IMAGE EVALUATION TEST TARGET (MT-3)

\Leftrightarrow

Photographic Sciences Corporation

23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

> Technical and Bibliographic Notes / Notes techniques et bibliographiques.
. The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may"be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture rastaurée et/ou pelliculéCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de lombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitred from filming/
Il se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-tre uniques du point de vuề bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur .

Pages damaged/ -
Pages endommagees
No.
Pages restored and/or lamineted/
Pages restaurbes et/ou pellicultes
Pages discoloured, stained or foxed/
Pages décolorées, techetées ou piquèes
Pages detached/
Pages détachées
Showthrough/
Transparence
都Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de I'en-tte provient:
Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checkenghow/ Ce document est filmé au taux de réduction índiqué ci-dessous.

The copy flilmed here has been reproduced thanks to the genarosity of:

Library of the National
Archives of Canada

The images appearing here.iere the best quality posalble considering the condition, and legibility of the original copy and in keeping with the filming contract apecifications.

Original copies in printed paper covers are filmed beginning with the fromt cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated Impression, and ending on the laat page with a printed or Illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (mepning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be fllmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, laft to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire filmd fut reproduit grice ila géndrosit'd de:

La bibliothìque des Archives nationales du Canada

Les images suivantes ont ótó reproduites avec le plus grand soin. compte tenu de la condition at de te netteté de l'exemplaire filmb, ot in conformith avec les conditions du contrat de filmage.

Les exemplaires origineux dont to couverture en papier est imprimbe sont filmós en commençant par le premier plat et en torminant soit par la dernidre page qui comporte une amprainte d'impression ou d'illustration, soit par la second plat, solon to cas. Tous les aútres exemplaires originaux sont filmés en commençant par la promidre page qui comporte une emprainte d'Impression ou d'llluatration ot en ferminant par la dernialre page qui comporte une telie empreinte.

Uñ des symboles suivants apparaitra sur to dernitre image de chaque mierofiche. selon le cas: le symbole \rightarrow signifis "A SUIVRE". Io symbole ∇ signifie "FIN':

Les cartes, planches, tableaux, etc., peuvent otre filmós 1 des taux de réductión diffórents. Lorsque le document eat trop grand pour atre reppoduit en un seul cliche. il est films d partir da l'angle supdrieur gauche. de gauche droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la móthode.

LOVELL's SERIES OF 8CHOOL BOOKS.

NATURAL PHILOSOPHY,

PARTI,

incleding

STATICS, HYDROSTATICS, PNEUMATICS, DYNAMICS: HyDRODYNAMICS, THE GENERAL THEORY OF UNDULATIONS, THE SCIENCE OF SOUND, THE MECHANICAL THEORY OF MOSIC, ETC.
draignid
FOR THE USE OF NORMAL aND GRAMMAR sCHOOLS, aND the higher glasses in common schools.

BY JOHN IIERBERT SANGSTER, M.A., H.D.,

MATHEMATICAL MASTER AND LEOTURER IX OHRMIBTRY AND NATURAL PHILOBOPHY IN THE NORMAL BCHOOI FOR UPPER CANADA.

3hlontreal:
PRINTED AND PUBLISHED BY JOHN LOVELL ;
AND BOLD BY ROBERT MLLER.
Coronto:
ADAM MLLER, 63 IIMG ETRET EABT.
1864.

PREFACE TO FIRST EDITION.

Tas following Treatise was originally designed to serve as a hand-book or companion to the lectures on Natural Philosophy, delivered to the junior division in the Normal School. Although numerous text-books on the subject were already in existence, it was found that they were either too abstruse and technical for beginners, or too general and saperficial to be of much practical use. The aim of the present little work is to occupy a position between these extremes-to present the leading facts of the science in a form so concise as to be readily remembered, and at the same time tg give that thorough drilling apon the principles which is absolutely essential to their full comprehension.

As a hand-book to lectures fully illastrated by apparatas, it was not necessary to introduce many wood-cuts, and accordingly they have been given only where absolutely required.

The chief peculiarity of this book consists in the introduction to a large extent of problems calculated to impart that intimate and praotical knowledge of the facts and principles of Mechanical Science, without which the stadent's information on the subject is, comparatively speaking, useless. How frequently do we meet with a pupil who has read carefully through one of the common text-books on Natural Philosophy without acquiring any very clear or definite ideas of the sciencel And what ahould we say of a work profening to
teach the principles of axithmetic or algebra by mere rules and explanations, without an appropriate selection of examples and problems? The exprcises are therefore deemed an important feature of the following pages, and it is thought that the science may be taught by their aid more thoroughly and in less time than otherwise.

Tobonto, January, 1860.

Gen Sub Prol Tabl Attr Prob ;

Subd
Stati Paral Paral Centr

Mecha
Virtue The L
The C
The W
The Di
Wheel
The Pa
The In
The W
The Sct
The Dii
The En
Friction
Table of

Unit of
Work of
Work on
Table of 0 of examdeemed an is thought thoroughly
the most s added a ie Theory d a third usts that and more already
Work of a tmospheric resistance, Pabit
57
57
Work on an inclined plane,
59
59
64
64
Table of moduli,
Table of moduli,
Modulus of machines
Modulus of machines
65
65
Work of water,
Work of water, 65
The Steam Engine,
65
65
Work of the Steam Engine
Work of the Steam Engine
68
68
Source of work in the Steam Engine,
71
71 72
Pambour's Experimental Table,
Pambour's Experimental Table,
CHAPtER V.
Hydrostatices, 76
Liquid pressure
76
76
Weight of cubic inch, gallon, and cubic foot of water,
Weight of cubic inch, gallon, and cubic foot of water, 77 77
Preasure against a vertical or inclined surface
Preasure against a vertical or inclined surface
78
78
 Bramah's Hydrostatic Press, 81
Hydrostatic Paradox, 84
Hydrostatic BeHows, 87
Specifio gravity, 87
To find the specific gravity of a solid 88
To find the specific gravity of a liquid, 89
To find the specific gravity of a gas, 91
Table of specific gravities, 92
To find the weight of a given mass of any substance 93 93
To find the mass of a given weight of any substance,
To find the mass of a given weight of any substance, Theory of Flotation 94 94 95
CHAPTER VI.
Pneumatics,
Composition of atmospheric air, 95
Gaseous diffusion, 96
Aqueons vapor, 98
Physical properties of atmospheric air, 97
Weight of air, 97
Dengity of air, 98 98
Pagm57

Vii

Vii

Vii

Vii

Vii

Vii

Vii

Vii

Pressure of air,

Pressure of air, Page Page

Mariotte's Law,

Mariotte's Law, 99 99 99 99 99 99 99 99

The Air Pump,

The Air Pump, 101 101 101 101 101 101 101 101

Pressure and elasticity of air,

Pressure and elasticity of air, 101 101 101 101 101 101 101 101

The Barometer,

The Barometer, 103 103 103 103 103 103 103 103

Use of the Barometer as a weather glass,

Use of the Barometer as a weather glass, 104 104 104 104 104 104 104 104

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme

To ascertain the beight of mountains, \&c., by the barbme ter, ter, ter, ter, ter, ter, ter, ter,
The Common Pump,
The Common Pump, 105 105 105 105 105 105 105 105
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS.
CONTRNTS. ii 100 100 100 100 100 100 100 100
The Forcing Pomp,
The Forcing Pomp, 108 108 108 108 108 108 108 108 108
The Syphon,
The Syphon, 108 108 108 108 108 108 108 108 108
CHAPTER VII.
CHAPTER VII. Dynamics, Dynamics, Dynamics, Dynamics, Dynamics, Dynamics, Dynamics, Dynamics, Dynamics, 108 108 108 108 108 108 108 108 108
Momentum,
Momentum,
Momentum,
Momentum,
Momentum,
Momentum,
Momentum,
Momentum,
Momentum, 109 109 109 109 109 109 109 109 109
Laws of motion,
Laws of motion, 110 110 110 110 110 110 110 110 110
Reflected motion,
Reflected motion, 114 114 114 114 114 114 114 114 114
Descent of bodies freely through space
Descent of bodies freely through space 114 114 114 114 114 114 114 114 114 114
Analysis of the motion of a falling body,
Analysis of the motion of a falling body, 115 115 115 115 115 115 115 115 115 115
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space,
Table of formulas for descept of bodies through space, 116 116 116 116 116 116 116 116 116 116
Descent on inclined planes,
Descent on inclined planes, 118 118 118 118 118 118 118 118 118
Descent in curves,
Descent in curves, 124 124 124 124 124 124 124 124 124
Table of formulas for descent on inclined planes,
Table of formulas for descent on inclined planes, 125 125 125 125 125 125 125 125 125 125
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems, 126 126 126 126 126 126 126 126 126
Projectiles,
Projectiles,
Projectiles,
Projectiles,
Projectiles,
Projectiles,
Projectiles,
Projectiles,
Projectiles, 127 127 127 127 127 127 127 127 127
Parabolic Theory,
Parabolic Theory, 129 129 129 129 129 129 129 129 129
Modern Parabolic Theory,
Modern Parabolic Theory, 130 130 130 130 130 130 130 130 130 130
Velocity of shot and shell,
Velocity of shot and shell, 131 131 131 131 131 131 131 131 131 131
Circular mation
Circular mation 133 133 133 133 133 133 133 133 133 133
Centrifugal force,
Centrifugal force, 134 134 134 134 134 134 134 134 134
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems, 134 134 134 134 134 134 134 134 134
Accumulated work
Accumulated work 135 135 135 135 135 135 135 135 135
The Pendulam
The Pendulam 137 137 137 137 137 137 137 137 137
The centres of suspension and oscillation
The centres of suspension and oscillation 130 130 130 130 130 130 130 130 130 130
Laws of the oscillation of the pendulum,
Laws of the oscillation of the pendulum, 140 140 140 140 140 140 140 140 140
Table of lengths of second's pendulums,
Table of lengths of second's pendulums, 140 140 140 140 140 140 140 140 140 140
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems,
Problems, 141 141 141 141 141 141 141 141 141 148 148 148 148 148 148 148 148 148
Page
CHAPTER VIII.
146
Hydrodynamics
146
146
Torricelli's theorem,
Torricelli's theorem,
146
146
Discharge of water through an orifice
Discharge of water through an orifice
147
147
Effect of Adjútages, !
147
147
Problemg
Problemg
148
148
The random of spouting fluids
The random of spouting fluids
150
150
Velocity of water flowing in a pipe or channel
150
150
Upright water-wheels
Upright water-wheels
151
151
To find the horse power of water-whecls,
151
151
The Turbine water wheel, 153
Chápter IX.
Theory of Undulations,
155
155
Vibrations of strings, 156
Vibrations'of rods,
157
157
Vibrations of plates,
158
158
Nodal figures,
Nodal figures,
159
159
Undulations in liquids,
159
159
Undulations in elastic fluids, 161
CHAPTER •X.
Acoustics,
161
161
Velocity of Sonnd,
162
162
Echoes,
Echoes,
165
165
Whispering 'Galleries, 166
CHAPTER XI.
Mechanical Theory of Music, 167
CHAPTER XII.
The Organs of Voice,
177
177
The Organs of Hearing,
181
181
Miscellaneous Problems, 186
Examination Papers,
195
195
Answers to Eramination Papers, 293
Aramination Questions, 205
SUBD

1. study which
2. viz., 0 from t
3. vegetai possess 4. objects Zool Bota \&c., of Min constit?

Astr nomena

Geold
crust of
Chem
ary bod pound b

Natur

- investig the natu

NATURAL PHILOSOPHY.

CHAPTER I.

SUBDIVISIONS—GENERAL PROPERTIES OF MATTER-

 ATTRAGTION.1. Natural Science, in its widest sense, embraces the study of all created objects and beings, and the laws by which they are governed.
2. Natural objects are divided into two great classes, viz., organic and inorganic, the former being distinguished from the latter by the exhibition of vital power or life.
3. Organic existences are separated into animals and. vegetables, the former distinguished from the latter by the . possession of sensibility and volition.'
4. The different subdivisions of natural science and their objects are as follows :-

Zoology describes and classifies animals.
Botany teaches the classification, use, habits, structure, \&c., of plants.

Mineralogy describes and classifies the various mineral constituents of the earth's crust.

Astronomy investigates the laws, \&ur., of celestial phenomena.
Geology has for its object the description, \&c., of the
crust of the earth.
Chemistry teaches us how to unite two or more elementary bodies into one compound, or how to decompose compound bodies into their simple elements.

Natural Philosophy or Physics has for its object the -investigation of the general properties of all bodies, and the natural laws by which they are regulated. - Chromatics, Physical Optics, Polarization, and ActinoChemistry.
IV. Electricity-including Statical Electricity, Galvanism, Magnetism, Thermo-Electricity, and Animal Eleotrioity.

V. Aconstics,

PROPERTIES OF MATtER.

6. Matter exists in three separate forms,-I. Solid ; II. Liquid; and III. Gaseous.

Nore.-The same body may exist in all three forms, as is the oase with soater, mercury, auphur, \&o. The amount of heat or oalonio presemt determinies the form of the body-if heat be applied, the attraction of cohesion from a solld to's liquid, and from a the attraction of cohesion gradualif a ravid to a gas. If heat be abstracted, imity, and the body passes from a gas to s liguid, particles into oloeer prox. to a solid. Henge heat and cohesion are called antagomistic fropa a aquid.
7. Matter is distinguished by the possession of certain distinotive properties.
8. The properties of matter are divided into1st. Essential Properties. 2nd. Accessory Properties.
9. The essential properties of matter are those without which matter could not possibly exist.
10. The essential properties of matter are Extension, Impenetrability, Divisibility, Indestructibility, Porosity; Compressibility, Inertia, and Elasticity. portion of space.
 oupy the same portion of apace at the same time.

Arts

18

divide
of $m a$
Nots minute (Ar.a" Note bility of
I. Gol and pre
II. W by side, de not woighs ?
III. In

इण do
IV. Th
inch in t
V. Blo
human b
the head and may
VI. Th
together might ew these eres nutrition,
VII. 4 so minute counting would req VIII. only abou together, 14.
a finite
Nores. destroy it. proved by 1. e., the in gate welgh arraly 00 m
attaohed to
115. ter do n interveni
[Arts. 6-12.
ARTS. 18-15.]

PROPERTIES OF MATTER.

Notm.-Examples of the impenetrability of matter will readily suggest themselves. Among the more common may be mentioned the impossibfilty the hand fe plung with water until the air ts displaced-the fact that when overfiows, \&c. Ail instances of thed with water, a portion of the liquid merely examples of displacement. Thapparent penetrability of matter are of wood, it displaces the particles of wood, driving them closer together. 13. Divisibility is the capability of being continually divided and subdivided, and is an essential property only of masses of matter.
Noti 1.-The ultimate particlem of matter; i: e., those inconceivably minute molecules which oannot be further subdivided, are termed atoms. (Gr.a "not" and femno " to cut;" i.e., that which cannot be cut or divided.) Note 2. The following may be given as axampies of the extreme divis1 Gold
I. Gold leaf is hammered so thin that 800000 leaves placed one on another, and pressed so as to.exolude the air, measure but one inch in thickness. II. Wollaiston's micrometric wire is so fine that 80000 wlres placed side de not, measure but one inch across- 150 of these wires bound together woighs but a grain, and 7 ounces would reach raw silk, 1 mile of the wire III. Insects' wings are some of would reach from Toronto to Enggland. goduvo of an inch in thickness. IV. The thinnest part of a soap bubble is only the 2500000 th part of an inch in thickness.
V. Biood corpuscles are so small that it requires 60000 human blood, or 800000 corpusoles of that it requires 50000 oorpuscies of the head of a common pin. Yese of the blood of the musk-deer to cover and may be resolved, by means of chemietry isies are compound bodles,
VI. There are animalcales of chemistry, into their simple elements. together do not equal the bulk minute that millions of them heaped might swim side by side through of a single grain of sand, and thousands these treatures possess, in many the eyo of the finest cambrio needle. Yet nutrition, \&o. posess, in many cases, complioated organs of locomotion,
VII. At Bilin, in Rohemia, a huge mountain consists entirely of shell. so minute, that a cubic inch oontains 41 billions-a namber so vast that would requitroidy as possible day and night without intermission, it VIII The fila
only about a grain-yet the spider's web is so fine that 4 miliee of it weigh together, \&c., \&c. -yet this thread is formed of about 9000 filamente united 14. Indestructibility implies that it is as impossible for a finite creature to annihilate as to oreate matter.
Nore.-We can ohange the form of matter at pleasure, but we cannot dentroy it. When fuel, for example, is burned, not a particle is lost, mot is proved by the fact that if we colleot all the products of the combuntions gate weight exactis, ashos, ato., and weigh them, we shall And thelrago te marbly constude that there that of the wood or coal connumed. Wel ity attaohed to our earth now than at the time of Adam. matter, more or lest,
115. Porosity implies that the constituent atoms of matter do not touoh each other, but are separated by small intervening spacos ealled pores.

Arte.

Noty substan require of one 8 any giv own we

C8
\mathbf{Y}_{6}
C
Ca
E0

- 8w

Ca
Pin
Ein
Oal
Bee
As
24.
and mae
25.
]
II
I

26.

is that fo eaoh othe when ap towards:
27. T an the ma their disth

ATTRACTION.

24. Attraction is that power in virtue of which particles and masses of matter are drawn towards each other. .
25. Attraction is of several kinds, viz:
I. Attraction of Gravity.
II. Attraction of Cohesion.
III. Attraction of Adhesion.
IV. Capillary Attraction.
V. Electrical Attraction.
VI. Magnetio Attraction.
VII. Chemical Attraction.
26. Attraction of Gravity (Lat. gravitas, "weight") is that force by which masses of matter tend to approach eaoh other. It is sometimes spoken of as gravitation, or when applied to the force by which bodies are drawn towards the centre of the earth, terrestrial gravity.
27. The intensity of the foroe of gravity varies directly as the mass of the bodies, and inversely as the square of their distanoe apart, y

Norz.-If we anppose two spheres of any kind of matter, lead, for examplo, to be placed in presence of each other, and under such conditions that being themsolvee free to move in any direction they are entirely unother, and :18t. If their masses are equal, their velocities will be equal.
2nd. If bne contain twice as much matter as the other, its velooity will be only half as great as that of the other.
8rd. If one be infinitely great in comparison with the other, its motion will
Te infinitely amall in comparison with that of the other; and 4th. The more nearly they approach each other, the more rapid will their
28. By saying the intensity of the force of gravitation varies inversely as the square of the distance between the attracting bodies, we merely mean that if the attractive force exerted between two bodies at any given distance apart be represented by the unit 1 , then, if the distance apart be doubled, the force of attraction will be reduced to $\frac{1}{4}$ of what it was before; if the distance between the bodies be increased to three times what it was, the force of gravity will be decreased 9 times, or will be only $\frac{1}{\theta}$ of what it was, \&c.

Example 1.-If a body weigh 981 lbs. at the surface of the earth, what will it weigh 8000 miles from the surface?

BOLUTION.

Here since the distance of the body in the first case is $\mathbf{4 0 0 0}$ miles from the centre of the earth and in the latter case 12000 (i, e. $8000+4000$) the distance apart has been trebled. Then weight $=\frac{981}{8^{2}}=\frac{981}{9}=109 \mathrm{Ibs}$. 4 ns.
Example 2.-The moon is 240000 miles from the (centre of earth, and is attracted to the earth by a oertain force. How much greater would thls force become if the moon were at the surface of the earth?
Here $\frac{240000}{\text { Earth's radius }}=\frac{240000}{40}=60$, and $608=3000$ times. Ans. MxRdign.
3. If a masa of iron meigh 6700 lbs. at the surface of the earth, how much would it weigh at the distance of 12000 milea from the surface? Ans. 418 ibs. 4. If a piece of copper weigh 9 ibs . at the distance of 36000 miles from the earth's surface, what would it woigh at the surface of the earth?

Ang. 900 lbs.
29. Attraction of Cohesion is that force by whioh the
85. T "a machi action of rest or to
36. T1 divided as
I. Sta^{\prime} whio deter
II. HYD ",sta
of the
III. DYN
whicl constituent particles of the same body ane held together. conditiona intirely unroach each
ity will be
notion will
Nore. - The attraction of cohesion acts oply at insensible distances; i. e., at distances 80 minute as to be incapable of measurement. The attraction of gravity, on the other hand, acts at sensible distenoss.
30. Attraction of Adhesion is that force by which the particles of dissimilar bodies adhere or stiok together.
31. Capillary Attraction (Lat. capilla, "a hair") is the force by which fluids rise above their level in confined situations, such as small tubes, the interstices of porous substances, \&o.
Nore.-It is by capillary attraction that oil and burning fluid, melted tallow, \&o., rise up the wiok of a lamp or candle.
32. Electrical Attraction is the force developed by friotion on certain substances, as glass, amber, sealing-wax, \&o.
33. Magnetic. Attraction is the force by which iron, nickel, \&c., are drawn to the loadstone.
34. Chemical Attraction, or Chemical Affinity, is the force by which two or more dissimilar bodies unite so as to form a compound essentially different in its appearance and properties from either of its constituents.
Thum Potash and Grease unite to form soap-Sulphur and Meroury nnite
to form Vermillion, dea.

CHAPTER II.

 STATICS.85. The Scienoe of general mechanios (Greek mèchand, "a machine") has for its object the investigation of the action of forces on matter whether they tend to keep it at rest or to set it in motion.
86. The Science of general mechanics is usually subdivided as follows :-
I. Statios, (Greek statos, "standing") or the science by which the conditions of the equilibrium of solids are determined.
II. Hydrostatics, (Greek hiddor, "water," and statos, "standing,") or the science by which the conditions III. DYN equilibrium of liquids are determined.
which ths, (Greek dunamis, "force") or the soience by 1i, me investigated.
IV. Hydrodynamics (Greek hudor and dimamis) or the science by which the laws that determine the motions of liquids are investigated.
V. Pneumatics (Greek pneuma, "air," and statos, "standing,") or Pneuma-statics, the soience by whioh the conditions of the equilibrium of elastic fluids, as atmospheric air, are investigated. Pneumatios may be regarded as a branch of $\mathbf{H y d r o s t a t i c s .}$
87. A body is said to be in equilibrium when the farces which act upon it matually counterbalance each other or are counterbalanced by some passive force or-resistance.
88. Forces that are balanced so as to produce rest are called statical forces or pressures, to distinguish them from moving, deflecting, accelerating or retarding forces.
89. A force has three elements, viz., magnitude, direction, and point of application.
90. A force may be represented either by saying it is equal to a certain number of lbs., oz., \&c., or by a line of definite length. A line has the advantage of completely defining a force in all its three elements, while a number can merely represent its magnitude.
91. Whatever number of forces may act upon one point of a body, and whatever their direction, they can impart to the body only one single motion in one certain direction.
92. When several forces (termed components) aot on a point, tending to produce motion in different direotions, they may be incorporated into one force, called the resultant, which, acting alone, will have the same mechanical effect as the several components.
93. When any number of forces act on a point in the same straight line, the resultant is equal to their sum, if they act in the same direction; but if they aot in opposite directions, the resultant is equal to the difference between the sum of those acting in one direotion and the sum of those acting in the other.
94. If two forces acting upon the same point be represented in magnitude and direction by two lines drawn through that point, then the resultant of such forves will
be represented in magnitude and direction by the diagonal of the parallelogram, of which these lines are the sides.
95. If any number of forces, A, B, C, D, \&ce, act upon the same point in any direction whatever, and in any plane whatever, by first finding the resultant of A and B, then of this resultant and C, then of this resultant and D, and so on, we shall finally arrive at the determination of a single force, which will be mechanically equivalent to, and will
96. If the components act in the same plane, the resultant is found by means of what is techicallogram of forces, if in different planes by the parallelopiped of forces.
97. The resultant of two forces which act on different points of the same body in parallel lines and in the same direction, is a single force equal to their sum, acting parallel to them, and in the same direction, at an intermediate point, which divides the line joining the two points of application of the components, in the inverse ratio of the magnitudes of these components.
98. The resultant of two forces, which act on different points of the same body in parallel lines but in opposite directions, is a single force equal to their difference, acting parallel to them and in the direction of the greater force, and at a point beyond the greater of the two forces, so situated, that the point of application of the greater of the two forces divides the distance between the points of application of the smaller force and of the resultant in the inverse ratio of the magnitudes of the smaller force and of the resultant.
99. When any number of parallel forces, $\mathbf{A}, \mathrm{B}, \mathbf{O}, D^{\text {d }}$ \&c., act on a body, at any point whatever, and in any planes whatever, by first finding the resultant of A and B, mext of this resultant and C, then of this last resultant and Dand 80 on, we shall finally arrive at the determination of a single force, which will be mechanically equivalent to, and will therefore be the resultant of the entire eystem of preallel foroes.
100. When a system of forces consists of two equal opposite, and parallel forces, it is called a Couple.
101. Two equal and parallel forces acting on a body in contrary directions, have a tendency to make that body revolve round an axis perpendicular to a plane passing through the direction of such two parallel and opposite forces; and such tendency is proportional to the product obtained by multiplying the magnitude of the forces by the distance between their points of applioation: and, consequently, all couples, in which such products are equal, and which have their planes parallel, are mochanically equivalent, provided their tendency is to turn the body round in the same direction; but if two such couples have a tendency to turn the body in contrary directions, then they have equal and contrary mechanical effects, and would, if simultaneously applied to the same body, keep it in equilibrium.
102. If any two forces, not parallel in direction, but which are in the same plane, be applied at any two points of a body, they admit of a single resultant, whioh may be determined by producing the lines, that in magnitude and direction represent the two forces, until they meet in a point and then applying the principle of the parallelogram of forces.
103. If two forces not parallel in direction act in different planes on two points of a body, they are mechanioally equal to the combined action of a couple and of a single force, and their effect will be two-fold-1st, a tendency to produce revolution; 2nd, a tendency to produce progressive motion, so that, if not held in equilibrium by some antagonistic forces, the body will at the same time move forward, and revolve round some determinate axis.
104. The process of incorporating or compounding two or more forces into one, is oalled the composition of forces; that of separating or resolving a single force into two or more, is termed the resolution of forces.
105. As all the molecules of a body may be considered as gravitating in parallel lines towards the centre of the earth

Arts 60
-the
a sing
all the words result vertics tion.
56. of grav Notr. because, Centre of 57. point i remain: 68. suspend riably 1 ral poin common tre of g 59. but may ring, a t
60. ' direction as possib
61. T estimated or overtu the cents port.
62. A to be in a Wheo the the body when the the body brium.
-these parallel forces may (Art. 49) be compounded into a single force-which resultant is equal to the sum of all the forces affecting the particles severally; or, in other words, to the weight of the mass. The point to which this resultant is applied, is called the Centre of Gravity, and the vertical line in which it acts is termed the Line of Direction.
56. Every dense body or solid mass possesses a centre of gravity.
Note.-The centre of gravity is sometimes called the Centre of Inertia; because, if it be moved, the whole mass is moved-it is likewise called the Centre of Parallel Forces, for the reason aseigned in Art. 55 .
57. The Centre of Gravity may be defined to be that point in a body, upon which, if the body be supported, itremains at rest and is balanced in any and every position.
68. If a body, regular or irregular in shape, be freely suspended by a point, the centre of gravity will invariably lie in the line of suspension. If suspended by several points of succession, the lines of suspension will have a common point of intersection, which point will be the centre of gravity of the body.
59. The Centre of Gravity is not necessarily in the body but may be in some adjoining space, as is the case in a ring, a table, an empty box, \&c.
60. The tendency of a body, when free to move in any direction, is always to rest with the centre of gravity as low as possible.
61. The Stability of a body resting in any position is estimated by the maynitude of the force required to disturb or overturn it, and will therefore depend on the position of the centre of gravity with reference to the point of support.
62. A body supported on the centre of gravity is said to be in a condition of Neutral or Indifferent Equilibrium; when the point of support is above the centre of gravity the body is said to be in a condition of Stable Equilibrium; when the point of support is beneath the centre of gravity the body is said to be in andition of Undinte Equiti:
brium.
63. The centre of gravity of two separate bodies may be found by dividing the line joining their centres in the inverse ratio of the magnitudes of the bodies.

CHAPTER LII.

MECHANICAL POWERS.

64. The object of all Mechanical contrivances is

1st. To gain power at the expense of velocity ; or 2n'd. To gain velocity at the sacrifice of force.
65. The relative gain and loss of power and velocity is regulated by that principle in philosophy known as the Law of Virtual Velocities, or the Equality of Moments.
66. The law of Virtual Velocity may be thus enun-ciated:-
If in any machine the power and weight be in equilibrium, and the whole be put in motion, then the power multiplied by the units of distance through which it moves is equal to the weight multiplied by the units of distance through which it moves.
Or, if $\mathrm{P}=$ power $\mathrm{W}=$ weight, $\mathrm{S}=$ space moved through by P , and $\mathrm{B}=$ - space through which W moves.

Then P : W : : $s: S$.
, Hence $P=\frac{W \times s}{S} ; S=\frac{W \times s}{P}, W=\frac{P \times S}{s}$ and $s=\frac{P \times S}{W}$
3.4payphy 5.-A weight of 700 lbs is moved through 90 feet by a certain power moving through ${ }^{*} 5,100$ feet. Required the power.

> soLuriox.

Hore $W=700,=90$ and $S=5100$.
Honce $P=\frac{W \times s}{S}=\frac{700 \times 90}{6100}=18 r^{6}$ lbs. Ame.
Examply 6.-A weight of 500 lbs , is moved by a power of 20 lbs .; through how many feet must the power move in order to raise the weight through 16 feet?

Here
Henc
ExA ries a a
Here 1
Then
Exam made to the wei

Here I
Then e
9. Ap through
10. A weight t
11. A through. the weig
12. A it carries power.
67. principl a large a small either si
68. I of six m ical Eler

The I
The I
The \mathbf{P}
The
The
The 8

Here $W=500, P=20$ and $s=16$.
Hence $S=\frac{W \times 8}{P}=\frac{600 \times 16}{20}=400$ feet. Ans.
Exampy 7. - A power of 21 lbs. moving through 75 feet car. ries a certain weight through 11 feet. Required the weight.
Hers $P=21, \stackrel{S}{S}=75$ and $s=11$.
Then $W=\frac{P \times S}{8}=\frac{21 \times 75}{11}-148 \mathrm{gl}$ lbe. Ans.
Example. 8.-A power of 204 lbs . moving through 30 feet is made to move a weight of 1000 lbs . Through how many feet does the weight move?

BOLUTION.
Here $P=204, W=1000$ and $S=30$.
Then $:=\frac{P+S}{W}=\frac{204 \times 80}{1000}=6,3$ ft. Ans. EXERCIBE.
9. A power of 7 lbs. is made to move a weight of 10001 through 11 feet; through how many feet must the power move?

Ains. 1571 feet.
1a. A power of 97 lbs . moving through 86 feet raises a certain weight through 10 feet. Required the weight. Ans. 834 llbs .
11. A weight of 888 lbs . is raised by a power of 60 lbs .; through how many feet must the power move in order to raise the weight through 1 foot?
12. A certain power moving throngh 27 feet is so applied that it oarries weight of 2500 lbs . through 4 feet. Required the power.

67. Any contrivance by which, in accordance with the principle of Virtual Velocities, a small force acting through a large space is converted into a great force acting through a small space, or vice vers \hat{A}, is a machine. Machines are either simple or complex.
68. In the composition of machinery it is usual to speak of six mechanical powers-more properly termed Mechanical Elements, or Simple Machines, viz :-
$\left.\begin{array}{l}\text { The Lever, } \\ \text { The Inolined Plane, } \\ \text { The Pulley and Cord, }\end{array}\right\}$ Primary Mechanical 'Elements. The Wheel and Axle,
The Wedge, The Screw,

ARTE. 7
69. In reality, however, there are but two simple nochanical elements, viz: the Lever and the Inclined Rtidie.' The Wheel and Axle and the Pulley are merely niodifiog. tions of the lever, while the Wedge and the Screvm ate both formed from the inclined plane.
70. In theoretical mechanics levers are hotioned to be perfectly rigid and imponderable-cords, ropes and chaihs are regarded as having neither thidkness, stiffness" fior weight, they are assumed to be mere mathematical lines, infinitely flexible and infinitely strong. At first no allow. ance is made for friction, atmospheric resistance, \&o. After the problem, divested of all these complicating ciroumstances, has been solved, the result is modified by taking into consideration the effects of weight, friction, atmos: pherio resistance, rigidity of cords, flexibility of bars, \&o.

the Lever.

71. The lever is a bar of wood, or iron, movable about a fixed point or pivot called the Fulorum.
72. Levers are either Straight or Bent, Simple or Compound.
73. Of simple Straight Levers there are three kinds, the distinction depending upon the relative positions of the fulcrum, the power, and the weight.
74. In levers of the first class the fulcrum is between the power and the weight.

Fig. 1.
of thic Hind of lever, we may
 handie, the beam of a pair of scal crowbarwhen used for prying, ido.

75. In levers of the second olass the weight is between the fulcrum and the power.

Nutorackers, an our in rowing, a orowbar when used in lifting, \&o.., are P Fig. 2. derramples of levers of the second kind, und chains fness nor ical lines, no allowance, \&o. ating cirby taking n, atmos.' bars, \&o.
ble about or Com. kinds, itions of

soldtion.

Horer $=10 \mathrm{lbs} . A=17$, and $a=20$.
Then $W=\frac{P \times A}{a}=\frac{110 \times 17}{20}=981$ lbe. Ans.

Arts.

80
consti
positio the po existin
81. 1 arms of
T
He
Exam power feet, the

Here \boldsymbol{n}
Then
Exam arms of $2,3,1$,

Hero $\begin{array}{r}\boldsymbol{P} \\ \boldsymbol{a}^{\prime \prime}=\end{array}$
Then I
$=$
24. In a
the

[ARTs 78, 79.

 z. is made to weight is $2 \frac{1}{2}$arm of the equired the ns. $31 \ddagger$ lbs. arm of the t of 5 cwt ? s. $17 \frac{1}{1} \mathrm{cwt}$. rm of the quired the 5. $50 \frac{2}{2}$ lbs. rm of the f 950 lbs.? $061+3 \mathrm{lbs}$. is 10 lbs., he arm of 8. If feet. o balance g $6 \neq$ feet, .4788 ft .
balance re is no f levers or the e forces cond or er from
t their liculars of the dopted do not

Arts. 80, 81.]
THE COMPOUND LEVER.

THE COMPOUND LEVER.

80. Two or more simple levers acting upon one another constitute what is called a Compound Lever or Cam-: Fig. 4.

position of Levers. In such a combination the ratio of the power to the weight is compounded of the ratios existing between the several arms of the compound lever.
81. In the compound lever if $W=$ weight, $P=p o w e r, a a^{\prime} a^{\prime \prime}$ the arms of the weight, and $\mathcal{A} A^{\prime} A^{\prime \prime}$ the arms of the power.

Then $P: W:: a \times a^{\prime} \times a^{\prime \prime}: \mathcal{A} \times \boldsymbol{A}^{\prime} \times \boldsymbol{A}^{\prime \prime}$

$$
\text { Hence } P=\frac{W \times a \times a^{\prime} \times a^{\prime \prime}}{\mathcal{A} \times \boldsymbol{A}^{\prime} \times \mathcal{A}^{\prime \prime}} \text { and } W=\frac{P \times \mathcal{A} \times \mathcal{A}^{\prime} \times \boldsymbol{A}^{\prime \prime}}{a \times a^{\prime} \times a \underline{a}^{\prime \prime}}
$$

Example 22.-In a combination of levers the arms of the power are 6, 7, and 11 feet, the arms of the weight 2, 3, and 31 feet, the weight is 803 lbs .; what is the power?

SOLUTION.

Here $W=803$ lbb., $a=2, a^{\prime}=3, a^{\prime \prime}=3 \mathrm{~h}, A=6, A^{\prime}=7, A^{\prime \prime}=11$.

$$
\text { Then } P=\frac{W \times a \times a^{\prime} \times a^{\prime \prime}}{A \times A^{\prime} \times A^{\prime \prime}}=\frac{808 \times 2 \times 8 \times 31}{6 \times 711}=80 \frac{1}{2} 1 \mathrm{bs} . A \mathrm{ng} .
$$

Exampli 23.-In a compound lever the power is 17 lbs., the arms of the power $9,7,6,5$, and 4 ft ., and the arms of the weight $2,3,1,1$, and $\frac{1}{3} \mathrm{ft}$. Required the 'weight.
solution.
Here $\underset{a^{\prime \prime}}{P}=17 \mathrm{lbs}, a^{\prime \prime \prime}=9, A^{\prime}=1$ and $a^{\prime \prime \prime \prime}=\frac{7}{=}, A^{\prime \prime}=6, A^{\prime \prime \prime}=6, A^{\prime \prime \prime}=4, a=2, a^{\prime}=3$,
Then $W=\frac{P \times A \times A^{\prime} \times A^{\prime \prime} \times A^{\prime \prime \prime} \times A^{\prime \prime \prime}}{a \times a^{\prime}} \times \frac{17 \times 9 \times 7 \times 6 \times 5 \times 4}{2 \times 8 \times 1 \times a^{\prime \prime} \times a^{\prime \prime} \times \frac{1}{a^{\prime \prime \prime}}}=\frac{128520}{2}$ $=64200 \mathrm{lbs} . \Delta n \mathrm{~A}$.

Ex日reise.

24. In a compound lever the arms of the power are 9 and 17 ft ., the arms of the weight 3 and 4 ft ., the power is 19 lbs ., Ans. 2421 lbs.
25. In a componnd lever the arms of the power are $6,8,10$, and 12 ft. , the arms of the weight, $7,5,3$, and 1 ft ., the weight is 700 lbs. Required the power. Ans. 129_{6}^{3}. 26. In a compound lever the arms of the weight are 11, 13, and 9 ft .. the arms of the power are 4,7 , sad 2 ft ., the weight is 560 ibs. What is the power ? 4, 7, and 2 ft ., the weight
Ans. 12870 lbs .

THE WHEEL AND AXLE.

82. The wheel and axle consists of a whot with a cylindrical axle passing through its centre, perpendicular to the plane of the wheel. The power is applied to the circumference of the wheel, and the weight to the circumference of the axle.
83. The wheel and axle is merely a modification of the lever with unequal arms; the radius of the wheel corresponding to the arm of the power, and the radius of the axle to the arm of the weight.

84. The wheel and axle is sometimes called the continual or perpetual lever, because the power acts continu-
85. The power and weight in the wheel and axle are in equilibrium when the power is to the weight as the radius of the axle is to the radius of the wheel.
86. For the wheel and axle-let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, $\mathrm{r}=$ radius of the axle, $\mathrm{R}=$ radius of the wheel.

Then $P: W: ; r: R$.
Hence $P=\frac{W \times r}{R} ; W=\frac{P \times R}{r} ; r=\frac{P \times R}{W} ;$ and $R=\frac{W \times r}{P}$.
Rximplim 27 .-In as wheel and axle the radias of the axle in 7 Inches, the radius of the wheel ia 35 inobes. What power wlll
belance a woight of 643 lbs ?

Art. 86.]

solution.

Here $W=648$ lbs., $R=35$ inches, and $r=7$ Inches,
Then $P=\frac{W \times r}{R}=\frac{643 \times 7}{35}=1283$. Ans.
Example 28.-In a wheel and axle the radius of the axle is 6 inches, the radius of the wheel is 27 inches. What weight will be balanced by a power of 123 lbs ?

solution.

Here $P=128$ lbs., $R=27 \mathrm{in}$, and $r=6 \mathrm{in}$.
Then $W=\frac{P \times R}{r}=\frac{128 \times 27}{6}=658 \frac{1}{2}$ lbs. Ans.
Bxample 29.-By means of a wheel and axle a power of 11 lbs. is made to bslance a weight of 719 lbs., the radius of the axle is 3 inches. Required the radius of the wheel?
solution.
Here $W=719$ lbs., $P=11$ lbs., and $r=8 \mathrm{in}$.
Then $R=\frac{W \times r}{P}=\frac{719 \times 8}{11}=191_{1} 1_{\mathrm{C}}$ inches. Ans.

EXEROISE.

30. In a wheel and arle the radius of the arle is 7 inches, the radius of the wheel is 70 inches. What power will balance : Ans. 91 ${ }^{7}$ \% lbe,
31. In a wheel and axle the radius of the axle is 5 Inches, and the radius of the wheel 17 inches. What power will balance a weight of 5950 lbs ? Ans. 1750 lbs .
32. In a wheel and axle the radius of the axle is 9 inches, and the radius of the wheel is 37 inches. What power wlll balance a weight of 925 lbs ? Ans. 225 lbs.
33. In a wheel and axle the radius of the axle is 11 inches, and the radius of the wheel is 45 inches. What weight wlll a power of 17 lbs . baiance? Ans. $699^{6} \mathrm{f}$ l $\mathrm{bs}_{\text {? }}$
34. By means of a wheel and axle a power of 37 lbs . balances a weight of 700 lbs., the radius of the axle being- 8 -inches, whit is the radius of the wheel? Ans. 151 f ? inchen.
35. By means of a wheel and axle a power of 22 lbs. balances a weight of 870 lbs . If the radius of the wheel be 67 inches

THE DIFFERENTIAL WHEEL AND AXLE.

 87. In the differential wheel and axle, the axle consists of two parts, one thicker than the other. By each revolution of the wheel the rope rolls once off the thinner portion and once on the thicker portion, and is consequently shortened only by the differences between the circumferences of the axles; and the distance through which the weight is raised is equal to half the shortening of the rope. The effect is therefore the same as if an axle had been used with a radius equal to half the difference Fig. 6.
'Art. 8

Here
Then
ExA
axles
What

Hore
Then
Exs
the wi of 729 between the radii of the thicker and thinner parts of the
differential axle.*
88. For the differential wheel and axle let $\mathrm{d}=$ the difference between the radii of the axles, $\mathrm{R}=$ radius of the wheel, $\mathrm{P}=$ the
power, and $\mathrm{W}=$ the weight.
Then $P: W:: \downarrow d: R$.
Whence $P=\frac{W \times i d}{R}, W=\frac{P \times R}{d d} \cdot R=\frac{W \times q d}{P}$, and $d=\frac{P \times R}{W}$,
Examplr 86.-In a differential wheel and axle the radius of the larger axle is $4!$ Inches, the radius of the smaller axle is $4 f$ inches, the radins of the wheel is 70 Inches. What power will
bolution.
Here $d=$ difference of radil $=\frac{1}{6}-\frac{1}{6},=\frac{1}{3 f}, W=1000 \mathrm{lbs}, \vec{R}=70 \mathrm{In}$.
Then $P=\frac{W \times \frac{1}{2} d}{R}=\frac{1000 \times \frac{1}{60}}{70}=\frac{108^{Q}}{\frac{10}{\Omega}}=\frac{1898}{48}=\frac{A}{8}$ lbs. Ams.

- Kxampli 37.-In a differential wheel and axle the radii of the

Here
Then
40. In
$3!$
$\stackrel{\rightharpoonup}{W}$
41. In

17
W
42. In
$2 \frac{1}{3}$
of
43. In
$\stackrel{4}{6}$
44. In

18
W
89. of the modifi
[ARTS. 87, 88 .
XLE.
axle consists : 6.

urts of the
difference $e l, \stackrel{P}{P}=t h e$
$=\frac{P \times R}{W}$ radius of axle is $4 f$ wor will
$=70 \mathrm{in}$.
n.
lii of the 0 inches.
${ }^{3}$ Ant. 89.] THE WHEEL AND AXLE.

SOLUTION.
Here $d=\frac{1}{4}-{ }_{8}^{3} \mathrm{~g}=\frac{8}{80}$ in. $R=100$, and $W=7234$.

Example 38.-In a differential wheel and axle the radii of the axles are $3 \frac{1}{8}$ and $3_{1}{ }^{2} \gamma$ inches, the radius of the wheel is 86 inches. What weight will a power of 17 lbs. balance?

BOLUTION.
Here $d=\frac{1}{b}-\jmath^{2} r=T^{\frac{1}{3} 6}$ of an inch, $R=86$ inches, and $P=17 \mathrm{lbs}$.
Then $W=\frac{P \times R}{\frac{1}{2} d}=\frac{17 \times 86}{\frac{1}{2 \frac{1}{2}}}=\frac{1462}{\frac{1}{7 \frac{1}{7}}}=397664 \mathrm{lbs}$. Ans.
Examply 39.-In a differential wheel and axle the radius of the wheel is 32 inches, and a power of 5 lbs. balances a weight of 729. What is the difference between the radii of the axles? SOLUTION.
Here $W=729$ lbs., $P=5 \mathrm{lbs}$, and $R=82$ inches.
Then $d=\frac{P \times R}{\frac{1}{2} W}=\frac{5 \times 82}{\frac{1}{2} 729}=\frac{160}{1 \frac{29}{4}}=320$ of an lnch. Ans.
EXEROISE.
40. In a differential wheel and axle the radii of the axles are $7 \frac{1}{4}$ and $77^{2} \mathrm{~T}$ inches, and the radius of the wheel is 85 inches. What power will balance a weight of 6900 lbs.?

Ans. $\frac{23}{3} 9$ lbs.
41. In a differential wheel and axle the radii of the axles ary 17 and 16 inches, and the radius of the wheel is 130 inches. What weight will a power of 17 lbs . balance?

Ans. 4420 lbs.
42. In a differential wheel and axle, the radii of the axles are $2 \frac{1}{3}$ and 23 inches, and a power of 231 oz . balances a weight of 6400 os . Required the radius of the wheel.

Ans. 6478 inches.
43. In a differential wheel and axle, the radii of the axles are $4 \frac{1}{2}$ and 5 inches, the radius of the wheel being 120 inches. What power will balance a weight of 2430 oz .?

Ans: 81 $\frac{1}{0}$ oz.
44. In a differential wheel and axle, the radii of the arles are 18 and 1 g feet, the radius of the wheel is $12 i$ feet. What weight will a power of 880 lbs, balance? -Ans. 146880 lbs.
89." Since the wheel and axle is merely a modification of the lever, a system of wheels and axles is simply a modification of the compound lever, and the conditions of

- Abt.
equilibrium are the same, i. e., the ratio of the power to the weight is compounded of the ratios of the radii of the axles to the radii of the wheels. In toothed gear, however, owing to the difficulty in determining the effective radii of wheel and axle, the ratio of the power to the weight is wheel and by the number of teeth and leaves upon the

90. Axles are made to act on wheels by various methods -as by the mere friction of their surfaces, by straps or endless bands, \&c.; but the most common method of transmitting motion through a train of wheelwork is by means of teeth or cogs raised upon the circumferences of the wheels and axles.
91. When cogged wheels and axles are employed, that part of the axle bearing the cogs is called a pin. ion. The cogs raised upon the pinion are called leaves, those upon the wheel are termed teeth.

- 2. Wheelwork may be used either to concentrateor diffuse power. The power is concentrated when the pinions tarn the wheels, as is the case in the crane, which is used to gain power. The power is diffused when the Wheels turns the pinions, as is the case in the fanning mill, threshing machinc, \&o., where extent of motion is sought. 99. In a syetem of toothed wheels and pinions, the conditions of equilibrium are that,-the power is to the weight as the continued product of all the leaves is to the continued product of all the teeth.

4. For a train of wheal work let $\mathrm{P}=$ the power, $\mathrm{W}=$ the scright, $t \mathrm{t}^{\prime} \mathrm{t}^{\prime \prime}=$ the teeth of the whed, and $11^{\prime} y^{\prime}=$ the leaves of
the pinion.

Then $P: W:: l \times l^{\prime} \times l^{\prime \prime}: t \times t^{\prime} \times t^{\prime \prime}$. of the axles however, ve radii of weight is upon the

EXERCISE.

48. In a system of wheel work there are.five heels and pinions; The wheels have respectively $100,90,80,70$ and 60 teeth, and the pinions respectively $9,7,11,9$ and 7 leaves-with such an appliance, what weight would bo sustained by a power of 77 lbs.?
49. In a train of four wheels and axles the Ans. $5333333 \frac{1}{3}$ lhs. ively $70,65,60$ and 50 teeth, and the axles raspectively 9 , 8,7 and 6 leaves; with such an instrument, what power could support a weight of 13000 lbs ?

Ans. $2 \frac{2}{2}{ }_{2}^{2}$ lbs.
50. In a train of wheel work there are three wheels and three axles, the first wheel and last axle plain, and having radii respectively 6 and 2 feet. The second and third wheels have respectively 80 and 50 teeth, and the first and second pinions, respectively 5 and 8 leaves. With such a machine what weight will he balanced by a power of 11 lbs.?

Ans. 3300 lbs.
95. In ordinary wheel work it is usual, in any wheel and pinion that act on each other, to use numbers of tecth that are prime to each other so that each tooth of the pinion may encounter every tooth of the wheel in succession, that thus, if any irregularities exist, they may tend to diminish one another by constant wear. This odd tooth in the wheel is termed the hunting cog.

> Thus if a pinion contain 10 leaves and the wheel 101 teeth, it is evident that the wheel must turn round 101 times and the pinion 10×101 or 1010 times before the same leaves and the teeth will be again engaged.
98. Wheels are divided into crown, spur and bevelled gear.
97. The crown wheel has its teeth perpendicular to its plane; the spiur wheel has its teeth, which are continuations of its radii, placed on its rim; the bevelled wheel-has its teeth obliquely placed, i. e., raised on à surface inclined at any angle to the plane of the wheel.
98. To communicate motion round parallel axes spurgear is employed : bevelled gear is used when the axes of motion are inclined to one another at any proposed angle. Where the axes are at right angles to one another a crown wheel warking in a spur pinion or a crown pinion working in a spur wheel is usually employed.
103.
99. Bevelled wheels are always frusta of cones channelled from their apices to their bases.
Note.-When bevelled wheels of different diameters are to work together the sections of the cones of which they are to be frusta are found in the
following manner: Let A B be the diameter of the large wheel, and B C that of the smaller. Place $A B$ and BC8o as to include the proposed angle. Bisect $A B$ in D and $B C$ in E. Draw perpendicuiars D F, E F meeting in \dot{F} and join FA, FB and FC. Then FAB and FBC are sections of the required oones. Aliso drawlog H G paral. lel to $A B$, and $G P$ puraliei to BC, we

; and pinions ; and 60 teeth, leaves-with Istained by a $5333333 \frac{1}{3}$ lbs. have respectspectively 9 , what power Ans. $2_{2}^{2} \frac{1}{5} \mathrm{lbs}$. els and three having radii third wheels and second ch a machine l lbs.? 2ns. 3300 lbs .
any wheel jers of teeth ooth of the 1 in succesmay tend to 3 odd tooth
h, it is evident 0×101 or 1010 zaged.
and bevelled
sular to its e continua-dioheel-has ace inclined
axes spurthe axes of osed angle. ter a crown on working
104. The pulley is often called a sheaf, and the oase in which it turns a block. A block may contain many sheaves. A combination of ropes, blocks, and sheaves, is called a tackle.
105. In the single fixed pulley the power must be equal to the weight, i. e., a fixed pulyey does not concentrate force at all. And hence the outy mechanical advantage derived from its use is, that it chagges the direction of the power.
108. In a system of pulleys moved by ${ }^{\prime}$ one cord the conditions of equilibrium are that the power is to the weight as 1 is to twice the number of niovable pulleys.
This is evident from fact that the weight is sustained equaliy by every part of the cord, and, negiecting the last fold or thatt to which the power is attached, there are two foids of cord for every movabie puliey. "Thus in Fig. 9 the weight is sustained by A and B, each bearing $\frac{1}{3}$ of it; and since \mathbf{B} passes over a fixed puiley, the power attached to C must be equal to the tension exerted on $13=1$ the weight.
107. For a system of pulleys moved'ly P 低 onecord let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movable pulleys.

Then P : $W:: 1: 2 n$.
Hence $P=\frac{W}{2 n}, W=P \times 2 n, n=\frac{W}{2 P}$.
Exampli 51.-In a system of pulleys worked by a single cord there are 4 movable pulleys. What power will support a treight of 804 lbs ?

BOLUTION.
Hero $W=804$ and $n=4$.
Hence $P=\frac{W}{2 \times n}=\frac{804}{2 \times 4}=\frac{804}{8}=100 \frac{1}{2}$ lbs. Ans.
Exampie 62.-In a system of 7 movable pulleys worked by a single cord, what weight will be supported by a power of 171 lbs ?

BOLUTION.
Fere $P=17$ and $n=7$.

and the oase ontain many id sheaves, is
must be equal concentrate al advantage rection of the

Fig. 9.

a single cord ill sapport a

3 worked by a wer of 17 lbs ?

Aler. 208.]

THE PULLETY

Exakpla 63 .-In a system of movable pulleys worked by a single cord a power of 7 lbs . balance a weight of 84 lbs . ; how many movable pulleys are there in the combination?
Here $P=7 \mathrm{lbs}$, and,$W=84{ }^{\text {eol }}$ UTIoN.
Hence $m=\frac{W}{2 \times P}=\frac{84}{2 \times 7}=\frac{84}{14}=6 . \Delta n$.
54. In a system of EXERCISE.
the weight is 700 lbs movable pulleys worked by one cord
55. In a system of eleven What is the power '? Ans. $68 \frac{1}{3}$ lbs. cord the weight is 2563 movable palleys worked by one

Required the power.
Ans. 1161 lbs.
56. In a system of eight movable pulleys worked by one cord the power is 37 lbs . Required the weight? Ans. 592 lbs
67. In a system of seven movable pulleys worked by a single ccrd the power is 13 lbs . What pulleys worked by a single
58. In a system of movable pulleys worked by a single cord, a power of 35 lbs. supports a weight of 7000 lbs. How many movable pulleys are there in the combination?

$$
\text { Ans. } 100 .
$$

108. In a system of pulleys, such as represented in Fig. 10, where each movable pulley hangs by a separate cord, one extremity of each cord being attached to a movable pulley and the other to a hook in a beam or other fixed support, each opulley doubles the effect, and the conditions of equilibrium are that the power is to the weight as 1 is to 2 raised to the power indicated by the number of movable pulleys.
Nore,-This wil bocome evident by ettentively examining the diagram and followthy up the several corde. The aguren at the top show the portion of bonime borno by the several parts of the boam, those attreched to the cords of tho conk partion of the oord.

-109. For a system of pulleys, such as exemplified in Fig 10, let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movable pulleys.

Then $P_{s}: W:: 1: 2^{n}$. Hence $P=\frac{W}{2^{n}}$ and $W=P \times 2^{2}$.
Example 59.-In a system of pulleys of the form lididicated in Flg. 10, there are 5 movable pulleys, and a weight of 128 lbs. What is the power?

BOLUTION.
Here $W=128$ lbs. and $n=5$.
Then $P=\frac{W}{2^{n}}=\frac{128}{2^{5}}=\frac{128}{32}=4 \mathrm{lbs} . A n s$.
Example 60.-In such a system of pulleys as is shewn Fig 10, thefe are 7 movable pulleys. What weight will a power of 11 lbs. balance ?

Here $P=11$ and $n=7$.
solution.
Hence $\mathscr{W}=P \times 2^{n}=11 \times 2^{7}=11 \times 128=1408 \mathrm{lbs}$. Ans.
ExErdige.
61. In the system of pulleys represented in Fig. 10, where there are 6 movable pulleys, what power will sustain a weight of 8000 lbs ?
62. In such a system when there are 10 movable pulleys, what power will sustain a weight of 48000 lbs. ?

Ans: 467 lbs .
63. In such a system when there are 7 movable pulleys, what power will support \& weight of $4564 \mathrm{lbs} . ?$

Ans. $35 \frac{2}{2} \frac{1}{2}$ lbs.
64. In such a system when there are 3 movable pulleys, what weight will

- be sustained by a power of 17 lbs .?

Ans. 136 lbs.
65. In such a system what weight will a power of 70 lbs . support when there ${ }^{*}$ are 5 movable pulleys?

