The Institute has attempted to obtain the best original sopy availabie for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autie que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored andfor laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continue

\square
Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canadian Engineer

Vol. VII.-No. 11.
TORONTO AND MONTREAL, M.IRCH, 1900.
$\{$ PrICl: 10 Clents

The Canadian Engineer.
 ISSUED MONTMLY JN thR INTEKKSTS OF THE

 CIVIL, MECHANICAL. IEIECTIRICAL. IOCOMOTIVE. STATIONARY MAPINY, MININGAND SANITARY ENGINEER. TME SURNEYUR. THE MANUFACTURER. THE CONTRACTOR ANDSuncripition-Canada and the United States, $\mathbf{3} .00$ per year, Great Britan and fortign, 6 . Advertisunk rates on application.

Opricas-62 Church Street. Toronto. and Fraser Builiding, Montreal.
E. B. Biggah
R. R. Sanuki

CO.. lublistiors.
BIGGAR. SAMUEL \& CO.. lublishors.
Huilding.
Toronto Tolephono, 1382. Montreal Tolephone, 2689.

All basinasi correspondenco ahonld be addrossed to our Montreal office. Eilitorial matier, cuts, oloctros and drawings nhould bo addrossed to tho Toronto OAlce, und nhould bo nent whenovir posilble, by mall, not by cxpress. Tho pablishers do unt undertake to pay duty on cuts from abrosd. Changes of mivertisemente ehould be In our hands not later than the lat of omeh month to enaure ivsortion.

CONTENTS OF THIS RUMBER:

THE INTERCEPTION TRAP.

BY W. M. WATSON.
For Tue Canadian Engineer.
About forty years since I began to learn the sanitary trade. many private drains were built with rough stone. bricks, broken pipes and wood; they were totally void of any scientific arrangement or rule; no regard was paid to grading, and often the level turned the wrong way, which of course made the channels useless as car-, riers of sewage. Such private drains only distributed the poisonous sewage among the subsuil of the premises they were laid under, making the ground a cesspuol of impurities that generated foul gases and contaminated the living rooms of the divellings.

This state of things caused an appalling death rate among young children, who spent most of their time in such polluted atmospheres. To add to the leaky and :unsanitary state of such private drains it was only in a few of the best plumbing jobs that either the soil pipe, the waste pipe or the liead of the drain pipe line, was continued upward to above the house roof with a view of ventilating the plambing, the private drain line and the public sewer.

To have cured this defect was simple enough, by having the diains laid with geod sound pipes, tightly jointed and scientifically laid by competent workmen, and the terminating head of every drain, soil pipe and drain pipe carried up to above the highest point of the roof of the building. so as to ensure a good circulation
of air from the street sewer upward through the line of pipes. However, the usual methods of tackling such difficulties was adupteci. Professional engineers and scientists made a big thing out of the sanitary cow, and meetings and lectures were many, to make a remedy for so scrious an evil, and the result was that W. P. Buchan, Glasgow, got the pull and inaugurated the system in I872 oi placing an interception trap in all private drains at a point where the private drain entered private property, or buildings. His argument was that no poisonous sewor gas cund pass from the public sewers to the private house, if this shut-off valve or interception trap was fixed intu the private drain; but he tuok no note of the fact that the putrid matter that poisoned the dwelling was under the dwelling, and not in the street sewer at that time, and it the street sewers were so badly laid that they generated poisonous microbes, the very best way was to provide plenty of means to draw off the ioul gases to a point of the atmosphere above the house rops. where they would at unce die, for dangerous microbes can live only where there is no circulation of air, and mo better carrier of air ur gas can be found than the warm moistened walls of a sewer or soil pipe.

Our Glasgow friend no doubt was a thinking man. but he evidently was not sunficiently well informed to know that when public sewers are scientitically laid, they are self-cleansing and self-acrating. When that is accomplished the sewage is kept moving until it reaches the sewage outiall, on that ground the foul matter entering the sewers cannot breed or incubate microbes, nor generate foul gases of any kind, because such putrefaction can only take place in very sluggish streams and cesspools, two thmgs that are not admissible in a well laid drain. Then with regard to aeration of the sewers, if both the seuers. the private house drain, and the plumbing be scientifically designed, and worked out. cuery pint uf sewage discharged from the house fixtures into the drain will carry with it into the main sewer about one quart of fresh atmospheric air, about sufficient to clean opt and purify it. When the time arrives that a reasonable amount of common practical knowledge is used when constructing sewer drains and plumbing, tandersers themselves will do a great deal towards cleaning 年d purifying, by the help of bacteria. the foul liquidghat is put through them. The system of Mr. Puchafi prevents all this good work by placiner the interception traps on all private drains. because the drains cannot have the proper and natural ventilatuon. nor can the sewage carry air into the scwers; moreover the scwers cannot be self-cleansing, in fact, it turns the whole system of sewers into a poisonous gas making machine, that has already sent many to a premature grave and will send many more before the fad works itself out.

The time is ripe for reliable statistics to be published showing the sickness and death rate of the inhab.
itants living in houses having the interception trap on their drains, and similar humses that have not, so that the public would be cmabled to judge for themselves whether or not it is a demgerous movaton. Though this would only shoun a small part of the danger and the injury done, because the whole sewage system of the town is fould for the want of the ventalation wheh the interception trap prohibits.

The introduction of the uterception trap has given sanitary theorists a large field wherein they have introduced many kinds of machines to try and aerate the drains, and flush the sluggish sewers, and by so doing prevent the generating of foul gases. but at every point they have met with poor success, and many of the public strects are charged with ioul odors coming from the sewer manholes, and people living in elevated places where the town sewer gas is driven have often to suffer contagious illnesses, simply because the town sewers are not ventilated by natural principles, or in other words let me say that mature is not allowed to perform her appointed duty; if it was, then the making of obstructions in the flow of sewage and sewage aeration would cease. Sewage ventilation would be fully secured by using the simple and natural means that is at hand when the interception trap is left oult. To do this all private drains must be inserted in the crown of the street sewer, and contimue on a rising grade free from any obstruction until the line arrives above the roof of the building, and all the waste pipes of all the conveniences on the premises must be comected with the vertical soil pipe separately by a short branch and trap.

There are more injurious excesses and unscientific obstructions placed in the sewage and plumbing appliances at the present period, than I have ever witnessed during my forty years' experience, and these excesses are as expensive as they are useless, and many of them are dangerous to the public health.

Fads being catching it is only the excessive cost that has prevented many comncils from destroying their present system of ventilation by compelling their townspeople to adopt the interception trap principle in their house drains. To show the excess that plumbing has arrived at I ask the reacier to study a drawing of R. M. Starbuck's, published in The Sanitary Journal of New York, which is a fair drawing, showing how plumbing must be put together in many cities and towns which consider their sanitary business the acme of perfection. The draving shows at least twice the amount of pipes and joints that are necessary to make safe and first-class sanitary jobs that will work frecly. It also shows the waste pipes from the conveniences to be arranged and carried out to the soil pipe connection in a way that cannot mect with approval of an expert experienced plumber. There is too much pipe used, and it is not well arranged. I gave sketches, and the reasons for making this remark in my article on plumbing in February issue of ifog and September issue, 1898; these two articles give detail reasons for several assertions made in this paper. The 3 -inch main line ventilation pipe shown to be joined by a branch to the 4 -inch soil pipe near the washtubs, and again at a point just under the roof, cannot have any circulation of air, for no current passing up the soil-pipe can be made to branch off and return into the scil-pipe again without the use of force. It is possible to turn the air round the 3 -inch by-pass,
by placing a stop valve in the 4 -inch soil pipe, somewhere between the two 3 -inch branches, but by no other matural way, so we can safely say that the su-called 3 -inch ventilation pipe, together with its five branches that lead to the five different conveniences, are no ventilation pipes at all. The only office they can perform is to form a relief, se that when the contents of the pipes contract or evpand they will throw out, or take in the small quantity of air needed to balance the space.

But there is another duty that they are credited with performing, viz., they prevent the key of water (that forms the air valve in all traps), from being syphoned out. When plumbers arrange the waste pipes from the bath and sinks in the way they are shown in this sketch, they do their level best to coax the traps that serve the fixtures to be syphoned, bur there are reasonis why thes never do syphon, when used in the usual domestic way, they never did syphon nor they never will, but if the waste pipes were connected to the soil pipe in a proper mechanical way, they could not be syphoned, if every pipe, including the soil pipe, was running full bore at one flush, which is an action that can never happen in the usual way of using them. Experiments have been repeatedly made, and the results have shown that such vent pipes are no use, but on the other hand do much harm, and are responsible for many premature deaths; this, too. has been personally proved.

The oldest plumber never found a-trap on a house pipe dried out by evaporation before the fad of venting all traps was introduced, because the drying influence of the atmospisere on the house side of the trap was balanced by the condensing of the sewer air and moisture present on the sewer side of the same trap. When a vent pipe is comected to the sewer side of the trap it
abolishes the moisture feed that the trap formerly had, and applies another drying influence into the traps, so that evaporation is going on both on the house and sewer side of the water seat, that is lodging in the dip of the small trap, therefore, it is only a matter of a few hours for the seal of the bath trap to become broken, and a passage is then open to introduce the gas from the sewers into the sleeping rooms, and it is by this method that some of our best houses have diphtheria and typhoid.

It may be safely said that where one trap can be found with its seal broken, because it has been syphoned, fifty traps can be found that have had the seal broken and dried out by evaporation, caused by the air coming in contact with the water on both sides of the trap, and on account of having a ventilation pipe placed on the sewer side of the trap, as has been shown.

SOUTH AFRICA, ITS PEOPLE AND TRADE.

CAUSES OF THE BOER WAR.

ARTICLE V.

(Cominued from last issue).
A word as to the commercial situation. In the year 1884 the revenue of the Transval was $f_{1} 61,596$, and the expenditure, $\mathfrak{E}_{184} 820$. The population at that tinic was about 45,000 , of whom 35,000 to 37,000 were Dutch. That was the year when Kruger went to England to obtain the new convention. The finances of his country were in bad shape, and remembering what England and Englishmen had done to rehabilitate the country financially during the three years of British administration, he had a letter published in the London papers inviting British capitalists, miners and merchants to come and settle in the Transvaal. Thev accepted the invitation, and in 1885-86 the De Kaap and Witwatersrand fields were discovered, with the result that the reventie for $x 898$ was $£ 3,329,958$, practically all of which is derived from the energies of the Uitlander. In the face of this, Kruger now asks, and the pro-Boer organs throughout the world echo the question: "If the Uitlander does not like the treatment he gets, why does he not stay away?" The Uitlander, upon Kruger's invitation, came to the country, discovered the gold, and built up the industry. Should he be robbed of the business he has created? And if prior occupation is urged by the Boer, how about the Kafirs, whom he has dispossessed of their lands? But while an unnecessary revenue, such as this, is squeezed from one element of the population, the expenditure has gone on to keep pace with it. This year the civil service list amounted
 habitant of the country. The ordinary expenditure last year was $£_{3,47} 6,844$. A large part of this, as stated, goes to build up a military power to overawe and oppress the very people whose exertions provide the noney; much of it, according to Cecil Rhodes, has gone as a bribery fund to influence elections in the Cape Colony, and carry on the propaganda for seducing the Cape Dutch from their allegiance to Britain. A huge secret scrvice fund* is used largely for political purposes in Europe to the same end; while a large but unknown sum is given by the President himself, as "doles," to Bocrs in the back aistricts, ostensibly to help farmers
in distressed circumstances, but in reality to keep burghers loyal to him. The various monopolies also yield large bribery funds. The dynamite monopoly, by which the sole right to make or sell dynamite was given to one man (afterwards a syndicate), who was permitted to charge 200 per cent. over what the article would cost in the open market, filches from the Witwatersrand mines alone $f 600,000$ a year. Space forbids reference here to the other monopolies, but it may be noted that these monopolies are given to Kruger's favorites on articles that are chiefly imported from Great Britain, or are used chiefly by British subjects. This is one of the numerous viclations of the conventions, which provided that the taxation should be equal to all classes. It may also be noted that President Kruger has not only defended these monopolists under all circumstances, but in the numerous cases in which boodling schemes have been unearthed, and scandals exposed -sometimes by honest men in his own party-he has invariably shielded the boodlers and not infrequently promoted them or given them fresh opportunities.

A great deal might be said on the external relations of the Transvaal. The convention of 1884 fixed the boundarics of the Transvaal exactly, and the republic undertook solemnly to respect the independence of native chiefs outside its territory. Scarcely a year has passed without the violation of the convention in this respect. One of Kruger's first acts was to invade part oi the British Protectorate and proclaim it a portion of the Republic. following up the aperations of some of his free booters. And he only withdrew because of Mr. Rhodes' protest and the Warren expedition, which cost the British Government over $£_{1,250,000 \text {. Then the }}$ Boer Government turned its attention to Zululand, which, after an intrigue with Dinizulu against the other chiefs, it invaded and attempted to upset the settlement made by Lord Wolseley. Next they invaded the country of the Matabele whom they had driven out of the Transvaal originally, and who were now under British protection, and they were only turned back by the tact and firmness of Dr. Jameson. Again they tried to lay hands on Tongaland, but the Queen Regent would have nothing to do with any country out England, whose protection she had sought. The invasion and spoliation of Swaziland was another Boer outrage, which Great Britain, from a mistaken notion of keeping peace with the Bocrs, condoned.

Such are a few of the features of Krugerism in South Africa, and the reader can judge whether they are such as to justify the interference of Great Britain.

It is a subject of wonder to many that the Boers persist in a course which a large number of them must know to be wrong, and stand out against the whole might of the British Empire in so doing. It must be remembered, however, that the vast majority, who never read a newspaper, or a book, except the Bible, are as ignorant of the outside world as the Hudson Bay Indians. Perhaps not ten of the whole body of burghers ever saw a man-of-war or visited Ertgland or Europe. Even Kruger and the other members of the Volksraad, who visited England, saw little of its resources; and it must be admitted of Kruger, who is a man absolutely without fear, that if he had the clearest realization of Britain's power, it would make no difference with his policy, so convinced is he that the Boers are the only favored nation of Heaven. What can be
done with a man who believes (as Kruger argued with Dr. Hertz, and a deputation of Juhamesburg Jews, who came last year to plead for educational freedom), that the Boers are the direct descendants of Isaac, and the Jews the descendants of Ishmael, and that, therefore, it would be against the Scriptures for both ,eople to inherit the land together! It must also be understood that, whatever the Boer leaders know, the Boers themselves are convinced that when the Gladstone Government gave back the country in 188r, it was through fear, and that the profession of generosity or justice was merely a cloak for this fear. And they point, in confirmation, to the fact that when Mr. Gladstone, after denouncing the annexation, in his Midlothian speeches in Opposition, came into power, he refused all along to restore the Boer Government until he had the experience of Majuba Hill. The leniency with which the British Government treated the Transvaal in its repeated violations of the two conventions, and the way in which they were allowed to despoil the Swazi tribe, were to the Boer mind only so much accumulating evidence of this fear, apparent to him as the years wel. on. Perhaps Kruger himself thought the Transvaal was a match for Britain, as J. P. Fitzpatrick relates the following, in his "Transvaal from Within:" "The late W. Y. Campbell, as spokesman of a deputation from Johannesburg, addressing President Kruger, stated in the course of his remarks that the people of Johannesburg 'protested' against a certain measurc. The President jumped up in one of his characteristic moods, and said: 'Protest! Protest! What is the good of protesting? You have not got the guns! I have.' And Mr. Campbell, in reporting this in Johannesburg, remarked: 'That man is sensible; he knows the position. I clain to be sensible, also, and I know he is right; you can take my name off any other deputations, for we'll get nothing by asking.'"

We have evidence that several members of the Raad would have given the Titlanders, not all, but some of the rights they vainly sought, but Kruger had become too powerful an autocrat. and they were no match for him either in diplomacy or determination. But though the Bocrs were ignorant, they were not so igrorant as to fail to realize that if the franchise was granted to Uitlanders, and a clean, honest administration inaugurated, these "doles" to burghers would cease, and they would no longer be able to live in ease at the expense of the hard-working alien. Hence, their determination to do what would otherwise appear insane-to risk the destruction of the Republic itself rather than to do justice at the cost of giving up control.
(To be continued).

CANADIAN MICKEL-STEEL.

The niekel-steel age, apoken of by Prof. RobertsAustin before the Pritich Asanciation for the Advancement of Science, as being the nevt great period in the inclustrial progress of the world, is mow entered upon. The most learned metallurgist in the world, whose opininn we have just qumed, also predieted that Canada would take a leading part in the developments which would characterize that epoch. There is no reason why the nickel-steel supplies of the world should not come from Canada. We can make iron cheaper than any-
where else in the world. We have the greatest and cheapest nichel supplies, because Canadian nickel contains cnough cupper to pay for getting it out and treating it, theretore the nickel-stecl can be produced by us at prices which defy competition.

Hamilton, Ont., is to be the scat of great metal. lurgical industrics. To the iron smelter and rolling mills already there, is now being added the Hoepfner Refining Co.'s works, which will refine zinc, copper and nickel. To operate this plant 3,600 electrical hurse-power will be required, which will be furnished by the Cataract Power Co. J. Patterson stated publicly on March ist, that contracts had been made with the Canadian Nickel Company, the Nickel Copper Company of Ontario, and the Hocpfner Refining Company, for the refining of nickel matte, the contractors to supply sixty tons of matte a day to the Hamilton works. As soon as the Hoepfner Co.'s plant is an accomplished fact, which will likely be in the coming spring, the nickel-stecl plant will be started, and the cost of the buildings and machincry will be about $\$ 6,000,000$.

For The Canadian Engineer.

peat as fuel in canada.

BY A. G. ARDAGH.
Peat or turf is usually associated in our minds with the old home-land, but there are many who do not know that in our country we have peat bogs of similar character. Swamp land, as we know, is widely distributed in the Dominion, but the product is not recognized by old country people as turf, which is senetalls the product of mosses; of the latter there exists, nevertheless, large deposits in Ontario and other Pruvinces. Both kinds of peat can be utilized as fuel. These peats are decomposed mosses, sedges, aquatic plants and other vegetable matters. Dana says: "In temperate climates it is due mainly to the growth of musses of the genus sphagnum. This plant furms a loose turf, and has the pecular property of dying at the extremity of the routs below while it contmuously grows and iacre:ases abuve the surface, and by this process a bed of great thickness is gradually formed." In "older" peat there are a few traces of fibrous matters, but it presents a pitchy, shining hue when cut. It will dry out more or less brown. In "recent peat" the fibrous condition is closely marked and the color brown.

