
IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

The Instixute has attempted to obtaln the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

\square
Coioured covers/ Couvertures de couleur

Coloured maps/

Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains d́́fauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.
\square Coloured pages/
Pages de couleur

Coloured plates/
Planches en couleur
\square Show through/ TransparencePages damaged/ Pages endommagées

Additional comments/
Commentaires supplémentaires
Original copy restored and laminated.

Bibliographic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Bound with other material/
Relié avec d'autres documents
\square Pagination incorrect/
Erreurs de pagination

Pages missing/
Des pages manquent

Cover title missing/

Le titre de couverture manque

Plates missing/
Des planches manquent

Additional comments/
Commentelres supplémentaires

Blank leaves which were added during restoration may appear within the text. Whenever possible, these have been omitted from filming.

The images appearing hare are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED'), or the symbol ∇ (meaning "END"), whichever applies.

The ariginal copy was borrowed from, and filmed with, the kind consent of the following institution:

Library of the Public
 Archives of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Las imagas suivantas ont été reproduitas avac la plus grand soln, compte tenu de la condition et de la netteté de l'exemplalre filmé, ot an conformite avec les conditions du contrat de tilmage.

Un des symboies sulvants apparaîtra sur la derniàre image de chaque microflche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifle "FIN".

L'axemplaire filmé fut reproduit grâce à la gênérosité de l'établissement prêteur suivant :

La bibliothégia des Archivas publiques du Canada

Les cartes ou les planches trop grandes pour être raproduites en un seul cliché sont filmdes à partir de l'angle supériaure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la máthode:

LOWER SILURIAN TRILOBITES.

BY

E. BILLINGS, Esq., F.g.s.
Halfontologist uf the geological surver ov canada.

(Plates XXXI. and XXXII.)

1. Asaphus platycephalus, with some of the legs preserved.

This specimen was collected in the Trenton Limestone, at the eity of Ottawa, about ten years ago. When discovered it was lying Hat mon a thin slab of limestone, and well preserved, with the exception of the eyes, which seem to have been forced inwards by pressure from above. It was also divided into two pieces by a fissuse which extended diagonally across, from the first segment of the thorax on the left side to the fifth segment on the right.

It remained in the Museum for several years without attracting particular attention, until ono day, observing that the part in front of the fissure was somewhat loosely attached, I removed it, and was surprised at finding, on the underside, not ouly the hypostoma in place, but also what appeared to be some of the legs of the animal. As the part behind the fissure was more firmly attached to the stone, I had it cut across just behind the eighth segment by the lapidary of the Survey. The remainder of the thorax was then casily split off. The pygidium came off with difficulty and in two pieces. All the pieces were then fastened together; and we thas oltained two specimens, one of which shows the underside of the Trilobite, and the other its impression on the stone.

On the underside (PI. XXXI. fig. 1) a broad shallow groove extends
from the space between the two lobes of the hypostoma, where we must suppose the mouth to b^{\prime} situated, backwards along the median line to the pygidium. This corresponds in position to the sternum of the ordinary crustacea. The lags are arranged in eight pairs, the hases of cach pair being situated exactly under one of the eight segments of the thorax, and at the sides of the sternal groove.

The legs of the first pair are better-preserved than the others. They curve forwards and can be traced to a point nearly under the outer edge of the eye, or, rather, kntween the eye and the outside of the head. The other seven pairs follow at the arerage distance of two and a half lines from each other. The cight pairs thus oceupy about twenty lines of the Jogth of the ventral surface. This is exactly the length of the thorix, measured on the upperside. This trilobite has always eight segments in the thorax ; and there is thus on the underside one pair of appendages to each segment. Although some of them are very imperfect, and the portions that remain are somewhat displaced, with a little study of the specimen it ean be seen that they all curve forwards, and are thus, most probably, ambulatory rather than natatory legs.

There appear to be several joints in cach of these appendages; but the exact number cannot be made out. On the left side, the first four legs show very clearly that there are at least two, one at five lines from the side of the groove, and another about three lines further out. The position of each of these is indicated by a small protuberance (PI. XXXI. fig. 1, n). On the right side the preserved portions of the legs are longer, and thus indicate a greater number of articulations, although they cannot be distinctly seen. I think that each leg consisted of at least fom or five articulations.