Ans. 2240 lbs.
66. In such a system what weight will a power of 100 lbs . support when

- there are 11 movable pulleys ?

Ans. 204800 lbs.
110. In a system of pulleys such as represented in Fig. 11 where the cord passes over a fixed pulley attached to the beam instead of being

Ans, 125 lbs.
Fig. 11.
2618

27 lbs.

ARTE
faste
tripl
that
indi
This
Where
111
power
The
Hen
Ex
what
movab
Here
Then
Exal pulleys

Here
Then
69. In

5 n
pov
70. In
wei
71. In 8 mov how pow rais
112. tion of make w angle gr power wi
[ARts. 109, 110^{\prime}. t in Fig 10, let ber of movable
$=\mathbf{P} \times 2^{\mathrm{n}}$.
m indicated in ght of 128 lbs .
shewn Fig 10, a power of 11

Ins.

0 , where there stain a weight Ans. 125 lbs. Fig. 11. $\begin{array}{lll}2 & 6 & 18\end{array}$

fastened to a hook in the beam, each movable pulley triples the effect, and the conditions of equilibrium are that the power is to the weight as 1 to 3 raised to the power indicated by the number of movable pulleys.
This will appear piain by a reference to the accompanying diagram where the numbers represent the same as in Art. 108.
111. In a system such as is represented in Fig. 11, let $\mathrm{P}=$ power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movable pulleys. Then P:W::1:3n.

$$
\text { Hence } \mathrm{P}=\frac{\mathrm{W}}{3^{\mathrm{n}}} \text { and } \mathrm{W}=\mathrm{P} \times 3^{\mathrm{n}}
$$

Example 67.-In the system of palleys represented in Fig. 11, What power will balance a weight of $4500 \mathrm{lbs} .$, when there are 4 movable pulleys?

Here $W=4500$ and $n=4$. Solution.
Then $P=\frac{W}{8^{n}}=\frac{4500}{8^{\frac{1}{4}}}=\frac{4500}{81}=65 \frac{5}{5}$ lbs. Ans.
Example 68.-In such a system, when there are 6 movable pulleys, what weight will a power of 10 lbs. support?

Here $P=10$, and $n=6$. BOLUTION.
Then $W=P \times{ }^{5 n}=10 \times 86=10 \times 729=7290 \mathrm{lbs}$. Ans.
ExERCIBE.
69. In the system of pulleys represented in figure 11 , there are 5 movable pulleys; what weight may be supported by a power of 10 lbs. ? Ans. 2430 lbs. 70. In such a system there are 7 movable pulleys and the 71. In such a system there are 9 the power. Ans. 11 lbs. movable pulleys - through how many feet must the power descend in order to raise the weight 10 feet? Ans. 196830 feet.
112. If the lines of direction of the power and weight make with one another an angle greater than 120°, the power will require to be greater

Fig. 12.

than the weight; and as this angle approaches 180°, the difference between the power and weight will approach \propto. Hence it is impossible for any power P, however great, applied at P, to pull the cord $A B \dot{C}$ mathematioally straight, and that however small the weight W may be.

the inclined plane.

113. The Inolined Plane is regarded in mechanical science as a perfectly hard, smooth, inflexible plane, in. clined obliquely to the weight or resistance.
114. There are two ways of indicating the degree of inclination of the inclined plane:

1st. By saying it rises so many feet, inches, \&ce., in a certain distance.

2nd. By desoribing it as rising at some stated angle with the horizon.
115. In the inclined plane the power may be applied in any one of three directions:

1st. Parallel to the plane.
2nd. Parallel to the base.
3rd. Inolined at any. angle to the base.
118. In the inclined plane the conditions of equilibriam are as follows:-

1st. If the power act parallel to the plane :- the power is to the weight as the height of the plane is to its length.
2nd. If the power act parallel to the base:- the power is to the weight as the height of the plane is to its base.
Nore-The third oase doee not come within the derign of the present
117. For the iaclined plane let $\mathbf{P}=$ the power, $\mathbf{W}=$ the woifht, $\mathrm{L}=$ length of the plane, $\mathrm{H}=$ height of the plane, and $\mathrm{B}=$ bate of
the plane.

Then $P: W:: H: L$.
Hence $P=\frac{W \times H}{L} ; W=\frac{P \times L}{H} ; H=\frac{P \times L}{W}$; and $L=\frac{W \times H}{P}$.
Also $P: W:: H: B$.
Hence $P=\frac{W \times H}{B^{-}} ; W=\frac{P \times B}{H^{-}} ; H=\frac{P \times B}{W} ;$ and $B=\frac{W \times H}{P}$.
Example 72.-On an inclined plane rising 7 feet in 200, wbat power acting parallel with the plane will sustain a weight of 4000 lbs. ?

BOLUTION.

Here $W=4000 \mathrm{lbs} ., L=200$, and $H=7$.
Then $P=\frac{W \times H}{L}=\frac{4000 \times 7}{200}=\frac{28000}{200}=140 \mathrm{lbs}$. Ane.
Example 73.-On an inclined plane rising 9 feet in 170-what weight will support a power of 180 lbs . acting parallel to the plane?

BOLUTION.

Hore $P=180 \mathrm{lbs} ., I=170$ and $H=9$.
Then $W=\frac{P \times L}{H}=\frac{180}{1} \times \frac{170}{9}=3400$ lbs. Ams.
Example 74.-On an inclined plane a power of 11 lbs. acting parallel to the plane supports a weight of 150 lbs .-how much does the plane rise in 200 feet?

> \& BOLUTION.

Here $P=11 \mathrm{lbs} ., W=150 \mathrm{lbs}, L=200$ feet.
Then $K=\frac{P \times L}{W}=\frac{11 \times 200}{150}=14$ feet 8 inches. Ans.
Examplis 75.-The base of an inclined plane ia 40 feet and the beight 3 feet,-what power acting parallel to the base wlll support a weight of 250 lbs.?

> solution.

Here $W=250 \mathrm{lbs} ., H=3$, and $B=40$.
Then $P=\frac{W}{B}=\frac{250 \times 8}{10}=18 \mathrm{llm}$. Ans.
Example 76.-On an inclined plane a power of 9 lbs , acting paraliel to the base supports a weight of 700 lbs . -the height of the plane being 18 feet, what is the length of the base?

BOLUTION.
Here $P=8 \mathrm{lbs}, \boldsymbol{W}=700 \mathrm{lbs}$, and $H=18$ feet.
Then $B=\frac{W \times H}{P}=\frac{700 \times 18}{9}=1400$ feet. Ans.
EXEROISE.
77. On an inclined plane rising 1 foot $\ln 35$ feet, what power acting parallel to the plane will support a weight of 17500 lbs.?

Ans. 500 lbs .
78. On an inclined plane rising 9 feet in 100 feet, what power acting parallel to the plane will sustain a weight of $\mathbf{4 2 3 7}$ lbs?

Ans. $3811_{1}^{33} 0^{3} 1 \mathrm{lbs}$.
79. On an inclined plane whose height is 11 feet and base 900 feet, what power acting parallel to the base will sustain a weight of 27900 lbs. ?

Ans. 341 lbs .
80. On an inclined plane rising 7 feet in 91 feet, what weight will be supported by a power of 1300 lbs ., acting parallel with the plane?

Ans. 16900 lbs.
81. On an inclined plane a power of 2 lbs., acting parallel to the plane, sustalns a weight of 10 lbs .-what is the inclination of the plane? Ans. Plane rises difoot in 5 feet.
82. On an inclined plane a power of 7 lbs , acting parallel to the base, sustains a weight of 147 lbs ,-if the base of the plain be 17 feet what will Its height be? Ans. $1 \frac{1}{8}$ feet.
83. On an inclined plane rising 2 feet in 109 feet, what weight will be sustained by a power of 17 lbs ., acting parallel to the plane?
84. On an inclined plane a power of 4% lbs., snstains a weight of 223 1, 1 lbs.; the power acting parallel to the plane, what is the degree of inclination?

Ans. Plane rises 341 feet in 17199 feet. 85. What weight will be supported by a power of 60 lbs., acting parallel to the base of an inclined plane whose helght is 7 feet and base 15 feet?

Ans. 128f lbs.

THE WEDGE:

118. The wedge is merely a movable inclined plane or a doublo inclined plane, i. e., two inclined planes joined together by their bases.
119. The wedge is worked either by pressure or by percussion.
[^0]ARts 12 that back
Nort the wer wedge Note
exampl
121.
$\mathrm{L}=t h$
Then
Exay
thickne
a press
Here P
Then n
Exam
of back
quired
Here W
Then P
88. The
its b
97 lb
89. The 1
back
weig)
90. The le back be res
122. 1
and may. wound ro
Norn. -Th that a diroule
120. In the wedge the conditions of equilibrium are that the power is to the weight as half the width of the back of the wedge is to its length. -
Nors 1.- Unlike all other mechanical powers, the practical use of the wedge depends on friction, as, were it not prevented by friction, the wedge would recoil at every stroké.
Note 2.-Razors, knlves, scissors, chisels, awls, pins, needles, ac., are examples of the application of the wedge to practical purposes.
121. For the wedge, let $\mathrm{P}=$ power or pressure, $\mathrm{W}=$ the weight, $\mathrm{L}=$ the length of the wedge, and $\mathrm{B}=$ the width of the back.

Then $\mathrm{P}: \mathrm{W}:: \not \mathrm{B}: \mathrm{L} . \quad$ Hence $\mathrm{P}=\frac{\mathrm{W}}{\mathrm{L}} \mathrm{X} \mathrm{B}$ and $\mathrm{W}=\frac{\mathrm{P} \times \mathrm{L}}{1 \mathrm{~B}}$
Exampla 86.-The length of a wedge is 24 inches, and its thickness at the back 3 inches, what weight would be raised by a pressure of 750 lbs .?

BOLUTION.
Here $P=750 \mathrm{lbs}$., $L=24$ inches, and $\frac{1}{d} B=1 \frac{1}{d}$ inch.
Then $W=\frac{P \times L}{\frac{1}{b} B}=\frac{760 \times 24}{1 / 2}=750 \times 16=12000 \mathrm{lbs}$. Ans,
Exampla 87.-In a wedge, the length is 17 inches, thickness of back 2 inches, and the weight to be raised is 11000 lbs. Required the pressure to be applied?

Here $W=11000$ bolution.
位 $1000, L=17$ inches, and $\mid B=1$ inch.
Then $P=\frac{V \times B}{L}=\frac{11000 \times 1}{17}=6471$ Y lbe. Ans.

ExEROISE.

88. The length of a wedge is 30 inches and the thickness of its back 1 inch, what weight will be raised by a pressure of 97 lbs. ?
89. The length of a wedge is 19 inches Ans. 6820 lbs. back 4 inches whe pickness of its weight of 864 lbs. ?
90. The length of a wedge is 23 inches an Ans. 9018 lbs . Ans. 9018 lbs
hickness of fits back 3 inches-with this instrument what pressure woald be required to raise a weight of 1771 lbs ? Ans. 1161 lbs .

THE SOREW.

122. The serew is modification of the inclined plane, and may be regarded as being formed of an inclined plane, wound round a cylinder.
Nori,-The sorew bearn the amme relation to an ordinary inclined plane
that ofroular staircase does to a atralght one.
123. The threads of the screw are either triangular or square, The distance of a thread and a space when the thread is square, or the distance between two contiguous. triangular threads, is called the pitch.
124. The screw is commonly worked by pressure against the threads of an external sorew, called the box or nut. The power is applied either to turn the screw while the nut is fixed, or to turn the nut while the screw is kept immovable,
125. In practice, the screw is seldom used as a simple mechanical power, being nearly always combined with some one of the others -usually the lever.
126. The conditions of equilibrium between the power and the weight in the screw are the same as for the inclined plane, where the power acts parallel to the base, i. e.,

The power is to the weight as the pitch (i. e. height) is to the circumference of the base (i.e. length of the plane.)

When the screw is worked by means of a lever, the conditions of equilibrium are :-

The power is to the weight as the pitch is to the circumfirence of the circle described by the power.
127. The efficiency of the screw as a meohanical power may be increased by two methods :

1st. By diminishing the pitch.
2nd. By increasing the length of the lever.
128. Nor the screw, let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, p $=$ the pitch, and $1=$ length of the lever.

Then since the lever forms the radius of the circle described by the power, and the carcumference of a circle is 3.1416 times the diameter, and the diameter ws twice the radius, $\mathrm{P}: \mathrm{W}:: \mathrm{p}: 1 \times 2 \times$ 3-1416.
Hence $P=\frac{W \times p}{\sigma \times 2 \times 8.1416} W=\frac{P \times l \times 2 \times 8.1416}{p} \frac{a p d}{} p=\frac{P \times l \times 2 \times 8.1416}{W}$
Nox.- The pitoh and the length of the lever muat be both exprensed in nnite of the same denominatipna, i.e both feet, or bothinohes,
(Arte, 128-128 triangular or ace when the o contiguous. ssure against box or nut. ew while the rew is kept
ig. 13.
τ
e. height) is the plane.) ver, the con-
the circum-
anical power
te lever.
the weight, p
le described by 416 temes the $\because: p: 1 \times 2 \times$

$-P \times 1 \times 2 \times 8: 1116$

 Wthe exproued in shen,

ART, 188.1
THE SOREW.
Exaypla 91.-What power will sustain a weight of 70000 lbs . by means of a screw having a pitch of $\frac{1}{1} 4$ of an inch, and the lever to which the power is attached 8 ft .4 in. in length?

solution.

Here $W=$ rooco lbs., $p=1_{4}^{1} \mathrm{in}$., and $t=8 \mathrm{ft} .4 \mathrm{in} .=100 \mathrm{in}$.

Exampla 92.-What weight will be sustained by a power of 5 lbs. by means of a screw having a pitch of toth of an inch, the power lever being 50 inches in length?

Here $P=5$ born boldion.
Then $W=\frac{P \times l \times 2 \times 8.1416}{p}=\frac{6 \times 50 \times 2 \times 8.1418}{\frac{1}{10}}=\frac{1570.8}{1^{\frac{1}{5}}}=157081 \mathrm{bs} . A n s$.
Exaypli 93.-By means of a screw having a power lever $\delta \mathrm{ft}$. 10 inches in length, a power of 6 lbs . sustains a weight of 80000 lbs.; what is the pitch of the screw?

Here $P^{p}=6 \mathrm{lbs}, W=80000$ ibs., and $l=70$ inches.
Then $p=\frac{P \times l \times 2 \times 8 \cdot 1416}{. W}=\frac{6 \times 70 \times 2 \times 8 \cdot 1416}{80000}=\frac{2038 \cdot 944}{80000}=0829868$ in ohes, or about $\frac{83}{1000}$ of an Inch, 4 ns .

Exayple 94.-What power will sastain a weight of 96493 lbs . by means of a screw baving a pitoh of 1^{3} th of an inch, the power "lever being 25 inches in length?

- bolution.

Here $W=08188 \mathrm{lbs} ., p=\mathrm{r}^{2} \mathrm{thin}_{\mathrm{h}}$, and ${ }_{l}=25$.
Then $P=\frac{W \times p}{i \times 2 \times 8 \cdot 1416}=\frac{08493 \times r^{3},-}{25 \times 2 \times 8.1416}=\frac{{ }_{18}{ }^{2} 9419}{167.08}=\frac{17028 \cdot 1764}{167.08}=$ 108:308 lbs . Ans.

mxarcigs.

95. What power will support a weight of 87000 lbs. by means of a screw having a pitch of ${ }^{\circ} \mathrm{g}$ th of an inch, the power lever being 0 ft . 3 inches long? ${ }^{\text {ans. }} 31 \cdot 83 \mathrm{lbs}$.
96. What weight will be sustained by a power of 200 lbs . acting on a sorew baving a pitch of stoth of an inch-the power lover being 16 inches long? Ans. 314160 lbs .
97. By means of a screw having a power lever 50 inches in length, a weight of 9000 lbs . is supported by a power of 12 libs. Required the pitch of the screw. Ans. 41888 , or rather over of of inch,

44

 THE DIFFERENTIAL SCREW. [ABTI. 129,120.88. What power will support a weight of 11900 lbs. by means of a screw having a pitch of $\frac{1}{1 \gamma}$ th of an inch, the power lever being 10 ft . in longth?

Ans. $3 \cdot 713 \mathrm{lbs}$.
99. By means of a screw having a power lever 7 ft .6 inches in length, a power of 10 lbs . supports a weight of 65400 ; what is the pitch of the screw? Ans. 0864 of an inch.
100. What weight will be supported by a power of 50 lbs acting on a screw with a pitch of $-\frac{3}{4}$ th of an inch-the power lever being 8 ft .4 inches in length?

Ans. 418880 lbs.

THE DIFFERENTIAL SCREW.

129. The differential screw, (invented by Dr. John Hunter,) like the differential wheel and axle, acts by diminishing the distance through which the weight is moved in comparison with that traversed by the power.

- It consists of two screws of different pitch, working one within the other (Fig. 14), so that at each revolution of the power lever the weight is raised through a space only equal to the difference between the pitch of the exterior screw and the 'pitch of the inner screw. It follows that the mechanical effect of the differential sorew is equal to that of a single screw having a pitch equal to the difference of pitch of the two screws.

Fig. 14.

For instanoe, in Fig. 14, the part B works within the part A. Now, ifB
 tion of the handie the weight will be raised through . $h_{g}=3 t_{0}$ of an inch, and the whole instrument has the same mechanical effeot as a single sorew haring a pitch of stoth of an inch.
${ }^{10}$ 130. For the differential screw, let $\mathbf{P}=$ power $\mathbf{W}=$ weight, $1=$ length of lever, and $\mathrm{d} E$ difference of pitch of the two screves, Then $P: W:: d: l \times 2 \times 3 \cdot 1416$.
Hence $P=\frac{W \times d}{l \times 2 \times 3.1416}$ and $W=\frac{P \times l \times 2 \times 3.1416}{d}$

Ex by me in len inner

Here an inct

Then $=7 \cdot 81$

Exa
1000
is 75 it
and th

Here an inch
Then
$=12921$
103. 'W
of
lor
the
104. W
on
lon
of
105. W
of
the
18
ARt. 3
[ARTM. 129, 12Q. lbs. by means he power lever Ans. 3.713 lbs. ft .6 inches in of 65400 ; what 164 of an inch. 50 lbs. acting he power lever ns. 418880 lba .
y Dr. John acts by dimght is moved er.
g. 14.

t A. Now, if at each revolu. ros $=\frac{1}{10}$ of an deot as a single
$\mathrm{W}=$ weight, e two screws,

ART. 181.$]$ THE ENDLESSS SCREW.

Example 101.-What power will exert a pressure of 20000 lbs . by means of a differential screw baving a power lever 50 inches in length, the exterior screw a pitch of iry of an inch, and the inner screw a pitchi of ${ }^{\frac{3}{6}} \mathrm{t}$ th of an inch ?
solution.

Example 102.-What pressiure will be exerted by a power of 1000 lbs. acting on a differential screw in which the power lever is 75 inches long, the pitch of the exterior screw $\mathrm{i}^{3} \mathrm{f}$ of an inch, and that of the interior screw $\delta_{\delta \delta}^{7}$ of an inch ?

BOLUTION.

 an inch.
 $=1292098 \frac{1}{f} \mathrm{lbs}$. Ans.

山

EXERCISE.

103. 'W hat power will exert a pressure of 100000 lbs . by means of a differential screw in which the power lever is 100 inches long, the pitch of the outer screw $\frac{1}{39}$ of an inch, and that of the inner screw $\frac{1}{46}$ of an inch?

Ans. 102 or about 7^{2} of a 1 lb .
104. What pressure will be exerted by a power of 20 lbs . acting on a differential screw in which the power lever is 50 inches long, the pitch of the exterior screw it of an inch, and that of the inner screw f of an lnch? Ans. 345576 lbs . 105. What power will give a pressure of 60000 lbs . by means of a differential screw in which the power lever is 60 inches, the pitch of the outer screw ${ }^{3} d$, and that of the inner screw Ans. $2 \cdot 652 \mathrm{lbs}$.

THE ENDLESS SCREW.

 - 131. The Endless Screw, Fig. 15 , is an instrument formed by combining the sorew with the wheel and axle. The teeth of the wheel are set obliquely so as to aot as much as possible on the threads of the screw.Fig. 15.

ARts. 18
132. In Fig. 15 each revolution of the handle makes the wheel revolve only through the space of one oog; hence if the whole has 24 cogs, the winch must revolve 24 times in order to make the wheel revolve once.

It follows that in the endless or perpetual screw the conditions of equilibrium are that the power is to the weight as the radius of the axle is to the product of the number of teeth in the wheel multiplied by the length of the winch; i. e., the radius of the circle described by the power.
133. For the endless screw let $\mathrm{P}=$ power, $\mathrm{W}=$ weight, $\mathrm{I}=$ length of winch or handle, $t=n u m b e r$ of teeth in the wheel; and r=radius of axle.
Then $P: W:: r: l \times t$. Whence $P=\frac{W \times r}{l \times t} \quad W=\frac{P \times l \times t}{r}$.
Example 106.-In an endless screw the length of the winch or handle is 25 inches, the wheel has' 60 cogs, and the axle to which the weight is attached has a radius of 2 inches. What weight will be sustained by a power of 100 lbs ?

8OLUTIOK.
Here $P=100 \mathrm{lbs} ., r=2$ inches, $b=25$ inches, and $t=60$.
Then $W=\frac{P \times l \times t}{r}=\frac{100 \times 25 \times 60}{2}=\frac{150000}{2}=75000 \mathrm{lbs} . ~ A n \%$
Example 107.-In an endless screw the length of the winch is 20 inches, the wheel has 56 teeth and the radius of the axle is 3 inches. What power will support a weight of 14000 lbs ? BOLUTION.
Here $W=14000 \mathrm{lbs}, r=3$ Inches, $l=20$ inches, and $t=50$.
Then $P=\frac{W \times r}{i \times t}=\frac{14000 \times 3}{20 \times 56}=\frac{42000}{1120}=87 \frac{1 \mathrm{lbs} \text {. Ans. }}{}$
EXERO18R.
108. In an endless screw the length of the winch is 18 inches, the radius of the axle is $\mathbf{2}$ inches, the wheel has 48 teeth, and the power is 120 lbs . Required the weight. 109. What power will support a weight of a million. 61840 lbs of lhs. by
means of an endlees screw having o winch means of an endless screw having a winch 25 inches long, an axle with a radius of 1 inch, and a wheel with 100 teeth?
110. What weight will be raised by a power of 40 lbs . by menens of an endiess screw in which the winch is 20 inches long, the radius of the axle 2 inches, and the number of teeth in Ans. 32000 ibs.
134. rules a retardin count in instrum the rigic axle, dc.
135. but oppo materiall mechanic
If P be th tion, then t less than P.
136.
137. the whole the frictio cient of s from \dagger to 138. 0 for the pu road the \mathbf{r} -varying from T_{8} to it is not mc dampness road the cc drawing a force of ${ }^{2}$ of traction.
139. V ishing the when wood of different
adle makes one oog ; ist revolve e.
w the conthe weight number of he winch; wer.
$t, 1=$ length draradius
xt
the winch be axle to es. What
184. The theoretical results obtained by the foregoing rules are in practice very greatly modified by several retarding forces. Thus friction has to be taken into account in each of the mechanioal powers-the weight of the instrument itself in the lever and in the movable pulleythe rigidity of cordage in the pulley and in the wheel and axle, \&c.

FRICTION.

135. Friction aids the power in supporting the weight, but opposes the power in moving the weight, and hence materially affects the conditions of equilibrium in the mechanical powers.

> If P be the power necesgary in the absence of all friction, and f the friotion, then the welght will be held in equillbrium by any power whloh is less than $P+f$, or greater than $P-f$.
> 136. Friction is of two kinds: 1gt. Sliding Friction. $\begin{array}{ll}\text { 137. The. frantinn }\end{array}$
137. The fraction which expresses the ratio between the whole weight and the power necessary to overcome the friction, is called the coefficient of friction. The coefficient of sliding friction, in the case of hard bodies, varies from \dagger to $\frac{1}{2}$.
138. On a perfectly level road, power is expended only for the purpose of overcoming friction, and on the same road the ratio between the power and the load is constant, -varying on common roads, according to their goodness, from its to ${ }_{3} \frac{1}{6}$ of the load. On an even railway, howequer, it is not more than rito to $\frac{1}{28} \mathrm{\sigma}$ of the load, according to the dampness or dryness of the rail. On a good macadamized road the coefficient of friction is about $\frac{1}{3} \frac{1}{6}$, so that a horse drawing a load of one ton or 2000 lbs. must draw with a force of $\frac{1}{3} \delta$ of 2000 lbs . or $66 \frac{2}{3} \mathrm{lbs}$. ; this is called the force of traction.
139. Various expedients are in common use for diminishing the amount of friction, such as crossing the grain, when wooden surfaces rub on one another; using surfaces of different materials, as wood on metal, or one kind of
metal on another kind, and anointing the surface with oid, tar, or plumbago. Tallow diminishes the friction by onehalf.

The following are the conclusions of Coulomb on the important subject of sliding friction :-
I. Friction is directly proportional to the pressure.
II. Friotion between the same two bodies is constant, being uninfuenced by either the extent of surface in contact or the velocity of the motion.
III. Friction is greatest between surfaces of the same material.
IV. Friction varies with the nature of the surfaces in contact.

The friction between surfaces of wood, newly planed- $\frac{1}{1}$ The frietion between similar metaliic surfaces $=t$ The friction of a wooden surface on a metallic surface=1 The friction of iron sliding on iron The friction of iron sliding on brass
V. Friotion decreases as the surfaces in contact wear. In wood the friation is thus reduced from $\frac{1}{2}$ to $\frac{1}{2}$.
VI. Friction is diminished between wooden surfaces by crossing the flbres. If when the fibres are in the same direction the coefficient of friction is $\frac{1}{}$, it is diminished to $\$$ by crossing them.
VII. Friotion is greater between rough than between polished surfaces.

Hence arises the use of lubricants in machinery. When the pressure is small, the most limpid oils are used. At greater pressures, the more viscid ofis are preferred, then tallow, then a mixture of tailow and tar, or tallow and plumbago, then plumbago alone, and in the heaviest machinery soapstone has been found to be the most etficacious substance.
NoTs.-At very great velocities the friction is perceptibly lessened; when the pressure is very greatly increased, the friction is not increased in proportion.

ROLLING FRIOTION.

VIII. Friction caused by one body rolling on another is directly proportional to the pressure, and inversely to the diameter of the rolling body.
That is, if a oylinder rolling aiong a piane have its pressure doubled, its friction will also be doubled; but if its diameter be doubled, the friction Will be only half of what it was.
The friction of a wooden cylinder of 32 fuches in diameter roliing upon rollers of wood is $\mathrm{r} \frac{1}{2} \mathrm{~s}$ of the pressure.

The friction of an iron axle turning in a box of brass and well coated with oll is $\frac{1}{80}$ of the pressure.

Exaypl raising a

Exampl raising 11

Exampliz raising 798

Here, since
Then units
-Exampla
raising 60 c
[ART. 189. e with oil, on by oneMB on the aninfluenced he motion.
rial.
ct.
$d=1$
$=1$
$0=$
$=$
$=$
n wood the
crossing the ient of fric-
ed surfaces. e pressure is more viscid ar, or taliow inery soap-
tened; when ased in pro-
otly proporling body. doubled, its the friction
oiling apon
conted with

Abts. 140, 141.]
UNIT OF WORE.

CHAPTER IV.

UNIT OF WंORK, WORK OF DIFFERENT AGENTS, HORSE POWER OF LOCOMOTIVES, STEAM ENGINES, AND WORK OD STEAM.

UNIT OF WORK.

140. In comparing the work performed by different agents, or by the same agent under different circumstances, it becomes necessary to make use of some definite and distinet unit of work. The unit commonly adopted for this purpose in England and Amerioa is the labor requisite to raise the weight of one pound through the space of one foot. Thus in raising 1 ib. through 1 foot, 1 unit of work is performod.
performed be rased 1 ff ., of if 1 lb . be raised $2 \mathrm{ft}, 2$ unite of work are performed.
Ift 7 libs. be raised through 9 ft., or if 9 lbs. be ralsed throngh 7 fl ., 88
141. The units of work expended in raising a body of a given weight are found by multiplying the weight of the body in lls. by the vertical space in feet through which it is raised.

Exayple 111.-How many units of work are expended in raising a weight of 642 lbs . to a height of 70 ft .?

SOLUTION.

Ans. Units of work $=642 \times 70=44940$.
Exauple 112.-How many units of work are expended in raising a weight of 423 lbs . to a height of 267 ft . ?

solution.

Ars. Units of work $=423 \times 267=112941$.
Exayple lís.-How many units of work are expended in raising 11 tons of coal from a pit whose depth is 140 ft.?

bolution.

Here, 11 tons $=11 \times 2000=22000$ Ibs. Then $22000 \times 140=8080000$ Ans.
Exakpli 114.-How many units of work are expended in raising 7983 gallons of water to the height of 79 ft .?

BOLUTION.

Here, since a gallon of water welgh $101 \mathrm{lbs}, 7988$ gala $=79830 \mathrm{lbs}$.

Exayple 115.mHow many units of work are expended in ralsing 60 cubic feet of water from a well whose depth is 90 feet ?

8 ince a cubie foot of water weighs 62 J lbs., 00 cubic feet weigh $62 \downarrow \times 00=$ 8750 lbs.
Then inits of work $=8750 \times 99=337500$. Ans.
Exrnetse.
116. How mnch work would be required to pump 60000 gallons of water from a mine whose depth is 860 feet. ?

Ans. 516000000 units.
117. How many units of work would be expended in pumping 8000 cubic feet of water from a mine whose depth is $\mathbf{6 7 9}$ feet?
118. How much work would be expended in raising the ram of a pile driving engine-the rain weighing 2 tons, and the height to which it is raised being 29 feet?

Ans. 116000 units.
119. How much work would be required to raise 17 tons of coals from \& mine whose depth is 300 feet?

Ans. 10200000 units.
120. How much work would be expended in raising 600 cubic feet of water to the height of 293 feet ?

Ans. 10987500 units.
142. The most important sources of laboring force are animats, water, wind, and steum. The laboring force of animals is modified by various circumstances, the most important of which are the duration of the labor, and the mode by which it is applied. The following table shows the amount of effective work that can be performed under different circumstances by the more common living agents :

TABLE.

BREWIWG THE WORE DONE PER MINUTE BY VARIOUS AGRNTS.
Duration of labor eight hours per day.

Horse

Mule
$33000{ }^{0}$ units
Ass 82000 22000 "

6
Man, with wheel and axle 8250 "
"drawing horizontally 2600 "
" drawing horkontally 3200 "
" raising materials with a pulley.......... 1600 "" "throwing earth to the height of 5 feet. 660 "

ART. 142.
Man,
"
" rai

Notre. units, but strength p given in til neering.

Exampl
100 lbs., bours?

Since (by units of wo minates. Units of Units of w
Then $\frac{560 \text {) }}{100}$
Example in a day of pail and ro

Units of w
Then num
Exampliz
by means o 80 feet ?

Units of wo Units of wo
The number
Example with a whee 87 feet?

Units of wo
Unite of wor
Tons raised :

- fratimes
engine of 71
pleet?

〔Art. 142.
igh $62 \AA \times 60=$

100 gallons
0000 units. n pumping epth is 679 0000 units. the ram of s, and the 3000 units. 17 tons of

000 units. 600 cubic

500 units.
force are force of the most , and the le shows erformed on living
gnts.

ART. 142.] WORK OF LIVING AGENTS. Man, working with his arms and legs as in rowing
" raising water from a well with a pail and rope.
" raising water from a well with............... 1054 " chain pump...............................

1730 "
Nors.-The work assigned by Watt, to the horse per minute was 38000 units, but this is known to be abont too great. A horse of average given in the table; however, is unitit of work per minute. The number neering.

100 lbs ., will a man throwy cubic feet of earth, each weighing hours?

4000 units

 raising water from a well with an upright 51
"
? solution.
Since (by the table) a man throwing earth to the height of 5 ft ., does 560 units of work per minute-and from the example he works $8 \times 60=480$
minutes. minutes.
Units of work done in the day $=560 \times 480$.
Units of work required to throw 1 cubic foot to height of 5 feet $=100 \times 6$. Then $\frac{560 \times 480}{100 \times 5}=5873$ cublo feet. Ans.

Example 122.-How many gallons of water will a man raise in a day of 8 houn from a well whose depth is will a man raise
pail and rope?

BOLUTION.

Units of work $=1044 \times 60 \times 8$; work required to raise $1 \mathrm{gal} .=10 \times 70$. Then number of gallons $=\frac{1054 \times 60 \times 8}{10 \times 70}=7222_{5 \%}^{6} . ~ A n s$.
Examply 123.-How many gallons of water can a man raise by means of a chain pump in a day of 8 hours from the depth of
80 feet? sóletion.
Unith of work performed by the man $=1780 \times 60 \times 8$.
Units of work required to raise 1 gal. of water $=10 \times 80$.
Thee number of gallons $=\frac{1780 \times 60 \times 8}{10 \times 80}=1088.4 \mathrm{~ns}$.
ExAMPLE 124.-How many tons of earth will a man working With a wheel and axle raise in a day of 8 hours from a depth of 87 feet?

BOLUTIOX.
Units of work performed by the man $=2000 \times 60 \times 8$.
Units of work required to ratse 1 ton to height of 87 ft . $=2000 \times 87$.
Tons raised $=\frac{2600 \times 60 \times 8}{2000 \times 87}=7$ 否5. Ans.
findele 125.-How many gallons of water per hour will an engine of 7 horge power raise from of water per hour will an
feet?
131. Wh rais
132. $A f$ each engi
133. An ing i 6 fee
134. An mer, of $2 f$ per b of the
Note.-T subtract the the work ex gives us the of the weigt

BOLUTION.

Units of work performed by engine per hour $=83000 \times 00 \times 15$.
Units of work required to raise 1 oubio foot $=625 \times 900$.
Hence, number of oubio feet $=\frac{83000 \times 60 \times 15}{62.5 \times 900}=528$. Ans.
Example 128.-What must be the horse power of an engine in order that working 12 hours per day it may supply 2300 families with 50 gallons of water each per day-taking the mean height to which the water is raised as 80 feet, and assuming that $\frac{1}{6}$ of the work of the engine is lost in transmission?

BOLUTION.
Weight of water pumped per day $=2300 \times 50 \times 10$.
Units of work required dally $=2300 \times 50 \times 10 \times 20$.
Units of work in one horse power per day $=8300 \times 12 \times 60$.
But since of of the work of the engine is lost in transmission.
Useful work of one H. P. per day $=8 \times 88000 \times 12 \times 60$.
Hence, H. P. $=\frac{2300 \times 60 \times 10 \times 80}{8 \times 83000} \times 10 \times 60 \times 4$. Ans.

TXERCISE.

129. How many cubic feet of earth, each weighing 100 lbs ., will a man raise by means of a pulley from a depth of 30 feet in a day of 8 hours?

Ans. 256 cubic feet.
130. How many cublc feet of water per hour will an engine of 20 H. P. raise from a mine whose depth is 460 feet, assu. ming that f of the work of the engine is lost in transmid. sion?

Ans, 11268 cubic feet.
[ART. 142.
$\times 7 \times 60$. ht of $110 . \mathrm{ft}$. $=$
aire to raise 360 feet?

1 an engine ise depth is
$\times 15$.
an engine 3300 famig the mean assuming n?

0 lbs., will 30 feet in cubic feet. engine of feet, assu-transmiscuble foet.

ARts. 148,144.] WORK ON A LEVEL PLANE.
131. What must be the H. P. of an engine in order that it may raise 11 tons of material per hour from a depth of 700 ft .? 132. A forge hammer weighing $890{ }^{\circ}$ Ans. 7.77 H. P. each per minut whing 890 lbs. makes 50 lifts of 4 feet engine that wown what be the horse power of the 133. An engine of 8 he hammer ? Ans. H. P. $=5.39$. ing it to make 50 hifts power warks a forge hammer, caus6 feet. What is lifts per minute, each to the height of 6 feet. What is the weight of the hammer?
134. An engine of 8 horse power aives motion Ans. 880 lbs. mer, which weighs 300 berge hamof 2 feet each. per hour from, and at the same time raises 2 tons of conl of the mine. the bottom of a mine. Required the depth Notre.-The work of theengine $=83000 \times 8$ unita per Ans. 3690 feet. subtract the nnits of work required $=83000 \times 8$ units per minute. From this the work expended per minute in ralsing the coal. Muitiplaing ther will be gives us the work required perthour for the the coal. Multiplying this by 60 of the weight in lbs. by the depth in feet, of which the former is product
143. In moving a carriage, \&c., along a level plane, a certain amount of power is expended in overcoming the friction of the road. This is rolling friction, and amonnts, as before stated (Art. 138,) to from $\sigma_{\delta}^{\frac{1}{\sigma}}$ to $T^{\frac{1}{8}}$ of the entire load on common roads, and from $\frac{1}{2} \frac{1}{8}$ to $T_{n}^{1} \sigma$ of the load on railway tracks. In the case of railway trains, friction is usually taken as 7 lbs. per ton of 2000 lbs.
144. In running carriages of any description, work is employed to overcome the resistances. These resistances are :-

1st. Friction-which on the same road and with the 2nd. Ascent of iname load is the same for all velocitieg. has to be lifted vertically through the height of the plane the work is the same, whatever may-be the velocity of the motion.
3rd. The Resistance of the Atmosphere-which depends upon the extent of surface, and increases as the square of the velocity.

Art. 146
145. When a railway train is set in motion, the work of the locomotive engine at first far exceeds the work of resistances, and the motion is consequently rapidly accelerated. But as the velocity of the train increases, the atmospheric resistance also increases, and with such rapidity as very soon to equalize the work of resistances to the work of the locomotive. When this occurs, i. e., when the work applied by the locomotive is exactly equal to the continued work of resistances (atmospheric resistance and friction), the velocity of the train will be uniform. In this case the train is said to have attained its greatest, or maximum speed.
146. The traction or force with which an animal pulls depends upon the rate of his motion. A horse, for example, moving only 2 miles an hour, can draw with a far greater force than when running at the rate of 6 miles an hour. The following table shows the relation between the speed and the traction of a horse :

TABLE OF TRACTION OF A HORSE. Speed.
A horse moving 2 miles per hour, can draw with a force of 166 libg.

$" 1$	3	$"$	$"$	125
$"$	31	$"$	$"$	104
$"$	4	$"$	$"$	83
$"$	41	$"$	$"$	$621 "$
$"$	5	$"$	4	412

Exampla 135.-What gross load will a horse draw travelling at the rate of four miles per hour on a road whose friction is $\frac{1}{9} 0$ of the whole load?

> solufion.

Here from the table the traotion is 88 ibs., which by the conditions of the question in of of the grose load.
Hence loud $=88 \times 20=1660 \mathrm{lbs}$. Ane.
Example 136.-At what rate will a horse draw a gross load of 1800 lbs . on a road whose coefficient of friction is if ?
solution.
Here traction $=18 p^{2}=100 \mathrm{lbs}$., whence by the table the rate mut be rather over if miles per hour.

Exampin 137,-If a horse draw a load of 2500 lbs upon a road whose coeffioient of friction is what traction will he exert, and how many units of work will he perform per minute?

Here, t miles per
The dist
Hence
Examp locomoti level rai mospher

Hore, w
Space p

Therefor
Exampl uniform v ing the fri of the atm

Space pae
Work of
Work of
Hence \mathbf{H}.
Exampl
90 tons be the resista of friction

Work don
Woight of
Units of w $=720$.
Work expe
\therefore Number
Examplia speed of 35 to be 80,1 atmospheris

BOLUTION.
Here, traction $=2 \frac{500}{3} 0=83 \mathrm{l}$ lbs., and hence he moves at a rate of four
iles per hour. miles per hour.
The distance moved per minnte $=\frac{4 \times 5280 *}{60}=352$ feet.
Hence units of work $=83\} \times 352=29383\}$. Ans.
Exampla 138. - What must be the effective horse power of a locomotive engine to carry a train weighing 70 tons upon a level rail at the steady rate of 40 miles per hour, neglecting atmospheric resistance and taking $\bar{z}_{\boldsymbol{z}} \boldsymbol{m}_{\pi}$ as the coefficient of friction? sOldTiom.
Hore, weight of train $=7 \mathbf{9}$ tons $=140000 \mathrm{lbs}$.
Space passed over per minute $=\frac{40}{00}$ miles $={ }^{40} \times{ }_{60}^{5290}=8520$ feet.

$$
\text { of friction to one foot }=\nabla^{\frac{1}{8} \delta ~ o f ~} 140000=\frac{140000}{200}=700 \text { unitt. }
$$

Uuits of riction per minute $=700 \times 8520=2464000$ units.
Therefore H. P. of locomotive $=\frac{.700 \times 3520}{83000}=\frac{2464000}{88000^{-}}=74.66$ Ans.
Example 139.-A train weighing 120 tans is carrled with a uniform velocity of 30 miles per hour along a level rail; assuming the friction to be 11 lbs . per ton, and neglecting the resistance of the atmosphere, what is the horse power of the locomotive? bOLUTion.
Space paised over per minute $=88$ miles $=\frac{80 \times 6280}{60}=2640$ feet.
Work of friotion to each foot $=120 \times 11 \sim 1820$ units.
Work of frletion per minute $=1320 \times 2640=3484800$ tnilts.
Hence H. P. $=\frac{8484800}{83000}=105 \cdot 6$. Ans.
Example.-140.-At what rate perhour will a train weighing 90 tons be drawn by an engine of 80 borse power, neglecting the resistance of the atmosphere and taking y $f 0$ as the coefficient of friction?

BOLUTION.
Weight of train ongine per hour $=88000 \times 60 \times 80$.
Unit of
$=720$.
Work expended in moving tho train through 1 mile $=720 \times 6280$.
\therefore Number of miles per honz $=\frac{88000 \times 60 \times 80}{720 \times 6280}=4105$. AMis.
Exampin 141.-A train moves on a level rail with the uniform speed of 35 miles per hour; assuming the H.P. of the locomotive to be 60 , the friction equal to 9 lbs . per ton, and neglecting atmospheric resistance, what is the gross welght of the train ?

[^1]Work of engine per hour $=83000 \times 60 \times 50$.
Feet moved over per hour $=35 \times 5280$.
147
Work expended per hour in moving 1 ton $=85 \times 5280 \times 9$.
\therefore Weight of train in tons $=\frac{83000 \times 60 \times 50}{35 \times 5280 \times 9}=59.523$. Ans.
Exampla 142.-In. what time will an engine of $100 \mathrm{H} . P$. move a train of 90 tons weight through a journey of 80 miles along a level rail, assuming friction to be equal to 10 lbs . per ton, and neglecting atmospheric resistance?

BOLUTION.
Work expended in moving the train through 1 foot $=90 \times 10=800$ anits. Work expended on whole journey in moving the train $=800 \times 5280 \times 80$. Work of engine per minute $=83000 \times 100$.
\therefore Number of minates $=\frac{900 \times 5280 \times 80}{38000} \times 100$
minates.

EXEROIEE.

143. What grose load will a horse draw travelling at the rate of 2 miles per hour on a road those coefficient of friction is \boldsymbol{T}^{2} ? Ans. 2988 lbs. 144. What must be the H. P. of a locomotive in order that it ise may draw a train whose gross weight is 130 tons, at the uniform speed of 25 miles per hour, allowing the friction to be 7 lbs per ton, and neglecting atmospheric resistance?

Ans. H. P. 60-66.
145. A train weighs 75 tons, and moves with the uniform speed of 30 miles per hour on a level rail ; taking $\frac{100}{}$ as the coefficient,of friction, and neglecting the resistance of the atmosphere, what is the hbrse power of the engine?

Ans. H. P. $=48$.
146. In what time will an engine of 160 H . P., moving a, train whpse gross weight is 110 tons, complete a journey of 150 miles, taking friction to be equal to 7 lbs. per ton, neglecting atmospheric resistance, and assuming the rail to be on a level plane throughout?

Ans. 1 hour 551 minutes.
147. At what rate per hour will a horse draw a load whose gross weight is 2200 lbs. on a road whose coefficient of friction is th?

Ans. Rather over 31 miles per hour.
148. From the table given (Art. 145) ascertain at what rate per hour a horse must travel, when drawing a load, in order to do the greatest amount of work? Ans. 3 miles per hour. 149. At what rate per hour will a locomotive of 50 H.-P. draw a train whose gross weight is 70 tons, neglecting atmos. pheric" resistance, triking wdo as the coefficient of friction, is and assuming the rail to be level ? Ans, 26.78 miles.
［ABr． 148.

100 H．P． of 80 miles 10 lbs．per
$=800 \mathrm{nnits}$. ．
$\times 5280 \times 80$ ．
$=1$ hour 35 f
the rate of tion is $\frac{1}{9}$ ？ 2988 lbs． der that it ns，at the friction to tance？
P． $\mathbf{6 0 \cdot 6 6}$ ． rm speed the coeffi－ he atmos－

P．$=48$ ． Ig a，train cey of 150 neglect－ to be on a minutes． ad whose tof fric－ per hour． itate per order to per hour． P．draw atmos－ friction， 78 miles．

Arts．147，148．］WORK ON A LEVEL PLANE，
147．When a body moves through the atmosphere or any other fluid，it encounters a resistance which increases： 1st．In proportion to the surface of the moving body； 2nd．In proportion to the square of the velocity．
Thus 1st．If a board presenting a surface of 1 sq．foot in moving through the air meet with a certain resistance，a board having a aur－ face of 2 sq ．feet will meet with double that resistance；a board having a enrface of 8 square feet will meet with three
－times that resistance，\＆o．
2nd．If a body moving 2 miles per hour，meet with a certain＇resigt－ ance，a body of the same size moving 4 miles per hour will meet with $\left(\frac{1}{2}\right)^{2}$ ，or 22 ，or 4 times that resistance．
If the velocity be increased 8 times；i．θ ．，to 6 milee per hour， the resistance will be increased 9 timee（i．e．， 82 times）．
If the velocity be increased 7 times：（ $1, \theta$ ，，to 14 miles per hour， the resistance will be increased 72 times，1．e．， 49 times，\＆o．
148．In the case of railway trains，the atmospherio re－ sistance is about 33 lbs ．When the train is moving at the rate of 10 miles per hour．It has been found，however，by recent experiment，that the atmospheric resistance ence日n－ tered by a train in motion depends very much upon the length of the train．
Exampla 150．－When a train is moving at the rate of 10 miles per honr，it encounters an atmospheric resistanoe．of 33 ； lbs．；what will be the reglstance of the atmosphere when the train moves at the rate of 50 miles per hour？

BOLUTION．

Here the velocity increases $\{8$ times，i．e．， \bar{b} times．
Hence the resigtance increases 58 times $=25$ times．
\because Reistance $=83 \times 25=825 \mathrm{lbs}$ ，i．$e ., 825$ units of work are experfled every foot in overcoming the atmospheric resistance．
Example 151．－If a train moving 7 miles per hour meet with an atmospheric resistance equal to 5 lbs ，what resistance will it encounter if its speed be increased to 49 miles per hour？

BOLUTION．

Here the velocity increasea 7 times，（i．e．，㧡）．
Hence the resistance increase日 $78=49$ times．
\because Rosistance $=5 \times 49=245$ tbs．；i．e．， 245 units of work are expended overy foot in overooming the atmospheric resistanico．
Exaupli 152，－If a salliway train moving at the rate of 10 miles per hour encounters an atmospheric resistance of 33 lbs ； What must be the horse power of the locomotive in order that the train may move 60 milies per hour，negiecting friction and ansuming the rall to be level？

Here the velocity is increse
Then the resistance is increased 36 times (Art. 147.)
Hence atmospheric resistance $=33 \times 36=1188$ ib
work are expended in moving the train through 1 ft ; i. e. 1188 units of
Number of feet train moves through in a minute $=\frac{60 \times 5280}{60}=6280$.
$\left.\begin{array}{c}\text { Units of work required per minute } \\ \text { overoome atmo日pheric } \\ \text { nsistance }\end{array}\right\}=1188 \times 5280$.
\because H.P. of locomotive $=\frac{1188 \times 5250}{83000^{-}}=190.08$. Áns.
Examply 153.-What must be the H. P. of a locomotive to move a train at the rate of 40 miles per hour on a level rail, taking atmospheric pressure as usual, (i. e., 33 lbs . when a train moves 10 miles per hour, and neglecting friction?

BOLUTION.

Here velocity increases 4 times, and hence resistance increases 16 times. Then resistance encountered $=83 \times 16=528=$ units of work required
Feet moved over per hour $=6280 \times 40$; hence units of work per hour $=$ $5280 \times 40 \times 628$.

Therefore H. $\dot{\mathbf{P}}=\frac{528 \times 40 \times 6280}{83000} \times 60^{-1}=56 \cdot 82$ Ans.
Example 154.-What must de the H. P. of a locomotive to draw a train whose gross weight is 80 tons, along a level rail, wlth the uniform velocity of 40 miles per hour, taking atmospheric resistance and friction as usual ?

soldTion.

Feet passed over per minute $=\frac{40 \times 5280}{60}=8520$.
Work of friction per minute $=80 \times 7 \times 3520=1971200$ units.
Work of atmospherio resistance $=83 \times 16 \times 8520=1858509$ units.
Therefore H. P. $=$ Work of friction + work of atmospheric remintance $=1971200+1858560 \quad$ Work of one H. P.
$83000=\frac{28300}{83000}=116.053$. Ans.
Examplim 155. - What must be the H. P. of a locomotive to draw a train, whose gross woight is 125 tons, along a level raff; with the uniform velocity of 42 miles per hour, taking friction as usual, and assuming that the atmospheric resistance encountered by the train is equal to 10 lbs ., when moving at the rate of 7 miles per hour?

BOLUTLON.
Feet moved over per minute $=\frac{42 \times 6280}{60}=8006$.
Work of friction per minnte $=125 \times 7 \times 8090=8284000$ unlts.
Worz of atmospheric resiat. per min. $=10 \times 86 \times 3696=1880600$ nnith.
Then H. P. $=\frac{\text { Work of fistion }+ \text { work of atmoapherio redistance }}{\text { Work of one H. P. }}$ $\xrightarrow{8284000}+1880660=4684660 \quad$ Work of one IF. P. $88000-\frac{480000}{88000}=188.82$. Ans.
156. If
w
a)
157. W
th
th
m
158. W
w
ve
to
th
159. A
un
of
as
149.
tion or are four the vert
Thus, if having a $\times 2=456$ through 1 150. and the plane is Hence the wor the worl
Examp dient bas speed of resistanc

Weight
Peet tra

Vertioal

Units of
\because H. P.

Exproism.

156. If a train encounters an atmospheric resistance of 8 lbs ., when moving at the rate of 5 miles per hour, what resistance will it encounter when its speed is increased to 45 miles per bour?
157. What must be the H. P. of a locomotive to draw a train at the rate of 30 miles per hour on a level, rail, assuming that the atmospheric resistance is equal to 9 lbs ., when the train moves 6 miles per hour, and neglecting friction?

Ans. H. P. $=18$.
158. What must be the H. P. of a locomotive to draw a train weighing 140 tons along a level rail with the pniform velocity of 36 miles per hour, taking friction as 7 lbs . per ton, and the resistance of the atmosphere 12 lbs., when the train moves 9 miles per hour ? Ans. H. P. $=112 \cdot 512$.
159. A train weighing 200 tons moves along a level rail with a uniform speed of 30 miles per hour; what is the H. P. of the engine-friction and atmospheric resistance being Ans. H. P. $=135 \cdot 76$.
149. If a body be moved along a surface without friction or atmospheric resistance, the units of work performed are found by multiplying the weight of the body in lbs. by the vertical distanoe in feet through which it is raised.
Thus, if a body weighing 12 lbs. be moved 200 ft . along an inclined plane having a rise of 19 foet in 100 , the units of work performed will be 12×19 $\times 2=456$, because in moving up the plane 200 feet, the body is raised through $19 \times 2=88$ feet.
150. When a train is moving along' an inclined plane, and the inclination is not very great, the pressure on the plane is very nearly equal to the weight of the body. Hence we find the work due to friction by Arts. 143-146, the work due to atmospheric resistance by Art. 148, and the work due to gravity by Art. 149.
Example 160.-A train weighing 90 tons is drawh np a gradient having a rise of 3 feet in every 1000 feet, with the uniform speed of 40 miles per hour-neglecting friction and atmosphericresistance, what is the H. P. of the engine ?

Weight of train in ibs. $=90 \times 2000=180000$,
Feet tratrelied per minuté $=\frac{40 \times 5290}{60}=8620$.
Vertioal distance moved through per minute $=$ Trint of $8520=10.66 \mathrm{ft}$
Units of work due to gravity per minute $=10.66 \times 180000$.
\because H. P. $=\frac{10.58 \times 180000}{80000}=57^{\circ} 6$. Ans.

Exampla 161.-A train weighing 140 tons moves up a gradient having arise of 3 feet in 1100 feet, with the uniform velocity of 36 miles per hour-neglecting atmospheric resistance and taking friction as usual, what is the H. P. of the locomotive?
Here weight of train in lb solution. nute $=\frac{86 \times 5280}{60}=8168$ feet.
The units of work due per minute to friction $=140 \times 7 \times 8168=8104640$.
Height to which train is raised per minute $=\eta^{3}$ ता of $8168=8.64$ feet.
Then units of work due per minute to gravity $=8.64 \times 280000=2419200$.
\because H. P. $=\frac{\text { work due gravity + work due friotion }}{\text { Work of one.H. P. }}=\frac{8104640+2419200}{83000}=$ $\frac{5628840}{88000}=167 \cdot 889$. Ans.

Examply 162- -A train weighing 100 tons moves op a gradient with a nuiform velocity of 30 miles per hour, the rise of the plane being 3 feet in 1000 feet, and taking friction and atmospheric resistance as nsual, what is the H. P. of the locomotive?
Here weight of train in soliution. of $2640=7.92$ feet.
Work of friction per ininnte $=100 \times 7 \times 2640=1848000$ units.
Work of atmospheric resistance per minute $=83 \times 9 \times 2640=784080$ nnits.
Work of gravity per minute $=7.92 \times 200000=1584000$ units.

$$
\begin{aligned}
& +1584000 \\
& +.
\end{aligned}=\frac{421,6080^{\circ}}{83000}=127.76 \text {. Ans. }
$$

Example 163.-A train weighing 130 tons descends a gradient having a rise of 7 feet in 2000 feet, with the uniform velocity of 60 miles per hour-taking atmospheric resistance as usual, and the coefficient of friction $\frac{1}{s} \delta$, what is the horse power of the
locomotive?

Here weight of train in Ibs. $=130 \times 2000=260000$; space passed over per minute $=\frac{60 \times 6280}{60}=6280 \mathrm{ft}$.; increase in the velocity $=80=6$; and ver-
tioal fall of train per minute $=$ चivo of $5280 \mathrm{ft} .=18 \cdot 48 \mathrm{ft}$.
Then work of friction per minute $=$ 玉 $^{\frac{1}{0} \delta} \times 200000 \times 5280=1300 \times 5280=$ 6884000 units.
Work of atmospheric resistance per minute $=88 \times 88 \times 5280=6272640$ nnits. Work of gravity per minute $=18 \cdot 48 \times 260000=4804800$ units Then, since the train descends the gradient, gravity acts woith. the engine.
Hence H.P $=\frac{\text { Work of friotion + work of athos, resigt. }- \text { work of gravity. }}{\text { Work of one H.P. }}$
Work of one H. P.
\therefore H. P. $=\frac{6864000+8272040-4804800}{88000}=\frac{8881840}{88000}=252 \cdot 48$. Ans.

ART. 1
Exa gradie the inc frictio H. P.