In general the older peat is underneath, but the lower stratum may be immature peat. This is the case in the Ellice marsh, nine miles north of Stratiord, Ontario, where there is a bed of several thousand acres of sphagnum peat about six fect deep. The moss has been burnt off the surface long since. On the great bog in the County of Welland a number of acres are still covered with the original sphagnum moss. It is curious that these manshes are tisually to be found on the watersheis. Peat contains in mdrained marshes about 90% of water. It parts with its water very slowly on exposure to the air when in the shape of bricks and out of contact with the bog. On the peat muors of Ireland, Scotland and Nurthern Continental Europe, turf has been, since time inmemorial, cut out in brick form and marketed Incally in its crude state, although previous to this many fruitless efforts have been made to compress it economically and on a commercial scale. In this way the
elficiency in burning puwer would be increased, the dust .a handling and using avoided, and shipments to a diswnce could be easily made.

Peat igntes easily, requires practically no draught when once the fire has taken hold, gives intense heat, and a banked fire will not burn out nor will it go out until the fuel is consumed. It burns with a flame for some time, and then for a longer period in red hot coals. The gases emitted in the initial stages of burning are not only innocuous but considered by some medicinal, especially against lung troubles. The perientage of ash will vary with the deposit from which the peat is taken. the following analysis was made of samples of compressed fuel made from the product of the Welland bog with the moisture reduced to a suitable amount:

Moisture	12
Volatile matter	88.20
Fixed carbon	
Ash	3.80

The absence of soot, clinkers and practically of :moke (when burned under proper conditions) are qualities which will appeal to all classes of consumers. Peat in its crude state varies very nuch in weight-about 600 lbs . to the cubic yard may be taken as a fair densi. y . The fuel as consolidated by the Dickson press will weigh from slightly under soft coal to slightly over hard coal, neither frost nor a damp atmosphere will affect it, but it should be protected from rain.

The Dickson Press, which is the result of many years patient experimenting, and the expenditure of a large amount of money on the part of the inventor, A. A. Dickson, of Toronto, commends itself by its simplicity. The peat, after being broken to a powder in a breaker, is disposed automatically by gravitation towards the lower and stationary dies or moulds, which consist of two stcel tubes about twelve inches long, of uniform bore and open at both ends, into which work two punches. Each charge of peat which flows in when the punch rises is compacted into a solid block on the top of the previously made blocks which occupy the lower two-thirds of the tube, and this column of blocks is forced down a distance equal to the depth of the block made, and thus each time one drops out at the bottom. The resistance thus obtained is yielding, and the formative pressure is always the same. These ideas presented themselves to Mr. Dickson after the failure to press the peat in a closed mould, as this substance offers more resistance and friction in a dry, cold, and disintegrated state than any other natural ligneous substance known; Processes which involve the consolidation of the crude peat in a wet or hot state leave it subject to disintegration upon drying or cooling.

It may be interesting to know that during the past summer factoris have been erected at the following places in Ontario: Kirkfield on the Trent Valley Canal, Picton, Perth, Beaverton, Brockville, Galt, Barrie, and on the Ellice marsh north of Stratford, to manufacture compressed peat fuel with Dickson presses. It has been largely an experimental year in many ways. Some of the factories nave not yet run, but the fuel placed upon the respective markets in small quantities has been very favorably received, and large factories would be required to meet the evident desire of the public for the fuel, Althouf, h much can be accomplished by natural drying in the wind, the question of artificial drying is being
speedily and satisfactorily solved, as the Trent Valley Peat Fuel Co. las installed a Cummer Dryer, which promises to render their manufacturing in a much larger degree independent of the weather. There are several other dryers to be insfalled elsewhere. Although for perhaps several years the fuel will be largely consumed domestically, yet as a steam-rising fuel it has proved its worth unequivocally.

The process of excavating and drying the peat as performed on the Ellice marsh last summer was as follows: Trenches were staked out $3^{\prime} 8^{\prime \prime}$ wide, and at intervals two men, side by side, were set digging with the ordinary steel spades with lifting handles. The peat was dug out one spading deep at a time and spread along the bank, when this was dry on one side it was stacked in small stooks of four or five with the wet sides out, three or four pieces on end and one on top. Subsequently these stooks were gathered into larger piles to make way for the spreading of a second spading and so on. To gather in the dry peat, portable tracks were laid over the ditches and the peat thrown into trams carrying from $3 / 4$ of a ton to one ton and conveyed to sheds or huge stacks to be thatched with lumber or moss.

The use of dredges and other machinery may reduce the cost of the operations up to this point. The peat will be either taken dry from the shed or dumped wet into the dryer. It will be pulverized before gravitating to the compressing machinery. It will be carried mechanically through all the processes before compression, and also from the machine to the railway car or store-house.

the toronto muddlers build again.

The people of Toronto are about to spend money in printing the city by-laws. So far as concerns codifying and printing the building by-laws, the money would be better spent in publishing them in the daily papers, so that the people might notice that they are entirely without protection from many of the dangers which threaten the city dweller from the incapacity or crime of thost entrusted with building operations, either as owners, architects, or contractors.

We showed, in a former article, that the building regulations of Toronto were a farce, and the office of building inspector a sinecure. The daily papers republished our statements and commented upon them, but no action was taken. The by-laws, which no one knows anything about, and which are entirely inapplicable to present day building, are still supposed to be in force, but in almost all buildings on the business streets these by-laws are entirely ignored.

We will repeat one statement from our former article which shows, as no argument could, the position of affairs: "There are no rules for steel construction in the building regulations of the city of Toronto."

An example of how the building inspector in Toronto guards the public safety is shown by the fact that the city finds its new market building at a standstill, because the steel contractor has refused to erect the roof upon the brick piers provided by the city's architect, and of necessity approved by the building inspector, without whose approval nothing could of course have been done.

If the Dominion Bridge Co., the steel contractors, had gone on with the work, and it had fallen, as they
claim it must, the resulting damages against the city for loss of life would have been very heavg. There can be no doubt that the eity is liable for damages to person and property for any accident arising in any way thruugh a cause peculiar to the steel type of building.

If a stecl girder in a Toronto building fail, no matter from what cause, the city is responsible because its presence in the building is not in accord with the city by-laws. Sucli buildings as house the large departmental stores in Toronto are most flagrant violations of the building laws of Toronto.

There are of course, rules for the building of kitchen chimneys, etc., and they are such as the fire underwriters enforce in the farm houses in Muskoka. It is a mistake for the grood aldermen of Toronto to build a market; their business ability would find scope rather in growing cabbages which they might vend upon the city hall steps.

CANADIAN SOCIETY OP CIVIL ENGINEERS.

fourterntil annual meeting.

The fourtenth annual meeting of the Canalian Society of Civil Enginecrs opened at the society's rooms, Montreal, on the 31 st January.

The president, W. T. Jemings, of Toronto, occupied the chair, and there were present the following members: From Montreal, C. H. McLeod. secretary: Wm. McNab, librarian; H. Irwin, treasurer; J. G. G. Kerry, Geo. Hall, L. J. Marion, C. de B. Leprohon, Percival W. St. George, Frank T. St. George,「. W. Lesage, E. Marcean. E. Fuscy, L. S. Pariseau, R. S. Lea, E. C. Amos. Geo. Holland. Alised Dedman. E. Berryman. E. S. M. Lovelace. I.ewis Skaife. R. Forsyth. G. H. Duggan. R. H. Balfour, A. E. Smaill, R. E. Hunter, G. L. Law. F. P. Shearwood, H. A Burson, E. E. Gagnon, E. A. Wallberg, W. I. Sproulc. Prof. H. T. Bovey, F. E. Came, Herbert Wallis, J. iv. Heckman, E. P. Hannainrd. P. A. Peterson, Stuart Howard, W. Melea Walbank, Wm. Kemedy, I. J. Papincan, N. Manson Greene, Arthur Crumpton, Geo. Janin, John Kemucdy. Duncan MacPherson. John R. Bariow, J. S. Vindin. L. A. Desy, Chas. H. Osler, F. L. Wanklyn, Thos. Kirk, J. T. Lemire, R. M. Hammaford, II. B. Stuart. J. S. Costigan, James Ewing, C. S. Lecch. Fred Thomson, J. A. U. Beaudry. From Ottana: Col. W. P. Anderson. Geo. A. Mountain. Wm. Crawford, E. J. Walsh. C. Thomson, A. Campbell. R. F. H. Bruce, C. A. Bigger. Wm. MeCarthy. From Toronto, W. T. Jennings. Willis Chipman, C. H. Kust. II. F. Duck, C. J. Crowley, H. W. D. Armstrong. From Quebec, L. A. Vallec. Charles Baillairge, E. A. Heare, Armitage Rhodes, Thos. Breen, F, X . Berlinguet, Henry O'Sullivan. From Lorette. Owen O'Sullivan. From Brantford, T. Harry Jones, C. A. Waterous. From Berlin, IIerbert J. Bowman. From Halifax, C. E. W. Dodwell. From Iroquois, F. R. Willord, G. J. Desharats. From Kingston, Prof. W. R. Butler. From Owen Sound, Jas. C. Kennedy. From Coteau Landing. Thos. Monro. Mex. Grant. From Boston, Frecman C. Coffin. From Sault Ste. Maric, Wm. Crawford. From Biack liake. Que., J. S. Costigan. From Vallcyfield. J. H. Sullivan.

On calling the meeting to order the president congratulated the society on the large atendance and on the prospects for a good convention. The secretary then read the programane of the meeting, after which the minutes of the last annual meeting were read and confirmed.

The president then nominated Messrs. Howard, Costigan, Stuart. L.ovelace. Heekman and Lesage as serutineers of the ballot for the election of officers. Messrs. Walbank, Berryman and Ewing were appointed serutinecrs oi the ballot for the Nominating Committce.

A large part of both forenoon and afternoon sessions was taken up by a discussion on the balloting methods of the society, and the greater security of the system from errors in the future. On motion of F. L. Wanklyn, seconded by P. W. St. George. it was decided that in future when more than one
ballot is cast, the color, size and all other details of the papers and enclosugg envelopes shall be alike; and on motion of J. G. G. Kerry, seconded by C. H. Rust, it was resolved that no list of the ballots cast shall be made before the closing of the ballot, and that no member other than a scritineer shall be permitted to know who has cast a vote.

REPORT OF COUNCII.

The following is the substance of the report of council on the work of the socicty during the past year: The elections in the ordinary course comprised one honorary member, eleven members, twenty-six associate members, four associates, and one hundred and eight students, in all one hundred and fifts Four associate members have been transferred to the class of member, and thirteen students to the class of associate mem. ber. Two members, removed from the roll for non-payment of dues. have been reinstated upon payment of their arrears. The clections under the Quebec Act. Vic. 62, Chap. 32, comprised three members, and fifty associate members. One associate was admitted to the class of member, and thirteen students were admitted to the class of associate member, under the Quebec Act. Resignations have been received from two associates and five students. Three members, four associate members and fifteen students have been removed from the roll for non-payment of dues. The deaths liave becn: Honorary member-Sir John William Dawson, C.M.G., LL.D., F.R.S. Member- Walter Shanly. Associate-llugh Ryan. Associate Member-Emery Lafontane. Students-F. X. Mill and M. A. Bucke. At present the membership stands as follows:

	Non-Res.	Res.	Total.
Honorary members	.. 6	I	7
Members 247	61	308
Associate members	... 198	91	289
Associates	. 26	14	40
Students	.. 99	104	203
Total.			847

This is an increase over last year of 14 members, 57 associate members, 6i student members, and a decrease in associates of 1 , making a toral net increase in membership of 1,31 over last year. There are pending II applications for admission. Fourteen ordinary mectings of the society were held during the year, and one special gencral meeting at which the following resolution was unaninously carried: Moved by C. H. Rust; seconded by J. R. Barlow, "That the council be and is hereby instructed to purchase the property, No. 877 Dorchester street. making use of the Building Fund, amounting to $\$ 4.500$. for this purjose, and also to raise $\$ 6,500$ by mortgage on the property. in order to complete the purchase price of $\$ 8,000$, with an additional sum of $\$ 3.000$ for repairs and improvements." It was also tesolved that the entrance fees, less the examination expenses, he credited to the Building Fund.

Additional subscriptions to the Building Fund were called for by circular, and the following amounts received to date: Subscriptions prior to $1890, \leqslant 4,656.73$; subscriptions received during 1809 and 1900: Collected, $\$ 2,084.44$; uncollected. $\$ 618$; total. $\$ 3.602 .4 .4$.

The obligations assumed in connection with the new home are as follows: Purchase price and expenses, $\$ 8,01 \mathrm{t} .30$; total amount of contracts, $\$ 7.475 .50$; estimated cost of fittings, ctc., \$755: Architect's fee, \$616.25; total, \$16,8:8.05.

In connection with the work of the commiteces on legislation it was reported that an Act was brought before the Ontario J.egislature in the caily part of last year, but. owing to oppositinn, arising chiefly from a misunderstanding of the Act, it was withdrawn after the second reading to be introduced again during the current session. The by-laws under the Quebec Act were sanctioned by Order-in-Council on February 24th, 1809. The Board of Examiners. composed of E. Marceau, S. Duval, T. Breen. C. H. MeLeod, R. J. Durley and R. S. Lea. held its first meeting. November 7 th, in accordance with the Quebec Act. and reported two candidates as having passed the examination for admission to practice.

The library Committec reported a number of gifts of books and pamphlets from members and friends. Books were given by Angus M. Stewart, A. D. Watson. G. Barnett Smith, F. C. Coffin. A. Crumpton, Gabricl Henry, Wm. McNab and George Brush. Two volumes have been acquired by purchase, viz.,
R.alway Track and Trackwork, by E. E. Russell Trat:nan, and Railway Engincering, by C. B. Smitl. I'amphlets and reports on various subjects have been recelved from A. V. Ramachandra Ayar, C. Baillairge, C. E. Gond, G. Henry, T. C. Keefer, C M.G.; John Kennedy, R. Steckel, P. W. St. Gcorge, F. M Baker, Wm. R. Iill, H. B. Seaman, W. Murdocli; various cichanges were also effected. The books of the library have bern appraised at $\$ 3,750$, and the library furniture at $\$ 1,250$. The neve quarters will furnish more library accommodation, and (rable the committec to earry ott many improvements.
financhal statement.
The following is an abstract of the receipts and capenses for the year ending 3ist December, 1899:

genfrill receipts.
Subscriptions-

\$1t.0.4 75

GRSi:MAL ENPRNDTURE.
Part payment for house, No. S77 Dorchester street. $\$ 3.40000$
Transactions printed and published......................... 71280
Advance proois ... 0875
Printing, stationery and binding 37652
Charter, by-laws and list of members 12400
Postage and poct n...is 2446
Messengers and teles ans 18 26
Cabs, cartage, etc 875
Secretary's salary for ycar 30000
Assistant secretary's salary for year 48000
Carctaker's wages for year $1+400$
Kecping rooms open at night and Saturday afternoons 11800
Rent of rooms for ycar 11800

Telephone service for year
Bank commissions on cheques 800
Water rates .. 2668
E!cctric lighting for ycar 72 f2
Books, magazines and library expenses................ il $^{3} 30$
Expenses re legislation, Quebec province........... 263 fo
Expenses re legislation, Oitario province 22575
Expenses during annual mecting 83 1s
Printing and engrossing diplomas 5235
Gzowski medal and engraving 730
Offece furniture and repairs t9 05
Rent of drawer in bank vault for year................ 5 cn
Gas for grate fire ... 310
Part entrance fees transierred to Building Fiund.... t30 00
Treasurcr's expenses, car fares, etc................... 1500
Petty cash in hands of assistant secretary............. 759
Examiners' fecs ... 5000
Ice for scason ... 500
Insurance on 877 Dorchester St . till Nug. 27ti), 1902. . -5 no
Insurance on present roonis till 18th Sept., 1902..... it 40
Ihuilder's risk on 877 Dorchester St. for three montis 1500
\$8,i4it 91
Balance on hand. 2.869 84
$\$ 11,03475$
D. MicPierson,
H. Irwis: Treasurer.
E. Marceau.

Anditors.

The treasurer's statement of the Building Fund showed atsets of $\$ 22,250$, made up of cash m hand from general fund $\$: 869$, from Building liund $\$ 2,431$, arrears of fees and subscriptions to Building Fund about $\$ 1,9 \psi^{8}$; value oi house, land and mprovements, $\$ 10,000$; books and furniture. $\$ 5,000$ lhe expendiure on the house during the year was $\$ 6,812$. The report was adopted.

The report of the Committee on Legislation was presented by Willis Chipman, as follows:

Tlic Committee upon I.egislation appointed at the last ammal mecting of the society to promote the passage of an det respecting civil engineers, a draft of whtheh was laid before the soctety at the latitanual mecting, begs to report as follows. Several meetings of the conmittec were held in Jannary. February and Mareh of 1899, and several conierences were held with the Minister of Education of Ontario and ollr solicitors, the result being Bill No. 136. The bill was introde:ed into the House as a private measure, and the fee ($\$ 100$), paid. The Bill was referred to the Private Biils Committec two or three days before the House prorogucd, and was referred back by the comnittec. The bill was opposed by Prof. Harris, of Queen's, and by Mr. Bell, secretary of the Canadian Mining Institute. The Goverument refunded the committee the $\$ 100$ deposited when the application was made for introducing the bill. The comwittee has held two meetings during this month, and has gone carefully over the bill of last year, making some alterations that should remove the opposition from the members of the Mining Institute and mechanics

She president observed that the opposition in Ontartu was largely due to popular igmorance of what the society's aims were. Some of the labor organizations were under the apprehension that the society was opposing their interests; but when they see that this society will prove a help and not a bindrance to the legitimate aims of all labur organizations, whether skilled or unskilled. they will no longer oppose it.

Mr. Chipman said it mast not be supposed that because the committee had not accomplished much they had been idle. Legislation of this kind was slower of accomplashment in Ontario than in Quebec, and the work of last session had at least disclosed where the opposition lay. Ottawa and Kingston had both been centres oi opposition; in the tatter case from all ex-professor of the Nilitary College. Whether there would be time to organize our forces ior the pending session of the Ontario legislature was a question.

The committee on the Gzowski medal reported that no award had yet been made, and the matter was left with the council.

Mr. Sproule stated that the committee on tates oi engmeers was not ready to report and asked that the commitiee bo continued.

