Technical and Bibliographic Notes /

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other materiai /
Relié avec d'autres documents
Only edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Colouied pages / Pages de couleur
Pages damaged / Pages endominagéesPages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

\square
Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments /
Commentaires supplémentaires:

Various pagings.
In Appendix No. 24 page 98 is incorrectly numbered page 8.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

SESSIONAL PAPERS.

VOLJINE 3.

THIRD SESSION OF THE SIXTH PARLIAMENT

OF THE
 PROVINCE OF CANADA.

-..........
$\because=$

Sessiot 1860.

Volome XVIII
fRINTED BY TEROMPSON \& GO, ST URSULE STREET, QUEBEC.

RETURNS

FROM RAILWAY COMPANIES.

No. 1.-Montreal and Chayplain Railroad, for the fear 1859.
No. 2.-Grand Trunk Ramway, from 1st January, 1854, to 31st De= Cember, 1859.
No. 3.-Northern Railway of Canada, for the year 1859.
No. 4.-Northern Railway of Canada, from 1853, to 31st Decr. 1859.
No. 5.-Great Western Railway of Canada, from 1855, to 31st JanJARY, 1860.

No. 1.
STATEMENT of the Receipts and Expenditure of the Montreal and Champlain Railroad, and appurtenances, together with the amount of Tonnage and of Passengers conveyed over the Road during the year 1859, as required by the 49th Section of the Act 2nd Wm. IV. cap. 58.

Receipts.	Expenditure.	Tonnage.	Passengers.		
	$\$ 22442994$	$\$ 118,81490$	56087	134148	

G. IRVING,

Accountant.
Montreal, March 14th, 1860.
I; George Irving, do make oath that the above Statement is correct and true in every particular, to the best of my knowledge and belief.
G. IRVING,

Accountant.
Sworn before me at Montreal, this 14th day of March, 1860.
T. Bodthillier, J.P.

No. 2.

Statement shewing the Annual Receipts and Expenditure of the Grand Trunk Railway Company of Canada, on the Separate Divisions on Traffic Account, from 1st January, 1854 to 31st December, 1859. (Prepared in accordance with the Order of the Honorable the Legislative Assembly.)

For the year ending	EASTERN DIVISION.					CENTRAL DIVISION:				
		RECEIPTS.		Expenditcre.		$\begin{aligned} & \dot{0} \mathrm{E} \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Receipts.		Expenditure.	
		Total for Division.	Per Mile opened.	Total for Division.	Pcr Mile opened.		Total for Division.	Per Milc opened.	Total for Division.	Per Mile opened.
		5 cts.	\$5ss cts.	\$ cts.	$\$$ cts. 223931		\$	$\$ \mathrm{cts}$.	\$ cts.	\$ cts.
31st Dec., 1854.	143	49796258			2239 56	125	*3235S 15	25 S 82	*15466 32	14773
31st Dec., 1856.	279	47218764	169243	57114951	204716	140	32615392	232967	21743632	155312
31 st Dec., 1857.	279	57777098	2070 S6	63710353	228352	333	104344904	313345	89483547	268719
31st Dec., 1858.		494513 \$3	177245	584570 S3	209525	333	98379416	295434	81984033	246198
31st Dec., 1859.		55194364	197832	57096113	204646	333	102926883	309089	75298847	235132

No. 3.
Statement of the Earnings and Expenditure on the Northern Railway of Canada, from
1st January to 31 st December, 1859, inclusive.

Statement of Northern Railway of Canada.-Continued.

NORTHERN RAILWAY OF CANADA.

Number of Tons (2000 lbs .) of Freight carried in 1859.

PASSENGER TRAFFIC.

Number of Passengers Ticketed from Stations. 57549
Paying on the Cars 15608
Forcign Through Passengers. 2618
Free and for Construction 2297
Total number of Passengers carried78072
Toronto. (I, Samuel Skelton, Superintendent's Clerk of the Northern Railway of Canada being duly to $\}$ Sworn, do depose and say that the foregoing is a correct return of Freights aud Passengers trans- Wit.
ported over said Railway during the Year, One thousand eight hundred and fifty-nine, according
to the best of my knowledge and belief.

SAMUEL SKELTON:

```
Sporn before me at Toronto,
    this 19th day of March, 1860.
    RICE LEWIS, J.P.
```

Return of Receipts and Expenditure of the Northern Railway of Canada, from the Opening of the Road in 1853 to the 31st December 1859, showing the Annual Earnings per Mile and the Annual Cost per Mile of running the trains; in pursuance of an order of the Legislative Assembly of 12th March, instant.

No. 5.
GREAT WESTERN RAILWAY OF CANADA.
Statement of the Receipts, in gross and per mile, for each year, from the opening of the Road, to 31st January, 1860 ; also the working expenses.

RECEIPTS.

	Years ended 31st January.	Amount.	Average earnings per mile.
		$\${ }^{\text {cts.}}$	\$. cts.
1855	138256600	
1856	232582200	937800
1857.	299852600	1059500
1858	254315600	886100
1859	.	208482500	697200
1860	190811000.	553000

WORKINGEXPENSES.

Years ended 31st Janaary.	Amount.	Average cost per mile of Railway.	No. of Train, miles run, earning Revenue.	Average cost per Train mile.
	\$ cts.	\$ cts.		\$ cts.
1855...................	06628800	283500	607879	109
1856....................	112407200	453200	932613	120
1857...................	153693600	543000	1221605	125
1858...................	137103000	477700	1194759	114
1859..........................	116574800	381800	1072200	108
1860.....................	114259900	325700	1127416	101

H. STEPHENS,

Sc retary.
Hamilton, C.W., 11th April, 1860.

RETURN

To an Address from the Legislative Assembly, dated 28th March, 1860, for information relative to proposed Terminus of Grand Trunk Railway at Montreal.

By Command,

Secretary's Office, 11th April, 1860.

C. ALLEYN,
Secretary.

1859.

(Copy.)

No. 44,237.
Harbour Office, Montreal, 22nd, Noi. 1859.
SIR, - I have the honor to transmit herewith a memorandum of an agreement entered into between H.H. Whitney, Esq., Chairman of the Harbour Commissioners of Montreal, and Thomas E. Blackwell, Esq., representing the Grand Trunk Railway Company, on the 19th instant, embodying the terms and conditions, upon which the rails of the latter are to be brought into the City of Montreal and connected with the Harbour, and am directed to request that you will be pleased to submit the same to His Excellency the Governor General in Council, for his consideration and sanction. The document in question which I enclose, is in duplicate, as also a plan of the proposed works alluded to therein, likewise in duplicate. One copy of each belongs to, and is the property of Mr. Blackwell, representing the Grand Trunk Railway Company, the others belonging to the Harbour Commissioners.

The Honorable John Young, one of the Harbour Commissioners is now in Quebec, and will have the honor of communicating with you, and of affording you any information in regard to the subject which the agreement embraces, with the view of obtaining His Fxcellency's approval at the earliest possible date.

I have the honor to be,
Your most obedient servant,

The Honorable
The Provincial Secretary Quebec.
(Signed)
ALEX CLERK, Secretary.

Memorandum of an Agreement entered into, between Thomas E. Blackwell, Esquire, representing the Grand Trunk Railway Company, and the Harbour Commissioners of Montreal, on this nineteenth day of November, 1859.

The necessity of extending the Rails of the Grand Trunk Company into the City of Montreal, and of connecting them with the Harbour, and also of having a freight Station in McGill St. for the local business of the City, and a passenger Station at the same place, as well as a Station for General Freight business on the south side of the Canal Basin, having become essential to mect the wants of the growing commerce of this City, the following agreement was entered into, and in which the Grand Trunk Company shall be designated as the party of the first part, and the Harbour Commissioners as the party of the second part.

1st. It is understood and agreed that a passenger and local Treight Station shall be constructed at the foot of McGill Street, on the North side of the Canal, by the party of the first part.

2nd. The above Station shall be connected with the Victoria Bridge, and the western lines of Railway, and as it is necessary, in order to effect this connection, that a space outside of Mill Street within the limits of the Harbour, be obtained for a Railway Track, the party of the second part hereby grants to the party of the first part, the privilege of laying down Rails on the site in question; provided the land taken for that purpose does not exceed Seventy-five feet in breadth upon the level of the Railway adjoining Mill Street, ten feet of which is to be applied to the permanent widening of Mill Street, with such slope as may be required, the Company having no claim to the ownership of the land occupied by the said slope, but the Harbour Commissioners undertaking (in case they find it necessary to remove any portion of it for the purpose of any works) to build a proper and sufficient retaining wall.

3rd. As it is intended to reclaim that portion of the St. Lawrence now covered by water, from the mouth of the Lachine Canal to Windmill Point, as indicated on the plan signed by the contracting parties, to the extent of about ten acres, it is agreed that in order to attain that object, the party of the second part shall construct the Wood or Crib-work of a Wharf between the points above mentioned, and also a sustaining or Revetment Wall, at a distance of not less than Seventy-five feet from the face of the said Wharf, which shall be built to the level of the present wharres, and the said Revetment wall to the level of Commissioner Street, and that the party of the first part shall at their own cost fill up the whole of the space enclosed by such Revetment wall, and make such other constructions and improvements as may be required to bring the whole also to the level of Commissioner Street, and shall deliver one half of the material required to fill up the space between the back of the Crib-work and the front of the Revetment wall, the party of the second partincurring the expense of levelling and grading the same.

4th. The property required by the party of the First Part, from the party of the Second Part, above mentioned, shall be leased to the party of First Part, at a nominal rent; say the sum of Five Shillings currency, yearly, for a term of 999 years.

5th. It is also understood between the parties that all the wharf below the said Revetment wall, shall be under the exclusive control, and for the especial advantage of the party of the Second Part; but the party of the First Part, after the work shall have been concluded, shall have the privilege of commuting for the use of the same for their own benefit and advantage, at such rates, and on such terms as may be agreed upon. 6

6th. Should the party of the Second Part be able to procure at the Quarries at Point Claire, the stone required for the construction of the said Revetment wall, the party of the First Part will deliver it at the works free of charge for transport.

7th. The present agreement is made subject to the sanction and ratification of the Provincial Government.
(Signed),
(Signed),

THOMAS E. BLIACKWELL, V. P.,
Managing Director, G. T. R. Co.
H. H. WHITNEY,

Chairman Harbor Commissioners

No. 44,237.

> SECRETARY'S OFIICE,
> 25 th November, 1859.

Referred to a Committee of the Honorable the Executive Council for Report.
By Command,
(Signed,)
C. ALLETN,

Secretary
No. $44,237$.
Referred to the Honorable the Commissioner of Public Works.

JOHN A. MACDONALD, S. Ex. Councl.

No. $44,317$.

(Copy.)

Grand Trung Railway of Canada. Montreal, November 24, 1859.
SIr,-You are doubtless aware that for a considerable time past. I have been engaged with the Corporation of the City of Montreal, the Board of Trade, and the Harbour Commissioners of this city in canvassing and deciding upon the best site for a terminus within the limits of the business portion of Montreal; and that after a protracted investigation with the several public bodies I have referred to, as to the merits of the different proposed sites for this terminus, we have at length determined upon the locality which under all circumstances of the case seems to us best suited for the purpose.

It is proposed to run lines from the present Point St. Charles station branching from its Easern and Western extremities, to a common point as shown in the accompanying plan, tud then taking a parallel course on an embankment alons Mill Street, which street it is intended to widen to the extent of ten (10) feet, and thence direct to the proposed general Freight Terminus, situate on the South side of the Canal, and partially to be reclaineed from the river St. Lawrence, as also shewn in the plan referred to.

It having also been determined that a local Freight and Passenger Depot should be established at the West side of the foot of McGill Street, it becomes necessary to cross the canal, which I purpose to accomplish by the erection of swing bridges at an elevation of from 7 to 8 feet above: the water level.

In order to carry out these new works for the accommodation of the City of Montreal, it will be seen that the branch lines from the main track at Point St. Charles cross over the property of the Provincial Government, and that they also occupy the vacant lots of ground near the Windmill Point ; and as I have before remarked this is the most available ronte for a branch into the city. I beg that you will submit this, my application, to the honorable the Executive Council, that the lands I have referred to may be placed at the disposal of this Company for the above purposes.

Thave deputed Mr. Trembicke to wait upon you with this communication, and the plan attached, so that in case of any further information being required by the Government, he being fully cognizant of all the particulars of the case, may supply you with the same.

I have the honor to be, Sir,
Your most obedient Servant,
The Honorable
C. Alleyn,
(Signed,) THOMAS E. BLACKWELL,

$$
\begin{aligned}
& \text { Provincial Secretary, } \\
& \text { \&ic., \&c., \&cc, }
\end{aligned}
$$

No. 44,317 .
Secretary's Office, 6th December, 1859.
Referred to the Honorable the Commissioner of Public Works, for Report in connection with No. 2,285 of 1859, already before him.

By command,

E. PARENT,
Assistant Secretary.

No. 44,385.

(Сору.)

To His Excellency Sir Edmund Head, Governor General.

The Memorial of the undersigned Forwarders, Steamboat owners, and others interested in the Transport business through the Lachine Canal, respectfully sheweth :-

That your Memorialists have learned with alarm of a scheme now under discussion, of bringing the Grand Trunk Railway into the City of Montreal by crossing the Lachine Canal at its lower entrance-a project fraught with insecurity to life and property, disadvantageous to the true interests of the Railway Company in particular, and to the travelling community in gencral.

That your Memorialists and their predecessors have for many years been engaged in developing the trade of the Province in general and particularly of the City of Montreal, by opening out and forming communications with the West, thereby greatly promoting the prosperity of the community.

That each successive cnlargement of the Canals and improvement in the navigation of the inland waters has compelled a corresponding change of Craft employed in Forwarding, to the grat damage and loss of those engaged in the business, and that owing to such exaction and outlay the trade with the Western country has been largely developed, and that it must go on increasing annually with the general advance of the Province; its present prosperity is much indebted to those engaged in this branch of business, who have never received the slightest aid from any public funds, although their losses have been heavy, and the difficulties with which they have had to contend have been most serious.

That your Memorialists would most respectfully, but urgently, protest against such proposed crossing of the Lachine Canal, on the ground of the incalculable injury the Trade of the country would suffer from the consequent impediment and delay to vessels using the Canal, which would be a constant and serious obstruction to the navigation thereof, more particularly at its connection with the River St. Lawrence, where such an enormous amount of passing occurs with River Steamers, Quebec and other craft, as at present frequently to occasion great delay, which must be seriously augmented by the construction of an additional Railway Bridge; whereas, on the high authority of Mr. Shanly and Mr. Keefer, it is plainly shown that a better and a safer course for the Grand Trunk Railway is to enter the City on the north side of the Canal.

Your Memorialists therefore pray that permission be not granted to the Grand Trunk Railway, to construct another draw-bridge over the Lachine Canal, at the point complained of, and thereby avoid the additional insecurity, and also save from unnecessary and grievous annoyance and loss, the large and important interests represented by your Memorialists.

And your Memorialists will ever pray.
(Signed,)
66

66
66
66
66

66
66
66

JAQUES TRACY \& CO., HENDERSON, HOLCOMB \& CO., ALEXANDER MILLOY, Representing Royal Mail Steamers. JONES, BLACK \& CO., GLASSFORD \& CO., J. J. JONES, P. M. BOCKERS, THOMAS S. MAXWELL, M. K. DICKINSON, JOHN MACPHERSON \& CO.

Montreal, December 5th, 1859. $\}$ No. 44,385 .

Acknowledged and transterred to the Honorable the Commissioner of Public Works, in connexion with No. 2,333.

Seeretary's Office,
9th December, 1859, $\}$

No. 44,500 .
(Copy:)
Quebec, 16th Dec., 1859.
The Hon. the Commissioner of Public Works.
Sir-Agreeably to instructions I have carefully examined the accompanying documents relating to the proposed Station at Montreal, of the Grand Trunk Railway and beg respectfully to report:-

That the objects contemplated being the establishment of a passenger and local freight station, within the city, on the North side of the Canal; "and a station for :general freight business on the South side of the Canal Basin." It is much to be regretted that the effecting of these highly important objects is looked forward to in the manner implied in the conditional arrangements made and submitted for the approval of the Government.

For, if I mistake not, a railway station should be so situated that the approach to it is not liable to any obstructions, other than such as are completely under the control of the Company ; which, it will be quite evident, can never be the case if it crosses the Canal at the place proposed-so long as the preservation of an unbroken connection between the Inland and sea-going route of the St. Lawrence is of so much consequence to the Province generally, and Montreal in particular.

In this view of the case, it appears to me that assenting to the proposition, would, by forcing the whole Western travel, to and from the city, over two draw-bridges, entail upon it a greater evil than either local interests, or that of the railway would justify-while there appears no good reason why the local traffic of the city should be carried round by the way of Point St. Charles; and if the general freight business is to be done on the South side of the Canal, to which there is no objection whatever, it may fairly be asked, why should not vessels go to the railway, instead of the Company undertaking to carry the railway to the vessels?

If these objections hold good at the present time, they certainly will be experienced in a far greater degree, if we are at all successful in attracting the Western trade by the St. Lawrence to the extent we have been aiming at for many years, and the Railway business, at the same time, keep pace with expectations.

Believing the case not to be attended with any such difficulties as render the proposed circuitous line of entering the City unavoidable, but considering any opinion on the different projects mooted, other than that of crossing the Canal, uncalled for, I proceed to remark:

That by the plan submitted it will be seen, two swing or draw-bridges are proposed to be constructed over the outlet lock,-one above the upper gates, to be raised to the level of Commissioner Street, for Railway traffic; another, below the lower gates, for ordinary travel, of a height to suit the wharf proposed to be formed on the south side.

That between the "slip" recently formed on the north side of the Lock for enlarging the Harbour accommodation and the Basin above, there is barely a space of 160 feet, exclusive of the walls, the whole of which would be occupied by the Railway, its branches and roadway leading towards the lower end, and the principal part of it raised fully $7 \frac{1}{2}$ feet over the side walls of the Lock.

Under such an arrangement there appears to me no way by which the Lock could be sufficiently accessible on either side or end, for effecting any necessary repairs or of introducing new gates, while the bridges and elerated works on which they must necessarily rest would greatly interfere with, if not quite prevent the eficient working of the Lock, no matter what precautions were adopted to lessen these evils.

During the season of navigation there is from 15 to 25 lockages daily, and on one occasion there were 29 in one day. The locking through of a steamer generally occupies 15 minutes; small sailing ressels 20 minutes; and large heary laden vessels 30 minutes and upwards, the sailing vessels being towed in and out of the lock by hand, causes this difference; a little mismanagement; however, on the part of those in charge of vessels often causes much more-delay.

The greater number of vessels pass through the Liock during the day, or within a period of from 16 to 18 hours.

If we suppose that there would be the daily arrival and departure of two western and two eastern trains, this would make eight regular passenger crossings, which with a like number of freight trains, together with lodging the locomotives at Point:St. Charles, would make
at East twenty-four crossings on the bridge, the greater number of which would be within the same time that the passing of vessels takes place.

The first of these statements being correct, and the second believed to be rather under than over estimated, if I mistake not, shews clearly that even in the present state of the traffic, ncither the interest of the navigation or of the railway would be consulted in adoptting the plan proposed; while there can scarcely be two opinions on the question, which, it is the interest of the Province most zealously to protect.

In short, the whole of the space in the vicinity of the lock being required, and the whole time necessary for the proper working and management of the Canal-any erection on, or occupation of the land for other purposes, or interference with the time of vessels passing, would, in my opinion, not only be detrimental to the navigation at present; but would be an evil increasing in degree as the trade increases in extent and importance.

It therefore appears to me that, however much the Province may be interested in the success of the railway, it would be extremely unwise to allow any scheme whatever to be carried out, even for its apparent advantage, that would have so decided a tendency to diminish the efficiency of the canal; but on the contrary, that all present advantages should be vigilantly guarded, and still greater facilities afforded for the speedy transfer of produce from lake craft to the sea going vessels.

Again, in the event of the navigation being enlarged, which many well qualified by habits of close observation in commercial matters, look forward to as a necessity, while the Government has in some measure turned its attention in a like direction; by calling for an estimate of the probable cost of increasing the draught of water in the canals; and further if it is at any time intended to carry out the plan so long anticipated of forming docks inside of the canal, capable of admitting Atlantic vessels, and for which land was purchased by the Government several years ago-the plan now under consideration would entirely defeat these objects.

As already stated, there is no objection to establishing a station for general freight business on the south side of the Canal, but, on the contrary, so many sound arguments in its favor, that I would recommend the Government to grant the Railway Company the privilege of reclaiming as much land from the river for that purpose between Point St. Charles and the lower entrance of the Canal as might be deemed expedient, with a due regard to the harbour boundaries of the city-provided :

Firstly-That a sufficient space is left between the Northern part of the railway works and the South side of the present Lock, to admit of the future enlargement of the Canal. This reserve I consider should not be less than 175 feet in width, extending southwards from low water mark on the present embankment, thence upwards to the southern line of Mill Street, as represented on the accompanying sketch.

Secondly-That the outlets from the two waste-weirs and the tail-races from the mills situated along the north side of Mill Street be constructed in a satisfactory and durable manner, through and under the trackway and wharf proposed to be formed, and the whole of them made of sufficient dimensions not to impede the free discharge of the water, and further that the rights of the lessees be duly respected by the Company.

Thirdly-That no encroachment shall be made on the property purchased and retained by the Government for the purpose of constructing docks, other than that the Company may have the privilege of laying down a trackway along its south side, which must be secured and protected by a wail or otherwise, as may be approved of by the Government, in the event of such docks being at any future time formed:

These being the views entertained on the question submitted, I beg respectfully to record them, believing that, however much opposition they may meet with from local or other interested sources, they will be fully sustained by those whose only object is that of maintaining an unobstructed connection between the highway of the St. Lawrence and the unrivalled water communication that nature, aided by the Provincial Exchequer, has opened up to us with the vast regions of the West.

I have the honor to be, Sir,
Your most obedient servant,
(Sigued,) JOHN PAGE, Civil Engineer, Public Works.

On the communication of the Chief Engineer with reference to the application of the Grand Trunk Railway Company to cross the Lachine Canal, the Honorable the Commissioner requests to be farored with the observations of Mr. Shanley and Mr. Trembicke on the following points, which would seem to embody the objections urged.

First. With reference to the permanent enlargement of the Canal, and the construction of additional works,-

1st. Will filling up on the south side, as proposed by the Company, interfere with this, or render it impracticable?

2nd. If so, what plan would you propose by which the enlargement might be affected? And in what way would the line cross it?

3rd. What would be the additional expense of construction to the Government - keepng in mind the Tail Race from the mills, and the necessity of providing for the discharge from them:

Second. In regard to the working of the present Canal, and the actual impossibility of working, or inconvenience the crossing will occasion,

1st. Can the gates be worked, with the bridges erected as proposed?
2nd. Can access for the purpose of placing new gates be obtained?
3rd. Will the necessary service-ground be diminished to an extent that will be permanently injurious to the narigation, keeping in view the object of descending to the level of the Harbor Wharves?

4th. What impediment will it offer to the passing vessels in the way of delay ?
The Commissioner also requests to be favored with the views of Mr. Shanley and Mr. Trembicke, as to whether there is any other way by which a city terminus, and access to the wharves can be obtained conveniently, and at what probable cost; of the plan proposed.

JOHN ROSE.
To Messiss. Shanley \& Trembicee.

No. 44,895 .
(Copy.)

MONTREAL CITY TERMINUS.

Answers to Questions by the Honorable the Commissoner of Public Works.
First, "With reference to the permanent enlargement of the Canal, \&c."
1st. The proposed mode of constructing the Station Ground on the south side of the Canal, interferes with the position proposed by Mr. Page, for the enlarged Locks; so much so as to reader it impracticable to place the Locks where laid down by Mr. Page, if the plans of the Station Ground be carried out.

2nd. To obviate the above difficulty, we propose to place the enlarged entrance Lock to the south of the Station Ground, and to carry the enlarged Canal wholly distinct from the existing one, outside of the Railway tracks, up to a point opposite the head of the Upper Basin, there to connect with the present Canal. The Railway would then have to cross the new Canal once, near the upper end of Mill Street, and also to cross the existing Canal; at the entrance Lock, as at present designed.

3rd. The additional cost to the Government, of constructing the new Canal and its Locks, wholly south of the Railway, would be mainly in the necessity of providing a Culvert or Tunnel, to carry the waste water from the mills and factories along Mill Street.

We have not sufficient data at hand for arriving at a correct estimate of the cost of such a tunnel, but it would probably involve an outlay not exceeding $\$ 60,000$. We submit that such a mode of constructing the Canal, would give great facilities for enlarged Basin accommodation, by enclosing sufficient"space for such purposes from the St. Lawrence, instead of excavating for them on shore Much of the inconvenience of crossing the Canal for the ordinary purposes of traffic, would also be done away with, and in fact be confined to the crossings of the existing Canal:

2nd:" With reference to the working of the present Canal, \&c."
1st. We do not:see that the proposed draw-bridge for Railway, purposes, at the head of the entrance Lock of the present Canal, need occasion much, if any inconvenience to the
navigation. Mr. Page gives the time occupied by the lockage of vessels, at from 15 minutes to half an hour, and the maximum number of lockages, in any one day, 29; the ocking taking place within from 16 to 18 bours. Taking then the minimum time for locking at 15 minutes, there must, under the most unfavorable circumstance of a succession of vessels, be two periods of 15 minutes in each of the 18 hours that the Canal is in fullest use; during which the gates would have to remain immoveable; and within such space of time the Bridge could be easily swang to, and a Train of Cars be taken over.

This allows for 36 Trains, or 36 passages of an engine in the 18 hours:
It is not anticipated that the Railway business, in connection with the City Terminus, will call fore more than 20 passages in the 24 hours at the outside.

The railway bridge would, as a rule, be always open, except when a train approached, and would then only be closed to admit of the train crossing, upon the Canal watchman signalling that the closing might take place. The other two bridges proposed would be more inconvenient than the single one designed for the passage of trains ; that is, more inconvenient to the public. We do not see that they need interfere with the navigation in any way, if subject, as they must be, in their working, to the rules and regulations established by the Canal authorities.

We do not see either, that any of the proposed Bridges will prevent the convenient working of the Lock-gates. The two designed to be placed on the entrance Lock must necessarily be at such an elevation above its coping as will admit of the lockmen walking erect underneath them, and the supports on which they are to rest, can be established sufficiently far back from the edge of the lockwalls, as practically to leave all the room there now is for the working of the machinery of the gates.

The bridge on the upper lock would be situated, with reference to the lower gates, nearly as the present public bridge is to the upper ones, and would impede the navigation or the working of the gates to no greater extent.

2nd. The position laid down for all the bridges, is so far clear of the "hollow quoins" of the Locks, as to leave ample room for the placing of new gates, without creating any great amount of inconvenience to the workmen.

3rd. The "service ground" attached to the Canal, on the North side of the entrance lock, will undoubtedly be diminished in extent by the construction of the proposed railway track, leading to the wharves, but in carrying out the reclaiming of land on the South side for station purposes, a large space [200 feet by 80$]$, may easily be be made available for the convenience of the navigation.

4th. The impediment to the navigation by the construction of the bridges will be trifling, the Canal authorities possessing the undoubted right of regulating the mode of working them, and the vessels using the Canal having, of course, the precedence, as well of the railway trains, as of foot passengers and carriages. We admit that inconvenience of some description or other, is inseparable from draw-bridges; but in the case before us, the interests opposing their construction have the power in their own hands to throw the whole inconvenience on the railway company, and the general public.

