The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover citle missing/
Le titre de couverture manque

Coioured maps/
Car tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

\square
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètart possible. ces pages n'ont pas ètè filmées.
L.Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplairs qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$
\square
Pages damaged/
Pages endommagées
\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquėesPages detached/
Pages détachées
$\square \begin{aligned} & \text { Showthrough/ } \\ & \text { Transparence }\end{aligned}$

Quality of ?י"int varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Titie on header taken from:/
Le titre de l'en-tête provient:

Tifle page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Génèrique (périodiques) de la livraison

Additional comments:/
Commentarres supplèmentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE

CANADIAN JOURNAL

07

INDUSTRY, SCIENCE, AND ART:

CONDUCTAD BY

THE EDITING COMMITTEE OF THE CANADIAN INSTITUTE.

NEW SERIES.

VOIn エx,

TORONTO:
PRINTED FOR THE CANADIAN INSTITTUTE, BY LODRLL * GIBSON, YONGE BTREET.
MDCCCLXIV.

CANADIAN INSTITUTE.

EDITING COMMITTEE.

GENERAL EDITOR - . J. B. CHERRIMAN, M.A.
I. Geology and Mineralogy: E. J. Ceapman, Ph.D., Prof. of Geglogy and Mineralogy, Univ. Coll. Toronto.
II. Physiology and Natural History: Rev. Wm. Hinces, F.L.S., Prof. of Natural History, Univ. Coll., Toronto.
III. Ethnology and Archaology : Daniel Wrlson, LL. D., Prof. of History and English Literature, Univ. Coll., Toronto.
IV. Meteorology: G. T. Kinaston, M.A., Director of the Magnetic Observatory, I'oronto.
V. Ohemistry: Henry Cboft, D. C. L., Prof. of Chemistry and Experimental Philosophy, Univ. Coll., Toronto.
VI. Mathematics and Natural Philosophy: J. B. Cherriman, M. A., Prof. of Natural Philosophy, Univ. Coll., Toronto; and the Rev. G. C. Irving, M.A., Prof. of Mathematics, Trin. Coll., Toronto.
VII. Engineering and Architecture: Sandpord Fleming, C.E.
VIII. Philology : Rev. E. Hatce, B.A., Prof. of Classics, Morin Coll., Quebec.

THE CANADIAN JOURNAL.

NEW SERIES.

No. XLIX.-JANUARY, 1864.

a POPULAR EXPOSITION OF THE MINERALS AND GEOLOGY OF CANADA.

BY E. J. CEAPMAN, Ph. D.
PROPESSOR OP MYRBALOGY AND GEOLOGT IN UNIVERSITY COLLEGE, TORONTO.
(Concluded from Yol. VIII. page 462.)

general outline and recapitulatory sketch of the geology of canada.

1. Canadian Rock Formations.-The rock groups occurring within the limits of Canada, comprise representatives of the Azoic, Lower Palæozoic, and Post-Tertiary series. The Upper Palæozoic deposits (inclusive of the Coal Measures proper) together with the entire formations of the Mesozoic and Cainozoic Ages, are altogether unknown within the limits of the Province.
2. Azoic Series.-The rocks of this series, composed of Sedimentary matters deposited in ancient seas, apparently before the creation of organic types, and subsequently rendered more or less crystalline by metamorphic forces, are subdivided into two formations. The lower of these is named the Laurentian, and the higher, the Huronian Formation. The Laurentian stri ia consist principally of highly crystalline beds of micaceous and hornblendic gneiss; hornblende rock; crystalline limestone and dolomite ; oxidized iron ores; quartzite; and auorthosites, or rocles composed chiefly of lime and soda feldspar. In

Vol. IX.
an economic point of view, the Laurentian Formation is essentially characterised by the vast beds of magnetic and specular iron ore that occur within it: full details of whic are given in a preceding page. The formation is many thousands of feet in thickness, and it covers an area of 200,000 square miles-running from Labrador along the north shore of the St. Lawrence to the vicinity of Quebec, and throughout all the more northern and north-western portions of the Province, as shewn in the sketch-maps, figs. 154 and 243. By reference to the latter, it will be seen that in the district between Prescott and Kingston, a narrow belt of this formation crosses the St. Lawrence, and expands over a large extent of country, comprising the Adirondack region, in the State of New York. This belt forms a somewhat important feature in the geology of Western Canada. It will be alluded to again, in connection with this sketch, under the name of the "gneissoid belt of the Upper St. Lawrence." The Huronian Formation which constitutes the higher division of the Azoic series, consists chiefly of green and greyish slate-conglomerates and other partially altered strata, interstratified with greenstone masses, and traversed by numerous trap dykes. It contains also many quartz veins, holding copper pyrites and other copper ores in workable quantities. The total thickness of the formation is probably not much under 20,000 feet. Its strata are chiefly developed along the north shore of Lake Huron (No, 2, in fig. 243), and in places on Lake Superior.
3. Laurentide Mountains. North and South Basins of Canada.A high water-shed or range of mountainous country, averaging a height of from one to two thousand feet above the sea, but rising in places to nearly four thousand feet, traverses the greater portion of the Laurentian area, and forms at one part of its course the "Laurentide Mountains." It dirides the Province into two great basins or geological areas: known, respectively, as the North and South Basins.
4. Great Northern Busin of Canada.-The area occupied by this basin, lying to the north of the Laurentian water-shed, and sloping towards Hudson's Bay, as regards its geological characters, is still comparatively unexplored. The formations known to occur within its limits, couprise the Laurentian and the Upper Silurian series. The Huronian rocks are thought to occur also, in the form of Chloritic schists, in the valley of Lake Temiscaming, but no traces of Lower Silurian strata have anywhere been met with. Hence, it is suggested by Sir William Logan, that, the Laurentide mountainous
range formed, from Labrador to the Arctic Ses, the nurthern shore line of the ocean during the Lower Silurian period. The la. ! to the north, being thus above the level of the sea, would receive no deposition of Lower Silurian strata; but an after movement of depression must have ensued during the Upper Silurian epoch, bringing down this northern district beneath the sea, and so enabling the sedirents of the latter period to be laid down upon its area.
5. Great Southern Basin of Canada: Its subdivisions:-The southern geclogical area of Canada, is in itself divisible into three smaller basins: (1) the Basin of the lakes; (2) The Basin of the St. Lawrence ; and (3) The Eastern or Metamorphic Basin. The two first of these are separated from each other by the gneissoid belt of the Upper St. Lawrence alluded to above; whilst the third or Eastern Basin is separated from the St. Lawrence area by a remarkable dislocation, accompanied by physical and chemical changes of great moment. This dislocation is evidently connected with the elevation of the Appalachian mountain chein. As traced in Canada by Sir Wm. Logan, it runs from near the northern extremity of Lake Champlain in a general north-easterly direction to the St. Lawrence, which it crosses immediately above Quebec ; and then turns to the east, traversing the northern part of the Island of Orleans and passing down the river into the Gulf, from whence it appears to re-enter the south shore a few miles above the mouth of the Magdalen River in Gaspé. The strata within the area circumscribed by this dislocation, are thrown up generally into:ighly inclined beds; and they exhibit, in other respects, many signs of the action of powerful disturbing forces. See under the head of the "Calcifcrous Formation," on a preceding page. In the more central portion of the area, also, they are much altered, or converted into crystalline schists, \&c., and rendered met .erous by metamorphic agencies. The strata of the Lake and St. Lawrence Basins, on the other hand, betray few signs of these disturbing influences, except in the case of the upper copper-bearing scries of Lake Superior, and in parts of Gaspé, as described fully in a preceding division of this Essay.
6. The Lake Basin of Canada:-Of this geological basin, properly speaking, only the north-castern and northern portions actually occur within the boundaries of the Provinc:. It includes all the area to the east or left of the Laurentian district marked 1-1 in the sketch-map fig. 243. Though affected here and there by slight local disturbences,
the strata within this aren hare agenera! wistetily dip, extending as far as the central part of Michigan, in consequence of which, on proceeding from the gneissoid belt of the Upper St. Lawrence, just east of Kingston, towards the southern extremity of Lake Huron, the various formations (exclusive of the Calniferous and Chazy series?) from the Potsdam to the Hamilton beds, with those also of Kettle Point, are successively traversed. The dip of these strata, however, (except here and there, under local conditions) is exceedingly slight, rarely exceeding two or three degrees, and averaging in general less than half-a-degree, or about 30 or 40 feet in a mile. The annexed section will serve to convey a general idea of the sequence of these formations, as shewn on the map, between the gneissoid belt east of Kingston, and the coal strata of central Michigan. The thickness of intervening rock between the top of the Hamilton formation and the lowest of the Michigan coal seams, is about 840 or 850 feet.

Fig. 250.
SKETCH-SECTION OF formations of western part of canada and eastern michigan.

At the extreme east of this basin, a little beyond Kingston, a narrow band of Potsdam sandstone rests on the western slope of the gneissoid or Laurentian rocks. This is followed to the west-the Calciferous and Chazy fornations being apparently absent-by the strata of the Ontario group, comprising the Birds-eye, Black River, and higher limestones of the Trenton formation, the dark bituminous Utica schists, and the arenaceous shales, \&c., of the Hudson River Series. The

Trenton formation is probably abont 700 or 750 feet in thickuess; the Utica shales, somewhat under 100 feet; and the Hudson River series, between 700 and 800 feect. These formations are develeped chiefly along the shore of Lake Ontario, between Kingston and the central part of Nelson township, west of Toronto; and also on the shore of Georgian Bay, between Cape Crocker and a spot a little south of the outlet of the River Severn; as well as throughout all the intervening country: including within the Trenton area, Lake Simeoe, Balsam Lake, Rice Lake, and other bodies of water. Kingston, Believille, Peterborough, Cobourg, Port IIope, Barrie and Collingwood, are situated over the Trenton district; Whithy and the country just west of Collingwood harbour, over the Utica formation; and Toronto, Oabville, Sydenham (Owen Sound,) and Meaford, over the Hudson River strata. These various formations, as explained fully under their respective descriptions on a former page, run also across the northern part of the Manitoulin Islauds.

The Niagara or Antico ti group succeeds the Lower Silurian strata. The Medina Formation (Map : No. 9), at its base, sweeps round by Queenston, Hamilton, \&c., below the great escarpment of that district, and continuing its course, first towards the north and then towards the north-west, comes out upon Georgian Bay near Cabot's Head, forms the extreme base of that promontory, and runs, it is supposed, in a narrow belt along the central part of the Manitoulin Isles. These Medina strata consist chiefly of red marls, shales, and sandstoues, capped by a grey freestone, known as the "grey band." On Lake Ontario, they exceed 600 feet in thickness, but diminish considerably towards their north-western limits. The green and red shales of the Clinton division (No. 10,) with their interstratified limestone beds, appear above the grey band of the Medina formation proper; and are succeeded by the calcareous shales and limestones of the Niagara formation, holding Pentamerus oblongus, fig. 213, amongst their other fossils. The Niagara limestone (Map: No. 11) appears to represent in the Middle Silurian strata, the great Trenton limestone of the Lower series. Still higher in the scale, and farther to the west, follow successively the Guelph dolomites (No.12), the gypsiferous end fossilfree strata of the Onondaga formation (No. 13), and the slightly developed Eurypterus beds of the Lower Helderberg group. These close tre Silurian series, The country between the upper part of the Niagara River and the north-eastern shores of Lake Huron, is occu-
pied by these Middle and Upper Silurian formations, but their strata are mostly concealed by Drift-deposits. The localities in which instructive exposures occur, have been mentioned under the separate descriptions of each formation, at the commencement of this Part of our Essay. The Clinton beds near the mouth of the Niagara River are only a few feet insthickness, but they.increase towards the northwest, and attain, on the shores of Georgian Bay, a thickness of about 180 feet. The Niagara formation increases in the same direction, from about 240 or 250 feet, to probably about 400 feet. The Guelph formation at its thickest part is estimated by Sir Wm. Logan at 160 feet. The Onondaga formation averages from 200 to 300 feet.

Still further to the west, a thin band of sandstone, belonging to the Oriskany Formation (Map : No. 15), crops out above the Eurypterus beds in the townships of Bertie, Cayuga, \&c. This forms the base of the Devonian series. It is succeeded by a large development of the cherty limestones of the Corniferous Formation, (No. 16), averaging collectively about 200 (?) feet in thickness, and supposed to be the source of the Petroleum supplies of that district. These are followed by the encrinal limestone bands and calcareous shales of the Hamilton (or Lambton) series (No. 17,) making up an additional thickness of from 200 to 300 feet. Finally, at Kettle Point, and in the townships of Warwick and Brooke, a few isolated patches of dark bituminous shales, containing calamites and fish-scales, conclude the Devonibn series as developed in this part of Canada. These bituminous shales, are referred to the base of the Portage group (No. 18). The relations of the Hamilton or Lainbton shales to the underlying Corniferous strata, and the chief points of interest belonging to the occurrence of petroleum in this region, have already been sufficiently discussed.

The Drift accumulations spread so generally over this western basin, consist of thick beds of clay, overlaid in most places by deposits of sand and gravel, with boulders of gneiss, syenite, limestone, and other rocks. The thickness of the entire mass varies greatly, but in places it exceeds 100 feet. In the upper Drift beds, or rathe: in those formed out of Drift and other materials by Post-glacial influences, numerous shells of existing fresh-water mellusks (planorbis, cyclas, \&c.), occur at different heights above our present lake-waters; whilst there seems to be an entire absence, in these beds, of marine or estuary types, such as occur in deposits of a similar age in the St. Lawrence basin. Fence tive inference, that, at a comparatively recent geological period, our
great lakes were united into one vast fresh-water sea, held back, on the east, by an elevation of the gneissoid belt of the Upper St. Lawrence or perhaps by a huge glacier-barrier extending in that direction, as explained on a former page.
7. The St. Lawrence Basin:-This Basin is separated from the Basin of the Lakes, just described, by the gneissoid band, which, passing southwards from the Lac des Chats on the Ottawa, crosses the St. Lawrence at the Thousand Isles, and forms the Adirondack region of New York. On the other hand, it is cut off from the Eastern or Metamorphic Basin (although, strictly considered, this forms an isolated central portion of its area) by the great dislocation alluded to under §5, above. This dislocation, accompanied both by a great upheaval and the manifestation of active metamorphic forces, runs from near the northern extremity of Lake Champlain to Quebec, and from thence along the north shore of the Island of Orleans, and down the river and gulf, as far as the coast of Gaspé, which it enters near the mouth of the Magdalen River. The area of the St. Lawrence Basin thus includes the peninsula between the gneissoid belt, the lower Ottawa, and the Upper St. Lawrence, together with a large extent of the south shore of the latter river, and all the north shore from the Ottawa to the Gulf, except a small portion (including the chief part of Quebec) lying within the above mentioned line of dislocation. It may be considered to include, also, the extreme eastern and southern parts of Gaspé the Island of Anticosti, and the Mingan Islands. Towards the western part of this area, more especially in the peninsula just west of the junction of the Ottawa and St. Lawrence Rivers, the Potsdam and Calciferous formations (Map : Nos. 3 and 4) are well displayed, together with the Chazy and Trenton limestone beds (Nos. 5 and 6). The latter occur also largely on the eastern side of the Ottawa, as around Montreal, \&c.; whilst the Utica and Hudson River formations extend more particularly along each bank of the St. Lawrence up to (and on the north, beyond) Quebec-apart from the small area, immediately around Quebec itself, cut off by the before-mentioned dislocation. At the Falls of Montmorenci, the Trenton, Utica, and Hudson River dirisions occur in force; and the latter runs along the north side of the Island of Orleans. These formations occur also in the small outlying basin of Lake St. John on the Upper Saguenay. The Trenton limestones form likewise some isolated patches on the north shore of the ,Gulf, as at the Seven Islands, the Straits of Belle Isle, \&c.; whilst the

Mingan Islands consist chiefly of the Chazy formation, the Trenton beds appearing at the south side of Large Island, one of the group. The northern shore of the Island of Anticosti is made up of Hudson River beds, the rest of the island consisting of Middle Silurian strata. In Gaspé, the Hudson River formation occurs on the north shore, between Cape Rosier and the River Marsouin. Eastward and southward the peninsula is chiefly composed of strata referred to the Devonian series, in which a thin seam of coal and numerous fossil plants are met with; whilst along the Bay of Chaleurs and the coast south of Gaspe Bay, the inclined Devonian beds are overlaid unconformably by a vast thickness (amounting to no less than 300 feet) of Carboniferous sandstones and conglomerates, the Bonaventure Formation of Sir William Logan. These strata, however, are quite destitute of coal.

Monntainous masses of eruptive traps and trachytes oscur towards the more western extremity of the St. Lawrence Basin. These break through Lower Silurian strata, and were formed, probably, during the Upper Silurian or earlier part of the Devonian epoch. They are traversed in most cases by dykes of more recent origin--apparently erupted towards the close of the Deronian period, or perhaps at a still later date. The more important of these intrusive masses, comprise: Rig \because ?d (in Vaudreud Co.); Mount Royal or the Montreal mountain; Montarville or Boucherville (in Chambly Co.) ; Rougemont (in Rouville Co.) ; Belœil (in Verchères Co., near the Grand Trunk Railway); Monnoir or MLt. Johnson, south of Beloil; and Yamaska. Other masses of a similar character, as those of Brome and Shefford, lie just within the Eastern or Metamorphic Basin; but as these are evidently connected with the above series, the whole may be described together. The mountains of Montreal, Montarville, and Rougemont, are essentially augitic traps or dolerites. They present a dark color in most parts, and contain, in many places, distinct and comparatively large crystals of augite ; Fig. 251. Small granular masses of olivine, with black grains of Magnetic Iron Ore and Ilmenite (mine-

Fig. 251. rals described in Part II.) are also commonly present, especially in the Montarville and Rougemont mountains. These trappean masses are penetrated by dykes of white or light-coloured compact trachyte (see Part III.), which contain minute crystals of iron pyrites, and generally effervesce in acids from the presence of intermixed carbonate of lime. The Rougemont mountain, is traversed also by granitic trachyte
(Part III.) of a grayish colour, and partly micaceous. The mountains of Rigaud, Belœil, Monnoir, Yamaska, Shefford, and Brome, are essentially granitic trachytes, consisting of light-coloured potash-feldspar, with small grains of black hornblende, or scales of brown or black mica; and usually containing, in addition, some small crystals of yellow sphene (see Part II.) and grains of magnetic iron ore. Much valuable information on the composition of these picturesque and interesting mountains, is given by Pfofessor Sterry Ifunt, in the Geological Report for 1859. See also the Canadian Journal, Vol. V., p. 426, and the Revised Report of the Geological Survey, 1863.

The surface of the St. Lawrence Basin, like that of the Lake area, is also very generally covered by thick accumulations of the Drift and Post-glacial epochs : comprising clays, gravels, and boulders. But the fossil shells, found in the upper part of these, are all of a marine or estuary character. They ase referrible to species which still exist in the Gulf of the St. Lawrence, or on the coast of Labrador. These shells occur, not only on comparatively low levels, but at considerable heights also, above the present surface of the sea. Some of the most noted localities comprise the neighbourhoods of Ottawa and Montreal; terraces on the Montreal Monntain : one, nearly 500 feet above the sea-level; Beauport near Quebec, about 120 feet above the sea; and various terraces on the Lower St. Lawrence; the Ste. Ame River, the Matanne, the Metis, \&c., in the Gaspé peninsula, at heights varying from 40 or 50 , to 245 feet above the present sea-level. It is evident, therefore, that at the commencement of the Post-glacial or present period, the entire or greater part of the St. Lawrence basin must have been deeply suomerged beneath the sea.
8. The Eastern or Metamorphic Basin of Canada:-This basin, forming strictiy, a portion of the St. Lawrence area, is separated from the latter by the great dislocation already described in $\S \$ 5$ and 7 . It includes the site immediately under and around Quebec, the central and southern part of the Island of Urleans, the south shore of the St. Lawrence from a little west of Point Levis to near the Magdalen River, and all the intervening area to the south (including the greater part of the eastern townships, \&c.) as far as the Province boundary. In the more northern part of this region, the strata, consisting of the Calciferous and Chazy formations (united into the Quebec group), are raised along the line of the before-menticaed dislocation into a position apparently above the horizon of the Trenton series. (See the remarks,
on this point, under the head of the Calciferous Formation, towards the commencement of the present Part of our Essay). They are also highly inclined, and consist chiefly of black and other coloured graptolitic shales, with associated beds of dolomite, limestone, \&c. At a certain distance south of the St. Lawrence, and more especially in the counties of Bagot, Drummond, Shefford, Orford, Brome, Stanstead, Sherbrooke, Megantic, Beauce, \&s., these beds are much altered by metamorphic action: being changed into gueiss-rocks, talcose and chloritic schists, serpentines, variously coloured marbles, and other rocks of a similar metamorphic character; whilst their fossils become gradually obliterated. They are associated also in many of these localities, with vast irregular masses of copper and iron ores; and are traversed by veins containing galena, and here and there by auriferous quartz-veins. These metallic deposits, with the marbles, slates, and other economic substances of the region, are enumerated more fully under the Calciterous Formation, on a former page. The alluvial matters derived from the disintegration of the metamorphic rocks of this Eastern Basin, contain grains and occasionally small nodules of uative gold-as explained at the same place, and also under the description of that metal in Part II. The Notre Dame and Shickshock Mountains, an extension of the Alleghanian chain, belong to the northeastern part of this area. These mountains, which rise in places to a height of 4,000 feet above the sea, consist of metamorphic strata of the Quebec group, including vast beds of serpentine and intermixed chromic iron ore. The eruptive granites of the Megantic Mountains, and those which occur in Winslow, Hereford, Stanstead, Barton, Weedon, and other neighbouring townships, lie also within the limits of this metamorphic zone.

ON THE ANNUAL AND DIURNAL DISTRIBUTION OF THE DIFFERENT WINDS AT TORONTO.

BY G. T. KINGSTON, M.A.
dIRRCTOR OP THB PROVINCIAL MAGNBTIC ORSBRYATORY, TORONTO.

The accompanying tables were derived from hourly records of the wind with Robinson's anemometer in the years 1853 to 1859 inclusive, during which period, with very few and short interruptions, the instrument was in continuous operation.

The monthly and hourly resultant directions and velocities include only the years 1854 to 1859 , and were computed from the well known formula

$$
\tan . \bar{\theta}=\frac{\Sigma(v \sin \theta)}{\Sigma(v \cos \theta)} ; \quad \bar{r}=\frac{\Sigma(v \cos \theta)}{n \cos \bar{\theta}} .
$$

RESULTANT DIRECTIONS IN THE DIFFERENT MONTHS.

A comparison of the monthly resultant directions given in table I. shews that the general direction of the atmospheric current is considerably more from the westward in the winter than in the summer months, the monthly resultants oscillating about $\mathrm{N} .43^{\circ} \mathrm{W}$. from April to September inclusive, and about $\mathrm{N} .72^{\circ} \mathrm{W}$. during the remaining six months.

There is a much nearer approach to uniformity of direction in the different years for some months than for others; for instance, taking the angular difference between a monthly partial resultant in a particular year and the corresponding monthly resultant for the six years as a rough measure of the irregularity of the partial resultant, it is found that the averages of these differences are 7° for January and about 75° for June and July. The quarterly averages of the differences are for winter (commencing December 1st), 20°; for summer, 53°; for spring, 29°; and for autumn, 27° : their half-yearly averages being 46° from April to September inclusive, and 19° from October to March.