The committec appointed to investigate the complaint oi Ilenry A. Gray that his paper on the lake levels had not been printed in the transactions oi the society, reported to the effect that that gentleman had made considerable use of extracts from the reports of the American Government engineers and other authoritics witiout giving credit or using quotation marks, and that such omissions had justified the editorial committee in withholding the paper from the transactions; but the comimittee recoguized that Mr. Gray's paper contained a great deal oi valuable information on the lake levels that was not accessible to members of the society, and recommended that, if he would indicate the extracts by quotation marks and give credit to the authorities to whom he was indebted, the paper be p:inted in the transactions. The report was accepted and the council was instructed to communicate with Mr. Gray.

Aiter adjona:ament at noon Mr. Kerry reported on behalf oi the committee on "lees" appointed to investigate the guestion .as to whether city members obtained more than their fair share of the benefits of the society. The committec, composed of Messrs. Irwin, Howard. McLeod and Kerry went over the treasurer's statements for the past five years and selected from them all expenditures which are at all of a local character. These are: Rent, janitor, night librarian, water, gas, telephone, electric light and mectings. It is not easy to say what portions of these expenditures would have to be made by the society for the conduct of its general business if it had no local membership, but in such case the expenses of a head office
athd librars would probably be at least \$500. Dechactung this sum from the totals of the items above noted the following are the local expenditures, and the income from the extra fees paid he resident members and associnte members for the vears under comsideration:

	Fecs Recocired.	E: permdi turs
1895	S1G2	\$256
1806	160	267
1.807	170	202
1508	276	553
180	304	590

The inereace an expmiture in the last tan years was due th reating and entra rome and the oppewng of the rooms at nighi It would appar irnu theoe ligures that the lueal fees do not fully meet the local eapendhure a figured ont on the abose bas. but that basts is itself only an estimate, and on the other hatnd no salue ean be placed upon the service rendered by the local mem bership to the society in general in conducting much of its business and keeping alive its meetings and committees, ditties which in some cases have become so arduous that the socirty must -hortly expect to place paid assistants at the disposal of the teasurer and librarian The letters which catused the :ppointment oi the committee aesm to have been written under a fear that with the opening of the new society houst. the local evpenses would greally increase, but it does not appear to your committe that any expenditure upon the furnishing and maintenance of the house which may tend to advance the dignity and standing of the socicty as a proiessional society ought to be opposed by any member. whether resident or non-resident. On the other hand your committee ieel that any expenditures which are not proper to a society constituted solely for professional murpoces, but belong rather to the province of an engineers' club. shouid not be chargeable to the gencral fumds, and would. if permitted bythe comeil. furnish valid ground of complaint to all members not benefiting by such expenditures. Your commintee would suggest that this report be made a subject of diccussion at the ammal meeting. as it does but feel that the committec itself is sutficiently representative to make any recommendation baced on the facts above presented.

Mr. Kerry added that local members had to pay an extra fee of $\$ 2$ ior the more irequent use they were supposed to have of the rooms. Ile said the policy of the society was to become the general engineerng sociely of Canada, and nothing could be more injurious than to spend money in a way to bring no bencfit to members outside the city. The library was a necessity, and we should have the best equmment in thas respect that it "as possible to get, but the general society should not be taxed for the pleasures of a club for the advantage of local members. During the discussion teierence wits mate to a card room used by local members. The president and Mr. Peterson expressed surprise that a card room existed, and hoped that this feature of the rooms would be done away whth at once. otherwise the local membership of the society would degenerate into a club.

Mr. Dodwell, speaking as an olltside member, thought the society should not begrudge the cost of proper quarters. He had not been here for two years, and might not be here for another two eears. but he was quite willing to pay his share of the cost n ? :nain:iaiming a proper home for the sucie: y.

Mr. St. George said it was the intention in the new quarters to provide sleeping accommodation for two; this was ior outside members, who might prefer to lodge at the society's rooms instead of going to an expensive hotel. After further discussion the following resolution was passed on motion of Mr. Sproule seconded by Mr. Kerry: That no expenditures from the society's funds shall be incurred either in purchases or mantenance, which are not necessary to the carrying on of the business of the socicty as a whole, and in the direct interests of the general membership, and that this resolation be transmitted to the council as the expression of the annual meeting.

The president made a fecling reference to the deaths of Sir William Dawson and Walter Shanly as old and highly honored members of the society, and it was decided to send tormal resolutions of condolence with the families of the deceased, and of other members who had passed away during the year.

The secretary read the results of the circular pust-a \cdot ds, whech had been sent ont solieting the opinion of members .. 10 future conventions. The fullowing was the list of questons. ind the total number of answers for and againat:

1. Are you in favor of continuing the present arrangemen of holding the annual mecting in Montreal in Janary of wh rear? ? Yea, 95: 110, 103.
2. Shall the society hold a smmer consention at difinat places each year ?--''es, 177: 110, 19.
3. If in favor of summer convention, in what month -hould it be held? Of the total answers 28 were in favor of Jume, \therefore onf July, 36 of August and 32 of September.
4. If such comention is held should the anmal meeting le at the sance time and place? - 「es, 1 In: un, 70.

It was moved by W J. Spronle and seconded smultaneonsly by 1.. S Pariscan, Duncan Macliberson and T Marry Jnmes. that $\$ 200$ of the society's funds be devoted to the National Patriotic Fund. This was carried by a standing vote. the members singing "God Save the Queen."

The scrutinecrs for the nominating committee reported that the following had been chosen for this work:

Quelice-L. G. Papiticau and C. de B. I.eprohon.
Ontario-C. H. Rust, J. Galbraith and Geo. A. Mountain
Manitoba and N.J.T.-Col. H. N. Rutan.
Maritime Provinces-Dr. Martin Murphy.
Newfonndland and Foreign-Lewis Skaife. Messrs. W. T. Jennings. W. G. McN. Thompson and T. C. Keefer, the three last presidents, are ex-officio members of the committec.

President Jemings then delivered his ammal address as follows:

On retiring from ollice I take this opportunity of again thanking the society for the high honor conferred in electing me to the presidential chair, and to express regret at my inabilty to have given the duties of the office the full attention they demanded. However, if not frequently in attendance, I have had the socicty and its objects fully in mind, and my constant desire has been to see the society attain a position where from its standiag and activity in the advancement of scientific education. coupled with wise regulations and a high standard of ethics, it will command the liearty suppott of engineers in all branches of the profession, and also the respect of the public at large.

Referring to our mocption, formation and advancement, I may brient remind you that the socicty was cstablished by a Dominion Government charter early in 1887° for the object and purpose of facihtating the acquirement and interchange of professional knowledge among its members, and more particularly to promote the acquisition of that species of knowledge which has special reierence to the profession of civil engineering. and. further. to encourage investigation in connection with all branches and departments of knowledge connected with the profession." The society was also empowered "to acquire and hold all land and property necessary and requisite in order to carry out the objects and purpose for which incorporation was sought." The mumerical strength of the society during the first year (188) . was as foliows: 188 members, 45 associate members. ig assuchates. $\$_{3}$ students: in all 335 members. During the same year the sum of $\$ 2 .+80.77$ was paid in to the treasurer. principally on account of ammal subscriptions.

From the secretary's returns it appears that the membership for 1890 numbered as follows: 7 honorary members, 30 is members, 289 associate members, 40 associates, 203 students; 11 all a total of S_{47} members, and showing a total net increase since the year of the formation of the society of 512 members of all grades, while the receipts from entrance and anmal fees. etc., amounted to $\$ 5.1+1.53$. This sum, added to the amount on ミ5,893.22, brought forward from gencral fund account, makes a total credit balance at the end of 1890 of $\$ 11,0.34 .75$, which sum has. as you will notice in the treasurer's statement, been fargely drawn upon for building account.

Permanent withdrawals from membership have been few. and due in most instances to removal irom the country Remonals iny death have cost us many worthy members, among whom we sincerely regret, Sir John Wilham Dawson, C.M.G., LL.D., and two past-presidents, namely, Mr. Samuel Kecier and Sir Casimir Gzowski. Mr. Walter Shanly may also be included in the number of past-presidents, as the was on several
acasions offered the nomination, but invartably dechand. As is well-known, these gentlemen were of the highent professional and social standeng, and hearmbe entered min the scheme tor the formation of the society, and did their part mobly to advance all its merests irom the date of its formation up to the thate of their decease. Others have departed who, although perhitps not as prominent before the public and in our midst, acelutted themselves howorably in the proicssion and faithfully as members.

The socicty, having carricd out the second provisinn in its charter, is now to be congratulated on the aceuisition of its own premises (as referred to in the treasurer's report), at a total estimated cost for improvements, etc., $\$ 8.846 .75$: building and land, $\$ 8.01 \mathrm{~s}, 30$: totai, $\$ 16.858 .05$. Of this amount there has been obtained by special subscriptions from members and friends the sum of $\$ 9.259 .17$. The balance of $\$ 9.308 .88$ has been temporarily provided for by loan from the general funds of the socicty.

It is confidently hoped that monetary and suthemen to extingluish the whole building account item of $\$ 16,858.05$ will be secured, thereby enabling the society to apply moneys now temporarily loaned from the general funds to other useful purnoses, notably the eniargement of the reference library, which is now valued at $\$ 3.750$, or, with furniture and fittings at a total ot, say, \$5.000, all of which can be inexpensively removed to our own premises, which it is hoped will be ready for occupation by the ist of May next. The benefit to be derived from having one's own professional home will doubtless strike every member as the bean ideal of seclusion and comfort. We now know that we have a headquarters, where we can mect and discuss topics of professional interest, or where we may individually rest by times when here. It has been stated by some of our members that the establishment has involved too great an expenditure, anu that only local members would profit by it. I would remind these gentlemen, that, as before stated, a large proportion of the cost was subscribed by members and friends for this particular purpose, which the socicty has had in contemplation from the outset.

I am satisfied we will do more individually and collectively in this way in the near future, and that we will dombtess soon have the pleasing duty of determining whether our surplus funds are to be deroted to the wider distribution of engineering information beyond that emanating from papers by our own members, or expend it in additions to our reference library, or, finally, stop the accumulation of funds by decerasing the amual subscription fec. I cannot think that the latter course would meet with the general sanction of the members, because, as time wears on, coupled with the general growth of the country, an ever-increasing demand will make it imperative that our members be promptly informed of the latest enginecring advances. However, as we have not yet reached that stage, it is umecessary to further eularge on the subject, and I only mention the matter as food for thought and discussion later on.

As to the second part of the assertion, that only local members would really profit by the establishment of our home, I may say that such must necessarily be to some extent the casc. and we who are not at headquarters can only hope that those who are so fortunately situated will take full advantage of the ouportunities afforded. Members should look on this feature in a broad light, and recognize that, while distant from the home. yet the advantages of it are apparent, in that the library is opet to us should we at any time desire information as recorded in our reference volumes, by simply making application to the secretary for the loan of the required work, which, if too voluminous to transmit, and the subject matter required not too extensive, there is no reason why arrangements should net be made for its transcription and transmission to the applicant. In this and many other ways can the "home" be made a bond of usciuluess to the members of the socicty, while its firm establishment means that the Canadian Society of Engincers has become a permanent and fully recognized institution of the country.

The advancement of economic mining has had the effect of attracting experienced mining engineers to the country, and of iuducing a large number of students to take up that branch of the profession. with the result that a separate society, called the Cauadian Mining Institute, has been successfully formed, and, as it is desirable that all branches of enginecring should be
cmbraced in the Camadnan Society of Engineers, it is hoped that this valmable banch will be united whth us in the near future.

Acknowledgment as a corporate body has been obtained frem the l.egislatures of the provinces of Quebee and Manitoba. In elfort has been made in the same direction in the province of Untario. but so far without success. It is, however, hoped that substantal advancement will be made in this resjuect during the coming session of the Ontario Legislature, and it is not difficult to see that the carrying out of the provisions in our bill will not only bencfit the profession and the operative, but also assist all intelligent and well-disposed persons by the elevation of the educational standard and general proticiency oi the civil engmeerng protesston of this country. In connection with our desire for provinctal incorporation, it has been stated, by those upposed to the measure, that our common object is to thoroughly entrench ourselves behind the Act in order that we may the more suceessfully wage war on those now practicing who have not thought fit to ally themseives with the society; also to legally emable us to exact enlaneed fecs fo- services, and generally to place a curb on free and untrammelled labor, be it professional or otherwise.

In reply to this and other like statements, I would driefly pont out that the old days of casual study as a pupil principally carred out in the onice, field or on works, and generally based on theoretical education of a more or less complete character, are almost past and gone, and while recognizing and upholding many good features in the old system, yet the near future will find only men in the profession who are graduates of schools of cugincering or of this society.

Cherefore (while not wishing to interfere with any one now engaged), the society seeks incorporation (in the provinces) particularly for the purpose lacing the foot of the student firmly on the tirst rung of the ladder by insisting that he siball have the foundation work of his profession securely laid in the form of a good academical education, and that his further ascent may be made under the guidance of experienced engineers, whose duty it will be to encourage him, until tine and experience in actual service enable him to become a full corporate member, and competent to stand alone and unaided.

In the matter of fees for professional services, the socicty has not made special provision, and it is desirable that a plan be formulated whereby satisfaction and uniformity may be obtained in this respect. as is customary in other professions.

When one thinks of the duties and responsibilities vested in an executive engineer, in charge of extensive and costly works, and oiten acting in a judicial capacity as between Governments. companics or municipalities, as against each other or contractors, and compares the returns they receive with those obtained by our judges and leaders in increantile pursuits, we certainly cannot be charged with placing a high estimate on ourselves.

As to interference with skilled or ordinary labor, I hold that the reverse is the casc, as by the better and more systematic education of our engineers we create a competent force to guide and assist skilled artizans and mechanics, in advancing their interests, either as inventors, uperators or overseers, of the laboring masses, who thereby cannot fail to obtain improved conditions.

As an index of this feature, it is only necessary to point to the valuable assistance rendered by schools of technology in Europe, and on the continent, where the ordinary mechanic may, by evening study under enginecrs, chemists and other suitable professors, sccure for a trilling sum such knotiledge of a scientific character as will enable him the more clearly and effectively to study out and improve upon present machinery and methods of manufacture, and generally bring under the control of the hand of man the powers and material of the physical world.

The cthical principles. which should be observed between members are not difficult to determine, and may be summed up) in the tenets of the "Golden Rule", and are largely provided for in our by-laws. It has, however, been suggested that members enjoying permanent positions, and whose compensation is in consideration of thr occupation of their whole time, should discontinue outside professional practice in so far as the interests of the country or municipality will permit.

It is to be hoped that the "transactions" of the society will
be increased in volunte by the addition of articles other than those emanating from members of our own soctety.

I have thus brielly touched upon society mathers rather than those of a specifically enginecring character, as has been the custom heretofore by retiring presidents, feeling that at thistime, when we are entering upon a new and more extended era, it would appear advisable that our members should be reminded of the objects of the society, and of the duties and obligations of its members to the public, and to each other in order that we may the more fully understand our position.

In concluding, I can only express a hope that our efforts will continue to mect with success, and that each member will personally feel that the society is of real value, and of venefit to our country.

On motion of P. A. Peterson, seconded by Thomas Munro, the thanks of the society were tendered to the peestident, who, in his suggestive and instructive address had taken an enturely new line of thought in presidential addresses.

John Kennedy, who had been moved to the charr, comphmented the president on the practical features of his remarks. The address wuld prove not only helpfil to members, but to the general public, who might wish to know the ams and purposes.of this socicty.

The election of officers for the ensuing year resulted as follows:

President-H. T. Bovey.
Vice-Presidents-G. H. Duggan, Percival II. St. Geurge and E. H. Keating.

Secretary-C. H. MeLeod.
Treasurer-H. Irwin.
Librarian-E. A. Rhys-Roberts.
The Council (the returns for which could not be presented till aiter the mecting), was as follows: John Kennedy, C. H. Rust, Thos. Monro, G. A. Mountain, Duncan McPherson, T. H. Tracy; St. Gcorge Boswell, James Ross, E. Marceau, H. Wallıs, Proi. J. Galbrath, R. Hermg, J. M. McCarthy, IV. McNab and C. E. IV. Dodwell.

Prof. Bovey in thanking the socicty for electing him to the presidency, said he had not sought the position, but was, in fact, in England when he was nommated. He thereiore felt the honor to be all the greater, and would do his best to show that it was merited.

On motion oi Herbert Waliace. seconded by Stuart Howard, a hearty vote of thanks was tendered to Mr. Jennings ior his services as president during the past year.

The meeting for busmess then adjourned till Feb. 6, when the returns of the scrutinecrs for members of the council, as given above, were reccived.

After the business of the day the members to the number of sixty or seventy leit by special tran. placed at their disposal by the Gand Trunk, for Boston. Owing to press of other matter an account of the visit is held over till nevt issuc. One of the crents of the trip was the annual dinner. a report of which follows:
the ansual dinNer.
The annual dinner of the society was held at the Hotel Brunswick, Boston, and proved an occasion to be remembered by all who attended.

The chair was oceupied by the president-elect, Prof. H. T. Bovey, Dean of ilie Applied Science Faculty of McGill University: who had on his right C. Frank Allen, professor of railway engineering in the Massachuselts Institute of Technology and president of the Boston Society of Civil Enginecrs. and on his leit, Desmond Fitzgerald of Brookline. late presidemt of American Socicty of Civil Engineers. and ehginecr of the Sudbury Department oi the Afetropolitan Water Board.

Among the members and guests of the society present were: I.conard Metcall. S. E. Tinkham, Henry Manicy, H. Bissell. Proi. Geo. F. Swain, Howard A. Carson, Frederic P. Stearns. John E. Chency, E. W. Howe. Prof. Gactano Lanza. L. F. Rice, Chas. W. Sherman, Gco. A. Kimball, A. B. Corthell, W. W. Cummings ard I. J. Hirt. of Boston; W. E. McClintock, of Chelsca. Mass.: Prof. Ira N. Hollis and Proi. D. I. Turner, oi Caunbridge. Mass.; T. Howard Barnes. of Micdiord, Mass.; Alex. H. French, of Brookline: Geo. B. Francis. of Providence, R.I.: Prof. C. II. Mel_cod. Duncan MacPherson. Stuart Howard, John Kennedy. Percival W. St.