Finally, we believe that there is no other mode of combining the project of a Railw ay Terminus within the City of Montreal, and convenient connection with the wharves, that can be pronounced practicable; not from any extraordinary difficulty of constructing a line via the Lachinc Railway station, for instance, that would accomplish the double object in view, but from the necessity that any other line would involve, of crossing numerous and much frequented streets, or of purchasing private property of such value as would render the undertaking financially impracticable.

Quebee, 17 th Jan. 1860.
[Signed,]
(")
W. SHANLY,
A. L. TREMBICKE.

To His Excellency the Right Honorable Sir Edmund W. Head, Baronet, Governor General of British North America, \&c., \&c., in Council.

The Memorial of the undersigned, Citizens of Port Hope, respectfully Sheweth -
That the St. Lawrence, being the natural outlet from the great North-Western Lakes of this continent, for the conveyance to the Eastward, of the productions of the fertile regions which border upon them, the Legislature of Canada wisely resolved to remove the obstacles that interrupted, in certain places, the navigation of this great river, by constricting a chain of Canals of unequalled magnitude, the completion of which, has ren-

Abstract

dered the St. Lawrence route, the shortest and most economical line of transport, from the West to the sea-board.

That, in effecting this important object, the Province has expended large sums of money, and necessarily entailed a heavy debt and burden of taxation; but your Memorialists feel sanguine, that under a fostering and judicious management, the capital invested in these great public works, will ere long, become productive, and the St. Lawrence Canals prove self-supporting, and remunerative to the Province.

That, entertaining these opinions, at this present juncture, when Railroad competition with the Canals is assuming increased activity, your Memorialists deem it their duty to call the attention of the Government and Legislature, to the necessity for maintaining unimpaired, and infull force, all such regulations and arrangements, as tend to insure the easy and efficient worbing of Canal Navigation, and to the importance of so controlling the location and manner of constructing all Railroad works, in the vicinity of our Canals, that no hindrance or impediment shall be created to the free transit of vessels, or to such extensions and enlargements of the Canal Locks and Basins, especially at Montreal, as the increasing traffic through both the St. Lawrence and Ottawa will soon render essential. Wherefore your Memorialists humbly pray, that before any further right of crossing, or permission to construct Railroad works in the vicinity of Canals be granted, full examination into the consequences may be made, and that nothing may be decided until after full discussion be had, full enquiries be irstituted, and a favorable report be received from competent and responsible Engineers having these public works in charge. And your Memorialists, as in duty bound, will ever pray.

Port Hope, Feby. 14th; 1860.
Petitions similar to the above have been received from the Inhabitants of -

Gananoque,	Oshawa,
Toronto,	Sarnia,
Goderich,	Prescott,
Montreal,	Ryerse,
St. Catharines,	Kingston,
Wellington Square,	Ottawa,
Montreal.	

Department of Public Works, Quebec, 25 th January, 1860.
No. 45,044 .

On the Application of the Grand Trunk Ratiway Company to Construdt a Bridge across the Canal at Montreal,-

The Deputy Commissioner and Chief Engineer are requested to consider and report whether, in the event of the enlargement of the Lock communicating between the Basin and the Harbour taking place, it would, or would not be practicable to take down and rebuild the present one between the 1st November and 1st May, and if so, what the probable cost would be in excess of the constriction of a new lock on the present ground, -the building of which occupied the usual time.

(Signed,) JOHN ROSE, Commissioner.

No. 45,044

(Copy.)
Departinent of Public Works,
Quebec, 23 rd January, 1860.
Sir,-On the application of the Grand Trunk Railway Company to constract a bridge across the first lock of the Lachine Canal at Montreal ;-

We have, as you desired, given our best consideration to the engineering question : "Whether it is practicable to take down and rebuild this lock, in one Winter, between the "first of November and the first of May; and if so, what the probable cost would be in "excess of the construction of a new lock outside, during the Summer season.".

We are clearly of opinion that any attempt to take down and rebuild the present lock, n situ, in one Winter, would be attended with insurmountable difficulties, and must end in
certain failure. A failure which would put a stop to the navigation of the Canal for a whole season.

The bed of the river at this place is covered with drift to a great depth, composed of a mixture of sand, clay, gravel, and boulder stones. The veins of sand are charged with water, and being in connection with the river outside of any coffer dam that may be built, may burst up at any time and put a stop to all operations.

We have a distinct recollection of the nature of this foundation, and of the difficulties, interruptions aad delays experienced from this cause during the first construction of this lock, which occupied three seasons, and it must be observed, that if such serious drawbacks were encountered in Summer, and under the most favorable circumstances for the hurks, during the period of low water, they must without doubt, be increased to an overwhelming extent in Winter, when the water is twenty feet higher, and when the frost will preclude making effectual repairs to the dams.

Even in the small basin recently constructed at great cost alongside this lock, the contractors met with great difficulties and delays from the bursting in of water, and, although they had Summer weather and low water to do it in, their operations were extended over nearly a year.

With reference, therefore, to the proposition to rebuild this lock in its present position, in one Winter, we cannot hesitate to pronounce it impracticable.
(Signed)
(Signed)
SAMUEL KEEFER, C.E., Deputy Com. Public Works. JOHN PAGE,
C. E. Public Works.

To the Commissioner of Public Works.
No. 45,074.
(Сору.)

On further reference to tife application of the Grand Trung Ramway Company to cross the Lachine Canal,-

The Deputy Commissioner and Chief Engineer are requested further to repor whether new and enlarged locks connecting the Harbour with the Upper Basins, migh ${ }^{\text {t }}$ not be constructed on the North side of the existing ones,-using, if necessary, the present steamship basin, -and whether the cost of the locks in that position would exceed the cost of locks placed on the South side of the existing ones.

Department of Public Woris,

 Quebec, 28th Jan., 1860.No. 44,237 .
(Copy.)

THE PROPOSED TERMINUS OF THE GRAND TRUNK RAILWAY IN McGILL STREET, MONTREAL.

No. 44,237.-Agreement between Harbour Commissioners of Montreal and Grand Trunk Railway Company, for extending a track into the city crossing Lachine Canal at the first lock.

No. 44,317.-Vice-President of Grand Trunk Railway submits plan of Montreal Terminus.

No. 44,385.-The Forwarders of Montreal memorialize against construction of another Railway bridge over the Lachine Canal.

No. 45,500.-John Page, Chief Engineer Public Works,-Report on the agreement between Harbor Commissioners and Grand Trunk Railway Company for City Terminus.

No. 45,895.-W. Shanly, and A. L. Trembicke,-Replies to questions proposed by the Commissioner in reference to their plan of City Terminus.

No. 51,044 -Deputy Commissioner and Chief Engineer report on impracticability of rebuilding Lock No. 1, in situ.

Printed Report of W. Shanly on City Terminus of Grand Trunk Railway Company made to Harbor Commissioner.

Official memorandum of the Commissioner on building enlarged lock on North side of the existing one.

28th January, 1860

Sir,-The Grand Trunk Railway Company at present enjoys the privilege of one crossing of the Lachine Canal at a distance of one mile and a half from its Station at Point St. Charles : It now seeks another across the entrance lock of this Canal. The question arises, is it possible to avoid another draw-bridge? Must all trains arriving at Montreal from the West cross the canal twice before reaching it, and make no less than four stoppages in doing so? Two at the canal, one at the Lachine Railway and one at Point St. Charles Station? Is there really no other way of reaching a city terminus on the North side of the Canal than the one proposed by this Company.

There is no doubt that this is the cl lpest and shortest line from Point St. Charles that Company can devise to reach the point anmed at ; but we are not prepared to admit that it is the best for all the interests concerncd. Mr. Shanly in his report to the Harbor Commissioners expresses his fears of want of roum at the foot of McGill street and suggests that the increase of business be provided for by reclaiming land from the river on the south side of the canal. If the efforts made by the Provincial Government for securing to the St. Lawrence route its fair share of Western traffic, shall yet be crowned by success, the business on this canal must be greatly augmented. But even the fractional portion of it which now seeks this route together with that from the lower ports, demand from 15 to 20 lockages a day, and on some days as many as 29 lockages have been made.

Looking then to the increase of traffic which may reasonably be expected both by water and rail; the greatest caution should be observed in the consideration of any plan which shall have the effect of crowding both together in a limited space where it is foreseen to be impossible to provide for their future growth and development.

We are so thoroughly convinced that the concession of another crossing of the Lachine Canal, at this point, would operate injuriously to the navigation by crowding all the traffic together in a snall compass, and making a thoroughfare of the two lowest locks, that we feel it our duty to lay before you, as plainly and concisely as we can, the reason which have induced this conviction, with the earnest hope, that upon further consideration some other method of accommodating the City may yet be adopted without inflicting unnecessary injury upon one of the greatest interests committed to this Department.

It may be assumed that the privilege of a second Canal crossing should not be sought or conceded, if the granting of it would in any way impair the efficiency of the existing Canal, or place obstructious in the way of its future contemplated enlargement. We are of opinion it will do both.

1. The lockages as before stated, vary during the season of navigation, from 15 to 25 per day, and on one occasion there were 29 in one day. These Lockages occupy according to the class of vessel that may be passing, from 15 to 30 minutes each. Now the Railway Company, through Messrs. Shanly and Trembicke (No. 44895) proposed to take that time enly during which the gates are closed for passing vessels as their time for crossing trains. They do not ask that vessels shall wait for trains, but proposed that trains shall wait for vessels. Then as business at the Canal increases, and the locks come to be used continually, their trains must occasionally wait. They can never be certain of their departure or arrival. The Time table cannot be observed. Their crossings with other trains on the line must be deranged, and irregularity, one fruitful source of accident on railways, must ensue. There willafter a time, be a public outcry against Canal management, and a general demand for making the rules of the Canal subordinate to those of the Railway, and reasonably so, for in the one case human life is jeopardized, while in the other there is only the question of a few minutes delay. It follows then, that if the Comyany is allowed to cross the Canal again at this point, that the interest of the Canal will be subordinated to its convenience. The Company proposed two other draw-bridges across the lower locks, to accommodate the common travel, and if these two be given, the Canal becomes a perfect throughfare for Railway accommodation and its efficiency aust be seriously impaired.
2. On the question of enlargement Mr. Shanly and Mr. Trembicke admitted that the carrying out of their plan interferes with the proposed position of the Locks, so much so as to render it impracticable to place them where they have been laid down on the plan. To obviate this difficulty they proposed that the entrance Lock shall be placed south of the Station ground, outside their Railway tracks, and the second one connected with the upper basin, by cutting through the mill lots and property. We do not think this suggestion can
be carried out, short of on increase of $£ 100,000$ over the plan which we recommend as the best. In point of fact we consider it a virtual admission, that if the Company obtains what it is seeking for, the Government will be forced into an expenditure on Point St. Charles Shoal, (wherever it shall decide upou the future enlargement of the Canal) which is unnecessary and difficult of estimation.

We apprehend that our Report ($\mathrm{N} 0.45,044$) proves the impracticability of reconstructing the lower Lock in situ and disposes of that question.

Upon your memorandum of the 28th instant, we have to state that the Locks, if built on the north side of the existing ones, would render useless the steamship wharf within the Harbor of Montreal as well as the wharf between the Locksthemselves, and fully two-thirds of that upon the upper basin, and that the upper Lock would encroach on Commissioner Street, and render the construction of the dock wall for fully one-half of its length indispensable.

The principal difference in expense of constructing Locks on the north side, compared with that on the south side of the present Locks, would be as follows:

Thus shewing that it would cause an expenditure of $\$ 80,000$ more to make the enlargement on the North than on the South side of the present Locks, besides which the adoption of the North line would render useless 1,300 feet of the present wharfage in the first and second basins, which if any value can be placed on it at all, cannot be less than $\$ 200$ per lineal foot, or $\$ 260,000$, while by placing the Liocks on the South side, about 600 feet of wharfage would be added to that which we have at present.

It is no part of our-duty to suggest a plan for connecting the Grand Trunk with the Harbor and City Terminus on the North side of the Canal, as desired by the Corporation and Board of Trade, but we think it right to take this occasion of expressing our mature opinion, that for these objects in which the City is so deeply interested, a line can be obtained, which will be free from the objections urged against the one under consideration, and better for the interests of the City, both present and future, and although it may cost more in the purchase of property at the beginning, it will be attended with this advantage: that it can be brought into operation in the course of two montlis, while the proposed plan will occupy two years in its construction. The City might then enjoy the advantage of connection with the Railway during this summer, instead of waiting for it intil the close of next year.

> We have the honor to be, Sir,

Your obedient Servants,
(Signed)
*

SAMUEL KEEFER, Deputy Commissioner,

January 31, 1860.
No. 46,170.

To His Excellency the Right Honorable Sir Edmund Walker Head, Baronet, Governor General of the Province of Canada, \&c., \&c., \&c.

On the application of the Grand Trunk Railway Company, for leave to cross Lock No. 1 of the Lachine Canal; and on the reference touching the arrangement between that Company and the Montreal Harbour Commissioners, the undersigned has the honor to report for your Excellency's information that he has given due consideration to the important questions involved in the foregoing applications and reference.

He is fully sensible, on the one hand, of the duty of guarding the public water communications of the Province, at this important point of junction with the ocean navigation, against obstructions which might either interfere with the present working of the Canal, or interpose serious difficulties in the way of its future enlargement; while, on the other, he equally recognizes it to be important to the general commerce of the country, (especially in view of the efforts now being made to attract the Western Trade through Canada, that a connection between the Grand Trunk Railway and the Harbour of Montreal should be formed, thereby avoiding a serious item in the cost of transport.

He accordingly caused the several applications to be referred to the Deputy Commissioner and Chief Engineer, and instructed them to report on the various engineering questions which might affect your Excellency's decision.

The Reports made by them, together with certain suggestions of the undersigned, which are considered to embody the objections presented in the Chief Engineer's Report, were afterwards submitted to Mr. Walter Shanly and Mr. Trembicke, acting for the Grand Trunk Railway Company; and the several Engineers were requested from time to time to consult together, with the view of devising, if possible, some course by which the public convenience in regard to the Terminus, might be met without injury to the Canal navigation.

These several Reports are submitted for the information of your Excellency, and the objections to the application may be considered as three-fold.

1st. That the project will interfere with, or prevent the enlargement hereafter, of the Lock connecting the Canal basins with the Harbour, except by the construction of a new entrance, at a very heavy cost, through the River St. Lawrence, outside of Mill street; and that it will necessitate the building of an arched tail race from the various mills on the South side of the Canal.

2nd. That the proposed works on Point St. Charles will come so near the Canal, as to encroach on, and diminish the service ground necessary for the Canal operations at the Lock.

3rd. 'That the Bridge across the Liock will interfere with, and offer so much obstruction to vessels passing, as to be a serious delay and injury to the present trade.

Before considering these several objections, the undersigned would premise, that he considers his duty to be very much limited by the action which the Legislature has already taken on this question; for it would seem that the legal right to cross the Canal has already been granted by several Acts of the Legislature, viz., the 18 Vic., c. 33 , sec. 24, and the 16 Vic., c. 37 , sec. 20 . Power is thereby given to the Company to construct a branch railway from the Victoria Bridge to the River St. Lawrence; at or below the Current St. Mary'; and such branch may be made either along the wharves, or by Graig street.

As this right, then, has been already legislatively conferred, the duty of the undersigned is restricted to guarding, as far as possible, the public interests, by imposing proper conditions on its proposed exercise by the Railway Company, and seeing that the plans and position of the structures shall be such as to offer the least injury to the existing works.

It is to be regretted that'some place could not have been devised by the Railway Com pany for entering the city and connecting with the Harbour, which would not have presented so many objectionable features as the one proposed. But the undersigned cannot tignore the fact that this plan is the result of prolonged negotiations between the Railway Company, the Harbor Commissioners, and the City of Montreal, and that the public discussions which have attended it lave failed in producing any other project, on which the parties interested are agreed, or which they are prepared to carry out.

The undersigned has, therefore, to deal with the application before him ; and he has now only to consider whether the public objections are of such a nature as must lead him to report adversely to it in its present form, or whether such modifications may not be made, and conditions attached, as will guard the public interests to an extent which may permit the accomplishment of the work.

The first objection, "that the work will interfere with the enlargement of the Canal,", is one of a grave character, and, if insurmountable, ought to lead to a rejection of the plan proposed. Whatever facilities it might give either to the general trade, to the city; or to the Railway Company, ought not to be purchased at the price of interposing a permanent obstruction to the future improvements of the water communications of the Province at this important point. It may, however, be fairly assumed, that the existing Lock will, for many years to come, meet the requirements of the trade. Its present size is adequate for the passage of vessels of from 700 to 800 tons,-it being 200 feet in length by 45 in breadth, with 16 feet of water over the sill.

An enlargement of all the St. Lawrence Canals to such an extent as to:exceed a depth of 16 feet can hardly be contemplated, seeing that the intermediate reaches, and the Harbours on the Lakes must be deepened to a like extent before those improvements take place.

The enlargement of the Lock in question can, therefore, only be called for in order to enable sea-going vessels drawing more than 16 feet of water, and which cannot proceed higher than, nor come from any port west of Montreal, to get from the present Harbour into the lower basins of the Lachine Canal, for they cannot pass into the upper basin until it shall have been deepened to 16 feet.

Sea-going vessels, whether drawing 16 feet or upwards, will rarely proceed to those basins, except when there may be a want of Harbour accommodation below and outside the Lock.

It is believed that crafts from the Lower Ports have entered this basin, with a view of relieving themselves from the Harbour dues, and that after the regulations which are now under consideration shall be enforced, the number of lockages will be diminished. When the trade shall demand an enlargement of the Harbour, if sufficient facilities to that end do not exist below, and it should become necessary to provide them by means of enlarging the Canal Basins above the Lock, the question then arises, whether the proposed works of the Railway Company will either so entirely prevent that enlargement, or offer such serious obstructions as to call on Your Excellency to withhold the permission the Company ask.

Three plans for the construction of an enlarged Lock present themselves.
1st. That referred to by Mr. Shanly, outside of Mill Street.
2nd. The proposal of taking down the present Lock, and rebuilding it in one year without.interrupting the navigation.

3rd. To build a new Lock by extending the basin lately constructed by the Harbour Commissioners for the Ocean Steamships, on the North side of the present one.

It is unnecessary that the expediency of the first plan, or the practicability of the second, should engage the attention of Your Excellency, since the third suggestion would seem to be accompanied with no engineering dificulties, por to entail much additional expense beyond what the construction under the present circumstances would involve.

And, though by rendering that portion of the basin a passage only, which is now used as a place for vessels to lie and discharge at, the accommodation might be somewhat diminished, yet the same necessity which will have demanded, in future, the construction of an enlarged or additional Lock, will have secured extra Harbour accommodation either below or by making new basins above it. It does not, therefore, appear that the proposed work would interfere so seriously with the enlargement of the Lock, whether needed for the increased Harbour accommodation, or as a part of a general enlargement of the whole inland navigation, as need call on Your Excellency to withhold your sancion from themprovided it be coupled with the condition that the Railway Company shall make good and pay any damages or additional expense which may arise in consequence of the Province adopting either the plan now adverted to or any other, instead of making the new entrance on the South side of the existing Lock, as would be done, were the intended works of the Railway Company not gone on with.

On the second objection, viz., "As to diminishing the necessary serviee ground."

The undersigned has to remark, that, though the service ground is diminished, especially on the North side, yet it would seem that arrangements may be made by the Engineer of the Department in regulating the position of the works, so that they shall not interfere seriously with the requirements of the Canal; and he would recommend that it be exacted as a condition, that the Railway Company shall make and appropriate so much on the South side as may be necessary,-in lieu of what is encroached on on the North side -the number of feet and the arrangement of all details to be settled by the Engineer of the Department.

On the third objection, viz., "The delay and obstruction to vessels passing."
It is considered as an indispensible condition, that the plans and position of the proposed work, and of every detail in connection with it, as well as that the opening and shatting of the Bridge when finished,', and all running arrangements in connection therewith, should be subject to the absolute order and direction of the Department of Public Works; and on these conditions it is presumed that the crossing may be so arranged as not materially to interfere with, or occasion serious delay to the trade of the Canal, whatever inconvenience or irregularity may be occasioned to the Railway Company in the running of its trains.

The observations of the Deputy Commissioner and Chief Engineer on this head are entitled to great weight; and should receive serious consideration on the part of the Railway Company; for the undersigned cannot recommend to Your Excellency that the rules of the Canal shall, under any circumstances, become subordinate to those of the Railway, and the consequences resulting from delay and irregularities, should be fully weighed beforehand by the Railway Company. The serious character of the objections urged may, however, be somewhat modified by the consideration that the point of crossing can hardly be considered as on the main line of Inland Navigation; and it is:believed that only asmall proportion of vessels will require to use the Lock, whose movements, in passing from the one basin to the other, may not be so timed as to produce less inconvenience or delay than would arise from a bridge at a point where they might be under full headway, and at which they might have to bring up when the bridge was closed.

The Lock is at a point between the termination of the Ocean voyage, and the beginning of the Inland voyage, and comparatively few vessels pass this point in direct continuance of their journey.

The conditions which the undersigned would recommend should be imposed upon the Company, are then the following:-

1st. That the permission to construct a track on, and pass over the property of the Province from Point St. Charles to, and thence along Mill Street, or on the land between that street and the River to the point of crossing the Canal, shall not be implied to convey any right whatever to the land, and that the Company shall be at the entire expense of all proper works of construction, connected with the Tail-races now existing or hereafter to be made; and of all other works whatever; and be responsible for all damages of every description.

2nd. That the plan and position of the proposed Bridge, and of all works and machinery connected with it, shall be subject to the approval of the Enginvers of this Department, and that the future working thereof shall be subject to the rules and regulations which may, from time to time, be approved by His Excellency in Council for the management of the Canals.

3rd. That so much space for service ground, or for other purposes, as the Engineer of the Department may consider necessary, shall be reserved and provided by the Railway Company.

4th. That, if at any time hereafter, the proposed Bridge shall be found to interfere with the working of the Canal to an extent which may be seriously detrimental to the Public Works of the Province, the Company shall be bound to remove the same.

5th. That; in the event of a new Lock being constructed between the Harbour and the Upper Basins, the Railway Company shall pay and make good all damages and additional expenses which the Province may be put to: in consequence of the adoption hereafter of any plan different from that which could now be followed, and which may be rendered necessary by the proposed works of the Railway Company.

6th. That the whole of the foregoing works shall be carried out as one plan, and the requisite grounds and Station be provided forthwith, and the works to proceed to the satisfac-
tion of the Department of Public Works, and the whole completed on or before the first day of April, 1861, and be subject to the approval of this Department.

The whole is respectfully submitted.

Quebec, March 26, 1860.
No. 46,170 .
(Copy.)
Copy of a Report of a Committee of the Executive Council, approved by His Excellency the Governor General, 28th March, 1860.
The Committee have had under consideration the annexed Report, dated 26 th March, 1860, from the Hon. the Commissioner of Public Works, on the application of the Grand Trunk Railway Company for leave to cross Lock No. 1 of the Lachine Canal, and the arrangement between that Company and the Montreal Harbor Commissioners in re-erence thereto-and they respectfully submit their concurrence in that Report, and recommend that the permission requested be granted on the terms and conditions therein set forth.

Certified.
(Signed,) WM. H. LEE,
C. E. C

RETURN

To an Address of the Honorable the Legislative Assembly, dated 12th March, 1860 ; for the Annual Report of the Chief Emigrant Agent at Quebec, for the past year; and also, the Reports of the German and Norwegian Assistants.

By Command,

C. ALLEYN, Secretary.

Secretary's Office, Quebec, 15 th March, 1860.

CONTENTS.

PAGE.
Abstract No. 1.-Appendix-Season's Emigration, 2
" " 2.-Arrivals from each Country and Port. 3
Vessels under the Act. 3
" 6 3.-Trades 4
" .. "4.-Panpers. 4
" " 5.-Emigration from 1829, 5
Passenger Acts, 5
Expenditure, 5
Quarantine 5
Emigration Agencies, 6
EmigrantTax 7
Résumé of Sub-Agents' Reports. 7
Foreign Immigration, 8
Norwegians, 8
German, 9
German Poor, 9
Distribution of Immigration, 9
Decrease of do 10
Suggestions, 11
Canadian Ocean Line of Steamers, 11
General Remarks, 11
Arrivals at New York, 12
Disposal of Public Lands, 12

Office of Her Majesty's Cbief Agent for the Superintendence of Emigration to Canada, Quebec, 31st December, 1859.

May it Please Your Excellency,

I have the honor to submit to Your Excellency, for the information of Her Majesty's Government, my Annual Report on the Immigration to the Province during the year 1859, accompanied by the usual Statistical Tables.

Table No. 1 furnishes a return of the season's Emigration, showing the number embarked, the births and deaths on the passage and in Quarantine, with the total number landed, distinguishing males from females, and adults from children, with the number from each country; also, the number of vessels, tonnage, and seamen employed, with the average length of passage. On reference to this Return, it will be seen that the number embarked for this Port during the season was as follows:-

Of the whole number of vessels engaged in the conveyance of the Emigration of the year, 85 were Sailing Ships, and 35 Steamers. The forner class had an average passage of 44 days, and brought 4471 persons. The Steamers, with an average passage from Liverpool of 11 days, from Glasgow of 16 days, carricd aliogether 4307 persons. Distinguishing the Cabin from Stcerage passengers, the following is the comparison :-

The Emigration has been very healthy. The mortality among the Steerage Emigrants, which has been confined altogether to the Sailing Vessels, was only.15. The deaths among those from the United Kingdom were but2. Those among the Germans were 8, the Norwegians 5 , making 13, and of these 11 were infiats. No deaths occurred at the Quarantine Station during the Season-a circumstance which had not occurred since the establishment of the Station in 1832 , a period of 27 years.

The sanitary condition of the Enigration of 1859, as compared with that of the arrivals in 1858, will appear ou a comparison of the admissions into hospital at Grosse Isle.

In 1858 they were 227 ; 1859 , they were 92 , which, in relation to the amourt of Emigration of the respective years, shows a proportionate decrease of 40 per cent

The following is a comparative statement of the arrivals from Europe in 1858 and $1859:-$

-	$\bigcirc \quad 1858$.		1859.	
	Cabin.	Steerage	Cabin.	Steorage.
England	1,436	5,005	1,493	3,353
Ireland...................	106	1,047	4	413
Scotland.................	38	1,386	158	635
Germany..	922	8	963
Norway..................	2,656	57	1,694
	1,5S0	11,016	1,720	7,058
Total	\cdots	12,596	8,778

Shewing a decrease in the Emigration of 1859 of 3818 on the whole, and on the Steerage passengers of 3958 ,--equal to 35 per cent.

Distinguishing the origin of the Immigrants of the past season, they will appear as follows :-

English,	-	-	-	2610
Irish,	-	-	-	1248
Scotch,	-	-	-	1787
Germans and Poles,	-	-	1100	
Norwegians,	-	-	1751	
Belgians, -	-	-	5	
Canadians,	-	-	-	277
				8778

Table No. 2 presents a Return of the passengers from each country and port during the seasons of 1858 and 1859.

Those from England were brought in 28. Steamers and 37 Sailing Vessels; and of the Whole number 4522 came from the port of Liverpool, 170 from Plymouth, and the remaining 154 from 14 other ports. The decrease on the year was 1595 passengers, equal to near 25 per cent.

