CHM
Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

\square
Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated / Couverture restaurée et/ou pelliculée

Cover title missing / Le titre de couverture manque

Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured. stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments / Pagination is as follows: [xiv], 1-17, 17A-17B, 18-430 p. Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres. sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposura are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exerrplaire filmé fut reproduit gráce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle ompreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche. selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent ètre filmés à des taux de réduction différents. Lorsque le document est trop grand pour ètre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Main Street
Rachesier, New Yark 14609 USA
(716) 482-0300-Phone
(716) 288 - 5389 -Fax

Garkleos

A TEXT-BOOK
OF^{\prime}

EUCLID'S ELEMENTS.

A TEXT'-BOOK
 OF
 EUCLID'S ELEMENTS

BOOKS I.-VI. ANd XI.

Hy
H. S. HALL, M.A.

FOIRMERLY SCIIOLAR OF CHIRIS'S'S COLLEGE, CAMBIRIDGE:
AND
F. H. S'TEVENS, M.A.

FOHMERLY SCHOLAR OF QUEEN'S COLLEGE, OXFOHD MASTERS OF THE MILTARY SIDE, CLIFTON COLADEGE

Prescribed b!y the Comeil of Vublic Instruction for use in the
Schools of Nora Scotia.

7301100n:
MACMILLAN AND CO.
AND NEW YORK.
Malifax, x. $\underset{\sim}{2}$:
A. AND W. MACKINLAY.

All Rights Reserved.

C． 4451
H^{2}
－8こり

PREFACE TO THE FIRS'T EDITIUN.

Turs volume contains the first Six Books of Euclid's Elements, together with Appendices giving the most ir. portant clementary developments of Euclidem Geometry.

The text has been earefully revised, and special attention given to those points which experience has shewn to present difificulties to beginners.

In the course of this revision the Enunciations have been altered as little as possible; and, except in Book V., very few departures have been made irom Euclid's proofs: in each case changes have been adopted only where the old text has been generally found a eause of difficulty; and suelı elanges are for the most part in favour of well-reeognised alternatives.

For example, the ambiguity has been removed from the Enunciations of Propositions 18 and 19 of Eook I.: the faet that Propositions 8 and 26 establish the eomplete identical equality of the two triangles considered has been strongly urged; and thus the redundant step has been removed from Proposition 34. In Book II. Simson's arrangement of Proposition 13 has been abandoned for a well-known alternative proof. In Book III. Proposition 25 is not given at length, and its place is taken by a
simple equivalent．Propositions 35 and 36 have been treated gemerally，and it has not been thought necessary to do more than call attention in a note to the special cases．Finally，in Book VI，we have adopted an alterna－ tive proof of Iroposition 7 ，a theorem which has been too mach neylected，owing to the cumbrous form in which it has berm usmally given．

These are the chiof deviations from the ordinary text as regards methol and arrangement of proof：they are points familiar as difficulties to most teachers，and to name them indicates sufficiently，without further enn－rieration， the gencral principles which have guided our revision．

A few alternative proof＇s of difficult propositions are given for the convenience of those teachers who eare to use them．

With regard to Book V ．we have established the prinei－ pal propositions，both from the afgelraical and geometrical detinitions of ratio and proportion，and we have endeavoured to liring ont clenly the distinction between these two modes of treatment．

In compiling the geometrical section of Book V．we have followed the system dirst advocated by the late Pro－ fessor De Morgan ；and here we derived very material assistance fron the exposition of the subject given in the text－book of the Association for the Improvement of Geo－ metrical Teaching．＇To this source we are indebted for the improved and more precise wording of definitions（as given on pages 286， 288 to 291 ），as well as for the order and substance of most of the propositions which appear between pages 297 and 306．But as we have not（except in the points above mentioned）adhered verbally to the text of the Association，we are anxious，while expressing in the fullest mamer our obligation to their work，to exempt the

Association from all responsibility for our treatment of the subject.

One purpose of the book is to pradually familiarise the student with the use of lewitimate symbols and abbreviations; for a geometrical argument may thus be thrown into a form which is not only more readily seized by an adranced reader, but is useful as a guide to the way in which Euclid's propositions may be handled in written work. On the other hand, we think it very desirable to defer the intaduction of symbols until the begimer has learnt that they can only be properly used in Pure Geometry as abbreviations for verbal argument: and we hope thus to prevent the slovenly and inaceurate labits which are very apt to arise from their employment before this principle is fully recognised.

Accordingly in Book I. we have used no contractions or symbols of any kind, though we have introduced vertal alterations into the text wherever it appeared that coneiseness or clearness would be gained.

In Book II. abbreviated forms of constantly recurring words are used, and the phrases therefore and is equal to are replaced by the usual symbols.

In the Third and following Books, and in additional matter throughout the whole, we have employed all such signs and abbreviations as we believe to add to the clearness of the reasoning, care being taken that the symbols chosen are compatible with a rigorous geometrical method, and are recognised by the majority of teachers.

It must be understood that our use of symbols, and the removal of unnecessary verbiage and repetition, by no means implies a desire to secure brevity at all hazards. On the contrary, nothing appears to us more mischievous than an abridgement which is attained by omitting
steps, or condensing two or more steps into one. Such uses spring from the pressure of examinations; but an examination is not, or ought not to be, a mere race; and while we wish to indicate generally in the later books how a geometrical argument may be abbreviated for the purposes of written work, we have not thought well to reduce the propositions to the lare skeleton so often presented to an Examiner. Indeed it does not follow that the form most suitable for the page of a text-book is also best adapted to examination purposes; for the object to be attained in each case is entirely different. The text-book should present the argument in the clearest possible manner to the mind of a reader to whom it is new : the written proposition need only convey to the Lxaminer the assurance that the proposition has been thoroughly grasped and remembered by the pupil.

From first to last we have kept in mind the undoubted fact that a very small proportion of those who study Elementary Geometry, and study it with profit, are destined to become mathematicians in any real sense; and that to a large majority of students, Euchid is intended to serve not so much as a first lesson in mathematical reasoning, as the first, and sometimes the only, model of formal and rigid argument presented in an elementary education.

This consideration has determined not only the full treatment of the earlier Books, but the retention of the formal, if somewhat cumbrous, methods of Euclid in many places where proofs of greater brevity and mathematical elegance are available.

We hope that the additional matter introduced into the book will provide sufficient exercise for pupils whose study of Euclid is preliminary to a mathematical education.

Such but an we; and oks how the puro reduce ented to rim most adapted attained s should er to the position that the cmbered
doubted udy Eledestined that to to serve asoning, mal and

on.

the full a of the in many ematical ced into s whose cal edu-

The questions distributed through the text follow very easily from the propositions to which they are attached, and we think that teachers are likely to find in them all that is needed for an average pupil reading the subject for the first time.

The Theorems and Examples at the end of each Book contain questions of a slightly more difficult type: they have been very carcfully classitied and arranged, and brought into close comnection with typical examples worked out either partially or in full ; and it is hoped that this section of the book, on which much thought has been expended, will do something towards removing that extreme want of freedom in solving deductions that is so commonly found even among students who have a good knowledge of the text of Euclid.

In the course of our work we have made ourselves acquainted with most modern English books on Euclidean Geometry: anong these we have already expressed our special indebtedness , the text-book recently published by the Association for the Improvement of Geometrical Teaching; and we must also mention the Edition of Euclid's Elements prepared by Dr. J. S. Mackay, whose historical notes and frequent references to original authorities have been of the utmost service to us.

Our treatment of Maxima and Minima on page 239 is based upon suggestions derived from a discussion of the subject which took place at the amual meeting of the Geometrical Association in January 1887.

Of the Riders and Deductions some are original; but the greater part have been drawn from that large store of floating material which has furnished Examination Papers for the last 30 years, and must necessarily form the basis of any elementary collection. Proofs which have been
found in two or more books without acknowledgement have been regarded as common property.

As regards figures, in accordance with a usage not uncommon in recent editions of Euclid, we have made a distinction between given lines and lines of construction.

Throughout the book we have italicised those deductions on which we desired to lay special stress as being in themselves important geometrical results: this arrangement we think will be useful to teachers who have little time to devote to riders, or who wish to sketch out a suitable course for revision.

We have in conclusion to tender our thanks to many of our friends for the valuable criticism and advice which we received from them as the book was passing through the press, and especially to the Rev. H. C. Watson, of Clifton College, who added to these services mueli kind assistance in the revision of proof-sheets.

> H. S. HALL,
> F. H. STEVENS.

July, 1888.

PREFACE 'TO THE SECOND EDI'ION.

In the Seeond Edition the text of Books I-VI. has been revised; and at the request of many teachers we have added the first twenty-one Propositions of Book XI. together with a collection of Theorems and Examples illustrating the elements of Solid Geometry.

September, 1889.
dgement
sage not made a action. ductions in themnent we time to le course
many of hich we ugh the Clifton sistance

CONTENTS.

BOOK I.

Defintions, Postulates, Axioms
PAGE
Section I. Propostriozs 1-26 1
Section II. Parallels and Paralleloghams.
Propositions 27-34 11 50
Section III. The Areas of Parallelograms and Trlangles. Propositions 35-48 66
Theorems and Examples on Book I.
Analysis, Syxthesis 87
I. On the Identical Equality of Thiangles 90
II. On Inequalities 93
III. On Parallelis 95
IV. On Parallelograms 96
V. Miscellaneous Theoremis and Examples 100
Vi. On the Concurrence of Straight Lines in a Tmi- angle 102
VII. On the Construction of Thiangles with given Parts 107
VIII. On Areas 109
IX. On Loci 114
X. On the Intersection of Luci 117

BOOK II.

BOOK III.
Definitions, \&c. 149
Propositions 1-37 153
Note on the Methol of Jimits as Applied to Tangency 213
Theorems and Levamples on Book III.
I. On the Cextre and Ciopds of a Circle 215
II. On tife Tangent and the Contact of Circlefs.
The Common Tangent to Two Circles, I'roblens on Tangeney, Orthogonal Cireles 217
III. On Angles in Segments, and Angles at the Centres and Cincumferences of Cincles.
The Orthocentre of a Triangle, and properties of the Pedal Trianglo, Loci, Simson's Line 222
IV. On the Circle in Connection with Rectangles. Further Problems on Tangency 233
V. On Maxima and Miniva 239
VI. Harder Miscellaneous Examplies 246
BOOK IV.
Definitions, \&c.250
Propositrons 1-16 251
Note on Requlal Polygons 274
Theorems and Examples on Book IV
I. On the Triangle and its Cirches.
Circumscribed, Inscribed, and Escrined Circles, The Nine-points Circle 277
H. Miscellaneous Examiles 283

CONTENTS.

BOOK Y.

IntrodectoryPAGF
Definitions 286
Sumbary, with Algebraicai Proofs, of the Principal Theorems of Book V. 292
Proofs of the Propositions dehived from the Geomeifical Definition of Proportion 297
BOOK VI.
Definitions 307
Propositions 1- 1 308
Theorems and Examples on Book VI.
I. On Tharmonic Section 359
II. On Centres of Similahity anio Similitude 363
III. On Pole and Polar 365
IV. On tife Radical Axis of Two on Mone Circles 371
V. On Transversalis 374
VI. Miscellaneofs Examples on Book VI. 377
BOOK XI.
Definitions 383
Propostrions 1-21 393
Exercises on Book XI. 418
Theorems and Examples on Book XI. 420

EUCLID'S ELEMENTS.

BOOK I.

Definitions.

1. A point is that which has position, but no magnitude.
2. A line is that which has length without breadth.

The extremities of a line are points, and the intersection of two lines is a point.
3. A straight line is that which lies evenly between its extreme points.

Any portion cut off from a straight line is called a segment of it.
4. A surface is that which has length and breadth, but $n o$ thickness.

Thie boundaries of a surface are lines.
5. A plane surface is one in which any two points being taken, the straight line between them lies wholly in that surface.

A plane surface is frequently referred to simply as a plane.
Nore. Euclid regards a point merely as a mark of position, and he therefore attaches to it no idea of size and shape.

Similarly he considers that the properties of a line arise only from its length and position, without reference to that minute breadth which every line must really have if actually drawn, even though the most perfect instruments are used.

The definition of a surface is to be understood in a similar way.
II. E.
6. A plane angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.

The point at which the straight lines meet is ealled the vertex of the angle, and the straight lines themselves the arms of the angle.

When several angles are at one point O, any one of then is expressed by three letters, of which the letter that refers to the vertex is put between tho other two. Thus if the straight lines $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ meet at the point O, the angle contained by the straight lines $O A, O B$ is named the angle $A O B$ or $B O A$; and the angle contained by $O A, O C$ is named the angle AOC or COA. Similarly the angle contained by $O B, O C$ is referred to as the angle BOC or COB. But if there be only one angle at a point, it may be expressed by a single letter, as the augle at O .

Of the two straight lines $O B, O C$ shewn in the adjoining figure, we recognize that $O C$ is more inrlined than $O B$ to the straight line $O A$: this we express by saying that the angle $A O C$ is greater than the angle AOB. Thus an angle must be regarded as having magnilude.

It should be observed that the angle $A O C$ is the sum of the zugies AOB and BOC ; and that AOB is the difference of the angles $A O C$ and BOC.

The beginner is cantioned against supposing that the size of an angle is altered either by inereasing or diminishing the length of its arms.
[Another view of an angle is recognized in many branches of mathematies ; and though not employed by Euclid, it is here given beeanse it furnishes more elearly than any other a conception of what is meant by the magnitude of an angle.

Suppose that the straight line OP in the figure is capable of revolution about the point O, like the hand of a watel, but in the opposite direction; and suppose that in this way it has passed suecessively from the position OA to the positions oceupied by $O B$ and $O C$.

Such a line must have undergone more turning
 in passing from $O A$ to $O C$, than in passing from $O A$ to $O B$; and consequently the angle $A O C$ is said to be greater than the angle $A O B$.]
straight ure not in

10 vertex of e angle.

um of tho the angles sizo of an ength of its
ranches of here given ion of what

OB ; and ngle ÁOB.]
7. When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called io perpendicular to it.

8. An obtuse angle is an angle which is greater than one right angle, but less than two right ingles.

9. An acute angle is an :mgle which is less than a right angle.
[In the adjoining figure the straight linte $O B$ may be supposed to have arrived at its present position, from the position occupied by OA, by revolution about the point O in either of the two directions indicated by the arrows: thus two straight lines drawn from a point may be considered as forming
 two angles, (marked (i) and (ii) in the figure) of which the greater (ii) is said to be reflex.

If the arms $O A, O B$ are in the same straight line, the angle formed hy them
 on either side is ealleat a straight angle.]
10. Any portion of a plane surface bounded by one or more lines, straight or curved, is called a plane figure.

The sum of the bounding lines is called the perimster of the figure.
Two figures are said to be equal in area, when they enclose equal portions of a plane surface.
11. A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another: this point is called the centre of the circle.

A radius of a circle is a straight line drawn from tho centre to the circumference.
12. A diameter of a circle is a straight line drawn through the centre, and temminated both ways by the circumference.
13. A senicircle is the figure bounded by a diameter of a circle and the pirt of the circumference cut off by the diameter.
14. A segment of a circle is the figure bounded by a straight line and the part of the cireumference which it cuts off.
15. Rectilineal figures we those which we bounded hy straight lines.
16. A triangle is it plane figrure bounded by thice straight lines.

Any one of the angular points of a triangle may be regarded as its vertex; and the opposite side is then called the base.
17. A quadrilateral is a plane figure bounded by ©our straight lines.

The straight line which joins opposite angular points in a quadrilateral is called a diagonal.
18. A polygon is a plane figure bounded by more than four straight lines.
19. An equilateral triangle is a triangle whose three sides are equal.

20. An isosceles triangle is a triatigle two of whose sides are equal.
21. A scalene triangle is it triangle which has three unequal sides.

2.2. A right-angled triangle is a triangle which has a right angle.

The side opposite to the right angle in a right-angled triangle is ca' 'ed the hypotenuse.
23. An obtuse-angled triangle is it triangle which has an obtuse angle.

24. An acute-angled triangle is a triangle which has three acute angles.

[It will be seen hereafter (Book I. Proposition 17) thet erery triande must have at least two actute angles.]
25. Parallel straight lines are such as, being in the sime plane, do not meet, however far they are produced in either direction.
26. A Parallelogram is a four-sided figure which has its opposite sides parallel.

27. A rectangle is a parallelogram which has one of its angles a right angle.
28. A square is a four-sided figure which has all its sides equal and all its angles right angles.
[It may easily be shewn that if a quadrilateral has all its sides equal and one angle a right angle, then all its angles will be right angles.]
29. A rhombus is a four-sided figure which has all its sides equal, but its angles are not right angles.

30. A trapezium is a four-sided figure which has two of its sides parallel.

ON゙ THE POSTULATES.

In orler to effect the constructions necessary to the study of geometr, it must be supposed that certain instruments are available; lat it has always been held that such instruments whold be as fow in mumber, and as simple in character as passible.

For the purposes of the first Six Books a straight ruler and a pain of compasses are all that are neded; and in the following Postulates, or requests, Enclid demands the use of such instrmments, and assmes that they suffice, theoretically as well as practically, to can y out the processes mentioned below.

Postulathes.

Let it be eranterl,

1. That a straight line may be drawn from any one point to any other point.

When we draw a straight line from the point A to the point B, we nre said to join $A B$.
2. That a fuite, that is to say, a terminated straight line may be produced to any length in that straight line.
3. That a circle may be described from any centre, at any distance from that centre, that is, with a radius equal to any finite straight line drawn from the centre.

It is inportant to notice that the l'ostulates include no means of direct measinement: hence the straight ruler is not supposed to be !rraduated; and the compasses, in accordance with Euclid's use, are not to be employed for transferving distences from one part of a figure to another.

ON TIIE AXIOMS.

The science of Geometry is hased unon certain simple statements, the truth of which is assumed at the putset to be selfevident.

These self-evident truths, called by Fuclid Common Notions, are now known as the Axioms.

The necessary characteristics of an Axiom amo
(i) I'hat it shonhl be selfecrident: that is, that its truth
study of lents are truments racter as
ruler and te followof such ly as well Ow.
"IIy* 1110 oint B, we
straight t line.
entre, at ius equal shonld be inmmerliately necepted withont pron?
(ii) That it shoul I he fundamentel; that 's, that its truth shonld not be alerivalhe from any other ta wis more simple than itemls:
(iii) 'That it shond . IHpply a hasis for tho establishment of further trnthe.

These characterin fies may lo: summed up in thon following definition.

Deflertion. An Axiom in a self-evident trath, which neither requires nor is capablo of proof, lut which serves as a fuundation for future reasoning.

Axions are of two kinds, general and geometrical.
General Axioms apply to magnitudes of all limds. (ieometrical Axions refer exchnsively to geometricel megnitules, such its have been already indicated in the definitions.

Gexbral Axioms.

1. Things which nre equal to the same thing are equal (to one amother.
\because If equals le irlded to equals, the wholes we equal.
\therefore. If eguals be taken fiom equals, tho rema inders aro equal.
2. If equals be iudded to unequals, the whol as are meequal, the greater sum being that which includes the greater of the unequals.
3. If equals be taken from unequals, the rentainders are unequal, the greater remainder being that which is left from the greater of the unequals.
4. Things which are double of the same thind, or of equal things, we equal to one another.
5. Things which are halves of the same thing, or of equal things, are equal to one another.
9.* The whole is greater than its part.

* To preserve the classification of general and geometrical axioms, we have placed Euclid's minth axiom before the eighth.

(ieometrical Axioms.

8. Magnitudes which can be made to coincide with one another, are equal.

This axiom affords the ultimate test of the equality of two geometrieal magnitudes. It implies that any line, angle, or figure, may be supposed to be taken up from its position, and without ehange in size or form, laid down upon a second line, angle, or figure, for the purpose of comparison.

This process is called superposition, and the first magnitude is said to be applied to the other.
10. Two straight lines camot enclose a space.
11. All right angles are equal.
[The statement that all right angles are cqual, admits of proof, and is therefore perhaps out of place as an Axiom.]
12. If a straight line meet two straight lines so as to make the interior angles on one side of it together less than two right angles, these straight lines will meet if continually produced on the side on which are the angles which are together less than two right angles.

That is to say, if the two straight lines $A B$ and $C D$ are met by the straight line $E H$ at F and G, in sueh a way that the angles BFG, DGF are together less than two right angles, it is asserted that $A B$ and $C D$ will meet if continually produced in the direction of B and D.

[Axiom 12 has been objeeted to on the double ground that it eannot be considered self-evident, and that its truth may be deduced from simpler prineiples. It is employed for the first time in the 29 th Proposition of Book I., where a short diseussion of the difficulty will be found.

The converse of this Axiom is proved in Book I. Proposition 17.]

IN'TRODUCTORY.

two geome ure, may be t change in pure, for the
ragnitude is
ts of proof,
es so as to
ether less eet if congles which

/E

F
\qquad

Plane Geonictry deals with the properties of all lines and figures that may be drawn upon a plane surface.

Euclid in his first Six Books confines himself to the properties of straight lines, rectilineal figures, and circles.

The Definitions indicate the subject-matter of these books: the Postulutes and Axioms lay down the fundamental principles which regulate all investigation and argument relating to this subject-matter.

Euchid's method of exposition divides the subject into a number of separate discussions, called propositions; each proposition, though in one sense complete in itself, is derived from results previously obtained, and itself leads up to subsequent, propositions.

Propositions are of two kinds, Problems and Theorems.

A Problem proposes to effect some geometrical construction, such as to draw some particular line, or to construct some required figure.

A Theorem proposes to demonstrate some geometrical truth.
A Proposition consists of the following parts:
The General Enunciation, the Particular Finnenciation, the Construction, and the Demonstration or Proof.
(i) The General Enunciation is a preliminary statement, describing in general terms the purpose of the proposition.

In a problem the Enunciation states the construction which it is proposed to eftect: it therefore names first the Data, or things given, secondly the Quæsita, or things required.

In a theorem the Enunciation states the property which it is proposed to demonstrate: it names first, the Hypothesis, or the conditions assumed; secondly, the Conclusion, or the assertion to be proved.
(ii) The Particular Enunciation repeats in special terms the statement already made, and refers it to a diagram, which: enables the reader to follow the reasoming more easily.
(iii) The Construction then directs the drawing of such straight lines and eircles as may be required to effect the purpose of a problem, or to prove the trith of a theorem.
(iv) Lastly, the Demonstration proves that the object proposed in a problem has been accomplished, or that the property stated in a theorem is true.

Euclid's reasoning is said to be Deductive, because by a connected chain of argument it deduces new truths froni truths alleady proved or admitted.

The initial letters Q.F.F., placed at the end of a problem, stand for Quod erat Faciendum, which was to be dowe.

The letters Q. F. D. aro appended to a theorem, and stand for Quod erat Demonstrandum, which ucts to be proced.

A Corollary is a statement the truth of which follows readily from an established proposition; it is therefore appended to the proposition as an inference or deduction, which usually requires no further proof.

The following symbols and abbreviations may be employed in writing out the propositions of Book I., though their use is not recommended to beginners.

and all obvions contractions of words, such as opp., adj., diag., \&c., for opposite, adjacent, diagonal, \&c.

SECTION I.

Proposition 1. Problem.
To rescribe an equilateral triangle on a gicen finite straight line.

Let $A B$ be the given straight line.
It is required to describe an equilateral triangle on $A B$.
Construction. From centre A, with radius $A B$, describe the circle BCD.

Post. 3.
From centre B, with radius BA, describe the circle ACE.
Post. 3.
From the point C at which the circles cut one another, draw the straight lines $C A$ and $C B$ to the points A and B. Post, 1.
Then sinall $A B C$ be an equiateral triangle.
Pionf. Because A is the centre of the circle BCD, therefore $A C$ is equal to $A B . \quad D_{\text {ef }} 11$.
And because B is the centre of the circle ACE, therefore $B C$ is equal to $B A$

Def. 11.
Dut it has been shewn that $A C$ is equal to $A B$;
therefore $A C$ and $B C$ are each equal to $A B$.
But things which are equal to the same thing are equal to one another.

Therefore $A C$ is equal to $B C$.
Therefore $C A, A B, B C$ are equal to one another.
Therefore the triangle $A B C$ is equilateral ; and it is described on the given straight line $A B$. Q.F.F.

Proposition -. Problem.

From a given point to drau a straight line equal to a given straight line.

Let A be the given point, and $B C$ the given straight line.
It is required to draw from the point A a straight line equal to BC.

Construction. Join AB Post. 1. and on $A B$ describe an equilateral triangle DAB. I. 1.
From centre B, with radius BC, describe the circle CGH.
Post. 3.
Produce DB to meet the circle CGH at G. Post. 2.
From centre D, with radius DG, describe the circle GKF.
Produce DA to meet the circle GKF at F. P'ost. 2. Then AF shall be equal to BC.
Pronf. Because B is the centre of the circle CGH, therefore $B C$ is equal to $B G$.

Def. 11.
And because D is the centre of the circle GKF, therefore DF is equal to DG; Def. 11. and DA, DB, parts of them are equal ; Def. 19. therefore the remainder $A F$ is equal to the remainder $B G$. Ax. 3.
And it has been shewn that $B C$ is equal to $B G$; therefore $A F$ and $B C$ are each equal to $B G$.
But things which are equal to the same thing are equal to one another.

Ax. 1.

Therefore AF is equal to $B C$;

and it has been drawn from the given point A. Q.e.f.
[This Proposition is rendered necessary by the restriction, tacitly imposed by Euclid, that compasses shall not be used to transfer distances.]

Proposition 3. Problem.

P'rom the yreater of two given straight lines to cut off a part equal to the less.

Let $A B$ and C be the two given straight lines, of which $A B$ is the greater.

It is required to cut off from $A B$ a part equal to C.
Construction. From the point A draw the straight line $A D$ equal to C;
I. Ω. and from centre A, with radius $A D$, deseribe the circle DEF, meeting $A B$ at E.

Then $A E$ shall be equal to C.
Proof. Because A is the centre of the circle DEF,
therefore $A E$ is equal to $A D$. But C is equal to $A D$. Therefore $A E$ and C are each equal to $A D$. Therefore AE is equal to C; and it has been cut off from the given straight line $A B$.
Q.E.F

EXERCISES.

1. On a given straight line describe an isosceles triangle having each of the equal sides equal to a given straight line.
2. On a given base describe an isosceles triangle having each of the equal sides double of the base.
3. In the figure of 1 . 2, if $A B$ is equal to $B C$, shew that D, the vertex of the equilateral triangle, will fall on the circumference of the circle CGH.

Obs. Every triangle has six parts, namely its three sides and three angles.

Two triangles are said to be equal in all respects, when they can be made to coincide with one another by superposition (see note on Axiom 8), and in this case each part of the one is equal to a corresponding part of the other.

Proposition 4. Tifeorem.
If two trimyles have two sides of the one equal to two sides of the other, each to each, and have also the amgles contained by those sides equal: then shatl their buses or third sides be equal, and the trianyles shall be equal in area, and their remainin! angles shall be equal, each to each, nemely those to which the equal sides are opposite: that is to say, the tritumgles shall, be aqual in all respects.

Tet $A B C, D E F$ be two triangles, which have the side $A B$ equal to the side DE, the side $A C$ epual to the side DF, aud the contained angle BAC equal to the contained angle EDF. Then shall the base BC be equal to the base EF, and tho triangle $A B C$ shall be equal to the triangle DEF in area; and the remaining angles shall ine equal, each to each, to which the equal sides are opposite,
namely the angle $A B C$ to the angle $D E F$, and the angle $A C B$ to the angle DFE.
For if the triangle $A B C$ be applied to the triangle DEF, so that the point A may be on the point D, and the straight line $A B$ along the straight line $D E$, then because $A B$ is equal to $D E$, ${ }_{H}{ }^{\prime \prime}$. therefore the point B must coincide with the point E.
three sides pects, when superposition of the one is
equal to two o the angles ases or third in area, and each, numel! is to say, the
the side AB side DF, and 1 angle EDF.
$E F$, and the EF in irea; to each, to

E,

mgle DEF, t D, line $D E$, $H_{i j 1}$. point E.

And because $A B$ falls along $D E$, and the angle BAC is equal to the angle EDF, I_{y} / ρ. therefore $A C$ must fall along $D F$. And because AC is equal to DF, IIY1. therefore the point C must coincide with the point F.

Then B coinciding with E, and C with F, the base BC must coincide with the base EF; for if not, two straight lines would enclose a space; which is impossible.

A $x .10$.
Thus the base BO coincides with the base EF, and is therefore equal to it.
$A x .8$.
And the triangle $A B C$ coincides with the triangle DEF, and is therefore equal to it in area.

Ax. 太.
And the remaining angles of the one coincide with the remaining angles of the other, and are therefore equal to them, namely, the angle $A B C$ to the angle $D E F$, and the angle $A C B$ to the angle DFE.
That is, the triangles are equal in all respects. Q.E.D.
Note. It follows that two triangles which are equal in their several parts are equal also in reren; but it should be observed that equality of area in two triangles does not necessarily innply equality in their several parts: that is to say, triangles may be equal in ciren, without being of the same shape.

Two triangles which are equal in all respects have identity of form. and magnitude, and are thercfore said to be identically equal, or congruent.

The following application of Iroposition 4 anticipates the ehief difliculty of Proposition 5.

In the equal sides $A B, A C$ of an isosceles triangle $A B C$, the points X and Y are tal:en, so that $A X$ is equal to $A Y$; and $B Y$ and $C X$ are joincd.

Shew that $B Y$ is equal to $C X$.
In the two triangles XAC, YAB,
$X A$ is equal to $Y A$, and $A C$ is equal to $A B$; $H y / m$. that is, the two sides $X A, A C$ are equal to the two sides $Y A, A B$, each to each;
and the angle at A, which is contained by these sides, is common to both triangles: therefore the triangles are ϵ qual in all respects; so that $X C$ is equal to $Y B$.

1.4. Q.E.D.

Proposition 5. Theorem.

The amples at the brase of an isosceles triangle are equal to one another; and if the equal sides be produced, the angles on the other side of the buse shatl also be equal to one another.

Let $A B C$ le an isosceles triangle, having the side $A B$ equal to the side $A C$, and let the straight lines $A B, A C$ be produced to D and E :
then shall the angle $A B C$ be equal to the angle $A C B$, and the angle CBD to the angle BCE.

Construction. In BD take any point F; and from $A E$ the greater cut off $A G$ equal to $A F$ the less. i. 3. Join FC, GB.
P'roof. Then in the triangles FAC, GAB, Because $\left\{\begin{array}{c}\text { FA is equal to } G A, \\ \text { and } A C \text { is equal to } A B, \\ \text { also the contained angle at } A \text { is common to the } \\ \text { two triangles; }\end{array}\right.$ therefore the triangle $F A C$ is equal to the triangle GAB in all respects;
I. 4.
that is, the base FC is equal to the base GB, and the angle $A C F$ is equal to the angle $A B G$, also the angle AFC is equal to the angle AGB.
Agrin, because the whole A_{r} is equal to the whole $A G$, of which the parts $A B, A C$ are equal, IIyp. therefore the remainder $B F$ is equal to the remainder CG.

Then in the two triangles BFC, CGB,
Because $\left\{\begin{array}{r}\text { BF is equal to CG, } \\ \text { and } F C \text { is equal to } G B, \\ \text { also the contained angle BFC } \\ \text { contained angle } C G B,\end{array}\right.$
therefore the triangles $\mathrm{BFC}, \mathrm{CGB}$ are equal in all respects;
so that the angle $F B C$ is equal to the angle GCB, and the angle BCF to the angle CBG.

1. 4.

Now it has been shewn that the whole angle ABG is equal to the whole angle ACF,
and that parts of these, namely the angles CBG, BCF, are also equal ;
therefore the remaining angle $A B C$ is equal to the remaining angle ACB;
and these are the angles at the base of the triangle ASC.
Also it has been shewn that the angle FBC is equal to the angle GCB;
and these are the angles on the other side of the base. Q.E.D.
Corollary. Hence if a triangle is equilateral it is also equiangular.

r.XERCISES.

1. $A B$ is a given st aight line and C a given point outside it : shew how to find any points in $A B$ such that their distance from C shall be eyull to a given length L. Can sueh points always be found ?
2. If the vertex C and one extremity A of the base of an isosceles triangle are given, find the other extremity B, supposing it to lie on a given straight line $P Q$.
3. Describe a rhombus having given two opposite angular points A and C, and the length of each side.
4. AMNB is a straight tive ; on $A B$ deserit - triangle $A B C$ such that the sidr \because shall be equal to $A N$ and the s. e $B C$ to $M B$.
5. In Prop. 2 the point A may be joined to cither extremity of BC. Draw the figure and prove the proposition in the ease when A is joined
to C.

II. L.

The following proof is sometimes given as a substitute for the first part of lroposition 5 :

Proposition 5. Alternative Proof.

Let $A B C$ be an isosceles triangle, having $A B$ equal to $P . C$: then shall the angle $A B C$ be equal to the angle $A C B$.
Suppose the triangle $A B C$ to be takeu 11 , turned over and laid down agqin in the position $A^{\prime} B^{\prime} C^{\prime}$, where $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, B^{\prime} C^{\prime}$ represent the new positions of $A B, A C, B C$.
'Then $A^{\prime} B^{\prime}$ is equal to $A^{\prime} C^{\prime}$; and $A^{\prime} B^{\prime}$ is $A B$ in its new position, therefore $A B$ is equal to $A^{\prime} C^{\prime}$;
in the same way $A C$ is equal to $A^{\prime} B^{\prime}$:
and the ineluded angle $B A C$ is equal to the included angle $C^{\prime} A^{\prime} B^{\prime}$, for they are the same angle in different positions;
therefore the triangle $A B C$ is equal to the triangle $A^{\prime} C^{\prime} B^{\prime}$ in all respects : so that the angle $A B C$ is equal to the augle $A^{\prime} C^{\prime} B^{\prime}$.
I. 4 .

But the angle $A^{\prime} C^{\prime} B^{\prime}$ is the angle $A C B i_{1}$ its new position ; therefore the angle $A B C$ is equal to the angle $A C B$.
Q.E.D.

ExERCISES.

Chiffly on Phoposirions 4 and 5.

1. Two eircles have the same centre O; $O A D$ and $O B E$ are straight lines drawn to cut the smaller cirele in A and B and the larger circle in D and E : prove that
(i) $\mathrm{AD}=\mathrm{BE}$.
(ii) $\mathrm{DB}=\mathrm{EA}$.
(iii) The angle $D A B$ is equal to the angle EBA.
(iv) The angle $O D B$ is equal to the angle $O E A$.
2. $A B C D$ is a square, and L, M, and N are the middle points of $A B, B C$, and $C D:$ prove that
(i) $\mathrm{LM}=\mathrm{MN}$.
(ii) $A M=D M$.
(iii) $A N=A M$.
(iv) $\mathrm{BN}=\mathrm{DM}$.
[Draw a separate figure in each case].
3. O is the centre of a circle and $O A, O B$ are batis M.videa the angle $A O B$ into two equal parts and cuts the line $A B \quad M$: provi that $A M=B M$.
4. $A B C, D B C$ are two isoseeles triangles described on the samo hase $B C$ lint on opposite sides of it : prove that the angle $A B D$ is eypal to the angle $A C D$.
5. ABC, DBC are two isosceles triangles deseribed on the same mase $B C$, hat on opposite sides of it , move that if $A D$ be joined, eacls of the angles $B A C, B D C$ will be divided into two equal parts.
6. PQR, SQR are two isosceles triangles deseribed on the same hase QR, ant on the same side of it : shew that tha angle PQS is "yual to the angle PRS, and that the line PS divides the angle QPR into two equal parts.
7. If in the figne of Expreise or the lime $A D$ meets $B C$ in E, prove that $B E=E C$.
8. $A B C D$ is a rimmbis and $A C$ is joind : prove that the anglo DAB is equal to the angle DCB.
?. $A B C D$ is a quakrilatom having the opposite sieles $B C, A D$ Gymal, and also the angle BCD eqnal to the angle $A D C$: prove that $B D$ is cunnal to $A C$.
9. $A B, A C$ are the equal sides of an isoscoles triangle; L, M, N are the middle points of $A B, B C$, and $C A$ respuetively: prove that $L M=M N$.

Prove also that the angle ALM is equal to the angle ANM.
Definition. Each of two Theorems is said to be the Converse of the other, when the hypothesis of ath is the conchnsion of the other.

It will be seen, on comparing the hypotheses and conelusions of Props. 5 and 6, that each proposition is the converse of the other.

Note. Proposition 6 furnishes the first instance of an indirect method of proof, frequently used by Enclid. It consists in shewing that an absurdity must result from supposing the theorem to be otherwise than true. This form of demonstration is known as the Reductio ad Absurdum, aud is most conmonly employed in establish. ing the converse of some foregoing theorem.

It must not be supposed that the converse of a true theorem is itselt neeessarily true : for instance, it will be scen from Prop. 8, Cor. that if two trinugles have their sides equal, each to each, then their angles will also be equal, each to each: hut it may easily be shewn by means of a figure that the converse of this theorem is not necessarily
true.

Prorosition 6. Theorma.
If teoo angles of' a triamyle be equal to me arrother, then the sides also which subtend, or are opposito to, the equal ungles, shall be equal to one another.

Let $A B C$ be a triangle, having the angle $A B C$ equal to the angle $A C B$:
then shall the side $A C$ be equal to the side $A B$.
C'onstruction. For if $A C$ be not equal to $A B$, one of them must be greater than the other.

If possible, let $A B$ be the greater; and from it cut off $B D$ equal to $A C$.
I. 3. Join DC.
Prool: Then in the triangles DBC: ACB , $D B$ is equal to $A C$,
Because $\left\{\begin{array}{l}\text { and } B C \text { is common to both, }\end{array}\right.$ alse he contained angle DBC is equal to the cui.ained angle $A C B$;

Hyp). therefore the triangle DBC is equal in area to the triangle ACB,
the part equal to the whole; which is absurd. A.x. 9.
Therefore $A B$ is not unequal to $A C$;
that is, $A B$ is equal to $A C$.
Q.E. D.

Coroliary. Hence if a triangle is equiengular it is ulso equilateral.

Proposition 7. Then em.

other', then the equal
equal to
$A B$.
I. 3.

Constr:
al to the III. e triangle I. 4 . d. Ax. 9 .
Q.E.I. thar it is
(1)1. The statue base, camel one the stere sites of it, there center be tue Erin Aha hreimy their sides which are terni2utele we one extremity of the base equal to one cumother, and.
 ritual to omer another.

If it be possible, on the same base $A B$, and on the sames site of it, let there be two thimbles $A C B, A D B$, having their sides $A C, A D$, which we terminated at A, equal to one another, and likewise their sides BC, BD, which are ternimated at B, equal to one another.

Case I. When the vertex of each triangle is without the other triangle.

Construction.
Proof: Then in the triangle ACD, because $A C$ is equal to $A D$, I'us'. 1. $11 / 110$. therefore the angle $A C D$ is equal to the angle $A D C$. I. 5 . But the whole angle $A C D$ is greater than its part, the angle $B C D$, therefore also the angle ADC is greater than the angle BCD; still more then is the angle BDC greater than the angle: BCD.

$$
\begin{aligned}
& \text { Again, in the triangle } B C D \text {, } \\
& \text { because } B C \text { is equal to } B D \text {, }
\end{aligned}
$$ therefore the angle BDC is equal to the angle BCD: I. 5 .

but it was shewn but it was shewn to be greater; which is impossible.

Cise 11. When one of the rertices, as D, is withiu the othere trimegle $A C B$.

Constructione. As before, join CD; and prodnce $A C, A D$ to E and F. Post. l. Then in the triargle $A C D$, because $A C$ is equal to $A D, I I!/$. therefore the angles ECD, FDC, on the other side of the base, are equal to one another.

1. ${ }^{\text {B }}$.

But the anme ECD is greater than its part, the angle BCD; therefore the augle FDC is also grvater that the angle BCD :
still more then is the angle BDC greater that the aurle $B C D$.
S.ginin, in the triangle BCD,
because BC is equal to BD,
therefore the angle $B D C$ is equal to the angle $B C D:$ I. . . but it has bern shewn to be greater; which is impossible.

The ease in which the vertex of one triangle is on a side of the other needs no demonstration.

Therefore $A C$ camot be equal to $A D$, and at the same lime, BC equal to BD.
Q.E.D.

Noti:. The sides $A C, A D$ are called conterminous sides; similarly the sides $B C, B D$ are conterminous.

Proposinion is. Theorem.

 side's of the other, each to rech, rated hete likeneise their buses "qual, then the angle whirle is rontained by the two sides of" the one sherll le rquerl. to the remple mbichle is contained big the tre sides of the other.

D, is within

T'ost. 1. Post. \because. to AD, $I_{!}!$. side of the I. $\overline{\text { I. }}$ mgle $B C D$; the angle
the angle

$$
\|_{1 / 1}
$$

3CD: I. 5. npossible. rle is on :
the stemes Q.E.D. es ; similarly their lutases co silles of atrincel by

Let $A B C$, DEF be two triangles, having the two sides $B A, A C$ equal to the two sicles $E D, D F$, each to each, namely $B A$ to $E D$, and $A C$ to $D F$, and also the base $B C$ equal to the hase EF:
then shall the angle BAC be equal to the angle EDF.
Proof: For if the triangle $A B C$ be applicel to the triangle $D E F$, so that the point B may be on E, and the straight line $B C$ along $E F$;
then because $B C$ is equal to $E F$, $H_{y 1}$. therefore the point C must coincide with the point F.

Then, BC coinciding with EF, it follows that $B A$ and $A C$ must coincide with ED and $D F$: for if not, they would have a different situation, as EG, GF: then, on the same base and on the same side of it there: would be two triangles hawing their comerminous sides equal.

But this is impossible.

1. $\overline{1}$.

Therefore the sides BA, AC coincide with the sides ED, DF. That is, the angle BAC coincides with the angle EDF, and is therefore equal to it.

Nore. In this proposition the three sides of one triangle are given equal respectively to the three sides of the other; and from this it is shewn that the two triangles may be made to coine ide with ane anothir.

Hence we are led to the following inportant Corollary.
Conoblans. If in troo triangles the three sitas of the
 then the tivamles reve equal in all reapeets.

The following proof of Prop. 8 is wortly of attention as it is independent of Prop. 7, which frequently presents difficulty to a beginner.

> Proposition S. Alfermative Proof.

Let $A B C$ and $D E F$ be two triangles, which have the sides $B A, A C$ equal respectively to the sides $E D, D F$, and the base $B C$ equal to the
base $E F$:
then shall the angle BAC be equal to the angle EDF
For apply the triangle ABC to the triangle DEF, so that B may fall on E, and $B C$ along $E F$, and so that the point A may be on the side of $E F$ remote from D,
then \approx must fall on F, since $B C$ is equal to $E F$.
Let $A^{\prime} E F$ be the new position of the triangle $A B C$. If neither $D F, F A^{\prime}$ nor $D E, E A^{\prime}$ are in one straight line, join DA'.
Case I. When DA' intersects EF.
Then because ED is equal to $E A^{\prime}$, therefore the angle EDA' is equal to the angle EA'D.

Again because FD is equal to $F A^{\prime}$,
therefore the angle FDA' is equal to the angle FA D.
I. 5.

Hence the whole angle EDF is equal to the whole angle EA'F; that is, the angle EDF is equal to the angle BAC.

Two cases remain which may be dealt with in a similar manner: namely,

Case II. When DA' meets EF produced.
Cask III. When one pair of sides, as DF, FA', are in one straiglit line.

Proposition 9. Problem.

To bisect a fiven angle, that is, to divide it into two equal purts.

Let BAC be the given ingle:
it is required to bisect it.
Construction. In AB take any point D; and from $A C$ cut off $A E$ equal to $A D$. 1. 3. Join DE; and on $D E$, on the side remote from A, describe an equilateral triangle DEF.
I. 1.

> Join AF.

Then shall the straight line $A F$ bisect the angle BAC.
Proof. For in the two triangles DAF, EAF,
Because $\left\{\begin{array}{c}\text { DA is equal to EA, } \\ \text { and AF is common to both; } \\ \text { and the third side DF is equal to the third side } \\ \text { EF; }\end{array}\right.$

$$
\text { Def. } 19 .
$$

Def. 19.
therefore the angle DAF is equal to the angle EAF, I. 8 . Therefore the given angle BAC is bisected by the straight
Q.E.F.

ENERCISES.

1. If in the above figure the equilateral triangle DFE were described on the same side of DE as A, what different eases would arise? And under what cireumstanees would the construction fail?
2. In the same figure, shew that AF also bisects the angle DFE.
3. Divide an angle into four equal parts.

Proposition 10. Problem.

To bisect ", steen finite straight line, that is, to divide it into taco equal jurists.

Let $A B$ be the given straight line: it is required to divide it into two equal parts.
Constr: On AB describe an equilateral triangle $A B C$, I. 1. and bisect the angle $A C B$ by the straight line $C D$, meeting $A B$ at D.

Then shall $A B$ be lisereterl at the point D.
Proof: For in the triangles $\mathrm{ACD}, \mathrm{BCD}$,
because $\left\{\begin{array}{r}A C \text { is equal to } B C, \\ \text { and } C D \text { is common to both: }\end{array}\right.$
I) oft. 19. also the contained angle $A C D$ is equal to the contanned angle BCD;
'Therefore the triangles are equal in all respects:
so that the base $A D$ is equal to the base BD. 1. 4. Therefore the straight line $A B$ is bisected at the point D.
Q. E. F.

RAERCASKK.

1. Shew that the straight line which bisects the vertical angle of an isosceles triangle, also bisects the base.
2. On a given base describe an isosceles triangle such that the sum of its equal sides may be equal to a given straight line.

Proposition 11. Problem.
To dreth, astraight line at right angles to at aivere sticeight line, from et gieen proint in the steme.

Let $A B$ be the given straight line, and C the given point in it.

It is required to daw from the point C a straight line at right angles to $A B$.
Construction. In AC take any point D,
and from CB cut off $C E$ equal to $C D$.
On DE describe the equilateral triangle DFE. I. 1.
Join CF.

Then shall the straight line CF be at right angles to $A B$.
Proof: For in the triangles DCF, ECF,
Because $\int \begin{aligned} & \text { DC is equal to EC, } \\ & \text { imel } C F \text { is common to beth; }\end{aligned} \quad$ C'onsert.
and the third side DF is equal to the third side
EF:
Therefore the angle DCF is equal to the angle ECF: I. S. and these are arljacent angles.
But when a straight line, standing on another straight line, makes the adjacent angles equal to one another, each of these angles iss called at right angle;
bef: 7.
therefore each of the angles DCF, ECF is a right angle.
Therefore CF is at right angles to AB,
and has been drawn from a point C in it. q.e.e.

EXERCTSE.

In the figure of the above proposition, shew that any point in FC, or FC produced, is cquidistant from D and E.

Proposition 12. Problem.

To draw a straight line perpendicular to a given straight line of unlimited lenyth, from a given point witrout it.

Let $A B$ be the given straght line, which may be produced in either direction, and let \mathbf{C} be the given point without it.

It is reguired to draw from the point C a straight line perpendicular to $A B$.

Construction. On the side of $A B$ remote from C take any point D; and from centre C, with radius $C D$, describe the circle $F D G$, meeting $A B$ at F and G.

$$
\begin{aligned}
& \text { Bisect FG at H; } \\
& \text { and join CH. }
\end{aligned}
$$

Then shall the straight line $C H$ be perpendicular to $A B$. J oin CF and CG.
Proof. Then in the triangles FHC, GHC, CG, being radii of the circle FDG; third side
Def. 11. therefore the angle CHF is equal to the angle CHG; I. 8 . and these are adjacent angles.
But when a straight line, standing on another straight line, makes the adjacent angles equal to one another, each of these angles is called a right angle, and the straight line which stands on the other is called a perpendicular to it.

Therefore $C H$ is a perpendicular drawn to the given straight line $A B$ from the given point C without it. Q.E.F.

Note. The given staight line AB must be of unlimited length, that is, it must be capable of production to an indefinite length in either direction, to ensure its being intersected in two points by the circle FDG.

FXERCISES ON PROPOSITIONS 1 TO 12.

1. Shew that the straight line which joins the vertex of an isosceles triangle to the middle point of the basc is perpendicular to the base.
2. Shew that the straight lines which join the extremities of the base of an isosceles triangle to the middle points of the opposite sides, are equal to one another.
3. Two given points in the base of an isosceles triangle are equidistant from the extremities of the base: shew that they are also equidistant from the vertex.
4. If the opposite sides of a quadrilateral are equal, shew that the opposite angles are also equal.
5. Any two isosceles triangles $X A B, Y A B$ stand on the same base $A B$: shew that the angle $X A Y$ is equal to the angle $X B Y$; and that the angle $A X Y$ is equal to the angle $B X Y$.
6. Shew that the opposite angles of a rhombus are bisected by the diagonal which joins them.
7. Shew that the straight lines which bisect the base angles of an isosceles triangle form with the base a triangle which is also isosceles.
8. $A B C$ is an isosceles triangle having $A B$ equal to $A C$; and the angles at B and C are bisected by straight lines which meet at O : shew that OA bisects the angle BAC.
9. Shew that the triangle formed by joining the middle points of the sides of an equilateral triangle is also equilateral.
10. The equal sides $B A, C A$ of an isosceles triangle BAC are produced beyond the vertex A to the points E and F, so that $A E$ is equal to $A F$; and $F B, E C$ are joined: shew that $F B$ is equal to $E C$.
11. Shew that the diagonals of a rhombus bisect one another at right angles.
12. In the equal sides $A B, A C$ of an isosceles triangle $A B C$ two points X and Y are taken, so that $A X$ is equal to $A Y$; and $C X$ and $B Y$ are drawn intersecting in O : shew that
(i) the triangle BOC is isosceles;
(ii) AO bisects the vertical angle BAC;
(iii) $A O$, if produced, bisects $B C$ at right angles.
13. Describe an isosceles triangle, having given the base and the length of the perpendicular drawn from the vertex to the base.
14. In a given straight line find a point that is equidistant from two given points,

In what case is this impossible?

Proposition 18. Theorem.
If owe straight line stumb "pon another stroight lime, then the arljucent amyles shall be cither two riaht ranalos, on toypther equal to mo right angles.

Let the straight line $A B$ stand upon the straight line $D C$: then the aljacent angles DBA, ABC shall be either two right amgles, or together equal to two light angles.

CAsE 1. For if the angle DEA is equal to the ansle ABC, r:wh of them is a right angle.

Dif: \%
(AsE TV. Rut if the megle DEA is moternal to the ilule $A B C$,
from B dhaw BE at right :Hyles to CD.
I. 11.
rroof. Now the mogle DBA is matle up of the two angles DBE, EEA;
to each of these equals arld the angle $A B C$;
then the two angles $D B A, A B C$ are together equal to thr
three angles DBE, EBA, ABC. Ax. 2 .
Again, the angle EBC is made up of the two angles EBA, ABC ;
to each of these equals add the angle DBE.
Then the two angles DBE, EBC are together equal to the three angles $D B E, E B A, A B C$. $A x .2$.
But the two angles DBA, $A B C$ hase been shewn to be equal to the same three angles; therefore the angles DBA, $A B C$ are together equal to the angles DBE, EBC.
But the angles DBE, EBC are iwo right angles; Constr. therefore the angles DBA, $A B C$ are together equal to two right angles. Q. F. D,

befinitions.

(i) The complement of ant ande angle is its difirt firom a right angle, that is, the ingle ly which it falls short of a right angle.

Thus two atse are complementary, when their sum is at right angle.
(ii) The supplement of an angle is its dofere firm two pight, angles, that is, the angle ly which it falls shon't of two right angles.

Thus two angles are supplementary, when their sum is $t_{w o}$ right angles.

Corollars. Abgles which are complementary on sumplememtary to thr swime angle, reper equel to ome remotlier.

Wexthcises.

1. If the two exterior angles formed by producing a side of a triangle both ways are equal, shew that the triangle is isosceles.
2. The bisectors of the adjacent angles which one straight line makes with another contain a right angle.

Note. In the adjoining figure $A O B$ is a given angle; and one of its arms AO is produced to C : the adincont angles $\mathrm{AOB}, \mathrm{BOC}$ are bisected by $\mathrm{O}, ~ Y$.

Then $O X$ and $O Y$ are called respect. ively the internal and external bisectors of the angle AOB.

Hence Exercise 2 may be thus enunciated:
The internal and external bisectors of an angle are at right angles to one another.
3. Shew that the angles $A O X$ and $C O Y$ are complementary.
4. Shew that the angles $B O X$ and $C O X$ are supplenentary; and also that the angles AOY and BOY are supplementary.

Propostrion 14. Theorem.

If; at a point in a straight lime, two other struight lines, one opposite sides of it, malie the aljucent romples together. equent to two right armles, then these two straight limes shall, be in one amel the same straight live.

At the point B in the straight line $A B$, let the two straight lines $B C, B D$, on the opposite sides of $A B$, make the adjacent angles $A B C, A B D$ together equal to two righit angles:
then BD shall lee in the same straight line with BC. Proof. For if BD be not in the same straight line with BC, if possible, let $B E$ be in the same straight line with $B C$.

Then hecause AB meets the straight line CBE, therefore the ardjacent angles $C B A, A B E$ are together equal to two right angles. liut the angles CBA, ABD are also together equal to two light angles. Therefore the angles CBA, ABE are torether II!p. angles CBA, ABD.
From each of these equils $A x: 11$. then the remaining equals take the common angle CBA;
$A B D$; the part ABD; the part equ: to the whole; which is impossible. Therefore BE is not in the same straight line with BC.
And in the same way it may be shewn that no other line but $B D$ can be in the same straight line with $B C$.

Therefore BD is in the same straight line with BC. Q.E.D.

EXERCISE.

$A B C D$ is a rhombus; and the diagonal $A C$ is isecied at O. If O is joined to the angular points B and D; shew that $O B$ and $O D$ are in one straight line.
obs. When two straight lines intersect at a point, four angles are formed; and any two of these angles which are not erliacent, are said to he vertically opposite to one another.

Proposition 15. Theorem.

If turco straight lines intersect one another, then the vertically "iposite angles shall be equal.

Let the two straight lines $A B, C D$ cut one another at the point E :
then shall the angle AEC be equal to the angle DEB, and the angle CEB to the angle AED.
Proof: Because AE makes with CD the adjacent angles CAA, ABD,
therefore these angles ane together equal to two right angles. Again, because DE makes with $A B$ the adjacent angles AED,
DEB, DEB, therefore these also are together equal to two right angles. Therefore the angles CEA, AED are together equal to the angles AED, DEB.
From each of these equals take the common angle AED; then the remaining angle CEA is equal to the remaining angle DEB.

In a similar way it may be shewn that the angle CEB is equal to the angle AED.
Q.E.D.

Corollary 1. From this it is menifest that, if two straight lines cut one another, the angles which they make at the point where they cut, are together equal to four right angles.

Corollary 2. Consequently, when coy member of straight lines meet at a point, the sum of the angles mule by consecutive lines is equal to four right angles.
II. L.

Prombithos lic Theores.

Tat $A B C$ be a triangle, and lot one side $B C$ he proflueed 1o D : then shall the exterior angle $A C D$ le groatore than rither of the interion opposite ansles CBA, BAC.

Cimstruction. Bisect $A C$ at E :
I. 10.

Trin BE ; and produro it to F, making EF armal to BE. i. \because. Join FC.
I'ront: IThan in the triangles AEB, CEF,

$$
A E \text { is equal to } C E \text {, }
$$ $\left\{\begin{array}{l}A E \text { is equal to } C E, \\ \text { and } E B \text { to } E F \text {; }\end{array}\right.$

Conest:
Consti.
liecanse rically also the angle $A E B$ is equal to the verticaly
therefore the triangle AEB is eqmal to the triangle CEF in all iespects:

But tho :ngle ECD is spmore than its part, the angle ECF ;
thrmeno thr amgle ECD is suratm than thr anyle BAE;
that is, the ancho ACD is surater than the angle BAC.
In a similan way, if BC ho bisected, amd the side AC produced to G, it may he shown that the angle $B C G$ is greater than the imgle ABC.

But the angle BCG is equal to the angle ACD: I. 15. therefore also the angle $A C D$ is greater than the angle $A B C$.
Q. E. D.

Proposithos 1i. Theorem.
 right aingles.

Set $A B C$ be a triangle: then shall any two of its angles, as
$A B C, A C B$, be together less than two right angles.
romstruction. Produce the side BC to D.
l'roof: Then hecause $A C D$ is an exterion angle of the triangle ABC, Aherefore it is rereater tham the interion opposito ingle ABC.

> To cach of these add the angle ACB:
then the angles $A C D, A C B$ are together greater than the imgles $A B C, A C B$.

C'onsti:
Constr.
e vertically
I. 1 B .
igle CEF in
I. 4.

ECF.
angle ECF:
whe $B A E$;
BAC.
te side $A C$
te BCG is
D: 1. 15
ungle $A B C$.
Q. E. D.
two right angles. Therefore the anglis $A B C, A C B$ ine I. 13 . right ingles.
Similarly it may be shewn the the angles BAC, ACB, as also the angles $C A B, A B C$, are tos we less than two right. Q.E. 1 .

Note. It follt from this Proposition that eeroy triangle must hare at leat 'uchir' ambles: for it one angle is obtuse, or a light angle, each it the other angles must be less than a right angle.

EXI RCISES.

1 Enunciate this Proposition so as to shew that it is the converse of A iom 1\%.
2. If any side of a triangle is produced both ways, the exterior angles so formed are together greater than two vight antyles.
3. Shew how a proof of Proposition 17 may be obtained by joining each vertex in turn to any point in tho opposite side.

Proposition 18. Theorem.

If one side of a triangle be greater than another, then the angle opposite to the greater side shall be greater than the angle opposite to the less.

Let $A B C$ be a triangle, in which the side $A C$ is greater than the side $A B$:
then shall the angle $A B C$ be greater than the angle $A C B$. Construction. From AC, the greater, cut off a part AD equal to $A B$.

Join BD.

Proof. Then in the triangle ABD, because $A B$ is equal to $A D$,
therefore the angle ABD is equal to the angle ADB. I. 5 .
But the exterior angle $A D B$ of the triangle $B D C$ is greater than the interior opposite angle DCB, that is, greater than the angle ACB. I. 16. Therefore also the angle $A B D$ is greater than the angle $A C B$; still more then is the angle ABC greater than the angle ACB. Q.E.D.

Euclid enunciated Proposition 18 as follows:
The greater side of every triangle has the greater angle opposite to it.
[This form of enunciation is found to be a common source of difficulty with beginners, who fail to distinguish what is assumed in it and
what is to be proved.]

Proposition 19. 'Theorem.

If one angle of a triangle bre greater than another, then the side opposite to the greater anyle shall be yreater than the side opposite to the less.

Let $A B C$ be a triangle in which the angle $A B C$ is greater than the angle $A C B$:
then shall the side $A C$ be greater than the side $A B$.
Proof: For if $A C$ be not greater than $A B$,
it must be either equal to, or less than AB.
But $A C$ is not equal to $A B$, for then the angle $A B C$ would be equal to the angle $A C B$; 1. \%. but it is not.
Neither is $A C$ less than $A B$; for then the angle ABC would be less than the angle ACB ; I. 18 .
but it is not:
Therefore AC is neither equal to, nor less than AB.
That is, AC is greater than AB. Q.E.D.
Notr. The mode of demonstration used in this Proposition is known as the Proof by Exhaustion. It is applicable to cases in which one of certain mutually exclusive suppositions must necessarily be true; and it consists in shewing the falsity of each of these suppositions in turn with one exception: hence the truth of the remaining supposition is inferred.

Enclid enunciated Proposition 19 as follows:
The greater angle of every triangle is subtenated by the yreater side, or, has the greater side opmosite to it.
[For Exercises see page 38.]

Proposition 20 . Theorem.
Any two sides of "t triangle are together greater then the thirel side.

Let ABC le a triangle:
then shall any two of its sides be together greater than the third side:
nianely, BA, AC, shall be greater than CB;
$A C, C B$ greater than BA ;
and CB, BA greater than AC.
Construction. Produce BA to the point D, making AD equal to AC.
Join DC.

Iroay: Then in the triangle ADC, hecause $A D$ is equal to $A C$,
therefore the angle $A C D$ is equal to the angle ADC. I. $\%$.
But the angle BCD is greater than the angle ACD ; A.e: 9 . therefore also the angle $B C D$ is greater than the angle $A D C$, that is, tham the angle BDC.
And in the triangle BCD,
because the angle $B C D$ is greater than the angle $B D C, P r$. therefore the side BD is greater than the side CB. I. 19.

But $B A$ and $A C$ are together equal to $B D$;
therefore $B A$ and $A C$ are together greater than $C B$.
Similarly it may be shewn
that $A C, C B$ are together greater than $B A$;
and $C B, B A$ are together greater than $A C$, \&. F. D.
[For Lxurcises sec page 38.\}

Proposition 21. Theorem.

If from the ends of a side of a triangle, there be drawn tuo straight lines to a point within the tricumbe, then these straight lines shall be less than the other turo sides of the triangle, but shall contain a greater angle.

Let $A B C$ be a triangle, and from B, C, the ends of the side $B C$, let the two straight lines $B D, C D$ be dhawn to a point D within the triangle :
then (i) $B D$ and DC shall be together less than BA and $A C$;
(ii) the angle $B D C$ shall be greater than the angle $B A C$. Construction. Produce BD to meet AC in E.
I'roof: (i) In the triangle BAE, the two sides BA, AE are together greater than the third side BE:
I. 20.
to each of these add EC ;
then BA, AC are together greater than BE, EC. Ax. t. Igain, in the triangle DEC, the two sides DE, EC are together greater than DC:
I. 20.
to each of these add BD ;
then $B E, E C$ are together greater tham $B D, D C$.
But it has been shewn that BA, AC are together greater chall BE, EC:
still more then are $B A, A C$ greater than $B D, D C$.
(ii) Again, the exterior angle BDC of the triangle DEC is greater than the interior opposite angle DEC ;
I. 16. and the exterior angle DEC of the triangle BAE is greater than the interior opposite angle BAE, that is, than the angle BAC ; still more then is the angle BDC sreater than the angle BAC. Q.E.D.

EXERCISES

on Phopositions 18 and 19.

1. The hypotenuse is the greatest side of a right-angled triangle.
2. If two angles of a triangle are equal to one another, the sides also, which subtend the equal angles, are equal to one another. Prop. 6. Prove this indirectly by using the result of Prop. 18.
3. $B C$, the base of an isosceles triangle $A B C$, is produced to any point D; shew that $A D$ is greater than either of the equal sides.
4. If in a quadrilateral the greatest and least sides are opposite to one another, then each of the angles adjacent to the least side is greater than its opposite angle.
5. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn through the vertex A and terminated by the base $B C$, is less than $A B$.
6. $A B C$ is a triangle, in which $O B, O C$ biscet the angles $A B C$, ACB respectively: shew that, if $A B$ is greater than $A C$, then $O B$ is greater than OC.
on Proposition 20.
7. The difference of any two sides of a triangle is less than the third side.
8. In a quadrilateral, if two opposite sides which are not parallel are produced to meet one another; shew that the perimeter of the greater of the two triangles so formed is greater than the perimeter of the quadrilateral.
9. The sum of the distances of any point from the thrce angular points of a triangle is greater than half its perimeter.
10. The perimeter of a quadrilateral is greater than the sum of its diagonals.
11. Obtain a proof of Proposition 20 by bisceting an angle by a straight line which mects the opposite side.
on Proposition 21.
12. In Proposition 21 shew that the angle BDC is greater than the angle BAC by joining AD, and producing it towards the base.
13. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.

Propostition 22. Problem.
To clescribe a triangle having its sides equal to three
gled triangle.
ther, the sides ther. Prop. 6.
oduced to any al sides.
re opposite to least side is
$A B$, shew that inated by the angles $A B C$, , then $O B$ is
is less than
not parallel meter of the perimeter of
hree angular
ne sum of its a angle by a
rreater than he base. ciangle from e.
given struight lines, any two of which are together greater. that the third.

Let A, B, C be the three given straight lines, of which any two are together greater than the third.

It is required to describe a triangle of which the sides shall be equal to A, B, C.
Construction. Take a straight line DE terminated at the point D, but unlimited towards E.
Make DF equal to A, $F G$ equal to B, and $G H$ equal to C. I. 3 .
From centre F, with latius FD, describe the circle DLK. From centre G with radius GH, describe the circle MHK, eutting the former circle at K.

> Join FK, GK.
'Inen shall the triangle KFG have its sides equal to the three straight lines A, B, C.

Proof. Because F is the centre of the eirele DLK, therefore $F K$ is equal to $F D$:

Def. 11. but $F D$ is equal to A; Constr. therefore also $F K$ is equal to $A . \quad A x .1$.
Agrin, because G is the centre of the circle MHK, therefore GK is equal to GH : Jlef. 11.
but GH is equal to C ; C'onstr:
therefore also GK is equal to C. $\quad A x .1$.
And $F G$ is equal to B. Consti:
Therefore the triangle KFG has its sides KF, FG, GK equal respectively to the three given lines A, B, C. \quad Q.E.F.

EXERCISE.

On a given base describe a triangle, whose remaining sides shall be equal to two given straight lines. Point out how the construction fails, if any one of the three given lines is greater than the sum of the other two.

Proposition 23. Problem.

It a given point in a gicen straight line, to make an aryle equal to a given enyle.

Let AB be the given straight line, and A the given point in it; and let DCE be the given angle.

It is required to draw from A a straight line making with $A B$ angle equal to the given angle DCE.

C'onstruction. In CD, CE take any points D and E; and join DE.
From $A B$ cut off $A F$ equal to $C D$. I. 3. On AF describe the triangle FAG, laving the remaining sides $A G, G F$ equal respectively to CE, ED.
Then shall the angle FAG ?e equal to the angle DCE.
I'roufi. I in the triangles FAG, DCE, Jecause $\left\{\begin{array}{l}\text { FA is equal to } D C, \\ \text { and } A G \text { is equal to } C E ;\end{array}\right.$ Coustr: Constr. (and the base FG is equal to the base DE: Constr. therefore the amgle FAG is equal to the angle DCE. I. S.
That is, $A G$ makes with $A B$, at the given point A, an angle equal to the given angle DCE.
Q.E.F.

Proposition 24.

If tho triangles hare two sides of the one equal to two sides of the other, euch to each, but the anyle coutmined, by the two sides of one greater theur the rengle comtained by the corresponding sides of the other; thene the lases of thirt which has the greater angle shall be greater then the base of the other.

Let $A B C$, DEF le two triamers, in which the two sides $B A, A C$ alm equal to the two sides ED, DF, each to each, hut the angle BAC greater than the angle EDF:
then shall the base BC be greater than the base EF.

* Of the two sides DE, DF, let DE le that which is mot greater than DF.

Construction. At the point D, in the straight line ED, and on the same side of it as DF, make the angle EDG "gual to the angle BAC.

$$
\text { Make DG equal to DF oi AC; } \quad \text { I. } 23 .
$$ and join EG, GF.

Proof. Then in the triangles BAC, EDG, $B A$ is equal to $E D$, and $A C$ is equal to DG, Consti.
$1 / y /$. and $A C$ is equal to DG, Conste.
Because
. . O , EDG,

B BA is also the contained angle BAC is equal to the
contained angle EDG; Consti:

Therefore tle triangle BAC is equal to the triangle EDG in all respects :
I. 4.
so that the base BC is equat to the hase EG.

[^0]

Again, in the triangle FDG, because $D G$ is equal to $D F$,
therefore the angle DFG is equal to the angle DGF, 1.5. but the angle DGF is greater than the angle EGF; therefore also the angle DFG is greater than the angle EGF; still more then is the angle EFG greater than the angle EGF.

And in the triangle EFG,
hecause the angle ETG is greater than the angle EGF, therefore the side EG is greater than the side EF ; I. 19.
but EG was shewn to be equal to $B C$;
therefore BC is greater than EF.
Q.E.1).

* This condition was inserted by Simson to ensure that, in the ecmplete construction, the point F shonld fall below EG. Without this condition it would be necessary to consider three cases: for F might fall above, or upon, or below $E \mathbb{G}$; and each figure wonld require separate proof.

We are however scarcely at liberty to employ Simson's condition without proving that it fulfils the object for which it was introduced.

This may be done as follows:
Let EG, DF, produced if necessary, intersect at K.
Then, since $D E$ is not greater than $D F$, therefore that is, since $D E$ is not greater than DG, But the exterior angle DKG is greater than the angle DEK.

1. 18.

therefore the angle DKG is greater than the angle DGK. Hence DG is greater than DK. But DG is equal to DF ; therefore DF is greater than DK. So that the point F must fall below EG.

Or the following method may be adopted.
Proposition 2.4. [Alternative Proor.]
In the triangles $A B C, D E F$, let BA be equal to ED, and $A C$ equal to $D F$,
but let the angle BAC be greater than the angle EDF:
then shall the base $B C$ be greater than the "ase EF.
For apply the triangle DEF to the triangle $A B C$, so that D may fall on A, and $D E$ along $A B$:

then because $D E$ is equal to $A B$,

therefore E must fall on B.
And because the angle EDF is less than the angle BAC, therefore $D F$ must fall between $A B$ and $A C$.

Let DF occupy the position AG.

Case I. If G falls on BC :
Then G must be between B and C : therefore $B C$ is greater than $B G$. But $B G$ is equal to $E F$: therefore $B C$ is greater than $E F$.

Case II. If G does not fall on BC.
Bisect the angle CAG by the straight line AK which meet $B C$ in K. Join GK.
Then in the triangles GAK, CAK, Because $\left\{\begin{array}{c}\text { GA is equal to CA, } \\ \text { and AK is common to both; } \\ \text { and the annle GAK is }\end{array}\right.$ and the angle GAK is equal to the angle CAK;
therefore GK is equal to CK.
But in the triangle BKG,
r. 9.

Constr.
I. 4.
 the two sides BK, KG are tog ther grea
that is, BK, KC are together than the thirt side BG, I. 20. therefore $\mathbf{B C}$ are together greater than BG; therefore $B C$ is greater than $B G$, or $E F$.
Q.E.D.

Proposition 25. Tieorem.

If turn trionugles hule two sides of the mee equal to tren sichen of the wthe's, creche to erach, lout the bense of ome grouter thone the browe of thes othere: thene the congle conetrined by the sides of that which has the: greator base, shath be greater then the anigle conterined by the coivesponding sides of the other.

Tret $A B C$, DEF be two triangles which have the two sides BA, AC equal to the two sides ED, DF, each to each, but the base BC greater than the base EF :
them shall the angle BAC be greater than the angle EDF.
Proof. For if the angle BAC be not greater than the angle EDF, it must be rither equal to, or less than the angle EDF.

But the ancrle BAC is not equal to the angle EDF, for then the hase RC woukd be equal to the base EF: 1. 4. lut it is not.
Neither is the imele BAC less than . for then the hase BC wonld he less than the bagle EDF, but it is not.
Therefore the angle BAC is neither equal to, nor less than the angle EDF; that is, the angle BAC is greater than the angle EDF. Q.E.D.

hixERCISE.

In a triangle $A B C$, the vertex A is joined to X, the middle point of the base $B C$; shew that the angle $A X B$ is obtuse or acute, according as $A B$ is greater or less than $A C$.

Propostion :g. Theghem.
 mayles of the othro, each to suril, ainl a vide "! ome rqual

 the trianylos be equill in whl iripects.

Case T. When the equal sides are cerfecerne to the equal angles in the two triangles.

Let $A B C$, DEF he two triangles, which lave the amples $A B C, A C B$, equal to the two angles DEF, DFE, carli to cadi ; and the side BC equal to the side EF:
then shall the triangle $A B C$ be equal to the triangle DEF in all respects;
that is, $A B$ shall the equal to $D E$, and $A C$ to $C E$,
and the angle BAC shall tre equal to the angle EDF.
For if A g be not equal to $D E$, one must he sreater than the other. If possible, let $A B$ be greater than $D E$. Construction. From BA cut oft' BG equal to ED, and join GC.

1. 3.

Proof: Thent in the two triangles GBC, DEF,
 therefore the triangles are equal in all respects: $I_{y / 2}$. so that the angle GCB is equal to the angle DFE.
But the angle $A C B$ is equal to the angle DFE; $\quad / I_{y} /$. thereforc also the angle $G C B$ is equal to the angle $A C B ; A x .1$.
the part equal to the whole, which is impossible.

Therefore $A B$ is not unequal to $D E$, that is, $A B$ is equal to $D E$.
Hence in the triangles $A B C, D E F$, Becanse $\left\{\begin{array}{rr}A B \text { is equal to } D E, & \text { Proved. } \\ \text { and } B C \text { is cqual to } E F ;\end{array} \quad \begin{array}{r}I I / / 1\end{array}\right.$. Becanse $\left\{\begin{array}{rr}A B \text { is equal to } D E, & \text { Proved. } \\ \text { and } B C \text { is cqual to } E F ;\end{array} \quad \begin{array}{r}I I / / 1\end{array}\right.$. Becanse $\left\{\begin{array}{rr}A B \text { is equal to } D E, & \text { Proved. } \\ \text { and } B C \text { is cqual to } E F ;\end{array} \quad \begin{array}{r}I I / / 1, \\ \text { also the contained angle } A B C \\ \text { contained angle } D E F ;\end{array}\right.$ therefore the triangles are equal in all respects: i. 4. so that the side $A C$ is equal to the side DF; and the angle BAC to the angle EDF. Q E., D.

Case II. When the equal sides are opposite to equal angles in the two triangles.

Let $A B C$, DEF be two triangles which have the angles $A B C, A C B$ equal to the angles $D E F, D F E$, each to each, and the side $A B$ equal to the side $D E$:
then shall the triangles $A B C$, DEF be equal in all respects ;
that is, BC shall be equal to EF, and AC to DF, and the angle BAC shall be equal to the angle EDF.

For if is be not equal to $E F$, one mast be greater than the other. If pussible, let BC be ghenter than EF.
Comstruction. From BC cut ofr BH equal to EF, I. $\%$ and joill AH.
P'romf: Then in the tringles ABH, DEF,
Leconuse $\left\{\begin{array}{c}A B \text { is equal to } D E, \\ \text { and } B H \text { to } E F, \\ \text { also the contained angle } A B H \text { is cipual } \\ \text { contained angle DEF; }\end{array}\right.$ Const): $\begin{array}{c}\text { the }\end{array}$ therefore the triandes are equal in all respects, Ityp. so that the angle AHB is equal to the angle DFE.
Proved. $H_{!} / 7$. aial to the Hyp.

cts: I. 4.

F;
QE.D.
e to equal
the angles to to each,

ON THE IIENOHCAL E\&LALITY OF TRIANGLES.

It the close of the first section of Book I., it iss worth while to call special attention to those Propositions (viz. Props. 4, 8, 26) which deal with the identical equality of two triangles.
'The results of these Propositions may be summarized thus:
Two triangles are equal to one another in all respects, when the following parts in cach are equal, each to cach.

1. Two sides, and the ineluded angle.

Prop. 4.
2. The three sides.

Irop. 8, Cor.
3. (a) Two angles, and the adjacent side,
(b) Two angles, and the side opposite one of
then.

From this the heginmer will perhates smmise that two triangles may be shewn to be equal in all respects, when they have threc paits equal, each to cach; hut to this statement two obvions exceptions must le made.
(i) When in two triangles the three congles of one are equal to the throe augles of the other, each to each, it does mot necessarily follow that the triangles are equal in all respects.
(ii) When in two triangles two siles of the one are equal to two sides of the other, each to each, and one angle equal to one angle, these not heing the angles included by the equal sides; the triangles are not neevssarily equal in all respects.

Th these cases a further condition must be added to the hypothesis, before we can assert the identical equality of the two triangles.
[See Theorems and Exereises on Book T., E.s. 1:3, Pige !e.]
The observe that in cach of the three cases already proved of inentical equality in two triangles, namely in Propositions 4, 8,26 , it is shewn that the triamgles may be made to coincide with one aroother: so that they are equal in urea. as in all other respects. Jinclid howerer restricted himself to the use of Prop. 4 , when he required to dednce the equality in arece of two triangles from the equality of certain of then parts.

This restriction has heen ahmudoned in the fursent text. lmok. [Sce note to l'rup. BI.]

1. If $B X$ and $C Y$, the bisectors of the andes at the lase $B C$ of an isosecles triangle $A B C$, meet the opposite sides in X and Y; shew that the trimoles YBC, XCB are equal in all respects.
\therefore. Shew that the perpendiculars drawn from the extremities of the base of an isosceles triangle to the opposite sides are equal.
2. Any point on the bisector of an anyle is e'puidistant from the
arms of the angle.
3. Through O, the midde point of a straight line $A B$, any straight line is drawn, and perpendiculars $A X$ and $B Y$ are dropped upon it from A and B : shew that $A X$ is equal to $B Y$.
\therefore It the bisector of the vertical angle of a triangle is at right angles to the base, the triangle is isosedes.
4. The perpendicular is the shortest straight line that can be drawn from atiern point to at aicen straight lime: and of others, that which is nearer to the perpendirular is less than the more remote; and turo, and ouly two rquel straight lines can be drown trom the' gicen pmint to the given straight line, one on each side of the perpendicular.
5. From two given points on the same side of a dicen straight lime, draw turo straight lines, which shall meet in the given straight line and matie equal angles with it.

Tet $A B$ be the given straight line, and P, Q the given points.

It is required to draw from P and Q to a point in $A B$, two straight lines that siall be equally inclined to $A B$.

Construction. From P draw $P H$ perpendicnlar to AB : produce PH to
 P^{\prime}, making $H P^{\prime}$ equal to $P H$. Draw $Q P$, meetin! $A B$ in K. Join

Then PK, QK shath be the required lines. [Sumply the proof.]
4. In at given straight line find a point which is equidistant from two given intersecting straight lines. In what ease is this impossible?
9. Through a given point daw a strainht line snoh that the verpendicuiars drawn to it from two riven points may be equal.

In what case is this impossible?

SECTION II.

PARALLEL STRAIGHT LINES AND PARALLELOGRAMS.
Definition. Pamallel straight lines are such as, being in the same plane, do not meet however far they are produced in both directions.

When two straight lines AB, CD are met by a third straight line EF, eight angles are formed, to which for the sake of distinction particular names are given.

Thus in the adjoining figure, $1,2,7,8$ are called exterior angles, 3, 4, 5, 6 are called interior angles, 4 and 6 are said to be alternate angles; so also the angles 3 and 5 are alternate to one another.

Of the angles 2 and 6,2 is referred to as the exterior angle, and 6 as the interior opposite angle on the same side of $E F$.

2 and fore sometimes called corresponding angtes.
So also, 1 and 5, 7 and 3, 8 and 4 are corresponding angles.
Enclid's treatment of parallel straight lines is based upon his twelfth Axiom, which we here repeat.

Axion 12. It a straight line cut two straight lines so as to make the two interior angles on the samse side of it together less than two right ingles, these straight lines, leing continually produced, will at length meet on that side on which are the angles which are together less than two right angles.

Thus in the figure given above, if the two angles 3 and 6 are together less than two right ingles, it is asserted that $A B$ and CD will meet towards B and D.

This Axiom is neel to establishi i. 29: some remarks upon it will be found in a note on that Proposition.

Proposition 27 i. 'Theorem.

If a straight line, frelling on two other straight lines, make the altermate anyles equenl to one renother, then the straight lines slatl be parallel.

Let the straight line EF cut the two straight lines $A B$, $C D$ at G and H, so as to make the altemate angles $A G H$, GHD equal to one another:
then shall $A B$ and $C D$ be patallel.
Proot. For if $A B$ and $C D$ be not parallel, they will meet, if produced, either towards B and D, or towards A and C.
If possible, let $A B$ and $C D$, when produced, meet towards B and D, at, the point K.
Then KGH is a triangle, of which one side $K G$ is produced to A : therefore the exterior angle AGH is greater than the interior opposite angle GHK.

But the anole AGH is I. 16. nence the angles $A G H$ and equal to the angle GHK: $\Pi_{I J}$ p. Therefore $A B$ and $C D$ cannot meet when produced towards B and D.
Similarly it may be shewn that they amont meet towards therefore they are parallel.

Phopostron es. Themban.

If' " straight lime, fallimy an heo other struight limes, matien ane crtcrion' amyle rquell to the intrrior "mposite cengle on the some side of the linw; or if it mate the interion "ugless on the sceme side toyether rqual, to two right angles, then the treo straight lines shucl be quarallal.

Let the straight line EF ant the two straight lines $A B$, OD in G and H : and

Fiast, let the exterion amgle EGB be apmal to the interior opposite angle GHD :
then shall $A B$ and $C D$ be paratlel.
Proot. Because the ming EGB is equal to the angle GHD; and hecause the angle EGB is also equal to the vertically opposite angle AGH;
I. 15.
therefore the angle AGH is equal to the angle GHD: but these are alternate angles; therefore $A B$ and $C D$ are paatlel.

1. $\because 7$. Q. F. b.

Secomally, let the two interior angles BGH, GHD be torrether ryual to two right angles:
then slall $A B$ and $C D$ lie parallel.
Proof: Beeause the angles BGH, GHD we together equal to two right angles; and because the arljacent angles BGH, AGH ane also togethere. equal to two right angles; therefore the angles BGH, AGH are together equal to the two angles BGH, GHD.

From these equals take the common angle BGH:
them the rmaining angle $A G H$ is equal to the remaining. angle GHD: and these are alternate angles; therefore $A B$ and $C D$ are parallel.

1. 27.

Q.E.D.

Proposition 29. Theorem.

If a straight line fall on two paralle's streitht lines, then it shall muke the alternate angles equal to one cnother, ainl ther extroior angle equal to the interior oppesite anyle on the seme side; aud also the theo interion augles whe the seme side equal to tro riglit anyles.

Let the straight line EF fill on the parallel straight lines $A B, C D$:
then (i) the alternate angles $A G H, G H D$ shall be equal to one another;
(ii) the exterior angle EGB shall be equal to the interion opposite angle GHD;
(iii) the two intarior angles BGH, GHD shall be together equal to two right angles.
Proof. (i) For if the angle $A G H$ be not equal to the angle GHD, one of them must be greater than the other.
If possible, let the angle AGH be greater than the angle GHD ;
add to each the angle BGH:
then the angles $A G H, B G H$ are together spater than the angles BGH, GHD.
But the adjacent angles $A G H, B G H$ are together equal to two right angles; therefore the angles BGH, GHD are together less than two right angles;
threfore $A B$ and $C D$ meet trwards B and $D . A x .12$.
But they never surel, since they are parallel. Ily Therfore the angle $A G H$ is not unequal to the angle GHD: that is, the alternate angles $A C H, G H D$ are equal.

(ii) Agran, because the ansle $A G H$ is ayue? to the vontically opposite angle EGB; and because the angle AGH is equal to the angle GHD ;
rarod.
therefore the exterior angle EGB is equal to the interior opposite angle GHD.
(iii) Tastly, the angle EGLB is equal to the angle GHD:

Proved. add io each the angle BGH ;
When the angles EGB, BGH are togethre equal to the angles BGH, GHD.
that ade adjacent angles EGB, BGH are together equal to two ight angies:
I. 1\%. therespe alko the two interior angles $B G H, G H D$ are tosuicer eypal to two right angles. Q.E.D.

$$
\text { EXERCISES on propositions } 27,28,29 \text {. }
$$

1. 'Two straight lines $A B, C D$ bisect one another at O : shew that the straight lines joining $A C$ and $B D$ are parallel.
[1. 27.]
2. Straight lines which are perpembienlar to the same straight line are parallel to one another.
[r. 27 or 1. 28.]
3. If a straight line mest tro or more parallel straight limes, and is perpendienlar to one of them, it is "lso perpendicular to all the others.
[r. 29.]
4. If two straight lines are parallel to two nther straight lines, cach to each, then the angles contained by the first pair aro squal respectivedy to the angles contained hy the second pair.
[1. 29.]

Note on the Twelferi Axios.

It must be admitted that Euclid's twelfth Axiom is unsatisfactory as the basis of a theory of parallel straight lines. It cimnot be regarded as either simple or self-evident, and it therefore falls short of the eusential characteristics of an axionn: nor is the diffieulty entirely removed by considering it as a corrollary to Proposition $1 \bar{\sigma}_{\text {, of }}$ of wheh it is the eonverse.

Many substitutes have been proposed ; but we need only notice here the system which has met with most general approval.

This system rests on the following hypothesis, which is put forward as a fundamental Axion.

Axion. Turo intersecting straight lines camot be both prerallel to " thirel straight line.

This statement is known as Playfair's Axiom; and thongh it is not altogether free from objection, it is recommended is both simpler and more findamental than that employed by Euclid, and more readily admitted without proof.

Propositions 27 and 28 having been proved in the usual way, the first part of Proposition 29 is then given thus.

Proposition 29. [Alternative Proor.]

If a straight line full on two parallel straight lines, then it shall make the alternate angles equal.

Let the straight line EF meet the two parallel straight lines $A B, C D$, at G and H :
then shall the alternate angles $A G H$, GHD be equal.
For if the angle $A G H$ is not equal to the angle GHD:
at G in the straight line HG make the angle HGP equal to the angle GHD, and alternate to it. I. 23.

Then PG and CD are parallel. 1. 27.
But AB and CD are parallel: Hyp. therefore the two intersecting straight lines AG, PG are both parallel

Therefore the angle AGH is not unequal to the angle GHD, that is, the alternate angles AGH, GHD are equal. Q.E.i.
The second and thind parts of the Proposition may then be deduced as in the text; and Euclid's Axiom 12 follows as a Corollary.