RESULTANT VELOCITIES AND MEAN VELOCITIES IN THE DIFFERENT MONTHS.

The resultant velocities and mean velocities have each their maximum in March and their minimum in July. The change from month to month is regular in both, with the exception of a small interruption of continuity in August, and another in December.

RESULTANT DIRECTIONS OF THE WIND IN THE DIFFERENT HOURS.

Confining our attention in the first instance to the annual resultants given in table II., we find that during the hour commencing noon the resultant wind is from $\mathrm{N} .103^{\circ} \mathrm{W}$., its extreme distance on the left of north. From this point, at whic. ..e wind is nearly steady during the three hours commencing at noon, it draws round regularly and continuously till it makes its nearest approach to the north (N. 38° W.) at 5 A. k ., about which point it remains nearly steady from midnight to 7 A.M. It then rapidly recedes again to the westward.

The extreme recession of the resultant direction from the north takes place during the first three hours after noon in all months excepting in November, when it occurs between 11 A.m. and noon, and in December, when it is between 3 p.m. and 5 p.m. It occurs in May between 1 p.m. and 2 p.m., but in a contrary direction to that of all other months, being 108° to the east of north.

The hours of nearest approach to the north are not so well marked and are included within wider limits. For most months they were found between midnight and sunrise, but in May, June and November they occur in the early part of the night. The angular diurnal range in the direction of the resultant is 180° in July (its maximum) and 15° in November (its minimum). The quarterly averages of the diurnal ranges are 25° from December to February, 85° from March to May, 152° from June to August, and 65° from September to November; also the half yearly averages are 135° from April to September, and 29° from October to March.

Mean resultant velocities of the wind in the different HOURS.

By table III. it is seen that the maximum resultant velocity for the whole year occurs during the hour commencing 1 p.m., and the minimum during the two hours between 4 A.m. and 6 A.m., the progression being continuous from the maximum to the minimum and to the maximum again, if the second place of decimals be disregarded.

The maximum takes place in one of the three hours commencing noon in every month but April and May, when it is found in the hours commencing at 9 p.m. in April and at 7 A.m. in May. The hours of minimum are not well marked in the separate months, and in July, August and September there is a double progression.

mean velocities of the wind in the different hours.

On the average of the year, as shewn in table IV., the maximum velocity is from 1 p.M. to 2 p.M., and the minimum from 1 A.m. to 2 A.m. The maximum occurs in every month during one of the four hours commencing noon, and the minimum in most months within three hours of midnight, a prominent exception being in December, when the minimum is at $7 \mathrm{~A} . \mathrm{M}$.

MEAN VELOCITIES GF THE WIND IN DIFFERENT DIRCTIONS.

From table V. which includes only the winds at the six observation hours, we learn that the wind has a maximum mean velocity of 10.90 miles per hour when it blows from N.W., and a minimum mean velocity of 5.22 miles when it blows from S.E. There is an interruption to the continuity of the progression amounting to a second maximum at about E.N.E. and a second minimum at about N.N.E.

ANNUAL DISTRIBUTION OF THE DIFFERENT WINDS WITH RESPECT TO DURATION.

The results given in tables I . to IV. depend on the velocities as well as on the durations of the different winds; and as the average velocities in some directions are much greater than in others, these tables convey but indirect information as to the comparative prevalence of the different winds with respect to their duration. To supply this want tables VI. to IX. are given which were computed in the following manner.

From the monthly abstracts which give the direction of the wind during every hour of every day, tables for each month in the seven years 1853 to 1859 were formed, containing the number of times during like hours that the wind blew from each of the sixteen principal points, as well as the number of absolute calms in each group of like hours. By combining these tables the two following auxiliary tables were prepared.

Table (A) giving the absolute durations in hours of the different winds and of the calms for the several months, each month embracing the observations of seven years.

Table (B) The absolute durations of the different winds and of the calms for each of the twenty-four hours, each hour including all the winds recorded for that hour in the seven years.

Table VI. is derived from table (A) by expressing the absolute duration of each wind in each month and in the year, in terms of the monthly and annual mean durations for all winds. It is designed to give, for each month separately, and for the year collectively, a comparative view of the duration of the different winds.

It appears that winds from between S.S.W. and north have a more than average duration as compared with other winds taking the year round; but it is only those from N.N.W. whose duration exceeds
the average in each separate montl. Winds from E.N.E. and E. are above the average on the whole year as well as in each separate month but December, January, February, and August.

The north wind is above the average of all winds on the whole year, and is above the average in some months and below it in others, but without any perceptible annual period.

The duration of the south wind is below the average of all winds, taking the whole year collectively, as well as in each separate month but May, June, July and August.

The wind of maximum duration for the whole year collectively is N.N.W. and the wind of minimum duration S.E. with a second maximum at east and a second minimum at N.N.E.

The principal maximum is found at some point between W.S.W. and N.N.W. in seven months; but in April, May and June east winds are the most frequent, and in July and September the most frequent wind is from S.S.W.

The wind of least duration is from S.E., S.S.E. or south in seven months; but in May, July, August, and September,* the least frequent wind is from W.S.W., and in June it is from N.N.E.

In table VII. the durations of the same wind in the different months are compared. As the months are of different lengths, instead of comparing the absolute durations, which for the longer months would be unduly great, this table is obtained by expressing the numbers of table VI. in terms of the annual arithmetic means for the several winds.

The change in duraiion from month to month exhibited by this table is very irregular, excepting in the case of the south wind, which decreases in duration continuously from its maximum in June to its minimum in December, the maximum being to the minimum nearly in the ratio of 8 to 1 .

If N_{s} be taken to denote the ratio which the duration of winds from the three points N.N.W., north and N.N.E. in the six winter months (October to March) bears to the duration of the winds from the same three points in the summer half year, and if N_{7} be the corresponding ratio when the winds from north are associated with those from the three points on either side of it from W.N.W. to E.N.E., the ratios for the analogous combinations about the three other cardinal points being represented by $S_{3}, S_{7}, E_{\mathbf{8}}, E_{7}, W_{3}, W_{7}$; it is found that

[^0]\[

$$
\begin{array}{llll}
\mathrm{N}_{3}=0.91 ; & \mathrm{S}_{8}=0.49 ; & \mathrm{E}_{8}=0.65 ; & \mathrm{W}_{8}=2.24 ; \\
\mathrm{N}_{7}=1.01 ; & \mathrm{S}_{7}=0.91 ; & \mathrm{E}_{7}=0.70 ; & \mathrm{W}_{7}=1.39 ;
\end{array}
$$
\]

Again, if the durations of the winds in the northern and in the western groups be compared with those of the groups diametrically opposite, and $\left(\frac{N}{\mathrm{~S}}\right)_{\mathrm{s}}$, be employed to denote the ratio whose first term is the duration of the winds from the three points about north, the ratios between the other groups being expressed in an analogous manner, we have

$$
\begin{aligned}
& \text { Winter }\left(\frac{\mathrm{N}}{\mathrm{~S}}\right)_{3}=1.94 ;\left(\frac{\mathrm{N}}{\mathrm{~S}}\right)_{2}=1.36 ;\left(\frac{\mathrm{W}}{\mathrm{E}}\right)_{3}=2.18 ;\left(\frac{\mathrm{W}}{\mathrm{E}}\right)_{7}=2.25 \text {; } \\
& \text { Summer =1.04; =1.22; =0.63; =1.13; } \\
& \text { Year }=1.34 ;=1.30 ;=1.25 ;=1.59 \text {; }
\end{aligned}
$$

DIURNAL DISTRIBUTION OF THE DIFFERENT WINDS WITH RESPECT

 TO DURATION.The comparative durations, for each hour, of the sixteen winds and the calms are obtained by dividing the absolute duration of each wind in the hour by the average duration of all winds, including calms, in the same hour. The results are given in table VIII.

From this table the following facts may be gathered :
I. The durations of the winds from W.S.W. to N.N.W. inclusive, for each hour separately, as well as for all hours collectively, are above the average duration of all winds.
II. The durations of winds from E. to E.N.E., taking the twentyfour hours collectively, are above the average; and excepting from 2 A.m. to 3 А.м., one or other or both of these winds are above the average at all hours.
III. The durations of the north winds are above the average for the whole day collectively, and have a marked diurnal period, their durations being above the average duration of all winds from 9 p.m. to 9 A.m., and below the average from 9 p.m. to 9 A.m.
IV. The south winds have a duration less than the average of all winds, taking one hour with another, and t t ey also have a diurnal period, their durations being above the averag duration of all winds from 10 А.м. to 6 р.м., and below the average daring the rest of the twènty-four hours.
V. The principal maximum occurs with the wind from S.S.W. from Il A.м. to 4 p.m., namely, during a portion of the time when the duration of the south wind is above the average, and it occurs with the N.N.W. and north winds mostly at the hours when the duration of the north wind is above the average, a second maximum vibrating from east to E.N.E. during the whole of the day and night. From 9 a.m. to 11 A.m., and from 4 p.m. to 7 p.m., namely, when the north and the south winds respectively are near their averages as compared with other winds, and when the winds in the N.W. quadrant are more equally distributed among its several points, the easterly or second maximum surpasses in value the westerly or principal maximum.

The character of the diurnal periodicity of the different winds is more apparent in table IX., in which the duration of each wind at each hour is expressed in terms of the average duration of that wind in the twentyfour hours.

If the columns corresponding to the four cardinal points be examined, it is found that the west wind, during the night, is mostly above the twenty-four-hour average, and below that average during several hours of the day; but the range is small, the maximum being to the minimum in the ratio of 1.36 to 1 .

The east wind from 8 a.m. to 9 p.m. is above the twenty-four-hour average for that wind, and is below the average from $9 \mathrm{P} . \mathrm{M}$. to $8 \mathrm{~A} . \mathrm{M}$, its diurnal range, or the ratio of the maximum to the minimum, being 2.40 to 1 . The north wind is above the average from $10 \mathrm{p} . \mathrm{m}$. to 9 A.m., and below the average from 9 A.m. to $10 \mathrm{p} . \mathrm{m}$. , and has a range of 3.44 to 1 . The south wind is above the average from $10 \mathrm{~A} . \mathrm{m}$. to 7 p.m., and below it from 7 p.m. to 10 A.m. Its range is 4.82 to 1.

Calms occur eight times as often between midnight and 1 A.m. as they do between 1 p.m. and 2 p.m. The hours of maximum and minimum frequency of calms are very nearly the same as those of minimum and maximum mean velocity, a correspondence which, as appears from table VII., does not bold in the case of the annual distribution of calms.

TABLE I．
Rcsultant Direction，Resultant Velocity，and Mean Velocity of the Wind， for each Month．
RESULTANT DIRECTION．

	寅	－	皆	寅	它	官	鲒	寑	$\begin{aligned} & \text { 禺 } \\ & \text { 品 } \\ & \text { 芯 } \\ & \text {. } \end{aligned}$	宫		它	灾
1854	м 77 W	N ${ }^{\circ} \mathrm{F}$ E	N 53 w	\％ 50 P	（ 9008	N 2.4 E	N131w	x 6 ¢ W	N $22 . \mathrm{w}$	N $\stackrel{0}{5} \mathrm{w}$	N 9	N 4.50	＊ 45 w
1855	N 73 w	$\cdots 10 \mathrm{~W}$	N 88 w	N 36 w	N 1 w	N 69 w	N181w	N63 W	N 20 B	N 82 w	＊ 66 w	N 92 w	N64 W
1856	N 75 W	N 81 W	N71w	N 23 E	N 4 LB	N 159w	＊ 79 w	N 50 W	N．101w	N 76 W	$\cdots 95 \mathrm{~W}$	N 93 W	N 71 W
1857	2 70 W	N102w	N 63 w	N 60 w	N 23 W	N 49 w	N 1128	N 77 W	N 68 w	N 19 w	N 119\％	＊ 89 w	N 74 w
1858	N 71 w	N72	＞ 58 w	s 1.4 w	N 42 E	－ 160 E	N 158	N 69 w	N106w	N 34 w	N 25 W	N 18 W	N＇1 w
1859	－ 99 w	N 54 w	NB4w	N 36 w	N 72 F	N 77 w	N 56 W	N 36 W	N 44 w	N 68 w	N 81 w	＊ 53 W	N 61 ：
$\begin{gathered} 1854 \\ \text { to } \\ 1850 \end{gathered}$	x 77 W	N 67 w	N 70 w	N 23 w	N 20 E	N 73 W	N 66 W	N 58 W	N 61 W	N 62 w	N 85 W	$\times 70$	N 62 w

TABLE II.

Monthly and Annual Resultant Direction of the Wind, for each hour of Toronto Astronomical Time, for the period 1854 to 1859 inclusive.

TABLE III．

Monthly and Yearly Resultant Velocity of the Wind，for each hour of Toronto Astronomical time，for the period 1854 to 1859 incluaive，the velocitipg being in miles per hour．

$\underset{x_{1}^{2}}{\stackrel{2}{6}}$		$\stackrel{0}{0}$	$\begin{gathered} \text { Hi } \\ \stackrel{y}{\mathrm{~N}} \\ \text { N } \end{gathered}$	$\underset{\sim}{\dot{c}}$	先		$\frac{5}{5}$	亥	守		3	\％	－
0	114.71	4.34	5.97	1.15	1.111	2.36	2.17	2.67	2.35	35.3	4.40	4.30	2.61
1	14．69	4.17	8.1 .4	1.80	1.17	2.65	2.810	2.92	2.10	3.29	1.35	4.48	2.71
2	4.45	3.94	6．20	1．6is	0.118		2.73	2.73	2.05	3.34	415	4.24	2.70
3	3.92	3.98	6.26	1.02	1.03	1.70	1.97	2.29	1.75	3.21	4.07	3.94	2.56
4	3.45	3.76	6.27	1314	1.37	1.42	1.16	1.94	1.70	3.39	3.76	3.89	2.60
5	3.02	2.94	＋5．164	2.45	1.811	61．943	0.75	2.50	1.43	2.55	3.10	3.75	2.48
6	3.10	3.13	5.44	3.14	4.20	0.86	0.60	2.50	1.38	${ }_{*}^{2}+7$	2.83	3.82	2．44
7	3.05	3.21	5.10	2.47	2.87	11.4	0.64	$2.2 i$	1.47	2.47	2.59	3.92	2.38
8	3.12	$3 \% 5$	＋193	3.8 .3	2.018	1.16	0.80	2．30	1． 58	2.45	2.53	14.00	2.35
9	2.55	3.12	5.15	3.38	1．15\％	1.50	1.05	2.37	1.60	2.34	2.41	3.98	2.38
10	－．．．	2.92	4.64	317	202	1.14	1.43	2.24	1.92	2.15	2.53	3.88	2.36
11	28	2.80	4.39	2.71	2． $2 \times$	1．65	1.64	2.13	1.52	2.00	$2: 8$	3．80	2.28
12	2.75	3.92	4.31	301	4.21	1.128	1.81	2118	1.69	1.92	2.6	3．33	$\therefore 25$
13	2.73	3.42	4．24	3.177	2．${ }^{\text {a }}$	1.313	2.105	2.25	1.510	2.14	2.52	［2．91	2.32
14	292	3.35	3.45	3.61	2.14	1.53	2.05	2.15	1.96	2.23	9.6	2.76	2.33
15	2.31	3.23	3．12	2．st	2.43	1.11	2.01	2.31	1.90	2.21	2.75	2.67	2.25
16	2.71	334	3.47	2．95	2．：3	1.111	1.93	2.12	1.73	2.06	2.62	2.55	2.15
17	2.74	3.23	3.75	311	2.47	1.31	179	2.10	161	2.16	2.43	2.41	2.11
15	2.74	3.73	3 Na	8.85	3． 3.8	1.36	1.74	2.26	1.58	$\because \cdot 10$	2.65	12.11	2.23
19	3.12	3.57	4.21	3.019	3.06	0.07	1.64	2.09	1.72	2． 13	2.55	2．27	2.22
20	3.30	3.53	4．5，${ }^{\text {d }}$	2.188	3.361	11.42	068	2.25	1.43	3.09	2.7	2.85	2.22
21	3.77	4.10	5.109	1.118	2． 513	1.12	0.67	1.45	1.24	3.14	3.62	311	2.24
22	3.90	3.98	5.38	1.17	1．82	1．15	1.82	175	1.41	3.18	4.17	3.87	2.18
23	4.45	4.30	5.71	0.42	1.41	． 18	2.48	2.44	2.41	3.33	4．43		2．37
Perio of 2 nonr	3.23	4．）	S			0.60	0.18	1.65	1.16	2.60	3.12	． 42	2.18

TABLE IV．

Monthly and Yearly Mean Velocity of the Wind，for each hour of Toronto Astro－ nomical Time，for the period 1854 to 1859 inclusive，the velocities being in miles per hour．

$\underset{\Xi}{\tilde{\Xi}}$	$\stackrel{\dot{\#}}{\underset{H}{y}}$	シ̀		$\stackrel{\rightharpoonup}{t}$	感	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\boldsymbol{E}}}$	$\stackrel{8}{3}$	$\underset{\underset{y y}{*}}{\substack{\text { un }}}$	$\stackrel{\stackrel{\rightharpoonup}{\ddot{*}}}{\stackrel{\sim}{\circ}}$	す	$\stackrel{3}{2}$	®	烒
0	10.43	10.69	12.10	11.20	10.33	8.80	8.76	8.99	9.27	1.33	1.57	10.97	． 29
1	10.54	10．5	12.20	11.12	110.28	19.101	8．52	9.45	8.84	． 22		11.05	32
2	10.45	10.13	12． 59	10.49	10.105	S．811	8．7．4	9.72	9.21	9.98	11.86	10.69	10.27
3	9.86	995	12.43	10.16	0.47	8， 8.	8.18	8.52	8.80	939			9.84
4	9．23	9.72	12．58	10．43	0.11	8 5	7.438	$9 \cdot 11$	7.86	8.50	10.28	9.97	9．94
5	8.63	8.54	11.18	9.18	5.02	7．8is	13.33	7．8：	6.09	6.65	9.06	9.60	8.20
${ }_{6}$	8.66	8.57	10.24	8.15	8.09	0.84	50	0.41	5.09	5.57	8.83	9.64	7.45
7	8.73	8.88		7.17	13．23	${ }_{4} \mathrm{~S}_{18} 8$	3.68	5.18	4.64	5.77	8.27	9.63	6.91
8	S． 38	8.99	9.41	7.92	3.01	4.41	3.31	4.93	4.45	5.33	8.31	9.88	8.72
9	7.74 7	8.08	9．22	7.06	5．4t；	＋． 111	3.30	4.63	$\underline{+68}$	5.29	8.02	9．23	6．40
10	791 7.76	7.69 7.73	8.53 8.23	6.88 085	8.1015 8.18	4.17 3.80 .5	3.82 381 18	462 4.08	4.66 4.29	5.42 5.08	7.98	9．74 ${ }_{9}$	6.34 6.18
12	7.90	7.84	8.12	8.58	4.82	411	4.09	3.98	4.09	4.92	7.9	9.63	6.17
13	765	8.19	8.04	0.50	4.09	3．8．4	3.82	4.16	4.40	5.00	7.38	9.21	6.14
14	7.45	8.11	7.85	6.82	5.334	3.82	4.07	4.18	4.48	5.41	7.80	943	6．2．4
15	7.42	7.86	7.98	6.71	8.103	3.77	3.83	4.29	4.39	5.25	8.18	9.48	6.17
16	7.49				4.87	3.813	3.05	4.15	4.16	509	8.26		6.16
17	7.82	7.99	8.12	7.06	5.42	4.01	3.68	4.24	4.19	5.17	8.09	9.22	6．20
18	7.94	8.62	8.36	7． 50	7.27	\＄． 81	4.01	4.56	4.29	4.91	8.08	9.25	${ }_{6}^{6.62}$
19	765	8.06	8 8 64	8． 4.4	8.03	8.10	3．72	4.79	5.11	5.50	7.9	8.49	6.87
20	8.08	8.57	9.45	8.31	9.02	8.17	0.73	8.43	6.14	6.87	8.	9.57	7.83
21	8.83	9.55	10．4t		9.47	7.181	8.70	7.31	7.28	8.10	9.61		8.67
22 23	9.35 990	［10．13	［11．17 1	近10．81 11.27	（ $\begin{array}{r}0.01 \\ 10.25\end{array}$	8.04 868	7.38 7.97	8.15 0.00	7.99 8.72	9.03 9.83	110.8	10.48 10.50	9．4．4 9.96
Period $0 \% 8$ boure．	8.56	8.87	8.86	8.50	7.37	8.91	6.41	0.24	5.96	6.81	9.15	9.75	7.70

TABLE V．

Mean Velocity of the Wind，arranged according to its direction，for the period 1853 to 1859 inclusive．

TABLE VI．

Ratios shewing the comparative duration of different winds，in the whole year as well as in ea：b separate month，being the absolute durations of the dif－ ferent winds in the year or month，expressed in terms of the annusl or monthly mean duration of all winds．

	空		$\begin{aligned} & \text { D} \mathbf{~ N} \\ & \text { N } \end{aligned}$	冡			$\underset{\sim}{3}$	烒			苍	它11	
N．	1.15	1.24	0.6	1.29	1.31	0.2	1.06	1.20	1.20		0.75	1．291	
N．N．E．	0.74	0.85	0.33	0.96	0.50	0.4	0.70	0.85	0.54	0.66	0.65	1.10	0.72
N．E．	0.96	0.78	0.34	0.84	0.71	0	0.59	0.	0 c 8	0.85	0.68	1.12	0.73
E．N．E	6.72	0.0	1.10	1.40	190	1.34	1.10	0.77	1.01	1.02	1.21	0.56	1.09
	0.75	0.96	1.01	1.71	2.08	1.85	1.40	1.10	1.74	1.12	1.47^{1}	072	28
E．S．E．	0.41	0.37	044	0.89	1.03	0.84	0.99	0.66	0.68	0.47	0.49	0.42	0．6is
S．E．	0.23	0.20	0.46	0．4S	056	0.51	0.72	0.75	0.69	0.22	0） 43	0.22	0.45
S．S．E．	0.21	0.25	0.24	0.52	0.57	0.59	118	0.67	0．72	0.45	1.43	0．19	0.50
	0.25	0.37	0.47	0.75	1.08	1.40	1.39	1.15	0．9n！	0.91	0.42	019	0.78
S．S．W．	0.78	1.00	0.90	1．05	1.30	1.63	1.61	1.27	1.50	145	0.86	0.49	
S．W．	1.58	1.15	1.39	0.73	0.70	1.35	0.72	0.83	0.95	1.01	1.50	142	1.12
W．S．W	2.61	2.01	1.27	0.71	0.36	0.60	0.46	0.51	0.65	1.930		2．61．	1.23
	1.75	2.08	1．81	0.93	0.49	0.90	0.803	0.92	0.78	1.35	1.78	1.95	1.25
W NW	1.00	1.47	2.27	1.13	0.79	． s ．	0.86	1.38	1.05	1.67	1.84	1.11	1.84
	118	1.19	$\because .05$	1．12	0.97	1.20	1.00	1.49	1.12	1.32^{+}	1.01	1 ns	1.28
N．NW	1.35	1.58	1．4	1.01	1.69	1.15	1.48	1.69	1.351	$1 \cdot 29$	1.03	1.29	1.41
Calms．	1.23	083	0.80	1.00	0.96	076	1.22	i． 11	1.361	1．671	0.89	1．02：	109

