The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/ Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCoyer title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Sound with other material/
Relié avec d'autres documents

∇
Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\squareBlank leaves added during sestoration may appear within the text. Whenever possible, these have been omitted frori, filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol II.-No. 8.
NOVEMBER, 1874.

Price in Canada $\$ 2.00$ per An. United States - \$250

THE BESSEMER (HANNEL STEAMSHIP.-TuE Swhgiso Saloon.

A IAY SERMON ON CHUBCHYARDS AND EIITAPHS.
In an hour of morbid melancholy the poet sings of earth becoming "dark w.:h the shadows of the tombs.' It is an unvatural and repulsive idea to associato skulls and crossbones and the like horrible paraphernalia with Death, to paint him as a gaunt skeloton armed with a scythe, wandering to and fro in the world, ruthlessly mowing down youth and age. It is botter philosophy and better religion to figure Death as ono of God's brightest angels continually travelling between earth and heaven, bearing messages of love, with voice soft as the autumn wind, that whispers to the dying blossom. and hand as gentle as the snow-flakes that weave their shroud above the perished nower.
"Weep not for the dead, neither bemoan him," was tho counsel of the prophet of old, but how difficult the task to act upon it. Bereavement mourns over the grave as if the one ehe loved was lying in the darkness beneath; she will not pause to reflect, to know and comfort herself with tho knowledge that all that endeared the lost one,-iost only for awhile, -the nobleness of soul, the beauty of mind, go not down into the grave, but rise from the bed of death upon the wings of immortality. It ljis the dust alone which returns to the dust.
"The luxury of woe" has lost much of its spiritual significance, and is become grossly materialised. Nowadays it has a price in the market. We measure our grief by the length of our crape. Wo have establithments whose "melancholy plessure" is to supply mourning at various rates and in various shades, 80 as to accommodate the wildest heartbreak and tho most microscopic grief. Only at the grave do we discover what a good or amiable or noble-hearted individual the departed was. We get up subscriptions for a monumental tomb to the genius or talent that for nigh a lifetimu begged a morsel of bread from us, and got a stone,-after death,-and wo inscribe on it an epitaph to tell posterity how lighly the departed wasidhonoured during life, how deeply regretted after death. "False as an epitaph," is an old saying. "Here lies," is a common and equivocal commencement. There is a paintiug in Hampton Court, representing the Day of Judgment; the graves are open, and some of the reanimated corpses are rushing about, carrying their tombstones with them, unfortunately the artist has been bencath a tombstone for a century or two, and the idea ine wished to convey is buried with him. Could it be that he supposed the dead would on the Great Day of Accourt use their then epitaphs as testimonials?

An ei itaph is too frequently an ornamental grief, if it were not so, nothing could teach a moro solemn lesson; nothing could better win the heart of man to think kindlier of his fellow-men; for ali that was lovable in a friend becomes still more lovely all that was hateful in one we deemed an enemy is robbed of ugliness when friend and enemy are laid in the grave. Death draws a curtain betwcen us and the departed through which we see them beatified, as we see a calner loveliness in the landscape when veiled in the golden haze of tae morning.

It is a feeling of natural picty that causes us to record upon the gravestone the name and virtues of the deceased; and those that say,

> "Wo have no need of names or cpitaphs,
> Wo talk about the dead by our firesides,"
are actuated by a feeling flowing from the same source. Each churchyardis a volume of Earth's great treatise on Death; its printed pages are the records on the tombstones; there are in it also blank pages-nameless graves-eloquent in their silence. Nature bends her blue cye on each hillock in the charchyard, nothing un!ovely or repulsive meets her gaze; she only_sees that which was once the tenement of a soul,

"Trurning to daisios gently in tho grave.

It whas a beautiful thought of olden Saxon piety to name the burial-ground God's Acre, $-a$ sacred land at whose borders man should put of pride and vanity; a field never to be upturned ky the plough, into which the husbaudman should never cast the giain to be quickened for the sickle of the reaper; where that seed alone may be sown which is to corrupt amid corruption, and to rise incorruptiblo when (iod gathers in the harvest of time.

An epitaph being the utterance of sorrow, should be brief. The character of the individual whom it commemomtes should
be given, but not in detail,-a scrupulous minuteness is nut to convoy the impression that the truth has not been strickly adhered to, and a multiciplity of words is generally the index of assumed sorrow. An old cpigram says,

> "With must of opitaphs I'm srieved, So vory muoh is said
> One half will never be belioverl,
> The othor novor read.

If the departed was a kind husband, lot that bo said, withont noting the various domestic duties which he so lovingly dis. charged; if a charitable man, let the simple fact be tuld without urning the tombstone into a subscription list (no uncommon practice, by detailiny the various sums ho gave during life, or bequeathed at death, for benovolent purposes, and astonishing future generations with the information that he was president of a soup-kitchen, or honorary secietary tis a coal-distribution society; if a soldier, where is the necessity to enumerate the number of legs lost and stumps won in the cause of glory? if an author, let no "complete list of the author's woiks" bo furnished; and let not a physician's opitaph become a "yuack advertisement," recording wonderful cures ho had performed during his life ; in short, an epitaph sbould be brief, and written in language that will appeal to the harts of all who read it. It should be free from the arrogance that appropriates heaven and eternal happiness, and, on the gravestone, boasts of the possession in words such as these :-"I am with the blessed." It should refer to the hope that stretches beyond the grave, to the uncertainty of life, and the certainty of death, and the tone of it all should teach that

> "The glories f our burth and stato

Aro shadows, nut substantial things,"
The mure condensed na epilaph is, the better. Pope wrote for Dryden's tomb:-

> This shefiold raised. The sacrod dust below
> Was Dryden once. The rest who doos not know? ",

It was not adopted. How much grander the one word that n. cupies its place :-

"Irydon."

What an intensity of affection in the simple inscription :-

"Ilero lios Willio,
 Ared 3 months."

The simple notice, "Mere lies Willie," wuuld have given scope for wide conjecture, but "aged 8 months" pictures at once the infant sitting on the shore of life suddenly snathed away from the murmur of the sunny wavelets. Our best cpitaths aro incorporated with our literature. What need is there of quoting dilton's on Shakspeare, Ben Jonson's on the Countess Dowager of Pembroke, or Garrick's on Hogarth?

Into the subject of epitaphs written by poets for themselven, there is littlo space to enter. That of Thumas Hood is almust perfect, " He sang the Song of the Shirt." Thumas Campuell wished that "Author of Gertrude of Wyoming" might be recorded on his memorial stone, but his wish was not carried vat. Matthew Prior wrote for himself such an epitaph as might have been expected :-

> "Noblos and Heralds, by your leavo
> Hero lios whatonco was Inathew Prior,
> The son of Admand of No,
> Can Stuartom Nassau claim higher?"

In vivid contrast to this is the self-written epitaph of Robert Burns :-
"The poor inhabitant bolow
Was quick to loarn and wiso to know
And kenly folt the friendly glow, And softer lamo;
But thoughtless follios laid him lor, And stain'd his namo."
The age of conventional epitaphs is gone, suchas "Sickurss was my portion, physic was my food," \&c., and "Aflictions sore," \&c., the ago of conventional tombstones, on which were displayed crossbones and grinning skulls and cherubs, that strongly resembled owls and parrots in their general contour, has departed and in the place of the latter we have a conventionality quite as ridiculous, quite as absurd. Who has ever entered a cemetery without being annoyed with the number of quasi broken pillars, torches extinguished, or about to be so, and the ewers and towels and double-handed jugs, that are suggestive of nothing but bedrooms and barber's shops?

There is a large class of well-meaning people who seem to think a gravestone without an epituph a mere wilful waste of so much gooi stone, and that $w i t h$ one, or mather by stone, the rlaims of the departed to the consideration of the public aro migitly strengthened, that a plain tombstone is considerably wore respectable than a simple raised turf; but that a tombtone with an epitaph to boot is positively and indisputably - puted Our burial-places are capable of great improvement. "I ho without a shudder can look upon a city churchyard," a diamal place raiseda few fect above the level of the street, and parted from it by a luw parapet wall and an iron railing-a rank unwholesome rotten spot, where grass and weeds seem in their froway growth to te ll that they had sprung from paupers' bolles, and struck their roots in the graves of men sodden in steamiug courts and drunhen hungry dens?" How different the ferling with whi h we enter a churehyard in the country, how reverently we gaze around the holy pite where beneath whose roof in life they congregated to worship,
"Each in his narrow cell for evorlaid,
Tho rude furefathers of tho hamlet sleop"
And yet knowledge and our reason tell us that to bury the dead in provimity to the living is to help to shorten the, in any eatee, brief space of time which divides one from the other.

JAPANESE VEGETABLE WAX.

The Tapan Mful contains sume further particulars respecting the preparation of the vegetable wax produced in Japan, and rhietly ryported to England. This wax is obtained from the fruit, or, more iorrectly, berry of the wax tree. The tree, wheh is by no means unlake the juniper trec, flourishes more especially in the sont in provinces of the empire. The fruit, whirh usually ripens about the month of October, is gathered "hen ready, and clumsed from its loose, outer husk, a process whin is accomplished in large wooden vessels, with wooden malls, similar to those in use for cleaning rice. The residue product, available for the manufacture of wax, is a bean-shaped hrrme of the size of a lentil, possessing an unusual degree of barduess, of a dark bellow wax colour, and offering a sapouaceoms exterior to the touch. The kernel is subsequently exposed in a sufficient degree to a steamiug process, which deprives it of itseatre me harduess, and allows of its oily proprotion hajg more easily extratid in the pressing stage. In thes proress, the oil is received into small earthen vessels, in whi h it subsequently hardens to a blueish-green mass, in the shape which it is commonly met with in home consumption.

Wax so produced is impure, and is only suitable for certain descriptions of candies and for wax-thread manufacture for home use. In order to render it merchantable for the exporter, the following refining process is resorted to :-The wax is boilud with a lye until it is brousht to a perfectly thuid state, and is then drawn off into a reservoir filied with clear water, the pure wax, mhich floats upun the surface, beng removed The mass is then exposel to the sun's rays for a period of filtern or sixteen days, during fine weather, for the purpose of bleaching it, at the expiration of which timo the wax presents a dirty white crumbling appearance and a strong tallowy s: acll. The boiling and bleaching are repeated with the view of rendering the refuing process still more complete, the only difference heing that, instrad of lye, pure water alone is omployed in boumer it. The product is a clear, white powder, which, in place of its former crumbling appearance, has assumed an alnovit vystallin. formation. The last stage of the preparatuon for export ronsists in rendering the powder a compact mas, which is effected by melting it over a fle with a litele water (in order to avoid burning, and running it off into fiat vesechs The product thus oblained, and known to commerce as vegetable wax, differs ezceedingly little from white bees'wax, with which it possesses the properties of colour, brittleners, and similarity in its fan-shaped fracture in common. "te onty, haracteristic difference may be said to bo in the ode r, the bec's-was giving off a refreshing aromatic seent in burnit. , while the tallowy smell of the Japanese wax is far from beng agrecable Vegctable wax is chicily used in the manufacture of wax candles.

1 rile which the Evans Rine Co, at Mechames Fall-, Me., are manufacturing, is cad to be capable of discharging thirtyfour shots in ninctepn seconds.

50-1ON STEAM-HAMMER

At the present time, when the large steam hammer at the Woolwich Arsenal hes ju t been specially exhibited to the Emperor of Russia, many of our readers will regard with interest the engravings which we th's week publish of a much larger hammer which has for some time past been at work at the Alexandrowski Stenl Works, 4t. l'eteraburg l'his hammer (of which we givean engraving from Enganeerang on page 329) was originally constructed by alessrs. Kolect Morrison and Co., of Newcastle-upon-L'yno, and it was arected by them in 1866. It was then a $35-t o n$ hammer of Messrs Vorrison' well-known pattern, the piston 101 , or hammer bar, which extonded through both top and hottom cyhndet covers being forged in one piece with the piston, and that portion which wasabove the piston being fiattened on two sides. Is first erected, also, the arched frames shown in our engraving sprung from the grousd level, their span being 30 ft , and the height ofarch to underside of cylinder 16 ft .8 in .

After the hammer had been working a short time the hammer bar began to give way, and nltimately broke, and the great expense which would have atten led repiacing it led Captain Kolokoltzoff to consult Messrs. Thwaites and Carbutt, of Bradford, as to the advisability of altering the hammer in one of 50 tonf, and at the same time providing the hammir head with guides, the hammer bar being originally guided by its stuffing-boxes only. The result of this consultation was that Messrs. Thwaites and Carbutt submitted several designs for the alteration, and eventually that which wo illustrate was carried out. Accordinf to this plan the uriginal eylınder 18 retained, but the arched standards instend of springing from the ground line are now mounted on the tops of massive vertical standards 12 ft . high, the clear height under the cylinder being thus increased to 28 ft .8 in., and room beint obtained for the erection of the guides for the hammer head The cylinder, we should state, is 6 ft .6 in . in diameter, and the length of stroke 12 ft .6 in ., so that the whole work is of a colossal character. The height of the hammer, as alter d, from the gro'nd line to the top of the eylinder is 46 ft ., whilo the cylinder itself is a massive casting weighing 36 tons. Each of the arched standards is 34 ft . in height, and weighs 40 tons, while the column of rectangular box section, from which each arched standard springz, is made in two parts, and weaghs 37 tons, the total weight of eachside frame complete from the floor line being thus 77 tons.

RaILWay Mattens.

Tus Burlington (la.) Hawkeye is of the opinion that when a locomotive engiaes tia ling himself lad out ou a side track for the greater part of the afternoon, wilcs away the monotong of the occasion by sending his nuw fireman bacs to the next station to losk after the exbaust which he claims to liave lost while coming up the hill, it mas be safely considered as a base attempt of a brotherhood inan to put a damper on rising genius.

A large wooden bridge on what is known rs the Pan Mandle Railway, in the United States, was recently burned down, and the promptitude with which it was reconstructed goes to prove that if a wroden bridge is easily destroyed it is easily reinstated. Immediately after the burniog of the bridge the company issued an order to Messrs Alex. McClure and Co., of Pittsburg, for the timber necessary for a new one : all the trins of the Pan Fiandle route were compelled to pass over the Pittsburg, Ft. Wayno and Cbicago and Cleveland and Pittsburg railways as far as Steabenville, until the new bridge cruld bo completed. Messrs. McClure and Co. immediately cleared their mills for action; and commenced on Monday murning. Sept., 21, running both saws day and night, until they had made 62, days, in which time they cut $143,478 \mathrm{ft}$. of lumbr ; 123, 850 ft . of this was cut and shipped in $4 \frac{1}{2}$ day, to the scane of the burut bridge. The railroad company erccted the new bridge in 3 d days. The lumbe for the bridge was all cut and loaded into.cars from the 218t to the 24th; the last car load having beer. sent off at threc o'clock on the morning of the e4th. The railroad cotn;any were highly gratified with the promptness with which the firm went to work, and with the unprecedently short tíne in which they were furnished with materials from the logs to build the entire new structure.

