Canadian Architect and Builder.

Canadian Architect and Builder, A Monthly Journal of Modern Construotive Methode,
 (With a Weekly Intermediate Edition-The Canadian Contract Racord),

rudishid on tie thiad saturday in zacil mohtil in the interest or
arChitects, civil and sanitary engineers, plumbers, DECORATORS, BUILDERS, CONTRACTORS, AND MANU FACTURERS OF AND DEALERS IN BUILDING materials and appliances.

C. H. MORTIMER, Publisher,

14 King Street West, - TORONTO, CANADA. 64 TEMPLE BUILDING, MONTREAL.

ONTARIO ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1892.

President -
ist Vice-Pursident
2no Vice-President
Treasurer
S. G. Curky, Toronto. King arnoldt. Ottawa. F. J. Rastrick, Hamilton D. B. Dick, Toronto.
council:

PROVINCE OF QUEBEC ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1892.

COUNCIL:
A. T. Taylor, F.R.I.B.A., R.C.A.

Montreal.
A. C. Futchison, R.C.A. . Monirenl.
M. Pertault - Montreal.
A. F. Dunlop, R.C.A.

Montreal.
Alph. Raza Miontreal,
J. F. Peachy

Quebec.

A Dictionary of Architecture has just been published which has been in course of preparation in England for more than forty years. With the exception of some twenty copies the edition which has been published has been sold to subscribers. As the work is said to be most authentic and complete, it is hoped a new and cheaper edition may be published.

There died in one of our Canadian cities recently a gentle man who delighted to call himsell the friend of the widow and orphan. His will, which has just been adınitted to probate, dis poses of property valued at nearly half a million dollars, yet strange to say, not a single dollar thereof has been devoted to the benefil of widows and orphans or any other benificent obs. ject. It is to be regretted that so few bequests are made by men of wealth in Canada for charitable and educational purposes. It is true that some very handsome endowments have been made by wealthy citizens of Montreal to institutions in that city notably the Royal Victorin Hospital and McGill University, but the number of philanthropists is by no means as large as it ought to be.

A BY-LAW respecting the construction of buildin: scafolds lias recently passed the Toronto City Council. The by-law simply indicates the materials of which scaffolds should be built and stipulates the method of their construction. The City Commissioner is empowered to prosecute any person who may proceed with the erection of buildings using scaffolding which is not constructed in accordance with the by-law, or in the event offinding a scaffold which in his opinion is unsafe, any person who, after due notice, neplects to make the same satisfactory. The penalty for violation of the by-law is not to exced $\$ 50$ for cach offence. It will be observed that the proposal urged upon the Council some months ago for the appointinent of an expensive corps of scaffold inspectors las wisely been disregarded. The by law in its present form will not be likely to prove very objectionable to builders.

AT the time of going to press, the city council of 'foronto had not appointed a City Engineer. Unless Mr. Jennings could be induced to again take the position at his former salary, we doubt whether the Council will be able to appoint a more satisfactory man than Mr. C. H. Rust, at present acting City Engineer. Mr. Rust has been connected with the Engincering Department of the city for upwards of fifteen ye:rs. For several years he has thad the entire charge of the construction of sewers, and in this capacity has done satisfactory work and proved himself to be possessed of the requisite executive ability. If Mr. Rust has given the city good service in the past, and is capable of filling the larger position, it would be unfair to give the appointment to an outsider. Should circumstances occasionally arise calling for engineering experience and ability of the highest order, the temporary assistance of an expert consulting engineer coukl be obtuined. Such occasions are not likely to be frequent, and consequently should not involve large expense.

We learn from the Brickmatior that there is much indignation expressed by Hudson River brick manufacturers over the action of the United States government in stopping French Canadians from going over the line to work on the brick yards under the Contract Labor Law. It las been the custom for yeas for these men to work in the brick yards during the summer, over 1,000 of them being employed every year. They spend most of their wages in the Stales, and before going home to wort: in the woods in winter lay in their supplies. The effect is, the manufacturers say, to cripple the yards, without benefilling the country, for the places of these men are gradually being filled by Arabs from the Holy Land who will carry the money paid them out of the country. The Alien Contract Labor Lavy, and some other measures recently enncted by the government of the United States, liave to a large extent brought the statesmanship of the Republic into contempt before the world. Without attempting to detract from the many admirable characteristics of the American people, it can tuthfully be said that as a nation, the United. States has stooped to petty meannesses which no other country of importance on the face of the earth would be guilty of. In some instances the self
respect of the nation has been dragged in the dust by politicians anxious to make themselves and their party "solid" with certain vote controlling elements.

The removal of St. Andrews Church, Toronto, from its present situation, at the corner of King ased Simcoe Streets, to an uptown location, has been decide.t upon. No doubt, from the standpoint of the church's interest, the decision is a wise one. The building is situated at too great a distance from the modern residential part of the city; and in consequence, some of its n:embers are forced to attend other churches. The removal of this church will deprive the city of a piece of street architecture which for nearly twent's years has stood an object of pride to the citizens and of admiration to visitors. The site on which the building stands was deeded to the trustees on the condition that a church would be erected thereon within a fixed period. When the limit of time had nearly elapsed a competition was held with the object of securing suitable plans for a building. The plans submitted by Mr. W. G. Storm, of Toionto, were chosen, and the building erected therefrom at a cost of $\$ 100,000$. An illustration of the building, which is in the Norman style, is published in the present number. Tenders are now being asked for taking down the church and for its re.erection on a new site. It is cstimated that the depreciation in the material would amount to about twenty-five per cent. It is not the intention we understand in re-erecting the building to make any alteration in the design. It is to be hoped that proper care will be taken to select a site which will display to not less advantage than at present its beauty of design.

Canadians should make the most of the opportunity afforded by the approaching World's Fair to make known to the world the capabilities of this country and its people. We ale pleased to notice that in agricultural, manufacturing and othel lines, steps are being taken in this direction. It would seem pertinent to enquire what will be done to show the status ot Canadian architecture. The desirability of making a Canadian architectural exhibit will hardly be questioned. Such an exhibit would tend to attract to Canada persons of efinement, many of whom have been imbued with prejudice against it in consequence of misconception regarding its climate and the status of its civilization. Canadian architects should lose no time in preparing for this exhibit dosigns which should exemplify their best talent. They should be sufficiently patriotic to devote whatever time and money may be necessary for this purpose. So far as time is concemed, the prevailing dullness has left many members of the profession with abundance of leisure which could not be used to better advantage. We are pleased to be informed that some prominent members of the profession in Toronto have already decided to exhibit their work either individually or in conjunction with other exlibitors, as circumstances may direct. It will of course be necessary to decide the conditions under which the exhibit should be made; that, however, is a matter of future arrangement. As the preparation of suitable drawings may be presumed to occupy several montis, it is very desirable that a commencement should be made at once.

A COnfetition was instituted last year for designs for an Episcopal Cathedral to be erected in Victoria, B. C. The limit of cost was fixed at $\$ 150,000$, a sum very inadequate for the purpose. The competition closed on the 31st of December last. The competitors numbered fifteen or sixteen, and were almost equally divided as between English and Canadian architects. Three prize were offered, the first being $\$ 750$ and 5 per cent commission on the cost of carrying out the work; the second, $\$ 500$, and the third $\$ 250$. Sir Arthur Blomfield was appointed to judge the designs. His award has just been announced. The first prize is given to Messrs. Evers \& Keith, of Victoria; the second and third prizes will, it is said, go to two of the English competitors whose names have not yet been disclosed. The Canadian competitors, being situnted at such a distance from the place of award, had two weeks less time than their English competitors in which to prepare their drawings. In consequence, some of the Canadian designs had to be forwarded in an incomplete condition. The accepted design is said to be in the style of the XIII century. The total length is 236^{\prime}, height of spire, 275^{\prime}, internal height of ceiling of nave $7 \mathbf{2}^{\prime}$. The cross bas been retained as the basis of the plan, the transepts being shallower than in most of the old examples. The tower has been placed in the centre of the west front. On the east side of the cast gable rise two turrets 93^{\prime} in height. The walls will be of stone with cut stone finish, ceiling of cedar and roof of slate. The total seating capacity is $1468,3^{\prime} 3^{\prime \prime} \times 1^{\prime} 1^{\prime} 1 / 1 /$, being allowed for each person. The enterprise may be regarded as an Englislt rather than a Canadian one, as it is understood that two thirds of the cost wilh be defrayed out of subscriptions of well known English philanthropists.

Scientific men and the general public have indulged the belief that of late sanitary science has been making satisfactory progress. In his paper on "The Free and Liberal Ventilation of Sewers in its Relation to the Sanitation of our Dwellings," read before the Royal Society of Canada, on May

3ıst last, Mr. Chas. Baillairgé, City Engineer, of Quebec, puts himself squarely in opposition to some of the most important doctiines of modern sanitarians. He says : "A host of unemployed would-be-scientists in each city, are constituted a 'Board of Health,' elect a President, Vice-Presidents, Secretaries, Treàsurers; appoint health officers, inspectors, etc., and this galaxy of hygienists, to give themselves an air of public usefulness, prove over zealous in clamoring against the falsification of alimentary substances, in adyocating and filtering of water, in conjuring up microbes, bacteria and contagious diseases, in battling fot vaccination, disẹnfection, ventilation and the like. They fancy they are serious and in the end become so, and would convince people that a thousand precautionary measures are at present indispensable, of which no one ever dreamed in the past, and without in any way suffering therefrom." And again : "let me say in one word, to have done with these preliminaries, and show that in many cases, the evil is not nearly as great as it is said to be, that while we are crying out for ventilation, nine tenths of the human race do without it and appear to be none the worse for ignoring it. A thousand precautions are sought to be enforced in the drainage of our houses. Thousands of towns and villages, the wide world over, isnore the thing entirely and live quite as long as those who at such great cost give themselves the luxury of sanitary modes of removing their excreta; and during epidemics, as during normal times, there is no more, no less sickness, there are no fewer, no less deaths in the one case than in the other." These opinions, from which most persons will feel inclined to dissent,are to some extent modified by those following, in which the importance of providing for the exclusion of sewer gas irom dwellings is discussed.