TABLE VII．

Ration shewing the comparative durations of each separate wind in the different monthe，being the numbers in Table VI．expressed in terms of the Annual Means．

	$\stackrel{\text { 容 }}{\text { en }}$	$\begin{aligned} & \text { in } \\ & \text { i } \end{aligned}$		寅	完	奢	$\stackrel{3}{\square}$	䓂			宮	
	1.08	1.14	0.62	1.18	1.20	0.84	0.87	1.10	1.10	0.91	0.89	1.18
N．N．E．	i． 03	1.18	0.46	1.34	0.70	0.61	0.98	1.18	117	0.92	0.90	1.53
N．E．	1.31	1.00	0.46	114	0.97	0.90	0.80	0.88	1.06	1.16	093	1.39
EN．E．	0.66	0.62	1.00	1.28	1．74	1.22	1.00	0.70	0.95	0.93	1.11	0.79
E．	0.59	0.75	0.79	1.34	1.63	1.45	1.09	0.86	0.89	0.88	1.15	0.58
E．S．E．	0.69	0.58	0.69	1.39	1.61	1.31	1.55	1.03	1.00	0.73	0.77	0.68
S．B．	0.50	0.45	1.00	1.05	1.24	1.12	1.58	1.65	1.57	0.48	0.94	0.48
S．S．E．	0.42	0.56	0.48	1.03	1.13	1.17	2.34	1.33	1.43	0.89	0.85	0.38
S．	0.32	0.48	0.60	0.97	1.38	1.82	1.78	1.49	1.23	1.18	0.54	0.23
S．S．W．	0.70	0.89	0.80	0.92	1.16	1.46	1.44	1.13	1.34	0.94	0.77	0．44
	2.42	1.08	1.25	0.65	0.63	1.21	0.64	0.74	0.88	0.91	1.34	1.27
W．S．W	2.12	1.63	1.03	0.58	0.29	0.49	0.37	0.41	0.53	0.73	1.69	2.12
W．W	1.39	1.63	1.41	0.73	0.38	0.70	0.41	0.72	061	1.08	1.39	1.55
W．NW	0.81	1.19	1.83	0.91	0.64	068	0.69	1.11	0.85	1.31	1.08	0.90
N．W．	0.96	0.97	1.67	0.91	0.79	0.97	0.81	1.21	0.91	1.11	0.82	0.88
N．NW	0.98	1.12	1.02	1.07	120	0．84	1.05	1.20	0.96	0.91	0.73	0.82
Cslms．	1.13	0.76	0.73	0.92	0.88	0.70	1.20	1.02	143	1.53	0.82	0.95

TABLE
Ratios shewing the comparative duration of different winds at each separate duration of all winds

Toronto Astronomical time.	N.	N.N.E.	N.E.	E.N.E.	E.	E.S.E.	S.E.	S.S.E.	S.
0	0.61	0.83	0.43	0.86	1.61	1.02	0.78	0.96	1.65
1	0.55	0.28	0.44	0.98	1.54	1.04	0.80	0.99	1.65
2	0.50	0.29	048	0.86	1.78	1.05	0.70	0.94	1.62
8	0.54	0.28	0.39	0.96	1.76	1.12	0.69	0.98	1.31
4	0.61	0.31	0.45	1.01	1.84	1.00	0.71	0.81	1.16
6	0.74	0.34	0.53	1.14	1.72	0.86	0.54	0.76	1.00
6	0.70	0.40	0.59	1.30	1.58	0.67	0.46	0.66	0.97
\uparrow	0.53	0.44	0.68	1.32	1.38	0.71	0.38	0.51	0.71
8	0.94	0.53	0.66	1.24	1.30	0.51	0.46	0.39	054
9	1.08	0.68	0.73	1.22	1.18	0.46	0.33	0.41	0.44
10	1.27	0.80	0.77	1.22	1.04	0.48	0.37	0.35	0.40
11	1.46	088	0.85	1.00	1.05	0.41	0.38	0.31	0.39
12	1.59	0.97	0.86	1.08	0.88	0.41	0.31	0.25	0.37
18	1.54	1.14	0.98	1.01	0.79	0.35	0.81	025	0.39
14	1.62	1.26	1.02	0.98	0.54	0.35	0.27	0.23	0.37
15	1.72	1.24	0.97	1.01	0.52	0.34	0.27	0.21	0.42
16	1.66	1.18	0.98	1.12	0.76	0.33	0.21	0.27	0.35
17	1.62	1.18	1.03	1.16	0.77	0.34	0.19	0.33	0.37
18	1.54	117	10%	1.13	0.86	0.83	0.24	0.29	0.39
19	1.46	1.07	1.02	1.18	1.07	0.35	0.27	0.24	0.41
20	1.19	0.56	0.92	1.34	1.36	0.54	0.35	0.27	0.44
21	0.96	0.64	0.84	115	1.55	0.75	0.46	0.87	0.66
23	0.79	0.53	0.53	1.04	1.57	0.93	0.70	0.62	1.12
23	0.82	0.43	0.44	0.96	1.52	1.06	0.80	0.78	1.52

VIII.
hour, being the absolute durations at the hour expressed in terms of the Mean at the same hour.

S.S.W.	S.W.	W.S.W.	W.	W.N.W	N.W.	N.N.W.	Calms.	Toronto Astronomical time.
\$. 82	1.16	1.05	1.28	1.14	1.10	1.00	6.25	0
1.87	1.16	1.12	1.19	1.12	1.14	0.96	0.22	1
1.91	1.04	1.16	1.23	1.08	1.04	108	027	2
1.83	1.11	1.12	1.23	1.08	1.05	1.22	0.36	3
1.57	1.21	1.09	1.22	1.06	1.12	1.27	0.55	4
1.48	1.30	2.11	1.13	1.20	1.04	1.28	0.86	5
1.24	1.34	1.20	1.13	1.13	1.29	1.35	0.99	6
1.11	1.37	1.28	1.10	1.31	1.21	1.55	1.11	7
0.87	1.36	1.33	1.29	1.25	1.22	1.66	1.46	8
0.77	1.06	1.35	1.29	1.31	131	1.62	1.68	9
0.68	1.00	1.84	146	1.28	1.24	167	1.67	10
0.74	0.94	1.38	1.40	1.22	1.30	1.66	1.63	11
0.68	0.95	1.84	134	1.26	1.29	1.59	1.82	12
0.85	0.90	1.40	1.30	1.22	1.85	1.61	1.80	18
0.74	$0 \cdot 90$	1.38	1.24	1.35	1.44	152	1.49	14
0.68	0.95	1.26	1.23	1.38	1.35	1.62	1.52	15
0.67	0.97	1.2:	1.28	1.48	1.28	1.65	1.56	16
0.65	0.92	1.22	1.33	1.35	1.33	1.70	1.47	17
0.69	1.05	1.14	1.22	1.38	1.31	1.60	1. 60	18
0.75	1.08	1.22	1.34	1.32	1.25	1.48	1.49	19
0.96	1.25	1.26	1.42	1.24	1.25	1.48	0.96	20
1.28	1.29	1.26	1.40	1.25	1.81	1.12	0.64	21
1.55	1.22	1.21	1.29	1.20	1.24	1.06	0.41	22
4.69	1.17	1.05	1.26	1.12	1.14	1.06	0.39	28

TABLE
Batios shewing the comparative duration of each separate wind in the different duration of the same

\qquad	N.	N.N.E.	N.E.	E.N.E.	E.	E.S.E.	S.E.	S S.E.	S.
0	0.56	0.46	0.59	0.79	1.26	1.59	1.71	1.90	2.12
1	0.51	0.39	0.61	0.85	1.21	1.62	1.75	1.96	2.12
2	0.46	0.40	0.59	0.79	1.40	1.64	1.53	1.86	2.08
5	0.50	0.39	0.53	0.88	1.38	1.75	1.51	1.90	1.70
4	0.56	0.43	0.61	0.92	1.44	1.56	1.55	1.60	1.49
6	0.68	0.47	0.72	1.44	1.34	1.34	1.18	1.48	1.29
6	0.64	0.56	0.80	1.19	1.24	1.05	1.01	1.30	1.25
7	0.76	0.61	0.93	1.21	1.08	1.11	0.33	1.01	0.91
3	0.86	0.74	0.80	1.13	1.02	0.80	1.01	0.77	0.69
9	0.99	0.94	0.99	1.12	0.96	0.72	0.72	0.81	0.57
10	1.17	1.11	1.05	1.12	0.82	0.67	0.80	0.69	0.51
11	1.34	1.23	1.16	0.91	0.82	0.64	0.83	0.61	0.60
12	1.46	1.35	1.17	0.99	0.69	0.64	0.67	0.49	9.48
18	1.41	1.59	1.34	0.92	0.62	0.55	0.67	0.49	0.50
14	1.49	1.75	1.39	0.90	0.66	0.65	0.59	0.45	0.48
15	1.08	1.78	1.82	0.92	0.60	0.53	0.59	0.41	0.54
16	1.52	1.64	1.34	1.02	0.63	0.52	0.46	0.53	0.44
17	1.49	1.64	1.40	1.06	0.60	0.53	0.41	0.65	0.47
18	1.41	1.83	1.46	1.03	0.68	0.51	0.52	0.57	0.50
19	- 34	2.49	1.39	1.08	0.84	0.55	0.59	0.47	0.53
20	1.09	1.20	1.25	1.23	1.07	0.84	0.77	0.53	0.57
21	0.88	0.89	1.14	1.08	1.22	1.17	1.01	0.73	0.85
22	0.78	0.74	0.72	0.95	1.23	1.45	1.53	1.23	0.44
23	0.57	0.60	0.61	0.88	1.19	1.66	1.76	1.54	1.96

IX.
hours, being the absolute durations at the hour expressed, in terms of the Mean
wind for all hours.

SSS.W.	S.W.	w.s.w.	W.	W.N.W	N.W.	N.N.W.	Caines.	Toronto Astronomical time.
1.62	1.04	0.85	0.97	0.92	0.89	0.71	0.23	0
1.67	1.04	0.91	0.94	0.90	0.93	0.68	0.20	1
1.70	0.93	0.95	0.97	0.87	0.85	0.77	0.25	2
1.63	1.00	0.91	0.97	0.87	0.85	0.87	0.38	3
1.40	1.09	0.89	0.96	0.85	0.91	0.90	0.50	4
1.62	1.17	0.90	0.89	0.97	0.85	0.91	0.79	5
1.11	1.20	0.98	0.89	0.91	1.04	0.96	0.90	6
0.99	1.23	1.04	0.87	1.06	0.98	1.10	1.02	7
0.78	1.22	1.09	1.02	1.01	0.99	1.18	1.34	8
0.69	0.95	1.10	1.02	1.05	1.06	1.20	1.54	9
0.61	0.90	1.09	1.18	1.08	1.01	1.19	1.53	10
0.66	0.84	1.12	1.06	0.98	1.06	1.18	1.49	11
0.61	0.85	1.09	1.03	1.01	1.04	1.13	1.67	12
0.68	0.81	1.14	0.98	0.98	1.09	1.14	1.65	13
0.66	0.81	1.12	0.97	1.09	1.17	1.08	1.36	14
0.61	0.85	1.03	0.97	1.11	1.09	1.15	1.39	15
0.60	089	0.99	1.01	1.19	1.04	1.17	1.43	18
0.68	0.83	0.99	1.05	111	1.08	1.20	1.35	17
0.62	0.94	0.98	0.96	1.11	1.06	1.18	1.47	18
0.67	0.97	0.99	1.06	1.07	1.01	1.05	1.37	19
0.86	1.12	1.08	1.12	1.00	1.01	0.99	0.88	20
1.14	1.16	1.03	1.10	1.08	1.06	0.80	0.59	21
1.38	1.10	0.98	1.02	0.97	1.01	0.75	0.38	22
1.61	2.05	0.85	1.00	0.90	0.98	0.75	0.86	23

A. NEW PROOF OF THE EXISTENCE OF THE ROOTS OF EQUATIONS.

BY THE REV. GEORGA PAXTON YOUNG, M.A., TOBONTO.

The equation of the $m^{\text {ts }}$ degree,

$$
\begin{equation*}
f(x)=x^{m}+a_{1} x^{m-1}+\ldots \ldots \ldots . .+a_{m}=0, \tag{1}
\end{equation*}
$$

has a root. For, y and z being real variables,

$$
f(y+\sqrt{-1} z)=P(\cos \lambda+\sqrt{-1} \sin \lambda) ;
$$

where P and λ are real. When y and z receive the definite values y_{1} and z_{1}, let P and λ become P_{1} and λ_{1} respectively; and let P_{1}^{i} be the least possible value of P^{2}. Then $y_{1}+\sqrt{-1} z_{1}$, or, as we may call it, x_{1}, is a root of the equation,

$$
\begin{equation*}
f(x)-P_{1}\left(\cos \lambda_{1}+\sqrt{-1} \sin \lambda_{1}\right)=0 . \tag{2}
\end{equation*}
$$

Let n be the greatest number of roots equal to x_{1} which this equation has. Then $f(x)-P_{1}\left(\cos \lambda_{1}+\sqrt{-1} \sin \lambda_{1}\right)$ is divisible by $\left(x-x_{1}\right)^{n}$ without remainder : which we may express by putting

$$
\begin{equation*}
f(x)-P_{1}\left(\cos \lambda_{1}+\sqrt{-1} \sin \lambda_{1}\right)=\left(x-x_{1}\right)^{n}\{F(x)\} . \tag{8}
\end{equation*}
$$

Take $x_{2}=x_{1}+k(\cos \phi+\sqrt{-1} \sin \phi)=x_{1}+h$. Then

$$
F^{7}\left(x_{2}\right)=F\left(x_{1}\right)+X_{1} h+\mathrm{X}_{2} h^{2}+\& c . ;
$$

where $X_{1}, X_{2}, \& c$., are clear of h. In order to separate the real from the imaginary parts in the value of $F\left(x_{8}\right)$, put

$$
F\left(x_{1}^{4}\right)=A(\cos \theta+\sqrt{-1} \sin \theta), X_{1}=B(\cos \psi+\sqrt{-1} \sin \psi),
$$

and so on. Since equation (3) is independent of the particular value of x, we may substitute x_{2} for x in that equation. Then

$$
\begin{aligned}
f\left(x_{8}\right)= & P_{1}\left(\cos \lambda_{1}+\sqrt{-1} \sin \lambda_{1}\right)+h^{n}\left\{F\left(x_{1}\right)+X_{1} h+\oint c .\right\} \\
& =P_{1} \cos \lambda_{1}+k^{n} A \cos (n \phi+\theta)+\ldots \ldots \\
& +\sqrt{-1}\left\{P_{1} \sin \lambda_{1}+k^{n} A \sin (n \phi+\theta)+\oint c\right\} .
\end{aligned}
$$

By putting $S=k^{n} A \cos (n \phi+\theta)+\xi c$, and $T=k^{n} A \sin (n \phi+\theta)+\& c$, this becomes

$$
f\left(x_{2}\right)=\left(P_{1} \cos \lambda_{1}+S\right)+\sqrt{-1}\left(P_{1} \sin \lambda_{1}+T\right) ;
$$

which again if $F_{2}^{2}=\left(P_{1} \cos \lambda_{1}+S\right)^{2}+\left(P_{1} \sin \lambda_{1}+T\right)^{2}$, may be written

$$
f\left(x_{2}\right)=P_{2}(\cos \beta+\sqrt{-2} \sin \beta)
$$

Since P_{2}^{8} is a particular value of P^{8}, and since the least value of F^{s} is $P_{1}^{2}, P_{q}^{\imath}-P_{1}^{q}$ cannot be negative. But

$$
\begin{align*}
P_{\mathrm{e}}^{2}-P_{1}^{2} & =2 P_{1}\left(S \cos \lambda_{1}+T \sin \lambda_{1}\right)+S^{e}+T^{2} \\
& =2 k^{n} A P_{1} \cos \left(n \phi+\theta-\lambda_{1}\right)+\& c_{0} \tag{4}
\end{align*}
$$

We give only the first term in the expansion of $P_{\frac{2}{2}}^{\rho}-P_{1}^{\rho}$ according to the ascending powers of k. The other terms contain powers of k higher than the $n^{\text {th }}$. Now suppose if possible that P_{1} is not zero. From the manner in which $F(x)$ was taken in equation (3), $F\left(x_{1}\right)$ is not zero; for if it were, $\boldsymbol{P}(\boldsymbol{x})$ would be divisible by $x-x_{1}$, and therefore there would be more than n roots of equation (2) equal to x_{1} : which we supposed not to be the case. Hence A also, which is a factor of $F\left(x_{1}\right)$, is distinct from zero. Take then $n \phi$ such $\left[\theta\right.$ and λ_{z} being determined, the former from $F\left(x_{1}\right)$, and the latter from $\left.f\left(x_{1}\right)\right]$ that $\cos \left(n \phi+\theta-\lambda_{1}\right)$ may be distinct from zero, and have its sign opposite to that of $A P_{1}$. Then cause k, always remaining positive, to approach indefinitely near to zero; till the sign of the whole expression for $\dot{P}_{8}^{2}-P_{1}^{2}$ in (4) is the same with that of its first term. The sign of that first term is necessarily negative. Therefore the sign of $P_{\mathrm{p}}^{\ell}-P_{i}^{e}$ is ultimately negative : which, however, we have seen to be impossible. Therefore P_{s} carnot but be zero. Hence $f\left(x_{1}\right)$ is zero; and x_{1} is a root of equation (1).

PROCEEDINGS OF THE BRITISH ASSOCIATION.

For the following valuable extracts from the proceedings of the British Association for the Advancement of Science, we are indebted to the Reports of the London Athenceum. The Association met at Neweastle, under the Presidency of Sir Wm. Armstrong.

EXTRACTS FBOM THE PRESIDENT'S ADDRESS.
The history of railways shows what grand results may have their origin in small beginnings. When coal was first conveyed in this neighbourhood from the pit to the shipping-place on the Tyne, the pack-horse, carryiug a burden of 3 cwt ., was the only mode of transport employed. As soon as roads suitable for wheeled carriages were formed, carts were introduced, and this first step in mechanical appliance to facilitate transport had the effect of increasing the load which the horse was emabled to convey from 8 cwt . to 17 cwt . The next improvement consisted in laying wooden bars or rails for the wheels of the carts to run upon, and this was followed b the substitution of the four-wheeled waggon for the two-wheeled cart. By this further application of mecbanical principles the original horse load of 3 cwt . was augmented to 42 cwt . These were important results, and they were not obtained without the shipwreck of the fortunes of at least one adventurous man whose ideas were in advance of the times in which he lived. We read, in a record published in the year 1649, that "one Master Beaumont, a gentleman of great iugenuity and rare parts, adventured into the mines of Northumberland with his 30,0001 ., and brought with aim many rare engines not then known in that shire, and waggons with oue horse to carry down coal from the pits to the river, but within a few years he consumed all his money and rode home upon his light horse." The next step in the progress of railways was the attachment oi slips of iron to the wooden rails. Then came the iron tramway, consisting of cast-iron bars of an augular section: in this arrangement the upright flange of the bar acted as a guide to keep the wheel on the track. The next advance was an important one, and consisted in transferring the guiding flange from the rail to the wheel; this improvement cuabled cast-iron edge rails to be used. Finally, in 1820, after the lapse of about 200 years from the first employment of wooden bars, wrought-iron rails, rolled in long leagths, and of suitable section, were made in this neighbourhood, and eventually superseded all other forms of railway. Thus, the railway system, like all large inventions, has risen to its present importance by a series of steps; and so gradual bas been its progress, that Europe Guds itself committed to a gauge fortuitously determiued by the distance between the wheels of the carts for which wooden rails were originally laid down.

Lart of all came the locomotive engiuc, that crowning achievement of mechanical scieuce, which enables us to convey a load of 200 tons at a cost of fuel
searcely exceeding that of the corn and hay which the original pack-horse consumed in conveying its load of 3 cwt . an equal distance.

In thus glancing at the history of railways, we may ohserve how promptly the inventive faculty of man supplies the device which the circumstances of the moment require. No sooner is a road formed fit for wheeled carriages to pass along, than the cart takes the place of the pack-saddle : no sooner is the wooden railway provided than the waggon is substituted for the cart: and no sooner is an iron railway formed, capable of carrying heavy loads, than the locomotive engine is found ready to commence its career. As in the vegetable kingdom fit conditions of soil and climate quickly cause the appearance of suitable plants, so in the intellectual world fitness of time and circumstance promptly calls forth appropriate devices. The seeds of invention exist, as it were, in the air, ready to germinate whenever suitable conditions arise, and no legislative interference is needed to insure their growth in proper season.

To persons who contend that all geological phenomena may be attributed to causes identical in nature and degree with those now in operation. the furmation of coal must present peculiar difficulty. The rankness of vegetation which must have existed in the carboniferous era, and the uniformity of climate which appears to have prevailed almost from the Poles to the Equator, would seem to imply a higher temperature of the earth's crust, and an atmosphere more laden with humidity and carbonic acid than exist in our day. But whatever may have been the geological conditions affecting the origin of coal, we may regard the deposits of that minerel as vast magazines of power stored up at periods immeasurably distant for our use.

The principle of conservation of force, and the relationship now established between heat and motion, enable us to trace back the effects which we now derive from enal to equivalent agencies exercised at the periods of its formation. The philosophical mind of George Stephenson, unaided by theoretical knowledge, rightly eaw that coal was the embodiment of power originally derived from the sun That small pencil of solar radiation which is arrested by our planet, and which constitutes less than the 2,000 -milhonth part of the total energy sent fortin from the sun, must be regarded as the power which enabled the plants of the carboniferous period to wrest the carbon they required from the oxygen with which it was combined, and eventually to deposit it as the solid material of coal. In our day, the reunion of that carbon with oxygen restores the energy expended in the former process, and thus we are cnabled to utilize the power originally derived from the luminous centre of our planetary system.

But the agency of the sun in originating coal does not stop at this point. In every period of geological history the waters of the ocean have been lifted by the action of the sun and precipitated in rain upon the earth. This has given rise to all those sedimentary actions by which mineral substances have been collected at pasticular localities, and there deposited in a stratified form with a protecting cover to preserve them for future use. The phase of the earth's existence suitable for the extensive formation of coal appears to have passed away for ever; but
the quantity of that invaluable mineral which has been stored up throughout the ghobe for our henefit is sufficient (if used discrectly) to serve the purposes of the human race for many thousands of years. In fact, the entire quantity of coal may be considered as practically inexhaustible. Turning, however, to our own particular country, aud contemplating the rate at which we are expending those deams of $\mathbf{c o s}$. which yield the best quality of fuel, and can be worked at the least expense, we shall find much cause for anxiety. The greatnees of England much depends upon the superiority of her coal in cheapness and quality over that of other nations ; but we have already drawn from our choicest mines a far larger quantity of coal tham has been raised in all other parts of the world put together, aud the time is not remote when we shall have to encomer the disalivantages of increased cost of working and diminished value of produce.

Estimates have been made at varous periods of the time which would bo required to produce complete exhaustion of all the accessible conl in the British Islands. These estimates are extremely discordant; but the discrepancies arise not from any important disagreement as to the arailable quantity of coal, but from the enormous difference in the rate of consumption at the various dates when the estimates were made, and also from the different views which have been eutertained as to the probable increase of consumption in future years. The quantity of coal yearly worked from British mines has been almost trebled during the last twenty years, and has probably increased tenfold siuce the commencement of the present century; but as this increase has takeu place pending the introduction of steam navigation and railway ransit, and under exceptional conditions of manufacturing development, it would be too much to assume that it will continue to advance with equal rapidity. The statistics collected by Mr. Hunt, of the Mining Records Office, show that at the end of I861 the quantity of coal raised in the United Kingdom had reached the enormous total of 86 millions of tons, and that the average aunual increase of the eight preceding years amounted to $\frac{23}{3}$ millions of tons. Let us iuquire, then, what will be the duration of our coad-fields if this more moderate rate of increase be maintained.

