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PBEFACE.

The favomble reception accorded to "The High School Algebra.Part I by the Mathematical Masters of the leadin.. CouLiateInst.tute, and High School, of Ontario, has induced'thaauCto proceed wth Part 1I„ which is now given to the public Ite
eadmgf«.turesaresi„,ilartotho.eoftLfornK.rvoirme

Pa tt

tL ^ ffi u .
•
.
™ ^"^ «'™» considerable prominenceThe d,ftc„lt.es of the subject are presented one at a tireTnlogical order preceded, where experience has shown it nece^slrvby numencal .Uustrations to prepare the way for more genemimvesfff»t.ons Explanatory matter and fori] proofs of11s.tions have been kept distinct, as far as possible, fo'theXvemence of students preparing for writte/examiLtions Themore important theorems, which should be read by all student,

readers and those who are not candidates for Honors o2 „ahty has not been attempted; yet new views of old th" rem wmbe found ,n many instances, and new theo,^ms, also, ira7ew

:::i^^;r ^--^ '" ^"' ---"^ -^--^'~
The exan.ples, which are very numerous and varied in theircharacter, have all been tested in the class room, and proved "obe suitable before being inserted. Their number is greater thanthe majority of students will find time for working- but !^ .are carefully craded it will k. . ,

v^orjjing, but as they

desirerl nf T ^^'^ **" '^^^'^* ^ "^^^7 ^s may bedesired of any required degree of difficulty. During the fir^t

two-thirds of the examples will be amply sufficient.Aa effort has been made, by „,eans of diagrams and familiar

I
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If

illustrations, to show clearly the connection between the symbols
on paper and the actual quantities they represent. This will be
especially noticed in the chapter on Imaginary Quantities, which
has been treated wholly from a geometrical point of view. Ex-
perience seems to warrant the belief that this method will prove
interesting and instructive to the student who limits his atten-
tion to ordinary Algebra; whilst to those who pursue their way
through the higher mathematics it will serve as an introduction
to the new and beautiful science of Quaternions.
Throughout the whole work the authors have constantly kept

in mind the future as well as the immediate wants of the student.
The treatment of Homogeneous Equations will be found con-
venient in Conic Sections; the Theory of Infinite Quantities pre-
pares the way for the Calculus; whilst it will afterwards be
seen that many of the examples give the solution of problems in
various departments o^ more advanced work.

The materials used in the preparation of the present work
have been gathered from many sources. The standard Algebras
of Wood, Potts and Todhunter have furnished a considerable por-
tion. The more recent works of Chrystal, C. Smith, Whitworth,
Hall <fe Knight, Newcomb, Wentworth, and Ch. De Comberousse,
have also been consulted. The papers set at the various Univer-
feity and Departmental Examinations have furnished many ex-
amples, whilst many more have been constructed for the use of
the authors' own classes in the regu'ar course of instruction.
The authors hav^e also to thank Prof. Alfred Baker, of Univer-
sity College, for reading the proof sheets of the chapter on Im-
aginary Quantities, and for valuable criticisms and suggestions
on that subject.

Should the present work be received with sufficient favor it
will be followed by a third volume, treating of the remaining
portions of the subject, so far as it is usually read for the B.A.
Degree with Honors in any Canadian or American University.

June, 1S89.

I. J. BIRCHARD,
W. J. ROBERTSON.
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HIGHER ALGEBRA.

CHAPTER I.

FUNDAMENTAL CONCEPTIONS AND
OPERATIONS.

ON THE STUDY OF ALGEBRA.

1. The Science of Algebra has for its object the investigation of
the magnitude and relations existing between the various quanti-
ties which are capable of being represented by numbers. The
process of investigation is carried on by means of symbols repre-
senting the quantities and the relations they bear to each other.
These symbols may be divided into two great classes, viz.:

1. Symbols of Quantity and Relation.

2. Symbols of Operation.

In the application of Algebra to the solution of any practical
problem there are four distinct stages necessary, as follows:

1. A clear conception of the nature and relations of the quanti-
ties involved.

2. An accurate representation of those quantities and their
relations in algebraic symbols.

3. A proper performance with those symbols of the operations
demanded by the conditions of the problem.

4. A correct interpretation of the result of th^ symbolical
operations.
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I

The truth of the information thus derived in any particular
case depends upon accuracy in each of these four stages. It is
therefore of the greatest importance for the student to clearly
perceive the connection between the symbols on paper and the
quantities or operations which they represent,

2. It should be carefully observed that the symbols of Algebram common with all symbols, have no meaning in themselves!
but only such meaning as may be attached to them by common
consent of those who use them. In determining the meaning to
be assigned m any particular case, we may proceed by eitho^ of
two distinct methods. We may first assign an arbitrary mean-
ing to a symbol of quantity, and then determine the laws of the
operations to which it may be subjected; or first assume that it
obeys certain laws, and then assign the meaning which will enable
It to do so. i

The former is the Synthetic method, and is the most suitable
for demonstrations and for conveying information; the latter is
the Analytic method, and the one by which discoveries are made
and the boundaries of the science enlarged. Examples of each
method are found in Part I., positive and negative quantities are
treated synthetically, but Indices analytically. Further exam-
ples of each method will also be given in the present work.

3. When two or more operations are to be performed succes-
sively, care must be taken to observe the proper order in per-
torming them. Certain operations are interchangeable, others
are not; no change must be made without examining whether
such change will afreet the result. The following are the funda-
mentel laws of elementary Algebra on this point-

Thus

I. THE LAW OF COMMUTATION.

1. Additions and subtractions may he perforrmd in arvy order.

a + b-c'=a-c + b = b-c + a= -c + a + b.
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2. Multiplication, and divisions nmy heperformed in any order.

Thus axhxc= hxcxa =cy.ay.b',
;

(ax6)-^c = ax(A^c):-(a^c)x6.
.

3. Involutions and evolutions irmy he performed in any order
tJmy are also interchav^eahle with multiplications and division^.

Thus
i i ii 1 1

1

a'^b^= (ah)"" ; a«*h'^= (ah)"" ; "L = (^\
km ^ '

II. THE LAW OF DISTRIBUTION.

1. Additions and subtractions of numbers nmy be distributed
over a series of additions and subtractions of their parts.

'^^^^
<t + (b + c-d)=^a + h + c-d;
a-{h + c-d) = a-b-c + d.

9.. Multiplications (and divisions) of numbers by one anotJier
nuxy be dxstributed over a seHes of additions and subtractions of
the products (and quotients) of their parts.

'^^^^ {<^-f> + c)m = am~bm-\-cm;

{a-b){c-d)^{a-b)c~{a-b)d

= a^-bc-ad+hd;
(a + b-c)~-m =a^m + b-^m-c~m.

4. The exact meaning of tlie examples in the preceding Art
should be carefully noted, expressed in words, and, where possible!
Illustrated by concrete quantities. Thus in the third examme
under the Law of Distribution the first combination of symbols
directs us to subtract b from a, add c to the difference, and n ulti^
plv the Slim h^T <m TV.^ c 1 1 •

*v X- 7 ~' "" "" """^""'^ cuiiiuinauon requires the muiti-
pacation of the several parts to be performed first, and the addi-
tions and subtractions to be performed afterwards. The greater
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part of algebraic work consists in such interchange of operations,

and the mistakes of beginners are usually due to an improper
application of thesQ fundamental laws.

Tlie remainder of this chapter is devoted to an explanation of

the meaning attached to various symbols of quantity and opera-

tions which do not occur in elementary work. The student must
not expect to be able to grasp the full meaning of some portions
of it at tlie first reading, but frequent reference to it in connec-
tion with the following chapters will be found helpful and in-

structive.

INFINITE QUANTITIES.

5. Quantity has already been defined to be that which is

capable of being divided into parts; it remains to distinguish

Finite and Infinite Quantities.

6. A Finite Quantity is one which has boundaries or limits;

it is a definite portion of any magnitude.

All Quantities treated of in ordinary arithmetical or algebra-

ical operations are finite.

7. An Infinite Quantity is one which has no boundaries or
limits; it is magnitude considered without limitation.

Time and Space, taken in their general signification, are familiar

examples of infinite Quantity. We cannot conceive of any limit

to the duration of Time or to the extent of Space; they are there-

fore said to be infinite.

SYMBOLo OF INFINITY.

8. The series of numbers, 1, 2, 3, 4, etc., may evidently be con-
tinued without limit. No particular number is so great that it

cannot be doubled and thus rendered greater. Number, then,
like Time and Space, having no limit, is infinite.

The symbol oc is frequently used to denote "infinity." Its

precise meaning cannot be made evident by a single definition,

but it will be clearly illustrated in the following Arts.
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9. The series of negative numbers, - 1, - 2, - 3, etc., may
also be continued to any extent; and the two series thus form a

system extending to nfinity in each direction from zero as the

central or starting point, the number in each case denoting dis-

tance, and the sign, direction.

10. When magnitude only is to be considered it is frequently

convenient to consider another infinite series, in which the cen-

tral number is a unit or 1 ; and as the series 2, 3, 4, etc., is derived

from it by multiplication, so another series, - , - , -
, etc., may

ij o 4

be derived from it by division. The one series becomes indefi-

nitely great as before, but the other becomes indfBfinitely small.

"We place oc at the end of one series to show that it is to be end-

lessly increased, and at the end of the other to show that it is

to be endlessly diminished. The whole series in order will be

— or .... -, — , 1, 2, 3 . .

.

oc 6 2
oc

It should he carefully observed that the above series is infinite

in each direction from the unit; and as the infinitely great or oc

can never be really attained, neither can the infinitely small or

ever be reached. Absolute zero can be obtained only by subtrac-

tion, never by division. This is giving a new meaning to the

symbol 0, which formerly denoted the mere absence of quantity.

There will be no difficulty in determining the meaning intended

in any particular instance; and it will be found that this ex-

tended meaning adds immensely to the power of Algebra as an

instrument of invesxiigaticn.

OPERATIONS WITH SYMBOLS OF INFINITY.

11. Since and oc do not represent any definite numbers or

quantities, operations performed with these symbols are not sub-

ject in all cases to the laws governing the same operations with

symbols representing definite or finite quantities, but require a

separate investigation.

I
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12. A finite quality dimded by gives ^f„ j^i^.
I*t 2 .,, then a =,.. Now let . ooatmually diminish and „

Zn ''V™'*'"
'!'""'«ty «; it is evident Lt by makin^^™an enough , n.ay be made grater than any assigLret^te

quantity. This i, briefly expressed in symbols thns, ? = „
13. A finite quantity divided by oc gives 0/or guotierU.

I^t
I =,, then « = ,.. Now let . continually increase and ,consequently continually diminisli • fhor. u . •

enough,
. ean be madeL.^^^^^^X,onn symbols ---= 0.

OC

'^-Jz^}Z':z: "- ''^'' ""'-^'^ -----^^

I*tj=j,thena = y.. Now, if „ a„d . are each zero, y may

.te^ht
,-
-Ttts^r .toTj' ^-- « "-

further on.
^'^'^ 5c ' ^« ^'U be shown

15. 7;^«>1, a<«==^. awf^^7«< l^^oc^o

I*t «=|, then, by taking the 2nd, 3:d, 4th, etc., powe« in
succession, it wiU be observed that e.ch multiplication adds mo.
than - to the original fraction ; therefore bv ™.,u._,„-_ _ „

'-• •"'^^i^ijiiig c4 sum-
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cient number of times the result way be made greater than any
finite quantity, or a* — oc.

Again, if a < 1, let a= -
; thenp > 1 and ««* = _L„i_=:()

oc

The truth of this latter proposition is generally assumed by
merely noting that if a is less than unity, each term of the series
a, a\ a\ etc., is less than the preceding, and therefore by taking the
exponent large enough the result may be made less than any finite
quanoity. But this mode of reasoning is fallacious, for the terms

ofthe series -, yj, (-j, (^j, etc., continually decrease, and

yet if the series be continued to any extent the terms will always

be greater than -.
o

16. Fractions which take the form - when particular values

are given to the literal symbols involved are termed Vanishing
Fractions. They usually arise from the numerator and denomi-
nator having a common factor, which is zero for the given values.
Such fractions have no definite value if by we mean the entire
absence of quantity; but with the meaning assigned in Art. 10 a
definite value may generally be found.

Ex. i.—To find the limit of the value of—^ when the valuex~a
of X approaches the value of a.

let the value of h become indefinitely small, then the value of
the fraction, viz., 2a + /i, becomes indefinitely near to 2a, i.e., by
making x sufiiciently near in value to a, the value of the fraction
may be made as nearly equal as we please to 2a, the limit required.

Pranfinallv fViJa tu^a.-iH i^ e i _i i
_. „ .vcT.tiv io Avuiiu ill, uuco oy removing the com-

uion factor x-a and writing a for x in the quotient.
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^^^ ^.-To find th^ value of '^±^ ^fc^n .= -1 a„d
whenar=.oc.

When ar= - 1 both numerator and denominator vanish, there-
fore :r +

1
is a factor. Removing thJ. factor we get ^^

; sub-
stituting - 1 for X ve get - 1, the result required.

^""^^
'

When X is infinitely great both terms of the fraction become
oc; Its value, therefore, in this form is indeterminate. The frac-

tion, however, in its lowest terms may be written t; and

If we now put ar=oc, - and t each =0, and the fraction be-

comes -
.
The meatxing in this case is, « By making x sufficiently

great the value of th^ fra<5tion may be made as nearly equal as
we please to - ."

o

17. The product of two factors vanishes when one factor van-
ishes, providing the other remains finite; if the second factor be-comes infimte the product may be zero, finite or infinite, as the
tollowing simple examples show:

Leta? = a2 andlet(l)«=l (2)v-- {'\\,. ^
. +u • , "

\ I y ^y \^^) y-^2» \^) y^—zy *hen in each
case when ar = 0, a = Oandy=oc

Thus, 1
(1) xy= d?,-^a^(i.

n.a

a?

(3) .ry= a2.-=_=,oc.
a? a

In the above and all simUar examples the meaning assigned to

iT^lt In"'
"'"" *''° "'^'""'y "^™S the abovfprocess

would be wholly unintelligible. It should be further oWved
the .wo .actors « «,„e, the one 0, the other =c, by the vanishing



FUNDAMENTAL CONCEPTIONS AND OPERATIONS. 17

of the same quantity, a; otherwise no definite result could be

given. For example, if ar = a and ?/= 7, and if u and b each be-
1

*

come 0, then ary = a x -= x oc ; but this product is entirely in-

definite.

EXERCISE ',

1. Find the value of

integer.

x-a
when r = ffl, w being a positive

2. Find ^he value of when ar= -a, (1) if n be odd;

(2) if n be even.

3. Find the value of

x + a

1 - 3.t2 + 2^5

(1 - xy
- when x=l.

4. Find the value of -——-—— when a- = and when or = oc.
ar + 3.r - 4.r

5. If a?= 1, find the value of — ——- when n= 1, 2 and 3.
(a? - 1

)"

6. Find the value of
K-^) +(a-x)

^^^^ ^^^^

T -p- J xi, 1
' e ^^- V2«+ V'x - '2a

,
/

.
-bmd the value of when x = 2a.

Vx^ - 4tt2

8. Find the value of —^^

—

when a = 0.

9. Find the value of
a

2a

when ar = and when a;= oc.

I -a'

10. Find the value of —

—

- when ar = « ard ?/= i.

11. If a:' + y2-(2y + a-% + (a-%= ai, find the value of

?/'-{a^ + 2h^)i/ + 2ab^
when ?/ = a.



,
CHAPTEE II.

If !

:

RATIO.

magnitudes only bv means of fk/ u
^^^""^ ^^^^^ "^'^^

and EucHd. deUrrntt^i^Srel"!?''^^
are therefore comnellp^ f^ •

^P^^^P"^*® ^^^ *hat purpose; we
though i„^«a,;sf. w e^l; f^r "f""™'

*'='•
us toW the subject numeri^^. ' *'" ™"='' "^ *"' •'"-Wo

w;o:it.^X:rr^L:rr,r -r -
the unit. ^ ^"^ ^^^^i" is taken as

«.e .tic 05 3 feet^^'^H-hJITrer l[T ,/r"^^'^fuUy observed that ratb exi... In't'C!^'-
'"'"''' '^ """^

""v '-^v-.v-oua qua/iUtties of the
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same kind, for the unit of measurement must evidently be of the
same nature as the quantity to be measured.

22. Since the values of ratios are measured by fractions we
are enabled at once to add, subtract, multiply and divide ratios
by the rules which govern these operations in fractions, and all

theorems which have been proved for fractions are equally true
for ratios. For example,

The terms of a ratio may be multiplied or divided by the same
number without changing its value.

In this connection see Arts. 151 and 169-171 of Part I.

23. A ratio is said to bo "a ratio of greater inequality," «'a
ratio of equality," or " a ratio of less inequality," according as the
antecedent is greater than, equal to, or less than the consequent.
In connection with this definition only the numerical values

of the antecedent and consequent are to be considered, otherwise
it would be inconsistent with previous definitions. For example,
3 : 4 is a ratio of less inequality, since 3 is less than 4 ; but if this

restriction were removed, - 3 : - 4 would be a ratio of greater
inequality, since - 3 is algebraically greater than - 4. But the

3 _ ^ ^
value of the former ratio is - and that of the latter —-= -, i.e.,

a ratio of greater inequality would be equal to a ratio of less in-

equality, which is absurd.

In the Theorems which follow the terms of the various ratios
Te considered positive.

24. A ratio of greater inequality is diminis/ted, and a ratio of
less inequality is increased, by adding the same positive quantity
to both its term^.

Let a
: J be the original ratio, and let a + ar : i + a? be the ratio

formed by adding the same positive quantity to both its terms.

a a + x x(a - b)Then

and this result is positive or negative as a is greater or less than b.
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Therefore, if a > i,

and if a < A,

which proves the proposition.

b^b + x*

^f^25. A ratio of greater inequality is increased, and a ratio of

The proof is similar to tliat given in the last Art.

Thus the dupliJ'il'^fi^f°:.! r™*^" ^--ff-";-
ratio a^ : i^

is a
.
o

,
and the tnphcate

fii^nW^"'" ^^ *^''' ^"^^'^'^"« «"^^ *h^t the ratio of thelust to the second equals the ratio of the second to the thirdthen the ratio of the firsf tr^ fK^ +u- j • x, ,
•-" ^"® ""rd,

the first to the second.
'"' " the duplicate ratio of

Let a, A, c be the three quantities,

the"
^ = -,and ... (lY^- *,«

which proves the proposition. i'

t.??"
^^
*^r^ ^''"' quantities such that the ratio of the fir^t

cate ratio of the first to the second
^' *"P^'-

The proof is similar to that given in the last Art.

30. Th-^ c,.uj.._.._ , . _
...«.-u«p„catc and Subtriplicate Ratios of two
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/

quantities are the square and cube roots respectively of their

ratio; but these terms are now seldom used.

31. The Inverse Ratio of two quantities is the ratio of the

second to the first. It may easily be shown to be the same as

the ratio of their reciprocals; lience inverse ratio is oiian called

Reciprocal Ratio.

A- 32. A ratio is increased by compounding it with a ratio of
'greater inequality^ and diminished hy compounding it with a

ratio of less inequality.

Let a:b he compounded with x : y, then the resulting ratio

ax : iy > or < a : 6 according as a; > or < y.

-n, ax a a(x — y)

by b~ by
'

and this result is positive or negati^ o according as a? > or •< y,

which proves the proposition.

FUNCTIONAL NOTATION.

33. The symbol /(x) has already been used to denote a func-

tion of X. In the same way /(x, y) may be used to denote a

function of x and y, f(x, y, z) to denote a function of the three

quantities a-, y and z, etc. The form of a function is the par-

ticular manner in which the quantities are involved. Different

functions of the same quantities are denoted by using different

letters before the brackets enclosing the quantities; thus F{Xy y)
and f{x, y) denote different functions of the same quantities, x

and y. Sometimes a subscript or other distinguishing mark is

used, thus, F^{x, y), F^(x, y\ etc.

Again, if the form of F{x^ y) be given, F{m, n) may be written

by changing x and y in the given expression into m and n respec-

tively; thus, i£ F{x^ y) denotes a3^+2hxy + bf, then F{m, n) de-

notes am^ + 2hmn + bn\

-^ 34. If F(x, y) denotes a homogeneous function of x and y of r

' dimensions^ and iffor x and y in this function we substitute mz
and nz, the result will be a^i^w, n).
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= «m'-«'-
+ Am'-'w;^'-+ cm-V^r ^ etc

= «'-(«W + bni'-\+ cmr-2^^ + etc )
'

function, then for x, y , 1 tit *.' -• "'" '"'3 *«™ » this

*(«)"M>><r.... 'of L^;;:'"';r:«
-' !^ f•

•••• - get

proposition.
/- —

'

, whioli proves tile

Cor. Z.-It x^„j, then F(x, y) becomes y'./'(«, i).

anfi7rPar/""Tl"'/'r"'"^ ''^ ^^'«»™- "^ Arts. 169

there ^^fil I« ht::;^^::* ^Tt"
"'^^'""^ "-^^ -''"

*'

the exercise folIowir..> twr J u°"
'" J^'-«=«»"«.» with

then exercise him/elf'bvw -7 ."*'"''"'"''"''"^- Heshould

Hnd inCnaed in t^ f^i^^^^t"^rr''"'"'"'
°' '''''

by independent work. ^ ^*'" '" e^h case

:V36. If there be two eqtud ratioi ih. ™/. ^

'^oftHeZZ:Z '° ''' "'"" "-^ '^ -->-^^ 0/ the

Let
I _ ^

be the equal ratios; /-(a, «), y(„, «) ^h, homogeneous

:rr:r °' ^ ""-^-^ "- --> ™«o =». tHe„ „=::

Then

(

Art. 34,

Cor. 2.

and

Therefore ^^(^^_J^(c, d)
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f
37. If there be any number of equal ratios, the ratio of any

homogeneous futiction of r dimensions of the antecedents to the

same function of the consequents is equal to the r*^ pcnver of one
of tlie equal ratios.

ace >

Let - = -=-, = ..,. be the equal ratios.

Let F{a, c, e, ....) be any homogeneous function of r dimen-
sions of the antecedents; F{b, d,f....) the same function of the
consequents; put each of the equal ratios =m, then a = mb,
c = md, etc.

Then
^(«, c, e,....)

^ m\F(b,d,f,....)
^ /Art. 34,

F{b,d,f....) 'F{b,rf,f„„) -^'
Icor.l.

which proves the proposition.

EXERCISE II.

1. Write down the duplicate ratio of 5 : 7 and the subdupli-
cate ratio of 289 : 400.

2. Which is the greater of the ratios, 9:10orl0:111a;:ar+l
or x+l.x + 2t a^ + b^:a^ + b^ or a^ + b^:a-]- hi

3. Compound the ratios 8 : 11 and 33 : 40; a:b, 6 : c and c : a.

4. Two numbers are in the ratio 5 : 7, and if 33 be added to
each the resulting numbers are in the ratio 8:11. Find the
numbers.

5. Find the ratio of .r to y from each of the following equations

:

(1) ax-by= cx + dy. (2) Zx'^-Txy = Qy\

(3) 2^2 _ 5^y ^ 2f = 0. (4) mx+ ny= a(mx - ny).

6. The sum of two numbers is 100, and their ratio 7:13. Find
the numbers.

7. If 5 men and 6 boys do as much work as ? men and 3 Ko"3
and 40 men and 15 boys together earn |114 per day, find the
wages of a man per day. ^ '
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-Wi„ eaoH the. J^it^^W ^TorrsT ^rmany chapters are there in each ?

"^^ ot JU 87. How

HeUtr:1L^ :f^r
*">-^ *- <" »-' -^o » : . .. „a.e

oa^Uw ::f " ^ ' -"^ * ^
' -" «<"-'. "-» <.

:
c i. the dupH-

14. Ua:b==b:c, then

l'^- Which IS the greater ratio,

« and i having like signs ?

+ ^ •

« + a 6 + 6*,

I 16. If «:i + c = w:riandi-c4.«-«. « j .,

,^ir. The .ates of two trainj aIhTb
^^"""^ ^"*-

ength. „( their .journeys are IpT liZT' Vt *'"'

longer to make its journev th„„ . T ^""^ ^ * h""™
of each.

'^ J""™/ tl««« It does train A. Knd the time

-- tfm:Copp:z!:r zr '^-^ '"-^ ^^^^ - ^-o

ratio of the timeXylale !ft
'""' ""^' ''"'^ *''»' *he

is n' : ml ^ '" *'*<" "^^ "°fe- to finish the journey

p-al!d^::erp:l•rtl:f^!r'""^^"^''»«*''-p^->
tively. Find irj; ~'°° 1"'''°««» "^ ""J 6* lbs. esnec
balanoe.

" '"*" ""'' '"« ™tio of the arms of the
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(V20. Each of two vessels contains a mixture of wine and water.
A mixture formed of two measures from the first and one from
the second contains wine and water in the ratio 56 : 79 but if
one measure be taken from the first and two from the second the
ratio is 58

:
77. Find the ratio of wine to water in each vessel.

21. I£7n gold coins are equal in weight to n silver coins, and
p of the former equal in value q of the latter, compare the values
of equal weights of gold and silver.

22. Urn gold coins placed side by side reach as far as n silver
ones, and p of the former are together as thick as q of the latter,
and the values of equal bulks of gold and silver are as r:*, com-
pare the-v^alues of a gold and a silver coin.

23. A street railway runs along an incline, and the ratio of the
rates of a car up and down is 2 . 3. The cars leave each terminus
every ten minutes. At what intervals of time will a car going
up meet the successive cars coming down, and vice versa?

24. A straight line is divided into two p&.rts in the ratio p : q,
and again in the ratio r : s. The distances between the points of
section is a. Find the length of the line.

(y 25. A straight line is divided into three parts in the ratio
piq.r. Find the ratio of the segments into* which the middle
point of the line divides the middle part.

38. A certain class of equations which occur very frequently
in the higher mathematics may conveniently be discussed in con-
nection with the subject of this chapter. Suppose we have given
the huigle equation a.r+ iy=0, the values of x and y are evidently
mdeterminate, since any value whatever may be assigned to one
letter, and then a corresponding value may be obtained for the
other. If, however, the different solutions be examined it will
be found that the ratio of the values of x and y is constant, what-
ever value may be assigned to one of the letters. The equation
may be written «(^") +6 = 0, from which ? = -

^. In fact, the
original equation is not properly an equaUon between two un-

V
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^

knowns, x and y, but an equation with om unknown, m., the
ratio X

: y. This fact will be more clearly perceived if we take
the two equatio^s, ax^hy = {i and a'x + h'y = % when it will be
found that the second equation will not assist in determining
exact values for x and y, but will be inconsistent with the former

unless
^ = ^ .

If this condition be fulfilled, the second equation

is a mere repetition of the first ; if not, a: = and y = is the only
solution. ";

39. Between three quantities, x, y and «, two independent ratica
exist, viz, x:zB.udy:z. A third ratio, x : y, might be written,
but Its value is dependent on the other two. Both ratios may
conveniently be expressed thus, x:y:z, which form has the addi-
tional advantage of representing the ratios of any two of the
three quantities. An equation of the form ax + by + cz = may
be considered an equation between two unknowns, viz, the ratios
ar : « and y : «, as will immediately appear from dividing through
by z. If, then, two such equations be given, th • values of the
two ratios may bo determined.

Ex. 1.—Given «a; + iy + os = 0,

)

a'a; + hy + dz = 0, j
*"* ^""^ *^® ^^*^°^ x-.y.z.

Dividing each of the equations through by z, and solvin- forX y- and - , we get
z z

X

and

he' - h'c

z ab'-a'b

y ca' - c'a

z ab'-a'b'

These results may be written in the more symmetrical form,

« y z

hc'-b'c ca'-c'a ab'-a'b'

H^-.toh gives the value of the ratios required,

3

H I
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Ex, 2.—To find the condition that the equations,

ax-\- bi/+ csi = 0,'

a'x + b'y + c'z = 0,

may be satisfied by the same values of x, y and z.

Writing the ratios x-.y.z from the second and third equations
we get

X y
b'c''-b''c' c'a"-c''a'~7Un^"

Now divide the terms of the first equation by these fractions
in succession, which is merely dividing through by the same quan-
tity, though in. different forms. The result is

a{b'c'' - b"c') + bic'a" - c'a') + cia'b" - a'b') = 0.

If this condition be fulfilled the equations are satisfied by

x = k{bV-b''c'), y.= k{c'a''-c"a'), z = k{a'b'' -a'b'),

where k is any multiplier, since it is evident that the ratios of
these values are the same as the ratios x:y:z originally given.
If the above condition be not fulfilled, then the only values which
will satisfy the equations are .r = 2/ = « = 0, which evidently satisfy
any similar set of equations.

40. The examples of the preceding Art. are of great impor-
tance, and the student should be able to write the ratios from
any similar set of equations without going through the succes-
sive steps of tlie solution. The res-Its may easily be remembered
as follows:

Write the equations one above the other, then omitting the
coefficients of each letter in turn the coefficients of the other two
form a square as below

:

i'.c

c, a,

c, a',

a, b,

«', b\

the letters a, b, c, a\ b', c\ following each other in the usual cir-
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cular order. The letters of these squares form the denominators
of . y and . respectively by taking the difference of the productsof heir dmgonals, heg^nn^ngM the Hagonal drawn don,nwards
to the r^ght The signs of the coefficients must be taken in con-
ne'^tion with the coefficients themselves.

Ex. i._Write the ratios x^y.z from the equations,

Result:

y
(-3)(-l)-(2)(l) (l)(l)-(2)(3T) = (2)(2)rrp3^^

or

1 3 7

Ex. 2.—Solve equations:

ar + y+ «=:0,

Writing the ratios from first and second equations,

h-c c-a~a-b'
Dividing the terms of the third equation by these fractions,

a\h -c) + b\c - a) + c\a -b) + {a- b){b - c)(c - a) . ^11^=
Q.

Dividing through by - (a - b)(b - c)(c - a),

^--^ = or x= b-c,

from which the values of y and .may be written, since the ratiosx:y:z are known.

Sometimes it is convenient to combine other quantities with
X, y and z. and th^n f^ iir«,'f^ au„ -._j.-. n ..

.
•

- -
; •'-'^- «^nc Litios or tne resulting expres-

sions as m the following example

;

a i' *
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jEx. 3.— Solve equations:

x + y +z^a + b + c]
ax + by + cz= ab + be + ca,

(b - c)x + (c - a)y + (« _ b)z = 0.^

The equations may be written,

(ar-i)+ {y-c)+ {z-a) = 0,

.
a(x-b) + b(y-c) + c(z-a) = 0,

(^-c)(x-b) + (c-a)(y-c) + (a-b)(z~a)^bc + ca + ab^a^-b^-c'.

From first and second equations,

x~b y~G z—a
c -b a -c b — a*

and then from third equation,

b~c
x-b

b+e

Therefore

X —b
'

2=-

or x= -

'i '

from which the values of y and z may be written from symmetry.

41. Commensurable Quantities are those which have acommon measure, or those which are capable of being expressed

Ire tIT 1,*'rr"'
""*• I^co^^niensurable Quantitiesare those which have no common measure, or are not capable of

being expressed in terms of the same unit.
A good example of incommensurable quantities is furnished

1 luM ""^ "" '•^"^'^ ^"^ ^*" diagonal. There is no unit of
ength that is contained an exact number of times in each. Ifthe side be divided into 10 equal parts, the diagonal will containmore than U such mrt,s. l.nf lo^c +!.„>, ik. :e .> v. , ^
,/^^

,
' '

— '^""" ^'^) " it oo aiviaea into
100 equal parts, the diagonal will contain more than 141 but less
tnan 142 such parts, and so on to any extent. Similarly, if the
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diagonal be divided into an equal number of exact parts, the side
wil. not contain an exact number of such parts. All this is briefly
expressed by saying that the quantities are incommensurable.

42. The relative greatness of two magnitudes is in no way
dependent on the manner in which they may be represented by
symbols. The diagonal of a square axlmits of being compared in
regard to its length, with the side, even though they can not' be
represented numerically in terms of the same unit. The defini
tion of ratio, therefore, of Ait. 21 is not strictly appropriate for
incommensurable quantities, and it is in this particular that it is
inferior to that of Euclid. But though the ratio of two incom-
mensurable quantities can not be exactly expressed by numbers.
It can be expressed to any required degree of accuracy, as isshown in the following Art. The ratio between two incommen-
surable quantities is called an Incommensurable Ratio.

43. If two quantities are incommenmrahk, afracti(m may hefound which will represent th^ir ratio to any required degree of
accuracy, ^ •'

^

For let a and h represent the two quantities; let b be divided
into n equal parts, and let x represent one of those parts; then
b==nx Also let a be greater than m.r, but less than (7^+ 1)^-

then - > -, but < -_; then the difference between "^ and -
J

b n
is less than -. Therefore by taking n large enough the fraction
m
- differs from the exact ratio of a to i by less than any assign-

able quantity.

In such examples ^ and "^ are said to be the Hmits be-

tween which the true value of the ratio lies.

44. Two im:omr>unsurahle ratios are equal providing tUy
always he between the same limits /m?,,^.,.^ ^, 7/ .1, ,.^
I . ^, ... ' —''^^-' cnttAiL crie ainere'nee
between those limits may he
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ropriate for

ar that it is

two incom-

•y numbers,

iracy, as is

incommen-

latio.

iofi may he

d degree of

be divided

'arts; then

I {m-\-\)x',

« , m
1 r and —
o n

le fraction

ny assign-

limits be-

Ung iliey

differeyice

For let a : 6 ajid c : c? be the two ratios whose values each lie
m wn-

1

between — and
; then the difference between those ratiosn n

1
is less than -, and by taking n large enough this difference may

be made less than any assigned difference between the ratios;

and since there can be no assigned difference between the ratios,

they must be equal.

EXERCISE III.

^M. Given ar + y + «= 0,\

2^ + 3y + 4« =0j ^"^ *^^ ^^^^'^ ^= 2/:«.

*^. Given a? = ay + is;,)
^

, t fi^d the ratios xxyxz.
y = bz+c.r,) ^

*^. Solve equations:

2x+y-z = 0y

ar-22/-3« = 0,

x^ + xy+ y^ = 8i.

\^ 4. Solve equations: i^ ^t%
2x-3y + iz = 0, (>

Zx-y-2z = 0,"^^

ar' +f + ^^.biSd.

.1^
fV

.X

e^. If
X — a y — h z — c

then each fraction =

6. If

and

then

I m n
and (x+a)l+(y\-h)m+ {z+ c)n = p

P

z

X

aif,:^
"^
h{c-a)

"^
c{a - h)

" ^'

aj^-cf _ h{c -af c{a- hf

b-c c—a a—b

y .
«

X y
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7 If ^-yi__y~zx
x{\ - yz) yfnr^* ^1 y b© unequal, then each

fraction =

8. If

then

_^-^y
. Ill

and {h ^ c)(^ > y.) + (, _aW - zx) + (a - b)(^ - :ry) = 0.

a?
C_ 9. If

and

then ~

and

V z

*+c c+a a+6
X y z

X

J ~ p—

-

o-c c-a a-b
1

y

C 10.

Solve the following equations:
f

c
11.

r

<^^ + by+ cz=(c-b)x + (a-c}y + (b-a)z
^a'+ V' + c'-ab-bc-ca.

x-¥y+ z = Z{a + b + c),

<ix +h + cz = 3(ab + bc + ca),

i^-o>+{c-a)y + {a-.b)z^bc+ ca + ab-a^^K^-^,

^^+ cy+ az= cx+ ay+ bz

= a^+ b^+ c\

x+y+ z= a + b + c.

^^'

"

.«+ y + z= a + b + c,

ax + by + cz==ab + bc + ca.

(f' + c')x+(c + a)y + (a + b)z = a'+b^̂ + c^+ ab + bc + ca.
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14.
ax + by by {• cz cz + ax

a-b b-c c-a *

€fix+ Iy^i/ + c^z+ (a - b){b - c)(c - a) = 0.

ir
2a? + 3y -4z _ 33r + 4y

-

2g 4x + 2i/-3z x + y-z
x + 5 5x 4x~-n 6 '

i>

16.
a'x

2/V

/>3.
'2/

z^x'^

c^z

a?2y2
1

17. If Val±Vf>m±:Vcn = 0, the two values oi y:z obtained

from

^^-+- + -=0,
X y z

2'^ lr+my+ nz= Oj

will be equal

18. Find the condition that the equations,

ax + ?iy + gz = 0, hx + by+fz= 0, gx+/y + cz= 0,

may be satisfied by the same values of ^, y and z,

19. Find the condition that the equations,

ax+ cy + bz= 0, bx + ay + cz = 0, cx + by+ az= Of

may be satisfied by the same values of x, y and z.

20. If the equations,

ax + by+ cz = 0, a'x + b'y + c'z= 0, a''x + b''y + c''z= Of

are satisfied by the same values of x, y and z, tlien

ax + a'y + a''z = 0, bx + b'y + b''z = 0, cx + c'y + c"z = 0,

are also satisfied by the same values of x, y and z.

x » y
21. If = a. = A, = c.

y + z ' z + x ' x + y
find the relation between a, b and c, and show that

x' r ^
I

a (1 - be) 6(1 - ca) c(l - ab)
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prove

23. If
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•cy+ i«, y-a« + ca., z=^bx

ar>

+ «yi

y'

l-a» l-As'nil-cr*'

26. If d; y
(y+«) h{z^.x) ^^T^'

a-b b~c c~c~a
«y/ 2/zZ2/a_7,\ . y^/; , zx.

X
y

then

and

26. If ^

then

and
^ - n

27. If «X^..r+cZ=0 and «.r+M'-...^=0 where

then ^2+ ^2 + ^2= K(Ac^_-V) + ^>2K
^/i/?. _ A ^^2 ,~7TI tt; ^.-4

—

LjLL



CHAPTER III.

PROPORTION.
,45. Proportion is the equality of two ratios. Four quanti-

'iies are said to be in j roportion when the ratio of tue first to the

second equals the ratio of tht; third to the fourth, and the quan-

tities themselves are called proportionals. The first and fourth

quantities are called Hxtrctnes, and the remaining two are

called Means.

46. The equality of two ratios may be indicated in various

ways. Thus, ii a:b and c : d are the two ratios, a:b::c:d

(read, as a is to i so is c to c?), a : A = c : <7, or r = ti indicates

that the ratios are equal and that the four quantities are in pro-

portion. Similarly the equality of three or more ratios may be

expressed, thus, a : i : : c : <f : : e :/, or a : 6 = c : c? = e :/, or the

fractional form may be used as before ; or again, the antecedents

may all precede the sign of equality, written but once, thus,

a •.c'.e — h'.d:f, and so on to any extent.

47. Four quantities are required to form a proportion; but one
may be repeated, thus requiring only three different quantities.

The quantities forming a ratio must be of the same kind, but

those forming the first ratio may he different from those forming

the second; but if only three different terms are used, all must
be of the same kind.

Vv 48. Iffour qvMntities are proportionals, the product of the ex-

/yptrefmes is equal to the product of the means.
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^t a, ft, c, rf be the four quantities,

such that ,

«:o:;c;(/.

Then

therefore

a e

ad=bc.
This propositim enables im +n u

For if

then

Therefore

Similarly

a

b

C a
-J and -

«:ft = c:c? and a:c = b:d.

b:a=:d:c and b:d=a:c.

b

d'

50. From the four terms whir»h fntm,
proportions may be formed Iv n T ^P'^P^^^^'*

"''^^T other

terms in various ^Js AelZ ''''' '^"^ ^^'"^^--^ ^^^e

in the following Art^l.^lr^Z ICh"' t"^^^ ^ ^--
some of them are known

^"''^^ *^'"^^ ^3^ ^^ich

51. If four quantities n h ^ ^
that

'
' '

"^^ ^""^ proportionals,so that
«:ft::c:(/,

thftr"'
a- P«.porti„.W .hen taken i„™.e„;

"IJAO IS,

«:c::ft:rf.
{^Iternwndo.)
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(3) The first, together with the second, is to the second as the

third, together with the fourth, is to the fourth;

that is, a + b:b::c + d:d. {Compoiie7ido.)

(i) The excess of the first above the second is to the second as

the excess of the third above the fourth is to the fourth

;

that is, a-b:b::c-d:d. {Dividendo.)

(5) The first is to its excess above the second as the third is to

its excess above the fourth

;

that is, a\a-b::c'.c — d. {Convertendo.

)

(6) The sum of the first and second is to their difference as the

sum of the third and fourth is to their difference;

that is, a + b:a-b: :c + d:c-d.

(7) Any equimultiples of the first and second are proportional

to any equimultiples of the third and fourth

;

that is, ma : mb ::nc'. nd.

Also, if equimultiples of the first and third, and of the second

and fourth, be taken, they will be proportional

;

that is, ma : w6 : : mc : nd^

where m and n are any real quantities.

(8) Like powers or roots of the four quantities are proportional

;

that is, a"* : i'" : : c"* : rf"',

where m is any real quantity.

The proof of these various propositions follows at once from
the equality of the fractions which express the equal ratios.

Since

therefore

a:b::c:d,

r = -, by definition.
b d ^

Divide unity by each of these equal quantities,

a c'

Therefore b:a;;d;c.

(1)
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Subtract eacli side of (1) from a unit,

a-b c~d
a c

then

Therefore

or

a c

« : « - i : ; c : c - (A

/

^milarly all the rccjuired results may easily be obtained.
Additional results may be obtained by a combination of .1.preceding principles; thu, applying the'sixth^rlla d tlsecond result of the seventh we get

P^mcipie to the

^ + ^^:ma-nb::,nc + nd:7nc~.nd.

^52. If four quantities are proportional, then any two homo-
/ geneous functions of the first and second are proportional toThtsame functions of the third and fourth-all the function betof the same number of dimensions.

unctions being

This Theorem may be concisely expressed in symbols thus.
If

(t'.b ::c:d,

^Itlf" "'"" '""'°^'"'=°'" """ °^ ""' -- "-"- of

The proof is at once evident from Art ^fl sj« i
• .,A^ ^7- • .• /.

^"" Aiwjii -ti-rc. ^0. feee also a simi ar

'^S. "and '',:l

''
'' '• '''" "' ''' " "''' ""'' *« '"' •" ™"«"''«1

P.-0-portao., and b IS a mean proportional between „ and 0- alsoIS s,ud to be a tbhd proportional to ,, and b If „ ;, V,! ?
t e lengj^s of straight line, then, since in ttis^tV^the length of the side of a sqnare which is equal in area t; ther^tangle contained by the lines a and . Henl the 1 tpll'tionottheSecomlBookof Kiirlidi,.p,.:..„i._,..,. ,.

' l"^!*"'

proportional between two given"q„a„tlt;r
^ "'"""°' '* """"
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\^
''54. If (i:h::h:c::c:d, then a, 6, c, d are said to be in con-

tinued proportion, and h and c are two mean proportionals be-

tween a and </. In this case we have

a

b

c

d'

Therefore

from which

a b c A«V
b' c

' d^\b)'
a

or
a-'

l^ = aH.

Therefore b is the length of the edge of a cube equal in volume
to a rectangular solid whose length and breadth are each a, and
height (/. To find this length by elementary geometry was one
of the three famous problems of antiquity which could never be
solved.

55. If « : b::c:d and e :/'. lyih,

tlien ae : //: : eg : dh.

For

Therefore

a c , e a

ae eg

bf^Jh'

or ae\bf\\eg\dh.

Cor.—

]

i a '.h\:.r :y and b :c::i/:z,

tJien a:c::a:z.

This prniciple may evidently be extended to any number of
quantities which are proportional to as many others. It is quoted
by the words ex (equali or ex cequo.

56. It will bo instructive to compare the test for proportion,
or the equality of two ratios, laid down by Euclid, Bk. V., Def. b,

with that already given. Euclid's definition may be stated thus

:

Four quantities are proportionals when, if any equimultiples
whatever be taken of the first and third, and also any equimulti-
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pies whatever of the second and fourth, the multiple of the third
is always greater than, equal to, or less than, the multiple of the
fourth, according as the multiple of the first is greater than, equal
to, or less than, the multiple of the second.

This definition, which is somewhat unwieldy when expressed
in words, will be more readily intelligible when expressed by
Symbols as follows

:

If there be four magnitudes. A, B, C, I), such that

according as

mC >, =-, or <, nD,

mA >, =, or <, nBf
I

for all positive integral values of m and n, then A, £, C, D are
said to be proportionals.

OTT we shalTiwAv show"that quantities which are proportional
according to the algebraic test are proportional according to
Euclid's test, and conversely.

-# 1. Let a, i, c, d be proportionals algebraically.

Then \'^\ by definition.

Multiplying each fraction by —
n

we get
ma mc
nb nd'

f

Now, ma and mc are any equimultiples of the first and third,
and nb and nd are any equimultiples of the second and fourth,
and from the principles of fractions

wc >, =, or <, nd,

according as ma >, =, or <, w6,

which proves the proposition.

Let a, b, c, d be proportional accordi sometrical
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definition, then shall they be proportional according to the alge-

braical definition.

a a
For if r be not equal to -, let - be the greater; and let — be

n

m
less than r, but greater than -.

a

Then, since

and since

a n
T > —, .*. ma > no;m '

en
J < —, :. Tnc < nd,
a m

Now, of the four quantities, a, b, c, d, of the first and third

equimultiples ma and mc have been taken, and of the second and
fourth equimultiples nb and nd have been taken; and the mul-
tiple of the first is greater than the multiple of the second, but
the multiple of the third is less than that of the fourth, which is

contrary ic the supposition that a, b, c, d are proportional accord-

ing to the geometrical definition; therefore - is not unequal to
c b

^, «,e., they are equal, which proves the proposition.

EXERCISE IV.

1. Find a fourth proportional to 3, 5 and 15.

, 2. The second, third and fourth terms of a proportion are 12,

41 and 61 J; find the first.

3. Find a third proportional to 1 + V'
2^
and 3 -H 2 V\ and a

mean proportional between V^ 7 - V 5 and 1 1 \/ 7 -J- 13 Vb.

4." What number must be added to each of the numbers 1, 3,

5 and 8 so that the results will be proportional?

5. Find a number which, added to 1 and to 11, will give re-

sults between which 12 is a mean proportional.

6. Given that x {- y: x — y.: a { b \ a - b^ and wi i

portional between x and y, find x and y.

mean

i
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B 'I

I

y^"

\

c 7. Three numbers are in continued proportion; the sun of the
greatest and the least is 51, and the sum of the two greatest is

60. Find the numbers.

C^ 8. Given that the work done by a;- 1 men in ar+ 1 days is to
the work done by ar + 3 men in a: - 2 days as 20 : 21, find x,

9. If four quantities are in continued proportion, the difference
between the first and last is more than three times the difference
between the other two.

^ 10. If (a'^+b^)(b^ + c') = (ab + bc)\ then «, b, c are in continued
proportion.

11. If a, i, c are in continued proportion,

*hen a + mb:a-mb::b + mc:b-mc,

and
(c + ^) • (^ + I J

'" ^ '^*^'* °^ equality.

12. What must be subtracted from each term of the ratio a : b
that the resulting ratio may be the duplicate of the original ratio 1

>U3. Find two numbers whose sum, difference and product are
proportional to s, d and p.

b' c' d*
~ ^^ proportionals, '

then b* + a^c" : b* - aV y.d* + c'e^ : d* - cV

;

and if a, b, d are also in continued proportion, then <^= e.

(,^15. If 6 + c + c?, c + c?+ a, 0?+ a + i, a + 6 + c are proportionals,

then i' + 6c + c2= a2 + a(f+cf2^

^ 16. What must be added to each of the four quantities a, 6, c, d
so that the results will be in proportion ? Examine the case in
whicha + o?=i + c.

^ 17. Ifa + i:7n. + 7t::m-w:a-6,
*^hen a + ni:b + n::b-n:a-m;
m(\ if a is greater than i, then b is greater than n.
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^18. If a, 6, c, d are proportionals,

(a - b)(a - c)
then a+d=b+c+

a

J 19. If a, b, c, d are proportionals, and if a is the greatest, then
d is the least; also, a + d>b + c and a^ + rf?> i^ + c^.

O.20. If the ratio of the difference of the antecedents of two
ratios to the difference of the consequents is measured by the
sum of the measures of the separate ratios, the antecedents are /

in the duplicate ratio of the conseqijents.
. . -

'

*^'m ^ Jc/U,

-J r,>-i 'iA

21. If ar and y be such th^*^^en added respectively to the
.awtecedent and consequent/^ the ratio a : h, the resulting ratio is

>-ryT^,t^^ reciprocal of that formed by adding them to the conwequent

y ^ and antecedent, then either a = 6orar + ?/ + a + 6 =

^ 22. lii{a-k'b-\rc + d){a~b-c + d) = {a-b + c-d){a + b-c-d),
then a: b::c:d.

^ 23. If {pa + qb + rc + sd){pa.r-qb-rc+ sd)

— {pa-qb + rc-sd){pa + qb—rc-sd)y

then bc:ad::ps: qr, w^\ ^
and br-.pdi'.as'.qc; Q0
and if either of the two sets, a, b, c, c?, or p^ q^ r, «, are propor-
tionals, the others are proportionals also.

^. 24. Sold goods for $24, losing as much per cent, as the goods
cost; find the cost. What should be the cost for the selling price
to be as great as possible ?

25. The time >^hich an express train takes to travel 180 miles
is to that taken by an ordinary train as 9:14. The ordinary
train loses as much time from stoppages as it would take to travel

30 miles without stopping. The express train loses only half as
much time as the other by stopping, and travels 15 miles an hour
faster. What are their rates respectively 1

5—26. To 300 lbs. of a mixture containing 2 parts of zinc and 3
of copper and 4 of tin was added 200 lbs. of another mixture of

p)0

1

I

d
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the same metals, when it was found that the proportions were
now as 3, 4, 5. What were the proportions in the added mixture ?

27. Each of two vessels contains 10 gals, of alcohol and water,

the first in the ratio of 3 : 2 and the second in the ratio 1:4;
how many gallons must be poured from the first into the second,

and then the same amount from the second into the first, to leave

5 gallons of alcohol in the first vessel ?

28. The first of two vessels is filled with wine and water in the
ratio m.n; the second in the ratio p : q Their contents being
mixed, the resulting liquid contains wine and water in the ratio

r:8; find the ratio of the volumes of the vessels.

29. If a, b, c are in continued proportion,

then {a-hy:h{a-c)::a{b-c):c{a + h)',

a\a-h + c):a? + ab + b'^'ui?-ah-k-h'^'.a-\-b + c',

^2 4i{b+cf {c + af (a + by

0- -, c — a a — b a —c
(a + b + c).

Q^ 30. If a, b, c, d are in continued proportion,

then (a-c)(b-d)-(a-d)(b-c)=={b-cy;

(b-cy+(c-ay + {d-by=={a-dy;

(ad+ bc)(a + b + c + d){a -b-c + d) = 2(ab - cd)(ac - bd).

31. Brass is an alloy of copper and zinc; bronze is an alloy

containing 80 per cent, of copper, 4 of zinc and 16 of tin. A
fused mass ot brass and bronze is found to contain 74 per cent,

of copper, 16 of zinc and 10 of tin; find the percentages of copper
and zinc in the composition of brass.

32. A and B are partners in a business in which their interests

are in the ratio a : b. They admit C to the partnership, without
altering the whole amount of capital, in such a way that the
interests of the three partners are then equal. C pays $c for

the privilege. How is this sum to be divided between A and B,
and what capital had each in the business originally 1



CHAPTER IV.

TARIATI®N.

58. The object of the present chapter is to present the principle

of proportion in a slightly different form, and one which is spe-

cially adapted to complicated and intricate problems. The diffi-

culty usually experienced by students in this method of treatment

of the subject will be removed by giving careful attention to the

meaning of the technical terms employed, as explained by a few

simple examples.

59. The concrete magnitudes to which mathematics are applied

are so related to each other that a change the one frequently

produces a corresponding change in another, or, in mathematical

language, one is a function of the other. Thus the circumfer-

ence, the surface and the volume of a sphere will each be changed

if the length of the radius be changed; i.e.., they are each func-

tions of the radius. The ratio of the circumference to the diam-

eter, however, will not be changed by changing the radius; the

value of this ratio is therefore a "constant," whilst the radius,

circumference, surface and volume are "variables." If we con-

ceive of different values being given in succession to the radius,

it may be called the "independent" variable, whilst the other

quantities, from their values being dependent upon the value of

the radius, are called " dependent " variables.

6§. The value of one quantity may depend upon the value of

several others; thus the area of a triangle depends upon, or is a
function of, the base and altitude. When one quantity increases

another may diminish; thus the time necessary to travel a given

y
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l\

in ^^^yNflJ

If

distance diminishes as the speed increases. The number of ways
in which the value of one quantity may be connected with, or be
dependent on, others is without limit. In any particular problem
the exact nature or the dependence or connection must first be
clearly conceived in the mind, and then accurately expressed in
mathematical symbols.

61. If a single equation be given, containing two unknowns,
X and y, we may give any value we please to one of them, and
then corresponding values of the other may be determined. In
such cases either quantity may be considered a function of the
other, and the quantities themselves are variables. Consider the
following simple examples : *

y = 2x, y = ix\ y = ax + h, y = ax'^+ hx + c, y = 2'.

In each case the value of y is known when that of x is known;
we therefore say that x and y are variables, that y is a function
of X, and that x is the independent variable, and y the dependent
variable.

62. We have now given a number of examples of both con-
crete and symbolical quantities, of which the value of one varies
{i.e., changes) when the other varies or changes, and therefore, in
popular language, one may be said to vary as the other. But the
word "variation," in mathematical language, is restricted to one
particular kind of change in value, or functional dependence be-
tween two quantities, which we shall now proceed to explain.

63. Variation is an abridged method of indicating proportion;
its precise meaning is determined by the definition of the follow-
ing Art. ^

r "*• ^^®
qp^«?fy

is said^p vary dirpctly as another when the

>i«,tio, the other is in<rr6ased or 4ecrease?d iri tlie same fatld^
Thus, if the rate percent, and "the time be constant, the simple

interest varies directly as the principal; for if P and p be two

J Cy^
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sums of money, / ami i the interest, I:i = P:p, the rate and

time being constant.

Again, if y — mx where tn is a constant, y varies as x; for if

y' and x' be simultaneous values of y and x, we have y' = mx'\

y tnx X .

.-. -=

—

- = -,ov y\y =x\x.
y mx X

The symbol oc placed between two quantities signifies that the

first varies as the second j thus y oc ar is read y varies as x. The

statement that one algebraic expression varies as another is often

called an equation of variation.

^^^f]^' ^^^ quantity is said to vary inversely as another when
/ 'the two are so connected that if one be increased or diminished

in any I'atio, the other is diminished or increased in the same

ratio.

Thus the time in which a given piece of work can be performed

varies inversely as the number of men employed in it; for if the

number of men be increased or decreased in any ratio, the time

required will evidently be decreased or increased in the same

ratio.

Again, if ;</ = — where w is any constant, y oc inversely as x;
X

ffh

X
for if y and x' be simultaneous values of y and x^ we have y' =

'U X
and therefore —, = — or w : y' = x' : .r.

y X

66. One quantity is said to vary jointly as two others when it

varies as their product. The area of a triangle varies jointly as

its base and altitude, for the area is always one-half the product

of the base and height; whence the truth of the statement is evi-

dent from preceding definitions. If A denote the area, b the base

and h the height, we have A = \hh, from which it is evident that

A increases or decreases in the same ratio as the product hh. We
also see from this example that when the relation of quantities is

expressed in symbols it is much easier to determine the nature of

the change in one produced by a change in another, than from

considering the magnitudes themselves.
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67. One quantity is said to vary directly as a second, and in-
versely as a third, when the first varies as the quotient of the
second by the third. Thus the time required to travel a distance
varies directly as the distance and inversely as the velocity; for
the time is always equal to the quotient of the distance by the
velocity, so that if the quotient be changed in any ratio, the time
18 changed in the same ratio.

Again, i{ij = m(^~j ^here vi is constant, then y « -
; for if ?

be changed in any ratio, y is evidently changed in the Lme ratio.

_

oo. 1 neorem \.—Ify oc x, tlien y = mx v^here 7n is constant
for all values of x and y.

Let X be changed to x\ and in consequence let y become y',

then

Therefore

y X
—J = — by definition, Art. 64.
y X

-(-^)- ymx if -, =m
X

Now, x' and y' are fixed numbers; therefore for all values of x
and y we have y = mx, where m is a constant quantity.
The converse of this Theorem has already been proved (Art

64).
^

69. The preceding Theorem, being the fundamental one of this
part of the subject, deserves the most careful attention. The
point which usually confuses a beginner is the change in meanin-
of the symbols y and x which takes place in the course of proof^
In the enunciation y and x are evidently variables. Upon be-
gmning the proof they are supposed to have some definite value-
afterwards y' and x' are supposed to remain constant, whilst yand ar are again susceptible of change. v

/U. Theorem 11.—If yocx when % is constant, and yozz
when X is constant, tJien yo<:xz when both x and z are variable.

The variation of y depends upon the variations of x and. «
Let the changes in the latter quantities take place separately.
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First let x be changed to x\ and in consequence let y become y^;
next let z be changed to z\ and in consequence let y^ become y\
so that we have the following sets of simultaneous values of the
variables

:

yi ar, z.

Vu z.

yi X

y'~
z

y
2/"

xz

x'z"

y\ ar', «'.

From the first change of values we have

y X

^ and from the second,

From these two equations,

y oc xz.

/71. The following illustration will render the preceding Art.
;' more easily intelligible.

The area of a triangle varies as the base when the height is

constant, and the area varies as the height when the base is con-
stant; and when both base and height vary, the area varies as
their product.

\ " Let ABC be any triangle. Denote its area by y, its base BC
by X, and its height ADhy z. First

p^, extend the base to any point E^ and

^Yi
denote its length by x\ and the area

of the triangle ABE by y^) then -
« ._ . yx

= —,
.

J>ext increase the height i)-4

to DF. Denote this height by z, and

the area of the triangle FBE by y' ; then -^ = -,. From these
^. , . 1/ xz y ^

i- / ,— > *vnicn anoirVa tnao tne us-ca varies as
y xz

the product of the height and the base.
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r

%

.^Z'J^
.v'^natxons ™ay be inverse, or one may be direct

rushed by the change of pressure of a gas when the volume and

sure, p of a ga^ vanes as the '-absolute ten.perature," t whenthe volume,
., ,s constant, and inversely as the volume when thetemperature is constant; that is,

/> oc < when V is constant,

*^^
^ =^ - when i! is constant.

From these equations;, c
^ .hen . and . are both variable, and

}y actual experiment this is found to be the case.

72. I/y ex: cc, then amj hanioffeneousfunction of x and y varies
22^^y otker kom.,ene.us function of tke sa.ne rirr.,er ofIZZ
Let F{x, y\ fl^c, y) denote any two homogeneous fu. ions of^andy, each of .-dimensions; and. since^::.^, • y^,^^

""^

Then r^(fLy)^jXgLi!^),^'-.i^(l,m) F{\, m)
/(^. y) f{x, mx) x\f{l,m)~ f{\,m)

^ ^ <^o^tant.

Therefore
^(^, y) oc./(:r, y).

\y^^' ^\ ^"^ ^'1""'*^°" °^ variation exists between two homo-

^hr;L""^ of the same number of dimensionsZ and

^

Let F{x,
y), y(^, y) denote two homogeneous functions each ofr dimensions, of which one varies as the oMier

Let y = ,n.r, then we have to show that the value of m does notchange when x and y change.

«|n- ^(-,y) «:/(., y), :. Fi.,y)^k.Myy
Therefore ^(r, m.r) = >{:./(.r, «^.r);

.". ^^^ym) = k.f{\,m).
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Hence the value of m is independent of the values of x and y,
and is therefore a constant; /. y <x x.

y

74. lly<xxcxz, then any homogeneous function of r dimen-
sions of X and y varies as z^.

Let i^(x, y) denote any homogeneous function of r dimensions,
and, since x and y each oc «,

/. x= mz, y = nz where m and n are constants.

Then F{x, y) = F{mz, nz) = z\ F{m, n) oc z\ AvK 34
^"^^^ -^(w, w) is constant.

Cor.—This principle may easily be extended to any number of
variables, thus;

Ifyocaocarocwcc...., then any homogeneous function of
r dimensions of these variables varies as the r"' power of any one
of them. For express all in terms of any one, thus y = mu,
z= nu, etc.,

Then ^(3/•«.^.w....) = w^i^(77^,w....)ocw^

Hence any homogeneous functions of the variables varies as any
other homogeneous function of the same number of dimensions.

75. If two equations of variation exist between homogeneous
functions of three variables, x, y, z, the functions belonging to
the same equation being of the same number of dimensions, t\en
yocxocz. Put

2/ = mz and x = nz, then we have to show that
the values of m and n are independent of x, y and z. Proceed-
ing as in Art. 73 we obtain two equations independent of x, yand z to determine the values of m and n.

REMARK.-It is not necessary to solve those equations, but only to observethat m and n must have flxed values independent of x, y and z.

76. The following examples illustrate the meaning of the nr^.
ceding Arts. They also show the method which should be adopted
for tlie solutioi. of similar examples in the exercise wliich follows
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l^x. l.—li y oc .r, then 2^ _ 3a-y ex: y2 _ 5^.