**

PRINCIPLLES OF SHOP MANIDULATION FOR liNaINEERING APPREN TICES.*

By Joun Richarda, M E Londoe
(Contınued from page 211.)
obihbalisation of suof processes.
Having thus far trented of such geneml principles and facts, connected with practical mechanics as might properly precedo and be of use in the study of actual manipulation, in the workshop, we come next to casting, forming and finisbing, with other details that involve manual as well as mental skill, and to which I will apply the term "proresses," for want of one more applicable.

As these shop processes or operations are more or less connected, and ran one into the other, it will be aecessary at the beginning to give a short summary of them, stating the general object of each, that may serve to render the detailed remarks more intelligible to thr apprentice as he comes to them in cousecutive order.
Designing or gencrating the plans of constructing machinery may bo considered the leading element in engincering manufactures of machinu construction, the one to which all others are subordinate, both in order and importance; and is that branch to which en;ineering knowledge is especially directed.
Designing cousist, first, in assuming certain results, and, secondly, in conceiving of mechanical agents to produce these results.

It comprehends the geometry of movemonts, the disposition and arrangement of material, the endurance of wearing surfaces, adjustments, and symmetry; in short, all the conditions of machiue operation and machine construction. This subject will be again treated of in another section relating to shop processes.
Drafting, or drawing, as it is more commonly called, is a means by which mental conceptions are conveved from one person to another; it is the language of mechanics, and takes the place of pords, which are insufficient to convcy mechanical ideas in an intelligible manner.

Drawiugs represent and explain the machinery to which they relate as the symbols in algebra represent quantities, and in a degree admit of the same modifications and experiments to which the machinery itself could be subjected if it were already constructed.

Drawinge are also an important aid in developing designs or conceptions. It is impossible to conceive and retain in the mind all the parts of a complicated machine and their relation to each other without some aid to fix the various ideas as they arise, and keep them in sight for comparison; like compiling statistics, the footings must be kept at hand for reference, and to determine the relation that one thing may bear to another.

In the workshop, the objects of drawings are to communicate plans and dimensions to the workmen, and to enable a division of the labour so that the seroral parts of a machine may b; operated upon by different workmen at the same time, and to euable classification and estimates of cost to be made, and records kept.

Drawings are in fact the base of shop system, upon which depends not only the accuracy and uniformity of what is produced, but also in a great degrec, its cost.
'omplete drawings of whatever is made are now considered indispensable in the best regulated establishments; yet we are not so far removed from a time when most work was made without drawings, but what we may realise their importance by contrasting the present with the system that existed but a few years ago, when to construct a new machine was a great undertaking, involviń generally many c.,perinients and mistukes.

Pattern making relatea to the construction of wooden models for the moulded parts of machinery.
l'attern making involves a knowledge of shrinkage and cooling strains, the manner of moulding and proper position of pieces, when cast, to insure soundness in particular parts.
Asa branch of machine manufacture, pattern making requires a large amount of special knowledge, and a bigh degree of skill; for in no other department is there 80 much that must be left to the discretion and judgment of the workmen.

- This, and tho succoeding articlos under tho same title, Fere published simuttancously in the Journal of the Franklin Institute, Phitadelphia, and in Engincering.

Pattern makers have to understand drawings throughly, it order to reproduce them on the trestle boards with allownnce for shrinkage; they must also understand moulding, ensting, fitting, and finialing, and should, as a department of machno manufacture, rank next to designing and drating.

Founding and casting relates to formir, 3 parts of machinery by pouring molted metal into moulds, the force of gravity alone being sufficient to prews or form it into even co rplicated form.

As a prucess for shaping such metal as is not injurad by the high degrec of heat required in melt ng, moulding is the cheapest and most expeditious of all means for shaping or forming material, for forms of regular outlint, while the importance of mouldin: in producing irregular forms is such that without this process the whole system of machine construction woul have to be changed.

Founding operations are divided into two classes, known technically as green sand moulding, an 1 loam or dry en id moulding, the first, when patterne or dupheates are use 1 to form the moulils, and the second, when the moulds are built by hand without the aid of complete patterns

Founding involves a knowledse of mixing and melting metals suchas are used in machine construction, the prep.rinar and setting of cores for the internal disp acement of the ractal, cooling sud shrinking strains, chills, and many other thing that are more or less special, and can only be learned and understood from actual observation and practice.
Forging relates to shaping metal by compression or blurs when it is in a heated and softened condition; as a process it is an intermediate one between casting and what miy be called cold treatment.

Forging also relates to welding or joining pieces together by sudden beating that melts the surface only, and then by forcming the pieces together while in this softened or semi-fused state.
Forging also includes, in ordinary practice, the preparation of cutting tools, and tempering them to variou degrece uf hardness as the anture of the work for which they are intended may require; also the construction of furnaces for heating the material, and mechanical devices for haadling it when hot, with the various operations for shaping, which, like casting, cau only be understood when secu.

Finishing and fitting relates to giving true and accurate drmensions to the parts of machincry that come in contact with eich other and are joined together o: move ufon each other, and consists in cutting away the surplus material that has to be left in foundigg and forging, because of the heated and expanded condition in which the material is treated ill these last proceszes. In finishing, the material is operated upon at its normal temperature, in which condition it can bo handled, gauged, or measured, and will retain its shape after it is fitted.

Finishing comprelends all operations of cutting and abrading mech as turning, boring, planiag, and grinding, als, the bandling of material; it is consedered the leading department in shop manipulation, because it $1 s$ the one where the machine ry is organised and brought t-gether. The fitting shop i-aho the department to which the drawings especially app'y, and other preparatory operations are usually made subserviunt to the fitting.

Shop system may alsis be classed as a branch of engincering work; it relates to the classification of machincs and thear parts by symb is and numbers, to record- of weight and tho cost of cast, forged, and finished parts, and apportions the cost of finished machinery among the different departments of the works. Shop system also includes the maintenance of standard dimensions, the classification and cost of labour, with other matters that partake both of a mechanical and a commercual nature.

In order to reader their study more easy for the apprentice, I will in treating of shop proce-ses, change the order in which they are named in the summary. Designing, and many matters connected with the operation of machines, will be more eavly learned and better understood, after having gone through with what may be called the constructive operations such as in. volv: manual skill.
mectanicat drawina.
Drawing may in some regards bo said to bear the same rela tion to mechanics that writing does to literature, but the analogy is by no means complete, a person may copy a manuscript or write from dictation about what he does not un-
derstand, but a mechauical draughteman cammot maku dnawings of a machino ho does not understand; at least he cannot do so in the true capacity of a draughtsman and a mecnante.
Geomotrical drawing is not an artistic art so much ns it is a constructive mechnaical one; displaying the parts of machinery on paper, is much the same in princlple and just the same in practice, as measuring and laying out work in the workshop.
Artistic drawiug is nuddressed to the senses, geometrical drewing is addressed to the understanding. Gcometrical drawing may, howover, include artistic skill, not in the way of ornamentation, but to convey animpression of neatness and ermpleteness, that bas by enmmon custom been assumed among engineers, and which conveys to the mind an Idea of competent construction in the drawing itself, and nlso in the machinery which is ropresented.
Artistic effect in drawings is easy io learn, and through a desire to make pictures, the beginner is often ied to neglect that which is more important in the way of accuracy and a judicious arrangement of the draving
It is ensy to learn "how" to draw; but is far from ensy to learn "what" to draw ; let this loo kept in mind, not in the way of discouraging effort in learning "how" to draw, for this must come frrst, but in order that the objects and true nature of the work will be understood.
The enginecring apprentice, as a rule, has a desire to make dravings as soon as he begins his studies, and there is not the least objection to his doing so, in fact there is a great deal gained by illustrating movoments and the details of machinery at the same time of studying the prociples. Such drawings, If made, should always be finished and carefully inked in, and memoranda made on the margin of the shects with the date and the conditions under which the dmwings were made. The shects should be of uniform size, not too large for a portfolo, and carcfully preserved, no matter what their character.

An apprentice who will preserve his first drawings in this manner, will some day find bimself in possession of a souvenir that no consideration would cause him to part with.

For an outfit procure two drawing boards, 42 in. long and 30 in . wide, to receive double clephant paper, bave the boards plain without cleete, or any ingenious devices for fastening the paper, and made from thoroughly seasoned tumber at least 14 in . thick.

Two boards are required, 8 that one may be used for sketchng and drawing details, which if done on the same sheet with elevations, dirties the paper, and is apt to lower the standard of the finished drawing by wh it I will term bad association.

Details and sketches should when made on a separste sheet, be to a larger scale than on the elevations, by changing from one scale to another the mind is schooled in proportion, and the couception of sizes and dimensions is more spt to be based upon the finished work than the drawing itself.

In working to regular scales, such as half-cighth or sizteenth size. it is a good plan to use a common rule, instead of graduated scales; there is nothing more convenient for a mechanical draughtsman than to be able to resolvedimensions into various scales, and the use of a common rule for fractional scales trains the mind, so that the computations come nature lly, and after a time almost withont effort.
Use a plain T spuare with a parallel blade fastened on the side of the head, but not imbedded into it, in this way the set sjuares can pass over the square head in working at the edges of the drawing. It is something strange that a draughtlag squar, should ever have been made in any other manner than this, and still more strange that people will use squares that do not allow the set gquares to come near to the edge of the board.
A bevel square is often convenient, but should be an independent one; a T square that has a movable blade is never int for general use; combinations in draughting instrumente, n. 3 matter what their character, should be avoided; such combinations, like those in machinery, are generally mistakes, and effect just the reverse of what is intended.
For set squares, or triangles as they are sometimes called, no material is so good as ebonite; such squares are hard, 8 mooth, impervious to masisture, and contrast with the paper in colour; thoy will also wear longer than those of wood.
If vood squares are ased, pear wood is best, because of its flexibility. A coat or two of shellac varnish improves such squares by making them smooth and preventing their derangement by moisture.

For instrumeuts, avoid everything of the claborato or faney kind; such sets are for amatenre, not ongineers. It is best to procure at first only such iastruments as are really required, of the best make, and then to add others as necessity may require; in this way experience will often suggest modifics. tions.

One pair each of 31 in . and 5 in . compasses, two ruling pens, two pair of spring dividers, for pen and poncil-, a triangular boxwood scalo and common rule, and a bard pencil, are the essential instruments for machine drawing.

At the biginning, when "scratchng out" will probably form an item in the work, it is best to use Whatman's yaper, or the best roll paper, which, of the best manufacture, is quite as good as any other for drawings that are not water shaded.

In mounting shests that are likely to be removed and replaced, for the purpose of modification, as working drawings grnerally are, they can be fastened very well by small copper tacks driven along the edges at intervals of 2 in. or less; the paper can be very slightly damped before fastening in this manner, and if the opration is carcfully performed the paper will be quite re smonth and convonient to work upon as though it were pasted down; the tacks can be driven down so as to be flush with, or below the surface of the paper, nud will offer no obsiruction to the squares.

If a drawing is to be elaburate, or is to remain long upon the board, the paper should be pasted down. 'To do this, first prepare the mucilage, and have it ready at hand with some slips of absorbent paper about 1 in . wide. Damp the shect on both sides with a sponge, and then apply the mucilage along the "dge, for a width of 1 in, then get the edge of the board on the floor, so that it will lean against the desk at steep angles In this position the paper can be applied without assistance. 'ithen, by placing the strips of paper along the edge, and rubbing over thom with some smooth, hard instrument. the cages are pasted firmls to the board, the paper slips taking up a part of the moisture from the edges, which are longest in drying If left in this condition the centre would dry first, and the paper be pulled loose at the edges by contraction before t'se paste had time to dry. It is therefore necessary to pass over the centre of the sheet with a wet sponge at intervals, until the edges adhere firmly, when it can be left to dry, and will be tight and smooth. In this operation much depends upon the judgment of the learner, and much will t. learard by practice. One of the most common causes of trouble in mourting is in not having the mucilage thick enough; when thin, it is absorbed by the wood or the paper, and is too long in drying, it should be as thick as it can be applied with a brush, and made from clean gum arabic or tragacanth glue is not so good.

Thumb tacks are of but littlo uso in mechanical draving, eccopt for the most temporary purposes, and can very well be dipensed with altogether, they injure the drafting boards, obstruct the squares, and disfigure the sheets.
(To be contznued.)

Mresing Branch Crooges, and Co., of St. Louis, U.S., are introdur a novelty in saws, invented by Mr. J. W. Branch, which is nus described.-The inventor takes a circular sawplate and inserts about thirty small pieces of steel or iron in which is embedded a bort or black diamond The small pieces thus inserted are made fast by a steel rivet to the sav disc. The circular plate is 60 in . in diameter, holds thirty diamonds equidistant around its edge, and is capable of making over 650 revolutions per miniti. This plate is affized in the same manner as a regular circular saw for woodwork, but has a rub ber pipe fized in such a manner that a spray of water is running on the side, edge, and in front of the blade as it revolves and answers a dovile purpose for cooling the saw-blade and wetting the stonc. The saw is fixed above a bedplate which has a feed movement with head blocks on rollers The apparatus is portable, and can be set up in quarries, as well as in shops and stonc-yards.

To Dys Seather Blef-Black-Take of beeswax 3 oas., black resin 2 ozs Mix together, and then add: Prussian blue 104 . lampback $\frac{1}{2}$ oz While the mixture is cooling, add tarpeutine till a suitable consistency is obtained. It should bo applied with a soft rag, and the leather aftormard: polished with a brush.

TEE ORIGIN OF TUE TURRET SYSTEM.

Siwe the period of the controverny between Neuton and Ledibrit\% as to the invention of flusions, it has been admitted by the common consent of men of science that second discoverers deserve no honours; and since the date when our patent system brought invention into our courte, it has become a maxim in lay that second inventors have no rights. Neverthel 88 , the history of inventive progress shows in very numerous instances-amongst which aro noticeable thuse of the steam hammor, of water-tight bulkheads in shijs, and of the very suliject on which we are about to write-that aecond inventors do, through the forct of circumstances, reap the substantial rewards that belong to first inventor: whose claims bave been ignord or have fallen into oblivion in consequence of their invention having bean too far in advance of the state of the arts and other circumstances of the time in which they lived. If an inventor is to receive a due mecd of houour and the substantial reward of wealth also, his invention must not only have the conditions of novelty and ralue, but of immediate and wide-spread utility in the time of the inventor himself-in illustation of which we need go no further than to recall the splendid rewards reaped by Arkwright, Watt, and Stephenson. There is, therefore, all the greater reason that when a first inventor has found something which has made a subsequent and later one famous or opulent, the claim of the first inventor should be disinterred, and the posthamons honour that belongs to him duly rendered to him when no other reward enn. Palman que mrrut ferat, should be the motto of a journal such as oure-jealous of the rights of inventors and equally ready to expose unjust pretension. It is with this view that we desire to place upon record the following facts, which appear to us to indicate that all that has been supposed valuable or novel in the turret system, whether applied on land or afloat. and which popular intelligence very generally views as evolved within the last twenty years, and which is commonly attributed chietly to the late Captain Coles, was in frect invented, and its advautages clearly discerncd and published, if not before Captain Coles was born, at least before he had left school or college.

