CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, of which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagé

Covers restored and/or Iaminated/
Couverture restaurie et/ou pelliculdeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)//
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a mierofilmd le meilleur exemplaire qu'il lui a dté possible de se procurer. Les ditails de cet exemplaire qui sont peut-ftre uniques du point de vue bibliceraphique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restauríes et/ou pelliculées

\square
Pages discoloured, stained or foxed/
Pages décolories, rachetíes ou piquies

Pages derached/
Pages détachées

Show through/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from: /
Le titre de l'en-tete provient:
Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de dejpart de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/ Pagination is as follows: μ. [239]-282.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy flimsd here has been raproduced thanks to the genarosity of:

Library,

Geological Survey of Canada
The images appearing here sre the beat quality possibie considering the condition and legibility of the original copy snd in keeping with the fliming contract specifications.

Original copies in printed paper covers ere filmed bsginning with the front cover snd anding on the last page with a printed or liluatrated impression, of the back cover when appropriate. All other originsi copies are filmed beginning on the first page with s printed or lifuatrated impreaslon. and ending on the laat page with a printed or illustrated imprassion.

The lasp recorded frame on sach microfiche shali contain the symboi - - (meening "CONTINUED"I, or the symbol ∇ (meaning "END"). whichever spplies.

Mapa. piates, charts, atc., may be filmed st diffarent reduction ratios. Those too large to be antirely Included in one sxposure are filimed beginning in the upper lett hand corner. left to right and top to bortom. as many frames as required. The following diagrams iliustrate the mathod:

L'exempiaire filmd fut rsproduit grice ala gendroaite de:

Bibliothìque,
Commission Gb́ologique du Canada

Les images suivantes ont ded reproduites svec le pius grand soin, compte tenu de io condition st de It nottoted de lisxemplaire filmd, st sn conformitd avec lea conditions du contrst de filmege.

Lea exempiaires originaux dont ia couvsrture en papier est imprimts sont filmts an commencant par lo promior piet et an terminant soit par la dernidre page qui comporte une amprsinte dimpression ou d'iliustration. soit par le secand plat, selon le cas. Toul les autres oxemplaires originaux sont filmts en commencant par la promidre page qui comporte une empreints dimpreasion ou d'iliuatration at an tarminant par ie dernidre page qui comports une telle smpreinte.

Un des symboies suivants spparaitra sur la dernidre image de chaque microfiche, selon le cas: is symboio \rightarrow signifie "A SUIVRE". It symboie ∇ signifie "FIN".

Lee cartes, planches, tableaux. sec., peuvent dite flimds at des taux de réduction différents. Lorsque io document sat trop grand pour atre ropproduit an un soui cilche. il eat fiimd á partir de i'angie supdrieur gauche. de gauche da droite. ot de haur an bas. en prenant in nombre d'images ndcessaire. Les diagrammes suivants iliustrent in molthode.

1	2	3
4	5	6

MUCROCOPY RESOLUIION TEST CHART

McGILL UNIVERSITY

PAPERS FROM THE DEPARTMENT
or

Geology.

PROPERTY OF LIBRARY GEOLOGICAL SURVEY OF CANADA 601 Booth St, Ottawe
LENT TO.
PLEASE RETURN
DATE

No. 14--The Montrregian Hilis-A Camadian Petrographical Pronince.

$$
\pi
$$

FRANK-D. ADAMS, PH.D.
[Peprinted from the Jatmel of Goolet: Vol xic. No. 3

Montreal, 1903.

JOURNAL OF GEOLOGY

$$
\text { . } 11 / 1 / .-1 / .18: 100 .
$$

THE: MONTERE(FIAN HH.L.S - A C.AN.\II.N. HETRO. GK.MHHCN. 1RいハINCE

IN the province of (anebec between the enormons expanse of the laurentian highlands the northwest, constituting the "Canadian shield," and the disturbed and folded tract of comntry to the southeast which marks the Appalachian uplift, there is a great plain underlain by nearly horizontal rocks of l.ower Paleozoic age. This plain, while really showing slight differences of level from place to place, seems to the cassial obsorver perfectly flat. Its surface is mantled with a fertile soil consisting of drift redistributed upon its surface by the sea which at the close of glacial times covered it. The uniform expanse of this plain, however, is troken by several isolated hills composed of igncous rocks, which rise abruptly from it and which constitute very striking features of the landscape. It was at the foot of one of these hills rising by the side of the river St. Lawrence, and which he named Mount Royal, that Jacpues Cartier on his first visit found the Indian encampment of Ilochelaga, whose site is now overspread by the city of Montreal, which has not only grown around the foot of the hill, but has extended up its sides and has reserved its summit as a park.

From the top of Mount Royal the other hills referred tu can all be seen rising from the plain to the east, while to the north Fol. Ni, No. 3.

Whe phan stretche aw.y mbinaken the that of the l.anrentan conntrs.

A, has beed remathed by ar Archathat licitite:

 would be rearicted th the lifther mases of ground. while ach a murd is

The hills under comvideration, while by mo means "mere hummocks," being sitnated in such a comntry of low relici, secm to be hisher than they really are and are ahways relerred to locally as "motmetains."

These mountains, whose positions are shown on the accompatheing map (fin. 1), are efght in number, their names and their height above sea level being as follows:
Mount Royal - . . . Ffing feet
Mumarvilie or Boucherville mounan - Som yet accurately delemaned
Helncil
1.137 feet (l.erow)

Kougemon yel accurally delermmed
Yamaska Shefford 1.600 feel (Dresser) Bronie 1.tto fect (Dresser) Mount Johnsom or Monnour - 87 ; feel

Brome mountain is by far the largest of the group, having an area of 30 sypare miles. Shefford comes next in size, having an area of rather less than nine square miles, while Mount Johnson. which is very much smaller than any of the others, has an area of only 422 of one square mile.

Of these eight, the first six, as Logan ${ }^{2}$ notes, " stand pretty nearly in a straight line," running approximately cast and west. Mount Royal being the most westerly, and the others following in the order in which they are enumerated above, until Shefford mountain is reached, which is the most easterly member of the series. The distance from Moumt Royal to Shefford is fifty

 bemge emmedictely whel of shefforl lt is highty probable. in

 -trught line" referred to hy logall on whet the firat six illomin.
 athge lime weh a ruther tharpe curse int the mothle, or as mathe up of swo shorter straight lames, cath with three momutams,
 tarville beome located at the pente of mberectons. Mownt Johnnoll and thome mometan might then be comsidered as situated ow short absidiary fractures.

Brome and shefford, hewever, which are the flow largeest monntains of the neries ald which are only separated beg des. samee of a little wet iwn miles, are probably contected at no great depth below the surface, furmong in reality one harke mass. While Mount Johnson, lake the simitar voleanie nectis of fife and Wirtemberg, may have no direct connection with ally line of fracture. It must be noted, ats mentioned by Dresser.' that White six of these mountains rise from the horizontal strattin of the plan, the two most earterly members of the gronp, named shefford and Brome, white still to the west of the axis of the ranke, lie well within the folded belt of the Appatachians. thongh, owing to the extensive demmation from which the region has suffered, dhis foldimg has had but litele intuence on the local sopegraphy:

No collectise nante hist hitheren beet proposed for this remarkable kroup of hills.? From their intimate seological

- The conle ansances ill whel, there fulla have lieen referrel to as a seographit al
 Lsnesus lowhs of Canal.o." Am. Jour. Acience, March, ibeo, where they are called the

 near the margit of the pham. by the river Ottans, athatt burty

 whicle rixe tron the plain inmedrately the the noth wh the latie of Two Motntatls, llear the functon of the (hawa and the st l.awretlec.
 mapog loke and to the northeast toword the Chathlare river athl beyond" is bea ittis a marked reacmblatie the the rextis of
 age. ${ }^{3}$

In a careful stady of Rigand musutain, recentle completed by Mr. I.cros: of this miversity, it is slown that the rock, cons. stitnting this mometain are differem in character from those of the Monteregian hills, being composed of a redilish hornblende syente and a quart\%bearing porphyry. These ructs, however. were fond to be identical in character and composition with a great area of syentite, cut by porphyry, nentioned by lowan an occupying some forty spuare miles it the townships of Chathant and Grenville on the margin of the Lauremtian platean, a few miles to the north of Rigatel momentain. Owing to the dritt which mantles this district, the act mat contact of the igneons roch of Rigated momentan and the Paleozoic strata of the plain is

- Geolegy of Cimala, wo z. p. 9.

${ }^{3}$ Eastern Townships Map (Montreal sheel), Ann fieme (ieol. Sure of Cisn adid. Sul. VII, l'art J.