Here minute $=$ tical asce Work Work Work of

Then H
Train a
Train d
Fiam having:
ing atm train wi

Here we
Work 0
Work of
Total w
Total w
\therefore Numl
Exampl
grossdoa assuming

Work of
Work of
Work of
Total wo gravity $=1$
\therefore Numb
EXAMPL in going d load whos efficient of
np a graiform velostance and motive?
reed per mi-
$8=8104640$. 8.64 feet. $0=2419200$. $+2419200$
up a gracise of the d atmosnotive?
passed per
$\mathrm{It}=\mathrm{T}{ }^{3} \sigma \mathrm{o}$

1080 anits.
emar. por min.
ns.
gradient locity of ual, and
of the
over per
and ver-
$\times 5280=$
40 nnits. gravity.

ABT. 150.] WORK ON AN INCLINED PLANE.
Example 164.-A train weighing 80 tons moves along a gradient with the uniform speed of 40 miles per hour-assuming the inclination of the gradient to be 3 ft . in 1000 ft ., and taking friction and atmospheric resistance as usual, what will be the H. P. of the locomotive :

1st. If the train move up the gradient, and 2nd. If the train move down the gradient?

BOLUTION.
Here weight of train in lbs. $=80 \times 2000=160000$; space passed over per minute $=\frac{40 \times 6280}{60}=8520 \mathrm{ft}$; velocity is increased if $4=4$ times, and ver. tical ascent or descent of train Tr^{3} ro of $8520=10.56 \mathrm{ft}$.
Work of friction $=80 \times 7 \times 8520=1971200$ units per minnte.
Work of atmospheric reaistance $=33 \times 16 \times 3520=1858560$ units per min.
Work of gravity $=10.66 \times 160000=1689800$ units per minute.
Then H.P. $=$ Work of friction + work of atmos. resist. \pm work of gravity.
Train ascending, H. P. $=\frac{1971200+1858560+1689800}{33000}=\frac{5519360}{83000}=167.258$.
Train descending, H.P. $=\frac{1971200+1858560-1689600}{33000}=\frac{2140160}{33000}=64.853$.
Frample 165.-A train weighing 110 tons ascends a gradient having a rise of \ddagger in 100 -taking friction as usual, and neglecting atmospheric resistance, what is the maximum speed the train will attain if the H. P. of the locomotive be 120 ?

BOLUTION.

Here weight of train in lbs. $=110 \times 2000=220000$.
Work of iriotion in one mile $=110 \times 7 \times 6280=4065600$ units.
Work of gravity in one mile $=$ ह 2 of $5280=6.6 \times 220000=1452000$ units.
Total work of resistance in one mile $=4085600+1452000=5517600$ unite.
Total work of engine per hour $=83000 \times 60 \times 120=237600000$ units.
\therefore Number of miles per hour $=\frac{237600000}{6517600}=43.06$ Ans.
Example 166.-If a horse exertia traction of 120 lbs ., what' grosseload will he pull up a hill whose rise is 17 ft . in 1000 ft ., assuming the coefficient of friction to be $\frac{1}{10}$?

BOLUTION.
Work of horse in moving the load over $1000 \mathrm{ft} .=120 \times 1000=120000$ units.
Work of friotion in moving 1 lb . over $1000 \mathrm{ft}=1 \times,_{1}^{1} \times 1000=100$ units. Work of gravity in moving 1 lb . over $1000 \mathrm{ft}=1 \times 17=17$ units.
Total work in moving 1 if. over 1000 ft . $=$ work of friction + work of gravity $=100+17=117$ units.
\therefore Number of ibs. drawn by horse $=1200000=1925,641$. Ans.
EXAMPLE 167.-What backward pressure is exerted by a horse in going down a hill which has a rise of 7 feet in 100 , with a load whose gross weight is 2000 lbs., assuming ${ }^{1}$ s to be the 00 efficient of friction?

BOLUTIOX.

Here on aleval plane the riotion would be $\frac{1}{8}$ of $2000 \mathrm{lbs},=57 \cdot 1 \mathrm{Llbs} .=$ unlts of work for eaph foot.
Work of gravity $=\mathrm{In}^{7} 0$ of $2000=140$ units to each foot.
Therefore, the backward pressure is $140-57 \cdot 14=82.86$ lbs. Ans.

易x 2018 .

168. What backward pressure will a horse exert in going down a hill which has a rise of 9 feet in 100 , with a load whose gross weight is 1200 lbs , assuming the coefficient of friction of the road to be $\frac{1}{30}$?
169. What gross load will a Ans. 68 lbs. draw op a hill will a horae exerting a traction of 150 lbs . the coefficient of friction to be $\frac{1}{16}$? in $100-$ assiuming
170. What will be the maximum speed attained by a train weighing 200 tons, drawn by a locomotive of 160 H. P. up a gradient having a rise of $\frac{1}{6}$ in 100 -taking friction as usual and neglecting atmospheric resistance?

Ans. 29.032 miles per hour.
171. A train weighing 88 tons moves up a gradient having a rise of \ddagger in 100 with the uniform velocity of 20 miles per hour -taking friction and atmospheric resistance as nsuai, what is the H. \mathbf{P}. of the locomotive?
172. A train weighing 95 tons fins. H. P. $=$ il182. of $\{$ in 1000 with the uniform ape gradient having a fall taking friction and atmospherio of 40 miles per honris the H. P. of the locomotive? 173. A train weighing 125 tong meves A. P. $=113 \cdot 742$. honr-taking friction and atmospheric resistance as usnal What is the H. P. of the engine,
let. When the trifin ascends the gradient?
2nd. When the train descends the gradient? Ans. Going up, H. P. $=113.75 ;$ going down, H. P. $=30 \cdot 416$.
151. For finding the $\mathbf{H} . \mathbf{P}_{.2}$ maximum speed, weight of train, \&o., as in the foregoing examples, by representing the variable quantities, such as weight, rate of motion,

Thus, rate per
=rate p rate, 88
Let $r=$
$20=$
$h=$
$R=$
Then uni
"
$\times 88 r$
Units of
Units of
Hence \mathbf{H}.
and f
H. P.

Therefore
Or H. P. =
From th neglecting
,

Since f is respeotively, inclination of plane, so., by lettere, we thay easily dedroe formulas by means of which the work required to solve such problems will be very materially abbreviated.

Thus, since the number of feet moved per minute is always $=$ rate per hour in miles $\times 5280$
$60 \quad=$ rate per hour in miles $\times \frac{5280}{60}$
Frate per hour in miles $\times 88$; therefore, whatever may be the
Let $r=$ rate per hour in miles, then $88 r$ rate per min. in ft .
$w=$ weight of train in tons, then $2000 w=$ weight of train in lbs.
$h=$ rise of the plane in every 100 feet.
$f=$ friction per ton.
$R=$ given atmospheric resistance at given speed, s.
Then units of work due per minute to friction $=f w \times 88 r$.
$\times 88 r=20 \mathrm{hw} \times 88 \mathrm{r} . \quad$ gravity $=2000 w \times \frac{h}{100}$
Units of york due per min, to atmos. resist. $=R\left(\frac{r}{s}\right)^{2} \times 88 r$. Units of work per min. in given H. P. $=$ H. P. $\times 33000$.
Hence Н. Р. $\times 33000=f w \times 88 r+R\left(\frac{r}{s}\right)^{2} \times 88 r \pm 20 h w \times 88 r$,
and factoring this, we get :
H. P. $\times 33000=\left(f w+R\left(\frac{r}{s}\right)^{2} \pm 20 h w\right) 88 r$.

Therefore H. P. $\left.=\left(f w+R\left(\frac{r}{s}\right)^{2} \pm 20 h w\right)^{\circ}\right) \frac{88 r}{33000}$
Or H. P. $=\left(f w+R\left(\frac{r}{8}\right)^{8} \pm 20 h w\right) \frac{r}{375}$ (I.)
From thls we obtain by transposition and reduction, and neglecting atmospheric resistante,

$$
\begin{aligned}
& w=\frac{\text { H. P. } \times 375}{(f+20 h) r} \\
& r=\frac{\text { H. }}{(\mathrm{P} . \times 375} \\
& (f \pm 20 h) w \\
& \text { (III. })
\end{aligned}
$$

8 inco f is commonly $=7, R=83$, and $z=10$, these formulan become
respeotively,

$$
\begin{align*}
\text { H. P. } & =\left(7 v+83 r^{2} \pm 29 h v\right)^{2} \\
v & =\frac{H \cdot P \cdot \times 876}{(7 \pm 20 h) r} \\
r & =\frac{\text { H. P. } \times 875}{(7 \pm 20 h) \omega} \quad \text { (IV.) } \tag{VI.}
\end{align*}
$$

Abts. 15
Example 174.-A train weighing 140 tons moves along a gradient having a rise of \ddagger in 100 with the nniform speed of 30 miles per hour; taking friction and atmospheric resistance as usual, what is the H. P. of the locomotive; lst, when the train moves up the gradient? 2nd, when the train moves down the gradient?

BOLUTION.

$$
\begin{aligned}
& \text { Here } w=140, r=30, h= \\
& \text { H. P. }
\end{aligned}=\left(7 w+38 r^{2} \pm 20 h v\right) \frac{r}{875} .
$$

Example 175.-A train drawn by a locomotike of 80 H. P. moves along an inclined plane having a rise of in in 100 with a nniform velocity of 45 miles per hour; taking friction as usual and neglecting atmospheric resistance, what is the welght of the train?

BOLUTION.
Here H. P. $=80, r=45$, and $h=\frac{1}{6}$.
Then by formula (V.) $v=\frac{H . P . \times 375}{(7 \pm 20 h) r}=\frac{80 \times 375}{\left(7 \pm 20 \times \frac{1}{6}\right)(15}=\frac{80000}{(7 \pm 8 t) 45}=$ $\frac{80000}{10 \mathrm{j} \times 45}$ or $\frac{30000}{3 f}=\frac{30000}{465}$ or $\frac{30000}{165}=64.61$ tons if the train is golug up the gradient, or 181.81 tons if the train is going down the gradient.
For practice in the application of these formulas, work any of the foregoing problems.

THE MODULUS OF A MACHINE.

152. The modulus of a machine is the fraction which expresses the value of the work done compared with the work applied, the latter being expressed by unity.

Thus if t of the work applied to a machine be lost in transmission, the modulus or useful work of that mashine is $\frac{6}{}$; if of be lost in transmiasion, the modulus of the machine is of, \&c.
153. The amount of work lost depends on friction, vigidity of cordage, \&o, and in some machines is more thanhalf of the whole work applied. The following table gives the moduli of machines for raising. Water ;

Work ap
Work do
pump is is.
Work ex
\therefore Num
Exampl
9000 cubi 110 feet?

Work of r
Effective
\therefore H.P.
154. ∇ boards of is found height thro

STI
155. A and regula steam engi 156. St from one distinct ma
ats. 158, 168.
es along a speed of 30 esistance as en the train s down the
140) $3 \frac{3}{3} \frac{8}{8}$
f $80 \mathrm{H} . \mathrm{P}$. 100 with a on as usual elght of the

30000
$(7 \pm 8 \mathrm{~b}) 45=$ ain is goling gradient. any of the
ion "which with the mission, the ransmission,
friction, more than able gives

Arts. 154-156.]
WORK OF STEAM.
TABLE OF MODULI. machine.
Inclined chain pump
Upright

$$
\frac{2}{3}
$$

Bpright "
Archimedian screw,

$$
\begin{aligned}
& \text { Archimedian screw, . }{ }^{\frac{7}{T}} \\
& \text { Pumps for draining mines, }
\end{aligned}
$$

$$
\text { Exayple 176.-I (fitg be annlien } \frac{\frac{1}{3}}{}
$$

pump, how many yplops o be applied to an upright chain

$$
\begin{aligned}
& \text { pump, now many ghrge on ter will be raised per hour to the } \\
& \text { height of } 50 \text { feet ? }
\end{aligned}
$$

Work apporition.
Work done $=38000 \times 7$.
pump is $\frac{1}{2}$. $=03000 \times 7 \times \frac{1}{2}$, since the modulus of the upright ohain
Work expended in raising 1 gallon of water 60 feet $=10 \times 60$,
\therefore Number of gallozs $=\frac{33000 \times 7 \times 60 \times \frac{1}{8}}{10 \times 50}=13860$. Ans.
Example 177. -What must be the H. P. of an engine to pump 9000 cubic feet of watdr per hour from a mine whose depth is
110 feet? 110 feet?

SOLUTION.
Work of raising water per hour $=0000 \times 621 \times 110$.
Effective work of one H. P. per hour $=33000 \times 60 \times$.
\therefore H.P. $=\frac{8000 \times 62 j \times 110}{88000 \times 60 \times \frac{1}{3}}=\frac{61875000}{1820000}=46.875$. Ans.

WORK OF WATER.

154. When water falls from a heightynon the floatboards of a wheel, \&c., the quantity of w it performs is found by multiplying the weight of the water by the height through whioh it falls. (See Chap. VIII.)

STEAM ENGINES AND WORK OF STEAM.

155. A constant power is obtained from the confinement and regulated escape of steam in the various linds of steam engines.
156. Steam engines, though differing very materially from one another in detail, are all modifications of two distinct machines, viz:-

1st. The high pressure steam engine, or non-condensing engine.
2nd. The low pressure steam engine, or condensing engine.
157. The high pressure engine, which is the simpler form of the two, consists essentially of a strong vessel or boiler in which the steam is generated, a cylinder; in which a tightly fitting piston moves backwards and forwards, an arrangement of valves so adjusted as to admit the steam alternately above and below the piston and also alternately open and close a way of eseape into the air, and lastly various contrivances by which the oscillations of the piston may be converted into other kinds of motion suited to the work the engine is to perform.
158. In the low pressure engine, the space into which the steam drives the piston is converted, by means of a condensing chamber, into a vacuum, so that the motion of the piston is not resisted by atmospheric pressure, and steam generated at a low temperature can therdfore be used.
159. The varieties of the low pressure engine are chiefly two,-the single acting, and the double acting engine.
160. In the single acting engine tho piston is driven forward by means of steam acting tgainsta vacuum, and baokward by the colnterpoising weight of the machinery. The machine is the $\begin{gathered}\text { dopre in action only half the time of the }\end{gathered}$ movement.
161. In the double acting engine the piston is driven both backward and forward by the steam acting against a vacuum on the opposite. side, and the machine therefore gets continuously.
162. In the high pressure engine the piston moves both forwards and backwards against the pressure of the air.
183. The following are the leading jdeas that enter into the censtruction and operation of the steam engipe.

1. When steam is condensod, a vacuum is produced into whioh the adJaoent bodies havo a tendency to rush.
II. When oold water is plaoed in contact with steam, it eondenses it with great rapldify; producing a vacuum, and thla vacuum raay be produced Without ooolling the oylinder containing the stenm, if a oominuniontion be kept up betwoon this and a vecoel eontaining wilter.
2. Hi is is desirab and light as the engine n engine is, hu wise out of
3. The steam engine sure per squa inches, the le the numiber of

[^2]III. The vapor of water exerts a considerable pressure even at compara-
tively low temperatures; for example, far below its boiling point. comparaIV. It the pressure exerted by the piston on a quantity of steam confined expand and give motion to the eiastic force of the steam, tho steam will V. If a vacuum be produced piston.
pheric pressure will drive the piston backwards. VI. The same quantity of tuei will convards. into stesm whatever may bo the preesure on its surfaco.
VII. The higher the prese the preesure on its surfaco. quantity of water its bulk, and the greater its elastic to whichsteam is gene
VIII. The samereater its elastic torce.
will produce the quantity of water converted into steam nt steam generated same is ischanical effect; i. e., if the presentany preissure elastio torce; if the sarge in quantity and possessed of compure bo low, the tity, but of high elastic force. high, the steam generated is of small quan.
IX. One cubic elastic force.
inches of steam, and, since the converted into vapor produces 1896 cubic thances, equal to that of the atmosshure of steam ta, under ordinary circumthe evaporation of one cubic incis of we the mechanical force. produced by timough 1696 inches or 141 f feet. This water is sufficient to raise 15 lbs . timcs of 15 lbs ., i. e, 2120 lbs . through one foot. The, in effect, as raising 141 j more thater in to steam therefore does work The conversion of one cubic and other causes ton weight tirrongh one foot. Deduivulent to raising rather One cubic foot of about 60 per cent. of this total force is available ffiction to about 60 per of water evaporated in one hour will hence do work equai 2000000 units, which is of 1728 times 2120 units, or in other words about same space of time.
A boiler then of
evaporatiug $7,8,9,10,8,9$, , cubic feet of ore power is a boiler capable of X. The common' allowance cubic feet of water per hour. minous coals for every horse power for the stoam engine is 10 ibs , of bituwater it evaporated per hour.) In Cof the boller, (i. e., every cubic foot of produced by the consumption of 5 Conwall, however, this effect has been boilers about $6 f$ ibs. of anthracite coal suffico coal only. In tho American cubic foot of water, or, in other words, the come the evaporatlon of one suffloiont to evaporate 10 ibs. of water.
164. High pressure engines are commonly used where is is desirable to have the engine as simple, cheap, compaet and light as possible, as the condensing apparatus renders the engine more costly and cumbrous. The high pressure engine is, however, far more liable to burst and get otherwise out of repair.
165. The units of work performed per minute by a steam engine are found by multiplying together the pressure per square inch on the boiler, the area of the piston in inches, the length of the stroke of the piston in feet, and the number of strokes per minute.
Thus lot the pressure exerted pa each square inch of the ploton bo 80 thasine tot the piston mako 40 strokes per minute of 8 ft . each, also lot the Noines of the piston be 100 square inches:

Art. 167.]
Exampla
inches, and the useful the H. P.
166. In the high pressure engine, the pressure of the atmosphere, abont 15 lbs . to the square inch, acts in opposition to the pressure of the steam; and in the low-pressure or condensing engine a pressure of about 4 lbs . to the square inch of the piston is exerted by the vapor in the condensing chamber. Besides these, a resistance of 1 lb . per square ineh is commonly allowed for the friction of the piston. Deducting these allowanees from the total pressure. we obtain the effective pressure; and we rust further make an allowance of of this for the friction of the whole engine.

Thus in the high pressure engine :
Load $+\downarrow$ load $+1+15=$ whole pressure.
In the condensing engine:
Load $+\uparrow$ load $+1+4=$ whole pressure.
For example,-lf the whole pressure be 58 lbs، per square inch.
Then for tho high pressure engine $58-1-15=42$ is the working pres. ure on the piston, and 42 is 1 (1.0. , luad $+f$ load) of the usetiul pressure, and hence useful or effective pressure $-42 \div \frac{9}{7}=364$.
For the low pressure engine $58-1-4=53=$ working pressure on the piston, and 53 is ${ }_{7}^{\prime \prime}$ of the useful pressure. Therefore useful or effective pressure is $58 \div 8=46{ }_{8}^{2}$.
167. For finding the H. P. of a steam engine, let $p=$ useful pressure in lbs. on each square.inch of the piston, $\alpha=$ area of piston, $l=$ length of piston stroke in foet, and $n=$ number of strokes per minute.

$$
\text { Then H. P. } \begin{align*}
& =\frac{p a l n}{33000} \cdot(\mathrm{I} .) \\
p & =\frac{\mathrm{H} \cdot \mathrm{P} \cdot \times 33000}{a \ln } \cdot(\text { II. }) \\
a & =\frac{\text { H.P. } \times 33000}{p \ln } \cdot(\mathrm{III}) \tag{III.}\\
n & =\frac{\mathrm{H} \cdot \mathrm{P} \cdot \times 33000}{p a l} \cdot(\mathrm{IV} .) \\
l & =\frac{\text { H.P. } \times 33000}{p a n} \cdot(\mathrm{~V} .)
\end{align*}
$$

Here $p=$
Then (Fort
Exampla area of 120 feet eachsquare inch

Here $48=$
Then $p=2$
By Formula
Example diameter of -the pressu inch, what

Here $45=p$
$a^{*}=10^{2} \times$
Then $p=35$
H.P. $=\frac{3 F x:}{}$

Examply 1 of the piston the useful pr many strokes

Here, H. P. $=$
Then (Farmu
Example 18 area of the p and the numb pregnure per rona presgure

[^3]rs. 168, 167.
ravity, then ach stroke, h stroke. minute.
e of the ts in op-low-presos. to the vapor in se of 1 lb . iction of otal prest further n of the
rking pres. al pressure,
ure on the or effective e piston, in foet,

Example 178. -The piston of an engine has an area of 250 inches, and makes 110 strokes, of 5 feet each, per midite-taking the useful pressure of the steam as 28 lbs , per sq. inch, what is the H. P. of the engine ?

EOLUTION.
Here $p=28, a=250,=110$, and $l=5$.
Then (Formula I.) H.P. $=\frac{28 \times 250 \times 110 \times 5}{33000}=116$. Ans.
Example 179.-The piston of a high peessure engine has an area of 1200 inches, and makes in each minute 30 strokes of 7 feet each-taking the gross pressure of the steam as 48 lbs . per square inch, what is the H. P. of the engine?

- solution.

Here $48=p+\frac{4}{4} p+15+1$, or $8=32$, and hence $p=82 \div-\frac{8}{8}=281 b$.
Then $p=28, a=1200, n=30$, and $d=7$.
By Formula I., I.P. $=\frac{28 \times 1200 \times 30 \times 7}{83000}=218.81$. Ans.
Example 180.-The pistón of a low pressure engine has a diameter of 20 in ., and makes 60 strokes of 4 ft . each, per minute -the pressure of the steam on the boiler is 45 lbs. to the sq. inch, what is the H. P. of the engine?

HOLUTHON.
Here $45=p+4 p+4+1$, or $8 p=40$, and hence $p=40 \div p=35$.
$a^{*}=10^{2} \times 3 \cdot 1416=100 \times 3 \cdot 1416=314 \cdot 16$.
Then $p=85, a=814 \cdot 16, n=60$, arrd $l=4$,
H.P. $=\frac{85 \times 314 \cdot 16 \times 60 \times 4}{88000}=79.988$. Ans.

Examply 181.-In a steam engine of 34 horse power, the area of the piston is 500 inches, the length of the stroke 4 feet, and the nseful pressure of the steam 33 lbs . to the sq. inch, how many strokes does the piston anake per minute?

GOLUTION.

Here, H. P. $=32, a=500, l=4$, and $p=33$.

Exauple 182.-In a low pressure ateam engine of 190 H.P. the area of the piston, is 1000 inches, the longth of stroke 6 feet, and the number of strokes per minate 110, what is the useful pregenneye per square inch on the piston, and also, what is the reone presgure of the pteam?

[^4]
BOLUTION.

Here, H. P. $=190, a=1000, l=6$, and $n=100$.
Then (Formnia II.) $p=\frac{180 \times 33000}{1000 \times 6 \times 110}=9 \mathrm{~d}$ lbs. $=$ useful pressuro.
And pressure on boller (Art. 166) $=9 \frac{1}{2}+\frac{1}{7}$ of $9 \frac{1}{2}+4+1=1501 \mathrm{lbs}$.
Example 183.-In a high pressure engine the piston has an area of 800 inches, and makes 40 strokes per minute, of 10 -feet each, what must be the pressure of the steam on the boiler in order that the engine may pump 120 cubic feet of water per minute from a mine whose depth is 400 feet-making the usual allowance for friction and the modnlus of the pamp?

SOLUTION.

Here, work done per minute $=120 \times 62.5 \times 400=8000000$ units.
Work applied, i. e., work of engine $=3000000 \div 3=4500000$ units $=$ H.P. $\times 83000$.

Then by Formnla II, $p=\frac{\text { H.P. } \times 33000}{a \ln }=\frac{4500000}{800 \times 10 \times 40}=14_{16}^{1} \mathrm{lbs},=$ usefui pressure.

And Art. 166, gross pressure $=14_{1}{ }_{6}+\frac{T_{7}}{}$ of $14_{1} \frac{1}{6}+15+1=321_{1} \frac{1}{4}$ lbs. Ans.
Example 184.-The piston of a high pressure engine has an area of 600 inches, and makes 20 strokes per minute, each 8 ft . in length, gross pressure of the steam 52 lbs , to the square inch. How many gallons of water per minute will this engine pump from a mine whose depth is 500 feet, making the usual allowance for friction and the modulus of the pump?

BOLUTION.

Here $a=600, l=8, n=20$, and since $52=p++p+15+1 ; 8 p=36$ and $p=81_{\frac{1}{2}}$.
Work of engine per \cdot minute $=$ paln $=31 \frac{1}{2} \times 600 \times 8 \times 20=3024000$.
Useful work per minute $=8024000 \times \frac{8}{3}=2016000$.
Work of pamping 1 gallon of wator to height of 500 feet $=10 \times 500=$ 5000 units.
\therefore No. of gallons pumped per minnte $\left.=8 \Omega \frac{1}{8} \frac{0}{0} 80=408\right\}$. Ans.

185. The piston of a low pressure steam engine is 40 inches in diameter and makes 40 strokes of 5 feet each per minute ;the gross pressure of the steam is 37 lbs. per square inch; what is the H. P. of the engine?
186. The piston of a high-pressure engine is 20 inches In diameter and makes 50 strokes of 4 feet per minute; takligg the grose pressnre of the steam as 40 lbs . per square inch and making the usual allowance for friction, what is the H. P. of the cngine ?

Ane. 39.984.
187. The mak usef squa
188. In area per pisto
189. In area gros's Requ
190. In a strqk

- press the at

191. How from the pi per'm steam ance
192. I real soure the amour upon the also upon under whi specimen showing th volume of By means volume of when we k is formed.
Note 1.-T under whiloh oponding tem third column,
193. The piston of an engine has an area of 2400 inches and makes 16 strokes per minute, each 10 feet in length; the useful pressure of the steam on the piston is 20 jbs . per square inch, what is the H. P. of the engine?
194. In a high pressure engine of 140 H . Ans. 232.72. aren of 1000 inches, and mas per minute ; what is the useful proser, of 5 feet each, piston and also the gross pressure per square inch? Ans. Useful pressure $=46.2 \mathrm{lbs}$. per s 9 in . Gross pressure $=68.8 \mathrm{lbs}$. per sq. in.
195. In a low pressure engine of 100 H . P. the piston bas an area of 200 inches, and makes 40 strokes per minute ; the gros's pressure of the steam is 45 lbs . per square inch. Required the length of the stroke made by the piston.
196. In a high pressure engine of $80 \mathrm{H} . \mathrm{P}$. the Ans. $11 \cdot 785$ feet. strokes per minute, each 6 feet in the piston makes 44 - pressure of the steam is feet in length, and the gross the area of the piston? 56 lbs . per square inch. What is
197. How many cubic feet of wate? Ans. $285 \cdot 714 \mathrm{sq}$. in. from a mine whose depth is 500 may be pumped per minnte the piston has an area of 2000 feet by an eagine in which per'minute, each 8 feet in 2000 inches, and makes 30 strokes steam being 40 lbs . per length, the useful prassure of the ance being made for ser square inch, and the usual allowance being made for the modulus of the pump?

Ans. 409.6 cubic feet.
188. In all the modifieations of the steam engine, the real source of work is the evaporating power of the boiler ; the amount of work done by the engine depending notonly upor the rapidity with which the water is evaporated, but also upon the temperaturo, and consequently the pressure under which the steam is produced. The following is a specimen of an experimental table, given by Pambour, showing the relation between hixpressure, temperature, and volume of the steam produced by one cubic fobtyof water, By means of this table, we aro enabled to deertain the volume of thesteam produced by a giton quantity of water, When we know the pressure or temperature under which it is formed.

WORK OF
Whar which peduced it. 1 will be oblerved that the lowef fhetempers. topt or what amotimts to the iame thing tess the pressure under which the etenm is formidithe greatdifts volunf. Thus under the usual atmospherip) pressure of 15159 . to the equwe inch (or at the common temptrature of bolder water, $27 \times$ or 218° Falir.), a cubic foot of water producus 1669 onbief fof stean, the however, the preasuit be decreager to $1, t$ to the equare moch, the steam is fermed at he temperatur or $3^{\circ} \mathrm{Fa}$. i , and occuptes 20954 cubic feet; y

NOTM 2.-It has been shown by mamerous experl ys thit thequantity of fuel reguisite for the evapa atiou of givenguanthy of whte is invariably the same; no matter wha may be tho ipy are under which the steam is producti. Herice it fis obvioas thet it is inot advantageous to omploy sten of a high pressure.

TABLE

HHOWIMGTHE YOLUKE OF STEAM REQDUCED BY ONE CUBIO FOOT OF WATEA AT THE OORRLBPONDIIG PRHSOURE AND TKMPKRATURE.

1	1080	- 20954	55	$288{ }^{\circ}$	506
6	$161{ }^{\circ}$	4624	60	2944°	467
10	1920	- 2427	$6{ }^{\circ}$	$299{ }^{\circ}$	- 484
15	$218{ }^{\circ}$	1669	70 *	$304{ }^{\circ}$	406
20	2280°	1280	75	809°	381
\% 20	241°	1042	80	$818{ }^{\circ}$	359
89	251°	888	85	818°	840
89	- $280{ }^{\circ}$	765	90	$322{ }^{\circ}$	823
-40	2680°	677	05	220°	307
46	270°	- 608.	100"	$330{ }^{\circ}$	293
60	, 2880	658	105	$888{ }^{\circ}$	281

169. If we let $a=$ area of the piston in square inches.
$l=$ length of stroke made by the piston.

- $n=$ number of strokes made por minute. $p=$ effective pressure to each sq. inch of the in on.
$c=$ cubio . water evaporated per minyts

4 Then to find $a ; l, n, p, c$, or v, when the others are given, we proceed as follows:

When p is given, v is found by the table.
Now the cubic feet of steam produced per minute $=c v$. Cubic feet of steam used at each stroke of the piston $=\frac{a l}{144^{*}}$

BOLUTION.
Here $a=80, n=20, a=-1$ and $p=50$ and (table) $v=652$.
Then $l=\frac{144 c v}{n a}-\frac{144 \times 1}{20 \times 652}=4.968 \mathrm{ft} .=4 \mathrm{ft} .11 \frac{1}{8 \theta}$ inches. Ans.
Exampla 195.-The boiler of an engine evaporates $\frac{2}{5}$ of a cubic foot of water per minute under a pressure of 45 lbs . to the square inch; the piston has an area of 250 inches, and makes a stroke 4 feet in length. Required the number of strokes made by the piston per minute.

SOLUTION.

Here $a=250, l=4, c=4, p=45$, and hence (table) $v=608$.
Then $n=\frac{144 c v}{a l}=\frac{144 \times 4}{250 \times 4} \times 608=35 \cdot 0208, \mathrm{i} . \mathrm{e} .35$ strokes per minute.Ans.
Exercise.
196. The hoiler of a steam engine evaporates \& of a cubic foot of water per minute under a pressure of 65 lbs. to the quare inch. If thè piston has an area of 144 square inches, and makes strokes 5 feet in length, how many strokes are made per minute?

Ans. 69•44.
197. The piston of an engine has an area of 288 inches, and makes 7 strokes per minute. If the boiler evaporates $\mathbf{7}^{\mathbf{7} \sigma}$ of a cubic foot of water per minute under the pressure of 55 lbs. to the square inch, what is the length of the stroke of the piston?
198. The piston of an engine makes 10 strokes of 6 feet each per minute; the boiler evaporating $\frac{1}{2}$ a cubic foot of water per minute under a pressure of 25 lbs . to the square inch, what is the ares of the piston? Ans. 1250.4 inches.
199. In a steam engine the piston hafing an area of 720 inches makes 20 strokes, of 3 feet each, per minute, what volume of water converted into steam under a pressure of 20 lbs . to the square inch, is evaporated per minute by the boiler? Ans. $\frac{1}{6}$ of a cubic foot.
200. The piston of a steam engine has an area of 600 inches, and makes 12 strokes, of 10 feet each, per minute: Now if the boiler evaporates 1 cubic foot of water per minute, what is the volume of the steam produced per minute and the pres-
" sure under which it is generated?
Ans. Volume $=500$ cubic feet.
Pressure $=$ nearly 55 lbs. to the square inch.
170. To find the useful H.P. of an engine when a, n, l, c, and v are given, we proceed as follows:

Find the pressure per square inch of the steam from the Table, and thenee Art. 168 the usefyt load on eact square inch of the piston; find also when required any of the other quantities, a, n_{0} or l, and then apply the rules given in Art. 167.

Kiakp piston, al engine in of stroke cubic foo the squar

By Art. $16 t$
By Art, 169
Hence we l
Then Art.
Exampl pressure e and make cubic foot

Since $\frac{1}{1}$ of foot of wate gross pressu

Then (Art
Also (Art.
Then $a=$ Hence Form
203. What engi mak of a 401
204. The p 432 i the minu what
205.
inch.
[Art. 179.

Ans.
of a cabic es. to the makes a es made
inute. Ans.
lbic foot s. to the e inches, okes are 18. $69 \cdot 44$. bes, and rates $i^{7} \sigma$ essure of e stroke $5{ }^{3}{ }^{3}$ feet. eot each f water tre inch, 4 inches. 0 inches volume 20 lbs. boiler? bic foot. hes, and w if the what is he pres-
nch. n a, n,

Exauple 201. - What is the useful load per square inch on the piston, and what is the effective horse power of a high pressure engine in which the area of the piston is 200 inches, the length of stroke 6 feet, the effective evaporation of the boiler $\&$ of a cubic foot per minute, and the pressure of the steam 70 lbs. to
the square inch?

By Art. 168, $70=\frac{8}{7} p+15+1$, and hence $p=54 \div \frac{8}{7}=47.25=$ useful logd,
By Art, $169, n=\frac{144 c v}{a l}=\frac{144 \times 4 \times 406}{200 \times 6}=19.488$
Hence we have $n=19 \cdot 488, p=47 \cdot 25, a=200, l=6$.
Then Art. 167, H. P. $=\frac{\text { paln }}{83000}=\frac{47.25 \times 200 \times 6 \times 19.488}{83000}=83.48 . ~ A n s$.
Example. 202.-What is the effective horse power of a low pressure engine in which the piston has an area of 288 iothes and makes every minute 16 'strokes, the boiler converting in of a cubic foot of water per minute into 304 cubic feet of steam?

solution.

Since \ddagger of a cubic foot of water produces 304 enbic feet of steam, 1 cubic foot of water wouid produce 608 oubic feet of steam, and hence (Table) the gross pressure of the steam is 45 ibs , to the square inoh. \&

Then (Art. 166) $45=8 p+4+1$, or $\frac{8}{7} p=40$ whence $p=35$.
Also (Art. 169) $l=\frac{144 c v}{n a}=\frac{144 \times 5 \times 608}{288 \times 16}=91 \mathrm{ft}$.
Then $a=288, \tau=9 \frac{1}{2}, n=16$, and $p=35$.

sxeroise.

203. What is the effective horse power of a bigh pressure engine in which the piston has an area of 360 inches and makes 20 strokes per minute,-the boiler evaporating of a cubic foot of water per minute under a pressure of 40 lbs . to the square inch? Ans. H. P. $=46 \cdot 528$.
204. The piston of a low pressure steam engine has an area of 432 inches, and makes strokes 10 feet in length. Now, if the boiler evaporates 9 of a cubic foot of water per minate under a pressure of 25 lbs . to the square inch, what is the usefui H. P. of the engine?
205. In't high pressure Ans. H. P. $=71 \cdot 613$. 4n high pressure engine the area of the piston is 600 Whas, the length of stroke is 6 feet, the elfective evapo${ }^{3}$ pitioh of the boiler is $\frac{8}{\text { s }}$ of a cabic foot per minnte, and the inch. Required the H. P.

$$
\text { Ans. H. P. }=32.897 \text {. }
$$

Arts. 1
depth. der by th which, to water the
178. in the tube- t tact will Note.bent grad will be 13 181 times
177. liquid in same liq of the v the liqui vessel.
NoTE.-Water was formeriy thought to be absolutely incomprest but recent experiments show that water is diminished in volume $\overline{2} \frac{2}{2}$ 万0 of its buik for each atmosphore of pressure upon it; or in other words a pressure of 2000 atmospheres or 30000 libs. to the square inch would comprese 11 cubio feet into 10 cubic feet. Alcohol is about twice as compressible as water.
2774. Liquids, by which term we mean non-elastic fluids, differ from gases principally in having less elasticity and compressibility.
175. Liquids differ from solids chiefly in the fact that their particles are less under the influence of the attraction of cohesion, and therefora have a freer motion among themselves, in consequence of which each atom is drawn separately towards the earth by the torce of gravity; hence:I. A liquid andined in any vessel, preses equally in all direc-Nons-spuarâs dowinwardo and laterally.

11 He surface of a liquid in a state of rest is alwoys level.
IIt with a jommo reservoir, whatever may be their form or capacity.

Notw- The fact that a liquid exerts a downward pressure is self-evident and requires no illinstration.
The lateral preasure of a liquid is shown by its spouting from holes pierced in the aldo of the vessel in whfoh itifeoontained.
The npward pressure is shown by taking a glass cylinder, open at both ende, and having one end acourately ground. A plate of ground glass is
hoid to this end by means of a plece of string passig through tho cylinder
and the cloced end of the instrument then immersed in water to and the closed end of the instrument then immersed in water to a small

Note 1.the samear towards the are hinged ; terminating Water is th ides untili when its de ressels it is this depth a the sides ar water; whe downward wider at the upon by the lateral press same dimens Note 2.-C asmnch as th snre is in pro the liquid. vessei is foun pendicular he is equal to thr pendicular sic wards, the ps optrards, the
178. Λ Fahr. weigl temperatur 10 lbs.
depth. Upon letting go the string the plate is still held against the oylinwlich the npward pressure of the water; it will even susfaln any welght, water that would ent the plate itselt, is not greater than the weight of the 170. Were removed.
176. When two liquids of different densities are placed in the opposite branches of an inverted syphon or bent tube-their heights in the two legs above the point of 6 bn tact will be jnversely as their densities.
Note.-Th may easily be proved by placing mercury and water in a bent graduated glass tube, when it will be found that the column of water $18 \frac{1}{2}$ times as heavy as the forme column of mercury since the latter is about
177. The amount of downward pressure exerted by a liquid in any vessel is equal to that of a_{k} column of the same liquid, whose base is equal to the area of the bottom of the vessel, and whose height is equal to the depth of the liquid, whatever may be the form or capacity of the vessel.
Note 1.-To Tllustrate this fact we procure three vessels, having bottoms of towards the top, aud in the third diverging tow, in the second converging are hinged and are held in their places by a cord paseing top. The bottoms terminating in a scale pan in which are pla cord passing over a pulley and Water is then carefully poured into the red weights to a certain amount. addes until its downward pressure is the vessel having the perpendiculare when its depth is accurately meis jusi sufficient to force out the bottom vessels it is found that the bottom rem. Upon using either of the other this depth and is then forced opom remains fixed nntil the water reaches the sides are perpendlenlar the botom This arises from the fact that when water; when the vessel is wie bottom snpports the whole weight of the downward pressure is sustalned top than at bottom a portion of the Wider at the bottom than at top thy the sides, while, when the vessel is upon by the whole column of the partlcles near the bottom are pressed lateral pressure is the same asit would above them and their do puard and same dimensions throughout as the base were the column of liquid ef the Nots 2.-Care should be taken not to co the vessel. asmuch as the weight is in pronortion to the quand weight with prure, insure is in proportion to the extent of base an quantity of liquia but wie presthe liquid. For example, the wel of base and the perpendicular height of vessel is found by multiplying the area of the water contained in a conical pendicular height; but the presenre ares of the base by one-third of the perthe whole height. It follows that in a conical yeying the area of the base by if equal to three times the weight of conical vessel the downward pressure pendicular sides, the pressure equals the weight; if the sides divergerwards, the pressure is less than the weight; ind if the sides diverge upopwands, the pressure is greater than the weight. ct that raction ; thema sepa-
178. Δ cubic ineh of water of the temperature of 60° Fahr. weighs 0.03616 lbs . Avoir., a cubic foot at the same temperature weighs 1000 ounces or 62.5 lbs ., and a gallon,
179. The pressure of a liquid on a verlical or inclined surface is equal to the weight of a column of the same liquid whose base is equal to the area of the surface pressed,

Area of th
Then (Ar) and height equal to the depth of the centre of gravity of the pressing liquid beneath its level surface.

Or, more simply, the lateral pressure exerted by any liquid on the side of a vessel is found in lbs. by multiplying the area of the surface pressed by half the depth of the liquil, and this product by the weight in lbs. of one cubic foot of that liquid.
Notr.-It follows that in a cublcal vessel filied with any liquid the pressure on the side is equal to hait the weight of the liquid, and hence the whole pressure exerted by the llquid, downward and lateraliy, ls equai to three times the weight of the Ilquid.

al

APPLICATION OF THE PRINCIPLES CONTAINED IN ARTS. 176-179.
Example 206. What downward pressare is exerted on the bottom of an upright cylindricil vessel having a diameter of 20 feet-the water filling it to the depth of 12 feet?

SOLUTION.

Here, since the sides are perpendieular, the downward pressure $=$ the weight.
Area of the bottom $=10^{2} \times 8 \cdot 1416=100 \times 8 \cdot 1416=814 \cdot 16$ feet.
Cubio feet of water $=814 \cdot 16 \times 12=3769 \cdot 92$
\therefore Weight $=3769 \cdot 92 \times 62 \cdot 5=235620 \mathrm{lbs}=$ pressure. Ans.
Example 207.-If olive oil and milk be placed in the two legs of a bent tube or inverted ayphon, when the height of the column of milk above the point of juretion is 20 inches, what will be the height of the columa of oil?

SOLUTION.

From the table of apecific gravities Art. 198, the weight of milk is to that of olive oil as 1030:915.
Henco (Art. 176) 915: 1030: : 20: $\frac{1080 \times 20}{915}=22 \frac{1}{2}$ inches. Ans.
Example 208.-If mercury and ether are placed in a bent tube as in the last example what will be the height of the column of mercury when that of the ether is 100 inches high?

SOLUTION.

From the table of specific gravities the weight of mercury is to that of ether as 18596 : 715.
Hence (Art. 176) $18590: 715:: 100: \frac{715 \times 100}{13590}=54$ inches. Ans.
Examply 209.-What will be the lateral prespure exerted against the side of a cistern,-the side bsing 20 feet long and the witer 12 feet deep ?

In this and sure equal to ares to the su beneath the w
Then volum cuble feot.
Henge prest
Eximpla equare feet does his bod

Column of $=1050$ cubio Hence press
Examplas vessel just ci inch be sunk

From Art. 1 rature of 60° Hence the 7 imes in 170 lb Thast is depth

[^5]
BOLUTION.

In this and similar examples the body of the fish has to sustain a pressure equal to the weight of a column of the water having a base equal in area to the surface of the fish nud a height equal to the depth of the fish beneath the surface of the water.
Then volume of water sustained by the body of the fish $=5 \times 100=500$ cuble feet.
Henge pressure $=500 \times 62.5=81250 \mathrm{lbs}$. Ans.*
Example 213.-If a man whose body has a surface of 15 square feet dives in water to the depth of 70 feet, what pressure does his body sustain?

SOLUTIOAT.

Column of water sustained by man's body at depth of 70 feet $=16 \times 70$ $=1050$ cubio feet.
Hence pressure $=1050 \times 62.5=65625 \mathrm{lbs}$. Ans.
Example 214.-To what depth may an empty closed glass vessel just capable of fastaning a pressure 170 lbs. to the square inch be sunk in water before it breaks?
solution.
From Art. 178 we find that a cubio inch of water at the common temperature of 60° Fahr. weighs 0.03618 of a pound Avoirdupois.
Hence the ressel may be sunk as many inches use .036161 ibs . is contalined times in 170 lbs.
That is depth $=170 \div 0.08816=4701\}$ inohes $=891$ feet 9$\}$ Inches. Ane.

[^6]ARTE. 180,
Example 215.-If an empty corked bottle be sunk to the depth of 130 feet before the cork is driven in, - What pressure to the square inch was the cork capable of sustaining before entering the bottle?
goLution.
Colnmn of water sustained by each square inch of the cork $=130 \times 12=$ 1580 cubic inches.
Then weight sustained by each squaro inch of the cork $=1560 \times 0.03616$ $=56 \cdot 4 \mathrm{ibs}$. $A n s$.

EXERCISE:

216. What is the amount of pressure exerted against one aide of the uprlght gate of a canal, 一the gate being 24 feet wide and submerged to the depth of 10 feet?

Ans. 7500 a lbs.
217 What is the amount of pressure exerted against a milldam, 一the part submerged being 10 feet wide and 80 feet lon and the depth of the water being 8 feet ?

Ans. 200000 lbs.
218. What is the pressure sustained by the sides of a_{A} cubical water tight box placed in water at the depth of 120 feet beneath the surface,-each edge of the box being 5 feet long?

Aus. 1185000 lbs .
219. At what depth beneath the surface will a closed glass vessel, capable of sustaining a pressure of 79 lbs. to the square inch, break?

Ans. 182 ft. $0 \frac{3}{4}$ inch.
220. What pressure is sustained by the body of a minn at the depth of 30 feet,-assuming that his body has araternce of $1 \frac{1}{2}$ square yards?

Ans. 2531
221. Whathis the amount of pressure exerted against one of the uprigh gate of a canal,-the gate being 30 feet wide and submarged to the depth of 5 feet?

Ans. 2343 "t lbs.
222. In a glass tube bent in the form of asyphon a column of turpentine is balanced by means of actumn of sea water,-if the height of the former be $20 ; 30$, or ${ }^{4} 4$ inches what each case will be the height of the latter?

Ans. $16^{\circ}{ }^{\circ}, 25^{2}$ or 39% inches.
223. What is the downward pressure, the pressure on each side and also the pressure on each end of a rectangular cistern, -14 feet 10 ng , and 9 feet wlde-the water being 10 feet deep?

Ans. Downward pressure $=78750$ 1bos:
"Pressure on side $=43750 \mathrm{lbs}$.
Pressure on end $=28125 \mathrm{lbs}$.
24. What amount of pressure is sustained by the body of a whale the depth of 890 feet, upon the supposition that. his body presents a surface of 200 square yards ?

Ans. 29250000 lbs .

225. In merc and mer the 1
180. inclined of the wa

Add the louser part of the colu

Then m water pres, foot of wat

Example square yar and the lo

Mcan wei,
11 ft , and ar Thou press
Eximple that the ws the gate to sustained b

The upper the surfaco, column of wo

Also area o
Henco pres
181. In use may bc
The phessar measurod fion Hence to thin

First.--1t wards.
Finind the p by the equar
[Art. 179.
the depth re to the entering
$130 \times 12=$ 0×0.03616
onề side Ig 24 feet
75000. lbs. t a millθ and 80 t ?
0000 lbs . a, cubical 120 feet ng 5 feet $\$ 000$ lbs. ed glass os. to the $0 \frac{7}{4}$ inch. ing gat the
 312 330
$437 \frac{1}{2}$ lbs. olumn of a of seb 2, or ${ }^{41}$ e latter? f inches. tach side tangular ter being 3750 lbF 3750 lbs. 3125 lbs. ody of a ion that.

ARTE. 180, 181.]
225. In a glass tube bent in the form of a syphor" a column of mercury is balanced in succession by a column of alcohol and a colutho of sulphuric acid. If the height of the forther be 10 inches, what in each case will be the height of Ans. Alcohol $=1713$ inches. Sulphuric ácid $=73$ zit inches.
180. To.find the pressure exerted against a vertical or inclined surfuce at some given depth beneath the surface
of the water:-

I!ULE.
Add the depth of the upper part of the surface to that of the lower part, and divide the sum by. 2. The result is the mean height of the coluinns of water pressing on that surflece.

Then multipiy the area of the surfitce bu the mean height of the water pressing it, and the resull by the weight in lbs., of one cubic
foot of water

Example 226.-What amount of pressure is sustained by one square yard of the site of a canal, the upper edge being 10 feet and the lower edge 12 feet beneath the surface of the water? 4 Boluriek. ":
Mean weight of cohmm of water pressing the given surface $=\frac{10+12}{2}=$ 11 ft , and area of surficen $=9 \mathrm{sq}$. ft .
Then pressure $=9 \times 11=99 \times 62 \cdot 5=618 \% \mathrm{f}$ Ibs. Ans.
Example 227.-An upright flood gate is ga placed in a canal, that the water is just level with the top of the gate.-Assuming the gate to be 30 feet long and 20 feet whe, what pressure is sustained by the lower half of one side?

NOIUTION.

The upper edge of the half to which the wobleur refers is 10 feet beneath the surface, nud the lower edge 20 teet, therefore the mean helght of the colnmn of water pressing against it is $10-1+20=15$ feet.

Also area of part of grato given $=30 \times 10=300$ sq. ft .
Hence pressure $=800 \times 15 \times 62.5=281259$ ibs. Ans.
181. In problems sinilar to the last a better ruile to use may bo derived from the following consideration.: "The phessure on the whole gate is to the pressure on any fraction of "it measurod from the top, In the diplicate ratio of ito that fraction.. Hence to ind the pressure on any part oftlie gate we baye the follaping:

Finst--If the part of the RULE wards.
"difind the pressure on the whole gate'" " by the equare of the, given fruclion.

Sicond. -If the part of the gate be measured from the bottom upwards.

Talce the given fraction from 1, square the remainder, and subtract it from unity.

Multiply the pressure on the whole gate by the fraction thus obtained, and the result will be the pressure, on the given fraction.

Examphe 228.-The flood-gate of a canal is 16 feet wide and 12 feet deep, and is placed vertically in the canal, the water being on one side only and just level with the upper edge of the gate; Required the pressure-1st. On the whole gate.
$2^{\text {ud }}$. On the upper third of the gate.
$3^{\text {rd }}$. On the lower half of the gate.
$4^{\text {th }}$. On the upper two-fifths of the gate.
$f^{\text {th. }}$. On the lower two-elevehths of the gate.
solution.

1. Pressure on the whole gate $=16 \times 12 \times 6 \times 62.5=72000 \mathrm{lbs}$.
II. Pressure on upper third $=$ whole pressure $\times\left(i_{j}\right)^{2}=72000 \times j=$ 8000 lbs.
2. Preserare on lower half $=$ whole pressure $\times\left\{1-\left(\frac{1}{2}\right)^{2}\right\}=72000 \times 1=$ 64000 lbs.
IV. Pressure on upper two-fifths $=$ whole pressute $\times\left(\frac{7}{5}\right)^{2}=72000 \times{ }_{\text {2f }}^{\text {f }}$ $=11620 \mathrm{lbs}$.
V. Pressure on lower two-elevenths $=$ whole pressure $\times\left\{1-\left(2^{9}\right)^{2}\right\}=$ $2000 \times{ }_{2}^{1 / 2} \mathrm{f}=23801 \cdot 6528 \mathrm{lbs}$.
 aquare and again subtract from unity and thus obtain $\frac{z}{3}$ for the multiplicr.
In V we take the given fraetion, in, from unity, this gives us H, which we square and again eubtraot from unity, thus obtaining $-\frac{10}{12}$ for the multiplier.

Example 229.-If a flood gate be placed as in last example what presture will be exerted on the upper : and what on the lower of the gate if it be 10 feet wide and 12 feet deep?

BOLUTION.
We first find the pressure on the whole gate ly Art. 178.
Then for the upper 3 we multiply the whole pressure by the square of ${ }_{7}^{3}$.
For the lower ? we subtrat of from 1, this gives us 8 which we square and thus obtain $y^{4} k$, then wo subtract ${ }^{9} \%$ from 1 and thus obtain 48 , lastly we multiply the whole preesure by this $\&$ \&
Whole pressure $=10 \times 12 \times 6 \times 62 \cdot \mathrm{~b}=45000 \mathrm{lbs}$.
Pressure on upper ${ }^{3}=45000 \times-4.4=82061 \mathrm{ibs}$.
Prequre on lower $\frac{o}{6}=45000 \times \frac{10}{\frac{1}{6}} \quad 28800$ lbs.

EX害RO185.

230. The flooi-gate of a canal is 30 feet wide und 10 feet deep, and is placed vertically in the canal, the water being oni one side only and level with the top, required the pressure-lst.

On the whole gate, 2nd. On thejupper half of the gate 3rd. On the lower half of the gate ; 4th. On the lowest twosevenths of the gate.

Ans. Pressure on whole gate - .
 231. A bollow globe has a surface of 7 square feet, and is sunk in water to the depth of 150 feet. Required the total pressure it then sustains.
232. What pressure is exerted against one square yard of an embankment if the upper edge of the equare yard be 11 ft . and the lower edge 13 feet beneath the surface of the water? Ans. 6750.
233. A hollow glàss globe is sunk in water to the depth of 400 feet, at which point it lreaks. Required the extreme pressure to the square inch which the vessel was capable of sustaining.
234. Required the pressure sustained by the body of a man at a depth of 100 yards beneath the surface of water-assuming the man's body to have a surface of $1, p$ squafefe feet.

Ans. 281250 lbs.
235. A flood-gate 16 feet long is submerged to the depth of 9 feet in water; what pressure is exerted against each side of it?
236. A mill dam is 120 foet exactly level with the torg the dam 7 feet beneath the wam and the lower edge of pressure exerted againste surface. 1st. What will be the sure will be exerted agninst thole dam. 2nd. What pres' 3rd. What pressure will be exerted per part of the dani. of the dam? Ans. Againgt against the lower half

Ans. Against whole dam 288750 lbs.
" upper half 72187 lbs.
" lower half $216562 \frac{1}{2} \mathrm{lbs}$.
237. A flood gate 26 feot wide is submérged perpendicularly to the depth of 12 feet ; find 18 st . The pressure against one gide of the whole part submerged. 2nd. The pressure against the lower half. 3rd. The pressure against the lowest third. 4th. The pretsure agninst the lowest sixth.

Ans. 117000 lbs whole gate.
87750 lbs . lower half.
65000 lbs . lowest third.
35750 lbs . lowest sixth,
182. If water be coifined in a vessel and a prossure to any amount be exerted upon any one square inch of the surface of that water, a pressure to an equal amount will be transmitted to every square inch of the interior surface of the vessel in which the water is confined.

Fig. i;
Note.-In the accompanying Iigure suppose the piston P has an area of 1 square inch, and the piston p^{\prime} anarea of 100 square inches, then iflitb. pressure be applied to, P a weigist of 100 lb . must be applied to p^{\prime} in order to maintain equillbrium. It is thls property of equai and instant transmission of pressure which enables us to make use of hydrostatic pressure as a mechanicat power, and it ls upon this principle that Bramah's Hydrostatic Press is constructed.

183. Bramah's Hydrostatic Press conzists of two stron metallic cylinders A and a, one many times as large as the
other, connceted - together by a tube.

Fig. 17.
The small cylinder is supplied with a strong forcing pump s^{\prime}, and the larger one with a tightly fitting piston S, attached to $a-$ firm platform or strong heid P. Both the cylinders and the communicating tube contain water, and when
 downward pressure is applied to the water in the smaller cylinder, by means of the attached foreing pump, the piston in the larger is forced upward by a pressure as much greater than the downward pressure in the smaller, as the sectional

For examplo, if the smaller evlinder have an arca of halt a square inch. and the large cylinder an area of 500 square inches, then the uppard pressure in the latter will be 1000 times as great as the downward pressure
184. Bramah's Hydrostatic Press is used for pressing paper, cotton, cloth, gunpowder, and other things-also for testing the strength of ropes, for uprooting trees, and for other purposes.