An octavo volume now extremely rare and dificult to be procured was published at Paris in the year 1831, the author being a $\$ 1$. Baltard, under the following title *:
Essat sut la Fortitcation et sur les Tuurs a Batterte tournante consuderés tsolesment ou reuntes aux ouvrages dans les places de guerie dux fron's lastiones, et dans les ports de mer-preeede we quelques conside' ations sur l'etot de l'architecture a l'epoque de la renasssance des arts et sur la propos de tortifier les villes de l'aris et de Lyons. Par Baltard, architecte exadjoint de lre classe au jens miltiatie. 1831. It was printed by Crapelci, Rue de Vaugirard No. 9 , and contains twenty-six folded lithographic alates, which together with the cac, very clearly divulge most, ii not all, of the salient features of the turret system.

Mr. Baltard the author, as we larn incidentally from his work, commenced his carcer at lesont as early as 1i94, in the French War Ufice, as one of those cival employes in the dictartment of milititry works and buildiugs who carry out in practical detail the requirements of those engineer oflicers whowe indispensable assistants they become - it having been found in.possible in the French service that a man educated as an engineer ofticer should also possess the raried and practical abilities of the civil architect and builder engaged upon coustructions which are essentially those of the arts of peace, though applied very difierently He appears to have been cmployed in this capacity during the great wars of Napoleon 1., but to have retired from direct official duties probably soon after the restoration of the lourbons, in 1815 . He had long proviouly turned his attention to the subject of revolving turrets as an element of tortification, both afloat and ashore, and had, if not completed, made much progress with the work before us, which, how rere, lay unpublished until the accession of Lonis Phillippe and the projected fortification of Paris and Lyons - which seems to have been mooted in this reign carlicr than we in England were aware - caused him to brimg forward his plans by tho publication of his

[^0]book. Haltard laved betore the inon age. His wrolvits. turrets are almost wholly of timber, yet ably put togethrr Artillery, whether on land or at sea, had reached nothng approaching its prosent dimensions; and Paltard's circular towers, with walls of timber 4 ft or 6 ft . in thickness, ind built up in the way he has indicated, would bave offereda stout tesistance to the artillery fire of his own period He worked with tho only material that was possible to him but so clearly has he discerned all the conditions that bu. lung to the system of revolving turrets, that had he lived upito the time when the state of iron manufacture admitted of the production of armour plates, we cannot doubt that lie would have applied these upou the exterior of his tower-, the construction of the walls of which was such as to render then highly effetive as backing tor such plates. Amongst the twenty-six lithographic plates which illustrate the work are to be found examples of large revolving turrets raised in rip.. mere upon the salientangles and other parts of land fortition. tions, and upon a large scale dominating over the coutr pa:t of polyronal forts in masonry and carth-work, all the parts of which, except the dominant turret, were sunk liwlow the trore platine. I'hese are illustrated in many forms, ind their use isillustrated finally in a skeleton map of Paris and country round, ufon whith he has indicated the dominant points at which he suggests the application of his system of turrets to a ring of detached forts. Thי general idea of onstruction of these land towers is sufficiently indicated by ligs 1 and 2, copird from his work, and giving in plan and vettical section on' of these towers, in which, as wall be seen by Fig 2, two fioors, one above the other, cach carrying guns, are made to revolve, the walls and roof of the tower itself bing fixed. The walls of these towers, as may be seen bv Fis 1 , and also Fig 3, were built up of wedge-shaped blocts ot hard timber, land lhe voissoirs transverse to tho thickuess of the wall, and it was proposed in various ways that thes should be "joggled' or "dowelled" together, being further secured and strengthened, both jaternally and externally, by complete circumferential thicknesses of timbers lard in the form of wailing pieces, and covering the whole of the surfaces external and iuternal. The gons were proposed leing brought forward in succession by the revolving platforms, so as to be discharged through the embras'ues on the engaged face of the turtet, and after discharge to pass on, so as to be reloade I at the rear or unengaged face. In Fig. 3, is seen, to a larger scale, the built up construction of the wall, which, as regards its cud.on voussoirs, presents a rery distinct resemblance to Chalmers, system of backing for armour plate. In the Fig. 3, as also in Figs. 4 and 5 , is sern the construction proposed for the cmbrasures These were of cast iron in heavy masses, and consisted each of an external frame forming the jair, of the embrasure, and prepared to receive a large cylindrical casting perforated through like the plug or pun rse a commun cosh, turning upon a vertical axis, a quarter of a revolution entiot closing the aperture of the embrasure against the entrance el projectiles, or leaving it free and open for the discharge of the gun within the tower.

The author suggests the use of these turrets for the defene of the ditches of bis sunken land fortresses, where they would be to a great extent secure from fir. up to nearly the period of the final assault. Many very uscful hints are to be gathered from his designs for land fortresses which it would be outsite our object to enlarye upon. D. Baltard also proposes the application of these revolving turrets to coast and harbour defences, by their forming parts of a sort of double turretad monitor, as shownen plan in Fig G, and in transverse mid. -hip section in Fir 7 , the transverse section of the turrets of the two ends of the monitor being of a construction sufticientls indicated by the section, Fig. 2, substituting thercin the floation hull upon which the tower is built for the masonry of that section. The vessels proposed for this service were either to be specinlly bult, or adaptations of tho hulls of existing mea-of-war cut down to a lower frecboard. The turrets occupid the extreme ends, and the entire length of the shap b tweca these was walled in and roofed, so as to afford as much protection as possible to the men who were to give mothon to the whole by the large sweeps or osrs-ihe rowers being ethar convicts (fow ontr) or soldiers. Both sides of the hull to above the water line had longitudinal timber bulklieads at s di-tance of some feet from the side of the hull, the spares within these being occupied in great part by large cylundrual hooped vessels of thick timber running in conventest
lengths for the whole length of the ship; these, bo far as ne can gather, werc intended to be imbedded in hard reristant ballast, which should give stability to the hall by fancing the top weight imposerd upon it, aud at the same ume sid in 1 wsisting the penetration of any shot strikugg arar or under the water line through the inner or longirudinal bulkheads, the object of tho hollow cylindrical boopel vessels being to render the hull practically unsinkwhe Minny and obvious as aro the defects evident in these de igus, it is worthy of remark how many of even the very latest suggestions of the invontors and naval architects of our nan day atre comprised in them, though in a form more or less rementary In weighiug the merits aud dufects of these devg aspublished forty-seron years ago, just criticism will al ways twar mint the state of the arts at the period of their con-ception-about sixty years ago-and of their publican :on Iron ship-building was unknown, steam navigatiou practically so, the primitive oar was therefore the only means Inft to Baltard to give mobility to his monitors, which by their very nature did not admit with safety of the applicanon of masts and sails - a fact which it would have been bappy tor many had it been recognised in the more modern day: of the Captain. There is a somewhat curious parallel triteen the history of these designs and those for water tight tollileads now in such universal use in iron ships, the credit 0 th. invention of which for a length of time was ascribed to the late Mr. Charles Wye Williame, of Liverpool, who proposed their introduction in some of the earlier iron ships. Water-tught bulkheads of timber were employed in several of the ships of war of the old French marine, and are clearly stown in tho engravings and described in the article on esral architecture in the great French Encurlopedie of In liroi and Do Lambre - folio edition. All that modern cill has effected has been to substitute iron tor timber is thre bulkheads as respects their primary object of moderng the ship less liable to founder, though since the will atself has been coustructed of iron the bulkhead assumed an additional value and second object in increasing the strength of the fabric.

A beyarleable and very beadtifde shade of blue is noticeable upon many of the ancient ornaments found in the tombs of Egypt. Analysis some time since proved the color to be fomed by a combination of soda, sand, and lime, with certain rropartions of copper, from which sabstances the Egyptians canaged to produce three different products-first, a peculiar ind of red, green, and blue glass; second, a orilliant enamel ; ad lastly, the color to which reference is above made, and ahh was used for painting. By synthetical experiments, al Pilnot has succe ded in reproducing this peculiar shade of Hoe, by heating together 73 parts of silica with 15 of oxide of wipers 8 of lime, an 3 of soda. The temperature should not exeed sin deg. Fah.. as in such case, a valueless black product - the result.

A Striking Sundiat, - A sundial that strikes the hours is not set ecery day, and many persons will doubt whether sucha theng has ewes had au existence. a dial of this description, entever, has bern invented and constructed by Abbó Allegret. tis simply a modification of what is termed the solar counit. for registering the times at which the sun shines or is ©rured lo effect this there are two balls, one black and we nther yellow, fixed at upposite ends of a lever substained ir acentral pivot. When the sun shines the black ball abwof mure heat than the yellow one, and the vapour of a ligith contrined is the former is elevated to a higher tem-r-tuture than that in the latter. sis a result the vapour leaves the one ball, and being condensed in the other, this becumes ho letavtr, overbalances the equilibrium, and in doing susets for a weight, giving motion to the requizite clock-work. In is sundal referred to, a pair of these balls is fixed at every berr-marh. When the shadow of the gnomon reaches any ;esticular hour-mark one of the balls is shmed, a prepondePr: of liquad enters, the ball, the lever tilts, the mechanism is ritgong, and a gong sounded as many times as the numfro of the hous to be sudicated. Of course the sun must shine ' ${ }^{\prime}$, titur of the hour-mark being passed by the shadow, or "ll will not le struck.

HOW ('REMATION IT PERFWABEL) A! IHESULAN.
Nowhere has the proposal, recently revivid be wir Henry Thompson, to substitute cremation for interment, taken such a hold upon the public mind as in Germany. Aluady numerous cremation societies have been formed in that country and several furnaces intended for reduc:ng human remains to ashes have been and aro being constructed. (In page 236, in this issue, we give a sectomal ves at thecremation apparatus recently erected at Dresden by tha Siemens, at the request of Professor Ieclam, on the model of a furnace exhibited by that firm at the Paris bxhbition of 196: The mode of conducting the operation of cromation by mans of this apparatus in thus described by Herr F Sicmens, of Dresden :

The entire apparatus consists of three distinct paits. lirst, a gas generator for the production of the gas necessary to hent the furnace, outiside the building ; secondly, the proper furnace with the furusce and cremation room, inside the building ; thirdly, tho pipe or tlut for carrying off the produt if the operation. Imagine, then, a large, haudsome buildın5, suitably constructed for the purpose for which it is intended, in the middle of which is built a furnace, out of sight of thuse inside the place. The funeral procession enters the editice, as it now enters tho churchyard, and the conin is plased ou a catafalque. Aifer the usual ceremonies, the remains ?re lowered (as shown in the illustration) into the valt, the corer of which has been previously raised, and is immediately closed upon the reception of the coffiu. The mauner of p rforming the operation of cremation by the means of heated air is hen as follows. The gas penerator is so contrived that ever. four or six hours the fucl is repleashed (apparently on some selfteeding system). The gas is then carried of, as fast a produced, through a pipe furnished with a rogulator valve, into the "Regenerator," or furnace proper, where is regular current of beated air is kept up, by means of which the gas is converted into flame. Thus flame fills the furnace, keeping the bricks at a white heat and the receptacle for the remains at a moderate red heat, and finally escapes tarough a conductor lendinir to the chimne;: As soon as the furnace is in this condition the operation may br commenced. The furance cover is lifted, as shown in the illustration, by a man whose business it is to attend to the furnuce, the coffin is lowered into its receptacle, the cover of which is fastened down, and the remains are exposed to a red heat for a longer or a shorter time, according to the physical condition and constitution of the deceased. When the body has been exposed to the heat for a eufficient leagth of time the regulator valve is closed and the gas shut off. The hested air streams through the furnaco and specdily operates a dissolution of the more combustible gortions of the now dried up body; while the bones are destroyed by the theat, the carbonic acid passing off through the chimney, and the calcareous matter r moining in the form of a fine powder, which is subiequently collected for preservation as the friends of the deceased may wish. With an apparatus such as this, Sir Henry Thompson has made several experiments. On one occusion he consumed a \log reighing 227 pounds in 50 min-utes-the operation beiug conducted withont the slightest offensive smell, or any perceptible escape of gas.

Inconclusion, we may quote the words used by l'rofessor Gottfried Einkel at the cremation mecting held at Zurich in March last. Hisargument should appeal strongly in favour of cremation to those who, as in the case with many in Mlontreal, lave had frequent cause for complaint owing to the unchethed and repeated desecration of the resting places of their dead -a desecration sbaneful buyond words winen conducted, as in this city, at the instance aud under the auspices of the civic authorities.
"It is not our wish to use compulsion in the intraduction of any new practice. There is nothing to prevent those whos mas desire it from being laid to rest in the bosom of the earth I should look upon it as a horrible thing if one were to make the idea of death yet more unbearable to some people by eaying to them ' You must submit to cremation whether you will or no' But it is a still more horrible thing if the State is to say to the inan who wishes his remains to be consumed - You must and shall be buried in this hred lot, and when it cems good to the athontics you shall be removed to ravke room foranother.' Sooner will he trust to cremation for a sure and untroubled resting place for our dead."

MECHANICS'
 Magazine.

MONTREAI, NOVEMBER, 1874.

Ihiettilations: Bessomer Channol Steamshp........... 225228 Flfty-ton Steam-hammor 22 origin of the turret Mystom 232 Notes Iu a l'ulman Car. 233 Cremation at 1)resden.. 236 Bazin's row model for Steamships.............. 23 sir Samiel Bafter's An-th-siavery Expedition. 240 Touacco manufacture In

Fradec. 211241240248 Thirty-flve ion silled Gnn........................ 249 Colossal Cannon In In. dia......................... 24 Vineyard attacked by the I'hyiloxera........ 252 Phylloxera vastatrix.... 253 Self-propelling tram-car 256

Contents:
Lay Sermon on Church. yards and Epltayhis... 226 Japanose vigetable wax 227
Fifty-ion Steam-ham.
mer..................... 227
Lallway Matters......... 227

Princlples of Shop Mantputation. 230
Novolty in Sawr............ 231
Origin of the turret Sys.
tom........................ ..
Cremation as performed at Dreaden................... 2
Sir S. laker's anti-Slave-
ry Expedition............. 2
Arthiolal and adulterated
butter......................... 239
Steam rersus tire In mines 239
Phylloxera vastatrix...... 239
Bazin's new Steamship
model........................ 211
Colossal Indian Cannon.. 212
Art Schools in Southern
Germany.
212
Treatment of tin Scraps.. 243
Guns of tho Thunderor... 216
Sclentitc news................ 24
Amerlcan silver mine,
down an...... 25
Artitichal butter.............. 250
Report on Caughnawaga
Ship Canal. \qquad
Dwarfed trees................ $25 i$
Fire-Engine hose, making
water-light...................
Self-Propelling tram-car.. 254

SII SAMUEL BAKER'S ANTI-SLAVERY EXPEDITION.