[^0]nowhere visible，su that it is imposible th determine whether the mass of Risalld momatall culs through the strata in gues－ tion，in in the case of the Monteregian hills，or whether it is pre－laleoroic in age．The satme is true of the mass in Chathan and lirenville，the actual contact here also beeng fomal by Mr． I．eroy to be banked wi with drift．The narrow margin of glleisis shown on Logran＇s map，between the Chathan syenite and the I＇aleozoic is also comjectural，the area being lokewise drift－ conered．Kigalud monntain is furthermore of a different shape from the mountatine eist of Montreal，being six miles in length and only two and one－half miles wite；at the eastern end of it， moreover，there is found ann wecurrence of ordinary Laturentian gheciss．The abrupt and straight southern boundary of the I．au－ rentian platteall along this patt of its course probably merke a fault．Ells hats noted the existence of other falles in this dis． trict，one of which he believes to follow the north side of Rigrated momutain．It is thus highly probable that the ridge known as Kigatd mometain does not belong to the Monteregian hills，but that it is a portion of the lalurentian platean separated from the main area by fanlting and stripped of its original coners of late－ ozoic strata by denudation．It is probable that Mont Cilsaire， as regarded by Logran，is also an outlying portion of the Laturen－ tian platean．

The hills on the west side of Lake Memphremagog and to the northeast toward the Chandiere river，referred to by Dr． Ells，so far as is known，are guite different in petrographical character from Momet Royal and the other members of its group． They constitute a chatin of hills occupying a tract of country some four miles wite and thirty－five miles in length，in the heart of the Appalachian uplift and following the strike of the Appalachian folding．Mand of them，as（ w l＇s Head and Orford momitain，rise to a lery considerable height，these peaks having a height of about 2.400 and 2,500 feet respectively；forming，in fact，the highest clevations in this part of Cimada．So far as hats been ascertained，these momatains are in all cases composed of

[^1]hishly altered rachs. Many of theme are alteral dabases.' In other cases the alteration is son tar athamed that it is impossible to determine the charater of the original roch. Many of them have been completely alterel tor mases of acrpentille: Nephe limesyenites, essextes, and similar rocks hate not as pet berd tound amphere in this chain of hills. I acries of dye rectis from Late Memphremagoge examined by Marsters, were fommed to be chiefly gramites and lamprophytes, with one typical camptonite. It would scem therefore, that white our kimowledge of these hills i as yet very imperfect, the evidence at our command, so far as it grese, points to them as belonging to a group puite distinct from Mont Kogal and its asocelites. The petrographical province of the Nonteregian hills may therefore, in the present state of our knowledtre, be satid to comprise only the cight monntains enmmerated on p. 240, together with the consanguineous dykes which at many points are found cutting the rocks of the surroundints phatins.

The first description of these hills was that given by logran and llumt in the carly years of the Cimadian Survey. To Ihme especially we owe a somewhat extended deseription of the petrography of the group and a number of chemical analyses, more especially of the constitnent minerals of eertain of the rocks. These descriptions are, however, very general and often very imperfect, as must necessarily have been the case betore the introduction of modern petrographical methods. Norwere certain important petrographical relationships observed which hate in later times come to be recognized. This early work, however, is of great interest, and in case of three of the mometains almost all the information which we have even at the present time, is derived from those carly studies. The results of this work were brought together in the Geolegy of Canded, published by the Geological Survey of Canada in iS 63 , and are to be found on pp. $655-7$. During the thirty years following the appearance of this volume, only three pripers contaning atclitional information concerning these rocks appeared. These were by

[^2]${ }^{2}$. Imeriann Ceotigist, Jubs, isos.

Ilarsington.' Lacrois, ${ }^{2}$ and the present writer, ${ }^{3}$ respectively, all dealing with Mount Royal. In 189 S the "Montreal Sheet" of the Eiastern Townships Mrop, prepared by Ells, and embracing the district of the Monteregian hills, was published by the Ceological Survey of Canada and accompanied by a geological report on this portion of the province of Quebec. Four years later Principal Dresser of St. Francis College, Richmond, aided by a small grant from the Geological Survey of Canada, made a careful study of Shefford mountain, and a preliminary paper embodying the chief results of his investigations appeared in 1901.4 Mr. Dresser last summer extended his work to Brome mountain, and has since published a brief description of this occurrence.s Mr . O. E. Leroy, of McGill University, is now engaged in a study of Beloeil, and 1 am indebted to him for the facts concerning the geology of this mountain which are here presented. Montarville, Rougemont, and Yamaska mountains still await detailed study, but it is expected that they also will before long be put in commission.

In the present paper it is proposed first to gather together the more important facts concerning the galogy of the Montrengian hills which are scattered throughout these various publications, revising some of the carlier work and embodying the results of later personal studies, and then to describe in sonie detail one of these hills-Mount Johnson-of which hitherto but little has been known.

PETROGRAPHY OF TIIE MONTEREGIAN hills.

Hunt distinguished four types of igneous rocks as constituents of the Monteregian hills. These he classed as trachyte,

- ""On Some of the Diontes of Montreal," Ann. Retio of the Geol. Surv. of Can. ada, 1877-78, 42 G.

2"Description des syénites néphélinitiques de Pousac et de Montréal (Canada) et de leurs phénomènes de contact," Bull. Soc. Giool. dé France, 3^{e} série, tume XVIII, 1890.

3"1)n a Melilite-Bearing Rock (Alnöite) from St. Anne de Bellevue near Montreal, Canada," Amer. Jour. of Science, April, 1892.

4 "On the Petrography of Shefford Mountain," Amer. Geol., October, 1901.
${ }^{5}$ Summary Report of the Ceological Suriey Defartment for 1001, p. 183.
phonolite, diorite, and dolerite, respectively. In this classification no distincton was made between rocks occurring as dykes and the great igneous intrusions which form the body of the hills; differences in structure resultime from mode of oceurrence were rot considered, the classification being based uport mineralogical composition alone.

Recent investigations have shown that Hunt's names do not convey an accurate idea of the petrography of these hills, nor do they set forth the ifteresting relationships of the various rocks composing thenr. It is necessary for this purpose to adopt a more modern nomenclature, for all the mountains of the group are composed of a family of consanguineous rocks, and taten together they present one of the finest examples of a petrographical province hitherto discovered. Iltey consist. furthermore, of a rather rare class of rocks charas erized by a high content of ahumina and alkalies, especially sodis.

The rocks forming the great intrusions which make up the mass of these mountains belong to two well-characterized types -one light in color, poor in iron-magnesia constituents, and comparatively high in silica; the other dark in color, rich in iron-magnesia constituents, and with a lower content of silica. They may be classed as follows, if Rosenbusch's nomenclature be followed:

1. Alkali-syenite, nepheline-syenite, or sodalite-syenite.
2. Essexite.

The first is an alkali-syenite, always containing a little nepheline, but this mineral in some cases becoming so abundant that the rock passes into a true nepheline-syenite, or, by the replacement of the nepheline by sodalite into a sodalite-syenite. This in the case of Mount Johnson and Shefford mountain is represented by the variety known as pulaskite; in Brome mountain it is stated by Dresser to resemble Brögger's laurvikite, while in Mount Royal and Beloeil it is a nepheline-syenite. At the latter mountain a sodalitesyenite also occurs in association with the nepheline-syenite. Nepheline-syenite is also known to form part of Yamaska mountain. In addition to the syenite of the

[^3]pulaskite variety, Dresser found in Shefford mometain a large development of a distinctly more acid type of the spenite magma. the rock slow ing occasionally a few grains of guartz. This rock lie has classed as nordmarkite. These light-colored syemtes, together with eertain dykes of bostonite having a general similarity in composition, were the rocks classed by Dr. Hunt as trachytes.

To the essexites belong the dolerites and diorites of Hunt, when he applied these terms to the great igneous intrusions of the mountains and not to mere dykes. They usually contain both hornblende and pyroxene, but the relative proportion of these two minerals varies considerably in the different occurrences. Olivine is sometimes present. Hunt did not recognize the presence of nepheline in these rocks, nor the highly alkaline character of the mayma which they represent, and classified them as dolerite or diorite according to the preponderance of pyroxene or hornblende, noticing certain occurrences in which the former rock passed into a pyroxenite or peridotite.

The greater part of Mount Royal is composed of an essexite, usually very basic, the dark-colored constituents forming a very large proportion of the whole rock. This was classed by Hunt as a dolerite, but is almost identical with the essexite of Mount Johnson, which Hunt classes as a diorite. This same rock is stated by Hunt to make up the greater part of Montarville and Rougemont and to form a portion of Yamaska mountain. An examination of thin sections of specimens of the Rougemont rock in the petrographical collection at McGill University shows it to be an essexite, rich in olivine. Dresser has found it to constitute approximately one-half of Shefford mountain and also to form large areas in Brome mountain. It makes up the greater part of Mount Johnson and forms the mass of Beloeil.

It is thus seen that the essexite mayma is represented in every one of the cight mountains, and that in six of them at least it is associated with the syenite magma. The remaining two, Montarville and Rougemont, which have not been thoroughly examined as yet, while certainly composed chicfly of essexite, will probably be found, on further study, to present a development of the syenite in some portions of their mass also.