Proposition 30. Theorem.

 "ire jutrallel to ome another.

Let the straight lines $A B, C D$ be each parallel to the straight line $P Q$:
then shall $A B$ and $C D$ loe parallel to one another:
Constroutimu. Draw any straisht line EF cutting AB, CD, and $P Q$ in the points G, H, and K.

Pront. Then becatuse $A B$ and $P Q$ are patallel, and EF meets them, therefore the angle AGK is equal to the altemate angle GKQ.
Aud leeanse 1. 29 And because CD and PQ are parallel, and EF meets them, therefore the exterior angle GHD is equal to the interior opposite angle HKQ.
I. $\Omega 9$.

Therefore the angle $A G H$ is equal to the angle GHD;
and these are alternate angles;
therefore $A B$ and $C D$ are pratlel. Q.I.. 1 .

Nort. If $P Q$ lies between $A B$ and $C D$, the Proposition may le pstablished in a similar manner, though in this case it scareely needs proof; for it is ineoneeivable that two straight lines, which do not mert an intermediate straight line, shouhd meet oro another.

The truth of this Proposition may he readily deduced from Playfair's Axiom, of whieh it is the converse.

For if AB and CD were not parollel, they would meet when produced. Then there would be two intersecting straight lines both parallel to a thind straight line: which is impossible.

Therefore $A B$ and CD never 2.1eet; that is, they are parallel.

Proposition 81. Problem.
Tio droun astruight lime through a :eirene puint pmatllet to "t giren straight lines.

Let A be the given point, and BC the given stataght line. It is required to dhaw through A a straight line parallel to $B C$.

Comstraction. Tn BC take any peint D; and join AD. It the point A in DA, make the angle DAE equal to the angle ADC, and altemate to it 1. 93 : ind produce EA to F. Theu shall EF be parallel to BC.
Proof: Because the straight line AD, meeting the two shaight lines EF, BC, makes the alternate angles EAD, ADC crual;
therefore EF is parallel to BC; Constr.
I. 29. reets them, the interior 1. 29.
e GHD:

1. 27.

q. Fin.
ition may le carcely needs rhich do not her.
educed from
et when prot lines both parallel.

Proposition 32. Theoma.

If " sinls of "e triangle be produced, then the extorior "tuyle shall be equal, to the sum of the two interion opposite "ugles: also the lliree intrion" anylos of a trieen!le, wee togethere equirl to tero righl armles.

Iat ABC lie a triamyle, and lett onn of its sides BC be prorluced to D :
then (i) the exterior angie $A C D$ shall be equal to the sum
of the to i innenve opposite ancrles $C A B, A B C$;
(ii) the three interior angles $A B C, B C A, C A B$ shall be together apual to two right angles. Construction. Through C draw CE parallel to BA. 1. . 21. Proof. (i) Then becanse BA and CE are parallel, and AC meets them, therefore the angle $A C E$ is equal to the alternate angle
CAB. Again, because BA and CE are purullel $\quad 29$. thrrefore the exterion angle ECD is and BD meets them, opposite angle ABC.
'Therefore the whole exterior angle ACD in I. 69. smin of the two interior oppocite sman of the two interior opposite amsles CAB, ABC.
(ii) Again, since the angle $A C D$ is eqmal to the sum of the angles $C A B, A B C$; l'rocerl. to each of these equals add the ancrle BCA: then the angles $B C A, A C D$ are torether equal to the three anrles BCA, CAB, ABC. But the adjacent angle BCA, ACD are together equal to two ricilit anyles; therefore also the angles BCA, CAB, ABC we tor 13 . to two right angles.
Q. E. D.

From this Proposition we draw the following important inferences.

1. If tro triomples hurre anyles of the one equal to tronameles of the other, couch to eneht then third anyle of the other.
2. In any right-angled triangle the tro woute anyles are com. ple'me'utary.
3. In a righe-angled isosedes triangle cach of the equal anghes is halj a right angle.
4. If one amgle of a timmile is c'qual to the sume of the ether two, the tirangle is right-ainglet.
5. The sume of the anglex of any quadriluteral jigure is equ 1 to fons right angles.
6. Lioch angle of an equilateral triang es is turo-thirels of "t right amyle.
thiert angle of the cane is ciplull to the
The exterior ior opposit? "ree together

iiles BC be

to the sum $C A B, A B C$; $C A B$ shall s.

BA. I. 31.
el, and AC
nate angle
I. 29. eets them, e interior
I. $\because 9$.
ial to the
3C.
he sum of
l'roced.
the three
equal to

1. 13.

her equa!
Q. E. D.

EXERCLSES ON PROPOSITION 32

1. Prove that the three angles of a triangle are together equmb to two right angles,
(i) by drawing through the vertex a straight line paralied to the base;
(ii) by joining the vertex to any point in the base.
2. If the base of any triangle is produced hoth ways, show that the stum of the two exterior angles diminished by the vertical angle is equal to two right angles.
B. If two straight lines are perpendicmar to theo other straight lines, erich to cach, the acnte angle betreen the first pair is equal to the ocnte angle between the secoml pair.
3. Eirery right-angled trimule is diviled into tro isosceles triungles lyy a struight line drawn firom the right angle to the mithlle point the limpotemuse.
Hemer the joining line is rymat to hati the leypotemsese
\therefore ranc a straight line at right angles to a given finite straight lime jrom one of its extremities, withont prodnciny the giren straight line.
[Let $A B$ be the given straight line. On AB doseribe any isuseeldew miantite AC̄B. Prontuce BC to D, making $C D$ wal to BC. Join $A D$. Then shall $A D$ be perpendicnlar to $A B, 1$
4. Trisect a right anyle.
5. The angle contained by the bisectors of the angles at the bave of an isosceles tiangle is cuinl to an exterior angle formed by pro-
A. The angle contained by the bisectors of two mijucent magles of a duadrilateral is equal to hatf the sma of the remaining angles.

The: following theorems were mblerg as corolluries to Proposition $3:$ by Robert Silmson.

 melly dir t cemyles as the figmo heres sieles.

Let $A B C D E$ bo alny rectilineal ligure.
'lake F, any joint within it, allal join F to each of the anghlat points of the figure. Then the figure is divided into its many triangles as it has sinles.
And the thre amorles of athen triangle are togrether equal to two right angles. $\quad 1,: 3:$. Hence all the angles of all the triangles are together equal to twice as many right imgles as the figure has sides.
But all the angles of all the triangles make up the interior angles of the figure, together with the amgles and the angles at F are together cupal to form rimht Therefore all the interior anmes 1. 15, Cor. right angles, aro torether ern of the figure, with four angles as the figure hass sides. (a. E. i).

Corollaby 2. If lue virles of' a rectilimeal riguror, which

For at eath angrular point of the firgure, tho interion angle and the exterion angle are together equal to two right imgles.
I. 1 :
'Therefors all the interion angles, with all the exterion' angles, ame together equal to twion as many right angles as the figume has sides.
liat all the intorion angles, with fonn rioht anshos, ane to. frothor equal to twice as many right anglas is the ligume hass sidess.
Therefors all tho interion amores will ath 1.82, Cor. 1. angles, aro together equal to all the interion the vxterime four right angles.
Therefore the exterior migles aro torgether equal to fome right ingles.

TA phlygon is snid to be regular when it hats all its sides and all its migles eyunl.]

1. Express in terms of a right angle the manitule of each mugle of (i) 1 regular hexagon, (ii) a regular vetagoni.
2. If one side of a regular hexngon is pronluced, shew that the exterion magle is equal to the angle of me equilnteral triangle.
3. Prove Simson's first Corollary by joming one vertex of the rectilineal figure to each of the other vertices.
4. Find the magnitude of emeh angle of a regular polygon of n sides.
5. If the altermute sides of any polygon be producen to meat, the sum of the inoluted ungles, therther with eight right angles, will be copual to twice as muy right ingless as the figure has sides.

Proposition 33. Theorem.

The straight lines which join the extremitio's of two equel and parallel straight lines towards the same purts are themselces equal and parallor.

Let $A B$ and $C D$ be equal and parallel straight lines; and let them be joined towards the same parts by the straight lines $A C$ and $B D$:
then shall AC and BD be equal and parallel.

Construction.

Join BC.

Proof. Then hecause $A B$ and $C D$ are parallel, and BC meets them,
therefore the alternate angles $A B C, B C D$ are equal. 1. $\because 9$.

> Now in the triangles $A B C, D C B$, $A B$ is equal to $D C$, and it has been shewn that they are also equal.
Q.E. D.

Depmimon. A Parallelogram is a four-sided figure whose opposite sides are parallel.

Proposition 34. Theorem.

The opposite sides and angles of a parallelogram are equal to one another, and each diayonal bisects the paralleloaram.

Let $A C D B$ be a parallelogram, of which $B C$ is a diagonal: then shall the opposite sides and angles of the figure be equal to one another; and the diagonal BC shall bisect it.

Proof. liecause $A B$ and $C D$ are parallel, and $B C$ meets them,
therefore the altemate angles $A B C, D C B$ are equal. I. 29. Again, becanso AC and BD are parallel, and EC meets them,
therefore the alternate angles $A C B, D B C$ are equal. I. 29.
Hence in the triangles $A B C, D C B$,

Hyp.
to the angle Proced. peets; 1. 4. e DB, DBC ;

$$
\text { 1. } \because 7
$$

equal.
-sided figure
traisht lines; parts ly the
rallel.
allel, and BC
equal. ı. 29.
B,

> Q.E.D.
1.
-
sof two equal uerts are them-

Note. To the proof which is here given Euchid added an application of Proposition 4, with a view to shewing that the triangles $A B C$, $D C B$ are cupual in erecr, and that therefore the diagonal BC biseets the parallelogram. This eqnality of area is however sufficieutly established by the step which depends upon I. 26. [See page 48.]

EXERCISES.

1. If one angle of a parallelogram is a right angle, all its angles are right anyle:.
2. If the opposite sides of a quadri7ateral are equal, the figure is a paritleloyram.
3. If the opposite angles of a quadritaterat are equat, the figure is a parallelogrant.
4. If a quadrilateral hes all its sides equal ame one angle a right angle, ail its angles are right angles.
5. I'he Siagonals of a parallelogram bisect each other.
6. If the diagonals of a quadrilateral bisect each other, the figure is a parillelograni.
7. If two opposite angles of a parallelogram are bisected by the diagonal which joins them, the figure is equilateral.
8. If the diagonals of a parallelogram are equal, all its angles aro right angles.
9. In a parallelogram which is not rectangular the diagonals are unequal.
10. Any straight line drawn through the middle point of a diagonal of a parallelogram and terminated by a pair of opposite sides, is bisected at that point.
11. If two parallelograms hare two adjacent sirles of one equal to tien aljacent sides of the other, each to cach, and one angle of one equal to one angle of the other, the parallelograms: are equal in all respects.
12. T'uo rectangles are equal if turo adjucent sides of one are equal to two arjacent silles of the other, curll to each.
13. In a parallelogram the perpendiculars drawn from one pair of opposite augles to the diagonal which joins the other pair are equal.
14. If $A B C D$ is a parallelogram, and X, Y respectively the middle points of the sides $A D, E C$; shew that the tigure $A Y O X$ is a parallelogram.
ded au applicatriangles ABC, BC biseets the intly established
c, all its angles
, the figure is a
al, the figure is
2c angle a right

er.

ther, the figure
bisected by the
1 its angles are
e diagonals are
nt of a diagonal posite sides, is
of one equal to ile of one equal all respects.
des of one are
rom one pair of ir are equal.
vely the middle is a parallelo-

MISCELLANEOUS RXERCISES ON SECTIONS I. AND IT.

1. Shew that the construction in Proposition 2 may generally be performed in eight differnut ways. Point out the exceptional ease.
2. The bisectors of two vertically opposite angles are in the same straight line.
3. In the figure of Proposition 16. if AF is joined, shew
(i) that $A F$ is equal to BC ;
(ii) that the triangle $A B C$ is equal to the triangle CFA in all
cts. vespects.
4. $A B C$ is a triangle right-angled at B, and $B C$ is produced to D : shew that the angle $A C D$ is obtuse.
5. Shew that in any regular polygon of n sides eaeli angle contains $\frac{2(n-2)}{n}$ right angles.
6. The angle contained by the bisectors of the angles at the base of any triangle is cqual to the vertical angle together with half the sum of the base angles.
7. The angle contained by the bisectors of two exterior angles of any triangle is egual to halt the sum of the two eorresponding interior
angles.
8. If perpendieulars are drawn to two intersecting straight lines from any point between them, shew that the bisector of the angle between the perpendiculars is paralld to (or eoineident with) the bisector of the angle between the given straight lines.
9. If tro points P, Q be taken in the equal sides of an ssoseeles triangle $A B C$, so that $B P$ is equal to $C Q$, shew that $P Q$ is parallel to
10. $A B C$ and $D E F$ are two triangles, such that $A B, B C$ are equal and parallel to $D E, E F$, each to cach; shew that $A C$ is equal and
11. Prove the secont Corollary to Prop, 32 by darawing through any angnlar point lines parallel to all the sides.
12. If two sides of a quadrilateral are parallel, and the remaining two sides equal but not purallol, show that the opposite angles are supplementary; also that the diagonals are equal.

SECTION III.

THE AREAS OF PARALLELOGRAMS AND TRIANGLES.

Hitherto when two figures have been said to be equal, it has heen implied that they are identically equal, that is, equal in all respects.

In Section III. of Luclid's first Book, we have to consider the equality in wen of parallelograms and triangles which are not necessarily epua! in all respects.
[The ultimate test of equality, as we have already seen, is afforded by Axiom 4 , which asserts that magnitudes which may, be made to coincide with one mother are equal. Now figures which are not identically equal, c:mnot be male to coincide without tirst undergoing some change of form: hence the methol of direct superposition is unsuited to the purposes of the present section

We shall seo however from Euclid's proof of Proposition 35, that two figures which are not identically equal, may nevertheless be so related to a third figure, that it is possible to infer the equality of
their areas.]

Definitions.

1. The Altitude of a parallelogram with reference to a Given side as base, is the perpendicular distance between the base and the opposite side.
2. The Altitude of a triangle with reference to a given side as base, is the perpendicular distance of the oppesite vertex from the base.

Propostigen 35. Theomem.

Parallelograms on the same base, and between the sutme parallels, are equal in area.

Let the parallelograms $A B C D, E B C F$ be on the sime base $B C$, and between the same paratlels $B C, A F$:
then shall the parallelogram $A B C D$ be equal in area to the parallelogram EBCF.

Case I. If the sides of the given parathelograms, opposite to the common base $B C$, are terminated at the same point D :
then because each of the parallelograms is double of the triangle BDC;
therefore they are equal to one another.
Case II. But if the sides AD, EF, opposite to the base $B C$, are not terminated at the same point:
then because $A B C D$ is a parallelogran,
therefore $A D$ is equal to the opposite side $B C$; I. 34 .
and for a similar reason, $E F$ is equal to $B C$; therefore $A D$ is equal to $E F$.

Ax. 1. Hence the whole, or remainder, EA is equal to the whole, or remainder, FD.

Then in the trimgles FDC, EAB,
FD is equal to EA, I'roved. Because $\left\{\begin{array}{l}\text { FD is eyd } D C \text { is equal to the opposite side } A B \text {, I. I. } 34 \text { t. }\end{array}\right.$ $\left\{\begin{array}{c}\text { also the exterior angle } F D C \text { is equal to the interior } \\ \text { opposite angle } E A B, \\ \text { I. } 29 .\end{array}\right.$

І. 29.
therefore the triangle FDC is cogual to the triangle EAB. I. 4.
From the whole figure $A B C F$ take the triangle $F D C$; and from the same figure take the equal triangle EAB ; then the remainders are equal;
A. $x .3$. that is, the parallelogram $A B C D$ is equal to the parallelo-
Q.E. D.

Proposition 36. Theohem.
P'aralleloyrams on equal bases, and between the same prisellels, are equal in area.

Let $A B C D, E F G H$ be parallelograms on equal bases $B C$, FG, and between the same parallels AH, BG:
then shall the parallelogran $A B C D$ be equal to the parallelogram EFGH.
Construction. Join BE, CH.
Proof. Thea because BC is equal to FG; Myp. and $F G$ is equal to the opposite side EH; I. 34. therefore $B C$ is equal to $E H$:
$A x .1$. and they are also parallel;
$I_{y p}$.
therefore BE and CH , which join them towards the same parts, are also equal and parallel.
I. 33.

Therefore EBCH is a parallelogram. Def. 26.
Now the parallelogram $A B C D$ is equal to $E B C H$;
for they are on the same base BC, and between the same parallels BC, AH.
I. 35.

Also the parallelogram $E F G H$ is equal to $E B C H$;
for they are on the same base EH, and between the same parallels EH, BG.
I. 35.

Therefore the parallelogram $A B C D$ is equal to the parallelogram EFGH.
$A x .1$.
Q.E.ग.

From the last two Propositions we infer that:
(i) A parallelongram is equal in area to a rectangle of equal base and equal altitude.
(ii) Praralldeyrams on equal bases and of equal altitudes are equal in area.
(iii) Uf two parallelograms of equal altitudes, that is the greater which has the arreater base; and of two parallelorgictm: om equal bases, that is the greater which has the greater altitude.

Proposition 37. 'Theorem.

Trianyles on the same base, and between the same parallels, are equal in area.

Let the triangles $A B C$, $D B C$ be upon the samac base $B C$, and between the same parallels $B C, A D$.
Then shall the triangle $A B C$ be equal to the triangle DBC.
Construction. Through B draw BE parallel to CA, to meet DA produced in E;

1. 31. through C draw $C F$ parallel to $B D$, to meet $A D$ produced in F.

Proof: Then, by construction, cach of the figures EBCA, DBCF is a parallelogram.

Ief. $\because 6$.
And EBCA is equal to DBCF; for they arf on the same base BC, and between the same paratlels BC, L ,

$$
\text { 1. } 35
$$

And the triangle ABC is half of the parallelogran EBCA, for the dimgonal $A B$ hisects it.

1. 34.

Also the triangle DBC is halt of the parallelogram DBCF, for the diarom at ac hise ats it. 1. 34.

But the halves of equat hings are equal ; A.x. 7 . therefore the triangle $A B C$ is ac ual to the triangle DBC.
Q.E.D.
[For Exercises see page 73.]

Proposition 3x. Theonem.

Triangles on equal bases, anul between the same purallels, are equal in area.

Let the triangles $A B C, D E F$ lee on equal bases $B C, E F$, and between the same parallels $B F, A D$:
then shall the triangle $A B C$ be equal to the triangle DEF.
Construction. Through B draw BG parallel to CA, to meet DA produced in G; through F draw $F H$ parallel to ED, to meet AD produced in H .

Proof. Then, by construction, each of the figures GBCA, DEFH is a parallelogram.

And GBCA is equal to DEFH ;
for they are on equal bases $B C, E F$, and between the same
parallels BF, GH.
I. 36.

And the triangle $A B C$ is half of the parallelogram GBCA, for the diagonal $A B$ bisects it. т. 34 . Also the triangle DEF is half the parallelogram DEFH, for the cliagomal DF bisects it. I. 34. But tho halves of equal things are equal: Ax. 7. therefore the triangle $A B C$ is equal to the triangle $D E F$. Q.E.J.

From this Proposition we infer that:
(i) Triangles on equal betses and of equal altitude are equal in area.
(ii) Of two triangles of the same altitule, thut is the greater. which has the greater base: and of tuo triangles on the sume buse, or on egral bases, that is the greater which hus the greater ultitude.
[For Exercises see page 73.]

Proposition 39. 'Theonem.
E'qual triangles on the same base, and on the same side of it, are between the stome parallels.

Let the triangles $A B C$, DBC which stand on the same base $B C$, and on the same side of it, be equal in area :
then shall they be between the same parallels;
that is, if $A D$ be joined, $A D$ shall be parallel to $B C$.
Construction. For if $A D$ be not parallel to $B C$,
if possible, through A draw $A E$ parailel to $B C, \quad$ I. 31 . meeting BD, or BD produced, in E. Join EC.
Proof. Now the triangle ABC is equal to the triangle EBC, for they are on the same base $B C$, and between the same parallels BC, AE.
But the triangle $A B C$ is equal to the triangle DBC; $I_{I m}$. therefore also the triangle DBC is equal to the triangle EBC;
the whole equal to the part; which is impossible.
Therefore $A E$ is not parallel to BC.
Similarly it can be shewn that no other straight line through A, except $A D$, is parallel to $B C$.

Therefore AD is parallel to BC.
Q.E. 1).

From this Proposition it follows that:
Equal triangles on the same base have cqual altitudes.
[For Exercises see page 73.]
finobosition 40. 'limbima.
 and on the seme site of it, are between the sume perrellels.

Let the triangles $A B C$, DEF which stand on equal hases $B C, E F$, in the same straight line BF, and on the same side of it, be equal in area:
then shall they be between the same parallels;
that is, if $A D$ be joined, $A D$ shall be pasallel to $B F$.
C'onstruction. For if $A D$ be not parallel to $B F$,
if possible, through A draw AG parallel to BF

1. 31 . meeting ED, or ED produced, in G.

Join GF.
Proyf. Now the triangle ABC is equal to the triangle GEF, for they are on equal bases $B C, E F$, and between the same parallels BF, $A G$.
I. 38.

But the triangle ABC is equal to the triongle DEF : $I_{y} /$. therefore alsn the triangle DEF is equal to the triangle GEF :
the whole equal to the part; which is imposisible.
?erefore AG is not parallel to BF.
Similaty it can be shewn that no other straight line through A, escept $A D$, is pirallel to $B F$.

Therefore AD is parallel to BF.

From this Proposition it follows that:
(i) Equal triungles on equal bases have equal altituies.
(ii) Equal trianyles of equal altitudes have equal bases.

Demintios: Lath of the thres straisht lines which join the thigular proints of a triangle to the midale points of the opposite side is called a Median of the triang
is Prop. 37.

1. If, in t. figure of Prop. $37, \mathrm{AC}$ and BD intersect in k , thew that
(i) the tringles $A K B, D K C$ are equat in area.
(ii) the duadrilaterals EBKA, FCKD are equal.
2. In the tigure of 3 . 16 , shew that the triangles $A B C, F B C$ are equat in area.
3. On the base of a gion triangh construct a second triangle, equa! in ared to the tirst, and having its vertex in a given straight line.
4. Describe an isosceles triangle equal in rea th a given triangle and standing on the same base.
on Prior. 38.
5. A triangle is divided by each of its m ans into two parts of equal area.
6. A parallelogram is divided by its diagonals into four triangles of equal area.
7. $A f$ is a triangle, anit its base $B C$ is bisected at X; if Y be any ponnt in the median $A X$, shew that the triangles $A B Y$, $A C Y$ are equal in urea.
8. In $A C$, a diagonal of the parallelonnm $A B C D$, any point X is taken, and $X B, X D$ are drawn: shew that the triangle BAX is eypual to the triangle DAX.
9. If two triangles have iwo sides of one respectively equal to two sides of the other, and the angles eontained by those sides supplementary, the triangles are equal in area.
on Pror. 39.
10. The straight line which joins the midlle points of tuo sides of a triangle is parallel to the third side.
11. If two straight lines AB, CD intersect in O , so that the triangle AOC is equal to the triangle DOB , shew that AD and CB are parallel.

$$
\text { on Prop. } 40
$$

12. Deduce Prop. 40 from Prop, 39 by joining $A E, A F$ in the figure of page 72.

MICROCOPY RESOLIJTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

Proposition 41. Theorem.

If a parallelogram and a trianule be on the same base ard between the same parallels, the prarallelogram sluall be double of the tiomule.

Let the parallelogram $A B C D$, and the trimgle EBC be upon the same base BC, and between the same parallels $B C, A E$:
then shall the panalle $\log _{\text {ram }} A B C D$ be donble of the triangle EBC.
Construction. Join AC.
Proof. Then the triangle $A B C$ is equal to the triangle EBC, for they are on the same base $B C$, and between the same parallels BC, AE.
I. 37.

But the parallelogram $A B C D$ is double of the triangle $A B C$,
for the diagonal $A C$ bisects the paralle $\log _{\text {grann }}$. 1.34.

Therefore the parallelogram $A B C D$ is also double of the triangle EBC.

EAERCISES.

1. $A B C D$ is th parallelogram, and X, Y are the middle points of the sides $A D, B C$; if Z is any point in $X Y$, or $X Y$ produced, shew that the triangle $A Z B$ is one quarter of the parallelogram $A B C D$.
2. Describe a right-angledisoseeles triangle equal to a given square.
3. If $A B C D$ is a parallelogran, an $1 X Y$ any points in $D C$ and $A D$ respectively: shew that the triangles $A X B, B Y C$ are equal in area.
4. $A B C D$ is a parallelogram, and P is any point within it; shew that the sum of the triangles $P A B, P C D$ is equal to half the parallelogram.

Proposition 42. Problem.

me latse shucll be

To describe a parallelogram that shall be equal to a given triangle, and huve one of its anyles equal to a given andle.

Let $A B C$ be the given triangle, and D the given angle. It is required to describe a parallelogram equal to $A B C$, and having one of its angles equal to D.

Construction. Bisect BC at E. I. 10.
At E in CE, make the angle CEF equal to D ;

1. 23. through A draw AFG parallel to EC ;
I. 31. and through C draw CG parallel to EF.
Then FECG shall be the parallelogram required.
Join AE.
Proof. Now the triangles ABE, AEC are equal, for they are on equal bases $B E, E C$, and between the same parallels;
I. 38.
therefore the triangle $A B C$ is doulle of the triangle AEC.
But fecg is a parallelogram ly construction; Def. 26. and it is double of the iangle AEC,
for they are on the same base EC, and between the same parallels EC and AG. I. 41. Therefore the parallelogran FECG is equal to the triangle ABC;
and it has one of its angles CEF equal to the given angle D. Q.E.F.

ExERCISES.

1. Describe a parallelogram equal to a given square standing on the same base, and having an angle equal to half a right angle.
2. Describe a rhoubus equal to a given parallelogram and standing on the same base. When does the construction fail?

Definition. If in the diagnnal of a parallelogram any point is taken, and straight lines are drawn through it parallel to the sides of the parallelogram; then of the four parallelograms into which the whole figure is divided, the two through which the diagonal passes are called Parallelograms about that diagonal, and the other two, which with these make up the whole figure, are called the complements of the parallelograms about the diagonal.

Thus in the figure given below, AEKH, KGCF are parallelograms about the diagonal AC ; and HKFD, EBGK are the complements of those parallelograms.

Note. A parallelogram is often named by two letters only, these being placed at opposite angular points.

Proposition 4\%. Theorem.

The complements of the parallelograms about the diagonal of any parallelogram, are equal to one unother.

Let $A B C D$ be a parallelogram, and $K D, K B$ the complements of the parallelograms EH, GF about the diagonal AC: then shall the raplenent $B K$ be equal to the complement KD.
Proof. Because EH is a parallelogram, and AK its diagonal, therefore the triangle AEK is equal to the triangie AHK. i. 34. For a similar reason the triangle KGC is equal to the triangle KFC.
Hence the triangles AEK, KGC are together equal to the triangles AHK, KFC.
gram any rough it the four iried, the a Paralo, which alled the onal.
allelograms olements of
only, these
e diagonal
he complegonal AC: he complediagonal, AHK. I. 34. ial to the ual to the

But the whole triangle $A B C$ is equal to the whole triangle $A D C$, for $A C$ hisects the parallelogram $A B C D$; \quad. 34 . therefore the remainder, the complement $B K$, is equal to the remainder, the complement KD. Q.E.D.

EXERCISES.

In the figure of Prop. 43, prove that
(i) The parallelogram ED is equal to the paralle! gram BH .
(ii) If $K B, K D$ are joined, the triangle $A K B$ is equal to the triangle AKD.

Proposition 44. Problem.

To a given straight line to apply a parallelogram which shall be equal to a given triangle, and have one of its angles equal to a given angle.

Let $A B$ be the given straight line, C the given triangle, and D the given augle.

It is required to apply to the straight line $A B$ a parallelogram equal to the triangle C, and having an angle equal to the angle D.

Construction. On $A B$ produced describe a parallelogram $B E F G$ equal to the triangle C, and having the angle EBG equal to the angle D; I. 22 and I. 42*. through A draw $A H$ parallel to $B G$ or $E F$, to meet $F G$ produced in H .
r. 31.

Join HB.

* This step of the eonstruetion is effected by first describing on $A B$ produced a triangle whose sides are respectively equal to those of the triangle C (1.22); and by then making a parallelogram equal to the triangle so drawn, and having an angle equal to D (1. 42).

Then because AH and EF are parallel, and HF meets them, therefore the angles AHF, HFE are together equal to two right angles: hence the angles $B H F$, HFE are together less than two right angles; therefore $H B$ and $F E$ will meet if produced towards B and
E. Ax. 12.
Produce them to meet at K.
Through K draw KL parallel to EA or FH;
I. 31 . and produce $H A, G B$ to meet KL in the points L and M. Then shall BL be the parallelogram required.

Proof. Now FHLK is a parallelogram,
Constr: and $L B, B F$ are the complements of the parallelograms about the diagonal HK:
therefore LB is equal to $B F$.
I. 43.

But the triangle C is equal to BF ;
Constr.
therefore LB is equal to the triangle C.
And because the angle GBE is equal to the vertically opposite angle ABM,
and is likewise equal to the angle D ; Constr. therefore the angle $A B M$ is equal to the angle D.
Therefore the parallelogram LB, which is applied to the straight line $A B$, is equal to the triangle C, and has the angle $A B M$ equal to the angle D.
Q.E.F.

Proposition 45. Problem.

To describe a parallelogiam equal to a given rectilineal figure, and hutiny an angle equal to a given amyle.

Let $A B C D$ be the given rectilineal figure, and E the given angle.

It is required to describe a parallelogram equal to $A B C D$, and having an angle equal to \mathbf{E}.
Suppose the given rectilineal figure to be a gladrilateral.
Constraction. Join BD.
Deseribe the parallelogram $F H$ equal to the triangle $A B D$, and having the angle FKH equal to the angle E. I. 4… To GH apply the parallelogram GM, equal to the triangle DBC, and having the angle GHM equal to E.
I. 44. Then shall $F K M L$ be the parallelogran required.
Proof. Because each of the angles.GHM, FKH is equal to E, therefore the angle FKH is equal to the angle GHM. To each of these equals add the angle GHK ;
then the angles FKH, GHK are together equal to the angles GHM, GHK.
But since FK, GH are parallel, and KH meets them, therefore the angles $\mathrm{FKH}, \mathrm{GHK}$ are together equal to two right angles :

1. 29. therefore also the angles GHM, GHK are together equal to two right angles:
therefore KH, HM are in the same straight line. I. 14.
1. E.

Again, hecause KM, FG are parallel, and HG meets them, therefore the alternote angles MHG, HGF are equal: I. 29 to each of these equals ald the angle $H G L$;
then the angles MHG, HGL. we together equal to the angles HGF, HGL.
But because HM, GL are parallel, and HG meets them, therefore the angles $M H G, H G L$ are together aqual to two right angles:
I. 29. therefore also the angles HGF, HGL are together equal to two right ancres :
therefore $F G, G L$ are in the same straight line.
I. 14 .

And hecause KF and ML are cach parallel to HG, Constr. therefore KF is parallel to ML; I. 30 . and KM, FL ine paralle]; Constr: therefore FKML is a parallelogram. Def. 26. And because the parallelogram FH is equal to the triangle ABD,
and the pamallologram GM to the triangle DBC ; Constr. therefore the whole parallelogram FKML is equal to the whole figure $A B C D$;
and it has the angle FKM equal to the angle E.
By a series of similar steps, a parallelogram may be constructed equal to a rectilineal figure of more than four sifles.
Q.E.F.

Proposition 46. Probimi.

To describe a square on a given straight line.

Let $A B$ be the given straight line:
it is required to deseribe a square on $A B$.
Constr. From A draw AC at right angles to AB ; I. 11. and make $A D$ equal to $A B$.
I. 3.

Through D diaw DE parallel to $A B$; I. 31. and through B draw $B E$ parallel to $A D$, meeting $D E$ in E. Then shall ADEB be a square.
Proof. For, by construction, ADEB is a parallelogram: therefore $A B$ is equal to $D E$, and $A D$ to $B E$. I. 34 . But AD is equal to $A B$; Constr. therefore the four straight lines $A B, A D, D E, E B$ are equal to one another;
that is, the figure ADEB is equilateral.
Again, since $A B, D E$ are parallel, and $A D$ meets them, therefore the angles $B A D, A D E$ are together equal to two right angles ;

1. 29.

but the angle BAD is a right angle ;
Constr: therefore also the augle $A D E$ is a right angle.
And the opposite angles of a parallelogram are equal ; 1. 34. therefore each of the ancles DEB, EBA is a right angle :
that is the figur: "DEB is rectangular.
Hence it is a square, and it is described on AB.

> Q.F.F.

Corollary. If one angle of a parallelogram is a right angle, all its angles are right angles.

$$
6-2
$$

Propostrion 47. 'Theorim.

In a righle-rmgled triamyle the squmber described one the
 the other trow sides.

Let $A B C$ be a right-angled triangle, having the angle BAC a right angle :
then shall the square described on the hypotenuse BC be equal to the sum of the squares described on BA, AC.

Construction. On BC describe the square BDEC; I. 46. and on $B A, A C$ describe the squares $B A G F, A C K H$. Through A draw AL parallel to BD or CE; i. 31. and join AD, FC.

Proof. Then because each of the angles BAC, BAG is a right angle,
therefore CA and AG are in the same straight line. I. 14.
Now the angle CBD is equal to the angle FBA, for each of them is a right angle.

Add to each the angle ABC:
then the whole angle $A B D$ is equal to the whole angle $F B C$.

'Them in the triangles $A B D, F B C$,

 Becamse $A B$ is equal to $F B$, and $B D$ is equal to $B C$, falso the angle ABD is equal to the angle FBC ; therefore the tringle $A B D$ is equal to the triangle $F B C$. I. 4.Now the parallelogram BL is double of the triangle ABD, for they are on the same base BD, and between the same parallels BD, AL.
I. 41.

And the square $G B$ is double of the triangle $F B C$, for they are on the same base FB, and between the same parallels FB, GC.
I. 41.

Jint donhles of equals are equal :
Ax. 6.
therefore the parallelogram BL is equal to the square GB.
In a similar way, by joining $A E, B K$, it cam be shewn that the parallelogram CL is "pual to the square CH.
Therefore the whole square $B E$ is equal to the sum of the squares GB, HC :
that is, the square described on the hypotenuse BC is equal to the sum of the squares described on the two sides $B A, A C$.
Q.E.D.

Notre. It is not necessary to the proof of this Proposition that the three squates should be described extermal to the triangle $A B C$; and since cach square may be drawn either towards or aucay from the triangle, it may be shewn that there are $2 \times 2 \times 2$, or cight, possible constructions.

ENERCISBS.

1. In the figure of this Proposition, shew that
(i) If BG, CH are joined, these straight lines are parallel;
(ii) The points $\mathrm{F}, \mathrm{A}, \mathrm{K}$ are in one straight line;
(iii) $F C$ and $A D$ are at right angles to one another;
(iv) If $G H, K E, F D$ are joined, the triangle $G A H$ is equal to the given triangle in all respeets; and the triangles $F B D, K C E$ are each equal in area to the triangle $A B C$.
[See Ex. 9, p. 73.]
2. On the sides $A B, A C$ of any trimgle $A B C$, sigumes $A B F G$, ACKH are described bith toward the trinnto, or both on the sido renote from it : shew that the straight lines $B H$ and $C G$ are equal.
3. On the sides of any tringhe $A B C$, epuilatem triangles $B C X$, $C A Y, A B Z$ are deseribed, all "xtermally, or all towards the triangle: shew that $A X, B Y, C Z$ are atl ergual.
4. The square deseribed on the diagomal af a gicen square, is double of the given square.
5. ABC is an equilutered trimule, und AX is the propendicular drarn from A to BC : shew that the suly 'e on AX is three times the squate on BX .
6. Describe a square equal to the sum of two given squares.
7. From the vertex A of a triangle $A B C, A X$ is drawn perpendicular to the base: shew that the difference of the squares on the sides $A B$ and $A C$, is cyual to the difference of the squares on $B X$ and $C X$, the segments of the base.
8. If from any point O within a triangle $A B C$, perpendiculars $O X, O Y, O Z$ are drawn to the sides $B C, C A, A B$ respectively; shew that the sum of the squares on the segments $A Z, B X, C Y$ is egual to the sum of the squares on the serments $A Y, C X, B Z$.

Proposition 47. Alfervative Proof.

Let $C A B$ de a rigit-angled triangle, having the angie at A a right angle:
then shall the square on the hypotenuse $B C$ be equal to the sum of the squares on BA, AC.
hures $A B F G$, 1 on the side wro oqual.
iangles BCX, the triangle:
en square, is
mrpendiculur liree times the
squares.
wn perpondiis on the sides BX and CX ,
erpendiculars ctively; shew CY is egual to

```
F'
```

le at A is right to the sum of
$0_{1:} A B$ descrine the square $A B F G$. 1. 46. From $F G$ and $G A$ cat ofl respectively $F D$ and $G K$, each equal to $A C$.

On GK inserthe the splumo GKEH: 1. 14 . thea HG and GF arn in the same strairht line. 1.11. Join CE, ED, DB.
It will tirst he shewn that the figne CEDB is the square on CB.
Now $C A$ is eplual to $K G$; add to cach $A K$: therefore CK is equal to AG. Similurly $D H$ is rylml to $G F$:
heace the fotr limes $B A, C K, D H, B F$ areall cqual.
Then in the trinngles BAC, CKE,

 therefore the triangles BAC, CKE are equal in all respects. I. 4. Similarly the four triangles BAC, CKE, DHE, BFD may be shewn to be cipalal iall respucts.
Therefore the four straight lines BC, CE, ED, DB are abl equal; that is, the ficure CEDB is equilaternl.
Again the angle CBA is equal to the angle DBF ; Proved. add to each the angle $A B D$:
then the angle $C B D$ is cpual to tho angle $A B F$:
therefore the angle CBD is a right augle.
Hence the figure CEDB is the waure on BC. Def. 28.
And EHGK is equal to the square on $A C$. Coustr.
Now the sumate CEDB is made up of the two triangles BAC, CKE, and the rectilimeal tigure AKEDB;
therefore the square CEDB is equal to the triangles EHD, DFB together with tho same rectilineal figure;
but these make up, the sinuares EHGK, AGFB:
hence the square CEDB is equal to the sum of the squares EHGK, AGFB:
that is, the square on the liypotenuse $B C$ is equal to the sum of the sduares on tle two sides CA, AB.
(2. L. 1).

Obs. The fol owing propprties of a square, though not formally enumeiated by luclid, are employed in subsequent proofs. [See I. 48.]
(i) The squares on equal straight lines are equal.
(ii) Equal squares stand upon equal straight lines.

Proposition 48. Timeorm.

If the square described on mo side of a tritengle be equal to the sum of the squares described on the other two sides, then the angle contained by these two sides shell be a right angle.

Let $A B C$ be a triangle; and let the square described on $B C$ be equal to the sim of the squares described on $B A, A C$: then shall the angle EAC be a right angle.
Construction. From A draw $A D$ at right angles to $A C ; 1.11$.

$$
\begin{gathered}
\text { and make AD equal to AB. } \\
\text { Join DC. }
\end{gathered}
$$ Constr.

Proof. Then, because $A D$ is equal to $A B$, Constr
then the sum of the squares on $C A, A D$ is equal to the sum of the squares on CA, AB.

But, because the angle DAC is a right angle, Constr: therefore the square on DC is equal to the sum of the squares on CA, AD.
I. 47 .

And, by hypothesis, the square on BC is equal to the sum of the squares on $C A, A B$;
therefore the square on $D C$ is equal to the square on $B C$:
therefore also the side DC is equal to the side BC.
Then in the triangles DAC, BAC,
Because $\left\{\begin{array}{r}\text { DA is equal to } \mathrm{BA}, \\ \text { and } A C \text { is common to both; } \\ \text { also the third side DC is equal to the third side } \\ \text { BC; }\end{array}\right.$
Because $\left\{\begin{array}{c}\text { DA is equal to } \mathrm{BA}, \\ \text { and } A C \text { is common to both; } \\ \text { al th third side } D C \text { is equal to the third side } \\ \text { BC }\end{array}\right.$ therefore the angle DAC is equal to the angle BAC. I. 8. But DAC is a right angle;

Constr. therefore also BAC is i right angle.
Q.E.D.

TILEOREAS AND EXAMPLES ON BOOK I.

yle be equal o sidess, then iyht angle.
escribed on On BA, AC:
le.

AC; 1.11.
I. 3.

Constr. re on AB.
to the sum
Constr. un of the I. 47 . o the sum e oll BC: e BC.

Constr:
third side
lioved. BAC. I. 8 . Constr. Q.E.D.

INTRODUCTORY.

HHNTS 'TOWARDS THE: SOLUTHON OF GEOMETRICAK EXERCLSES. ANALYSLS. SYNTHESIS.

It is commonly found that exercises in Pure Geometry present to a heginuer fiar more difficulty than examples in any other Inanch of Elementary Mathematics. This seems to be due to the following causos.
(i) The main Propositions in the text of Euclid must be not merely understood, but tharoughly digested, hefore the exercises depending upon then can be successfully attempted.
(ii) The variety of such exercises is practically mbinited; and it is impossible to lay down for their treatment any definite methots, such as the student has been acenstomed to find in the rules of Elementary Arithmetic and Algebra.
(iii) The arrangement of Euclid's Propositions, thongh perhaps the most coneineiney of all forms of argment, ationds in most cases little chos as to the way in which the proof or construction uas discoucred.
lu, "s propositions we arranged syntheticaily : that is to say, iney stan't from the hypothesis or data; they next proceed to a construction in accordance with postulates, and problems ahealy solved; then hy successive steps based on known theorems, they finally establish the result indicated by the enunciation.

Thus Geometrical Synthesis is a building up of kinoun results, in order to obtain a new result.

But as this is not the way in which construct:ons or proofs are usually discovered, we draw the attention of the student to the following hints.

Begin by essaming the result it is desired to establish; then by working backwards, trace the consequences of the assumption, and try to ascertain its dependence on some simpler theorem which is ahrady known to be true, or on some condition which surgests the necessary construction. If this attempt is successful, the steps of the argument may in general he re-arangel in reverse order, and the comstruction and proof presented in a synthetic form.

This muravelling of the conditions of a proposition in order to trace it back to some earlier prineiple on which it depends, is called geometrical analysis: it is the matmal way of attacking most exercises of a more difficult type, and it is especially adapted to the sohntion of problems.

These directions are so general that they camot be said to anommt to a method: all that ean be clained for Geometrical Analysis is that it furmishes a mode of secerching for a suygestion, and its success will necessinily depend on the skill and ingenuity with which it is employed: these may be expected to eome with experience, but a thorough grasp of the chief Propositions of Enclid is essential to attaming then.

The pratical application of these hints is illustrated by the following examples.

1. Construct an isosceles tiangie harm! , ginen the base, and the sum of one of the equal sides and the perpendicnlar drawn from the vertex to the base.

Let $A B$ be the given base, and K the sum of one side and the perpendicular drawn from the vertex to the base.

Analysis. Suppose $A B C$ to be the required triangle.
From C draw $C X$ perpendicular to $A B$:
then $A B$ is biseeted at X.
Now if we produce XC to H , making XH equal to K ,
it follows that $\mathrm{CH}=\mathrm{CA}$; and if AH is joined,
we notice that the angle $\mathrm{CAH}=$ the angle CHA .

1. 5.

Now the straight lines XH and AH can be drawn before the position of C is known;

Hence we have the following construction, which we arrange synthetically.
ion in order h it depends, ay of attackis especially
ot be said to - Geunctrical ching for a on the skill y be expected he chief Pro-
crated by the
base, aud the ran firm the
e side and the

1. 26 .

HA. I. 5 . re the position

Synthesis.
Bisect AB at X :
from X draw $X H$ perpendicular to $A B$, making $X H$ equal to K. Join AH.
At the point A in HA, make the angle HAC equal to the angle $A H X$; and join CB.

Then ACB shall be the triangle required.
First the triangle is isosceles, for $A C=B C$.
Again, since the angle $H A C=$ the angle $A H C$,
I. 4.
$\therefore H C=A C$.
Constr.
I. 6 .

To each and CX ;
then the sum of $A C, C X=$ the sum of HC, CX

$$
=H X \text {. }
$$

That is, the sum of $A C, C X=K$. Q.E.E.
2. To divide a given straight line so that the square on one part may be double of the square on the other.

Let $A B$ be the given straight line.
Analysis. Suppose $A B$ to be divided as required at X : that is, suppose the square on $A X$ to be double of the square on $X B$.

Now we remember that in an isosceles right-angled triangle, the square on the hypotenuse is double of the square on either of the equal sides.

This suggests to us to draw BC perpendicular to AB, and to make $B C$ equal to $B X$.

Join XC.
Then the square on $X C$ is double of the square on $X B, \quad$ 1. 47 . $\therefore \quad \mathrm{XC}=\mathrm{AX}$.
And when we join $A C$, we notice that
the angle $X A C=$ the angle $X C A$.
I. 5.

Hence the exterior angle $C X B$ is double of the angle XAC.

1. 32.

But the angle $C X B$ is half of a right angle :
I. 32 .
\therefore the angle XAO is oncojourth of it right angle.
This supplies the clue to the following construction:-

Syntmesis. From B draw BD perpendieular to $A B$; and from A draw AC , making BAC one-fouth of a right angle. From C, the intersection of $A C$ and $B D$, draw $C X$, making the angle $A C X$ equal to the angle BAC.

Then $A B$ shall be divided as required at X.
For since the angle $X C A=$ the angle $X A C$,
$\therefore \quad \mathrm{XA}=\mathrm{XC}$.
I. 6.

And because the angle $B X C=$ the sum of the angles $B A C, A C X$, I. 32. \therefore the angle $B X C$ is half a right angle; and the angle at B is a right angle; therefore the angle $B C X$ is lanlf a right angle; 1. 32. therefore the angle $B X C=$ the angle $B C X$;
$\therefore B X=B C$.
Hence the square on $X C$ is double of the square on $X B: \quad 1.47$. that is, the square on $A X$ is double of the square on $X B$. q.v.r.

I. UN THE HDENTICAL EQUADITY OF TRLANGLES.

Sce Propositions 4, 8, 26.

1. If in a triangle the perpendicular from the vertex on the base biseets the base, then the triangle is isoseeles.
2. If the bisector of the vertical angle of a triangle is also perpendicular to the base, the triangle is isosceles.
\cdots. If the bisector of the vertical angle of a triangle also bisects the base, the triangle is isusceles.
[Produce the bisector, and complete the construction after the manner of 1.16.$]$
3. If in a triangle a pair of straight lines drawn from the extremities of the wase, making equal angles with the sides, are equal, the triangle is isosceles.
4. If in a triangle the perpendiculars drawn from the extremities of the base to the opposite sides are equal, the triangle is isosecles.
5. Two triangles $A B C, A B D$ on the same base $A B$, and on opposite sides of 1 , are such that $A C$ is equal to $A D$, and $B C$ is equal to $B D$: shew that the line joining the points C and D is perpendienlar to $A B$.
6. If from the extremities of the base of an isosceles triangle perpendiculars are drawn to the opposite sides, shew that the straight line joining the vertex to the intersection of these perpendieulars bisects the vertical angle.
right angle.
lking the angle
I. 23.
7. 6.

C, ACX, I. 32.
le; \quad. 32.
on XB: 1. 47.
XB. q. v.r.
(LINS.
ex on the base
e is also per-
le also bisects
ion after the
from the exare equal, the
e extremities is isoseeles. d on opposite qual to BD : cular to AB . triangle perthe straight culars bisects
8. $A B C$ is a triangle in whieh the vertical angle $B A C$ is biseeted by the straight line $A X$: from B draw $B D$ perpendienlar to $A X$, and produce it to meet $A C$, or $A C$ produced, in E; then shew that $B D$ is equal to DE.
9. In n quadrilateral $A B C D, A B$ is equal to $A D$, and $B C$ is equal to $D C$: shew that the diagonal $A C$ biscets each of the angles which it joins.
10. In a quadriateral $A B C D$ the opposite sides $A D, B C$ are equal, and also the diagonals $A C, B D$ are equal: it $A C$ and $B D$ intersec+ at K, shew that each of the triangles $A K B$, DKC is isoseeles.
11. If one angle of a triangle be equal to the sum of the other two, the greatest side is double of the distance of its middle point from the opposite angle.
12. Turo right-angled triangles which hare their hypotemases equal, and one side of one equal to one side of the other, are identically equal.

Let $A B C, D E F$ he two Δ^{s} right-angled at B and E, having $A C$ equal to $D F$, and $A B$ equal to $D E$:
then shall the Δ^{s} be identically equal.
For apply the $\triangle A B C$ to the $\triangle D E F$, so that A may fall on D, and $A B$ along $D E$; and so that C may fall on the side of $D E$ remote from F.

Let C^{\prime} be the point on which C falls.
Then since $A B=D E$, \therefore B must fall on E;
so that $D E C^{\prime}$ represents the $\triangle A B C$ in its new position.
Now each of the $\angle \mathrm{S} D E F, \mathrm{DEC}^{\prime}$ is a rt. L ; Hylf.
$\therefore E F$ and $E C^{\prime}$ are in one st. line. I. I4. Then in the $\triangle C^{\prime} D F$, becanse $D F=D^{\prime}$, \therefore the $\angle D F C^{\prime}=$ the $\angle D C^{\prime} F$. 1. ${ }^{5}$. Hence in the two $\triangle^{s} D E F, D E C^{\prime}$,
 also the side DE is common to hoth;
\therefore the $\triangle^{s} D E F, D E C^{\prime}$ are equal in all respeets; 1. 26. that is, the $\triangle^{s} D E F, A B C$ are equal in all respeets.
Q.E.D.
13. If two triangles have two sides of the me equal to two sides of the other, each to cruch, wat have likewis? the anyles opposite to one pair of equal sides equal, then the congles opposito to the ohlier pair of equal sithis are cilher equal or supplementary, und in the former case the triangles ase cqual in all respects.

Let $A B C, D E F$ he two triangles, having the side $A B$ efgual to the side $D E$, the side $A C$ equal to the side $D F$, and the $\angle A B C$ equal to the $\angle D E F$; then shall the $\angle{ }^{s} A C B, D F E$ be either eqnal or snpptementary, and in the former case the triangles shall be equal in all respects.

If the $\angle B A C=$ thie $\angle E D F$, then the triangles are equal in all respeets.
But if the \angle BAC be not equal to the $\angle E D F$, one of them must be the greater.
Let the $\angle E D F$ be greater than the $\angle B A C$.
$\Lambda t D$ in $E D$ make the $L E D F^{\prime}$ equal to the $\angle B A C$.
Then the $\triangle * B A C, E D F '$ are equal in all respects.
I. 26 .

$$
\begin{aligned}
\therefore \mathrm{AC} & =\mathrm{DF}^{\prime} \\
\text { bit } \mathrm{AC} & =\mathrm{DF} ; \\
\therefore \mathrm{DF} & =\mathrm{DF}^{\prime},
\end{aligned}
$$

\therefore the $\angle D F F^{\prime}=$ the $\angle D F^{\prime} F$.
I. 5.

But the $L^{*} D F^{\prime} F$, DF'E are suppiementary, \therefore the $\angle{ }^{s}$ DFF', DF'E are supplementary :
that is, the \angle DFE, ACB are supplementary.

> Q.E.D.

Three eases of this theorem dezerve special attention.
It has been proved that if the angles ACB, DFE are not cqual, they are sumplementary:

And we know that of angles which are supplementary and imequal, one must be acute and the other obtuse.

4 to two sides of usile to one puir prir of equal
former cese the prir of equal
former cese the

B equial to the ABC equal to mal or shpplebe equal in all
I. 4 .
them must bo

BAC.
ects.
I. 26.

III/p.

1. 5.

I. 13 .
Q.E.n.
are not equal,
and unequal,

Coroldartes. Hence, in addition to the hypothesis of this theorem,
(i) If the ancles $A C B, D F E$, opposite to the two equal sides $A B$, $D E$ are both acinte, both obtuse, or if one of them is a right angle, it follows that these angles are equal,
and therefore that the triangles are equal in all respects.
(ii) If the two given angles are right angless or obtuse angles, it follows that the amorles ACB, DFE must be both achte, and therefore eqnall, hy (i) :
so that the triangles ane eipral in all respects.
(iii) If in each triangle the side opposite the given angle is not less than the other given side; that is, if $A C$ and DF are not less than $A B$ and $D E$ respectively, then the angles ACB, DFE cannot be greater than the angles $A B C, D E F$ respectively ;
therefore the angles $A C B, D F E$, are both acute; hence, as above, they are equal;
and the triangles $A B C$, $D E F$ are equal in all respects.

11. ON INEQU, ATITIES.

See Propositions 14, 17, 18, 19, $20,21, \varrho 1,25$.

1. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn through the vertex A, and terminated by the base $B C$, is less than $A B$.
2. ABC is a triangle, and the vertical ample BAC is biseetra by a straight line which meets the buse BC in X ; shew that BA is greater than EX, and CA greater than CX. Inence obtain "proof of a. 20 .
3. The perpentienlar is the shortesu straight line that can be Trarn fivom agiren point to a gicen straight line; and of others, that which is nearer to the perpendicular is less then the more remote; and two, and only two equal straight lines caro be drawn from : ie given point to the given straight line, one on each side of the perpendicular.
4. The sum of the distances of any point from the three angular points of a triangle is greater than half its perimeter.
5. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.
6. The perimeter of a quadrilateral is greater than the sum of its diagonals.
7. The sum of the diagonals of a quadrilateral is less in: n the smon of the forr straicht lines drawn from the ampular points to any given point. Prove this, and point out the exceptional case.
8. In a triangle any tro sides are together greater than twice the median which bisects the remainiug side.
[See Def.]. 73.]
[Produce the median, and complete the eonstruction after the manner of 1. 16.]
9. In any triangle the sum of the medians is less than the perimeter.
10. In a triangle an angle is acnte, obtuse, or a right angle, according as the median drawn from it is greater than, less than, or equal to half the opposite side.
[See Ex. 4, p. 59.]
11. The diagonals of a rhombus are megual.
12. If the vertical angle of a triangle is conteined by unequal sides, and if from the rerte. the medion ime the bisector of the antite are drann, then the mestian lies within the angle contained by the bisector and the longer side.

Let $A B C$ be a \triangle, in which $A B$ is greater than $A C$; let $A X$ be the median drawn from A, and $A P$ the bisector of the vertical $\angle B A C:$
then shall $A X$ lie between $A P$ and $A B$.
1rooluce $A X$ to K, making $X K$ eqmal to $A X$. Join KC.

Then the \triangle^{*} BXA, CXK may be shewn to be equal in all respects; I. 4. hence $B A=C K$, and the $\angle B A X=$ the $\angle C K X$.

But since $B A$ is greater tham $A C$, IIyp.

\therefore CK is greater than AC;
\therefore the $\angle C A K$ is greater than the $\angle C K A$:

1. 18.

that is, the $\angle C A X$ is greater than the $\angle B A X$:
\therefore the $\angle C A X$ must be more than half tho vert. $B A C$; hence $A X$ lies within the angle BAP.
Q.E.D.
13. If tho sides of a triangle are unequal, and if from their point of intersection three stratult lines are drann, namely the bisector of the rertical angle, the median, amd the perpendicular to the base, the jirst is intermediate in position and matmitude to the other turo.

1II. UN HARALLHLS.

See Propositions 27-31.

1. If a straight line meets two parallel straght lines, and the two interior angles on the same side are bisected; shew that the biscetors meet at right angles. [I. 24, 1. 32.]
2. The straight lines drawn from any point in the biseetor of an angle parallel to the arms of the angle, and teminated by them, we cyual; and the resulting figure is 1 thomb ras.
3. $A B$ and $C D$ are two straight lines intersecting at D, and the adjacent angles so formed are bisected: if through any point X in $D C$ a straight line $Y X Z$ be drawn parnhlel to $A B$ and meeting the bisectors in Y and Z, shew that $X Y$ is equal to $X Z$.
4. If two straght lines are paralle to two other straight lines. fach to each; mad if the nifles contaned by each pair are bisected; shew that the bisecting lines are parallel.
5. The middle point of mys straight line which meets two parallel straight lines, and is terminated by them, is equidistant from the parallels.
6. A straight line drawn between two parallels and terminated by them, is bisected; shew that myy other straight line passing through the middle point and terminated by the parallels, is also biseeted at that point.
7. If through a point equidistant from two parallel straight lines, two straight lines are drawn eutting the parallels, the portions of the latter thus intereepted are equal.

Problems.

8. $A B$ and $C D$ are two given straight lines, and X is a given point in $A B$: find a point Y in $A B$ suel that $Y X$ may be equal to the perpendicular distanee of Y from $C D$.
9. $A B C$ is an isosceles triangle; required to draw a straight line $D E$ parallel to the base $B C$, and meeting the equal sides in D and E, so that $B D, D E, E C$ may be all equal.
10. $A B C$ is any triangle; required to draw a straight line $D E$ parallel to the base $B C$, and meeting the other sides in D mad E, so that $D E$ may be equal to the sum of $B D$ and $C E$.
11. $A B C$ is any triangle; required to draw a straight line parallel to the base $B C$, and meeting the other sides in D and E, so that $D E$ may be equal to the difference of $B D$ and $C E$. II. L.

Ser Ironnsitions $3: 3,31$, and the deductions from these Prons. given on litge (it.

1. The straialit liue Irourn through the midlle point of a side of a triangle peralle to the base, biserts the remaining side.

Let $A B C$ le is \triangle, and Z the middle point
of the side AB. 'Throngh Z, ZY is chawn bur to $B C$; then shall Y le the midulepoint of $A C$.

Through Z draw $Z X$ paris to $A C$. \quad. 31 .
'Ihen in the $\triangle^{s} A Z Y, Z B X$,
lecanse $Z Y$ and $B C$ are par',
\therefore the $\angle A Z Y=$ the $\angle Z B X ;$ 1. 23. and becanse ZX and AC are part,
\therefore the $\angle Z A Y=$ the $\angle B Z X ;$ I. 29.

also $A Z=Z B: \quad$ Iyj. $\therefore A Y=Z X$.

1. 26.

But ZXCY is a dam by construction;

$$
\therefore Z X=Y C .
$$

I. 31.

Hence $A Y=Y C$;
that is, $A C$ is lisected at Y.
Q.E.D.
2. The straight line whirh joins the uidalle points of two sides of a trianyle, is purallel to the third sider.

Lent $A B C$ be at \triangle, and Z, Y the midalle points of the sides $A B, A C$:
then shall ZY be par to BC. Produce $Z Y$ to V , making: YV equal to $Z Y$.

Jin CV.
Then in the $\triangle^{s} A Y Z, C Y V$, Decause $\left\{\begin{aligned} \mathrm{AY} & =\mathrm{CY}, \quad \text { IIyp. } \\ \mathrm{Y} Z & =\mathrm{YV}, \text { colstro. }\end{aligned}\right.$
and the $\angle Z A Y=$ the $\angle V C Y$;
hence $C V$ is prar to $A Z$.
But CV is equal io $A Z$, that is, to $B Z$:
$\therefore C V$ is equal and pror to $B Z$:
$\therefore \mathrm{ZV}$ is equal and par to BC:
that is, $Z Y$ is par to $B C$.

1. 27 .

Hy/

1. 38.

Q.E.D.
[A second proof of this proposition mav be derived from r. 38, 39.]
3. The straight line which joins the middle points of two sides of a triangle is equal to halj the third side.
4. Shew that the threre straight limes which join the middle points of the sides of a triangle, divide it into jour triangles which are identically equal.
5. Ally straight line dran't from the revtere of a triangle to the base is liserted ing the straight line which joins the middle points of the sther sides aj the trimulde.
f. Given the three middle points of the sides of a triangle, construct the tri:mgle.
7. $A B, A C$ are two given straight lines, and P is a fiven point between them; required to draw through P a straight line terminated by $A B, A C$, and lisected ly P.
8. $A B C D$ is a prallelogran, and X, Y are the middle points of the opposite sides $A D, B C$: shew that $B X$ and $D Y$ trisect the diagoual AC.
9. If the middle points of adjacent sides af any quadrilateral be joined, the jigure thus jormed is a purallelogram.
10. Shew that the straight lines which join the midde points of opposite sides of a dathilateral, bisect one another.
11. The straight line which joins the midnle points of the oblique sides of a traprinum, is paral.el to the two parallel sides, and passes through the midelle points of the diagonals.
12. The straight line which joins the middle points of the oblique. sides of " trapezillm is cqual to half the sum of the parillel sides; and the poistion intererpted beflecen the diagonals is cqual to half the difiterence of the purallel sides.

Definition. If from the extremities of one straight lince perpendiculats are drawn to mother, the portion of the latter intercepted between the perpendiculars is satid to be the Orthogonal Projection of the first line upon the second.

Thus in the adjoining figures, if from the extemities of the straight line $A B$ the perpenticukars $A X, B Y$ are drawn to $P Q$, then $X Y$ is the orthogonai projection of AB on PQ .
13. A giten struight liue AB is bisected at C ; shew that the projections of AC, CB on any other sterlisht line arie equal.

Lact $X Z, Z Y$ be the projections of $A C, C E$ on any struight line $P Q$: then $X Z$. and $Z Y$ shail be equml.

Theon, A draw a straight line parallel to $P Q$, metin; CZ ., BY or these lines produced, in H, K.
I. 31.

Now $A X, C Z, B Y$ are parallel, for they are perp. to $P Q ; 1.28$.
\therefore the figures XH, HY are parm ;
$\therefore A H=X Z$, and $H K=Z Y$.
I. 34.

But the ouph C, the midale point of $A B$, a side of the $\triangle A B K$, CH las been drawn parallel to the side BK ;
\therefore CH biseets AK: Fix. 1, 1. 96.
that is, $\mathrm{AH}=\mathrm{HK}$; $\therefore \mathrm{XZ}=\mathrm{ZY}$.
Q.E.D.
14. If these parallel straight lines make equal intercepts on a fourth stemight line which meets thrm, they will also make "qual intercepts on any other struight line which meets them.
15. Biqual and parallel stiaight lines hare equal projections on any other straight line.
16. $A B$ is u given straight line bisected at O; and $A X, B Y$ are perpendiculars drawn from A and B on any other straight line: shew that $O X$ is equal to $O Y$.
17. AB is a giten struight line hisected at O : and AX, BY and OZ are perpendiculurs dram to any straight line PQ , which does not pass betucen A and B : shew that OZ is ciqual to half the sum of AX, BY.
[OZ is said to be the Arithmetic Mean between AX nad BY.]
18. $A B$ is n given strieht line bisected at O; and throngh A, B and O parallel straight lines are drawn to meet a given straght line PQ in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: shew that QZ is cumal to half the sum, or half the difference of AX and EY , aceording as A and B lie on the same side or on opposite sides of PQ .
the thero

t line $P Q$:

1; CZ, BY

1. 31.

Q ; 1. \because,

1. 34.

$\triangle A B K$,
$\mathrm{x} .1, \mathrm{p} .96$.
Q.e.b.
cepts on 1 quol inter-
ons on any
$X, B Y$ are line: shew

3Yomd OZ s not piss $A X, B Y$.
BY.]
rough A, B rainhlit line 1 lalf the same siux
19. To divide a gicen jinite storight line into any momber of c'qual perts.
['or example, required to divide the straight line $A B$ i ito) fire equal purts.

From A draw AC, a str" thame of un. limited tength, making nuy nagle with $A B$.

In $A C$ take any point P, and wamk off sucesssive puts $P Q, Q R, R S$, $S T$ anch equal to AP.
doin BT; and through P, Q, R, S draw paralleds to $B T$.

It may be shawi loy Lix. 14, 1, (18, that these parallets divide $A B$ into tive equal parts.]
20. If through an mald of a poraltet tram any straght line is dromen, the perpesticuls) droune to it trom the oppersile nagle is r'quol to the swm or diflirence of the perperneticolars drawn to it from the two remoming omyles, wecordin!! us the given straight line falls withont the porollelogrom, or intersects it.
[Through the opposite angle draw a straight line parallel to the given stainght line, so as to met the perpendicular from one of the remaining angles, produced if neces-ary: then apply I. 34 , I. \boldsymbol{D}_{1}. Or proceed us in the following example.]
21. From the angular points of a prallelogram perpendieulars are drawn to my straight line which is athont the parallelogram: shew that the sum of the perpenticulan, drawn from one pair of opposite angles is equal to the sum of those hawn from the other pair.
[Draw the diagonals, and from theiv pin of intersection let fall a perpendieular upon the given straght line. , we Lix. 17, p. 98.]
22. The sum of the perpendiculars drawn from any point in the babof an isoscelcs triangle to the equal sides i equal to the perpendicular drawn from either extremity of the base to the opposite side.
[It follows that the sum of the distances of any point in the base of an isosceles triangle from the equal sides is constant, that is, the same whatever point in the base is taken.]
23. In the base produced of an isosecles triangle any point is taken: shew that the difference of its distanees frim the cqual sides is constont.
24. The sum of the perpendiculars drawn from any point within an equilateral triangle to the three sites is equal the perpendicular drawn from any one of the angular points to the orposite side, and is therefore constant.

Problems.

[Problems marked (*) armit of more than one solntion.]
*2\%. Draw a straight line through a given point, so that the part of it interecpted between two given parallel straght lines may be of given length.
26. Draw a straight line parallel to a given straight line, so that the part intercepted between two other given straight lines may be of given length.
27. Draw a straight line equally inclined to two given straight lines that mect, so that the part intercepted between them may be of given length.
28. $A B, A C$ are two given straght lines, and P is a given point without the angle eontained by then. It is ropuired to draw through P a straight line to meet the given lines, so that the part intercepted between them may be equal to the part between P and the nearer line.
V. Misceldaneots theorems and benampers.

Chiefly on I. 32.

1. A is the rerter of an isosecles triangle ABC, rud BA is produced to D , so thut AD is equal to $\overline{\mathrm{B}}$; if DC is drome, shew that BCD is " right nugle.
2. The straight line joining the middle point of the ligpotemuse of a righe-augled triangle to the right cugle is equal to half the hypotemuse.
3. From the extremities of the base of a triangle perpendieulars are drawn to the elposite sides (produced if nceessary); shew that the straight lines whel join the middle point of the base to the feet of the perpendieulars are equal.
4. In a triangle $\mathrm{ABC}, \mathrm{AD}$ is Itravin perpendicular to BC ; and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the middle prints of the sidns $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ resplectively: shew thut rach af the angles $\mathrm{ZXY}, \mathrm{ZDY}$ is equal to the angle BAC.
5. In "right-angled triaugle, if a perpendicalar be dratra from the right anyle to the luppotennse, the two triangles thins formed are equidmatur to one ansuther.
6. In a right-angled triangle two straight lines are arann from the right angle, one bisicting the hapotemuse, the other perpemuicular to it : shew that they contain an angle equal to the difierence of the two acute angles of the triangle. [Sce above, Ex. 2 and Ex. 5.]
7. In a trimull, if a perpemdianlar be drane fiome one extremit! of the base to the hisectore of the reeticen anghe, (i) it will male with either of the sides comtaming the reetimal amgle an aughe equal to half the smm of the aumles at the louses (ii) it mill make arith the base an angle equal to hatf the thitiperence of the angles at the base.

Jet $A B C$ be the given \triangle, and $\wedge H$ tho bisector of the vertical $\angle B A C$.

Let CLK inect AH at right angles.
(i) Then shall each of the $\angle \mathrm{S} A K C, A C K$ bo equal to half the sum of the \angle " $A B C$, ACB.

In the $\triangle{ }^{9} A K L, A C L$,

the $\angle K A L=$ the $\angle C A L$,
Because $\left\{\begin{array}{l}\text { also the } \angle A L K=\text { the } \angle A L C, \text { beinin rt. } L * ; ~\end{array}\right.$
and AL is common to both Δ^{*};
\therefore the $\angle A K L=$ the $\angle A C L$.
I. 26.

Again, the $\angle A K C=$ the sum of the $\angle \mathrm{KBC}, \mathrm{KCB}$; 1. 32. that is, the $\angle A C K=$ the sinn of the $\angle * K B C, K C B$. To each add the $\angle A C K$,
then twice the $\angle A C K=$ the sum of the $\angle{ }^{\text {s }} A B C, A C B$, \therefore the $\angle A C K=$ half the sum of the $\angle{ }^{*} A B C, A C B$.
(ii) The $\angle K C B$ shall be equal to half the differenee of the $\angle S A C B, A B C$.

As before, the $\angle A C K=$ the sum of tho $\angle{ }^{s} K B C, K C B$.
To each of these add the $\angle \mathrm{KCB}$:
then the $\angle A C B=$ the $\angle K B C$ torether with twice the $\angle K C B$.
\therefore twice the $\angle K C B=$ the difference of the \angle " $A C B, K B C$, that is, the $\angle K C B=$ half the difference of the \angle " $A C B, A B C$.

Coroldars. If X be the middle point of the lase, and XL be joimed, it may be shewn iby E.x. 3, p. 37 , that XL is hat! BK; thut is, that XL is half the difference of the sides AB, AC.
8. In any triangle the angle contained by the bisector of the rertical amgle and the perpendicilar frome the revtex to the base is equel to half the differemee of the angles at the base.
[See Ex. 3, p. 5\%.]
9. In a triande $A B C$ the side $A C$ is protued to D, and the angles BAC, BCD are bisected by straight lines which meet at F; shew that they contain an angle equal to half the angle at B.
10. If in a right-angled triangle one of the acnte angles is donble of the other, shew that the hypotentse is donble of the shorter sitle.
11. If in a diagonal of a parallelogran any two points equidistant from its extremities be joined to the opposite angles, the figure thus formed will he also a parallelogram.
12. $A B C$ is a given equilateral triangle, and in the sides $B C, C A$, $A B$ the points X, Y, Z are taken respectively, so that $B X, C Y$ and $A Z$ are all eqnal. $A X, B Y, C Z$ are now drawn, intersecting in P, Q, R : shew that the thiangle $P Q R$ is equilateral.
13. If in the sides $A B, B C, C D, D A$ of a parallelogram $A B C D$ four points P, Q, R, S be taken in order, one in each side, so that $A P$, $B Q, C R, D S$ are all equal; shew that the figure $P Q R S$ is a parallelogram.
14. In the figure of 1 . 1 , if the circles intersect at F, and if $C A$ and $C B$ are prodnced to meet the circles in P and Q respectively; shew that the points P, F, Q are in the same straight line; and shew also that the triangle $C P Q$ is equilateral.
[Problems marked (*) admit of more than one solution.]
15. Through two given points draw two straight lines forming with a straight line given in position, an equilateral triangle.
*10. From a given point it is required to draw to two paralle straight lines two equal straight lines at right angles to one another.
*17. Three given straight lines meet at a point ; draw another straight line so that the two portions of it intercepted between the given lines may be equal to one another.
18. From a given point draw three straight lines of given lengths, so that their extremities may be in the same straight line, and intercept equal distances on that line.
[See Fig. to i. 16.]
19. Use the properties of the equilateral trianerle to trisect a given finite straight line.
20. In a given triangle inscribe a rhombus, having one of its angles coinciding with an angle of the triangle.
V. ON THE CONCURRENCE OF STR.MCHT LINES IN A TRLANGLE.

Definitions. (i) Thee or more straight lines are said to be concurrent when they meet in one point.
(ii) Threc or more points are said to be collinear when they lie unon one straight line.

We here give some propositions relating to the coneurrence of certain groups of straight lines drawn in a triangle : the importance of these theorems will be more fully appreeiated when the student is familiar with Books JIr. and In.
es $B C, C A$, CY and $A Z$ in $P, \mathbf{Q}, \mathbf{R}$:
ram $A B C D$ so that $A P$, a parallelo.
F, and if spectively ; line; and
on.]
es forming c.
vo parallel nnother.
w another etween the
en lengths, and inter5. to I. 16.] eet a given one of its

RIANGLE:

 e said to hen they acurrence : the imted when1. The perpendiculars draun to the sides of a triangle jrort their middle points are concurrent.

Let $A B C$ be a Δ, and X, Y, Z the iniddle points of its sites :
then shall the perp drawn to the sides from X, Y, Z be concurrent.

From Z and Y draw perps to $A B, A C$; these perpss since they eannot be parailel, will meet at point O.
A.c. 12. Join OX.

It is required to prove that OX is perp. to BC .
Join OA, OB, OC.
In the \triangle^{s} OYA, OYC, $Y A=Y C$,

Hyp.
and OY is common to both;
also the $\angle O Y A=$ the $\angle O Y C$, being rt. \angle :
$\therefore O A=O C$.

1. 4.

Similarly, from the $\triangle{ }^{*} O Z A, O Z B$, it may be proved that $O A=O B$.
Hence $O A, O B, O C$ are all equal.
Again, in the $\triangle^{*} O X B, O X C$
Hecaluse $\left\{\begin{array}{r}\mathrm{BX}=\mathrm{CX}, \\ \text { and } \times \mathrm{O} \text { is conmen to both ; } \\ \text { also } \mathrm{OB}=\mathrm{OC}:\end{array}\right.$
\therefore the $\angle O X B=$ the $\angle O X C$;
but these are adjacent $\angle{ }^{s}$;
\therefore they are rt. L^{s};
1ryp.
Iroced.
I. 8 .

Idef. 7.
that is, $O X$ is perp. to $B C$.
Hence the three perp ${ }^{\text {s }} \mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ meet in the point O.
Q. E. 1 .
2. The bisectors of the angles ay a trianthe sire comentrent.

Let $A B C$ be a \triangle. Bisect the $\angle{ }^{8} A B C$, BCA, by straight lines which must meet at some point 0 .
A.x. 12.

Join AO.

It is required to prove that AO biserts the $\angle B A C$.
From O draw OP, OQ, OR perp. to the sides of the Δ.

Then in the \triangle^{*} OBP, OBR,
the $\angle O B P=$ the $\angle O B R$,
Constr.
Because fand the $\angle \mathrm{OPB}=$ the $\angle \mathrm{OFB}$, being it. $\angle s$,
and $O B$ is common;
$\therefore O P=O R$.

1. 26.

Similarly from the $\triangle^{*} O C P, O C Q$, it may be shewn that $O P=O Q$, $\therefore \subset P, O Q, O R$ are all equal.
Again in the \triangle ORA. OQA,

Ex. 12, p. 91.

That is, $A O$ is the biscetor of the $\angle B A C$. Hence the bisectors of the three $\angle \mathrm{s}$ meet at the proint O . Q. E. J.
3. The bisectors of two exterior angles of a triangle and the bisector of the third angle atre concorrent.

Let $A B C$ be a \triangle, of which the sides $A B$, $A C$ are protuced to any point, D and E.
liseet the $\angle{ }^{3}$ DBC, ECB by straight lines which must meet at some point O . A.x. $1 巳$. Joiu AO.
It is required to proce that AO bisects the angle BAC.
From O draw OP, OQ, OR perp. to the sides of the Δ.

Then in the $\triangle^{s} O B P, O B R$,
Because $\left\{\begin{array}{r}\text { the } \angle O B P=\text { the } \angle O E R, \text { Constr } . \\ \text { alse the } \angle O P B=\text { the } \angle O R B, \\ \text { beingr } r t . ~ \\ L\end{array}\right.$

Similarly in the \triangle * OCP, OCQ, it may be shewn that $O P=O Q$:
$\therefore O P, O Q, O R$ are all equill.
Again in the $\triangle{ }^{s}$ ORA, OQA,
Decause $\left\{\begin{array}{c}\text { the } \angle \text { s } O R A, O Q A \text { are rt. L" } \\ \text { and the hylotemse } O A \text { is common, } \\ \text { also } O R=O Q ;\end{array}\right.$
\therefore the $\angle R A O=$ the $\angle Q A O$.
Proved. Ex. 12, 1. 91. That is, AO is the biscetor of the \angle BAC.
\therefore the bisectors of the two exterior $\angle^{*} D B C, E C B$, and of the interior $\angle \mathrm{BAC}$ mect at the point O.
Q.E.D.

4. The medians of a triangle are concmrent.

Jet $A B C$ be a \triangle. Jet $B Y$ and $C Z$ be two of its medians, and let them intersect at O.

Join AO,
and prodnce it to met BC in x.
It is required to shew that AX is the remoining median of the Δ.

Through C draw CK parallel to BY:
prodnce $A X$ to meet $C K$ at K.
Join BK.
T_{11} the $\triangle \mathrm{AKC}$,
beause Y is the middle point of $A C$, and $Y O$ is parallel to CK,

Ex. 1, p. 06 .

Apain in the $\triangle A B K$,
sinee Z and O are the midule points of $A B, A K$,
$\therefore \mathrm{ZO}$ is paraliel to BK.
Ex. 2, p. nf.
that is, OC is parallel to BK:
\therefore the figure BKCO is a parm.
But the diagonals of a parm bisect one another, Ex. is, p. 6t.
$\therefore X$ is the middle point of BC.
That is, $A X$ is a median of the \triangle.
Hence the three medians meet at the print O. Q.E.D.

Coromany. The three medions of a triangle cut one another at a point of trisection, the greater segment in corch leing torarls the amgular point.

For in the abore figure it has been proved that

$$
A O=O K,
$$

also that OX is half of OK;
$\therefore O X$ is half of OA :
that js, $O X$ is one third of $A X$.
fimilarly $O Y$ is one thind of BY, and $O Z$ is one third of $C Z$. Q.e.n.

By means of this Corollary it may be shewn that in any triangle the shorter median bisects the greater side.
[The point of intersection of the thre medians of a triangle is called the centroid. It is shewn in mechanics that a than trimentar plate will balance in my position about this point: therefore the centroid of a triangle is also its centru of gravity. 1
5. The perpendicnlars drawn from the rertices of a triangle to the opposite sides are coucurrent.

Let $A B C$ be in \triangle, and $A D, B E, C F$ the three perp drawn from the vertices to the opposite sides:
then shall these perp" be concurrent.
Through A, B, and C draw straight lines MN, NL, LM parallel to the opposite sides of the Δ.

Then the figure BAMC is a parin.
$\therefore A B=M C$.
Def. 26.
I. 34.

Also the figure $B A C L$ is a pa1m.
$\therefore A B=L C$,
$\therefore \mathrm{LC}=\mathrm{CM}$:
that is, O is the middle point of LM.
So also A and B are the middle points of $M N$ and $N L$.
Hence $A D, B E, C F$ are the perps to the sides of the $\triangle L M N$ from their middle points.

But these perps meet in a point: Ex. $\%$, p. 54. Ex. 1, p. 108. that is, the perp" drawn from the vertices of the $\triangle A B C$ to the opposite sides meet in a point.
[For another prof see Theorems and Examples on lbook 1H.]

1) Prinitions.

(i) The intersection of the perpendiculars drawn from the vertices of a triangle to the opposite sides is called its orthocentre.
(ii) The triangle fommed by joining the feet of the perpendiculars is called the pedal triangle.
VII. ON THE CONSTRUCPION OF TRIANGLES WITH GIVEN PARTS.

No general rules ean be laid down for the solntion of problems in this section; but in a few typieal cases we give constructions, which the sturent will find litcle difficnlty in adapting to other questions of the s:me class.

1. Construct a right-angled triangle, hurin! given the hypotenuse' and the sum of the remainings sides.
[It is required to construet a it. angled Δ, having is hypotenuse equal to the given straight line K, and the sum of its remaining sides equal to $A B$.

From A draw $A E$ making with $B A$ an \angle equal to half a rt. L. From centre B, witlo radius equal to K, describe a cirele eutting $A E$ in the points $\mathrm{C}, \mathrm{C}^{\prime}$.

From C and C^{\prime} draw perp $p^{s} C D, C^{\prime} D^{\prime}$ to $A B$; and join $C B, C^{\prime} B$. Then either of the $\triangle^{\triangle} C D B, C^{\prime} D^{\prime} B$ will satisfy the given conditions.

Note. If the given hypotenuse K be greater than the perpendicular drawn from B to $A E$, there will be two solntions. If the line K be equal to this perpendicular, there will be one solution; int if less, the prublem is impossible.]
2. Construct a right-angled triangle, having given the hypotenuse and the difference of the remaining sides.
3. Construct an isosceles right-angled triangle, having given the sum of the lypotenuse and one side.
4. Construct a triangle, having given the perimeter and the angles at the base.

[Let $A B$ be the perimeter of the required \triangle, and X and Y the \angle^{8} at the base.

From A draw AP, making the $\angle B A P$ equal to half the $\angle X$.
From B draw $B P$, making the $\angle A B P$ equal to lialf the $\angle Y$.
From P draw $P Q$, making the $\angle A P Q$ ecqual to the $\angle B A P$.
From P draw $P R$, making the $\angle B P R$ equal to the $\angle A B P$.
Then shall PQR be the required \triangle.]
5. Construct a right-angled triangle, having given the perimeter and one aeute angle.
f. Constrmet an isoseeles triangle of given altitude, so that its base may be in a giventraight line, and its two equal shome may bess through two fixed points.
[Sce 1ix. 7, p. 49.]
7. Constract an curiateral trianche havin: fiven the loneth of the perpendienlar drawn from one of the vertices to the opposite side.
8. Construct an isoceles triangle, having given the base, and the difference of one of the remuining sides and the perpendientar drawn from the vertex to the base.
[So fix. 1, p. 8s.]
9. Construct a trimgle, having given the hase. one of the angles at the base, and the smm of the remaming viles.
10. Gonstruct a triangle, having siven the base, ono of the angles at the base, and the difference of the remaining sides.
11. Construct a triangle, hating given the bewe, the diplerence of the entyle's at the base, and the differences of the remaining side's.

Het $A B$ be the given base, X the difference of the $\angle s$ at the base, and K the difference of the remaining sides.

Draw BE , making the $\angle \mathrm{AEE}$ equal to half the $\angle \mathrm{X}$.
From wentre A, with rat lius equal to K, describe a circle eutting $B E$ in D and D^{\prime}. Let D be the point of intersection nearer to B. Join AD aml produce it to C.

> Draw $B C$, mating the $\angle D E C$ equal to the \angle BDC.
> Then shall $C A B$ be the \triangle required. \quad Ex. 7, p. 101.

Norn. This problem is possiblo only when the piven difference K is greater than the perpendicular drawn from A to $B E$.]
19. Construct a triangle, having given the base, the difference of the angles at the base, and the sum of the remaining sides.
13. Construct a triangle, having given the perpendicular from the vertex on the lase, and the difference between each side and the adjacent segment of the base.

perimeter

so that its \& may pass . $7, \mathrm{p}, 4!\cdot]$
lenisth of posite side. base, and pendicular. . $1, \mathrm{p}$. ss.] the andes the angles dillerence sides.
the base,

7, p. 101. ference K ference of and the
14. Constrnet a trinngle, having given two sides and the median whieh bisects the remaining sitlo.
[Heo Ex. 1s, 1. 102.]
1.). Construct a trinngle, having biven one side, and the medims which lisect the two remanimg sides.
[Sceliz. to Fix. 1, p, 10.
1.et $B C$ be the given side. Take two-thiteds of eath of the given medims; hence constract the trimgle BOC. 'Ihe lest of the construction follows casily.]
16. Constract a triangle, huring giren its three medians.
[See Nig. to Fix. 4, p, 10\%.
Take two-thirds of each of the given motians, and eonstruct the triangle OKC. The rest of the construction follums cabily.]

vill. (N゙ Ambis.

See Propositions 35-15.

It must be malerstood that throughont this section the word equal as apllied to rectilineal figmons will be used as denoting equality of circe maless otherwise stated.

1. Shew that a prothelournm is bisiseted by en! straight lime which passes throngh the middle point of one of its diagonals. Lf. 2!), 26.$]$
2. Biscet a parallelogram by a straight line drawn through a given point.
3. Bisect a parallelogram by a straight line drawn perpendicular to one of its sides.
a. Bisect a parallelogram by a straight line drawn paratlel to a given straight line.
4. ABCD is a trapezian in which the side AB is paratlel to DC . Shew that its area is equal to the "rean of a parallelograme formed li! drawing throngl, X , the middle poinu of BC , a straight line purallel to AD. [1. 23), 26.]
5. A trapezium is equal to at paralleloram whose hase is half the smm of the parallel sides of the given figure, and whose altitude is equal to the perpendicular distance between them.
6. $A B C D$ is a traperium in which the side $A B$ is parallel to $D C$; shew that it is donble of the angle formed by joining the extremities of $A D$ to X, the middle poins of $B C$.
7. Shew that a traperinm is bisceted by the straight line which joins the middle points of its parallel sides.
[1.38.]

In the following group of Exercises the proofs depend chiefly on Propositions 3_{7} and 34 , and the two converse theorens.
9. If two straight lines $A B, C D$ intersect at X, and if the straight lines $A C$ and $B D$, which join their extremities are parallel, shew that the triangle $A X D$ is equal to the trinngle $B X C$.
10. If two straight lines $A B, C D$ intersect at X, so that the triangle $A X D$ is curual to the triangle $X C B$, then $A C$ and $B D$ are phtrallel.
11. $A B C D$ is a parahelogran, and X any point in the diaronal $A C$ prodneml; shew that the trameles XBC, XDC are equat. [See
Ex. 13, p. 61 .
12. $A B C$ is a triangle, and R, Q the middle points of the sides $A B, A C$; shew that if $B Q$ and $C R$ intersect in X, the triangle $B X C$ is cifunl to the quadrilateral $A Q X R$. [See Ex. $\overline{5}, \mathrm{p}$. 73.]
13. If the middle points of the sides of a quadrilateral be joined in order, the parallelogram so formed [see Ex. 9, 1. 97] is equal to half the given figure.
14. Two triangles of equal area stand on the same base but on opposite sides of it: shew that the straight line joining their vertices is bisected by the base, or ly the base produced.
15. The straight line which joins the naddle points of the diagomals of a trapezium is parallel to cach of the two parallel sides,
16. (i) A triangle is equal to the sum or difference of two triangles on the same base (or on equal lonses), if the altiturle of the jormer is equal to the sum or difference of the altitudes of the latter.
(ii) A triangle is equal ot the sum or difference of two triangles of the same altitude if the base of the tormer is equal to the sum or difference of the bases of the latter:

Similar statements hold good of parallelograms.
17. $A B C D$ is a parallelogram, and O is any point outside it; shew that the sum or difference of the triangles $D A B, O C D$ is equal to lalf the parallelogram. Distinguish between the two eases.