George, J A. U. Beaudry, Fred. Thomson, A. E. Smaill, K H. Balfour, H. Rutheriord, T. H. White, F. L. Fellowes, Alex. Pringle, E. C. Amos, L. G. Papineau, Lewis Skaife, 「. W. Lesage. J. S. Vindin, W'm. McNab, F. P. Shearwood, K. I. Hunter, Gordon Grant, F. E. Came, Joseph W. Hechman. Alex. J. Grant, Arthur Crumpton, R, S. Lea, Sidncy Hosmer. of Montreal. C. II. Rust. JI. W. D. Armstrong, E. B, Biggar. of Toronto; Charles Baillarge, Louis A. Vallec, Armitage Rhodes, F. X. Berlinguct. Ilenry O'Sullivan, of Quebec. C. Thomson, A. Camplell. Col. W. P. Anderson, C!as. A. Bigger, oi Ottawa, C. E. W. Dodwell, of Halifax, N.S.: l'rof. W. R. Butler, C. B. O. Symons, of ningston; T Harry Iones, C. A. Waterous, of I3rantiord; G. J. Desbarats, F. R. Wilford, Iroquois, Ont.; Herbert J. Bowman, Berlin, Ont.: W'm. Crawford, of Sault Ste. Maric, Out.; Owen O'Sullivan. of I.orette, Que.; Clias. J. Crowley, of Chaudiere, Que., and J. II. Sullivan, of Valleyfield, Que.

Among the invited guests wino wete umable to be presem were, Messrs. Charles M. Hays, gencral manager Grand Trunk Railway; F. H. McGuigan. E. H. Fitzhugh, G. B. Kecves, W E. Davis and F. W. Morse, of the Grand Trunk Railway; T. A. McKinnon and Lucius M. Tuttle, of the Boston and Main system; W. A. Ritchic. of the Pullman Palace Car Co.; J. F. Wallace, president, and C. W. Hunt. secretary, of American Society of Civil lingineers: Wim. Jackson. city engineer of Boston. H. M. Whitney, president Dominion Coal Co.; J. E. Hardman, president, und B. T. A. Bell, secretary, of the Cana dian Mining Institute, and Prof. S. H. Capper, president Quebec Association of Architects.

After full justice had been done to an excellent dinner the chairman proposed the " Queen." and in doing so expressed his regret that the last days of our beloved Queen should be distressed by the hormors of war. but there was one consolation ior the sufferings of the South Airicin war, and that was that it had maniested the solidarity oi al parts of the British Empire, and it was brmging about the solution of mort than one oi the problems oi that Empire. After the toast had been duly honored Proi. Bovey proposed the " President oi the E"nited States." He said the imaginary line between Canada and the L'nited States marked no division in the hearts of the people who, though they might criticize each other in a friendly way, realized there was a kinship in sentiment as well as in blood. He never came to Boston without feeling loth to go away, and without carrying in mind some happy reminiscences of his visit. He hoped the Boston society would return this visit, and so increase those good relations which should subsist between kindred societies. The " Star Spangled Banner" was then sung, followed by "Hés a Joll; Good Fellow."
"The Enginecring Proiession" was briefly responded to by C. H. Rust, city engineer of Toronto, who after returning hearty thanks said le wished to give place to L. J. Hirt, of the N. E. Gas and Coke Co. Mr. Hirt said Boston was practically the pioncer American city in developing the electric railway, having in the course of that development changed the types of motors five times. Boston was also ore of the most advanced cities in solving problems of water supply and sewage, and owing to the number of rivers the difficulty of these problems had been increased. In the case of their own gas works they had to tunnel under the river, the work being done by compressed air. The iron pipe was laid concentrically in a wooden tube, and one of the unforescen difficulties after the tunnel was Enished was the sweating of the iron pipe. In the main pipe under the river this sweating amounted to six or seven barrels of water per day. In concluding Mr. Hirt laid stress on the value oi practical and teclnical cducation; and spoke in high praise of the value of Nova Scotia coal in the work carried on by the company he was commected with.

With this toast the chairman particularly associated the names of Desmond liitegerald. late president of the American Sosicty of Civil Enginecrs: Prof. Hollis, of Harvard University, and Prof. Lanza. of the Massachusctts Institute of Technology. Mr. Fitzgerald in thanking the chairman for his kind words sainl he felt all engineers were brothers, no matier to what part of the continent they belonged. He loved Canada, because he had often fished her rivers, climbed her grand mountains and explored her iorests; but lie never loved her as he did now: The Canadian Society of Civil Enginecrs was an honor to the pro-
fession, and he was surprised to learn that it now numbered 8no meinbers. This fact showed the enormous development of the material resources of Canada. He spoke of the fine physique of Canadians, and remarked that when introduced to the first member he had to look up in the air to see his face. Enginecring was the noblest of the professions, not even excepting law. divinity or medicine; for engineering was founded on horse sense, and this was the requisite of all. The engineer was the great unifier of the human race, for his work ioined country to country, brought healh to cities in pure water supplies, spanned the widest rivers and bridged the ocean itself by the steamslip lines, which joined continent to continent. Mr. Fitzgerald's speech was enlivened with gleams of real Yankec humor, and was warmly reccived. Mr. MeNab then gave a capital recitation from Dr. Drummond deseribing how Batisse came home from his sojourn in the States, and was followed by Prof. Hollis, of Harvard University, who said he was glad to meet the members of the Canadian Socicty of Civil Enginecrs at dinner, and to renew in this meeting the bleasant memorics of his visit to Montreal under their auspices several years ago. It was to be hoped that this visit was only the beginning of many others, and that we aray become neighbors indeed. Speaking to the toast he thought the words of an old friend would be very apt in this connection. This friend said, "Your profession bids fair to become the great profession of civilized nations. It provides for the homes, the material welfare, and the general well being of all people. The engineer will surely cure the tariff more effectively than the legishator, because he will by his labor saving machinery make tariffs unnecessary, and.bring us to irce trade." It struck the speaker that his function in modern times is far wider even than this. Mr. Fitzgerald, had spoken of the railroads. Ilave we ever thought that the railroad system is more important in uniting the Atlantic and Pacific coasts of this continent than even a constitution framed by the people who live here ? The States are bound together far more effectively by the steel rail and the telegraph wire than they could ever have been by written agrecment. The Canadian Pacific is doing for Canada just what the Union Pacific has done for the United States. In contrast to the railroads in this country we have the necessity of marine transportation to Great Britain and her empire. The striking changes which have been effected by the engincer are seen in the readiness with which your country transports to South Africa an army of 200,000 men with their equipment, artillery and horses. This is almost beyond imagination-six thousand miles by sea made possible by the constructors of ships and machinery. It is no exaggeration to say, therefore, that the British Empire, or betler still, its vast conicderation of colonics, can be held together by means of the sub-ratine cable and the steamships. It is this thought that should make us all proud of our profession and glad to belong to it. The presence in Boston at this time of the Canadian Society impressed him strongly with feelings of decpest sympathy for British people in the trials which war has brought upon tiem. He held by the English, as he believed that their cause is the cause of the Anglo-Saxon sace, which stands as the great tulwark of civilization and individual ireedom. He was sure that he spoke the thoughts of thousands of his eountrymen when he expressed the deepest grief for our losses and the most heartielt sympathy for us in this trouble. He ior one followed the course of the war from day to day with the same interest and sympathy as he did two years ago that of their orsn war in Cuba. Time and acquaintance have brought Fngland and America logether. In Cambridge, four miles from here, he lived not far from a milestone marked "Eight miles to Boston." It was put up when this was an English colony, and the journey from Cambridge to Boston was made through Charlestown, and by ferry across the Charles River. We have minny of the old colonial customs and institutions in Cambridge, and we cherish much of the old affection for English soil. No wonter then that we are drawn together at this time of trial to your people. Concluding, he hoped the two socictics would soon mect again. Prof. Hollis' speech was received with much enthusiasm. Prof. Janza on being called on said it was hard to Velicue Prof. Bovey was not a Yankec. He emphasized the unity of the two peoples. Referring to the loast he sid the day was now past when law. divinity and medicine could monopolize the culture of the countri. 'The great object of the
professions was the best guod for man, and the engineering profession stood for absolute truth, therefore, it must stand as the science of all sciences. With this gieat aim the engineer did not stop to consider party, and was not tied within the boundaries of a country, but aimed for truth and the good of man ia general. He remembered how royally the American Society of Mechanical Engineers was welcomed in Montreal some years ago, and was glad such visits as. these made the ties between the two peoples closer as time went on. After the singing. of "Soldiers of the Queen," by Stuart Howard, of Moutreal, F. P. Stearns, chief engineer of the Metropolitan waterworks, was called on and spoke of the work done by the State Commissions appointed by Massachusetts to deal with the water supply of citics and with the liquor traffic. The work oi these commissions had been most satisfactory to the public, because the appointments had been kept out of politics, having been made by the governors, who had fortunately been able and upright men.

John Kenneds; harbor enginecr, Montreal, then proposed the "Boston Socicty of Civil Enginecrs," and spoke in high praise of the hospitality of the Boston enginecrs, whose thoughtful attentions to the Canadian visitors had delighted them ail. He was muth struck by the evidences of strength and prosperity shown by the Boston societ:, titirh now numbered 500 members, many of whom took such high rank m the proiession in the United States. Bostun was not only a pionees in the development of electric lighting and the electric railway, but was to the iront in dry docks and other harbor works. These advances were due to the able work of engineers, and he heartily wished every success to the Boston society.

Three hearty checrs avere then given ior the Boston society, and Lewis Skaife followed with the song "The Absent-Minded Beggar," to which he added the following original topical verses:
When you've feasted a: the Brunswick. when you'vekept it up 0° nights, When you've dined nud wined the Boston engineers,
When you've swung around the circle and have seen the Boston sights, And bave listened to the wisdom of the seers.
You'll be absent-minded beggars for a day or two at least,
And your wits will have a iendency to leave you.
So you'd better stay in Boston wit!e the wise men of the East.
Who have done a lot 0° little things to please you,
You stay, l'll stes-stay till we sober down.
Montreal can wait for us till some other day.
Each of us doing our country's work surveying this Boston town.
We've found the service pleasant, and we'll stey, stay, stay.
Some day they'll come to see us, these same Boston engineers.
And we'll fod a way to keep them when they come.
We'll dine them at the Windsor and we'll drink the cup that cheers. And we'll make them feel exceedingly at home.
We will build a solid highway from St. Lawrence 10 the Bay,
We'll be brothers in behavior as in blood,
We will jnin in an alliance that will never pass awas.
And we'll face the world toxether for its good.
we'll join, they 11 join, allies forevermore.
A hundred million freeborn men here and over the sea,
Each of us helping the commen cause (and this shall our motto be)
Liberty, fraternity, and the world as it ousht to be.
Prof. C. Frank Allen replied to the toast, saying it seemed quecr for himseli and members of the Boston socicty to be playing the part of guests in their own city, and the situation seenied to show that it was more blessed to give than receive. He spuke of the intimate and pleasant relations of the men ol Boston and Montreal, an intimacy that had largely been brought about by the work of enginecrs, starting with Stephenson, whose achievement in building the great Victoria bridge had opened up direct railway communication between Boston asid Montreal. ife had not thought it possible to get as much enjorment out of the visit of the Canadians as he lad got, and he hoped this would not be their last visit.

Mir. O'Sullivan, chicf of surveys of Quebec, after reicrring to his very pleasant trips to Boston, the first having been made in ISEK, gave a comic song, "The Old Irish Stew" to the tune of the "Red, White and Blue," which was sung with a rousing chorus.

IInward A. Carson, enginecr of the subway; was called on and in a thoughtiul specch scierred to the imaginative faculty of the engincer, who must have in his mind a conception of the structure or work he sets himself to do beiore it exists in fact. The imagination nust of course be bound by the laws of nature, or the engineer would find himself as disappolnted a man as the soutlierner who recently conceived the
idea oi setting monkeys to pick conton. Jmbying from the deftness of monters the thought he world ravinumace contom, meking, as one mant might louh after 20 monkeys, who could mek ten times as fast as the haman conton pieker: but when he pot to work he found it took about so men to look after one monkes, and the problem batled lan. He preducted that the work of the engineer wenald ubhurate tarof walls, and white we night have our local governments and mstutumbs. we did not want to have any fellow looking mo our tranks when we crossed a boundary. but we wanted our horses. our umber, our coal and other products irecly exchanged between the two countrics.

Proi. Swain, of the Massachusetts Institute of Iechnology. also spoke of the satisiaction it gave him to know that the Canatian society had chosen lhoston as the objective of their excursion. The ties between Canadiens and Imericaths were growing. and they have never been so strong as they ate at the present time.

Mr. Dodwell, of Halatax, then sing " In Cellars Conl." and in response to an encore wave ${ }^{\text {a }}$ Simon the Cellarer"

Proi Mcl.cod, ni McGill L'miversity was called on to reple to the toast of "Our Socioly" Brielly remming thank he laid down for himscli the law that as secretary of the suciety his work was to do and not to talk:

theelectric liahting and power plant of VICTORIA HOSPITAL, LONDON, ONT.

One of the most efficiemt electrical cquipments installed durmg last season wats that of the Vietoria Hospital at l.ondon, Ont. A rigid specification was prepared by the Gilbert Wilks, Engntering Co.. of Detroit, under whose supervision the worn was installed and tested. The plant, consisting of two direct combected engmes and generators oi $43 \mathrm{~h} . \mathrm{p}$. 7nd 32 kw eapacan respectively, were to be of noiseless operation, to have a regulation within two per cemt. limit, and a capability of being over :onded to twemty-five per cent. ior several hours without injury The contract was secured by the Electrical Construction Cu. of London, Letd, who have installed the entire plant, which hats been in use now about five months, siving the very best ni satisfaction.

Being at duplicate plant it has been customary tor the engr-mer-in-change to rum each mit for wenty-iour hours altermately with the other. as light and power are required continnously - hroughi ut ilue buiding. However. beginning with ifth Febraary. oft oi the senerating sets was started on a 7 -day contimuous run hight and day, at the end of which iemperatures were taken showing the following temperature rise of the different parts above the surrounding atmosphere: Commutator.

Chatles Baillairge consulting enginecr of Queloce city. was also called on and compared the work oi the engineer with other professions, with the conclusion that caginecring was the biad oi all profecsions A general had in lonk at things armund and facts that were visible. but an enginese thad to loonk into and through thinge. and in draw inierences irnm things that were not visible or hint dinly krenve When one looked abous hitm he would see that all the eominers of modern liie were due to the skill of the enginecr.

Proi. Bovey here prupused the hath oi Mr. Metcali, who had personally dunc su much fu: the visturs, and the tuast was drunk with "He's all right."
"The Ladies" were remembered in a humorous speceh by Col. Francis, resulent enginecr of the \therefore …. … 11 , and Hartford Railway, and hy T. H. White, oi Mourseal.

Beiore separating the president remmed the company of the fortheoming convention oi the American Socicty of Civil Engincers, to be licld thas year in IEngland. and he housed not only that the attendance of Americans would he large but that many Canadians would join.
$11^{\circ} \mathrm{C}$.. armature cors. $7^{\circ} \mathrm{C}$. crank pin journal, $17^{\circ} \mathrm{C}$; left bearing of engine. $13^{\circ} \mathrm{C}$: : right bearing of engine, $11^{\circ} \mathrm{C}$.; oil of cuginc, $16^{\circ} \mathrm{C}$. ficld coils of dymamo. $9^{\circ} \mathrm{C}$. Considering that $=$ limit is allowed in seneral enginecring practice of $40^{\circ} \mathrm{C}$., and sometines 50° C., the above figures are exceptimally satisfactory. During the week the load had varied between ten per cent. mierload and one fith of full load, no adjustment of the brushes being necessary nor was any special allemtion refurred.

The engines which are supplied b:E. Leonard \mathbb{C} Son, of Lumden. are on their new Peerless selt-oling type. and are lubricated autumamally in all paris withom atiention. Renown engace onl being used for all bearings, and Capital Renown for the cylinder. A description of the proncipal features of this new enginc. which is hasing a large sale, was given in our December number.

Tine equipment is clectrically controlied by means of a handsome Tennessec marble switeh-board, provided with ten light circuit swaches. five notor circuit switches, main switches. pilot lights and rheostats, cte., making a verg compact and well arranged boned. The plant also fumiches power for two direct
 I ondon. The eleetra menors and controllers of wheis were inrnished by the l:lectrical Construction Co.. of L.ondon, l.tal. who also installed two motors direct belted to fans, which are wed to exhatust the ar tron the entire building. The fan motors are of the bi-polar type, and hate a speed controller. Tlite suboth rammag on the engmes. and the steadiness of the wote one of the electric plam, hive called forth high compliments srent the many bisitors to the new institution. The engineer .. Id mechanical superimendent is Samuel S. Glass.

THE ENGINEERS' CLUB. TORONTO.

The annaal dimner oi the Engineers: Club of Tormito, wot place at the Rossin Hunse. Toronto, Febrmary Sth, and the following gentlemen were elected to the varions obliees ior the anmug year: l'ressdem. Kwas Tully. vice-presidem, I'rui. J:o. Gallirath: dircetors. C. H. Kust. representing the civil engmeers: K. W. King, the mechameal eagmeers, and T. R tioselmagh. the clectrical chgheers, treasurer. T. B. Spuaght. secretars, Willis Chiman. Among the members who partici pated in the annual dunter at the close of the business meeting wore the iollowing: 1 ivas Tully, C. A. Camniff. C. E. Cooper. - Brodse. W. A. Clement. Henry F. Duck. Jno. A. Duff. Fred. G. Durnford. J. A. Eilis, W. A. Johnson, Henry A. Gray. Gordon. Jno. Gallorath. G. II. Hanning, li. W. King. E. IT. Keating. Geo. R. Mickic. J. G. Maybec. E. Phillip. Rod. J. l'arke, Jno. G. Ridout. C. H. Rust. T. S. Scott. T. B. Spcight. i: T. Tatc, Geo. White Fraser. Jno. Willians. C. H. Wriellt and P. AI. Wickens. The usual toasts. with music. concluded a very successinl- entertainment.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

lronticts of coni.

The monthly open meeting of the Ilamiton Branch oi Stathomary Engineers was held February 2oth. The principal ie:ature of the evening was an address by J. M. Williams of J. Wimer \& Co., on the subject of products that conld be obtamed from coal. The address was illustrated throughout by means of blackboard drawngs, and specimens of the various steb stances named were on exbibition for the inspection of the members present. It was demonstrated that aiter the first pro duct. Which was heat, the uext wo oi greatest inportance were gas and coke. From the coke we obtain electric light carbons. and carbinde oi calcium used in the production oi acetylene gas Coal tor was the next production, and as the substances obtamed irom the distidation oi the tar are practically mamerable, the princupal products only were touched on.