By combining the known thickness of the various workable seams of coal, and? computing the area of the surface under which they lie, it is easy to arrive at an estimate of the total quantity comprised in our combearing strata. Assuming 4,000 feet as the greatest depth at which it will ever be possible to carry on miniug operations, and rejecting all seams of less than two feet in thickness, the entire quautity of available coal existing in these ishands has been calculated to amount to about 80,000 millious of tons, which, at the present rate of consumption, wouli be exhausted in 930 yeurs, but, with a continued yearly increase of 23 millions of tons, would only last 212 years. It is clear that long before complete exhaustion takes place, England will have ceased to be a conl producity country on an extensive scale. Other nations, and especially the United States of Ameriea. which pussess coul-fields thirty-seven times more extensire than ours, will then be working more accessible beds at a smaller cost, and will be able to displace the English conl from every market. The question is, not how long our coal will endure before absolute exhaustion is effected, but how long will those particular coal-seams last which yield coal of a quality and at a price to enable
this oountry to maintain her present supremacy in manufacturing industry. So far as this particular district is concerted, it is generally admitted that 200 years will be suflicient to exhaust the principal seams even at the present rate of working. If the production should contmue to inerease, as it is now doing, the duration of those geams will not reach half that period. How the case may stand in other coal-mining districts I have not the means of ascertaining; but as the best and most accessible coal will always be worked in prefereuce to any other, I fear the same rapid exhanation of our most valuable seams is everywhere taking place. Were we reaping the full advantage of all the coal we burnt, no objection could be made to the largeness of the quantity, but we are using it wastefully and extravagantly in all its applications. It is probable that fully one-fourth of the entire quantity of conal raised from our mines is used in the production of heat for motive power; hut, much as we are in the habit of admiring the powers of the steam-engine, our present knowledge of the mechanical onergy of heat shows that we realize in that engine only a small part of the thermic effect of the fuel. That a pound of coal should, in our best engines, produce an effect equal to raising a weight of a million pounds a foot high, is a result which bears the character of the marvellous, and seems to defy all further improvement. Yet the investigations of recent years have demonstrated the fact that the mechanical energy resident in a pound of coal, and liberated by its combustion, is capable of raising to the same height 10 times that weight. But although the power of our most, economical steam-engines has reached, or perhap3 somewhat exceeded, the limit of a million pounds raised a font bigh per lb. of coal, yet, if we take the average effect obtained from steam-engines of the various constructions now in use, we shall not be justified in assuming it at more than one-third of that amount. It follows, therefore, that the average quantity of coal which we expend in realizing a given effect by means of the steam-engine is about Sin times greater than would be requisite with an absolutely perfect heat-engine.

The causes which render the application of heat so uneconomic in the steamengine have been brought to light by the discovery of the dynamical theory of heat; and it now remains for mechanicians, guided by the light they have thus received, to devise improver' practical methods of converting the heat of comburtion into available power.

Engines in which the motive porver is excited by the communication of heat to fluids already existing in the aeriform condition, as in thone of Stirling, Ericsson and Siemens, promi e to afford results greatly superior to those obtained from the steam-engine. They are all based upon the principle of employing fuel to generate sensible heat, to the exclusion of latent heat, which is only another name for heat which has taken the form of unprofitable motion amougst the particles of the fluid to which it is applied. They also embrace what is called the regenerative principle-a term which bas, with reason, been objected to, as implying a restoration of expended beat. The so-called "regenerator" is a contrivance for arresting unutilized heat rejected by the engine, and causing it to operate in aid and consequent reduction of fuel.

It is a common observation that before coal is exhausted some other motive agent will be discovered to take its place, and electricity is generally cited as the coming power. Electricity, like heat, may be converted into motion, and both
theory and practice bave demonstrated that ita mechanical application does not iuvolve eo much waste of power as takes place in a steam-engine; but whether We use heat or electricity a a motive power, we mast equally depend upon chemical affinity as the source of aupply. The act of uniting to form a chemical product liberates an energy which assumes the form of heat or electicity, from either of which states it is convertible into mechanical effect. In contemplating, therefore, the application of electricity as a motive po or, we must bear in mind that we shall still require to effect chemical combinations, and in so doing to consume materials. But where are we to find materials so economical for this purpose as the conl we derive from the earth and the oxygen we obtain from the air \mid The latter costa absohtely nothing; and every pound of coal, which in the act of combustion enters into chemical combination, renders more than two-nad. a. half pounds of oxycen available for power. We cannot look to water as a practical source of oxygen, for there it exists in the combined state, requirine expenditure of chemical energy for its separation from hydrogen. It is in the atmosphere alone that it can be foond in that free state in which we require it, and there does not appear to me to be the remotest chance, in an economic point of view, of being able to dispense with the oxygen of the air as a sourc. either of thermo-dynamic or electro-dynamic effect. But to use this oxygen we must consume some oxidizable substance, and conl is the cheapest we can procure.

I have hitherto spoken of coal only as a source of mechanical power, but it is also extensively used for the kindred purpose of relaxing those cohesive forces which resist our efforts to give new forms and conditions to solid substances. In these applications, which are geverally of a metallurgical nature, the same wasteful expenditure of fuel is everywhere observable. In an ordinary furnace employed to fuse or soften any solid substance, $i t$ is the excess of the heat of combustion over that of the body heated which alone is rendered available for the purpose intended. The rest of the heat, which in many instances constitutes by far the greater proportion of the whole, is allowed to escape uselessly into the chimney. The combustion also in common furnaces is so imperfect, that clouds of powdered carbon, in the form of smoke, envelope our manufacturing towns, and gases, which ought to be completely osygenized in the fire, pass into the air with tro-thirds of their heating power undeveloped.

Some remedy for this state of things, we may hope, is at hand, in the gas regenerative furnaces recently introduced by Mr. Siemens. In these furnaces the rejected heat is arrested by a so-called "regenerator," as in Stirling's air-engine, and is communicated to the new fuel before it enters the furnace. The fuel, however, is not solid coal, but gas previously evolved from coal. A stream of this gas raised to a high temperature by the rejected heat of combustion is admitted into the furnace, and there meets a stream of atmospheric air also raised to a high temperature by the same agency. In the combination which then ensues, the heat evolved by the combustion is superadded to the heat previously acquired by the gases. Thus, in addition to the advantage of economy, a greater intensity of heat is attained than by the combustion of unheated fuel. In fact, as the heat evolved in the furnace, or so much of it as is not communicated to the bodies exposed to its action, continually returns to augment the effect of the new
fuei, there apjerare to be me limit to the tomprature attaimble, exeept the powers of re-istance in the materiah of which the inmee it eomponed.
 taken part with Dr. Richatson mad Ma. Langrihe in a series of experiments made in this neightombood in the yenrs 1 siti-is for the purpose of testing the practicability of preventing smoke in the combution of bitummens ceral in steam engine builer, I can state with purfort cuntitence that, ro far as the raising of steam is concerned, the production of moke is unnecessary and inexcusable. The experiments to which I refer proved beyond a donbt, that by an easy method of firing, combined with a due ueluiswion of air and a proper arrangement of firegrate, not involving any complexity, the emission of sunoke might be perfectly avoided, and that the prevention of the smoke increased the economic value of the fuel and the evaporative power of the beiler. As a rule, there is more amoke evolved from the fires of stem- $\begin{gathered}\text { minges than from any others, and it is in these }\end{gathered}$ fires that it may be most easily provented. But in the furnaes used for most manufacturing enerations the prevention of smoke is much more difficult, and will probably not be effected until a radical olange is made in the system of applying fuel for such operations.

Not less wasteful and cxtravagati is our mode of employing coal for domestic purposes. It is computed that tha consumption of conl in dwelling-houses amounts in this country to a ton por hend per anom of the eatire population; so that upwaids of twenty-nine millions of tons are annually expended in Great Britain alone for domestic use. If any one will consider that one pound of coal apphed to a well-constructed atemangine boiler evaporates 10 lb ., or one gallon of water, and if he will compare this effect with the insignificant quantity of water which can be boiled off in stam hy a pound of coal consumed in an ordiuary kitchen fre, he will be able ta uprecinte the enormous waste which takes place by the common method of hurning conl for culinary purposes. The simplest arrangements to confine the hent and coneentrate it upon the operation to be performed would suffice to obviate this reprehensible waste. So also in warming heuses we consume in our open fires about five times as much coal as will produce the sama heating effect when burat in a close and properly constructed stove, Without saerificing the lusury of a visibl. fire, it would be easy, by attending to the principles of radiation and convection, wender available the greater part of tiee heat which is now so improvidently discharged into the chimsey. These are homely considerations-too much no, perhans, tor an assembly like this; but I trust that an abuse involving a useless expenditure exceeding in amount our incometax, and capable of being rectified by attention to seentific principles, may not be deemed unworthy of the notice of some of those whom I have the honour of addressiug.

The increase of the earth's tomperature as we descend below the surface is a subject which has been disoussed at provious Meetugs of the British Association. It possesses great scientific interest as affecting the computed thickuess of the crust which covers the molten mass asmumed to constitute the interior portions of the earth, and it is also of great practical importance as determining the depth at which it would be possible to pursue the working of coal and other minerals.

Yol. IX.

The deepest coal-mine in this district is the Monkwearnouth Colliery, which reaches a depth of 1,800 feet below the surface of the ground, and nearly as much below the level of the sea. The observed temperature of the strata at this depth agrees pretty closely with what has been ascertained in other localities, and shows that the increase takes place at the rate of 1° Falr to about 60 feet of depth. Assuming the temperature of subterranean fusion to be $3,000^{\circ}$, and that the increase of heat at greater depths continues uniform (which, hovever, is by no means certain), the thickness of the film which separates us from the fiery ocean beneath will be about 34 miles-a thickness which may be fairly represented by the skin of a peach taken in relation to the body of the fruit which it covers. The depth of 4,000 ieet, which has been assumed as the limit at which coal could be worked, would probably be attended by an increase of heat exceeding the powers of human endurance. In the Monkwearmouth Colliery, which is less than balf that depth, the temperature of the air in the workings is about 84° Fahr. which is considered to be nearly as high as is consistent with the great bodily exertion necessary in the operation of mining. The computations, therefore, of the duration of coal would probably "require a considerable reduction in consequence of too great a depth being assumed as practicable.

In the course of the preceding observations I bave had occasion to speak of the sun as the great source of motive power on our earth, and I must not omit to refer to recent discoveries connected with that most glorious body. Of all the results which scieuce has produced within the last few years, uone has been more unexpected than that by which we are enabled to test the materials of which the sun is made, and prove their identity, in part at least, with those of our planet. The spectrum experiments of Bunsen and Kirchboff have not only shown all this, but they have also corroborated previous conjectures as to the luminous envelope of the sun. I have still to advert to Mr. Nasmyth's remarkable discovery, that the bright surface of the sun is composed of an aggregation of apparently solid forms, shaped like willow-leaves or some well known forms of Diatomacee, and interlacing one another in every direction. The forms are so regular in size and shape, as to have led to a suggestion from one of our profoundest philosophers of their being organisms, possibly even partaking of the yature of life, but at all events closely connected with the heating and vivifying influences of the sun. These mysterious objects, which, since Mr. Nasmyth discovered them, have been seen by other observers as well, are computed to be each not less than 1,000 miles in leugth and about 100 miles in breadth. The enormeus chasms in the suu's photosphere, to which we apply the diminutive term "spots," exhibit the extremities of these leai-like bodies pointing inwards, and friaging the sides of the cavern far down into the abyss. Sometimes they form a sort of rope or bridge across the chasm. and appear to adhere to one another by lateral attraction. I can imagine nothing more deserving of the scrutiny of observers than these extraordinary forms. The sympathy, aiso, which appears to exist between forces operating in the sun, and magnetic forces belonging to the earth merits a continvance of that close attention which it has already received from the British Association, and of labours such as General Sabine has with so much ability and effect devoted to the elucidation of the subject. I may here notice that most
remarkable phenomenon which was seen by independent observers at two different places on the lst of September, 1859. A sudden outburst of light, far exceeding the brightness of the sun's surface, was seen to take place, and sweep like a drifting cloud over a portion of the solar face. This was attended with magnetic disturbances of musual intensity and with exhibitions of aurora of extraordinary brilliancy. The identical instant at which the effusion of light was observed was recorded by an abrupt and strongly marked deflection in the selfregistering instruments at fiew. The phenomenon as seen was probably only part of what actually took place, for the maguetic storm in the midst of which it occurred commenced before and continued after the event. If conjecture be allowable in such a case, we may suppose that this remarkable event had some conuexion with the means by which the sun's heat is renovated. It is a reasonable supposition that the sun was at that time in the act of receiviag a more than usual accession of new energy; and the theory which assigns the maintenance of its power to cosmical matter plunging into it with that prodigious velocity which gravitation would impress upon it as it approached to actual contact with the solar orb, would afford an explanation of this sudden exbibition of intensified light in barmony with the knowledge we have now attained that arreated motion is rerresented by equivalent heat. Telescopic observations will probably add new facts to guide our judgment on this subject, and, taken in connexion with observations on terrestrial magnetism, may enlarge and correct our views respecting the nature of heat, light and electricity. Much as we bave yet to learo respecting these agencies, we know sufficient to infer that they cannot be transmitted from the sun to the earth except by communication from particle to particle of intervening matter. Not that I speak of particles in the sense of the atomist. Whatever our riews may be of the nature of particles. we must conceive them as centres invested with surrounding forces. We have no evidence, either from our seuses or otherwise, of these centres boing occupied by solid cores of indivisible incompressible matter essentially distinct from force. Dr. Young has shown that even in so dense a body as water, these nuclei, if they exist at all, must be so small in relation to the intervening spaces, that a hunared men distributed at equal distances over the whole surface of Eugland mould represent their relative magaitude and distance. What then must be these relative dimensions in highly rarefied matter? But why encumber our conceptions of material forces by this unnecessary imagining of a central molecule 8 If we retain the forces and reject the molecule, we shall still have every property we can recognize in matter by the use of our senses or by the aid of our reason. Viewed in this light, matter is not merely a thing subject to force, but is itself composed and constituted of force.

The dynamical theory of heat is probably the most important discovery of the present century. We now know that each Fahrenheit degree of temperature in 1 lb . of water is equivalent to a weight of 772 lb . lifted 1 foot high, and that these amounts of hent and power are reciprocally convertible into one another. This theory of heat, with its numerical computation, is chiefly due to the labours of Mayer and Joule, though many other names, including those of Thomson and Ronkine, are deservedly associated with its development. I speak of this digcovery as one of the present age becanse it has been established in our time; but
if we search back for earlier conceptions of the identity of heat and motion, we shall find (as we always do in such cases) that similar ideas have been held before, though in a clouded and undemonstrated form. In the writings of Lord Bacon we find it stated that heat is to be regarded as motion and nothing else. In diating upon this subject, that extraordinary man shows that he had grasped the true theory of heat to the utmosi extent that was compatible with the state of knowledge existing in his time. Even Aristurta seems to h..ve entertained the idea that motion was to be considered as the f. unation not only of heat, but of all manifestatious of matter; and, for aught we know, still earlier thinkers may have held similar views.

The science of gunnery, to which I shall make but slight allusion on this occasion, is intimately conuected with the dynamical theory of heat. When gunpowder is exploded in a cannon, the immediate effect of the affinities by which the materials of the powder are caused to enter into new combinations, is to liberate a force which first appears as heal, and then takes the form of mechanical power communicated in part to the shot and in part to the products of explosion which are also propelled from the gun. The mechanical force of the shot is reconverted into heat when the motion is arrested by striking an object, and this heat is divided between the shot and the object struck, in the proportion of the work done or damage inflicted upon each. These considerations recently led me, in conjunction with my friend Capt. Noble, to determine experimentally, by the heat elicited in the shot, the loss of effect due to its crushing when fired against iron plates. Joule's daw, nad the known velocity of the shot, enabled us to compute the number of dyoamical units of heat representing the whole mechanical power of the projectile, and by ascertaining the number of units developed in it by impact, we arrived at the power which took effect upon the shot instead of the plate, These experiments showed an enormous absorption of power to be caused by the yielding nature of the materials of which projectile are usually formed; but further experiments are required to complete the inquiry.

Few sciences have more practical value than meteorology, and there are few of which we as yet know so little. Nothing woukd contribute more to the saving of life and property, avd to augmenting the general wealth of the world, than the ability to foresee with certainty impending changes of the weather. At present our means of doing so are exceediugly imperfect, but, such as they are, they have been employed with considerable effect by Admiral FitzRey in warning mariners of the probable approach of storms. We may hope that so grod an object will be effected with more unvarying success when we attain a better knowledge of the causes by whick wind and rain, heat and cold are determined. The balloon explorations conducted with so much intrepidity by Mr. Glaisher, uuder the auspices of the British Association, may perhaps in some degree assist in enlightening us upon these important subjects. We have learnt from Mr. Glaisher s observations that the decrease of temperature with elevation does not follow the law previously assumed of 10 in 300 fect, and that in fact it follows no definite law at all. Mr. Glaisher appears also to have ajcertained the interesting fact that rain is only precipitated when oloud exists in a double layer. Rain-drops, be
bas found, diminish in size with elevation, merging into wet mist, and ultimately into dry fog. Mr. Glaisher met with sbow for a mile in thickness below rain, which is at variance with our preconceived ideas. He has also rendered good service by testing the efficiency of various instruments at beights which cannot be risited witnout persoual danger.

The science of organic life has of late years been making great and rapid strides, and it is gratifying to observe that researches both in zoology and botany are characterized in the present day by great aceuracy and elaboration. Investigations patiently conducted upon true inductive principles cannot fail eventually to elicit the hidden laws which govern the animated woold. Neither is there any lack of bold speculation contemporaneously with this painstaking spirit of inquiry. The remarkable work of Mr. Darwin promulgating the doctrine of natural selection has produced a profound sensation. The novelty of this ingeniots theory, the eminence of its author, and his masterly treatment of the subject have perhaps combined to excite more enthusiasm in its favour than is consistent with that di-passionate spirit which it is so necessary to preserve in the pursuit of truth. Mr. Darwin's views have not passed unchallenged, and the arguments both for and against have been urged with great vigour by the supporters and opponents of the theory. Where good reasons can be shown on both sides of a question, the truth is generally to be found between the two extremes. In the present instance we may without difficulty suppose it to have bern part of the great scheme of ereation that natural selection should be permitted to determine variations amounting even to specific Jifferences where thuse differences were matters of degree; but when natural selection is adduced as a cause adequate to explain the production of a new organ not provided for in original ereation, the hypothesis must appear, to common apprehensions, to be pushed beyond the limits of reasonable conjecture. The Darwinian theory, when fully enunciated, founds the pedigree of living nature upon the most elementary form of vitalized matter. One step further would carry us back, without greater violence to probability, to inorganic rudiment-, and then we should be called upen to recogrize in ourselves, and in the exquisite elaborations of the ammal and veretable kingdoms, the ultimate results of mere material forces left free to follow their own unguided tendencies. Surely our minds would in that case be more oppressed with a sense of the miraculous than they now are in attributing the wondrous things around us to the creative hand of a Great Presiding Intelligence.

The avidences bearing upon the antiquity of man have been recently produced in a collected and most logically treated form by Sir Charlwa Lyell. It seems no longer possible to doubt that the human race has exi-twi on the earth in a barbarias state for a perid far exceeding the limit of histonsal iecord; but notwithstanding thes great antiquity, the proofs still remam unalteled that man is the latest as well as the noblest work of God.

REPORT BT THE COMMITTEF APPOINTFD TO INVESTIGATE NOMR IMPROVEMENTS IN GUN-COTTON.

Since the invention of gun-cotton by Prof. Schonbein, the thoughts of many have been directed to its application to warlike purposes. Many trals and ex-
periments have been made, especially by the French; but such serious difficulties presented themselves that the idea seemed abandoned in every conntry but one, Austria. Fiom time to time accounts reached Enghand of its partial adoption in the Austrian service, though no explanation was afforded of the mode in which the difficulties had been overcome, or the extent to which the attempts had been successful. The Committe, however, had been put in posseesion of the fullest information from two sources-Prof. Abel, chemist to the War Department, and Baron W. von Levk, Jajor-Geveral in the Autri.n Artillery, the inventor of the system. Prof. Abel, by permission of the autirnitues, communicated to the Committee the information given by the Austrinn (iuvernment to our Government, and also the results of his own elaborate experiments. General von Lenk, on the invitation of the Committee, by permission of the Austrian Government, paid a viait to this country, to give every information in his power on the subject, and brought over drawings and samples from the Imperial factory. The following is a summary of the more important points:-As to the chemical nature of the material, Von Lenk's gua-cotton differs from the gun-cotton generally made, in its complete conversion into a miform chemical compound. It is well known to chemists that, when cotton is treated with mixtures of strong nitric and sulphuric acids, compounds may be obtained varying considerably in composition, though they all contain elements of the vitric acid and are all explosive. The most complete combination (or product of substitution) is that described by M. Hadon as C_{36} $\mathrm{H}_{21}\left(9 \mathrm{NO}_{4}\right) \mathrm{O}_{30}$, which is identical with that termed by the Austrian chemists Trinitrocellulose, $\mathrm{C}_{22} \mathrm{H}_{7}\left(3 \mathrm{NO}_{4}\right) \mathrm{O}_{10}$. This is of no use whatever for the making of collodion; but it is You Lenks's gun-cotton, and he secures its production by several precautions, of which the most important are the cleansing and perfect desiccation of the cotton as a preliminary to its immereion in the acids, -the employment of the strongest acids attainable in commerce,-the steeping of the cotton in a fresh strong mixture of the acids after its first immersion and consequent imperfect conversion into gun-cotton,-the continuance of this steeping for fortyeight hours. Equally necessary is the thorough purification of the gun-cotton so produced from every trace of free acid. This is secured exclusively by its being washed in a stream of water for several weeks. These prolouged processes are absolutely necessary. It seems mainly from the want of these precautions that the French were not successful. Frorn the evidence before the Committee it appears that this nitric compound, when thoroughly free from acid, is uot liable to some of the objections which have been urged against that compound usually experimented upon as gun-cotton. It seems to have a marked advantage in stability over all other forms of gun-cotton that have been proposed. It has been kept unaltered for fifteen years; it does not become ignited till raised to a temperature of $186^{\circ} \mathrm{C}$. (277° Fabr.) ; it is but slightly hygroscopic, and when exploded in a confined space, it is almost eutirely free from ash. There is one part of the process not yet alluded to, and the value of which is more open to doubt-the treatment of the gun-cotton with a solution of silicate of potash commonly called waterglass. Prof. Abel and the Austrian chpmists think lightly of it; but Von-Lenk considers that the amount of silica set free on the cotton by the carbonic acid of the atmosphere is really of service in retarding the combustion. He adds, that some of the gun-cotton made at the Imperial factory has not been silicated at all,
and some imperfectly; but when the process has been thonoughly performed, he finds that the gun-cotton has increased permanently about 3 per cent. in weight. Much apprehension has been felt about the effect of the gases produced by the explosion of the gun-cotton upon those exposed to it- action. It has been stated that both nitrous fumes and pru-sic acidare amon, these gases, and that the one would corrode the gun and the other poison the arthleryman. Now, though it is true that from some kinds of gun-cotton, or by some methods of decomposition, one or both of these gases may be produced, the resulti of the explosion of the Austrian gun-coiton without access of air are found by Karolys to contain neither of them, but to consi-t of nitrogen, carbonic acid, cabbouic oxide, water, and a little hydrogen and light carburetted hydrogen. These are comparatively innocuous; and it is distinctly in evidence that, practically, the sun is less injured by repeated charges of gun-cotton than of gumporder, and that the men in casemates suffer less from its fumes. It seems a disadvantage of this material as compared with gunpowder that it explodes at a temperature of 277° Fahr.; but against the greater liability to accidents from this cause may be set the almust impossibility of explosion during the process of manufacture, since the gun cotton is always immersed in liquid, except in the final drying \dagger Again if it should be considered advisable at auy time, it may be stored in water, and only dried in small quantities as required for use. The fact that gun-cotton is not injued by damp like gunpowder is, indeed, one of its recommendations, while a still mone important chemical advantage which it possesses arises from its being perfectly resolved into gases on explosion; so that there is no smoke to obscure the sight of the soldier who is firing or to point out his position to the enemp, and no residuam left in the gun, to be got rid of before auother charge can be introduced.