On the following proposition depends an important theorem in Mechanics: we give a proof of the thret ease, leating the sucond case to be dednced by a similar method.
inl chiefly ins.
le straight shew that
that the (1)BD we diagonal 1al. [See
the sides e BXC is
be joined equal to
se but on vertices
the diaides.
triangles - is equal
angles of or differ-
tside it; equal to

heorem

 seende18. (i) ABCD is a parallelogram, amal C ज al I point thout the angle BAD and its opposite verticnlangle:s whe the tringle OAC is squal to the sum of the triangles $O A D, O A 3$.
(ii) If O is within the angle BAD on opposite ver ical any? the triangle OAC is equat to the difference of the trimul't $O A$ OAB.

Case I. If O is without the $\angle D A B$ and its opp. vert. \angle, then $O A$ is without the parim $A B C D$: thervfore the perp. drawn from C to $O A$ is equil to the sum of the perp ${ }^{n}$ drawn from B and D to $O A$. [See Ex. 20, p. 9\%.]

Now the \triangle " OAC, OAD, OAB are upon the same lnse $O A$;
and the altitude of the $\triangle O A C$ with respect to this base has leen shewn to be equal to the sum of the altitudes of
 the $\triangle^{*} O A D, O A B$.
Therefore the $\triangle O A C$ is equal to the sum of the $\triangle^{\mathbb{B}} O A D, O A B$. [See Eix. 16, , 1, 110.]
Q.1:.1).
19. $A B C D$ is a parallelogram, and throurh O, my point within it, straight lines me drawn parallel to the sides of the parallelogitm; shew that the difference of the paralelegran; DO, BO is double of the triangle AOC. [See preceding theorem (ii).]
20. The area of a quadrilateral is equal to the area of a triangle havaly two of its sides equal to the diagronals of the given figure, and the included angle equal to either of the magles between the diafomals.
21. ABC is a triantle, and D is any point in AB : it is required to draw through D a straight lime DE to mert BC modnced in E , so that thi trianyle DBE may be cqual to the trianyle ABC.

[Join DC. Through A Araw $A E$ parallel to DC. I. 31. Join DE.
The $\triangle E B D$ shall be equal to the $\triangle A B C$. I. 37.J
H. E.
22. On a base of given length describe a triangle cyemito a given triangle and having an mgle egmat to anaglo of the given tringle.
23. Construct a triangle egual in ara to a given trimgle, and having a given nltitude.
24. On a base of given length construct a triangle equal to a fiven triangle, mad laving its vertex on a given straisht line.

2i. On a base of given length describe (i) an isosecles trimgle; (ii) a right-angled triangle, egual to a given triangle.
26. Constract a trimple erpund to the sum or difference of two given triangles. [See lix. 16, !'. 110.]
27. $A B C$ is a given triangle, and X given point: describe a triangle equal to $A B C$, having its vertex at X, and its base in the same struight line as BC .
28. ABCD is "quadriluteral: on the hetrie AB comstruct at trianyle squal in urea to ABCD , and huring the angle ut A commmon with the qumbriluterul.
[Join BD. Theronh C draw CX parallel to BD, meoting AD produced in X; join $B X$.]
29. Construct a reetilimeal digure rynal to a diren rectilimeal jigure, athe hurin! dimer side's by oure than the given figure.

Hence shew how to construct a trinnule s'qual to a diren rertilineal jigure.
30. $A B C D$ is a quadriatimat : it is required to construct a triande egual in nea to $A B C D$, having its vertex at a fiven point X in DC, and its base in the sime statight line as $A B$.
31. Construct a rhombus equal to a given parallelogram.

3:. -onstruct a parallelogram which shall have the same aren and perimeter as a given trangle.
33. Bisect et triangle l!!g astraight lime Iraum throngh one of it: anyular points.
31. I'risect a triangle by straight lines drawn throng one of its angular points.
[See Lix. 19, 1. 102, and 1. 38.]
35. Divite a triangle into any momber of emal parts by straight lines drawn through one of its angular points.
[Sce Ex. 19, p. 99, and г. 38.]
uto a given 11 triangle. ailugle, and muan to n ne.
les trimgrle;
chee of two : describe a in the sume
t "trian!le on with the
ing $A D$ pro-
rectilineal 4 rectilineal
ct a trimule nt in DC,
111.
same aren
lt me of its:

1 one of its and 1.38 .1 by straight , and I. 38.]
 point in ome of its sides.
[Lat $A B C$ be the given \triangle, mal P the given point ion the sides $A B$.

Biscet $A E$ ut Z; mul join $C Z, C P$.
Through Z draw $Z Q$ parallel to $C P$. Join PQ.
Then shall PQ hiseet the \triangle.
Hee Jix. 91, p. 111.1

37. Triscet a triamgle by straight limes dranen from " given point in one of its xides.
[Let $A B C$ be the given \triangle, and X the given point in the side BC.
Trisect BC at tho points P, Q. Nx, 19, p. 9\%. Join $A X$, and thongh P mul Q draw $P H$ mad QK parmllel to $A X$.

Join $X H, X K$.
These straight lines shall trinert the Δ; as may be shewn by joinin! $A P, A Q$.

Sce Lx. 2I, 1. 111.]

38. Cut off from a given trimule 1 fourth, fifth, sixth, or any part required by a straight line drawn from a given point in one of its sides.
[See Ex. 19, 1. !9, und Lix. 21, 1. 111.]
39. Disert " quadrilateral by " straight line ditan' throuthla an angular point.
[Two ennstruetions may be given for this problem: the first will be kughested ly Exereises 28 and :33, p. 11こ.

The second method proceets then.
Let $A B C D$ be the given guadrilatem, and A the given mgular point.

Join AC, BD, and biseet BD in X. Through X draw $P X Q$ parallel to $A C$, meting $B C$ in P; join $A P$.
Then shall AP bisect the quatrilateral. Join AX, CX, and use 1. 37, :38.]

40. Cut ofĭ from Ω given quadriateral a thirci, a fourth, a fifilh, or any part required, by a straight line drawn through a given angular point.
[See Exereises 28 and 35, p. 112.]
[The following Theorems depend on r. 47.]
41. In the figure of s .47 , :hew that
(i) the sum of the squanes on $A B$ and $A E$ is equal to the sum of the sumates on $A C$ and $A D$.
(ii) the suluare on EK is equal to the square on $A B$ with fonr times the simate on AC.
(iii) the sum of the syuares on EK and $F D$ is eyua? to five times the square on ESC.
42. If a straight line be divided into any two parts the square on the straight line is greater than the sumares on the two parts.
43. If the syume on one side of a triangle is less than the spuares on the remaining sides, the angle contaned by these : ides is acute; if greater, ubthec.
41. $A B C$ is a trimgle, right-inglat at A; the sibus $A B, A C$ are intersectal hy a suaght line $P Q$, ami $B Q, P C$ are joincol: shew that the sum of the :quares on $B Q, P C$ is equal to the snm of the squarcs on $B C, P Q$.
4.5. In a right-angled trimgle four times the sam of the squares on the medians which bisect the sides containing the right angle is equal to five timos the sidure on the hypotemase.
46. Describe a square whose arca shall be three times that of agoth syluate.
47. Divide a straght line into two parts smeh that the sum of their syuares shatl be equal to a given spuare.

IN. ON Ioct.

It is frequently required in the conrse of l'lane (ieometry to find the prsition of a print which satisfies given conditions. Now all problems of this type hitherto considered have been fomad to be capable of definite determination, though some admit of more than one solution: this however will not he the case if onl! one condition is given. For example, if we are asked to find a print which shatl be at a given distance from a given point, we wherve at once that the problem is indeteminute, that is, that it admits of an indefinite mmber of solntions; for the condition statal is satistied by any point on the eircumference of the circle describer from the given point as centre, with a sulins equal to the given distance: moreover this condition is natisfied by mother moint within or withont the circle.

Again, suppose that it is required to find a point at a given distance from a given straght line.

Here, too, it is obvious that there are an infinite number of such points, and that they lie on the two paralled straight lines which may he drawn on either side of the given stright line at the given fistance from it: finther, no point that is not on one or other of these parallels satisfies the given condition.

Hence we see that when one condition is assigned it is not sufficient to determine the position of a point absolutely, but it may have the effect of restricting it to some definite line or lines, straight or curved. This leads us to the following definition.

Deforitiox. The Locus of a point satisfying an assigned condition consists of the line, lines, or part of a line, to which the point is thereloy restricted; provided that the condition is satisfied by every point on such line or lines, and by no other.

A locus is sometines defined as the path traced out by a point which noves in accordance with an assigned law.

Thus the locus of a point, which is afrays at a given distance from a given point, is a circle of whith the given point is the centre : and the locus of a point, which is alwase at a given histance from a given straight line, is a pair of parallel straght lines.

TVe now see that in order to infer that a cortain line, so system of lines, is the locus of a point under a gren condition, it is necessary to prove
(i) that any point which fulfils the given condition is on the supposed locus;
(ii) that every point on the supposed locus satisfies the given condition.

1. Find the locks of a peint whirh is alarays "quidistant from two given points.

Inet A, B be the two given points.
(a) Let P le any point equidistant from A and B, so that $A P=B P$.

Bisect $A B$ at X, and join $P X$. Then in the $\triangle^{s} A X P, E X P$, $A X=B X$
Decause $\left\{\begin{array}{c}\text { and } P X \text { is common to both, } \\ \text { also } A P=B P\end{array}\right.$
Constr:
also $A P=B P$,
II! $/ 2$.
\therefore the $\angle P X A=$ the $\angle P X B ; \quad$ I. S.
and they are adjacent $\angle s$;
$\therefore P X$ is perp to $A B$.
\therefore Any point which is equidistant from A and B
 is on the straight line which bisects $A B$ at right angles.
(8) Also every point in this line is equidistant from A and B.

For let \mathbf{Q} be any point in this line.
Join $A Q, B Q$.
Then in the $\triangle^{s} A X Q, B X Q$,

$$
A X=B X \text {, }
$$

Hectuse $\left\{\begin{array}{l}\text { and } X Q \text { is common to both; } ; ~\end{array}\right.$
also the $\angle A X Q$ the $\angle B X Q$, being it. $\angle^{\text {b }}$;
$\therefore A Q=B Q$.

1. 4.

That is, Q is cquidistant from A and B .
Henee we conclude that the locus of the point equidistant from two given points A, B is the straight line which bisects $A B$ at right angles.
2. To find the Torns of the middle point of a straight line dramu jrom ", giren point to meet " giten straight line of anlimited length.

Let A be the given point, and $B C$ the given straight line of unlimited length.
(a) Let $A X$ be any straight line dawn through A to meet $B C$, and let P be its middle point.

Draw AF perp, to BC, and bisect AF at E.
Join EP, and prodnee it ind finitely.
Since $A F X$ is a \triangle, and E, P the middle points of the two sides $A F, A X$,
\therefore EP is parallel to the remaining side FX. Ex. 2, p. 96 .
$\therefore P$ is on the straiglit line which passes througle the fixed point \mathbf{E}, and is parallel to BC.
(β) Again, every point in EP, or EP produced, fulfils the required eondition.

$$
\text { For, in this straight line take any poine } Q \text {. }
$$

Join $A Q$, and produee it to meet $B C$ in Y.
Then $F A Y$ is a \triangle, and through E, the middle point of the side $A F, E Q$ is drawn parallel to the side FY,
$\therefore Q$ is the middle point of AY. Ex. 1, p. 96 .
Hence the required locus is the siraight line drawn parallel to BC , and passing through E, the middle point of the perp. from A to $B C$.

3．Find the locias of a point equidistant from two given inter－ secting straight lines． ［See Ex．3，p．49．］

4．Find the locus of a point at a given radial distance from the eireumferenee of a given circle．

5．Find the locus of a point whicin moves so that the sum of its distanees from two given intersecting straight lines of unlimited length is eonstant．

6．Find the locus of a point when the differences of its distances from two given intersecting straight lines of mimited length is eonstant．

7．A straight rod of given length slides between two straight rulers placed at right angles to one another：find the loens of its midale point．
［Sce Ex．2，p．100．］
8．On a given base as hypotenuse right－angled triangles are deseribed：find the locus of their vertices．

9．$A B$ is a given straight line，and $A X$ is the perpendieular drawn from A to any straight line passing through B ：find the loeus of the middle point of $A X$ ．

10．Find the locus of the vertex of a triangle，when the base and area are given．

11．Find the locus of the interseetion of the diagonals of a paral－ lelogram，of whieh the base and area are given．

12．Find the loeus of the intersection of the medians of a triangle described on a given base and of given area．

ぶ．ON゙ THE INTERSECTION OF LOCI．

It appears from various problems which have already been considered，that we are often required to find a point，the position of which is sulject to two given conditions．The method of loci is very useful in the solution of problems of this kind： for corresponding to each condition there will be a locus on which the required point must lie；hence all points which are common to these two loci，that is，ali the points of intersection of the loci，will satisfy both the given conditions．

Example 1．To construct a triangle，having giren the buse，the altitude，and the length of the median which bisects the lase．

Let $A B$ be the given lase，and P and Q the lengths of the altitude and median respectively：
then the triangle is known it is rertex is hown．
（i）Draw a straight line $C D$ parailel to $A B$ ，and at a distance from it equal to P ：
then the required fertere must lie on CD．
（ii）Again，from the midde point of $A D$ as centse，with radius equal to Q ，describe a cirele：
then the remuired vertex must lie on this circle．
Hence any points which are common to $C D$ and the cirele， satisfy both the given conditions：that is to say，if CD interscet the cirele in E ．F each of the pints of intersection might be the vertex of the required triamrle．This supposes the length of the median Q to be greater than the altitude．

Exampes：To find a point rifuidistant from three given points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ，which are not in the same straight line．
（i）The locus of points equidistant from A and B is the straight line $P Q$ ，which bisects $A B$ at right angles．1，1．115．
（ii）Similarly the locus of points equidistant from B and C is the straight line RS which biscets $B C$ at right angles．

Hence the point common to $P Q$ and $R S$ must satisfy both con－ ditions：that is to say，the point of intersection of $P Q$ and $R S$ will be equidistant from A, B ，and C ．

These prineiples may also be used to prove the theorems relating to concurrency already given on proge le：3．

Examplas．To prore that the bisectors of the amghes of＂triangle are concurvent．

Let $A B C$ be a triangle．
Bisect the $\angle S A B C, B C A$ ly straight lines BO, CO ：these must meet at some point 0 ．

A．x． $1 \underset{\text { ．}}{ }$
Join OA．
Then shall OA biseet the $\angle B A C$ ．
Now BO is the locus of points equi－ distant from BC，BA：Ex．3，1．49． $\therefore O P=O R$ ．
Similaly CO is the locns of points
 equidistant from $B C, C A$ ．

$$
\therefore O P=O Q \text {; hence } O R \quad O Q \text {. }
$$

$\therefore O$ is on the locus of points equidistant from $A B$ and $A C$ ： that is $O A$ is the bisector of the $\angle B A C$ ．
Hence the bisectors of the three $\angle s$ meet at the point O ．

It may happen that the data we the pohbern are so related to one another that the resulting loci do not intersect: in this case the problem is inmossible.

For example, if in Ex. 1, page 11s, the length of the given median is less them the given altitude, the straight line $C D$ will not be intersected by the circle, and no triangle can fultil the conditions of the problem. If the length of the median is equed to the given altitude, one point is common to the two loci ; and conseduently only onc solution of the problem exists: and we have secn that there are two solntions, if the median is greater than the altitude.

Tn examples of this kind the student should make a point of investigating the relations which must exist among the datal, in order that the problem may be possible ; and he must olnorve that if mader certain relations tero solutions are possible, and under other relations no solution exists, there will always he some intormadiute relation under which one and only one solntion is possible.

1:XAMPHES.

1. Find a point in a given straght line which is equidistant from two given points.
2. Find a point which is at given distances from each of two given straight lines. How many solutions are possible?
3. On a given base ronstruct a triangle, havin! given one angle at the base und the length of the opposite side. Firamine the relations. which mast exist anong the dutn in orler that therer may be two solntions, one solution, or that the problem may be impossible.
4. On the base of a given triangle construct a second triangle equal in area to the frrst, and having its vertex in a given straight line.

ש. Construct an isosecles triangle equal in area to a given triangle, and standing on the same base.
f. Find a point which is at a given distance from a given point, and is equidistant from two given parallel straight lines.

Book 11.

Book IT. deals with the arieats of reetangles and spuares.

Definilions.

1. A Rectangle is a parallelongorm which has one of its angles a right imgle.

It should be remembered that if a parallelogram has one right angle, all its angles are right angles.
[14. 1, p. 64.]
\because A rectangle is said to be contained ly any two of its sieles which form a right angle: for it is clear that both the form amd magnitude of a rectimgle are fully determined when the lengths of two such sides are given.

Thus the metangle $A C D B$ is said to be comtaimer by AB, AC; or ly CD , $D B:$ and it X and Y are two stampht lines equal respectively to $A B$ and $A C$, then the rectangle contained $b \underset{X}{ } X$ and Y is equal to the rectangle entained $1, y$ $A B, A C$.
[See Ex.] 2 , p. 64.]

After Proposition $: 3$, we shall use the abbreviation rect. $A B, A C$ to denote the recteningle contained biy $A B$ and AC.
B. In any parallolocian the figure formed ly either of the pamallegograms about a diaromal together with the two complements is called a gnomon.

Thas the shaded jortion of the amexed figure, consisting of the parahehgram EH together with the complements $A K, K C$ is the gnomon AHF.

The other gnomon in the figure is that which is made up of $A K, G F$ and $F H$, namely the gnomon AFH.

1.xrronuerons.

Pure Geometry make's no use of mmber to estimate the magnitude of the lines, angles, and tigners with which it deals: henee it requires no maits of mannitude such as the student is fimmiliar with in Arithanetic.

For exanıle, thongh feometry is concerned with the relative lengths of straight lines, it dows not seek to express those lengths in terms of yords, feet, w inches: similarly it does mot ask how many squate yonds or squetie feet a given digure contains, hor how many degices there are in a given angle.

This constitutes :un essential difference between the methorl of Pure Ceometry and that of Arithmetic and Algehna; at the sinue time a close comnection exists becween the results of these two methods.

Th the ease of Euclid's Book II., this commection rests mpon the fies that the number of "nits. of arene in or rectongular figure is jound by multiplying toyether the mambers of units of leneth in tevo celjacent sides.

For example, if the two sides $A B, A D$ of the rectangle $A B C D$ are respectively fowe and three inches long, and if through the points of division patallels are drawn as in the amexed figme, it is seen that the rectangle is divided into three rous, each containing form square inches, or into four columus, each contaning there square inches.

Hence the whole rectangle sontains 3×4, or 12 , square inches.

Similarly if $A B$ and $A D$ contain m and n units of length respectively, it follows that the rectangle $A B C D$ will contain mn units of area: further, if $A B$ and $A D$ are equal, each containing m units of length, the rectangle becomes a square, and contans $m{ }^{2}$ mits of area.
[It must be understood that this explanation implies that the lengths of the straight lines $A B, A D$ are commensurable, that is, that they can be expressed exactly in terms of some common unit.

This however is not always the case: for example, it may be proved that the side and diagonal of a square are so related, that it is impossible to clivite either of them into equal pats, of whinh the other contains an exact number. Such lines are said to be incommen-
surable. Hence if the adjacent sides of a rectangle are incommensurable, we camot chowic any linear unit in terms of whinch these sides may be cerertly expmssed; and thes it witl be impossible to subdivide the retangle into sububs of unit ara, as illastated in the
 further into the subject of incommensmable gmantities: it is sumticient to mint out that further knowhenge of them will convince the student that the area of a rectangle may be exprossed to an!! erenticed defree of accuracy by the protuct of the lengths of two adjucent sides, whether those leneths are eommensmablo or not.]

From the foregoing explanation we conchude that the rectangle

 "唯mbro. Aceordingly it will he found in the conne of book If. that several theorems relatiner to the areas of rectangles and sthates are analogots to well-known algelnatical formale.

In view of these pinciples the restangle contatined by two straight lines $A B, B C$ is somethes expresed in the form of a product. as $A B . B C$, and the spuate deseribed on $A B$ as $A B^{2}$. This notation, together with the signs + and - will he employed in the adlitional matter apmemed to this bowk; but it is not admitted into Liuldids trat becanse it is desimalbe in the first instance to emphasize the distinction between geometrieal magnitudes themselsen and the muncrical equivalents by which they may be expressulathentically.

Phobosiplos 1. 'Thmorba.

 into an!! mumbor of puits, the vectangle conteineed by the two straight limes is equeth to the sum of the vectungles conthined liy the mudirided stredight liue cend the sereroel purts of the divided line.

Let P and $A B$ be two straight lines, and let $A B$ be divided into any number of parts $A C, C D, D B$:
then shall the reetangle contained by $P, A B$ be equal to the sum of the rectangles contained by $P, A C$, by $P, C D$, and hy P. DB.

commen-

 ich these (0) to sub)ol in the to enter is sulitivince the mquired adjacent
catcongle

\therefore to the thint the flutie of Book 11. fles and by two lill of it as $A B^{2}$. inloyed it is not the first sal mato ich they
dividerd b!y the es rom1) puerts AB be equal P, CD,

From A draw $A F$ perp. to $A B$;

1. 11 . and make $A G$ requal to P. 1. 3. Through G draw $G H$ pir to $A B$; 1. 31 . mad through C, D, B diaw $C K, D L, B H$ pat ${ }^{1}$ to $A G$.
Now the fig. AH is mate up of the figs. AK, CL, Dit : and of these,
the fire. $A H$ is the woetangle contaned by $P, A E$; for the fig. $A H$ is contamod by $A G, A B$; and $A G$: P : and the fig. $A K$ is the rertangle eontamed hy $P, A C$; for the fis. $A K$ is contaned $\mathrm{ly} \mathrm{y} A G, A C$: med $A G=P$: also the lig. CL is the rectancle contained by $P, C D$; for the tig. $O L$ is contamed by $C K, C D$; and $C K=$ the ople side $A G$, and $A G P$: 1. 3. similarly the fig. $D H$ is the rectangle contained by $P, D B$.
\therefore the rectangle contained by $P, A B$ is equal to the sum of the rectangles contamed hy $P, A C, b y P, C D$, and by P, DB.
Q.E.H.

CORRESPONDHNG ALGERLIIICAL FORMULA.
In accordance with the principles explainet on phe 122 , the result of this proposition may be written thus:

$$
P \cdot A B=P \cdot A C+P \cdot C D+P \cdot D C .
$$

Now if the line P contains p units of length, and if $A C, C D, D B$ contain a, b, c units respectively,

$$
\text { then } A B=a+b+c
$$

and we have

$$
p(a+b+c)=p a+p b+p c .
$$

Proposition 2. Jheoren.

If a struighte lime is divided inlo anny two purvis, the squerere on: the: "hole: lime is equ"al to the sume of the reateregles comelained bis the whole line aned enche of the parts.

Let the stringht line $A B$ be divided at C into the two prits $A C, C B$:
then shall the sty. on $A B$ lin equat to the sum of the rects. contained ly $A B, A C$, ind by $A B, B C$.

$$
\begin{array}{ll}
\text { On AB deseribe the syuan ADEB. } & \text { I. } 46 . \\
\text { Thoogh C datiw CF pat' to AD. } & \text { 1. } 31 .
\end{array}
$$

Now the fig. $A E$ is made up of the figs. $A F, C E$: and of these,
the fig. $A E$ is the seq. on $A B$:
${ }^{\prime}$ 'onstr.
and the tior. $A F$ is the rectangle contained by $A B, A C$; for the fig. $A F$ is contamed by $A D, A C$; and $A D=A B$; also the lig. $C E$ is the rectumgle contained by $A B, B C$; for the tig. $C E$ is contatined by $B E, B C$; and $B E=A B$.
\therefore the sel. on $A B=$ the sum of the rects. contained by $A B, A C$, and ly $A B, B C$.

'The result of this monosition maty be written

$$
A B^{\prime}=A B \cdot A C+A B \cdot B C .
$$

Let $A C$ contain a units of length, and let $C B$ contain b units,

$$
\text { then } A B=a+b \text {, }
$$

and we have

$$
(a+b)^{2}=(a+b) a+(a+b) b .
$$

Proposition :3. Theory.

 cometainad by tho tho 1 miss.

Lat the straight line $A B$ le divided at C inter the two parts $A C, C B$:
then shall the rect. contained by $A B, A C$ bee arhat to the sq. on $A C$ tether with there rt. contained li $A C, C E$.

On AC describe the square AFDC;
I. 16.

1. 46.
1. 31.

E:
Constr. , AC;
$=A B$;
, BC;
$=A B$.
ines by
Q.E.D. and through B draw $B E$ parl to $A F$, meeting $F D$ produced in E. 1. 31.

Now the fig. AE is made up of the figs. $A D, C E$; :and of these,
the fig. $A E=$ the rect, contained $\bar{y} A B, A C$; for $A F$. AC ;
and the fig. $A D$ is the sip. on $A C$; Constr. also the fig. $C E$ is the rect. contained by $A C, C B$; for $C D=A C$.
\therefore the rect. entrained by $A B, A C$ is equal to the sq. on $A C$ together with the rect. contained by $A C, C B$. Q.E.D.

corresponding alembracal forme la.

This result may be written $A B \cdot A C=A C^{2}+A C \cdot C B$.
Let $A C, C B$ contain "and b units of length respectively,

$$
\text { then } \dot{A} B=u+b \text {, }
$$

and we have

$$
(a+b) n=a^{2}+a t,
$$

Note. It should he observed that Props. 2 and 3 are special cases of Prop. 1.

If "t straight lime is divided into amy two parts, the square on the whole lime is equal to the sum e of the squares on the two pries together with twee the restrengle contained boy the two puts.

Let the straight lime $A B$ be divided at C into the two pints $A C, C B$:
then shall the sig. on $A B$ be equal to the sum of the sig. on $A C, C B$, together with twice the rect. $A C, C B$.

$$
\begin{aligned}
& \text { On AC describe the spate ADEB; } \\
& \text { I. } 46 \text {. } \\
& \text { : mind join BD. } \\
& \text { Through C draw CF part to BE, meeting BD in G. " 'gl. } \\
& \text { 'though G draw HGK p:11' to AB. }
\end{aligned}
$$

It is first required to show that the fig. CK is the sq. On BC.

Because the straight line BGD moots the pars $C G, A D$,
\therefore the ext. ante CGE . the int. opp angle ADB. I. 29.
But $A B=A D$, hrimes sides of a suture;
\therefore the anglo $A D B=$ the angle $A B D$;

1. ${ }^{2}$.
\therefore the angle $C G E=$ the angle $C B G$.

$$
\therefore C B-C G .
$$

Ј. 6.
Sud the ole sides of the perm CK are equal ; 1. 34 . \therefore the tia. CK is equilateral ; and the mingle CBK is a right angle; Def. as. \therefore CK is a square, and it is described on BC. I. 46, Cor. Similinly the fig. HF is the sq. on HG, that is, the sq. On AO,
for $H G$ the opp. side $A C$.
I. 34

Again, the complement $A G$ the complement $G E$. 1.13 , Bint the fige. $A G$ ther met. $A C, C B$; for $C G$ CB. \therefore the two figs. $A G, G E$ twion the met. $A C, C B$.
*Non the sif. oll $A B=$ the fie. $A E$

- the hiss. HF, CK, AG, GE

HIM syl on AC, CB tomether witl twiwe the wert. AC, CB.
\therefore Hie sy. oin $A B$ ther smin of the seq\% on $A C, C B$ with

* For the purpose of otal work, this step of the prowf may comboniontly hr atraned as follows:

Now the sif. on $A B$ is equal to the fis. $A E$, that is, to the figs. HF, CK, AG, GE ; that is, to the sirl. on AC, OB together with twice the rect. $A C, C B$.

Corolastiv. I'arallelograms alout the diatgonals of is squabe are themselves squaros.
G. \quad : 1 .

CK is the

CG, AD,
DB. 1. 29.
I. $\%$
I. 6 .
$1 ; \quad 1.34$. Def. 28. 1. 46, Cm . t is, the sq.
I. 34
II. L.

Probosition \%. Theorma.

If a straight lime is divided equally and also mequally, the rectengle rontained by the unequal parts, and the square whe the line betwen the points of sertion, are together equal to the square on heelf the lime.

Let the straight line $A B$ be divided equally at P, and mequally at Q :
then the rect. $A Q, Q B$ and the sq. on $P Q$ shall be together equal to the sty. on PB.
On PB describe the square PCDB.
I. 46. Join BC.

Through Q draw QE par to BD, cutting BC in F. i. 31 . Through F draw LFHG par to AB.
Through A draw AG par to BD.
Now the complement $P F=$ the complement FD: I. $4: 3$. to each addel the tig. QL:
then the fig. PL the fig. QD.
But the fig. $P L=$ the fig. $A H$, for they are parms on equal hases and hetween the same part.

1. 36.

\therefore the tir. $A H=$ the tig. $Q D$.
To each add the fig. PF:
then the fig. $A F=$ the gnomon PLE.
Now the fig. AF the rect. $A Q, Q B$, for $Q B$ - $Q F$;
\therefore the rect. $A Q, Q B$ the gnomon PLE.
To each add the sq. on PQ, that is, the tig. HE ; II, 4. then the rect. $A Q, Q B$ with the sq. on $P Q$
the gnomon PLE with the fig. HE the whole fig. PD, which is the sq. on PB.

That is, the rect. $A Q, Q B$ and the sq. on $P Q$ are together equal to the sq. on PB.
Q. E. D.

Conomank: From this Proposition it follows that the difference of the squares on two straight liners is equal to the rectangle contained by their sum and difference.

For let X and Y be the given st. lines, of which X is the greater.

Draw AP equal to X , and produce it to B , making PB equal to
 $A P$, that is to X.

From PB cut off $P Q$ equal to Y.
Then $A Q$ is equal to the sum of X and Y, and $Q B$ is equal to the difference of X and Y.
Now because $A B$ is divided equally at P and unequally at Q,
\therefore the rect. $A Q, Q B$ with sq. on $P Q=$ the sq. on $P B ;$ II. \%). that is, the difference of the sqq. on $\mathrm{PB}, \mathrm{PQ}=$ the rect. AQ, QB, or, the difference of the sqq. on X and $Y=$ the rect. contained by the sum and the differenee of X and Y.

1. 46 .
F. 1. 31 .
2. 43.

pat ${ }^{\text {ms }}$ on
I. 36 .

QF ;
HE ; II. 4. the fig. HE

CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written

$$
\mathrm{AQ} \cdot \mathrm{QB}+P \mathrm{Q}^{2}=P B^{\prime \prime} .
$$

Let $\mathrm{AB}=2 a$; and let $\mathrm{PQ}=b$;
then AP and PB each $=a$.
Also $\mathrm{AQ}=a+b$; and $\mathbf{Q B}=a-b$.
Hence we have
or

$$
\begin{aligned}
& (a+b)(a-b)+b^{2}=a^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

EXERCISE.

In the abore figure shew that AP is hatj the sum of AQ and QB ; and that PQ is half their difference.

Proposition 6. Theorem.

If a straight lime is biserted and produced to any point, the rectangle contrinced b!, the urlole line thus produced, and the purt of it prorluerd, torgther with the squetre on hatf the line bisected, is rquert to the square one the straight line mate up of the half wad the purt produced.

Let the straight line $A B$ be hisected at P, and produced to \mathbf{Q} :
then the rect. $A Q, Q B$ and the siq. on $P B$ shall he together equal to the sq. on PQ.

On $P Q$ describe the square $P C D Q$.
I. 46 .

Join QC.
Through B draw $B E$ par ${ }^{1}$ to $Q D$, meeting $Q C$ in F. I. 31 . Through F draw LFHG par to AQ.
'Through A draw AG par' to QD.
Now the complement $P F=$ the complement $F D$. 1. 43.
But the fig. PF $=$ the fig. AH ; for they ane parm on rqual hases and between the same pars.

1. 36.

\therefore the tig. AH $=$ the fig. FD.
To each add the fig. PL;
then the fig. $A L=$ the gnomon PLE.
Now the fig. $A L=$ the rect. $A Q, Q B$, for $Q B=Q L$; \therefore the rect. $A Q, Q B=$ the gnomon PLE.
To each iudel the: sp. on PB, that is, the fig. HE ; then the rect. $A Q, Q B$ with the sq. on $P B$
$=$ the guonon PLE with the fig. HE $=$ the whole fig. PD, which is the square on $P Q$.
That is, the rect. $A Q, Q B$ and the $s q$. on $P B$ are together equal to the sq. on $P Q$.

CORRESBONDING ALCEBRAICALA FORNULA.

y point, uced, and on half right line
I. 46 .
F. I. 31.
D. I. 43. par mis on т. 36 .

HE ;
the fig. HE
e together Q.E.D.

This result may be written

$$
\mathrm{AQ} \cdot \mathrm{QB}+\mathrm{PB}^{\prime \prime}=P \mathrm{Q}^{\because}
$$

Let $A B=2 a ;$ and let $P Q=l$;
then $A P$ and $P B$ each $=u$.
Also $\mathrm{AQ}=a+b$; and $\mathrm{QB}=b-u$.
Hence we have
or

$$
\begin{aligned}
& (a+b)(b-a)+a^{2}=b^{2}, \\
& (b+a)(b-a)-b^{2}-a^{2} .
\end{aligned}
$$

Derinmon. If a point X is taken in a straight line $A B$, or in $A B$ produced, the distances of the point of section from the extremities of $A B$ are said to be the segments into which $A B$ is divided at X.

In the former ease $A B$ is
 divided internally, in the latter case externally.

Thus in the annexed figures the segments into which $A B$ is divided at X are the lines $X A$ and $X B$.

This definition enables us to include Props. 5 and 6 in a single Enunciation.

If a straight line is bisected, and also dirided (intermally or e.rtermally) into two mequal seqments, the rertengle contained liy the unequal seqments is equal to the difference of the squares on half the line, and on the line betueen the points of section.

ENERCLSE.

Shew that the Enunciations of Props. is and if may take the fullowing form:

The rectangle contained by tro straight lines is equal to the difference of the squares on hatif their smm and on holf their difference.
[Sce Ex., p. 129.]

Proposithon 7. 'Theorem.

If a straight line is diceided into any two puerts, the sum of the squares on the whole line and on one of the parts is equal to twiee thers rectamle contained liy the whole and theet puert, toycther with the square on the other prert.

Let the straght line $A B$ be divided at C into the two parts AC, CB :
then shall the sum of the sig. on $A B, B C$ be equal to twice the rect. $A B, B C$ together with the sq. on $A C$.

On AB describe the square ADEB.

1. 46 .

Join BD.
'Through C draw CF par to BE, meeting BD in G. 1. 31 . 'Ilrough G draw HGK pur to AB.

Now the complement $A G=$ the complement $G E ; \quad$ 1. 13 . to each add the tig. CK :
then the fig. AK . . the fig. CE.
But tine lig. $A K=$ the rect. $A B, B C$; for $B K=B C$.
\therefore the two tigs. $A K, C E=t$ wice the rect. $A B, B C$.
liut the two tigs. AK, CE make up the gnomon AKF and the lig. CK :
\therefore the gnomon AKF with the fig. $C K=$ twice the rect. $A B, B C$.
'fo each iddl the fig. HF, which is the sq. on AC : then the gnomon AKF with the figs. CK, HF
$=$ twice the rect. $A B, B C$ with the sif. on $A C$.
Now the sqq. on $A B, B C$ the figs. $A E, C K$
$=$ the gnomon AKF with the figs. CK, HF
\therefore twice the rect. $A B, B C$ with the sq. on AC.

CORRESPONDIN: ALGEBRAICAL FORMULA.
The result of this proposition may be written

$$
A B^{2}+B C^{2}=2 A B \cdot B C+A C^{-}
$$

Let $A B=u$, and $B C=b$; then $A C=u-b$.
Hence we have

$$
\begin{aligned}
& a^{2}+b^{2}=2 a b+(a-b)^{2} \\
& (a-b)^{2}=a^{2}-2, a b+b^{2}
\end{aligned}
$$

Proposition s. Theorem.
If a struight line be divided into anty tu: $\mathrm{In}^{\prime \prime}$ its, joun times the rectengle contained by the whole live chel one of the parts, together with the square on the other part, is equal to the square on the straight line which is mule up of the whole and that part.
[As this proposition is of little importance we merely give the figure, and the leading peints in Euclid's proot.]

Let $A B$ be divided at C.
Produce $A B$ to D, making $B D$ equal to BC.

On AD describe the squate AEFD; and complete the construction as indicated in the figure.

Euclid then proves (i) that the figs. $C K, B N, G R, K O$ are all equal.

(ii) that the tigs. $A G, M P, P L, R F$ are all equal.

Hence the eight figures named above are four times the sum of the figs. AG, CK ; that is, four times the fig. AK; that is, four times the rect. $A B, B C$.

But the whole fig. $A F$ is made up of these eight figmes, together with the fig. $X H$, which is the sq. on $A C$:
hence the sq. on $A D$ form times the rect. $A B, B C$, together with the sig. on AC.
Q.E.D.

The accompanying fighe will suggest a less cumbrous proof, which we lease as an Exercise to the student.

Proposition 9. Theorem.

If a straight line is divided equally and also unequally, the sum of the squares on the two unequal parts is twice the sum of the squares on half the line and on the line between the points of section.

Let the straight line $A B$ be divided equally at P, and mequally at Q :
then shall the sum of the sig. on $A Q, Q B$ lee twice the slim of the scut. on AP, PQ.

$$
\begin{array}{cc}
\text { At P draw PC at rt. angles to AB; } & \text { I. } 11 . \\
\text { and make PC equal to AP or PE. } & \text { I. } 3 \text {. } \\
\text { Join AC, BC. } & \text { Throng h Q draw QD par to PC; } \\
\text { Th. } 31 . \\
\text { The though D draw DE pan to AB. } & \\
\text { Join AD. }
\end{array}
$$

Then since $P A=P C$, Constr:
\therefore the angle $P A C=$ the angle PCA. I. 5 .
And since, in the triangle APC, the angle APC is a rt. angle,
hence each of the angles PAC, PCA is halt it rt. angle.
So 'o, catch of the angles PBC, PCB is half a rt. angle.
\therefore the whole angle $A C B$ is a rt. angle.
Again, the ext, angle CED the int. opp. angle CPB, I. 29 . \therefore the angle CED is a rt. angle:
and the angle ECD is half it rt angle. Prompt.
\therefore also the angle EDC is half art. angle; 1. :30. \therefore the angle $E C D=$ the angle $E D C$;

$$
\therefore E C=E D
$$

1. 6.

Igain, the ext. angle $D Q B=$ the int. opp. angle CPB. I. 29. \therefore the angle DQB is a rt. ingle.
And the angle QBD is half a rt. angle; Proved. \therefore also the angle QDB is half a rt. angle: 1.32 . \therefore the angle $Q B D$ the angle QDB;

$$
\therefore Q D-Q B .
$$

1. 6.

Now the sq. on $A P=$ the sq. on $P C$; for $A P=P C$. Constr. But the sy. on $A C=$ the sum of the sig. on $A P, P C$, for the angle APC is a rt. angle.

1. 47.

\therefore the sq. on AC is twice the sq. on AP.
So also, the sq. on CD is twice the sq. on ED, that is, twice the sq. on the opp. side $P Q$.
I. 34.

Now the sirf. on $A Q, Q B=$ the siq. on $A Q, Q D$
$=$ the $s q$. on $A D$, for $A Q D$ is a it. angle;
I. 47 .
$=$ the sum of the squ. on $A C, C D$, for $A C D$ is a rt. angle; 1.47 . twice the se. on AP with twice the sq. on PQ. lroved.
That is,
the sum of the squ. on $A Q, Q B=$ twice the sum of the sequ. 1. : 11 .

Coustr: 1. 5. C is il it. Constr: $: \quad$ 1. $3:$. thgle.
rt. angle.
B, І. 29.
Pioned.

1. 3%.
I. 6 .

CORRESPONDING Ab(BRBRACAL FORNULA.

The result of this proposition m. y be written

$$
A Q^{2}+Q B^{\prime \prime}=2\left(A P^{\prime}+P Q^{\prime}\right) .
$$

Let $\mathrm{AB}=4 a$; and $\mathrm{PQ}=u$;
then AP and PB each $=a$.

$$
\text { Also } \mathrm{AQ}=a+b ; \text { and } \mathrm{QB}=a-b
$$

Hence we have

$$
(a+b)^{2}+(a-l)^{2}=2\left(t^{2}+b^{2}\right) .
$$

Phoposhthos 10. Theorem.

If a straight line is bisected avel yrooluced to any point, the stem of the squares on the uriote line these prodeced, and the the perer prodeced, is twice the stem of the spuenters on heti' the line bisected anel on the line made un :f the half" end the part moduced.

Let the st. line $A B$ be hisected at P, and prodnced to Q : then shall the sum of the siq. on $A Q, Q B$ be twice the sull of the sqq. on AP, PQ.

At P draw $P C$ at right augles to $A B$;
I. 11.
and make PC equal to PA or PB.

1. 3. Join AC, BC.
Through Q draw QD par to PC, to meet CB produced
in D;
and through D draw DE pari to $A B$, to meet $C P$ produced in E .

Join $A D$.
Then since $\mathrm{PA}=\mathrm{PC}, \quad \quad$ 'oustr: \therefore the angle $P A C=$ the angle PCA. I. \quad. And since in the triangle APC, the angle APC is a rt. angle,
\therefore the sum of the angles PAC, PCA is a rt. angle. 1. 32 .
Hence each of the angles PAC, PCA is half a rt. angle.
So also, each of the angles PBC, PCB is half a rt. angle. \therefore the whole angle $A C B$ is a rt. angle.
Again, the ext. angle CPB $=$ the int. opp. angle CED: I. 99 . \therefore the angle CED is a rt. angle:
and the angle ECD is half a rt. angle. Proved.
\therefore the angle EDC is half a rt. angle.

1. 32.

\therefore the angle ECD $=$ the angle EDC;
$\therefore E C=E D$.
I. 6.

Again, the angle DQB $=$ the alt. angle CPB.

1. $\because!$ \therefore the amgle DQB is in rt. anglo.
 that is, the angle QBD is half a it. ingle.
\therefore the angle QDB is half a rt. angle:
2. $3 \ddot{\partial}$
\therefore the angle $Q B D$ - the ingle $Q D B$;

$$
\therefore Q B=Q D
$$

1. 2.

Now the sy. on AP thesp. on PC ; for AP PC. Constr.
But the sq. on $A C=$ the sum of the sidy. on $A P, P C$, for the ang! APC is art. angle.

1. 17.

\therefore the sif. on AC is twice the sq. on AP.
So atso, the sif. on $C D$ is twice the sy. On ED, that is, twice the sq. on the opp. side PQ.

1. 31 .

Now the sqq. on $A Q, Q B=$ the $s q q$. on $A Q, Q D$
$=$ the sq. on $A D$, for $A Q D$ is a it. angle; 1. 17. the sum of the suy. on $A C, C D$, for $A C D$ is a rt. angle; 1.47 . $=$ twice the sep. on AP with twiec the sq. on PQ. Proved.
'lotht is,
the sum of the syy. On $A Q, Q B$ is twice the sum of the sq4. 011 AP, PQ.
(2. E. 1).
I. 31 . produced

C'unestr.
J. $\%$.
itt. angle',
e. 1. 32 . ingle. t. angle.

D : 1. $\because 9$.
Proced.

1. 3.2.
2. 6.

iced to Q : twice the
J. 11 . 1. 3. produced

CURBESPONDHAG ALGEBHASICAL FURMULA.

The result of this proposition may be written

$$
A Q^{2}+B Q^{2}=2\left(A P^{2}+P Q^{2}\right)
$$

let $\mathrm{AB}-2 a$; and $\mathrm{PQ}=b$;
then $A P$ and $P B$ cach $二 u$.
Also $\mathrm{AQ}=a+b$; and $\mathrm{BQ}=b--c$.
Hence we have

$$
(a+b)^{2}+(b-a)^{2}=2\left(a^{2}+b b^{2}\right) .
$$

EXERCISL:.

Shew that the enunciations of Props. 9 and 10 may take the following form :

The sum of the squares on two straight lines is equal to twice the sum of the squares on half their sum and on half their difference.

Phopusition 11. Problem.

To divide a given straight line into tue parts, so that the rectingle contained by the whole aul one part may be equal to the square on the other part.

Let $A B$ be the given straight line.
It is required to divide it into two parts, so that the rectangle contaned by the whole and one part may be equal to the square on the other part.

On AB describe the square ACDB. 1. 46.
bisect AC at E.
I. 10 .

Join EB.
Produce CA to F, making EF equal to EB.
I. 3.

On AF describe the square $A F G H$.
I. 46.

Then shatl $A B$ be divided at H, so that the rect. $A B, B H$ is equal to the sig. on AH.

Produce GH to meet CD in K.
Then because CA is bisected at E, and produced to F, \therefore the rect. CF, FA with the si. on $A E=$ the sq. on FE in. 6 .

$$
=\text { the sq. on EB. Constr. }
$$

But the sq. on EB the sum of the sqq. on $A B, A E$,
for the angle $E A B$ is a r r. ingle.
I. 47.
\therefore the rect. CF, FA with the sty. on $A E=$ the sum of the shq on AB, AE.

From these take the sq. on $A E$:
then the rect. $C F, F A=$ the sid. on $A B$.

But the rect. $C F, F A=$ the fig. $F K$; for $F A=F G$;
and the sq. on $A B=$ the fig. $A D . \quad$ Constr'. \therefore the fig. $F K=$ the fig. $A D$.
From these take the common fig. AK,
then the remaining fig. $F H$ the remaining fig. $H D$.
lint the tig. $H D=$ the rect. $A B, B H$; for $B D=A B$;
and the fig. $F H$ is the sq. on $A H$.
\therefore the rect, $A B, B H=$ the sq. on $A H$. Q.E.r.
Definition. A straight line is said to be divided in Medial Section when the reetangle contained ly the given line and one of its segments is equal to the sfuare on the other segment.

I'he stadent should olserve that this division may be internal or extrimal.

Thus if the straight line $A B$ is divided internally at H, and $C x$. termally at H^{\prime}, so that
(i) $\mathrm{AB} \cdot \mathrm{BH}=\mathrm{AH}^{\prime}$,
(ii) $\mathrm{AB} \cdot \mathrm{BH}^{\prime}=A H^{\prime 2}$,

we shall in either case consider that $A B$ is divided in medial section.
The case of internal section is alone given in Euclid nf, 11; but n straight line may be divided externally in medial section by a similar process. See Ex. 21, p. 146.

algebraicat illustration.

It is required to find a point H in $A B$, or $A B$ produced, such that $A B . B H=A H^{\circ}$.
Let $A B$ contain ε units of length, and let $A H$ contain x units;
then $\mathrm{HB}=a-x$:
and x must be such that $a(a-x)=x^{2}$,
or $\quad x^{2} \div a x-a^{2}=0$.
Thus the construction for dividing a straight line in medial section correspouds to the algebraical solution of this quadratic equation.

FXERCISEA

In the figure of in. 11, shew that
(i) if CH is produced to mect BF at L, CL is at right angles to BF :
(ii) if BE and CH mect at O, AO is at right angles to CH :
(iii) the lines $B G, D F, A K$ are parallel :
(iv) $C F$ is divided in medinl section at A.

Propmation 10. Theoma.

 drewen firoun cither of the "cute rengles to the orporsite side prowheret, the squme on the side suldeculing the ahruse cemple is
 "nyle, by twien the rectomgle coutained by the side one which, when produced, the perpendicutar, ,ialls, aned the liue intercepted without the triangle, between the perpendicular und the obtuse "nyll.

Let ABC be an obtuse-angled triangle, having the obtuse angle at C : and let $A D$ be drawn from A perp. to $B C$ prorluced:
then shall the sq. on $A B$ be greater that the sqq. on BC, CA, hy twice the rect. BC, CD.

Because BD is divided into two parts at C,
\therefore the sq. on BD the sum of the sqq. on BC, CD, with twice the rect. BC, CD.

To each add the sif. on DA.
Then the sqq. on BD, DA the sun of the sqq. on BC, CD, $D A$, with twice the rect. $B C$, Ω.
Sut the sum of the squ. on BD, DA the sq. on $A B$, for the angle at D is a 1 't. angle.

1. 47. Similarly the sum of the sqq. on $C D, D A=$ the sq. on $C A$.
\therefore the sq. on $A B=$ the sum of the sqq. on $B C, C A$, with twice the rect. BC, CD.
That is, the sq. on $A B$ is greater than the sum of the sqq. on BC, CA by twice the rect. BC, CD. Q.E.D.
[For alternative Enumciations to Props. 12 and 13 and Exercises, site 1. 14. 3

Proposimos 13．A＇mbobm．

In erery triangle the syunere on the side subtemting＂II nerute anyle，is lesss then the squares on the sides comentinin！ thut amyle，by twire the rerttuyle contrimed by cither of thess sides，and the straight lime interrepted betwern the perpen－
 angle．

Let $A B C$ be any triangle having the angle at，E an acute $a n^{-1 / b}$ ；and let $A D$ be the perp．deaw from A to the opp．side Bé
hen shatit the sy．on $A C$ be less than the sum of the sqq．＇n $A \mathrm{E}, \mathrm{B}$ ；，by twice the rect． CB, BD ．
Now rousy fall within the triangle $A B C$ ，as in Fig．1，of withoat it，as CuF． 2.
Becanse $\left\{\begin{array}{l}\{i n \\ \text { in Fig．1．} \\ \text { ing．}\end{array} \quad\right.$ BC is divided into two parts at D，
\therefore in both corsps，
the sum of the siq．on CB，BD＝twiee the reet．CB，BD with the sq．on CD．

II． 7.
To each add the sy．on DA．
Then the sum of the sqq．on $C B, B D, D A=$ twice the rect．
$C B, B D$ with the sum of the sq\％．on CD，DA．
But the sum of the sqq．on $B D, D A=$ the sq．on $A B$ ，

> for the angle ADB is a rt. angle.

I． 47.
Similarly the sum of the sqq．on $C D, D A=$ the sq．on $A C$ ．
\therefore the sum of the $s q q$ ．on $A B, B C=t$ wice the rect．$C B, B D$ ， with the sq．on AC．
That is，the sq．On $A C$ is less than the sqq．on $A B, E C$ by twice the rect．CB，BD．

Q．E．D．

Obs. If the perpendicular $A D$ roincilles with $A C$, that is, if $A C E$ is a right angle, it uny be shewn that the proposition morely repeats the result of I .17.

Nore. The result of Prop. 12 may be written

$$
A B^{2}=B C^{2}+C A^{2}+2 B C \cdot C D
$$

Remembering the definition of the Projection of a straight line given on page 97 , the student will see that this proposition may be emmeiated as follows:

In an obtase-angled triangle the stuare on the side opposite the obtuse aumle is greater than the sum of the squares on the side's contaikiuy the obtuse cumbe by trice the rectumgle contained b! "ithere of thase sides, and the projection of the other side upon it.

Prop. 1:3 may be written

$$
A C^{2}=A B^{2}+B C^{2}-2 C B \cdot B D
$$

and it may also be enunciated as follows:
In erery triangle the square on the side subtembing an arinte angle, is less than the supure's on the sides containing that amyle, b!y tur ice the rectangle coutaiued by either of these sides, and the projection of the other side upon it.

EXERCISES.

The following theorem should be noticed; it is proved by th, help of ir. 1 .

1. If four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are taken in order ou a straight line, the" rill

$$
A B \cdot C D+B C \cdot A D=A C \cdot B D
$$

2. If from one of the base angles of an isosecles triangle a perpendicular is drawn to the opposite side, then twice the rectangle contained by that side and the segment adjacent to the base is equal to the square on the base.
3. If one angle of a triangle is one-third of two right angles, shew that the square on the opposite side is less than the sum of the squares on the sides forming that angle, by the rectangle contained by these two sides.
[See Ex. 10, p. 101.]
4. If one angle of a triangle is two-thirds of two right angles, shew that the square on the opposite side is greater than the squares on the sides forming that angle, by the rectangle contained by these sides.
[Sce Lx. 10, p. 101.]

Proposition 1t. Problem.
T'o describe a square that slatl be equal to a yieen rectilineal figure.

Let A be the given rectilineal figure.
It is required to describe a square equal to A.
Describe the parim BCDE equal to the fig. A, and having the angle CBE a right angle. . J. 45.
Then if $B C=B E$, the fig. $B D$ is a square; and what was required is done.
But if not, produce $B E$ to F, making $E F$ equal to $E D$; $1 .: \%$ and hisect BF at \mathbf{G}.

1. 10.

From centre G, with radius GF, describe the semicirele BHF: produce DE to meet the semicircle at H .
Then shall the sq. on EH be equal to the given fig. A. Join GH.
Then because $B F$ is divided equally at G and unequally at E,
\therefore the rect. BE, EF with the sq. on GE $=$ the sq. on GF 11. 5.
= the sq. on GH.

But the sq. on $\mathrm{GH}=$ the sum of the sqq. on GE, EH; for the angle HEG is in rt. angle. 1. 47.
\therefore the rect. $B E, E F$ with the sq. on $G E=$ the sum of the shq. on GE, EH.

From these take the sq. on GE : then the rect. $B E, E F=$ the sq. on $H E$.
But the rect. $\mathrm{BE}, \mathrm{EF}=$ the fig. BD ; for EF ED; Coustr. and the fig. $B D=$ the given fig. $A . \quad$ Constr. \therefore the sq. on $\mathrm{EH}=$ the given fig. A. Q.E.F.
II. L.

THEOREAS AND EXAMPLES ON BOOK II.

ON 11. \& ANO 7 .

1. Shew by 1r. 4 that the squmer on a stroight lime is four times the square on holf the lime.
[This result is constantly used in solving examples on Book ir, especially those which follow from 11. 12 and 13.]
2. If a straight line is divided into any three parts, the square on the whole line is equal to the sum of the squares on the three parts together with twice the reetangles contained by each pair of these parts.

Shew that the algebraical formula corresponding to this theorem is

$$
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 b c+2 c a+2 a b
$$

3. In a right-angled triamgle, if a perpendicnlar is dramen from the right angle to the hypotemnse, the square on this perpembicular is equal to the rectomgle contained by the segments of the hypotemse.
4. In an isoseeles triangle, if a perpendienlar be drawn from one of the angles at the base to the opposite side, shew that the square on the perpendieular is equal to twice the reetangle contained by the segnents of that side together with the square on the segment adjacent to the base.
5. Any reetangle is half the rectangle eontained by the diagonals of the squares described upon its two sides.
6. In any triangle if a perpendicular is drawn from the vertical angle to the base, the sum of the siduares on the sides forming that angle, together with twiee the rectangle contained by the segments of the base, is equal to the square on the base together with twice the square on the perpendicular.

ON H. 5 ANI 6.
The student is reminded that these important propositions are both included in the following enturiation.

The difference of the squores on two straight lines is equal to the rectongle contained by their smm and difference.
7. In a right-angled triangle the squate on one of the sides forming the right angle is equal to the rectangle contained by the sum and difference of the hypotenuse and the other side. [I. 47 and II. 5.]
8. The difference of the squares on two sides of a triangle is equat to twice the rectangle contained by the base and the intercept betwern the middle point of the base and the foot of the perpendicular draun from the vertical angle to the base.

Let $A B C$ be a triangle, and let P be the middle point of the base $B C$: let $A Q$ be drawn perp. to $B C$.

Then shall $A B^{2}-A C^{2}=2 B C . P Q$.

First, let $A Q$ fall within the triangle.

$$
\begin{aligned}
& \text { Now } A B^{3}=B Q^{2}+Q A^{2} \text {, } \\
& \text { I. } 17 . \\
& \text { also } A C^{\prime 2}=\mathbf{Q C}^{2}+\mathbf{Q} \mathbf{A}^{2} \text {, } \\
& \therefore A B^{2}-A C^{2}=B Q^{2}-Q C^{2} \quad A x .3 \text {. } \\
& =(B Q+Q C)(B Q-Q C) \\
& \text { Ex. 1, p. 12!. } \\
& =2 B C . P Q \text {. } \\
& \text { Q.E.E. }
\end{aligned}
$$

The case in which AQ falls outside the triangle presents no difficulty.
9. The square on any stadight line drawn from the vertes of an isoseches triangle to the base is less than the square ou one of the equal sudes by the rectangle contained by the seguents of the base.
10. The square on any straight line drawn from the vertex of an isoseeles triangle to the base produced, is greater than the square on one of the equal sides by the rectangle contained by the segments into which the base is divided externally.
11. If a straight line is drawn throngh one of the angles of an equilateral triangle to meet the opposite side produced, so that the reetangle contained by the segmeuts of the base is equal to the square on the side of the triangle ; shew that the square on the line so drawn is double of the square on a side of the triangle.
12. If $X Y$ be drawn parallel to the base $B C$ of an isosceles triangle $A B C$, then the difference of the squares on $B Y$ and $C Y$ is equal to the rectangle contained by BC, XY. [See above, Ex. 8.]
13. In a right-angled triangle, if a perpendicular be drawn from the right anglo to the liypotenuse, the syuare on eititer side forming the right wagle is equal to tho reetangle contained by the liypotenuse und the segment of it adjacent to that side.

ox H. ! ANH 10.

14. Deduce Prop. ! from lrops. 4 and 5, using also the theorem that the square on a straight line is four times the square on half the line.

1i5. Deduce Prop. 10 from Props. 7 and 6, using also the theorem mentioned in the preceding Exercise.
16. If a straight line is divided equally and also unequally, the Fquares on the two mequal segments are together equal to fwiee the rectangle containce by these segnents together with four tines the square on the line between the points of section.

ON゙ II. 11.
17. If a straight line is divided internally in medial section, and. from the ifreator segment a part be taken equal to the less; : shew thet. the arrenter segment is also divided in medial section.
18. If a straight line is divided in medial section, the rectangle contained by the sum and difference of the segments is equal to the rectangle contained by the segments.
19. If $A B$ is divided at H in medial section, and if X is the middle point of the preater segment $A H$, shew that a triangle whose sides are equal to $\mathrm{AH}, \mathrm{XH}, \mathrm{BX}$ respectively musi be right-angled.
$\because 0$. If a straight line $A B$ is divided internally in medial section at H, prove that the sum of the squares on $A B, B H$ is three times the square on AH .
21. Divide a straight line extermally in medial section.
[1'roceed as in ir. 11, but instead of diawing EF, make EF' equal to EB in the direction remote from A; and on $A F$ ' describe the square $A F^{\prime} G^{\prime} H^{\prime}$ on the side remote from $A B$. Then $A B$ will be divided exterwally at H^{\prime} as required]

$$
\text { ON II.]: NND } 13 .
$$

29 . In a triangle $A B C$ the angles at B and C are acute: if E and F are the feet of perpmadiculars drawn from the opposite angles to the sides $A C, A B$, shew that the square on $B C$ is equal to the sum of the rectangles $A B, B F$ and $A C, C E$.
23. $A B C$ is a triangle right-angled at C, and $D E$ is drawn from a point D in $A C$ perpendicular to $A B$; shew that the rectangle $A B, A E$ is equal to the rectangle $A C, A D$.
24. In antitriangle the sman of the squares on tho sides is equal to
the theorem c on half the
the theorem
nequally, the to twice the ur times the
section, ant. : shew thest.
the rectangle is equal to
if X is the iangle whose t-angled.
ial section at ee times the

n.

lic $E F^{\prime}$ equal be the square livided exter-
ate: if E and angles to the e sum of the
twice the square on half the third side together with twice the square on the median which biscets the third side.

Let $A B C$ be a triangle, and AP the median liseeting the side $E C$. Then shall $A B^{2}+A C^{2}=2 B P^{\prime 2}+2 A P^{2}$.

Draw $A Q$ perp. to $B C$.
Consider the case in which $A Q$ falls within the triangle, but does not enincide with AP.

Then of the angles APB, APC, one must be obtuse, and the other acute: let APB be olotuse.

Then in the $\triangle A P B, \quad A B^{2}=B P^{2}+A P^{2}+2 B P . P Q . \quad 15.12$.
Also in the $\triangle A P C, A C^{2}=C^{2}+A P^{2}-2 C P . P Q . \quad 11.13$.

$$
\text { But } \mathrm{CP}=\mathrm{BP} \text {, }
$$

$\therefore \quad C P^{2}=B P^{2}$; and the rect. $B P, P Q=$ the rect. $C P, P Q$.
Hence adding the above results $A B^{2}+A C^{2}=2 \cdot B P^{2}+2 \cdot A P^{2} . \quad$ Q.v.1).
The student will have no difficulty in adapting this proof to the eases in which AQ falls without the triangle, or coincides with AP.
25. The sum of the squares on the sides of a parallelogram is equal to the sum of the squares on the diagonats.
26. In any quadrilateral the squares on the diagonals are together equal to twice the sum of the squares on the straight lines joining the middle points of opposite sides.
[Sce Ex. !, p. 97.]
27. If from any point within a rectangle straight lines are drawn to the angular points, the sum of the squares on one pair of the lines drawn to opposite angles is equal to the sum of the squares on the other pair.
28. The sum of the squares on the sides of a quadrilateral is greater than the sum of the squares on its diagonals by fonr times the square on the straight line which joins the middle points of the riagonals.
29. O is the middle point of a given straight line $A B$, and from O as centre, any circle is deseribed: if P be any point on its circumference, shew that the sum of the squares on $A P, B P$ is constant.
30. Given the base of a trimgle, and the sum of the squares on the sides forming the vertieal angle; find the locus of the vertex.
31. $A B C$ is an isosceles triangle in which $A B$ and $A C$ are equal. $A B$ is produced beyond the base to D, so that $B D$ is equal to $A B$. shew that the square on $C D$ is equal to the square on $A B$ together with twiee the square on BC.
32. In a right-angled triangle the sum of the squares on the straight lines drawn from the right angle to the points of trisection of the hypotennse is equal to five times the square on the line hetween the points of trisection.
13. Three times the sum of the sitares on the sides of a triangle is equal to four times the sum of the squares on the medians.
31. $A B C$ is a triangle, and O the peint of interection of its medians: shew that

$$
A B^{2}+B C^{2}+O A^{2}=3\left(O A^{2}+O B^{2}+O C^{-}\right)
$$

35. $A B C D$ is an matritatesal, and X the middle point of the straight line joining liw biseetions of the diagonals; with X as eentre any circle is described, and P is any point upon this cirele: shew that $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}+\mathrm{PD}^{\prime \prime}$ is centant, weing equal to

$$
X A^{3}+X D^{2}+X C^{2}+X D^{2}+4 X P^{2} .
$$

36. The squares on the dinconals of a trapezitum are together equal to the shm of the squares on its tro oblique sides, with twice the retangle contained by its paratlel sides.

PROBLEMS.

37. Construct a rectangle equal to the difference of two squares.
38. Divide a given straight line into two parts so that the reetangle contained by them may be eymal to the square described on a given staight line which is less than half the straight line to be divided.
39. (iiven a square and one side of a reetangle which is equal to the square, find the other side.
40. Produce a given straght line so that the rectangle contained by the whole line thus produced and the part prodnced, may he equal to the symare on another given line.
41. Produce a given straight line so that the rectangle contained by the whole line thus produced and the eriven lime shall be equal to the square on the part produced.
42. Divide a straight line $A B$ into two parts at \bigcirc, such that the rectangle contaiued by BC and another line X ma; be equal to the square on AC.
squares on ertex.
are equal. ual to $A B$. B together res on the nts of triare on the
es of a trimedians. tion of its
oint of the X as entre : shew that
re together with twice
ro squares. the the rectcribed on a line to be
ch is equal e contained wiy be equal le contained be equal to uch that the equal to the

PAR'T TI.

BOOK 11 I .

Book III. rloals with the propertios of Cireles.

Defintions.

1. A circle is : plane figure bounded by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another: this point is called the centre of the circle.

$\because . ~ A$ radius of a circle is a straight line drawn from the ematre to the circumference.
2. A diameter of a circle is at staight line drawn through the centre, and teminated both ways by the circumference.
3. A semicircle is the figure bounded by a diameter of a circle and the part of the circumference cut off by the diameter.

From these definitions we draw the following inferenees:
(i) The listance of a point from the eentre of a circle is less than the radins, if the point is within the circumference: and the distance of a point from the centre is greater than the radius, if the point is without the cireumference.
(ii) A point is within a cirele if its distance from the centre is less than the radius: and a point is without a circle if its distance from the centre is greater than the radius.
(iii) Cireles of equal radius are equal in all respects; that is to say, their areas and circumferences are equal.
(iv) \AA eirele is divided by any diameter into two parts which are equal in all respects.
5. Circles which have the same centre are said to be concentric.
(i. An are of a circle is any part of the circumference.
7. A chord of a rircle is the straight line which joins any two points on the circumferente.

From these definitions it may be seen that a chord of a circle, which does not pass through the centre, divides the circumference into two mequal ares; of these, the greater is called the major arc, and the less the minor arc. Thus the major are is greater, and the minor are less than the semicircumference.

The major and minor ares, into which a circumference is divided by a chord, are said to be conjugate to one another.
8. Chords of a eirele are said to be equidistant from the centre, when the perpendiculars drawn to them from the centre are equal: and one chord is said to be further from the centre than another, when the perpendicular drawn to it from the centre is greater than the perpendicular drawn to
 the otlier.
9. A sacant of a rircle is a straight line of indefinite length, which cuts the diremmference in two points.
10. A tangent to a circle is a straight line which meets the circmuference, but being produced, does not cut it. Such a line is said to touch the circle at a point; and the point is called the point of contact.

Hence a tangent may be detined as a straight line which passes through two roinci-
 dent points on the circumterence.
11. Circles are said to touch one another when they ment, but do not cut one another.

When each of the circles which mect is outside the other, they are said to touch one another externally, or to have external contact: when one of the circles is within the other, they are said to tonch one another internally, or to have internal contact.
12. A segment of a circle is the figure bounded by a chord and one of the two ares into which the chord divides the circumference.

The chord of a segment is sometimes called its base.
13. An angle in a segment is onc formed by two straight limes drawn from any point in the are of the segment to the extremities of its chord.

[It will be shewn in Proposition e1, that all angles in the same segment of a circle are ergul.]
if An angle at the circumference wi cude i.s one formed liy straight lines drawn from a point on the cireunference to the extremities of an are: such an angle is said to stand upon the are, which it subtemels.

15. Similar segments

 of circles are those which contain equal angles.
16. A sector of a circle is a figure bounded ly two radii and the are intercepted betwern them.

In addition to the symbols and abbreviations given on bige 10, we clall use the followint.

Proposition 1. Problem. Tho find the centre of a given circle.

Let $A B C$ be a given circle: it is required to find its centre.
In the given circle draw any chon $A B$, and bisect $A B$ at D.
I. 10 .

From D draw $D C$ at right angles to $A B$;
I. 11 . and produce DC to net the O "e at E and C. Bisect EC at F.
I. 10 .

Then shall F be the centre of the \odot ABC.
First, the centre of the circle must le in EC: for if not, let the centre be at a point G without EC.

Join AG, DG, BG.
Then in the \triangle^{*} GA, GDS,

$$
\begin{aligned}
& \mathrm{DA}=\mathrm{DB}, \\
& \text { and } \mathrm{GD} \text { is common; }
\end{aligned}
$$

Constr:
and $G A=G B$, for by supposition they are radii;
\therefore the $\angle G D A$ the $\angle G D B$;
\therefore these angles, being adjacent, are rt, angles.
Put the $\triangle C D B$ is a rt. angle; Constr.
\therefore the $\angle \mathrm{GDB}=$ the $\angle \mathrm{CDB}$, \quad A $x .11$.
the part equal to the whole, which is impossible.
$\therefore G$ is not the centre.
so it may be shown that no point outside EC is the centre ; \therefore the centre lies in EC.
$\therefore F$, the middle point of the diameter EC, must be the centre of the © $\mathcal{A B C}$.

Corollary. The straight lime which bisects a chord of "virile ut right any jos passes through o the centre.
[For Exert , see pa se 156.]

Propontion :-. 'Thsonem.
If ellly two points are twhirn in the rincunference of to circle, the chord which joins them, falls wition the cirele.

Let $A B C$ he a rimele, and A and B any two pmints on its $O^{\text {cr }}$:
then shall the chorl $A B$ fall within the circle.

> Find D, the centre of the $\odot A B C$;
> III. 1. and in $A B$ take any point E.

> Join DA, DE, DB.

In the $\triangle D A B$, because $D A=D B$, III. Def. 1.
\therefore the $\angle D A B=$ the $-D B A$.

1. 5.

But the ext. $\angle D E B$ is greater than the int. opp. $\angle D A E$;
I. 16 .
\therefore also the - DEB is greater tham the - DBE;
\therefore in the $\triangle D E B$, the side $D B$, which is opposite the greater angle, is greater than DE which is opposite the less: I. I!.
that is to say, $D E$ is less than a radius of the circle ; \therefore E falls within the circle.
So also any other point between A and B may be shewn to fall within the circle.

$$
\therefore A B \text { falls within the circle. } \quad \text { Q.e. D. }
$$

Definition. A part of a curved line is said to be concave to a point when, amy chord being taken in it, all straight lines drawn from the given point to the intercepted are are cut by the choril: if, when any chord is taken, no straight line drawn from the given point to the intercepted are is cut by the chord, the curve is said to be convex to that point.

Proposition 2 proves that the whole circumference of a circle is concave to its centre.

Propustrions 3. 'Theorem.

If a straight line draun througle the ceatre of a circle
bisects achord which docs not messe thromgh the centre, it shall rut it at right congles:
and, concersely, if it cut it ut righl nuyles, it shell bisect it.

Lat $A B C$ be a circle; and let $C D$ be an st. line drawn through the centre, and $A B$ a chord which does not pass through the centre.
friost. . Let $C D$ bisect $A B$ al F :
then shall $C D$ cut $A B$ at ret. ahgles.
Find E, the centre of the circle;
III. 1.
and join EA, EB.
Then in the \triangle^{*} AFE, BFE,
Becatase $\left\{\begin{array}{c}A F=B F, \\ \text { and } F E \text { is common : } \\ \text { ind } A E=B E, \text { being radio of the circle; } \\ \therefore \text { the }-A F E=\text { the } \angle B F E ; \quad \text { I. } 8 .\end{array}\right.$
\therefore these angles, being adjacent, are rt. angles,
that is, $D C$ cuts $A B$ at re ingles. e. E.1\%.
Concersely. Let $C D$ cut $A B$ at it. angles:
then shall $C D$ bisect $A B$ at F.
As before, find E the centre; and join $E A, E B$.
In the $\triangle E A B$, becat e $E A=E B$,
iII. Def. 1.
\therefore the $\angle E A B=$ the $\angle E B A . \quad 1 . \pi$ 'Then in the \triangle^{8} EFA, EFB,

$$
\therefore A F=B F
$$

1. 26.

Q. F. 1).
[F'or Lixercises, sce page 156.]

EXERCISES.

on l'roposition 1.

1. If two cireles intersect at the points A, B, shew that the line which joins their centres biseets their common chord $A B$ at right angles.
\because AB, $A C$ are two equal chomels of a circle; shew that the straight line which biseets the angle BA.C passes through the centre.
2. Tuo chords of a circle are given in position and maynitude: jiud the centre of the circle.
3. Describe is circle that shan pass through three giren points, which are not in the same straight liue.
4. l'ind the locus of the centers of cirches which priss thromgh two yire" poillts.
5. Deseribe a circle that shall pass throngh two given points, and have a given madius.
on Phoroshmos 2.
6. A straight liur caunot cut a citcle ill umse than turo priats.
ox Fhorosition 3.
8 . Throngh a given point within a circle draw a chord which shall be bisected at that point.
7. The parts of a straight line intereepted between the cireumferences of two coneentric cireles are equal.
8. The line joining the middle points of two parallel ehords of a circle passes through the eentre.
9. Find the locus of the middle points of a system of parallel chords drawn in a eircle.
10. If two circles eut one another, any two parallel straight lines drawn through the points of intersection to cut the eireles, are equal.
11. $P Q$ and $X Y$ are two parallel chords in a circle: shew that the points of intersection of PX, QY, and of PY, QX, lie on the straight line which passes through the middle points of the given chords.

Proposimion 4. Theorem.

If in a circle two chords cut one another, which do not both pass throagh the rentre, they camot both be bisected at their point of intersection.

Let $A B C D$ be a circle, and $A C$, $B D$ two chords which intersect at E, but do not both pass through the centre:
then AC and BD shall not lee both bisected at E.
Case I. If one chord passes through the centre, it is a diameter, and the centre is its middle point;
\therefore it camot be bisected by the other chord, which ly hypothesis does not pass through the centre.

Case IT. If neither chord passes through the centre; then, if possible, let E be the middle point of both; that is, let $A E=E C$; and $B E=E D$.
Find F, the centre of the circle:
iII. 1.
Join EF.

Then, hecause FE, which passes through the centre, bisects the chord $A C$,

And becanse FE, which passes through the centre, hisects the chord BD,
$11 y)^{\prime}$
\therefore the _ FED is a rt. angle.
\therefore the - FEC $=$ the $\angle F E D$,
the whole equal to its part, which is impossible.
$\therefore A C$ and BD are not both bisected at E. Q.E.b.
['or Lixereises, see page 158.]

Proposition 5. Theorem.

If two circles cut one another, they cannot have the same centre.

Let the two - $^{\circ}$ AGC, BFC cut one mother at C : then they shall not have the same centre. For, if possible, let the two circles have the same centre; and let it be called \mathbf{E}.

Join EC;
and from E draw any st. line to meet the O wes at F and G. Then, because E is the centre of the © AGC, $\quad I_{y p}{ }^{\prime}$. $\therefore E G=E C$.
And because E is also the centre of the $\odot \mathrm{BFC}, \|_{y p}$.

$$
\therefore \mathrm{EF}=\mathrm{EC} .
$$

$\therefore E G=E F$,
the whole equal to its part, which is impossible.
\therefore the two circles have not the sane centre.
Q.E.D.

EXERCISES.

ux Proposition 4.

1. If a parallelogram can be inseribed in a circle, the point of intersection of its diagonals mnst be at the centre of the circle.
2. Rectangles are the only parallelograms that can be inscribed in n circle.
on Proposition
3. Two cireles, which intersect at one point, must also intersect at another.

Proposition 6. Theorem.

If two circles touch one another internally, they cannot hace the same centre.

t C:
ecentre;
F and G.
c, $11 y l^{\prime}$.
$\mathrm{FC},\left\|_{y}\right\|^{\prime}$.
ble.
re.
(2. E. 1).
the point of circle.
be inseribed

Propostrion 7. Theorem.

If from any point within a circle which is not the centre, straight lines are dirmm to the circmujermee, the greatest is that which passes through the centre; and the least is that which, when produced backurards, passes through the centre:
and of all other such limes, that which is nenrer to the greatest is alvays greater then one more remote:
also treo equal straight lines, emb only tro, can be drancon fiom the gicen point to the circumferenef, one on euch side af the cliumeter.

Let $A B C D$ bee a circle, within which any point F is taken, which is not the centre: let FA, FB, FC, FG be drawn to the $O^{\text {er }}$, of which $F A$ passes through E the centre, and FB is nearer than FC to FA, and FC nearer than FG: and let FD be the line which, when produced hackwards, passes through the centre: then of all these st. lines
(i) FA shall be the greatest;
(ii) FD shall be the least;
(iii) $F B$ shall be greater tham $F C$, and $F C$ greater than FG ;
(iv) also two, and only two, eqnal st. lines can be drawn from F to the $\mathrm{J}^{\text {ce. }}$
Jin EB, EC, EG.
(i) Then in the $\triangle F E B$, the two sides $F E, E B$ are together greater tham the third side FB.

1. $\because 0$.

But EB-EA, being radii of the circle;
$\therefore F E, E A$ are together greater than FB;
that is, FA is greater tham تB.

Similarly FA may be shewn to be greater than any other st. hine drawn from F to the $O^{c e}$;
$\therefore F A$ is the greatest of aill such lines.
(ii) In the $\triangle E F G$, the two sides $E F$, $F G$ aro together greater than EG;
and $E G=E D$, being radii of the circle;
$\therefore E F, F G$ are together greater than ED.
Trake away the common part EF
then $F G$ is greater than $F D$.
Similarly any other st. line drawn from F to the $\cup^{\text {ae }}$ maty be shewn to be greater than FD.
$\therefore F D$ is the least of all such lines.

$$
\begin{equation*}
\text { Th the } \triangle^{\&} B E F, C E F \text {, } \tag{iii}
\end{equation*}
$$

Because $\left\{\begin{array}{c}B E=C E, \\ \text { and } E F \text { is common; } \\ \text { lut the }-B E F \text { is greater than the }-C E F ; \\ \therefore F B \text { is greater than FC. }\end{array}\right.$ Similurly it may be shewn that FC is greater than FG.
(iv) It E in FE make the $-F E H$ equal to the $-F E G$.
I. $\because 3$. Join FH.
Then in the \triangle^{s} GEF, HEF,
becinuse $\left\{\begin{array}{c}G E=H E, \\ \text { and } E F \text { is common; } \\ \text { also the }-G E F=\text { the } \angle H E F ; ~ C \text { (onsiti. }\end{array}\right.$

$$
\therefore F G=F H .
$$

I. 4.

Ind besides FH no other straight line can be drawa from F to the $\mathrm{O}^{\text {ce }}$ equmal to FG .

> For', if possible, let $F K=F G$.
> Then, leenuse FH - FG,
> $\therefore F K=F H$,
that is, a lime neare to FA, the greatest, is equal to a line which is mene remote; which is impossible. Proverh.
\therefore two, and only two, equal st. lines can ise drawn from F to the $O^{c e}$. Q.E. 1 .

Proposition 8. Theorem.

If from amy point withont ce rivele straight lines are dianen to the circunference, uf those which fall on the concore circomererence, ithe greatest is that which passes through the rentre: sume of others, that whirl is wearer the the areatest is wheryss grenter than one mare remote:
finther, of thase which fiell on the concese circmimerence, the lenst is that which, when montuced, puasies through the rentie; ant af others that which is netrer to the least is reluerys liss thetu oue nowe remole:
lastly, from the gicen point these con be drenen to the rimenference two, and only tuo, "qual straight lises, one on each side of the shomtest line.

L_{1} et BGD bee a circle of which C is the centre ; and let A lee any point outside the circle: let ABD, AEH, AFG, le st. lines drawn from A, of which AD passes through C, the centre, and $A H$ is nearer than $A G$ to $A D$:
then of st. lines drawn from A to the concave $O^{\text {ee }}$,
(i) $A D$ shall he the greatest, and (ii) AH greater than AG:
and of st. lines drawn from A to the convex $O^{\text {ce }}$,
(iii) $A B$ shall he the least, and (iv) $A E$ less than $A F$.
(v) Also two, and only two, equal st. lines cam be drawn fromi A to the $\mathrm{O}^{\text {an }}$.
Join CH, CG, CF, CE.
(i) Then in the $\triangle A C H$, the two sides $A C, C H$ are together greater than $A H$:
I. こ0.
but CH CD, heing radii of the circle;
$\therefore A C, C D$ are together greater than AH:
that is, $A D$ is greater than $A H$.
Similarly $A D$ may be shewn to be greater than any other st. line diawn from A to the concave O er
$\therefore A D$ is the greatest of all such lines.

Thi the \triangle^{s} HCA, GCA,
Becanse $\left\{\begin{array}{c}H C=G C, \\ \text { and } C A \text { is common; }\end{array} \quad\right.$ In. Mef: 1.
$\therefore A H$ is greater than $A G$. I. $\because 4$.
(iii) In the $\triangle A E C$, the two sides $A E$, $E C$ are together greater than AC :

$$
\text { but } \mathrm{EC}=\mathrm{BC} ; \quad \text { III. D. Def. } 1
$$

\therefore the remainder $A E$ is greater than the remainder $A B$.
Similarly any other st. line drawn from A to the conves $O^{c e}$ may be shewn to be greater than $A B$;
$\therefore A B$ is the least of all such lines.
(iv) In the $\triangle A F C$, because $A E$, EC are drawn from the, extremities of the base to a point E within the triangle,
$\therefore A F, F C$ are together greater than AE, EC. I. 21 .

$$
\text { But FC }=\mathrm{EC}, \quad \text { III. } D \rho f .]
$$

\therefore the remainder $A F$ is greater than the remainder $A E$.
(v) At C, in $A C$, make the $-A C M$ equal to the $\angle A C E$. Join AM.
Then in the two \triangle^{8} ECA, MCA,
Ber:inse $\left\{\begin{array}{c}E C=M C, \\ \text { and } C A \text { is common ; } \\ \text { also the } \angle E C A=\text { the }-M C A ; \quad \text { Constr. } 1 . \\ \therefore A E=A M ;\end{array}\right.$
and besides $A M$, no st. line can be drawn from A to the $O^{r e}$, equal to $A E$.

For, if possible, let $A K=A E$:

$$
\text { then because } \quad A M=A E, \quad \text { Poned. }
$$

that is, a 'ine neares to the shortest line is equal to a line which is mos remete; which is impossible. Proved.
\therefore two, and on ly two, equal st. lines can be drawn from A to the $O^{\prime \prime}$.
Q.E.D.

Where are the limits of that part of the circumference which is concave to the point A ?

Obs. Of the following proposition Euclid gave two distinct proofs, the first of which has the advantage of being direct.

Phopontios ! 9. Theorem. [First Proof:]
If from a point within a circle more than tho equal? straight lines ria be drew o to the circumference, the nt point is the country at he circle.

Let $A B C$ be a circle, and D a point within it, from which more than two equal st. lines are drawn to the $O^{\text {ce }}$, namely DA, DB, DC:
then D shall be the centre of the circle.

> Join AB, BC:
and bisect $A B, B C$ at E and F respectively. 1. 10.
Join DE, DF.
Then in the \triangle " DEA, DEB, Because $\left\{\begin{array}{lr}E A=E B, \\ \text { and } D E \text { is common; } \\ \text { and } D A=D B ;\end{array} \quad\right.$ Constr. \therefore the - DEA $=$ the - DEB ;
\therefore these angles, being adjacent, are rt. angles.
Hence ED, which bisects the chord $A B$ at it. angles, must pass through the centre. iII. 1. $C o r$.

Similarly it may be shewn that FD passes through the centre.
\therefore D, which is the only point common to ED and FD, must be the centre. Q.E.D.

Proposition 9. Theorem. [Second Proof.]

If from a peint within a civele move than taco equal struight lines com be drenon to the circumference, thet point is the centre of the circle.

Let $A B C$ be a circle, and D a point within it, from which more than two equal st. lines are drawn to the O ef, namely DA, DB, DC:
then D shall be the centre of the circle.
For, if not, suppose E to be the centre.
Join DE, and produce it to meet the $\mathrm{O}^{\text {re }}$ at F, G.
Then because D is a point within the circle, not the centre, and because DF passes through the centre E;
\therefore DA, which is nearer to DF, is greater that DB, which is more remote :
III. 7.
but this is impossibe, sime ly hypothesis, DA, DB, are equal.
$\therefore E$ is not the centre of the circle.

* And wherever we suppose the centre E to be, otherwise than at D, two at least of the st. lines DA, DB, DC may be shewn to be unequal, which is contrary to hypothesis.
$\therefore D$ is the centre of the © $A B C$.
(2.5.1).

[^1]Ohw. 'I'wo proofs of Proposition 10, both indire + were fiven by Suclic.

Probosimion (0). Theorban. [Finst Proof.]

One circle camot cut nonother nt more thren two points.

If possible, let DABC, EABC le two circles, entting one another at more than two points, namely at A, B, C.
Join AB, BC.

Draw $F H$, bisecting $A B$ at rt. angles ;
I. 10,11 .
and draw $G H$ bisecting $B C$ at rt, angles.
Then because $A B$ is a chord of both circles, and $F H$ bisects it at it. amgles,
\therefore the centre of both circles lios in FH. 111. 1. Cor.
Again, because BC is a chord of both ireles, and GH hiseets it at right angles,
\therefore the centre of both circles lies in GH. 111. 1. Cor.
Hence H, the only point common to FH and GH , is the centre of both cireles ;
which is impossible, for circles which cat one another camot have a common centre.
III. 5.
\therefore one circle cannot cut another at more than two points.
Q.E.I.

Conollaries. (i) Two circles cannot meet in three points without coincilling entirely.
(ii) Two circles camot hate a common are without coincidirg entirely.
(iii) Only nur circle cras be cirscribei through three points, which are not in the same straight line.
ge givell by
r.]
mints.
I. $10,11$.
alld FH
11. 1. Cor. and GH 11. 1. Cor: H , is the another III. 5. o points. Q.1.D.D. in three without
tivee

Proposition 10. Theorem. [Skcond Proor.]