We first obtain from coat tar a substance called benzol, which. combined with mitric acid, wrms nitro-benzol, wheh is used extensively in the making of periume. Next we procure carbolic acid, then creosote, a substance used for preserving raiuay ties, wharves, cte. Then iollows naphthature, used in the manufacture oi camphor balls; in excepuonally cold temperatures this substance sometimes blocks up the sas pures. We then obtain solid parallus, principally in the form oi waxes. The tast product obtanticd through the distulung process of coal tar is pitch.

It was then shown how the artucles and productions men moned were applied to the manuacture oi motiern commorities of everyday use. The explosives used in modern wariare are composed largely of materials obtanced from coal, such as car bolic achu, ctc.; maphtlialue goes mio some of tiem, and is used in some ot the cartridges oi the present day. Hes speaker then exhibited samples oi cordite and other explosives, and expmaned how smokeless powder differed from ordinars gunpowicr. It was shown how natural aricles of commeree were being imitated ij) productuons from coal zar, such as oil oi wintergicen/ obramed from carbolic acill. musk, saccharine, which is 500 times sweeter than common sugar, and also artificial perfume re sembling flower oi lilac. In some discases sascharine can be used where sugar could not. Gum-benzoic, naturally obtained from the sap of a tree grown in castern countries. a stibstance which has been wed from earliest fines in making incense, and in all probability utilized in the preservation of nummics, is now artificially made in the form oi benzoic acid. Mr. Williams had on cxhibition a piece of gum-benzoic, which was
wer two humbed sears old. A substance is also obtained from wal tar, which is used for much the same purposes as quinme medicine.
. It conclusion of the address a hearts vote of thanks was iembered Mr. Williams for his trouble in preparing such in miteresting and exhanstive address on the subject. L.. If. Mann, of Boston. a well known stationary engitter. addressed the meeting before it closed, and announced that he would be present at some meeting in the near future and address the members at some length. II. J. Wickens, of Toronto, made a few remarks, and a paper from him on ciectricity is looked for in the near future.

DOMINION ESTIMATES.

Kalnays and Cimals. The amume to be voted is $\$ 4,570,902$, as ayanst the current vote of $\$ 4,855,472$. Of this the Intercolomal Ranlway is to receive $\$ 1.545 .902$, being $\$ 95.216$ of a decrease. The Prince Edward Island Railway receives $\$ 713,500$, as aganst $\$ 26 \$, 000$ for the current jear. Canals reccive $\$ 2,311$. juo. as aganst $\$ 2,944.454$ for the current year. The canal items are:

Soulanges camal, construction, $\$ 350,000$; Sault Ste. Maric canal. comstruction. $\$ 0,000$; Lachine canal. construction oi lock. S500.000: lachine canal, dredging between locks 2 and 3 and basin. $\$ 21.000$; Lachine canal. building slope walls. \$11,000: Lachine canal, build a quadrant pontoon gate. \$20.000: Lachine canal, installation of electric light. \$40,000; I.ake St. Lonis, forming channel, \$14.000: Grenville canal enlargement, $\$ 5,000$; Lake St. Francis, removing shoals, $\$ 5,000$; Cornwall canal. enlargement, $\$(60,000$; Farran's Point canal, enlargement. $\$ 69,500$; Galops canal, enlargement, $\$+41,000$; North Channel, forming $\$ 200,000$; Galops Rapids, forming clannel, $\$ 100.000$; St. Lawrence River and Reaches. surveying, buoymg, etc.. Sis.000; Trent canal. construction. $\$ 320,000$; Welland canal, unprovemenis to Port Colbortic entrance. $\$ 100,000$; total. $\leqslant 2.311,300$.

In addition to the above which are chargeable to capital. there is $\$ 245.927$ to be voted chargeable to income. Of this $\$ 9,000$ is for Lake St. Francis; $\$ 17,000$ for the Lachine caual, including $\$ 3.000$ for new steel rollers for Wellington sireet bridge; $\$ 10.000$ for St. Ours locks; $\$ 31,700$ for the Carillon and Grenville canals.

Public Works, Capital.-The amount to be voted is $\$ 476,000$. being an inerease over the current vote of $\$ 2,1,000$. Of this $\$ 433.000$ is for the St. Lawrence ship canal. being the same as the current vote.

Pablic Works Income. The amount to be voted is Ft.m95.423. as 2 gainst $\leqslant 3.224 .5: 6$ for the current year. The iollowing appropriations are for Queliec:

Dominion public buildings. \$12.000: Grosse Isle quarantine station. Sio.000: Montreal public buildings, \$5.000: Quebec Citadel. Governor General's quarters, \$2.000; Quebec custom bouse and cxamining warehouse. $\$ 2.000$: Qucbec immigation buildings on Louise cmbankment and lireakwater, and Queen's whari huildings. \$5.000.

Harbors and Rivers.-Anse auk Gascons (Port Daniel :East). breakwater, Sı.j00; llaic St. Paul (Cap aun Corbeaux). cxtenston and repairs to whari. \$-.000; Beauport, wharf, \$4.500: lierther (en bas). repars and open shed. Si.000. Carleton. extension of landing pier, $\$ 1,00$: Grosse Isle. repairs to wharf, \$1.500; general repairs and improvements to harbor, river and bridge works, $\$ 10,000$; I-anorate, repairs to whari.and construcumn of ice breaker, $\$ 2,500$; I.ongucuil whari. reconstruction and repairs. \$2.500; Lower St. Lawrence, remoral of rocks, \$1.500: Magdalen Islands breakwater. S10.000: Matame, extencion oi training pier southwardly, $\$ 4.00$; New Carlisle, repairs to whari, $\$ 500$: Newport breakwater. $\$ 7,000$; Perce (North Cove). whari, S10.000; Rimouski wharf repairs. \$3.000: Riviere Cap de Chatte pier, $\$ 500$: Riviere a la Pipe. whasi onl lake St. Joln, near mouth of river, $\$ 1,000$ River. Si. Manrice, channel between Grandes Piles and La Tugue, dredging, $\$ 6,300$; St. Alexis, Baic des Ha! Ha! pier. S4.000; St. Alphonse (Bagotville). landing pier. repairs and shed. $\$ 500$: Ste. Anne de Sorel, ice piers, $\$ 2,000$; St. Fulgence, pier aul improvements, $\$ 1,500$; St. Jerome (Lake St. John), wharl, ミi.500: St. Laurent. repairs to wharl, \$700.

arnold magnetic clutch.

In the design of the modern electric power plam it is frequenty found desirable to arrange the getnerators in sesel a way that they may be readily comected or disconnected to the prime movers according to the exigeties of the service. This reguirement of station design has been met by Br. Bion J. Arnold in the system known by his mame. As this system reguires the use of cluthes, Mr. Arnold has worked out : magnetic clutch, a number of which have already been bult.

These clatches are in reality friction clutches. yet the friction between the contact surfaces is not due to mechameal pressure. but to magnetic traction. The working parts of tite clutches are composed of metal having a high perme:bibity so arranged as to become magnetized upon the passage of direct rurrent through the colls whth which they are provided The two parts of the clutch can be attracted together in this way with a pressure far in excess of that obtained in mechanical clutches. and it is only a guestion of making the clutches large enough to enable them to transmit power in any desired amount. The energizing circuit is controlled bey means of a switch placed at a consenient point. which is quite a decided
for power station purposes, whereas the ordinary friction clt: it becomes especially unwieldy and unsightly after passing the 300-1.p. size.

The current is carried to the clutch coils through coll . 1 rings upon the side of the clutch, and carbon brushes hed w insulated brush holders. The electrical connections are sinure and easily accessible for inspection. The clutch reduires wis more current than would be used by four ig-c.p. incandescent hamps, and the loss in the clutch due to the contimuons use ." the electric eurrent white the cluteh is in operation amomus in cinly one-hundredth of 1 per cent. of the power transmithing capacity.

A number of these clutehes have been made to commet larke synchronous motors to their load in such a way that they can be guick!y disconnected in ease of accident. and they have abo been huilt for use upon line shafting. They are also particularly applicable to use in connection with gas engines, as they would eliminate the flywhed problem of the gas engine in many cases, whels of itself would be a distinct advantage. Indeed, there would seem to be no limit to their use wherever it is desired in transmit power from one shaft to another.

advantage over the ordinary iriction eluth. It thas becomes possible in throwing a generator in or out of service to control it entirely from the switchisoard, where all the regulating devices and measuring instruments are within the reach of one attendant. These magnetic clutches also possess the advamtages oi neat appearance and compact design. Even in the larger sizes the amount of space occupied upon the shait is not much more than twice the diameter of the shaft, and by using a liange forged solid on the end of the chaft. they can be made to occupy coen less space when used as cut-off couplings. Owing to their having no projecting suriace or parts to catch the air when in nperation the windage resistance is negligible. The greatest advantage. however. of this form of clutch over others is the fact that it is self-contained-the "action and reaction" being within the clatch itseli, and consequently there is no resulting end thrust upon the slaft bearings and un additional friction luad due to the operation of the cluteh. The illustration. Fig. 2. shows the largest magnctic cluteh in the world It is 100 inches in diameter, and is capable of transmitting 3.003 h.p at 150 revolutions per minute. This clutch is one of three uow in t:se connecting the engines and generators in the central station of the Imperial Flectric Light. Heat \& Power Company at St. B.onis, a view of the equipment of which is shown in Fig. 1. The experience with this plant demonstrates that thas form of rlutch is applicable to the large size units now being installed

ELECTRIC TRAVELING CRANES

One oi the subjects discussed at the Engineering Conference of the Institution of Civil Enginecrs in England last year was "Cranes and the Power to be Uised with Them." The debate was opened by Walter Pitt, who spoke strongly in favor of electric power; indeed, he recommended it for all cranes. cxecpt those used singly, or with a great range of portabilits. Of course his views did not go unchallenged. secing that he allowed but little future. for the hydraulic crane. which is eminently adapted for certain classes of work. But he carried his audience with him entirely when he said that electric driving was the only one to use for overhead travelers. This is a mater which admits of no argument; the great requisite of an overhead crane is convenience in use and manipulation. There are others. but this is the chief, for a crane which can be used quickly and easily will very soon save its cost in a works. There are no travelers which fulfil this condition like those driven by electricity. particularly when the designer has had the enurage in avail hiunseli to the full of the agent which he employs. The early cranes hat one notor, and the power was distributed from this to the hoisting berrel, and to the longitudinal and traversing gears hy belts or other mechanisms. The arrangement was an improvement on the familiar square shaft. but still it was very foulty. It showed that the designer feared the electric motor
would \&ive trouble, and, therefore, he thought it wise to restrict himself to a single one. No doubt he was right; motors have been immensely improved of late years, and in no respect more than by the use of the carbon brush. Without that it would have been a difficult matter to have brought the electric tramear to the point of commercial suceess which it now enjoys, and other forms of motive power transmission would have hailed, in a greater or less degrec, to attain their present established position.

The success of the electric tramway upsets every posisible objection which can be raised against the reliability of the electric motor for other purposes. On a car it runs among slush and mud, is stopped and started every two or three minutes, and has often to get into motion under loads many times the normal. It may safely be said that if an electric motor succeeds in such work-and it certainly does succeed-it may be employed with the fullest confidence in every position in an enginecr's shop. for there it meets with skilled care, and the greatest demands that can be made upon it are uniformly casier than those found
recent issue. In the early nineties the firm were in want of two additional overhead cranes, and after considerable enquiries they determined that they should be electrically driven, and that they would build them themselves, because at that time the established makers did not recommend this application of electric power. The makers of motors also cast very considerable doubt on the advisability of using reversing motors, while at the same time the cost of the motors was very high. In 1893 one of the firm went to the United States, and soon found that there did not exist the same hesitancy about using reversing motors on the other side of the Athatic as here, and be returned with the conviction that they might proceed with confidence. On November 5, 1894, thej set to work their first three-motor cranc, and during the next two years they constructed cranes for their own shop, proceeding tentatively and experimenting at their own cost rather than at that of their customers. In that period they. built five or six cranes, not only as regards the ironwork, but also the motors and the electrical equipment. In 1807 they

mG. 2 arnold magnetic clutch.
in a tramway. It may be a moot point how far the subdivision of electric power should be carried in the driving of tools, but its applicability and economy of power when used in traveling crancs has passed beyond the stage of discussion. The question of economy in the driving of a crane is, however, of little inoment. What does matter is that no time shall be lost at the rooks. Lathes, planing mechincs, and other appliances now represent such an immense capital outlay that it is most imperative that they shall work every available minute, and this can only be done if the work can be lifted in and out with expedition and with certainty. For this work there is nothing on the market equal to the electric crane.

The most advanced practice in over?ead travelers is to use a separate motor for cach motion. It is not many years that Afessrs. Adamson have been making crancs, their original husiness being that of boilermakers. and it will be interesting if we trace their connection with the new industry, as their experience reflects in a general way the histore of the e'ectric crane in this country, savs Encincering. Tondinn. Finc.. in a
began working for the public, and have since turned out cranes of various sizes.

The latest crane has four motors. Their purposes are respectively to drive (1) the main barrel, (2) the light barrel, (3) the longitudinal motion, and (4) the traverse motion, and ail are supplied with current at 220 volts. The main lifting speed is 4 feet per minute, the corresponding motor running at 400 revolutions per ininute, and the barrel being 2 ft .6 in . in diameter, there being three intermediate shafts between the mo:or and the barrel. Alt these spur gears are machine cut out of the solid, execept the last two. which are of the double helical type. all being of steel. The first motion wheel has a bronze rim bolted on it. The use of keys is avoided wherever possible, the pinions are forged solid on their shafts, and the wheels are keyed on prolonged bosses formed on the piations to receive them. The load is carried by a steel wire rope 5 inclies in circumicrence, passing in two bights round two sheaves on the hook block. The two ends of the rope are fixed to the drum. and the centre bight is led round an cqualizing pulles, thus
giving a trac verncal lift. The light lift is menteded to deal with loads up to five tons, amb has a barrel 1 ft. 4 in . in dameter. around which is wound fronn each end, a sted rope 2^{21} inches in circumference The speed of lifting is 15 feet per minute, and the rewohtions of the motor aco per minnte. The speed is rednced at two steps by one worm reduction and a pair of spurwheels The worm has four threads, and gears into a whed with machine-cut teeth on a bronze rim. The worm roms in an oil bath, and its thrust is taken up in a thast bearing of the marime type Both lifting drums are comtroled by e'ectric bralies. These are fised to the motor shatts, and work ante matienlly without eare on the part of the attendant. The brake wheel is pressed on by shoc- applied by springs and released by an electromagnet. which is energized when the current is directed to the enrresponding motor. Thus. should the curemt fail from any accidemal cance, the brake goes on immediatels. and holds the load safely. On the other hand, immediately the altendant sets the crane to lift or lower, the brake is taken utf. Shonld the load, mfalling. drive the motor too rapidly, the back electromotive force would reduce the current, and the brake would go on of itself.

The longitudmal motion of the crane is effected by the motor fixed on the end of the main girders, the speed of the motor, 300 revolutions per minute, being reduced at two stages to give a traveling speed of 80 ft . per munte. The traverse motion is derived irom the motor. This rums at 500 revolutions, and gives a speed of to ft. per minute through two reductions. The power absorbed by the four motors is as follows when the crane is iully loaded. Main hoist. 25 brake in.p.; auxiliary horst, In brake h.p.. tratersing. 7 brake h.p., and traveling longundinally. 5 brake h.p. Leaving for the moment the electrical equipment. We will turn to the dimensions and constraction of the crane itself. The height of lift is 22 feet, the span is $27 \mathrm{ft} .+\mathrm{in}$.. and the distance apart of the girders. centre to centre, $7 \mathrm{it} .61 / 2 \mathrm{in}$.

THE ONTARIO ASSOCIATION OF LAND SURVEYORS.

The convention of the Ontario Land Surveyors was held on Feb. 2Sth and March ist in the Parliament Bי:ildings. Toromo. The attendance was large, and the interest elisplayed most gratifying throughout. especially in the proposal to explore New Ontario. The election of officers resulted as follows: President, Geo. Ross, Welland: vice-presideut, Janes Dickson, Fenelon Falls; secretary-treasurer, Major Villiers Sankey. Toronto; Auditors, Capt. K. Gamble, H. J. Browne. The following were nominated as councillors, clection to tabe place by letter ballot on April 3: Capt. W. F. Van Buskirk. Stratiord: Messis. A. J. Van Nostrand, Toronto; E. T. Wilkic, Carleton Place; W. R. Aylesworth, Belleville; J. W. Tyrrell. Tamilton; II. H. Gibson, Willowdale; A. S. Code, Alvinston; John McAree, Rat Portage.

The next issue of The Canadian Engineer will contain a more detailed report of the meeting.

METAL IMPORTS FROM GREAT BRITAIN.

The iollowing are the sterling values of the imports from Great Britain. of interest :o the metal trades, in Jamuary, 1899 and 1900:

	Jan. 1899.	Jan. 1900
Hardware	.1,538	2,068
Pig iron	. 361	2,090
Bar, cte	445	1,100
Railroad		321
Hoops, shecis, cte	125	2,005
Galvanized sheets 488	5,736
Tin plates	. 5,685	1.4,738
Cast, wrought, ctc., iron	997	3,291
Old (for remanufacture)		2,485
Steel	.3.770	22,449
Lead	. 889	1,052
Tin, unwrought	.2,515	3.377
Alkali	.1,543	2,601
Cement 21.3	272

THE PROPERTIES OF NICKEL-STEEL.

Brief notices have appeared from time to time in The Comptes Rendus of the French Academy upon M. Guillaume's important researches into the physical properties of the various dlloys oi nickel and steel, but the complete detals of these innestigations have not been made puble untul recently. A paper ho M. Gullame in The Bulletin de la Soctete d'Encouradement now describes the apparatus and methods used by him, and also gives the results of his researches more completely than they have been given. heretofore. While it is impossable, in limited space available, says The Engmeerng Magazine in revewing the article, to examine the work oi M. Gullame at length, the peenliar properties which he has discovered possess sufficient importance to demand a brief indication, and may render the application oi the alloys important for engincermg purposes in differem lines from those previously consudered. The prucipal object in view, in making these researches, was the discovery of the best allog for metrological purposes, and the investigations covered the density, elasticity, magnetic properties, and behavior under the action of heat. They were not intended to cover the entire magnetic properties of the various ailoyy, but nolly to use these as guides to the selection of suitable proportions for further imeetigatipn. These tests showed that alloys containing from o to 25 per cent. of nickel are irreversible-that is, they possess two different sets of magnetic properties, according to the direction of the preceding temperature-changes, whether ascending or descending. For alloys containing 25 to 50 per cent of nickel. on the contrary, the magnetic properties are reversible. depending at each temperature upon the temperature only, regardless of the preceding condition.

