Champion engine, twelve-horse power, vertical boiler, and spark proof furnace. Two horses can thaul it to any position. It is easily understood, simple in construction, easily managed, requires small amount of fuel, and can be applied to any sort of work; this winter we have already had it in a field threshing a stack of peas, in the bush cutting cordwood, and, thrice a week, driving the strawcutter, root-pulper and grain-crusher in the barn. The separator in connection with this engine is that of Sawyer, of Hamilton, and so far as experienced it has given much satisfaction. In all the alterations and improvements consequent on this change of motive power, our Mechanical Foreman, Mr. McIntosh, has been thoroughly at home, and many valuable lessons have been thus afforded the students.

We have also had great pleasure in working the mower of the Toronto Reaper and Mower Co. We have as yet had nothing equal to it in simplicity, easy motion, small tear and wear, light draught, facility of management under all circumstances and good work.

The strongest and at the same time one of the most efficient reapers in our experience is that of the "Champion." It is the only one that will go through a thick, strong crop of corn fodder safely.

We have had long experience of the Royce (now the Lion) reaper, of Mr. Watson, of Ayr, and can testify to its easy management, simplicity of construction, light draught and good working powers.

VI.-FARM INSTRUCTION.

We are doing our best to make this an efficient department, experiencing no difficulty and finding no wants except the one great one-want of another team of horses to give more opportunities at ploughing and other field operations. With the doubling of our students, this want has been multiplied, of course ; and accordingly I must impress upon the Government the absolute necessity of keeping up to the demand upon this field instruction. This can be done with much advantage to the whole farm, in this way :-You are aware that we have been striving to get rid of the very large legacy of thistles, by thorough cultivation on our root divisions, and two or three annual cuttings of them on other divisions. We are progressing, but progressing slowly, and so in order to secure an earlier cleanness all over, I beg to propose that you allow me an extra team of horses for continuous summer fallowing, during two or three years, which team should be in the hands of the Tnstruction Department for practice in ploughing.' With this and the present
instruct in most I extende which is

Duties o L. $-\mathrm{FaR}_{\mathrm{AR}}$

1. F
work, un employed
2. 1 noting by
3. H ceive no requiring
II. -Cat
4. T
5. T
6. To
III.-FAR
7. T_{o} all position 2. Pr 3. M_{2} engine.
8. No
9. To
IV. $-Y_{A R I}$
10. To

Nos. 1 and
2. To
nesday and 3. To
afternoon.
4. To
V.-Cattle

1. Fees
2. Clea
3. Seei
4. The
5. The
6. Feed
7. The
ley and corn
8. The
9. The
instruction team we should be in a position to offer every student considerable practice in most farm operations.

I have much pleasure in reporting a winter instruction arrangement, upon an extended scale, to meet increasing wants and progress, as laid down in the following card, which is given to every student.

Winter 1880-81.
Duties of Students in certain Departments, and upon which they will be examined at

I.-Farm Clerk.

 Easter, or in June.1. He shall have charge of the Tool House, and remain in the same during hours of work, unless relieved by the Farm Superintendent, or Farm Foreman, or when otherwise
2. He shall state in the Tool Record Book, the removal or return of any article, noting by whom removed or returned, with its number, name and condition.
3. He shall keep the house in good order, leaving everything in its proper place, receive no article in a dirty condition, and shall daily take to the Carpenter Shop any article requiring repairs, recording the same, and also when returned.

II.-Cattle Grooms.

1. To curry and brush all tied up cattle, under the directions of the Head Cattleman.
2. To make themselves acquainted with the different breeds of cattle.
3. To assist the Cattleman at extra work, as may be approved by the Farm Foreman.

III.-Farm Engineers.

1. To assist Head Engineer in placing, levelling, and working the steam engine in all positions for all kinds of work.
2. Preparing fuel and water for engine. engine.
3. Making a thorough acquaintance with the names and duties of every part of the
4. Noting the quantity, value, and effect of certain kinds of fuel, water and steam.
5. To fire, clean, oil, and regulate the steam engine.

IV.-Yard-Men

1. To level and mix the manure in cattle court from all the stables daily,-that from

Nos. 1 and 2 stables to be removed every Wednesday and Saturday by cart or waggon.
2. To scatter two pail-fulls of gypsum over the cattle court manure heap every Wednesday and Saturday.
3. To pump the liquid manure over the cattle court every Monday and Thursday afternoon.
4. To clean the barn court and road round buildings as may be required.
V.-Cattlemen. To be under the Head Cattleman in-

1. Feeding, watering, and bedding cattle, and seeing to their general care.
2. Cleaning cattle stables, and disinfecting same.
3. Seeing to the special care of breeding and milch cows
4. The handling and management of bulls.
5. The special treatment of calves and young cattle.
6. Feeding, in amount, kind, form, manner, and times, to be studied,
ley and ceparation of straw, hay, corn fodder, turnips, mangolds, carrots, peas, bar-
7. The kinds and modes of administ condiments for food.
8. The management of of administering medicine.
9. The management of swine in all respects.
10. Making acquaintance with different breeds of cattle and swine.
11. Assisting in, observing progress, and studying, cattle feeding experiments.
VI.-Shepherds. To be under the instructions of the Head Shepherd, in-
12. Feeding and general caro of all the sheep.
13. Attention to ailments and diseases.
14. Making acquaintance with the different breeds.
15. Assisting at lambing time, as may be arranged by Farm Superintendent.
16. Noting the kind, quantities and form of food given, and the manner and times of feeding.
17. Observing the kind and progress of experimental sheep feeding.
18. Handling and judging different kinds of wool.
19. Assisting in the feeding of farm horses.
VII.-Experimental Fikld Plots. To be under the Assistant Superintendent, in-
20. All kinds of work connected with the department.
21. Making an intimate acqu: "ntance with the various kinds of farm seeds and plants.
22. Examining and judging various fertilizing manures.
23. Cleaning and preparing seeds and plants.
24. Observing the time, manner, quantity, form, effects, progress and results of various manures and crops, on certain soils, under conditions of weather, (summer prineipally).
25. Making acquaintance with the diseases of plants.
VIII.-Instruction Department. Students will be under the Instructor, in-
26. Grooming, harnessing and driving horses.
27. Management of working oxen.
28. Use of the axe.
29. Sowing by hand.
30. Management of wood-sawing powers.
31. Grinding tools.
32. Examination of farm implements and machinery.
33. Cleaning grain.
34. Crushing grain.
35. Cutting and pulping food fcr cattle and horses.
36. Making bands and tying sheaves.

VII.-THE EXPERIMENTAL.

A. -The Animal.

> 1.-Fattening of Young Cattle.

Few things puzzle the best of us so much as how to ascertain the actual cost of anything produced from the growth of the soil. It is not only very difficult to do, but when done, few believe it. The purchase and formation of a piece of iron into a plough, can be clearly shown in all its details ; its beginning, progress and ending, form one straight and double line of debit and credit, without leaving any doubtful issue, or unrealized connection. It is otherwise, for example, with corn and beef,-the result on the one hand of the purchase of land, its taxes, tillage, manuring, and harvesting, and of the breeding, feeding and general management of a cattle beast, on the other hand. The actual estimate of these in their several relations has often been atterapted, but never clearly defined; and probably never will be. But, such difficulties should not debar the search for more facts; as the chemist is not yet able to tell us what climate, soils, manures and plants do,
and what certain animal-life does under all conditions, we have the honour of becoming known in some such fashion as this, so that, where we stumble and doubt in our practical awkwardness he may follow to help and make more clear. Take then, at present, the interesting and popular question, for the farmer, of how best to make profit in the production of beef. The commercial standing of a fattened cattle beast consists of three things, of almost equal value ; first, that period from birth up to stall feeding; second, the six or seven months of stall feeding; and third, the value of the manure made. thing, including (1) bull well done to all along, and the actual cost and value of everymonths, and (3) ordinary feeding with and, on an average, we have expended meal added up to the time when 23 months old, specially arranged for the highest results, will cost 845 last seven months, while in stall live weight, or just the market value of the fattened animether $\$ 85$-for, say, $1,500 \mathrm{lbs}$ thing is the accumulated quantity and value of aned animal in these times. The third by all fair figures in our advanced agriculture it cannot be put at 1 ; these $2 \frac{1}{2}$ years, and cally then, to the farmer, the animal destined for the shamlies is a manure Practimachine, in which relation it produces one-half of the sham ies is a manure making presents the only reliable source of profit to him under the batter condition this value re-

But there are other bearings to this animal is maturing itself for direct hum question. As a manure producer, the fattening and return in risky goods, the sooner food, and by all the sound laws of investment So then the farmer should breed well, not being believed by everyone, we und sell immediately. This 1879-80:

On 1st October, four steers and one heifer of our own breeding, were selected and tied up in the usual manner with sliding chain. No. 1 was a pure bred Shorthorn steer, 29 months old ; No. 2 a pure bred Galloway steer, 25 months old; Nos. 3 and 4 Shorthorn grade steers, 18 months each ; and No. 5 a well bred, white grade heifer, 20 months old, at that date. The stamp of No. 1 was somewhat heavy boned and light in the crops, though otherwise good ; the Galloway was very fair of his kind, but wanting depth and width in the hind quarters; the two Durham grades were not up in point of merit for fattening-wanting especially in depth and width behind; the heifer was particularly oven, being chunky, with fine bone, clean head, and neat all over. As a matter of interest, and one also of education, the second year students judged these animals on ontry, using a standard of 1,000 marks throughout some thirty detailed points. The mean
of their work stood thus:

$$
\begin{aligned}
& \text { No. } 1 \ldots . . . \text {. } 765
\end{aligned}
$$

$$
\begin{aligned}
& \text { No. 5...... } 747 \\
& \text { The object of experme } 696
\end{aligned}
$$ of these comparatively youriment was to ascertain how much could be added to the weight ing so as to mature, or pre-mature, within eight months.

Bill of Fare per head per day.

From 1st October to 1st March, 12 lbs. pea meal.
From 1st March to 12 th April, 12 lbs . corn meal,
From 12th April to 10th May, 12 lbs . pea meal and 2 lbs . oil cake.
From 19th January to 10th May, 2 lbs. extra of pea meal, and 3 lbs . of extra fodder (hay).

During whole course: 12 lbs cut fodder (consisting of 6 parts oat and wheat straw ; 4 parts cut corn fodder, and 2 parts cut hay), with 2 lbs. bran; 75 lbs. turnips and mangolds pulped, and 2 oz salt, with the offer of water once daily.

Quantity and Cost of Food per head for whole period of 222 days.

Pea meal.	2,330	bs. at	1 cent per lb.	82330
Corn meal	504	"	1 " ${ }^{\text {c }}$	${ }^{82} 504$
Oil cake	56	"	\$33 per ton.	- 92
Hay	333	"	$\$ 8$ per ton	166
Bran	444	"	$\$ 11$ per ton.	244
Mixed fodder	2,664	"	\$4.75 per ton	620
Roots	16,650	" 9	9 cents per bushel of 60 lbs .	2497

There are three ways of presenting this account: (1) The Farmer's, (2) The Commercial, and (3) The Scientific.
1.-The Farmer's,
who says, "my straw, bran and roots have cost me no actual cash; they have come as part and parcel of the material that I do not usually put to market, like my grain, and therefore in feeding them to my animals I do so simply to feed and make manure ; I cannot see the sense of charging those against my fattening stock any more than to the horses, milk cows and calves." So, then, the farmer's reckoning takes the following shape :

" 1100 lbs . at 4c., when bought, or entered for feeding Meal, cake and hay	844 30 30
Sold 1477 lbs . live weight at 6c.	$\begin{array}{r} 87492 \\ 88 \\ 62 \end{array}$
Giving a cash profit of	81370

And I have all the manure into the bargain."
2.-The Commercial,
who argues that we must debit and credit everything as any merchant does, whether the farmer is in the habit of selling them or no. Their growth must have cost something, and whatever they would fetch in the market should be debited to the consumer; so, then:

But a wider view of this question is taken by him who checks his practice by scientific chemical help, who is dissatisfied not only with the farmer's unregistered method of manure making, but cannot even recognize the more careful business man who estimates the value of farm-yard manure by the load, and at a price that is solely regulated by the
farmer piants respon are kn crops, subject

The and pea purpose. it tells cally, we cents for two years represent Ontario,

The 1100 lbs. each duri

The upon his

The upon the

The 2.12), or

It too that were

The f flesh added

The d is exactly

The
Were cumstance

But, cass from 4

Thus one-fourth
farmers themselves. This third party shows that with the facts of soil foods, and that piants require so much of them to produce certain results under certain conditions, we must respond to their teachings and allow value accordingly for any form of materials which are known to possess so much of the properties that go to sustain soils and build up crops, also of known values. Thus we now submit the advanced or modern form of the
subject:

The practical feeder will notice what the general reader may overlook, that the corn and pea meal cost per bushel what is usually understood to be too high to pay for such a purpose. Indeed, this is correct in the view of any of the three valuators named, though it tells particularly hard on the method of the so-called matter-of-fact farmer, Practically, we (Ontario farmers) have been looking at 45 cents per bushel for corn, and 50 cents for pea meal as the safe figures for cattle-feeding. We could get corn about this two years ago, now nothing under one cent per pound. This difference of, say, one-third represents in the production of flesh and manure by the 100,000 fattening cattle from Ontario, the handsome sum of $\$ 250,000$.

The five cattle thus illustrated went in on the 1st October at an average weight of 1100 lbs . and came out on 10th May at 1477 lbs., having therefore increased 375 lbs. each during 222 days.

The pure-bred Shorthorn increased at the rate of 2.05 lbs . per day, or 23 per cent. upon his original weight.

The pure-bred Galloway increased at the rate of 1.66 lb . per day, or 24 per cent. upon the original weight.

The three Shorthorn grades increased at the rate of 1.74 lb . per day (one as much as $2 \cdot 12$), or 37 per cent. upon their original weight.

It took 17 cents for food to make one pound of flesh (and its associations) in animals that were pressed or pre-matured at 29 months old,

The food and flesh thus handled gave 11 cents value of manure for every pound of flesh added

The difference between the cost of additional flesh and the value of menure obtained is exactly equal to the price got for the live animal, or 6 cents per !b.

The value of the manure was equal to one-half the value of the finished animal.
Were little or no value placed upon manure, the production of beef, under such circumstances, would lead to serious loss.

But, besides these facts, the food thus used increased the value of the original carcass from 4 to 6 cents per lb., making an item of $\$ 22$ per head.

Thus one pound of new flesh improved every three pounds of the old, and added one-fourth to the whole carcase value.

2.-Fattening of Young Sherp.

One of the important questions of these times with us is, how best to produce the earliest, cheapest, and most choice, mutton for the British market ? As an experimental station, we have had considerable experience in testing the various breeds and crosses, with different kinds of food, in view to this end, for the use of the Province, and now feel some confidence in submitting the conclusions that have taken solid shape here of late.

Let us preface by saying that most things to attain the greatest success should be made a specialty of - one thing engaging the whole individual attention. This is the case in sheep-farming, and particularly so in the growth of wool and mutton, for good wool and good mutton are one thing in the same animal, in Canadian economy. We shall, therefors, speak of the fattening of sheep as a particular branch of farming. We know our markets : England will take our mutton, if we offer it at moderate weight, and well length. What shall we do to supply these ?

It is not the irregular and patchy plan of the feeding of sheep of any sort, in connection with our mixed farming, that will be able to meet the demand or compete with other countries ; the work must be brought to a special business on a larger scale, and with the stamp of animal found to produce the two wants named. Of course everybody is not expected to jump into this new line, but I affirm, that unless it is systematized by a considerable proportion of our fariners who have conditions favourable to its best success, Ontario need not hope to face the world as she is now doing with her cattle. The regular breeder of pure blood will always take the lead as a breeder, and he must keep what is most in demand, either for ourselves or for the United States. Because the heavy long wools are not so much looked to for the fine mutton and kind of fleece desirable for the subject under treatment, it does not follow that their importance is on the wane. Over the reach of this continent, with its immense variety of physical conditions, the old openings and many new ones will always exist for the Leicester, Lincoln, and Cotswold, whatever comes across the field of other special mutton and wool for particular purposes.
by thyse breeds of shee being mapped out, very clearly, in altitudes and geological areas own special wants, sheep that have, as it were, of themselves made the survey for their Cotswold, or Downs with which too few of our leading mistaking the actual value of this point, and it is one what heavy soil from alluvial deposit ure are conversant. If a farm consists of someless than 200 feet above sea or lake level, it would he our Province, and is situated at results from the introduction of the Southdowns; be at least unnatural to expect the best character of soil prevails, upon any outhdowns; but, on the other hand, where a lighter seven or eight hundred feet, then the Southdown formations, at an elevation over peculiarities. The very aspect, colour and smell

So then we say to the general Ontario farmer, choose the breed suitable to your farms, and according to the well known physical characteristics of their respective European habitat, the chances being in favour of larger profits.

We have, let us say, on 1st October, a flock of 100 common grade Canadian ewes, roomy, well wooled, healthy, and averaging 3 shear, that cost $\$ 7$ each; to them we put two pure bred Southdown shearling rams that cost $\$ 30$ each; they are fed upon pastures alone, the rams getting meal by special arrangement. They are housed for the winter on 15th November, in two large, airy sheds, with open courts, both open at all times, and ar fed upon hay, pea-straw, turnips, pea-meal and bran, as also mangolds previous to lav bing, with plenty of water and salt. Lambing begins on 1st March, in a separate apartment adjoining; and now practical knowledge guides fifty per cent. of the whole undertaking. Some deaths of ewes and lambs will occur, whatever the nature of the management. It is presumed you "know the face" of every ewe, that you are well up in the indication of "time" and lambing, that you have the common sense to let well alone when the ewe is in labour, and yet the skill to know what to do when help is needed. Be regulated by the weather as regards confinement, and by the strength of the lamb and disposition of the mother as regards individual crib confinement for a few days. Continue previous
diets, anc
twelve ds old, let tl the "calf to open a runs awa pasture, r quantity meal to a about 1st Dip all la remove or yoke, and much of t runs, with orchard, o An early late housir winter sim lambs to b for deaths through 1

It wi farmer's m

He sa easily put until it bec In add pasture eac With them, so ws Four ewes retain The ew

Requir Ewes,

Lambs,
diets, and add mangolds, with some boiled barley ; shorten tails and castrate when about twelve days old. Lambs will soon nibble at clover hay leaves, so that when three weeks old, let them have access to places where they can get their own share of everything; thus the "calf" flesh is never lost whatever the condition of the mother. "Give early freedom to open air on fine days, but do not put to grass too early, so that the search for a living runs away with the previous management. Change, and change, and change, when on pasture, remembering that it is variety of grasses we need in Ontario, more than the quantity of one thing. Keep your eye on scours and foot sores, and do not grudge some meal to all lambs. Cull and dispose of some of your wether lambs as the market tempts about 1st May. Clip ewes during second week in May, and wean lambs about 1st July. Dip all lambs in "McDougall," so as to clean skin and wool, remove or prevent vermin, remove or prevent itch and scab, soften wool, keep off rain and cold, increase the natural yoke, and give a healthy tone all over, though fortunately Canada is very ignorant of much of these. Put ewes to poor pasture for a week, and the lambs upon the best clover runs, with a touch of meal as before. Should pastures grow scant, treat to a run in the orchard, or to a cut from any of the green fodders; never stint, never allow to go back. An early fall of snow will do no harm to sheep if "foggage" be good, but it is certain that late housing means twenty per cent. less progress during winter. Feeding during the second winter similar to the first, but in larger quantities proportionate to age, will bring our for deaths at any shearlings in end of April. Of course the most careful must be prepared through $1 \frac{1}{4}$ lamb per ewe.

It will now be interesting to make up our Balance Sheet, adopting the common farmer's method of doing so.

The Farmer's Calculation.

He says he should only charge what it costs him in cash, or value for stuff he can easily put into cash, for extra food for each sheep for twelve months, and for each lamb until it becomes a shearling.

In addition to this, they get four lbs. pea straw, eight lbs. of roots, and the summer's pasture each per day.

With so many things to handle, fully half the time of one man is taken up with them, so wages amounting to $\$ 100$ have to be debited.

Four ewes died, and their loss must be charged, as also the value of 10 shearling ewes retained to make good three deaths, and others that may occur ere next winter.

The ewes will give an average of 6 lbs . and the shearlings 9 lbs . of washed wool.

Balance Sheet.

Required for 100 ewes, and 125 lambs :
Ewes, 100 : Pea meal, $\frac{1}{2}$ lb. each per day, from 1st Oct. to 1st May. 210 days $=105 \mathrm{lbs} \times 100 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. Bran, $\frac{1}{2} \mathrm{lb}$. each per day, for same time Barley, $\frac{1}{2} \mathrm{lb}$. each " " for 40 days end5 tons ing 1st May
Roots, 210 days- 8 lbs. each per day 34 bushels.
$\begin{array}{lll}\text { Hsy, } 210 \text { " } 4 \text { lbs. each, for half time } \ldots . . . & 2,800 \text { "... } & 21 \text { tons }\end{array}$
Pea-straw, 210 days, 4 " \quad " \quad " \quad " $\quad \ldots .$.
Lambs, 125 : Pea-meal, 360 days, $\frac{1}{2} \mathrm{lb}$. from 1st May to 1st
May.
Bran, $\frac{1}{2}$ lb. per day, 860 days . 375 bushels.
Barley $\frac{1}{4} \mathrm{lb}$. " 40 days..................... 11 tons
Roots, 210 days, 8 lbs. each 21 bushels.
Hay, 210 " 4 " " for half time...................... 3,500
Pea-straw, 210 days, 4 lbs . each, for half time $\quad 25$...... 25 .