Sir Samuel Baker's now book which has been looked for anxiously for some little time has at last appeared and is as readable and full of interest as his others works on African travel. Few travellers have ever succecded in placing the records of their researches and adventares before the pablic in so inviting a form as Sir S. Baker. Our illustrations on page 240, are from the work itself, Ismailia. The first engraving represents Mr. Higginbotham, accompanied by Dr. Gedge and the English party, together with all the Egyptian mechanics, on their way across the desert in charge of the steamers and machinery, carried by some thousand camels.-The following description will explain the second engraving, "Liberation of Sleves." On a certain occasion a vessel hove in sight, appasently laden with corn in bulk, and, it was stated, with ivory bencath the corn. Colonel Abd-el-Kader, a zealons subordinate of Baker's, feeling suspicious, thurst a steel ramrod into the corn. A smothered cry followed, and presently ho dragged to light a negro woman. Further discoveries disclosed a hundred and fifty human beings, boys, girls and women, packed like herrings in a barrol. One young woman was sewn up in the lower part of the sall attached to the main-yard. Sir Samuol Baker gives an interesting account of tho manner in which ho disposed of these captives. - The thìd engraving represents a night attack made by a hippopotamus on the boats. With one blow he capsized and sank the zinc boat, with its cargo of flesh, and then he seized and splintered the dingy into fragments. Though Baker fired shot after shot at him, he returned to the charge, and it was not till after a long time that ho was killed._"The Forty Thieves" were a corps of forty-six picked men, half black aud half shite. They wore so nicknamed owing to their light-fingered character, but eventually they became a model of morality. In the last engraving they are depicted in the act of advancing to mect
the attack of the slave-huuters at Fatico. The slave-humen had treachorously opened tire on Bakor's troops, and as he had alteady had several men wounded, he called the "Eurs Thicves" together, and ordered the bugler to sound the bayonet charge, whereupon the enemy took to fight. Thes were pursued four miles, and more than half of the party wife killed.

artificial and adulterated butteli.

A very large amount of butter that is not all butter is stated to be constantly produced now, here and in Europe. Tte products aro not all alike and vary considerable in excellence Sume of these we have seen, and they looked well, tasted well and were probably just as wholesome as pure butter. still there was a difference both in appearance and flavour. Cous. derable quantities of this butter have been shipped to Liserpool from Canada, but the merchants there have leartued to detect it now, and it is said to be dificult to sell. Ensthed dealers are stated to be shipping it to the United stated whence probably it finds its way to the South.
The chemical detection of adultorated butter is by no meade an easy matter. Mr. John Horsley, however, furnishes to the Chemical Nerss the results of some recent experiments, whit were directed torard the detection of meat fats mixed with butter, and therefore the process indicated will prove useful both to those suspecting such adulteration in genuine butter. as well as to others who are not sufficiently expert to dis. tinguish the artificial from the inferior qualities of the ral article.
Fresh butter is permanently soluble in methylated ether of specific gravity 0.730 at the temperature of 65^{3} Fah. With the view of determining whether any other substance contaned in the butter could be precipitated from it, Mr. Horike! first placed 25 grains of the fresh material in a test tube with 1 dram of methylated ether, in which ready solution tools place. Thirty drops of methylated alcohol, 630 over proof, were added, and the whole agitated, but nothing was precipitated. The experimenter then mixed 10 grains of freeb butter with 15 grains of mutton fat, and added the liquids as before, when, in less than half an hour, the fat was preciptat. ed, the heat of the room being 680 Fah. Lard, beef, muttov, and tallow fats, properly melted together in proportions of 64 grains of butter and 40 of fat and stirred antil cold, can eacb, by a simular operation, be precipitated in a few minut's. As much as 30 per cent. of the iat first used has thus been recovered. This is a simple and direct way of dealing with such adulterations, and is superior to the process of estimating the butyric acid. It should be observed, however, that crystalization of butter out of the ethereal solution at a luwer temperature than 650 must not be mistaken for the fist pricepitated by the alcohol alluded to, since the butter, besides being so much lighther, occupies the apper layet, and is df. ferent in character and easily remelted by the application of the warm hand for a minute or so.

Our illustration on page 237, is from the London $G, a j^{h n t}$, and is entitled "Notes in a Pulman Car." l'ulmans are now thoroughly established on the Midland line and are mahios their way on others. In fact their introduction has perhaps excited more popular interest in England than any subject since the Tichborne trial. Since the recent abolition on some English lines of the second class carriages the Pulmans have become the first class, and the old first class, the second class carriages.

:S'PEAM IR:KilS FIRE IN MINES.

The employment of steam at West Pitteton, Pousylvania, in subduing the fire at the Empire mine, has resulted in a triumphal sucerss for the Lehigh and Wilkesbarre Coal Compsuy The fire originated at the boilers which were situated at the head of slope No. 5 , which leads from old abandoned mines down to newer workings, while the old slope leading to the surface served merely as an upeast used for ventilation only. Here stood a wooden stack, which, on the night of Deccmber 31st, of last year, was discovered to be in flames, while at the same time the timber supports in the old workangs on each side of the slope had served to extend the flame inall directions through the abandoned chambers. The ar. rial of oficers and men was met by a torrent of flamo sweeping through 1000 ft . of slope, from a level 356 ft . below. Water was roured into the slope from a reservoir, and also turned on from the lower end of the boiler feed pipes, while every effort was used to cut the air from the flames. But the entire slope falling in three hours after this plan was adopted, and the fruitless efforts to substitute a steam-pump worked from the mine engine below, showed plainly that only the most ra-pidly-planned and promptly-executed methods on a large scale could save the engine-house and the boiler gangway, which, if lost, would lose everything.
In order to conquer the flames and prevent their spreading to the other workings a slope was driven from the surface 160 it through an exceedingly tough clay, and diviled into downcast and upcast.
In fifteen days the old slope was reached, and; a plank "manmay" was held by continually playing the water upon it untll one of stone was built and pushed through in sections, bf which the crossing of the burning slope was effected.
In every chambor below the intense heat crumbled the outside of the pillars, which kept the masses of glowing coals perpetually supplied. Here "manways" were built beside each pillar only by continually playing water upon them, with the men working in a temperature of 170 deg ., while from the rising of black damp, tive minutes was the maximum limit of stay. Of 800 men employed in fighting the fire not one life rac lost. As the fans could not be stopped a moment, signals trere adopted for warning if one gave way. This was eseatial since the current of air and smoke had two miles to traterse before emerging from the mine.
All the machinery, lumber, and stone for " manways," supporters, and walls were brought over the most mountainous rads in the depth of winter, while the outside water that had been available was soon frozen solid, and the mine water, which rapidly corroded the machinery and hose, had to be ased over and over again.
At the close of February the fire had been nearly enclosed when tho tokens that the roof of the old workings would soon fall, caused the refusal of the men to remain in the mine, faring the concussion of the air, but the fall proved so gentle that the watchers were unware of the occurre, and when the men returned it was found that the fire had exteuded to donble its original dimensions, while air currents were reversed, and connecting passages flooded or closed. which gave rise to the dilemma that if the fans were kept working it would be feding the flames, while to stop them was certain death to the motkmen.
At this juncture, the mine manaser, Br. Levis S. Jones, arged the trial of steam, and tested it in spaces still enclosed with such success that a wall was soon completed, entirely surrounding the old workings; all cave holes packed with
clay, and steam from eighteen boilers driven down through pipes by May lst. At that time the test thermometers regis. tered 176 deg., while, within four weeks, the lower stralum was cold. It is proposed, however, to continue the steam until January lst to provide against all possibility of further danger.

It is astonishing how scverely Nature enforces the livine edict that by the sweat of man's brow shall he obtain bread. The Irishman was becoming a second Italian lazzarone, living on potatoes which produced themselves almost without labour - when suddenly Nature stepped in and stopped it all by cutting off the potatocs and compelling him to work at growing something else. In the same way here in the valleys of the St. Lawrence and Richelieu Riveri, the farmers kept on growing crop after crop of wheat until they had also cultivated the insects which feed on it to such an exteut that wheat became soon as searce as it bufore had been universal The same chain of circumstances is now repeating itself in central Europe. The culture of the vine has gradually grown there to immenso proportions. In France alone the agricultural and commercial interests involved in this product are estimated at $\$ 750,000,000$ yearly. This great production is now suffering a most severo attack from a little insect hardly visible to the naked eye. The Phylloxera vastatrix, this little enemy, is mahing suindevastatiou among the vineyards, that their very existence is threatened, and, with them, an industry which pays yearly, into the revenue of one European country alone, a revenue of about $\$ 8,000,000$. There is now almost no part of Europe in which the pest has not made its appearance. On page 252, wo illustrate the appearance of a vineyard, near Cette, in France, attıcked by Phyllosera, and also three figures of the insect itself magnified about 5000 times. Fig. 1, iepresents a winged female; Figs. 2 and 3, views of a wingless iemale insect seen from above and from below. These insects are carrice to new untouched vineyards, by the wind. Arrived at a new feeding ground they bury themselves in the earth and multiply so rapidly that, attacking the vines about their rots, they very soon in spite of their small size, spread devastation and ruin over a large surface of the country. No perfect remedy has yet been found for the plague, although the French Govermment has offered a reward of $\$ 50,000$ to the discover of a cure. The only remedy at all successful so far is the submersion of the vines for a short period. This attacks the pests by drowning them out, as they multiply and fred under the surface of the ground. If submerging turns out to be a perfect remedy it will be another instance of the great benefits to be derived from artificial irrigation.

We illustrate this month on several pages the manufacture of tobacco as pursued in Paris. Tobacco is used to an enormous extent in France, the consumption in Paris alone mountiog to an annual value of $40,000,000$ francs. We are compelied to defer a short description of the processes emploged till next month.

Not long since we gave our readers an illustration of the steamer "Castalia," one of the two new types of steam ferries for service between England and France. On pages 235, and 228 , will be found illustrations of the liessemer, the other type. She has been already fully described in these columns, as to her plan and mode of construction. We hope soon to be able to inform our readers as to the relative merits of the | rival boats, as decided by actual service.

Our iilustration on page 240, is a striking contrast to the last new cannon. It represents a colossal cannon cast about 200 years ago by Rajah Gopaul of Tanjour. This monster gun is 24 feet long and $3 \frac{1}{2} \mathrm{ft}$. in diauncter. It was raised on to its carriage and worked by means of eight ringe four on each side-two only remain now on the side represented in our ongraving. The gun is said nover to have seen any active servic., but it has often been fired and the report made itself heard at a distance of ninety miles. The balls used were of granite, somo of which remaiu peacofully beside the gun which will probably never again be fired.

AIRT SCHOOLS IN SOUTHERN GERMANY.

bX SOHELE dE vERE

In ono of the most beautiful parks of the Old World there rises on a slight eminence, a vast buildiny, presenting to the south a linc of immense windows, and hilled in winter with the magnificent old orange trees of the Royal Gardens. Hence its name of the Orangerie, by which the good people of Stuttgart, the capital of Wurtemberg, designate the noble structure. During the summer months of the year 1872, however, the building contained treasures of vastly greator import for the little kingdom than the cos'liest exotics and the rarest plants of the world. Every fivo years an exposition is held there of a special class of schools, the usefulness of which cannot bo well over-rated, whether we look at the tangille results shown in this great hall, or at the influence they exercise on the taste and the wealth of the people.

From time immemorial the people of Southern Germany have exhibited rare talents for tho higher branches of mechanical arts. No traveler through Swabia and the lands on the Rhine can help being struck with the exquisite beauty of villas and villagers' houses, while railway-stations, and even the flagkeepers' httle huts, are often real master-pieces of architecture, and loaded with a profusion of admirable vood-carving. Swiss carvings are familiar to most of us ; but the wealth of ornamentation with which the modern houses of Germany are decked is a matter of wonder and admiration to all new-comcrs. From majestic Berlin in the north to the smallest village in the south these new structures show in every feature of therr archit.ecture a master's hand; lintel and coping, window-frames and cornices, are cunningly carved by skilful stone-masous; front and sides are covered with fresco-painting in sublued colors and classic patterns; and in suitable places, over the wide entrance-gate or in well-arranged medallions, the sculptor finds room for a noble statue or a portrait-bust. Nor is this love of ornament limited to tho great and the rich; the humble house has its galteries with richly-carved raslings and graceful cornice, and even tho vintner's modest hut in a cucumber field has its few titbits of rich coloring and delicate carving.
The skill which has placed all these sources of enjoyment, these ethings of beaut? which remain "a joy forever" to the educated eye, withn reach of all, is the result partly of an innate love of the beautiful grauted from on bigh to most Southern nations, and partly of an admirable system of educatoon whel finds its expression in the above-mentioned exhibition. For long years the littic bingdom of 11 urtemberg has been famous among German principalittes for its Sunday drawing-scheols, trequented by mechanics of all degrees, from the youthfulapprentice to the hoary master. Here, during the hours not deroted to dwine services, volunteer teachers, eothugiasts for therart, met their volunteer pupils, and taught them drawing in all its various branches. The time was neressarily very limited, and hence, for many years, no real artistic skill could be obthined in these schools except by a less rare children of genius. The hard, coarse work of the week often destroyed the delacate touch required for holiday labors, and the ege aloue could be permanently benefited.
It was not until the year 1×54 that the general interest feit in this kind of instruction by men of influence and far-sucing statesmen on one side, and by the eager, ambitious mechanics of townand cruntry ahke on the otherside, led to the establishment of regular eseming or night srhools for the snme purpose. It was a noble sight to wateh the weary artisan and the hard.