Since y oc .., ,. y = ^^ ^h3^^ ^,^ .^ ^ ^^^^^^^^

Then 2-^!ll?^^ 2^-3m^ _ 2 - 3m

Therefore

jr'-Sa-"

2.r2-3ary«.2,2^5^2^

= a constant.

W™ /-f^+ ^-*(^'^^- 2.y) where . is a constant.
Therefore ^(l-3m + m3) = i^;,(4,„_2m').

•'
' -3ot + »»'== 4(4m_2m=).

\j
•^"^•'^- -M2/°c^oc^. then:r«-2y2^ + 3;ry«oc;^.

Since both y and x vary as ^, let y = ,n,., :r = ^.
or^ - 2y2^ + 3^y^= ,3(^3_ 2,^2+ 3^^^

= «'x a constant.
Therefore ^-^h + ^xyz^:^.

co^^Xanzj^trraTdr^"-^"^--^-
^^««e yc^x + z, :.y = k{x + z).

Andsince 2^ + .^ oc.^ + ,.y, • 3,2^,^^^^^^
where Jc and ? are constants

JuMtuting the given values for , and . in these equations

'^z= k{nz + z) or m = k{n+ I)
',

m^z^ 4. w*2 __ 7/^2 , „- ., . ov
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These two equations detennine constant values for m and w,
which proves the proposition.

RKMARK.-It may be objected that in such examples m and n may have
several different values, and are therefore not constants. The reply is that
their values are restricted to certain definite quantities which do not change
when X, V and z change; Ihey are therefore constants within the meaning of
that term as used in Variation.

77. The following examples show the application of the princi-
ples of variation to the solution of problems.

Ex. 1.—Given that yocr, and when a;= 2, 2/ = 3; find the
value of y when x = 30.

Since y oc ar, .-. 2/ = mar where m is constant for all values of
X and y. Substituting the given values of x and y we get 3 = 2wi •33 3 .3

'

number required.

.-. w= -
; .-. y=-x, and when ar = 30, 2/= -a;= 1 x 30 = 45, the

'^^-y Ex. 2.—li 3 men working 5 days earn $30, how much will
7 men earn in 9 days ?

From the nature of the problem the amount earned varies
jointly as the number of men and the time they work.

Let X, y, z denote the number of men, the time they work, and
the amount earned respectively.

Then zocxy^ :. z^mxy.

Substituting 3, 5 and 30 for x, y and z we get

30 =w X 3 X 5.

From which m = 2, .-. «= 2a;y.

Then substituting 7 and 9 for x, and y in this last equation we
get a= 2 X 7 X 9 = 1 26, the number of dollars required.

;
Ex. 5.—Given that y varies as the sum of three quantities, the

first of which varies as x\ the second varies as a-, and the third is
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constant; and when a: =1, 2, 3 7y-f5 n is.
of X.

y-o, 11, 18; express y in terms

The three quantities may be represented by „^, nx and p.
'

Substituting the given values we get

6 =m + w+j»,

11 =4m + 2w+jt?,

18 = 9w + 3?i+jt?.

Solving these equations we get m = 1, n = 2, jo = 3.

y = ar2 + 2.r + 3, the result required.

ass^mr''^-^"''^
^—^+n.+i,. it would at flrst appear that we Bhould

V=kimx^+nx+p).

EXERCISE V.

yJ63"^"''''''^''^'^"^^'^^^'"^"*^^*'^«^-^"«<>f--hen

2. Given that z varies jointly as .. and y, and when x= 1 v/- 6and ^=16, find the value of y when ^=150 and :r = 6.

3. Given that 4x + 6y oc 2.. - 6y, and when ^ == 10, y= 1 fi„dthe ratio .tr : y.
^» y i> una

^4^
Given that

j, oc^.+ ,, and whea .= ,, 2, ^=5, 7. find the

5. Given that , varies directly as :. when y is constant andmversely as y when . is constant, and when .= 16, yTu^
2 =40, find the value of s when ;.«_ 5x3, -6y'.

6 Given that y varies as the sum of two quantities, one ofwh.ch .s constant andthe other varies inveJy as ., and li
- X, ,

,
X, _ i^, o^ una tiio value of x when y = 10
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C 7. Given that ip cxz a'' - x\ and that when ;r = 0, y = ±A, find
the value of y when x = Va? - h\

'
;

^ 8. Given that « oc <» when / is constant and s oc/ when t is
constant, and when t=l, 28=/, find the equation between
s, f and t.

m (p. The surface of a sphere varies as the square of the radius,
and its volume varies as the cube of the radius. Find the radius of
a spliere whose volume equals the sum of the volumes of spheres
whose radii are 3, 4 and 5 feet respectively, and compare its sur-
face with the sum of the surfaces of the three spheres.

10. If s" oc ve and t?* oc sf" when / is constant, and «« oc t^y
and ^ oc s/* when t is constant, show that v" ocfs when all vary.

(Jl. Given that y varies as the sum of three quantities, the
first of which is constant, the second varies as x, and the third
varies as x\ and that when x = u, 2a and 3a, y = 0, a and 4a, find
y when x = {n+\)a.

/J 2. Given that z varies directly as x and x varies inversely as y,
and that when ar = 4, y + ;s= 340, and when x=\, y-z=1275,
for what value ~>i x ia y = z'i

C 13. If y oc a:, then x~y oc x + y and r^ + y' ^ xy(ax+ by).

el4. If yoc2;ocrr, then x^ + y^ + ^ oc xyz oc (x + y + zf.

^ 15. If ax + byaccx + dy, then y oc a: and x^ + y^ocxy.

ae. If x + yocz and z + xocy, then xocyocz and
^IZ + yz + zxcxzx^ + y^ + z^

CJ.7. If y'^oczx and z"^ ex xy, then x^ - yz c< (x'^z)l

aa^. If xocy% focz\ ^cxzu' and u' oc v\ then xyzu ocv\

19. If xocy + z, xzocu' + y'i and y'cxizix + u), then
(^ + y){y + z){z + u){u \-x)oc xyzu oc aa:* + by' + (c;^"^ ^^^ ^ ^^2^,^

20. If X, y and ^ be variable quantities such that y + z-xis,
constant, and that {x + y - z){z + x ~y) oc yz, then x + y+ zocyz.
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21. If ix + y-\.z){x-\.y -z){x~y + z){- X + y+ z) oc, x^yi^ then
either ar^ + y^ocz^ or x"" + y"^ - z^ oc xy. Give a geometrical in-

terpretation to this example, v

<^i/22. A locomotive engine without a train can go 24 miles an
hour, and its speed is diminished by a quantity which varies as
the square root of the number of cars attached. With four cars
its speed is 20 miles an hour. Find the greatest number of cars
which the engine can move.

623. If the attendance at church varies directly as the preacher's
ability, and inversely as the square root of the length of his ser-

mon; and if 240 and 350 persons attend A's and B's churches
when the sermons are 49 and 36 minutes long respectively, com-
pare A's and B's ability.

24. The time of the vibration of a pendulum varies directly as
the square root of its length, and inversely as the square root of
the force of gravity; and gravity varies inversely as the square
of the distance from the earth's centre. Find the height of a
tower on whose top a seconds pendulum loses one second in 24
hours. If the length of the pendulum be 39.139 inches, how
much must it be shortened to make it keep correct time in the
elevated position ?

>l25. The value of a diamond varies as the square of its weight.
Three rings of equal weight, each composed of a diamond set in
gold, have values of o, b and c dollars, the diamonds in them
weighing 3, 4 and 5 carats respectively. Find the value of a
diamond of one carat, the value of the workmanship bf ii g the
same for each ring.

26. The value of diamonds varies as the square of their weight,
and the square of the value of rubies varies as the cube of their
weight. A diamond of a carats is M'orth m times the value of a
ruby of h carats, and both together are worth %c. Find the values
of a diamond and of a ruby, each weighing n carats.

-^27. The velocity of a railway train varies directly as the square
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root of the quantity of coal used per mile, and inversely as the
number of carriages in the train. In a journey of 25 miles in
half an hour with 18 carriages 10 cwt. of coal is required- how
much coal will be consumed in a journey of 21 miles in 28 minutes
with 16 carriages?

28. The consumption of coal by a locomotive varies as the
square of the velocity. When the speed is 1 6 miles an hour the
consumption of coal per hour is 2 tons; if the price of coal be $5
per ton, and the other expenses of the engine be $5.62^ per hour,
find the least cost of a journey of 100 miles.

O^. The square of the time of a planet's revolution varies as
the cube of Its distance from the sun; find the time of a revolu-
tion of Venus, assuming that the distances of the Earth and
Venus from the sun to be 91^ millions and 66 milHons of miles
respectively, and taking our year to be 365 days.

^ 30. The attraction of a planet on its satellite varies directly es
the mass (M) of the planet, and inversely as the square of the
distance (B); also, the square of the time (T) of a satellite's revo-
lution vanes directly as the distance, and inversely as the force

. ^!r'^^T'
^^ '''" '^^' ^' ^""^ '^^' ^^' ^^ ^^« simultaneous values

of Jf, i>, T respectively, prove that

dl
df*2''2 "-2

Hence find the time of revolution of that moon of Jupiter whose
distance is to the distance of our moon as 35 : 31, having given
that the mass of Jupiter is 313 times that of the Earth, and that
the moon's period is 27.32 days.

square



CHAPTER V.

ARITHMETICAL PROGRESSION.

78. A Series is a succession of numbers or quantities which
are formed in order according to some definite law.

Thus 1, 2, 3, 4 is a series, the law of formation being that

each number is obtained from the preceding by adding a unit.

Also, a + h, a^ + b\ a^ + h^,, ,, is a series of which the law of

formation is evident.

79. An Arithmetical Series, or an Arithmetical Pro-
g^ression, is a succession of numbers which constantly increase

or constantly decrease by a common diflference.

Thus each of the following series is an arithmetical progres-

sion :

1, 2, 3, 4, 5 ... .

20, 17, 14, 11 ....

a, a + d, a + 2d, a + Sd

a, a- dy a -2d, a — 3d

The words " arithmetical progression " are briefly denoted by
the letters A. P.

80. Each of the successive numbers in a series is called a
Term ;

the first and the last terms are sometimes called Ex-
tremes, and the intermediate ones. Means. In an arith-

metical series the difference between the successive terms is

called the Common Difference.

81. Any arithmetical series may be represented by

a, a + d, a + 2d, a + 3d . ..,

i.

¥
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in which a stands for the first term and d the common difference
The series will be an increasinff or a decreasing one according as
d is positive or iiegative.

' 82. In any arithmetical series there are five quantities to be
considered :

The first term . . . .

The last term . . . .

The common difference .

The number of terms . .

The sum of all the terms

which is denoted by a.

" d
n.

l»t 2''d ard

«, « + rf, u + 2d

'it^83. To find any required term in an arithmetical progression
thefirst term and the common difference being given.

Forming the terms in succession we have

• a +M a + {n-\)d,

from which we ol)serve that—

Any term isfound by multiplyvng the common difference by one
less than the number of tli^ tenn, and adding tU product to the
first term.

This result is briefly expressed in symbols thus

:

w*Herm = a + (n-iy,
°''

^= a + (n-l)rf.
^1^

^V^^' To find the sum of any required number of terms of anA. I ., thefirst term and the last term being given.

Write the series first in the natural order, then in the reverse
order, and add.

Then 'S'=a + (« + o?) + (rt + 2rf)+ .... (;„^)4-7
^nd S=lHl-^-^{l-2d)^....\a^d)Va,

I
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2S=={a + l) + {a + l) + {a + l)+ ..

== (a + 1) repeated n times

. S" -(a + 0> the sum required.

(« ¥l) + {a + l)

(2)

85. If any two terms of an A. P. bo given, the series is com-
pletely determined. For, suppose the m»»' and w»^ terms are ^>
and ({,

Prom these two equations a and d may be found, and then the
series is known.

86. To find the arithrhetical mean bettoeen two given extremes.

Let a and h denote the given extremes and x the required
mean, so that a, x, h are in A. P.

x-a — h-x. -/. ^^^^Then

from which x =
a + b

y(-^'

From the above it is seen that the aritlmietical mean of two
quantities is half their sum; it corresponds to what is meant in
common language by the word "average."

^
87. To insert a given number of arithmetical means between

^iwo given extremes.

Let a and h denote the given extremes, m the number of
means, and d the common difference of the resulting series.
Then, the total number of terms being m + 2, from the equation

l= a-\-{n-\)d

we get b = a + {m + \)d,

b — a
from which rf=

m+1
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Therefore tlie required means are

b

61

m+1 '

or

w + 1 m + 1 ' m + 1 •

'

88. The equations, /= a + (w-l)(/,
0)

(2)

th m le e rr '""'^^" '' arithmetical progression. Fromthem we can find any two of the five quantities involved whenthe other three are given, and are thus enabled to solv all J^lble problems in the subject.
^^*

By substituting in (2) the value of / from (1)

we get

ot solving problems in arithmetical progression:

f"'
'-^^"^^ « = 17, cf= - 3 and ^= 55, find n and /.

Substituting the given values in the equation,

^=^{2a + (n-l)c/},

we get

Simplifying,

from which

n
55=-{34-3(n-l)}.

^^^2 on.. , 1 -iz-w rt

W = 5 or 7|.
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The value 7 J is not admissible, since, from the nature of the
problem, n must be a positive integer.

Then l=>a + (n-l)d

-:17 + (6-l)(-3)

-5.

Bx. ^.—The sum of the second and fifth terms of an A. P. is

47, and the sum of the first four terms is 58; find the eleventh
term.

With the usual notation we have,

second term => a + </,

fifth term =a + id,

sum of first four terms = - {2a + (4 - l)rf}.

Then from the problem we have,

2a + 5c? =47,

4a + 6<;=58.

Solving these equations in the usual way,

a=l and rf=9.

Then eleventh term =1+(11-1)9
= 91.

£x. 3.—If o, h and c are in A. P., then

2

Since a, h and c are in A. P., a + c = 2h.

Then
g (« + i + c)^ =

^
(3i)» = 66»,

and a\b + c) + b\c + a) + c\a + />) = (« + & + cXab + bc + ca) - Zabc

= U{b{a + c) + ac}-3abc

= 04",

-• ---.---. I'.n- ^r. vr^^Ociviuii,
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BXBROISB VT.

1. In a series whose first term is 5 and common difference 2,
find the tenth, fifteenth and one Imndrodth terms.

2. In a series whose first term is 35 and common difference
- 3, find the eighth, fifteenth and /***» terms.

3. In the series

—

. (1) 4, 7, 10 .... , find the n*" term.

(2) 8, 5, 2 .... , find tho n*"* term.

(3) 2§, 2^, 2| ,
find the ninth and seventeenth terms.

> (4) - 23, - 18, - 13 find the thirteenth and (w- 1)""

terms.

M Intheserie8,17, 14, H ...., which term is -82, - 118,-419]

b. The first term is 17 and the twentieth term is 150; find the
common difference and the fortieth term.

v6. The third term is 75 and the eleventh term is 131; find the
twentieth term.

i/7. The first term is 2a - Zh and the second term is 3a - 2i-
find the w* term and the (2n - l)'" terra. Which term is
(3/) + 5)a + 3joi?

8. Sum the series

—

u(l) 1, 2, 3, 4.... to 100 terms.

(2) 8, 3, -2, -7.... to 20 terms.

1 3
^ (3) 2 '

-
4 '

- 2 ... . to 24 terms.

c(4) 2n-l, 2n-3, 2n-5 to n terms.

/c\ 6 —12
^^ ~7^' ^^^' --:-.... toSOterms.

V 3 V3
.(6) w - 1, M- 2, n-i .... to 2n terms.
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^ 9. Find the arithmetical mean between 33 and 17, 37 and - 5,
m + n and m-n.

•^10. Insert five arithmetical means between 2 and 20.

^11. Insert x arithmetical means between 1 and x\

(5 2. If m-n-l arithmetical means be inserted between, w'
and w', what is the common difference of the resulting series?

^^13. The sum of the second and fourth terms of an A. P. is 30,
and the sum of the third and fifth is' 38; find the first term and
the common difference.

tU. The eighth term of an A. P. is greater than the fifth by
24, and the sum of the sixth and tenth terms is 100; find the
common difference and the w*** term.

as. The first term of an A. P. is 1, and the sum of the first

twenty terms is 400; find the thirtieth term.

(il6. The sum of the first five terms of an A. P. is one-third the
sum of the next five terms; the tenth term is 19; find the sum
of n terms.

0-17. Find the sum of eleven terms of the A. P. whose sixth
term is 10.

08. Find the sum of the whole series formed by inserting m
arithmetical means between a and b.

J9. Find the (m+ 1)'" term of , a A. P. whose sum to (£w+ 1)
terms is (2»i+l)c.

20. Show that the sum of the r"» term from the beginning
and the r«' term from the end of any A. P. is constant for all
values of r.

, is to the sum
21. The sum of n terms of the series, 1, 4, 7 .

of 2n terms as 10:41; find n.

^2. The sum of three terms of an A. P. is 33, and the sum of
their squares is 413; find the terms. ^,
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C^23. The sum of three terms of an A P is 1 5 „„^ +k
their cubes is 495; find the terms.

' """ '""^ "^

^
lusei ted whose sum is greater by unity than their numW howmany means are there ?

i»»m»^r, now

c25. The sum of five terms of an A P is 25 anrl fK.
ten terms is 100; find the sum of n tms. '

' "™ ''

<^6. The sum of four numbers in A ia 44 „r,^ +1, •

is 13440; find the numbers. ' *^''' P'°^""*

28. Divide unity into four part, in A. P. .ueh that the sum of^
leir cubes may be --. V
rVNs>H^wA»'^ 10

V'v

their cubes may be --.

lour, but starting two hours after the former- in hr.^r

pr;;r:e!r---- ---crr;-

Ct;*" """ °* " '^""^ O'™-" "y *••<• «-t tenn is a per-'

a".^if;L'":~;^oatt:^r"—— --

33. n 5 be the sun. and ,/ the difference of an A. P. of ,. tenns,
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then the difference of the squares of the first and last terms is

-(n-l)dS.
n
^4. The middle term of an arithmetical series of n terms is j!>,

and the n^^ term is q times the middle term ; find the first term

and the common difference.

35. Given the first term and the common difference, find n so

that the sum of 2n, terms may be equal to p times the sum of n

terms. Examine the case in which d = 2(i and p = i.

36. The series of natural numbers is arranged in groups thus:

1, 2 + 3, 4 + 6 + 6, etc.; find the first and the last numbers of the

the sum of the n^^ group, and the sum of all then^^ group,

groups. -^^

37. The odd numbei's are arranged in groups thus: 1, 3 + 5,

7 + 9 + 11, etc.; show that the sum of each gro.up is a perfect

cube, and the sum of any number of groups beginning with the

first is a complete square.

/38. Find the sum of n terms of the series,

1 + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + ....

39. In any arithmetical series the sum of any two terms, less

the first term, is a term of the series ; and the difference of any

two terms, increased by the first term, is also a term of the series.

40. If the terms of an A. P. be arranged in groups of n terms

each, the sums of these groups will form an A. P. whoSe common

difference is n^ times the common difference of the original series.

41 Prove that the terms of an arithmetical series will still be

in A. P. after any of the following operations have been per-

formed upon them

:

(1) If the same quantity be added to or subtracted from each.

(2) If the terras of another arithmetical series l)e added or sub-

tracted in order

(3) If the terms bo multiplied or divided by the same factor.

cases.
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90. The student should carefully work out «.!! fKo a-^ .
cases of Art. 88 This will off a if, *^® different

. -A .'
^'^^^^^^' ^ome of the results are worthy of sDeeialconsideration, of which the following is an example:

"^

Oiven
/,

c?, ^, to find w and «.

From the fundamental equations,

l='a + {n~\)d
^j^

Substituting in (2) the value of a obtained fn>m (1) we get
^o = n{2l + d-nd),

or

n
'2T •

from which

Similarly from the same equation, h may be shown that

may be fold ^ ^' "'"" ""^'P^^ing values of „

anrr Th!"
''/

"""/u^"'
«'™" *» ^' '« ™'-s each for nand «. The nature of the problem evidently requires „ to bl T

»umiiin;trrl;rdrdmor«'^ ^" ^'^" '•-^ *- -'-
A numerical example will show how this is possible

:

^' ?=11, rf=2, ^=32,
which give n-4 or 8, and a = 5 or -3.
We thus obtain

o, 7.

two series,

9, 11, and -3.-1 l

•atk of which satisfies the required condition!

3, 6, 7, 9, 11.
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Similarly the double values for n and /, obtained wlien a, d
and ^ are given, should be examined.

91. "We have seen (Art. 88) that of the five quantities, a, I, d,

n, S_ three must be given in order to determine the remaining
two; if, however, the form of the w*'' term, or of the sum of n
terms, be given, the whole series is immediately known. We
have seen that the n^^ term is a + (n-l)d, and the sum of n

terms, ^{2a + {n-l)d}. These may be written {a-d) + dn and

\
~ 2/^"^ \2/^*' '^^^^^ ^^^^ *^** *^® ™ost general forma of

these expressions are p + qn and rn + Sn\ where p, q, r and S are
constant numbers for any particular series; but n is a variable

number, by giving uifferent values to which in succession any
particular term, or the sum of any number of terms, may be
found.

V92. Given the w'* term of an arithmetical series, p + qn, to find
tlie common difference and the sum ofn terms.

The successive terms are formed from the general term by
substituting for n the values 1, 2, 3 n in succession.

Then S={p + q) + {p + 2q) + {p + 3q) + ....{p + nq)

=p+p + ..., to n terms + {1 + 2 + 3....n)q

n(n+l)q

The common difference is evidently q, the coefficient of n in the
general term.

/ 93. Gitfen the sum ofn terms of an arithmetical series, pn + qn\
tofind the w'* term and the common difference,

Liet aS_. oenofA t.hft snm rwf « fAi>rna *vw j ^*«2 4-1,''— Cf iii-„ _i— .,_ ,_ „..,5i., — j,,i.-^^j^^ tHcn *-J„_i ".Vlli

denote the sum of (» - 1) terms =jo(w - l)+^(n- I)*, Now, if
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from the sum of n terms we subtract the sum of n - 1 terms, theremainder must be the w'" term.

Then w"'term = AS' -S

=p-hq(2n~l).

The common difference is 2q, the coefficient of n in the n^
term.

The first term may be found by writing 1 for n either in the
expression for the n- term or for the sum of n terms.

.r^
^*

T'!l
^ ^"^^^'"^^^^^ *« give a different solution to the

problems of the two preceding Arts.

In every arithmetical .jeries we have

w*'*term = a + (ri_l)c/.

^°^'i^
n''^ term =p + qn

= (p + q) + (n-l)q,

Again,

If, then,

n

S^pn + qn?

= ^(2^ + 2^^)

= ^{Hp-^q) + {n-\)2q},

the first term is ;, + y, and the common difference 2^, as before.

me!nin!t
""'"'." ''

'"T
^"'^''"^ ^^*' ^^^^^^^ - *« --gn ameanmg to negative and fraofj^^oi „„i..__ <• , . . . ®

JEx. 1, Art 89
s—sonai vaiuca oi « oDtained as in
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Let n= -m be a negative value so obtained, then —m written

for n satisfies the equation.

:. S=^{2a-(m+l)d}

m
-{-2a + (m + l)4

m̂
{2{d-a) + {m-l)d}.

This shows that S is the sum of m terms of the series beginning
with d — a.

Again, ^=_{2a-(m+iy},

m
S=-{2{a-d) + (m-l){-d)}.

This result shows that if we begin with the term a-d and
count backwards m terms the result will be - S. Similarly,

meanings^nay be assigned to fractional values of n.

^.iL 96:||^^.—The /" term of an A. P. is P, and the y*** term

,y^lj^ Q; find the {p + qY^ term.

We have p^^ term = a + {p-\)d= P,

and q^^\^Ym=^a + {q-\)d=^Q.

Therefore
p-q

Now (p + qf' term = a + {p + q-l)d

= a + (p-l)d + qd

p-q
pP-qQ
p-9
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^..^^.-Find the condition that ., y a^d . may be the p-^th
a,^j} ,,th terms of an A. P.

We have

y'''term = a + (y_l)^^y^
v,th term = a + (r-l)d=.z.

From these three equations we must eliminate a and d. Sub-tractmg the equations from each other in succession we get

{p-q)d^x-y^

{q-Ad= y~z,
{r-p)d=z-x.

Now multiply the equations respectively by r v and . «.n^add. then the leffside vanishes and we get
^' ^

{^-y)r-\-i,j-z)p + {z-x)q=.(i^

the condition required. Had we multiplied by ., . and y insteadof r, ;, and .7 we should have obtained
« y instead

the same result under a different form.

-^n+a -^n = (w + !)"> + (w + 2)'» + (n + 3)th terms
= 3(w + 2)"'term

which proves the proposition.

ing ;, te™,"t:
''™^' """^ "'^ ^l"*' *" *"« -» »« *"« follow-

{•rn _i_ /v. \ „ / - - - \

{n+p) m{n~pY
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Equating the sums of the three sets of terms we get

^{2a + (m- l)d} =
I
{2(a + md) + (n- l)d}

Therefore

and ' X

From which

and

Then by division

= ^{2{a +m + n.d) + (p-l)d}.

V. 2a + (7n-l)d ^n
2{a + md) + (n - l)d~

m

2(a + ni + n.d) + {p-l)d n

2ia-pmd) + {n-\)d ^p

'

^^ ^/ > \j^ {vi + n)d

\

in- n
2{a + md) + {n-\)d m

(u +p)d n ~ p
2(a + md) + (n-l)d~ p '

m, + n p (7n - w)

n +p 7n{n — p)'

EXERCISE VII.

/
1. How many terms of the series, 25, 23, 21 , must be

taken that the sura may be 165

1

J^. The n^^ term of an A. P. is 2w- 3; find the common differ-

,4nce and the sum of n terms.
A*

C3. The r^^ term of an A. P. is 7 - - ; fir^/' the sum of 2%+ 1

^terras.

/ 4. The {n-\.\Y^ term of an A. P. is
^^^f^^ find the sum of

/ 2n+l terms.

, Q 5. The n^^ term of a series is w'- n+ 1 ; write down the tenth

|,
term, the r**> term, the (w + 1)*" term. Is it an arithmetical

§eries *?

c_ 6. The sura of n terms of an A. P. is dn^-Sn, find the n*" ^
(a 'j term and the common difference. 1^^
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i)d}.

, must be

Qon differ-

of 2n+l

he sum of

the tenth

ithmetical

id the n*'* .

\j

J. The sum of n terms of the series, 2, 6, 8 . . .
.

, is 950; find n ^
Give an mterpretation to the negative value of n.

c3. Find the eighth term of an A. P. whose sum to n terms is

^'^

2l3'*'4j*

9. The nt" term of an A. F.h2n+1; of how many terms is
the sum 99 ? Give two different interpretations to the negative
result/.

^10. If the sum of p terms of an A. P. equals the sum of a
terms, then the sum of jp + ^ terms is zero.

^11. Find the relation between a and d when the equation be-
tween a d, s, n, is satisfied by two different positive integral
values of w.

^6
Cl2. The sum of n terms of an A. P. is an?+bn, and the sum ''

of m terms of another series is hm' + am; the fifth term of the
first series is half the fifth term of the second series; show that
17a = 7o.

13. The sums of two arithmetical series, each to n terms, are
to each other as 13 - 7^^ to 1 +3n; find the ratios of their first
terms, their second terms, and their r*"* terms.

14. If a, b and c are the y^ q^^ and r'^ terms of an A P
then p q and r are the a^\ 6* and c'^ terms of another A.

p'
a, 6 and c being positive integers.

'

(1^6. If the (p + qyr.
^^,j ^^__^y, ^^^^ ^^ ^^ ^ ^ ^ ^^ ^^^ ^.

n respectively, find the p'^ and q'^ terms. ^

16 T)' 'iJ
w(w + 3)

^ .
i^ivide -—jg— into n parts such that each shall exceed

the preceding by a fixed quantity.
,

^17 The sum of m terms of an A P. is n, and the sum of nterms is m; show that the sum ot m + n terms is - (m + n), and
th

~ ' " ^
. . . f 9»,\

n terms is (?«. - w) ( 1 + IT

)

I
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Q 18. If S^ denote the sum to n terms of an A. P., show that
"n+2-^S„+i + Sn is equal .^ v,. v.....siuon diflference.

19. If .S'„ denote the sum of n terms of the natural numbers
beginning with a, pi ove >S'3^+„_, = 3;^^.

20. If a,, flj, ttg a^ denote the terms of an A. P., and S
their sum what is the sum of the series,

21. There are n arithmetical series of n terms each; their first
terms are the natural numbers, 1, 2, 3 . . .

.
, and the common

difference of each is the same as the first term- find the sum of
all the terms of the series taken together.

f 22. If ,S' and .S" denote the sum to n terms of two arithmetical
series having the same first term a, and common differences d and
-(i respectively, then ^^^^fezil^.

23. If S„ denote the sum of n terms of an arithmetical series,

and (^S,„-3S,, + 3S, = 0.

24. If the sum of the first m terms of an A. P. equals the sum
of n terms beginning with the {r+iy\ and also equals the sum
of ^ terms beginning with the (s+ 1)*", prove

2r+n-m (m~n)p
'28+p-m {m~p)n

^ 25. If the y" and q'^ terms of an A. P. are P and Q respec-
tively, what is the n^^ term ?

V 26. If S be the sum of n terms of an A. P., and S' the sum of
ihe arithmetical means between the consecutive terms, then

aS': aS"= w: w— 1.

nS

£

^1. If «: + aa -f-flg + . . . . a^ =^^ gho^ ^j^at

(S-a,y + (S-a.y + ^.

ff

2 + . . . . a,j".
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.K?:J^^
''"*'' ""^ * right-angled triangle are in A. P.- showthat they are proportional to 3, 4, 6.

'

^29. If a\ h\ c- are in A. P., then -L J_ ^ .
,

in A. P.
6 + c'c + a' ^6 -«-!->

m A. P.; also, a^ - be, h^ - ca, c^ - a6 are in A P. Compare th^common differences in the several cases.
^ "^

C rr^b' *' FTTc ^^^ ^^ ^^- P-> then A,
*, 1 ^^e in A. P.

32 Tf ''^ i c

b-c' 7:ra^ iTTi *^« in A. p., then

aH^-2A3 a + 6 + c—2"—

•

a' + c2-2A2'

(,33 If two terms of one A. P. are proportional to the corre-sponding terms of another A. P., then all the terms of the foZsenes are proportional to the corresponding terms of the Lter

34. If ^„ denote the sum of n terms of an A. P., then

r S^+2p - 2S,,^p + S^ =fd,

^AZttr^' ^' '''^"""^ "^'^ ""^^^ "^ -^-h the sum ofthe first half of any even number of terms bears a constant rattrler
'' ''' ''-'''' '''' -' «^°- *^- *^ere is butt:

diieL'trr2T'^^l:n '^'^ ^^ ^- ^-^ -'-'^—
*,2. »K. .u : ., .

'
*""* "^^^^^ s"™s. each to n terms are«

,

show that the.r fi.t terms f„™, . decreasing A. P. wC
first term is

g („+ 1), ^„<, „„„„„„ ^jg.^^^^^^^
1

^^ _
2

t/37.
If ^, ^V ... be the sums of .n arithmetical series, each
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to^ terms, the first terms being 1, 2, 3. . .
.

, and the differences

1, 3, 6 .... ; show that S, + S, + . . . . S^=
J wn(mn + 1). ,

^,38. If Si denote the sum of n terms of the series 1, 6, 9
and S, the sum of w - 1 terms, or of n terms, of the series 3,

7*

11 ...
. , then Si + S, = (Si-S,y.

^ f 39. Find the first of n consecutive odd numbers whose sum is
on", where p is any positive integer greater than unity.

40. Show that nP may be resolved into the difference of two
-.integral squares, n and p being integral, and p greater than 2.

41. If S, denote the sum of n terms of the natural numbers
beginning with r, then S^^S^^ . . . ,S^ =

nin{m + n)
^

< 2

\,42. The successive terms of an A. P. are arranged in groups
of 1, 2, 3, etc., terms each; show that if S^ denote the r*"" group,

then

and

n
Sn = na+-{'n?-\)d^

'^i + /^2 + ....Ay„ = ^^^^~J{4a + (n-l)(w + 2)c/}.

43. With the notation of the preceding example show that

and p{S,, - S,) + m(S„ - S^) + n{S, - S^)

= (m - n){n - p){p- m){m+ n+p)^.
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CHAPTEB VI.
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ral numbers

GEOMETRICAL PROGRESSION.
97. A Geometrical Series, or a Geometrical Progres-

sion, IS a succession of numbers which constantly increase or
constantly decrease by a common factor.

Thus each of the following series is a geometrical progression:

1, 2, 4, 8, 16 ....

72, -36, 18, -9, 4^....

a, ar, a<r, ar^, ar*

The words "geometrical progression" are briefly denoted by
the letters G. P., and the common factor is frequently called the
Common Ratio, or briefly, the Ratio.

98. Any geometrical series may be represented by

a, ar, ar^, ar^, ar*' ....

in which a represents the first term and r the common ratio.
Ihe series will increase or decrease numerically according as r is
greater or less than unity.

99. In any geometrical series there are five quantities to be
considered, viz.:

The first term . .

The common ratio . .

The last term .

The number of terms .

Tlie sum of all the terms

which is denoted by a.

" r.

" I.

((

((

((

{(

(( (( " S.
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Y <^'^>«^ terra and th common ratio being given.

^"^"''^^'

Forming the terms in succession we have v

1«' 2nd 3rd joth ^t^

«. «^, ar2 .... ar^ .... a^-i^

from which we observe that—

Any term isfound by multiplying the first term by the commonfactor ra^sed to a p^er less by one than the number of the tZ
This result is briefly expressed in symbols thus

:

w"' term = ar"-^

101. To find the sum of a given number of terms of a aeometr^cal ser^es, the first term and the common ratio I fguZ^
^^Let . be the number of terms required, and denote the sum

Then 'S'=a + ar + ar'+ ar3+ ....a^n-2+ ^^n.i

therefore rS^ <^r + ar^ + ar>+ .. , ,ar^-^+ ar^-r^ar\
Then by subtraction rS-S=- ar^-a

«(r»-l)

"TTT- (2)

rl= ar\

substituting in (2) we get S== '^-tll
r~\' (3)

Equations
(1), (2) and (3) should be .:on,n,itted to memorjr.

therefore

Again, from (1)

*s'=:

102. If any two terms of a G P be mv«.T, +»,-> • •

P.t.. dete^in.. .0. suppose the ^r^:^~
then

and

.elT" tZ,T
^""""""^

" ""^ - ™'^ '"' '™"''- »<• *»- the

ay."*-! -,p

ar**-^ = g.
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103. Tofind the geometric mean between two given extremes.

Let a and h denote the given extremes and x the required
mean, so that a, a*, h are in G. P.

Then

from which

a X

x= Vab.

From the above it is seen that the geometric mean between
two quantities is </*/• square root of their product; it is the same
as "mean proportional." This arises from the fact that a geo-
metric series is simply a series of numbers in continued propor-
tion.

104. To insert a given number of gemnetric m^ans between two
given extremes.

Let a and b be the given extremes, m the number of means,
and r the common ratio. Then since the total number of terms
is »: + 2, of which a is the first and b the last, we get from (1)

6 = ar-+^ or r=(-)^.

Therefore the means required are12 4

(b\^i (b\^i /6Wi /AWi

-1. _L 1 1

or (a'»i)"'+i, (a^--^by+\ {a^-%^f+\ . . . {ab^f^\

This series should be compared with that of Art. 87, when it
will appear that addition has been changed to multiplication,
coefficients to exponents, and division to a root sign. These
changes all arise from the fact that the successive terms in A. P.
are formed by addition, while those of G. P. are formed by mui
tiplication.
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105. The equations, l= ar^-^

are the fundamental formulae of geometrical progression. Whenany three of the five quantities involved are given, they theoretic-
ally deternnne the other two. If, however, we attempt to work
out the difterent cases in succession we shall find that some of
the equations which present themselves cannot be solved by the
methods already given, and that others cannot be solved by anyknown method whatever.

Four cases present no difiiculty, viz.: when (1) a, r, w, (2) a, n, /.

(3) r, n, I, (4) r, n, s, are given.
\ / ' >

>

The four cases in which n ha^ to be found require logarithms
for their solution.

The rema,ining cases, viz. : when (1) «, n, s, (2) n, /, «. are given,
are incapable of a general solution.

EXERCISE Vni.

Find the required terms in the following series:

1. The fifth term of 2, 4, 8, 16

2. The tenth term of 1, 3, 9, 27

3. The fifteenth term of 64, 32. 16 8
4. The w**" term of 2, 6, 18, 54 ...

.

5. The {2n - !)»•> term of 4, - 8, 16, - 32 ...

.

6. The v}^ term of a, «V, aV, aV

Q* 7. The 2n*'> term of -, - a, A, - -
. . .

.

8. The (n - 1)'" term of 3a, 5aV, 7a^r% 9aV.

^^'S V3 3 - V 3"
9. The w*** term of

V3 + l' 1/3+2' ^^3 + 2

10. The(2w + 3)tHerm of ^±1 1 1

V2-I' 2-7f' 2

N^

^N
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li. Sum 1 + 2 + 4 + 8. ... to ten terms and to n terms.

19 Q 8 8 40
iw. Hum -+-+-_ to SIX terms and to n terms.

13. Sum 1-2 + 4-8.... to 2w terms and to 2n+l terms.

14. Hum
2 + - + - + __ to ten terms and to n terms.

15. Snma^x-^-a^+a\r-a^j;\... to n terms and to 2ri- 3 terms.

/ 16. Sum (2- >/3-) + l+(2+ ^3). . . . to n+ 1 terms.

17. Sum to n terms the series whose ri*"* term is ar^-\

18. Sum to w+ 3 terms the series whose n^^ term is a^-%'^-\113
Cl9. Sum - + -+-+.... Tto w+ 1 terms.

20. Sum 2 + ^8 + ^ 2 + . . . . to w terms and to 16 terms.

91 o 5 5 10
^1. Hum ---+__.._ to n terms and to 2w+ 1 terms.

22. The first term of a geometrical series is 5 and the third
term is 80; find the common ratio. x'

23. The fifth term of a geometrical seri'js is 48, and the ratio
is 2; find the first and n}^ terms.

24. If a = 2 and r = 3, which term will be 162 ?

25. The sum of three terms of a geometrical series is HI, and
their product is 8; find the t^rms.

^6. The sum of three number^ Lx G. P. is 13, and the sum of
their squares is 91 ; find the numbers.

27. The sum of two r imbers is m, and their geornetric mean
IS n; find the number;.

28. Insert two geometrical means between 9 and 21|.

29. Insert six geometrical means between /^ and 5^^.

30. What is the common latio of a geometrical series when
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IS; h

tJie difference between the first and n'^ terms is equal to the
sum of w - 1 terms 1

y31. The sum of the first three terms of a geometrical series is

4f ,
and the sum of the first, third and fifth terms is 8-^'^; find

the series.

v32. The sum of the first six terms of a geometrical series is

157^, anrl the sum of the third to the eighth inclusive is 630;
find the series.

^33. The fir^t of four numl,ers in G. P. is ^, and their sum is

greater by one than the common ratio; find the numbers.

34. There are five numbers, the first three of which are in
G. P., and the last three in A. P., the second number being the
common difference of these three terms. The sum of the last
four is 40, and the product of the second and last is 64; find the
numbers.

^35. Three numbers whose sum is 27 are in A. P.; if 1, 3 and
Tl be added to them respectively the results will be in G. P.; find
the numbers.

36. To each of the first two of the numbers, 3, 35, 190, 990, is
added w, and to each of the last two is added y; the resulting
numbers are in G. P.; find x and y.

37. The series of natural numbers are divided into groups
thus: 1, 2 + 3, 4 + 5 + 6 + 7, etc., each group containing twice as
many numbers as the preceding; find the sum of the «*" group
and the sum of all the groups.

38. The odd numbers are divided into groups thus: 1, 3 + 5
7 + 9 + 11 + 13, etc., each group containing twice as many num-
bers as the preceding; find the last number of the w*" group, the
sflm of the w"' group, and the sum of all the groups.

39. The terms of the geometrical series, 1, 2, 4, 8 , are
arranged in groups thus: 1, 2 + 4, 8+ 16 + 32, etc., each group
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containing one number more than the preceding; find the sum
of the n^^ group and the sum of n groups.

40. The terms of the geometrical series, 1, 2, 4, 8 are
arranged in groups thus: 1, 2 + 4, 8 + 16 + 32 + 64, etJ.,* 'each
group containing twice as many terms as the preceding; find
the sum of all the groups and the sum of n^^ group.

41. If a geometric progression consist of in terms, show that
the ratio of the sum of the first n terms and the last n terms is
to the sum of the remaining 2n terms as r^" _ r" + 1 to r".

42. Find the sum of the squares of the differences of every
two consecutive terms in a G. P. of n + 1 terms.

;43. Determine m and n in te)'ms of a and h so that
^^ + ^^

may be the a-ithmetical mean between m and n, and tC gZ-
metrical mean between a and b.

44. In a G. P. with the usual notation prove

«^2n = S,(S,,^, - r . S„_,) and ^..(^3„ - ^,„) = (S,, _ s.f,

45. If P bo the continued product of n quantities in G. P.,
S their sum, and S' the sum of their reciprocals, show that

4'6. If S,, denotes the sum of n terms of a G. P., S^^ the sum of
the next 2n, terms, and ^%„ the sum of the following 3n terms

47. If K + a,'+ a,^ + .... «„.,=')« + ag^ + a,2+ . . . . aJ)

= (aia2 + a2a3.+ ....«„_ia„)2,
and ai, aj . . . .

a^ are all real, then a^, a^, . . . . a„ are in G. P. ,.

^^^«f r'»^!.Tr
°^ ^ ^^^^ ^^ * geometrical series has been showK

to be ^^^^; this may be written "^^^ Now if r be less

than unity, by taking n large enough »-« may he made as Hrxi^li
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as we please (Art. 15), i.e., the sum of n terms may be made
as nearly equal as we pleaae to ^. This statement is usually

abbreviated thus:

The sum of the series, a + ar+ ar'+ . . .. ad infinitum, is -^.
1 —7*

The same result may be obtained thus:

then rS== ar^-ar^Jra-fi^...,

.'. S(l-r) = a, or S=-^ as before.
1 -r

This process deserves very careful attention. Since the seriesm each line is continued indefinitely it is assumed that the terms
cancel each other entirely. In reality, however, am term is
neglected, which corresponds with assuming r« to be zero in the
former investigation; this is legitimate only when the term
omitted is indefinitely small. The necessity for care in such
matters will easily be seen from the following:

Let ,S'=l + 2 + 4 + 8 + .,..

^^^» 2^= 2 + 4 + 8 + ....

This absurdity arises from the fact that the single term neglected
IS more important than the whole of tliose retained.

107. Recurring decimals in arithmetic are familiar examples
of infinite geometrical series.

Thus -7^-777. ...=.1 +1(1]+1(1\\
lo^iovio/^ioVio/ *"••••

which is an infinite geometrical series, whose first term is — and
common ratio —

; its sum to infinity is therefore

10 V 10/ ~ 9
•

10
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Again, .234^-^4
34 34 34

10

2

10^

34

10« 10^

10 10^
{1 +

= T?C-t

34

10^

1

1

10^
+

}

10 lO^'

=_?. ^*

1-
10»

10 990

232
~990*

The value of any recurring decimal may be found in the same
way, but the result may be more neatly obtained by the method
of Alt. 106; the solution is given below.

108. Tofind the value of a recurring decimal.

Let r denote the figures which do not recur, and let them be
-p in number; let Q denote the recurring period consisting of q
digits; let D denote the value of the whole decimal.

Then

Therefore

and

Therefore

or

I>= 'PQQQ....

l0^xD= F-QQQQ....

10^+^ xD = PQ-QQQQ....
(10i'+«- 10^)2)= P^-P,

PQ-1'D =
(10«-1)10^*

Now, 10«- 1 is a number consisting of q nines, and 10^ is a
unit followed by p ciphers.

From this result the truth of the ordinary rule for reducing a
recurring decimal to its equivalent vulgar is at once evident.
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109. To find the value of nr- when r is less than unity and n
18 indehnitely great.

^

Since r is less than iinifv 1 « ;„ ^ •,.' -,

,no,, 1*1 ,
^' 1 - »• 18 positive, and a number, ar,may bo taken large enough so that

r

X

Put

then

< 1-r, or n +-L<
2.

l + -j»*= wi, sothatm<l,

1 + ?)r''̂•'^<m2

(-D r^<in!^

or

Therefore

.rfr • r« r
"""^' *'''"''*°''"' "'«" " '" indefinitelygr^ «» ,s indeflm ely .uall; a„d since . is a finite number^^m IS also mdefinitely small; and «^<„„» therefore when r is

ess than un.ty, by taking „ large enough n^ may be made lessthan any finite quantity.

110. To find the sum of ii terms of the series,

^ + (<^ + d)r + (a + 2dy + ...,{a + (n-l)d}r-\
In which each term is the product of the corresponding terms ofan arithmetic and a geometric series.

Denote the sum by ,S, then

^='<i+ (a+d)r+(u + 2dy+..{a + (n-l)d}r-\
rS= ar+(a + dy + ..la-,(n-2)d}r^-i+ {a + (n~l)d}r^.

:'gi!-."»gg
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.'.S{l-r)

»a-f
t/r(l-r»-')

1-r
- {« + (n - \)d)r\

1-r *
(1_;^)3 •

The a;x>ve series is sometimes called an arithmetico-geometric
series.

The last term may be written «r»-i + d{n - l)r~-i. If r be less
than unity, by taking n large enough this term may be made
mdehnitely small (Art. 109), and may therefore be neglected
Omittmg this term and summing the series dr + dr'' + . . . to

infinity we get -^ + -_^^ as the sum of the preceding series

to infinity.

EXERCISE IX,

Sum the following series ad injinituni:

,111

o 1 1 1

3 9 27^

5.
2 1 3

3
2"^8~""'

7. 2-^4+^2-....

9.
1 1 a/¥ 2

V'2 3
"*"

9 27'^

11.
V2+1 1 1

V2-I' 2-V'2' 2'"

13. Sum l + 2.c+3a:H4a:3^^
less than unity.

2 ^ ^u.1 1

2 4 8 16

.333
i ~

8
"^
l6 " • • •

•

6. 2+\/2 + l+....

8. (2+V'3")+l + (2- v/3)...

10. a+/_j L

Sb b

12.
^^^

__y±_ 3-V3
'/3'+l' v/3 + 2' V'3+

. to w terms and ad inf., a^feng
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C^
A A J

14. Sum 1 + 0+92+03 + '*" t®** terms and art iryf.

(D15.
3 5 7

Sum l + ^+o2 + S3+ "" **'** terms and ad ir\f.

16.
3 5 7

Sum 1-^ +92~9i+ *'" ^** terms and ad inf.

\

/^ 17. Sum ar+ {a + ah)r^ \- {a-{-ab + ah'^)t^ + . . . . to n terms and

ad inf.y r and hr being each less than unity.

^18. In a geometrical series consisting of an odd number of

terms prove that the product of the first and last equals the

square of the middle term.

^19. The (n+Vf^ term of a geometrical series is c; find the

product of 2n + 1 terms.

/T 20. If n geometrical means be inserted between a and 6, what

is the product of the terms of the whole series thus formed 1

'^ 21. In a G. P. the {p + qY^ term is m, and the {p — qf^ term

^s n'y find thejp*'' and the 5'*'' terms.

22. If the p^'^ term in a G. P. is P, and the q^^ term is Q^ what^

is the w"" term ?

term is ^, what/

of a geortfetrical23. If a, h and c be the jo***, q^^ and r^^ terms

progression, then a*"'', y-^. c^~^= 1.

24. If the j»*^ q^\ r^^ and s* terms of an A. P. are in G. P.,

then p - q, q — r and r - « are also in G. P.

c25. In a G. P., if each term be added to, or subtracted from,

the preceding, the results in either case will be in G. P.

26. If the terms of a geometrical series be arranged in groups

of p terms each, the sums of the successive groups will be in G. P.

Find the sum of n groups, and show that it is equal to the sum
of the same terms taken separately. .^

27. If S be the sum of an odd number of terms in G. P., and
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if .S" bo tho sum of the series when the signs of the even terms
are changed, sliow that the sum of the squares of the terms will
be jSij .

28. If there be any number of quantities in G. P., r the com
men ratio and .S„ the sum of the first n terms, prove that the
sum of tho products of every two terms is

r+ 1 •^"•'^n-i'

C25- If P be the sum of the series, 1 +rP + r'p + r^p+ „,i ,•„/•

and if^ be the sum of the series, H-»'«+ r'* + ,*/ + ... ac/ inf
show that P9(^Q -\)p = Qp/p _ j \

?_

-^ "'

^30. Sum the series, V'^+
| V 3 + ? v' 2"+

. . . . «e/ ir^.

k_- 31. Sum the series,

' ^. J
V' 2(1 + V 2")

" (r772)(2T71)
*
^^^^

C 32. Sum ton terms 3 + 33 + 333 + .... ,^.g, lU-'^A
33 Find the series in which each term equals n times the sum

of all which follow it, the sum of the first two terms being m. C
34. If S, be the sum of n terms of a G. P., what are the sums

of/Sfi + ^2 + ....^ and ;S^„ + ^^ +^ + o

35. Show that 2^4^ 8*
. U''' . . . . ad inf. == 4,

and that

i4

u^.^

3^9^.27''^81''^
. ad inf, = 3 .

L- • '^i, ^ ^3 .... ^„ be the sums of n terms of n geometrical
progressions, of which all the first terms are 1 and confmon ratios
1. -, ^ . . .

.
n respectively, show that

'^i + .^. + 2.% + 3^, + ....(^_l)^^^l„^.2n + 3„^__^^^^„ ^

C37 If ^„ denote the sum of the n"' powers of the terms of aninfinite geometrical series, show that

1^ 1 1
1

1

r

a —r'

/.-
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38. Given S the sum and s^ the sum of the squares of the

f^ terms of an infinite G. P
terms is

S

show that the sum of the series to n

{-G^5"}-
(^ 39. The middle points of the sides of a triangle are joinod, the

middle points of the sides of the triangle so formed are again

jomed, and so on ad infinitum. Show that the sum of the areas

fj'r all the triangles so formed is one-third the area of the original

triangle.

W 40. Two straight lines meet forming an acute angle; from any

\joint in one a perpendicular is drawn to the other; from the foot

of this perpendicular a perpendicular is drawn to the former, and

so on ad infinitum. The lengths of the first two perpendiculars

are a and h ; find the sum of the lengths of all the perpendiculars

and the sum of the areas of all the right-angled triangles thus

formed.

41. The triangle ABG has each of the angles at B and C double

the angle at A ; lines are drawn within the triangle, making the

triangles CDB^ DEB^ etc., each similar to the original triangle.

If A denote the area of the original triangle, find the sum of the

areas of the infinite series of triangles, ABC, CDB, DEB^ etc.,

and also of the infinite series, CDA, DECy etc.
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CHAPTER VII.

HARMONICAL PROGRESSION.

Ol^'
•^'" "^""^°"^^^^ Series, or an Harmonical Progres-Sion, IS a senes of numbers such that of every three con3!ve^rms the ratio of the first to the third equal theVatof «difference between the first and second to the difference betweenth„d and third, the differences being always taken inTh:

Thus a, b,c,d.... are in harmonical progression

b:d=b~c:c-dj etc

The numbers 30, 20. 15 12 10 o-o •
i.

gression,
' ^^ 10.... are m harmonical pro-

^^'^ 30:15 = 30-20:20-15,

20:12 = 20-15:15-12,'etc.

thetttirH. R
^^"^"'^^' ''''''''''''''" -^ ^^-«^ ^-«^^ ^y

fgr^^o^ZT"^
Progression, formerly called Musical Pro-

Ipnrr^l, ''"'f''^^'^
^""^ ^^nsion produce harmony when theirengths are in progression according to the preceding definit onIs importance is chiefly due to this fact and to the occur enceof Wonical quantities iu connection with many ;Z::Z
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113. A good example of quantities in H. P. may be obtained

as follows

:

Take any two straight lines AB and CD cutting each other

in C; bisect the angles ACD, BCD by g
the straight lines CE, CF; across the C
four lines CA, CE, CD, CFdYa.\v any

straight line AEDF, then the lengths

of the lines AE, AD, AF are in har- ^
monical progression. A E F

For AE:ED = AC'.CD Euc. VI., 3

= AF:FD. Euc. VI., A
Therefore AE:AF=ED:DF Art. 52, (2)

=AD-AE:AF-AD,

which shows that AE, AD, AF satisfy the conditions for H. P.

according to the definition.

114. If a series of numbers are in H. P., tlieir reciprocals a/re

n A. P., and conversely.

Let a, h, c be in H. P.

Then, by definition, a:c = a — bib — c.

Therefore a(b-c) = (a- b)c.

1_1_1_1
c b b a'

Art. Ill

Art 48

Dividing by abc,

Therefore
1 1 1

a' A' c

the converse.

are in A. P. The process reversed proves

* Cor. 1.—The general expression for an harmonical series is

obtained by taking the reciprocals of the successive terms of an

arithmetical series.

T,,
1 J_ 1 1

a a + d a+ 2d a + (n-l)d

is a general expression for any harmonical series.
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ds

ay be obtained

reciprocals are

Cor. 2 A constant quantity divided by the successive terms
of an A. P. g^ves^quotientsju H. P. For the reciprocal of.

{a + {n-l)d} ^^ a'^^'^'^^c' ^^^ general term of an A. P.

wliose first term is '' md ccanmon difference -
^ c'

115. Harmonical progression, though connected with arith-me -1 p"ogress.oa by the simple relation given in the formerArt IS nevertheless, essentially different, in several respectsfrom both it and geometrical progression
^ '

The various terms in A. P. and in G. P. can be written whenthe first term and the common difference, or the common rat.oare g.ven; but m II. P. there is no quantity corresponding

S

the common difference or the common ratio. Again, in the L.progresszons convenient expressions can be found which repre'sent the sum of any number of terms; but no correspondin/ex-

^r^Z:^-"' ''''-' '' "^^"^^ ''^ ---P^-^-^ arith-

116. If two terms of an harmonical progression be given, theseries IS completely determined.
« given, the

For let tlie m^^ and n'^ terms be j. aiid g.

L'eversea proves Then

H and

ive terms of an 1

<t + (m-l)d=l^
P

a + (n-l)d==.l.
9

Art. 114
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117. Tojind the harmonic mean between two given extv.mea.

Let a and b denote the given extremes and x the required

mean, so that a, a*, b are in H. P.

Then

Therefore

from which

a:b = a — x:x— b.

a(x — b) = b(a — x)y

2ab
a; =3

a + b'

Thus the harmonic mean between two quantities is twice their

product divided by their sum,.

118. To insert a given number of Jia/rmonic m^ans between two

given extremes.

Let a and b be the given extremes and m the number of means.

Insert in arithmetic means between - and - ; their reciprocals
a b

will be the harmonic means required.

The arithmetic means are

:

1 1 /1 1\ 1 _2_/l_l\ 1 7n /I l\

a m+l\b ar a m,+ \\b a/"" a m+l\6 a/*

Simplifying, and taking the reciprocals, we get

{m,+ \)ab {m+V)ab {m+\)ab

mb+a ' (m-l)b + 2a' '" b+m^ '

the harmonic means required.

This series can easily be remembered by observing that the

numerators are all alike, and that the denominators are the same

as the numerators of the corresponding arithmetic means taken

in the reverse order.

Cor.—The product of the r* arithmetic and the (m-r+l)^
harmonic means between any two quantities is equal to the

square of the geometric mean between the same two quantities.
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-119. IfA, G<mdH denote tU arithmetic, the gernietric and the
.
\nrmo7uc nieana between any two quantities, then A, G and H are
in gcyrmtricaljrrogression, and A is the greatest or the least acced-
ing as tlie quantities are both podtive or both negative.

Let a and b denote the two quantities.

Then

AHand a + b lab

2 '^T6

Therefore G is the geometric mean between A and H,

Again, A-G= -{a + b).

1

V'ai

= ^{a-2Vab + b)

= -{Va-VT)\

a square quantity which is positive if a and b are positive, there-
fore A 13 greater than G- and A, G, H are in geometrical pro-
gression, therefore G is greater than H,

If a and b are negative, V^and ^/TTare imaginary, and the
square quantity is negativz; therefore A is less than G, and G is
less than //.

If one quantity is positive and the other negative, A and H
are real, but G is imaginary, and consequently no comparison in
magnitude can be made between it and the other two.

ex-
120. Ex. i.—The arithmetic mean between two numbers ^^

cecds the geometric by 55, and the geometric exceeds the har-
monic by 44; find the numbers.
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Let X denote the arithmetic mean.

Then ar - 65 and ar - 99 will denote the geometric and harmonic
means; and since A, 6-', li are in geometrical progression,

therefore ir{x - 99) = (r - 55)',

from which a- =275.

The three means, then, are 275, 220 and 176.

Next let X and y denote the required numbers.

Then ar + y = 550, ^1)

and V'xyr=220.
(2)

Adding twice (2) to (1), and taking the square root, we get

Vxi- V'y = 3 l/TTo.

Similarly -v/J- V^= -v/lTo.

Therefore Vx^ 2 a/TTo and V'y= VTTo,

OP ar= 440 and y = 110,

the numbers required.

2.—Ii
h

ix--spj'
• ~. " J^g» g^^» ^^.^

^ in H. P., and conversely.

. are in H. P., then a, b, c are also

Since

therefore

ct b c . __ _.
, -

. i are m H. P.,
b + c' c + «' a + b

b+c c+a a+b

then

a ' b ' c

Add a unit to each,

b + c + a c + a + b a + b + c

are in A. P.

c
are in A. P.

Divide by a + b + c,

then

Therefore a, b, c are in H. P.

The work reversetl proves the converse.

-
, 7 , - are in A. P.

a b c

ill
'^mSm^.
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kud harmonic

ission.

(1)

(2)

we get

^.-it ^T^ -^— =^^, and if 7,, ^, r are in A. P., then

a*, y, « are in H. P.

Put

then

Therefore

and

px qy rz
= ^,a-x a-y a—z

^ Je y k z k
a — X P a-y q* a-z r'

~ y ^ • XT r»—
» z
—

-i z are in H. P.a — x a — y a — z

a — X ci —y a — z
ZL »

~~
>X V zy

are in A. P.

Add a unit to each,

then

Therefore

a a a
- , - , - are in A. P.X y z

X, y, z are in H. P.

fArt. 114,

1 Cor. 2.

i, c are also

P.

EXERCISE X.

1. Find the tenth term of the series, 3, 4, 6 ...

.

2. Find the w*'» term of the series, - , - 1
' 3' 6'

3. Find the twenty-fourth term of the series, 24, 12, 8 ...

.

4. Find the arithmetic, the geometric and the harmonic means
between 2 and 32.

5. Insert two harmonic means between 1 and 2.

6. Insert three liarmonic means between 16 and 4.

7. The second and fourth terms of an H. P. are - and - - •

find the first, third, fifth and n''' terms.
^ ^

'

8. The first and second terms of an H. P. are « and b; find the
w"* term.

9. The arithmetic and geometric means between two quanti-
ties are o - 6 and Va' - b'^ respectively; find the harmonic mea^/'
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10. The arithmetio and harmonic means between two numbera
are 2 and

1 J respectively; find the numbers.

11. The sum and difference of the arithmeti*^ and geometric
means between two numbers are 16 and 4 respectively; find the
harmonic mean.

12. Find a number such that the arithmetic? mf;an between it

and 2 may be 2? times the harmonic mean.

13. Find two numbers whose difierence is 16^, and the geo-

metric mean between the arithmetio and harmonic roeans of

which is 9.

\rU. The sum of three terms of an H. T. ia ~, and the first

1 ^2
term is - ; find the series and continue it two terms each way.

tIS. The arithmetic mean between two numbers exceeds the
geometric mean by 13, and the geometric mean exceeds the har-

monic mean by 1 2 ; find the numbers.

j^l6. From each of three quantities in H. P. what quantity must
be taken away so that the remainders may be in G. P. 1

yll. The sum of three numbers in H. P. is 11, and the sum of
their squares is 49 ; find the numbers.

^8. Find the value of "^
^t ^^^n a, h, c are (1) in A. P.,

(2) in G. P., and (3) in H. P.

^19. If «, 5, c are in A. P., and a, mh, c in G. P., prove that
a, m^h, c are in H. P.

A. 20. If X is the harmonic mean between m and »», show that

1 1 1 1
.= _ + _.

X— m X ~ n m n

21. If four quantities are proportionals, and the first three are

in A. P., prove that the last three are in H. P.