It will winter, the e more, so th 125 lambs d We are ther at next clipp

Bal

We have is a grand ou argues that w of the farmer on the other I have endeav is not only th greater propo held to so mus the facts of so under certain for any form to sustain soils

In submi recent conclus: during the fee

Valu
Valu
Pea s
Atten
Valu
Estim
In any for the value of the
a speedy change
3.

We have a regulates the q in all parts of management, wi what certain cro as well as the ch we undertook ar

It will be observed that besides the maintenance of the lambs during the second winter, the ewes (now again in lamb) have also to be provided for ; this means one-third more, so that we get at an area of 122 acres as necessary to do well to 100 ewes and 125 lambs during what is practically two years, though only 18 months as shown in detail. We are therefore driven to make another balance sheet to cover the ewes as they stand at next clipping :

We have then $\$ 386$ per annum from an original investment of $\$ 800$, which certainly is a grand outcome, if true. Its truth may be questioned by the regular accountant, who argues that we must debit everything fed and all labour employed, whether by the hands of the farmer himself, his son, or the hired man. There can be no objection to this, if, on the other hand, the actual present and future value of the manure can be ascertained. I have endeavoured, in the reports of this farm, to show this in regard to cattle, but there is not only the greater difficulty of estimating quantity from sheep, but to allow for the greater proportionate chemical value of their droppings. We are not, now-a-days, to be held to so much per load. He who checks his practice by scientific help shows that with the facts of soil food, and that plants require so much of them to produce certain results under certain conditions, we luist respond to their teachings, and allow value accordingly for any form of materials which are known to possess so much of the properties that go to sustain soils and build up crops-also of known value.

In submitting a few figures upon this subject I prefer the plain rule arrived at from recent conclusions here and elsewhere in cattle feeding, that the value of the manure during the feeding process is equal to half the value of the finished animal :-
nure left in done in fat-
for inciden-
aire to proaixed farmpermanent ner may do nts of the
exchanged

Final Balance.

In any form, therefore, we obtain a handsome return, even allowing still further for the value of the pasture. Surely such facts ought to impress themselves and bring about

3.-Cream and Butter from Different Breeds of Cows.

We have all to bow to the fact that it is the machine more than the materials that regulates the quality of the milk of most animals. This seems to hold good practically in all parts of the world, whatever the variations in condition of climate, food and management, with the better known pure breeds of cattle, yet little is known in regard to what certain crosses of these can do under like circumstances. So, having this in view, as well as the checking of the work of others and the establishment of data for ourselves, we undertook an experiment during last winter on this most valuable subject :

The cows set aside for the purpose were-
1.-A pure-bred Ayrshire.
2.-A pure-bred Shorthorn.
3.-A pure-bred Hereford.
4.-A pure-bred Aberdeen Poll.
5.-A Shorthorn grade.
6.-A Hereford grade, 2nd cross.

As the experiment was not a question of quantity of milk, the difference in the condition of the cows or their time since last calving is not so serious an objection as may appear on first thoughts. The food given consisted of :-

Turnipsand Mangolds(pulped)
Pea Meal..
60 2 "
in equal quantities to each per head per day in three meals. The times of milkng were at $6.30 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$., by the same hands during the whole course.

In the management, record was kept of

1. Temperature of stables.
2. Quantity of milk by weight and measure.
3. Specific gravity of milk previous to setting.
4. Temperature of milk before setting.
5. Te nperature of dairy.
6. Time of setting.
7. Testing quality of cream by tubes.
8. Manner of setting-shallow or deep.
9. Time given for cream to rise.
10. Weight of cream removed.
11. Condition of cows.

The experiment began on 21 st J
uary, and ended the 28th April, 1880, with an interval
We shall first tabulate the
points affecting cream and butter.
Cream and Butter from different Breeds of Cows at the Ontario Experimental Farm.

In analyzin the specific grav it, of different a weight of milk ness, then the h tion. In this e

But this gr tain foreign mat these matters, the purity or ric it may be assum the milk as con Shorthorn used maintaining her no difference bet

The Herefo the second place any reliance can

Another po the sweet milk t our plan of work during twenty-fo months, and all certain column, of this test of t diagram, which :

A large vol ter, any more tha by bulk, as is no that sume regar time given the c the farmer allow destroyed, becau but, if there is Shorhorn, as com for the one as fo per cent. less in sixty-six per cen milk of the pure horn, Shorthorn ford and Aberd then, may not b proximation to the immense diff

In analyzing this table it is interesting first to notice the difference in what is called the specific gravity of the milk from animals of different breeds, and for that mattter of it, of different animals in the same breed. If the lactometer is a true indicator of the weight of milk relatively to distilled water, and if weight indicates thickness or creamyness, then the higher the figures in the first column the richer should be the milk in queetion. In this example we have the following :-

Order of Richness of Milk by Specific Gravity :
 1. A. or A. Poll 111
 2. Hereford grade. 106
 3. Shorthorn grade.
 4. Ayrshire. $\}$ 103 equal.
 5. Hereford
 91
 6. Shorthorn. 86

See Diagram Fig. 1.
But this graduated piece of glass would register the same and higher figures, were certain foreign matters introduced into the milk, or were the milk adulterated with water and these matters, so that no reliance can be placed upon such a form of ascertaining either the purity or richness of milk. Of course, here, all the milk was pure, and consequently it may be assumed that the instrument did indicate some sort of relative properties in the milk as compared with pure water. Are we to conclude that the famous beefing Shorthorn used a much larger proportion of the fattening or solid matters of her food in maintaining her constitution by as much as 25 out of 111 , and in these respects is there no difference between the milking Ayrshire and beefing Shorthorn grade?

The Hereford also ranges low in this indication, but its cross with a grade rises to the second place among the six. We may see, as we advance in this inquiry, whether any reliance can be placed on specific gravity.

Another point of much value, especially to those who now send cream in place of the sweet milk to the creameries, is what is shown in the second column of the table. In our plan of work, creamometers were used to test the percentage of cream that would rise during twenty-four hours. The tubes were filled every day for the whole period of three months, and all conditions, such as temperature, were properly attended to. As regards a certain column, or body, of cream rising in a given time, I have no doubt of the accuracy of this test of the different breeds, and to illustrate the result I beg to add the following diagram, which shows the relative proportions more strikingly :

See Diagram Fig. 2.

A large volume of cream does not necessarily imply a corresponding quantity of butter, any more than high specific gravity denotes quantity of cream, but when cream is sold by bulk, as is now the increasing practice in the management of creameries, it is evident that sume regard should be paid to the kind of animal giving the milk, and the time given the cream to get to the surface. The creamery will not, I presume, object to the farmer allowing his milk to stand over twenty-four hours, so long as its sweetness is not destroyed, because the last cream is always the heaviest and best for the butter maker, but, if there is no corresponding thickness of buttery materials in, for example, the Shorhorn, as compared with the Hereford, then he will soon find that in paying as much for the one as for the other, all the while that the Shorthorn may be, as we shall see, forty per cent. less in the property of giving butter from cream than the Hereford, he is paying sixty-six per cent. more for the Shorthorn milk than he is for the Hereford milk. The milk of the pure-bred Ayrshire is apparently not half so rich as either that from the Shorthorn, Shorthorn grade, or Hereford grade, and is twenty-five per cent. less than the Hereford and Aberdeen Poll, and forty per cent. less than the mean of all. The Ayrshire, then, may not be the best breed for the creamery, and certainly if there is only an approximation to the truth in this matter of cream volume in the different breeds of cattle, the immense difference of 124 per cent. that the Hereford grade shows over the Ayrshire
is enough to give rise to serious thought on the part of both the farmer and the creamery
man. Meantime pass to another view of the subject.

See Diagram Fig. 3.

The difference of weight of equal bulk of the like materials is evidence of their containing different proportions of the same constituents, and in our case of milk from various breeds of cattle, should guide us in arriving at cream volume, or value. I am sorry to be unable to submit the Shorthorn and Ayrshire in this respect, because of some irregular conditions at churning times. In the case of the four others we have the Aberdeen Poll in advance with forty-three per cent. over the Hereford and Shorhorn grade (which are equal), with twenty-four per cent. over the mean of all. Observe the exact agreement between the weight of cream and the specific gravity of their milk, as thus illustrated:

See Diagram Fig. 4.

If then, the weight of cream agrees with the produce of butter in each case, we may be led to place some reliance on specific gravity after all-that is to say, when the milk is pure.

What butter then, have we received from the several creams, and what has been its proportion to the original milk.

See Diagram Fig. 5

There is no agreement, or rather, there is a diverse agreement, between the proportion of butter from a given quantity of milk to that of butter from a given quantity of cream. The Poll, with its 33 lbs . nearly of butter from 100 lbs . of mill, gives the lowest, or 40 lbs. of butter from 100 lbs . of cream ; while the Hereford with only its 2 lbs . fully of butter from 100 lbs . of milk, gives as much as $50 \frac{1}{4} \mathrm{lbs}$. of butter from the like quantity of cream.

See Diagram Fig. 6.

It appears, therefore, that in every case where the weight of butter is low relatively to the quantity of milk, the weight of butter from the cream of that milk is correspondingly high. Here then, is valuable guidance for farmers, dairymen, and creanerymen ; for example, in sending milk to the creamery the farmer is credited with the average proportion of cream that rises from all the milk, so that if the average be $2 \frac{2}{3} \mathrm{lbs}$. of butter from every 100 lbs , of milk, the while that the creamerymen obtain $41 \frac{1}{3} \mathrm{lbs}$. of butter from every 100 lbs . of cream, there is something in getting milk from different breeds of cattle.

On an average of breeds we find that
Every 100 lbs . of milk give $6 \frac{1}{4} \mathrm{lbs}$. of cream ;
Every 100 lbs . of cream give $41 \frac{1}{3} \mathrm{lbs}$. of butter ;
Every 100 lbs . of milk give $2 \frac{2}{3}$ lbs. of butter ;
I beg to ask the dairy expert if the quantity of dried curd from skimmed milk is any indication of the cheese value of the milk, and therefore of the particular breed? If it is, we have in our experience, not much extended however, to record merit as follows: Best, Shorthorn grade giving ${ }^{12.50}$ per cent. of curd.
2nd, A. or A.
3rd, Hereford
4th, Ayrshire
"
$\begin{array}{llllll}\text { " } & 10.60 & \text { " } & \text { ". } & \text { " } & \text { " } \\ \text { " } & 10.00 & \text { " } & \text { " } & \text { " } & \text { " }\end{array}$ 5th, Shorthorn
" 7.50
" " "

Comparative Abstract and Result of Butter and Cream from Different Bremp of Cattle.

We are dealing with what we know to be pure milk from cows of different breeds, and in looking over the various tests used in our winter experiment, I have to acknowledge the great atbention given the whole subject by Messrs. Howitt and Holterman, second year students, to whom was intrusted the carrying out of the details. Every part of their work was characterized by punctuality, care, correctness, cleanness, and a thorough in-
terest. No fewer than 4,000 observations had to be actually made and recorded by them in the course of eighty days, and thus the public will be able to appreciate the value and reliability of this experiment, so far as it goes.

It is interesting to note the very large range in the specific gravity of these milks; two such famous beefing breeds as the Shorthorn and Aberdeen Poll differ by as much as 35 in the 100. British experiments give the average of their breeds as 103-water being 0. Using this as a comparison we have our Ayrshires, and Shorthorn grade exactly at their standard, the pure Hereford at 91, and the pure Shorthorn down to 86-the whole five breeds giving a mean of $99_{\frac{z}{z}}$ in winter and 99_{3} in summer. Of course we do not forget that individual cows vary much, and that the same cows might give different results under different management in another part of the country. If, however, there be trust in specific gravity, the Aberdeen Poll is 35 per cent. better than the Shorthorn, and considerably over all the others; even the two grades are at and over the British standard, and much superior to the Hereford and Shorthorn. However, specific gravity is but one thing. The next natural test, following that of purity, or, in our case density, is the quantity or volume of cream from a certain weight or measure of milk-measure in this example. In Britain this is set down at 10.01 , that is, every 100 lbs . of milk gives 10 lbs . of cream. At our farm we have the Hereford grade leading, with as much as $13 \frac{3}{4} \mathrm{lbs}$. of cream to every 100 lbs . of milk, the Shorthorn grade second, with $12 \frac{\mathrm{lbs}}{} \mathrm{lb}$, the pure Shorthorn $12 \frac{1}{3}$ lbs. ; the Aberdeen Poll only $8 \frac{1}{2} \mathrm{lbs}$. ; the pure Hereford $7 \frac{9}{9}$, and the Ayrshire lowest with, $6 \frac{1}{8}$ lbs-all over an average of 10.20 . The Hereford grade and Shorthorn grade have kept their places well ; the pure Shorthorn has advanced a great deal, but the Aberdeen Poll is now far behind-noteven up to the mean. We have then clear proof that specific gravity of milk does not necessarily imply bulk of cream.

Our third test was the actual weighing of the cream, as a step nearer the butter that may be got from each breed. In this we cannot present the Ayrshire and pure Shorthorn for reasons previously stated. Of the four reliable ones, the Aberdeen Poll again steps in with a lead of $7 \frac{3}{4} \mathrm{lbs}$, of cream from every 100 lbsof milk; the Hereford grade again steadily in its place, and giving nearly $6 \frac{1}{2} \mathrm{lbs}$; with the Shorthorn grade and pure Here-

Here we are ate, and equal, with nearly $5 \frac{1}{2}$ lbs of cream to every 100 lbs . of milk. milk and the actual weight of the cream from the same mil. The specific gravity of the Fig. 4.

But the housewife says,-come to the best possible test, or what weight of butter do
get from a certain weight of cream? you get from a certain weight of cream?

From every 100 lbs . of cream we obtained $50 \frac{1}{4} \mathrm{lbs}$. of butter in the case of the pure Hereford; from the Shorthorn grade 46 lbs . of butter ; from the Hereford grade $40 \frac{1}{2}$ lbs. of butter, and from the Aberdeen Poll 40 lbs . of butter from every 100 lbs . of cream. This true test of richness and value of milk has considerably changed the places of the respective breeds ; the Aberdeen Poll and Hereford grade, that have been so high in previous records, are now at the bottom of the list in this, while the Hereford and Shorthorn grade are very much higher, though they stood lowest in most other things.

Therefore, the weight of cream for a certain weight of milk does not imply a corresponding weight of butter. Indeed so exactly are they reversed in our experience that doubts may be entertained of their correctness; but this, I need hardly say, is not the case, as all figures have been carefully checked by the two superintendents, as well as by
myself. myself.

It will interest some to know what per cent. of butter by weight we obtained from the milk of each breed. This is shown in Fig. 6-placing the Aberdeen Poll first with 3.72 per cent. ; the Hereford grade second, with 2.54 ; the Shorthorn grade third, with 2.31 ; and the pure Hereford last, with 2.01 lbs . of butter from every 100 lbs . of milk, or exactly in agreement with the weight of cream from milk, as in Fig. 3.

Finally, we are now in possession of every kind of data, except one, by which to estimate the annual value of a cow of each of these breeds for dairy purposes. We want the average production of milk under like food in a given time. Looking to the future for this, we are able meantime to tabulate the value of one cow of each on the assumption that each will give $4,500 \mathrm{lbs}$. of milk within the twelve months ; price of
butter, say 18 cents per pound. In regard, therefore, to actual value of milk for production of butter, without reference to quantity of milk, we have to conclude meantime that the Hereford grade is first, the Aberdeen Poll second, the pure Hereford third, and
the Shorthorn grade last.

See Fig. 7.
Canadian Experiencr.
Value of Butter from equal quantities of Milk, from various Breeds of Cattle. Say $4,500 \mathrm{lbs}$. of Milk per annum, and Butter 18 cents per lb .

BREED.	Weight of Cream from Milk.	Weight of Butter from Cream.	Value of Butter per Annum.
Hereford Grade	lbs.	lbs.	\$26 10
	290	145	
Aberdeen Poll	350	141	2540
Hereford....	245	141	
Shorthorn Grade.		123	2210
	245	112 $\frac{1}{3}$	2070

Any further evidence in favour or against a particular breed, will depend, therefore, upon qUANTITY of milk per annum. Taking the extreme, in a herd of 50 cows, the difference would be $\$ 300$ in favour of the Hereford grade.

Milk and Cream from "Solling" and Grazing of Cows.
It was considered well to make a beginning in this in order to gain experience for something more extensive in the future. It being known that the quantity of milk depends upon food and breed, and quality upon breed more than food, the conditions affecting plants and animals, especially in regard to weather, have much ado with such experiments. The lengthy drought we had during June and August would therefore be in favour of "soiling," as the pastures were very much withered and short, while we had, by special arrangement, always a good cut of some kind of green fodder for the housed cows.

On the 6th June the 2nd year students selected six cows from our herds as nearly equal in points as possible - such points having reference to breed, frame, markings, and condition. None were in high milking condition, and hence we had no rush in either in-door or out-door management. The soiling food consisted principally of lucerne, rye (green), clovers and tare and oat fodder, of which they got 110 lbs . per head per day, at three meals, stall-tied, and getting to water and a few minutes' exercise once a day. The dissatisfaction of the three housed cows was very apparent, which could not of course be by reason of want of company, and may then be assigned to the unusual conditionsat such a season. Milking was done morning and evening. The three grazed cows had the usual run of cultivated and uncultivated pastures, were driven home for milking, and therefore received no special attentions whatever. Milk was tested with thermometer, lactometer, creamometer, and specific gravity bottle-i.e., weighing in place of floating. The first stage of the experiment extended to forty days, -the second stage to twenty days,-the cows being changed after allowing one week's interval with the view to counteracting previous

RESULT FROM 6th JUNE TO 16 th JULY.

RESULT FROM 26th JULY TO 13th AUGUST.

MANAGEMENT.	Milk in Quarts per day.	Specific Gravity by Lactometer.	Per cent. of Cream by Volume in 24 hours.
Soiling (the cows grazed above)			
Grazing (the cows soiled above)		99.53	9.03
		99.75	10.26

In this simple statement we have such evidence of great uniformity in the milk of various cross breeds of cattle that th 3 first natural conclusions are in favour of the plan of of the milk are so even, with two little in these examples yet more both stages, even by the reversion of the instance of the power of the constitution to that no doubt need be entertained in this against the kind and quantity of food doing so digest and regulate on the one hand, as gave the largest quantity by grazing in the tiry on the other hand. The same cows that the second stage, and those that gave the smallest byge, gave also the largest by soiling in quantity by grazing in the second stage. I do no soiling in the first, gave the smallest to such a result, for the latter part of the secon say that conditions were not favourable ing, but then the same cows gave also least under stage (in August) was against the grazentitled to look at least as much to the machine soiling previous to that, and so we are

We have elsewhere (see "Cream and Butter fre food for this uniformity. report, given satisfactory evidence of the value rom Different Breeds of Cows") in this of milk, and so, building upon this, we have to the lactometer in indicating quality gravity of the milk during the first stage of this note quite a diffierence in the specific second, with a slight figure in favour of one set experiment, and practically now for the (example, 101.20 and 99.75 , as against 98.30 and cows giving richer milk than the other from grazing to soiling, very slightly increased the qualitypectively). The cows changed soiling to grazing decidedly reduced the quality. not necessarily show what volume of cream give about the same percentage of cream during twenty-four for both specific gravities which, however, differs by 1.23 per cent. in the twenty-four hours (10.20 and 10.03), soiling (9.03 and 10.26).

Grazing then, was slightly superior to soiling in amount as well as richness of produce.

THE EXPERIMENTAL.

B.-The Fibld.

5.-The effects of Bone Dust, Gypsum, Nitrate of Soda and Mineral Superphosphate applied in 1878. (Plot 29, Field C.)

Our 1878 and 1879 reports should be read before this, although the subjoined cropping list will give an idea of what is being aimed at :-

1876. Bare summer fallow.
1877. Bare summer fallow.
1878. Manures as above supplied to Oats and Barley.
1879. Carrots, Sugar Beets, Mangolds, and Turnips.
1880. Wheat, spring variety, and Oats.

Years 1876 and 1877 were preparatory by bare summer failowing; in 1878 the manures were applied, 600 lbs . of each, except nitrate of soda, which was limited to 300 lbs. at same time, with wheat, oats, and barley ; in 1879 crops of carrots, sugar beets, mangolds, and turnips were taken, and this year one of White Russian spring wheat and White Blade oats. In place of following up, in detail, the results of this year's cropping, we will aggregate for the period of three years, and draw some conclusions :-

Three years' cropping after Special Fertilizers-all weights in pounds. (Plot 29, FieldC.)