185 To find the relation between the foree applied and the pressure obtained in Bramah's Hydrostatic Press.
I. If the power be applicd by means of a lever, find the amount of downward pressure in the smaller cylinder by the rule in
1I. Divile the sectional area of the larger cylinder by that of the smaller cylinder, and multiply the. quotient by the power applied to the smaller cylinder.
Example 238 ,- $\mathrm{In}^{\prime \prime}$ a hydrostatic pregs the force pump has a sectional area of one square inch; the large cylinder a sectional area of one square foot, the force pump (is worked by means of a lever whose arms are to one another as $21: 2$. If \mathfrak{n} power of 20 lbs . be applied to the "extremíty of the lever, what will bo the "upward presisure exerted against the piston in the large cylinder?
power applied to a force pump $=\frac{20 \times 21}{2}=210 \mathrm{lbs}$.
Scetional àrea of smaller cylinder $=1$ inch, and of a largor cylinder $-=144$ inches.
Then $144 \div 1=144 \times 210=\$ 0240 \mathrm{lbs}$. Ans
Example 239:-In hydrostatic press the sectional areas of the cylinders are f of an inch and 150 inches, and thie power lever is so divided that its, arms are to one another as 7 to 43. What pressure will be exerted by a poryer of 100 lbs applied at the extremity of the long arm of the lever?
folution.
Downward pressure in stall cylinder $=\frac{100 \times 48}{7 \cdots}=614{ }^{\circ} \mathrm{fbs}$,
Upwardpressure in large eylinder $=\frac{160}{3} \times 6.427=450 \times 6142=$

$$
240207
$$

Etamph 240. -The area of the small piston of a bydrosta press is $\$$ an inch and that of the "larger one 300 inches, the lever is 30 inches long and the piston rod is placed 5 inchet from the fulcrum ($\boldsymbol{0}$ as to form a lever of the secondiorder) What power mist be appiied to the end of the lever in order'to produce an upward pressure in the cylinder' of 1000000 lbs ?

Downward pressure in smaller cylinder $=1000000 \mathrm{lbs} . \div \frac{300}{\frac{1}{2}} 1000000 \mathrm{lbs}$.
$\quad \div 600=1666 . \mathrm{lbs}$ $\div 600=1666 \mathrm{j} \mathrm{lbs}$.
Then power applied $=1666 \frac{2}{3} \mathrm{lbs} . \div \frac{30}{5}=1686 \frac{3}{3} \div 6=277 \%$ lbs. Ans.

EXERCISE.

241. It a hydrostatic press the area of the small cylinder is one inch, and that of the large one 300 laches, the force * pump is worked by a lever of the second order 30 inches long, having the piston rod 2 in thes from the fulcrum; if a pressure of 50 lbs . be applifed to the lever, what upward pressure will be produced in the large cylinder?

Ans. 225000 lbs.
242. In a hydrostatic press the force pump has assectional area of balf an inch, the farge cylinder a sectional area of 200 inches; the force pump is worked by means H. of a lever whose arms are to one another as 1 to 50 ; now suppose a force of 50 lbs. be applied to the extremity of the lever, what will be the upward pressnre exerted against the piston in the large cylinder?

Ans. 1000000.
243. In a hydrostatic press the small cylinder bas an area of one inch, and the large one an area of 500 inches, the pamp lever is so divided that its arms are to one another as 1 to 25 . What will be the uphard pressure against the piston in the large cylinder produced by a force of 100 lbs . acting at the extremity of the lever?

Ans. 1250000.
244. The area of the small piston of a hydrostatic press is $\frac{3}{4}$ of an inch, and that of the large one 120 inches-the arms of the lever by which the force pump is worked are to one another as 40 to 3. Required the upward pressure exerted against the piston of the large cylinder by a power of ${ }^{1 / 7} \mathrm{lbs}$ applied at the extremity of the lever.

Ans. 36266 ${ }_{3}^{2}$ lbs.
245. The area of the small piston of a hydrostatic press is $1 \frac{1}{2}$ inch, and that of the large one 200 inches-the arms of the lever by which the force pump is worked are to one another as 20 to 11. What power applied at the extremity of the lever will produce a pressure of 780000 lbs ?

Ans. $421 \frac{7}{8}$ lbs.
188. Since the pressure of water upon a given base depends upon the height of the liquid and not upon its quaptity, it follows that:-

ARTS 18 Any balance or to ro
Note. reality, h a pound It does it wejght in 20 Ybs ., of Inches in hydrostat cities.
187. called t of board bellows the uppe B, finish ation, C

Note. tube an the upper weight of of the bo area of th

For ${ }^{\text {exan }}$ foran inch then the ar great as thi water in th against the
188. board of the tube.

Divide multiply th Nors. the section and the pro weight of o
Examplit an area of and is fille pressure is

Any quantity of water, however small, may be made to balance the pressure of any other quantity however great, or to raise any weight however large.
Note.-This is what is commonly called the Hydrostatic Paradox. In realy, however, there is nothing at all paradoxical in it; since, although it does it upon precis be made to baslance 10 lbs ., or 1000 lbs ., or $100,000 \mathrm{lbs}$., weight in the lever and other mecherinciple that the power balances the 20 ibs., of water by the descending force of powers. Thus in order to raise inches in order to raise the former 1 of 1 lb ., the latter must descend 20 hydrostatic paradox is in strict conformity to the prine what is called the citics.
187. This principle is illustrated by an instrument called the Hydrostatic Bellows, which consists of a pair of boards united together by leather, as in the common bellows and made water-tight. From the upper board there rises a long, tube B, finished with a funnel-shaped termination, C.

Nore. -When water is poured into the tube an upward pressure is exerted against the upper hoard as much greater than the weight of the water in the tube as the area of the board is greater than the sectional area of the tube.

For example. If the sectional area of the tube be 4 of an inch, and thearea of the board bo 250 inches, then the area of the board will be 1009 times as. great as that of the tube, and consequendy 1 lb . of wator in the tube will exert a pressure of 1001 bs. against the upper board of the bellows.

Fig. 18.

188. To find the upward pressure exerted against the board of a hydrostatic bellows by the water contaihed in the tube.

RULE.
Divide the sectional area of the hodrd by that of the tube, and multiply the result by the weight of the water in the tube.

Norm. - The weight of water in the tube is found by multiplying the sertional area of the tube by the height of the water in inches and the product, which is cubic inches of water, by 0.03616 lbs., the weight of one cubic inch of wuter.

Exampli 246.-The upper board of a bydroatatic bellows has an area of 1 foot, the tube has a sectional area of an inch and is filled with water to the height of 7 feet. What upward pressure is exerted agsinst the top board of the bellows?
fArts. 194
GOLETIOX.
Cubic inches of water in the tube $=\frac{1}{2} \times 84=42$.
Weight of water in tube $=0.08616 \times 42=1.51872$.
Upward pressure against bellows board $=51872 \times \frac{144}{\frac{1}{2}}=1.61872 \times 2 \mathrm{ss}$ $=437.39 \mathrm{lbs}$. Ans.
Example 247. - In a hydrostatic bellows the board bas an area of 200 inches and the tube a sectional area of 4 of an inch. What upward pressure is exerted on the board by 7 lbs. of water in the tube?

$$
\text { Upward pressure }=7 \times \frac{200}{\ddagger}=7 \times 800=5600 \mathrm{Hbs} . \quad \text { SOLETION. } n v .
$$

EXERCISE.
248. In a hydrostatic bellows the board has an area of 250 inches, the tube bas a seotional area of 14 inch, and contains II lbs. of water. What is the amount of upward pressure exerted against the board of the bellows?

Ans. 2200 lbs.
249. The board of a hydrostatic bellows has an area of 300 inches, the tube has asectional area of 1 inch, and is filled with water to the height of 10 feet-what pressure will be exerted against the upper board of the beliows? Ans. 1301-76 lbs. 250. The tube of a hydrostatic bellows las a sectional area of -72 of an inch, and is filled with water to the heiglit of 50 feet-what weight will be sustained on the bellows. board if the later have an area of 3 feet?
189. A body immersed in any liquid. will either float, sink, or rest in equilibrium, according as it is specifically lighter, heavier, or the same as the liquid.
100. A floating body displaces a quantity of liquid equal to its own weight.
191. A body immersed in any liquid loses a portion of its weight equal to the weight of the liquid displaced, and, hence, by weighing a body first in aw and then in water, its relative wright or specific gravily may be determined.
192. The specific gravily of a body is its weight as compared with the weight of an equal bulk or volume of some other body assumed as a standard.
193. Pure distilled water at the temperature of 60° Fahr. is taken as the standard with which to compare all
solids an rature of is taken
194. water:

Divide t the result
Exampla only 205 g

Loss of we
Hence spe.
Example
but $50 \cdot 5 \mathrm{gr}$
Lossof wei
Then specii
253. A piec grains
254. A piec oz. in w "255. A piec water;
195. To ciently heav

To the body body sufficien and loss of w

Then weigh weight deduct divide the absi quotient will
Exampli 25 has attached 41 in water, the"specific gr
solids and liquids, and pure dry atmospheric air at a temperature of $32^{\circ} \mathrm{Fahr}$., and a barometric pressure of 30 inches is taken as the standard with which all gases are compared.
194. To find the specific gravity of a solid heavier than water : \qquad

rele.

Divide the weight of the body in air by its loss of weight in water, the result will be its specific gravity.
Example 251.-A piece of lead weighs 225 grains in air, and only 205 grains in water; required its specific gravity. .
Loss of weight 225 solution.
Hence specitic gravity $=225 \div 20-11$ grains.
Example 252 .-A
but 50.5 grains in water ; sulphur weighs 97 grains in air and but $50 \cdot 5$ grains in water; what is its specific gravity?
Lossof weight in solution.
Then specitic gravity $=97-46 \cdot 50 \cdot 5=46 \cdot 5$ grains.
Then specitic gravity $=97 \div 46 \cdot 5=2 \cdot 008$. Ans.
"exercise.
253. A piece of silver weighs 200 grains in air and only 180 grains in water; required its specifonsavity.
254. A piece of platinum weighs $154 \frac{1}{\circ}$ oz is Ans. $10 \cdot 000$.
oz, in water; requited its specific pravity and only $147 \frac{1}{3}$
4255 . A piece of glass weighs specicic gravity. . Ans. 22.071 . water; required its specific gravity. air and but 130 oz . in water; required its specific gravity. .Ans. 3063.
195. To find the specific gravity of 'a solid not sufficiently heavy to sink in water.

To the body whose specific gravity is sought qttach some other body sufficiently heavy to sink it, and of which the weight in air and loss of weight in ivater are known.
Then weigh the united mass in water and dir, from its loss of weight deduct the loss of weight of the heavier body in water, and divide the absolute weight of the lighter body by the remainder, "the quotient will be the specific gravity of the lighter body.
Exampla 256.-A piece of wood which weighs 55 oz . in air has attached to it a piece of lead which weighs 45 oz. in air and 41 in water, the united mass weighcotym. in water;; required the specific gravity of the plece ofme. *. water.; required

Example 257.-A piece of wood which weighs 70 da. in air has attached to it a piece of copper which weighs 36 oz . in air and 31.5 oz . in water, the united mass weighs only 11.7 oz . in water; what is the specific gravity of the wood?
solution.
Wt. of united mass in air $=70+36=1060$ o.
water $=1 \underset{\text { mass in water }=94 \cdot 3}{ }$ "
Loss of wt. of united mass in water= $=94.3$ "
Loss of wt. of copper.
Loss of wt. of wood \quad " $=7=89 \cdot{ }^{\prime \prime}=$ loss of weight of the wrod.
EXERCISE.
258. A piece of pine wood which weighs 15 lbs. in air has attached to it a piece of copper which weighs 18 lbs . in air and 16 lbs . in water; the weight of the united mass in water is 6 lbs ; required the specific gravity of the ping?
259. A piece of cork which weight 20 oz. in air has attached to it an iron sinker whioh weighs 18 oz . in air and $15 \cdot 73 \mathrm{oz}$. in water, the united mass 'weighs 1 oz . in water; required the specific gravity of the cork? Ans. 575 .
260. A piece of wood which weighs 33 oz . in air has attached to it a metal sinker which weighs 21 oz . in air and $18 \cdot 19 \mathrm{oz}$. in water, the united mass weighs 2.5 oz . in water ; what is the specific gravity of the wood? Ans. -677.
198. The specific gravities of liquids may be determined in three different ways.

First Metrod.-A small glass flask, which holds precisely 1000, grains of pure distilled water at the temperature of 60° Fiuhr., is filled with the liquid in question and accurately weighed, the result indicates the specific gravity of the liquil.
Second Method.-A piece of substance of known specific gravity is weighed both in and out of the liquid in question. The difference of weight is multiplied by the specific gravity of the solid,
and the pro the result is

That is $s=$

Therd Met most common ment called tl ated scale ri which is a sm other heavy s_{1} the greater th specific gravi sinlis in diffe scale, which th liquids specific ated from the the top downo
Example 26 with sulphuri the specific gr

Example 26 weighs 792 gr

Example 265 $27 \cdot 4 \mathrm{oz}$. in a ce specific gravity
 Then $s=\frac{v-u}{v}$
Exampia 264
weighs 47.8 gra is the specific g

[^7][ARr. 190. f' the wood.
dar. in air oz. in air 11.7 oz . in
f the rood.
n air has lbs. in air sin water ?
Ans. $\cdot 600$. traclied to $15 \cdot 73 \mathrm{oz}$. ; required Ans. 575. tached to $18 \cdot 19 \mathrm{oz}$. ; what is. Ans. 677.
termined
iscly 1000 Fuhr., is the result
cific graion. The the solid,

Art. 190.]
IIYDROSTATICS.
and the product divided by the absolute weight of the solid, and the result is the specific gravity of the liquid.

$$
\begin{aligned}
& \text { That is } s=\frac{w-w^{\prime}}{w} \times s^{\prime} ; \\
& \text { where } w=\text { absolute } \\
& w^{\prime}=\text { weight in the liquid. } \\
& \text { •Therefore } w-w^{\prime}=\text { loss of weight. } \\
& s=\text { specific gravity of the liquid. } \\
& s^{\prime}=\text { specific gravity of the solid. }
\end{aligned}
$$

most commonly found in specific gravity of liquids is ment called the Hydrome practice by means of an instru- Fig. 19. ated scale rising from a glass or silver which is a small appendage laded with bulb, beneath other heavy substance. It acts upon the phot or some the greater the density of a liquid the greater will that specific gravity. The depth to which the instr be its sinks in different liquids is shown by the graduated scule, which thus indicates their specific gravities. For liquids specifically lighter than water, the scale is graduated from the botton upwards; for those heavier, from the top downwards.

Example 261.-The Thousand-grain Bottle filled with sulphuric acid weighs 1841 grains.* What is the specific gravity of the sulphuric acid?

solution.

$$
1841 \div 1000=1 \cdot 841 . \text { Ans. }
$$

Example 262.-The Thousand-grain Bottle filled with alcohol weighs 792 grains, required the specific gravity of alcohol.

$$
\begin{gathered}
\text { SOLUTION.. } \\
792 \div 1000=\cdot 792 . \text { Ans. }
\end{gathered}
$$

Example 263;-A piece of zinc (specific gravity 7.190) weighs $27 \cdot 4 \mathrm{oz}$. in a certaiu liquid and $32 \cdot 7 \mathrm{oz}$. out of it, required the specific gravity of the liquid.

Here $\hat{v}=32 \cdot 7, w^{\prime}=27 \cdot 4, s^{\prime}=7 \cdot 190$.
Then $s=\frac{w-w^{\prime}}{w} \times s^{\prime}=\frac{32 \cdot \gamma-27 \cdot 4}{32 \cdot 7} \times 7 \cdot 100=\frac{5 \cdot 8 \times 7 \cdot 190}{32 \cdot 7}=1 \cdot 165$. Ans.
Example 264.-A piece of silver (specific gravity 10.500) weighs 47.8 grains in a liquid and 58.2 grains out of it-what is the specific gravity of the liquid?

[^8]

soLution.

Nore $10=58.2, w^{\prime}=47.8$ and $s^{\prime}=10.5$.
Then $s=\frac{w-2 v^{\prime}}{w} \times{ }_{s^{\prime}}=\frac{58.2-47.8}{58.2} \times 10.5=\frac{10.4 \times 10.0}{58.2}=1.876$. Ans.

EXERCISE.

265. A piece of copper (specific gravity $8 \cdot 850$) weighs $446 \cdot 3$ grains in liquid, and 490 grains out of it, required the specific gravity of the liquid. Ans. 789.
266. The Thousand-grain Bottle filled with olive oil weighs 915 grains-what is the specific gravity of olive oil?

Ans. 915.
267. The Thousand-grain Bottle filled with mercury weighs 13596 grains-what is the specific gravity of mercury?

Ans. 13.596.
268. A piece of cast-iron (specific gravity $7 \cdot 425$) ${ }^{\text {\% }}$ weighs $34 \cdot 61$ oz. in a liquid, and 40 oz . out of it-what is the specific gravity of the liquid?

Ans. 1.000 nearly.
269. A piece of gold (specific gravity 19•360) weighs $139 \cdot 85$ grains in a liquid, and $159 \cdot 7$ grains in the air, required the specific gravity of the liquid?

Ans. $2 \cdot 406$.
270. A piece of marble (specific gravity $2 \cdot 850$) weighs 30 lbs . in a certain liquid, and 35.9 lbs . in the air, required the specific gravity of the liquid?

Ans. 468 .
107. The speeific gravity of gases is found by exhausting a flask of atmospheric air and filling it with the gas in question previously well dried. This is accurately weighed and its weight compared with the weight of the same volume of dry atmospheric air at the temperature of $60^{\circ} \mathrm{Fahr}$. and under a barometric pressure of 30 inches.
198. The following table gives the specific gravities of the most common substances :-

Atmosph
Hydroge
0xygen, Nitrogen, Ammonia Carbonic Sulphuro Chlorine,

Distilled Mercury, Sulphuric Nitric acid Milk,..... Sea water, Wine, . . . $0 l i v e ~ o i l, ~ . ~$ Spirits of
Pure alcol Ether
Prussic aci

Platinum, . Gold, Silver, Lead,
199. A perature of if the spec weight of Forexample and a cubio fo of mercury we
200. To weight:-

Contents in

of a cubic foo
Example
of dry oak (s
/A Ats. 197, 199.

$$
10.0
$$

1) weighs $446 \cdot 3$ it, required the Ans. 789. oil weighs 915 ive oil?

Ans. '915. nercury weighs of mercury ?

Ans. 13.596.
;) ${ }^{*}$ weighs $34 \cdot 61$ t is the specific s. 1.000 nearly. weighs $139 \cdot 85$ ho air, required Ans. $2 \cdot 406$.
reighs 30 lbs . in equired the speAns. 468.
id by exhaustrith the gas in cately weighed e same volume 60° Fahr. and
gravities of
weight:-

Hydrogen,... $\quad 1 \cdot 000$
0xygen,.
$1 \cdot 106$
Nitrogen,................ 972
Ammoniacal gas,....... 596
Carbonic acid gas,..... 1.529
Sulphurous acid gas, .. $2 \cdot 234$
Chlorine,
$2 \cdot 470$

Lievids.

Distilled water, $\ldots .$. ... 1.000
Mercury,.................. 13.596
Sulphuric acid,............ $1 \cdot 841$
Nitric acid,............. $1 \cdot 220$
Milk,......................... $1 \cdot 030$
Sea water,...................... 1.026
Wine,...............................
Olive oil, 993
$\begin{array}{lll}\text { Spirits of turpentine, } . . . & -915 \\ \text { Pure alcohol, } & -792 \\ \end{array}$
$\begin{array}{ccc}\text { Pure alcohol,............. } & -792 \\ \text { Ether,.................. } & -715\end{array}$
Prussic acid, BOLIDS.
Platinum,
$\left(\begin{array}{l}\text { Platinum, } \\ \text { Gold, } \\ 19 \cdot 360 \\ \text { Silver, } 10 \cdot 500 \\ \text { Lead, } \\ 11 \cdot 250\end{array}\right.$
199. A cubic foot of pure distilled water at the temperature of 60° Fahr. weighs exactly 1000 ounces. Hence if the specifio gravity of any substance be known, the weight of a cubic foot, \&c., may be easily found.
For example-The specific gravity of mercury is $13 \cdot 596$ water, being $1 \cdot 000$, and a auble foot of water weighing 1000 ounces, it follows that a ouble foot
of mercury weighs 13593 ouncos. of mercury welghs 18593 ouncos.
200. To find the solid contents of a body from its

RULE.
Contents in feet $=\frac{w}{w 0^{\prime}}$ where $w=$ whole weight, and $w^{\prime}=$ weight of a cubic foot as ascertained from its specific gravity.
Examplin 271.-How many cubic feet are there in 2240 fba , of dry oak (specific gravity -925.)?

202
requisi
1st.

2ud.
203.
upon v liquid
Note. of the t White t of gravit or other 1 of gravit
204.
gravity
line, an
Stable
ancy.
Neutr of buosa

Unstat buoyanc.
205. of perm may be
208. of gases surround 207. sideratior only abou
Note.-T
earth, so the would be re
208.
of two gi
202. In order that a floating body may be in equilibrium it is requisite that:-
1st. The weight of the water displaced shall be equal to the weight of the floating body ; and,
2 nd . The resultant of all the upward pressures of the liquid shall act in the line of direction of the centre of gravity of the body.
203. The centre of buoyancy of a floating body is the point upon which the resultant of all the upward pressures of the liquid acts.
Note.-The centre of buoyancy coincides not with the centre of gravity of the floating body, but with the centro of gravily of the fluid displaced. Whine tho body floate, the centre of buoyanoy is al wave below the centre of gravity, but the two ooinoide when the body sinks. Iñ a ship, tiowever, or other hollow body, containing much leavy ballast in the hoid,' the centre 204 A fout gravity and the centr is in equilibrium when the centre of line, and the equilibrum is:- buoyancy are in the same vertical
Stable when the centre of gravity is bejow the centre of bunyancy.
Neutral when the centre of gravity coincides with the centre of buogancy.
Unstable when the centre of gravity is above the centre of buoyancy.

CHAPTER VI.
 PNEUMATICS.

205. Pncumatics treats of the mechanical properties of permanently elastic fluids, of which atmospherie air may be taken as the type.
206. The atmosphere (Greek atmoi " gascs") or sphere of gases is the name applied to the gaseous envelope which surrounds the earth.
207. It is supposed, from certain astronomical considerations that the atmosphere extends to the height of only about 45 miles above the surfuce of the earth.
Note.-The height of the atmosphere is only about yrs of the radius of the parth, 80 that upon an artificial globe 24 inches in diameter the atmosphere would be represented by a covering $\frac{1}{8}$ of an inch in thickness.
208. Atmospherio air is a mechanical mixture chiefly of two gases, oxygen and nitrogen, in the proportion of

1 gallon of the former to 4 gallons of the latter. Its exact composition, omitting the aqueous vapor, is as follows:-

Note.-Oxyden is the sustaining principle of animal life and of ordinary combustion. Whenan anlmal is placed in a vessel of pure oxygen its heart beats with ingreased energy and rapidity and it very soon dies from excess of vital action. Masy substances, also, that are not all combustible under ordinary cifeumstances burn when placed in pure oxygen with extraordinary brimiancy and vigor.
Nitrogen, on the other hand, supports neither respiration nor combustion. In its chemical nature it Is distinguished chiefly by its negative properties. In the atmosphere it serves the important purposo of diluting the oxygen and thas fitting it for the function it is designed to perform in the animal economy:
Carbonic acid is a highiy poisonous gas, formed by the union of oxygen and carbon (charcoal). It is produced in' large quantitles during the processes of animal respiratlon, common combistlon, fermentation, volcanic action and the decay of animal and vegetablo substances. Although when inlaled, it rapidly destroys anlmal life it constitutes the chief source of food to the plant. Animals take into the lungs air loaded with exygen and throw it off so charged with carbonic acid as \quad a be incapable of again serving for the purposes of respiration. The green parts of plants, ou the contrary, absorb air, decompose the carbonic acid it contains, retain the carbon and give offair contalning no carbonle acid but a large amount of oxygen. This is a most beautiful llustration of the mutual dependence of the different orders of created beings upon one another. Wero it not for plants, the air would rapldly become so vitiated as to canse the total extinction of animal life; were it uot for animals, plants would not thrive for want of the food now supplied in the form of carbonle acid by tho living animal. As it is, the one order of beings prepares the air for the sustenance and support of the other, and so admirably is the mattor adjusted that the cemposition of the air is, within very narrow limits, Invariably the samo.
The amount of carbonlc acld varies from 3.7 as a minimum to 0.2 as a maximum in 10000 volumes.

Carburetted Hydrogen is produced during the decay of animal and vegetable substanees. It is one of the chiet Ingredients of common illuminat ligg gas, and is polsonous to animals when present in the air in large quantities.
209. One of the most remarkable eharacteristics of gases, is the property they possess of diffusing themselves among one another. Thus if a light gas and a heavy one are once mixed they exhibit no tendency to separate again, and no matter how long they may be allowed to stand at rest, they are found upon examination intimately mingled with each other. Moreover if two vessels be placed one upor
the 0 gen) and anot remal
oppos and mixed
Not apon t) were to Bexide would tricts, uninha

21 atmos form
combu
taneou
amoun
upon
the we rto in

211 suffere light, to abso solar regions with b] large at
212. propert compre:
Note ous expe
I. If an in the int cannot en
II. If th position together
the other, the upper being filled with any light gas (hydrogen) and the lower with any heavy gas (carbonic acid), and if the two gases be allowed to communicats with one another by a narrow tube, or a porous membrane, a remarkable interchange rapidly takes place, i. e., in direct opposition to the attraction of gravity the heavy gas ascends and the light gas descends until they become perfectly mixed in both vessels.
Note.-The property of gaseous diffusion has a very intimate bearing upon the composition of the air. If either of the constitnents of the air Were to separate from the mass, the extinction of lite would soon follow. Bealdes were it not for the existence of this property, various vapors tricts, volcamic regin certain localities, as large citfes, manufacturing disuninhabitable. reglons, drc., in such quantities as to rouder them totally
210. In addition to the gases already mentioned, atmospheric air always contains more or less water in the form of invisible vapor. This is derived partly from combustion, respiration and decay, but chiefly from spontaneous evaporation from the surface of the earth. The amount of invisible vapor thus held in sulution depends upon the temperature of the air being as high as to of the weight of the air in very hot weather, and as low as rto in cold.
211. The blue color of the sky is due to light that has suffered polarization, and which is, therefore, reflected light, like the white light of the clouds. The air appears to absorb to a certain extent the red rays and yellow rays of solar light and to reflect the blue rays. In the higher regions the blue becomes deeper in color and is mixed with black. The golden tints of sunset depend upon the large amount of aqueous vapor held in solution by the air.
212. Air, like all other material bodies, possesses the properties of impenetrability, extension, inertia, porosity, compressibility, elasticity, \&c. (See Arts. 11-18.)

Nots 1.-The impenetrability of atmospherio air is illustrated by various experiments, among which are the following:
I. If an inverted tumbler be Immersed in water the lignid does not riee In the interlor of the tumbler, because the iatter is fuli of air and the water cannot enter until the air has been displaced.
II. If the two boards of a bellows be drawn asunder and while in that position the nozzle of the bellows be closed, the boards csnnot be pressed cogether becanne the bellows is full of air.
III. If an india-rubber bag or a bladder be inflated with air, and pros. sure applied, it is found that there is a material something within which koops the sideg asunder, -that material something is atmospherie air.

Note 2-The Inertia of atmospheric air is shown :-

1. By the force of wind, which is nothing more than air in motion.
II. By attompting to run on a calm day, carrying an open umbrella.

11I. By the apparent current of wind experienced on a perfectly calm day by a person standing on the deck of a steamboat, or the platform of a rallway car when in rapld motion, which current is cansed by the body
displacing the air.
IV. By cansing a feather and a ball of lead to fall in a vacnum, when it is observed that they fall with the same velocity. In the atmosphere, however, the ball falle, faster than the feather because it contains a greater amount of matter with the same extent of surface as the feather, and hence, meets with less resistance from the inertia of the air.
213. Air, in common with all other forms of matter, is acted on by the attraction of gravity, and consequently possesses weight.

NoTs 1.-To prove thls is the findamental fact in the science of pneumatics, we take a glass globe capable of containing 100 cubic inches, and after weighing it accurately, withdraw from it, by means of an alr pump, all the alr it contains. When we welgh it again we find that its weight is about 81 grains less than when filled with air.

100 cubic Inches of Atmospheric air weigh

Nore 2.-Although a small quantity of air when examined appears to be almost imponderable, the aggregate weight of the entire atmosphere ts enormous, bejng equal to :
I. Five thonsand millions of mlllions of tons; or
II. A globe of lead 66 miles in diameter; or
III. An ocean of water covering the whole surface of the edinito the depth of 82 teet; or
IV. A stratum of mercury covering the entire surface of the globe to the
depth of 80 inches.
214. Since the air is ponderable and also compressible, and since the lower stratum has to sustain the pressure of the saperincumbent portion, it necessarily follows that the air is denser near the surface of the earth than in the higher regions of the atmospherc.
215. The density of the air decreases in geometrical progression, while the elevation increases in arithmetical progression. That is at the height of 2.7 miles; the atmospheric pressure is reduced to one-half, at twice that height to one-fourth, at three times that height to one-eighth, \&c.
Note.-The following table exhibits the density, elasticity and prezaure of the air at the different elevations given. Halley fised the helght at which the pressure is decreased to onc-hatiat $8 \frac{1}{2}$ mifes, but a more caretiol

216 of its 15 lbs.
Note. to the $s q$ 80 inches a section umn ofs level of t
[Arts. 213-215. air, and pros. g within which spheric air.
in motion. n umbrella. perfectly calm platform of a d by the body
cunm, when it e atmosphere, tains a greater efeather, and
f matter, is insequently lence of pneuc inches, and an air pump, t its weight is

81 graine.
80
47\}

appears to be trosphere is
oathino the globe to the apressible, ressure of s that the an in the
ometrical ithmetical he atmosat height ghth, \&c. nd preesure o helght at ore caretul

Arts. 216-219.]
PNEUMATICS.
collection, by Biot and Arago of the obeervations made on the Andes and in balloons respecting the npward decrease of pressure and temperature, has led to the adoption of $2 \cdot 7$ miles as the polnt at which we may say that onehalf of the atmosphere is beneath us.

HEIGHT IN MILES,	DENSITY.	HKIGBT, IN IN., OF COLUMN OFMEROURT /	PREBSURE IN LBE. TO THE BQ. INCH.
$2 \cdot 7$	$\frac{1}{2}$,	15	7.5
$5 \cdot 4$	4	7.5	$3 \cdot 75$
$8 \cdot 1$	$\frac{1}{8}$	3.75	. 875
$10 \cdot 8$	21_{6}^{1-}	$1 \cdot 875$. 937
18.5	$\frac{1}{31}$	- . 987	. 887
16.2	1.		-468
18.9	64	-468	-234
$18 \cdot 9$	T28	. 234	$\cdot 117$
$21 \cdot 6$	Id 6	-117	. 058
$24 \cdot 3$	万te	058 -	008
27.0	-	0	-029
29.7	T024	-029	. 014
497	2048	. 014	$\cdot 007$

216. The pressure of the air is a necessary consequence of its weight, and is equal, at the level of the sea, to about 15 lbs. to the square inch.
Note.-By saying that the pressure of the atmosphere is equal to 15 lbs . to the sq. Inch, we mean that it is capable of balanolng a column of mercury 80 inches in height; and a column of meroury 80 inohes in height and having a sectional area of 1 sq . inch welghs 15 lbs . Or in other words, that a collevel of thesea to the top of tho atmosphore weighs 15 ibs.
217. Air at $60^{\circ} \mathrm{F}$. is 810 times as light as water, and 10466 times as light as mercury. It follows that the pressure of the atmosphere is equal to that of a column of air of the same density as that at the surface of the earth 810 times 32 feet or 10466 times 30 inches in height. That is, if the air were throughont of the same density that it is at the level of the sea, it would extend to the height of about 5 miles.
218. The particles of elastic gases, unlike those of solids or liquids possess no cohesive attraction, but on the contrary a powerful repulsion, by means of which they tend to separate from onc another as far as possible.
219. Permanently clastic fluids, such as atmospherio
air, and certain gases; are chiefly distinguished from nonelastio fluids, such as water, by the possession of almost perfect elasticity and compressibility.
, Note.-Air and cortain gases as Oxygen, Hydrogen, Nitrogen, \&c., are called permanently elastie to distinguish them from a number of others as Carbonic Acid, Nitrous Oxide, \&c., which undor great pressure and intense cold pass first into the liquid and finally into. the solld state. **
220. If a liquid be placed in a cylinder under the piston, it will remain at the same level, no matter to what height the piston may be raised above it, but if a portion of air or any other elastic gas be thus placed in the eylinder, and the piston be air-tight, the confined air will expand upon raising the piston and will always fill the space beneath it, however great this may become. This expansibility or tendency to enlarge its volume so as to entirely fill the space in which it is enclosed is termed elasticity.

Note.-It is obvions that the elasticity of air is dne to the repulsive power possessed by the particles.
221. The law determining the density and clasticity of gases under different pressures was investigated by Boyle in 1660, and afterwards by Mariotte.

NoTe.-To illustrate this law wo take a bent glass tube Fig. 20, having one llmb AC much longer than the other. The longer limb is open and the shorter farnished with a stop-cock.
Both enda being open a quantity of mercury is poured into the tube and of course rises to the same level in both lege-the surface of the mercury at $A a$, sustaining the welght of a column of air extending to the top of the atmosphere. We now close the stopcook and thns shat of the pressure of the atmosphere above that point, so that the surface a, cannot be affected by the weight of the atmosphere-i.e., cannot be influenced by atmospherie pressure. We find, however, that the mereury in both ilmbs remains at the same level, from which we infer that the elastle force of the air confined above a is equal to the weight of the whole column on a before the stop-cock was closed.
Hence the eiasticity of the air is equal to its woight which is equal to a column of mercury 80 lnches ligh.
If now we ponr mercury into the tube until the air confined nbove a is compressed into half its former volume, i. e., until the mercury rises to $b \mathrm{ln}$ the shorter tube, we shall find that the column of mercury $b B$ is exactly 29 inches in length, or in other words, we have donbled the pressure on the

ARTE.

air conf Its form It now lbs. to t If we above it its origi Hence t] 222
I. Th to whict II. T varies in Notis, within ce to very g elasticity. than with when the into $z_{z^{\prime}}$ of Mariot we know phere. D a certain of the ind and thus probablo tion of iug to have a? this exact an elevatic Builisen ad
223. used for vessel.
224. the air-1 exhauste to have 1 Note.-T burgomaste Diet in 1504 emperor an he ex hauste edges, and blned stren
The exha that while u vent the in" of many em construction
225. 1 of an air-

Anta. 220-222.]
d from nonn of almost rogen, \&c., are mber of others t pressure and id state. *

Fig. 20.

air confined in the shorter tube and have decreased its volume to one-half its former dimenaions, and at the same time doubled its elastio force since. it now reacts against the surface of the meroury with a force equai to 30 lbs. to the squgre inch.
If we increase the height of the mercury in the longer leg to 60 inches above its height in the shortefleg, we ahall compress the air into one-third its originai volume and at the same time treble its elasticity, and so on.
Hence the law of Mariotte.
222. Mariotte's law may be thus enunciated :
I. The density and elasticity of a gas vary directly as the pressure to which it is subjected.
1I. The volume which a gas occupies under different pressures varies inversely as the force of compression.
Nots,-Recent researches tend to prove that Mariotte ${ }^{*}$ iaw is true only. within certain limits, and that all gases vary from the law when subjeoted. to very great pressures, their density increasing in a greater ratio than their than with any other gas, the correspond holds good to a fargreater extent when the air is expanded to 300 volumes, and alig found to be rigidly exact into $\frac{1}{2}$ of its primary volume.
Mariette's law would require the air to be indofnilely expansible, while we know that there is, beyond all doubt, an upward limit to the atmosphere. Dr. Wollaston imagines that when the particles of air are driven of certain diatance apart by their mutual repulsive power, the weight of the individual particles comes at last to balance this repalaive force, probable from various further divergence. If this be the case, as is tion of u gas, arriving at which the to have a true upper aurfach like gas ceases to expand further and comes this exact limit and upper surfece liquid. As has been already remarked, an elevation certainiy not greater than 45 miles- Biot fixes it at 30 miles; Busen and others place it at 200 miles. 45 miles-Biot fixes it at 30 miles;
223. The air-pump, as its name implies, is an instrument used for pumping out or exhausting the dith from any closed vessel.
224. The bell-shaped glass vessel usually attached to the air-pump is called a Receiver, and when the air is exhausted as far as practicable from this, a vacuum is said to have been produced.
Note.-The air-pump was invented by Otto Guericke, a ceiebrated burgomaster of Magdeburg, in the year 1560 . At the close of the Imperial Diet in 1564, he exhibited his first public experiments with it before tho emperor and assembled priuces and nobles of Germany. On this occasion he exhausted the air from two 12 inch hemispheres fitted to on ther by ground edges, and greatly astonished his noble audienge by showing that the com. The exhauating syringe of Otto Guerient to pall them asunder. that while using it he was of Otto Guericke was so imperfect in its action vent the in ward leakage of the sir to keep it immersed in water to proof many eminent men has been air. Since his time, however, the attention constraction of the air-pump have been greatiy improved.
225. The exhausting syrine mproved.
of an air The of an air-pump, consists of a brass cylinder abcd, supplied
with an air-tight piston $e f$, and an arrangement of valves $h^{\prime} k$, by means of which the air is permitted to pass out from the receiver q and through the piston $e f$, but not in the contrary direction.
Nore.- When the piston ef is raised the valve h closes, and as the piston in its ascent produces a partial vacuum beneath it, the air contained in the recuiver q opens the valve c by itg expansive power and thus refilis the cyifnder abod. Now when the piston is forced down agaln, ihe air contained in the cylindortends to rush back into the receiver, but in doing so oloses the valve k, and has therefore no other mode of escape than through h, thus passing above the piston to be lifted ont at the next stroke. In this manner -the air continues to be exhansted until what remains in the recelver has not sufficient expansive power to open the valve k, when the exhaustion is anid to be complete.

Fig. 21.

226. The principle upon which the air-pump acts is the elasticity or expansibility of the air, and since in order to enable the pump to act, the air contained in the receiver must possess sufficient elastic force to raise the valve, it follows that a perfect vacuum cannot be secured by the air-pump. Thus, pumps of common construction will not withdraw more than 9 yor of the contained air, but the improved form is said to exhaust ${ }^{9} 9898$.
Nore,-If we suppose the cylinder of the exhausting yyringe to have tho same effective capacity as the recelver, and that the piston passes at each stroke the whole length of the cylinder, it is evident that in raising the piston to the top of the cylinder and then depressing it again to the bottom, ooe-half of the air will have passed from the receiver ; the remaining half
completely filling it, but having before. The filling it, but having only half as much density and elasticity as and elesticity, to one-fourth, the third to will reduce the quantity, density, by the following table:

227. The condensing syringe, which is used for forcing air into a'teceiver or condensing chamber, differs from an
inwa
2: the Not exper

1. v ceiver is re-a
II. ${ }^{\prime}$
with
III.
them.
1V..]
cup wh the sur V. hote ce Throug beer wi
VI. T ciple of VII the pros rapidly. VIII. each foo to sustaj has a sid years ax wards, b and the IX. Pr dependa X. If a plece or whole sui vessel up atmosphe XI. Sue ing liquid XII. TH lances a od XIII. T Thus if 80 receiver oi boil, owin be corked flask in al boil; the of the flas
Notr 2. among whi
I. The ex oity of the II. The el ite mouth the bottio!

Ant. 22S.]
exhausting byringe only in the fact that its valves open inward towards the chamber instead of outward.
228. ' The air-pump is chiefly employed to illustrate the pressure and elasticity of the air.
Note 1.-The pressure of the atmosphere may be ahown by innumerableexperiments among which ars the following:
I. Wben the sits is exhatisted from the receiver of an air-pamp the receiver isfirmaly fastoried to the plate, and cannot be remoyed until the air II. The hand
with arioreetufficiently onthe open end of tho receiver is pressed inward
III. Thin square glass great to canse pain.
them.
IV. In the surgical operation of cupping, the air is romoved from a small cup which ts then placed over an opened voin; the pressure of the air on
V. When a cask of beer is"the blood to flow rapidly into the cup. hole called the vent-hole hes beped, the beer does not run until a small Through this the atmosph has been made in the upper part of the cask. beer with a force of 15 ibs . to the enters and pressing on the surface of the
VI. The useful small glass the square inch, forces it through the tap. ciple of atmospheric pressure. VII A hole is nsually mado. the preasure of the atmosphere and thiu of tea-pot so as to bring into play rapidly. each foot which is thugiass or on the ceiling by producing a vacuum under to sustain the weight of the insect. The the suriace with a forcesufficient has a similar apparatus attached to ine gecko, a South Americap-lizard, years a man has succeeded in walling across and within the past few wards, by alternately vithdrawing and admitting the wir his head dowhand the celling.
IX. Pneumatic chemistry, i. e., the mode of collecting gases over water dependa upon the prinolple of atmospheric pressure.
X. If a tumbler of other glass vessel beflled with water and covered with whole of paper, and the hand be then placed firmly on the paper and the vessel upon removing carefully inverted, the water does not fiow "out of the atmosphere.
the ap ard pressure of the
ing liquids into the effect of atmospherio pressure, as illustrated by draw-
XII. The pressure of the also by the leather sucker used by boys.
lances a column of mercury air is shown by the fact that it onpports or ba-
XIII. The pressure of the atmosphe column of water 82 feet in height. Thus if some boiling water be atmosphero retards ebullition or boiling. receiver of an air-pump and the air exy cooled and then placed under the boil, owing to the deoreased pressur exhausted, the wator recommences to be corked and the water be allowed or if a flask containing boiling water fiask in a large vessel of cold wrater, to cool partially, npon plunging the boil; the reason is, the cold water, the water in the flask again begins to of the flask and thus produces a partial veounm vapor in the upper part Nors 2-The olesticity of a partial vaounm.
among which are the following:
I. The exhaustion of the receiver of the alr-pump is a proof of the elastioity of the air

1. The elasticity of the air is shown by placing a thin square bottle with the mouth glosed, under the recelver, and exhaugting the surrounding air, the bottle Is broken by the elastic force of the oontained air.
III. When some withered fruit as apples, figs, or raisins, with unbroken skins are placed under the receiver, and the surrounding air exhausted, they become plump from the elasticity of the included air.
IV. The elasticity of air is shown by the operation of the air-gun.
V. The clasticity of the air. is taken advantage of in applying air as a stufing material for cushions, pillows, and beds.
, 229. The barometer (Greek"baros "weight" and metreo "I measure") is an instrument designed to measure the variations in the amount of atmospheric pressure.

Norm.-The barometer was invented about the middie of the seventoenth century by Torricelli, a pupil of the celebrated Galileo.
230. The essential parts of a barometer are:

1st. A well formed glass tube 33 or 34 inches long, closed at one end and having a bore equal throughout, of two or three lines in diameter. . The tube contains pure mercury only, and is so arranged that the mercury is sapported in the tube by the pressure of the atmosphere; and

2nd. An attached graduated scale and various appliances for protecting, the tube and ascertaining the exact height of the column of mercury.
Note.-The vacant space between the top of the column of mercury and the top of the tube is called the Torricellian vacuum, in honor of the inventor of the barometer, and in a good instrument is the most perfect vacuum that can be produced by mechanical means.
231. The excellency of a barometer depends principally upon the purity of the mercary in the tube, and the perfectness of the Torricellian vacuum.
The value of the instrument may be tested:-
1st. By the brightness of the column of mercury, and the absence of any speck, flaw, or dulness on its surface.
2nd. By the barometric light; i. e., flashes of electrio light produced in the dark in the Torricellian vacuam by the friotion of the meroury against the glass.
8 rd. By the clearness of the ring of olleking sound produced by making the meroury gtrike the top of the tube, and which is greatly modilied when any particles of air are present above the column.
232. The cause of all the oscillations in the barometer is to be found in the unequal and constantly varying distribution of heat over the earth's surface. If the air is much heated at any spot it expands, rises above the mass of air, and rests upon the colder portions surrounding it. The ascended air consequently flows off laterally from above, the pressure of the air is decreased in the warmer place, and the barometer falls. In the colder surrounding
place
ascen
apon
Not
vary g region in the to any over 8 Withis disturb
'thunde carsor desolat as the

23
the w
oscill the h occur
at abc
Nots
averag:
in lat.
comple
and tri_{1}
23
I. 1
upon
rapidi
Nots
the sur
column
II. .
high w
III.
fine wi
snove 81
IV.
change
V.
is gene
VI.
is comn
VII.
with u r
Note.
approac
proach
places, however, the barometer rises, because the air that ascended in the warmer regions is diffused over and presses upon the atmosphere of these cooler parts. .
Note.-It is found that the fluctuations in the height of the barometer vary greatly in extent in different latitudes-being so small in tropical regons as almoat to escape notice, and comparatively so fitful and extremo in the temperate and frlgid zones as to defy ali attempts at reducing them to any syster. In our climate the column varies in height from a little over 80 inches as a maximum to a little over 27 inches as a minimum. Within the torrid zone the column of mercury scarcely ever exhlbitts any disturbance greater than what would occur in Canada before a slight thunder storm-but such a dlaturbance is there the onand rapld precarsor of one of those mighty atmospheric convulsion fich sometimes desolate vast reglons and which are frequentiy as disastrous in thefr effects as the most violent earthquakes.
233. Besides the irregular fluctuations depending upon the weather, the barometer is subject to regular semi-diurnal oscillations depending upon atmospheric tides, caused by the heat of the sun-the two maxima of pressure always occurring at about 9 a.m. and 9 p.m. and the two minima at about $3 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$.
Note.-The semi-diurnal oscillation is greatest at the eqnator, where it averages one-tenth of an inch-diminishing to six hundredths of an inch in lat. 80°, beyond which it still decreases, and in our climate becomes completely masked by the irregular fluctuations peculiar to the temperate and trigid zones.
234. USE OF the barometer as a weather-Glass.
I. The'state of the weather to be expected depends not so much upon the absolute height of the column of mercury as upon the BAPIDITY AND EXTENT OF ITS MOTION whether rising or falling.
Nors.-If the mercury have a convex surface, the column is rising; if the surface is concave, the column is ialling; when the surface is flat, the column is usually changing from one of these states to the other.
II. A fall in the barometer generally indicates approaching rain, high winds, or a thunder storm.
III. A rise in the mercury commonly indicates the approach of fine weather; sometimes, however, it indicutes the approach of a sno10 storm.
IV. A, rapid rise or fall in the mercury indicates a sudden change of weather.
V. A steady rise in the column, continued for two or three days, is generally followed by a long continuance of fine settled weather.
VI. A steady fall in the column, continued for two or three days, is commonly followed by a long continuance of rainy weather.
VII. A fuctuating state in the height of the mercury coincides with unsettled weather.
Nots.-The barometer is far more valuable as a means of asoertaining approaohing changes in the state of the wind than in foretelling the approach of wet or dry weather.
235. To ascertain the height of mountains, \&c., by the barometer.

halley's bole.

I. Find the logarithm corresponding to the number which expresses the height in inches of the column of mercury in the barometer at the level of the sea.
II. Find also the logarithm corresponding to the number which expresses in inches the height of the column in the barometer at the top of the mountain or other given elevation,
III. Subtract the latter of these logarithms from the former, multiply the remainder by the constant number, 62170, and the result will be the elevation in English feet.
Note.-The number 62170 in this rule, and 63946 in the following, were selected by Halley for certain mathematical reasons into which it is nnnecessary to enter.

Exampla 281:-On the top of a certain mountain the barometer stands at the height of 21.793 inches, while on the surface of the earth it stands at $29 \cdot 780$ inches; required the height of the mountain.
solution.
Logarithm of $29.780=1 \cdot 478925$ and logarlthm of $21 \cdot 793=1 \cdot 328317$. Then from 1•478925 Subtract 1.328817

Remainder $=145608 \times 62170=9052$ feet. Ans ruly with oorreotion fob temperaturm.
I. Obtain, as before, the difference between the logarithms of the numbers expressing the heights at which the mercury stands at the surface of the earth and on the summit of the mountain.
II. Multiply this difference by the constant number, 83946-the

AR: 30 incheo 14.85 inches. At the summit of the mountain it was only the mountain was 87° Fahr and the temperature at the base of is the height of Chimborazo? and at the top $50 \cdot 40^{\circ} \mathrm{Fahr}$. What

$$
\begin{aligned}
& \text { Log. of } 90=1 \cdot 47121, \text { log. of } \begin{array}{l}
\text { BOLUTION. } \\
14 \cdot 85
\end{array} \frac{87^{\circ}+50 \cdot 4^{\circ}}{2}=\frac{18 \cdot 4^{\circ}}{2}=68 \cdot 70^{\circ} .
\end{aligned}
$$

Then $1 \cdot 477121-1 \cdot 171724=306897$.
And $305897 \times 08948=19099$ feet.
[ART. 235.
\&c., by the
er which exin the baro-
umber which meter at the
the former, 70 , and the
llowing, were hich it is nnthe baromethe surface te height of
328317.
feet. Ans. hms of the inds at the

33946-the of the sur-
not $69 \cdot 68^{\circ}$ gree above erature be
f the sea, height of was only te base of 1r. What
rerature $=$

Since the mean temperature of the two stations is 1° iess than $69 \cdot 68^{\circ}$, wo deduct $\pi \frac{1}{\pi} \pi$ of the elevation found. $\frac{1}{48} \mathrm{~J}^{\text {of }} 19539=40.7 \mathrm{ft}$. and $19599-40 \cdot 7=19498.3 \mathrm{ft}$. Ans.

LESLIE'S RULE.
for miasuring heights by the barometer without the oge of Logarithms.
I. Note the exact height of the column of mercury at the base and at the summit of the elevation.
II. Then say, as the sum of the two pressures is to their difference, 80 is the constant number 52000 to the answer in feet.

Example 283. - The barometer in a balloon is observed to stañ at a height of 22 inches, while at the surface of the earth it stands at $29 \cdot 8$ inches; what is the elevation of the balloon?

$$
\begin{gathered}
22+29 \cdot 8: 29.8-22: \\
\text { Or, } 51 \cdot 8: 7 \cdot 8:: 52000: \frac{52000 \times 0 \cdot 1}{51 \cdot 8}=7830 \cdot 1 \mathrm{ft} \text {. Ans. } \\
\text { EXERCISE. }
\end{gathered}
$$

284. At what height would the mercary stand in the barometer at an elevation of $29 \cdot 7$ miles above the earth's surfáce? Ans. 0.0146 inches. NoTe.-Divide 29.7 by $2 \cdot 7$ (See Art. 212,) the quotient is 11, then divide 30 inches by 211 , i. e. 2048, and the result is the answer.
285. At what height will the barometer stand in a balloon which is at an elevation of 16 t miles?

Ans. $\cdot 46875$ inches.
286. It is observed that while the barometer at the base of a mountain stands at a height of 30 inches, at the top of the mountain it stands at a height of only 18 inches, required the height of the mountain? Ans. 13000 feet.
287. While the mercury at the base of a mountain stands at the height of $29 \cdot 5$ inches, at the summit of the mountain the barometer indicates a pressure of only 20.4 inches, what is the height of the mountain?

Ane. $9482 \cdot 9^{\circ}$ feet.
288. While in a balloon the barometer indicates a pressure of only 19 inches, at the surface of the earth

[^9]the pressure is 29.94 inches-taking the mean temperature of the two stations at $72-50^{\circ}$, what is the elevation of the balloon? Ans. 12703 feet.
236. The common pump consists of a barrel $S B$, a tube $A S$, which descends into the water reservoir, a piston $c d$, moving air-tight in the barrel and two valves, v and x, which act in the same manner as in the exhausting syringe of the air pamp.
Note 1. - When the machino begins to act the piston is raised and produces a vacuum below it in the barrel, and the atmospheric pressure on the water in the reservoir forces it up the tube and through the valve x.
into the lower part of the and the water containcd in the piston, to be lifled out in the barret passes through the vaive v above is sometimes calied a lifting pump.
Nots 2.- Since the specific gravity of mercury is 18.596 and the preasure of the atmosphere sustains a column of meroury, 30 inches in height-it inches, or 34 f. iu height pressure will sustaln a column of water 30×13.596 the surface of the water in the reservair must be
loss than 34 feet, or taking the variations in atmosphoric pressure into account, about 32 feet.

Fig. 23.
237. The forcing pump consists of a suction pump A, in which the piston P is a solid plug without a valve. When the piston P descends the valve v closes and the water is forced through the valve v^{\prime} into the chamber $M N$. -The upper part of this chamber is filled with compressed air, which, by the pressure it exerts against the surface of the water, ww drives it with considerable force through the pipe or tabe $\boldsymbol{H G}$.

Nore.-Sometimes the forcing pump is used without the air chamber, MN. Fig. 23 exhibits the arrangement of the valves, \&e., in a common fire engine with the exception that there is another simifar foring pump on the other gide of the air chamber. $\boldsymbol{B Q}$ reprosents the tube leading
238. The Syphon is a bent tube of glass or other material having one leg somewhat longer than the other, and is used for transferring liquids from one vessel to another.

upiva

of the
the ill
wiH
Thu
ohain
fluld r
in the
tinuou
surfac

23
tigatic
comes
be bal
other
these
240 deduci abstrac physic proof 0
241. change

1 st. or from 2nd. 3rd. he balloon? 12703 feet. $S B$, a tube piston $c d$, v and x, ng syringe
sed and pro: pressure on a the valve x° 'alve x closes aive v above mmon pump
the pressure n height-it $\mathrm{r} 30 \times 18.596$ aive x above 23.

-

CHAPTER VII:

DYNAMICS.

239. When the forces which are the subject of investigation are balanced, the consideration of them properly comes under the science of Statics; but when they cease to be balanced, and the body acted upon is set in motion, other principles become involved, and the investigation of these constitutes the more complex science of Dynamics.
240. Statics is a deductive science, since all its facts are deducible, like those of Arithmetio and Geometry, from abstract truths; dynamics is an inductive, experimental, physical science, many of its priuciples being capable of proof only by an appeal to the laws of nature.
241. Force may be defined to be the cause of the. change of motion, i. e., force is required :-

1 st. To change the state of a body from rest to motion, or from motion to rest.

2nd. To ehange the velocity of motion.
3rd. To change the direction of motion.
242. Forces are cither instantaneous or continued, and continued forees are either accelerating, constant, or $\dot{\text { retard }}$ ing.
243. Motion may be defined to be the opposite of rest, or a continuous changing of place.
244. Motion has two qualities, dircction and velocity, and is of three kinds-

1st. Direct ;
2nd. Rotatory or Circular ; and
3rd. Vibratory or Oscillatory.
245. An accelerating, constant, or retarding force produces an accelerated, uniform, or retarded motion.
246. Velocity is the degree of speed in the motion of a body, and may be either uniform or varied. It is uniform when all equal spaces, great or small, are passed over in equal times.
247. The principles of the composition and resolution of force are equally applicable to motion.
248. Momentum, or Motal Force or Quantity of Motion, is the force exerted by a mass of matter in motion.
249. The momenta of a body depends upon its weight and velocity, thus:
I. When the velocities of two moving bodies are equal, their momenta are proportional to their masses.
II. When the masses of two moving bodies are equal, their momenta are proportional to their velocities.'
III. When neither the masses nor velocities of two moving bodies are equal, their momenta are in proportion to the products of their weights by their velocities.
Notr. - When we speak of mnltiplying a velocity by a weight, we refer to multiplying the numbor of units of weight by the number of units of velocity, and it makes no difference what units of each kind are employed, for the prodnot, thus obtained, means nothing by itself, but only by comparison with other products similariy obtained by the use of the same units.
For exampie, when we say that a welght of 11 lbs. moving 6 feet per second, has a momentum of 66, all we mean is, that in this case the weight strikes a body at reat with 66 times the force that a body weighing one lb . and moving only oue foot per second would exert.
250. If a moving body M, having a velocity V, strike another m at rest, so that the two masses shall coalesce,

That is, mentum 0

Examp the veloc rest weis move on

Art. 250. and v the
Then (M
In this ex Thener:-
$(\mathbf{M}+m) \times v$; or whatever momentum may be acquired by the body m must be lost by M. another body m, moving in the same directy, wo a velocity v, so that the two may coalsese, an $(M+m) \times v e l$, or in other words the two bodies united have the same momentum that they separately had before impact.
252. If a moving body M, having a velocity V, strike another body m moving with a velocity v, in the opposite direction, so that the two masses shall coalesce and move on together with a velocity $v e l$,-then $M \times V \sim m \times v=$ $(M+m) \times v e l$, or in other words, the body moving with least foroe will destroy as much of the momentum of the other as is equal to its $o w n$ momentum.
253. If a moving body M, having a velocity V, strike another body m moving obliquely towards it with a velocity v, so that the two masses shall coalesce and move on together, then 'by representing their momenta, just before impact, by lines in the direction of their motion and'. completing the parallelogram, the diagonal will represent the quantity and direction of the momentum of the combined mass.
Example 289.-What is the momentum of a body weighing 78 lbs., and moving with a velocity of 20 feet per second? BOLUTION.
Momentum $=78 \times 20=1590$. Ans.
That is, the momentum of such a body is 1560 times a
mentum of a body weighing only 1 ib., and moving only 1560 times as as the mo-
Example 290 .-If a body weighing moving only $I f t$. per second.
the velocity of 11 feet per second, 67 lbs. be moving with. rest weighing 33 lbs , so that the two and strike a second body at. move on together, what will be tho bodies may caalesce, and BOLUTION.
Art. 250 . If M be the moving body, V its velocity, m the body at rest,
and v the velocity of the united mass;-
Then $(M+\dot{m}) \times v=M \times V$ and therefore $v=\frac{M \times V}{M+m}$
In this example, $M=67, r=11$, and $m=82 . \quad M+m$
Then $r-\frac{A f \times V}{M+m}=\frac{67 \times 11}{67+38}=\frac{737}{109}=7.87$ fret per scenind. Ans.