A similar condition of reversibility, or irreversibility. appeared in conncetion with changesiof volume, the irreversible alloys showing, within certain limits, absolntely different changes when subjected to ascending and descending temperatures. The reversible alloys expanded and contracted in the same manner, whether cooled or warmied. but seemed to follow laws altogether different from these governing other metals or alloys. The peculiar behavior of the irreversible alloys can be shown only by a diagram, but the expansion and contraction of the reversible alloys is tabulated in a very interesting manner. The formula for the coefficient of expansion is given in the shape of a constant plus a function of the temperature, but neither the constant or the coeflicient remains the same for different alloys. As the proportion of nickel is increased, the coefficient of expansion diminishes until the minimum is reached for the alloy containing 35.6 per cent. of nickel, after which it again increases. At this minimum proportion the expansibility is only one-tenth that of platinum, and less than one-twentieth that of brass. The great value of this alloy, for standard measures of length will be seen at once, especially' as it possesses other desirable qualities. The alloy is particularly homogencous, takes a brilliant polish, remarkably frec from flaws, and has a ciensity oi about cight and a modulus of clasticity of about $20,000.000$ pounds per square inch.

In order to attain the best results. the bar of this alloy is subjected to a prolonged elevation of temperature, lasting for several days, after which the molecules appear to liave arranged themselves in the most stable position, so that the subsequent changes of length for differences of temperature are reduced to it minimum. The influence of this relieating also renders the small, but ordinarily somewhat variable, expansion coefficient practically constant. If it is desired to secure a variation of less than 0.001 millmeter in a length of one meter, the bar should be maintained at a temperature of boiling water for 80 to 100 hours. A still greater degrec of precision may be obtained by giving the bar a scries of prolonged licatings for several hundred hours at successively diminishing temperatures; in this way hars for the measurement of geodetic base lines may be obtained with the temperature crror practically climinated.

A variation of mikron per meter in the length of a pendulum corresponds to less than 0.05 second per day; in fact, a clock with a pendulum rod of this alloy has shown a rate of less than 0.02 second per day for a period of six months.

Although the researches of M. Guillaumic are not yet completed, the facts which he has made public are of much value. and his iull account of his work will be found both interesting and practical.

NOTES ON THE DEPOSITION AND DEVELOPIENT OF the olace bay coal seams.*

ay s. d. kirkpatrich, d.sc.
At the commencement of carboniferous times the northeastern portion of Cape Breton was overlain by a deep clear sea, favorable to the growth of coral and the deposition of limestone and gypsum. At the close of the lower carboniferous age the sea became shallower and towards the end of the formation of the millstone grit we find the rivers depositing clay, coarse sand and gravel. The succeeding age was one of extensive vegetable growth; and the rising sea-bottom became in part a swamp where the successiul growth of forests deposited great deptis of bituminous matter. The vegetable matter from the land probably accumulated at certain tinnes in the shallow sea in sufficient quantities to form coal seams. When the land slowly sank fine sediment was carsied down by the rivers forming shales and sandstones. These are impregnated with fossil remains of plant life and in some cases fossil animal remains.
I.ater on the former conditions may have been reproduced by a further upheaval or shallowing of the sea. So with the action of time and pressure we have a formation composed of sandstones, shales and marls containing beds of coal. During the ages that have passed siace the carbonifcrous times, part of the coal measures have been worn away, a large area sunk bencath the Gulf of St. I-awrence and the continuity of the beds destroyed by faulting. The strata las also been thrown into undulations, so the dip and strike of the coal seams vary very considerably at different parts of the Cape Breton coal fields. There is reason to suppose that this coal field is only the end of an immense coal area, now underlying the Gulf of St. Lawrence, extending to Newfoundiand, and underlying the Magdalene Islands.
siderable inclination, it is practical to work the coal by tumels. But in this particular case the choice lies betyyeen shafts and slopes. The latter are adapted to scans at a considerable inclina tion, where the outcrop is on the property, and a cheap development required. Shafts are necessary when the seam is only slightly inclened or when two or more beds are to be worked from the same bankhead. They are also best adapted to mining on a large seale, when quick returns are not so important as the ultimate cost of raising coal per ton. The question of where to sink the shaft depends, to a great extent, on the amount of capital available for development. If the shaft is sunk well to the rise the cost of hauling the coal to the pit bottom is greater, but the cost of sinking less and an early output is available, On the other hand a deep shaft would allow of a less costly system of laulage, but would take more time and money. Up to the present the greater number of the Glace Bay coal pits have compromised by sinking a shaft from 150 feet to 180 feet deep, so at first a large part of the coal could be brought to the pit bottom by gravity. This plan will no longer l:e foliowed as the Dominion Coal Co. is eugaged in sinking a deep shaft to work more than one seam. Usually the shaft has three compartments, two for hoisting the mine cars and one for a man hift. The dimensions will depend to a great extent on the shape of the mine ears, which is governed by the thickness of the seam and the character of the roof. The former regulates the height of the car and the latter the breadth because a brittle roof will allow of wider workings and consequently wider cars.

The question of the method to be employed in wooking the coal now arises. The chice systems are the long-wall and the pillar and stall. By the iormer all the coal is taken out by cutting along the wall or face of the coal. cither commencing from the shaft and working outt towards the boundary or by running

The Glace Bay coal beds, worked by the Dominion Coal Co., form an cliptical basin, the longitudinal axis running nearly due enst and west. The greater part of this basin is under the sea; the western end only being available for mining operations. This portion is bounded on the north and cast by the sea coast, and on the west and south by the auticlinals of Lingan and Cow Bay. The Lingan anticlinal is also a line of faulting, and it is as yet undetermined if there is a fault aiong the Cow Bay anticlinal. In this basin there are four seams of coal of considerable thickuess that may be worked profitably. They are as follows:

Approximate thickeness.
IIub, coal 842 feet.
Sandstonres, shales and limestones. 320 feet.
Harbor, coal 6 fect.
Sandstones, shales and limestones. 400 feet.
I'helan, coal ... 7 fect.
Sandstones, shales and limestones. 165 fect.
Emery, coal ... 5 fect.
The inclination of the seams vary, but it is usually under six degrees. Of the six collicries hoisting in 1898, four were working the Phelan seam, viz., Caledonia, Dominion No. 1, Old Bridgeport and Reserve.

The question of where to locate the opening of a mine and what iorm of opening is best generally depends on the property. A thorough knowledge of the extent of the seam, its depth, inclination and thickness are required. These facts may be obtained by examining the outcrop, and boring through the overlying strata, and further verified by slopes and drifts. Usually in mountainous country, whete the strata is at a con-

[^0]tunncls or haulage ways to the boundary and working towards the shaft. This would be adapted to shallow seams, especially where there is a sufficient amount of splint slate, etc., in the coal to make stpports, called gob-walls, for the roof. Usually, however, the roof is allowed to fall in, then if the surface property is of value there must be a sufficient depth of overlying strata to prevent the cave-in coming to the surface. By the pillar and stall method only part of the coal is removed by cutting out tunnels or rooms and leaving sufficicntly large pillars of solid coal to support the overlying strata

At the Glace Bay coal fields almost all the coal is mined in this way, for on account of the thickness of the seam and the small amount of rubbish in the coal they would have to allow the roof to cave in, when much damage would be done to the suriace property. Of course it would be possible to support the roof by a system of blocks and heavy timbers, but such a method would be too costly. After sinking to the scam, levels are run out in the direction of the strike of the coal and the deeps, two or more run para!lel or radiating from the pit bottom. Both decps and levels are worked in-pairs, that is two parallel tunnels usually 12 feet wide with a 12 -foot wall between them. Every 66 feet they are connected by a 9 -foot cross-cut, to allow the air to circulate and so rentilate the working face. A large part of the coal around the shaft is not mined but allowed to remain to prevent the settling of the ground under the bankhead and the surface buildings that are generally around the shaft. The rooms or stalls are cut off from the levels, and are worked towards the outcrop parallel to the plane of the coal.

They are about 18 fect wide with a 12 -foot wall between them, and are connected, every 66 feet by a 9 -foot cross-cut. After working some distance down the deeps, levels are turned off as before, and rooms are commenced on this level-to cut up
to the higher level. In this way the entire coal area is honescombed from the shaft out towards the boundary. When the whole area has been worked in this way, part of the remaining to per cent. of coal may be recovered by robbing the pillars, that is removing the whole or part of the remaining coal, working from the boundary, allowing the surface to fall in if necessary.

The timbering of a pit worked on this principle is not extensive. The overlying strata is supported by the coal pillars; but the roof of the rooms must be further supported by one or two rows of timber, say 6 inches in diameter, and placed from f to 8 fect apart. Occasionally the roof of the haulage ways is supported by cross timbers set in the walls or resting on one or two props. The timbers used in the main ainvays are usually the best 8 inch props, for there the timber is more liable to rot. due to the large quantity of air that flows past having a very deteriorating effect on them. If the coal pillars at any part of the mine begin to crusit on account of the weight of the overlying strata, then very heavy timbering must be resorted to, and a larger percentage of the coal left as pillars. On the traveling roads and haulage ways the old props are frequently replaced by new ones, for the average length of a prop is only from two to four ycars, and on main airways often not a year. Before the work of development has advanced very far it is necessary to put in some system of hatulage. The mine cars here have a capacity of from $11 / 2$ to 2 tons, and run on a narrow gauge tramway. They are filled at the working face, and are drawn by horses to the main deeps and levels. The coal mined above the pit-bottom can be let down by gravity, the full cars going down pulling up the empties. When this is not possible some form of rope haulage is employed.

The two chief methods in use in Cape Bretun are the tailrope and endless cable systems. In the former the cars are drawn in trips, that is from eight to fifteen ears hiteled together. In this system there is only one track and two ropes, one for hauling the loaded cars to the pit bottom, and the other of double the length of the road passing around a wheel at the (nd of the level or deep to pull the empties back to the working fice The engines are usually situated underground, near the pit hottom, and turn two drums of equal diameter, so that the one will be taking in the main rope, while the other is letting out the tail-rope, and vice versa. The main rope is a much heavier cable than the tail-rope, and will be as long as the road, the tail-rope will be twice this length. In the second system there is a double track and an endless cable kept mnving at the rate of about two miles per hour along one track and back the other. The cars are attached to. the cable by friction grips. The full cars are drawn to the pit bottom on ene track and the empties taken back on the other. The advantages of this system are: 1. Less wear on cable and on roadbed due to slower speed. 2. The tubs arrive at the pitbottom one at a time, and the strain on the cable is more equalized on account of the cars being fairiy equally spaced. 3. The cable is only double the kugth of the road. 4. Only one encineer is required to manage three or four endless cables.

The disadvantages are: I. A double track is required, therefore, the deeps and levels must be wider than in the single track system, and the initial cost of roadbeds and tracks more. 2. The initial cost of the power plant will be greater. 3. Cost of maintenance of roadbed more. 4. The cable will be damaged by the grips, and accidents are often caused in the deeps by the grips slipping. When the mune car is hauled to the pit-bottom it is run on to the hoist, where it is held by an automatic clutch; it is lifted to the bankhead, and dumped, and then lowered at the same time, as the next full car is being hoisted in the adjoining compartment. The lifts ale run thus in balance, the weights of the cars and eages counter-balancing. The mine is usually kept dry by draining the decps with compressed air pumps discharging into a sump or reservoir at the pit-bottom. and from there it is forced to the surface by a steam pump.

In all mines of this class some form of artificial ventilation must be employed. There are at least two openings to the minc. and it is so arranged by leaving walls of coal and walling up passagec. that the air entering one shaf is divided so that some of it will pass through each part of the mine before finding its waty up the second shaft During the carlier stages of development. and in certain cases of deep shafts it may be economical to foree this current of air by heating the air in the
upeast shaft by a fire at the foot, and so rarifying the air that it tends to rise and draw air through the mine from the other shaft. More often, however, some form of fan is used to exhaust or compress the air in one of the shafts.

ORNERAL ENGINEERING COMPANY VS. THE DOMINION COTTON IILLLS COMPANY AND AMERICAN STOKER COMPANY.

In a reference in our last issue to the litigation now going on between the General Enginecring Company, of Toronto, and the American Stoker Company some errors occurred which we very nuth regret. In referring to the progress of the case it was stated that, "it was carried by the defendant companies from one court to another until it reached the Exchequer Court." The fact was that the action brought by the Gencral Enginecring Company was begun in the Exchequer Court, and all the procecdings have been in that Court. By a slip of the pen it was stated that an "injunction" had been cranted instead of a "judgment" given. The substance of this indgment was given in our issue of October last, but it appears that formal judgment was not taken out, an application for a new trial having been made in the meartime by the defendants. This application first came up at Osgoode Hall on the 5th of July, and was enlarged at plaintiff's request until the soti of September. Between these two dates the American Stoker Company applied for a writ of scire facias asking for the repeal of one of the Jones Stoker patents on the ground that it had expired. Judgment was given in this action in favor of the General Enginecring Company on the ground that a writ of scire facias was not the proper remedy. The application for a new trial was then renewed by the defendants, and an order giten by the Court to the following effeet: That a new trial may be had on condition that the defendants pay plaintiff's costs to date, that the previous judgment be set aside. that at the new trial new evidence should be limited to the issues as to whether lefters patent No. 40,700 in plaintiff's statement of claim had become void by expiry at the time of the infringements alleged, and prior to the institution of this action. It will be seen that there is no judgment now standing in the case, no damages were ever awarded, and no injunction was ever issued against the Amcrican Stoker Company. The Exchequer Court has as yet expressed no opinion, as to whether or not the patent in question is still in fgree, or has become void by expiry. The public are not restrained by injunction from putting in the stokers of the American Stoker Company, and the American Stoker Company is not prohibited from doing, business in Canada.

NEW LAND SURVEYORS.

Commissions as Dominion Land Surveyors have been grimted to C. W. MacPherson, O.L.S., Barric, Ont.; R. Rinfret. B.A.Sc. (McGill), P.L.S., Montreal, Que.; F. J. Robinson, S.P.S., Toronto, O.L.S., Barric, Ont.; J. N. Wallace, B.A. and B.C.E. (Dublin). O.I..S., Hamilton, Ont. The following candidates were admitted as pupils: R. H. Cautley, Ipswich, England: F. W. O. Werry, B.A. (Toronto), Ottawa, Ont.

At the recent meeting of the Board of Examiners for Ontario Iand Surveyors the following candidates were admitted to practice: Wm. Walter Stull, Sudbury, Ont.; William Howard Fairchild, Simcoc, Ont.; John Henry Shaw, Pembroke, Ont., and Melville Bell Weekes, Brantiord, Ont. Leonard Oswald Clarke, of London, passed the preliminary examination, and received a certificate admitting him to apprenticeship.

IT BENEFITS READERS.

Edifor Canadian Engineer:

I am very much pleased with your paper, and although I have only received two numbers as yet I have derived a great deal of benefit from them. Yours sincerely,

Providence, R.I., Feb. 13th, 1900.
G. A. Hamilton.

Waring, Chapman \&erarquhar, New York, have prepared plans for a system of sewerage for Λ shly, a resident:at town now building by the Dominion Jron and Stecl Co., near Sydney, C.B.

THE USE OF BOILER COMPOUNDS.*

by aldert a. Cary.

To the majority of steam users, anything that is put into a boiler to lessen troubles duc to the formation of scale, is a "boiler compound;" and the fact that these various so-called compounds act difterently in their endeavor to accomplish their purpose is not as generally understood as it should be by those who persist in their use. Such nostrums may be divided into three classes:

First-Those attacking the scale-producing material chemically, and acting as re-agents, combine with the matter precipitated from the feed water, forming a third substance different from either the original precipitated solids or the "re-agent," the theory being that the new substance will not form into a hard, resisting scale, and therefore can be more easily removed by blowing off or by the cleaning tools used after the boiler is "opened up." Second--Hose acting mechanically upon the precipitated crystals of scale-making matter soon after they are formed. Such "compounds" are of a glutinous, starehy or oily nature, and become attacised to the surface of the newly formed crystals (precipitated from the water) surrounding them, as the skin does an orange; and when these crystals fall together they are thus robbed of their cement-like action, which irequently occurs when they are allowed to come in immediate contact. Third-Those acting both mechanically (as just described) and also as a solvent, the latter action partially dissolving scalc already formed, and by this "rotting" effect (as it is often called), preparing the scale for easy removal.

The "compounds" under the first division (which act chemically upen the scale-forming matter) also frequently accomplish this same rotting effect upon scale formed previous to their use. Still other divisions or subdivisions might possibly be made, but the above will suffice for a good general idea of the subject. Taking up our first division of this subject, we find that the principal ingredients used in such "compounds" are soda ash (or carbonate of soda) and tannin matters, while we sometimes find caustic soda, sal soda, acetic acid and numerous other active agents which are generally less efficient in their action on the scale-forming matter and more harmiul to the boiler and its fittings. In order to disguise these very cheap chemicals and help the "compound" vendor get prices for his powder or liquid, whicherer, it may be, there are oiten added other substances whel generally render the active agents less efficient, and they frequently fall unchanged to the bottom of the boiler with tlic scale, thus increasing the deposit and aggravating the trouble. Such added substances include clay, chalk, sand, etc., and sometimes merely coloring matter is used to disguise the original chemicals, such as tobacco juice, iron scraps, lamp black, spent tan, etc.