Manures.	1878.				1879.				1880.				
	Oats.		Barley.		\%			首		eat.	Oa		
Bone Dust .	Straw Grain		Straw	Grain	lbs.				Straw	Grain	Straw	Grain	Ibs,
	2820	382	2760	436	48600	45120	30240	16080	1320	280	2800	8	1678
Gypsum.....	2400	765	2340	480	37440	27840	22500	13080	760	240	2360	760	
Nitrate of Soda	3960	765	3240	552	39360	37680	25360	18000	640	180	2560	1040	133337
Mineral Super-											2000	1040	133337
phosphate..	2700	956	2580	600	38160	31440	28800	16080	1040	300	3040	960	126656
	11880	2868	10920	2068	163 ¢ั60	142080	106900	63240	3760	1000	10760	3600	

An examination of this three years' table shows the following financial fact, taking $\$ 100$ as the standard of the highest produce from bone dust.

$$
\begin{aligned}
& \text { Nitrate of Soda........................... } 87 \\
& \text { Mineral Superphosphate. } 84 \\
& \text { Gypsum } 73
\end{aligned}
$$

Bone dust in a three years' trial is, therefore, twenty per cent. over the mean of all the others ; or, on an average of crops, seven per cent. per annum.
Three years' cropping, after Farm-yard Manure and three Special Fertilizers. (Plot 36, Field C.)
This is a continuation of an important experiment begun in 1878 , and all that can be called for this year is to tabulate and add up for the three-year period.

PLOT 36, FIELD C.

The cropping and manuring has been :-
1876. Turnips, with Farm-yard Manure.
1877. Wheat, no Manure.
1878. Manure as above, with Mangolds, Turnips and Carrots.
1879. Wheat, Barley and Oats.
1880. Wheat and Oats.
Three Years' Cropping after Furm-yard Manure and three Special Fertilizers-all weights in Ponnds. (Plot 36, Field C.)

The examination here shows the financial result, with the highest as $\$ 100$ for easy comparison, to be:-

Farm-yard manure, during a three years' trial, is therefore seventeen per cent. over the average of mineral superphosphate, nitrate of soda and bone dust, or, nearly six per cent. per annum.

The Effect of Manures upon Wheat-Second Year. (Field C, Plots 10, 11 and 12.)

Were the production of crops experimentally a matter of profit, we would hear little about experiments, or were the continuance of experiments to hinge upon large produce per acre, the special profession would be equally barren. When, from a season such as we have passed through, the ordinary farm management has given 19 and 22 bushels of spring wheat per acre, and that from experimental work by the like kind of grain, only an average of $6 \frac{1}{2}$ bushels, as in the example now to be considered, the ordinary reader, untaught to value the line of our work, must necessarily doubt the use of its existence.

In order to follow best through this account, it is necessary to gather up from previous reports, where it is shown that these plots were subdivided into eighteen parts, and treated with various manures as follows :-

X		XI.		XII.	
$\left\lvert\, \begin{gathered} 4 \\ \text { F.-Y. Manure } \\ \text { and } \\ \text { Superphosphate. } \end{gathered}\right.$	1 F.-Y. Manure and Superphosphate. a	4 Salt	1 Bone dust.	4 F.-Y. Manure and Salt.	F.-Y. Manure and Salt. a
5 Superphosphate.	$\begin{gathered} 2 \\ \text { F.-Y. Manure. } \end{gathered}$	$\begin{gathered} 5 \\ \text { F.-Y. Manure } \\ \text { and } \\ \text { Bone dust. } \end{gathered}$	2 F.-Y. Manure and Bone dust. a	$\begin{gathered} 5 \\ \text { F..Y. Manure } \\ \text { and } \\ \text { Gypsum. } \end{gathered}$	2 F.-Y. Manure and Gypsum.
6 Nitrate of Soda.	s No Manure.	$\begin{gathered} 6 \\ \text { F.-Y. Manure } \\ \text { and } \\ \text { Nitrate of Soda. } \end{gathered}$	3 F.-Y. Manure and. Nitrate of Soda.	Gypsum.	3 Lime Compost.

The plan shows three plots, 10,11 and 12 , of one-tenth of an acre each, sub-divided into eighteen, so that we have to deal with one-sixtieth of an acre in each of these experiments. The manures and quantities used in 1879 were :-

> Farm-yard Manure, 26 loads
> Superphosphate (mineral)
> (of $2,000 \mathrm{lbs}$.) per acre.
> Nitrate of Soda
> 400 lbs.
> 200 ،
> "

We associati any man where y fodder of the supe manufac Paris, an vegetable The for the p admixtur others w shall first be observ very many three reacl associated So ag case of the as our guic the use of tion, upon

But r

We have these separately，as also，with the exception of compost，all in duplicate association with farm－yard manure，making seventeen distinct applications－that without any manure completing the list．The farm－yard manure was got from covered hammels where young cattle were being suckled by their dams visiting twice daily，and fed on cut fodder of corn，straw，and hay，with a mixture of bran，corn meal，and a littlo oilcake ； the superphosphate was the ordinary kind from Belleville ；bone dust from Toronto manufacture，well ground and not new ；salt from Goderich ；gypsum（land plaster）from Paris，and the compost of our own making from two years＇gathering of experimental vegetable refuse mixed with one of lime to seven of itself．

The duplicating of farm－yard manure with the five purchased fertilizers was primarily for the purpose of testing to what extent they would be affected－for good or bad－by admixture one month previous to application，that is on the 1st April，1879，while the others were left to the 28 th，or immediately before ploughing and seeding．

As in 1879，the crop in 1880 was spring wheat，White Russian variety，and we shall first tabulate its conduct during season of growth．

Plot．	Sub－division．	MANURE．	Perfection being 10.					
					䓓	$\begin{aligned} & \text { 羔 } \\ & \text { 音 } \end{aligned}$		
X．	1	F．－Y．Manure and Superphosphate（a）．．．．．						
	${ }_{3}^{2}$	F．－Y．Manure ．．．．．．．．．．．．．．．．．．．．．．．．	8	7	7	8	8 9	8
	3 4	No．Manure．．．．．．${ }_{\text {F }}$（ Manure and Superphosphate ．．．．．．．	${ }_{6}^{6}$	${ }^{6}$	6	7	8	8
	5	Superphosphate ．．．．．．．．．．．．．．．．．．．．．．．．	6 3 3	7	7	8	8	8
	6	Nitrate of Soda．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	${ }_{4}^{3}$	${ }_{4}^{2}$	${ }_{6}^{6}$	5 6	8	8
XI．	1		5	5	6 7	${ }_{6}^{6}$	8	8
	$\stackrel{2}{3}$	F．－Y．Manure and Bone Dust（a）${ }_{\text {F }}$ F．Y．${ }^{\text {a }}$ ．．．．．	6	7	7	8	8 9	8
	4	F．－Y．Manure and Nitrate of Soda（a）．．．．．］	${ }^{6}$	6	7	7	9	8
	5	F．－Y．Manure and Bone Dust ．．．．．．．．．．．．．．	5 4	5 3 3	7	7	8	8
	${ }^{6}$	F．－Y．Manure and Nitrate of Soda＊．．．．．．．．．	$\stackrel{4}{5}$	5		${ }_{6}^{5}$	8	8
XII．	1	F．－Y．Manure and Salt（a）$\ldots \ldots \ldots \ldots \ldots .$.	5	6	6 7	${ }_{8}^{6}$	8	8
	${ }_{3}^{2}$	F．－Y．Manure and Gypsum（a）．．．．．．．．．．．．．．．	5	7	7	8	8	8
		Compost		8	7	8	${ }_{9}^{8}$	8
	4 5	F．－Y．Manure and Salt F．－Y．Manure and Gypsum	8	8	7	8	8	8
	5 6	F．－Y．Manure and Gypsum Gypsum	8	8	7	8	8	8
				8	7	8	8	8

The condition of the crop during the early part of July varied very much，as will be observed．That upon superphosphate and nitrate of soda was particularly poor； very many of the sub－divisions did not show over five marks out of the ten，and only three reached eight．These three were farm－yard manure alone，and farm－yard manure associated with salt and gypsum respectively．

So again，when at maturity，these extremes of condition maintained their own in the case of the best，but fell off in that of the poorest，and when we take the unmanured plot as our guide with its fair mark of 6 ，there is surely ground for questioning the good from the use of superphosphate and nitrate of soda，as well as others，singly or in combina－ tion，upon wheat．

But rust was worst on these poorer crops，as also where no manure was given，and
in the case of the poor result from combinations of farm-yard manure with bone dust and nitrate of soda, this disease seemed to be as bad.

The vigour of a plant is evidenced in one way by sending up numerous shoots from the one seed, or what is called tillering ; the best example of this was from farm-yard manure and gypsum combined, and one of the poorest from superphosphate.

Strength and length of straw were most prominent from farm-yard manure, compost, and the association of bone dust and nitrate of soda with farm-yard manure.

Yield of Grain and Straw per acre, with quantity of Small Grain.

Plot.	Sub-division.	MANURE.	Grain.	Straw.	Small grain.
X.	1 2 3 4 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6		Bushels.	lbs.	Bushels.
		Farm-ydrd Manure and Superphosphates (a) Farm-yard Manure...	${ }_{8}^{7}$	1,740 1860	${ }_{9}^{21}$
			81	1,860 1,440	3_{1}
		Farm-yard Manure and Superphosphate ...11)	5_{4}^{4}	1,470	2
		Superphosphate 14	31	$8^{7} 0$	$1 \frac{1}{12}$
XII.		Bone Dust........................... ${ }^{161}$	8	- 960	$1{ }_{2}^{16}$
		Farm-yard Manure and Bone Dust (a)191	6	1,260 1,800	${ }_{2}^{2}$
		Farm-yard Manure and Nitrate of Soda (a) . 23	8	1,920	1
		Farm-yard Manure and Bone Dist	4_{4}	1,200 1,200	
		Farm-yard Manure and Nitrate of Soda (a) 23	$\stackrel{4}{7}$	1,200 1,560	${ }_{2}^{1 \frac{1}{2}}$
		Farm-yard Manure and Salt (a).......... 20	${ }^{5}$	1,935	4
		Fime Compost.	81	2,190	31
		Farm-yard Manure and Salt. ${ }^{20} 20$	${ }_{6} 8$	2,100 2160	3.
		Farm-yard Manure and Gypsum201	${ }^{64}$	2,160 2,140	3_{3}^{31}
		Gypsum $17{ }^{17}$	64	1,680	31
		Means........................188 ${ }^{18}$	$6 \frac{1}{2}$	1,616	

The result, to the average practical farmer, may be called a failure, but to such as ourselves, and therefore to the more careful weigher of causes and effects, the conduct of this second years' crop of wheat upon land manured in 1879, cannot fail to be interesting. If the blight formerly referred to was the main reason for such a small average yield as $6 \frac{1}{2}$ bushels per acre, it must be borne in mind that on such a small area as onetenth of an acre, having one aspect and one physical condition of soil all over, any atmospheric affection would be uniform unless influenced by conditions brought about by the manures applied. We start, therefore, with the clear understanding that variations in amount of grain and straw have been caused directly or indirectly by character of manure. There is such a large falling off in prodnce from $18 \frac{1}{2}$ in 1879 to $6 \frac{1}{2}$ bushels in 1880, as at once to raise the question whether it is not owing more to climatic causes than to condition of soil, and thus we must look to comparative facts for confirmation of the position I take, that while it is so unquestionably, yet the manurial influences were the strongest.

For example, the lowest produce last year was from farm-yard manure, and that without manure-this year both are second highest among the eighteen examples, the only one a shade better being from compost. Why then does farm-yard manure, and particularly the plot unmanured, give 90 per cent. more grain and straw this year than that (superphosphate $3 \frac{1}{2}$) which produced as much as 14 bushels last year ? I take the two extremes for the stronger argument.

I must confess, however, to much surprise at the continued equal position of the grain and straw from farm-yard manure, and from that which got no manure, thus :

ompost,

-

uch as luct of terestverage is oneny atby the ons in manels in sthan of the re the d that s, the e, and than ke the of the

Taking, first, the unmanured result as the only safe base for comparison, it is plain that the falling off in its case from $13 \frac{1}{2}$ to $8 \frac{1}{4}$ bushels is owing to one of two, or to the two causes combined, of weather, and exhaustion of soil ; if more to exhaustion, then why have we a crop in 1880 from the unmanured equal to that from farm-yard manure? Does the farm-yard manure still give straw only and not incruase of grain? for as will be readily observed, not only was the straw in 187914 per cent. more from the farm-yard manure, but it is also 23 per cent. more in $1 \circ 80$ than the unmanured land.

Another distinct feature of the experiment is the result from pure mineral fertilizers :-

Here, again we must look to the unmanured returns for comparison with these, and note first that while superphosphate in 1879 gave practically the same result ($\frac{1}{2}$ bushel more), it has fallen off to such an extent in 1880 that twice the seeding only was obtained, and hence nearly five bushels less than the unmanured. Why less than the unmanured? Has harm resulted directly, or through combination of weather influences to the crop? because we are surely allowed to argue that if no superphosphate had been applied to this particular plot, which is contiguous to the other, a crop equal to the unmanured one would have been obtained. Harm of some sort must have, or has, resulted from the application of this mineral fertilizer; not only did the first crop not make use of it, but the second has succumbed directly or indirectly to its influence.

The nitrate of soda in 1879 gave a little more grain and a great deal more straw than the unmanured, but the falling off in 1880 of both straw and grain is very large. Indeed, it is evident that the immense rush of straw in 1879 took with it much, if practically not all, the fertilizing properties of this salt, if any was left, it did no good and, probably some harm.

Common salt alone was advantageous last year to the extent of four bushels per acre over the unmanured, with corresponding straw ; this year there is neither grain nor straw within 250 per cent. of itself, nor 200 per cent. of last year's unmanured.

Last year gypsum alone stood equal to salt, but this year it is 26 per cent. better, both in grain and straw ; and again I must impress the fact that here is further proof of the weather not having had all to do with these results. Were the salt and gypsum of equal fertilizing powers, in their continuance, the record now would not be so wide as it is with these minerals.

What now of the behaviour of these pure minerals, in combination with farm-yard manure ?-

	1879.		1880.	
	Grain.	Straw.	Grain.	Straw.
	Bushels.	tbs.	Bushels.	tos.
F.-Y. Manure and Superphosphate	17	3,770	6	1,605
F.-Y. Manure and N. of Soda	23	4,000	$7{ }^{3}$	1,740
F.-Y. Manure and Salt	20	3,420	64	2,047
F.-Y. Manure and Gypsum	214	3,040	71	2,115
Means	204	3,532	$6{ }^{3}$	1,877

Those least last year hold exactly the same relative position this year, in the order of :

Altogether, however, a very uniform yield in grain, the straw from farm-yard manure and gypsum being superior, and very much reduced in quantity in the cases of superphosphate and nitrate of soda.

The highest result in grain, and one of the best in straw, was from lime compost, which last year also gave one of the best returns.

The most striking fact in all these returns is, that, not only last year, but this year, the yield of wheat from unmanured land was largely over the mean of all the manured ones, in the face of the other fact, that the soil cannot be called rich, naturally or artificially, as evidenced by the average produce of almost 11 bushels of grain per acre ($13 \frac{1}{2}$ and ${ }^{3}{ }^{3}$).

We are called upon to wonclude, at this stage of this experiment, that much of the soils of Canada is yet in no need of special fertilizers, even when they are partially exhausted, and that the best method of recuperation is by systematic rotation of crops, and the liberal use of farm-yard manure.

8.-The effects of 19 Varieties of Manures on Wheat, as applied to Turnips in 1879. (Part of Farm, Field No. 9.)

This, the second year of a very varied experiment to test the permanency of various manures, alone and in combination, by a rotation of cropping, has exhibited results as interesting as last year, meagre as has been all cropping in comparison with the like wheat on the same field by our regular field rotation, which, let me at once say, was $19 \frac{1}{2}$ bushels per acre.
nt. better, r proof of ypsum of wide as it farm-yard

Straw.
ths.
1,605
1,740
2,047
2,115

1,877
rder of :
manure
of super-
compost,
his year, he manurally or per acre
h of the ially exops, and

[^3]various esults as e wheat bushels

Ere criticising this table, I beg our readers will peruse the introductory remarks to the chapter herewith on plots 10,11 and 12 of field C , and be assured that we are looking for something besides weight of produce per acre in this experimental search of finding what certain manures or plant fertilizers do under equal conditions during a series of years.

Here, the story last year, was a crop of turnips, as a start with these nineteen forms, with a result as regards produce in the following order.
order of merit by amount of produce in 1879.
Largest-Farm-yard manure.
Mineral superphosphate and gypsum.
Bone dust and salt.
Bone superphosphate and mineral superphosphate.
Mineral superphosphate.
Bone dust and gypsum.
Bone superphosphate and gypsum.
Bone superphosphate and salt.
Bone superphosphate and bone dust.
Mineral superphosphate and salt.
Bone superphosphate.
Mixture of $2,7,12,17$, and 19 .
Mineral superphosphate and bone dust.
Bone dust.
Gypsum.
Salt.
Lime.
No manure.
Gypsum and salt.
Least-Nitrate of soda.
The first striking fact in the cropping of 1880 is that Farm-yard Manure is again far in advance of all others, fully four times the lowest from mineral superphosphate and bone dust, and double the mean of all.

Gypsum is second this year, as against its fifteenth place last year, a result very gratifying, and evidence of more permanency than many of us are inclined to grant to this mineral.

Salt was in the very low position of sixteenth last year-it is now third, and equal to a combination of gypsum and mineral superphosphate. Salt, immediately to roots, has had a much superior effect on a succeeding crop of wheat than upon the roots themselves.

The Gypsum and Mineral Superphosphate hold nearly an even position each year-second last year and fourth this year, among nineteen competitors.

Bone Dust alone is now working its way up the permanent scale-from fourteenth last year to fifth this year.

Associated with Bone Superphosphate, Bone Dust is also advancing steadily, being now sixth as against ninth last year.

Bone Dust and Salt, in the third place last year, has now gone down to the seventh, a combination not equal to the separate results of these fertilizers.

We have Bone Superphosphate and Salt in exactly the same place koth years.-eighth.
of the rotati las ton ha potatoes.
3.-Tha
spring wheat rots, and 25 ?
4.- In superphosph: but the effect
5.-Fiv bushels of sp
6.-Min
7.-In

290 bushels
And thu the fourth to the ninth place in this matt

Bone Superphosphate an this matter of quantity of produce. against that of 1879 .

Nitrate of Soda came out lowest of all last year, and it will surprise some to note how it has risen nine steps in the making of wheat during 1880. There was no rush of straw, but a comparatively low yield of it.

Lime has followed nitrate of soda as regards advance in relative position-from seventeenth to twelfth.

So again, Bone Superphosphate alone gives an even account of itself-on the whole low, but keeping its place.

The Mixture (of gypsum, bone dust, bone superphosphate, mineral superphosphate, and salt) is also in agreement with its previous conduct.

Mineral Superphosphate made a good record last year, having stood fifth, as we would expect with roots, but to wheat it is comparatively indifferent, standing as low as fifteenth among nineteen.

Our somewhat prominent fertilizers, Bone Dust and Gypsum, in their single effects, do not maintain their record when associated, nor ate they nearly up to their first year's place as a combination.

Bone Superphosphate and Gypsum are this year seventeenth, or ten places below that of 1879 .

Gypsum and Salt seem to be a poor combination in any case-so much so that the chemist will have to say why.

Last year the plot that received no manure was better than gypsum and salt combined, as well as nitrate of soda alone ; this year it is not yet at the bottom, being superior to a mixture of mineral superphosphate and bone dust.

Therefore, Mineral Superphosphate and Bone Dust have fallen from the thirteenth place to the twentieth, or lowest of all.

9.-Five Years' Experience of Thirty-Three Forms of Fertilizers.

Five years' experience should be of some value in this matter. Facts should now be accumulating in our farm practice, and special experiments, from which indications, at least, if not reliable conclusions, ought to be gathered in regard to the fertilizing properties of what are called manures-singly, and in combination with each other. Appended, therefore, find a complete table of what we have realized during the last five years throughout some 2,000 trials from ten of our most common farm crops.

The natural question is, what can be gathered from these for the use of the average farmer 9 I think several important facts :-
1.-That many varieties of fall wheat with twenty tons per acre of good farm-yard manure have given an average of 41 bushels per acre.
2.-That our ordinary farm practice of sending all manures through the root division
result very grant to this and equal to oots, has had mselves. each year-

m fourteenth

eadily, being the seventh, ars.-eighth. cended from
this year as ise some to here was no
from sevenon the whole rphosphate, as we would as fifteenth
ngle effects, first year's s below that so that the d salt comtom, being
thirteenth
of the rotation has resulted in 18 bushels of spring wheat; 47 of oats; 34 of barley ; 14 ton of hay ; 836 bushels of mangolds ; 705 of turnips ; 614 of carrots, and 162 of potatoes.
3.-That farm-yard manure, without any other help, has given us 19 bushels of spring wheat ; 48 of oats ; 34 of barley ; 895 of mangolds; 450 of turnips ; 666 of carrots, and 255 bushels of potatoes per acre.
4.- In association with lime, salt, bone dust, nitrate of soda, gypsum, and mineral superphosphate, farm-yard manure produces 20 bushels of spring wheat on an average, but the effects for the second and third years were comparatively little.
5.-Five kinds of mineral fertilizers, in their single effects, made an average of 16 bushels of spring wheat pracre, with a rapidly reducing result after the first year.
6.-Mineral fertilizers gave 22 bushels of barley, and 26 of oats.
7.-In fifteen different forms, singly, and in association, these mineral fertilizers gave 290 bushels of turnips per acre on an average.