CHARACTERISTICS OF ARCHITECTURAL STYLE.

By G. F. Stalker

SINCE the Qneen Anne revival, and to a large extent on account of it, there has been more energy and individuality displayed in the architecture of Great Britain, her colonies and America, than has been the case in any similar period of the world's history. It is a noticeable fact at the same time, and probably also attributable to the same cause, that during this time style in architecture has got somewhat mixed. The misfortune in regard to the Queen Anne revival was not on account of any lack of genius on the part of the architect who was the chief mover in it, but that the Queen Anne style (if style it may be called) was esssentially debased and impure. During the latter part of the reign of Queen Anne, when the kind of bullding which bears her name was in vogue in all its pristine impurity, architecture was at as low an ebb as it well could be. The knowledge of art, in any of its branches, had departed; but the belief that Rome was the mother of art and Italy its home, possessed the minds of the people; and consequently nothing that had not a smattering of Roman or Italian art would pass muster. And, as fenerally happens under such circumstances, the least pure features of the ltalian renaissance, with its broken backed, curved or twisted tympani, its disproportioned mouldings and obtrisive carving, were copied and stuck on to buildings in England, without any regard as to fitness or congruity. And in these latter times the absurdities, and the outgrowths of the ignorance displayed in the days of Queen Anne have come to be looked upon as quaint, piquain, or artistic architectural adomments. But there is properly speaking, no style in them. A cool headed architectural critic would pass over the Queen Anne period without the slightest notice. A much better revival and one more likely to be lasting, is the Norman. This is often but most erroneously called"the modern Romanesque," but there is nothing Romanesque in it, excepting that the semi circular arch is used, and this was also the dominant feature of the Norman. Everything else in this revival is peculiarly Norman, and consequently it is based upon a style of great purity. Herein, then, lies the great difference between the two. In the latter, modern architectural expression has been founded upon a distinct language, in the former it rests on a poor kind of patois. These two revivals are noticed here merely to show the effect that a clear knowledge of architectural style will have upon any attempt which may be made to lound a new development, or departure, in architecture, upon any style which has previously existed. To take as a model the class of buildings that were erected at a time when architectural knowledge was meagre, and the outcome of it in consequence debased, may create a fleeting fancy, but will have no lasting beneficial effect on architecture. While, on the other hand, to take as a model a period when architecture was studied and practiced as a fine art, the result cannot fail to have a good and permanent influence.
The question of inventing a new style of architecture is often raised by unlearned men; and architects are often taunted with the fact that they are unable to accomplish this object. But then no man ever did invent a style of architecture or a language. They are both the growth of centuries, having in them the distinctive marks of the people amongst whom they have sprung up, and have been developed and perfected, but bearing also upon them trices more or less definite, of international influence. It is, therefore, no disgrace to a young country like Canada, that she has not yet reached that fulness of architectural stature, to claim for any of her buildings a truly
and distinctly national character: At the same tinse, the tendency of architects in the Dominion is happily in this direction. And this being, the case a consideration of the characteristics of architectural style may not, at the present time, be deemed inopportune or unimportant. It is a matter of uncertainty to fix the dates of some of the older buildings of the world, or even to be very positive in asserting what nation has the first claim to luve had a national style. On these points the doctors disagree, but the minjority of writers are of opinion that in the architecture of Egypt, we are taken further back in the history of the world, than in that of any other nation. It is now known, beyond question, that some of the pyramids were erected at lenst 3000 years B. C., and when the great mechanical ingenuity displayed in these wonderful structures is taken into consideration, together with other evidences of the high state of civilization the Egyptians had attained at that early period, we are absolutely at a loss to ascertain how far back their history is a nation extends. For the purpose of this paper, however, it is sufficient to start with the pyramids, as the earliest architectural monuments known to us in the world.
In these, as in all other buildings which have been discovered in Egypt, the great predominating feature is mass. The Egyptians were essentially builders, and they built for eternity. It is nowhere found in any of their buildings, not even in the tombs or temples, that the details are emphasized in such a way as to detract from the massiveness of the whole composition. Simplicity and stability were with them of the first importance, and where ornament and color were intioduced, their introduction did not in any way lessen the sombre grandeur, or the eternal purpose of the structure. But being kept in subjection and painted or carved with remarkable fidelity and truth, they served the double purpose of affording relief to the eye, and giving scale to the buildings.

In many of the chambers of the pyramids, and particularly in the tombs and temples, color was freely used; not as an after thought, (as decoration is arranged for in our own day) but as an essential part of the original design. And though the colors were always brilliant and lustrous, the general harmony was maintained so perfectly that the effect was always pleasing. The subjects chosen for these mural paintings were generally scenes from their daily life; and so from these we have a more nccurate history of this people than we have of many nations that came into existence when ancient Egypt had almost or aliogether disappeared. Sculpture also, was very largely used, and wherever it was applied, like painting, it formed part of the original conception. And these sculptural representations may always be taken to be most faitliful portrail. No fattering touches were permissible. The sculptors were required to adhere most sorupulously in every line and feature, to an exact representation of the original. Some writers on Egyptology even go so far as to assert that rigid accuracy both in painting and sculpture, wherever the human form was concerned, was not so much an artistic as a religious necessity. In the more strictly architectural ormmentation of their columns, doorways, cornices and other portions of their buildings, however, although their ornament was generally based upon natural objects immediately at hand, it was invitriably conventionalized. And when color was applied in these cases, it was so arranged as to contribute to the hannony of the whole composition.
The remarks which have been made have reference, as any one may see, to the great public buildings of Egypt. But with regard to the domestic architecture of the country, very little is known. Even from the solitary example now remaining at Medinet Habou (this being a royal pavilion) we can form only a faint idea of the general charncter of their domestic work. But we can well imagine that the people who erected, with such taste and skill, pyramids, temples, onibs and palaces, which were intended to defy the destructive forces of time, must have exhibited the same refinenient in their domestic work, althougt. they may have built their houses with more perishable materials.
A very singular and noticeable fact with regard to Egyptian architecture, is the continuance of the national features and characteristics of the style right on until the time when it may be said that Egypt ceased to build. The Egyptians were conquered by the Greeks and afterwards by the Romans, two great building nations, but, unlike any other people who fell under their domination, their influence on the architecture of Egypt is nowhere visible. Many great and notable buildings were erected both under the Greeks and the Romans, but they were carried out in every detail just as if neither Greek nor Roman had ever seen Egypt. This is very stronR evidence that those two great peoples saw in the architecture of the country they had conquered, its absolute suitableness to that country, for, though they both imitated and grafted on to the styles which bear their names, features essentially Egyptian, they left the architecture of the country, during the period of their occupation, altogether untouched.
Following the Egyptian period, in point of antiquity, we reach the Chaldean, in which, however, must be inclirded the Assyrian and Persian styles. The oldest buildings of these people so far as can be ascertained, date back to about two thousand five hundred years before the Christian era. Unfortunately the materials used were mostly of a very perishable nature, such as wood and sun-dried bricks, so that the remains of them are, in most instances, nothing more than heaps of shapeless ruins.

But during the reigns of the Assyrian and Persian monarchs, more durable materials were: manufactured or imported, and then many palaces and a few temples were erected of gigantic dimensions, and in all the gorgeousness of etstern show and spiendour. Symbolism and allegory, having always been the most natural expression of the mind of the western Asiatic, are, in the Chaldaic buildings, employed to their fullest extent. As 2 necessary consequence they aremore decorative than architectural, in the strict sense of the word, always gorgeous, though sometimes having a leaning to the barbaric. Some of the architectural forms they invented, were, however, turned to gool account by the Greeks, and are better known to us in their European than in their Asiatic dress. At the same time the remaths which have been, and which, it is to be hoped, will yet be discovered and explored (such Nineveh, Persepolis, etc.) must always be of vast importance and interest, although more to the historian than to the architect.

Unfortunately, the Jews bad no style of architecture whatever that they could call their own. The greatest buildings that were erected in Judea, even during the: time when they endeavoured to mark their prosperity and importance on the history of the world, were the conceptions of foreign architects, and the execution of foreign builders. Probably this is due to their too literal interpretation of the second commandment. But whether this is the case or not, the fact remains the same, that there is nothing essentially Jewish to be found in the whole history of archttecture.

ONTARIO ASSOCIATION OF ARCHITECTS STUDENTS EXAMINATIONS.

In response to a number of requests we publish below the examination papers used in the above examinations:-

Practical Knowledge of Building Trades.
FINAL.
APRIL STH.

Mh. E. Burke, Examiner.
NOTE: szo Marks will be the maximum number possible to be obtained and 60 per cent. the mivimum to pass.
Values.
10 1. Name a simple method of "squaring" m laying out the lines for the erection of buildings. What are "batter boards ${ }^{n}$? and what is their use?
15 2. Drav to a scale of $1 / 2$ "to the foot, a section of a cellar wall of rubble stone $18^{\prime \prime}$ thick, showing proper construction, with footings and methods of kreping the walls dry and of removing water of soakage and springs. Write explanatory descrip. tions.

15
3. Draw to scale of $12^{\prime \prime}$ to the foot, to carry an iron column, a brick pier $2^{\prime} 3^{\prime \prime}$ square, 8 ft . high, with double footing course. Show also plans of two consecutive courses of the brickwork. Wood beams $10^{\prime \prime} \times 12^{\prime \prime}$ will rest upon two sides of the pier, one foot below the top, in such a manner ats not to weaken it.
15 4. In constructing a heavy tower wall of stone, in connection with a lighter stone wall abutting upon the same, what precaution should be taken to prevent unequal settlement which might occur even when the footings are properly proportioned to sustain the supermposed load.
125 . What is underpinning ? and how done? Give explanatory sketch. How would you support a brick wall when inserting a breastsummer? Show sketch with explanatory remarks.
12 6. Indicate the construction 1/1 size of the joint of an $8^{\prime \prime}$ cast iron pillar of x section set upon a cylindrical pillar of cast iron $9^{\prime \prime}$ diameter. The latter also carries two beams $8^{\prime \prime} \times 12^{\prime \prime}$.
12 7. Draw $1 / 8$ size proper method of superimposing wood posts carrying beams, so that the latter may burn or fall out without endangering the whole building. Show also connections of beans to walls with the same object in view.
15 8. Draw section to $1 / 4$ scale of a Queen Bolt Composite roof truss of so ft. span and pitch of 30 to 40 degress. Show details $1 / 3$ size. Indicate parts in compression and tension. 20 9. Indicate construction of iron floor beams and posts showing method of fire proofing.
15 to. Show approved construction of a first class veneered door. Show to an inch scale a horizontal section of a boxed window frame with inside folding blinds in boxes.
10 11. Describe and sketch two methods of forming valley and hip flashings. Also method of flashing a shte roof of $1 / 2$ pitch at a parapet wall.
I 5 12. Describe three coat plastering, mentioning points in regard to each coat. How should successive coats of paint be treated to gain a proper surface. Show a section of the leads in lead glazing and method of inserting and holding glass.