Example 291.-If a body weighing 50 lbs., and moving with a velocity of 100 ft . per second, come in contact with another body weighing 40 lbs . and moving in the same direction with a velocity of 20 feet per second, so that the two bodies coalesce and move on together, what will be the velocity and momentam of the united mass?

BOLUTION.

Art. 251.-If M and m be the two bodies, and. V and v their separate velocities, and vel the veiocity of the united mass:-
Then $(M+m) \times v e l=M \times V+m \times v$. Hence $v e l=\frac{M \times V+m \times V}{M+m}$
In this example $M=50, m=40, V=100$ and $v=20$.
Thon $V e l=\frac{M \times V+m \times v}{M+m}=\frac{50 \times 100+40 \times 20}{50+40}=\frac{5000+800}{90}=\frac{5800}{90}$ $=64 \frac{1}{g} \mathrm{ft}$. per second, aud momentum $=(50+40) \times 64 \frac{4}{3}=6800$. Ans.

Examply 292.-If a body weighing 120 lbs , and moving to the east with a velocity of 40 feet per second, come into contact with a second body weighing 90 lbs., and moving to the west, With a speed of 80 feet per second, so that the two bodies coslesce and move onward together, in wbat direction will they move, with what velocity, and what will be their momentum?

BOLUTION.

From Art. 252, if M and m be the bodies, and V and v their respective velocities, and vel the velocity of the united mass after impact:-
Then $(M+m) \times v e l=M \times V \sim m \times v$ and hence
$v e l=\frac{M \times V}{M+m \times v}$
In this example $M=120, m=90, V=40$ and $v=80$.
Then $v e l=\frac{M \times V-m \times v}{M+m}=\frac{(120 \times 40)-(90 \times 80)}{120}+90 \quad=\frac{4800 \sim}{210}$
$=\frac{2400}{210}=113$ feet per second $=$ the veiocity. $113 \times(120+90)=113 \times$ $210=2400=$ momentnm.
And since 80×80, the momentum of the body moving to the west is greater than 120×40, the momentum of the body moving to the east, the united mass moves to the west.
rexprcises.
293. What is the momentum of a body weighing 79 lbs. moving with a velocity of 64 feet per second? Ans. 5056 .
294. Which would strike an object with greatest force, a bullet weighing oue ounce and propelled with a velocity of 2000 feet per second, or a ball weighing 5 lbs.and thrown with a velocity of 28 feet per second?

Ans. Momentum of bullet $=\mathbf{1 2 5}$.
" of ball $=140$.
Therefore the ball would exert most force of impact.
295. Which has the greatest momentum, a traln of cars weighing 170. tons and moving at the rate of 40 miles per hour, or 4 a steamer weighing 790 tons and moving at the rate of 9 miles per hour? Ans. Momentum of train $=6800$, of steamer $=7110$, and therefore the latter has most mo-
mentum.
296. If a body weighing 60 lbs . and moving at the rate of 86 feet per second, come in contact with another body weighing 400 lbs ., and moving in the same direction at the rate of 12 feet per second, so that the two bodies coalesce and move on together; what will be the velocity and momertum of the united mass?
Ans. Velocity $=21_{\frac{1}{5}}^{5}$ feet per second ; momentum $=8960$.
297. If a body weighing 56 lbs. and moving with a relocity of 80 feet per second come in contact with a body at rest, weighing 70 lbs , so that the two bodies coalesce and move on together; what will be the velocity of the nnited mass?
298. If a body weighing 77 lbs . and moving from south to north, with a velocity of 40 feet per second, come in contact with snother body weighing 220 lbs . and moving from nerth to south, with a velocity of 14 feet per second, so that the two bodies coalesce; in what direction and with what velocity does the united mass move?
Ans. Their momenta exactly neutralize each other and the bodies come to a state of rest.
299. If a body weighing 70 lbs ., moving to the south with a velocity of 70 feet per second, come in contact with another body which weighs 80 lbs . and is moving to the north with a velocity of 60 feet per second, so that the two bodies coalesce and move on together ; in what direction will they move and with what velocity and momentum? Ans. To the south with velocity of 8 inches per second. Momentum of nnited mass $=100$. 300. If a body weighing 600 lbs . and moving to the west with a velocity of 40 feet per second, oome in contact with a second body weighing 50 lbs . and moving to the east with a velocity of 20 feet per second, and after the two have coalesced they come in contact with a third body which weighs 100 lbs ., and is moving in an opposite direction with a velocity of 150 feet per second, and the three then coalesce and move on together ; in what direction will their motion be, and what will be the velocity and momentum of the united mass?

Ans. Direction, west.
Velocity $=10$ feet.
Momertum $=8000$.
254. When force is communicated by impact to a body at vest, the body will remain at rest until the force is distributed throughout all the atoms of the mass, unless a frugment be broken off by the force of impact, in which case this fragment alone moves.

> LAWS OF MOTION.
255. Tam firbe law or motion.-Every body must persevere in a state of rest or of uniform motion in a straight line, unless it be compelled to change that state by force inpressed upon it.
256. Tun sxoond Law op motion.-Enery change of motion. must be in proportion to the impressed force, and must be in the direction of that struight line in which the impressed force acts.
257. Third law or motion.-All action is attended by a corresponding re-action, which is equal to it in force and opposite in
direction.
These laws are commonly known as Sir I. Newton's laws of motion-in renlity thowere the first is due to Kepler, the second to Newton, and the
third to GHileo.
258. When a moving elastic body strikes against the sarface of another body, the direction of its motion is changed, and the motion thus resulting is said to be reflected. Here :-

1st. The angle at which the moving body strikes the surface of the other is called the angle of incidence;

2nd. The angle at which the moving body rebounds is called the angle of reflection; and

3 rd The angle of reflection is always equal to the angle of incidence.
259. In a vacuum all bodies, whatever may be their form or density, fall "towards the centre of the earth in vertioal lines and wid equal rapidity; but in ordinary circumstances, i. e, falling through the air, only heavy bodies fall in vertical lines, and the density and form of a body materially affect its velocity.
260. The resistance which a body encounters in moving throtagh the atmosphere or any other fluid, varies:-

1st. As the surface of the moving body. 2pd. As the square of the velocity of the moving body. (See Art. 147.)'.
pact to a the force ass, unless , in which
sersevere in unlesş it be t.
of motion sst be in the ree acts.
a a corresopp,osite in
motion-in con, and the
gainst the motion is to be re-

Notx.-In the case of heavy bodies falling through the air, the resigtance of the atmosphere produces a considerable discrepanoy between the actual fall of bodies and the distance through which they should theoretically fall. Thus, it has been found by eperiment that a ball of lead dropped from the lantern of St. Paul's Cathedral required $4 \frac{1}{2}$ seconds to reach the parement, a distance of 272 feet. Bat in $4 \frac{1}{2}$ feconds the ball ought to have fallen 824 feet by theory, the difference of 52 feet being due to the retarding force of the atmosphere.
261. A heavy body falling from a height moves, with a uniformly accelerated motion, since the attraction of gravity which causes the descent of the body never ceases to act, and the falling body gains at each moment of its descent a new impulse, and thus an increase of velocity, so that its final velocity is the sum of all the infinitely small but equal increments of velocity thus commanicated.
262. Hence the velocity of a falling body at the end of the second ntoment of its descent is twics that which it had at she end of the first second; at the end of the third second, trare tianes that which it had at the end ef the first; at the end of.the fourth, FOUR times, \&c.
263. Hence also a heavy body starting from a state of rest and falling during any time acquires a velocity, which would in the same space of time carry it through twice the space it has passed over.
264. It has been ascertained by numerous and careful experiments, that a falling body acquires at the end of the first second of its descent, a velocity equal to that of $32 \frac{1}{6}$ feet per second, and hence during the first second of its descent a body falls through one-half of $32 \frac{1}{6}$ feet, i. e., through $16{ }_{1} \frac{1}{2}$ feet:

NOTE 1.-The average speef of the falling body is the arithmetical mean between its initial and terminal velocities, or in the case of the first second of its fall, betwcen 0 and $82 \frac{1}{f}$, and this is $16_{1}{ }_{1}$.
Note 2.-In the following exercises we shall use 32 and 16 in place of $32 \frac{1}{6}$ and 161_{1}, since the fractions materially increase the labor of making the caloulations without illustrating the principles any better than the whole numbers used alono.
265. ANALYSIS OF THE MOTION OF A FALLING BODY.

Note.-The numbers in the geoond, third and fourth columns mean so many times 10 feet.

.

From this it is evident that:-
I. The spaces through which the body descends in equally súccessive portions of time increase as the odd numbers, $1,3,5,7,9, \& c$., and hence the space through which the body falls during any second of its fliyht, is found by multiplying. 16 feet by the odd number which corresponds to that second; i. e., one less than twice the number of the second.
II. The final velocity acquired by a falling body at the end of successive equal portions of time, varies as the even numbers, 2,4 , $6,8, \& c i$, and hence the final velocity acquired by a body at the end of any second of its fall, is found by multiplying 140 wot 5 thaite thè number of seconds.
 successive portions of time, varies as the square of the numbers, 1,$2 ; 3,4, \& c$., and hence the whole space pdssed over during any given number: $0 f$ seconds, is found by multiplying 16 feet by the square of the number of seconds.
Sif6. Let $t=$ the time of descent in seconds, $v=$ the terminal velocity, velogity acquired at the end of the last second of its fali, $s=$ phedrasised over, and $g=32$, i.e., the measure of the attraction of
 nal velocity, or $t=\frac{s}{\frac{1}{2} v}=\frac{2 s}{v}$.

RTS. 265, 266. 30DY.
l epack.

Anta. 267, 268.]
DYNAMICS. a
鹵
Agaif(Art 265, III) the whole space passed over is equal to 16, I. e., half of the gravi, st wultiplied by the square of the time or $s=19 t^{2}$.
By (1wice the time the terminal veloclty is equal to $16, i$. ois $1 g$ multiplied Hy wice the time or $v=\frac{1}{2} g \times 2 t=g t$.
Whe three formulas, viz: $s=\frac{1}{2} g t^{2}, v=g t$ and $t=\frac{2 s}{2}$ are fundamental, and the remaining aix of the following table are dorived from them hy transposition and substitution :-

TABLE OF FORMULAS FOR DESCENT OF BODIES FALLING FREELY THROUGH SPACE.

267. When a body is thrown vertically upward it rises with a regularly retarded motion, losing 32 feet of its original velocity every second, and it occupies as mach time in rising as it would have required in falling to acquire its initial velocity.
268. If a body be projected npwards or downwards with g given initial velocity V, and is at the same time acted npon by the force of gravity then when the body descends, in t seconds the intilial velocity alone wronld carry it through Vi feet, and gravity alone would carry it through igt feet,


```
    *****
```

 -
 en a
4,

DYNAMICS．
［Art． 268.
Whon tho body ascends the initial velocity acting alono would carry it in t seconds through $V t$ feet，but in t seconds the force of gravity would draw it downward through giz feet，and therefore its whole ascent will be $V t-\frac{1}{2} g t^{2}$ ，and its terminal velocity will be $V-g t$ ．Hence，
$(X) s=V t+\frac{1}{2} t^{2}$ when the body descends．
$(X I) s=V t-\frac{1}{3} t^{2}$ when the body ascends．
（XII）$v=V+t g$ when the body descends．
（XIII）$v=V$－tg when the body ascends．
Example 301．－Through how many feet will a body fall dur－ ing the llth second of its descent？
goletion．
From Art．265，I．space $=\{(11 \times 2)-1\} \times 16=(22-1) \times 16=21 \times 16$ $=836$ feet．Ans．

Example 302．－Through how many feet will a body fall dur－ ing the 17 th，the 43 rd ，and the 6 list second of its descent？

BOLUTION．
For the 17 th second $17 \times 2=84-1=83 \times 16=528$ feet．Ans． For the 43rd＂ 43×2 三 $86=1=85 \times 16$ 三 1860 feet．Ans， For the 61st＂ $61 \times 2=122-1=121 \times 16$ 三 1936 feet．Ans．

Exampli 303．－What will be the terminal velocity of a falling body at the end of of the 9th second of its descent？

BOLUTION．
Formula IV．$v=g t=32 \times 9=288$ feet per second．Ans．
Exampli 304．－What will be the terminal velocity of a fall－ ing body at the end of the 25 th second of its fall，also at the end of the 33rd second ？

BOLUTION．
$\begin{aligned} \text { Formula IV．} v & =g t \equiv 82 \times 25=800 \text { feet per second at ond of } 25 \text { th second．} \\ v & =g t \equiv 82 \times 83=1056 \text { feet per second at end of } 38 \mathrm{rd} \text {＂}\end{aligned}$
Exampla 305．－Through how many feet will a body fall during 5 seconds？

GOLUTION．
Formula I．$s=\frac{1}{2} t^{2}=3 \times 32 \times 5^{2}=16 \times 25=400$ feet．Ans．
Exampla 306．－Through how many feet will a body fall in 12 seconds？

BOLUTION．
Formula I．$s=12 t^{2}=\$ \times 82 \times 12 s=16 \times 144=2804$ feot．Ans．
Exayple 30\％．－If a body has，fallen notil it has acquired a terminal velocity of 400 feet per second，what is the whole space through which it has descendel？

हOLUTION．
Formula II．$=\frac{\theta 2}{2 \eta}=\frac{400^{2}}{2 \times 92}=\frac{100000}{64}=2600$ feet．Ans．

Formu 10400 feet
[Art. 268.
ould carry it ravity would le ascent will

Ay fall dur-
$16=21 \times 16$
dy fall durcent?

Ans.
Ans,
Ans. of a falling
ty of a fallalso at the
f25th second. of 33rd " body fall ns. body fall in vhole space

Alet. 208.]
DYNAMICS.
119
Example 308.-How long mast a body fall in order to acquire a terminal velocity of 1000 feet ?

Formula VIII. $t=\frac{v}{q}=\frac{1000 \text { solution. }}{32}=81$ \& seconds. Ans.
Example 309.-How long mast a body fall in order to acquire a terminal velocity of 8000 feet per second?

Formula VIII. $t=\frac{v}{g}=\frac{8000}{82}=250$ seconds. Ans.
Exampla 310.-What time does a body require to fall through 11200 feet?

soldtion.

Formula IX. $t=\sqrt{\frac{2 s}{g}}=\sqrt{\frac{2 \times 11200}{82}}=\sqrt{700}=26 \cdot 45$ seconds. Ans.
Exampla 311.-When a body has descended through 4400 feet, What velocity has it acquired?
solutioni:
Formula V. $v=\sqrt{2 g s}=\sqrt{2+82 \times 4400}=\sqrt{281600}=680.6$ feet per
Exampla 312.-If an arrow be shot vertically upwards and reach the ground again after the lapse of 20 seconds, to what height did it rise?

EOLDTION.
sconding, and hence the prs that the arrow will be as long asoending as dewhich the arrow will fall in half of 20 aced to finding tho distance through
Then formult $\mathbf{I} . s .=\frac{1}{2} g t 9$ haif of 20 seconds, i. e., in 10 seconds.
Example 313 .If a $=16 \times 100=1000$ feet. Ans. itial velocity of 1600 a cannon ball be fired vertically with an in-
-
solution.

First, the time it ascends is equal to the time it would require if descend. lng to acquire a terminal velocity of 1600 feet.
By formula VIII. $t=\stackrel{v}{=}=\frac{1000}{32}-50$ seoonds $=$ time of ascent.
Then formula XI, $s=q_{t-10 t z}^{82}=1600 \times 50-\frac{1}{9} \times 82 \times 50{ }^{8}=80000-16$ $\times 2500=80000-40000=40000$ feet. Ans. $60-\frac{1}{} \times 82 \times 50{ }^{8}=80000-16$

Exampli 314.-If a body be shot upward with an initial velocity of 1200 feet per second, at what height will it be at the end of the 10 th second, and also at the end of the 70 th second of

solution.

Formula XI. $=V t-10 t 9=1200 \times 10-\frac{1}{1} \times 88 \times 102=1800-1600=$
10400 feet $=$ elevation at end of 10 th second.

Example 315.-If a cannon ball be fired vertically with an initial velocity of 2400 feet per second :-
lst. In how many seconds will it again reach the ground? 2nd. How far will it rise?
3rd. Where will it be at the end of the 40 th second ?
4th. What will be its terminal velocity ?
5th. In what other moment of its flight will it have the same velocity as at the end of the 19 th second of its ascent ?

SOLUTION.
Since the initial velocity $=$ terminal velocity $=2400$ feet.
I. Formula VIII. time of ascent $=\frac{v}{g}=\frac{2400}{82}=75$ seconds, and aince it is as long asoending as descending, it again reaches the ground in 150 sec.
II. Formula 1. $s=\frac{1}{2} g t^{2}=\$ \times 82 \times 5 z=16 \times 5625=90000 \mathrm{ft}$. $=$ height to which it rises.
III. Formula XI. $s=V t-\frac{1}{2} \dot{g} t^{2}=2400 \times 40-\frac{1}{2} \times 32 \times 402=96000-10$ $\times 1600=98000-25600=70400 \mathrm{ft} .=$ elevation at end of 40 th second.
IV. Terminal vciocity $=$ initiai velocity $=2400$ feet per second.
V. Since the whole time of flight $=150$ seconds, and, sirice at all equal spaces of time from the moment it ceases a ascend and begins to descend, the velocity is the same in rising as in falling, it foliows that the moment in which the body has the same velocity as at the end of the 19th second of Its ascent is 19 fuli seconds' before it again reaohes the ground, or in $150-$ 19 三 181 st second, i. e., in the end of the 131st second.

Examples 316.-If a body is thrown downwards from an elevation with an initial velocity of 70 feet per second, how far will it descend in 27 seconds?

BOLUTION.
Formula X. $s=V t^{2}+\frac{1}{2} t^{2}=70 \times 27+\frac{1}{2} \times 82 \times 278=1890+16 \times 729$ $=1890+11664=18554$ ft. Ans.

Exampla 317.-If a body is thrown down from an elevation with an initial velocity of 140 feet per second, what will be ita velocity at the end of the 30 th second?

eolutiós.

$v=V+t g=140+30 \times 32=140+960=1100$ feet per second. Ans.
Exampli 318.-If a body be projected vertically with an initial velocity of 400 feet per second, what will be itg velocity at the end of the 12 th second?

EOLUTION.
Formula XIII. $v=V-\operatorname{tg}=400-12 \times 32=400-384=16$ feet per second. Ans.

Exampla 319.-If a cannon ball be fired vertically upwards with an initial velocity of 1800 feet per second :-

18t. In how many secbnds will it again reach the ground ?
2nd. What will be its terminal velocity?
3rd. How far will it rise ?
4th. Where will it be at the end of the 90 th second ?
8th. In what other moment of its flight will it have the same velocity as at the end of the 27 th second of its aseant?
[АІт. 268.

Art. 268.]
DYNAMICS.
soldtion.
I. $t=\frac{v}{g}=\frac{1800}{32}=564=$ time of ascent or descent, hence whole time of inght $=664 \times 2=112 \frac{1}{2}$ seconds.
II. Terminal velocity $=$ initial velocity $=1800$ feet per second.

1II. Formula 1. $S=\frac{1}{2} g t^{2}=\frac{1}{2} \times 32 \times(56 t)^{2}=16 \times 8164 \cdot 0625=50625 \mathrm{ft}$.
IV. Formuia XI. $S=V t-\frac{1}{2} g t^{2}=1800 \times 90-\frac{1}{2} \times 82 \times 90^{2}=162000-10$ is $\begin{aligned} & \times 8100 \\ & \text { second. }\end{aligned} 162000-129600=82400 \mathrm{ft}$. = elevation at end of the 90 th
V. $112 \frac{1}{2}-27=85 \frac{1}{2}=$ middle of 86 th second of flight.

Exampla 320.-A stone is dropt into the shaft of a mine, and is heard to strike the bottom in 9 seconds; allowing sound to travel at the rate of 1142 ft . per second, and taking $g=32 \frac{1}{6}$; required the depth of the shaft.

sOLUTION.

Let $x=$ time stone takes to fall. Then $(9-x)=$ time sound takes to reach the top and $\left.x^{2} \times 16\right)^{\frac{1}{2}}=$ depth of shaft $=(9-x) \times 1142$ feet.
Therefore $\frac{193 x^{8}}{12}=1028-1142 x$.
$193 x^{2}+13704 x=123330$.
$148996 x^{8}+10579488 x+187799616=95215892+187799616=$ 283015008.
$386 x+18704=16828+$
$886 x=8119$
$x=8.0803=$ number of seconds body was faliing.
$9-x=9-8.0803=9197=$ tinse sound travelled.
And $1142 \times 9197=1050 \cdot 2974$ feet $=$ depth of ehaft.
Example 321.-A body has fallen through m feet when another body begins to fall at a point n feet below it ; required the distance the latter body will fall before it is passed by the former?

FIRET GOLUTION.
At end of $m \mathrm{ft} . t=\sqrt{\frac{2 g}{g}}=\sqrt{\frac{2 m}{g}}$, and $v=g t=g \sqrt{2 m}=\sqrt{2 m g}$,
and gince
$n=$ distance to be íraversed $t=\frac{n}{\sqrt{2 m g}}, ~ h e n c e ~ S=\frac{1}{1} g t^{q}=\frac{1}{2} g \times$ $\left(\frac{n}{\sqrt{2 m g}}\right):=\frac{1}{g} \times \frac{n \varepsilon}{2 m g}=\frac{n^{2}}{4 m} . ~ A n s$.

Let $x=$ distance. Then (of 2nd $=$ body) $t=\sqrt{\frac{2 S}{g}}=\sqrt{\frac{2 r}{g}}$ and $\sqrt{\frac{(2 m+x+x)}{g}}=$ entire.time taken by the first body to pass through whole space.
Then $\sqrt{\frac{2(m+n+x)}{g}}-\sqrt{\frac{2 m}{g}}=\sqrt{\frac{2 x}{g}}$ and multiplying all by $\sqrt{ } g$. $\sqrt{2(m+n+x)}-\sqrt{2 m}=\sqrt{2 x}$. $\sqrt{2(m+n+x)}=\sqrt{2 x}+\sqrt{2 m}$, and squaring.
$2(m+n+x)=2 x+2 m+2 \sqrt{4 m x}$.
$2 m+2 n+2 x=2 x+2 m+2 \sqrt{4 m x}$.
$2 n=4 \sqrt{m x}$.
$n=2 \sqrt{m x}$.
$n^{2}=4 m x$.
$\checkmark \cdot x=\frac{n 2}{4 m}$. Ans.
*exprotrm.
322. Through how many feet will a body fall during the 37 th Ans. 1168 ft . 323. Through what space will a body descend in 25 seconds? Ans. 10000 ft .
[ARt. 288.
$\frac{\overline{2 S}}{g}=\sqrt{\frac{2 r}{g}}$ and - to pass through
ying all by $\sqrt{ } g$.
ing the 37 th Ans. 1168 ft . 5 seconds? Ins. 10000 ft . close of the 0 ft. per sec. order to ac-

Ans. 841 sec. before it ac-
8. 451564 ft . t has fallen 8. $1264 \cdot 8 \mathrm{ft}$. velocity of of the 40 th $f 214400 \mathrm{ft}$. velocity of it fall in 32 18. 20224 ft .
ial velocity
nt.

1st. How far will it rise?
2nd. Where will it be at the end of the 6th second?
3rd. In how many seconds will it again reach the ground? 4th. What will be its terminal velocity?
5th. In what other moment of its flight will it have the same
velocity as at the end of the 13th second of its ascent?
Ans. 1st 58564 ft .
2nd. At an elevation of 11040 ft .
3rd. 121 seconds.
4th. 1936 ft . per second.
331. If a body be projected 5th. At end of 108th sec. of fight.

4000 feet per second, takincally with an initial velocity of 1st. How high will the body riga ? 2nd. Where will it be body rise?
3rd. Where will it be at the end of the 50 th second? 4th. Where will it be at the end of the 100th second? 5th. In what time will it end of the 200 th second?

Ans. 1 again reach the gound?

332. If a cannon ball be fired vertically with an initial velocity of 1100 feet per second, what will be its velocity at the end of the 7th second, at the end of the 20th second, and at the end of the 33rd second ?

333. If a stone be dropped into a well and is aeen to strike the water after the lapse of 5 seconds, how deep is the well?
334. If a stone be thrown downwards with an initial velocity of
250 ft. per second, what will be its velt 250 ft . per second, what will be its velocity at the end of the 3 rd, the 9 th, the 30 th, and the 90 th seconds of its des-
cent?

335. A stone is dropt into the shaft of a mine and is heard to strike the bottom in $12 \cdot 76$ seconds, assuming that sound travels at the rate of 1100 ft . per socond, what in the depth of the mine ?

Ane. 1986 ft .
336. A body has fallen through 400 feet, when another body begins to fall at a point 2500 feet below it ; through what space will the latter body fall before the former overtakes
it?
337. A body A has fallen during m séconds, when anather body B begins to fall, f feet below it ; in what time will A overtake B?

- Ans. $\frac{f}{32 m}$

DESGENT ON INCLINED PLANES.

269. When a body is descending an inclined plane, a portion of the gravity of the body is expended in pressure on the plane and the remainder in accelerating the motion of the descending body.
270. The following are the laws of the descent of bodies on inclined planes:-
I. The pressure on the inclined plane is to the weight of the body as the base of the plane is to its length.
II. The terminal velocity of the descending body is that which it would have acquired in falling freely through a distance equal to the height of the plane.
III. The space passed through by a body falling freely is to that gone over an inclined plane, in equal times, as the length of the plane is to its height.
IV. If a body which has descended an inclined plane meets at the foot of it another inclined plane of equal altitude, it will ascend this plane with the velocity acquired in coming down the former, it will then descend the second and re-ascend the former plane, and will thus continue oscillating doun one plane and up the other.
Norz-The sameitakes place if the motion be made in a curve instead of on an inolined plane. In practice, howeper, the reefistance of the atmosphere and frction retard the motion very greatly at each oscillation and
very soon bring the body to a state of rest.
271. The final velocity, neglecting friction, on arriving at the bottom of the plane is dependent solely on the height of the plane, and will be the same for all planes of equal height, however various may be their lengths; and the times of desoent are exactly proportional to the lengths

A1

272. If in a vertical semicircle any number of cords be from any points whatever and any points

 in the lowest point of the semioircle, and a number of bodies he allowed to start along these cords at the same instant they will all arrive at the bottom at the same instant, and at every instant of their descent they will all be in the circumference of a smaller circle.Thus in the accompanying figure if $A D P$ be a semicircle and $B P, C P$, $D P, E P, H^{\prime} P$, any cords, and balis be allowed to start simultaneousiy from A, B, C, D, E, and B, they will all arrive at P at the same instant. time they take to fail to the entire have arrived at fall to P, A will bodics will be in the circumference of dit the end of one-half the time ferencent, \&c. law as regards velocity as those on inclined planes, i. e. e., the terminal velocity is due only to the perpendicular fall. "274. The Błachystochrone (Greek brachistos, "shortest,"
and chrouos, "time,") or curve of quickest descent, is a curve somewhat greater than a circular curve, being what mathematicians denominate a cycloid or curve, being what scribed by a point in the circucloid, or that which is derolling along a plane. 275. Since Art 270 body descending an inclinedect of gravity as an accelerating force on a freely falling through the air pane is to the effect of gravity on a body We have accelerating force of gravity on ingity of the plane is to its length; accelerating force of gravity on inclined planes $=\frac{g h}{l}, g:: h: l$; and hence $\begin{aligned} & \text { Where } h=\text { helght of plane. } \\ & i=\text { length. }\end{aligned}$

AET. 27
vertical
continp
it will It will o velocity velocity

Exas
15 seco
Here t
Then
Exay fallen 0 to acqu:

Here g
Then 8
Exam
20th sec
an incli

Here θ
Then for
Exam
has falle

Here s =
Then fo
24117 feet
Examp inclined velocity

Here $g=$
Thon for
Examp feet on an

Here $g=$
Then for

Nore - When a body is thrown up an inclined plane, the attradtion of gravity acts as a uniformly retarding force an when on body is projectad
[ART. $2 \pi 6$.

ULINED

HEPONDING MULA IN
RT. 266.

1 an inclined $+\frac{g h t^{2}}{2 l}\left(10_{0}\right)$ projected up y $\vec{V} ; s=\vec{V}$ the attraction of body ta projectal

AET. 276.]
descent on inclined planes.
127
vertically into the air. In the case of the inclined plane the body will continue to rise with a constantly retarded motion nntil $V t=\frac{g h t z}{2 l}$ when it will remain stationary for an inptant and then commence to descend. It will occupy the same tlme in coming down as in going up: its terminal velocity will be the same as its initial velocity, and it will have the fame velocity at any given point of the plane both in ascending and descending.

Example 338.-Through how many feet will a body fall in 15 seconds on an inclined plane which rises 7 feet in 40 ?

BOLUTION.

Here $t=15, h=7, l=40$, and $g=32$.
Then $s=\frac{g h t 2}{2}=\frac{32 \times 7 \times 15^{t}}{2 \times 40}=630$ feet. Ans. ${ }^{\prime}$
Example 339.-Throngh how many feet mnst a body have fallen on an iuclined plane, having a rise of a feet in 32 , in order to acquire a terminal velocity of 1700 feet per second ?

> SOLUTION.

Here $g=32, v=1700, h=3, l=32$.
Then $8=\frac{l v^{2}}{2 g h}=\frac{82 \times 1700^{2}}{2 \times 32 \times 8}=481066 \mathrm{~g}$ feet. Ans.
Example 340.-What will be the velocity at the end of the 20th seoond, of a body falling down an inclined plane, having an inclination of 7 feet in 60 feet?

soldtion.

Here $g=32, t=20, h=7$, and $l=60$.
Then formula 5. $v=\frac{g h t}{l}=\frac{32 \times 7 \times 20}{60}=74 \frac{\text { feet per second. Ans. }}{6}$.
Example 341.-On an inclined plane rising 3 ft . in 17 , a body has fallen through one mile, what velocity has it then acquired?

solution.

Here $s=1$ mile $=5280 \mathrm{ft} . h=8, l=17$ and $g=32$.
Then formula VI. $v=\sqrt{\frac{2 g h s}{l}}=\sqrt{\frac{2 \times 32 \times 8 \times 5280}{17}}=\sqrt{59882.94}=$ $24 \cdot 17$ feet per second. Ans.

Example 342.-In what time will a body falling down an inclined plane, having a rise of 7 feet in 16 , acquire a terminal velocity of 777 feet per second?

> \&OLUTION.

Here $g=32, h=7, l=16$, and $v=777$.
Then formula 8. $t=\frac{l v}{h g}=\frac{16 \times 777}{32 \times 7}=55 \frac{1}{2}$ seconds. Ans.
Examplan 343.-In what time will a body fall tbrough 4780 feet on an inclined plane, having a rise of 3 feet in 4 ?

solution.

Here $g=32, h=3, l=4$, and $s=, 4780$.
Then formula 9. $t=\sqrt{\frac{2 h 8}{g h}}=\sqrt{\frac{2 \times 4 \times 4780}{82 \times 8}}=\sqrt{908.8}=19.9$ second

Exayple 344.-If a body be projected down aneinclined plane,
351. If

1st.
2nd.
3rd.
4th.
5th.
Ans.
352. A
i,
Here $h=5, l=16, g=32$, and $v=2000$.
Then formula $8, t=\frac{l v}{g h}=\frac{16=2000}{5 \times 82}=200$ seconds.
1et. Formula 12. $s=V t-\frac{g h t^{t}}{2 l}=200 \times 2000-\frac{32 \times 5 \times 2009}{2 \times 16}=400000$

$$
-200000=200000 \mathrm{fl} . A^{n n s .}
$$

2nd. Ascent $=200$ sec. + descent 200 sec. $=400$ sec. Ans.
3rd. Terminal velocity $=$ initial velocity $=2000$ feet per sec. Ans.
4th. Formula 12. $=V t-\frac{g h t^{2}}{2 l}=100 \times 20000-\frac{32 \times 5 \times 1002}{2 \times 16}-200000$ $-60000=150000$ = elevation at end of 100 th sec. Ans.
sth. $400-11 \equiv 389$ th second.

nXTRCIBR.

346. On an inclined plane rising 5 feet in 19 through what space
will a body descend in half a minute? Ans. 3789 昂 ft .
347. On an inclined plane rising 3 feet in 13 , what velocity will a descending body acquire in 39 seconds? Ans. 288 feet per second.
348. What time does a body require to descend through 3800 feet on a plane rising 19 feet in 32 ?
349. If a body be projected dowi an inclined Ans. 20 seconds. fall of 7 in 11 with an initial velocity of 50 feet per second, what, will be its velocity at the end of the 44th second?

Ans. 946 feet per second.
350. If a body be thrown down an inclined plane having a rise of 13 feet in 32 with an initial velocity of 100 feet per second, through how many feet will it descend in 130 sec.? $A n 8,122850$ feet.
27.7 has beel any for the exp act the
278. 1st. Th mo 2nd. T] mo wh
Unde jectile d but whi figure.
Note 1.cone paral
Note 2. which are
1st. Tha
[AET. 276.
lined plane, of 80 feet conds?
$=8800+1186531$
clined plane y of 2000 ft .
plane?
ond?
ave the same of its ascent?
$\times 2002=400000$
16
sec. Ans.
$\frac{100^{2}}{16}-200000$
Ans.
gh what space 9118. 3789 禹 ft. t velocity will Ans. 288 feet

I throngh 3800 ns. 20 seconds. lane, having a eet per second, th second? eet per second. having a rise f 100 feet per nd in 130 sec .? ne. 122850 feet.
351. If a body be projected up an inclined plane, having a fall of 5 feet in 8 , with an initial velocity of 800 feet per second:-
1st. How far will it rise?
2nd. In how many seconds will it again reach the bottom of the plane?
3rd. What will be its terminal velocity?
4th. Where will it be at the end of the 68th second?
5th. In what other moment of its flight will it have the same velocity as at the end of the 37 th second of its ascent?
Ans. 1st. Rise $=16000 \mathrm{ft}$.; 2nd. .Time of flight $=80$ seconds; 3rd. - Terminal velocity $=800$ feet per sccond ; 4th Elevation at end of 68 th sec. $=8160$ feet $;$ oith. At the end of the 43 d second.
352. A body rolls down an inclined plane, being a rise of 7 ft . in 20-when it has descended throngh f feet, another body commences to descend at on point m feet beneath it. Throngh how many feet will the second body descend before the first body passes it ?

Ans. $\frac{m^{2}}{4 f}$

PROJECTILES.

27.7. A projectile is' a solid body to which a motion has been communicated near the surface of the earth, by any force, as muscular exertion, the action of a spring, the explosive effects of gunpowder, \&c., which ceases to act the moment the impulse has been given.
278. A projectile is at once acted upon py two forces:1st. The projectile force whioh tends to make the body move over equal spaces in equal times; and 2nd. The force of gravity, which tends to make the body move towards the centre of the earth over spaces which are proportional to the squares of the times.
Under the joint influences of these two forces the projectile describes a curve, whioh in theory is the parabola, but which in practice departs very materially from that figure.
Nore 1.-The parabola is that curve which is produced by outting a cone paralle to tht side.
Note 2.-The parabolic theory is based upon three sappositions, all of which are more or less inaccarate.
1st. That the force of gravity is the same in every part of the surve described by the projectifo.

2nd. That the force of gravity acts in parallel lines.
3rd. That the projectile moves through a non-resisting medium.
The first and second of these suppositions differs so insensibly from truth that they may be'assumed to bo absolutely correct, but the resistance of the atmosphere so materially affects the motions of all bodles, especially when their velocitles are considerable, that it renders the parabollo theory practically useless.
278. When a body is projected horizontally forward, the horizontal motion does not interfere with the action of gravity, - the projectile descending with the same rapidity while moving forward, that it would if acted upon by gravity alone.
Norm.-The accompanying figure represents a tower 144 feet in height. Now if three balls a, b, and c, be made to start slmultaneously from P, one dropping verticaliy, oue being projected forward with suffcient force to carry it horizontally half a mlle, and the third with snfficient force to carry it horizontally to any other distance, say one mile, all threo balls will reach the gromad, provided it be a horizontal plane, at the samo instant. Thus each ball will have fallen 16 feet at the ond of the 1st second, and they will simultaneonsiy cross the line def. At the end of the 2nd second they have each desconded 64 feet, and are respectively at g, h, and 8, \&c.

Fig. 26

280. According to the parabolic theory:-

1st. The projectile rises to the greatest height, and remains longest before it again reaches the ground, when thrown vertically upwards.
2nd: The distance or -range over a horizontal plane is greatest, when the angle of elevation is 45°.
3rd. With an initial velocity of 2000 per, second, the projectile should go about 24 miles.
Forre.-The first of these laws is fonnd by experiment to be absolutely correet, and the second is not far from the truth, the greatest range taking place at an anglo of elcyation somewhat less than 85°.

The digio has et of 5 n

28 it is not e Not vacua moves which
Not that w the bal weight Not fact th crossin sometil 400 yar is too 8

28 tigate theory into result
when
I.
II.
III.

IV்.
when t phere b of grav
uniforn
WHEN
I. ;
ing bra
II. :
of deser
III.
IV. 1
V. 7
mating t

The difference between the third law and the result of experiment is prodigious ; for no projectile, howevor, great Its initial velocity may have been, has ever been thrown from the surface of the earth to a horizontal distance
of 5 miles. .
281. Whatever may be the initial velocity of projection, it is speedily reduced by atmospheric pressure, to a velocity not exceeding 1280 feet per second.
Note 1.-This arises from tho fact that atmospheric air flows into a vacuam with a velocity of only 1280 feet per, second, so that when a bail moves with a greater velocity than this, it leaves a vacuum behind it into Nothe strongly compressed air in front tends powerfully to force it. that when throm exporiments made with great care, it has been ascertained the ball meets with an atmospher other projectie is 2000 feet per second, weight.
Note 8.-Another great irregularity in the firing of balls arises from the fact that the ball deviates more or less to the right or left, sometimes crossing the direct line several times in a very short course. This deflection sometimes amounts from $\frac{1}{6}$ to $\frac{1}{4}$ of the whole range, or as much as 800 or 400 yards in a mile when there is considerable windage ; $1 . e$., when the ball is too small for the calibre of the gun.
282. The motion of projectiles has recently been investigated with much care, with the view of deducing a new theory in which the resistance of the air should be taken into account. The following are the most important
results;results;

When tee body is thrown vertically upwards into the air.
I. The time of ascent is less than the time of descent. .
II. The velocity of descent is less than that of ascent.
III. The terminal velocity is less than the initial velocity.
IV. The velocity of descent is not infinitely accelerated, since when the velocity becomes very great, the resistance of the atmosphere becomes so great as to counterbalance the accelerating force of gravity, and the velocity of the descending body is thenceforth uniform.

When the projectile is thrown at an anole of klevition.
I. The ascending branch of the curve is longer than the descending branch.
II. The time of describing the ascending branch is less than that of describing the descending branch.
III. The descending velocity is less than the ascending.
IV. The terminal velocity is less than the initial.
V. The direction of the descending branch is constantly approximating to a vertical line, which it never reaches.
VI. The descending velocity is not infinitely accelerated, but, as in case of a body falling vertically, becomes constant after reaching a certain limit.
VII. The limit of the velocity of descent is different in different bodies, being greatest when they are dense, and increasing with the diameter of spherical bodies.
283. The explosive force of gunpowder, fired in a piece of ordnance, is equal to 2000 atmospheres, or 30000 lbs . to the square inch, and it tends to expand itself with a velocity of 5000 feet per second.
Notre-Gunpowder is an intimate mixture of 6 parts saltpetre, 1 part charcoal, and 1 part sulphur. In firing good perfectly dry ganpowder, the ignition takes place in a space of time so short as to appear instantaneous. 1 cuble inch of powder produces 800 cubic inches of cold gas, and, as at the moment of explosion the gasis is red hot, we may safely reckon the expansion as about 1 into 2000 .
284. The greatest initial velocity that can be given to a cannon ball is little more than 2000 feet per second, and that only at the moment it leaves the gun.
Norrs.-The velocity is greatest in the longest pieces; thns Hutton found the velocity of a bail of given weight, fired with a given charge of powder to be in proportion to the fifth root of the length of the pieco.
285. The velocities communicated to balls of equal weights, from the same piece of ordnance, by unequal weights of powder, are as the square roots of the quantities: of powder.
288. The velocities communicated to balls of different weights and of the same dimensions, by equal quantities of powder, are inversely proportional to the square roots of the weights of the balls.
287. The depth to which a ball penetrates into an obstacle is in proportion to the density and diameter of the ball and the square root of the velocity with which it enters.
Nore 1.-An 18.pound ball with a velocity of 1200 feet per second penetrates 84 inches into dry oak, and a 24 -pound ball with a velocity of 1800 ft . per second penetrates 13 feet into dry earth.
Note 2.-Tho length of guns has been much reduced in all possibie cases. Field pleces are now seldom made of greater iength than 12 or 14 calibres (diamoter of the ball). The maximum oharge of powder has also been diminished very greatiy now seldomoxceeding one-turd, and often being as low as one-twelfth of the weight of the ball.
288. The following rule, obtained from experiment, has been given, to find the velocity of any shot or shell, when
the weight of the charge of powder and also that of the shot are known :-

RULE.

Divide three times the weight of powder by the weight of the shot, multiply the square root of the quotient by 1600, and the product will be the velocity per second in feet.

Orif $p=$ charge of powder in lbs.; $w=$ weight of ball in lbs., and $v=$ velocity per second in feet; then $v=1600 \times \sqrt{ }\left(\frac{3 p}{w}\right)$

Examply 353.-What is the velocity of a ball weighing 48 lbs., fired by a charge of 4 lbs. of powder?'

Here $p=4$ and $w=48$. soldtion.
Then $v=1600 \times \sqrt{ }\left(\frac{3 p}{v}\right):=1600 \times \sqrt{ }\left(\frac{3 \times 4}{48}\right)=.1600 \times \sqrt{ }\left(\frac{1}{4}\right)$ $=1600 \times \frac{1}{2}=800$ feet per second. Ans.

Exampi: 354.-With what velocity will a charge of 7 lbs . of powder throw a ball weighing 32 lbs .?

Here $p=7$ and $w=32$. \quad bolution.
Then $v=1600 \times \sqrt{\frac{\overline{3 p}}{w}}=1600 \times \sqrt{\frac{8 \times 7}{32}}=1600 \times \sqrt{\cdot 65625}=1600$ $\times \cdot 81=1296$ feet per second. Ans.
Examplis 355.-If 4 lbs . of powder throw a ball 16 lbs . in weight with a velocity of 1200 ft . per second, what amount of powder would throw the same ball with a velocity of 600 feet

BOLUTION.

Art. 285. vel. : vel. : : $\sqrt{ }$ (welght of powdor) $: \sqrt{ }$ (welght of powder); or $1200: 600:: \sqrt{4}: \sqrt{x}$, and hence $x=1 \mathrm{lb}$. Ans.

Exampl 356. -If 3 lbs. of powder throw a ball 6 inches in diameter and weighing 32 lbs ., with a velocity of 850 feet per second, with what velocity will the aame charge throw another ball of the same dimensions but weighing only 9 lbs .?

SOLUTION.

Art. 286. $\sqrt{9}: \sqrt{82}:: 850: x$, or $3: 5 \cdot 65:: 850: x$.
And hence $x=1600$ feet. Ans.

EXEROISE.

357. With what velocity will a charge of 11 lbs . of powder throw a cannon ball weighing 24 lbs.? Ans. 1876 fcet per second.

Arte

297

Thes

Also
and he
ducing
$r=\frac{}{u n}$

Exax
body w
second

Hero
Then e
Exam
Weighin
making
293. When the velocity and radius arc constant, the centrifugal force is proportional to the weight.
29.4. When the radius is constant, the centrifugal force varies as the square of the velocity.

Note.-At the equator the centrifugal forco of a partiele is $\overline{\mathbf{2} \frac{1}{8} g}$ of its gravity or welght, and from the equator it diminishes as we approach the poles whore it bccomes 0 . It follows that if the carth were to revolve 17 times faster than it doos, the centrifugal force at tho equator would be equal to gravity, and a body would not fall there at all. If the earth revolved still more rapidly, the water, inhabitants, \&c., would be whirled zone of storility.
295. When the velocity is constant, the centrifugal force is inversely proportional to the radius.
296. When the number of revolutions is constant, the centrifugal foree is directly proportional to the radius.
297. Let $c=$ centrifugal force, $v=$ the velocity per second in feet, $r=$ radius in feet, $g=32, w=$ weight, and $n=$ the number of revolutions per second.

$$
\text { Then } c=\frac{w v^{2}}{g r}(\mathrm{I}), r=\frac{w v^{2}}{c g}(\mathrm{II}), w=\frac{c g r}{v^{2}}(\mathrm{III}), v=V\left(\frac{c g r}{w}\right)(\mathrm{IV}) .
$$

Also, since $v=r \times 2 \times 3.141 \% \times n, v^{2}=r^{2} \times 4 \times(3.1416)^{2} \times n^{2}$, and hence formula I . : $c=\frac{w \mathrm{X}^{2} \times 4 \times(3 \cdot 1416)^{2} \times n^{8}}{\mathrm{gr}}$ and reducing this we get $c=u r n^{2} \times 1 \cdot 2345(\mathrm{~V}), w=\frac{c}{r n^{2} \times 1 \cdot 2345}$ (VI), $r=\frac{c}{w n^{8}} \frac{c 1.2345}{}(\mathrm{VII})$, and $n=V\left(\frac{c}{w r \times 1.2345}\right)$ (VIII).

Example 361.-What is the centrifugal force exerted by a body weighing 10 lbs . revolving with a velocity of 20 feet per second in a circle 8 feet in diameter?
solution.
Hore $w=10, v=20, r=4$, and $g=32$.
Then $\mathrm{c}=\frac{w v^{8}}{g r_{\mathrm{w}}}=\frac{10 \times 202}{82 \times 4}=\frac{10 \times 400}{82 \times 4}=31$ ibs. Ans.
Example 362. What centrifugal force is exerted by a bo dy Weighing 15 lbs , revolving in a circle 3 feet in diameter and making 100 revolutions per minute?

soldtion.

Here $w=15, q=1 \cdot 5, n=\frac{1090}{60}=18$.
Then formula V.: $c=20 r n 2 \times 1 \cdot 2345$
lbs. Ans.
Fravply 363.-A body weighing 40 lbs. revolves in a circle 4 feet in diameter; in order that its centrifugal force may be $1847 \mathrm{lbs} .$, What must be its velocity and number of revolutious per second?

BOLUTION.
Here $\boldsymbol{v}=40 \mathrm{lbs} ., r=2$, and $c=1847$.
Then formula VIII. : $n=\sqrt{ }\left(\frac{c}{w r \times 1 \cdot 2845}\right)=\sqrt{ }\left(\frac{1847}{40 \times 2 \times 1 \cdot 2345}\right)$
$=\sqrt{18 \cdot 7019}=4 \cdot 22=$ number of revolutions per second, and hence revo. lutions per minute $=256^{\circ} 8$.
Also $v=4 \times 8.1416 \times 14.82=54.28$ feet per second.
Example 364.-The diameter of a grindstone is 4 feet, its Weight half a ton, and the centrifugal force required to burst it is 45 tons: with what velocity must it revolve, and how many. revolutions must it make per minnt it revolve, and how many :

soldtion.

Here $v=\frac{1}{d}, c=45$, and $r=2$.
Then formula VIII. : $n=\sqrt{ }\left(\frac{0}{\text { vr } \times 1 \cdot 2345}\right)=\sqrt{ }\left(\frac{45}{1 \times 2 \times 1 \cdot 2845}\right)$
$=\sqrt{88.452}=6.08=$ revolutions per second, and hence $6.03 \times$
$=$ the revolutions per minute,
Also velocity $=4 \times 8.1416 \times 6.03=75.775$ feet per second.
EXTRGIBE.
365. If a ball weighing 4 lbs. be atteched to a string $2 \frac{1}{2}$ feet long and whirled round in a circle so as to to make 120 revolutions per minnte, - What must be the strength of the string in order to just keep the ball from flying off? Ans. $49 \cdot 38$ lbs.
366. A ball weighing 2 lbs . is attached to a atring 31 feet long and capable of resisting a strain of 200 lbs .; if the ball be whirled in a circle with the whole length of the string as radius, how many revolations per minute must it make in order to break the string? Ans. 2888 revolntions. 367. A ball is whirled in a circle, with a velocity of 64 feet per second, by means of a string 4 feet in length and capable of resifting a strain of 840 lbs . ; what must be the weight of the bail in order to break the string?

Ans. 264.lbs.
368. What is the centrifugal force exerted by a body weighing 20 lbs. revolving in a circle 10 feet in diameter and makking $2 \cdot 8$ revolntions per second? Ans. 967.848 lbs . 369. What is the centrifugal force exerted by a body weighing 8 lbs and revolving in a circle 20 feet in diameter with a Ans. 250 lbs.

ACCOMULATED WORK.

298. Work is required to set a body in motion or to bring a moving body to a state of rest. For example, when a common engine is first set in action a considerable portion of the work of the engine goes to give motion to the fly-wheel and other parts of the machinery; and before the engine can come to a state of rest, all of this accumulated work must be destroyed by friction, atmospheric resistance, \&c. body:-
299. To find the work accumulated in a moving RULE.
I. Find the height in feet from which the body must have fallen to have acquired the given velocity.
II. Multiply the number thus found by the weight of the body in pounds.

Or let $U=u n i t s$ of work accumulated, $v=$ velocity, $w=t h e$ weight in lbs., and $g=32$ Then Art. 266, since $s=h=\frac{v^{2}}{2 g}$

$$
U=h w=\frac{v q}{2 g} \times w=\frac{v \varepsilon w}{2 g}
$$

Exakplim 370.-A ball weighing 10 lbs . is projected on smooth ice with a velocity of 100 feet per second: assuming the friction to be I^{\prime} of the weight of the ball, and neglecting atmospheric resistance ; over what space will it pass before coming to a state of rest ?

BOLUTION.

Hore $v=100, v=10$, and $g=82$.
Then $U=\frac{v^{2} w}{2 q}-\frac{100^{2} \times 10}{2 \times 88}=\frac{10000}{64}=1502 \pm \Rightarrow$ units of work aecu. mulated in the ball.
Also $1_{\delta} \times 10 \times 1 \Rightarrow \frac{1}{2}=$ units of work destroyed by friction in moving the ball through 1 foot.
Therefore the number of foet $=1562 \frac{1}{3} \div \frac{2}{3}=28483$ Ans,

Example 371.-A train weighs 100 tons and has a velocity, of 40 miles per hour when the steam is turned off: how far will it ascend a plane having an inclination of $\frac{1}{2}$ in 100, taking friction as 11 lbs. per ton, and neglecting the resistance of the

.BOLUTION.

Here $v=40$ miles per hour $=\frac{40 \times 5280}{60 \times 60}=58_{3}$ feet per second, $w=100$ tons $=200000$ lbs. and $g=82$.
Then $U=\frac{v^{2} v}{2 g}=\frac{\left(58 g_{3}^{2}\right)^{2} \times 200000}{2 \times 32}=\frac{3441 \frac{\gamma}{g} \times 200000}{64 \cdots}=3441_{9}^{7} \times 3125=$
$107555555_{9}=$ units of work accumulated in the train.
Work of friction $=100 \times 11=1100$ units to each foot.
Work of gravity $={ }_{q} \delta_{0} \times 200000=1000$ units to each foot.
Work destroyed by resistances, i. e., friction and gravity, in
train over one foot $=1100+1000=2100$ units. gravity, in moving the
Therefore number of feet $=107555558$
\Rightarrow nearly one mile.
Example 372.-If a car weighing 3^{\prime} tons, and moving at the rate of 10 feet per second on a level rail, pass over 500 feet tion per ton?

BOLUTION

Work accumulated in car $=\frac{10^{2} \times 6000}{2 \times 32}=\frac{600000}{64}=9375$ units. Work of friotion $=$ friction $\times 500$.
Therefore friction $\times 500=9375$, and hence friction $=\frac{9375}{500}=18 \mathrm{l} \mathrm{lbs}$.
on whole car. Then friction per ton $=183 \div 3=6 \mathrm{~d} \mathrm{lbs}$. Ans.

EXERCISE.

373. A train weighing 90 tons is moving at the rate of 30 miles per hour when the steam is shut off: how far will it go before stopping, on a level plane, assuming the coefficient of friction to be qitf? Ans. 6050 feet, or, $1 \frac{7}{78}$ miles.
374. A train weighing 80 tons has a velocity of 30 miles per hour when the steam is turned off : how far wlll it ascend a plane rising 7 feet in 1000-taking friction, as usual, and neglecting atmospheric resistance?

Ans 2880.95 feet.
375. Required the nitits of work accumulated in a body whose weight is 29 lbs . and velocity 144 feet per second?

Ans, 9396.

ABTE.
d has, a velocity, ff: how far will 100, taking fricsistance of the 4

- second, $w=100$
$3441_{9}^{7} \times 3125=$
pot.
y, in moving the
nearly one mile.
noving at the over 500 feet stance of fric-
units.
$\frac{375}{500}=183 \mathrm{lbs}$.
of $\mathbf{3 0}$ miles will it go the coefli7_{8}^{7} miles.
miles per 11 it ascend as nsual,
$380 \cdot 95$ foct.
ody whose 1?
Ans, 9396.
.376. A ball weighing $\mathbf{1 5}$ lbs. is projected on a level plane, with a velocity of 90 feet per second : assuming friction to be equal to $\frac{1}{10}$ of the weight of the ball, how far will it go before it comes to a state of rest? Ans. 1265.625 feet. 377. A train weighing 90 tons has a velocity of 100 feet per second when the steam is turned off: how far' will it go on a level plane, assuming friction to be equal to 12 lbs. per ton, and neglecting atmospheric resistance?