And thus, all over, any one may continue this kind of analysis from the table.

This was with instructi Three pl in field 8, on

On plot the 29 th Octo was applied t

Farza-yard Mant Apatite
No Manure

The whea ceived no ferti good trim for The pract fertilizer, wit

Many of mentalist at le duce per acre, thing to make trial with a va

Red Globe

Long Red........

Long Yellow

Yellow Globe ...

10.-Apatite upon Fall Wheat.

This was undertaken by desire of the Dominion Government, who sent the material with instructions as to mode of application, per J. Gemmell, Esq., of Ottawa.

Three plots, contiguous, and as nearly equal as possible in all essentials, were laid off in field 8, on the 20th October, 1879.

On plot 1, about 20 tons of farm-yard manure were applied per acre ; on plot 2, on the 29th October, 500 lbs . of apatite per acre, and the like quantity on the 27 th May was applied to the crop ; and plot 3 got no manure of any kind; result as follows :-

Manure.	Producr Per Agre.		Small grain per acre.	Weight per bushel.
	Grain.	Straw.		
	Bush. lbs.	lbs.	Bush. lbs.	lbs.
Farra-yard Manure	$33 \quad 35$	2,015	115	59
Apatite	$29 \quad 15$	1,750	45	59
No Manure	$29 \quad 5$	1,740	.. 35	58

The wheat was the Clawson, or Seneca; previous crop pease, and the soil had received no fertilizer for seven years except 200 lbs. of gypsum to hay in 1876-thus in good trim for such a trial. The small grain is included in the total quantity per acre.

The practical observant reader will note several points in favour of this mineral fertilizer, with a probable better record next year.

11.-Produce of Roots at Various distances apart on the Drill.

Many of our most intelligent farmers still doubt the fact, well known to the experimentalist at least, that the nearer bulbs are cultivated to each other the greater the produce per acre, and that there is a limit to this; the fact is indis, utable, but as it is one thing to make the assertion and another to give proof, we have again made a careful trial with a variety of mangolds-the result is thus tabulated :-

	$\begin{gathered} \text { Distance } \\ \text { apart } \\ \text { on the Drill. } \end{gathered}$	Average Weight of Bulbs.	Bushels per Acre.
	Inches.	tbs.	
"	12	${ }_{1} \cdot 823$	578.40
"		${ }^{2 \cdot 862}$	$627 \cdot 40$
Long Red.	24 6	3.742 1.777	611.20 896.00
	12	${ }_{2} \cdot 345$	$760 \cdot 40$
"	18	${ }_{2} \cdot 976$	597.20
Long Yellow.	24 6	$2 \cdot 400$ 1.506	385.20 80500
"	12	${ }_{2}{ }_{2} .000$	805.00 620.40
"	18	${ }_{2} \cdot 563$	562.21
"	${ }^{6}$	1.881	$851 \cdot 40$
"		${ }_{4} \cdot 941$	${ }_{6} 613 \cdot 40$
"	${ }_{24}^{18}$	4.553 3.781	$998 * 40$ $56 \cdot 40$

	$\begin{gathered} \text { Distance } \\ \text { apart } \\ \text { on the Drill. } \end{gathered}$	Average Weight of Bulbs.	Bushels per Acre.
	Inches.	1bs.	
	${ }^{6}$	1.915	$872 \cdot 40$
" 4	18	2.656 3.959	$830 \cdot 40$ 868.00
" "	24	${ }_{3} \cdot 785$	618\% 0
Carter's Warden Prize	6	1.651	$828-20$
	12	$2{ }^{\text {2 } 924 ~}$	672.00
"	18	$2 \cdot 851$	$625 \cdot 20$
Red Intermediate	24 6	${ }_{1} 3.771$	546.00 868.00
"	12	${ }_{2} \cdot 144$	$860 \cdot 40$ 690
Long White Sugar Beet	24	3.114	$508 \cdot 40$
Long White Sugar Beet	8	$2 \cdot 523$	1148.00
"	12	$4 \cdot 143$	1169.00
White French Suger Beeet	42	$5 \cdot 690$	531.00

Drills were 28 inches apart in all cases, and of course all were similarly manured and cultivated, on soil as nearly alike as possible.

An exatination of the table shows that out of the 31 examples there are but five instances in which there is not a large decrease in produce per acre from the close distances to the wider distances apart between plant and plant up to a certain point. The five eyceptions are the Red Globe at 12 inches, the Yellow Globe at 18 inches, the Improved Mammoth Long Red ai 18 inches, the Red Intermediate at 18 inches, and the large White Sugar Beet at 12 inches, and these may have been brought about by extra favourable circumstances unknown to us. Bui before discussing the whole question, let us analyze these figures by another table:

Mean produce at different distances apart-plant to plant.

At six inches apart from plant to plant on the drill, therefore, we obtain an average bulb of $1 \frac{3}{4}$ lbs. weight and 836 bushels per acre ; at 12 inches apart the bulbs attain to $2 \frac{1}{4} \mathrm{lbs}$. each, and give only 652 bushels per acre; at 18 inches apart bulbs rise to $3 \frac{1}{4} \mathrm{lbs}$. and return 710 bushels per acre ; and at 24 inches from plant to plant the bulbs reach the very larger average of $3 \frac{1}{3}$ lbs., but produce only 538 bushels per acre.

Now, in the first example, there are but two exceptions to the fact that the produce
per acre is 3 as 30 per ce 710 bushels We had a fir evidenced by

So, then inches ? All mark, that, drills, in plac be at least on

Leaving ant fact in th

We have produce per 12 to the 18 . individual bu yield would h crease gradua ponding incre $3 \frac{1}{3}$ lbs. each, distances betv cent. more ; i from $1 \frac{3}{4}$ to $2 \frac{1}{4}$ too little, and able to tell if against small is shown that value per acre acre, we shoul gives more tod so nutritive as

The sugar With reference weight per acr bulbs 80 per ce extravagant ex thinned out to large average o

On 29th 0 ploughed under apart. Braird 22nd June, Ma On 12th July b

Italian and taking their plac the sewage ditch

Bushels per Acre.
$872 \cdot 40$
$830 \cdot 40$
868.00
$618 " 20$
$828-20$
$672 \cdot 00$
$625 \cdot 20$
$546 \cdot 00$
868.00
$690 \cdot 40$
$695 \cdot 20$
$508 \cdot 40$
1148.00
1169.00
531.00
y manured
re but five e distances he five eyImproved rge White favourable us analyze
per acre is 34 per cent. larger than the mean of all the other forms of production; as much as 30 per cent. over those of 12 inches ; as much as 18 per cent. over the large yield of 710 bushels at 18 inches apart; and no less than 56 per cent, more than the 24 -inch ones. We had a fine braird of plants all over, and fairly favourable conditions throughout, as evidenced by the good average of 684 bushels per acre.

So, then, the question is, Why thin out to any other distance than that of about 6 inches ? All we want is room to cultivate with the horse hoe, and here, permit the remark, that, were it possible to do so safely and thoroughly at 8 or 12 inches between drills, in place of 28 inches as in this case, it is almost safe to say that the produce would be at least one-thi,d more, that is to say, the 836 bushels would have been 1,100 .

Leaving this latter point for another occasion, it is our duty to note another important fact in this experiment:

We have seen that, between the 6 and 18 inch spaces, there is a large falling off in produce per acre, (not per bulb remember), and that there is a large increase from the 12 to the 18. It is plain from the figures that this increase arose from the weight of individual bulbs, nearly $3 \frac{1}{3} \mathrm{lbs}$. each. Had we had this size of bulb at 6 inches apart the yield would have been 1,666 bushels per acre. But very large bulbs, or bulbs that increase gradually in size, as space is allowed between the plants, does not imply a corresponding increase per acre ; as to this, note that while at 24 inches the bulbs rise to fully $3 \frac{1}{3} \mathrm{lbs}$. each, the produce is reduced to 538 bushels. There is then a limit to wide distances between plants; eighteen inches are too much, because at 6 we have 18 per cent. more ; if the bulb would increase proportionately at 9 inches apart, as we obtain it from $1 \frac{3}{4}$ to $2 \frac{1}{4}$, the produce would be 817 bushels; twelve inches are either too much or too little, and thus the question lies between small bulbs and large bulbs. When we are able to tell if there be y difference, and what, if any, in the nutritive value of large as against small bulbs, w will be in a position to choose the growing of either ; but until it is shown that the large is superior to the small, to such an extent as to give more fseding value per acre than those from 6 -inch distances, it is plain that, if we want the bulk per acre, we should sccure plants at or about 6 inches in the row. It may be that smallness gives more toaghness or woodiness than the medium and larger roots, and the t fibre is not so nutritive as flesh in this case.

The sugar beet cultivation in the first table is not included in the foregoing results. With reference to them it will be noticed that there is practically little difference in weight per acre between 8 and 12 inches plant to plant, the while that the 12 inches give bulbs 80 per cent. larger than the other. Here again numbers give weight. A very extravagant extreme is shown in the case of the White French sugar beet. These, thinned out to 42 inches between plant and plant, on drills 28 inches wide, give the very large average of $5 \frac{3}{4} \mathrm{lbs}$. per bulb, and the very small produce of 531 bushels per acre.

12.-An early catch of Mangolds and Carrots.

On 29th October, 1879, land was manured with twenty tons of farm-yard manure, and ploughed under. On 15th April seeding was well done in drills twenty-eight inches apart. Brairding was irregular on 24th May, by reason of unfavourable weather, and by 22nd June, Mangold leaves from opposite drills were meeting. No late frosts interfered. On 12th July bulbs of Mangolds were three inches in diameter, and Carrots one inch.

Result.

Long Red Mangolds, 1070 bushels per acre.
White Belgian Carrots, 901 "

13.-Grasses and Clovers.

Italian and Perennial Rye grasses sown in 1878 are now disappearing-white clover taking their place. There has been a self re-seeding to some extent. On the borders of the sewage ditsh these grasses are strong and rank, and holding better than anywhere else.

In 1879 we seeded with "Carter's mixture of grasses and clovers for clay soil." The appearance on 1st April, 1880, was very doubtful; on 24th May there was a good show of common trefoil and white clover, but little else. June gave the heaviest sward of alsike, red, white and trefoil clovers in all our experience, with a few plants of the rye grasses, which latter improved very much by November.

Sweet Vernal grass laid down in 1878, is now all off its old site, but some plants from self-seeding have done fairly well in shelter among other grasses.

What we got as Bent, variety not named, and sended in 1878, is doing well, gave a cut of short hay, with little after math.

The Crested Dog's Tail (1878) is practically a failure.
Red Top is equal to timothy-thick and fine, but offers little pasture after cutting.
Meadow Fescue (1878) is also very good, comparable with timothy, gives good pasture, less bunchy and finer than timothy and orchard.

Kentucky Blue grass (1878) is a close sward all over.
Fan-oat grass, (1878). A very fine crop, gives good hay and very good pasture.

14-Potatoes in Field 17.

The land was prepared as for sowing mangolds, except that the salt, bone dust, and superphosphate was applied after the drills were made.

Potato sets were planted eight inches apart, in drills twenty-eight inches apart, on May 28. Covered by splitting the drills with a plough.

June 14th.-Harrowed with a light harrow to kill weeds and break down drills.
June 30th.-Hoed with horse and hand hoe.
July 9th.-Earthed up with a horse hoe.
October ${ }^{\text {1 }} 5$ th.-Potatoes taken in and weighed.

Laid do
May 11 at this date i upheaved by

June 1 and harrowe

July 12 labour in kee

Nov. 11 part.

July 12

Date

May 20th
September 26th
October 21st. .

Planted sprout.

April 24 is not in the 1 We took and sending o July 7th.

May 11th
June 1st
July 2nd
Ootober 1at

Total
clay soil." was a good viest sward unts of the some plants 1, gave a cut ter cutting. gives good
pasture.
dust, and es apart, on n drills.
size.
est small ones

15.-Green Fodders.

Lucers:, ibld A.

Laid down in 1877, one-half broad cast and the other half in drills.
May 11th, 1880.-The broadeast starts more rapidly in the spring than the drills; at this date it stands six inches high and we cut three tons per acre. It has been severely upheaved by the frost, about half being killed. It does not grow so strong as last year.

June 12th.-Top-dressed with well rotted farm-yard manure eighteen loads per acre and harrowed in.

July 12th.-Horse-hoed and harrowed the drills and re-seeded broadcast, so as to save labour in keeping the drills clean.

Nov. 11th.-The drills are now much stronger than the broadcast, or the re-seeded part.

July 12th.-Has produced plants four inches high.

Prickly Comprey.

Planted in 1879, three feet apart each way. On April 5th, 1880 , it was starting to sprout

April 24th.-This is the first green fodder of the season, being ahead of lucerne. it is not in the least injurec by the severe winter.

We took the first cutting on May 11th, and on May 24th it was ready to cut again, and sending out seed stalks.

July 7th. - Top-dressed with rough manure, 15 loads per acre.

Date or Cuttings.

May 11th
June 1st
July 2nd
Ootober 1at \qquad
Total
tal

Weight.

$1 \neq$ tons per acre.

24	"	"
24	"	"
31	"	"

Spring Rye.

This plot was manured, twenty loads per aćre, with farm-yard manure, and fall ploughed in 1879.

April 26th, 1880.-Gang-ploughed, harrowed, and drilled with spring rye, two bushels per acre, and seeded with red clover, forty pounds per acre. On May 24th, it looked very fine, better than tares and oats, and growing very thick.

June 14th.-Cut ten tons per acre, green. It could have been used on June 1st.
Oct. 1st. - The clover on this plot looks as well as that on the plot next to it, which was sown without any other crop.

Tares and Oats.

The land for these was prepared the same as for spring rye.
Apri 26 th. -Sowed first batch, equal parts of tares and oats by measure, two bushels per acre in all.

June 14th.-Made second sowing, two bushels per acre.
July 6th.-Cut first sowing as plants were begining to head out, they would have given a fair cut three weeks ago.

Aug. 20th.-Cut second sowing. The oats were poor and rusty.
July 6th.-First cutting 84 tons per acre.
Aug. 2nd.-Second cutting $2 \frac{1}{4}$ tons per acre.

Sainfoin.

The land was prepared the same as for spring rye.
April 28.-Sowed sainfoin thirty pounds per acre.
June 15.-Seed has not germinated well.
July 1st.-The weeds are getting so much ahead of the sainfoin as to threaten the destruction of the sainfoin entirely; we mowed weeds to keep them from seeding.

Oct. 1st.-The sainfoin is now beginning to push and spread.
Nov. 11th.-It is growing much better now and spreading, and is not yet in the least injured by frost.

Indian Corn.

The land was prepared the same as for spring rye, ploughed and harrowed on June 14th.

June 15th.-Sowed Indian corn with drill, two bushels per acre.
Aug. 11th.-Cut green corn nine tons per acre, plants being short.

Rape.

This plot was manured from the farm-yard, and ploughed in the fall of 1879 .
June 14th, 1880.-Ploughed and harrowed.
June 18th.-Sowed rape on drills, four pounds per acre.
August 5th.-The rape was long enough to pasture with sheep, and on August 11 was long enough to give a good cutting.

August 19th.-Cut first cutting of rape, $6 \frac{1}{4}$ tons per acre.
October 22 nd.-Cut second crop of rape, 4 tons per acre, making a total of $10 \frac{1}{4}$ tons per acre.

Thousand-Headed Kale, or Tree Cabbage.

The land was prepared at the same time and in the same way as for rape.
June 18th.-Sowedkale the same as rape seed; as soon as the plants were large enough they were singled and cultivated like turnips.
and fall
rye, two y 24 th, it
ne lst. it, which
wo bushels
ould have

September 25th.-We cut a part of the plot, which gave $4 \frac{1}{2}$ tons of green feed per acre. October 22.-Cut the balance of the plot, which gave $11 \frac{1}{2}$ tons per acre.

Lucerne, Field C, Plot 18.

This plot was sown in drills in the spring of 1876 (see former reports).
May 24th 1880.-Two thirds of this crop is gone, either from the severe winter or from natural exhaustion. The plants are heaved four inches and rotten in the centre of the stalk. What plants are left are growing vigorously.

June 25th.-Loosened the soil well with horse hoe, harrowed, and sowed lucerne, forty pounds per acre, broadcast and rolled.

July 10th.-The young plants have made a good start and look well.
October 30th.-This crop has grown wonderfully long, thick and tender, and yielded a cutting of six tons per acre, which was fed to sheep; they like it and thrive well on it, When sown broadcast it grows more tender, and stock prefer it better than that cut from the drills. The leaves are more easily injured by frost than red clover.

$$
\text { 16.-Permanent Pasture, Field ©., Plot } 33 .
$$

The rotation of crops on this plot has been as follows :
In 1876, oats, no manure.
In 1877, wheat, farm-yard manure, 30 loads per acre; and gypsum 200 lbs . per acre. In 1878, April 23rd, seeded with a mixture of grasses and clovers, that are sown separately on plot 34, forty pounds per acre, and manured with a mixture of all our artificial manures (see 1878-9 reports).

1886, April 5th.-This plot looks well and would make better pasture tha: any of our other pasture or meadow fields. The clovers, and especially the great strong wedgy roots of lucerne have been badly heaved by the frost.

May 22nd.-Put four rams to graze on one-half of the plot for seven days. They were also fed one quart of grain per day, so that at this date the pasture was able to support eighty sheep per acre, for seven days, along with half a pint of grain per head per day.

May 25th.-From the other half of the plot we took grass equal to one hundred pounds of hay, and this would have kept two sheep for a week.

May 29th.-Removed two sheep and put the other two where the grass was cut. Lucerne grows rapidly and sheep eat it first.

June 5th.-Let two rams have the run of the whole plot.
June 12th.-Took sheep off.
June 22nd.-Put four rams on for four days.
The lucerne shoots ahead of the other clovers and grasses, and grows fine and tender, sheep are very fond of it and eat it down first.

July 10th.-Put four rams on for three days.
Lucerne, white, and trefoil clovers are doing well, also orchard, fan-oat, meadow fescue, English rye, and rib grasses. No doubt there are other kinds that cannot be distinguished among so many.

October 4th.-Put four rams on for two days.
November 12th.-Orchard grass is thriving, and at present is thickest and strongest ; lucerne is also doing well, white and trefoil clovers, rib grass and meadow fescue are plentiful, the whole plot is covered with four inches of thick pasturage. Put six sheep on for one day.

The pasturage for the season, then, is equal to 112 days for one sieep, and would have kept four sheep for a week more, making 140 days for one sheep, or over seven sheep per

17.-Barley in Field A.

These plots were manured and ploughed in the fall of 1879 , after a crop of oats had been taken off; gang-ploughed this spring, and seeded with barley on May 14th, two bushels per acre ; and on May 15th seeded with grasses and clovers, thirty pounds per acre.

Carter's Chevalier, Potter's Prize, and Hallett's Pedigree, are two-rowed varieties, obtained from Carter and Co., London, England, in 1878 ; they are all very much alike. Russian Hulless is a two-rowed variety with fine, weak straw, got from Centennial Exhibition. Russian and Spring are six rowed varieties from the Centennial Exhibition, both good kinds. Thanet and Probestier are old varieties, the six-rowed is from the Centennial Exhibition, the grain is small and bright ; the straw is very good, long and strong.

The average produce of all is 33 bushels of grain and $2,683 \mathrm{lbs}$. of straw per acre, with a mean weight of 36 lbs . per bushel.

The value of each per acre is given in the following list, grain being reckoned at 34 cents per bushel of 34 lbs . and straw $\$ 6$ per ton.

Value Per Acre of Grain and Straw from Thirty Varieties of Oats.

Grain does not go by straw, nor straw by grain, necessarily. Observe in some cases, such as White Blade, and Poland, that two, and two and one-third, tons of straw give 1,185 pounds of grain, or only one pound of grain to every three and a half pounds of straw ; while others, such as Hopetown Nö. 2, and New Zealand give as much as one pound of grain to every pound of straw nearly. There is a very long reach from a value of $\$ 31.91$ to $\$ 12.09$ per acre ; such a reach and such a variety of choice, either for grain or straw, that we are impressed with the fact of how much does lie in choice of the proper plant to get what is wanted. Who, for example, would think of cultivating Hopetown No. 2 for straw, were straw their object, and no one would prefer French No. 2, were bulk of grain the object? It may be considered a very good proportion when one pound of grain is got for every two pounds of straw-that is, thirty bushels of grain for every ton of straw. Examples, Colorado (Iowa), Surprise, Bullman's Spanish, and others.

Fort William is of average plumpness and medium skin, and is simply Black Tartarian under a new name, obtained, no doubt, while travelling recently; the head is long, somewhat open below, but grandly clad with grain on top.

White Blade is a beautiful sample of white oats, neither large nor small, though inclining to the small side; not remarkably plump, nor with a large barrel, but having no waste anywhere, and no doubles; it has a lengthy, branchy, compact head, standing well up.