 One circle ctmmot cht an 1 , 'ut more than thro points.

If possible, let $D A B C, E A B C$ be two circles, cutting onc another at more than two noints, namely at A, B, C.

Find t centre of the \odot DABC, $\quad 1.1$. : in $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$.
Then since , the centre of the \odot DABC,
$\therefore \mathrm{HA}_{\mathrm{A}}, \mathrm{HB}, \mathrm{HC}$ are all equal. nim. Jo\% 1.
And berause H is a point within the © EABC, from which more than two equal st. lines, namely $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$ are drawn to the $\square^{\text {re }}$,
$\therefore \mathrm{H}$ is the centre of the (.) EABC: III. 9.
that is to say, the two circles have a common centre H ;
but this is impossible, since they cut one another. III. 5 .
Therefore one circle camot cut another in more than two points.
Q.E.J.

Note. This proof is imperfect, because it assumes that the centre of the circle DABC must fall vithin the circle EABC; whereas it may be conceived to fall either withont the circle EABC, or on its circumference. Hence to make the proof complete, two adidional cases are regnired.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

Proposition 11. Theorem.

If two circles tonch one another internaliy, the straight line which joins their centres, being produced, shall putss througl the point of contact.

Iet $A B C$ and $A D E$ be two circles which tonch one another internally at A; let F le the centre of the $\odot A B C$, and G the centre of the $\odot A D E$:
then shall FG produced pass through A.
If not, let it pass otherwise, as FGEH.
Join FA, GA.
Then in the $\triangle F G A$, the two sides $F G, G A$ are together wreater than FA :
hut $\mathrm{FA}=\mathrm{FH}$, being radii of the $\odot \mathrm{ABC}$: $\quad / I y$,
$\therefore F G$, GA are together greater than $F H$.
Take away the common part FG;
then $G A$ is greater than $G H$.
But GA $=\mathrm{GE}$, being radii of the $\odot \mathrm{ADE}: \quad / I y p$.
\therefore GE is greater than GH,
the part greater than the whole; which is impossible.
\therefore FG, when produced, must pass through A.
Q.E.D.

EXERCISES.

1. If the distance between the centres of two circles is equal to the difference of their radii, then the circles must meet in one point, but in no other; that is, they must tonch one mother.
2. If two circles whose centres are A and B tonch one another internaliy, and a straight line be dran:m throngh their point of contact, cutting the circumferences at P and Q ; shew that the rodii $\mathrm{A} \dot{P}$ and BQ are parallel.

Proposition 12. Theoren.

If two circles touch one another externally, the stratight Zine which joins their centres shall pass through the point of contact.

Let $A B C$ and $A D E$ be two circles which tonch one another externally at A; let F be the centre of the $\odot A B C$, and G the centre of the $\odot A D E$:
then shall FG pass through A.
If not, let FG pass otherwise, as FHKG. Join FA, GA.
Then in the $\triangle F A G$, the two sides $F A, G A$ are together greater than $F G$:
$\therefore F H$ and $G K$ are together greater tham $F G$; which is impossible.
\therefore FG must pass through A.

FAERCISES.

1. Final the locns of the centres of all circhs whirl touch a gitern rirele at a given point.
2. Find the loens of the eentres of all citcles of given ratins, whirh toucle a given circle.
3. If the distance between the centres of two circles is equal to the sum of their radii, then the circles meet in one point, but in no other; that is, they touch one another.
4. If two cireles whose centres are A and B tonch one another extermaliy, and a straight line he draven thron!! their point of contact cutting the circumferenees at P and Q ; shew that the radii AP and BQ are parallel.

Proposimion 13. Theorem.

Tho circles cannot touch one another at more than ome point, whether internally or externally.

Fig. 1

Fig. 2

If possible, let $A B C$, EDF be two circles which touch one mother at more than one point, namely at B and D.

Join BD;

and draw GF, bisecting BD at rt. angles. I, 10, 11.
Then, whether the circles touch one another internally, as in Fig. 1, or externally as in Fig. -,
hecause B and D are on the O res of both circles, $\therefore B D$ is a chord of both cincles :
\therefore the centres of both circles lie in GF, which hisects ED at rt. angles.
iII. 1. Cor.

Hence GF which joins the centeres wast pass through a point of contact ;
in. 11, and 12.
which is impossible, since B and D are without GF.
\therefore two circles camot touch one mother at more than one point.
e.E.D.

Note. It must be observed that the pronf " given applies, by virtue of Propositions 11 and 12, to both the , figures: we huve therefore omitted the separate discussion of Fig. -, which finds a phace in most editions based on Simson's text.

k:XERCISES ON PROPOSITIONS 1-13.

1. Describe a circle to pass through two given points and have

Proposition 1t. Theorem.

Equal chords in a circle are equidistant from the centre: and, conversely, chords which are equidistant from the centre ure equal.

Let $A B C$ be a circle, and let $A B$ and $C D$ be chords, of which the perp. distances from the centre are EF and EG.
lirst, \quad Let $A B=C D$:
then shall $A B$ and $C D$ be equidistant from the centre E. Join EA, Ec.
Then, because EF, which passes through the centre, is perp. to the chord $A B$;
H_{I} I).
$\therefore \mathrm{EF}$ bisects AB ;
III. 3.
that is, $A B$ is double of $F A$.
For a similar reason, $C D$ is double of $G C$. But $A B=C D$,

$$
\therefore F A=G C .
$$

Now $E A=E C$, being radii of the circle;
\therefore the sq. on $E A=$ the sq. on $E C$.
But the sq. on EA = the sqq. on EF, FA;
for the $\angle E F A$ is a rt . angle.
I. 17.

And the sq. on EC $=$ the sqq. on EG, GC ;
for the $\angle E G C$ is a rt. angle.
\therefore the sqq. on $E F, F A=$ the sqq. on $E G, G C$.
Now of these, the sq. on $F A=$ the sq. on $G C$; for $F A \Rightarrow G C$.
\therefore the sq. on EF $=$ the sif. on EG,
$\therefore \mathrm{EF}=\mathrm{EG}$;
that is, the chords $A B, C D$ are equidistant from the centre.
Q.E.D.

Conversely. Let $A B$ and $C D$ be equidistant from the
centre: from the
chords, are EF
atre E.
entre, is
$I_{I \prime} /$. III. 3.
$11 y p$.

1. 17.

$A=G C$.
centre.
Q.E.D.
that is, let $E F=E G$:
then shall $A B=C D$.
For, the same construction being made, it may be shewn as before that $A B$ is double of $F A$, and $C D$ double of GC ;
and that the squ. on EF, FA $=$ the squ. on EG, GC.
Now of these, the sq. on EF - the sq. on EG, for $E F=E G$:
I_{y}.
\therefore the sy. on $F A=$ the square on GC ;
$\therefore \mathrm{FA}=\mathrm{GC}$;
and iloubles of these equals are equal;
that is, $A B=C D$.
Q.E., I).

ExERCIses.

1. Find the locus of the middle points of equal chords of a circle.
2. If two chords of a circle cut one another, and make equal angles with the straight line which joins their point of intersection to the centre, they are equal.
3. If two cqual chords of a eircle intersect, shew that the segments of the one are equal respecticely to the segments of the other.
4. In a given circle draw a chord which shall be equal to one friven straight line (not greater than the diameter) and parallel to another.
5. $P Q$ is a fixed chord in a circle, and $A B$ is any diameter : shew that the sum or difference of the perpendiculars let fall from \mathbf{A} and \mathbf{B} on $P Q$ is constant, that is, the same for all positions of $A B$.

Proposition 15. Theorem.

The diumeter is the greatest choted in a circle;
and of other's, that which is neater to the contre is yreter then one more remote:
conversely, the greater chord is nemer to the centere thene the less.

Jet $A B C D$ be a circle, of which $A D$ is a diameter, and E the centre; and let BC and FG be any two chords, whose perp. distances from the centre are EH and EK :
then (i) $A D$ shall he greater than $B C$:
(ii) if $E H$ is less tham $E K, B C$ shall be greater tham $F G$:
(iii) if $B C$ is greater than $F G, E H$ shall be less than $E K$.
(i)
Join EB, EC.

Then in the $\triangle B E C$, the two sides BE, EC are together greater than BC ;

$$
\text { but } \mathrm{BE}=\mathrm{AE}, \quad \text { III. Def. } 1 \text {. }
$$

$\therefore A E$ and $E D$ together are greater than $B C$; that is, $A D$ is greater than $B C$.
Similarly, $A D$ may be shewn to be greater than any other chord, not a diameter.

Let EH be less than EK; then $B C$ shall be greater than $F G$.
Join EF.

Since $E H$, passing through the centre, is perp, to the chord BC,

$$
\therefore \text { EH bisects } \mathrm{BC} \text {; }
$$

that is, $B C$ is double of HB .
For a similar reason FG is double of KF.
Now EB=EF,
ili. D!f. 1.
\therefore the sq. on $E B=$ the sq. on EF.
But the sq. on $E B=$ the sqq. on $E H$, $H B$;
for the $\angle E H B$ is a rt. angle;
I. 47.
also the sq. on $E F=$ the sqq. on $E K, K F$;
for the $\angle E K F$ is a it. angle.
\therefore the sqq. on $E H, H B=$ the sqq. on $E K, K F$.
But the sq. on EH is less thon the sq. On EK, for $E H$ is less than $E K$;
\therefore the sq. on HB is greater than the sq. on KF ;
$\therefore H B$ is greater than KF:
hence BC is greater than FG.
(iii) Tet BC be greater than FG;
then EH shatl be less than EK.
For since BC is greater than FG, IHyp. $\therefore H B$ is greater than KF:
\therefore the sif. on $H B$ is greater than the sq. on $K F$.
But the sqq. on EH, HB = the sqq. on EK, KF : I'roved.
\therefore the sq. on EH is less than tha sq. on EK ;
\therefore EH is less than EK.
Q.E.D.

EXERCISFS.

than any
erp. to the
III. 3.

Obr. Of the following proofs of Proposition 16, the second (by reductio ad absurdum) is that given by Euclid; but the first is to be preferred, as it is direct, and not less simple than the other.

Phopostrion 16. Theonem. [Alitrinxative Proof.]
The straight line drawn at right angles to a diameter of 1 circle at one of its extremities is a tangent to the circle:
and every other straight line diaun through this point cuts the circle.

Let $A K B$ be a circle, of which E is the centre, and $A B$ a diameter; and through B let the st. line CBD be drawn at rt. angles to $A B$:
then (i) CBD shall be a tangent to the circle;
(ii) any other st. line through B, as BF, shall cut the circle.
(i) Tn CD take any point G, and join EG.

Then, in the $\triangle E B G$, the $\angle E B G$ is a 1 t. angle; M!p. \therefore the $\angle E G B$ is less than a rt. angle;
I. 17.
\therefore the $\angle E B G$ is greater than the $\angle E G B$;
$\therefore E G$ is greater than $E B$:
I. 19.
that is, $E G$ is greater than a radius of the circle;
\therefore the point G is without the circle.
Similarly any other point in CD, except B, may be shewn to be outside the circle :
hence $C D$ meets the circle at B, but being produced, Liues not cut it;
that is, $C D$ is a tangent to the circle, III. Def. 10 .
liameter of circle:
this point
I. 19.
ircle;
y be shewn
produced, III. Def. 10 .
(ii)

Draw EH perp, to BF.

1. 12.

Then in the $\triangle E H B$, because the - E'S is a it. angle,
\therefore the $\angle E B H$ is less than a rt. angle;

1. 17.

$\therefore E B$ is sreater than $E H$;

1. $1!$ that is, EH is less than a radius of the circle: $\therefore H$, it point in $B F$, is within the circle:
$\therefore B F$ must cont the circle. \&.F.D.

Propostrion 16; Theorem. [Erchan's Proof.]
The straight live drawn at right angles to a diameter of " circle at one of its extremities, is a tenyent to the circle:
and no other straight line can be drawn throuyld this point so as mot to cut the circle.

Let $A B C$ be a circle, of which D is the centre, and $A B$ a diameter; let $A E$ be drawn at rt, angles to $B A$, at its extremity A:
(i) then shatl $A E$ be a tingent to the circle.

For, if not, let $A E$ cut the circle at C.
Join DC.
Then in the $\triangle D A C$, because $D A=D C$, III. Def: 1 .

$$
\therefore \text { the }-D A C=\text { the }-D C A \text {. }
$$

$$
\text { But the - DAC i.s a rt. angle; } \quad \text { I!./p. }
$$

$$
\therefore \text { the } \angle \text { DCA is a rt. angle; }
$$

that is, two angles of the $\triangle D A C$ are together ergual to two
rt. angles; which is impossible.
I. 17.

Hence AE meets the circle at A, but heing produced, loes not cut it;
that is, $A E$ is an tangent to the circle, III. Def: 10.
(ii) Also through A no other straight line but AE ern be drawn sor as not to colt the cirele.

For, if possible, let AF be anothre st. line drawn ti. ough A so as not to cut the circle.

From D draw DG perp, to AF; 1. 13.
and let DG meet the $\mathrm{O}^{\text {ce }}$ at H .
'Then in the $\triangle D A G$, because the $\angle D G A$ is art. angle,
\therefore the - DAG is less than it it. ingle: I. 17.
\therefore DA is greater than DG. But DA $=\mathrm{DH}$,
I. 19. ни. 1) ff. 1.
$\therefore D H$ is greater than DG, the part greater than the whole, which is impossible.
\therefore no st. line can be drawn from the point A, so as not to cut the circle, except AE.
Conoldaries. (i) A trmgent toweles a circle at ome point only.
(ii) There can be but ome tangent to a circle at "t green point.

Probosifion 1\%. Pbobiam.
 on, or milhout the circumpierence.

Fig. 1
Fig. 2

Let BCD be the given circle, and A the given point: it is required to draw from A a tangent to the © CDB.
Cast: I. If the given point A is on the ore. Find E, the centre of the circle.
III. 1. Join EA.
It A draw AK at rit. angles to EA.
I. 11 . 'I'hen AK being perp. to a diameter at one of its extremities, is a tangent to the circle.

$$
\text { III. } 16
$$

Case IT. If the given point A is without the O ".".
Find E, the centre of the circle;
Hi. 1.
and join $A E$, cutting the $\odot B C D$ at D.
From centre E, with radius EA, describe the $\odot A F G$. At D, draw GDF at it. angles to EA, cutting the $\odot A F G$ it F and G.

Join EF, EG, cutting the $\odot B C D$ at B and C.
Join AB, AC.
Then both $A B$ and $A C$ shall $b \in$ tangents to the $\odot C D B$.
For in the $\triangle^{S} A E B, F E D$,
Because $\left\{\begin{array}{r}A E=F E, \text { being radii of the } \odot G A F ; \\ \text { and the included angle } A E F \text { is common : } \\ \text { and }\end{array}\right.$
\therefore the $\angle A B E=$ the $\angle F D E$.
I. 4.

But the \angle PDE is a rt. angle,
Constr. \therefore the $\angle A B E$ is a 1 t. angle ;
hence $A B$, being drawn at r. angles to a diameter at one of its extremities, is a timgent to the $\odot B C D$. III. 16 .
Similarly it may be shewn that $A C$ is a tangent. Q.F.F.
Corolalary. If two tangents ure draun to a circle from an external point, then (i) they are equal; (ii) they subtemel rqual angles at the centre; (iii) they make equal anyles with the straight line which joins the given point to the centre.

For, in the above figure,
Since ED is perp. to FG, a chord of the \cdot FAG,
$\therefore D F=D G$.
111. 3.
'Then in the $\triangle^{s} D E F, D E G$, Because $\left\{\begin{array}{r}D E \text { is common to looth, } \\ \text { ind } E F=E G ; \\ \text { and } D F=D G ;\end{array}\right.$
11. Def. 1. Proved.
\therefore the $\angle D E F=$ the - DEG.

1. ミ.

Note. If the given point A is within the eircle, no solution is possible.

Hence we see that this problem admits of turo solutions, one solution, or no solution, aecording as the given point A is without, on, or within the circumference of a cirele.

For a simpler method of drawing a tangent to a circle from a given point, sce page 202.

Proposition 18. Theohem.

The straight line drawn from the centre of a civele to the point of contact of a tangent is perpendicular to the tanyent.

Let $A B C$ be a circle, of which F is the centre;
and let the st. line DE touch the circle at C :
then shall FC be perp. to DE.
For, if not, suppose FG to be perp. to DE,
I. $1 \because$.
and let it meet the $O^{\text {ce }}$ at B.
Then in the $\triangle F C G$, because the $\angle F G C$ is a rt. angle, $H_{y} / /$. \therefore the $\angle F C G$ is less than a rt. angle: I. 17 . \therefore the \angle FGC is greater than the $\angle \mathrm{FCG}$;

$$
\begin{aligned}
& \therefore F C \text { is greater than } F G: \quad \text { 1. } 19 . \\
& \text { hut } F C=F B ;
\end{aligned}
$$

$\therefore F B:$ greater than $F G$,
the part greater than the whole, which is impossible.
\therefore FC cannot be otherwise than perp. to DE:
that is, FC is perp. to DE.
(.2.E.1).

GXERCISRS.

P'roved.

$$
\text { I. } 4 .
$$

Q.E.D. no solution is
ions, one soluvithout, on, or e from a given

Proposition 19. Theorem.

The straight line drau'n perpendicular to a tangent to a circle from the point of contact passes through the centre.

Let $A B C$ be a circle, and $D E$ a tangent to it at the point C; and let CA be drawn perp. to $D E$:
then shall CA pass through the centre.
For if not, suppose the centre to be outside CA, as at F. Join CF.
Then because DE is a tangent to the circle, and FC is drawn from the centre F to the point of contact,
\therefore the $-F C E$ is a rt. angle.
But the $\angle A C E$ is a rt. angle;
\therefore the - FCE $=$ the -ACE ;
the part equal to the whole, which is impossible.
\therefore the centre camot be otherwise than in CA;
that is, CA passes through the centre.
Q.E.D.

EXERCISES ON THE TANGEN'I.

Propositions 16, 17, 18, 19.

1. The centre of any circle which touches two intersecting straight lines must lie on the bisector of the angle between then.
2. $A B$ and $A C$ are two tangents to a circle whose centre is O; shew that $A O$ bisects the chord of contact $B C$ at right angles.
3. If two circles are coneentric all tangents drawi from points on the circumference of the outer to the inner circle are equal.
4. The diameter of a circle biscets all chords which are parallel to the tangent at cither extremity.
5. Find the locus of the centres of all circles which tomeh "!iven straight line at a giren point.
6. Find the locus of the centres of all circles which touch cach of two pewe 'straight lines.
7. Hiws , be locms of the centres of all circles which tom heach of two intersectina straight lines of unlimited length.
8. Describe a circle of given radius to touch two given straight lines.
9. Through a given point, within or without a circle, draw a chord equal to a given straight line.

In order that the problem may be possible, between what limits must the given linc lie, when che given point is (i) without the circle, (ii) within it?
10. Two parallel tangents to a circle intereept on any third tan. gent a segment which subtends a right angle at the centre.
11. In am! quodrilateral circmmseribed about a circle, the sum of ome pair of opposite sides is equal to the sum of the other pair.
12. Any parallelogram which can be circumscribed about a circle, must be equilateral.
13. If a quadrilateral be described about a circle, the angles subtended at the centre by any two opposite sides are together equal to two right angles.
14. $A B$ is any chord of a circle, $A C$ the diameter through A, and $A D$ the perpendicular on the tangent at B : shew that $A B$ biscets the angle DAC.
15. Find the locus of the cxtremities of tangents of fixed length drawn to a given circle.
16. In the diamcter of a circle produced, determine a point such that the tangent drawn from it slall be of given length.
17. In the diameter of a circle produced, determine a point such that the two tangents drawn from it may contain a given angle.
18. Describe a circle that shall pass through a given point, and touch a given straight line at a given point. [See page 183. Ex. ס.]
19. Describe a circle of given radins, having its centre on a given straight line, and touching another given straight line.
20. Describe a circle that shall have a given radius, and touch a fiven circle and a given straight line. How many such circles can be drawn?

Proposition 20. Theorem.

The angle at the ceatre of a circle is double of an angle at the circumference, standiny on the stame arc.

Fig. 1

Fig. 2

Let $A B C$ be a circle, of which E is the centre; and let $B E C$ be an angle at the centre, and BAC an angle at the $O^{\text {ce }}$, standing ou the same arc BC:
then shatl the $\angle B E C$ be double of the $\angle B A C$.
Join $A E$, and produce it to F.
Case I. When the centre E is within the angle bac.
Then in the $\triangle E A B$, because $E A=E B$,

$$
\therefore \text { the } \angle E A B=\text { the } \angle E B A ; \quad \text { I. } \% \text {. }
$$

\therefore the sum of the $\angle{ }^{9} E A B, E B A=$ twice the $\angle E A B$.
But the ext. $-\mathrm{BEF}=$ the sum of the $\angle{ }^{\text {y }} \mathrm{EAB}, \mathrm{EBA} ; \mathrm{I}$. 3.2 .
\therefore the $\angle B E F=$ twice the $\angle E A B$.
Similarly the - FEC = twice the $\angle E A C$.
\therefore the sum of the $\angle{ }^{8}$ BEF, FEC $=$ twice the sum of

$$
\text { the }{ }^{9} \mathrm{EAB}, \mathrm{EAC} \text {; }
$$

that is, the $\angle B E C=$ twice the $\angle B A C$.
Case II. When the centre E is without the _ bac. As before, it may be shewn that the $\angle F E B=$ twice the $\angle F A B$; also the $\angle \mathrm{FEC}=$ twice the $\angle \mathrm{FAC}$;
\therefore the difference of the $\angle{ }^{5}$ FEC, FEB $=$ twice the difference of the $-{ }^{s}$ FAC, FAB :
that is, the $\angle B E C=$ twice the - BAC.

Note. If the are BFC, on which the angles stand, is greater than a semi-circumference, it is elear that the angle BEC at the centre will be reflex: but it may still be shewn as, in Case I., that the reflex $\angle B E C$ is double of the $\angle B A C$ at the $O^{c e}$, standing on the same arc BFC.

Proposition 21. Theorem.
Angles in the same segment of a circle are equal.

Let $A B C D$ be it circle, and let $B A D, B E D$ be angles in the sime segment BAED:
then shall the $-B A D=$ the $\angle B E D$.
Find F, the centre of the circle.
ifi. 1.
Case 1. When the segment BAED is greater than is semicircle.
Join BF, DF.

Then the $\angle B F D$ at the centre $=$ twice the $\angle B A D$ at the $O^{\text {ce }}$, standing on the same arc BD: III, 20. and similarly the $\angle B F D=$ twice the $\angle B E D$. III. 20 . \therefore the $\angle B A D=$ the $\angle B E D$.

Case 15. When the segment BAED is not greater than a semicircle.

Join AF, and produce it to meet the $O^{\text {ce }}$ at C.
Join EC.
Then since AEDC is a semicircle;
\therefore the segment BAEC is greater than a semicircle:
\therefore the $-\mathrm{BAC}=$ the -BEC , in this segment. Case 1 .
Similarly the segment CAED is greater than a semicircle;
\therefore the $-C A D=$ the $-C E D$, in this segment.
\therefore the sum of the $-{ }^{*} B A C, C A D=$ the sum of the - "BEC,
CED:
that is, the - BAD the - BED. Q.E.1.

EXERCLSES.

1. P is any point on the are of a segment of which $A B$ is the ehord. Shew that the sum of the angles PAB, PBA is eonstant.
2. $P Q$ and $R S$ are two chords of a circle interseeting at X : prove that the triangles $P X S, R X Q$ are equiangular.
3. Two eircles interseet at A and B; and through A any straight line PAQ is drawn terminated by the cireumfcrences: shew that PQ subtends a constant angle at B.
4. Two circles intersect at A and B; and through A any two straight lines PAQ, XAY are drawn terminatcd by the cireumferenees: shew that the ares PX, QY subtend equal angles at \mathbf{B}.
5. P is ainy point on the are of a segment whose chord is $A B:$ and the angles PAB, PBA are bisected by straight lines whieh interseet at O. lind the locus of the point 0 .

Note. If the extension of Proposition 20, given in the note on page 185, is adopted, a separate treatment of the second case of the present proposition is nnnecessary.

For, as in Case I.,
the reflex $\angle B F D=$ twice the $\angle B A D$; nir. 20 . also the reflex $\angle B F D=$ twice the $\angle B E D$;
\therefore the $\angle B A D=$ the $\angle B E D$.

C.
ircle:
Case 1.
micircle;
: ${ }^{*} \mathrm{BEC}$,
Q. E. 1).
h $A B$ is the nstant.
at X : prove
any straight lew that $P Q$

A any two umferences :

1 is $A B:$ and intersect at

The converse of Proposition 21 is very important. For the construction used in its proof, viz. To describe a circle about a given triamgle, the student is referred to Book iv. Proposition 5. [Or see Theorems and Examples on Book i. Page 103, No. 1.]

Converse of Proposition 21.

Eiqual angles stamdiug on the same base, aud on the same side of it, hare their revtices on an are of a citche, of which the giten base is the chord.

Let BAC, BDC be two equal angles standing on the same base $B C$:
then shall the vertices A and D lie npon a segment of a circle having $B C$ as its chord.

Describe a circle about the $\triangle B A C: 15$. then this circle shall pass through D.
For, if not, it must cut BD, or BD produced, at some other point E.

Join EC.

Then the $\angle B A C=$ the $\angle B E C$, in the same scgment: III. 21 . but the $\angle B A C=$ the $\angle B D C$, by hypothesis;
\therefore the $\angle B E C=$ the $\angle B D C$;
that is, an ext. angle of a triangle $=$ an int. opp. angle; which is impossible.

1. 16.

\therefore the circle which passes through $\mathrm{B}, \mathrm{A}, \mathrm{C}$, cannot pass otherwise than throngh D.

That is, the vertices A and D are on an are of a circle of which the chord is BC.

The following corollary is important.
All triangles dramon the same base, amd with equal rectical augles, hate their vertices on an are of a circle, of which the given buse is the chord.

On, The locus of the vertices of triamgles drawn on the same base with equal vertical angles is an arc of a circle.

Proposition 22. Theorem.

The opposite angles of any puarrilateral inseribed in a circle are together equal to two right anyles.

Let $A B C D$ he a quadrilateral inscribed in the $\odot A B C$; then shall, (i) the - ${ }^{\text {s }}$ ADC,$~ A B C$ together $=$ two rt. angles ;
(ii) the $-{ }^{8} B A D, B C D$ together $=$ two rt. angles.
Join AC, BD.

Then the $-A D B=$ the $\angle A C B$, in the segment $A D C B ;$ in. 21. also the $-C D B$ the - CAB, in the segment CDAB.
\therefore the $\angle A D C=$ the sum of the $\angle{ }^{9} A C B, C A B$. To each of these equals add the - ABC:
then the two - "ADC, ABC together = the three $\angle{ }^{*} A C B$, $C A B, A B C$.
But the \angle ACB, $C A B, A B C$, being the angles of it trimgle, together = two rt. angles. I. $8:$.
\therefore the $-{ }^{*} A D C, A B C$ together $=$ two it. angles.
Similarly it may be shewn that
the - "BAD, BCD together = two rt. angles.
Q. E. D.

EXERCISES.

1. If a circle can be described alout a parallelogram, the parallelogram must be rectangular.
2. $A B C$ is an isosceles triangle, and $X Y$ is drawn parallel to the base BC : shew that the four points $\mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}$ lie on ε circle.
3. If one side of a quadrilateral inscribed in a circle is produced, the cxteriar ample is equal to the opposite interior anyte of the quadrilateral.

Proposition 22. [Alternative Proof.]

Let $A B C D$ be a quadrilateral inseribed in the $(A B C$: then slanll the \angle " $A D C, A B C$ together $=$ two rt, angles. Join FA, FC.
Then the $\angle A F C$ at the centre $=t$ wice the $\angle A D C$ at the $O^{c e}$, standing on the same are $A B C$. 111. 20.

Also the reflex angle AFC at the eentre $=$ twice the $\angle A B C$ at the $C^{\text {ces }}$, standing on the same arc ADC. 111. 20.

Hence the $\angle{ }^{s} A D C, A B C$ are together half the sum of the $\angle A F C$ and the reflex angle $A F C$; but these make up four rt. angles:

\therefore the $\angle{ }^{*} A D C, A B C$ together $=$ two rt. angles. Q.E.v.

Definition. Four or more points through which a circle may be deseribed are said t, be concyclic.

Converse of Proposition 2 g.

If a pair of opposite angles of a quadrilateral are together equal to two right angles, its vertices are concyelic.

Let $A B C D$ be a quadrilateral, in which the opposite angles at B and D together = two rt. angles;
then shall the four points A, B, C, D be eoncyclie.

Through the three points A, B, C describe a circle:
then this circle must pass through D.
For, if not, it will cut AD, or AD produced, at some other point E.

Join EC.

Then sinee the quadrilateral $A B C E$ is inseribed in a circle,
\therefore the $\angle \approx A B C, A E C$ together $=$ two rt. angles. 111. 22. But the $\angle{ }^{\circ} \mathrm{ABC}, \mathrm{ADC}$ together $=$ two rt. angles; \quad IIyp. hence the $\angle{ }^{s} A B C, A E C=$ the $\angle{ }^{*} A B C, A D C$.

Take from these equals the $\angle A B C$:
then the $\angle A E C=$ the $\angle A D C$;
that is, an ext. angle of a triangle $=$ an int. oppr angle; which is impossible.
\therefore the eirele which passes throngh A, B, C eannot pass otherwise than through D:
that is the four vertices A, B, C, D are concyelie. Q.E.D,

Definition. Similar segments of circles are those which contain equal angles.

I'roposition 23. 'Theorem.

On the same chord and on the same side of it, there cannot be two similar segments of circles, not coincidiny with one another.

If possible, on the same chord $A B$, and on the same side of it, let there be two similar segments of circles ACB, ADE, not coinciding with one another.

Then since the arcs $A D B, A C B$ intersect at A and B, \therefore they camot cut one another again; III. 10 . \therefore one segment falls within the other:
In the outer are take amy point D; join $A D$, cutting the imer are at C :
join CB, DB.
Then because the segments are similar,
\therefore the $\angle A C B=$ the $\angle A D B ; \quad$ HII. Def. that is, an ext. angle of a triangle $=$ an int. opp. angle; which is impossible.
Hence the two similar segments $A C B, A D B$, on the same chord $A B$ and on the same side of it, must coincide.
Q.E. D.

EXERCISES ON PROPOSITION $2 .$.

1. The straight lines which bisect any angle of a quadrilateral figure inscribed in a circle and the opposite exterior angle, meet on the circumference.
2. A triangle is inscribed in a circle: shew that the sum of the angles in the three segments exterior to the triangle is equal to four right angles.
3. Divide a circle into two segments, so that the angle contained by the one shall be donble of the angle contained by the other. nciding with
n the same circles ACB, A and B, ifi. 10.
4. Dof. opp. angle; I. 16 . on the same ide.
Q.E.D.
quadrilateral ngle, meet on
te sum of the equal to four
gle contained other.

Proposition 24. Theorem.

Similar segments of rireles on equal rhomots are equal to one another.

Let $A E B$ and CFD be similar segments on equal chords $A B, C D:$
then shall the segment $A B E=$ the segment $C D F$.
For if the segment $A B E$ be applied to the segment CDF, so that A falls on C, and $A B$ falls along $C D$; then since $A B=C D$,
\therefore B must coincide with D.
\therefore the segment AEB must coincide with the segment CFD ; for if not, on the same chord and on the same side of it there would be two similar semments of circles, not coinciding with one another: which is impossible. 1II. 23.
\therefore the segment $A E B=$ the segment CFD. Q.F.D.

EXERCISFS.

1. Of two segments standing on the same chord, the greater segment contains the smaller angle.
2. A segment of a circle stands on a chord $A B$, and P is any point on the same side of $A B$ as the segment: shew that the angle $A P B$ is greater or less than the angle in the segment, according as P is within or without the segment.
3. $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ are the middle points of the sides of a triangle, and X is the foot of the perpendicular let fall from one vertex on the opposite side: shew that the jour points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{X}$ are concyclic.
[See page 96, Ex. 2: also page 100, Ex. 2.]
4. Use the preceding exercise to shew that the midule points of the sides of a triangle and the jeet of the perpendieulars let fall. irom the vertices on the opposite sides, are eoncyclic.
H. E.

 cumfermes of which the giown are is etpet.

lat $A B C$ the an wre of a rimeld:
it is repuived to reseribe the whele or whe wher the are $A B C$ is a part.

In the siven are take any three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
doill $A B, B C$.
ftaw DF hisecting $A B$ at it. angles, \quad. 10.11 . and dian $E F$ bisecting $B C$ at it. angles.
Then beeanse DF bisects the chord AB at rt. angles,
\therefore the centre of the circle lies in DF. HI. l. Con
Again, becanse EF bisects the chord BC at it. angles,
\therefore the centre of the cirele lies in EF. HI. 1. Cor. \therefore the centre of the cirele is F, the only point common to DF, EF.
Hence the Ore of a circle deseribed from centre F, with ratius FA, is that of which the given are is a part. Q. L. F.

* Note. Euclid gave this proposition a somewhat different form, as follows:

A segment of a circle being giten, to describe the circle of which it is a segment.

Let $A B C$ be the given segment standing on the chord $A C$.
1)raw DB, bisecting $A C$ at rt. angles. I. 10. Join AB.
At A, in $B A$, make the $\angle B A E$ equal to the $\angle A B D$.
Let $A E$ meet $B D$, or $B D$ produced, at E. Then E shath be the centre of the required cirche.
[.5oin EC ; and prove (i) EA=EC;
I. 4.
(ii) $E A=E B$.
1.6.]

Proposition ed. Theorem.

1. 10. 11.

es.
t. ancrless,
F. 111 . ?. Co,
't. angles,
=. 111. l. C' or. comment to
centre F, with site. Q.E.F. different form, circle of which rd AC.

Lot ABC, DEF he equal circles and lot the" - "BGC, E. HF, at the centres lee equal, rad consequently the: - * BAC, EDF at the co se equal:
there shall the are BKC = the inc ELF.
-Join BC, EF.
'Then heremse the fro* ABC, DEF andernial,
\therefore their mani are equal.
Hence in the \therefore * AGC, EHF,

$$
\therefore B C=E F
$$

$1 /!110$.

1. 2.

Asfill, bemuse the - EAC the - EDF, II !ノ!
\therefore the srement BAC is similar to the segment EDF:

$$
\text { 111. } D_{1}: 15
$$

and they are on equal chords BC, EF ;
\therefore the seriment $B A C=$ the segment EDF., 11124.
But the whole $\odot A B C=$ the whole $\odot D E F$;
\therefore the remaining segment $B K C=$ the remaining serpent $E L F$, \therefore the are $B K C=$ the are ELF.
?.E. D.
[For an Alternative Proof and Exercises see pp. 197, 195.]

In equal circles the angles, whether at the centres or the circumferences, which stand on equal arcs, shall be equal.

Let $A B C$, DEF be equal circles, and let the are $B C=$ the are $E F$:
then shall the $\angle B G C=$ the $\angle E H F$, at the centres; and also the $\angle B A C=$ the $\angle E D F$, at the $O^{\text {res }}$.
If the $\angle{ }^{8}$ BGC, EHF are not equal, one must be the greater.

If possible, let the $\angle B G C$ be the greater.
At G, in $B G$, make the $-B G K$ equal to the - EHF. 1. 23.
Then because in the equal $\odot^{*} A B C, D E F$, the $\angle B G K=$ the $\angle E H F$, at the centres;
\therefore the are $B K=$ the arc $E F$.
But the are $B C=$ the arc $E F$,
a part equal to the whole, which is impossible.
\therefore the - BGC is not unequal to the - EHF ;
that is, the - BGC = the - EHF.
And since the - BAC at the $O^{\text {cen }}$ is half the - BGC at the centre, iil. 20 .
and likewise the $\angle E D F$ is half the - EHF,
\therefore the $\angle \mathrm{BAC}=$ the $\angle E D F$. Q.E.D.
[For Exercises see pp. 197, 198.]

Proposition 28. Theorem.
In equal circles the wis, which are cut off by equal chords, shall be equal, the major arc equal to the major are, and the minor to the minor.

Let $A B C, D E F$ be two equal circles,
and let the chord $\mathrm{BC}=$ the chord EF : then shall the major are BAC $=$ the major are EDF:
and the minor are $B G C=$ the minor are $E H F$.
Find K and L the centres of the $\odot^{s} A B C$, DEF: III. 1. and join $B K, K C, E L, L F$.
Then because the $\odot^{*} A B C$, DEF are equal, \therefore their radii are equal.
Hence in the $\triangle{ }^{*}$ bKG, ELF,

$$
\text { Because }\left\{\begin{array}{r}
B K=E L, \\
K C=L F, \\
\text { and } B C=E F ;
\end{array}\right.
$$

\therefore the $-B K C=$ the $\angle E L F$;
\therefore the arc BGC $=$ the are EHF ;
I. 소.

HI. $\because 6$.
and these are the minor ares.
But the whole $O^{\text {re }}$ ABC $=$ the whole $O^{\text {ce }}$ DEAF; $\quad I / y / l$.
\therefore the remaining are $B A C=$ the remaining are EDF:
and these are the major arcs. Q.E.D.
[For Exercises see pp. 197, 198.]

Proposition 29. Theorem.

In equab circles the chomels, which whe aff equet ares, stenth be equal.

Let $A B C$, DEF be equal circles, and let the are BGC the are EHF: When whall the chord $B C=$ the chord EF.

Find K, L the centres of the circles.
Join BK, KC, EL, LF.
Then in the equal © ${ }^{*} A B C$, DEF.
because the are $B G C$ the are EHF,
\therefore the - BKC the $-E L F$.
Hence in the $\triangle^{*} B K C$, ELF, BK EL, being vardii of cqual cirden; Because ! $\quad \begin{aligned} & \text { K } \\ & K C=L F \\ & \text {, for the sanne reason, }\end{aligned}$ lioved.
$\therefore B C E F$.

1. 4.

Q. B. 1).

ExERCISES

```
on propositions 26, 27.
```

1. If tro cherds of a cirede are parallel. they interecter rimal ares.
\because. The straight lines, which join the extremities of two equal ares of a civele towards the same parts, are parallel.
2. In a circle, or in sequal cirches, sectors are equal if their angles at the centres are equal.
3. If two chords of a circle intersect at right angles, the opposite ares are together equal to a semicircumference.
4. If two chords intersect within a circle, they form ant anyle rqual to that subtronded at the cireumferener by the sum of the ares they
5. If tho chords intersect without a cirche they form an an!ale Pqual to that sultemdid at the ciremmference by the differenee of the ares they cut aff:
6. If AB is a fixerd chord of a circle, amd P all! point on one of the ares rent off b!y it, then the biseretor of the amble APB cuts the conjugate are in the same point, whatreer be the position of P.
7. Two circles intersect al A and B : and throngh these points straight lines are drawn from any point P on the circminferenee of one of the circles: shew that when prorlucal they intercept on the other circumference an are which is constant for all positions of P.
8. A triangle AEC is inscribed in a circle, and the bisectors of the angrles mert the eireumference at X, Y, Z. Find ench angle of the triangle $X Y Z$ in terms of those of the original triangle.

$$
\text { ON PROPOSITIONS ご, } 29 .
$$

10. 'The straight lines which join the extremities of parallel chords in a circle (i) towards the same parts, (ii) towards opposite parts, are equal.
11. Through A, a point of intersection of two equal circles two straight lines PAQ, XAY are drawn : shew that the chord PX is equal to the chord $Q Y$.
12. 'Thongh the points of intersection of two circles two paralle] straight lines are drawn terminated by the diremoferences: shew that the straing lines which join their extremities towneds the sane parts are equal.
13. Two equal circles intersect at A ant B; and throurh A any straight line $P A Q$ is drawn terminated by the circumferences: shew
14. $A B C$ is m isosceles triangre inseribed in a cirele, and tho hisectors of the base angles meet the circumference at X and Y. Shew that the figure BXAYC must have four of its sides equal.

What relation must subsist among the angles of the trimere $A B C$, in order that the figme $B \times A Y C$ may be equilateral?

Note. We have given Euclid's demonstrations of Propositions $26,27,28,29$; but it should be noticed that all these propositions also admit of direct proof by the method of superposition.

To illustrate this method we will apply it to Proposition eti.

Proposimon 26. [Altemative Proof.]

In equal circles, the ares which subtend equal angles, whether at the centres or circumferences, shall be equal.

Let $A B C$, DEF be equal circles, and let the $\angle \mathrm{s} B G C, E H F$ at the centres be equal, and consequently the $\angle{ }^{*} B A C, E D F$ at the $O^{\text {ces }}$ equal:
III. 20.
then shall the are $B K C=$ the arc ELF.
For if the $\odot A B C$ be applied to the $\odot D E F$, so that the centre G may fall on the centre H ,
then because the circles are equal, \quad Hyp.
\therefore their oces must coincide; hence by revolving the upper circle about its centre, the lower circle remaining fixed,

B may be made to coincide with \mathbf{E}, and consequently GB with HE .
And beeanse thic $\angle B G C=$ the $\angle E H F$, \therefore GC must coincide witl HF : and since $G C=H F$,
\therefore C must fall on F.
IIyp.
Nuw B coinciding with E, and C with F, and the $\circlearrowleft^{c 0}$ of the $\odot A B C$ with the $C^{\text {ce }}$ of the $\odot D E F$,
\therefore the are BKC must coincide with the are ELF.
\therefore the are BKC = the are ELF.
4.E.L.

Propositions propositions
tion 26.
x, whether at

EHF at the F at the $o^{\text {res }}$
iII. 20.
the centre G
Hyp.
lower circle

IIyp.

DEF,
F.
4.E.L.

Proposition 30. Problem.
To bisect e given rir:

Let ADB 'ee the given are:
it is required to bisect it.
At C draw on $A B$; and bisect it at C.
I. 10 . are at D.

Join AB; and bisect it at C.
I. 11.

> Then shall the arc ADB be bisected at D.
> Join AD, BD.

Then in the $\triangle^{s} A C D, B C D$,
Because $\left\{\begin{array}{l}A C=B C, \\ \text { and } C D \text { is common; }\end{array} \quad\right.$ C'onsti.
and $C D$ is common;

$$
\therefore \mathrm{AD}=\mathrm{BD} .
$$

\therefore the ares cut off late equal,
to the minor, aud the mion are equal and the the major are to the major: III. $\because \mathrm{O}$. for each is less arcs $A D, B D$ are both minor ares, the chord $A B$ at a semi-circumference, since DC, bisecting ot the circle. iII. l. Cor.
\therefore the arc $A D=$ the are $3 D$:
that is, the arc ADB is hisected at D. \& $\because \mathrm{F}$.

EXERCISES.

1. If a tangent to a circle is parallel to a chord, the point of contact will bisect the are ent off by the chord.
2. 'Trisect a quadrant, or the fourth part of the circumference, of
ircle. a circle.

Propostion :31. Theorem.

The anyle in a somicivicle is a right magie:
 there is riyht anylm:
 spreater the", "right enagle.

Let AECD be a circle, of which EC is a diameter, and E the centre; and let $A C$ be at chord dividing the circle into the segments $A B C, A D C$, of which the segment $A B C$ is grater, and the segment is ADC less than a semicirele: then (i) the angle in the semicirele BAC shatl be a rtangle:
(ii) the angle in the segment $A B C$ shall be less than a it. angle:
(iii) the angle in the segment ADC shall be wreater than a rt. angle.

In the are ADC take any point D; Join BA, AD, DC, AE; and produce BA to F.

$$
\begin{align*}
& \text { (i) Then because } E A=E B, \tag{i}\\
& \therefore \text { the } \angle E A B=\text { the } \angle E B A . \\
& \text { And because } E A=E C, \\
& \therefore \text { the }-E A C=\text { the }-E C A . \\
& \therefore \text { the whe }
\end{align*}
$$

\therefore these angles, being adjacent, are it angles.
\therefore the $\angle B A C$, in the semicircle $B A C$, is a rt. angle.
(ii) In the $\triangle A B C$, because the two - " $A B C, B A C$ are together less than two rt. angles; I. 17. and of these, the $-B A C$ is in it. angle: Proverl. \therefore the $-A B C$, which is the angle in the segment $A B C$, is less than a ret, angle.
(iii) Becanse $A B C D$ is at quadriateral inseribed in the - ABC ,
\therefore thr - * $A B C, A D C$ together $=$ twort. angles;
1II. こ.'. and of these, the $\angle A B C$ is less than a it. angle: Proverl. \therefore the $\angle A D C$, which is the angle in the segment ADC, is greater than a r t. angle.

ENRRCISES.

1. A circle alespribed on the higpotemuse of a right-am!leil trimulle us dirmeter, pusses thromgh the opminsite angular point.
2. A system of right-angled triangles is deseribed upon a siven straight line as hypotenuse: find the locus of the oprosite angular points.
3. A straight rod of given length slides hetween two straight rulers phaced at right angles to one arother: find tho loeus of its middle point.
4. Two circles intersect at A and B ; and throurh A two dian: ter:s $\wedge P, A Q$ are drawn, one in each cirele : shew that the points P, B, Q are collinear. [See Def. p. 102.]
5. A circle is deseribed on one of the equal sides of an isoscele; triangle as diameter. Shew that it passes throngh the middle point of the base.
6. Of two cireles which have internal contact, the diameter of the inner is equal to the radins of the outer. Shew that any chord of the outer cirele, drawn from the point of contact, is bisected by the cireumference of the inner circle.
7. Cireles deseribed on any two sides of a triangle as diameters intersect on the third side, or the third side produced.
8. Fime the locus of the middle points of chords of a circle dram through a tived point.

Distinguish between the cases when the given point is within, on, or without the eireumferenec.
9. Describe a square equal to the differenee of two given squares.
10. Thronerh one of the points of intersection of two circles draw a chord of one eirele whieh whall be bisected by the other.
11. On a fiven straght line as base a system of equilateral foursided firures is deseribed: find the loeus of the interseetion of their diagonals.

Note 1. The extension of Proposition 20 to straight and regles angles flunishes a simple alternative proot of the first theorem contained in Proposition 31, viz.

The angle in a semicircle is a right "n!gle.
For, in the adjoining figure, the angle at the centre, standing on the are BHC, is double the angle at the $\mathrm{C}^{\text {ce }}$, standing on the same are.

Now the angle at the centre is the struight amyle $B E C ;$
\therefore the $\angle B A C$ is half of the straight anfle $B E C:$
and a straight angle $=$ two rt. angles;
\therefore the $\angle B A C=$ one half of two rt. angles,
$=$ one rt. angle.

Note 2. From Proposition 31 we may derive a simple practical solution of Proposition 17, ns nely;

To draw a tangent to a circle from a giren external peint.
Let BCD be the given cirele, and A the given external point:
it is required to draw from A a tangent to the $\odot B C D$.

Find E, the centre of the circle, and join $A E$.

On AE describe the semicircle $A B E$, to cut the given circle at B.

Join AB.
Then $A B$ shall be a tangent to the © BCD .

For the $\angle A B E$, being in a semicircle, is a rt. angle.
III. 31.
$\therefore A B$ is drawn at rt, angles to the radius $E B$, from its extrenity B ;
$\therefore A B$ is a tangent to the circle.
111. 16 .
(Q.E.F.

Since the semicircle might be deseribed on either side of $A E$, it is clear that there will be a second sohution of the problem, as shewn by the dotted lines of the figure.

III, 31. 11 its ex-
iII. 16. Q.E.F. $A E$, it is shewn by

Probosition 3:. Theorem.

If' "struight line touch a circle, and from the point of contact a chord be drawn, the angles which this chord makes with the taregent shall be equal to the angles in the alternate. segments of the circle.

Let $E F$ touch the given $\odot A B C$ at B, and let $B D$ be a chord drawn from B, the point of contact:
then shall (i) the $\angle D B F=$ the angle in the alternate segment BAD:
(ii) the $\angle \mathrm{DBE}=$ the ingle in the alternate segment $B C D$.

From B draw BA perp. to EF,
Take any point C in the arc BD; and join AD, DC, CB.
I. 11.
(i) Then because $B A$ is drawn perp. to the tangent $E F$, at its point of contact B,
$\therefore B A$ passes through the centre of the circle: int. 19 . \therefore the $\angle A D B$, being in a semicircle, is a rt. angle: III. 31. \therefore in the $\triangle A B D$, the other $\angle{ }^{s} A B D, B A D$ together $=a r t$. angle;

$$
\text { I. } 32 .
$$

that is, the $\angle{ }^{s} A B D, B A D$ together $=$ the $\angle A B F$.
From these equals take the common $\angle A B D$;
\therefore the $\angle \mathrm{DBF}=$ the $\angle \mathrm{BAD}$, which ${ }^{\circ}$: in the alternate seyment.

(ii) Bumase $A B C D$ is a mumbilateral irsseribed in a "irels,
\therefore thr - * BCD, BAD togrether $=$ two it. angles: Hi. $\because \because$.
hut the: - *DBE, DBF togethor=twort. angles; 1. lid.
\therefore the - "DBE, DBF together the - $B C D, B A D$: and of these the $-\mathrm{DBF}=$ the: -BAD ; Iroerel. \therefore the $-D B E=$ the $-D C B$, which is in the altomate sergment.
(f. B. D.

EXERCISES.

1. State and prove the converse of this proposition.
2. Use this Proposition to shew that the daments down to a cirele from an extemal point are equal.
3. If two circles touch one another, any straight tine drawn throngh the point of contact ents off similar segments.
l'rove this for (i) internal, (ii) external contact.
4. If two circles touch one another, and from A, the point of contact, two ehord; $A P Q, A X Y$ are drawn: then $P X$ and $Q Y$ are parallel.
lrove this for (i) internal, (ii) external eontact.
5. Two eircles interscet at the points A, B: and one of them passes through O, tho centre of the other: pove that OA bisects the ancle between the common chord and the tangent to the first circle at A.
6. Two eireles interseet at A and B; and through P, any point on the cireunference of one of them, straight lines PAC, PBD are drawn to cut the other cirele at C and D : shew that $C D$ is parallel to the tiangent at P.
7. If from the point of eontaet of a tangent to a cirele, a ehord he drawn, the perpendiculars dropped on the tangent and ehord from the middle point of either are ent off by the chord are equal.

Phorosimos : : Pr, Pombem.

AD : Procerl. late serg(9.E. 1$)$

Notr. In the particular case when the given mugle C is a rt, anyle, the erghent required will be tho somiciscle described on the given st. Line $A B$; for the mugle in a semicirelo is a ret. angle.
111. 31.

FABRCISFA.
['The following exereises depond on the eorollary to Proposition 21 given on page 187 , namely

The locus of the rertices of triangless which stand on the semme buse and hare " giron rertical angin, is the are of the segment stamling on this base, "nde containing an ungla equal to the given angle.

Sxercises 1 and 2 afford good illustrations of the method of find. ing lequired points by the Intersiction of Loci. See page 117.].

1. Inseribe a triangle on a given base, harin! a given revtical "u!gle, and huring its vertere on a girenstreight line.
2. Constrmet a trianale, having gieen the buse, the revtical angle and (i) one other side.
(ii) the altitude.
(iii) the lenuth of the molian whirh bise ets the buse.
(iv) the point at which the perpendicular from the vertex meets the bense.
3. Construrt at trimale having given the base, the revtieal angle, and the point at mhich the base is cut by the bisector of the rertical anyle.
[Let $A B$ be the base, X the given point in it, and K the given angle. On $A B$ describe a segment of a circle containing an angle equal to K; complete the ove hy drawing the are APB. Bisect the are $A P B$ at P : join PX, and produce it to meet the ore ut C. Then $A B C$ shall be the required triangle.]
4. Construet a t "gle huring given the buse, the verlicul angle, and the sum of the rem. wing siders.
[Let $A B$ be the given base, K the given angle, and H the given line equal to the sum of the sides. On AB describe a segment containing an minle equal to K, also another seginent containing an angle eyual to half the $\angle K$. From centre A, with radius H, describe a circle cutting the last drawn serment at X and Y. Join $A X$ (or $A Y$) cutting the first segment at C. Then $A B C$ shall be the required triangle.]
5. Construct a triangle having giveu the base, the vertical angle, and the difference of the remaining sides.

C is art. maple,

Proposition 21
a the same basse ent standing on igle.
method of fint age 117.] .
giran vertical vertical angle
mise.
rom the verte.e
vertical angle, of the rerticnl

K K the given ning an angle Bisect the arc C. Then ABC
rertical angle, the given line ent containing an angle eyual seribe a circle or AY) cutting ed triangle.] vertical angle,

Proposithon Bi. Probiem.

lirame a giorn circle to roet ogf" sergment which shall

Let $A B C$ be the given cirele, and D the wiven imgle: it is required to ent ofl from the - ABC a segrenent which shall contain an angle equal to D.

> Take any point B on the and at B draw the tangent EBF.

It B, in FB, make the - FBC equal to the - D. I. Iti. Then the segment BAC shall contain an angle equal to D.

Because $E F$ is a tangent to the circle, and from B, its point of contact, a chord BC is drawn,
\therefore the $-F B C=$ the ingle in the alternate segment BAC.
111. $3:$.

But the $-\mathrm{FBC}=$ the $\angle \mathrm{D}$;
Constr。
\therefore the ingle in the segment $B A C=$ the $-D$.
Hence from the given © $A B C$ a segment $B A C$ has been wat off, contanining in angle equal to D.

EAERCISES.

1. The chord of a given segment of a circle is prodnced to a fixen: print: on this straight line so produced draw a segment of a circie similar to the given segment.

2 . Through a given point without a cirele draw a straight lime that will cut off a segment capable of containing an angle equal to a given angle.

$$
\begin{equation*}
\text { II, } \boldsymbol{H} \tag{14}
\end{equation*}
$$

Proposithes 3.5. Theorem.

If tho shords of a civele cut we wather, the rectanyle emmicimel b!! the segments of one shall be equal to the rectanyle contained by the segments' of the other.

Let $A B, C D$, two chords of the $\odot A C B D$, ent me: another at E :
thern shall the rect. $A E, E B$ the rect. $C E, E D$.
Find F the centre of the $\odot A C B$:
III. 1.

From F draw $F G$, $F H$ perp. respectively to $A B, C D$. i. $1 \because$. Join FA, FE, FD. Ther beeause FG is clrawn from the centre F perp. to $A B$,
$\therefore A B$ is bisected at G. III. 3.

For a similar reason $C D$ is bisected at H.
Again, because AB is divided equally at G, and unequally at E, \therefore the rect. $A E, E B$ with the sq. on EG the sq. on AG. $11 . \bar{\sigma}$.

To each of these equals add the sig. On GF: then the rect. $A E$, EB with the siqq. on EG, GF - the sum of the sqil. on AG, GF.

But the squ. on EG, GF the sq. on FE: 1.7^{7}.
and the sqq. on AG, GF ... the sq. on AF;
for the angles at G are ret. angles.
\therefore the rect. AE, EB with the seq. on FE the sq. on AF.
Similaly it may be shewn that
the rect. $C E, E D$ with the $s q$. on $F E=$ the $s q$. on $F D$.
But the sq. on $A F=$ the sq. on $F D$; for $A F=F D$.
\therefore the rect. $A E, E B$ with the sy. on $F E=$ the rect. $C E, E D$ with the sq. on FE.

From these equals take the sq. on $F E$:
then the rect. $A E, E B=$ the rect. $C E, E D$. (.E. D.

Cobomans. If through a jieced proint wilhien at cirche any mumbere af chords are drowen, the rectrengless contained by theie segments ure all requal.

Nors. The following special eases of this proposition deserve notice.
(i) when the given chords both pass through the centre:
(ii) when one chord passes throngh the eentre, and cuts then other at right angles:
(iii) when one chord passes through the centre, and euts the other obliquely.
In cach of these eases the general proof requires some modification, which may be left as an exercise to the stndent.

LXEACHSEN.

1. Truo straight line's AB, CD intersere at E , so that the rerctamble $A \mathrm{E}, \mathrm{EB}$ is riqual to the rectangle CE, ED : shew that the four points A, B, C, D are concyclic.
\because The rectangle contained by the segments of any chord drawn throngh a given point within a cirele is equal to the siquare on labli the shortest chord which may be drawn through that point.
2. $A B C$ is a triangle right-angled at C; and from C a perpendicular $C D$ is drawn to the hypotenuse: shew that the square on $C D$ is equal to the reetangle AD, DB.
3. $A B C$ is a triande; and $A P, B Q$ the perpendienlars dronved from A and B on the opposite sides, interseet at O : shew that the rectangle $A O, O P$ is equal to the rectangle $B O, O Q$.
4. Two circles intersect at A and B, and through any point in AB their common chord two chords are drawn, one in each circle; shew that their four extremities are concyclic.
5. A and B are two points within a circle such that the rectangle contained by the segments of any chord drawn through A is equal to the rectangle contained by the segments of any chord through B : shew that A and B are equidistant from the centre.
6. If throngll E, a point withont a circle, tuo secants EAB, ECD are drarn; shew that the rectangle EA, EB is riqual to the rectangle EC, ED.
[P'roceed as in min. 35, using ir. 6.]
7. Through A, a point of intersection of two circles, two straight lines CAE, DAF are drawn, each passing thronfl a centre and terminated by the circumferences: shew that the rectangle CA, AE is cqual to the reetangle DA, AF.

Proposition : ifg. Theorma.
If firome "u!! pmint withonet a ciorele "e tangent. anll a sectuit be dranen, thene the rectangle combained biy the whole spccut ared the prart of it without the circle shall be equal, to the squenre one the teregeret.

Let $A B C$ be a circle: and from D : point without it, let there be drawn the secant DCA, and the tangent DB:
then the rect. DA, DC shall be equal to the sq. on DB.

$$
\begin{aligned}
& \text { Find E, the centre of the } \odot A B C \text { : } \\
& \text { and from E, draw EF perp. to AD. } \\
& \text { Join EB, EC, ED. }
\end{aligned}
$$

Then branse EF, passing through the contre, is perp. (t) the chord AC,
$\therefore A C$ is hisected at F.
III. 3.

And since $A C$ is bisected at F and produced to D,
\therefore the rect. DA, DC with the sq. on FC $=$ the sq. on FD. 1. 6.
To each of these equals add the sq. On EF:
then the rect. DA, DC with the sqq. on EF, FC - the sqq. on
EF, FD.
But the sqq. On EF, FC . the sq. on EC ; for EFC is a it. angle; $=$ the $\mathrm{S} q$. on EB .
And thesciq. on $E F, F D=$ the sq. on ED ; for $E F D$ is a rt. angle; the squ. on EB, BD; for EBD is a r't. :mgle.
if. 18.
\therefore the lect. DA, DC with the sq. on EB = the sqq. on EB, BD.
From these equals take the sq. on EB:
then the rect. $D A, D C=$ the sri. on DB. Q. F.,s).
Nom: This proof may easily be adapted to the case when the secant passes through the eentre of the circle.

Conomary. If fiom a given point without a rircle any number of secauts are dramen, the rectangles contuined by the whole seconts arel the prents of them without the circle wre all equal; for erech of these rectrongles is squal to the square on the tangent dsourn from the gicene point to the circle.

For instance, in the adjoining figure, rach of the rectangles PB, PA and PD, PC and PF, PE is equal to the square on the tangent PQ:
\therefore the rect. PB, PA
the rect. $P D, P C$
$=$ the rect. PF, PE.

Notr. Remembering that the segments into which the ehord $A B$ is divided at P, are the lines PA, PB, (see Part I. page 131) we are emabled to inelude the corollaries of Propositions 35 and 36 in a single enunciation.

If any mmber of chords of " circle are drown through " giren point within or uithout a cirelle, the rectongles routnined b!! ther segments of the chords are equal.

EXERCISAE.

1. Use this proposition to shew that taments drawn to a circle from an external point are equal.
2. If two eireles intersect, tangents drawn to them from any point in their common chord produeed are eqnal.
3. If two cireles intersect at A and B, and $P Q$ is a tangent to both eireles; shew that $A B$ produed bisects $P Q$.
4. If P is any point on the straight line $A B$ produced, shew that the tangents drawn from P to all cireles whieh pass throngh A and B are equal.
5. $A B C$ is a triangle right-angled at C, and from any point P in $A C$, a perpendieular $P Q$ is drawn to the lypotennse: shew that the reetangle $A C, A P$ is equal to the reetangle $A B, A Q$.
6. $A B C$ is a triangle right-angled at C, and from C a porpendienlar $C D$ is drawn to the hypotennse: shew that the reet. $A B, A D$. is equal to the square on $A C$.

Phopostrion :3: Turorem.

If fiom "pmint mithout a virele there be dirn're tros Nameglit, liurse, owe "f which cuts the circle, wad the other. meptsis it, curl if the recturyle contained bis the whole line which ruts the ciscle cund the porst of it without the rircle bes romenl. to the squate on the lime which mets the cirche, thone

Let $A B C$ he a circle; and from D, a point without it, let there be drawn two st. lines DCA and DB, of which DCA cuts the circle at C and A, and $D B$ meets it; and let the rect. DA, DC the sq. on DB: then shall DB he a tangent to the circle.
From D draw DE to touch the $\odot A B C$: 111.17.
let E be the point of contact.
Find the centre F, and join FB, FD, FE.
III. 1.

Then sime DCA is a secant, and DE a tangent to the cirele, \therefore the rect. DA, DC the sq. on DE, HI, $\because G$, But, by hypothesis, the rect. DA, DC = the sq. on DB;
\therefore the sif. on DE the sif on DB,

$$
\therefore D E=D B .
$$

Hence in the $\triangle^{*} D B F$, DEF.

\therefore the - DBF $=$ the - DEF.
But def is a rt. augle:
\therefore DBF is also a it. angle:
and since $B F$ is a radias,
\therefore DB touches the $\odot A B C$ at the point B.
Q.E.D.
drulion tro de the other whole liue the circle be cirele, there to it.
without it, 3, of which it; and lot

1i.17.
III. 1.
the cirele, 111. : $\%$.
m DB;

Promerl.
111. Dit.l.

1. S.
H. 1®.

3.

Q.E.D.

NOTE ON THE METHOD OF LIMITS AS APPLIED TO TANGEXCY.

Fuclid defines a tangent to a circle as a stroight line which merts the circumference, but beimy prorducrd, does not cut it: and from this definition le dednees the fundanental theorem that a tanyent is perpendicular to the radins drawn to the point of contact. l'rop. 16.

But this result may alio be established by the Method of Limits, which regards the tangent as the ultimate position of a sectut when its: tuo points of intersaction rith the rivaugerence are browht into coincidence [Sec Note on pare 151]: and it may be shewn that evers theorem relating to the tanent may be derived from some more general proposition relating to the secment, by considering the ultimate case when the two points of intersection coincide.

1. To prore by the Method of Limits that a tmugent to a ritcle is at right angles to the radius draven to the point af contart.

Let ABD be a circle, whose centre i.: C ; and PABQ a secant entting the , ee in A and B; and let $P^{\prime} A Q^{\prime}$ be the liniting position of PQ when the point B is brought into coincidence with A : then shall $C A$ be perp. to $P^{\prime} Q^{\prime}$.

Bisect $A B$ at E and join $C E$: then $C E$ is perp. to $P Q$. 1II. 8.
Now let the sceant PABQ change its position in such a way that while the point A remains fixed, the point B contimually approaches A , and ultimately
 coincides with it;
then, homeror near B approaches to A. the st. line CE is always $p^{\text {rerp. }}$, to $P Q$, since it joins the centre to the middle point of the chord $A B$.

But in the limiting position, when B coincides with A, and the secant $P Q$ becones the tangent $P^{\prime} Q^{\prime}$, it is elear that the point E will also coincide with A; and the perpembicular CE becomes the radius $C A$. Hence $C A$ is perp, to the tangent $P^{\prime} Q^{\prime}$ at its point of contact A.
Q. 1:. I).

Nume. It follows from Proposition 2 that a straight line cannot rut the circmbierence of a circle at more than two points. Now when the two points in which a secant cuts a circle move towards coincidence, the secant nltimately becomes a tangent to the circle: we infer therofure that a tangent cannot meet a cirele otherwise than at its point of contact. Thas Euclid's detinition of a tangent may be deduced from that given by the Method of Limits.
2. B!/ this Method Iroposition 32 may be derived as a special case from Proposition 21 .

For let A and B be two points on the cee of the $\odot A B C$; and let BCA, BPA be any two angles in the segment $B C P A$: then the $\angle B P A=$ the $\angle B C A . \quad$.1. 21 . Produce PA to \mathbf{Q}.
Now let the point P continually approach the fixed point A, and ultimately coincide with it;
then, hourerer neor P may upproseh to A, the $\angle \mathrm{BPQ}=$ the $\angle \mathrm{BCA}$. 111. 21 .
But in the limiting position when
 P coincides with A, and the secant PAQ beeomes the tanernt $A Q^{\prime}$, it is clear that $B P$ will coincide with $B A$, and the $\angle B P Q$ becomes the $\angle B A Q^{\prime}$.
Hence the $\angle \mathrm{BAQ}^{\prime}=$ the $\angle B C A$, in the alternate serment. (1. घ., 1 .

The contact of circles may be treated in a similar manner by adopting the following definition.

Definition. If one or other of two intersecting cireles alters its position in such a way that the two points of interscetion continually approach one another, and ultimately coincido; in the limiting position they are said to touch one another, and the point in whieh the two points of intersection ultimately coincide is called the point of contact.

EXAMPLES ON LIMITS.

1. Deduec Proposition 19 from the Corollary of Proposition 1 anc? Proposition 3 .
2. J)educe Propositions 11 and 12 from Ex. 1, page 156 .
i. Deduce Proposition 6 from Proposition is.
3. Deduce Proposition 13 from Proposition 10.
4. Shew that a straight line ents a eirele in two different points, two coincident points, or not at all, according as its distance from thr rontre is less than, equal to, or greater than a radius.
(i. Deduce Proposition 32 from Ex. 3, page 188.
5. Deduee Proposition 36 from Ex. 7, page 209.
6. The angle in a semi-circle is a right angle.

To what Theorem is this statement redueed, when the vertex of the right angle is brought into coincidence with an extremity of the diameter?
9. From Ex. 1, page 190, deduce the corresponding property of a triangle inscribed in a circle.

it. 12.1:.3. manner by les alters its continually miting posi1 which the he point of oposition 1
56.
ent points, ce from the
e vertex of mity of the
operty of a

THEOREMS AND EASMPLAS ON BUOK III.

J. ON THE CFNTHE AND CHORDS OF A CTRCLAF。
see Propositions 1, 3, 14, 15, ?.2.

1. All circles which pass through a fixed point, and hare their rentres on a giren straight line, pasis also through a serond .ixed point.

Let $A B$ be the given st. line, and P the given point.

From P draw $P R$ perp. to $A B$;
and produee $P R$ to P^{\prime}, making $R F^{\prime}$ equal to $P R$.
Then all cireles which pass through P, and have their centres on $A B$, shall pass also through P^{\prime}.

For let C be the eentre of an!y our of these eireles.
Join CP, C P^{\prime}.
Then in the $\triangle^{*} C R P, C R P^{\prime}$
$C R$ is common,
and $R P=R P^{\prime}$,
Comstr.
Because
$\angle C R P-$ the $\angle C R P$, being it. augles;
$\therefore \mathrm{CP}-\mathrm{CP}^{\prime}$;
I. 4.
\therefore the eircle whose eentre is C, and which passes through P, must pass also through P^{\prime}.
But \mathbf{C} is the eentre of an! eircle of the system;
\therefore all cireles, whieh pass through P, and have their eentres in $A B$, pass also through P^{\prime}. Q. 1:.1.
2. Describe a circle that shall pass through three giren points not. in the same straight line.
3. 1)escribe a circle that shall pass through two given points and have its centre in a given straight line. When is this impossible?
4. Deseribe a circle of given ratius to pass through two given peints. When is this impossible?'
5. $A B C$ is an isosceles triangle; and from the vertex A, as centre a circle is deereribed enting the hase, or the base produced, ut X and Y. shew that $B X-C Y$.
6. If two circles which intersect are ent loy a straight line parallel to the common chord, shew that the pate of it intereepted betwern the eisematerences are equal.
7. If two circles cut one another, any two straight lines dawn through a point of section, making equal angles with the common chond, and terminated by the circumferences, we eqmal. [Ex. 12, I. 3. 5.7
8. If two circles cut one another, of all straight lines drawn through a point of section and terminated by the cireumferences, the freatest is that which is parallel to the line joining the centres.
6. Two circles, whose centres are C and D, infersect at A, B; and through A a straight line $P A Q$ is drawn terminated by the circumferences: if $P C, Q D$ intersect at X, shew that the angle $P X Q$ is equal to the angle CAD.
10. Througlt a point of rection of two circles which ent one another draw it straight line termimated by the eireumferences and bisected at the point of section.
11. $A B$ is a fixed diameter of a circle. whose centre is C; and from P, any point on tha circmonference, $P Q$ is dawn jerpendienlar to $A B$; shew that the hisector of "tie angle $C P Q$ always intersects the circle in one or other of two fixed points.
12. Cireles are described on the sides of a yuadrilateral as diameters: shew that the common chord of any two consecutive circles is parallel to the common chord of the other two. [Ex. ?, 1. : 17.$]$
13. Two cqual circles touch one another externally, and through the point of contact two chorts are drawn, one in cach circle, at right angles to each other: shew that the stramht line joining their other extremitios is equal to the diameter of cither circle.
14. Straight lines are drawn from a given external point to the circumference of a circle: find the locus of their middle points. [1x. 33, p. 97.]
15. Two equal segments of circles are described on opposite sides of the same chord $A B$; and through O, the middle point of $A B$, any straight line $P O Q$ is drawn, interseeting the ares of the segments at P and Q : shew that $O P=O Q$.
aloints and apossible?
hh two given
A, as centre. , at X and Y.
struight line t interereptal
lines drawn the eommon
al. [Ex. 12,
lines drawn ferences, the entres.
ect at A, B; ated ly the angle PXQ
ich cht one ferences and
e is C ; and erpendicular itersects the
hilateral as consecutive vo. [Fix. !,
and through lo circle, at oining their
oint to the ldle points. of AB, wily cgments at

sem Ironositions $11,1: 16,17,14,19$.

1. All equal dords phaced in a hiven cirde tonel a tixed concentrie cirele.
2. If from an external point two tamemats aro drawn to a circle, the angle eontained by them is dond the angle contained bue the
 contact.
3. 'Two ciscles tunch one another' extematly, and through the point of contact a stranght line is dmwn tominated by the eiremmforeneos: shew that the fangents at its extremitios are parallel.
4. Two eireles intersect, and throng one point of section any straight line is drawn teminated by the eiremfereners: shew that the angle betweon the tangents at itsextremitics is equal to the anglo between the tangents at the point of section.
5. Shew that two parallel tangents to a circle intereapt on any third tange int a segment which subtends a right angle at the centre.
6. Two tangents are drawn to a given cirele from a fixed extermal point A, and any third tangent ents them protuced at P and Q : shew that $P Q$ subtends a constant anglo at the centre of the circle.
7. In any quadrilaterul circumseribed about "circle, the sum of one parir of opposite sides is equal to the sum of the other puir.
s. If the sum of one pair of opposite sides of a 'quadrilateral is equal to the sum o! the other peir, shew that a circle may be inscriberl in the jigure.
[Bisect two ndjacent angles of the figurc, and so describe a circle to touch three ot its sides. Then prove indirectly ly means of the last exercise that this cirele monst also tonel the fometh side.]
8. Two circles touch one another intemally: shew that of all chords of the outer cirele which touch the inner, the greatest is that Which is perpendicular to the strat fit line joining the centres.
9. In any triangle, if a cirele is described from the middle point of one side as eentre and with a radius equal to half the smm ot the other two sides, it will tourlo the circles deseribed on these sides ats dimmeters.
10. Through a given point, draw a straight line to cut a circle, so that the part interepped by the circumference may be equal to a given straight line.

In order that the problem may be possible, between what limits must the given line lie, when the given point is (i) without the circle, (ii) within it?
12. A series of cireles toneh a kiven straight lineat a given point: shew that the tangents to throm nt the points where they cut a given parallel stmight line all tonch it fixed eirche, whose eentre is the given point.
13. If two circles tonch one another internally, and any third eirele be deseribed tonching both; then tho smm of the distances of the centre of this third circle from the centres of the two given eircles is constant.
14. Find the loens of points such that the pairs of tangents drawn from them to a given cirele contain a constant angle.
15. Find a point such that the tangents drawn from it to two given circles may be cunal to two given straight lines. When is this impossible?
16. If three circles tonch one another two and two; prove that the tangents drawn to them at the three points of contact are con. eument and equal.

> Tme Common 'lavents ro 'Two Chelas,
17. To drane a common tangent to tro cireles.

First, if the given eireles are cxtemal to one another, or if they intersect.

Let A be the ceatre of the greater cirele, and B the centre of the less.

From A, with radius equal to the differ of the radii of the hiven circles, deseribe a circle: and from B draw BC to touch the last drawn circle. Join AC, and produce it to mect the
 greater of the given circles at D.

Through B draw the radius $B E$ par' to $A D$, and in the samo direction.

Join E:
then $D E$ shall be a common tangent to the two given circles.
For since $A C=$ the diffo between $A D$ and $B E$,
$\therefore C D=B E$:
and $C D$ is par to $B E$;
$\therefore D E$ is equal and par to $C B$.
('onstr:
is a tangent to the circle at C,
\therefore the $\angle A C B$ is a rt, angle; hence cach of the angles at D and E is a rt. angle:
111. 18.
$\therefore D E$ is a tangent to both circles.

1. 2%.
Q.v.F,
given point: cut a given is the given
ad myy third distances of given circles
of tangents le.
min to two When is this
; prove that act are eon.
or if the.

the same
('onstr:
Constr.
2. 33.
1. 18.
1. $2!$ Q. w.F,

It follows from hypothesis that the point B is outside the circle used in the constraction:
\therefore two thigents such ns BC may always be drawn to it from B; hence tro common tangents may ulways be drawn to the given circles by the above method. These are ealled the direct common tangents.

When the given eireles are extermal to one another and do not intersect, two more common tangents may be drawn.

For, from centre A, with a radius equal to the sum of the radio of the given circles, deseribe a circle.

From B draw a tangent to this circle; und proceed as before, lont draw $B E$ in the direction opposite to $A D$.

It follows from hypothesis that B is exterme to the circle usel in the construction:
\therefore two tangents may be drana to it from B.
Hence tao more common tarsents may be drawn to the given eircles: these will be found to pass between the given cireles, and are called the transverse common tangents.

Thins, in general, four common tangents may be drawn to two given circles.

The student should investigate for himself the number of common tangents which may be drawn in the following specinl cases, noting in each ease where the general construction fails, or is moditied:-
(i) When the given circles intersect:
(ii) When the given circles have external contact:
(iii) When the given circles lave internal contact:
(iv) When one of the given cireles is wholly within the other.
18. Draw the direct common tangents to two equal circles.
19. If the two direct, or the two transverse, common tangents are drawn to two circles, the parts of the tangents intercepted between the points of contact are equal.
20. If four cemmon tangents are drawn to two circles extermal to one another; slew that the two direct, and also the two transerse, tangents intersect on the straight line which joins the centres of the eircles.
21. Two given circles have external contact at A, and a direct common tangent is drawn to touch them at P and Q : shew that $P Q$ subtends a right angle at the point A.
22. Two circles have external contact at A and a direct common tangent is drawn to tonch them at P and Q : shew that a circle described ou $P Q$ as diameter is tonched at $\dot{\mu}$ by the straight line which joins the centres of the circlea.
23. 'Two circles whose centres are C and C^{\prime} have external contact at A, nand n direct common tangent is drawn to touch them at P und Q : shew that the bisectors of the angles PCA, QC'A ment nt rifht ungles in $P Q$. And it R is the point of intersection of the bisectors, shew that RA is also a common tangent to the circles.
24. Two circles ha: external contact at A, ama a firect common thngent is drawn to touch them at P man Q : shew that the spmawe on PQ is equal to the wectangle contaned by the dimmeters of the circtes.

2\%. han a tangent to agiven cinele, so that the part of it interecpted bey another given circle may be equal to a given straight line. When is this impossible?
26. Draw n secmat to two given circles, so that the parts of it interepted ber the eircminferene maty be equal to two given straight lines.

> Phomatas wy Caviever.

The following exereises are solved hy the thethod of Intersection of Loci, explaned on prase 11%.

The student should legin! by making limself faniliar with the following lori.

(ii) The locus of the centres of cirches rhich tomele a giren struight line at a girem point.
(iii) The locus of the coutres of cireles which touch a given circle at "turc" proint.
(iv) The locns of the centres of "iveles whed tonch a girenstraight line a cued hater a gitritu ratins.
(v) The locus of the cruties of cireles which touch as given cirche, and hate a !iren rodits.
(vi) The bochs "f the cruties of circles whink tonch turo giren straight lines.

In each exercise the stulent should investighte tho limits and relations among the data, in onder that the problen may be possible.
27. I) eseribe a circle to touch three given straight lines.
os. Deseribe a circle to pass through a givell point and touch a given staaght liue at a givel point.
29. Describe a circle to pass through a given point, hat toneh a given circle at a given point.
linal conluct then at P C'A ment nt ation of the circles.
ect common the square eters of the
part of it ent struight
parts of it ell strmight

1 of Haterriliur with

K tư ! given Th struiglit encirele at 'enstraight iven cirele, two giren tho limits m maty be
dd touch :t
Id touch a
iin. 1beserilie ne cirelo of givern radius to pass throneh a giren proint, mad touch a given strught lime.
:31. Theseribe a cirele of given ratius to tomeh two given cireles.
33. Jescribe a circho of hiven radius to touch two given mainht tines.
 given straight line.
34. Describe two cireles of piven zalii to tomblate another unt atgiven straight line, on the sanle side of it.
$3 . \%$ If a circle toneles a given circle und a given straight lime. shew that the points of eontact and mu extremity of the dianmeter of the given circle at right ungles to the given line are collinem.
 giten straight line at agiren point.

Let DEB be the given eircle, PQ the given st. line, and A the given point in it :
it is requirel to describe a circle to toueh the © DEB, mud also to tomeh $P Q$ at A.

At A dran $A F$ perp. to $P Q:$ I. 11. then the centre ot the required circle must lie in AF. \quad in. 1 !.

Find C, the centre of the \cdot DEB, III. 1. nul draw a dimmeter $B D$ perp. to $P Q$:
 join A to one extremity D, cutting the ocu at E.

> Toin CE, mnd produee it to cut AF nt F.

Then F is the centre, and $F A$ the radius or the required cincle.
[Snpply the proof : and shew that a sceon lation is obtained hy joining $A B$, and prodncing it to meet the Cr . also distinguish between the iatitre of the eontuct of the cireles, when $P Q$ cuts, touches, or is without the given eirele.]
37. Deseribe cle to touch a given straight line, ant to tonch a given circle at is gren point.
38. In sonhe \boldsymbol{n} cirele to touch a given eirele, have its euntre in a given straight line, and pass througla a given point in that straight line.

Unthogonal Circles.

Defonitus. Circles which intersect at at point, so that the two tangents at that point are at right angles to one another, are said to be orthogonal, or to cut one another orthogonally.
39. In two intersecting cireles the angle between the tangents at one point of intersection is equal to the angle between the targents at the other.
40. If two circles cut onc another orthogonally, the tangeut to each ciccle at a poiut of intecsection will pass through the centre ai" the other circle.
41. If two circles cut one another orthogonally, the square on the distance betwecu their centres is equal to the sum of the squares on their rallii.
42. Find the locus of the centres of all cireles which ent a given circle orthogonally at a given point.
43. Describe a cirele to pass through a given point and eut a given circle orthogonally at a given point.
111. ON ANGLES IN SEGMENTS, AND ANGLES AT THE CENTRES ANI) CIRCUMFERENCES OF CLRCLES.

See Propositions $20,21,22 ; 26,27,28,29 ; 31,32,33,34$.

1. If turo chocds intersect withiu a citche, the'y form an augle equal to that at the centre, subtemed by half the sum of the ares they cut effic.

Let $A B$ and $C D$ be two chords, intersecting at E within the given © $A D B C$:
then shall the $\angle A E C$ be equal to the augle at the centre, smbtended by half the sum of the ares AC, BD.

Join AD.

Then the ext. $\angle A E C=$ the sum of the int. Olp. 1 "EDA, EAD;
that is, the sum of the \angle "CDA, BAD.
But the \angle "CDA, BAD are the angles at
 the $0^{\text {re }}$ subtended by the ares $A C, B D$;
\therefore their sum $=$ half the sum of the angles at the centre subtended loy the same ares;
or, the $\angle A E C=$ the angle at the eentre subtended by half the sum of the ares $A C, B D$.
o. E. D.
2. If two chords uhen produced interscet outside a circle, they form an angle equal to that at the centre subtendell by half the difference of the arcs they cut off.
3. The sum of the ares cut off by two chords of a cirele at right angles to one another is equal to the semi-eireumference.
4. $A B, A C$ are any two chords of a circle; and P, Q are the middle points of the minor ares sut off by them: if $P Q$ is joined, entting $A B$ and $A C$ at X, Y, shew that $A X=A Y$.
5. If one side of a quadrilateral inscribed in a cirele is produced, the exterior angle is equal to the opposite interior angle.
6. If two circles intersect, and any straight lines are drawn, one through each point of section, terminated by the circumferences; shew that the chords which join their cxtremitics towards the same parts are purallel.
7. $A B C D$ is a quadrilateral inscribed in a circle; and the opposite sides $A B, D C$ are produced to meet at P, and $C B, D A$ to meet at Q : if the cireles circumseribed about the triangles $P B C, Q A B$ interseet at R, shew that the points P, R, Q are collinear.
8. If a circle is described on one of the sides of a right-angled triangle, then the tangent drawn to it at the point where it cuts the hypotenuse bisects the other side.
9. Given three pcints not in the same straight linc: shew how to find any number of points on the circle which passes through them, without finding the centre.
10. Through any onc of threc given points not in the same straight line, draw a tangent to the circle which passes through them, without finding the centre.
11. Of two eircles which intersect at A and B, the circumference of one passes throngh the centre of the other : from A any straight line is drawn to ent the first at C, the seeond at D; shew that $C B=C D$.
12. Two tangents $A P, A Q$ are drawn to a eircle, and B is the middle point of the are $P Q$, convex to A. Shew that $P B$ bisects the angle $A P Q$.
13. Two cireles interseet at \mathbf{A} and \mathbf{B}; and at \mathbf{A} tangents are drawn, one to each cirele, to meet the circmmferences at C and D : if $C B, B D$ are joined, shew that the triangles $A B C, D B A$ are equiangular to one another.
14. Two segments of circles are cescribed on the same chord and on the same side of it ; the extremities of the common ehord are joined to any point on the are of the exterior segment: shew that the arg intercepted on the interior segment is constant.

II, E :

1\%. If a series of triangles are drawn standing on a fixed base, and having a given vertical angle, shew that the bisectors of the vertiral angles all pass through a fixed point.
16. $A B C$ is a triangle inscribed in a circle, and E the middle point of the are sultended by $B C$ on the side rmote from A : if throngh E a diameter ED is drawn, shew that the angle DEA is half the difference of the angles at B and C. [Sce Ex. 7, p. 101.$]$
17. If two circles tonch each other internally at a point A, any chord of the exterior circle which tonches the interior is divided at its point of contact into segments which subtend equal angles at A.
18. If two circles touch one another internally, and a straight line is drawn to cut them, the segments of it intercepted between the circumferences subtend equal angles at the point of contact.

The Ohmocentie of a Thengle.

19. The perpendiculars drawn from the vertiess of a triangle to the npposite sides are concurreut.

In the $\triangle A B C$, let $A D, B E$ be the perp ${ }^{4}$ drawn from A and B to the opposite sides; and let them intersect at O. Ioin CO ; and produce it to meet $A B$ at F.

It is required to sheu that CF is perp. to AB .

Join DE.

Then, becanse the \angle SOEC, ODC are
 it. angles, H! 11 .
\therefore the points $\mathrm{O}, \mathrm{E}, \mathrm{C}, \mathrm{D}$ are concyclic :
\therefore the $\angle D E C=$ the $\angle D O C$, in the same segment ; $=$ the vert. opp. $\angle \mathrm{FOA}$.
Adain, becanse the $\angle{ }^{8} A E B, A D B$ are rt. angles,
\therefore the points $\mathrm{A}, \mathrm{E}, \mathrm{D}, \mathrm{B}$ are concyclic :
\therefore the $\angle D E B=$ the $\angle D A B$, in the same segment.
\therefore the smm of the $\angle{ }^{8} F O A, F A O=$ the sum of the \angle *DEC, DEB $=\mathrm{a}$ \% t . angle:

Нур.
\therefore the remainin ${ }^{\circ} \angle A F O=$ a rt. angle: I. $3 \geq$.
that is, $C:-$ is perp. to $A B$.
Hence the three perp ${ }^{\text {s }} A D, B E, C F$ meet at the point O. Q. F. n.
[For an Alternative Proof see page 10ti.]
n a fixed base, ors of the verti-
E the middle note from A : it ge DEA is hatf . 101.$]$
ta point A, any is divided at its agles at \mathbf{A}.
and a straight ted between the ontact.
of a triangle to

$H!p$.
gment
gment.
\angle "DEC, DEB
Hyl

1. 3.

Defintions.

(i) The intersection of the perpendicnlars drawn from the vertices of a triangle to the opposite sides is malled its ortho centre.
(ii) The triangle formed loy joining the fect of the prepentirulan is called the pedal orthocentric triangle.
20. In an arnte-angled triautle the perpendiculats drantu from the revtices to the opposite sides bisect the auyle's of the perdul trimule through which they pass.