Strength of Materials.
 \section*{Final.}

Note: roo marks count a full papocr.

Values.
15 . What would be the proper Form of Cross-Sections for a Beam of (a), cast iron; (b), wood; (c), rolled steel; giving your
reasons in each casc. Explain the circumstances governing the selection of a factor of safety in each case.
15 2. Explain fully what is meant by the following terms: (5), 13etm: (2), Short Post ; (3), Long Post ; (f), Cantilever; (5), Strut ; and ; 0), Tic-rod.
o 3. Explain at leng(h what is meant by (a), Shearing Force ; (\%), Bending moment at a vertical cross-section of a beam.
o 4. How are the Normal and Shearing Stresses distributed over the vertical cross-section of a uniformly loaded horizontal wooden beam.
15 5. Explain the principle qoverning economy of material in bolts and rivets. Find the pitch of the rivets in a plate buttjoint, with a patir of cover plates, double rivetted in terus of the diameter of rivet and thickness of plate.
30 6. What is meant by the terms: Modulus of Elasticity and Limit of Elasticity. Explain fully.
107 . State clearly the various conditions upon which the strength of posts depends which are long enough to be liable to ficiure.
15 8. State and explain the equations of equilibrium for forces acting on a rigid body in one plane.
20 9. Calculate the Stresses in the following truss : (c), Analytically ; (b), Graphically.

Structural lronwork.
SECOND INTERAMDATE.

$$
\text { APRII, } 6 \text { TII. }
$$

Mr. E. Burke, Examiner.
NoTls: soo mevks quill be the moximum oblainable and 50 por cent. the minimum to pass.
Values.
10 I. Draw a section $1 / 2$ full size of a fliteh-girder, the timber for which was taken from a piece of $10^{\prime \prime} \times 12^{\prime \prime}$ suff. Write description and comments.
5 2. What is the best description of iron for beams? Give reasons.
to 3. Draw a section $1 / 2$ full size of a cast iron lintel or beam s" decp and indicate portions which are in compression and whech in tension.
10 4. Draw a section $1 /$ full size of a rolled iron girder 12 " deep. Show connection of $9^{\prime \prime}$ wrought iron benm, both the bottom flanges being level.
to 5. Draw a section $10 \mathbf{1}^{\prime \prime}$ scale of a one and one half brick wall carried on I beam.
12 G. Indicate by a sketch is full size such a method of anclioring a $10^{\prime \prime} \times 12^{\prime \prime}$ wood beam to an $18^{\prime \prime}$ brick wall, that the wall will not be pulled over should the beam drop out by buming or otherwise.
10 7. Draw a section to scale of cast iron columns of $\mathbf{H} \& X$ pattern and name the parts, with comments.
to 8 . Draw section ${ }^{\prime} / 8$ full size of comection of a $g^{\prime \prime}$ chameter cast iron column to cap and base plates and name the parts, with comments.
to 9. Draw sections $/ 2 / \mathrm{y}$ full size of $8^{\prime \prime}$ diameter, rectangular and octagon columns built up from rolled iron plates or bars.
15 10. Draw to a scale of 4 ft . to the inch an iron roof truss of $1 / 4$ pitch 25 ft . clear span between brick walls. Indicate members in compression and tension.
12 if . Drav to a scale of 4 ft . to the inch a trussed breastsummer formed with 4 pieces of 3×12 joisting, having a clear span of 15 ft . and a space of 2 ft . from top of beam to underside of window sills above.
12 12. What is understood by the terms washer, nut, upset ends to tension rods, torsion, core, cold shot. Draw or describe.

History of Architecture.
 First Intermediate

tIUURSDAY, APRIL 7TII.
Nowe: The Cenditatc is expected to answer three of the followitg questions. Dravings are to be neat and to a scale of not less than $1 / 2$ an inch to 1 fort but they are not requived lo be finished. The scale used must be mentioned.

1. Sketch, in outline, the Orders of Classic Architecture ?
2. In what country was the Arch first used as a feature in Arehitecture?
3. Name the various styles of Architecture since the introduction of the Arch down to the present day.
4. Describe and illustrate by sketches the leading features of each of these styles.
5. Give an approximate date for each of these styles.

> Second Intermediate.

THUKSDAY, APRIL 7TH.
Nore : Drawings are to be in outlinc only, theat and weill arranged and are not reguired to be finishen. The seale should be not less than y an inch to the foot. The scale used must be mentioned.

1. Draw the Grecian Orders.
2. Draw the Roman Order.
3. What do you understand by the term Romanesque Architecture.
4. Illustrate by drawings the characteristics of Norman, Early English, Decorated and Perpendicular styles of Architecture.

FINAL.
tilibesiont, alrkic jtit.
Note: The Candidate is expected to answer questions Nos. 4,8 , 9, 50,14. Additional marks will be given for additional answers. Drawings are to be in outline only and are not required to be finished. The scale should be not less than $1 / 2$ an inch to I foot and intust be mentioned where used. It is to bo Vorro in mind that it is not the drawing so mtuch as what the drawing indicates of the Candidatc's knowledgc, that is required. But neatness of drawing and good arrangenent will be taken into consideration.

Ancient Architecture.

I. What country may be called the birthplace of Architeccure.
2. Through what countries is the history of Architecture to be traced prior 10 the rise of the Greeks as a nation.
3. Give an outline of the bistory of Archatecture in these countries.
NOTE: The Candidate is cxipected to ansuoer one of the above grestions.

Grecian and bonan. ${ }^{\text {a }}$
4. Name and draw in outline only the Orders of Greek Architecture and give an approximate date for each.
5 Draw in outline only the plan and front elevation of a Greek Temple in any order.
6. Explain illustrating by sketches the development of the Ionic Capital.
7. Mention one Greek Temple in each Order.
8. Draw the Roman Order.

RomanesQue.
9. Sketch the leading characteristics of Romanesque Architecture.

Gothic.
10. Sketch a portion of a nave in Norman Early English Decorated and Perpendicular giving the date of each style.
1I. What is the practical use of the flying buttress and of the pinnacles?
12. What is "Flamboyant" Architecture?
13. What do you understand by Renaissance Architecture?
14. Describe the main characteristics of the style you have chosen illustrating them by sketches in outline. Give a portion of the plan of a building in this style, sufficient to show the characteristics; give a section of the roof shewing the form of vaulting, shew the form of the windows, arcitding and any other feature specially illustrative to the style.

Mouldings, Features \& Ornaments. Final.
 APRIL 7TIE.
 S. H. TOWNSEND, Examiner.

NOTE: $s 50$ marks will bc considered a full paper.
Values. 15 . Show by a diagram how you would arrive at the entasis of a Doric Column.
20 2. Sketch a Triglyph, and show in what way the Greek and Roman examples differ.
25 3. Draw to half inch scale a Greek Conic Capitat, and sketch some of the ornament to a larger scale.
15 4. Sketch a "trussed rafter" roof.
15 5. What are Cusps? during what period were they first introducecl. Sketch two examples, one of early and one of late date, and point out the main points of difference between them.
30 6. What are the general characteristics of the mouldings of the period you have sketched, give examples showing how they differ from the periods immediately preceding and following.
20 7. Sketch to a scale of 14 of an inch to the foot, one of the buttresses against the side wall of an Early English Church, to be 21 in . wide on face, to project 36 in . at the base, and to have three weatherings. Height from the ground to the underside of the eaves cornice twenty feet.
10. 8. What do you understand by plate-tracery? In what styles was it used. Give examples.
15 9. Sketch some folinted ornament in the style you have selected.
25 10. Sketch two examples of string courses in the Norman, Early English, Decorated and Perpendicular styles. One ex-

Vol. V.]
The $\epsilon_{\text {anadian }} \overbrace{A_{r r}}$

GIERNNDRA SCHOOL-FOR GIRLS
ат Еалт-Товонто.
Henty Simpjon Trénitect.

ample in each style to be placed under the ground floor windows of a collcge building and the other at a height of twenty feet from the ground over the main entrance doorway.
30 11. Sketch a doorway in the style you have selected, giving Plim, Elevations, and section through jamb and head.

Algebra.

First and Second Intermediate.
Note : roo marks will be considored a full paper:

Values.

15 1. Simplify
(a)

$$
\begin{gather*}
\frac{a^{2}}{(a-b)(a-c)}+\frac{b^{2}}{(b-a)(b-c)}+\frac{c^{2}}{(c-a)(c-b)} \tag{b}\\
\frac{x+y}{y}-\frac{2 x}{x+y}+\frac{x 3-x 2 y}{\sqrt{3}-x x^{2} y}
\end{gather*}
$$

15 2. Two numbers differ by two. Show that the difference of their squares is twice their sum.
20 3. Solve the equation $a x^{2}+b x+c=0$. If α, β are the roots of this equation prove $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta-\stackrel{c}{a}$
20 4. Solve the equations :
(a) $x-y=1$
(b) $\frac{x+3}{2}-\frac{x-2}{3}=\frac{3 x-5}{12}+x$

15 5. Factor:
(a) $a^{2}+b^{2}-c_{2}-d^{2}-2 a b+2 a d$,
(b) $a^{2}+9 a b+20 ; r$.
(c) $b c(b-c)+c a(c-a)+a b(a t-b)$.
o 6. State and prove the rule for fincling the Highest Common Fretor of two numbers.
10 7. Find the Least Common Multiple of $x^{2}+2 x-3 ; x_{3}+$ $3 x_{2}-x-3$ and $x^{3 x}+4^{2 x}+x-6$
158 . In a mixture of wine and water the wine composed 30 pallons more than half of the mixture and the water to gallons less than a third of the mixture ; how many gallons were there in each?