Ans. 26041 号 feet. 378. A ball weighing 20 lbs .is thrown along a perfectly smooth plane of ice with a velocity of 60 feet per second : how far will it go before stopping if the friction be $\frac{1}{8 f}$ of the weight? 379. A train weighing 100 tons has a velocit Ans. 1125 feet. second when the steam is turne velocity of 25 foet per descend an incline of 3 in turned off how far will it equal to 12 lbs . per ton? 100 , taking friction to be 380. Reqnired the work accumulated in Ans. $3255 \cdot 2$ feet. 50 lbs. and which is moving with a a body which weighs second. \quad feet per 381. What work is accumulated in Ans. 3828 units. falling with a velocity of 40 in a ram weighing 2000 lbs. falling with a velocity of 40 feet per second?

Ans. 50000 units.

THE PENDULUM.

300. A pendulum consists of a heavy body suspended by a thread or slender wire, and made to vibrate in a vertical plane.
301. When the body is regarded as a point, and the thread or wire without weight, the pendulum is called a Simple Pendulum.
302. A Compound Pendulum or Material Pendulum consists of a heavy body suspended by a, ponderable wire or thread.
303. The motion of, the pendulum from one extremity to the other of the are in which it moves, is called an oscillation or a vibration.
304. The amplitude of the are of vibration is measured by the number of degrees, minutes and scconds through which the pendulum oscillates.
305. The duration of a vibration is the space of time occupied by the pendulum in swinging from one extremity to the other of the are of vibration,
between the centre of suspension and the centre of oscilla-
tion.

Note nous on ever, th oscillati
311 weight 307. The centre of suspension is the point round which
the pendulum moves as a centre. 308. The centre of oscillation is that point in a vibrating time of vibration would remain unchanged.
Nots 1.-If a bar of iron or any other substance be suspended by one extremity and made to vibrate, it constitutes a compound pendulume
Now, if the sereral partioles ty, those nearer the centres composing the rod were free to move separate those more remote; but singe the pospon would vibrate more rapialy than particies must ribrate in the same pendulum is a soild body, all of its mhat of thich are nearer the centre, of hence the motion of those however, there more remote parts is aocelerated sonsion is retarded, while the centre of cuast be a point or particle so situewhere in the rod, lerating effiect of the and the other parts of the rod that respect to retarding foroe of the particies above it is oxsctly noa, that the aece. or point vibrates in exaliecules beiow it ; and, oonse neutrailzed by the from all conneat set swinging by an with the parts above, below and aud ocupy if iberated of osolliation.
point is called the contre
what ia called the cene of osclllation in a vibrating mass coinotdes with point in a revoiving boofy whirection. The centre of percussion is that obstacie, will cause the whole of the mon striking against an immorable body to be destroyed, so that, at the motion accumulated in the revorving thicknesse theency to move in any direction of impact, the body would from the axis entre of percussion is two-thirds of rod of inapprecisble
309. The centres of suspension and oscillation in the pendulum are interchangeable, i. e., if the pendulum be inverted and suspended by its centre of oscillation, the former point of suspension will become the centre of oscillation, and the pendulum will vibrate in precisely the same time.

lawh of the ogcillation of the" pendulum,

310. The duration of an oscillation is independent of its amplitude, provided it does not exceed 4° or 5°.
Norve 1. This fact is commonly stated by saying that the vibrations of a given length will osocillato throin i., equai- thmed. Thus, a pendulum of have required to vibrate through an an aro of $5 \circ$ in the same time it would the vibrition is in the one case bo times as ar great ass in ough the ampititude of flarough a greater the pendulum in moving through the ther. This arises through a greater vertical distance, and hence acquires a greator velocity.
numbel
313
unequa the lon oscillati
311. which a
312.

sixty vil

Notre. the surface equator. \mathbf{I} than at the be lengtifen In point of mooh longer shows the If surface, and whith the foc entire secon

St. Thoma Ascenision. New York Paris....... London... Apitzbergon
is the distance centre of oscilla.

point round which

int in a vibrating re. collected, the
be suspended by one mpound pendulum. ree to move separate emore rapldy than ilid body, all of its the motion of those is retarded, while owhere in the rod, ted with respect to rod, that the acce. neutralized by the aently, this particle oceupy if liberated round it, and were is called the contre
aass coineides with percussion is that inst an immorsble $x d$ in the revolving t, the body would of inappreciable length of the rod
illation in the pendulum be scillation, the ontre of oscil. sely the same

JM.

dependent of or 5°.
he vibrations of a pendulum of 10 time it would 10 ampilitude of er. This arises larger aro falls eater velecity,

Nore 2.-Strictly speaking, the oscillations of the pendulum are isochro. nous only when the curve in which they move is a cyclold. When, how:
over the evcr, the common pendulum vibrates in very small arces, as of 2° or δ°, the
oscillations are, for
911. Th and practical purposes, isochronous.
311. The duration of the vibration is independent of the weight of the ball and the nature of its substance.
312. Two pendulums of equal lengths perform an equal number of vibrations in the same period of time.
313. Two pendulums of unequal lengths perform an unequal number of vibrations in the same period of timeoscillations.
314. Pendulums of nequal lengths vibrate in times which are to one another as the square roots of their lengths. 315. A seconds pendulum is one that performs exactly sixty vibrations in a minute, or one vibration in one second. 316. The time occupied by a vibration depends:1st. Upon the length of the pendulum; and End. Upon the intensity of the force of gravity. Norex.-Since the earth is not an exact sphere, being flattened at the poies, the eurface of the earth at the poles is nearer to the centre than at the
equator. Hence the intenat than at the poles, and a be lengthened in order to beat sect that beats seconds at the equator must In point of fact, a seconds pendulum at the is oarried towards the poles. inch longer than a seconds pendulum at the poles is about ono-fifth of an an surface the length of the eeoonds pendulume equator. The following tablo surface, and also the magnitude of the force of ofrent parts of the earth's
Which the force of entire second.
an gravily will impart to a dense body in falling for on on

Note.-In Canada the seconds pendulam is about $39 \cdot 11 \mathrm{in}$. in length.
317. The pendulum is applied to three purposes:-

1st. As a measure of time; 2nd. As a measure of the force of gravity : and 3rd. As a standard of measure.
Note. -The pendulum is nsed as a measure of time by attaching it to olock-work, whioh serves the double purpose of registering its oscillations and restoring to the pendulum tho motion lost in its vibration by friction and atmospherioiresistance. The use of the pendulnm as a standard of measure will be seen from the following statements, viz:
1st. A poisind pressurelmeans that amonnt of pressure which is exerted towards the earth, In the latitude of London and at the ievei of the sea, by the quantity of matter oalled a pound.
2nd. A pound of matter means a quantity equal to that quantity of pure Water which, at the temperature of 62 deg. Fahrenhelt, would occupy
$27 \cdot 727$ cubic Inches
Ord. A cubic inch is that oube whose side, taken $89 \cdot 1893$ times, would measure the effective length of a London seconds pendulum.
4th. A seconds pendulum is that which, by the nnassisted and nnopposed effect of its own gravity, would make 86400 vibrations in an artificial solar day, or $86163^{\circ} 09$ in a natnral sidoreal day.
318. If $t=$ the time of oscillation, $l=$ the length of the pendulum, $g=$ the force of gravity; i. e., the velocity which the force of gravity would impart to a dense body falling through one entire second, and $=3 \cdot 1416$; i. e., the ratio between the diameter of a circle and its circumference.

Then $t=\pi \times \sqrt{ }\left(\frac{l}{g^{2}}\right)(\mathrm{I}) l=.\frac{t^{2} g}{\pi^{2}}(\mathrm{n}$.$) and g=\frac{l \pi^{2}}{t^{2}}$ (m.)
When $t=$ one second, formulas (n.) and (III.) respectively become $l=\frac{g}{\pi^{2}}$ (iv.) and $g=l \pi^{2}$ (v.)
319. To find the time in whioh a pendulum of given length will vibrate, or the length of a pendulum that vibrates in a given time:-

Let $l=$ the length and $t=$ the time. Then since (Art. 314) the times are as the square roots of the lengths and in Canada the seconds pendulum is $39 \cdot 11$ inches in length-we have.

$$
\begin{aligned}
& t: 1:: \sqrt{ } l: \sqrt{ }(39 \cdot 11) ; \text { and hence } \\
& t=\sqrt{ }\left(\frac{l}{39 \cdot 11}\right)(\text { vi. }) \text {, and } t=t^{9} \times 39 \cdot 11 . \text { (vII.) }
\end{aligned}
$$

320. To find the number of vibrations which a pendulum of given length will lose by decreasing the fegce of gravity,
i. e., b other e

Let n face in same tin height o $n^{\prime}=\frac{n h}{r}$
321. lum of the pen
Let l in length given tin time ; th
n

Examp inches 10

Formula
Hence
Examp
80 vibral
Here $t=$
Then for
$21 \cdot 999$
Examp
vibrate?

Formala
Ans.
Exakp
the top of
lose in 6
[ARTs. 317-320.
in. in length.
rposes :—
ity : and
attaching it to gits oscillations ition by friction a standard of
hich is exerted el of the sea, by
[uantity of pure would occupy

8 times, would n.
and unopposed artificial solar
of the penduh the force of gh one entire e diameter of

- (III.)
tively become
n of given ulum that
(Art. 314) Canada the
II.)
pendulum of gravity,

Ant. 321.1.
TIIE PENDULUM. 143
i. e., by carrying the pendulum to the top of a mountain or other elevation.
Let $n=$ the number of vibrations performed at the earth's surface in the given time, $n^{\prime}=$ the $\bar{n} u m b e r$ of vibrations lost in the same time, $r=$ the radius of the earth, $=4000$ miles, and $h=$ the height of the mountain in miles or fraction of a mile; then $n^{\prime}=\frac{n h}{r}$ (VIII), and hence $h=\frac{n^{\prime} r}{n}$ (IX.)
321. To find the number of vibrations which a pendulum of given length will gain in a given time by shortening the pendnlum:
Let $l=$ the given 1 ngth of the pendulum, and l l $=$ the decrease in length: also let $n=$ the number of vibrations performed in the given time, and $n^{\prime}=$ the number of vilrations gained in the same time ; then

$$
n^{\prime}=\frac{n l^{\prime}}{2 l}(\mathrm{x} .) \text { and } l^{\prime}=\frac{2 n^{\prime} l}{n}(\mathrm{xI})
$$

Examply 382.-How many vibrations will a pendulum 36 inches long make in one minute?

solution.

Formula VI: $t=\sqrt{ }\left(\frac{l}{89 \cdot 11}\right)=\sqrt{ }\left(\frac{86}{89 \cdot 11}\right)=\sqrt{\cdot 8204}=\cdot .959$ seconds.
${ }^{\circ}$ Hence the number of vibrations $=60 \div \cdot 959=62 \cdot 56$.
Examply 383.-Required the length of a pendulum that makes 80 vibrations in a minute.

Heret $=60$ holution.
Then formula VII. $t=t 2 \times 89 \cdot 11=(3)^{2} \times 39 \cdot 11={ }^{2}=16 \times 39 \cdot 11=$ 21.909 inches.

Exayple 384.-In what time will a pendulum 60 inches long vibrate?

> . BOLUTION.

Formula $\mathrm{VL}_{\mathrm{L}}: t=\sqrt{ }\left(\frac{1}{89 \cdot 11}\right)=\sqrt{ }\left(\frac{60}{89 \cdot 11}\right)=\sqrt{1 \cdot 6841}=1 \cdot 289$ secends. Ans.
Example 385.-A pendulum which beats seconds is taken to the top of a monntain one mile high : how many seconds will it . lose in 6 hours ?

SOLUTION.

Here $n=6 \times 60 \times 60, h=1$, and $r=4000$.
Then formula (VIII.) : $n^{\prime}=\frac{n h}{r}=\frac{6 \times 60 \times 60 \times 1}{4000}=\frac{21600}{4000}=5.4$.Ans.
Example 386.-If a clock lose 1 minute in 24 hours, how much must the, pendulum be shortened to make it keep true time?

SOLUETION.
Here $n=24 \times 60 \times 00, n^{\prime}=60$, and $l=39.11$.
Thon formula XI. : $l^{\prime}=\frac{2 n^{\prime} l}{8 n}=\frac{2 \times 60 \times 39 \cdot 11}{24 \times 60 \times 60}=0.0543$ or about $\frac{1}{18}$ th of an inch. Ans.
Example 387. -Throngh what distance will a heavy body fall in Canada during one entire second, and what will be its terminal velocity?

SOLUTION.

Here $t=1$, and $l=89 \cdot 11$.
Then formula V. $g=l_{\pi^{2}}=39 \cdot 11 \times(3 \cdot 1416)^{2}=39 \cdot 11 \times 9 \cdot 80965006=$ 386.002 inches $=$ terminal velcoity.

Hence thespace passed through $=\frac{0+886.002}{2}=193.001$ inches $=$ 16.0835 feet. Ans.

Example 388.-What must be the length of a pendulum in order to vibrate ten times in a minute ?

SOLUTION.
Here $t=\frac{60}{10}=6$ seconds.
Then formula VII. $l=t 2 \times 39 \cdot 11=102 \times 39 \cdot 11=100 \times 39 \cdot 11=3911 \mathrm{in}$. $=820$ feet nearly. Ans.
Example 389.-A pendulum which vibrates seconds at the surface of the earth is taken to the top of the mountain and is there found to lose 18 seconds in a day of 24 hours : required the height of the mountain.

BOLUTION.

Here $n^{\prime}=24=24 \times 60 \times 60^{\prime} n=18$, and $r=4000$.
Then $h=\frac{n^{\prime} r}{n}=\frac{18 \times 4000}{24 \times 60 \times 60}=\frac{5}{2}$ miles $=4400$ feet Ane .
Example 390.-If a seconds pendulum be shortened 11 inch; how many vibrations will it make in one minate?

THE PENDULUM.

sOLUTIOM.

Here $n=60, l=39 \cdot 11$, and $l^{\prime}=1 \cdot 25$.
Then formula X. : $n^{\prime}=\frac{n l}{2 l}=\frac{60 \times 1 \cdot 25}{2 \times 89 \cdot 11}=0.958=$ the number of vibrations gained; hence the number of vibrations made $=60.058$. 1 mis.
Example 391.-What will be the velocity acquired by a heary bergen?

BOLUTION.

Here $t=1$, and by the table Art. $816,7=89 \cdot 21$.
Then $g=l \pi \pi^{2}=89 \cdot 21 \times\left(8.1416^{2}=89.21 \times 9.89985=888988\right.$ inchen. Av.

5ymROISE.

392. What must be the length of a pendulum in the latitude of Canada in order that it ahall vibrate once in 3 seconds? Ans. 351.997 inches.
393. A pendulum that vibrates seconds at the surface of the earth is carried to the summit of a mountain 3 miles in height: how many seconde will it lose in 24 honre?

Ans. 64-8.
394. In what time will a pendulum 10 inches in length vibrate? Ans. 506 seoonds.
396. What velocity will a heavy body falling in the latitude of New York acquire in one entire second? Ans. 385.90s. 396. If a clock lose 10 minates in 24 hours, how much mutst this pendulum be shortened in order that it shall keep correct time? Ans. 543 or over of an inoh.
397. If a seconds pendulum be shortened 5 inches, how many vibrations will it make in a minnte? 5 inches, how many 398. A pendulum which vibrates seconds at the surficee of the earth is carried to the summit of a monntain, where it is observed to lose 30 seconds in 24 hours: required the height of the moantairs Ans. $7333 \cdot 3$ feet. 399. In what time will a pendulum 100 inchen long vibratel Ans. $1 \cdot 59$ seconain.
400. Required the length of a pendulum which makes 120 vibrations per minute, a pendalum which makes 120 vibra-
401. Through how many feet will a body fall in one second, saa what will be its terminal velocity at the end of that portion of time in the latitade of Paris?

$$
\begin{aligned}
& \text { Ans. Terminal velocity }=386.1 \mathrm{in} \text {. } \\
& \text { Space paned over }=16.0878 \mathrm{ft} . \\
& 10
\end{aligned}
$$

CHAPTER VIII.

HYDRODYNAMICS.

322. Hydrodynamics treats of the motions of liquids and of the forces which they exert upon the bodies when their action is applied.
323. The particles of a fluid on escaping from an orifica possess the same velocity as if they had fallen freely in vacuo from a height equal to that of the fluid surface above the centre of the orifice. This is known as Torricelli's theorem.
324. The principal deductions from the Torricellian theorem are-

1st: The velocity of an escaping fluid depends upon the depth of the orifice beneath the surface and is independent of the density of the liquid.

2 nd . The velocity of efflux from an orifice is as the square root of the height of the fluid sprface above the centre of the orifice.
Nors.-Since all bodies falling in vacuo from the same height acquire the same relooity, density ham no effect in increasing the velocity of a liquid excaping from an orifice in the side or in the bottom of a vessel. Thus watar, alcohol, and meroury will all fow with the same rapidity; for though the pressire of the mercury is 18y times greater than that of water, it has 18 fimes as much matter to move.
825. When a liquid flows from an orifice in a vessel which is not replenished but the level of which continually desoends, the velocity of the escaping liquid is uniformly retarded, being as the decreasing series of odd numbers 9 , 7, 5,3 , \&co., so that an unreplenished reservoir empties itself throngh a given aperture in twice the time the samc quantity of water would have required to flow through the same aperture had the level been maintained constantly at the same point.
326. The quantity of fluid discharged from a given aperture in a given time is found by multiplying the area of the aperture by the velocity of the escaping liquid.
Norm.-Experiments do not agree with this theory as regards the quantity of iquid disoharged. The whole subject has been ourefuliy inventigated by Bosent, and he has shown that

Actwal disoharge: Theorelical discharge : $8 \cdot 62: 1$ or as $5: 8$.

Arta.
Henc true qu This jet din formin vein. distanc at $\boldsymbol{c} \boldsymbol{c}^{\prime}$ above as the
If the vein re than 45

327
apertu
$g=a \ell$
The
and h

Note
respecti

321
conica
passes
the fla
wet t
increa
32
than f
33
augme
effect
33] is still three
orifice
greate

Hence the thooretical discharge must be multiplled by f to obtain the true quantity.
This discrepancy arises from the fact that the escaping jet diminishes in diameter just after leaving the vessel, forming what is known as the vena contracta or contracted vein. The minimum diameter of the vein is found at a distance abont equal to half the diameter of the aperture at $\boldsymbol{o c}^{\prime}$ Fig. 27. This effect arises from the fact that just above the orifice the lateral particles of fuid move as well as the desoending portions,

Fig. 27.

If the jet of llquid be thrown upwards at an angle of from 25° to 45° the vein retains tho diameter of tho dperture, but if thrown at an angle greater
327. Let $Q=$ the quantity discharged in 1 second, $a=$ area of aperture, $h=$ height of fluid level above the centre of the orifice, $\boldsymbol{g}=$ accelerating force of gravity, and $v=$ velocity.
 and $h=\frac{Q^{2}}{2 g^{2}{ }^{2}}$. (Iv)
Notr.-Since $g=32,2,29=64$, and $\sqrt{2 g}=8$, formulas I, II and III become respectively $v=8 \sqrt{ } h, Q=8 a \sqrt{ } h$, and $a=\frac{Q}{8 \sqrt{ } h}$.
\bullet
328. An adjutage is a short tube, either cylindrical or conical, placed in an orifice to increase the flow. If the vein passes through the tube without wetting the interior walls, the flow is not modified, but if the liquid adhere, i. e., wet the walls, the vena contracta is dilated and the flow increased.
329. A cylindrical adjutage with length not greater than four times its diameter increases the flow one-third.
330. A conical adjutage, converging towards the exterior, augments the flow more than a cylindrical adjutage-its. effect upon the vein varying with the angle of convergence.
331. A conical adjutage diverging towards the exterior is still more efficient and may be such as to render the flow three or four times as great as the actual flow from an orifice of the same diameter in a thin wall and $1 \cdot 5$ times greater than the theoretical flow.
332. As the velocity of a liquid escaping through an orifice is the same as it would haye aoquired in filling freely in vacuo through a space equal to the distance of the orifice below the level of the liquid, it follows that a jet of water spouting upwards should rise to the: level of the liquid in the reservoir. In prac-? tioe however the sponting jet never reaches this height owing to certain disturbing forces, namely:

1st. Friction in the "conduoting tube in part
 destroys the velocity.
2nd. Atmospheric resistance.
3rd. The returning water falls upon that which is rising and thus tends to stop its ascent.
Note.-The height to which the liquid spouts is increased by:
1st. Having the orifice very small in comparison with the conducting 2nd. Piercing the orifice in a very thin wall; and
3rd. Inclining the jet a ilttle so as to avoid the returning water.
Eximpla 402.-With what velocity does water issue from a small aperture at the bottom of a vessel filled to the height of 100 feet?

> solution.

Formula $1 v=8 \sqrt{ } h=8 \sqrt{ } 100=8 \times 10=80$ fect per second. Ans.
Example 403.- What quantity of water will be discharged in
theor

The
1870
Ex
wate
t of
vesse

Her
Hen
The
Qua
IIm one minute from an aperture of half an inch in area-the height of the water in the vessel being kept constant at 10 feet above the centre of the orifice?

GOLUTIOT.

Here $a=\frac{1}{2}$ equare inch $=\frac{1}{4}$ of a square foot.
The cuble feet discharged $\ln 1$ second $=8 a \sqrt{ } h$.
Cublo feot disohargod in 1 minute $=00 \times 8 a \times \sqrt{ } h=60 \times 1{ }_{8} \times \sqrt{ } 10$ $=00 \times{ }_{36} \times 8.162=5 \cdot 27$ cubio feet $=$ the theoretioal quantity, and $527 \times$ i $=3 \cdot 29$ oubie feet $=$ truc quantity.

Exampla 404.-What must be the area of an orifice in the side of a vessel in order that 40 cubio feet of water may issue per hour-the water in the reservoir being kept constantily at the level of 20 foet above the centre of the aperture?

AOLUTION.
Here $Q=\frac{40}{60 \times 00}=\frac{1}{90}$ of a cublo foot, and since this is onily f of the
through an Fig. 28.

h is rising
by:
e conduoting
g water.
sue from a te height of

Ans. scharged in -the height feet above
theoretical quantity, $Q=\frac{8}{8}$ of $\frac{1}{9 \theta}=\frac{1}{2 \frac{1}{5}}$ of a cubic foot. Also $h=20$
 7600 of an inch. Ans.

Example 405.-An upright vessel 16 feet deep is filied with water, and just contains 15 cabic feet. Now, if a small aperture \ddagger of an inch in area be made in the bottom, in what time will the vessel empty itself?

SOLUTION.

Here $h=16 \mathrm{ft} ., a=3$ of an inch; and $Q=15$ cubio feet.
Hence the theoret drmantity $=15 \times \frac{8}{8}=24$ cubic feet.
Then velocity at \quad cement $=8 \sqrt{h}=8 \sqrt{16}=82 \mathrm{ft}$.
Quantity discha \quad necond $=82 \times \delta \frac{1}{6}=3 \frac{39}{6}=\frac{1}{8}$ of a cubic foot.
Time required to oischarge 24 cubio feet $=24 \div 1=482$ seconds.
But, Art. 824, when a vessel empties itself, the time required to discharge a given quantity of water is double that requisite for discharging the same guantity when the level is maintained.
Henco time $=432 \times 2=864$ seconds $=16.4$ minutes. Ans.

ExEROTSE.

406. With what velocity does water issue from a small aperture in the side of a vessel filled to the height of 25 feet above the centre of the orifice? Ans. 40 feet per second.
407. With what velocity does water flow from a small aperture in the side of a vessel filled with water to the height of 17 feet above the centre of the orifice?

Ans. 32.984 feet pes second.
408 In the last example, if the water flows into a vacuum, what is its velocity?

Ans. 56 feet per second.
Note.-Since the pressure of the atmosphere is equal to that of a column of water 82 feet high, the effoctive height of tho colnmn of water is $17+82=49$ feet.
409. How much water is discharged per minute from an aperture having an area of $\frac{t}{}$ of an inch-the surface of the fluid being kept constant at 36 feet?

Ans. 21 cubic feet.
410. What must be the area of the aperture in the bottom of a vessel in order that 90 cubic feet of water may issue per

- hour-the level of the water in the vessei being constantly kopt at 20 fect above the centre of the orifice ?

Ans. 161 or about $\frac{1}{4}$ of an inch.
411. A vessel contains 20 cubic feet of water, which filis it to the depth of 30 feet-now, if an aperture having an area of f of an inch be made in the bottom of the vpseel, in what time will it empty itself? Ans. 2 min. 80 ; sec.
333. When water spouts from several apertures in the side of a vessel, it is thrown with the greatest random from the orifice nearest the centre, the jet issuing from the contre will reach a horizontal distance equal to the entire height of the liquid, and all jets equally distant from the centre will be thrown to an equal horizontal distance.
Notr.-Let $V A$ be a vessel
filled with water, having itg
$\begin{aligned} & \text { sido } A B \text { perpendicular to the } \\ & \text { horizontal plane } B M\end{aligned}$
desoribe the semicircio OnlAB
Bisect $A B$ in C and in $A B$ tako
any points D and D^{\prime} equally
distaut from E, also C and C,
cqually digtant from K_{i} Draw
also $C C, D D, E E, \& c$., per-
pendicular to $A B$ and pro-
$\begin{aligned} & \text { duced to the circumference } \\ & A B C \text {. Then if small oriftces }\end{aligned}$
be plerced in the sido ofifles
vessel at $C^{\prime} D^{\prime}, E^{\prime \prime}, D^{\prime}$, and
C, the llquid fom E will and
to twico $E E^{\prime}=A B=B M$;
$\begin{aligned} & \text { the liquld trom } C \text { or } C^{\prime} \text { will } \\ & \text { spout to } H \text {, twice } C C^{\prime} \text { or }\end{aligned}$ ${ }^{\text {spout to }} H D$ or $D^{\prime} D$. twice $C C$ or $C C^{\prime}$ and that from D or D will reach $K=$ twice

Fig. 29.

334. The horizontal distance to which the liquid spouts under these circumstances may be found as follows:

Let $H=$ height of water above horizontal plane, $d=$ perpendicular let fall to the orifice from the circumference $\mathcal{A} E^{2} B$, and $h=$ height of orifice above the horizontal plane. Then
(Euclid iii. 35) (Euclid iii. 35)

$$
d^{2}=h(H-h) \text { and hence } d=\sqrt{h(H-h)}
$$

Thus if the reservoir in Fig. 29 be 20 feet in height and be 4,10 and 15 feet above apercures C, E, and D be respectively $A B$ are respectively 4 and 16,10 and ; then the segments of the randoms will be respectively 2×1, and 15 and 5 feet and and $2 \times \sqrt{15 \times 5} ;$, $\times \sqrt{4} \times 16,2 \times \sqrt{10} \times 10$ $2 \times \sqrt{75}$ or 17.32 ft . $2 \times \sqrt{64}$ or $16 \mathrm{ft} .2 \times \sqrt{100}$ or 20 ft . and
335. When water flows in any bed, as in the chanmel of a river or in a pipe, the velocity becomes constant when the length of the bed bears a large proportion to its scctional area. Thus, in pipes of more than 100 feet in length, or in rivers whose course is unopposed by natural obstacles, the velocity of the body of the stream is the same throughout. When this occurs the liquid is said to be in train.
tures in the andom from m.the centre atire height \dot{a} the centre
 ch $K=$ twice uid spouts ws : e, $d=$ perice $\mathcal{A} E^{\prime} B$, ne. Then ght and be espectively egments of 5 feet and $\sqrt{10} \times 10$ 20 ft . and
© channel ant when to its secn length, obstacles, throughtrain.
336. The velocity of the liquid flowing in a pipe or channel is not the same in every part of its section, being greatest in the centre of the section of the pipe or in the middle of the surface of the stream.
Nore 1.-This ariges from the friction exerted against the fuild by the interior surfice of the pipe or the banks of the atream. In a stream, on account of the middle pirt having the greateat velocity, the surfice is always more or less convex.
Noxre' 2.-The velocity of a thream may be determined in three different ways:-
1st. An open tube bent at rightangles is placed in a stream with one of its lege opposed to the current and the other branch vertioal-the velocity of the stream is measured by the height to which the water riees in the vertical leg.
2nd. A float is thrown into the stream and the time ocenpied by it in passing over a known distance observed.
3rd. The convexity of the gurface may be measured by a levelling instrument, and its velocity thus determined
337. To find the" velocity of efflux, and hence the quantity of water discharged in a given time from a resexvoir of given height through a pipe of given length and diameter:-
Let $d=$ diameter of pipe, $l=$ length, $h=$ height, and $b=$ velocity.
Then, all the dimensions being in feet, $v=48 \sqrt{ }\left\{\frac{h d}{1+54 d}\right\}$,
Nore.-This is the formula of M. Poncelet, and is regarded as strictly accurate.

WATER WHEELS.

338. Water is frequently made to drive machinery by its weight or momentum exerted on a vertiçal water-wheel.
339. There are three varieties of vertical water-wheels, viz.: the undershot, the overshot, and the breast wheel.

Fig. 31.

Noxs.-The mode in which the water is made to act on these is repremoved by the momentum of the observed that the andershot wheel in Theel by its weight dided of the water-the breast wheel and overshot produce twice the effect of an und momentum. An overshot wheel will quantity of water being the same undershot wheel,-the dimensions, fall, and twioe the quantity of water required by breast wheel is found to consume .work
340. In all water-wheels the greatest mechanical effect

E
plies
in di
will

Her
The
-8.86
Qual
Quas
$57001 \cdot 1$
418.
416. A

41\%. A
418. 1

Fizaicple 412.-A water-wheel is worked by a stream 6 feet minute, and the height of the fall 30 feet, required the horse power of the wheel, the modulus being $\cdot 7$.

EOLUTIOR.

$$
\text { H. } P .=\frac{m b d v s h}{88000}=\frac{6 \times 8 \times 22 \times 30 \times 62.5 \times 7}{88000}=15.75 \text { Ans. }
$$

Examphe 418, What is the horse power of a water-wheel Worked by stream 2 feet deep, 7 feet wide, and having a veloaity of 33 feet per minnte-the fall being 10 feet and modulus of
the wheel 6 ?

$$
R . P .=\frac{\text { mbotvo }}{80000}=\frac{0 \times 7 \times 2 \times 88 \times 68 \times 10}{8000}=4.26 . \text { Ant. }
$$

[ARTs. 240,941.
32.

these is repreershot wheel in 1 and overshot 30t wheel will sions, fall, and ad to consume to do the same
nical effect 21 times
cal water
of stream, ight of fall, ulus of the
eam 6 fect 2 feet per the horse

5 Ans. ter-wheel g a veloodulus of

Art. 242.$]$

Examplim 414.-A water resiervoir is 100 feet in height, supplies, water to a city by a pipe 10000 feet in length and 6 inches in diameter, what is the velocity per second and what quantity will be discharged In 24 hours ?

Here $h=100, l=10000$, and $d=t$ STON.
Thin Art $880, v=48 V\left\{\frac{h d}{l+54 d}\right\}=48 V\left\{\frac{100 \times \frac{1}{10}}{10000+54 \times \frac{1}{2}}\right\}=48 \sqrt{\frac{50}{10027}}$ $-3 \cdot 86$ feet per second $=$ velocity.
Quantity discharged in 1 second $=3.1416 \times(\})^{2} \times 8.36$.
Quantity discharged in 24 hoars $=8.1416 \times \frac{1}{6} \times 8.38 \times 60 \times 60 \times 24=$ 57001-1804 cuble foet. Ans.
415. A water-wheel is worked by a stream 4 feet wide and 3 feet deep, the velocity of the water is 29 feet per minute, the fall 20 feet; required the horse power of the wheel, its modulus being 56 ?
416. A water-wheel is worked by Ans. 7.38. feet wide, and havinged by a stream 2 feet deep and 4 fall is 33 feet and the mocity of 50 feet per miunte, the feet of water per hour will this of 44 feet?

Ans. 15120.
41\%. A water-wheel is worked by a stream 4 feet wide and g feet deep, the velocity of the water being 15 feet per minute, and the fall 27 feet, how many gallons of water per hour will this wheel raise to a height of 80 feet, the modulus being 8 ? Ans. 18225 gallons.
418. A water reservoir 80 feet in height supplies water to a city through a pipe 1742 feet in length and 4 inches in diameter, what is the velocity of the water per second, and how many gallons wlll it deliver in 10 hours?

$$
\text { Ans. } 115925 \cdot 04 \text { gallong. }
$$

342. The turbine is a horizontal water-wheel having a vertical axle. It revolves ontirely submerged, and is of all varieties of water-wheels the most cconomical and powerful. It was invented by M. Fourneyron in 1827, but has since been much modified in form and greatly improved. The water enters at the centre of the wheel, descends in its vertical axis and is delivered by a great, number of ourved guides so an to strike the buckets in a direction nearly tangential to the circumference of the
wheel. The buckets are also curved in the direction required to give the machine the greatest possible amount of efficiency. The water having expended its force escapes from the wheel in a direction corresponding very nearly with the radii.
343. Turbine wheels may be divided into high pressure and low pressure machines.
344. High pressure turbines are such as are worked by a high fall of water, and are adapted to hilly countries and deep mines, where the height of the fall may be made to compensate for the smallness of the volume of water.
345. Löw pressure turbines are employed where a large stream of watter possesses but little fall; they are said to produce powerful effects with a head of water of but nine inches.
346. A committee of investigation appointed by the French Academy of Sciences, and consisting of Arago, Prony, and others, gave the following report on these whecls:-
I. Tarbines are equally applicable to high or low falls of water.
II. Their effeetive work is from 70 to 78 per cent. of the work applied. (Turbines, made by Boyden of Boston, have given 88 per cent. of the work applied.)
III. They work without much loss of power at velocities both above and below that required to produce the maximum effect.
IV. They will work without appreciable loss at a depth of from 4 , tis 6 feet beneath the surface of water.

[^10][Aitts. 843-346.
e direction reble amount of force escapes g very nearly
high pressure
are worked by countries and y be made to f water.
where a large y are said to of but nine
nted by the g of Arago, on these
or low falls
per cent. of by Boyden of the work
at velocities to produce
at a depth ce of water. als the water is ${ }_{28}$ are patontẹd

Arts. 347-351.] THEORY OF UNDULATIONS.

CHAPTER IX.

THEORY OF UNDULATIONS.

347. All undulations or waves have their origin in vibratory or oscillatory movements imparted to the molecules of the solid, liquid, or gaseous body in which the undulations occur.
348. Undulations are of two kinds, 1st. Progressive undulations.
2nd. Stationary undulations.
349. Progressive undulations are such as are produced by the vibratory movement passing from the particles first affected to those next them, and the oscillation being thus communicated successively from particle to particle, the wave advances with a progressive movement,
if As famillar illustrations of this kind of undulatory movement, we may on its surface, and those prod on water by the wind, or by casting a stone sinartly'shaking the other end upand a cord made fast at one end, by like movoment is oheerved to pond down. In the iatter care, a waveCord, and then a similar wive returns to the hand to the fast end of the Nore.-It must b wive returns to the hand. advances, the particles hy who remembered that although the wave no progroseive motion, but a mere like that of a pendulum. Thus in oscillatory movement np and down matter that compose the cord do no case of the cord, the particles of and advance to it. And that therg not themsoives recede from the hand in the particles of water producing water-wogressive for ward movement that a float piaced on the surffice of water-waves is evidenced by the fact, the wave but does not move forward with it.
350. Stationary undulations are such as are produced when all the particles of a body are made to assume and to complete these vibrations at the same times.
Thus when a cord or a wire is strotched betwoen two fixed points, and is made to vibrate by drawing it at the middle from its rectilinear position, in which all the particondition after performing a series of undulations
351. In every undulation certain parts are to be distinguished as follows:-

The curve $a d b e c$, is called an undutation wave.

The part $a d b$, is the phase of elevation.

The part b e c, is the phase of depression.

Fig. 33:

The distance $a c$, is the length of the wave.
The distance $d g$, is its height.
The distance $f e$, is its depth,
Twige $d g$, or $f e$, is its amplitude.
352. The vibration of solid bodies may be conveniently considered under the heads of cords, rods, planes, and masses. Stretched strings, wires or other linear Fig. 34. solids, are susceptible of three kinds of vibration, viz.:

> 1st. Transverse vibrations. 2nd. Longitudinal vibrations. 3rd. Tomional vibrations.

Thus if a cord besecured at one end and held atrotched by a welght attached to the other as in Fig. 34, then 1st. Upon drawing the string to one side and suddenly letting it go the vibrations which it makes and whioh are represented by the dottod lines are at right angles to the axis of the cord and are called transverse ribrations.
2nd. If the bell B be raieed a little and suddenly dropped, it will continue
for some time advancing and receding from its original position, the
cord performing a series of longituding ril vibrations.
3nd. If the ball be turned ronnd its vertioal axis several times, and then
pet go, the cord will for some time continue to twist and unwist, thus
353. In transverse vibrations the time of vibration is the time occupied in passing from a to b, that is, in making one complete movement from side to side
354. The vibrations of stretched cords, wires, \&c., are always isochronous (See Art. 310), and are governed by the four following laws:
I. The tension being the same, the number of vibrations of a cord varies inversely as its length.
II. The tension and length being the same, the number of vibrations in cords of the same material, is inversely as their diameters.
III. The number of vibrations of a stretched cord is proportional to the square, root of the force of tension, i. e., the stretching wieight.
IV. All other things being equal, the number of vibra-

Thus

$\underset{\mathrm{Be}}{\mathrm{m}}$ tions of different cords is inversely proportional to the square root of their densities.
[ARTE. 352-854. les, and masses.
r Fig. 34.

, it will continue mal position, the

1 times, and then and unwist, thus
vibration is is, in making
ires, \&c., are cerned by the
of vibrations th. the number material, is
cord is proforce of ten-
er of vibraroportional

ARTS. 355, 356.] THEORY OF UNDULATIONS.
$*$
Thus by the first law, equally stretched cords of the same material vibrate more rapidly in proportion as they are shortened. For example, if several strings of cat-gut be equally artretohed gnd their lencthis, are represented by the numbers $1, \frac{1}{3}, \frac{1}{1}, t, \frac{1}{t}$, tr, to., their vibrations in the same space of time will be represented by the numbera $1,2,8,5$,
7. 11, \&o.
length and tension, but having a thickness of the same material of equal $1, \frac{1}{1} \frac{1}{2}, \frac{1}{4}, t$, \&c., then the number of their represenited by the numbers of time, will be respective number of their vibrations in the same unit
By the third law, if we havely copresented by the numbers $1,2,8,4,5$, sic. of force and therefore vibcord or wire stretched with a certain degree of force and therefore vibrating with a certain rapidity in order to have to strain the cond to four, nine, siry of the vibrations, we shall have to strain the cond to four, nine, sixtoen, \&c., times its original
tension,
By the fourth law, if we have two
the fourth law, if we have two cords of the same tension, length and and the other formed of congut having a apec. grav. or denajty of 1 , and the other formed of copper having a spec, grav. or denaity of 1 , density of
nearly 9 , the former will vifrate about three times as rapidy as the
later. latfer.
355. When a stretched cord as ab, Fig. 35, is fastened at each extremity and also temporarily fixed at two intermediate points d and c, the segment, $a d, d, c$ and $c b$ may be thrown in stationary vibrations of equal amplitnde. Uay be now loosening the points d and c it will be found that these points remain at rest although the other parts of the cord are in rapid vibration: These

Fig. 35.
 nodus "a knot,") and occur wherever the phases of elevation and depression in such a vibratory line intersect each other.

Noti-The nodal points of a yibratory line or rod may be experimentally determined by small rings of paper which remain firy be experimentbut are thrown off from all others. A stretched line or mod on these points, into a series of stationary vibrations by drawing a violin bow across it in different places.
356. A rod like a stretched string, may vibrate either transiversely, longitudinally, or torsionally, and is subject in its vibrations to the following laws:

I. The vibrations are isochronous.

II. The transverse vibrations vary in number inversely as the square root of the length of the rod.
III. Longitudinal vibrations vary in number inversely as the lengths of the rods no matter what may be their diameters or the forms of their transverse sections.

IV. Torsional vibrations of rods, of the same materiul,

 vary in uumber directly as their thickness and inversely as their lengths.357. An elastic plate may be made to vibrate by fastening it in a vice either by the corner or by the centre and drawing a violin-bow across its edge.
358. In a vibrating plate certain lines exist which are always at rest and which are hence called nodal lines. They correspond to the nodal points in strings or rods, and if we regard the plate ${ }^{\text {el }}$ as being composed of a number of rods then we may consider the nodal lines will be made up of their nodal points.
The plate is divided by the nodal lines into internodal spaces, the adjacent spaces being always in opposite phases as shewn in' Fig. 36, where the sign+indicates the phase of elevation, and the sign the phaso of
depreasion.

Fig. 36.

359. The nodal lines vary in number and position according to the form of the plate, its size, its elasticity, the position, the point by which the plate is fixed, \&c. Their position may be determined by scattering sand or colored powder on the plate and vibrating by means of a violinbow, -the sand is thrown off the internodes and arranges itself along the nodal lines forming the so called nodal figures or acoustic figures.
360. Nodal figures have a great variety in their form but are generally very symmetrical. Several hundred have been figured. The accompanying illustration represents a few of those obtained on square and circular plates.

The plates are supposed to be fastened in.a vice at the point a, and the violin-bow drawn over the edge at the point b. In figure III the finger is placed on the edge of the plate at a point 45° from b, in IV at a point 60° or 30° or 90° from b. In V the finger is placed at w.
[ARTS. 357-859.
same material, cleness and in-
rate by fastenhe centre and
: 36.

spaces, the adja. in' FIg. 36, where on the phase of
position aclasticity, the ich they are d, \&c. Their 1d or colored s of a violinand arranges called nodal
n their form ral hundred ration repreand circular
at the point point b. In ate at a point om b. In V

Arts. 380-362.]

Fig. 37.

361. The vibrations of elastic plates are performed according to the following laws :-
I. The number of vibrations is independent of the breadth
of the plate. II. The number of vibrations is proportional to the thicks. III. The thicloness being the same, the number of vibrations varies inversely as the square of its length. Note.-The plate is supposed to be, in each case, composed of thesame
ubstance.

UNDULATIONS IN LIQUIDS.

362. Undulations in a liquid are caused by the vibratory movement of its molecules in such a manner that each particle describes a vertical circle, about the spot in which it may chance to be, revolving in the direction of the advancing wave. This rotating movement among the particles is progressively carried to the contiguous particles, so that different atoms will be describing different parts of their circular path at the same moment. Thus some will be at the point of highest elevation, forming the crest of the wave, others at the point of lowest depression forming the trough, "and others at intermediate points.

The diameter of the vertical circle desoribed by a singie particle is called the amplitude of the wave, and is, iu the case of ocean waves, often as muoh as 20 feet. It has been ascertained by oxperiment that aliquid is not distarbed by the undulations on its surface, to a depth greater than about 175 times the amplitude of the wave.
III. If
363. Progressive undulations striking against a solid surface are reflected and the angle of reflection is always equal to the angle of incidence. It follows from this law that:-
1st. If the wave be linear, i. e., if its crest is at right angles to its course and it meets a plane surface perpendicularly it will be reflected back in the same path, and if it meet the plane surface at an angle of $80^{\circ}, 40^{\circ}, 30^{\circ}$, \&ce., it will be reflected on the. other side of the perpendienlar at the same angle.
2nd. The rays of a wave originating in one focus of an elliptical vessel are all reflected to the other focus.
3rd. The rays of a wave propagated in the focus of a parabola are all reflected in parallel lines.
4th. A line or wave impinging on a parabola has all its rays reflected to the focus of the parabola.
5th. If two parabolas face each other with their axes coincident, a system of circular waves originating in one focus will be followed by a corresponding system having the other focus for their centre. 6th. When the rays of a circular wave impinge at right angles upon a plane surface they are reflected so as to form a circular wave having the came degree of curvature but in the opposite direction.
364. When two systems of waves originating in different centres meet, they either combine or interfere and their interference may be either complete or partial.
I. When two praves meet in the same phase, i. e., so that their elevations and depressions coincide, they combine and form a new wave having an amplitude equal to the sum of the amplitudes of the combining waves.
II. If the two waves of equal amplitude mect in opposite phases, i. e., so that the depression of the one

388 sounds, which
coincides with the elevation of the other they interfere, both waves disappear, and the liquid surface beoomes perfectly horizontal.
III. If two waves of unequal amplitude meet in opposite phases they partially interfere, and the resulting wave has an amplitude equal only to the difference between the amplitude of the meeting waves.

UNDULATIONS IN ELASTIC FLUIDS.

365. All elastie fluids; such as atmospheric air, are subject to surface undulations such as occur in liquids; and these surface undulations are governed by the same laws.
366. When an elastic fluid is compressed, and the compressing force is suddenly removed, the fluid expands beyond its normal dimensions, it then contracts, a second time expands, and thus continues, for some time, to oscillate alternately on each side of its original volume. The pulsations or waves whieh are thus engendered in elastic fluids differ from the surface waves produced in the same fluid, and also from the waves that are peculiar to water and other non-elastio fluids in the following particulars:
1st. Aërial waves or undulations consist in the alternate rarefaction and condensation of the air or other gas and are hence called waves of rarefaction and waves of condensation; and
2nd. Aërial waves are always spherical in form.
367. Aërial waves are influenced with respect to interference and combination by the same general laws as govern the surface wave of liquids (See Art. 364), but we must bear in mind that the term rarefaction corresponds to phase of elevation, and condensation to phase of depression.

CHAPTER X.
 ACOUSTICS.

388. Acoustics (Greck "Akouō" "to hear,") treats of sounds, their cause, production and nature, and the laws by which they are governed.
389. Sounds are sensations arising from impressions made upon the auditory nerve by waves or undulations in the surrounding medium.

370, 'All bodies producing sound are in a state of more or less rapid vibration; and theye vibrations, impinging upon the atmosphere or other elastic mediam, produce in it a series of undulations of condensation and rarefaction.
The vibrations of a stretched cord produeing sound may be perceived by placing the finger on it; the vibrations of a sonorous plate by scattering sand uponit, \&c.
371. The intensity of the sound produced by a vibrating sonorous body depends chiefly upon two circumstances:

1st. The density of the surrounding medium, and.
2 nd . The rapidity of the vibration of the sonorous body.
372. Sound is not propagated at all in a vacuum, and the sound produced in atmospheric air by a vibrating sonorous body is much more intense than that produced in hydrogen and other gases of less density than air. On the other hand solid bodies, vapors, water and other liquids of greater density than air, transmit sound with increased energy.

Sounds are not only much louder but ean be hoard to a much greater distance in wator and solids than in air. Thus if the ear be applied to one end of a long beam of wood and the least tapping nolse or even the peratch of a pin be applied to tife other-the nound is distinctly perceived by the car. The report of cannon is said to hate been diatinctiy heard to the distance of 250 miles by appiying the ear to the solid earth. If the ear be placed undor the surface of water, and two pelbbled be knocked together, the sound conveyed to the ear is very loud and it is said that if a cannon be tired close to a body of water in which a person hias his head immorsed, the report is sufficiont to destroy his sense of hearing.
373. All sounds travel, in the same medium, with the same velocity, whatever may be their pitch or their strength.
Were it not for this property of sound-the notes produced by the musical instruments of an orehescra would be discordant, except to those in the immediate noighborhood of the performers.
Note-It has lately been satiafactorily shown that in the case of sounds differing very widely In intensity this in uot strictly true,-very intense sounds travel rather more rapidly than others.
374. The velocity of sound in atmospheric air varies: 1 st. With the temperature, decreasing about $1 \frac{1}{16} \mathrm{ft}$. per lowered.

Note.-The intensity of a sound as beard af a distance is much modified but its velocity is not affected by the condition of the air as to its being clondy.
375. Accurate experiments have determined the velocity of sound in atmospheric air at a temperature of $60^{\circ} \mathrm{F}$., to be 1118 feet per second.
1 376. The velocity of sound in vapors and gases at 32° F., has been determined from calculation by Dulong to be as follows:
䀯。

Carbonic acid	860 fell per second.		
Alcohol vapor,	862		
Oxygen,	1040	"	"
Olefiant gas,	1030	"	"
	1092	"	"
Carbonic oxide,	1105	"	"
Water vapor,	1347	"	"
Hydrogen,	4163	"	

377. The following table gives the results of experiments made upon the velocity of sound in liquids and solids:

In Water, sound travels at rate of 4708 feet per second.
Tin,

Tin,		${ }^{\prime}$	"	8385	${ }^{\prime}$		
Cast Iron,	'	"	"	11609 e	"		
Oopper,	,	"	"*	13416	${ }^{6}$	${ }^{6}$	
Wood,		"	1	16770	14	"	

Note. -That is, in water sound travels 44 times as fast as in air; in wood about 15 times, and in metals from 7 to 12 times as fast.
378. The distance to which sound may be propagated depends upon the following circumstances:
I. The greater the intensity of the sound the greater the distance to which it will travel.
II. The denser the air or other conducting medium the greater the distance to which the sound will travel.
III. In atmospheric air the distance to which the sound will travel is much influenced by the condition of the air as regards winds, \&c.

Ante. 38
379. It has been experimentally ascertained that the following sounds may, under ordinary circumstances, be heard at the annexed distances:

The human voice in the open air, The marching of a compqny of soldiers at night,.. 2500 ft . The marching of a company or squadron of cavalry, 3000 ft .
The report of a musket, 3000 ft .
NoTE-Gleut. Foster conversel with a man, in frosty weather, aeross the harbor of Port Howon, a distance of 11 miles. Dr. Young states that tho watchword "All's well" has been heard from Old to New Glbraltar, n distance of 10 miles. The cannonading of a sea fight between the English and Dutcb in 1672 was heard at Slirowsbury, a distance of 200 miles. Who ear, nonading at tho slege of Antwerp in 1832 was heard In the mines of saxo uý, a distance of 320 miles.
The noise produced by tho volcanic eruptlon in Tomboro in Sumbawa Wha b eard at a distance of 900 miles.
380. When two series of sonorous undulations 'encounter each other in opposite phases of vibration, they interfere, and, if the sound produced by each separately are equal, the interference will be complete, they will destroy each other and produce silence.
381. The phenomenon of interference of sonorous waves so as to produce silence may be conveniently shown in the following manner:
Take two tuning forks of the same note, fasten to tone prong of each a small dise of oard board half an inch in diameter and make one fork rather heavior thain the othor by londing it with a little sealing wax at the ond. Also take a glass jar about ten Inches in height and two inches in dinmeter. Then make one of the forks vibrate, and holding it just above the mouth of the glifss vessel as scen at d, Fiz . 38 , carmfulty pour in water till tho alr In the jar vibrates in unison with the fork and the result will be the productlon of a prolonged nuiform and cloar sound without stop or cessation. When either fork is mado to vlbrato and is held alone over-the jar, we obtain a uniform sound, but when both aro made to vibrate and are at

Fig. 38.
 the sume timo held over the mouth of the Jar there arise a series of sounds alternating with a series of ailences, thls alternation oontinuing as long as the forks are vibrating.
The explanation is simply that the long waves arising from one fork overtake the storter waves produced by the other and alternately interfere and comblye wlith them.
The destruethon of souorons waves by Inferferonce may also bo obacrved by holding u vibyating finlug-fork about in foot from the ear and gradually t urnisp it rallad. Whon tha promge are equally distant from the eari- n note is heard, but when one ls more distant than the ether partial or comploto linterterence takes pince, and the somind hes out in part or alto gether.
382. Sound waves are reflected upon striking any solid
or liqu Art. 3
Nore. undergo

383 ciently betwee these m 384 other u one-nin travels exist ul the ear
If a sel a reflocti tance of the last t If the the reflee them. \mathbf{T} carpeta, are bad n the diffle If a pel loudly at eight eyll vol to the ntterance
385.
repeat monly placed to refle to side.
In a mu wave is a by each re veying an
386. Re towers thi At Ade throe time At Lurl timee.
At Belv barns whs timen.
that the tances, • be

700 ft . 2500 ft . 3000 ft . 3000 ft .
r, aoross the tos that tho Gibraltar, a the English miles. in the mines in Sumbawa
tions 'ention, they separately y will de-
or liquid surface according to the laws enumerated in Art. 363.
Notes.-A certain portion of the sound enters the second medium and undergoos refraction.
383. An echo, is a sound reflected by a surface sufficiently distant to allow a short space of time to intervene between the direct and the reflected gaunds in order that these may not be confounded.
384. The ear cannot distinguish one sound from another unless there be an interval between the two at least one-ninth of a second. In one ninth of a second sound travels 124 feet $(1118 \div 9)$ so that a perfect echo cannot exist unless there be at least 62 feet (half of 124) between' the car and the reflecting surface.
If a sentence be repented in a loud voice at the distance of 62 feet from a reflecting wall the last syllable will be distinctly cohoed.; if at the distance of 124 ft . the last two syllables ; if at tho distance of 186 ft . (62×3) the last three syllables, \&o.
If the reflecting wail is at a less distance than 62 ft. from the speaker, the reflected sounds blend with the emitted so as to prolong and strengttien thom. This is expressed by tho torm resonance. Hangings, draperies, carpets, \&o., about a room tend to smother or stifle the pound, as thoy are bad reffectors. A crowded sudionce hap a similar effect-increasing the difficulty of speaking by presenting non-reflecting surfaces.
If a person stands 1118 feet from a reflocting surface and articulates: loudly at the rate of four syllables per second tho echo will repeat the fast eight syllables olearly; boeause the sound will require two sounds to travol to the reflecting surface and baok to the car, and in two sebonds he gives: utterance to elght syllables.
385. Repeating or mulciplying eehoes are those that repeat the same sound several times. Such echoes commonly occur where parallel walls or other obstacles are. placed opposite each other at a sufficient digistance apart to reflect the sonorous undulations alternately from side to side.
In a muitiplying echo each repetition is loss loud because the reflected wave lis always more feoble than the direct waves so that intemeity is lost by each reflection untill the sonorous undulations become incapablo of convoying any impression to tho ear.
386. Remarkable Echoes.-There is an echo at Vorchères between two towers that repeate a word thirteen times.
At Adernach in Bohemia there is an echo which repeats seven syllables: three times distinctily Ruine there is an ocho which repeats soventecn times. At Belvidere, Alleghany County, N. Y., there ifein echo between twobarms which ropentegletinctly a word of one, two or three ayllables eleven:
timen.

4RTE.
It was the prin is disprc is much differen differen

39 tions
The r or of a

39] produ

398 guisha
I.
II.

III
39:
depen
ducing
bratiol
394
upon
sonoro the de sonoro
Note. wave, al

39
onpeo other
Thus 1 same pll sound p

39 tions

> 4RTs. $390-296$.] MECHANICAL THEORY OF MUSIC.
> It was formerly customary to expiain the action of the car trumpet apon the principie of reflection of the rays or waves of sonnd. This explanation is disproyed by the fact that so long as the extremity remote from the ear is much larger than that appited to that organ, it makes but little or no differenoe what may be the shape of the trumpt. It likewise makes no difference whethergthe interior surface is rough or poilished.

CHAPTER 'XI.

MECHANICAL THEORY OF MUSIC.