On the pygidium there are three small ovate tubercles, arranged in a line, that 5 cm to be organic (tig. 1, d); and if they are so, they are, perhaps, the processes to which respiratory feet were attached.

The length of the specimon is four and a half mehes, and the width two and a half inches. On a side view the height of the head just behind the eyes is nine lines, and at the middle of the thorax abont seven lines. The depth of the internal cavity at the back part of the head is seven lines, and at the last segment of the thorax four lines. The plane in which the legs are situnted is thercfore not so low down as the extremities of the plenra. The visceral eavity is thus about one-third less than the whole bulk of the animal (Pl. XXXII. fig. 1).

Tho ubove is all that I desire to say at present concerning this remarkable specimen. The first and all-important point to be decided is, whether or not the forms exhibited on its underside are truly, what they appear to be, locomotive orgams. If this question be decided in the affirmative, it will then remain for Carcinologists and others to homologize them with the limbs of existing crustacea. It is scarcely necessary to remark, in this place, that, in view of the great zoological questions that are at present being disenssed, the correct determination of the affinities of the Trilobites is of extraordinary importance.

A short notice of the specimen was drawn up and read before the Natural-History Society ot Montreal in 1864. Publication, however, was delayed, partly hecause I hoped to obtain inditional evidence, hut principally because I wished to have the specimen tirst exhihited to the Geological Society, and examined by as many of the Fellows as possible. Feeling somewhat aprehensive that it would be difficult to prosuade geologists and palamolologists into the belief of the existence of trilohitic lers by figures and descriptions alone, I thought it better to wait until the priper and the specimens could be laid before the Society at the same time.

During the six years that hare elapsed, a vast number of Trilobites have passed throngh my hands, but nearly all of them in a fragmentary eondition. Among such, 1 an satistied, we may scek in vain for any traces of locomotive organs. We can only expect to find them in perfect or nearly perfect specimens. These latter, considering the prodigions multitude of these aumals that must have existed in the silurian and Devonian svas, are not abundant fossils; at least they are not so in our Canadian rocks. For example, during the twenty years that I have colleeted fossils, I do not believe thit I have seen fifty specimens of A. platycepialus with with the head, thorax, and pygidium all in connexion. We have had a mumber of those belonging to the provincial collection eut up and polished, without any suceess whatever. They were not the best ones, but they were as perfect as was the subject of this notice before it was split apart. There are others in the colleetion whi h may have the underside preserved; but we do not like to saerifice them. Although no additional evidence of the existence o .mbs was discovered, several points in the structure of other pas' were ascertained, which will be described further on. As Sir W. E. Logan is about visiting London, and has kindly offered to take charge of this paper, and will also take the specinens with him, I shall delay publieation no longer.

2. Discovery of the Panderian Organ** in several American species of Asaphus.

The evidence afforded by the specimen above deseribed, and others of whieh I have made sections, proves that in the genus Asophus the underside was not flat, but somewht concave. In the head, on each side of the mouth, there was a eavity like that which oceurs in the existing king crab-Limulus Polyphemus. The position of these eavities is at ec, in Pl. XXXI. fig. 1. They are partially filled up in the specimen; but I have ascertained their depth to be about five lines in another individual of the same size. The ends of the plen.sa projected downwards a short distance below the level of the sternum. The pygidium was also concavo at the sides, with a portion along the mididle, holding the intestine, convex. This structure can be seen, in part, by examining the slab from which the specimen

[^0]abovo noticed was split. Portions of the lower margins of the head and tail, and the extremities of some of the plenye, remained sticking in the stone. It can also be proved by polished sections through the head and tail of any well-preserved specimen. Such sections usually show that a portion of the crust, called the "donblure" by Barrande, all round the margin is folded under and reflected upwards, ending in a free thin edgo (Pl. XXXI. figs. 2, 3, 4). The pheure have also a duublure, whieh extends upwards, nearly halfway to the median lebe of the body. In consequence of this structure the extremities of the pleure are hollow, exactly like those of a lobster.

In Limulus a similer doublure cecurs; and we san sce there that it is continuous with the thin membranous crust which covers the underside of the body and bears the limbs. Between the stermum of Limulus, with its load of ponderous legs, and the doublure there is no connexion, all round, except this fragile membrame. In consequenee of this structure it often comes away with all its appendages, leaving nothing of the animal except its huge carapace, pygidium, and telson. Specimens of this great crab in this condition are ommon in muscums.