The principal scale-making impurities precipitated in boilers are carbonate of lime $\left(\mathrm{CaCO}_{3}\right)$, carbonate of magnesium (MgCO_{2}), sulphate of lime (CaSO_{4}) and sulphate of magnesium (MgSO), and, although there are generally other precipitates, notice of these alone will be sufficient for the present consideration. The chemical action taking place when some of the above named active agents are used may be traced as follows: Soda ash is a dry impure carbonate of soda, from which the pure alkali is afterwards made. The carbonate of soda $\left(\mathrm{Na}_{3} \mathrm{CO}_{3}\right)$ is used to act upon the sulphate of lime and magnesia, as shown in the following chemical formulac:

Sulphate of Lime	and	Carbonate of Soda
(a) CaSO	$+$	$\mathrm{Na}_{2} \mathrm{CO}_{5}=$
	form	
Carbonate of Lime CaCO_{2}	and +	Sulphate of Soda $\mathrm{Na}_{2} \mathrm{SO}_{4}$
Suiphate of Magnesium	and	Carbonate of Soda
(b) MgSO	+	$\mathrm{Na}: \mathrm{CO}_{2}=$
	form	
arbonate of Magnesia	and	Sulphate of Soda
MgCO_{3}	+	Na:SO،

Leaving this treatment for a moment, it would be well to note that both the carbonate of lime and carbonate of magnesia are held in solution through the presence of carbonic acid gas dissolved in the water, which unites with them and changes the

[^1]mono-carbonates into bi-carbonates (which are only !encwn to cxist in solution), as shown thus:

Carbonate of Lime

$\mathrm{CaCO}_{1}=$

In a similar manner the bi-carbonate of magnesium is formed from the mono-carbonate thus:

Carbonate of Magnesium
$\mathrm{MgCO}_{2}=$
composed of

Bi-Carbonate of Magnestuns Generally Expressed
$\mathrm{MgO}\left(\mathrm{CO}_{3}\right)_{3} \mathrm{H}_{2} \quad=\quad \mathrm{MgH}_{2}\left(\mathrm{CO}_{3}\right)_{2}$
The mono-carbonates (or single carbonates) of lime and magnesia are but slightly soluble in water, whereas the bi-carbonates, or double carbonates) are very soluble in cold water, and this fact will account for the presence of the large quantities of lime and magnesia in boller waters as carbonates.

When waters contaming the bi-carbonates are heated, the rise in temperature drives off the extra carbone acid gas and leaves behind the practically insoluble mono-carbonates, which are precipitated.

When a temperature of 180 degrees Fabir, is reached, a con siderable percentage of the bi-carbonates is precipitated (as insolubic mono-carbonates), and at 290 degrees Fahr. (a temperature corresponding to 43 pounds gauge pressure) the precipitation is nearly completed, after a thorough boiling.

Scale formed from the mono-carbonate of lime is seldom very troublesome, if not allowed to accumulate in too large a uluantity, nor allowed to remain in the boiler for a long time, while the precipitated mono-carbonate of magnesia gives slightly more trouble, due to the iact that at seldom is found in scale as a mono-carbonate. All the contanned carbonce acid $\left(\mathrm{CO}_{3}\right)$ is generally lost from the bi-carbonate of magnesia (MgO(CO2) $\mathrm{HI}=\mathrm{O}$) by the time it forms a crust, leaving behind the hydrate of magnesia ($\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{MgO}_{3} \mathrm{H}_{2}$), which acts as a cement and binds closely together (though not very strongly) whatever precipitated matter it may come in contact with. This hydrate of magnessa is very fine and light when precipitated and requires a comparatively long time to settle.
(To be continued).

THE RED CROSS FUND.

Biggar, Samuel \& Co.,
Publisuers Canadian Engineer.
Gentlemen,-I desire gratefully to acknowledge your handsome donation of $\$ 36$, the profits on the sale of the sthedition of your pamphlet on the Boer war. The donation is especially. opportune at this time when so many of our brave fellows-. Colonial and Imperial-are being wounded in their heroic efforts to uphold the cause of equal rights and true British liberty. Very sincerely yours,
J. George Holgins,

Hon. Treas. of the British Red Cross Socicty, Canadian Brancl, Toronto, February 28th, 1900.

Collingwood, Ont., will vote on May 3oth on a grant of $\$ 115,000$ honus to Chas. Cramp, Philadelphia, the well-known shipbuilder, to establish a smelter, capacity of 200 tons a day, in that town. There is to be an open hearth steel plant of three Wellman furnaces, and a rolling mill capable of making armor plates.

Ottawa. Ont., will spend $\$ 80,000$ additional to the huge appropriation already made in its main dramage scheme. Part of the drain will be built outside the city. limits.

The Fensom Elevator Works, Toronto, hāve the contract for the elevators for the South African Mutual Life Insurance Co.'s butiding at Port Elizabeth, Cape Colony.
S. B. Best has suceceded as manager of the Camadian Typograph Co., F. S. Evans, who has recently become manager of the National Cycle and Automobile Co., Toronto.

The Nickel Steel Co. is applying for powers similar to those conferred by the Railway Act upon railways, enabling it to expropriate lands, build railway lines, sidings, etc.

The Goldie \& McCulloch Co., I-td., Galt, Ont., has begun the year well. There have been sold 29 engines in the first 43 days of this year All other departments are also very busy.

The contract for the new public buildings at New Westminster, BC, has been awarded to Bourque \& Des Rivieres, Sttawa, Ont. The amount is ith the neighborhood of $\$ 60,000$.

St. Louis, Que., will grant a bonus to the Phoenix Bridge and Iron Works if they build a $\$ 25,000$ building, put in a $\$ 50,000$ plant, employ at least 150 men, and pay $\$ 60,000$ a year in wages.

There were during February 1,063 boarders at the .Dominion Iron and Steel Company's dining-room, Sydney, C.B. The company have appointed nine new policemen to waten the works.

A sewage disposal plant is desired for the west end of Hamilton. Ont. E. G. Barrow, C.E., has recommended filtration as cheapest in operation. The plants already installed are chemical precipitation.

The contract for the locks, ace., at St. Andrew's Rapids, near Winnipeg, Man., has been let to T. Kelley, contractor, Winnipeg. The work will cost between one-half and one million dollars before it is completed.
C. H. Rust, city engincer, Toronto, has drawn plans for the proposed Yonge strect overhead briuge. The width is 32 iect, having a 20 -foot roadway and two 6 -foot sidewalks. There is a double line of strect railway tracks.

The Canadian Steel Co. is applying for incorporation to do a general mining, smelting, rolling mill and general construction busincss. Operations are to be carried on in Welland, Ont., and Hull, Que., and elsewhere.
W. M. Watson, 92 Dundas strect, Toronto, whose articles on sanitary matters have interested our readers for some years past, is going to England at the end of this month to examine into the latest ideas in scwage disposal, etc.

The Canadian Canoc Co., Peterboro, Ont., has been running overtime since January 1st., and has already booked a larger number of orders than during any previous season. The No. 16 canoe is proving very popular, as in past years.

At the Montrcal Rolling Mills Co.'s annual meeting the folJowing were elected officers: A. Allan, president; E. S. Clouston, vice-president; H. M. Allan, H. Archibald, Hon. G. A. Drummond, J. S. McLennan, and W. McMaster, directors.

The chicf of the fire brigade in Montreal has written the city council demanding that the high buildings in that city be compelled to put in stand pipes. This is now not the case, and such buildings are in some cases entirely beyond the reach of the fire fighting apparatus.

The R. Woodman Mnig. and Supply Co., Bozton, Mass., is famous as makers of light railroad and mill supplies. The advertisement of patent speed indicators on another page will be read with interest by all enginecrs and machinists. A more detailed description of these specialties will appear in our April issue.

The Austin Separator Co., Detroit, Michigan, manulacturers of the Austin Steam and Oil Separators, have just shipped an order of seven 7 -inch new pattern. Fig. E., iron, horizontal receiver machines for use in the immense new power plant of the London \& Bristol Tramway Co., London, Eng., in connection with Allis engines. As this is one of the most important and complete power plants installed during the past year in Great Britain, the selection of these goods is a distinct honor to American industry.
H. B. Canm, R. Caic, S. A. Crowell, A. Cann, C. iv Cann, C. C. Richards, J. M. Killam, IV. Law, B. B. Law, H. Crowell, Yarmoith, N.S., and C. Burrill, Weymouth Bridge, N.S., have applied for a charter as the New Burrill-Johnson Iron Co., Letd., to carry on the business of the Burrill-Johnson Iron Co., Ltd.; capital, $\$ 50,000$.
R. S.'Hodgins, Sydney, C.B.; F. Macdougall, Christimas Island, C.B.; Malcoln Macfarlane, Montreal; R. B. Van Horne, Syducy, C.B., and others liave been incorporated as the Cape Breton Mufg. Co., Ltd.; capital, $\$ 10,000$; to make bricks; chief place of busincss, Sydncy, C.B..
S. R. Poulin, Ottawa, Ont.; J. Bourque, Wright \& Co., Hull, Que.. A. M. Calderon, architect; J. M. Cromwell, L. O. Joly, Ottawa; C. L. Graham, M.D., Hull, Qac.; W. G. Mulligan, Aylmer; J. S. Allen, Ottawa, J. Pıche, Hull, Que., are to be ancorporated as the Gatineau Junction Brick Co., Ltd.; capital, $\$ 20,000$.

The suit brought some time ago by the Colliery Engineer Co., of Scranton, l'a., conducting the International Correspondence Schools, against the American School of Correspondence, of Boston, Mass., was recently dismissed by Judge Lacombe, of the United States Circuit Court, the plainuffs remsing to argue the case after scyeral postponements of the triat.

In the town of Middleton, N.S., a sewage company has been formed to provide sewage disposal for a few subscribers to the company. The capital is $\$ 1,000$. There are a great matiy towns where partial installations could be very beneticially undertaken in this way. The rights of the municipality in its, own streets being of course properly protected.

The Syracuse Smelting Works, manuiacturers of babbitt anctals and solder, Muntreal, have announced to the trade that they have bought the supply of raw material which they expect to use this year, and advise all their friends to place their orders promptly for any raw or manufactured goods they may require, as the works expects prices to be considerably ligzher.

Among this year's sales of the Goldie \& McCulloch Co., Ltd, Galt, are one large Wheelock engine for the Midland Elcvator Co., one for Collingwood Meat Co., one for the Beaver Portland Cement Co., Marlbank, Ont; one for the Gutta Percha and Rubber Mnig. Co., Toronto; three for the Linde British Refrigeration Co., Montreal; one for J. Oliver \& Sons, Ottawa, Ont., and several others.

The Acetylene Manufacturing Co., of London, Ont., control the rights for a number of different types of acctylene gas machines. This company has put in a 300 -light plant at the Walker House, Berlin; and a 380 -light .plant in a town in Manitoba. Mr. Stinson, of this company, has made some interesting experiments with acetylene gas as a fucl, which will be lescribed in our next number.

Letters of incorporation have been granted to the Artesian Ice Company of Toronto, Ltd.; capital, $\$ 1,000,000$; the, provisional dircetors are: J. R. Barber, Gcorgetown; S. F." MeKinnon, Dr. G. S. Rycrson and J. Flett, Toronto, and J. J. L_ong, of Collingwood, Ont. The company proposes to enuip a factory for the manufacture of ice, with a capacity of over 100 tons per day, and to provide refrigerator and cold storage accommodation.

The Imperial Paper Co., Sturgcon Falls, Ont, it is announced has sold to Lloyds, of London, Eng., the owners of The Daily Chronicle, part of its concession from the Ontario Government for three-quarters of a million dollars. The purchase of a part intercst in the company by the Lloyds means that the bulk of the output of the mills will be used in The Chronicle office and that of the other newspapers controlled bs J.loyds. It is known that other great English papers are negotiating for the production of their paper supply in Canada.

We are informed that the net-carnings of the New England Gas and Coke Co.'s plant for December amounted to $\$ 20,000$, This showing was made on an average of less than 200 coke ovens in operation during the month, with ain average price oi but $\$ 2: 57$ received for coke and: with but very. small. sales of.gas. It is estimaled that net carnings for January will reach $\$ 30,000$ with an average of less than 250 ovens. in commission. The company is gradually increaṣing its coke and gas output and it
is expected that by the latter part of lebbruary its entire 400 ovens will be in operation, and that it will be supplying gas to Dorchester and Charleston in addition to Jamaica Plains and Brookline.-Boston Financial News.

Harrison Watson, Canadian section Imperial Institute, London, Eng., has had the following entuirics and invites replies: I. A northern firm of importers wishes to hear of Canadian manufacturers of gig spokes, wheels, and hickory hammer shafts. 2. A Glasgow firm pounts out opening for Canadian nuts and bolts, and asks for names of manufacturers; American makers are finding a market here for same. 3. An Irish firm can contract for 50,000 sets spruce box boards cut to dimensions for manufacture of patent buter boxes. 4. A Midland mahiufacturer of anchors and chains is prepared to appoint a resident Canadian agent. 5. A Welsh firm wants immediate quotations for 150,000 spruce and white wood boxes cat to dimensions: Tops and bottoms. 18×11; sides, 18×9; ends, 10×9; quotations c.i.f. London; delivery before 31st May; cash, less $21 / 2$ per cent. against B.L. and insurance policy.

Electric Tlashes.

The Ottawa Electric Railway Co. made last year a net profit of $\$ 85,280.37$.

The Shelburne Power Co., Ltd;; is applying for a Nova Scotia charter to develop power on the Rosemay river, near Shelburn, N.S.

A firm of electrical instrument and machincry makers in the United States is negotiating for premises in Brantford, owned by Wood Bros.
W. D. Snowball and others are being incorporated as the Chatham Electric Light Co., Ltd.; capital, $\$ 50,000$; chief place of business, Chatham, N.B.

Jack \& Rohartson, electrical supplies, Montreal, have sent us a very handsome blotting pad, which combines the useful features of a desk calendar.

The Sherbrooke Gas \& Water Co. intends to install new machinery in the lighting station the coming summer, which will increase the lighting capacity by 8,000 lights.
J. C. Eyres, of Woudville, Ont.; president of the Victoria Telephone Co., which controls an independent system, with headquarters at Woodville, Ont., is building its line to Lindsay, Ont.

James McElliott, a former cmployce of the Lachine Rapids Hydraulic and Land Co.. has enterad an action claiming from it $\$ 5,000$ damages for injurics received by coming in contact with a live wire while working in its service.

Montreal Strect Railway proposes to put its electric wires under ground. The manager in a communication to the Road Conmitter of the Council, stated that the company lad decided to expend some $\$ 200,000$ on this conduit system.

The Electrical Maintenance and Construction Co., of Toronto, has opened a branch at 143 King strect eașt, Hamilton, with a very attractive show. room, under the local management of H. J. Wickens, son oi A. M. Wickens, engineer of the Ontario Parlioment Buildings.

St. Catharines, Ont., is askiug the Ontario Government for power to raise $\$ 150,000$, wherewith to acquire water powers for the development of electrical energy, for acquiring land, for the erection of buildings, etc., all of which is intended to induce manufacturers to locate in that city.

Major Gray, Government engineer, has reported in favor of, and the Railway and Canals Department has ordered a storage battery equipment to: be put in, to swing the radial railway bridge at Burlington Beach, Ont., and also to light the canal in case of accident to the radial's supply wires.

Assistant Secretary Spaulding, of the United States freasury Department, has announced that lie would not decide the nuestion of the dutiability of electricity brought into the United States from the Dominion of Canada. He admitted that:he did not fecl: justified in taking up the matter at this time, and it is probable that the question will never be passed upon.

The Lomdon Cold Storage Co. is puting in a lighting plam. direst connected to Leonard self-oiling engines. The Electricat Construction Co.. L.tel. I.ondon, Ont., has the comenat.

The Londom, Ont., Electric Light Co. has just put in four new boilers, and the Berlin, Ont., Gas Co.. one new boiler. The Kingsville Electric Light $C o$. is puttung in a Leonard selfoiling engine.

A company to butd electric lan:ches is beng orgamed in Itamitton, Ont., by S. R. Sintz, Chicago, and A. Wes, Detroit. The batteries will be built by the Volt: Storage Battery Co., Hamilton. Ont.

The E. B. Eddy Co.. L.t., has contracted with Conroy Bros., Deschenes. for \$oo electrical horse-power at \$15. The use which is to be made of this litrge amoum of power by the E. B. Eddy Co.. has not been allowed to become public.

Application will be made to cuable the Buffalo Ry. Co., or the Bulfalo and Niagara Falls Electric Ry, to acquire the iranchise and business of the Niagara Falls Park and River Ry: Co., the Clifton Suspension Bridge Co., the Queension Hergits Suspension Bradge Co., and the Quecuston lleghis Bradge Co.

The Hon. A. A. Thibadean, R. Wilson Suith, G. H. Meldrum, Montreal; T. B. Stillman and H. Hall, New York, are being incorporated as the Electric Fire-Proofing Co., of Canada. Ltd.; capital, $\$ 300.000$; headquarters, Montreal: to carry on the business of treating timber, wood and other substances so as to render the same fireproof.

The Hoeffner Refiniug Co., Hamilton, Ont., has placed an order with the Canadian General Electric Co. for two 1,500 amp., izo volt generators, to be used for electrolytic purposes. These machines are to be direct-connected with Stanley motors, and the power will be supplied by the Cataract Power Co. from the DeCew Falls transmission lines.

At the ammal meeting of shareholders of the Hamilton Electric Light \& Cataract Power Co., Lod.., the officers and directors were elected as follows: Hon. J. M. Gibson, president; Jas. Dison, vice-president; John Moodie, treasurcr; John Patterson, secretary; J. W. Sutherland, John Dickenson, M.L.A.; J. A. Kammerer, Toronto, and Allan B. Forbes and Edward P. Smith, Chicago.

At the annual meeting of the Lachine Rapids Hydraulic and Land Co., a satisfactory statement was made, and the directors re-elected. The directors' report stated that the company's revenucs had been dependent on private consumers butherto but that they hoped to secure a city lighting contract at an early date. The lighting contract is now held by the Royal Flectric Co.

Mayor Wilson, of Wimipeg, Man, has prepared a by-law voting $\$ 300,000$ for the purchase of the plant now operated by the gas company, or the erection of a new one; also for the securing of the franchise for private electric lighting by the city. The Mayor states that the unqualified success of the city in handling the waterworks and the street lighing proves the utilty of municipal owacrship, and warrants the city in securing other francluses.

The Central Passenger Association has granted a special rate of a fare and one-third, on the certificate plan, from all points in its'territory to Chicago and return. for delegates and friends attending the zwenty-third convention of the National Electric Light Association, to be held in Chicago, Ill., May 22nd, 23rd and 24th. It is expected that the various other passenger associations will announce the same concession at an carly date.
J. Patterson, J. Moodie, J. Dixon, W. W. Osborne and the Hon. J. M. Gibson, Hamilton, Ont.; J. Dickenson, Glamford, Wentworth county, Ont., and J. A. Kammerer, Toronto, have been granted incorporation to manufacture carbolite and products from its manufacture, and to utilize slag for its production, under the name of Carbolite, Ltd. The capital of this company is $\$ 1,000,000$, and the head office is to be in Hamilton, Ont.

At the anmual meeting of the Canadian General Electric Company the stockholders sanctioned the issue of $\$ 300,000$ in new stock. The financial statement showed remarkable increases in business during the year. The annual report showed that the net profits for 1809 wele $\$ 281,995$, out of which $\$ 108,000$ were paid in dividends, $\$ 09,358$ written off machinery
and other assets, $\$ 100,000$ transferred to reserve fund, and $\$ 53.4 .37$ to prolit and loss account. The reserve fund is now $\$ 140000$.

