CIHM
Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculće
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutios lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-tre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
\square
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continue
Includes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de départ de la livraison
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or lllustrated impression, or the back cover when appropriato. All other original copies are filmed beginning on the first page with a printed or illuatrated Impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many framea as required. The following diagrams illustrate the method:

Les ims plus gri do la ni confort filmage

Les exe
papiar
par lo dernidr dimpre plat, $s 0$ origina premid dimpre la derni ompreis

Un des
dernièr
cas: lo
symbol

Les car
filmés
Lorsque
reprodu
de l'ang
at de hi
d'imag
illustrar

L'exemplaire filmó fut reproduit gráce à la gónérosité de:

Hamilton Public Library

Les images sulventes ont étó reprodultes avec la plus grand soin, compte tenu de la condition et de la nettet' de l'exemplaire filmb, et en conformit'́ avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont flimfs en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernidre image de chaque microfiche. selon le cas: le symbole \rightarrow signiflo "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent àtre fllmús à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul clich6, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de hast en bas, on prenant le nombre d'images nćcessaire. Les diagrammes suivants illustrent la méthode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

SPECIFICATIONS \& ESTIMATES of the

THREE SUCCESSFUL COMPETITORS

 FOR PREMIUMSOFFERED BY THE CITY COUNCIL, ,

FOR THE BEST MODE OF
SUPPLYING The CITY WITH Water;

TOGETHER WITH THE

REPORT THEREUPON OF T. C. REEFER, ESQUIRE,

PUBLISHED, BY ORDER OF THE CITY COUNCIL, FOR THE INFORMATION OF TILE INHABITANTS.

HAMILTON :
painted at the spmotator office, court hubs square.
1855.

In all purificati ical impu the atmo water of to that of
(1) In the

PLAN No. 1.

To Robert McElroy, Esq., Chairman of the Committec on Fire and Water, of the Council of the City of Hamilton, C. W.
Sir,-The City Council have proposed for " Plans, Specifications, and Estimates for supplying 40,000 Inhabitants with water from Burlington Bay."
1 respectfully submit herewith Papers and Plans, embracing the arrangement for this purpose, which under the circumstances, I am inclined to propose for the supply mentioned.
These papers consist of remarks on the system of Supply Proposed, Descriptive Specifications, and Estimates of Cost, and are accompraied by a General Plan, showing location of Reservoirs, Engine House, Force Tube, and Distributing Mains and Pipes, Plan of Engine House, Pumping Engine, Distributing Reservoir, and Pumping Reservoir Culvert.
The terms of the proposal of the City Council limit the investigations on the source of supply to the use of the water of Burlington Bay, and its elevation by means of forcing machinery. It is to be presumed that a supply through gravitation from inland sources, is, either from want of sufficient elevation, inadequacy of amount, objectionable qualties, or expensive access, placed by nature out of the question. Our attention is therefore to be limited to the waters of Ontario and the intervention of the Steam Engine.
The fact that the source of supply is thus imperatively fixed, is by no means, in my opinion, to be regretted. The economy of gravitation eupplies is a principle not fully established by practice. There are numerous instances on this Continent as well as the other, going to shew conclusively, that the adoption of this principle has involved large preliminary outlays, the interest of which is largely in excess of the annual cost of a supply by pumping, and the arrangements of the works themselves, much more inconvenient, with an inferior quality of water.
In all large bodies of water there is a constant tendency to selfpurification. The principle of subsidence operates on the mechanical impurities, and in connection with the chemical influences of the atmosphere, with which it is constantly brought in contact, the water of large rivers and lakes is, in many cases, much perferable to that of springs or brooks, for the manifold uses of a city. 11 In the case of Burlington Bay, chemical analysis shows its favor-
able comparison with the water in the inland vicinity, and that used in varions cities, as appeurs in the following table of analyses :

$$
\begin{aligned}
& \text { Burlington Bay.......... } 8.44 \text { gra, solid contents per gallon. } \\
& \text { Grand River.................66 } \\
& \text { Laneaster Creek.........18.78 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vdinbngh. } \\
& \text { New River co.................... } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { New River Co, Londoin. . } 10.50 \\
& \text { Seine. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Seine, Paris..................... } \\
& \text { Artesian Woil }
\end{aligned}
$$

$$
\text { Artesian Well, Grenille... } 9.86
$$

$$
\begin{aligned}
& \text { Croton Rjver................ } 10.93 \\
& \text { Schuylkill River. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Schylkill River.............. } 5.50 \\
& \text { Mudon Rivor }
\end{aligned}
$$

Hudson River.............

$$
\begin{aligned}
& \text { Mohawk liver............................ } \\
& \text { Genesee River }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Genesee River................. } 11.21 \\
& \text { Lake Ontario. Bochhestur }
\end{aligned}
$$

Lake Ontario, TOoChester....10.21
If the location of your city had been made with a view to its supply by steam power, few places on the lake shore conld have been found more favorably situated.
Burlington Bay is formed by a large indenture in the Lake shore, its commodious harbor being nearly enclosed by two narrow projecting tongues of lund, approaching each other from the opposite banks.
The City of Hamilton is located on the primary terrace above this Bay, at an elevation of from 50 to 00 feet above its level. Behind the city a second terrace rises abruptly to an elevation of nearly 400 feet, where it meets the level of the inland country. The extension of the city southerly, is limited by this abrupt clevation. On the westerly side it is also limited by the Dundas Marsh, which is separated from the Bay for some distance by the bold and picturesque promontory known as Burlington Heights. These Heights are directly above the shore of the Bay, and command the entire populated district of the City, with the exception of a few villas built on the slope of the southern terrace.
The proposal of the City Council leaves the ratio of daily supply to each inhabitant undetermined, and the experience of large cities is so varied as to make this ratio somewhat a matter of doubt.
Much depends on the popular impression as to the character and cost of the supply, and the precuation taken to prevent waste. In life on shipboard, for instance, from one and a half to five gallons per day, suffices for all cooking and drinking purposes.

The average daily consumpuion in London, was in the year 1849, less than 30 gallons for cach inhabitant, and as a general rule, this is a large ratio for European Cities. In the United States, however, the ratio is much greater, reaching, in the case of the City of New York last year, nearly 90 gallons. This enormous consumption may be accounted for by the popular opinion, that as the supply comes by gravitation, and costs a large sum, it has or ought to have no limit, and very few precautions are taken to prevent waste. The
shlue ex tion sup the wate

The fo of the la

Fol

Jul

The av 36.52 wit

As the greatei, I and machi supply of which is, desired to considerat saving in t crease in t

Another the Council the expens

Not feeli subject, I h as I presum these plans may be de: there are so are others r rather than with a prop prefer.

REMA
The syste description Machinery,

In locating water may be
sume experience is common to the City of Boston, ulso a gravitation supply, although the ratio is loss, while in Philadelphia, where the water is pumped, the ratio is invariably much less.
The following comparative statement of the daily consumption of the last named cities, will more filly illustrate this point-

The average daily consumption was therefore during four years, 36.52 wine gallons in Philadelphia, and 49.62 gallons in Boston. As the average consumption during the warm months is much greater, I have deemed it best to adopt for the scale of the works and machinery, a ratio of 50 gallons (lmperial) per day, or a daily supply of $2,000,000$ gallons for your city; the present population oi which is, I believe, about half the number for which provision is desired to be made. On this point the plan of pumping has this consideration, that whatever your city uses under this quantity is a saving in the annual cost of working the Engine, and a virtual increase in the capacity of the Reservoir.
Another important point is not deternined by the proposal of the Council, and that is, the sum at which it is desirable to limit the expense.
Not feeling at liberty to communicate with your Council on this subject, I have prepared the plans on such a scale of expenditure, as I presumed would meet its wishes. I have however to say, that these plans may be somewhat increased or diminished in cost as may be desired, without affecting their gencral features. While there are some portions in which I cond not advise a change, there are others readily altered. I have aimed at durabilty and strength rather than ornament. A combination of substantial construction with a proper regard to appearances is what I supposo you would prefer.

REMARKS ON THE SYSTEM OF SUPPLY PROPOSED.

 The system of supply proposed is comprised in the following description of the Location of Engine House, Character of Machinery, Location of Distributing Reservoir, and Distribution :
LOOATION OF ENGINE hOUSE.

In locating the Engine Fouse a site must be found where the water may be taken at a proper depth; where it is not exposed to
the prescht or future sewerage of the City, or the wash of the marshes on the east or west-where the supply may not be aflected by the ice in winter and spring, or disturbed by the storms whieh sweep over the Lake, agitating and roiling the water of the Bay, and where a direct and short communication may be had with the Distributing Reservoir.

From a point where the curve of the Great Westem Railroad leaves the deep cut in the side bank of Burlington Heights, to the commencement of the tangent in front of the Passenger 'Depot, the Road is constructed in embankment, leaving between its bank and the original shore of the Bay, a space varying from 100 to 250 feet in width, now filled with water, which has access to the Bay by a culvert through the Railroad bank.

Experience has shown that much expense and many serious dfficulties are involved in the plan adopted in other places for Lake supplies, of building out a pier into de?n water for the protection of a suction main to the Pumping Engine.
I propose therefore to avoid this difficulty, and secure at the same time the benefit of location above mentioned, by taking advantage of the Reservoir now partially formed between the lailrond bank and the original shore, locating the Engine House at the westerly end of a Pumping Reservoir thus formed. This will be connected with the Bay by a substantial stone culvert to be constructed for tho purpose with a wire screen, bulk head, and sluice gates for regulating the supply, or shutting it out entirely in case of stormy weather : the Reservoir being of suffieient capacity to supply the Engine for from 5 to 8 days, depending on the level of the Bay, when shut off.

This plan secures a constant supply to the Engine of puro and clean water, it avoids the difficulty and expense of laying a suction main out into the Bay, und the serious objection to laying the force tube under the Railroad tacek, where it may be affected by the jar of passing trains and the limited facility for examination and repairs. It also affords an opportunity for an ornamental arrangement of the Engine House, Grounds, and Reservoir, exposed to the daily observation of hundreds of passing travellers; while the eontiguity of tho Rail Wharves as built and contemplated, provides a convenient point for the reception of coal and other materials for the Engine House, at a light expense for intermediate transportation.
The location of the Engine House thus contemplnted is about 1450 feet west of the Machine Shop.

Character of machinery.

Tho character and dimensions of the Pumping Engine and appurtenances, have been adapted to the scale of supply mentioned in the introduetory remarks.

The sever mined by t Engineers. although ox

The Engi water and ha been in cons beyond that

The exten: shown pract ing Engine form of Eng ance, commo a long strok to this purp without equa I am connect Engine on th when I say, purpose as
drawings-a experience. chinery for at adopted is id
wash of the not he affected storms which cr of the Bay, o had with the
tern Railrond Ieights, to the fer Depot, the n its bank and 00 to 250 feet the Bay by a
many serions laces for Lake ho protection
secure at the , by taking between the Engine House ormed. This culvert to be 1k head, and it entirely in ient capacity on the level
of pure and ng a suction ing the foree d by the jar ination and ttal arrange. posed to the aile the con, provides a paterials for liate transed is about
ine and ap. entioned in

The dimensions and duty huve been ealeulated as follows :-

$$
\begin{aligned}
& \text { supply to each daily.....orthation } 40,000 \text {. } \\
& \text { Quantity per duy................................ } 50 \text { gallons, Inperial. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Elevation of heserroir surface } 155 \text { feet. } \\
& \text { Leugth of Horee Tube.............................. } 1700 \text { feet. } \\
& \begin{array}{c}
\text { Diameter of ". } 18 \text { inches. } \\
\text { Priction of }
\end{array} \\
& \text { stroko of liston and Phimger............................. . } 8 \text { per cent. } \\
& \text { Number of effective strokes, per mini............... . } 8 \text { feet. } \\
& \text { Diameter of Cylinder } \\
& \text { Diameter of llunger................................. } 84 \text { inches. } \\
& \text { Vertical pressure of Fores Tube, pe............... } 2 r \text { inches. } \\
& \text { Plunger resistance. } \\
& \text { Friction of Engine, ussume. " ".... 70.08 lbs. } \\
& \text { Average liston pressare } 20 \text { per cent. } \\
& \text { H:TY. } \\
& \begin{array}{l}
\text { Water raised....2.158.056 ft. 1bs. } \\
\text { Friction of Eagine. } 431.751 \\
\text { / }
\end{array} \\
& 172.810 \\
& 2.768 .623 \mathrm{ft} \text {. Jbs. } \\
& \text { Horse Power } \\
& \text { 87.12. }
\end{aligned}
$$

The several sizes of the geueral parts of the Engine are determined by the duty to be performed, and the best practice of our Engineers. The style of Engine admits of some dissension, although experience in my opinion, is very conclusive on this point.

The Engine of Thomas Savery, was invented in 1698 for pumping water and has done to the present time; steam pumping Engines have been in constant use, and have attained a maximum of effective duty beyond that of any other application of machinery.

The extensive and varied experience of a century and a half has shown practically and theoretically that the arrangement of a Pumping Engine should be of the simplest possible character, and that the form of Engine, which is single anting, working with a counterbalance, commonly known as the Cornish Engine, with a slow motion, a long stroke, and a high ratio of expansion, is the best adapted to this purpose. Various other forms of Engines have been tried without equally favorable results. In the department with which I am connected, we have the largest double-acting-beam Pumping Engine on the Continent, and I speak from personal observation when I say, that it is by no means as valuable for this peculiar purpose as the style of the Engine shown in the accompanying drawings-a style which has received the sanction of 150 years experience. In recently preparing the plans of the pumping machinery for a daily supply of $10,000,000$ gallons, the form of Eingine adopted is identical with that above mentioned, although I believe
but one Engine of the kind is at present in use in the United States, and that has been but recently constructed.

The boilers, which are the grand source of the vitality and success of the Engine, I havo endeavoured fully to provide for in the Specifications on this point. Two are proposed at present, and the Boiler Room is made large enough to adnit others, if the increase of the city should require a duty of the Eugine greater than two can supply.

LOCATION OV DISTRIBUTING RESERVOIR.

Burlington Heights furnish several points for the location of this Reservoir. The most favorable point, however, I believe to be at the south-east corner of York and Dundurn strcets, on the broad plateau from which the ground hreaks down abruptly towards the City. This is higher, better adapted to a system of distribution, easy of access from the Pumping Engine, the distance being but 1700 feet, and has the farther advantage that at any future time the Reservoir may be enlarged beyond the eapacity deemed sufficient for a population of 40,000 .

A Reservoir can be constructed at this point, with a capacity of about $24,000,000$ gallons, sufficient for a supply of 12 days, at an elevation of 155 feet above the Lake, which is 72 feet above the intersection of James and Market streets, 27 feet above the intersection of Main and Hess streets, and 28 feet above that of James and Hannah streets, commanding every building and spire in the City, except the villas mentioned at the foot of the southerly terrace.

I believe that no other point equally favorable as to elevation, can be found in the vicinity of the Bay. At the intersection of the South City Concession with Queen street, the ground rises rapidly towards a gorge in the terrace behind it, on which a Resarvoir might be constructed at a much greater elevation. The distance however from the Bay would be a serious objection to its use in connection with the Pumping Engine, and there are no advantages to be gained by an increase of clevation above that adopted on Burlington Heights.
A supply which finds its way freely to the tops of the highest houses within the denser district is abundantly high for all practical uses. The experience of Philadelphia, New York, Boston, London and other large cities, shows beyond argument, that no elevation of supply cau supersede the necessity of a department for protection from fire, without a complicated, expensive, and inconvenient arrangment of hydrants; and that every foot of elevation beyond a certain medium, involves additional risk of accident to the distribution and service mains and pipes, calling for more expensive guards wherever used, without compensating benefit.

While this argument is forcible in the case of gravitation supply
it recei by pun of repa seriousl therefor ral feat

The s at York street t Distribu inch pip water.

Tho distribut peopled wider lim Railhoad for and lo cases, and In these inches in similar lir being entir pressure. this point, than to pay in cost not An error i economy, is after the pil
I have als cost of Dist pipe. I am advising its personal obs Continent an It is found velope in use parts, and th plumbago: ${ }^{\circ}$ tubercles, in diminished ar
This is the in a Report o
which they st
have been par

United States, e vitality and ovide for in the resent, and the if the increase ter than two
ocation of this lieve to be at on the broad y towards the f distribution, ce being but iture time the ned sufficient
a capacity of 2 days, at an eet above the ve the interbat of James spire in the he southerly
to elevation, ection of the ises rapidly a Reservoir The distance to its use in advantages adopted on
the highest all practical k, Boston, nt, that no department ve, and inof elevation accident to for more benefit.
tion supply
it receives additional weight from the consideration that in a supply
by pumping, the duty of the engine, the consumption of coal, cost of repairs \&c., are increased directly with an increase of lift, and seriously affect the constant annual cost. This annual expense is therefore an item to be maturley considered in arranging the general features of the work and in working the machinery when in use.

dibtribution.

The system of Distribution which I propose to use, commences at York street from a line of 16 inch main, passing down this street to Caroline street from the central entrance of the inch pipes, arranged with a vis then subdivided into 12, 10, 8 and 6 water.

The accompanying circulation of distribution panying estimates are made in relation to two peopled portion of the City, confined to the more densely wider limits, arrauged in reference the second extending over Railroad Buildings, \&cc., and the Shipping in case of fires, for the for and located in accordance with \quad drants are provided cases, and the necessary stope with the approved practice in such In these estimates I have limited the smarious sizes of pipes. inches in diameter. Four inch pipe smallest size of pipe to 6 similar lines, but I am satified that has commonly been used for being entirely too small for its requisit not to be recommended, pressure. The experience of large citite purposes under ordinary this point, and it is much better to cities is becaming conclusive on than to pay in the same way, for the same lage of this experience in cost not being sufficient to affect the same lessons-the difference An. error in the system of distribution mally the general aggregate. economy, is much to be depreoated, under a mistaken idea of after the pipes are laid.
I have also to remark on this subject, that the estimates for the cost of Distribution are made, as in the usual way, for cast iron pipe. I am inclined however, seriouly to question the propriety of advising its adoption, having been satisfied for several years, from personal observation, and the accumulating testimony on this Continent and the Eastern, that its use is open to grave objections.

It is found, I believe universally, that cast iron wave objections. velope in use, "a tendenoy to the absorption of water pipes departs, and the formation in its atsorption of the iron in certain plumbago; also, to the gradual dead of a substance resombling tubercles, in the interior of the pelopement of local accretions or diminished and the flow of water pipes, by which their capacity is This is the cone for water impeded." in a Report on their Distribue Water Board of the City of Boston, which they state that " all the System then three years in use, in have been partially or entirely larger pipes that have been opened
with detached tubercles varying from $\frac{1}{2}$ to $2 \frac{1}{2}$ inches base, with a depth or thickness in the middle of from $\frac{1}{4}$ to $\frac{3}{4}$ of an inch." "In one case a four inch pipe was found covered to a thickness of about one inch."
"The 36 inch and 30 inch mains have become already, in consequence of the actual diminution of their area, and also of the additional friction which has been occasioned, scarcely superior in capacity to those of 34 and 28 inches, having a clean surface."

The same facts are noticed by the French Engineers; and extended experiments have been made to determine the cause of the difficulty and its remedy. A visit to the Croton Pipe Yard of New York, or any other city using cast iron pipe, furnishes abundant testimony of the same results.

The destruction of the iron, and consequent formation of tubercles, by which the pipe is reduced in strength and capacity, is produced by the contact of the water with its internal surface:-the remedy which suggests itself, is to form an internal coating to prevent the contact of the water and iron.

Experiment, analysis, and a continued practice of years, have shown that the best material for this coating is Hydraulic Cement. This is the conclusion of the Engineers of France and the United States. In the latter country a number of Cities and Towns have been furnished with water pipe, made of wrought iron plates, securely rivetted together; the pipe thus formed being by an ingenious arrangement lined with a coating of cement, and the outside oovered with the same material to prevent external corrosion. Pipes made in this way are now extensively in use as force tubes and distribution mains of different diameters-in some cases under a pressure of 240 feet head.

These pipes combine several advantages. The thickness of the iron can be adapted to any required degree of strength; the several lengths are readily connected in a continuous line, by sleeve joints, and when so connected, form a smooth and regular water way; they can be tapped for service-branches at any point, under any head without shutting off the water, and with little trouble or expense ; their firmness and durability, so for as the cement lining and coating can affect them, increase with age, and when properly dried before use, they transmit the water without contamination of any kind; they are in addition. more easily transported and handled than cast iron pipes, and can be furnished at a price at least 20 per cent. less. Under these circumstances, and in view of the testimony above mentioned, I should feel under professional obligations to advise their adoption without regard to comparative cost, although the fact of their superior economy is worthy of consideration. The estimates are made in view of their adoption in

Another point in connection with the subject of Distribution must be brought to your notice, although not included in the
estim to m pract water meteo to eac metho benefi the pr The system giving the str
base, with a inch." "In ness of about
eady, in cond also of the ly superior in surface." agineers; and the cause of Pipe Yard of ipe, furnishes
tion of tuber1 capacity, is surface :-the al coating to years, have aulic Cement. Id the United Towns have iron plates, being by an ent, and the sternal corro:1 use as force n some cases

ckness of the

 trength ; the ne, by sleeve regular water point, under - trouble or sement lining hen properly amination of sported and price at least view of the professional comparative orthy of conr adoption in
Distribution

 uded in theestimates, as I am not aware of the method by which you propose to meet the principal and annual cost of this work. I refer to the practice, lately becoming general, of determining the amount of water used and to be paid for, by each consumer, by means of a meteor which registers the weekly or monthly quantity of supply to each. In Boston, New York, Philadelphia, and other cities, this method has been adopted to a larger or smaller extent, with beneficial results. It is a feature however, not directly involved in the present investigations, though worthy of mention and attention.
The following schedules embrace the Reduced and Extended systems of Distribution, in detail, as proposed and estimated, giving the lengths and diameters of the several sizes of pipes, and the streets through which they are laid:

SCHEDULE OF DISTRIBUTION.
REDUCED DIGTRICT.

6 inch Pipe,

SCHEDULE OF DISTRIBUTION.
EXELENDED DISTRICT.

The S
the sever

1. Grubl
2. Excav
3. Emba
4. Puddl
5. Morta
6. Masor

As the works of quantity, for the er which can

The lat careful p? responsibl This point

From structures saplings, removed Chief Eng lands or p

All nece other mate including permanent

These es for all fou the same. placed. I the work a damage to be used fo earth bein Engineer. keep the w building, sl

Under backfilling material e»

SPECIFICATIONS.

The Specifioations descriptive of the manner of construction for the several structures are managed in the following order:

1. Grubbing and Clearing.
2. Pumping Reservoir Culvert.
3. Excavation.
4. Embankment.
5. Puddling.
6. Mortar.
7. Masonry.
8. Pumping Reservoir.
9. Engine House.
10. Engine, \&c.
11. Distributing Reservoir.
12. Distribution.

As there are at present several methods in practice of contracting works of this kind, either by a specific sum for each material and quantity, or by letting an entire structure, or by making a contract for the entire work, I have not drawn up the form of contract, which can be readily made to suit the plan adopted.
The latter system of contracting is becoming general, and under careful plans and specifications, with proper superintendence, and responsible Contractors, I consider it the most advantageous. This point, however, must be left for your future determination.

GRUBBINE AND CLEARING.

From the ground required to be occupied by the several structures of this work, including embankments and walls, all trees, saplings, bushes, roots, wood, and perishable materials shall be remeved and burnt up or otherwise disposed of, as directed by the Chief Engineer, care being taken that no damage is incurred to the lands or property adjoining those taken for the work.

hexcavation.

All necessary excavation and removal of earth, sand, stones, and other materials, shall be made for the construction of the works, including all excavations under water, and for all temporary and permanent structures.

These exoavations shall be made to the proper depth and form for all foundations, the earth being properly cut and rammed for the same. All necessary shoring and plank shall be provided and placed. The excavations shall progress with the several parts of the work as required, and be so made as to avoid all unnecessary damage to property along the line. The material excavated shall be used for embankment and backfilling as required, the surplus earth being deposited agreeably to the directions of the Chief. Engineer. Under this head all pumping, bailing, and draining, to keep the work free from water, while the mechanical structures are building, shall be performed in the most efficacious manner.
Under this head will aleo be included all embankments and backfilling made within 500 feet of the excavations, from the material excavated.

EMBANEMENTE.

All the embankments required for the construction of the several parts of the work shall be made of proper and sound material, with such slopes and method of construction as directed by the Chief Engineer.
The foundation of the embankments shall be prepared as described in Specification Nos. i and 2. In forming the embankments care shall be taken to raise them by successive layers, sloping towards the centre of the bank, of the full width of bank proposed, with other precuations to prevent slips.
When puddling, masonry, \&c., are comnected with the embankments, eare must be taken to adopt one part of the work to the other in order to ensure the perfection of the whole.
The material shall be taken from the nearest excavation suitable therefor, or fron borrowing pits provided for the same, of convenient access. Previous to the enmpletion of the work the embankments, where required, shall be properly turfed or sodded, to prevent washing by rain or otherwise.

Under this head will be included all necessary backfilling for the several portions of the work not included under " Excavations." puddling.
In all parts of the work where puddling is required, the material used for this purpose shall be of proper quality, and worked in thin layers, each of which must be thoroughly wet and tempercd, and worked so as to incorporate each course with those adjacent.

Care shall be taken to carry up the work in connection, to prevent checks and ensure its tightness. The dimensions and position of the puddle-walls, material, \&c., to be as directed by the Chief Engineer.

MORTAR.

All the moriar used on the several parts of the work, must be made of the best quality of ground hydraulic lime, which shall be subjected to proper tests of its freshness and strength. In wet work it shall be mado of equal parts of cement and sand, and in other places of two parts sand to one of cement, the proportions being ascertained by careful measurement. Strict care must be taken to protect the cement from the weather previous to its use.

The sand shall be free from all impurities, coarse grained, and shall be properly screened before its use.
In mixing mortar the cement and sand of the required proportions shall be mixed dry, then wet to a proper consistency, and above described, an Where grout is required it must be mixed as No mortar shall kept in brisk motion until it is used. prevent it from properly setting.

Concr adding th each part mass. I in diamet prepared being tak be ramme eoncrete layers to

Dry R quarried inches this the bed ar spalls." T bond.

Rubble described, vertical jc spalls beir wet before

Dressed laid in a fi inch. The a depth no

The face arris. Th face stone.

Cut Sto color, laid joints bein ceeding $\frac{1}{4}$ and set by plans and

Brick M sight must burned ; t must be of

They mı bond in a bed being laid on the and stretch

MASONRY.

Concrete Masonry shall be made of mortar as above described, by adding thereto five parts of durable broken stone and gravel to each part of cement, and thoroughly mixing and incorporating the mass. The concrete stone or gravel shall not exceed $2 \frac{1}{2}$ inches in diameter, and shall be cleaned before using. The material thus prepared shall be immediately laid in the place intended for it, care being taken to provide a bed well rammed. After laying it shall be rammed until the mortar flushes to the surface. When the bod of concrete exceeds 12 inches in depth, it must be formed of successive layers to the proper height, each not more than 12 inches deep.

Dry Rubble Masonry shall be made of sound, durable stone, quarried out in regular beds of a proper area, and not less than 6 inches thick. The broadest and best bed shall always be laid down, the bed and vertical joints being levelled and filled up by suitable spalls. The work to be well tied with headers in a substantial bond.

Rubble Masonry shall be laid with stone of the quality above described, in similar manner, in a full bed of mortar. The vertical joints shall be grouted or filled with mortar, chips and spalls being put in afterward. The stone shall be clean and always wet before laying.

Dressed Masonry shall be of the material above described, and laid in a full bed of mortir, with a joint not exceeding $\frac{3}{8}$ ths, of an inch. The top and bottom beds and end joints to be squared for a depth not less than 12 inches.

The face of the stone shall be made with a tool draft around the arris. The headers in the bond shall be equal to one-fourth the face stone.

Cut Stone Masonry shall be of the best material, of uniform color, laid in regular courses, the top and bottorn beds and end joints being squared not less than 15 inches, and the joints not exceeding $\frac{1}{4}$ of an inch. The large stones shall be properly limited and set by machinery, and the work carried up agreeably to the plans and directions for the same.

Brick Masonry: In this work the bricks used and not exposed to sight must be of sound, durable quality, regularly shaped and hard burned; those exposed to sight after the completion of the work must be of the best quality of face brick of regular form and color.

They must be well soaked before laying, and placed with a good bond in a full bed of mortar, with struck joints inside and out, the bed being grouted whipe required. In archos, the beds shall be laid on the radius. line, with uniform joints and alternate beader and stretcher courses, where the thickness of wall admits.

PUMPING RESERVOIR CULVERT.

At such point as may be designated, a Culvert shall be constructed through the Railroad embankment, to be provided with a copper screen and gate chamber, with a bulk head, two gates, screw shafts, band wheels, and other necessary appurtenances.

After the excavation through said embankment is made, (over which a firm double track bridge shall be built as directed, for temporary use, coffer dams of sheet piling and embankment shall be constructed as herewith provided.
The foundations of the culvert shall be of concrete masonry, 12 inches deep, laid $14 \frac{1}{6}$ feet below low water level, on which cross planking of sound oakt, 4 inches thick, shall be laid in a double thickness, and covered with a bed of rubble masonry 18 inches deep. On said bed the bulk head on the north end of the culvert arch, which shall be $12 \frac{1}{2}$ feet wide and $8 \frac{1}{2} \mathrm{ft}$. high in the clear, the arch being 2 feet thick. On the south side, the culvert shall terminate in the Pumping Reservoir, with two splayed ring walls, as drawn, to protect the embankments.
The foundations at the ends and sides will be protected by four rows of sheet piling, 5 inches thick, connecting with the concrete masonry, and supported at the ends by guide piles and ribonds, as
per plans.

All the work to be done according to the plans and directions of the Chief Engineer, and the foregoing Specifications; to be commenced within
within months. days of the date of contract, and completed

PUMPING RESERVOIR.

The space between the Railroad embankment and the original shore of the Bay, from a point 600 ft . west of the Railroad Machine Shop, marked A on the General Plan, to a point 850 ft . further West, shall be excavated to a depth of twelve feet below low water to one.

Around the excavation thus made, embankments shall be formed from the material excavated, of the form and height designated by the Chief Engineer; the balance, if any, being deposited as directed.
The embankments on the South side will be so constructed as to prevent the flow of surface drainage into the Pumping Reservoir.
Under this head will be included the Coffer Dam, Embankment of the Pumpwell and Culvert, and the filling and forming of the

The work to be done under the direetic Engineer. To be commenced and completed in months.

The E Pump

The e: feet belo 30 feet \mathbf{x} round sp from cent enough tc klow. level, oak with $2 \frac{1}{2}$ in Concrete, worked in oak plank on which
Said ma arch of 18 the Pump work on th line and ws

To be pr \&ec., for the a white pin prevent eva perforated built in co and appurte oak stair-ws

The found piles driven row, 3 feet 4 being driv To be cappe filled in with piles, the top base. On t and 2 at top,

The dimen ternal, 30 fee Boiler Room,

The Engin Boilers,' shall rammed sand ported by cas

ENGINE HoUse.

ell be constructd with a copper es, screw shafts,
is made, (over as directed, for ankment shall

9 masonry, 12 on which cross d in a double mry 18 inches of the oulvert ert walls and the clear, the vert shall terring walls, as
ected by four the concrete d ribonds, as
directions of ; to be com1 completed
the original晾 Machine 0 ft . further low water and a half

I be formed

 ignated by is directed. tructed as Reservolr. bankment ing of the the Chief contract.The Engine House with its appurtenances shall be built with a Pump Well, Engine Room and Boiler Room.

The excavation for the Pump Well shall be made to a point 15 feet below the low water level of the Bay, the foundations being 30 feet wide by 20 feet long, and constructed, if so directed, on round spruce piles of 12 inches diameter at the butt, driven 3 feet from centre to centre each way, and about 20 feet long, or long enough to be driven to a uniform guage of one inch at the last level, oak cap timbers of 12 been driven and cut off at the proper with 21 inch treenails, and inches by 6 shall be treenailed on them Concrete, flush with the top of the cap timbers faces filled in with worked in firmly around the heads of the piles and 18 inches deep, oak plank 6 inches thick shall be treenailed with $2 \frac{1}{2}$ inch treenails, on which the masonry of the Pump Well shall be built.
Said masonry shall be rubble masonry, built with an inverted arch of 18 feet 8 inches diameter, and side piers to the levels of the Pump Well and Engine Room floors. That portion of the work on the East front of the Engine House, between the water line and water table, to be faced with dressed masonry.
To be provided with the openings, bulkheads, grooves, cheeks, \&c., for the copper wire screen and influx gates, and covered with a white pine flooring, 3 inches thick, fitted above the Well, so as to prevent evaporation into the Engine Room, the East wall being perforated to favor this purpose. All the Pump Well work to be built in connection with the bearings and fixtures for the Engine and appurtenances; access to be had to the Engine Room by an oak stair-way $4 \frac{1}{2}$ feet wide.

The foundations of the walls of the Engine House to be built on piles driven as described for the Pump Well, in an alternate double row, 3 feet between centres across, and 5 feet lengthwise the wall, 4 being driven at each corner, if such piling is deemed necessary. To be capped with 6 by 12 inch oak plank, treenailed down and filled in with Concrete, 12 inches deep, firmly worked around the piles, the top of the Concrete being 5 feet below the water table base. On this foundation rubble masonry $3 \frac{1}{2}$ feet wide at base and 2 at top, shall be built to the water table level. wide at base
The dimensions of the Eyine Room shall be 52 by 40 feet external, 30 feet high to the top of the brick wall; and those of the Boiler Room, 40 by 32 feet, 16 feet high to the top of brick wall.
The Engine and Boiler Room floors around the Engine and Boilers, shall be flagged with 4 inch dimension flagging, laid on parmmed sand, except over the Pump. Well, n..ere it will be supported by cast iron beams.

The walls to be built of brick masonry 16 inches thick, with 4 arched doors 10 feet wide and 12 feet high in the clear, and 16 windows $8 \frac{1}{2}$ by 4 feot, wide, and 0 windows 7 by 4 feet, fitted and furnished complete. The chimney to bo of brick masonry on plled foundations, with a 16 inch wall to a point 32 feet above water table, the entire height being $53 \frac{1}{2}$ feet above water table; the flue being 30 inches square, curried up verticully.

The cut stono work to consist of the water table, window sills ana lintels, ehimney water table, and cap, rustic blocks of the doors and corners, and the centre pier of the working beam of the Engino.
The roof to be composed of an iron trass, with wrought iron principals, tie-rods bolts, nuts, jack rafters, \&e., and cast iron braces, according to plans for the same. The principals to be placed not more than 8 feet apart between centres, and the jack rafters not more than 10 inches apart. The whole to be covered with the best quality of blue Vermont Slate, not less than 10 by 16 inches, secured by lead nails to the rafters; to bo nr.svided with a cast iron Cornice-Moulding and Gutter, and six 4 -inch tin leaders, fitted and erected complete, the leaders having cast iron spouts.

All the work on the Engine House and appurtenatces, to be according to the plans and directions of tho Chief Englneer and the foregoing specifications, and to be commenced within days after date of contract, and completed within months.

ENGINE AND MACHNERY.

One Condensing Pumping Engine shall be erected in the Engine Room of the Engine Housc, on the foundation to be prepared for it:-built with a cylinder of 8 fect stroke and .54 inches bore, and a plunger of 26 inches diameter.

The engine to be provided in every respect with the valve chest, condenser, air-punp, force-pump, parallel motions, bearings, stuff ing boxes, glands, comecting rods, guides, bolts, nuts, oil cups, and all other necessary appurtenances, of proper size, material, and workmanship.

To have a double east iron beann, connected with collar-bolts, 24 feet long between centres, and a counterbalance chest attached to the plunger, connecting rod or beam, adjustable to diferent loads of the engine.

To be connected with two boilers by a sufficient steam-pipe, the boilers being properly built of boiler plate iron not less than $3^{3} \delta$ of an inch thick, properly riveted and caulked, with all the steam and water guages, man holes, hand holes, plates, grate bars, flues, bridges, stays, safety valves, steam drums, stop valves, and all other appurtenances necessary or ordered. To be of the "double return drop flue" variety, with sufficient fire surface and steam-generating
power, the D|st per min inch, cut nected of the ot necessar of 6 -inch as to be
Detail purtenan, inspection

The iro in dimens the appro of the bes piece to b gineer, du thoroughly proper plo

Under tl force tube with four c nuts, \&c., ness, durab

The abov of contract,

The Distri graund bord durn Streets feet frout on
It shall be nected with copper wire cession from shafts; colum nances.
It shall als to each apartr copper wire si arranged so as bottom, and an connecting wit
s thick, with 4 clear, and 16 feet, fitted and asonry on piled t above water table ; the flue
e, window sills oks of the doors 1 of the Engino, 1 wrought iron ast iron braces, be placed not jack rafters not ered with the 0 by 10 inches, led with a cast leaders, fitted pouts.
urces, to be ac. neer and the days nonths,
in the Engine prepared for ches bore, and
te valve chest, earings, stuff, oil cups, and material, and
collar-bolts, hest attached iifferent loads
eam-pipe, the ess than ${ }^{3}$ Is of he steam and ebars, flues, and all other louble return m-generating
power, to enable the angine to pump $2,000,000$ gallons, daily, into the Distributing Reservoir, and to maintain nine effective strokes per minute, with an average cylinder pressure of 30 lbs . per square inch, cutting off at f the stroke. To be proporly fitted, and so connected that either may be fed, or supply the engine independently of the other,' and to be provided with the firing tools, shovels, \&e., necessary. To be provided with one "Northington" steam pump, of 6 -inch bore and 2 feet stroke, so counected with the foree tube as to be used as an auxiliary.
Detail plans for the several parts of the Engine, Boilers, and appurtenances, shall be furnished by the Contractor, subject to the inspection, alteration or rejection of the Chief Engineer.
The iron end composition work, surface work, and finished work in dimensions and arrangement, to be in all respeets according to the approved plans and directions of the Chief Engineer, and made of the best quality of materials and workmanship. Each part and piece to be subject at all times to the inspection of the Chief En. gineer, during its construction and after it is in place, and to be proper place.
Under this head, as ma appurtenance, will bo included a line of force tube from the Air Chamber to the Distributing Reservoir, with four check valves, and all the necessary joints, flanges, bolts,' ness, durability and strength.
The above work to be commenced within of contract, and completed within whe days of the date months.

DISTRLBUTING RESERVOIR.

The Distributing Reservoir shall be constructed on the vacant ground bordered on the North by York, and on the West by Dundurn Streets, the structure being 550 feet front oin York, and 400 feet froint on Dundurn Strcet.
It shall be divided by a division wall into two apartments, connected with a connecting wear of rubble masonry, provided with a copper wire screen and three gates, arranged so as to draw in succession from the surface to the bottom, and provided with screw shafts, coluring, hand wheels, and all other necessary appurtenances.

It shall also be provided with a waste wear and well, common to each apartment, a distributing chamber to each, fitted with a copper wire scireen and three gates adapted to 2 by 3 feet openings, arranged so as to draw down in succession from the surface to the bottom, and an influx and drainage chamber to each; said chambers connecting with the distribution and drainage pach; said chiambers force tube.

The walls on the West, South, East, and a portion of the North side of the IVeservoir, to consist of an embankment, formed from the material excavated, 28 feet high above the bottom level, 10 fect wide at top, faced with a line of dimension flagging, 4 feet wide by 4 Inches thick. The inner slupe of said embankment shall be lined with brick masonry 8 inches thick, built on a slope of one to one ; the outcr slope shall be one and a half to one, supported by ${ }^{a}$ wall of rubble masonry, about 6 feet high abcve the ground level, surmounted with a coping of flag stone $2 \frac{1}{2}$ feet wide by 0 inches thick. To have a central wall of puddling constructed, in benches, being 10 feet wide at base, 4 feet at top, and 31 feet m beight. The retaining wall to have a foundation of concrete, 5 fect wide, 12 inches deep, laid 5 feet below surface of ground, and to be three feet thick, with a batir of one in six.
From the corner of Dundurn aud York streets, to the Central Pipe Vault, a Vault will be constructed inside of said retaining wall, forming a Chanber 0 feet high and $7 \frac{1}{2}$ feet wide, with un arched roof, through which the force tube and drainage pipe will connect with the Central Pipe Vault. The retaining wall and embankments will be built as above described, to the junction with the Centre Pilaster.

The division wall shall be built of rubble masonry, with a section 10 feet wide at base, resting on concrete masonry 12 feet wide and 12 inches deep, and 3 feet 4 inches at top, the sides being $2 \frac{1}{2}$ feet thick, filled in with puddling. On said wall a flag coping 4 feet wide and 4 inches thick shall be laid.
On the York street front the Central Pilaster will be built of rubble masonry, faced partly with dressed masonry and partly with cut stone masonry, per plan. The side walls at the junction with the earth embankment will be carried up plumb on the sides, with a thickness of three feet, and a face batir of one in six, to the level of the top of embankment : the central portion will be of cut stone masonry, with a face and side batir of one in six, being 20 feet wide at the coping. To be surmounted with a coping and parapet of cut stone, conrected on either side with an iron railing 3 feet high, around the coping of said walls, and to have an entrance ornaniented with cut stone jambs and lintels. The whole to have a rubble masonry foundation on a concrete bed.

The full, a efflux:
Und inches House, laid ae nected

This directic To ba comple

Thro be desig hydraun as direct

The m than 4 fe a sufficie carefully after the

The se are ma' ginecr.
buting R_{t} with each

All the the Chief date of C

The est in the follo

The inner wall of the pilaster to be of rublilo masonry 3 feet thick, with the same face batir, and connected with the outer, by a stone arch of $3 \frac{1}{4}$ feet radius, on which the curciete filing and the flagging of the upper floor will rest. Said inner wall to connect with and form part of the waste wear, diainage and influx, and distribution chambers, aforesaid, and to be built in all respects according to plans and directions. On the outer side of each distributing chamber, wing walls will be built to support the embankment slnoes which terminate against them.
on of the North t , formed from mis level, 10 feet , 4 feet wide by ement shall be slope of one to , supported by ve the ground eet wide by 6 constructed in and 31 feet in concrete, 5 feet ound, and to be
to the Central said retaining wide, with an rage pipe will ; wall and emjunction with
y, with a sec12 feet wide des being $2 \frac{1}{2}$ 5 coping 4 feet
ill be built of y and partly t the junction on the sides, in six, to the will be of cut six, being 20 ping and pairon railing 3 an entrance rhole to have
sonry 3 feet outer, by a $1 . n g$ and the 11 to connect lux, and dispects accordch distributmbankment

The water chambers of the reservoir to be 25 feet in depth when full, and no arranged that either may be used for either influx or efflux.

Under this hend will be included the line of drainage pipe, 12 inches in diameter, laid parallel with the force tube to the Englne House, and north side of the Railroad embankment, which shall be laid agreeably to the 8 pecifications for "Distribution" and connected with the force tube as may be directed.

This work to be made, in all respects, according to tho plans and directions of the Chief Engineer, and the foregoing specifications. To be commenced within days of the date of Contracr, and months.

distribution.

Through such graded streets of the City of Hamilton, as may be designated, the distributing mains and pipes, stopcocks, hydrants, hydraunt connections and drains, shall be fully placed and connected us directed, in the most substantial and workmanlike manner.

The mains and pipes to be laid with thin upper surface not loss than 4 feet below the street grade, the trenches being excavated to a sufficient width and depth for this purpose, and the backfilling carefully replaced and rammed, nnd the pavement (if any) relaid, after the pipes are laid and connected as aforesaid.

The several lengths of pipes (or the material from which they are ma, ${ }^{3}$ e) to be thoroughly tested, to the satisfaction of the Enginecr. The York street main to be connected with the Distributing Reservoir, and the several mains and pipes to be connected with each other agreeably to directions.
All the work to be done according to the plans and directions of the Chief Engineer. To be commenced within days of the date of Contract, and completed within months.

ESTIMATES.

The estimates for the work, and its several parts, are arranged in the following order :-

Pumping Reservoir Culvert. Pumping Reservoir.
Engine House.
Engine and Machinery.
Distributing Reservoir.
Distribution, (Cast Iron Pipe.)
" (Indestructible do.)

summary.

For more convenience in calculation, the detail prices are given in Dollars and Cents., the aggregate being made in Currency. The prices of the several parts of the work, I have endeavoured to keep at a safe and remunerative rate, preferring to make them somewhat above what may be considered the present value. Whatever excess of this kind there may be, rou can readily judge. :

I find that the aggregates compare very favourably with similar supplies to other cities.

Excaral Embank Sheet Pi Riband Piles, 2 Coneret Rubble

Embankı
Piles, (8 C Sheet Pi Fxcavati Bailing, Screen, (Iron Gat

- Temporal

Excavatio Embankm Land, (4t

Spruce Pil Capping, (Planking, Treenails, Conorete, Foundation Rubble Ma Flagging, Cast Iton W. Pine Fl Brick Maac Cut Stone ,"
"
" \quad R

Iron and Slo Window Fr "
Oak Doors,
Copper Wir
Iron Gates,
Bailing, \&o.
rices are given urrency. The roured to keep aem somewhat Whatever exwith similar

ESTIMATE FOR PUMPING RESERVOIR CULVERT

Excavation, 1,000 o. yds.			
Embankment, 8,000 o. yd	at 0,20		200,00
Sheot Piling, (oak) 3,870	0,15	.	450,00
Ribands, ${ }_{\text {Prem }} 836 \mathrm{bb}$	25,00		96,75
Piles, 20 feet long. 8 b.	30,00 7	10,08
Concrete, 56 o. yds.....	7,00	\ldots	56,00
Rubble Masonry, 230 c. yds.	6,00	…..	336,00
	6,00	,	1,880,00
Embankment, 900 c. yda			
Piles, (20).	0,15	\ldots	185,00
Sheet Piling, 5 inch., 0,000	7,00	140,00
Exavation, 600 o. yds. . .	25,00		150,00
Bailing, de.	0,30		180,00
Screen, (copper wire)			1,500,00
Iron Gates, complete, (2)			1,800,00
Temporary Railroad Bridge	200,00		400,00
			500,00
			5,883,83

24

\$ $40,000,00$ 10,200,00 1,600,00 2,000,00

853,800,00 JIR.

10,720,00 6,700,00 3,720,00. 38,000,00 16,800,00 600,00 424,00 50,00 80,00 1,724,00 1,381,00 426,00 1,000,00 600,00 2,400,100 1,050,00 30,00 1,400,00 160,00
12,000,00
$7,000,00$

$\$ 100,163,000$

PTPE.

- $\quad 72,765,00$

20,560,00
19,368,00
6,120,00
$17,250,00$
400,00 400,00 210,00 80,00
5,840,00
1,533,00
2,000,00
3,000.10
2,150,00
40,264,00
$1,600,00$
\$193,540,00
$25:$

ESTIMATE FOR DISTRIBUTION.-(Indestructible Pipe)

estimate for Distribution--(Cast Iron Pife.)

ESTIMATE FOR DISTRIBUTION. - (Indegtructible Pipe.)
REDUCED DISTRICT.

SUMMARY OF ESTIMATES.

Pumping Reservoir Culver	\pm	s. D .
Pumping Reservoir.	... 1,470	18
Engine House 4,320	0
Engine, \&c.	... 5,140	16
Disirributing Reserv	. . 13,450	00
Listribution, (Cast Iron Pipe).	$\begin{aligned} & . .25,040 \\ & .48,385 \end{aligned}$	$\begin{array}{cc}15 & 0 \\ 0 & 0\end{array}$
Less for Indestructible Pipes..	$\begin{array}{r} £ 97,807 \\ \therefore \quad 7,867 \end{array}$	10 29
Engineering and Contingencies, (10 p. c.)	$\begin{array}{r} £ 89,940 \\ . \quad 8,904 \end{array}$	$\begin{array}{lll}8 & 3 \\ 0 & 11\end{array}$
	¢98,984	0. 1

WITH REDUCED DISTRIBUTION.

In the cisely as Supply best ada By th the wate and othe ther. It which, al House is which for voir. Tl above the 1,700 fee giving a 1 the City, at the foo by this el and well, of lifting by circun of 50 gall large for

The age affected extended tem, to ${ }^{\prime}$
The cos tendance, and extens the extent made. A and are c annual cos plated, I sh very libera $500,000 \mathrm{ft}$. is, in many The averat $638,300 \mathrm{ft}$.

CONCLUSION.

In the foregoing pages I have endeavoured to comprise as concisely as possible, the general and detail features of the Plan of Supply from Burlington Bay, which has suggested itself as íhe one best adapted to the necessities of your City.
By this Plan the water is taken from the Bay at a point where the water is 18 feet deep, and most free from the wash of marshes and other contan inations, and the effects of cold and stormy weather. It is received in a capacious natural reservoir, by the use of which, among other obvious advantages, the location of the Engine House is fixed inside the Railroad Track, and at the foot of a ravine which forms the best and shortest line to the Distributing Reservoir. This reservoir is established on the Heights, immediately above the Engine House, with which it connects by a force tube, 1,700 feet long, and at an elevation, above the Bay, of 155 feet, giving a head of 72 feet above the more densely settled portion of the City, and containing a supply of 24 million gallons. The Villas at the foot of the Upper Terrace, which are not fully commanded by this elevation, can be readily supplied by a small steam pump and well, when deemed advisable, the primary and annual expense of lifting the entire supply to a sufficient height not being justified by circumstances. The scale of the worli is founded on a supply of 50 gallons each to 40,000 inhabitants; a quantity abundantly large for a period as yet belonging to the future.

The aggregate cost of the work, as will be observed, is materially affected by the system of distribution preferred. For the most extended system it amounts to $£ 98,940$; and, for the reduced system, to $£ 78,256$, including a contingent ailowance of 10 per cent.
The cost of maintaining the annual supply will be for fuel, at. tendance, and repairs of machinery, and the general superintendence and extension of the distribution. The latter items will depend on the extent of supply determined upon, and the additions annually made. A portion are to be classed in the Construction Account, and are covered by the Estimates made. The principal item of annual cost is that of fuel, and, for the maximum supply contemplated, I should consider an estimate of $3 \frac{1}{2}$ tons, daily consumption, very liberal. This is based on an assumed duty for the engine, of $500,000 \mathrm{ft}$. lbs., (or pourds raised one foot high per minute,) which is, in many cases, less than one-half the duty of the Cornish engines. The average onnual duty of 36 pumping engines I find to be $638,300 \mathrm{ft}$. lbs.

The average cylinder pressure required is 20.95 lbs . per square incin. Assuming an expansion of 7^{7}, this requires an initial pressure of 28 lbs . The quantity of steam used, per stroke, will be 39.75 cubic feet, which, multiplied by $7 \frac{1}{2}$, gives 288.19 cubic feet per minute, to be supplied by the boilers. Assuming the boiler pressure at 30 lbs., it is necessary to evaporate 1 cubic foot of water to make 883 cubic feet of steam, or, to supply the cylinder the boilers must evaporate per minute $28 \frac{1}{8} \frac{1}{3}=326$ cubic feet of water, or, $326 \times 62 \frac{1}{2}=20.37 \mathrm{lbs}$. water. These boilers properly fired, will evaporate not less than 8 lbs . of water with 1 lb . of coal ; but assuming the low rate of 6 lbs . per 1 lb . of coal, we have $20 . \mathrm{g} 7$; 3,395 lbs. of coal per minute or $3,395 \times 1440=4888,8$ pounds per day, or 2.18 tons. The estimate of $3 \frac{3}{3}$ tons per day, covers, therefore, an abundant allowance for hauling and cleaning fires, and other sources of waste.

The limited time given for the preparation of these plans, and the pressure of other duties, have prevented me from extending more fully the arguments on the peculiarity of each part.
From the manner in which they are to be received, the difficulty experienced in adapting them to your wishes must be apparent. I am of the opinion, however, that the important features will present themselves properly to your consideration, and receive the attention they are entitled to claim : beyond this I have nothing
further to ask.
'SAMUEL MoELROY.
I consider this competitor should receive the first premium.

THOMAS C. KEEFER.

Montreal, Dec. 23. 1854.

To the 1
Gentlex
The
your app advertise for suppl Bay.

As yo water is method o From purest, an eligible p of a Corn feet bore, Bay.

The Re for 40,000 each per d cubic feet,
The wat pipe throu street, will ordinate fe lishing Hy at the plar ideas in thi

The dt at the inter: cient for all force for us pressure un labour of w to be given

PLAN No. 2.

 he cylinder the 3 cubic feet of ooilers properly th 1 lb . of coal ; we have 20.37^{7} 4888,8 pounds er day, covers, aning fires, andlese plans, and om extending part.
, the difficulty e apparent. I ures will prend receive the have nothing

IoELROY.
remium.
KEEFER.
velocity of the required jet and that of the water when it enters the engines, added to the friction power of the machine.

The topographical features of the City preclude the possibility of using any higher level, unless the side of the Mountain is chosen for the site, (of the "Storing Reservoir,") which is in many respects highly objectionable, on the score of its greatly increased cost, in quadrupling the length of mains and increasing friction, and consequently the annual expenditure as well as the first outlay.
Indeed, it will be readily perceived, upon reflection, that were the increased head, necessary to the extinguishing of fires, obtained without any additional cost either primarily or annually, it would not by any means be wise to make use of it for the ordinary pur. poses of life, as the certain result ,ould soon he the rupture of
service pipes.

The sys"em which we hare adopted, viz: the "constant service," under a continual head pressure from the rescrvoir, scarcely needs, we think, any explanation or defence at the present day.
The evils of the old systems, in connecting the rising mains with the service pipes, without the intervention of the storage cistern, in practice, soon become but too apparent. V. ilst the motive power is in action and but little water drawn from the pipes, the pressure is frequently increased to an enormous and destructive extent. Then, again, in cases of sudden emergency, such as a conflagration in the night, when the motive power is at rest, some hours may elapse before any supply can be arailable.

The comparative low cost of the "direct system" has, in many cases, led to its adoption, where the contingent expenses caused by its irregularities (not at first calculated upon) were soon found to increase it beyond that of more complete operations.
As to the idea of future extension, we have made ample provision for it in all departments of the works, without allowing it to cause any interruption or dismembering when it is called for. As the City gradually extends its borders, the mains can be continued so as to keep pace with it.
Should the increase southward to the rising ground at the base of the mountain call for a liberal supply in that direction, we propose to furnish it from a secondary reservoir in the neighborhood, at a sufficiently high elevation to insure a free flow-the reservoir being supplied by a secondary main, branching from the rising main where it enters the longer reservoir. With this system of a high and lower head the works will be as perfect as there is any possibility of their being made.

When the fire alarm is sounded, the higher head can be temporarily turned on, thereby giving all the effect of a constant supply from that point, without the cost of raising the whole of the water
to that height continually.

This tho teno in actio stop-coc to any ments f diameter be for fil power is terms of of fuel t
Having
propose departme of the Ba

Althous points frol obtained, with the p so obvious it is not p it is the co vessels whi a deleterio bottom, by
It may ju the whole from the R limits of th all their att from any pe

The wate the city, but tern, for th entertained

The We grounds and tions of pur any other po The bottol quite free fr portion of th This itself

31

This combination has been tried and approved of in practice; the tendency to rupture in the service pipes whilst this pressure is in action, can easily be avoided by partially closing the neighboring stop-cocks, se as to retard the velocity, thereby causing loss of head to any amount at will. As to the other portions of our arrangements for extension, the mains are laid at present with maximum diameters and minimum velocities, so that they will serve if need be for five times the proposed number of inhabitants. The motive power is also at present calculated for slow operation and short terms of daily working, so that by inereasing only the consumption of fuel they will readily do duty to four times the amount.
Having thus glanced at the leading features of our design, we propose to go more fully into the consideration of each individual department, and shall therefore commence by ehoosing that portion
of the Bay which will be our

POINT OF SUPPLY.

Although Burlington Bay at the present time presents many points from which a comparatively pure supply of water might be obtained, still, as we must have an eye to future fitness equally with the present, the choice of the proper locality is by no means so obvious as might appear at first sight. Navigated water, when it is not purified by a current, is unfit for the purpose, insomuch as it is the common cess pool for all tl. 3 offal of the wharves and the vessels which pass through it. Steam navigation in particular, has a deleterious effect, through the stirring up of the sediment on the bottom, by the action of the paddle wheels.

It may justly be surmised that before many years have elapsed the whole of the water frontage of the City on Burlington Bay, from the Railway Company's grounds on the West, to the extreme limits of the City on the East, will be occupied with wharves and all their attendant shipping, so that the idea of obtaining a supply from any point within those limits cannot be sustained.

The water eastward of the city is too far distant, not only from the city, but likewise from any elevated ground suitable for a cistern, for the idea of obtaining a supply from that quarter to he entertained for a moment.

The Western extreme of the Bay, between the Company's grounds and the Desjardin Canal, possesses the necessary qualifications of purity of element, and convenience of position, beyond any other point, in reference to this subject.

The bottom of the bay at this point is a clear sandy gravel, and portion of the rest.
This itself is one great feature in its favour, insomuch as vege-
tation not only pollutes the fluid itself, but by harboring reptile life in great abundance, defiles the water beyond the cleansing power of mechanical filtration.

As to escaping navigation and all its attendant filth, the chances are as ten to one in favor of this point. The high precipitous nature of the shores forbid the idea of wharf accommodation, whilst the narrow formation of the table land above gives security against future pollution by sewerage. Its situation is such that it can never be used as a channel for the passage of craft of any description whatever.

The current of water through Blirlington Bay is from west to east, passing from the Dundas Creek through the Desjardin Canal, castward, and finally entering Lake Ontario by the Burlington Canal.

This motion of the water secures for the position in question the first flow of the fresh water, and prevents as well the possibility of defilement, by the passage westward of the navigated water.

Its proximity to the city and elevated ground is th 3 crowning reason for selecting it above any other. Whilst according to the present survey of streets, a rising main may be taker dïrect to the site of our Reservoir, thereby avoiding all unnecessary friction
arising either from distance or arising either from distance or curves.
Having thus selected the point of the source from which we take our supply, we shall pass on to the consideration of the next most important point, viz. :-

STORAGE RESERVOIR.

The leading point to be observed in the arrangement of this department, is the obtainance of sufficient liead as near as possible to the points of supply and distribution.

The position upon which we have fixed as the site of the Reservoir, is a block of unimproved land on the crown of the ridge towards the western end of the city.

The block, as may be seen from the plate, is bounded on the north by Governor Street, west by Princess Street, south by Oxford Street, and east by Lock Street.

It is the highest ground North of the Mountain, being at present full 117 feet above the bay level, or 45 feet above the intersection of Jairies and King Streets: the depth of our reservoir will add 20 feet more to this head, so that 65 feet of head pressure will be available at the last mentioned point. This we consider quite sufficient for all ordinary purposes, and is in fact fully equal to that of ' ${ }^{\text {a }}$ ths of the works at present in operation throughout the United States.

Tho Reservoir is designed in two separate departments, which
may be will. T inconven The be case of a reducing confined pressure ment in e may be t present years mus amount, s in one der the increas

There is nection wi ment of su allude to t] Were th than prote would ther of the sumı (where ther tering the p dispensable.

The heav extent, the ing will en galvanized wood and ir louver board sun or wind,

The sides First next th ness of one ir brick coursin hind the cone according to an earthwork retaining wal Our reason fo is the great lo forming an im high value. I for obtaining equal.
rboring reptlle cleansing power

lth, the chances

 precipitous naodation, whilst security against hat it can never any deseriptions from west to esjardin Canal, the Burlington
in question the possibility of d water.
th3 crowning reurding to the a airect to the ssary friction
om which we n of the next
ement of this ar as possible
of the Reser. 1 of the ridge
anded on the th by Oxford
ng at present 3 inter section roir will add ssure will be Jer quite sufqual to that t the United
nents, which
may be used in connection with each other, or independently, at will. They may also be orected at different periods, without any

The benefits arising from the double reservoir are various. In case of a large demand fur fire tending to lower the head, by reducing the quantity of fluid, the draft on the store may be wholly confined to one, leaving the other full to innintain the usual supply pressure when the temporary run is over. In case of any derangement in either, or accidental stoppage in pipes, or valves, the other may be turned on whilst the repairs are being effected. As the present population of our City is altogether but 20,000, many years must elapse before the actual water takers will exceed that amount, so that for the present a seven days' supply can be stored in one department, thereby saving the erection of the other until the increase of the population rendered it absolutely necessary.

There is another point to which we would call attention, in connection with this department, one which in the general arrangement of such works, elsewhere, has been too often neglected-we allude to the covering of the reservoir.
Were there no other benefit to be derived from covering, further than protection from the smoke or dust of the City, the expense would thereby be overbalanced. But when we consider the effect (we summer sun in not only increasing the temperature, but (where there is so large a quantity with but little motion) in fostering the production of animalcule - we consider a covering in-
dispensable.
'The heavy frosts of winter will likewise hasten, to a very great extent, the decay or disruption of the basin. These evils a cover. ing will entirely prevent. The roof we propose to cover with galvanized corrugated iron, supported by a light combination of wood and iron framing. The sides to bo formed of moveable louver boarding, so as to allow the admission or exclusion of the
sun or wind, at will.
First next the water a coat of basin are to be constructed of, ness of one inch upon alternate coursing Cement laid to the thiekbrick coursing, bedded in a layer hind the concrete is a layer of ayer of conerete. Immediately iveaccording to the depth at which puddled clay, varying in thickness an earthwork embankment, held is placed. Behind the clay is retaining wall, which forms the in position by the stone-work Oui reason for substituting the soutward boundary of the Basin. is the great loss of space which is one wall for the usual earthwork, forming an important consideration occupied by the outward slope, high value. Besides with the facilition where the ground is held at a for obtaining stone, the cost acilities which the City possesses, equal.

The light sandy nature of our soil is a serious objection to the earthwork system, as it would require much more than the usual slope of $1 \frac{1}{2}$ to 1 , to be scrviceable.
We object likewise to the usual position of the puddling clay which forms the centre of these mounds. As the object of puddling with elay is to make the retaining structure impermeable, we cannot perceive the utility of placing it some 20 or 30 feet from the fluid which it is destined to check, as the whole of the intermediate strata must necessarily be in a state of saturation highly destructive to it.
The arrangement which we have made in service pipes and mains, in connection with the reservoir, not only gives the use of both or either at will, but allows the water to be slut off from both, and carried, if required, to a cistern at a higher level, as before proposed, under the iden of future extension. An overflow pipe will prevent the water rising beyond the proper level in the cistern. A valve pit and tool house which we have designed in connection with the cistern, contains all the stop-cocks for regulating the supply to either, with the exception of those for regulating tho intermediate pipes between the cisterns.
The dimensions of either cistern if reduced into a rectangle of the same dimensions will be $185+160$ feet, having 20 feet of available depth, the actual depth being 21 teet 6 inches, to allow of sedementary deposit.
Then ft. 185 long wide. deep. oublo feet. $502,000+61$ imperial 3,700,000 imperial gallons in a cubic foot will be equal to

Then the demens in each, or $7,400,000$ gallons in both. rial gallons demand for 40,000 inhabitants, at the rate of 25 impegallons, which, multipl to each, will be $40,000+25=1,000,000$ $7,000,000$ gallons-

By a
gallons, with the ing to 400,000 gallons, or demand, we have an overplus amountthe cistern or reservǫir.

DISTRIBUTION.

The experience of other water works has shewn that nearly one third of the whole daily supply is drawn from the pipes between the hours of 8 and 12 in the forenoon, so that the capacity of our pipes must be such as not only to admit of this amount, but likewise any extraordinary demand, such as fires, \&c.
As high velocity in the water passing through pipes, by causing friction, tends to diminish the head pressure, we must in conse-
quence ameter when th quantity to any and effer and afte
The r single pi same al smaller one. Th the same the diam
$\frac{180.000 \mathrm{el}}{4 \text { hour }}$ ing the wl

Then $\frac{40}{8}$ per secono

Then ${ }_{8.1}^{1}$ per second

Even at
reduction
the followi
sections of

Levels

S1

King
Pearl
Rae
Queen.... Hess
Caroline...
Bay.......
Park
McNabb ...
James.
IIughson...
John
Catherine. .
دfary.
objection to the othan the usual

3 puddling clay

 object of pudapermeable, we r 30 feet from e of the interuration highlyrice pipes and ives the use of shut off from gher level, as
An overflow or level in the e designed in ks for regulatfor regulating
rectangle of g 20 feet of os, to allow of
storage, and be equal to ns in both. of 25 impe$=1,000,000$ pply, makes
r, 7,400,000 lus amountin favour of
nearly one es betwcen city of our t, but like-
by causing in conse-
quence avold it, as far as possible, by making them of larger diameters than the present demand wonld actually call for, so that when the daily supply to bo delivered has inerensed to twice the quantity, the mains may serve, without reducing the head pressure to any sensible amount. This we consider much more economical and effective than making the main to supply the present demand, and afterwards adding another when needed.
The reason is that the same quantity when passing through a single pipe of large diameter, dues not meet with anything like the same amount of friction as it does when passing through two smaller pipes which, collectively, have the same area as the larger one. The cost of small pipes is also proportionally more when the same amount is delivered. The following figures will exhibit the diameter and velocity of flow in distributing mains
$\left.\frac{180.000 \text { eablo feet per day, }}{4 \text { hourf. }}\right\}=40,000$ per hol", at the rate of delivering tho whole in 4 hours if needed.
 per second; or nearly.
Then $\frac{11.60}{}$ per erecoud. per seeond.

Even at this comparatively slow velocity there will be some reduction of the head pressure, as may be more clearly seen by the following Table, exhibiting the available leights at the intersections of the various streets with King Street :

TATExT0 Levels of King Street, at the intersections of cross Streets, Calculated for a velocity of 8.8 feet per second.			
STREETIS.	$\xrightarrow{\text { Actral }}$ HEADS.	theoretical HEADS.	DIAMETERS
King	${ }_{30.63}^{\text {Feet. }}$	Feet.	Foet.
Rae	21.22	${ }_{19.72}{ }^{29}$	2. 0
Queen	${ }_{20,91}^{20.22}$	17.80	2. 0
Hees	${ }^{28.91}$	${ }^{25.50}$	2. 0
Caroline Bay...	${ }_{51.73}$	37.40 4700	2. 0
Park	55.82	50.80	2. 0
MeNab ${ }^{\text {a }}$..........................	${ }^{69.12}$	52.50	2. ${ }_{2} 0$
James,	64.49 6.59	56.70	2. 0
Hughson.....................	- 65.29	55.50	2. 0
Catherine..................	${ }^{65.28}$	53.50	1.100
Mary	67.80 69.92	54.80 85.90	1. 6
			1. 6

By referring to P'ate No, 1, the arrangement of service main and pipes will bo soen. The supply main is taken from the Ro. servoir, along Lock Street to King Street, and from thence down
through the centre of the City. through the centre of the City.
Sub-mains aro carried from it into the cross streets wherever deemed necessary, and angle joints and stop-cocks left for future use, opposite each strect, where water is not needed at present. Hydrants for fire supply aro placed at the angles of each block wherever the water service is taken.
We have not made any provision for any general system of measurement-of the quantitics of water used by the takers, as the high price of meters is a serious objection, It has been found quite sufficient to collect a general water-rate, and allow an unlimited use of the fluid. Indeed among the poorer classes the use of the water is rather to be encouraged than restricted. In manufactories, however, or any large public establishments, where considerable quantities are taken, we would advise the use of a registering meter. We have not included one in our details because there are numerous patents for the purpose which can easily be had
at any time
As the Water from Burlington Bay, at tho point from which we propose to take it, is sufficiently pure for domestic use, wo have deemed it unnecessary to incur the expenso of filtering. But as for drinking purposes it may require to be somewhat purified; we exhibit in our details a drawing of a very simple and efficient filter for attachment to the service pipes from which filtered or common Open from separate cocks. Street Gore, and Markets d'Eau," should be placed in the King will be sufficient to raise the ; the head pressure at these points them in our estimate of the cost.

Before elosing our remarks on this department, wo will reconsider the amount fixed upon as the dnily supply for each person, in comparison with that of other cities, a list of which collected from
various sources we subjoin :

CITIES. New York . .	DailySupply ench person. Imp. Gallons.	CITIES.	DailySupply each person. Imp. Gallons.
Boston....	50	Detroit	
Philadelphia	66	London	22
Nottingham .	35	Albany ${ }^{\text {a }}$	28
Plymouth. .	70	Paris	31
	10	Hamilton	20 25

The sequent advanta necessit clayey whilst is Hamilto it may 1 business

In the perineab is altoge it collect ment of 1,500 pe:

Extens ground, 1

The an general a

Its natu with most mum rate

TH
The sul water, has riments ex Cornwall.
In somo raised I,25 which has I

The part the Single expansively of $1,000,00$ of coals.

This amo basis of our elevating ou

In order ment in ma of one large for 40,000 it days in the their time of
of sorvico main en from the Resm thence down
streets wherever s left for future eded at present. s of each block
meral system of y the takers, as t has been found d allow an unliclasses tho use cted. In manuonts, where conuse of a regisdetails because an easily be had
from which we ic use, wo have 1g. But as for purified; we d efficient filter ed or common
ed in the King it these points Wo include
a will reconsi. ch person, in ollected from

DailySupply oach person. Imp.Gallons.

The variable results exhibited by the foregoing Table, are consoquent upon the peculiarities of each City, not only as to natural advantages, but likewise to their progress in manufactures. The nccessity for an artificial supply is greatly augmented by a stifl claycy impermeable soil, which retuins the rain upon the surface, whilst in the case of a light sandy or gravelly soil, such as that of Hamilton, the natural supply from wells is quite sufficient, unless it may be in the densely populated portions which surrounds the business streets.
In the City of Detroit, for instance, the soil is of such an im. permeable character, that the water which finds its way into wells is altogether surfuce water, charged with all the impurities which it colleets in its course. The consequence has been the establishment of water-works in that eity where the population was but 1,500 persons.

Extensive mannfactures and dense population for the area of ground, likewise demand a heavy proportional supply.

The amount upon which we have fixed for Hamilton is about the general average, according to most cities.

Its natural advantages, however, are so high that in comparison with most others, its artificial demands inight be placed at a mini-
mum rate.

THE MOTIVE POWER AND CONVEYANCE.

The superiority of the Cornish pumping Engine, for raising water, has been demonstrated by a long and carefil series of experiments extending over many years of operation in the mines of
Cornwall.
In some instances, by the burning of one pound of coals, it has raised $1,254,848$ pounds of water to the height of one foot, a duty which has not as yet beon performed by any other engine.
The partieular description of engine which we propose to use is the Single Roverse-Action Condensing Engino, using the steam expansively, the duty of which may fairly be stated at an average of $1,000,000$ pounds of water, raisod one foot high, for each pound of coals.

This amount, which wo consider a fair average, will form the basis of our calculations in estimating the running cost per day of el cvating our water supply.
In order to guard against the risk of stoppages, through derangement in machinery, we propose to use two small engines instead of one large one. By making the engines raise the wholo supply for 40,000 inhabitants in 8 hours of working time por day for 6 days in the week, we have ample room for extension, by increasing

Therefore, as the weekly supply-1.120.000 cubie feet-is to be raised in 48 hours, we have $\frac{1.120 .000}{49}=23.333$ cubio feet raised per hour, or nearly 389 cubic feet per minute.
Then, to find the necessary horse power of each engine, working at the rate of 10 strokes per minute, we have $\frac{889}{2}=105$ nearly, for each, per minute or $\frac{195}{10}=19 \frac{1}{2}$ or say 20 feet at each stroke or lift. Then, as the stroke of pump is $5 \frac{1}{2}$ feet $-\frac{20}{50}=3.63$ feet cubic, the arca of pump-which will therefore be 2 feet 2 inches diameter
in bore.
Then, as the total rise to reservoir is $=137$ feet, by adding $2 \frac{1}{2}$ feet for friction in pipes at a velocity of 2 feet per second, we have 139.5 feet, the theoretical head which the water requires to be
raised to.

Then, 139.5×2.06 the velocity per second, gives 279.0 , the number of cubic feet per second, or 279×60 seconds per minute $=$ 16740 cub. ft. per minute. Then $16{ }^{n 74} \times \times 3.1416$, the area of a pipe column. Thet foot of water, gives 3205687 , the number of pounds in a cubic of horse power, gives 99.8 , or which divided by 33.000 , the unit the whole supply. As the friction 100 horse power to elevate dition of one-fifth, it will amount of machinery requires the ador two engines of 60 horse power each horses for the whole power, feet of water to a height of 139 feet in to elevate 1.120 .000 cubic The cost of fuel for this currency, at the rate of one pound will amount to Nine Pounds assuming one cord of wood to be currency per cord of woodminous coal.
The yearly cost of fuel would therefore be Four Hundred and Sixty-eight pounds currency, or nearly three pence for each person.
As provision against fires we have stationed at the angles of each block, wherever our pipes extend, Hydrants of double capacity to the number of 82 .
We also use Stop-cocks at the intersections of the sub-mains with the principal one, to the number of 85 in all, including those engaged about the Tank, in order to be able to cut off supplies at
pleasurc, from any district.
ubic feet-is to be abic feet raised per
h engine, working $\frac{189}{2}=105$ nearly, at each stroke or $=3.63$ feet cubic, 2 inches diameter
et, by adding $2 \frac{1}{2}$ second, we have r requires to bo
gives 279.0 , the Is per minute $=$ le area of a pipo ts of the whole ands in a cubic 3.000 , the unit ower to elevate equires the adde whole power, 120.000 cubic

Nine Pounds ord of wood60 lbs of bitu-

- Hundred and reach person. angles of each le capacity to
he sub-mains cluding those ff supplies at

SPECIFICATION

Of Work to be done and Materials to be used in the Construction and

 Completion of the Water Works, for the City of Hamillon, according to the accompanying Plans.
RESERVOIR.

To be constructed of dimensions and form as shewn on Plate No. 3, and as more particularly detailed in section, on Plate No. 4. The Stone retaining walls will be finished on the exterior in coursed rock work, having not less than 10 -inch beds. The interior of the wall will be formed of random-coursed rubble work, having all the stones dressed to rectangular forms with their beds laid level. The Cornice or String Course, along the top, will be formed of two thicknesses of Bush-hammered and tooled free stone, in lengths of not less than 4 feet, and of the respective widths of 2 feet and 3 feet for the under and upper courses. The wall will be built of mortar composed of one part of the best fresh well burnt lime to two parts of clean sharp sand, thoroughly incorporated together. Mortar to be well flushed up into the centre of the wall, so as to be quite solid. The exterior will be finished off courses will be set in putty.
The earth work will be excavated or embanked in the various portions, as may be required to form the tank according to the
drawings.
The embankments are to be well ramined down in 6 -inch layers as they are formed. All new formed earth work, wherever it is placed in the works, must be thoroughly rammed. All superfluous earth must be removed from the site entirely, and distributed as may be directed by the City Authorities.

The puddled clay will be covered over the whole interior of Reservoir of the thickness and form denoted by/ section on Plate No. 4:

The puddling to be thoroughly worked with plenty of water in not more than six inch layers at a time.
The concrete will be composed of one part of the best well burnt fresh lime, mixed with six parts of screened gravel, thoroughly. incorporated. The mixture must be first made without water, the lime being finely ground for the purpose. When wetted it must be briskly brought up, and deposited in its position while quite hot.

The brickwork will be built in alternating layers, as per section, solidly bedded in the concrete, having the joints made with Hy draulic cement.

The whole of the interior of reservoirs will be covered with an inch coating of Hydraulic cement, laid on in two coats of half inch thickness each.

The roof will be constructed as per plan, covered with corrugated galvanized sheet iron, fastened by galvanized nails to light heading pieces supported by rafters and framing, as delineated on plate No. 3.

The framing will be constructed as per plan, in the most workmanlike manner, with iron ties, bolts and nuts, where shown or required.

The sides will be formed as per plan, with moveable louvre boarding filling the intervals between the supports. The louvre boards will be connected together by tie or regulating rods.

The whole of the wood work, both inside and out, is to be finished with three coats of the best white lead and linseed oil, with approved toning colours.

ENGINE HOUSE AND WHARF.
The piling for Wharf and engine foundations is to be driven to a solid bearing, caused by the percussive power of a driver of 1800 lbs . weight falling from a height of 20 feet. The piles to be of hardwood of the necessary lengths, and not more than 14 inches or less than 10 inches diameter." The piling under walls of building will be driven in four rows, at 2 inch intervals.
The foundations for machinery and smoke chimney to be piled close under the whole area.

The foundations will be laid on two stratas of 3 -in. pine planking, crossed and spiked to the level sawed heads of piles.

The Wharf will be covered with one layer of 4 -in. pine planking, pinned down, close joints, to horizonial bearers framed upon the piles. The outer edges of wharf will be finished by 6×8 oak guard pieces. The sides will be planked to a depth of 6 in . below the water line with $3 \times 6 \mathrm{in}$. battens well spiked to piles.

Provide and fix 8 heavy mooring posts 15 in . diameter and 4 feet high above wharf-of length sufficient to drive 6 feet into bottom, and at wharf level thoroughly joined by framing to the other timbers.

The conveying canal or tube from the pump well in engine house to the point of supply, will be construeted 4 feet in diameter, of circular stave work bound by iron hooping at every 2 feet run; the staves will be 12 feet in length, 2 in, thick, and not more than 6 in.
ers, as per section, ts made with Hy -
covered with an coats of half inch

1 with corrugated to light heading lineated on plate
the most workwhere shown or
aoveable louvre ts. The louvre ing rods.
is to be finished ed oil, with ap-
to be driven to of a driver of The piles to be than 14 inches walls of build-
ey to be piled

pine planking,

pine planking,

 aed upon the y 6×8 oak f 6 in. below iles.meter and 4 feet into botto the other
ongine house liameter, of et run ; the re than 6 in.
widc. A second bottom of horizontal planking, 4 feet in width, will be attached by braces and hoop iron bonds. The whole will be sunk and retained in its proper position by a ballasting of stones laid upon the false bottom.
The Building will be erected, as per plan and section, of brickwork with stone dressings ; the timber used is to be clear, dry and sound, wrought according to the varying forms and details, in the most workmanlike manner. The whole of the wood work, inside and out, is to be painted in three coats of oil colours. The sashes are to be glazed with the best German sheet glass. Provide and fix all necessary iron work required in the construction of the
building.

TA 公
Showing the ponition and diamoters of Pipel as laid through the Streots.

- STREETS WHERE LAID.	SPACES O	OF LAYING.	DIAMETERS.
Lock	Engine House Reservoir.	to Reservoir......	${ }_{2} \mathrm{ft}$. in.
King	Lock Street	" King Street....	$\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}$
	McNab Street	" James Street...	20
" ${ }^{\prime}$......	James Street	" Hughson Street.	110
"	Jughson Street	" John Street	18
		". CatherineStreet.	14
Bay.	King Street	" Cannon Street...	12
MeNab	Hunter Street	* Cannon Street.	06
Park .	Maiden Lane	" Caunnon Street...	08
James	King Street	", Gore Street	$\begin{array}{ll}0 & 6 \\ 1 & 0\end{array}$
\% . $10 . .$.	Gore Street "	" ${ }^{\prime \prime}$, Lind Street . . . ${ }^{\text {a }}$	$\begin{array}{rrr}1 \\ 0 & 10\end{array}$
"	King Street	" Tyburn Street..	1 1 10
Hughson.......	Main Street. "	" Augusta Street.	$\begin{array}{llll}0 & 8 & \cdots\end{array}$
John	King Street . .	" Lind Street ...	$0^{0} 8$
Catherine.......	King Street "	- Catherine Street.	
Mary	Tyburn Street "	" Henry Street...	$\begin{array}{ll}0 & 8 \\ 0 & 8\end{array}$

The piping to be laid through the various streets as delineated upon the Service Plan on Plate 1, aud according to the diameters of bore as mentioned in the foregoing table, The pipes to be laid of the depths and ranges as shewn in the profile sections of the' streets, upon Plate 2, but nowhere approaching nearer the surface than five feet from the tops of the pipe. The filling in to be well rammed, as solid as before, and the street repaired and left in as good condition as it was found at first.

The piping joints to be formed as exhibited in details on Plate 6. The jointing will be first caulked with oakum, and then the outer portion run in with melted lead to the depth of $2 \frac{1}{2}$ inches, afterwards well caulked.

The pipes to be subjected to a pressure of 250 lbs . to a square inch, previous to laying, and no article whatever is to be admitted into this department of the works, which has not stood this test.

The open ends of the present terminations to service pipes are to be closed by a temporary cast iron cap, rendered water-tight and secured to pipe by wrought iron portable serew clamps. Stopcocks of the proper diameters for the pipes are to be placed at the Strect, and lik of the subordinate feeders with the main in King another not shewn in the desiens in couuection with the reservoir, rising main, in the engine house. The be placd at the bottom of brought up through a faucet into a stone cope spindles are to be of the street. The opening in stone cap cap sunk below the level cast iron cover.

Hydrants of the form and dimensions, as exhibited in the details on Plate 6, are to be placed to the number of 82 , at the angles of the different streets, as marked on City Service Plan.

COST.

The works as we have designed them in the plates and specifications are of so heary and permanent a character, that they would involve a much greater outlay than would be needed were the present or even future demands, for 10 years hence, to be taken into consideration alone. Our 2 feet mains are quite sufficient for the supply of a City of 200,000 inhabitants, and it is with a view of their being able to serve that demand, when the City requires it, that we have desigued them so large. It is a common complaint with other cities, where such works have been for some time esta. blished, that the mains are insufficient to supply the increased demand, owing to their having been laid on too economic principles at the first.

Steam
Engine
Reservo Distrib Hydran Stopcoc

Enginee

No. 2.-E

Steam E
House an
Reservoir
Mains, Pi
Hydrants
Stop-cock

Engineerir

Then to
6 per cent. Fuel
Wear of E Salaries of

Or about 1111 gallor
The estim in cost by sufficient to
etails on Plate 6. d then the outer $2 \frac{1}{2}$ inches, after-
bs. to a square to be admitted ood this test.
rvice pipes are red water-tight clamps. Stope placed at the 3 main in King t the reservoir, the bottom of idles are to be elow the level I with a heavy
ted in the de, at the angles an.
and specifit they would rere the pree taken into ient for the h a view of requires it, complaint time estae increased mio princi-
ding to the rrency, as

No. 1.-ESTLMLATED COST OF THE WORKS, as provided for in the beport and speomications.

Steam engines and pumping ap	£	8.	
Engine House and Wharf, ac.	6000	0	
Reservoir	3000	0	0
Distributing and	16742	0	0
Hydrants..	33781	0	0
Stopcocks	820	0	0
	255	0	
Engineering	60598	0	0
	3030		
Total Cost			

No. 2.-ESTIMATE OF COST, IF EXECUTED ON A MORE REDUCED
SUALE.

Steam Engine and Pump	\pm	s.	D
House and Wharf....	4500	0	0
Reservoirs and Site	2500	0	0
Mains, Piping, \&c.	7300	0	0
Hydrants.	16472	0	0
Stop-cocks	600	0	0
	150	0	0
Engineering	31522	0	0
	1580	0	0
'th : , Total Cost	102	0	0

Then to ascertain the yearly cost, we have 6 per cent. Interest on Capital.

Salaries of employees... 300

$$
\text { Yeurly Coist..................... } \overline{£ 5,085137}
$$

Or about 3 pence currency for the elevation and distribution of
1111 gallons.
The estimate, No. 2 , is provided in order to shew the decrease in cost by using mains of one-half the diameter which would be sufficient to supply the City for 20 years to come.

This estimate only takes into consideration the erection of one half the reservoir, without any covering. One of the Cornish Engines is also omitted, the other being sufficient to do the work, and a duplicate power for emergencies being provided, in the form of a High Pressure Engine, of 25 horse power.
As it does not remain with us to decide upon which scheme may be adopted, we have only to remark, in conclusion, although the balance at present is greatly in favor of the construction of works to meet the present or only immediate future demand, still, in the long run, we consider the first estimate for the more extensive works considerably the cheapest. When such projects as these are entered into by Cities so promising as Hamilton, the calculations should not be limited to the necessities of one generation, but be formed upon a wide and liberal basis, embracing the probabilities of the future as well as the necessities of the present.

We have the honor to remain,
Your most obedient servants,
"DETUR DIGNISSIMO."

1 consider these competitors should receive the second premium. Montreal, 23rd Dec., $1854 . \quad$ THOMAS C. KEEFER.

The Re embankm thorough other, or water. I a retentive in the neis half to on and inner edge, and of concret been first the percola ally preven
e erection of one 3 of the Cornish t to do the work, vided, in the form
thich scheme may ion, although the ruction of works sand, still, in the more extensive jects as these are the calculations neration, but be the probabilities nt.
ervants, GNISSIMO."

PLAN No. 3.

The Chairman of Fire and Water Commiltee, City Hall, Hamilton. " non quo, sed quomodo."

REPORT AND SPECIFICATION OF PLANS Herewith submitted, for he Supply of the City of Hamilton with Water from Burlington Bay.
The general arrangement of Main, and Sub-main, and Serviccpipes, is indicated by blue lines on the accompanying enlarged Map of part of the City of Hamilton. The position of the Distributing Reservoir, Engine House, Stand-pipe, \&e., is also shown thereon; and the height of the water in the Reservair above the several streets, at their intersections, is given in red figures.

SITUATION OF RESERVOIR.

The situation chosen for the Reservoir is on the high ground to the south of the property of Sir Allan McNab; it occupies the entire Block bounded by Florence, Governor, Lock, and Princess Streets, and is slightly undulating (but in the main nearly level), affording an excellent base for the embankments, and is therefore preferable to a site, the natural surface and underlying stratification of which deviates in any great degree from an horizontal direction.

CONSTRUCTION, Etc.

The Reservoir is divided into two compartments by a central embankment, provision being made (as hereafter described) for the thorough cleansing of either compartment without emptying the other, or interfering in any degree with the continuous supply of water. The Embankments are proposed to be formed of clay of a retentive quality, an abundance of which ean be readily procured in the neighborhood. The outer slope is at the rate of one and a half to one, and the inner at the rate of two to one; the bottom and inner slope to be lined with hard-burnt clinker Bricks, laid on edge, and grouted with hydraulic mortar, and resting upon a bed of concrete one foot thick, the embankment and bottom having been first puddled with blue clay; injury to the embankment from the percolation of water through its substance will thus be effectuolly prevented.

SIZE OF REAERVOIR, ETC.

The size of each compartment will be, at the water line, 170 feet long, and 150 feet wide: the depth of water will be 21 feet : the height of the water alove the average level of the Bay will be 144 feet. The capacity of each compartment will be $2,022,433$ gallons : the entire quantity of water in both compartments will be $4,044,866$ Imperial gallons, or 4,850,338 American gallons, affording a supply for more than four days to 40,000 inhabitants, estimating the quantity to be supplied to each at 30 Imperial gallons per day, or 30 standard American gallons.

SUPPLY PIPE, \&c.

Each compartment is provided with a separate influent or Supply Pipe from the Engine, entering the Reservoir at the point indicated on the Drawings. This pipe torminates in a chamber of masonry, arranged in such a way that the current of water therefrom is directed upwards, and is effectually hindered from wasting away or otherwise injuring the bottom of the Reservoir, as is frequently the Ease when the Reservoir being empty the water is let on from the Engine, and when 10 provision of this kind is made for diverting the force of the current from the bottom; it has also the effect of preventing the current from disturbing any sediment which may happen to be at the bottom of the Reservoir, and which would otherwise become mixed with the entire quantity of water therein.

VALVES, \&c.

This Pipe is provided with a hinged Valve, so that when the
valves, nicate w tom of this well Valve 1 When it of one ol ing them received the Clean the Main arch ove and for re

The De that the w or from bo The orifice screen of $:$ for filling t grosser ma the deliver similar to Main of 18 of these, as plan and de

CONNEC'

ln order t connecting p bedded in c opening or s structed at t frame, suppo wall, serves t to the attend the timber co be necessary

CLEANSING PIPES, \&c.

The Cleansing Pipes, one from each compartment, also pass through the lower story of this Building, and are provided with

When the v (which is 1 foc
ater line, $\mathbf{1 7 0}$ feet 1 be 21 feet : the o Bay will be 144 ,022,433 gallons : will be 4,044,866 affording a supply imating the quan-- per day, or 30

Ifluent or Supply e point indicated ber of masonry, therefrom is divasting away or is frequently the let on from the de for diverting Ilso the effect of nent which may ad which would water therein.
that when the water cannot e effected upon ooding. Each Valve (shewn Engine can be s those of the reater convessary objects. is placed in apparatus is ch of the atrovided with
valves, similar to those already described. These Pipes commu. nicate with a Well lined with masonry, and sunk below the bottom of thy Fieservoir, which inclines in every direction towards this well. The Cleansing Pipes pass from this point through the Valve House to n receiving well, placed outside the bnilding. When it is required to draw off the water entirely from the botom. of one of the compartinents, for the purpose of eleansing or repairing them, the Valve being opeued, the last of all the contents is received in the wells above inentioned, and is drawn away through the Cleansing Pipe into the receiving well, and passes thence into areh over ther. A Man-Hole is construeted in the crown of to and for removing any silt the purpose of giving admission thereto

DELIVERY FROM RESEPVOIR. de.

The Delivery from the Reservoir is arranged in such a manner that the water may be drawn cither from one compartment alone or from both at once, each division having its own separate outlet. The orifice of each effluent pipe is enlarged to receive a perforated screen of sufficient size to permit the guantity of water necessary for filling the pipe to pass into the Main, the sereen preventing any grosser matters which may be in the Reservoir from passing any the delivery pipes. The effluent pipes pass through a Valve flouse similar to that already described, und are united in one principal Main of 18 inches diameter, at a li' tle distance. The arrangement plan and details of the influent and cleansing pipes is shown in the phet dills of the Reservoir, Sheet No. 10.

CONNECTION PIPE BETIWEEN COMPARTMENTS, \&e.

In order to keep the surfaces of both the divisions at a level, a counecting pipe is placed in the central embankment: this pipe is bedded in concrete; and midway a Slide Valve is inserted for opening or shutting the pipe. A circular well or Man-hole is constructed at this point to give access to the valve : a moveable oak frame, supported on stone corbels, projecting from the face of the wall, serves to steady the valve spindle, and to give standing room to the attendant when closing the valve. This framing, as well as be necessary to repair the valve.

WASTE PIPES, \&e.

When the water has reached its proper height in the Reservoir, (which is 1 foot 8 inches below the top of the embankment, and
still continues to flow from the Engine, the surplus water rising in the waste pipes to the bend therein, falls over it into the water-bag in the waste-weir well below, and is thence carried off into the main sewer. At this point the enibankment is raised betwcen two retaining wulls of masonry to the height of 4 feet over the pipes, so us to protect them effectually from the frost, and the mouth of these waste pipes is sunk to a depth of 8 feet below the water line for the same purpose.

SURFACE DRAINAGE.

A raised terrace, 10 feet wide, is formed round the base of the outer embankinent to protect it at the foot ; and on the outer margin of this is constructed an open paved drain, which will receive the superficial drainage of the enbankment, and convey it to the sower through the necessary gratings und gully drains constructed
at each angle.

MODE OF DISTRIBUTION, \&c.

The mode of distributing the water through the eity is shewn in the accompanying enlarged map. The principal Main leaves the Reservoir on the Scuth side, and passes along Rail way Street to its intersection with King Street; thence along the latter to Queen Strcet; thence, keeping on the high ground in the neighborhood, on Hunter, Bond, and Anderson Streets, to the termination of the latter Street on the East side of the City. From this Main, Sub. mains proceed down McNab, James, Mary, and Wellington Streets to the North shore of the Lake. At the intersection of the several Streets crossed by these Sub-mains, service pipes are attached hy curves of 15 feqt radius; those service pipes proceed, as shewn on the Map, towards the East, in which direction the greater part of the ground on which Hamilton is built, inclines. After passing the several intervening blocks, these pipes are again joined to the main, east of that from which they started; and in every case they reach the former at a level very considerably below that of the point whence they first procceded. The whole of the water is thus made to flow downwards, instend of being forced upwards in the pipes by the pressure of the head. By this arrangement all return currents are avoided, and any sediment there may be remains in a great measure undisturbed. For example, the water leaving the James Street Main, by the Service Pipe at the corner of King Street, reaches the Mary Street Main on the corner of Henry Street, at a level of 30 feet 6 inches below its level in King Street. And again, the junction of the Ser ice Pipe out of the Main on Bay Street, at the corner of Cannon and Bay Streets, with the Main on

James Street distribu technica vice Pip pipe,) are inva prejudici sive to r whicin tha casion, th extreme than four a novel ou for a City is uninterr the furthe

CUTTIN

The man with the M in Sheet No Service wit nearest side Service at t Main anothe is also an en Pipe. Wh the upper sl thus cut off none can ent opened, the receptacle be connecting C admitted, so be taken up o are enclosed it crown of the

The mode 0 bottom of sach of the uneven
is water rising in nto the water-bag off into the main ed between two t over the pipes, and the mouth of w the water line
the base of the a the outer mar. wh will receive convey it to the tins construeted
city is shewn in Main leaves the ray Street to its latter to Queen neighborhood, nination of tho this Main, Subllington Streets a of the several re attached by d, as shewn on greater part of fter passing the ed to the main, rase they reach at of the point r is thus nade ds in the pipes nt all return be remains in er leaving the ruer of King Henry Street, Street. And Main on Bay the Main on
cleansing pipe of not less than 6 inches diameter is attached to the Main by a sleeve; this cleansing pipe passes through a man-hole or well, in which is placed a sluice cock, by opening which a quantity of water is rapidly drawn from the Main, carrying with it the silt or mud laying in the pipe, which falls into the water bag in the receiving well and passes thence into the Scwer.

HYDRANTS, \&e.

The form of Hydrant or Fire Plug, as shown in Sheet No. 15, possesses many advantages which cannot be claimed for any other with which I am acquainted. In the Drawing referred to is exhibited a vertical section of the Hydrant complete-the cast iron shell is shown bolted to a branch elbow-pipe; this shell has an internal projecting rim or flange near the top, which is bored to receive the hollow brass plug through which the water finds its way into the hose from the Main. A double-threaded serew, one inch pitch, is cut on a projecting spindle, cast in a piece with the lower end of the plug ; and this screv works through a brass cross picee checked into the bottom of the outer shell to act as a mut for the vertical movement of the plug in opening and closing the Hydrant. The water from the main always keeps the space between the exterior of the plug and the interior of the shell full as far up as the bored internal flange of the latter; and when the plug is serewed downwards to its lowest position, as in the Drawing, it escapes into the interior of the plug by the line of slots, and thence up the barrel to the Hose. The stuffing box of the plug being intended to stand excessive pressure, possesses several peculiarities. The gland is cast finished, of composition metal, in which tin forms the chief ingredient; the cupped portion at the bottom of its ring, which fits the plug, slightly overlaps a Gutta Percha Ring with a bottom flange; and in the groove formed by this flange and the bottom edge of the gland, a narrow packing ring of Hemp is placed as stuffing, the adjustment being effected by serewing down the three bolts of the gland in the usual manner. The interior of the top of the plug is grooved on each side for the reception of two feathers on the coupling for attaching the Hose; and the upper screw on this coupling is left-banded, so that when the Hose is attached the plug of the Hydrant may be turned to depress it in obtaining a supply of water, without endangering a twisting of the Hose. This Hydrant presents very superior facilities for repair, for it is only necessary to unscrew the four bolts which attach the shell to the Main, when the whole may be lifted out and taken to the workshop, another being put down in its place-the whole operation occupying only a few minutes, and leaving the street undisturbed. The working surfaces are well adapted for durability, and any slight wear.
is attached to the rough a man-hole ing which a quanrrying with it the o water bag in the
in Sheet No. 15, ned for any other eferred to is exhi. te-the cast iron is shell has an in. s bored to receive finds its way into w, one inch pitch. the lower end of oss piece checked it for the vertical e Hydrant. The stween the exteas far up as the ${ }^{3}$ plug is screwed g, it escapes into sence up the bareing intended to ities. The gland a forms the chief is ring, which fits ; with a bottom and the bottom mp is placed as d down the three terior of the top 1 of two feathers upper screw on θ is attached the t in obtaining a the Hose. This ir, for it is only the shell to the to the workshop, ration occupying ed. The workany slight wear
cannot affect the tightness of the parts; and the internal pressure in the Mains tends only to close the plug by its action on the screw. Provision is also made for avoiding the effects of frost, as no water remains inside the tubular plug when closed, and as the orifices are passed a short distance above the packing ring, the water in the tube always flows out. The opening screw is of considerable nitch, one turn being sufficient to elevate or depress the plug an inch, and the gradual action of the screw prevents the occurrence of any sudden shock from the rush of water. No stand pipe is required, the communication with the Hose being entirely effected by a short more is required than one of the small opening and closing, nothing Brigade, so that no delay of the small lever keys used by the Fire point of economy, too, this occur from want of proper keys. In most others, as where they hydrant possesses advantages over been supplied at about £1 Sterling each.

PIPES.-SIZE, STRENGTH, \&c.

As respects the diameter, thickness, and junctions of the Pipes intended to be used, it may be proper in this place to state, that the sizes of the several Main, Sub-Main, and Service Pipes, are marked in figures on the enlarged Map already referred to; and that the thickness of metal of these pipes will be, for

MODE OF JOINTING PIPES, \&c.

With regard to the descrintion of joint, it will be seen by reference to sheet No., that the pipes are shewn with Socket Joints, packed with hemp and leaded, a groove being left in the socket for the lead to run into and thus ensure a perfectly water-tight joint. ticed, and is of jointing water-supply pipes has been much prac. disadvantages of greater ective when properly done; but it has the difficulty of removal should thore trouble in laying, and extreme with the less expensive, casier laid ever be occasion, as compared replaced Flange Joint Pipes, Percha packings, and bolted togked with Indian Rubber or Gutta and which, therefore, on the score of economy in Sheet No. for laying and removal, I propose of economy, and greater facility or laying and removal, I propose to adopt in the present works.

STAND PIPE, TOWER, \&c.

As in works of this kind it is very desirable to relieve the Engine as soon as possible of the water delivered from the pumps, which is usually effected by the ercetion of a Stand Pipe, as near to the Engine as may be, and reaching to a height a little over that of the water in the Reservoir, advantage has been taken for this purpose of the high ground innmediately adjoining the site of the Engine House, on which it is proposed to erect a Stand Pipe and enclosing Tower, as shewn by drawings on Sheet No. 8. The ground at this point is 83 feet 6 inches above the level of the water in the Bay, the Stand Pipe is 65 feet 6 inches high from the ground level ; its total height thereforo, about the clacks of the pumps, will be 149 feet, or 5 feet higher than the surface of the water in the Reservoir. At the bottom of the Stand Pipe, leading from the Engine, is fixed a Butterfly or Flap Valve, (also shown in the same Drawing,) the action of which will be to admit the water delivered by every stroke of the pumps to flow up the Stand Pipe, and, at the completion of the stroke, the Valve closes and prevents its return to the Engine-thus immediately relieving the pump valves from the pressure of the water.

A HIGHER SITE FOR THE RESERVOIR, \&c.

It may be right here to mention, that although the Reservoir is shown in what to my judgment is, for all present and prospective purposes, the situation best calculated to ensure the completeness and general usefulness of the works, yet that there is another site for the Reservoir (indicated in lines on the enlarged Map), which, if it were deemed preferable to adopt, would secure an additional distributing elevation of 48 feet over the present site. And this change can be made without affecting in any degree the plan and arrangements laid down, further than that the Engines and pumping apparatus would be placed at the foot of Hess or Queen Street; the power of the Engines would have to be proportionately increased ; and the leading Main be carried down James Street, and thence as already shown. This Reservoir would be sunk 10 feet below the ground level, and the embankments formed of the soil removed from the excavation. The arrangement of influent and effluent pipes would be similar to that already described, with the exception only of the effluent pipes, which would be made to pass through the same Valve House as the other pipes; and this Valve House would be situated on the North side of the Reservoir. contend w nery being pump. O_{1} the pump and throug ing through vacuo by t is performe is complete the same ar on the oth formed. E to accompli

ENGINES, \&c.

orelieve the En from the pumps, nd Pipe, as near $t a$ little over that en taken for this ng th.: site of the a Stand Pipe and reet No. 8. The level of the water from the ground 3 of the pumps, e of the water in leading from the hown in the same a water delivered .nd Pipe, and, at and prevents its the pump valves

OIR, \&e.
the Reservoir is and prospective ne completeness e is another site d Map), which, re an additional site. And this ee the plan and es and pumping reen Street; the ately increased; t , and thence as feet below the 1 removed from 1 effluent pipes exception only rough the same ouse would be
${ }^{2}$ The Engines herein set forth are two double-acting condensing Engines, having a Beam supported on two longitudinal Girders and Colunns for each. They are worked upon the High pressure expansion principle-that is to say, admitting the steam at a pressure of about 30 lbs . per square inch on the piston, and cutting off the same at an early period of the stroke; thus working at a high degree of expansion, and consequently greatly diminishing the weight and magnitude of the working parts of the Engine; in addition to these advantages, the one and all-important advantage is the saving of wood or coal, which is only to be effected by Engines on this principle. I do not say principle in form, but principle in theoretical construction, based upon practice and observation. The Engine is upon the rotative system, which perhaps to some may appear not so well adapted as the single-acting or Cornish Engine. The Cornish Engine is a very effective one, as it performs its work at a single stroke of the steam cylinder and pump plunger, but it must be remembered that the speed of the Engine is very slow, and one stroke of the piston is used for lifting the plunger, and for this purpose only the steam is employed-hence the ponderous weight and size of the different parts. And of course this Engine is very much more expensive than the Rotative expansive double-acting Engine. By referse to the Drawings (Sheets Nos. 1, 2, 3, 4 \& 5) and annexed Sr "astion, it will be seen that this Engine will work a double ia? Pump so constructed as to perform work at every stroke of the Engine, although the pump attached to each Engine has but one working barrel. The velocity of the piston in the steam cylinder will be 15 single strokes, or 30 double strokes, per minute, giving the puinp a velocity of 90 feet per minute, which is but a very ordinary speed, and thoroughly effective. The Engine, with such a pump and speed, will at no period have to contend with sudden resistances, the work and speed of the machinery being perfectly uniform in consequence of the action of the puinp. On reference to Drawing No. 3, it will be seen that while the pump piston is delivering the water on one side of the same and through the valvo marked "delivery valve," the water is flow. ing through the valve marked "suction valve" into the space left in vacuo by the ascending and descending strokes of the piston-this is performed at every stroke of the same, so that when the stroke is complete and the return stroke is made, the piston meets with the same amount of resistance that it had in delivering the water on the other side-hence the uniformity of the work to be performed. Each Engine is equal to 35 horse power, and sufficient to accomplish the required amount of work.

PUMPS.

The Pump cousists of a Cylinder truly bored and fitted with valves as shewn in the drawing. This pump will throw 60 gallons at one revolution of the Engine, or $1,296,000$ gallons per day, which is more than is needed, but taking into consideration the Wuste, the quantity required for manufacturing purposes and fires, it is, I think, only a fair allowance. The total cost of the Engines, Pumps, and Boilers, I estimate at $£ 6,000$. The Specification of the Machinery, describing the different parts, is annexed to this
Report.

PIPE INTO THE BAY, \&c.

The mode in which it is proposed to conduct the water from the Bay to the Suction Well of the Eugines, is as follows : a well will be sunk in the position shewn on the enlarged Map, of suitable dimensions, and bricked up in the manner described in the. Specification, into which the water will be conducted by a Cast Iron inlet
sets of perform and reg ways in arise.
Pipes as water as of the w that bot] works of umission endeavol a abund aged, for parposes outlay as in all Pu tion and considera pipe will pass under the Great Westastance of 200 yards. This already formed there at the foot of Railway, through the sluico be laid in a channel excavated in is. Mary's Lane. The pipe to and protected from the water, during of the Bay, surrounded Coffer Dams of narrow width, and in such process of laying, by the most convenient to manage. in such lengths as shall be found by a small portable Engine. The water being pumped out covering of shing!e and large. The pipe will be protected by a laid in its place. The extremence, deposited over it after being by a Perforated Cast Iron S end of the pipe to be terminated this pipe will fall into the well just The water passing through be conveyed by a brick-built Culveribed, and will from thence within the Engine House. Culvert, into the Suction Well

In submitting to the consideration of the Council, this plan for supplying the City of Hamilton with water, from the source specified in the advertisement, I would beg permission to direct atten. it has been my ontial requisites for completeness and efficiency which probable rate of increase in the In the first place, looking at the supply has been based on double population, my estimate for the tants; and in order that thouble the present number of Inhabi. well as private purpeses, the supply may be ample for publio as at the maximum. In the second be an uninterrupted supply, and place, to secure as nearly as may against those accidents and conto provide as far as practicable from the system of pumping fromencies which are inseparable only deemed it necessary to put dow the lowest level, I have not
d and fitted with throw 60 gallons gallons per day, consideration the irposes and fires, of the Engines, Specification of annexed to this
water from the ws: a well will fap, of suitable ed in the SpeciCast Iron inlet 0 yards. This rough the sluice 2. The pipe to ay, surrounded of laying, by shall be found s pumped out protected by a it aiter being be terminated ssing through 11 from thence Suction Well
this plan for source specidirect atten. iciency which ooking at the imate for the er of Inhabi. or public as been taken arly as may practicable inseparable I have not nes and two
sets of pumps, but also to have each Engine of sufficient power to perform the needful work alone-working the Engines alternately and regularly, and so having one Engine and a set of pumps al. ways in perfect order, and in reserve for any emergency that may arise. In the third place, I have so laid out all the Distributing Pipes as to secure as complete and continuous circulation of the water as possible, knowing that without this provision the quality of the water is often much deteriorated at the lower points, and that both in England and America, many otherwise well-designed works of Water-Supply have been marred in effectiveness by the omission of this preventative. In the fourth place, I have anxiously endeavoured to make full provision for cleansing and repairs, for a abundant supply of fire-plugs easily reached and readily managed, for flushing sewers, street watering, and for all other public parposes. And lastly, I have had such a careful regard to the outlay as is consistent with that durability and completeness which, in all Public Works, and more especially in works of this description and importance, it is the truest economy to make the first consideration.

SPECIFICATION

Of Work to be done and Materials furnished in erecting Reservoirs, Engines, Pumps, and other Apparatus for supplying the City of Hamilton with Water from Burlington Bay, in accordance with the Plans herewith submitted, and bearing the Motto "Non quo, SED QDO MODO."

The Area of the Reservoir is to be brought to a uniform and fair level, the earth taken from the heights thereon to be used in filling up the depressions of the surface, to be wnll rammed and consolidated in layers of not more than 18 inches thick before the formed agreeably to the are begun. The Embankments to be outer slope to be formed to an inclination herewith exhibited; the the inner slope to two to one melination of one and a half to one; inches high from the level ; the Einbankments to be 22 feet 6 the outer Embankments to be 10 brick bottom of the Reservoir; one 6 feet wide, to be formed to the wide on the top; the central more than 18 inches thick, of clay or well worked and beaten together and thoroughly a retentive quality, the next layer be commenced; the side slophly consolidated before off to the inclination mentioned above, but to be neatly dressed bankment has been completed. Be, but not till the whole emcommenced, the trenches for pipes, fore the Embankments are cleansing wells, and for Valve Hou, foundations for delivery and and dimensions shown in the Drawing to be dug out to the depths 3 feet thick, to be formed in the centre. A wall of puddley clay, scending 4 feet below the bottom of R of each Embankment, dewithin one foot of the top of the embankervoir and carried up to clay loam mixed with a suitable proportioments, to be formed of a well incorporated together and proportion of fine gravel, the whole well wetted and cut through vaid on in courses 12 inches thick, inch till the whole is rendered compally with spades every $\frac{3}{4}$ of an course is set another should be impact and water-tight. When one any interruptions of the work the last ly commenced, and during earth or wet straw to prevent cracking. The to be covered with servoir to be formed with a slight wells shown in the plan, and a sht inclination towards the cleansing as shown; the inner slope and hoinow open paved Brick Drain laid
formed is hard bur joints wit sharp san

The Cl Valve IIU crete is ex rounded Concrete first appro burned sto powder on be then th and in sma with as lit diately afte (constructe vided for it of concrete and extend rammed bef livery and and all othe of the dime of the same. built of regi perfectly trid stones, in all headers and : and the cours the very leas shown as rock arches, and q with a toole arris. The the Reservoir Sluice Cock V hammer-dress true both vert with the best natural beds, compounded o clean sharp sa parapet, cornic House to be of the beds and jo and the window

57

cting Reservoirs, lying the City of accordance with otto "Non quo,
formed in the manner hereinafter described, and to be paved with hard burnt clinker bricks laid on edge, and grouted between the joints with liquid mortar, coonposed of Hydraulic Lime and clean
sharp sand in proper proportions.
The Cleansing and Receiving Wells, the Pipes, Foundations of Valve IIouses, and all other purtions of the work in which Concrete is exhibited in the Plans and Sections, to be laid and surrounded with Concrete male in the fullowing manner :-The. Concrete to be composed of unscreened ballast or gravel, (to be first approved of by the Engineer, six parts, and of fresh wellburned stone lime, one part; the lime to be beaten or ground to powder on the premises whilst unslacked, the gravel and lime to be then thoroughly mixed in the pruportions mentioned above, and in small quantities at a time, the lime at mixing being slacked with as little water as possible, and the concreted mass immediately after mixing to be thrown or dropped from a staging (constructed by the contractor) so as to fall into the trench provided for its reception from a height of at least 12 feet; the layer of concrete to be of such thickness as the Engineer shall direct, and extending the whole width of the trench, and to be well rammed before any masonry is laid upon it. The Receiving, Delivery and Cleansing Well, Valve House and Stand-Pipe Tower, and all other masonry connecter! with the Reservoir, will be built of the dimensions and forms as shewn in the respective Drawings of the same. And all the exposed portions of such work to be built of regular coarse masonry, the beds and joints to be dressed perfectly true, both vertically and harizontally, and closely set; the stones, in all cases to be laid on their natural beds with alternate headers and stretchers, the beds to be not less than 12 inches wide, and the courses not less than 12 inches high-the headers to be at the very least 1 foot 8 inches long. Those portions of the work shnwn as rock-faced masonry, including the pilasters, window jambs, arches, and quoins of Valve House, to be of tho best free-stone, with a tooled draft of $1 \pm$ inch wide to all joints and projecting arris. The whole of the rest of the mason work connected with the Reservoir, and also the Rcceiving and Clcansing Wells and Sluice Cock Wells, to be finished in a neat and regular course, hammer-dressed to a fair surface, and the joints to be close and true both verticilly and horizontally. All this work to be backed with the best rubble masonry, of large flat stones laid on their natural beds, and the whole properly laid and bedded in mortar, compounded of one-third well burnt stone lime, and two-thirds of clean sharp sand, well beaten and carefully amalgamated. The parapet, cornice, mouldings, plinth, winduw and door sills of Valve House to be of free stone walling, tooled on the exposed surfacesthe beds and joints as before described-the door sills to be 12×8,
and
, and the window sills 12×6.

The masonry of the Engine House and Stand-pipe Tower to be executed in the manner hi rein above described, and in strict accordance with the drawings of the same; such portions as are not shown in rock masonry are to be executed in tooled ashlar masonry, The main shift of Stand-pipe Tower, the flues, circular shaft of Engine Chimney, and all other work shown in brick, to be built of the best hard-burnt stock bricks-as also the brick casing round the Boilers, Ash-pit, \&ec.
A Well to be sunk in the position shown in the enlarged Map, for receiving the water from the Pipe into the Bay, will be built of hard bricks laid in Hydraulic Cement on a Cast Iron Curb, with 8 cutting edge downwards, the soil to be taken out from the interior and as the Curbsinks the brick sides to be carried up in proportionthe brick to be moulded so as to radiate from the centre of the curve, and to be laid in heading courses two bricks (18 inches) thick. The Well to be sunk to the depth of 25 feet below the ground level: proper openings to be left in the side nearest the Bay, for the insertion of the cast iron Inlet Pipe. The back of the Well to be properly puddled. An arched Brick Culvert to be carried from the Well to the Suction Well of the Engine House.

ENGINES, PUMPS, \&c.

The Engines and Pumps to be constructed in strict accordanc with the several Drawings thereof annexed, and as hereinafter mor particularly specified, viz: The Cylinder of each Engine to be 22 inches diameter, having a stroke of 5 feet; to be of fine hard cas iron and accurately bored and fitted in all respects; the cylinde cover and valve spindle-gland to be bushed with fine hard guf metal, and also the bottoms of the stuffing boxes. The Pisto to be fitted accurately with two brass rings, which are to be acte upon by hemp in the inside of the same by means of a plate an screws. The Piston Rod to be of the best faggotted Wrought Iroo and properly fitted into the cross-head, and secured by a coltes The Beain to be made as per detail Drawings, having the main an smaller gudgeons truly turned and fitted. The Air Pump to be fine hard cast iron, and truly bored and fitted with a piston of th same description as the piston in the Steam Cylinder, and th bushes and glands to be of the same description as those in th Steam Cylinder. The Air Pump Rod to be accurately fitted int the gland of the Air Pump lever and attached to the back links the motion. The Condenser to be cylindrical, and of the dimension and form shown in the drawings, the joints to be all accuratel faced and properly furnished with bolts and nuts. The Injectio Cock to be made of brass, and fastened to the Condenser by mean of a flange bolted to the side of the same, and to be provided wit
a spindle Hot Wato shown in necessary truly bore the worki finest cast plunger tr the workin Crank to fitted into keys, and truly turne well fitted the crank turned as the dimensi The Connec the Drawing with the ne the large or prasses truly py the colte ection of its ix arms ; to rrought iron py wrought his purpose, ing on both eccentric Pu ecured accor keyed on to t hard with bat olts, and of Rod attached put and finish limensions sh D Valve, leav ruly fitted an rast iron, not olid ends fit ead of wrougl which is to ha djusting the he girders to ngs, and to be hown, and fast

nd.pipe Tower to be

 and In strict accord. portions as are not led ashlar inasonry. es, circular shaft of brick, to be built of brick casing roundthe enlarged Map, 3ay, will be built of t Iron Curb, with t from the interior up in proportionn the centre of the bricks (18 inches) 25 feet below the he side nearest the 3. The back of the ick Culvert to be e Engine House.
n strict accordane is hereinafter mor Engine to be 22 e of fine hard cas ects ; the cylinde ith fine hard gur xes. The Pisto ch are to be acte ans of a plate an ted Wrought Iror sured by a colte ving the main an lir Pump to be th a piston of the Cylinder, and th 1 as those in th urately fitted int the back links of the dimension be all accuratel

The Injectio idenser by mear be provided wit

59

a spindle and handle for regulating the supply of Injection Water. Hot Water Pump to be of brass, and of the form and dimensions shown in the Drawings, fitted with strong conical valves and all the necessary pipes for suction and delivery: the ran to be of iron, truly bored, and having a rod jointed to the same and attached to the working beam. The Cold Water Pump to be made of the finest cast iron, as hard as that of the Cylinder, and fitted with a plunger truly turned, and cor nected to a rod, and to be worked by the working beam, at the distance shewn in the Drawings. The Crank to be of tough cast iron, the eye to be truly bored and fitted into the crank shaft and secured to the same by two strong keys, and not to be shrunk on to the shaft; the crank pin to be ruly turned to the dimensions shown on the Drawing, and to be well fitted into the crank, and fastened by means of a colter through the crank and pin. The Crank Shaft to be of cast iron, truly the dimensions shown in having its journals in the position and of The Connecting Rod to be of cast iron-to be accurately observed. the Drawings; the sraall ends to iron, and of the form shown in with the necessary brasses, pins be fitted with continuous straps, the large or crank end to be solid, haviters, all properly fitted; brasses truly bored and fitted into the sag a pin slotted out and py the colter. The Fly Wheel to be 20 see, and to he acted upon section of its ring not less than 28 inches, and in tiameter, having a ix arms; to be cast in three pieces ands, and not to have less than rrought iron rings shrunk on to th and secured at the nave by two by wrought iron straps shrunk to the same; the ring to be fastened his purpose, and bolts to phank on to pieces formed on the same for ing on both sides $-a$ Drawing herentter to be furnished Eccentric Pully to be of casting hereatter to be furnished. The ecured according to the Drawing and having the throw accurately reyed on to the shaft. Thrawing-to be properly bored out and ard with babbit metal, and fastencric Strap to be of brass, very bolts, and of the form shown intened together with two nuts and Rod attached. The Wergh Shaft thrawing, with the Eccentric out and finished, having the starting to be wrought iron, truly set limensions shown on the Drawing line and balance-weight of the O Valve, leaving the amount of lip she Slide Valve to be a long ruly fitted and scraped to a proper shown on the Drawing - to be ast iron, not ton hard to a proper surfuce, and to be cast of fine olid ends fitted with bro bo worked by two good side rods with eead of wrought iron, and thes and colters, and attached to a cruss which is to have nuts on eithe samie to be fitted to the valve spindle, djusting the travel of the V side of the same for the purpose of the girders to be of the dimensions and Columns for supporting ngs, and to be firmly fastened to the transverse phown in the Drawormation of the Engine IRon,m. To transverse plate built into the Thown, and fastened to the colu. The Girders to be of the section hown, and fastened to the columns by fuur bolts; the lungitudinal
girders to have cheeks and chipping pieces cast on them, so as to be able to get up a true bed for the Plummer Blocks for carrying the main beam gudgeons. The Plummer Blocks to be of the form and dimensions shown-to be very accurately fitted in every respect, and the brasses to be of good tough gun-metal lined with babbit metal, and fitted with suitable lubricators. The Parallel Motionsthe main links to be of the form and dimensions shown, fitted with hard gun-metal brasses, accurately bored, with distance pieces, gibs and colters complete; the back links to be open-ended, having hard gun-metal brasses with distance pieces and keys well fitted; the parallel bars to be round, larger in the centre than at the ends, and of the dimension shown in the Drawings-they are not to have straps, but to be fitted with brasses and keys, with cups for lubricating the working parts : the Radius Rods to be of the same form, very accurately centred. A Blou-through Valve to be provided and put in a convenient part for the Engineman to use with the levers of the starting geer. The Larye Pump to have a Cylinder 17 inches in diameter and a stroke of three feet, with an air vessel to each, a drawing of which will be furnished hereafter: the Cylin. der to be of good hard cast iron, very accurately bored and fitted, with a piston of the same description as that described for the Cylinder of the Engine; the Cylinder to be $1 \frac{8}{4}$ inches thick, to be fitted with Valve Boxes and Valves; the Valves to be of leather, with a thickness of vulcanized India Rubber at the back of the Ram, the two being drawn together by bolts passing through two irnn plates; the Valves to work upon metallic hinges, and this description of Valve to be employed in all parts of this pump, a detail Drawing of which will hereafter be furnished: the Valves must have checks fastened on the inside of the Valve Boxes, and so placed that the Valve shall not open too far ; all the joints to be very truly faced, and the Valve Duors to be planed on the joint surface and well bolted to the Valve Box; the Piston Rod to be $3 \frac{1}{8}$ inches thick, of the very best faggoted wrought iron. T'he Pump Cover to be well fitted to the pump flange, and thoroughly bolted down; it must have brass bushes and glands. A set of open Valves are also to be provided; all the other parts of the same to be as per Drawing, well bedded down to the bed plate which is to carry both this and the Cold Water Pump. The Piston to be worked by a rod attached to a parallel motion before described, and worked by the large beam. The Boilers are to be tubular, and four in number, heving an internal Fire Box of the form shown in the Drawings, the thickness of which is $\frac{1}{2}$ inch; the outer shell of the Boiler is ao be $\frac{3}{8}$ thick and well rivetted together by $\frac{3}{4}$ rivets $1 \frac{1}{4}$ pitch; the tube plate near the Fire Box to be $1 \frac{1}{4}$ inch thick, the one at the Smoke Box to be 1 inch, the front plate $\frac{3}{4}$ thick-the Smoke Box to be of $\frac{4}{4}$ Sheet Iron, of the dimensions and form shown, and fitted with a door inside-the Tubes to be not less than 56 in number, of

3 inches be of th of 150 tened in Smoke slightly same. as showr plugs an also, on a gliss w must be municati will here with a we to this ea of the wa by damag thick, pro protected the effect are to be inches dia in this Spe manlike m and all Pa Engineer is further but shown and actual slight alte by the pas said works pense of th of the said

61

on them, so as to locke for carrying to be of the form din every respect, ined with babbit 'arallel Motionsshown, fitted with tance pieces, gibs ided, having hard well fitted; the 1 at the ends, and are not to have h cups for lubrif the same form, to be provided nt to use with the have a Cylinder ith an air vessel ifter: the Cylin. bored and fitted, bed for the Cylhes thick, to be to be of leather, rack of the Ram, rough two iron ind this descrip. pump, a detail he $V_{\text {alves must }}$ s , and so placed to be very truly oint surface and 0 be $3 \frac{1}{8}$ inches ie Pump Cover bolted down; pen $V_{\text {alves are }}$ ne to be as per s to carry both worked hy a and worked by our in number, the Drawings, f the Boiler is 11 pitch; the the one at the he Smoke Box own, and fitted in number, of

3 inches external diameter and $\mathbf{6}$ feet $\mathbf{6}$ inches long-they are to be of the best patent lap-welded iron tubing, proved to a pressure of 150 lbs , by Steam, or 200 lbs . by Hydraulic pressure, and fastened into the Fire Box tube plate by steel ferrules, and into the Sinoke Box end by iron ferrules, which are to be truly turned, slightly tapered, and the holes in the tube plates to be bored to the same. The Stays on the top of the Fire Box are to be arranged as shown and $\frac{1}{4}$ inch thick; each Builer to be provided with 2 mud plugs and one 2.inch blow-off cock, and a spare set of fire barsalso, on one side a set of brass gange cocks, and on the other with a glass water guage. Safety Vulves.-On the Steam dome there must be two Safety Valves, and a regulator for stopping the com. munication between any of the Boilers, detail Drawings of which will hereafter be given ; one of the Safety Valves is to be provided with a weight, and the other with a Spring Balance ; and in addition to this each Boiler is to have a float apparatus for testing the height of the water in the Boilers, in the event of the other means failing by damage or other defects. The Steam Pipes are to be $\frac{1}{2}$ inch thick, provided with expansion jointe and well clothed, so as to be prutected from the effect of cold, which would very much din.inish the effect of the steam in its passage to the Boiler; all the flanges are to be provided with 1 -inch nuts and bolts; the pipes to be 6 inches diameter inside. The Engines, Pumps and Boilers described in this Specification, to be thoroughly completed in a perfectly workmanlike manner in every respect, all the usual parts to be bright; and all Patterns and Castings to be submitted for inspection by the Engineer appointed for that purpose by the City Council. And it is further to be understond, that all details not herein mentioned, but shown upon the Drawings cr otherwise intended to be specified and actually necessary to be made, are to be undertaken, with any slight alterations that may hereafter be decided upon for the best by the party or parties contracting or otherwise undertaking the said work-the same to be completed and set at work at the expense of the said Contractors on the place appointed for the erection of the said Engines, Pumps and Builers.

AN ESTIMATE
 Of the Cost of the Works herein reported upon, and to be executed in accordance with the Drawings and Plans herewith submitted, and bearing the motto, "Non quo, sxd quomodo."

Two 85 Horse-Power Engines, with Boilers,
Pumps, \&c.
Main Pipes, and Laying .. $\begin{array}{rl}0,000 & 0 \\ 0 & 0\end{array}$
Sub-main and Service Pipes...00,000 00

$\mathfrak{£ 0 6 , 0 0 0} 0$
This Estimate is for the supply of the whole area
of the City, and the entire works as delineated on
the Plans, but as the greater portion of the above
amount would be expended in laying the pipes
through districts, where, from the sparseness of the
population, a supply of water will not be prosently
needed, the amount is of course very much above that required for the immediate necessities of the City. By confining the supply to the more central portion of the City, this amount may be very greatly diminished. My Estimate for the Mains, Sub-mains, and Service Pipes to supply the area bounded on the south by Hunnah Street, on the north by Stuart Street, the west by McNab Street, and the east by Wellington Street, including the Rescrvoir, Engines, Stand Pipe, Hydrants at the appendages, is

$$
\begin{aligned}
& \text { intersection of every street, and all the vecessary } \\
& \text { appendages, is }
\end{aligned}
$$

It is also right to state that although26,400 00 Stand Pipe is expedient and desirable yet the not absolutely uecessary, the cost therefure ($£ 050$) may be deducted from this amount, thus making £25,450 00 the sum

November 10, 1854.
WILLIAM HODGINS.

I consider this competitor should receive the third premium.
Montreal, 23rd Dec., 1854.
THOS, C. KEEFER.
nd to be executed
ewith submitted,
$\boldsymbol{\varepsilon}$ 8, D_{c}

- 2,500 0

0,000 0
$-25,000 \quad 0 \quad 0$
$.30,000 \quad 0 \quad 0$
$2,500 \quad 0 \quad 0$
$: 66,000 \quad 0 \quad 0$

REYORT OF T. C. KEEFER, ESQ.,

Montagal, January 6th, 1855. Corporation of IIamillon:
Sin,-
I have the honor to report that in obedience to the Resolution of the City Council, tranamitted to me in your letter of 15 th carefully examined the Water Supply Plans, Speeifications, and Estinuates, of the six competitors for the prizes offered by the City of Hamiltou on the
Plans numbered 2, 4 and 7, fix the aite of Lait Engines and Pumpa near the Engine House of the Great West a Ruilway, and the Reservoirs upon of the rated plateau of ground lying setureen Locl and Dundurn Streets ; Wharves, and the three, two place thi Eumines be sr Land's and Falkner's of Queen street; and all plant the Great V sitem Psumay Wharf, at the foot plant their Distrit ing Reservoirs upon the Moun-
It appeara from the Plans, that with the exception of some Streets upon the terrace underneath "the Mountain," the City of IIamilton is built upon and the first point to determine indred feet above the level of Lake Ontario : be selected for the Reservoirs which regat height is the least which should clear that if a point be assumed whiegulate and control the supply 1 It is the City limita, such an el evation may be muchmand every building within adequate supply of the greater part of the much more thail is needed for the diture be oalled for-in Engine power and mity, and thus a greater expenwise be needed.

RESERVOIRS.

Another consideration of much importance, and one which greatly influences the altitude, is the practicabilityof obtaining the greatest capacity of Reservoirs nt the lenst expense in construction, and at the shortest possible whether by gravitations. The efficiency of any system of water supply, Reservoirs as near the centre of thise, depends upor having large Storing the Reservo: a should be as large as cau be affor as practicable. In all case sufficient to carry the City throngh any extensive confla to ensure a supply tain the head for ordinary consumption extensive conflagration, and mainceased, as well as to give some opportion aftor such rnusual demand has subsidence. Such Reservoirs cannot berty for purification of the water by unless the ground on which ther are alfocd ed, in the majority of cases, excavation. Sidelong and rockey are placed is tolerably level and easy of fore rapidly diminish the capscity of Reservoirs, wease the cost, and therecase, a specifig sum only capaity yefordes for this object. as is genera!

It does not appear from the infornation afforded, that an economical site for capacious Reservoirs, is attainable st an elevatiou which will command the highest villus-even if it were advisable to pump the whole aupply for the city to such a point-either to supply those villas or incrense the presoure on the city proper. It would appear that if such an elevation is selected, Reservoirs of very limited capacity must be adopted.
The next considerations in importance are the proximity of the Reservoirs to the Pumps, and their position, as respects the latter and the City.
If the Reservoirs are placed beyond the City, the water must be pumped through the latter, and brought buck by a geparate descending pipe-or, the supply must be taken off the "rising main." In the first ense you are put to the greatest expense for your large pipes, and increased power for forcing the greatest distance (irreapective of the height to which the water is elevated); or if, to avoid this, the supply be tuken off the rising main, the flow in the latter is irregular, from the varinble draught in the distributing pipes; the impulsive action of the pumps is brought to bear directly upon the house services-the fittings, and all the joints of the distribnting pipes presenting the most unfavorable conditions for the regular working of the Engine, while no opporturity is given the water fur subsidence in
If on the other hand the Resarvoirs can be placed between the City and the Engine, so that the whole aupply can be first pumped into the Reservoirs, and thence be drawn off for consumption, the system partakes of all the regularity of a gravitation one, as far as the distribution is concerned; the Engines work under a regular pressure, (the Reservoir serving the office of a Stand Pipe,) while, if the Reservoirs are ample, an opportunity is afforded for an improvement in the charaeter of the water by subsidence.
The distances from the proposed Sites of the Engines, in plans 3 and 6, to elevated Reservoirs under the Mountain, are, as measured on the plans, about 12,800 feet and 8,600 feet, respectively, and back to the corner of King and James Streete, 4,300 feet, and 8,500 feet; while those between the Engines and Reservoirs placed on the Heights, near Dundurn, in phus 2,4, and 7, are 1,700 feet 2,300 feet and 3,000 feet, reapectively ; and, through these Reservoirs, to the corner of King and James Strect, 5,700 feet, 5.310 feet, and 4,8100 feet,-making the total distance which the wnter must flow (on the assumption that the supply is not taken off the rising minin) 17,000 feet in the former case-sa compared with about 7,500 in the lutter. This mode of comparison is taken because it places the Mountain Reservoirs on a par, as to efficiency, with those at Dundurn. The difference of say 8,000 feet of length, to a conmon central point on the distribution, in the ascending and descending mains, by the two routes, is equivalent to a saving in main pipe of alout $£ 15,000$ in favor of the shorter one, with an assumed Main of 24 inches 'n both cases, and giving same altitudes for the two Reservoirs. The difference of about 10,000 feet between Plans 2 and 3 , in the distance between Eagine and Reservoirs, in favor of the Dundurn Site, not only reduces the power required for the same altitude and the same sized risiug main, but, as the latter al ways carries more or less air with it from the pumps, and the flow in it is not so regular as in descending mains, it should always be larger than the descending one-the resietance from friction being diminished by an incrense of diameter. The pumping main is exposed to the greatest pressure and severest strains, is more apt to leak than other pipes, and therefore the shortur it is the less the risk and cost of maintennnce, Reservoirs secures a more effied. Thus, a short and direct route to the these Reservoirs guarantees a larger capacity in them.
Every change of direction in a pumping main calls for increase of diameter

65

an economieal site hich will command te whole supply for icrense the presoure ovation is selected,

y of the Reservoirs d the City.

must be pumped scending pipe-or, efirst ense you are creased power for o which the water of the rising main, ught in the distrihit to bear directly of the distributing - regular working - for subsidence in
ween the City and to the Reservoirs, artakes of all the is coneerned; the rving the office of tunity is afforded idence.
plans 3 and 6 , to ed on the plans, : to the corner of hose between the urn, in phuse 2, 4, y; and, through - 5,700 feet, 5.310 water muat flow sing main) 17,000 the latter. This in Reservoirs on enee of say 8,000 n , in the ascendnt to a saving in with an assumed r the two Reser2 and 3 , in the indurn Site, not d the sanne sized air with it from ending mains, it nee from frietion main is exposed leak than other of naintenance, et route to the vorable site for
ease of dismeter
or increased Engine power; therefore, if the main is short, increased diamoter nffirds a cheap mode of overcoming the disadvantages of unavoidable

HIGH SERVICE.

With respeet to the inerensed cost of pumping to the higher Reservoirs, this can only finirly be compared with the lower system, by taking into consideration the difference of the delivery in the two cases. The higher system calls for greater Engine power and greater annual consumption of coal and stores-incrensed length, cost, risk, and expense of maintenance of the rising main, and perhaps a somewhat increased thickness in it through the lower distriets-but it would supply every honse, and command the elosely built Wtreets with a pressure whicl? would he very valuable for fire extinction. Where the supply is by gravitation, I eonsider a pressure of 150 to $2(1)$ feet on the distributing pipes the most desirable; and shis may bo increased, where necessary, to 250 or 3141 fcet without objection, if thereby suitable commanded. (Irdinary obtained, or otherwise maccessible elevations ure sure, and any incrense in the thickness of the larger ones, will bear this presfor by a reduced size, allowable in consequencer of thes will be compensested given by the grenter head. Where consequence of the increased discharge the annual charge is so light there the supply is pumped by water powte. to plant the Reservoirs so as to secure a fire preasure e the grond permita) empluyed, the cost inerenses with every foure pressure; but where stenm is maifestly injudicious to lift the every foot of elevution, and it would be meet the general requirements of tole supply beyond a point whiels would circumstanees which warranted the population, unless there were other siderable portion of the population eourensed high serviec. Thus, if a conservice were adopted, -since these could not be supplied unless the higher ble-if sufficiently elevated ground pret be left out, it would be adrisaraise the whole supply to the higher presented itself near the punps-to of distribution, with reservoirs of uer ceve, and thereby aroid two systems advantage of a fire pressure of uneflual altitude ; because, the additional sccured, and some compensation the principal part of the town would be a diminished size of sub-mains and service-pipes. At Hamilton, the distanee of any Reservoirs whe
house from the water to be pumped-the unfich would enmmand every ground for economical Storagumped-the unfavourable clicracter of the the increased cost of constructionservoirs of sufficient capacity, as well as ance-leave no room for doubt, upond grenter annual expense of malntenDundurn is the proper site for ypon my mind, that the lower platenu nenr portions of the City not conmanded by tiis site Reservoirs; and that those separate Reservoir and separate distribution.
I have understood that there is a Spring snd discharge enough for a limited number which has suffieient elevation, already becn proposed as one of the sources of consumers, and which has capacity of this Spring should, as I am led to bagraitation supply. If the all future residents above the influence of the Deve, be sufficient to supply the cost does not prove objectionable, this source of supply would he proferable to pumping; because these higher tenements would also have a full pressure, supplying the upher as well as lower rooms, and still higher building sites could be oceupied without the great drawbaek of a want of water; whereas, if now supplied from the Engine, the lowest admissible site for the upper Reservoir would naturally be selected, for economical considera. tions, and the extension of the suppiy to higher points be thus arrested.
By a small Reservoir for the upper "graritation" distriet, a fire presenre of the desired extent could be thrown, at will, upon tho lower diatribution, and thue greater advantages be secured thas if the higher districts were
supplied by pumping. The practicability of supplying the upper district by gravitation, and the cost, as compared with steam pumpiag, can only be determined by a survey.

PUMPING INTO THE DISTRIBUTION.

I have taken no account in these observations, of the plan proposed by

 competitor No. 5, of planting fonr tanks, holding one to three hundred thousand gallons each, or an aygregate of 810,010 gallons, on different eleva. tions, as a reserve supply-and of pumping directly into the distributing pipes-but as the principle of depending upon the engine-power to maintain the supply and requisite pressure, is in operation in some pumping works, and is sometimes recommended fur its primary ecunoiny, it leserves some notice Moreover. as a comparison of the whole distance travelled by the water fron the Engine, via the Reservoirs. to the intersection of King and James Streets, has been made between the Dur.durn and "Monntnin" sites, on the assumption (in the caso of the lntter) that the rising main is not objections to topping of such a comparison should be vindicated, and the it can be avoided, stated. It consumption is embraced hets day; and unless the power of the Engine and size of the four hours of the such as to deliver this supply ns fast os it ise of the puinping main aro or smnll tanks are used instead of arity in the working, where stand pipes to prevent a sudden loss of head duringit Reservoir of sufficient surface Again, where the Engine works directly into the distribution, and where a Summit Reservoir beyond the distribntion is substituted for a Stand Pipe at the Engine, the impulsive action of the pumps strains every joint and pipe whenever the draught suddenly censes or a valve is closed, producing a shock at the "dead eads," and tending to burst the pipes. Also, when a distributing pipe near the Engine bursts, the sudden relief of pressure causes an immediate accelcration of speed in the Engine, until it is brought up as the Cornish Engine, increase theservoirs; all of which, particularly with given to the flow by counter currents and regeak down. Lastly, the check impairs the efficiency of the pumping main wherever it connectery much distribution before reaching the Reservoirs.
There can be no doubt that for the "constant" supply system, pumping into the distribution is decidedly objectionable. Under the "intermittent" system (by which a certain quantity of whter is supplied to each tenant on stated days), which is not in use in America, the draught is tolerably uniform and the difficulty therefore less; and in proposing for America what has been extensively practised on the other side of the Athntic, this distinction and also the immense difference in the consumption per head in the two cases-is often overlooked.

By adopting Reservoirs at Dundurn, in preference to the Mountnin site, you have the least cost for engines and pumping main, because the same expenditure in reservoirs will provide a capacity which will enable you to work a comparatively small power, steadily, throughout a longer period of the day, instend of a larger and more expensive Engine working irregularly of the smaller " " the extreme draught, and provide for the rapid exhnustion of the smaller "mountain" Reservoirs, in case of firc.

CONSUMPTION OF WATER

Another point which leads to a good deal of discrepancy in the different schemes, is the quantity of water necessary for daily consumption; for sit this depends the amount of Eagine power to be provided, and, to a certain
extent, the cost of Reservoirs and pipes.

The ust companie ceeded thi " constant mer, when the consur Undoubted reached 90 perience tl public exp of our Sum
The adv average da an element their provi will take m required su quantity in ber of days in the other wise involy
I have th form, and a the competi

The quest
importent is quires some The point fixed are, tl within whicl voirs. If th power will height, than former case 8ons:-If the hour (24 or 4 not uniform between 9 a.r if there were ments of the average hourl meet, withou the four morn
It would n pages were to risk and cost, will be prude supply in 12 pacity to mair provision of p the hot wenth

With refere pend on the p. ing. The mos smaller ones, puinping, in di
the upper district mping, can only be

ON.

a plan proposed by to three hundred , on different eleva. to the distributing power to muintain le pamping works, y, it leserves some ce travelled by the "ection of King and "Mountain " sites, rising main is not indicnted, and the 3 reservoirs, whero ater portion of the - four hours of the puinping main are here must be defiwhere stand pipes f sufficient surface itest consumption. ition, and where a or a Stand Pipe at sry joint nnd pipe osed, producing a s. Also, when a of pressure causes t is brought up as particularly with Lnstly, the cheek water, very much connects with tho
system, pumping θ "intermittent" to each tenant on tolerably uniform mericn what has this distinctionhead in the two
se Mountain site, becaiss the same ill eaable yout to longer period of king irregularly rapid exhaustion
in the different Imption; for 9 n und, to a certain

The usual estimates, based upon the transatlantic experience of private companies selling water upon the "intermittent system," have seldom exceeded thirty gallons per head of the population; but the experienee of the "eonstant" supply in America shows, that during the hot months of Summer, when the greatest benefits of an abundance of water are experieaced, Uudoubtedly then has doubled, and in some instances trebled this estimate. reached 90 gallons per head reckless waste where the daily consumption has perience that where water is supplied under constant there is abundant expublic expense, a more liberal provision ther constant •pressure, and at the of our Summer's, will be demaaded.
The advertisement stated the pop
average daily consumption. This being to be provided for, but not the an element of consideration in appraising eft to the competitors, becomes their provision on this head varying from 15 to 50 gallons, and we find will take more Engine power and coal to raise $2,000,000$ gallous dnily (the required supply for 40,000 inhabitants at 50 gallons), than to raibe half that quantity in the same time; while the Reservoirs, to contain the same num. ber of days' supply, must be double the capacity in the one case over that in the other. The larger supply will alsu call for larger main pipes, or otherwise involve a greater loss of head.

I have thrown the details of tho different plans and estimates into tabular form, and annexed them to this repert; by this means the different views of the competitors will be readily perceived.

ENGINE POWER.

The question of the amount and character of the Engine power is most important in its bearings, on the efficiency and cost of the works, and requires some explanation.
The points to be determined, after the site of Engine and Reservoir are fixed are, the number of gallons to be raised daily, the number of heurs within which this quantity is to be raised, and the capacity of the Reservoirs. If the Engine works uninterruptedly throughout the 24 hours, less power will of course be required to raise the same quantity to the same height, than if this effect is to be produced in 12 or 14 hours; but in the former case larger Reservoirs ought to be provided for the following trea-sous:-If the consumption be assumed at one or two gallons per head per hour (24 or 48 gallons per diem) it is found in practico that this draught is not uniform, but that three times as great a quantity per hour is drawa between 9 a.m., and 1 p.m., as for the remaining hours of the day ; so that, if there were no Reservoirs, the Engine power, in order to meet the requircments of the distribution, should be treble what would be necessary it the average hourly consumption were pumped into Reservoirs large enough to meet, withont ton great n loss of liead, the extraordinary demnad during the four morning hours.
It would not be desirable to run the Engine constantly, oven if no stoppages were to be provided for, because night-work is attended with greater risk and cost, as it involves the expense of a double stuff of emplojees; it will be prudent, therefore, to provide Engine pewer sufficient to raise the supply in 12 or 14 hours, daily work, and have Reservoirs of sutficient eapacity to maintain the liead during the night, and upon Sundays. Such a provision of power could be worked 18 or 20 hours or more, daily, during the hot wenther, whenever tho consumption ealled for this extra supply.

With reference to reserve power or duplicate Engincs, much wonld depend on the pusition and capacity of the Kescrvoirs, and the mole of punping. The most ecunomical inode would be onc large Engine instead of two pmaller ones, giving the same power; and whero the risk is dinainished by pumping, in day time, through a short main uot counected wath the distri-
bution, and when the Reservoirs are sufficiently large to give a teek or ten days' supply, there is scarcely a chance of repairs requiring a stoppage longer than the Reservoirs could sustain. The Engine House should, however, he constructed for a pair of Engines; and, tas one would be sufficient for the commencement, if the amount to be saved proves an object, a cheap non-condensing Engine, sufficient for the lowest rate of consumption, conld be provided as n reserve; to be sold when the second Engine is erected.
In short, with regard to the whole question of pumping power now required, capacity of Reservoirs, and extent of distribution, it is one of finance, and is to be determined by the amount of money which the City is now propared to expend in these works. There be'rig no limitation to the proto the policy which in the advertisement, the competitors differ ns much as number of gnllons requity should follow in the premises, as in the daily a course. In doing so, however e way, therefore, be expected to propose as well as the requirements of the City. Euginecr must consult the resources It is eusy to fix a minimum limit, as t bids cheap or temporary contrivances. done; but it is also manifest that a Whatever is done must be well mined. The larger the Reservoirs and pipes-the not so easily deternumerous the fittings, the more efficient will be the more complete and amount of money may be expended, and well expended, on really usefal works; but perliaps the first question is-how much is it necessary now to expend in order to make an efficienit commencement, and provide for future extension without prejudice to existing works?
While it is prudent. to assunue that a daily consumption of at least 50 gallons per head will be reached, and that in a very short time the population will reach 40,000 , yet as this population will not probably exist until some time after the works are in operation, and as the consumption proposed will not be reuched until a still later period-that is, until the distribution pipes are extended into every inhabited street-it is not necessary to make the preliminary outlay on the basis proposed in the advertisement. The cost of pipnge. particularly, which will form so large a proportion of the whole required outlay, is an element of great elasticity, and the amount now required will probably be dictated to the Engineer by the decision of the Council ns to the strects first to be supplied; its annual extension therenfter can be effected willout fimmeial inconvenience.

Whether one or two Eugines are employed, it would not be desirable to economise much in the power provided, as the additional cost of horse power will work the large sil, and confined to the first outloy. The sume stnff will be proportional to the as smaller one, and the consumption of fuel power at the commencement the Enone; if there is therefore an excess of ndvantage of surplus power eunbles it to over-run the ordinary consumption in all cases of emergency.
In the construction of the Reservoirs, also, little economy should be attempted. The value of duplicate reservoirs will be iminediately appleciated; and by adopting the fillsize, they will be coustructed clieaper in the first instance, in proportion to their capncity. But in the large item of plpage in important reduction, in the necessary provision for 44,000 inhabitants, may very properly be made.
Without detailed surveys at the points where the smpply is drawn, and where the Engines and Reservoirs are planted, it would be impiudent to venture on specific estimntes; but, from the informution afforded, I nm of opition that the necessary expendititre to provide a first class supply, to meet the fall requirements of the Clty, on the completion of the worke, need not exceed One Hundret Thoesand Pounps. I do not think a less sum should be provided, or that the City Would consiuer that sum too much
for a thorough supply.

The f about f rnle, the of the po the popu warrant be supplis closely bu

Wiih \mathbf{r} of the Cit ascortaine the whole it by the 1 the pumpi smn!l rese until the site for the ing main distributio supplying hour or tw

In one o "indispens of its econo speedy deet covering. result veget
Each Rese of covering covering ou country. I shallow rese of soot, whi in those rex vegetation fl without a sin and it would would have t is provided t area is inore rect proporti, to mike the !
Where Res will take plac provide all of temperature, long enough from that of with referenc is not so gene the Dundurn ing a ridge gr pround more business-this purities in the

69

The future extension of pipage for a supply of 40,000 would require about $£ 25,400$ more to be expended over a series of years. As a general role, the cost of the distributing pipes, de. may be taken at 25 s. per head of the population for the time beilig; but there will always be a portlon of the population scattered through suburbs too distant from the mains to warrant an immediate extension of the pipes to their quarters, which will be supplied from wells. The first provision will of course be in the more closely built streets.
Wiil regard to the supply of the Mountain terrace, and those portions of the City above the influence of the Dundurn lieservoirs, it is first to be ascertained whether this supply vill be afforded most advantageously, upon the whole, by gravitation or by pumping. There will be no difficulty about it by the latter mode, and at a moderate cost, by means of a branch (from the pumping main where it enters the Dundurn Reservoirs) leading to a sunall reservoir under the Mountain. The cost of these cannot be estimated until the nember to be provided for on the upper distribution is known, the site for the Reservoir selected, and the size and length of the branch punp. ing muin thereby deternined, and the amount of pipage required in the distribution ascertained. As sufficient engine power will be poovided for hour or two could be devoted daily about 12 hours daily working, an extra

COVERED RESERVOIRS.

In one of the plans covered reservoirs are proposed, and considered "indispensnble." Gulvanised iron is the material recommended on account of its economy-but it is found that the evaporation of the water causes the speedy decay of this material, and that brick or slate is the only suitable covering. Even slute does not effectually exclude the light, without which result vegetation is not prevented; on this aecount brick is preferred.
Each lieservoir ought not to be less than one acre in surface, and the cost of covering two would be about $£ 10,00$, a sum which I consider makes covering out of the question, even if there were any necessity for it in this country. It hass been found advisable, in England, for small and generally shallow reservoire, surrounded with chiunneys, on account of the precipitation of soot, which, becoming dissolved, imparts a bitter taste to the water; and in those reservoirs where, from deficient construction in the first place, regetation flourisled. The principle caunot be applied to large reservoirs with it would be objectich renders it, commercially speaking, inupracticable ; would linve to digectionable always, on accont of the natural tendeney it is provided to prevent yere area of all reservoirs. After a sufficient depth arell is inore inportant thention, and heating by the eurnmer sun, surtace rect proportion to the number of, and the efffieney of reservoirs is in dito make the heaviest draught upon them with the leonst the olject being
Where Reservoirs are 2 II feet deep, and with the lenst loss of hend.
will tuke place. In our elimate fund properly constructed, no vegetation provide an efficient covering ; and whe-third of the year, nature will temperature, either in winter' or sumith respect to any regulation of the long enough in them to undergo nuy appreciable change of temperature from that of the Bay from which they are receiving dnily supplies. Lastly, with reference to the collection of soot, dirt, de., the consumption of conal is not go general or extensive as in England: Uut if it were, the situntion of ing a ridge greatly roir is most favorable. Oceupying a narrow nt ck, formground more likely to be devoted to sill busiuess-this site is but slightly exposed to any innportnot collection of impurities in the surrounding atmosphere, while from its elevated and summit
position, the wind sweoping over it will crente a wholesome agitation of the surface, which will, in my judgment, make open reserroirs in such a position superior to covered ones. This adrantuge, as well as those of proximity to the pumps and economy in construction, would not be possessed by reservoirs under tho mountain, where the latter would form a back ground, and aid in precipitating the dust and soot rising from the city below.
For all impurities which float on the surface of the Rencrroiss ana overflow
will be provided.

FILTRATION:

Similar objections may be urged to the system of filteration-which is considered necessary by one of the competitors-viz: the gieat wost and little necessity for it .
The lowest cost of filtration in Eugland has been 1.8 of a penny per thousand gallons-and it has cost as high as $[.8$ of a penuy : allowing for the difference of labor we camot sately take les, than one half-penny per 1.910 gallons, or 83 s , 4 d sterling per ciem, as the probable cost of filtering 50 gallons for a population of 40, unt, This operation would entail n enst of about $£ 1800$ per annum, exclusive of the cost of filter beds, estimated at $£^{17,001}$ for a dauly consumption of 30 gallous-and increasing with the growth and consumption of the city. 'ihns cost of filier beds would to better applied to the construction of a subsiling Reservoir at the pumps [into which the water would only be admitted when in gocic condition] and the annual cost of filtering be thus avoided. Filtration, to be perfect,sbould take pince intaediately before entering the distributing pipes-and should wisthas soore hies is proposed above be herealter desirable, a straining prewess, menns of vertical beds of gravel, can be applied at the outlets filterio. Wher veservoirs-whiel process is sive times as expeditious as what dadisturbed, reservoirs more pure, Ontario and Burlington Bay nre, than nny artiticial ones ean be mare pure, on accoant of theirgreat volume, temporary and disappear with a calm, it is manifest their impurities are filtration need enter the plan of supply for Hamilton

CORNISH ENGIVE.

In nearly all of the plans the description of pumping engine recommended is that known as the single acting, or Cornish, which is the Engine that has been adopted in recent pumping works in the United States.

The fact thnt in the new works of the Lambeth Co. at Thames Ditton, for the supply of the city of London (where bior horse power is employed in forcing a supply of $10,1 n f(0,001$ gallons daily, through a main ten miles in length, and to a height of nearly one bundred feet) the Cornish Engine has notly. been selected, proves that in London, where the question has been admitted. These we superiority of the Cornish Eagine is by no means of the most experienced Were only completed in 1852 by Mr. simpson, one crystal palaee int sydeuhany Works Enyineers living. Since then, the new exhnusted the talent of England) has betion of which may be said to have raioing watertoa heirht of iwh been supplied with a large power for the present jenr, the New hundred feet, upon the same plan; and during ordered four Engines from thiver Company, the largest in London, has certi"ed performance of these engines " is equal to $97,64,804$ lbs. paised one foot for every lelbs, of cuil cors equal to 97, 64,804 lbs., raised of the Engines nid pumps, and the consmed, nuired fur west the friction pumps, feed and charging pumps, and raising the water for condensation. nir The Ditcon Engines consumed 23,400 lbs. conl in 24 hours, or 975 lbs . in
one hour of coal pe 1859; wh the regula: hour.
1 find fro and zuth
Engines w coal-and power par
The perf with a cons was nacerta Son), who t reporting by the Co.
The follo performance Towe
Par
Grea
Pemb
West
Par 0
Tre'a
Pemb
It will be than the Dit other six giv
In point o Engines com Eugines on tl ations of no for Water W
The Cornis bursts, or ap in which ease beams. This acting ones. Cornish Engi the continuou
The gradua highly iavora the pump val out for repair sinee.
The Ditton sess in this re:
The greates ployed and ex done in a sing must be made and therefore high pressure can be carried greater ratio t proportionate sumed-becau water at all te
ome agitation of the voirs in such a posi3 those of proximity ot be possessed by orm a back ground, e city below.
erroirs on overflow

Heration-which is 4he great "ost and
a of a penny per niny : nllowing for me half-penny per eost of filtering 50 1d entail a const of beds, estimated at reasing with the er beds would be oir at lie punips ood condition] and be perfect, should sipes-and should rable, a stranning ied at the outlets as expeditious as lington Bay are, veirgreat volume, ir impurities are no provision for

ine recommended

 Engine that hasames Ditton, for - is employed in in ten miles in mish Engine has estion las been is by no means 45. Simpson, one ace then, the new bo said to have large power for plan!; nud during in London, has t Ditton. The 894 lbs., raised ides the frietion orking the nir condenation." 3, or 975 lbs . in
one hour ; which, for 600 horse power, gives a consumption under $12-8 \mathrm{lb}$ of coal per horse power per hour. This wat on a trial made in January 1853; when 1 visited the works, in July 1853, the Mrnagel nssured me that the regular consumption of conl did nut exteed 2 lhs, per horge power per hour:
1 find from "Brown's Cornish Engine Reporter" that between 21st Oetober and zuth Novenber 1854 the average duty of sixteen Cornish pumping Engines was $68,404,000 \mathrm{lbs}$ ransed one foot by the censumption of 112 lbs . coal-aud that the average consumption of cual was 3 l-2 ibs, per' horse
power per hour. Wer per hour.
The performanee of the Ditton Engiaes quoted abovo (viz., $97,064,894 \mathrm{lbs}$. with a cousumption of less than $1 \frac{3}{3}$ ths. of conl por hase power per hour), was nscertained and is certified by Mr. Joshual Field iof.Malnoshay, Field \& Son), who tested thein on behalf of the Lambeth Co., for the purpose of reporting whether their performance was necording to the eontract made by the Co. with the builders of the Engines.
The following-also from Brown's Reporter of the nibeve late date-is the performance of Comish Pumping Engines doing Ligbest duty : -

Pembruke and Enst Crinnis, 80 in............... " ${ }^{\text {Single }}$... " 87.2
West Towey Consols, 60 in . 80 in . "ingle \ldots.. " 770
Par Consul, 72 \& 36 in. Sims' combined ". ". 76.0
Tre'awney, 50 in. Single ". " 75.2
Pembroke nnd East Crinnis, 70 in. Single ". " 74.9
It will be seen that only two out of the
than the Ditton Eagines, and this duty only 3 to 5 ailligher reported duty other six give from ten to twenty-three millions 5 millions more, while the
In point of economy of fuel, for the same
Engines compare favorably with the wame duties performed, the Ditton Eugines on the Cornish single-acting princiksteed nnd other Water Worke ations of no less importance which, in my piple; but there are other considerfor Water Works purpeses, to the Cornish Engine.
The Cornish Engine is subject to dangerous accidents whenever a pipe bursts, or a pump valve is held up by nny fureign substance getting into itin which case the plunger may descend with its whole weight on the Spring beams. This Eagine, therefore, requires muteh closer attention than doubleacting ones. Again, the intermittent atrenm of water delivered by the Cornish Engines, eauses much morestrain on the machinery and pipes than the continuous stream from a double-acting Engine.
The gradual stopping aud reversing of the motion in Crank Engines, is highly favorable to noiseless netion, and greatly increases the durabillty of out for repair, although of the pump valves at Ditten have yet been tnken sinee.
The Ditton Engines, like the Cornish, are expansive ones-anid they possess in this respect all the merit of the latter, with none of its defects.
The greatest economy of fuel is obtained, when the highest stenm is employed and expanded to the utmost linit. In the Cornish Engine this is done in a single large cylinder, which, with every other part of tha Engine, must be made atrong in proportion to the pressure of the steam employed, and therefore to the amount of economy in fuel aimed nt. The economy of high pressure steam results from the greater extent to which the expansion can be carried, and to the faet that the pressure of ateam increases in a greater ratio than its density; therefore, the higher the pressure the less proportionate quantity of water to be evaporated, and the less fuel is conwater at all temperatures.

This high preasure steam cannot be used withont the intervention of a mass of matter to be first set in motion in order to check the speed caused by the initial excess of steann pressure wherever any great degree of expan. sion is aimed at. In Coruwall this mass of matter is furuished by the pump rods, descending 500 to 1,010 feet into the mines, and this necessary weight
gave rise to the extension of the galting therefrom.
For Water Works pumping the Cormish Engine is necessarily loaded with many tons of metal which is lifted by the steam, and in descending, forces by its weight the water to be punpel. Thus it will be seen that at every stroke, extreme strains, on the first admission of stenm to a zingle large cyliuder, with their wear and tenr, friction, \&e., are unavoiduble.
In the Ditton Engines the expansion is effected in two cylinders, whereby the action of the steann is rendered more uniform, nad as the extreme strains are avoided, the weight of the purts may be made proportionally less, thus dininishing friction, wear and tear, te. If any accident happeus to the pipes or valves, the speed of the Eugine, which may be incrensed thereby fir \boldsymbol{n} atroke or two, is speedily checked by the governor: whereas, under similar ciremu-tances, with the Cormish Engine, unless the attendant is at hand, a break-down is risked.
The Ditton Eugines being double-acting, and sending a continuous stream of water into the mains, do not require a stand pipe; wherens the Cornish Engine, raising water by the weight of a loaded plunger, can ouly work economically under one particular litt,to which this weight must be adjust. ed; and wherever water is pumped through n long line of man, the lift is variable in consequence of the friction incrensing or diminishing in proportion to the square of the speed. So where water is pumped directly into the acrvice mains, with the Coruish Engine, a stand pipe rising above the highest point to be supplied, is neeessary to regulate the action of the Engilies,
The theoretical advantage of any given degree of expansion, is the same whether effeeted by the Cornish single, or the donble Cylinder Engine. The extent to whieh it may be carried will depend on the pressure of steam Which it may be advisable in ench case to employ; but it is known that Wolf in his double Cylinder Engine, carried the principle of expansion With Reservoirs at Dund been carried in any single Cornish Engine. most favourable conditiond forn, the Cornish Engine would be placed in the Reservoir doing away with the necesgity working; the proximity of the Second Reservoir for n higher service is to for a stand pipe; but if the sider a etand pipe will be required with a Cornish Engine pumping, I eonassumes $1,010,400 \mathrm{lbs}$. as the fair average of tha duty to be expompetitor the Corvish Engine, and another estimates it as just The performance of select engines at certain mines in Cornwall, cannot be taken ae a criterion of the average working of the Cornish Engine, in supplying a town, because the circumstances under which the two work, are different. From the best information I can obtain, the performance of the Wicksteed Cornish Engine, at the East London Water Works, does not appear to have equallod that of the Ditton Engines, either in work done or fuel saved, and the annual cost of repairs must be greatly in favor of the

All those improvements in boilers, valves, management, and economy of hent, which have done so much to give the Cornish Engine ite deservedly high character, are applicable to double acting Engines; and as far as the expansion is concerned, it can bo carried much farther in the double cylinder Engine than in the Cornish, and much beyond what in praetiee it would be desirable to do.
and first bility and your City:

One of tl objections, structible,' extent, and The princip a peculiar is supplied been made for so many that the wa effects in the purity of a patent art than as a gr and branch will be any should be ex pipe, before price for 24 can conceive tages ns east economy wit strength, dui material whe could be equa
It is stated durability ins trane nit the concr ste, very the Romansthe effect or r is prefernble the subsidence atreets, deman sure of any re sdditional stre from oxydation respect to the not think this already had wi isolated and ex of air or wate rapid, is a ques and all wrought posed to the act Lastly, the ef excellence of th. ship, neither of as in the case of or will adhere mined when it is

- intervention of the speed caused at degree of expan. uished by the pump necessary weight id the economy re-
sanily loaded with descending, forces secu that at every Ito a zingle large oidnule. y linders, whereby he extrene atrains tiomally less, thus it bapperss to the incrensed thereby $:$ whereas, under he attendunt is at
contimuous stream erens the Cornish er, can only work it must be adjust. t mann, the lift is ishing in proporped directly into rising above the aetion of the En -
nsion, is the same ader Engine. The ressure of steam t is known that ple of expansion nish Engine. be placed in the proximity of the pipe; but if the pumping, I con. One competitor expeeted from If, or $5 \cdot 1,1,001 \mathrm{lbs}$. ornwall, cannot -nish Engine, in the two work, performance of Works, does not n work done or in favor of the
and economy of e its deservedly nd as far as the he double cylinraetiee it would
double eylinder em, as to bulk
and first cost, safety of working, ease of action on pipes and valves, dura-
bility and economy, as the beat kind of pumping your City.

CEMENT, OR "INDESTRUCTIBLE" PIPES.

One of the competitors considers the use of enst iron pipes " open to grave

objections,", and recommends that shert iron and cement pipes, called "indestructible," which are stated to be now extensively in use. Where, to what extent, and how long these patent pipes have been employed, is not stated. The principal objection to cast iron is bused upon the expericuce of Bostonted. a peculiar case, arising out of the quality of the water with which that City is supplicd; but ! am not nwure that any such alarnuing developments liave been male in the numerous cities and towns whero cast iron has been used for so many years. Nor does it appear, from the experienco of other towns, that the water of the St. Lawrenco, and the Lakes, prodnces such deleterious effects in the interior of the pipes as that arising, perhaps, from the excessive a patont article, of at least water. The proposal to expend over $£ 40,000$ on than as a great experinent. Toubtful efficiency, cannot be viewed otherwise and branch pipes, valves, fittingeng the whole distribution, with the curved will be any advantage on the score of question very much whether there should be excessively high. In seore of economy, unless the price of irorf pipe, before purchasing for the wastreal wion by an agent for this patent price for 24 -inch cement pipe Montreal Water Works, and found that the ean conceive of no materinl which higher than for the same size in iron. I tages as cast iron for the distrib, on the whole, possesses so many advaneconomy with which any required cury of water supply. The facility and strength, durability and tightness, in cast branch can be formed, of equal material when broken or superseded, are iron-and the value of the old could be equally oltained with the cement aipantages which I cannot seo
It is stated in faver of the "indestructibl pipe.
durability increase with age, and when pipe," that "their firmness and trank nit the water without contamination," properly dried before use, they concr ste, very thick and short, and of reny de. Pipes of pure cement or the Romans-and there is no doubt of tery smail dimneters, were used by the effect or rather absence of effect on the durability; and with respect to is preferable to metals, but the strains to water, good cement or concreto the aubsidence of ground, the action of frost , which pipes are subjected from streets, demand a greater strength than is neaded of heavy traffic in the sure of any required head of water. Theded to resist the equable presadditional strength is obtained by a combination in the patent pipes this from oxydation by internal and external a comation of sheet iron, protected respect to the durability of this combination that of concrete; and it is with not think this question can be bination that experience is wanted. I do alrendy had with this composite pipe. Whether settled by the experienco isolated and excluded, particularly at the joints, from et-ron is completcly of air or water, in which case from it thing, from any possible contact rapid, is a question of the first import thimness, its destruction must be and all wrought iron, oxydizes much more. It is well known that sheet, more rapidly than east iron, when exLastly, the efficiency of su excellence of the materinis emplomposite pipes must depend wholly on the ship, neither of which can be jupyed and the faithfulness of the workmanss in the case of iron; and whether the cetorchand with the same certainty or will adhere without fail to the ine cement itself proves of good quality mined when it is too late to repair the error made which can only be deter-

I have the honor to be, Sir,
Your Obedient Servant,

74

＇ג\}o

以斯 80
－anoH

PROFESSOR CROFT'S ANALYSIS.

Sin:

Toronto, July 10, 1854.
In my first Report I deseribed the relative qualities of the waters submitted for examination, and montioned that the water marked (I)) was decidedly the purest of the four, the quantities of solid matter left on evapo-
ration being as follows:-

D			
A	12.660	"	
C	13.784	4	
13	22.507	16	"

I have in 22.50 " 16
formed on wiling as this is of eorinents to determine the quantity of sediment of the wheer in Steam Boilors, considerable importance as respecta the use sedimeni on boiling down to nbont for other purposes. The quanatities of

Here you will poreivo
nearly the whole of the solia D still maintains its anperiority, although inclined to believe that iny a little too high.
C and A are
grains of solublo matter calcium, chloride of sodium, and orgonefly of sulphate of lime, chloride of The others, A, C and i) containic matter.

substnnecs.

In choosing water for the supply of a town, various cireu to be taken ioto consideration. list. The purity at the presentances have Tho certainty of its retuining that degree of purity. present time, 2nd. available. 4th. The mechunical means for effecting the suppl. The quantity

With regard to the first point,-if tho water be derivedpply. water would be rendered impure by any factories establiom a river, the course; if from the bay, then the supply pipes ories established along its from the City as to extend beyond the iffices should be carriod out so far sible. The second question horo comes into ence of the drains as far as posdrainage of a rapidly increasing town will consideration, as to how far the an inclined to believethat with town will render the water unfit for uso. I objection would not hold good.

Thirdly-Can the water be
calculated that at least 20 or supplied in sufficient quantity? It has been not too much, and as the calculation gallons per diem for every inhabitant, is the present population, owing to its should not be made with reference to amount, it can readily be ascertained ind increasc, but for 3 or 4 times its possibly supply sufficiont.

I need not alludo to
I need not allude to the mechanical means of supply, as you must be so From whatever sour with the dotails and with the probable expense. stand in a large reservoir, the water be obtained it should be allowed to it should thon be fittered, and deposit any mechanically suspended matter, tention, as here, in Toronto, we are suff particulariy impress on your atthis prooess.
Further purification of the water previous to filtering will, I think be unnecessary with either specimen, especially with D. If thonght requisite, it could be effected as in several of the London Water Works, by meang of lime, the quantity required being easily calculated-thus, D would require
abont 41 is quite doubt wh the possil pipes beec does not

These a several ot in my ana slluded to

Robt. MoE

SIS.
, July 19, 1854.
ities of the waters marked (D) was tter left on evapo-
sallon.
antity of sediment ${ }^{6}$ respecta the use The quantities of lon.
iority, although y boiling. I ain f sediment for D
and leaves 8.867 lime, chloride of
traces of those
umstances have ent time. 2ad.

1. The quantity oly. om a river, the ished along its rried out so far 18 as far as posto how far the infit for use. I nentioned, this 1 It has been inhabitant, is Is reference to or 4 times its springs could
ou must be so expense. be allowed to nded matter, 8 on your at: oma a want of
think, be unt requisite, it , by meene of rould require
about 4i graina to the imperial gallon. I consider, however, that the water in quite suffieiently pure without ite undergoing the lime procees; in fact, I doubt whether it would be desirable to purify it atill further on aecount of the posibility of its then acting on the lead pipes-very pure water in lead pipes becomes poisonous, which water with 8.10 grains of salts in the gallon doen not act on them.
These are the principal points to which I would direct your attention; several other facts connected with the composition of the water, as shown in my analyais, are not of any practical importauce, and I have not therofore alluded to them.

I have the honor to be, Sir,
Your very obedient Servant, HENRY CROFT.

$$
\square
$$