From Ireland, the Emigration numbered but 417; a large proportion of which consisted in females and children. The whole were brought out in 12 ships. The largest number from any one port was from Now Ross, Eeing 194. The decrease, when compared with 1858 , is 733 passengers, equal to 64 per cent.

From Scotland, the number was 793 , brought out in 7 steamers and 12 ships. Of the total number 612 sailed from the Port of Glasgow. The decrease from this country is 631 souls, equal to 44 per cent.

The foreign emigration numbered 2722-966 from Germany in ' 7 , and 1756 from Norway in 16 ships. The Germans, when compared with the arrivals in 1858 , showed an increase of 41 souls; but the Norwegians showed a decrease of 905 souls, equal to 34 per cent.

But 16 vessels sailing from the United Kingdom came under the regulations of the Passenger Act. These brought 1329 passengers. 45 vessels, with 421 passengers, were exempt from its operations. The following table shows a return of the numbers from the United Kingdom:-

	Under the Act.		Exempt.	
	Vessels.	Passengers.	Vessels.	Passengers.
England......................	5	657	32	831
Ireland........................	6	382	6	35
Scotland......................	5	299	7	55
Total.....................	16	1329	45	421

Table No. 3 furnishes a return of the adult (steerage) male emigration, distinguishing their trades, callings, and origin. The number embarked was 3081, who were classed as as follows:-

	Total.	British.	Foreign:
Farmers	1051	550	501
Labourers ..	866	602	264
Mechanics	388	328	60
Professional Men	13	11	2
Clerks, Agents, and Traders......................	331	331	0
Servants	40	39	1
Miscellanoous and Unenumerated	392	266	126
Total	3081	2127	954

The incomplete form in which many of the ships' lists are made in regard to the classification of tradesmen and mechanics will account for the appearance of so large a proportion under the head of Miscellaneous.

Table No. 4 presents a return of the number of persons who have been aided in their emigration to this country by private individuals, charitable institutions, or who have emigrated under the sanction of the Poor Law Commissioners. The total number assisted was 142-38 males, 76 females, and 28 children; and the amount paid among them on their arrival here was $£ 108$ sterling. The number from England was 46 , viz., 25 from the Chatham Union, consisting of 8 men, 9 women, and 8 children; and 21 youths, from fifteen to eighteen years of age, from the London Ragged Schools.

The youths were readily supplied with situations, some in this City, but the chief part in the country settlements, where their services were eagerly sought for, as they are generally stout, active lads, willing and anxious to make themselves useful.

Those from the Chatham Union were not of so desirable a class, consisting of middleaged men and widows with children. The latter find great difficulty in procuring situations, and the charge they are subject to for the support of their children absorbs three-fourths of the wages they are able to earn.

From Ireland the number was 95, viz.: 8 males, 53 single females, and 14 widows accompanied by 20 children. Of this party there were 13 widows with 18 children, sent out by the Guardians of the Gorey Union. The remainder consisted of single females and lads from the Wexford, Mullingar, and Youghal Unions; all of whom readily found employment.

I had occasion in my Report to Your Excellency, of last year, to point out the hardships and sufferings to which a party of widows with children, similarly situated to them of this year, and sent out by the same Union, were exposed from the difficulty which was experienced in procuring them any suitable employment. In consequence of the reception of a larger party this year from the same Union, I have felt called upon to make further and more direct representations to the Guardians, pointing out the cruelty of transferring this class of helpless poor to a country in which no provision whatever exists for them; and subsequently receiving very discouraging reports concerning them and their prospects from the Agents of this Department; where the party was distributed, I forward simi-
lar representations to the Emigration Commissioners of Liondon, with the view of more effectually bringing the matter under the notice of the Poor Law Commissioners.

Table No. 5 presents a comparative statement of the number of emigrants landed at this Port from the year 1829 to the present time, a period of 31 years, numbering in the aggregate 922,593 souls.

There was but one complaint of infringement of the Passenger Act in the course of the past season. This was by the Passengers of the Brig William and Joseph, from Limerick. It did not, however, result in a prosecution, as the complainants refused to remain to prosecute. The case appeared to be one of disagreement between the Master and his Passengers rather than a direct breach of any provisions of the Act. A statement of the complaint was forwarded to the Government Emigration Office at Limerick, in order that it might be brought under the notice of the owners.

The amended Provincial Law relating to Emigrants came into operation on the Ist January last, and will doubtless prove efficient in the protection of Immigrants. The 6th clause, requiring the Agents of Railway and Steamboat Companies to be licensed, has been strictly enforced, and has been found to have a bencficial effect. Ccrtificates were granted to seven applicants, and these persons only have been authorized to approach Emigrants with offer of inland transport.

The total expenditure of the Emaigration Department, including a portion of the expenditure of the Quarantine Establishment at Grosse Isle, during the season of 1859, amounted to $\$ 27,914.50$.

$\$ 18,473$: 61
$\$ 27,91450$
The several heads of Expenditure on account of the Quarantine Establishment were as follows:-

By cash received from Shipmasters for carriage of their passengers to Quebec,
$\$ 5225$
$\$ 9,440 \quad 89$
This shows a decrease, when compared with the Expenditure of 1858 , of $\$ 463.09$, which has chiefly been effected in the items of Hospital Supplies and Cartage.

This abstract, however, does not include the charge for Steamboat service for the use of the Station, which was defrayed by the Board of Works, and cost for the season \$1,677.50. The greatly reduced Immigration has permitted a considerable saving under this head, when compared with the Expenditure of 1858, in which jear a steamer was engaged for the exclusive use of the Station at a cost of $\$ 5,000$. During the present season the contract was made for a certain sum per trip, and but one regular trip per week was en-
gaged. The whole amount saved in the cost of the Quarantine establishment at Grosse Isle, when compared with that of 1858 , was $\$ 3,785.59$.

The Expenditure incurred on account of the Immigration at the several Agencies throughout the Province, for the year ending 31st December, has been as follows :-

Qucbec...	Transport. \qquad Provisions \qquad Agency Charges. \qquad Salaries.	$\begin{array}{r} 2,60914 \\ 11621 \\ 1,17500 \\ 1,97997 \end{array}$	
Ottawa	Transport. \qquad Provisions \qquad Agency Charges Salarics. \qquad	$\begin{array}{r} 32814 \\ 3198 \\ 27907 \\ 1,50000 \end{array}$	
Montreal.......................................	Transport. Provisions \qquad Agency Charges \qquad Salaries.	$\begin{array}{r} 47200 \\ 2334 \\ 34545 \\ 104333 \end{array}$	\$2,139 19
Toronto and Kingston......................	Transport. \qquad Provisions \qquad Agcncy Charges. \qquad Salarics.	$\begin{array}{r} 66050 \\ 13 S 25 \\ 73 S 54 \\ 3,64200 \end{array}$	\$1,SS4 12
Hamilton.......................................	Transport Provisions Agency Charges Salaries.	$\begin{array}{r} 99072 \\ 2 S 615 \\ 31352 \\ 1,50000 \end{array}$	5,17929 \cdots $3,390.69$
			\$15,473 61

From this Statement it will be seen that the total direct relief extended to destitute Immigrants throughout the Province has been :-

For Transport,				
Provisions,	-	-	-	-

The total expenditure, when compared with that of 1858, appears as follows:-
$1858 . \quad 1859$.

The decrease in the expenditure incurred in the direct relief of Immigrants during the past year was $\$ 5,830.14$, equal to upwards of 50 per cent. The cost of Agencies shows a decrease, when compared with that of last year, of \$313.43.

The number of persons assisted at the Quebec Agency was equal to 897 adults, at an average cost for transpor of $\$ 2.90$ each. There were forwarded to-

Places in Canada East, - - 451
Ottawa District - . . 108
Places in Canada West . $\quad 130$
United States, . - . 208-897 adults.
Of the above there were:

English,	-	-	-
Irish,	-	154	
Scotch,	-	340	
Germans,	-	7	
Norwegians,			147

At Montreal there were assisided 189 adults, at an avcrage cost of $\$ 2.50$. They were forwarded to-

Western Canada and Ottawa,	-	-	-	185		
United States,	-	-	-	-	3	
Eastern Townships,	-	-	-	-	-	$1-189$.

At Ottawa there were relieved 202 souls, equal to 153 adults, at an average cost of \$2.15. They were chiefly forwarded to places on the Upper Ottawa.

At Toronto the number of persons who received assistance was 812 , at an average cost of 98 cts . each. They were chiefly forwarded into the interior, and were mostly persons procceding to join their friends.

At Hamilton the number assisted was 949 , at an arerage cost of $\$ 1.35$ each. 913 were forwarded to places in Western Canada, 21 to Montreal, and 15 to the Suspension Bridge at Niagara. A large amount of this expenditure is stated by Mr. Dixon to have been incurred on account of the immigrants who rached the Province by the route of the United States, and who are generally in very destitute circumstances, owing to the unreasonable detention they are exposed to from the practices of designing persons on the route.

The emigrant duty realized in the course of the season was as follows:-

$$
\begin{array}{ccccc}
\text { At Quebec, } 8438 \text { at } \$ 1 \text { each, } & - & - & & \$, 438 \\
\text { Montreal, } 7 \text { at do. } & & - & & \frac{7}{7} \\
\text { Total amonnt of tax collected, } & - & - & - & \$ 8,445
\end{array}
$$

I here submit a resume from the reports of the Sub-Agents, as the results of the season's immigration to the several Sections of the Province under their more immediate charge, viz: Mr. McKay, the acting Agent at Toronto, Mr. Dixon at Hamilton, Mr. Clemow at Ottawa, and Mr. Daly at Montreal. The reports in full have been transmitted to the Secretary of the Bureau of Agriculture.

Mr. McKay, the acting Agent at Toronto, reports that 4131 Enigrants arrived at the Agency, during the Season, via Quebec, Rochester and Oswego; 2276 of whom proceeded to the Western States, and 1855 remained in Canada. The condition of the immigrants generally was very good, and a great many of them had means to enable them to settle down comfortably and become valuable settlers, while others proceeded to join their friends. A number of families were in destitute circumstances, chiefly those who came out to friends, but more particularly those who reached the country by the route of the United States. The demand for labour has continued limited throughout the season, but the prospects and condition of the farmers were improving, and all who came out have found employment, although at reduced wages.

Mr. Dixon, the Agent at Hamilton, reports the arrivals during the year as 14,236; 1696 of whom came viâ Quebec, and 12,540 vi人 the United States and Suspension Bridge; 10,095 proceeded to the Western States, and 3141 settled in Canada. 949 persons were assisted to enable them to reach their friends in different sections of the country; more than half of whom reached the Province via the United States, and were gencrally very destitute, owing to the detention and imposition they were exposed to on the route. With reference to employment Mr. Dixon states that it is still very scarce, but he anticipates that natters will improve before Spring, and that Agriculturists will find remancrative employment; but, for mechanics, and more especially persons seeking situations in mercantile life, he fears they will be doomed to disappointment and want.

Mr. Clemow, the Agent at Ottawa, reports that 489 immigrants reached his Agency, against 1829 during the season of 1855. They arrived viâ Quebec, and a few by the route of the United States. They were remarkably healthy, and in appearance respectable; but generally of the laboring class, a number of whom came out to join their friends. 202 persons received assistance to proceed to their destination, chiefly on the Upper Ottawa. Of the immigrants arrived 212 were foreigners, Germans and Poles. A number of Germans also had removed from Berlin, Canada West, and settled on the Government Lands, in the Townships of Alice and Wilberforce. They are doing well and appear satisfied
with their prospects, and will, from their industrious habits, prove a valuable addition to the population of that district. The demand for labour, owing to the limited immigration, has been stealdy, and every man able and willing to work was at once engaged. Some disappointment was felt by the farmers at not being able to secure the number of laborers they recpuired, wore particulary during the harvest. But 23 mechanics reached the Agency during the scason, who obtained employment with little difficulty. The district has been supplied with all the mechanical labor it requires by the influx of old residents from other parts of the country, and the prospects at present are not encouraging, unless to those who might possess sufficient means to establish themselves in the small towns and villages, which gencrally offer a good opening, and where they are more likely to succeed than by depending om the uncertain employnent in large cities. To persons desirous of settling upon land, the Ottawa Country offers every encouragement. The large extent of Crown Lands, as also those held by prirate individuals, the greater portion of which are suited for agricultural parposes, presents farourable opportunitics for settlenent; lands partially improved, or unimproved, being casily obtainable at prices and upon terms according to situation.

Mr. Daly, the Agent at Montrcal, reports that $2 \overline{7} 4$ indigent persons, equal to $189 \frac{1}{2}$ adults, were assisted at his Agency ; 185 of whom were forwarded to Western Canada and Ottama; 3i to the United States, and I to the Lastern Tomnships.

He affords particular information as to the systematic imposition practised on Immicrants who come to Canada by the route of Now York, stating that some 20 families, to his knowledge, had been ticketed to that port, and thence sent to their destination in Canada, by very circuitous routcs, wia Suspension Bridge, Rochester, Oswego and Cape Vincent. One family in particular, whose destivation was Ramdon, near Montreal, were ticketed at Sivapool, for New York, being told that the port of Qucbee Was closed until the end of June; from New York they were sent round by Suspension Bridge (which they were told was within a few miles of their destination), their inland transport costing more than the voyage by sea. Mr. Daly further reports the great healthiness of the Immigrants he saw at his Agency, their respectable appearance, and the purpose of many, with means, to purchase lands in the Western section, while others intended to apply for free grants on the Government lands. Those secking employment obtained it with difficulty in some cases. Agricultural laborers and female servants were hired at fair wages, but the prospect, generally, for mechanics, was far from cncouraging.

The foreign cmigrants who have arrived at this port, during the past year, number as before stated, 2856 souls- 1756 Norwegians and 1100 Germans. The former came to this country in Norwegian vessels direct; of the latter 901 . sailed from Hamburg, 63 from Bremen, and 136 from Liverpool.

The Norwegians show a decrease of 900 when compared with the immigration of 1858. They were generally in good health. They proceeded to the Western States, with the exception of 15 families, 49 persons, who have settled with their countrymen in the Eastern Townships, purchasing their lands from the British American Land Company, in the Township of Bury, where they appeared so well pleased with their situation, that two of them have proposed returning to their native land this winter, in order to make known the advantage Canada offers, and to induce others of their countrymen to join them.

From the report received from Mr. Christoper Closter, Norwegian Interpreter, it appears that the falling-off in the number this season was owing to the difficulty which the intending Emigrants found in realizing money for their property. From the information he has received, he anticipates that we may look for an increase of their number in 1860.

There evidently exists among the Norwegians who emigrate great prejudices against this country, which he considers hare been fostered and encouraged by interested parties and Agents connected with the Western States. The Government and people of these States very justly attach a high value to the immigration received from Norway, which, without reference to the large amount of money-capital it introduces in the aggregate, is distinguished by its orderly and industrious character. It may therefore be anticipated that, from the success which has attended the establishment of the Norwegians in the Eastern Section of the Province, more extensive bencicial results will follow by an annual increase
of their number, and a more general occupation of our waste lands. In the development of the inexhaustible wealth which this country possesses in her fisheries along the seacoast and the Bay of Chaleur, the hardy fishermen of Norway might find a large encouragement; and fishing establishments, in connection with settlement, would greatly conduce to the general prosperity of the country.

From the report of the German Interpreter, Mr. Sinn, there appears a small decrease in the immigration from Germany when compared with 1858. A considerable portion of the Immigration was of the poorer class, and some families presented the appearance of great destitution.

The number settled within the Province may be stated at from 300 to 400 , a great number of whom went to the Ottima country. This district has also received a considerable accession from the removal of old residents from the neighbourhood of Berlin, Canada West, who have purchased Government lands in the Township of Alice. These settlements have made very satisfactory progress, and now afford indications of a rapid and beneficial enlargement, the success of which may, in a great measure, be attributed to the exertions of Mr. Sinn, who first directed his countrymen to that district.

Among the immigration from Germany, for several years past, we have annually received a larse number of very destitute families, which, it would appear, are sent by this route by the Shipping Agents in Europe, to avoid the difficulty and discouragement which they cxperience in forwarding them by the United States. During the past season, there arrived by the ship "Main," from Hamburg, a number of families of this class. [See Monthly Report, at page 19 of the Appendix.] They were Prussians from Pomerania, consisting of 19 families, 93 souls- 23 men, 21 women, and 49 children. From the information obtained from these people, it would appear that they left home with the intention of proceeding to Brazil ; but finding, on their arrival at Hamburg, that their means were insufficient to convey them to that country; they were induced to take passage to Quebec. As no suitable employment offered for them within the Province, owing to the proportion of females and children being so greatly in excess, it appeared advisable, in order to provide for their immediate nceessities, and to protect the Province from the burthen of their support, to forward the entire party to the German settlements in the Western States.

In my Annual Report to Your Excellency in 1854, I felt called upon to offer some remarks with reference to the export of foreign paupers to this country, which appeared to call for some legislative enactment. This class of our emigration annually entails a direct charge on the Emigrant Fund, to cover which no special provision has yet been made by law. In the State of Massachusetts, the Emigration Commissioners are empowered to exact from the owners of the vessels conveying any passengers deemed on enquiry to be destitute, or likely to become so, special provisions against the case. The strict enforcement of these regulations deters the promoters of the emigration of this class of people from resorting to the United States ports, and leads them to ship for Quebec all such passengers as may involve them in extra expense on arrival. It may be deemed expedient, in the event of further legislation, to adopt some course which will protect the Province from the indiscriminate introduction of foreign poor. I have reason to believe that the circumstances under which they are sent out correspond with many of those of emigrants from the United Kirgdom, who have been aided to emigrate through the means furnished by their parishes, \&c. They had been supplied with aid, not because they were fitted to succeed as settlersin America, but because they were burthensome at home ; and it was evident on their arrival here, that the same disability which had rendered them valueless to the community in their own country would affect them here in an increased degree.

The following is an approximative statement of the distribution of the steerage immigration arrived in the past year:-

Arrived at Quebee,		7,061
Via Portland to 31st December,	139	
"/ Toronto, from United States,	-	500
" Hamilton, by route of the Suspension Bridge,	12,540	

Brought forvorrl, -
 DISTRIBUTION.

$\$ 20,240$

The gradual decrease in the number of emigrants received annually direct from Ireland is very remarkable, when compared with the numbers received from other countries. The falling-off was first observable in 1855, when the direct emigration fell from 16,151 in 1854 to 4,106 in the following year.

On referring to the direct emigration from that country which reached this port during the 5 years from 1855 to 1859 , and comparing it with the previous 5 years, I find that the number was, during the later period, but 9,380 , or an average of 1,876 passengers per annum ; while during the 5 years ending with 1854, the number was 86,918 , being an average of 17,385 per annum, ne:uly double the whole number received during the subsequent period.

Although a comparison during the same periods, of the emigration from England and Scotland, presents a considerable falling-off, yet the reduction is by no means so large as in that from Ireland.

The annexed table exhibits the numbers from the respective countries during these periods:-

The sercre destitution constantly prevailing in Ircland in former years stimulated emigration to an extent perhaps never before paralelled in any country. The Emigration Commissioners, in their Nineteenth General Report, while referring to this circumstance, rightly remark: "It is impossible to doubt that a result, continued with such regularity "through a succession of years, inplies an equally constant cause, That cause is to be "found in the increased prosperity of the working classes in Treland and the consequent "absence of any inducement to emigrate." This improved condition of the labouring classes extends, although in a less degrec, to the other portions of the United Kingdom, and, with the increasing demand and large bounty offered for men for the Qucen's service, corrcspondiagly affects the labour market at home. The unfavourable reports which were received from this country, as well as from the United States, may be deemed a further explanation of the decrease in our emigration.

It is not to be desired that emigration from the United Kingdom should be again stimulated by the same causes that were in operation some years since. We may, however, hope that the improved condition of this country, in its abundant harvest of last year, will authorize our agriculturists to extend their operations very largely; and, by thus furnishing an increased field for labour, afford that encouragement to emigration which steady employment at the rate of wages, which a prosperous new country can afford, is certain to produce.

The great muss of our emigration, for several years past, consists of persons emigrating at the invitation of their friends, or of members of families coming out to join those who hare preceded them, and, in many cases, have been enabled, by their industry; to acquire the means of paying the passage of remaining relatives. In fact, it is a rare thing to find a party on arrival seeking a settlement: they all have a destination in view, where there are friends before them whom they are anxious to join. There is just reason, however, to hope that, owing to the improved circumstances of the great bulk of the population in the mother country, and the encouragement to settlement now afforded by the Government, we may
look for an accession of a different class from that which has hitherto characterized our immigration. I refer principally to the agricultural laborer, or small farmer, who may possess sufficient capital to enable him at once to enter upon the occupation of land, with the view of acquiring a home for his family. It may, therefore, be desirable to consider what other measures can be adopted to encourage the introduction of so desirable a class.

The want of a responsible duly-qualified Agent for the Province in the United Kingdom has long been felt. While the United States have numerous Agents both in the United Kingdom and on the Continent, whose duty it is to encourage and invite emigration to their own ports, Canada remains unrepresented ; and an emigrant desirous of acquiring information is left to the mercy of ship agents, or other partics, whose sole interest in the matter is to secure his passage across the Atlantie, without reference to his most advisable route, or to the question of his possessingany of the qualifications necessary to ensure his success. To this cause may be attributed much of the disappointment which annually occurs among our immigrant population, and the injurious influence which such of them as return to their native lind exercise by circulating reports unfavourable to the country, and attributing their disappointment to anything but the true cause, which may probably have been more within themselves than in any deficiency on the part of the country to receive and provide for them. I should look forward therefore with a considerable degree of satisfaction to the establishment of a Government Agent at Liverpool, whose duty it should be to afford the fullest information to all persons seeking a home in this Province.

The effect of the establishment of such an office would be to draw public attention, and encourage enquiry among the classes which it is the interest of this country to procure. A record of the Government lands, with terms and conditions of occupation, \&c., as also the particulars of private properties for sale, with all such other information as might be of serrice to the emigrant, which I would have embodied and printed in a monthly sheet for gencral circulation and for distribution on board all passenger vessels sailing from the United Kingdom, could not fail to prove of great service, and to exercise a most useful and beneficial influence upon the future of this country, by leading the emigrants, who now in such large numbers flock to the Western States, to enquire if Canada does not offer them superior adrantages.

The Canadian Ocean Mail Line of Steamships commenced their weekly trips from Liverpool during the past scason; and it is gratifying to find that they continue to maintain their high character for speed, safety, and comfort, fully establishing the fact of their equal cfficiency with any other line of Atlintic Steamers, which cannot fail to prove of exceeding value to the Province, by bringing her into constant and inmediate comnnunication with the continent of Europe, as well as with the mother country, and be the means of attracting a large share of the pleasure as well as business travel to this route.

The six Steanships composing this line made 28 passages, and brought out 3,859 passengers ; and returning carried back 3,159-1,254 Cabin, and 1,905 Steerage passengers, Their average passage out was 11 days and 15 hours, and homewards 10 days and 10 hours. In addition to these vessels we have the Anchor Line of Screv Steamships from Glasgow, making regular monthly voyages. The vessels composing this line, two in number, made 7 passages during the season, and brought out 448 passen ners, 123 Cabin and 325 Steerage; and on their return trips carried home 102 Cabin and 352 Steerage. Their average passage out was 162 days, and home 14 days.

It thus appears that these two lines brought out very nearly one-half of the whole immigration of the season, and, if we take only those from the United Kingdom, they carried within 1,740 souls of the entire immigration, to this port. On their return passages they carried home 3,613 persons, 2,257 of whom were classed as steerage passengers, including
about 250 soldiers about 250 soldiers.

To the intending emigrant these steamers offer every inducement, whether their destination may be within the Province or to any part of the United States, as by the increased facilities which the Grand Trunk Rail way are now enabled to offer, since the opening of the Victoria Bridge, they may, by availing themselves of the express trains, despatched on the
arrival of every steamer, proceed through to any part of the west, without changing cars. These facilities, in additon to the regular daily line of first-class Stcamers, so long and favorably known on the St. Lawrence, from this port to all the chief places on the River and Lakes, with the full assurance that emigrants may depend on meeting with ercry protection and adrice from the Government Agents, should secure to this route a large share of European travel.

The many instances of imposition which have come to my knowledge, of emigrants who probably have been induced from apparent economy to take their passage to the United States, in preference to Quebec, as referred to by the Agents at Hamilton and Toronto, but more particularly by Mr. Daly at Montreal, at page S, fully prove that not only a considerable saving in money would be effected, but that a rast amount of trouble, inconvenience and suffering would be aroided by using the Canadian route throughout.

Taking into consideration all the circumstances of the immigration of the past season, I may be permitted to remark that although the numbers have been swall, when compared with those of previous years, yet, in most other respects, it has been of a very satisfactory character, and that all of those who have remained in the country are likely to become permanent settlers, and to prove a valuable addition to our population.

At the close of 1858 , fears were entertained that, owing to the limited demand for labour that existed throughout the country, and more especially Western Canada, much difficulty might be experienced in providing satisfactorily for any considcrable number of cmigrants depending upon employment that might arrive in 1859.

As this limited demand has continued to exist in a greater or less degree throughout the season, it may on the whole be considered fortunate, that this class of our immigration have not been more numerous.

Fully four-fifths of those arrived during the past year were persons either in a position to take up land, or were coming out to join friends already established in the country, consequently they were at once placed in a position of being provided for. Those sceking employment have generally obtained it in the country settlements, although at a reduced rate of wages. Provisions, however, have been moderate in price, and it may reasonably be hoped that the working classes generally have occupied as good a position as they did before the reduction in the wages took place.

In the Appendix will be found a Table (No. 6) compiled from the Emigration Returns of the Port of New York, comprising the period between the years 1848 and 1854.

The immigration of 1849 has amounted to 74,598 , being a decrease on that of 1858 of 3,991 souls. The Irish has been larger by 20 per cent., while the German shows a decrease nearly in the same proportion. The Enclish and Scotch show a decrease of about 25 per cent. The whole number from the United Kingdom shows an increase of 2,228, while the foreigners present a decrease of 6,228 souls.

The increase is confined to the Irish, and is remarkable only when viewed in relation: to the Trish emigration to Canada for the same year, which, in place of an increase of 25 per cent. on the year before, has decreased more than 33 per cent.

A regulation of the Crown Lands' Department, some time since adopted, is directed to save the public lands from monopoly by speculators, and to keep them open for actual settlers only. By communicating directly with the Crown Lands' Department of the Province, lands may be acquired in entire Townships of 40,000 to 70,000 acres, at two shillinga sterling per acre, provided only actual settlement be engaged within a stipulated period:

This regulation is more especially adapted to the views and requirements of communities of intending emigrants, and of landed proprietors in the United Kingdom who may desire to settle any of their tenantry under circumstances calculated to improve their social position, and to such it is well deserving of consideration.

I cannot close this Report to your Excellency without adverting to the large facilities now offered in this country for the acquisition, by settlers, of lands, wild or improved. Private proprietors and companies make public lists of their respective lands, with terms of sale, and the Government takes every care to publish, from time to time, Schedules of the Public Lands open for purchase in every district of the Province.