In the genus Asaphus, and, no doubt, in all other Trilobites, the doublure is, as in these imperfect specimens of Limulus, only the remains of the integument which covered the underside and supported the sternum. These two genorn, however, differ widely in other respects.

The doublure of A. platycephalus was figured by Dr. Bigsby so long ago as 1823, in the Geological Transactions, 2nd neries, vol. i. pl. xxvii. fig. 1 c , among the illustrations of his paper " On the (ieography and Geology of Lake Huron." The figure shows a section through the doublure on the right side, just in front of a line drawn across the head through the centres of the eyes. In the description of the figure the true eharactor of the part in question is recognized, by the remark that " the shelly crust of the under side joins the upper at the sides." It is also shown in fig. $1 b$, on the same plate, which represents the underside of the same specimen, with the hypostoma in place*. In that paper this now famous Trilobite

[^1]" A. Données Historiques.
" 1821. Le plus ancien hypostome connu, est figuré et décrit par Wahlenkerg, sous le nom de Entomostracites bucephalus (Nov. Act. Soc. Sci. Upsel. viii. 37, pl. i. fig. 6).
"1822. Ch. Stokes découvre sous la tète d'Asaphus platycephalus (Isotelus gigas, De K.) une pièoe orustacée, placée à l'entrée de l'estomac; et il la décrit dins les Transact, Géol. (nouv. sér. i. 208, pl. 27).
"La même année, le savant Américain De Kay décrit et représente le måme appareil ,que nous retrouvons figuré par Buckland dans les Bridgew. Treatises, en 1837." (Barrunde, Système Silurien \&o. vol. i. p. 154.)

There is a difficulty about the nomenclature of this Trilobite, owing, in part, to some uncertainty as to the true dates of publication. In the later reports of our survey we have adopted the name given to it by Stokes, while most American authors call it either Aso ,has gigas or leotelus gigas. Dr. Bigsby's paper was

was first mado known to science. It was named by Mr. Stokes. Very numerous figures of the doublure of different species of 'trilobites may be seen in the large works of Barrmule, Salter, mud others; hut it is deserited ly some as a portion of the crust. folded umber to give greater strength to the margins of the head and tail. 'This, however, is not the whole of its interpretation. It is (ns above stated) a part of the underside, which, on aceonnt of its greater thickness and hardness, is ustally preserved, while the more membranous and fragile portions have disappeared.

About twelve years ago, Dr. Pander discovered some small sears and tubercles on the inuer surface of the donblure of the Rassian Irilobite A. erponsus; and they were afterwards described and figured by lor. A. Volborth in several papers*. He supposes them to indicate the points of attachment of soft swimming-feet. Eichwald has also deseribed and figured tho same organs in A. Schlotheimii, but maintuins that thoy are the sockets of the first segments of hard, horny, articulated, ambulatory legst. These two distinguished naturalists have discussed the points in difference between them at length, and with their well-known ability, in the works cited below. I have discovered the same orgins in three of our species-A. plutycephulus, A. conadensis, and A. meyistos. They are small rounded or ovate scars, with an elevated protuberance on one side. They are situated on the doublure, close to the anterior margins of the pleure. The protuberance leaves a small but distinctly marked pit in the cast of the interior, as is shown in P1. XXXI. fig. 5. That organs of some kind were here attached, I think there can be little doubt. liat what was their function? If they were legs, then Astophus must have had four parallel rows of limbs beneath the thorax. If the two inner rows were ambulatory, as I suppose those of our Trilohite to have been, then the two onter rows may have been natatory, as Dr. Volborth maintains. Eichwald figures eeveral slender articulated organs, which he supposes to be the legs of 'Trilobites; and indeed they resemble, not remotely, those of our specimen. For convenicnce of reference, I have copied his figures (Plate XXXI. fig. 6). If they are truly the same organs, he would still be, to some extent, wrong; for he thinks they were attached to the doublure.
read February 21st, Marelı 7th, and 21st, 1823. It is usually cited under the date of 1822. In his article on the Minerals and Fossils of Canada, published in Silliman's Journal in 18.-4, vol. viii. p. 84, he alludes to it thus:-"I beg to refer to three figures of large unknown trilobites, published last year in the Geological Tranaictions of London." I in'er from this that the portion of the Transactions containing his paper was issued in 1823. De Kay's paper, in which the species was first called Isotalus gigas, was read betore the New York Lyceun of Naturn History, October 27th, l823. It is generally quoted with the date 1894.