Trigonometry.

Fikst and Second Intermediate.
Note : 100 marks woill bc considercd a full papor:
Valmes
5 g. (a) Define ant angle according to the usage of Plune Trigonemetry.
(b) Define the common units of angular measure.
(c) Express in sign and magnitude in any two of the units, the angle described by the ininute hand of a clock between the times 9 l .05 m . and 11 h .25 m .
20 2. (a) Explnin fully the meaning of $\sin A, \cos A \tan A$, and $\sec A$.
(b) Discuss the changes in them as A clanges from o° to 360°.
15 3. Prove the foll.-

$$
\begin{aligned}
& \tan A=\frac{\sin A}{\cos A} \\
& \sin _{2} A+\cos ^{2} A=1 \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B
\end{aligned}
$$

to 4. Express the other trigonometrical mios in terms of the tangent.
Is 5. Prove the foll. -

$$
\begin{aligned}
& \sin (\alpha+\beta) \sin (\alpha-\beta)=\cos 2 \beta-\cos 2 \alpha \\
& \sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}
\end{aligned}
$$

6. What is the logarithm of a number? Of what use are logarithms? Prove the statements you have just made.
15 7. Prove $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
15 8. Given $a=47.97, b=54.23$ and $A=57^{\circ} 34$. Find B, C and C.

NUMBER	MANTISSA	RATIO	L
5423	.734240	$\sin 57^{\circ}-34^{\prime}$	9.926351
4797	.680970	$\sin 72^{\circ}-35^{\prime}$	9.979618
4344	.637890	$\sin 72^{\circ}-30^{\circ}$	9.99658
4345	.637990	$\sin 49^{\circ}-50^{\prime}$	9.883191
	$\sin 49^{\circ}-51^{\prime}$	9.883297	

Euclicl.

First and Second Interniminte.
 bakt 1.

b. (a) Priangles upon the same base, and between the same parallels, are equal to one another.
(b) E is a point in the side $A C$ of a triangle $A B C$. Construct a triangle $E C B D$ equal to $A B C$.
2. If a straight line be divided into any two parts, the square on the whole line is equal to the squares on the two parts together with twice the rectangle contained by the parts.
3. The angle at the centre of a circle is double of the angle at the circumference subtended by the same arc.
4. The opposite angles of any quadrilateral figure, inscribed in a circle, are together equal to two right angles.

First and Second Intermediate.
PART 2.
5. If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles, and the three interior angles of every triangle are together equal to two right angles.
6. In any right angled triangle the square which is described on the side subtending the right angle is equal to the squares described on the sides which contain the right angle.
7. To describe a square that shall be equal to a given rectilinear figure.
8. The bisections of the three angles of a triangle meet in one point.

Foundations. Final.

Values. Name one of the best soils for buikding upon. Is it safe
to to build upon a clay soil; state your reasons for the answer you give.
11 2. In buidling upon a soil which bas not level strata or which has portions of clay or loose gravel, what shoukl be done to prevent uneven settlements.
15 3. Where the foundations of a building are not at the same level what means should be taken to prevent uneven settlement.
20 4. If you were putting in the founclation of a building and came upon a soft piece of ground what would you do to obtann a good foundation and prevent uneven settlements?
20 5. What is meant by the detached pier system of found. ations; when should it be adopted and what are its advamsages?
20 6. In puting in foindations for a buiding what means would you take to prevent uneven settlements on the part of the supporting soil.
15 7. What are sand piles and uncler what conditions is it advisable to use them?
10 8. What woukd be safe load to place upon ingood hard clay soil?
20 9. What should be done to make a safe foundation where the soil is running sand?
10 10. Enumerate some of the different forms of piles.
20 11. How would you obtain a large surface support for a buidding where it is impossible to obtain such a support in the ordinary way by projecting the footing courses.
20 12. Is it advisable to use inverted arches in fonndations; if so under what conditions?
20 13. State the proportions of a good concrete for filling trenches under founclation walls.
to 14. Should concrete be placed in the trenches or should it be thrown in from a raised platform.

Architectural Jurisprudence.
 FinN.

Arpli. 7 rit
s. II. Townstenis, Examiner.

No'ns: 100 merks will be cousidered a full phiper:
Values.
20 . The penalty clause in contracts as it is usually termed, provides that in the event of the Contractor's fature to complete the work, or buidding to be executed, within the stipulated period he is to forfeit and pay to the employer a specified sum per day or per week, for each and every day or week as the ease may be which shall elapse between the stipulated and actual date of completion. The sum of money so iorfeited by the Contractor is sometimes spoken of as a "penalty," although in most contracts it is expressed to be as "liquidated damages." Distinguish between these two terns, aud give a simple illustration of the difference.
2. Does the approval by the client of the drawings and specifications estop him from afterwards alleging that the Architect has failed to exercise proper skill in the prepitralion of these documents? If so, to what extent? and in regard to what matters?
20 3. What are "torts i" Do you know of any law or rule of the courts in regard to tort-fensors, liable to effect the liability of an Architect to partics other than his client?
25 4. State what you know of the responsibilities an Architect incurs in the event of the failure of buildings constructed from his drawings and under his supervision, and say to what extent these responsibilities ate shared by the builder and owner. and final certificates. 6. A contract provides that the certificate of the Architect shall be a "condition precedent" to payment, and that his decision shall be final, and further that the contractor must obtain written orders signed by the Architect for extra work before such work is commenced. (a) What is meant by a condition precedent? (b) If the Atchitect includes in his final certificate extra work for which he is not given a written order or work which has not been properiy executed, must the proprietor pay the full amount certified for ? If so, why so? If not, why not? (c), What will be the effect to the builder if the Architect refuses to grant him a final certificate. I Because he honestly believes the work to be improperly done, when as a matter of fact the work is done in a manner that would be accepted by another Architect. 1 Because the proprieter told him he had not the money to meet a certificate, and induced him to delay granting the certificate in consequence. 7. To what extent has an Architect power to order changes in the work shown by the drawings and specifications? If for instance the drawings and specifications showed that the foundations were to be piled, and the contract provided that the contractor was to make such additions or omissions as the Architect directed, and the Architect finding piling unnecessary directed the builder to buik the building without piling-would the court recognize this order ? C_{r} if the Architect considered a wall specified to be built of brick would be better if built of stone, would he be justified in ordering the chance without the express assent of his client? If he did order it, without such consent, would the court recognize the order?

Heating and Ventilation. Final. Heating.

Values. Neating.

1. Name the different ways in which heat may be transmitted and explain clearly how heat is given off in ench case. 30 2. (a) State the advantages and disadvantages of hot air heating.
(b) Staie the advantages and disadvantages of hot water heating.
(c) State the advantages and disadvantages of steam heating. relation to the rooms to be heated 4. What precaution should be taken in the running of the hot-air pipes so that hot air may be carried equally to the different rooms on all floors?
2. What is the average temperalure of the surface of a hot-water radiator when the system is working properly on a cold day?
3. State the reason why a hot-water plant cannot be piped similar to steam. That is, what precautions are necessary to ensure that all radiators may obtain an equal supply of water? 7. What is meant by the water line of a steam boiler and what relation must it bear to the positions of the supply and return mains for the proper working of a gravity job?
4. What is a false water line in a steam heating job and is it a satisfactory method of overcoming differences in levels? - 9. What is the usual pressure on the boiler of a first class gravity system of heating ?
o 10 What is meant when it is stated that a building is heated by (a) exhaust steam
(b) live

- 1I. In piping a building for heating by exhaust steam what precaution must be taken as to the position and size of he steam main?

12. What service is performed by a Nason steam trap?
13. What service is performed by an Albany steam trap? 14. What is meant by the one pipe system of piping ?
14. What is the cause of noise, etc. in a steam plant and how may it be avoided ?
15. In a two pipe system of steam heating in what direcfion should the main steam supply fall?
16. Should the safety valve on heating boiler have a lessel or greater opening than on a high pressure boiler?
17. What is the object of a check valve on the main return ? to 19. Which is the better method to carry the return mains under the flaor or above? State seasons for your reply.
25 20. What should govern the amount of heating surface to be placed within any room to be warmed?
18. Is any moisture given off to the air of a house by a hot water or stean beating plant?

VENTILATION.

10 1. What is the usual method of detecting impure air?
10 2. Why does a column of air pass up or down a flue?
3. When should an out-let register be placed in a room heated by hot air ?

- 4. Does impure air rise to the ceiling, drop to the floor or does it do either ?

5. What is the highest speed at which air can be brought into a room without causing a draught?
5 6: Is one opening out of a room for ventilation purposes better than two or more openings or not?
6. What is meant by upward ventilation ?
7. What is meant by downward ventilation?

10 9. Which is the more satisfactory and why?
10. What amount of floor area and cubic space should be allowed in a school room per pupil?

Sanitary Science.
 FINAL,

Value
25

15 16. What measure would you tike to prevent any danger to health arising through emanations from the ground beneath a house?
17. What are the causes of damp basements in clay soil and how would you provide against such dampness?
18. What is an earth closet and what are its advantages and disadvantages?
19. What is an anti-syphon trap and what are its advantages?

> 20. How may a trap become unsenled?
21. What constitutes a good trap?

The Elements of Building Construction.
 Sirst and Fecond Intekmediate. APRIL 8TH.
 Ma. E. BURKE, Examiner.

NOTE: In fst intermediate 170 marks torill be the greatest number obtainable and so per cent. the muniwnum to pass. In the second interinediale 130 marks will be the greatest number oblainable and so per cent. the minimum to pass. The Questions enclosed in brackets are not required of the first inicrmediate students.

10
10. Sketch section of fat roof, (fell or gravel), at parapet wall and method of fashing.