Submitting this Report to Your Excellency's favorable consideration,
I hare the honor to be Your Excellency's
Most obedient humble servant,
(Signed,
A. C. BUCHANAN, Chicf Agent.
No．1．－CANADA．
Retunn of the number of Emigrants embarked，with the number of Births and Deaths during the voyage，and in Quarantine，the total number landed at Quebee，distinguishing Males from Females，and Adults from Children，with the number of souls from each Country ； also，the number of Vessels，＇Tonnage，and Seamen employed，and the average length of Passage，during the season of 1859.

WHENCE．	Number of Vossels．	Average days on Passage．	Tonnage	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Scamen. } \end{aligned}$	number mabarked．							Births．		deathis on the passage．					
						Adults．		Children 1 to 14 years．						$\begin{aligned} & \text { 离 } \\ & \text { 霛 } \end{aligned}$		Children 1 to 14 sears．			ت़स－
						M．	F．	M．	F．			M．F．		M．	F．	M．	F．		
England $\left\{\begin{array}{l}\text { Steamships．．．．．} \\ \text { Sailing Vesseis．}\end{array}\right.$	28 37	114 $42 \pm$	369.44 27285	2355 823	1460 33	1402 337	589 305	177 137	160	71 47	2309 955		3559 988			．．．．．．			
Ireland Sailing Vesseis．	37 12	421 39	27285 5118	823 182	33 4 4	337 127	305 182	137 51	129 34	47 19	955 413	\ldots.	988 417		1	．	．．．．．．		1.
Scotland \｛ Steamships．．．．．．	7	$16 \frac{1}{2}$	7212	377	123	138	118	36	27	7	326	… \ldots ．．．	4.49	1	．．．．	．．．．．．．	．．．．．．．	．．．．．	1
Scotland \｛ Sailing Vessels．	12	$42 \frac{1}{2}$	7019	530	35	124	99	42	38	7	310	．．．${ }^{\text {．．．}}$	345			．．．．．．．			
Germany．．．．．．．．．．．．．．．．．．．．．．	T	50	2731	114	8	32.4	273	175	12.4	66	962		972		1	．．．．．．		7	8
Norway．．．．．．．．．．．．．．．．．．．．．．．．	16	－ 47	6762	237	57	628	506	232	231	97	1694	6	1761		．．．．．		1	4	
Belgium ．．．．．．．．．．．．．．．．．．．．．	1	46	350	13		2					2		2				．．．．．．	．．．．．	．．．
$\left.\begin{array}{l}\text { Now Brunswich，} \\ \text { Nova Scotia，\＆e．}\end{array}\right\} \ldots$.																			．．．．
Total．．．．．．．．．．．．．．．．．．．．	120		93.421	4631	1720	3082	2072	850	7.131	314	7061	${ }_{8} \mid-4$	8793	1	2		1	11	15

WHENCE．	deaths in quarantine．							total，landed in the colony．									
	Adults．		Children 1 to 14 years．			$\begin{aligned} & \text { त̈ } \\ & \text { E-1 } \end{aligned}$		Adults．		Children 1 to 14 years．		Total．					
	M．	F．	M．	F．				M．	F．	M．	F．	M．	F．				
England \｛ $\left\{\begin{array}{l}\text { Steamships．．．．．} \\ \text { Sailing Vessels．}\end{array}\right.$	．．．．．．．．．．．				：．．．．．．．．．．．．．			1402 337	589 304	177 137	160 129	1579	749 433	71	2399	1460	3859
Ireland ．．．．．．．．．．．．．．．．．．．	…．．．．．．．						1	337 127	304 182	137	129	474	433	47	954	33	987
Scotland \｛ Steamships．．．．．．							i＇1	137	188	31	$\stackrel{3}{27}$	178	216	19	413	4	417
Scotand \｛ Sailing Vessels．								124	99	42	38	166	137	7	325	123 35	448
Germany ．．．．．．．．．．．．．．．．．．．．．			．．．．．．．．．				8	328	272	175	124	499	396	61	950	8	940
Norway．．．．．．．．．．．．．．．．．．．．．．．．	．．．．．		．	．．．．．．．．	．．．		5	628	506	232	230	860	736	103	1699	57	1756
Belgium．．．．．．．．．．．．．．．．．．．．．．				\cdot	．．．			2	．．．．．．．．	．	．．．．．．．．．	2			2		2
$\left.\begin{array}{l}\text { New Brunswick，} \\ \text { Nova Scotia，\＆c．}\end{array}\right\}$																	
Nova Scotia，\＆c．\dagger												．．．．．．．	．．．．．．．．	．．．．．．．．．．．	．．．		．．．．．．．．．．．．．
\because Total							15	3081	2070	850	142	3931	2812	315	7058	1720	8778

No. 2.
Abstract Statement of the number of Emigrants landed in the Province, distinguishing the Countries and Ports whence they sailed, during the seasons of 1858 and 1859.

-	1858.	1859.	-	1858.	1859.
england.			scotland.		
Bristol	173	7	Aberdeen	245	117
Cardiff.	12	1	Dumfries................................	7
Exeter.	9		Glasgow	976	612
Fowey....	22	...	Greenock		2
Ifull	142	56	Montrose...............................	196	62
Liverpool................................	5233	4,522			
London ..	214	35	Total	1424	793
Maryport................................	4	5			
Newcastle................	5				
Newport...	14	7			
Penzance.		6	FOREIGN EMIGRATION.		
Plymouth	540	170			
Poole.........	\ldots	14	germanx.		
Portsmouth	6	6			
Shields	\ldots	1	Bremen	170 755	63 901
Southampton............................... Torguay........................	\ldots	2	Hamburg		
Torquay...................................	16 51	5 6	Total.	925	964
Tynemouth		3			
Total.	6441	4846			
meland.			Bergen	772	356
Belfast	148	13	Christiana	35 S	44.8
Cork	42	3	Drammen	431	168
Dublin	57	Drontheim	198	110
Dungarran	S	Gothenburg	267	41
Galway......	280	Grimstadt..............................	17	0
Limerick	107	110	Erager3e	58
Londonderry	142	63	Postgründ..............................	223	404
New Ross....	312	194	Stavanger	390	171
Sligo	3				
Tralce		8	Total.	2656	1756
Waterford	44				
Wexford		22	-		
Youghal	7	4			
Total	1150	417	Antwerp	2

Recapitulation.

England	6441	4846
Ireland.	1150	417
Scotland	1.424	793
Germany	925	964
Norway und Sweden.	2656	1756
Belgiam	2
Total	12,596	8778

(Signed,)
A.C. BUCHANAN,

Chief Agent.

No. 3.

Return of the Trades and Callings of the Immigration of 1859.

-	Pritish.	Foreign.	-	British.	Foreign.
Bakers	11	3	Brought forward	1668	785
Bookbinders and Printers..	12	\cdots	Painters and Glaziers................	9	-
Bricklayers and Masons	14	3	Professional Men......................	11	2
Brickmakers...........................	1	1	Saddlers and Haruessmakers	i	2
Butchers	8	Sailmakers	1
Cabinetmakers.	2	Sawyers.	5
Carpenters and Joiners..............	104	9	Servants.	39	1
Clerks, Agents, and Traders	331	Shoemakers..	18	9
Coopers	3	2	Smiths	37	12
Engineers	11	Stonecutters	1	2
Engravers	1	Tailors	55	6
Farmers and Agriculturists, gencrally.	550	501	Tinsmiths, \&c	4	2 $\ldots . .$.
Hatters	1		Wool and Flax Dressers	4	.
Laborers	602	264	Wheclwrights	3	4
Millers and Millwrights.	4	2	Weavers	4	3
Miners.	10		Miscellaneous and Unenumerated..	266	126
Moulders and Foundrymen Carried Forward. \qquad					
	1668	785	Grand Total................	2127	954
		(Signed,)		HAN	
Emigration Department, Quebec, 31st December, 1859.				Chief	Agent.

(he United Kingdom, with the Amount paid them,

Emiaration Department,
Quebec, December 31st, 1859.
Comparative Statement of the Number of Himigrants arrived at the Port of Quebec since the year 1829 ，inclusive．

	$\begin{gathered} 1829 \\ \text { to } \\ 1833 . \end{gathered}$	$\begin{gathered} 183.4 \\ \text { to } \\ 1838 . \end{gathered}$	$\begin{gathered} 1839 \\ t o \\ 1843 . \end{gathered}$	$\begin{gathered} 18.44 \\ \text { to } \\ 18.48 . \end{gathered}$	$\begin{gathered} 18.49 \\ \text { to } \\ 1853 . \end{gathered}$	185.	1855.	1850.	1857.	1858.	1859．
Engln ${ }^{\text {a }}$ ．．．	43，3S6	28，561	30，791	60，453	47，405	18，175	6，754	10，353	15，471	6，441	4，8．46
Ireland．．．	10，2666	5．4，90．1	74，0st	112，192	93，583	16，165	4，106	1，08s	2，016	1，153	417
Sootland ．．．	20，1．43	11，061	16，311	12，767	25，127	6，446	4，559	2，794	3，218	1，424	793
Continent of Europe．	15	485		9，728	16，867	11，537	4，86．4	7，343	11，368	3，578	2，722
Lower Provinces．．．	1，5s0	1，346	1，777	1，219	4，405	855	691	261	． 2.4	21.4	
Grand Total．．．．．．．．．．．．．．．．．．．．．	167,699 $\ldots \ldots$.	96，307	123，560	196，359	187，737	53，183	21，274	$\begin{array}{r}\text { 22，439 } \\ \\ \hline \ldots\end{array}$	$\begin{array}{r}32,097 \\ \hline \ldots1\end{array}$	12， 810	$\begin{array}{r} 8,787 \\ 922,593 \end{array}$
$\left.\begin{array}{c}\text { Emighation Department，} \\ \text { Quebec，31st Dec．，} 1859 .\end{array}\right\}$						（Signe		$\mathrm{C} .$	$J C H A N$ $C l$	AN， if $A g$	

$\begin{aligned} & \text { io } \\ & \text { 号 } \end{aligned}$		
官	$\begin{aligned} & \text { No } \\ & 0 N=0 \end{aligned}$	
荢		
荡		
$\stackrel{\dot{\sim}}{\stackrel{\circ}{B}}$	$\begin{aligned} & \text { No } \\ & \text { Nos } \\ & \text { Non } \end{aligned}$	
$\begin{aligned} & \text { هு } \\ & \text { BO } \end{aligned}$		
侖	$\begin{aligned} & \text { MENF } \\ & \text { MN ND } \\ & \text { NEN } \end{aligned}$	
号	$\begin{aligned} & \text { Now } \\ & \text { ONON } \\ & \text { NEN } \end{aligned}$	
$\stackrel{\dot{D}}{\dot{D}}$		 ■
$\frac{\dot{p}}{\dot{j}}$		

No. 7. Extracts from the Notes appended to the Periodical Reports of Arrivals of Passenger Ships at the Ports of Quebec and Montreal in the season of 1859.

No. 1. From the 28th Aprolito 31st Mry.

Nore.- 2,065 emigrants have arrived at this Port from the opening of the Navigation to the 31st of May. There arrived by Occan Steamers, including the United Kingdom from Glasgow, $2: 29$ Cabin and 436 Steerage, which, compured with the remainder of the cmigration, exhibits a satisfactory appreciation of the weekly line of Steamers, commenced this year between Europe and Canada.

The total decrease, as compared with the emigration of the last season, amounts to the number of 353 . This decrease is less to be regretted, as at present there is a very general dearth of employment throughout the Province ; nor has there been, fortunately, any extensive enquiry for employment on the part of the emigrants hitherto arrived, the majority having come out to join their friends, and a large number had secured through tickets prcvious to their embarkation, and they proceeded at once to their destination.
On board the "Dunbrody," from New Ross, there were 35 paupers sent out by the Gorey Union,-consisting of 13 widows, accompanied by 18 children, only 4 of whom were of an age to enable them to contribute anything towards their support, and 4 single girls. They were paid $£ 1$ steriing each on landing here. The single girls at once found employment; but under the present circunstances of the province, and the limited demand which exists for labour, these poor widows cannot but be exposed to severe distress. It was found necessary last year to point out the hardships and sufferings which a party similarly situated, sent out by the same Union, were exposed to, from the difficulty which was experienced in procuring them any suitable employment, as but few persons can be found who are disposed to engage the service of women encumbered with children; and a further representation has been made to the guardians, pointing out the injustice, not only to the people themsolves, but to this country, of this mode of disposing of their useless poor.

Six lads, from 16 to 19 years of age, were sent out from the Grotto Passage Ragged School, Marylebone. They received $£ 1$ each on landing here. Two were engaged in this city at $£ 1$ per month wages, and the other four have been employed in the neighbourhood of Montreal.

The foreign emigration consisted of 554 Norwegians and 181 Gcrmans. They have proceeded chiefly to the Western States, and 11 Norwegians to their friends in the Eastern Townships.

Among the Germans per the ship "Main," from Hamburg, there were 19 families, consisting of 23 men, 21 women, and 49 children, from Pomerania. These people had left their homes with the intention of procecding to Brazil. On their arrival at Hamburg, they found that their money was insufficient to pay their passage to that country, and they, consequently, took passage to this Port, where they arrived on the 27 th May. On enquiry it was ascertained that but 4 families had any money left, amounting to $\$ 61$, the renainder were without the means of procuring even a day's food. As the proportion of families and children were so greatly in excess of the male adults, and as there was no demand for their labour in the Province, it appeared advisable to supply them with sufficient provisions for their journey, and forward the entire party to the German settlements in the Western States, as the cheapest and most efficient way of disposing of them. This has ncecssarily entailed a heavy charge on the very limited resources arising from the Emigrant Tax.

By the Ship "Menapia," there were 10 females and 3 children sent out by the Wexford Union. The master of the Ship stated that they received a fixed sum each on leaving the Union, to fit themselves out and provide their passage. They proceeded to Montreal by Steamer the day of their arrival.

I herewith annex Report of Mr. Sinn, the German Interpreter of this Office, with reference to the passengers per "Main."

$$
\text { 30th May, } 1859 \text {. }
$$

Sre :-I have the honor to report the arrival of the Hamburg Ship "Main," Capt. Haack, from Hamburg, on the 27 th inst., having on board 179 souls.

My enquiries on board this vessel elicited the fact that, some days previous to her sailing, about 200 persons left their homes in Pomerania, Prussia, for Hamburg, in hopes of taking passage thence for the Brazils, having been encited to that course by favourable representations ; but finding themselves on arrival at that port in no conditiou to procecd thither, it appcars they were then persuaded, at least such of them as had funds remaining sufficient to pay for the passage, to cmbark for this port, and the result is, that of these passengers, four families; consisting of 22 persons, possess about $\$ 61$; and 15 families, 89 persons, have not among the whole wherewith to buy a loaf of bread.

Although the heads of these families are very robust and able-bodicd people, they will hardly be able to earn enough to procure their families the necessary comforts at the present low state of labor throughout this Province; and I fear they will be exposed to suffer greatly, and more on account of their ignorance of the language.

During the last seven years I have observed that cortain Ship and Passenger Agents of Bremen and Hamburg have taken advantage of the facilities offored to introduce into this Province large numbers of poor and destitute familics, without an equivalent number of the wealthy and more able classes, whom they direct to New York, \&ec. ; and although the German population of Canada is more than 40,000 , still there is no chance at present to introduce these parties per "Main" amongst them, with a certainty of obtaining employment, and, therefore, although at greater expeuses to this Province, I would beg to suggest to forward them into the wealthy German settlements on Lake Michigan, where this number will be absorbed, and cause no hardships to them nor to the communities who receive them.

All of which is most respectfully submitted.
I have the honor to be, Sir,
Your most obedient servant, (Signed,)
W. SINN.

The expenditure incurred by this office on account of the above party was as follows:-

No. 2. From the 31st of May to the 30th of June.

Note.-2,480 emigrants have arrived at this Port during the month of Junc.
They were all healthy and gencrally respectable. They proceeded to join their friends in Upper Canada and the Western Stites. This characteristic of the present season's emigration leaves no difficulty; considering the circumstances of the country, in finding employment for those who have emigrated hither for that object.

No. 3. From the 30 th of June to the 31 st of July.

Note.-The total number of Passengers arrived during the period of this Return is 1,310 , making a decrease, as compared with the last season, of 3,171 . Most of the passengers have come out to join their friends in various parts of Canada and the States.

Several familios of the Brodrone, after a special inspection by two of their number of the Norregian Scttlement in the Eastern Townships, have chosen localitics in that district, purchasing thercfor a block of more than 1,000 acres of the British American Land Company. These parties, as they possess considerable means, will prove a valuable addition to that scetion of the Province; and, as they are from a part of Norway from which but few emigrants have as yet been received, it may be anticipated that, on the report of these settlers reaching home, others will be induced to follow.

But fow of the Emigrants of the past month have been seeking employment. The last reports from the Ottawa district state that agricultural laborers and domestic servants are much required, and that all who may proceed to that quarter will readily find employment.

No. 5. From the 31st of Augist to the 30th of September.

Note.-The enigrants arrived at this port during the month of September number 1,173 souls ; namely, 906 by steamers, and 267 by sailing vessels. They were all healthy, notwithstanding the unusuaily long passages of the latter vessels, the average of which was upwards of 63 days.

They appear gencrally to have come out to friends. Among those by the steamships were a considerable number of Canadians returning from a visit to the old country. The Ocean Steam-Ship Company's vessels bring each trip a number for New York, Boston, and other parts of the Eastern States, who are chicfly mechanics seeking employment. Through an arrangement made by the Company with the Grand Trunk Railway, which came into operation in July last, these emigrants are cnabled to reach their destinations by this route on as favorible terms as they could by proceeding dircet from Liverpool, and with greater specd, comfort, and protection.

Employment, in all descriptions of manual labor, continues limited; very few enquiries for men having been received by this Department during the past month, but the demand for female servants considerably exceeds the supply:

The harvest throughout the country has been most beautiful; and it may be fully anticipated, that the returning prosperity will enable our farmers to afford increased employment in the ensuing season.

No. 6. From the 30 th of September to the 7 th of November.

Note.-The total number of emigrants arrived since the 30 th of September is 794 , which closes the present season. The decrease of embarkations, from the number of last year, is 4,053 .

The character of the immigration, of which particulars are given in this return, is very good. The passengers arrived chiefly by steam-ships were partly returned residents, but chiefly parties who came out to join thcir friends.

The annexed shows a comparative statement of the embarkations for this port during the season of navigation in 1858 and 1559.

Statement specifying the number of German Emigrants arrived at Qucbec, each season since 1845, and from whence :--

Sailed from	1S45			1845	1549	1850	1551	1852	1853			1856	LS57	1858	1859	Total.
Antwerp..		10								39.	447	935	794			25 SO
Bremen..		119	5830	564					335:			44		170	63	11362
Wisaburg.		765	1602	8311	316	596	6.4	:322	2084	4569	1555	+20.4	1221	752	901	26593
Wismal .. Liverpool .		\ldots			120				767	4736	460	Ss	127	310	136	120 6624
Hull........										295		S	12.	310	\%	${ }_{295}$
Dublin...										255						255
		594		${ }^{1385}$	436	596		4990	13186	110:34		5668	5142		1100	47529

This statement shows that 47,829 German immigrants hive landed at Quebec during the last fifteen years.

With very few cxceptions, those who landed from 1845 until 1850 proceeded all through to the United States; but since then many have been induced to remain in Canada. They were either directed to the Germau settlements in Waterloo County, or else employment was procured them at the different villages along the St. Lawrence and Lake Ontario.

The number so retained in this Province may be estimated at more than 15,000 , of which, perhaps, one-fourth have since become landholders in Upper Canada.

About two-thirds of our German immigration might be classed poor, as the most possess very little more than is necessary for their transport to the interior, and even those who have some means seldom posscss more than from a couple of hundred dollars up to one thousand. Since 1852 we received at this port, with the exception of about 200 from Bavaria, who had emigrated voluntarily, no other immigration from Wirtemberg, Bavaria, Baden, Saxe Meiningen, and Saxe Altenburg, than their paupers, the number of which was nearly 2000 souls.

Amongst those from Mciningen and Altenburg were a number of incorrigible bad characters, single females with children, and not unfrequently silly persons.

Amongst some 600 from Baden were a great number of men with large families; who were not inclined to work, but went begging about the country for their sustenance.

Those from Wirtemberg and Bavaria were, in general, more robust and willing to work, and with many the appearance of substantial improvement might have been perceived already a few months after their landing in this country.

The assistance rendered by the Immigration Department to those paupers, and to such who emigrated on the savings of many years' service, or the sale of a little property, hardly sufficient to secure their passage across the ocean, but who landed here quite as destitute, has, every year, absorbed the tax collected from the whole of the German immigration at this port; and if no restrictions are adopted against such immigration, this fund will not suffice in future. It has already become necessary, in one instance, last summer, to avoid the heavier burthen of a prolonged support, to forward a number of destitute families who arrived here by the ship "Main," from Hamburg, to the large and wealthy settlements ou Lake Michigan.

During the construction of our railways, little difficulty was experienced in procuring employment for them; but as those sources are now closed, and as the country is more than sufficiently supplied with laborers, the Immigration of large numbers of destitute families, ignorant alike of the language and labor of the country, without an equivalent of that class which becomes immediately cmployers, can be of no good to the Province, nor bring anything else than suffering and want upon the poor Inmigrants.

Until 1857 , parties possessingsome means in quest of land were usually directed to the settlements in Waterloo County and the Huron Tract, but frequent complaints were received, that the price asked for good land there was so high, that they were unable to purchase any lot large enough to yield them their support, and consequently were going to try the Western States.

There were also a great number of families scattered through Canada who had saved some 2 or 300 dollars from the late prosperous times, which they were anxious to invest in the acquisition of a homestead for themselves; but unable to procure, without spending a large amount in travelling about the country, any particular information regarding some localities in this Province, where these savings would be sufficient to realize their wishes, many of them, also, left Canada for the Far West.

The Emigration of such most valuable people from Canada being too great a loss to see continued without making an attempt to retain them, and although the superintendence of colonization seems no duty of the Emigration Department, I commenced to operate without instructions, upon my own responsibility, and started for the Backwoods, in search of a suitable locality for a new settlement, and decided on a tract of Government Land near Pembroke and Egansville, in the County of Renfrew, Ottawa District, which I found to possess all the advantages necessary for the success of energetic and persevering mon with small means desirous to create a comfortable home for themselves and their families.

On recommending the same in the German papers of Upper Canada, 122 applications for the purchase of about 13,000 acres were made by parties residing mostly in Waterloo County late in the Fall of 1858; and notwithstanding the most discouraging reports and falsehoods that were circulated by speculators and others, to frustrate the establishment of this settlement, many families entered upon their lots during the winter, besides some 30 more whom I conducted into the Bush during the beginning of May.

I succeeded also to bring a considerable increase to the settlement from this season's Immigration, and when last I visited the same I was astonished to see the progress the people had already made in clearing ; they were living in comfortable block-houses, around which patches of potatoes and other vegetables were growing, and their cows with a bell attached to the neck could be heard grazing through the adjoining bushes, and that forest which only a few months before had been so lonesome had then changed into uumerous homely spots.

The settlement is as yet mostly composed of people who brought very little means with them, and many will have to endure a few years of great hardship; but their persevering industry, assisted by the habit of extreme frugality, will soon carry them through their difficulties into prosperity and independence.

The total number of Germans, with very few exceptions all from the north of Prussia, directed to the County of Renfrew, since spring in 1858, is not far from 800, of whom about half are occupying land.

As will be seen by the statements on the preceding page our German Immigration has suffered during the last two years a most remarkable large decrease; and, unless Canada will look a little more after this Emigration at the Ports of Hamburg and Bremen, there is, now that these cikies have added to their lines of Sailing Packets also two lines of Steamships to New York, very little prospect that the St. Siawrence Route will receive a fuir share of the general Emigration from Germany.

The protection of Immigrants at this Port, and the cheapness and total absence of imposition in their Inland Transport, is very well known in Northern Prussia, from which quarter only we can expect at any time any considerable Immigration; and I am fully aware that the greater portion of the Emigration from there is desirous to take the Quebec Route, if they were only left to do so at Hamburg and Bremen.

All of which is most respectfully submitted.
I have the honor to be, Sir,
Your most obedt. servt.
W. SINN.

REPORT OF NORWEGIAN ASSISTANT.
To A. C. Buchanax, Esq.,
$\left.\begin{array}{r}\text { Her Majesty's Chief Agent for Emigration, } \\ \text { Quebec. }\end{array}\right\}$
SIR - - I have the honor to transmit herewith my second Annual Report on the Norwegian Emigration, arrived at this Port during the Season of 1859.

The total number landed this yeur was 1756 persons, which is a decrease of 900 souls of last your's arrivals. It is, however, estimated that the amount of moncy brought by the Emigrants this ycar exceeds that of last year, when compared with the number of persons arrived during the two ycars. The annexed statement will show details during the Scason.

The principal cause of the decrease in the Emigration from Norway, this year as well as last year, appoars to be owing to the extriordinary difficulty to dispose of their property for ready cash.

The Emigrints in gencral assured me that there is every prospect of a continuation of the Emigration from Norway, and they also stated that, should the intending Emigrants be able to convert their property into moncy during the present winter, the Emigration will be considerably larger the coming year thau during the two last years.

Avongst the arrivals during the present Scason some 15 families proceeded with considerable sums of money into the Eastern Townships; the remainder proceeded to the Western States. Those who went into the Townships purchased land there from the British Amerian Laind Company, and amongst them were also three persons, who, it appears, were sent out by their relations and friends for the purpose of selecting a locality for future settlement. These persons informed me, whilst I went with them into the Townships to examine the land, that the favorable appearance of the country far exceeded their anticipation, as they had been informed both in Norway and on their arrival that Canadian lands throughout the country were the most unfertile for agricultural purposes in North Americit.

From a letter recently receivod from the Settlement in the Townships, I am informed that the three personsabove mentioned, as also the others who proceeded there this Season, are well pleased with their selections, and expressed every confidence that it cannot fail to attract attention in Norway, when the people there once become convinced, before they leave their uative country, that all the misrepresentations made in Norway, with respect to the agricultural capability of Canada, has been circulated there as well as here on them by parties in the pay of Western States, interests, for the purpose of influencing the Emigrants at onec to proceed westward, regardless of the welfare and prosperity of the poople, who come here ignorant of the country and the English language.

In my Report of last yoar I took the liberty to call your attention, by showing an Abstract Statement from Official Returns of the number of Emigrants arrived at this Port from Norway, during a period of nine years, and by adding this year's arrivals it will show, during a period of ten years, a grand total of 28,460 persons, whom it is estimated have brought with them nearly a million dollars, and with but few exceptions, say 400 persons, all hive proceeded to the Western States.

I also showed in the same Report that great crils existed, and pointed out the main cause why the Norwegian farmers had not before adopted this country as their future home. It will, therefore, not be necessary now to refer to the same again.

May it not be sufficient, under the present circumstances, on the whole, to glance at the general faatures of the Norwegian Emigration on the one hand, and at the natural advantages this country offers to the industrious farmers on the other hand, and from thence proceed to the consideration of its importance ; and whether the existing policy to secure the Settlement of Norwegians could not in some way be amended to meet the requirements by such meins as would be warrintable and consistent with the general interests and prosperity of the country, and to engage more actively in promoting, not only the continuation of Norwegian Emigration to pass through the country, but also to induce them to settle within our territory on such conditions as would not fail to be a lasting bencifit both to the Emigrants themselves and the country at large.