390. Noise is the effect of a series of sonorous undulations produced by unequal or irregular vibrations.
The report of a gun, the crack of a whip, the rumbie of a train of cars or of a oarriage on a stone road, \&c., are familiar examples of noises.
391. Musical sounds are the result of sonorous waves produced by equal or regular vibrations.
392. Every sound has three distinct qualities distinguishable by the ear, viz. :
I. The pitch or tone.
II. The intensity.
III. The quality or timbre.
393. The tone or pitch of a sound is high or low and depends upon the rapidity of the vibratory movement producing the sonorous undulation. The more rapid the vibrations are, the higher will be the pitch of the note.
394. The intensity or loudness of the sound depends upon the amplitude of the vibratipns which produce the sonorous wave, or ampulte to the same thing, upon the degree of condensation produced in the middle of the sonorous undulation.
Nors.-A Aund may maintain the same pitch, i. e., the same leng th of wave, and ydt vary in intensity.
395. The quality or timbre of a sound is that preperty onpeculiarity which enabres us to distinguish it from all other sounds of the same pitch and intensity.
Thus if a finto, a piano, a violin, and a alarionst, all sound errote of the aame pitch and with the same intensity, we can readily distinguish the sonnd prodnced by each.
396. Sounds prodaced by the same number of vibrac tions per second ifgend to be in unison. which bear to each other such simple relations as are readily perceived by the ear, and which consequently produce an agreeable impression.
397. A chord consists of two or more melodious sounds produced simultaneously.
398. A haimonized passage consists of a succession of chords following one another in melodious order.
To a cultivated ear a ring of bells is musical or noisy according as ita tonea are musical or unmusical intervals; it. is harmonlous or discordant according as the intervals are concords or dissonances; it will be "cheermajor.or minor.
399. The instruments used for determining the number of vibrations performed by a sonorous body giving a tone of definite pitch, arc the Sirene and Savart's toothed wheel.
The essential parts of the Sirene are a brass tube about 4 inchos in dia-- meter, terminating in a smooth brass plate which has about twenty

Then wire or P. A, the ilx the atrii

40: the no length vibrat numbe string tions pared lengths scale, belongi

Relative Relative

403
use by
Thus t
sound
higher
lower o
401. The Monochord or Sonometer is an instrument used to study the transverse vibrations of cords, and, hence, the relation that subsists as regards number of vibrations, \&c., between the several notes of the musical scale.
ious sounds
succession ler.
cording as ita or discordant II be "cheersordances are
he number ing a tone t's toothed
nchos in diabout twenty d thick plate obliquely in buch a manof the verti∇_{4} hich acts or the tube dich in kept \%s. When a holes in the to the latter f escape for onsequently ty, sonorous afte of wind inereasing eater. The ue to which

5 means of the coge of metal, thus the toothed number ot multiplying It is pertion of the quentiy the tongue to of these is on.
nlied princ 7 the bame to revolve nd experi. m the dial

Fig. 39.

The monochord consists of a thin wooden case SS^{\prime} above which a metallic wire or a cord of catgut FTF' is stretched over the pulley M by the weight P. A movable bridge HH' can be placed at any desired point belween the fixed bridges F and F^{\prime}. The weight P is commonly adjusted so that the string or wire when vibrating its whole length shall give the note C.

402, If the whole length of cord vibrating produces the note C it is found by experiment that when $\frac{8}{8}$ of its length vibrate, the note D is produced; $\frac{4}{5}$ of its length vibrating give the note E, \&c.; and since (Art.) the number of vibrations varies inversely as the length of the string these fractions inverted give the number of vibrations necessary to produce the notes $\mathrm{D}, \mathrm{E}, \& \mathrm{cc}$., as compared with C. The following table gives the relative lengths of cord producing the notes of the common diatonic scale, and the relative numbers of vibrations per second belonging to them.

	c	D	E							
	${ }^{\text {do }}$	${ }^{\text {re }}$	mi	fa	sol	${ }_{\text {la }}$		${ }_{8 i}$		
			${ }^{5}$	d	3	8		18		
mber		9	1	3	3	1		15		

403. It is common to indicate the different scales in uso by means of indices attached to the various notes. Thus the fundamental 0 which corresponds to the highest sound of the base is represented by C' ${ }^{1}$, the successive higher octaves by $\mathrm{C}^{2}, \mathrm{C}^{3}, \mathrm{C}^{4}, \& \mathrm{~s}$., and the successive lower octaves by $\mathrm{C}^{-\mathrm{N}}, \mathrm{C}^{-2}, \mathrm{C}^{-3}$. Sirene or Savart's wheel in unison with it. It has been thus ascertained that the fundamental \mathbb{C} is produced by 128 simple vibrations per second, and by multiplying this successively by $\frac{6}{3}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}$, \&c., we obtain the number of vibrations for the other notes as given in the following table:-
404. The number of vibrations corresponding to the several notes of any superior gamut, is found by multiplyifig, the above numbers by $2,4,8$, \&ce, and for the inferior gamut by dividing by $2,4,8$, \&o.

Norz.-Therecis a slight difference in the actual number of vibrations producing a paiticular note as performed in different cities. Thus the number of tititione required to produce A^{3} varies as follows:-

Theóngital number, 428j.
Orchestra of Berlin Opera, $487 \frac{1}{2}$
Opera Comiquo, Paris,.................... 4272 ,

The General Musical Congress which met in London lastyear (18d0) to consider the propriety of adopting a pulum musical pltoh, fixed opon the number 528 complete vibrationg for 6440 tor A^{3}.
The commisgion ignatiy apo pinted in France have recommended $\mathrm{C}^{2}=$ 622; $=A^{3}=485$. In the rep ${ }^{2}$ numitted bythis committee the foliow. ing pitches were discussed:

Handel's Tuning Fork (d 1040),,$~ A$ at $416=C$ at $499 子$.
Theoretical Pitoh,........it.........A at 4262 = C at 512.
Philharmonic Soclety (1812-42), A at $488=\mathbf{C}$ at $818{ }^{2}$.
Diapason Normal (Paris, 1850), A at $435=\mathbf{C}$ at 588.
Stuttgard Congress (1834) ….......A at $440=\mathrm{C}$ at 528.
Italian Qpera, London, (1859),.....A at $466=\mathrm{C}$ at 546.
Planofortes for privato purposes are usually tuned somewhat below concert, pitch, 80 thist A^{3} is produced by sbout 220 complete pibrations
406. The length of a sonorous vibration is found by dividing 1120 feet, the velocity of sound per second, by the number of vibrations made per second, in order to pro- setting the [t has heen roduced by iplying this he number e following

B. \mathbf{C}

$240,256$.
ing to the by multind for the
to vibrations. " ${ }^{\text {" }}$
"
of vibrations Thus the

*
ear (1800) to xedjpon the
nended $\mathbf{C l}^{2}=$ the follow.
what below oribratlong
found by coond, by er to pro-

Arts. 40-409.] MECHANICAL THEORY OF MUSIC.
duce the note. The following table gives the wave-length of the C of different scales :-

Notes.	Simple Vibrations per second.	Wavelengths
C-3. 16.f.....	
C-2.	32.	? 8.
	64......	\therefore … 178.
${ }^{\text {c }}$	${ }_{256}^{128 .}$	87.
Cl^{3}	512.	${ }^{48}$
${ }_{C}{ }^{\text {c }}$	1024.	$1{ }^{15} 5$.
${ }_{C 6}{ }_{6}$		

7. Interval indicates how much one sound is.higher that onnother in pitch, and is of course greater or less as the afference in the number of vibrations, producing the two souths, is greater or less.
8. Musical intervals are named thirds, fourths, fifths, \&c., from the position of the higher note counting upwards from tho lower, according to the following table, in which the first line gives the name of the note; the second line, the number of its vibrations, as compared with the first note; the third line, the name of the interval; and the fourth line, the interval obtained by dividing each note by that which precedes it.

9 10 18 . 18 . 18 . 18 th. 9 th. 10 th. 11 th. 12 th. 18 th. 14 th. 15 th.
 Note.-The second line of this table must be interpreted thus:-In order to produce the eiecond note, $\mathrm{D}, 9$ vibrations must be made in the same time required by 8 vibrations giving the first note \mathbf{C}; in order to obtain the third note $\mathrm{E}, 5$ vibrations must be in time required by 4 of the first note C and so on; or, taking 24 the least common denominators of the fractions, while the vibrations producing the irst note \mathbf{C} Cuamber $2 t$, those required to produco the successtve following notes will be 27,30 , 82 , $38,40,45,48,60,72,80,90$, and 96 .
409. In examining the foregoing table two points must be earefully noted.
I. There are but three different intervals between the successive notes of the soale, viz., f, to and 18.
II. These intervals occur in the same order in each successive octave.

Ants.
The interval y, being the largest interval found in the scale, is called a major tone; ${ }_{9}^{10}$ is called a minor tone, and 18 is called a semitone, although it is greater than one-half of either a major or a minor tone.

Note.-The interval $1 \frac{8}{8}$ is frequently spoken of as a diatonic semitoie; the difference between a major tone and the diatonic semitone, i. e., $\frac{9}{x}-\frac{10}{8}=\frac{3}{1} \delta^{2}$, is calied a chromatic semitone; the difference between a minor tone and the diatonic semitone, i. e., $\frac{10}{4}-4 \frac{6}{3}=\frac{-2}{85}$, 13 called a grave chromatic semitone; the difference between a major tone and a minor tone, i. e., $\frac{4}{8}-1_{9} 0=\frac{1}{\sqrt{2}}$, is called a comina.
410. The following table exhibits all the intervals that oocur in comparing the notes of the common scale two and two:

$$
\begin{aligned}
& \left\{\begin{array}{l}
C . . D=F \ldots G=A . . B \quad \equiv \frac{h,}{} \quad \text { a major tone. } \\
D . . E=G \ldots A
\end{array}\right. \\
& \text { A. } . \mathrm{F}=\mathrm{B} . . \mathrm{C} \quad=\frac{19}{9} \text {, a minor tone= }{ }^{89} \text { of } \frac{9}{8} \text {. } \\
& =\frac{10}{5} \text {, diatonic semitone }=\frac{2}{26} \text { of } \\
& \frac{1}{9} 9^{2} \text { or } \frac{24}{25} \text { of } \frac{50}{81} \text { of } \frac{4}{5} \text {. } \\
& =\frac{5}{4} \text { a major third. } \\
& =\frac{5}{8} \text { a minor third }=\frac{24}{2} \text { of } \frac{5}{4} \text {. } \\
& =\frac{80}{87} \cdot \text { of a minor third }=\frac{8}{80} 0 \text { of } \\
& \frac{y_{5}}{5}=\frac{3}{2} \text { of } \frac{80}{81} \text { of } \frac{5}{4} \text {. } \\
& \left\{\begin{array}{l}
C . . F=D . . G=E . . A=G . C^{\prime}=\frac{4}{3}, \text { a perfect fourth. } \\
A . D^{\prime}
\end{array}\right. \\
& \text { F..B } \quad=\frac{27}{27}, \text { a } \operatorname{sharp} \text { fourth }=\frac{81}{81} \text { of } \frac{4}{3} . \\
& =\frac{15}{32}=4_{38}^{35} \text { of a perfect fourth. } \\
& \left\{\begin{aligned}
C \ldots G=E \ldots B=F \ldots C^{\prime} & =G \ldots D^{\prime}=\frac{2}{8} \frac{4}{4} \text { of } \frac{8}{80} \text { of } \frac{4}{3} . \\
D \ldots A & =A . E^{\prime}=\frac{3}{3}, ~ a ~ p e r f e c t ~ f i f t h . ~
\end{aligned}\right. \\
& \text { B. . } \mathrm{F} \\
& \text { SC. } A=D . . B=F . . D^{\prime}=G . . E=\frac{64}{46} \text {, an inharmonious interval. } \\
& \left\{\begin{array}{l}
A . . F^{\prime}=B . . G^{\prime} \\
F^{\prime}=F \cdots D^{\prime}=G . . E=\frac{h}{3}, \text { a perfect sixth. }
\end{array}\right. \\
& \text { F.. } D^{\prime} \text { - } \quad=\frac{8}{6} \text {, a minor fifth }=\frac{3}{2} \frac{5}{6} \text { of } \frac{5}{3} \text {. } \\
& \text { C.AB=F..E } \quad=\quad=34, \text { an inharmonious interval. } \\
& \text { D. . } \mathrm{C}^{\prime}=\mathrm{G} . \mathrm{F}^{\prime}=\mathrm{B} . \mathrm{A}^{\prime} \\
& \text { E.. } D^{\prime}=A . G^{\prime} \\
& \text { C.. } \mathrm{C}^{\prime} \\
& =15 \text {, a seventh, an inharmo- } \\
& \text { nious interval. } \\
& =\frac{16}{9}, \text { a flattened seventh, more } \\
& \text { harmonious than the per- } \\
& \text { fect seventh. } \\
& =\frac{8}{8,} \text { a minor seventh }=\frac{24}{26} \text { of } \frac{48}{8} \\
& =i \text {, an octave. }
\end{aligned}
$$

411. Compound chords consist of three or four notes whose vibrations have a simple numerical relation to one another, and which taken together two and two, produce harmony.

Th E an bers two g Accor tions the re
Nots fect ma

41: pitch simila same When into a called

413 to intr tive in tional , the to lowere

414 full tor sult is what is 45. introdu tional D mation or lowe ally- to would r vent thi tioal, t] slightly, as the 1 purposes are tunc
al found in ed a minor t is greater onic semitóne; emiltone, i. e., ace between a ${ }_{3}^{2}$, 13 called a r tone and a
ervals that scale two
$=\frac{88}{8} \frac{1}{3}$ of 9. one $=\frac{2}{2} 4$ of of $\frac{9}{8}$.

新 of 5 . $\mathrm{rd}=\frac{8}{81} 0$ of f $\frac{5}{4}$.
$=\frac{8}{8} 8_{8}$ of $\frac{1}{3}$. ect fourth.
et fifth. s interval.
$\frac{24}{8}$ of 8. s interval. inharmo-
nth, more n the per-
$=\frac{2}{2}$ of $\frac{18}{8}$
ur notes 1 to one produce

Arta. 412-415.] MECHANICAL theory of music. 173

The Perfect Major Accord consists of the three notes C, E and G, whose vibrations are to each other as the numbers 4,5 , and 6 , and which compared together two and two give the relations $\frac{5}{4}$, $\frac{0}{6}$ and $\frac{6}{1 .}$. The Perfect Minor Accord consists of the three notes E, G and B , whose vibrations are as the numbers 10,12 and 15 , and which give the relations $\frac{5}{5}, \frac{5}{4}$ and $\frac{3}{2}$.
Note.-The intervals of the perfect minor differ from those of the perfect major accord only in their order.
412. Any tone whatever in the common scale or any pitch whatever, may be adopted as the basis of another similar scale, provided means be employed to preserve the same relative intervals between the successive notes. When a piece of music is thus changed from one scale into another it is said to be transposed, and the process is called the transposition of scales.
413. In the transposition of scales it is found necessary to introduce additional notes, in order to maintain the relative intervals between the successive notes. Such additional notes are called sharps (\#) and flats (b) according as the tone corresponding to any given note is raised or lowered.
414. When these new notes are interpolated in every. full tone (major or minor) of the diatonic scale, the result is a series of twelve intervals in the octave, forming what is known as the chromatic scale.
415. Temperament is an artifice by means of which the introduction of an inconveniently large number of additional notes into the scale is prexgetted. In the transformation of scales it is assumed that every thote may be raised or lowered by a diatonic semitone 14 , but in order aetually to raise and lower each tone by that amonnt; we would require a very great number of new notes. To prévent this such notes as $C_{\#}$ and D_{b} are regarded as identical, though in reality they differ from one another slightly, and are played differently on stringed instruments, as the harp and violin, by skilful players, For practical purposes nusical instruments such as pianos, organs, \&c., are tuncd so as to divide the octave into 12 equal inter-
vals called chromatic semitones of equal temperament. "It follows from this that all musical intervals except octaves, as played on instruments differ more or less from absolute purity; thus in the following table it will be seen that the minor semitone and the major thirds are all too sharp, and the major semitones, the minor thirds and the fifths, are all too flat.

> Value in equal

True value. : temperament.

Minor third.......... $\frac{8}{8}=1 \cdot 200 \ldots \ldots . .^{12} \sqrt{2^{3}}=1 \cdot 189$
Major third........... $\frac{4}{4}=1 \cdot 250 \quad{ }^{12} \sqrt{2^{4}}=1 \cdot 260$
Fifth................. $\frac{3}{3}=1 \cdot 500 \quad \ldots . . .{ }^{\prime} .{ }^{12} \sqrt{2^{7}}=1=498$
Another mode of explaining what is meant by temperature the following:-

While the key note makes 1 vibration, the major third must make $\frac{5}{4}$ vibrations, the major third of this note must make of $\frac{5}{4}=\frac{25}{1} \frac{1}{8}$ vibrationg and the major third of this last note $\frac{5}{4}$ of $\frac{5}{4}$ of $\frac{5}{4}=\frac{182}{84}$.' This last note does not accord perfectly with the trpe octaveswich is 2 or $\frac{128}{28}$. If then we keep the octave pure we cannot tetain the purity of $_{\text {w }}$ the thirds, and the same occurs with respect to the fifths. In ofrder therefore, to retain the octaves pure we have to raise or lower the thirds and fifths somewhat above or below their normal tone. This balaneing or suffering the note to float somewhat over or under its proper tone is. called tempering.

The subject of temperament is a very extensive one, and the student is direeted for its full investigation to any of the standard works on musio.
Nort.-If the ear were more eensitive than it ia, it would be eq unplea. samly affected by the impurity of the thirds and fifths, as almost to preciqde any enjoyment frommusical performances.
416. When two sounds, not in unison, arg produced at the same time, alternations of strength and feebleness are perceived. These alternations follow each other af regular intervals, and are called beats. The nearer the yibrations agree if rapidity, the longer is the intervald cen the beats; when the unison is perfect no beat oceurs; and
(ARt, 416. ent. ${ }^{\prime}$ It octaves, absolute that the 0 sharp, se fifths,
in equal rament.
$=1.060$ $=1.189$
$=1.260$
$=\mathrm{I}, 498$ empera-
or third te must of this t accord If then urity of w te fifths. have to re or ${ }^{\text {b }}$ ring the tone is
one, and 0 any of so unplea. ost to preluced at ness are regular brations cen the rg; and

ARTs. 417-421.] MECHANICAL THEORY OF MUSIC.
when the vibrations differ widely in rapidity they produce merely an unpleasant rattle.
417. The tuning fork or diapason is a two-pronged steel fork of peculiar form, by means of which we can produce an invariable note. It is commonly formed to give A^{3}, corresponding to 428 vibrations per second, but may be made so as to give any other note of the gamut. It is much used as a standard in tuning instruments, or striking the key note in vocal music, \&c.
Notr.-The note given by the diapason is much strangthened by mount ing it on a box of thin wood open at one end.

MUSICAL INSTRUMENTS.

418. Musical instruments may be for the most part 'divided into-
I. Wind instruments.
II. Stringed instruments
III. Instrumentsof which the essential part is a stretched nembrane.
4a Wind instruments are sounded either by an embouct de like the flute, organ; pipe, flageolet, \&c., or by reeds'w .the Jew'sharp, clarionet, melodeon, horns, trumpets, trombones, \&c.
419. Stringed instruments are all compound-the sounds produced by the vibrating string being stre thened by elastic plates of wood or metal and inclosed portions of air to which the cords transmit their own vibrations. Stringed insitruments are played--
I. By a bow as in the violin.
II. By petreussion as in the piano, or
III. By twanging an in the-harp.
420. The third class of musioal instruments inolưdes drums, tambourines, 80 . Drums are of three kinds, - the small drum or common regimental drum, which is a brass cylinder liayjng both heads covered with membrane but beaten only at one end; the base or double drum which is much larger, and Which is beaten at both heads; and. the kettle drum which is ac hemispherical copper vessel supported on a tripod, and having its head coveted with
vellum. The kettle drum has an opening in the metallio case to equalise the vibrations.
421. In all wind instruments the sounds are produced by throwing the column of air contained in tubes into vibration. The pitch of the sound produced depends upon:-

1st. The length of the tube containing the air.
2nd. The position and dimensions of the embouchure.
3rd. The manner of imparting the primary motion to the air.

The difference of quality belonging to the notes given by pipes of different materials is due most likely to a feeble vibration of the sides of the tube.
423. Sonorous vibrations are produced in tubes-
I. By blowing obliquely into the open end of the tubet as in the Pandean pipe.
II. By casting a current of air into an embouchure. near the closed end of the tube as in mouth pipes.
III. By thin laminæ of metal or wood placed at the end of the tube and which vibrate as the current of air sweeps past. These laminæ are called reed.
IV. By the lips acting as reeds.
V. By a small burningخjet of hydrogen gas.
424. The laws that govern the vibration of air in tubes were investigated by Bernoulli in 1782. He divides all tubes into two classes.

1st. Tubes having the extremity opposite the mouth closed.

2nd. Tubes open at both extremities.
For tubes with the end remote from the mouth closed he gives the following taws:-

1. The same tube may produce different sounds and in this case the number of vibrations will be to each other. as the odd numbers $1,3,5,7,9, \& 0$.
II. In tubes of unequal length sounds of the same order correspond to the number of vibrations and these are in inverse ratio to the length of the tube.

11H. The edumn ol arivilorating in a tube is divided

425
sounds, a voice Man al power 0 articula
426. lowing
I. T
muscles
a currer
II. 'I
air from cerned i
III.
organ of musical
IV.
the top

RTS. 422-424. e metallis produced es into videpends puehure. motion to
otes given kely to a
res-
\because the tube abouchure s.
ed at the ent of air
r in tubes livides all
he mouth
th closed
ds and in ach other
ane order se are in

Arts. $42 \mathrm{~F}-42 \mathrm{~T} . \mathrm{]}$ TIIE ORGANS OF VOICE.
into equal parts which vibrate separately and in unisonthe open orifice being always in the middle of a vibrating part, and the length of a vibrating part equal to the length of a wave corresponding to the sound produced.

For tubes open at both ends the foregoing laws prevail with the following modifications:
I. The sounds produced are represented by the natural numbers $1,2,3,4,5,6,7$, \&c.
II. The fundamental sound of a tube open at both extremities is'always the acute octave of the same sound in a tube closed at one extremity.
III. The extremities of the tube are in the middle of a vibrating part.

CHAPTER XII.

TIIE ORGANS OF VOICE AND HEARING.

THE ORCANS OF YOICE.

425. Many animals have the power of producing sounds, and as a general rule those that are endowed with a voice have also the organ of hearing well developed. Man alone, however, possesses the gift of spoech, i. e., the power of giving to the tones he utters a varicty of definite articulate sounds.
426. The vocal apparatus of man consists of the following parts :-
I. The Thorax, which, by means of the intercostal muscles and the diaphragm, acts as a bellows in producing a current of air for the production of sounds.
II. The Windpipe, which is a long tube carrying the air from tho lungs to the organs more immediately conth cerned in forming the voiee.
III. The Larynx (Adam's apple), which is the musical organ of the voice, and corresponds to the mouth-piece of a musioul instrument.
IV. Tur Phanynx - a latge-fimmel-shaped cavity at the top of the larynx or at the bark of the mouth, which
by varying in form and tension modifies the tones of the voicte.
V. The mouth and nasal passages, which correspond t) the upper part of an organ tube ${ }_{2}$ and throw the vibrations into the air.
427. The larynx is composed of the hyoid bone, and its attached cartilages, viz., the two, thyroid, which form the sides and front of the larynx, and which constitute the

Ants.

sides
tact, passin what and tl the so tions, of tens or sela and ar
Note.
sound as
431
conneg the per
length
inch, a to thei male,
length about $\frac{1}{8}$ of the tones, al
distinct
voice m
notes co
vocal con
an inch
follows t cords re not be: more tha Note.to sound 10 as the oom could pound of t of an in witt prechet
492. ! quently sexies up
, are two end from cartilages omewhat an open; but by the open wo vocal length ${ }_{i}$ opening tidis, or r of the olds just is much covered p ealled d lower icles of e vocal ff yoice hat the
sides rather than the edges of the vocal cords are in contact, and while the ligaments are thus in contact, the air passing through the larynx sets them in vibration, somewhat like the reed of a clarionet or the tongue of a trumpet, and the result is the production of a sound. The pitoh of the sound depends of course on the rapidity of the vibrations, and this is governed by the length and the degree of tension of the vocal cords. The vocal cords are tightened or celased by recins of the muscles that act on the thyroid and arytenoid cartilages.
Note:-Somo physfologistin regard tho return of the glottis in producing sound as analogous to that of a bird call.
431. One of the most remarkable circumstances in connection with the organs of voice and their action is the perfect precision with which the will can determine Dthe dugree of tension of these ligameitsts. Their average length while in repose ist in the adult male about $\frac{73}{103}$ of an inch, and in the adult female $\frac{51}{10 \pi} ;$ and when stretched to their utmost capacity their, length is only ${ }^{9}{ }^{93}{ }^{3}$ in tho male, and $\frac{13}{103}$ in the female: The extreme difference of length is therefore about $\frac{\pi}{5}$ of an inch in the male, and about $\frac{1}{8}$ of an inchin the female. The average compass of the cultivated voice is about tiono octaves or 24 semitones, and as a practised singer canf produce at least 10 distinct intervals within each semitone, the rauge of the voice may be said to be 240 notes. Each of these 240 notes corresponds to a different degrec of texasion of the vocal cords; and as the utmost limits of tension are $\frac{1}{8}$ of " an inch in the male and $\frac{1}{4}$ of an inch in the fenale it follows that in man the difference in length of the vocal cords required to pass from one interval to another wills not bojnore than ríd of an iuch, and in woman not

Noxe.- Hdasaid"that the colebrated vocalist Madamo Mara was ablo to sound 100 thrierent notes within each interval of the diatonics was ablo as the compass of hor volce was 20 tones, tho wholanumber of notes. sho of of an inch, It may henco le comprised within tho extreme varlation wiff precision tho contragtion of tho vocal cords to tho
482. The larynx is about thr quently the vocal cords are about the same length in both sexcs up to the age of 14 or 15 years; hawcever from that
433. The difference of timbre or quality in different voices, appears to be chiefly due to the difference of flexibility and smoothness in the cartilages of the larynx. Women and children have these cartilages smooth and flexible, and hence their voice is smooth; men, of the contrary, have cartilages which are harder, and sometimes completely ossificd, and hence the roughness-the want of flexibility of their voices.
434. The loudness of the voice depends principally upon the force with which the air is expelled from the chest, but in part also the resonance produced by the other parts of the larynx and the neighboring cavities.

Nore.-In the howling monkeys of South America there are several hollow pouches which open from the larynx, and one in the hyoid bous (which is greatly enlarged). The voice of this variety of monkey is said to be louder than the roar of the lion.
435. Voices are divided by musicians into the following elasses :-

Double vibrations per second made by vocal cords.
Fomalo voices, $\left\{\begin{array}{l}\text { Soprano. } \\ \text { Mezzo-Soprane. } \\ \text { Contralto. }\end{array}\right.$
Male voices, $\left\{\begin{array}{l}\text { Tenor. } \\ \text { Baritone. } \\ \text { Base. }\end{array}\right.$

From 1056 to 264.
$\begin{array}{llll}" & 930 \\ \text { " } & 220 . \\ & 704 & & 176 .\end{array}$
Male voices,
" 528 " 132.
" 352 " 110.
Note.-Inspeaking, the range of the voice is limiteit to $820^{\prime 2}$. octave, in alinging, to about two octaves. Occasionally a person may hr met with who has cultivated his volce so as to roach through three octaves. The entire range of the human voice, taking both male and female together, may be said to be ubout four octaves.
436. Birds have a true larynx which is often very complex, and which is placed at the lower extremity of the trachea, just where it branohes into the bronchial tubes. The upper end of the trachea opens into the pharynx by a mere slit. Birds in which the true orlower larynx is ablsent, are necessarily'voiceless. In the eat the upper and

$$
437 .
$$

three p
I. T
II. $]$ tower vocal cords are aimost equally developed, and hence the varicty and range of its voicc. The horse and ass have

Arts
only cause their their air to to ma
henoe it
slight m

Arts. 433-486i
Arts. 437, 438.]
THE ORGANS OF HEARING. 181
only two vocal cords. The sounds produced by insects are caused by percussion or by rubbing the horny sheaths of their wings or legs together, or by the rapid vibrations of their wings; or by the contraction and expansion of their air tubes, which forees the air through their orifices so as to make it whistle.

vertical bection of the organ of hearing.
437. The organ of bearing in man is composed of three parts, viz. :-
I. The External Ear or Pinna.
II. The Middle Ear or Tympanum.
III. The Internal Ear or Labyrinth :-
438. The External Ear consists of two parts.
I. The Pinna or Pavilion ($a b c$), also called tho ala or *wing and the auricula.
II. The Méatus Auditorius, or auditor oanal (d). Both the pinna and the auditory canal are cartilaginous in structure, but are abundantly-supplied-with vessels, and hence it is that the ears tinglo and rodden even with very slight mental emotion. The pinna colleots the waves of

Art, 4
sound and direats them inward to the tympanum, through the auditory canal. The precise purpose served by the numerous prominences and depressions on the pinna is not satisfactorily known. The auditory canal is about an inch long in the adult, and extends from the pinna to the drum or tympanum. Its entrance is guided by hairs; and further, to prevent the intrusion of insects, there is a very bitter and somewhat fetid wax secreted along its entire length.
Nores.-Many animals possess tho ability to turn their external earso in different directions, the better to collect the soniferous waves; and it is worthy of remark, that beasts of prey can turn their ears forward with most facllity, while timid animals commoniy keep thoir ears directed backwards so as to guard against the approach of danger from behind, their eyes serving to keep them warned of wiat is going on in front.
439. The Middle Ear; or tympanum or tympanic cavity is a somewhat hemispherical cavity, about half-inch diameter; it is placed in the temporal bone, extending from the drum to the vestibule, and is fillod with air. The parts of the middle ear are :-
I. The Membrana Tympani, gr drum of the ear.
II. The Eustachian Tube.
III. The four small bones of the ear.

The membrana tympani is placed obliquely aeross the inner end of the auditory canal. It is thim and oval, and is placed at an angle of 45°, its oatward plane looking forwards and downwards:

The Eustachian tube is a membraneous canal leading from the middle ear downwards and forwards into the pharynx, with which it communicates ?by means of a valvular "opening that is generally clased. It gives exit to the mucuis which forms in the middle ear, and also permits the entranee of air into thatympanic cavity; when closed by a cold, it eauses partial deafness.

The ossicles of the tympanumare four small banes which connect the membrana tympuni with the fenestra ovalis. "They are shown magnified in the Fig., and-are named-from-their shapes; the mulleus or hammer, m, the incus or anvil, i,

Fig. 41.

the os
the bc the m thase ovalis repres ment 44
excav: body.
I.
II.

III
Th
bone.
teries
cavity
memb (o, Fi_{8}
(r, Fi_{2}
The
ber, p
upper
are pl
one an
by a 1
sames
The
Fig. 4 ral cs
form 0 volutio and a lar.
two
(the
fuiti
passag there
n, through ed by the pinna is 3 about an ana to the by hairs; there is a along its
sternal ears . es; and it is ortward with ars directed rom behind, front. tympanic : half-inch extending air. The
ar.
cross the oval, and e looking
l leading into the ans lof a ives exit also pery ; when
the os orbiculare or round bone \dot{o}, (the smallest bone in the body), and the stapes or stirrup, s. The handle h of the malleus is fastened to the membrana tympani, and the Hase of the stapes to the membrane covering the fenestra ovalis. The bones are joined to one another in the position represented in the figure, and are capable of slight movement by means of attached musclès.
440. The labyrinth or internal ear has its channels excavated in the petreous bone, the hardest of any in the body. It consists of the following parts:-
I. The Vestibula.
II. The Semi-circular Canals.
III. The Cochlea.

The vestibule (l) is a chamber formed in the petreous bone. Various branches of the auditory nerve and of arteries pass into it, and it is connected with the thonanic cavity by means of two orifices which are covered trith membranes, wiz. the fenestra ovalis or oval window (o, Fig. 42), and the fenestra rotunda or round window (r, Fig. 42).

The semicircular canals (x, y and z) are three in tumber, passing from and returning into the vestibule in the upper posterior part. They are placed at right angles to one another, and are each filled ${ }^{x}$ by a membraneous canal of the same shape, containing fluid.

The cochlea (snail shell), n Fig. 40 and \% Fig. 42, is a spiral cavity, h,ving the exact form of a snail's shell, the convolutions making just two turns and a half around a central pillar. The canal is divided into two plesages by a partition (the lamina spiralis), which ruag its entire-length. - These passages do not pommunicate except at thetop, "haye' there is a small opening through the partition; at the lot
end (corresponding to the mouth of the snail shell) they terminate separately, one with the tympanic cavity by moans of the fenestra rotunda, and the other opens freely
into the vestibule.
441. The whole interior of the labyrinth is lined by a delieate membrane, on which the auditory nerve is minutely distributed. Small looped fibrils of this nerve depend from the lamina spiralis, and float in the watery liquid which fills the cochlea as well as the other parts of' the labyrinth.
442. The functions of the different parts of the ear are terw 1 waves of sound are collected in the pinna or extion. ${ }^{\text {apon }}$ the membrana tympani throw it into vibra-
II. The chain of small bones connecting the membrance tympani with the membrane that cover the fenestra ovetis receives the vibrations from the drum or membrana tympani, and transmits them aeross the tympanic cavity through the fenestra ovalis into the vestibule.
III. The vibrations which are thus excited in the fluid which fills the vestibule, semi-circular canals and cochlea, are received by the expanded filaments of the auditory nerve, and the sensation of sound is thus transmitted to the brain.
443. Careful experiments have determined the following principles with regard to the transmission of vibrations from one medium to another, and a due consideration of these will explain the arrangement of membranes, and solids, and fluids in the car.
I. Atmospheric vibrations lose much of their intensity when transmitted directly either to solids or liquids.

II: The intervention of a membrane greatly facilitates the communications of vibrations from air to liquids.
III. Atmospheric vibrations are readily communicated to a solid, if the latter be attached to a membrane so placed that the vibrations of the air act upon it.
is capa comple are ma i. e., dd ciated tions p
Note. from side
446. cated in Birds the sam increly

Repti iniddle ϵ in color, phospha

Fishes membrar mounted number.

The e and havi surface,

NTs. 441-443.
hell) they cavity by rens frcely
ined by a ve is mithis nerve he watery r parts of
he ear are
na or exanal, and to vibra-
embrance ra ovelis na tymcavity
the fluid cochlea, auditory itted to
followf vibra-nsiderabranes,

Itensity
ilitates
nicated ane so

Arts. 444-446. . THE OhGANS OF liEARING.
IV. A solid body fixed in an opening by a border nembrane so as to be movable, communicates sonorous vibrations from air on one side to water or other similar fluids on the other, much better than solid media not so constructed.
444. The peculiar functions of the semi-circular canals and of the cochlea, are not very well known. As the former are always placed at right angles to each other, occüpying the position of the bottom and two sides of a cube, it has been supposed that they enable us to jndge of the direction of sound: it is also deemed highly probable by physiologists that the cochlea serves to give us the idea of the pitch of sounds.
445. According to Savart the most grave note the car is capable of appreciating is formed by from seven to cight complete vibrations per second. When fewer vibrations are made per second, they are heard as distinct sounds, i. e., do not produce a note. The most acute note appreeiated by the ear is produced by 36500 complete vibrations por second.
Note.-The interval la is said to be heard by rapidly moving the head from side to side, owing to the notions of the small bones of the ear.
446. The mechanism of hearing is not equally complicated in all classes of animals.

Birds hade the internal and middle ear constructed on the same general plan as man, but the external ear is nerely a circlet of fẹathers.

Reptiles have no external ear, and in many cases no middle ear. The fluid in the vestibule is rendered milky in color, owing to the abundance of minute crystals of phosphate of lime.

Fishes have no external or middle car, but simply a membraneous vestibule situated in the skull, and surmounted by semi-circular canals from one to three in number.

The ear of the mollusk is simply a sack filled with liquid, and having the auditory nerve expanded upon its juner surface,

The position of the organs of hearing in insects is not
11. \mathbf{T}
12. A

1
13. If
15. W
15. In
16. In
17. A
18. At
19. An

18
2n
3 r
4 tl
50
20. A
21. Th
22. In
23. If
10. The piston of a low pressure steam engine has an area of 360 inches and makeg $1 \$$ strokes of 7 feet each per minute, the pressure of theateam on the boiler being 40 lbs . to the square inch. Required the horse power of the engine.
sects is not r, have the
latitude of ? and the arm ument what
be cylinders cee pump is one anothem plied to the wire will be der?
velocity of
ond.
the ground.
tve the same ascent.
4 feet wide y of 27 feet 16 feet, how rge hammer the stroke
axles are $3 \ddagger$ ins a weight
ning a preswater before
levar 9 feet what is the
ag 70 cubic
an area of per minute, 0 lbs. to the - engine.
11. Through how many feet will a power of 7 lbs , moving throngh 120 feet, carry a weight of 29 lbs.?
12. A train weighing 75 tons is drawn along an inclined plane with a uniform velocity of 40 miles per hour, assuming the inclination of the plane to be in 100 , and taking friction and atmospheric resistance as usual, what is the horse power of the engine :-
1st. If the train is ascending the plane?
2nd. If the train is descending the plane?
13. If a body weighing ' 7 Ibs. at the surface of the earth be carried to a distance of 30,000 miles from the earth, what will be its weight?
15. With what velocity per second will water flow from a small aperture in the side of a vessel, the fluid level being kept constantly 12 feet above the centre of the orifice?
15. In a hydrostatic bellows the tube has a sectional area of $1 \frac{1}{2}$ inches, the area of the board is 37 inches, and the tube is filled with water to the height of 28 feet, what npward pressure is exerted against the board of the bellows?
16. In a differential wheel and axle the radii of the axles are 1 ? and $2 \frac{1}{4}$ inches, the radius of the wheel is 40 inches, what power will sustain a weight of $8,700 \mathrm{lbs}$.?
17. A clock is observed to lose 17 minutes in 24 hours, how much must the pendulum be shortened in order that it may keep correct time?
18. At what height will the mercury stand in a barometer at an elevation of 3.5 miles?
19. An upright flood gate of a canal is 17 feet wide and 13 feet deep, the water being on one side only and level with the top; required the pressure :-
1st. On the whole gate.
2nd. On the lowest three-fifths of the gate.
3rd. On the middle three-fifths of the gate.
4th. On the upper fonr-elevenths of the gate.
5th. On the lowest five-twelfths of the gate.
20. A piece of stone weighs 23 oz . in air and only 14.7 oz . in Water ; required its specific gravlty.
21. Through how many feet will a body fall in 21 seconds down an incline of 7 in 16 ?
22. In a compound lever the arms of the power are $9,7,5$, and 3 feet, the arms of the weight 3, 2, 1, and feet, the power is 11 lbs ; required the weight.
23. If mercury and milk are,placed together in a bent glass tube or syphon, and if the column of mercury is $7 \cdot 9$ inches in length, what will be the length of the column of milk ?
24. In a hydrostatic press the sectional areas of the cylindersare to one another as 1111 to 2, the force pump is worked by means of a lever whose arms are to one another as 17 to 2 , and the power applied is 123 lbs.; what is the upward pressure exerted against the piston in the large cylinder?
25. In a differential screw the pltch of the exterior screw is $\frac{1}{7}$ of an inch, that of the interior screw is in of an inch, the lever is 25 inches long and the power applied is 130 lbs ., what is the pressure exerted?
26. A seconds pendulum is observed when carried to the summit of a mountain to lose 3 seconds in an hour; what is the teight of the mountain?
27. Through how many feet will a heavy body fall during the 10th, the 7th, and the 6th seconds of its descent?
28. In what time will an upright vessel 20 feet high and filled with water; empty itself through an aperture, in the bottom, three-fifths of an inch in area, the vessel containing 250 gallons?
29. A train weighing 80 tons is drawn along a level plane with a uniform velocity of 20 miles per hour, taking friction and atmospheric resistance as usual, what is the horsf power of the locomotive?
30. What is the weight of the milk contained in a rectangular vat 11 feet long, 7 feet wide, and 3 fcet deep?
31. What would be the height of the mercury in the baromoter at an elevation of $29 \cdot 7$ miles?
32. What power will support a weight of 666666 by means of an endless screw having a winch 30 inches long, an axle with a radius of 2 inches, and a wheel with 120 teetfir
33. How much work is required to raise 29 tons of coal from a mine 1120 feet deep?
34. With what velocity does a body move at the close of the 27th second of its descent?
35. What is the entire pressure exerted upon the body of a fish having a surface of 11 square yards and being at a depth of 140 feet?
36. How mudh water will be discharged in one hour through an aperture in the side or bottom of a vessel, the water in the vessel being kept at a constant height of 17 feet above the centre of the orifice, and the area of the latter being seven-elevenths of an inch?
37. How many cubic feet of water can a man raise by means of a chain pump from a depth of 120 feet in a day of 8 hours?
38. If a stone be thrown down an incline of 11 in 100° with an initial velocity of 140 feet per second, what will be its velocity at the 10th second of its descent, and through how many feet will it fall in 21 seconds?
39. At what rate per bour will a train weighing 120 tons. be drawn up an incline of $\frac{1}{3}$ in 100 by an engine of 90 horse power, taking friction as usual and neglecting atmospheric resistance?
40. A water-wheel is driven by a stream 4 feet wide and 3 feet deep, the fall is 40 feet and the velocity of the stream $38 \frac{1}{2}$ feet per minate-if the modulus of the wheel is 63 , what number of gallons of water will it raise pep hour from a depth of 270 feet?
41. In a system of movable pulleys a power of 2 (lbs. sustains a weight of 64 lbs ; how many movable pulleys are there? 1 st . If the system be worked by one cord? 2nd. If there are as many cords as movable pulleys?
42. At what rate per hour will a borse draw a load whose gross weight is 1800 lbs . on a road whose coefficient of friction
is $\frac{1}{25}$?
43. In a high pressure engine the piston has an area of 600 inches and makes 30 strokes of 5 feet each per minute; what must be the pressure of the steam on the boller in order that the engine-may pump 1000 gallons of water per minute from a mine whose depth is 270 feet-making the usual allowance for friction and the modulus of the pump?
44. The barometer at the summit of a mountain indicateg a pressurc of $21 \cdot 73$ inches while at the base it indicates a pressure of 29.44 inches, what is the height of the mountain, taking the mean temperature of the two stations as 63.70?
45. If a stone be thrown vertically upwards and again reaches the ground after a lápse of 16 seconds, to what height did it rise?
46. In a composition of levers the arms of the power are $8,4,2$, and 7, the arms of the weight are $3,1, \frac{1}{2}$, and 4 ; what weight will be sustained by a power of 29 lbs.?
17. A plece of wood which weighs 17 oz . has attached to it a metal sinker which weighs $13 \cdot 7 \mathrm{oz}$. in air and $8 \cdot 6 \mathrm{oz}$ in water-the united mass weighs only 5 of an ounce in γ Water; what is the specific gravity of the wood?
48. What must be the area of an aperture in the bottom of a vessel of water 18 feet deep and kept constantly full in order that 27 cubic feet may be discharged per hour?
49. How many tons of coal will be raised per day of ten hours from a mine whose depth is 400 feet, by a low pressure engine in which the piston has an area of 1200 inches and makes 20 strokes of 6 feet each per minute, the pressare 50. What the steam on the boiler being 45 lbs. to the sq . Inch ? screw having a pitch of a ${ }_{2}^{z}$ y of an inch and a power lever 9 feet two inches in length?
51. In what time will a pendulum 50 inches long vibrate in the latitude of Canade?
52. In a lever whose power arm is $8 \frac{1}{2}$ times as long as the arti of the weight, what power will sustain a weight of 729 lbs .?
63. A train weighing 130 tons is drawn along an incline of $\frac{1}{6}$ in 100 with a uniform velocity of 25 miles per hour; taking friction and atmospheric resistance as usual, what is the horse power of the locomotive :-
1st. If the train is ascending the incline.
2nd. If the train is descending the incline ?
54. A seconds pendulum is observed to loes 40 seconds in 24 hours on the summit of a mountain frequired ita height.
55. A body is fired vertically with an initial velocity of 2000 feet per second; it is required to find:-
1st. Where it will be at the ead of the 120th second.
2nd. How far it will rise.
3rd. In what space of time it will again reach the ground. 4th. Its terminal velocity.
5 th. In what other moment of its flight its velocity will be the same as at the end of the 49th second.
56. In a wheel and axle the radius of the axle is 3 inches and a weight of 247 lbs . is sustained by a power of 17 lbs ; what is the radius of the wheel?
57. With what velocity does water flow from a small aperture in the side or bottom of a vessel, the fluid level being kept constant at 40 feet above the centre of the orifice?
58. In a train of wheel work there are four wheels and four axles, the first wheel and last axle being plain, 1. e., without cogs, and having radii respectively of 12 and 2 feet-the second wheel has 70, the third 80, and the fourth 100 teeth : the first axle has 8, the second 7 , and the third 11 leaves; with this machine what weight will be sustained by a power of 130 lbs.?
60. To what depth may a closed empty glass vessel capable of sustaining a pressure of 200 lbs . to the square inch be sunk in water before it breaks?
60. In a
a
61. Hon

0
62. Whe
b
ti
63. A tr of
m
w
64. A ba
su
in
65. On a pl
66. What
rev
rev
67. What 23.
68. If ab
the
1st
2nd
69. In a
incl lbs
70. In whe
trai
of 3
phe,
larl.
71. An eng
from
time
of 3
72. In a hy
are
by a
upw
powe
ten hours w pressure inches and pressare sq. lnch ? leans of a wer lever ate in the 8 the artin weight of
ine of $\frac{1}{6}$ in r; taking hat is the
nds in 24 ts beight. y of 2000

d.

ground.
y will be
bes and a f 17 lbs.;
aperture rel being orifice? and four , without feet-the urth 100 third 11 sustained
pable of inch be
60. In a differential wheel and axle the radii of the axles are $1 \frac{2}{2}$ and 18 inches : a power of 2 lbs . sustains a weight of 749 , what is the radius of the wheel?
61. How fony units of work are expended in raising 247 tons of coal from a depth of 478 feet?
62. What is the horse power of an upright water wheel worked by a stream 5 feet wide and $2 \frac{1}{1}$ feet deep, the velocity of the water being 110 feet per minute, the fall 6 feet, and the modulus of the wheel $\frac{1}{5}$?
63. A train weighing 140 tons ascends a gradient having a rise of $\frac{1}{} 100$; taking friction as usual and neglecting atmospheric resistance, what is the maximum speed the train will attain if the horse power of the locomotive be 150 ?
64. A barometer at the summit of a mountain indicates a pres sure of $21 \cdot 4$ inches, while at the base the pressure is $30 \cdot 2$ inches, what is the height of the mountain?
65. On an incline of 7 in 100 what power acting parallel to the plane will sustain a weight of 947 lbs. ?
66. What centrifugal force is exerted by a ball weighing 40 lbs. revolving in a circle 20 feet in diameter and making 140
67. What is the specific gravity of a piece of metal which weighs 23.49 oz . in air and only 18.12 oz . in water?
68. If a body be thrown vertically upwards and again reaches the ground in 22 seconds-
1st. With what velocity was it projected? 2nd. How far did it rise?
69. In a screw the pitch is T^{4} of an inch, the power lever is 40 inches long; what power will sustain a weight of 95000
70. In what time will an engine of 120 horse power, moving a train whose gross weight is 100 tons, complete a journey of 300 miles, taking friction as usual, neglecting atmospheric resistance, and assuming the rail to ascend regu-
71. An engine of 60 horse power raises 50 tons of coal per hour from the bottom of a mine 200 feet deep; and at the same time causes a forge hammer to make forty lifts per minute of 3 feet each : required the weight of the hammer.
72. In a hydrostatic press the sectional areas of the cylinders are to one another as 1411 to 3 , the force pump is worked by a lever whose arms are to one another as 28 to 3 , the upward pressure required is 9000 lbs ; what must be the power applied?
73. In a differential screw the pitch of the exterior screw is 3^{3} and that of the inner screw $\frac{1}{17}$ of an inch, the power lever is 6 feet 8 inches in length; what pressure will be exerted by a power of 19 lbs ?
74. A piece of nickel (spec. grav. 7•816) weighs 24 grains in air and only 16.4 grains in a certain liquid; required the specific gravity of the liquid.
75. In a differential wheel and axle the radii of the axles are $1 \frac{1}{4}$ and $1 \frac{3}{s}$ inches, the radius of the wheel is 42 inches; what weight may be sustained by a power of 23.7 lbs .?
76. What gross load wiil a horse draw when travelling at the rate of 31 miles per hour on a road whose coefficient of friction is $1 \frac{1}{16}$?
77. A body has descended through $a+x$ feet when a second body commences to fall at a point 2 m feet beneath it ; what distance will the latter body fall before the former passes it ?
78. On an incline of in 70 what power acting parallel to the plane will sustain a weight of 4790 lbs ?
79. When a body has fallen 7000 feet down an incline of 7 in 20 what velocity per second has it acquired?
80. A body weighing 100 lbs. and moving from south to north with a velocity of 6 G feet per second comes into contact with another body which weighs 430 lbs . and is moving from north to south with a velocity of 20 feet per second, and the two bodies coalesce and move on together; required the direction and velocity of the motion of the united mass.
81. An engine of 21 horse power "pumps 40 cubic feet of water per hour from the bottom of ${ }_{\text {a }}$ a mine whose depth is 200 feet and at the same time draws coals from the bottom of the mine; required the tons of coals drawn up per hour.
82. In a system of pulleys worked by several cords, each attached by both ends to the pulleys, there are 8 movable pulleys and as many separate cords; what weight will be sustained by a power of 73 lbs .?
83. A body weighing 20 lbs . and moving at the rate of 47 feet per second comes in contact with another body weighing 270 lbs . and moving in the same direction with the velocity of 30 feet per second; required the velocity and momentum of the united mass.
84. In what time will an engine of 150 horse power draw a train whose gross weight is 90 tons through a journey of 220 miles, taking friction as usual, and neglecting atmospheric resistance, one half of the journey to be on a level plate and the other half up an incline of in in 100 ?
85. In
86. At
87. If
i
8
88. In a
\mathbf{a}
tl
${ }^{\mathbf{e}}$
89. If a
of
W
Ve
80
pe
ge
tui
90. What

C
mi
91. What deI boc
22. A pie it 30 . wal req
93. What feet 94. How
95. What
a hi weit the 06. What emb the I
85. In a common whecl and male a power of 7 lbs. sustains weight of 974 ; the radius of the wheel is 51 inches, what is the radius of the axle?
86. At what height would the mercury stand in a barometer placed at an elevation of $43 \cdot 2$ miles above the level of
the earth?
87. If a hody be projected down an incline of 7 in 12 with an initial relocity of 40 feet per second, through how many feet will it move during the tenth second, and over what space will it have passed in 23 seconds?
88. In a ligh pressure engine the piston has an area of 360 inches and makes 17 strokes of 5 feet each per minute; taking the pressure of the steam on the boiler as equal to 56 lbs . to the square inch, what are the horse powers of the
engine? engine?
89. If a hody weighing 111 lbs . moving to the east with a velocity of 90 feet per second come in contact with another body which weighs 70 lbs . and is moving to the west with a veloclty of 40 feet per second, and after the two have coalesced they come in contact with a third which weighs 80 lbs . and is moving to the east with a velocity of 20 feet per second, and the three then corlesce and move on to-. gether; what will be the direction, velocity, and momentum of the nnited mass?
90. What must be the length of a pendulum in the latitude of Canada in order that it may make 40 vibrations in 1
minute?
91. What pressure will be exerted npon the body of a man at the depth of 97 feet beneath the surface of the water, the man's body having a surface equal to 14 square feet?
92. A piece of cork which weighs 27.42 grains has attached to it a sinker which weighs $34 \cdot 71$ grains in air and only $30 \cdot 12$ grains in water, the united mass weighs nothing in water, i. e., is of the same specific gravity as water; required the specific gravity of the cork.
93. What is the weight of a mass of slate which contains 27 cubic feet?
94. How many cubic feet of iron are there in 87 tons?
95. What backward pressure is exerted by a horse in going down a hill which has a rise of 3 in 40 with a load whose gross weight is 2100 lbs . assuming friction to be equal to $\frac{1}{30}$ of the load?
06. What pressure is exerted against one square yard of an embankment if the upper edge of the yard be 17 feet and the lower edge 18 feet beneath the surface of the water 7
97. The leagth of a werdge is 27 inches, and the thickness of the back 2 inches; what weight may be raised by a pressure of 17 lbs.?
93. What is the effective horse power of a high pressure engine in which the piston has an urea of 43:) incles, anll mak's 30 strokes per minute, the boiler evaporaing : of a cubic fuot of water per minute under a pressure of 60 lbs . to the square inch?
99. A train drawn by a locomotive of 100 H . P. moves along an incline of $\frac{1}{}$ in 100 with a unifurm vel city of 25 miles per hour; taking friction us usual and neglecting atmospheri: resistance, what is the weight of the train : -
1st. If it is ascending the incline?
2nd. If it is descending the incline?
100. A lightning flash is seen 93 seconds before the report is heard, at what distance did the discharge occur?
101. A body 7000 miles from the surface of the eirth weighs 500 lbs., what would be its weight at the distance of 4000 miles?
102. How long would sound require to travel from Toronto to Markham a distance of 21 miles, the thermometer indicating a temperature of $82^{\circ} \mathrm{F}$.?
103. At what distauce from the source of sound must the reflecting surface be in order that the last 20 syllables uttered may be distinctly repeated by the echo?
104. On a perfectly calm day the report of a cannon fired on the northern shore of Lake Ontario is lieard on the southern shore a distance of 40 miles. How much sooner will the report arrive at the southern shore through the water of the lake than through the overlying air?
105. A metallic wire placed on the monochord vibrates 800 times in a second-by how much'must its length be increased in order that with the same degree of tension, \&c., it shall vibrate only 550 times in a second?
106. What are the relative numbers of vibrations per second required to produce the notes E and D sharp?
107. What is the length of a wave of air produciug F^{2} of the Italian Opera (1855)?
108. A cord of certain length and diameter makes 90 vibrations per second when stretched over the sonometer by a weight of 100 lbs ., by what weight mast it be stretclied in order to make 135 vibrations per second?
109. In the year 1783, the report of a meteor was heard at Windsor Castle 10 minutes after the flash of the meteor Was seen, what. Was its distance assuming the tomperatare of the air to be $52^{\circ} \mathrm{F} . ?$
110. Anapright vessel is filled with water and is pierced in the side at the heights of $2,5,9$, and 16 feet from the ground, taking the whole height of the water as 24 feet, what in ench cuse will be the random of the jet?
111. A jerson supposes himself to be in the range of a distant cannon, the report of which he hears 23 seconds after seeing the flash, how soon may he appreliend danger from the ball assuming that it travels with the uniform velocity of ${ }_{1}{ }^{1} \rho$ of a mile per second?

EXAMINATION PAPERS.

耳.