1. Draw to scale of $1 / 2$ " to the foot a section of a rubble stone Celkar wall 18^{74} thick, showing footing course in proper proportion. Show how wall is built in Section and Elevation and indicate description of work in writing upon the drawing.
2. Draw to $1^{\prime \prime}$ scale plans of two Successive Courses of a one and a half brick wall at the angle of a building showing Flemish bond on exterior and English on interior face.
3. Sketch in Elevation a random coursed wall of squared rubble having a rockfaced plintb, quoins with margin draft and weathered coping. Also sketch section showing bond. 4. Show Elevation of a window to $1 / 2$ inch scale $3^{3} 0^{\circ \prime \prime}$ wide 6'o" high in a one and a half brick wall with Segmental Arch-one hals the arch to be "bonded" $11 / 2$ brick in height and the other to be "rowlock" same height. Indicate on the elevation in a serics of four courses each, three different kinds of bond. [Show $1 / 4$ full size section of jamb, head and sill. Sashes to be hung with weights.]
4. Show a far stone arch over a 4 ft . opening with the stones joggled. What is a cramp?
5. Skeich a Scarif Joint $3^{\prime} 0^{\prime \prime}$ in a $6^{\prime \prime} \times 8^{\prime \prime}$ timber. [Show plan and elevation and fastenings of a beam spanning 22 f ., the largest timber available being $3^{\prime \prime} \times 12^{\prime \prime}$, stuff 16 ft . long, beam to finish 9 thick.]
6. Show Section of a brick trimmer-arch with trimmei joints, flooring and deafening.
7. Draw Section to $\boldsymbol{1}^{* \prime}$ Scale of a King-bolt roof.truss, having a span of 30 ft . Indicate the names of the different niembers.
8. Sketch section of Gutter and Eaves, wood or metal,
9. Show a section, 10 a scale of $2^{\prime \prime}$ to the foot, of jamb and
sill of an external door in $11 / 2$ brick wall, the frame being 6×4, and the door iys thick, pannelled on the outside and bead flush on the insicle.
17 12. What is understood by the terms : beam flling, bricknogging, damp-course, bats, corbelling, grouting, template, parging, deafening, strapping, plugging, housing, morticing, lenoning' bridging, key (in plastering), wiped joint.

Nature and Properties of Materials. Final.
 APRIL 8TH.

MP E BuRKE, Examiner.
NOTE : 80 marks will be the maximum number of marks passible to be obtained and bo per cent. The mintinum to pass. What is the composition of good Oil Paint and of Varnish.

Technical Terms

Firsi Internediate.

NOTE : 100 marks will be considered a full paper.
Values,
I. Define : Abacus, Fillet, Acanthus, Verge-board, loss Coping, Voussoir, Cavetto, Chamfer, Architrave, Base Coping, Aisle Crockels, Mullion, Extrados, Console, Patua, Groin, Dais, Clere-storey, Transept, Surbase, Beak-head, Astrakal.
2. What is a Chamfer Stop? Sketch one.
3. What is a Rose Window? Sketch one.
4. Sketch, roughly, any Gothic Roof principal, and name the varioustimbers.
5. What do you understand by a Broach Spire?
6. Describe the main features of any Church you know using the proper teclinical terms for all parts.
7. Sketch a Classic Conice, and give the proper names to ench member.

Siecond Internediate.
 AIPILE STH.
 S. H. Townsend, Examiner.

Nore: 100 marks will be considered a full puper
Values
15 1. What is a Corbel Table?
50 2. Define: Cyma-recta, Fillet, Surbase, Gargoyle, Torus, Trimsept, Abacus, Mullion, Apse, Console, Flamboyant Bowill, Voussoirs, Crockets, Achlar Annulet, Triglyph, Extrados, Boss, Caryatides, Clere-storey, Dais, Cavetto Architrave, Astragal.
15
3. What are Chamfer Stops? Sketch one in the Nomman and one in the Early English style.
4. Sketch three examples of Norman Plain Mouldings and name the members.
5. Describe any Church you know, using the proper technical terms wherever possible.
6. Sketch roughly a Column and Entablature in any order. Name the order, and each of the members.

Final.

S. H. Townsknd $i_{\text {xamizer }}$

Note: roo marks will be considered a full paper.
Values.

1. What do you understand by "long and short work? Sketch an example and say where and when it was used. Label Mitre Boptll, Donjon, Cyma-recta, Fillet, Surbase, Squint, Throating Torus, Gargoyle, Transept, Squinch, Extrados, Abacus, Modilfion, Caryatides Dais.
2. What is a Broach Spire? Sketch one.
3. Of what members do Norman Plain Mouldings consist? Sketch three examples of Norman enriched mouldings, and give the proper name to each.
4. What is an "Impost"? Sketch one.
5. What is a Rose window ${ }^{\prime \prime}$ " Sketch one.
6. Sketch a column entablature in any of the Greek orders, and name the members.
7. What is a Corbel Table? Sketch one.
8. Describe the roof and main entranice door of any Chürch you know, using the proper technical terms and names for all mouldings, fixtures, etc.

ILLUSTRATIONS.

KESIDENLES ON DORCIIESTER STREET, AONTREAL, FOR MESSRS SIIEARER AND IIROWN.-VRIGHT \& SON, ARCEITECTS.
The above houses are situated on the corner of Dorthester sireet and Atwat, r avenue, and the whw is taken up on Atwater avenue, kooking on the front on Durchester street. They ure tuilk ol Nova Scotia red sandstone furnished and buill by Mr. J. H. Hutclison, contractor.
They are lined on the froms with serra colta blocks.
In the plumbing the very best materiats have been used, and all is fitted up very complee.e. The buildngs are wired for eleectric lighl.
The fat portion or hollow roor is covered with Sparham cement and the mansard with best red siale, cul round. Firewall, covering, nosing, etc., are all cold rolled copper, as well as all the hip rolls and terminals.
The ground floors are finislice in oak. the first Roor in whitewood and the halance in pine. All the interior detail is made to correspond with the interiors tone work. The from is richiy earved.
The contractors for the work were as follows: Masonry, J. H. Hutchiason; carpentering, J. Shearer : plastering. P. C. Wand; plumbing and electric wiring, Roli. Mitchell \& Co.; roofing, Caupbell \& Co.
DHOTOGRAVULE PLATE-ST. ANDREW'S CHURCH, TORONTO.-W. G. STORM. ARCIITECT, TORONTO.
house in hosedale.-E. n. jarvis, architect, toronto.
al,EXANDRIA SCHOOL FOR GIRLS, EAST TORONTO.-HENKY SIMIHON. ARCIITECT, TORONTO.

HOW TO ESTIMATE.

By W. H. Hodson
Following is a portion of the balance of the specification and bill of quantitics iccompanying the drawings of Baptist church, Walmer Road, Toronto, published in the Canadian Architect and Builder for May. The remaining portion will appear in our next issue :