22. If H be the harmonic mean between a and i, prove that
it is also the harmonic mean between H-a and If~h.
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r23. If a, 6, o be in H. p.,

b+a b+cthen

and

<i- 24. If between each two successive terms of the series, .., ar,
ar". ':. UT^, an harmonic mean ba inserted, the sum of those mLns

2ar(r'*-l)

c 25. If «. i. . be in H. P., then^ ^ ^ .^e also in

H-D J * +<' ^J +<* a + b
• ^-1 and -—-, -T— > are in A. P.u

C. 26. If a, 26 and c be in H. P., then will a + c, a and a - i be
in G. P.; so also will c + a^ o and c - i be in G. P.

27. Find the condition that a, A, c may be the p>-\ q^^ and r^
terms of an harmonic progression.

28. If the (p + qY'' term of an harmonic progression be m and
the (p-qY'' term be n, find the/" and ^"^ terms.

f 29. If the p^ term of an harmonic progression be P, and the o*"*

term be Q, the w*" term will be

{p-q)PQ
in-q)Q~{n-p)P'

V.30. If a, i, c be in A. P., and a, 5, d in H. P., then
• c_ 2(a-&)^

(^ a6

ex. If ^, G?, ^ be the arithmetic, geometric and harmonic
means between a and i, then

g-1 AS~a){H-h) 1 11
i< ^ ?« and -—- A . = _^ GP A +G^G+H G'

(> 32. If a:r=.by= cz, and a, J, c are in A. P., then .r, g/, « are in
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^IVX U a-«Ai'.-o«, and «, A, „ aro in i). P., then a", y, « are in

34. If oitlmr of two oonsooutivo t«^rmR of an IT. P. is divisif>lo
by t|H>ii- (lUroitMico, show that ono of tlio tornm of tho sorioa i«
iurinity. Can any tonn of u tinito hannonioal mm-wh Im nm>1

an. If an arithuiotical and an Imrmonical progression have „uoh
tho sanio lirst and sm^ond trrn.s, « and A, and if .r and y lie the
n"' tonna in tho two Horios, then

y(^ - n) n I

«(y-/i) n-2*

136. If Iwtwoon any two quantities there are inserteil two arith-
metic nuuMis, A„ A,, two goonjotrio means, G^, 6?,, two harmonic
means, Jf^, ]f^^ then

A^ + A^ I a^a^
, ^

C^l, If (I, A, are in IF. P., then - J?
.

* ^

are also in H. P.
/> + o-2« o+ «-26' « + 6- 2c

111111
-, - +CO « + 6

^38, If «, A, c are in II. P., then i +— . 1 + J:.

«»»;»TT -D J -•* . ^ . . ca nh
are in H. P., then

areinH.P.;.mdifa + Ji-, A + -f!L c+—
A + c' o+ tt* a + 6

«, 0, c are in A. P.

^^, If (», A, fl Iks *hroe quantities such tlmt a is tho arithmetic
moan In^lNvtHMi b and r, and (> is tlio Imrmonio njean between a
nnd A, tlu>n «, b, e ai-e in (',. P.

Q;lO. If tho luirjuonio moans botween eaoh pair of tho three
quantitios, „, A, o be in A. P., then b\ a\ o' shall be in H. P.; but
if the Juvrmonio me»ins l)o in IF. P., then A, «, o slmll l,e in H. P.

44. If aS',, iS'a, ><?'3 denote tho sums of n terms of each of three
arithmetical series having the same first term, a, and their com-
mon differences in H. P., then

Ji
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SQUARES AND CUBES OF THE NATURAL
NUMBERS.

121. Ill th« practical applicptiou of luatluMiiiitics sorica fre-
(lucntly present tli.»ni8elve8 whoso sununation tle|Huul8 upon tho
Sinn of the aciuanvs or the cubes of the natural numbers. We
thorefoi-o give their sumnuition, with a few Miniplo applications.

122. 7'# Jind the nmn of i/te squares of Om Jirst n natural
nuinhers.

•enoti) tho Huni by S.

'^'h«n 'S'-P + 2''+ 3» + ....n».

Wo have idonticUly,

n'-(n-l)9 = 3»t'-37t+l,

(n - If - (n - 2)»= 3(n - 1)' - 3(„ _ l) + i,

(n - 2)3 - (n - 'if ^ 3(m - If - ^n - 2) + 1,

3=^- 2'' = 3. S*"*- 3.3+1.,

2''-P^3. 22-3. 2 + 1,

l'-t»=3.1'^-3.1 + l.

Tlieii, by addition,

n' = 3(P+2» + ....n')-3(l+2 + ....n) + n
.,., 3n(M+l)

2 ^ »*.

Therefore 3-iJ'=n»-w+
3n(n+l)

or S= M(n+l)(2w+l)
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It

ties.

should Im obsorvod

consoq

tJuit tho procodirig oqimlitios are tde* H-
true Jhr all vahw-s <>/'n. Tho first is ol)-

tmuvii hy 8ubtnu,ti(>n; tho sooond is obtained f.-oni tho first bv
t'hai

1

»i{in^' n mio n -

lb

«"oji; tholinul o(jualitio8aroobt<unod
.y sub«t,tutinK nuniborn for n. Upon adding, tho second column
on tho left cancels tho first, excepting the single term, n'.

^i^.—Sum to n terms tho series,

1.2 + 2. 3 + 3, 4 + ....n(7H-l).

Tho series may l)o written

'^^=(l^+l) + (2^+2) + (3» + 3) + ....(n' + „)
= (P+2-^ + 3-^ + ....,,•.) + (! ^.2 + 3 + ..,,,^)

M(n+l)(2,t+l) »t(7i+l)
+

3
•

123. Tofmd themm o/'the cubes o/UtejirH n natural numbers.

Denote tho sum by ^\

Then 'S^=»P+23 + 33+ ....n».

We h.tvo identically,

n* ~ (n - 1 )< x= 4n^ „ Gm'+ in - 1

,

(n-l)*-(n-2/ = 4(n-l)3_6(«-l)»+4(n-l)-l,

2*-l*::.4.2«-6.2-^V4*.2-l,

1^_0*=-4.P.Jg.P + 4.1-1.
Then, by addition,

n* = .{.V-6(P+2-^ + ....,,=) + 4^1^2 + ....n)-n.
Therefoi-o 4.V= n^ + n + »(n+ l)(2n+ 1) - 2u(n + 1)

= n{n +l){n^~n+\+ 2n +1-2)

n(n+\)Yor -S':

|n(njO)y
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SQUARES AND CUBES OF THE NATURAL NUMBERS. 1#3

Thus tho sum of the cubes of the natural numbers ia equal to
i\w squaro of tho sum of the numbers.
Tho same n.ethod mt>.y be applied to find the sum of the fourth,

lifth, etc., powers iu succession.

124. Tho sum of tho cubes of tho natural numlx^rs n.ay easily
bo found independently of the sum of their squares as follows:
Arrange the odd numbers in groups thus:

l+(3 + 5) + (7 + 9 + ll) + (13+15 + 17 + 19) + ....

In n groups there aro 1 + 2 + 3 . *> = ^ll**
"* ^

)

11

—

terms. The
hust torn, of the n"' group is .r + ,._ 1, the first term is w^-n+ 1
and tliero are n terms in it; therefore the sum of the r.«' group is

la

This shows that the successive groups are the cubes of the

giving !iii-- - tern,s of the series of odd numbers, whose sum is

at onco known to be |!i^-'ti)V''

125. It is frequently convenient to indicate by a single symbol
that tuo whole of a series of terms is to bo taken. This is gener-
ally done by writing the Greek letter 2' before the ,.»" term of the
series, thus:

1 + 2 + 3 + .. ..u is denoted by 2m.
1-' 4.02 , 'VJ 2

•'

I + w +0 + n' u ti

(' + ar + ar-....ar"-^ « u

.Jl^ujn !^""' '"' ^''*"' '""'^"^ *''" ^'«^" ^>^ summation,
0. e must bo t.vken to correctly .distinguish the rarM and rj-

^ t V • t 'f^'T"^P^^ - - *^« variable; if . were takenfor the ^ ariablo, lar'^-^ would stand for a + 2'-»a + r-^« Thecontext will u^n^U.r j.^h- -» • • - -

'

nhio , ^ 1 y ^ ""
^"'' ^'"^^^ "^ doubtful case§ the vari-ftble must be specifietl.

ti 2>„.»-i
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Bx.—Sum to n terms the series,

1.2.3 + 2.3.4 + 3.4.5 + n(n+l)(n + 2)

The »*"• term may be written n^ + 3n^ + 2n

/. sum of n terms = In^+ 3In^ + 2Zn --'
'

" 5'
/T-i-^X

_/n(w+l)y +
Sn(n+l )(2n+ 1 ) 27i(»t + 1

)

6 2

n(n+l)(n + 2)(n + 3)

4
'

126. When the terms of a series are alternately positive and
negative it is sometimes necessary to consider separately the
cases in which n is even or odd. The two results can then be
combined as follows

:

Let A and B denote any two quantities.

Then ^ +(- l)"if denotes their sitm when n is even, but their
difference when n is odd.

Let p and q denote the sums of the series when n is even and
odd respectively.

Then let A+£=p
and A-B =

q,

from which ^A{p+q\ B=l(p-q).

Therefore -{(p+^)+ (_l)"(^_y)| is the required sum whether

w be even or odd.

^a;.—Sum 1-2 + 3-4 + 5-.... to n terms.

When n is even,

^=(l-2) + (3-4)....to|groups

= -1— 1— ....to - terms

= - o > *he sum when w is even.
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When n is odd,

Then

and

^=l-(2-3)-(3-4)-....to n

Y-
• groups.

= 1 + 1 + 1+ tol +^^— terms

w + 1
=—

7)
—

> t'he sum when n is odd.

1/
, X 1 1. , 2w + l

1
= 4{l+(-irH2n+l)},

whether w be even or odd.

um whether

\

PILES OF SHOT AND SHELL.

127. Tojind the number of shot arranged in a complete pyramid
^ on a square base.

Let n be the number of shot on a side of the lowest layer;
then w- 1, n - 2, etc., will be the numbers on a side of the suc-
cessive higher layers. The number of shot composing the layers
will be n\ (n- 1)% etc., ending with a single shot at the top of
the pile.

Then aS= P+ 22+ . . . . (n - 1)2 + w»

I
_w(n+l)(2n+l)

//
6

Art. 122

128. Tojind tJie numher of shot arranged in a complete pyramid
whose hose is an equilateral triangle.

Let n be the number of shot on a side of the base. Countinc
8 ^

\
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the shot in the lowest, or < layer by rows we see that it con-
tains

n + (n-l) + (n-2).... + l=!!(!^±l).

Similarly the {n - \f^ layer contains (!iziX^)-, etc.

We have thus to find the sum of n terms of the series whose

Ti*" term is ^{n^^n).

Therefore

6
Art. 122, Ex.

The number of shot in the successive layers, beginning at the
top, are 1, 3, G, 10, 15, etc, which are called triangular num-
bers for the same reason that 1, 4, 9, 16, etc., are called square
numbers. *

Jll ^^®' ^^-^"^ ^-'^ ^^^^^^ ^f'^ot contained in a complete pile^ ij^upon a rectangular base.

Let m and n be the number of shot in a side and an end of
base. i-iAf^M:^^^-*^

There will be n layers, the top one consisting of a single row
containing m-n^\ shot. Each succeeding layer will consist of
one more row, and each row will contain one more shot than the
preceding. The numbers in the successive layers will be the
terms of the following series,

.-. 'S'=(m-n-M) + 2(m-n-F2) + 3(m-r. + 3).,..M(m-n-f.ri)
= (w-7i)(l+2 + 3-f-....ti) + (P + 22+32-f-....w2)

_ (m-n)n(M+l) w(n+iV2w+l)
2 + 1

_ n{n-\ l)(3m - n+ 1)

6
"•

If m = n the rectangle becomes a square, and this result re-
viuces «> that obUiued for the number on a square base.
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130. Tofind the number of shot in an incomplete pile.

Find I7 the preceding Arts, the number the pile would con-
tain if complete, and from the result subtract the number re-
quired to complete it.

^K.—Find the number of shot in an incomplete pile of six
layers, there being 20 shot in a side and 12 in the end o£ the base.

If complete the pile would contain -Ali^li^ ^ i274 shot.
6

6.7.37

//

The number required to complete it is . = 269 shot.
6

Therefore the number of shot in the pile is 1274 - 259 = 1015.

3.

'^^
f/

—

^^^' ^^^®" *^® number of shot in a complete square, or in a-m complete triangular, pile, to find the number in one side of the
"^^ base.

Let iVbe the number of shot in the pile and n the number in
a side of the base. Then

(1) In the triangular pile w(m + l)(n + 2) = CiT. Now
n{n+\){n + 2) > n' but < (n+lf, therefore n is the integral
part of the cube root of GiT.

(2) In the square pile n{n+l)(n+Vj .-,3^^, therefore, as be-

fore, n is the integral part of the cube root of SIf.

BXBROISB XI,

1. Find the number of shot in a complete pile on a square base
containing 20 shot on a side.

2. Find the number of shot in a complete pile on a triangular
base containing 30 shot on a side.

3. Find the number of shot in a complete pile on a rectangular
base containing 25 and 20 shot oir the side and the end respec 4
tively. ^

y
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4. . low many shot in an incomplete pile of twelve courses on
a triangular base containing 37 shot on a side t ^^^

5. How many shot in an incomplete pile of eleven courses on
a rectangular base containing 27 and 23 shot on the side and the
end respectively ?

6. An incomplete square pile contains 225 shot in the top
layer and 729 in the bottom; how many shot in the pile?

7. The base of an incomplete rectangular pile contains 800
shot and the top 450; the length of the base is greater than the
breadth by 7 shot; how many shot in the whole pile 1

8. A triangular and a square pile of shot have each the same
number on a side of the base, but the former contains ouly four-
sevenths as many shot as the latter; find the number in each pile-

9. How many shot in an incomplete triangular pile of eleven
courses, there being 166 more sliot in the bottom layer than in
the top %

10. Show that the number of shot in a square pile is one-fourth
the number in a triangular pile of double the number of courses.

11. If from a complete square pile of shot a triangular pile of
the same number of courses bo formed, show that the remainder
will just form another triangular pile.

12. The number of shot in an incomplete square pile is equal
to six times the number required to complete it; and the number
of completed courses is equal to the number of courses required
to complete the pile; find the number of shot in the incomplete
pile.

13. Find the number of shot in the rectangular pile in which
the number in the lowest course is 600, and in the top ridge, 11.

14. How many courses must be taken fro-n the top of a com-
plete square pile of shot to make up 2,870? How many more
courses will make 12,040?

16. The value of a triangular pile of 16-lb. shot is $244.80; if
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ve courses on J.25 per cwt., find the number of shot
the value of the iron be

in the lowest layer.

16. A triangular and a square pile of shot have each the same
number in a side of the base, and also one base row in common;
the number of shot in both piles is 64,D75; how many in a row
in the base, both piles being complete 1

17. How many 8-inch shells would there be in a square pile
erected on the grouad formerly cover<^d by a square pile contain-
ing 4,900 13-inch shells, both piles being complete?

^18. The numbers of shot in a triangular, a square and a rec-
tangular pile are in A. P., the number of courses, w, being the
same in each; show that w- 1 is a multiple of 3. If the rec-

tangular pile contains 5,566 shot, ho-.v many does each of the
others contain ?

19. Four equal square pi'es of shot are so placed that their
bases form a larger square, and each pile has two base rows in
common with the adjacent piles. There are 21 shot in the base
roV of the large square; how many shot in the whole ? If there
are 3,225 shot in all, how many in a base row of the large square?

EXERCISE XII.

MISCELLANEOUS EXAMPLES IN PROGRESSION.

Sum to n terms the series:

1. 2^ + 4:' + 6K^.

3. a' + {a + lf + (a + 2y^'.

5. P.2-1. 22.3 + 32.4. .k"^

7. P-22-,-32-....

C2. V+3'' + 6\/..

^4. P-l-33 + 5'..'.'^

6. w + 2(w-l) + 3(w-2)....

8. P_32-h52-....

n
9. Find the sum of the squares of n terms of the series whose
^ term is 2 - 3w. "^

10, Tf S! ^o»^+«c +1
v\.-i-3 tut^ b1ui« of tho first H natural numbers, find

thosumsof,«?. + ^, + ....^„and-bf,y^-t-^,^.f.....^„^./



iH

110 HIGHER ALGEBRA.

11. Sum!^l±l%iiL?.\»*' + 33
•

w + 1 n + 2 n + 3
^^ terrain.

12. Give„that.+2{._^U3(. -1 V...^„^^,
is zero, find a-.

^ ^^ ' ** " ^^

13. Given x, y, ^ in G. P.. y, z, 4 in H. P., ^, «•, y in A. P.,
find X, y and z,

^

1 4. Sum to infinity the series

:

P_2' 3=_4'

5*
23 '2^

•
^-/ 5 52.5,

15 Divide the number 2--1 into n parts in the ratio of
1, J, 4, 8, etc.

16 Find the sum of the products of tl»e first n natural num-
bers taken two and two together.

17. Show that —^ +__ is equal to 4, greater than 7 or 10,
according as a, c, i are in A., G. or H. P.

18. The three sides of a triangle and the perpendicular from
the opposite angle on the greatest side are in G. P.; show that
the triangle is right-angled.

19. If 1, X, ^ and 1, y\ f be each in H. P., show that - ,/ ,/

^, .are in A. P., and that their sum is ^ + y3, supposing . + ;not to be zero and ar and y not to be unity.

20. Sum 1.1.3 + 2.3. 5 + 3.5. 7 + 4. 7.9... .tonterms.
21. Let the sums of the squares of the roots of the equations,

3{^+ (m+l).} = l, ?{.r^+(m + 2).} = l, ?K + (.^ +3H = l,

be
^,^ and C; find the value of m so that A, B and G may be

in G. P. ^

22. Between the successive terms of an A. P. arithmetical
means are inserted, one between ^,he first and second, two be-
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. to n terms

tween the second and third, three between the third and fourth,

and so on; find the sura of all the means so inserted, the first

series consisting of w 4 1 terms.

23. SumP-2' + 3»-4» + ....to7iterms.

24. If ^1 be the arithmetic mean between a and i, A^ the

arithmetic mean between Ay and i, and so on, show that

A1 + A2 + ^„ = a + (w-l)6--—-.

25. Sum 2 .5 - 3 . 9 + 4 . IS - 5 . 17 + to 2n terms and to n
terms.

26. If a, tti, ttjj «3' • • «n be in A. P., and a, i^, b^., .h„he in

G. P., and if »•, the common ratio of the latter series, be equal to

the common difierence of the former series, then

{a,ar - ab,) + {aj,,r - a^b^) +,. . . (aX_,r - a^_J>,,) =
^'^ ~

)
.

r-1
27. Show that the sum to n terms of the series whose (m-iy^

1
term is m{m - 1) is equal to - of the product of the n'** terms of

the three series whose (p - l)*"* terms are p-l, p and p + 1.

28. An A. P., a G. P. and an H. P. have each the same first

and last terms and the same number of terms, n; and their r***

terms are a„ i„ c^; prove a,+i : fir+i = 6„_^:c„_,, and if ^, ^, C
be the continued products of the n terms, then AG= B'.

29. Between two quantities an harmonic mean is inserted, and
between each pair a geometric mean is inserted; the three means
are in A. P.; prove that the ratio of the two quantities is

7±4 VZ: 1.

30. If a, 6, c, d are in G. P.,

then abcd\- + - + - + -A =={a-^.b + c + d)\

and
a/zy* -I- M J- a/ hi.
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i|

31. If a, b.

fw ; W^'^ I"
^' ^" ^""^ ^' ^ *^« arithmetic means be-Ween «, I and A. c. then A will be the harmonic mean between p

32. If a, 5, c are in A, P., .,, ^3, y in H. P., and - + ?:»« + ^
then ««, ij3, cy are in G. P. y « c o

'

th!v' M^rT •''''S^''
*'"

^^ ^- ^-^ ^"^^ ^^ ^«^^ b« increased by 15they will be,nH. P. The suu. of the numbers is 49; find tlfem

infas!T f'* "^"""^".* ';^'*"^' ^^^^ ^^ "«^^*-^ --rd-mg as ai, a^, ag, a^ are m A P., G. P. or H. P.

«x, Ai and a„ A, the arithmetic and harmonic means between m, aand g, n respectively, then aj^ = ^2= a^, .

^

G.p';tL:'''^'^^'^/-^''«'^'^-«-^-'-<^««.¥.^in

«:A:c=i:l ;!
J ^ a

Jl " "
!r *'"'u"'^'

°' *''° arithmetic means between twon«mbe.-s, and m the first of two harmonic m3ans between tiesame two numfers, prove that the value of ,. doe, notTottween the values of n and 9m.

ftp then the ratio of the harmonic means between ; Td „

;:nti:i:r"^'
*° *"' """• -' *^ ^"'^*™ --- »* *-« --

39 If J„ ^j . .
. ^„ be the « arithmetic meajis, and H, . H,

terms of the series whose r*"* term is

Jld^::;;htv"''"* ^'' «-""*'« »-- *«'-»

''n-2--K-^(V-A„^)*}2.
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ive accord-

41. If a, i, c are in A. P., G. P. or H. P., then a** + c'»>24".

42. If ttj, rtj • • • • "n are in H. P., then

a.

are also in H. P.

43. If the squared differences of
f?, 5-, r be in A. P., then the

differences in order are in H. P.

44. If 1\ Q, li he the ju^ g-* and r"» terms of an H. P., then

I I'

-r' r^-jr^ j?

Q' R' i~ \ F' ^ q^ ~^]\ F' ^"y
45. If n arithmetical and n harmonical means be inserted be-

tween two quantities, a and h, and a series of n terms formed
by dividing each arithmetical by the corresponding harmonical
mean, the sum of the series will be

{
n{\ + •]

6(w+l)a6

46. Find the sum of n terms of the series,

1 + 22+3 + 42+ 5 + 62....

(1) when n is even, (2) when n is odd; find the w"' term.

47. Find the n^^ term and the sum of n terms of the series,

2 + 2(22 + 2) + 6 + 2(42 + 4) + 10 + 2(62 + 6) + 14 + 2(82 + 8)....

(1) when n is even, (2) when n is odd, (3) when n is any positive

integer.

48. Between each of the pairs of quantities, (a?, y), (ar, 2y\
(r, 4y), etc., are inserted m geometric means, and M^ is the w*"

mean of the r*" pair; show that ~^^ = 2'»+i for all values of r
Mf

49. There are n piles of stones placed in a straight line, the
intervals between them being 3, 5, 7 .. .. 27i-l yards, and the
piles containing 1, 2, 3 n stones respectively. How far must
a nerson wnllr frk fipo+Ur.». +l»^,« „J i..:„4. 1 1 1 1

the end of the row at which is placed the single stone ]



CHAPTER IX.

IH

SCALES OF NOTATION.
132. The basis of number is the unit or elementary number

one; all other numbers are repetitions of this unit. The groups
of units thus formed by successively adding one are known by
distinctive names, and are represented by symbols. Thus " two »

IS the name given to "one and one"; "three" is the name given
to " two and one," and so on. These groups are represented by
the symbols 1, 2. 3, 4 5, 6, 7, 8, 9, called digits, each of which
represents a unit n.or(^ than the preceding. We have no symbol
to represent «9 and 1"; we therefore give it a distinct name (ten),
and represent it as a unit of a second order. To distinguish it
from the simple unit we write the symbol beside it on the ric^ht
When other units are added they take the place of the until
two units of the second order are reached. Ten units of tho
second order are expressed as a unit of the third order (named
hundred), and so on, the order of any unit being determined by
the position of the digit representing it, counting from the right.

This method of representing numbers is called the Common
Denary or Decimal Scale of Notation, and ten is said to
be the radix, or base, of the system.

133. In like manner numbers may be represented by assuming
a different radix and using the figures 1, 2, 3, etc, in the same
sense as before. The number of independent significant symbols
must evidently be one less than the radix. Thus if eight be taken
for the radix, the figures 8 and 9 will bo unnecessary; but if
twelve be taken, two new symbols must be introduced to repre-
sent " ten " and " eleven " respectively. The letters t and e are
generally used for this purpose.

JL-i.
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Tho exact meaning of each symbol employed should l)e care-

fully observed. Thus in the common scale

365 means 3 times 10' + 6 times 10 + 5,

but in the scale with radix 8

365 means 3 times 8' + 6 times 8 + 6;

and generally, if Oo, a^, a^,... n^ denote the digits in order, be-

ginning with the units, r the radix, then the number is

«„r" + a„_ir»-^ + a^_,r^-^ + . . . . fl^r- + a^ + Oj

where a„, rt„_i . .. .a^ are all positive integers, each less than r,

but any one after the first may be zero.

The radix itself is always represented by 10.

134. Our language, being adapted to the decimal mutation, is

inapplicable to any other. Thus 26 in the scale of ei(,ht must
not be read twenty-six, for it is not tioo tens and six, but two
eights and six, or twenty-two. Since w.i have no words to desig-

nate the numbers in the form in which they appear in the various

scales, we read such numbers by naming the digits in order, giving
the radix of the scale.

135. The various arithmetical operations can be performed in

any scale on the principles which are employed in the common
scale. But inasmuch as we are not familiar with the addition
and multiplication tables in any but the common scale, we shall

bo compellel tD determine the carrying figures by an indirect

p* v/cess, as shown in the following example

:

Ex. i.—Multiply 2763 by 25 in the n«nary s«al«.

2763 \\

15246

5636

72616
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In this scale we carry one for every nine. Multiplying by 5
we have

r j s> j

3x5 = fifteen = 9 + 6 = 16.

We therefore set down 6 and carry 1 ; then

6x5 + 1= thirty-one = 3 times 9 + 4 = 34,

and so on till the multiplication is complete.
The same method is followed in the addition.

Bx. ^.-Divide 59^6^3 by 7 in the duodenary scale.

7[59<46e3

9e9285 rem. 4

The first two figures, 59, are not fifty-nine, but 5 times twelve
+ 9 = sixty-nme. Dividing by 7 we get 9 for quotient and re-
mainder. Next, 6 times twelve + ^ = eighty-two; dividing by 7we get eleven (or e) for quotient and 5 remainder, and so on.

I

ik?^^'
^"^ ^^^'*^^* "* ^*''^'' number in a scale with a given radix.

T^t K denote the number, r the radiv ^1 at
T«t K denote the number, r the radix. r\ F

Divide iT by r, the quotient by r, the second ^fe

Q.

Q,

rem. p^

" Ih
it

Pt

quotient by r, and so on until the last quo- ,.

tient is less than r. Denote the successive ^
quotients by Q,,Q._.... ^„_,, ^,^^^ ^nd the re-

mainders by ;,.„ 2h. ]h .... Pn.u as indicated r\ Q \
' '««* '«

in the margin. ^~- ^"-^

Then from the nature of division we have

^"^^QiV + p,, Q^ = Q,^r + p„ Q,= Q.^r+iK„ etc..

Therefore X^ q^^ ^^^^

= Qii^ +Pir + jt?o

=Piif +Pn-\>'''~^ +;>ar-+jt?jr + »„,,

which is the required number. When figures are used the radix
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and signs of addi*"ion are omitted, and the last quotient followed

by the several remainders are written consecutively.

Ex. 1.—Express 3824 in the scale whose radix is 7.

Dividing continually by 7, the quotients and remainders are

as follows

:

7
1

3824

7 1546 rem. 2

7]T8 "

7 [IT "1
1 " 4

The required number is 14102.

Ex. 2.—Change 31247 from scale of eight to the common scale.

First Solution.

31247
8

Second Solution.

<[31247

<
I 2420,

<[14,

1,

7

6

9

2

25

8

202

8

1620

8

12967

Result in each case, 12967.

The reason for the work in the first solution will be perceived

by writing the number with the various powers of the radix thus

:

3(8*) + 83 + 2(82) + 4(8) + 7.

Now, 3(8*) + 8=5 = (3 X 8 + 1)83 = 25(8'),

25(83) + 2(82) = (25x8 + 2)82 = 202(82), etc.

The division in the second solution is performed in the scale of

eight; the reasoning is the same as that of the preceding example.
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Also, Ex. 1 may be solved by multiplication, like the first solu-
tion of Ex. 2. The examples which follow should be solved by
both methods. ^

E3XBRCISB XIII.

tl. Add the following numbers, which are expressed in thenonary scale: 32078, 4135, 2057, 38725.

r 2. From 20100431 take 14034324 in the quinary scale.

^3. Multiply 372^563 by 38 in the undenary scale.

C 4. Divide 42765236 by 7 in the octenary scale.

^. Divide 32^^094 by 1 1 in the duodenary scale.

C6. Divide 30102112 by 1323 in the quaternary scale.

C 7 From 2061203 take 1626156 in the septenary scale, and
multiply the difference by 506.

8. Find the G. C. M. of 323345 and 502341 in the senary ilBl,

scat
^'^^ *^' ^' ^" ^^* ""^ ^^' ^^' ^^' ^^' ^^' ^^ ^^ *^« "^^^^^^y

^ 10. Express a million in the nonary scale.

scale'

^^^"^' ^^^^^^' ^''"' *^'' '''^' °^ '^"^"^ *^ *^" ^«°^°^°"

X>2. Change 8032765 from the nonary to the septenary scale.

'

QP. Multiply 4541 octenary by 21301 quaternary, extract the
square root of the product, and give the result in the septenary^^-

^ 14. Extract the square root of 11000000100001 in the binary

,15. Show that the numbers 121, 144, 1234321 are perfect
s-?Juares in any scale whose radix is greater than 4. \

,,
^^; ?i*!" TT]^^^ ]!

2' ^' «' ^*^-' lbs., which must be taken to^
wuign o'Ji iDs.i io'lo lbs.?

n
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common

17. Of the weights 1, 3, 9, 27, etc., lbs., which must be taken ^
to weigh 1852 lbs., one of each kind only to be taken, but to be ^^^y
placed in whichever scale is necessary 1

^'

(' 18. In what scale is 182 represented by 222 1 ^
,-»^19. Find the scale in which 519 is the square of 23.

v20. Find the scale in which the product of 32 and 25 is 1163

21. Show that 1367631 is a perfect cube in every scale whose /H>-wv/
radix is greater than^ 7.

22. Find the scale in which 12736 is represented by 30700.

23. In what scale is 511197 denoted ky 17463351 d /

lyii. Add the following fractions in the scale of eight:

3 ^ 13 _7^ 5

4' 10' 20' 14' 30*

25. A rectangle is 13 ft. 6,^ in. long and 10 ft. 4 in. Mvide;6'y:^
find its area by multiplication in the scale of twelve.

26. Find by division in the scale of twelve the height of a c^>vvi

right-solid containing 282 cu. ft. 705 cu. in., whose base contains
^

24 sq. ft. 5 sq. in. __

'Ia/

J

/

Koti^^looSt.
137. Radix Fractions are a series of fractions whose de-

nominators are successive powers of the radix of the scale, and
whose numerators are each less than the radix. Radix fractions
in any scale correspond to decimals in the common scale, and are
distinguished from integers in the same way, by being preceded
by a point, which may be called the radix point.

Thus, in the octenary scale,

237-6574 = 2(82)^3(8)^7#-*-AlA-i.
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but since in this scale seveii is the highest number expressed by
one symbol, the above must be written

237-6574 = 2(10)2 + 3(10) + 7 +—+— +—+-—

since the radix is always expressed by 10.

-^ t'-'138. To transform a givenfraction into radixfractions in any

/Y proposed scale.

n ^^^^^ fraction and r the radix of the proposed

scale.

Multiply m by r and divide the product by n', let q^ be the
quotient and r^ the remainder. Multiply r^ by r and divide by
n; let q., be the quotient and r.^ the remainder, and so on. The
quotients

</i, q^, etc.,! will be the numerators of the radix fractions

required.

tnr r.
For

Therefore

=
5'i + -,WW

r,r r„

-;^ = ?2 + -,
n n

etc. = etc.

m q^ r

(1)

( )

n r nr

"
r'
+

;r5 + ZTs' substituting from (2),nr

^ ~ + T2 + ~ +

which are the radix fractions required.

I. In the preceding Art. the fraction is supposed to be in

est terms. If the denominator n contains no factor ex-

ept factors of r, the process will terminate, and the number of

divisions may be known by considering what power of r is neces-

sary to cancel all the factors of n. If n contains any factor
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zctio'ns in any

site tier T" °' ' "' ^"^^ ""' »^™^ *<'™»-t«; tat.

ot exceed n 1 before some previous remainder recurs, and then«.e senes of quotients will be repeated continually i^ 'Zrccc.s.on. Thus any fraction can be expressed in a'finite TriL
ot radix fractions, or in a series in which a group of quotientsconstant y recur, the number of repeating quotient nevertTng
greater than the number of units in the denominator of hffactor, minus one.

^^.-Transform - from the common scale to a series of radix
fractions in the scale of seven.

First Solution.

5

_7
13)35(2

26

9

_7
13)63(4

52

11

_7
13)77(5

65

12

_7
13)84(6

78

Result in each case, "2456 ....

we fc "chl'°'",t f
"''^! "° ^"P"*™"""- "' ^ne secona method

equivalent to multiplying by the railix 7 (».|,;.h .r.„t now beexp-e^ by 10), and divide by the denomiiiato. being carlfulto perform the whole operation in the new scale,
y

Second Solution.

18)5-000(-2456
35
120
103

140

122^

150
141

6

In the second method
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140. If, in reducing a proper fraction in its lowest terms to

^ a series of radix fractions, a remainder occurs equal to the differ-
ence between the numerator and denominator, one-half the re-
.-.ring period has been found, and the remainder may be ol>-

tained by subtracting in order the digits already found from the
Ny radix, minus one.

With the notation of Art. 138 suppose a remainder n-m
occurs.

(»i - 111) r
Then nr —

n<7i

n
= T-\ n — r.

1\n 'n
which shows that the next quotient is obtained by subtracting
the first one, q^, from r-\, and the remainder, n-r^, being of
the same form as n - m, the next quotient must also be found
by subtracting q^ from r - 1, and so on. We thus double the
number of digits alrettdy found.

In the Ex. of Art. 139, if the process be continued two places
further the remainder 8 ( = 11 in second solution) occurs, and it
will be found that the succeeding figures are obtained by sub-
tracting those already found from 6. The complete result is

5

Yg
= -245631421035,

both sides of the equality being expressed in the scale of 7. In
this example it may be observed that the number of figures re-

peating is one less than the number of units in the denominator,
but in the common scale the number repeating is onh/half as
ereat. y^
/ .J

141. The difference between anij number and the sum of its

ligits is divisible by r-1 where r is tlie radix of the scale in
which tlie number is expressed.

Let JV denote the number, a, l,c.,.. the digits in order be-
ginning with the units, S the sum of the digits.

Then J^=a + br + cr'^ + d'r^ + , , ._

,

S=a-^b + c + d+
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==(''-'^W' + c(r+l) + d(r^ + r+l) + ,,,,^
Therefore »•- 1 is a factor oiJV-S.

^Ae same dibits is divisible hjr-l. ^
For let iT, and i\-, denote the numbers, S the sum of the dibits

'

in either case : then sinceN ^ ^^a \r o \
^"^

^ ' ' ^*' ~ *)°'^-*i--'l^i IS divisible by r-l.

Let iT denote the number a h ^ +v j- -^ •

Then ^=a + br + cr'' + dr' .. .

.

^ = a-b + c-d+....

= a multiple of r+1.
Therefore if i> is a multinle of ^ + 1 so al.o ,'. - ri,-

111

^'11
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143. If the sums of the digits of two numbers in the common
icale be separdtely ilivided by 9> and if the product of the two
remainders again be divided by 9, the last remainder will be the

same as that obtained by dividing by 9 the sum of the digits of

the product of the original numbers.

Let iVi and K^ denote the numbers, rj, r^ the remainders ob-

tained by dividing the sums of their digits by 9; then ri, r^ are

also the remainders when iVi, N^ are divided by 9 (Art. 141,

Cor. 1). Let g'l, q^ be the quotients.

Then -^i = %H-ri,

and N.,= ^q^ + r^;

^
= a multiple of 9 + r^r^.

•herefore the remainder, when 7-1^2 h divided hy 9, is the same
as when the product iVjiVa is divided by 9; and this is the same
as that obtained by dividing tiie sum of the digits by 9.

The above is called the ''liule for casting out the nines." It

will be observed that the rule fails to detect any error which
does not affect the sum of the digits in the result, or which
changes their sum by a multiple of 9.

EXERCISE XIV.

15
Ojt. Transform — from the common scale to radix fractions in

the scales of four, six, eight and twelve.

11 5 3
^^ 2. Transform — , --, — from the scale of six into ordinary

decimals.

f^ 3. Transform -15625 and -2083 from the common scale to

scale six.

nmls.
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.J,!""'""""
'''''''' ''"'" *"*> -'« <" "»*.,«,« »c.le of

6. What fractions are equivalent to -224 anrf -lilic' • *t
scales of twelve and eight respectively J

" '" *'"'

otli if"!!"',™'"
°'

:f
"" =™'V--; of -15 in scale ei^ht.of 91 in scale eleven; and of -(9724 in scale twelve

of se'J""'"™
"'"""' '™"" *•« -'e of eleven to the scale

». Transform «.. and le-lee from scale twelve to scale eleven.

^riL'rr'"'
'°^"" "''" S ^ --% oxprised by finite r«,i.

sent!d b;;'^;"'^
'^ '°'"'''' °' ^™"' '- oorrectjyj

• 13. Transform •111101011 fr/^T« +1. v ' ^

scale four ?

""^"^ ^^^^*^ ^"^"^^ b« required in A

aivisiLity o^:ieX7itr
"^ " '"""' " "" ^°' *"«

-l^"crd t;:;i:^f""'^
°' "-»•=- ^^ -« -nary

vfd lylddi't'Vr'b'^V;-^*?""''
""'' ''^ '"S"^ '- -

-Plenary stle
"^ ""'"« ".'""' t^-'^orming into the

to":J!:Z-TT '"'''7 '^.f- "' ^lenominator be reduced X
ceed;ither;(ri)r

;;"^r'
'""" ""* ^"""^ '^''"°' ''-^
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18. Prove that in every scale whose radix is greater than 8
the number represented by 1 1088 is divisible by that represented
by 12; that the first figure of the quotient is one less than the
radix; and that the last two digits are in every case the same.

^19. Prove that any number expressed by four digits in the
common scale is divisible by 7 providing the first and last digits
are equal, and the hundreds digit is twice the tens di«it

"^0. If a number in the common scale is divisible by 3, the
numbers expressed by the same digits in the scales of four, sLven
and thirteen are also divisible by 3.

21. In a scale whose radix is odd, any number and the sura of
its digits are both odd or both even.

22. If S, be the sum of the digits of a number, ^, expressedm the septenary scale^ and 2S^ the sum of the digits of 2JV ex-
pressed in the same scale, then the difference between S, and S
is a multiple of 3.

^

23. Prove that the squ.^re of rrrr in the scale of s is rrrqOOOl,
where q, r, s are any three consecutive integers. "^

24. In the scale of notation whose radix is r, ahow that the
number (r^- 1)(^- l), ^hen divided by r - 1, will give a quo-
tient with the same digits in the reverse order.

(I 25. If from any number expressed in the nonary scale is sub-
tracted the sum of every third digit beginning with the units
twice the sum of every third digit beginning with the tens, and
four times the sum of the remaining digits, the remainder i.
divisible by 7.

^6. Show that any number of six digits in the common scale
whose first and fourth, second and fifth, third and sixth digitl
are alike, is divisible by 7, 11 and 13.

27. A certain fraction is correctly represented by -21 in the
scale of X, by -27 in the scale of y, and by -5 in the scale of x+y
express the frn.of.inn as an ot./i;»,a-,. j„—•„- i x ^'^
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sClhe digits of a number are added, the digits of this sum
are add.d, and so on until the last sum is a single digit. If this
operation be performed upon several numbers, and then the same
operation upon the resulting single digits, the final result will bo
the same as that obtained by performing the same operation upon
the sum of the original numbers.

^^- ^^
(TTiyj ^ reduced to radix fractions in the s ale of r,

show that the period which repeats is composed of .ero followed
by the digits in order up to r - 1, omitting the digit r - 2.

.,30. If jy^ p,,p,..., be the digits of any number beginning
Vith the units, prova that the number is divisible (I) in thecommon scale by 8 iip, + 2p, + ip^ is divisible by 8: (2) in the
scale of twelve by 8 if 4p, +p, is divisible by 8; and by 2, 3 or 6
providing p, ,8 so divisible. Give similar tests for the divisibility
of numbers in the scale of twelve by sixteen, eighteen, twenty
four and seventy-two.

' j

31. If the digits of any number in the common scale be divided
mto groups of six digits each beginning with the units, and if the
digits in order of each group be multiplied by 1, 3, 2 6 4 5 re-
spectively, and the sum of the products bo subtracted from the
given number, the remainder will be divisible by 7. Give a/
similar theorem when 13 is substituted for 7.



CHAPTEK X.

SQUARE AND CUBE ROOTS, AND SURDS.

SQUARE ROOT OF NUMBERS.

144. Practical rules for the extraction of the square and cube
roots of numbers are given in all works on arithmetic, but the
reasoning employed, being algebraical, is not suitable for students
at that stage of their studies. We shall now, therefore, deduce
the reason for the ordinary rules for extracting the square and
cube roots from the methods given (Part I., Chapter XI.) for the
extraction of the corresponding roots of algebraical expressions.
Examples of whole numbers only have been given, but the princi-
ples are equally applicable to decimals.

145. The integral part of the square root of a number less
than 100 consists of otic digit; of a number between 100 and
10,000 consists of two digits; of a number between 10,000 and
1,000,000 consists of three digits, and so on. In other words,
the square root of a number consists of one, two, three, etc.,

digits, according as the number consists of one or two digits,

three or four digits, five or six digits, etc. If, then, we divide
the digits of the given number into groups of two digits each be-
ginning with the units, the number of groups will give the num-
ber of digits in the root. This gives us the highest power of 10
contained in the root, which, multiplied by the largest integer
whose square is not greater than the left-hand group, gives a first

approximation or is the first figure in the required root.
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146. Let JV denote a number whose square root is to be found,
and let a denote a first approxinmtion found by the last Art.]
and let x denote the remaining part of the root.

Then JV'= a»+ 2aar + ar' or JV- a" = 2ax + x\

from which equations the value of x must be found.

Now, neglecting x\ which is considerably less than lax, we get

•* = ~2a~* ^* ^» ^ *^® ^'*^* figure of the quotient, followed hy

the proper number of ciphers; add it to '^a, multiply the i-esult
by a?! and subtract from N-a^, and we get

N-a^- 2axi - ar,« or N-{a + x^f.

Denote a + x, by ai and the remaining part of the root by x^, and
proceed as before.

In practical work it will frequently be found that 2axi + xi' is
greater than JV - a''; in such cases a smaller integer than x^ must
be taken.

Ex.—Find the square root of 119025.

Dividing the digits into groups of two digits each we see that
the root ust contain three digits; and since the greatest integer
whose square is less than 11 (the left-hand group) is 3, therefore
300 is a first approximation.

Then 11 9025 = (300 + xf = 90000 + 600ar + x\

:. 600.r + ar2= 29025 or ar = 40;

then (600 + 40) x 40 = 25600; 29025 - 25600 = 3425.

Again, 680;ir + ar»= 3425 or ar=5,

*^^«" (680 + 5) X 5 = 3426,

which shows that 345 is the root required.
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The preceding work may be arranged thus:

300

300 X 2 = 600
40

640

340 X 2 = 680
5

685

11 90 25(300 + 40 + 5
9 00 00

2 90^5
2 56 00

. ~3r25
34 25

The student should compare the above with what precedes
then omit the zeros and arrange the work in the usual way al
below, and observe that the final operation is only a convenient
arrangement of the process first given.

3.

64

119025(345
. 9

. 290
256

685 3425
3425

147. When n + 1 figures of the square root of a number have
been found by the ordinary process, n more may be found by
dividing the last remainder by twice the root already found, tlie
whole root consisting of 2n + l figures.

Let a denote the part of the root already found, x the part to
be found, K the given number.

Then N^a-' + 2ax + x''-

therefore N-a'^ = 2ax + x^

and
2a

Now, iT- a^ is the last remainder, and this divided by 2a,
t.e., twice the mot already found, gives .r the part to be found

increased by ~, which we shall show to be less than unity.
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Now, a ' ontains n + 1 digits followed by n digits,

and X contains n digits, /. z< 10".

a>102";

Therefore
a;^

2a *^
2 (10)^"

1

which proves the proposition.

If the number is not a complete square the above demonstra-
tion fails. But the quotient obtained by this method in all cases
differs from the true root by less than a unit in the last digit; it
may therefore always be used for finding approximate values of
the roots of surds. Similar remarks apply to the theorems of
Arts. 151 and 152.

CUBE ROOT OF NUMBERS.

148. The integral part of the cube root of a number less than
1,000 consists of one digit; of a number between 1,000 and
1,000,000, of two digits, etc. Therefore the cube root of a num-
ber consisting of one, two or three digits, consists of one digit-
of a number consisting of four, five or six digits, consists of two'
digits, etc. If, then, we divide the digits of a given number
into groups of three digits each beginning with the units, the
number of groups will give the number of units in the root. This
gives us the highest power of 10 contained in the root, which,
multiplied by the largest integer whose cube is not greater than
the left-hand group, gives a first approximation to the required
root.

11

149. Let JV denote a number whose cube root is to be found,
and let a be the part found as above, and let x be the remaininc^
part of the root.

°

Then Ji^a^+ Sa^x + Sax^ + x",

= {:ia? + ^ux + x:^)x.

or
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'f !

I'

I- ii

NoglootmK tho tonus 3...'^ + ^' which are less th.ui .'Ja'^.r. wo
got .r = --^^^ -

.
T^t .r, 1,0 tho first figure of tho quotient, followed

by the proper number of ciphers; substitute it for x in tho ex-
pression, (M.^'.r + 3..r + .r^).r, and subtract it from the In^t re-
nuunder, viz iT-a^ giving ir-(a + ..)'; for « + .r, write .„ and
proceed as Ix^foro until there is no remainder, or until the root
h,is be«,n found to tho required degree of accuracy

Should the numerical value of (3«^ + 3«^, + ^r)'". be gimter
than JY- a, an integer smaller than u:, must bo taken.

150. In practical work the tedious part of the operation con-
sist! in calculating tho values of tho trial divisors, 3a\ 3« ^ etc
and of the co.nplote divisors, Sa'+3ax + x^, etc. By properlv
arranging the work their values may be calculated in succession
the value of each being used in finding the value of the followin.^
one. The method will be evident f,x,m the arrangement of the
quantities in the two columns below. The first approximation
to the root IS det.oted by «, and tho successive additions to it by
f>, c, etc., which for distinctness may bo called quotients

First Column.

3(1,

3a + h,

3« + 2A,

3(<i + ft) + c,

3(<f + h) + 2r,

3(rt + h + (•) + J,

Second Column.

3a\

3{a + b)\

^<i + hy + 3{a + h)c + c\

In the above observe

:

(1) The successive quotients. «, b, c, etc., are found by dividing
the successive remainders by the trial divisors, 3<,^, 3{a + ff, etct
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(2) The successive quantities in the first colunm are formed by
adding A, h, h + G, c,c + <l, d, d+ e, etc, each quotient being added
tlireo times.

(3) Each quantity in the second column is formed by multiply-
ing the corresponding quantity iu the first colum.i by the last
(juotumt, and adding the result to the preceding quantity in the
second column.

Ux.—Extract the cube root of 12288010U82976.

1 228801 0982!')7()(2.'U)7r)

_8_
6 12 "4288
63 1389 4167

66 1587 T2 1010982
6907 15918349 111428443
G914 15966747 "9582539976
69216 159708999G .... 9582539976

Explanation.—The digits of the given number are divided
into groups of three figures each for reasons already explained.
The greatest integer whoso cube is not greater than 12 (the group
on the left) is 2; therefore 2 is the first figure of the root. Cub-
ing 2, subtracting from 12, and bringing down the next period,
we have 4288 the first remainder. Three times 2 gives 6, the
first number in the first column; multiplying the 6 by 2 we get
12, the first number of the second column and the first trial
divisor. Rejecting the list two figures, 88, of the remainder we
got 3 for quotient, tlio second figure of tho root. The various
succeeding num})ers in tho two columns correspond exactly to
tlie algebraical quantities in the columns formerly given, the let-
ters (^ h, c, d being replaced by 20000, 3000, 70, 6, the ciphers
being omitted for brevity. The student should write out tho
work in full, then remove tho ciphers, when the remaining figures
will bn ff)"prl +- K^ xl -•

1 ., . . .
^

;••' " ^^ ^-^ ''""s^ given above, thus siiowing tho reason
for tho given arrangement.

M
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151. Wfien n + 2figures of the cube root of a number hav3 been

founa bv the ordinary process^ then the inteyral part of the quo-
tient obtained by dividing the last remainder by three times the

square of the root alreadyfound toill be the remaining part of the

root required, the whole root consisting of 2n + 2 figures.

Let N be tho given number, a the part of the root found, x the
part to be found.

Then

and

Now,

and

N={a + xf

JV"-a3 = 3a2ar + 3ax2 + r',

N-
3f

a^ .r-/3a+*a-\

3a + .r 4
,—^—<- because .r< a,

6a 3

x'—

<

(10)-" 1

<T7..a (10)2«+i 10

since x contains n digits and a contains 2n + 2 digits.

Therefore — I
—

-

a\ 3f

+ x\~—
1 is less than a unit, and x, the integral

part of the quotient, is the root required.

152. Wlien n figures of the cube root of a given number have

beenfoimd by the ordinary process, 2{n-l) more figures may be

obtained by dividing tJie product of the last remainder and the

part alreadyfound by the sum of tJie given number and twice tim

cube oftJie root alreadyfound.

With the notation of tho previous Art. we have

iN'-a^)a _ (3</.^a; + 3ax^-f r')«
= a:jl-

iV+2rt=' ]'
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Therefore, if we take ^-^—!-^ instead of the true value, x, we

make an error of ~^~ f/

JV+ 2a^

Now,

therefore

N'>a^ and «>.r;

x\2a + x) .r"(2a + a:) x^

N+ 2«3 3a= a'

If « contains n digits and a,- contains r digits,

*^en «>(10)»+'-i and ar<(10)'-.

Therefore
arJ

-^<-
(10)

,3/-

(10)'

«^'^(10)-<"+''-i''^(10)2("^i)*

And the error is less than a unit if r is not greater tlian 2(n - 1).

NoTE.-In practical work a" is found afc onco by subtracting ,ho last re-niainder from the given number.

-fi'a;.—To find the cube root of 7.

By the ordinary method we find the first tliree figures to be
1-91, and the remainder, -032129.

Then

and

Therefore

«3= 7 _.032129 = 6-967871,

-032129x1-91

7 + 2(6-967871)
'"'^^^^^^'

^7"= 1-912931.

SURDS.

153. The most important properties of surds have already been
explained (Part I., Chapter XIIL); we now discuss a few more
complicat<?d examples, chiefly in counectiou with the extraction
of the square and cube roots of surd expressions.
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154. The square root of the sum of two quadratic surds may
sometimes be expressed as the sum of two fourth roots.

For the expression s/a\ + \/ b may be written

and if a^ is a perfect square, the root of this quantity may

be expressed in the form

V^7(a;-f a/^) or ^cx^+ ^^\

Ex. Find the square root of /27 + VM.
» _ _

V2I + V2i = a/ 3(3 + 2 \/ 2) W-6{ v'¥+ 1 )\

Therefore \^^V^+\)= V^l2+ v/3 is the root required.

155. The square of the sum of three surds consists of four

terms, viz., a rational quantity and three surds. Hence we may
sometimes find the square root of a quantity of the form

a+ V~b+ V'c+ VJ.

Assume ^ a+ Vb+ \/ c+ V'd= V x + V 1/+ V z.

Squaring,

a + V'h+ V c+ Vd = x + i/ + z + '2 V^ + 2 V' y^ + 2 Vzx.

If, then, values for or, y, z can be found such that

2 s/'xj/= VJ, 2 \/~ip = Vc] 2 ^/Tx = s/7l]

and if the A'alues thus found also satisfy x + y + z = a, we shall

evidently have the root required,
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^a;.—Extract the square root of 12 - 4 a/s"- 2 a/T5 + 4 a/ 5".

Assume ^12 - 4 a/3 - 2 vtE + Wjr= Vx_ -/"+ ^~
then

12-4A/3-2Vl5 + 4v/5=^ + y + ^_2i/^y_2A/^ + 2v'zT.

Put 2v/^ = 4V3, 2a/^=2a/I5, 2 a/^:^ == 4 a/ 5,

°' -^^=12, 2/^=15, ;,^ = 20,

from which we easily get x = 4, y = 3,^= 5 ;_and these values also
satisfy x + y + z =12, therefore 2 - V' 3 + i/ 5 is the root required.

156. In the preceding Art., if the values found for ar, y, ;;; do
not satisfy the equation, x + '>/ + z==a, it would be erroneous to
infer that the given expression has no square root. The correct
inference is that it has not a square root of the assumed form;
it may have a root of a_different form^ For example, consider
•he expression, 12 + 8V'2 + 6\/3h-4a/6.

Proceeding as before we obtain the equations,

2a/^ = 8v/2; 2a/^ = 6a/3, 2\/'^ = 4V6,

which are satisfied by :r = 5^, y = 6, « = 4^. But these values do
not satisfy x + i/ + z=l2, therefore the_square root of the given
expressions is not of tjie form Vx+ Vy^-V^. The correct root
IS 1 + \/2+ '/3+ \/6; but no direct process can be given for
obtaining the root in such cases. It will be instructive for the
student to write out the square of each of the expressions,

x+Vy+ V7+ V^z, \^7+ \/y+ \/z~+ V^,
m+ Vxy+ Vyz+ Vzx,

and to observe that the result in each case is of the same form
as that of the preceding Art. But if we attempt to obtain the
root of a numerical example by using any one of these results,
we shall find the resulting equations too difficult for solution.

10
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lif

2/-
157. J/ ^a-^ V~h = x+ Vy, then will ^ a- V'l=.t-V

For by cubing we obtain

a+ \^ b = x^ + ^x^Vy+ 'dxy + yVy.

Equating the rational, and also the irrational, parts, we Iiave

a = x^ + ^xy, V b = Zx'^V y + yV^.

Therefore a - V'b = x^ - 3x^ V y + Sxy-y^y,

or '^a-Vlt^x- Vl/.

Similarly it may be shown that if

^ «+ \/6 =a;+ A/y, then ^

where n is any positive integer.

a- V h-x- Vy,

158. To extract t/te cube root ofa binomial quadratio snrd.

Since {x^ ^^f = x?^- 2>xy + (3.r- + y) V y,

and {Vlc+V]/f = {x + 3y) ^/x + {y + 3x) V y,

we see that the cube of a binomial quadratic surd is a quadratic
surd of the same form. We therefore reduce the given surd to

its simplest form, and assume its root to be a similar surd.

1. If one term be rational

Assume

Then

therefore

^«+ 7iVb = x-\-ys/b.

y rr
^ a - nVb^x — yVb^

\^a''-n'b = x^-by\

Cubing (1), and equating the rational parts, we get

x{x'+Uy'') = a.

and from (2), x"^ - by^ = c,

(1)

Art. 157

(2)

(3)

(4)

where, (^ = a'^-n^b.
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2. If both terms be surds:

Then, as before, x(ax^ + Si?/^) = „i,

where
c-'' = m-a - n-h.

(6)

Now, If the ongznal surd is an exact cube, and its coefficients
a e positive integers . and y must also be positive integers, and

3 equal to an integral quantity. If the coefficients are not in-
tegral they may be made integral by multiplying through by the

thiTLtor ' *^'
'""*' """'^ ^' "^^"^^^"^ ^y *^" ^°°<^ «^

The values of ;. and y must be found from (3) and (4), or from
(5) and (G), by trial

; but since they are positive integert, in mo tcases this may easily be done. The numerical examples which
follow show the best method of proceeding.

I^x. 1.—Find the cube root of 207 + 94 V'h.

^207 + 94 VT = ^.+yv/5:
Assume

Then

from which

or

and

^207 - 9475 = a: -y ^5,

.f2 _ 5y2 _ ^^'(207735(947,

(1)

(2)
4^2+15^2)^207

From {llx-^t^y^-. U. Giving y the values 1, 2, etc., in suc-
cession we find 2,= 2, .. = 3_satisfies this equation and alL equa-
tion (2); therefore 3 + 2 V' 5 is the root required.

Bx. ^.—Find the cube root of 921.7 - 4122 VJ.

The equations are

:

x"-5y'^-n,
.r(.f=+15/) = 9217.

(1)

(2)
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The values y« 2, x = 3 satisfy (1) as before, but do not satisfy

(2). Giving y the values 3, 4, etc., wo find y = 6 gives a com-

plete square, 169, for the value of x-; therefore 13 - 6 a/ 5^
is the

root required.

Bx. ;?.—Extract the cube root of 430 \^~2+ 324 \/
"3.

Assume ^430V'2+324\/¥ = a?A/¥ + yV'3'.

Then ^430^/2 -324 a/"3 =a; V'2 -y v^S,

therefore 2;r» - 3^^ = v" (430 v"ty^32iV3)-

aud

= 38,

.r(2;c^+V) = 430.

Giving y the values 1, 2, etc., until an integral value is also

obtained^or r, we find y = 2, a; = 5 sa^'sfies both equations; there-

fore 5 V^ 2 + 2 V 3 is the root required.

159. The student's progress in many parts of mathematics,

especially in the solution of equations and in Trigonometry, will

be much facilitated by a thorough knowledge of surds. We
therefore give a large collection, chiefly selected from examples
which have presented themselves in practical work.

EXISROISE XV.

3
1. Find the square root of 10, - and 3-1415926536, each to

ten decimal places.

2. Find the cube root of 2, -2 and 1-9098593172, each to ten

significant figures.

3. Find the value of -'^10 + 2 a/ 5 and of ^_\ each
^ 2a/2

seven places of decimals.

to
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4. Find the square root of

8 V'
2 +

2

a/30, 7v/'3-12 -1
V2"

aiitl nVm~2mVn-

f). Find the square root of

16-2V2(>-2v^28+^l40andof40+12v/6+8l/T0 + 6v/T5.

6. Find the square root of

21+3V'8-6i/3 -61/7-/24- 1/56 + 21/21.

7. Extract the cube root of

7 + 5V'2, 72-321/5 and 1351/3-871/6.

8. Simplify {1351-780v/3'}*-{26 + 15i/3}~^.

9. Divide

V3 + 3 by 31/3 + 5 and .r-;r' + 2ar VTT^ by 1 +a-- 1/!^..

10. Simplify (.r- 1 + Vl){x- 1 - 1/ 2)(ar + 2 + 1/ 3)(.r + 2 - 1/3).

11. Simplify li:^^ + (lz.^^:lKLt5J^

12. Simplify

{Vb+ V^3+ 1/2"+ 1)2 + (1/5+ V3_ y/g"- 1)2

+ (v/5- 1/3+ 1/2- 1)2 + (1/5'- i/y- 1/2 + 1)2.

T? -p (
^3"+ 1/ 5)( V' 5"+ 1/

2"-)

tion with a rational denominator.

V'S + I
14. Show that -;_-^__- = (^2+^3X/2-l).

15. Simplify 1-
x^+f
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16. Simplify ^ 2 ^ 2 V^ 2 X ^ 2 v' 2 i/ 2 -h
^ 2 ^^iTf.

17. Show that ^'S+V5- ^5- V'b = {8-2 ^10 + 2 Vb) *

18. Find the continued product of the six factors,

x""-
^ 3 + 1 ^ v" 3 - 1

ar+l, .^2 T^-x+\, 3-'' + .rV'2+l,
V'i

.r' - ar v/ 2 + 1

v/2

ar+1, a;2 + -^x+\.x'^-\

V2 '

a/ 2

19. Multiply ar2-(i?'2-l)a:+ v'I+^2+1 by ar+^2"-l.

20. Divide 2.c3-6ar + 5 by a'^^^- v'l+l.

2^2TvT21. Simplify

22. Simplify

^3 - >/

,

and
^/2+ ^7-3\/5 4- '^6-4-v/2

(48^ + ^v/T5)^ + (48^_^^15)i

a/ 20

23. Show that ^«2 ^ ^^4^,2+ v'/^a ^ v'(7Z* = (a§ + i§)^

24. Simplify
^16 -QV7
VZ + ^1

^and2v'24v^l8-^?. ^2 l/l2.

25. Find the value of ar* - 3 f 2 x when ar =— it^

26. Find the value of x'+Sqx when

27. Simplify (1 + \/ 2 - v/3) ^"^TTf - 2J2 - -^ti
^ v" 2
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28. Simplify

143

A'G-15v/3
(1/2 + ^3)(v/3> ^6)(v^6 + v/2) "^'5^0: ^I^THTI

*

29. Show that

[ i )
=64|2ViO-2v'5- ^10 + 21/5}.

30. Extract the cube root of dah"^ + (h- + 2U^) Vf^^sl?.

2+V3 2-i/331. Show that :^ +
^^2+ ^2 + V'6 a/2 - ^2

.= v^2.

vs

32. Show that ( a/ 3 + V2 -1)^2 + V2=2J2 \

^^+^

IOa/2
33. Find the value of

V2

a/18- ^"3+ a/5 a/8+ v'3- a/5

to

five places of decimals.

34. Show that

\2 a/2 + A/3 + 1/ \2v'2+ A/3-1/
difference of two simple surds.