As regards the mechanical portion of this question, it appears that greater effects are produced by gases generated from gun cotton than by gases generated from gunpowder, and it was only after long aud careful examination that the Committee were able to reconcile this fact with the low temperature at which the mechanical force is obtained. The great waste of force in gunpowder constitutes an important difference between it and guncatton, in which there is no waste. The waste in gunpowder is 68 per cent. of its own weight, and only 32 per cent. is useful. This 68 per cent is not only waste in itself, but it wastes the power of the remaining 32 per cent. It wastes it mechanically, by using up a large portion of the mecbanical force of the usefui gases. The waste of gunpowder issues from the gun with much higher velocity than the projectile; and if it be remembered that in 100 lb . of useful gunpowder this is 68 lb ., it will appear that 32 lb . of useful gunpowder gas is wasted in impelling a $68-\mathrm{lb}$. shot composed of the refuse of gunpowder itself. There is yet another peculiar feature of gua-cotton. It can be exploded in any quantity instantaneousily. This was once considered its great fault; but it was only a fault when we were ignorant of the means to make that velocity anything we pleased. General von Leuk has discovered the means of giving gun-cotton any velocity of

[^1]explosion that is requived for merely the mechanical arrangements under which it is used. Gun-cotton in his hauds has any speed of explosion, from 1 foot per second to 1 foot in rosen of a second, or to instantancity. The instantaneous explosion of a large quantity of gun-cotton is made use of when it is required to produce destructive t ffects on the surrounding material. The slow combustion is made use of when it is required to produce manageable power, as in the case of gunuery. It is plain, therefore, that, if we can explode a large mass instantaneously, we get out of the gases so exploded the greatest possible power, because all the gas is generated before motion commences, and this is the condition of maximum effect. It is found that the condition necessary to produce instantaneous and complete explosion is the absolnte perfection of closeness of the chamber containing the gun-cotton. The reason of it is, that the first ignited gases must penetrate the whole mass of the cotton, and this they do, and create complete ignitiou throughout, only under pressure. This presure need not be great. For example, a barrel of gun-cotton will produce little effect and very slow combustion when out of the barrel, but instantaneous and porerful explosion when shut up within it. On the other hand, if we desire gun-cotton to produce mechanical work, and not destruction of materials, we must provide for its slower combustion. It mast be distributed and opened out mechanically, so as to occupy a larger space, and in this state it can be made to act even more slowly than gunpowder; and the exact limit for parposes of artillery Generel von Lenk has found by critical experiment. In general, it is found that the proportion of 11 lb. of gun-cotton, occupying 1 cubic foot of space, produces a greater force than gunpowder, of which from 50 to 60 lb . occupies the same space, and a force of the nature required for ordinary artillery. But each gun and each kind of projectile requires a certain deurity of eartridge. Practically, gun-cotton is most effective in guns when used as $\frac{子}{3}$ to $\frac{1}{8}$ weight of powder, and occupying a space of 1,$\}$ of the length of the powder cartridge. The mechanical structure of the cartridge is of importance as affecting its ignition. The cartridge is formed of a mechanical arrangement of spun cords, and the distribution of these, the place and manuer of ignition, the form aud proportion of the cartridge, all affect the time of complete ignition. It is by the complete mastery he has gained over all these minute points that reneral von Lenk is enabled to give to the action of guncotton on the projectic any law of force he pleases. Its cost of production is considerably less than that of gunpowder, the price of quantities which will produce equal effects being compared. Gun-cotton is used for artillery in the form of a gun-cotton tbread or spun yarn. In this simple form it will conduct combustion slowly in the open air, at a rate of not more than 1 foot per second. This thread is woven into a texture or circular web. These webs are made of various diameters, and it is out of these webs that common rifle cartridges are made, meraly by cutting them into the proper lengths, and inclosing them in stiff cylinders of pasteburd, which form the cartridges. (In this shape its combustion in the open air takes place at a speed of 10 feet per second.) In these cylindrical webs it is also used to fill explosive shells, as it can be conveniently employed in this ehape to pass in through the neck of the shell. Gun-cotton thread is spun into ropes is the usual way up to 2 inches diameter, hollow in the centre. This is the form used for blasting and mining purposes; it combines great density with
speedy explosion. The gun-cotton yarn is used directly to form cartridges for large guns by being wound round a bobbin an as to form a spiadle like that used in spinning-mills. The bobbin is a hollow tube of paper or wood, the object of the weoden rod is to secure in all eases the neceseary length of chamber in the gun required for the most effective explosion. The gun-cotton circular web is inclosed in close tubes of india-rubber eloth to form a match line, in which form it is most convenient and travels with speed and certainty. In large quantities, for the explosion of mines, it is used in the form of rope, and in this form it is conveniently coiled in casks and stowed in boxes. As regards conveyance and storage of gun-cotton : it results from the foregoing facts, that 1 lb . of gun-cotton produces an effect exceeding 3 lb . of gunpowder in artillery. This is a material advantage whether it be carried by men, by horses, or in waggons. It may be placed in store, and preserved with great anfety. The danger from explosion does not arise until it is confined. It may become damp and even perfectly wet without injury, and may be dried by mere exposure to the air. This is of great value in shipa of war, and in case of danger from fre, the magazive may be submersed without injury. As regards its practical use in artillery, it is easy to gather from the foregoing general facts how gun-cotton keeps the gun clean and reguires less windage, and therefore performs much better in continuous firing. In gunpowder there is 68 per ceni. of refuse, or the matter of fouling. In gruecotton there is no residuum, and therefore no fouling. Experiments made by the Austrian Committee proved that 100 rounds could be fired with gun-cotton, against 30 rounds of gunpowder. From the low temperature produced by gun-cotton the gun does not heat. Experiments showed that 100 rounds were fired with a 6 - pounder in 36 minutes, and the gun was raised by gun-cotton to only 122° Fahrenheit, whilst 100 rounds with gunpowder took 100 minutes, and raised the temperature to such a degree that water was instantly evaporated. The firing with the gunpowder was, therefore, discontinued; but the rapid firing with the gun cotton was continued up to 180 rounds without any inconvenience. The absence of fouling allows all the mechanism of a gun to have much more exactness than where allowance is made for fouling. The absence of smoke promotes rapid firing and exact aim. There are no poisonous gases, and the men suffer less inconvenieuce from firing in casemates, under hatches, or in closed chambers. The fact of smaller recoil from a gun charged with gun-cotton is established by direct experiment: its value is $\frac{\pi}{\delta}$ of the recoil from gun-powder, projectile effect being equal. To understand this may not be easy The waste of the molids of gunporder accounts for one part of the saving, as in 100 lb . of gunpowder 68 lb . have to be projected in addition t c the shot, and at a much higher speed. The remainder, General von Lenk attributes to the different law of combustion. But the fact is established. The comparative advantages of gun-cottun and gunpowder for producing high velocities, are shewn in the following experiment with a Krupp's cast-steel gun, 6 -pounder. With ordinary charge 30 oz. of powder produced 1,338 feet per second. With charge of $13 \frac{2}{2}$ oz., gun-cotton produced 1,563 feet. The comparative advantages in shortness of gun are shown in the following experiments, 12-pounder:-

	Calibres.			Charg					$\begin{array}{r} \text { Ve } \\ \text { fect pe } \end{array}$	clocity. per second.
Cotton, length 10	\ldots	\ldots		02.					1,426
Prowder, "18s	49		rmal	powder	charge.)		1,400
Cotton, " 9		...	17						1,402

- As to advantage in weight of gun, the fact of the recoil being less in the ratio of $2: 3$ emables a less weight of gun to be employed, as well as a shorter gun, without the disadvantage to practice arising from lightness of gun. As regards durance of gun, bronze and cast-iron guas have been fired 1,000 rounds without in the least affecting the endurance of the gan. As regards its practical application to destructive explusions of shells, it appears that from a difference in the law of expansion, arising probably from the pressure of water in intensely-heated steam, there is an extraordinary difference of result, namely, that the same shell is exploded by the same volume of gas into more than double the number of pieces. This is to be accounte? for by the grenter velocity of explosion when the guncotton is conflned very closely in very small spaces. It is also a peculiarity that the stronger the shell the smaller the fragments into which it is broken. As regards mining uses, the fact that the action of gun-cotton is violeat and rapid in exact proportion to the resistance it encounters, tells us the secret of its far higher efficiency in miniag than gunpowder. The strouger the rock, the less gun cotton, comparatively with powder, is necessary for the effect; so much so that while gun-cotton is stronger than powder as 3 to 1 in artillery, it is stronger in the proportion of 6274 to 1 in a strong and solid rock, weight for weight. It is the hollow rope form which it is used for blasting. Its power of aplitting up the material is regulated exactly as wished. As regards military and submarine explosion, it is a well-known fact, that a bag of gunpowder nailed on the gates of a city will blow them open. In this case gun-cotton would fail. A bag of gun cotton exploded in the same way is powerless. If one ounce of gunpowder is exploded in cales, the balance is thrown down; with an equal force of gun-cotton nothing bappens. To blow up the gate of a city a very few pounds of gun cotton, carried in the hand of a single man, will be sufficient, only he must know its nature. In s bag it is harmless; exploded in a box it will shatter the gates to atoms. Against the palisades of a fortification: a small square box containing 25 lb , merely flung down close to it will open a passage for troops; in actual experience on palisades a foot diameter and 8 feet high, piled in the gronnd, backed by a second row of 8 inches diameter, a box of 25 lb , cut a claan opening 9 feet wide. To this three times the weight of gunpowder produced no effect whatever, except to blacken the piles. Against bridges: a strong bridge of oak, 24 feet span, was shattered to atoms by a small box of 25 lb . laid on its centre; the bridge was not broken, it was shivered. As to its effect under water: in the case of two tiers of piles, in water 18 feet deep, 10 inches apart, with stones between them, a barral of 100 lb . gun cotton, placed 3 feet from the face and 8 feet under water, made a clean sweep through a radius of 15 feet, and raised the water 200 feet. In Venice a barrel of 400 lb . placed near a sloop in 10 feet water, at 18 feet distance, threw it in atoms to a height of 400 feet. All experiments made by the Austrian Artillery Committee were conducted on a grand scale,-36 batteries, six and twelve pounders (gun cotton) baving been constructed, and practised with that material.

The reports of the Austrian Commissioners are all based on trials with ordnance, from sis pounders to forty-eight pounders, smooth bore and rifled cannon. The trails with small fire arms bave been comparatively few, and not reported on. The trials for blasting and mining purpuses were a'so made on a large scale by the Imperial Engineers' Committec, and several tepurts have beeu priuted on the subject.

Sir W. Armstrong said it was impossible to listen to the report which bad been read without being very much impressed with the great promise there was of gan-cotion becoming a substitute for gunponder ; but at the same the there were certain peculiar auomalieg about it which he certainly should like to have cleared up, and until they were, they could not feel that perfect confidence in the results that they wished to do. In the fisst place, with rerard to the heat evolved, they were told th t, with such a quantity of gun cotton as would produce a given quantity of gas, a certain initial velocity was imparted to the projectile, and that the heating effect upon the gun was much less than when a smilar velocity was produced by an equivalent quantity of gurpuwder. The alsence of heat in the gun implied an ab-ence of heat in the gas. Where was the projectile force to come from, if there was uo hent in the gas? He could not, for his part, cenceive bow it was possible of explandion. The vext point that occurred to him was with regard to the recoil. It waf stated that the recoil wats very much less, That was ascribed to the absense of solid inert matter in the charge, which, in gun-cotton, was next to nothing. If the recoil was only two-thirds that of gunpowder, it would require, in order t. ac aunt for that difference, a much larger quantity of solid matter than chere reculy was in the case of gunpowder. The repurt stated that the use of guncotton enabled them to reduce the length of the gun. It was quite certain, however, that with a short gun they could not get an equal initial velocity as with a lo :g gun. If the initial velonity were inceased there was more danger of bursting the gun than with gun?owder. Bec use if they got any velocity, or an equal velocity with the shorter gun, it must be cuncluded that it was doue by virtue of a greater initial pressure and an eariic: action upon the shot. That necessarily implied a greater strain upon the gun at the first explosion, and that would necessitate the employment of stronger guns. He should have expected a smaller velocity by a shorter gun, for the action of the gas was necessarily shorter than in a longer gun. The heat question, however, was to him the greatest puzzle of all. How they could bave the propelling power without heat in the gas, and if they heated the gas, how they escaped heating the gun, be could not understand.-Prof. Pole said he was quite unable to give any explanation of the difference of recoil. If the shot left the gun with the eame velocity as when fired with gunpowder, it was natural to suppose that there must be the same quantity of recoil.-Mr. Siemens having briefly spoken on the dynamical question involved in the matter, suggested that the greater heat imparted to the guu in the case of gunpowder might be owing to the greater amount of solid matter, which taking up the great heat of the gases under a pressure of some 400 atmospheres imparted a portion of the same by radiation to the side of the gan, while in the case of gun cotton gases only were produced, which could only impart heat to the guo by the slower process of conduction, and left a larger margin of heat to be developed in force by expansion.-Admiral Sir
E. Betconar thought that the reason the gun was not heated by an explosion of gun-cotton might be because the gases had not time to heat the gun orviug to the rapidity of the explosion, which was sluwer in the case of gunpowder; or that it might aise from the greater amount of fouling in the case of gunpowder.-Capt. Maury said this Report was something more than interestivg, because it was on exceedingly auggestive; and it appeared to him that it afforded them an element of security by giving the preponderance on the side of defence. Ever since stean had been apphed to purpuses of naval warfare it had been considered a matter of very great doubt by many proiessional men how tar ordiuary steamers and men-of-war, where forts were to be pasced at the mouth of a river, were capable of sustaining the fire of such forts and passing up the river. And to show that there was ample time for them to do so, they had only to recollect the fact of steamers having fought forts for several hours. Io the Crimea and at Charleston the stenmers bad remained under fire for several hours-a much longer tume than was necessary to enable them to pass the forts and go higher up the river into a place of anfety where they could do damage to the enemy. Iron clacis had rendered this much more easy than it had previously been. If then their principal defences failed them at the mouth of the river in this way, the question was whether they should not have recourfe to mining for the destruction of the invading vessels? He himself had been engraged upon the subject. He found this difficulty in employing gunpowder, that in order to be sure of destroying the vessel as she passed in a given line by means of gunpowder, the magazines must be in actual contact, or very nearly in actual conact with the side of the vessel; otherwise the probability was that the vessel would not be destroyed. Last week they had the intelligence of a vessel having had a mine exploded under ber on the James River. That magazine contained several thousands of pounds of powder. The vessel did not know that the mine was there; but the mine did not destroy the vessel. It merely threw up a column of water which washed some of the men overboard. His own conclusion was that to make sure of destroying a vessel after she had passed the forts, they must mine the chamel in such a manncr that the vessel must come in coatact with one or other of the mines. It was found that wooden vessels to contain the powder would not do. They would not confine the powder long enough to produce a sufficient foree. It was necessary to make them of stout boiler iron. It would not do to leave the magazines on the top of the water, and it would wot do to put them at the bottom, for then there would be a cushion of water between the bottom of the ship to be destroyed and the magazine, which would protect the vessel. In short they had to anchor them veneath the surface with short buoy-ropes, at a depth proportioned to the kind of vessel expected to come up. But when they made the magazine of boiler-iron they had to have buoys to float it so large that they were always in danger of being carried away by the vessels crossing the live of magazine. The plan was to place those magazines in a ring in such a position that the vessel in passing would have to come in contact with at least one and probably two of them. It was necessary to place those magazines of powder so that when you saw the vessel in that range you had only to bring the two poles of the galvanic battery together and make the explosion. There was, as already ctated, a difficnlty in using gunpowder. But since gun-cotton bad the remarkable effect of destroying a versel-he did not
know her strength-at a distauce of 18 feet, and that not vertically, but lateraly, the question arose whether they might not fertify and protect those channel ways by phacing a ring of gun cotton magazines along the botiom; but, at any rate, if that was not necessary, they could float them at any depth, and out of reach of the ressels generally using the chancl. That appeared to bin: to be one of the most important uses of guu cotton, and it was one which would give safety to cities which were some distance from the mouths of uavigable rivers. He trusted that in the event of the Committee continuing their labours, they would address their attention to this important point.-Admiral Sir E. Belcufr stated that the explosion of powder under water was once done under one of his owu vessels to clear away ice. He placed it upon the ground, thinking that its explosion would blow the ice clear of her bows without touehing the vessel. There was, however, sufficient water to form a cushion, and when the explosion took place it only pro duced a great wave upon which the vessei rose Prof. Pore said what they wanted was something to show the varying pressure of the gases in the gun; in fact, an indicator diagram. - Mr. J. Scotr Russell set himself to clear away the many difficulties which attended this very difficult subject. How was it that in gunpowder and in gun-cotton where there were equal quantities of gas put in, the gas in the case of gunpowder was raised to an enormously high temperature, and came out at an enormously high pressure, showing that they had gas enormously expanded by heat; whereas in the case of gun cotton the gas came out quite cool, so that you might put your hand upon it, and the gun itself was quite cool? He (Mr. Russell) had a theory Steam was a gas, and steam expanded just by the same laws as other gases did. A great deal of the gas of gun-cotton happened to be steam. Let them conceive 100 lb . of guo-cotton shut up in a chamber that just held it. They had got there all the gases that had been spoken of, but they had also got 25 lb . of sulid water-about one-third of a cubic foot of water-in that chamber. What did they do with it? They put fuel, they put fire to it. They heated the whole remaining pounds of patent fuel. If, then, they considered the gan-cotton gai as the steam-gun, they got rid of two difficulties. They would have, first, the enormous elasticity of steam; and secondly, they would get the cooluess of it. Thiey all knew that if they put their hand to expanded high pressure steam, it had swallowed up all the heat and came out quite ecol. He believed that the gun cott n gun was neither more nor lees than Perking's old steam gun with only this difference, that you bottled up the fuel and water, and let them fight it out with each other. They did their work and came out quite cool. He hoped, however, that it was understood that he did not dogmatize. He put all he had said with a note of interrogation upon it. Prof. Tyndall said he thought that a note of interrogation ought to be put to what Mr. Russel had said.

The subject is considered of so much importance that the British Association, though it has re-appointed the Joint-Committe to continue its inquiries, has passed a reselution to urge on the Government the appointment of a Commission by means of which a more complete investigation, and such as the subject unquestionably deserves, may be made than the means at the diaposal of the Association will admit of.