Hopetown, No. 1, is more awny than the two described, prolonging the skin too much towards the blade end, and having quite a few doubles ; it is the thick and medium lengthened head of this oat that gives the large produce per acre ; branches are not long, and twigs not far apart. It is apt to shed its grain.

Colorado (Iowa), has a well balanced head, a little lengthy, with grain rather irregular in size.

Surprise is a well-known Canadian oat, short, of average plumpness, very regular in size, with a good length of head, and thick below ; the weight per bushel (40 lbs .), is evidence of its fineness.

The two Bullmans may be classed together as regards grain, but with a preference to the Charlottetown variety for head; the berries are on the small side.

The oat called Poland gives grain very irregular in size, some large for a black kind, and some very small, and as will be seen, has the poorest record in quantity of smalls per acre ; the head is of medium length, branches short and not well loaded.

The Spanish variety is a beautiful oat in head and grain, the grain is particularly nice, no undue skin, awn, or slack bosom, and but for a few small berries, would top the list.

Birlie (Iowa), is small, clean, bright, plump; a strong plant with a well filled head, and is not materially different in any respect from Birlie (Ontario).

The Australian side white variety of oats is a grand cropper, having medium straw and a compact head, not too long; the grain has not the appearance of weighing forty pounds per bushel, nor of being the best of all in giving least smalls, as the bosom is open and the blade end somewhat lenghty.

The Charlottetown side black has a bunchy head and a fair sample of grain.
Colorado, has a more delicate head than the Iowa variety of the same name, though the grain is rather better sampled.

Russia gives a thin branchy head with delicate branches, and a fair sample of grain somewhat small in size.

The Black Tartarian from Scotland, has kept up its size of berries well, but gathering more skin and a more open bosom, as the result of a warmer climate; hence it is only one pound over the standard weight ; colour is maintained. The head is peculiarly bunchy and very neat. The Ontario variety of the same name (simply of a longer importation I presume) is much lighter in colour, and a very different head, being open and delicate in stalk and branches,

Somerset is one of our finest samples of white branched oats, both in plant and grain ; grain even, plump, and bright, weighing well, and giving few smalls, the head strong, roomy, and well balanced.

The Side, is a side white, having a longish delicate berry, but a strong medium-sized head-

White Straw gives a plump oat of average length, therefore weighing well ; the head is strong and airy with clean bright straw of medium strength and length.

Short, with us, means short plump grain, and a very even sample of good weight, with an average head, and rather delicate straw.

The New Zealand grain is better than the head indicates, which, for a side variety is rather delicate in appearance. Berries on the large sample, open bosom but with a fine plump kernel.

Norway is a brown coloured oat well up in sample and plant, and is deserving of more attention.

For beauty in colour, evenness of sample, weight per bushel, and few smalls, the Halifax white branched oat has few rivals.

Sparable is short and plump in the grain for a black; the dark is very decided, with white blade tips; head and straw somewhat delicate.

Pale has a lengthy narrow berry, and a long head, grain under the standard weight.
French.-Nos. 1 and 2 are poor varieties of the branched black.
The Swiss, as already stated, is as yet a failure, except in straw, the grain is changing in colour from gray to a dull white, and the head is open and badly filled.

19.-The Growth of Nine Spring Wheats During 1880.

These are from the experimental plots, and have all been under trial since 1877, except Champion, White Fife and Gordon. We have now agreed to place Lost Nation and White Russian together as one wheat in straw, head and grain. Their conduct has been highly satisfactory ; true to kind, good croppers under a variety of conditions, no more liable to diseases than others, maturing in good time, tillering well, giving a fair amount of straw, and not bad to feed. Hundreds of farmers throughout the Dominion have bought several thousand bushels from us, and in no case have we heard of disappointment ; on the contrary we cannot supply the demand.

The Rio Grande is a medium bearded wheat, of good length of head, somewhat open has been hardy, reliable to kind, with grain of average colour, and sample otherwise.

The Arnautka is already well known in some districts of the Province, being admired for its grand bold square head and beard, and grain perfect in colour as regards transparent brightness : berries are large, oblong, with a flat bosom and highly flinty in structure. We have no experience of its milling qualities, but hear of appreciation as a strong one for mixing with others. The plant stoolc very poorly-not more than two or three per seed-and gives a third-class straw in quality, being pithy and weak at the neck. Its remarkable compact chaffy head is crowned with a thick beard six and seven inches in length.

The Champion is Rio Grande in appearance in head and straw, but having a shorter, lighter coloured berry. We still wait its magnificence.

The White Fife has a head superior to the size of berry it produces, but the berry is compact, though small, good coloured, and has produced considerably well; the bosom of the berry is too open and deep; it has the appearance of a good miller.

The Rice or Goose seems to me to be another name for Arnautka, or the Arnautka may have its origin from the Goose or Rice. The story is, that grain got from the crop of a wild goose, whieh had fed upon wild rice, was systematically cultivated until it attained its present form. We have had grain direct from the crop of a wild goose, which was long, flinty, bright in colour, and much like overgrown rye that has since by cultivation taken substantially the character of Arnantka, Rice and Goose wheat. The head of this Rice or Goose wheat is a smaller type than the Arnautka we have had from the States, and parts of Ontario.

Farrow or Red Chaff, has been a good cropper in Ontario for many years, but not a favourite with the millers. It is a reliable plant, requiring frequent change when off the limestone formations. Grain of a darkish hue, medium in size, and regular.

Gordon may be a renewed Fife-the good old Fife-or a larger form of the White Fife, or indeed but a new name to some such type of plant, set agoing by a pushing speculative party

Altogether then, we have had much more success in the growth, establishment, and spread of spring wheats than we have had with winter varieties. All our physical conditions are in favour of these, and it is possible our bent has been more in this direction. I may mention that our field result of White Russian spring wheat for 1880 was over twenty-two bushels per acre, and none under sixty-two pounds per bushel.

VIII.-ARBORICULTURAL.

1.-The Ontario Farmers' Text Book.

We took up a text last year on this important subject, the substance of which stood thus

1. Be your own nurseryman, by setting aside part of the garden to be laid with young trees from your own bush or that of your neighbour.
2. There are as many suitable plants in the uncultivated clearances of the country as would rep' .nt every cultivated acre of the old Provinces.
3. Do not grudge a piece of cultivated land for tree planting-the gain will be more than a grain crop, and in any case you can seed down to hay and permanent pasture.
4. The objects of planting, or replanting, are :
5. Immediate shelter.
6. Ornament.
7. To assist in regulating rainfall and general temperature.
8. As a profitalle crop.
9. The best shelter is froin fully developed trees standing at proper distances apart -not from a close body of branchless stems.
10. Ornament is secured only by allowing every tree room to grow in accordanse with its individual character-never by crowding.
11. To assist in regulating rain-fall and temperature suitable to the wants of the country, we must have a national policy based upon scientific and practical facts in past. arboricultural history.
12. Never plant trees upon naturally wet ground (our heaviest swamp sorts-so called -are upon comparatively dry spots).
13. Our native trees require no manuring, trenching, or breaking up of the surface, in preparation for replanting.
14. Spring planting is generally more successful than in the fall.
15. Choose mild, calm weather, between 1st April and 1st June.
16. Select plants from the clearings or unshaded openings in the bush, never from under older ones, and as much as possible from soil and exposure of a similar character to that to which they are to be removed.
17. Hardwood trees are safer to transplant than the pine and spruce.
18. The best sorts are maple, birch, beech, ironwood, ash, elm, butternut, oak, and hickory, with pine, spruce, and hemlock to intermix.
19. To save time and insure better success, remove the plants from the bush, or the public nursery, in October, and trench them close together, but separately, in dry soil, cov-
ering firmly with earth.
20. Before trenching, cut off any over-lengthy rough root, and branch, but take care of the small fibres and the top leader.
21. Avoid tall branchless trees that have been growing close together-a two or three feet one will do better than one ten or twelve feet it length.
22. In removing from the bush, dig all round before lifting; do not pull much nor shake off all the earth.
23. Never forget that drought is more dangerous than a little frost.
24. Two men in one day will dig up, waggon home, and trench in the garden nursery, as many as 300 plants from your own bush.
25. Choose calm cloudy weather, when the soil is moist, but not wet, for planting from the nursery.
26. Make the pits one-half wider and deeper than the roots require, and never plant deeper than one inch over the old mark on the stem.
27. Do not plant while water is in the pit.

direction

25. The object of planting so close as seven feet (900 per acre) is to afford individual shelter, mutual support in several physiological relations, give plenty allowance for failures, and to thin out as required for purposes of profit and individual necessities of trees.
26. Two men should pit and plant 150 trees per day.
27. Spread out all fibrous roots in the pit, fill in the top or best loamy soil first, shaking the plant and gently pulling it up a little; when fully half the earth is in, tramp firmly with the foot, and finish up with the remainder of earth. 28.
certain.
28. Use a variety of trees, not one or two species only, as the success will be more
29. D the plants.
growths from trisks from animals or breaking by snowdrifts, and allow no sapplings or
30. Sheep may be admitted terfere with those planted.
31. The second year is the trying one: you may have buds and for twenty. and a dead plant the second, if good the third year, congratulate.
32. Make good any deaths for the first three years, not afterwards.
33. Always have a few hundred plants ready in your garden nursery.
34. Never burn the grass among your trees, but use the scythe when too rank.
35. Never allow the drying of clothes on the young plants.
36. Do not prune the pine, spruce, or any of the resinous sorts.
37. Thin out the least valuable sorts, or those you do not wish to retain permanently, whenever they begin to interfere six inches into the branches of each other.
38. It is no over-calculation to say that where the influence of trees is needed, the gain, after fifteen years, will amount annually to $\$ 200$ over a hundred-acre farm.
39. If you plant at 12 or 15 feet apart you will be ten years behind those at seven feet, when each are 25 years old.
40. We do not deserve well of our country if we cannot establish trees at a cost not
41. The cost of planting one acre, irrespective of fencing, which will depend upon form and any advantages from local causes, will be about:-

Lifting and trenching 900 plants in October Opening 900 pits	\$1000
Planting	1700
Pa	800
Keeping for three	\$35 00
	1000
	\$45 00

43. If you purchase from public nurseries, the cost will be about $\$ 100$ more.
44. Get your Township Council to petition Government to institute a regular system

Precep
On the acre was la uncultivate were left fr aspect, is n were fenced Pits at 7 fe diameter, a taken from.

With t
native trees lings, and t plants about June rough advice in n

The tr nut, oak, el to over-size keeping nun with the wh

Tr

Cost :-

It is pla of his horses

[^4]
2.-Re-planting Uncultivated Land with Bush Trees.

Precept without example not being much, you honoured me with instructions to set the example, building upon the recommendations thus paragraphed :

On the south-west of the bush land that lies north-east of the College buildings, one acre was laid off for this experiment. It is simply bush land with its stumps and uncultivated grassy surface, never having been touched by the plough; three shade trees were left from the clearing up; the soil consists of a light clay loam with a south-western aspect, is naturally dry, and sheltered from north and east by old trees. Two of the sides were fenced, and the other two had to be erected with the best of old cedar rails, pro tem. Pits at 7 feet apart were dug all over, thus making 900 to the acre ; size of pits 18 inches diameter, and one-third deeper than any individual tree required. Planting was overtaken from. the 15 th April to the 5th May.

With the exception of some European Larch, and a present of several varieties of native trees from D. Nichol, Esq., of Kingston, the trees were got from our own bush seedlings, and those of some of our neighbours within a radius of ten miles; average height of plants about four feet. Pruning of irregular branches was done on 18th May, and on 5th June rough grass was cut to mulch trees. Twice during the season we attended to the advice in number 29.

The trees were principally maple, beech, birch, black ash, black walnut, butternut, oak, elm, balsam, ceiar, pine, basswood. Pine and balsam were a failure, owing to over-size and a dry season; the greater number of the hardwoods have done well, but keeping number 32 advice in view, it will suffice meantime to record the living and dead, with the whole cost of operations.
Cost :-

It is plain that were the farmer not to put any value upon his own labour or that of his horses, the actual cost would not exceed $\$ 30$ per acre.

3.-Tree Seeds. (Plot 30, Field C.)

This spring, we received a number of tree seeds through the Fruit Growers' Association, to be tried here.

The soil is a clay loam, and dry.
May 18. Sowed the seeds in rows, sixteen inches apart.
The following failed, or have yet failed, to germinate:-
Indian Cedar (Cedrus deodara).
Norway Maple (Acer platanoides).
Scarlet Maple (Acer rubrum).

$$
\begin{aligned}
& \text { Trees alive on 31st October . } 715 \\
& \text { " dead " " .. } 185
\end{aligned}
$$

Sugar Maple (Acer saccharinum).
Common Berberry (Berberis vulgaris).
Sasafras Laurel (Lauras sassafras).
Florida Dogwood (Cornus florida).
Virginian Snow-flower (Chionanthus virginicus).
Cockspur Thorn (Cratagus crus-galli).
American Service Tree (Pyrus americana).
American Elm (Ulmus americana).
Western Plane (Platanus occidentalis).
English Elm (Ulmus campestre).
Narrow-leaved Kalmia (Kalmia angustifolia).
Poplar-leaved Birch (Betula populifolia).
Pliant Birch (Betula buta).
The following have made a good start:-
Tulip Tree (Liriodendron tulipifera), about one-eighth of the seed has grown.
Deciduous Cypress (Taxodium distichum), one-quarter has grown.
American Beech (Fagus ferruginea), one-half has grown.
Panicled-flowering Kolreuteria (Kolreuteria paniculata), very few plants have grown. Canada Judas Tree (Cercis canadensis), very few have come.
Honey Locust (Gleditschia triacanthos), nearly all are growing well, and at present stand two feet high.

THE SOILING OF CATTLE IN CANADA.

We are accustomed to hear of the different systems of farming called grazing, grain growing, root farming, dairy farming, and mixed farming, in each and all of which the live stock go and come from field to field in summer, according to conditions of cultivation and the various modes of management.

In these examples the animals search for food, and must be satisfied with what they find within a limited area, thus differing from those in the wild state, only in having a more choice bite for a certain time, but with less variety and fewer successions of crops, for nature, after all our combination of science and practice, gives a more regular rotation of grasses and other herbage than the best of our model farming now-a-days.

Were we, therefore, to think of the summer management of cattle on the patriarchal plan of moving from place to place, or having the range of a common bush, we possibly could not improve upon them in the desire for more palatable milk and good beef, in moderate quantity, at the least possible cost. But, comparatively new country though we be, our bounds are becoming keenly outlined, and every foot of land clearly defined. The day is not far off-in Ontario at least-when every fence will have its own place economically, when every open ditch will be grudged, every wide, private lane tightened up, every cairn of stones and swamp corner be greedily reclaimed, and every tree have its proper place on our farms.

As an agent towards such an end, the comparatively new and little understood system of cattle management called "Soiling" will have much to say ere long.

To show this in the most practical shape is my present duty. I desire distinctly to confine myself to the produce of certain crops used for this purpose, as against the prevailing summer management of cattle we call "Grazing." It would be easy to bring in
the importa and take fro seasons, and October, wh lowed to sea

First, old pastures of grasses of herbage our winters sufficiently permit the and temper: the things in ticulturist public mark nence amon

On an cut fodder 1 there is gro inside. So, foreign mar some other of milk.

With question bef the indispen the up-keep sense? Ind nations wou of that suns from a bed

We wa months of t

1. An
2. Rep
3. A sı
4. Kin
5. The implies muc
6. Hig

I have consideratio can be culti parts of Car
the important story of the use of auxiliaries in both cases, but to do so would complicate and take from the value of the comparison. Soiling, then, is the housing of cattle at all seasons, and distinctively, in our circumstances, from the middle of April to the middle of October, when all their food is taken to them from the fields, in place of their being allowed to search for themselves.

First, what is our position in Ontario as cattle graziers? We cannot secure the rich old pastures of England, rich as our soils are, because we cannot secure variety enough of grasses (which means 15 to 20 kinds) to give a close bottom and offer that succession of herbage best for the health and growth of animal life. Our droughts, and especially our winters, are against this; we have rain enough per annum, but it is not distributed sufficiently to give the regular top-dressing so essential to continuous greenness. Here permit the remark that as we have ourselves been the cause of this irregularity of rainfall, and temperature, to a certain extent, so it is left to us to make good the balancing of the things in nature that have been displaced-how and where, the meteorologist and horticulturist will explain by-and-by, for, so sure as we are opening ourselves to the world's public markets, so sure are we bound to leave no stone unturned in view of national eminence among them.

On an average of seasons, on putting a cattle beast to the field, without any grain or cut fodder helps, there is no going back, neither is there much progress in flesh making; there is growth of bone and muscle, but comparatively little finishing on the outside or inside. So, then, we can make the frame in the field, but not complete it for the home or foreign market. In this respect, therefore, we cannot possibly compete, at present, with some other parts of the world. What applies to beef making applies to the making of milk.

With unreliable pastures for continuous progress in milk or beef production, the question before us is, how can we better ourselves? We have the soil, or soils; we have the indispensable sunshine, as also the irregular showers, and all the essentials towards the up-keep of fertility. Have we the enterprise, or, shall I call it, the necessary common sense? Indeed, history, past and present, shows that, with such a sunshine as ours, some nations would bein possession of an enormous agricultural wealth, by the simple economy of that sunshine in the production of repeated crops of fodder plants in one season, even from a bed of sand.

We want then to secure such a succession, or association, of green fodders during six months of the year, as shall secure the following objects:-

1. An early cut.
2. Repeated cuttings of the same plant.
3. A sufficient number to offer an unbroken supply of succulent herbage.
4. Kinds to differ considerably in their constituent elements.
5. The largest possible produce per acre, consistent with good husbandry, (and this implies much).

6. High fattening and milking properties.

I have no desire to lengthen introductory remarks, and shall now submit for your consideration, first, a diagram, showing what crops, in our present knowledge of things, can be cultivated in view of these objects. In this, we have the experience of different parts of Canada, and particularly that of the Ontario Experimental Farm.
Green Fodders for "Soiling" in Canada.

In this w
to the end of and the time date of sowing one season is the quantity 0 and adjoining, the value per

Good hay ratio or nouris -and they ar example, lucer

If hay eq the feeding val ferent kinds w the percentage

The mana form subjects f

To recapit coming about t end of that mo when moisture about 50° and months of dry

Repeated, twice from san prickly comfrey two also by tw and cabbage, so of fodder plant As many during the who are not in a p dairyman.

On examin are less than th place of any wa of offerings befo

It would n especially to no ent feature, ma so fresh and goo to, it may be, th

I cannot re and feeding the and careful use crop, is another

As is well health and the the nourishing v

Rich old p valuable fodders place as an actu comparing other

If then goo nature's making

Description of Diagrak.

In this we have an exhibition of twelve varieties of plants from the middle of April to the end of October, in the order of earliness. Each horizontal bar represents one acre, and the time during which each plant can be cut and used on an average of seasons. The date of sowing is shown by a cross, and the number of times the same plant can be cut in one season is given in the first column after October. Following the latter information is the quantity of green fodder obtained per acre from any of the kinds all over the season, and adjoining, the weight of these in the dry or hay condition. The last column contains the value per acre of each kind, that value being regulated by the following circumstances :

Good hay from rich pasture is valued at an average of $\$ 10$ per ton, and the feeding ratio or nourishing properties thereof stands at forty per cent.; taking these as standards -and they are now recognized as such-we would have this calculation, as regards, for example, lucerne:

If hay equals $\$ 10$ per ton and a feeding value of .40 , what is four tons of lucerne, the feeding value of which is .38 ? The answer is $\$ 38$ per acre, and thus all over the different kinds we obtain their comparative values-the figures on the horizontal bars being the percentage of nourishing properties in each case.

The management of each crop and the characteristics of the several plants should form subjects for discussion another year.

To recapitulate, by the points sought for, we have, as regards an early cut, lucerne coming about the middle of April, followed by sainfoin a week later, and red clover at the end of that month, thus obtaining three tons per acre from three varieties during a time when moisture is plentiful and the temperature rarely below freezing point, the average being about 50° and the maximum 70°. This is th welcome start of the season, after the five months of dry fodders, roots, and grain.

Repeated, or rather, continuous cuttings o' the same spot or plants, four from lucerne, twice from sanfoin, twice from red clover, twiee from fall rye; and at least thrice from prickly comfrey; two sowings at different dates of tares and oats give other two cuttings ; two also by two sowings of rape, two from two sowings of millet, and one each from corn and cabbage, so that in all we have no fewer than twenty-one cuttings from ten varieties of fodder plants.

As many kinds, therefore, as should offer an unbroken supply of suceulent herbage during the whole summer months, for without tenderness, freshness and regular supply we are not in a position to impress the value of this system upon the average farmer or
dairyman.

On examining the diagram, there is no time of the six months during which there are less than three sorts on hand, and in some months as many as eight; and indeed, in place of any want, the difficulty during July and August is to keep up with the succession of offerings before they become woody or matured.