36. Simplify >

(^3 + a/2- 1)^2 + a/2 _, v^FiF- -^^^15625

2^4 + a/6 + a/2

37. Find the value of

and
^270 + v'33-75

2P9

o7~7Tn (^ a; 4- A/ a;) when ar= (

2{a- + b')^ ^ \a-bj
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CHAPTEK XI.

IMAGINARY QUANTITIES.

160. From the meaning given to Multiplication the product of

two equal factors has been shown to be essentially positive, and
the square rr .t of an algebraical expression has been defined to
be one of two equal factors whose product is the given expres-
sion; from which it follows that to speak of the square root of a
negative quantity is a contradiction of terms, and is therefore an
absurdity. For this reason the terms, " impossible," " imaginary,"
"not real," have been applied to symbols denoting such contra-

dictory operations. When, however, the proper meaning is at-

tached to the symbol V -I, which may be taken as the repre-

sentative of all the so-called imaginary expressions, it becomes
quite as real and intelligible as any other symbol whatever. But
the words "imaginary," etc., are too firmly fixed in the language
of mathematics to be changed, and this is the necessary and sufli-

cient reason for their being retained.

It is customary in mathematical works to assume that ima^^in-

ary quantities are subject to all the operations of elementary
algebra without assigning any intelligible meaning to either the
symbols of quantity or the operations performed upon them; and
this course was adopted in the brief treatment given in Part I.

"We shall now give a rigorous investigation of the truth of what
was there assumed, according to the meaning which we shall

assign to t!ie symbols of imaginary quantities and the operations
to be performed upon and by them.

1C1. When a quantity is multiplied by a negative number dif-

ferent from unity, two distinct operations are performed: (1) the
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magnitude is increased or diminished, and (2) its relation to some
other quantity is changed, i.e., it is changed from positvve to nega-
Uve or v^ce versa. For the present leaving out the numerical
value and taking - 1 for our multiplier, let us carefully examine
Its effect. By multiplying by - 1, a number denoting cash in
hand or money due to me is transformed into a number denotin<.
a debt due fiy me; a number denoting time reckoned after a given
event into a number denoting time preceding that event; and a
number denoting a distance measured in one direction into a
number denoting an equal distance in the opposite direction
Now the question arises, Is it intelligible to speak of performing
a part of any one of these operations ? or, in other words, Is there
any mtermediate stage between positive and negative ? In the case
of distance and direction there is; in all other cases there is not-
consequently i/ - 1 has an intelligible meaning when applied to
space, but IS unintelligible in connection with any other kind of
quantity.

J^^"«^^*
^^^^ ^^ ^ '''''^^' "^"^^"^ "• ^"^^ ^^^ diameters

AUG, BOD at right angles to each other; then if OA be denoted
by +a, OG will be correctly repre-

sented by -a; therefore OA multi-
plied by -1 becomes OG. In the
process of changing OA into OG, con-
ceive that OA revolves around 0,
through the semicircle ABG, and con-
sequently passes through the position
OB. Now, distance measured in direc-

tion OB is neither positive nor nega-
tive, it is the intermediate stage re-

ferred to in the last Art. To turn OA through a right angle
into the position OB is to perform half the operation of multi-
plymg It by - 1; for if the operation be repeated upon OB the
result is OG, which is the result obtained by multiplying OA
by - i. Now, to multiply twice by the square root of a number
gives the same result as to multiply once by the number; there-

1
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I

fore, as a multiplier, the square root of a number bears the same
relation to the number itself as the operation of turning a line
through one right angle bears to the operation of turning it
through iioo right angles, which is equivalent to multiplying it
by - 1. For this reason it is convenient (and reasonable) to
define V - 1 to be the symbol of the operation of turning a line
f. Jm its original position through one right angle.

163. The operations symbolized by V~^ may be performed
upon the result of a previous operation of the same kind, thus:

a/^ . OA = OB, -v/TTI
. OB = OC,

V~
, OC= OD, V~^\. . OD = OA, etc.

If, now, we denote one of these quantities, OA, by a, and the
number of operations performed upon it by an exponent affixed
to the operator, we shail have the following results:

OB=^~I~\,OA=. ^^l.a-,

OC = -/TT. OB=.^^—lY,a^ -a, since 0C= - OA;

= - V ~ I . a, since OD = - OB;
OD V -\.0C ={V -If a

OA = V-\.OD^{V -\y.a^+a.

Since (a/^)*. « = «, the symbol {V^^ in connection with
any quantity may be introduced or omitted any number of times
without producing any change whatever. This principle enables
us to give_at once the result of any number of such operations
Thus

(
V - If. a = a, V-l.a, -a,ov - -/—

. „, according as
n, when divided by 4, gives 0. 1, 2 or 3 for remainder.

164. It should be observed that it would have been equally
correct to assume that V^ - 1 as an operator turns a line in a
direction opposite to that which we have chosen. Had this been
done the symbols representing OD and OB would simply have
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been interchanged. Tl.e direction chosen, as in the case of ordinary pos.fve and negative quantities, is Jf no conseZcf wwhen once chosen it must be rigidly adhered to tl,2 1, /

frf:t'r ""^ -**• *"" ^^-- --^^^ -^^^^^^

165. Since V~ i, the .y»bol o£ an operation, it can have nomeanrng except when taken in connection with a quantityII
operation, it is also without meaning when standing alone But

to speak ofj/ - 1 aa a multiplier or factor, of (y-rT)" as ^power of V - 1, andof the operations symbolized as mu tipHc^t.on. Again, a. V - l.a denotes a line . units in length dr w„ma parfcu ar direction, so V~i.^ should be written to deltea hne 1 unit xn length drawn in the same direction; burtheT salways omitted, and V -U. written either as a symbol of Irl
one unit, „

.
V - Hs written to denote a units of the same kind •

so that when V-1 stands first it denotes an operation to h.'

Hntruti? t' ^°r;-'""r'''"
'' ^'-"^ .arttdTnoTes":tad of unit. This distinction, however, is not always observed-nee a change from one inteirretation to another is frequl Ivmade .n he same problem; but since both interpretatiZTl'to the same result, no confusion ensues. For brevity and convenience of printing the symbol V~ is replaced by the letter"

:t:irJr^cKr ^'"' ''-' --»<" ^-^^^

V- "V ° -..ai;z.ua to a V - 1, or aL as a symbol ofiuantuy determines the meaning to be attached to it asSymbol
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of operation. To multiply a quantity is to substitute it for the
unit in the multiplier. Now, ai indicates that a unit in length
has been repeated a times and the result rotated through a right
angle; therefore when these operations have been performed upon
any quantity denoting a line, we say it has been multiplied by ai.

It is important to observe that the wder in which these two opera-
tions are performed does not affect the result.

Thus hxai= abxi= bi x a ^ abi= iab,

bi X ai= abi xi= b{{f x a = ab{if = _ ai, etc.

The product of any number of such factors depends only upon
their numerical values and the number of rotations indicated by
the operator i.

I

I

167. Since ai^aj = _ a\ therefore V -a'^ai-, similarly,
y-2=V2. v-1, etc., so that i is the only necessary symbol
of imaginary expressions. But in this connection one point re-
quires careful attention:

When a and b denote positive quantities, V~^ x Vb = Vol;
but this is not true when a and b are negative. For example,'

:6(\/-l)2=_6; Art. 166
l/-4x v/-9 = 2a/-1x3 \/TT

but the rule just quoted gives

a/ - 4 X V'To = \/-4x -9 = l/36 = 6,

which is not^true._ The explanation is found in the fact that the
formula VaxVb = Vab asserts that the operations of multipli-
cation and the extraction of the^square root obey the law of com-
mutation (Art. 3, 3), but V-i does not indicate the extraction
of the square root of-i (Arts. 160 and 162); therefore there is
no reason why these symbols should obey the specified law.

168. The meaning of division by an imaginary quantity is de-
rived from that of multiplication in the usual way—by defining
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the quotient to be that quantity which, when multiplied by the
divisor, will give the dividend as product.

Thus, since OA x V-1 = 0£, .-. OB-ir V~-i = OA; Art. 163

that is, the effect of i/ - 1 as a divisor is to turn a line back-
wards, i.e., m the negative direction through a right angle. We
see, therefore, that V - l_a3_a divisor is equivalent to - V^Tl
as a multiplier, or that v/ - 1 and - a/ - 1, which, as quaniities,
denote opposition in direction, as operators, denote the reciprocals
of each other.

169. The following is a concise statement of the results thus
far obtained

:

1. An Imaginary Unit, as a qtiantity, denotes a line of unit
length drawn at right angles to a given fixed line; as a multi-
pher it turns aline through a right angle. In either case it is
denoted by V - 1.

2. An Imaginary Quantity is a number of imaginary units
taken either positively or negatively; it is denoted by either
V -l.a or aV-1, where a may have any numerical value,
either positive or negative. The same symbols are also used to
denote operations.

3. As a quantity, ±aV~ consists of three elements-the
number a, which denotes distance; the symbol VIT, which de-
notes perpendicularity; and the sign + or - , which distin-
guishes the two directions along this perpendicular.

4. Imaginary quantities can be added or subtracted in the
same way as positive or negative quantities, since they are meas-
ured m opposite directions on the same straight line.

5. Imaginary quantities can be multiplied (or divided) by
° ""—£1 " \-^ q<-tOi;it:n i.y ui uio real ractors with the

factors, 1, V -
1, - 1, or - 1/ - 1, according as the number of
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1. ?

1 ;

1 i

iiMajj;inrtry fiu'tors, whni dividod l.y 1, givon 0, 1, 2 or 3 for ro-
inaiiulor. Iina;i(inaiy iinil.s, as (Hvisoi-M, may (whoii nocosaary)
1)0 tuniod int.) iho oqulvalont inultipliora Art. 1(>8.

0. Siiico imaijitiary miinhors and n>a.l numluM-s donoto distances
(voux a HximI point, along two Vmrn at right anghvs to each other,
an iniaginary nundun-^can novcr bo oquivalont to a roal number.
If, thoi-oforo, a + 6 1/ - 1 X. 0, thon n and b must separately vaniali.

COMPLEX NUMBERS.

170. AVo hav»> now assigned an int(>lligil)hi meaning to imagin-
ary quantities, and have shown that, with this nuviuing, two such
quantities may bo addcnl or subtracted in the same way as real
quantities. Wo have also assigned a nuvining to the operations
ol -MiUiplieatioa and division of two quantities, providing any
qu^' uty is wholly real or wholly imaginary. It remains to do-
ternuno what nu\vning should bo attached to tho sum of a real
and ai\ inuigiiuiry quantity, ami to tho operations of nuiltiplica-
tiou and division with such combinations, in order that tho whole
nuiy be in harmony with the definitions ami rules of Elementary
Algt>b.-jv, and with what has already been dotormiued with regard
to pure imaginaries.

171. A Complex Number is tho sum of a real and an
imaginary nundnM'. Its general foiin is a + il,^ where a and b
may have any numoric^il value, positive or negative, i.e., a and b
n\ay l)0 any (piantities which do not involve tho imaginary sym-
Ih>1 i.

The exact meaning of tho word "sum" should bo noted, both
when it refei-s to quantities (actual qmuitities, not to their repre-
sentativ.) symln^ls) and to algebraic expressions. Tho sum of two
quantities is the quantity formed by combining tho given quanti-
ties. Tlie sum of two algebmical expressions is tho combination
of syml)ols which convctly ,.op.nv.ont3 tho quantity formed by
combining tho qu;uitities represented by the given expressions.

if

A

I
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172. To r^presrut the sum ofa real and an hnaghu^ry number,
t.c, a annplex number. '

Other. Ixit mil numbers ho meas-
urod from (? in diroctious OX ov
0A'\ nccordiiig as thoy aro posi-

tivooriiogativo; thou imaginary
imm1)crs must be moasurod indi-
rections or or or, according as
the sign of the real factor is posi-
tive or negative. From tiike

CM in direction O^and a units
in length; from M take MP, in direction OF and i units in
o.^th; then ^1/ and 3fP, are correctly represented in magni-
tude and direction by -|-. and +ib respectively. Now, the re-
sult of a motion from to M, followed by (or plus) a motion from
Ji to J „ IS the same as a motion from to P,; therefore with
this extension of the meaning of the sign -f. OP, is the correct
representative, both in magnitude and direction, of the complex
number a + ih.

^

Similarly 0P,=. -a + ib, 0P,= -a-ib, OP, = a-ib.
It IS evident that the point /', might be reached by first meas-unng i units in direction OV, and then a units in direction OX

liierefore a + tb = ib + a.

H ^^^;^vf''' ^r^^^ ^''^- «J^«"ld be carefully compared with
tlie addition of positive and negative numbers (Part I., Art. 34)To add a positive units and b negative unit, we measure a units
in the positive direction, and from the extremity of this line
me^isure i units in the negative direction. The distance and
drrectran of the extremity of the latter line is taken for the sum
of the two numbers; and this is precisely the metliod adopted in
the preceding Art. In both cases the sum nf f.I,« L.^rfjJ^f .i-_

two lines added is greater than tlie length of the line'^taken for
their sum; but in both cases direction as well as length is con-
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sidered in the addition, and it is this element which causes the
difference.

174. The Modulus of a complex number, a + ih, is the posi-
tive value of Vd^^b^ which may be considered the absolute, or
numerical, value of the expression. It will be observed that it
represents the length of the line OP, without regard to direction •

so thatifa circle be described from as centre, with radius equal
to Vd'+b\ an indefinite number of complex numbers may be
represented, each of which has the same modulus, viz., the radius
of the circle.

175. The Argument of a complex number is the angle through
which the line of positive, real units must be rotated to corre-
spond with the line denoting the complex number; its magnitude
18 determined by the signs of a and h, together with their relative
numerical value. The four numbers, a + *A -a + t'6 -a-ib
a-ib represented by OP,, OP,, OP,, OP,, have each the same
modulus, but different arguments. Sometimes it is convenient
to consider the argument negative. Thus the argument of a - ib
IS the acute angle MOP, taken negatively; for a rotation through
this angle in the negative direction gives the same result as a rota-
tion through the corresponding reflex angle in the positive direc-
tion.

176. Tofind the sum of two complex
numbers.

Let a + ib and c + id be the given
numbers.

Draw the lines, OA, AB, BC, CD,
representing the numbers, a, ib, c, id, in

magnitude and direction, and join the ^
various :>oints as indicated in the figure.

Then OE=a + c, ED = b + d,

and OB = a + ib, BD = c + id

Therefore OI) = OE + i.ED

Geometrically

Art 173

{a + c) + i{b-\-d).
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Now, with the extended .neaning given to addition (Art. 173),

OB + BD^OD.
Therefore

(. + ,7.) + (c + uT) = OB + BD

=-{<^ + c) + i{h + d),

1. The result of combining the four numbers a ih c ,V/
'

independent of the order in which they are talen 1 t1
'

"
bols obey the Commutative Law. ' '" *^*' '^"^

2. The numbers may be combined singly or in ^rroun. / ..obey the Distributive Law. ^ ^ ' •'•' ^^'^^

it Llf' r'""f
'^ ^"btraction and the method of performing

*um of the two numbers vould equal the suui or difference of

:"r„:irte^7:t:r °^ - -" ^ -- *^«--
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II

But

Thou

IJ

178. To find thfi product of a cmnpUn numher, (/) htj a rml
number; (;!') hi/ an imatjltuirt/ immlmr.

1. Lot it 1m> requiivd to multiply fk
tlio cou»j)l<ix iiMinlHir a + ib by tho
roal nutnlicr n..

Draw OH ropj-oaonting a + ih. »

Tako OD-n.OJi', thou 07) rei)ro-

sonta tlio result nujuired. Through l^L
T> draw PC parallel to JiA, meeting ^
OA i)rodueed in C; then from similar triangles, OAB, OCD, wo
luivo

OB'.OAxAB^OD'.OC'. CD. Kuc. YI. 4

OD^n.On, .'. 0C^7i.0A and CD^n.AJi.
n{a + if,) -^ n . OJJ ^ OD

= OC+CJ) Art. 172

= na + inh.

2. Let it 1)0 required to multiply the complex number a + ih
by the imaginary number in.

Turn OD through a right angle into position OE-, then OE
represents i

.
n{a + ih) (Art. 1G2). Draw EF at right angles to

CO produced; then the triangles ODC and EOF &ve geometric-
ally o(iual, and CD = F and OC = FE. But considering direc-
tion as well as length, OF^ - nh and FE-^ ina.

Therefore tu {a + ih) -^i.OD-^OE

= OF+FE Art. 172

== — nh + ina

= ina — nh.

Thus both those openitions obey tho Distributive Law.

179. The meaning attached to « + ih as a quantity, in connec-
tion with the definition of Multiplication, determines the mean-
ing of a + ih as a multiplier; for the quantity a + ih is formed
by adiiing two lines, the first of which is draw.i in the direction

l\
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o tho or.g.Mal u.Mt and a times its length, nncl the second drawnat nghfc angles to ita extrenuty and b units in length. If then
tins operation bo perfonned upon any lino (since any lino ^ay b^considered a unit\ it is said to be nmltipHed by « + ih

It w.ll bo observed that this operation turns tho lino multiplied

180. Tojind thei>roduct of two camphx numbers.

Let it bo required to multiply a + ib by m + in.

Draw the lino representing a + ii; then from the n.naning ofmultiplication by a complex number we have

{m + in){a + .7,) = m{a + ih) + in{a + ib) Art. 179
= rna + imb + ina-nb Art. 178
= ma -nb + {(mb + n«), Art. 176

which proves tlio Distributive Law when both numbers are com-pex The student should draw the diagram corresponding tothi operation, when it will be found that an independent geo-metrical proof may easily be given.
^

^

Similarly it may easily be shown that the Commutative LawIS applicable m this and the preceding cases of multiplication.

181 The modulus of the product of tu,o complex numbers uequal to the product of their moduli, and the aryun^nt of the j^o-d^txs equal to the Slim of thei^ arguments.

From the product given in the previous Art. we have
{ma - nhf + (rub + naf= ni\t^ - 2mnab + nW

+ m%^ - 2mnab + n'^b^

which proves the first part of the proposition. The second parts at once evident from the meaning assigned to multiplicatronhy a complex number (Art. 179).
^ ^^f^on
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1

it

;

182. TIm modnluH of tJie quotient of two comph'.r, numbers is

equal to the quotient of tlw.ir moduli, and the anjument of the quo-
tient is equal to the difference of their anjmmnts.

The truth of tliis proj)08iti«)ii follows from tho i)roco(15ng hy
observing that tho product of tho divisor and <iuotit)nt must givo
tho dividend.

183. Two complex iiumhors which difFor only in tlm nigu of
tho imaginary part are said to bo conjugate to each other.
Thus « + ib and a ~ ib are conjugate complex numbers.
The modulus of a complex numb(!r is evidently equal to that

of its conjugate. Their angles are also equal, but they lie on
opposite sides of tho line on which the real units are reckoniid.

The sum and tho product of two conjugato complex numbers
are each I'cal.

For

and
{,1 + ib) + {a - ib) = 2(«,

{t + ib)x{a-ib)=.a^-.iVfl

= a- + b:

Tho reader should illustrate these operations l»y a diagram.

184. A complex number vanishes when tho real and the imag-
inary parts separately vanish ; and conversely, if a complex num-
ber vanishes, the real and the imaginary parts must separately
vanish. I^oth sHtements aie at once evident from the diagram
representing a complex number. They are also evident from the
symbols, since if a = and A = 0, then a + ib = 0. And if « + ib = 0,

then a = - ib, a real number equal to an imaginary number, which
is impossible (Art. 169, G).

185. If two complex numbers are equal, their real and their

inuKjinary parts are separately eqtial.

For if a + {f,^c + id,

then a-c + i(b - </) = 0,

which is impossible unless a-c and b-d are each zero (Art.

169, 6).
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po...t (/ ,) arc thoinselvoa fixed and unchangeable.

« + .»><• X ami redum the remit U, tl«,f,ma I'+M then /• in
.» tlie remit o/„d„tU,Uing a - ib.

'^
For since P is real, it can involve only even powers of ib andmce ,0 .s u„ag,nary, it ^„ i„voIve only «« powers of .7 The™

out J will remain unchanged.

C«--If P=o and = 0, then ^ -(« + «) i, a «,ctor of thepvon function, and consequently . - (,;_ ,,) is also a ttor

187 It will now be instructive to briefly review the cour» ofreasoning already given in connection with imaginary oultmetThe meaning first aligned to the symbol •ri^niade" aTymW
nght angle; then m connection with a numerical factor we made

use as an operator. Having fixed its meaning, both as a "mWo operation and a symbol of quantity, we examined the Tutoof combining the quantities it represents with those repre entldby other symbols, and tr.aced the connection between i^T^t.ons performed on the quantities themselves and the symSoperations by which they might conveniently be represented

J wT:T "' "'.'^ ""^'' "' '^""S "" "' re-
lished Id !*'• '""™*'°.'" <" ^''"^"'^^y A'ge"--- estab-iished, and smce imaginaries, both when taken alone and whencombined with other quantities, have been shown to oW thefundamental laws of algebraic operations, the whole foZ oneharmonious system and results obtained by the use of imagiiarieare quite as reliable as those obtained by any other nrSessIf
mathematical investigation.

^ ^ '
"'
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One point of interest still remains. The imaginary symbols,
both of quantity and operation, are unintelligible except in con-
nection with geometrical magnitudes. Suppose that in the solu-
tion of a problem relating to other magnitudes the imaginary
symbols are used, but that they do not appear in the result, is
the result reliable ? To answer this we have only to observe that
magnitudes of any kind may be represented by straight lines,
and that by so doing the problem immediately becomes a geo-
metrical one, and then all operations are intelligible. The result,
when correctly interpreted, is therefore in such cases perfectly
reliable.

188. We shall now investigate the properties of certain imag-
inary quantities which are frequently employed in mathematical
investigations.

Suppose x^^J^
then aA^i or .r3-l=0,

*hatis, (x-l)(x^ + x+l)=:0.

Therefore, either ar-l=0 or x^ + x+l^O-

1± v~^whence x=l or x = -

Each of these values of x when cubed gives unity; therefore
unity has three cube roots, namely,

1.
l + V-S l-V~

2
'

2 "'

two of which are imaginary expressions. Denote these by p and
q; then, since p and q are the roots of the equation,

x^ + x+l=0,
their product is equal to unity.

That is, pq^l, :. p^q=^p\

Similarly we may show that p == q\
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189. The geometrical meaning of these results will l,e found
interesting and instructive.

Draw three lines, OA, OB, OC, each a unit
in length, making angles of 120 degrees be-
tween each pair. Join BC; then it may easily
be shown that BC cuts AO produced at right

angles, and that 0D=- and DB=^~ VH. We
have, then.

-o\

2^ 2 -P*

2 2^'
Now, since the absolute value of each of these expressions

(the lengths of OB and OC) is unity, the absolute value of their
product, or of any power of one of them, is unity; and since
the sura of the angles A03 and (the reflex angle) AOC is 360 de-
grees, we see that their product is represented by OA, that is, + 1.
Again, y= 5r, because turning twice through an angle of l'>0
degrees gives an angle of 240 degrees; and q^=.p, because turn-
ing twice through an angle cf 240 degrees gives a whole revolu-
tion and 120 degrees besides.

190. Since each of the imaginary roots is the square of the
others. It is usual to denote the cube roots of unity by 1, a, u?
where <o is either of the imaginary roots. The following Ire' im-
portant properties of these quantities

:

1. The sum of the three cube roots of unity is zero. For u, is
a root of the equation,

a-'+ ar+l^O;

/. w'-Fw-f-l=0.

2. Any three successive int,fi»t<nl nnwora of /. «;--- ^i^- o— i -— rs or ix} give tnu vm^c
cube roots of unity (zero and negative powers included). For

three
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any nun.lK^i. n, when clividerl by 3, must give 0, 1 or 2 for re
nmmder. T^t m be the quotient; then

i£

if

if

n = 3m, CU" -: ()•"'" = {u>Y -1;

3. Every nun.ber l-.as three cube roots. Let a denote the cube
root of a nu.nber found in the ordinary way; then «o, and aj>
are also cube roots.

^''^ (auty = aW = a^

It will bo observed that two of the cube roots are imaginary.

191. Wo shall now give a few examples:

£x. i.—]>ivide c + di by a + hi.

c + di _{c + di){a~hi)

a + hi. {a + fn){a-/n)

= "^ + ^>'^+(ftc - hd) i

u" + b^

_ ac + hd ac - hd
,

~
<i- + h''

"^
«2 + /;-''•

Thus by reference to Arts. 17G, 177 and 180 we see that themm, d%^ere,ice, product and quotient of two complex numbers
are, in general, complex numbers. In special cases, however
the result may be either real or a pure imaginary.

Ex. ^.—To find the square root of a + h V'~.

Assume V" + *V -\ = « + yy'TT
where .r and y are real quantities.

S(niiniin.r!n{ / 4/"
a-x-b\ 1 — X' -y'+2a-yV-l.
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Equating the real and also tho imaginary parts

Therefore ^-' + fy-==(.^-yy+(2.yy
= a^ + /j\

From (1) and (3) we obtain

161

(1)

(2)

(3)

V'<> + /y2+ a
y- r=

Therefore x

2
' - 2

from which the required root is known.

In this example observe

:

(1) In (3) the positive sign must be taken with the ra^licalbecause x and y being real, x"- +/ is positive
(2) The signs of x and y must be alike or different accordingas h IS positive or negative, since Ixy= i.

-fi'a;. 5.—Find the square root of ± \^~7\,

Assume

Then

therefore

from which

Therefore

and

±^-l=^'-2/^±2.ryv/"rT,
3-2_y/2 = and 2ary=l,

.r = y = ±
a/2

ope^tC"*
'''""'' ""^ *'"' ''"^™™ —ponding t» these

r
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Ex. .^.—Resolve a-^ +y -^^^ ^.j^^g^ factors.

We have a;^ +^ = (.r + y)(.r2 -xy^
,f).

^ow a> + o>=--l and 0,. 0)2=1,

therefore ^ + '>f
= {x + y){x + ^y){x + a,^).

Similarly .r' - y^ ^ (^ _ ^^^^ _ ^^^^_ ^^^^

Art. 190

^a,-. 5.—Resolve .r^ + v/^ + ^2 _ ^^ _ ^^ _ ^^ j^^^ factors.

The expression may be written

We have now to find two quantities whose sum is -{y + %) and
whose product is f-yz + z\ Factoring this latter expression
we get y + 0)^ and y + oPz; but the sum of these two expressions
IS not - {y + z). If we multiply +he first factor by o> and the
second by o.^, their product will be unchanged, and the factors
become ••nj + ui'z and o>V + a>«, whose sum is -{y + z) as required.
Therefore

'^'' + y'' + z''-xy-yz-zx^{x + i^y + ioh){x + is,hj + t^),

Ex. (5.—Factor a? + -t^-\.^- 3xyz.

The expression may be written in either of the forms,

a^ +M' + (<^'zy -3x.<oy. 0,% ^ + (uy^yf + („;,)3 _ Sx . 0,^ . <oz.

From the original form we know that x + y + z ia a. factor,
therefore from the above forms we know that x + u>y + u>h and
x + tohj + toz are factors; and since the expression is of but three
dimensions there can be no other literal factor. The coefficient
of ar' in the product of the three factors is the same as that of x'
in the given expression; therefore

'>^ +f + ^-^^yz = (x + y + z){x + ioy + u>-'z)(x + u,'y + u>z).

The factors of the expression might evidently have been taken
from those of the last example, and conversely. The methods of
tniH example niigijt aiso have been used in Ex. 4.
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JiLltlu'^'^'T"
"^ i-aginaries to the solution of geo-metrical problems does not fall within the scnnA nf +V,

work Wfi mvo T.^ . P® **^ *"® present

the square, on these three lines equals three times the suT ofthe squares on the sides of the triangle.

i>i^rS^:<tf'„""! ^'^^ °' *"« ^^^S'". describe squares-o^^ O, C(./r^, ^AZ^; draw ^i> perpendicular in Tin i i

note the /.«,,/. of BC, CA, AB, J,L by . fl '^T'considering direction as well as length,
'
^'

'

BA=.£D + J)A, CA=.CI) + I)A,

sidf7: t iTr'
' ^^"^"

^?
*'^ ^^"^^^ «^ *^« ^-^^^^ of theside, z.e It IS the square of the modulus when the side is expressed by a complex number; therefore

= 2(a^-ax + x^ + y").

Again, FG=^FC+CG EL^EB + BL
= -i.CB-i.CA =i.BC + i.BA
^ia-i{x~a + iy) ^ia + i{x + iy)

= y + i{2a~x), =^-y + i{x + a),

and Kir=EA,Aff^ -X- + ^.) -X- « + ..) = 2, - .'(2. - «).

Then, as before, sum of squares on FG, EL, KH
= {f + (2a - xf} + {f + (^ + «).j + 1 4^. ^ ^2^ _

which proves the proposition.

NoTE.-In thoabovo draw fiChnriznnf^iw /.*!..„•-.. r. ,

tno usual directions for measnrpmnnt^ ^Zr"\V" "^'"' "^'^ ^pwarun; olioose

between ,»«.„ a„d .»y«nZu8ho," °' """ '^'""^ ""ngulsh

it
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EXERCISE XVI.

1. Find tho values b' .•"+ .r'+ .,4+ ,.2+ j ^^j x'' + x'' + .t> + a;

when X = 2i.

2. Simplify (2 - 3i){3 - 2i) + (4 - i Vsyi

3. Express as complex numbers, (2 - 3iy and (1 +t¥,

4. Simplify

(2-^V5)3+(2+^,/5)«and{(2 + ^V5)2-(2 + ^V3>}(V'5+v/3).

5. Simplify ^. + 1:1?!' and -A-:l^l__ + Ji+ ^2
2-Sr 3->^ iV 3 - V2 V3~uVl'

6. Extract the square root of 5 - 1 2/, 1 - U V3 and iiVE -\.

7. Extract the cube root of - 3 v/
3"
-7; ^2 and- 10 + 9iV 3".

8. Find the values of «" + h^ + «'' _ 3ahc when

^ 9.^ Show by the use of imaginaries that {u^~3ahy +(30:^1 ^ly
= {<r + hy, and deduce similar expressions for other powers of

10. Simplify

(.r - 1 - *• V~2){x -\+i Vl){x -2~i Vl^){x - 2 + * V3).

11. Divide U- ^/lT>-(7^3+2v/5>'by 7-iv/5:

1 2. Simplify l±l^ + ^ + 3iVj_ _ 4(2-i vT)
2-iV3 2 + iV3 \-iV3 '

13. Find the modulus of 3 + 4*, vi^~'n? + 2mni and ^".
1 - i*

U. Express 69zI^;;Ti+( V 3 - 6 • S)i

3 - ( V 3 liTS^^ '" *'" '•'™'- « + •'
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15. Find the value of ^Yi^lU'^Y ^ 1 ^ ,

«^+ *^=0 and «.= 1.

'^^"^ '^^ «^t>^T3-a-^.' ^^-n

16. Find the modulus of (?^^P + ^i)

{Q + ii){l5 - Si)'

17. Find the p,-oduct of (a + ih){la + b){ia + ih),

18. Express (« + i6)(i + ,',)(, + i,^ ^, „ ^^^^^^^^ ^^^^^^^
19. Show that

What^relation exists between these quantities Before the, are

20 If ^ + ?i is a root of ax^+bx + c = Q, then ay+ i;, + c = ««2and
2«^ + . 0; a b and c denoting real quantitfes SW th'enecessity for the latter clause in this example.

21. Find the sum of 1 + 2/+ 3i= + . . . (^+ i)^,. ^j.,^ ^ j^ .j.
even multiple of 2 ; (2) an odd multiple of 2.

^ ^M 1)
an

22. Find the product of (a + 6 - ct)(h + c - ai)(c + a - bi).

23. Detect the fallacy in the following reasoning:

(-1)^ = (-1)' = {(-1)^]^ = (+1)^ = 1,

and Illustrate by reference to a geometrical diagram.

24. Find the modulus of 1 + i^ + i^,.+ , . . ^^ -^^^ ^j^^^^ ^^ ^

25. If .is an imaginary cube root of unity, then 1+. and1+0) are the imaginary cube roots of - 1.

26 Show that (1 + co)^ and (2 + .)^ are cube roots of 1 and - 27and hnd the other roots.
'

27. Find the values of

(l+o>y + {l+u>y and (l-a> + o,»)(l+o>-o>^).

28. Simplify

(u> + ^)(a>^-^•) and (1 + . - 0,=^)^ + (
1 -a, + o>7 + (I _<o-a>7.
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29. Show that (1 - (0 + o>y = (1 + o) - w-)'" = ( _ 8)".

OA T.1 1— o)l+a> a)+iou. ii^xpress -——- and with rational denominators.

31. Show that

(1 - o> + o>2)(l - 0.2 + co4)(l - o,* + a>«) . . . . to 2.t factors = 2^

32. Show that
^ , ^ and iu) are sixth roots of - 1. Find the

other three, and illustrate geometrically.

33. Show that

2 V 2 ; -\^2"~T~)v/2 2 2 • ^
and give the geometrical meaning of these equalities,

Show that the result will be unchanged by changing the con-
necting signs of each of the factors, or by multiplying each of
the second terms by o>; but if each be multiplied by t, the con-
necting sign of the result will be changed. Give the geometrical
meaning of each of these statements.

35. Simplify
1— + +a + b + c a + huy+CM^ a + bur'+coi'

36. If x + ,j + z== - + 1 + 1 =0 and xy^= 1, show that .r, y, z

are the cube roots of unity.

37. If ar + y + c= -+-^ + -==0, show that a;« +/ + ;^ = and

that A-" +f + z° = x'i/z{x^ + '/ + ;s«).

38. If x==a + h, ,j = auy+bw\ z = ao>''+bw, show that

{1} x' + if + z' = Qab, (2) x'^ + ,f +^= 3(„3 ^ j3->^

(3) x' + y* + ^*^i8,,^2^ (^^ x' +f + :^=l5ab(a'^+b%

{5} xp==a'^ + P=-^,r + y)ri^ + ^)(;, + :r).
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and that -Y^ + r» + ^2 _ j^^ _ ^ -^ _ ^^

then («^ + f,>/ + czf + (b, + ey + «.)« + (^^ + ,,^ ^ ,,^y

^

I



CHAPTER XII.

QUADRATIC AND HIGHER EQUATIONS.

ONE UNKNOWN QUANTITY.

193. The symbol denoting the unknown quantity in an equa-

tion is frequently called a Variable. Symbols denoting other

quantities are called Constants.
It is often necessary to examine the result of assigning special

values to one or more letters in an algebraical expression; the

letters to which different ^^•llue3 are thus given are also called

variables.

194. An Integral Equation is one in which the variable or

unknown quantity does not appear in the denominator of a frac-

tion, and is not affected by any root sign. It is in its simplest

form when its terms are arranged in powers of the variable, and
the coefficient of the highest power is unity and positive.

195. The Degree of an Equation is the number of dimen-

sions in the highest power of tlie variable which occurs in the

equation. The words, "linear," "quadratic," "cubic," "biquad-

ratic," are used to denote equations of the first, second, third and
fourth degrees respectively. These terms are especially applied

to integral equations.

196. From an equation which is irrational, or fractional, or

both, an integral equation can be derived, the roots of which are

usually assumed to be the roots of the original equation. Upon
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trial however, it is frequently found that one or more roots ofone equa ion will not apparently satisfy the others. This pointdeserves the most careful consideration.
^

197. The following method of rationalizing surd equations ismstructive Arrange all the terms on one side and denote them

one term
'''^'''"^^ quantities, if any, being collected into

(1) Let there be two terms.

Then the equation is a + b = 0.

Therefore (a - b)(a + b) = 0,

which will be rational, since each term is a square.

(2) Let there be three terms.

Then the equation is a + b + c = 0.

Therefore ia + b-c){a-b + c)(a-b-c)(a + b + c) = 0,

or a* + 6* + c* - 2a^^ - W<?~ 1(?d? = 0,

which will be rational, since each term is raised to an even power.

This method may easily be extended to four or more terms
the results m each case being the same as would be obtained by
the ordinary method of squaring.

198. In Part L, Exercises XC, XCL and XCIL, illustrations
were given of ordinary quadratic equations of one unknown. We
now proceed to give specimens of more difficult quadratics, and
of equaf Ions of higher degree, that can be solved either as quad-
ratics or by other artifices. It is well, however, to bear in mind
that no text-book can afibrd spaca for illustrations of all the dif-
ferent ingenious artifices emnlovfifl fo nhfai'r. c^i.,*i^v,„ ^r _i,_i.

and complicated equations.

12

I
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^^«.i.-8ol™ (-^)%(-^)'=„(„.,).

Let

Then

n(n-l) = m.

(j^)'+G-fi)'-"'-

Clearing of fractions and collecting coefficients,

or
2 -m 2-m'

Completing the square on left-hand side of equation,

^2, Umy 4m + l

\ 2-m/ "'(2- w)'^'

Substituting n(n - 1) for m,

/^ w^n+ ly _ in^- in + 1

V 2-n2 + n/ ~(2-n2 + 7^'

Extracting square root,

^ n'-n + l ^ 2n-l
2-n' + n ^2-w' + n*

/. a:' =
w' - 3w + 2

n' - n - 2
or

rr + n
n2-n-2

n - 1 w
or

0)

(2)

n+1 n-2'

N.B.—Instead of completing the square to obtain the root,

factoring might have been used.

'^f Ex. ^,—

I

or

Solve 2'+» + 4*=80.

2«+» + 4*'=L.2*+22- = 80,

—
I -^ r> w VV*
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(2)

Then

Factoring,

Therefore

that is,

Let

If we let

QUADRATIC AND HIGHER EQUATIONS.

y' + 2y=80, or y' + 2y 80 q.

(y+l0)(y-8) = 0.

y= -lOo-c

2-= - 10 or 8.

2*= 8 = 23.

2'= - 10,

the solution cannot be obtained.

Ex. 5._Solve (a: + «)(^ + 2a)(ar + 3a)(a: + 4a) = c*.

Multiply together first and fourth fn.f
third factors, since the sum of a and 4aT.^^

'"'"' ^"^'

of 2a and 3a.
^" '' *^^ «^™« «« the sum

Then (^+5aa,- + 4a')(^2+5aa. + 6a==) = o«.

Let

Then

or

Completing square.

Extracting root,

or

»r;rr-r:xr.i---;;-....,

or

a;' + 5aar + 4a2= -a^ii/^Tj:^^

^' + 5aar= -5a2iV'^*T^.
This equation, althoimh n„w,u.-— ^ «.

solution.
" ~° """^""'' "°^^'^ "« difficulty in its



p

172 HIGHER ALGEBRA.

'ff Ex. ^.—Solve ^2 + a.-2 + a; + a.-i = 4.

Add 2 to each sidf of the equation.

{x + x-^ + 3)(a; + a:-i - 2) = 0.

ar + a;-^-2 = 0.

Solving in turn a: + a;-* + 3 = and a; + a;"^ - 2 = we find

Then

or

or

Therefore

or

(1)

(2)

x = x= 1, 1.

/
y Ex. J.—Solve a^+2x^- S.r' - 3^;^ + 2^ + 1 = 0.

Arrange as follows

:

{a?+\) + 2x{x'+\)-Zx\x+\) = 0. (1)

It is evident that .r + 1 is a factor of each quantity in brackets,

.'. a: = - 1 is one solution.

Dividing (1) by {x+V) we obtain

{x^-a? + x'-x+l) + 1x{x'-x+\)-2>x''= 0,

or a;* + a;^ - 4.t' + a; + 1 = 0,

or (a;*+l) + a'(a;'+l) = 4a;'.

Adding 2x'^ to each side of the equation,

(a;* + 2a;2 + 1) + x{x'' + 1) = Qx\

or {^x-'^\y + x{x''+l) + j =^.
Extracting square root,

, _ a; 6x

^+^-^2=±T-

TI

or

or
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(2)
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We have now two quadratics to be solved, viz.:

X
a:'+l + J= _

5x

and

(1)

its,

2 ^2'

^

neither of which presents any difficulty.

-sa.ew.entheter--frX^^^

Reciprocal equations may also be defined as those which are
not altered by changing aj into -

.

Every reciprocal equ^^^ Joda degree will be divisible by

IS -lorl .^"? "^" '' ''™">' ^^^^^^-^^ - *^e ^-^ tern'

if. 1 \ .
"^ ^' ^"^ ^^'^^y reciprocal equation of even degree with

2nTZ' "'^ '^ '^'"^^ ^^ ^^ - ^ ^ -^ *'- reduced eq a

degree, and with its last term + 1 (Cdenso's Algebra).

one of thVr^r ^"'Tf^
"'^ '^ ^^'"^^^ '^ ^ ^-^-^-» -d

L n Ex 4 " ""'' '^^"^ *^ ^ '^^--^raHc, and then s Ived

J'ar. ^._Solve-?-t£--a

Add 1 to each side.

Then (l + xy+l + x*

or

or

2(i+x+xy

(1+^)* ~ 2"'
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Extracting square root,

l +x + x^ ^ Vj(l+a)
= ±

or

or

1 + x + x^ _ V2(l+ a)

X

or
1 + 2.r + a:^ 1

X 1-m'

This now can be solved as a quadratic.

I

Ex. 7.—Solve v'il+xf- 7(T3^2= vT^l^,

2 2 1

that is, (1 + ar)"* - ( 1 - a-)"» = (1 - x^.

Dividing by (1-4 (l±fy'_i.(i±fy'/

2
/l+a-\"*Assume

Then

or

Solving for y we get

that is,

1 V5

l+.ry 1±V5"/l4-.ry»

•
1+a? /l±vT\

^(liVT)™
~

2'" or



diffttt!
""""'"'°" ""' O-n.i.ator, .„a dividing b, their

a?= (l±y 5 )« - 2"*

\2x~3) +i2^3J ^Isii^FZ^)-

Now,

... (?^^)^/?iz3^^ 4J2.+3 2.-31
V2x-3y +U.+ 3; -i3t2J=3 + 2^3}-

2x + 3\i

2-^+3 2x-3_2(4ar'»+9)
2:^-3 2.r+3 ~J^^:rg~*

Assume

Then

/2x + 3\*

It is evident that y+l ig a f«r>f«^ «# i. i.u •

,

1 ^
2^ + y

»« a factor of both sides, ar^d therefore
y + - = will give a partial solution.

If

or

1

y+-=0, then y2=-l,

Cubing

/2^+3\S

U^-3/ = ~

/2^+3\2

W-s) "^ ~

1.

or

To obtain the remaining solutbr.s ^e have

or

3^- 4
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Solving,

that is,

or

HIGHER ALGEBRA.

y= 2, ^. -2. -|,

r2x+3\i/2x+3\4 1

l2^::ij
=2, or-, or ~ 1, or ~ -

2ar + 3. 1

2^33 = 8. or-, or -8, or

27 7

1

2'

1

8*

^a;. P.—Solve Vx^ + ax -\+ Vx^ + bx -\=. V a + V b. (1)

Now, (a:2 + aar- 1) - {:i^+bx - l) = ^a -
6),

that is,
( Vx'-^ax~\y - ( V'ar2 + />.r - 1)2 = .r(a - J), (2)

Dividing (2) by (1),

Va^ + ax-\- Var-^bx-\=x{ /a - -/Z) (3)

Adding (1) and (3) we obtain

Let

2Vx^ + ax-\= \/a + Vb +x{Va- V b).

'^a+ V b =m and V^ - \^'b=n.

li

,*. 2 A/a;* + aar - 1 = m H- wa-.

Squaring, ix^ + 4,ax-4: = m^ + 2mwa: + n^o-'.

Transposing, and arranging according to powers of ar,

ar2(4 - a;2) + ar(4a - %nn) - (4 + w;2) ^ q.

But >n^^ = (\/a-^. 'v/i'X'/a- 'v//r) = a--J,

.-. ir2(4-w2) + ar(4a-2a4-2^>)-(m2 + 4) = 0,

0"^ ^'(4-n2) + .T(2a + 2i)-(m2 + 4) = 0.

Factoring, {ar(4 - w^) + (m^ + 4) } (a: -
1
) =

{since m^ + 4 + w" - 4 = m" + n"

= (^« + ^4)' + (Va - V'l)2 = 2a + 2A|.

(4)
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From (4 ) we obtain ar = 1 or -!±!

that iIS. x^i or i:^C^±:^)!±i
(Va- V bf~i

Assume « ^ i .a-x =m and ar-6 = n.

.*. m + n = a~b,

• ^!!±!L*_4i/ 41 •-<

20(^* + n^) = 41 (m^ + ^^)(^,2 + ^^ ^ 2mn),

21(m* + n*) + 82m'n' + 82mn(m' + n^) = o.

Arranging according to powers of ^.,

21m* + 82w«n + 82mV + 82mw« + 21 w* = 0.

Dividing by mV, 21^'+ 82^* + 82 + 82^ + 21^^! = 0.

or

or

Let

Then
n

2V + 822/ + 82 + ?? + 2i =
y 2/'

177

(1)

throwing (Sthe L'' ^ ^^™^'^ ^°^"^^^^ ^^ ^^^^^^ ^^

21K + n'^)3 + 82mn(w« + ,,2)^40^,^,^Q^

* ''^' ^"^^ "t^ reaauy factored.
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Ex. ii.—Solve 2a^ -a?~ 2.r + 1 = 0.

Add ar* to both sides.

Then i>^+2o^-x^ -2x+\=x\

Extracting square root, x^ + x-\=z±x^

:. ar-l=0, or 2x'^ + x-\=0,
:. x^\, or (2ar-l)(a:+l) = 0.

Therefore roots are 1, -. - 1
' 2

Ex. 7^.—Solve 2x* - 4ar + 1 = 0.

Multiplying by 2, 4:r* - 8ar + 2 = 0,

®^'
4aj« + 8ar2 + 4-(8x2 + 8a- + 2) = 0,

^^ (2ar2 + 2)2-(2i/2.^+ V 2)2 = 0.

Factoring,

(2a^+ 2 - 2 A/
2 .

:r- V 2 )(2r' + 2 + 2 V' 2".
:r + 1/ 2 ) = 0.

.-. 2r'+2-2v/'2.ar- i/'2=0,

2a;2 + 2 + 2v/2".a?+ V'2" = 0.

V 2"± ^2 v^Ti

or

From (1) we get

From (2) we get

x>

x =
'V/2±v'_2v'2-2

r2>

Ex. 13.—Solve x+ Vx+\ = 5.

Rearranging, V'^+l = 5-3-.

Squaring, ar+ 1 = 25 - lOar + a^.

From which
a- = 3 or 8.

Upon trial we find that 3 satisfies the given equation, but that
o belongs to the equation,

X - VxTl = 5.
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Ex. i^.—Solve x+ '^t7Z\^=,\

179

^a:. 75.-SoIve ^2FT1- '/57Tl-7 = o.

Using the result in (2) Art IQ? , u
when a, ^ and c are the tts o tv

^^ '""^ ''" "'^"'

result in the following fori
' '^"''^''^- ^^^^"^^ *his

aV- 2fi2 - 2c2) + (42 _ c2)2 == 0.
Here taking ^s^^g A2-9^.o , ^

the expression reduces to

9a:*- 698a: +2013 = 0,

(^-3)(9a:-671) = 0.

:. x= 3 or 74^.
l^pon trial it is found that apparently th. « • • ,

not satisfied hy either root and tlf.K
^^'"^^ equation is

equation,
''*' ^'^^ *^^* *^« root 3 belongs to the

(2)

or (1)

(3)

1/ 2a: + 3 + ^ 5^~jri; _ 7 ^ Q^

and the root 74f to the equation,

The difficulty may be explained in two ways:
(a) It has already been explained in Part T fhn, .u •

he square root of a quantity may be either J'-!
"'^ "^

If we take positive signs of the roots of the r^'*"' T '''^'''''''

oigii Or tne roots in V fla* j. i o„j xl . .a 1X1 r oa: + 1, and the positive

fT^ff/jg^i
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sign in •/ 2^; + 3, the equation will be satisfied by a; = 3. A
similar explanation applies to the root 74S.

(6) The difficulty may also be explained by pointing out that

equation (1) is the product of four factors, of which (2) and (3)

are two, and consequently any value which satisfies either (2) or

(3) must satisfy (1).

A similar explanation applies to Exs. 13 and 14.

If we are restricted to the positive root in each case, the given

I equation has no solution.

Ux. 16.—An integral equation of the third degree can always

Let
'1

be expressed in the form

a

Substituting, and arranging in powers of y, we get

2(? ah

.^i!

Now, if this equation can be solved we shall have the roots of

a
the original equation ; for x = y—-, and therefore when x is

o

known y is known. If, therefore, we can solve a cubic equation

in which the term containing x"^ is wanting, we can solve any

cubic equation. > , / / »

^^y^-^Ex. 17.—Solve the equation, a^ — qx—r — 0.

Let

Then ^ = 2/^ + H^-^ 3y

t''+

,3

(-1;)

'21f

It ^.'-f

or 3^ —qx —
'^f

\-

^AAM^
272/=

= r.

I

or



'

! ?

Then
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from which

and

f--

x= y +
3y

-{l-^l-^P{l-4U}'
after rationalizing the denominator and simplifying the second
term.

It should be observed that the same result is obtained by
taking either the upper or the lower signs with the radical. But
every quantity has three cube roots, and we must determine
which are admissible. For brevity, denote the first term by pand the second by q, and the cube root of unity by <o; the roots
will then be

p+ qy po} + qoi\ poP+ q^^

as may easily be verified by trial.

Bx. i<?.—Solve a^-^Q,a;=.l,

Let

Then

^6

9 _

or x^- v^6.x = i/ + ~L = l

from which ?/ = - or --^3 3*

Then ar= 2/4
^Q

Jy

n/"3+N/3' N^ + a>\"/-,ora,\^/,^.+a,,.>2
3
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Ui t^*"*'^ ^A/v^ Jtf^

EXERCISE XVII.

Solve the following

:

- a{x - h)(x - c) Hx-c)i^_-^

_

^ \a-b){a-c) "^
(b-c){b-.a)

'"''

.-.. ''

a-
{a-xf + {x-hy 5

(a - x){x - b)

X

r
7.5

/

1

6.

C8.

x'-^x-lb x''+2x-Zb x'+lQx + ^V
1 1

lx'-Ux+2 i^x'-lbx^ 2

8 8 a^

= 12a:2_7a;+l.

+
6a; + 5 x^-Ux + ^b x^-lQx+^'

6 5
+

x^-1x-\-\0 x'-l'dx + iO'

{a - xf + (g - x){x - &) + (a? --&)'^

=^9/

11 1

I

^9. (.r-7)(a;-3)(a: + 5)(ar+l) = 168#.

^ ^10. 16ar(a; + l)(a;+2)(a; + 3) = 9.

,^11. Va^-a''-b''+ Va^-b'^-c'- \/ x" - <?C^ a? = x.

\/a;+2+^ar+l Vx + 2- Vx+l
^12. --=:::^ +_^ -= = 3ar(ar- 1).V .r + 2 - V a; + 1 Va; + 2 + Va; + 1

Va:2+1+ V^a;2-1 ^^TT- VP^T ^
ClO. J „, _ 4 V'j.2 _ 1

Vx' + i-Vx'-i V¥Ti+Vl^^

14.
a? a

a + a; ^a + X X

/ L

£35.

37.

38.

40.
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y^'

tie. v^(^T^»-^(^^2==:()'^r:72,

C4e. V'Sor' - 2a: + 9 + Vsit' - 2^ -1 = 13.

^19. V3^-7x-30-V2^^Pj^Zr5^^_5^

183

21. '^a;2 + aa; + 6'+ Va:2 + iar+a2= a + i.

'^

'V{^

22. (a: + 2 V/ a:)* - (a; - 2 VI)* = 2(a:» - 4.r)*. ,-/

o ..-t

.y

23. V'«2_a.5i+ ^y'^2_2^^3^2_

1 /or''- 2a; -3
a:^.

/

.24 l/^.^\ l/^-2^^5N 2/.^-2.-35X 92
6V^^-2a:-8; 9[^~-2x^2i) -rs[^c^Z2^Zrs) ^585'

Q_
26. a;3 + pa.2 +^^ ^ 1 ^ Q^ ^^^ 10(*-iM2-*) ^ ioQ(J^ ^ .^

t
i}9. 32« + 9 = 10x3*. 30. 22«+8+ 1 = 32x2'.

8
32. ar*+-a:2+i^3^^3^(;;31. 22«+3-57=:65(2'-l).

^3. (a + ar)^ + 4(a

~

xf = 5(«'» _ a:^)i. 34. ar* - 2ar' + a: = 380.

^35. 27a^ + 21. + 8 = 0. ^- ^36. «-(a^+ l) = (a^a»)a.

3^
(a-ar)S4-(ar-A)« 211 ^

38.
(a~xy~(x-by {a~b)c
(a-a:)2-(a;-6)2~(^rr^)(^T6)—' ^9- ^- 6a;«+ 5a-+ 12 = 0.^ Ci ^-''Mii

A
40.

C.42.

(ar + l)5 a

ar« + l
~6- -

a2_5 a:2_ 11 ^2_7
a;2.

41. ar* + aa:3^j^^^^^c^^Q^ _.

a"

«'' — 12 2?=* — 8 a;'* — 10* — 'V^^tn<>n, ^^y c'lJ^-^--.
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43. x + a+3 \fahx = b. ^

44. = a'

i 8 rn+n
\_

46. a»AV-4(a6)*a;2»"» = («-i)2..r'".

49. a^ = 4(a;-l)(l-ar-a;2^. >^ 5q^ 1 +4a;- 8a;2+2ar* = 0.

51. (5:r2+^+io)=+(a;2+7a:+l)2 = (3a:2-a;+5)H(4a:2+ 5^+ 8)l /
52. (12:r-l)(6ar-l)(4ar-l)(3ar-l) = l. •

53. 8^+ 81 = 18^:^460?*.

55. (l+a:8) + (l+a;)«=»2(l+;ir + .r2)*.

56. a?*-2a:"-3ar»-12a:H-36 = 0.

57. x*-8ar^+10x^ + 2ix + 5 = 0.

64. a;'+ 3ar= a'-
»,3*

'^
' /68. {x+ b + c)(x+ c + a)(x + a + b)^{x + a)(x + 2b){x + 3c). 4

69
^0 20 8__ 12 _ .

/ * a:' + 2a;-48~ar2+9ar + 8 aT2+10ar'''^T5^^^'*"^"^' ^

60 (^ - ^)(^ - c)«'' {x - c){x- a)b^ (x - a)(x - by
,

/ * {a-b){a-c) (b-c){b-a) "^
{c-a){c-b) ~ '

,61. (a!3-2a^-2ar + 3)(a;3-4ar» + 4ar-3)

= (ar» + 2a:'»-2.'K-3)(ar3 + 4a;2+4a;+3). ^
/TO 2\3

62. «* + 2a3? + ^-^— = fby putting it in the form

\or-^ax

63. a;*-8a:3_208 = 0.

4 65. ar»-18ar-35 = 0. /

67. ar»-15a:2_33^^g^7^Q

69. 8a:3_3g^^27 = 0.^

64. a:* --10ar»- 3456 = 0.

66. «'+ 72a;- 1720 = 0.
>^

68. 2ar' + 25a:' + 56a; -147=0.



CHAPTER XIII.

SIMULTANEOUS EQUATIONS OF THE
SECOND AND HIGHER DEGREES.

TWO OR MORE UNKNOWNS.

given for the solutinn „f ,

°''""^™ *"»* »<> general rule can bes
."'

'™ '"'""on of auch equations. A carofnl •*,.j . xifolWmg examples will enable him to solvt I^^l"
^°' ""^

tent and useful problems that ma/a^ " "" """"' "^^'

method, not introduced "plrt7 of I^

-me explanation of a

^ of the>. de«r.. ^mircKh^TrinTterminate Multiplier., and is best explainedi a'ilU^ut
Bx—Solve

0)
(2)

(3)

ing^he ^fulTT" ''' '' ' ^^^ -' -^ -^^^^^ <^)' -^ -ng-
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Now let / and m have such values that the coefficients of yand z may both be zero.

Then ^_ld+mdi + d.

where

and

Z=i— ___
la +mai + a^*

Ic + mCi + c^axO.

m 1

ftjC, - b^i 6jc - Acj bci - b^c

'

Substituting these values of / and m in

Id+ mdi + dj

la + moi + ttj

we obtain x=
«(*iC2 - Vi) + ai(V - bcj) + ^{bci - 6jc)'

Haying thus found the value of x, the values of y and « can
be written down by symmetry.

It is evident that this method may be employed when more
than three unknown quantities are given, all that is necessary
being a corresponding increase in the number of indeterminate
multipUers. The student may, as an exercise on this method,
take any ordinary selection of problems in simultaneous equa-
tions, and find the solutions required.

201. We proceed now with the consideration of the subject,
matter proper of this chapter.

202. When both equations are homogeneous and of the same
number of dimensions, the method of elimination may be em-
ployed.

-£'«.—Solve j/'-3xf + bx'^y = 1 5,

xy^-ix'y-^^d^^b,

Multiplying (2) by 3 and subtracting from (1) we get

(1)

(2)
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Factoring, (y - x){y - 2x){y - 3a-) = 0.

^^"^^^'^ y==x,2x or 3;r.

Substituting these values successively in (1) we get

Then

and

«'=5,
2 ^^ ^•

v^5

y= v'S; ^20 or 3.

Each pair of roots may be multiplied by an imaginary oube
root of unity, giving six other solutions.

203. It is sometimes convenient to find the values of ar + « and
xy btfore finding the value of each letter separately.

-£a;.--Solve x^ +f + x + y=\Q^
&{x + y) = bxy.

Equation (1) may be written

(^ + y)' + (a; + y)-2a:y=18.

Substituting for xy from (2),

(1)

(2)

{x+yy--{x + y)-\S=^0,

from which a; + y = 5 or -—
5

then from (2),

Squaring (4) and subtracting four times (5),

xy= ^ or -—

.

Combining (4) and (6),

«-y=±l or ±- 1/2I.

3
a:= 3, 2 or -(-3±i/21),

(3)

(4)

(5)

(6)

3
y=2, 3 or =(-3qFV'21).
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When the values otx+ y and xy have been obtained, the values
of the separate let^^rs may be neatly written from the quadratic
whose second term is th:. sum of x and y with tlm sir/n cJianged,
and whose product is the last term, a different letter being used
as variable. Thus from the preceding example we have

r»-5r + 6 = and r^ + i?r-— = 0.
6 25 '

from which r= 2 or 3, or '-5(-3±V2?.).

The two values of r derived from either equation will give two
solutions, one value being given to x, and the other to y.

204. When one solution of a pair of simultaneous equations
has been found, other solutions may frequently be written at
once from the following considerations

:

1. If the variables are symmetrically involved, their values
may be interchanged. (See Art. 203.)

2. If each term is of an even number of dimensions, the signs
of both values may be changed.

3. If each exponent is even, the sign of each value may be
separately cht nged.

4. If the literal part of each equation changes signs when the
variables are ' iterchanged, and if each term is of an odd number
of dimensions, the values may be interchanged, providing both
the signs are also changed.

205.—Another artifice sometimes used is the finding of the
values oix + yB,nAx-y before finding the values of x and y.

Ex,—Solve

Assume

(a;+ y)(a:3+ 2r')==76,

{x +yf=U{x-y).

x + y = 7n and x — y= n,

m+n m~n
.. x=——- and y =—-—

.

(1)

(2)
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Then o^+f= {x+ y){x^-xy+ f)

= ^(^'+-4—)

4 •

Equations (1) and (2) now become

»n»(3n2 + m2) = 304,

and

Dividing (3) by (4),

w'=64n.

3w»+ m2 19

or

But from (4),

or

or

Let

wi 4w*

4w<3w2+ m2) = 197».

64'

. mV3m« \

•• 16164^ +^7 = ^9^

3m* m*

16 X 642"^ 16

3w8 m
le'^x iP^le+ 1-T=19.

44
'**•

Then (6) becomes

or

3«2+i6«=i9,

3«2 + i62_l9:=0

= (3«+19)(«-l) = o.

.*. a=l or -~.

Solutions can now be readily obtained.

(3)

(4)

(5)

(6)
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206. The following are further illustrations of methods:

Ex. 1.—Solve a^ = 31ar»-4y», (\\

Dividing (1) by (2),

Let

y» = 31y'-4ar».

ocr'_ 3lx-- 4f
3/»~31y2-4^'

X
- =711.

y

(2)

(3)

Then m,8.
31w2 - 4

or

or

or

31-4m«'

31m'-4w« = 31«i2-4,

31(m»-m«) = 4(m«-l),

31w2(^-l) = 4(m-l)(m* + m3 + m2 +m + l). (7)

(4)

(6)

(6)

It is evident the equation (7) is satisfied by m= 1, or - = 1,

orar = y. If x = y, then ar = 3/ = 27.
^

The equation left after w - 1 is struck out is

31w' = 4(m* + wN- w* +m + 1),

1 1or

or

or

Let

Then

31=4(m2 +m+l+- +—

)

31=4(. + J,)^4(.-.1)^4,

35 = 4(m +iy+4(m +iV

m +— = «.

35-4«2h.4«,

from which we obtain

2«+l=±6, or 2« = 5 or -7.