We cannot ignore the fact of the settlement of the Great. West (U. S.) by American enterprise; for no sooner is one Territory organized than another is taken possession of and provision made for the reception of European Emigrants. We must, therefore, nceessarily provide against the many influential efforts that are made and will be made by the Western States, to retain in futurc the tide of Norwegian Emigration; and the twenty or thirty thousand Norwegians, with their millions of money, who have landed at this Port and proceeded West (besides the large number whio have landed at the Ports of Boston and New York,) will be sufficient to warrant them in their efforts to continue to secure the NorWegians to become the Settlers of the West.

Nor can I overlook or ignore the fact, that this Province will receive but a very limited number of emigrants from the British Islands, (at ieast, for some years to come,) to what it has been in former years, of which you are doubtless aware. We must, therefore, in my humble opinion, adopt such policy as will attract the attention of emigrants from the Continent of Europe. Although, at the present time, the Province has no Public Work going on, by which the emigrants for the coming year could be offered as an inducement for them to remain within our own country, it is, however, not so much looked for by the Norwegians, as the majority of them seek to obtain land almost immediately, and which has characterized them in the Western States.

After matured consideration on the subject, I respectfully beg to submit for your favourable consideration, a few suggestions for the encouragement of the future settlement of Norwegians in Canada, and should you approve of the same, you will then be pleased to recommend the adoption to the Government.

SUGGESTIONS.

" 1st. The Government to set apart three Townships for the exclusive settlement of "Norwegians, in three different parts of Canada, namely, one on the borders of the Bay of "Chaleurs, one in the Eastern Townships, and one on the Northern Shore of Lake Huron.
" 2 nd. The Government to make roads through the centre of each Township, and to "employ the settlers to construct the same, in order to assist the new comers during the "first year, either by letting of small contracts, or otherwise to cmploy them in the con"struction of the roads.
" 3rd. The Government to engage three persons, one to reside in each Township, and "to be acquainted with both English and Norwegian languages, for the purpose of advising " and assisting them in procuring or issuing of location tickets to the settlers.
"4th. The Government to allow a period of ten years for the exclusive settlement of "those Townships by Norwegians, and after the expiration of the said period, any lands "then found unoccupied in cither of the three Townships, to be then disposed of as Gor"ernment may direct.
" 5 th. The Government to offer a frec grant of one hundred acres to each head of "family, to actual and intending settlers,) and, for which, the settlers to comply with "such settlement duties as Government has required in the settlement of the free grant "roads in the Upper Province, (on the Opeongo and Hastings Roads,) or such other duties "as will bring the respective lots as selected by the settlers into a state of cultivation, be"fore the settler should become entitled to a deed or a patent from the Crown."

My object in proposing that three Townships should be at once set apart, and on the conditions above mentioned, are chiefly because it would give the settler every possible chance of choosing a locality peculiarly adapted to their respective occupations, whether agriculture, lumbering, mining, or fishing pursuits.

My attention has also been drawn to the subject of Fisheries in the Bay of Chaleur, and the lower part of the St. Lawrence River and its.tributarics. In my opinion, they are of such importance in themselves as would attract the attention of many amongst the thousand of fishermen in Norway, were they to be made acquainted with the natural facilities this country could offer to the industrious fisherman; and which, if prosecuted here according to the facilities, and in that carnestness as manifested on the fishing-grounds in Norway, this country, I believe, would derive a revenue from export to exceed any other export of Canadian production.

In conclusion, pernit me to add my full conviction, that if the foregoing suggestions (or the principles thereof) could be adopted by the Government, it would not fail to arrest the attention of intending emigrants from Norway; and I feel confident that many large families with small capital would avail themselves of such offer, when assured that their friends and relations would be offered the same privileges on joining them in future in the same Townships.

All of which is respectfully submitted.
I have the honor to be, Sir, Your's respectfully,

CHRISTOPHER O CLOSTER.
$\left.\begin{array}{l}\text { Saint Pater Street, } \\ \text { Quebec; Dec., 1859. }\end{array}\right\}$

ANNUAL RETURN

Of Fees received for the Fee Fund of Upper Canada, and of Salaries paid to County Judges and Recorders during the year 1859.

Counties.	Fees received for Gort.	Net Fees.	Judges' Salaries.	Recorder's \& Co. Ct. Clk ofYork \& Peel.	Deficit.	Sarplus.
1. Brant.	$\begin{array}{cc} \$ & \text { cts. } \\ 2723 & 89 \end{array}$	${ }_{2502}^{\$ 84}$ cts.	$\begin{array}{cc} \$ & \text { cts. } \\ 2800 & 00 \end{array}$	\$ cts.	${ }_{2}^{\$} \mathrm{cts} .$	\$ cts.
2. Carleto	216616	196562	220000	100000	123438	
3. Elgin	176720	167684	280000		112306	
4. Essex	74544	71029	200000		128971	
5. Frontenac, Lennox and Ad.	391249	354800	280000	100000	25200	
6. Grey..............................	222704	210104	280000		69896	
7. Haldimand......................	160434	140022	200000		59978	
3. Halton	153910	136518	200000		63452	
9. Hastings	231868	222714	280000		57286	
10. Huron and Bruc	355408	341409	2600 00			814.09
11. Kent.	115934	97098	240000		1429.02	
12. Lambton	141516	137659	200000		62341	
13. Lanark and Renfrew	143381	135169	220000		84831	
14. Lreeds and Grenville	243245	210114	230000		69886	
15. Lincoln	174527	166721	230000		113279	
16. Miadlesex	234310	223886	280000.		551.14	
17. Norfolk..	173001	164787	200000		35213	
18. Northumberland \& Durham..	620105	594647	$\left\{\begin{array}{l}2800.00 \\ 209863\end{array}\right.$			1047 84:
19. Ontario	276752	263482	280000		16518	
20. Oxfurd	285580	273.828	280000		8172	
21. Perth.	275026	260876	220000			40676
22. Peterboro and Victor	307520	295296	240000			55296
23. Prescott and Russoll..........	45116	40561	200000		159439	
24. Prince Edward.	122514	103014	200000		96986	
25. Simcoe...	317243	287755	280000			55
26. Stormont, Dundas \& Glengary.	2804.33	269162	280000		10838	
27. Waterloo	3268:16	297088	280000			17088
25. Welland	162965	155282	200000		44718	
29. Wellington	436108	401799	280000			121799
30. Wentworth	5393.60	519426	280000	108333		1310.93
21. York and Peel	13449 :33	12626 61 $\{$	2800 JJ1943 JDC120	$\} 213333$		454968
Total	8822233	8249247	82842 13	521666	1571500	1014868

WILLIAM DICKINSON,
 Acting D. I. G.

Inspector General's Office, 25th January, 1860.

RETURN

To an Address from the Legislative Assembly to His Excellency the Governor General, dated the 12th instant, praying His Excellency to cause to be laid before the House "a copy of the Accounts for "1858, of the Expenditure on Roads and Bridges in Canada West, "made by David Gibson, Esquire, Superintendent of Colonization "Roads."
(By command.)

Secretary's office, Quebec, 19th March, 1860.
C. ALLEYN, Secretary.
(In accordance with the recommendation of the Joint Committee on Printing, the following abstract only is printed.)

Abstract of the whole Accounts to 31st December, 1858.

		Sums Received.	Sums Paid.	Sums at Credit:	Sums at Debit.
8	County of Bruce.	${ }_{59929}^{\$}$ cts. ${ }_{\text {cts }}$	${ }_{65958}^{\text {S }}$ cts.	\$ cts.	: ${ }_{\text {\$ }}$ cts.
	do Huron.............................	32322.75	4641761	1409486
	do Wellington......................	2075990	23184: 63		242473
	do Grey	3495037	2399292	1098745	
	do Waterloo........................	11ss 00	200326		81526
	do Perth.......	762310	597307.	1850.03	
	Colonization Reterborough.......	884.75 $13316-00$	$\begin{array}{r} 86475 \\ 12208181 \end{array}$	1123419
		29098481 29047660	29047660	$\begin{aligned} & 2387167 \\ & 2336346 \end{aligned}$	2336346
	\$	50821		50S 21	

RETURN

To an Address from the Legislative Assembly to His Excellency the Governor General, dated the 5th instant, praying His Excellency to be pleased to cause to be laid before the House, a Return of the recent Survey and Report of the Engineers on the Ottawa Ship Canal.

By Command,

\author{
Secretary's Office, Quebec, 19th March, 1860. $\}$

}

C. ALLEYN,
Secretary.

REPORT.

To tife Honorable Johis Rose, Commissioner of Public Works.
Sir,--T have the honor to submit herewith my Report upon the Ottawa navigation, in accordance with instructions received from the Department of Public Works, and hereunto appended.

The questions upon which information is sought, and to answer which the survey has been carried on during the past year, are as follows:-
I. To determine the practicability of a navigation for vessels of the larger class, between Montreal and Lake Huron by way of the River Ottawa and its tributary the Matawan, Lake Nipissingue, and the French River.
II. To ascertain what scale is best suited to the nature of the route.
III. To give a reliable estimate of the cost of the improrement.

In the first place I have to report that the distance between Montreal and the mouth of French River on Lake Huron (according to the plans furnished me by the Departuent) is, following the line of Navigation adopted, 430,76 miles.

That of this distance 351,81 miles are aiready a good natural navigation, and require no improvement, and that it is perfectly practicable so to improve the remaining 78,95 miles, so as to convert the whole drain of waters into a first-class narigation for steam vessels, and to reduce the length of canalling to 29,32 miles, or, exclusive of the Lachine canal, co 20,82 miles.

Secondly-The semle of navigation attainable, and which I would recommend as best suited to the capabilitick of this route, is calculated for vessels of one thousand tons burden, and has locks 250 fect long by 45 feet wide, by 12 feet depth, on the mitre sills.

Finally-A careful estimate, resulting from a close instrumental survey of all obstructed yoints, the details of which will be found hereafter, enables me to state that the cost of this improvement, exclusive of interest, legal expenses, and land damages, none of which i have any means of ascertaining, will not exceed the sum of $\$ 12,05 \overline{7}, 680$, distribated as follows:-

Ottawa and Frevci River Navigation.

These are, exclusive of the Lachine Canal, 20.82 miles of Canals, costing $\$ 12,058,680$, which is equal to $579.13+4$ per mile of Canal. But the cost of the whole narigation, from St. Annes to Lake Huron, 408.76 miles, is but a trifle under $\$ 29,500$ per mile.

Such are the results of the Surveg. The manner in which they have been atained will be described under the following general heads.
I.-Thysical characteristies of the Ottawa.
II.- Method of Improvement proposed.
III.-Character of work and material in locks, dams, canals, dec.
IV.-Scale of Navigation.
V.-Special description.
VI.-General Remarks.

I.-PHYSICAL CHARACTERISTICS OF THE OTTAWA.

Before taking up in detail the method of improvement proposed for this chain of waters, I shall sketch bricfly the physical geography of the Ottawa Valley, and some of its prominent geological features. Nor is this forcign to an Engineering report, for, in order to clearly understand the matter of the changes proposed, we must frst get a correct idea of things as they are.

Rivers have been well defined as the channels by which the water, originally evaporated from the sea, and falling upon the land, is returned to the sea again, and the volume of water discharged is the excess of precipitation over evaporation throughout the valley of any river, varying dircctly with the area of drainage, the rain-producing character of the atmosphere, and the nature of the soil.

Their position is determined by the lams of gravity, and they always follow, from the interior of continents to the sea, the line of quickest descent,- that is, the line of dowest level, whether resulting from upheaval, denudation, or the combined effects of both.

The characteristics of rivers are much modified by the nature of the geological formations throurh which they pass, and their different powers of resistance to the transport ing anc eroding effect of the waters.

In a country based upon sedimentary rocks, which are not hard enough to resist the force of the current, and generally do not appear above the sarface at all, the formation of river chancls is a process similar to that which we see when a shower falls upon a newly cultivated ficld. The water follows the line of quickest descent, but meetins materials of different degrees of hardness, it meanders about from right to left and assumes a sinuous cuurse ; its constant tendency being to clongate its channel and conseguently diminish its slope. These windings are so great in some rivers as to double thir length, as in the case of the Mississippi, between the Ohio and the Gulf of Mexico. When the lengeth of the channel has men so much increased as to diminish the slope, and the conserfuent relocity of the current to such a rate that it will cat into the shores no longer, the recime is said wo be established.

But in a formation composed of the harler crgstalline rocks which ohtrude themselres above the surface, the waters have not the same power to form for themselves channels ; and the characteristics of the rivers of such a country are very different from those previmusy described.

The irregular depressions and clefts in the surface become filled with water, and form Lakes, whose overflow tumbles in cascades and rapids, over the rocky barriers which it cannot destroy, until it finds its way into other Lakes, lying at a lower level, and from these to others, until at hast it is received in some such arm of the sea as the Guif of Sc. Latwrence, or Hudsons Bay.

A elance at the map of our continent will show at once the distinctive pechifarieses of the two systems; north of the St. Jawrence, in the region of chrystaine recks, the country is dotted with Lakos, and the connceting rivers are generally short. In what may be termed the Mississippi system, there are but few Lakes, and the rivers are inge and marked by a peculiar sinuosity of course.

Owing to the absence of the harder rocks, there are but few cascades and rases. The currents are strong, but all the tributaries of the Mississippi have at some seasons of the zesr a natural narigation for boats of light draft of water.

On what we may call the northern river system, the navigation consists of stretche of deep and still mater, interrupted by rapids and falls; around which the light cances of the voyaceurs are portaged by hand.

The obstacles to the improvement of these two river systems are of an entirely opposite nature. The problem in the one case is to reculate the natural fow, so as retain sufficieut depth for navigation in summer, and to defend the surrounding country from the disastruas inundations cenused by Spring floods, which often rise to a height of fity or sixty feez :shove the Summer level, and would probably sweep away any atiticicial works intended friz the inprovement of navigation. As the country becomes more widely setied, and a lateer area of timbered land is cleared away, the evil increases ; for swamps diminish evaporation, aud act as natural reservoirs to moderate the violence of torrents.

Our river system, fortunately for us, is furnished with a series of reservoirs, which cannot be destroyed, in the Lakes themselves. These Lakes receive the waters from the melting of the snows in the spring, and hold them stored up against the summer heats. Hence the beautiful uniformity of the flow of our rivers. The St. Lawrence unless dammed by ice seldom rises over four or five feet ; and the average rise of the Ottawa, where free from obstruct:ons, is about twelve. There are few more beautiful illustrations of that beneficent design, which adapts the physical structure of the earth to the wants of its inhabitants than this; for, from the unretentive nature of the soil, the rain would escape nearly as fast as it fell ; and the northern rivers would be torrents at one time, and nearly dry for the rest of the year, were it not for these natural reservoirs in which the surplus waters have been stored up among the hills.

To improve the navigation of such a river system is a comparatively simple matter for the greater part is already done to our hand, and we have only to derise some means of getting from one Lake to another, and our task is accomplished.

This brief sketch of the more prominent peculiarities of the Northern River System of this Continent, will enable us readily to comprehend the physical characteristies of the Ottawa, the largest of the tributaries of the St. Lawrence.

Its total length from its source, near the heads of the Saguenay and St. Maurice, nc-
cording to Sir William Logan, from whence it describes nearly the half of a circle in its course, until it fulls into the St. Lawrence at the Island of Montreal, is orer seren hundred miles; and it drains an area of not less than eighty thousand square miles.

From the Table of Rivers (see Appendic B) it will be seen that its size is about equal to that of the Rhine, and its sreat regularity of flow, particulariy as compared with such rivers as the Ohio and Rhine, will be evident.

This is principally owing to its numerous lakes, as before mentioned ; but in some degree to the fact, that, from the difference of latitude, the snow has melted and passed on to its Southern tributaries, before its "North Water," as it is called, comes down.

The tro great geological divisions of its rocks are Laurentian and Silurian. The Laureatian rocks are supposed by Geolorists to hare been the surface of the then existing continent and the floor of the sea upon which the sedimentary Silurian rocks were deposited.

The outlines of the shores of this ancient continent followed the North bank of the St. Lawrence, and thence ram up the Otawa, skirting its North shore at varying distances. The present Otawa Valley, as far up as Deep River, seems to have been a bay or inlet of the Silurian Sua bounded on the North and West by the main continent, and on the South by a peninsula which rums into Northern Now York, and forms that wild section of country of which the Adirondac Mountains are the Eastern boundary. The River St. Lawrence has broken through the isthmus which comected this peninsula with the main land, in a great number of channels, forming the celebrated group of the Thousand Islands.

The surface of this Laurentian formation is extremely ruged, and the rocks are contorted in a manner that shews the action of some extraordinary force. There is little level land, and the hollows between the rocky hills are filled with innumerable lakes, whose water is clear and deep. The whole region shews the wearing effects of water, and has evidently been much influenced by glacial action, as may be scen from the groored appearance of the rocks and the hills, and the huge deposits of boulders that choke up portions of the river beds. The rocks consist chiefly of micacious and horblendic gueiss, mica slates, and reins. of crystalline limestone.

The silurian rocks, on the other hand, are sandstones and limestones; lying in regular strata, fiat and undisturbed as when deposited on the floor of the ocean.

The truth of the obserration of Hugh Miller that the physiognomy of the landscape depends upon its reology, is nowhere more evident than upon the Upper andLower Ottawa.

From Montreal to Deep River the Ottawa runs in a silurian valley; although at some points, as the "Rocher Fendu" and the Chats, the crystalline rocks shew themselves in the channel of the river. The gencral features of the landscape are those of a level country, like that of all limestone formations. Rocky barriers have penned back the waters into long lakes, like the Des Chênes and Chats, whose shores are low and fat, and generally cultivated to the waters edge with fertile farms. The timber is hardwood, principally beech, maple, ash and cim. The width of these shects of water is from half a mile up to two miles. Along the Northern shore at varying distances, runs the unbroken outline of the Laurentian hills; which, as has been stated, were probably once cliffs against which beat: the wives of a Silurian sea.

Above Deep river the character of the landscape changes. We are now catering upon the oidest part of our continent, whose rugged masses and contorted outlines speak of thr convulsions of former ages. The hills that had admitted a strip of level country betweer. their buses and the riwer, now crowd close upon its edge, and rise precipitous, in some places to the height of seven or eight hundred feet. The groves of hardwood give place to those vast forests of pine of which the wealth of the Ottawa chicfly consistis, and the clearings are fow and unimportant.

As we advance, the seenery becomes more wild and rugged, and the picturesque beauty of the cliffs and cascades of the Mattawan, and of the lonely isles of French river, is unrivalled in any part of the continent.

Take Nipissingue is of irregular shape, from forty to fifty miles long and twelve to eighteen wide: and receives the water of seven rivers ; two of them, the Sturgeon and NauWinitigone, of considerable size. The south and west shores are bold, and the depth of water is grat. The north and east shores are low and flat, and the water shoals gradually.

The western end of the Lake is filled with Islands, and the shores are cut up with inlets ending in marshes.

The Mattawan and French rivers consist of a series of long and narrow lakes, of a great depth and sluggish current, the waters cscaping from each into the next below over natural dams of rock, wherever, from greater softness or a more unfavorable disposition of the strata for resistance,* these rocky dains have been much worn down, the current is stronger, and it may be seen from the rounded and ware-worn appearance of the rock-bound shores, that the lake above has once maintained a higher level than it now holds.

On the Ottawa, from the Mattawan to Deep-river, there are strong currents, and the character of the water is more river tham lake-like.

METHOD OF IMPROVEMENT YROPOSED.

From the precedins sketch, the following conclusions may be deduced :-
That there are two great natural divisions of the Ottalwa country : on one of which the banks of the river are low, and the rocks generally soft; while on the other the shores are precipitous and rocks hard.

That the Ottawa is a river of very even flow, and not subject to sudden rise or destructive freshets.

That the extent of obstructed water requiring improvement is but a small proportion of the whole, and that the geater part is a chain of inland lakes, affording a good natural navigation.

How to connect these unobstructed parts is the question now to be considered.
When a river is obstructed by falls and rapids there are several methods of making it narigable.
I. We may cut Canals around the rapids, and lock up and down through them, keeping away from the river, and letting it entirely alone
II. We may throw dams across the channel of the river, and convert the rapids into a series of still lakes, and lock directly from one into another.
III. We may combine these methods by canalling around rapids, and using low dams to give the required depth, and to drown out currents between the canals.

Sometimes one of these methods is most applicable to a particular locality, and sometimes another ; and the judgement of the engineer is shown by his choosing that which best suits the circumstances of the casc.

On the lower Ottawa, where the Iakes arc long and deep, and the shores low and hichly cultivated, it would be unwise to attempt to alter the existing levels, for we should drown a large extent of country, thereby destroying arable land, and probably rendering what was left unhealthy. Whatever plan is proposed will carefully avoid disturbing the long levels.

But fortunately for the project, on the greater part of the river, where the water is required to be raised, the shores are bold, and the desired lift would, overflow but little land. Herc we have only to raise the natural dams or recrs of rocks to the desired height, by artificial structures, thus restoring a condition of things which possibly existed before the ceaseless rush of the waters, or glacial action, had worn the rock dams down to their present state.

Wherever canalling is resorted to, the canal will follow the shore, and be constructed by cmbankments rather than in excavation, on account of the great saving of expense over thorough cuts in solid rock, of the large dimensions necessary for the navigation.

The whole key to the system of improvement proposed for the Ottawa is comprised in two propositions.
I. Follow the natural bed of the river and avoid cutting into the rocky shores.
II. Gain the clepth recquired for narigation by raising the surface of the water rather than by submarine rock excavation.

We may lay it down as a general principle that, although on the lower part of the river where the shores are flat and lie upon sedimentary rocks, we could dispense with the use of dams; yet, as soon as we enter upon those portions where the river has cut its bed through

[^0]erystaline rocks, (which is more than half the whole distance from. Montreal to Lake Hurai) the only mode by which a navigation can be made at all is by raisiug the water by dams.

There is not now depth cough of water; the currents are too strong to be overcome; and as the shores rise alniost perpendicular from the water's edge, there is no room to construct canals; moreover, even if there were roon, the lengeth of artificial canal required would be so great as to coudemu the project; and there can be no doubt of the superiority of a still deen like froni two to thrce hundred yards wide, for purposes of navigation, over a canal of fifty yards in width.

Fitimately crery existing conditiou farors this mode of construction.
The bed of the river consists of hard crystalline rocks, worn smooth and generally free fron houlders; and the shores of the same material rise abruptly on either side, diminishing the lemeth of dam required.

Point: can be obtained where the water is shallow, and where there are rocky islands which will act as natural buttresses for the structure. Under these circumstances there is no whe danger of a properly constructed fiat dam being disturbed than one of the islands themenves.

A has becu preriously said, the Ottama is not a river subject to sudden rise or extraordimery flows. It uerer aterayes over three inches in trenty-ifour hours for any number of days in succession; its common rise is oue inch per dey. Its rise to its ligh water mark stand, and subsequent fail, occur crery year at nearly the same dates, with the utmost regularity. (See apmendix for Table "C.")

There is very little shore of ice in the Ottalwa, where dams would be recquired.
So anple is the rolume of water, cren in the driest time, that notrithstanding leakage and the effect of wind blowing down stroum, the dams would be always submerged, with from one to two fect of water runuing over their crests.

A rerjimportant effect of dams upou the Ottawa will be to diminish the rariation betreen high and low water. This is always proved to be the case wherever they are built, for there is a geeiter arca to be filled up by the flood waters before they can rise; and the discharge orer the top of a dem is so free that the water can never rise abore it to the same extent that it does in a river chansel obstructed by islandsand sunken rocks.

In designing a system of dams for the Ottawa improvencut, we should have the actual volume of water discharged both at the lowest and highest recorded stages. This would require a series of gauces in different parts of the river, taken for a term of years, until the greatest and least flow was ascertained from actual measurement.

As the time of this surrey has been limited to one seasou, I canuot pretend to have attained such accuracy; nor, mercly for the purpose of an ostimate of cost, is it necossary. It is only requisite, for that purpose, that what is assumed as the greatest and least volume should corer the extrome limits of variation.

The results of several gauges give, for the Summer volume of discharge, at Portage da Fort, 31,000 cubic fect per second, and that of high witcer, 127,000 cubic feet per second. From any thing on record, it doos not appear probable that the least discharge erer falls below 25,000 cubic fect per second, or the greatost over 130,000 . These quantities, therefore, havebecn assumed as a maximumand minimun (sec appendix, Table "D.")

Where the dans theneselves act is waste weirs, it has been thought preferable to raise the masonry of the upper or guard lock, and allow the water to raise as high as it would upon the crests of thic dams, ratiocr than toattempt to control it by cuard gates in the body of the dams, as this would be introducing a perishable material, and mode of cinstruction, into the body of the work.

The huight at which the water will stand upon the crests of the dams for different volumes of discharge, has been calculated by the formula for weirs, originaily duc to the investigations of Du Buat.

Let Q be the number: of cubie feet per record, and L the leasth of the orerfall of dam be known, and we can obtain.

IH. The height at which the water will stank abore the crest of the dam, from the simple equation.

$$
=\left(\frac{0}{3.56}\right)_{\mathrm{L}}^{\mathrm{L}} .
$$

By this formula, the Table of dams, (see appendix D.) was calculated, and the height of the coping of guard locks established.

It will be seen that these dams will have from 1. 34 to 3 . 51. of water running over them at low water. Yet for purposes of estimating, their crests have been assumed to be as high as the level of water abore them, which gives excess of material.

One other point demands notice. We know that by dams we can drain out currents, in these Lakes themselves, strong enough to affect navigation.

The relocity of any current depends directly upoin the area of Flowage. When that is large in proportion to the volume, the relocity is slow; and as the area diminishes, the relocity increases, in order that equal volumes may pass in equal times. How great this velocity will be at any point, is strictly a matter of calculation, founded on well known hydraulic laws. Without here giving details, it is sufficient to state in gencral terms, that the present arca of flowage will be so much enlarged by the depth of water thrown on by dams, that no greater velocity of current need be apprehended than three milesan hour, at any point, ereu during the six or seren weeks of high water; and during the rest of the season, the currents will be entirely imperceptible.*

III. METHOD OF IMPROVEMENT PROPOSED.

In accordance with the instructions of the Department, the quality of the works is proposed to be not inferior to the standard of the St. Lawrence Canals; and every thing has been designed as substantial as possible. It is believed that there will be nothing pcrishable but the lock gates, on the whole linc.

Daws, where carried above water, will be of rough but strong rubble masonry laid in cement; wherever the water runs constantly over them they will be flat timber dams compused of solid timber laid up crib-fishion, without framing, fastened with $\frac{3}{4}$ inch square bolts, 20 inches long; at each crossing rock bolts $\frac{1}{2}$ inch round, to be filled with loose stone, covcred with 4 inch plank, well spiked, and staunched with gravel, similar to those ussually constructed by the Department, in comnexion with timber slides.

In most places the water can be diverted by a rough coffer dam, and the permanent structure commenced directly upon the flat rock. This operation is much facilitated by the numerous channels into which the river is divided, at the points selected, by large and small islands. The dams can be run from one island to another, and passares left for the discharge of the waters, which can be afterwards closed.

When the water is deep, recourse must be had to the system of sinking cribs. The dams should, where possible, be laid out upon segments of circles arching up stream; a mode of construction in which the greater the pressure the tighter the dam. Every alternate cribshould be lowered to its place, sunk, and fastened to the rock with heary iron bolts.

[^1]The key cribs should then be floated in to fill up the spaces, and the whole sheet piled on the up-stream side.