In the acute-angled $\triangle A B C$, let $A D$, $B E, C F$ be the perps drawn from the vritiees to the opposite sides, meeting at the orthocentre O ; and let DEF be the pedal triangle :
then shall $A D, B E, C F$ bisect respect. ively the $\angle{ }^{\text {B }}$ FDE, DEF, EFD.
For, as in the last theorem, it may be shewn that the points O, D, C, E are
 coneyelic;
\therefore the $\angle O D E=$ the $\angle O C E$, in the same segment.
Similarly the points O, D, B, F are concyelie;
\therefore the $\angle O D F=$ the $\angle O B F$, in the sames segment.
But the $\angle \mathrm{OCE}=$ the $\angle \mathrm{OBF}$, each being the compt of the $\angle \mathrm{BAC}$. \therefore the $\angle O D E=$ the $\angle O D F$.
Similarly it may be shewn that the \angle "DEF, EFD are biseeted by. $B E$ and $C F$.
"npollary. (i) Erery/ turo sides of the pedal triaugle are equally at to that side of the original triaugle in whirh the! meet.
For the $\angle E D C=$ the eompt of the $\angle O D E$

$$
\begin{aligned}
& =\text { the comp } \\
& =\text { the } \angle B A C .
\end{aligned}
$$

Similarly it may be shewn that the $\angle F D B=$ the $\angle B A C$, \therefore the $\angle E D C=$ the $\angle F D B=$ the $\angle A$.
In like manner it may be proved that
the $\angle D E C=$ the $\angle F E A=$ the $\angle B$,
and the $\angle D F B=$ the $\angle E F A=$ the $\angle C$.
Corollary. (ii) The triangles DEC, AEF, DBF are equiangular to one another and to the triangle ABC.

Note. If the angle BAC is oltuse, then the perpendiculars BE, CF bisect externally the corresponding angles of the pedal triangle.
21. In any triangle, if the perpendiculars draun from the vertices on 'he opposite sides are prodnced to meet the circmuscribed circle, then each side bisects that portion of the liue perpendienlar to it which lies betureen the orthocentre and the ciremuference.

Let $A B C$ lie a triangle in which the perpen. diculars $A D, B E$ are drawn, intersecting at O the ortliocentre; and let AD be produced to meet the r " of the circumscribing circle at G :
then shall DO = DG.

Join BG.

Then in the two \triangle " OEA, ODB, the $\angle O E A=$ the $\angle O D B$, being rt. angles; and the $\angle \mathrm{EOA}=$ the vert. opp. $\angle \mathrm{DOB}$;
\therefore the remaining $\angle E A O=$ the remaining $\angle D B O$. I, 32 .

> But the $\angle \mathrm{CAG}=$ the $\angle \mathrm{CBG}$, in the same segment; \therefore the $\angle D B O=$ the $\angle D B G$.
> Then in the \triangle^{s} DBO, DBG,
Q. 1. 1 .
22. In an acute-angled triangle the three sides are the exterual bisectors of the angles of the pedal triangle: and in an obtnse-rmgled triangle the sides containing the obtnse augle are the interual bisectors of the correspording angles of the perlal triameld.
2.3. If O is the orthocentre of the trimate ABC . shere that the rugles BOC, BAC aris supplementur?.
21. If O is the ortheentre of the triangle ABC , then any one of the four proint: $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ is the orthocentre of the trimgle whosi vertiess are the other three.
25. The three eircles which pass; throngh two vertices of a triangle aml its orthoerntre are each equal to the eirele ciremmseribed abont the triangle.
26. D, E are taken on the circminference of a semicircle described on a given straight line $A B$. the chords $A D, B E$ and $A E, B D$ intersect (produced if uccessary) at F and G : shew that $F G$ is perpendicular to $A B$.
27. $A B C D$ is a parallelogram; $A E$ and $C E$ are drawn at right angles to $A B$, and $C B$ respectively: shew that $E D$, it produced, will be perpendicular to $A C$.
28. $A B C$ is a triangle, O is its orthoeentre, and $A K$ a diameter of the cireumseribed cirele: shew that BOCX is a parallelogram.
29. The orthocentre of a triangle is joined to the middle point of the base, and the joining line is prodneed to meet the ciremmseribed cirele: prove that it will meet it at the same point as the diameter whiel passes throngh the vertex.
30. The perpendicular from the vertex of a triangle on the base, mud the straight line joining the orthoeentre to the middle point of the base, are produced to meet the eiremmeribed eirele at P and Q : shew that $P Q$ is parallel to the base.
31. The distance of each vertore of a triangle from the orthocentere is donble of the perpendicular, draw from the centre of the circumseribed circle on the opposite side.
32. Three circles are deseribed each passing throngh the orthocentre of a triangle and two of its vertices: shew that the triangle formed by joining their centres is equal in all respeets to the original triangle.
83. $A B C$ is a triangle inseribed in a circle, and the bisectors of its angles whiel intersect at O are produced to meet the eireumference in $P Q R$: shew that O is the orthoeentre of the triangle $P Q R$.
34. Construct a triangle, having given a vertex, the orthoeentre, and the centre of the cireumseribed eirele.

Loci.

35. (iiten the base and vertical angle of atriangle, find the locns of its orthocentre.

Let $B C$ be the given base, and X the given angle; and let BAC be any triangle on the base $B C$, havine its vertical $\angle A$ equal to the $\angle \mathrm{X}$.

Draw the perp ${ }^{s} \mathrm{BE}, \mathrm{CF}$, intersecting at the orthocentre \mathbf{O}.

It is required to find the locus of O .
Since the $\angle{ }^{\circ}$ OFA, OEA are rt. anorles, \therefore the points O, F, A, E are coneyclic ;
\therefore the $\angle F O E$ is the supplement of the $\angle A$:

But the $\angle A$ is eonstant, being always cumal to the $\angle X$, \therefore its supplement is constant; that is, the $\triangle B O C$ has a fixed base, and constint vertical angle; hence the loeus of its vertex O is the arc of a segment of which BC is the chord.
36. Given the base and revtical angle of a triangle, find the locus of the intersection of the bisectors of its angles.

Let BAC be any triangle on the given hase $B C$, having its vertical angle equal to the given $\angle \mathrm{X}$; and let $\mathrm{AI}, \mathrm{BI}, \mathrm{CI}$ be the biseetors of its angles: [see Ex. 2, p. 103.] it is required to find the locus of the point I.

Denore the angles of the $\triangle A B C$ by A, B, C; and let the $\angle B I C$ be denoted by i. Tlien from the \triangle BIC,

(i) $\quad I+\frac{1}{2} B+12 C=$ two rt. angles,

1. $: 3$. and from the $\triangle A B C$,

$$
A+B+C=\text { two rt. angles; }
$$

1. $3!$.
(ii) so that $A+\frac{1}{2} B+\frac{1}{2} C=$ one rt. angle,
\therefore, taking the differences of the equals in (i) and (ii),
$1-1-1 A=$ one rt. angle:
or, $\quad \mathrm{I}=$ one rt. angle $+\frac{1}{2} \mathrm{~A}$.
But A is constant, being always equal to the $\angle X$;
$\therefore \mathrm{I}$ is constant:
\therefore, sinee the lase $B C$ is fixed, the locus of I is the are of a segment of which BC is the chord.
2. Giren the buse and vertical anyle of a triangle, find the locus of the centroid, that is, the intersection of the medians.

Let BAC be any triangle on the given base BC, having its vertical angle equal to the given angle S; let the medians AX, BY, CZ intersect at the eentroid G [see Ex. 4, p. 10in]: it is required to find the locus of the point G.

Through G draw GP, GQ prr to AB and $A C$ respectively.

Then ZC is a thitd part of ZC ;
 and since GP is prn to $Z B$,
$\therefore B P$ is a third pant of $B C$.
Similarly QC is a third part of BC;
.ind Q are fixed points.
Now since PG, Gu are par respectively to BA, AC,
\therefore the $\angle P G Q=$ the $\angle B A C$,
C'onstr. $=$ the $\angle \mathrm{S}$,
I. 29.
that is, the $\angle P G Q$ is constant;
and sinee the base $P Q$ is fixed,
\therefore the locus of G is the are of a segment of which $P Q$ is the chord.
the locus

1, $3: 2$.

1. 3%.
segment
the locus:

$9,1.99$.

Constr.
I. 29.
hord.

Obs. In this probiem the points A and G move on the arcs of similur segments.
38. (iiven the base and the vertical angle of a triangle; find the locus of the intersection of the biscetors of tho exterior base angles.
39. Throngh the extremities of a given straight line $A B$ any two parallel straight lines $A P, B Q$ are drawn; find the locus of the intersection of the bisectors of the angles $P A B, Q B A$.
40. Find the locus of the niddle points of chords of a cirele drawn through a fixed point.

Distinguish between the cascs when the given point is within, on, or without the circumference.
41. Find the locus of the points of contact of tangents drawn from il fixed point to a system of concentric circles.
4.). Find the locus of the intersection of straight lines which pass through two fixed points on a circle and intcreept on its circumference an are of constant length.
43. A and B are two fixed points on the ciremmference of a cirele, and $P Q$ is any diameter: find the locus of the intersection of PA and QB.
4. BAC is any triangle described on the fixed base BC and having a eonstant vertieal angle; and $B A$ is produced to P, so that, BP is equal to the sum of the sides containing the vertical angle: find the locus of P.
4.5. $A B$ is a fixed chord of a circle, and $A C$ is a moveable chord passing through A : if the parallelogram $C B$ is completed, find the locus of the intersection of its diagonals.
46. A straight rod $P Q$ slides between two rulcrs phaced at right angles to one another, and from its extremities $P X, Q X$ are drawn perpendicular to the rulers: find the locus of X.
17. Two circles whose centres are C and C, intersect at A and B : through A, any straight line PAQ is drawn ter cinated by the eiremm. ferences; and FC, QD intersect at X : find the iveus of X, and shew that it passes through B. [Ex. 9, p. 216.]
48. 'Two circles intersect at A and B, and through P, any point on the circumference of onc of them, two straight lines PA, PB are drawn, and produced if nccessary, to cut the other circle at X and Y : find the locus of the interscetion of $A Y$ and $B X$.
49. Two circles intersect at A and B; HAK is a fixed straight linc drawn th ough A and temmated by the ciremmferences, and $P A Q$ is any other straight line similarly drawn: find the locus of the intersection of HP and QK.
50. Two segments of circles are on the same ehord $A B$ and on the same side of it; and P and Q are any points one on each are: find the locus of the intersection of the biseetors of the angles PAQ, PBQ.
51. Two cireles interseet at A and B ; and through A iny straight line PAQ is drawn terminated by the eireumferenees: find the locus of the middle point of $P Q$.

Miseqlaneots Exampas on Angals in a Cimele:

5\%. $A B C$ is a triangle, and eircles are drawn through B, C, eutting the sides in $P, Q, P^{\prime}, Q^{\prime}, \ldots$: shew that $P Q, P^{\prime} Q^{\prime} \ldots$ are parallel to one another and to the tangent drawn at A to the eircle cirenmseribed about the triangle.
53. Two circles intersect at B and C, and from any point A, on the cireumferene of one of them, $A B, A C$ are drawn, ant produced it necessary, to meet the other at D and E : shew that $D E$ is parallel to the tangent at A.
54. A secant PAB and a tangent PT are drawn to a cirele from an external point P; and the biseetor of the angle $A T B$ meets $A B$ at C : shew that PC is cqual to PT.
55. From a point A on the circmmference of a cirele two chords $A B, A C$ are drawn, and also the diameter $A F$: if $A B, A C$ are produced to meet the tangent at F in D and E, shew that the triangles $A B C$, $A E D$ are equiangular to one another.
56. O is any point within a triangle $A B C$, and $O D, O E, O F$ are drawn perpendieular to $B C, C A, A B$ respeetively: shew that the angle BOC is equal to thic sum of the angles BAC, EDF.
57. If two tangents are drawn to a circle from an external point, shew that they contain an angle equal to the difference of the angles in the segments eut off by the chord of contact.
58. Two eircles intersect, and through a point of section a straight line is drawn bisecting the angle between the dianeters through that point: shew that this straight line euts off similar segments from the t wo circles.
59. Two equal circles intersect at A and B ; and from centre A, with any radius less than $A B$ a third eirele is deseribed cutting the given eireles on the same side of $A B$ at C and D : shew that the points B, C, D are collinear.
60. $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are two triangles inseribed in a cirele, so thet $A B, A C$ are respectively parallel to $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$: shew that $B C^{\prime}$ is parallel to $B^{\prime} C$.
B and on each are : gles PAQ,
y straight re locus of

C, eutting lel to one unscribed
int A, on coduced it arallel to
rcle from ts $A B$ at
vo chords produced les $A B C$, that the
al point, te angles ugh that from the

11 eentre tting the te points $B C^{\prime}$ is
61. 'Iwo circles intersect at A and B, and through A two straight lines HAK, PAQ are drawn terminated by the circumferences: if $H P$ and $K Q$ interscet at X, shew that the points H, B, K, X are concyclic.
62. Describe a circle touching a given straight line at a given point, so that tangents drawn to it from two fixed points in the given line may be parallel. [Sce Ex. 10, p. 183.]
63. C is the centre of a circle, and CA, CB two fixed radii: if from any point P on the are $A B$ perpendiculars $P X, P Y$ are drawn to $C A$ and $C B$, shew that the distance $X Y$ is constant.
64. $A B$ is a chord of a circle, and P any point in its circumference; $P M$ is drawn perpendicular to $A B$, and $A N$ is drawn perpendicular to the tangent at P : shew that $M N$ is parallel to $P B$.
(i5. P is any point on the circumference of a circle of which $A B$ is it fixed diameter, and PN is drawn perpendicular to $A B$; on $A N$ and $B N$ as diameters circles are described, which are cut by AP, BP at X and Y : shew that $X Y$ is a common tangent to these circles.

6i6. Upon the same chord and on the same side of it three segments of circles are deseribed containing respectively a given anglo, its supplement and a right angle: show that the intercept mate by the two former segments upon any straight line drawn through an extremity of the given chord is bisected by the latter segment.
67. Two straight lines of indefinite length touch a given circle, and any chord is drawn so as to be bisected by the chord of contact: if the former ehord is producel, shew that the intercepts between the eircumference and the tangents are cqual.
(68. Two circles intersect one another: through one of the points of contact draw a straight line of given length terminated by the circumferences.
69. On the three sides of any triangle equilateral triangles are described remote from the given triangle: shew that the circles deseribed about them intersect at a point.
70. On $B C, C A, A B$ the sides of a triangle $A B C$, any points P, Q, R are taken; shew that the circles described about the triangles AQR, BRP, SPQ meet in a point.
71. Find a point within a triangle at which the sides subtend equal angles.
72. Describe an equilateral triangle so that its sides may pass through threc given points.
73. Describe a triangle equal in all respects to a given triangle, and having its sides passing through three given points.

Simson's Lise.

74. If from any point on the cincumference of the circle circuur. seribed about "trinule, perpendiculars are drown to the three sides, the fect of these perpendiculars are collinear.

Let P be muy point on the $C^{\text {re }}$ of the circle circmmseribed abont the $\triangle A B C$: and let PD, PE, PF be the perp ${ }^{*}$ drawn from P to the three sides.

It is required to prove that the points D, E, F are collinear:

Join FD and DE :
then FD and $D E$ shall be in the same st. line.

Join PB, PC.
Because the \angle " PDB, PFB are rt. angles,
\therefore the points P, D, B, F are concylic:
Hyp.
the $\angle P D F=$ the $\angle P B F$, in the same serment.
111. 21.

But since BACP is a quad inseribed in a circle having one of its sides $A B$ produeed to F,
\therefore the ext. $\angle \mathrm{PBF}=$ the opp. int. $\angle \mathrm{ACP} .1: x .3, p .188$. \therefore the $\angle P D F=$ the $\angle A C P$.

To each add the \angle PDE :
then the $\angle{ }^{*} P D F, P D E=$ the $\angle{ }^{B} E C P, P D E$.
But since the $\angle B P D C$, PEC are rt. angles, \therefore the points P, D, E, C are eoneylic;
\therefore the $\angle{ }^{s} E C P$, PDE together $=$ two rt . angles:
\therefore the $\angle \mathrm{sPDF}, \mathrm{PDE}$ together = two rt. angles; $\therefore F D$ and $D E$ are in the same st. line; 1. 11. that is, the points D, E, F are collinear. Q.E.D.
['The line FDE is called the Redal or Simson's Line of the triangle $A B C$ for the point P; though the tradition attributing the theorem to Robert Sinison has been recently slaken by the researches of Dr. J. S. Maekay.]
75. $A B C$ is a triangle inscribed in a eircle; and from any point P on the eircumference $P D, P F$ are drawn perpendicular to $B C$ and $A B$: if FD, or FD produced, cuts $A C$ at E, shew that $P E$ is perpendicular to AC.
76. Find the loeus of a point which moves so that if perpendiculars are drawn from it to the sides of a given triangle, their feet are collinear.
77. $A B C$ and $A B^{\prime} C^{\prime}$ are two triangles having a common vertical angle, and the eireles circumseribed abont them meet again at P : shew that the feet of perpendiculars drawn from P to the fonr lines $A \bar{A}, A C$, $B C, B^{\prime} C^{\prime}$ are eollinear.
78. A triengle is inscribed in a circle, and any puint P on the cir. cumference is joined to the orthocentre of the trinugle: shice that this joining line is bisceted ly the wedal of the point. P .

小. ON THE CHLCLE IN CONSECTHON WTH RECTANGLES.

 See Propositions $3 \pi, 36,37$.1. If from any extcrmal point P two tomsents are dinurn to at niven circle whose centre is O , and if OP merts the chom of contact ut \mathbf{Q}; then the rectample OP, OQ is equal to the simare on the radius.

Let PH, PK be tangents, drawn from the external point P to the \subset HAK, whose centre is O ; and let OP meet HK the chord of contact at Q, and the $O^{\text {ec }}$ at A : then shall the rect. $O P, O Q=$ the $s q$. on OA.

On HP as diameter describe a circle : this cirele must pass through Q, since the $\angle H Q P$ is a rt. angle.
111. 31.

Join OH.

Then sinee PH is a tangent to the © HAK,
 \therefore the $\angle O H P$ is a rt. angle. And since HP is a diameter of the \odot HQP, $\therefore \mathrm{OH}$ touches the $\odot \mathrm{HQP}$ at H .
in. 14. \therefore the rect. $O P, O Q=$ the sq . on OH ,
111. 36 .
Q. E. 1%
2. $A B C$ is a triangle, and $A D, B E, C F$ the perpendicalars drawn from the vert: eses to the opposite sides, meeting in the orthocentre O : shew that the rect. $A O, O D=$ the reet. $B O, O E=$ the rect. $C O, O F$.
3. $A B C$ is a triangle, and $A D, B E$ the perpendiculars drawn from A and B on the opposite sides: shew wat the rectangle $C A, C E$ is equal to the reetangle $C B, C D$.
4. $A B C$ is a triangle right-angled at C, and from D, any point in the hypotenuse $A B$, a straight line $D E$ is drawn perpendieular to $A B$ and meeting $B C$ at E : shew that the square on $D E$ is equal to the difference of the rectangles $A D, D B$ and $C E, E B$.
5. From an exterual point P two tangents are drawn to a wiven efircle whose centre is O, and $O P$ meets the shord of contant at Q : shew that any eircle which passes through the points P, Q will cut the given circle orthogonally. [See Def. p. 222.]
6. A serics of circles pass through tro siren peints, and from it fixed point in the common chord produced tangents are drow to to all the circles: shew that the points of coutare lie on a circle which cuts ull the giten circles orthogonally.
7. All circles whish pass through of fixed paint, and cont a giten circle orthogonally, pass alse throngh a sectond jired point.
8. Find the locus of the centres of all eircles which pass through a given point and cut a given cirele orthogonally.
9. Deseribe a eirele to pass through two given points and eut 4 given eirele orthogonally.
10. A, B, C, D are four points taken in order on a given straight line: find a proint O between B and C such that the rectangle OA, OB may be equal to the rectangle OC, OD.
11. AB is a fixed diameter of a circle, and CD 1 , inerd stroight line of inderinite length cutting AB or AB prodnerd at right omgles: any sitraight line is ilrown thrombl A to cut CD at P ond the circle at Q : shew that the rectangle AP, AQ is constant.
12. $A B$ is a fixed dianeter of a eirele, and $C D$ a fixed chord at right amgles to $A B$; any straight line is drawn through A to cut $C D$ at P and the eirele at Q : shew that the rectangle $A P, A Q$ is equal to the square on $A C$.
18. A is a fixed point and $C D$ a jired straight line of indefinite lemith; AP is an! straight line diarit throulh \mathbf{A} to meet $C D$ it P; and in AP a point Q is token such that the rectangle AP, AQ is constant: find the locus of \mathbf{Q}.
14. Two eircles intersect orthogonally, and tangents are drawn from any point on the circumference of one to toneh the other : prove that the first cirele passes through the middle point of the chord of contact of the tangents. [Ex. 1, 1. 233.]
15. A semicirele is deseribed on $A B$ as diameter, and any two chords $A C, B D$ are drawn interseeting at P : shew that

$$
A B=A C \cdot A P+B D \cdot B P .
$$

16. 'lwo cireles intersect at B and C, and the two direct common langents $A E$ and $D F$ are drawn: if the common chord is prombed to meet the tangents at G and H, shew that $G H^{\prime \prime}=A E^{2}+B C^{\prime}$.
17. If from a point P, without a circle, $P M$ is drawn perpendiculas to a diameter $A B$, and also a secant PCD, shew that

$$
P M^{\prime}=P C \cdot P D+A M . M B,
$$

d jrom a po all the hich cuts
ta given throngh and cut a straight rectungle
straight angles: circle at
ed chord gh A to $A P, A Q$
nedefinite
D int P : $A Q$ is
e drawn : prove chord of
my two
common need to
ulicular
18. Three circles intersect at D, and their other points of intersection are $A, B, C ; A D$ cuts the circle BDC at E, nend EB, EC cut the circles $A D B, A D C$ respectively at F mad G : shew that the points F, A, G are "onenear, and F, B, C, G ronerchi".
19. A semicircle is described on a given diameter BC, and from B and C auy two chords $B E$, CF are drawn intersecting within the semicircle at $O ; B F$ and $C E$ are produred to meet at A : shew that the sum of the squares on $A B, A C$ is equal to twice the square on the tangent from A togethor with the square on $B C$.
20. X and Y are two fixed points in the dianeter of n circle eqnidistunt from the centre C : through X any chord $P X Q$ is druwn, and its extremitios are joined to Y; slow that the smus of the sinnares on the sides of the trimgle PYQ is constant. [See p. 1 fi , Ex. 21.1

I'momems on Tanormes.

21. To describe "e virche to pase through fro giten juints and to fourlo a given straty then.

Let A and B se the give n proints. and $C D$ the give s si l lme: it is required to a saribe a circle to pass through A an- 3 ' 3 and to tourh CD.

Toin BA, and produce it 4 , mean $C D$ nt P.
I) escribe a squme equal to the
 rect. FA, PB; II. 14. and from $P D$ (or $P C$) cut off $P Q$ equal to a side of this sumare.

Through A, B and Q deseribe a cirele. Fix. 4, p. 1:m.
Then since the rect. $P A, P B=$ the sq, on $P Q$,
\therefore the $\odot A B Q$ tonches $C D$ at Q. $11 .: 3$.
(1. F., r .

Note. (i) Since PQ may be taken on either side of P, it is elear that there are in general two solutions of the problem.
(ii) When $A B$ is parallel to the given line $C D$, the above method is mot appheable. Til this case a simple construction follows from iIf. 1, Cor. and mi, 16° and it will he found that only one solution exists
22. To describe " circle to pass through two given points aul to touch a giten circle.

Let A and B be the given points, and CRP the givell eircle:
it is required to deseribe a rirele to pass throngh A and B, and to touch the $\odot C R P$.

Through A and B de. seribe any cirele to cut the given circle at P and Q.

Join AB, PQ, and produce them to meet at D.

From D draw DC to tonel the given cirele, and let C be the point of eontact

Then the circle described through A, B, C will tonch the given ci)cle.

For, from the $\odot A B Q P$, the reet. $D A, D B=$ the rect. $D P, D Q:$ and from the - $P Q C$, the rect. $D P, D Q=$ the sq. on $D C$; III. 36. \therefore the reet. $D A, D B=$ the sq. on $D C$:
\therefore DC tonches the $\odot A B C$ at C.
But DC tonches the © PQC at C;
III. 37.

Constr. \therefore the $\odot A B C$ touches the given circle, and it passes through the
given points A and B.
Note. (i) Since two tangents may he drawn from D to the given circle, it follows that there will be two solutions of the problem.
(ii) The general construction fails when the straight line bisecting $A B$ at right angles passes through the centre of the given circle: the problem then becomes symmetrical, and the solntion is obvinus.
23. To describe a circle to pass through a giren point amd to twuch two given straight lines.

Let P be the given point, and $A B, A C$ the given straight lines: it is required to deseribe a circle to pass through P and to tonch $A B, A C$.

Now the centre of every circle which tonehes $A B$ and $A C$ must lie on the bisector of the $\angle B A C$.

Ex. 7, p. $18: 3$.
Hence draw $A E$ bisecting the
 $\angle B A C$.

From P draw $P K$ perp. to $A E$, and produce it to P^{\prime}, making $K P^{\prime}$ equal to $P K$.

Then every circle which has its centre in AE, and passes through P, must also pass through P^{\prime}.

Ex. 1, p. 215.
Hence the problem is now reduced to drawing a circle through P and P^{\prime} to tonch either $A C$ or $A B$.

Produce $P^{\prime} P$ to met $A C$ at S.
Produce $P^{\prime} P$ to met $A C$ at S.
Describe a $S q u a r e$ equal to the rect. $S P, S P^{\prime}$; and cut off SR cqual to a side of the square. Hescribe a circle throngh the points P^{\prime}, P, R :
then since the rect. $\mathrm{SP}, \mathrm{SP}^{\prime}=$ the Sq . on SR, \quad Coustr. \therefore the circle tonclies AC at R; Ex. 21, p. 285. II. 14. 111. 37. and since its centre is in $A E$, the bisector of the $\angle B A C$, it may be shewn also to touch AB.
Q. F. r.

Note. (i) Since SR may be taken on either side of S, it follows that there will be two solutions of the problem.
(ii) If the given straight lines arc parallel, the centre lies on the parallel straight line mid-way between them, and the construction proceeds as before.
24. To describe a circle to touch tro given straight liues and a given circle.

Let $A B, A C$ be the two given st. lines, and D the centre of the given circle : it is required to describe a circle to touch $A B, A C$ and the circle whose centre is D.

Draw EF, GH part to $A B$ and $A C$ respectively, on the sides remote from D, and at distances from them equal to the radins of the given circle.

Describe the \odot MND to touch EF and GH at M and N, and to pass through D.

Let O be the centre of this circle.
Join OM, ON, OD meeting AB, AC and the given circle at P, Q anci R.

Then a circle described from centre O with radius $O P$ will tonch $A B, A C$ and the given circle.

For since O is the centre of the \odot MND,

$$
\therefore O M=O N=O D
$$

$$
\text { But } P M=Q N=R D ;
$$

$$
\therefore O P=O Q=O R \text {. }
$$

Cionsti.
\therefore a circle described from centre \mathbf{O}, with radius $O P$, will pass through
Q and R.
And since the \angle° at Mi and N are rt , augles,
III. 18.
\therefore the $\angle \mathrm{s}$ at P and Q are rt. angles;

1. 29. \therefore the $\odot P Q R$ touches $A B$ and $A C$.

And since R, the point in which the eircles meet, is on the line of centres OD,
\therefore the $\odot P Q R$ tonches the given circle.
Q. E. F.

Note. There will be two solutions of this problem, since two circles mary be drawn to tonch EF, GH and to pass through D.
25. To describe a circle to pass through "girem point and touch a giren straight line and a !iren cirche.

Let P be the given point, $A B$ the given st. line, and DHE the given circle, of which C is the centre: it is required to describe a circle $t=$ pass through P, and to touch $A B$ and the \odot DHE.

Through C draw DCEF perp. to $A B$, cutting the circle at the points D and E, of which E is between C and $A B$.

Join DP;
and by describing a circle through
 F, E, and P, find a point K in DP (or DP produced) such that the rect. $\mathrm{DE}, \mathrm{DF}=$ the rect. DK, DP.

Describe a circle to pass through P, K and touch $A B$: Ex. 21, p. 235.
This circle shall also touch the given \odot DHE.
For let G be the point at which this circle tonches $A B$.
.Join DG, cutting the given circle DHE at H. Join HE.
Then the $\angle D H E$ is a rt. angle, being in a semicircle.
iII. 31. also the angle at F is a 1 t. angle;
('onsti.
\therefore the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are concyclic :
\therefore the rect. $\mathrm{DE}, \mathrm{DF}=$ the rect. DH, DG :
IIf. 33.
lint the rect. DE, DF = the rect. DK, DP: constr.
\therefore the rect. $\mathrm{DH}, \mathrm{DG}=$ the rect. DK, DP:
\therefore the point H is on the \odot PKG.
Lint O he the centre of the \odot PHG.
Join OG, OH, CH.
Then OG and DF are parid since they are both perp. to $A B$; and DG meets them.
\therefore the $\angle \mathrm{OGD}=$ the $\angle \mathrm{GDC}$.
ェ. 29.
But since $\mathrm{OG}=\mathrm{OH}$, and $\mathrm{CD}=\mathrm{CH}$,
\cdot the $\angle \mathrm{OGH}=$ the $\angle \mathrm{OHG}$; and the $\angle \mathrm{CDH}=$ the $\angle \mathrm{CHD}$;
\therefore the 2 OHO the \angle CH:
$\therefore \mathrm{OH}$ and CH are in one st. line.
\therefore the \odot PHG touches the given \odot DHE.
Q. F. F.
the line of q. F. F. since two , D.
21. p. 233.
iII. 31. ronstr.
mi. 36. ('onstr.

1. 29.

HD :
Q. F. F.

Nore. (i) Since two circles may be drawn to pass through P, K and to touch $A B$, it follows that there will be two solutions of the present problem.
(ii) Two more solutions may be oltained by joining PE, and proceeding as before.

The student should examine the nature of the contact between the cireles in each case.
26. Describe a circle to pass through a given point, to touch it given straight line, and to have its centre on another given straight line.
27. Describe a circle to pass throngh a given print, to touch a given circle, and to have its centre on a given straight line.
28. Deseribe a circle to pass ihrough tw, given points, and to intereept an are of given length on a given civere.
29. Deseribe a cirele to tonch a given circle and a given straight line at a given point.
30. Deseribe a eirele to touch two given circles and a given straight line.

V. ON MAXIMA ANH MINIMA.

We gather from the Theory of Loci that the position of an angle, line or figure is eapable under suitable conditions of srahaal change ; and it is usually found that change of position involves a srresponding and gradual change of magnitude.

Cinder these circumstances we may he required to note if any situations exist at which the magnitude in question, after increasing, begins to decrease; or after decreasing, to increase: in such situations the Magnitude is said to have reached a Maximum or a Minimum value; for in the former case it is greater, and in the latter case less than in aljanent situations on cither side. In the geometry of the circle and straight line we only meet with such eases of contimons change as admit of one transition from an increasing to a decreasing state-or viee versit-so that in all the problems with which we have to deal (where a single eirele is involved) there can be only one Maximmon and one Mininum-the Maximum being the greatest, and the Minimum being the least value that the variable magniturle is cupable of taking.

Thus a variable geometrical magnitude reaches its maximum or minimum value at at turning point, towards which the magnitude may mount or descend from either side : it is natural therefore to expect a maximmu or minimum value to occur when, in the course of its change, the magnitude assumes a symmetrical form or position; and this is usually found to be the case.

This general comection between a symmetrical form or position aul it maximun or minimum value is not exact enough to constitute a proof in any particnlar problem; but by means of it a situation is suggested, which on further examination may be shewn to give the maximum or minimum value sought for.

For example, suppose it is reguired to determine the greutest strelight line thet may be diaurn perpendioular to the chord of a segment of a circle and intercepted betueen the chord and the ene:
we immediately anticipate that the greatest perpendienlar is that which ocerpies a symmetricol position in the figure, namely the perpendieniar which passes through the middle point of the chord; and on further examination this may be proved to be the case by means of 1.19 , and 1. 34 .

Again we are able to find at what point a geometrical magnitude, varying under certain conditions, assumes its Maximum or Minimum value, if we can discover a construction for drawing the magnitude so that it may have an assigned value: for we maty then examine hetween what limits the assigned valne must lie in order that the comstruction may be possible; and the higher or lower limit will give the Maximum or Mimmum songht for.

It was pointed ont in the chapter on the Intersection of Loci, [see page 119] that if under certain conditions existing among the data, teo solntions of a problem are possible, and under other conditions, mo solution exists, there will always be some intermediate condition under which one and only one distinct solution is possible.

Under these cireumstances íhis single or limiting solution will always be foum to correspond to the maximum or minimum value of the magnitude to be constructed.

1. For example, suppose it is required to divide "given straight line so that the rectangle contained by the two segments ma! be a maximum.

We may first attempt to divide the given straight line so that the rectangle contained by its segments may have a given area-that is, be equal to the square on a given straight line.

Let $A B$ be the given straight line, and K the side of the given square:

it is required to divide the st. line $A B$ at a point M, so that the rect. $A M, M B$ may be equal to the sy. on K.
Adopting a construction suggested by 1r. 14,
deseribe a semicircle on $A B$; and at any point X in $A B$, or $A B$ produced, draw $X Y$ perp. to $A B$, and equal to K.

Through Y draw $Y Z$ par to $A B$, to meet the are of the semicirele at P.

Then if the perp. PM is drawn to $A B$, it may be shewn after the manner of 11.14 , or by 111.35 that

$$
\text { the reet. } \begin{aligned}
\mathrm{AM}, \mathrm{MB} & =\text { the sq. on } \mathrm{PM} . \\
& =\text { the sq. on } \mathrm{K} .
\end{aligned}
$$

So that the rectangle $A M$, MB inereases as K inereases.
Now if K is less than the radius $C D$, then $Y Z$ will mect the are of the semicircle in two points P, P^{\prime}; and it follows that $A B$ may be divided at two points, so that the reetangle contained by its segments may be equal to the square on K. If K increases, the st. line $Y Z$ will recele from $A B$, asd the points of interseetion P, P^{\prime} will continually approach one another; until, when K is equal to the radins $C D$, the st. line $Y Z$ (now in the position $Y^{\prime} Z^{\prime}$) will meet the are in wo coincident points, that is, will touch the semicirele at D ; and there will be only one solution of the problem.

If K is greater than $C D$, the straight line $Y Z$ will not neet the semicirele, and the problem is impossible.

Hence the greatest length that K may have, in order that the constrnction may be possible, is the radius CD.
\therefore the rect. $A M, M B$ is a maximum, when it is equal to the square on CD;
that is, when PM coincides with DC, and consequently when M is the middle point of $A B$.

Obs. The special feature to be notieed in this problem is that the maximun is fund at the transitional point between fico solutions and 40 solution; that is, when the two solutious coincide and becone identical.
'The following example illustrates the same point.
2. To fiml at what point in a given straight line the angle subtemded ly! the line joininy two given points, which are on the same sille of the given straight line, is a muximum.

Let CD be the given st. line, and A, B the given points on the same side of CD:
it is required to find at what point in $C D$ the angle subtended by the st. line AB is a maximum.
First determine at what point in $C D$, the st. line $A B$ subtends a siter angle.

This is done as follows:-
On $A B$ describe a segment of a circle containiny an ange equat to the given angle.

If the are of this segment intersects $C D$, the points in $C D$ are fomnd at which AB subtends the given angle: but it the are does not neet CD , no solution is given.

In accordance with the principles explained above, we expect that a maximmon angle is deternined at the limiting position, that is, when the are touches $C D$; or meets it at two eoineident points.
[See pace 213.]
This we may prove to be the case.
Deseribe a cirele to pass through A ant B, and to toueh the st. line CD.
[Ex. 21, p. 235.
Let P be the point of contact.
Then shall the $\angle A P B$ be greater than ary ot las ample sultended by $A B$ at a point in $C D$ on the same side of $A B$ as P.

For tuke Q, any other point in $C D$, on the same side of $A B$ as P; and join AQ, QB.
Sinee Q is a point in the tangent other
 than the point of contaet, it must be with. out the circle,
\therefore either $B Q$ or $A Q$ must meet the are of the segment $A P B$. Let $B Q$ meet the are at K : join $A K$.
Then the $\angle A P B=$ the $\angle A K B$, in the same serment: but the ext. $\angle A K B$ is greater than the int. opp. $\angle A Q B$.
\therefore the $\angle A P B$ is greater than $A Q B$.
Similarly the $\angle A P B$ may be shewn to be greater than nuy other angle subtended by $A B$ at a point in $C D$ on the same side of $A B$: that is, the $\angle A P B$ is the greatest of all such angles. 4. E. 1.
Nome. Two tireles may be deseribed to pass through A and B, and to touch $C D$, the points of contact being on opposite sides of $A B$;
hence two points in CD may be found such that the nugle subtended by $A B$ at each of them is greater than the angle subtended at any other point in CD ou the same side of AB .

We add two more examples of considerable importance.
3. In a straight line of imlefinite length find a point such that thr' sum, of its distances from froo giren points, on the some side of the !iren line, shall be a minimum.

Let $C D$ be the given st. line of indefinite length, and A, R the given points on the same side of $C D$: it is required to find a point P in $C D$ such that the sum of $A P, P B$ is a minimum.

Draw AF perp. to $C D$;
and produce $A F$ to E, making $F E$ rigual to AF.

Join EB, cutting CD at P.
Join AP, PB.
Then of all lines drawn from A an.l B to a point in CD,
the sam of $A P, P B$ shall be the least.
For, let Q be nny other point in $C D$.
Join AQ, BQ, EQ.
Now in the $\triangle{ }^{8} A F P, E F P$,
hecause $\left\{\begin{array}{c}\text { and } \begin{array}{c}\text { AFP is common; } \\ \text { and the } \angle A F P=t h e ~\end{array} \angle E F P, \text { being it. angles. } \\ \therefore A P=E P .\end{array} \quad\right.$ Constr.

$$
\therefore A P=E P .
$$

Similarly it may be shewn that
$A Q E Q$.
Now in the $\triangle E Q B$, the two sides $E Q, Q B$ are together greater llıan EB;
hener, $A Q, Q B$ are together greater than $E B$, that is, greater than AP, PB.
Similarly the sum of the st. lines drawn from A and B to anyother point in $C D$ may he shewn to be greater than $A P, P B$.
\therefore the sum of AP, PB is a minimum.

$$
\text { Q. … } \quad \text {. }
$$

Note. It follows from the above proof that

$$
\begin{array}{r}
\text { the } \angle \mathrm{APF} \text { - the } \angle \mathrm{EPF} \\
\text { the } \angle \mathrm{BPD} .
\end{array}
$$

I. 4.
i. 15.

Thus the sum of $A P, P B$ is a minimum, when these lines are equally inclined to CD.
4. Giten two intersectiny straight lines AB, AC, Ind a point P lefueen them; shem that of all straight lines which pass through P and are terminated by AB, AC, that which is biserterl at P cuts off the triangle of minimm" area.

Let EF be the st. line, teminated ly $A B, A C$. Which is lisected at P :
then the \triangle FAE shall be of minimum irea.
For let HK be any other st. line passing through P :
through E draw EM par to AC.
Then in thr \triangle "HPF, MPE,

$$
\begin{aligned}
& \text { Becanse }\left\{\begin{array}{r}
\text { the } \angle H P F=\text { the } \angle M P E, \\
\text { and the } \angle H F P=\text { the } \angle M E P, \\
\text { and } F P=E P
\end{array}\right. \\
& \therefore \text { the } \triangle H P F=\text { the } \triangle M P E \text {. }
\end{aligned}
$$

lout the $\triangle M P E$ is less than the $\triangle K P E$:
\therefore the $\triangle H P F$ is less than the $\triangle K P E$: to each add the fig. AHPE;
then the \triangle FAE is less than the \triangle HAK.
Similarly it may be shewn that the \triangle FAE is less than any other triangle formed by drawing a st. line through P : that is, the \triangle FAE is a minimum.

Examples.

1. Two sides of a triangle are given in length; how must they be placed in orter that the area of the triangle may be a maximum?

2 of all triangles of given base and area, the isosceles is that which has the least perimeter.
3. Given the base and vertical angle of a triangle; construct it so that its area may be a maximum.
4. Find a point in a given straight line such that the tangents drawn from it to a given circle contain the greates angle possible.
5. A straight rod slips between two straight rulers placed at right angles to one another; in. what position is the triangle intercepted between the rulers and rod a maximum?
d a point P through P cuts off' the'

1. 1%.
2. $2!$.

II $1 /$. г. $26, \mathrm{Cor}$. 1 any other must they aximum? ossible. te triangle
6. Divide a giveu straight line into two parts, so that the sum of the squares on the segments may
(i) be equal to a given square,
(ii) may be a mininum.
7. Through a point of intersection of two circles draw a straight line terminated by the circmmferences,
(i) so that it may be of given length,
(ii) so that it may be a maximmm.
8. Two tangents to a circle cut one another at right angles: find the point on the intereepted are sueh that the smin of the perpendienlars drawn from it to the tangents may be a minimm.
9. Straight lines are drawn from two given points to meet one another on the convex ciremference of a given cirele: prove that their sum is a minimum when they make ermalangles with the tangent at the point of interseetion.
10. Of all triangles of given vertical angle and altitude, the isosecles is that which has the least area.
11. Two straight lines $C A, C B$ of indefinite length are drawn from the eentre of a circle to meet tho ciremmference at A and B; then of all tangents that may be drawn to the circle at points on the are $A B$, that whose intercept is bisceted at the point of contact ents off the triangle of minimum area.
12. Given two intersecting tangents to a circle, draw a tangent to the convex are so that the trianglo fomed by it and the given tangents may be of maximum area.
13. Of all triangles of given base and area, the isosceles is that whieh has the greatest vertical angle.
14. Find a point on the circumference of a cirele at which the straight line joining two given points (of which both are within, or both without the circle) subtends the greatest angle.
15. A bridge consists of three arehes, whose spans are 49 ft ., 32 ft . and 49 ft . respectively: shew that the point on cither bank of the river at which the middle arch subtends the greatest angle is 63 feet distant from the bridge.
16. From a given point P without a circle whose eentre is C, draw a straight line to cut the circumference at A and B, so that the triangle $A C B$ may be of maximum area.
17. Shew that the greatest reetangle which ean be inseribed in a cirele is a squarc.
18. A and B are two fixed points withont a circle: find a point P on the circunference such that the sum of the squares on $A P, P B$ may be a minimum. [See p. 147, Ex. 24.]
19. A segment of a circle is described on the chond $A B$: find a puint C on its are so that the sum of $A C, B C$ may be maximum.
20. Of all triougles thut can be inseribed in a cimbe that which has the greatest perimeter is equilateral.
21. Of all triangles that con be inseribed in a giren circle that whirh has the greatest area is equiluterent.
22. Of all triangles thut call be inscribed in "!icen triangle that which has the least perimeter is the trimulte formed hy joining the jeet "f thr perpenticulars clenur" from the rerticess on opposite silles.
23. Of all rectangles of given aren, the square has the least peri-
21. T. 1 rqual to thus t a ${ }^{2}$ ven triangle, and its sides passing through three giver proints.

IT. HabDER MISCRLLANEOI'S EXAMPIES.

1. $A B$ is a diameter a cincle; aud $A C, B D$, two chords on the same side of $A B$, intersect at E : shew that the circle which passes through D, E, C cuts the given circle orthononally.
2. Two circles whose centres are C and D intersect at A and B, and a straight line PAQ is drawn throngh A and terminated hy the circmaterences: prove that
(i) the angle $\mathrm{PBQ}=$ the angle CAD
(ii) the angle $B P C=$ the angle $B Q D$.
3. Two chords $A B$. $C D$ of a circle whose centre is O intersect at right angles at P : shew that

$$
\text { (i) } P A^{\prime \prime}+P B^{\prime \prime}+P C^{2}+P D^{2}=4 \text { (radius) }{ }^{2} \text {. }
$$

$$
\text { (ii) } A B^{2}+C D^{1}+40 P^{2} \quad=8 \text { (radius) }
$$

4. Two parallel taugents to a circle intercept on any third tangent a portion which is so divided at its point of contact that the rectangle contained by its two parts is equal to the square on the radus.
5. Two equal circles move between two straight lines placed at right angles, so that each straight lin is touehed by one circle, and the two circles touch one another: fime the locus of the proint of contact.
6. $A B$ is a given diam ter of a circle, and $C D$ is any parallel chord: it suly punt X in $A B$ is joined to the esiremities of $C D$. shew thra

$$
X C^{\prime 2}+X D^{\prime}=X A^{2}+X B^{\prime \prime} .
$$

$A B:$ find a ximull.
Phat whirh
rircle thut
iumate that ing the jeet les.
least peri.
its anghes ough thee
wo chorls rele whirh
A and B, ted by the
itersect at
any third that the: re on the
es plaeed ne cirele, the point
7. $P Q$ is a lixad chord in a circle, and $P X, Q Y$ any two parallel rhoms throngh P mal Q : shew that $X Y$ fonches a fived coneentric virele.
8. Two cinal cireles intersect at A and B; and from C any point on the circmmerence of (of them a perpendienlar is drawn to $A B$, meting the other eircle a $)$ and O^{\prime} : shew that either O or O^{\prime} is thin wthocentra of the triangh a BC. Jistingnish between the two cases.
9. Three equal circles pass throngh the same point A, and their other points of intersection are B, C, D : shew that of the fomr foints A, B, C, D, each is the orthocentre of the triangle formed by joining the other three.
10. From a given point withont a cirele draw a straght line to the enncave circumference so as to be biseeted by the conver circumference. When is this problem impossible?
11. Draw a straight line entting two coneentrie eireles of that the ehord intercepted by the ciremmference of the greater circle mas be donble of the chord intercepted by the less.
12. $A B C$ is a triangle inseribed in a circle, and $A^{\prime}, B^{\prime}, C^{\prime}$ are the middle points of the ares smbtented hy the sides (remote from tha opposite vertices): find the relation between the angles of tha two triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$; and prove that the pedal triangho of $A^{\prime} B^{\prime} C^{\prime}$ is equiangular to the triangle $A B C$.
13. The opposite sides of a quadrilateral inscribed in a eircle are produced to meet: hew that the bisectors of the two angles so formed are perpend alar to one another.
14. If a quadrilateral ean have one eirele inscribed in it, and another ciremmseribed about it; shew that the straight lines joining the opposite points of contact of the inseribed circle are promendimhar Io one another.

1\%. (iiven the base of a triangle and the sum of the remaining, sides; find the loens of the foot of the perpendienlar from ono extremity of the base on the bisector of the exterior vertical angle.
16. Two circles touch each other at \mathbf{C}, and straight lines are drawn through C at right angles to one another, mueving the cireles at $\mathbf{P}, \mathbf{P}^{\prime}$ and $\mathbf{Q}, \mathbf{Q}^{\prime}$ respectively: if the straight line which joins the centres is terminated by the circumferences at A and A^{\prime}, shes that

$$
P^{\prime} P^{2}+Q^{\prime} Q^{*}=A^{\prime} A^{\prime} .
$$

1. Two cirelos cut one another orthogonally at \mathbf{A} and \mathbf{B}; \mathbf{P} is any point on the are of one circle intereepted hy the other, and PA, PB are produeed to meet the eircumference of the seeond cirele at C and D : shew that $C D$ is a diameter.
2. $A B C$ is a trianyle, and from any point P perpendiculars $P D, P E, P F$ are drawn to the silles: if $\mathbf{S}_{1}, S_{3}, S_{3}$ arm the centres of the cirches circumseriben about the triangles EPF, FPD, DPE, shew that the trianglo $S_{1} S_{3} S_{a}$ is equinugnatr to the triangle $A B C$, mul that the sides of the one are resprectively half of the sides of the wher.
3. 'I'wo tangents $P A, P B$ are drawn from an external point \mathbf{P} to n given circle, and C is the midulle point of the chord of contact $A B$: if $X Y$ is any chord throngh P, shew that $A B$ biseets the nugle $X C Y$.
4. Given the sum of two straight lines and the rectangle contamed ly them (equal to a given square): fimb the lines.
5. (iven the smm of the squares on two straight lines amb the redtagle contained ly them: find the limes.
6. Give in the sum of two straight lines and the sum of the spluares on them: fimb the lines.

2:3. Given the diflerence between two straight lines, and the rectangle contained ly them: find the lines.
24. Given the sum or difference of two straight lines and the difference of their stuares: find the lines.
25. $A B C$ is a triangle, and the internal and extemal lisectors of the ungle A meet $B C$, and $B C$ produced, at P and P^{\prime} : it O is the midde point of PP', slew that OA is a tangent to the circle circum. scribed nbout the triangle $A B C$.
26. $A B C$ is a triangle, and from P, any point on the circunference of the circle circmascribed abont it, perpondieulars are drawn to the sides $B C, C A, A B$ meeting the cirele again in $A^{\prime}, B^{\prime}, C^{\prime}$; prove that
(i) the triangle $\mathrm{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ is identically equal to the trimylo ABC .
(ii) $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ are parallel.
27. Two equal circles intersect at tixed points A and B, and from any point in $A B$ a perpendicular is drawn to weet the circumferences on the same side of $A B$ ut P and Q : shew that $P Q$ is of constant lenytli.
28. The straight lines which join the vertices of a triangle to the contre of its circumscribed eircle, are perpendieular respectively to the sides of the pedal triangle.
29. P is any point on the circmmference of a eircle circumscribed about a triangle $A B C$; and perpendieulars PD, PE are drawn from to the sides BC, CA. Find the loeus of the centre of the circle circumscribed about the triangle PDE.
endicnlars centres of
D D DPE, igle ABC, iles of the
point \mathbf{P} to of contact ot the ninglo
angle son-
and the
m of the

1 the rect.
s and the
sectors of O is the circum.
e circmm. are dritwn ', $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$;
le ABC.
and from mferences constant
gle to the ely to the
mscribed nfrom ? le circum.
30. \mathbf{P} is any point on the cirenmference of a cirche ciremmscribed abont a triangle ABC: shew that the angle between Simson's Line for the point P and the side $B C$, is equal to the angle between AP and the diameter of the eiremuseribed cirele through A.
31. Shew that the circles circmaseribed abont the four triangles formed log two pairs of intersecting straight lines meet in a pomt.
32. Shew that the orthocentres of the four triangles formed ly two pairs of intersecting straight lines are collinemr.

On the Construction of Thangles.

33. Given the vertical angle, one of the sides containing it, and the length of the perpendicular from the vertex on the base: construct the triangle.
34. Given the feet of the perpendiculars drawn from the vertices on the opposite sides: constract the triangle.
35. (iiven the base, the altitnde, and the radius of the circumseribed circle: construct the triangle.
36. (iiven the base, the vertical angle, and the sum of the squares on the sides containing the vertical angle: construct the triangle.
37. (iiven the base, the altitude and the sum of the squares on the sides containing the vertical angle: construet the triangle.

3K. Given the base, the vertical angle, and the difference of the figuares on the sides containing the vertical angle: construct the triangle.

3!. Given the vertical angle, and the lengths of the two medians drawn from the extremities of the base: constract the triangle.
40. Given the base, the vertical angle, and the difference of the angles at the base: construct the triangle.
41. Given the base, and the position of the bisector of the vertical angle: construct the triangle.
42. Given the base, the vertical angle, and the length of the bisector of the vertical angle: construct the triangle.
43. Given the perpendicular from the vertex on the base, the biseetor of the vertical angle, and the median which bisects the base: construct the triangle.

44, Given the bisector of the vertical angle, the mentan bisceting the base, and the difference of the angles at the basc: construct the triangle.

BOOK IV.

Book IV. consints entirely of problems, dealing with varions rectilineal figures in relation to the circles which pass through their angular points, or are touched by their sides.

Drfintitions.

1. A Polygon is a rectilineal figure bomaled beymer mor thim four sides.

1 Polygon of	fire side	called	Pentagon,
	six sides	.,	Hexagon,
"	seven sides	.	Heptagon,
"	right sides		Octagon,
.	ten sides		on,
"	tuelve sides		Dodecagon,
.. .	fittern sides		Quinde

2. A Polygon is Regular when all its sides are equal, and all its angles are equal.
3. A rectilineal figure is said to be inscribed in a circle, when all its sugular points are on the circumference of the circle: ind at circle is said to be circumscribed about a rectilineal figure, when the cireumference of the circle passes through all the angular points of the figure.
4. A rectilineal figure is said to be circumscribed about a circle, when each side of the figure is a tangent to the circle: and a circle is said to be inscribed in a rectilineal figure, when the ciscumference of the circle is touched by each side of the figure.

5. A straight ham is said to be placed in ar rircle, when its extremities are on the cifcmuference of the circle,

Proposition 1. Problem.

ling with les which by their
by more
on,
n,
on,

1,
son,
agon.
re equal.

Let $A B C$ be the given circle, and D the given straight line not greater than the diameter of the eirele :
it is required to plate in the $\odot A B C$ at chord equal to D.
Draw CB, a diameter of the $\odot A B C$.
Then if $C B=D$, the thing required is donc:
But if not, CB must he greater than D. Hyp,
From CB cut ctr' CE equal to D:
and from centre C, with radius CE, describe the \odot AEF, cutting the given eirele at A.

Join CA.
Then CA shall he the chord required.
For CA $=C E$, being radii of the (C)AEF :

$$
\text { and } C E=D \text { : }
$$

C'onestr.
$\therefore \mathrm{CA}=\mathrm{D}$.
(1) E. 1',

LEAERCISES.

1. In a given circle place a chord of given lengeth so ats to pass through a given point (i) without, (ii) within the circle.

When is this problem impossible?
2. In a given circle phace a chord of given length so that it may be parallel to a given straight line.

Proposition 〔. Problem.

In a given circle to inscribe a trianyle equiangular to a gicen tricengle.

Let $A B C$ be the given circle, and DEF the given triangle: it is required to inscribe in the $-\mathcal{A B C}$ a triangle equiangula' to the $\triangle D E F$.

It any proint A, on the \cup ve of the $\odot A B C$, draw the tingent GAH.
111. 17.

At A make the - GAB equal to the - DFE ; I. 23. and make the - HAC equal to the - DEF.

1. 23. . Join BC.
Then ABC shall be the triangle reguived.
Becaluse $G H$ is a tamgent to the $\because A B C$, and from A its point of contact the chord $A B$ is drawn.
\therefore the -GAB the $-A C B$ in the alt. segment: In. $3:$. \therefore the - ACB $=$ the - DFE.

Constr.
Similarly the $-H A C-$ the $-A B C$, in the alt. segment: \therefore the - ABC = the - DEF. C'onstr:
Hence the third - BAC the thirel - EDF, for the there angles in each triangle are together explat to
two rt. angles.
\therefore the $\triangle A B C$ is erpuitugulat to the $D E F$ i. $i=$. inseribed int lle: © ABC.

Proposition 3. Problem.

About a gicen circle to circumscribe a triangle equi. ungular to a given triangle.

Let $A B C$ be the given circle, and $D E F$ the given \triangle : it is required to circumscribe about the $\odot A B C$ a triangle "ruiangular to the $\triangle D E F$.

Produce EF both ways to G and H.
Find K the centre of the $\cdot A B C$,
ili. 1. and draw any radius KB.
It K make the - BKA equal to the $-D E G ; \quad$. $\because: 3$.
and make the - BKC equal to tio $-D F H$.
Through A, B, C draw LM, MN, NL perp. to KA, KB, KC.
Then LMN shall be the triangle required.
Because LM, MN, NL are drawn perp. to radii at their extremities,
\therefore LM, MN, NL ine tallgents to the circle. In. 16 .
And beause the four angles of the quadrilateral AKBM together-four rt. angles;
I. 32 . Cor.
and of these, the \angle^{8} KAM, KBM, are rt. anglns: Consti. \therefore the $\angle{ }^{8} A K B, A M B$, together - two it. ingles.
But the $-{ }^{s}$ DEG, DEF together $=$ two rt . angles; I. 13.
\therefore the $-{ }^{8}$ AKB, AMB $=$ the $-{ }^{8}$ DEG, DEF;
and of these, the $\angle A K B=$ the $-D E G ; \quad$ Constr: \therefore the $\angle A M B=$ the $-D E F$.
Nimilarly it may be shewn that the - LNM - the - DFE,
\therefore the third - MLN - the third - EDF. 1. $3:$.
\therefore the $\triangle L M N$ is crumarutar to the $\angle D E F$, ind it is circunscribed about the $\mathcal{C} A B C$.
$\mathrm{Q} . \mathrm{L}, \mathrm{F}$,

Propostrion 4. Problem.
To inseribe a circle in a given trianale.

Let $A B C$ be the given trimgle:
it is required to inseribe a circle in the $\triangle A B C$.
Bisect the $\angle{ }^{*} A B C, A C B$ by the st. lines $B I, C I$, which intersect at I.

From I draw IE, IF, IG perp. to AB, BC, CA. I. $1 \ddot{\text {. }}$.
Then in the \triangle^{s} EIb, FIb,
 and BI is common; $\therefore I E-I F$.
Nimilarly it may be shewn that IF: IG.
\therefore IE, IF, IG are all equal.
From centre I, with radius IE, describe a circlo:
this circle must pass through the points E, F, G;
and it will lee inscribed in the $\triangle A B C$.
For since IE, IF, IG are radii of the © EFG ;
and since the $\angle{ }^{*}$ at $\mathbf{E}, \mathbf{F}, \mathbf{G}$ are rt. angles;
\therefore the \mathcal{C} EFG is touched at these points ly $A B, B C, C A$:
III. 16 .
\therefore the $\odot E F G$ is inserited in the $\triangle A B C$.
R. F. F'。

Nom. From page 10:3 it is seen that if Al be joined, then Al bisects the angle BAC.

Hence it follows that the bisectors of the angles of a triangle are concurrent, the point of intersection beiny the esutre of the inscribed citcle.

The centre of the circle inscribed in a triangle is sometimes called its in-centre.

Definifton.

A eirele which tomehes one side of a trimgle and the other two sides prolueed is satid to be an escribed cirele of the triangle.

To dran an wseribed rivele of agicen triangle.
Let $A B C$ be the given triangle, of which the two sides $A B, A C$ are produced to E and F :

BC .
CI , which
I. 9.

1. 1:.

Constr. gles ;

1. 36
ircle:
F, G;
$B C, C A:$
III. 16 .
q. F. F.
cd, Hen AI
it is required to describe a circle touching
$B C$, and $A B, A C$ produced.
Bisect the $\angle{ }^{\circ}$ CBE, BCF by the st. lines $\mathrm{BI}_{1}, \mathrm{Cl}_{1}$, which intersect at I_{1}. \quad. 9 .

Froin I_{1} draw $I_{1} G, I_{1} H, I_{1} K$ perp. to $A E$, BC, AF. 1.12 .

Then in the $\angle^{B} I_{1} B G, I_{1} B H$, $\left\{\begin{array}{l}\text { the } \angle I_{1} B G=\text { the } \angle 1, B H, \text { Constro. } \\ \text { and the } \angle 1, G B=\text { the } \angle 1, H B,\end{array}\right.$ Because $\left\{\begin{array}{l}\text { and the } \angle 1, G B=\text { the } \angle 1, H B, \\ \text { being rt. angles; }\end{array}\right.$ also $I_{1} B$ is common;

$$
\therefore I_{1} G=I_{1} H .
$$

Similarly it may be shewn that $I_{1} H=I_{1} K$; $\therefore I_{1} G, I_{1} H, I_{1} K$ are all equal.
From centre I_{1} with radius $I G$, describe a circle: this circle must pass through the points $\mathrm{G}, \mathrm{H}, \mathrm{K}$: and it will be un escribed circle of the $\triangle A B C$. For since $I_{1} H, I_{1} G, I_{1} K$ are radii of the $\odot H G K$, and since the angles at $\mathrm{H}, \mathrm{G}, \mathrm{K}$ are rt. angles,
\therefore the $\odot G H K$ is touched at these points by $B C$, and by $A B, A C$ produced:
\therefore the $\in G H K$ is an escribed circle of the $\triangle A B C$. Q.e.f.
It is clear that every triangle has three escribed circles.
Note. From page 104 it is seen that if Al_{1} be joined, then AI_{1} bisects the angle BAC: hence it follows that

The biscetors of tho exterior angles of a trimulle and the bisector of the third angle are concurrent, the point of intersection being the centre of at escribed circle.
11. F.

Proposition 5. Problem.

Ton circumseribe a cirrle about a given triangle.

Let $A B C$ be the given triangle :
it is required to circumscribe a circle about the $\triangle A B C$.
Draw DS bisecting $A B$ at rt. angles ;
I. 11. and draw ES bisecting $A C$ at rt. angles;
then since $A B, A C$ are neither par', nor in the same st. line, \therefore DS and ES must meet at some point S.

Join SA ;
fund if S he not in $B C$, join $S B, S C$.
Thell in the $\triangle^{8} A D S, B D S$,
line:ase $\left\{\begin{array}{l}A D=B D \\ \text { and } D S \text { is } \operatorname{lammon} \text { to the } \angle A D S=\text { the }-B D S \text {, being it. angles ; }\end{array}\right.$

$$
\therefore S A=S B .
$$

Nimilaty it may be shewn that $S C=S A$.

$$
\therefore \text { SA, SB, SC are all equal. }
$$

From centre S, with radius SA, describe a circle: this cirele must pass through the points A, B, C, and is therefore ciremmseribed ahont the $\triangle A B C$.

It follows that
(i) when the centre of the circmmscribed circle falls within the triangle, each of its angles must be acute, for nath angle is then in a segment greater than a semicircle:
(ii) when the centre falls on one of the sides of the biangle, the angle opposite to this side must be a right angle, for it is the angle in a semicircle:
(iii) when the centre falls without the triangle, the angle opposite to the side beyond which the centre falls, must be obtuse, for it is the angle in a segment less than a semicircle.

Therefore, conversely, if the given triangle be acute-angled, the centre of the circumscribed circle falls within it. if it be a right-angled triangle, the centre falls on the hypotenuse: if it be an obtuse-rengled triangle, the centre falls without the triangle.

Note. From page 103 it is seen that if S be joined to the middle point of $B C$, then the joining line is perpendicular to $B C$.

Heuce the perpendiculars drawn to the sides of a triangle from their middle poiuts are concurrent, the point of intersection being the centre of the circle circumscribed about the triaugle.

The centre of the circle circumscribed about a triangle is sometimes called its circum-centre.

EXERCISES.

On the Inscribed, Circussacriped, ann Escriben Circlers of a Triancle.

1. An equilateral triangle is inscribed in a circle, and tangents are drawn at its vertices, prove that
(i) the resulting figure is an equilateral triangle:
(ii) its area is four times that of the given triangle.
2. Describe a circle to touch two parallel straight lines and a third straight line which meets them. Shew that two such circles can be drawn, and that they are equal.
3. Triant, ${ }^{\text {es }}$ which have equal bases and equal vertical angles have equal cir?umscribed circles.
4. I is the ceutre of the circle inscribed in the triangle ABC , and I_{1} is the centre of the circle which truches BC and AB, AC produced: shew that $\mathrm{A}, \mathrm{I}, \mathrm{I}_{1}$ are collinear.
5. If the inscribed and irchnscribec circles of a triangle are courcentric, shew that the triangle in anilateral; and that the diameter of

6. $A B C$ is a triangle; and I, S are the centres of the inscribed and circumscribed circles; if A, I, S are collinear', shew that $A B=A C$.
7. The sum of the diameters of the inseribed and circumscribed eircles of a right-angled triangle is equal to the sum of the sides containing the right angle.
8. If the circle inseribed in a triangle $A B C$ touches the sides at D, E, F, shew that the triangle DEF is acute-angled; and express its angles in terms of the angles at A, B, C.
9. If \mid is the eentre of the circle inseribed in the triangle $A B C$, and I the eentre of the eseribed circle whieh touches BC ; shew that I, B, I_{1}, C are concyelic.
10. In any triangle the differenee of two sides is equal to the difference of the segments into whieh the third side is divided at the joint of contact of the inseribed circle.
11. In the triangle $A B C$ the bisector of the angle BAC meets the base at D, and from I the centre of the inseribed circle a perpendicular. $I E$ is drawn to $B C$: shew that the angle BID is equal to the angle CIE.
12. In the triangle $A B C, I$ and S are the centres of the inscribed and circumseribed eircles: shew that IS subtends at A an angle eqnal to half the differenee of the angles at the base of the triangle.
13. In a triangle $A B C, I$ and S are the centres of the inscribed and eircumscribed eireles, and $A D$ is drawn perpendicular to $B C$: shew that AI is the bisector of the angle DAS.
14. Shew that the aren of a triangle is equal to the rectangle eontained by its semi-perimeter and the radius of the inscribed circle.
15. The diagonals of a quadrilateral $A B C D$ intersect at O : shew that the enntres of the eircles eireumscribed about the four triangles $A O B, B O C, C O D, D O A$ are at the angnlar points of a parallelogram.
16. In any triangle $A B C$, if I is the centre of the inscribed eirele, and if Al is produed to meet the circumseribed circle at O ; shew that O is the centre of the cirele circumseribed about the triangle BIC.
17. Given the base, altitude, and the radius of the cireumscribed circle; construct the triangle.
18. Describe a circle to intercept equal chords of given length on three given straight lines.
19. In an equilateral triangle the radii of the circumscribed and eseribed circles are respectively double and treble of the radius of the inscribed circle.
20. Three circles whose entres are A, B, C touch one another extenally two by two at D, E, F : shew that the inseribed cirele of the triangle $A B C$ is the eircumscribed circle of the triaugle DEF。

Proposithon 6. Prohlen.

To inseribe a square in a giten circle.

Let $A B C D$ be the given circle :
it is required to inseribe a square in the $\odot A B C D$.
Find E the centre of the circle: 111. 1. and draw two diameters AC, BD perp, to one another. I. 11. Join AB, BC, CD, DA.
Then the fig. $A B C D$ shall be tho stutre required.
For in the \triangle^{8} bea, dea,
Becituse $\left\{\begin{array}{r}\mathrm{BE}=\mathrm{DE}, \\ \text { ind } \mathrm{EA} \text { is common } ;\end{array}\right.$ O ; shew that ngle BIC.
:ircumscribed
en length on
inscribed and radius of the

Proposition 7. Problem.

To circumscribe a square ubout a given circle.

Let $A B C D$ be the given circle: it is required to circumscribe a square about it.

$$
\text { Find } E \text { the centre of the } \odot A B C D: \quad \text { III. } 1 .
$$ and draw two diameters AC, BD perp. to one another: I. 11. Through A, B, C, D draw FG, GH, HK, KF perp. to EA, EB, EC, ED.

Then the fig. GK shall be the square required.
Because $\mathbf{F G}, \mathbf{G H}, \mathbf{H K}, \mathrm{KF}$ are drawn perp. to radii at their extremities,
$\therefore F G, G H, H K, K F$ are tallgents to the circle. 11.16 . And because the $2{ }^{8}$ AEB, EBG are both it. angles, Constr: \therefore GH is par to AC.
I. 28.

Similarly FK is par to AC :
and in like manner $G F, B D, H K$ are par'.
Hence the figs. GK, GC, AK, GD, BK, GE are par ${ }^{\text {man. }}$
\therefore GF and $H K$ each $=B D$;
also $G H$ and $F K$ each $=A C$:
but $A C=B D$;
$\therefore \mathrm{GF}, \mathrm{FK}, \mathrm{KH}, \mathrm{HG}$ are all equal :
that is, the fig. GK is equilateral.
And since the fig. GE is a par" ${ }^{\mathrm{m}}$,
\therefore the $\angle B G A=$ the $\angle B E A$;
I. 31.
but the $\angle B E A$ is a 1 it. angle;
Constr.
\therefore the $\angle a t G$ is a r rt. angle.
Similarly the L^{8} at F, K, H are rt. angles.
\therefore the tig. $G K$ is a square, and it has been circumscribed about the $\odot A B C D$.
Q.E.E.

T＇hobition es．セhublem．
T＇o inscribe a civele in us yivere squetoc．
t it．
III． 1.
1：I． 11.
（1）EA，EB，
ed．
i at their
111． 16.
s，Corsstr．
1． 98.
ar ${ }^{1110 x}$ ．

I． 31. Constr．

Let $A B C D$ be the given square： it is required to inseribe a circle in the sif．ABCD．
Bisect the sides $A B, f \quad F$ and E ．I． 10 ．
Through E draw E゙H lin B or DC：I． 31.
and through F draw $F K$ par to $A L \quad B C$ ，meeting $E H$ at G ．

Now $A B=A D$ ，being the sules of a square；
and their halves are equal ；
$\therefore A F=A E$ ．
But the fig．AG is a $\mathrm{p}^{\text {an }}$ ： ；＇onnstr． $\therefore A F=G E$ ，and $A E=G F$ ； $\therefore G E=G F$ ．
Similarly it may be shewn that GE GK，and GK GH：
\therefore GF，GE，GK，GH wey all equal．
From centre G ，with radius $G E$ ，deseribe a circle； this circle must pass through the points F, E, K, H ：
and it will be touched by BA，AD，DC，CB；III． 16.
for GF，GE，GK，GH are redlii ；
and the angles at F, E, K, H are 1 t ．angles．1． 29. Hence the \odot FEKH is inscribed in the sq．$A B C D$ ． c．F．F．
［For Exercises see p．263．］

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No, 2)

|| 1.25

APPLIIEL IMAGE Inc

Proposition 9. Problem.

To circumscribe a circle about a given square.

Let $A B C D$ be the given square : it is required to circumscribe a circle about the sq. $A B C D$.

Join AC, BD. intersecting at E.
Then in the $\triangle^{s} B A C, D A C$,
Because $\begin{cases}\mathrm{BA}=\mathrm{DA}, & \text { I. Def. } 28 . \\ \text { and } \mathrm{AC} \text { is common: } \\ \text { and } \mathrm{BC}=\mathrm{DC} ; & \text { I. Def. } 28 .\end{cases}$
\therefore the $-B A C=$ the $\angle D A C$:
I. 8.
that is, the diagonal $A C$ bisects the $\angle B A D$.
Similarly the remaining angles of the square are bisected by the diagonals $A C$ or $B D$.

Hence each of the \angle^{5} EAD, EDA is halt a rt . angle ; \therefore the $\angle E A D=$ whe $\angle E D A$:
$\therefore E A=E D$.
I. 6 .

Sinilarly it may be shewn that $E D=E C$, and $E C=E B$.
\therefore EA, EB, EC, ED are all equal.
From centre E , with radius EA , describe a circle : this circle must pass through the points A, B, C, D, and is therefore circumscribed about the sq. $A B C D$.
Q.E.F.

Definition. A rectilineal figure about which a circle may be described is said to be Cyclic.

EXERCISES ON PROPOSITIONS 6-9.

1. If a circle can be inscribed in a quadrilateral, shew that the sum of one pair of opposite sides is equal to the sum of the other pair.
2. If the sum of one pair of opposite sides of a quadrilateral is equal to the sum of the other pair, shew that a circle may be inscribed in the figure.
[Bisect two adjacent angles of the figure, and so deseribe a cirele to tonch three of its sidcs. Then prove indircetly by means of the last exercise that this cirele must also touch the fourth side.]
3. Prove that a rhombus and a square are the only parallelograms in which a circle can be inseribed.
4. All cyclic parallelograms are rectangutar.
5. The greatest rectangle which can be inscribed in agiven cirche is a square.
6. Circumscribe a rhombus about a given cirele.
7. All squares eircumscribed about a given cirele are cqual.
8. The area of a square circumscribed about a circle is double of the area of the inseribed square.
9. $A B C D$ is a square inscribed in a cirele, and P is any point on the arc $A D$: shew that the side $A D$ subtends at P an angle three timus as great as that subtended at P by any one of the other sides.
10. Inscribe a square in a given square $A B C D$ so that one of its angular points should be at a given point X in $A B$.
11. In a given square inscribe the square of minimum area.
12. Describe (i) a circle, (ii) a square about a given rectangle.
13. Inscribe (i) a eirele, (ii) a square in a given quadrant.
14. $A B C D$ is a square inscribed in a eircle, and P is any point on the cireumference; shew that the sum of the squares on PA, PB, PC, PD is double the square on the diameter. [See Ex. 24, p. 147.]

Proposition 10. Problem.

To describe an isosceles triangle having each of ithe angles at the base clonble of the third angle.

Tako any straight line $A B$.
Divide $A B$ at C, so that the rect. $B A, B C-t$ le sq. on $A C$.
in. 11.
From centre A, with radius AB, describe the \odot BDE;
and in it plate the chord $B D$ equal to $A C$. Iv. I.
Join DA.
Then ABD shall be the triangle required. Join CD ;
and about the $\triangle A C D$ circumscribe a circle. iv. 5.
Then the rect. $B A, B C=$ the sq. on $A C$ Const: $=$ the sq. on BD. Constr.
Hence $B D$ is a tangen ${ }^{+}$to the $\odot A C D$: ini. 37 . and from the point of contact D a chord $D C$ is drawn;
\therefore the $\angle B D C=$ the $-C A D$ in the alt. segmeut. nil. 32.
To each of these equals add the \angle CDA : then the whole $\angle B D A=$ the sum of t^{8} CAD, CDA.
But the ext. - BCD $=$ the sum of the - AD, CDA ; J. 32. \therefore the $-B C D=$ the $\angle B D A$.
And since $A B=A D$, being reaiii of the $\odot B D E$,
\therefore the $\angle D B A=$ the $\angle B D A$. 1. .
\therefore the $\angle D B C=$ the $\angle D C B$;

$$
\begin{array}{rlr}
\therefore D C & =D B ; & \text { 1. } 6 . \\
\text { that is, } D C & =C A: & \text { Constr. } \\
\therefore \text { the } \angle C A D & =\text { the } \angle C D A ; & \text { I. } 5 .
\end{array}
$$

$$
\therefore \text { the sum of the }-{ }^{8} C A D, C D A=\text { twice the angle at } A \text {. }
$$

But the $\angle A D B=$ the sum of the $-{ }^{s} C A D, C D A ;$ Proved. \therefore each of the $\angle{ }^{8} A B D, A D B=$ twice the angle at A.
Q. E. F.

EXERCISES ON PROPOSITION 10 .

1. In an isosceles triangle in which each of the angles at the base is double of the vertical angle, shew that the vertical angle is one-fifth of two right angles.
2. Divide a right angle into five equal parts.
3. Describe an isosceles triangle whose vertical angle shall be three times either angle at the base. Point out a triangle of this kind in the figure of Proposition 10.
4. In the figure of Proposition 10, if the tuo cireles intersect ai F, shew that $\mathrm{BD}=\mathrm{DF}$.
5. In the figure of Proposition 10, shew that the cirele ACD is equal to the circle circumseribed about the triangle ABD.
6. In the figure of Proposition 10, if the two circles intersect at F, shew that
(i) $B D, D F$ are sides of a regular decagon inscribed in the circle EBD.
(ii) $A C, C D, D F$ are sides of a regular pentagon inseribed in the circle $A C D$.
7. In the figure of Proposition 10, shew that the centre of the circle circumscribed about the triangle DBC is the middle point of the arc CD.
8. In the figure of Proposition 10, if 1 is the centre of the circle inscribed in the triangle ABD, and I^{\prime}, S^{\prime} the centres of the inscribed and circumscribed circles of the triangle DEC, shew that $S^{\prime} i=S^{\prime} 7^{\prime}$.

Proposition 11. Problem.

To inscribe a regular pentagon in a given circle.

Let $A B C$ be a given circlo: it is required to inscribe a regular pentagon in the $\odot A B C$.

Describe an isosceles $\triangle F G H$, having each of the angles at G and H double of the angle at F .
iv. 10.

In the $\odot A B C$ inscribe the $\triangle A C D$ equiangular to the $\triangle F G H$,

Bisect the \angle^{s} ACD, ADC by CE and DB, which meet the $O^{\text {ce }}$ at E and B.
I. 9 .

Join AB, BC, AE, ED.
Then $A B C D E$ shall be the required regular pentagon.
Because each of the $\angle{ }^{*} A C D, A D C=t$ wice the $\angle C A D$; and because the $\angle{ }^{\text {s }}$ ACD, ADC are bisected by CE, DB, \therefore the five $-{ }^{8} A D B, B D C, C A D, D C E, E C A$ are all equal. \therefore the five arcs $A B, B C, C D, D E, E A$ are all equal. In. 26 . \therefore the five chords $A B, B C, C D, D E, E A$ are all equal. ini. 29. \therefore the pentagon $A B C D E$ is equilateral.

Again the arc $A B=$ the are $D E ; \quad$ rioret. to each of these equals add the are BCD ;
\therefore the whole are $A B C D=$ the whole arc $B C D E$:
hence the angles at the $O{ }^{\text {ce }}$ which stand upon these equal ares are equal ;
iII. 27.
that is, the $\angle A E D$ the $\angle B A E$.
In like manner the remaining angles of the pentagon may be shewn to be equal;
\therefore the pentagon is equiangular.
Hence the pentagon, being both equilateral and equiangular, is regular ; and it is inscribed in the $\odot A B C$. q.E.f.

Proposition 12. Problem.

I'o circumscribe a reyular pentayon about a yiven circle.

Let $A B C D$ be the given circle:
it is required to circumseribe a regular pentagon about it.
Inscribe a regular pentagon in the $\odot A B C D$, IV. 11. and let A, B, C, D, E be its angular points.
At the points A, B, C, D, E draw GH, HK, KL, LM, MG, tangents to the circle.
iII. 17.

Then shall GHKLM be the required regular pentagon.
Find F the centre of the $\odot A B C D$; iil. 1. and join FB, FK, FC, FL, FD.
Then in the two $\triangle^{s} B F K, C F K$, $B F=C F$, being radii of the circle,
Because $\left\{\begin{array}{l}\text { and } F K \text { is common: } \\ \text { and } K B=K C, \text { being tangents to the circle from }\end{array}\right.$
the same point K. iii. 17. Cor.
\therefore the $\angle B F K=$ the $\angle C F K, \quad$ I. 8 .
lence the $\angle \mathrm{BFC}=$ twice the $\angle \mathrm{CFK}$,
and the $\angle B K C=$ twice the $\angle C K F$.
Similarly it may be shewn
that the $\angle C F D=$ twice the $\angle C F L$, and that the $\angle C L D=$ twice the $\angle C L F$.

But since the arc $B C=$ the arc $C D$, Iv. 11 .
\therefore the $\angle B F C=$ the $\angle C F D$;
II. 27.
and the halves of these angles are equal, that is, the $\angle \mathrm{CFK}=$ the $\angle \mathrm{CFL}$.

Then in the $\triangle^{*} C F K, C F L$, Becanse $\left\{\begin{array}{l}\text { the } \angle C F K=\text { the } \angle C F L, \\ \text { and the } \angle F C K=\text { the } \angle F C L, \text { beingrt.angles, III. } 18 . \\ \text { and } F C \text { is common; }\end{array}\right.$

$$
\therefore C K=C L \text {, }
$$

I. 26.
and the $\angle F K C=$ the $\angle F L C$.
Hence KL is double of KC ; similarly HK is double of KB.
And since KC $=K B$,
iiI. 17. Cor.
$\therefore \mathrm{KL}=\mathrm{HK}$.
In the same way it may be shewn that every two consecutive sides are equal ;
\therefore the pentagon GHKLM is equilateral.
Again, it has heen proved that the $\angle F K C=$ the $\angle F L C$, and that the $\angle{ }^{8} \mathrm{HKL}$, KLM are respectively double of these angles :
\therefore the $-H K L=$ the $\angle K L M$.
In the same way it may be shewn that every two consecutive angles of the figure are equal ;
\therefore the pentagon GHKLM is equiangular.
\therefore the pentagon is regular, and it is circumseribed about the $\odot A B C D$.
Q.E.F.

Corollarr. Similarly it may be proved that if tangents are drawn at the vertices of any regular polygon inscribed in a circle, they will form another regular polygon of the same species circumseriberd about the circle.
[For Exercises see p. 276.]

Propostrion 1:3. Problem.

To inscribe a circle in a giren regular pentagom.

Let $A B C D E$ be the given regular pentagon :
it is required to inscribe a circle within it.
Bisect two consecutive $\angle{ }^{8} B C D, C D E$ ly CF and DF which intersect at F.

1. 9.

> Toin FB ;
ind draw $F H$, FK perp. to BC, CD.
г. 12.

Then in the $\triangle^{8} B C F, D C F$,
Becanse $\left\{\begin{array}{c}B C=D C, \\ \text { and } C F \text { is common to both; } \\ \text { and the } \angle B C F=\text { the } \angle D C F ;\end{array} \quad\right.$ Constr:
\therefore the $\angle C B F=l_{1 e} \angle C D F$. I. 4 .
But the $\angle C D F$ is half an angle of the regular pentagon: \therefore also the $\angle C B F$ is lalf an angle of the regular pentagon: that is, FB bisects the $\angle A B C$.
So it may be shewn that if FA, FE were joinerl, these lines would bisect the L^{8} at A and E.

Again, in the \triangle^{s} FCH, FCK,

$$
\therefore F H=F K .
$$

I. 26.

Similarly if $F G, F M, F L$ be drawn perp. to $B A, A E, E D$, it may be sliewn that the five perpendiculars drawn from F to the sides of the pentagon are all equal.

From centre F, with radius FH , describe a circle; this cirele must pass through the points H, K, L, M, G; and it will be touched at these points by the sides of the pentagon, for the \angle^{8} at $\mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{G}$ are rt. L^{8}. C'onstr. \therefore the $\odot H K L M G$ is inscribed in the given pentagon. Q.E.F.

Corohlars: The bisector's of the angles of a regular prentugon meet at a point.

In the same way it may be shewn that the bisectors of the angles of any regular polygon meet at a point. [See Ex. 1, p, 274.]
[Eor Exereises on Regnlar Polygons see p. 276.]

MISCELLANEOUS ENERCISLS.

1. Two tangents $A B, A C$ are drawn from an external point A to a given eircle: deseribe a circle to toueh $A B, A C$ and the convex are intereepted by them on the given eirele.
2. $A B C$ is an isosceles triangle, and from the vertex A a straight line is drawn to meet the base at D and the eireumference of the cireumseribed eirele at E : shew that $A B$ is a tangent to the eirele eireumseribed about the triangle $B D E$.
3. An equilateral triangle is inseribed in a given circle: shew that twice the square on one of its sides is equal to three times the area of the square inseribed in the same eirele.
4. $A B C$ is on isoseeles triongle in which each of the angles at R and C is double of the angle at A : shew that the square on $A B$ is equal to the rectangle $A B, B C$ with the square on $B C$.

Proposition 14. Proprizm.

T'o circumscribe a circle about a given regular pentagon.

Let $A B C D E$ be the given regular pentagon:
it is required to circumscribe a circle about it.
Bisect the $\angle{ }^{8} B C D, C D E$ by CF, DF intersecting at F. I. 9. Join FB, FA, FE.
Then in the $\triangle^{8} B C F, D C F$,

$$
\therefore \text { the } \angle \mathrm{CBF}=\text { the } \angle \mathrm{CDF} \text {. I. } 4 \text {. }
$$

But the $\angle C D F$ is half an angle of the regular pentagon:
\therefore also the $\angle C B F$ is half an angle of the regular pentagon:
that is, $F B$ bisects the $\angle A B C$.
So it may be shewn that FA, FE bisect the $\angle{ }^{8}$ at A and E.
Now the $\angle{ }^{s}$ FCD, FDC are each half an angle of the given regular pentagon;

$$
\therefore \text { the } \angle F C D=\text { the } \angle F D C, \quad \text { iv. Def. }
$$

$$
\therefore F C=F D
$$

Similarly it may be shewn that FA, FB, FC, FD, FE are all equal.

From centre F, with radius FA describe a circle : this circle must pass through the points A, B, C, D, E, and therefore is circumscribed about the given pentagon.
Q.E. F.

In the same way a circle may be circumscribed about any regular poiygon.
I. E.

Phorositios 15. Problem.

Ton inscribe a reguther hexagon in a given circle.

Let $A B D F$ be the given circle :
it is required to inscribe a regular hexagen in it.
Find G the centre of the $\odot A B D F$;
III. 1.
and draw a diameter AGD.
From centre D, with radius DG, describe the $\odot E G C H$.
Join CG, EG, and produce them to cut the $O^{\text {ce }}$ of the given circle at F and B.

Join AB, BC, CD, DE, EF, FA.
Then ABCDEF shall be the required regular hexagon.
Now $G E=G D$, being radii of the $\odot A C E$; and $D G=D E$, being radii of the $\odot E H C$:
$\therefore G E, E D, D G$ are all equal, and the $\triangle E G D$ is equilateral.
Hence the $\angle E G D=$ one-third of two rt . angles. I. 32 .
Similarly the $-\mathrm{DGC}=$ one-third of two rt. angles.
But the $\angle{ }^{\text {s }}$ EGD, DGC, CGB together $=$ two rt. angles; 1.13 .
\therefore the remaining $\angle \mathrm{CGB}=$ one-third of two rt . angles.
\therefore the three $\angle{ }^{s}$ EGD, DGC, CGB are equal to one another.
And to these angles the vert. opp. $\angle{ }^{8}$ BGA, AGF, FGE are respectively equal:
\therefore the ${ }^{8} E G D, D G C, C G B, B G A, A G F, F G E$ are all equal :
\therefore the arcs ED, DC, CB, BA, AF, FE are all equal ; III. 26.
\therefore the chords ED, DC, CB, BA, AF, FE are all equal: iII, 29 . \therefore the hexagon is equilateral.
Again the are FA = the arc DE: Proved. to each of these equals add the are $A B C D$;
then the whole are FABCD $=$ the whole are $A B C D E$: hence the angles at the $O^{\text {ce }}$ which stand on these equal arcs are equa],
that is, the $\angle F E D=$ the $\angle \Lambda F E$.
111. 27.