It would not be difficult to add a few other fodders of less importance to this list, and especially to note a fact that on well arranged farms, where root cultivation is a prominent feature, mangolds are generally in such quantity, and have come through the winter so fresh and good, that they are not finished until June-thus, then, a very valuable help to, it may be, the scant early green fodders.

I cannot reccommend the practice-a very old one-now less necessary, of thinning and feeding the leaves of turnips and mangolds, during their growth, but the systematic and careful use of both bulb and leaves of those removed to make room for the permanent crop, is another thing, and a very important auxiliary to what we are treating upon.

As is well known, all animal life must have a change of food in order to secure health and the best production of flesh and milk, and so we are called upon to examine the nourishing values of these various plants as got month by month.

Rich old pasture, with its many varieties of grasses, is not only one of the most valuable fodders, green or dry, as is well known for milk making, but it also takes a high place as an actual fattener of animals; for these reasons it is used as a standard for comparing other green fooders with, and accordingly we shall adopt it on this occasion.

If then good pasture, with its 40 per cent. of nourishing properties, is a standard of nature's making as improved by man for all the essentials of animal life, it must be im-
portant to see how far our ten kinds of special green fodders come up to this standard from month to month.

Lucerne leads with . 38 ; millet, second, with .36 ; red clover having .31 ; and sainfoin, fourth, with .28 per cent.

Three of these in April make a large start, therefore, with an average of 32 per cent., and it will be observed that all the early croppers are very much superior in their feeding values to those that come after June-millet excepted. There is then a range of no less then . 18 -from .20 in the case of corn, up to .38 in that of lucerne-and the fact of this difference in feeding value implies corresponding differences in the actual elements of the plants, so that we certainly have variety enough. I shall not labour this chapter with any detailed chemical analysis, as I trust it is clear that along with the variety of plants, we have also a variety of elements for all healthy and rapid production of flesh and milk-the man of science says so, and practical experience says so. Of course the mean of 29 per cent. over the season is much below the standard of 40 , and this again points to the help wanted by some form of grain, should higher excellence be desirable, although many good managements consider it really unnecessary to give grain for milk where green fodders are plentiful and various.

We have now therefore established two important things :
1st. That Canada can grow the necessary variety and quantity of green fodders.
2nd. That they are well adapted to the sustenance of animal life for the purposes in view.

The next question is, what is the proper position of "soiling" in association with grain, root and hay cultivation, and what can be done on a farm, say of 100 acres ?

There can be no idea of recommending soiling alone as a separate system of farming in this or any other country ; the essentials of life cannot be neglected, nor can the average farmer run the risk of reducing his income by placing all his faith in one or two articles of production only.

There must be provision for horses in hay and grain; pasture for sheep and yearling cattle ; and roots, straw, and grain for cattle, sheep and pigs in witter; and grain and potatoes for family use. By grain I mean wheat, oats, barley, and peas ; and roots include mangolds, turnips, and carrots. We have to deal with the following classes of crops in our rotation.

> 1.- Roots.
> 2.-Grain.
> 3.- Hay.
> 4.- Pasture.
> 5.--Greun Fodders.

The green fodders are divisible into-
1.-Cereals, one-half.
2.-Clovers, one-fourth.
3.-Foliage proper, one-fourth.

On soil of an average texture, the best rotation in my opinion is:-
1.-Peas and grain fodders.
2.-Wheat and oats.
3.-Roots and foliage fodders.
4.-Barley or wheat (seeded) and clover fodders.
5.-Hay.
6.-Hay.
7.-Pasture.

The area of each class on 100 acres would be:-

Of the va Luce
Sain
Red
Rye
Tare
Pric
Mill.
Rape
Corn
Cabb

The syster
20 acres under
Taking a
rotation of crop tion could poss the seven cours company the 1 fere with syster

The sod fr fodders, these g wheat and oats fodders in the with roots prop rests the backbo clover) are laid alone as the gre hay, with the ex

In all this farming and ac cess of grain and ment, with suffic

The 20 acr
management, 23

$$
W_{1}
$$

Allowing fo fattening, breed along with such course according head, or nearly o dian experience remember, but w progressive cond age, no stinting acre field in sear

We have, th
" soiling," as aga
one-tenth of dry

5.-Hay	14 acres
6.-Hay and pasture.	14 if
7.-Pasture	14

Of the various green fodder crops there would be:-

$$
100 \text { acres. }
$$

The system altogether then is practically one of five divisions, having equal parts of 20 acres under roots, grain, hay, pasture and green fodders.

Taking a clay loam as the average texture of Canadian soils, it is obvious that a rotation of cropping agreeable to all sound theory and practice, and by which no exhaustion could possibly take place even under careless management, would be what is called the seven course, as laid down in these notes. By this our green fodders would accompany the 1st, 2nd and 4th divisions after sod-breaking, so as to agree, and not interfere with systematic rotation and management over the whole farm.

The sod from one or two years' pasture is broken up and cropped with peas and grain fodders, these grain fodders being corn, tares and oats, millet and rye; the second year is wheat and oats in proportion of 5 and 10 respectively; the third in roots with foliage fodders in the shape of rape, cabbage and kale and prickly comfrey-all the latter, as with roots proper, admitting of thorough cultivation, manuring and cleaning, upon which rests the backbone of this system. During the fourth year grass seeds (of timothy and clover) are laid down with barley or wheat, and part, if deemed necessary, with red clover alone as the green fodder section of this division, and of course the 5 th and 6 th years are hay, with the exception of, say, one-half of the 6th as pasture; 7th year pasture.

In all this there is an easy and luxurious cropping, suitable to the best of mixed farming and according with the "soiling" system under consideration. There is no excess of grain and hay, but thorough cleaning and strengthening of soils by root management, with sufficient rest (so called) by depasturing with sheep and young cattle.

The 20 acres devoted to green fodders, will on an average, give, under the best management, 234 tons per annum.

What can be done with this amount of Green Fodders.

Allowing for waste, one cattle beast of average size, age and circumstances as regards fattening, breeding, or milking, will consume daily 100 lbs . of these green materials, along with such dry fodders and grain as may be considered desirable-more or less, of course according to objects. For the six months named, this means the maintenance of 26 head, or nearly one and one-third ($1 \frac{1}{3}$) animal per acre. Now, it is well-known in Canadian experience that it takes fully three acres of ordinary pasture-not poor pasture remember, but well laid down timothy and clover, to keep one of such cattle in a full progressive condition-either laying on fat decently well, or milking well over the average, no stinting or having the animals walking two miles a day over and over a twenty acre field in search of a bellyfull.

We have, then, the striking difference of four (4) to one (1) meantime, in favour of "soiling," as against grazing, without allowing for any other facts, for or against. Were one-tenth of dry fodders-such as hay or straw-added to the green ones, six more ani-
mals can be maintained, but our present purpose is to follow the exact value of the soiling crops alone.

It is rare in these times to find more than 15 head of cattle beasts in all on a hundredacre farm, summer and winter. So supposing that one-half of the soiled animals, in our example case, were for the butcher, and the other half supporters of the dairy, there would be an additional five head of yearlings and five calves, with one bull, and one score of sheep. The sheep and yearlings would be grazed, but the calves and bull housed and receiving part green fodders ; these would be equal to four (4) additional average sized cattle, and so reducing the 26 to 22 head that can be maintained from 20 acres of soiling materials. Still additional to this would be what would, or should, be used for horses and pigs, so that altogether we arrive at the safe standard of 20 cattle, or one to each acre.

Soiling in Canada then is as 3 to 1 , and by the system which I have thus sketched it is plain that by simply setting aside 20 acres from the 100 , so as not to interfere with the reliable and profitable farming called mixed, or alternate, we can fatten, or dairy, 20 cattle in place of 7 during the six months of spring, summer and autumn.

What now is the financial position in the system?
To this, sketch first the general management that would be adopted: Upon a hun-dred-acre farm such as I have introduced, one man with horse and cart can easily undertake the attendance in every respect of these 10 fattening cattle, 10 cows, 5 yearlings, 5 calves, 1 bull and 20 sheep. Any of the yearlings intended for breeding would be grazed during their second summer, but those for fattening should be systematically housedgetting one hour's exercise daily ; the calves would also be under cover, the sheep on pasture of course. At the most then, the cattle man would have 30 head to be soiled. After feeding and cleaning up in the morning he has to cut and cart home 2,500 lbs. of green fodder, in two loads, for the evening use, and as all green fođders are better to be slightly "wilted," not heated, ere offered, he would thus have to secure another cut in the evening to be used for next morning's meal.

Financial Result of Six Months "Solling" from Twenty Acres.

10 Fattening cattle : 108 tons green fodders at \$2.15. (See diagram) $\$ 232$
Proportion of attendance 50
$\$ 282$
10 milk cows : 86 tons. $\$ 184$
Proportion of attendance 40
Milking 20 $\$ 244$
Total debit $\$ 526$
Increase on 10 fattening cattle $\$ 5$ per head per month $\$ 300$
Manure (bedding inclusive) 60 tons 50
$\$ 350$
Milk from 15 cows ; 180 days, 10 quarts at $1 \frac{1}{4} \mathrm{cts} . . \$ 225$
Manure 50 tons. 40
$\$ 265$
$\$ 265$
40 tons green fodder supplied to other cattle 86
Total credit $\$ 701$
cattle:Twenty
Rent
Pro
$3 \frac{1}{2}$ Esti

In the ca equal to nearl

I am han or milk revenu profits. All t] roadside pickir in each case.

Again, th of grazing, in

1. Where maintain at lea three acres to 2. Were a large savir Where we good or poor is fodders.
2. We ob manure by soil the court. I a yard manure in on the part of pendent as to b as the mere ove wealth of his f preserve, and h
3. The lar
4. Gives g greater comfor
5. But it variety of crops say beat at onc and too much 1 Let him contin farm, so as the fish life, as wel
6. It is we good early past winter confinem under which the tainly be much not so much mi falling off, thro
the soil-
hundred1s, in our ry, there and one 11 housed average acres of used for one to ched it is with the airy, 20
n a huny underlings, 5 egrazed ousedon pasAfter of green slightly evening

Twenty acres under ordinary good pasture and seasons, will graze seven head of

> Rent or value of 20 acres at $\$ 3$
> Proportion of management
> $\$ 60$

$3 \frac{1}{2}$ milk cows, 150 days, at 8 quarts 60
Estimate value of manure left........................... 10
$\$ 67$

Credit balance............................. $\$ 53$

In the case of "soiling," a clear profit of $\$ 175$-and in that of grazing $\$ 53$-the one equal to nearly three rents per acre, the other hardly one rent.

I am handling a strict debit and credit account, and not speaking of so much flesh or milk revenue per acre, without charging, what very few farmers do charge, in estimating profits. All this, remember, without any help from bush or stubble pasture, and any roadside pickings-no meal, bran, or slops of any sort, but the plain produce of the soil in each case.

Again, then, let us note that "soiling" in Canađa means fully three times the profits of grazing, in addition to other considerations now to be examined.

Some of the Advantages and Disadvantages of Solling.

1. Where land is a consideration, there is a great saving of it by being enabled to maintain at least one cattle beast per acre, in place of having to calculate on allowing three acres to graze one.
2. Were we to reckon by the amount of fodder produce (soiling, or pasturing), there a large saving of food in avoiding destruction by cattle traffic.
Where we have apparently useless quantities of any kind of straw, chaff, and haygood or poor in quality-they can be safely used in association with the moist green
fodders.
3. We obtain fully double the quantity, and proportionately much more value, of manure by soiii g than by allowing it to have its own way in the field, the roadside, and the court. I am of opinion, that were we able correctly to estimate the value of farmyard manure in connection with this matter of soiling of cattle, there would be no concern on the part of the farmer as to any other form of profit. He would simply be so independent as to be able to throw all beef and milk into the bargain, or allow them to stand as the mere overflowings of a system that puts him in possession of all the past and future wealth of his fields. Would the day were here when we all knew how to make, how to preserve, and how to apply our cattle droppings.
4. The larger produce of flesh and milk on an average.
5. Gives greater variety of materials, allows uniformity in management, which gives greater comfort and health, and less liability to accidents.
6. But it requires greater care and intelligence to establish and maintain such a variety of crops; so, if this is to be put up as an objection to the system, we had better say beat at once. When any farmer begins to speak about "troubles," and first expense, and too much looking after of things, then the sooner he falls into the ditch the better. Let him continue his successive crops of wheat, and give his cattle the range of all the farm, so as the earlier to convince him of the high life he is-leading-an extravagant, selfish life, as well as a dangerous one.
7. It is well known in soiling experience that cows give a greater flush of milk from good early pasture than from having the food taken home to them. The change from winter confinement to the rich and plentiful crop of grass, along with the easy conditions under which they obtain it, does this. Were this grass rush to continue, there would certainly be much less in favour of housing; but it does rarely keep up, and, while there is not so much milk in April, May, and part of June, there is a continuous flow, with no falling off, through July, August and September.

Requisites in Cropping of Green Fodders.

1-Soils: Depth, dry, rich sub-soil.
2-Seed: Lucerne, 20 lbs.; Sainfoin, 3 bushels; Red Clover, 20 lbs ; Rye, 2 bushels; Tares and Oats, 2 bushels and 1 bushel; Millet, 1 bushel; Corn, 3 bushels; Rape, 8 lbs .

3-Cultivation: Broadcast, drilling, horse-hoeing.
4-Manuring: Liquid, Special, Farm yard Manure.
Essentials: A rich soil, moisture, and heat.

THE PRACTICAL APPLICATION OF SCIENTIFIC KNOWLEDGE TO THE FEEDING AND FATtENING OF LIVE STOCK.

We tried to throw some light upon this subject in last year's report. It is surely time che ordinary farmer were shown a few steps in such a valuable ladder. I mean the actual use in practice of what the chemist says, and what experience says, is the feeding property of each of our animal foods. He has hay, straw, grain, and some special preparations, which he is told are good for certain purposes, but is not given any reasons for their particular use. In place of being only the agent in their transfer, he should also be the regulator according to the requirements of each class of animals, whether for (1) ordinary growth in youth, (2) rapid growth in youth, (3) production of milk, (4) production of beef or mutton under various conditions, (5) working animals, and (6) breeding animals.

In applying what we know of this subject to our own case at The Ontario Experimental Farm, I beg to submit first of all, the list of classes of animals in the order in which, in my opinion-opinions differ no doubt-they should be fattened or fed, beginning with those requiring most flesh and fat forming materials, and gradually ranging into those that should receive the least.

Order of Requirement of Fattening Properties in Food for Various Classes of Live Stock, at the Ontario Experimental Farm, during Winter, 1880-81.
1.-Fattening old oxen,
2.-Three-year-old fattening steers.
3.-Two-year-old " "
4.-Fattening wethers.
5.-Driving horses.
6.-Farm horses (winter).
7.-Bulls.
8.-Rams.
9.-Breeding cows.
10.-Yearling steers.
11.-Heifers.
12.-Ewes.
13.-Dairy Cows.
14.-Lambs.
15.-Calves,

Second.-We must be in possession of the
Order of Fattening Properties in Food to be used this Winter.
1.-Oil-cake contains 82 per cent of fat and flesh materials.
2.-Barley " 80 "" "/ "

2.-Barley	"	80	"	"	"	"	
3.-Corn	"	79	"	"	"	"	"
4.-Oats	"	75	"	"	"	"	"
5.-Pease	"	73	"	"	"	"	"
6.-Bran	"	64	"	"	"	"	"
\%-Hay	"	59	"	"	"	"	"
8.-Pea straw	"	41				"	

Horses-

Farm.
Buggy
Cattle-
Oxen $\quad \mathrm{Fa}$
Steers, 3 years
Steers, 2 years
Steers, 1 year
Bulls
Breeding Cows
Dairy Cows..
Heifers
Calves

Sheep-
Wethers Fatter
Rams
Ewes .
Lambs.
11．－Wheat straw＂${ }_{33}^{37}$＂＂＂＂＂

12．－Roots（mean）＂ | 9 |
| :---: | ＂＂＂＂＂

Cattle Fodder．
1 of hay－ 59 ．
1 of oats－41．
1 of corn -37 ．
1 of wheat－ 33 ．

Sheep Fodder．

Half hay－ 59 ．
＂pease－41．
Mean 50

$$
\text { Mean } 42 \frac{1}{2}
$$

From these we can now make a
Tabular List or Guide to the Feeding and Fattening of our Live Stock during Winter， 1879－80．

No animal to get more than 15 lbs ．fodder or hay， 12 lbs ．of meal， 90 of roots， 3 of oil－cake， 5 of oats， 2 of pease，or 3 lbs ．of bran．

CLASS OF ANIMAL．	Food and Daily Allowance Per Head in lbs．											
		｜	既	筞	\％	｜l｜l｜						
Horses－												
Farm．												
Buggy		$\cdots{ }^{12}$			5				\ldots	11.56	60	181
			4	1	72			．．．	\cdots	11.93	65	189
Catte－												
Oxen Fattening．．．	15		2									
Steers， 3 years＂	12		2	90				．．．．	3	27.69	23	122
Steers， 2 years＂	10		2	60	\cdots	10			2	21.32	22	86
Steers， 1 year			2	50		8			2	17.94	25	72
	8	．．．．	2	40				2		9.10	17	52
	9	．．	2	50			2		\ldots	11.23	18	－63
Breeding Cows	9		2	50								
Dairy Cows．	8		2							10.10	17	62.
Heifers			2	40			$\frac{1}{2}$			8.48	16	$50 \frac{1}{2}$
Calves	8		2	40			1			9.08	17	51
	6		1	20			$\frac{1}{2}$			5.19	19	
Sheep－												
Wethers Fattening	5											
		－						1	$\frac{1}{1}$	5.00	324	1513
Ewes ．．	5		$\frac{1}{2}$	6				1		4.09	32	12ね
Lambe	5		$\frac{1}{2}$	5				1		4.00	35	11\％
Lamb．．	3	．．．．	4	3			．．	4		2.11	33	64

Consecutive Order of Animals in Feeding, with Total Values or Feeding Ratio for Each.

	Feeding Ratio.	Per cent. of fat.
1.--Fattening Oxen	27.69	23
2.- " three year old Steers	21.32	22
3.- " two " "	17.94	25
4.-Driving Horses	11.93	65
5.-Farm Horses (winter)	11.56	60
6.-Bulls	11.23	18
7.-Breeding Cows	10.40	171 ${ }^{1}$
8.-Yearling Steers	9.10	174
9.-Heifers	9.08	17
10.-Dairy Cows	8.48	16
11.--Calves	5.19	19
12.-Fattening Wethers	5.00	324
13.-Rams	4.09	32
14.-Ewes	4.00	35
15.-Lambs.	2.11	33

Now, 10.40 to the total quantity of 62 lbs. consumed is equal to $17 \frac{1}{2}$ per cent. of fattening properties. Thus, then, we say the farmer can easily make up for himself a yearly guide to the winter management of his live stock, with particular regard to the making of bone, muscle, blood, milk, flesh and fat. If he has old working oxen to be fattened off, the mean of the fodder, and of bran, roots, corn and oil-cake may safely reach as high as 27.69 per cent. in fattening materials, according to quantity consumed, and having due regard to the more cautious up-bringing of calf life, the ratio of fat to other materials in the kind and quantity of food to be given, should range about 5.19 per cent. Between these probable extremes, we have, in our own case this winter, as thus illustrated, nine others, all distinct in themselves by reason of class, age, and purpose. The sheep, in four classes, are similarly treated.

HAND-BOOK TO CANADIAN CEREALS.

In pursuance of the resolution and plan proposed and begun in my Annual Report for 1879, under this heading, I take pleasure in sketching the character of some sixty varieties of Bald Winter. Wheat that have been cultivated by us during the past five years. It will be difficult to avoid repetition of terms, so the more nice readers will have to give way meantime to those who look mostly for practical information.

Large \mathbf{v} variety ; to sc ber of berries tity in thick certain clima and confine t number of be way it is pres by the face, t and overlap at an angle or floret, som to the inch, a

In judgi number and d
1.-The white and red means that so or having a bl
2.-Size, some large anc 3.-Struc and meally.

> 4.-The unless when
5.-The
6.-The and flat one.
7.-Plum
but that the be want of food-8.-Smell
9.-The T 10.-The and the blade

Miscellane
11.-Haro
12.-Weig
13.-Com
14.-To ti
seed, under goo
15.-To ha
16.-The s

Arnold's H also strong, anc small, moderate darker, and shri with longer berr to 1879,-grain

Arnold's H The sample got w much inferior, sm not so well filled Arnold's V^{2} Medal. The crop

Large value in small space should be our first idea of a typical wheat plant of any variety; to secure this the head, or ear, should be compact, having the most possible number of berries in the length and breadth, and covered or protected by the minimum quantity in thickness and length of chaff, or awn. Berries can be too close on the head in certain climates, and may be too heavily overlaid with covering so as to hinder ripening and confine their individual bulk. The form of head best calculated to carry the largest way it is presented with sufficient air room for proper maturing is that which, in whatever by the face, the face beinge, will appear of almost equal breadth, whether by the side or and overlap each other at an angle of forty-five or floret, som to the inch, a thin one two.