Upon this level surface the superstructure of the fiat dam is carried up in the usual way. Generally the levels can be so arranged as to receive the spill of the dam into deep water; where this could not be done an upron of solid timber has been provided to protect the rock below.

Timber and stonc suitable for dams are found abundantly in all parts of the routc, and there are no points where their construction offers greater difficulties, than have been suocessfully overcome by the enterprise of the lumbermen, on the tributaries of the Ottawa.

The locks are intended to be built of sound and durable stone, laid in hydraulic cement, with fine bouchard face, cut to quarter of inch joints, backing of rectangular stone, with parallel beds laid to one inch joint, and well bonded to face work. The rock is generally assumed to be sound, but a tight timber foundation, laid in concrete, is prorided for under the recesses.

The gates are designed of solid timber; in the style now used on the St. Lawrence Cavals. Each gate will have two sluices $10^{\prime \prime} 6^{\prime \prime} \times 2^{\prime \prime} 6,^{\prime \prime}$ and culyerts around the hollow quoins to be used in case of accident to the sluices, or together with them if required. The arrangement for opening and shutting gates should be of the most approved kind; and it is believed that a lockage need not take over ten minutes; the average time on those locks of the St. Lawrence Canals, where the latest improvements in machinery and gates are used.

In arranging the lockare, it has not been found necessary to place more than two locks in combination, cxcept at the Talon-chutte, where three have been combined, the contour of the ground prohibiting any other arrangement.

The cost of the cxecution of this work will depend, more than anything else, upon the character of the rock, its hardness in excavation, and its suitableness for purposes of construction. As has been before stated, the two great divisions of the Ottawa rocks are Laurentian and Silurian. The former are very hard, difficult to work, and too brittle for the face stone of locks; while, on the other hand, the Silurian lime and Sandstones are easily excavated, and, from the upper beds of the Limestone, known as the Trenton group, we can procure a building material cxcellent in every respect, both as regards ease of workmanship, strength, and durability. From some of the Argillacecus beds a good hydraulic cement can be obtained, such as is now made at Hull opposite Ottawa City.

We know then, that from Montreal to Deep river, building stone lies all around us, but from that point to Lake Huron, it was much to be feared that the stone of the counury, although good enough for backing lock walls, filling lock dams, and rough masonry in general, could not be depended on for face work. Luskily, howerer, this is not true of the whole of that extent of country. A bed of ycllow, weathering, fossiliferous limestone, on the North-east shore of the river, a little above the Deux Rivières Rapids, will afford good stone for the structures in that district, and on the lower Mattawan.

At Talon-Chutc there is a vast mass of crystalline limestone, described in the Geological Report, which is a fine grained and tolerably tough stone, and appears to be good enough for face work. The locks at that point have been estimated to be built of it.

The face work of the remainder of the locks upon the Lower Mattawan, is designed to be built from a (fuarry of gray granite (probably an intrusive dyke) on the north side, about half' a mile from the river, below Parcsseux-Chute.

For the structures on French River, the face stone must come from the beds of Niagara lime, on the Manitoulin Islands of Jake Huron. This will much increase the cost of that portion of the work, and render its construction necessarily gradual.

IV. SCALE OF NAVIGATION.

The first point to consider is, whether we are desirning a local or a through Narigation. This wouid be decided by the general depth of the chain of waters, the difficulties of overcoming the summit, the supply of water, and other points, more or less closely connected with the preceding.

To these my attention was first directed, and after careful personal examination of the whole route, aided by the Graphic Report of Mr. Shanly, and the results of such Surveys
as were at the time made, I was able definitely to decide, that, whatever scale was fixed on should be with the riew of completing, at some future day, the through line of Navigation.

It must be borne in mind that this is exclusively a Steam Navigation; sails, although useful auxiliaries, would never alone enable ressels to pass through this route, with any saving of time, over that by the Welland Canal.**

The next point is, whether we shall build locks fitted for large vessels; or whether, preserving the dimensions suited to an inland and Local Navicration, we shall cause a transhipment to take place at the mouth of French River, which is about half way between Chicago and Montreal by this route.

This question is determined by the length of Canal (or what is equivalent in delay to an artificial cut) on the route where a large proportion of the distance is canal. I should then recommend transhipment; for I believe the unwieldiness of large vessels, on account of their top hamper being acted on by the wind,-the risk of damage to the vessel and to the works in the narrow Channel of a Canal, and the delay arising from these causes, would more than balance the cost and trouble of transhipment into Steam barges better suited for Canal Navigation. \dagger

As soon as I had ascertained that the length of Canal on the whole routc, including Lachine, would notexceed 29.32 miles, and that the remaining 401.44 miles could be made a navigation allowing of as rapid a transit as the great Lakes thenselves; and indeed more so, so far as freedom from head winds and storms is concerned; I was then prepared to recommend the larger scale, and an unbroken line of Navigation.

It only remains to decide how large. When crops are good, and full freights offer, it is an advantageous axiom, that, the larger the vessels the cheaper the cost of transport. It is a fortunate peculiarity of this route that vessels can always depend upon making up full freights of sawed lumber from the ineshaustible pinc forests of the Ottawa, manufactured at every dam on the river.

It requires then, I think, no argument to prove that we cannoterr in providing to let down to Montreal the largest class of Propellers, now confined to the Upper Lakes by the limited size of the Welland Canal.

From these data, and after consultation with various persons experienced in the Lake Trade, I have fixed upon the dimensions given, as follows :-

The length proposed by Mr. Shanly, and suggested in the instructions of the Department, 250 feet,-is long enough for vessels of the desired tonnage. It does not, however, scem desirable to exceed the breadth of the St. Lawrence Canals, 45 feet; because this is in itself wide enough; and because it makes the enlargement of the Lachine Canal attainable, without pulling down the present lock walls.

The depth has been fixed at 12 feet, which is absolutely neccessary if we wish to admit vessels of over six hundred tons, as will be seen from the table of large Propellers (given in Appendix E.) for which I am indebted to the kindness of Capt. D. P. Dobbins, Secretary of the Board of Lake Underwriters, Buffalo, N. Y.

Although, through the heavy cuttings, and where the distance is short, I have followed the width recommended by the Department, 100 feet on bottom, I have not hesitated to increase the prism of the Caval generally to 146 feet on bottom; as I believe that it is not more than is required for ressels to pass with speed and safety. The depth has been fised at

[^2]one foot more than the locks-say 13 feet; and in Lakes and Rirers will be 15 feet, and generully average 20 feet.

V.-SPECIAL DESCRIPTION.

Commencing at the City of Montreal, we hare the Lachinc Canal common to both the Saint Lawrence and Ottama routes. It is 8.5 miles long; has fire locks, $200 \mathrm{ft} \times 45 \times 9$, with a total lockace of 44.75 fect. The prism of the Canal is 80 feet on bottom, 120 at water surface, and arerages 10 feet deep. This would have to be deepened, and the locks lengehened to admit resscls of the same tonnage as could pass the proposed Ottawa Canals.

As neither the time nor means at my disposal have enabled me to make a surrey of this, I have not included it in my estimate. The enlargement involves no serious obstacles, and will, probably, be made whether the Ottawa Narigation is opened or not.

A map of Lake St. Louis, made for the Commissioners of the St. Latrrence improvement, in 1842 , by A. LaRue, P. L. S., shows a channcl depth, somewhat circuitous, of not less than 15 fect from Lachine to Isle Perrôt. For rasons given abore, I have not made any surrey herc, but aminformed by pilots that there are 15 feet, and orer, along the North Shore of Isle Perrôt, up to the foot of the present St. Anne's Lock. I have, myself, taken soundings for half a mile below the lock, and over that distance can corroborate the truth of their statement; but it is much to be desired that there should be a now surrey with somding carcfully made from Saint Anne's Lock to Lachine.

SAINT ANNES.

Length of Canal, 1.19 miles.
1 Lock 1 ft . lift, L. W. 3.5, H. W.
Guard pier below, 1000 ft . long.
Canal aboic, 125 ft . wide by 5000 feet long.
Estimated cost, $\$ 469.672$.
I propose to cularge the present lock to the requisite dimensions, as it occupies the best point that can be selected. In order to do this it will be necessary to put in a coffer dam and pump it dry, take down the cast wall, and get the pit sunk to the proper depth, as carly in the spring as the weather will admit of laying stone. Then, by working night and day, it would be possible to complete the new lock without delaging the opening of the navigation more than three or four wecks.

It will be necessary to build a guard pier 1000 feet long below the lock, on the side next the rapid, to cut off the current, which, at high water, is strong enough to incommode vessels very much. This will be an ordinary crib-pier filled with stone.

Above the lock, the river bed is Potsdam Sandstone, in strata of from five to eighteen inches thick, somewhat tilted upon one another, and covered with boulders from the Laurentian rocks. The arerage clepth from the head of the lock to a point where the water suddenly deepens to cighteen fect, is cight feet, and the distance fire thousand.

I propose to make a double line of timber piers, 15 feet wide and 125 feet apart, for the whole distance. Half of the width of cach pier to be filled with earth lining and sheetpilcd, and the enclosed area divided into sections by water-tight bulk heads. The rock is seamy and would leak a good deal, but by putting in powerful steam pumps and shortening the length of the section to be laid dry in proportion to the leakage, it would be perfectly practicable to kecp down the water until the excavation was made to the required depth of five fect. The stone would be used to fill the outside compartments of the piers, and the excess deposited outside of that. The bulkheads would be removed, and the Whole thing would be an artificial canal 125 feet wide, and 13 feet deep, in the bed of the rirer, while the piers would serve as ruides to keep ressels from straying out of the chanuel. I have been particular to describe this in detail, as a similar method will be proposed for submarine rock excavation wherever it may occur.

The face and backing of locks is cstimated to come from the neighbouring quarries of chazy limestone at Point Clair, of which the piers of the Victoria Bridge are built ; filling of cribs out of the cxcaration.

This is unquestionably the best ray to make the improvement, for were the proposed camal located on the shores of the Islaud of Montreal, as has been sometimes proposed, the amount of under water rock excavation required to reach 15 fect of water from the shore, both above and below, would actually exceed that on the line I propose, and we should
have, in addition, an cnormous amount of excavation on land, and an expensive bridge to build for the Grand Trunk Railway.

LAKE OE TWO MOENTAINS.

The head of the Saint Anne's Canal would be 23 miles from Montreal. From the Esrd to $2 t$ th mile, according to the surreys of Wr. B. Gallwey, C. E., placed in my hands by the Department, it has a depth of from 20 to 30 feet. From the 24 th to the $26 \frac{1}{2}$ th mile, the low water depth docs not caceed 13 to 14 feet, and I am unable to say whether the bottom is rock or some material that could, if required, be dredged. From the 26isth tuile to the foot of the Carillon rapids at the 47_{4}^{3} mile, the channel is 30 feet, and the navigation is straight and unimpeded.

CARTLLON.
Length of canal 0.5 miles.
2 locks, 12 and 5 fect lift ; passing basin, 2000 ft . long.
Rolling dam, 1700 ft . orerfill ; lift of water, 6.25 feet.
Estimated cost, $\$ 307.7+2$.
At Carilion the Rirer is obstructed for 1.3 miles by a reef of calciferous sandstone with onyy two or three feet of water running over it, except in the "Sickle" channel, about 150 ft . wide and 9 or 10 deep, and, as its name implies, vary crooked. The fill at the stare of water, when we lerelled it, was 8.75 feet.

This has been orercome by the military canal, built by the Imperial Govermment, 2.09 miles long ; locks up, 23 fect, by tro locks $128 \times 32.5 \times 5.5$, and down again, 13 to 15 fect by one lock of the same size, and is fod from the North river. The prism of the canal is rery irregular, being from 18 to 40 fcet wide on bottom, and 50 to 80 at surface, saty 5.5 deep in the centre, gradually shoaling to each side. It runs in from 5 to 16 feet cutting to water surface, principally rock.

The rocks are in a very ruinous state and cannot last many ycars longer in their prescnt condition.

The great amount of rock excayation necessary to enlarge this canal to the new scale, its twelve to fiftecn feet of unnecessary lockage, and the bad location of the lower lock, forbid us attempting to impro\%e the present mork.

I hare located the new canal on the south shore of the river. The water is 25 to 30 fice decp up to the lower lock, which is at the foot of the current, near the house of the late Judge Macdonald, Point Fortune. The passing basin is defended from the river by a wall of stone laid in cement battening $2^{\prime \prime}$ in $1^{\prime 2} 2^{\prime \prime}$, backed by a bank of loose rock out of the excaration, sloping 12 to 1 towards the river, and the whole pared with stone set on edge. The rolling dam stands on flat rock, free from boulders, and, except in the channel, the depth of water is not orer tro feet. It will have a slide for timber, and the height of water above its crest will rance from 2.57 to 8.11 feet.

By remoring some' fifty thousand cubic yards of rock betrech the upper lock and the head of the rapid, this dam across the river could be dispensed with. On referring to the map it will be scen that the proposed canal occupies the place of the side dam just constructed. To gather enough depth of water to run deal and timber cribs ; as we are obliged to destroy this chanuel, we must provide a new onc, and there is no way so practicable as to raise the water by a dam, which shall coutain a broad and short slide leading directly into deep water below.

The lock stone will come either from the Pointe Claire quarries, or those of Isle Bizard. The loose stone for dam filling, out of the excavations, and the stone for the wall, to be lad in cement, can be got out of the bed of the river in such size and shape as will cambie it to be laid up into a wall with scarcely any dressing. On this account I have considerel that 83.25 per cubie yard, would be sufficient; which price implies that but little labour is required.

CIICTE A BLONDEAU゙.
Tencth of canal, 0.07 miles.
One lack, ten feet litt.
Tolling dam, over fall, $1,750 \mathrm{ft}$, lift 12 ft .
Jight dam, cement masoury, $1,550 \mathrm{ft}$. long.
Estimated cost, $\$ 1+4.315$.

A stretch of five miles of still water, over 30 it. deep; brincs us to this rapid, about 900 ft . lons, and falling 4 ft . The Nilitary Canal is here formed by cutting off a point of rock, and has one lock of the same size as at Carillon. The canal is forty feet ride, and cut through rock, about the same depth.

We place the new lock in a channel between the island and the present lock, and follow the line of reef with one dam, the depth, except in channel, not being over two or three feet. This dam has a slide for timber similar to Carrillon.

The object of raising the water 12 ft. by this dam is as follows: the lower end of the present Grenville Canal is through rock cutting. By raising the water at the Chute a Blondean, we can follow the river for 1.1 miles above the present lower lock of the Grenville Canal, shortening the now one by so much, and saving a large amount of rock cutting.*

The lock stone is estimated to come from the same point as Carillon Stone for dams can be procured on the spot.

GRENVILLE.
Length of canal, $4 \cdot \frac{43}{}$ miles
One pair of combined locks, 12 ft . lift each.
Passing basin, 400 ft . long.
One lock $6 \frac{1}{2} \mathrm{ft}$ lift; prism of canal 150 ft , at surface, 146 om bottom, and 13 deep at head for $2,000 \mathrm{ft}, 100 \mathrm{ft}$. wide on bottom.

Guard lock, 1 to 15 ft lift.
Estimated cost, $\$ 1,197,862$.
The bed of the Ottawa, at the foot of the Long Sauit, which is an almost continuous rapid for five miles, with a fall of forty-five foct, consists of culcarious sandstone, covered with boulders from the Laurentian crystalline rocks. These are worn smooth and polished by the water, are of all sizes, and in many places entirely conceal the rock in position. This makes so bad a foundation for artificial structures, that we are driven perforce out of the bed of the river, and can do nothing but enlarge the present Grenville Canal, which is gencrally well located on a strip of flat land lying between the high bank and the margin of the river.

As has been stated, we leave the river $1 \cdot 1$ miles above Grucese Point, and lock up at once to the Grenville level, in order to raise the bottom of the canal out of cutting. The new line joins the old one in about a mile, follows it for abont a mile and a half, and then, to aroid rock cuttings, runs along the river's edge, which forms one bank, while the other is formed by a stone wall laid in cement, backed by a bank of loose rock out of the excavation of the head, and sloped $1 \frac{1}{2}$ to 1 toward the river, and paved. The new canal follows the old line, cutting through the neck of land upon which the Village of Grenville stands. Here, for 2,000 feet, the width has been estimated to be 100 fect, with sides nearly vertical. The embankments (not river wall) are formed by dry battered wall, backed with carth filling.

If, instead of using these stone walls, laid dry on land, and in cement in river wall, the embankments were dressed to a slope of 11 to 1 , and paved, the estimated cost of this section could be reduced about three hundred thousand dollars.

The lock-stone can be brousht from below by the prosent canals; all the other stone can be got out of the river, or ncar by; and, as at Carillon, will require but little labor to lay it into a good wall. All the rock from Carillon to Grenville is soft, lies in thin strata, and can be easily got out. I have considered $\$ 1$ per cubic yard as an ample allowance, except at Chute it Blondean, where the rock is harder and there is less of it, and I have called it $\$ 1.25$ per yard. Jhe lock-stone is easily dressed and can be carried from the quarrics, to where it is wanted, in scows: distance 25 to 35 miles. I have considered that $\$ 12$ per face and $\$ 0$ per backing, averaging $S S$, would be sufficient.
*The Chute a Blondeatis one of the fei points on the Ottawa where the phenomenon of "ice-packing: takes place.

The floating ice which has come down the Long Sault, is arrested by the shect of still water below this rapid, jammed under it and "packed," until an ice dam is formed, raising the river some 25 to 30 fect abore its summer lerel.

The effect of the pronosed clam would be to form a stiil lake for some three miles above it, whici roull be frozen over with a thick shect of ice, and the "packing:" if it took place at all, would be removed some three miles up the viver, avore the peint fixed for the lower entrance of the Grenrille Canal.

At the head of Long Sault is a great sand-shoal, partly dry at low water; but following close to the north shore we have 24 to 30 feet. From Grenville to Ottara, the river runs in a level rallcy, with low shores of blue tertiary clays; a considerable extent is orerflowed by high water, and corcred with sand deposited by the river.

The width is from one to two thousand feet, and the channel depth 30 feet, until we get to the "Green Shoal," some 8 or 9 miles below Ottawa City. Here a calciferous sandstone reef runs clear across the river, diminishing the depth at low water to eight feet for a length of five hundred fect.

It will be necessary to pursue the same course here, that has been recommended at St . Annes, and remove the stone by a coffer dam, the sides of which should be left for guide piers to indicate the channel. Between this place and Ottawa City, there are some sand shoals that must be dredged, but no more rock.

The sum estimated for the improvement of this section is $\$ 136,105$.
The plans of this part of the river furnished me by the Department from the surveys of Mr. Gallwey being unfinished, I have obtained the distance from Grenville to Ottawa City through the kindness of Sir William Logan, who calculates it at 55.25 miles in a straight line. Allowing for the bends of the river, I hare called it 56.07 .

Chatidiere and des chenes.

Iength of Canals: Chaudiere, ${ }^{2}$; DesChênes, 61. Total 2.61.
Slides channel ; pair of combined locks 111 feet lift cach ; passing basin 600 feet long; pair of combined locks $11 \frac{1}{2}$ fect lift each ; water surface above raised 3.7 fcet by prolongation of present dam from head of mill flume, across islands to Spark's Point.

Spark's point ; 1 lock; 8른 feet lift ; side dam stone, 1700 feet long ; rolling dam at head of little Chaudiére 2000 feet over-fill ; lift of water four feet, drowns out-Remoux.

Remoux ; coffer dam and rock excaration.
Des Chênes: 1 lock, $8 \frac{1}{2}$ feet lift; caual bunks battered wall of stone in cement, backed with stone filling, and pared. Estimated cost $\$ 806.733$.

At 0 ttawa City the river is interrupted by rapids and falls for 6.36 miles, having a descent between Ottawa harbor and DesChênes Lake of about 60 feet, $* 36$ of which are taken up by the Chaudière, a magnificent fall which affords one of the finest water powers on the contivent.

Several lines had been previously surveged for this canal, but I have preferred to follow the river, shortening the length of canal refuired, and much diminishing the amount of rock-cutting, and consequent expense. But little land is overflowed, and that chiefly swamp. Two mills would be destroyed, (Sparks, and the Britannia,) but the new privileges would be better than those now existing.

Stones for the dams can be got out of the excavation, and excellent lock stone from the Trenton group of limestones, abounds close at hand.

Lake DesChênes, or, as it is sometimes called, Chaudière Lake, is 26.69 miles long, and varies from half a mile to two miles in width; and, according to Mr. Gallwey, its general channel depth is from 20 to 30 feet of water.

Below the river Quio the channel is crooked for a short distance, the depth 14,16 and 18 feet, and some points might have to be taken off. From there to the foot of the Chats there is 25 to 30 .

CHATS.

Length of Canal 0.6 miles
Chats Island: 1 pair combined locks 12 feet lift each; passing basin 400 feet long; clay embankment paved; 1 pair combined locks; 12 and 6 feet lift ; rolling dam 3700 feet oreriall ; tight dam 300 fect; lift of surface 4 feet. Chats Rapids: 1 lock, eight feet lift; rolling dam 2100 feet spill ; light dams 1000 feet long ; lift of surface oight feet, up to low water level of Chats Lake.

[^3]Head of Rapids ; coffer dam and rock excaration. Estimated cost \$681.932.
This, it will be observed, differs entirely from the old route of the Chats Canal. A considerable proportion of the excivation necessary to finish that work to the seale originally contemplated [60 feet wide and 7 deep,] has been done, but it forms a rery insignificant amount of that required for the new scale. The canal ends below in Bie Bay, a sheet of water about a mile lons, quite shallow, and with bottom of gneiss rock.

The depth at low water per 700 feet is not over 5.5 ; per 1000 fect not over 8.5 ; and per 1600 fect, at the entrance, not over 6 or 7 feet, althourg most of this last is probably clay, and could be dredged.

The only way in which sufficient depth can be got, except at a ruinous expense, is to throw a dam across the mouth of Big Bay, and raise the surface, placing a lock on what is called Hudson Point.

My estimate for the completion of the present Chats Canal on this plan, to a scale uniform with the rest of the river, is $81,465,439$. [Sce appendix J.]

There being some difficulties in ascortaining the amount of work done, I hare credited the work with the whole amount expended, as per last Report of Department of Public Works, amounting to $\$ 3 \geqslant \pm, 000$, leaving a balunce to be yet expended of $\$ 1,1+1,429$.

My estimate for the new work has been stated at $\$ 681,932$, showing that it would be a saving to the Province of $\$ 459,507$ to abandon the work already done on the old route, and take the new.

The length of Canal on the old route is three miles, and is quite crooked; on the nem roate we have ouly f of a mile, being the locks and passing basin. The rest of it will be as good narigation as any part of the river. I have no hesitation in recommending the adoption of the new route.

We cross the Chats Island with four locks, as stated above, and run a low dam along the line of reefs at the head of the main fall, raising the surface enough to drown out currents up to our upper lock. The water doos not exceed three feet in depth on the line of dam, except in the channels, and there are so many islands to work from, that the difficulty of building a dan here is not so great as at first sight would appear.

The depth of water will be not less than 20 to 25 feet from this point to the upper lock and dam. This brings us to the level of Chats Lake, and we have 18 to 30 feet depth as far as the reef at the present head of the rapils. At what is called the conoe channel, there is now a depth of ten feet, but it is narrow and crooked. It slopes above into 13 feet of water in about 300 feet, and, below, pitches off at once into 18 feet of water. After the dam has been built below, and the water stilled, it will be necessary to put in a coffer dam here, and remore some rock, which is chiefly crystalline limestone, leaving the sides of the dam for guides, as at Green Shual.

The lock stone for this work should come from the quarries of Black River limestone on DesChênes Lake. Stone for dams can be got in the neighborhood. I have estimated the face stone at $\$ 12$, and the backing at $\$ 6.50$ per cubic yard, or an average of $\$ 8.25$.

Up to this place whatever rock excavation has been necessary, was through Silurian lime and sandstones of a soft texture. But this rocky barrier, over which the river tumbles in some thirty different chutes, is one of the Laurentian series, and consists of gneiss, horneblendic, mica slates, and crystalline limestone., The strata are considerably inclined, dip in the direction of the current, and the "strike" is generally at right angles to the direction of the stream, as may be plainly seen from the course of the reefs.

These rocks are all hard to work. The crystalline limestone is much the easiest, and I have allowed $\$ 1.50$ per cubic yard for it. The mica slates, and particularly the horneblendic gneiss of a greasy texture, and greenish red colour, such as is found at the lower end of the Canal excarations, are hard to drill, and require much powder to break them up. The price which I have allowed, and which is proportioved to the rock prices over the rest of the river, is $\$ 250$ per cabic yard.

The Chats Lake is a fine sheet of water 18 miles long, and from half a mile to three miles wide, with a channel depth of from 25 to 30 feet.

From the head of this Lake to the head of the Calumet Island, a distance of 81.07 miles by the North or Calumet Channel, and 24.79 miles by the South or "Rocher Fendu," channel, the river has a total fall of 102.48 feet, and is much obstructed by
rapids and shoois. On the north channel more than half the fall is concentrated at one point, the Grand Calumet Falls, and there are longer stretches of still water. The south channel is a continuous rapid for much of the distance.

In deciding between these two channels, several things were apparent without further instrumental survey:
I. The Calumet was 6.28 miles longer than the other.
II. From the head of the Calumet falls to LaPape, 17 miles, the bed of the river is cut through sandy alluvial soil, is very crooked, and is filled with shifting sand-bars and shoals, that wonld have to be dredged, not only once, to open the navigation, but continually to keep it open.
III. The timber slides now occupy the Calumet channel, and as there is not room for both timber and vessels, if we take this channel, new slides must be built on the Rocher Fendu.
IV. The nature of the ground at the Calumet Falls, would require three locks in combination.

The very important question of cost could not be determined without making location of locks and dams on both channcls, and estimating on each.

The Lock at the Snows is common to both routes; the lift of the upper onc at Portase du Fort, and the height of dam, would have to be increased sir feet. Two locks and a dam, and 0.28 miles of canal at the "Mountain" chute, and five locks and a dam at the "Grand Calumet," raising the water to the level of the river at the head of the Island.

Here the only possible location for the canal is on thesite of the present slides. A ravine to the left of the fall was surveyed in 1857. But even by combining all the five locks at the lower end, there would be fifty feet catting for one mile, which, eren for a canal of a hundred feet wide, would require the removal of nearly a million yards rock. This is, of course, impracticable.

In comparing the cost of the two routes, the lockage is the same; and the difference of dams is not enough to affect the estimate materially. But the "Calumet" Route would have in excess,
 over the Rocher Fendu Route.

Taking all these things into account, I have no hesitation in recommending the Rocher Fendu for improvement, and shall describe how it can be done.
CHENAUX À "sNOWs."

Total length of Canal, 0.2 miles.
1 lock 6 feet lift.
Dam 1,267 feet.
Estimated cost, $\$ 133,356$.
The Rapids of the Ottawa are caused by reefs.
These are the remains, more or less worn away, of the rocky barriers which once separated the different lakes. In the limestone formations, the whole bar has generally been Fashed away, leaving an entirely submerged reef. But among the Laurentian rocks, the river cuts channels through the softer veins, leaving the harder rocks protruding above Fater in the form of islands. The "Snows" is a place where even the reefs between the islands have been worn away, so that it is now merely a contraction in the channel, forming what hydraulic writers call a "discontinuous weir."

In summer the volume of water is only sufficient to dam itself up some six or eight inches,* forming a slight ripple; but in floods the water above rises from three to four feet, making a rapid too strong for steamboats to ascend.