A commanication from the Astronomer Ruyal, 'On Boiler Explosiong,' was read by Mr. P. Le Neve Foster. Tle auhtor stated that, in considering the cause of the extensive mischief dune by the bursting of a high-pressure boiler, it is evident that the small quantity of steam contained in the steme chamber has very little to do with it. That steam may immedntely produce the ruptnre, but as soon as the rupture is made, and some steam escapes, and the pressure on the water is diminished, a portion of the water is immediately converted into steam at a slightly lower tempetature and lower pressure. and this, in the same way, is followed by other steam at still lower temperature and pressure, aud so on till the temperature is reduced to 212° Fahr. and the pressure to 0 . Then there remains in the boiler a portion of water at the boiling point, the other portion having gone off in the shape of steam of continually diminishing pressure. From this it is evident that the destructive energy of the steam, wheu a certain pressure is shown by the steam gauge, is proportional to the quantity of water in the boiler. By the assistance of Prof. Miller, of Cambridge, Messrs. Ransome, of Ipswich, and George Biddell, Esq., the author has been able to obtain a result which he believes to be worthy of confidence. He first stated, as the immediate result of Mr. Biddell's experiments, that when there were in the boiler of a small locomotive 22 cubic feet of water, at the pressure of 60 lb . per square inch, and the tire was raked out, and the steam was allowed gently to escape, with perfect security against priming, the quantity of water which passed off before the pressure was reduced to 0 was $2 \frac{8}{2}$ cubic feet, or $\frac{1}{3}$ of the whole. In regard to the use made of Prof. Miller's theory, Prof. Miller had succeeded in obtaining a numerical expression for the pressure of steam at tweive different measures of the volume occupied by water and steam, which expression the author has succeeded in integratirg accurately, and had thus obtained an accurate numerical expression for the destructive energy of steam. In regard to the use of General Didion's experiments, these experiments gave the velocity of the ball, in cannon of different sizes, produced by different charges of powder. The author found, by trial with the formula $\frac{W v^{2}}{2 g \times \text { weight of powder, }}$ which of these experiments exhibits the greatest energy per kilogramme of powder, and had adopted it in the comparison. The result is as follows:-the destructive energy of one cubic foot of water, at 60 lb . pressure per square inch is equal to the deatructive energy of two English pounds of gunpowder in General Didion's cannon experiments; Gen. Didion's experiments were made as the author understood with smooth bored cannon. It cannot be doubted that much energy in lost in the windage; some also from the circumstance that the propelling power ceases at the muzzle of the gun, before all the energy is expended; and some from the coolness of the metal. If we suppose that from all causes one-half of the energy is lost, then we have this simple result: the gauge-pressure being 60 lb . per square inch, 1 cubic foot of water is as destructive as 1 lb . of gunpowder. In one of Mr. Biddell's experiments, the steam-valve was opened rather suddenly, and the steam escaped instantly with a report like that of a very heavy piece of ordnance. This is not to be wondered at; it appears from the comparison above that the effect was the same as that of firing a cannon whose charge is 44 lb . of powder.
'On Spectral Analysia,' by Prof. Plucker.-It is generally admitted now, that every gaseous body rendered luminous by beat or electricity sends out a peculiar
light, which, if examined by tho prinm, gives a well-defined and characteristic spectrum. By such a spectrum, by any me of its brilliant lines, whose position has been measured, ju may teountizo the examined gas. This way of proceeding constitutes what is cha whetrul malyeln, tw whel we owe, until this ray, the discovery of three new elementary bodios. In order to give to spectral amalysia a true and certain bais, you want the npectrum of each elmenta: y substance. Most recently, some e a nent philusophers, in cxamining euch spectra, met with unespected difficulties, and de:bts arose in their mimla ngnint the new dowtrine. These doubts are unfounded. The fact is, that the molecular constitution of gases is much more complicated than it has beungenerully admitted till now. The spectra, therefore, always indicating the molecular constitution of gases. ought to be more complicated also than it was thought at first. By these considerations, a new importance a rather physical one, is given to spectral amalysis. You may recognize by the spectrum of a gas, not only the chemicul mature of the gas, but you may also obtain indications of its more intimnte molecular structure-quite a new branch of science. Allow me now to select out of the results already obtained two instances only. Let me try to give what I may call the history of the epectia of two elementary bodies-of sulphur and nitrogen. In order to analyse by the prism the beautiful light produced by the olectrio current, if it pass through a rarefied gas, I gave to the tube in which the gas in included such a form that its middle part was capillary. Thus I got within this part of the tube a brilliant film of light, extremely fitted to bo examined by the prism. Thee date of my fist paper on this subject is the 12th of March. 1858. After having provided myself with apparatus more suited to my purposen, I ankol, alout a year aro, my friend, Prof. Hittorf, of Münster, to join me in taking up my former reyurches. The very first results we obtained in operating on gasen of a greater density opened to us an immense field of new investigation. We found that the very same elementary substance may have troo, even three, absolutely difforent spectra, which only depend on temperature. In our experiments we made use of Ruhmkorff's induction coil, whose discharge was sent through our spectral tubes. In order to increase at other times the heating power of the discharge, we made use of a Leyden jar. Now, let us suppose a spectral tube, most highly exhuusted by Geissler's mercury pump, contains a very small quantity of sulphur. The discharge of the coil will not pass through the tube if it do not meet with ponderable matter, either taken from the surface of the glass, or, if the discharge le pery strong, by the chemical decomposition of the glass. In heating slowly the tube by means of a lamp, in order to transform a part of the sulphur ints vapour, all accidental spectrom, if there be one, will disappear, and you will get a pure and beautiful spectrum of sulphur. I supposed the Leyden jar not to havo been interposed. If you now interpose it, the spectrum just spoken of will swidenly be replaced by a quite different one. We were generally led to distinguish two quite different classes of spectra. Spectra of the first class consist in a certnin number of bands, variously shadowed by dark transversal lines. Spectra of the second class consist in a great number of most brilliant lines on a dark ground. Accordingly, salphur has one spectrum of the first class and ancther one of the second class. You may as often as you like obtain each of these two spectra. In operating on a spectral tube, containing nithogen at a tension of about 50 millimetres, you will, without the Leyden jar, get
a most beautiful spectrumi of the first class. After interposing the jar, a splendid spectrum of the secomd class will be seen. But here the case is more complicated yet. The above men. coned spectrum of the first clas is not a simpte cune, but it is produced by the superposition of two spectra of the same class. Igaited nitrogen at the lowest temperature has a most beautiful colour of gold. When its temperature rises, its colcur suddenly changes into blue. In the first casse, the corresponding spectrum is formed by the less refracted bands extended towards the violet part; in the second case, it is formed by the more refracted band of the painting extending towards the red. Nitrogen, therefore, has two spectra of the first class and one spectrum of the second class. The final conclusion, therefore, is that sulphur has two, nitrogen three, different allotropic states. It may appear.very strange that a gaseous body may have different allotropic states-i. e., different state of molecular equilibrium. It may not appear, perhaps, more strange that a substance, hitherto supposed to be an elementary one, may really be decomposed at an extemely high temperature. From spectral analysis there cammot be taked any objection that sulphur and nitrogen may be decomposed. Chloride of zinc (or cadmium), for instance, exhibits two different spectra. If heated like sulphur and then ignited by the discharge of Ruhmkorff's coil, you will get a beautiful spectrum either of chlorine or of the metal, if either the Leyden jar be not interposed or be interposed. There is, in this case, a dissnciation of the elements of the composed body in the highest temperature, and re-composition again at the lower temperature. You may consider the dissociation as an allotropic state, and, therefore, I may make use of this term as long as the decomposition be not proved by the separated elements.
'On the Star Chromatoscope,' by Mr. A. Clacdet - The scintillation and change of colours observed in looking at the stars are so rapid that it is very difficult to judge of the separate lengths of their duration. If we could increase on the retina the length of the sensations they produce we should have the better means of examining them. This can be done by taking advantage of tho power by which the retina can retain the sensation of light during a fraction of time which has been found to be one-third of a second-a phenomenon whicl: is exemplified by the curious experiment of a piece of incaudescent charcoal revolving round a ceutre, and forming a continual circle of light. It is obvious that if the incandescent charcoal during its revolution was evolving successively various rayo, we could measure the length and duration of every ray by the angle each would subtend during its course. This is precisely what can be done with the light of the star. It can indeed be made to revolve like the incandescent charconl, and form a conplete circle on the retina. When we look at a star with a telcscope we see it on a definite part of the field of the glass; but if with one hand we slightly move the telescope the image of the star changes its position, and during that motion, on account of the persistence of sensation on the retina, instead of appearing like a spot, it assumes the shape of a contimued line. Now if, instead of moving the telescope in a straight line, we endeavour to move it in a circular direction, the star appears like a circle, but very irregular, on account of the unsteadiness of the movement communicated by the band. Such is the principle of the instrument employed by the author to communicate the perfect circular motion which it is impossible to impart by the hand. The instrument consiste of a cenical tube
placed horizuntally on a stand, and revolving on its ownaxis by w ans of wheels inside this tube a telescope or an opera glass is placed, by which, by means of two opposite serews, the end of the onject-glass can be placed in an excentrio position in various degrees according t: the effect desirel, while the eye-glase remains in the centre of the small end of the tube. Now, if we understand that when the machine makes the tube to revolve upon its axis, the telescope inside revolves in an excentric duection, durity the revolution the star seen tbrough it must appear like a circle. Th:s circle exhibits on its priphery the varmus rays emitted by the star, all following each ohber in epaces corresponting with their duration, showing also blank spaces between two contiguma rays which must correspond with the black lines of the spectrum. The instrunsent, in fact, is a kind of spectroscope, by which we can analyze the light of any star, stuity the cause of the scintiliation, and compare its intensity in various climates or seasons and at different altitudes.
The Abbe Molgno exhibited and described M. Soleil's Tenebroscope, for illus trating the invisibility of light. It as well known to scientific men, although the general public do not sufficiently appreciate the fact, that light in itself is invisible unless the eye be so placed as to receive the rays as they approach it, or unless some object be placed in its course, from whose surface the light may be reflected to the eye. which will generally thus give notice of the presence of that objectThus, if the strong beam of aunlight be admitted into a darkened chamber through a small opening aud received un some blackened surface placed against the opposite wall, the entire chamber will remain in perfect darkuess, and all the objects in it invisible, except in as far as small motes floating in the air mark the courso of the sunteram by reflecting fortions of its light. Upon projecting a fluid or small dust across the course of the beam its presence also becomes perceptible. The instrument exlibited consisted of a tube with an opening at one end to be looked into, the other end closed, the inside well blackened, and a wide opening across the tube to admit strong light to pass only across. On looking in all is perfectly dark, but a small nigger raises at pleasure a small ivory ball into the course of the rays, and its presence instantly reveals the existence of the crossing beam by reflecting a portion of its light.
'On the System of Forecasting the Weather pursued in Hollanc.' by Dr. Buys Ballot.-The author said:-"I shall not abuse your indulgence, which I earnestly impiore. I shall very shortly explain (1.) what are the rules about foretelling weather in IIolland, given before a similar system was introduced in England; (2.) how they behaved themselves; aud (3.) what is to be done now: and I will very abunamaly answer to any question or remark if they be made, for in that case I am justified in trespassing on your time.-(1.) Under our plan, where observations are taken in Holland, there are four principal places: Helder indicated by H, Groningen indicated by G, Flushing indicated by V, and Macstricht indicated by M, on the indications of which I base my forecaste, and in the first place on the barometer readings. For every day of the year and fur every hour of the day I have very carefully determined the height of the barometer in the place of observation at that height above the sea. where it is suspended. This is a cardinal point not sufficiently observed in England, and not at all in France. The differ-
eace of an observed pressure from that calculated on I call the departure of the pressure-positive when the pressure is greater, negative when it is less. Those deraiturcs, besides the observations of the other instruments, are communicated from pust to post. The rule is unt very simple. If the departures are greater (more positive) in the southern places than in the northern, greater at M. or V . than at G. or II., the wind will have a W. in itu name; when the departures are greater in the northern places the wind will have an E. in its name. More accurately, you may say, the wind will be ucarly at right angles with the direction of the greatest difference of pressures. When you place yourself in the direction of the wind (or in the direction (f the electric current) you will have at your left the least atmosphenic pressure (or the north pole of the magnet). When the difference of pressure of the southern phaces above the northern is not above four millimetnes there will be no wind of a firce above 30 lb . on the square mètre. Moreover. he greatest amount of rain "ili fall when the departures are negative; and at the phaces where the departures are most negative there also the force of the wind will be geverally athonger. Horeover, there will be no thunder if the barometric pressure is not less than two millimetres above the average height, and when at the same time the difference of the departures of temperature is considerable. Those rules, and especially the first two, were laid down by me, in 1857, in the Comptes Rendus, and on the list of June, 1860, the first telegraphic warning by order of the Department of the Interimy was giveu in Holland. It was unfortunate that those telegraplic warnings were not introduced four days sooner, for in that case the first communication would have been a firet warning againat the fearful storm of May 28,1860 , called the Fioster storm. All of you know how amply Admiral Fitz Roy has arrauged the telegraph warnings all over England. -2. Thuse rules used in Holland lave behaved themselves very well, ns is laid down in the tramslation of a pater of Mr. Klein, captain of a merchant ship, whereto I have abded my observations and signals compared with the signals of Admi. ral Fitz Roy in table A. p. 25 . My own paper dates from June 1, 1860 , and is extracted by Mr. Kilein as you may see, but I preferred that the leis complete and precise paper of a practica? man be translated. because I thnught that the senmen would put more renamee on it. From the tables adiced to that tramslanim it appears that I have warned frommy frur stations, just as Admiral Fitz Roy has doue from his twenty. It must. however, be iecorded that besides those four stations, there are atso éme station- - Parie, Havre, Baest-in France, and some in Eng and-Haricpool, Yamonth, Portsmouth, llymouth. that send me their observationa. Generaliy they anjve tno late, and theretore they throw but very little light on the ferecasting, principally while the barometurs are not so well known. So much for the strength, now for the direction. The direction is in the first twenty-four hours after the oberrations three times of the four such as indieated, and the secoid 24 hours and the third 24 hours still two times of the three sach as indicated (see table B, p. 29), and moreover no storm has occurred in those six years when not before the difference of the southern departur. $\begin{aligned} & \text { above the }\end{aligned}$ northern has becu four millimetres.-To come to the third point. 3rd. What is to be done: 1 The nomal heights of the barometric pressure, or better, of the barometere, wheb ase read, must brenscientionsly taken, the obsersation must be made at more points ouce a day, and mutually communicated, and at days when
there are greatly different departures, that is to say, of three millimetres, or when there is change of inclination, there munt be sent a message at noou or in the evening of the same day. In all cases, not only the pressure in the morning, but likewise that at night should be given. A critical indication is, when the previous day the northern stations had greater departures, and ihe following day the southern bad greater departures, even when the difference in the latter case was small. There is caution to be had when the difference of the departures is 4 millinetres. But I may not trespas on your time and bindness in expressing wishes only, it may be sufficient to have commumicated the general rule.
'On Aluminium.' by Mr. I. L. Bell.-The author faid-"The progress of the manufacture of this, g_{0} far as the arts are coneernert, new metal has scarcely been such as to require much to be added to the researches bestowed upon the process by the distinguished chemist, M. St. Cairi Deville, of Paris. Upon the introduotion of its manufacture at Washington, three years and a half ago, the source of the alumina was the ordinary ammonia alum of commerce, a nearly pure sulphate of alumina and ammonia. Exposure to heat drove off t :ee water, sulphuric acid and ammonia, leaving the alumina. This was convertel into the donble chloride of aluminium and sodium by the process described by the French chemist and practised in France, and the double clloride subecquently decomposed by fusion with sodium. Faint. however, as the thaces might te of impurity in the alum it. self, they, to a great catent, if uot entirely, being of a fixed character when exposed to heat, were to be found in the alamina, fiom which, by the action of the chlorine on the heated mass, a large proportion, if not all, found their way into the sublimed double chlonide, and once there, it is unnecessary to say that under the iufluence of the solinm, any silica. iton, or phosphorus found their way into the aluminium souglit to be obtained. Now, it happens that the presence of these impurities in a degree so small as alnost to be infintesimal, interferes so largely with the colour as well :s with the mal eability of the aluminium that the use of any zubstance containing them is of a fatal character. Nor is this all, for the nature of that com- wat which hitherto has constituted the most important application to this metal-1 me:m aluminium-bronze-is so completely changed by using aluminium comaining the inpurities referred to, that it ceases to possess any of those properties wheh render it valuable. As an example of the amount of interference exercise 1 by verv minute quatiies ff foreign matters. it is, perhaps, worthy of u, fice that vety fer varieties of copper have been found susceptible of being emphoyed for the manufacture of aluminiun-bronze; and hitherto we hare not at Washington, nor have they in Fratce, been able tu eatablish in what the difference conssts between copper fit for the production of nluminiun bronze, and that which is utterly unsuitaine for the purpose. These consideratious have led us, buth here and in France, to adopt the use of another :am material for the production of almminum, which wither dues not contain the impurities referred to as so prejudicial, or contains them in sach a form as to admit of their easy separation. This material is Banste, so called from the name of the locality where it is found in France. The Bauxite is ground and mixed with the ordinary alkali of commerce, heated in a furnace. The metal is so extensively used in the arts as to keep the only work in Englaud, namely, that at Washiugton, pretty actively emplosed. As a substance for works of art, when whitebed by means of hydro-
finoric and phophoric acid, it appears well adapued, as it runs into the most complicated patterns, and has che advantage of preserving its colour, from the absence of all teadency to unite with sulphur or become aftected by sulphuretted hedrogen. A larise amome of the increased activity in the manufacture referred to is due to the exceeding beaty of its compound with copper, which is solike gold as scarcely to be distingushable fiom that metal, with the additional valuable property of being ne.nly as hard as iron."

- On the Sydacyluus Condition of the Hand in Man and the Anthropoid Apes,' by Mr. C. \therefore Blake.-The author said, "I call the attention of the Section to a corious abnormity which is presented by the intrgument of a specimen of old male gorilla which was brought from the Gaboon by Mr. W. Winwood Reade, and presented by that gentleman to the Museum of the Anthopological Society of London. The specimens of gorilla which have been the subjects of the elaborate and complete Memoirs which have appeared from the pens of MM. Duvemoz and Isidore Geoffroy St. Hilaire, in the Archives of the Paris Museum (vols. viii. and x.) and ny Prof. Owen in vatioua parts of the Zuolugical Transactions, have, with other suthors, all coincided in the statement of a fact, true as regards the specimens with which they were acquainted, which probably represent the majority of specimens of gorilla which have bean examined in Europe. This statement, re. duced to a gencral proposition, was that the integument of the shin of the fingers was more or less comnected across the first digital phalanz in such a manner that the first joints were firmly comnected together by shin, sometimes as far as the distal extremity of the first phalanx, sometimes merely to the middle of 1 phalanx. In no specimen of gorilla, of the description of which I am yet cugnizaut, are the digits of the anterior extremity free to the same extcut as in man, in wheh the distal extremities of the metacarpals mark the termination of the amount of syndactylity of the hand. In the specimen of gorilla to which allusion is made in this short note, the digits of the fingers present a different condition of connection from the typical specimens deseribed by zoologists. The second (iudex), third (medius), and fourth (amulus) digits are free beyond the distal ead of the metacarpals as in the human subject; the ifth digit (minimus) is also in a less degree attached to the annulus than in the specimens of gorilla contained in various public museums. We have thus a specimen of gorilia in which the dugite of the band are almost as tree as in the hand of the lower races of mankind. Careful examination by a lens of the intergment before the preparation of the specimen by Mr. Leadbeater, who first called my attention to this abnormity, demonstrates the fact that the epidermis covers the cutis on the inner sides of the interdigital spaces of the first phalatiges of this specimen. The consistency of this epidermis merely differs in degree from that of the homologous structure in the foot and otber parts of the body. It would be interesting to compare such a curious abnormity of the integument with the similar abnormities which exist in the human species. The human fingers are nost frequently comected together by syadactyli, and remain duriag life in that state of arrested development (as regards the integunent) which is typified by the permanent stage of the develepment of the gorilla. On the other hand, I bave never yet met, either in the chimpanzee or orang-utan, with a similar case of freedom of digits to that here described. We must, however, recollect that the number of specimens of chimpanzee and orang-
utan, which have been accurately described anatomically, form a very small percentage. How many individuals of grorilla inay exist, in which there may be a similar 'accidental' variety, must remain for a long time unkuown to us. Syudactylity is often congenital. A case has recently come before my observation of a married female, in which the medius and annulus of both hands are firmly connected together by integument. A similar condition prevails in one of her children; another bas deformity on the right hand; while the youngest preserves the digits in their dormal condition. The speculation whether a like rule or its converse may or may not prevail in the ape,-whether it might uot through generations during which the congenital defect of the gorilla, or absence of the characteristic syndactylity, might be transmittel, operate towards the production of a more preb .sile form of band, must, however, be postponed until a vaster series of specimens shall be examined by anthropologists or zoolugists."
' On the Physical and Mental Character of the Negro,' by Dr. J. Hent.
This paper brought up Mr Craft, a negro of nearly pure black skin, in defence of his race. Mr. Craft said, that as Africans were very dark, and the inhabitants of Northeru Europe very fair, and as, moreover, the nations of Southern Europe were much darker than those of Northern Europe, it was perfectly fair to sappose that climate had a tendency to bleach as well as to blacken The thickness of the skulls of the negroes had been winly armuged by Providence to defend their brains from the tropical climate in which they lived It God had not given them thick skulls their brains would probably bave beoome very much like those of many scientific gentlemen of the present day. The woully har was not considered by Africans as a mark of inferiority, thoush some of them shaved it off, but it also answered the purpose of detonding the head from the sum. With regard to bis not being a trut Afric.m. his grandmother and gandf:ther were both of pure negro bleod. His grambather was a chief of the West Const; but, through the treachery of sume white men. who doubthess thought them-cive greatly his superiors, he was kidnapped and taken to Amerca, where he M. (taft) was born. He had recently been to Africa on a visit to the King of Dahomey. He found there cons:derable diversities even anong the Africans themselves. Those of Sierra Leone had prominent, almost Jewish features. Their heels were quite as short, generally, as those of any other race, and upon the whole they were well formed. Persons who had any knowledge of Africans knew that, when they enjoyed a:ivantages, they were capable of making good use of them. He might refer to the instance of the little girl brought to this comery by Capt. Forbers. This child was presented to the Cucen, who had her carefully rducated. When she grew up, she mingled in good society, and interested every one by her proficiency in music; and recently she had been married to a commercial senteman of colour at Laros. Another case was mentioned by Mr. Chambers in me of his works; and another case wae that of Mr. Crowther, who w is well known to many genllemen in this country. One wond with reference to ile an-ient Britons. When Julius Cesar came to this country, he said of the native that they were such stupid peopie that they were not fit to make slaves of in fome. It had takin a long time to make Eiaghshmen what they now were, and therefore it was not wonderful if the argroes made slow progress in intelle chal reveropment. It was, however, proved, that they made ve:y rapid progress when placed in advan-
tageous circumstances. As to the nerpor, net being erect, the same thing might be said of agricultural labourers in thic country, He pointed to Hayli as furnishing an instance of independence of character and intelectual power ou the part of the negro; and contended that in Amenica the degracled position which he was forced to occupy gave him no chance of proving what he really was capable of doing. He was sory that learned and scientic men shonld waste their time in discussing a subject that could piove of no lenefit to mankind. He spoke with great defer ence to their opinions; but, fur his own pat, he firmly asteed with Cowper, that

> Fleecy locks and black conplexion
> Cannot alter nature's clam;
> skins may differ, but aftection
> Dwells in white and black the same.
' Military Budgets of Einglish and French Armmes for 1863-4, statistically compared,' by Col. Sykes - He showed by a series of elaborate returus that the total effective English army was $1+7,118$; that of the French, 355,187 . The cost per head of the effective and non-eff ctive English, numberiug 14T,118 men, was $94 l$. 1a. $1 \frac{1}{2} d$, while that of the Fseuch effective and non-effective forces of 400,000 was 43l. 98. 4d. per head. The cost of the British manufacturing department was $6 l$. 10s. per head, against $2 l .15 s .10 l$.; military stores (British) per head, $5 l .148$, French, 3l. 0s. 2d.; purchase of small arms (British), 14s. 4d d d, against 5s. $8 d$. ; British military educ.tion, 1l. 3s. bd., Fiench, 7s. $1 d$; administration of the British army (Secretary of State and Coumander-in-Chiff's Department), 1l. 8s. 11d., French, $6 s .11 \frac{1}{2} d$; Govermment staff (Briish) per individual 304l. 5s., French, 390l.; clothing (British), 4l. 0s. 2d., against 1l. 19s. 11d. Col. Sykes gave further details, showing the great difference in the atnount of estimates required for the support of the Britisli and French armies. He (Col. Sykes) expressed his opinion that econumy would be secured in a much greater degree if the Government, instead of manufacturing themselves the materiel required for use in the army and navy, would intrust it to contractors. He had been hoping that the contrast between the expenditure on the French army aud that on our own could have been satisfactorily explained, and that the French army was only ont-half of our owa. The details could not be gainsaid. Then, ngain, when a certain total sum was granted, there was the greatest possible vigilance exercised to insure that the sums appropriated to various purposes we:e actually spent in the department to which they were originally inteuded to be applied, or that they were clearly accounted or if not required. He had received a communication from a friend of his own of high position and fully acquainted with military matters, who, after making inquiries in the proper quarters, was of openion that the administration of French military affairs was in a very healthy stat, indeed, and had exercised a most beneficial influence on the political condition of the country. No Englishman would for a moment begrudge the proper means of securing the respectability, the gentlemanly beariug, the self respect of the common soldier eveli, but Englishmen did wish that, whatever public money was given for that purpose, should be devoted in the most economical manner to the purposes for which it was given. It was what the people of England bad a right to expect; and his object in calling attention to those comparisons was that all thuse thinge might be looked into, and that, in future, there would be less catse for the army and uary to absorb nearly onehalf of the taxes of the conntry.

RESEAROEES ON THE MOON. -BI PROF. iHALLIPS.