In judging the grain of wheat, the points are so important that it will be best to number and describe separately:
1.-The first thing that strikes the eye is colour. Formerly wheat was classified by white and red, but now when we speak of colour as a point of merit in any variety it means that sort of transparency or brightness which reflects light, as opposed to dulness, or having a bleached appearance. This should be uniform and not parti-coloused.
2.-Size, or evenness of sample, refers to uniformity of berries to each other, not some large and others small, but nearly all alike-whether large, medium, or small-sized.
3.-Structure characterizes the gritty, hard, or flinty kinds from those that are soft and meally.
4.-The Skin may be thick or thin, rough or fine, and should always be smooth, unless when curly from its natural fineness.
5.-The Form, or outline, of the berries should he alike, whether long, short, or round.
6.-The Bosom may be full and close, that is, with a well sprung rib, or an open and flat one.
7.-Plumpness has no reference necessarily to one uniform outline like a bag of flour, but that the berry is well filled-out, of whatever form, showing no slackness of skin from want of food-not shrivelled.
8.-Smell should not be musty or sour.
9.-The Taste should be nutty, sweet, and mellow, not sour or bitter.
10.-The Germinating points should be distinct; the base, or root end prominent, and the blade end slightly hairy.

Miscellaneous qualities:
11.-Hardy, productive, and a good miller.
12.-Weighing, after cleaning, not under sixty pounds per bushel.
13.-Comparative freedom from diseases-whether animal or vegetable.
14.-To tiller, or stool, well-that is, to produce five or more perfect plants from one seed, under good management.
15.-To have sufficient strength of straw to carry the head.
16. -The straw to be of good quality as regards freedom from pith.

Bald Winter Varieties of Wirat.

Arnold's Hybrid (Philadelphia).-Head strong and thick, with well-set florets; straw also strong, and of good quality. The grain sample obtained was not first-class, being small, moderately filled, and of a dark colour; crop of 1878 became inferior-smaller, darker, and shrivelled; that of 1879 was much improved, or about equal to the original, with longer berries, and produced thirty bushels per acre. The crop of 1880 was inferior to 1879 ,-grain not being so evenly filled.

Arnold's Hybrid (Washington).-Head short and moderately thick, with good straw. The sample got was large, plump, of a dark red, and parti-coloured. The crop of 1878 was much inferior, smaller, shrivelled, and darker in colour, while that of 1879 was good, though not so well filled as the original; 1880 gave somewhat better than 1878.

Arnold's Victor (Paris, Ont.). -This hybrid has head and straw resembling Gold Medal. The crop of 1877 was good in colour, nice and plump, though a little irregular in size
and form; 1878 was poor in every respect, but 1879 gave a much improved sample, unequal, however, to that of 1877 . Produce in $1879-39 \frac{2}{3}$ bushels per acre, weighing sixty pounds per bushel. The plants of $1879-80$ were entirely winter-killed.

Bull Forward.-A very fine sample from the Centennial Exhibition of 1876. The produce in 1878 was much inferior, delicate-looking, small berries, well coloured. That of 1879 was larger, but irregular, becoming darker in colour, and the crops of 1880 is not so deficient as many others. The head is too narrow, being, however, long and fairly set.

Blue Stem.-This is not unknown in Ontario. What we got of it in 1877 was a good dark colour, irregular in sample, and all of a small size. The cropping of 1878 was much inferior, but improved in 1879, though not equal to original--producing 40 bushels that year.

Bush's Prolific is an American variety of medium size, and somewhat dark coloured. The crop of 1878 was practically a failure-shrunken, miserable-looking stuff. 1879 gave a large improvement, and 34 bushels per acre, lighter in sample, not so well filled, more irregular ; and 1880 , though not equal to 1879 , kept up well, considering. The head is poor-tight, narrow and short.

Bush's Satin Chaff, also from the States, was originally of fair size and plumpness, but parti-coloured and of a dark red tinge. In 1878 we had a much smaller and poorer sample, with some improvement in 1879-holding its colour, but shrunken, and 1880 brought about its failure for the present. The head is of fair length, but too open ; straw strong; chaff slightly velvety.

Bush's Large White.-Of good colour, but small and shrivelled in 1878, and up to date is a failure, being too tender. Straw good ; head too open, but otherwise good.

Bush's Mammoth.-The sample from the Centennial looked mixed, was large, plump, and of average colour. Our produce of 1878 was very inferior-dark and shrunken. There was a decided improvement in 1879 over 1878, the darker colour increasing, however ; 1880 was a failure. The head of this is very long, yet fairly clad, the chaff being a white velvet ; straw was much subject to rust.

Cook's White.-Grain of medium size, nicely coloured, regular and plump. 1878 gave a darker and smaller grain, but altogether not so bad, considering the season. 1879 was very good, of fair size, well filled, but darker than the original. It was winter-killed during 1879-80. Head short and thick, with strong red chaff and good straw.

Clawson Club.-A very good sample of the ordinary Clawson, or Seneca, under a slightly new name, the berry being slightly smaller. The crop of 1878 wanted a little better filling to make it a good one. 1879 was not equal to the original, but good in size of grain; it was shrivelled and unfed in 1880. The ear is a Clawson one in size, colour and form.

Canada Winter No. 1.-The growth of 1878 and up to 1880 inclusive was practically nothing-even that of favourable 1879 being medium; head narrow and tight.

Canada Winter No. 2.-The original grain of this was a little irregular, but otherwise good ; colour dark ; 1879 gave the only fair sample-the head being an average specimen.

Canada White.-Original sample large, regular, very plump and fine in colour ; 1878 gave a very poor, shrivelled, small, dark-coloured grain; 1879 was much improved, indeed, almost up to first sample in size and form, though darker in colour and not quite so plump, yet well filled, and giving $25 \frac{1}{2}$ bushels per acre ; 1880 was not so good ; the straw is strong and clean ; the head a little short, square, however, and thick set.

Clawson (or Senecu).-I think it may be safely assumed that the millers' account of this wheat is now over the jealous stage and into the fastenings of their purse. The fact of non-controversy is evidence of this. Our 1876 experience was not first-class-berries irregular, somewhat parti-coloured, small sized, and not well-filled. Those of 1877 were much improved, larger, better coloured, but not a very bright sample ; 1878 was much inferior-fairly coloured, however. One-third of the berries very small, badly filled, and shrunken. The head was much too open and thin, yet with plenty of straw. The crop of 1879 gave a very fine head in size, compactness-long, strong and close ; $44 \frac{2}{3}$ bushels per acre, weighing $61 \frac{1}{2}$ lbs. per bushel. We cannot speak of any success during 1880 .

Diehl.position with growth and m in plumpness peculiarities, sized head, clo or size all ove

Diehl Fi have made no

Excelsior berries over th grain was not filling; a long

France. produce of 18 and even bett

Fultz (K parti-coloured what open; 18 latter year.

F'luke (Il sive experienc but not in for Gold Med In 1876 the colour, that of was little sup 36 bushels per hybrids; the h

Kentucky did not matur the original, a filled correspo

Lennie's not withstand

Mexican. coloured, of m the sample wa somewhat na well filled, but head, shortish

May Red. Centennial. H

Mediterra the sample, ex sample was mu a tendency to

Nursery. in any case, an

Rust Pro bushels per ac Head about m

Reid's Gi While very p head and strav

Red Velve hide-bound in
ole, ung sixty

The That 0 is not fairly
was a
78 was bushels loured. 1879 filled, The

Diehl.-It must be remembered that for some of our best Canadian fall wheats, our position with its large exposure and high elevation is not the best adapted to their thorough growth and maturing ; for example, we cannot show a sample of the Diehl or Soule equal in plumpness and colour to the Galt and Hamilton districts by reason of these climatio peculiarities, not by reason of unsuitable soil. Here we find the Diehl with a mediumsized head, close set, dark and strong however, the grain not taking on the right colour or size all over, many of the berries being small.

Diehl Fife.-Is but the old Diehl under a new name apparently, with which we have made no progress, except in growing a good balanced head all over.

Excelsior.-The original sample of this had a nice bright colour, flat bosom, and the berries over the medium size. Though we obtained forty-seven bushels per acre in 1879, the grain was not equal to the start, yet fair, and 1880 even gave a good sample, wanting filling; a long fairly balanced head.

France.-The original of this resembled a medium sample of Soule. While the . produce of 1878 was "nothing," that of 1879 maintained its old points in most respects, and even better in colour ; the head is chubby.

Fultz (Kansas).-The grain of this cannot be called plump, the berries are pointed, parti-coloured, and a fair medium sample all over; the head is narrow, pointed, and somewhat open; 1879 sample was superior to that of 1880 , yet the colour improved through the latter year.

Fluke (Illinois).-This has all along been the earliest maturing wheat in our extensive experience ; the head is small, of medium closeness; the grain has improved in colour but not in form or size.

Gold Medal.-Our five years experience of this hybrid has been very satisfactory. In 1876 the grain was comparatively poor, being irregular, badly filled, but good in colour, that of 1877 was very good all over except colour; 1878 though not down to 1876 was little superior; 1879 gave us a better fed berry, with a darker colour, and a yield of 36 bushels per acre. Winter 1879-80 proved too much for this, as it did for most other hybrids; the head is short, thick, and strong.

Kentucky.-A good bright coloured wheat of fair size, which in 1878 kept up in size, did not mature sufficiently, giving straw at the expense of grain. 1879 improved upon the original, and even in 1880 with its blight and rust, the size was maintained but not filled correspondingly. The head is longish, a little open, but otherwise good.

Lennie's White.-Direct from England, and one of the best of its flour makers, does not withstand our winter, though hardier than the Essex Red under like conditions.

Mexican.-From the American Centennial of 1876, had a dark grain unevenly coloured, of medium size, but fairly filled. The colour inproved in 1878, but otherwise the sample was altogether inferior; 1879 brought a delicate whiteness, berries being somewhat na rower and not so even in sample; again, 1880 made a darker shade, not well filled, but yet even in its irregularity. It is a good tiller, straw rather weak, close head, shortish (resembling Gold Medal), and takes a medium place in hardiness.

May Red.-Long berries, pointed, and from 1879 made as good as that from the Centennial. Head too open, narrow, and having a delicate caste, not characteristic enough.

Mediterranean.-The original was poor, dark and unequal ; 1878 did not improve the sample, except in colour; the colour continued to improve in 1879, and the whole sample was much superior, even as against the original. Head compact, a fair size, with a tendency to over closeness.

Nursery.-Characterized by a round, tight head, a form of head most objectionable in any case, and otherwise a plant of little importance apparently.

Rust Proof.-A good average wheat, not rust-proof however; 1879 gave $25 \frac{1}{2}$ bushels per scre ; better colour than Centennial sample, and equal in evenness of grain. Head about medium in size, and well up in points.

Reid's Giant Red Chaff (hybrid).-A pointed berry, not large and not plump. While very poor all over in appearance from 1880, it gave $24 \frac{1}{2}$ bushels per acre. The head and straw resembles the Clawson.

Red Velvet.-An oval shaped berry of a good dark colour. Head narrow, tight and hide-bound in appearance.

Red Winter.-Not unlike the Scott, and in our best season of 1879, gave a good sample, hardly plump enough, which did not deteriorate so much in 1880 as others. The head is rather short, but nice and compact, though somewhat pointed.

Reid's Golden Kernel (hybrid).-A medium coloured, open bosomed wheat, having a slight resemblance to Clawson, that gave us $25 \frac{1}{2}$ bushels in 1879.

Russia.-A hardy variety of a darkish colour that has not improved with us. The head is long and open, and inclined to beard.

Russia Nos. 2,6 and 9.-In some respects resembling the Russia, as above, with thicker chaff and better at tillering; all hardy, and particularly too long and open in the head, thus reducing their cropping qualities.

Scott (Glasgow ?).-A dark, even sampled grain, with short, compact head, having a tendency to beard.

Silver Chaff.-This once famous wheat has almost refused to do anything here. In 1876, the sample was fair, though irregular, not well enough filled, nor perfect in colour. In 1877, berries were large, well filled, of a nice bright colour, and that gave the very large yield, for that year, of $57 \frac{1}{2}$ bushels per acre; 1878, fell off, poor in colour, shrivelled and uneven. In 1879 , we had 30 bushels per acre (57 lbs . per bushel), but in most essentials a very poor sample. The straw has been good; heads, long, strong and well set.

Soule.-As elsewhere remarked, we cannot grow a first-class sample of this very fine old Canadian winter wheat. The quantity has averaged 32 bushels per acre, and the weight 61 lbs. per bushel; but colour has not been satisfactory, berries are too tight and irregular, as if unequally matured. Head has been good in form and size, with average straw.

Tasmania.-The original was a good sample in most respects, but our experience has proved it to be too tender.

Treadwell (bald).-Grain seems to be mixed; a bald head, not close nor yet open; somewhat resembling Soule, with a tendency to beard; colour good; berries well filled.

Turcana.-Has a long, open head, with a large, plump, dull-coloured berry. Tender, and has largely deteriorated in sample.

White Velvet.-Has a head with velvety chaff, of fair length, strong and compact. Good straw; subject to rust Sample has not improved with us as yet, being also tender.

Washington-Nos. 1 to 17.-These, out of many others similarly distinguished, have done best with us during the last four years. The average produce has been $34 \frac{1}{2}$ bushels per acre, with a distinct want of feeding over all the berries, which are generally large and lanky. Heads are also generally of the small open class with a tendency to fineness or want of boldness. The largest cropper was No. 13, the smallest, No. 17.

Thus, as yet, we have made no great discovery in any new winter wheat suitable to Ontario, nor, I presume, can we hope to do so, without more trials, more failures, more perseverance, more extensive gatherings, more systematic inquiry and collection, and more attention in every possible respect. This is a great field in truth, and one deserving the whole attention of one man, specially authorized and provisioned-an enthusiast of no mean parts, appointed by Government-keen to catch, safe at handling and experimenting, and reliable in reporting. While the Ontario Experimental Farm has not re-clothed the Province with another spring wheat equal to the grand old Fife, or the equally valuable winter Soule and Diehl, it has already given an interest to the subject, and a prominence to some varieties that, some men-tell us, goes a long way to meet the necessarily heavy draft on the Legislative purse in its up-keep. We have it from not a few quarters, that what we have done in the establishment and scattering of the White Russian spring wheat throughout the Province, marks the fact of a valuable chapter in our history. If we do not know how to labour and wait, we need expect little success.

OUR 1880-1 CATTLE FEEDING EXPERIMENT.

Many of our breeders and fatteners of live stock, are in the practice of giving old fodder and roots unprepared, that is the hay and straw are not cut, nor are the roots cut or pulped. As many others are believers in everything being cut and pulped, and given separately, or in the shape of a pudding. The advocates of either plan cannot of course
speak of defi thought it de of such a very

We have precisely simi same manager Along w cross-bred ste whole fodder kinds of food, corn meal and and all attend conducted by to record here advised with

THE PRI
We canno ous samples of wool, grain or us to be stirrin forward when

As one of loud calls upon in this Provine

The Britis and up to a rec wants quality years ago, and out particular r now wants qual quantity. In a another class of without regard and lean, but no

Weight of colns, Cotswolds the longest and these breeds, bot good-bye, for a

On the othe quired by the g^{\prime} sheep-Southdov crosses.

The question is most clearly on of two shearling finished at this a dian wether, poss cross of any of th
speak of definite comparative results under exactly similar conditions, and so we have thought it desirable to conduct an experiment this winter, having in view the elucidation of such a very valuable point.

We have been fortunate in securing, four two-year old Shorthorn grade steers, of precisely similar breeding, almost exact in age, that were bred and have been under the same management all along.

Along with these, as additional data for evidence, we have set aside four yearling cross-bred steers of our own, two of which, with two of the others, will be kept upon whole fodder and roots up to May next, and the four others will be treated to the same kinds of food, prepared by cutting and pulping. During the same period all will receive corn meal and bran. Everything will be weighed as dealt out, animals weighed weekly, and all attendant circumstances carefully noted. The handling of this experiment will be conducted by Mr. John Leask, one of our leading second year students, and it is my duty advised with me in the second year student is taking a keen interest, and has all along advised with me in the object, the purchasing, and the regulation of this experiment.

THE PRESENT IMPORTANCE OF DLFFERENT GRADES OF WOOL

We cannot too often impress our farmers with the difference in value between various samples of the like article as produced by themselves, whether it be beef, mutton, wool, grain or any other crop ; indeed, while the Government looks to the more active of us to be stirring up such matters, there yet rests the duty upon all Legislators of pointing forward when any branch of their economy is making true indications.
loud calls upon our enterprise, notently clear among us all, and that is, however, making in this Province.

The British Colonies pay more attention to the quality of wool than she does herself, and up to a recent date, this aim was correct, but now, in addition to quantity, the world wants quality and a certain grade suitable for certain purposes. The market of three years ago, and many years previous, was weight of fleece along with weight of mutton, with out particular regard to sample in either article, but that market has changed ; the world now wants quality, as represented mainly by fineness and medium length, along with the quantity. In addition to this change in wool, there is also a very decided preference for another class of mntton; hitherto the most of us were asked to grow size of carcass without regard to quality as indicated by fineess of grain and proper admixture of fat and lean, but now we are told to produce an average weight having the quality referred to.

Weight of carcass and weight of fleece have been, and are still, obtained from Lincolns, Cotswolds and Leicesters, or by their crosses. These give the heaviest mutton, and the longest and heaviest wool, so that while at present there are many special fields for these breeds, both for flesh and wool, the great market for the million is bidding them good-bye, for a time at least.

On the other hand, the average weight of carcass and fleece, with quality as now required by the great market of the world, are obtained from any of the Down breeds of sheep-Southdown, Shropshire Down, Hampshire Down, and Oxford Down, or by their crosses.

The question is not one only of supplying iwo classes of goods most in demand: It is most clearly one of larger returns under any circumstances; take, for example, the case of two shearling wethers ready for market (and by the way all our mutton should be finished at this age), one the ordinary grade of the country, what may be called a Canadian wether, possessing part Leicester, Lincoln and Cotswold blood, and the other the first cross of any of the pure-bred Downs named, upon such a Canadian ewe,

Difference in value between a common Canadian, and a Down-Cross, Shearling Wether.

	Canadian.	Down Cross
	8 cts.	\$ ets.
Canadian Wool, $4 \frac{1}{2} \mathrm{lbs}$, at 30 c .	135	
Down Cross Wool, 7 lbs , at 35 c .		245
Canadian Mutton, 145 lbs . at 4c.	560	
Down Cross Mutton, 170 lbs . at $5 \frac{1}{2} \mathrm{c}$.		935
	685	1180
Difference in favour of Down Cross	495	

This remarkable difference should come home very forcibly to us all; we take it to ourselves at this farm, though, of course, being obliged to maintain a variety of breeds for educational purposes, we cannot change as the ordinary farmer may, but, supposing we could, and taking our 1880 clip for illustration, there is the following striking evidence :

1880 Clip of Wool at The Ontario Experimental Farm.

$$
\begin{aligned}
& \text { Long Wool- } 95 \text { fleeces, } 8 \mathrm{lbs} \text { each, } 760 \mathrm{lbs} \text {. at } 30 \mathrm{c} . \ldots . . .{ }^{2} .{ }^{2} 22800 \\
& \text { Medium Wool-(Oxford Down, and Oxford and Southdown } \\
& \text { cross upon Canadian ewes) } 22 \text { fleeces, } 7 \mathrm{lbs} \text {., 154, at } 35 \mathrm{c} \quad 5390 \\
& \text { Short Wool-21 fleeces, } 5 \text { lbs., } 105 \text { lbs. at } 40 \mathrm{c} \text {. . . . } 4200 \\
& \text { In all, } 138 \text { fleeces, weighing } 1,019 \text { lbs. (} 7 \frac{3}{8} \text { each). } \$ 32390
\end{aligned}
$$

If the 95 fleeces of long wool had been from common Canadian sheep in place of heavy pure-bred Cotswolds and Leicesters, the average weight would not have exceeded $4 \frac{1}{2} \mathrm{lbs}$. each, which would have fetched $\$ 128.10$, and had the 95 sheep been improved by Down-crossing, the wool would have weighed 665 lbs . and brought $\$ 232.75$, or a difference in wool alone of $\$ 1.10$ per head per annum. But, further, had these been a flock of 95 shearling wethers shorn in May and shortly afterwards sold for shipment to England, the accounts would stand thus :-

	Canadian.	Down Cross.
	8 cts.	\$ cts.
427 lbs . Wool	12810	
665 lbs. Wool.		23275
13,775 lbs. Mutton, live weight	55100	
16,150 lbs. Mutton, live weight		88825
	67910	112100
Difference	44190	$\ldots . .1 . . .$.

If this is not proof enough to convince and convert, then we needs must despair in all truth. The cost of keep is alike for both classes, and all that would have to be extra debited to the improved wool and mutton is interest on the extra value of a pure-bred

Nationally, this subject is all important. Canada should easily raise and dispose of 20,000 head of shearling wethers annually ; the difference in favour of the improved animal would give $\$ 22,000$ for wool and $\$ 75,000$ for Mutton, or $\$ 97,000$ of a gain to the country.

X.-ESTIMATES AND RECOMMENDATIONS FOR 1880-81.

First-We require the new live stock as detailed in the introduction herewith.
Second-The extra team of horses for instruction and fallowing, as explained under the heading "Farm Instruction."