[^4]Three methods of improvement have been surgested :-To raise the Chats Lake and drown out the rapid;-To renove the islands which obstruct the channel ;-To put a lock in one of the channcls.

When a river channel is contracted, the water dams itself up until it has attaineda head sufficient to give itself relocity enough to pass through the narrow passage. Raising the water from below will not prevent this from taking place, unless it is raised enough to give it an area of flowage equal to that of the average channel of the river. To do this here, would require a lift of the Chats Lake so great as to be inadrisable.

To cnlarge the area from $\$, 400$ to 20,000 square feet, by remoring obstructions, would require too much rock excaration.

We are therefore reduced to the third plan, as recommended by T. E. Norman, C. E., in his report to the Department last year, and must puta lock in one of the channels. The Canoe Channcl has been selected as the best; and the Steamboat Channel will be left open for the descending trade : but all the others will be closed by low dams. This will raise the water six feet* above its present level. In the Spring the high water will pour over these dams.

I have gone somewhat more into detail in describing this place, than its importance would seem to warrant; because, from its being the line of the present steamboat navigation, it has been rnuch discussed, and many plans suggested for its improrement, both by professional and amateur engineers.

The iock stone should come from the superior quarries at the Lower end of Chats Lake.
PORTAGE DU FORT
Length of Canal, 0.24 miles.
1 Lock 12 feet lift, passing basin 400 feet long.
1 Lock 8 feet lift. Rolling dam 2,664 fect long.
Light Dam, of masoury, 1,360 fect; lift of surface, 10.5.
Estimated cost, $\$ 287,396$.
Here we have a multitude of islands and channels, but the reefs between are not worn down more than two or three foct below the surface of water, with one exception, a narrow channel called the "Devil's Elbow, which is over twelve feet deep. The locks will be placed at the head of the island to which runs the dam of Usborne's Mills. From the locks to the north shore the dam is a light one, with a flume to admit water and logs to the mills. The remainder is a rolling dam, giving free discharge to the flood waters. The timber slides will not be disturbed, except to lengthen them for the increased fall.

The locks may be built of a crystalline linestone, known as Portage du Fort marble, and the dams of the same.

ROCIIER-FENDU.

Length of Canal, 0.61 miles.
\& Locks and 5 dams, as follows:
Rocher-Fendu Chute Canal, 0.07 miles.
1 Lock Ten feet lift ; dam 450 feet long.
Lift of surface 13 feet.
Long Rapids Canal, 0.12 miles.
$h=$ height to which it is dammel. $=6-10$ of foot.
$q=$ quantity of discharge in cubic fect per second $=9 \dot{0} \sqrt{.2 g h}(\quad+d)=33,254$ cut feet. the quantity is guaged at same time, and a miic above was 30:913.

At high water d becomes. 28

agreeing rexy nearly whith other observations of H. W. discharge.

> Call $\begin{aligned} & q=32,254 \text { cubic feet, per record. } \\ & d=20 \text { feet } \\ & h=6 \text { feet, height required, } \\ & \text { And } b= \\ & \text { breadth required. }\end{aligned}$ The formula, $\quad \frac{q}{b}=\sqrt{\left(\frac{\pi}{2} h+a\right)} \sqrt{2 g h}=1054$ feet.
which is about the bread th of the present steamboat channel, which may be left alone. And by clow ing the others. the water wlll be dammed up six feet.

> Pair of combined Locks, 14 and 6 feet lift; rolling dam 600 feet ; tight dam $500 ;$ lift 17 feet.
> Lafontaine's Rapids, length. 0.23 miles.
> 1 Lock 12 feet lift ; basin 400 fect long; 1 lock 12 feet lift : dam 350 feet \quad long; lift 7 feet.
> Norman's Rapids, length 0.12 miles.
> Pair combined locks 12 feet cach ; dam 350 feet flat, 100 feet tight; lift 23 feet.
> Black Falls, length 0.7 miles.
> Guard lock, 2 to 4 feet lift ; tight stone dam 1100 feet long; low water lift 2.4. Estinated cost, $\$ 836,088$.

The dam at Portage du Fort will drown out the small rapids known as the "Split Rock and Tables," and give sufficient depth of water as far as the Rocher-Fendu Lake, which, according to the Surveys of T. E. Norman, Esq., is 30 to 60 feet in depth. The distance from Portage du Fort to the head of this Lake, where we have a lock and dam, is 7.35 miles. A distance of 1.61 miles takes us to Long Rapids, where are trro locks and a dam. The lift of water, 17 feet, drowns out La Barrière, Muskrat, and Mice Rapids, all of which have channels worn through the reefs, so that there will be no necessity for submarine rock escavation, while the shores are bold and high enough to prevent much land from being orerflowed. We are now at the foot of what is called La Fontaine Island, and here the rirer is divided into three channels. It is proposed to follow the south channel, and by building a tightstonedam above Black's Falls, at the head of the Island, to shut out the flood water and drive it down the other two channels, only admitting enough for navigation. Otherwise, the amount of water discharged in floodis so great in proportion to the contracted size of the channel, that it'would be difficult either to build structures, or use them after they were done. By availing ourselves of the existence of these other channels to take off the surplus water, we can lay our work without coffer dams, and regulate force of currents as we please. Five locks and three dams take us to the head.

Some of the crystalline limestone is good enough for locks, some stone will come from the quarries on Allumettes Island above, and perhaps some from Portage du Fort or Chats Lake.

The rock on this part of the river, although of the Laurentian serics, will not be so hard as that at the Chats, owing to the greater amount of crystalline limestone, and to the preponderance of felspar in-the gneiss, which is easily acted on by the weather, and causes the gneiss to crumble, and become broken up. I have estimated the rock excavations at $\$ 1.50$ per cubic yard. Stone for dams can be got in the locality.

From the head of the Calumet Island to the foot of the Allumettes Island, the river expands into what is known as Lake Coulonge. At its foot the river is divided into several channels and islands. The main body of water passes on the West side, and has not beeu sounded until this year. The other channcls are quite shallow, but this has 20 feet and orer, except at one point, where, for five hundred feet in length, there is not over ten feet at low water.

Through the remainder of Lake Coulonge accordiug to plans made under the direction of Mr. Shanly, and furnished me by the Department, there is 25 to 30 feet in depth of water.

The river is again divided into two channels by the Allumettes Island ; the Northern of which, known as the Culbute, is much the better suited for navigation.

Thischannel is narrow with bold shores, and the fall $18: 25$ feet, is concentrated into rapids at the head, the Culbute and lIslet. For nine miles from the foot of the Island, up to a slight rapid of five or six inches fall, known as the Chapeau, and caused by a construction of the channel, we must follow the natural bed of the river, which is somewhat crooked, and will require a-considerable amount of dredging, particularly at the mouth of Black River, a turbulent stream which brings down much sand during the Spring freshets.

It is probable that there will be some boulders, and points of reef below water, to be removed. For the improvement of this section there has been estimated the sum of \$262,414.

Chappau and Jíslet.

Length of Canal, $0.1+$ miles.
Chapeau: 1 lock, 12 feet lift, and rolling dum 500 feet long; tight dam, 240 feet; lift of surface, 11.5 fect.

Lislet: I lock, 6 feet lift, L. W., 1ㄹ fect: H. W. ; tight dam, 700 feet long; lift of surface 9.5 fect. Estimate cost, 3253,512 .

The lift of 11.5 at the Chapcan, gives good navigation for 5.85 miles to the foot of l'Islet. Here a tight dan of masonry in eement, as at Black's Falls, will keep out the flood waters, and drive them down the broad Pembroke channel, and the lock is located in the channel betreen the island and the north shore.

This mases the surface of the water above l'Islet to the level of the river at Fort Wiliam, and drowns out the Culbute, which rapid darts through a narrow gorge in the rock, not over eighty feet wide, with high perpendicular cliffs on either hand. It will be necessary to take three or four feet off the top of the reef for about fifty feet in length. This can be done by puting in a short temporary dam at the head, after the water is raised and made still by the dam below. Then, on opening the gates of the lower dam, the bed of the river will be laid dry at this point, and the rock can be removed, after which the coffer dam above must be taken out.

The lock stone for these works is estimated to come from the quarries on Allumettes Island, four or five miles from the work. Stone for dams can be got near by.

Although it does not properly fall within the limits of this Report, yet I shall take the likerty of calling the attention of the Commissioners to the fact that the expenditare of the above named sum of $\$ 253,512$, would extend the present steam boat navigation from Des Joachims to the head of Calumet Falls, a distance of 75 miles. From thence the macadamized road just finished by the Department, would avoid the 8.41 miles of obstructed navigation, between the steamboat landing above the Calumet and Portage du Fort, the present head of navigation on Chats Lake; avoiding the expensive and tedious detour of Muskrat Lake. An additional expenditure of $\$ 80,000$ would build the lock at the Snows. The dam would not be required at present.

I know of no point above the City of Ottawa where so little expenditure would do so much for the local traffic, as at these places.

From the head of Culbute to Fort William, 5.3 miles, the river is much broken ap by rocky islands, but according to the soundings laid down on the plans of Mr. Shanly, there is a deep, although somewhat tortuous channel.

From Fort William to the Rapid des Joachims, we have the fine stretch of water known as Deep River; this is very straight, one to two thousand feet wide, and 27.6 miles long. The depth is very great, and said to be over 100 fathoms in some places; the shores are very bold, and the general character of the scenery resembles that of the Saguenay ona small scale.

Des Joachims

Total length of a Canal 0.57 miles.
Pair combined locks, 13 feet lift each. Passing basin 2000 feet long. Embanked by material taken from the excavation and sides of river. Slopes paved. One single lock, 12 feet lift. Dam, 1,272 feet long; length of overfall, 1,148 feet; lift of surface, 17.8 feet

Estimated cost, \$327,774.
This rapid is 1.64 miles long and falls 26.4 feet. It comes in nearly at right angles to the general course of the river, which, if prolonged, would run through a series of lakes, and strike the river again about three miles above. A line of levels were taken by Mr. G . H Perry, to see whether this chain of lakes might be followed and a Canal cut through the ridge, dividing them from the river. Although the distance is less than a mile, the cutting, even with proposed dam at head of Joachims, would average 20 feet, which would require the removal of over 400,000 cubic yards, principally rock. Hence we prefer to follow the north shore of the river itself. The lock occupies the place of the slides, which will have to be removed to the south side of the island, where there is a very good place for them:

Face stone of locks is estimated to come from Pembroke quarries. All other stone con be obtained in the neighbourhood.

McSorley's

Length of Canal, 0.13 miles; 1 Kock ten feet lift. Length of Dam, 1,383 feet; length of overfall, 1,041 feet; lift of surface, 16.5 fect. Estimated cost, $\$ 160,375$.

From the Upper Lock at des Joachims, a distance of 13.68 miles, brings us to a series of small rapids of 3 fect fall, where we put in a Lock on the south side of the river, and a Dam. It is necessary to mise the water eleven feet on the foot of the Rocher Capitaine; and to aroid making the Dam at the Joachims so high, this intermediate Dam at MeSorley's is designed.

The face stone of the Lock must come from the Pembroke Quarrics. Backing, and other stone, adjacent to the works.

Rocher Capitaine.

Total length of Canal, 0.65 miles.
Single Lock, 13 fect lift; passing basin, 1,000 feet long. Material for bank; taken from excavation; slopes paved.

Single Lock six feet lift, L. W., 12 at H.W. Dam, 1,005 fect ; lift of -surface, 23.4 feet; pool, 0.70 miles long. Pair of combined Locks, 13 and 6 feet lift; Dam, 1,702 feet long ; overfall, 1,400 feet; lift of surface, 21.5 feet.

Estimated cost, \$533,544.
The Rocher Capitaine, which it is proposed to overcome in the above manner, is one of the largest rapids on the Ottawa, falling 40.9 feet, in a distance of 1.35 miles. The Locks are located on the north side of the river. The bank is composed of an immense mass of boulders of all sizes, worn smooth by the water. It covers a space of about two square miles, and rises some sixty feet above the watcr. Fortunately, between these boulders and the river there is a strip of solid rock in position, upon which we place the Locks and Canals. The bottom of the river is smooth rock, the depth where the Dams run is not great, and, except that the upper Dam nust be long, there is no special difficulty in overcoming this Rapid.

The face stone of Locks is estimated to be got from Pembroke Quarries; but the expense would be less, if the Canal; hereafter described at the Deux Rivieres, Tere built first, as the stone would then come from the Quarries above it, without transhipment. The rest of the materials can be got near the work.

Devx Rivieres.

Length of Canal, 0.46 miles.
Pair of combined Locks, 12 feet lift each ; passing Basin, 500 feet long. Material of bank from excavation; slopes paved; single Lock, 12 feet lift, passing Basin, 500 feet long; Single Lock, 6 feet lift; upper Locks, on timber foundations. Dam, total length 1,292 feet; over fall, 938 feet, lift of surface 33.9 feet.

Estimated cost, $\$ 419,942$.
The Rapids, known as the Deux Rivieres, Iron and Levielle, occupy 3.15 miles, and fall 31.1 feet. The fall in the river, from their head, to Johnson's Rapids, a distance of 17 . 85 miles, is 9.7 feet, most of which occurs in the Rapids at the Rocky Farm, which occupy 4.75 miles. It was thought bestto put in a high Dam at the Deux Rivieres, and then back the waters to Johnson's Rapids, as the facilities were greater for that mode of construction, than for putting in another Dam and Lock between the two, and the amount of land overflowed is quite insignificant.

The Locks are situated on the south side of the river, on a flat piece of land, well suited for their location; the Lock stone will come from beds of a yellow or buff colored fossiliferous limestone, which appears on the north side of the river, about three miles above, and promises to afford a good building stone Other stone can be got near at hand.

JOHNSON'S RAPIDS.

Length of Canal 0.45 miles. Single lock 12 feet lift; passing basin 1900 feet long; raised with earth and stone from cutting; slopes paved; single lock on timber foundation
8.2 feet; lift at I.W. up to 13 feet; at H.W: ; Dam 2626 feet long; over fall 2000 feet; lift of surface 21 feet.

The Locks and Canal are on the North side of the River on a strip of flat land. The dam stands in $4 \frac{1}{2}$ feet water at L.W.

The Lock stone will come fromquarries below, other stone near by.
This dam drains the rapids just below the mouth of the Mattawan, and the currentsin that River, and throws 13 feet water upon the foot of the Pleinschants rapids 3.40 miles above.

MATTAWAN RIVER.

At Fort Mattawan 308 miles from Montreal, we leave the Ottawa which turns to the Northward, and still a large river. The amount of water passing in summer being but little less than that ruming over the Chaudière at Ottara. This is owing to the fact that, as we descend, the river ${ }^{3}$ expands into wide lakes, and loses by evaporation nearly as much as it receives from its tributaries.

From this point to French River, I cannot do better than to quote from the report of my principle Assistant, Mr. E. R. Blackwell:-
"On commencing examinations for a work of the contemplated character and magnitude of the inprovement of the Ottawa and French River Waters, the first thing presenting itself as indispensably necessary, was to obtain a reliable section of French River, Lake Nipissingue, and the summit or height of land between Nipissingue and Trout Lakes. The examinations were commenced at the principal mouth of the middle outlets of French River on the 20 th November 1858.

This debouchment of French Piver is entirely land-locked. To the West lie a large group of Islands known as the "Bastard Islands," which completely shelter the mouth of the River from the Westerly aud Southwester:y winds of Georgian Bay. The main land affords protection from the Northerly winds.
"The Channel to the cntrance of French River lies at the Northerly extremity, and close under these Tslands. There appear to be several dcep and broad Channels divided by sunken reefs, and I an confident that a spacious entrance can be marked out, free from these treacherous sunken rocks which mark the whole coast of Georgian Bay.*
"From the mouth of French River, for the distance of 2.74 miles, the River is straight, broad, and deep; the banks bold, and the grey chrystalline gneiss rocks rise perpendicular out of the water, and make it resemble more the deep bays of the Lake, than the mouth of a River.
" At this distance from the Bay, the River makes a turn nearly at right angles to the right, and becomes quite narrow ; and here "Les Petites Dalles Rapids," form a barrier to Navigation; the fall at this point is six feet. The rapids are about ninety feet in width, and it is about Eleven hundred and sixty feet from deep water below to deep water above. The rock as the North riscs nearly perpendicular to the height of ninety feet, and on the South side, with a gentle slope, to the height of twenty feet, in a distance of one hundred and twenty feet, and then rises abruptly into broken cliffs.
"From "Les Pctites Dalles" we continue our course nearly East for the distance of one and a quarter miles; here we find two large Channels, one continuing directly on the course we hare been traversing, and the other nearly at right angles to the North.
"We pursued our examinations up the latter for the distance of three miles; to "Lac du Bouf," a body of water about three miles long by one mile in width, thickly studded with Islands ; here we cnter on our Easterly direction for Lake Nipissingue.
"At the distance of 10.17 miles from "Les Petites Dalles," we find a small rapid of two fect fall, about two hundred feet wide, and the water from six to cight feet deep atia low stage.

[^5]"At a further distance of 3.82 niles, another small rapid of seven-tenths of a foot fall, is encountered. 1.08 miles further, we reach 'Le Grand Récollet Rapids,' with a fill of 6.80 feet. The width of the river at this point is two himdred and fifty feet. The bank on the North side rises nearly perpendicular to the height of one hundred and fifty feet above the water. On the South side there is a table scarcely sufficient in length and breadth for the lock. The rest of the bank rises perpendicularly eighty or ninety fect.
" After learing 'Le Grand Récollet,' we hare a reach of $1 \overline{7} .02$ miles to the 'Rapide de Parisien,' where there is a fall of 1.20 feet. In the next 4.10 miles, we pass the 'Petite Futucelle Rapid,' fall 4.4 feet, 'Rapide du Buison,' fall 3.3 feet, 'Grand Faucelle Rapid; fall 5.6 feet, and 'Rapide du Piu, fall 2.6 feet. In tracing the distance we change our course from East to North. At the head of the 'Rapide du Pin' the course again becomes easterly, and continues so to the foot of the 'Chaudiére Rapids,' a distance of 7.57 miles.
"The fall between the foot of Lake Nipissingue and the still water in Freuch River below the Rapids, is divided into fine cascades and rapids. The total fall is 26 fect in a distance of 1.61 miles. The banks at the water's edge of the Rapids are mostly low ; rising gradually for the distance of sixty to one hundred feet back; then they rise abrupt into high rocky cliffs.
"From the mouth of French River on the Georgian Bay, to its source at the outlet of Lake Nipissingue, the distance is 47.52 miles; the ascent at low water is 60.3 feet, making the elcvation of Lake Nipissingue 6:34.3 feet, above tide water.
"The distance through Lake Nipissingue is 30.44 miles. Between Nipissingue and Trout Lakes two routes were carefully examined.
"The first, by the valley of the 'Rivière des Vases,' 6.69 miles in length.
"The second, by the valley of the 'Ojibwaysippi,' 4.19 miles in length, with an ascent between Nipissingue and Trout Lakes of twenty-four and a-half feet. The water-heads of the Mattawan are 658.8 feet above tide water.
"In comparative cost these two routes have no relative merits. By the 'Vases' route, there are four miles of cutting, any one of which would cost more than the whole line of the 'Ojibwaysippi' route.
"Here we pass the watershed between the waters of the Ottawa and French Rivers.
"After entering 'Trout Lake' our course bore South of East. The length of this Lake is 8.43 miles, and average width one mile. At the foot of this occurs a narrow ridge of rocks which divides it from Turtle Lake. The fall is nine-tenths of a foot. The Rapid is about ten feet wide, and not over cighteen inches in depth. We then pass 3.28 miles through Turtle Lake, nearly on a due East course. This Lake averages about half a mile in width. Passing down the outlet of Turtle Lake, we change our course to the North in the first two miles; thence Eastwardly, and at the distance of 3.74 miles, we enter Lac Talon. The descent between these two last named Lakes is 29.3 feet, giving 'Lac Talon' an clevation of 628 feet above tide water. The outlet has a succession of small rapids with deep still ponds between them:
"The course through Lac Talon lics about South-east, and is 7.63 miles in length, With an average width of one mile. Lac Talon discharges through a flume-like chute of 21 feet in width, with three bcautiful cascades before reaching the level below. The total fall is 42.7 fect. Each side of the chute is bounded by high and barren syenite cliffs.
"From the foot of Talon-Chute, the course of the water changes to the North, until they reach the foot of the Paresseux-Chute 2.88 miles; in this distance there is a series of ponds, or basins and rapids, making a descent to the head of the Paresscux-Chute of 21 fect. At the Paresseux Rapids and Chute there is 33.8 feet fall in a beautiful cascade.
"After passing the Paresseux-Chute, the xiver passes between bold cliffs of syenite, which present the appearance of rough and massive masonry, towering up about one hundred and fifty feet above the surface of water. The river is narrow and deep between these iron bound barriers, in places only one hundred and five feet wide. It soon widens to two hundred and fifty and three hundred feet in width.
"From Lake Talon to the river below Talon-Chute, a route was examined, leaving TalonLake about one and a-half miles above its foot. At the distance of fifteen hundred feet from Lake Talon, we encountered a summit of fifty feet in height above the Lake, and about two thousand fect in length; after passing this summit, we dropped down into a chain of small ponds running nearly East, and emptying into the Mattawan about one-half of a mile
below 'Paresseux-Chute: The length of this line is 4.15 miles, and more direct than the channel of the river, and well adapted for the line of improvement, were it not for the heavy cutting at the summit. The examinations, estimates, and plans of this route were made with the same care and attention as marked those of the main route.
"The river route is 1.06 miles louger, but is estimated to cost $\$ 564,000$ less, and is recommended.
"From the foot of the 'Paresseux-Chute' to the mouth of the Mattawan, the course is direct and nearly due East. At 2.64 miles we reach the 'Rapide des Aiguilles,' with a fall of frur-tenths of a foot; 0.71 miles further East is the 'Rapide des Rochers' with a descent of 4.8 fect. At this hapid the land on each side is low and swampy for the distance of six to eight hundred fect back. Passing down with a strong current for 1.20 miles, we reach the 'Rapide de la Rose,' fall 5.6 feet. At the further distance of seven-tenths of a mile is the 'Rapide des Epines,' fall 5.6 feet.
"From the foot of the 'Rapide des Epines,' we find a broad and deep stretch of river for five and a half miles in length, with the sanue rugged syenite cliff-like banks; at the fout ol' this fine stretch of water, we rach the 'Lac I Plein Chants Rapids and Chute,' with a fall of 16.9 fect, in the distance of four-tenths of a mile. At the further distance of 2.40 miles, the Mattawan enters the Ottawa waters. In this distance we find three small rapids with a fall of 5.4 feet; making the total descent of the Mattawan 169.8 fect in the distance of 39.79 miles, and the low water surface at the mouth 489 feet above tide.
"A tabular statement of the low water section of these rivers, de., is hereunto annexed.
"The characteristics of the French River and Mattawan waters are similar, each being a sucecssion of pools of vide, deep and still watcr, separated by short falls and rapids; in many of these pools there is no perceptible difference of level.
"The shores are principally lined with the ever-prevailing syenite and gneiss, rising abruptly out of the water into bold precipitous cliffs, covered with a dwarf growth of timber.
" By the mode of improvement proposed, that is by locks and dams, which is the only: feasible plan of work to render these rivers navigable for any class of vessels that may uavigate the Western Lakes; the characteristics of these rivers will, in a great degree, remain the sume as now, after the completion of the improvement."

My early atteution was called to the question of supply of water, " upon which the succass of the whole project depends," and more particularly directed to the practicability of the phan of elerating Jake Nipissingue to the summit level, as proposed by Mir. Shanly, both by the general instructions of the Board of Public Works, and by your letter of instructions.

Mr. Shamly in his Report on the "Ottawa Survey," says " It may at once be stated that the summit does not furmish water sufficient to meet the demands of even a far inferior scale of mavigation to that which the general character of the route woud warant us in looking forward to."

To this opinion of Mr. Shamly's, respecting the supply of water from the summit, that is from Trout and Turte lakes, Iagree; and aiter a circtulexamination of the whole subject, I would recommend the following plan for

SUPPIY.

"For the supply of water it is proposed to raise Lake Nipissingue 946 fect above high water, and lower Trout Lake 7.85 feet, and Turtle Lake 6.95 feet, and Turtle Lake outlot to the sanoe level, and to raise Lac Talon 20.95 feet, which brings it up to the same height, making a summit level for uarigation of 57.12 miles in length, with an area of watershed of 81.65 square miles, and a reception basin of cighty miles in longth, and varying from one half of a mile to 12 miles in width, giving a surface of about threc hundred and thirty souare miles. By this arrangement it does not become necessary to make any prorision for a storage reservoir. The waters of Lake Nipissingue are sufficient for any scale of navigation, and for all time to come.
"Although the quantity of water required to maintain a steady flow of any given depththrough open sluices of regular width, may be calculated with a considerable degree of accuracy; yet, in the case of an open river of uneven bottom and irregular width and declivity; like that of the Fiench river, it cemnot be expected that any thing more than a rough ap-
proximation can be obtained ; uncertainty must attend the measurements, and consequently the results founded thereon.
"Fortunately for us in this case, the quantity of water discharged from Lake Nipissingue through the French Rirer is so large, that any error of this kind could not affect the question of supply for any scale of navigation that may be adopted.
"The quantity of water found, by careful guaging, to be flowing in French River at a low stige, was nine thousand five hundred (9,500) cabic feet per second, or ($820,800,000$) eight hundred and twenty millions cight hundred thousand cubic feet, in twenty-four hours. Assuming the locks to be $250 \times 50 \times 12$, and that fifty lockages are made eich way in twenty-four hours, it would require fifteen million cubic feet of water, or less than one fiftieth part of the supply. The whole amount of water flowing is equivalent to 5,472 lockares each twenty-four hours. This, at once, sets at rest any idea of the necessity of a storage reservoir.
"There are but few objectionable features to this mode of supplying the necessary water for navigation, and of raising Lake Nipissingue to the height above stated. The first and almost the only one is the overflowing of the latads bordering on the Lakes.
"The entire Southern shore of Lake Nipissingue, East of the Chaudière Portage, is bounded by high barren rocky cliffs, with a scanty growth of evergreens covering the whole, except a strip on the Fast end of the Lake, about eight miles long, and varying from onetenth to one-fourth of a mile in width, one-half of which is annually inundated by the Spring freshets. The shore of the East Bay and the East end of the Lake, for the distance of ten miles will be overflowed; a large portion of this tract is annually submerged by the freshets, and nearly the whole is oue extended Tamarac swamp, or an Alder marsh.. The North shore, for two-thirds of its length, is high, and out of the reach of this height of water.
"In the vicinity of the Hudson's Bay Post, at the mouth of the Sturgeon River, the largest tract on the borders of the Lake will be submerged, say from ten to twelve miles in length, and from two to three miles in width; one third of the tract is low open marsh, about one third swamp annually overflowed, and the remaining third tolerably fair land for agricultural purposes.