Tn like manner the remaining angles of the hexagon may be shewn to be equal.
\therefore the hexagon is equimgular :
\therefore She hexigon is regular, and it is inseribed in the $\odot A B D F$.
Q.E. F.

Corollary. The side of a reguler hexagon inscribed in a circle is equal to the radius of the circle.

Proposition 16. Problem.

III. 1.

GCH.

ce of the
igon.
ilateral.
s. 1.32 .
gles.
es ; 1. 1\%. ngles. another:
IGF, FGE equal:
iII. 26.
l : iII, 99 .

Proved.

CDE: qual ares

To inscribe a reyular quindecagon in a given circle.

Let $A B C D$ be the given circle :
it is required to inscribe a regular quindecagon in it.
In the $\odot A B C D$ inscribe an equilateral triangle, Iv. 2. and let $A C$ be one of its sides.
In the same circle inscribe a regular pentagon, iv. 11. and let $A B$ be one of its sides.
Then of such equal parts as the whole $O^{\text {ce }}$ contains fifteen,
the arc $A C$, which is one-third of the $O^{c e}$, contains five; and the arc $A B$, which is one-fifth of the $O^{\text {ce }}$, contains three;
\therefore their difference, the arc $B C$, contains two.
Bisect the arc BC at E: III. 30. then each of the arcs BE, EC is one-fifteenth of the $O^{\text {ce }}$.
\therefore if 85 , E0 be joined, and st. lines equal to them be placed successively round the circle, a regular quindecagon will be inscribed in it.
Q. E. F.

The following propositions, proved by Euclid for a regular pentagon, hold good for all regular polygons.

1. Thi bisectors of the angles of any regular polyyon are concurrent.

Let D, E, A, B, C be conseeutive angular points of a regular polygon of any number of sides.

Biseet the $\angle 8 E A B, A B C$ by $A O, B O$, which intersect at O.

Join EO.

It is required to prove that EO bisects the $\angle D E A$.
For in the $\triangle^{8} E A O, B A O$.
Beeause $\left\{\begin{array}{cc}E A=B A, \text { being sides of a regular polygon; } & \\ \text { and } A O \text { is common; } \\ \text { and the } \angle E A O=\text { the } \angle B A O ; & \text { Const } 1 . \\ \therefore \text { the } \angle O E A=\text { the } \angle O B A . & 1.4 .\end{array}\right.$
Brt the $\angle O B A$ is half the $\angle A B C$;
Constr.
also the $\angle A B C=$ the $\angle D E A$, since the polygon is regular;
\therefore the $\angle O E A$ is half the $\angle D E A$:
that is, EO biseets the $\angle D E A$.
Similarly if O be joined to the remaining angular points of the polygon, it may be proved that eael joining line biseets the angle to whose vertex it is drawn.

That is to say, the bisectors of the angles of the polygon meet at the point O.

Corollaries. Sinee the $\angle \mathrm{EAB}=$ the $\angle \mathrm{ABC}$; \quad I!! $!$. and sinee the $\angle{ }^{8} \mathrm{OAB}, \mathrm{OBA}$ are respectively half of the $\angle{ }^{\mathrm{B}} \mathrm{EAB}, \mathrm{ABC}$;
\therefore the $\angle \mathrm{OAB}=$ the $\angle \mathrm{OBA}$.

$$
\begin{aligned}
\therefore O A & =O B . \\
O E & =O A .
\end{aligned}
$$

$$
\text { x. } 6 .
$$

Similarly

Hence The bisectors of the angles of a regnlar polygon are all equal: and a cirele described from the eentre O, with radius $O A$, will be circumseribed about the polygon.

Also it may be shewn, as in Proposition 13, that perpendieulars drawn from O to the sides of the polygon are all equal; therefore a cirele described from eentre \mathbf{O} with any one of these perpendiculars as radius will be inscribed in the polygon.
2. If a polygon inscribed in a circle is equilaterul, it is also equiangular.

Let $A B, B C, C D$ be consecutive sides of an equilatcral polygon inscribed in the $\odot A D K$; then shall this polygon be equiangular.
Beeause the ehord AB = the chord DC, Hyp. \therefore the minor are $A B=$ the minor arc $D C$. 11.28.
To each of these equals add the arc AKD:
then the arc $B A K D=$ the are $A K D C$;
\therefore the angles at the ${ }^{\circ}{ }^{\circ}$, which stand on these equal ares, are equal;
 that is, the $\angle B C D=$ the $\angle A B C .111 .27$.
Similarly the remaining angles of the polygon may be shewn to be equal:
\therefore the polygon is equiangular.
Q.E.D.
3. If a polygon inscribed in a circle is equiangular, it is also equilateral, provided that the number of its sides is odd.
[Observe that Theorems 2 and 3 are only true of polygons inscribed in a circlo.

The accompanying figures are suffieient to shew that otherwise a polygon may be equilateral without being equiangular, Fig. 1; or equiangular without being equilateral, Fig. 2.]

Note. The following extensions of Euclid's constructions for Regular Polygons should be notieed.

By continual bisection of arcs, we are enabled to divide the eircumference of a circle,
by means of Proposition 6 , into $4,8,16, \ldots, 2.2^{n}, \ldots$ equal parts; by means of Proposition 15, into $3,6,12, \ldots, 3.2^{n}, \ldots$ equal parts; by means of Proposition 11, into $5,10,20, \ldots, 5.2^{n}, \ldots$ equal parts; by means of Proposition 16, into $15,30,60, \ldots, 15.2^{n}, \ldots$ equal parts.

Hence we can inscribe in a circle a regular polygon the number of whose sides is included in any one of the formule 2. $2^{n}, 3 \cdot 2^{n}, 5 \cdot 2^{n}$, $15.2^{n}, n$ being any positive integer. In addition to these, it has been shewn that a regular polygon of $2^{n}+1$ sides, provided $2^{n}+1$ is a prime number, may be inscribed in a circle.

exercises on propositions $11-16$.

1. Express in terms of a right angle the magnitude of an angle of the following regular polygons:
(i) a pentagon, (ii) a hexagon, (iii) an octagon, (iv) a decagon, (v) a quindccagon.
2. The angle of a regular pentagon is trisected by the straight lines which join it to the opposite verticcs.
3. In a polygon of n sides the straight lines which join any angular point to the vertices not adjacent to it, divide the angle into $n-2$ equal parts.
4. Shew how to construct on a given straight line
(i) a regular pentagon, (ii) a regular hexagon, (iii) a regular octagon.
5. An equilateral triangle and a regular hexagon are inscribed in a given circle; shew that
(i) the arca of the triangle is half that of the hexagon;
(ii) the square on the side of the triangle is three times the square on the side of the hexagon.
6. $A B C D E$ is a regular pentagon, and $A C, B E$ intersect at H : shew that
(i) $\mathrm{AB}=\mathrm{CH}=\mathrm{EH}$.
(ii) $A B$ is a tangent to the circle circumscribed about the triangle BHC .
(iii) $A C$ and $B E$ cut one another in medial section.
7. The straight lines which join alternate vertices of a regular' pentagon intersect so as to form another regular pentagon.
8. The straight lines which join alternate vertices of a regular polygon of n sides, intersect so as to form another regular polygon of n sides.

If $n=6$, shew that the area of the resulting hexagon is one-third of the given hexagon.
9. By means of Iv .16 , inscribe in a circle a triangle whose angles are as the numbers $2,5,8$.
10. Shew that the area of a regular hexagon inscribed in a circle is three-fourths of that of the corresponding circumscribed hexagon.
ur octagon. ascribed in ron; times the sect at H : about the f a regular f a regular polygon of one-third of ngle whose in a circle hexagon.
2. In the riangle ABC, I is the centre of the inseribed circle, and $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ the centres of the escribed circles tonehing respeetively the sides. $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ and the other sides produced.

Prove thip following properties:-
(i) The poiuts $\mathrm{A}, \mathrm{I}, \mathrm{I}_{1}$ are collineur; so are $\mathrm{B}, \mathrm{I}, \mathrm{I}_{2} ;$ and $\mathrm{C}, \mathrm{I}, \mathrm{I}_{3}$.
(ii) The points $\mathrm{I}_{2}, \mathrm{~A}, \mathrm{I}_{3}$ are collinear; so are $\mathrm{I}_{3}, \mathrm{~B}, \mathrm{I}_{1}$; and I_{1}, C, I_{2}.
(iii) The triaulles $\mathrm{BI}_{1} \mathrm{C}, \mathrm{Cl}_{2} \mathrm{~A}, \mathrm{AI}_{3} \mathrm{~B}$ are equiangular to one another.
(iv) The triangle $l_{1} l_{3} \mathrm{~L}_{3}$ is equiangmlar to the triangle formed by joining the points of contuct of the iuscribed circle.
(け) Of the four points $\mathrm{I}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ eaeh is the orthoeentre of the triangle whose rertices are the other therce.
(vi) The jour cireles, eaeh of which passes through three of the points $\mathrm{I}_{1}!_{1}, I_{2}, I_{3}$, are all equal.
circle, and ctively the
3. With the notation of page 277 , shew that in a triangle $A B C$, if the angle at C is a right angle,

$$
r=s-c ; \quad r_{1}=s-b ; \quad r_{2}=s-a ; \quad r_{3}=s .
$$

4. With the figure given on page 278 , shew that if the circles whose centres are I, I_{1}, I_{2}, I_{3} touch $B C$ at D, D_{1}, D_{2}, D_{3}, then
(i) $\mathrm{DD}_{2}=\mathrm{D}_{1} \mathrm{D}_{3}=b$.
(ii) $\mathrm{DD}_{3}=\mathrm{D}_{1} \mathrm{D}_{3}=c$.
(iii) $\mathrm{D}_{2} \mathrm{D}_{3}=l+c$.
(iv) $\mathrm{DD}_{1}=b \sim c$.
5. Shew that the orthocentre and rerisces of a triangle are the centres of the inscribed and escribed circles of the pedal triaugle.
[See Ex. 20, p. 22J.]
6. Given the basc and vertical angle of a triangle, find the locus of the centre of the inscribed circle.
[See Ex. 36, p. 228.]
7. Given the base and vertical angle of a triangle, find the locus of the centre of the cscribed circle which tonches the base.
8. Given the basc and vertical angle of a triangle, shew that the centre of the circumscribed circle is fixcel.
9. Given the base $B C$, and the vertical angle A of a triangle, find the locus of the centre of the escribed circle which touches AC.
10. Given the base, the vertical angle, and the radius of the inscribed circle; construct the triangle.
11. Given the base, the vertical angle, and the radius of the escribed circle, (i) which touches the base, (ii) which touches one of the sides containing the given angle; construct the triangle.
12. Given the base, the vertical angle, and the point of contact with the base of the inseribed circle ; construct the triangle.
13. Given the base, the vertical angle, and the point of contact with the base, or base produced, of an escribed circle; construct the triangle.
14. From an cxternal point A two tangents $A B, A C$ are drawn to a given circle ; and the angle BAC is bisected by a straight line which meets the circumference in I and I_{1} : shew that I is the centre of the circle inscribed in the triangle $A B C$, and I_{1} the centre of one of the escribed circles.
15. I is the centre of the circle inscribed in a triangle, and $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{\text {; }}$; the centres of the cscribed citcles; shew that $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ arc lisected by the circmufercnce of the circmmscribed circh.
16. $A B C$ is a triangle, and I_{2}, I_{3} the centres of the escribed circles which touch $A C$, and $A B$ respectively: shew that the points B, C, I_{2}, I_{3} iie upon a circle whose centre is on the circumierence of the circle circumscribed about ABC.
17. With three given points as centres describe three circles touching one another two by two. How many solntions will there be?
18. Two tangents $A B, A C$ are drawn to a given circle from an external point A; and in $A B, A C$ two points D and E are taken so that $D E$ is equal to the smm of $D B$ and $E C$: shew that $D E$ touches the circle.
19. Given the perimeter of a triangle, and one angle in magnitude and position: shew that the opposite side always touches a fixed eirele.
20. Given the eentres of the three eseribed circles; eonstruet the triangle.
21. Given the centre of the inseribed cirele, and the centres of two escribed eireles; construet the triangle.
22. Given the vertieal angle, perimeter, and the length of the biseetor of the vertieal angle; construct the triangle.
23. Given the vertical angle, perimeter, and altitude; eonstruct the triangle.
24. Given the vertieal angle, perimeter, and radins of the inscribed circle; construct the triangle.
25. Given the vertieal angle, the radius of the inscribed circle, and the length of the perpendicular froris the vertex to the base; construct the triangle
26. Given the base, the difference of the sides containing the vertieal angle, and the radius of the inscribed cirele; construct the triangle.
[See Ex. 10, p. 258.]
27. Given a vertex, the centre of the eireumscribed eircle, and the eentre of the inseribed circle, eonstruct the triangle.
28. In a triangle $A B C, I$ is the centre of the inseribed eirele; shew that the centres of the circles circumseribed about the triangles BIC, CIA, AIB lie on the cireumference of the eirele ciremseribed abont the given triangle.
29. In a triangle $A B C$, the inseribel circle tonehes the base $B C$ at D ; and r, r_{1} are the radii of the inscribed eirele and of the eseribed cirele which tonehes BC : shew that $r \cdot r_{1}=B D$. DC.
30. $A B C$ is a triangle, D, E, F the points of eontact of its inseribed eircle: and $D^{\prime} E^{\prime} F^{\prime}$ is the pedal triangle of the triangle $D E F$: shew that the sides of the triangle $D^{\prime} E^{\prime} F^{\prime}$ are parallel to those of $A B C$.
31. In a triangle $A B C$ the inscribed eircle touehes $B C$ at D. Shew that the cireles inscribed in the triangles $A B D, A C D$ toueh one another.

On the Nine-Ponts Circle.

1 magnitude fixed circle.
onstruct the centres of agth of the ; construct of the in. ribed circ'e, the base;
taining the nstruct the 10, p. 258.] cle, and the
circle ; shew angles BIC, ribed about
base BC at the escribed
its inscribed DEF : shew ABC.
$B C$ at D. touch one

32. In any triangle the middle points of the sidles, the feet of the perpendiculars draun from the vertices to the opposite sides, and the middle points of the lines joining the orthocentre to the vertices are concyelic.

In the $\triangle A B C$, let X, Y, Z be the middle points of the sides $B C, C A$, $A B$; let D, E, F be the feet of the perps drawn to these sides from A, B, C; let O be the orthocentre, and a, β, γ the middle points of OA, $O B, O C$:
then shall the nine points X, Y, Z,
D, E, F, α, β, γ be concyclic.
Join $\mathbf{X Y}, \mathbf{X Z}, X_{a}, Y_{a}, Z_{a}$.
Now from the $\triangle A B O$, since $A Z=Z B$, and $\mathrm{Aa}=\mathrm{aO}, \quad \quad$ I!,\quad.
$\therefore Z_{a}$ is par to BO. Ex. 2, p.96. And from the $\triangle A B C$, since $B Z=Z A$, and $B X=X C$, Hyp. $\therefore Z X$ is par to $A C$.

But $B O$ makes a rt. angle with $A C$;
Hyp. \therefore the $\angle \mathrm{XZ} \alpha$ is a rt. angle.
Similarly, the $\angle X Y a$ is a rt. angle.
I. 29.
\therefore the points X, Z, a, Y are concyclic:
that is, a lies on the $c^{\text {ee }}$ of the circle, which passes through X, Y, Z; and $X a$ is a diameter of this circle.

Similarlv it may be shewn that β and γ lie on the $\mathrm{C}^{\text {co }}$ of the circle which passes through X, Y, Z.

Again, since $\alpha D X$ is a rt. angle,
Hyp.
\therefore the circle on $X a$ as diameter passes through D.
Similarly it may be shewn that E and F lie on the circumicrence of the same circle.
\therefore the points $X, Y, Z, D, E, F, a, \beta, \gamma$ are concyclic. Q.E.D.
From this property the circle which passes through the middle points of the sides of a triangle is called the सine Foints circle; many of its properties may be derived from the fact of its being the circle circumscribed about the pedal triangle.
33. To prove that
(i) the centre of the mine-points circle is the middle potnt of the straight line which joins the orthocentre to the circumscribed centre:
(ii) the radius of the nine-points circle is half the radius of the circumscribed circle:
(iii) the centroid is collinear with the circumscribed centre, the nine-points centre, and the orthocentre.

In the $\triangle A B C$, let X, Y, Z be the middle points of the sides; D, E, F the feet of the perp; ; O the orthocentre; S and N the centres of the circumscribed and nine-points circles respectively.
(i) To prove that N is the middle point of SO.

It may be shewn that the perp. to $X D$ from its middle point bisects SO;

Similarly the perp. to EY at its
 middle point biscets SO:
that is, these perps interscet at the middle point of SO:
And since XD and EY are chords of the nine-points circle,
\therefore the intersection of the lines which bisect XD and EY at rt. angles is its centre:
\therefore the centre N is the middle point of SO.
(ii) To prove that the radius of the nine-points circle is half the radius of the cireumscribed circle.

By the last Proposition, $\mathrm{X} \alpha$ is a diameter of the ninc-points cirele. \therefore the middle point of $\mathrm{X} a$ is its centre: but the middle point of SO is also the centre of the ninc-points circle.
(Proved.)
Hence $X a$ and so bisect one another at N.
Then from the \triangle^{n} SNX, ONa
Because $\left\{\begin{array}{r}\text { and } \begin{array}{rl}\mathrm{NN} & =\mathrm{ON}, \\ \text { and the } \angle \mathrm{SNX} & =\text { the }\end{array} \\ \text { and }\end{array}\right.$
(and the $\angle S N X=$ the $\angle O N a$;
I. 15.
$\begin{aligned} \therefore \mathrm{SX} & =\mathrm{O} a \\ & =\mathrm{A} a\end{aligned}$
I. 4.

And SX is also par to $A a$,
$\therefore \mathrm{SA}=\mathrm{X} a$.
I. 33.

But SA is a radius of the cireumscribed circle; and $X a$ is a dianteter of the nine-points circle;
\therefore the radius of the nine-points circle is half the radius of the circum. scribed circle.
(iii) To prove that the centroid is collinear with points $\mathrm{S}, \mathrm{N}, \mathrm{O}$. Join AX and draw af parl to SO.

Let $A X$ meet $S O$ at G.
Then from the $\triangle A G O$, since $A a=a O$ and $a y$ is par ${ }^{1}$ to $O G$,

$$
\therefore \mathrm{Ag}=\mathrm{gG} . \quad \text { Ex. 13, p. } 98 .
$$

And from the $\triangle X a y$, since $a N=N X$, and $N G$ is par to $a!$,

$$
\therefore q \mathrm{G}=\mathrm{GX} . \quad \text { Ex. 13, p. } 98
$$

$\therefore A G=\frac{?}{2} A X$;
$\therefore G$ is the eentroid of the triangle $A B C$.
That is, the centroid is collinear with the points $\mathrm{S}, \mathrm{N}, \mathrm{O}$. Q.E.D.
34. Given the base and vertical anyle of a triangle, find the locus of the centre of the nine-points circle.
35. The nine-points circle of any triangle ABC, whose orthoentre is 0 , is also the nine-points circle of each of the triangles $A O B, B O C$, COA.
36. If I, I_{1}, I_{2}, I_{3} are the centres of the inscribed and escribed circles of a triangle $A B C$, then the circle circumseribed abont $A B C$ is the nime-points cirele of each of the four triangles formed by joining three of the points I, I_{1}, I_{2}, I_{3}.
37. All triangles which have the same orthoccutre and the same cirenmscribed circle, have also the same nine-points circle.
38. Given the base and vertieal angle of a triangle, shew that one angle and one side of the pedal triangle are constant.
39. Given the base and vertical angle of a triangle, find the locus of the eentre of the eircle which passes through the three escribed centres.

Note. For another important property of the Ninc-points Circle sec Ex. 60, P. 382.

If. MISCELLANEOUS EXAMPLES.

1. If four circles are described to tonch every three sides of a quadrilaterai, shew that their centres are concyclic.
2. If the straight lines which bisect the angles of a reetilineal figure are concurrent, a cirele may be inscribed in the figure.
3. Within a given circle describe three equal circles touching one another and the given circle.
4. The perpendiculars drawn from the centres of the three escribed circles of a triangle to the sides which they tonch, are contcurrent.
5. Given an angle and the radii of the inscribed and circumscribed cireles; eonstruet tho triangle.
6. Given tho base, an angle at tho base, and the distance between the eentro of tho inseribed cirele and the centre of the cseribed circle whieh touches tho base; construet the triangle.
7. In a given circio inscrihe a triangle sueh that two of its sides may pass through two given points, and the third sido be of given length.
8. In any triangle $A B C, I, I_{1}, I_{12}, I_{3}$ are the centres of the inscribed and escribed eireles, and S_{1}, S_{21}, S_{3} are the eentres of the eireles cireumseribed abont the triangles $\mathrm{BIC}^{\prime \prime}$, CIA, AIB: shew that the triangle $S_{1} S_{2} S_{3}$ has its sides parallel to those of the trianglo $I_{1} I_{2} I_{3}$, and is one-fourth of it in area: also that, the triangles $A B C$ and $S_{1} S_{-} S_{3}$ have the same cireunscribed eircle.
9. O is the orthocentre of a triangle $A B C$: shew that

$$
\mathrm{AO}^{2}+\mathrm{BC}^{3}=\mathrm{BO}^{2}+\mathrm{CA}^{2}=\mathrm{CO}^{2}+\mathrm{AB}^{2}=d^{2}
$$ where d is the diameter of tho eircumscribed eircle.

10. If from any point within a regular polygon of n sides perpen. diculars are drawn to the sides the sum of the perpendiculars is equal to n times the radius of the inscribed circle.
11. The sum of the perpendiculars drawn from the vertices of a regular polygon of n sides on any straight line is equal to n times the perpendieular drawn from the eentro of the inscribed cirele.
12. The area of a cyelic quadrilateral is independent of the order in which the sides are placed in the cirelc.
13. Given the orthoeentre, the centro of the nine-points circle, and the middle point of the base ; eonstruet the triangle.
14. Of all polygons of a given number of sides, which may be inseribed in a given eircle, that which is regular has the maximnm area and the maximum perimeter.
15. Of all polygons of a given number of sides cirenmseribed abont a given eircle, that whiel is regnlar has the minimum area and the minimm perimeter.
16. Given the vertieal angle of a triangle in position and magnitude, and the sum of the sides eontaining it: find tho locus of the eentre of the circumseribed cirele.
17. P is any point on the cireumferenee of a circle eircumscribed about an equilateral triangle ABC : shew that $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}$ is constant.
reumscribed
nce between cribed circle
of its sides be of given
s of the in. ntres of the : shew that iangle $l_{1} l_{2} I_{3}$ es $A B C$ and
ides perpen. lars is equal
vertices of a n times the le.
of the order ts circle, and hich may be he maximum
ircumscribel um area and locus of the

BOOK V.

book V. treats of Ratio and Proportion.

INTRODUCOTORY.

The first fon books of Euclid deal with the absolute equality or inequality of Geometrical magnitudes. In the Fifth Book magnitudes are eompared by eonsidering their ratio, or relative greatness.

The meaning of the words ratio and proportion in their simplest arithmetical sense, as contained in the following definitions, is probably familiar to the student:

The ratio of one number to another is the multiple, part, or parts that the first mumber is of the sccond; wnd it mety therefore be measured by the fraction of which the first mumber is the mumerator. and the second the denominator.

Four numbers are in proportion when the ratio of the first to the second is equal to that of the third to the fourth.

Bnt it will be seen that these definitions are inapplicable to Geometrical magnitudes for the following reasons:
(1) Pure Geometry deals only with concrete magnitudes, represented by diagrams, bit not referred to any common unit in terms of which they are measured: in other words, it makes no use of number for the purpose of comparison between different magnitudes.
(2) It commonly happens that Geometrical magnitudes of the same kind are incommensurable, that is, they are snch that it is impossible to express them exactly in terms of some common unit.

For example, we can make comparison between the side and diagonal of a square, and we may form an idea of their relative greatness, but it can be shewn that it is impossible to divide either of them into equal parts of which the other contains an exact number. And as the magnitudes we meet with in Geometry are more often incom. mensurable than not, it is clear that it would not always be possible to exactly represent such magnitudes by numbers, even if reference to a common unit were not foreign to the principles of Euclid.

It is therefore necessary to establish the Geometrical Theory of Proportion on a basis quite independent, of Arithmetical principles. This is the aim of Euclid's Fifth Book.

We shatl employ the following notation.
Capital letters, A, B, C,... will be used to denote the magnitudes themselves, not amy mmerical or aldeltraicol measures of them, and small letters, n, n, p, \ldots will be used to denote whole numbers. Also it will he assumed that multiplisation, in the rense of repented wition, can be applied to any magnitude, so that m. A or mA will enote the ingrnitude A taken m times.

The symbol $>$ will le nsed for tho worts greater than, and $\&$ for leas thitu.

l/t.t Nithoss.

1. A greater mignitude is silid to be a multiple of a less, when the greater contains the less an eacact number of times.
2. A less magritude is suid to be a submultiple of a greater, when the less is contaned an exact number of times in the greater.

The following properties of multiples will be assumed as self-evident.
(1) $m \mathrm{~A}>=$ or $<m \mathrm{~B}$ according as $\mathrm{A}>=$ or $<\mathrm{B}$; and conversely.
(2) $m \mathrm{~A}+m \mathrm{~B}+\ldots=m(\mathrm{~A}+\mathrm{B}+\ldots)$.
(3) If $\mathrm{A}=\mathrm{B}$, then $m \mathrm{~A}-m \mathrm{~B}=m(\mathrm{~A}-\mathrm{B})$,
(1) $m \mathrm{~A}+n \mathrm{~A}+\ldots=(m+n+\ldots) \mathrm{A}$.
(5) If $m>n$, then $m \mathrm{~A}-m \mathrm{~A}=(m-n) \mathrm{A}$.
(i) $m \cdot n \mathrm{~A}=m n \cdot \mathrm{~A}=m n \cdot \mathrm{~A}=n, m \mathrm{~A}$.
3. The Ratio of one magnitude to another of the same kind is the relation which the first hears to the second in respect of quantuplicity.

The ratio of A to B is denoted thus, $A: B$; and A is called the antecedent, B the consequent of the ratio.

The term quantnplicity denotes the eapacity of the first magnitude to contain the second with or without remainder. If the magnitudes are commensurable, their quantuplicity may be expressed ummerically by observing what multiples of the two magnitudes are equal to one another.

Thus if $\mathrm{A}=m a$, and $\mathrm{B}=n \cdots$, it follows that $n \mathrm{~A}=m \mathrm{~B}$. In this ease $A=\frac{m}{n} B$, and the quantuplieity of A with respect to B is the arithmetical fraction $\frac{m}{n}$.

But if the magnitudes are incommensuable, no multiple of the first can be equal to my multiple of the seeond, and therefore the quantuplicity of one with respect to the other camot exactly bo expressed numerically: in this case it is determined by examining how the multiphis of one mugnitude are distributed mong the multiples of the other.
'Thas, let nll the multipl ;of A be formed, th. acs' extenting oul infinitum; also let all the muthpers of B be formestat placed in their proper orker of magnitade among the multiples of A. This forms the relative sale of the two mat nitmes, and the quatmplicity of \mathbf{A} with respect to B is estimated by catmining how the multiples of \mathbf{A} arc distributed mong those of B in their antive scale.

In other words, the ratio of A to B is hnown, if for all interat values of m we know the multiples $n B$ and $(n+1) B$ hetween which m A lics.

In the ense of two given magnitndes A and B, the relative seale of multiples is definite, and is different from that of \mathbf{A} to C, it C differs from B by any matnitude however small.

L'or let D be the difference between B and C; then however small D may be, it will be possihle to find a mumer' m such that $m D>A$. In this case, $m \mathbf{B}$ und $m \mathbf{C}$ would differ ly a magnitude greater than \mathbf{A}, and therefore conld not lie between the same two multiples of A; so that after a certain point the relative seale of A and B would differ from that of A and C.
[It is worthy of notice that we can always estimate the ari hmetical ratio of two incommensurable magnitudes within any required degre of acenracy.

For suppose that A and B are inconmensurable; divide B into m erfual parts each equal to β, so that $B=m \beta$, where m is an integer. Also suppose β is contained in A more than n times and les. than $(n+1)$ times; then

$$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B}
\end{aligned}=\frac{m \beta}{m \beta} \text { nnd }<\frac{(n+1) \beta}{m \beta},
$$

that is, ${ }_{B}{ }_{B}$ lies between $\frac{n}{m}$ and ${ }_{m}^{n+1}$;
so that $\frac{\Lambda}{B}$ differs from $\frac{n}{m}$ by a quantity less than $\frac{1}{m}$. And since we cmenchoose β (our unit of measurement) as small as we please, m can be made as great as we please. Hence $\frac{1}{m}$ can be made as small as n please, and two integers n and m can be iound whose ratio will exprep:that of a and b to any required degree of accuracy.]
H. E.
4. The ratio of one magnitude to another is equal to that of a third magnitude to a fourth, when if any equimultiples whatever of the antecedents of the ratios are taken, and also any equimultiples whatever of the consequents, the multiple of one antecedent is greater than, equal to, or less than that of its consequent, according as the multiple of the other antecedent is greater than, equal to, or less than that of its consequent.

Thus the ratio A to B is equal to that of C to D when $m \mathrm{C}>=$ or $<\mu \mathrm{D}$ according as $m \mathrm{~A}>=$ or $<\mu \mathrm{B}$, whatever whole numbers n antrl n may be.

Again, let m be any whole number whatever, and n another whole mumber determined in such a way that either $m \mathrm{~A}$ is equal to mB , or $m \mathrm{~A}$ lies between $n \mathrm{~B}$ and $(n+1) \mathrm{B}$; then the definition asserts that the ratio of A to B is equal to that of C to D if $m C=n D$ when $m A=n B$; or if $m \mathrm{C}$ lies between $n \mathrm{D}$ and $(n+1) \mathrm{D}$ when $m \mathrm{~A}$ lies between $n \mathrm{~B}$ and $(n+1) \mathrm{B}$.

In other words, the ratio of A to B is equal to that of C to D when the multiples of A are distributed among those of B in the same manner as the multiples of C are distributed among those of D.
5. When the ratio of A to B is equal to that of C to D the four magnitudes are called proportionals. This is expressed by saying " A is to B as C is to D ", and the proportion is written
or

$$
\begin{aligned}
& A: B:: C: D \\
& A: B=C: D .
\end{aligned}
$$

A and D are called the extremes, B and C the means; also D is said to be a fourth proportional to A, B, and C.

Two terms in a proportion are said to be homologous when they are both antecedents, or both consequents of the ratios.
[It will be useful here to eompare the algebraieal and geometrical definitions of proportion, and to shew that each may be deduced from the other.

Aceording to the geometrical definition A, B, C, D are in proportion, when $m \mathrm{C}>=<n \mathrm{D}$ aceording as $m \mathrm{~A}>=<n \mathrm{~B}, m$ and n being any positive integer's whatever.

According to the algebraical definition $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are in proportion when $\frac{A}{B}=\frac{C}{D}$.
is equal to any equiratios are f the coneater than, ccording as tham, equal
to D when tever whole
nother whole ual to $n \mathrm{~B}$, or serts that the nen $m \mathrm{~A}=\mu \mathrm{B}$; ween $n B$ and

C to D when in the same ie of D.
tof C to D This is exproportion
means; also d C.
homologous nents of the
d geometrical deduced from
re in propor. and n being
in proportion
(i) To deduce the geometrical detinition of proportion from the algebraical definition.

Sinee $\frac{A}{B}=\frac{C}{D}$, ly multiplying both sides by $\frac{\prime \prime \prime}{\prime \prime}$, we oltain

$$
\frac{m \mathbf{A}}{n \mathbf{B}}=\frac{m \mathbf{C}}{n \mathbf{D}}
$$

hence from the nature of fractions,

$$
m \mathbf{C}>=<n \mathbf{D} \text { according as } m \mathbf{A}>=<n \mathbf{B}
$$ which is the geometrieal test of proportion.

(ii) To deduce the algebraical definition of propertion from the geometrical definition.

Given that $m C>=<n D$ according as $m A==<n B$, to prove

$$
\frac{A}{B}=\frac{C}{D}
$$

If $\frac{A}{B}$ is not equal to $\frac{C}{D}$, one of them must be the greater.
Suppose $\frac{A}{B}>\frac{C}{D}$; then it will be possible to find some fraction $\frac{n}{m}$ which lies between them, u and m being positive integers.

Hence

$$
\frac{\mathrm{A}}{\mathrm{~B}}>\frac{n}{m} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1)
$$

and

$$
\begin{equation*}
\frac{\mathrm{C}}{\mathrm{D}}<\frac{n}{m} \tag{2}
\end{equation*}
$$

F'rom (1), $\quad m \mathrm{~A}>n \mathrm{~B}$; from (2),

$$
m \mathrm{C}<n \mathrm{D} ;
$$

and these contradict the hypothesis.
Therefore $\frac{A}{B}$ and $\frac{C}{D}$ are not unequal; that is, $\frac{A}{B}=\frac{C}{D}$; which proves the proposition.]
6. The ratio of one magnitude to mother is greater than that of a third magnitude to a fourth, when it is possible to tind equimultiples of the antecedents and equiinultiples of the consequents such that while the multiple of the antecedent of the first matio is greater tham, or equal to, that of its consequent, the multiple of the antecerlent of the second is not greater; or is less, than that of its consequent.

This definition asserts that if whole numbers m and n can be founa such that while $m \mathrm{~A}$ is greater than $n \mathrm{~B}, m \mathrm{C}$ is not greater than $n \mathrm{D}$, or while $m \mathrm{~A}=n \mathrm{~B}, m \mathrm{C}$ is less than $n \mathrm{D}$, then the ratio of A to B is greater than that of C to D .
7. If A is equal to B, the matio of A to B is called a ratio of equality.

If A is greater than B, the ratio of A to B is called a ratio of greater inequality.

If A is less than B, the ratio of A to B is called a ratio of less inequality.
8. Two ratios are said to be reciprocal when the antecedent and consequent of one are the consequent and antecedent of the other respectively; thus B : A is the reciprocal of $A: B$.
9. Three magnitudes of the same kind are said to be proportionals, when the ratio of the first to the second is equal to that of the second to the third.

Thius A, B, C are proportionals if

$$
\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}
$$

B is called a mean proportional to A and C, and C is called a third proportional to A and B.
10. Three or more magnitudes are said to be in continued proportion when the ratio of the first to the second is equal to that of the second to the third, and the ratio of the second to the third is equal to that of the thind to the fourth, and so on.
11. When there are any number of magnitudes of the same kiud, the first is said to have to the last the ratio compounded of the ratios of the first to the second, of the second to the third, and so on up to the ratio of the last but one to the last magnitude.

For example, if A, B, C, D, E lee magnitudes of the same kind, $A: E$ is the ratio compounded of the ratios $A: B$, $B: C, C: D$, and $D: E$.

This is sometimes expressed by the following notation:

$$
A: E=\left\{\begin{array}{l}
A: B \\
B: C \\
C: D \\
D: E .
\end{array}\right.
$$

12. If there are any number of ratios, and a set of magnitudes is taken such that the ration of the first to the second is equal to the first ratio, and the ratio of the second to the third is equal to the second ratio, and so on, then the first of the set of magnitudes is said to have to the last the ratio compounded of the given ratios.

Thus, if $A: B, C: D, E: F$ be given ratios, and if P, Q, R, S be magnitudes taken so that
then

$$
\begin{aligned}
& P: Q:: A: B, \\
& Q: R:: C: D \\
& R: S:: E: F
\end{aligned}
$$

$$
P: S\left\{\begin{array}{l}
A: B \\
C: D \\
E: F
\end{array}\right.
$$

13. When three magnitudes are proportionals, the first is said to have to the third the duplicate ratio of that which it has to the second.

Thus if $A: B:: B: C$, then A is said to have to C the duplicate ratio of that which it has to B.

$$
\text { Since } \quad A: C=\left\{\begin{array}{l}
A: B \\
B: C .
\end{array}\right.
$$

it is clear that the ratio compounded of two equal ratios is the dupli. cate ratio of either of them.
14. When four magnitudes are in contimued proportion, the first is said to have to the fourth the triplicate ratio of that which it has to the second.
It may be shewn as above that the ratio compomade of three equal
ratios is the triplicate ratio of any one of them.

Although an algebraical treatment of ratio and proportion when applied to geometrieal magnitudes caunot be considered exact, it will perhaps be useful here to summarise in algebraical form the prineipal theorems of proportion contained in Book V. The student will then perceive that its leading propositions do not introduee new ideas, but merely supply rigorous proofs, based on the geometrieal definition of proportion, of results already familiar in the study of Algebra.

We shall only here give those propositions whieh are afterwards referred to in Book VI. It will be seen that in their algebraical form many of them are so simple that they hardly require proof.

Sumiary of Principar Theorems of Book V.

Proposition 1.
Ratios which are equal to the same ratio are equal to one another.
That is, if $\mathrm{A}: \mathrm{B}=\mathrm{X}: \mathrm{Y}$ and $\mathrm{C}: \mathrm{D}=\mathrm{X}: \mathrm{Y}$;
then
$A: B=C: D$.

Propostrton :3.
If four maynitules are proportionals, they are also proportionals when taken iurersely.

That is, if then

This inference is referred to as invertendo or inversely.
Phopostrion 4.
(i) Eiqual magnitudes hare the same reutio to the same magnitule.

For if
then
$A: B=C: D$,
$B: A=D: C$.
(ii) Ihe same mofnitule hets the same rutio to pqual magnitudes.

For il
then

$$
\begin{gathered}
A=B \\
C: A=C: B .
\end{gathered}
$$

Proposition 6.

(i) Maymitules which have the same matio to the somme magniturde arf equal to one another.

That is, if'
then

$$
\begin{gathered}
A: C=B: C, \\
A-B .
\end{gathered}
$$

(ii) Those mugnitulles to which the same mugnitude has the same rutio are equal to ome atrother.

That is, if thent

$$
C: A: C: B
$$

$A-B$.

Propestitons.

Magmitudes hare the same ratio to oue another which their equimultiples harr.

That is,

$$
\mathrm{A}: \mathrm{B}=m \mathrm{~A}: m \mathrm{~B}
$$

where m is any whole mumber.

Proposition 11.
If forr ma!nitules of the same kind are proportiomals, they are also proportionals when takin alternately.

If

$$
\mathrm{A}: \mathrm{B}-\mathrm{C}: \mathrm{D},
$$

then shall

$$
A: C \quad B: D .
$$

For since

$$
\frac{A}{B}=\frac{C}{D} ;
$$

\therefore multiplying by $\frac{B}{C}$, we have $\frac{A}{B} \cdot \frac{B}{C}=\frac{C}{D} \cdot \frac{B}{C}$;
that is,

$$
\frac{A}{C}=\frac{B}{D}
$$

or

$$
A: C=B: D .
$$

This inference is referred to as alternando or alternately.

Proposition 12.
If an! mumber of magmitudes of the same limd arr proportionals, then as one of the anteredents is to its cousequent, so is the sum of the (1utecedents to the sum of the cousequents.

Jet

$$
A: B=C: D=E: F=\ldots ;
$$

then shall

$$
A: B-A+C+E+\ldots: B+D+F+\ldots
$$

For put each of the equal ratios $\frac{A}{B}, \frac{C}{D} \cdot \frac{E}{F}, \ldots$ equal to l : then

$$
\mathrm{A}=\mathrm{B} k, \mathrm{C}-\mathrm{D} l i, \mathrm{E}-\mathrm{F} l: \ldots
$$

$$
\begin{gathered}
\therefore \begin{array}{l}
\mathrm{A}+\mathrm{C}+\mathrm{E}+\ldots=\begin{array}{c}
\mathrm{B} l+\mathrm{D} k+\mathrm{F} k \\
\mathrm{~B}+\mathrm{D}+\mathrm{F}+\ldots \\
\mathrm{B}+\mathrm{F}+\ldots
\end{array}=\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}}-\frac{\mathrm{E}}{\mathrm{~F}}-\ldots ; \\
\therefore \mathrm{A}: \mathrm{B}
\end{array} \mathrm{~A}+\mathrm{C}+\mathrm{E}+\ldots: \mathrm{B}+\mathrm{D}+\mathrm{F}+\ldots
\end{gathered}
$$

I'Ihis inference is sometimes referred to as addendo.

Proposition 13.
(i) If four magnitudes are proportionals, the sum of the first and second is to the second as the sum of the third and fourth is to the fourth.

Lect
then shall
For since
that is,
or
This inference is referred to as componendo.
(ii) fí four magnitudes are proportionals, the difference of the first and secomb is to the second as the difference of the third and fourth ie to the fourth.

That is, if then

$$
\begin{gathered}
\mathrm{A}: \mathrm{B}=\mathrm{C}: \mathrm{D}, \\
\mathrm{~A} \sim \mathrm{~B}: \mathrm{B}=\mathrm{C} \sim \mathrm{D}: \mathrm{D} .
\end{gathered}
$$

The proof is similar to that of the former case,
This inference is referred to as dividendo.

Proposition 14.

If there are thro sets of magnitmeses, such that the first is to the secomd of the first set as the first to the secomb of the other set, and the second to the third of the first set as the secomd to the third of the other, and so on to the last magnitude: then the first is th the lust of the first set as the first to the last of the other.

First let there be three magnitudes, A, B, C, of one set, and three $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, of another set,
and let
$A: B=P: Q$,
and
$B: C=Q: R$;
then shall
$A: C=P: R$.
For since

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{P}}{\mathrm{Q}}, \text { and } \frac{\mathrm{B}}{\mathrm{C}}=\frac{\mathbf{Q}}{\mathrm{R}}
$$

$$
\frac{A}{B} \cdot \frac{B}{C}=\frac{P}{Q} \cdot \frac{Q}{R}
$$

that is,

$$
\frac{A}{C}=\frac{P}{R}
$$

Cl^{\prime}
Similarly if
$A: C=P: R$.
$A: B=P: Q$,
$B: C=Q: R$,
$L: M=Y: Z$.
it can be proved that
$A: M=P: Z$.

This inference is referred to as ex æquali.

Cormedabt. If
and
then shall
For since
$A: B-P: Q$,
$B: C=R: P$;
$A: C=R: Q$.

$$
\frac{A}{B}=\frac{P}{Q} \text {, and } \frac{B}{C}=\frac{R}{P} \text {; }
$$

$\begin{aligned} & A \\ & B\end{aligned} \frac{B}{C}=\frac{P}{Q} \cdot \stackrel{P}{P} ;$
$\therefore \frac{A}{C}=\frac{R}{Q}$;
$A: C=R: Q$.

Phoposition 15.

$1 f^{\prime}$
 and
 then shall
 For since

that is,
$\mathrm{A}: \mathrm{B}=\mathrm{C}: \mathrm{D}$,
$\mathrm{E}: \mathrm{B}=\mathrm{F}: \mathrm{D}$;
$A+E: B=C+F: D$.
$\frac{A}{B}-\frac{C}{D}$, and $\frac{E}{B}-\frac{F}{D}$:
$\therefore \begin{gathered}A+E \\ B\end{gathered}=\begin{gathered}C+F \\ D\end{gathered} ;$
$A+E: B=C+F: D$.
Proposition 16 .
If tuo rutios are equal, their duplicute ratios are equal; aul comersply.

Let

$A: B=C: D ;$
Shen shall the duplicate ratio of $A: B$ be equal to the duplicate ratio of $C: D$.

Let X be a third proportional to A, B;
so that
that is,

$$
\begin{array}{rl}
A: B & =B: X \\
\therefore B & =\frac{A}{B} \\
B & B \cdot A \\
X & A \\
B & A \\
B
\end{array}
$$

But $A: X$ is the duplicate ratio of $A: B$:
\therefore the duplicate ratio of $\quad A: B=A^{2}: B=$.
But since

$$
\begin{aligned}
& A: B=C: D \\
& \therefore A=C \\
& B=D \\
& \therefore A^{2}=\frac{C^{2}}{B^{2}}
\end{aligned}
$$

or

$$
\mathrm{A}^{2}: \mathrm{B}^{2}=\mathrm{C}^{2}: \mathrm{D}^{2} ;
$$

that is, the duplicate ratio of $A: B=$ the duplicate ratio of $C: D$.
Conversely, let the duplicate ratio of $A: B$ be equal to the duplicate ratio of C : D;
then shall
for since

$$
\begin{gathered}
\mathrm{A}: \mathrm{B}=\mathrm{C}: \mathrm{D}, \\
\mathrm{~A}^{2}: \mathrm{B}^{2}=\mathrm{C}^{2}: \mathrm{D}^{3} \\
\therefore \mathrm{~A}: \mathrm{B}=\mathrm{C}: \mathrm{D} .
\end{gathered}
$$

Proofs of the Propositions of Book V. derived fron

 the geomerbical definithon of Pbopobion.qual; and icate ratio

Ohs. The Propositions of Book V^{\prime}. are all theorems.

Proposition 1.

Ratios which are equal to the same ratio are equal to owe renother.

Let $A: B:: P: Q$, and also $C: D:: P: Q$; then shall A:B::C:D.

For it is evident that two scales or arrangements of multiples which agree in every respect with a third scale, will agree with one another.

Proposition 2.

If two ratios are equal, the antecedent of the second is (1preater than, equal to, or less than its consequent accordiny as the antecedent of the first is greater than, equal to, or less thren its coussequens:

Let.
then according

$$
\begin{array}{r}
\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}, \\
\mathrm{C}>=0 \mathrm{O}<\mathrm{D} . \\
\mathrm{as} \mathrm{~A}=:=\mathrm{or}<\mathrm{B} .
\end{array}
$$

This follows at once from Def. 4 , by taking m and n each equal to unity.

$$
\text { I'roposition } 3 \text {. }
$$

If two ratios are equal, their reciprocal ratios reve equat.
Set
then shall

$$
\begin{aligned}
& \mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}, \\
& \mathrm{~B}: \mathrm{A}:: \mathrm{D}: \mathrm{C} .
\end{aligned}
$$

For, by hypothesis, the multiples of A are distributed among those of B in the same mamer as the multiples of C are atmong those of 5 ;
therefore also, the multiples of B are distributed among those of A in the same mamer as the multiples of D are athong those of C .

That is,

$$
B: A:: D: C .
$$

Notr. This proposition is sometimes enunciated thus
If four magnitudes are proportionals, they are also proportionals where taken intersely,
and the inference is referred to as invertendo or inversely.

Proposition 4.

E'qual magnitudes hare the same ratio to the same maynitude; and the same magnitude has the same ratio to equal. mrignitueles.

Tet A, B, C be three magnitudes of t^{\prime} in same kind, aud let A be equal to B : then shall

$$
\begin{aligned}
& A: C:: B: C \\
& C: A:: C: B .
\end{aligned}
$$ and

Since $A=B$, their multiples are identical and therefore are distributed in the same way among the multiples of C.

$$
\begin{array}{rr}
\therefore \text { A : C : : B : C, } & \text { Def. } 4 \\
\text { C : A : : C : B. } & \text { v. } 3 .
\end{array}
$$

\therefore also, invertendo,

Propusition \%.

(!) two unequal maynitudes, the grenter hus. protero ratio to a third maynitude than the less has; ran same magnitude has a greater ratio to the less of tuo maynitudes than it hess to the greater.
first,
then shall

$$
\text { let } \mathrm{A} \text { be }>\mathrm{B} \text {; }
$$

$$
A: C \text { be }=B: C .
$$

Since A - B, it will be possible to find m such that $m A$ exceeds $m \mathrm{~B}$ by a magnitude greater than C ;
hence if $m \mathrm{~A}$ lies between $n \mathrm{C}$ and $(n+1) \mathrm{C}, m \mathrm{~B}<n \mathrm{C}$:
and if $m \mathrm{~A}=n \mathrm{C}$, then $m \mathrm{~B}<n \mathrm{C}$;

$$
\therefore A: C>B: C .
$$

Def. 1.
Secondly, \quad let B be $<A$;
then shall

$$
C: B \text { be }=C: A .
$$

For taking $i n$ and n as before,

$$
n \mathrm{C}>m \mathrm{~B}, \text { while } n \mathrm{C} \text { is not }=m \mathrm{~A} \text {; }
$$

$$
\therefore C: B=C: A .
$$

Proposition 6.

Maynitutes which have the same ratio to the bimme maynitude are equal to one another; and those to which the same magnitude hats the same rutio are equal to one another.
first, then shall

$$
\text { let } \mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{C} \text {; }
$$

$A=B$.

> For if $A>B$, then $A: C>B: C$, and if $B>A$, then $B: C>A: C$, which contradict the hypothesis;

$$
\therefore A=B .
$$

Secomelly, then shall	$\begin{aligned} \text { let } C: A & :: C: B \\ A & :=B . \end{aligned}$	
\therefore incroverule,	$\begin{array}{r} \text { liecaluse } \mathrm{C}: \mathrm{A}:: \mathrm{C}: \mathrm{E}, \\ \mathrm{~A}: \mathrm{C}:: \mathrm{B}: \mathrm{C}, \\ \mathrm{~A}=\mathrm{B} \end{array}$	v. 3.
by the tirst pur	t of the proof.	

Proposition $\overline{7}$.

There meternitule which has ae grenter reatio thene another hersis to the semme matuitudes is the greater of the two; ared. that mutguitude to which the seme has e geeater ratio thene it hus to muother marnuitule is the less of the tieo.
liurst, $\quad \operatorname{let} A: C$ be $>B: C$;
then shatl
A be > B.

For if $A: B$, then $A: C: B: C$, v. 1.
which is contrary to the hypothesis.
And if $A<B$, then $A: C<B: C$;
v. 5.
which is contray to the hypothesis:

$$
\therefore A>B .
$$

Secomally, let C A be $>\mathrm{C}: \mathrm{B}$;
then shatl
$\therefore b x<B$.
For if $A=B$, then $C: A: C: B$, V. 4. which is contrary to the hypothesis.

And if $A>B$, then $C: A<C: B$; $\therefore .5$. which is contrary to the hypothesis;

$$
\therefore A<B .
$$

Pimponition s'.

Maynituedrs hener thes setme rettin to one another whirh their equeimultiples hate.
v. 3.
"trother eot ; ethrl theere it
v. 1.
v..
v. 4.
v. 5.

> leet A, B be two magnitudes:
then shaill

$$
A \cdot S:: m A: m B .
$$

It 1 , q he any two whole numbers,
then $m \cdot \mu A>-11^{\circ}<m \cdot q^{B}$
aceording as $\mu \mathrm{A}=0 \quad 0<\eta \mathrm{B}$.
lint $m \cdot \mu \mathrm{~A}=\eta, m \mathrm{~A}$, and $m \cdot q \mathrm{~B}=q \cdot m \mathrm{~B}$;
$\therefore \mu \cdot m A=-O r<\eta \cdot m B$
according as $p \mathrm{~A}=-\cdots \mathrm{or}^{\circ}<\boldsymbol{\eta} \mathrm{B}$;

$$
\therefore A: B:: m A: m B
$$

Def. 1.
Cols.

$$
\text { Let } A: B:: C: D \text {. }
$$

Then since $A: B:: m A: m B$,
and C : D :: $\mu \mathrm{C}: n \mathrm{D}$;
$\therefore m \mathrm{~A}: m \mathrm{~B}:: n \mathrm{C}: m \mathrm{D}$.

Proposition 9.

If two ratios are equal, arue any equimultiples of thes antecedents and also of the consequents are traken, the muttiple of the first antecedent luss to thut of its consequent the same ration as the multiple of the sther antecedent has to that of its consequeul.

$$
\begin{aligned}
& \text { Let } \mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D} ; \\
& m \mathrm{~A}: \mu \mathrm{B}:: m \mathrm{C}: u \mathrm{D} .
\end{aligned}
$$

then shatl
Let p, q be any two whole numbers, then because $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$,

$$
q^{\prime} m \cdot \mathrm{C}==0 r^{\circ}<q u \cdot \mathrm{D}
$$

$$
\text { according its } p^{m} . \mathrm{A}>=01^{\circ}<q^{\prime} u . \mathrm{B}, \quad \text { /nof. } \mathrm{L} .
$$

$$
\text { that iss, } \mu \cdot m \mathrm{C}>-\mathrm{or}^{r}<q \cdot u \mathrm{D}
$$

$$
\text { according as } p \cdot m \mathrm{~A}=0=0 \ll q \cdot u \mathrm{~B}
$$

$$
\therefore m \mathrm{~A}: u \mathbf{B}:: m \mathrm{C}: u \mathrm{D}
$$

$$
D_{e f:} 4
$$

Proposition 10.
If four muynitudes of the same kind were pioporionals, the first is greater than, equal to, or less thene the thirel, according as the secomb is greater than, equal to, or less than the jourlh.

Let A, B, C, D be four mignitudes of the satne kind such that

$$
\begin{aligned}
& \text { A: B::C:D: } \\
& \text { then } A>- \text { or }-C \\
& \text { according as } \mathrm{B}=00^{\circ} \because \mathrm{D} \text {. } \\
& \text { If } B-D \text {, then } A: B=A: D \text { : } \\
& \text { lut } A: B:: C: D \text {; } \\
& \therefore C: D-A: D ; \\
& \therefore A: D=C: D ; \\
& \therefore A=C \text {. }
\end{aligned}
$$

Similarly it may be shewn that
if $B<D$, then $A<C$,

$$
\text { and if } B-D \text {, then } A-C \text {. }
$$

Proposition 11.
If four mugnitules of the seme liind are proportionals, they are also proportionals when taken altermately.

Let A, B, C, D be four magnitudes of the same kind such that

$$
\begin{align*}
& \mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D} ; \\
& \text { A:C :: B : D. } \\
& \text { Becaluse } \mathrm{A}: \mathrm{B}:: m \mathrm{~A}: m \mathrm{~B} \text {, } \\
& \text { v. } 8 . \\
& \text { and } \mathrm{C}: \mathrm{D}:: m \mathrm{C}: m \mathrm{D} \text {; } \\
& \therefore m \mathrm{~A}: m \mathrm{~B}:: \mu \mathrm{C}: n \mathrm{D} \text {. } \\
& \text { v. } 1 \text {. } \\
& \therefore m A-\omega r^{\circ}<\mu \mathrm{C} \\
& \text { aroording is } m \mathrm{~B}>=0 r^{\prime}<n \mathrm{D} \text { : } \\
& \text { v. } 10 \text {. } \\
& \text { and } m \text { and } n \text { are any whole numbers; } \\
& \therefore \mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{D} \text {. }
\end{align*}
$$

then shaill

Aote. This inference is usublify referred to as alternando or alternately.

Proposition $1 \therefore$.

If amy number of magnitudes of the setme kinut are propurtionals, as one of the untecedents is to its consequent, so is the sum of the antecedents to the sum of the conseruents.

Let A, B, C, D, E, F,... be magnitudes of the same kind such that

$$
\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}:: \mathrm{E}: \mathrm{F}:: \ldots \ldots \text {; }
$$

then shall $A: B:: A+C+E+\ldots: B+D+F+\ldots$

> Because A:B::C:D::E:F::....
\therefore accorrling as $m A>=O^{-}<\mu B$,
so is $m \mathrm{C}>\mathrm{O}^{\prime}<\mu \mathrm{D}$.

$$
\text { and } m \mathbf{E}>\text { or }=u \mathrm{~F} \text {, }
$$

\therefore so is $m \mathbf{A}+m \mathbf{C}+m \mathbf{E}+\ldots>-0 \cdot<u \mathbf{B}+n \mathbf{D}+n \mathbf{F}+\ldots$

$$
\text { or } m(\mathrm{~A}+\mathrm{C}+\mathrm{E}+\ldots)>=0 r^{\prime}<n(\mathrm{~B}+\mathrm{D}+\mathrm{F}+\ldots)
$$

and m and n are any whole numbers;

$$
\therefore \mathrm{A}: \mathrm{B}:: \mathrm{A}+\mathrm{C}+\mathrm{E}+\ldots: \mathrm{B}+\mathrm{D}+\mathrm{F}+\ldots . \mathrm{Def:} 4 .
$$

Notr. This inference is usually referred to as addendo.
oportionals, e kind such
v. 8.
v. 1 .
v. 10 .

Mef. 4. Iternando or

Proposition 1:3.

If forr maynitudes are proportionals, the sum or difference of the first and second is to the secould as the sum or difference of the third aul formth is to the fourth.
then slanl
Let A: B:: C:D;

$$
\begin{array}{r}
\mathrm{A}+\mathrm{B}: \mathrm{B}:: \mathrm{C}+\mathrm{D}: \mathrm{D}, \\
\text { and } \mathrm{A} \sim \mathrm{~B}: \mathrm{B}:: \mathrm{C} \sim \mathrm{D}: \mathrm{D} .
\end{array}
$$

If m be any whole number, it is possille to find another number n such that $m \mathrm{~A}=n \mathrm{~B}$, or lies between $n \mathrm{~B}$ and $(n+1) \mathbf{B}$,
$\therefore m \hat{A}+m \bar{B} \quad m \mathrm{~B}+\mu \mathrm{B}$, or lies between $m \mathrm{~B}+n \mathrm{~B}$ and
H. E.

$$
m \mathbf{B}+(u+1) \mathbf{B} .
$$

But $m \mathrm{~A}+m \mathrm{~B}=m(\mathrm{~A}+\mathrm{B})$, and $m \mathrm{~B}+n \mathrm{~B}=(m+n) \mathrm{B}$:
$\therefore m(\mathrm{~A}+\mathrm{B})=(m+n) \mathrm{B}$, or lies between $(m+n) \mathrm{B}$
and $(m+n+1) B$.
Also because A : B :: C : D,
$\therefore m \mathrm{C}=n \mathrm{D}$, or lies between $n \mathrm{D}$ and $(u+1) \mathrm{D} ; \mathrm{Deff}^{2} 4$.
$\therefore m(C+D)=(m+n) D$ or lies between $(m+n) D$ and $(m+n+1) \mathrm{D} ;$
that is, the multiples of $C+D$ are distributed among those of D in the same way as the multiples of $A+B$ among those of B;

$$
\therefore A+B: B:: C+D: D .
$$

In the same way it may be proved that

$$
\begin{aligned}
& \quad A-B: B:: C-D: D, \\
& \text { or } B-A: B: D-C: D, \\
& \text { according as } A \text { is }>\text { or }<B .
\end{aligned}
$$

Note. These inferences are referred to as componendo and dividendo respectively.

Proposition 14.

If there are two sets of magnitudres, such that the first is to the second of the first set as the first to the secome of the where set, and the secourl to the thimel of the furst set wes the secomed to the thirel of the other, amel so on to the last magmitule: then the first is to the last of the first set as the first to the last of the other.
first, let there be three magniturles $\mathrm{A}, \mathrm{B}, \mathrm{C}$, of one set and three, P, Q, R, of another set,
and let $A: B:: P: Q$, and $B: C:: Q: R$;
then shall $A: C:: P: R$.
Because $A: B:: P: Q$,

$$
\therefore m \mathrm{~A}: m \mathrm{~B}:: m \mathrm{P}: m \mathrm{Q} ; \quad \text { v. } \&, \operatorname{Cor}
$$

: mill because B:C:: Q : R,
$\therefore m \mathrm{~B}: n \mathrm{C}:=m \mathrm{Q}: \eta \mathrm{R}$,
г. 9.
\therefore invertenco.
$n \mathbf{C}: m \mathbf{B}:: n \mathbf{R}: m \mathbf{Q}$.
v, 3.

1) B
2) B

Def. 4. D and
mg those 3 among
and divi-
he finst is ud of the wet as the thatmie first to
f one set
$\therefore 8$, Cor.
v. 9.
v. 3.

Now, if

$$
\begin{array}{rlr}
m \mathrm{~A} & >n \mathrm{C}, \\
\text { Hhen } m \mathrm{~A}: m \mathrm{~B} & >n \mathrm{C}: m \mathrm{~B}: & \text { v. } . \\
\therefore m \mathrm{P}: m \mathrm{Q} & >m \mathrm{R}: m \mathrm{Q}, & \\
\therefore \text { and } \therefore m \mathrm{P} & >m \mathrm{R} . & \text { v. }
\end{array}
$$

Nimilarly it may be shew that $m P=$ or $<\omega R$, areording as $m \mathrm{~A}$ or $<\mu \mathrm{C}$,

$$
\therefore A: C:: P: R . \quad \text { Def. } 4
$$

Secondly, let there be any number of magnitudes, A, B, $C, \ldots L, M$, of one set, and the same number $P, Q, R, \ldots Y, Z$, of another set, such that

$$
\begin{aligned}
& A: B:: P: Q, \\
& B: C:: Q: R \text {, } \\
& \text { •M.. Y: } Z \\
& \text { then shall } A: M:: P: Z \text {. } \\
& \text { For } A: C:: P: R \text {, } \\
& \text { and } C: D:: R: S \text {; } \\
& \therefore \text { by the first case } A: D:: P: S \text {, }
\end{aligned}
$$ and so on, until tinally

$$
A: M=P: Z
$$

Note. This inference is referred to as ex æquall.

$$
\begin{aligned}
& \text { Coroldary. } \text { If } A: B:: P: Q \\
& \text { and } B: C:: R: P
\end{aligned},
$$

Propositio: 1.t.

\therefore, romponendo,
$A+E: E:: C+F: F$.
ソ. 10.
Again, $E: B:: F: D$,
$A+E: B: C+F: D$.
Hyp.

1. 14.

Proposition 16.

If tuo ratios are equal, their duplicate ratios are equal; and conversely, if the duplicate ratios of two ratios are equal, the ratios themselves are equal.

Let $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$;
then shall the duplicate ratio of A to B be equal to that of C to D.

Let X be a third proportional to A and B, and Y a third proportional to C and D, so that $\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{X}$, and $\mathrm{C}: \mathrm{D}:: \mathrm{D}: \mathrm{Y}$:
then hecause $A: B:: C: D$, $\therefore B: X:: D: Y ;$
\therefore ex cequali, A: $\mathrm{X}:: \mathrm{C}: \mathrm{Y}$.
But $A: X$ and $C: Y$ are respectively the duplicate ratios of $\mathrm{A}: \mathrm{B}$ and $\mathrm{C}: \mathrm{D}, \quad$ Def. 13.
\therefore the duplicate ratio of $A: B=$ that of $C: D$.
Conversely, let the duplicate ratio of $\mathbf{A}: \mathrm{B}=$ that of $\mathrm{C}: \mathrm{D}$; then shall $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$.
Let P be such that $A: E:: C: P$, \therefore, invertendo, B:A :: P:C.
Also, ly lypothesis, A : X :: C: Y, \therefore, ex requali, $\quad \mathrm{B}: \mathrm{X}:: \mathrm{P}: \mathrm{Y}$;
hut A:B::B:X,
$\therefore \mathrm{A}: \mathrm{B}:: \mathrm{P}: \mathrm{Y}$;
v. 1.
$\therefore \mathrm{C}: \mathrm{P}:: \mathrm{P}: \mathrm{Y}$;
v. I.
that is, P is the man proportional hetween C and Y.
$\therefore \mathrm{P}=\mathrm{D}$,
$\therefore A: B: C: D$.

BOOK VI.

Definitions.

1. Two rectilineal fignres ate said to be equiangular when the angles of the first, taken in order, are equal respectively to those of the second, taken in order. Each angle of the first figure: is said to correspond to the angle: to which it is equal in the second figure, and sides opposite to corresponding ingles are called corresponding sides.
2. Rectilineal figures are said to be similar when they are equiangular and have the sides about the equal angless proportionals, the corresponding sides being homologous.
[See Def. 5, page 288.]
Thus the two quadrilaterals $A B C D$, $E F G H$ are sinilar if the augles at A, B, C, D are respectively equal to those at E, F, G, H, and if the following proportions hold
$A B: B C:: E F: F G$,
$B C: C D:: F G: G H$
$C D: D A:: G H: H E$,
$D A: A B:: H E: E F$

3. Two figures are said to have their sides about two of their ingles reciprocally proportional when a side of the first is to a side of the second as the remaining side of the second is to the reuaining side of the first.
4. A straight line is said to be divided in extreme and mean ratio when the whole is to the greater segment as the greater segment is to the less.
5. Two similar rectilineal figures are said to be s.milarly situated with respect to two of their sides when these sides are homologous.

Proposition 1. Tineorem.

The areas of triangles of the steme altilude are to one another as their bases.

Let $A B C, A C D$ be two triangles of the same alditude, namely the perpendicular firm A to $B D$:

$$
\begin{aligned}
& \text { then shall the } \triangle A B C: \text { the } \triangle A C D:: B C: C D \text {. } \\
& \text { Produce } B D \text { both ways, }
\end{aligned}
$$

and from CB produced cut oft any number of parts BG, GH, each equal to BC ;
and from $C D$ produced cut ofl any number of parts $D K$, KL, LM each equal to CD.

Join AH, AG, AK, AL, AM.
Then the $\omega^{*} A B C, A B G, A G H$ are equal in area, for they are of the same altitude and stand on the equal bases CB, BG, GH,

1. 38 . \therefore the $\triangle A H C$ is the same multiple of the $\triangle A B C$ that $H C$ is of $B C$;
Similarly the $\triangle A C M$ is the same multiple of $A C D$ that $C M$ is of $C D$.

Ancl if $\mathrm{HC}=\mathrm{CM}$,
the $\triangle A H C=$ the $\triangle A C M$;

1. 38 .
and if HC is greater than $C M$,
the $\triangle A H C$ is greater than the $\triangle A C M$; I. 38 , Corr. and if HC is less than CM ,
the $\triangle A H C$ is less than the $\triangle A C M$. 1. 38, Cor.
Now since there are four magnitudes, namely, the $\triangle^{\circ} A B C, A C D$, and the bases $B C, C D$; and of the antecedents, any equimultiples have been taken, namely, the \triangle AHC
and the hase HC ; and of the consequents, any equimultiples hase been taken, manely the $\triangle A C M$ and the base CM ; and since it has been shewn that the $\triangle A H C$ is greater than, equal to, or less than the $\triangle A C M$, according as HC is greater than, equal to, or less than CM ;
\therefore the four original magnitudes are proportionals, l. Def. I. that is,
the $\triangle A B C$: the $\triangle A C D:$ the base $B C$: the base $C D$. q.is.1).
Corolabis: The areas of purallelogromes of the steme altitude are to ome another as their bases.

Let EC, CF le pian of the same altitude; then shall the par ${ }^{101} E C$: the par $C F:$ BC : $C D$.

Jonn BA, AD.
Then the $\triangle A B C$: the $\triangle A C D: B C: C D ;$ lroved.
but the parin $E C$ is double of the $\triangle A B C$,
and the pirrm $C F$ is double of the $\triangle A C D$;
\therefore the parin EC : the par ${ }^{191}$ CF :: BC:CD. $\quad \therefore .8$.
Note. 'I'wo straight lines are cut proportionally when the segments of one line are in the same ratio as the corresponding segments of the other. [See definition, page 131.]

Fig. 1
\qquad

Fig.2

'Thus $A B$ and $C D$ are cut moprorionally at X and Y, it' $A X: X B: C Y: Y D$.
And the same detinition applies equally whether X and Y divido $A B$, CD internally as in Fig. 1 or externally as in Fig. 2.

Proposition :. Theores.

If " straighle line bee dratou purvellel "1" oure siete of a triangle, it shath rut the other sides, or those sides produced, moportionully:

Conversel!, if the sides on. the sides modured be cut pion purtionetly, the steright lime which joins the points of section, shatl be purallat to the remminimy zide of the trinengle.

Let $X Y$ be drawn biat to $B C$, one of the sides of the $\triangle A B C$:
then shall

$$
\begin{gathered}
B X: X A:: C Y: Y A . \\
\text { Join } B Y, C X .
\end{gathered}
$$

Then the: $B X Y=$ the $\triangle C X Y$, being on the satme biese $X Y$ and leetwoen the same paraliols $X Y, B C$; \quad. and $A X Y$ is mother trimeste:
\therefore the $B X Y$: the $\triangle A X Y::$ the $\triangle C X Y:$ the $\triangle A X Y$. 1. 1. But the $\triangle B X Y$: the $\triangle A X Y:: E X: X A$, II. 1 . and the $\triangle C X Y$: the $\triangle A X Y:: C Y: Y A$, $\therefore B X: X A:: C Y: Y A$.
1.1.

C'oncersely, let $B X: X A:: C Y: Y A$, innel let $X Y$ lee joined: then shall $X Y$ be par' to $B C$.

As betore, join $B Y, C X$.
By hypothesis BX : XA : : CY: YA ;
but $B X: X A::$ the $\triangle B X Y:$ the $\triangle A X Y$, vi. 1.
and $C Y: Y A::$ the $\triangle C X Y$: the $\triangle A X Y$;
\therefore the $\triangle B X Y$: the $\triangle A X Y::$ the $\triangle C X Y:$ the $\triangle A X Y$. $: 1$.
\therefore the $\triangle B X Y \ldots$ the $\triangle C X Y$;

1. 6. and they aretriangles on the same hase and on the same side of it.

$$
\therefore X Y \text { is pur to } B C .
$$

1. 39.

Q.E.D.

1

FXERCISES.

1. Shew that every madrilateral is divided ly its dingonals into fotir riangles proportional to each other.
2. If amy tro straight limes are cut by three parallel straight lines. they are cat proportionally.
3. From a point E in the common base of two triangles $A C B$, $4 D B$, stratight lines are drawn parallel to $A C, A D$, meeting $B C, B D$ ut F, G : shew that $F G$ is parallel to $C D$.
4. In a triangle $A B C$ the straight line DEF meets the sides $B C, C A, A B$ at the points D, E, F respectively, and it makes erqual angles with $A B$ and $A C$: prove that
```
BD : CD :: BF : CE.
```

5. If the bisector of the angle B of a triangle $A B C$ mects $A D$ at risht angles, shew that a line through D parallel to $B C$ will biseet AC.
6. From B and C, the extremities of the base of a triangle $A B C$, lines BE, CF are drawn to the opposite sides so as to intersect on the median from A : shew that $E F$ is parallel to $B C$.
7. From P, a given point in the side $A B$ of a triangle $A B C$. draw a straight line to $A C$ produced, so that it will be bisected by BC.
8. Find a point within a triangle such that, if straight lines be drawn from it to the three angular peints, the triangle will be divided into three equal triangles.

Phopostrion :\%. 'Theoren.

If the rertical angle of a triangle be bisected by astraight linu which cuts the buse, the seyments af the base shall hate to one chother the situe retion ths the remaining sides of the trinugle:

Conversely, if the brase be dirided so that its segments hates to one anolice the seme ratio as the remainiug sides of the triangle hece, the straight line deconn fiom the vertes to the poiut of section shetl bised the arotical anyle.

In the $\triangle A B C$ let the - $B A C$ be bisected liy $A X$, which meets the base at X; then shall

$$
B X: X C:: B A: A C .
$$

Through C draw CE pat to XA, to meet BA produced at E .

Then lecause XA and CE are par',
\therefore the $\angle B A X=$ the int. opp. $\angle A E C$, 1. $\because 9$. and the $-X A C=$ the alt. $-A C E . \quad$ 1. 29. But the $-\mathrm{BAX}=$ the $\angle X A C ; \quad I_{y_{1}}$.
\therefore the $\angle A E C$ - the $\angle A C E$; $A C=A E$.
I. 6.

Again, becaluse $X A$ is par to $C E$, a sile of the $\triangle B C E$,

$$
\therefore B X: X C:: B A: A E
$$

$$
\text { that is, } \quad B X: X C: B A: A C \text {. }
$$

C'oncersely, let $B X: X C:: B A: A C$; and let $A X$ le joined: then shatl the $-B A X-\angle X A C$.
$E C, 1 . \because 9$.

1. 29 .

IIyp.

1. 6 .
$\triangle B C E$,

For, with the same construction as before, because XA is pirt to CE, a side of the $\triangle B C E$, $\therefore B X: X C: B A: A E$. V1. … lint by hypothesis $B X: X C:: B A: A C$; $\therefore B A: A E: B A: A C ;$ $\therefore A E=A C$;
\therefore the $-A C E=$ the $-A E C$.
V. 1 .

1. i. But becaluse XA is par ${ }^{1}$ to CE,
\therefore the - XAC the alt. - ACE. 1. $\because 9$.
and the ext. - BAX - tha int. opp. - AEC; 1. $\because 9$.
\therefore the $-B A X=$ the $-X A C$.
(2.E. 1).

ENERCISRK.

1. The side $B C$ of atriangle $A B C$ is bisected at D, and the angles $A D B, A D C$ are bisected by the struight lines $D E, D F$, meeting $A B$, $A C$ at E, F respectively: shew that $E F$ is parallel to $B C$.
2. Apply Proposition 3 to trisect a given finite straight line.
3. If the line bisecting the vertical angle of a triangle be dividerd into parts which are to one another as the base to the sum of the sides, the point of division is the centre of the inscribed circle.
4. $A B C D$ is a quadrilateral: shew that if the bisectors of the angles A and C meet in the diagonal BD, the bisectors of the angles B and D will meet on $A C$.
5. Construct a triangle having given the base, the vertical anyle, and the ratio of the remaininy sides.
6. Employ this proposition to shew that the bisectors of the angles of a triangle are concurrent.
7. $A B$ is a diameter of a circle, $C D$ is a chord at right angles to it, and E any point in $C D: A E$ and $B E$ are drawn and produced to cut the circle in F and G : shew that the quadrilateral CFDG has any two of its adjacent sides in the same ratio as the remaining two.

Phorostion A. Theorm.

If ome: side of " lriamgle lwe produced, amd the exteriar "ungle so formed bre lisectad by re stomight liur which cuts the base producos, thes segments lintwern the bisector ered the catremities af the lustes shatl latere to mes aroother the semes retion as the semuinimy sides of the triangle late:

C'oncrersely, if the sepurents of the bese prodeced hence to me enother the sature retion as the remuinimy sides of the triangle hase, the straisht liew diown fiom thes vertes; "n the

In the $\quad A B C$ let $B A$ be produced to F, ind let the exterior - CAF be bisected by AX which meets the bitse produced at X : then shall

$$
B X: X C:: B A: A C .
$$

$$
\begin{aligned}
& \text { Through C draw CE pur' to XA, } \\
& \text { and let CE meet BA it E. }
\end{aligned}
$$

'Then becanse $A X$ and $C E$ are par',
\therefore the ext. $-F A X$ - the int. opp. $-\operatorname{AEC}$, ind the $\angle X A C=$ the alt. $-A C E$.

Again, because XA is $1^{\prime \prime}$ to $C E$, a side of the $\angle B C E$, C'mestr.

$$
\begin{array}{r}
\therefore B X: X C:: B A: A E \text {; } \\
\text { thet is, } B X: X C: B A: A C .
\end{array}
$$

Comerisely, let $B X: X C: B A: A C$, and let $A X$ lo joinem: then shall thr - FAX thr $-X A C$.
For, with thre same construction ins before, because $A X$ is par to $C E$, a side of thr $\triangle B C E$,

$$
\begin{aligned}
& \therefore B X: X C: B A: A E . \\
& \text { II. } \because \\
& \text { Rut, hy hypothesis } B X: X C:: R A: A C \text {; } \\
& \therefore B A: A E:: B A: A C \text {; } \\
& \text { V. } 1 . \\
& \therefore A E=A C \text {, } \\
& \therefore \text { the }-A C E=\text { the }-A E C \text {. } \\
& \text { I. i. } \\
& \text { lint because } A X \text { is par to } C E \text {, } \\
& \therefore \text { the }-X A C=\text { the alt. }-A C E \text {, } \\
& \text { and the ext. - FAX the int. oplr }- \text { AEC ; r. } \because 9 . \\
& \therefore \text { thr - FAX - the }-X A C \text {. \&F. } 1 \text {. }
\end{aligned}
$$

Propositions 3 and A may he both included in one enunciation as follows:

If the iutrior or exterior rertical augle of " triample be lisected !!! a straight lime which also cuts the buse, the buse slatl be divided iutermally or cexternall!! into se!ments which hare the same ration as the sides of the trimule':

Couversely, if the base be divided intermally or extermally into segHu which lame the same ratio as the sidles of the triangle, the stratight lime drann from the point of division to the rerters will bisect the interior or erterior vertical angle.

EXERCISES.

1. In the circumference of a circle of which $A B$ is a diameter, Ω point P is taken; straight lines PC, PD are drawn equally inclined to $A P$ and on opposite sides of it, mecting $A B$ in C and D; shew that
```
心:CB::AD:DB.
```

2. From a point A straight lines are drawn making the angles $B A C, C A D, D A E$, wech equal to half Ω right angle, and they are cut by a straight line BCDE, which makes BAE an isosceles triangle: shew that $B C$ or $D E$ is a mean proportional between $B E$ and $C D$.
3. By means of Propositions :3 and A, prove that the straight lines bisecting one angle of a triangle internally, and the uther two externally, are concurrent.

Proposition 4. Theormi.

If two triangles be equiangular to one another, the sides about the equal angles shall be proportionals, those sides which are opposite to equal angles bieing homologous.

Let the $\triangle A B C$ be equiangular to the $\triangle D C E$, having the $\angle A B C$ equal to the $\angle D C E$, the $\angle B C A$ equal to the $\angle C E D$, and consequently the $\triangle C A B$ equal to the $\angle E D C$: I. 32 . then shall the sides about these equal angles be proportionals, namely

$$
\begin{array}{r}
A B: B C:: D C: C E, \\
B C: C A:: C E: E D, \\
\text { and } A B: A C:: D C: D E .
\end{array}
$$

Let the $\triangle D C E$ be placed so that its side CE may he contiguous to BC , and in the same straight line with it.

Then because the $-{ }^{s} A B C, A C B$ are together less than two rt. angles,

$$
\text { and the } \angle A C B=\text { the }-D E C \text {; }
$$

т. 17 . Hyp.
\therefore the $\therefore{ }^{s} A B C, D E C$ are together less than two rt. angles; $\therefore B A$ and ED will meet if produced. Ax. 12 . let them be produced and meet at F. Then hecause the $-\mathrm{ABC=}$ the $\angle \mathrm{DCE}, \quad I I!/ P^{\prime}$.
$\therefore B F$ is par to CD;
and hecause the $\angle A C B=$ the $-D E C$,
$\therefore A C$ is parr to FE,
I. 2 s .
\therefore FACD is a par ${ }^{12}$;
$\therefore A F=C D$, and $A C-F D$.
I. 34.

Again, because CD is par to $B F$, a side of the $\triangle E B F$, $\therefore B C: C E:: F D: D E$: VI. ϱ. but $F D=A C$;
$\therefore B C: C E:: A C: D E ;$
and, alternately, BC : CA :: CE : ED. V: 11.
Again, because $A C$ is par ${ }^{1}$ to $F E$, a side of the $\triangle F B E$,
$\therefore B A: A F: B C: C E ;$ VI. ,
but $A F=C D$;
$\therefore B A: C D:: B C: C E ;$
ind, alternately, $\mathrm{AB}: \mathrm{BC}:: \mathrm{DC}: \mathrm{CE}$.
Also BC : CA :: CE : ED;
v. 11 .

Proved.
\therefore ex uquali, $A B: A C:$ DC : DE. \quad v. 14.
Q. E. b.
[For Alternative Proof see Page 320.]

EXERCISES.

1. If onc of the parallel sides of a trapezium is double the other, shew that the diagonals intersect onc another at a point of trisection.
2. In the side $A C$ of a triangle $A B C$ any point D is taken: shew that if $A D, D C, A B, B C$ are bisected in E, F, G, H respectively, then $E G$ is equal to $H F$.
3. $A B$ and $C D$ are two parallel straight lines; E is the middle point of $C D$; $A C$ and $B E$ meet at F, and $A E$ and $B D$ meet at G : shew that FG is parallel to $A B$.
4. $A B C D E$ is a regular pentagon, and $A D$ and $B E$ intersect in F : shew that $A F: A E:: A E: A D$.
5. In the figure of 1.43 shew that $E H$ and $G F$ are parallel, and that FH and GE will mcet on CA produced.
6. Chords $A B$ and $C D$ of a circle are produced towards B and D respectively to meet in the point E, and through E, the line $E F$ is drawn parallel to $A D$ to meet $C B$ produced in F. Prove that $E F$ is a mean proportional between $F B$ and $F C$.

Proposition :. Theorem.

If the sides of turo trianyles, tuken in order about each of their angles, be proportionals, the triangles shatl be equiangular to ome another, havin! those angles equal which are opposite to the homologous sides.

Let the $\triangle^{*} A B C$, DEF have their sides proportionals, so that

$$
\begin{aligned}
& A B: B C:: D E: E F, \\
& B C: C A:: E F: F D,
\end{aligned}
$$

and consequently, ex cequali,

$$
A B: C A:: D E: F D .
$$

Then shall the triangles be equiangular.
At E in $F E$ make the $\angle F E G$ equal to the $\angle A B C$:
sud at F in $E F$ make the $\angle E F G$ equal to the $-B C A ;$. $\because: 3$. then the remaining $-E G F=$ the remaining $-B A C$. r. 32. \therefore the $\triangle G E F$ is equiangular to the $\triangle A B C$;
$\therefore \mathrm{GE}: E F:: A B: B C$.
But $A B: B C$:: $D E: E F$;
$\therefore \mathrm{GE}: \mathrm{EF}:: \mathrm{DE}: \mathrm{EF}$;
vi. 4.

IIyp.
v. 1.
$\therefore \mathrm{GE}=\mathrm{DE}$.
Similarly GF $=$ DF .
Then in the triangles GEF, DEF
because $\left\{\begin{aligned} & G E=D E, \\ & G F=D F, \\ & \text { and } E F \text { is comnon } ;\end{aligned}\right.$
\therefore the $\angle G E F=$ the $\angle D E F$,
I. 8 .
and the $\angle G F E=$ the $\angle D F E$.
and the $-E G F=$ the $-E D F$.
But the $-\mathrm{GEF}=$ the $\mathrm{ABC} ; \quad$ Const ${ }^{\circ}$.
\therefore the $-D E F=$ the $-A B C$.
Similarly, the $\angle E F D=$ the $\angle B C A$,
\therefore the remaining $-F D E=$ the remaining $-C A B ;$, $: 82$. that is, the $\triangle D E F$ is equiangular to the $\triangle A B C$.
(\&. $)$.

Proposition 6. Theorbm.
If ture triangles latere one angle of the ome equinl to oue angle of the other, and the sides rebout the equenl angles proportioneds, the triamyles sluell be similet:

In the $\triangle{ }^{*} A B C, D E F$ let the $-B A C=$ the $-E D F$, and let

BA : AC :: ED : DF.
Then shall the $\triangle{ }^{s} A B C, D E F$ he similan.
At D in $F D$ make the - FDG equal to one of the \angle "EDF, BAC: at F in $D F$ make the $-D F G$ equal to the $-A C B ; 1.23$.
\therefore the remaining $-F G D=$ the remaining - $A B C$. i. $3:$. Then the $\triangle A B C$ is equiangular to the $\triangle D G F$; $\therefore B A: A C:: G D: D F$.
vi. 4.

But BA : AC :: ED : DF;
$\therefore \mathrm{GD}: \mathrm{DF}:: \mathrm{ED}: \mathrm{DF}$,
$\therefore G D=E D$.
Then in the \triangle^{s} GDF, EDF, Ber:unse $\left\{\begin{array}{c}\text { GD }=E D, \\ \text { and } D F \text { is common; } \\ \text { and the }-G D F=\text { the }-E D F ; \quad \text { Constr: }\end{array}\right.$ \therefore the \triangle^{*} GDF, EDF are equal in all respects, I. 4. so that the $\triangle E D F$ is equiangular to the $\triangle G D F$; but the \triangle GDF is equiangular to the $\triangle B A C$; Constr.
\therefore the $\triangle E D F$ is equiangular to the $\triangle B A C$;
\therefore their sides about the equal angles are proportionats, vi, f. that is, the $\triangle{ }^{*} A B C, D E F$ are similar.
(2. E. 1).
11. 2:

Nece 1. From lefinition 2 it is seen that tuo eonditions are neeessary for similarity of rectilineal figures, namely (1) the figures must be equiangular, and (2) the sides about the equal angles must be proportionals. In the case of triongles we learn from 1'rops. 4 and 5 that each of these conditions follows from the other: this how. ever is not necessarily the ease with rectilineal figures of more than three sides.

Noms 2. We have riven Euclid's demonstrations of Propositions 4, 5, 6 ; but these propositions also admit of easy proof by the method of superposition.

As an illustration, we will apply this method to Proposition \&

Proposition 4. [Althinative Proofe]

If two triangles be equiangular to one another, the sider about the rqual angles shall be proportionals, those sides which are opposite to equal angles beiny homologous.