0)

(2)

(3)

(4)

(5)

(6)

(7)

= 1.
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1 .

If m +- is now substituted for «, and than - for m, we obtain

X in terms of y, and find the values of a: and y to be

Other values are.

2(3±v/33) and
| (3^^/33).

ar=15, 30,1

y=30, 15J

Ex. ^.—Solve (ar + y)* + (a- - y)* = a*,

(x» + y2)*+(x»-y«)*=a*.

Cubing (1), a; + y+ ar-y + 3(a^-y»)*a*=a,

O' 2ar + 3(a;«-y*)*a*n=.a,

®' 3(a:2-y'»)M=a-2af,

(1)

(2)

or /«a «\J a - 2a?
(a!«-y2)»=

3a*
(3)

Cubing (2) and treating the equation in a similar fashion to (1),

-..4a_ «'-2^(^-/)
3ai

Dividing (4) by (3),
^ ^' a-2x J*

Substituting these values in (2) we get

a"

a-2x a^~2x'
~ +

3a* J (a - 2a?)

-^-J.

(4)

(5)

(6)

(6) can now be readily solved as an ordinary quadratic. The
values of a; and y are:
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Mx, S.—Solve a^^az + by,

Subtracting (2) from (1),

^-y'-(«-A)(^-y).

<1)

(3)

The equation is satisfied by putting x-y = or x=y. If

a^=ax + bx, and x = or a + b;

.'. y = or a + b.

Dividing (3) by (x - y) we get

x + y-^a-b or y = a-b-x.

Substituting this value of y in (1) or (2) we find

^ =
2 {(« - *)± V^(«-A)(a + 36)}

and therefore y=
^
{(a - i):|: V"(a - b){a + Sb)}

.

Ex, 4.—Solve «+ s^ = 706,

a? + y=8.

^'•om(2),
(a: + y)*= 4096, .

or «* + 4ar«y + 6ar2y2+ 4ary3 + 2,« = 4096.

a?* + y* = 706,

/. 4r>+ Q3»f+ 4a-y3= 3390,

23:^2/ + 3;ry+2^=1695,

a'y(2jr2 + 3;ry + 2y) = 1695.

2ar2 + 3xy +V =% + 2/)''-a»y

«=128-ary.

But

or

OP

Now,

0)

(2)

0)

(3)

from (2)

\P^



(1)

<2)

(3)
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Substituting in (3), a^(l 28 - xy) = 1 695,

0' ar«y»-128xy+ 1695 = 0,
'

(4)

or (ar2/-15)(:ry^ll3) = 0;

/. ary=15 or 113.

Combining these results with x + ij=8 we readily find the
values of x and y. One set of values is

ar= 3, 5,1

y = 5, 3./

(1)

(2)

<1)

(3)

(2)

EXERCISE XVIII.

Solve the following equations

:

1. r' + y'=65,
ar + y = 5.

3. a:5-/= 16564,

x-y = i.

5. a!3 + 3/' = 35, ^-

a:' + y'=13.

7. a;* + ar2y2 + y«=133,

ar'+ ary + 2/^= 19.

9. a:» + ary+ y = 37,

i/^ + xy + x=l9.

f4K 11- (^ + 3/)(^ + 2/') = 1216,
'^ '^"^^^ ar2 + ary + y2 = 49.

13. C^+y)'
,

(^-y)'
_

a" 62
wi.

1
«^+y''=2'*-

2. a!^ + y* = 2417,

a: + y = 9.

4. a^ + y* = 641,

6. a^-y* = 6&, '^ ^iH'*^
x-y=\.

8 ar' + ary + ya^gi,

ar+ Vxy + y =13.

10. a^-i :y=a«,

a^ + 2xy + 2f=h\

12. ar« + y'= a',

x'y + xy^= h%

14.
a' i2 ma^I?

{x+yy {x-yf {x'-yY
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46. :i' =
'i/', ^

17. x»-y, /

19. ar(x« + y2) = 6y,

^16. x»^ = a», /

-i -i 5

20. 5_y=,.i+y.
y X (B»fy«'

^21. ar + ary»=18, ^
-It

22. ar» + ar\^ary»=208, >

y' +y^^= 1053.
a:y+'ary»= 12.

^^*
Vy"^0(^^l)^^^' C24. :r + y = ;ry= ar»-y».^

S-')(^*^)-"»-

25. (ar» + y«)(r» + 2r') = 455^ 26. x* + i/^ = 6U, y
« + y = 5. ar»y + ;rys=290.

27. ar-y = a,

29. a?» + y = 7, /
y« + ar=ll. r

^28.

(Find 16 solutions.)

1-xy

«—

= 2, /

= 2.

30.
^ + y ^ w»+wt»

*
a; + y x-y n*-m^'

_g_ _y n? + 2ran-m^
x-y x +y~ n^-m^

31. aJ' + y6=178\/3. / ^^32. af'+«'» = y*, y
x' + y'=lOxy.

y"+'" = ar*.

\^



<
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rt + ar 6+y a + A + o*

aJ+y-ft

36. -^^^' + iv:j:^/^„^j^
3g ^y,4^4^J^_ 1^

37. ^+ y>+ :^(^+J,)>I3, ^ 38. ^S;+^^= , + j

19. V^ar +y+^ ,_y^4
a?»-y»=,9.

^M^^y')! = ^.

(^-A^T-

a; 3' /
X 15

y

40. 2;* « mar 4- ny,

y* = my + n.^

42. (ar»+y')(ar + y) = l5;py, ^
(^+y*)(ar» + y») = 85xV='.

^^4. y"'+llx«y = 480, ^

9^2

ar' + ay= 30.
Vy Var 2'

45. ^(^+aW + A^) + ^(^M:^^^^^??^ = (a + J).

£"«. 1.—Solve
a: + y + «=4,

ar« + y2 + s2=14,

^y+yz-zx=6.

0/

(2)

(3)
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(5)
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Squar J (1) and subtract (2) from it, and divide by 2,

Combining (3) and (4),

2/(^ + 2) = 3, zx= -2.

Substituting in (5), 2/(4 - y) = 3,

^^
2r'-4y + 3 = 0,

from which y= 3orl.

M
2/ = 3, ar + «=l, and from (5), zx=^ -2.

Therefore ar = 2 or - 1 and ;== - 1 or 2.

Similarly, when 2/= 1, ar= 1(3± v/l7), z^^hs^vVf).

From the above we see that y has two values, whilst x and ;.
have each four values, and it is necessary that these values should
be correctly grouped to give a true solution. The correct arrange-
ment is

:

°

x-^ 2, -1, l(3±Vi7);

y= 3, 3, 1;

2=-l, 2, 1(3 T ^17).

^x. ^.—Solve X1/ + 1JZ + zx = a' - ar'= i2 _ 2/2= c' - «2.

Rearranging and factoring we get

(x + y)(x + z) = a^,

(y+ «)(2/ + -^) = i',

{!S + x)(z + y) = c\

7
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Multiplying the three equations together and taking the square
root we get ,

{^ + l/){l/ + «)(z + x) = ±abc.

Dividing this result by each of the original equations in succes-
sion we get

-+ »= ±^, 2,H-.-±l", .+ .>±!^.
« c

Adding these equations and dividing by 2 we get

x + i/ + z= ±

Thence by subtraction, x = ±

2abc

2abc '

from which the values of y and z may be written from symmetry.

I!x. 5.—Solve x + ij + z=10,

xy+yz + zx = z\,

xyz=:ZO.

Equation (2) may be written

^i/ + z{x + i/)
= Sl.

From (1) and (3), ^,+^=10-;., xy = ^,
z

Substituting these values in (4),

30— + 2;(10-;s) = 31.

Rearranging, x^ -10z'^ + 31z- 30 = 0.

Factoring, (z - 2)(z - S)(z - 5) = 0,

from which , _ o q

The values of x and y are then easily found.

(1)

(2)

(3)

(4)

(5)

(6)

\ji 5.
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The following solution is worthy of attention

:

Consider the following equations in r:

(r-z){r-y){r-z) = 0,

or ^-{^ +2/+zy + {zi/ + i/z + zx)r-xyz=0,

Its three roots are evidently x, y and z. If, then, for

x+ y+z, xy+yz+zx and xyz

we substitute their values from the original equations, we shall
obtain a cubic equation in r whose roots are the values of ar, yand z. The equation will be

?^-10r2 + 31r- 30 = 0,

which is identical with (6) previously obtained. The three values
of r, viz., 2, 3 and 5, may be assigned U)x,y and z in six different
ways as follows

:

a:=2, 2, 3, 3, 5, 5;

y=3, 6, 2, 6, 2, 3;

z = ^, 3, 5, 2, 3, 2.

The methods of this solution are of great importance in the
application of Algebra to Geometry.

Ex. ^—Solve {x - y)(y -z) = a\

{y-zXz+ x) = b\

(z + x)(x + y) = c\

Divide (1) by (2) and (2) by (3), and simplify.

(b^-a^-b^y-ah^O,

Px+ (b^~c')y+ c'z==0.

From (4) ind (5),

•^

_ y X

_ x-y y-z
2a\b''-c^) -26*'

(1)

(2)

(3)

(*)

(6)

T

D

or

El

Eli

(«)
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Substituting from (6) in (1),

from which

then from (6),

and

£x. 6.—Solve

x=.
a*A'-dV-cV

2 =
26V^Tr32

Adding the equations and factoring,

Multiplying the three equations and dividing by
(4),

Then

"'"'"'^<'>'(^)'""»(3)''y..ya„d.,a„d^ding,
«' A3 c3

r+-+-=o,

Eliminating x from (5) and (6),

Eliminating a? from (1) and (5),

J

(1)

(2)

(3)

(4)

(«)

(6)

(7)

(8)
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From (7) and (8),

from which y = \R+^)
**

Substituting from (D) in (8),

a\E-by '

b^B-c'y
'

Ji^(a^ + b%R + b^)

from which

Then

r»= -

ar3= -

and ,f^- 3\2\E-a^)

(9)

The values of a^ and 2/* are written from that of z' by symmetry.

208. In the application of Algebra to Geometry symmetrical

expressions with three letters frequently occur. They usually

arise from the sides or the angles of a triangle, or from the three

dimensions of space. A knowledge of the more usual forms and

facility in making transformations is desirable. The solution of

the following equations will furnish exercise in such work. The

following identities will sometimes be found useful:

^•^+y^+ z^--={x + it + zf-2{x9/ + yz+ zx).

x^ + if + z^ = {x + y + zf-3{x + y + z){xij+yz + zx) + Sxyz.

^2(y + z) + yHz + a;) + z\x + y)^{x + y + z){xy+ yz+ zx) - Zxyz
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EXERCISE XIX.

Solve the equations:

q1. a; + y + « = 6, Cl2.

^3. a; + i/-z=l, ^4.

ary=15.

^ 6. x + 9j + z= 0, c^6.

xy + yz + zx = - 7,

^7. a; + yf2;= 5, 8.

xyz = ^(i. ^^

^ 0. x\y + z) + i/'{z + x) + z\x + y) = 22

x + y + z^i,

« + y + « = 8,

x^ + y^ + z^=90,

yz + zz— xy=i3;

2x + 3y-z=6,

xz= - 2.

a; + y + «=2,
^y + y^ + 2!^ = — 23,

a?y«= - 60.

x + y +z= - 1,

;r3 + 2/3+.3_ _97^

i^lO.

t 12.

<14.

16.

x + y + z = 9,

xy + yz + zx='26,

{y + z)(z + x){x + y)==2l0.

xy + x + y = 7,

yz + y +z= -9,

zx + z + x= - 17.

{x-y){y + z) = a\

/ (y + ;s)(2-a;) = i^

^3.

^Pa^vXi-L. \'<^J

x^ + xy + xz^ 18.

y^ + yz + yx= -30,

»* + «a; + «2/= 48.

y — y» + 2;=l— a,

z — zx + x=\ — b,

x — xy-\-y=\ — c.

(y +«^ a;)(y -"« + «) = 6^

^ {z-\-X;^y){z-x + y)==c\

x^-yz= a^jjf \ ^7.
y ~aX = o, p,\----.u i

• -

/ s? -xy = c\ /

x'^ + 2yz= aPj

,.2 , 0~^ ,2

,';2 + 2ar2^ = 6^.

14
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If

{

18. z^ + xy + i/= 37, 19.

y' + ya+ «'=19,

i? + zx + x'= 2S,

>20. -^ «y(af-2/) = 12, c 21.

-^ y«(y-2)=-30,
^. *ar(« - a?) := 48. /

%!-«")= -30,

y(«'-^)=-i2,
,

23.

Y^^vi 2/«(.-^)=-16, /

y\x->ry-\-z)-\:^-\-x^-\-zx) = h\ W
z(x + y + z)-{x^ + y^ + xy)=<^. ^

yz{y-z) = h\ .

Zx(z -'X) = (?. '

f-zx^hy,
s?-'Xy= cz,

i ^^J>ia<3

25.

c
^7.

{x-\-y){x-{-z) = ax^

{i/ + z)(y + x) = by,

(z+ x)(z + y) = cz.

!>^ + y^ + s^== 3xyz,

x — a = y — h = z — c.

26.

28.

29. x^{y + z)^a\
y\z + x) = h\

xyz=^<?.

C30.

31. ar + y + »=l, 32.

«» + y' + »' + 6a:y= 0, •
» y

y + » « + .P ir + y
= 0.

(^-2/)(y-«) = *y>

(« + ar)(ar -y)=:ax.

iQ/ . 481
13(a; + y + «) =—,

x+y + z = 10,

yz + zx + xy=S3y

{y + «)(» + x){x + y) = 294.

33. («-2)»-|.(y-3)2 + («-l)2 = 2'4,

xy 4-vz + zx= 63, /

^x + Sy + z= 30.



30,

12.

/

I- j\XA/\^

481

481

= 10, /

= 33, /

= 294.

y\
= 3./
= 7,

CHAPTER XIV.

ELIMINATION.

209. From two or more equations it is frequently necessary toform an equation in which o.e or more of the quantities pre-
viously involved will not appear. The process of finding such an
equation is called Elimination, and the unknown quantity or
quantities which disappear are said to be Eliminated.

210. In order that elimination may be efiecfced there must beat lea^t on. tndependeni equation more than the quantities to be

•f ciindrtitn
'"'"^''''^ ''^''''^'°''

'' °^*''' "^^^^^ ^"^ Equation

Thus from

and a^x + b^ = Cj

(1)

(2)

we can obtain the values of .. and y, and these values, substi-
tuted m '

will give an equation without . and ,, but expressed in terms ofthe other letters of the equations. This new equation expresses

(2) a^tsT"
'

^ """^ ""^''^^ *^' **""'' '^"^''°"'' ^^^'

211 It often happens that the student does not at once per-ceive the number of quantities to bo «Umi-„af.^ ,•„ *u v/
given him. Thus, in the following problem

:
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Eliminate Xy y and z from

(1)

(2)

(3)

the beginner usually assumes that there are three independent

quantities to be eliminated; and as there are only three equations

given, he naturally concludes that elimination is impossible. In
such problems, however, there are only two independent quanti-

ties. For, divide (1), (2) and (3) separately by z, then we obtain,

\

z z

CC 11/

«i • - + />i
• - + cj = 0,

z z

a . --i-b . ^ + cj = 0.
z z

(4)

(5)

(6)

Thus we see that in (4), (5) and (6) there are only two inde-

pendent quantities, namely, - and -, and elimination is possible,
z z

If, however, (1), (2) and (3) had, on the right-hand side of the

sign of equality, quantities such as d, d^, d^, elimination would be

impossible, as there would now be three independent quantities

to be eliminated, and only three equations.

212. No general rule or rules can be given for Elimination.

In simple cases the values of the quantities to be eliminated can
be obtained from the same number of equations, and then these

values can be substituted in the remaining equation or equations.

This process, however, is not alVays easy or desirable, and various

artifices are employed to get rid of the undesired quantities. The
following examples may give some assistance

:



(1^

(2)

(3)

(4)

(5)

(6)

ELIMINATION.

Ex. i.—Eliminate x from the equations,

ax + b = c

From (1),
^-^

and from (2),

x = -

X-

a

Ci~bi

a,

,,

which is one form of the desired result.

Ex. 2.—li

and

eliminate x and y.

From (1),

and from (2)

ax-\-by =

aiX + bji/ = 0,

a

I

a a,

x'

x'

^ 205

(1)

(2)

0)

(2)

= -~y or aftj - aj) = 0.
b bi

Ex. S.~Ii

and

ax+ bi/ + cz =
(1)

(2)

eliminate z, and find the value of -

y

Multiply (1) by q.and (2) by c, and subtract the products.

Then x(aci ~ «ic) + y(bci - b^c) = 0.

Therefore
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Ex. 4-—Given

Prom (1),

from (2),

and from (3),

HIGHER ALGEBRA.

x + y + Z'^a, (1)'

xi/+ 2/z+ zx=:b, (2)

xyz=^c, (3) J

y + z= a-x,
b-yz

X
e

yz=-.
X

eliminate y and z.

Combining these results we obtain

.r^ - ax"^ + bx -c = 0.

Note.—The student's attention is directed to another and more elegant
solution of this problem in the chapter on Simultaneous Equations.

Ex. 5.—Having given a? = fty + c«+ c?w,

y= aar + c« + c?w,

»= aar + Jy + c?w,

w = aa; + Jy+ c«,

a b

(1)

(2)

(3)

(4)

show that 1 = +
d

a?, y, 2, u being supposed all unequal.

Adding ax to both sides of (1), by to both sides of (2), cz to

(3), and du to (4), we obtain

a:(l + a) = aar + iy + c« + c?w = 3/(1 + J) = «(1 + c) = m(1 + (/).

Let axJfby-\-cz-\-du= h.

h k
Then x= - y- z-

1+a' ^ 1+i' -"l+c

Substituting the values of a;, y, «, w in

a;(l •\-a\ = ax-\-by-\-cz + du,

ak bk ck

k . k
, and u =

\+d'

we obtain k =

Dividing by A;, 1 =

dk

\+a^\+b'^\+c\+d'

d

\+a^\+b'^\+c\+d'
II



<1)

(2)

(3)

(4)

•

"

BLIMINATIOK.

Ex. 6.—Find the relation between a, A, c, having given

sa7

that is,

« y X 7i ' y X

«» y' a:' «2 y» 22

= aic + 4.

or a'' + 62 + c8-a6<5 = 4.

Ex. 7.—Eliminate x £rom the equations,

a^ar^ + h^x + Cj = 0,

As in Art. 39, Exs. 1 and 2, we have

x" X 1

icj - ijC caj -Cia ab^- a^h'

:. 0^=
bci — biC

and a:=
ca, — c,a

or

abi-Uib abi -a^b'

,
/ cai-Cia y_ bCi-bjC

\abi-aibj ~ ab^ - aji'

(ail - a^by{bci - he) = (ca^ - Cja)'.

(1)

(2)

/
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Ex, 8.—Eliminate a?, y, % from

(ar-y + s)(y - 2 + ar) = oy«,

{y-z+ x){z-x-^y) = hzx^

(« - ar + y){x -y + z) = cxy.

Multiplying together (1), (2) and (3),

{(ar - y + z){y -z + x){z -x + y)}«= ahc^y^z\

or

or

or

cr

or

0)

(2)

(3)

{x-y-{-z){y~i.^x){z-x^-y)
_ ^—

xyz
^'

x'^y + a?z + yh + y^x + z'^x + z'^y-x^-'}r^-7?-2xvz ,-r- '— .— •_ _ Vaic,
xyz '

ixyz-x{:^~(y^zy}-y{y'-(z-xr\-z{z'-(x-yn ^ ^—
xyz '

4:Xyz - axyz - bxyz - cxyz ,—r—~ '— — V abc,
xyz

i — a — b-c= Vabc.

/. (4:-a-b-cy= abc.

\

EXERCISE XX.

e.1. Eliminate x and y from x + y= z, x^ + i^= a^, aP + y^=b^.

^ 2. Elimiuiite x and y from x + y = a, xy= z\ a?^ + y' = h\

^ 3. EL^ii^ate x, y and z from the equations,

a^(y + «) = a3, y'(a; + «) = i3^ 2'(a; + y) = c', xyz = abc. ^
4. Eliminate »», w, />, q from the equations,

^-y y + y 'pm qn jir? n^ P^ 9' . /

,1.6. Eliminate x and y from the equations,

aa? + iy = ar + y + a;2/ = a:2^y2_1^0. /
II
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0)

(2)

(3)

be.

abc,

h^.

i J:

6. Given y^-x*=zay- hx, 4xy - ax + by and .r' + y* = 1 , elimi- /
nate x and y, and show that (a + i)8 + (a - A)* - 2.

7. Eliminate x and y from the equations, /

x^+y^^a, b^x + Sx^y^, c = y + 3x*y*.

C3. Find the condition that /
«iar +% = Ci, a^ + b^ = c^ and a^ + h^^c,

may be satisfied by the same values o! ar and y.

9. Eliminate x, y and » from tho equations,

(b + c)x + (c + a)y + {a + b)z=>>0, (i -c)ar + (c-«)y+ (a-% =

and a:-^ + y-i + 2;-i«o.

10. Eliminate a, y, s from

aar + iy + c« = 6a: + cy + a2 = car + ay + i»=l when ar' + y2 + «2=p2.

11. Eliminate x, y, « from

ha' + ey + az^cx + ay + bz'=ax + by + cz = ab + bc + ca

and ar + y + 2;= a + 6 + c.

12. If ax + cjy + biz= 0, CiX + by + a^z^O, b^x + Uiy + cz = 0,

show that aa^^ + bb^ + cc^ = aic + 2aiUiCi

and {ab - c,^{ca - bi')x' = (be - a,^){ab - c,'),/ = (be - a,')(ae - b,y\

13. Eliminate m, x, y, « from the equations,

y + z+ u==ax, z + u + x=by, u + x + y = cz, x + y + z = du.

14. Eliminate a and b from the equations,

a- y=« «
. S' A k

;r2+A2=i' ;; + i = i. - + 7 = 1.a a a

15. Eliminate x or 77 from t.bfi K^nnnfinno
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16. Eliminate ar or ?/ from

{x-y){x''-,f)^^ and {x + y){x' + y^) = %^,

17. Eliminate x or y from

a^ + 2/' + (2y/2+l)(a; + l) = and x" -f -xy -\=0.

18. Eliminate x and y from

a.x + hy = c\ xy^,?-ah and -, + 2^= 1
a-* W>3 g •

19. Eliminate a: and y from

a.r2 + />a:2/ + c2/2= and «i.c^ + />,j:7/ + qy^ ^ 0.

20. Eliminate or and y from

•^' + ^2/ +y= «^ x^ + x'f + y^^h'' and .r« + a^y +/ = ^s.

21. Eliminate ar and y from

«' 2^_. a^ y' , a:* 2/* m
a n

22. Eliminate a? and y from

a%y = mb\ -2 + |2=l and ht + my=p.

23. Eliminate ar and y from

r(iar - ay) = .^^(aar - hy) = ary and a^ +/ = c\

24. Eliminate .r and y from

« 1
"* o .

"^ n . ex byx +— = 2tn, y + ~. = 2n and —+-£ = *,X y y ^ r

25. Eliminate x and y from

«.r + 6y = c(a2 + 2/2)i and a^x^\y ^clx" + y'')^.

26. If 2/2_wi(2ar + m) = a2, x^ - m{2y ^ m) = h'^ and « + a? = i +
show that m = or m = a + i.

y,



ELIMINATION. 211

4- w.

27. Find the equation between a?, y and a, independent of a

and 5, from the equations, a? + ax = y^ b^ + bx = z and a'^ + b^=l.

28. From aar + iy -« = (mV + 712^2 + c*)i = n%-i = m^aa?-i find

an equation which does not contain a and b.

29. Given the equations, x^ = -^— and y = = 5, show that if
1 + i5 1 — 2;

2; be eliminated the following equation will hold between x and y :

{^ + {f + l)^^ + {y-{f + l)^}^=x-^-x.

30. Eliminate y and z from the equations,

y + «= o, a;2 + y2_2ma?y = 62 a,nd ar^ + 2^ + 2/»a:« == c^,

and show that
(« + ^ + <^)(^ + ^-«)(<^ + «-^)(« + ^-c)

.^^^,
4a2(l - m2)

31. Eliminate a from the equations, ——-„ = -~— =
, and

prove that x{y'^ - ^2) + 2y{z'^ -a^) + iz{x^ - y^) = 0.

32. If ax^ + hf=bz{y-x) and bx^ + ay^ = ay{x ^ z), find the

relation between x, y and a.

33. Eliminate a;, y, and z from

ar + y + « = a, a:^ + y2 + 3;2= ^2 ^jid a;^ + yj + ;53 _ 3^^^ ^ ^s^

34. Eliminate ar, y and » from

ar + 2/ + a = a, x"^ + y"^ + z"^= b\ u^ + y' + z^'^c^ and xyz = d\

35. Eliminate ar, y and » from

a: + 2/ + « = and -+-=- + £ = _+_.
a X y b z c

36. Eliminate ar, y and z from

ar2/2; = a«, (;r + yXy + a)(a + ar) = c», -+^ + -=aand-+2^ + -=6.
y z X z X y

37. Eliminate a*, y and « from

x^^y^-^rz^- layz, y"^ = .r2 + 2;2 - 262aJ and »2 ^ ^2 ^ ^2 _ 2cary.

/
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38. Eliminate x, y and z from

39. Eliminate ar, y and z from

(ar + y)2= 4c:ry, (.r + ^)2 = 4i:r« and {y + zf^^ayz.

40. Eliminate :t, y and z from

^^-y« = «, y^'-^.r^i, z^-^cy^c, ax + hy + cz = d.

41. Eliminate .r, y and « from

^'^ y^ Z^ X^ y"^ 2

42. If
X

= a.

y+ z z + x
tween o, i and c.

y ^
= A and =c, find the relation be-x +y

43. Find the relation between a, h and c, having given

44. Eliminate a and i from the equations,

a'-.^ 2ar + 3y

^^^^^r^y' <''-^'= {^-yy and «Ui^=^*.

45. Eliminate x and y from x + y==a,c^ + f=.h' and ;r« + y= = c«.

46. Eliminate x from the equations,

47. Eliminate .r, y and z from the equations,

^
,
y z X

- + - + -=«, - +
y a X ' z ^r*•(^f)(f-^)(^i)=«.

48. Eliminate a; and y from

4(ar=' + y«) = aa. + Jy, 2(0:^ - y^) = ax - iy and xy = c^.

«i



= abc.

VI

o'^z.

he-

= 0.

= C6.

c.

CHAPTER XV.

THEORY OF QUADRATICS,

213. In Part I., Chapter XXI., the simpler portion of the
Theory of Quadratics has been ti-eated. It remains now to give
that part of the Theory which is of a more difficult nature.

214. In algebraical researches it is frequently necessary to
determine for what values of the variable a particular quadratic
expression becomes positive or negative. A few numerical illus-
trations will render the principal proposition more easily intelli-
gible.

Take for example the expression, a-^ - 13a; -h 36, and for z substi-
tute various numbers, anc! collect the result. Thus when

x= 1, 2, 3, 4. 5, 6, 7, 8, 9, 10, 11....
:r2-13ar + 36 = 24, U, 6, 0, -4, -6, -6, -4, 0, 6, 14....

It will be observed that when a; is 4 or 9 the expression vanishes,
because these are the roots of the equation,

a;2_ 13x4-36 = 0;

that when x is between those roots the expression is negative, and
that for all other values it is positive. If we change the sign of
every term in the expression, the vanishing points are unchanged;
but the expression is now positive when x is between 4 and 9,
and negative for all other values.

Next consider the expression, 2x^ ~8x + 25. It will be found
that this expression is always positive for real values of x. When
a:= 2 the expression becomes 17; but for all other real values of
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X it is greater. The reason for this peculiarity is seen at once by
writing the expression in this form:

^{x-2Y+^].
When x=2,{x- 2y is zero; but for all other real values of x it
18 a positive quantity. Note that in this case the roots of

are imaginary.

We will now proceed to state and prove the general proposi-
tion relating to this subject.

215. The quadratic expression, ax' + bx + c, is always of the

^

same sirjn as afor all real values of x, except wJien the roots of the
quadratic equation, aaP + bx+ c = 0, are real arA UNEQUA^'ami
X lies between them. *

^^ (^x'^ + bx + c = a{x-m){x-n).
Then the roots of ax^ + hx + c^O &rem and n. (Art. 294, Pt. I.)

1 Let m = M. Then ax'^+ hx + c^ a{x - nf. But {x - nf is
posi ive when x and n are real; .-. a{x-ny is positive if a is
positive, and negative if a is negative.

2. Let m>n. Then if x>m and >w, {x - m){x - n) is posi-
tive, since both factors are positive. Also, iix<m and <m,
{x-m){x-n) is positive, since both factors are negative. But
if :r>m and <w, or a;<m and >n, then {x-m){x-n) is nega-
tive, since one factoi is positive and the other negative. When
{x-m){x-n) is positive, a{x-m){x~n\ as shown before, is of
the same sign as a; but when {x-m){x-n) is negative, then
a{x - m){x - n) must have a different sign from a.

3. Let the roots oiax^ + hx + c = be imaginary.

Solving ax^ + hx + c = Q

we find

2a^

b \/W - 4ac

2a

If i^<4ac, the roots must be imaginary.
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\

Now, ax'+bx + cm^a(x'+-x+S.\
\ a aj

But (.+ i-)'is positive; and '-^ i. positive, since «V4ac
and M U positive.

.-. ar-+ 6^+ . equals the product of « anda posi .ve quantity ;.-. „;^+ 4^+ „ „„,t b^ „f th^ ^^^
when the roots of ax' + hx + c are imaginary.

Ex. i._The expression, 2.r'+ 8.. + 9, is always positive for all
real values of x.

Since 8'<ix 2>c 9, the roots of 2:r=+ 8^+9 = are imaginary;
the value of 2^+ 8.+ 9 for all real values of . is of thTcaie

Sign as 2, and is therefore positive.

..n?;
^'~?^^ JW^^-ion, ix^+Ux+U, is always positive ex-cept for values of x lying between the roots of 4^^ + 1 5^ + 1 2 =Forl5>4><4xl2;

.-. the roots of 4^+ 15.+ 12 are real and
unequal, and, therefore, ix^+Ux+U is negative when x lies
between these roots.

^1.216. It is sometimes possible to find maximum and minimum
^ Values of a fraction for real values of the unknown quantity.

Let it be required to find the maximum and minimum values of

Assume

2ar»+2ar+r

x'^-Zx-Z
= y&.

2a;2 + 2a?+l

Multiplying out, and arranging as a quadratic,

(1)
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Since x is real, (3 + 2ky + 4(1- 2k){Z + yfc) ^ 0,

21-8A;-4F^0,or

or

or

4P + 8yfc-21<0,

(2A + 7)(2X;_3)^0.

Now in order to be negative or < 0, 2k must be < 3, and
.*. A;< - . so that the maximum value of yfc is -. Also, if 2A;<3
2^ + 7 must be positive; .-. 2A> - 7, and :.k>J-. The mini-

mum value of k is therefore -
| , and the maacimum value, ?. If

J^=--^or ~,the expression, (2A; + 7)(2^ - 3) = 0, which is the
condition that the roots of (1) should be real and equal.

'' jfc
^^

'-?^^' ^^ -^^^ '^^ condition that a^ + 2hxy + h^f + 2gx+^y + c
.ji^Tyrmy resolve into two rational factors, the constant quantities,

I
«j ^> o, gyj, c, Jeiri^ rational.

^
The expression, a.:^ ^ ^j^^y ^ j^, ^ ^^^ ^ ^^^ ^ ^^ ^.^^ ^^^^^^^

into two rational factors if the equation,

«^' + 2Aary + 6y2 + 2^a?+2/y + c = 0, (1)

when arranged as a quadratic in x or y, has rational roots.

Arrange (1) as follows:

«ar2 + ;r(2% + 25') + (i/ + 2/y + c) = 0.

When the equation is solved tlie quantity under the radical
sign will be

{^hy + 2gY-ia{hf + 2fy + c). -

||
In order that the roots may be rational (2^ must he a perf«qt

square.
' ^ -*-^

t»



B < 3, and

o, if 2A;<3,

The mini-

ilue, ~. If

h'.ch is the

il.

jx+^y + c

quantities^

ill resolve

(1)

)OtS,

le radical

B. perf«Qt

THEORY OF QUADKATICS.

Now, (2) = 4 {f{h? - ab) + y{2gh - 2af) + (j^' - ac)},

the condition of which being a perfect square is

(2gh - 2a/)»= i{h? - «*)(/ - ac\

217

or

or

218. To find the condition that a:t' + bx + c = nmy have roots
equal numerically, but of diflferent signs.

Since

then

a3p + bx + c = 0,

-2 .
* c ^ir+-x+-=0.
a a

The sum of the roots of this equation is - -

.

a*
But since the roots are equal numerically, and of different

signs, the sum of roots = 0.

b

" "a'" ^^ ^'"^ ^^*''^<^o^<ii<iion required.

BXEROISB XXI.

fact,!^^'"'^'^'

2y« + 2a;«-5^y-4ay-a.r-6a» into two simple /

2. If f + axy + bx^ + cy + dx + e can be resolved into two /
rational factors of the first degree, find the relation between the
coeflficients.

3. If f+by^+2a,y+2b,x+2c,xy + c be the product of two
rational linejil factors, show that

abc + 2aiVi - aai" - bb^" - cci' = 0.

4. If X be real.

/

1

x^l ~^^ ^'^^ "®^^^ ^^^ between 5 and ~./^

16

/o ^ u^^kf
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6. If ar be real, prove that g + ^-^Jij

between — and 1.
25

-t- uj: + * >

u

t/6. If n be real, prove^~~ must lie between 3 and I /

7. The greatest value which ^^) admits of for any real /
4/9,7 .ti-« •'

valueofaris—^—

.

^ 8. Show that for real values of x,
^ ~ ^^ '*' ^

tween and - 4.

- 4a? + 4 ,,^^T cannot lie be- ^

i^. Withi]t^. Within what limits is the value of^~-^ an integer or /
a rational fraction ?

t/10. Show that {x - aXb - a,) can never exceed -(a - bf. /
11. Show that the least value of fc±^)fe+l) j^ ^J ^ ^^^^ ^^^

the greatest value of ^i±^fc±) is ^ + *)'

iab •X'

12. Show that the roots of (3a -x)-^ + (36 - x)-' + (3c _ x)-^ =
are real if a, b, c are real.

13. Show that by giving an appropriate real value to x, ^
4^^-36^4-9

12ar2-f-8xTl

can be made to assume any real value.

14. The expression
|^^|^|, admits of all possible values, /

provided that one, and only one, of the quantities a or b lies be-
tween c and d, and otherwise will have two limits between which
it cannot lie.

/



real value /

3 and -.

)r any rea/ ^

not lie be- ^f

integer or ^

h)\ /
+ h^)\ and

/

•le values, ,/

h lies be-

jen which
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15. The expression,
^^^^^^^ will be capable of all values

for real values of a-, provided that («c, - «,o)'< 4(a,6 - ai>,){h,c - hc^

16 If a be >\ and c be positive, prove that the greatest value
which the expression, (x - «)(:. - A)(x - a - c)(a: - 6 + c), can have
tor values of x between a and h is

16

17. Find the limits between which a must lie in order that

aar^ - 7ar + 5

5x* - 7a; + a
may be capable of all values, a; being any real quantity.

^8. Show that|—^ will be capable of all values when ^
X is real, provided that p has any value between 1 and 7.

19. If the roots of a^^Ux^c^^ be possible and different
then the roots of (a + c)(ar2+ 26a: + c) = 2(ac-6WH- 1) will b^

'"

K
impossible, and vice versd.

20. Show that
ff,l2al^^Ia)

^"^ ^^ ^^P^^^^ «^ ^" ^^l»e« ^i^en

X is real, if (c^ - c?') and (a^ - b') have the same sign.

C21. For what values of m will the expression, ^

f+2xy + 2x + my~3,
be capable of resolution into two rational factors?

j 22. Find the values of m which will make ^
2x^ + mxij + 3/ _ 5y _ 2

equivalent to the product of two linear factors.

/• 2.3. Show tlia>. »vi/^ ^,2\ ~,.// --\ 1 J •. a .

,s- ;" ^"V" -:/ /- -^uv - -V itivvays admits of two real
linear factors,

n
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24. Find the condition that
'

Ix^ + mxy + nf and lix"" + m^xy + n^i/''

may have a common linear factor.

/

25. If the expression, 3.r'- + 2Axy+ 2?/ + 2ax - 4y + 1 = 0, can J
be resolved into linear factors, prove that A must be one of the
roots of the equation, A"^ + iaA + 2«' + 6 = 0.

^26. Find the condition that the expressions,

' ai^+ Uxy + hy^ and «..r» + 2h^xy + by, ^

may be respectively divisible by factors of the form y-mx and
my + .r. .

4. 27. Show that in the equation,

ar2-3ary + 2/_2ar-3y-35 = 0, /
for every real value of x there is a real value of y, and for every
real value of y there is a real value of x.

28. If X and y are two real quantities connected by the equa-
tion, ^a? + 2xy + y - ^2x - 20y + 244 = 0, then will x lie between
3 and 6, and y between 1 and 10.

^ 29. If (ax' + bx + c)y + a,x^ + b,x + c^ = 0, find the condition that
X may be a rational function of y.

3d. The expression, Bax^+bx + c ^ f T

,"Vill be capable of all values
cx^ + bx + a

whatever if b^>{a + cf. There will be two values between which
it cannot Jie if b'^<{a + cy and >4ac, and two values between
which it must lie if 62<;4a(..

31. Find the greatest numerical value, without regard to sign,

which the expression, {x-S){x - 14)(x- \Q){x - 22), can have for
values of x between 8 and 22.

L
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SOME RELATIONS BETWEEN ROOTS AND THEIR
COEFFICIENTS.

^^19. Theorem.—7/- the coefficients of an equation are rational
khsn surd roots must be in pairs; i.e., ifa+Vbis one root, thena- V b must be anotJtsr root.

Ex.—l^ta+ V~bhQ a root of a^+px' + qx + r^^O.

Then, substituting a + V~b iov x we obtain

(a + VTf +p{a + VTf + y(a + ^Z1) + ^ ^ q,

or {«» + 3a* +pa' +pb + qa + r} + {Sa^ + h + 2pa + q]VJ=. 0.

But when the sum of a rational quantity and a surd is equal
to zero, the rational quantity must be equal to zero; also the
surd equal to zero.

.'. a^-¥Zab+pa'^+pb + qa + r = 0^ n)
^^ {^a'' + b + 2pa + q)VT=.0,

(2)

Subtracting (2) from (1),

a? - 3a» x/J+ Sab - b VJ+p(a^ - 2a VJ+ b) + q(a - i/J) + ^ = 0,

'*''
(« - "^'^Y +P{a - ^If + q{a - i/ 6) + ^ = 0.

From this it is evident that (a - \^T) is a root of

The following is the

General Froof.~Let the equation,

x''+px"-' + qx«-^ + .,,, _^
root, u+ Vb, and let the coefficients,

have

rational.
Py 9, be
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If a + 1/lis substituted for x the equation will take the form of

P+Q VJ=0,

where i* stands for the rational terms and Q VJ the irrational.

Since p+Q^J^o^

:. P = and Q\/'b = 0.

:. p-qVJ^o.

But a a- VJ he substituted for x in the equation the result

obtained will be P-Q\^b; and as P-QVI^q, a- V b nmst
be a root of the equation. See Art. 186 for a shorter proof.

^NL^-^20.—Theorem.—7/* the coefficients o/an equation are real,
^J\lhen ifa^h^-1 is a root, a-bV -lis also a root; or, in brief,

if the coefficients of an equation are real, imaginary roots occur in
pairs.

•

The proof of this proposition can be obtained by the same line
of reasoning as in the preceding theorem.

^a;.—Let a + J V - 1 be a root of a^ + joar + ^ = 0.

Then
(« + *VTi)2 + ^(a + 5^-n)^.^=,0,

®^ (<^''-^^+pa + q) + {1ab+ph)V~^ = 0,

°''
a'-b'^+pa + q^O

^"^ {2ab+ph)V~:^=.0.

Subtracting, «" _ ^ab /Tl „ y" +p{a - bV^) + y = 0,

{a-bV -\f+p{a-bV ~\) + q = 0.

From this condition it is evident that a - 6 v^ - 1 is n. rnnf of
a^-\-px + q = 0.
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HXBROISE XXII.

Solve the equations:

1. 3;r« - 10^+ 4.r» - :r - 6 = when one root is i±-^li^
2

2. 6a^-13r'-35ar2- r + 3 = when one root is 2- V^.

Q^ a^+ 4«» + 5ar- + 2ar - 2 = when on« root is - 1 + ^rj.

^ 4. x«-^*4.8x'-flx-15 = 0, o^e ^t l^eii^g V 3 wid a*,^er

^ 5. Form the equation of the lowest dimensions with raUoual
coefficients, one of whose roots is:

"'

C. (1) V^S+v^T^; c (2) _ i/^+-v/5;

(3)-i/2-V"rT; (5,(4) ^s-f^ve.

^ 6. Form the equation whose roots are ±4 V'S, 5±2 V^".

V 7. Form the equation of the eighth degree with rational co-
efficients, one of whose roots: is V 2 + V' 3 + ^1"!.

0^8. If a±|3l/-l betherootsof ar»+ 5^a: + r= 0,then|3' = 3a'+,j.

9. If r»+;?ar2 + ja: + r= be satisfied by a: = 3+ VT, it will bo
satisfied by a: = - r.

10. If - + '^'hh^B.xootoi^^p^^qxArr^^.t^^n
a^->,j>a4,fi

is a factor of r, i not being a perfect square, and ;>, y, r rational.

11. If a + 6A/TT be a root ofy + yar + r = 0, th^ a is a root
of 8.1:3^2?^- r = and Za^-h^^ -^, but it « + 6 1/31 boa.root
of ar» - ^^2 - r = 0, then a is a root of 8x^ - Spx" + l^x +r = D.

12. If a:» + g'a: + r= have a root \(xi^ V 6), ghow that «is a
root of the equation, ar*+ ga: - r= 0.



CHAPTER XVI.
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INDETERMINATE COEFFICIENTS.

221. The student of Algebra is frequently called upon to de-

termine the relations between the roots of an equation and its

coefficients; also the conditions that must be satisfied by the co-

efficients of an algebraic expression when it vanishes for certain
definite values of the unknown quantity involved.

Bx.—What condition must be satisfied by the coefficients of
aa:' + f>x + c if this expression vanishes for more than two given
values of x ax^ + bx + c l>eing a positive integral function oi x1

Let ax^ + bx + c vanish when x = m, nfi. Then

a(^x^+ ~x+^j =a(x-m)(x-n){x-py, Part I., Art. 275

therefore

^
V

^ a
^^

a )
"^ ^^ ~ "^^(^^* + n+p) + ax{mn + np +pm) - amnp,

a quantity of the third degree, which is impossible unless

aar' = or a = 0.

If a = 0, then ax^ + bx + c = bx + c.

In the siime way it can be shown that 5 = 0, and .'. c = 0.

The conditions, then, for ar' + L. + c vanishing for more than
two Values of x are a = 0, 6 = 0, c = 0.

£.<£.. TT c p-uj;.-ccu nuw tu give i/iiu proor or vne general proposi-

tion of which the preceding example is an illustration

:
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Proposition.—If any positive integral function of x of the

7i'* degree vanish for more than n different values of x, then each

of the coefficients must vanish.

Let ^„a;" + ^„_ia;"-^ + . . . ^lo be a positive integral function of x.

This function can be denoted by the symbol yi[a-).

Let «!, cfa a„ be values of x which make/(a-) vanish.

Then f{x) = A„{x - a^){x - a^{x - ag) . . . . (x - a„).

If possible lety^a:) vanish for x = a„^i.

Then y(a„+i) = = il„(a„+i - ai)(a„+j - a^) . . . . (a„+i - a„).

Now, since or„+i-Oi, a^^^-a^ «n+i-«n are each not zero,

since fl„+i is different from a^, a.^ a„, /. A„ must = 0.

Therefore /(a?) reduces to A^_.^x^-^ + . , . . A^. In the same
manner .<4„_,, ^„_2. . . . Aq can be shown to be zero.

The above is the usual proof; but it is well for the student to
recognize that the truth of the proposition depends upon the fact

that a positive integral function of x cannot have more linear

factors than is indicated by the highest power of x. If it has,

then the coefficients of the function must be separately zero.

223. Corollary.—//"id + Bx + Cx'-\-... .Nx^=^A, + B^x + C^^
+ ifiic" for more than n values of x, tJien A=Ai, B = Bi,

For, transposing, {A~ A,) + {B - B,)x + . . . .{2^- Ni)x'' = 0, and
the equation is satisfied by more than n different values of x.

Therefore the coefficients separately vanish; i.e.,

A-A, = 0, B-B, = O....N-N-^ = Q^

A=A„ B = B„ C=C,.... JV=F,.

Ex. 1.—Let x^-p.v'^ + qx-r=^{x-2){x- 3)(a; - 4) for more than
two values of x.

Then, since {x - 2)(ar - 3)(.c - 4) = x^ - ^x^ + 26a; - 24,

we find, by equating coefficients, that ;? = 9, y = 26, r = 24.
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Ex. ^.—Let ax*+p3r^ + qx'^ + rx + 8 = 4:u!^ + 3z^+ 5x-2 for more
than four values of x.

Then a = 4, j(j = 0, 5 = 3, r=5, s=-2.

This principle is called that of Indeterminate Coefficients,
by which is meant '• coefficients that have to be determined." As
the principle has a very extensive application we append a few
more solved examples.

Bx. 3.—Show that the following is an identity

:

a\x -h){x-c) Ir (x - c)(x - a) c\x - a)(x - b)

{a-b){a-c) {b-c){b-a)
"*"

(c - aXTTftjT
" ^•

From inspection we see that the equality holds when for x we
substitute a, h or c. But the expression is of the second degree
in x; and since it is satisfied by more than two difierent values

of x, the coefficients of corresponding powers of x on opposite

sides of the equation must be equal. Therefore the equation is

an identity.

^Ex. 4'—Find values for a and b which render the fraction,

2x^+(a-b)x + 2a2 - U^
3^2 + (a-7)x + 3{a^+ 2ab + Sb^

the same for all values of x.

Let
2.t' + («- ').r+2o2_3i2

Sx^ + {a-7)x + 3 (a" + 2ab + W)
where h is the same for all values of x.

= k

Clearing of fractions, and arranging as a quadratic in x, we obtain

x'{2 -U) + x{a-~b- k{a -1)]+2a'-W - Zk{a'' + 2ab + W) = 0.

Now, since the left-hand expression vanishes for all values of x,

the coefficients separately vanish.
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Therefore (l) 2-3k = 0, (2) a - 6 - k{a - 7) = 0,

(3) 2a2-362_3>fc(a2+2a6 + 362) = 0.

2From these equations we find that k=-, a= -6 or -14,

6 = 2f or 0.

Bx. 5.—Resolve 2x^ - 2\xy - 1 \xy^ - ar + 34y - 3 into rational

factors of the first degree.

Assume Ix'-nxy-Uy^-x + Z^^y-Z^ {2x+my + n){x + ry + s).

Multiplying out, and equating coefficients of like terms, we have

-2l = 2r + m,

— 11= mr,

-l=w + 2,

34 = nv 4 ms,

- 3 = rw,

(1)

(2)

(3)

(4)

(5)

Solving these equations we find m=l, n- -3, r= -11, and
«= 1.

.'. factors are (2x + y- 3)(x - 1 ly + 1).

This is a tedious process of obtaining the factors of this ex-

pression, but it is here introduced to illustrate a method some-
times useful.

Ex. 6.—If a, 6, c, d are the roots of x^-px^ + qx^-rx + 8 = 0,

find the relations between the roots and the coefficients.

If a, 6, c, d are values of r that make x^ - pi^ + qx"^ - rx { s

vanish, then x-a, x-b, x-c and x-d are factors of this ex-

pression, and therefore

a^ -px^ + qx'^-rx + 8 = {x- a){x - b)(x - c){x - d)

for all values of x.
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Multiplying out, and equating coefficients, we obtain

a + b + c + d = j»,

ab + bc + cd + da + bd + ca = q,

abc + bed+ cda + adb = r,

abed — s.

(1)

(2)

(3)

(4)

(1)» (2), (3) and (4) are the relations required. From this ex-

ample it is easily seen what general relations exist between the

roots and coefficients of positive integral equations.

Hx. 7.—If
x" B C

-,

+

{x - a){x - b){x - c)~ X - a x-~b x-c^

find the values of -4, B and C, and prove thatabc (1)

= 0.
(a - b){a-c) {b -a){b-c) {c- a){e - b)

Clearing (1) of fractions we obtain

a^ = A{x- b){x -c)+ B{x -a){x-c) + C{x -a){x- b). (2)

Since (2) is an identity the equality holds for all values of x.

(3)
Therefore when x = a, a^ = A{a-b){a-c), or A =

Also when x = b, P = B{b-a){b-c), or B =

Similarly when x = c, e^ =C{e-a){e-b), or C

a'

{a--b){a--«)

(b-.a){b-

c2

-«)

(c -a)(c~ b)

• (4)

• (5)

ABC
Again, in (1) let a: = 0; then — + — + — = 0.abc
But from (3), (4) and (5), by dividing (3) by a, (4) by b and (5)
by c, we find that

a b c~{a-b){b-e)'^{b-a){b-e)'^{e- a){e - b)
= 0.
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224. The principle of Indeterminate Coefficients is often em-
ployed in finding the sum of a series.

Ex. ^.—Sum the series, p + 22 + 32 + 4^ + . . . . n\

Assume

V+2'' + 3' + 4:' + ...n^ = Ao + A,n + A,n'' + A,n? + A^n' + ... (1)

Then, since the sum of the squares of the first n natural numbers
is a function of n,

V + 2^+Z^ + i^ + ...n' + {n+iy

= Ao-rA,(n + l) + A^{n+iy + A3{n+lf + Ai{n+iy + ... (2)

Subtracting (1) from (2),

{n + iy=Ai+A2{2n+l) + Ar^{3ri'+Sn+l) + A^(irv^ + 6n'' + 4n + l) + ...

or n^ + 2n+l=Ai + Apn+l) + As(3n' + 3n+l) + (3)

It is not necessary to write down any coefficients beyond A^,

because J 4, A^, A^.. . are the coefficients of w^ w* . . . in (3), which
do not exist on the left-hand side of this identity, and .*. must
be =0.

Equating coefficients of the same powers of n,

l=Ai + A^ + As (term without w),

2 = 2^2 + 3^3 (coefficient of w),

1 = 3,43 (coefficient of n^).

Solving (1), (2) and (3) we obtain

A -^ A ^ A ^^3-3, ^3=2' ^1=6-

-A
(1)

(2)

(3)

1
... V+2^ + 3^ + i^ + n\.. = A,+ ~n+l-n'+^n\

o 2
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Since this is true for all values of 7i, let n = 0.

:. P+ 22+32 + 4=^ + .

9 n w^ j^3

6^2^3
w + 3^2 + 2n'

= ^ (1 +3w + 2w2)

6

_ n(l+w)(l +2n)

6
•

EXERCISE XXIII.

1. If «!, «„ a3 be the roots of ^+px'- + qx + r-^0, express, in
terms of p, q and r,

<^^^^ ^+i;+? ^^> «x^+«/+< (3) ^^+^^+^2^«2^i3 %
^ ^ «2 as «3 «i «! tta

C 2. If «, i, c, ^ be the roots of ,^-r^+x+\ = 0, find the values of

(1) a'h + a:'c + aH+b''c + .... (2) a^ + b' + c' + d^

3. If o, b, c are the roots of or^ +^,.^2 + g^ + ^ = 0, form the cqua-
'^ tions whose roots are (1) a\ b\ <?; (2) ab, be, m.

C 4. Show that or^ - 5^^ + 8^ - 4 = has two equal roots, and find
all the roots.

^ 5. If «, b, c be the roots of x'-2x'^+ 3ar-4 = 0, find the values of

'^^^^lu^U (2)«^ + *^ + c^ (3)^, + l + i.

6. Find the relation existing between p, q and r when the
equation, ^+px'' + qx + r = Q, has two equal roots.

7. If two of the roots of 3^ + qx + rr=0 are equal nr^vo fK^
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8. If a, J. c are the roots of ^ +;,a:=' + ^.r + r= 0, form the equa-
oions whose roots are (1) h + c,c + a,a + b- (2) bh\ c^a\ a^b\

9 The roots oi ^ + q^ + r=.0 ^ve denoted by «, 6, c; form theequation whose roots are ha + ac, ch + ba, ac + cb.

that the equation, ^ + ^^ + ^ = 0, may be put in the form

^^{x' + ax-^.by,

and hence solve the equation, 8^ - 36.r + 27 = 0.

11. Investigate the relation which exists between m and nwhen ^^-{2m^^,ny^im^^,mn).-,m^n is a perfect cube
12. Determine the relations which exist among a,b c d e v awhen a.^ + b^^c.^^d. + e is divisible by .^+A; ' ' '

''^' ^

13. Investigate the condition for the expression,

4.r* - ip^ + 4^a;2 + 2p{m + l)x + {m+ l)\

being p. perfect square.

14. Investigate the condition for the expression,

Aa^+ 2Bxy + Gf+ 2Dx + 2Ey + i^,

being divisible by a factor of the form ax + by + c.

15. Express i{x^ + a- +^ + x+\) s^ the difference between two
squares.

16 Investigate the relation between the coefficients that the
equation, a^^bx^+cx+d^O, may be put under one of the forms,

(1) x' = {x''+px^.q)\

(2) q'^ix'+px-^qf.

Solve in this way ^a^-x"^ -2x+l=0.

17. If two of thfi rortfo n( r,^ I Qi^a , o , t -.-" " ""^ T ^^j>- \ OCX \-a = \i are pniml
prove Kac-h'^){bd-<^)^(<^d-hc)\ ^ '

11
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18. Show that x*+pr> + qx^ + rx + 8 can be resolved into two
rational quadratic factors if s be a perfect square, negative, and
equal to

P^ - H
L 19.j4f flr' + 6a;=' + cx + tZ be a complete cube, show that ac^= dh^\/
and i^ = 3ac. W

20. If ax* + bj^ + cx"^ + dx + e he A complete fourth power, prove
bd=\Qiie, be = Gad and cd = 6be

21/li px? + Zqx^ + 2>rx + s vanish when a; = a or 6 or c, express ^
in terms of ja, q, r^ s^

{\) a + h + c, (2) a2 + 62 + c2, {^) a^ + b^ ^ c' - ^abc.

22. From
«« ABC

f +(;r-a)(a:-i)(ar-c)(a:-o?) x-a'^ x -b^ x-c^T^Td'

prove
a" 6»

+

{a-b){a-c){a-d) {b-a)(b -.c){b -d)

c' d?

(c-a){c-b){c-d) (d-a){d-b){d-cy

23. Determine the value of

« b

{a-b){a-c){a-d)'^{b-a){b-c){b-d)

+ ^ . ±
{c-a)(c-b)(c-d) {d-a){d-b){d-cy

24. Determine the value of

0.

a»

+ anal + anal + anal.{a-b){a-c){a-d)

t25. li.^-—==a^ + a^x-\.a^'' + a^x^ + ....^ prove a^^ 1, a^^ 2, ^
flj= 3 . . . . and «„ = w + 1,
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^26. If
J--

= «„ + a^^ + a^ ^ ^^^^^ a^^a^=. a„ ,

27. Deterniine a, b, c, d, e so that the n^^ term in tlie expan-
~

(1 _ j.^5
niay be n*c'-».

28. Expand, in ascending powers of x,

1+x

^
sion of

1 1-
2-3.1;' 2 + 3.1;' \-x + ?'

t

prove ^3 + ^,5, + ^,^^ + ^^^0.
^V+ i^.^....

^ 30. What values of x and y make the fraction,

2z' + (x-u)z + 2b (x - 2c)

3z^ + (fjlb)z + Za{y - 3c)

'

independent of z 1

31. Sum the series, 1 . 2 + 2 . 3 + 3. 4 + . . . . n(w+ 1). V'

C-32. Sum the series, P + 2' + 3^ + ^^^^ \^

q33. Sum the series, 1 + 3 + 5 + (2n _ 1). )/

)/

I)

«) ' i|-

al.

S-l, ai = 2, ^

16



CHAPTER XVII.

JJLLM

PERMUTATIONS, COMBINATIONS
AND DISTRIBUTIONS.

225. The word Permutation is used to designate a number
of things arranged in a definite order.

Thus abc, acb, bca, hac, cha, cab are the permutations of the
letters a, 6, c taken all together. Sometimes we speak of the
permutations of a number of things, of which only a part are
taken at a time. Thus ab, ba, ac, ca, be, cb are the permutations
of the letters a, 6, c, two being taken at a time.

226. The word Combination is used to designate a number
of things taken as a whole, without regard to the order of their
arrangement.

Thus abc, bed, cda, dab are the combinations of four letters
a, b,c, d, three being taken at a time. The groups, abc, acb, etc.,'
are different permutations, but the same combination.

227. The word Distribution is used to signify a mode of
division of a number of things into parcels, or groups. In this
connection we shall use the word Parcel to refer only to the
things taken together, and the word Group when we wish to
distinguish both things and order of arrangement.

228. When we speak of n things without further description

'
•^" "-=""^e tnat tiiuy are aii aiuerent, t.e., each is

capable of being distinguished by the eye from every other. If
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i-o or more aro alike, the exact number of such like thing, «inbe speched; and m thi, case each individual thing will be counted.n stating t.o total number. But when wo spLk of « thlgTeach of w ,,oh ;n„y be repeated any number of^imes, wo Z^n d,fferent kmds, with an unlimited number of each kind.

Vcrf^neA« n different roays, then the tu,o actio,^ jointly can hefa-formed m mn differed ways.
'^

^t the first action be the selection of one of the capital letters,AJI, C . .
.

,
and the second ;l,e selection of one of the small letters

se
.

Ihe letter A n.ay fl«t bo chosen, and then any one of the
..letters, „ *, o. .

. ,
n.aking n choices in which A is taken firstS^mdarly there n.ay be n choices in which B is taken first, aidso on. Thus we have in all n choices repeated « times, il, thetwo selections together may be made in mn diflerent ways.

Con-This principle may easily b„ extended to three or moresets of operations. Thus if the first action can bo perforn.er Im ways, the second in n ways, and the third in p ways, the who ecan be performed in mnp ways, and so on to any ex^it

1-230. The preceding Art. contains the fundamental principleof the reasoning employed in this chapter. I„ applying \ to anyparticubu. problem care must be taken to see thatl^L reJ.are d^Jerent and that all the different ernes are included!

Ex. 1 In how many ways can two persons be seated in aroom containing 10 vacant seats !

..
One person can select any one of the 10 different seats, and

:r;oroiTo7ff:.rw:;r"^
-^ '>» --»'>« » -^'«:'»
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di

Ex. ^.—In how many ways can the letters «, «, «, «, «7, A, c be
arrunged in a line ?

Place all the a's in a line with spaces Ijetween them. This
can be done in only 1 way. Place the b at one end or in one of

the four spaces. This can l)e done in 6 ways. The c can now
be placed at either end or in one of the five spaces, making 7
ways. The total number of diderent arrangements is therefore

1 X 6 X 7 = 42.

PERMUTATIONS.

/r 231.

—

Tojind the number of jjermutationg of n thingSy r being
taken at a tinie.

Each of the n things may be followed in succession by each of

the remaining n- 1 things, giving n{n-\) permutations of two
things each. Each of these n{ti- I) permutations may be fol-

lowed by each of the remaining ri-2 things, giving w(n-l)(n-2)
permutations of three things each. Proceeding in the same way,
and noting that the number of factors in each result is the same
as the number of things taken together, we see that the number
of permutations, r at a time, is

n{n - l)(w - 2) to r factors,

n{n - l)(n - 2) (n-r+\), the result required.or

Cor.—The number of permutations of u things taken all at a
time is

n(w-l)(/i-2)....3.2.1.

It is usual to denote this product by the symbol In, called "fac-

torial n." In modern American works it i;i usually denoted by nl

The number of permutations of n things, r at a time, may con-

veniently' be wenoweu oy n-if
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232. To find tU number of permutniions of n things, rata
time, when each thing may be repeated any number of times.

Each of the n things may be followed in succession by one of
Its own kind and by one of each of the remaining kinds, giving
n^ permutations of two things each. Again. e.ich of these n' per-
mutations may be followed by any one of the n things, giving n'
permutations of three things each. Proceeding in this way and
noting that the exponent of n is always the same as the number
of t

. -ags taken, we see that n" is the number of permutations
required.

l-a;.-Seven travellers arrive at a town in which there are 10
hotels; i.i how many ways may they be accommodated with lodg-
ings, provided all, or any number of them, may go to one hotel]

Each traveller may choose any one of the 10 hotels. Each
choice of the first may be taken in connection with each choice
of the second, making 10" arrangements for the first two. Each
of these may be taken with each of the ten choices of the third,
making 1 0" arrangements for the first three, etc. The 7 traveller^
may therefore be entertained at the 10 hotels in 10^ or tm million
different ways.