Forking mechanic come hither after a day's incessant labo: still anxious to improve, to learn, and to benent uther, a. woll as himsolf. Youths of barely fifteen, sturdy min in tw fall vigor of their strength, and old, gray-haired masters, a mot here as humble pupils to teach the stiff fiugers new an raro skill, to train the cye to perceive unsuspected benutuand to roproduce with the brush or the burin, the hamm. 5 if the saw, the masterpicces of great artists. The schools wet over-crowded; soon one hundred and twenty-five such m-th. tions sprang up in the small lingdom; the indispencoid exponses of room rent, gas, models, etc., were cheerfully hurse by the cacer learnere, and er long the results appeared ut overy town and overy village. Low, dark huts were rejlizel by bright, cheerful houses; dirty mud-walls reappeared a bright, stuccoed surfaces, to which a fow sparing bits of culur gave light and veauty; the low door with its stone seat dis, lared a modest sarland or well carved flowers, to take in whter the place of the vino and the clematis; and neat little summer. houses arose, as if by magic, in every garden. Far gratir of course, was the cbange in towns aud cities, where entire hers quarters wero built in the improved style of architecture. nin. ing the mason, the painter and the sculptor ample opportuntr to display their newly-acquired skill But the most chewria. encouragement came when the great London Exhibitiou rvealed to the astonished multitude the beauty and the shin displayed in the workman-hip of mechanics trained in these Wurtemberg schools, when prize after prizo was obtaned by their pupils, and when finally, sensible Englishmen ar. tually qeent their most talented warkmen to learn the secret o: sach great succese, the joy and the pride of the people hite" no bounds.

The immediate effect was the extension of the facilities h_{1}. pr totore offered only at night and during a few Sunday hours Every school in the land, abovo the humblest, arranged a la; $\boldsymbol{\mu}^{r}$ hall, which whs kept open on one day of the week to all "hi chose to avail themselves of the opportunity. "hen whter courses of six months' duration were added for the bem fit if laborers whose work ceased with the fine season. Finally a class of special schools sprang up, under the name of Fortlith ungs Schulen-literally schools for further advaacement-t. which all had free access who wished to profit by its instructiun and who were willing to pay the small fee required. For, as in the excellent public schonls of the kingdom, so in these tithnical schools also, the principle was adhered to that he whu could must pay, since no one values much what is giren a"ar without price. Those really unable to pay even the smalt fee required 1 ere and in all public schools find no difircultr it being admitted gratuitously; and then education may be san to be virtually free throughont the land, from the village-schoul to the universities. In the case of the industrial school the statpass one-half of the expenses, and the communty in whit the school is placed the other half, and nothing can speak wיr forcibly of the usefulaess of these instructione, rud the gas! sease of the people in appreciating their worth, than the far that there are now four hundred such Fortbildhungs sch mive is operation.

It was soon found that the eagerness with which instruction was sought, and the endless varieties of subjects for whith pupils called, required a subdivision in the general purpuieof those schools. They divided in the larger schools, into a mercantile department, where book-keeping, the laws of as change (very complicated on the Continent), modern languare telegraphing, etc., were taught, and an industrial departmer.t for geometry, physics, chemistry, met hanics, and the so calle] fine arts. What deserves special praise is the fact that, with a view to the true interests of the other sex, -pecial schnolthis kind are establshed for married and unmarrie I wunand the benefits arising from the source of lucrative rmpt rment thus openet to deserving and well-qualified women cat hardly be over-rated.

Every five or six years all these Forthildungs schools yntr ${ }^{\circ}$ in holding a gencral exbibition, such as was held in 1572 a ater city of Stuttgart. Separatealcoves are allotted to eash district and within the narrow compass cach town or village has agan its small space to itself. Here are shown net only the best that each echool can boast oi, but the actual working-bouke, dramings, and daily tasks of the pupil, inscribed with iis nam This creates naturally an eager competition ; district vues with district, school with school, and pupil with pupil. The evibibtion is visited by thousauds; the king and his court never fas to inspect every part of it minutely; anxous friends and
relatives crowd around the tables of their native place ; artists and masters of overy handicraft come from abrond to see and to learn; and foregners examine with growing interest these works of humble, unlearned workmen. No branch of mechanical industry is wanting in this admirable collection, from the horseshoe to the artistic bronze, from the mason's rough centrestone, to the sculptor's bust. The lock smith shows his new combination lock, nud the draughtsman his new patterns for calicoes and silks. Models abound in wax and in clay, in stone and in \mathfrak{p} cious metals. The younger pupils content themselves with aithful copies of masterpieces, but many an cxhibitor of barely fifteen already ventures to send his newly-inveuted problem in mixed mathematics, his original model of carving, or an ctching of his own invontion. In the purely ornamental department, female pupils excel natumally by native taste and a keener sense of the beautiful, and many are thus traned to conspete with experionced artists for the very lucrative places of draughtsmen in great factorins. Vor are the domestic wants neglected; cooking for the house and brewing for the multitude, the making of inlaid floors for the parlor and the building of palaces and great institutions, are all thoroughly taught, 2s well as the art of the landscape-gardener, the horticulturist, and the florist. Agriculture alone is excluded, as that is taught in special schools, such as Hohenheim, which have already obtained a world wide reputation.-Appleton's Journal.

TREATMEST OF TIN SCRAPS.

In the manufacture of tin ware it is said about 6 per cent. of the whole of the plates employed disappears in the form of scmps. The enormous trade in sardine boxes produced at Fantes, in 1869, nearly 400 tons of scrap; Birmingham produces some twenty tons per week; and Paris fifty to sixty tons per month. A small quantity of these scraps has alvays been used in various ways, such as the addition of a small quantity to the pis-iron intended for steam cylinders; another small portion was treated by concentrated sulphuric acid, or a solution of caustic potash, but no one treated tin scmp on t large scale until a short time since.
The utilusation of a waste substance is like the saving of the penny, it helps to keep the pound unbroken, and the hest method of utilising such a large product as tin scrap becomers a matter of importance. The subject has been treated in the journals within a short period, but M. Kuensel has taken up the sub, ect in an exhaustive manner in the Beryund Uttannannuche Zettung, which demands attention. The article is of considerable length, but we shall give the purport of it in the shortest space consistent with intelligibility.

The mode employed comprises four chief operations - (1) treatment of the scraps by means of boiling in water acidulated with hydrochlo-ic and nitric acid, until all the tin is dissolved; (2) precipitation by means of zinc, of the tin contained in the above solution, and washing of the precipitate ; (3) solution of the precipitated tin in hylrochloric acid, and crystallisation of the chloride of tin ; (4) utilisation of the iron scraps when despoiled of the sin.

1. Care in buying tin-plate scrap is one of the first essentials in a financial point of view. Gool tin scraps contain from 5 to 9 per cent. of tin. uf course, the thinner the plate the greater is the amount of tin. French tin plate has if to 2 per cent. more tin than English, as the plates are rougher, but it is very important to remember that the French tin is often, probably almost always, mised with lead, a fact which may be ascertained by wipng the tinned article with a clean handkerchief, when, if lead be present, it will show itself. If the lead exceeds 10 per cent. of the tin, the scraps should be refused, as they are more diflicult to treat, and leave the iron in a worse condition. Lacquered tin boxes, like those used for French sardines, give bad scrap, for the lacquer has to be destroyes by heat, which reduces the amount of tin recovered. Sometimes the scrap does not contain more than 2 to 4 per cent. of tin instead of 6 per cent., besides being mired with lead. Galvanised iron (fer zingue) shr ld also be rejected. When not packed, scrap tin is very diffi it to carry, a tent-on truck will not hold more than three to four tons; the best way, if possible, is to pack the scrap in old barrels or cases, and ram it dovn well. In France the scrap is made up into paikets by being rammed into a wooden mould, rather broader at top than at bottom, and holding one or two cwt.; the packet is then fastened round with iron wire. The scrap thus packed
must be well separated, or many pieces will stick together, and the action of the acid will be materially impeded.

2 The solution used to dissolve the tin is composed of a no part of raw nitric acill and ten parts of raw hydrochloric acid At first wooden vata, holding nbout three cubic metres were used, but the acid destroged them rapidly. The best vessels are those of stoneware, or vats of teood or of brick deessed in. side with a hot mizture of one part of sulphur and two parts of sanil. At the bottom of tho vat, which should contain at least one metre cube, a vulcanite pipe is introdured through which stenm may be introduced from a boiler. The vat, or back, is nearly filled with scraps, a threc-meter vat will hold about 600 or 700 kilogrammes, the mixture of acids is then poured over the scrap, and water added to about four-fiths of the height of the scraps; the steam is then introduced thll the solution completely covers the scraps, and is continued until the whole of the tin disappears from the upper scraps, and hydrogen ceases to be disengayed, showing that the solution has become neuter. The boiling takes generally about half or threc-quarters of an hour. A cock at the bottom of the vat allows the liquid, which cuntains all the tin, a certain quantity of chloride of iron and of chloride of lead when the tin is not pure, to run off into a recciver into which nearly all the chloride of lead is pre, , pitated by cooling. For the treatment of 1000 kilos. of scraps, containing 5 to 6 per cent. of tin, the average quantity of acid employed is 300 kilos. of hydrochloric, and 30 kilos. of nitric, diluted with 3$\}$ to 4 cubic metres of water, of which a small quantity is used to wash the iron left in the vat, but which is saved for the next operation. The iron is then removed by means of forks, and made up into packets of various sizes, according to the purpose intended. These must not be kept in heaps, for they oxidise rapidls; and the heat thus produced will even heat them to redness. A beap of about 100 tons was once burned in thes way. For the treatment of three tons of scrap in twelve hours, six or seven vats, of about three cubic metres capacity each, are cmployed.
3. The solution cooled in the receptacle already mentioned is now transferred to a large wooden or brick cistern, filled with old sinc-phate or serap, which precipitates the tin, and also any lead which remains in the solution. This process should not produce any gas, as that would show the solution to have been too acid, and cause a useless loss of zinc. From time to time a small quantity of the solution, slightly acidulated by means of sulphuretted hydrogen, is tested to ascertain if the precipitation is complete. The operation is generally efliected in two hours. When terminated, the solution is run off from the buttom, through a filter made of sailcloth. which stops any of the tin precipitate which may be floating, and the liquid is of no further use. The zinc is then moved about to cause as much of the tin as possible to fall to the bottom, and the solution from another boiling is then introduced. This operation is repeated until this vat or cistern is onethird or hali filled with tin. About sisty-five to seventy-five parts of old zinc are required to precipitate 100 parts of tin Theoretically, it should only require fifty-five parts, and the overplus must be attributed to an excess of acidity and to the oxides of zinc and lead gencrally present in the old zinc.
The precipitate obtained, which is mixed with fragments of zinc and tin solder from the old zinc, is taken out of the vat and thrown on a metal sieve with holes about three or four 2 j ths of an inch in diamcter, and a stream of water being directed on the sieve, the precipitate is carried on to a sailcloth filter. On the metal sieve will be found scraps of tinplate not affected by the acids, and some tin solder; the former is thrown into the boiling vat, the latter cast into ingots for sale. The precipitate is washed in the filter, as long as any trice of iron remains, and is then placed in canvass sacks, and the water squeezed out by means of a screw or hydraulic press. The precipitate is employed in making chloride of tin; it is well to dissolve it in hydrochloric acid as soon as it is taken out of the press, or, at any rate, to sprinklo it with it, as otherwise the tin oxidises rapidly, and the oside will not afterwards dissolve in the acid. It is far more advantageous to convert the precipitate into chloride than to cast it in motallic ingots, as the former being very finely divided is worth much more in the market. The mode of making crystalised chloride of tin is too well known to require description. The treatment of the residues insoluble in hydrochloric acid is important. These residues consist principally of chloride of lead and oxide of tin. Theae have

TOBACCO MANUFACTURE IN FRANCE.-Washing Presses.

been successfully treated in a small Belgian zinc oven, in which the residue is made of a red heat in six retorts, arranged in two lines, and inclining forwards at a considerable angle, after being mixed with twice its own weight of fine poor coal. If the residue contain sufficient chloride of lead all the tin will be transformed into volatile chloride, which condenses in the retort, and metallic lead is also form $\stackrel{d}{ }$, partly in the neck of the retort, and partly mixed with the residue at the bottom, from which it is separated by washing. It there is not suftici ut chloride of lead in the residue, some must be added from the receptacle, described in paragra ${ }^{\prime} 2$.
4. When only a small quantity of tin scrap is treated daily, and sulphuric acid can be obtained cheap, it may be advantageous to convert the iron from which the tin has been recovered into sulphate, but not when large quantities are dealt with. At Liége about four tons of tin scrap have been treated daily which would give about twenty tons of sulphate of iron. Such a quantity could not be placed advantageously in Belgium. It was necessary, therefore, either to find other applications or remove the prejudice against such scrap iron. This scrap, made up into compressed packets, yields, with a loss of 20 to 25 per cent., an exiremely brittle iron, but which may be rolled hot, and then presents an excellent surface. The demand for this was, however, small. A nother method which succeeded better was to make up the scrap in buodles of about 10 lb . each, and to introduce them into the puddling-furnace to the extent of from 10 to 20 per cent. of the charge. I'ne packets

should be put in when the iron is most covered with scum. This scrap iron exerts an especially favourable influence on pig containing much phosphorus, tho puddled iron gains in quality, and the production is notably increased in quantity. Whito pig-iron of excellent quality has beon obtained by smelting this scrap in a reverberatory furnace, mixed with turnings of grey pig to the extent of two to tive. About 800 tons of this iron surap have been sold in England, but for wh'at purpose is not stated.
'I'he cost of treatment on the basis of the price of iron in 1860.70, les8 the general expenses, is given as follows:-1 ton of tin scrap, 60 fr. ; $3^{3 n} \mathrm{k}$. of bydrochloric acid, 9 fr . ; 30 k . nitric acid, 15 fr ; ; 35 k . old zinc, 10 fr . 50 c .; labour, 20 fr .; fuel, 2 fr . 50 c . . total, 117 fr . Lesult -50 k . tin precipitate, 150 fr ; 900 k. scrap iron, 24 fr , total, 174 fr .

The industrial result depends upon the yield of tin, and, consequently; upon the careful purchasing of the scrap, for at the prices of iron in 1860-70 a yield of 3 per cont. of tin would not cover the cost of the operation.

'LHE GUNS OF 'IHE THUNDERER.