In addition to these bodies of intrusive ruck which form the mass of the mountains, great numbers of dekes accur cutting buth the surrounding sedimentary strata and the intrusions. These are, of course, especially numerous in and around the mountains themselves but are also occasionally found far removed from the centers of activity. The relative abondance of these dybes in the vicinity of the several mountains varres greatly. They swarm through the Paleozoic strata about Mount Royal, cutting the limestones in all directions and also traversing, although less frequently, the igneous rock of the main intrusion as well. No less than twenty-nine dykes and fows, belonging to at least four and possibly five separate series, each cutting the preceding set, were mapped by Dr. Harrington some years ago in in excavation measuring 220 yards by 100 yards which was opened up in the Trenton limestone on the tlank of Mount Royal during the construction of the Montreal Reservoir extension. Dykes, in fact, abound wherever in the vicinity of Mount Royal the bed. rock is exposed by the removal of the mantle of drift, as for instance at the Mile End Quarries, St. Helen's Island, and in the bed of the St. Lawrence about Point St. Charles when it is exposed at low water. The whole district about the city would present a network of dyikes, could the overlying drift be removed.

Dresser mentions dykes as occurring abundantly about Shefford mountaii. In Mount Johnson, on the other hand, they are almost entirely absent. Only five dykes could be found after a careful exploration of the whole occurrence, and they were of insignificent diniensions. But very few dykes also occur at Beloeil mountain. A large number of the dyke rocks have been collected from the various occurrences and are now awaiting investigation in the geological depar!. I at McGill University. The work on the dykes of Mount R 1 is now well advanced and, it is hoped, will be ready for publication shortly. They form a most remarkable series, comprising bostonites, tinguaites, sölvisbergites, camptonites, fourchites, monchicquites, and alnöites. Most, if not all, of the types of dye rocks which have been described as occurring in association with the alkaline rich
magnas of the theralite and nepheline syente groups in any part of the world are thus represented. To these dyke rocks belong Hunt's phonolite, which he considered to differ from the trachite in that it contained a certain proportion of natrolite. The two oceurrences which he describes are both from points near Montreal. They are nepheline bearing dykes in an advanced stage of alteration.

As has been mentioned, dyke rocks which from their com. position are clearly connected with the intrusions of the Monteregian hills have been found cutting the rochs of the plain at very considerable distances from any of the main centers of activity. Thus, in addition to occurrences at Laprairic, Lachine, Rivière des Prairies, Ste. Anne de Bellevue, St. Paul's Island in the vicinity of Montreal, several dykes and flows of "trachyte" (bostonite) are noted by Hunt and Logan as occurring about Chambly, which is six miles to the south of the line of the Monteregian hills, ${ }^{2}$ while the occurrence of a "dolerite " dyke at St. Hyacinth, ten miles north of the line, is mentioned. ${ }^{3}$

A sheet of trap evidently connected with these intrusions also occurs at St. Lin, * twenty four miles north of this line, where it alters the Chazy limestones through which it cuts into a pink marble. It is very much decomposed, but evidently belongs to some variety of the nepheline or melilite dyke rocks above mentioned. ${ }^{5}$

Whether the camptonite and in some cases bostonite dykes, described by several authors from various points in the states of Maine, New Hampshire, and Vermont, adjacent to the Canadian line, and the still more distant occurrences of similar dyke rocks in the state of New York, are connected with the Monteregian hills, is not yet known. There seem to be no intrusions of nepheline-syenite or essexite hitherto discovered with which these southern dykes can be connected in the districts in which they occur. The umptekite intrusion of Red Hill, Molton-
${ }^{5}$ Geologry of Canada, pp.659-61. 3 Jbil., p. 210.
a Jbid., pp. 209 and $657 . \quad 4$ Jid., 1. 133.
${ }^{5}$ F. D. Adams, " Report of Geology of Laurentian Area to North of Island of Montreal," Ann. Rept. Geol. Surz'. of Canaia, Vol. VIII, J, p. 139, 1896.
boro，N．I！．，is，however，closely related to the Monteregian pulaskite in character and composition，and may prove to be such a center．

The question of the mutual relations and relative age of the several rock types constituting these hills presents mang points of interest．In the case of Mount Royal the essexite which con－ stitutes the greater part of the momatain was the earliest intrusion． When this had become solid the nepheline－syenite broke through it，sending arms into it and catching up detached fragments of the shattered essexite．The same sequence in time is，according to Dresser，to be seen in Sluefford Mountain．The basic essexite here forms the earliest intrusion，and was succeded by the pulashite and more acid nordmarkite．Mount Johnson，however， presents the two rocks in an entirely different relation．Here， as will be shown later，there was but a single period of intrusion． For although both rocns are present in the mountain，the essexite forms the central portion of the mass and passes over into pulaskite about the periphery of the neck．The mountain thus consists of essexite in its center，surromeded by a \％one of pulas－ kite，the two rocks passing imperceptibly into one another．Mr． Leroy considers it probable that a similar passage takes phace in the case of Belocil mountain，but it is there difficult accurately to determine the relations of the magmas to one another on account of the covering of drift which obscures the contact．

It is thus evid it that the two rock types constituting the Monteregian hills are differentiation products of a single magma， the separated magmas，however，in the case of Mount Royal and Shefford having been erupted in succession instead of simultaneously．In connection with the question of differentix－ tion，another noteworthy fact is that the more easterly mountsins contain proportionately more syenite and the western hills a greater proportion of the essexite．The bearing of this fact on the character of the differentiation which took place in the subter－ ranean magma basin can be more profitably discussed at a later date when the precise character and relative extent of the intru－
sious in Yamaska, Rougemont, and Montarville lave been de mined

With regard to the structure of the ere untutains, it thay noted that Login, who first examined them, reters to them "intrasive masses breaking through the surrounding Paleoz. strata." " They are thes represented in the geological sectic of this district coutained in the atlas accompanying his repo V:lls refers to them simply as "ermptive utomatas." = The nte detailed studies of shefford and Brome mountains recent carricd out by Dresser, however, have led him to consider the two occurrences as uncovered laccolites. Concerniug Sliteffo tuountain he says:

The sedimentary strata which surround the nountann are fou 10 wrap armulld the igneons mass of the moumain, mamling it with hardened conlact zone to a heipht of 300108,000 feet above the surrounti country, according to the direction of glaciation. Whave the later heing the moumain rises upwart of 200 feel, the summit beink capped by outlier of Trenton slate about a quaner of a mile in extent. This presers the cleavage, dip, and strike of the similar rock al either side of the mou tan and is penetrated by dykes from the underlying igneous rocks. Fro these facts, together with the absence of tufaceous material and the gener arching of the strala around the nountain, it is inferred that shefford mou tain is an uncovered laceolite rather than the denuded neek of a once acoin volcano. ${ }^{3}$

In Brome mountain also the presence of oullying masses of th surrounding sedimentary series at high levels lying upon th sneous rock of the intrusion "seem to indicate unmistakabl that Brome mountain, like Shefford, is an uncovered laccolit aud has never been an active volcano." 4

Mount Johnson, on the contrary, as will be shown, is a typica neck or plug, representing a portion of the condtit througl which the magma rose, to fill laccolites above in strata whicl have long since been swept away by erosion, or to be poured out at the surface at volcanic vents. This is seen by the fact
${ }^{\text {a }}$ Geoligy of Cianadid. p. 655.
'Inn. Repf. of Geol. Surri, of Ciundi, Vol. VII. J, p. 71.

- American Geologist, Oclober, 1901, p. 204.

4Geol. Surv. of Canuda, Summary Reph. fur 1g01. p. 15\%.
that the flat-lying stratit all iflous is are mot arehed ups lous atout
 by it. Heines shates. they are ot comrace botied to hormatomes. but show Hos sugns of upheatiol or taltane. The shalt siec and almost circular eross-sceloon of the momatain are it further moli. cation of this origin: and tinally there is conclusibe fromt thats there was a vertical or upward mowement of molten roch thwomb the :ipe. The mosmatian has been fisured by l'rofecand Divis. in his Physical Geography, frome whe wf the atuthor', photosraphs. as a typical example of a volcanic nect.