* (1) Leutsehe Petersb. Akad. Zeitung, 1857, No. 255; (2) Verhandl. der kaiserl. miner. Gesellselı. Juhrg. 1857-i8. p. 168; (3) Mén. Acad. Imp. St. Pétersbourg, tome vi. No. 2, 1843; (4) Bull. Soe. Imp. Nat. Moscou, No. 1, 1866. I have only seen the last two of these.
+ Lethaca Russica, vol.j. pt. 2. p. 136t, pl. $\mathbf{2} 2$. fig. 24.

3. Are Protichuites aml Climnctichnites the tracks of Trilobits:?

In his deseription of Protichuites, Prof. ()wes says:-"The Limulus, which has the smsil anterior pair of limbs (near the middle line) and the next four lateral pairs of limbs bifurente nt the free extremity, the last pair of lateral limbs with four lanelliform appendages, and a long slender hard tail, comes the nearest to my iden of the kind of animal which has left the impressions on the Potsdam sandstone "*. In 186i2, Dr. J. W. Jawson tested this opinion by actual experiment, on a sandy beach near the mouth of the Scarborough river, on the const of Mane. Having caught a Ximules he kept it alive for several days, and "tried its mode of locomotion under rarious couditions on the sandy shore, and preserved sketches of the markings " \uparrow. His figures and descriptions prove clearly that the tracks on the saulstone could have been made by an animal having a structure like that of Limulus. The grooves along the side of the track were made by the edges of the broad cephalothorax, the small pit-like impressions by the extremitics of the large limbs, the transverse grooves by the lamelliform feet, and the median groove by the telsom. If it be granted that Asaphes, in addition to its thoracic lege, possessed a set of lamellar swimmingappendages under the pygidium, then the structure of the undersurface would be sufficiently like that of Limulus to enable it to produce the same markings. The median groove m°, t Se made by a Trilobite with a caudal spine like that of Meyplaspis horos (Angrelin). This species is a true Asephus. The large 'Trilobite of the lotedam sandstone, Dilelocephalus, differs little in gencral structure from Asaphus, while the pygidium of several of the species crinces a tendency to beeome spinous around the margin. The genus Aglasisis (Hall) appears to me to be a Trilobite of the same group; and, moreover, the specimens figured seem to be the tail and not the hend. What are suppesed to be the eyes are the bases of two spines, like the one that occurs on the pygidium of Bathynarus spiniger (Aciduspis spiniyer, Hall).

Dr. Dawson, after comparing all the facts, says:-"On the whole we may sately conclade that, if any of the larger primordial 'Trilobites were provided with walking- and swimming-ieet of the type of those of Limulus, hut differing in details of structure, they may have produced both the Protichites and the Climactichnites." Prof. J. D. Dana, also speaking of the latter, says:-"It has been regarded as the traek of a very large Gasteropod; but it is fuite us probable that it was made by the clusters of foliaccous appendagen of one of the great Trilobites-these appenduges being its locomotive organs" ${ }_{+}$. The following, therefore is the present state of the ques-tion:-

1. The tracks could have been made either by a Limulus or by a Trilobite.

[^2]2. No fossils of the order (Xiphosura) to whict Limulus belongs have been fonnd so low down as the Potsdam sandstone.
". Jarge 'Trilobites occur there in abundance.
The weight of the evidence, therefore, favours the inion that the tracks in question are those of Trilobites. It is important to bear in mind that lrotichinites and Climactichnites occur togethor on the same slabs of sandstone. Dr. Jawson's observations dearly prove that both might have been made by an animal of the same species under different circumstanees, accordingly as its walking- or its swimming-feet were made use of. Judging from the width of the tracks, I beliove that several of those of both kinds on one of the slabs, now in the Muscum of the Survey. were made by the sume individual.

4. On a rollect-up specimen of Calynone senaria filled with small ovate bodies.

It is above stated that whilo seeking for additional evidence rolating to the limbs of 'lrilohites, a number of specimens were ent up and polished. Oue of these was an exceedingly perfect, rolled-up Culymene senaria, from the Hudson-River group at Cincinnati, in Ohio.