The armament of H.M.S Thunderer is to be of a type vastly superior to that of the Derastation, and will consist of four 38ton guns, originally intended for land service, but which have now been completed as naval guns, in the gun facteries of the Royal Arsenal at Woolwich The whole four are now reads for issue, with the exreption of fitting revating patches, \&c. \&c.; but one has been finis' id even in this, and in all other refpects, and will be despinerlied to Portsmonth so soon as its carringe has been fitted The engraving on page 219 is a failhful representation of the improved "Enfant Terrible." a comparison of its majestic proportions with those of the pigmy 7-pounder mountain gud which our artist has introduced beneath will nabble the reader to form some idea of its actual size. The shells and cartridges for both guns will be seen standing between the wheels of the trolly on which the 3 aton gun rests. The 7 -pounder is, it will be remembered, the weapon which gave such excellent results in the Abyssinian war. The dimensions of the 38 ton gin are as follows:Length, 19 ft ; diameter at thr thi kest part of the breech, $5{ }^{1} \frac{1}{2}$ in -being $1 \frac{1}{2}$ in more in this respect than the 35 -ton gun; diameter of trunnions, 13 in ; length of bore, 16 ft .6 in . ; calibre, 12 in The rifling has an increasing twist from nothing at the breech to one turn in 35 calibres at the muzzle. The number of grooves is 9 The cartridge and projectiles are for the present at least-to be similar to those of the 35 -ton gun, viz., of 100 lb . and 700 lb . respectively. It will thus be seen that anmdditional length of 3ft. has been given to this gun as compared with that of the original "Infant." Such an increment in this respect cannot be otherwise than an immense improvement. It is an acknowledged fact that, with the latter, a considerable quantity of the charge 'is blown out at the muzzle of the gun unconsumed, although, partly with a view of obviating such a dificulty, the weight of the powder employed has been reduced to a minimum. Tho evident cause of this is the impussibility of obtaining ignition of the cartridge throughout its entire mass in the momentary space of time that clapses before the projectile leaves the muzzle, owing to the extreme shortness of the bore, which is only 13 ft . Gin. in extent. But with the ner gun ample space is afforded for the expansion of the powder-gas waves, and for the combustion of the charge, which, it is anticipated, will be entirely accomplished. Thus it may confidently be expected that better results will be obtained from actual practice with this weapon, both as regards range and penetration, than were arrived at it the trials already made with the 35 .ton gun. The latter was proved capable of penetrating wrought aron plates lin. thick, as well as a backing of 18in. of timiver, and a shin of 1 in. plate, at 500 yards; also of piercing, and very nearly of penetrating, wrought iron plates $15 i n$. thick, with a similar backing, \&c., at 200 yards. It ponetrated 12 in . armour and a similar backing up to 1700 yards. The 38 -ton gun will probably penotrate 16 in . of armour-plate, with a corresponding backing, at a distance of 1000 yards, as the addition of the 7 lb . or 8 lb of powder to the charge-which was before wastedmust of course make a selsible difference in the amount of energy produced. Every effort has been mado to finish the four guns for the Thunderer with the greatest possible celcrity, as
it is intended to mount two of them in a turret directly it is ready to receive them, and to institute a series of experiments with a view of ascertaining their puwess of range and other qualifications.
It must not be imagined, howaver, that tho idea of completing the romainder of the 38 -ton guns, with a calibre of $12 \frac{1}{2} \mathrm{n}$, has been abandoned. The experimental trals which have only just been concluded with the original "Woolwich Infant," increased in length to 10 ft ., re-tubed, and bored out to a calibre of $12 \frac{1}{2}$ in, have, we understand, been ominently satisfactory in their issue. It is true that the enormons charge proposed. viz., 170 lb . of pebble powder, wero never actually attempted to be employed, as even with 140 lb ., the heaviest charge attained, 10 lb . of that amount were blown out at the muzzle, still, nevertheless, a marked incrense of power was observable as consequent on the enlarged calibre, and much valuade information was obtained in regard to the vexed question of exceptional pressures. It was clearly established that the occurrence of such pressures could be avoided by increasing the size of the grains of powder used in making up the cartridge, and consequently decreasing the rapidity with which the powder was ignited. In order to ascertain this, cubes of powder $1 \ddagger i n ., 1 \frac{1}{2} \mathrm{in}$, nad 2 in . square we amployed, the largest of the threo natures producing the b, esults. Hence it is probable that the $12 \frac{1}{2}$ in. gun, if finang adopted, will have a cartridge of some 130 lb . of pebble powder consisting of such cubes. The projectile wall be of 800 lb . weight, as in the esperimental trials alluded to. Should this be done, there will oven then be a trifing loss of powder, as although the quantity blown out at the muzzlo will be less than would be the case with a charge of 150 lb ., stall thore must be an appreciable quantity which escapes in this manner. Indeed, it will always be so, and the only thing that can be done to remedy the evil is to the lessen it as much as possible. Leugthening the gun to an indefinite extent would not cause every grain to be consumed, and the loss of initial velocity occasioned by such a proceeding wuuld be very serious. This fact has been clearly demonstrated during the past few months by a sertes of experiments made with an 11 in . gun, purposely cunstructed with a bore having the extravagant length of zuft. Portions of this gun were cut off from time to time after various sized clarge had been tried, in order to ascertain accucatels what was the precise length of tube or bore required. It was found that no corresponding advantage wa, gained by unduly $14-$ creasing the leagth. 'There is only one point on which we cannot help expressing a regret the probable is now that two natures of 38 -ton guns will shortly exist, one of wheh will have a calibre of 12 in , and the other of 12 inin., instead of one only.

To Pbefest Rostrina.-Boiled linseed oil will keep polished tools from rusting if it is allowed to dry on them. Common sperm oil will prevent them from rusting for a short period. A coat of copal is frequently applied to polished tools exposed to the weather. Woolen materials are the best for wrappers for metals. Iron and steel goods of all descriptions are kept free from rust by the following :-Dissolve half an ounce of camphor in one pound of hog's lard, take off the scum, and mix as much blacklead as will give the misture an iron colour. Iron and steel, and machinery of all kinds, rubbe 1 over with this mixture and left with it on for twonty-four hours, and then rubbed with a linen cloth, will keep clean for months. If machinery is for esportation, it should bo kept thickly coated with this during the voyage.

On October 16th a special train on the Central Mailroad of New Jersey, consisting of engine No. 47, one baggage and two passenger cars, made the run of 74 miles from Eastern to Jersey City in uno hour $28 \frac{1}{2}$ minutes, including lour stops, the actual running time being one hour $24 \frac{1}{2}$ minutes, making average speed over $52 \frac{1}{2}$ miles an hour. It is claimed that the 164 miles between Annadale and Somerville were run in $14 \ddagger$ minutes. Engino No. 97 has 17 in . by 22 in . cylinders, driving wheels 5 ft . 10 in . diameter. The road-bed and track over which this run was made is in most oxcellent order, among the best in the country.

SCIENTIFIC NEWS

M Giffard, of injoctor fame, has invented a method of fitting milway rarringes whirh eliminntes oscillation. The carringe is suspeaded be powerfinl springs nt adh end, and at the trials recrently muln in the presenre of some members of the Fromeb Asanciation for the Alvancement of Science, the carrage was found to be so steady that reading and writing could be easily carried on

The United States Government is erecting a standard pres. sure guage at the Smithonian Institute. It will have a oneunch column of mercurv 1 roft high, ant it will be possible by it to accurately test gauges to a pressure of 8001 b . per square inch.

As instrument for detecting colour-blindness has been introduced into Lermany. It consists of a disc the centre of which is divided equally into black and white. Outside this circle there are three rings-the inner one half red, half green; another violet and red; and then the out r i) f violet and green. To the green-blind, the middle ring; will appear grey; to the red-blind, the outer ring; and to the violet-blind, the inner ring

It a recent srance of the Paris Academy no ferser than eleven communications were received relating to the destruction of phyllosera. A letter from a vincyard propriotor proposed giving tobaccu-seed among the vines; he had found this an cffectual remedy, in the case of artichokes, for destroying an sphis which - ked the roots. Hemp and Daturee stramonuum Were proposed as preferalile to tobacco, on account of tiscal restrictions on the latter. One suggestion was to destroy the 0 inscet by electrical lischarges. A committee of the Linnaan Society of Bordeauc. have pronounced, as tho result of their remarches, that the Phylloxera is not the cause of the disease, but an effect of an organic malady attributable to five causes, whith they specif) (cxhaustion of soil, inclement seasons, bad choice of stochs, and bad treatment, dic) They state that while 'hylloxira is an cticet, it may aid in deteriorating the vine.
Thre prize offered for the best circular saw at the Cincinnati fair, $1^{\text {nor dols in gold, was awarded to Mlessrs. Emerson, Ford }}$ and Co, of leaver Falls, Pa. There were nine contestants, and the work dono by eath saw was remarkablo for excellence and rapidity A Cincinnati contemporary says that Messrs. Emerson and Co 's olid tooth saw, "when it struck the th... log, showed its real metal. It took in tho situation most beautifully, making the sparks fly gally at every entrance into the tounh poplar, but was steady and kept right down to actual work all the time, making siateen good boards, 10 by 20 , in tro minut's and forty-fuur seconds, on 3 itin. feed, and cuming out cool as a cucumber. The oak \log was then placed upon the carriage, and the sais proved that its appetite had mercly beeu sharpened by the poplar. It chit twelve oah boards, 12 by 15 , in one minute and forty-three seconds, all No. 1 lumber. This is the crowning feat of the test so far."

In a letter to MI Chevreul, M. Volpicelli, of Rome, mentions some experimepts he made with regard to the statement of a physician of some reputation, that if a magnet were brought ntar a nervous subject, the magnetism troubled him in various ways and affected his health. M. Volpicelli suspected imaginatton (and not magnetiom) was the cause. Invited to experiment on a nervous patient in one of the hospitale \mathbb{M}. Volpicelli presented, in place of a magnet, a piece oi in quite free from magnetism. Tho patient, immediately na secing it, went into convulsions. Again, a magnet was put in the hany of an individual having nervous disease; in a few munutes he was so excited that it had to be removed. This same individual was engaged to preside at a scientific meeting; su 3. Volpicelli took the opportunity of secretly introducing, beforeband, very powerful magnets into bis chair, into the drawer of the table, and under the feet During the scance, which lasted more than two hours, the chairman had no acrvous trouble, and after the meetiar was over, he declared, on M. Volpicelli making inquiry, that ho was in perfect heslth; only when informed about the magnets, he showed at once surpnse and fear, as if he were not sure about being quito mell. 'l'hus, M. Volpicelli found his vievs confirmed.

The ash of the better conls uf the Imenican carboniferous age appears to be derived whislly from the phants which formed them. According to annlyses by inany chemists-froted by Professor Dana, in the last edition of his "tieology -made on lycopods, ferns, rquiseta, mosses, comitera, sc., there is in them an average quantity of silica and alumina, such that if the plants wore converted itito coal it would amount to 4 per cont, of the whole, and the whole ash would be $4 \cdot 75$. Many analyses of bituminous cual show but 3 per cent. of ash, and 4.5 is an average. Hence it follows.-(i) Hat the whole of the impurity in the beat oals may has. been derived from the plants (2) the amount of ash in tho plants was less than the average of modern species of the same tribes, (3) the winds and waters for long periods contributed aimost no dust or detritus to the marshes. In that em of moist climate and univereal forests there was bardly any chance for the wands to gather dust or sand for transportation.

To make Imitation (iold - Take of pure copper, 100 parts; zinc or preferably tin, 17 parts; magnesia, 6 parts, sal ammoniac, $3 \cdot 6$ parts; quicklime, 1.8 parts; tartar of commerce, ! parts The copper is first melted, then the magnesia, sal ammonisc, lime, and tartar aro added, separately and by degrecs, in the form of powder; the wholo is now briskly stirred for aboat half an hour, so as to min throughly, and the zanc is added in small grains, by thruwing it on the surface and stirring untll it is entirely fused, the crucible is then covered, and the fusion maintained for alout 35 minutes. The surface is afterwards skimmed, and the alluy is ready for casting. It has a fine grain, is malleable, and tak +5 a splendid polish. It does not corrode readicy, and for many purguses is an excellent substituto for gold. When tarnished, its brilliancy can be restored by a little acidulated water.

Feter Gerss -In a recent contribution Ur. Lionel S. Bcalo writes - Some of us have long been studying these things, and by working carefully with ver. hikh magnatyang powers at tissues in which the changes induced by fever serms hat been effected, wo have been able to learn mach concerning the nathie and origin of certain disease-carrying particles. I have shown that by the rapid growth and multiplication of the living matter of the healthy tissues, as occurs in every case of inflammation and fever if it reaches a certand degreu of intensity, morbid living matter results. ISy observing withan the microscopic limit, in which the apparent size of an object may be increased so about 5000 diameteri, I am able discern the origin of a disease-producing living particle. Arguing, then, from facts which have been established in the courso of careful and prolonged investigations into the nature of these poisons, I am led to the conculsion that all tho fever-poisons of man and the higher animals are closely allied as regards their essential nature. All arise by degradution frco the living matter of and in the body itself. Whey are not microscopic fungi, nor are they derived from them, neither are they bodies which have been formed or evolved in the world outside.

Fonty or fifty of the most prominont telegraphers in America, as well as many other prominent men intercsted in the science, met in Chicago on the 12 th ult., and organised the American Electrioal Society. Its objects are. The interchange of knowledge and the professional improvement of its members, to advance electrical and telegraphic science, and the establishment of a central point of reference. The constitution adopted provides that the annual mecting shall be held on the third Wednesday of October at a flace designated by the exccutive committee, and that the head-quarters of the society shall be Chicago.

A Japan Bronze.-A bronze which has lately been discovered to be rouch in use in Japan, has been found to be composed of 5 parts of tin and 10 of lead to 100 of copper. It is cast generally in thinsheets like slates, upon which b autiful designs in silver may be incrusted as follows :-The plates are covered wita a varnish upon which the designs are graved with a style, the plates are then plonged into a suitably prepared bsth to receire a deposit of silver upon the graved lines. When a sufficient deposit has been formed on the parts from which the varnish has been scrat shed, the plates are placed in a muffe furnace, in which the bronze, turns black and the silver remains white and brilliant, showing up beautifully by the contrast.

DOWN AN AMERICAN SILVER MINE.

A writer in a lato number of the Virginia Enterprise says that a day or two since he and a friend took a run through some of the upper levels of the Belcher mine. Our particular business on this occasion did not take us below the 1100 -fect level. We micht have gone 400 fect leeper-might have visited the $1200,1300,1400$, and 1500 -feet levels. Hank Domelly, foreman of the mine, who was our guide on the trip, oflered to escort us through the steaming regions below, but, as we have said, our business lay above. We do not propose in this article to speak of the ore breasts, ich stopes and chambers, and all that sort of thing; we n.can merely to mention some of the sights met with while we were rambling about in the vast cavernous recesses of the upper portions of the mine. It is not dark and dismal below, as many suppose. The long drifts are linhted up by candles placed at regular intervals. These drifts, and the broader galleries, running in all directions, somewhat resemble the streets and alleys of some old fashioned, overcrowded village-some village seated in a confined place, where it is crushed out of shape. Uur underground streets are not wanting in life. As we pass along the highways and byrays of the underground regions we meet with the people of the place at every turn.

There are employed in this one mine between 750 and 800 men-a sufficient number to populate a town of considerable size. Men meet and pass us, all going about their business as on the surface, and frequently a turn brings us in sight of whole groups of then. We seem to have suddenly been brought face to face with anew and strange race of mer. All are naked to the waist, and many from the middle of their thighs to their feet. superb muscular forms are secn on all sides, and in all attitudes, gleaming white as marble in the light of the many candles. We everywhere see men who would delight the eye of the sculptor. These men seem of a different race from these we have seen above-the clothes wearers. Before us we have the Troglolytes-the cave dwellers. Our mind runs back to the time when the human race housed in caverns not alone far up the Nile, as the ancients supposed, but in every land, at a certain stage of ther advane ement in the arts of life. Not unfrequently, while travelling along some lonely pastage, we were confronted by a man of low stature, huge beard, and breast covered with shaggy hair, who came sliding down out of some narrow side drift, and for a moment stood and gated curiously upon us as though half inclined to consider us intruders upon his own peculiar domain On such orcasions we would not have been much surprised to ser the mun before us cut a caper in the air, brandish a huge stone axe and advance upon us with a wild whoop.