I

b required,

aken all at a

called "fac-

lenoted by n!

me, may con-

233. To find the number ofpermutations of n things, all at a
time, of which p are alike of one kind, q alike of another kind,
r alike of another kind, and the rest all different.

Let N- denote the required number. Suppose all the possible
permutations written out; then, if we place distinguishing marks
upon each of the p like things, and permutate them in all possible
ways, from each of the original numbers we can form \p permu-
tations witliout disturbing any of the other things, givhig in all
Nx [^permutations. Similarly, by placing distinguishing marks
upon each of the q like things we can form [^ permutations from
each of those preceding. In like manner, by distinguishing the
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r like things, we can form
|^

r permutations from each of the lat-

ter. But tlie things are now all different, and consequently
admit of 1 n permutations.

^x [/> X [^x [r^= [w,Therefore

or ir=. L
n

It Ll IL

This process may evidently be continued to any extent.

234. To fnd the number of ways in which n things can he
arranged in a circle. ^

Since only relative position is considered we shall get f11 pos-
sible arrangements by placing one thing in position and permu-
tating the other n - 1 things as in a straight line, giving in all

iw-l permutations.

These permutations may be arranged in pairs, the order of the
things when proceeding from right to left in the one being the
same as in proceeding from left to right in the other. If these
be considered alike, the preceding result must be divided by 2,

giving -
[

w-1 as the result required.

It may appear to the student, at first thought, that the result
should be the same as if the things were arranged in a straight
line, viz., [w. If so, place each of the following permutations of
four letters, abed, bcdo., cdab, dabc, around a circle, when it will
be found that though they are different permutations in a line,
they form the same arrangement in a circle. Similarly all the
pormutations of n letters may be arranged in groups of n permu-
tations each, which give the same arrangement in a circle. The
whole number of circular arrangements is therefore \n-^n or
\n-\. ,



PERMUTATIONS, COMBINATIONS AND DISTRIBUTIONS. 239

loh of the lat-

consequently

extent.

'kings can be

1 get pll pos-

1 and permu-

giving in all

1 order of the

ne being the

er. If these

livided by 2,

at the result

in a straight

mutations of

when it will

ns in a line,

ilarly all the

of n permu-

circle. The

EXERCISE XXIV.

-1. How many different numbers, each consisting of three fig-

ures, can be formed with the nine digits ?

-^2. In how many ways can a consonant and a vowel be chosen ^2c %J9
from the word permutationi </ '

—3. A basket contains 20 oranges and 15 pears. In how many
ways can one of each be chosen 1 In how many ways can two
perse as each choose onel'

-4. How many dictionaries nmst be published to translate any
one of 5 languages into any one of the other 4 1 How many new
ones will be required to include 3 more languages 1

_ 5. How many of the permutations of the 5 vowels, taken all

together, begin with ael In how many will ae occur together]

6. If all the numbers which can be formed with the 9 digits,
taken all together, be written out, how many of them will begin
with 312 and end with 89 ?

7. In how many ways can 10 persons be seated (1) upon 1(\

(2) upon 11,
(J)

upon 12 chairs placed in a row 1

8. How many different signals can be made with 5 flags of
different colors, 3 flags being used in each signal and all placed
in a horizontal line 1 How many by placing any number of them
in a horizontal line 1

9. How many different signals can be maae with 20 flags of

5 different colors, 4 of each color, any number less tlian 5 being
used, but always placed in a straight line, either vertical or hori-

zontalf

10. The number of permutations of m things, three at a time,
is I of the number of permutations uf m + 1 things, three at a
time; find m.
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e, 11. The number of permutations of m things, th._ .„ „ ,,.„„
13 if of the number of permutations of im things, two at a time-

ree at a time,

find

tii

1-. How many permutations can be made from the letters of
hey^ord/acetiousl^j, taken all together, (1) by permutating
e vowels only; (2) by keeping all the vowels together;a3) by

keeping all the vowels in the given order 1 ^
.C^^ .^""^ "'^''^ permutations can be made from the letters of
the following words, the letters of each word being taken all to-
gether, Mzsstssippz, proportion, indivisibtlityl

Ol4. From a party of 12 ladies and 10 gentlemen one lady andone gentleman are to be chosen; in how many ways may this bedone so that no one of three specified ladies may be chosen with
either of two specified gentlemen 1

> .

^^' ^i^«
l^fes and 5 gentlemen drive out in 5 separate car-

i^ riages one lady and one gentleman in each; in how many waysmay the party be arranged, including the order of the carriages?

l^^6. In hov. many ways may 5 speakers be called upon, (1) pro-viding ^ may not speak before ^; (2) if A must be the third
speaker an.I J] may not speak before him 1

^ 17. By how many different ways may a student go fro^Th^home to school who lives 4 blocks to the north and 3 to the eastfrom the school-house 1

18. In how many different ways can 6 apples and 5 orangesbe distributed among 10 boys, giving each boy one, supposing
the apples to be alike, but the oranges to be different ?

19. In how many ways can the letters oi ubiquitous he
arranged so that q may always be followed, (1) by ,.; (2) by onlv
one^.*; (3)byjusttwow's1 ' ' ' ^ ^ ^ ^

20. On a shelf are 20 books, of which ft fnrm o .... ,v i—

-

many ways can they be arranged, (1) keeping the set in order

l^'
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and unbroken; (2) keeping them in order, but allowing other
books between; (3) keeping the set together, but not in order?

21. In how many ways can 5 books be arranged on a shelf if
any book may be placed either end up and either side to the
front ?

22. How many signals can be formed with 20 flags of different
colors, not more than 4 flags being used to form a signal, and be-
ing placed m a line vertically, horizontally or diagonally ?

23. Tom, Dick and Harry scramble for an apple, an orange
and a pear; in how many different ways may they pick them
up-? In how many ways if the three things were all alike, or if
two were alike 1

' y
C24. In how many ways can 10 persons form a ring so tha^
certain couple may always be beside each other 1

r25. In how many different ways may 8 persons be seated at a
round table, the seats being distinguished ? In how many ways
may 8 children form a ring ? In how many ways may 8 different
beads be made into a bracelet ?

.t26. In how many ways can 7 persons sit at a round table so
that the host may have the guest of highest rank on his right,
and the next in rank on his left 1

c 27. In how many ways can a company of 12 sit at a round
table so th8,t the host and hostess may sit opposite each other ?

28. In how many ways can a party of 10 form a ring so that
a specified couple shall never be beside each other?

29. On a shelf are placed 5 Latin, 3 Greek, 4 French and 6
English books. In how many ways may they be arranged, (1)
keeping those of each kind together; (2) keeping each set in order
from left to right or from right to left, but allowing other books
to be placed between ?

/- 30. In how many ways can the letters of the word syzuyy
be arranged, (1) with the three y's together; (2) with "each y
separate; (3) just two y's together?



iiiiiy

ill

1 (Hi

! i

'

' m

m

u
242 HIGHEH ALGEBRA.

I. 31. In how many different ways can the letters in the word
indivisibility be arranged, (1) with all the i's together;

(2) with just five i'a together?

32. In how many ways can m ladies and m gentlemen form a
ring so that no two ladies shall be together ?

33. Twenty male and 6 female candidates apply to a school
board who have to fill 10 diflferent situations, 4 of which must be
held by men and 3 others by women; in how many different

ways may the appointments be made ?

COMBINATIONS.

^ ^p235. To find the number of combinations of n things, r being
^ oaken at a time.

Let iV denote the required number. Now from each combina-
tion

1^^
permutations may be made, making in all iV x \r permu-

tations; but this will evidently be the total number of permuta-
tions of *i things, r at a time.

Therefore

OP

iVx [r = n{n-l)(n-2)....{n~r + l),

{n-l){n-2) ....(n-r+1)N=
Ll

the number of combinations required.

If we multiply both numerator and denominator of tiiis frac-

tion by (n~r)(n-r- 1) .... 3 . 2 . 1, i.e., by \n-r, we may write

the result in the neat form,

In
i\^= ^-=—

.

I

r
I

w - 7'

The symbol „C^ is frequently used to denote the number of

combinations of 7i things, r at a time.

€(

-f!
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"T.^tSB. The number of combinations of n things, r at a time, is

^ equal to the number of combinations of n things^ n-r at a time.

This is at once evident from the fact that when r things have

been selected to form a combination, n ~ r things are left to form

a corresponding combination. The proof also follows easily from

the formula} thus

:

_n{n-\) ..n-{n-r) + \ n{n-\). .r+\ [^ [
n

n-r
L
n-r \r \n—r\r

which is tlie result obtained for „C,

'237. To find the total number of combinathns which can be

y^piadefrom n things, any number being taken at a time.

I» proceeding te farm a combination each thing in succession

may be disposed of in two ways, i.e., it may be either taken dr

left; and since either m#de of dealing with any one thing may
be ffllowed by either mode of dealing with each of the others in

succession, the total number of ways is

2x2x2 to 71 factors.

But this includes the case in which all are rejected. The total

number of combinations is therefore 2" - 1.

From this article we get an indirect proof of the following

equation

:

nC*! + «(72 + nCg + .... „Cn = 2" - 1,

which may easily be verified for any particular value of n.

I 238. To find tlie number of combinations which can be formed
from a collection of things of which p are alike of one kind, q alike

of a second kind, r alike of a third kind, and so on, any number
being taken at a time.

nnu^ 4.i,:„, u.
j-iitr 'p \jiii.ii'^a iii'txy fjts viispuScu Oi in vt? + i ways, siixcc we uiay

take 0, 1, 2, 3 ... .ja of them. Similarly the q things may be dis-
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posed oUnq + l ways, and so on. The total number of ways of
disposing of all the things is therefore

(P+mq+lXr+l)....
But this includes the case in which all the things are rejected.
Therefore the total number of combinations is

(p + ^)(q + i)(r+\)....-\.

239. To Jind the number of combinations of n things, r at a
time, when each thing nwj be repealed any number of times.

Denote the n things by the natural numbers, 1, 2, 3 .... n.
Take any combination of r of these numbers (with repetitions),
arrange them in numerical order, and to the numbers of this
series add the numbers 0, 1, 2, 3 .... r - 1 respectively. The re-
sulting numbers must be found in the series, 1, 2, 3....n + r-l.
Conversely, from this latter series select any combination of r
numbers, arrange them in ascending order of magnitude, and
from them subtract 0, 1, 2, 3 .... r - 1 respt actively. The result-
ing numbers must form a combination (with repetitions) of r
numbers no one of which is greater than n.

Hence for every combination of r out of n things with repeti-
tions there is a corresponding combination of r out of n + r- 1
things without repetitions, and conversely. The number of the
latter combination is

(»M-_r--l)(w + r - 2) . n— or
j

w -f- r - 1

w-1
which is therefore the number required.

If we denote the different things by the letters a, b, c, etc., and
the number of each found in any one combination by an expo-
nent, then if all the combinations be written out we shall have
all the terms of r dimensions that can be formed from the n
letters. Hence this proposition is often quoted as that of finding
how many homogeneous products of r diinP'njtin'no ^««, a^ .c,_4
Jrom n symbols.
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i 240. The proposition of the preceding Art. may also be proved
in the following manner, which will be an instructive exercise
for the student

:

Suppose all the combinations written out. Denote their num-
ber by

In each combination there are r letters, therefore each letter
must be repeated

7*

n

times in the whole number of combinations.

Again, if any one letter, a for example, be removed a single
time from every combination in which it is found, the resulting
combinations will be those which can be formed from the n let-

ters, r - 1 at a time; and the number of times in which a will be
repeated in them is

r-1

and the a has been removed oiice from each combination; there-
fore the total number of times in which a enters into the original
combinations is

r-1

and this must equal the number formerly found.

Equating the two expressions we get

n

' — cttr» vi- J VI met.
Therefore

V r — \

I

n

n + r-l^
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W-l =— T—Cr^i,

t7-_-=

r-1

n + r-3

Lr_

Or-.

_ w 4- 1 n
~ ~~2~

'

1
•

Multiplying tiiese equations and cancelling like terms on the
opposite side of the resulting equation we get

C = (^ + ^-l)(^^ + ^-2)....(w + l)»i

r(r-l)....2.1

[?i + r - 1

n - 1

/»-

1^ 241. To find the number of combinations of n things of which
p are alike, r bei7ig taken at a time.

I. Suppose r not greater than j)-

From the ;? like things one combination of r like things may
be formed; with r-1 like things take each of the remaining
n-p unlike things in succession, giving n-p combinations;
with r - 2 like things take each combination of two of the w -p
unlike things, giving

{n-p){n-p-l)

LI

combinations. Proceeding in the same way we find the whole
number of combinations to lie

1 +(.,-.,) ,

i^-P){n-P-'^) in -p)(n~p-l)(n-p -2)
12

I
3

+ etc.y

the last term in the series being that in which all the unlike
things are employed.
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:e terms on the
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the remaining

combinations;

vo of the n-p

find the whole

^ + etc.,

all the unlike

II. Suppose r greater than p.

Take the p like things and r-poi the unlike things. This can
be done in

t^
[t-pYn — r

ways, and continue the series as before.

Ex.—Find the number of combinations which may be formed
from tlie letters aaaabcdef, (1) taking three at a time, (2) taking
five at a time.

1. Form one combination from the a'a alone, viz., aaa. Next
take two «'s and one other letter, giving 5 combinations. Next

take one a and two other letters, giving~ or 10 combinations.
1.2

5.4.3

I

Lastly, without an a we can form ^-^ or 10 combinations. The

total number is therefore 1 + 5 + 10 + 10 = 26 combinations.

2. Forming the combinations of h, c, d, e,/in succession, 1, 2,

3, 4 and 5 at a time, and with each combination placing the
proper number of a's, we get all possible combinations, 5 letters

at a time. The numbers are 5 + 10 + 10 + 5 + 1 = 31, the number
of combinations required.

242. Problems occasionally present themselves in which it is

required to find the number of combinations (or permutations) of

n things, r at a time, when there are several sets of like things
to be chosen from. No general formulae can be given for such
cases, but the following example will indicate the method to be
pursued in any particular problem

:

Fx.—Find the total number of combinations which can be
fornicd from the letters in the word p roporlio n taken 6 at a
time.
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This problem must be divided into six parts, as follows:

(1) With all the letters different we obtain 1 comb'n.

(2) With one double letter we get 3 x 5 = 15 comb'ns.

(3) With two double letters we get 3 x 6= 18 comb'ns.

(4) With three double letters we get 1 comb'n.

(5) With three o's and the rest different we get . . . 10 comb'ns.

(6) With three o's and one double letter we get 2 x 4 = 8 comb'ns

The sum of these numbers is 53, the number of combinations
required.

The number of permutations, 6 at a time, may easily be found
from the preceding; for the first combination will produce [6

permutations; each combination in (2) will furnish -^ permuta-

tions, since there are two letters alike in each, and so on. The
total number is 11,130.

Jm^ 243. The theorem given in the next Art. usually presents a
' considerable difficulty to beginners; we therefore give a numerical
illustration to prepare the way for a general proof.

Consider the number of combinations of 10 things taken 1, 2,

3, 4, etc., at a time. We have

^10 10.9 10.9.8 ^ 10.9.8.7

_ 10.9.8.7. 6 10^.8.7.6.5
' 1.2.3.4.5' ^"-17273.4.5.6' ^^°-

Now, observe that each combination is formed from the pre-
vious one by placing one more factor in both numerator and de-
nominator; and therefore each result is greater than the preced-
ing so long as the factor in the numerator is "reater than tho
corresponding one in the denominator. In this example C5 is the
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follows

:

1 comb'n.

> = 15 comb'na.

>= 18 coinb'ns.

1 comb'n.

. 10 comb'ns.

4 = 8 comb'ns

; combinations

asily be found

11 produce i 6

1 -f^ permuta,

d so on. The

lly presents a

^e a numerical

gs taken 1, 2,

9.8.7

JT374''

etc.

:rom the pre-

rator and de-

n the preced-

iter than tho

uple Cg is the

greatest, being greater than any one of the preceding; and of
those which follow,

g^6» C^= ;=C,, etc.,

which shows that from C5 each number is less than the preceding.
In like manner write out the number of combinations in suc-

cession of 9 things, when it will be observed that the numbers
increase up to C^j that C^ and C^ are equal; and that these are
greater than any others.

From these two examples it may be perceived that when n is

even, the greatest number of combinations can be formed by
, , . w

.

^

taking - at a time; but when n is odd, two results, viz., those

formed by taking '— and^ at a time, are equal, and that

these are greater than any other.

-ffiii, 144. Tofimi the value of r for which tJie number of combina-
tions of n thinys, r at a time, is greatest.

With the usual notation we have

nPr = tfir-l ^
n-r + 1

r

Therefore

according as

i.e., as

or as

or as

nCr >, •-, or <, „Cr.u

n-r + 1

r
>, =, or <, 1;

n-r+ 1 >, =, or <, r;

w+1 >, =, or <, 2r;

w+1
r <, =, or >, -—

.

Now, from the nature of the problem, r must be a positive

integer; therefore

n
(1) li uhe even, „C,. is greatest when r= -

17
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(2) It n be odd, „C^ = „C^_i wnen r-.

n+1
, and ill theso two

cases the number of combinations is greater tlian in any other,

i.e., „C. if greatest when /• = either
n- I n+l-__ or -r—

,

245. To express the number of combinations of n things^ r at a
time, in terms of the number of combinations for smaller values

of n and r.

The total number of combinations is evidently made up of

those which can be formed without including a particular thing,

together with those each of which does include it. T^'e number
of the former is „_iC^; the number of the latter is „_iC^_i, for

any specified thing will appear as many times as different cor*-

binations of r - 1 things can be formed from the remaining m - 1

things to place with it. Each of these combinations can be sepa-

rated into two parts in the same way, and so on to any extent.

The process may be expressed in symbols as follows

:

»^r — ;i-l^r+ n-l^r-l

EXERCISE XXV.

CI. How many different parties of Wian be chosen from If

personsH In how many of these would a particular person be

found 1

'^2. How many different parties of 6 can be chosen from 20

persons ? "^ In how many of these would two particular persons

be found 1
"^^ In how many would the first be present and the

second absent 1

.3. In Arithmetical Progression there are five quantities con-

cerned, and when any three are given the other two can be found.

How many different formulae can be given on the subject"?
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t 4. From 20 ladies and 15 gentlemen how many different par-
ties of .) ladies and 5 gentlemen can he formed ? If the parties
\^ considered different when different ladies and gentlemen are
partners, how many parties can bo formed ?

5. From a company of 9 men and their wives a party of 4 menand 4 women are to be chosen. In how n.any ways can this bedone so that a man and his wife shall not be in the same party?

6 In a basket are 5 apples at two for a cent, and 3 pears a^
cent each. A boy having 2 cents in his pocket wants some fruitHow many choices can he make?

7. From 10 different books in how many ways may a choice ofone or more books be made ? If all possible choices be made in
succession, how many times will any one book be chosen?

'" '

ars, 1 dollar, j^'
taking one or more of the following sums: 10 dollars, . aoiiar,
50 cents, 25 cents. 10 cents, 5 cents, 1 cent? What is the total
value o all the sums thus formed? How n.any sums could be
formed by using a 20-cent piece in addition ?

C.9. In a basket are 10 oranges, 8 pears and 7 apples. Howmany different choices of a quantity of fruit can be made the
specimens of each kind of fruit being alike ?

10. Apply Art. 238 to find the number of divisors of th.. -.m-
bers 540, 720.

11. Find the number of combinations of the letters of theword V ndivisih'ility,i letters being taken at a time. Find
also the number of permutations 4 at a time, and the number of
permutations all at a time, in which two i^s do not con.c together.

S^\ }^' ^'f f"""
''"°'^^' "^^ combinations, (1) 5 at a time, (2) G at^W, of the letters of the words ever esteemed frieZl

J^md also the number of permutations in^ach case.

13. In a basket are 25 oranges worth 3 cents each. Howmuch money should a boy spend so as to have the greatest num-
ber of choices ?

o «t

l^

i

iy'

I
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\

*

U. From 15 ladies and 8 gentlemen a committee of 7 is to be

chosen. How many of each should be taken to permit of the

greatest number of choices ]

, 15. There are 17 consonants and 5 vowels. How many from

each must be taken to form the greatest number of combinations

containing a tixed number of both vowels and consonants? and

how many such combinations can be forr.ied 1

IS. In the preceding example how many combinations can b-

formed, each containing a fixed number of letters'! What is tb

total number of combinations which can be formed, and how

many of these will contain at least one vowel and two consonants?

,.. 17. Of 2H things 7i are alike and the rest are diflforent. How

many different combinations of n things each can be formed?

18. The number of combinations of n things, 5 together, ia

3| times the number, 3 together. Find n. -j^-

1». The number of combinations of 2n things, 3 together, is

'

If times the number of permutations of n things, 3 together.

Find n.

2* The number of combinations of n things, r at a time, is

-"

the same as the number 2r at a time, and 2^ times the number

of combinations, r - 1 at a time. Find n and r.

21. In how many ways may m boys and n girls form a ring so

that no two girls shall be beside each other 1 {m >n.)

22. Three aldermen are to be elected from 5 candidates. In

how many ways can 4 electors cast their votes, each elector hav-

ing the privilege of voting for 1, 2 or 3 candidates?

23. The number of ways of sel^ting x things out of 2x + 2 is

to the number of ways of selecting x things out of 2x - 2 as 99

t^7. I
Find X.

\<'ri 24 From n things, p of which are alike of one kind arid q

another kind, how many choices of on© or more things^y

y\ may be made ?
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f, 25. How many different throws may bo made with 2 dice?
with 3 dice? with n dice?

2«. In how many ways can a boy select a dozen marbles in a
shop where there are 5 kinds for sale ?

27. If (a + h + c + dy be expanded, how many terms will there
be in the result?

^ 28. Out of 21 consonants and 5 vowels how many words, each
containing 5 consonants and 3 vowels, can be formed ?

c 29. Find the total number of permutationa that can be formed
from m thin-s of one kind and n things of another kind, taking
r of the former and s of the latter to form each permutation.

3#. Find the number of signals which can be made with 4
lights of different colors when displayed any number at a time,
arranged perpendicularly, horizontally or diagonally.

31. How many apples must be put in a basket with 9 oranges
and 14 pears so that a person wishing to purchase some fruit
may have 2,999 choices?

1 32. If n straight lines of indefinite length be drawn upon a
plane, no two being parallel and no three passing through the
same point, (1; how many intersections will there be? (2) how
many triangles ?

f 33. If n points in a plane be joined in all possible ways by in-
definite straight lines, no two of which are coincident or parallel
and no three passing through any point except the original n
points, (1) how many lines will there be? (2) how many triangles
having their angular points on the original points 1^) how many
triangles in all ? (4) how many intersections, exclusive of the in-
tersections at the 71 points ?

34. There are n points in a pla.ie, p of which are in a straight
line. (1) How many .straight lines can be formed % joining the
points ? (2) how many triangles will have their angular points on
the oriffinal noinfo 1

35. If there be n straight lines in a plane, no three of which

{/



254 HIGHER ALGEBRA.

meet at a point, find the number of groups of n of their point, of

intersection in each of which no three points he m one of the

straight lines,

^ 36 In a plane are m straight lines which all pass through a

^ven point, n others which pass through another point, and ;,

others which pass through a third point. Supposing no other

three to intersect in one point, and that no two are parallel, find

the number of triangles formed by the intersection of the straight

lines.

37 In an ordinary checker-board how many squares can be

formed by grouping together any number of the original squares^

How many could be made if there were n squares on each side

of the original board ]

38 If a cubic foot were divided into cubic inches, how many

cubes could be formed by grouping together any number of the

cubic inches without disarranging any of the small cubes ^ How

many could be formed if the edge of the original block were n

inches 1

DISTRIBUTIONS.

4 246 In the problems which we have discussed in the previous

'

sections of this chapter we found two chief elements for considera-

tion, viz , the order of arrangement of things in a group and he

particular things to be taken to form a group, in both cases the

number of things in a group being given. But there are a num-

ber of other elements which, when taken into consideration, very

much change the character of a problem, some of which are treated

in the remainder of the chapter. /..,•„„

The general problem is the separation of a number of things

into a series of classes. A very great variety exists in the par^

ticular problems which may be proposed, some of

-^^f^l^^^
considerable difficulty. The principal elements on which the dis-

tribution depends are live in number, as toliows:

1 The things to be distributed may be alike or different.
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2. The classes when formed may bo distinguished from each
other by some consideration independent of the elements they
contain, or they may not be so distinguished.

3. The order of the things in a class may or may not be con-
sidered, i.e., they may form a group or a parcel.

4. Blank groups or parcels may or may not be allowed.

6. Some of the things may or may not remain undistributed.

I/.

247. 7'# find the number tf imys in which n things can he
divided into tw» parcels containing r and n-r things respectively.A ^^

This is essentially the same as finding the number of combina-
tions of n things, r at a time; for whenever a combination of r
things is formed, another combination of n-r things is left, and
the original number is divided into two parcels. The result is

therefore

I

r \n-r'

If r= w-r, and if there is no way of distinguishing the par-
cels except by the elements they contain, this result must be
divided by 2.

^rB.—Four different books may be equally divided between
2 boys in G different ways; but they can be wrapped in parcels
of 2 each in only 3 different ways.

241. To find the number of ways in which n things may be
Hvided into three parcels containing r, s and n-r-s things re-

ipectively.

From the n things r things may be selected in f-

I

r \n-r
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different ways; and when any one selection has been made the

remaining n-r things may be divided in

\n-r

n-r - 8
111

ways. The two operations may therefore be performed in

I

w
\

n-r [n.

\r\n-r \s\n-r-s [^ r
j

8
\

n-r-8

different ways. This process may evidently be continued to any

extent.

lir = 8^n-r-s, and if there is no method of distinguishing

the parcels except by the elements they contain, this result must

be d"vided by I 3 ; and if two of the three parcels contain an

equal number of~thiugs, the result must be divided by 2, as in

the former Art.

^a;.—Six persons may be placed in 3 different carriages, 2 in

each carriage, in 90 different ways; but 6 different letters can be

divided into 3 sets of 2 each in only 15 different ways.

'/V'"

249. To find the number of way8 in which n different things

may he divided into r distinguislied parcels (blanks allowed).

The first thing may be placed in any one of the r different

parcels; and when this has been done the second may also be

placed in any one of the r parcels, giving r" ways of disposing of

two things. Each of these ways may be followed by r ways of

placing the third thing, making r* ways of disposing of three

things. Proceeding in this way we see that n things can be

divided into distinguished parcels in r" ways.

Ex. This proposition gives the number of ways in which n

different prizes may be awarded to r students.
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fj

:50. To find tJie number of vniys in which n difevent things
-an he arranged m r different groups (blanks allowed).

The first thing may be placed in any one of r different groups-the second may be placed on either side of the first one, or inany one of the remaining r- 1 groups, nmking r+\ different
pos.t.ons. Similarly the third may be placed in any one of .4-2
different positions, and so on. Therefore all together there are

r(r+l)(r + 2)....(;. + w-l)
different arrangements.

Ex.-li a lady has 3 different rings, each of which may beworn on any finger of either hand, she can place them on her
fingers m 8 . 9 . 10 = 720 different ways

K '^}y]'rf^'"^
^^' ''"'''*''* •^"''^•'^^ *'^ ""'^'"'^ ^ ^^^' things may

be divided into r distinguished parcels (blanks allowed).

Denote the parcels by A, B, C, etc., and the number of things

^l":' " 't 'I ^W' ^'"' *^'"^ ^^^ ^»^^" g«^ «-h results fs

7 ,:
• • •/°' ^^^ ^^^"''^"^ ^'^y^ o^ division. Now, the only

restriction is that «4-i + e+ . . . . =,, ,i,ee all the things must
be distributed. This is evidently the same as forming all the
homogeneous products of n din.ensions from the r symbols. A, B
C, etc. The result is therefore

r + n- 1

[n \r ~\ Art. 239

Ex.~li n marbles be thrown on the ground to be scrambled
tor by r boys, this proposition gives the number of ways in which
tliey may be picked up.

252. To find the number of ivays in which n different things
can be arranged in r different groups (no blanks).

Arrange the n things in a line; we have then to insert r- 1
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points of division among the n-l spaces between the n things.

This can be done in

L!l:ii. [
1 In -r

ways. The things can be arranged in a line in frt different ways;

therefore the required number is

n -1M
.

r— 1 1 w-r'

Ex.—The number of ways in which n cars can be ft Cached to r

different engines, one car at least being attached to each engine, is

1
L!^L

n

Ir— 1 \n — r

253. To find the number of ways in tohich n like things can he

divided into r distinguished parcels (no blanks).

Place the n things in a row. Since all are alike this can be

.

done in only one way. Insert r - 1 points of division among the

n—1 intervals, and place the things between the successive points

in the parcels in order. Tiie result is evidently the number of

combinations of w - 1 things, r - 1 at a time; that is.

L
n-l

L'

r̂-l n — r

Ex.—This proposition gives the number of ways in which n

marbles, all alike, may be distributed among r boys so that each

boy gets at least one.

*

The preceding propositions do not, by any means, exhaust the

number of problems which may be proposed in this part of the

subject; but they contain a sufficient variety for the ordinary

cjf ji (1 Qrjt TliOP.ft v/ho dpsire tn pursue the subject further, and to

inv*^sfigate the more intricate problems, are referred to the very
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Whttrtr'''.M'f1 " ^'"^^ ^"^ ^'^^"^^'" ^^ William AllanWhitworth which has been consulted to some extent in the preoaration of this chapter. ^ P*'

EXERCISE XXVI.

ItU" '2°W.77T """ ' '"'^"'" ""o''' •« «J™"y "-ided

^«Pa„lt7 Th^
™''' "" '' P'"™^ ""^ '""'''^'' -to 3 equal

ZZT^ in r '"""''T" """ *'"^ •'^P''""' » 3 differentcarnages, 4 in each carriage ?

- 3. In how many ways may the 26 letters of the alphabet bedivided into 5 parts, 4 of the parts containing 6 letters'eachl

4 In how many ways can a selection of (n- \)r things bemade from n- 1 sets, containing 2.. 3.. . . .. tilings respec^fvel^ktaking r things from each set %

P^^^iveiy^fe;.

^ 5. How many signals can be made with 7 differently colored k
^^'^

fhTmTst:r"'
^" *^^ ^^^^^ ^^^^^^ -^^' ^- - --rily^n

lifti''.
^'''- ""^""^ ""^^^ '^" ^^ ^^^^^^^* ^^^ be attached to 4 V^ 5 o

different engines, any number being attached to an engine ?

^ - 7. In how many ways may 10 apples, all alike, be divided be- "^ "
b'ltween 5 boys, any number being given to a boy ^

8 At a matriculation examination 100 students compete for .

If the award is made for general proficiency ? (2) if each scholl/ship is awarded for one department only ?

^ '"

^ 9. How many signals can be made with 7 different fla^s on ^ c r.
niasts, If all the flags must be used and every mast muiTve a ^ " ' '

^nW ^''

^T "'T^
^^^^ '^" '^" ^"""'•^ ^^ *h« ^Iph^bet be made ^ 1

^"^
^nto 6 words, each letter being used once, and only once ?

^

I

J
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r 11. In how many ways can an examiner assign 100 marks to^

10 questions, some value being given to each question "J

_ 12. Twenty shots are to be fired. In how many ways may the^
work be distributed among 4 guns, {\) without leaving any gun ijl

unemployed; (2) without any restriction*! \

^ 13. If n marbles, all alike, are thrown on the ground to be 0-7

"Scrambled for by r boys, in how many ways may they be picked ^

up, (1) if all the marbles are found; (2) if some of them are los^J^

14. In a ladies' school are 15 pupils, who walk out in 5 rows

with 3 in each row. In how many different ways caia they be

arranged so that no two shall be twice in the same row 1

15. There are 3n + 1 things, of which n are alike and the rest

all different. In how many ways may n things be selected from

theml

16. In how many ways can 3 numbers in arithmetical pro-

gression be selected from an arithmetical series of n terms?

17. How many different selections of 2n things may be made

from a collection of n like things of one kind, n like things of a

second kind, and 2n like things of a third kind 1

18. A, B and C have respectively the letters oi proportion,

square root and logarithms. In how many ways may

they exchange so that each will still have 10 letters, but only

one of the persons will have two or more letters alike?

19. A square is divided into 16 equal squares by vertical and

horizontal lines. In how many different ways may 4 of these be

painted white, 4 black, 4 red and 4 blue, wit>iout repeating a

color in the same vertical or the same horizontal line ?

20. Show that

m m(m + 1 ) irt{m + 1 ){m + 2)
to 71 + 1 terms

^ ^ lil±}l + !i(!i±i)(!^_±l) + .... to m + 1 terms
1-I-T + 1.2

+
1.2.3
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posed. If 30.me„,bers vote, each for 1 subject, in how manyways can the votes fall 1
^

22. Up^ + r things are to be divided as equally as possibleamong ;. persons, in how many ways can it be done 1 (r<p.)
23 In how many ways can ;, positive and n negative signs be

placed in a row so that two negative signs shall not come to-gether? (/> = or > M.)

24 In how many ways may the letters of permutationscombznaHons, distribution, be divided among 3 per-sons givmg 6 double letters to one person, and 12 letters, notwo being alike, to another ?

25. In how many ways may 2n like things of each of 3 different
kinds be divided between 2 persons so that each person may haveon things ?

* / ^

26. In how many ways may the letters of Ili^^her A Inshra
be divided among 3 persons, any number of letters being given
to one person ?

b b ""

27. The game of },agatelle is played with 8 balls all alike and

• TT^t "^J^"^* ^' *° ^^^ ^ '"'^'^y ^« possible of the balls
into 9 different holes, each of which is capable of receiving but 1
ball. How many di^erent arrangements of the balls are possible ?

28 If bagatelh/is played with n balls alike and one different
and there are y^ \ holes, each capable of receiving one ball, the
whole numbejfof ways in which the balls can be disposed .f is
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CHAPTER XVIII.

MATHEMATICAL INDUCTION.

254. Suppose we were required to find the sum of the series

1+3 + 5 + ....

to n terms. This might be done by the following line of reason-

ing:

1. By observation and trial we find that

1+3 = 22, 1+3 + 5 = 32^ 1 + 3 + 5 + 7 = 42.

Here it is seen that the sum of two terms = 2% the sum of three

terms = 3'^, and the sum oi four terms = 4^. These facts would

indicate or suggest that the sum of n terms = n'.

2. To prove that this is so let us assume that

1+3 + 5 + 7 + .. ..(2n-l) = ;i2,

and then proceed to examine what will follow from this assump-

tion. Adding (2?4+ 1) to both sides we obtain

l + 3 + 5 + 7 + ....(2n-l) + (2w+l) = n2 + 2M+l;

that is, the sum of (n+ 1) terms = (n-+ \y.

3. It is now proved that if the law holds for the sum of r

terms, it holds for the sum of (n + 1) terms. By trial it was

found that it does hold ior /our term°, therefore it must hold for

Jive terms; and holding iovjive terms it must hold for six terms,

and so on. Hence wo conclude that the sum of the iirst n odd

natural numbeis always equals n".
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255. Thia ,„otl,od of proof, or line of roasoniny, is calledMathematical Induction, f, its resemblance to tl !t m<^„of rea.on,ng called " Induction " employed in the discoverlfnew truths. I differs from Induction, as applied to the discovery

that^tlr ""'T
•™""' '" """ ' ""'™' "» "'- for doubt anJthat the conclusion we reach is no wider than the premises. Toa c rtam cla«, of problems, many of them connected with serilMathematjcd Induction is the only lino of investigation ".d

reached by any other method of investigation. Neverthelesshere ,s generally a feeling of dissatisfaction in the m nd of h"^dent when first called upon to reach general results this way

weTuZLrVhtrr
'-''' ''-'-'-' '» *"»—•"« -

that the aw holds goo<l for a !,e„eral value, n, of one or n.oro ofthe quantities involved.
"ioii, oi

(3) The i«-oo/that if this law holds good for the value n itmust hold.good for the next value, („ + 1).

« value «, it

(i) By trial it is seen to hold good for a particular numericalva ue, and therefore by (3) it must hold go^ for the iZer cavalue greater by one. FoUowing out this line of rea^onTng wisee that the result, or law, is generally true.

In many problems the law is given, and its proof alone re-quired; bu in its general application the law has to be Tco"ered as well as proved to be true.

of Mi'itauxrr''^^
"'""""™^ " ''' ^p"'-"-

divtib/;;;';:::?'"
"'"

"
'^ p"'"™ -" -'='«^^- ^•-"-

a;"-rr

X -a
= a;»-i

(r"-i /»-!
)

.4" - a
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Therefore a;" -a" is divisible by (x-a) if x^-'-a""' is di^ isiUle

by {.r - a).

By trial wo find that when n. = 3, x" - «" is divisible by ; ;

.*. x* - o* is also divisible by (,r - a), and .*. x^ - a\ *-a
.«"-(«" is always divisible by (x-a) when n is positive am' in-

tegral.

-fi'x'. 2.—If «i, «2» "3 rt„ be in H. P
,
prove

Since

are in A. P.,

and therefore

or

«i, rtj, r/3 a„are in H. P.,

]. 1 1 1

ttj a.2 ^3 rt,j

1111=
.

ctj a^ (I2 (^i

Oj + «3

or aiCf2 + «2f'3=2f'i«3-

Hence we see that the law holds good when n = 3.

Assume that it holds good for n-l terms; that is,

ttjrto f a,«3 + «„-!«„ = (n - 1 )«!«„.

To each side add fl„a,i4.i,

But

or
«l"»+l

Simplifying the result we obtain

(n - l)«ia„ + ",i«„+i = ««!«„+!.
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Therefore if the law holds ,m/j t
good for „ ter,„,. But wo/ "" ' **™'' " »'«' hold,

««. term,, or when n t « T '''°'°'' "'»' '' '"''<'' «oo<l for

.no thereto fX^u.S^nfCr"' «°°'' '^ "^ 'e™.

Prove by Induction;

EXERCISE XXVII.

^2. l' + 2' + 33 + 4» + ....,,3^/^+l)y k^

^4. ar^ + y" is divisible bv /r-L« «,i,^ • ^
".a. .-r. <,i...e ., .v;w\:r::r::tsr-'*^

- har„onio »ea„ between .. and „..,.. Shr^thtt"^^Tfa"
6- It

"., *„ be the coefficients of .. in the expansion, of

'
'

IS

2-ar
and —

I- Ax + x^
1 - 4a; 4- a?2

respectively, then «„« _ Zb^^=\,

7. 2 + 6 + 14 + 30 + .... to wterms = 2»+='-(2r, + 4).

8- (^ + «)(-^ + 6)(:^ + c).... ton factors

.
=^'' + ^''~V + * + c + c;+....) /

+ ar«-2(a6 + Ac + c« + . )

18
^''-\abc + bed + cda + ,,.,) + . abed
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^

1 ^

Apply Induction to Examples 9-11

:

1 11 t,-^

. 9. Find the sum of n terms of the series, ^ + o^ "^
2^

"^ "

"

10. Find the sum of 2^ + 4" + 6^ + ... to m terms.

11. Find the sum of
1

1.2 2.3 3.4"
to n terms 1/

19 Tf
a + (« + yy)a? + (ft + 2y)a;^+ (a + 3// ).r^. . . .

to^_
;, .^^^

a + (a - 2/)a; + (« - 'ly)^' + (« - 3^.).?^ .... to cc '
'

if X receive values in H. P., show that the corresponding values

of y will be in A. P.

13. >S^i, aS'j, aS's are the sums to n terms of n geometric

series, whose first terms are each unity, and common ratios

1, 2, 3 Show that

^^ + ^^2+ 2^3 + 3^; + .... (n-l)>Sf„=l"+2'' + 3" + ...,«".

U.
a-Vhx b +CX c + dx

, and if, also, a* = &" = c* = . . .
.

,

a—hx b —ex c — dx

then will a^b, c be in G. P., and ar, y, 2 in H. P.

15. A person devised his estate among n persons in the follow-

ine manner: A was to receive %P and of the remainder; B,

1
** 1

S2iP and - of the remainder: C, $3P and - of the remainder,

and so on. Find the value of the estate.

16. If the difference between the (n - l)*** and n"' terms of an

H. P. be —;; ^ ,
find the relation between a, h and c.

1
17. If a;= 1 + -

, show that the sum of the seriesy.
1 + 2a; + 3^2 +

.

^.o th terms = ?r,
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18. Show that if - + ?^ + ^ - 1 „„j « * c ^

a;2 2^2 2;2

19- ^^-+^=2/+,-=^ + ^, then .2^2,.^!^^^^^^^^^

20. Show that if

^=2^+ ^+2a,., ^= .»+ .=+2fa and .-= .V/+2<.,, then

^
J/' s'

loii ratios
jui. win

. . n\

— t/ ^^^ • • • •
J

22. If

P.

the follow-
and

ainder; B, prove that

remainder, and

23. If X,

ernis of an
will each fr

md c.

l-a^ l_i2 i_^r

21. Show that if ^l±£!i:^'4.^' + «'-^' «^ + i^-c'
"^ ^ + ^^— = 1, then

(

2Ac ' 2ca

•i2 + c2-a2\ 2n+ l

2a6

+ anal. +anal. = 1,

a^:t'+ by + 0^x^=

i-a2^1_,.^l_^,

««a^ + iy + cV= a*x' + by + c'z\

qual, and if ^^JLl.^1^ (2^ -'^-xf
X

~
» then

24. If.(«^^^2^o^+...).(«^,,,^,
..nthen« = . = e =

« being the number of the letters.
'**'

25. Show that (x'^ + xit + ',fi\(a'^4.„h^ifl\ A i

theform.Y^ + _Ji:F+r2/^^^
+"^ + ^^^ "^" ^« expressed in

-;£S£a^
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BINOMIAL THEOREM.

POSITIVE INTEGRAL EXPONENT.

257. By trial it can easily be shown that

(^ + a){x + h){x \-c) = 3?-\- X'{a + /> + c) + x{ah + he + ca) + abc,

also, (x + a){x { b){x + c){x -\- d)

= a?* + 3?{a + 6 + c + cZ) + x\ah + hc + cd H- da + ac + bd)

+ x{abc + ice? + cc?a + dab) + a6cc?.

From these two cases it is apparent that the coefficient of the

highest power of a: is 1 ; the coefficient of the next highest power,

the combinations of the second terms of the factors taken one at

a time; the coefficient of the next highest power, the combina-

tions of the second terms of the factors taken two at a time, and

so on, the last term being the combinations of the terms taken

all together.

258. The truth of this law of expansion for miy number of

factors may be proved by Induction ; but it can reactii^ »»•
, shown

to be true by calling attention to the mannor in which the

various terms of the product are obtained. For instance, when

(a; + a)(x + b)(x + c){x + d) are actually mn!'';;plled together, the

product is obtained according to the following laws

:

1. The whole product consists of a number of partial products,

obtained by multiplying together four letters, one being taken

from each of the four factors.
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2. The partial product x* is obtained by taking x out of each
of the four factors.

3. The next term is obtained by taking r out of any three of the
factors as many ways as possible, and o7ie of the letters a, b, c, d
out of the remaining factors.

4. The next term is obtained by taking x out of any two of the
factors as many ways as possible, and two of the letters a, i, ^, d
out of the remaining two factors.

5. The next term is obtained by taking x out of any one of the
factors as many ways as possible, and three of the letters «, h, c, d
out of the remaining three factors.

6. The last term—the one ind pendent uf x—h obtained by
taking all the letters a, ft, e, d.

Now it is evident that this is only another way of stating that
the coefficient of a^ is the combinations of a, h, c, d taken one at
a time; the coefficient of x\ the combinations of a, b, c, d taken
two at a time, and so on.

It is also evident that the same reasoning applies, no matter
what the number of factors is, so long as each factor begins with
the same letter (x). Consequently we reach the general result
that

{x + ai){x + a,)(x + a.,),..{x + a„)

= a,'« + «;«-!(«, +a2 +,.«„)
+ x^^-^a^a^ + a^a^ + a^a^ + ... a^_^a^) + . .

.

a,a^ ...«„,

the coefficients bein^- formed according to the law of combina-
tion^; that is, the coefficient of x^-^ is the cor.Luiations, taken
or<^ at a time, of «i, - .3....«„; the coefficients of x^-\ the
combinations cf the same letters taken two at a time, and so on.
If, now, we assume «! = a, = ag= . . . . a„ = «, we have

{x + «)»»

= .r" H- x-\na) + ^n-.|!^^_L)^j ^ ^„,3 K^-lXn-2)
^3| ^ ^ ^^

=.x- + nx-^a + ^-^IL«-V + !^-lfc:?)^n-3«3 +
u U

..a*».
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This is the Binomial Theorem ; that is, the law of the ex-

pansion of an expression of two terms when the index is a posi-

tive integer. In a subsequent chapter it will be shown that the

same law of expansion holds for any index.

^- 259. Proof of the Binomial Tlieorem.—The previous result

may be reached with much less work as follows

:

{x + cf)" is the product of n factors, each equal to {x + a). This

product consists of terms, each of n dimensions, obtained by
multiplying together n letters, one being taken from each factor.

For instance, the term x^-^aj^ is obtained by taking x out of

(w - 3) factors, and a out of the remaining three. Therefore the

coefficient of 3if*-^a\ that is, the number of terms containing

ar**-V, will be the number of ways (w-3) thi/ig'i can be taken

out of n things, or the number of ways three things caa be taken
out of n things ; that is,

the coefficient of a*""V = —^^

—

1—Jl—Z

—

L — L^^

Li w-3|3

Similarly it may be shown that

the coefficient of a;"
L!^

[n~r\r^

Now, by giving r all values possible in this case, that is, 0, 1,

2, 3 .... »i, we obtain the coefficients of all the terms. Therefore

{x + af = a;" + C^x''" 'o. + C'aa:"-V+ .... C„a»

where Cj, Cn, Cg (7„ represent the number of combinations

of n things taken 1, 2, 3 .... n together.

Cor. 1.—Write - a for a ; then

Cor. S.—Since the coefficients of the expansion are

1> Cl, C/2, Cg. . . . C„,

...
y
T; _L jrj\»» 1C1 / /.

xr3 : /
1\
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Car. 5.—Let .r = 1 and a = ar; then

the expansion of (1 + x)" = 1 + C,x + C^c^- + C,r^ + c,x* + .... C,^,

Cor. 4.~In the preceding let ar= 1; then

(1 + 1)» = 2"=1+C, + C, + C3 + ....C„,

2»-l= C, + C, + C, + ....C,.

Thus by the Binomial Theorem we reach the conclusion already
obtained in the chapter on Combinations, that the number of
combinations of n things taken 1, 2, 3 .... w together = 2"- 1.

Cor.5.-In(l+x)"=l + C,x + C^ + ....C„;r"put;r=-l;

then (l-ir= 0=l-(7, + C,-.C3 + ....(-l)»(7„,

That is, the sum of the combinations taken 1, 3, 5 ... . together
= the sum of the combinations taken 2, 4, 6. . . . together, plus
unity. ^

260. Any binomial can be expanded by using the form (1+ar)"
For suppose we have to expand (x + y)» this can be expressed in
the form,

Let - = a ; then (x + yy = x\\+ a)\

We can now expand (l+a)" and multiply each term of the
expansion by x^.

261. Since the coefficients of (a + x)» are, after the first term
the combinations of n things taken 1, 2, 3 .... ,i together,

the coefficient of x is

of a^,

Yl
ra"-'; oix', [Vl

zQ
,n-2,

Li
i\
'- /• Lit

;«**-'.
. .

.
; and of ar'.

I r In
r,n-r
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Therefore the term involving x^ in (a + a:)" is

L"
-a"-'a;^

I

r n-r

This is called the General Term, or the (r+ 1)*** term of the

series.

Cor.—The general term of (1 + ar)" is

\r \n-r
x\

262. The coefficients of (x + a)" equidistant from the beginning

and end of the expansion are equal.

For the coefficient of x**~'^a^ is the number of combinations of

n things, r together, and therefore equal to

L
n

I

r \n-r'

it is also the (r + 1)''' coefficient from the beginning of the expan-

sion. The coefficient of x^a^~'^ is the number of combmations of

n things, {n - r) together, and therefore equal to

L:
n

n -r\r'

But it is the (r + 1)'** coefficient from the end of the series; there-

fore, since

l!^ [1__
\r \n-r \n-r \r'

the {r + ly^ coefficient from the beginning = the (r-f- 1)*** coefficient

from the end.

The important point to notice in this almost self-evident propo-

sition is that, since the combinations of n things, r together, =

combinations (n - r) together, it follows that the coefficients must

be equal when they are respectively the combinations of n things.
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r together, and n things, (n - r) together. This occurs when the
terms are the (r +!)'»> and the (n-r+iy^ from the beginning,
or the (r + !)*•» from the beginning and the (r+ 1)'" from the end—
the (r+ !)*»> from the end being the same term as the (n-r+l)^
from the beginning, the whole number of terms being (n+l).

Ex. i.—Find the product of (x +l){x + 2)(.r + 3){x + 4).

The first term is x*;

the coefficient of a;^ = (1 + 2 + 3 + 4)

;

the coefficient of a;^ = (1.2 + 1.3 + 1.4 + 2.3 + 2.4 + 3.4);

the coefficient of a; =(1.2.3 + 2.3.4 + 3.4.1+4.1.2);
and the last term =1.2.3.4.

.*. product =a;* + 10r' + 35a:2 + 50a; + 24.

Bx. 2.—Write down the coefficient of x"^ in

(ar-l)(a- + 2)(ar + 5)(a:-6).

The coefficient

= {( - 1)(2) + ( - 1)(5) + (-l)(-6)+ (2)( + 5) + (2)( - 6) + (5)( - 6)}

= {_2-5 + 6 + 10~12-30}= -33.

Ex. 5.—Expand {x + yf.

{x + y)
,6_^6

LiL
Ta^y +

L
2 14

•ar*y
Li

Li I
3 13

^f + Tjj-^^Y
LI

1^

Li Li

= ar« + 6.r«y + 1 5ar*2/2 + 20a:3y + 1 ftxhf + <oxif + f.

This expansion might huve been written as follows:

6.5.4.3.2

1.2.3.4.5
. V + ./-
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N.B.-The student will observe that after the middle term,
^'^'^

. x^y^,
is passed, the coefficients are the same as in the first half of the^^ri^s^ only in
reverse order. In such examples, therefore, the coefficients of the last half of
the series can at once be written down by observing the coefficients of the first
half. 1 his IS, of course, only an application of the general law that the coeffi-
cients equidistant from beginning and end are equal.

Bx. 4.—Find the coefficient of x* in the expansion of (3 + 2xy.

The coefficient of x^ in the expansion of (a + x)" is

[nn
-«"-'•==_n(n-l)(n-2)(n-3)...(n -r+ l)a'-

l- [VliI 1.2. 3 .

In this example « = 3 and x = 2x; .-. the coefficient of x* is

L«

LI

04 cti 8.7.6.5
3*

. 2* = X 3* V 94

1.2.3.4
'•

•.
.^•^•-I"«t««'^ of deducing the result from the general expression, (a+x)n

It IS advisable fur the student beginning the subject to obtain tlie term required
by actual expansion.

Ex. 5.—Find the coefficient of .r« in the expansion of (x +-)'[

We have now to expand ^l+^^'\nd then multiply each

term of the expression by x''. To obtain x<^ we must find the

term in (l +"t,) , which has x* for a denominator (since x'^^x*\'*'//2\io ^

= :r«). Expanding
(^1 +^-j we find the third term has x* in the

denominator, and its coefficient is ^^ = 45, which is the co-

efficient required.

Another way of arranging ^a;+ 1 V^is as follows:

1 l+x^x+-=~J-
X X

^
^

^
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x^y^.

^̂X^

In this case, to find. ar« we must find the term in the numerator
which contains ar'«; and this is found to be the third term from
the end, which has the same coefficient as the third term from
the beginning, and, as before, is found to be 45.

Hx. <?.—Find by the Binomial Theorem the value of

(a + Va' - 1)6 + (a - V^F^f.

Let \(a^ - 1 = ar,

.-. {a + V^^^^)" + (a - V'^^~\f = (a + xf + (a - x)\

(a + xf = a« + Qa^x + 1 5a*^ + 10a"a^ + 1 5«V + 6a^ + a^,

and (a - xf= a« - Qa^x + 15aV - 20a3r» + 1 5a2.r* - 6«;ir6 + x\

Adding, (a + ar)" + (a - ar)"

= 2(a«+15«*r2+15aV-ar'')

= 2{a«+15a*(«2-l) + 15a2(a2-l)' + (a2-l)3}

= 2{«.« + 15a« - 15a* +\ba'- 30a« + ISa^ + a« - 3a* + Sa^ - 1}
= 2{32a«-48a* + 18a2-l}.

. It will be observed in this example that owing to the second
terms of each binomial diflFering in sign alone, the even terms of
the expansions disappear when they are added, and the odd terms
are taken twice. If the difference of expansions had been re-

quired, the odd terms would have disappeared, and the even terms
would be each taken twice. It is, therefore, not necessary to
write out the expansions in full -the result can be written down
at once by inspection.

EXERCISE XXVIII.

Write out the following expansions

:

1. {x + a){x + h){x-c). 2. (ar-5)(ar + 4)(ar-3)(ar-6).

3. (a;-6)(j- + 18)(a--9)(a?-3).
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4. (x + af.

6. {2a -yy

HIOHEH ALGEBRA.

5. (2a + 3hy

7. (1 - 2xy.

8. ("!)•

Y

10. Find the third term

11. Find the fourth term of (i

Find the twentieth term c

Find the thirty-fifth term of (4x - «)«•.

14. Find the middle term of (1 +a:)i°.

1.15. Find the middle term of (x - 2yy\

Y/6.
Find the middle term of (1 - xy^.

VI 7. Find the general term of (ar- 3y)".

^18. Find the general term of (ar^^yS)".

'** 1 9. Find the general term of {x^ - i/y\

^20. Show that the coefficient of x'^ in the expansion of (1 + x)'^
is double the coefficient of x" in the expansion of (1 + xy^-K

21. Find the middle term of (1 +.r)-", and prove it

_1.3.5....(2n-l)

L
n

2»_j.n

22. Find the coefficient of x*" in the expansion of /aj-h -)".

23. Find the middle term of (x- -V".

24. The coefficients of the fifth, sixth and seventh terms of the
expansionof (l+a:)2'>arein A. P. Find w. /

25. For what values of n are the coefficients of the second,
third and fourth terms of the expansion of (1 +^)" in A. P.?

•1

I
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«.

26. Simplify {x+Vf-\y + {x- s/y' - 1)«

-*,

xr

bhe

id.

I

27. Simplify
(
^m'^ 1 + \/m^-\f - (

\/m'-^ 1 - ^/^i^^~\)\

^28. If a be the sum of the odd terms, and h the sum of the
even terms, of (1 +x)", show that (1 -x^Y = a?-l^.

A 29. Simplify (5 V2 + If x (5 V2- 7)\

(2
1 \'

-x' )

.

3 ixj

X ) .

C32. Find the coefficient of .i'" in the expansion of (^^ + — ) •

33. Find the coefficient of .i'" in the expansion oi (x^ + — \ .

^ 34. Find the value of

- - 3w(n-l) 4w(m-1)(w-2)
, ,,,l + 2n +-^—-^ + -^ -^ -^ + ....(w+l)l

when w is a positive integer.

263. ^o ^w(/ <Ae greatest coefficient in the expansion of {1 + xf
when n is a positive integer.

This is the same problem as that of finding the value of r for

which the number of combinations of n things, taken r together,

will be the greatest. In Art. 244 it was proved that when n is

even the value of r is -
, and when n is odd the value of r is ^^^^

n+\ ^ 2
oi -^ . Therefore the greatest coefficient when n is even is

. fn \"'
the coefficient ot the ( o + M term, and when n is odd, the

(-2-+1) or /-^+lj term; that is, of the [-—) or

/w + 3\*''

^
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264. To find the numerically QtecUest term in the expansion

0/ (a + x)\

The r*"* term of (a + a;)« is
'

n(n-l)(n-2)....(n- r + 2) ,. _
|r-l

£an-r+l
^ ^-1^

and the (r + l)*** term is

w(n-l)(n-2)....(n-r+l) „ ,^- -V- , af;

that is, tho (r + 1)*" term = r*"* term x
"'"'''''

^

. ?
r

Therefore the (r +!)*•» term >, =, <, r*"' term

J. n-r +1 X
according as — . - >, =, <, l-

a

eras

or as

or as

or as

r i a

n-r +1
r

n+ 1

a

a

>, =, <, 1 + -;
r

n + l

X

>, =, <, r.

n + l
If is an integer, the (r + 1

)»" term = the r*" term when
1+-

n+l

1 +
a

X

and theee will be the greatest terms of the expansion; for any
greater value of r will make

n-r + 1 X
<1.

7^

i

\
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n+l .

If ——• is not an integer, but has for its integral part m, then

1 +
X n-r + 1 X

r a

cannot be > 1 for any value of r > w; that is, the (»•+ 1)*" temi,

cannot be > r*** term for any value of r > m. Therefore the

(r + l)*"* term > r'^ until r = m; .*. the greatest term is the

(w + 1)* term.

N.B.—The student should observe that this proof applies solely to the

numerically greatest term, and therefore applies to (a -a:)".

'^j""^^^ ^'—FiJid the greatest term in the expansion of (1+ar)"

f when
2

ar = - and w = 6.
o

The (r+ 1)*" term is >, =, <, r*" term,

n — r + 1
according as

or as

But

.'. according as

or as

• * ^> — » *^i '^

J

71 + 1
>, =, <,r.

1 +
X

w = 6 and x= -
o

_2
1 +

- >, =, <,r;

14
The greatest value r can have in order that — may be >r is 2

;

therefore the third term is the greatest, and its value is

6x5 ./2\' _ 46x5 ./2\'' ,, 4 ,.,

Ijj
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^-
Ex. 2.—Find the greatest tsnn in the expansion of (a fa:)"

when

*=Q» ^~7» '* = 8.

In this the condition

becomes

or

w+ 1

1 +
a

X

1 +
3

27

>, =, <,n

>, =, <,r,

>, =, <,!'.

Therefore the greatest value of r is 3, and the fourth term is

the greatest, and its value is,

8x7x6/lvVlV ^^ 1 1

lV2^i3JU>'^^^''2i3^64-

265. The following examples are suggestive, and worthy of

attention

:

, 'Ex. 1.—Find the sum of the series,

that is, find the sum of the squares of the coefficients of (1 + a;)^

(1)
/-I \« 1 W(W - 1) o{\+xY=\+nx +-^

—

-x^ + a;";

ahio,

\1

{x + 1)» = r" + na;»-i + ^ , , V "^ + .... 1.

Li
(2)

If, now, (1) and (2) be multiplied together, and the coefficienl,a

of x^ be collected, their sum will be the given series.
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But (1) X (2) = (1 + x)- X (x + 1)» = (1 + ;,)2..

,^/rf°!l*^^
^'''^" ?"^^ """^^^ ^ ^^"*^ ^ **^e coefficient of ;r»

[2n

in(l+ar)*»; t.e., equal to

Hence 1 + 1'=
2n[2^

^a;. ^.—If Co, Ci, Cj C„ denote the coefficients of (1 +«)»
find the sum of

'

2 3
C^o + "o" + -^r + . . .

.

Now /7j-^^a.^2, cr 1 .
^

n+V
n n(n-l)

Multiply both sides hy (n+l);

... ^(n + l) = (n+l) + (!L±i)!?^Mn)^^^^
11 Li

Add 1 to both sides;

/. >y(n+l) + l = l + (^+l) + 6i±lK^^.....l^(l^lj.+,^2''+^

LI
.-. ^=2»+»..l4-(w+l).

EXERCISE XXIX.

Find the greatest term in the expansion of;

04. (a + 6)20, when a = 2, i=3. *^
C^. (2x-yy% when x^i, ij = 5.

^
C3' (^+1) '

when x=e, y = 8.

. . /2x 3a\« ,

Q«- (-3-+:^ ) » when x=9, a =16,

19

<0 * ^T'

/^
/
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^^^

Find the value of the greatest term in the following:

jk6. (1+ar)*, when *= 3' ''*= '*•

, 6. (2-3a;)», when «= g^* ^ = ^-

^ 7. {a-bf, when 0= 2, 6-3, r= 4.

8. («+-)» when 05=2, n=»8.

'> ^ 9. In the expansion of (1 +«)*' the coefficients of the (2r+ 1)*^

and (r + 2)*'' terms are equal. Find r.

10. The second, third and fourth terms of {a+ rY are 240, 720

and 1080 respectively. Find the values of x and n.

ell. Find the relation between r and n in order that the co-

efficients of the fifth and (2r + 5)"* terms of (1 + x)" may be equal.

^ 12. If the coefficient of the Sr"* term from the beginning of

(l+x)^ equals the coefficient of the (r-l- 2)*'' term from the end,

find the relation between r and n.

If ao, ai, aj. . . . a^ denote the ioefficients of (1 +«)*, prove:

--13. ai+ 2a2 + 3a3 + ....wan= »i-2"--

11 ^n ^ ^

cl«. Oo-2ai + 3a2-....(-l)"(w + l)an = 0. ^

,;^17. — +— + + .... = ^•

ao *i ^a a—>i.-i

18. (Oo+ «l)(«l + «2) • • • • («n-l+ «»)
'-

a-^. . . . «n(^+ "•)"

l!L

^19. ai-2a2+ 3a3-....(-ir-'wa^= 0.