CAKIENTER AND JOINER WORK.
Provide and fix all necessary centerings and turning pieces, none to be removed until nuthorizel by the urchitects. Provide curnbered lintels 6 in. in depth by the thickness of wall where required. Framing lumber to be of good white pine free from large or loose knots, shakes or other imperfections and to hold the full sizes shown or specified when fixer in the building. The portion showing below plaster line must be carefully selected free from dask knots, stains and cracks. The joists and rafters nay be of sound well seasoned hemlock. The joiners' work to be executed (unless otherwise specified) will good quality of clear rach well seasoned white pine lumber suilable for carving. The woodwork of front of phatiorm and baptistry. panelling and tracery at back of phatorm, gallery fromt ansl casing of gal. lery beam, vestibule screw and the doors and jambs in auditorium and front vestubule, and strings of stairs to be of well sensoned black ash, kiln dried, and of best quality. The turned pillars in gallery front to be of Llack birch. The carpenter to hoist and set the iron columns and girders which will be delivered at the building by founder, who will assist carpender in putting columns eogether, supplying and fixing the necessary bolts and doing ting columns cogether, supplying and fixing the necessary bolts and doing any driling required. Board over gtome sills and weathering as soon as of joists, and elsewhere ris required for fixing trimmings and at every a ti. of joists, and elsowhere as requrin for fixing trimmings and at cvery 2 it. in height of dressing rooms and vesiry outer walls to which to nail battens Sc.e. und provide ail mecessary wood, Uricks, sc. Batem outer walls of vestry vetibules will be finished in brick) Ground Boor joists 10 be 12×2 in at vettibuics will be finished jol brick). Ground hoor joists to be $12 \times 2 \mathrm{in}$, at Bearsage of 16 in . cenircs resting on wills, ind on 30×12 in. beams. Beains 10 rest on wails and on brick piers, joists of porch, renr vestibule, dressing roont and vestry, 10×2 in, at 16 in. centers, Gallery beams to Ge composed of ten $12 \times$ /s dressed boards breaking joint and well nailed. Gallery josts to be ro $\times 2 \mathrm{nt} 16 \mathrm{in}$. centres : outlooks or same $2 \times 6 \mathrm{in}$. Form rising plates wil h 2×4 in, stuff as shown. The rear gallery beam is to be carried in four dressed and chamfered brackels ns shown ; brackets $t 0$ rest in sone corbels, and 10 be bolted and well anchored. Deck joists of vestry \&c., to be 10×2 at 16 in. eentres, made up with 2 in . suff 10 form slope of $\%$ in. to the foot. Form curves for skylight with 2 in . stuff 10 in . nbove roof, and line in inside with natrow matched ant jointed sheeting with bend nt ceiling line and moulding at tep. Trimners nt stioirs, nues, windows, 8 c., to be 4 in. thick. Put a cultrse of $2 \times 2 \mathrm{in}$. bridging between encti benring. Joists of tower to be 12×2 at 16 in . centres, The run beams or plates of main roof resting on iron columns to be formed with five thicknesses of 2×10 in. stuff breaking joint, and in iengths to span two bays-to be well spuked with 5 in. wrot. mron spike at 3 ft. spaces with double $\nexists \mathrm{in}$. wrot. iron bolts at all joints. Wnils of clere story 10 be formed with $10 \times 2 \mathrm{in}$. studding at 16 in . centres, resting on 6×10 in. dressed and chanifered beans cuting in between iron columus. Plate abbove this beam reeciving ends of nisle rafters to be $2 \times$ to in. spiked to studding wherever practicible; the friming timbers may be made up to several thicknesses of stulf instead of being solid. In such cases joinis must be properly broken and work thoroughly spiked and bolled. Princijxal miners. collars, the beams, queen posts and wall pieces to be of the sizes figured on detail slicet, dressed and stop chamfered or uirned and moulded as shown. Purlines 6×8 in., checked into principals and stop chanifered. Ribs on ceilings forming panels to be 2 in . thick, rounded at angles, curved ribs to be made up of several thicknesses of stuff, breaking joint and well glued and maited. Carpenters to supply and fix all the boins, straps, iron rods, nuls, wishers, stiruups, \& c ., in connection with the franting of roof rithe ns directal. Common mitiers and collars $6 \times 2 \mathrm{in}$. at $\mathbf{t} 6 \mathrm{in}$. centres, collars to be well spiked to mifters. Rafters of pinnacles to be 4×2 secured to 4×4 in. mast, built into brickwork. Conse the run benms de., with 36 in. stun, forming frieze having nngle moulding ns shown. Form moulded cornices in wood culting in between principals. put moulded fillets or cornices wherever necessary at junction of wood or plaster work with finished brick walls.
Roofs, sloping and flat, to be sheeted with $3 /$ in. matched boarding weil nalled to miters in widil)s not exceeding 8 in. haid to break joint. Put proper 3 in. rolls to ringes. Eaycs and gabies to thave ends of ratiers dressed; dressed and bended soffit, dressed facia and moulding against wall. Eaves of pinnaeles nnd buttresses to be moulded as shown. The oul air trunk connecting calvanized iron vent tube in loft of church to tower oo have 6×2 joists, 4×2 studding and ratiers; wails and roor to be boarded or shining, soffit to be sheeted with $3 / \mathrm{matched}$ and V jointed stuff, and floor nid with 3 in. matched stufl ; hinged lanten door in cast side fastened with sood boit. Provide u valve in the snmat of light stuff, hinged at top and worked with rope and pulleys from gallery stage of tower. Carry this duct with nuteled sheeting into belfy as shown. nind form stanll door, hinged and bolted. in the same. Shicel walls of elerestory on outside with ${ }_{3}$ matelied stuff. Lay gronnd gallery floors with good quitity of well seasoned $3 / 1 \mathrm{in}$. grooved and tongued boneding. blind naikd to joists
and properly cleaned off on completion, boards not to exceed 4 in. in width. Forms steps at gallery passages. Partitions shown on phans by a yellow tint to have $4 \times 3 \mathrm{in}$. heads and sills, common studs 4×2 at 16 in. centres; door posts $4 \times 4 \mathrm{in}$; braces 4×3 in. Truss partutions wher necessary. Stairs in tower and N. E. stairease to have $13 / 4 \mathrm{in}$. close strings beaded, with moulded capping and string mould, If treads, rounded nosings, civelts, and filitet, $3 / \mathrm{im}$. risers, $7 \times 6 \mathrm{in}$. turned rea oak newwets 5×3 in. moulded red birch rail, and 13, in. turned birch balusters, Stairs in cover from gallexy level 10 next stage 10 be generally similar, but with 5 in. newels and 4×3 in. rall. Enclose ut head with 76 matched and jointed shecting with panelled door hung with 4 in. butts and finished with good mortice lock and porcelain and ptated funiture. Stairs to have all necessary carringes, bracketings. \&c. kc., conuplete; street soffit of stairs with narrow and jointed stuff. Stairs to basement 10 have 13, treads, no risers, rountled nosings, $23 / 4$ strings, rounded rails. Stairs to tower belfrey from upper floor to have rity strins and treads, rounded rall and 4 in. newets. The windows of restry and dressing rooms to bave proper boxed frames
wiah all necessary lines, weights $\& \mathrm{ce}$, $11 / \mathrm{in}$. moulded sashes fastened with all necessary lines, weights ac., $13 / 1$ in. moulded sashes fastened with Berlin bronze automatic fasteners and furnished with brass ring window lifts. All basement windows to be prolected by wire guards of stoutest wire well secured to frames. Windows of ehurch tower, vestibules \&e., io laves solid citis oucide and lights and beaded hilets outside and inside as shown, ventiators and gabiles o have chamfered frames and $7 / \mathrm{in}$. kouvres. Pul hinged ballen doors on inside, fastencd with boles. The doors to basement arca to be $13 / \mathrm{in}$. thick bead and butt huug with 6 in. butts and furnished with two 8 in. barrel and wo 8 in. square bolts to each lear; provide strong hooks. Frame 4×6 chamfered and rebated 2 in rounded oak sill. Door at back of west porch o be $1 \$$ panelled and champered, hung with 5 in. Berlin bronze butts furnished with 5 in. good mortice lock, bronze knobs- 4×6 chamfered and rebated frame, 2 in. oak sill. The entrance doors on east front to be of oak 23 in. thick. panelled as shown, with rounded stiles and raised panels. Doors to be hung with 3 best 6 in . butts to each leaf, furnished with heavy squirce bots to both leaves. and ecclesiastical escuteheons and drop handles of selected design. Provide and set also ornamental cast iron hinge plates according to decail; frames to be rebated and moulded with sulf beand and nooukled tracenid fanlights with stop to secure glass. Provide heavy wrot. iron hooks to hold doors open. The siving doors immediately inside of the foregoing 10 have noulden mmes finisied above wibh crwon mould. Doors to le 1% in. thick, pinelled, moulded, vencerer, with black ash and pre pared with stops for glazing ; to be bung witti Chicago doable action spring hinges, nickel plated, and fornished with 12 in . polished copper finger phites boxit sides. The other swing doors from vestibuke to tower and staircase to be simikar, also that from rear porch to vestibale, execpt thnt the katter will be of pine and will have japanned linges and porcelain finger plates. The swing doors opening into gatery will be similar to those in front vestibule, but without glazing. The external thoors of porch at rear of charch to be $\% \mathrm{in}$. matched and bended boarding $21 / \mathrm{in}$. framed nnd chamcered stikes atri $1 / 4$ inch back-rails, bung with three pairs of 5 in. butts to in. related and chamfered frames, having 2 in. oak sills, and fumishied vith β in. spring and to in. barzel bolls and best heavy rebate mortice locks and 2 in. hronze knous. Fasten back doors with strong brass hooks and cyes. Doors from church 10 rear vestibule to be $13 / 4 \mathrm{im}$. panelled and moulderl, to be hung to moulded and rebated with two strong 5 in. Beriln buonze spring hinges to each leaf, and furnish with best 5 m . mortice locks, beavy copper bronze handjes on one side, and copper iron finger plates on the other standing icaf to have $\mathbf{t} 2 \mathrm{in}$. bronze fausht bolts, and strong hooks to hold both leaves open. Doors from eburch to vestry to be gen crally similar, but hinges not to be spring. Sabstitute also bronze knobs for hamelles and finger piates. Doors from front vestibule to church to be similar to those to rear vestibule in every respect, but prepared for clazing. Doors opening on to platform to be bung with three 4 in. Berlin bronec hingess to each and furnished with best it in. mortice locke, copper bronze knolss and furniture. All hardiwood doors to be veneered. The doors in vestry and dressing rooms to be $5 \% / 4 \mathrm{in}$. panelled and chamfered hung in proper rebated and beaded frumes with 4 in. Berin bronze but hinges. and furnistied with good 4 in . mortioce locks, brass botis and keys, porcelain and plated furniture. Doors in plastered partitions to bave $3 / \mathrm{in}$. simply moulded arehitaves 41 . in. wide with band mould. Walls on ground floor keading to dressing rooms and vestry to be sheeted to height shown with z in. matebed and V. jointed sheeting of the bes hualily, in widths not excoorling 4 in., blind sniled 10 grounds, and finished with moulded capping. Dressing rooms, lavatories and vesrry to have 8 in. moulded $3 / 2$ base and $5 \times$ 洛 moulded chnir mil. Pit fillet at juinction of lloor and buse. Vestibule screen to be according to delais, 10 lave moulc ed posis or franes, hoxed for weights. Dado of 24 ini, $x \%$ nuathed V joinied shecting, double, forming pocket into which sashies may slide ; sashes to be $21 / 1 \mathrm{in}$., prepared with stops for lend glazing, hung with the very best sash cord over heavy brass pullies and heavy weights, and bronze lifts is required. Form baptistry with proper studding and joisting, and shee reguired. Form baptistry with proper studding and joisting. and sheet noor and sides with narrow matehod stuff ; curb io be misulted Foit moonded enpping-proper delached soid steps in baptistry. Froin pannelling, \&ce, as shown, Pulpit phatform 10 have 6 . in by a in. joisting on panneling, de, as shown, purpit patiorm io have 6. mby ain. josing on proper supports-fioor as church-front to be of panelling as shown, with rounded sties and moutded capping and base, trut steps to platorm a shown. Gailery front to be according lo detaill turned balusters nnd tractitd punirs to platform. Provide and fix cut iron brackets on stays at about 5 f stairs to platforth. Provide and fix cut iron brackets on stays at about 5 ft space weluscuil balustende of stairs from gallery to platform to be a con String mould mil baluscrnce of stairs from gallery to platform to be a con tinixation of gallery front is shown; form proper carriage and hearers of these shairs and prepare for plastering. Steprat side emrance to be 2 in by 3 in. statted and dressed 3 sides, 2 in. strings resting in cedar bearers, slat walk in rront of seme of similar stuft in cedar slecpers and having
 shecting 7 . high in 3 in. widiss, hinsted with cupping. Doors to be kep
up 6 in. from floor; to be panclied and furnished with brass bolts and
 hung with 33, butts Piumber will supply seats of ctosets. Partitions with 1% in. bevelied plank secured to brick work with $\%$ in, bolts 2 I . long Trim for registers and cit for stenm fitters, pipes, \&c., ns required Form sife of cant bin with a in plank on proper girth, Allow the sum of $\$ 100.00$ for conlingeracies which will be deducted at final setulement if no required. Allend on other trades is required in the execution and for the: perfect completion of the work.