Way stations are frequently encountered during our underground tratels. These are large rooms fitted up of at one side of the principal drift and usually not far from the main shaft. Here are barrels of ice water, tin dippers and cups hanging about on nails, and probably boxes of candles and other store;. We are always glad to come to one of these stations and go for the dipper without any one telling us that it is a good thing to do. About these stations we always find a number of the Troglodytes They come for water and stop a short time to hear the news of the mine; for the station is near the mine incline, up and down which regularly run trains of cars and which is the Central Pacitic of the region and connects the lower regions with the surface. These men gaze contemptuously upon us, as being men wearing sharts, and then betake themselves to their own pechliar regions along the several streets and alleys leading thereto. On the 1100 foot level we took a "near cut" through the wilderness. This is a place to make the hair stand upon the head of any clotheswearing man. It covers about ten acres of vorked-out ground. One sees here something of the great pressure of the superincumbent earth. The large timbers are crushed down, splintered and twisted; chambers originally square are squeczed into a diamond shape and their roofs touch the floor in the centre; solid piles of square timbers are pressed into pancakes, winzes and chutes are telescoped, ladder-ways once spacious are creshed out of all shape and now can hardly accommodate a cat-ill is confusion confounded. Yet through all this we must find our way. It not a little resembles tho track of a torando in a timber country-what is called a "windfall." When wo have a windfall wo do not want one of this kind. In places are immense caverns where all the timbers are gone, and great flakes of clay and rock lean out from the
walls and composedly look down upon the trembling passer. by. One is afraid to sneeze lest he may bring these down upun his head.
Sociable ratsdwell in this fearful region. Sitting down upon some fallen timbers to rest, several of these quadrupedal inhabitants came about. Hearing our voices is we for a tim remained stationary, these fellows uaturally conclulded that we had something to eat, and came to look out for their shat They got up on the ends of the timbers, cocked their hendthis way and that, as they gazed inquiringly about. Fvidently they did not understand it at all. Why we should be sitting there talking with no dinner pails in sight puzzled thom uet a little. 'Hey always flock about the miners when they sit down to eat, and always get their share of what is going.

A ride on the "giraffe" was a new experience to us. This giraffe of the miners is merely a large car made to run on an inoline track. The whecls in front are low, and those behind bigh. 'l'hus tho body of the car stands as level es that of a car on an ordinary track. This incline stands at an angle of : deg., and the track laid in it is of ordinary railroad iron. Th. car plying to and fro carries about 8 tons of ore At the front is a seat, much the same as the driver's seat on an ummbus Here is seated the conductor of the train. There is room for three on the seat, and mounted upon it we took our fist ifle upon a giraffe. The car is drawn up by a heavy wire cable, and it goes up like lightning-so that the timbers at the siden pass each other so quickly as to resemble a fine-toothed comt To look ahead and see before you 100 yards of steep steel rail-, up which you are rushing at whirlwind speed may be excitmg, but is the reverse of natural. Lp this quecr railroad you are :hundered through the caverns of the I'roglodytes till you reach the bottom of the vertical shaft, when ihey transfer you to a cage, rush gou up a shaft, and shoot you out at the tol', as the "Red Gnome" in the play is shot up through the star trap in the stage floor.

ABTIFICIAL BUTTER.

According to reports from Paris, the question of producing cheap artificial butter has been practically solved, for the sale of a substitute for butter has been athorised by the authorities.

The new butter is called by the name of Margarino Mourses, after the inventor, M. Mege Mourics. The process by which it is produced is not published, but it is stated in a report of M Boudet to the Conseil dyygiene that no differeace can be discovered by analysis between this and ordinary butter.
M. Mige first made a careful study of ordinary butter, and, it is said, found the means of copying nature with the same clements that composo ordinary butter, but at the same tame climinating the germs of corruption which chemistry ha, pointed out. The new butter is declared to be incorruptible, and going trice as far as ordinary butter. It has been adopted by the ('ouncil of Eealth, the sale of it authorised, the Monster of the Interior has ordered it to be used in the public instatutions, and, by way of anti-climax, the Octroi officers charge the same tar on its coming into Paris as on ordinary butter.
'Chis invention is put forward as a boun to the people of Paris, who are extremely fond of butter, and whose delicate cockery depends in a great degree upon it; but the price had become so high as to ve prohibitory for poor people. The new preparation is of course much cheaper than real butter. Withan a fow years the price of butter has ranged from about tareo to cight shillings per kilogramme; the present average price is about four shillings; the price of the artificial butter is 18. 10 d . to 2 s .

Tho butter is manafactured by a company, which has seven stablishments, emploging four hundred workmen. A warebouse has been opened in the liuo du Pont Neuf, near the great central markot of Paris, and the sale of the new artucle is said to be already very large. It is of course to be understood that the above account is merely the announcement of the inventor, and that no opinion as to the morits of the preparation can bo expressed here.

REPORT OF WALTER SHANLY, ESQ., C. E, ON THE (ACGHNAWAGA SHIP CANAL.

(Continued from page 223.)

While touching thus generally on the improvement of the navisation between Kingston and Montreal, I would note that the Lachine canal having to serve the trade of both rivers, would seem to demand a different mode of treatment from what may be properly applicable to the other links in the chain, and should, therefore, be "contrived a double debt to pay," by giving it additional width and duplicated locks
With such views, then, as to the depth fully and best suited for our river improvement ${ }^{-}$. I recommend that the Caughnawaga canal be plaoned tor ten feet of water on the mitresills; and in closing my remarks on this most important subject of canal enlargement and extension, I would record my conviction that it will be as great a mistake to limit our lake navigation to vessels of tivelve fect draft, as by giving the Welland canal that much clear depth only we practically do limit it, while Buffalo will be bidding against us with the inmence odds of two feet greater draft in its favour, as it will be to seek for more than ten feet in the liver. The money that would be needlessly expended in attempting to obtain twelve feet draft below Prescutt would far more than pay for the difference in cost between fourteen and twelve feet in the Welland.
Next-as to the uses, and, as I believe, certain effects of connecting our St. Lawrence and Ottawa navigation directly with Lake Champlain, I bave always thought the Caughanmaga canal an essentin. and naturally necessary link in-and, therefore, a blundering omission from - our general canal sistem. Jho object of oonstructing those immensely costly worke, which, take one year with another in the quarter of a century in which they have been in use, have never get earned their living, should have been to do all the business they could possibly attract and were capable of doing; not to use them nerely to subserve the interests of one particular localitf; but to securo to all Canada her natural right-a rifht inberent in her waters-of being the carrier of the products of half the continent almost. Had the Caughnawaga camal been made, as it should have been made, immediately following Mr. Whlls survey in 1848 we would all these years have been doing a large carrying trade for the New England States untead of a limited one only for Montreal : doing an immense forwarding business in place of what, in comparison with what we might have had, has been, and even yet is, an unsignificant one. In New England "The West" has its steadiest customer. In good years or bad she buys Westerngrown cereals all the same; not raising enough of her own soll, all the way from Maine to Connecticut to feed her population for, probally, one month ont of the twelve. New England has, so to speak, no cereal crop. Her capital and labour are embarked in other lines of industry better suited to her condition and resources.
The breadstuffis and salted provisions, of which the Eastern States are such large consumers, reach their markets mainly by way of Albany, and are mainly transported that far by water - Lakes and New York canals. Another portion descends the St. Lawrence to Ogdensburg and is there, as at Albany, transferred to the rail. Doubtless, also, a considerable quantity goes by steamer from Baltimore and Philadelpha to Boston, and other "Down East" ports. The distribution through the interior of the country is wholly by rail, of course.
That these commoditics could be laid down more speedily and at lesser transportation charges in Lake Champlain by was of the St. Lawrence and Caughuawaga canals than they culd rach the New England border by way of Ogdensburg or Albany, is simply an incontestable proposition. The bulk of the business now takes the Eric canal route, and compared with it tho Caughnawaga could certainly show a gain in point of time of not less than three days, and in point of expenses of not less than 25 per cent, as between Chicago and Albang on the one hand, and Chicago, and, say, Burlington on the other. New England will havo her food supplies from the West whether we carry them for her or not, but assuredly she will not object to our caraping them, provided we can do the business with better despatch and more cheaply than others can, and the producers in tho West will be equally
ready on the same conditions to entrust the tramportation business to Canadian carriers.
And now a word about New York trad. Montreal merchants havo always urged what has always seemed to me a senseless and unreasoning antagonism to the canghnawaga canal project. They bave argued that its construction by Canadians would be a suicidal act-tapping Canadian trade to gend it away to Now York. From Caughanwaga to Montreal is a short nine miles. From Caughnawaga to New Y'urk a round four hundred Is the harbuur of Montreal, I would ask -the means it affords for the haudlins and shopulag of grain and all other freights; the business capacity and conterprise of ber merchants and shipmasters, and everything the all aronad pertaining to drontreal-are all these essentials to a great scaport city so utterly wanting, I repeat, that it will pay butter for the vessel laded with Western producti araved in Lake St. Louis to head southwards and worm its way through nome 400 miles of canal, lake and river to New York rather than drop quietly down ever nine miles of water-aurace to Slontreal, where she can bo alongside as good, as big, and as seaworthy a ship as New York would have to offer her, in fewer houss thau it would take days to reach the latter port, and at a teventieth part of the expense? 'To such a question Montreal people, Board of Trade included, have over aud over again, in effect and emphatically, answered "Yes, that i is just what would happen : our trade wonld be tapped and we would die of inanition." They forget, or clie have never thought, or known, that the trade which they cry would be turnell amay from them never was "theirs," and that none of what you and I and a few others would like to see enrit hing 'anadian waters has ever, save in mere driblets, whe ans ueater to our doors than Oswego, to the trade of which phace the Welland canal has hitherto ministered quite as mur in as so that of the St. Lawrence. With the "cut-off" point for New York transferred from Oswego to Caughawaga, Montreal would be ina position to "tap" New York business instead of New York tapping hers.
However the export trade of Montreal may grow, New Yurk will none the less continue to increase and thourish, and the only way in which we of Caunda can have part or lot in her prosperity will be by carrying for her what she will have brought to her any-how, and in our capacity ascarri-rs it will be possible for us to make can for ourselves from her a cessities With direct navigable acerss from the it Lawrent. to Lake Champlain, Western New York intereste, directly opposed to ours in all things, could an longer hinder the enlargement of the Northern Canal (Whitehall to the Hudson) because the city of New York wonh find it absolut ly necersary to take the benefit of the cheapest transportation rwute n the continent by meeting us in Lake Champlan When that time comes, then for one vessel we now meet dotting the surface of our great river at long intervals apart, all the way from Prescott down, we will espy ten, all doing good to the country as they passalong, putting in at one river port for fuel, at another for provisions, aud, in one way or another," leaving money" everywhere-cven in the form of wages, for all raft, Wheresoever owned, wall, then as nuw, be largely manned by Cauadian crews.
The lifelessuess of our waters between Lake Ontario and Montreal is noted by all observant tourists, and the repronch will never be wiped out so long as the dea pry vails and is acted ou that Candian carrying busuress must be limited to what of Western products Sontreal can take and dispmis of to her sole advantage. When we begin to carry for all comers, and we will begin, for it is the destmy of the river and those who rule it, Montreal will quicl-ly learn that she has been living in error for a quarter of a century (tine ase of our canals), and that the more business we can induce down the St. Lavrence, whatever its seaward destination, the breter it will be for the country, and consequently, for the amm.r. cial capital of the country. Montreal can well afford to cease opposing, if she will not aid, the Caughnavaga canal cuterprise.

In opposing it her people act as though her advantages as a seaport wore purely adventituous and only to be maintained by placing unnatural restrictions on the carrying capacity of those great waters through the means of which it mainly is that Canada is to continue to increase in wealth, distinction, and importance.

I havo frequontly heard it argucd in discussions on tbis question of international carrying trade that the navigation

IHYLLOAERA VASMATRIX - Macsirmi aboty jum Thes.

DWARFED PINE TREE.
laws of the 1 aited stati - wombld for ever prevent our reaping commetanate brediv from the experare attendag the extenson ef our canal system winthwart. Dembere of more tban
 the caughnamaga datol projert as a Government work, I wonda allow mon su! phantonto "stop the why. If by opening a changel into lathe Champlann we (an areonplinh
 of the tameportation of litedstati- abd, no, batiag therr value at the hace oi pentuetou-the limad states navigation baws will he looked after at home We can leate that littl, matti, whother we are th hate a genclal keciprocity
 frictudi.

Thawe not, while writing thin letter, had meat ; of at cess to

 with its almont llimiallat grain trach, the Ottawa, with its

 na igation may, i le have, le lopprially aud coutudently looked for.
 Dominion, those who bilte be that her futuro was tarigely dependent for its greatners on the anes to be made of her unrivalled l.kes and rivire sper jally we lomed that anse in the programme of cindiderathos whin b fureshadiwide the early
 "worl if fromine" thinn given "to the ear has been "broken tu the 1 "pe" Witha mater al alsatucement in alm ist every other dircetion ail has Canadans may well be prond of, unt anals to-day wre just where and what they were then and for twenty years before. Laberal almost to lavishness in our appropriations for all other classes of pubuc works the noblest portiun of our heritage hiss been treated with an a proach to indifference and ueglect. "Millions for railways, net one cent for mavigation" would not inaptly characterize what bas been our policy of expenditurc. We stand ready to

Abstract

pledge the credit of Canada to ils utmost borrowing caracity in pursuit of phantom railways to the Pacific, or any where else, but can scarce spare a thought - or a dollar - for the improvement of the river. In all the leading journals of the rountry, railway questions command columns of editoriais, where the Welland canal could hardly obtain lines. I am of those who hold that for milways, as national undertakings, we have for the present at all events, done our whole duty, and that we will lest consult the future of Canada and best promote the development of her magnificent resources by henceforwar l, for a time, directing our thoughts, energies, and means in improving and perfecting to the fullost measure of its capacity that which, in all its natural aspects certainly, is the grandest system of internal navigation in the world.

Yours, very truly, W. SHANLY.

JAPANESE DWARFED TREES.