20. a^+ 2a, + 3ffj + . . . . {n + l)a, - (« + 2)2-\

/'

/^

^

03

II
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C21. a, + 2a3 + 3flr, + . . . . (n _ i)a^ = 1 + (^ _ 2)2»-i.

22. a^, + a,a,^, + .... a^_^^ = U=
. ^7^^^ ^ " ^ ^r

I

n - r
I

n + r /

23. aotti + fljOj + . . . . a^_iO„ =— [2n

^rA^/v A/ v;
^^^|n+l

|

n-l • ~7/j^ ^
< ^' v;

= when n is odd. ( 2 )

luoxi^ I
i< ^m'a^ tc^tlc ^q^v»o <-t/6^ j^J-^Cuo

.

>
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BINOMIAL THEOREM.

ANY EXPONENT.

n^266. In the preceding chapter we found the form that the

expansion of (a + x) assumes when n is a positive integer. This

was easily obtained, since (a-f x)» was taken as the product of n

equal factors, and therefore its coefficients came under the law

of combinations.

We have now to prove that the/or»t of the expansion of (a + xf

is the same when n is not a positive integer as when n is a posi-

tive integer.

(^
ca'

267 By actual division we find that

1

(1+^)
- or (l+a;)-2 = l-2a; + 3a;'-4ar' + ....

,^(-2),,(-2)( -2-l) ,

" "IT —[?

—

Hence we see that in this particular case the formula holds good.

Similarly, by actually extracting the square root of 1 +.r it can

be shown that

(1 +«)' = !+ 2^ +
1 K-.-).i(H(H

Li [3

'•1/ T • • • •

268 We now proceed to prove that the law holds good for all

values" of n, fractional and negative. At the outset it will be
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tiecessary to call the attention of the student particularly to the
fohowing statement, the truth of which he must be convinced
before he can understand the proof of the Binomial Theorem for
any exponent.

^\ FORM
69. If two algebraic expreasiona are multiplied together, tlie

FORM of the product is independent of the value of tJie letters
involved.

Thus (a + b){a -b) = a'- b\ no matter what values may be
given to a and b. So, too, if

{% + axX +a^ + .,..a^x%b^+b^x + b^ + ..

.

. i«ar»)

= ^0 + ^iiar + ilj^ + . . . . ^j^a*»,

the fr«TO of the product is independent of the values of a,, i„,

«i, Ai. . .
.

Of course, the valv^ of the product will change, but
Its algebraic expression will remain the same. The application
of^his totjie proof of the Binobial will be seen in the following

o provk the Bitiomidl Theorem when the exponent is a
positivefraction.

Lrt.

27o:

Let the series,

,
.

mlm - 1 ) „

Li
a>

be denoted hyf^m); then the series,

T ,
n(n - 1) „

will be denoted by/(w).
Li

(2)

By the reasoning of the preceding Art. the form of the product
of (1) and (2) will be the same, whatever values be given to m
and n. But the series (1) i? the expansion of (1 +a-)'» when m
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is a positive integer, and (2) is the expansion of {\+xY when n

is a positive integer. Therefore the product of (1) and (2), when

m and n are positive integers, is

{m + 7i)(m + n-l). ,„,

(l+ar)'"+" or \-h{m + n)x + ^ -—^ ar' + {^6}

Hence (3) is the form of the product of /{m) and /(w) for all

values of m and n. Also, since y1^m) denotes ( 1 ), J{m + n) denotes

(3), and therefore

also, f{m)>^f{n)%f{p)=J{m^n)y^f{p)

=f(m + n + p).

Similarly it can be shown that

/{m) xf{n) xJIp) to w factors =/{m + n +p . . . .
to » terms).

Now, let ^ '

in — n—p = . • • • T»

where h and k are positive integers.

••/(I) x/C^)- ••*"* *^*°'''=/(^ + I
.... to A terms),

/('i)=(i.4

or

But, in accordance with the notation eK^ployed,

'h\ . k"^ k\k )

L
1 li

vl , X''" k\k V
»C^ "t" • • •

rj

I

tl

(1
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Let J ^n: then
k

0\it -I
n(n — 1 ) ,

Li.

that is, the Pmomial Theorem holds good when n is a positive

([vvA. r^**^ (Kur^
TV) prove tJie^inomial Theorem for a negative index.

Since /(w) x/(n) =/(w •+ n) for all values of m and n, let
n = -m (w being taken positive).

Then ^Iw) x^i; - rn) =y|;»n - m) =^(0).

But/(0) = 1, as it is obtained by puttingm=0 in the series,

, mlm - 1) ,

Li
••• y(»»)xy]:-m)=i,

or

But

^-'">=;t)=(iT^=a+^)-"

(1+^)--i+zl».^(-"'X-'»-i)^^
Li Li

sincej^- m) stands for i +<~'">t I

<""*>< ~ *"-
')j' |.. ..

Thus it is seen "that the Binomial Theorem holds good for the
Tiegative index, - m.

>^4^272. The proof contained in the two preceding Arts, presents
>r one difficulty, which needs some explanation. It has been stated

thaty^m) ><.J\n) =/(m + n). Now, what meaning must be attached

,
to such a statement when the series whichyj^w) and^^n) represent

^^AJafi^^e divenient ? Such series are the expansions of (1 - x)-^ and

(1-a:)-^ when ar^l. (See next Art.) \VTien x<\, (l-a;)-« is
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arithmetically = 1 + 2a; -^ 3x» + 4x» + ex:, anid^l - x)-^ is arith-

metically «=. 1 +«+ a:* +«'+

.

oc and .-. (l-ar)-»x(l-af)-'or

(1 - ar)-» is arithmetically = 1 + 3x + 6x» + cc, which is the

productof (l+2x + 3x» + 4a:» + .... oc)(l +ar + a:' + . . . . oc). But

when a:"" 1, (1 -ar)"' and (1 -^)"^ a>"e not respectively arithmetic-

ally = 1 + 2ar + 3x» + 4x» + oc and l+x + x^ + a^ + ....oc, and

we cannot assert that (1 + 2a;+ 3a:»+ . . . oc) x (1 +ar+a;--l-ar»+. .
.oc)

x» 1 + 3a; + Gar* + oc . We can, however, assert that the first r

terms of the product of (1 + 2a;-l-3a;» + . . . oc) and (l+ar + x» + . . .
oc)

are the same as the first r terms of (1 + 3x + Gr* + . . . .
oc), and,

generally, that the first r terms of the/(w) x/(n) ftre the same

as the first r terms oif(m + n).

273. It has been stt ted in the preceding Art. that the expres-

sions, l+2a; + 3a;» + oc and 1 +a; + a;* + a;' + oc, are, when

a;< 1, the arithmetical equivalents of (1 -a-)"' and (1 -a;)-^ Thia

can be shown by summing the series according to methods already

employed in the chapters on Progressions. If, however, a;~l,

1 + 2a; + Sa;* + oc and 1 + a; + a;^ + oc are not the arith-

metical equivalents of (1 - a-)
"^ and (1 -x)-\ This can be easily

proved as follows

:

For, if possible, let (1 -a;)"* = 1 + 2a; + 3a;'' + 4a;3 + . . . oc . Then

if these expressions are identities they must be equal when a; = 2,

in which case

(i-^r=(i-2)-^=(-i)-^=(Tri7=i.

and l + 2a; + 3a;» + ....oc = l+2.2-f-3.22 + 4.2'-|-....oc = oc.

That is, 1 =« oc , which is absurd.

The real value of (1 - x)-^ when a;~ 1 is ~_ v

actually divided out, gives

(r + Dx''
l+2a;4-3a;2 + 4a;' + .... Vi ^•

(1-a;)

-5, which, when

^

V
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If ar<l, by taking r great enough the expression,

can be made as small ns we like, since x"^ tends to vanish when

x<\ and r is very great. If, however, x~l, a:*" increases as r

increases, and each term of the quotient becomes greater than

the preceding.

74. In the expansion of (1 + xY it was found that the (r+ 1)**

term was obtained from the r** term by multiplying the r*** term

by . a*. Now, if n is a positive integer, -X or

n-(r-l)—^
. X becomes zero when r-l—n or r= n + l. Therefore

r

the number of terms when n is a positive integer cannot exceed

7j _ (r — 1

)

(n+1). But when n is negative or fractional, can

never become zero, since (r - 1) is a positive integer and n is not

a positive integer. Therefore when n is negative or fractional,

the series does not terminate, and the number of terms is infinite.

Ex. i.—Expand (l+.r)*.

l-J(Mja-)(l-)
(l+ar)* = l+i-j-4 .ar» + •V T" • • • •

Li Li ' Li

, 3 /1\ 3.1 /1\« , 3.1.1 /ly .

»+-jT-(2r+ lT-(2)-''-]37-(2)-^
+ ...

1 3 3„ 1 ,
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Ex. ^.—Expand (1 +a-)*.

LL Li l:

^ T • • • •

. X 1.2 „ 1.2.5 , 1.2.5.8
1 +7rT-r-7r5-r—a?^+ ^. „ a^-

jJn^^.

^11 32|_2 3»|_3

£». 5.—Expand (1 - ar)~'.

3*
Lt

ar* + ,

'
^

(-2)(-2-l)(-2-2)

Li
= l+2a:+ 3r' + 4r»+ ....

Similarly it can be shown that

J^:!^ff\ (l-ar)-^=l+:r + a:2+^+ ^^^^

and ^^^(l-ar)-3=l + 3.r + 6x2+10r' + ....

^a ^.—Expand (1 - x)"".

(i-.)-.,n.(zg(-») ,(-"Xy-i)(_.),

(-«)( -«-l)(-M - 2)

LI

{-xfAr

(-ar)« + ..

w(w+l) w(?i+l)(w + 2) ,

This expansion, as to form, does not depend upon the value of

n, whether integral or fractional, so long aa n is positive: there-

fore when the index is negative, and the sign between the two
terms of the binomial is negative—the terms themselves being
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positive—the expansion has every term positive. The recognition

of this fact will save much time in expanding binomial expres-

sions. It is also worthy of notice that the factors of the numer-

ators increase by unity continuously, instead of diminishing.

Ex. 5.—Expand (9 + 2a-)*.

9 + 2x = 9(l4-^);

2a;\i „/, 2a:\i
.•.(9 + 2.)J=9i(l+f)» = 3(l4-)

•}•

The expressions in the brackets can be simplified, and the re-

suits multiplied by 3.

Ex. 6.—Find the general term in the expansion of (1 -|-ar)^.

The general term in the expansion of (1 +xY is

w(n-l)(n 2)(w-3) {n-r+\)

M.
'-pf.

In this case n= -
; therefore the general term is

o

2/2
3 (l-^)(I--)--(i--0

2.1.4....(3r -5)

3^LI

(-l)'-V.
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Bx. 7.—Find the general term in the expansion of (1 - x)~*.

The general term in the expansion of (1 +ar)" is

n(n-l)(n-2) (n-r + 1) ^

and to find the general term in the expansion of (1 — a:)~" we
must substitute {-x) for x and (-w) for n. Therefore the

general term

_-w(-w-l)(-n-2)....(-w-r+l)

n(n+l){n + 2) (n + r-l)

{-xy

[L
i-m-^y

_n{n+l) (n+r-l)
^

N.B.—^Ex. 4 is an illustration of this general case.

Ex. 8.—Find the simplest form of the general term of (1— a;)~"

when w is a positive integer.

The general term is

w(» + l)(?i + 2) (n+r-l) .

U
x^

- l-2.3....(n-l)n(n + l).. . . (n + r - 1)

1.2.3....(w-l)[r
x^

In + r- 1

x\
[n-_l [

r

If w = 4, the general term of (1 — ar)-* is

l!l±i r
0'4-l)(r + 2)(r + 3)

[±[L
x^ = x'
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<Ll.

11.

Expand (1 +r)*.

Expand (1 + 2^)^.

Expand (2 - 5a:)*.

Expand (1 -x)-\

Expand (3 - 2a:)"

BXBROISB XX.

(l2. Expand (1 - x)^.

ypA. Expand (a + bx)^.

c6. Expand (1 +x)~^.

^8. Expand (2 - xy\

C 10. Expand (l+a;2)-3.

Expand \^{a^ - x^f.

1
12. Expand 13. Expand — 1

A/l+3.r

^. Find the sixth term of (1 + 2a;)~*

Cfb. Find the eighth term of (1 - 29/)^.

^16. Find the fifth term of (1 + 3.r')^"".

n 17. Find the seventh term of (a - xy.

^8. Find the tenth term of (3 - 2b)^.

jj 19. Find the {r + 1^" term of (1 - x)~K

(^ 20. Find the (r+ 1)"' term of (1 +x)^.

CSl. Find the (r + 1)*'^ term of (1 - 2y)-^

<tuii2. Find the (r + 1)*'' terra of (m - 3w)-*.

^3. Find tYw (r + 1)*'^ term of (x + 2ij)~K

^24. Find the twelfth term of (2i» - 2^a)'^.

25. Find the sixth term of (38 + 6*j '^.

'

26. Find the eighth term of ^4 + 3ar^^.

nx

1 .-I
27. Find the third and sixth terms of (1 - ^x)~^,
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„^0f^ the

(28. Find in its simplest form the (r + 1)*** term of (1 - x)'^,

t/29. Expand (1-1)'*

30. Fin4|be^coefficient of a;" in (1 - 4.?r)~^.

276. To fi%find {wJien possible) t/te numerically greatest term
the expansion qf(a + a*)".

tn

The (r+ If^ term of (a + x)" is obtained from the r*" term by

ultiplying

given to n.

multiplying it by ? , no matter what value may be
r a

I. Let n be a positive integer.

This case has been discussed already in Art. 264.

II. Let n be positive and fractional.

Then, since (r+lf^ term = r*'' x
^

"""^"^ ^

) -, the (r+1)

term = r'" term

<

according as

or as

or as

or SU3

\ r J a^ '

/w + 1 \ >a+ 1 ,\>a

<

n+l>
r a;

n+l >

90

{
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Since w is a fraction, {j~- - l] can never be made = 0; and

by taking r great enough (that is, by taking a sufficient number

of terms), /— Ij can be made as near (- 1) as we please,

and therefore ( 1(^-)^ can be made as near— as we please
a

*^

In this case whether there will be a greatest term or not depends

upon the value of
a'

If - _ 1 after a sufficient number of terms

have been taken, each term will bo equal to or greater than the

preceding, and there will be no greatest term; but if -<1
a '

there will be a greatest term, and it will be found from the con-

dition that —— >r. As in Art. 264, the greatest term will be
1 + -

It —— IS

not an integer, the greatest term will be the (m + 1)***, where m
equals the integral part of •

the (r+ 1)*" term when r = ^^-^~-^, if r is an integer

X

1 +
a

X

Then

III. Let n be negative.

If n is negative let it = -7n (where m is positive).

n-r+l\ X /-in-r + l\x/n-r+l \ X ^ /-m-r + 1\ x _ /m + r-l\ x
\ r J

' a \ r )a~ ~
[ '^ /

' «

'

As what is required is the numerically greatest term of the
expansion, the negative sign may be neglected, and the multiplier

will be
[m + r-\\x ^, ,

>
/

j
_

. Then the (r + 1)*" term = r"' tern;
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according as

or as

/m + r-l\x_

V r )a^

As in the preceding case, if mis fractional, {— l-lj

'm — 1

may

(m-\ .\x
be made as near unity aa we please, and .*. ( "^

) a
*^ ^^^^

- as we please. If - "^
1, there will be no greatest term; but if

<1, the greatest term will bo Tound from the condition thatX

a

fm-l ^\x

or

or

m— 1 a ->- -1,
r X

m — 1

"-1
X

<>r.

m—1
The rest of the proof is the same as in I. and II. when

is positive.

If however, —^ is negative, a new case arises, for then
'

r

/f^ ~ ^ + 1) is always < 1, and y^^—- + A\ ^^ always < 1 if

x~ a. Therefore the successive terms of" the expansion will each

be less than the preceding, and therefore the first term will be

the greatest. If x>a the greatest term will be found as in I,

J^nd II,
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Ex. 1. - Find the greatest term in the expansion of (a + xY

when n =— and 4a; = 3a.

Here the (r + l)'** terra is > the r^^ as long as

or

-'
4

I r
J

21

2

r
"-^3'

or
21 7 9

Therefore the greatest term is the fifth.

-1

^a;. 2,—Find the greatest term in the expansion of (1 «)""

3 3
when M = 2 and x=- .

4

The (r + 1)*'> term ^ r*"* as long as

^2 +r-lM/2+r-l^l>^ / . 2a3 n

or 1 r.

Therefore first and second terms are the greatest.

EXERCISE XXXI.

Find the greatest term in the expansion of:

8
1. (1-ar) = when a;=-. 2. (1-a;)-'^* when ic=. -."

4
90
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QS. (l^•a;)-" when x=- (1 ~ a:) • when ^ = ^ •

C 5. {1 + ar)^ when x=-.
f^.

{2z + by^ when ar = 8, y = 3,,

C^. (3a;2+52/')-'' whenar=9, 2/=2, n=15.

Find the first negative term in the expansion of:

^- iy+l^f'

^10. If cTi, aj, aj, or^ be ary four consecutive temrof an ex-

panded binomial, prove tha^-

flj + ffj ttg + O4 0^ + «3

SPEriAL APPLICATIONS OF THE BINOMIAL

THEOREM.

1. Find the sum of the coefficients of the first (r + 1) terms of

(l-a;)«

Let ao, a^, aj, aj .... a^ ... . be the coefficients of (1 — x)**.

Then (1 - rr)" = a^ + a^a; + ('2^'^ + <^3^ + «r^'' + ; (1)

also, (l-a;)-*=l+a; + a;Har3 + x^ + (2)

By inspection it is seen that the coefficient of x^ in the product

of (1) and (2) = »(, 4- (Ti + O2 + • • • • «r' ^^^ the coefficient of ar»'in

the product of (1) and (2) = coefficient of a;'" in (1 - a')"(l - a:)"^ or

(1 - a;)""*, and the coefficient of a;*" in

(1 _ ^)n-i ^ (n-l)(n-2)....(n-_r)^
_ ^^^

(n-\\ln-1\ (n-r) ,,
,*. ao+ ai + «2 + «r = -^ —

j-^
^ -(-!)''•
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(2)
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Ex.—Find the sum of the first (r + 1) coefficients of (1 - x)-\

Let (l-^)"' = ao + «iar + a2x' + ....aX+....,
also, (l-ar)-»=l+ar + ar» + ....

;. flo + a, + oj + of^ = coefficient of .c'" in (1 - x)-\l - z)-^ or

_>.V-4_ '*-5-6-...(r + 3j|(^ 1.2.3.4.5.6....(r + 3)(l-xV

Lr. ^ 1-2.3 ... r

_ (r+l)(r + 2){r + S)

2. Find to five places of decimals the value of V98.

Vr8=Vioori=J,"oo(i4„) = iojrj=,o(i-l)^

.ikl!l /i\' 2(2-0(2-^) /iv 1

LI 'W [3 [50) -^""j

= 10(1--? ! I__ 1
1. 100 8x2500 16x(60)'~*"7

=10(l-J—i L__ \
t 100 20000 2000000"'" 7

= 10 - 1 1

10 2000 200000'

To obtain the values of the several fractions as d ^oimals we
proceed as follows

:

1 = -1

10 ^'

1 1 J 1

2000 2 ^1000" 2
= ;; X~:rTr= -(-001) = -0005,

w
17

I

'3
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i

/. 10-T7^-

200000 100V2000,

1

•000006.

10 2000 200000

)ooj

= 10 - (-100505) = 9-899495.

Similar artifices can be applied to find the values correct to

a given number of decimal places of such expressions as V^126,

i?'2400, e*;c.
^

3. Show that the coefficient of 3^^ in the expansion of

is 2n.
(1-^)'

= (1 + 3a:2 ^ 3^ ^ ^8)1 1 ^. 2aJ + 3;i;« + 4a-« + ....(/+ IXr*)-- + ... .}.

The coefficient required consists of all the terms in the product

of these two expressions containing n^'^ ; and since every terra of

the expansion of (1 - 3?)~^ contains powers of a?^ and only one

term of (1 + x'Y, viz., .^^ contains a power of a-', therefore the

coefficient required = (coefficient of a:^" + coefficient of a:^""') in

{\-3?)-\ The coefficient of r*" in (1 -ar')-2 = w+ 1, and coeffi-

cient of a-^"~* or a;*""^*' = w - 1. Therefore coefficient of a?"' in pro-

duct of {\+xyi\ -ar»)-2 = n-H 1 +w- 1 = 2w.

#-
..^1

4. The following are illustrations of approximations

:

Ex. 1.—If X be so small that its square and higher powers may

be neglected, find the value of >^0)

(l-7ar)*(l + 2a')-*.

j^xpanding and neglecting powers of x higher than a;'

23 f49

7 49 3 21
(l_7ar)«(l + 2ar)-* = (l-^ar--a;'-j-....)(l--a: + _a:^-....)

=.\-^x^—^^
23

= 1 - -77-^, ncsi iy.
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Ex. 2.—If p q he small compared with p or q, prove

Jp ^ (n-t-l)/> + (
n 3jiJ9'_

\/</ (n - l)p + {n+ l)q

3fl

Assume rl - = 1 + ar, where x is very small,

For the first approximation neglect terms containing powers
higher than z.

Then P p-q
q nq

Again, for a. second approximation retain term containing a;''

Then p . n{n-\) , , ^, w - 1 ,

^ = 1 + na: + -l-^x^ = 1 + wx(l + -^-a:)^

l+nxil +
n - 1 p — q)
~~2~

nq

Simplifying, X='
2(p-q)

nq + np-p + q

(n-l)/; + (w+l)5' \^*

Show that the integral part of (5 + 2 V^)" is odd if n be a

positive integer.

' ySince (5 4 2 VQ) x (5 - 2 VQ) = 25 - 24 = 1,

- 2 v' 6) must be less than 1, (5 + 2 a/ 6) being greater than 1.

y .*. (5 - 2 V^ 6 )" = a proper fraction =/i.

Let (5 + 2 V 6 )" = / ^J] when / stands for the integral part

andy* the fractional part of the expansion.

. ySince
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If (5 + 2 s/6)« and (5 - 2 \/ 6)» are expanded, the odd terms
will be identical in the two series, while the even terms will differ
only in sign.

' \ terms of (5 + 2 l/ 6)"/
= an even integer;

.'• •^+/+/i = an even number = N;
•'• /+/i = iV - /= an integer. <

But/ and /i are each < 1,

.•./+/x=i=jr-/;

•*• -^= ^- 1 = an odd integer, since N is even.

6. The Binomial Theorem is sometimes used to expand an ex-
pression of more than two terms.

^aj. jr.—Expand (l+ar + a:2)*.

= 1 + 4.r(l + a-) + &x\\ + xy + 43^(1+ xf + ar*(l + xf
^\+ixA ix'^ Qx\\ + 2ar + x"") + 4a:3(l + 3ar + 3.r2 + a^)

+ a;*(l+4a' + 6r^ + 4.r3 + ar*)

= 1 + 4a: + 10.i:= + 1 Gar^ + 1 9.1:* + 16a:« + lO.?' + 4a:' + a:».

^a;. ^.—Expand (1 + 2a: + Sa;^ + 43:^ + . . . . oc)3.

(1.+ 2a: + 3a;« + ....«)•»= {(1 - a;)-2}3 = (1 _ :j:)-<»

-1 f6ar + 21a:2 + 56.r' + ....

le following examp'r i., wtii . orth noting:

Find the sum of the first n + r coefficients of ^lif^

{\ + xY
{\-xy

(l-a.)
- = (l + x)«(l-a:)-

= (1 +wa;-f
w(w-l)

LI
a:' ' + ....)(l + 2a: + 3a:2 + ....)

= rto + «ia- + cfa^ + . . . . a^^^.a:"-*^ + . . .

.
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(1+ar)*

'=(ao + a,af + a,jr» + ....)(l+aj + aJ+ ....).

If from the product of

{(io + aiX + a^^ + ....)(l+x + r'+ ....)

the coefficient of ar''+'-» is selected, it will be found to be

Oo + ai + «a + + a„+r-i,

or the sum required. Therefore the sum required must be equal
to the coefficients of a;'*+'^~* in

[rzip;
that is, in {2 - (1 - ar)}«(l - z)-».

Now, {2 - (1 - a-)}"(l - ar)-»= 2»(1 - x)-' - n . 2'»-Xl - ar)-»

n(n-l)

L?. ^" ' Li
terms containing powers of (1 -x), with positive indices, of which
the highest is (1 -a:)"-^

We must therefore select the coefficient of a;"+^-i from the
terms containing (l-x) with a negative index, that is, from

2»(l-:r)-3, -n.2^-\l-x)-\ !^zl)2«-2(l _^)-i.

The coefficients of ar»+'-i in (l-a;)-^, (1 -ar)"* and (l-x)-^ are
respectively

(n + r)(n + r+l)
2 » ** + *" ^'^d 1.

Therefore the whole coefficient

= 2'-i(n + r){n + r + 1) - 2"-1w(m + r) + 2'-»w(n - 1).

S. Series are often summed by observing that they are com-
posed of one or more binomial expansions.

2-^(1 - :r)-» - ?fcli>(!^)2«-3 + ...

.
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Ex. 1.—Find the sum to infinity of

2«/l-n l::5_L,^(^+^)/^-^\'' n{n+\){n+2)(\-xy

By inspection it is seen that

= A +—V"- /"-!_V"- (^ + ^>''

1 +0? ^ ^ '

^a;. ^.—Sum to infinity, 1 + ? +-M +-?J^^ + .. ..•^'
6 6.12^6.12.18^

Arrange the series as follows:

2 5 2 5 8

-i^-G-)^v-a)
3 3 /W 3 3 3 /1\'

By inspection this is seen to be the expansion of

9. The sum of a series is frequently found by observing that

it is the coefficient of some power of x (or other quantity) in a
series formed by multiplying together, or otherwise combining,

two or more series.

Ex,—Show that if w be a positive integer not less than 4,

, , 4.5 wCn-n 4.5.6 w(w-lVw-5^

u 2
Li

.1
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(l+x)-*=l-4^ + ii.^2_4.5.6

and
[1 Li

•*- "f" • . .

.
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(1)

It is evident that

1-4^ + 1:^. ^zl)_
[2 1^2

= the coefficient of x' in product of (1) and (2) = the coefficient
of ar<* in

(1 +.)-.(! + 1)" or
(1 +«)»-*

X"

But every terra of ^ /
.'. the series = 0.

a-"
contains x (with a negative index);

"" ind the number of homogeneous products of r dimen-
can be obtainedfrom n letters.

Let a, b,c, d.... be the n letters. Take n series,

l+aar + tfV +aV + ....oc,

l + bx + b''x^+b\r' + ....ac,

1 + CX+ c^c^ + c^.r' + . . .

.

oc.

in which ax, bx, ex are each < 1.

It is evident that if these n series be multiplied together, the
coefficient of x will be the products of one dimension obtained
from a,b,c,d...., the coefficient of x"" will be the products of two
dimensions, and, generally, the coefficients of x^ will be the pro-
ducts of r dimensions from the given letters and their powers.
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I

The problem, then, is to find the number of terms forming the
coefficient of .t;'" in the product of

Now, l+ax + a^x^ + a^:^ + ...,^ = ^i_a^y^ when ..r<l;

l + car+cV+c-V + ....oc = (l-c^)-i when cx<l;

:. (l+ax + a^x\.
. .Xl+bx + b^x' + .. . .){l^^ + c^-^\ ...)...,

= (l-ax)-\l-bx)-\l-cx)-\.
.

The number of terms forming the coefficient of x% therefore,
will be the number of terms in the coefficient of x' in

{\-(ix)-\\-hx)-\l-cx)-',,,.

But the number of terms in the coefficient will not be alterpd by
giving a, b,c,d.... the particular value 1, in which case each
term will be 1, and the coefficient will be the number of terms
If a = i = c = c/ = 1,

(1 - ax)-\\ - bx)-\\ - i.r)-i ....=(!„ ^)-n

and the coefficient of x"" in

(1 -^)-»_ !i(^+l)(^ + 2)....(n + r-l)

\n + r - 1

Therefore the sum of the homogeneous products of r dimen-
sions of fl, i, c, (/ . . .

.

\

n + r- 1
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^

277. Tofind the number of terms in the expansion of any multi-
nomial when the index is a positive integer.

Let (a^ + «2 +^+ . . .
. a^Y be the multinomial to be expanded

Every term of the expansion will be of n dimensions, and there^
fore the number of terms in the expansion will be the number of
terms of n dimensions formed from m letters and their powers
which by the preceding Art.

\m + n-\

1/
[w [w - r

y / 278. From the result of Art. 277 we can readily find" the num-

1/ ^owed'''"''''^''''''
'^ ^ *^"'^''

'' ^^ ^ *'"'"' ^^^"^ repetitions are

Let the n things be the n letters, «, i, c, c/. . . .; then the num-
ber of combinations of n things, r at a time, when repetitions are
allowed, will be the number of homogeneous products of r dimen-
sions formed from the n letters, «, b,c,d...., and their powers
and therefore will be

'

\

n-\-r~\

This result was proved in the chapter on Combinations, Art.

279. Very frequently the method of Art. 276 is found usefulm the solution of difficult problems in Permutations and Combi-
nations.

^a^.-In how many ways can 20 be thrown with 4 dice, each
of which has six faces marked 1, 2, 3, 4, 5, 6 respectively ?

Let the n faces be marked as follows : a, a\ a\ . . a^ • then the
coefficient of .r^"* in (1 -f- ax + a'x' -f- a^r' + . . . . aV^I* will L th. ^;p.
ferent ways 20 can be thrown with the four dice; and the number
of ways will be found by putting a= 1, for then each term of the

'M:
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coefficient will become 1. If a = 1, we have to find the coefficient

oix'^in(l+x + x^ + ii^ + .... .r«)*, or the coefficient of r^ in

Now, (1 -a?7(l_ar)-*

[1
Selecting from the product of these two expansions the terms

containing x^ we obtain

21.22.23 4(14.15.16) 6(7.8.9)

Li ' Li ^'~\I
=35.

EXERCISE XXXII.

:

!'

1- 2a?

f
3x^- 2

x + x^
'

2 + x + x^

1 9'

a1. Find the coefficient of x"^ in the vjxpansion of
" •"'

^^ (1 — ar

Qf^. Find the coefl. ient of x'" in the expansion of

g/o. Find the coefficient of a;"* in the expansion of
(1 - xf

4. Show that the coefficient of ar"+'"-^ in the expansion of

(T^ -^ 2»-V + 2r).

5. Show tKat the coefficient of ar"^ "^ in the expansion of

(^^^^' (-l)"(r-2n)2'-S

6. Find to four places of decimals the value of:

(1) v^ggg; (2) V^l002; (3) v'2400; (4) i^'sm.

JJ. If X be very small, show that

(l-3.r)-S+ (l-4ar)- ^ = ' ?^ --^

(l_3.r)-*+ (l_4.r)-l ^
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8. If a? be very small, find the value of ^

9. If J\r and n be nearly equal, then . 1— =-^ 4. 1 ^"^^
\ w JV+n i ' N *

very nearly. If ^^ and ^ .^ have their first p decimal

places the same, show that the approximation may be relied
to 2p decimal places.

on

10. If c = a- 6, and it be very small compared with a and b ^"
then a%\a^ - aV + i-i^y^ = a-2c + Scx\ nearly.

Xll. If (6 V6 + 14)="»+i = i\^, and /be its fractional part, then ^
0^2. Show that the integral part of (8 + 3 VJ)" is odd if w be a^
positive integer.

i^S- 1 3. If (3 V^ 3 + 5)2^+1 = /+/, where / is an integer and/a proper
f'•action, then will/(/+/) = 2^"+^

14. If n be a positive integer, the integer next greater than
(3+ ^5)" is divisible by 2».

--oC-15. Find the coefficient of x* in (1 - 2« - 2x^)^.
^^

16. Find the coefficient of x^ in (ia^ + 6ax + 9xy\ J^A i^fh >r

.^i_J7. Show that the coefficient of x^"' in
'^

is 2m + 1 k^
{i+x+x'^y

'

X 18. Find the coefficient of .c'" in the expansion of ,^<*

(1.2 + 2.3j; + 3.4.c2 + ....oc)2.

19. Show that the coefficient of x"" in the expansion of 2^^*"^

(1 + ;r + 2;r2 + 3:r3 + . . . .)Ms ^l^-iy

.

6

20. Show that the coefficient of x" in the expansion of -
1

-. V^
i+x + x^ 9

is 1, or - 1, according as w is of the form 3m, 3m- 1 or Stn+l.
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CL21. Prove VI=1+^ +h2,MlL, V^

^2. Prove^/^=l_l.l .U 1 _1:3.5 1 V
V. >/3 2 2 2.4'22 2.4.6'23"*'""

^ um the series, ^Vi^l! + i:llLll^
3. 6^3. 6. 9^3. 6.9.

12'*'-"-

1 1.3 1.3.5
'rove - H + _ + rv- ~ 1 /

4^4.6 4.6.8
^••^^•

.A

H) .V.?/1A'

1 '3 /3.5 3.5.7
'OVel+.;r+ +__!_L1_. ,. o8^8.10^8.10.12^'-"°*= 2-

Pr„vel+i2+lLy^l;4Li|^....„,12,

L>^
\

'>;'

ijW
,^*

'/

14 14. 16"^ 11.16. 18

AJ7. Prove 1 + ?^ + 2n, (2^ + 2) 2n(2n + 2)(2n + 4) ^^^ 3 3.6 ^ 079 + •••• ^

I
3"^

3.6 * 37679 +""J^

0^8. Prove T^/l + - + !!i!!zl) .
Hn-l)(n-2) >^^

^ 7 7.14 ^7.14.21 +••••} ^

= 4«/i + ^ + !!(^±l) ,

!»(!M:i)(w+2)
^

'
2"^

2.4 *" 274~fi +••••}•

{^9. Prove ^-^_Ji_
l+n.^+!!(^-tl)r_^

a"

b-a ' |2^

1

{b~^y+-"
-=(-i)"r». y

C^O. Show that if a; > - i, y'

—5_ =-^-.-^/-MM:3/^\3 1.3.5/ ^ ^4

Va;+1 !+«' 2Vl+ary ^2.4^1+^/ '^27r6[urx)
'^""

i

II
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J

^1. Show that

(1 + :r)2»= (1 + ;,)« + ^1 + ^y., ^ ^ ^±i^:r^(l + ;.)n-2
"^

L_

g42. Show that if a < 6,

33. Show that

la-]-bY{--i.t^^ «* 4.5.6 a'
^

'\b'' 1 />«'^i.2'i*"r72T3'P"*"--'7'

/

l+ar [2(1+^)- " + = 0.

one-
A^i. Show that if the numerical value of y be less than
third of that of a-,

[+n|'-^U!^±lVJy-\^ ^(^ + l)(^ + 2)/ 2y y
V+y) [2 U+y; + jT (^j+--..

35. Prove {n? - 2)*

=^!zi|i_i.__J 1 1 1 1

n ^ 2 {n'-lf 8'(rt'^-l)* 16 ' (^^2Tri)6--- ••}•

36. Prove that if n be an even integer,

\ 1 1 1 2"-»

""

\7^ ^•^ + -... = 2'-(l+r).

r
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„^ _ 1.3.5....(2r-l)

Pin+l +PiP2n +PiP2n-l + PnPn+l = S '

39. lipr =
2ni ^, prove

^{P2n -PlP2n-l +P2P2n-2 + - •'•(- l)'->„-i/>n+l} =Pn+(-'^Y'W-

40. If ffo, rt,, flj ^„ are the coefficients in the expansion of

(1 +;r)" when n, is a positive integer, prove

(1) «o-«l + «2-«3 + --.-(-l)'"«r = (-))'"
,

,^ , .

^r \n- r -I

(2) ao--2ai + 3a2-4rt3 + ....(-l)''(n+l)a„ = 0;
n

(3) flo^ - ai' + a^' - «3' + . . . . ( - 1)X' = or ( - l)^.

41. Prnv. 1 .'^. + ilj.^(^-i) ,

3-4.
5_

n(n-l)(n-2)

li
1.2 [2^ '1.2.3'

= 2''-3(w2-:-7m + 8).

, - 1.3.5....(2r-i) 5.7.9.. ..(2r + 3)

+ ...

2.4:6.. ..2r """ ^'^-2X6. ...2r '

^'^"^^

1

2'

1 +

43. Prove

n{n-l)]\ /lY(n(n-l)(n-2)Y
i-r-G)FLi^T^a)r-^^^^ir^T---

_/7y. ri(n-JL) /6\ n(n- l)(n - 2)(n- 3) /6x =

44. If a^ be the coefficient of a?*" in (1 +x)'*, prove that if /5; be
less than n,

[n_ \n-l \n-2

\

n-k "^|n->fc-l'^''''[glT:72
-.... = 0.
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45. If.r,= a.(.r+l)(^+2)....(^4-n-l),8howtha'

(This is Vandermonde's Theorem.)

46. Prove that if H + r^" - /. j_ ^ ^ «mu ii{^L+x) -c^ + cix + c^^ + ,,,, c^^n^ then
n(l + x)-^ = c, + 2c^ + 303..=^ + . . . .

^„^»-i.

47. Prove, using the notation of the preceding example, that

and Co2 + 2c,2 + 3c22 + ....(^+i),^2^

48. If/(r)

813

- + n
[n n(n - 1) \n

iLiHizz TEr]ZIZZl''ni~'IEin£EZE ; + .

then/(0) + n/( 1 ) +!^^) /y2^ ^ /^.) - (^^ ^ 1 )(2^ + 2 )_3n^

49. W(l+a:)«= ao + ai.r + ^2.r=' + ...., then will

< + 2a,' + 3a3''.f^..naJ_^
~~a7+«7+«7+

. . .T<^?~ ~ 2 ' ^ '^^^"^ ^ positive integer.

50. Prove 2" - (74 - l)2"-2

L '

51. Prove

2».H^~—^ on-2 .
w('*-1)(w-2)(m-3) \2n

V V.2''
•2"-* + ....

l!iL
w

52. Prove that the sum of the first n coefficients of the expansion, in ascending power of x, of

(l-.r)^
"IS On-4

;^i

n being a positive integer.

m
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53. In a shooting competition a niah can score 5, 4, 3, 2, 1 or

points for each shot. Find the number of different ways in which

he can score 30 in 7 shots.

64. A man goes in for an examination in which there are four

papers with a maximum of m marks for each paper. Show that

the number of ways of getting half marks on the whole is

^(m+l)(2m2 + 4m+3).

55. There are two regular polyhedrons marked in the manner
of dice, and the numbers of their faces are m, m + n respectively.

How many different throws can possibly be made by throwing

them together 1

56. If, in the preceding question, the number of polyhedrons

be four, and the numbers on their faces 3, 6, 8, 12 respectively,

show that the number of different throws that can be made by
throwing all together is 552.

57. lis = a^ + b\ p = 2ab, P= (a + hy, show that

P. P*.pi.P*....<.oc

L 2

n{n- 1),

»^-=' + ,

68. !£/(», ™) = i-„(-±-) +!!(!!--JL)(_i ) _ ,h„,m \m+pj 12 \m + 2jo/
'

that /{n, m) = \~\f{n - 1, m +p).

59. li z^ + z + l-=0, show that the sum of those terms of the

expansion of {l+x^, in which the index of a: is a multiple of 3,

60. If a,.= coefficient of a;'" in (1 +x)", show that

\"0 + "l/\^i + "2/(^2 + ^3/ + . . . . {f^n-i + "n) =
(n+iy

n ^'Oi **!> ^f a-
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CHAPTER XXI.

INTEREST. DISCOUNT AND ANNUITIES.

for which interest is paid is called the Princioal • the i„f .on one dollar for one year is called the RatT' Id ^.
'^"''

the principal and inte^st for an, gi.en tfnTe'rs'th:Amor„:
2. Interest is of two kinds, simple and compound.

onW "r*. '"l"'^' "
'"*""'''' ''"'""''^ "P"- th« original sum

^L ft .P"^"-' ol interest as it bTomes due Susuradded to the principal, and interest for the succeeding p^ri«f

interest. Ihe latter IS the only correct mpfK^ri f
i'""""

interest which should evident,, ^ru^:
*"

he Xl Tb?
J.tl.ut regard to the manner in which the' deU hastent

Let P be the given sum in dollars, r the interest on one dollar

Imou::.
'^"' " '"" '""* '" ^"^^- ' "« '"'«-'. »d 'I'

itrClVr '"^ ""•' ^^" '^ "• ""• "--^^ '- » y-rs

i:^:-, (1)

From

= P{l+nr).

(1) and (2) it is evident that if any three

^2^

of the (juanti-
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ties, P, /, n, r, A (excepting the three /*, /, vl) be given the

other two may be found.

4. To find the •present value and discount of a given sum due

in a given tivie, allowing simple interest.

Let A be the given smn, r the given rate, n the number of

years, P its present value, and D the discount required.

Then

Therefore

And

A = P{\+nr)

P A
i +Mr

D = ^-P,

..A-/-
1 -{-nr

Anr

(3)

1 +?tr (4)

In actual business, and for short periods of time, it is cus-

tomary to deduct interest on the whole sum instead of the true

discount which, as shown by (4), is the interest on the present

worth. This is known as Bank Discount, which is therefore

greater than true discount by the interest on the true discount.

5. To find the amount and the interest of a given sum in a

given time at compound interest.

Let P denote the principal, r the rate, n the time in years,

/ the interest, and A the amount.

The amount at the end of a year is found by multiplying

the principal at the beginning by 1 + r, and the amount at the

end of each year is the principal at the beginning of the next

year, therefore the series.

P(l+r), P{l+ry, P{\+rf.

gives the amount at the end of 1, 2, 3. . .

...P{l+ry

n years respectively.

Therefore

And
A=P{l+ry,
I=A~P
;=P{(l+r)"-l}

(5)

(6)

iiil



(3)

(4)

(6)

(6)

. Interest, discjoUnT and AMNUiTifia ai7

^. Tofind the present value and the dise<nint on a given mmHue xn a gtven time, allowing compound interest.

Let A denote the given sum. P its present value, r the rate.n the time m years, D the discount.

Then from (5)

Therefore

And

A = P(l+r)-;

(l+r)"

D-'A-P,

(7)

(8)

(9)

7. In the examples which precede the time has been assumed
to be an exact number of years. When a fraction of a year
occurs m actual business it is customary to allow the same frac-
tion of the annual rate of interest, but this is not theoretically
correct, and frequently leads to contradictory results as the
tollowing simple example will show :

^.^A note for $500 is drawn January 1st, due in one yearwith 6 per cent, interest; find its cash value on July 1st of thesame year.
"^

Two modes of solution present themselves, which appear
equally reasonable. We may add 6 months' interest makTng
1^515, or find the present worth of $530, the sum due at the endof the year, 6 months before it is due, giving $514.56. The
discrepancy arises from our having twice assumed that 6 per
cent, for a year is the same as 3 per cent, for 6 n»onths, which
assumption is untrue.

8. In actual business interest is sometimes payable more
trequently than once a year, and then there is a difference
between the nmm^uil rate per annum and the true annual rat.

(1 OsV-l'^Oeoq"'' Tl
""" ''^'"' half-yearly gives really

,

,

.
' ^^1XJ i-~ !•' annuaiiy. ii the interest is

payable q times per annum, and if r is the nominal annual rate,
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then the interest on one dollar for one interval is -, and since
q

there are qn intervals in n years the amount of $P in n yea.rs

will be p A+^y
In this case the interest is said to be capitalized q times a year.

9. In solving problems in compound interest logarithms are
frequently useful to avoid tedious multiplications and are some-
times essential, as in the following example :

^a;.—In how many years will $126 amount to $672 at 4^ per
cent, compound interest; give log 2 = 30103, log 3 = .47712.
Let n be the number of years

;

Then 126 (1.04^)"= 672,

Therefore ' (^I]\^-^^
\2i/ 126 3'

or n (log 25 - log 24) = log 1 6 - log 3,

from which

(Art. 5)

« =
4 log 2 - log 3

•j»2 - 5 log 2 - log 3

= 41 nearly.

EXERCISE XXXIII.

^\J^ At simple interest tlie interest on a sum of money is $135
and the discount $120 ; find the sum of money and the rate per
cent, for the given time.

{;^. The compound interest on a given sum for 5 years at 5 per
cent, exceeds the simple interest for the same time by $19.71

;

find the sum.

£^3. Show that the true discount of any sum is half the har-
monic mean between the sum and its simple interest for the
given time.

^4. If the simple interest be ^ of the principal, the true dis-

count will be ^— nf fllA muon oi,»«

p + q
° '"•
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c^. The bank discount on a bill due in one year at 8 per cent,
is $540 ; find the true discount.

^6. If the interest on $A for a year be equal to the discount
on $B for the same time, find the rate of interest.

7. Divide $1,000 between three persons aged 18, 19, anTio
years respectively, so that on their coming of age (21 years)
their shares may be proportional to 4, 5, and 6, reckoning com!
pound interest at 5 per cent.

8. In how many years will a given sum of money treble itself
Tl) at simple interest, (2) at compound interest, 3| per cent •

having given log 3 = .47712, log 1035 = 3.01494.
'

C9. What sum of money at 6 per cent, compound interest will
amount to $1,000 in twelve years; given log 106==2i253ifi
log 49697 = 4.696329 ? 6

.w oowm,

10. In what time will $100 become $1,050 at 5 per cent
compound interest; given log 2 = .301030, log 3 = .477121 W 7= .845098?

^^. *og'

n. A merchant's profits during each year are -, and his ex-

1
penses - of his capital at the beginning of the year. In how

™anyyea«L.will his capital be doubled ?

(t^fXperson invests his money in a business which pays 4
per cent, per annum. Each year he spends a sum equal to
twice the original income. In how many years will he be
ruined; given log 2 = .3010300, log 13 = 1.1139434.

13. Find the interest on one cent for 2,000 years at 5 per
cent. (1) at simple interest (2) at compound interest : Given lo-
105 = 2.0211893, log 23912 = 4.3786159.

ii
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ANNUITIES.
10. An Annuity is a fixed sum of money payable at the

end of equal intervals of time, usually one year each.

11. An annuity is said to be forborne when it is left unpaid
tor any number of years.

12. A Deferred Annuity, or Reversion, is an annuity
which does not begin until the end of a certain number of yearsWhen the annuity is deferred n years, it is said to begin aftern years, but the payments being n.ade at the end of each period,
the iirst payment will be made at the end of w + 1 years.

13. An annuity whi h is to continue for ever is called a
Perpetuity.

14. A Freehold Estate consists of land, or other property,
which yields a perpetual annuity usually called the RentThe annual income derived from freehold estates, irredeemable
stocks, etc., IS frequently called a Year's Purchase.

15. Freehold estates are sometimes leased for a term of years
for a certain sum ^n ca^h at the beginning of the period.
Suppose an estate so leased, and that ;, years before the term
expires the lessee wishes to obtain a new lease good for « + n
years the sum which he must pay for this extension of time is
called the Fine for renewing n years of the lease.

lY/ 16. To^nd the amount ofan annuity left unpaid fo- a givenU number of years allowing (1) simple interest, (2) compound

Let P be the annual payment, r the interest on one dollar for
one year, A the amount, and n the number of years

Since the payments are made at the end of each year, the
first payment will be at interest n - 1 years, the second n - 2ypara n.nrl an rvn TU. i

; -"-- '--". ^»us, wu nave,
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At simple interest from (2),

^='P{l+{n^.l)r}+P{\+{n-2)r}+....Pilj^r)+P
= wP+(l+2 + 3+....w-l)7>r

(10)

„ n(n- 1) „ 4. I= nF+ —^-

—

Lpj.^ ,y^T 7vwt.>v £<4^
^

At compound interest from (5),

= i'{l + (l+r) + (l+r)2+...,(l+^^„-,|

Tlie reader should observe that the coefficients n-\ n-2
etc.. in the value of A at simple interest become ea^oLnts inthe value at compound interest.

Jr 17. Tojlnd the present value ofan annuity to continue a given

? int7reZ.
"^ '""' "'''"'"" ^'^ ""^'^ '''''''''' ^'^ --/---"

With the notation of the preceding article, the values of theannuity at the end of the given time are,

nP+-n(n-l)Pr and - {(1 +r)»- 1}

Therefore its values at the beginning of the given time will befound by dividing these expression by 1 +nr and (1 +r)- re-
spectively (Arts. 4 and 6).

'

Thus,

nP + -n(n-l)Pr

I +nr and^|l--_i_l
r [ (1+r)"/

s'Lttely"'""'
"'"" '" ""P^^ ^"' ^^°^P^""^ ^"^^-* -

Cor. The value of a perpetuity may be found from the above

}^.
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by making n infinitely great. The expression for the value at

simple interest may be written
i

n

, and when n

oc the numerator becomes infinitely great, but the denominator
remains finite, thus making the value of the present worth in-

finitely great. This is another indication of the impractical
results of simple interest when long periods of time are involved.

In the expression for the value at compound interest.^ '(l+r)*
becomes indefinitely small when n becomes indefinitely great,

p
and the present worth reduces to -, which is evidently correct,

for this amount of cash will give a yearly interest of P for all

time to come.

^s/ / 11. Tofind the present value of a deferred annuity to commence
p^t the end ofp years, and to continue n years, allotving compound

J interest.

The value at the beginning of the period of n years is

r\ (1 + rf]
(Art. 17)

Therefore the value of this sum p years preceding this date is

r(lT;^'(^-(lTr7} (^^-6)

This formula also gives the fine to be paid for renewing w
years of a lease, p years before the first lease expires.

0»r. The present value of a deferred perpetuity to commence
p

after » vears is .^' r(l+ry

Ex.—X. mortgage for $5000 with interest at 6 per cent, per

annum is drawn January 1st, 1890, payable in 8 years; find its
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cash value on March 1st, 1890, allowing the purchaser 10 percent per annum, payable half-yearly.

The annual payment of interest is $300. The values of these
payments at the end of the period of time with 10 percent
interest, payable half-yearly, are 300 (1.05)", 300 (1.05)'2
••#. Thus the total amount will be

.5Mf + 3#| {(1.05)" + (1.05y2-H n
»5Mi + 3Ma^-^?>:izil

1(1.05)2-1/
= 8462.f6

We must now find the cash value of this sum payable in 71
years, allowing 10 per cent, interest, payable half-yearly. Thus,

8462.06
(Art. 6)

= $3940.13(1.05)i'*»

is th«j cash value required.

19. The preceding propositions are sufficient to solve the
practical problems arising from loans, stocks, debentures, and
all transactions involving periodical payments for a fixed num-
ber of years. Such are called Annuities Certain, but
another and most extensive department of the subject relates to
Life Annuities, which are payable during the life of a
specified person or the survivor of a number of persons. For
further mformauon the student may consult the article "An-
nuities," in the "Encyclopedia Britannica," and "System and
lables of Life Insurance," by Levi W. Meech, Norwich, Conn.

EXERCISE XXXIV.

^, \nJ^^^
^^^'^^ P*^""*^"* ^^^ ^^'^^ y^^ ^^" ^m a loan of

$1,000, money being worth 6 per cent. ?

^ 2. Find the amount of an annuity of $100 in 20 years, allow-
ing comnound intersRt a*-. 4 1 --'— .-—

2 t^I (."CIIU I given

log 1.045 = .0191163, log 24.117 = 1.3823260.
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I 3. A freehold estate which rents for $216 per annum is sold
for $4800 ; find the rate of interest.

t 4. How many vpjai^R' piirny|g,^fl RVinnU bo given for a freehold
estate, money being worth 3| per cent. ?

5. Find the cash value of an annuity of $250 to continue for

20 years, money being worth 6 per cent.
; given

(1.05)'» = 2.653297.

6. If a perpetual annuity is worth 25 years' purchase, find

the amount of an annuity of $625 at the end of 5 yeai-s.

7. What annuity, to continue 20 years, can be purchased for

$10,000, allowing compound interest at 5 per cent?

j^8. For what sum might an annuity of $400 a year, for 10
years, to commence in 5 years, be purchased, allowing compound
interest at 6 per cent. 1

9. A person who enjoyed a perpetuity of $1000) per annum
provided in his will that, after his decease it should descend to

his son for 1 years, to his daughter lor the following 20 years,

and to a benevolent society for ever after. "What was the cash
value of each bequest at the time of his decease, allowing com-
pound interest at 6 per cent. ? Given

(1.06)-» = 3.20713547.

10. If 25 years' purchase must be paid for an annuity to

continue n years, and 30 years' purchase for an annuity to con-

tinue 2n years, find the rate per cent.

11. A man has a capital of $20000, for which he receives

interest at 5 per cent. ; if he spends $1800 every year, show that
he will be ruined before the end of the seventeenth year ; having
given log 2 = .3010300, log 3 = .4771213, log 7 =.8450980.

12. A young man enters upon a situation at a salary of $100
per quarter, which is increased $10 e\ery payment. His ex-

penses are $75 for the first quarter, and increase 5 per cent,

each succeeding quarter. He invests his savings at 6 perer cent/

4=/

1,1

V'

I

\
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per annum. What viH he be worth in 10 years? Proceeding
in the same way would he ever be ruined 1

13. A merchant invests $12,000 which yields 25 per cent
profit annually. At the end of the first year he withdraws
$1000 for expenses, and each succeeding year 33 J per cent,
more than the preceding year. How many years before he
will become bankrupt 1

^i< 1 4. The annual rent of an estate is £500 ; if it is let on a
lease of 20 years, calculate the fine to be paid to renew the

)
lease when seven years have elapsed, allowing compound interest
at 6 per cent. ; having given

log 106 = 2.0253059, log 4.688385 = .6710233, log 3.118042 =
.4938820.

15. Find the present worth of a perpetual annuity of $10 at
the end of the first year, $20 at the end of the second, and so
on increasing $10 each year ; compound interest at 5 per cent.
per annum.

^16. An annuity is payable for a terra of 2n years ; show that
its present worth for the first n years is (1 +»•)» times its present
worth for the second n years. If t' o present worth for the
whole time is m times the present worth for the last n years
find n.

*

(^17. A loan is repaid by an annual payment for n years of—
of the given sum ; show that (1 -I- r)" (1 - mr) = 1.

^18. If there be n annuities of 1, 2, 3 .... n pounds respectively
left unpaid for n years, find the sum of their amounts at simple
interest.

19. If P be the present value of an annuity to continue for n
years, and P+Q ita value for 2n years, find the yearly value of
the annuity. , /

on T?- J XI 0^^y^^AA<fi4 if ;ri.4''^A

AK). rina the nrASAnt xu^rn-fK ni A <) A Kt A zrta A j_-n i

. , _ _ sr •' ^i, ^-'x, .jxL . ^T ^n a. uuuars oue
allowing compound interest,

A 'U -\

Bctive

X V
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21. A freehold estate is to be held in succession by each of n
charitable institutions for such times as will divide its value

equally amongst them. For how many years does each hold it 1

22. If a, 6, years' purchase must be paid for an annuity to

continue n, 2w, 3n years respectively ; show that

o' - ab + b'^ = ac and r = -—^—— .

23. Show how each formula for simple interest may be de-

rived fcom the corresponding formula for compound interest.

!
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BXJDBOISB XXXV.

1. Divide l+;r + ^' + ^^ + ,4^,«^^r^^^^„^^,„^^
J _^_^^

2. Show that (ra + ^y + y2^(„2 ^ ^^ _j^ ^,^

- («^ - hyy + (ax - iy)(ay + f,^ + l,y) + (^^ ^ ,,^ ^ ^^^j,

plet iTr:""'""
^'^" *'^' (- + *^)('-^ca)(.^«.) is . eo„.

5. Find the condition that the equations,

may Imve but one solution, and find the solution.

J-llfa^Z"' '"?
"^^-*^^ + ^' ^^- it will also divide«^ - co: + a, and conversely.

7. Fa^^tor (a + 6)(a3 + ^3^. ^ g^,^^^ ^ ^^,^^3 ^ ^3^ ^ ^^^^^^^ ^ ^^^^

8. Solve the equations,

^ y z

c

a b

— +•
a a I

+ 1 ^ = »*(«* + he + m).

a

^^£L^Simplify the blowing, i„ which . denote, a cube root of

/1\ 1

- +
(0 ,..2

•** + 2/ + 2 X -If

1

y + w'-'s; x-^ui^y^uiZ
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1 w
-.r +

0)

X + 1/ + z ' X + 0)1/ + (t)'z
' X + ii?y + u)Z

(3) (.r + y + zf+ (a; + wy + ai^z)^ + (ar + o>V + <azf - 3(r' + y'' + s"' - Saryz) •,

/^X -L. — — — L —
^ ' (^x+y-\-zY {x+wy+iii^zf {x + ui^y+mzf x^ + y^ + z^ + 3xi/z'

10. A number consisting of three digits is doubled by reversing

the digits. Find the digits in the scale of r, and hence show that

there is no such number in the connnon scale. Find the scales

in which it is possible, and show that the number formed by the

first and last digits is also doubled by reversing its digits.

11. A parallelogram is inscribed in a triangle having two of

its sides coinciding with sides of the triangle. Show, algebraic-

ally, that the parallelogram will have the greatest area when its

sides are each half the corresponding sides of the triangle.

12. The sides of a triangle are the roots of j^ - ax^ + bx-c = 0.

Show that its area is - \^a{4:ab-a^-8c).

13. If

yi^)-«(^-^^) +'^(-ir^)'
then/(x)+/(:r + l)=/(^ + 2).

14. If 2^ = (18 + 5a/I3)"+(18-5v^13)''

and 2yV^l3 = (18 + 5v/T3)"-(18-5v/l3)",

show that x2-13//2 = (-l)". .

1 5. If f,{x) = ^
(e' - c-') and fix) = ^ («' + e-'\

then

-and

2

/i(^) J-ky) ±fl^) 'fxku) =/i(^ ± y)

fl^) -My) ±/iW 'A{y) =M^ ± y)-

e* - e"*
16. If/(;r) =-—— , then/(2x) =

e' + e 1

+

{A^)r

A^-^y)=
/(•^)+/(y)

1 +/(^) -Ay)
and ./];3x) =

{/(a:)}" + 3/(0-)

l + 3{/(ar)}'-' •
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n. I£2s^a + b + c and Ha ^ b)(s - c) ^ be, then
b^ + c'^a'+bc, 4s(s-a)^3bc and «^ + 6*+ c* = 2a»(A' + c') > AV.
18. If az" + 6y» + c«» be divisible by pofx' + vz) /'«2„u.«> \

then bp^- + cq^n ^ „^„^„ ^Q y ^^^ + y«^ - (S- y +i?'«)^.

19. Simplify

3 .5 and the velocxtiea of the water through the pipes a^ as 3 : 4.

tt! Z\u '\''" ''''^ ^^^^'^^ "^«^« ^-« «-ed throughthe second than through the first. Find the number of gallonswhich flow through each pipe per hour.
^

21 A man walking upon the railway track has partly crosseda bndge whose length is /, when he perceives a train app^rhLg
sulth ;-f

•'' "'^"" ^ '^^"^ '''' ^"^^«- H- position i!such that ,t 13 equally safe to advance or to retreat. Find the

train
*'^'"' ^'''^''*'"^ ^' ^^' J"'' ^^'^^ *^ ^«^^P« *he

tontermr^^'^^^^^^'''^^^^^-'^'^^^^^^^^^^)^----

23. Sum (.-,). (^_^,(y.^ + . . . . to »i terms.

1).

24. Sum to n terms the series whose w'" terms are

25. Compare the length of the sides a, i, c of a right-angled
triangle, c being the hypotenuse, when the squares described upon
them are in harmonical progression.

26. If y be the harmonical tnAnn Vw^fwi^an -,. a^A - „- i j
, , " '^'" •" »"« >ii aim X and

» be the arithmetical and geometrical means respectively between
a and b, express ij in terms of a and b.
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27. Show that a series oi numbers in A. P. may be found whose

sum to n terms is always an even square, but that no such series

can always be equal to an odd square.

28. Six men and their wives stand in a row. In how many

ways may they be arranged, providing each man must stand be-

side his wife 1 In how many ways, providing no man may stand

beside his wife 1

29. The driver of a four-horse coach can choose his horses from

a stable of 6 white and 8 black horses, but he must not pair 2

horses of different colore. In how many ways may he choose his

4 horses 1 .

30. Find the quotient when the sum of all the numbers which

can be formed with n significant digits is divided by |n-l times

the sum of the digits.

31. In a basket are 10 apples at 3 for a cent, and 5 pears at

2 for a cent; a boy has 6 cents in his pocket and wants some

fruit; how many choices has he 1

32. In how many ways may 6 persons each choose a right and

a left-hand glove from 6 pair without any person taking mates 1

33. If Pr denote the number of permutations of n things, r at

a time, then

n(r.-l)(P„_, -Pn-.)(Pn-. -Pn-z) • • • (i'. "A) =A • A • A • •^-2^.

34. Prove that 2"=!
(n + 1 )n (n-Hl)n(n-l)(n-2)

Li Li
"t" • • • •

35. Prove that

^'6-'0-^
23.3 1.3.5 2«.32

2 5*
Li

1.3.5.7.9 2\3» .