IRON FOUNDER.
The iron columns to br delivered at the building, and the carpenter will hoist and sel the same, nssisled by founder, who will do any necessary htuing. drilling for boits and suppy all connection, hastetiom plates where All bearings to be turned ind encne columns under pulpit plaiform it in dinm. $1 /$ inch metal. Provide six columns under enilery 4 in. flameter metal, having moulded caps and shaft enriebed with a diaper pattern of ap-
proved design. Provide and fix on ground Noor eight columns, io in. diameter, Y/ metal, bnving diaper pattern as above. Caps will be of plaster. The second stage of column will be (O) shaped ro in, diam. \% metal, Caps will be of plaster, as shown. The third stays of column will be + to in. diam, I in. metal. All to bave the necessary brackets, bolts. stays, \& c . according to detail. Gallery front will be of wood. Provide and sel across bapkistry recess owe ta in. I beam, 22 fl .6 in. tong, weighing 40 lbs. to the foot, and one 6 in . I beam II n . long weighing 16 lbs . to the food to carry back wnll of organ recess. Provide and set two pairs of rolled fron girders neross openings under gallery at tower and stair case, each cirder to girders across openings under gailery at tower and stair case, each girder to washers. Drill for serews securing wooden fillet on soffit to cover gap.
galvanized IRON.
All the main eaves or nave and ais'es to have 5 in., and caves of tower, vestibule and staircase nod vestry building square formed No. 28 galvanized iron, gutters properly sccured to facias with wrot. iron brackets $1 / 1 \times 1$ in.
and
stiffened
vith
$7 / 16 \times 7 / 16$ wrot. iron birs in best manner. Put fifteen and stiffened with $7 / 16 \times 7 / 16$ wrot. iron bars in best manner. Put fifteen 3 im , octagon ginvanized iron down pipes properiy connected at eaves waps oid lasts not more than 8 ff pha ; secure o wall with ormamentar wrot. irow h caves to waste on main roof and puts in bo stacks of similar pipes io the other two sides connected to the 3 in . pipes. Flash at walls of church at deck of vestry building with galvanized iron so in, wide let inio joints of brickwork cemented and turned down over felt. Cover wreathing orrojection well on west elevation with No. 28 galvanzed iron, lappeil tacked and soldered. Provide and set glazed with rough plate two galvanized iron skylights having ventilators with valves opened by cords and pulleys. Provide and set on ventilating openings in ceiling of church ornamental register gratings and carry from the same to box near tower No. 28 gilvanized iron duces of sizes showa, carchiny slayed and made secure rand tight. Cover belfiry floor of tower with No. 28 galvanized iron, lapperl, lacked and soldered, and line with scupper and shoot to wasle over church roof. Carry the iran gin. up on to wall and cement into joints of brickwork. Put galvanized iton shield in front of duct opening orer roof of N. E. staircase held in place by wrot, iron brackets.

SLATER.

Line valleys with galvanized iron 15 in . wide. Cover saddle at back of tower with No. 28 galvanized iton carried up 2 ft . on to roof of church. Cover ridge rolls. Fhash under sill pieces at jurnction of ctear-storey walls, nisle roofs. Cover the sill pieces also and earry the iron well up behind in all tiles-sny 5 in. Step and cloak fash at climmeys, tower, gables, As. as required. Cover walls as shown and rools of pinacles, tover and stair case, with hard burmed dark red tikes of best quality (Ontario or Toronto Pressed Brick Co's.) of patterns to be selected. Form hips at tower and pinnacle roof and provide and sec terra colta finials as shown bolted with iron rods to wood work of spire, \&c. Cover the other sloping roofs with mediums sized Canadian slates from the Rookland quarries laid on heavy khe. The adouble coursc at caves. Slate the weatherings in west elevation. also the walls and edge of gangwny to tower. Cower fiat roof of vestry building with best felt pitch and gravel roofing, guaranteed for five years in writing. Repair and nake good after other trades and leave all perfect and complete.

BILL OF QUANTITIES.
carhenter and foiner work.
$6,600 \mathrm{ft}$. of pine timber (boaml measure) in beanis, partines, $\$$ c. phasos,
25.300 ft. of hemlock timber (board measure) in joists, ratiers II \% squares (100 f., of $2^{\prime \prime} \times 11 / /^{\prime \prime}$ latlening, onter walls of dressing roont and restry
12 squires (100 fi.) of to in. $x 2$ in. studding, clear story
50 squares (100 fl . of 2 in . ribleed work, in reof, ceilings, forming panels, curved al angles
21/4 scuuares of $3 / 2$ matched roor sliceting. 8 ins. wide
9 squares of 3 matched sheeting to chear story
is/ squares of 3 matched floor
I $1 / 2$ squares of $/ 2$ milucled and v jointed sheetine
120 lineal ff. of platform fromis, best gunlity black asi, kiln tried 72 lineal f. of bapkistry panel work. tracery and mallery front kiln dried
24 lineal f of casing gallery bein
262 lincal f. of run beall ont iron cotumns, g thicknesses to in. x 2 in. and $3 / 4$ recize casing, bolts spiked, etc.
160 lineal fi. of forming cornices mondel at principals, and junction of wood work and phaster at brick wall
232 ineal ft . of 3 im . rolls to ridges
430 lincal ft. of dressed caves and beaded sofit, ete.
147 lineal f . of pinnacle dressed eaves
12 black ash duors and jambs, nuditorium, vestibulc, etc.
5 pairs roof princlpads wrought and mouldexd, as per section
Io pairs roof principals smaller, wrought and unoulded to nisles
I hinged door in tower floor bolted
I valve linged and with ropes and pullics, to belfry, und with small door hinged and bolted
173 stinir steps finished, etc, as specified, different widths, strings black psh and open treads to basemen
4 diack birch turned pulars. gallery fron gallery beam, on stone corbels, 3 iron bolts in brick wall, aneliored
1 rows of $a^{\prime \prime} \times 2^{\prime \prime}$ bridging
Provide and fix centres, etc, I Ihronghout, provide cambered lintes 6 m , wail thickness, hoisting and scting 16 iron columns, 6 beams and girders, to receive assistance from tron founder Boarding over stome silils and weathering, etc., its required
812 squares of 3 in . G and T gnllery iloors, 4 in. wide, stepped at passages
34 squares of stud partition, Imissed wheic necessary
squarrs of $4 \mathrm{in} . \times$ Kin. viointed wall sheeting mould, capped incal f. of vestibule sereen mould frame hoxed for weights. etc., complete
8 lineal f. 3 in mutclied y jointed sheeting, double for pocket to slide sashes, complele
28 lineal c . dado, $2 \% \mathrm{in}$. $\times \mathbf{Z i n}$. matched, v jointed, 7 ft high, cap. ped part up to eciling, complete
o linealit. of area coping, $13 / 4 \mathrm{in}$. bevelled plank
panel door head of lower shair complete, ns specifice
shin, doors to basement area, bead and butt, hardwarc, etc. complete
2) in. paneled door, west porch, hardwafe, etc., compietc an. oak entrance pancl, and fanlight door, double hardware cte., complete
2.1 if in. swing entrance panel door veneered with black ash, hard- $\$$ waric, etc., complete
2 $\%$ in. rear porch door, framed and filled with $\%$ in. matclsed and beaded boards, hardware, cte., complete
$613 / 4 \mathrm{in}$. panel doors, fromt church to reatr vestibule, for glass, vestibule to church and vestry, finer plates, hardware, ete. complete
2 platform doors, hardware, etc. complete
4 I $/ 4$ panel doors in vestry and dressing rooni, complete
4 doors to lavatories 6 in. up from floor, etc.. coniplete
7 basement doors and y large botrowed light. liardivare, elc., complete
4 stiding doors, per plans, hardunire, ete., complext
72% sishes, stops for lead ghazing, sash, cord, pullics, weights. 7 2y sishes, stiple comple
$21 / 5$ sashes over same, south elevation
4 windows (English) to vestry and dressing roont complete
4 windows, church towers and vestibules, stops for leatl lights and
hends, fillets jaside and out, ventilaior, ete., complete
basement windows and wire guards complete
25 basement windows and wire gua
36 clere story windows complete
3^{6} clere story windows comple briel window, nerth elevation, complete
I pulpit platform, panelling round stiles, mould eap and bases, steps, etc., complete
r 2 in. plank conl bin
Trimmers for registers, and cut for steam fitters pipes, etc., attend on other irades and lenve work complete
Straps, iron rods, nuts and washers, stirrups, bolts, spikes, etc., in the above work as specified
Add $\$ 100$. for contingencies, (if not required deducted at final)
Note - Beginning whth bearing timbers, (undressed) the measure, thus : joist $30 \mathrm{ft} . \times$ ro in. $\times 3 \mathrm{in}$. $=$ equal to 6 ft .3 in . cube-to bring into board measure; multiply by Σ (fora foot square) gives the board measure 75 teet Flooring, roof boarding, studding, farring, \&c., theasured length ind breadth, thus: 25 ft . $x 16 \mathrm{ft}$. gives $\mathrm{I}_{4} 400 \mathrm{fl}$., equal to 4 squares of 10 ft . x 10 t. Lineal meas of running (eet applies to cornces. And dressed work enerally. the sizes stated either in quantities or specification. Itenis in numbers, such as doors, windows, Scc., as above

$$
\begin{aligned}
& \text { JKON FOUNDER. } \\
& \text { Dulnit mal form }
\end{aligned}
$$

23 in. metal columns under pulpit platform 4 in . diameter .
Fin. metal columns under galiery moukds and ornaments 4 in. diar
8 in in. metal columns on ground floor, $10^{\circ} \mathrm{im}$ dinr, eaps and plinths
beapman' $6^{\prime \prime}$ long 40 lbs. to the foo
1 beatin II' $6^{\text {er }}$ long, 16 lbs . to the foot
2 pairs rolled iron girders $211 / 2 \mathrm{lbs}$. to live food
Yokes, bolts, ornamental washers, drill for screws, etc., as required
577 lineal it, of 5 im . Na. 28 G. iron gutters, branclies, cte., complete
3^{80} lineal ft. of octngon G. tron down pipes, 3 in.
150 lineal ft . of No. 28 G . rron ducts, stays, etc
2 squares (roo ft.) No. 28 G , iron covering, belfry floors, cemented, and shoot to over church roof
a galvanized iron skylights, ventilators opened by cords and pullies
4 omamental registers, gratings to ventilating duets
G. iron shields to duct opening and brackeis complete

Flashing to walls at duct, and projections loppet, tucked and soldered
NOTE.-The measurements for this work as given above, lincal. SLATER.
igily squares (roo f.) dark red tile covering walls, roof of pinncle. $\$$. . etc., npproved
75 squares (100 ft) Rockland slating on I ply tarted filt
50 lineal fr . G. iron valleys. is in, wide
140 lineal ft flashing clere siory covering sills, etc.
152 lineal A . of step and ctoak ninshing, chimnies, tower, gibles, elc., complete
100 lincal ft. of state weathering, west cevation
1 saddle covered with G, iron at tower
1 terra cotta finial bolted to wood work
Repairing and making good aner olher trades
Note.-Measured, and contents given in squares, before mentioned
lineal measure, also, and the sizes as alove.