In at recent piper by Buchan' the vien was put forwind Hhat Mount Royal represents the reminant of it denteled laceoliteon the ground that on one side of the monurtinin, towird the summit, there is an isolated mims of ilit-lying, altered lialeozone limestone, evidently a part of the sedmentary strata of the plinn from which the mountain rises. This alone, however, is not sufficient to establish a laccolitic origin, and opposed to such an explanation is the fact that where the stratio of the plain are secen along their immediate contact with the intrusion in many places. especially on the eistern and northern side of the monntain. they abut against the intrusive rock and are cut off by it instead of being uptilted, the igncous core of the monntain rising up precipitously like a wall across the truncated edye of the beds. The occurrences of the flat-lying limestone on the side of the mountain refrired to above appear to represent the remmant of certinin beds, beneath which a portion of the intrusive mass penctrited, after the r anner of a laccolite, on one side of the mass. Their existence does not by any means indicate a laccolitic structure for the mountains as a whole, or that the igneous material did not find a vent at the surface, there developing a volcano. In fact, there is evidence in the existence of a remarkable deposit of a breccio-conglomerate in several places around the momentain that it did develop as is volcano and that the materials constituting the deposit in yuestion were ejected from it. A study ot this breccia was undertaken last allumn by onc of the geological field parties of McGill University, and a description of it, with a

[^4]disctusion of tes orgigin, is now in prese alld will appear Candedian R'coorl if Scrensi withon the next few weeks. The four hill, have not as yee been athdied in sufficient det enable any definite statement concerning theor nefocture made.

In the Monteregian hills there are thus intrusions nature of baceoliter, trice necks, and probably also of The age of the inerusions cannot as yet be definitely detern They are later than the lower Devonitu, for some of the connected with Monne Royal cut limertoner which belong smmit of the upper Silurian, while fragments of limestome are shown by the fursils which they contain to be referal the lowest beds of the Devonim. oceur as inclavions in the canic breccia or agylomerate which is found about the flan the same mountain. The depply eroded character of the m tains, however, shows that they are of early date, and it s. most probable that the intrusion took place somewhere in faleozoic times.

Having considered in a general way the character of Dionteregian hills as a whole it may be of interest tolook so what more closely into the structure and petrographical acters of one member of the groulp which has recently studied in some detail, namely Monnt Johnson.

Mos.NT JOHN:ON.

Mount Johnson rises from the plain twenty-two mites southeast of the city of Montreal, and six miles northeast of town of St. Johns on the Richeliew river, and twenty-five m north of the international boundary. The little village of Gregoire is situated near its base. The surrounding countr perfectly flat, forming a fertile and well-tilled agricultural trict, the nearest mountain being Rongemont, which lies northeasterly direction some nine miles distant. In cross-sect Mount Johnson is nearly circular. (Fig. 2.) The igncous p itself has at the base, immediately above the hornstone colla somewhat elliptical outline and measures 3.500 feet by 2 , feet, the longer axis having a direction N 20 E. This give.

Herear in the The other colt detail to ructure lo tre ivions of the a) of stucks. determined. ,f the dykes belong to the evtoule which referable to x in the vol. he llanks of of the mounnd it secons here in lat. eter of ne look somehical char. contly been
miles east. least of the -five miles lage of St. country is altural dislies in a oss-section cous plug e collar, a
by 2,500 - gives the

 at Montreal, What that the high e ament int the townes

 of wyo tees. It has a ownewhite dome- hike outhelle and berg stroking feature in the lativeape. The elope oft the ere she is step, in place prectplons, white to the Hort
 from the railway station near he. Coregoire, which is about

 teal the summit callacel by a ravine whet pase donn th
 southeastern. .tnt anthwentern she le are monterey of lars. which have fallen from the steep upper viper att ester
 form of drift whet ill part burn the ne great hackie. furn "tail" probably due to the drift accumulating here on t side of the mountain during the ie e movensents in the age. This drat, However, has been in part it least restart wate-action during the period ot depression which in this followed the glacial age and during which the seat cover plain to a depth of several homered fees at leave, as shown! high level! terraces with shell bant is on f the slopes of? Royal. On the plain about the mountain no rock exposure seen. A mantle of drift covers it, ald numerous erratic and bowlers are scattered about. These are largely git from the laurentian highland, but some of them are plat rocks from other hills of the Monteresian group. The about Mount Johnson in, however, neater be Ells, who has e incl this district, to be underlain "prentimably" by rots Usea-Lorrathe division of the Lower Silurians.
()n ansecnding the mountain the first rock which is ext above the drift mantle in a very fille-grolined dart hornstone

The me:.11 , at a rected lin iom. Cill L'mberatel Hunt.anlo
 11, ar so: terl
 C - llat forma. (1) the sulth. the merth is in ig. 31, tithen , alrout : mole
 te little motid lown the vide. its anthern. itars. 1 .h dexter out terraced phat. k. lorming : re on the lex in the glacial reasoortellby in thiar region cowered the hown by the es of Mount spusures are rratic bluck. sely gheises. are plutomic

The pain o hats exam. rocks of the. l is expored ristonle, uni-

The momban above this hernatolle collat is mate up exclu--ively of igncons material, which preacols a most etriking and bealliful instance of differentiatom.

Immediately above the hornstome collar, and in contact with it, is a coarse-gralled and highly Edopathic semite, lisht buit in color. wh the pulatite tye. This, as the memutain in acaled. pasine rather abrupthe into at dart-colored rock with large per phyrtic white teldypara, which in its turn lowe it. perphyrite.
 tuten the Hisn of the hill alll which beconle at the ammit file in grain, richer in proxeme and often holdine a lithe mbine. Xos atarph lines call be drawn leetheen these everall rocks: one
patser graduatly into the other, the whole constituting one sive unit. The approximate limits of these aeveral rock are shown in the atecompamying map (foig. 2) athd photo (Fig. s) of the momtatn, it being impossible sharply to d the several species, seceing that they pass into one another. mass therefore becomes progressively more basic as we from the margin of the intrnsion to its coriter. The two rock typer are the pulaskite and the essexite which will be rately considered. The essexite, being the more abmolant and one presenting a greater complexity in mineralogical position, may be first described.

Essikwo. The rock is dark in color and rather coan grain, and although holocrystallone us, dally presents a more on marked muidal arramgement of the constituents. This is cially marked in the zone of transition between the essexite pulaskite, owing to the presence there of the large fetd phenocysts which, being arranged with their longer anes par to the lirection of how, serve to accentuate this structure. fincr-grained variety forming the summit of the mometain is n massive in character a:al does not exhibit the fluidat arrat ment of constituents. Under the microscope the rock is see be composed of the following minerals: hornblende, pyone biotite, olivine, plagioclase, nepheline, sodalite, apatite, in netite, sphene, and in some cases a very small amount of ort clase.

There is a marked tendency on the part of all the constitue to assume an idiomorphic development. The long lathe: ihiol plagioclases and large hormblende individuals hawe ant appro mately parallel arrangement, and between these lie the ot iron-magnesia constitnents with the smaller plagioctase in vidnals, the nepheline and the other components of the roe These interstitial constituents do not differ greatly in size fre the whers and show the same tendency to a parallel arrant ment.

Hormblende.- Although atmost every thin section of the ro contains not only hornblende, but pyroxene and biotite als their relative \mid oportion varies considerably. The hornblen
ing one intru－ rock species photograpli ly telimit ether．The as we pasis he two chicef will be sepra－ molant rock logrical com．
cr coatrse in more or less his is esper essexite athl ge feldspar xes parallel eture．The tain ：s more al arringe－ K is secoll to proxenc： tite，mag－ of ortho－
onstituent： the \because hipect 1 aproxi－ the other lase indi－ the rock． size from arrange－
the rock tite also， arnblende
 varicty forming the summit of the mountatn in which it is dis－ tinctly subordinate in amonmt torh proxeme and micas．h is deep brown in color and is sometimes hypietiomorphic in its wevelopment，but often wecurs with perfect ersstalline form． showing the prismatic and the orthopimacoidal faces．Its extine－ tion is larger than is usual in brown hornblendes，jutging from the recorded instances，reaching 20．It posises ses at atrong pleochruism as follows：

$$
\begin{aligned}
& \text { a pale vellowish-brown. } \\
& \text { b-decp-hrowil. } \\
& c=\text { vers decp. hrown. } \\
& \text { Absorphing c: b A. }
\end{aligned}
$$

It is often twinned parallel to so 1 so or that steporthodome，and sometimes presemts a failt honal structure，marked be a shight difference in extinction of the several zones indicatimg at slight change in composition ats growth proceeded，and occasionally a greenish tint is noticeable about the margin of the individuat． It sometimes holds inchasions of maynetite and is often inter－ grown with the proxene．In the essexite from one place on the south side of the mountain，the hornblembe was found free from inclusions，and practically free from the prosene which is usually so intimately associated with it．From this locality a fuamtity of the hornblende was whatined in a state of perfect purte through repeated separations by meatns of Klein＇s solution， all grains of foreign mineral still remaining being finally remoned be picking them out by hatd with the aid of a powerful lens． The pure matterial thus obtained was amalyed by Profesoor Norton Evalns，of the De（iill University，every precallion to secure aceuracy being observed and especial care bemg taten theffect a complete separation of the magnesia from the ahmina by the repeated precipitation of the latter．The water was esti－ mated be a direct determination．The results of the andilysis are given below，together with those of several other homblendes of similar composition which hatre been added for purponsen of
comparison：

No. 1. Hornblende. From the essexite of Moumt fohnson, pros Quebec. Canada.
No. 2. Hornbleude. From Bohemian Miteigebirge.
No. 3. Hornblende. From tuff of hornble le basalt, Hairslingen, Nas No. 4. Hornbtende. Basalt tuff, Hoheberg, near Giessen.
No. 5. Hurnblende. From "hormblende diabase," (iräveneck, near Wo No. 6. Hornblende. Syntagmatite. Jan Mayen.