This animal (Pl. XXXIL. fig. 3) appears to have shut itself up so completely that the fine mud in which it was buried could only gain access through the small fissure at a, where the points of the head and tail come together. There is here a small space, within the letters, t, d, e, f, which is of a light yellowish brown. I think that neither the mud, nor even the muddy water, penetrated further. There is no trace of comminuted fossils in this spaco, as there is in most specimens that I have cut up. The whole of the romainder of the cavity is filled with a greenish-grey spar, with a patch in the back part of the head at b of a different colour. This spar holds a vast number of small ovate bodies (fig. 4), of which the greater diameter is about an eightieth of an inch, and the lesser a hundredth. They are of a lighter colour and more opaque than the matrix. When examined with a good glass, and under favourablo light, they seem to float, as it were, in the spar. The hypostoma c d, is in placo, and is here cut through. From the end of the tail, at \dot{e}, a thin rough line runs inwards, nearly to the large spot at f, and is obscurely indicated thence to the end of the hypostoma at c. The spoi i appears to be organic. It is of an ovate form, and has four or five obscure ribs across it at right angles to its greater diameter. There are other dark spots scattered irregularly throughout the matrix, that possibly may represent organic structures.

It is possible that the line efe may represent the edge of the ventral integument eut throngh; for in a rolled-up trilobite this must be exactly its position. The small ovate bodies I beli -a to be the eggs.

EXPLANATION of plates XxAI. \& XXXil.

Plate XXXI.
Fig. 1. Asaphus phatycephatus, Stokes.-Itnderside, slonwing the legs: a h . suturo through the doublure ; c, c, cavities on each side of the hypostomm ; d, d, tubereles on the pygidium ; $f f$, cephalie donblure ; l, l, the iwo lobes of the hypestom: m, position of the mouth; n, n, n, n, joints in the legs.
Fig. 2. Transverse ideal seetion through the thorax: a, b, the doublure of the pleura; ; n, position of the Panderian organ. The dottet line from b to b indicates the contour of the ventral surface.
Fig. 3. Ideal section through the head, eutting off the points of the hypostoma, l, l, in a plane passing through the eges: 1,2 , position of the lst and Ind pairs of legs.
Fig. 4. Section through the tail of a small specinen, showing the doublure, $f f$.
Fig. 5. Three pleure restored, showing the position of the Panderian organ at $p ; a, b$, portion of the plenree removed.
Fig. 6. Supposed leg of Trilobite, figured by Fichwald: a, natural size; l, enlarged.
Pate XXXI:

Fig. 1. Asaphus platyoephalus.-Side view of the specimen which shows the legs, somewhat restored. The dotter line, $a b$, represents the position of the plane of the ventral surface nearly.
Fig. 13. Dorsal view of the same; the detted lines indicate tho position of the hepostoma and legs.
Fig. 3. Calymene senaria.-Seetion through the axis of the thorax: a, junetion of head and tail ; b, back of the head ; $c d$, hypostoma; e, end of the tail ; f, a body showing structure.
Fig. 4. A gronp of the small bodies in fig. 3 , enlarged 8 diameters.
Fig. 5. The organic body seen at f in fig. 4, enlarged 3 diameters.

Drectession.

Mr. Woodward had carefully examined Mr. Billings's specimen, and agroed with him in considering that there was mudoubted evidence of the presenee of walking-appendages under the thorax. The presenee of such limbs might is priori have been expected ; and the nature of the test suggested that the Trilobites were walking rather than swimming forms of lsopods. The branchise had prow bably been under the telson; and this would account for its large development. It was not more surprising to find highly organized Trilobites than it was to find such highly organized cristaceans as Pterygotus, Euripiterus and Slimonia in the same beds.

Prof. Repert Jones, P'rincipal Dawsong, and Sir Wm. Logan made some remarks, more especially on I'rotichnites and Climactich-nites-the latter having been explained as galleries of T'rilobites, by Prof. Jones, when first exhibited in England.

[^0]: * Dr. Volborth calls the organs in question "die I'ander'schen Organe," a term of which I heartily npprove, as, if generally adopted, it will permanently assoeinte Dr. Pander's name with his diseovery.

[^1]: * This is the second hypostome eves figured. Barrande, in his great work on the Trilobites of Bohemia, conmences the history of the organ in question, thus:-

[^2]: * Quart. Journ. Geol. Soc. vol. viii. p. 224.
 + Cunadian Naturalist and Geologist, vol. vii. p. 276.
 \ddagger Manual of Geology, p. 185.