The Royal Electric Co. is sumplying the electrical equipment for the I'satt \& letelaworth tron works in Bramford, Ont.

The tuwn cumal of Neepans, Man., tol aceepting the electric light power plant recently installed by the Robb, Engineermg Co. passed the followng resshution. "That this conncil has much pleasure in bearing teamony to the etticient manner mo which J. F Porter has installed the engine and boilers in somection with our electric plam, and that a copy of this resolution be semt to the Robb Engineering Co." Carried.
J. S. Clark, Ayr, Ont., vice-president and managing director of the Grand Valley Railway Company, which proposes to build an electric line from l'ort Dover to Goderich via Bramford, l'aris, Gait and Berlin, says the company has behind it some well-known capitalists in New York and London, Eng., inchuding D. IV. MeNair, J. Acton Lomax, Charles R. Sickles, Dr. Sanger, of New York; Horr. Jas. Roche, late of the Alaska Bonadary Commissivn; and O. MeNarr, of the Warsaw Bank, Bulfalo. Mr. Clark salys that he completed arrangements for tmying the chatter of the Preston and Berlin Electric Ry. Co. He has also bought the toll road from Ayr to Paris, Ont.

It 11 o'clock on Tuestay night, January gth, fire occurred in the power house of the St. Jetome Light and Poiver Co., St. Jerome. Que., which destroyed its electric plant. On Wednesthy afternoon at 3 o'clock the Royal Electric Co. was instructed by the St. Jerome Co. 10 ionward as quickly as possible, a 75 -k.w. S.K.C. generator complete with exciter and switchboard; the whole went forward that evening, was received in St. Jerome Thursday morning at io o'clock, the destroyed phat was removed and the new one put in its place, and the lights urned on as lisual at 5 p.m. on Friday, or $4 \$$ hours after the receipt of order by the Royal Electric Co. in Montreal, lights were again burning in St. Jerome.

$] \sqrt{\text { arine }} \sqrt{e w s}$:

The Yarmouth Marine Railway Co. has declared a seven per cent. dividend for the year.
F. Cormer, Moncton, N.E., has invented a rudder to be carried and slipped in case of accident to the regular rudder.

Thomas Heary, Canadian freight agent of the Northern Pacific Railway, has been appointed general traffic manager of the Richelicu \& Ontario Navigation Co.

The St. Lawrence Terminal \& Steamship Co., Ltd., is applying for incurporation to build wharis, docks, elevators, etc., at Sorel, Que., or some other point on the Richelieu River.
G. R. Walker, formerly on the engineering staff of the Manclester Ship Canal, is now in Canada in the interest of the proposed Georgian Bay Canal.

The Cape Island Steamship Co., Ltd., is being formed for the purpose of doing business on the south shore of Nova Scotia, with Clark's Harbor as the chief place of business; capital, \$ro,000.

The Davis Dry Dock Co., Kingston, Ont., has the contract to build a steam yacht for the St. Lawrence Yacht Club. It will have a draught of not exceeding two fect, will be 65 fect by 13 !ect beam, and 4 fect deep. The boilers will be Davis' water tube, carrying 200 lbs , the engine 8 inch by 8 inch cylinders. The speed is to be ten miles an hour.

A large and influential deputation from Port Hope, Ont., and Cobourg, Ont., recently interviewed FIon A. G. Blair, an' asked that the Trent canal plans be altered so that instead of the canal being constructed from Rice Lake to Trenton, a distance of 64 miles, it be cut from Rice Lake to Port Hope. a distance of 10 miles.
R. Pickiord, W. A. Black. G. W. C. Hensley, C. S. Pickford. W. A. Black. Halifax, N.S. (of whom Robert Pickford. William Anderson: Black and George William C. Hensley are to be the first or provisional directors of the said company). are deing incorporated as Pickford and Black Steamships, J.td.: capital. $\$ 600.000$.

The Davis Dry Dock Co., Kingston. Out.. has closed a contract with C. Lewis, Kecwatin, Ont., to build the framework of a 70 -foot passenger steamboat, all ready to set up at Kecwatin.

It is announced that Mr. Petersen, of the firm of Petersen, Tait \& Co., the firm which secured the contract for a fast Atlantic line from the Canadian Government, contemplates establishing a through steamship service for the carriage of yram from Lake Superior to England as soon as the decpening if the St. Lawrence canals to 14 fect of elear drauglit is completed.

A delegation of about twenty of the most prominent owners of lake vessels on the Great Lakes went to Washington recently, accompanied by H. D. Goulder, the attorncy for the Lake Carriers' Association. Their object being to induce the United States Congress to take steps toward the formation, with Canadn, of an international commission wiich should have charge of all matters affecting the water levels of the lakes. The reasons why they are active in the matter at this time are the completion of the Cluengo Drainage Canal, the construction of tise "Soo" power camal, and the proposed building of a dam in Niagara.

The plans for the improvements in the Red River, about fifteen miles from Wimmipeg, call for a dam acooss the Red River 800 feet in lengtin, a canal 1,000 feet in length, one set of locks 255 feet in length, and dredging in the river for a distance of some 400 fect. The lock will the 215 feet long, 45 iect broad and the solid concrete will be 38 feet deep, giving the locks a high water depth of 30 feet, while at low water the depth will be in feet. The gates of the lock will be of steel. The approach to the locks will be by a canal from a point on the west bank of the river, a distance of 1,500 feet. The canal will be 100 feet wide, and have a depth of in fect. The distance to the canal from the river will be of partly wooden crib work. filled in with stone and will be 290 feet in length. The canal extends 400 feet north of the lock to the river, which will be dredged to a depth of nine feet for about 100 yards. The dans to regulate the river will extend from the east side of the locks soo feet, to a point on the east bank of the Red River. It will be of concrete, granite faced, 32 feet at the base and 18 feet 5 inches at the top. The dam is provided with seven piers and two abutments, and also with slaice gates. The piers and abutments can be used as the base of a service bridge and from this could be worked a system of shutters and movalik frames. by which the height of the dam could be increased $12 t$ feet. The bridge and shutters, however, will forin a scyarate contract.

JVining JVatares

Alex. Dick, mining enginecr, of Halifax, N.S., has moved to Toronto.

A valuable copper mine has bec̣ discovered at Mill Drook. Pictou county, N.S.

The Cordova Exploration Company's gold mine in Belmont, Ont., is also producing largely.

The proposed mill to be erected at Goldenville, N.S., to handle the quartz from the Palmerston, Mayllower and other properties, it is stated will be 100 stamps.

The Atlas Arsenic Company has been incorporated to do business in Belleville, Ont., with a capital stock of $\$ 750,000$. The directors reside in Ohio.

The Canadian Gold Fields Company's milh at Deloro, Ont., is said to be turning out three tons of arsenic daily. The gold product is over $\$ 300$ per day.

The annual meeting of the Canadian Mining Institute is to be held in Montreal on the $7 \mathrm{~h}, 8 \mathrm{th}$ and 9 th inst. The annual dinner will be at the Windsor Hotcl on Friday evening, the 9th March.
A. McElwec, L. A. May, J. R. McDonald, H. G. Catlin, New York; M. Lodge and W. B. Chandler, Moncton, N.B., are applying for incorporation as the New Brunswick Cannel Coal Co., Ltd.; capital, $\$ 1,000,000$.

An estimate made shows that there are close on a hundred companies employing over 2,000 men, engaged in development and mining work in the Lake of the Woods, Seine river and Manitou districts.
J. C. Calhom, W. S. Logan, J. E. Calhoun, C. S. Dalcy, New York, and H. F. Puddington, St. John, N.B., are being incorporated as the Provincial Coal Co., Lid.; capital, $\$ 1,000,000$; chief place of business, Moncton, N.B.
M. J. Galvin. Buffalo, N.Y., manager of a blast furnace at Charlotte. N.Y., making foumdry mg for magnetic iron ores of good quality which could be conveniently shipped from Belleville or Trenton, Om., has recently made a search in central Ontario.

A decision of great importance to Quebee mine owners has been given by the Qucbec Government regarding the exemptions from taxation of mining property. In 1890 exemption was granted th- mines for ten years, and now an extension of the exemption for another ten years has been granted.

Iron ore yislding 64 per cent. of iron, and 7 per cent. of sulphur has been found near Ten-Mile Creek, some 22 miles up the bay shore from St. John, N.B. A lease, covering five square miles, has been taken by W. E. Skillent, St. Martin's, N.B., and he proposes to do development work.

Charles Howard, in behalf of himself and other stockholders of the Vermillion Mining Company, of Ontario, is suing the Canadian Copper Company, the Anglo-American Company, Stevenson Burke, C. W. Bingham, Henry . McIntosh, Cnas. Baird and J. B. Wright, exechtors of the Cornell estate, and all stockholders of the Canadian Copper Company, for $\$ 1,350,000$ damages.

At the amual general mecting of the shareholders of the Cumberland Railway \& Coal Company the annual reports of the company were presented by the secretary, H. R. Drummond, which were found highly satisfactory to the shareholders. The election of officers for the ensuing year resulted as follows: President, R. Cowans; vice-president, the Hon. G. A. Drummond; general manager, R. J. Cowans; secretary, H. R. Drumniond.

Toronto and Nova Scotia capital has taken up the stock. $\$ 750,000$. of the Port Hood Coal Company, and bonds to the amount of $\$ 750,000$ have also, it is said, been issued. The company has the assurance of their engineers that the coal. anoumting to $160,000,000$ tons, is as good as the Sydney coal for steam. Work will begin in the early spring. and shipping will be made from Port Hood, 100 miles nearer the St. Lawrence ports than Sydney.
K. Ludloff, a German geologist, who, since last summer. has been living in Cariboo, B.C., in the interests of Russians who wish to replant the fir forest in Litonia, from British Columbia cones, has made a discovery of great importance. Herr Indloff is in the camp on Woodpecker Island, in the Fraser River, a considerable distance above Quesnclle, where he has been collecting seeds. While doing so he is said to have discovered exteisive deposits of gold-bearing songlomerate, imersected by veins of quartz, bearing gold and iron. pyrites, similar to the gold in the Transvaal. He has also found deposits of red hematite, bearing irce gold. This find is in the upper Fraser vallcy, about twenty or thirty miles south of Fort George. The formation is Archaean.

The Bureau of Mines has commissioned Prof. Courtney de Kalb, of the Kingston School of Mines, to prepare an exhaustive report on the salt industry in Ontario. The report gives a detailed account of the extent of the salt beds, present output, purity of brine and the various grades of commercial salt put on the market, methods of working and refining, with suggested measures for the further extension of the uses of the raw material in the manufacture of soda, soda ash and salts, soaps, etc., for home consumption. A detailed report on the peat industry in Ontario will be issued shortly by the Bureau of Mines, giving an account of the exient of the numerous available peat beds, analyses of raw and manufactured peat as made into briquattes by the Dickson compression patent, with the probable value of peat as a fuel for domestic and commercial purposes. This report will be of great interest to people in the coal and wood trade.

Railway Jatters.

The Canada Atlantic Railway proposes to buald a $5,000,000$ bushel elevator at Surel, Quc., and as asking Guiernment add.

Owing to the large increase in busuness the C.P.R. has decided to ereet new freight sheds in Turonte, at a cost of about \$25,000.

The C.P.R. is said to be about to tunnel under the Nepean Point Park, Ottawa, to get a western entrance into the Central depot.

It is reported that the contract for $11 / 2$ miles of the South(rn Railway, nas been awarded to John W. McManus, of Memramcook, N.B.

Application is being made for an Act to authorize the Kingston ard Pembroke Ry. Co., to extend its line from Renfrew. Ont., across the Ottawa river to Bryson, Que.

Incorporation is asked for a company to build a railway from Batchewana Bay on Lake Superior to the C.P.R., and to James Bay at or near the mouth of the Albany river.

Ce LeB. Miles, C.E., is making a survey for a line of railway from Bristol to Foreston. N.B., a distance of some fiteen miles. The road is intended to give the lumbermen in the vienity of Foreston a means of transport for their lumber.

Application is being made by the Montiort and Ganneau Colonization Ry. Co.. ior leave to extend its line from the Great Northern Ry., near St. Canc. Que., to the Union Jacques Cartier Ry., near Montreai, passing through the counties of Two Mountains, Laval and Jacques Cartier, and connecting with the Union Jacques Cartier Ry.

It is said that a syndicate will make an offer for the purchase of the Kingston locomotive works, now in liquidation, and that among those concerned in the purchase are Mackenzic \& Mann, of Toronto; James Hammond, oi Fort William, and others. It is said that the Ontario \& Rainy River Ry. would require the manufactures of the works for the next ten years.

An unexpected turn has been given to the discussion on Eric canal enlargement by the offer said to have been made by S. R. Callaway, president of the New York Central Railway Company. He has offered. it is stated, to transport íree to shippers all the grain they may send across the State of New York for export if the State will pay its road four per cent. on the $\$ \$ 0,000,000$ proposed to be expended on the enlargement of the Eric canal. The intercst on that sum would amount to $\$ 2,400,000$ per annum.

John M. Nicol is the projector of the Quebec \& Lake Huron Ry., the proposed air line bet:ween Georgian Bay and Atlantic tidewater. He said in a newspaper intervew: "The line will be about 46 l miles in a straight line through a new and unsetted portion of Canada, and would shorten the grain haul from Chicago and Duluth to the seaboard by fully 500 miles. The ruil route would be about the same length as that from Buffalo to New York, saving all the lake distance between Georgian Bay ard Buffalo. From Quebec to Laverpuol is called 2,660 miles; from New York to Liverpool, 3,130 miles, giving us another 470 miles saved on the ocean, or nearly 1,000 miles less distance over our road to liverpool from ether Duluth or Chicago than over the present routes."

Very satisfactory progress is being made on the Inverness and Richmond Ry.., which Mackenzic \& Mann are building irom Port Hastings to their mines at Broad Cove on the west coast of Cape Breton. The company owns extensive coal areas there, and the railroad is to carry the coal to Purt Hastings on the Strait of Canso, wheh is to be the shapping pome. Construction was started at the Strait in July last, and by December ist the rails were laid over the first thirty miles. It is expected trains will be rumning over the whole line by December next. W 2 Earln is chicf engineer, and Ryan \& Macdonell, of Montrea?. are the contractors for the whole work, having as their manager Hugh Dokeny. The sub-contractors are, M. J. O'Brien, Renfrew, Ont., and Pegnem \& Doheny, of Montreal.

LITERARY NOTES.

The Canadian Almanac for 1900 is issued as usual by Copp. Clarl: \& Co., Ltd., Toronto. The historical diary contains more than usual, and a list of titled Canadians is given.

The Canadian General Electric Cu., Ltd., has sent its friends a latge wall calcndar, which shows a number of views of the company's handsome new offices on King street, Toronto.

A graduates" magazine, "The Technology Review," has just been issued by the recently organized association of Class Secretaries of Mass. Inst. Tech. It is an octave volume of 140 pages, and of the best workmanship. The cover, designed by Hapgood, and printed on Army brown paper, is very handsome. The first number contains the announcement; a photograph with biographical shetch of President Crafts, articles on the Function of the Laboratory, by Prof. S. W. Holman, and on the Pierce Building, by Prof. E. B. Homer, the architect; reprints in fac-simile of carly institute documents and lettersall in the first and more general half. The latter half, seventy pages, is given to news of the institute, of the undergraduate and graduate classes.

THE TORONTO TECHNICAL SCHOOL.

At the inaugural mecting of the Toronto Technical School Board, C March was elected chairman for the year, and Ald. liubbard vice chairman. The committees were elected as follows:

School Management-D. J. O`Donoghue (chairman), L. J. Malone, R. Y. Ellis, A. F. Wickson, Ald. Urquhart.

Property-John Tweed (chairman), Ald. Hubbard, W. A. Langton, William Henderson and Thomas Cannon, jr.

Printing and Supply-Robert Glocking (chairman), James Wilson, Ald. Ward, William Rowe and A. M. Wickens.

Finance-C. Mustles (chairman), Mayor Macdonald, J. D. Allen. Ald. Leslic and F. B. Hayes. The treasurer's report for the year shuned cxpenditures $\$ 12,294$ and receipts $\$ 11,391$.

CANADIAN PATENTS.

The following patents which are of interest to the engineering and mecianical trades have been recently granted in Canada. Full details of each device, together with the explanators drawings, are published in the Canadian. Patent Office Record, which 're on file in our Toronto office, and may be cxamined by any of our readers who wish to call for that purpose.

No. $63,756-$ F. H. Pitkin and I. Thompson, Chicago, Ill.; a machine for making expanded metal, having a number of cutters arranged in converging series.

No. 63.757-The Ingersoll-Sergeant Drill Co., New York; a coal-cutting machinc.

No 63.762-C. de L. Rice, Hartiord, Conn., gear cutting machine.

No $63.763-\mathrm{R}{ }^{+}$Sill. New York, an electrical heater.
No. 63.764-D Cranc. Ruthland, Vt.; a guard rail chair.
No. 63.769-W H. Tobey, Tupperville, Ont.; water iced regulator for boilers, by means of a float.

No 63.738 -R. Lohnston, River Falls, Wis.; hoisting apparatus.

No. 63,793-C. F. Bancroft and P. F. Sullivan, Lowell, Mass; systems of preventing collisions on electric railways in which a feed wire on a trolley line, provided with turnouts, has in each branch an insulated section, so that when a car passes one turnout the power is cutt off from an approaching car.

SITUATEON-A b:Ikhe soung man with a thorough education, technical in S mechanics iferitable can hrat of an ppportunlty to his adrantage liy addres: ing "Farm alachinery." Sarnia. Ont. Want a yonncman of cood hables and ad. dress. willing to crow ap whit a rood basiness. Would be lritict equipped it amiliar uth farm and threshing machinery Nomoney required, bat must be ablo so kive best of zelriencer

W. M. WATSON,

9: Dundas strect. Toronto. whose articles upon sanitary topics in Tuz Caxadias Excitarar have attracted wninch attention. leares for Great Brtain at the end of March. While in I'ngland 3it Walmn will make an cxhausturecratination cf the latest improvements in serrage dispokal methods, waste water parlication, etc. Mr. Watson will also leeslat so undertake basiness commissions in line with his cxpert knowledsc.

[^0]: FFrom a paper read beforo the Applied Seience Society of afcGill University
 Montreal.

[^1]: - Reprinted from the American Blachlolst.