Analyses Nos. 2 to 6 are taken from schneider's paper referred to
The hornblende thess belongs to the class of basaltic blendes, and not to the barkevikites as might be expectec contains, however, proportionally more of the iron in a fe enndition, together with somewhat less alumina and a some larger proportion of alkalies than most basaltic hornble The unusually high extinction for a hornblende of this which it possesses is probably connected with the high col in ferrous iron, since Schneider ${ }^{2}$ has shown that the extin increases with the increase of iron in this state of oxidation

Pyroxcme. - This minelal occurs intimately associated often intergrown with the hornblende, both mineral. freque holding many inclusions of magnetite and apatite. It is pale-greenish in color, with no perceptible pleochroism, but a marked aispersion of the bisectrices. It is usually hypi morphic, but is frequently idiomorphic, showing a distinct cl age parallel to the pinacoids, but usually none parallel to prismatic faces. It belongs to the variety of diopside-

[^5]| No. 5 | No. 6 |
| :---: | :---: |
| +1. 35 | 39.16 |
| 1.97 | |
| 13.45 | 14.39 |
| 5.14 | 12.12 |
| 10.13 | 5.85 |
| | 1.50 |
| 11.4 | 10.72 |
| 10.9 .3 | 13.18 |
| 2.10 | 2.48 |
| 0.12 | 2.01 |
| 0.45 | 0.39 |
| 00.8 | 99.90 |

on, prowince of
gen, Nassau.
, near Weilburg,
ferred to below.
asaltic hornxpected. It in a ferrous a somewhat hornblendes.
f this class igh content e extinction idation.
ociated and frequently It is very im, but with ly hypidiotinct cleavHel to the opside-lite 1891, p. 579.
ampites which oceur in rocks of this class. The extinction is high, reaching 45°.

Biotife- This is deep-brown and alomost iclentical in color with the hornblende and is strongly pleochroic, © pellowishbrown, and a deep-brown. It occurs intimately associated with the hornblende and aturite, and also freguently as a border around the iron ore. While usually present in comparatively smatl anount, in the finer-gratined essexite forming the summit of the mountain it is much more abundant than the hornblende. In this variety of the essexite both the mica and the hornblende often possess a poikilitic structure owiner to the preselace of numerous inclusions of plagioclase, which mineral also often penetrates the individuals of biotite and hornblende in the form of well-developed crystals.

Oliaine. - This species is found in the finer-grained variety of the essexite at the summit of the mountain, and was also observed in the thin sections from the essexite at one point on the east side of the mountain not far from the summit. It is very pale-green in color and occurs as little grains inclosed in the biotite and pyr cone.

Plagioclase. - The plagioclase in the rock has well-developed, lath-like forms and is, almost without exception, excellently twinned according to the albite latw. Twinning according to the carlsbad and pericline laws is also very common, occurring in the same individuals which show the albite twinning. The laths of plagioclase .an in a few cases be seen to de distinctly twisted, evidently owing to pressure exerted upon then by other cristals during the consolidation of the rock, since the rock wits submitted to no dynanic action subsequent to ${ }^{i t}$ s erystallization.

As before mentioned, all the plagioclase ; dividuals are not of the same dimensions. There are larger i: hs associated with the large hornblende crystals, and between these are smaller laths. The two sets are not, however, sufficiently well marked to catuse the resulting structure to be classed as porphyritic. The plagioclase in the rock is not all of the same compositoon, but varies somewhat, even in the same hand specimen, ranging from an extremely acid labradorite to an oligoclase. It, how-
ever，is chiefly andesine．Its character was determined by a large number of extinction measurements carried out on the allite twins，as well as by Michel－lévy＇s method，which can readily be applied owing to the frepuency of carlsbad twinning in association with albite twinning．These determinations were extended and checked by a number of specific－gravity deter． minations and separations by means of Thoulet＇s solution．The larger plagioclase individuals were found，in the case of the rock on the northeast side of the mountain 320 feet above the plain， to be somewhat more basic than the smaller crystals，having the composition of a basic andesine，while the latter ranged in char－ acter from andesine to oligoclase．In this case no teldspar hawing a specific gravity of over 2.65 was found to be present in the rock．Again in the rock of one of the quarries on the south side of the mountain，the larger feldspars tested by Michel－ Leivy＇s method were found to have the corr sition of a very acid labradorite，$A b_{1} A n_{1}$ ．The results of as separation of the constituents of the rock by Thoulet＇s solutions showed that the feldspar was almost all andevine，although it varied from $A b_{1} A n_{1}$ to an oligoclase．A crystal examined by Mr．Wright in Professor Rosenbusch＇s laburatory gave on P an extinction of $5^{\circ}-6^{\circ}$ and on Mabout 11° ，showing the feldspar to be on the line between andesine and labradorite．A very small amount of orthoclase was also present，forming a subordinate accessory constituent．That there is a variation in composition even in the same individual of plagioclase is indicated in many cases by marked growth rings with different extinctions in the different rings．The smaller plagioclases，although twinned in the same manner as the larger，usually have the twinning developed in a less striking manner．A certain proportion of the smaller grains； are also untwinned，but most of these must be identical in char－ acter with the twinned feldspar，since the separations show that， while orthoclase is often present，it occurs in only extremely． small amount．Dr．Sterry Hunt gives ${ }^{\text {a }}$ an analysis of the feld－ spar from the essexit：of Mount Johnson（called by him diorite）． This is as follows：

[^6]

This feldspar has the specific gravity and general composi－ tion of an acid andesine，although the high content of $\mathrm{K}_{\mathrm{y}} \mathrm{O}$ may possibly indicate the presence of some potash feldspar as an intergrowth．

Nepheline．－This is quite subordinate to the feldspar in amount．It possesses the usual low index of refraction，with extinction parallel to the cleavages，which latter can usually be seen．It is sometımes quite fresh，but at other times is found more or less completely altered to a mineral which occurs as little fibrous bundles，showing strong double refraction and parallel ex inction．The fbers usually have a more or less dis－ tinctly parallel arrangement．This mineral remains practically unaltered when treated with concentrated hydrochloric acid for twenty minutes，although the nepheline in which it is imbedded is destroyed．It is either muscovite or kaolin．The nepheline is allotriomorphic and occurs chiefly in the corners between the larger crystals of feldspar and other minerals，and is penetrated by them．It is especially abundant in those portions of the rock which are rich in the dark－colored constituents．When ofcur－ ring in this manner it appears，with the sodalite，to have been the last constituent of the rock to crystallize out．It is usually much more abundant than the sodalite．The nepheline also occurs in places as irregular－shaped lath－like inclusions in the feldspar．

Sodulite is usually，although not invariably，present．It strongly resembles the nepheline in appearance and shows the same alteration product．It is，however，quite isotropic．Like the nepheline，it occurs either in the spaces between the other
minerals, cementing them together, or as inclusions in the feld--pars.
dpatik.- The abundance of apatite is a distinct feature in this, in in simtilar rocts occurring eisewhere. It is always preseltt and was the first consiatueat to crystallize ont, being found in the form of perfect hexagonal prisms with double pyramidal terminations imbedded in the iron ore. It also occurs in the splenee as well as in the iron-magnesia constituents, in the nepheline, and also, although much less frepuently, in the feldspar. Its large amount is shown be the high percentage of phosphoric acid in the analysis of the rock, 1.23 per cent. Another specimen of the rock in which the phosphoric acid was determined by: Dr. B. J. Harrington wale 1.01 per cent. These figures represent 2.79 per cent, and 2.35 per cent, of apatite, respectively. It is usually somewhat turbid from the presence of minute dust-like inclusions.

Magnetite occurs chielly inclosed in the iron-magnesia constituents, but is occasionally found in the feldspar. It is black, oparyue, and highly magnetic, and is usually allotriomorphic, but occasionally presents an approximation to definite crystalline outline. As shown by the calculation of the analysis of the rock, this iron ore contains a considerable percentag: of titanic acid.

Splene is not found in more than one-half of the specimens examined. When present it is not very abundant and usually occurs as well-defined wedge-shaped crystals, often of considerable size.

In the accompanying table analyses are given of the normal essesite which forms the greater part of Mount Johnson, and of the finer-grained olivine-bearing variety of the same rock found at the summit of the mountain. For purposes of comparison there is presented in the same table the analysis of the essexite from Shefford mountain, which belongs to the same Nonteregian province, together with analyses of the original essexite from Salem, Mass., and of allied rocks from two other localities. A partial analysis of the transitional rock between the essexite and the pulaskite of Mount Johnson is also given.