1. A railway train weighing 110 tons is drawn along an incline of $\frac{1}{4}$ in 100 with a uniform velocily of 42 miles per huur, taking friction as usual and atmospheric resistance equal to 20 lbs. When the train is moving at the rate of 7 miles per hour, what is the horse power of the locomotive? 1st. If the trinin is ascending the gradient?
2nd. If the train is descending the gradient?
2. Enunciate the principle of virtnal velocities and calculate through how many feet a weight of 89.7 lbs . will he carried hy a power of $11 \cdot 7 \mathrm{lbs}$. moving through 123 feet?
3. In a differential wheel and axle the radii of the axles are $3 \ddagger$ and 3_{9} inches; the radius of the wheel is 42 iuches, what power will sustain a weight of $444 \cdot 4$ lbs.?
4. Describe the barometer, and explain the principles on which it acts.
5. What is the weight of a log of boxwood (spec. grav. 1-320) 17 feet long, 1 foot 9 incles wide, and 2 feet 3 inchea
6. The upright gate of a canal is 12 feet wide and 16 feet deep. the water being on one side only and level with the top; required the pressure :-
1st. Un the whole gate.
2nd. On the lowest five-eighths of the gate; and
3rd. On the middle seventh of the gate.
7. Give the composition of atmospheric air, and state what are the chief sources of the carbonic acid.
8. The piston of a high pressure engine has an area of 400 inches, and makes 18 strokes of 6 feet each per minute, the pressure of the steam on the boiler is 64 lbs . per square inch; how many tons of coal per hour will this engine ralse from a mine whose depth is 240 feet $\%$:
9. Distingnish between the essential and the acceasory properties of mutter, and enumerate the former.
10. A cannon ball ls fired vertically with an initial velocity of 800 feet per second ; required-
1st. How. far it will ascend.
2nd. In what space of time it will again reach the ground. 3rd. Where it will be at the end of the 31st second. 4th. Its termitial velocity.
5th. In what other moment of its flight it will have the same velocity as at the close of the 13th second.
11. Enumerate the different kinds of attraction, define what is meant by the attraction of gravity, and state by what law its intensity varjes.
12. A piece of stone weighs 73 grains in air and only 35 grains in water; required its specific gravity.
13. In a hydrostatic press the areas of the cylinders are to one another as 1347 : 2, the force pump is worked by magns of a lever whose arms are to ore another as 23:2, the power applied is 120 lbs ; required the upkard pressure exerted against the piston in the larger cylinder.
14. In a lever the power arm is 7 -feet long, the arm of the weight is 5 inches, the power is 11 lbs ; required the weight.
15. Enunciate the principle of the parallelogram of forces, and explain how it is that a force nay be more advantageously represented by a line of given length than by saying it is equal to a given number of lbs., \&c.
16. Name the different kinds of upright water wheels, explain the difference between them, and give the rule for finding the horse powers of a water wheel.
17. If a closed empty vessel be sunk in water to the depth of 143 feet before it breaks, what'was the extreme pressure to the squiare inch it was capable of sustaining?
18. Describe what is meant by the rena contracta of escaping fluids, indicate its 狍ition with reference to the orifice of escape, and 'give the' proportion between the area of the aperture and the nectional ares of the eeno constracta.
19. An engine of 50 horse power draws a train weighing 60 tons up an incline of $\{$ in 100 with a uniform velocity of 20 miles per hour; taking aimospheric fesistance as usual whet is the friction peyton?
20. By mests of a levor as ortain númber of Tbs. Troy attached to the arm of the theight balances the same number of ounces Avoirdupois attached to the arm of the power; required the tatio between the arms of the lever, a pound 2. En roy being to a pound Avoirdupois as $5760: 7000$. with which a liquid spouts from a salculate the velocity of a vessel when the level of a small orifice in the side the centre of the orifice.
21. In a bydrostatic bellows the sectional area of the tube is three-sevenths of an inch and it contains 12 lbs , of water, the area of the board of the bellows is 3.7 square feet; what is the upward pressure exerted against the board of the bellows ?
22. Through how many feet will a body fall during, the 2nd second of its descent?
23. Define what is meant by specific gravity. Give the role for calculating the specific gravity of a solid not sufficiently heavy to sink in water, and calculate the specific gravity of cork from the following data :-
A piece of cork which weighs 20 oz . in air has attached to it an iron sinker which weighs 18 oz . in air and only 15.73 oz . in water; the united mass weighs 1 oz . in water, required the specific gravity of the cork.
24. What weight would be carried through a space of 7 feet by a power of 5 lbs . moving through 40 feet ?
25. Define what is meant by the centre of gravity of a body, and. explain how it may be experimentally determinted in a
26. How many tons of coal per day of ten hours may be raised from a mine of-660 feet in depth by a low pressure engine having a piston which has an area of 500 inches; and makes 20 strgkes of 11 feet each per minate, the groes pressure of the steam on the boller being 37 lbs. per
27. The powerarm of a lever is 32 times as long as the arm of the weight, the power is $970 \mathrm{~m} . ;$ required the weight.
28. A city is supplied with water through a pipe 8 inches in diameter and 1 mile in length, leading to a reservoir whose height is 140 feet above the remote end of the pipe; what will be the veiocity of the water per second, and how much will be discharged in one hour?

IV.

1. Enunciate the law of decrease in the pressure and density of the air as we, ascend into the bigher regions of the atmosphere?
2. In a hydrostatic press the sectional areas of the cylinders are to one another as $943: 2$, the force pump is worked by means of a lever whose arms are to one another as 19:3; if the power applied he 87 lbs. , what is the upward pressure exerted against the piston in the larger cylinder?
3. The power arm of a lever is 9 feet long, the arm of the weight is 17 feet long, and the weight is $6 \frac{1}{1} \mathrm{lbs}$; required the power.
4. Explain when a body is said to be in a condition of stable, "unstable, or indifferent equilibrium.
5. A train weighing 90 tons is drawn along an incline of 2 in 900 with a uniform velocity of 30 miles per hour; taking friction and atmospheric resistance as usual, what is the horse power of the locomotive :-
1st. If the train is ascending the gradient?
2nd. If the train ls descending the gradient?
6. A stone is dropt into a mine and is heard to strike the bottom in 11! seconds; required the depth of the mine, if sound travels at the rate of 1066 feet per second.
7. State the condition of equilibrium in the differential wheel and axle.
8. What is the weight of the sulphuric acid (specific gravity 1.841) contained in a rectangular vat 7 feet 4 inches long, 2 feet 5 inches deep, and 3 feet 7 inches wide?
9. At the top of a mountain a barometer indicates a pressure of 21 Inches while at the base the prussure is 29.78 inchesthe temperature at the top is 40.70° Fahr. and that at the base e_{p} ' $70.70^{\circ} \mathrm{Fahr}$; required the height of the mountain.
10. A high pressure steam engine ralses 200 cubic feet of water per minute from a depth of 80 feet, the platon has an area of 800 inches, and makes 10 strokes per minute of 8 faet each, what is the pressure of the steam on the boiler?
e 8 inches in to a reservoir ad of the pipe ; r second, and
e and density regions of the
f the cylinders p is worked by)ther as 19:3; o upward preser cylinder ?
he arm of the lbs. ; required
ition of stable, incline of 2 in : hour ; taking lal, what is the
strike the botof the mine, if second.
ferential wheel
pecific gravity 4 inches long, ide?
es a pressure of 29.78 inchesand that at the f the mountain. c feet of weter on has an area linule of 8 faet the boiler?
11. The flood gate of a canal is 10 feet long and 7 feet deep, the water being on one side and level with the top; what is the jressure:-
1st. On the whole gate?
2nd. On the lowest two-sevenths of the gate?
3rd. On the middle three-sevenths of the gate?
4 th . On the lowest one-ninth of the gate?
12. In a compound lever the arms of the power are 6,7 , and 11 feet, the arms of the weight are 2, 3, and 5 feet; by pans of this combination what power will sustain a weine of 1000 Jbs.?
13. Enunciate Mariotte's law, and ascertain what wili be the density, volume, and elasticity of that amonnt of atmosplieric air, which, under ordicary circumstances, i. e., at the level of the sea or under a pressure of 15 lbs . to the square inch, fills a gallon measure, if it be placed in a piston and subjected to a pressure of 60 lbs . to the square inch.
14. What power moving through 29 feet will carry a weight of 7 lbs . through 70 feet?
15. An engine of 12 horse power gives motion to a forge hammer which weighs 400 lbs , and makies 40 . lifte of 3 feet each per minute and at the same time pumps water from a mine 100 feet deep; required the number of cubic feet of water it pumps per hour from the mine.
16. On an inclined plane a power of 341 lbs , acting parallel to the brise sustains a weight of $27,900 \mathrm{lbs}$. ; what must be the length of the base in order that the beight may be 11 feet ?
17. Enunciate the three laws of motion commonly known as Newton's laws, and state to whom they respectlvely belong.
18. A piece of sulphur welghs 19 oz. in air and 10 oz . in water, required its specific gravity.
19. A bali is thrown up an incline of 11 In 16 with an initial velocity of 1100 feet per second; required-
1st. To what height it will rise.
2nd. Where it will be at the end of the 20th second.
3rd. In what time it will again reach the ground.
4th. Its terminal velocity.
5th In what other moment of its flight it will have the same velocity as at the end of the 17 th second of its ascent.
20. Required the pressure exerted against a mlib-dam 170 feet long and 16 feet vide, the perpendicular depth of the w.ater being 12 feet.

VI.

1. When the barometer indicates a pressure of 30 inches at the
2. 1
3. I
4. It
5. De
6. To
7. In
8. Hon
h
th
9. The
ar
10 feet the arms of the weight are power is 19 lbs ; what is the weight?
10. Explain the difference between the common and the forcing the lifting pump.
11. A traln weighing 80 tons is moving at the rate of 30 feet per second when the steam is turned off, how far whll it ascend an incline of 3 in 1000, taking friction as usual, and neglectlog atmospheric resistance?

VII.

1. What amount of pressure is exerted against one square yard of an embankment, the upper edge of the square yard being 16 ft . 3 in . and the lower edge 19 ft .9 in . below the surface of the water?
2. How much must the pendulum of a closk which loses 1 minute in an hour be shortened in order that it may keop correct time?
3. Describe the syphon and give the theory of its action.
4. In a system of eleven movable pulleys worked by a single cord what weight will a power of 27 lbs . sustain?
5. In a bydrostatic press the large cylinder has a sectional area of $6 \frac{1}{2}$ feet, the smaller cylinder a sectional area of $2 t$ inches, the force pump is worked by means of a lever whose arms are to one another as $19: 1 ;$ now if a power of 100 lbs. be applied to the extremity of the lever, what upward pressure will be exerted against the piston in the larger cylinder?
6. Describe the differential screw, and give the conditions of equilibrium between the power and weight in the common screw.
7. To what depth may an empty glass vessel capable of sustaining a pressure of 197 ibs. to the square inch be sunk in water before it breaks?
8. In a system of pulleys consisting of elght movable pulleys worked by eight cords, the upper end of each fastened to the beam, the power is $7 \frac{1}{2} \mathrm{lbs}$., what ts the weight?
9. How many gallons of water per hour will an engine of 7 horse power pump from a mine 67 feet in depth, making the usual allowance for the modulus of the pump?
10. The piston of a low pressure engine has an area of 400 inches and makes 20 strokes, each eight feet in length, per minute, the boiler evaporates 731 of a cubic foot of water per minute, what is the useful borse power of the engine ?

VIII.

1. Explain the difference between the simple and compound pendulum-also what is ment by the "centre of oscillation" and by the "centre of percussion."
2. What velocity will a heavy body falling freely in the latitude of London acquire in one entire second, the London 3. In seconds pendulum being $39 \cdot 13$ inches long?
height of inc bellows the tube is filled with water to the aguinst the feet; what upward pressure is exerted be 33^{7} feet?
3. In a differential screw the exterior sorew has a pitch of ${ }^{4}$ y of an inch, the interior acrew a pitch of An of an, inch, the pawer lever, ia fifty inches long; what prenaure with be exerted by a power of 130 lbs .?
4. A train weighing 100 tons moves up a gradient having an inclination of $\frac{5}{6}$ in 100 with it uniform speed of 20 miles per hour; taking friction and atmospheric resistance as usual, what is the hurse power of the lacumotive?
5. When a body has fallen through 2500 feet what velocity has it acquired?
6. Explain what is meant by gaseous diffusion, and show the important influence it has in maintaining the composition of atmospheric air constant at all places.
7. In a common wheel and axle the radius of the axle is 11 inches, and the radius of the wheel 47 in .: what power will, with this machine, sustain a weight of 793 lbs . ?
8. A flood gate is 22 feet wide and 20 feet deep, the water being on one side only and level with the top; required the pressure-
1st. Against the whole gate.
2nd. Agalnst the lowest three-sevenths.
3rd. Against the upper four-ninths.
4th. Against the middle three-elevenths.
6th. Against the lowest three-ifths.
9. Give the different rules for finding the specific gravity of liquids.

IX.

1. In a differential wheel and axle the radii of the axles are 23 and $2{ }^{3}$ r inches, the radius of the wheel is 90 inches; what weight will be sustained by a power of 7 lbs.?
2. The tube of a hydrostatic bellows is filled with water to the height of 50 feet; if the board of the bellows has an area of $6 \frac{3}{3}$ feet, what upward pressure is exerted against it?
3. How many vibrations per minute will a pendulum 9 jards long nake?
4. Gire the princlpal laws of the deacent of bodies on inclined planes.
5. A body has fallen through 8600 feet when another body begins to fall at a point 4000 feet beneath it; through what space will the latter body fall before the first overtakes It?
6. The piston of a steam engine has an area of 440 inches and makes 11 atrokes per minute, each 9,1 feet in length, tho boller evaporates ${ }^{\prime 9}$ of a cubtic foot of water per minute; What is the volume of the steam produced per minute, and what is the pressure under which it is generated?
7. H. P
8. Art
9. $1 \cdot 92$
10. 8294
11. 184§
12. H .
13. Ar_{r}
14. 16
15. Ar
16. 552
17. Pow
gre
18. Arts.
19. 14911
20. 688 f
21. Arts.
22. Art. 2
23. 25979
24. $127^{4} \%$.
25. Art. C
26. H. P.

It having an 1 of 20 miles cesistance as tive? velocity has 1d show the composition
is 11 inches, er will, with
water being required the
cravity of
axles are 23 iches; what
water to the has an area gainst it? um 9 jards on inclined other body t; through - first over-
inches and length, tho er minute minute, and ted ?
7. Give the most important conseqnences that result from the fuct that each atom of a liquid is separately drawn towards the centre of the earth by the force of gravity.
8. What gross load will a horse exerting a traction of 74 lbs. draw on a road whose coefficient of friction is z_{i}^{1} ?
9. What are the conditions of equilibrium between the power and weight in the inclined plane-?
10. Through how many feet must a body fall in order to acquire a velocity of 250 feet per second?

ANSWERS AND REFERENCES TO EXAMINATION

 PAPERS.
4

1. H. P. $=228.48$ or $105 \cdot 28$.
2. Art. 66.
3. •1679 lbs.
4. Arts. 227, 229,
5. $5522 \cdot 34375$ lbs.
I.
6. 96000 lbs ., $82500 \mathrm{lbs}_{\text {cr }}$ and 13714 l lbs.
7. Art. 205.
8. $151 \cdot 2$ tons.
9. Arts. 9, 19, and 20.
10. 18 min., 45 sec .
11. H. P. $=161 \cdot 28$ or 38.08 .
12. Arts. 25, 27.
13. $1 \cdot 921$.
14. 929430 lbs .
15. 184 l lbs .

耳I.

6. Art. 44.
7. Arts. 339, 341.
8. 62.05 lbs . 341.
9. Arts. 9, 19, and 10.
10. $8 \cdot 425 \mathrm{lbs}$. per ton.

III.

1. Power arm 13199	times as	6. 284 lbs.

great as the arm of the weight.
2. Arts. 25, 26, and 27.
3. $14918 \cdot 4 \mathrm{lbs}$.
4. 688 feet.
5. Arts. 192, 195, and $\cdot 57584$.
7. Arts. 57, 58.
8. 1400 .
9. 194 lbs .
10. Velocity $=6.336$ feet per second.
Quantity $=7962-0^{7} 1$ cublo feet per hour.

1. Art. 212.
2. 259798 1bs.
3. 1600 feet.
4. 12 f .
©. Art. 62.
B. H. P. $=106 \cdot 16$ or $\mathbf{4 2} 16$.
5. Art. 88.
6. 7307.00144 1b.
7. $9721 \cdot 2$ feet.
8. 337 to the square inch.
9. 153121 lbs., $7500 \mathrm{lbs} ., 65621$ lbs., and 3213ify lbs.
10. 64 得 lbs.
11. Art. 219, density 4 times as great, volume 1 qt. and elasticity 60 lbs . to the sq. inch.
12. $16 \frac{24}{2}$ lbs.
13. 33401 cubfe feet.
V.
14. 900 feet.
15. Arts. 255, 256, 257.
16. $2 \cdot 111$.
17. 27500 feet.

At elevation of 17600 feet. 100 seconds.
1100 feet per second.
At the end of the 83rd sec.
10: 1020000 lbs .

1. 19724 feet.
2. Art. 282.
3. 24336 feet.
4. $45 \cdot 36 \mathrm{H} . \mathrm{P}$.
5. ris 1 g of an inch.
6. 10406 lbs .
7. 1-303 inches.
8. Art. 235.
9. 594 lbs .
10. 626933 f lbs.

VI.

6. Arts. 183 and 182, Note.
7. 618.
1. 3990 lbs .
2. Arts. 233 and 234.
3. $2163 \cdot 4$ feet.

VII.

6. Arts. $129,126$.
7. 454 feet.
8. 1920 lbs .
9. $13791_{6}{ }^{3} \%$ gallons.
10. H. P. $=67.87$.

VIII.

1. Arts. 301, 302, and 308.
2. $386 \cdot 17$ inches.
3. 3022.68672.
4. $14660165 \cdot 6 \mathrm{lbs}$.
5. $133 \cdot 262$.
6. 400 feet per second.
7. Art. 206.
8. 1859 Ibs.
9. 275000 lbs . $1852047^{4} \mathrm{Jbs}$. $543200_{4}^{s} f$ lbs.
75000 lbs.
231000 lbs.
10. Art. 196.

14.

2\%8085 lbs.
2. $21479 \cdot 04$ lbs.
8. $20 \cdot 8$.
4. Art. 270.
6. 11115 foet.
6. Volume $=339 \cdot 5$ cub. feet. Pres. $=85 \mathrm{lbs}$. the sq. inch.
7. Art. 175.
8. 1776 lbs .
9. Aft. 116.
10. 976$]^{9}$ feet.

QUE
Note.
articles

1. What
2. Into
disting
3. How
4. What
b. What
5. What
6. What
7. What
8. What
9. What
10. What
11. In whe
12. Define
13. Enume
14. What
15. What it
16. What i
17. Does th
matte
18. Give sol
19. What is
20. What is
21. What is
22. What is
23. It bodies bodies
24. What is
25. Name the
26. What are
27. Enumeral
matter.
28. What is m
29. What is d
30. What is te
31. What is a
32. Enumerat
33. What is th
34. What is the
35. Explain w as the sq
36. What is thi
37. What is the
38. What is ca,
39. What is ele
40. What is ma,
41. What is che
42. What is the
43. What is the
44. What is the
45. What is the
46. What is the
47. What is the
48. What is the
49. What is the
50. What is the
51. Whation the
52. What is Natural Science ? (1)
distinguished from each other ?
53. How are animals distinguish ? (2)
54. What is Zoology ? (4)
55. What is Botany ? (4)
56. What is Mineralogy?
57. What is Astronomy ? (4)
58. What is Geology ? (4)
59. What is Chamistry ? (4)
60. What is the object of Natural Philosophy ? (4)
61. In what sepsrate subdivions of Natural Philosophy ?
62. Define what is meant by the essentic exist ? (6)
63. Enumerate the essential properties of matter. (10)
64. Wiat is extension ? (11) properties of matter. (10)
65. What is impenetrability ?
66. What is divisibility ? (13.) Give some illustrations. (12)
67. Does the property of divisibility belong to maseos or
68. Give sor or to both ? (13)
69. What is Indestructibility of the extreme divisibility of matter. (13, Note)
70. What is Porosity ? (15) P (14)
71. What is Compressibility
72. What is Inertia ? (17)
(16)
73. It' bodies cannot bing
bodies moving upon themselves to a state of rest, how is it that all
74. What is elasticity ? (18) near the earth soon come to rest ? (17, Note)
75. Name the diffe
76. Enumerate some of thy properties of matter ? (19) mstter. (20)
77. What is malieability Wha
78. What is ductility ?
79. What is tenacity ? (28)
80. What is attrsotion ? (24)
81. Whumerate the difierent kinds of attraotion. (25)
82. What is the law of variaf gravity ? (20)
83. Explain what is mesnt by saying the fority of gravity? (27)
84. What is the are of the distance. (28)
85. What is the attraction of cohesion ? (29)
86. What is capillary attraction ?
87. What is eleotrioal attraction ? (82) some exampies. (81)
88. What is magnetio attraction ? (83)
89. What is chemical attraction ? (84)
90. What is the derivation of the word
91. What is the objeot of the science of Statics? (86)
92. What in the derivation of the word Statios? (86)
93. What is the object of the soienoe of Hydrostatics? (36)
94. What is the derivation of the of Hydrostatios? (88)
95. What is the object of the eqience of Dyrumics? (86.
96. What is the derivation of the wee of Dynamios ? (88)
97. What is the objeot of the the word Bydrodymamion? (86)
98. What is the derivation of the of Hydrodynamice ? (83)
99. What is the ohfeet of the the word. Prewmation ? (86)
ant is the objeot of the eltence of Enemmation ? (86)
100. When is a body said to be in equilibrinm ?
101. What aie riatical torces or piesulues? (38)

55 What are the p'ements of a toice ! (39)
56. What are the uifferent mudes of representing a force? (40)
67. When several finces ac upon the same point of a body, how many
58. Diutiuns can they give it (41)
69. If weireral furces act component and resultant forces. (42)
same diruction, t, what a polite in the same straiglit litue and in the
60. When sevoral forces act upon ir resultant equai? (43)
upposite directions, tu upon a point in ile same stiaight line, but in
61. Enunciate the principle of the parallelogrum of fual ? (43)
62. When several foices aot ous paint in grum of forces. (44)
how tho lesultant may be found. (45)
63. What is the distinction bet wren the parallelogram of forces and the parallelopiped of fouces \& (46)
64. What is the resultant of wo parallel forces which act on different points of a body, but in the samu direction ? (47)
65. What is the resultant of two parallel forces which act on different poinis of a boly and in opposite directions? (43)
66. How do we tind the ron
6i. What is a couple? (50)
68. Distinguish between the forces. (54)
6y. What is the centre of gravity of a body ? (5i)
70. Why is the centre of gravity called also the centre of parallel forces? (55)

1. How may the centre of gravity of a solid body be experimenially determined? (58)
2. If a budy be free to move in any direction, how will it finally rest
3. How recerence to its cellire of gravity ? (601
4. When the atability of a body estiniated $₹(61)$ different equilibrium? (62) a condition of stable, unstable, or in-
5. How may the ceutre of gravity of two separate bodies be found ? (63)
6. What is the object of all mechanical conirivahces? (64)
7. By what law or principie in philosophy is the relative gain or loss of power and volocity in a maohine determined ? ($6 \bar{\circ}$)
8. Enunciate the prinoiple of virtual velocities. (66)
9. What is a machine ($6 \overline{\mathrm{~T}}$)
10. How many mechanical elements enter into the composition of ma-
11. Name the primary mechanical elements. (68)
12. Name the secondary mechanical elements. (68)
13. From what mechanical element is the wheel and axle formed ? (69)
14. Of what mechanical element are the wedge and screw modifica tions ? (69)
15. How are iovers, cords, \&c., regarded in theoretical mechanios: (i0.)
16. What is a lever? (71)
17. Of how many kinds are levers ? (72)
18. Of simple siraight levers how many kinds are there ? (78)
19. Upon what does the diatinction, between the three kinds of levers depend Y (78).
20. Give examples of levers of the first elass. (74)
21. How are the tulorum, power, and weight placed in levers of the first
elaes ? (75)
22. How are the falerum, power, and weight placed in levers of the second olves: (75)
23. Give some examples of levers of the seoond eiacs. (i5)
24. How are the
25. GIv
26. In we 97. In we
27. In 1 the
28. Wha
29. Win wei
30. Ded nov
31. Whe effer
32. Wha
33. Dedu leve
34. Defc
35. Why
36. What
37. Dedu the
38. Deser
39. To wh
40. Deduc
41. In too dete!
42. How
43. When
44. When
45. What and
46. What
47. Deduc Whee
48. Explai
49. Name
50. Explai
51. Explai
52. When show found
53. What is
54. Show t (101)
55. 'Wherei chanic
56. When is
57. What is
58. What at
59. Explain
60. 'What is palley.
61. In a sys tions of
62. Deduce I (107.)
63. What ar meparato
64. Give somp examples of levers of the third clans. (76)
65. In levers of the first class which must be greateat, the power or the welzlit ? (is, Note)
66. In ievers of tho second elass which must be greatest the power or the
67. Weight? (is. Notp) The weight ? (76, Nole)
68. What is the (rm of the
69. What are the conditions of cquilibrium the arm of the power \boldsymbol{P} (77) weight in the lever ? (77) cquilibrium between the power and the
70. Deduce formulas tor fllnding the power, the weight, the arm of the nower or the arm of the weight when the other three are given. (77)
71. When the aims of the lever are curved or bent, how must their effectlve lengith be determined? (79)
72. Whit is a comppund lever or composition of levers ? (80) lever ? (81)
73. Describe the wheel and axle (82.)
74. Why in the wheel and axie some
75. What are the condifions of equilibrive called a perpetual lever ? (84)
76. Deduce a ket of rules for finding the pow in the whel and fixlo ? (85)
the axle or the radjus of the wheel when the the weight, the radius of
77. Deseribe the differential wheel and axle ? (87)
78. To what is it, in effect, equivalent 9 (8) ? (87)

- 111. Deduce a set of rules for the differential

112. In toothed gear how is the ratio between wheel and axle. determined P (89)
113. How are axies commonly made to act on wheels ? (100)
114. When is wheel work used to concentrate power? Give an example. (92)
115. What are the conditions of equifuse power ? Give an example. (92) and pinions ? (98)
116. What is a pinion? What are leaves? (91)
117. Deduce formulas for finding the porrer)

Wheels and axies. (94) .ig power and the weight, in a syatem of
119. Explain whatier. (94)
120. Name the different kinds the hunting cog. (90)
121. Explain the difference between cro. (96)
122. Explain for what purpore ween crovos, spur, and bevelled gear. (97)
123. When bevelled wheols of different , spur, or bevelled gear is used. (08) show how the sections of the cones of which are to be uped together found. (99)
124. What is a pulley ? ' 100)
125. Bhow that from the pulley itself no mechanioal advantage is derived.
128. Wherein oonsiats the real advantage of the polley and cord as a me Chanical power P (101)
127. When is a pulley said to be fixed ? (102)
128. What is a single movable pulley called? (108)
180. Explain Spanish Bartona? (108)
181. 'What is the only meohanioal words sheaf, blook, and tackle. (104) palley, (105)
182. In a system of palleys por tiona of equilibriam ? (106)
188. Deduce a set of rules for a (107.)
184. What are the conditions of equil eeparate cords are attached direotly to the bounioh Barton when if cherds are attached direetly to the beam ? (108)
185. What are the conditions of equilibrium when the separate corde are attached to the movable pulleys? (109)
186. Deduce in each of these last two uases a set of rules for finding the ratio between the power and the weight ? (110 and 111)
187. If the lines of direction of the power and weight make with one another an angle greater than 120°, what is the relation between the power and the weighty (112)
188. In theoretical mechanios how is the inclined plane regarded? (118)
139. What are the modes of indicating the incilination of the plane? (114)
140. In the inolined plane how may the power be appliod? (115)
141. What are the conditions of equilibrium in the inclined.plane? (116)
142. Deduce a set of rules for the inclined plane. (117)
148. What is the wedge? (118)
144. How is the wedge worked? (119)
145. What are the conditions of equilibrium in the wedge whon it is worked by pressure? (120) ${ }^{\circ}$
146. In whatimportant partioniar doee the wodge differ from all the other méchanical powers! (120, Note 1)
147. Give some examples of the application of the wedge to practical purposes. (120, Note 2)
148. Deduce a set of rules for the wedge. (121)
149. Describe the sorew. (122)
150. How is the screw related to an ordinary inclined plane? (182, Note)
151. What is the pitch of the screw ? (128)
155. How is the sorew commonly worked (124 and 125)
158. What are the conditions of equilibrium in the screw? (126)
154. H w may the efficiency of the screw as a meohanical power be increased? (127)
155. lleduce a set of rules for the common screw. (128)
156. By whom was the differential screw invented? (129)
157. Upon what principle does the differential scrow act? (129)
158. To what is the differentiai screw, in effect, equivalont? (129)
159. Deduce a set of rules for the differential scrtw. (180)
160. Describe the endless screw. (131)
161. What are the conditions of equilibrium in the endless sorew? (182)
162. Deduce a set of rules for the endless screw. (188)
168. How does friction affect the relation between the power and the weight in the mechanical elements? (185)
164. What are the different kinde of triction ? (188)
165. What is meant by the ooeficient of friction ? (187)
166. What is the coefficient of aliding friction ? (188)
167. What is the coeffident of friction on railways? (188)
168. What is the coefficient of friction on good macadamized roads! (188)
169. What is meant by the force of traction? (188)
170. Enumerate the different expedients in common use for diminishing friction. (189)
171. Give Coulomb's conclusions as regaraf pliding friotipn. (189)
172. Give Coulomb's conolusions as regard froiling friction. (189)
178. What is the unit of work? (140)
174. How are the units of work expended in raising a body found ?
(141)
175. What are the mont important sources of laboring forces? (142)
176. How many, unite of wurk are there in oue horse power" (142)
177. What ls meant by the Table in Art. 142?
178. What is the true work of the horse per minute! (142, Note)
179. In moving a oarriage along a horizontal plane, for what purpose in work expendedt
180. In the case of rallway trains that in the amount of friotion? (148)
181. In the eque of mallwaytrilins whon doen the velocity beeome unfional
188. Upo pen
188. Atw
184. Upo am
185. Expi
188. Wha of n
187. If a
resi
188. Whe
for
189. Dedi
mui
190. Wha
191. Of m
192. How
four
193. How
194. Wha
195. Wha
198. How
197. Wha
198. How
199. In th phe
200. Give eng
201. In wi dent
202. How
208. Knov the
204. Give
205. What
206. Why
207. Give sure
208. Defln
209. How
210. Into
211. To wh
212. How
213. In wh
214. Give
215. How (175,
216. What
difife
217. What
in at
218. How
218. Show anot
220. What gallo
91. To wh surf
228. Give
228. How inclis

examinatiod quistions.

188. Upon what does the traction of foree with which an animal palls depend ? (146)
189. At what rate per hour mast a horse travel to do most woy? (146)
190. Upon what does the amount of atmospheric resistance experienced by a moving body depend? (i47)
191. Expiain what is meant by this. (147)
192. What is the amount of atmospherio resistance experienced by a train of medium length moving at the rate of 10 miles per hour? (148)
193. If a body be moved along a surface without friction or atmospherio resistance, how may the umits of work performed be found ? (49)
194. When a train is moved along an inclined plane, how is the workperformed by the locomotive found P (150)
195. Deduce a set of formulae for finding the horse power, weight, maxle
mum speed, \&o., of trains. (151)
196. What is meant by the modulns of a machine? (152)
197. Of machines for raising water, whioh has the greatest moduius ${ }^{\text {192 }}$ (158)
198. How may the work performed by water falling from a height be found? (154)
199. How is steam converted into a sonrce of laboring force? (155)
200. What are the two principal varieties of the steam engine? (156)
201. What are the essential parts of the high pressure engine? (157)
202. How does the low pressure differ from the high pressure ehgine? (158)
203. What are the varieties of the low pressire engine? (159)
204. How do these differ from each other? (160,161)
205. In the high pressure engine, at what part of the stroke does atmospherio pressure act against the piston? (162)
206. Give the leading ideas that enter into the construction of the steam engine. (165)
207. In what respects is the low pressure engine preferable to the non-condensing engine? (164)
208. How are the nnits of work performed by an engine found ? (165)
209. Knowing the pressure of the steam on the boiler, how do we obtain the useful pressure on the piston ? (166)
210. Give the rules for finding the H. P., \&o., of engines. (167)
211. What is the real source of work in the steam engine ? (168),
212. Why is it most adyantageotys to employ steam of high pressure? (168)
213. Give formulas for finding the area of the piston, length of stroke, pressure, effective evaporation, \&o., in the steam engine. (169)
214. Define what is meant by a fiuid.' (171)
215. How is the term fuid commonly applied? (172)
216. Into what classes are fluids divided Name the type of each. (178)
217. To whatextent is water compressible? Alcohol? (178, Note)
218. How do liquids chiefly differ from garee? (174)
219. In what respecte do liquids chiefly differ from solids? (176)
220. Give the most important oonsequences that flow from this fact. (175)
221. How would you illustrate the upward and lateral pressure of liquids ? (175, Note)
222. What relation exists between the respective heights of two liquids of diffrent densities placod in an inverted syphon? (176)
223. What is the amount of downward pressure exerted by a liquid confined in any vesself (177)
224. How would you illustrate this fact ${ }^{\prime}$ (177, Note.)
225. Show that weight and pressure are not to be confonnded with one another : (177, Note 2.)
226. What are the weights respectively of a cubio ineh, a oubio foot, and a gallon of water, at the temperature of 60° Fahr, (178) To what of water, at prese temperature of 60° Fahr. $?$ (178),
surface equal? (179) exerted by water on a vertical or inclined
227. Give a rule for finding the lateral pressure exerted by water. (179)
228. How do yon find the pressure exerted by water against a rertical or inclined surface at a given depth beneath the wator? (180)

examination quinitors.

8. Find do yea find the premereexertod against any freotion of a vartieal atarface when the apper edgeis level with the surface of the water ?(181)
9. Explain what is meant by transmission of pressure by liqnids. (182)
10. Describe Bramah's Hydrostatio. Press, and illustrate by a figure. (188)
11. Explain the principie upon which Bramah's Press acts. (182, Note)
12. For what purposes is Bramah's Press used? (184)
13. How do we find the reiation between the power applied and the preesure obtained by Bramah's Press? (185)
14. Describe what is meant by the hydrostatio paradox. (186)
15. Show that it is not in reality a paradox. (186, Note)
16. Describe the hydrostatio bellowh. (187)
17. Give the rule for finding the upward presaure against the board of a hydrostatio belio wr. (188)
18. When will a body float, sink, or reat in equilibrium in a fuld? (189)
19. What weight of liquid does a foating body displace? (190)
20. What portion of its weight is iost by a body immersed in aliquid (191)
21. What is the apecifo gravity of a body? (192)
22. What tis the standard of comparison for solids and liguids? (198)
23. What is the standard of comparison for all gases? (193)
24. How do we find thetppecifio gravity of a coldabeavier than water?(194)
25. How do we find the speoifu gravity of a solid not sufficiently heary to sink in water? (106)
26. What is the frat method of finding the apecifio gravity of a liquid? (196)
27. Whatis the second method given for finfigig the specifle gravity of a liquid? (196)
28. How is the speoifid gravity of a ilquid determined by means of the
29. Describe the hydrometer. (196)
30. What difference is there between hydrometers designed for determining the speoifo gravity of liqnidd speciflcally lighter than water, and those for ascertaining the specifo gravity of liquids specifically heavier than water? (106)
31. How is the speoifo gravity of gasesifound? (197)
32. How may the weight of a oubfo foot of any substance be found when its speeflo gravity is kntown? (189)
33. How may the solid contents of a body be found from ita weight? (200)
34. How mey the weight of a body be found thom its solid contents? (201)
35. What is Pneumaties? (200)
36. What tis the derivation of the word atmoosphere? (208)
37. What is the atmosphore ? (208)
38. To what helght doos the atmosphere exyifict (201)
39. Give the exeot composition of atmospherfo uir. (205)
40. What purppese is cerved by the oxygen in the air? (205, Note)
41. What purpose is served by thenitrogen? (205 Note)
42. Deeoribe the prinolpal properties of otrbonio acid. (200) Noto)
43. What are the chig (aonrces of oarbonic aold? (205, Nove)
44. What is the maximum and what the minimum amount of oarbonic Woid in the air? (205, Note)
 an 1 , (200^{2} Note)
45. Degoty. (20) operty of gaseous dimarion (208)
46. Exy or

47. Hor
48. Ho
49. Wh
50. Wh
51. Wh
vil
52. Giv
53. Ho
54. Bx

Rom
276. Fro
277. Wh
278. If th
it
279. Hov
280. Hov
eia
281. Wh
282. Ilins
288. To
284. Enu
285. 1ilus
286. To
287. Whi
288. By
289. Desc
290. Dra
291. Upo
292. Нои
293. Des
294. For
295. Give
208. Give
297. Whs
298. By
299. Wh
300. Whs
301. How
802. Wha
303. In
804. To
805. At w
306. At
807. In w
308. Give
the
309. How
the
810. Wha
811. Whia
812. Wha
bar
818. Wha
814. Wha
200. To whit Is the blue oolor of the aky duef To what the golden tintus of
815. Wha
den
207. Which of the emantial properties of matter belong to the air? (209)
289. How wonld yon illustraterthe impenetrability of the air? (200, Noto)
209. How wouid you ilustrate the inertia of tho air? (209, Note 2)
270. Why does air posedetight? (210)

272. What is the weight of touethic inches of eaoh of the following gases, viz., oxygeny hydrogen, nitrogen, atmospheric air, carbonic air?
273. Give some impstytions of the aggregate weight of the atmosphere. (210 Note 2)
274. How that the lowerstrata of air are denser than the upper $\boldsymbol{\text { (211) }}$ (21)
276. By hat law does the density of the atmospluere decrease as we as Nounth (212)
276. From what does the pressure of the air reanit? (218)
277. What do we mean by saying the pressure of the air is equal to 15 Ibs. to the square inch? (213, Note)
278. If the air were of the same density throughout, to what height would it extend? (214)
279. How is this known ? (214)
280. How are permanentiy elastic gases chiefly diatinguished from nonelastic gases? (216)
281. What is meant by permanently elastic gases? (216, Note)
282. Illustrate what is meant by the elasticity of a gas. (217)
288. To what is the elasticity of gases due? (217, Note)
284. Enunciate Mariotte Itaw. (219)
285. 1ilustrate it by a bent tube as in Art. 218.
286. To what extent is Mariotte's law true? (219, Note)
287. What is the air-pump? (220)
288. By whom and when was it invented P (221, Note)
289. Jesoribe the exhausting eyringe. (222)
290. Draw a shetoh of the air-pump, and describe its mode of action. (228)
291. Upon what principle does the air-pump act? (228)
292. How perfect a vacuum can be secured by the air-pump? (228, Note)
293. Describe the condensing ayringe. (224)
294. For what purpose is the air-pump chiefly nsed? (220)
295. Give some illustrations of the pressure of the air. (225, Note)
200. Give some illustrations of the elasticity of the air. (205, Note)
297. What is the barometer? (226)
298. By whom and when was it invented? (226, Note)
299. What are the essential parts of a barometer? (22\%)
300. What is meant by the Torricellian vacuum? (227 , Note)
301. How may the excellency of a barometor be tested? (228)
303. In hat is the cause of the oscillations of the barometer ? (2299)
303. In inthe regions of the earth are the oscillations of the barometer most f. phahd extensive? (229, Noto)
204. To what regular osciliations is the barometer subject? (230)
305. At what hours are the two maxima of pressure? (230)
306. At what hyurs are the two minima of pressure? 230)
807. In what roglon are the semi-diurnal oscillations greatest? (230 , Note)
808. Give some idea of their extent in tropical countrios, and explain why they are not observed in our climate. (230, Note)
309. How may the weather to be expected be foretoid by the oscillations in the height of the barometric column? (251)
810. What does a fall in the barometer denote? (231. II.)
811. What does a rise in the barometer indicatof (283, III.)
812. What does a sudden ohange in the height of the mereury in the barometer denote? (281, IV.)
818. What doen a tredy rise in the column denotef (231, Fi)
814. What does a stegdy fall in the column denote? (281, Vi.)
815. What does a frictuating state in the hetght of the columin of mereury denote? (231, VII.)
816. Give Halley's rule for ascertaining the height of mountains, \&o., by the barometer. (282)
817. Give Halley's rule with correction for temperatare. (282)
818. Give i.eslie's rule. (232)
819. Desoribe the ersential parts of a oommon pump, and illustrate by a diagram. (288)
820. Explain why the common pump is sometimes called a lifting pump. (238. Note)
821. Explain the principle upon which the common pamp aots. (238, Note 2)
822. Explain why the lower valve must be within 82 feet of the water in the reservoir in order that the pump may act at all times. (284, Note 2)
828. Describe the forcing pump. (234)
824. Describe the essential parts of a fire engine. (234, Note)
825. Describe the ayphon. (285)
826. How is the syphon set in operation? (235, Note 1)
827. Explain upon what principle the syphon acts. (235, Note 2)
828. When does the consideration of forces oome under the solence of atatics? (288)
829. What kind of forces are coneldered in dynamics? (283)
830. Why is statics calied deductive science? (287)
881. Why is dynamics called an inductive or experimental science? (287)
882. What may force be defined to be? (288)
888. For what purposes in force required? (288)
834. What are the different kinds of forces as regards duration? (289)
885. What are the different kinds of continued forces? (239)
836. What may motion be defined to be? (240)
887. What are the qualities of motion ? (241)
888. What are the diferent kinds of motion? (241)
889. What kind of a motion is produced by an accelerating, constant, or retarding force? (242)
840. What is velooity? (248)
841. Of how many kinds is velocity? (248)
842. When is velooity aald to be uniform? (248)
848. What is momentum or motal force? (246)
844. To what are the momenta of bodies proportional? (246)
845. When the veloitites of two moving bodies are equal, to what are their momenta proportional? (247)
846. When the masses of two moving bodies are equal, to what are their momenta proportionail (248)
847. When we gpeak of multiplying a velocity by a weight, what do we
848. When force fi communicated by impact to a body at rest, how long will the body remain at rest? (254)
849. Gire the frot general law of motion. (256)
850. Whose lav is thita? (257, Note)
851. Give the second law of motion. (256)
856. Whose law in this? (257, Note)
858. Give the third law of motion? (257)
854. Whose law is this? (257, Note)
855. What is" ref ected motion ? (258)
856. What tit the angle of incidence (258)
867. What is the angle of reflection? (258)
868. What proportion exists between theangle of incidence and the angle of reffeotion? (258)
859. How would all bodles fall in a vacnam ? (259) 9
800. Upon what does the resistance encountered by a body moving throngh the atmosphere depend? (200)
845. What in the nature of the motion of a heavy body fllling from a helghtf (281)
862. What $s e 00$
888. Throu dera
884. Dedui 8pac
865. When (267)
866. Gíve dow
867. When (209)
888. What
889. Upon pend
870. What
871. What

872 What
878. Deduc
874. What
875. What

876 What
8i7. What
878. Upon (278,
879. Show zontal
880. What a
881. What is
882. To wha it may
888. How d
884. What Is factile
885. When a tion in
888. What a throw
887. Whata throw
888. To wha equal
889. With wi
890. What is
891. What is (284)
892. To what charge
898. To what charge
894, To what dimens
896. To what tional 1
898. Give the weight
897. What is
898. Why is i
899. What is
400. When do
401. When do
862. What relocity is acquired by a heary body in fulling through ons second? (264)
883. Throngh how many feet does a body fall during the firat seoond of ito defcent ? (205)
364. Deduce a set of formulas for the descent of bodiea freely through space. (266)
865. When a body is projected upwards what is the nature of its motion? (267)
868. Give the formulas for the motion of -a body projected npwards or downerds? (268)
867. When a body is descending an incline how is the gravity expended ? (209)
868. What are the laws of descent on inclined planes ? (270)
889. Upon what is the final velocity of a body falling down an inoline dependent ? (271)
870. What are the laws of descent in curvee ?
871. What is the brachystochrone ?

872 What is a oyolold ? (274)
878. Deduce a set of formulas for descent on inclines. (276, 276)
874. What is a profectile? (277)
875. What forces influenco projeotiles ? (278)

876 What is the theoretical path of a projeotile?
877. What is a parabola ? (278, Nate 1)
878. Upon what erroneous suppositions is the parabollo theory baced ? (278, Note 2)
879. Show that when a body is projeoted horizontally forward, the horfzontal motion does notintefere with the action of gravity. (279, Noto)
880. What are the three oonclusions of the parabolio theory \& (280)
881. What is the greatest horizontal range of a projeotile ? (280, Note)
882. To what is the velocity of projection speedily reduced, no matter what it may have been originally? (281)
888. How do you explain this ? (281, Note 1)
884. What is the atmospherio resistance encountered by a ball or other proJoctiie having a velooity of 2000 feet per second ' (281, Noto 2)
885. When a ball has considerable windage, what is the amonnt of defioction in ita course ? (281, Note 8)
888. What are the most important is regarding the motion of projectiles thrown vertically into the air? (288)
887. Whatare the most important live regarding the motion of projectiles thrown at an angle of olevition ? (288)
888. To what is the explonive foroe of gunpowder exploded in a cannon equal ? (288)
889. With what velocity does exploded gunpowder tond to expand ? (2s8)
890. What is the composition of gunpowder? (288, Note)
891. What is the greateat initial veloolty that oan begiven to a cannon ball ? (284)
392. To what is the velocity of a ball of given weight fired with a given charge of powder proportional ? (284, Note)
898. To what are the veloottles of balls of equal woight fired by the same charge of powder proportional ; (286)
894, To what are the velooities of balls of dimerent woight but of the same dimensions fired by eqnal quantities of powder proportional? (288) o what is the depth which a ball penetratee into an obetacle propor-
tional ? (287)
898. Give the rule for finding the velooity of any shot or ohell when ita weight and also that of the charge of powder are known ? (288)
397. What is centrifugal foroe? (289)
898. Why is it sometimes called tangential forcep (289, Note)
899. What is centripetal force? (200)
400. When does a body move in a olrolep ((201)
401. When does a body more in an ellipeo? (291)
402. How long oan a rotating mase, proserry Itseif ? (202, Note 1)
403. Give some examples of the enfecto of oentriffugil roree. (292, Fdto 2)
404. Irthe veloeity and radiumare constant, to what is the centrifugal force proportional ? (298)
405. When the radius is constant, how does the centrifigal force vary? (294)
408. What is the amount of oentrifugal foroe at the equator? (204, Noto)
407. How rapibly must the earth revolve in order that the centitfugal force at the equator may equal gravity ? (224, Note)
408. When the velocity is constant, how does the centrifagal force vary? (295)
409. When the number of revolutions is constiant, to what is the centrifugal foroe proportional? (208)
410. Give a set of formulas for caloulating oentrifugal force. (207)
411. Give a rule for finding the work acoumulated in a moving body. (299)
412. What is a pendulum ? (800).
418. What is a simple pendulum ? (301)
14. What is a oompound or matorial pendulam? ((202)
415. What is an osciliation or vibration ? (808)
41. What lis meant by the amplitude of the aro of vibration : (304)
417. What is meant by the duration of a vibration ? (806)
418. What is meant by the length of a penidulam ? (800)
419. What is the centre of suspenslon (1807)

200, What is the centre of osocliation ? (808)
221. What is the oentre of percussion ? (808, Noto)
423. What is meant by saying the centres of osoillation and suspeciofon are interchangeable? (8008)
423. How is the durition of s ribration aiftected by its amplitude? (810)
424. What is mogint by aifitg the vibration of the pendulum is tsochronous P (810 , Note)
425. What relation exiots between the lengths and times of vibrations of pendulums? (314)
428. Oive the chief laws of the osaillations of the pendulim. (sii-816)
227. Why does the eeconds pendulum vary in langth in different latitades? 1831, Noto)
428. What is the length of a seconds pendulum in Canada? (818, Note 2)

420 To what purposes is the pendulum applied? (817)
430. How is the pendulum used as a measure of time? (817, Noto)
481. How is the pendulum used as a atandard of measare? (a17, Note)
482. How do me find the length of a pendulum to vibrate in a given time ? (219)
438. How do we fnd the number of vibrationa loet tr'a pendalum of given
length when the foree of gravity is deoreased? (120))

- 434. How do we find the number of vibrations gained by a peridulam of given leagth. When it to shortened? (821)

435. What is the solence of Hydrodynamico? (322)
436. Emundiate Torricelliss theorem? (823)
437. In what time doen a fall veseel empty iteolf through an ortico in the bottomp (825)
438. How is the quantity of fuld discharged through an orifice of givion afive found (828)
439. What la the venc contracta? (828, Note)
440. Whet retation exiety between the theoretical disoharge and the actual discharge? (828, Note)
441. Give the ruie for finding the veloolty and quantity of huid disoharged through an apertare of given dise. (827)
442. What is an adjutage? (828)
443. Under what oircumstanioe in the flow of wator through an adjatage modified? (828)
444. How doein a oylindriont adjutage inoreme the How? (829)
445. How do oonloal adjutages increaso the low (880,881)

446. When water sponts from an aperture in the side of a vesel, how is the horizontal distance to which it ts thrown found if (333)
447. When a liquid flows throngh a pipe or ohannel, whioh part has tipe greatost velocity ? (885)
448. How is the velocity of a stream determined ! (836, Note 2)
449. What are the prinoipal varieties of water wheelf ${ }^{\text {4 }}$ (889)
450. In water wheels, when is the greatest meolanical effeot produced ? (840)
451. Give the rule for finding the horse powers of apright water wheels, (341)
452. What is a turbine wheel ? How does it aet ? (842)
453. For what purposes are high and low pressure turbines respectively nsed P (8905)
454. What ato Nile prinotpal advantages of the turbine over the upright whter wheels? (84)
455. Whith is the orggin of all waves or undulations ? (817)
456. Of how many kinds are undulations ? (348)
457. What ere progressive nudulations? (840)
458. What are stationary undulations $P(850)$
459. What kinds of vibration may bo imparted to a stretched string?
460. What is moant by the time of vibration? (858)
461. What are the ohief laws of the transverse vibration of cords ? (854)
462. What are nodal points? (355)
463. What are the princlpal laws thiat govern the transveree vibrations of rods ? (858)
464. How may an elastio plate be made to vibrate? (857)
465. What are nodal lines and nodal Agures ? ($858-60$)
466. What are the laws of vibration of elastio plates ? (301)
467. Explain the canse and mode of undulation in liguide. (892)
468. Give the law of reflection of progressive undulations. (288)
469. Explain what is meant by the inteference of waves and the phenom. ena resulting, (884)
470. Desoribe aarefully the phenomena of anduiations in an elaetio taid like the air. (846).
471. What are the objects of the epience of acoustios if (868)
472. What are sounds? (869)
473. Upon what does the intensity of a sound depend? (871)
474. How is the sonnd affeoted by the density of the medium is whith it, is produced ? (872)
475. How does the pitch of a aound afifot its velooity ? (878)
476. How does the velooity of sonnd in atmospherio air vary ${ }^{\boldsymbol{P}}$ (874)
477. What is the velocity of sound in atmospherio air ? (875)
478. Give the velooity of soand in several other media. (876, 877)

480 Upon what does the distance to whith mountd may be propagated dopend? $(378,879)$
481. What is the result of the interference partial or complete, of conorous waven ? $(880,881)$
482. What laws govern the refleotion of sound waves ? (882, 888)
483. What is an eoho f (888)
484. What must be the leaat distance of the refleeting eurfwee in order to produce a perfeot eoho f (884)
485. What are repeating eohoes. (885)
488. Give some examples of remarizable echoes? (886)
487. Explain the oonstruetion of the so called whispering palleries.
488. Name nome of the best whispering gallerios in the worla. (887)
489. Desoribe the apenking trampet and oxplain its mode of antion
300. Describe the ear trumpet and explain the prinoiple vpon whioh it aoto (989)

401. What is notee ? (890)

497. What are musical sounde? (891)
498. What are the three elements of a sound ? (892)
499. What, is tone or pitch ? Upon what does it depend? (208)
500. What is intensity? Upon what does it depend? (894)
501. What is the quality or timbre of a sound ? (896)
502. When mere sounds ald to be in unison ? (896)
503. What is a melody? (897)
504. What is a chord f (808)
505. What is harmony ? (898)
506. Describe the siren and Savart's toothed wheel and explain their use. (400)
507. Describe the monoohord and explain its nse. (4d1)
508. Give the relative length of cords and the number of vibrations reguired to produce each note of the gamut. (402)
509. How is the absolnte number of vibrations required to produce any given note determined ? (408)
510. Give the number required for each of the notes of the common scale (404)
511. How do we determine the number of vibrations required for the corresponding notes of higher or lower scales ? (4051)
b07. How do we determiue the length of a sonorous vibration? (408)
B08, Give the lengths of the vibrations producing the C of different scales. (408)
512. What are intervals'? (407)
513. How are musical intervals named ? (408)
514. Give the fractional length of the interval between each two snccessive notes in the diatonic scale. (408 and 409)
515. What is a major tone? A minor tone? a semitone? (409)
516. What are diatonic and ohromatic semitones ? What is a grave chrometic semitone ? What is a comma? (409, Note)
517. What are compound ohorde? (411)
518. What is the perfect major accord?. (411)
519. Fhat is the perfect minor accordi; (111)
520. What is the differince between these as regards intervals? (411,Note)
521. Expiain what is meant by the transpositlon of soules ? (412)
522. What are aharpa and flats, and for what purpose are they employed? (418)
523. What is the chromatio geale P (414)
524. What is tomperament ? (415)
525. Explain the use of temperament in mueic. (415)
526. Explain the phenomena of beating fu musical sounds. (416)
527. Deecribe the diapason or tuning fork. (417)
528. Claseify mnsical instruments. (418)

626, Desoribe the mode in which wind Instruments are sounded, and name the most imp ortant wind instrumento. (419)
627. Describe the mode in which stringed instruments are sounded. (420)
628. Deecribe the difierent varieties of the drum. (421)
620. Upon what ciroumstanoes does the pitoh of the sound produced by a wind instrument depend ? (522)
580. What carses the diference of timbre in wind iustruments ? (428)
581. What are the difierent modes of produoing sonnds in tubes? (428)
682. G1ve Bernoulli's lawa governing the vibration of air in tubes. (424)
688. Name the ceveral parts that constitute the organ of voioe in man. (420)
634. Give the ponlition and commion iname of the larynx. (497)
685. Desoribe the strueture of the larynx. -(27)
693. What ourtilages form the prominonce known an Adam's apple in the
se7. Hont purt of the throat $?$ (977)
B57. Whereare the arytenold cartilages placed ? What is their nee ? (497),
588.
539.
540.
641. $]$
542.
543.1
544.
545.
546.
547.
548.
549. \mathbf{D}
550.
551. N

558 . N
558. N
554. \mathbf{W}
b55. D
556. H
657. D
658. W
559. D
538. Describe the cordae vocales. What is their position and their attach. ments? (428)
539. What is the rima glottidis? What is its shape except during the production of eound? (228)
540. What is the glottis? What the epiglottis? (429)
542. Iltustrate the extreme precision in the larynx. (430)
the exact amount of tension of the tocal corde will can determine
543. Explain why a man eings base or tenoral cords. (481) sing treble. (482)
545. Upon what does the loudneas of the
546. How are voices divided by me the voice depend: (434)
547. Givo the oxtreme number of vibrations of eac
548. What is the range of the voice in speaking? ciass of voicos? (485) singing? (435 Yote) voice in spealing? What is the range in
549. Describe the production of sound in the inferior animals?
550. What are the principal parts of the organ of hearing? (487) (436)
551. Name and deacribe the two parts of the external ear? (438)
552. Name and describe the three parts of the middle ear. (438)
554. Name and describe the three parts of the intermal ear. (440 .
555. Describe the penestra ovalis? What the fenestra roturnda? (440) (440,448) oduce any umon acale or the cor-
(408) ;ent scales.
snccessivo rave chro-
556. How and w
657. Deacribe the functions of thery nerve distributed in the ear? (441)
658. What are the most grave and acuent parts of the ear. (449) ear? (444) (445)

TEE END OF PART I.

$x=4$

$$
18
$$

[^0]: Nore.-When the wedge is worked by percussion, the relation between the power and waight cannot be ascertalned aince the foroe of percuasion difors mo oumpletely from oontinued forces to admit of no pomparieon
 with them.

[^1]: - 6280 in the number of feet in one milla

[^2]: Thus let the p thor atidet the the inte of the pi
 Now if a weig ofthe ploton, the

[^3]: When the d plying the mquar

[^4]: Whem the diameter of the piston is given, ite area is found by multiplying the equare of half the diameter by $8 \mathbf{1 4 1 0}$.

[^5]: - In this and no allowance f

[^6]: -In this and following examples involving the came principle, we make ae allowance for the incroased prosesure at great depthi.

[^7]: *That

[^8]: *That is not including the weight of the battle itself.

[^9]: - Uee Leslie's rule.
 \dagger Use Halley's rule with correction for tomperature; i. e., the second of
 erules given. the rules given.

[^10]: Note.-In another modification of these horizontal wheels the water is made to apply at the periphery of the wheel. Many varieties are patented and highily spokepi of as to their effective performances.