The author having on previous occasious presented his ; pws as to the wethods and objects of research in the moon, was desirous now to state a few results, and exhibit a few drawings, the fruit of recent exammations of the moon by means of a? new equatorial by Cooke, with an object-glass of 6 ioches. In sketching ring mountains, such as Theophilus and Posidonius, the author has heen greatly interested by the changes of aspect which even a small alteration in the angles of clevation and azimuth respectively produce in the shadows and lights. Taking an eample from Cyrillus, with ite rocky interior, and fixing attcntion on the nearly central mountain, it always appeare in the moruing light to have two promeipal unperforated masses. By a slight change in the direction of the light, the division of these masses is deeply shaded on the uorth or deeply shaded on the south, and the figure of the masses, i.e., the limit of light and shade, seems altered. A slight change in the angle of clevation of the incident light makes more ren arkable differences. On Posidonius, which is a low, nearly level plateau, within moderately raised borders, the mid-morning light shows with beautiful distinctness the shieldlike dise of the mountain, with narrow broken walls, and in the interior, broad, easy undulation one large and several smaller craters. In earlier morning more oraters appear and the interior ridges gather to form a broken terrace subordnate to the principal ridge. This circumstance of an interior brokenterrace. under the high main ring of mountain, is very frequent, but it is often concealed by the shadow of the great ridge in early morning shadows. To see it emerge into halflights, and finally to distinct digitations and variously directed ridges, as the light falls at increasing angles, is a very beautiful sight. But it is chiefly to the variations in the central masses of lunar mountains and their physical beanings that the author wishes to direct attention. Many smaller mountains are simply like cups set in saucers, while others contain only one central or several dispersed cups. In Plato is a nearly central very small cup, bright, and giving a distinct shadow on the grey ground, as seen by Mr. Lockyer, Mr. Birt, and Pr,f. Phillips himself. But in the centre of many of the larger mountains, as Coperuicus, Gassendi and Theophilus, is a large mass of brokeu rocky country, 5,000 or 6,000 feet high, with buttresses passing off into collateral ridges, or an undulated surface of low ridges and hollows. The most remarkable object of this kiad which the author has yet observed witb attention is in Theophilus, of which momatain two drasriuge are given, in which the author places equal confidence, except that the latter drawing may have the advantage of more experience. The central mass is seen uuder powers of $200-400$ (the best performance is from 200 to 300), and appears as a large conical mass of rocks about fifteen miles in diameter, and divided by deep chasms radiating from the centre. The rock-masses between these deep cleits are bright and shining, the clefts widen towards the centre, the eastern side is more diversified than the western, and like the southern side has lo, og excurrent buttresses. As the light grows on the mountain, point after point of the wa-s on the eastern side comes out of the shade, and the whole firgure resembles an uplifted mass which broke with madiating cracks in the act of elevation. Exeept ng in steepness, this resembles the theoretical Mont dOr of Du Beamont; an as there is no mark of cups or craters in this mass of broken ground the author is disposed th regard its origin as really due to the displacement of a soliditied part of the
moon's crust. He might be justified by Prof. Secchi's drawing of Copernicus, in inquiring if the low excurreut buttresses may indicate issues of lava on the southern and western sides? On the whole, the author is confirmed in the opinion ho bas elsewhere expressed, thit on the moon's face are features more strongly marked than on our own globe, which, rightly studied, may lead to a knowledge of volcanic action under grander and simpler conditions than have prevailed on the earth during the period of subaierial volcanoes. The author also exhibited a drawing of Aristarchus, showing some undescribed features in the aspect of that, the highest part of the moon's surface.
' On some Phenomena proluced by the refractive power of the Eye,' by Mr. A. Claudet.-This paper was to explain several effects of the refraction through the eye, one of which is, that objects situated a little behind us, are seen as if they were on a straight line from right to left. Another, that the pictures of external objects which are represented on the retina, are included in an angle much larger than one-balf of the sphere at the centre of which the observer is placed; frem this point of view a single glance encompasoes a vast and splendid panorama extending to an angle of 200°. This is the result of the common law of refraction. All the rays of light passing through the cornea, to the chrystalline lens are more and more reftacted in proportion to the angle at which they strike the spherical surface of the cornca. Consequently, the only objects which are seen in their true position are those enteling the eye in the direction of the opthe axis. By this refraction the rays which enter the eye at an angle of 90°, are bent at 10°, and appear to come from an angle of 80°. This phenomenon produces a very curiousillusion. When we are lighted by the sun, the moun, or any other light, if we endeavour to place ourselves in a line with the light and the shadow of our body, we are surprised to find that the light and the shadow seem not to be connected at all, and that, instead of briur in a line, they appear bent to an an.le of 160° instead of 180°, so that we see buth the light and the shadow a little before us, where they are not expected to be. The eye refracts the line formed by the ray of light, and the shadow and the ffect is like that of the stick, one half of which being immersed in water, appears crooked or bent ints an angle at the point of inmersion. This en!aryement of the fielt of vision to an angle of 200°, is one of those innumerable and wonderful resources of nature by which the beaty of the effect is increased. Our attention is called to the various purts of the panorama which appear in any way a dosirabie point of obsurvation, and we are warned of any danger from objects coming to us in the most oblique direction. These advantages are particulaly felt in our crowded towns, where we are obliged to be constantly on the look out for all that is passing around us.

On the Cultivation of Cinchona in Indi.," by Mr. C. R. Markham.
Dr. Thompsos said it was those only who knew how rapidly the supply of quinine from Chili and South America was beng exhansted that could know how inestimable was the work which the paper described. The experiments which had been mate hal siown, ant only that the plant might be grown in oher countries, but that the bark of the young tree yichle 1 a ameh larger proportion of quinine than that of the ohl. The gool which would reeult from carrging the cultivation of the phat into new fields was immense' for while the application of quinine was
extending, many of the hospitals had hard to restrict its use on aocount of the expense; and the result of the recent discoveries would be that physicians, when prescribing bark alone, would give the preference to young bark.

On the Reason why the Stomach is not Digested by its own Secretion during Life, by Dr. Pavy.-How is it (he observed) that the stomach, composed as it is of digestible materials, escapes being digested itself, whilst digestion is being carried on in its interior? The question here raised must beadmitted to be one of the utmost interest and importance to us all, because it touches upon the means by which we escape after every neal we consume from the occurrence of an event which would inevitably prove fatal to life. Hunter noticed that the stomach was susceptible of being attacked by the digestive liquid after death, and accounted for its porver of resisting destruction during life by reference to the 'living principle.' The stomacn, he says, which at oue instint, that is, while possessed of the living principle, was capable of resisting the digestive powers which it contained, the next moment, namely, when deprived of the living principle, is itself capable of being digested. In illustration, he furthersays, "if it were possible for a man's hand to be introduced into the stomach of a livin, animal, and kept there for some considerable time, it would be found that the dissolvent pewers of the stomach could have no effect upon it ; but if the same hand were separated from the body and introduced into the same stomach, we should then find that the stomach would immediately act upon it" This statement, however, fails to stand the test of actual experience. Bernard, of Paris, ingeninusly contrived to introduce the hind legs of a living frig through a fistulous opening in the interior of a digesting sto. mach, and foum that they underwent digestion, notwithstanding that the life of the aninall was maintained. My own experitnce enables me to te,tify to the accuracy of this result; and further. I have found that the tip of a living rabbit's ear has similarly yielded to the influence of the durestive menstruum. The "living princible" must, therefore, be discarded, as insufficient to account for the state of security under which the living stomach exists. To replace the refuted influeuce of the "living principle," it has been suggested that it is the epithelial lining which gives to the stomach the immunity from destruction it enjoys daring life. The stomach, it has been said, is lined with an epithelial layer, and this, with the mucus secreted, acts as a kind of varnish in protecting the deeper part:. Whilst digestion is proceeding, the epithelimin and mucus are constantly being dissolved, like the food contained in the stomach; but a fre-h supply being as constantly produced, the organ is thereby maintained intact. Death taking place, and the epitheliallyer being no longer produced, the gastrie juice, after acting upon and dissolving it, reaches the deeper coats, and then, continuing to exert its influence, may ultimately, the temperature bemer maintained sufficiently favourable for the purpose, oceasion a perforation of the organ. This vier, however, like Inuter's "living principle," fails to stand when submitied to the test of experiment; for I have found that a considerable sized patch of mucous membrane may be removed, and food will afterwards be digested without the slightest sign of attack being made upon the deeper enats of the orgran. Indeed, it might almost be assumed upon reflection, that something more constant-that some condition presenting loss exporure to the chance of being influenced by external circumstances than that supphed by the existence of an epithelial layer, would be required to accoant
for that unfailing seenri:y from ante morten solution which the stomach appears to enjing. From the articles swallowed, abrasion of the mucous membrance may be prosumel to have been not unfrequently produced, and uleeration is not of so uncommon an occurrence; yet perfuration has not been observed as the necessary result. The problem, therefore, as to why the stomach is not susceptible of attack during life as it is after death, still remains open for solution; and the view that I have to offer refers the immunity observed to the circulation within the walis of the organ of an alkaline current of blood. It will not be disputed that the presence of acidity is une of the necessary circumstances for the accomplishment of gastric digestion. Now, alkalinity is a coustant character of the 'blood, and, as during hife, the walls of the stomach are everywhere permeated by a current of this alkaline blond, we have here an opposing influence, the effect of which would be to destroy, by neatralizing its acidity, the solvent properties of the digestive fluid tending to penctrate and act upon the texture of the organ. The Hood beiug stagnant after death, the opposing influence is lost that is offered by the circulating current. Shouhl life happen to be cut short at a period of digestion, there is ouly the neutralizing power of the blood actually contained in the vessels of the stomach, to impede the progress of attack upon the organ itself; and the consequence is, that digestion of its parictes pruceeds. as long as the temperature remains favourable for the process, and the solvent power of the digestive liquid is unexhasted. There is, therefore, no want of harmony between the effeot that occurs after death and the explanation that refers the protection afforded due ring life to the neutralizing influence of the circulation. In support of this view I have found, experimentally, that by arresting the flow of blood through the stowach during life, the organ is placed in the same condition as it is after death: having lost its protecting influence, digestion of its texture now proceeds. It will be naturally required of me to recomeile the view advanced, with the effect that is noticed when the living frog's legs and rabbit's ears were introtuced through a fis* tulous opening into the digesting stomacb. If the circulation, through its neutralizing power, protect the stomach, why should it not have afforded equal protection to the tissues of the living animals introduced through a fistulous opening into the organ? According to the proposition offered, the result is involved in a question of degree of power between two opposing influences. And becanse through degree of vascularity the neutralizing power of the circulation is sutticient to hold in check the eolvent action of the gastric juice in the case of the walls of the stomach, it does not follow that it should simitarly be sufficient to do so in the case of the frog's legs and rabbit's ears. With the frog it may be fairly taken that the amount of blond possessed by the animal would be totally inadequate to furnish the required means of resistance to the i.ffluence of the acidity of a dog's gastric juice. With the rabbit's ears the vascularity is so much less than that of the ralls of the stouach that there is nothing incomprehensible in the fact of tho one yielding $t n$, and the other resisting the attack. In aupport of the position that has beeu taken, it can be shown by experiment that even with the stomach itself, by increasiug the acidity of its contents beyond a certain point, its circulation is no longer adequate to cuable it to resist digestion.

ENTOMOLOGICAL SOCIETY OF CANADA.

Tas ordinary monthly meeting of the society was beld in the Council-room of the Canadian Institute, on Tuesday, the 8th December, at three o'clock, p.m Nearly all the members from Toronto and the vicinity wers present.

In the absence of Prof Croft and Mr. Saunders, Dr. Morris was called to tho chair, and Mr. Hubbert appointed secretary, pro. tem. The minutes of the previous meeting were read and confirmed.

Communications were received from

Professor Hincks, expressing regret at his inability to attend, in consequence of indisposition;
F. Grant, Esq, and R. V. Rogers, Esq., on businoss connected with the society.

The following gentlemen were proposed as suitable persons to become members of thes society:
The Rev, H. P. Hope, Toronto. Rice Lewis, Esq., " James Wright, Esq, Vienna.
The following donations were achnowledged, and the thanks of the socicty voted to the donors:
From Prof. Croft-
A cabinct of seven drawers.
To the Library:
From the Smithsonian Institution-
Monographs of the Diptera of North America. By H. Laen. Part I.
From the author, W. Saunders, Esq, London, C. W.-
(1) Monograph of the Arctiadæ of Canada. 20 copies.
(2) Description of tro new species of Arctia.
(3) "On some hitherto undescribed Lepidopterous larva."

From A. L. Packard, Jun, Esq, Cambridge, Mass., through Principal DawsonPhotographs of the following undescribed Bombyces: Crambuda pallida, Callimorpha vesta, Callochlora chlorata, Cyrtosia albopunctata of and \&, Entortricallis testacea, Cyrtosia geminata, Cilodasys cinereafrons, Laphodonta ferruginea, Gluphisia trilineata ot and q, Platycorura furcille, Cilodasys biguttata, and Edapleuza bilineata.
From James Hubbert, Esq., B.A.-
Popular Entomology. By Maria E. Catlow.
British Butterflies. By W. S. Coleman.

To the Cabinet:

Trom Prof. Croft-

48 Specimens, including 27 species of Chinese Lepidoptera.

- 164 " 61 " Coleoptera.

From B. R. Morris, Esq., B.A., M.D.-
47 Specimens, including 16 species of Coleoptera.
From J. F. Sangster, Esq., M.A.-
23 Specimens, including 17 species of Coleoptera.

6	$"$	$"$	5	"	Lepido \cdot tera.
11	$"$	$"$	10	"	Diptera.
10	$"$	$"$	10	$"$	Uymenoptera.
5	$"$	$"$	4	"	Neuroptera.
4	$"$	$"$	4	$"$	Orthoptera.

From B. Billings, Esq., Ottawa-

236	Specimens,	including	132	species	of Coleoptera.
21	$"$	$"$	19	"	Lepidoptera.
6	$"$	$"$	5	$"$	Diptera.
7	$"$	$"$	5	$"$	Orthoptera.
3	$"$	$"$	2	$"$	Strepsiptera.
3	"	"	3	$"$	Hemiptera.

From James Hubbert, Esq.. B.A.-
251 Specimens, including 176 species of Coleoptera.

63	$"$	$"$	25	$"$	Lepidoptera.
49	$"$	$"$	40	$"$	Diptera.
38	$"$	$"$	27	$"$	Iymenoptera.
12	$"$	$"$	10	$"$	Orthoptera.
12	$"$	$"$	8	$"$	Neuroptera.
15	$"$	"	10	$"$	Hemiptera.

From Thomas Reynolds, Esq., Montreal-
13 Spesimens, including 8 species of Coleoptera.

154	$"$	$"$	53	$"$	Lepidoptera.
1	$"$	$"$	1	$"$	Diptera.
9	$"$	$"$	6	$"$	Hymenoptera.
2	$"$	"	1	$"$	Hemiptera.

From Wm. Saunders, Esq., London-
345 Specimens, including 121 species of Colcoptera.

111	$"$	$"$	37	$"$	Lepidoptera.
1	$"$	$"$	01	$"$	Diptera.
8	$"$	$"$	5	$"$	Neuroptera.
4	$"$	$"$	1	$"$	Strepsiptera.

A communication was read from Mr. Saunders. regarding the r-acticability of publishing a catalogue of the known Canadian species of each order of insects. After considernble discussion as to the best form. icc.,-

It was moved and seconded,-That the society take immediate steps to prepare and publish catalogues of the Coleoptera and Lepidoptera, to be followed by
similar catalogues of the other orders an soon as possible; and that Mr. Saunders, Prof. Croft, and Mr. Billinge, be a cominitteo on Coleoptera; and Prof. Hincks, Mr. Saunders, and Dr. Morris, on Lepidoptera.-Carried.

The committee are very anxious to secure the co-operation of all persons baving either named collections or lists of species. Any informat which would aid in bringing out full and necurate catalogues, should be communicated without delay to Mr. Saunders or Prof. Ilincks.

Moved and seconded,-TThat a supply of entomological pins and sheet cork, for lining cabinets, be kept on hand, to be furnished to members at the lowest cost prices.-Carried

It is intended ultimately to losep all the apparatus required in capturing and preserving insects.

Moved and seromided,-Thut the Rev. Charles Bethune, B.A., be requested to nse influence to advance the interests of this society among Naturalista in Great Britain.-Carried.

A verbal communication was made by Dr. Morris, on insects captured in the vicinity of Orillia, during the summer of 1863. Among the interesting specimens exhibited by Dr. Morris, were several examples of Colias edusa, so seldom met with in Canada,-only two or three individuals baving been taken as yet Dr. Morris remarked that this insect socms to differ from the C. edusa of British. Naturalists, in its habits of ilight, \&e., which seems to indicate either a distinct species or very wide variations.

Both sexes of Terius lesa, alyo very rare in Canada, had been captured.
A species of Anhenotes, talken hy Mr. F. Grant, of Orillia, was also exhibited. The general appearance of the insect closely resembled that of A. septentrionis, of which it is probably a variety. The form of the rostrum is so peculiar, as to lead Dr. Morris to think that possibly there may be two species with us.

The following papers were presented by Mr. Hrabbert:
(1) Notes on insecte captured near Kingston. 1863.
(2) What the insects do in Jamuary.

The meeting then adjourned

CANADIAN INSTITUTE.

ANNUAL REPORT OF THE COUNCIL FOR TEE YEAR 1868.

Ter Council of the Canadian Instituse have the honour to preaent the fol lowing Report of the Proceedings of the Society for the past year:

I.-Memberbuip.

The presenu state of the membership is as follows:
Members at commencement of Session-December, 1862 447
New Members elected during Session 1862-63 18
By the Council during the recess of 1863 3
Deduct-Deaths... 8
Withdrawn... 16
Left the Province.. 9
Non-payment. 1

Total-30th November, 1863

445

Composed of-Honorary Metabers 4
Life Mcmbers 32
Corresponding Members 6
Junior Members . 3
Ordinary Members 400
Total $\overline{445}$
The Councll hare to deplore the loss, during the past year, of Sir Johe Beveriey Rubinson, Bart. The active interest which he exinced in the prosperity of the Iustitute, and the valuable services which he rendered to it, will long be held in grateful recollection. Death has also removed Mr. Justice Connor and John Hutchinson, Esq., who, although they did not take prit in the proceedings of tie Society, yet lent their aid in promoting its welfare.

IL.-Comyluications.

The following list of papers, read at the ordinary meetings beld during the session, will be found to contain many valuable communications, and some of general interest:

$$
13 t h \text { December, } 1802 .
$$

Rev. Prof. Hincks, F.L.S.: \&c.. "On certain Vegr.table Monstrosities considered in reference to the question of the reality and permanence of Species amongat organized .jeings."
P. Freeland, Esq.. exhibited and described Smith and Beck's New Universal Microscope.

2こth December, 1862.
Prof. H. Y. IIind, M.A., F.G.S., \&c, "On Vegetable Parchment, its nses and preparations."

10th January, 1863.
The Rev. J. McCaul, LL.D., read the "Anmual Address."
17th January, 1863.
Prof. D. Wilson, LL.D., "On the Lbaracteristics of the Flint Implements of the Drift as compared with those of a later Stone Period."
John Martiu, Esq., LL.D., "On some General Properties of Curres."
24th January, 1863.
A. E. Williamson, Esq., "A proposed Classification of the Genus Helix."

Professor J. B. Cberriman, M.A., (1) "Remarks on Comets." (2) "On Poinsot's memoir on Rotation."

3!st January, 1 1s63.
No papers.-Death of the late Ciiief Justice Robinson.
71h February, 1863.
Prof. G. T. Kingston, M.A., "Meteorological Report of $1862 . "$
James Hubbert, Esq., "On the Fungi"
B. R. Morris, M.D., "'n the Natural Checks to the Destruction of our Crops by Insects."

14th February, 1863.
Prof. G. T. Kingston, M.A., "On the Disturbance of Magnetical Declination at Torouto, during the years 1855-1562, inclusive."
Prof. D. Wilson, LI.D., "Relative to a new kind of Cannon which was described to him on his recent visit to Washington."

2lst February, 1863.
D. Ogden, Esq.; M.D., "On Chloroform and its effects."
T. J. Cottle, Esq., "On a new Species of Astacus,"

28th February, 1563.
Sandford Fleming, Esq., C.E., "On the present condition of the Enniskillen Oil Wells."
The Rev. Prof. Hincks, F.L.S., \&c., "On the position and relations of certain families of Birds."
W. Saunders, Esq., "Catalogue of Plants found near London, C. W.," Tth March, 1563.
Prof. D. Wilson, LL.D., "Notes of a recent Visit to the Mortonian Collection of the Academy of Natural Sciences of Philadelphia."

14th March, 1863.
Professor Mind, M.A., F.G.S., "On the Masquapees."
28th Ma. h, 1863.
P. Freeland Esq., "On the Measurement of Microseopic Objects."

The President, the Rev. J. McCaul, LL.D., "On the determination of Ancient Roman dates"
J. Bovell, Esq., M.D., "On Growth and Repair."

$$
\text { 11th April, } 1863 .
$$

Prof. E. J. Chapman, Ph.D., "On a Specimen of Carbonaccous matter from Lake Superior, with remarks on the Origin of the Petroleum, as applied more particularly to the Oil District of Western Canada, and some new views on the general formation of Coni."

18th April, 1863.

Rer. II. Scaddirg, D.D., "On Phonetic Anomalies observed in some modern forms of ancient proper names."
Rev. Prof. G. P. Young, M.A., "Formule for the cosines and sines of multiple arcs."
W. Saunders, Esq : "On Canadian Arctiadæ."

$$
\text { 25th April, } 1863 .
$$

Sandford Fleming Esq., C.E, "Notes on projected Canadian Cauals to connect the Upper Lakes with the St. Lawrence."

The increase in the number of original papers and of contributors is a gratifying feature of the gear. The number of our active members is still, however, too limited, and further cooperation is earnestly invited.

III.-Report of Editing Committee op the Journal.

"Your Committce hare little to report on this occasion, beyond stating the fact of the completion of the Eighth Volunie of the Journal, and expressing the hope that its usefulness has not been deteriorated below its predecessors. The general phan of the publication has in no respect been changed, although a larger number than usual of original communications has this year entered into it, and it is thus acquiring more and more the character which the Institute desigued it to bear, namely, a record of the proceedings of the Society. No less than toenty-six such communications have been given, all of them bearing more or less closely on scientific or literary progress in connection with the Prosince. In addition to these, several translations of important articles from foreiga sources, not ntherwise accessible to the English readers, have been furnished, as well as Reviews on subjects of promineat interest, which may fairly claim for the most part to be considered as essay; on those subjects of independent value. The Committee desire to express their obligations to Mrs. M. M. Kingsford and S. Kingsford, Fsq., for valuable aid in this department. It was deemed adrisable to curtail the space allotted to miscellaneous intelligence, or extracts from other journals, in order not to increase the cost of the Journal beyond its usual limit. In view of the reduction of the Government Grant to the Institute, of the withdrawal of the order for the supply of copies of the Journal to the Parliamestary Library Committee, and of the necessity that bas otherwise arisen for economy in the affairs of the Institute, it is proposed to reduce the issue of the Journal to 500 copies, which will be sufficient for present need, and
will leave a margin for future wants. The cost of publication of the Journal has amounted to $\$ 1348$.
"All which is respectfully submitted.

"J. B. Chrrbiman, G'eneral Editor."

The Council have much satisfaction in noticing that the Journal continues its high reputation as a Scientific and Literary Periodical.

The Treasurer in account with the Canadian Institute, for the Year 1862-63, from `st December, 1862, to 30th November, 1863:

Dr.	£	s. d.
Cash-Balance last year	389	131
" Interest received on Securities	64	168
" Received from Members.	163	100
". 6 on account of Journal	49	
" " for Rent		140
" Securities paid.	:50	00
" " "	75	0 a
"	500	00
" Securities beld.	775	00
	£2194	573

Vol. IX.

D. Cramiord, Treasurer.

V.-Rerort of Aeditors.

Toronto, 12th December, 1863.
Compared the rouchers with the cash-book. Balance due by Treasurer, £221 19s. 1d. [Two hundred and twenty-one pounds nineteen shillings and one penny.]
$\left.\begin{array}{l}\text { Sam. Spreull, } \\ \text { G. HI. Wilson, }\end{array}\right\}$ Auditors.