For the analysis of the Mount Johnson essevite (No. 11 as well as for that of the associated pulaskite, which is given below, I am indebed to Professor Norton-Evans, white the analysis of the olivine-bearing variety of the essexite (No. 2) was made for me by Mr. M. F. Connor. The methods recommended by Hillebrand and emphoyed in the very accurate, analytical work carried nut in the laboratory of the United States Geological survey were followed by both analysts and every precaution was tatien to insure accuracy.

\&. Normal essexite (andose), Mount Johnson, Quebec.
II. Olivine-bearing essexite (essexose), Mount Johuson, Quebec.
III. Essexite (akerose), Shefford mountain, Quebec, (American Geologist. 1901, p. 201), (with $\mathrm{CO}_{2} 0.39$ and $\mathrm{SO}_{3} 0.28$).
IV. Essexite (essexose), Salem ㄷeck, Salem, Mass. (Washington, Jork. Geol., 1899, p. 57).
V. Theralite, Elbow Creek, Crazy mountains, Montana.
VI. Rock forming transition from essexite to pulaskite, Mount Johnson, (lebec. (Partiai analysis. The iron present is all calculated as FeO .)

The analyses (Nos. 1 and 2) of the two varieties of the essexite from Mount Johnson can be readily calculated out so as to show the quantitative mineralogical composition of the rocks.

The calculation of the mode - or relative proportion of the minerals actually present gives the following result:
${ }^{1}$ Qumbitative Classifiation of x_{n} neous Kocks (C. I. P.II:) (L'niversity of Chago Press. (903), p. 147.

205

In the ease of No. I the percentage mineralogical composition given expresses exactly the chenical composition of the rock, except that it reguires 0.06 per cent. of FeO in excess of that shown in the analysis. In No. 2 the agreement is complete.

The calculation further demonstrates that the plagioclase in the case of No. I is a trifle more basic, and in the case of No. 2 a little more acid, than $\mathrm{Ab} \mathrm{b}_{2} \mathrm{~A} n_{1}$, which as has been stated, is shown by the optical character and by the specific gratity of the feldspar to represent its average composition in these rocks. The amount of orthoclase recognized in thin sections also appears as mentioned in the description of the rock. The nepheline is in places somewhat altered to a mineral resembling kaolin. The small percentage of kaolin shown by the calculation has therefore been added to the nepheline in extending the table.

In order to fix the position of these rocks th the excellent system of classification recently claborated by Messrs. Cross, Iddings, l'irsson, and Washington, and to determine the nante which should be given to these rocks, if their precise character is to be designated, it is necessary to calc late their morms. These have been found to be as follows:

No. I thus takes the following position in the classification in question:

Class il, dosalanc.
Oriter 5, germanare.
Kang 3, andase.
Subrang 4 , andose (grad $=$ polmitic).
Its precise designation would be nephelini-bearing grano-andose or in some cases mpheline-bearing tracho-andosi.

No. 2, however, belongs to the next order and is domalkalic. Its positu is as follows :

Class [I, .osalane.
Order 6, norgare.
Kang 2, essexase.
Subrang t, essexose (grad $=$ prepolic).
It would theiefore be termed a mepheline-bearing grano-essexasc. It is therefore seen that the essexite from the central portion of Mount Johnson (No. 21 is practically identical in character and composition with the essexite of the original locality at salem, Mass. (Analysis IV), while the outer andose is poorer in nepheline and has a somewhat larger proportion of lime as compared with the alkalies.

The proportions of the several mincrals present in thin sections of the specimens analyzed were then determined by the system of diametral measurements proposed by Rosiwal.' In
' Verhd. K: h: Geol. N'eichsanst. (Wien, 1898), 1. 143.
 100．Which latter mumber Rowiwal comvitery in be afficient． The meanmement，were，however，confined to a mall monber of thin wections，mamely two in the case of No．I，and fone in the cane of No． 2 ， 18 being considered admable to tre only sectums cot from the actual siecimen from which the material for analysis was tatien．The resulter obtaned were as follows：

	Na． 1		No． 1	
Pelinpar			－1．0n，成1 cent	
Arplichar．				
Vimerne	4	＊	11%	．．
Hfatle	－111	＂．	1.219	＂
（ Яиние．	－ 11	．	119	＂
Itun ${ }^{\text {dre }}$		＂	111	＂
入раtite．	2．11	．．	8.10	
	2．1）		1．2）	＂
	100.00	＊	19119\％	＂

In the case of No．I the results atre vablatially the same an the calculated mode except that there is about 3 per cent．mone livexcene athe a correspondingly smaller proportion of feldspar． This relativel！high proportion of prosence in untsual，the examination of thin sections of the rock tor various parts of the mountain showing that，as has been stated abowe，and as is shown also by the calculation of the mode of this spect－ men．there is usually a preponderance of hornblende over pyroxene．In the case of No． 2 the chicl difference between the values measured and the calculated mode lies in the rela－ tively higher proportion of feldspar and lower proportion of nepheline in the former．In this rock，however，it is very diffi－ cult to distinguish the nepheline from the feldspar in every case． These diserepancies indicate that in applying Rosiwal＇s methoul to comparatively coarse－graincel rocks such as these，especially if there be any tendency to irregularity in composition a consid． erable number of thin sections should be emplosed in order to obtain a true aserage of the rock as a whole．

For purposes of eomparison the analysis of the essexite from shefford mountain（No．Ill）has been reduced to its normative
 tion determined. It is tound to le a* follows:

Chan tt, homatme.
Grder 5 , kermathate.

Sulpathe so akerome (spat pentmitic).
It thus, in comproxition, ocedpies, in atmanter, a midelle phace

 tioncel, forms the unter sonte of the monntaing girllang the exacix. ite, is leas abondant than the latter and differs greatly from it in appearance. Ihin difference is due checly to the faret that it is much lighter in color, being pale-yellow or holf anateal of dark-gray, the lighter color being dise to the very small propurtion of iron-magneaia conatituents present and the marked preponderance of the feldspars. The rock aloo has a more massive structure, the fludal arrangentent of the constituents otten mee with in the essexite being absent, and it weathers in a somewhat different manner. It peraseasen, moreover, a peecies of porphyritic structure, owing to the development of the peldspar in two forms: first, as stont prisms, "p to $10^{\text {mm }}$ in diancter, which are light-gray in color and very abundant: and, secondly in the form of smaller lathe of a yellow or hulf color which, in association with the iron-magnesia and other constitnents, form a sort of groundmass in the ruck.

The constituent minerals of the rock are biotite, hornblende. (pyroxenc), soda-orthoclase, nepheline, sodalite, apatite, migenetite, and sphenc. The darker constithents are identical in character with tho:e occurring in the essexite, and therefore do not reyuire to be descrihed again. Xot only are they as a class much less abundant in this pulastite, but elice mica bere preponderates, being the prevaling iron-magnesia constitnent, while the hormblente is much less abmadant and the prowente in entirely absent. It may be moted, hoswever, that the hormblende sometimes fossesses the greenish tint retered tu as uccasionally seen about the borders of the hornhlende individuals in the cesexite, indicating prohably thot, the pulaskite masma being

2:0

/N.1.1A /1.1/.1.1/

ruher in wola, the hornhberlele cerystallioning ont of it hav a ten. Weney to take ajp thas element mure alumblantly

Fhe foldsper in the pulaskite. is hav bee'n mentoned, oceurs Ill phirt as stout prisurs and in part as sllaller laths. The latter tanatly have a somewhat chobly appearance under the miero. scople, probably owill to incipiome alturation. The larger felf. ybitr are what is commonily dexeroled an ateda urthoclase. When exambined under the microseofe they are seen to be come presed of very minnte intergrowtr of two, and in some casew pertiag even of three. different tehlypars - cousing them tos present beeween cerossed micols a montled appearatice. These several felelopars have somewhat different indices of refraction, ithel freguenty imder a high fower, where ewo are present, one of them call be seoll to pessess a very minute polysunthetic twinning. while the other is untwinned. The relative proportion of the several feldspars present differs in defferent grains. The individuals as a whole occasionally present the form of carlshad twins but usually have the appearance of simple crystals, and I'rofessor Kosenhusch, to whom sections of the work were submitted, considers the feldspars comprosing them to be microcline, and in part microcline microperthite, with probably some anorthoclase.

The specific gravity of these pl:. Teryots thaid determined in the case of two hand specimens of the pulaskite from different parts of the mountain. In the first of these three specimens of the feldspar were fommel to have specefic gravities of 2.62, 2.609. and 2.603, respectively: while in the second, five specimens of the feldspar were selected and found to have specific gravities lying between orthoclase and albite, which bears out the results of their microscopic stud!.