Let the $\triangle A B C$ be equiangular to the $\triangle D E F$, having the $\angle A B C$ equal to the $\angle D E F$, the $\angle B C A$ equal to the $\angle E F D$, and consequently the $\angle C A B$ equal to the $\angle F D E$:

$$
\text { I. } 32 .
$$

then shall the sides about these equal angles be proportionals.
Apply the $\triangle A B C$ to the $\triangle D E F$, so that B falls on E and $B A$ along ED:
then $B C$ will fall along $E F$, since the $\angle A B C=$ the $\angle D E F$. Hy/p.
Let G and H be the points in $E D$ and $E F$, on which A and C fall. Join GH.
Then becanse the $\angle E G H=$ the $\angle E D F$,
$\therefore \mathrm{GH}$ is pard to DF:
\therefore DG : GE :: FH : HE;
\therefore compomendo, DE:GE:: FE: HE,
$\begin{array}{lll}\therefore, \text { componenclo, DE:GE: } \mathrm{DE}: \mathrm{FE}: \mathrm{HE} & \text { v. } 13 . \\ \therefore \text { alternately, } & \mathrm{DE}: \mathrm{FE}: \mathrm{GE}: \mathrm{HE} & \text { r. } 11 .\end{array}$ that is, $D E: E F:: A B: B C$.
Similarly by applying the $\triangle A B C$ to the $\triangle D E F$, so that the point C may fall on F, it may be proved that
듣: FD :: BC: CA.
\therefore ex wquali, $\mathrm{DE}: \mathrm{DF}:: \mathrm{AB}: \mathrm{AC}$.

Proposition i. Theorma.

 angle of the other anel the sides about ome sther ariyle ine erech moprortionenl, so the the silles opposite to the equal arigles are homologons, then the thied anyles wre rither equele or sulp. plementary; ane in the former case the trienogles are similat.

Let $A B C, D E F$ be two triangles having the $-A B C$ crqual to the $-D E F$, and the sides abont the angles at A and D proportional, so that

$$
\mathrm{BA}: \mathrm{AC}:: \mathrm{ED}: \mathrm{DF} \text {; }
$$

then shall the $-{ }^{s}$ ACB, DFE be either equal or supplementary, and in the former case the triangles shall be similar.

$$
\begin{aligned}
& \text { If the }-B A C \ldots \text { the }-E D F \text {, } \\
& \text { then the }-B C A=\text { the }-E F D ;
\end{aligned}
$$

I. $: 8$.
and the \triangle^{8} are equiangular and therefore similar. Vi. I. But if the - BAC is not equal to the $\angle E D F$, one of them must be the greater.

Let the $\angle E D F$ he greater than the - BAC.
It D in $E D$ make the $-E D F^{\prime}$ equal to the - BAC. 1. $\because: \%$
Then the $\triangle{ }^{*} B A C, E D F$ are equiangular, C'onstr.
$\therefore B A: A C:: E D: D F^{\prime}$;
lut BA : AC :: ED : DF;
$\therefore E D: D F:: E D: D F^{\prime}$,
\therefore the $_D F F^{\prime}=$ the $\angle D F^{\prime} F$.
צ. 1.
v. 11 .
hat the point
(2. E. D. A and C fall.

Hyp.
v. 13.
onditions re (1) the figures angles must om Trops. 4 her: this howof more than
f lropositions by the method
position 4.
sides about the we opposite to , and conseI. 32. ortionals. on E and $B A$ DEF. I! $/$.
-

Corollaries to Proposition 7.

Three cases of this theorem deserve special attention.
It has been proved that if the angles ACB, DFE are not supplementary, they are equal:
and we know that of angles which are supplementary and unequal, one must be acute and the other obtuse.

Hence, in addition to the hypothesis of this theorem,
(i) If the angles ACB, DFE, opposite to the two homologous sides $A B$, DE are both atute, both obtuse; or if one of them is a right angle,
it follows that these angles are equal;
and therefore the triangles are similar.
(ii) If the two given angles are right angles or obtuse angles, it follows that the angles ACB, DFE must be both acute, and therefore equal, by (i):
so that the triangles are similar.
(iii) If in each triangle the side opposite the given angle is not less than the other given side; that is, if $A C$ and $D F$ are noi less than $A B$ and $D E$ respectively, then
the angles $A C B, D F E$ cannot be greater than the angles $A B C, D E F$, respectively;
therefore the angles $A C B, D F E$, are both acute;
hence, as ahove, they are erfual;
and the triangles $A B C, D E F$ similar.

f:XERCISES.

on Piopositions 1 in 7.

1. Shew that the diagonals of a traperium cut one another in the same ratio.
2. If three straight lines drawn from a point cut two parallel straight lines in A, B, C and P, Q, R respectively, prove thet
$A B: B C:: P Q: Q R$.
3. From a point O, a tangent $O P$ is drawn to a given eirele, and OQR is drawn eutting it in \mathbf{Q} and R ; shew that

OQ : OP :: OP : OR.
4. If two triangles are on equal bases and betucen the same paraltels, any straight line parallel to their bases will cut off equal areas from the two triangles.
5. If two straight lines PQ, XY intersect in a point O , so that $\mathrm{PO}: \mathrm{OX}: \mathrm{YO}: \mathbf{O Q}$, prove that $\mathrm{P}, \mathrm{X}, \mathrm{Q}, \mathrm{Y}$ are concyclic.
6. On the same base and on the same side of it two equal triangles $A C B, A D B$ are described; $A C$ and $B D$ interseet in O, and through O lines parahel to DA and CB are drawn meeting the base in E and F. Shew that $A E=B F$.
7. $B D, C D$ are perpendicular to the sides $A B, A C$ of a triangle $A B C$, and $C E$ is drawn perpendicular to $A D$, meeting $A B$ in E : shew that the triangles $A B C, A C E$ are similar.
8. $A C$ and $B D$ are drawn perpendieular to a given straight line $C D$ from two given points A and $B ; A D$ and $B C$ intersect in E, and $E F$ is perpendicular to $C D$: shew that $A F$ and $B F$ make equal angles with CD.
9. $A B C D$ is a parallelogram; \mathbf{P} and \mathbf{Q} are points in a straight line parallel to $A B$; $P A$ and $Q B$ meet at R, and $P D$ and $Q C$ meet at S : shew that RS is parallel to AD.
10. In the sides $A B, A C$ of a triangle $A B C$ two points D, E are taken such that $B D$ is equal to $C E$; if $D E, B C$ produeed meet at F, shew that $A B: A C$:: $E F$: $D F$.
11. Find a point the perpendiculars from whieh on the sides of a given triangle shall be in a given ratio.

Thoposithon s. Theorbm.

 firom the right ample to the happolenuse, the triangles on euch side of it are similar to the whole triumgle aml to one another.

let AEC be a triangle right-ingled at A, and let AD be 1ल尸, to EC:
then shatl the \triangle * $D B A, D A C$ he simila to the $\triangle A B C$ and to one another.

In the $\triangle^{8} D B A, A B C$,
the $\angle E D A=$ the $\angle B A C$, beinig rt. angles,
and the $-A B C$ is common to both;
\therefore the remaining $\angle B A D=$ the remaining $\angle B C A$, I. 32 . that is, the $\triangle^{8} D B A, A B C$ a:e equiangular;
\therefore they are similar.
In the same way it may be proved that the \triangle^{s} DAC, $A B C$ are similat.

Wence the \triangle^{*} DBA, DAC, being equiangulan to the same $\triangle A B C$, are equiangular to one another;
\therefore they are similar:
vi. 4.
Q.E.D.

Conohbarr. Because the $\triangle^{s} B D A, A D C$ are similar,
\therefore BD : DA :: DA : DC;
and heramse the $\triangle^{s} C B A, A B D$ are similar,
$\therefore \mathrm{CB}: \mathrm{BA}:: \mathrm{BA}: \mathrm{BD}$;
and because the $\triangle{ }^{*} B C A, A C D$ are similar, $\therefore B C: C A:: C A: C D$.

EXERCISES.

1. Jrove that the hypotenuse is to one side as the second side is to the perpendicular.
2. Shen that the ratins of a circle is a mean proportional betneen the segments of any tangent betreen its point of contact and a pair or parallel tangents.

Definitios. A less magnitude is said to be a submultiple of a greater, when the less is contained an errect
ro draters les on eurb we another.
lot $A D$ le $\triangle A B C$ and es,

3CA, I. 32. tr;
vi. 4. DAC,
o the same
vi. 4.
Q. E. I. similar,
number of times in the sereater.
[Book i. Wef. : …]

Proposition 9. Probley.

From "t aicen straight line to cut off atuy required submulliple.

Let $A B$ le the given straight line.
Tt is reguired to cut off a certain submultiple from AB.
From A draw a straight line $A G$ of indefinite length making my angle with AB.

In $A G$ take any point 5 ; and, by cutting off suceessive parts rach equal to $A D$, make $A E$ to contain $A D$ as many times as $A B$ contains the required submultiple.

Join EB.

Through D draw DF pir to EB, meeting $A B$ in F. Then shall $A F$ be the required submmatiple.

Because DF is part to $E B$, a side of the $\triangle A E B$, $\therefore B F: F A:: E D: D A ;$

ソT. ${ }^{-}$.
\therefore, componenulo, BA: AF :: EA : AD.
v. $1: 3$.

But $A E$ contains $A D$ the required number of times; Constr.
$\therefore A B$ contains $A F$ the required number of times;
that is, $A F$ is the required submultiple. Q.E.F.

EXERCISES.

1. Divide a straight line into five equal parts.
2. Give a feometrical construction for cuthing off two-sevenths of a given straight line.

Phoposition 10. Pbobem.
T'o divirle a struight lina similarly to at gitene divided straight lime.

Tat $A B$ be the given straight line to be divided, and $A C$ the given straight line divided at the points D and E.

It is required to divide $A B$ similarly to $A C$.
Lat $A B, A C$ be placed so as to form any angle. doin CB.
Through D draw DF par to CB,

1. 31. and through E draw EG par' to $C B$, and through D draw DHK par to AB.
Then fiB shatl be divided at F and G similanly to $A C$.
For liy construction each of the figs. FH, HB is a parm;
$\therefore D H=F G$, and $H K=G B$. I. 3.
Now since $H E$ is par to $K C$, a side of the $\triangle D K C$,
$\therefore K H: H D:: C E: E D$.
vi. 2.

But KH = BG, and HD=GF;
$\therefore B G: G F:: C E: E D$.
v. 1.

Again, berause $F D$ is par to $G E$, a side of the $\triangle A G E$, \therefore GF : FA :: ED : DA,
VI. 2. and it has been shewn that
$B G: G F: C E: E D$,
\therefore, ex rquali, BG: FA :: CE : DA :
v. 14.
$\therefore A B$ is divided similally to $A C$.
Q.E.F.

ExERCISE.

Divide a straiglt line internally and externally in a giren ratio. Is this always possible?

Proposition 11 . Pionaem.

Let A, B be two given straight lines.
It is required to find is thind proportional to A and B.
'lake two st. lines DL, DK of indefinite length, containing any ingle:
from DL cut off DG equal to A, and $G E$ equal to B; and from DK cut off DH equal to B.
I. .3. Join GH.
'Through E draw EF pan' to GH, meeting DK in F. i. $: 81$.
Then shall HF be a third proportional to A and B.
Because GH is pan' to EF, a side of the $\triangle D E F$;

$$
\therefore D G: G E:: D H: H F \text { vi. } .
$$

But DG A; and GE, DH each $=\mathrm{B}$; Coustr. $\therefore \mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{HF}$;
that is, HF is a third proportional to \mathbf{A} ind \mathbf{B}. i. E. F.

BXERCISES.

1. $A B$ is a diameter of a circle, and through A any straight line is drawn to cut the circumference in C and the tangent at B in D : shew that $A C$ is a third proportional to $A D$ and $A B$.
2. $A B C$ is an isosceles triangle having earh of the angles at the base double of the vertical angle $B A C$; the biscetor of the angle $B C A$ meets $A B$ at D. Shew that $A B, B C, B D$ are three proportionals.
3. Two circles intersect at A and B; and at A tangents are drawn, one to each circle, to meet the circumferences at C and D : slew that if CB, $B D$ are joined, $B D$ is on third proportional to $O B$, BA.

Phomastion 1:.. Probleas.

Let A, B, C be the thee given straight lines. It is required to find a fourth proportional to A, B, C.
'lake two st might lines DL, DK containing any angle:
from DL cut off DG equal to $A, G E$ equal to B; and from DK cut off' DH equal to C . 1. ?.

> Join GH.

Through E draw EF par' to GH.

1. :31. Then shall HF be a fourth propertional to A, B, C.
liecause $G H$ is par' to $E F$, a side of the $\triangle D E F$:

$$
\therefore D G: G E:: D H: H F .
$$

But $D G=A, G E B$, mind $D H$ C;
iI. 2.
$\therefore A: B:=C: H F$;
that, is, $H F$ is a fourth proportional to A, B, C.
Q.E.F.

EXERCISES.

1. If from D , one of the angular points of a parallelogram $A B C D$, a straight line is drawn mecting $A B$ at E and $C B$ at F; shew that CF is a fourth proportional to $E A, A D$, and $A B$.
2. In a triangle $A B C$ the biseetor of the vertical angle $B A C$ meets the base at D and the eirenmference of the eircumseribed eircle at E : shew that $B A, A D, E A, A C$ are four proportionals.
3. From a point P tangents $P Q, P R$ are drawn to a eirele whose centre is C , and QT is drawn perpendicular to RC prohnend shew that $Q T$ is a fourth proportional to $P R, R C$, and $R T$.

yhl lines.
A, B, C.
: Anglo:
, B;
I. \because

1. : 11 ,

B, C.
EF:
VI. 2. ('onsti.
Q.E. F。
rallelogram at F; shew
 limes.

Lat $A B, B C$ be the two given stmathe lines. Tt is reguired to find at mean propertional hetween them.

Place $A B, B C$ in in straight line, and on $A C$ describe the semicircer $A D C$.

From E draw $B D$ at it. ingles to $A C$. r. 11. Then shatl BD be in mean proportional between $A B$ and $B C$. Join AD, DC.
 and hecaluse in the rirhtian ferl $\triangle A D C, D B$ is drawn from the rt, angle perp. in the liy otemuse,
\therefore the A ABC DBC are similar; VI. $\therefore 20: \triangle D: B D: B C$;
that is, $B D$ is a meme proportional between $A B$ and $B C$.
C. W. F.

EXERCRSN:

1. If from one angle A of a parallelogram a straight line be drawn entting the diagonal in E and the sides in P, Q, shew that $A E$ is a mean proportional between PE. and EQ.
2. A, B, C are three points in order in a straight line: find a point P in the straisht line so that $P B$ may be a mean proportional between PA and PC.
3. The diameter $A B$ of a semicircle is divided at any point C, and $C D$ is drawn at right angles to $A B$ meeting the eircunference in D; $D O$ is draw to the centre, and $C E$ is perpendicnlar to $O D$: shew that $D E$ is a third proportional to $A O$ and $D C$.
4. $A C$ is the diameter of a semicircle on which a point B is taken so that $B C$ is equal to the radius: shew that $A B$ is a mean proportional between $B C$ and the sum of $B C, C A$.
5. A is any point in a semicircle on $B C$ as diameter; from D any point in $B C$ a perpendicular is drawn mecting $A B, A C$, and the cireumference in E, G, F respectively; shew that $D G$ is a third proportional to $D E$ and $D F$.
6. Two circles touch externally, and a common tangent touches them at A, and B : prove that $A B$ is a mean proportional between the diameters of the circles.
[See Ex. 21, p. 219.]
7. If a straight line be divided in two given points, determine a third point such that its distanees from the extremities may be proportional to its distances from the given points.
8. $A B$ is a straight line divided at C and D so that $A B, A C, A D$ arc in continued proportion; from A a line $A E$ is drawn in any direction and equal to $A C$; shew that $B C$ and $C D$ subtend equal angles at E.
9. In a given triangle draw a straight line parallel to one of the sides, so that it may be a mean proportional between the segments of the base.
10. On the radius OA of a quadrant OAB, a semicircle ODA is described, and at A a tangent $A E$ is drawn; from O any line ODFE is drawn meeting the circumferences in D and F and the tangent in E : if DG is drawn perpendicular to $O A$, shew that $O E, O F, O D$, and $O G$ are in continuel proportion.
11. From any point A, in the ciremiference of the circle $A B E$, as entre, and with any radius, a circle BDC is described cutting the former circle in B and C; from A any line $A F E$ is drawn meeting the chord $B C$ in F, and the circumferences $B D C, A B E$ in D, E respectively: shew that $A D$ is a mean propostional between $A F$ and $A E$.

Definition. Two figures are said to have their sides about two of their angles reciprocally proportional, when is side of the first is to a side of the second as the remaining side of the second is to the remaining side of the first.
[Book vi. Def. 3.]
B is taken an proporrom D any nd the cirird propor.
ent touches etween the 21, p. 219.]
determine es may be
$B, A C, A D$ any direcugles at E.
one of the egments of
le ODA is c ODFE is gent in E : , and OG
le $A B E$, as utting the leeting the E respecnd $A E$.
eir sides al, when maining rst.
Def. 3.]

Proposition 14. Theorem.

P'arallelograms which are equal in area, and which have one augle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional.

Conversely, paralleloyrams which have one angle of the one equal to one angle of the other, and the sides about these angles reciprocally proportional, are equal in area.

Let the pariny $A B, B C$ be of equal area, and lave the $\therefore D B F$ equal to the $-G B E$:
then shall the sides about these equal angles be reciprocally proportional,

$$
\text { that is, } D B: B E:: G B: B F \text {. }
$$

Place the par ${ }^{\text {ma }}$ so that $D B, B E$ may be in the same straight line;
$\therefore F B, B G$ are also in one straight line. I. 14.
Complete the par ${ }^{\text {m }}$ FE.
Then because the par ${ }^{m} A B=$ the par ${ }^{m} B C, \quad I I y /$. and $F E$ is another par ${ }^{n 1}$,
\therefore the par ${ }^{m} A B$: the par ${ }^{m} F E$:: the par ${ }^{\prime m} B C$: the par ${ }^{m} F E$; but the par ${ }^{m} A B$: the par ${ }^{m} F E:: D B: B E, \quad$ vi. 1. and the $\operatorname{par}^{m} B C$: the par ${ }^{m} F E:: G B: B F$,
$\therefore \mathrm{DB}: \mathrm{BE}:: \mathrm{GB}: \mathrm{BF}$.
V. 1.

Conversely, let the $\angle D B F$ be equal to the $-G B E$, and let DB: BE :: GB : BF.
Then shall the par ${ }^{m} A B$ be equal in area to the par ${ }^{\prime 2 m} B C$.
For, with the same construction as before,
by hypothesis DB:BE::GB:BF;
but DB : $B E$:: the par ${ }^{\text {mi }} A B$: the par ${ }^{\text {m }} F E$,
Vi. 1.
and $G B: B F$:: the par ${ }^{m} B C$: the par ${ }^{m} F E$,
\therefore the par ${ }^{m} A B$: the par ${ }^{m} F E:$ the par ${ }^{m} B C$: the par ${ }^{m} F E ; v .1$.
\therefore the par ${ }^{m} A B=$ the par ${ }^{m 2} B C$.

Phoposition 15. Theorem.

Trianyles which are equal in aren, aret which hate one ample of the one equal to one amyle of the other, hate thrissides about the equal angles reciprorally proportional:

Conversely, tricugles wekich have one angle of the one equal to one angles of the other, centh the sides alout these umiles reciprocelly proportionut, are equab in area.

Let the $\triangle{ }^{\circ} A B C, A D E$ be of equal area, and have the $\angle C A B$ equal to the $\angle E A D$:
then shall the sides of the triangles about these angles be reciprocally proportional, that is, $C A: A D:: E A: A B$.
Place the \triangle^{8} so that $C A$ and $A D$ may be in the same st. line; $\therefore B A, A E$ are also in one st. line. Join BD.
Then because the $\triangle \mathrm{CAB}=$ the $\triangle \mathrm{EAD}, \quad I_{y / 2}$. and $A B D$ is another triangle;
\therefore the $\triangle C A B$: the $\triangle A B D$:: the $\triangle E A D$: the $\triangle A B D ;$
lut the $\triangle C A B$: the $\triangle A B D:: C A: A D$,
II. 1. and the $\triangle E A D$: the $\triangle A B D:: E A: A B$, $\therefore C A: A D:: E A: A B$.
r. 1.

Conversely, let the - CAB be equal to the $-E A D$, and let $C A: A D:: E A: A B$.
Then shall the $\triangle C A B=\triangle E A D$.
For, with the same construction as before,
ly hypothesis CA : AD :: EA : AB ;
but $C A: A D$:: the $\triangle C A B$: the $\triangle A B D$, v. 1.
and $E A: A B$: the $\triangle E A D$: the $\triangle A B D$,
\therefore the $\triangle C A B$: the $\triangle A B D$:: the $\triangle E A D$: the $\triangle A B D ; v .1$. \therefore the $\triangle C A B=$ the $\triangle E A D$.
Q. 3. 1).

J.AERCISN:

on linopestrions 14 and 1%.

1. Parallelograms which are equal in area aml which bure their sides reciprocally moportional, hate their anyles respectirely equal.
2. 'riangles which are equal in area, anel which have the sides "bout a pairof angles reciprocally proportional, hate those ongles e'gual or supplementory.
3. $A C, B D$ are the diagonals of a trapezium which intersect in O; if the side $A B$ is paraliel to $C D$, use erop. is to prove that the triangle $A O D$ is equal to the triangle $B O C$.
4. From the extremities A, B of the hypotennse of a rightangled triangle $A B C$ lines $A E, B D$ are drawn perpendieular to $A B$, and menting $B C$ and $A C$ produced in E and D respectively: employ Prop. 15 to shew that the triangles $A B C, E C D$ are equal in area.
\%. On $A B, A C$, two sides of any triangle, squares are deseribed externally to the triangle. It the squares are $A B D E, A C F G$, shew that the triangles DAG, FAE are equal in area.
5. $A B C D$ is a parallelogram; from A and C any two parallel straight lines are drawn meeting $D C$ and $A B$ in E and F respectively; $E G$, which is parallel to the diagonal $A C$, meets $A D$ in G : shew that the triangles DAF, GAB are equal in area.
6. Deseribe an isosceles triangle equal in area to a given triangle and having its vert-ual angle egual to one of the augles of the given triangle.
7. Prove that the equilateral triangle deseribed on the hypotenuse of a right-angled triangle is equal to the sum of the equilateral triangles described on the sides containing the right angle.
[Let $A B C$ be the triangle right-angled at C; and let $B X C, C Y A$, $A Z B$ be the equilateral triangles. Draw $C D$ perpendicular to $A B$; and join DZ. Then shew liy Prop. 15 that the $\triangle A Y C=$ the $\triangle D A Z$; and similarly that the $\triangle B X C=$ the $\triangle B D Z$.]

Proposition 16. Theorem.

If four straight lines are pmortional, the rectangle contained by the extremes is equal to the rectumyle contained by the meres:

Conversely, if the rectangle contained by the extremes is equal to the rectangle contained by the means, the four. straight lines are proportional.

Let the st. lines $A B, C D, E F, G H$ be proportional, so that $A B: C D:: E F: G H$.
Then shall the rect. $A B, G H=$ the rect. $C D, E F$.
From A draw $A K$ perp. to $A B$, and equal to $G H$. I. 11,3 .
From C draw $C L$ perv. to $C D$, and equal to $E F$.
Complete the par ${ }^{\text {ms }} \mathrm{KB}$, LD.
Then because $A B: C D:: E F: G H$;
and $E F=C L$, and $G H=A K$;
II $1 / \|^{\prime}$.
$\therefore A B: C D:: C L: A K$;
that is, the sides about equal angles of par ${ }^{\text {my }} \mathrm{KB}$, LD are reciprocally proportional;

$$
\therefore K B=L D .
$$

But KB is the rect. AB, GH, for $\mathrm{AK}=\mathrm{GH}$, Constr. and $L D$ is the rect. $C D, E F$, for $C L=E F$;
\therefore the rect. $A B, G H=$ the rect. $C D, E F$.
Conversely, let the rect. $A B, G H=$ the rect. $C D, E F$:
then shall $A B: C D:: E F: G H$.
For, with the same construction as before,
because the rect. $A B, G H=$ the rect. $C D, E F$; and the rect. $A B, G H=K B$, for $G H=A K$, and the rect. $C D, E F=L D$, for $E F=C L$; $\therefore K B=L D$;
that is, the parims $K B$, LD, which have the angle at A equal to the angle at C, are equal in area;
\therefore the sides about the equal angles are reciprocally proportional:

$$
\begin{aligned}
& \text { that is, } A B: C D:: C L: A K ; \\
& \therefore A B: C D: E F: G H .
\end{aligned}
$$

Q.E.1).

Proposition 17. Theorem.

If three straight lines are proportional the rectungle contained by the extremes is equal to the square on the mean.

Conversely, if the rectangle contained by the extremes is equal to the square on the mean, the theree straight limes are pioportional.

Lert the three st. lines A, B, C be proportional, so that $A: B:: B: C$.
Then shall the rect. A, C be equal to the sq. on B. Take D equal to B.
Then because $A: B:: B: C$, and $D=B$; $\therefore \mathrm{A}: \mathrm{B}:: \mathrm{D}: \mathrm{C}$;
\therefore the rect. $A, C=$ the rect. $B, D ; \quad$ Vi. 16 ,
but the rect. $B, D=$ the sq. on B, for $D=B$;
\therefore the rect. $A, C=$ the sq. on B.
Conversely, let the rect. $A, C=$ the sq. on B :
then shall $A: B:: B: C$.
For, with the same construction as lefore,
because the rect. $A, C=$ the sq. on B,

IIyp.
and the sq. on $B=$ the rect. $B, D, f o r D=B$;
\therefore the rect. $A, C=$ the rect. B, D,

$$
\begin{array}{r}
\therefore \mathrm{A}: \mathrm{B}:: \mathrm{D}: \mathrm{C}, \\
\text { thitt is, } \mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C} .
\end{array}
$$

Iv. 16.
Q. F. D.
H. E.

EXEHCISES.

on Phomostrions 16 ANu 17 .

1. Apply Iroposition 16 to prove that if two chomes of a circle intersect, the rectangle contained by the segments of the one is eqnal to the rectangle contained by the segnents of the other.
2. Prove that the rectangle contained by the sides of a right. angled trinngle is egual to the reetangle contained by the hypotenuso and the perpendicular on it fiom the right angle.
3. Onl a given straight line construct a rectangle equal to a given rectangle.
4. $A B C D$ is a parallelogram ; from B any struight line is drawn cutting the diagonal $A C$ at F, the side $D C$ at G, and tho side $A D$ produced at $E:$ shew that the rectangle $E F$, $F G$ is crual to the suluat on EF.
\%. On a given straght line as base deseribe an isoseeles triangle cgual to a given triangle.
5. $A B$ is a diameter of a circle, ind any line $A C D$ cuts the circle in C and the tangent at B in D; shew by wops. 17 that the rectingle $A C, A D$ is constant.
-. The exterior ancrle A of a triangle ABC is bisected by a straighb lime which mests the bise in D and the ciremuscribed circle in E : shes then the reetample $B A, A C$ is equal to the rectangle $E A, A D$.
6. If twn thodis $A B, A C$ drawn from any point A in the circmufere, of the eirele $A B C$ be produced to meet the tandent at the other in: nity of the dinneter throngh A in D and E, shew that the ta iargle AED is similar to the triangle ABC.
7. At the extremities of a diameter of a circlo tangents are drawn; these nect the tangent at a point P in Q and R : shew that the rectangle QP, PR is constant for all positions of P.
8. A is the rertex of an isosceles triangle $A B C$ inscribed in a circle, and $A D E$ is a straight line which euts the base in D and the cirele in E; shew that the rectangle $E A, A D$ is equal to the seruare on AB.
9. Two cireles tonch one another externally in A; a straight line touches the eircles at B and C, and is produced to meet the straigha liue joining their centres at S : shew that tho rectangle $S B, S C$ is equal to the square on $S A$.
10. Diviae a trimgle into two equal parts by atraight line at right amgles to one of the sides.

Drenituon. Two similar rectilineal tigures are said to lee similarly situated with respect to two of their sides when these sides are homologens. [lionk vi. Def. 5.]

Phomostmes 18. Phoblem.
On a given streight line to deseribe a rectilineal figure similar and similarly situwied to a giten rectilineal diture.

Let $A B$ be the given st. line, and $C D E F$ the given rectil. figure: first suppose CDEF to be a quadrilateral.

It is required to rescribe on the st. line $A B$, a rectil. figure similar and similarly situated to CDEF.

Join DF.

It A in $B A$ make the - BAG equal to the $-D C F$, 1. 23 . and at B in $A B$ make the $\angle A B G$ equal to the $\triangle C D F$;
\therefore the remaining $\angle A G B=$ the remaning $\angle C F D ;$ I. 32 . and the $\triangle A G B$ is equiangular to the $\triangle C F D$.
Sgain at B in GB make the $\angle G B H$ equal to the $\angle F D E$, and at G in $B G$ make the $-B G H$ equal to the $\angle D F E ;$ r. 2. .
\therefore the remaining $-B H G=$ the remaining $\angle D E F ;$ ı. $3 \because$. mod the $\triangle B H G$ is equiangular to the $\triangle D E F$.

Then shall ABHG be the rerpuired figure.
(i) I'o prove that the quadrilatemals are equiangular.

Because the $-A G B=$ the $-C F D$,
and the $-\mathrm{BGH}=$ the - DFE; Constr:
\therefore the whole $-A G H=$ the whole - CFE. $A י \because$.
Similarly the $-A B H$ the $\angle C D E$;
and the angles at A and H are respectively agnal to the amgles at C and E;
\therefore the fisf. ABHG is repuimurular to the fig. CDEF.

(ii) To prove that the quadrilaterals have the sides about their equal amgles proportional.

Because the $\triangle^{8} B A G$, DCF are equiamgular;
$\therefore A G: G B: C F: F D . \quad$ Vi. 4.
And becanse the \triangle^{4} BGH, DFE are equiangulat:
$\therefore B G: G H:: D F: F E$,
\therefore, proquali, $\mathrm{AG}: \mathrm{GH}:$: $\mathrm{CF}: \mathrm{FE}$.
v. 14.

Similarly it may be shewn that
$A B: B H:: C D: D E$.
Also BA : AG :: DC : CF, vi. 4.
ind $\mathrm{GH}: \mathrm{HB}:$: FE : ED ;
\therefore the tigs. ABHG, CDEF have their sides about the erpual imgles proportional ;
$\therefore A B H G$ is similar to CDEF. Def. 2.
Tn like mammer the process of construction may be extemed to a figure of tive or more sides.
Q. F. F.

Definition. When three magnitudes are proportionals the first is said to have to the third the duplicate ratio of that which it has to the second.
[Book v. Def. 13.]

Proposition 19. 'Theorem.

Similar wiangles are to mere emother in the dnplacote reetio ") thrir homologouss sides.

Let $A B C, D E F$ be similar triangles, having the $\angle A B C$ equal to the $\angle D E F$, and let $B C$ and $E F$ be homologons sides: then shall the $\triangle A B C$ be to the $\triangle D E F$ in the duplicate ratio of $B C$ to $E F$.

To BC and EF take a third proportional BG, so that $B C: E F: E F: B G$.
vi. 1 i. Join AG.

Then because the $\triangle^{s} A B C$, DEF are similar, II!pl $\therefore \mathrm{AB}: \mathrm{BC}:: \mathrm{DE}: \mathrm{EF}$;
\therefore, allernately, $\mathrm{AB}: \mathrm{DE}:: \mathrm{BC}: \mathrm{EF} ; \quad$ v. 11 .
but $B C: E F:: E F: B G ;$ Constı:
$\therefore A B: D E: E F: B G ; \quad$ v. 1 .
that is, the sides of the $\triangle^{*} A B G, D E F$ about the equal
angles at B and E are reciprocally proportional;
\therefore the $\triangle A B G=$ the $\triangle D E F$.
Vi. 15.

Again, because BC : EF :: EF : BG, Constr.
$\therefore B C$: BG in the duplicate ratio of BC to EF. Def.
But the $\triangle A B C$: the $\triangle A B G:: B C: B G$, I. 1.
\therefore the $\triangle A B C$: the $\triangle A B G$ in the duplicate ratio of $B C$ to $E F$:
v. 1.
and the $\triangle A B G=$ the $\triangle D E F ; \quad$ Proved.
\therefore the $\triangle A B C$: the $\triangle D E F$ in the duplicate ratio of $B C: E F$.
Q.E.B.

Promsmone :0. Thionem.

Lat ABCDE, FGHKL be similar polyenes, amd let $A B$ be the side homologous to FG;
then (i) the polygons maty be divided into the same numbere of similar to: 1 one
(ii) these triangles shall have each to wath the same matio that the polyrons have;
(iii) the polygon $A B C D E$ shall be to the polygron FGHKL in the duplicate ratio of $A B$ to $F G$.
. Win EB, EC, LG, LH.
(i) 'Then beramse the polygon ABCDE is simitar to the poly yon FGHKL,
\therefore the - EAB the - LFG, and $E A: A B:: L F: F G$;
\therefore the $\triangle E A B$ is similar to the $\triangle L F G$; li. 6 . \therefore the $-A B E$ the $-F G L$.
But, because the polywons are similar,
\therefore the $-A B C$ the $-F G H$,
… Def. $こ$.
\therefore the remaining - EBC tho remaining - LGH.
And beciuse the $\triangle{ }^{*} A B E$, $F G L$ ine similat, Proneal.
$\therefore \mathrm{EB}: \mathrm{BA}:: \mathrm{LG}: \mathrm{GF}$;
and beatuse the polywons are similar,
\therefore erereruali, EB: IC::LG GH ,
 proportionatis:
\therefore ther $\triangle E B C$ is similar to the $\triangle L G H$. II. (i.

In the same wity it may be proved that the $\therefore E C D$ is simila to the \triangle LHK.
sereme Intemlu's che (1) a whe there sies curothee is
:and lot $A B$ be same mumber ach the same小yon FGHKL
similan to the /Iy".
11. Difi : $=G$; iI. 6 .
$11!/ 110$.
v. Mof. \because. - LGH.
nilat, IProrerl.
$\mathrm{u}, \quad H_{y} / \mathrm{p}$.
vi. Mef. \because.
V. 14 .

LGH arr
H. Vi. 6.
\therefore the polygons lawe been divided into the same munlere of similar triangles.
(ii) Agran, because the ABE is similar to the FGL, \therefore the $\triangle A B E$ is to the $A F G L$ in the duplicate ratio of EB:LG;
Vi. 1!.
aml, in like mammer,
the $\triangle E B C$ is to the $\triangle L G H$ in the dupleate matio
of $E B$ to $L G$;
\therefore the $\triangle A B E$: the $\triangle F G L::$ the: $\triangle E B C$: the $\triangle L G H . v .1$.
In like manner it can be shewn that
the $\triangle E B C$: the $\triangle L G H:$ the $\triangle E D C$: the $\triangle L K H$.
the $\triangle A B E$: the $\triangle F G L:$ the $\triangle E B C:$ the \therefore LGH $:$ the $A E D C$: the \triangle LKH.
 cerlent is to its comsequent so is the sum of all the ante cedents to the sum of all the eomsequents;
‥ $1 \because$.
\therefore the $\triangle A B E$: the $\triangle L F G::$ the fig. $A B C D E$: the tig. FGHKL.
(iii) Now the $E A B$: the $\triangle L F G$ in the duplicate loitio of $A B: F G$,
and the $\triangle E A B$: the $\triangle L F G:$ the fig. $A B C D E$: the tise FGHKL; \therefore the fig. $A B C D E$: the fig. FGHKL in the duplicater ratio of $A B: F G$.
Q. F.: 1).

Corolbary 1. Let a thirel proportional X be taken (1) $A B$ and $F G$,
then $A B$ is to X in the duplicate ratio of $A B: F G$;
lout the fig. $A B C D E$: the fig. FGHKL in the duplicate ratio of $A B: F G$.
Hence, if thereestraight livess are propombionmets, as the dinst is to the third, so is "nay rectilinestl, digure describert one the jis:s 'o a similar and similarly reseribel rectilineal figute oir serund.
 ure to one rnother us the squares on their homoloyones seders. for squares are similar figntes and therefore ane th one mother in the duphlante ratio of their sides.

Proposition 21. Theorem.
lisctiliunal figures which are similar to the stares rectilineal fiymere, are also simitar to etch other.

Let each of the rectilinear tights A and B be simitar to C : then shall A be similar to B.
For because A is similar to C,
$\therefore A$ is equiangular to C, and the sides about the ir equal angles are proportionals.
vi. Def. \because.

Again, because B is similar to C,
$1 / y p$.
$\therefore B$ is equiangular to C, and the sides about their equal angles are proportionals.
vi. Def. 2.
$\therefore \mathrm{A}$ and B are each of them equiangular to C , and have the sides about the equal angles proportional to the corresponding sides of C ;
$\therefore A$ is equiangular to B, and the sides about their equal angles are proportionals;
$\therefore A$ is similar to B.

Propestitos 29. 'Jushmin.

lif forer strainlle lines be moportionenl amel "f juir uf
ther aremers recti-
similat to C :
//yp. t their equal vi. Mefi: 2.
$H_{y p}$. their equal
v. Def. \because.

C, and hato to the cor-
t theire equal v. 1.
Q. 1\%, D. sumilar vertilimenl digmors be similarly deswriber ou the dirst "!ind secomd, and relan of preir one the thired and fullith, iheses digures shall be propurtional:
 shreight liness les the similar ame similnity describurd figure on. the secome ns or rectilineal figure on the third is to the similar ared similarly described figme one the fourth, the fone atruighe livess stall be proportioncel.

Let $A B, C D, E F, G H$ be proportionals, so that $A B: \therefore D:: E F: G H$;
and let similar figures KAB, LCD be similanly described on $A B, C D$, and also let similar tigs. MF, NH be similarly described on EF, GH: then shall
the fig. $K A B$: the fig. LCD :: the fig. MF : the fig. NH.
To AB and CD take a third proportional X, vi. 11.
and to $E F$ and $G H$ take a thind proportional O;

$$
\text { then } A B: C D:: C D: X \text {, }
$$

and $\mathrm{EF}: \mathrm{GH}:: \mathrm{GH}: \mathrm{O}$.
But $A B: C D:: E F: G H ; \quad \| y /$.
$\therefore C D: X:: G H: O, \quad$ v.l.

$$
\therefore \text {, ex rquali, } \mathrm{AB}: \mathrm{X}:: \mathrm{EF}: 0
$$

But $A B: X::$ the fig. KAB : the fig. LCD, vi. 00 , 6, and $E F: O$:: the fig. MF : the fig. NH;
\therefore the fig. $K A B$: the fig. LCD : : the fig. $M F$: the fig. NH.

x

Conversely,
let the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH; then shall $A B: C D:: E F: G H$.
To $A B, C D$, and $E F$ take a fourth proportional PR: vi. 12. and on PR deseribe the fig. SR similar and similary situated to either of the figs. MF, NH. vi. 18.

Then because AB: CD :: EF : PR,
Constr: \therefore, by the former part of the proposition, the tig. KAB : the fig. LCD :: the fig. MF : the fig. SR. But
the fig. KAB : the fig. LCD :: the lig. MF : the fig. NH. Hy/l. \therefore the fig. MF : the fig. $S R$:: the fig. MF : the fig. NH, v. 1 .
\therefore the fig. $\mathrm{SR}=$ the fig. NH .
And since the figs. $S R$ and $N H$ are similar and similarly situated,

$$
\begin{aligned}
& \therefore P R=G H^{*} . \\
& \text { Now } A B: C D:: E F: P R ; \\
& \therefore A B: C D: E F: G H .
\end{aligned}
$$

Consti:
(2. E. D.

* Euclid here assumes that if turo similar aud similarly situated fignres are equal, their homologons sides are equal. The proof is easy and may be left as an exercise for the student.

Demintios: When there are my mumber of magnitudes of the same lind, the first is said to have to the last the ratio compounded of the ratios of the first to the second, of the second to the thirel, and so on up to the ratio of the last but one to the last magnitude.
[Beok :. Def. 12.]

Propostition 23. Theorem.

Parallelograms which are equianyular to one another. leace to one another the ratio which is componneled of the retios of their sides.

Let the parn $A C$ be equiangular to the parin $C F$, having the \therefore BCD equal to the - ECG:
then shall the parim AC have to the parm CF the ratio compounded of the ratios $B C$: $C G$ and $D C$: $C E$.
Let the parms be placed so that $B C$ and $C G$ are in a st. line;

$$
\text { then DC and CE are also in a st. line. } 1.14 \text {. }
$$ Complete the parin DG.

Take any st. line K,
:and to BC, CG, and K find a fourth proportional L ; vi. 1:.
and to $D C, C E$, and L take a fonrth proportional M;
then BC: CG :: K : L,
and DC: CE : : L : M.
But K : M is the ratio compounded of the ratios

$$
\mathrm{K}: \mathrm{L} \text { and } L: M, \quad \therefore: D, 1 \because
$$

that is, $K: M$ is the ratio compounded of the ratios
$B C$: $C G$ and $D C$: $C E$.
Now the parin $A C$: the pan ${ }^{101} C H: B C: C G$ VI. 1.
:: K : L, Constr:
and the parin CH : the parn CF::DC:CE VI. 1.
:: L: M, Constr: \therefore, ra requali, the par ${ }^{1 n} \mathrm{AC}$: the parm CF : $\mathrm{K}: M . \quad$ v. 14 . But $K: M$ is the ratio compounded of the ratios of the sides; \therefore the par ${ }^{101}$ AC has to the par ${ }^{\prime \prime \prime}$ CF the ratio compounded of the ratios of the sides. Q.E.1).

EAERCISE.

The areas of two triangles or parallelograns are to one another in the ratio compounded of the ratios of their bases and of their altitudes.

Phoposition 24. Theorem.

Parallelogirams about a diagonal of amy parallelogram are similar to the whole parallelogram and to one another:

Let $A B C D$ be a parm of which $A C$ is a diagonal ; and let EG, HK be parnins about AC:
then shall the parins EG, HK be similar to the parin ABCD, and to one another.

For, because DC is par' to GF,
\therefore the $\angle A D C=$ the $\angle A G F: \quad$ 1. $\because 9$.
and because $B C$ is par to $E F$,
\therefore the $\angle A B C=$ the $\angle A E F$;

1. $\because 9$.
mind each of the $\leq{ }^{*} B C D, E F G$ is equal to the opp. - BAD,
\therefore the $\angle B C D=$ the $\angle E F G$; [r. :34.
\therefore the paran $A B C D$ is equiangular to the parrn $A E F G$.

- Igain in the $\triangle^{*} B A C, E A F$,
because the $\angle A B C=$ the $-A E F$,
and the $\angle B A C$ is common;
$\therefore \quad \triangle^{*} B A C, E A F$ are equiangular to one another';

1. 32.

$\therefore A B: B C:: A E: E F$. vi. 4.

But $B C=A D$, and $E F=A G$; r. 34.

$$
\begin{aligned}
& \therefore A B: A D:: A E: A G \\
& \text { and } D C: C B:: G F: F E, \\
& \text { and } C D: D A:: F G: G A,
\end{aligned}
$$

\therefore the sides of the parms $A B C D, A E F G$ about thesir equal angles are proportional;
\therefore the par ${ }^{\prime \prime \prime}$ ABCD is similar to the parm AEFG. Vr. Def. ..
Tn the same way it may be proved that the parm $A B C D$ is similar to the par ${ }^{\prime \prime \prime}$ FHCK,
\therefore each of the par mas EG, HK is similar to the whole pare ${ }^{\text {man }}$:

Proposition 25. Problex.

To describe a rectilineal figure which shatl be equal to one und similar to another rectilineal figure.

Let E and s be two rectilineal figures:
it is required to deseribe a figure equal to the tig. E and similar to the fig. s.

On $A B$ a side of the fig. S describe a parm $A B C D$ equal to S, and on $B C$ describe a par ${ }^{\text {m }}$ CBGF equal to the fig. E, and having the $\angle C B G$ equal to the $\angle D A B$: $\quad 45$. then $A B$ and $B G$ are in one st. line, and also $D C$ and $C F$ in one st. line.

Between $A B$ and $B G$ find a mean proportional hK; vi. 13 . and on HK describe the fig. P, similar and similarly situated to the fig. s :
then P shall be the figure required.
Because AB:HK:: HK: BG, Constr.
$\therefore A B: B G::$ the fig. s : the fig. P. vo. $\because 0, C o r$.
But AB: BG :: the par ${ }^{m \mathrm{~m}}$: the parm BF ;
\therefore the fig. S : the fig. $P::$ the parm $A C$: the parm $B F$; \therefore I. and the fig. $\mathrm{S}=$ the $\mathrm{mar}^{\mathrm{m}} \mathrm{AC} ; \quad$ Constr: \therefore the fig. $P=$ the par ${ }^{m /} B F$

$$
=\text { the fig. } E . \quad \text { Const } r \text {. }
$$

And since, by construction, the fig. P is similar to the fig. S , $\therefore P$ is the rectil. figure required.

Proposithon 20. Theorem.

If two similar prarallelograms have a common angle, and be similarty sitmated, they are ubout the same diagonal.

Let the par"4 $A B C D, A E F G$ be similar and similarly sitmated, and have the common angle BAD:
then shall these par mis be ahout the same diagonal.
Join AC.
Then if AC does not pass through F, let it cut FG, or FG produced, at H .

> Join AF;
and through H draw HK part to $A D$ or BC. I. 31.
Then the paras $B D$ and $K G$ are similar, since they are alonat the same diagronal AHC;
in. 24.
$\therefore D A: A B:: G A: A K$.
But because the parns $B D$ and EG are similar; $I I / p$.
$\therefore D A: A B:: G A: A E ; \quad$ vi. Def. \because.
$\therefore G A: A K:: G A: A E ;$
$\therefore A K=A E$, which is impossible;
$\therefore A C$ must pass through F;
that is, the $1^{\text {man }} \mathrm{BD}$, EG are alout the same diagonal.
Q.E.1).
(\%). Propositions 27,28 , 29 being cmmbrous in form and of little value as geometrical results are now very generally omitted.
> mom angle, aned cliergoneal.
ilarly situaterl, diargonal.
cut FG, or FG r BC. I, 31.
hey are about 11. 24.
imilar; $/ I!/ p$. vi. Def. \because. impossible; e diagonal. Q.E. 1),

Definition. - 1 straight line is said to be divided in cxtreme and mean ratio, when the whole is to the greater segment as the greater segment is to the less.
[Book vi. Def. 4.]

Proposition 30. Problem.

To diciete a giorne straight live ine extreme and mone ratio.

$$
A \quad C B
$$

Let $A B$ be the given st. line:
it is required to divide it in extreme and mean ratio. Divide $A B$ in C so that the rect. $A B, B C$ may be equal to the so. on AC.

$$
\text { II. } 11 .
$$

Then becaluse the rect. $A B, B C$ the sig. on $A C$,

$$
\therefore A B: A C:: A C: B C \text {. V. } 17
$$ Q.E.F.

EXERCISES.

1. $A B C D E$ is a regular pentagou; if the lines $B E$ and $A D$ intersect in O, shew that cach of them is divided in extreme and mean ratio.
2. If the radius of a circlo is cut in extreme and mean ratio, the treater segment is equal to the side of a regular decagon inscribed in

Proposition 31. Theorem.

In a riaght-anyled triangle, any rectilinerel figure deseribed om the hypotenuse is equel to the sum of the two similar and similarly described figures on the sides containing the right cengle.

Let $A B C$ be a right-angled triangle of which $B C$ is the hypotenuse; and let P, Q, R be similar and similaly tescribed figures on $B C, C A, A B$ respectively:
then shatl the fig. P be equal to the sum of the figs. 2 and R.
Draw AD perp. to BC.
Then the $\triangle^{8} C B A, A B D$ are similan;
Vi. 8 .
$\therefore C B: B A:: B A: B D$;
$\therefore C B: B D:$ the fig. P : the fig. R, vi. $20, C o r$.
\therefore, imersely, $B D: B C:$ the fig. R : the fig. P. V. .. In like mamer $D C: B C::$ the fig. Q : the fig. P; \therefore the sum of $B D, D C: B C::$ the sum of figs. R, Q : fig. P;
lut $B C=$ the stim of $B D, D C$;
\therefore the fig. $P=$ the sum of the figs. R and Q.
Q.1.1.

Note. This proposition is a generalization of the 47 th Prop. of Book r . It will be a usefnl exercise for the student to deduce the general theorem from the particular case with the aid of Prop. 20, Cor:。".

EXERCISES.

1. In a right-angled triangle if a perpendieular be drawn from the right angle to the opposite side, the segments of the hypotenuse are in the duplieate ratio of the sides containing the right angle.
2. If, in Proposition 31, the figure on the hypotenuse is equal to the given triangle, the figures on the other two sides are each equal to one of the parts into which the triangle is divided by the perpendieular from the right angle to the hypotenuse.
3. $A X$ and $B Y$ are medians of the triangle $A B C$ which meet in G : if $X Y$ be joined, compare the areas of the triangles AGB, XGY.
4. Shew that similar triamples are to one another in the duplicate ratio of (i) corcespomdiu! medions, (ii) the radii of their inseriberd ciccles, (iii) the radii of their circumscribed circles.
5. $D E F$ is the pedal triangle of the triangle $A B C$; prove that the triangle $A B C$ is to the triangle DBF in the duplieate ratio of $A B$ to BD. Hence shew that
```
the fig. AFDC : the }\triangle\mathrm{ BFD :: AD* : BD*.
```

6. The base $B C$ of a triangle $A B C$ is prodnced to a point D sueh that $B D$: $D C$ in the duplicate ratio of $B A: A C$. Shew that $A D$ is a mean proportional between $B D$ and $D C$.
7. Biseet a triangle by a line drawn parallel to one of its sides.
8. Shew how to draw a line parallel to the base of a triangle so as to form with the other two sides produeed a triangle double of the given triangle.
9. If through any point within a triangle lines be drawn from the angles to eut the opposite sides, the segments of any one side will have to eaeh other the ratio compounded of the ratios of the segments of the other sides.
10. Draw a suaight line parallel to the base of an isoseeles triangle so as to eut sit ilangle whieh has to the whole triangle the ratio of the base to a vids.
11. Through a given point, hetween two straight lines containing a given angle, draw a line which shall cuit of a triangle equal to a given rectilineal figure.

Obs. The 32nd Proposition at siben by Euclid is defective, and as it is nover appliot, is hare omitted it.

H. E,

Phopusimion 3:3. 'Theohem.

In equal circles, tomgles, whether "t the centres or the circumferencts, hate the same ratio as the ares on which they stend: so ulso hace the sectors.

Let $A B C$ and DEF be cyital circles, and lat BGC, EHF be angles at the centres, and BAC and EDF angles at the $O^{\text {ees }}$; then shall
(i) the $-B G C$: the $\angle E H F$:: the are $B C$: the are $E F$,
(ii) the - BAC : the _ EDF :: the are BC : the are EF,
(iii) the sector BGC : the sector EHF :: the are BC : the arcef.

Along the O "e of the $\cdot A B C$ take any number of ares CK , KL each equal to BC ; and along the $\mathrm{O}^{\text {cr }}$ of the $\odot \mathrm{DEF}$ take any number of ares FM, MN, NR each equal to EF. Join GK, GL, HM, HN, HR.
(i) Then the \angle^{*} BGC, CGK, KGL are all equal, for they stand on the equal ares $\mathrm{BC}, \mathrm{CK}, \mathrm{KL}: \mathrm{HI} .27$. \therefore the $\angle B G L$ is the same multiple of the $\angle B G C$ that the are BL is of the are BC.
Similarly the $-E H R$ is the same multiple of the $\angle E H F$ that the are ER is of the are EF.

Aud if the are $\mathrm{BL}=$ the arc ER , the $\angle B G L=$ the $-E H R$;
iII. 27.
and if the arc BL is greater than the are ER, the $\angle B G L$ is greater than the $\angle E H R$; and if the are BL is less than the are ER, the $\angle B G L$ is less than the $\angle E H R$.

Now since there are four magnitutes, mamely the
etres or the ciron which they
t BGC, EHF le es at the $O^{\text {cens }}$;
: the are EF, : the are EF, e arc BC : the
umber of ares of the \odot DEF ilual to EF .
equal,
CK, KL: III. 27. BGC that the e of the $\angle E H F$
iII. 27.

8BGC, EHF and the arcs BC, EF; and of the antecedents any equimultiples have been taken, namely the - BGL :mid the arc BL; and of the consequents any equimultiples have been taken, nanely the - EHR and the are ER: and it has been proved that the - BGL is greater than, rqual to, or less than the $\angle E H R$ according ats $B L$ is greater than, equal to, or less than ER;
\therefore the four magnitudes aro proportionals; v. Def: 4. that is, the - BGC : the $-E H F$:: the are BC : the are EF.
(ii) And since the - SGC - twice the $-B A C$, III. 20. and the $\angle E H F=$ twice the $\angle E D F$;
\therefore the - BAC : the $\angle E D F$:: the arc BC : the are EF. v. S.

(iii) Join $B C, C K$; and in the ares $B C, C K$ take any points X , o.

Join BX, Xc, co, OK.
Then in the \triangle^{s} bgc, сак,
Because

$$
\mathrm{GC}=\mathrm{GK},
$$

fand the $\angle B G C=$ the $\angle C G K$;
iII. 27.
$\therefore B C=C K$;
г. 4.
and the $\triangle B G C=$ the $\triangle C G K$.
And because the are BC $=$ the are CK,
C'onstr.
\therefore the remaining are BAC $=$ the remaining are CA,K:

$$
\therefore \text { the } \angle B X C=\text { the } \angle C O K \text {; II. } 27 .
$$

\therefore the segment BXC is similar to the segment COK ; iII. Def. and they stand on equal chords BC, CK;
\therefore the segment $\mathrm{BXC}=$ the segment COK. II, 24, And the $\triangle \mathrm{BGC}=$ the $\triangle \mathrm{CGK}$;
\therefore the sector $\mathrm{BGC}=$ the sector CGK.

Similarly it may be shewn that the sectors BGC, CGK, KGL we all equal;
and likewise the sectors EHF, FHM, MHN, NHR are all equal.
\therefore the sector BGL is the same multiple of the sector BGC that the are $B L$ is of the are $B C$;
and the sector EHR is the same multiple of the sector EHF that the are $E R$ is of the are $E F$:

And if the are $B L=$ the are $E R$, the sector $B G L=$ the sector $E H R$: I'roneel. and if the are BL is greater than the are ER, the sector BGL is greater than the sector EHR:
and if the are BL is less than the arc ER, the sector BGL is less than the sector EHR.
Now since there are four magnitudes, namely, the sectors BGC, EHF and the arcs BC, EF; and of the antecedents any equimultiples have been taken, namely the sector BGL and the arc BL; and of the consequents any equimultiples have been taken, namely the sector EHR and the arc ER: and it has heen shewn that the sector BGL is greater than, equal to or less than the sector EHR according as the arc BL is fater than, equal to, or less than the arc ER;
the four magnitudes are proportionals; v. Def. 4. that is, the sector $B G C$: the sector $E H F:$ the are $B C$: the are $E F$.

Prorostrion 13. Theorem.

If tho revtical angle of a trianyle be bisected by a straight line which cutss the base, the rectamyle comtrined hy the sides of the triangle shath loe equed to the redangle contained by the seyments of the busp, together with the sururie or the straight line ich bismets the anyle.

Let $A B C$ be a triangle having the $-B A C$ hieected liy $A D$. then shall
the rect. $B A, A C=$ the rect. $B D, D C$, " he sip. on $A D$.
Deseribe a circle about the $\quad \Delta C$, IV. 5 . and produce $A D$ to meet the in E. Join EC.

Then in the $\triangle^{8} B A D, E A C$,
because the $-B A D=$ the $\angle E A C$, 11 ! 71.
and tho $-A B D=$ the $\angle A E C$ in the sime segment; 11.21 . \therefore the $\triangle B A D$ is equiangular to the $\triangle E A C$. 1.3ま.
$\therefore B A: A D:: E A: A C$;
vi. 4.
\therefore the rect. $B A, A C=$ the rect. $E A, A D, \quad$ vi. 16 .
$=$ the rect. ED, DA, with the sq. on AD.
II. 3.

But the rect. $E D, D A=$ the rect. $B D, D C$:
111. 35.
\therefore the rect. $B A, A C=$ the rect. $B D, D C$, with the sif. on $A D$.
Q. 1. 1).

1:NERCLSE:

If the vertical angle BAC be externally hisected by a straight line which meets the base in D, shew that the reciangle contained by $B A$, $A C$ together with the square on $A D$ is equal to the rectangle contained by the segments of the base.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

Proposition C. 'Theorem.

If from the vertical angle of a triangle a straight line be lrawn perpendicular to the luse, the rectangle contained by the sides of the triangle slutl, be pqual to the rectangle contained by the perpendicular amb the diameter of the circle described about the triangle.

Let $A B C$ be a triangle, and let $A D$ be the perp. from A to BC:
then the rect. $B A, A C$ shall be equal to the rect. contained by $A D$ and the diameter of the circle circumscribed about the $\triangle A B C$.

Describe a circle about the $\triangle A B C$; draw the diameter $A E$, and join $E C$.

Then in the $\triangle^{s} B A D, E A C$,
the rt. angle $B D A=$ the rt. angle $A C E$, in the semicircle $A C E$, and the $\angle A B D=$ the $\angle A E C$, in the same segment; 1II. 21. \therefore the $\triangle B A D$ is equiangular to the $\triangle E A C ; \quad$ I. 32.
$\therefore B A: A D:: E A: A C$;
vi. 4.
\therefore the rect. $B A, A C=$ the rect, $E A, A D$.
vi. 16. (.E.D.

Proposition D. Tineonem.

The rectengle contrined biy the dingomets of a quadriluteral iuscribed in a cirele is equed to the sum of the two rectanyles contained $b_{:}$its opposite sides.

Let $A B C D$ be a quadrilateral inseribed in a circle, and let $A C, B D$ be its diagonals:
then the rect. $A C, B D$ shall be equal to the sum of the rectangles $A B, C D$ and $B C, A D$.

Make the $\angle D A E$ equal to the $\angle B A C ; \quad$. 23 . to each add the - EAC, then the - DAC the $-B A E$.

Then in the $\triangle^{s} E A B, D A C$,

$$
\text { the }-E A B=\text { the }-D A C \text {, }
$$

and the $-A B E=$ the $\angle A C D$ in the sime segment; ; irr. 21.
\therefore the triangles are equiangular to one another ; I. 32.

$$
\therefore A B: B E: A C: C D ; \quad \text { v. } 4 .
$$

\therefore the rect. $A B, C D=$ the rect. $A C, E B$. in 16 .
Again in the $\triangle^{*} D A E, C A B$,
the $\angle D A E=$ the $-C A B, \quad$ C'onstr:
and the $\angle A D E=$ the $\angle A C B$, in the sime segment, in. 21 .
\therefore the triangles are equiangular to one another; 1. 32.

$$
\therefore A D: D E: A C: C B ; \quad \text { vi. } 4 .
$$

\therefore the rect. $B C, A D=$ the rect. $A C, D E . \quad$ vi. 16.
But the rect. $\mathrm{AB}, \mathrm{CD}=$ the rect. AC, EB. l'rover. \therefore the sum of the rects. $B C, A D$ and $A B, C D=$ the sum of
the rects. $A C, D E$ and $A C, E B ;$
that is, the sum of the reets. $B C, A D$ and $A B, C D$

$$
=\text { the rect. } A C, B D \text {. II. } 1 \text {. }
$$

Q. E. L.

Note. Propositions B, C, and D do not occur in Euelid, but were added by Robert Simison.

Prop. D is usually known as l'toleny's theorem, and it is the particular ease of the following more general theorem:

The rectangle coutained b_{y} the diagonals of a quadriluteral is iesss than the sum of the rectangles comtained by its opposite sides, unless a circle can be circumscribed about the qualrilateral, in which case it is equal to that sum.

EXERCISES.

1. $A B C$ is an isosceles triangle, and on the base, or base produced, any point X is taken: shew that the circumseribed circles of the triangles $A B X, A C X$ are equal.
2. From the extremities B, C of the base of ar: isoseeles triangle $A B C$, straight lines are drawn perpendicular to $A B, A C$ respectively, and interseeting at D : shew that the rectangle $B C, A D$ is double of the reetangle AB, DB.
3. If the diagonals of a quadrilateral inscribed in a cirele are at right angles, the sum of the reetangles of the opposite sides is couble the area of the figure.
4. $A B C D$ is a quadrilateral inseribed in a eircle, and the diagonal $B D$ bisects $A C$: shew that the reetangle $A D, A B$ is equal to the rectangle DC, CB.
5. If the vertex A of a triangle $A B C$ be joined to any point in the base, it will divide the triangle into two triangles such that their circumscribed cireles have radii in the ratio of $A B$ to $A \subset$.
6. Construet a triangle, having given the base the vertical angle, and the reetangle eontained by the sides.
7. Two triangles of equal area are inscribed in the same tirele: shew that the reetangle contained by any two sides of the one is to the reetangle contained by any two sides of the other as the base of the second is to the base of the first.
8. A eircle is deseribed round an equilateral triangle, and from any point in the cireumferenee straight lines are drawn to the angular points of the triangle: shew that one of these straight lines is equal to the sum of the other two.
9. $A B C D$ is a quadrilateral inseribed in :
e, and BD biseets the angle $A B C$: if the points A and C are fixed on the circumference of the cirele and B is variable in position, shew that the sum of $A B$ and BC has a constant ratio to BD.
in Euelicl, but were n, aud it is the par-

Itodrilaterol is isss site sides, mmess a in which cose it is
base, or base promseribed eircles of
r. isoseeles triangle $B, A C$ respeetively, $A D$ is double of
din a eircle are at site sides is double
, and the diagonal equal to the reet-
d to any point in les sueh that their to AC.
the vertical angle,
a the same circle: of the one is to ler as the base of

Igle, and from any in to the angular at lines is equal to
e, and BD bisects the circumference t the sum of $A B$

THEOREMS ANI ENAMPLES ON BOOK VI.

1. ON HARMONIC SHCTION.

1. To divide a giren struight line internolly ond externolly so that its segments may be in a giren ratio.

Let $A B$ be the given st. line, and L. M two other st. lines which determine the given ratio: it is required to divide $A B$ internally and externally in the ratio L.: M.

Through A and B draw any two par' st. lines AH, BK.
From AH cut off $A(0$ equal to L,
and from BK cut off $\mathrm{B} b$ and $\mathrm{B} b^{\prime}$ each equal to M , $\mathrm{B} b^{\prime}$ being taken in the some direction as \hat{A}, and $\mathrm{B} b$ in the opposite direction.

Join ab, cutting AB in P;
join $a b^{\prime}$, and produce it to cut $A B$ externally at Q.
Then $A B$ is divided internally at P and externally at Q,
so that and
$A P: P B=1: M$,
$A Q: Q B=L: M$.

The proof follows at once from Euclid vi. 4.
Obs. The solution is simgmlor; that is, only ome internal and ome external point ean be found that wili divide the given straight line into segments whieh have the given ratio.

MEFINITION.

A finite straight line is said to be cut harmonically when it is divided internally and externally into segments which have the same ratio.

Thus $A B$ is divided harmonieally at P and Q, if

$$
\mathrm{AP}: P B=A Q: Q B .
$$

P and Q are said to be harmonic conjugates of A and B.
If P and Q divide $A B$ internally and externally in the same ratio, it is easy to shew that A and B divide $P Q$ internally and externally in tho same ratio: henee A and B are harmonie cunjugates of p and Q.

Erample. The base of a triangle is dirided harmonically by the internal and esternal biscetors of the vertical angle:
for in each case the segments of the base are in the ratio of the other sides of the triangle. [Euclid vi, 3 and A.]

OJs: We shall use the terms Arithmetic, Geometric, ana Harmomic Heans in their ordinary Algebraieal sense.

1. If AB is divided intermally "t P and externally at Q in the same ratio, then AB is the harmonic medn between AQ and AP .

For by hypothesis $A Q: Q B=A P: P B ;$ \therefore, altermately,
$A Q: A P=Q B: P B$, that is, $A Q: A P=A Q-A B: A B-A D$, which proves the proposition.
2. If AB is divided harmonically at P and $\mathbf{\Omega}$, and O is the middle point of AB ;
then shall $O P . O Q=O A$.

For since $A B$ is divided harmonically at P and Q,
$\therefore A P: P B=A Q: Q B ;$
or,
$2 O P: 2 O A=2 O A: 2 O Q$;
$\therefore \mathrm{OP} . \mathrm{OQ}=\mathrm{OA}^{2}$.
Comersely, if
it may be shewn that
$O P . O Q=O A^{\circ}$,
$A P: P B=A Q: Q B$;
that is, that $A B$ is divided harmonically at P and Q.
nically when it its which have

A and B.
a the same ratio, y and externally cunjugates of P nomically ly the atio of the other
c, ana IIarmonic
thy at Q in the and $A P$.
lO is the middle
3. The Arithmetic, Geometric and Harmonic means of turo straight fints may be thus represented graphicully.

In the adjoining figure, two tangents $A H, A K$ aro drawn from any external point A to the circle PHQK; HK is the chort of contact, and the st. line joining A to the centre O cuts the $O^{\circ 0}$ at P and Q.

Then (i) $A O$ is the Arithmetie mean between $A P$ and $A Q$: for clearly

$A O=\frac{1}{2}(A P+A Q)$.
(ii) $A H$ is the (reometric mean between $A P$ and $A Q$:

$$
\text { for } A H^{2}=A P . A Q \text {. } 11 .: 3
$$

(iii) $A B$ is the Harmonic mean between $A F$ and $A C$:

$$
\text { for OA } O B=O P
$$

$\therefore A B$ is cut harmonically at P and Q. Ex. $1, p, 360$.
That is, $A B$ is the Harmonic mem between $A P$ and $A Q$.
And from the similar triangles $\mathrm{OAH}, \mathrm{HAB}$,

$$
O A: A H=A H: A B \text {, }
$$

$$
\therefore \mathrm{AO} \cdot \mathrm{AB}=\mathrm{AH}^{\circ} ;
$$

vi. 17.
\therefore the Gcometric mean between two straight lines is the mean proportional between their Arithmetic and IIarmonic means.
4. Gicen the base of a triangle and the ratio of the other sides, to find the locus of the rerter.

Let BC be the given base, and let BAC be any triangle standing upon it, such that $B A: A C=$ the given ratio:
it is required to find the locus of A .
Biseet the $\angle B A C$ internally and
 ixternally by $A P, A Q$.

Then $B C$ is divided internally at P, and extermally at Q, so that $B P: P C=B Q: Q C=$ the given ratio;
$\therefore P$ and Q are fixed points.
And since $A P, A Q$ are the interinal and external bisectors of the $\angle B A C$,
\therefore the $\angle P A Q$ is \AA rt. angle;
\therefore the locus of A is a cirele described on $P Q$ as diameter.

Exencise. Giten three points B, P, C in a straipht line: find the lucus of points at which BP and PG subtend equal antles.

HEFINITIONS.

1. A series of points in a straight line is called a range. If the ruge consists of four points, of which one pair are harnonic conjugates with respect to the other pair, it is said to be a harmonic range.
2. A series of straight lines drawn throngh a point is called it pencil.

The point of conemrence is called the vertex of the pencil, and each of the straight lines is called a ray.

A pencil of four rays drawn from any point to a harmonic raluge is said to be a harmonic pencil.
3. A straight line dawn to ent a system of lines is called a transversal.
4. A system of four straight lines, $n o$ three of which are concurrent, is called a complete quadrilateral.

These straight lines will intersect two and two in six puints, called the vertices of the quadrilateral; the three straight hines which join opposite vertices are diagonals.

Theomeas on Harmonic Section.

1. If a transrersal is draun parallel to one ray of a harmoaic mencil, the other thre rays intereept equal parts upon it: and conretsely.

コ. Any transtersal is cut harmonically by the rays of a harmonic pencil.
3. In a lurmonic pencil, if one ray biscet the angle between the other pair of rays, it is perpendicular to its conjugate ray. Comrersely if one pair of rays form a right angle, then they bisect internally and extemally the angle between the other pair.
4. If A, P, B, Q and a, p, b, q are hermonic ranges, one on curth of two giren straight lines, and if $\mathrm{Aa}, \mathrm{Pp}, \mathrm{Bb}$, the straight lines which join thrce pairs of corresponding points, mect at S ; then will Qq "llso pass through S.
5. If tuo straight lines intersect at A , and if $\mathrm{A}, \mathrm{P}, \mathrm{B}, \mathrm{Q}$ and A, $\mathrm{p}, \mathrm{b}, \mathrm{q}$ are tue harmonic ranges one on euch struight line (the points rorresponding as indiuted by the letters), then $\mathrm{Pp}, \mathrm{Bb}, \mathrm{Qq}_{\mathrm{q}}$ vill be concurvent : also $\mathrm{Pq}, \mathrm{Bb}, \mathrm{Qp}$ will be concurrent.
6. Use Throrem 5 to prove that in a complete qualrilateral in wheich the thre' ditumuls are draurn, the stratyht line joininy any pair. of opposite rertices is cut iurmonically by the other two diagonads.
called a range. one pair are harr, it is sail to be
a point is called it ex of the pencil, it to al harmonic f lines is called a ree of which are wo in six points, re straight lines
!! of a harmonic pon it: amd con-

IIys of a harmonic
tmyle between the ray. Comrersely, ect internally and
ranges, one on the straight lines S ; then will Qq
$\mathrm{A}, \mathrm{P}, \mathrm{B}, \mathrm{Q}$ amd line (the points Qq uill be con-
anulvilateral in oining any pair diagonals.

II. O. CENTHES OF SIMHARITV AND SLMHLITUDF:。

1. If amy tho meqnal similar figmes are placed so that their homologous sides are parallel, the lines joining corresponding points in the two figures meet in a point, whose distances from any turo corresponding points are in the ratio of amy pair of homologons sides.

Let $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be two similar figures, and let them be placed so that their homologous sides are parallel; namely, $A B, B C, C D$, $D A$ parallel to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} D^{\prime}, D^{\prime} A^{\prime}$ respectively:
then shall $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$, DD^{\prime} meet in a point, whose distances from any two corresponding points shall be in the ratio of any pair of homologous sides.

Lict AA^{\prime} meet BB^{\prime}, produced if necessary, in S .
Then because $A B$ is par ${ }^{1}$ to $A^{\prime} B^{\prime}$;
$H!/ I$.
\therefore the $\triangle^{8} S A B, S A^{\prime} B^{\prime}$ are equiangnlar;
$\therefore S A: S A^{\prime}=A B: A^{\prime} B^{\prime}$;
vi. 4.
$\therefore A A^{\prime}$ divides $B B^{\prime}$, extcrnally or internally, in the ratio of $A B$ to $A^{\prime} B^{\prime}$.
Similarly it may be shewn that CC^{\prime} divides BB^{\prime} in the ratio of $B C$ to $B^{\prime} \mathrm{C}^{\prime}$.

But since the figures are similar,
$B C: B^{\prime} C^{\prime}=A B: A^{\prime} B^{\prime} ;$
$\therefore A A^{\prime}$ and $C C^{\prime}$ divide B^{\prime} in the same ratio; that is, $A A^{\prime}, B^{\prime}, C^{\prime}$ meet in the same point S.
In like manner it may be proved that $D D^{\prime}$ meets $C C^{\prime}$ in the point S .
$\therefore A^{\prime}, B^{\prime}, C C^{\prime}, D D^{\prime}$ are concurrent, and each of these lines is divided at S in the ratio of a pair of homologous sides of the two figures. Q. E. D.

Cor. If amy line is drawn through \mathbf{S} meeting any pair of homolo!gons sides in K amd K^{\prime}, the ratio SK : SK^{\prime} is constont, and eqnal to the rotio of amy pair of homologous sides.

Note. It will be seen that the lines joining corresponding paints are divided externally or internally at \mathbf{S} according as the corresponding sides are drawn in the same or in opposite directions. In either case the point of concurrence S is calied a centre of similarity of the two figures.
3. A common tangem STT' to tro circles whose centres are $\mathrm{C}, \mathrm{C}^{\prime}$, meets the line of centres in S . If through S amy straight lime is drant mreting these tro circles in P, Q, and $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$, rexpectirely, then the rallii CP, CQ shatl be respereticely parallet to $\mathrm{C}^{\prime} \mathrm{P}^{\prime}, \mathrm{C}^{\prime} \mathrm{Q}^{\prime}$. Ilso the rectamples $\mathrm{SQ} . \mathrm{SP}^{\prime}, \mathrm{SP} . \mathrm{SQ}^{\prime}$ shath cach be cqual to the rectingle ST. ST'.

Join CT, CP, CQ and $C^{\prime} T^{\prime}, C^{\prime} P^{\prime}, C^{\prime} Q^{\prime}$.
Then sinee each of the \angle^{*} CTS, $\mathrm{C}^{\prime} \mathrm{T}^{\prime} \mathrm{S}$ is a right angle, un. 18. \therefore CT is par to $\mathbf{C}^{\prime} \mathbf{T}^{\prime}$;
\therefore the $\triangle^{*} \mathrm{SCT}, \mathrm{SC}^{\prime} \mathrm{T}^{\prime}$ are equiangular;

$$
\therefore S C: S C^{\prime}=C T: C^{\prime} T^{\prime}
$$

$$
=C P: C^{\prime} P^{\prime}
$$

\therefore the $\triangle{ }^{*}$ SCP, SC'P' are similar;

Similarly $C Q$ is par to $C^{\prime} Q^{\prime}$.
Again, it easily follows that $T P, T Q$ are par to $T^{\prime} P^{\prime}, T^{\prime} Q^{\prime}$ respeetively;
\therefore the \triangle^{*} STP, ST'P' are similar.
Now the rect. $\mathrm{SP} . \mathrm{SQ}=$ the sq. on ST ;
$\therefore \mathrm{SP}: \mathrm{ST}=\mathrm{ST}: \mathrm{SQ}$,
and $\mathbf{S P}: \mathbf{S T}=\mathbf{S P}^{\prime}: \mathbf{S T}^{\prime}$;
$\therefore \mathrm{ST}: \mathrm{SQ}=\mathrm{SP}^{\prime}: \mathrm{ST}^{\prime}$;
\therefore the reet. ST. ST' $=$ SQ. SP ${ }^{\prime}$.
In the same way it may be proved that
the rect. $\mathrm{SP} . \mathrm{SQ}^{\prime}=$ the reet. $\mathrm{ST} . \mathrm{ST}^{\prime}$.
Cor. 1. It has been proved that
Q.E. I.

$$
\mathrm{SC}: \mathrm{SC}^{\prime}=\mathrm{CP}: \mathrm{C}^{\prime} \mathrm{P}^{\prime}
$$

thus the external common tangents to the two eireles meet at a point S which divides the line of centres externally in the ratio of the radii.

Similarly it may be shewn that the transverse common tangents meet at a point S^{\prime} whieh divides the line of eentres internally in the ratio of the radii.

Cor. 2. $C C^{\prime}$ is divided harmonically at S and S^{\prime}.
Definition. The points S and S^{\prime} which divide externally and intermaty the line of contres of two cireles in the ratio of their radii are called the external and internal centres of similitude respectively.
e centice ure $\mathrm{C}, \mathrm{C}^{\prime}$, my straight lime is Q^{\prime}, rexpecticely, the to $\mathrm{C}^{\prime} \mathrm{P}^{\prime}, \mathrm{C}^{\prime} \mathbf{Q}^{\prime}$. ch be cqual to the

RAMMPILS.

1. Inseribe as square in a given triangle.
2. In a given triangle inscribe a triangle similar and similarly sitnated to a given trinngle.
3. Inscribe a square in a given suctor of circle, so that two angular points shal' be on the are of the sector and the other two on the bonnding radii.
4. In the fiture on page 278, if DI mets the inscribral circle in X, shem that $A, X_{1} \mathrm{D}_{1}$ art collineri. Also if Al_{1} meets the base in Y shew thut II_{1} is dirided harmomically at Y and A .

万. With the motation on page 282 shew that O and G are respecetiverly the extermal and internat centres of similitmbe of the circmuseribed and wine-points circle.
6. If " variable rivele tonches two jine circles, the line joinim! their points of whturt passes throngh a contre of similitmle. Distimynish betreen the different cass.
7. Describe "r whe which shall touch two given eirctes ame pass thromyla a yircu point.
8. Deserilue a circle which shall tonch thre given eircles.
9. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ triv the couters of throe given circtes; $\mathrm{S}_{1}{ }_{1}, \mathrm{~S}_{1}$, tre the internal and externat couters of similitude of the purir of cireles whowe rentics are $\mathrm{C}_{2}, \mathrm{C}_{3}$, amd $\mathrm{S}_{2}^{\prime}, \mathrm{S}_{\ldots,}, \mathrm{S}_{3}^{\prime}, \mathrm{S}_{3}$, hure similor meanings with vegurt to the ollire two pairs of circlis: shew that
(i) $\mathrm{S}_{1}^{\prime} \mathrm{C}_{1}, \mathrm{~S}^{\prime}{ }_{2} \mathrm{C}_{2}, \mathrm{~S}_{3}^{\prime} \mathrm{C}_{3}$ are concurrent ;
(ii) the siex points $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{1}^{\prime}, \mathrm{S}_{2}^{\prime}, \mathrm{S}_{3}^{\prime}$, Tie three and three on forto struight lines. [See Ex. 1 and 2, 111. 375, 376.]

HI. ON POLL: ANJ POLAR.

merinitions.

(i) If in any straight line drawn from the centre of a circle two points are taken such that the rectangle contained by their distances from the centre is equal to the square on the radins, each point is said to be the inverse of the other:

Thus in the figure given below, if O is the centre of the circle, and if $O P . O Q=(\text { radius })^{2}$, then each of the points P and Q is the inverse of the other.

It is clear that if one of these points is within the cirvie the other must be without it.
(ii) The polar of a given point with respect to a given circle is the straight line drawn through the inverse of the given point at right angless to the line which joins the given point to the centre: and with referenes to the pron the given point in called
the pole.

Thus in the adjoining figure, if $O P, O Q=(\text { radins })^{2}$, and if through

P and $Q, L M$ mid $H K$ are drawn perp. to $O P$; then $H K$ is the polar of the point P, and P is the pole of the st. line HK: also LM is the polar of the point Q, and Q the pole of LM.

It is clear that the polar of an external point must interseet the eirele, and that the polar of an iuterual point must fall without it : also that the polar of a point on the circumperence is the tangent at that point.

1. Now it has been proved [see Jx. 1, page 233 | that if from an external point P two tangents PH, PK are drawn to a eirele, of whieh O is the centre, then OP ents the chord of eontact HK at right angles at Q, so that

$$
O P \cdot O Q=(\text { radius })^{2}
$$

\therefore HK is the polar of P with respeet to the cirele.

Hence we conelude that
The Polar of an exterual point with
 reference to a citcle is the chord of contact of tangents drawn from the given point to the circle.

The following Theorem is known as the Reciprocal Property of Pole and Polar.
to a given circle the given print en point to the " point is calloul
)", and it through

HK is the polar also LM is the
st intersect the fall without it: the tangent ut

al Property of
2. If A and P are any two poiuts, und if the polur of 1 with respect to any circte passes through P , the" thi polar ui P must puss through A.

Let $B C$ be 'he polar of the point A with respect to a civele whose centre is O, and let BC pass through P :
then shall the polur of P pass thromgh A.
Join OP; and from A draw $A Q$ perp. to $O P$. We shall shew that $A Q$ is the polur of P.

Now since $B C$ is the polur of A, \therefore the $\angle A B P$ is in it. ungle;

Iof. 2, paze 3tio. and the $\angle A Q P$ is in rt. angle: Coustr. \therefore the four points A, B, P, Q are concyelic;

$\therefore O Q . O P=O A . O B \quad 11,36$. $=(\text { radius })^{2}$, for CB is the polar of A :
$\therefore P$ and Q are inverse points with respect to the given circle.
And since $A Q$ is perp. to $O P$,
$\therefore A Q$ is the polar of P.
That is, the polar of P passes through A.
Q. E. 1 .

A simihr proof applies to the case when the given point A is without the circle, und the polar BC cuts it.
3. To prove that the low of the intersection of tanyents derarn to " circle at the extremities of all chords which pass through " gircen point is the polar of thert point.

Let A be the given point within the circle, of which O is the centre.

Let HK be auy chord passing through Λ; and let the tangents at H and K intersect at P :
it is required to prove that the locus of P is the polar of the point A.
I. To shew that P lies on the polar of A.

Join OP cutting HK in Q.
Join OA: and in OA produced take the point B,

so that $O A, C B=(\text { radins })^{-1}$ n. 14. Then since \mathbf{A} is fixed, \mathbf{B} is also tixed. Join PB.

Then since HK is the ehord of contaet of tangents from P ,

$$
\begin{array}{rlr}
\therefore O P \cdot O Q & =\text { (radius) } & \text { Ex. I. p. } 23: 3 . \\
B u t O A \cdot O B & =\text { (radius) } \\
\therefore O P \cdot O Q & =O A . O B: &
\end{array}
$$ \therefore the fom points A, B, P, Q are eoneyelic.

\therefore the \angle at Q and B torether $=$ two rt. angles.
But the \angle at \mathbf{Q} is a rt. angle;
111. 29.

Constr.
Coustr.

And since the point B is the inverse of A;
$\therefore P B$ is the polar of A;
that is, the point P lies on the polar of A.
1I. To shew that any point on the polar of A satisfies the given conditions.

Let $B C$ be the polar of A, and let P be any point on it. Draw tangents PH, PK, and let HK be the chord of contact.

Now from lix. 1, p. 366, we know that the chord of contact HK is the polar of P, and we also know that the polar of P must patss throngh A; for P is on BC, the polar of A :

$$
\text { that is, HK passes through } A \text {. }
$$

Ex. $\because, p .367$.
$\therefore P$ is the point of intersection of tangents drawn at the extremities of a chord passing through A.

From I. and II. we conclude that the required locus is the polar of A .

Note. If A is wihout the circle, the theorem demonstrated in lart I. of the above proof' still holds good; but the eonverse theorem in Part II. is not true for all points in BC. For if A is withont the cirele, the polar BC will intersect it; and no point on that part of the polar whieh is within the circle can be the point of intersection of tangents.

We now see that
(i) The Polar of an external point with respect to a circle is the chord of contact of tangents druan from it.
(ii) The Polar of eu internal point is the locus of the intersections: of tangents drown at the extermilies of all chords which pass through it.
(iii). The l'olar of' a point on the cireumference is the tanyent at thent point.

rents from P ,

Ex. I. p. 233. Consti.
yclie.
ngles. 111. 2e. Constr.
f A; Constr.
A.
satisfies the given
oint on it. Draw ct.
rd of eontact HK
rough A ; for P is Ex. 2, p. 367.
lrawn at the ex-
oeus is the polar
demonstrated in converse theorem A is without the on that part of of intersection of
to at circle is the
the intersections: tich pass thromgh
is the tanyent at

The following theorem is known as the Hamonic lroperty of l'ole and Polar.
4. Any straight line drawn throngh a point is ent harmonically by the point, its polar, and the circumference of the circle.

Let $A H B$ be a eirele, P the given point and HK its polar; let Pafl be any straight line drawn through P meeting the polar at q and the ore of the circle at a and b :
then shall P, , $, q, b$ be a harmonie range.

In the ease here considered, P is an external point.

Join P to the eentre O, and let PO eat the $O^{r e}$ at A and B : let the polar of
 P eut the O^{r} at H and K , and PO at Q .

Then PH is a tangent to the © AHB. Ex. 1, p. 36\%.
From the similar tringles $\mathrm{OPH}, \mathrm{HPQ}$,

$$
\begin{gathered}
\mathrm{OP}: \mathrm{PH}=\mathrm{PH}: \mathrm{PQ}, \\
\therefore \mathrm{PQ} \cdot \mathrm{PO}=\mathrm{PH}^{2}
\end{gathered}
$$

$$
=\mathrm{P}_{\mathrm{a}} . \mathrm{P} l \text {. }
$$

\therefore the points $\mathbf{O}, \mathbf{Q}, a, b$ are conevelie:
\therefore the $\angle a \mathrm{QA}=$ the $\angle a b \mathrm{O}$
$=$ the $\angle \mathrm{O} t b$
$=$ the $\angle \mathrm{OQ} b$, in the same segment.

And sinee $Q H$ is wrp. to $A B$,

$$
\therefore \text { the } \angle a \mathrm{QH}=\angle J \mathrm{QH} .
$$

$\therefore Q_{q}$ and $Q P$ are the internal and external biseetors of the $\angle \| Q u$:
$\therefore \mathrm{P}, a, q, b$ is a harmonie range. Ex. $1, p .360$.
The student should investigate for himself the ease when P is an internal point.

Conversely, it mayb be shewn that if through a fixed point P any secant is drawn cutting the circmmerence of a giten circle at a and b, and if q is the harmonic comjugute at P with respect to a, b; then the locus of q is the polar of \mathbf{P} with respect to the given cirele.
[For Examples on lole and Polar, see p. 370.]

1)EFLNITIUN.

A triangle so related to a circle that each side is the polar of the opposite vertex is sitid to be self-conjugate with respect to the circle.

EAAMPLAK ON POLE AND POLAR

1. The stmeight lime which joths ally turo perints is the polar with rexperet to a giren circle of the point of intersection of their polars.
2. The point of intersection of an! turo straight lines is the pole of the straight line whith joins the ir poles.
3. F'ind the locus of the pelds of all straight lines which perso through a gicen point.
4. F'ind the locus of the poles, with respect to a given circle, of tangrouts dianth to a concrutric citole
5. Il turo citcles cut one another orthogomally and PQ be an! diameter of one of them; shew that the polat of P with regard to the other cirele passes throuyh \mathbf{Q}.
6. If turo ciacles cat one another othogomally, the centre of eath "ibele is the pole of their common chord with respret to the other cirche.
7. Au! turo points subtend ut the rentre of a circle an anyle equal to one of the amgles formorl by the polans of the giren points.
8. O is the centre of a given circle, aud AB a dired straight line.