VI.-Report of Libiarian.

The additions to the Library of the Institute during the year 1863, have not been very numerous. They consist principally of the Reports and Transactions received from the Scientific Societies of Europe and the United States.

In addition to its own publications, the Smithsonian Institution has transmitted valuable reports from the Royal Dublin Society, and from several German and Scandinarian Scientific Associations.

From the Hon. J. M. Broadhead, of Washington, bave been received eight official reports on Statistics, \&c. Through Professor Hincks, fourteen volumes (in parts) of the Linnean Society's Journal hare been presented.

The fourth volume of Agassiz's Contributions to the Natural History of the Unitrd States,--the gift of the late Sir John Beverley Robinson, -has arrived, rendering the work, so far as published, complete.

The Scientific Reports comprise thirty-four bound volumes, forty-five unbound volumes, and about sixty-seren pamphlets.

Ten sheets (all published) of a very valuable Ethuological Map of Finmark bave been transmitted by the Smithsomian Institution. A Cbart of Lake Ontario has been presented by Mr. Chewett Mr Bohn bas sent-through Messra. Rollo and Adam - the three latest additious to his interesting series of Libraries. A copy of the Statutes of Canada for 1863, has been received from the Record Office, Quebec.-These works, amounting in all to a little over one hundred and ffty, constitute the donations of the year.
The additions to the Library by purchase during the same period have been comparatively few. In view of the proposed commencement of a building by the Institute, economy in this, as in every other direction, seemed desirable. The volumes purchased amount to only eighteen. These include four volumes in continuation of series in course of publication, riz., three volumes of Bacon's Works, the third volume of Carlyle's Life of Frederick II., the third volume of Smiles' Lives of the Engineers, and the second volume of May's Constitutional History of Englaud.

Detailed lists of all books, pamphlets, and maps received, are appended below.
About seventy volumes belonging to the Library are out on loan : many of them since 1861 ; some ten of them since 1858. Members when applied to by circular on the subject of these loans, do not in every instance respond. It seems desirable that there should be a return of all borrowed books at least once a year.

In regard to ordering books, it is important that in every instance toe title of the work should be entered first in the order-book of the Institute: there is otherwise a danger of duplicates arriving to the address of the Institute. It is also important that every volume should be entered in the Librarian's Catalogue before passing into the hands of members.

The present Library is becoming somewhat over-crowded ; but some space has been gained by placing two rows on one shelf, where the size of the volumes admitted of that arrangement.

Toronto, Dec. 5tb,'1863.

II Scadding,
Librarian Canadian Institute.

VII-Report of Bulding Commitee.

In the spring of the year, the Society purchased an eligible lot of land as a eite for a building, in which the business of the Institute might be satisfactorily conducted, and designs were submitted and approved. The following report states the causes which prevented the Building Committee from carrying out the intention of the Society. The plans, which bave heen adopted, provide ample and convenient accommodation, and the Council trust that the funds of the Institute may soon be sufficient to marrant the commencement either of the projected building or of one on a smaller scaic.

BI:PORT.
"The Building Committee report that the tenders which they received for the building, so far exceed the expectation of the Council and the means at the dis-
posal of the Institute, that they have deemed it necessary to bring the whole subject again under the consideration of the Council.
"The amount of the lowest tender sent in for the carpenters' and masons: department, was $\$ 9,9.24 .00$; and the only reductions which the architect suggested, amounted to $\$ 1,319.00$, -leaving $\$ 5.605 .00$ as the cost of the building. But to this must be added the necessary expenditure on light. heating, and fencing, which would be about $\$ 1,210$; so that the minimum cost may be assumed at about $\$ 10,090$ - being so far in excess of available funds that the Committce did not feel warranted in undertaking the building.
"John McCaul, Churmar."

VIII.-Medical Section.

During the past year, : section for the cultivation of Medical Science was formed. Its meetings bave been regularly beld, and much valuable information has been communicated in the papers which bave been read, and in the discussions which have arisen.

REPORT.

Since the organization of this section, on the 1st of April last, six regular meetings have been held, at which the following papers were read by the respective authors, viz :
 Uzziel Ogien, Chairman.
Toronto, December 12th, 1863.

- IX.-The Entomological Society of Canada.

This Society, which holds its meetings in the rooms of the Institute, was also formed during the past year, for the encouragement of the study of the important branch of Natural History, from which it derives its name. Its progress is a satisfactory earnest of its future success.

nKPOBT.

The following are a few of the points of interest connected with our Entomological Society.-The first meeting was held on Thursday, the 16 th of April. As the summer vacation has occupicd most of the intervening time only two other mectings have yet been held. The Society numbers thirty-six members, all of whom are actual working Entomologists. Eight papers bave been read ; and several valuable contributions to the Library have been received. The donations to the Reference Cabinet, which is the property of the Institute, comprise- -

235	Species of Coleoptera.	
76	"	Lepidoptera.
43	$"$	Diptera.
35	"	Hymenoptera.
8	"	Orthoptera.
8	"	Neuroptera.
18	$"$	Hemiptera.
2	$"$	Strepsiptera.

Duplicates of many of these have been received, swelling the whole number weeired to 1480 specimens. Most of these duplicates will be used for effecting oxchanges, and thus will ultimately go to increase the collection in the reference cabinet.

James Ilubbert, Curator.

The Council, in conclusion, desire to express their regret, that the Institute was deprived, during the latter part of the year, of the valuable assistance of their Recording Secretary, Patrich Freeland, Esq. Serious illness compelled him to resign the oflice, which he had so efficiently occupied. The Council sincerely trust that restorsd health may permit him again to take part in the Society's proceedings. The dutics of the vacant office were kindly undertaken by the Corresponding Secretary, Dr. Morris.

> JOHN McCAUL, President.

APPENDIX.

DONATIONS OF BOOKS, MAPS, \&c., SINCE LAST ANNUAL REPORT.

- Those marked thus * are not bound.
From the Vermont State Library, Montpelier, Vermort, U. S. vons. The Geology of Vermont, \&c. Vols. 1 and 2. By Ed. Hitchcock, LL D.; Ed. Hitchcock, Jr., M.D. ; Albert D. Hager, A.M. ; and C. H. Hitchcock, A.M.

From the Hon. J. M. Brodhead, Washington.
Patent Office Reports. Agriculture. 1361 1
Preliminary Report, Eighth Census, 1860, United States. By Joseph C. G.
Kennedy, Superintendent............. 1
Annual Report of the Board of Regents of the Smithsonian Institution, for the year 1861 ... 1
Results of Meteorological Observations made under the direction of the United States Patent Office and the Smithsonian Institution, from the year 1854 to 1859 , inclusive. A Report of the Commissioner of Pa teuts, 1st Session, 36th Congress. Vol. 1. Washington, $1861 \ldots . .$. . 1
Fourth Meteorological Report of Prof. J. P. Espey. Washington, 1854.... 1
vols
Report on the Art of War in Europe, in 1854, 1855, and 1856. By Major Richard Delafield, Corps of Engineers. Washington, 1860 1
Military Commission to Europe, 1855 and 1856. Report of Major Alfred Mordecai, Ordnance Department. Washington, 1864 1
The Commercial Relations of the United States with Foreign Nations, for the year ending aptember 30th, 1861. Washington, 1862 1
From the National Association for the Promotion of Social Science, per the Hon. G. W. Allan, M.L.C.
Transactions of the National Association for the Promotion of Social Science, 1860 and 1861 2
From the Hon. Sir J. B. Robinson, Bart.Contributions to the Natural History of the United States. By LouisAgassiz. Vol. 41
Presented by the Author.
Britanno-Roman Inscriptions. By the Rev. John McCaul, LL.D., Pres. Univ. College, Toronto. 1
From the Government of India.
Magnetical and Meteorological Observations made at Bombay in 1860 1
From the respective Societies.
Transactions of the Royal Yrish Academy. Vol. 24.-Part II. Science. $1 *$
Proceedings of the Literary and Philosophical Society of Liverpool, 51st Session. 1861-62. No. 16 $1 *$
Transactions of the Royal Society of Edinburgh. 1857-58. Vol. 22. Part I. 1 *
${ }^{4}$ 1558-59. Vol. 23. Part I. 10
Froin the University of Norway.
Recherches sur la Syphilis Appuyées de Tableaux de Statistique Tirés des Archives des Hopiteaux de Christiania. Par W. Boeck, \&c. 1862 $1 *$
Ten Maps 10
Die Culturpflanzen Norwagens Beobachet Von Dr. F. C. Schubeler. 1862. $1 *$
Geologiske Undersogelser i Bergens omegn af Th. Hiortdahl og M. Irgens. 1862 $1{ }^{\circ}$
Beskrivelse over Lophogaster Typicus, \&c., af Dr. Michael Sars $1{ }^{\text {e }}$
Forhandlinger Videnskabs-Selskabeti Christiania. Aar, 1861 1*
Meteorologische Beobachtungen Aufgezeichnet auf Christiania's Observa- torium. Lieferung I. and II $1 *$
Generalberetning fra Gustad Sindssygeasyl for Aaret 1861 10
Beretning om Bodsfaengflets Virksomhed i Aaret, 1859 1 *
From Smithsonian: Institution-supposed from Society.
Verbandlungen der k. k. Zoolog-botanischen Gescllschaft in Wien Jahr- gang, 1861 1^{*}
Nachtrage zu Maly's Enumeratio plantarum phanerogamicarum imperii Austriaci Universi. Von August Neibreich. Wein, 1861 $1 *$
Bericht über die Thätigkeit der St. Gallischen naturwissenschaftlichen Gessellscbaft Währerd des Vereinsjahres. 1861-62. (Redaktor. Prof. Dr Wartman) St. G.allen, 18 b 2 1^{\bullet}
CANADIAN INSTITUTE. 71
From the Royal Dublin Society, per Smithsonian Institution, vols
Journal of the Royal Dublin Society-January and April, 1861 $1 \bullet$
" " " July and October " $1 *$
" " " January, 1862 $1 \bullet$
" " " April 1°
From the State of Wisconsin, U. S., per Smithsonian Institution.
The Geology of Wisconsin. Vol. 1. Hall and Whitney, 1862. 1From the United States Patent Office, Washington
Patent Office Reports, 1860. Vol. 1. Mechanics 1
" " " Vol. 2. " 1
" " 1861. Agriculture 1
From Dr. Oldham, Superintendent of the Geoiogical Survey, India.
Memoirs of the Geological Survey of India. Vol. 4, Part 1 $1 \bullet$
Annual Report of do. do. do. for 1861-62 1^{\bullet}
Memoirs of the Geological Survey of India-Palæontologia Indica-2.1. The Fossil Flora-Rajmahal Hills 1^{\bullet}
Do. do. do 2. 2 $1 *$
From the Office of Routine and Record.
The Statutes of Canada, for 1863 $1{ }^{\bullet}$
From W. C. Chewett \& Co., Toronto.
Ohart of Lake Ontario 1
From H. G. Bohn, Esq., London.
The Eistorical Works of Giraldus Cambrensis Revised. By Thos. Wright. 1863 1
Demosthenes' Miscellaneous Orations, with Index 1
Lownde's Bibliographer's Manual. Vol. 4, Part 2 1
From Vienna, through the Smithsonan Inst .ution.
Mittheilungen der Kaiserlich-Koniglichen Geographischen Gesellschaft,

From Leonurd Scott \& Co., New York.
Reviews-Westminster, Edinburgh, London, North British, and Quarterly;and Blackwood, monthly. Each one set1
From B. Quaritch, London.
Catalogue Raisonneé of Rare and Valuable Books, 1863 12

$$
\begin{aligned}
& \text { DONATIONS OF PAMPHLETS, SHEETS, \&o. } \\
& \text { Fom J. Hall, Albany, New York. }
\end{aligned}
$$

Fifteenth Annual Report of the Regents of the University of the State of New York, on the condition of the State Cabinet of Natural History and the Historical and Antiquarian Collection annexed thereto. Apl. 12th, 1862 5
Contributions to Palæontology. By James Mall 6
Notice of some New Species of Fossils from a locality of the Niagara Groupe, in Indiana, with a list of Identified Species from the same place. By J. Mall 1
From Inarvard College, U. S.
Report of the Committee of the Overseers of Harvard College, appointed to visit the Library, for the year 1862, \&ic. 1
From J. W. Dawson, LLL D., F.G.S., \&c. (the author.)
On the Flora of the 「evonian Period, in North Eastern America 1
Air Breathers of the Coal Period, Nova Scotia 1
From Samuel Spreull, Esq., Toronto.
On Ribs and Transverse Processes, with special relation to the theory of the Vertebrate Skeleton. By J. Cleland, M.D 1
On the relations of the Vomer, Ethnoid, and Intermaxmillary Bones. By J. Cleland, M.D. 1
From the Linnaan Society, London, per Rev. W. Hincks. Parts
Botany-Vol 1. Nos. 1-4 4^{\bullet}
2. 5-8 4^{*}
3. $9-12$ $4 *$
4. 13-16 $4 *$
5. 17-20 $4 *$
6. 21-24 $4 *$
" 7. 25,26 2
Supplement to Botany. Nos. 1 and 2. Vol. 1 2.
" " Vol. 4 1
" " " б $1 *$
Second Suppiement to Botany. Vol. 5 $1 *$
Zoology-Vol. 1. Nos. 1-4 4.
2 . $5-8$ 4
3 9-12 $1{ }^{\circ}$
" 3
13-16 40
" 5. 17* 17-20 5
" 6. 21—24 $4{ }^{\circ}$
" 7. 25,26 $2 *$
The President's Address, and List of Members of Linnæan Society, for 1862 $2 *$
From Prof. Kingston, Magnetic Observatory, Toronto. vOLS.
Abstract of Magnetical Observations made at the Magnetic Observatory,Toronto, C. W., 1856-1862, inclusive, and parts of 1853-18551
lirom the Society. per In. D. Wilson. pamphlets
Annals of the Botanical Society of Canada, Vol. i, Part I., from 7th Doc., 1860, to 8th March, 1861 1
From S. Fleming, Esq.
Memorial of the People of Red River 1
From McGill College, Afontreal.
Faculty of Medicine, 1863-1864. 1
Fiom T. C. H'cefer, Esq.
Descriptive Catalogues, Exhibition; London, 1862.
Jamaica 1
Trinidad. 1
Venezucla 1
New South Wales 1
Victoria, Australia 1
Norway (Yegetable Productions) 1
Russian Section 1
Zollverein, Miniug \&c. 1
Belgium 1
Paris Artistical Bronze 1
From E. A. Meredith, Esq., Quebec.
Report of the Board of Inspectors of Asylums, Prisons, \&c., 1862 1
From T. C. Wallbridye, II. P. P.
Third Military District Rifle Association of Upper Canada Rife Match on Barriefield Common, Pittsburgh Sept., 1863. 1
Lectures on Canada. By the late Mr. Charles Bass. 1
Letter to the Right Mon. C. B Adderly, M. P., on the relations of England with her colonies. By Hon. Joseph Howe, Premier of Nova Scotia. 1
Annuaire de L'Université-Laval Pour L'Année Academique, 1863, 1864 1
Copies of all Reports of anty Officers of the Public Works, 9 th Sept., 1863.
District Town of Kamouraska, Change of. 1
Bili for protection of growing timber 1
Return for Copies of Correspondence and Papers relative to certain Bonds of Grand Trunk Railway Co. 1
Act, the City of Moutreal to aid the G. T. R 1
Act connected with the Peterborough and Port Hope Railway 1
Act, Stanstead Railway 1
Report of the Library of Parliament 1
The Post Offiee contract. Montreal Occan Steamship Company 1
From the Trusteas of the New York State Library, Albany.45th Annual Report of the Trustees of the New York State Library, April 7,18632
16th Annual Report of the Trustees of the New York State Cabinet of Natural History, \&c., April 15, 1863 10
76th Annual Report of the Regents of the University of the State of Now York, Marcin 4, 1863 6
In Exchange for Jourtal, 1863. PAMPHLETS
The Journal of the Society of Arts, 1863 1
The Journal of Education, Upper Canade (Duplicate) 1
The Journal of the Franklin Institute, Philadelphia, 1863 1
The Artizan, 1863, London 1
Silliman's American Journal, 1863 1
Canadian Naturalist and Geologist, 1863 1
Transactions of the Royal Scottish Society of Arts. Vol VI., Part I 1
Proceedings of the Academy of Natural Sciences, Philadelphia, 1863 1
Historical Recollections of the Essex Institute, 1863 1
Annales des Mines. dec, K'rance.
Tome II. 4 Livraigon de 1862, 6 Series 1
" 5 " 1
" 6 1
III 1 " " 1863 " 1
" 2 " 1
Proceedings of the Boston Natural History Society 1
The Canadian Agriculturist, Upper Canada, 1863 1
Journal of the Board of Arts and Manufactures, 1863 1
The Journal of the Royal Dnblin Society
No. 20 and 21, January and April, 1861 1
No. 22 and 23, July and October, 1861. 1
No. 24, January 1862 1
No. 25, April, 1862 1
No. 26, 27 and 28, July, 1862, to January, 1863 1
Transactions of the Royal Society of Edinburgh for the Session 1857-58 and 1858-69. Vol. 22, Part 1 1
Transactions of the Royal Society of Edinburgh for the Session 1861-62. Vol 23, Part.
Transactious of the Academy of Sciences, St. Louis. Vol. II., No. 1 1
Transactions of the Royal Irish Academy. Vol. \&4, Part 2. Science. 1
Proceedings of the American Geographical and Statistical Society, New York, 1862-63. No. 1, Vol. 1; No 2, Vol. 1; and Session 1862-63 3
Transactions of the Literary and Historical Society of Quebec. New Series. Vol. 1, Part 1 1
The Anthropological Review. No. 1, May, 1863 1
The British American Magazine, I863 1
BOOKS PURCHASED. vols
The Microscope and its revelations. By W. Carpenter, M.D., 1862. 1
Smiles' Liv , of the Engineers. Vol. 3 1
The Book 21. ater, \&c. J. Hill Burton. 1
The English Langaage and its early Literature. By G. P. Marsh 1
The Works of Bacon. Vol. 5, 6 and 7 3
Allibone's Dictionary of Authors. Vol. 1 1
The Tropical World. Hartwig 1
vols
Leyell's Antiquities of Man. English Edition 1
Eritish Columbia and Vancouver's Island. Mayne 1
Kemoirs of Prince Alberi 1
Lewis Astronomy of the Ancionts 1
Bistory of Fredrick II. of Prusbla, called Frederick the Great. By Thomas Carlyle. Vol. 3 1
Oonstitutional History of England. Vol. II. Mayo 1
The Geological Evidences of the Antiquity of Man. By Sir J. Lyell. Am. Ed., Philadelphia 1
Kingslake's Crimea, Vol. 1
Eistory of the Intellectual devolopement of Europe. By Dr. J. W. Draper 1
BOOKS BINDING FROM PERIODICALS.
Athenæum, January to June, 1803 1
" July to Dec., 1802 1
Illastrated London News, July-Dec., 1862 1
" " January-July, 1863 1
Mning Journal, 1862 1
Builder, 1862 1
Civil Engineer and Architects' Journal, 1862 1
The Art Journal, 1862 1
Ohemical News, 1862 1
Blackwood, January-June, 1858 1
" July-Dec., 1858 1
" July-Dec., 1862 1
" January—June, 1863 1
Reviews, Westminster, 1862 1
" North British, 1862 1
" North American, 1802 2
" do 1863 1
" Natural History, 1862 1
" Edinbargh, 1862 1
Journal, Board of Arts and Manufactures, 1862 1
" Franklin Iustitute, July - Dec., 1862 1
London. Dublin, and Edinburgh Philosophical Magazine, July-Dec., 1862. 1
Quarterly Journal of Microsconical Science, 1862 1
Edinburgh New Philosophical Journal, July-October, 1862 1
" " January-April, 1863 1
Journal of Education, Upper Caunda, 1861 and 1862 1
Proceedings of the Academy of Natural Sciences of Philadelphia, 1862 1
Historical Collections of the Essex Institute, 1862 1
Journal of the Society of Arts, 1881 1
Canadian Naturalist and Geologist. Vol. 7, 1 \& 52 1
vOLS
Canadian Agriculturist, 1860 and 1862 2
Canadian Journal. 1862 8
Silliman's Journal, July-Dec., 1862 1
Total 36

AbSTRACT OF TIIE YOLEMES IN TIIE LIBRARY.

			Vol's. Bou			Vol's.	not	3ound
Compartment	A.	-	30.	-	-	31 in	200	parts
	13.	-	253	-	-	5 :	σ	"
"	C.	-	328	-	-	$4{ }^{\prime \prime}$	25	"
"	D.	-	301	-	-	5 "	5	"
"	E.	-	305	-	-	$3:$	8	"
"	F .	-	307	-	-	6 "	6	"
"	G.	-	30 ?	-	-	10 "	130	Law
"	H.	-	136	-	-	71 "	107	
"	I.	-	199	-	-	20 "	23	
Lent ? 'rabers,		-	50	-	-	- -	28	
Office,	-	-	13	-	-	12 in p	parts.	
Table,	-	-	42					
Binding,	-	-	36					
			2610			!		
			179					
Total Volumes,			2789	Bound	Ld	abound.		
Niscellaneous Pamphlets,			- 570.					

DONATIO: : TO THE MUSEUR.

From S. Fleming, Esq., C. E.
Largo Salmon Trout from Lake Huron.
From Thomas Devine, Esq., per S. Fleming, Esq.
A Number of Electrot, 0 (thirtcen) casts or Fossils.

78
REMARKS ON TORONTO METEOROLOGIOAL REGISTER FOR OCTOBER, 1865.
no appreciable depth of snow, the
$\xrightarrow[\text { Resultant. A Mean }]{2}$宽|

 fesuliants for the wind aro from hourly observations．

$\begin{aligned} & 9 \\ & 8 \\ & \hline 2 \\ & \hline \end{aligned}$		！ $\frac{B}{B}$ 	¢	＋¢
			$\begin{aligned} & 7 \\ & 3 \\ & 3 \end{aligned}$	
		 	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 10 \\ & 20 \end{aligned}$	
－	Soџ口uI!		$\underset{\infty}{3}$	$\begin{array}{r} 5 \\ 18 \\ \hline \end{array}$
	SS2p 100 N		$\begin{aligned} & c! \\ & 45 \end{aligned}$	$+5$
$\begin{aligned} & \dot{z} \\ & \underset{y}{z} \\ & \underset{y}{*} \end{aligned}$	sotoux		守	$\begin{array}{r}\text { ¢ } \\ +5 \\ \hline 5\end{array}$
	SS8p J0．0N		S	$\begin{array}{r} 0 \\ +\infty \\ \hline \end{array}$
TBMPERATURE．	$-98: 18\rangle$		9 0 0	\％
	$\left\lvert\, \begin{gathered} \text { p3n.50s } \\ -q 0 \\ -1!N \end{gathered}\right.$		$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	
	$p 3 A 138$ -90 -7816		\％	¢
		 \qquad	！	\％
	- UETIS	 	愹	Z
	$7 \times$	 	${ }^{\prime}$ te9t 04 3：14ray	気点象晹

[^0]: * In September, the duration of the wind from E.S.E. is the same as that from W.S.W.

[^1]: + In ten years' experience it is proved that this temperature is sufficiently high to insure safety of manipulation; 277° Fahr. is an artificial temperature, and artificial temperatures accidentally produced are generally high enough to ignite gunpowder. The greater liability to accidert from this cause can, therefore, scarcely be admitted.