The smaller lath-shaped feldspars, although more freguently comporsed of a single species, often show atn intergrowth of two feldspars, as described in the case of the phenocrysts. Ceparations of the constituents of several species of the rock by means of Thoulet's solution show that these smiller feldspars have a somewhat lower specific erravity than the phenocrysts. Thus, while the specific gravity of the phenocrysts lies between 2.591.

 intergrowllas of urthoelase with albite, or of cetleer of thens with microchac or anorthechase. No fille-anda felitapur coulal be recoknmeal in ally apecmen of the rock.
 in allount, althongh they are vecen th nearly every tion we tonn.
 Ways av ill the enacxite, fyang chicfly in the eorncer between the
 ring as inclusions in the feldybur. lliey are, as at general rule. much altered to the same decomposituon product seen in ilpples.

	VII	V11	IX	N	XI	KII
				56.45		10.01
110	1.07	0.16)	0 16	0.29	0 Wl	,
A! ${ }^{1}$	17.41	17.18	16.46	20.01	is is	20.76
Fri',	1.01)	1.44	1.59	111	1.6)	4.01
Fe()	2.70	1.71	1.35	4.17	3.18	1.76
Mn(0.25	0.47	0.10	0.09	0.01	brace
H50)	1.16	0.65	1.12	0.61	1.09	0.80
Hat ${ }^{\text {d }}$	not det.	.12	mine 8.10	2... ${ }^{\text {a }}$
$\mathrm{Na}_{\boldsymbol{4}}{ }^{\text {d }}$	6.48	6.0 .4	5.95	5.61	7.01	5.90
F, "	1.3. ${ }^{\text {N }}$	4.71	5.16	7.13	9.14	9.46
C1...						
11.10	1.03	1.10	0. N_{2}	1.51	0. 60	0.69
	90.69	100.17	29.86	100.19	92.98	108.07

V'il. Pulaskite (laturvikose), Mount Juhisnh, Ruebec.
Vllf. Pulaskite (laurvikose). Shefford mounain, Quehec. (American (icologisf. 1901. 1. 213.)
IX. Nordmarkile (mordmarkose), Shefford mountain, Queher. (that. 11,01, p. 200.)
X. Sodalite syenite, Square Bulle, Montana (differentation proluct of shonkinite).
XI. Umptekite, Red Hill, Msitonhorn, New Hamp shre.

Xil. Pulaskite, Fourche mountain, Irkis , (original locality).
line in the essexite and which is, as has been mentioned, either kaolin or muscovite. Probably both are present.

Apatite is present in considerable amount and in the form of perfect crystils, oceurring chiefly in the mica, hornblende, ind sphene.

The iron ore and sphene present the same characters as in the case of the essexite, but the latter mineral is relatively more abundant than in that rock.

An analysis of this pulaskite is given in the accompanying table together with analysis of the pularkite and the nortmarkite of Shefford mountain described by Dresser, Analysis of three allied rocks from other localities are added for purposes of comparison.

The mode of the Mount Johnson pularkite (No. VII), calculated from the analysis given above, is as follows:

This proportion of the various minerals expresses exactly the chemical composition of the rock as presented by the analysis, except that a very small excess of silica, amounting to 0.06 per cent., is required.

The calculation shows clearly the fact, ascertained by the study of the thin sections of the roch, that a considerable percentage of sphene is present, a mineral which does not occur at all in the essexite.

The anorthite is probably in combination with the other feldspathic constituents in the form of anorthoclase. The calcu-
lation also brings out clearly a point already mentioned, namely. that in this rock the nepheline is much more highly altered that in the essexite, ass shown by the amount of kaolin present. Thin kaolin, however, is not entirely derived from the alteration of the nepheline, but appears as a hate all through the smaller feld spars, and hence in the extension of the results should be a : wign. I in part to the nepheline and in part to the feldspar. It is of , urse impossible to measure the amount of hatin present by fiosiwal's method, occurring as it does distributed through the sections in the form of extremely minute individuals. If, how. ever, the amount of nepheline given by the Rosiwal measurement be correct, namely 4.40 per cent. -and this of course includes both the unatered mineral and that filled with decomposition products-then 1.84 per cent. of the kadin has been derived from the alteration of the nepheline. There will than remain 3.12 per cent. of the kaolin which has been derived from and measured up with the feldspar. If this amount be added to the feldspar found by calculation, it will increase the proporton present to 77.15 per cent., which is within 0.09 per cent. of the percentage of feldspar obtained be the Rosiwal measurement.

The norm of the pulaskite is found to be as follows:

Its position is, therefore, as follows:
Class I, persalane.
Order 5, canadare.
Rang 2, pulaskase.
subrang t, laurvikose.

It should thas be termed a framo-lanraikese or peosiblle, in view of its somewhat porphyritic structure, a gromophyro-linerio tiase. The proportions of the several minerals present, or mote, as determined by Rosiwal's method were as follows:

$$
\begin{aligned}
& \text { Felispar } \\
& \text { Nephrline } \\
& \text { Hormblumle } \\
& \text { Howite } \\
& \text { Iron ore } \\
& \text { Sphene } \\
& \text { Apratite }
\end{aligned}
$$

$$
77.21 \text { per rem. }
$$

$$
1.10
$$

$$
5.37
$$

100.00

For purposes of comparison the allalysis of the pulatite (No. VIII) and of the nordmathite (\dot{N}_{\circ} IX) of Shefford monntain were cilculated into their respective morms and the position of these rocks in the new system of classification determined. The pulaskite (No. VIII) is found to have the following position:

Clats 1, proralane.
Orler 5, canalare.
Rang 2, pulaskase.
Subrang t. laurvikuse.
The nordmarkite (No. IX), however is peralkalic and must be classified as follows:

Class I, persalane.
Order 5, canadare.
Kang 1, nordmarkase.
Subrang 4 , nordmarknse.
It, however, lies just on the line between nordmarkose and phlegrose, and might thus be best termed a nordmarkosephicerrose.

It is thus seen that the rocks from Mount Johnson and from shefford mountain which, following Rosenbusch's classification, have been called pulaskite, and which in this new scheme of classification are pulaskase, are almost identical in composition with one another and with the Norwegian laurvikite, and the nordmarkite of Shefford mountain is very close in composition to the nordmarkose of the original Scandinavian localits:

Diagrams showing the c mposition of these several rocks are presented in lris. 4.
 venes in Moment Johnon between the pulaskite border and the central mass of essexite a transitional \%one consisting of a rock which is dark in color and thins resembles the essexite, but which is characterized be the presence of large porphyritic feldspars sometimes as much as two inches in length, of peculiar form scattered through it and often arranged with the larger axes in the same direction, thos griving a huidal appearance to the rock. This rock contains a large proportion of the same iron-magnesia minerals, more especiallythe hornblende, found in the essexite, and passes ower gradually into this rock. It, passage into the pulaskite is rather more abrupt and is marked chicfly by the almost entire disappearance of the dark-colured constituents above mentioned. There is, however, a continuous transition or passage from the pulaskite through this inter-

Fli. 4.- Wiagrammatic represembaton of the clemical composition of the several rucks alescriled.

No. I. l.aurvikose - Mount Johnson.
No. 2. L.aurvikuse Shefford mountan.
No. 3. Nordmarkose Shefford muumain.
No. 4. Andose - Mount Johnson.
No. 5. Eissexose - Mrunt Johmsun.
No. 6. Andose - Shefford moumain. mediate rock into the inner essexite of the momentain.

This transitional rock is composed of the same minerals as the essexite with the exception of the feldspar, which consists in part of the sodi-orthoclase characteristic of the pulaskite, and in part of the plagioclase (in this case oligoclase) which forms the
fellopathic element of the essexite. It is thus m mineralogical composition intermediate between these two rocks, although, as abore mentioned, being rich in the dark-colored constituents, it more closely resembles the latter.

The large feldspars have frequently a peculiar crystalline form giving to the mineral, when broken across, a perfect hexagonal outline. The six faces represented in this form are apparently T, h, and M. The crystals hold many little inclusions of proxene, biotite, hornblende, magnetite, sphene, and nepheline, often regularly arranged so as to give a \%onal structure to the feddipar individual. The specific gravity of twelve small fragments of the feldspar of these large crystals, collected from a locality on the southern side of the mountain and as free as possible from all inclusions, was determined. The specific gravity of nine of these lay between 2.59 and 2.607 , while that of the other three was between 2.625 and 2.628 . This shows the feldspar in the former case to be identical with that of the pulaskite, While in the latter three the specific gravity lies betwee" that of albite and olgoclase. The somewhat greater specific gravity in this case may be due in part to inclusions of other minerals. A separation of the constituents of the rock shows, however, that, as above mentioned, a considerable amount of oligoclase is really present. The feldspar individuals, both great and small, usually show in thin sections the mottled character due to the intergrowth of different species, cescribed in the pulaskite. A partial analy:is of a specimen of this intermediate rock, from the south side of the mountain, is given in the accompanying table of analyses (No. VI), on page 265 . As will be seen, in chemical composition as well as in mineralogical character, it occupies a position intermediate between the essexite and the pulaskite, occurring on either side of it, thus representing an intermediate zone in which the differentation was not quite completed. It is, however, much more nearly allied to the essexite, being alkalicalcic and dosodic, and although in the absence of a complete analysis or detailed measurements its position in the new classification cannot be determined with absolute certainty, there is very little doubt that it also, like the essexite adjacent to it, is an andose.