Li

1
, 23 2 ,- 1

36. Prove that 34" 3 ^ ^ ==2^" 2*
' 4

""~2«
[5

3 1.3.5
f

^7. In the expansion of (1 - «) " prove that the sum ot the co-
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efficients of the first r terms bears t^ »,««:.
the ratio of 1 + n(r - 1)^1

^'o^ffie.ent of the r'*" term

38. Find the (r + !)«• terms of (1 - 4x)-i and—L-_

39. Find the coefficient of x-* in the expansion of ^^^,
40. Sum to n terms,

^ ~ -^
)

41. Show that the coefficient of w- in H - r)- i« « i . .«um of all the preceding coefficients. ^ ^

^ ''^""^ *" '^'

42.- In the expansion of (^tfj^He coefficients of the (2.-1).
and the (2r)«' terms are equal.

and
^0<7n+m„.x+/>.^„_, + ....^0.

44. If ar be small, find the value of L
i + 'v^i-ar r+Trrj*

46. Solve ^-^!±5!±£'^i^!+il+f^

46. Solve iiJy,y + 2^ ^ + 2;g

3» 3a: 3^ = ^ +y+ 2.

47. The numerator and the denoDiinator of one frartinneach grea^r b, 2 than the com^ponding term's oTal^ZZ

w
iir
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of each were increased 1 yard, the former would make only 50

revolutions more than the latter in going the same distance. Find

the circumference of each wheel.

49. Solve x + y + z = ly

xy + yz-zx=l,

(he a\
50. Eliminate x, y, z from x = yz\- + ---^j,

(0 a h\

^ \z X yj

la h c\

51. Solve V^^= ^V^\Z + ^
~
E)

'

^9 Tf — = ^ where d is the diflference of the roots of

a;^ + mo: + n = and i> the difference of the roots of x"" ^-Mx+N= 0,

then
m^ n

M' N'

53. The coefficient of x^ in (1 - ax)-\\ - bx)'^ is

54. Show that the equation, x- + rx-^ + s = will have equal

roots if {-(i>-n)V={^(n-;^)|

55. If the roots of x"^ + px + q = are real, so also are the roots

of the equation, {mp + 2)x'^ + 2{mq + 6p)x + 18g = 0.
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56. Solve ar* 4- 1 = 2(1 + xf.
1

57. ITove
^- j _ -|---____| if^ 18 nearly equal to q.

58. If r< 1 and positive, and w is a positive integer, show that
(2w + l)r^(l - r)< 1 - r^+\

59. Show that the sam of the products of the first n natural
numbers, three together, is

{n-2){n-\)n\n + \f
48

•

60. Find the condition that the equations,

Ix^ + m'if + ns? = 0,

ax + hy + cz = Q,

may have only one set of values for the ratios x-.y.z, and show
that if this condition hold,

Ix my nz

a b c
'

61. Sum to n terms and to infinity,

J_ J_ 1 1

1.6'^6.1l"*"ll.l6"^16.2l'^"**

62. The equations, a^ +^ + i^-. Sxyz = a%

yz + zx + xy=> i',

x + y + z = c,

cannot be simultaneously true unless c^-a^ = 3cb^; and if this

holds, they are true for an infinite number of finite values of

X. y, z.

63. Show that

(l+a:+ a^)(l+a:3 + a:«)...(l+ar'"-' + ar'»»"-') = l+a: + ;r'^-H...a:3"-i.

64. Prove that the coefficient of ar^^ in the expansion of

(1 -;r)(l+ar)^
IS

(n+l)(4n2+lln + 6)
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I

!

65. If ar be a positive integer, prove that ———~- is a
positive integer. {l-xf

66. If mx^+ny^ = a\ mx^+ ny^ == a\ and mXiX^ + ny^.i = 0,
ft yv2

then x^ + x^ = — and yi-\-y^ =m ' '- n

67. If nPr denote the number of permutations of »i things taken
r together, and I{,P) denote „A + „A + • • • n^„, show that

IU,P) = (n+l){I{,P) + l}.

68. The coefficient of x"" in the expansion of

(l+a;){l+cx){l+c^x)....,

the number of factors being unlimited and c less than unity, is

equal to
C»r(r-1»

(l-c)(l-c'0(l-c=')....(l_c'-)-

69. There are p + q numbers, a, §, y , of which p are even
and q odd. Show that the sum of the products, taken 3 and 3

together, of the quantities, ( - if, ( - 1)^, ( _ 1)^ . . .
.

, etc.

'=Q{(Q-py-Hq'-p'') + 2(q-p)}.

70. If

and

A=aQ + aiX + a^x^
i a.^x"

-5 = cTo + «iy + «22/^ + . . . . «„2/",

n n

show that when ao = ««, «i = ofn-i, etc., A'.B = :^:y\ where x and
y are the roots of x"^ +px +1=0.

71. li X, y, z he three positive quantities whose sum is unity,
then will (1 - ar)(l - y)(l - z)>8xyz.

>, 72. Ifa; + y + « = «2 4-2/'' + 22^2, then will

x{l-xy==y{l-yy = z(l-zy.

73. The equation,

{x+ V^^Tc){y+ Vf-ca)(z+ Vz^-ab) = ahc,

is equivalent to ax'^ + hy^ -\- cz^ = ahc + 2xyz.
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74. Prove that the equations,

a b c

^ y ^ ^
-3 + T3 + -3 = 0,
a-* b^ c^

*

are equivalent to only two independent equations if

bc+ ca + ab = 0.

75. If a, § be the roots of a;* + a; + 1 = 0, show that

-_i-_^ W^ L.\
l+x + .r' a-(i\l-ax l-/3arj*

76. If a, b, c be the roots of the equation, ar3 + ^ar + r = 0, form
the equation whose roots are

ab
a +b

1 A 1 . 1
, oc + j—~ and ca +b+c c + a

77. There are n lines in a plane, no two of which are parallel
and no three pass through the same point. Their points of inter-
section are joined. Show that the number of fresh lines intro-
duced is

^(n)(n-l){n-2){n-3).

78. The number of ways in which r things may be distributed
among n +p persons so that certain n of those persons may have
one at least is

{n+py-n{n+p-iy + -^--^(n+p-2y-
li

79. If the quantities r, y, z be all integral, and satisfy the
equations,

y^ zx
~

~^y •

each member of the equations =a^ -\. and

xyz{xy+yz + xy) = x + y + z.



336 HIGHfift ALGEBRA.

r,^ Tm aA-n(a-b) a-bx ... . , , ., « .,
80. If x=- ) rf, :-; T-„ will be equal to the sum of the

b + n{a-hy (1 -xf ^

first n terms of its expansion in ascending powers of ar; a, b being

unequal quantities.

81. The number of combinations of 2n things, taken n to-

gether, when n of the things, and no more, are alike, is 2"; and

the number of combinations of 3w things, n together, when n of

the things, and no more, are alike, is

\2n
22n-l

2( [nf

82. The number of ways in which p things may be distributed

among q persons, so that every one may have one at least, is

Q'-9{9-^y +
Li

^(^-2)^-....

83. Prove that

= 0.
n(l+x) n(n-l) l+2a; n(rt-l)(w-2) l+3a-'

1+nx * [TlT+nxf [£ {l+nxf'^'

84. Factor

(a" + 6^ + c^)xyz + {b^c + <?a + a%){y^z + z^x + x^y)

+ {bc^ + ca^ + ab'^){yz^ + zx"^ + xy^) + (.r^ + 2/* + 2:^)ffic + 3nbcxyz.

85. If a* + y + »-f-w = 0, then

wx{io + xf + yz{w - xf + tvy{w + yf + zx{w - yf

+ wz{w + zY + xy{w - 2;)^ + ixyzw = 0.

86. An A. P., a G. P., an H. P. have a and b for their first

two terms. Show that the (w + 2)*** terms will be in G. P. if

ba{l^-a^)
"""

n '

87. A candidate is examined in three papers, to each of which

m marks are assigned as a maximum. His total on the three
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= 0.

papers is 2m. Show that there are -(m + l)(w + 2) ways in

which this may occur.

88. If r be less than n, find the value of

[n
\

n- 1 r(r-l)
|

^-2
-r

|^r}^n-r \r-l ^n - r 12 |r-2 | w - r

89. By comparing the two expansions of (1 +xy^ prove

2^ ^ r{r-l)^
^
2,_,

^ r(r-J)(r- 2)(r- 3) 3.., ^ ^ ^

In — r |n-r+l [2 [n-r+2

2w[27J

I

w |2w-r*

90. If a, h, c, d he the roots of the equation,

ar* + 4jt?a^ + Qqx^ + 4^rar + < = 0,

« J xu 1 r ^" ^" ^" ^"nnd the value of 1 H h .

X — a x — h X- c X - a

91. Form the series whose m*** term is (m- l)(m + l)(2m- 1),

and sum it to w terms.

92. If a^ be the coeflELcient of a'" in the expansion of (1 +x)\
and Cf be the coefficient of x'^ in the expansion of (1 + jr)^, show

that, when n is an even number,

93. Find the sum of the products of the first n natural num-

bers, taken two at a time, and show that it is the same as one-

half the sum to n - 1 terms of the series,

94 . Solve (1) .r^ -{a-iy- L+-\x+l^O;

(2) ex* - 35r» -I- &2x^ - 35^? + 6 = 0.

22
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95. Show that

n +

HIGHER ALGEBRA.

11 i 3 I ^3

96. If « + i + c = 0, prove that
77,+ .,

= 0.
6c - «2 CO -b^ ab-c

97. Having given, for all values of n, the relation,

find the sum, to n terms, of the series «x + a^ + aj -j- . . . . «„.

98. If the roots of .r* +px^ + g'X + r = be in A. P., prove

2p^-9pq + 27r = 0.

99. The equ^on, x* + 4:^3 + 3^^ _ g^r - 6 = has one root of the
form - 1 + ^/ _ 1. Find all the roots.

100. If a, b, c are real quantities, prove that no real values of
X and y can satis > the equation, ay-bx = cV'uZaf:^Tr-rg^
unless c2 is less than a2 + i2.

/ \^ /

.

101 Write down all the numbers that can be composed of the
four digits, 3, 4, 5, 6, which are divisible by 11.

102. Six papers are to be set in an examination, two of themm Mathematics. In how many different orders may the papers
be given, provided only th.t the two mathen,atical papers do not
come together ?

103. Find the sum of the series,

_L _?_ 16__ 25
1.5 5.14 14.30 '''30~.~5r)'*'

*«»* terms,

the^ last factor in the denominator being tlie sum of the other
i.actor and the numerator.
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104. If n ia greater than 1 in the series,

12 3 4

n n- w n*

n
show that the sum to infinity is -—„ and the sum to m terms,

{n—\y '

w(n'^-l)~m(n-l)

105. If
x — a y — h % -

c

b c a

X — h y — c z — a

= 0,

+ 'cab
X — c y -a z — h

= 0,

a
+ = 0,

show that x = yT=z =

b e

ab + bc + ca

mc au XI .
(*-c)(* + cf + anal. + anal. „,

^^'- Show that
|,_,;;,^,;.^,,,,^

-^^=2(a+^-,c).

107. Show that n-" = (-l -?!i.-J ^
(2n- l)(3n-2) ^ |»-

Ul Li . Li
'"}

108. If rt, />, c are the roots of .r^ -px^ + qx -r = 0, express

2a^^ + 2b^c^ + 2c^a^ -a*-b*-c^
2ab + 2bc + 2ca - «« _ //i _ ^2

in terms of 7>, 5- and r.

109. If a-(a;-l)2 + 2/(y-l)2 + s(«-l)2-y«(a^+l)2-2.r(2/+l)*

'-xy{z + lf + ixyz = 0, and a: + 2/ + s>l, prove that

(ar + l)(2/+l)(2! + l) = .T2 + 2/2 + ;52+l.

110. If X* +px + 5- be divisible by x'^ + ax + b, then will

(a^ + jo)(a=' - /)) = 4«'^5' and (/>« + ^){/>2 - q) ^pV,\
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I

111. lif{x) be divided by ar-a, and the integral quotient by
x-b, and the second quotient by ar - c, the remainder will be

_ {h - c)f{a) + {c - a)f{h) + (g - h\f(c)

{b - c){c - a){a - b)

a + cx
^^^' ^^

c +^ ^ expanded in series ascending by powers of

(l-x) and (1 +x), and A and B be the coefficients of (1 -a-)" and
(1 + ar)" respectively, then

U-^rC^)
113. On a raUway there are 20 stations. . Find the number of

tickets required in order that a person may travel from any one
station to any other.

114. Show that if
a"

:< 1, a must be <b{l + ^/ 3).2bV2a^-b'^

115. Having given the equations,

ar + y + 2 = 0, x, + y^ + Zi = 0, a^^ar^ + ari^, b^^y^^y\ c^^^z^^z^,

provre that a\yz - y^z^ + b\zx - z,x,) + (^{xy ~ x^y,) = 0.

116. Show that if a + i + c = 0, then

(b-c c-a a-b\f a h c \

117. Prove that if

1 m mn

and

\+l + ln \+m-{-nd \+n+mn
I ml 1

= 1,

= 1,l+l+ln \+ 771 + ml \+n+mn
and none of the denominators be zero, then l= m~7i,

118. There are n letters and n directed envelopes. In how
many ways could all the letters be put into the wrong envelopes?
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EXERCISE I. (Paob 17.)

1. na'*"^

5. 0, 3, ex:.

,n-l
2. nd!^~\ oc.

V2a

3. 3. 4. oc, 0.

6.
1

av'3+1 ' 2Va*
9. 0, cxj oc, oc; a, oc, according as a >,=,<, 1.

1

8. -7- or oc.

10. No definite value. 11. ±^
-2(a - h)'

EXERCISE II. (Page 23.)

1. 25:49; 17:20. 2. 10: 11; ar+ 1 : a; + 2; a' + i^ja' + iV

3. 3:5, ratio of equality.

6.(l)i±-^; (2)3or-^ (3) 2 or
-J r (4)

"("+•>
(t - c

6. 35 and 65.

ad — be

4. 495 and 693

1

2

c-d.
'

npt mqt

9.

17.
r mq — np mq — np

21. mq: np.

7. 82.40.

15. The latter.

19. 56, 7:8.

22. n^qr-.m^ps.

in(a — 1)*

8. 929, 260.

tiq — mp
16.

inq + np + Imp'

20. 2:3 and 4 : 5.

23. 6 min., 4 min.

24.
qv'^ps

25. q + r-p:p-{-q-r.

EXERCISE III. (Pagb 31.)

1. 1:-2:1.

3. x= -y = « = ±2A/2l.

2. ha+a):ha+c):\-ac,

4. a:=10, y=16, !S = 7.
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10. a;«=a-6, y = 6-c, 2 = c-cf. 11. ar= 6+ 2c, y = c+ 2a, « = a + 26.

b-c
12. ar=.64-c-«,

z = a + b-c.

15. x = 5,

« = 3.

13. a; = 6, U. A =
a '

c — a

16. ar5 =
6V

6
'

a — b

2^=

a
' z =

7^ =

18. a6c + ygh - ap - bg^ - ch^ = 0.

21. 2a6c + a6 + 6c + ca = l.

6
'

19. a3+43 + c3-3a6c = 0.

EXERCISE IV. (Page 41.)

1- 25. 2. 8. 3. 7 + 5a/¥, i/y+ l/5. 4. 7. r

5 7or-19. 6. m^^,m^^. 7. 3, 12, 48, or 13|, 22J, 37^.

8. 9 or 11. 12. -^-
. 13. ^, ^ . 16,

^^""^

24. $40 or $60; $50. 25. 30, 45. 26. 7, 8, 9.

27. 3J. 28. (//t + rt)(jr-j9s):(jt? + g')(7na-wr). 31.64,36.

32.
(2a - b)c (2b-a)G 3ac 3bc

a + b ' a+T~' a+'b' a + b'

EXERCISE V. (Page 54.)

1. 45.

5. 10 or 15.

2- 10. 3. 10:1.

6. ^. 7. -.
5 a

9. 6, 18:25. 11. n?a. 12. ±16.

23. 4 : 5. 24. 244^ ft. -000906 in., nearly.

a -2b + r
26. dollars. 26.

men''

(w + lK

4. 2:3.

8. .= ^«l

22. 143.

IT

(m + l)b^
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27. 6.376 cwt.

29 224J days, nearly.

28. $93.75.

30. 1 day 18 hrs. 28 min.

EXERCISE VI. (Page 63.)

1. 23,33,203. 2. 14, -7,38-3n.
3. (l)3n + l; (2) 11 - 3n; (3) IJ, 0; (4)37,5^-33.
4. 34"', 46'^ no term. 5. 7, 290. 6. 194.

7. {n+l)a + (n-i)b, 2na + {2n-5)b, {3p + iy\

8. (1) 5050; (2) -790; (3) -333; (4) n*; (5) 1325 V^ 3; (6) -n.
9. 25, 16,m. 10. 5,8,11,14,17. 11. x,2.t-1...x^-x+1.

12. -(ni' + mn + n'). 13. 7,4. 14. 8, 8w-14. 15. 59.

18. 5^

ir-^^' 19. c. 21. 7.

23. 3, 6, 7. 24. 20. 25. n'.

27. ±l,±3,±5;6jpj2^4j?.

pq+\

16. wl 17. 110.

22. 6, 11, 16.

26. 8, 10, 12, 14.

12 3 4
98 ^ 1 1 _
" * 10' 10' 10' 10

29.

34.^,(2-^),
n-\

' 35.

30. 3 or 8 hours.

(jt> - 2)(2a - d)

d{i-p) •

36 !!i!Lzi]+i ^(^ + 1) ^(^'+ 1) n(yt+l)(7t' + n + 2)

2 ' 2 ' 2 ' 8
•

38.
n^n' + l)

EXERCISE VII. (Page 72.)

1. 11 or 15. 2. 2, »t(n-2)

(2w + V)(ma — nb)

3.
(13-n)(2n+l)

-^ \ 5. 91, r^-r+l, w2 + n+l. 6. lOw-8, 10.

7. 25 or -—
. The sum of 76 terms of 0, -

,
- .... is 950.

«* 3 3

S. 2f. 9. 9or-ii. The pum of 11 terms of 19, 17. ...

is 99; the sum of 11 terms of 1, - 1, - 3 is - 99.

J
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2a 10 -7r
11. -T is a negative integer. 13. 3:2, -4:5, .d 3r — 1

._ m + n (2q-p)m+pn
^^- -2~'

2q
•

21. '^(^.
4

16. g, 2, 3.... 20. (n-l)«.

25.
(n -q)P-{n-p)Q

p-q
30. 1 :ai + 6c + ca:a + 6 + c. 35. 1,3,5,7....

39. n-'-n + l. 40. H^^-J-^Dj' Hn^--!)!'

1. 32.

5. 22".

2. 19683.

6. aV"-'.

EXERCISE VIII. (Page 80.)

1
3.

7. -

256'

J2»-3

a,2n-3'

9. -^(v'3-1)". 10.
{V2-\f

l..M..^{(|)"-l}.

11 1?23 1 1

1024
•^"2'»- 15.

4. 2(3)''-».

8. (2n-l)a"-V'-'.

11. 1023, 2--1.

1 _ 2*'» 1 + 2'»+i

~l 3 '

«'{1- (-aa;)"} a« {J^+ (aar)*-^}

a:(i + aar) '
^

2»+i

13.

a;(l+aar)

16
(2+V^3)n.f./3 -2

^^
a{y^-\)

^3 + 1

'

' r\r-\y ' a»+'(a-62^

5-n n

2*(2*-l) 15-GM- 20.

23. 3, 3(2)-^ 24. 5^ 25. \, 2, 12. 26. 1, 3, 9.

98. 12, i 6.27. -{m-\. Vm?^^v?}, -{m- Vni'-in'']

4 2

9. 3, etc.
19 19

i. i, 2. etc., or—, -— , efiQ,

1.

/.
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33. 1. ±1 1? ±5f
17' ^17' 17' ^17*

32. 2^, 5, etc., or -
7J, 15, etc.

34. 2,4,8,12.16.oriL6, _?l?,etc.

35. 5, 9. 13, or 23, 9, - 6. 36. 5. 10, or - 8i - 323i
37. 2-2(2- + 2-» -

1), 2"-»(2- -
1).

3 J

38. 2»+»-3, 3.22"-2-2», (2- -1)2.
"(ii-i) »(n+l)

39. 2 ' (2» - 1),
2--^ _ 1. 40. 22"-i _ l, 1 12^" - 2'"-^

42.
a2(l-r)(l-r'")

1. 1.

1 +r

^l-

43. -i*'^" 2a Vb
Va+ VV Va+ VT

7.#-l. 8.

v'2+1

11. 4 + 31/2".

BXBROISB IX. (Paor 87.)

3 1
'2"

2 - 21

5 + SV3 „ 3(3 1/ 2 - 2)

1 1 « 8
2* ^- 21' ^- 2(2+ V2).

9. 10.
aVab

12.
3+ v'3

13.

1^
• V^b-i

n.r" ar" -

1

1

or-l (x - 1)2' (l-a;)*-

14. 4-(n + 2)2-»+>, 4. 15. 6-^ti 6 16 ^
.

6n+l 2
2»-i ' • • 9-^9(_2)'-i' 9'

19. c2»+i.
17

<yr(l->Vr») q(l-&'»)r"+^

(l-r)(l-6r) (l-r)(l-6)' (l-.r)(l-6r)-

20. (a6)"»'. 21. (mn)*, rJl^y". 22 /'^'\^'

30.
\/6

l/3- 'v/2
31.

v/2'

33. a = !!^tL) .= 1

32.i^(10--l)-^.

34.

4n

w+2 ' w + r

(r-l)2 r-V (r-l)(rP-l)~;ni-

«**
,, /a/"5+1\
^^' (—2—)^' ^'

a-"

<*-''' 2(«2-62)*"
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EXERCISE X. (Paob 07.)

1 -1?
5

64 32 64

7' T' l3-

7-n 3. 1. 4. 17, ±8,31?. 5. ?,?
4

7 1 11
4'"^' ~4'632;t-

8
ah

{n-\)a-{n-2)b'

11. 3f.

9. a + h. 10. 3, 1.

12. 14 or -. 13. 20J, 4.

2' '
2' 4' 6' 8' 10'

^'^
24' 17' 2' 3' ~ 4' ~11' "

l8*

15. 104, 234. 16. Half the middle term. 17. 2, 3, 6.

18. a,6,c. 24. )^_^ ' . 27. bc{q~r) + ca(r-p) + ab(p-q) = 0.

2mn 2mnq
28. m + n* 2nq + (m - n)p'

34. No.

EXERCISE XI. (Paob 107.)

1. 2870.

5. 4466.

9. 1375.

15. 120.

19. 1981, 25.

2. 4960.

6. 5915.

12. 330.

16. 50.

3. 3920.

7. 4944.

13. 4970.

17. 20540.

EXERCISE XII. (Page 109.)

1.
2w(n+l)(2w+l)

4. 6214.

8. 220, 385.

14. 20, 15.

18. 2024, 3795.

n(in^-l)

^ n{n-l)(2n-l)
,

4. n\2n^-\).

w(?i+l)(n + 2)(3n + l)

7. (-1)i»+i

12

m(w+ 1)

6.
n(n+l)(w+2)

6

8- 9i(^^*'-i)(-ir'-i}.
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9. n(2n'-3n-l). 10.
^(^+l)(^ + 2) np(n+l)

13. 8,1,5 or --,.!,__.
11 -15!^i)

"• «• #.•

16.
^(^^-l)(^+ l)(3n + 2)

24

16. 2»+l, 2"+i + 2, etc.

y^(w+l)(2n^+2n-l)
20,

2

21. -
22. !^l)|6a4-(4n-l)rf}.

12

23. 8{(-l)"+»(4n3^6n2-.l)_l}.

1
25. -n(8n + 9), j{7 + (- l)«+t(8n2+ i8n + 7)}.

33. 9, 15, 25.

n

39.

w+ 1

w(2w+l)(a-&)a

6(n+l)6

46.
r2(- + 4)(2-+l),^(2n»H-n + 3), ^{n+ 1 +(-l)n(,_i)j,

47. 2(n^ + w), ^^+l)(^+j). 2^ n(w+l)(n + 2)^

49.
wi''(M+l)'

{(-ir+lK + 2n, !i<!LtL)|2n^7^.^_j^,.3j

BXBROISB XIII. (Paob 118.)

1. 78U7. 2. 1011102. 3. 12710442. 4. 4776362
5. 2ee008i^j. 6. 12121,^1.:^. 7. 103466023. 8 1045
^- 2^^- 10. 1783661. 11. 5647124

12. 51215405. 13. 3400. 14. uoim
16. 2»+2« + 2^+l, 2'<'+2'' + 2^ + 2«+2« + 2* + 2 + l

17. 3^+1 -(3« + 3* + 3^ + 3). 18. Nonary. 19. Undenarv.
20. Jbeptenary. 22. Octenary. 23. Oc^enar/
2'- ^ft-b. 25. 140 s(j. ft. \ scj. in. 26. 1 Ht, 9 in,
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BXBROISB XIV. (Page 124.)

1.

3.

9.

10.

15.

16.

31.

1.

2.

3.

5.

6.

8.

11.

15.

19.

21.

25.

30.

35.

37.

•33, -5343, -74, -eS. 2. -875, -83, -428571.

•05343, -113. 4. •9167406.... 5. 12<96-515223.

67 21 7,359
'14' 6' To"

8. 20110004-3.300' 50'

1209-«1836547296, 10<-<09349787026....

Six and twelve. 11. Two. 12. Nine.

Last digit 4 or 0; last digit and preceding digit even.

36. 27. -3125.

The given multipliers must be replaced by 1, 10, 9, 12, 3, 4.

EXERCISE XV. (Page HO.)

3-1622776601, -8660254037, 1-7724538509.

1-2599210498, -5848035476, 1-2407009818.

•9510565,-2588190. 4. \^T8+ \^50, 2a^3"- v'27, ^2-*!^.

V'5+VY-2, V2 + VI + ^/'5 + VSO.

3- A/y+^/I- V3. 7. 1+ VI, 3-^5, 3V3- VQ.

0. 9. 2\/S-3, 1-x+VT^. 10. a;* + 2r'-8:r*-6a:-l.

-3. 12. 44.

X

13. l(V2 + V3 + V5).

16. v'2. 18. x^'+l.
Vx^ + if

a^ + 3x^^2 + 1. 20. ar2f 4-.r(^2 + 2)+ v'le- ^4 + 1.

g
Vb, a/ 6- a/3 + a/ 2-1. 22. 7^. 24. a/3- ^7, ^l2.

2. 26. 2r. 27. 0. 28. ^(a/6- 2i/2+ V'3- 1), - Vs.
" 3

.3a + \/h^-3ix\ 33. 5-23607.

±2(a/3-\/2) or ±2(v/6-2). 36. -—, —

.

'

VI 90

^a + 6
O+J)

\a-h) '
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EXERCISE XVI. (Page 164.)

2. SVJ. 3. -46-9», -4-4*.

349

18 . ._ ._

13'
tV3 + V2.

4. -44, 8i-2(v'5 + VS).

6. 3-2*, 2-tV3, 2 + iVJ. 7. V3-W2, 2 + *V3.
8. 27*. 10. a:*-6a;='+18.i;2_26^ + 2l. n, 2-*V3"

12. = 13. 5, m2 + n2 1. U. 2 + (V'3-4i/ 5)5

15. - 3 + t

v/2
16. ;;

5

34" 17. -(a + 6)(a2 + i2).

18. abc - Ac' - ca' - ab^ + *(«'* + *'c + c'a - aJc).

21. 2(» + 2-m'), 2(»» + 2)(*-l).

22. 2aAc - {«' + i" + c" + (« + b)(b + c)(c + a)}*. 24. _i__

26. (1+0)2)2, (2 + 0)2)2.

30. 0)2 — oj or 1^/3,
0)— O)''

27. - 1, 4.

-i\/"3

A/l+a:2'

28. 2±v/3; 0.

34. ar«+l. 35. —

-

3

3(a2_Jc)

,
0)2- 2* -o) or »(V'3-2).

a' + 6'' + cl-3aic'

EXERCISE XVII. (Page 182.)

1. :r= a,6. 2. .r = ^il^^ ?^
3. ar = 5, -3J.

4. ar = 0, -i,
j2' 5. ar = ±2,±2\/-l. 6. a: = 3, 7, 5± VTT.

C!7. ar =
5a + 36 56 + 3a

8 8
8. a?= a2 + 62

9. ar=9, -7, 1±2a/-6.

11. «•= ± + 6-c- + c' a'

2abc

^^ o+T ^^ simple equat'n).

10. ar= - ? - ? -3±V^l0
2' 2' 2 '

12. ar = 3, -|. 13. ar=±A/2.

i il
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14. ar=
^ {w2 ± mV^wiH 4a} wherem= ^{-a±Va^ + U}.

2

15. a: =
49± v/97

8
16. ^

(1± v^5)"'-2"
x — a

{(l±\/5)'»+2' 3-

17. .= 1

19. ar = 6. -^

18. a; = 4, - 10

20. x=l.

21. x = 0.
{3a + b){a + 3h)

'

47-44^/6

23

23 a: = ±l, ±

22. a: = 0, 2(1 ±v' 2).

24. a: = l±A/l9.

25. «=-l, -h{P-1TV^(jo-3)(;j+1)}.

26. X
3+ A/-11

28. ar= -1, -
1,

31. x = 3, -3.

33. .=0, §«.

3±a/5
2

27. x = 3, -1, 1±2\/-1.

29. ar = 0, 2. 30. ar=-4, -4.

32. . = 3, I Z1±^IE,
* 3' 6

34. x = 5, - 4,
1±v'-75

OK 1 1±a/-31
3' 6 • 36. a; = ±l.

37. x = 3a- 2b, 3b - 2a. Other values are imaginary.

38. ^a.-x){x-b) = {a-by±V{a-by-8c{a-b). 39. .r = 3,4, -1.

41. (a; +— ) +a(x + — \+b = ~.
\ ax) \ axj a

42. x = ±3. 43. ar = (i^-a*)3
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44. ar =
a'+l

a' -1

(m+n)«

45. X
q-p

46. ar = (a"i + 6-i)
Imn

47. a:2 =
1±^5

48. ar = 2. -1.
5±v^l7

49. ar= -1±^3.

50. x =
ni±V6 + 2w

where»i = ±^2. 51. ar=2±v'2, 3±\/3.

1
52. ar = -{5±^5±2l/5}. 53. X:

(-iP'-G)'
54. ar = a-^H-(-iW-K-D}
55. a: = 0. - -l±V-3

56.

58.

^=2, 3,

:

' *' 2

-3±v'-15
2

59.
-11 ±4 1/105

57. a;= -1, 5, 2±'/5.

60. An identity. 61. x = 0, ar2=±v^3.

63. a: = 3(l ± 1/3), 1± v/ -5. (Apply formula of 62.)

64. x=U, -6, 2±2l/3Tl. 65. ar = 5, -^ ^ ^ ~1
.

66. a:=10, - 5 ± 7 a/ - 3.

68. .^-7.-^^^^^.

67. x = U, 11, -7.

2' 4

1. ar= 4, 1;

BXEROISB XVIII. (Pagb 193.)

1
2. ar = 2, 7, ^(Qiv'-Sll);

1

y = 7, 2, -(9=FV -511).

1

I
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3. x=7, -3. 2±^-33; 4. x=5, -2.

y = 3, -7, -2±\/-33.
f(3±v/-103);

y=2, -5, --(3:^:^^-103).

5. x = 3, 2, -(_7±v'T723), ^2±^22);

1
y=2, 3. 2(-7q:v/-23), i(2TV22).

6. ar=3, - i(3 :p v/3T9); 7. ar= ±3. ±2;

„ 1 , y = ±2, ±3.
y = 2, -.-(7TV^-79).

8. ar = 9, 1;

y=i, 9.

9. ar = 5, -5;

3/ = 2, -3.

X 1
^^'

y
^ - ^^^* ^""^ + ** + i/6«*i;i3-^5r68j. From this equation

and .^2 + 2ary + 2f= 5^, a: and y can be found.

11. x = 5, 3, -3, -5;

2/ = 3, 5, -5, -3.

12. x + y= ^a3 + 36%

a;?/ =

'Other solutions can be found from

13. x + y =
a

x-y = b

Va'-b^

Vn-b^m;

Va^m - n.

^'' "^2/ =7=/—*^ 15. . = 0, ^^. 16. . = «',

x-y =
Va^+ b''

Vn + ma^

8

2^ = 0, I

b

a

17. x^4, 0; 18. .r = 9, 4; 19. :r = 0, 8*, 2/'?!')^.

y=2,0. y.4, 9. ^64/
^

,, ^ .i /3\i

25.
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20. x= Q, j(l±V2);

y=o, l.

21. x=2, 16;

y= 2, 1.

,, _ 97 f
The only other solution is |^ " ~ ®'

22. ar= 8,

y

23. a: = 3, 1; 24. ar = 0,

25. a: = 3, 2, i(5±| V3309);

y = 2. 3, ^(5T^VT309).

26. rr = ±2, ±2v'-l, ±5, ±5a/~;
y = ±5, ±5a/31, ±2, ±2v'"3T.

3±v^
2

1±V5"

27. .2/ =^l±l)|^
8 '

-

'Other solutions from
29.^2 + 203ry + 29y2 = o
and a:* + y* = 641.

29. a?=2

y

30. a; =

Solve. 28. a; =1, -1;

= 2,1

= 3. J
^*^®^ solutions obtained from a cubic equation.

x= n, - n;}

y =m -m.i
^^^^^^^^^ no* independent.

31. x= VS + V% a/3- s/I-;r, a/3-i/2;\
^- /— ,— f etc.

2, l/3 + V2;J

32. ar =
3'

4
3^

^'^^^^'l^-^.

33. x= 9, 25;

2/= 25, 9.

28

34. X:
ae

y=

a + 6'

be

a + b'

35. a?=-l,
a(b + c)

b '

b{a + c)

a
I
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36. X:

y
38. X:

y

40. « =

y=

= 1, l±V-2i
A, -2.

37. «= 3, -2;

y=-2, 3.

39. x= 5, 11;

y=±4, ±4\/7.

0, V'm + w, //m+|(a:FA/a«-4);

0, v'mi-w, Wm+|(a±A/a2-4),

where a;
- (m + w)± \/m* - 2mn + Sn''

41. X:

y

42. « =

y-

1. aj =

2n

Other solutions from — =—

.

f 5

:±3, ±3a/~;

:±2, ±2VTl.

= 2,4; 43. a:=2,8; 44. a: = 2^5, 2 v'l, 2; 45. a; = a,6;

= 4,2. 2/-8, 2. 2/ = 2v'5,4^2;6. y = i,a.

3,

4,

-1,

3;

1;

4.

EXERCISE XIX. (Paok 201.)

2. a?= -4, 7,

7, -4,

5, 5,

5j:V'l37

2

5:FVr37

2

3.

3. a; = 5, 3; 4. ar= 2,

y = 3, r

« = 7, 7.

5. ar= 3, -2, -1;
y=-2, -1, 3;

«=-l. 3, -2.

7. ar= 10, -3, -2;
y= -3, -2, 10;

«=-2, 10, -3.

1

2'

1 1

3' 3'

«=-l,-4.

6. a:= 3, 4, 5;

y= 4,-5, 3;

«=-5, 3, 4.

8. x=-b, 3, 1;

?/= 1,-5, 3;

«= 3, 1,-5.

13.
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9. x= 3, 2, -1;
y=-l, 3, 2;

«= 2,-1, 3.

11. x= 3, -3;

y=-5, 5;

«= 8,-8.

13
\ a

15. .= ±^'±f!),
26c '

y=±
2ca

'

10. ar= 2, 3, 4;

y= 3, 4, 2;

«=4, 2, 3.

12. ar= 3, -5;

y= 1,-3;
2= -5, 3.

14 ^_ ^>V + a'&'-aV

26V6^r5 '

16..= +
^*-J^-^

'/a«+A«+c«-3a26V'

A* - c»a'

y=

0:

^ lab

1

A/a«+66+c«-3a26V'

C* - tt«62

l/a«+6«+c«-3a«6V"

17. x^-{±Vh^+2d^±V^a^-b^)}, '-{± ^^r^2±^2^+-p};

y=3{±V^A5^T2^TA/3(^C62)|^ l|j.
v'6r:72^V2^rj:^j.

2= ±
^2a'« + 62

^{T2i/62_«2^y'2a2+6''}.

18. a; = ±4, i^v^S;

y= ±3, ± 1a/3;

«=±2, t| V3.

19. a;= -2, 2;

y= 4, -1;
«=-l, 4.

J
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20. x=i, 4;

y=l, 3;

«=6, -2.

22. «= 6,

«= 1.

21, oi?=-r———-——i-— etc.

(See Art. 207, Ejt. 5.)

23. a: = a, 0,0,
(ca-i2)(„A_c»)

y=±

2A/3a6c-a3-68-c''

(c + a)'-(& + c)(a + ft)

2 A/Saic-a'-A^.c'

'

_^ {a + bf-{c + a){h + c)
^

25. ar = T~r{{^^ -ca + ah){hc -Vca- aJ)}, etc.

26. x{ac -ah- he) = y{ab + ac- he) = z(ab + hc + ea).

27. x=^(2a-b-c),

3ttAc-a3-i3-c'*

y = 0, h, 0, etc.;

2 = 0, 0, c, etc.

y=-(2i-c-a),

z=-{2c-a-b).

28. a:=lj, 2§;

2/=2§, 1|;

«=2, 2.

29. cc

y=

_ f(a»6»-c«)(a»+^)'» J

(c=» + a7

31. aj= 0, ^ ;

1 + V^ :fV6"- 1

30. a; = 3, 4, 3;

y = 3, 3, 4;

a = 4, 3, 3.

y=

»=

2

v^-1

2

2.

32. x==l, 9; 33. a;^6, 3J;
y=2,-6; y=^6J;
«= 4. « = 3, 4J.

18.

21.
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BXBBOIaE XX. (Paok 308.)

1. ^+263-3a'. = 0. 2. a^- 7aV+ 14aV-7a.« = 6^

3. a' + b' + (^ + abc=>0. 4. (? + 2/\ ^ g.

7. (b + c)^ + (b-c)^ = 2a.

K 1 1 1

a' 6» (a -by

9.
1 1 1

bc-a'
"^
;i;ip + ^6ip = 0. 10. p\a + 6 + c)^= 3.

1 1 1 1
1.

11. a?+b'^ + c'-ab-bc-ca = 0. 13 ^ . .

a+1 6+1 c+1 rf+1
14. {x-h){y-k) = Q. 15. 2,^0 or x = 0.

16. y'-8 = or a:»-8 = 0. 17. 2y^+l=0, y»-4y + 3 = 0.

«• ^63-8 «^ ~6^~ + a»=8-
19. {ac^-a^cy={b^c-hc,){aj,-ab,). 20. 4«*68- 2aV-a86*-6»= 0.

^^'
b*=^;r^^- 22. p'= 6«(a» + ;n«). 23. c' + a»-6^ = 0.

24. im^ca + in^ab+p^a^ = imnap + ia^c.

25. (ail - «i6)' = (61C - bciY + (ac, - a,c)\

27. By squaring the equations and adding we get

(a« + i«) + 2(a* + 6> + (a2 + i2)^= y2+ ^^

(l+ar)^ -yg-g2But a2 + 62=l, .-. a262^
4a; + 3 (1)

Also, by adding and subtracting the equations and multiply-
ing together,

il^.y-a^b^J^^,
(2)

From (1) and (2) a' and i' can be found, and their values
substituted in a? + b'^=\,

32.
"'^ — ^.gjyz ^)- ?/'28. ^. + ^, + i =w n' y{x~z)~i/
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33. a»-3a62 + 20^ = 0.

35. a + i + c = 0.

37. a' + i''4-c' + 2«6c = l.

39. {a + b + c-iy = iabc.

34. a'-3aft»+2c3-6rf' = 0.

36. c' = a-^a + 6 + 2).

38. o' + 63^c=' + a6c = 0.

40. a=' + 63 + c-''-3a6c = (/'.

4^2orx .*.. 2

41. aV + *V + cV = ^rTV2 +
f'% c%^

42. a6 + 6c + ca + 2abc =1. 43. (a^ ^ b'i j. 0^)3 + 8(a6 + be + ca)^ = 0.

44. .i;3+2/2=s5 45. 6(«3-i3)(2a»+63) = 9a(a5-c«).

46. (f!±/)*-(f!i-^y=i.

48. {a + bf-{a-bf={%c)^.

47. a6 = c + l.

3 7
9. Between - and - -.

BXBROISB XXI. (Page 217.)

1. (x-2y-2a)(2.r-y+3a). 2. {ac - 2df = {a" - ib){c'' - U),

17. Between 2 and - 12.

21. w=-2. 22. m=±7.

24. (/wi - /in)'' = (Im^ — /im)(wni - wiiw).

26. (aai - iftj)" + 4:{ha^ + hj)){hbi + Aja) = 0.

29. (oci - aic)2 = (ail - ai6)(6ci - 6ic). 31. 576.

EXERCISE XXII. (Page 223.)

1. X — , 3,
2
3' 2. ;r=2±V3, -

^,
-

^.

3. x=-\±V -\, -\±V% 4. x^±V\ l±2v/"^, -1.

5. (1) :r*-2.i:'+25 = 0, (2) x^- 8.^2 + 36 = 0,

(3) x^-2x^+ 9 = 0, (4) a;*-10.r2+ 1=0,

6. «*-10x'-19a;2 + 480;r- 1392 = 0.

7. ;r«-l6x« + 88.1;*+ 192a;'' +144 = 0,
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BXBROISB XXIII. (Page 230.)

• 4- -2, -j^. 6. (27r + 2/,»-9jt,y)2=4(;,'-3y)».

8. (1) ^+2;.,r=' + ar(;,2^.^^^^_^^^^

(2) 0:3 _ ^2(^2 _ 2pr) + a:(;?V - 2yr») - r* = 0.

9. ar»-2y:r2 + ?'o: + r»=0. 10. ^== -8r^ x=- .^±3^5
' 2' ~I •

11. m' = 3n.

13. 45' = 4(m+l)+;,2.

15. (2x^ + x + 2y~5x\

12. qc-g^a-pq(b-pa) = e,

qd-pe-q\b~pa) = Q^

14. {e^-CA){D^-AF)=.{BD-EAf

16. (l)4W=8arf'+ er', (2) 63 + 8«V= 4aAc: :r= 1 1 _!
Q^ o/„ . .

' 2' ^*

21. (1)

23. 0.

% (2) ?i?^), (3) z»z£r>.p
24. 1.

/>-

OQ 1 3 9
28.

2 + 4^+8^'+ -..

2"r-^r-!6^+---

27. «=1, 6=ll,c=ll,rf=i,^»o.

30. x= a + 2c,

y = 6 + 3c.

3j w(w+l)(w+2)
*

3
^•

32. |*ifctl>V.
33. n'.

EXERCISE XXIV. (Pagb 239.)

2.25. 3.300,1190. 4.20,36.
1. 604.

8."
60,125. I L. 10 r'''^

^^^^^«00,«^
12. 720, ^1«*00 55440 13. 34650. 151200, 121080960.
14. 114. 15. 300(^16. 60, 12. 17. 35.

30240, 19. 90720 7nRR7r-iT7^?r «« .,„ [2090720, 70560, T76i(T. 20.

v.. '

L
13. i.

8
J 13

I

8.

A
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21. 122880. 22. 494020. 23. 27, 10, 18. 24. 80640.

25. 40320, 5040,-2520. 26. 24. 27. 3628800.

28. 282240. 29. 298598400, 8233505280. 30. 24, 24, 73.

31.362880,2903040. 32. \m.
\

m-\ . 33.81126230400.

EXERCISE XXV. (Pagk 250.)

1. 210, 84. 2. 38760, 3060, 8568. ' 3. 20.

4. 46558512, 5587021440. 5. 630. 6. 51.

7. 1023, 512. 8. 127, $762.24, 171.
J.

791.

10. 24, 30 (including unity and the given number).

11. 163, 3393, 3386880. 12. 576, 821; 46866, 314695.

13. 36 or 39 cents. 14. 5, 2. 15. 8 or 9, 2 or 3, 243100.

122
16.

jYj^,
222-1, (.•^-18)(25-1). 17. 2". 18. 12.

19. 8.

22. 390625.

25. 21, 56,

20. 12, 4. 21.
I

m
I

TO - 1

m-n
23. 5.

[n + 5

5_[w,'

28. 8204716800.

24. (j9+l)(g' + l)2"-9-^-l.

26. 1820. 27. 56.

[^ L
n

29.
TO -r

I

8

—
• \r + s.

— a In — 8

30. 244.

33.

31. 19. 32.
n{n — \) n{n-\){n—2)

LT"' [I '

n{n - 1 ) n(n - 1 ){n - 2) n{n - 1 )(n - 2){7i^ - 1 3n + 20)

[1
'

Li 48

n{n - l){n - 2){n - 2>)

8
•

34
n(n-l) p{p-\) _I^__. _LI^^

*

LI LI Li \'^-p-^
\ 1 |

w-;>-2

35. -
I

n ~ 1

.

-f

/?(;?- l)(w-;>)

10.

16.
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36. !!^^!!i:il)l!*_tZ) . !i(^^)0^+!^ ^^^
2

"^

2
"*"

o

38. 6084,
37 204 M^tiK2ri+l)

6

(^
+ limp.

1. 20, 10.

\nr
4 ±-=^

7. 1001.

'26 125
10. l--=Jr=-

[5 1^20'

EXERCISE XXVI. (Page 259.)

2. 5775, 34650. 3.
|26

6. 1663200.

1100

•

[95 '
^^ •

199
11 -i=--

11 [^-

\r + n~ I \ri + r
13. -L:=:r- L__Z_

?l
I

?• - 1

H - 1

11. 7.

123
6. -1—.

9. 75600.

12. 9G9, 1771.

15. 2-".

ifi 'i/^ A /" - ^y-
^"'

2 \2
~

/
*^*'

I

—

2~) '
^^^oi'tliiig as u in en

17. (h+1)-.

21. 46376. 22

24. 690.

18. 30786.

I
pq + r

ven or odd.

19. 576.

23.—1'^=:
('7+ir(Li)^''

25. 3^t- + 3w+l. 26. 209952. 27. 281.5

EXERCISE XXVII. (Pagk 265.)

9 1-- 10 M'lti)!!!*-*-!)
2"'

3
• 11.

n
n -JfV

IG. a= + 4(/c = />».
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1.

2.

4.

5.

6.

7.

EXERCISE XXVIII. (Page 275.)

3^ 4- x\a + b-c) + x{ab - be - ca) - abc.

a;*-10r» + 7.r2+162jr-360. 3. .c* - 225.c2 + 1620.r- 2916.

x5 + 5aa;* + 1 Qa^r^ + 1 Oa?x^ + 5a*.e + a^.

64a' + 576a56 + 21 60a<62 + 4320^353 +486o«26* + 291 6a6^+ 7296".

16a* - 32a'y + 24(/y - Say^ + y*.

1 - 1 2a: + 60j;2 _ 1 60^3 + 240i:* - 1 92j;5 + 64a«.

« . TO 4 . en > icA 240 192 64
x^ + 12a;* + 60.r2 + 160 + -^ +—-^ +—

.

a;^ a;* a;«

4 1
a:« + 4ar* + 6 + -^ + -.

12.

15.

18.

09

1
25

1
40

l^=-a^b'\ 13. ...'—. 4«.r«a^<.

10. 252.cy. 11. -20000.r3.

10
14.

5 I 5LiL
3^.

1
12 112

-^2V/. 16. --^-^.*:^ 17. (-1)- Lr.__3r..p.-r r^

w

["_

ir
n — t

-.i;2'»-2y.
il6

^'-
^-^Vlt^-'^"^-

n

\{n + r) ;{n-r)
23. (-1)"-

in

\n In
24. n-7.

25. n = 7.

27.

26. 2j;* + 1 2a;y - 1 2a;2 + 2.v* - 4y2 + 2.

31.

16(4m*-l)Vm*-l. 29. 1.

[2n

30.
192'

2n

T
4m (when n is a multiple of 3).

T

32.
L
n

(2n-r) 3»t + r

5 5

. 33.
[2nn

I

4ri + «j,

[ZEI
6ri — m . 34. 2'* + n.2'*-».
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1.

4.

7.

10.

13*'' term.

5"" term.

EXERCISE XXIX. (Page 281.)

2. 5'" and 6"' terms. 3. 4"' term.

6. 540.5 *
^' 3-

108864. 8. 512. 9. ,.= 14.

x = 3, n.= 5, a = 2. 11. n = 2r + 8. 12. 2r = «.

1.

3.

4.

5.

7.

9.

10.

11.

12.

13.

, 3 3
' + r-32x^-\

EXERCISE XXX. (Page 293.)

5 .

128

2 1 4

i+..-1,,hJ..'-....

1 1 1

-i o lb

2^-2*a;-2~^3.c2-...

l+6.r + 21/- + 56.r"'+ ....

1 ,, 4 20 , 320
,

l-3.c2+6.r*-10,r" + ....

6. 1 -3.r + 6.i;2-10,r3^ _
o 1 3 3^5,
^•8+l6" + !6^ + 32"' + -

«- -
2 a;3 1 .7;6

3
' « ~

9 a*

, 3 27
^-2" +¥ ,k' -

135

2. 1.4....(3r-o)

3'^ a

„3r

,3r-8

16
r —

1 a; ./;-(ri + 1)

14.

17.

19.

-x\
-63
"8

-225 _T
«» a

(« + iu-:;».+i )...^_{(r-_n,. ^^
[r.

15. r»y..

.-r'

«nr+l
+

16.
35
-Xu

2" 16
e« ".c" 18 -Il(LiM-.5JHiiIl?!' 79

3^-
^9
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21. i-ir.h±^i:^^^_.

22. 3
{

j7 ( - 2r . 2/'--(r + l)(r+ 2)2-y.

(r+l)(r + 2)(r + 3)

il

•1
-(r+i).nr

23. (-1)
.1.3 (2r-l) dHri±l)

24.

25.

27.

- 2"!

X a
2/'

13.11.9.7.5.3.3.5.7

11.9.7.5.3
3'-'* X 21V.

)
X.11

15 , 3.5.7.9.11
32' )10

L:

26.

28.

XT ^7
3.5.9.13. 17.21

2^
(r+}yr + 2)(r + S)(r + 4)

29. x* + iar'+lOx-'+20x.

30.
1.3. 5. 7. 9. ...21

or .tr8(l +4.r-i-10.r' + ).

ill

2'i x"

1. ThtU^hor5
3. The 39*'' term.

5. The 5"' term.

Bl^ERCISE XXXI. (Page 297.)

terms. 2. The 23"^ term.

i. The 12">term.

G. The 7''» term.
7. The 3'-'' term. 8. The 9'" term. 9. The 8'"^ term.

EXERCISE XXXII. (Page 308.)

^•-l^- 2. (-l)-i. 3.2m'+'Sm + 2.

6. (1) 9 99666...., (2) 10.00666

(3) 6-99927 + ...., (4) 5-00128.

«-('>l-T'(^)3(l-^)- 15.
-245

16. Coefficient of ."• is 3>. 2-3'-=. u'^- coefficient of .r^^+i is
_33r+I 2-3r-.,,,-3r-3^

aild of .r''-+2 i, 0.

18 0:+ 1 )(^+ 2)(r + 3)(r+ 4)(r + .5)

30

55. mn+ -m(m+ i).

• 23. 3V3-2. 53. 462.
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EXERCISE XXXIII. (Pagi 318.)

1. $1080, 12| percent. 2. $750. 5. $500. 6.
B-A

7. $252.13. $330.92. $416.95. 8. 57|, 32 nearly.

9. $496.97. 10. 48.2 years nearly.

11.- ^°ff2

log {mn - m + n) - log mn
13. $1.00, $23912 (lO)**.

12. 17.67.

EXERCISE XXXIV. (Paok 323.)

1. $374.11. 2. $3137.14. 3. 4| per cent. 4. 28f.

5. $3115.55. 6. $3385.20. 7

9. $7360.08, $6404.74, $2901.83. 10. ^.

j2 100(1.06^-490 jq.06yo_(io6)j^

(1.06)*- 1
-+ ^"

l~{(T.06r7i}F-|

'2.42. 8. $2199.95.

13. 10.74. 14. .£1308 12s. 4|d.

1.05 -(1.06)*'{ )
15. $4200.

16.

19.

21.

log(w-l)

log (1+r)"
18.

n\n^\)
{2 + (w-l)r}.

I (^) " - i} 20. ^(^i!L±l.) - (l±!)!_-_-^
'l\^/ r\ 2 (l+r)"-V^P-Q

log w - log (w - 1) log (n- 1) - log (ri - 2^ log 2

}

log(l+r) log(l+r) log(l+r)*



MISCELLANEOUS EXAMPLES.

EXERCISE XXXV. (Paoi 827.)

1. l+x + x^ + r^ + x* + .r^ + a^ + x'' + ci^ + si!'.

^ a" b' , a h

8. a* = n{J)C - a*), y = n{ca - Jr), z = n{ah - c^).

4. a*- 1.

7. {a + by

Hf-zx) ^z^-xy)

X + y^ + ?^ - ^xyz ir^ + if -v ^ - Swy.
\txijz,

10.
-2

r- 1,

2r-l

27(.«;^ - ?/;s) (y/ - zx) {z- - a-y)

(.r + f + z^ - Sxyzf

scales of f), 8, 11, etc
>

"'} '')

19.

22.

(.r-^)(.r-<^)

{x + a){x + b)(x + cy
20. 999,2220. 21.

c?

2d+r
I'.M + l.

X

\_(x_

-y\

(l-.f«) iy(l-2/'r

1-ar y
23.

,2n-a'
(jr + yy

18
24. -^(6»-l),

arV'-l) Mw+l)(2w+l) {xyY+^-(xyy

x'-l nj -1

.(6») - 2" +

25 a• ** • =1: v'2:'^\+ V+ V2.

6.5

26.
2(a + b)

m'<m
6.5.4

28. 2«[6, ^l^-G.2[n+Y^.22|10--yo-2'[9^ + etc

1
29. 505. 30. -(10" -1)

38.

9

1.3.5....2r-l

1.2.3

31. 5455. 32. 190800.

—(2.r
1.6.11 ....5r- 4 a^

2»-
39. --(w+l)(w + 2)(5w + 6). 40.

i(n+l)

,rv+i"

50
(6w3 + 9rr + lln + 4).

44.
X

45. X = a^{b + c) + b\c + a) + c\a + b).
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46. ar = y«=»«i
8 6

47. ::, -r
6' 4

49. « 3. -1,
'i±V-s

48. 10 ft.. 15 ft.

y

z— — t

iqpv^-a

0.

50. (a+ V'«2_i)(i+ V'U'-\){c+ Vc'^-1)-1.

51. x = {a+h-c){a.-h + c), 56. x+ 4 ± V'6

2/ = (ft + c - a)(6 -c + a),

z = {c-\-a- h){c -a + b).

a h^
60. ~ + - + - =

I infi n
61. l(l- 1 ). 1,

5 V 5n+ 1/ 5

76. rr'-<?(l+r)a:2-(l+rf = 0.

84. (aa; + iy + C2)(6ar + cy + rt;s)(cjr + ay + hz).

88.

n. - ?•

LrLn -2r
90.

x^{ix^ + 1 2/>.r- + 1

2

^3? + 4r)

ar* + 4/>.'i'^ + 6^.r- + \rx + <

91. wi*** term = Irn^ -vn? — 2m + 1

sum = 2
{n{n-\-\)y w(n+l)(2w+l)

1

94. (1) a' = f/ and aar' + r/.r-l=0; (2) a? = 2, -

-(n)(»^+l)+«.

1

97.
«i«-l)

tti
'-1

102. 480.

99. -1+ v^-l, -1- -vZ-l, -3, 1.

103. 1
(n+l)(n + 2)(2w + 3)

108. =

118.

- p* + ip\ - 9>pr

^ -ji-
nx 380.

nJ_1__L _i_ L}1')



yo^^-^^^ '^il^^tJi^Z^y^^^iy^ /i^>*»_ >*A >^^ r
<n i^w

49VMl^<;,^^^

-̂ •'-

/.

0<^<krvyv.t/'t- 'U^u^ ^^^-tiyi^. ^

Acnu^i^ ^JJ _ x)^

A -<^/

':^-s^(

a.^

^- / «?

^ ru

'^-^1

^ •/-•



APPENDIX.

The following are the ordinary proofs for Permutations, Com-
binations and Binomial Theorem

:

1. To find tilt number of'permutations of n things taken r at a
time.

Denote the n things by the letters a, b, c, d , and the re-

quired number by the symbol (n)^.

We can form these {n)^ permutations into 7b classes—(1) those

in which a stands first, (2) those in which b stands first, and so

on; and (w),. is the sum of the numbers of all these classes.

Now, every permutation of the first class can be formed by
placing a before one of the permutations of the (n- 1) things,

b, c, d. .. ., taken r - 1 at a time; and every one of these latter

permutations give a difierent permutation of the first class.

Hence the number in this class ={n- l),._i. Similarly it can be

shown that (n.-l),._i is the number in each of the w classes;

.*. the sum of the numbers in all these classes =zn{n- I),.rr-i-

Hence

and

(n\ = n(n-l\_i

{n-l)r.i = {n-l){n-2\_„

etc. = etc.,

(n - r -I- 2)2 = (w - r ^- 2)(w - r + l)i.

.-. multiplying, (n),. = w(n - 1) . . . . (n - r + 2)(w - r + l)i;

but {n-r+l)i = n-r+l.

.\ {n)r-=n{n-l) (n-r+1).
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2. To find the member of combinations of n things taken r at a
time.

V

Denote the n things by the letters a, A, c, rf. . .
.

, and the re-

quired number by (m)^.

We can form all such combinations !nto n classes—(1) those
in which a stands first, (2) those in which b stands first, and so
on; and the sum of the numbers in all these classes is r{n\. For
every combination oocurs r times, viz., once in each class in which
any one of its component things stands first.

For instance, when r = 4 the combination abed occurs in each
cf the first four classes.

Now, every combination of the first class can be formed by
placing a before one of the combinations of the (n- 1) things,
i, c, d

, taken r-\ at a time; and every one of these latter

combinations gives a dlflerent combination of the fi.st class.

Hence the inimber of this class ={n-\\_^. Similarly we can
show that (/4 - l)^_i is the number in each of the n classes; /. the
sum of the numbers in all these classes =w(h- l)^_j.

Hence

and

etc. = etc.,

w - r + 2
(n-r + 2)2 =

2
(ri-r+l)j.

.-. multiplying, („^^,
"("- D- • (»-r +2)

^^_^^ ^^_.

but
Li

(w-r4-l)i = «-r+l;

n{n - 1 ) ....
(h - r + 2){n - r + 1)

.*• (»0r =

li



APPENDIX. 371

i

3. To prove the Binomial Tfteorem when the index is a positive

INTBOER.

We shall find, l>y actual multiplication, that

(./; + a){x + b) = x^-\- (a + h)x + a&,

(j* + a){x + h){x + c) = .c^ + (a + /-» + c)x- + {nh + <ic + hc)r + abc.

Assume this law of formation to hold for n-\ factors, su that

(,r + a,)(x + a,) (jt + a„_i) = it:""^ +;;iX-"-' +f>._,.r"-^ + etc. + ;>„_ i

where j^j s= Oj + (/^ + «3 + etc.

,

^^2 = ttiMj + ai«3 + «2«3 + otc, etc. = etc.,

Then, multiplying by another factor, x + <«„, wo have

(a: + a,)(j: + (/,).... (.f + ^'„)

= j;» +j[)ii;"-' +^>»2.K"-''' + etc. +Pn-it

+ a„a:"-^ +/>i«„.''""''^ + etc. +i;„_2«„.r +7>„_ifl'„

= .r" + giX"- ' + qrft"-
'^ + etc. + (?„ . i« + <?**

where

grj=j9i + a„ =ai + «2 + «3 + etc. + a„,

^2 =i^2 "^Pfln — ^\^2 + ''I'^S + '^2"3 + ^^C. + «!«„ + «2^'n + ^tC, Otc. = CtC,

9'rt —Pn-l^n ~ O'l^i^i • • • • <*jt-i^;i
')

that is, if the law holds for tho product of ?»- - 1 factors, it holds

also for that of n factors. But we have seen above that it does

holds for three factors, the fore ior/our, and therefore iovjive,

and so on; that is, it holds generally, when n is a positive integer.

Now, it is easily seen that the terms in g'j, q^y 5^3, etc., are the

different combinations of the n letters, «!> a^, ^3, etc., a„, taken

one, two, three, etc., together; and, consequently, the number of

terms in y^ is Ci, in q^ in C.^, etc., where C^, Cj— (7„, represent I
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the combinations 1, 2, 3 together. Let us put a for each of

«!, aj, etc.; then the first side becomes {x + a)\ and each of the
terms in ^-i, q.,, q^, etc., becomes a, a% a% etc., respectively; and
therefore we have

(.r + «)« = a;" + C^ax''-^ + C/zV'-' + etc.

And, of course, it will follow in like manner that

(« + a-)« = rt" + C,.<vt»-i + C^v^a" - 2 + etc.

= a" + Cia"-i.r + CU^-^.r + etc.

)
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