HYDRAULIC CEMENTS-NATURAL AND ARTIFICIAL, THEIR COMPARATIVE VALUES.

(Covtinued from May Number.)

To be sure. the Portland costs twice as much, but it tests twice as ligh; therefore it is to be expected io cost nccordingly. We nre apt to tose sight of the fact that both classes of erments sells for just about the same price at the mills, and that the increased cost of Portland is due to ocean freights, duties. dock charges and importers' profic, and even the most zealous advo. cate of Portland cement cannot claim that these charges can. in anyway, enhrance the intrinsic value of thit cement. Bat higher price genernlly means better quality and backed by the testiug muchine, the engineor is perhaps justified in his opinions.
The testing machine is a good thing if put to its legitimate use. It is the abuse of it that we object to. It ghould oceupy a subordinnte place. If this were thoroughly undersiood, all. would be well, but unfortunately the resquisics to a thorough understanding of a proper use of the machine requires more time and study than it docs to kearn to moke and test it bri-
quette. It consists in knowing something of the chemistry of a cement; in knowing what a table of analysis means; in having a knowledge of true combining proportions, and the effect of variations therefrom. Then the combining proportions, and the eficet of variations tierefrom, testing machine becontes a valuable auxiliary, for its rendings will then have taken on a nuv meaning. The student will find that many of the rules and regulations governing tests, that have been built up within the past few years are unsound and need revision.
The lesting muchine revents many curious freaks, and taken on the prineiple thut Everything is for the best." it may yet revent to us that a cement nuay nemdous struggle on the part of the Poriland cement manufacturers 10 supply nuendous struggie on the part of the Portland cement manufactucrs to supply it, striving by every conceivable means to beat the record, is all wrong. This may sound strangely at first, but a study of ine rables of long-time lests of Porland cenments, is complied by such engineers as Clarke, of Bos tow, and MacClay, of New York, and ohers eminent in the profession, reveals the rather startling fact that briquettes of neat Portland do nol test is high nt 3 or 4 years as they do at I or 2 years old. Clarke says: "They become brittle with age and are apt to fly into pieces under comparatively light loads." If this is the result with neat cement at that age, what is to prevent the same results with sind mixtures at 15 to 20 ycars or so ? 1 have seen walks that were made with Portland cement concrete remain in perfect condition for 8 years, and during the ninth year go all to pieces. An examination of the broken pieces shows the concrete to be exceedingly hard but brittle.
'The ten years' tests of Portland cement made by Dr. Michaclis of Derlin. show that the maximum strength whs "reached at the end of two years, and this point beld fairly well until the end of the seventh year, but from tha time until the end of the tenth year there was a remarkable falling off in values. We do not recollect ever having seen any table of long-time tests of Portland cement that did not exhibit similiar results, and it is more that probable that it may yet be shown that our natural, slow-setting American cement may, in to or 12 years teats, surpass any artificial cements. The excellent condition of some of our old work, done many years ago widh American cements, would seem to indicate as much.
At all events, we have no proof that the Portland is superior in matter of durability, and we do not beleive that clay and lime can be suktenly thrown together, and kepe there by any skill of man, that can in aus manney compare with the staying quatities as found in first-class matuml eentents whare the chay and line have existed in the most intimate contact for countless nges.
During the past summer the engineer in charge of tice Aboydeen harbor sea works, reported a serious failure in the Ponland cement concrete work at that point; after only 15 years immersion it weat to piuces, whike the nuural cement conurete, at the same place and same afc, was in good condition. He states that every care had been taken in the Porthand concrete used; the cenient had withstood the mechanical tests, and the concrete had set hard. After a thorough examination by a Board of Engincers, assisted by Professor Brazier, of Xberdeen University, it was concluded that "P Port. land cement cannot resist the action of sea water." The Prolessor further states that "A clientical action had taken place between the sea water and the Portland cement in the concrete, causing an expansion and softening of the concretc." The harbor engineer also reported that "the Portland cement concrete entrance walls of the dock had expanded $26 / 4$ inctess, in the lieight of the walls, and their surfaces had cracked and bulged, and the joints of the ctisson Quoin-stones had opened up, causing considerable leakage.
Another case is that at the harbor of Dundee, reported upon during the past summer. In this instance the Portland cement concrete Inad softed in sca water nod natural coment was used to protect it if possible from further distasters.
The investigations of Professor Tetmajer of the Federal Polytechnical Sctrool at Zurich, developed some intesesting information. It has long been noticed in Germany that Portland cement of certain kinds, When exposed ger liad become so serious thit the German Minister of Public Worle issult a circular in 1885 , restricting within narrow limits, the use of Portland ce. a circular in in work exposed to the air.
Since that time Professor Tetmajer has devoted IIImseff to investigating livenitter, and, according to his statements, the cause of the disintegtation of Portand cement exposed to air is to be found in a want of proper reparaion of the materias, partientariy in the lack of sufficient grond ogether of the cinalk and clay to ensure the complete siltication of the lime during the process of calcination.
But the best brands of Portland cement, which had withstood the aetion of water for several years, became soft on exposure to air. He saysalso, that " air especially attacks sharply (heavy) burni eenents, which imbibe a great deal of carbonic neid, and decay in water is caused by an excess of matters thich undergo an increase in volume by mxidation and imbibing of water." he Prolessor foind about io per cent. of the brands tesicd in this condition. In the light of this exposition of the characteristics of both the English and German Portland cements, in the conntries where they are manufactured and where they lave been the longest in use, it would seem that no other or better evidence is needed to prove that artificialiy-made cements, however hieh they may test. are not Irue cements, and the people of this country who of late years, ate using Porthnd cements with such unlimited confidence in the superiority of those brinds over our own natural ceinents, a confidence born of the testing machine and nurtured in the belief that tensile strain ean be as unerringly applied to cements as io iron or stee), may yet awniken to t sad realization of the cleceptive ehameter of such tests, for it may well be prodicted that in a very few years, we shall see cvidences of disintegration and decay in many of the importunt works now being constructed of Port land eement in this country. When we compare these early indications of decay on the part of these new-born artificial centents with tive splerdid record made by natural cements that have successfully withstood the action of sen water for over a century -and the still more trying action of the nir for centuries-renching nearly if not quite as far bach ns civilization itself. We are incvitubly ted to the conclusion that anan lase not yet succeeted in compounding the matcrials essential to the production of a first-chass cement, that can surpase, in durability and general excellence, that which mature bas so bountifully bestowed upon us.

ERRATA.

Editor Canadian Architect and Buildmh. Dear Sir, - I find that a printer s error occurs in the deseription of Mr. E. A. Wells house "The half timber framing is constructed of a in. $\times 6$ in. studs," instead of 2 in. $\times 2$ in. studs as ap. pearing in your publication. Kindly correct same and oblige.
Respectfolly yours, J. Francts Brown.

The Adnmant Mrg. Co., of Syracure, N. V. having re. cently purchased the property nad business orthe Northweatern Adomant Co., of dinneaplis, has been reor. 5tmized with acapital stock of $\$ 5 c o, 0$ oro under the nanic "Adamani Mfs. Co. of America". 'The new company has branches in Newy York, Mitwaukes, Wext Supariar the same management as heretofore.

THE CUELICH SILICA BARYTIC STONE CO.

RDOFING AND PAVING

 MATERIALSTARRED 1 ELLT， 2 and 3 ply． BULLDING PAPERS． COAL TAR，PITCH， DEAFENING FELTS．

MILTON PRESSED BRICK

THE mILTON PRESSED BRICK AND SEWER PIPE CO．，Ltd．，have one of the best equipped plants in the country，and turn out a brick unequalled anywhere in color and finish．Contracts have already been seeured for the season of 1892 of over four million pressed brick．

PLAIN AND ORNAMENTAL BRICK，TERRA COTTA，ETC．，ALWAYS IN STOCK．

WORKS AND OFFICE ：MILTON，ONT．

Toronto Offices：
4 ADELAIDE ST．EAST AND 1172 YONGE STREET．
DR．ROBERTSON，PRESIDENT．

Don Valley Pressed Brick Works

TAYLOR BRTOHERS， toronto．

®アㅍIA工TIEs FOR 1892：
RED，TROJAN，CARTHAGINIAN，ROMMAN，POMPEIIAN， OBSIDIAN，AND FANCY COLORS．
Owr goods are now aclnowledged by the leading Canallan and United States Architiects to be the highest grade manufactured in America to－day．

OFFICE AND SHOWROOMS：
60 Adelaide Street East，
卫OROINTO．

The Canadan Photo－Encranice Bureau 16 Adealide Streest West，Toronto

 Designers－\cdots Engravers

Illustrations for Magazines，Books，Cata－ logues and Newspapers made by the

HLAF－TNOE

or line process from photos or drawings．We can reproduce any kind of black or white copy．

SFND FOR ESTIMATES AND SAMPLES．
MOORE \＆ALEXANDER，

Vol. V.]
The Ganadian $A_{\text {rchitect }}$ and Builder.
[No. 6.