Third-Drainage has been neglected for two years, and must be continued, and should be completed during next two years.

Fourth-So also in fencing, we have done nothing for some time, by reason of large expenditure upon the College buildings, and now it mnst be overtaken.

Fifth-As yet we have no cover for our implements and machinery.
Sixth-A small sum is required for new implements.
Seventh-Cottages for the Farm Foreman and Gardener are already on the card from last year's estimates.

Eighth-We shall be glad to continue the tree-planting experiments so well begun, in addition to those in the hands of the Fruit Growers' Association.
Ninth-We have not completed the number of tools for instruction purposes in the
Mechanical Department.
These may be estimated thus:-

Live Stock.	
Instruction	, 300
Drainage.	300
Fencing.	1,000
Implement Shed	1,000
Implements and Too	500
Tree Planting.	1,500
Experimental Preparations as usual	100

The Ontario Agricultural and Experimental Union,

It affords me much pleasure to draw your attention to the Society under this title, as recently formed by our own students. It comes more immediately under my report than that of the President, because of practical farming being its largest field, and of my position as President thereof for the current year. The accompanying note of $\mathbf{M r}$. C.S. Dickinson, Editor, saves explanation by me, and, in addition, the constitution as copiéd herewith will explain fully. We had a very hearty and profitable meeting of officers, students and ex-students at last Easter, when, of course, much was initiatory ; and now, being thoroughly organized, we trust, ere long, to make our union a felt power throughout the Dominion.

To the Honourable the Commissioner of Agriculture :

SIr,--Since the above-mentioned Union has been formed in connection with this College, we deem it but due to the position you hold to inform you as to its origin and the aims of its promoters.

Some three years ago it ocsurred to a Mr. Toole-one of the most successful of our students-that it would enhance the vaiue of our education, and tend to our mutual improvement if, in connection with this College, some sort of a union were established wherein matters pertaining to agriculture might be discussed and the results of our experience interchanged.

In pursuance of this idea a meeting was convened, and some twenty or thirty members were enrolled. The matter was then allowed to fall into abeyance until a further accession of members should justify us in drafting a constitution and electing the necessary officers.

Last Easter the subject was again brought to the fore, ex-students were notified, and meetings were held on two successive days within the College buildings. Some very valuable information was given by the old students present, and letters were receivea om others who were unable to attend ; officers were elected, and a committee was appointed to draft the appended constitution.

We have now on our roll some 120 acting members, who form the nucleus of what may be, we hope, one of the most successful Agricultural Societies in the Dominion.

In conclusion, I would remark that the College authorities are unanimous in their support of the Union, not only on account of its intrinsic merit, but also because they view it as a means of keeping sight of the students after they leave the College, and of proving to the country at large that this institution turns out not nincompoops but suecessful farmers and intelligent men.

Hoping that you will see fit to accept the accompanying invitation to join us as an Honorary Member,

I am, Sir, on behalf of the Union,
1 Your obedient servant,
C. S. Dickinson, Editor.
(Second Year Student.)

Constitution of the Ontario Agricultural and Experimental Union.

Objects of the Union.

The objects of the Association are to form a bond of union among the officers and students, past and present, of the Ontario Agricultural College and Experimental Farm, to promote their intercourse with the view to mutual information, to discuss subjects bearing upon the wide field of agriculture, with its allied sciences and arts, to hear papers and addresses delivered by competent parties, and to meet at least once annually for these purposes.

Admission of Members.

All officers and students, of whatever time, shall be entitled to become members of the Union on paying their subscription.

The Hon. the Commissioner of Agriculture for the Province of Ontario, for the time being, shall be an honorary member of the Union.

Subscriptions and Privileges.

Members shall pay the sum of 50 cents annually. They are eligible to all the offices of the Union, and shall receive gratuitously any reports of the same which may be published after the date of such payment. For any reports previous to their admission, they shall have to pay the sum of 25 cents.

Every ex-officer and ex-student who is in regular accord with the Union shall be considered as a Corresponding Member thereof. Each shall be entitled to the privilege of receiving, for experimental purposes, at least five samples annually of such agricultural seeds as may be on hand for distribution at the Ontario Experimental Farm. He shall report to the Union the results of such experiments, and also give his experience on such subjects as come within the scope of the Association. Ex-officers and students, who are members, shall be entitled to receive, by correspondence, if necessary, such information on the work of the Union, or that of the Ontario Agricultural College and Experimental Farm, as may be deemed reasonable by the Executive Council.

The Union more, beginning

The officer Secretary, Corr appointed annu

The Presid mittees or coun The Vice-F - The Recor Union.

The Corres in regard to me for which purpo

The Treasu ments of the U

The Editor ticles, or papers

The Execut Its duties shall with parties for such other work ized by the gene

The account the general meet

No part of Union, and then

Is the educa said that his case his condition has dragged to the d

This questio has long had a dr seminated throug fever of twenty seems to me to be upon this chemic
ty mem further he necesome very vea om ppointed of what ion. in their use they , and of but sucfor these

Meetings.

The Union shall meet annually at the Ontario Agricultural College, for one day or more, beginning two days previous to the Easter closing exercises of the Institution.

Officers and their Duties.

The officers of the Union shall consist of a President, Vice-President, Recording Secretary, Corresponding Secretary, Treasurer, and Editor of Transactions, who shall be appointed annually by the general meeting, and hold office for the ensuing twelve months.

The President, as chief officer of the Union, shall be ex officio a member of all committees or councils thereof during his term of office.

The Vice-President shall have powers similar to the President, but only in his absence. - The Recording Secretary shall keep the minutes of the general meetings of the Union.

The Corresponding Secretary shall conduct all business in connection with the Union in regard to membership, general meetings, and all the business of the Executive Council, for which purposes he shall be ex officio a member of that Council.

The Treasurer shall collect all fees, and keep account of all receipts and disbursements of the Union as may be authorized by the general meeting and Executive Council.

The Editor shall receive, revise, and attend to the publication of such addresses, articles, or papers as may be authorized for publication in the transactions of the Union.

Executive Council.

The Executive Council shall consist of the officers of the Union for the time being. Its duties shall be to prepare a programme for annual general meetings, invite and arrange with parties for the reading of papers, to appoint reception and sectional committees, and such other work as has been indicated for it in this Constitution, or which may be authorized by the general meetings.

Accounts.

The accounts of the Union shall be audited annually by the Auditors appointed by the general meeting.

Alteration of Constitution.

No part of the Constitution to be altered except at an annual general meeting of the Union, and then only by giving at least three hours' notice of such intended alteration.

XI.-CONCLUDING REMARKS.

Is the education of the farmer in his own profession still a problem? May it be said that his case has been, and still is, largely one of compulsion-that the bettering of his condition has been forced upon him by outsiders; that he has been petted and even dragged to the dows of his own school?

This question is of general application-European and American. The Britisher has long had a dream of more produce and greater profits by chemical knowledge disseminated through schools and experiments, and he is still a deep scientist. The guano fever of twenty years ago helped to carry him into the present insolvent gutter, and it seems to me to be as clear as noon-day that if he continues to place a similar reliance upon this chemical footing, his chances of a new lease of the virtues of mother earth
are as wide as ever. His schools of practical agriculture have also been a clean failure, and ever will be, until they are actually made practical in every detail. With all his long experience and natural advantages, the British farmer is no longer able to meet the foreign farmer in the same market, and it is very unlikely that more schooling will make up the want. The reasons are deeper and more private.

The continental European farmer has been more cautious, more conservative and more frugal than the Britisher. He has also called in the aids of science, but, while searching and trying, he has not built upon anything until long practice in the field has more than doubled the proofs. Neither has he aimed at much in teaching the field practical, because, it may be, of the same caution that accompanies his conservatism, so that he has not failed where others have, in this respect.

Australia and New Zealand are now trying to obtain more agricultural light, by the establishment of agricultural schools and experimental stations in association. It will be gratifying to hear of their success, and having the advantage of the trials, failures and successes of others, we may look for something very good ere long.

Agricultural education has already a history of a quarter of a century in the United States, and such has been the varied results among its many establishments, that all we can do is to sympathize, and advise to try again. There is plenty of push, and were there more of steadiness and keeping on the proper track, our neighbours would lead the world in agricultural education, as much as they do in most other professions.

And what of our own progress ? Have' five years helped to solve the problem of agricultural education in Canada ? If expression of public opinion is always reliable, we are doing well ; if Legisiative support is much, we need not be ashamed of the record ; and if patronage by the young men of the country is everything, then our success is very large, but are all these certain evidence of a want fully met and of work thoroughly done? May not a high popularity be one of the most dangerous and false positions in a state, especially from a previous history of considerable odium?

Evidence, above all these questions, is the cue to our value. Farmers' sons, and the sons of men not farmers, who are all making for farming, and who have been, or are now, with us from England, Scotland, Ireland, Switzerland, the United States, and most of our own Provinces, are telling in various way what we have done for them. It is because of doing one thing only that success is ours; we teąch agriculture-not the languages, nor military tactics, nor even the higher mathematics or mechanics ; it is also because we teach practically. Soil is what we find and handle-not what a book tells; manures must be tested, crops thoroughly judged; cultivation a thing of individual doing on the part of every student, and an animal is one only when seen, handled, and compared with others in every detail. It is also because labour is compulsory, and not optional, on the part of students requiring it ; and part of our success, I think, is due to the fact that we teach, and do not lecture.

Coming here, a young man sees at once that everybody is in earnest ; saddle horses, buggy-driving, city-idling, or looking-on are not part of the curriculum, and consequently he either bids us good-bye, or acts the man. In his progress through the initiatory stages of out-door duties, he is sharpenough to see that the sooner he is out of them the better for himself in the matter of debit and credit-for instruction means no pay. Once past this, there is keen competition for excellence, for superintendence of others, for teachers' oonfidence, and honour in all things ; and as he gradually masters the science and practice of his profession, he finds he can obtain a situation as farm manager, and ere long will manage to find his own farm.

As a whole, therefore, I consider the problem of agricultural education is being gradually and surely unfolded in our case.

I have the honour to be, Sir,

Your obedient servant,

Shorthorns:
1 Two-yea
5 Cows .
2 Two-year
2 One-year
2 Calves-

Herefords:

1 Five-year
2 Cows.
1 Two-year
1 One-year
1 Heifer ca
Devons:
1 Five-year
1 Cow
1 One-year
1 Heifer ca
Aberdeen Polls:
1 Five-year
3 Cows ..
2 'Two-year-
1 Heifer cal

Galloways:

1 Cow
Ayrshires:
1 Five-year
4 Cows ...
1 yearling h
1 Calf
Grade Shorthorns
13 Cows
3 One-year-a
4 Steer calv
1 Short-horn
2 Heifers-
1 Galloway
1 Aberdeen

APPENDIX.

ve and while ld has field ism, so
by the will be es and

United all we d were ld lead lem of eliable, of the ur sucwork false
nd the or are d most It is ot the is also tells ; ividual d , and nd not due to achers' prace long
being

INVENTORY AND VALUATION OF OUTSIDE DEPARTMENTS.
Farm,-Live.Stock.

— \$1,450 00
Shorthorns :
1 Two-year-old Bull . 20000

2 Two-year-old heifers . $\quad 1$, . 20000
2 One-year-old heifers . 10000
2 Calves-Heifers .. $\quad 7500$
Herefords
1,70000
1 Five-year-old bull . 40000
2 Cows
80000
1 Two-year-old heifer . $80 . \quad 30000$
1 One-year-old heifer
17500
1 Heifer calf
10000
Devons :
1,77500
1 Five-year-old bull
1 Cow
17500
1 One-year-pld 15000
1 Heifer calf
17500

Aberdeen Polls :
5000

20000
1 Five-year-old bull
75000
2 Two-year-old heifers
25000
1 Heifer calf 4000

Galloways:
1 Cow
9000
Ayrshires:
1,24000

9000
1 Five-year-old bull
10000
4 Cows
40000
1 yearling heifer
5000
1 Calf
3000
Grade Shorthorns :

13 Cows

3 One-year-old heifers
52000
4 Steer calves
6000
1 Short-horn Ayrshire, cross calf 10000
2 Heifers-Calves 1000
1 Galloway Shorthorn calf 2500

1 Aberdeen Poll cross calf 1000 2000
Grade Herefords :
1 Steer $\$ 2000$
1 Calf 1000
Fattening Stock:
5 One-year-old steers 16000
2 Aged oxen 15000
Sheep.
Cotswolds:
1 Three-shear ram 12000
40 Breeding ewes 1,20000
8 Ewe lambs 16000
7 Ram lambs 17500
Shropshire Downs :
5 Ewes 25000
1 Three-shear ram 15000
Leicester
7500
7500
1 Five-shear ram
1 Five-shear ram 54000
3 Ewe lambs 6000
2 Ram lambs 5000
Southdowns
1 Three-shear ram 15000
19 Breeding ewes 48000
3 Ram lambs 9000
5 Ewe lambs 10000
Oxford Downs ;
1 Two-shear ram 15000
6 Breeding ewes 30000
1 Ewe lamb 2000
1 Ram lamb 3500
Merino:1 Two-shear ram
Grades
13 Breeding ewes 10000
3 Ewe lambs 1500
Grades, feeding20 Wether lambs12000
Pigs.
Berkshires :
1 Imported boar 10000
1 Boar 5000
5 Brood sows 20000
1 Imported sow 6500
2 Seven month boars 6000
Prince Albert Windsor:
2 Brood sows 100005050015000

4 Waggo
1 Democ
2 Carts
8 Sets of
4 Neck-y
3 Pair of
1 Long s
1 Pleasur
2 Seed dr
1 Broade
2 Reaper
4 Mowers
1 Pea-har
3 Horse r
2 Cultivat
1 Horse-p
1 Jack
1 Separat
4 Shafts
1 Drag sa
3 Fanning
1 Circular
Wheelbar saws,
4 Iron plo
4 Iron bea
1 Metal be
I Wooden
1 Double
2 Gang p
1 Sub-soil
3 Ploughs
1 Turnip
4 Sets iro
2 Sets wo
1 Wooden
Shovels, sp
5 Sets of
6 Sets of
2 Sets of
1 Barn tr
1 Set of w
1 Platform
Half-bushe
basket
5 Hay rac
1 Water
1 Straw-cu
2 Grain cr
Dogs.
3 Dogs-Scotch collies $\$ 8500$
Total
Total
Implements.
Implements.
4 Waggons
4 Waggons
$\$ 18000$
$\$ 18000$
$\$ 18000$
2 Carts
2 Carts 4500 4500
8 Sets of double-trees
8 Sets of double-trees 4900 4900
4 Neck-yokes
4 Neck-yokes 400 400
Pair of bob-sleighs
Pair of bob-sleighs 6750 6750
Long sleigh
Long sleigh 1800 1800
2 Seed drills
2 Seed drills 3600 3600
1 Broadcast seeder
1 Broadcast seeder 1500 1500
Reapers
Reapers
11500
11500
11500
1 Pea-harvester
1 Pea-harvester 16000 16000
3 Horse rakes
3 Horse rakes 1800 1800
2 Cultivators
2 Cultivators 3400
1 Horse-power
1 Horse-power
3500
3500
3500
1 Separator
1 Separator 1500 1500
4 Shafts
4 Shafts 8000 8000
1 Drag sawing machine
1 Drag sawing machine 6000

3 Fanning mills

3 Fanning mills
5050
5050
5050
Wheelbarrows, curry combs, brushes, oil cans, wrenches, saws, hammers, axes, mallets
4 Iron ploughs 4000
4 Iron beam ploughs
4 Iron beam ploughs 7200 7200
1 Metal beam plough
1 Metal beam plough 1000
I Wooden plough
I Wooden plough 1000 1000
1 Double mould-board plough
1 Double mould-board plough 2800 2800
2 Gang ploughs
2 Gang ploughs 3500 3500 3500
1 Sub-soil plough
1 Sub-soil plough
1 Sub-soil plough
2000
2000
2000
3 Ploughs, with wheel and skimmer
3 Ploughs, with wheel and skimmer 3500 3500
1 Turnip drill.
1 Turnip drill.
1000
1000
1000 6000 6000

2 Sets wooden harrows

2 Sets wooden harrows

2 Sets wooden harrows
1 Wooden roller
1 Wooden roller 1000 1000
Shovels, spades, forks, and \&one-boat.
Shovels, spades, forks, and \&one-boat. 6000
5 Sets of team harness.
5 Sets of team harness. 13500 13500
6 Sets of plough harness
6 Sets of plough harness
5500
5500
5500
Sets of cart
Sets of cart 2000 2000
1 Set of weigh scales.
1 Set of weigh scales. 400
1 Platform scales
1 Platform scales
9000
9000
9000
Half-bushel measures, horse-blankets, bags, chains, picks,
Half-bushel measures, horse-blankets, bags, chains, picks, baskets, scythes, grain cradles, hoes, hooks, etc baskets, scythes, grain cradles, hoes, hooks, etc 11000 11000
5 Hay racks
5 Hay racks 3500 3500 3500
Water cart
Water cart
Water cart
5300
5300
2 Grain crushers
2 Grain crushers 7500 7500
1 Cake crusher $\$ 2000$
3 Root slicers and pulpers 7500
70 Cattle chains 2800
4 Bull leaders. 400
2 Feed boilers. 2500
Sheep racks, troughs 7500
2 Cross-cut saws. 600
1 Vertical 6 horse-power boiler 19000
1 Portable steam engine 75000
1 Thresher 45000
Garden.
1,500 Flower pots. $\$ 6000$
4 Rakes 400
16 Spades 2000
7 Shovels. 1000
10 Draw hoes 600
5 Dutch hoes 300
1 Scythe and snaith 150
2 Garden ploughs 2000
1 Cultivator 800
2 Wheel-barrows 600
5 Screens 500
2 Trowels 100
5 Pruning saws 400
4 Manure forks 300
5 Potato forks 400
2 Garden reels and lines 300
2 Tree scrapers 050
5 Hammers 300
2 Pair of edging shears. 400
2 Pair hedge shears 400
6 Watering pots 750
2 Pair of pruning shears 400
1 Syringe 500
8 Pruning knives 400
16 Hot-bed lights. 3000
3 Picks 350
Knife, bill, hook, dibble. 500
1 Set cart harness 800
1 Garden cart 4000
1 Gravel screen 1500
1 Set garden harrows 1000
1 Garden roller 1000
2 Garden sickles 050
2 Edging knives 200
4 Spuds 100
1,000 Greenhouse plants 80000
1 Stove 1300
3 Potato dusters. 100
1 Seed drill 700
1 Steel square. 200
Compass, plyers 100
6 Baskets. 150
3 Thermometers 150
10 Marking irons 1000
2 Axes 350

16 Hyacinth 1 Office des
6 Pick han 4 Hay rake
3 Markers
1 Crow-bar
4 Hand gla
2 Brooms.
1 Working
2 Hand lav
1 Single st

9 Hand cro
4 Rip saws
3 Fine cros
1 Compass
3 Draw-kn
3 Braces
1 Set of Bi
1 Boring m
20 Gimlet b
3 Oil-stone
6 Smoothi
1 Jointer
6 Half-join
7 Jack-plas
1 Iron circ
1 Set hollo
1 " mat
1
1 Centre
1 Side bea
$\begin{array}{ll}1 & \text { " } \\ 1\end{array}$
1 Rabbit
1
11 Hamme
3 Bench a
1 Broad a
1 Screw
2 Cold ch
3 Spoke-s
5 Try squ
1 Framin
1 Panel s
4 Mallets
1 Level
2 Framin
2 Trowel
6 Screw
1 Chalk
1 Comm
2 Tool bs
1 Wire-t
1 Bench-

5 Carpenter's benches
6 Ladders $\$ 3500$
2 Scratchawls 600
4 Paint brushes 010
4 Five gallon oil-cans, and glue pot 300
3 Gimlets 450
1 Grindstone 045
1 Stove 500
Fencing tools, spade, spar, pick, mauls 650 1000
Block and tackle
Block and tackle

1 Ratchet drill and set of bits.

1 Ratchet drill and set of bits. 1200 1200 600
Abstract of Inventory and Valuation :

Abstract of Inventory and Valuation :
Farm-Live Stock , $\$ 13,53000$ 3,931 00
Garden
Garden
Mechanical 1,307 3521930

[^0]: Appointments to be made by the Lieuten-ant-Governor in Council.
 6. The Lieutenant-Governor in Council may from time to time appoint a president and such professors, instructors, officers, assistants, and servants as the Lieutenant-Governor in Council may deem necessary for the efficient working of said college, and the promotion of its usefulness, and may pass by-laws regulating and prescribing their respective duties.

[^1]: 7. Describe Daniell's Hygrometer. Find the dew-point from the following data : Dry bulb thermometer, 74°; Wet bulb thermometer, 65°.
 8. What is the effect of moisture in the atmosphere? How is it ascertained ? Describe the pluviameter.
 9. Name the different kinds of clouds, and state the kind of weather likely to follow their appearance.
 10. Account for the wonderfnl rainfall in parts of India, and also for the presence of deserts in different parts of the world.
[^2]: Names unnumbered are those of students who failed to pass.

[^3]: n 1879.

[^4]: This spr tion, to be tr

 The soil
 May 18
 The followin
 Indian
 Norway
 Scarlet