The Chinese and Japanese have a great fancy for dwarfing trees This they do by such means as horizontal grafting (of which we have some specimens in our collection) and by studiously withholding more nourishment then will barely keep the plant alive. We present, here with, na engraving from the tme zan Garden of a species of Pine (Rinus densiflora, var albifolia) which bas been thus dwarded. This plant-at least one hundred years old-is only about four feet bigh, while the trunk is nearly equal in diameter to tho vase in which it ag gruwn-about twenty inches-so that the rate of growth has nut exceeded fuur-tenths of an inch per year. The patio ace anil perseverence of three generatiuns of men in growing and caring fur such a plant is marvelluus. Although we may cousider the result absurd we raust give them credit for the shill they exhibit in controlling or bending Nature to their whims or caprices.

MODL: OF MAKING FIRE-ENGINE HOSE WATERTIGHT.

The Bryerisches Industric und Gecrerbeblatt contains a proceeding, which has been patented in Bavaria, sor rendering hose of fire-engines completely water-tight, so as to withstand the greatest pressure. The hose are, after theg have been cleanedsand dried, impregnated with a mixtare of 100 parts of glycerine of 240 B . and 3 parts of carbolic acid, which may be done either by drawing the hose through the liquid, or, better still, by brushing it well in. Thus treated, the hose are said to preserve a certain degreo of dampness, without, however, being liable to rotting in the least degree, and so suffering detorioration in quality and durability. The brass fittings of the hose are attacked only imperceptibly by the acid contained in the composition; but oven this may be easily prevented by giving them before impregnation a coating of weak shellac varnish, or by greasing them well with tallow. The hose, which are said not to leak in the slightest degrec, must be cleaned every time they have been used, dried, and impreguated auew with the liquid. The previous drying of the hose is, however, not necessarily essential, more especially in winter, when drying is slightly difficult ; it suffices to let the water run well out of tho hose. As frost does not affect the mix. ture, hose prepared in the above manner, do not freeze casily at low temperatures. This fact makes the suggestion one wo.th consideration in Canada.

A preliminary meeting of railway servants engaged in tho passenger departments of the London and North-Western, Lancashire and Yorkshire, Manchester, Sheffeld, and Lincolnshire, and Manchester South Junction and Altrincham lines, was held on Thursday ovening, the 5th inst., at the British FIret, Oldfield-road, Salford, to take into consideration tho hest means of ameliorating their present condition, when it was revolved to hold an aggregate meating on Sunday, the 15th inst. in Manchester, in order to decide as to what further means should be adopted towards the object in view.

A SELF-PROPELLING TRAM-CAR.

We recently devoted a brief paragraph to a preliminary notice of this invention, patented in March last by Mr. Lre. veanx, and relating to an apparatus or automatic means ot im. parting motion to carriages on tramways, railwayd, and uther roads, and we now resume the subject with the purpose of de. tailing all the features of this auth atic motive jover, as lliustrated in tho engravings on page 256.

Even if the time had not passed when the question of nes. hor or not tramways should be permitted in urban thorough. fares might be regarded as open to discussion-for we take it that tramways, urban and suburban, have passed fivm the sphere of speculation into the domain of fact, and beconae a permanent institution of the period, notwithstanding the objections of "carriage people "-the inpention of Mr. Leveaus would possess substantial claims to consideration, as exercising a preponderating influence in favour of the adoption of tram. ways, to the full comprehension whercof it is necessary that the primary and essential conditions of the question should be fully stated and thoroughly understood. These may be vers brieely summarised.

The facilities for public intercommunication in urban and suburban localities, by the pablic thoroughfares, are of three kinds, omnibuses, tramways, and cabs or tho like vehicles plf. ing fur hire, all equally dependent for motive power on hurses -a condition which is not of encouragiog aspect, eitherin the present or the future, in viow of certain contingencies, such as, e.g., the increase in the price of horese, and the cost of thrit keep; the possibility of an equine upidemic, such as hasucured in America, or a drike among the drivers, hard-worsed and underpaid. It is an undoulted fact that the working ol tramway cars by hurses is not only serere, in tasking the purets and shortening the working life of the horses, but is a rers heary tax upon their earmugs. Nevertheless, it is equally cer tain that, as yel no mechanical power has been devised ut ap. plied so as to supersede them, in spite of several hopeful and promising projects for steam tramway jcars, \&c., which hare, however, failed to bear fruit practically hitherto, and the great desideratum of a suitable motive power has so far remained unsupplied.

It may be broadly assumed that whatever mechanical motor may bo adopted, it should, having regard to the safety of the public, and the other traftic uses of horses, fulfil certain cond-tions: it should be thoroughly under control, and ezerted onlr along a prescribed course ; also noiseless, so far as wractucable, and not emetting any objectionable humming, pufiag, hasing, whirring, whistlin 5 , clicking, clatter, or noise calculated to be a nuisance and cause fright ; there should neither be any visible smoke, steam, or vapour, nor any annoging and unpleasant chemical odour, gas, fumes, or vitiated air. Morcover, it would be well to have no boiler, generator, tank, or receptacle for infiammable liquid, iavolving risk of explosion. As regards the extent and duration of its exercise, the power need not exceed in capability the ordinary working speed of the present conveyances, nor be exerted throughout long distances or periods.

Whatever degres of seccess may bereafter be attained by steam, gas, heat, petroleum, or other engines, in the realisation of the above conditions, we are at present disnosed to consider Mr. Leveaur's, invention as alono substantially attaining the same. Its principle consists simply in the application of could springs wound up by machinery, and acting in uncollog through suitable intermediato gearing, upon the running wheels of the tramway car. Although up to quite a recent dak, the conception of spriags applied to the generation of p smer has been limited to watches and clocks, mechanical tors, $x c$. and has been developed on no scale practically larger, so far as we know, than in the well-known self-coiling shutters, yet this is clearly only a question of power and degrec, affect. ing simply the conditions and capabilities of the manufarture, which bave indeed, in effect, presented the oaly difficuities to be overcome.

In spplication to the ordinary form of tramway-carnage, 4 portion of the space below the floor of the car is utilised forsis arrangement of a series of drums or barrels, contanang the springt, which may bo arranged transpersely in two groups ur sets, suitably inter-connected, so as to form one continuocs volute, acting to generate revolution of the driving-whects, and thus effect propulsion of the car. At the terminal, or utberia. termediate stopping stations the means of winding up and ft
coling the springs, by any saitable fixed steam-engine or other prime-motor, are to be provided, rotary motion boing commu. niratrd hy rhafts under the roadway to vertical spindles and gnared wheels, which being throwninto temporary connection, for the purpose, with the spring-barrel, will coil the springs until the requisite tension power is obtaned. The means of effecting this temporary connection of the prime-motor with the carriage-mechanism may obvously be varied, without affecting the principle of thus providing stored-up power, selfcuntained, whereby tho car may bo automatically propelled Adrquate brakr power is also provided 80 as not only to control and arrest, when requisite, the suring-power, but to hold it in complete suspension when the car is stationary : and furthe:more, an arrangement of clatches is interposed between the spring-harrels and the driving-wheels, whereby the uncoiling motion of the springs, which is constant in one direction only, may be transformed into an ultimate variable notary motion, giren out in opposite directions as needed, for reversing the direction of propulsion of the car.

In the accompanying engravings fig 1 represents en ordinary tramway car in side elevation, fitted up with this self-propelling appliance, and showing the mechanist for winding up the coiled springs applied thereto. In fig. 2 is shown an invertel view or plan of the underside of the ca-framing and merhanism; the sectional plan of the spring-barrels or drums and gear connectrd therewith appearing in fig. 3 ; while fig. 4 inmonstrates in elevation, as applied to such a tramway carriage, the mechanical arrangement proposed for employment in winding up the springs.

Fixpd hnrizontally and transversely beneath the carriage flonring and situated at about the centre of its leagth, are two serime or groupa of hollow drums or spring barrels, A, A1, fitted on to sleevr-shafts, carried on fixed axies, B, B1; in each group there are tive barrels, but any less or greater number of barrels mav be eraployed, as may be convenient and requisite Simultaneous operation of all the springs in both groups may be secured an ! maintained ; or, on the other hand, action may be limited to thr springs of one series only; the arrangement and detalls being as follows.

A winding-shaft, C, is fixed in bearings in the cheeks or side plates, \mathcal{D}, fitted to tho underside of the carriage-framing, which carry also the drum-axles, B, B_{1}. On the shaft, C, is keyed a pinion, c_{1} geared into a spurwheel, a, affixed to the spring-barrel, 1 , the first of group A. The spring-barrels, 1 and 2, are loosely mounted on a slecve on shaft B, and severally connected thereto by means of coiled springs, whercof the coll for the barrel 2 is in the reverse direction to that for the barrel 1 ; the barrels 3 and 4 aro simalarly carried by, and reversely connected to another and independent sleeve on the same axle. Connection between the barrels 2 and 3 is effected by a pin, b, at the periphery of the barrels, which thus acts alternately as a drivir, to transmit the coiling power from the prime-motor, passiag through spring-barrel, 1 , or vice versa, to give out the power of tension stored up in the colled-springs, when acting in their turn as prime-motor. A similar pin, b_{3}, also connects spring-barrels 4 and 5 , whercof the latter is roounted on and connected with a separate sleeve, and carries a spur-wheel, al, ongaging in another like spur-wheel, a2, affixed to the spring-barrel, 6 , the first of the second group or series, A_{1}, carried on the axle, B1; the arrangement and connection of the spring-barrels, $6,7,8,9$, and 10 , constituting the second gr up are precisely similar; and the last barrel, 10 , of the senes is provided with a spur-wheel, e2, engaging into the intermediate gearing actuating the driving-wheels.
Centrally located between B and 131 is a supplementary axle, E_{1} arso carried in the side-plates, D, and serving to carry a loose pinion, c, engaging in the spur-wheels, e1, e^{2}, which are respectivcly m sunted on shafts, 83 and 131,80 as to run loose; the wheel, el, is connected with the spring-barrel 1, by means of a pawl and ratchet, just as in the case of e^{2}, and 10 . Fric-tina-brakes, h, thrown in and out of action by brake-rods, H, H1, extending forwards and backwards to the opposite ends of the car, and by lever handles, and operated by bevel-gearing, as slonwn in fig 2 -are fitted on the peripherics of the springtarrelv 1 and 10 , so as to act asdetents for the prevention of the runving down or uncoiling of the springs of both sroups, when In action; or otherwise, when released, to permit them to exercse their tension-power
The count"r shaft, F, carried in bearings in side-plates, D, serves to transmit the spring-power and rotary motion to the
axle ' $'$, of the driving-wheels, by the medium of spur-gearing,
$f, f, f 2$. I'pon this driving arle are two pirions, g, loosely mounterl, and having clutch-teuth on ther boxeg, furmed to re. ceive respectively the teeth of a pair of clutches, g1, sliding on feathers on the chaft X, and actuated by the clutch-rods, g ? Theso constituti the reversing gear, for forward motion, the pinion into which the wheel, f, gears, is thrown into action, the trausmission of p, wer being direct, fur ruversal to backward motion, the spur-wherl, $f=$ is put in action, driving an idle pinion g^{3}, gearing into the adjacent pituton, g, and ruaning looscly on a shaft, g^{f}, having its leariogs in radius rode, g5 resnectively pendent from shafts, P, G, and thus transmitting epposite rotation to G. It will be understood that the terms "backward" and "forward "aro only relativo, and that moticn may be imparted to the car in cither direction indifferently.

In caso the barrels, 1 and 10 , aro both released from the fric-tion-brakes, h, both groups of springs exert their power through their respective spur-wheels, el, $e 2$, upon the pinion, f. If, howover, the brake be put inaction on the barrel, 10, only, the tension-powre of group, A, is transmitted back bs spur-wheels, $a^{2}, a 1$, in aid of group, A, and the spur-wheel, e, by the pinton, e, and e2, now acting as an idl owheel drives the pinion, t; on the other hand, if the barrel, 1, be h.ld by the brake, and 10 be free, the action of the springs is transmitted in the reverse direction to the wheel en, which thus receives and transmits the whole combined propelling power.
The winding-up of the spring-barrels is effected, as oxplained, br engine power, located at suitable intervals along the track, as may be convenient for the run, or at special stopping places. In fig 4 the stationary engine, 1 , and fly-wheel, K , drives by belt the pulley, L, fix \boldsymbol{f} on horizuntal shaft, M, carried in bearings, caclnsed in a metallic tubo or casiag, beacath the roadwar, and extending across the tramway trach, close alongside whereof a covered bos, N, is suak in the rosdway, enclosing a chain-wheel, O, affixed on the shaft, N. The endless pitchchain, P, passes round O, and a second chain-wheel, Q, carricel on a pair of radius arms, B, supported on M. The axle of Q is fitted with a sleeve so shaped as to connect rith the rindingaxle, C, of the tramway car, and thus give the requisite motion thereto. On the arrival of a car at any station requiring to have its epring-tension renewed, the chain-wheel, Q, is rased into position, connected with the shaft, C, and the epring-barrels are wound up by the engine, which being dono, U is disconnected, and depressed into its original position. A frictioncoupling or other like appliance may be introdnced at nny suitable and convenient part of the spparatus, to prevent overFinding.

The crucial point of the whole system clearly relates to the size and power of the spriags, the arrangement adopted, of connecting together the springs alternately by their arbours and peripheties, practically unites all the soparate springs of the two groups into one continuous coil, exerting the juwer of each individual momber of the series (supposed of equal strength), but exerting that power through a proportionately longer period The power and duration of the springs must bo adequate for the maintenance of the requisite maximum (though limited) speed for a period or journcy of sufficient longth.

Now it has been computed that the actual tractive force, requisite to overcome the resistance of a tramway car weighing gross 5 tons, is 60 lb . on the driving wheels, corresponding to 720 lb . on the periphery of the spring barrel; 24 lb . and 288 1b. respectively correspond to a gross weight of 2 tons; and in like proportions for intermediato weights. So far as previous experionce goes, a spring 6 lb . in weight, exerting a direct pressure of 105 lb ., may be taken to ropresent the maximum in size and power of such stecl springs. Under the stimulus applied by M. Loveaux's researches, the stecl manufacturers of Shefield, by special and improved plant, annealing ovens and appliances, have turned out springs 50 to 60 feet long, capable when duly coiled of exerting a presbare of 800 lb . to 900 It . without permanent set. In France also, still driving bands, with grest elasticity, aro made 100 yards in length, 80 that the question of the possibility of obtaining springs of the requisite size and power is practically solved.

Having satisfactorily tested the principle in a working model, to one-sixth scalo, on a small temporary tramway of considerable length, ir Leveaux has had all the necessary mechanism and appliances made by a well-known firm of en-

[^0]: - 1,sens on lurtutication and on levulring lattory Torecrs vienced sushior as jarts of furtificid ploces, with bastion faces or sca frontsbicceded by eame roflections on the stato of architesture from tho Josuns B3 Bedard. Candunct archiectof the first-class of tho Curps dilitars Eingmeers. I'aris Published by the author. Iczi.