P is any point in AB ; jind the locus of the point inverse en P with resperet to the circle.
9. (xiten a ciarle, and a fixed point O on its circumference: P is any point ou the circle: find the lorus of the point incerse to \mathbf{P} with respect to atuy eircle whose centre is \mathbf{O}.
10. Given two points A and B , and a rivele whose rentre is O ; shew that the rectangle contained by OA and the perpendicnlar from B on the polar of A is equal to the rectangle contained by OB and the perpendicular from A on the polew of B .
11. Four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ ater talirn in ordere on the ciacamperemes "f a circle: DA, CB intewet at $\mathrm{P}, \mathrm{AC}, \mathrm{BD}$ ut Q unt BA, CD in R : shew that the trianyle, PQR is selj-coujugate with respert to the cirele.
12. Gice a linear ronstruction for dindin! the polar of a given point with respect to a giren cirele. Ménse dial a lillear construction jor aranily a tan!apt to a cirrle from an external point.
13. If " triangle is self-conjugate with respect to a circle, the centre of the circle is "t the orthocentre of the triangle.
14. The polars, with respect to a giren circle, of the four points of " harmonia range form "ha'monic pencil: and comrersely.

N゙. ON TUE RADMC:A, JXIS.

tw is the polur with f their polan's.
thimes is the pole of
t lines which putss given circle, of tur-
/ aud PQ lee au! with regutd to the
the centre of each to the ot the circle.
rele' an anule equal points.
red staight lime.
t inverse on P with
ircumfercuce: P is inverse to P with
whose rentre is \mathbf{O}; mondicular from B ad by OB and the
the circumferene ul BA, CD i" R : pect to the circle.
polur of a gircu ucat construction itı.
to a circle, the
the four points of resily.
 tro giren citeles are requi.

Fig. :
Jig. …

Let A and B lee the centres of the given circles, whose radii are a and l; and let P be any point such that the tangent PQ drawn to the circle (A) is equal to the tangent $P R$ drawn to the circle (B) : it is required to find the locus of P.
Join PA, PB, $A Q, B R, A B$; and from P draw $P S$ perp. to $A B$.
Then because $\mathrm{PQ}=\mathrm{PR}, \therefore \mathrm{PQ}^{2}=\mathrm{PR}^{\prime \prime}$.

$$
\text { But } P Q^{2}=P A^{2}-A Q^{2} ; \text { and } P R^{2}=P B^{2}-B R^{2}: \quad \text { I. } 47 .
$$ $\therefore \mathrm{PA}^{2}-A Q^{\prime \prime}=\mathrm{PB}^{2}-\mathrm{BR}^{\prime 2}$;

that is, $\mathrm{PS}^{2}+\mathrm{AS}^{2}-a^{2}=\mathrm{PS}^{2}+\mathrm{SB}^{2}-b^{2} ;$
I. 47. or, $\quad \mathrm{AS}^{2}-a^{2}=\mathrm{SB}^{2}-b^{2}$.

Hence $A B$ is divided at S, so that $A S^{2}-S B^{2}=a^{2}-v^{2}$:

$$
\therefore \mathrm{S} \text { is a pixed print. }
$$

Hence all points from which equal tangents can be drawn to the two circles lie on the straight line which cuts $A B$ at rt. angles, so that the difference of the squares on the segments of $A B$ is equal to the difference of the squares on the radii.

Again, by simply retracing these steps, it may be shewn that in Fig. 1 every point in SP, and in Fig. 2 every point in SP exterior to the circles, is such that tangents drawn from it to the two circles are equal.

Hence we conclude that in Fig. 1 the whole line SP is the required locus, and in Fig, 2 that part of SP which is without the cireles.

In either case SP is said to be the Radical Axis of the two circles.

Conolaner, If the circles cut me another as in Fix. 2 , it is clear that the Radical Axis is identical with the straight line which passes through. the points of iutersection of the circles; for it follows readily from 11I. 36 that tangents drawn to two intersecting circles from any point in the common chorl produced are equal.

Let there be three circles whose eentres are A, B, C.
Let $O Z$ be the radical axis of the $\odot^{*}(A)$ and (B); and OY the Radicar Axis of the $\bigodot^{\prime}(A)$ and (C), O being the point of their intersection:
then shall the radical axis of the $C^{*}(B)$ and (C) pass through O.
It will be found that the point O is pither without or within all the circles.
I. Wien O is withont the circles.

From O draw OP, OQ, OK tangents to the $\cdot{ }^{\circ}(A),(B),(C)$.
Then because O is a point on the radical axis of (A) and (B); Myp.
$\therefore \mathrm{OP}=\mathrm{OQ}$.
And becanse O is a point on the radical axis of (A) and (C),
$\therefore \mathrm{OP}=\mathrm{OR}$,
$\therefore \mathrm{OQ}=\mathrm{OR} ;$
$\therefore O$ is a point on the radical axis of (B) and (C), i.e. the radical axis of (B) and (C) passes through O.
II. If the circles intersect in such a way that O is within them all; the radical axes are then the common chords of the three circles taken two and two; and it is required to prove that these common chords are concurrent. This may be shewn indirectly by III. 35.

Dermanos. The point of intersection of the radieal axes of three circles taken in pairs is called the radical centre.
in Fig. Y. it is clear t line which passess or it follows readily g circles from any
aiss are roncurrent.

A, B, C. and (B); ocing the point of
sthrough 0.
tout or within all
A), (B), (C).
A) and (B) ; Myp.
4) and (C), IIyp.
nd (C),
rough O.
hat O is within
the three circles at these common ly by in. 35.
ical axes of three
3. To draw the rudical axis of tro given cirdes.

Let A and B be the centres of the given cireles: it is required to draw their radical axis.

If the given eireles intersect, then the st. line dawr throngh their points of intersection will be the radical axis. [Ex. 1, Cor. p. 372.]

But if the given circles do not intersect, describe any circle so as to eut them in E, F and G, H; Join EF and HG, and produce them to meet in P. Join $A B$; and from P draw PS perp. to $A B$.
Then PS shall be the radical axis of the © $\mathbb{C}^{4}(A)$, (B).

Definition. If each pair of eircles in a given system have the same radical asis, the eircles are satid to be co-axal.

ENAMPINES.

1. Shew that the radiral aris of tro cireles lisects any one of their rommon tangents.
2. If tangents are drann to tuo circles from any point on their radical axis; shew that a circle described with this point as centre and amy one of the tangents as radins, cuts both the given circles orthoyonally.
3. O is the radical centre of three circles, and from O a tangent OT is dront to any one of them: shew that a circle whose centre is O and radius OT cuts all the given circles orthoyomelly.
4. If three circles touch one another, taken two and two, shew that their common tangents at the points of contact are concorrent,
i. If circles are deservibed on the three sides of a triample as diameter, their rodical centre is the orthocentre of the triangle.
G. All circles which pass throngh a fixed point amd ent a giren cirele orthogonall!, pass thron!lh a secomidi.red point.
5. Find the locus of the centres of all circles which pass thromgh " !ivern point and cut a !iven circle orthogomally.
6. Describe a circle to pass throuth tro giren points and cut a giren circle orthogomally.
7. Find the lachs of the centres of all riveles which cot theo!iven nircles orthogonolly.
8. Describe a circle to pass throm!h a giren point and cut tro giren circles orthogonally.
9. The difference of the squares on the tamgents drawn from any, point to two circles is eqmal to twice the rectangle contained by the straight line joining the ir centres and the perpendicnlar from the !giren point on their radical axis.
10. In a system of co-ncal circles which do not intersert, amy point is taken on the radical axis; shew that a circle deseribed from this. point as centre with radins equal to the tangent drarn from it to amy tue of the circles, will meet the line of centres in tro fixed points.
[These fired points are called thic Limiting Points of the sylstem.]
11. In a system of co-axal circles the tho limiting points and the points in mhich amy one circle of the system cuts the line of centres. form a harmonic range.
12. In a system of co-axal circles a limiting point has the same polar with regard to ali the circles of the system.
13. If tro circles are orthogonal any dimmeter of one is cut harmonically by the other.

Ol:. In the twe following theorems we are to suppose that the segments of straight lines are expressed numerically in terms of some common unit; and the ratio of one such segment to another will be denoted by the fraction of which the first is the numerator and the second the denominator.

V. ON TRANSVFBSALS.

Defrimpos. A straight line drawn to cut a given sistem of limes is called a transversal.

1. If three concurvent straight liu's are droucu fiom the nugular points of a triangle to meet the opposite sides, then the product of three altermate segments talien in order is equal to the product of the othere three segments.

Let $A D, B E, C F$ le drawn from the vertices of the $\triangle A B C t$, intersect at O, and cut the opposite sides at D, E, F:
then shall
$B D . C E \cdot A F=D C \cdot E A . F B$.
By similar triangles it may be shewn that
$B D: D C=$ the alt. of $\triangle A O B$: the alt. of $\triangle A O C$;
similarly,
and

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\triangle \mathrm{AOB}}{\triangle \mathrm{AOC}} \\
& \mathrm{CE}=\triangle \mathrm{BOC} \\
& \mathrm{EA}=\triangle B O A^{-} \\
& \mathrm{AF}=\frac{\triangle C O A}{\triangle C O B} \\
& \mathrm{FB}
\end{aligned}
$$

Multiplying these ratios, we have

The converse of this theorem, which may be proved indirectly, i.s very important: it may be enunciated thus:

If three straight lines arann from the vertices of a triangle cut the opposite sides so that the pronluct of three alternate segments taken in order is equal to the product of the other three, then the three straight lines are concurrent.

$$
\begin{gathered}
\text { That is, if } \mathrm{BD} \cdot \mathrm{CE} . \mathrm{AF}=\mathrm{DC} \cdot \mathrm{EA} . \mathrm{FB} \text {, } \\
\text { then } \mathrm{AD}, \mathrm{BE}, \mathrm{CF} \text { are concurrent. }
\end{gathered}
$$

2. If a transiersal is draten to cut the sitles, or the sidns moduced, of a triantle, the produet of there altermate segmentas taken in ordere is cqual to the prothet of the other there sequments.

Let $A B C$ le a triangle, amt let a transsersal met the sides $B C$, $C A, A B$, or these sides produced, at D, E, F then shall $B D . C E \cdot A F=D C . E A . F B$.
Draw $A H$ par to $B C$, mecting the transversal at H.
'Then from the similar' $\triangle^{*} D B F, H A F$,

$$
\begin{aligned}
& B D=\begin{array}{l}
H A \\
F B \\
A F^{2}
\end{array} .
\end{aligned}
$$

and from the sinilar \triangle " $D C E, H A E$,

$$
\frac{C E}{D C}=\frac{E A}{H A}:
$$

\therefore, by multiplication,

$$
\begin{aligned}
& B D \cdot C E=\frac{E A}{F B} \cdot \frac{A C}{A F} ; \\
& F
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \mathrm{BD} \cdot \mathrm{CE} \cdot \mathrm{AF} \\
& \mathrm{DC} \cdot \mathrm{EA} \cdot \mathrm{FB}=1 .
\end{aligned}
$$

or,
Note. In this theorem the transversal mast either meet two sides and the third side produced, as in Fig. 1; or all three sides produced, as in Fig. 2.

The converse of this Theorem may be proved indirectly:
If three points are talien in turo sides of a triangle and the third side produced, or in all three sides produced, so that the product of three altermate segments taken in order is eqmal to the product of the other three segments, the three points are collinear.

The propositions given on pages 103-106 relating to the concurrence of straight lines in a triangle, may be proved by the mothor of transrersals, and in addition to these the following important theorems may be established,

DFFINITLONS.

(i) two trimgles aro sum that then ntraight limes joinimg comespmeting vertices aro commormet, they are sitill to lee copolar.
(ii) If two triangles are sum that the points of intersection of corvesponding virles are collinear, they ure sill to le co-axial,

 paints of rontart of the inscriberd sirelo (or all! of the three eseribed circles) ais collouriont.
2. The middle points of the diagomals of a commplete qumatrilateral "re' collimeta.
3. Co-polnr triantyls arr also co-arial; and comernsly co-arial triangles are also co-polar.
4. The six centres of similitude of three eircles lie thee by three oin, four stroight limes.

MISCELLANEOUS EXAMPLES ON BOOK VI.

1. Through D, any point in the base of a triangle $A B C$, straight lines $D E, D F$ are drawn parallel to the sides $A B, A C$, and meeting the sides at E, F : shew that the triangle $A E F$ is a mean proportional between the triangles $F B D, E D C$.
2. If two triangles have one angle of the one equal to one angle of the other, and a seeond angle of the one supplementary to a second angle of the other, then the sides about the third angles are proportional.
3. $A E$ bisects the vertical angle of the triangle $A B C$ and meets the base in E; shew that if circles are deseribed about the triangles $A B E, A C E$, the diameters of these eircles are to each other in the same ratio as the segments of the base.
4. Through a fixea point O draw a straight line so that the parts intercepted between O and the perpendiculars drawn to the straight line from two other fixed points may have a given ratio,
is. The nugle A of a nimgle $A B C$ is bisected by AD meeting $B C$ in D, and $A X$ is the median hisecting $B C$: shew that X.D has the same ratio to $X B$ as the difference of the sides has to their smm.
5. $A D$ and $A E$ bisect the vertienl ungle of a triangle internally and externally, meeting the hase in D and $\mathrm{E}_{\text {; }}$ shew that if O is the: middle point of $B C$, then $O B$ is a mean proportional between $O D$ and OE.
6. P and Q are fixed points: $A B$ anl $C D$ we fixed parallel struight lines; any stmight line is drawn from P to mect $A B$ at M, and a straight line is drawn from Q parallel to $P M$ meeting $C D$ at N : shew that the ratio of PM to $Q N$ is eonstant, and thence shew that the straight line through M and N passes throngh a fixed point.
r. C is the middle point of an are of a circle whose chord is $A B ; D$ is any point in the conjugate are: shew that

$$
A D+D B: D C:: A B: A C .
$$

9. In the trimugle $A B C$ the side $A C$ is donble of $B C$. If $C D$, $C E$ bisect the angle $A C B$ internally and extermally meeting $A B$ in D mend E, shew that the areas of the trinngles $C B D, A C D, A B C, C D E$ are as $1,2,3,4$.
10. $A B, A C$ are two chords of a eircle; a line parallel to the tangent at A cuts $A B, A C$ in D and E respectively: shew that the reetangle $A B, A D$ is equal to the rectangle $A C, A E$.
11. If from any point on the hypotenuse of a right-angled triangle perpendiculars are drawn to the two sides, the rectangle contained by the segments of the hypotenuse will be eqmal to the sum of the rectangles contained by the segments of the sides.
12. D is a point in the side $A C$ of the triangle $A B C$, and E is Ω point in $A B$. If $B D, C E$ divide each other into parts in the ratio $4: 1$, then D, E divide $C A, B A$ in the ratio $3^{3}: 1$.
13. If the perpendiculars from two fixed points on a straight line passing between them be in a given ratio, the straight line monst pass through a third fixed point.
14. PA, PB are two tangents to a circle; PCD any ehord through P : shew that the rectangle contained by one pair of opposite sides of the quadrilateral $A C B D$ is equal to the rectangle contained by the other pair.
15. A, B, C are any three points on a circle, and the tangent at A meets $B C$ produced in D : shew that the diameters of the cireles circumseribed about $A B D, A C D$ are as $A D$ to $C D$.
d by AD meeting hew that X.D hats has to their sum.
triangle internally is that if O is the onal between OD
wre tixed parallel to meet $A B$ at M , M meeting CD at and thence shew eh a fixed point.
e whose chord is
of $B C$. If $C D$, meeting $A B$ in D $A C D, A B C, C D E$
parallel to the \because sliew that the
a right-angled s , the rectangle be equnl to the te sides.
$A B C$, nnd E is n rts in the ratio
s on a straight raight line must
y chord through pposite sides of intained by the

1 the tangent at of the circles
16. $A B, C D$ are two diameters of the eircle $A D B C$ at rifht angles to each other, and EF is any chord; CE, CF are drawn meeting $A B$ prodaced in G and H : prove that the rect. $\mathrm{CE}, \mathrm{HG}=$ the rect. EF, CH.
17. From the vertex A of any trimuld $A B C$ draw a line menting EC produced; D so that AD may le a mean proportional between the segments os the lase.
18. Two circles toncli internally at $O ; A B$ a chord of the larger rircle tonches the smaller in C which is cont ly the lines OA, OB in the points P, Q : shew that $O P: O Q: A C: C B$.
19. $A B$ is any chord of a circle; $A C, B C$ are drawn to any point \mathbf{C} in the ciremmference and meet the diameter perpendicular to $A B$ at D, E : if O be the centre, shew that the rect. $O D, O E$ is equal to the spluare on the radius.
20. $Y D$ is a tangent to a circle drawn from a point Y in the Nimeter $A B$ produce 1 ; from D a perpendicular $D X$ is drawn to the dameter: shew that the points X, Y divide $A B$ internally and externally in the same ratio.
21. Determinc a point in the circumference of a circle, from which lines drawn to two other given points shall have a given ratio.
22. O is the centre and $O A$ a radins of a given circle, and V is a fixed point in $O A$; P and Q are two points on the circmaference on opposite sides of A and equidistmit from it; $Q V$ is produeed to meet the cirele in L : shew that, whatever be the length of the are $P Q$, the chord LP will always mect $O A$ prodneed in a fixed point.
23. EA, EA' are diameters of two circles touching each other externally at E; a chord $A B$ of the former circle, when produced, tonches the hatter at C^{\prime}, while a chord $A^{\prime} B^{\prime}$ of the latter tonches the furmer ot C : prove that the reetangle, contained by $A B$ and $A^{\prime} B^{\prime}$, is four times as great as that contaned by BC^{\prime} and $\mathrm{B}^{\prime} \mathrm{C}$.

24 . If a circle be described tonching externally two given cireles, the straight line passing through the points of contact will intersecet the line of centres of the given circles at a fixed point.
25. Two circles tonch externally in \mathbb{C}; if amy pint D be taken witlinut them so that the radii $A C, B C$ unbtend equal angles at D, and $D E, D F$ be tangents to the durles, shew that DC is a mean proportional between DE and DF.

2fi. If throng the midhle print of tho base of a triangle may line be drawn intersecting one mide of the triangle, the other prodnced. burd the line drawn parallel to the bises from thes vertex, it will bes divided harmonically.

If from either base faghle of a trimage n line be drawn isecting the mealian from the vertex, the Opmesites side, mal the lin drawn puralial othe base from the vertex, it will be divided hana. "lically.

2s. Any straight line dman event the mons of mu negle fund its intermal mid extermal hisectors is ent humonienlly:
29. P, Q are hamonic eomjumters of A and B, nud C is an rxternal point: if the augle PCQ is a right moghe, whew that CP, CQ are the intermal and external isectors of the angle $A C B$.
 line moting AB in G , and in stratint line throngh A parilel to the luse in E, so that $C E$ may be to $E G$ in a given ratio.
31. P is a given peint outride the angle fomed by two givan lines $A B, A C$: whew how to draw in shaight line from P such that the patso of it intercepted between P and the lines $A B, A C$ may havo a given ratio.
:30. Through a given point within a given circle, draw a stratht line such that the parts of it interepted between that point and the ciremmerence may have a given ratio. How many sohntions does the problem admit of?
33. If a common tangent be drawn to my umbler of circles which tonch each other intemally, mat from any point of this tambent as a centre a circle be describod, cutting the other circles: and if from this centre lines be drawn thromg the intersections of the circles, the segments of the lines within each circle shall be equal.
31. APB is a quadrant of a circle, $\operatorname{SPT} n$ line tonching it at P; C is the centre, and $P M$ is perpendicula to $C A$; prove that the $\triangle S C T$: the $\triangle A C B$: the $\triangle A C B$: the $\triangle C M P$.
:3.5. $A B C$ is at triangle inseriber in a cireln, $A D, A E$ are lines Grawn to the base $B C$ parallel to the tangents nt B, C respectively; whew that $A D=A E$, mid $B D: C E:: A B^{\prime}: A C^{3}$.
80. $A B$ is the dianeter of a cirche, E the midule point of the radius $O B$; on $A E, E B$ ats diameters circles are deseribel; $P Q L$ is a common tangent tonching the circles at P and Q, and AE poduced al L : shew that $B L$ is equal to the radius of the smather cirche.
of a triangle any he other prodneerd, vertex, it will hes
a line be drawn mite side, and the it will be divided
an mate and it.s

B, mal C is mu hew that CP, CQ ACB.
c, draw a stamight
A parnilel to tha
w two given lines P such that tho , $A C$ may have a

C draw a straight at point and the y solutions does
muler of cireles \because point of this other circles; intersections of lo shall be equal.
meling it at P; we that

$\triangle C M P$.

, $A E$ are lines C respectively;
lle point of the ribeal: $P Q L$ is a ind AE produced li circle.
37. The verticat angle C of a triangle is bisceted by a straight line which meets the base at D, mul is pronaced to a point E, such that the reetumple contained by $C D$ and $C E$ in equal to the rectanglo contained by AC and CB : Hhew that it the base and vertial angle he given, the position of E is inval able.
38. $A B C$ is an isosceles trinngle having the base angles at B and C each domble of the vertion angle: if $B E$ and $C D$ bisect tho bave angles and mese the oplosito sudes int E and D, shew that $D E$ livides the trimgle into figures whose man is eyblal to that ot $A B$ to BC.
39. If AB , the diancter of a somicirale, lie bisected in C and on $A C$ mad $C B$ circles be deseribed, and in the spate betwe the thrme (incmanferences a circle be inseribed, show that its diameter will be to that of the equal circles in the ratio of two to three.
40. O is the centre of a circle inseribed in a quadiateral $A B C D$: a line EOF is drawn mol making equal angles with AD mad BC, mul moetiny them in E mad F respectively: shew that the triangles $A E O$, $B O F$ are similar, and that

$$
A E: E D=C F: F B .
$$

41. From the last exereise deduce the following: Whe inseribed circle of a triangle $A B C$ tonches $A B$ it F; XOY is dawn throngh the centre making equal angles with $A B$ and $A C$, and mecting them in X and Y respectively: shew that $B X: X F=A Y: Y C$.
42. Inseribe a square in a given semicircle.
43. Inseribe a square in a given segment of a eirele.
44. Describe an equilateral triangle equal to a given isosecles triangle.
45. Describe a square having given the difference between a diugonal and a side.
46. Given the vertical mogle, the ratio of the sides containing it, aind the diancter of the circumseribing circle, construct the triangle.
47. Given the vertical mogle, the line bisecting the base, and the angle the bisector makes with the base, construct the triangle.
48. In a given circle inseribe a triangle so that two sides may bass through two given points and the third side be parallel to ic given straight line.
49. In a given circle inseribe a triangle so that the sides may mass through three given points.
50. A, B, X, Y are four points in a straight line, and O is sneh a point in it that the rectangle $O A$, $O Y$ is equal to the rectangle $O B$, $O X:$ it a cirele be described with eentre O and radius equal to a mem proportional between $O A$ and $O Y$, shew that at every point on this circle $A B$ and $X Y$ will subtend equal angles.
51. O is a fixed point, and $O P$ is any line drawn to meet a fixed straight line in P; if on $O P$ a point Q is taken so that $O Q$ to $O P$ is is constant ratio, find the lueus of Q.
52. O is a fixed point, and $O P$ is any line drawn to meet the circumference of a fixed circle in P; it on OP a point Q is taken so that $O Q$ to $O P$ is a constant ratio, find the locus of Q.

5i. If irom a given point two straight lines are drawn including a given angle, and having a fixed ratio, find the loeus of the extremity of one of them when the extremity of the other lies on a fixed straight line.
5.4. On a straight line PAB, two points A and B are marked and the line $P A B$ is mate to revolve round the fixed extremity P. C is a fixed point in the phane in whieh PAB revolves; prove that it CA and $C B$ be joined and the parallelogram CADB be completed, the locus of D will be a circle.
55. Find the locus of a point whose distances from two fixed points are in a given ratio.
iof. Find the locus of a point from which two given circles subtend the same angle.
57. Find the locus of a point such that is distances from two intersecting straight lines are in a given ratio.
58. In the figure on parge 364 , shew that $Q T, P^{\prime} T^{\prime}$ meet on the radical axis of the two eircles.
59. $A B C$ is iny triangle, and on its sides equilateral triangles are lescribed externally: if X, Y, Z are the centres of their inseribed eireles, shew that the triangle $X Y Z$ is equilateral.
60. If S, I are the centres, and R, r the radii of the circumscribed and inseribed circles of a triangle, and if N is the eentre of its minepoints circle,

$$
\begin{aligned}
\text { prove that } & \text { (i) } \mathrm{SI}^{2}=\mathrm{R}^{2}-2 \mathrm{Rr} \\
& \text { (ii) } \mathrm{NI}=!\mathrm{R}-\mathrm{r} .
\end{aligned}
$$

E.stablish corresponding roperties for the escrihed circles, and hence move that the nine-points cireln tonches the inseribed and escribed cimes of a trimgle.
line, and O is such o the rectangle OB, radius equal to a at at every point on
awn to meet a fixed that $O Q$ to $O P$ is
drawn to meet the roint Q is taken so of Q.
are drawn including cus of the extremity es on a fixed straight

I B are marked and tremity P. C is a ; prove that if CA be completed, the
ces from two fixed given circles subdistances from two $\mathrm{P}^{\prime} \mathrm{T}^{\prime}$ meet on the aterul triangles are of their inscribed
f the circumscribed centre of its nine-
circles, and hence iled and escribed

SOLID GEOMLETRY.

EUCLID. BOOK XI.

DEFINITION:

From the Definitions of book I. if will be remembered that
(i) A line is that which has length, without hreadth or thickness.
(ii) A surface is that which has leneth and brealtin, without thickness.
'Lo these definitions we have now to add :
(iii) Spaca is that which has length, brecelth, and thickness.

Thus a line is said to be of one dimension; a surface is said to be of two dinensions; and space is said to be of three dimensions.
The Propositions of Euclid's Eleventh Book here given establish the first principles of the geometry of space, or solid geometry. They deal with the properties of straight lines which are not all in the same plane, the relations which straight lines bear to planes which do not contain those lines, and the relations which two or more planes lear to one another. Unless the contrary is stated the straight lines are supposed to be of indetinite length, and the planes of infinite extent.

Solid geometry then proceeds to discuss the properties of solid figures, of surfaces which are not planes, and of lines which can not be drawn on a plane surface.

> 11. E.

Lines and Planes.

1. A straight line is perpendicular to a plane when it is perpendicular to every straight line which meets it in that plane.

Norm. It will be proved in Proposition 4 that if a straight line is perpendicular to two straight lines which meet it in a plane, it is also perpendicular to every straight line which meets it in that plane.

A straight line drawn perpendicular to a plane is said to be a normal to that plane.
2. The foot of the perpendicular let fall from a given point on a plane is called the projection of that point on the plane.
3. The projection of a line on a plate is the locus of the feet of perpendiculars drawn from all points in the given line to the plane.

Thus in the ahove figure the line al is the projection of the line $A B$ on the plane $P Q$.

It will be proved hereafter (see page 420) that the projection of a straight line on a plane is also a straight line.
4. The inclination of a straight line to a plane is the
o a plane when which meets it
; if a straight line it in a plane, it is ts it in that plane. ne is said to be a
all from a given f that point on
is the locus of points in the

jection of the lino he projection of a acute angle contained by that line and another drawn from the point at which the first line meets the plane to the point at which a perpendicular to the plane let fall from any point of the first line meets the plane.

Thus in tho above figure, if from any point X in the given straight line $A B$, whiel intersects the plane $P Q$ at A, a perpendicular $\mathrm{X} \cdot \mathrm{x}$ is l.t fall on the plane, and the straight line $A \cdot x b$ is drawn from A through x, then the inclination of the straight line $A B$ to the plane $P Q$ is measured by the aeute angle BAb . In other words :-

The inclination of a straight line to a plane is the acute angle contained by the given strajght line and its projection on the plane.

Axrom. If two surfaces intersect one mother, they meet in a line or limes.
\%. The common scction of two intersecting surfaces is the line (or lines) in which they meet.

Notz. It is proved in Proposition 3 that the eommon section of two planes is a straight line.

Thus $A B$, the common seetion of the two planes $P Q, X Y$ is proved to be a straight line.
(i. One platne is prependicular to another plane when (In!) straight line diawn in onte of the planes perpendiculan to the common section is also perpendicular to the other plane.

Thus in the adjoining figure, the plane $E B$ is perpendicular to the plane CD , if any straight line PQ , drawn in the plane EB at right angles to the common section $A B$, is also at right angles to the plane CD.
7. The inclination of a plane to a plane is the acute angle contained by two straight lines drawn from any point in the common section at right angles to it, one in one plane and one in the other:

Thus in the aljoining figure, the straizht line $A B$ is the eommon section of the two intersecting planes $B C, A D$; and from Q , any point in AB , two straight lines QP, QR are drawn perpendieular to $A B$, one in each plane: then the inelination of the two planes is measured by the acute angle PQR.

Note. This definition assumes that the angle PQR is of eonstant marnitude whatever point Q is taken in $A B$: the truth of which assumption is proved in Proposition 10.

The angle formed by the intersection of two planes is called a dihedral angle.

It may be proved that two planes are perpendieular to one another when the dihedral angle formed by them is a right angle.
nother plane when nes perpendicular cular to the other
 perpendicular to the ne plane EB at right right angles to the
olane is the acute n from any point to it, one in one

PQR is of constant the truth of which planes is called a cular to one another t angle.
8. Parallel planes are such as do not neet when produced.
9. A straight line is parallel to a plane if it does not meet the plane when produced.
10. The angle between two straight lines which do not meet is the angle contained lyy two interisecting straight lines respectively parallel to the two non-intersecting lines.

Thus if $A B$ and $C D$ are two straight lines which do not meet, and $a b, b c$ are two intersecting lines parallel respectively to $A B$ and $C D$; then the angle between $A B$ and $C D$ is measured by the angle abc.

11. A solid angle is that which is made by three or more plane angles which have a common vertex, but are not in the same plane.

A solid angle made by three plane angles is said to be trihedral; if made by more than three, it is said to be polyhedral.

A solid angle is sometimes called © corner.

12. A solid figure is any portion of space bounded by one or more surfaces, plane or curved.

These surfaces are called the faces of the solid, and the intersections of adjacent faces are called edges.

Polyhemba.

13. A polyhedron is a solid figure lounded by plane faces.
()hs. A plane rectilincal figure must at least have three sides; or four, if two of the sides are parallel. A polyhedron must at loast lave four faces; or, if two faces are parillel, it must at least have five faces.
14. A prism is a solid figure bounded by plane faces, of which two that are opposite are similar and equal polygons in paralle] planes, and the other faces are parallelograms.

The polygons are called the ends of the prism. A prism is said to be right if the edges formed by each pair of adjacent parallelograms are perpendicular to the two ends; af otherwise the prism is oblique.
15. A parallelepiped is a solid figure bounded by three pairs of parallel plene faces.

Fig. 2.

A parallelepiped may be rectangular as in fig. 1, or oblique as in tig. 2.
16. A pyramid is a solid figure bounded by plane faces, of which one is a polygon, and the rest are triangles having as bases the sides of the polygon, and as a common vertex some point mot in the plane of the polygen.

The polygon is called the base of the pyramid.
A pyramid having for its base a regular polygon is said to be right when the vertex lies in the straight line drawn perpendicular to the base from its central point (the centre of its inseribed or circumscribed circle).
17. A tetrahedron is a pyramid on a triangular base: it is thus contained by four triangular faces.

18. Polyhedra are elassified according to the number of their faces : thus a hexahedron has six faces;
an octahedron has eight faces;
a dodecahedron has tuelve faces.
19. Similar polyhedra are such as have all their solicl angles equal, each to each, and are bounded by the same number of similar faces.
20. A Polyhedron is regular when its faces are similiz. and equal regular polygons.
21. It whll he proved (see page 405) that there can ontly be pire regular polyhedra.

They are detined as follows.
(i) A regular tetrahedron is a solid figure bounded by forer plane faces, which are copual and equilatemal triangles.

(ii) A cube is it solid figure bounded by six plane fices, which are equal squares.

(iii) A regular octahedron is : solid figure bounded ly eight plane faces, which are equal and equilateral triangles.

(iv) A regular codecahedron is a solid figure bounded by twelve plane faces, which are equal and regular pentagons.
(v) A regular icosahedron is is solid figure bomeded by twenty plane faces, which are equal and equilateral triangles.

Solins of Revolution.
22. A sphere is a solid figure described by the revolution of a semicircle about its diameter, which remains fixed.

The axis of the sphere is the fixed straight line about which the semicircle revolves.

The centre of the sphere is the same as the rentre of the scmieircle.

A diameter of a sphcre is any straight line which passes through the centre, and is terminated both ways ly the sarface of the srherc.
23. A right cylinder is a solid figure described by the revolution of a rectangle about one of its sides which rer ains fixed.

The axds of the cylinder is the fixcd straight line about which the rectangle revolves.

The bases, or ends of the cylinder are the circular faces described by the two revolving opposite sites of the rectangle.
24. A right cone is a solid lignme deseribed by the revolution of a rightangled triangle about one of the sides containing the right angle which remains fixed.

The axis of the cone is the fixed straight line about which the triangle revolves.

The base of the cone is the circular face described by that side which revolves.

The hypotenuse of the right-angled triangle in any one of its positions is called a generating line of the cone.
25. Similar cones and cylinders are those which have their axes and the diameters of their bases proportionals.

ne nhout which the scribed by that side in any one of its hose which have proportionals.

Proposition 1. Theorem.

One purt of a stratght line ramont be in ap phane ant allother purie outside it.

If possible, let $A B$, part of the st. line $A B C$, be in the plane $P Q$, and the part $B C$ without it.

Then since the st. line $A B$ is in the plane $P Q$, \therefore it can be produced in that plane. 1. Post. 2.

$$
\text { Produce } A B \text { to } D \text {; }
$$

and let any other plane which passes through AD bo turned about AD until it passes also through C.

Then because the points B and C are in this plame, \therefore the st. line BC is in it: I. Def. 5 . $\therefore A B C$ and $A B D$ are in the same plane and are both st. lines ; which is impossible. 1. Jef: 3 . \therefore the st. line $A B C$ has not one part $A B$ in the plane $P Q$, and another pint BC outside it.
Q.E. J.

Note. This proposition scarcely needs proof, for the truth of it follows almost immediately from the definitions of a straight line
and a plane.

It inculd be observed that the method of proof used in this and the next proposition rests upon the following axiom.

If a plane of unlimited extent turns about a fixed straight line as an axis, it can be made to pass through any point in space.

Proposition 2. Theoblam.

Auy, two straight limes which cut one another are in one phane: curd cen! throe straight limes, of which cach puir inter. sect one another, ure in one plane.

Lat the two st. lines $A B$ and $C D$ intersect at E; and let the st. line $B C$ he drawn cutiong $A B$ and $C D$ at B and C :
then (i) $A B$ and $C D$ shall lie in one planc.
(ii) $A B, B C, C D$ shall lie in one plane. and let this plane be turned about $A B$ until it passes

Then, since C and E are points in this plane,
\therefore the whole st. line CED is in it. I. Def. 5 and XI. 1. That is, $A B$ and $C D$ lie in one plane.
(ii) And since B and C are points in the plane which contains $A B$ and $C D$, \therefore also the st. line $B C$ lies in this plane. Q.E.1.

Cohollary. One, and only one, plane can be made to pass throuyh two given intersecting straight lines.

Hence the position of a plane is fixed,
(i) if it passes through a given straight line and a given point outside it; Ax. p. 393.
(ii) if it passes through two interseeting straight lines;
x1. 2.
(iii) if it passes through three points not collinear ;
xi. 2.
(iv) if it passes through two parallel straight lines.

1. Def. 25.

M.

mothor wre in one che cuch preir inter.

rsect at E;

$A B$ and $C D$ at B
e plane. ephane.
AB;
until it passes
his planc, Def. 5 and xi. 1. lane.
the plane which plane. Q.e.d.
can be made to ines.
and a given point Ax. p. 393. ight lines; XI. 2. near;
xi. 2. 1. Jef. 25.

Probosition B. 'fimorem.

If two plemes cul ane menther theire rommmons section is as straiylet lime.

Let the two planes $X A, C Y$ cut one another, and let BD be their con mon section :
then shall $B D$ be a st. line.
For if not, from B to D in the plane XA draw the st. line. BED;
and in the plane $C Y$ dinw the st. line BFD.
Then the st. lines BED, BFD have the same extremities;
\therefore they include a space;
hut this is impossible.
\therefore the common section BD cannot be otherwise than a st. line.
Q.E.U.

Or, more brictly thus-
Let the planes XA, CY cut one another, and let B and D be two points in their conmon section.
Then because B and D are two points in the plane $X A$, \therefore the st. line joining B, D lies in that plane. I. Def. i. And because B and D are two points in the plane CY,
\therefore the st. line joining B, D lies in that plane.
Hence the st. line BD lies in both planes, and is therefore their common section.
That is, the common section of the two planes is a straight
line. Q.E. D.

Proposition 4. Tineorem. [Alternative Proof.]
If a straight line is perpendicular to each of two straight lines at their point of intersection, it shall also be perpendicular to the plane in which they lie.

Let the straight line $A D$ be perp. to each of the st. lines $A B, A C$ at A their point of intersection:
then shall $A D$ be perp. to the plane in which $A B$ and AC lie.

Produce DA to F, making AF equal to DA.
Draw ally st. line $B C$ in the plane of $A B, A C$, to cut $A B, A C$ at B and C;
and in the same plane draw through A any st. line $A E$ to cut BC at E.

It is required to prove that $A D$ is perp. to $A E$.
Join DB, DE, DC ; and FB, FE, FC.
Then in the $\therefore{ }^{8} B A D, B A F$, because $D A=F A$,

Constr. and the common side $A B$ is perp. to DA, FA :

$$
\therefore B D=B F .
$$

I. 4.

Similarly $C D=C F$.
Now if the $\triangle B F C$ be turned about its base $B C$ until the vertex F comes into the plane of the $\triangle B D C$,
then F will coincide with D,
since the conterminous sides of the triangles are equal. 1. 7 .
$\therefore E F$ will coincide with ED, that is, $E F=E D$.
native Proof.]
ch of two straight all also be perpeneach of the st. il:
n which $A B$ and

DA.

f $A B, A C$, to cut st. line AE to cut to AE .
FC.

Constr. ODA, FA:
I. 4.
its base BC until $\triangle \mathrm{BDC}$,
es are equal. i. 7. D,

Hence in the \triangle^{*} DAE, FAE, since $D A, A E, E D=F A, A E, E F$ respectively,
\therefore the $\angle D A E=$ the $\angle F A E$.
I. 8 .

That is, DA is perp. to AE.
Similarly it may be shewn that DA is perp, to every st. line which meets it in the plane of $A B, A C$;
\therefore DA is perp. to this plane.
Q.E.E.

Proposition 4. Theorem. [Euclid's Proof.]

If a straight line is perpendicular to ench of noo straight lines at their point of intersection, it shall also be perpendicular to the plane in which they lie.

Let the st. line $E F$ he parp. to each of the st. lines $A B, D C$ at E their point of intersection :
then shall EF be also perp. to the plane $X Y$, in which $A B$ and $D C$ lie.

Make EA, EC, EB, ED all equal, and join $A D, B C$.
Through E in the plane XY draw any st. line cutting $A D$ and $B C$ in G and H.

Take any pt. Fin EF, and join FA, FG, FD, FB, FH, FC. Then in the \triangle^{s} AED, BEC,
because $A E, E D=$ 은, 드 respectively, and the $\angle A E D=$ the $\angle B E C$; Corstro. I. 15. I. 4 .

In the $\triangle^{*} A E G, B E H$,
because the $\angle G A E=$ the -HBE ,
Proved. and the $\angle A E G=$ the $\angle B E H$, and $E A=E B$;
I. 15.

Constr.
$\therefore E G=E H$, and $A G=B H$.
Again in the $\triangle{ }^{s}$ FEB, FEB, because $E A=E B$,
and the common side $F E$ is per. to $E A, E B$;
$\therefore F A=F B$.
Similarly $F C=F D$,
Again in the $\triangle^{s} D A F, C B F$,
because DA, AF, $\mathrm{FD}=\mathrm{CB}, \mathrm{BF}, \mathrm{FC}$, respectively,
\therefore the $\angle \mathrm{DAF}=$ the $\angle \mathrm{CBF}$.
And in the \triangle^{s} FAG, $F B H$,
because $F A, A G,=F B, B H$, respectively, and the $-\mathrm{FAG}=$ the $\angle \mathrm{FBH}$, $\therefore F G=F H$.

Lastly in the $\triangle^{8} F E G, F E H$,
because $F E, E G, G F=F E, E H, H F$, respectively,
\therefore the $-\mathrm{FEG}=$ the $\angle \mathrm{FEH}$;
I. 8.
that is, $F E$ is pere. to $G H$.
Similarly it may be shewn that FE is perv. to every st. line which meets it in the plane $X Y$.
$\therefore F E$ is per. to this plane.

Proposition 5. Theorem.
If a straight line is propematicutur to evert of there concurrent straight lines at their point of intersection, these three straight lines shall lo in one plane.

Let the straight line $A B$ be perpendicular to each of the straight lines $B C, B D, B E$, at B their point of intersection:
then shall $B C, B D, B E$ be in one plane.
Let $X Y$ be the phone which passes through $B E, B D ; x I .9$.
and, if possible, suppose that $B C$ is not in this plane.
Let $A F$ be the plane which pisses through $A B, B C$; and let the common section of the two planes $X Y, \wedge F$ be the st. line CF xI. 3.

Then since $A B$ is perv, to $B E$ and $B D$, and since $B F$ is in the same plane as $B E, B D$,
$\therefore A B$ is also perp. to $B F$.
xi. 4.

But $A B$ is pere. to $B C$;
lisp.
\therefore the $\angle A B F, A B C$, which are in the same plane, are both rt. angles; which is impossible.
$\therefore B C$ is not outside the plane of $B D, B E$: that is, $B C, B D, B E$ are in one plane.
Q.E.D.
II. E.

Proposition 6. Theorems.

If two straight limes are perpendicular to the same plane, they shall be pereelle to one murther.

Let the st. lines $A B, C D$ be perk. to the plane $X Y$: then shall $A B$ and $C D$ be par!.*
Let $A B$ and $C D$ meet the plane $X Y$ at B and D. Join BD;
and in the plane $X Y$ draw $D E$ per. to $B D$, making $D E$ equal to $A B$.

$$
\text { Join } B E, A E, A D \text {. }
$$

Then since $A B$ is perv. to the plane $X Y$, II! $/$. $\therefore A E$ is also perv. to $B D$ and $B E$, which meet it in that plane;
that is, the \angle " $A B D, A B E$ are rt. angles.
Similarly the - ${ }^{4}$ CDC , CDE are rt. angles.
Now in the $\triangle^{s} A B D, E D b$,
because $A B, B D=E D, D B$, respectively, Constr. and the $-A B D=$ the $\angle E D B$, being rt. angles;

$$
\therefore A D=E B .
$$

I. 4.

Again in the $\triangle^{8} A B E, E D A$, because $\mathrm{AB}, \mathrm{BE}=\mathrm{ED}, \mathrm{DA}$, respectively, and $A E$ is common ;
$\therefore \mathrm{tl} \mathrm{e}-\mathrm{ABE}=$ the $-E D A$.

* Note. In order to shew that $A B$ and $C D$ are parallel, it is necessary to prove that (i) they are in the same plane, (ii) the angles $A B D, C D B$, are supplementary.
to the same plane,
the plane $X Y$:
r^{1}.*
at B and D.
$B D$, making $D E$
me XY, II! \quad. meet it in that xi. Def. 1. angles.
t. angles.

B,
actively, Constr. rt. angles;
I. 4.
,
actively,

D are parallel, it is plane, (ii) the angles

But the $\angle A B E$ is a rt. angle; Proved.
\therefore the $\angle E D A$ is a rt. angle.
But the $\angle E D B$ is a it. angle by eonstruetion, and the $\angle E D C$ is it lit. :angle, since $C D$ is perp. to the plane $X Y$.

Hence ED is perv. to the three lines DA, DB, and DC;
\therefore DA, DB, DC are in one plane. xi. 5.
But $A B$ is in the plane which contains DA, DB ; xI. 2.
$\therefore A B, B D, D C$ are in one plane.
And each of the $\angle^{s} A B D, C D B$ is a rit. angle; $I I y p$. $\therefore A B$ and $C D$ are par ${ }^{1}$. I. 28. Q.E.D.

Proposition 7. Theorem.

If two straight lines are parallel, the straight line which joins any point in one to any point in the other is in the same plane as the parallels.

Let $A B$ and $C D$ be two parr ${ }^{1}$ st. lines, and let E, F be any two points, one in each st. line :
then shall the st. line which joins E, F be in the same plane as $A B, C D$.

For since $A B$ and $C D$ are par', \therefore they are in one plane.

1. Def. 25.

And since the points E and F are in this plane, \therefore the st. line which joins them lies wholly in this plane.

$$
\text { 1. Def. } 5
$$

That is, EF is in the plane of the paris $A B, C D$.

Proposition 8. Theorem.

If two straight lines wre parallel, and if one of them is perpenticular to a plane, then the other shatl also be perprenticutur' to the sume phene.

Let $A B, C D$ be two parr st. lines, of which $A B$ is perp. to the plane $X Y$:
then CD shall also be perp. to the same plane.
Let $A B$ and $C D$ meet the plane $X Y$ at the points B, D. Join BD;
and is the plane $X Y$ draw $D E$ perp. to $B D$, making $D E$ equal to AB .

$$
\text { Join } B E, A E, A D \text {. }
$$

Then because AB is perp, to the plane XY, IIyp. $\therefore A B$ is also perp. to $B D$ and $B E$, which meet it in that plane;
that is, the $\angle{ }^{s} A B D, A B E$ are 1 t. angles.
Now in the $\triangle^{s} A B D, E D B$,
lecause $\mathrm{AB}, \mathrm{BD}=\mathrm{ED}, \mathrm{DB}$, respectively, Constr. and the $\angle A B D=$ the $\angle E D B$, being rt. angles;

$$
\therefore A D=E B .
$$

I. 4.

Again in the $\triangle^{9} A B E, E D A$, lecause $A B, B E=E D, D A$ respectively, and $A E$ is common ;
\therefore the $\angle A B E=$ the $\angle E D A$.

But the $\angle A B E$ is a rit. angle; I'roced. \therefore the $\angle E D A$ is a rt. angle: that is, ED is perp. to DA.
But ED is also perp. to $D B$:
Comestr:
\therefore ED is perp. to the plane containing $D B, D A$. xr. 4 And DC is in this plane; for both $D E$ and $D A$ are in the plane of the parss $A B, C D$.
x. 7
\therefore ED is also perp. to DC ;
x, Ief. 1. that is, the $\angle C D E$ is it rt. angle. Again since $A B$ and $C D$ are par', and since the $\angle A B D$ is a rt . angle, \therefore the $\angle C D B$ is also a rt. angle.
r. 29. $\therefore C D$ is perp. both to $D B$ and $D E$;
$\therefore C D$ is also perp, to the plane $X Y$, which contains DB, DE.

X1, 1. Q.12.1).

にNERCHES.

1. The perpendicular is the least straight line that can lo drawn from an external point to a plane.
2. Equal straight lines drawn from an external point to a plane are equally inclined to the perpendicular drawn from that point to the plane.
3. Shew that two observations with a spirit-level are sufficient to determine if a plame is horizontal: and prove that for this purpose the two positions of the level must not be parallel.
4. What is the locus of points in space which are equidistant from two fixed points?
5. Shew how to determine in a given straiglt line the point which is equidistant from two fixed points. When is this imposcible?
6. If a straight line is parallel to a plane, shew that any plane passing through the given straight line will have with the given plane a common section which is puallel to the given straight line.

Proposition 9. Theorem.
Troo straight lines which are parallel to a thired straight line are parallel to one another.

Let the st. lines $A B, C D$ be each part to the st. line $P Q$: then shall $A B$ he par' to $C D$.
I. If $A B, C D$ and $P Q$ are in one plane, the proposition has already been proved.
I. 30 .
II. But if $A B, C D$ and $F Q$ are not in one plane, in $P Q$ taks any point G;
and from G, in the plane of the par $A B, P Q$, draw $G H$ perp. to $P Q$;
I. 11. also from G, in the plane of the paria $C D, P Q$, draw GK perp. to PQ.
I. 11.

Then because PQ is perp. to GH and GK, Constr.
$\therefore P Q$ is perp, to the plane HGK, which contains them.
But $A B$ is par to $P Q$;
$\therefore A B$ is also perp. to the plane HGK. Similarly, $C D$ is perp. to the plane HGK.
Hence $A B$ and $C D$, being perp. to the same plane, are par ${ }^{1}$ to one another.

Proposition 10. Theorem.

If two intersecting straight lines are respletively parallel to two cter intersecting straight lives not in the same plame with them, then the first puir and the serom puir shall contain equial angles.

Let the st. lines $A B, B C$ be respectively par to the st. lines DE, EF, which are not in the smme plane with them: then shall the $\angle A B C=$ the $\angle D E F$.

In $B A$ and $E D$, make $B A$ equal to $E D$; and in $B C$ and $E F$, make $B C$ equal to $E F$.

Join AD, BE, CF, AC. DF.
Then because BA is equal and par' to ED, II!gp. and Constr:
$\therefore A D$ is equal and par to $B E$.
I. 33.

And because BC is equal and par to EF,
$\therefore C F$ is equal and par to $B E$.

1. 33.

$\therefore A D$ is equal and par to $C F$;
xi. 9.
hence it follows that $A C$ is equal and pari to DF. I. 33.
Then in the $\triangle^{*} A B C, D E F$,
because $A B, B C, A C=D E, E F, D F$, respectively,
\therefore the $\angle A B C=$ the $\angle D E F$,

1. 8.

Q.E.D.

loborosition 11 . Problem.

TIu derren at straight line perpendicular to a given plane from se given paine ontsicles it.

Let A be the given point outside the plane $X Y$.
It is required to draw from A a st. line pere. to the plane: $X Y$.

Draw any st. line BC in the plane $X Y$;
and from A draw $A D$ pere. to $B C$.
I. 12.

Then if $A D$ is also pere. to the plane $X Y$, what was required is tone.

But if not, from D draw $D E$ in the plane $X Y$ perm. to EO :
I. 11.
and from A draw $A F$ pert. to $D E$.
I. 12 .

Then AF shall be perp. to the plane $X Y$.
Through F draw FH par to BC.
I. 31.

Now because CD is peri. DA and DE, Constr.
$\therefore C D$ is pere, to the plate containing DA, DE. XI. 4. Ind HF is par to CD ;
$\therefore H F$ is also per. to the plane containing DA, DE.
XI. 8.

And since FA meets HF in this plane,
\therefore the $\angle H F A$ is a rt. ingle;
x. Def. 1.
that is, AF is pere. to FH.
And $A F$ is also perv. to $D E$;
$\therefore A F$ is perv. to the plane containing $F H, D E$;
tina is, AF is pert. to the plane $X Y$.
Q.E.F.

Phoposition 12. Probrim.

To drome se strceight lime perpendientare to a giren pleme fiom ere given point in the plane.

Let A be the given point in the plane $X Y$.
It is required to draw from A a st. line perp, to the plane XY.

From any point B outside the phane $X Y$ draw $B C$ perp. to the plane.
xi. 11.

Then if BC passes through A, what was required is done.
lut if not, from A draw $A D$ par to $B C$. I. 31.
'Then AD shall he the perpendicular required.
For since BC is perp, to the plane XY, C'onstr: and since $A D$ is par to $B C$, Constr.
$\therefore \wedge D$ is also perp. to the plane $X Y$. XI. \&.
Q.E.F.

EXIPR'ISES.

1. Equal straight lines drawn to mest a plane from a point without it are equally inclined to the plane.
2. Find the locus of the foot of the perpenilicular drawn from a given point upon any plane which passes through a given straight line.
3. From a given point A a perpendicular $A F$ is drawn to a plane $X Y$; and from $F, F D$ is drawn perpenticular to $B C$, any line in that plane: shew that $A D$ is also perpendicular to $B C$.

Proposition 13. Theorem.

Only one perpendicular rens be drawn to a given plane from " yiven point either in the pleno or ontside it.

Case I. Lat the given point A be in the given plane $X Y$; and, if possible, let two perps. $A B, A C$ be drawn from A to the plane $X Y$.

Let $D F$ he the plane which contains $A B$ and $A O$; find let the st. line DE be the common section of the planes DF and $X Y$.

Then the st. lines $A B, A C, A E$ are in one plane.
And because BA is perp. to the plane XY, XI. 3. that is, the $-B A E$ is in rt. angle. xi. Def. 1. Similarly, the $\angle C A E$ is a rt. angic.
\therefore the $\angle{ }^{s} B A E, C A E$, which are in the same plane, are equal to one another.

Which is impossible.
\therefore two perpendiculars cannot be drawn to the plane XY from the point A in that plane.
Case IT. Let the given point A be outside the plane $X Y$.
Then two perps cannot be drawn from A to the plane ;
for if there could be two, they would be par', yr. ©. which is absurd.
Q.E.D.

Proposition 14. Theorem.

Plenes to which the same stroight line is perpendicular are parallel to one another.

Let the st. line $A B$ be perp. to each of the plames $C D, E F$: then shall these planes be par'.
For if not, they will meet when prorluced.
possible, let the two planes meet, and let the st. line GH be their common section.
xI. 3.

In GH take any point K ; and join AK, BK.
Then hecause $A B$ is perp. to the plane EF,
$\therefore A B$ is also perp. to $B K$, which meets it i^{t} 'his plame; xi. D (f. 1.
that is, the $\angle A E K$ is a r. angle.
Similarly, the BAK is a r't. angle.
\therefore in the $\triangle K A B$, the $+=-1 B K, B A K$ are together equal to two rt. iugles;
which is impossible.

1. 17.

\therefore the planew $C D, E F$, though prorlncel, do not meret :
that is, they are parr.
Q.E.D.

Proposition 15. Theorem.

If tuo intersec!iny straight lines are parallel, respectively In two other inlonspctiuss strolight lines which are not in the same plane with them, then the plane containing the first pair shall be prevallel to the plane containing the second pair.

Let the st. lines $A B, B C$ be respectively par to the s.t. lines $D E, E F$, which are not in the same plane as $A B, B C$:
then shall the plane containing $A B, B C$ be par to the plane containing DE, EF.

From B diaw BG perp. to the plane of DE, EF ; and let it meet that plane at G. Through G draw $G H$, GK par ${ }^{2}$ respectively to DE, EF. I. 31.

Then because $B G$ is perp. to the plane of $D E, E F$, $\therefore B G$ is also perp. to $G H$ and $G K$, which meet it in that plane :
that is, each of the $\angle{ }^{s} B G H, B G K$ is a rt. angle.
Now hecause BA is par to ED, and because GH is also par ${ }^{2}$ to ED,
$\therefore B A$ is par ${ }^{1}$ to $G H$.
And since the $\angle B G H$ is a at. angle:
\therefore the $\angle A B G$ is a r t. angle.
Constr. XI. 9. Similarly the $\angle C B G$ is a it. angle.

Then since BG is pert. to each of the st. lines BA, BC,
$\therefore B G$ is perp. to the plane containing them. xi. 4. But BG is also perv. to the plane of ED, EF: Constr: that is, BG is peep. to the two planes AC, DF:

$$
\therefore \text { these planes are par'. }
$$

Q.e.D.

Proposition 16. Theorem.
If two parallel planes are cut by a third plane their common sections with it shall be parallel.

Let the par' planes $A B, C D$ be cut by the plane EFHG, and let the st. lines EF, GH be their common sections with it :

> then shall EF, GH be par'.

For if not, EF and GH will meet if produced.
If possible, let them meet at K .
Then since the whole st. line EFK is in the plane AB, xi. 1.
\therefore and K is a point in that line,
\therefore the point K is in the plane $A B$.
Similarly the point K is in the plane CD.
Hence the planes AB, CD when produced meet at K; which is impossible, since they are par!.
\therefore the st. lines EF and GH do not meet; and they are in the same plane EFHG;

$$
\therefore \text { they are par!. }
$$

i. Def. 25.
Q.E.D.

Proposition 17. Theorem.

Straight lines which are cat by parallel planes are cut proportionally.

Let the st. lines $A B, C D$ be cut by the three par' planes GH, KL, MN at the points A, E, B, and C, F, D :
then shall $A E: E B:: C F: F D$.
Join AC, BD, AD;
and let $A D$ meet the plane $K L$ at the point X : join EX, XF.
Then because the two par planes KL, MN are cut by the plane $A B D$,
\therefore the common sections EX, BD are par ${ }^{1}$. XI. 16 . and because the two par planes $G H$, KL are cut by the plane DAC,
\therefore the common sections XF, AC are par'. xi. 16 . And because EX is par to $B D$, a side of the $\triangle A B D$, $\therefore A E: E B:: A X: X D$.
vi. 2.

$$
\begin{array}{r}
\text { Again because } X F \text { is par' to } A C \text {, a side of the } \triangle D A C, \\
\therefore A X: X D:: C F: F D . \\
\text { Hence } A E: E B:: C F: F D . \\
\text { Q.E.D. }
\end{array}
$$

Definition. One plane is perpendicular to another plane, when any straght line drawn in one of the planes perpendicular to their common section is also perpendicular to the other plane.
[Book xi. Def. 6.]

Propustrion 18. Theorem.

planes are cut
If a straight line is perpenticular to "plene, then every plane which passes thronyl the straight line is also perpendicular to the given phane.

Let the st. line $A B$ be perp. to the plane $X Y$; and let $D E$ be any plane passing through $A B$:
then shall the plane DE be perpo to the plane XY.
Let the st. line CE be the common section of the planes XY , DE.
xi. 3.

From F, any point in $C E$, draw $F G$ in the plane $D E$ perp. to CE.
I. 11 .

Then because $A B$ is perp. to the plane $X Y$, Hyp. $\therefore A B$ is also perp. to $C E$, which meets it in that plane, xi. Def. 1.
that is, the $\angle A B F$ is a rt . angle.
But the $\angle \mathrm{GFB}$ is also a rt. angle; Constr. \therefore GF is par to AB. I. 28.
And AB is perp. to the plane XY, IIyp. $\therefore G F$ is also perp. to the plane $X Y$. XI. 8 .
Hence it has been shewn that any st. line GF drawn in the plane DE perp. to the common section CE is also perp. to the plane XY.
\therefore the plane DE is perp, to the plane XY. xi. Def. 6 .
Q.E.D.

EXERCISE.

Shew that two planes are perpendicular to one another when the dihedral anyle formed by them is a right angle.

Proposition 19. Theorem.

If two intersecting platues are each perpendicular to a third plane, their common section shall also be perpendicular. to that plane.

Let each of the planes $A B, B C$ be perp. to the plane $A D C$, and let $B D$ be their common section :
then shall $B D$ be perp. to the plane $A D C$.
For if not, from D draw in the plane $A B$ the st. line $D E$ perp. to $A D$, the consmon section of the planes $A D B, A D C$:
I. 11 .
and from D draw in the plane $B C$ the st. line $D F$ perp. to $D C$, the common section of the planes $B D C, A D C$.

Then because the plane BA is perp. to the plane ADC, IIIf. and $D E$ is drawn in the plane $B A$ perp. to $A D$ the common section of these planes, Constr. \therefore DE is perp. to the plane ADC. xi, Def. 6 . Similarly DF is perp. to the plane ADC.
\therefore from the point D two st. lines are drown perp. to the plane ADC ; which is impossible. xi. 13 . Hence DB cimmot be otherwise than perp. to the plane ADC.
Q.!.!

Proposition 20. Theorem.

Of the three phane angles which form a trihedrab anyle, any two are together greater than the thirel.

Let the trihedral angle at λ be formed ly the three plane $\angle{ }^{8} B A D, D A C, B A C$:
then shall any two of them, such as the $\angle^{s} B A D$, DAC, be together greater than the third, the $\angle B A C$.
Cass I. If the $\angle B A C$ is less than, or equal to, either of the $\angle^{8} B A D, D A C$;
it is evident that the \angle^{8} BAD, DAC are together greater than the $-B A C$.
Case II. But if the $\angle B A C$ is greater than either of the $-{ }^{8}$ BAD, DAC ;
then at the point A in the plane $B A C$ make the $\angle B A E$ equal to the $\angle B A D$; and cut off AE equal to AD.
Through E, and in the plane BAC, draw the st. line BEC cutting $A B, A C$ at B and C : join DB, DC.
Then in the \triangle^{s} bAD, BAE,
since $B A, A D=B A, A E$, respectively, Constr. and the $\angle B A D=$ the $\angle B A E ; \quad$ Constr. $\therefore B D=B E$. I. 4 .

Again in the $\triangle B D C$, since $B D, D C$ are together greater than BC,
I. 20.

Proved.
$\therefore D C$ is greater than EC.
11. \mathbf{E}.

27

And in the \triangle^{s} DAC, EAC,
hecause DA, AC = EA, AC respectively, Constr. but DC is greater than EC ; Proved.
\therefore the $\angle D A C$ is greater than the $\angle E A C$.
But the $\angle B A D=$ the $\angle B A E$;
\therefore the two \angle BAD, DAC are together greater than the

Proposition 21. Theorem.
Livery (convea') solid angle is formed by plane angles which are toyethor less than forer right anyles.

Let the solid angle at S be formed by the plane $\angle{ }^{8} A S B$, BSC, CSD, DSE, ESA : then shall the sum of these plane angles be less than four r t. angles.

For let a plane $X Y$ intersect all the arms of the plane angles on the same side of the vertex at the points A, B, C, D, E : and let $A B, B C, C D, D E, E A$ be the common sections of the plane $X Y$ with the planes of the several angles.

Within the polygon $A B C D E$ take any point O;
and join O to each of the vertices of the polygon.
Then since the $\angle s$ SAE, SAB, EAB form the trihedral angle A,
\therefore the $\angle{ }^{s} S A E, S A B$ are together greater than the $-E A B$;

that is,

the $\angle{ }^{B} S A E, S A B$ are together greater than the $\angle{ }^{*} O A E, O A B$.

Similarly,

the $-{ }^{8}$ SBA, SBC are together greater than the $-{ }^{8} O B A, O B C$: and so on, for each of the angular points of the polygon.

Thus by addition, the sum of the base angles of the triangles whose vertices are at S, is greater than the sum of the base angles of the triangles whose vertices are at 0 .
But these two systems of triangles are equal in mumber ; \therefore the sum of all the angles of the one system is equal to the sum of all the angles of the other.
It follows that the sum of the vertical angles at S is less than the sum of the vertical angles at 0 .

But the sum of the angles at O is four rt. angles;
\therefore the sum of the angles at S is less than four rt. in_{2} 'les.
Q.F، 1.

Note. This proposition was not given in this form by Euclid, who established its truth only in the case of trihedral angles. The above demonstration, however, applies to all cases in which the polygon ABCDE is convex, but it must be observed that without this condition the proposition is not necessarily true.

A solid angle is convex when it lies entirely on one side of each of the infinite planes whieh p. ss through its plane angles. If this is the case, the polygon $A B C D E$ will have no, re-entrant angle. And it is clear that it would not be possible to apply xi. 20 to a vertex at which a re-entrant angle existed.

Gixerchsis on Book Nit.

1. Equal straight lines drawn to a plane from a point without it have equal projections on that plane.
2. li' S is the centre of the circle circumscribet about the triangle $A B C$, and if $S P$ is drawn propembicular to the plane of the triangle, shew that any point in $S P$ is equidistant from the vertices of the thanme.
3. Find the locns of points in space equidistant from three givon points.
4. From Example 2 deduce a practical method of drawing a perpendicnlar from a given point to a plane, having given ruler, compasses, and a straight lod longer than the required perpendienlar.
5. (ive a peometrical construction for drawing a straight line crually inclined to three straight lines which meet in a point, but are not in the sime plane.
6. In a gauche quantrilateral (that is, a quadrilateral whose sides ore not in the same plane) if the mirdle points of adjacent sides are joined, the figure thus formed is a parallelogram.
7. $A B$ and $A C$ are two straight lines intersecting at right angles, ond from B a perpendicular $B D$ is drawn to the plane in which they are: shew that $A D$ is perpendienlar to $A C$.
8. If two intersecting planes are eut by two parallel planes, the lines of section of the first pair with each of the seeond pair eontain equal ang!ci.
9. If a strairht line is parallel to a plane, shew that any plane passing thougla the given straight line will intersect the given plane in a line of seetion which is parallel to the given line.
10. Two intersecting planes pass one through each of two parallel straght lines; shew that the common section of the planes is parallel to the given lines.
11. If a straight line is parallel to each of two intersecting planes, it is also parallel to the common section of the planes.
12. Through a given point in spaee draw a straight line to intersect each of two given straight lines which are not in the same plane.
13. If $A B, B C, C D$ are straight lines not all in one plane, shew that a plane which passes through the middle point of each one of them is parallel both to AO aml ED.
14. From a given point A a perpendicular $A B$ is drawn to a plane $X Y$; and a second perpendicnlar $A E$ is drawn to a straight line CD in the plane $X Y$: shew that $E B$ is perpendicular to $C D$.
Li. From a point A two perpendiculns $A P, A Q$ are trawn the to each of two intersecting planes: shew that the common section of these planes is perpendicular to the plane of AP, AQ.
15. From A, a point in one of two given intersecting planes, $A P$ is drawn perpendieular to the first plane, and $A Q$ pernendicular to the sccond: if these perpendiculars meet the secon: plano at P and Q, shew that $P Q$ is perpendieular to the common section of the two planes.
16. A, B, C, D are four points not in one plane, shew that the four angles of the gauche quadrilateral $A B C D$ are together less than four right angles.
17. $O A, O B, O C$ ire three straight lines drawn from a given point O not in the same plane, and $O X$ is another straight line within the solid angle formed by OA, OB, OC : shew that
(i) the sum of the angles $A O X, B O X, C O X$ is greater than half the sum of the angles $A O B, B O C, C O A$.
(ii) the sum of the angles $A O X, C O X$ is less than the sum of the angles $\mathrm{AOB}, \mathrm{COB}$.
(iii) the sum of the angles $A O X, B O X, C O X$ is less than the sum of the angles $A O B, B O C, C O A$.
18. $O A, O B, O C$ are three straight lines forming a soli 1 angle at O, and $O X$ biscets the plane angle $A O B$; shew that the angle $X O C$ is less than half the sum of the anyles $A O C, B O C$.
19. If a point be equidistant from the angles of n right-anglen triangle and not in the plane of the triangle, the line joining it with the middle point of the hypotenuse is perpendieular to the plane of the triangle.
20. The angle which a straight line makes with its projection on a plane is less than that which it makes with any other straight line whieh meets it in that plane.
21. Find a point in a given plane such that the sum of its distances from two given points (not in the plane bint on the same side of it) may be a minimum.
22. If two straight lines in one plane aro equally inclined to another plane, they will be equally inclined to the common section of these planes.
23. PA, PB, PC are three concurrent straight lines each of which is at right angles to the other two: $\mathrm{PX}, \mathrm{PY}, \mathrm{PZ}$ are perpendiculars drawn from P to $B C, C A, A B$ respcetively. Shew that $X Y Z$ is the pedal triangle of the triangle $A B C$.
24. PA, PB, PC are three coneurrent straiglit lines each of whieh is at right angles to the other two, and from P a perpendicular $P O$ i; drawn to the plane of $A B C$: shew that O is the orthocentre of the triangle $A B C$.

'THEOREMS $\triangle N D$ FINAMPLEA ON BOOK XI.

Definitions.

(i) Lines which are drawn on a plane, or through which a plane may be made to pass, are said to bo co-planar.
(ii) The projection of a line on a plane is the locus of the feet of perpendiculars drawn from all points in the given line to the plane.

Theonem 1. The projection of a struight line on a plane is itself a straight line.

Let $A B$ be the given st. line, and $X Y$ the given phane.
Vrom P, any point in $\triangle B$, draw P_{p} perp. to the plane $X Y$:
it is required to shew that the locus of p is a st. line.
From A and B draw $A d, B l$ perp, to the plane $X Y$
Now since $A c, P_{p}, B b$ are all perp, to the plane $X Y$,

$$
\therefore \text { they are pari. }
$$

xr. 6.
And since these parrs all intersect $A B$,
\therefore they are co-planar.
xi. 7.
\therefore the point p is in the common section of tho planes $A l, X Y$;
that is, p is in the st. line $a b$.
But p is any point in the projection of $A B$,
\therefore the projection of $A B$ is the st. line $a b$.
Q.E.D.

Theonem 2. Draw a perpendicular to cach of two stoaight lines which are not in the same planc. Irove that this perpendicular is the shortest distance between the two lines.

Let $A B$ and $C D$ be the two straight lines, not in the same plane.
(i) It is required to draw a st. line perp, to each of them.

Throngh E, any point in $A B$, draw EF par to CD.
Let $X Y$ be the plane which passes through $A B, E F$.
From H, any point in CD, draw $H K$ perp. to the phane XY. Xi. 11. And through K, druw $K Q$ part to $E F$, cutting $A B$ at Q. Then KQ is also par ${ }^{1}$ to CD;
x1. 9.
and $C D, H K, K Q$ are in one plane.
xı. 7.

From Q, draw QP par to HK to meet CD at P.
Then shall $P Q$ be perp, to both $A B$ and $C D$.
For, since HK is perp, to the plane $X Y$, and $P Q$ is part to $H K$,
Comstr.
$\therefore P Q$ is p ze to the plane $X Y$;
$\therefore P Q$ is perp. to $A B$, which meets it in that plane.
xis. 8. For a similar reason $P Q$ is perp. to $Q K$,
$\therefore P Q$ is also perp. to $C D$, which is p^{1} to $Q K$.
(ii) It is required to shew that $P Q$ is the least of all st. lines drawn from $A B$ to $C D$.

Take HE, any other st. line drawn from $A B$ to $C D$.
Then HE, being oblique to the plane XY is gicater than the perp. HK. p. 403, Jix. 1.
$\therefore H E$ is also greater than PQ. Q.E.D.

Defonitun. A parallelepiped is a solit ligure bomaded by three pairs of purallel faces.

Thaonsar 3. (i) The fuces of a parallelepiped are parallelngrams, of which those which are oppasite are identically equal.
(ii) The four diagomals of a parallelepiped are concurrent amb bisect one another.

Let $A B A^{\prime} B^{\prime}$ be a paypel, of which $A B C D, C^{\prime} D^{\prime} A^{\prime} B^{\prime}$ are opposite faces.
(i) Then all the faces shall be parms, and the opposite faces shall be identically equal.

For since the planes $D A^{\prime}, A D^{\prime}$ are par ${ }^{\prime}$, and the plane DB meets them,
\therefore the common sections $A B$ and $D C$ are part.
\therefore the fig. ABCD is a parm,
und $A B=D C$; also $A D=B C$.
Similarly each of the faces of the par pet is a parm ;
so that the edges $A B, C^{\prime} D^{\prime}, B^{\prime} A^{\prime}, D C$ are equal and parl:
so also are the edges $A D, C^{\prime} B^{\prime}, D^{\prime} A^{\prime}, B C$; and likewise $A C^{\prime}, B D^{\prime}$ $\mathrm{CA}^{\prime}, \mathrm{DB}^{\prime}$.

Then in the opp. faces $A B C D, C^{\prime} D^{\prime} A^{\prime} B^{\prime}$,
we have $A B=C^{\prime} D^{\prime}$ and $B C=D^{\prime} A^{\prime}$;
Proved.
and since $A B, B C$ are respectively part to $C^{\prime} D^{\prime}, D^{\prime} A^{\prime}$, \therefore the $\angle A B C=$ the $\angle C^{\prime} D^{\prime} A^{\prime}$;
\therefore the parm $A B C D=$ the parm $C^{\prime} D^{\prime} A^{\prime} B^{\prime}$ identically. P 61 xi. 10.
(ii) The diagonals $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$ shall be concurrent end bisect one another.

Iom $A C$ and $A^{\prime} C^{\prime}$.
bomided by three
re parallelograms, al. tre concurrent and
' A ' B ' nre opposite ne opposite faces r^{1}
$D e f$.
xı. 16.

1. 34.

parm
1 and par':
kewise $A C^{\prime}, B D^{\prime}$,

Proverl.
$D^{\prime}, D^{\prime} A^{\prime}$,
xi. 10.
P. 64, Ex. 11.

3 eoncurrent end

Then since $A C$ ' is equal and par' to $A^{\prime} C$, \therefore the fig. $10 A^{\prime} \mathrm{C}^{\prime}$ in a mim;
\therefore its diagomats $A A^{\prime}, C C^{\prime}$ bi wet une nnother That is, $A A^{\prime}$ passes through O, the middle point of $C O$.
Similarly if $B C^{\prime}$ and $B^{\prime} C$ were joined, the fir. $B C B^{\prime} C^{\prime}$ would he a par ${ }^{\text {m }}$;
\therefore the diagonals $B B^{\prime}, C C^{\prime}$ bisect one another.
That is, BB' nlso passes through O the middle point of CC'.
Similarly it may be shewn that DD' passes throngh, and is bisected $n \mathrm{t}, \mathrm{O}$. Q.E.…

T'neones 4. The straight lim's which join the vertices of a titmhedron to the centroids of the opposite faces are concurreat.

Let ABCD be a tetrahedron, and let $f_{4}, y_{2}, f_{3}, y_{4}$ we the centroids of the faces opposite respectively to A, B, C, D.

Then shall $\mathrm{A}!_{1}, \mathrm{~B}_{!_{2}}, \mathrm{C} g_{3}, \mathrm{D}_{9_{4}}$ be concurrent.
Take X the midille point of the elle $C D$;
then I_{1} and g_{2} monst lie respectively in $B X$ and $A X$,

$$
\begin{aligned}
& \text { so that } \mathrm{BX}=3 . \mathrm{X} g_{1}, \\
& \text { and } \mathrm{AX}=3 . \mathrm{X}, 10 \%, \text { Ex. } 4 \text {. } \\
& \therefore g_{1} g_{2} \text { is } \mathrm{par}^{1} \text { to } \mathrm{AB} \text {. }
\end{aligned}
$$

Anl $A f_{1}, B f_{2}$ must intersect one another, since they are both in the plane of the $\triangle A X B$:
let them interseet at the point G.
Then by similar $\Delta^{\mathrm{s}}, \mathrm{AG}: \mathrm{G} f_{1}=\mathrm{AB}: g_{1} g_{2}$

$$
\begin{aligned}
& =A X: X_{g_{2}} \\
& =3: 1 .
\end{aligned}
$$

$\therefore \mathrm{B} g_{2}$ cuts $\mathrm{A} g_{1}$ at a point G whose distance from $g_{1}=1 . \mathrm{A} g_{1}$.
Similarly it may be shewn that $\mathrm{C} g_{1}$ and $\mathrm{D} g_{4}$ cut $\mathrm{A} g_{1}$ at the same point;
\therefore these lines are eoncurrent.
Q.t.t.1.

Theonem 5. (i) If a pyranid is cut by planes deawn parallel to its base, the sections are similar to the base.
(ii) The arens of such sectious are in the duplicate ratio of their perpendicular distances from the vertex.

Let SABCD be a pyramid, and abed the section formed by a plane drawn pari to the hase ABCD.
(i) Then the figs. $A B C D$, abcil shall be similar.

Because the planes abcd, ABCD are par', and the plane $A B b$ meets them,
\therefore the common seetions $a b, A B$ are parl.
Similarly bc is par to BC ; $c d$ to $C D$; and de to DA.
And sinee $a b, b c$ are respeetively par 1 to $A B, B C$,

$$
\therefore \text { the } \angle a b c=\text { the } \angle A B C \text {. }
$$

xi. 10 .

Similarly the remaining angles of the fig. abcd are equal to the eorresponding angles of the fig. ABCD.

And since the $\triangle{ }^{*} S_{a b}, S A B$ are similar, $\therefore a b: \mathrm{AB}=\mathrm{S} b: \mathrm{SB}$
$=b e: B C$, for the $\triangle^{s} \mathrm{Sbc}, \mathrm{BC} c$ are similar.
Or,

$$
a b: b r=A B: B C .
$$

In like manner, be: $c d=B C: C D$.
And so on.
\therefore the figs. abcd, $A B C D$ are equiangular, and have their sides about the equal angles proportional.
\therefore they are similar.
(ii) From S draw $\mathrm{S} . \mathrm{r} \mathrm{X}$ perp, to the planes abcl, ACCD and meeting them at x and X .

Then shall fig. abce $:$ fig. $\mathrm{ABCD}=\mathrm{S} x^{2}: \mathrm{SX}^{2}$.
Join ar, AK .
Then it is clear that the $\triangle{ }^{*}$ Sux, $S A X$ are similar.
And the fig. abed : fig. $\mathrm{ABCD}=a b^{2}: \mathrm{AB}^{2}$
vi. 20.
$=a \mathrm{~S}^{3}: \mathrm{AS}^{2}$,
$=\mathrm{S} x^{2}: \mathrm{SX}^{2}$.
Q.E.D.

befinition.

A polyhedron is regmlar when its faces are similar and cqual regular polygons.

Theorem 6. There eamot be more than five regmlar polyhedra.
This is proved by examining the number of ways in which it is possible to form a solid angle out of the plane angles of various regular polygons; bearing in mind that three plane angles at least are required to form a solid angle, and the sum the plane angles forming a solid angle is less thon four right angles.
xi. 21.

Suppose the faces of the regular polyhedron to be cquilateral triangles.

Then since each angle of an equilateral triangle is $\frac{2}{3}$ of a right angle, it follows that a solid angle may be formed (i) by three, (ii) by four, or (iii) by five such faces; for the sums of the plane angles would be respectively (i) two right angles, (ii) ${ }_{3}^{*}$ of a vight angle, (iii) $\frac{10}{3}$ of a right angle;
that is, in all three cases the sum of the plane angles would be less than four right angles.

But it is impossible to form a solid angle of six or more equilateral triangles, for then the sum of the plane angles would be equal to, or greater than four right angles.

Again, suppose that the faces of the polyhedron are sqmores.
(iv) Then it is clear that a solid angle could be formed of three, but not more than three, of such faces.

Lastly, suppose the faces are regular pentagons.
(v) Then, since each angle of a regular pentagon is : of a right angle, it follows that a solid angle may be formed of three such faces; but the sum of more than three angles of a regular pentagon is greater than four right angles.

Further, since each angle of a regolor hexagon is equal to $\frac{t}{4}$ of a right angle, it follows that no solid angle could be formed of such faces; for the sum of three angles of a hexagon is equal to four right angles.

Similarly, no solid angle ean be formed of the angles of a polygon of more sides than six.

Thus there can be no more than five regular polyhedra.

Noti: on the Regular Polyhedra.
(i) The polyhedron of which each solid angle is formed by three equilatiral triangles is called a regular tetrahedron.

It has four faces, four vertices, six edges.

(ii) The polyhedron of which each solid angle is formed by four equiluteral triangles is called a regular octahedron.

It has eight faces, si.c vertices, twelve edges.
(iii) The polyhedron of which each solid angle is formed by five equilateral triangles is called a regular icosahedron.

It has twenty faces, twelve vertices, thirty edges.
(iv) The regular polyhedron of which each solid angle is formed by three squares is called a cube.

It has six faces,
eight vertices, twelve edges.

(v) The polyhedron of which cach soliti angle is iormed by three regular pentagons is called a regular dodecahedron.

It has twelve faces, twenty vertices, thirty edges.

Theorem 7. If F denote the number of faces, E of edges, anai V of vertices in any polyhedron, then rill

$$
\mathrm{E}+2=\mathrm{F}+\mathrm{V} .
$$

Suppose the polyhedron to be formed by fitting together the faces in succession: suppose also that E_{r} denotes the number of cdges, and V_{r} of vertices, when r faces have been placed in position, and that the polyhedron has n faces when complete.

Now when one face is taken there are as many vertices as edoes, that is

$$
E_{1}=V_{1} .
$$

The second face on being adjustcd lias two vertices and one edge in common with the first; therefore by adling the second face we increase the number of edges by one more than the number of vertices;
$\therefore E_{2}-V_{2}=1$.
Again, the third face on adjustment has three vertices and two edges in common with the former two faces; therefore on adding the thind face we once more increase the number of edres by one more than the number of vertices;

$$
\therefore \mathrm{E}_{3}-\mathrm{V}_{3}=2 .
$$

Similarly, when all the faces but one have been placed in position,

$$
\mathbf{E}_{n-1}-V_{n-1}=n-2 .
$$

But in fitting on the last face we add no new edges nor vertices;

$$
\begin{gathered}
\therefore E=E_{n-1}, \quad V-V_{n-1}, \quad \text { and } F=n . \\
\text { So that } E-V=F-2, \\
\text { or, } E+2=F+V .
\end{gathered}
$$

This is known as Euler's Theorem.

Miscelaneous Eximpless on Solid Geometry.

1. The projections of parallel straight lises on any plane are parallel.
2. If $a b$ and $c d$ are the projections of two parallel straight lines $A B, C D$ on any plane, shew that $A B: C D=a b: c d$.
3. Draw two parallel planes one through each of two straight lines which do not intersect and are not parallel.
4. If two straight lines do not intersect and are not parallel, on what planes will their projections be parallel?

5 . Find the locus of the middle point of a straight hine of constant lingth whose extrenities lie onc on cach of two non-intersecting straight lines, having directions at right angles to one another.
of edges, ani \mathbf{V} of
ogether the faces lber of edges, and tion, and that the
vertices as edges, s and one edge in second face we the number of
vertices and two re on adding the ges by one $1110 r 0$

Ineed in position, nor vertices; :

EOMETRY.
n any plane aro llel straight lines of two straight e not parallel, on line of constant ersecting straight
6. Thee points A, B, C are taken ore on ench of the conterminous edges of a cube: prove that the angles of the triangle $A B C$ are all a^{-}te.
7. If a parallelepiped is cut by a plane which intersects two pairs of opposite faces, the common seetions form a parallelogram.
8. The square on the diagonal of a rectangular parallelepiped is equal to the sum of the squares on the three edges conterminous with the diagonal.
9. The square on the diagonal of a cube is three times the square on one of its edges.
10. The sum of the squares on the four diagonals of a parallelepiped is equal to the sum of the squares on the twelve edges.
11. If a perpendicular is drawn from f vertex of a resular tetrahedron on its triangular base, shew that the foot of tho perpendieular will divide each median of the base in the ratio $2: 1$.
12. Prove that the perpendicular from the vertex of a regular tetrahedron upon the opposite face is three times that dropped from its foot upon any of the other faces.
13. If $A P$ is the perpendieular drawn from the vertex of a regular tetrahedron upon the opposite face, sliew that

$$
3 \mathrm{AP}:=2 a^{2},
$$

where a is the lengih of an edge of the tetrabedron.
14. The straight lines which join the middle points of opposite edges of a tetrahedron are coneurrent.
15. If p tetrahearon is eut by any plane parallel to two opposite edges, the section will be a parallelogram.
16. Prove that the shortest distance between two opposite edges of a regular tetrahedron is one half of the diagonal of the square on an edge.
17. In a tetraledron if two pairs of opposite edges are at right angles, then the third pair will also be at right angles.
18. In a tetrahedron whose opposite edges are at rioght angles in pairs, the four perpendiculars drawn from the vertiees to the opposite faces and the three shortest distances between opposite edges are concurrent.
19. In a tetrahedron whose opposite edges are at right angles, the sum of the squares $0 _$each pair of opposite edges is the same.
20. The sum of the squares on the edges of any tetrahedron is four times the sum of the squares on the straight lines whieh join the middle points of opposite edges.
21. In any tetrahedron the plane which bisects a dihedral angle divides the opposite edge into segments which are proportional to the areas of the faces meeting at that edge.
22. If the angles at one vertex of a tetrahedron are all right angles, and the opposite face is equilateral, shew that the sum of the pernerdienlars dropped from any point in this face upon the other threr taces is constant.
23. Shew that the polygons formed ly eutting at prism by parallel phanes are eqnal.
24. Three straight lines in space $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$, nov mutually right angles, and their lengths are a, b, c : express the then of the triangle $A B C$ in its simplest form.
25. Find the diagonal of a regular cetaliedron in whas of of its edges.
26. Shew how to cut a cube by a plane so that the lines of section may form a regular hexagon.
27. Shew that every section of sphere by a plane is a circle.
28. Find in terns of the length of an clge the radius of as splaere inseribed in a regular tetrahedron.
29. Find the locus of points in a given plane at which a straight linc of ived lagth and pasition subtends a right angle.
30. A trat paint O is joined to any point P in a given plane which duts, i" contain O; on $O P$ a point Q is taken such that the rectangle $O F, O Q$ is constant: shew that Q lies on a fixed sphere.
cts a dihedral angle - proportional to the
edron are all right that the sum of the face upon the other
${ }_{6}$ a prism by parallel

OC, ne matually m ress the tuen of the
on in tumas of one of
the lines of section
dane is a circle.
he ratios of a sphere
te at which astraight tangle.
t P in a given plane tuken such that the on a fixed sphere.

$$
\nabla
$$

[^0]: * See note on the next parge.

[^1]: * Note. For example, if the centre \mathbf{E} were supposed to be within the angle BDC, then DB would be greater than DA; if within the angle $A D \bar{D}$, then $D B$ would be greater than $D C$; if on one of the three straight lines, as DB, then DB would be greater than both DA and DC.