Dikes.- I feature in connection with Mount Johnson, and one possibly connected with its somewhat peculiar structure, is the almost entire absence of dykes. These were found only in two places, and in botl cases the dyeses were small in sime. The first of these localities is on the northeastern margin of the intrusion, where the dyke oceurs in association with and probably cutting the hornstone. It was found as large angular blocks in the heary maple bush which here covers the slope of the mountain, but is undoubtedly in place in the immediate vicinity. The rock is very dark gray in color and very fine in grain, and belongs to the camptonites. It has a porphyritic structure, the very mumerous phenocrysts consisting of hornblende and pyroxene. The hornblende phenocrysts are deepbrown in color and strongly pleochroic, the mineral being the same basaltic hornblende described in the essexite. The pyroxene of the phenocrysts is pale purplish in color and shows a marked dispersion of the bisectrices. Buth minerals have very perfect crystalline forms. The plagioclase of the rock is very basic in character, as shown by its high extension. The rock resembles very closely certain occurrences found on Mount Royal. The size of this dyke is not known, but it probably has not a width of more than a foot or two. The other dykes occur on the southeastern slope of the mountain by the side of the road leading down from the quarries here. At this locality there are four small dykes, the largest only a foot in width, cutting the cosexite. These are all very fine in grain and much decomposed, but represent two varieties of rock. Two of the smallest are composed of a camptonite consisting of a groundmass of brownish hornblende and playioclase, with lath-shaped plagioclase phenocrysts. The other two dykes consist of a rusty weathering rock, made up of feldspar laths and a mass of pseudomorphs of limonite after some prismatic mineral, probably either agerin or arfvedsonite. Professor Rosenbusch considers it to be a highly altered tinguaite or sölvsbergite, probably the latter.

The several dykes, while small and unimportant in themselves, are of interest in that they present tie petrographical types regularly associated with the alkaline rich intrusions of the class represented in Mount Johnson.
 tain and the character of the rochs composing it also throw come light on the guestion as to where the differentiation took place. In conrse of conversation with the foreman of one of the gnarries in the essexite on the flank of the monntain, the writer Was infurmed by him that Monnt Johnson consisted of three layers of horizontal roct: a line grained one on top, below which
 right.

Fili. 5,- Yuarr: in anduse, Mount Johnam, showing vernical How structure on
was the coarser-grained rock of the yuarry, and beneath this a spotted variety. Each of these layers, he considered, went through the mountait, horizontally and could be seen outcropping at their respective levels on every side. The three rucks referred to were, as will be recognized, the fine-grained essexose, the andose, and the transitional rock below the latter, respectively. The pulaskite zone he had not noticed, it being at the base of the mountain and in many places more or iess covered with fallen blocks and talus. If this were the true interpretation of the structure, the mountain " uld have to be considered as the rem-
nant of a laceolite which had been intrucicl between the horizontal Shlurian strata and which had subsequently been almont entirely removed by peripheral denudation. This has been shown to be the true explanation of the origin of some of the occurrences, formerly supposed to be intrusive stocks, in the western portion of the United States, and it was at first considered as a possible explanation of the origin of Mont Johnorn. A careful examination of the mountain, however, slows that such an explanation of its origin is untenable, and that it is a true neek, due to the filling up of a nearly circular perforatonn in the horgontal strata of the plain, by an upward moving magma.

The evidence of this is to be foumd in the drection of the banding or fluidal arrangement of the erystals in the cravente already referred to and shown in Figs. 5. This fludat arrmarement is seen in most large exposures of the essexite and with especial distinctness in the great faces of this rock expered in the quarries on the mountain side, and it is always vertical, showing that the movement of the rock was upward through the pipe, and not outward and horizontally over the pulaskite, as it womld have been in the ease of a laccolite. Furthermore, in several cases when the fludal arrangement is very distinct and hats a somewhat banded character, as shown in Fig. 6 , due to the alternation of somewhat more feldspathic portions of the rock with others richer in iron-magnesia constituents, a strike can be made out on horizontal surfaces, and this strike curves around the mountain, 1 lowing its marginal outline, as shown in the map, Fig. 2.

It is thus clear that Mount Johnson is a neck in its most typical form. A cross-section of the mountain is shown in Fig. 7 . The opening occupied by the intrusion was in all probability formed by the perforation of the horizontal shales at this point by the explosive action of the steam and vapors preceding the eruption proper, as it presents exactly the features reproduced by Daubrée in his highly suggestive experiments on the penetrating action of exploding gases. It is, in fact, what he :erms a diatrime.

Dev perforations anso remarkables, lant par lenrs fomes fue par bes
 parmiles cassures ferrestres, un lype anaco nettement characterios ponir

 poliser, aux cassures lindares, diaclaseq el pararlases.

Hifi, 6. - Anduse in juarry on Mount Johnson, showing verlical how structure.
The occurrence is one which presents a close resemblance to the remarkable volcanic neeks recently described by Sir Archibald Geikie ${ }^{3}$ in Fast Fife, and also to those described by Branco, ${ }^{3}$ in Würtemberg. Mount Johnson, however, is a neek occurring

- ." Kecherches expérimemales sur le rôle possuble des gaz: à hautes temperatures doués de très fortes pressions, etc.," Bull. de la Soc. Cíol. "h ivance, ze série, tome XIX (1891), p. 328.
- The V'olcanic Necks of Eiast Fiffe. Cilaspow: Hedderwich d Sons.
'Schzatens 125 Vistarn-Embryonen und deren tufferfulle Aushruchsrohren das gresste Gebret ehemalizer Maare auf der Firde. Tibinger. 1804.
in all area which has matergene mach more extenate demmatation since the tume of the intrusion than in the cases abowe mens. tioned, and as a consecpuence of tha the tragmental material Wh h fills some, althongh not all of the nectes referred to above, has been entirely swept awas.

In view of the fact, then, that Mount Johnson is a neek or pige of comparatively small sectional area, in which the differentiation is very complete. but in which the magma did not remain at rest, but was not long prior to final consolidation,

Fic. 7. Lhagrammatic crons-section of Moun Johnsoll, showille the relallon inf the several rock types.
moving upward, it seems improbable that the marked differentiation of the magma into the several sarieties described in this paper took place while the magma was in the pipe itself. The evidence points rather to the differentiation of the mass having already taken place in the reservoir of molten rock bencath, which was tapped by the pipe. If this be the case, it would seem that the upper and more acid portion of the magma, represented by the lighter pulaskite, had collected in the upper portion of the reservoir, and that the essexite formed a lower, more basic, and heavier stratum or part. When the passage to the surface was opened up, the pulaskite would first rise in it and, after a more or less long-continued flow, being followed by the essexite, would be pressed toward the circumference of the pipe, the more basic rock occupsing the central portion of the passage. and the most basic variety, originally lower, would be found in the central axis of the neck. The fact that, while the essexite forms the mass of the intrusion, there is a zone of pulaskite about it, would seem (1) indicate that there had not been at this center of volcanic activity any very protracted outpouring of the essexite, since, had this been the case, it would seem probable

28:

 pulantite Illigntrat

 thoroughly stalied. It as miterestang tor note the cumblative

 it mathy center ill at silng!e areat like that dencribed in the presellt piaper, hati almo all centern widely separated froms olle droblicer ill dilferent piarts of the worlel. The oecurrences
 "onted Ill thia connection in closely allied to those of the Monteregian hills. a mola-stenite lomptetite oceurring aboul the
 the mosstät, While: theralite in alon foumel is at differentiationt problact of the sillle intrasion.

Th.: allthor deatrea to acknowledge his indehtedness in con"ection with this illtestigation to Miss Kusallind Witsonn, of Victorat, 13. C.. Who, when at stalent at this undersity leeriall the
 Ihelings, ind l'rofenorr C. II. Mel.eod for viluable aid during the course of the wort.

Fк.ink D. Abams.
Itombeal.

[^7]

[^0]: - Bull. of the American Lieolugial Sintely, Vial. N1l, 1901.

[^1]:

[^2]:

[^3]: 'Summary Refort of the Geological Suriey of Canada, 1901, p. 187.

[^4]: 'Limadian Reciorld of Saence, V.l. VIII (1901). p. 321.

[^5]: " Zur Kenntniss hasaltischer Hornblenden." そiteche. fur R'yst, I8OI, p. 5

[^6]: ＇Geoliny of Canada，p． 177.

[^7]:

