IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other tinan blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de sn procurer. Les détails de cet exemplaire qui sont peut-ôtre uniques du point de vue bibllographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la máthode normale de filmege sont indiquess ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShovithrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure imege possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the genarosity of:

National Library of Canada

The Images appearing here are the best quality possible considering the condition and legibility of the original copy and in keaping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back covar when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., nay be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The fallowing diagrams illustrate the method:

L'exemplaire filme fut reproduit grâce à le générosité de:

Blbliothéque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont ia couverture en papier ast impriniée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comparte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'innpression ou d'illustration et en terminent par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE'", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent Être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être raproduit en un seul cliché, il est filme à partir de l'angle supériaur gauche, de gauche a droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

 GRNW TRUNK RAll/IA,
 TRANSITION CURVE
 BY
 E. S. M. Lovelace, B.A.Sc. A.M. Can. Soc. C.E.

Entered according to Act of Parliament, in the year 1893, by E. S. M. Lovelace, in the office of the Minister of Agriculture and Statistics at Ottawn.

PREFACE.

As most engineers who have given the subject the slightest consideration have acknowledged the advantages to be derived from the use of transition curves in the location of a line of Railway, the writer has no intention of discussing the question farther than to say, that as sectionmen almost invariably ease off the ends of the circular curves as staked out (causing thereby either absolute kinks or else portions of track of a much sharper degree of curvature than the main curve), it would seem to be the duty of the engineer to avoid such sources of denger to a train becoming derailed by locating the curve at once in the position which it will be made to take finally.

The trouble hitherto has been that the transition curves proposed have either been of so complicated a nature as to render their location very troublesome, or elsc, mere approximations which engineers instinctively object to.

The transition curve which the writer has undertaken to describe is mathematically exact, and its location requires very little more work, either mental or otherwise, than does that of an ordinary circular curve.

In preparing the following, the writer received a good many suggestions from the papers on the subject read before the Canadian Society of Civil Engineers, and also from the remarks of those gentlemen who took part in the subsequent discussions on such papers.
E. S. M. L.

> 54 St. Matthew St., Montreal.

Chapter i.

FORMULE.

Fig. 1
In Fig. 1 let $A B$ and $A^{\prime} B$ be two tangents, intersecting at B. It is proposed to connect them by the main curve $P P^{\prime}$, of radius $O P$ or R and the transition curves $A P, A^{\prime} P^{\prime}$, the radii of which vary from R at the points P and P^{\prime} to infinity at A and A^{\prime}.

As most engineers are more concerned with practical results than with the theoretical transformations by which such results are obtained, all demonstrations, eto., have been purposely placed at the end of these notes, where all who choose may see for themselves that the following six equations (giving all the neeussary information for the location of the proposed eurves, and used in working up the table about to be described) are correct.

Assuming R, radius of main curve, and the constant number m, as known, then will $A P$, the chord of the transition curve, be equal to the constant number m divided by three times the radius of the main curve, or letting the chord $A P=c$.

$$
\begin{equation*}
c=\frac{m}{3 R} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sin 2 \theta=\frac{c^{2}}{m} \tag{2}
\end{equation*}
$$

the co-ordinates of the point P are

$$
\left\{\begin{array}{l}
A N=c \cos \theta \tag{3}\\
N P=c \sin \theta
\end{array}\right.
$$

the co-ordinates of the point O are
(4) $\begin{cases}A H=\frac{c}{6}\left(\frac{2+\cos 2^{H}}{\cos \theta}\right) & \text { or } A H=A N-R \sin 3^{A} \\ H O=\frac{c}{6}\left(\frac{2-\cos 2 \theta}{\sin \theta}\right) & \text { or } H O=N P+R \cos 3^{H}\end{cases}$
the distance $A B$ is given by

$$
\begin{equation*}
A B=H O \tan \frac{I}{2}+A H \tag{5}
\end{equation*}
$$

Letting $\frac{L}{2}$ equal the length of transition curve from A to P
(i)

$$
\frac{L}{2}=c+\frac{m^{3}}{10 m^{2}}+\frac{e^{0}}{24 m^{4}}
$$

Tho constant number n, which determines the length of $A P$ (the chord of the transition curve) can of course be chosen at will.
'To get on tangent at the point' P, sight to A and turn off twice the deflection angle to P^{P}, that is turn off $2^{\prime \prime}$
The central angle POH is always. $3^{\prime \prime}$ or three times the deflection angle to the point P.
The above equatious also apply to any other point on the transition curve between A and 2 .

CHAPTER II.

TABLEA.

Assuming that the chord distance to the point P is sixty fect for each degree of curvature at that point (which assumption makes the value of the constant nuinber m equil to 1031337), the following table gives the deflection angles and all necessary data for a transition curve that can be applied to any main curve (from an 0° to a 10° onc), the degree of curvature of which is some multiple of 5 minutes.

When the degree of curvature of main curve is not a multiple of 5 minutes, all the necessary data (for the point where the transition curve meets the main curve) can be found by interpolation in the table with the exception of the distanoc $H O$, which varies so rapidly that it must be calculated from equation (4). The deflection angles for points five feet apart on transition curve ean still be taken direct from the table.

To use the table:-
Look in 1st column for quantity corresponding to degree of curvature of main curve, and on the same line with it under the several headings will be found the deflection angle and distance to point where transition curve meets the main curve and also the quantities to be used in calculating the distance $\boldsymbol{A B}$.

In laying out the curve by means of offiets from the tangent the neccssary dist:unces will be found in columns 6 and 7 .

In laying out the curve by means of deflection angles from the point A, take from the 3 rd column the chord distance
from A to a desired point on eurve, or take from column 4 the distance ulong curve itself to the same point, and on the same line in column (5) will be found the corresponding deflection angle.

For example:-

 tion 37), sary urve hich 3 the nterHO, ation tran-Suppose a ease in which the chninage of the point B is $105+59.3$; the intersection angle $70^{\circ} 0^{\prime}$; and D, the degree of eurvature of main curve " ${ }^{\circ}$: 35^{\prime} '.

In the table, on the same line with $6^{\circ} 35^{\prime}$, the value of $A H$ is found to be 197.3, and the value of $/ 10877.8$, also $\frac{L}{\frac{2}{2}}$ is $395.9, \theta$ is $4^{\circ} 21^{\prime} .04$, and the chord length $A P$ is 395.

By equation (5) $A B=H O \tan \frac{I}{2}+A H=877.8 \tan 35^{\circ}$

$$
+197.3=813.9 \text { feet }
$$

also as $\left(1-6^{\theta}\right)=70^{\circ} 0^{\prime}-26^{\circ} \quad 6^{\prime} .24=43^{\circ} 53^{\prime} .76$, therefore length of main curve $=666.8$

Consequently the chainage of the point

$$
\begin{aligned}
& A \text { is } 105+59.3-8+13.9=97+45.4 \\
& P \text { is } 97+45.4+3+95.9=101+41.3 \\
& P^{\prime} \text { is } 101+41.3+6+66.8=108+08.1 \\
& A^{\prime} \text { is } 108+08.1+3+95.9=112+04
\end{aligned}
$$

Having established the points A and A^{\prime} in the usual way by chaining along the tangents from B, suppose the instrument is at A, and also suppose that stakes are to be placed 50 feet apart. Referring to table, it will be seen that the deflection angle for a point

50	feet from A	or for chainage	$97+95.4$ is $0^{\circ} 4^{\prime}$	
100	$"$	$"$	$"$	$98+45.4$ is $0^{\circ} 17^{\prime}$
150	$"$	$"$	$"$	$98+95.4$ is $0^{\circ} 38^{\prime}$
200	$"$	$"$	$"$	$99+45.4$ is $1^{\circ} 7^{\prime}$
250	$"$	$"$	$"$	$99+95.4$ is $1^{\circ} 44^{\prime}$
300	$"$	$"$	$"$	$100+45.4$ is $2^{\circ} 30^{\prime}$
350	$"$	$"$	$"$	$100+95.4$ is $3^{\circ} 24^{\prime}$
$P 395.9$	$"$	$"$	$"$	$101+41.3$ is $4^{\circ} 21^{\prime}$

Now move the instrument to A^{\prime} and set out the transition curve from A^{\prime} to P^{\prime} in precisely the same manner, using the above deflection angles.

Finally set up at P^{\prime}, sight to A^{\prime}, turn off 2θ or $8^{\circ} 42^{\prime}$ to get on tangent, and run in the circular curve in the usual way, checking on P.

Inspecting the table, it will be seen that, when the distance is greater than 220 feet, there is an appreciable difference between the chord length to a point aud the length along curve itself; therefore in locating points on the curve (as it would be inconvenient to cbain these fractional differences) the deflection angles are added corresponding to distances which are multiples of 30 , 50,60 and 100 feet (the lengths usually chisen in spacing stakes), these distances to be measured along the transition curve itself.

In bending the rails, if the chord distance from A to a point be divided by sizty, the result will be the degrec of curva. ture (in degrees) of the transition curve at that point.

TABLE.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multicolumn{2}{|l|}{Co-ordinates of Point P.} \& \multicolumn{2}{|l|}{Co-ordinates of Point 0 .}

\hline \& \& \& \& \& AN or x \& NP or y \& AH \& H0

\hline \multirow[t]{12}{*}{0

5
10
10
15
20
25
30
35
40
45
50
55} \& infinite \& \& \& \& 0.0 \& 0.00 \& . 0 \& infinte

\hline \& 68755.8 \& \& 5.0 \& 0.04 \& 5.0 \& 0.00 \& 2.5 \& 68755.8

\hline \& 34377.9 \& \& 10.0 \& 0.17 \& 10.0 \& 0.00 \& 5.0 \& 34377.9

\hline \& 22918.6 \& 15 \& 15.0 \& 0.38 \& 15.0 \& 0.00 \& 7.5 \& 22918.6

\hline \& 17188.9 \& 20 \& 20.0 \& 0.67 \& 20.0 \& 0.00 \& 10.0 \& 17189.0

\hline \& 13751.2 \& 25 \& 25.0 \& 1.04 \& 25.0 \& 0.01 \& 12.5 \& 13751.2

\hline \& 11459.3 \& 30 \& 30.0 \& 1.00 \& 30.0 \& 0.01 \& 15.0 \& 11459.3

\hline \& 9822.3 \& 35 \& 35.0 \& 2.54 \& 35.0 \& 0.02 \& 17.5 \& 9822.3

\hline \& 8594.5 \& 40 \& 40.0 \& 2.67 \& 40.0 \& 003 \& 20.0 \& 8594.5

\hline \& 7639.5 \& 45 \& 45.6 \& 3.38 \& 45.0 \& 0.04 \& 22.5 \& 7639.5

\hline \& 6875.6 \& 50 \& 50.0 \& 4.17 \& 50.0 \& 0.06 \& 25.0 \& 6875.6

\hline \& 6250.5 \& 55 \& 55.0 \& 5.04 \& 55.0 \& 0.08 \& 27.5 \& 6250.5

\hline \multirow[t]{2}{*}{$1{ }^{\circ} 0$} \& 5729.6 \& 60 \& 60.0 \& 6.00 \& 60.0 \& 0.11 \& 30.0 \& 5729.7

\hline \& 5288.9 \& 65 \& 65.0 \& 7.04 \& 65.0 \& 0.13 \& 32.5 \& 5288.9

\hline 10^{\prime} \& 4911.1 \& 70 \& 70.0 \& 8.17 \& 70.0 \& 0.17 \& 35.0 \& 4911.2

\hline 15^{\prime} \& 4583.7 \& 75 \& 75.0 \& 9.38 \& 75.0 \& 0.21 \& 37.5 \& 4583.8

\hline 20^{\prime} \& 4297.2 \& 80 \& 80.0 \& 10.67 \& 80.0 \& 0.25 \& 40.0 \& 4297.3

\hline 25^{\prime} \& 4044.5 \& 85 \& 85.0 \& 12.04 \& 85.0 \& 0.30 \& 42.5 \& 4044.5

\hline 30 \& 3819.8 \& 90 \& 90.0 \& 13.50 \& 90.0 \& 0.35 \& 45.0 \& 3819.9

\hline 351 \& 3618.7 \& 95 \& 95.0 \& 15.04 \& 95.0 \& 0.42 \& 47.5 \& 3618.8

\hline 40 \& 3437.8 \& 100 \& 100.0 \& 16.67 \& 100.0 \& 0.49 \& 50.0 \& 3437.9

\hline 45^{\prime} \& 3274.1 \& 105 \& 105.0 \& 18.38 \& 105.0 \& 0.56 \& 52.5 \& 3274.2

\hline 50 \& 3125 ? \& 110 \& 110.0 \& 20.17 \& 110.0 \& 0.65 \& 55.0 \& 31254

\hline 55^{\prime} \& 2989.4 \& 115 \& 115.0 \& 22.04 \& 115.0 \& 0.74 \& 57.5 \& 2989.6

\hline \multirow[t]{2}{*}{$2{ }^{\circ} \quad 0$} \& 2864.8 \& 120 \& 120.0 \& 24.00 \& 120.0 \& 0.84 \& 60.0 \& 2865.0

\hline \& 2750.2 \& 125 \& 125.0 \& 26.04 \& 125.0 \& 0.95 \& 62.5 \& 2750.5

\hline 101 \& 2644.5 \& 130 \& 130.0 \& 28.17 \& 130.0 \& 1.07 \& 65.0 \& 2644.7

\hline 15^{\prime} \& 2546.5 \& 135 \& 135.0 \& 30.38 \& 135.0 \& 1.19 \& 675 \& 2546.8

\hline 20 \& 2455.6 \& 140 \& 140.0 \& 32.67 \& 140.0 \& 1.33 \& 70.0 \& 2455.9

\hline 25^{\prime} \& 2370.9 \& 145 \& 145.0 \& 35.04 \& 145.0 \& 1.48 \& 72.5 \& 2371.3

\hline 301 \& 2291.9 \& 150 \& 150.0 \& 37.50 \& 150.0 \& 1.64 \& 75.0 \& 2292.3

\hline 35^{\prime} \& 2217.9 \& 155 \& 155.0 \& 40.05 \& 155.0 \& 1.81 \& 77.5 \& 2218.4

\hline 40^{\prime} \& 2148.6 \& 160 \& 160.0 \& 42.67 \& 161.0 \& 1.99 \& 80.0 \& 2149.1

\hline 45. \& 2083.5 \& 165 \& 165.0 \& 45.38 \& 165.0 \& 2.18 \& 82.5 \& 2084.1

\hline $50 \cdot$ \& 2022.2 \& 170 \& 170.0 \& 48.17 \& 170.0 \& 2.38 \& 85.0 \& 2022.8

\hline 551 \& 1964.5 \& 175 \& 175.0 \& 51.05 \& 175.0 \& 2.62 \& 87.5 \& 1965.1

\hline \multirow[t]{2}{*}{30} \& 1909.9 \& 180 \& 180.0 \& 54.01 \& 180 \& 2.83 \& 90.0 \& 1910.6

\hline \& 1858.3 \& 185 \& 185.0 \& 57.05 \& 185.0 \& 3.09 \& 92.5 \& 1859.1

\hline
\end{tabular}

12
TABLE.

					Co-ordinates of Point P.		Co-ordinates of Point 0.	
					ANor ${ }^{\text {a }}$	NP or y	AH	HO
$3^{\circ} 10^{\prime}$		190	190.0	1°	190.0	3.33	95.011810.2	
15'	1763.0	195	195.0	3.39	195.0	3.60	97.5	1763.9
20	1718.9	200	200.0	6.68	200.0	3.88	100.0	1719.9
25	1677.0	205	205.0	10.06	205.0	4.18	102.5	1678.0
30^{\prime}	1637.0	210	210.0	13.52	210.0	4.49	105.0	1638.2
35^{\prime}	1599.0	215	215.0	17.07	214.9	4.82	1075	1600.2
40	1562.6	220	220.0	20.70	219.9	5.16	110.0	1563.9
45	1527.9	225	225.1	24.41	224.9	5.52	112.5	1529.3
50^{\prime}	1494.7	230	230.1	28.20	229.9	5.90	115.0	1496.2
55^{\prime}	1462.9	235	235.1	32.08	234.9	6.29	117.5	1464.5
			240.0	35.97	239.8	6.70		
4°	$\begin{aligned} & 1432.4 \\ & 1403.2 \end{aligned}$	240	240.1	36.05	239.9	6.71	120.0	1434.1
		245	245.1	40.05	244.9	7.13	122.5	1405.0
			250.0	44.15	249.8	7.57		
101	1375.1	250	250.1	44.23	249.9	7.58	125.0	1377.0
151	1348.2	255	255.1	48.45	254.9	8.04	127.5	1350.2
20^{\prime}		260	260.1	52.75	259.9	8.53	130.0	1324.4
251	$\begin{array}{r} 1322.2 \\ 1297.3 \end{array}$	265	265.1	$57 \cdot 13$	264.8	9.03	132.5	1299.5
			270.0	$2^{\circ} 1.51$	269.7	9.54		
301	1273.3	270	276.1	1.60	269.8	9.55	135.0	1275.6
351	1250.1	275	275.1	6.15	274.8	10.09	137.5	1252.6
40^{\prime}	1227.8	280	280.2	10.79	279.8	10.65	140.0	1230.4
451	$\begin{array}{r} 1206.2 \\ 1186.4 \end{array}$	285	285.2	15.51	284.8	11.23	142.5	1209.0
$50 \prime$		290	290.2	20.32	289.8	11.83	145.0	1188.4
$55 \prime$	$\begin{aligned} & 1185.4 \\ & 1165.4 \end{aligned}$	29	295.2	25.21	294.7	12.46	147.5	1168.5
5°			300.0	29.99	299.5	13.07		
	1145.9300		300.2	30.19	299.7	13.10	150.0	1149.2
51			305.2	35.25	304.7	13.77	152.4	1130.6
10^{\prime}	$\begin{array}{ll\|l\|} 1127.1 & 305 \\ 1109 & 0 & 310 \end{array}$		310.3	40.40	309.7	14.46	154.9	1112.6
151	1091.4315		315.3	45.63	314.6	15.17	157.4	1095.2
20^{\prime}	1074.3320		320.3	50.95	319.6	15.91	159.9	1078.3
25.	1057.8	325	325.3	56.35	324.6	16.67	162.4	1061.9
			330.0	$3^{\circ} \quad 1.40$	329.1	17.38		
30^{\prime}	1041.8	330	330.4	1.84	329.5	17.45	164.9	1046.1
351	1026.2	335	335.4	7.41	334.5	18.25	167.4	1030.8
401	$\begin{array}{r} 1011.1 \\ 996.5 \end{array}$	340	340.4	13.07	339.5	19.09	169.9	1015.9
45 '		345	345.5	18.82	344.4	19.94	172.4	1001.4
			350.0	24.06	348.9	20.73		

13
TABLE.

						Co-ordinates of Point P.		Co-ordinates of Point 0 .	
						or x	P	H	10
$\begin{array}{rc} 5^{\circ} & 50^{\prime} \\ 55^{\prime} \end{array}$	982.2	350	350.5	3°	24'.65	349.4	20.82	174	987.4
	968.4	355	355.5		30.57	354.3	21.73	177.4	973.8
			360.0		35 ?85	358.7	22.55		
	954.9	360	360.6		36.57	359.3	22.66	179.9	960.6
	941.9	365	365.6		42.66	364.2	23.62	182.4	947.8
	929.1	370	370.7		48.84	369.2	24.61	184.9	935.3
	916.7	375	375.7		55.11	374.1	25.63	187.4	923.1
	904.7	380	380.8	4	1.46	379.1	26.67	189.8	911.3
	892.9	385	385.8		7.90	384.0	27.74	192.3	899.9
			390.0		13.24	388.0	23.64		
301	881.5	390	390.9		14.43	388.9	28.84	194.8	888.7
351	870.3	395	395.9		21.04	393.9	29.97	197.3	877.8
			400.0		26.40	397.8	30.89		
40^{\prime}	859.4	400	401.0		27.75	398.8	31.12	199.8	867.2
$45!$	848.8	405	406.0		34.54	4037	32.31	2 (12.3	856.9
$50 '$	838.5	410	411.1		41.42	408.6	33.53	204.8	846.9
55.	828.4	415	416.2		48.39	413.5	34.77	207.3	837.1
			420.0		53.75	417.3	35.74		
	818.5		421.2		55.45	418.5	36.05	209.7	827.5
$5!$	808.9	425	426.3	5°	2.60	423.4	37.36	212.2	818.2
10.	799.5	430	431.4		9.84	428.3	38.70	214.7	809.1
$15!$	790.3	435	436.5		17.17	433.2	40.08	217.2	800.3
201	781.3	140	441.6		24.59	438.0	41.48	219.7	791.7
25^{\prime}	772.5	445	446.7		32.10	442.9	42.92	222.2	783.2
			450.0		36.96	446.0	43.86		
30^{\prime}	764.0	450	451.8		39.70	447.8	44.39	224.6	7750
351	755.6	455	456.9		47.40	452.7	45.90	227.1	767.0
401	747.3	460	462.0		55.19	457.5	47.44	229.6	759.2
$45!$	739.3	465	467.1	6°	3.06	462.4	49.02	232.1	751.5
$50!$	731.4	470	472.2		11.04	467.3	50.63	234.5	744.1
$55 \prime$	723.7	475	477.3		19.10	472.1	52.28	237.0	736.8
			480.0		23.34	474.6	53.15		
$\begin{array}{cr}80 & 0 \\ 5! \\ & 10 \\ 15! \\ \\ & 20!\end{array}$	716.2	480	4824		27.26	477.0	53.96	239.5	729.7
	708.8	4*5	487.6		35.52	481.8	55.68	242.0	$72 \% .7$
	701.6	490	492.7		43.87	486.6	57.43	244.4	715.9
	694.5	495	497.9		52.31	491.4	59.23	246.9	709.3
			500.0		55.89	493. $:$	59.99		
	687.6	500	503.0	$7{ }^{\circ}$	0.85	496.3	61.06	249.4	702.8

TABLE.

						Co-ordinates of Point P.		Co-ordinates of Point 0 .	
						ANor x	NP or y	AH	но
$8^{\circ} 25$	680.8	505	508.2	$7{ }^{\circ}$	9'.49	501.1	62.93	251.8	696.4
			510.0		12.63	502.8	63.61		
30^{\prime}	67	510	513.3		18.23	505.9	64.84	254.3	690.2
$35!$	667.5	515	518.5		27.06	510.7	6678	256.8	684.2
401	661.1	520	523.7		35.99	515.4	68.77	259.2	678.2
$4{ }^{\prime \prime}$	654.8	525	528.9		45.02	520.2	70.80	261.7	672.4
$50!$	648.6	530	534.1		54.15	525.0	72.87	264.2	666.8
551	642.6	535	539.3	8°	3.38	529.7	74.98	266.6	661.2
			540.0		4.68	530.4	75.28		.
$9{ }^{\circ}$	636.6	540	544.5		12.71	534.5	77.13	269.1	655.8
	630.8	545	549.7		22.15	539.2	79.33	271.5	650.5
			550.0		22.72	539.5	79.46		
$10!$	625.1	550	554.9		31.68	54:3.9	81.56	274.0	645.3
$15!$	619.4	555	560.1		41.33	548.6	83.84	276.5	640.3
20.	613.9		565.4		51.07	553.3	86.17	278.9	635.3
			570.0		59.73	557.5	83.25		
251	608.5	565	570.6	$9{ }^{\circ}$	0.92	558.0	88.54	281.4	630.5
$30!$	603.1	570	575.9		10.88	562.7	90.95	283.8	625.7
357	597.9	575	581.2		20.94	567.4	93.41	286.2	621.1
40 ?	592.7	580	586.4		31.11	572.0	95.91	288.7	616.5
$45!$	587.7	585	591.7		41.39	576.7	98.46	291.1	612.1
50	582.7		597.0		51.78	581.3	101.06	293.6	607.8
			600.0		57.65	583.9	102.54		
$55 \prime$	577.8	595	602.4	10°	2.28	585.9	103.71	296.0	603.5
$0^{\circ} \quad 01$	573.0	600	607.7		12.90	590.5	106.41	298.4	599.4

CHAPTER III.

PROBLEEAS IN LOCATION OF TRANSITION CURVE.

Although theoretically both methods are equally good, practically it is better to run in the second piece of transition curve from A^{\prime} before locating the main curve $P P^{\prime \prime}$; but should it be considered necessary to reverse this order by putting in the main curve first, and then the second piece of transition curve, proceed as follows:-

In Fig 2. Suppose that one piece of transition and the main curve have been located, that the transit is at P and sighting along $P T$ the tangent to both transition and main curves.

Nommencing at A call the points to be located $P_{1} P_{2} P_{3}$, etc.,
their rectangular coordinates $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}$, etc., and the deflection angles from A to these points $\theta_{1}^{\circ}{ }_{1} \mathscr{O}_{2}^{\circ} \theta^{\circ}{ }_{3}$ etc.

The exterior angle $P S R=S P P_{7}+R P_{7} P$

$$
\text { therefore } S P P_{7}=P S R-R P_{7} P
$$

but tangent of angle $R P_{7} P$ is cqual to

$$
\frac{P R}{R P_{7}}=\frac{N P-N R}{A N-A N_{7}}=\frac{y-y_{7}}{x-x_{7}}
$$

also the angle $P S K$ is equal to the angle $P T N$ or $3 \boldsymbol{\theta}$;
therefore the angle T / P_{7}, the defiection angle from the tangent $P T$, to P_{7} the first point to be located, is given by

$$
\text { angle } T P P_{7}=3^{\theta}-\tan ^{-1} \frac{y-y_{7}}{x-x_{7}}
$$

Similarly angle $T P P_{6}=3^{H}-\tan ^{-1} \frac{y-y_{6}}{x-x_{6}}$

$$
\begin{aligned}
& \text { " " } T P P_{5}=3^{i j}-\tan ^{-1} \frac{y-y_{5}}{x-x_{5}} \\
& \text { " " } \mathrm{TPP}_{4}=3^{\theta-\tan ^{-1}} \frac{y-y_{4}}{x-x_{4}} \\
& \text { " " } \quad \text { TPP } P_{3}=3^{H}-\tan ^{-1} \frac{y-y_{3}}{x-x^{3}} \\
& \text { " " } \quad T P P_{2}=3^{H}-\tan ^{-1} \frac{y-y_{z}}{x-x_{2}} \\
& \text { " " } \quad \text { PPP } 1_{1}=3^{\theta}-\tan ^{-1} \frac{y-y_{1}}{x-x_{1}} \\
& \text { " " TPA = } 3 H-\theta=2 \theta \text {. }
\end{aligned}
$$

As the distances from A to points $P_{1} P_{2} P_{3}$ etc., will have been already decided on when running in the first piece of tran-
sition curve, it is only necessary to take from the table the values of $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}$, etc., corresponding to these distances, and insert them in the above equations:-

For instance : in the example given in the last chapter the point P_{4} is 200 feet from A,
therefore from table $x_{4}=200.0$ and $y_{4}=3.88$ and P is 395.9 feet from A,
therefore from table $x=393.9$ and $y=29.97$ θ is also $4^{\circ} 21^{\prime} .04, \quad$ therefore 3θ is $13^{\circ} 3^{\prime}$.

Consequently the angle

$$
T P P_{4}=13^{\circ} 3^{\prime}-\tan ^{-1} \frac{29.97-3.88}{393.9-200}=13^{\circ} 3^{\prime}-7^{\circ} 40^{\prime}=5^{\circ} 23^{\prime}
$$

A similar problem is that in whieh it becomes necessary to put in an intermediate hub at any point, say P_{5}, for then the transit being moved to P_{5} and sighted along the tangent $U P_{5}$

$$
\begin{aligned}
& \text { the deflection angle } P_{4} P_{5} U=3 \theta_{5}-\tan ^{-1} \frac{y_{5}-y_{4}}{x_{5}-x_{4}} \\
& \text { " " " } P_{3} P_{5} U=3_{5}{ }_{5}-\tan ^{-1} \frac{y_{5}-y_{3}}{x_{5}-x_{3}} \\
& \text { " " " } P_{2} P_{5} U=3^{\theta_{5}}-\tan ^{-1} \frac{y_{5}-y_{2}}{x_{5}-x_{2}} \\
& \text { " " } \\
& \text { " } P_{1} P_{5} U=3 \theta_{5}-\tan ^{-1} \frac{y_{5}-y_{1}}{x_{5}-x_{1}} \\
& \text { " } A P_{5} U=3 \theta_{5}-\theta_{5}=2 \theta_{5}
\end{aligned}
$$

or if running the curve forward to P

$$
\begin{aligned}
& \text { the deflection angle } P_{8} P_{5} V=\tan ^{-1} \frac{y_{6}-y_{5}}{x_{6}-x_{5}}-3 \theta_{5} \\
& \text { " } \quad \text { " } \quad \text { " } \quad P_{7} P_{5} V=\tan ^{-1} \frac{y_{7}-y_{5}}{x_{7}-x_{5}}-3 \theta_{5} \\
& \text { " } \quad \text { " } \quad \text { " } P P_{5} V=\tan ^{-1} \frac{y-y_{5}}{x-x_{5}}-3 \theta_{5}
\end{aligned}
$$

If there be more than one intermediate hub, proceed in an exactly similar way.

Referring again to Fig. 1 it will be seen that $O H-R$ is the offset distance which a circular curve of radius $O H$ would have to be moved towards the centre O to make room for the transition curves, so that if an external distance corresponding to a radius equal to $O H$ be taken from a volume on circular curves, this offset will have to be added to it to give the external dis tance $\boldsymbol{E} B$ in Fig. 1.

$$
\text { also since } E B=O H \sec \frac{I}{2}-R
$$

a value of R may be ehosen which will (with the corresponding value of $O H$ taken from the table) make $E B$ equal to any required distance.

For a given intersection angle $I, E B$ is as small as possible when $3^{\theta}=\frac{I}{2}$, or when in the table $\theta=\frac{I}{6}$, at the same time the main curve $P P^{\prime}$ reduces to zero, the points P and P^{\prime} come $\mathrm{t}_{\text {ogether }}$ at E, and R is the minimum radius which can be used so long as $m=1031337$, the value chosen in the construction of the table.

Conversely, for a given minimum radius $R, E B$ is as small as possible when m has a value equal to $9 \dot{R^{2}} \sin \frac{I}{3}$ found by com-
bining equations (1) and (2); theoretically this would be the correct curve to adopt in every ease, but to use it one would have to be content to do without the aid of tables, as such would require to be infinite in extent.

In special cases when the values given in the table are not suitable, and it beecfes necessary to depend entirely on the formule given in the 1st Chapter, proceed as follows:-

Assume a convenient length for the chord distance $A P$ or c; then, as R is supposed given ; by equation (1) $m=3 R, c$.

Knowing m and c, θ is given by equation (2).
By equation (4) $A H$ and $H O$ ean now be casily calculated, and their values substituted in equation (5) will give the tangent distance $A B$.

Finally find the length of the transition curve from equation (6). 'To locate the curve :-

Call the chord distances from A to the points to be located $a, 2 a, 3 a, 4 a$, etc., and the deflection angles to these points, $\theta_{1}{ }^{\circ}, \theta_{2}{ }^{\circ}, \theta_{3}{ }^{\circ}, \theta_{4}^{\circ}$, etc.,
then by equation (2) $\sin 2 \theta_{1}=\frac{a^{2}}{m}$

$$
\begin{array}{ll}
\text { " } \quad \text { " } \sin 2 \theta_{2}=4 \frac{a^{2}}{m}=4 \sin 2 \theta_{1} \\
\text { " } & \text { " } \sin 2 \theta_{3}=9 \frac{a^{2}}{m}=9 \sin 2 \theta_{2}
\end{array}
$$

thus it is only necessary to calculate the valuc of $\sin 2 \theta_{1}$, for this, multiplied by $4,9,16,25$, etc., will at once give the values of $\sin 2 \theta_{2}, \sin 2 \theta_{3}, \sin 2 \theta_{4}, \sin 2 \theta_{5}$, etc.
$\theta_{1}{ }^{\circ}, \theta_{2}{ }^{\circ}, \theta_{3}{ }^{\circ}$, etc., can now be found from a table of natural sines by inspection.

When ${ }^{\theta}$ is not greater than say 6° it would be correct enough to assume that $\sin 2 \theta_{1}=2 \theta_{1}$, or $\theta_{1}{ }^{\circ}=\frac{u^{2}}{2 m} \frac{180}{\pi}$, therefore if $\theta_{1}{ }^{\circ}$ be multiplied by $4,9,16,25$, etc., $\theta_{2} \circ \theta_{3} \circ \theta_{4} \circ$, etc., will at once
be given.
enough re if $\theta_{1}{ }^{\circ}$ at once

CHAPTER IV.
DERIVATION OF FORMULE AND GENERAL CONCLUSIONS RELATIVE TO CURVE.

FiG (3)
Let $A K P$ be the proposed transition curve, and assume that the radius of curvature at any point P of this curve varies inversely as the chord distance from A to that point, that is,

$$
\text { Let } r=\frac{m}{3 A P}
$$

$$
\text { and therefore } A P=\frac{m}{3 r}=\text { equation (1) }
$$

Assume a system of polar co-ordinates in which $A P$ is the radius vector, and the angle which it makes with the tangent $A N$ the vectorial angle.
PST is tangent to the transition curve at P and $A T$ is the polar distance

$$
\begin{aligned}
\text { Let } A P & =c \\
\text { " } A T & =p
\end{aligned}
$$

The formula for the radius of curvature at any point P is

$$
\begin{aligned}
r & =\frac{c d c}{d p} \\
\therefore d p & =\frac{c d c}{r} \\
\text { by (1) } \quad d p & =\frac{3 c^{2} d c}{m} \\
\text { integrating } \quad p & =\frac{c^{3}}{m} \quad(a)
\end{aligned}
$$

there is no constant of integration as p and c vanish together.

The formula for the Polar distance is

$$
p=\frac{c^{2} d \theta}{\sqrt{(d c)^{2}+c^{2}\left(d^{\theta}\right)^{2}}}
$$

Squaring both sides, transposing and simplifying

$$
d^{H}=\frac{p d c}{c \sqrt{c^{2}-p^{2}}}
$$

$$
\begin{equation*}
\text { by (a) } d^{\theta}=\frac{c d c}{m \sqrt{1-\frac{c^{4}}{m^{2}}}} \tag{b}
\end{equation*}
$$

$$
\begin{align*}
& \text { Integrating } \theta=\frac{1}{2} \sin ^{1} \frac{c^{2}}{m} \\
& \therefore \sin 9^{\theta}=\frac{c^{2}}{m}=\text { equation } \tag{2}
\end{align*}
$$

there is no constant of integration as c and θ vanish together.
The sine of $A P T$, the angle which the tangent PST makes with the chord $A P$ is $\frac{A T}{A P}=\frac{p}{c}$
but by (a) $\frac{p}{c}=\frac{c^{2}}{m}$
and by (2) $\frac{c^{2}}{m}=\sin 2 \theta$

$$
\begin{aligned}
\therefore \sin A P T & =\sin 2^{\theta} \\
\therefore A P T & =2 \theta
\end{aligned}
$$

Also the sentral angle $P O H=P S N=S A P+A P S=\theta+2 \theta=3^{\theta}$

The rectangular co-ordinates of \boldsymbol{P} are

$$
\left.\begin{array}{l}
A N=c \cos \theta \\
N P=c \sin \theta
\end{array}\right\}=\text { equation (3) }
$$

The rectangular co-ordinates of 0 are
$\left.\begin{array}{l}A H=A N-H N=A N-V P=A N-r \sin 3 \theta \\ H O=H V+V O=N P+V O=N P+r \cos 3^{\theta}\end{array}\right\}=$ equation
Substituting in the above $\mathrm{c} \cos \theta$ for $A N, \mathrm{c} \sin \theta$ for $N P$,
$\frac{c}{3 \sin 2^{H}}$ (found by combining (1) and (2) for r, simplifying and reducing,

$$
\left.\begin{array}{rl}
A H \text { becomes } & =\frac{c}{6} \frac{(2+\cos 2 \theta)}{\cos \theta} \\
\text { and } H O \text { becomes } & =\frac{c}{6} \frac{(2-\cos 2 \theta)}{\sin \theta}
\end{array}\right\}=\text { equation (4) }
$$

Referring to Fig. (1)

$$
\begin{equation*}
A B=A H+H B=A H+O F \tan \frac{I}{2}=\text { equation } \tag{5}
\end{equation*}
$$

To find the length of transition curve itself :the formula for a differential of the curve is

$$
\begin{gathered}
d L=\sqrt{(d c)^{2}+c^{2}\left(d^{\theta}\right)^{2}} \\
\text { but by }(b)\left(d^{H}\right)^{2}=\frac{c^{2} d c^{2}}{m^{2}-c^{4}}
\end{gathered}
$$

$$
\therefore d L=\frac{m d c}{\sqrt{m^{2}-c^{4}}}=m\left(m^{2}-c^{4}\right)^{-\frac{1}{2}} d c=\left(1-\frac{c^{4}}{m^{2}}\right)^{-\frac{1}{2}} d c
$$

expanding by the Binomial Theorem

$$
d L=\left(1+\frac{c^{4}}{2 m^{2}}+\frac{3 c^{8}}{8 m^{4}}+\right) d c
$$

integrating, $\quad L=c+\frac{c^{5}}{10 m^{2}}+\frac{c^{9}}{24 m^{4}}=$ equation (6)
When $m=1031337$, (the number chosen in making up the table); $\frac{c^{5}}{10 m^{2}}$ the second term in the above series $=\frac{1}{10}$ of a foot when
$c=254.3$ feet, and $\frac{c^{9}}{24 m^{4}}$ the third term in the above series $=\frac{1}{10}$ of a foot when $c=518.6$ feet, therefore it is only necessaiy to use the second term when $D>4^{\circ}-10^{\prime}$, and the third when D $>8^{\circ} 3 \overline{3}^{\prime}$.

In constructing the table, a value for the constant number m was chosen which would give a reasonable length of transition curve for at least the great majority of cases (viz., those in which the degree of curvature of main curve varies from say 3° to 7°); and which would also give to the table a convenient form for comparison with such tables on circular curves as may be found in the works of Searle, Shunk, etc.; it was found as follows:-

Let the chord distance in feet to any print on transition curve be numerically equal to the number of minutes contained in the degree of curvature at that point, or if $D=$ degree of curvature at the point, then 60 D will equal the number of minutes in the degree of curvature at the same point

$$
\text { that is, Let } c=60 D
$$

giving about 60 feet of transition curve for each degree of curvature of main curve

$$
\text { by (1) } 60 D=\frac{m}{3 r}
$$

$$
\text { but when } D=1^{\circ} \quad r=5729.65
$$

$$
\text { and } \therefore m=3,5729.65,60=1031337
$$

In bending the rails it is also a convenience to know that if the chord length to a point on the transition curve be divided by sixty, the degres of curvature at that point is at once given.

When necessary, other valucs of m may be found similarly.

The curve is symmetrical with respect to a line, making an angle of 45° with the initial line $A N$, for since

$$
\begin{gathered}
\sin (90-2 \phi)=\sin (90+2 \phi) \\
\text { and } \therefore \sin 2(45-\phi)=\sin 2(45+\phi)
\end{gathered}
$$

c has the same value in equation (2) when $\theta=45-\phi$, as it has when $\theta=45+\phi$.

When ϕ is $0, \theta=45^{\circ}, 2^{\theta}=90^{\circ}$, and $\sin 2^{\theta}=1$

$$
\therefore c=\sqrt{m}=a \text { maximum. }
$$

If a few points be plotted, it will be seen that the curve takes the form of a loop, the point of the loop being at the origin A.

If the negative values of c be also taken, a second loop is obtained, so that the complete curve is in the form of the figure eight, and is, in fact, identical with a well-known curve called the Lemniscata.

If it be assumed that $\sin 2 \theta=2^{\theta}$
equation (2) becomcs $2^{\theta}=\frac{c^{2}}{m}$ or $\theta=k c^{2}$, where $k=\frac{1}{2 m}$
This is the formula that a member of the Canadian Society of Civil Engineers proposed using; but looking at Figure 1 it will be seen that the length of the main curve depends upon the value of 6^{θ}, and therefore if 6^{θ} is greater than say 6° or θ greater then 1°, a correct length for the main curve will not be obtained if such a formula has been used to calculate the value of θ.

As has been already pointed out, however, the assumption may be used to advantage in the mere location of points on the transition curve.
\square