In the Western Bay, there is an occasional narrow strip that will be drowned out. Taking the whole land that will be drowned by the rising of Lake Nipissinguc, it will be inconsiderable when compared with the length of Shore, and that but of small value for agricultural purposes."
"Raising Lake Nipissingue to the height of Trout Lake, would lessen the cost of consiruction about one million dollars, and reduce the length of Canal on the summit to less than one and three quarter miles, would increase the lockage 15.6 fect, and overflow three times as much land as the plan proposed.
" The land, being in a district uninhabited except by a few Indians, and the servants of the Hudson's Bay Company camoot be looked upon as claiming much consideration, in deciding upon such an important question. The objectionable features in clevating the water of Lake Nipissingue to the level of Trout Lake, are :-
"First, the low banks along the southerly shore, west of the Chaudiere Portage, and also for two miles to the East of the Portage ; Second, the large fissures and crevises in the rocks, affording an opportunity for the escape of water, scarcely to be cstimated: in fact this might prove so large as to cause any attempt to meet such an emergency entirely aborfive, and without a more careful and minute instrumental examination of the entire southern shore west of the Portage, than my limited time would permit me. I should be unwilling to recommend the raising of Lake Nipissingue higher than contemplated in the plan proposed.
"The raising of Jake Talon can be accomplished without overflowing the adjacent lands to any considerable extent.

LOCKAGE.

[^6]"To establish the level above the Petites Dalles, it would be necessary to construct seven Dams across the several outlets of French River.

Total length of Darns, 1,535 feet, Aggregate Spill, 1,595 feet, Crest of Dans, 850 fect, above low water.
"These Dams throw the water up to "Le Grand Recollet Rapids," fifteen and one tenth miles, drowning out two small rapids, so that no excavation will be necessary to give the requisite depth of water.
"At Le Grand Recollet," one lock of thirteen fcet lift on the south side of the river.
"Two Dams will be necessary, one across each chaunel of the river.
Total length of Dams, 566 feet, Aggregate Spill, 406 feet,
Crest of Dam, 1, 130 feet above low water.
"The length of the next reach is 1,695 miles, extending to the "Rapide de Parisien," where we have one lock of seven feet lift, on the north side of the river.

Total length of Dam, 599 fect,
Length of Spill, 445 feet,
Crest of Dam 21 fect above low water.
"The next reach is only 2.23 miles to the " Rapide du Buisson," drowning out the "Petite Faucelle Rapid," so that no excavation will be necessary for the requisite depth of the water. At this point there is one lock of ten feet lift on the north side of the river. Here the river is divided by a large Island into two channels; it will be neccessary to dam each of them, and also to dam the north channel of the east, in making these Dams.

Total length of Dams, 1,070 feet,
Asgregate Spill, 1,055 feet,
Crest of Dam on Main Channel, $19 \frac{1}{2}$ feet above low water ; Crest of Dam in the North Channel of the East, 10.8 feet above low water.
"From the head of the Lock at the "Rapide du Buisson," the level extends to the foot of the Chuudière Portage, ten and one half miles, drowning the "Grande Faucelle," and "Rapide du Pin;" a simall Island one hundred feet long by trrenty-five feet wide, will have to be excavated to the depth of five feet from its present surface.
"At the Chaudiere Portage there will be three Locks of two feet lift each, the first single, and the second and third combined; located on the south side of the river. By combining all these Locks, a saving of about $\$ 80,000$ could be made.
"Four Dams across the outlets of Lake Nipissingue will be necessary.
Total length of Dams, 1,1.34 feet.
Aggregate Spill, 1,310 feet,
Crest of Dams, 16.7 above low water.
" The next or summit lerel extends to the foot of Lac Talon, a distance of 57.12 miles, with a grand Lock in the Canal between Nipissingue and Trout Lakes, to control the waters in times of high wind.
"At the foot of "Talon Lake," there is one lock of eleven and a half feet on the north side of the outlet.

Total length of Dam, 500 feet.
Length of Spill, 472 feet,
Crest of Dam, 23.7 fect above the low water mark.
"The next three locks occur 0.43 miles below the last mentioned Lock, and on the south side of the river at'Talon Chute, all in combination, each fourteen and a half feet lift.

Total length of Dim, 382 feet,
Length of Spill, 332 fcet,
Crest of Dam, 12.3 fect above low water.
"Two combined locks of eleven fect lift each next occur at the "Petit Paresseax Rapid," length of lovel 2.13 miles. The locks are located on the north side of the river. This level drowns out several small rapids, so that but trifling excavation will be required to make the necessary depth of water."
$\begin{array}{llllllllll}\text { Total length of Dam, } & - & - & - & - & - & - & - & - & 1128 \text { feet. } \\ \text { Length of spill, }\end{array}$
Crest of Dam, 22.8 feet above low water.
"At "Paresseux Chute," 0.35 miles below are two locks in combination, each fourteen feet lift, located on the south side of the river."

Total length of Dams, - - - - - - - - 872 feet.
Crest of Dam 10.4 above low water.
"A level of 4.62 miles extends to the "Rapide de la Rose. There we have one lock thirteen feet lift on the south side of the river. This level completely drowns out the "Rapide des Aiguilles," and "des Rochers."
$\begin{array}{lllllllll}\text { Total length of Dam, } & - & - & - & - & - & - & - & 812 \text { feet. } \\ \text { Length of spill, }\end{array}$
Crest of Dam, 21.2 feet above low water.
The next lercl of 6.29 miles reaches the last locks on this division at "Lac Plein Chants Rapide and Chute." Where there are two locks in combination, of thirteen feet lift each, on the north side of the river.

Total length of Dam, - - - - - - - 664 feet.
Length of spill, - - - - - - 388 feet.
Crest of Dam, 18.8 feet above low water.
"A short reach of 2.40 miles carries us to the mouth of the Mattawan, the eastern end of the western or Nipissingue division."
"The quastion of cost will be greatly cohanced by the difficulties to be encountered in procuring the materials necessary for the construction."
"The face coping and culvert stone for all the Locks west of the Summit, will have to be procured from the great Manitoulin Island, in Lake Huron; which lies to the westward about fifty miles, directly facing the mouth of French River. The stone for the lock at Les Petites Dalles can be landed at the work, and that for the Rapide de Parisien will be attended with the additional cost of two short portages. For the lock at "Du Buisson," three short portages will be necessary, and for the locks at the Chaudière Portage, two short portages, and two miles. of land carriage will have to be encountered. All foreign materials for these locks will be subject to similar expense of transit."
"The stone for the backing and interior of all the Locks of this division, will be obtained from the excavation for locks, and from the banks adjacent to the works."
"Large quantities of rectangular blocks are found upon the banks of the river, often with parallel beds and joints more perfect than it would be possible to quarry them from limestone quarries, and in size well adapted to the character of the work. The stone for rubble masonry will be procured in the same manner as the backing. Loose stone, for filling the Dams, will be obtained from the cxcavation, and picked up from the River banks:
"The timber for the Locks and Dams is in all cases convenient; in no instance do I think it will be necessary to haul over two miles. In some instances it will be found cheaper to cut the timber on the banks above the work, and float it down rather than haul it.
"The work west of the summit requires no special description; there are no difficulties to be encountered in the construction, of an unusual character.
"The two first miles of Canal, on the summit, between Nipissingue and Trout Lakes, are wholly of carth, cutting through an open marsh, easily drained. This work has been estimated at thirty-five cents per cubic yard.
"For the remainder of the Canal, the material has been all estimated as rock. The cxcavation will all be disposed of with a short handage. In this portion of the Canal there are several deep ponds, which can be casily drained without machinery, as the work progresses. The rock excaration has been estimated at two dollars per cubic yard. Twenty two hundred feet of this cut have been estimated with a width of 100 feet on the bottom.
"For the excavation of the bars in Trout and Turtle Lakes, it is contemplated to commence the work at the foot of the Turtle Lake outlet, carrying it up to Turtle Lake, the water of the Lake will then pass off through the cut, and leave the rocks to be excavated out of water, and easy of access. Then, by cutting through the barrier between Turtle and Trout Lakes, which is only three hundred feet long, the work in Trout Lake will be drained, and will be as easily accomplished as any on the whole length of the improvement, except that in some places boats will have to be used to pass to and from the work; a liberal allowance has been made for such contingencies.
"The greater portion of the work to be done in Trout Lake, is the removal of round boulders, varying in size from one fourth of a cubic yard, to six and eight cubic yards.
"That in Turtle Lake is the excaration of rocks and reefs, mostly in the pinnacle form. As they stand up with bold slopes and deep sounding near them, they can be readily excavated at less than the usual expense of rock excavation. Anticipating that this character of work would be looked upon as a hazardous undertaking and expensive, I have given it a price of two dollars and twenty-five cents per cubic yard; a far larger price than that for which I think it can be safely executed.
"For the Lncks at the foot "Lac Talon," and "Talon Chute," an abundance of crystalline limestone is found at those points, and from the examinations made of this matcrial, it is presumed that it will make suitable masonry for Lock walls. The excavation for these Locks is chiefly in this kind of limestone.
"For Locks at 'Petite Parresseux,' and 'Parresseux Chute,' the face stone will have to be hauled about two miles from a fine Quarry of gray granite. A liberal estimate has been made for the expensive dressing of this character of stonc.
"The face stone for the Locks at the "Rapide de la Rose," and at 'Plein Chants: Chute,' it is proposed to obtain from the same Quarry."

VI. GENERAL REMARKS.

In the preceding pages it has been attempted to show that the Ottawa waters may be improved for vesscls of one thousand tons burden, for a sum not exceeding $\$ 12,026,351$.

The discussion of the important questions of the present or prospective nced of such improvement; its effect, if constructed, on the course of Western Trade, and its relative merits to other routes alrcady existing, formed no part of my instructions, and will not be taken up here.

I shall take the liberty, however, to recommend, that whatever new work may be hereafter constructed upon this line of waters, may not be of less dimensions than those which I have stated as necessary for the through line of navigation, as the difference in cost between a Caual on a small scalle like those already built, and such a one as has been recommended, would not amount to so much as, in my judgment, would warrant the construction of work which might hereafter have to be enlarged.

I cannot conclude this Report without expressing how much we have been indebted to the labors of the Geologieal Survey, and its accomplished director, Sir William Logan. Their plans of French River, Lake Nipissinguc, and the Mattawian, were so complete, and, after a close test, proved so accurate, that they left nothing farther to be desired towards a general map of that section of the waters. Had they not been in existence, this Report could not have been made without another scason's field work.

Had maps of the Ottawa River, of a similar character to those of French River, been accessible, a large part of the expense of the Ottarwa Survey might have been saved to the Province. I mention these facts both as an act of justice, and because I wish to record distinctly my appreciation of the Geographical results of the Geological Survey, in regard to which my past years labors have qualified me to speak.

The labors of my predecessors, Messrs. Stewart,' Perry, and Gallwey, have been made use of to determine the leagths and depths of the unobstructed, or rather still water portions of the River.

The plans and sections of the "Roches Fendu" Channel, and Chats Rapids, made for the departunent by Mr. Thomas E. Norman, have been adopted in full.

Mr. Slater's levels and bench marks, from Fort William to the head of the Chats Chamnel, have been followed; everything else upon which this Rcport and estimate of cost is based, has been derived from actual survey, carried on under my own supervision, and for the correctuess of which I am responsible.

In accordance with the instructions of the Department, the plans and estimates "give in detail the dimensions and quantities of each section of work, and the structures pertaining thereto." This has required a much more careful survey than is usual on a preliminary examination, and has involved a large amount of labor. It has been neeessary to make a continuous section of 198.73 miles river, and to make detailed surveys and cross sections of the location of every Lock, Canal and Dam, on the whole line. Plans, on a large scale, have
been coustructed from these surveys, and the estimates and quantities taken out in detail with great care.

This could not have been accomplished in the limited time allowed, if I had not been so fortunate as to have had very energetic as well as careful assistants.

To Mr. E. R. Blackwell, whose reputation, as an experienced Hydraulic Engineer, stands high in the United States, I owe the labor of conducting the surveys from Des Joachims to Lake Huron, and taking out the quantities upon the whole line. By his judgment I have been much guided in arranging plans and determining prices.

To my other assistants, Messrs. T. E. Norman, C. H. Irvin and Mr. H. Civer, I am much indebted for executing quickly and accurately, whatever fell to their duty to perform.

I have also been assisted by the judgment and experience of Mr. Horace Merrill, Superintendent of Ottawa Timber Slides, to whom is due the plan of Timber Dams. His report upon the effect of the proposed improvements upon the timber narigation, and the arrangements and cost of new Slides, will soon be handed in.

I musta also state that all our work on the river has been facilitated by the courtesy of the officers of the Hon. Hudson Bay Company, among whom I may particularly mention George McTavish, Esq., C. T. Fort William.

All of which is respectfully submitted by
(Signed,)
THOS. C. CLARKE, Engineer, Ottawa Survey.

APPENDIX.

TABLE OF CONTENTS.

Page.
A. Copy of Instructions 29
B. Table of Rivers 29
C. Table shewing elevation of Surface of Ottawa, at Grenville, for every day in the year 1859.. 3 30
D. Table of Dams 32
E. Table of large Propellers 33
F. Table of Distances and Lerels, Ottawa and French River Waters 34
G. Table of Dlstances and Levels, Ottawa and Frencl River Waters, according to proposed improvement. 36
H. Abstract of Estimates 39
I. Estimates of Quantities and Cost in detail. 40
J. Estimate of Quantities and Cost Chats Canal-old route 55
K. Comparison of Routes. 56

A.

Extract from Instructions to the Engineers intrusted with the Ottavac Survey..
The Survey is to be prosecuted with a view of ascertaining the practicability of opening a ship communication between the St. Lawrence and Lake Huron, through the Ottawa waters ; and not for the purpose of making a minute and highly accurate hydrographic chart of the River, except so far as the same may be subservient to the first named purpose.

The Engineer in charge of each section of the Survey is to examine, in that section, the nature of the difficulties, and the quantity of the canalling required to be done, and to state the cost of such canalling; giving in detail the dimensions and quantities of each section of work, and the structures pertaining thereto, and the prices which appear to him sufficient for their execution; in order that the data, upon which his estimates are based, may be open to the inspection of this Department.

The Scale of Navigation upon which his estimates are to be based, will be that proposed by Mr. Shanly, i. e., dimensions of locks $250 \times 50 \times 10$ feet.

Canals one hundred feet wide on bottom, depth ten to eleven feet. Should he, howcrer, see any reason which appears to him sufficient for modifying any of these dimensions, he will make a separate estimate upon such portions, giving his reasons for the change.

The quality of the works proposed should not be inferior to the standard of the St. Lawrence Canals.

He will be expected to report generally upon the method proposed for executing the works, and to designate the points from which materials are to be obtained; and should any special difficulties of construction occur on his section, he should show how he proposes to orercome them.

With his Report he will furnish a separate planand section of each piece of Canal, carefully noting upon the sections, the difference of level between extreme high and low water.

As the question of Supply, upon which the success of the above project depends, is to be determined upon your section, you will give particular attention to that point, and to the practicability of the plan of elevating Lake Nipissingue to the summit level, as proposed by Mr. Shanly. The question also of a terminal harbor on Lake Illuron should receive your careful consideration, and the proper site for lighthouses and piers should be pointed oat.
(Signed,) L. V. SIC.OTTE,
Chief Commissioner.
Toronto, 16 th Nov., 1858.
B.

Table of Rivers.

NAMES.	Area of drainage in square miles.		Discharge in cubic feet per second.			Autiority.
			Low Water.	Mean.	High watcr.	
Amazon.....	2,400,000	4,000			1,700,000	Encyclopxdia Britannica
Mississipri	1,226,000	4,400	447,200		1,270,000	C. Ellet, Junior.
Saint Lawrence	565, 000	2,600		900,000		A. J. Russell, Esq.
Niagara	237,300		370,589	389,000	406,000	N: Y. State Reports.
Ganges	432,000	1,680	36,300	207,000	494,200	Sir C. Lyell.
	520,200	2,240	23,100	220,000		Encycloprdia Britannica
Ohio, at Wheeling	25,000		1,400		260,2it	C. Ellet, Junior.
Thimmes	5,000	215	1,330		7,900	Encyclopædia Britannica
Rhone	38,000	560	7,000	21000	204;000	D. Aubuisson.
Rhine	88,000	700	13,400	33,700	164,000	do.
*Ottawa (Grenville) ...	80,000	700	35,000	85,000	150,000	Ottawa Survey.
French River .	4,700		9,500			

C．

Table of Heigets of Water．－Upper Lock，Grenville，year 1859.

$\underset{\underset{\sim}{\underset{\sim}{E}}}{\stackrel{\text { ت}}{\tilde{E}}}$	Height of Water on Sill．		Height of Water on Sill．	妾	Height of Water on Sill．	家	Height of Water on Sill．	宝	Height of Water on Sill．	$\underset{\text { ® }}{\text { ¢ }}$	Heigh： of Water on Sill．
1	$6 \quad 3$	1	5	1	59	1	$10^{6} \quad 10^{\prime \prime}$	1	$11^{6} 11$	1	13^{16}
2	63	2	54	2	51	2	1010	2	123	2	138
3	62	3	54	3	51	3	1010	3	12.6	3	13 \％
4	6 I	4	54	4	51	4	1010	4	129	4	13.6
5	61	5	54	5	51	5	1011	5	130	5	13.6
6	61	6	54	6	5 1－	6	$10-10$	6	142	6	136
7	60	7	54	7	51	7	$10 \quad 9$	7	14.5	7	13－5
8	511	8	54	8	51	8	107	8	147	8	137
9	510	9	54	9	51	9	104	9	1410	9	136
10	510	10	54	10	50	10	$10 \quad 2$	10	1410	10	135
11	59	11	54	11	50	11	100	11	1411	11	13.3
12	59	12	54	12	50	12	911	12	1411	12	131
13	58	13	54	13	50	13	910	13	150	13	120
14	5.7	14	54	14	52	14	99	14	1510	14	1210
15	57	15	53	15	53	15	99	15	1510	15	129
16	57	16	53	16	56	16	99	16	1510	16	12.8
17	57	17	53	17	60	17	99	17	15.9	17	127
18	58	18	53	18	70	18	9.9	18	158	18.	127
19	56	19	53	19	78	19	99	19	15.8	19	126
20	5.6	20	53	20	81	20	99	20	147	20	126
21	55	21	53	21	86	21	99	21	146	21	12.61
22	55	22	53	22	90	22	99	22	1411	22	12 T
23	5.5	23	53	23	9： 5	23	910	23	1411	23	12.61
24	55	24	52	24	97	24	11.2	24	1410	24	12.6
25	55	25	52	25	98	25	113	25	1410	25	126
26	55	26	52	26	911	26	115	26	149	26	$12{ }^{5}$
27	55	27	52	27	100	27	11.7	27	14.9	27	12
28	5.5	28	51	28	103	28	11.9	28	148	28	123
29	55			29	105	29	1110	29	1311	29	122
30	54			30	10.6	30	1111	30	1310	30	12 l
31	54			31	108			31.	1310		

(Signed)

THOMAS C. CLARKE,
Engineer Ottawa Surrey.

January 2nd, 1860
D.

Table of Dams.-Showing the depth of water on their crests at high and low water

NAME.	I. Length of overfall in feet.	Low water.		High water.			
		Q. Cubic feet per second.	H. Height in feet.	Q. Cubic feet per second.	H. Height in feet.		Remarks.
Carrillon:	1700	35000	320	150000	848	528	
Clute à Blondeau.............	1750	"	315	:	832	इ 17	
Little Chaudière.	2000	25000	231	130000	693	462	
Cbats ...	2100	"	2.80	"	840	1560	
Portage du Fort.	2400	'6	508	\because	608	$4 \begin{array}{ll}4 & 0\end{array}$	
Rocber fendu C \}	400	15000	464	70000	13	$8 \cdot 36$	Rocher fen
Long Rapids..... $\}$	600	"	367	"	1007	640	du:Channel
Joachims.	1150	25000	333	125000	9 T6	643	
McSorlcy's	1040	"	355	:	1043	688	
Rocher Capitaine............	1050	"	351	"	1036	$6 \quad 85$	
Do. do.	1400	"	292	"	854	5. 62	
Deux Rivières..................	938	"	382	"	11. 20	738	
Johnson's Rapids	2000	"	229	"	673	144	
Parresseux Chute.	920	5000	134	7800	163	1029	Mattaman:

The heights H and H in columns 4 and 6 were calculated by the formula $H=\left(\frac{Q}{356.1}\right) \frac{2}{3}$
The quantities Q and Q are assumed to be the least and greainst rolumes of water, respectively, which will pass over the Dams.
(Signed;) THOMAS C. CLARKE,
Engineer Ottawa Survey.
January 2nd, 1860

[^7]
E.

Table of Large Propellers.

600 tons and over.

Icar.	NAME.	Port of Hail.		$\frac{\text { Over }}{\text { Length. }}$	all. Beam.	Draft- when Loaded.
1356...	Acme	Buffalo	762	$1.00 \cdot 6$	$33 \cdot 3$	10.0)
d9 ...	Alleghany	dio	583	$172 \cdot 0$	$25^{\circ} 7$	$10 \cdot 9$
do...	Aldriatic.	Detroit	663	$175 \cdot 0$	$31 \cdot 6$	$10 \cdot 0$
1535...	Chicago	Bufialo	758	-		
$1: 56 . .$.	Cuyhahoga	Cleveland	601			
1s5i...	Comet	Buftalo	622	$181 \cdot 3$	29.0	11.6
do ...	Ducotah...........................	Cleveland	698	$193 \cdot 4$	$30 \cdot 4$	$11 \cdot 0$
do ...	Equinox	Buftalo	620	185.0	$30 \cdot 0$	$10 \cdot 0$
do ...	Eclipse.	do	620	185.0	$30 \cdot 1$	$10 \cdot 1)$
do ...	Equator	do \qquad	620	135.0	$30 \cdot 0$	10:0
1856...	Evergreen City	Sheboygan..........................	624	192.6	27.9	$10 \cdot 6$
1857...	Free State.................................	Buffalo	768	196.0	$31 \cdot 6$	$10 \cdot 6$
do ...	Pountain City	Cleveland	S20	$210 \cdot 0$	$30 \cdot 3$	$12 \cdot 0$
to \ldots	Galena..	do \qquad	690	$793 \cdot 0$	$30 \cdot 4$	10.6
dio...	Ifunter.....................................	Buftilo	680	$200 \cdot 0$	$30 \cdot 0$	$10 \cdot 6$
1350...	Iron City	Cleveland...........................	607	1842	29.4	$9 \cdot 6$
	Iuwa.......	Butialo	9SI	2470	31.0	$11 \cdot 6$
1555...	Jerscy City	Dunkirk	633	IS2.0	29.5	10.6
1556...	Kenosha ..	Cleveland	645	1947	$27 \cdot 10$	$10 \cdot 0$
d0 ...	Montgomery	Detroit	S79	$204 \cdot 0$	$33 \cdot 5$	11.0
do ...	Mohawk .	Bufialo	789	2016	$31 \cdot 2$	11.6
1557...	Mendotik	Cleveland	709	193.9	$30 \cdot \%$	11.0
....	Milwaukic..		650	$200 \cdot 0$	$23^{\circ} 11$	10.6
	May Flower		623	$185.0 \cdot$	$28 \cdot 1$	11.0
.........	Nile		700	158.0	$2 \mathrm{~S} \cdot 6$	11.0
IS56...	Neptune.	Buffalo	675	181.0	$30 \cdot 2$	10.6
do...	New York...................................	Dunkirk	665	182.1	$32 \cdot 0$	10.6.
1858...	Northern Light	Cleveland	716	$20 \%{ }^{\circ}$	$30 \cdot 0$	10°
	Oriental.		850	2340	$34 \cdot 0$	$1.0 \cdot{ }^{\circ}$
	Plymouth	Butralo	54.6	212.0	32-0	11.0
1856...	littsburgh	do \qquad	606	1850	$25 \cdot 0$	10.6
1855 :	Potomac.	do \qquad	S1S	$209 \cdot 0$	$33 \cdot 0$	$11 \cdot 0$
$1850 . . .$	Racine	do \qquad	715	196.0)	$30 \cdot 0$	$10 \cdot \mathrm{~S}$
do ...	Rocket......	do	61.1	181.1	$29 \cdot 3$	$11 \cdot 6$
$185 \cdots$	l'onawanda......................................	do \qquad	929			
1857...	Wenonit...................................	Cleveland	688	$193 \cdot 0$	$30 \cdot 6$	11.9

(Signed,) THOMAS C. CLARKE,
Engineer Ottawa Survey.
January 2nd, 1860.
$\bar{\square}$

Ottawa Waters Unjmproved．－Table of Distances and Levels．

Names of Rivers，Lakes，Rapids，de．	Distances．			Levels．			
	$\begin{aligned} & \text { 言立立 } \\ & \text { 菏至 } \end{aligned}$						宽
Tide Three Rivers．					$0 \cdot 00$		
Montreal Harbour．	1.00			12．75	12\％$\%$		
Lachine ．．	$8 \cdot 50$		－50	$43 \cdot 75$	56.50	$62 \cdot 50$	6.00
Lower St．Annes ：．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$22 \cdot 00$	13•50		． 50	57.00	63.50	6.50
Upper St．Aunes	$22 \cdot 111$		－10	1.00	$5 \mathrm{~S} \cdot 00$	（17－00）	$9 \cdot 00$
Carillon Rapids ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$47 \cdot 70$	$25 \cdot 60$		$1 \cdot 00$	59.00	71.00	12.00
Above do ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	49.00		1：30	8． 75	67.75	77.75	10.00
Chute i Bloudeau lapide ．．．．．．．．．．．．．．．．．．．．	5．3．00	4－00		－05	67.80	79.80	12.00
Above do ．．．．．．．．．．．．．．．．．．．	53.70		$\cdot 10$	4.00	71.80	S7．00	$15 \cdot 20$
Foot of Long Sault Rapids	54：50	$1 \cdot 40$		－10	71.90	ss．30	16.40
Grenville	60.43		5•93	45.80	117\％0	132.50	14：80
Ottawa Ifarbuar．．．．	116：50	$56 \cdot 17$		＊2．30	$120 \cdot 00$	$1.40 \cdot 00$	20.00
Above Chaudière Fall				42：30	1.62 .30	170.30	S．00
Above Little do	118.50			S． 10	$170 \cdot 40$	177.40	7.00
Above Remoux Rapids				$2 \cdot 50$	173.20	151.20	8.00
Des Cheues Lakes．	122．86		$6 \cdot 36$	$9 \cdot 80$	153．00	191．80	8.00
Foot of Chats Falls	149.55	26.69		－30	$153 \% 0$	193.30	10.00
Above Chats．	$150 \cdot 05$			38．00	221：30	225：30	400
Chats Lakc．	$153 \cdot 16$		$3 \cdot 61$	11.80	$238 \cdot 10$	$240 \cdot 10$	7.00
Fort of Suows Rapid	$171 \cdot 13$	$17 \cdot 97$		． 20	$233 \cdot 30$	240.30	$7 \cdot 0$
Head of do	$171: 33$		20	－60	233390	243.90	10.00
宀⿱二⿺卜丿口刂 Portage da Fort hapid．	$175 \cdot 3$	4.40	2	1.90	235080	$2.15 \cdot 80$	10.00
E licad of du				12.00	$2.18 \cdot 50$	25%－80	9.00
\＃Mountain Mapil．．．	181：3：			6．20	255.00	265.00	10．00
O．Head of do ．				13.29	$268 \cdot 29$	$281 \cdot 29$	$13 \cdot 00$
$\stackrel{\rightharpoonup}{\text { a }}$ Mead of Darerics Rapid				1.76	$270 \cdot 0.5$	$275 \cdot 05$	8.00
E Foot of Calumet．				$5 \cdot 6.5$	275.70	2 S 570	10.00
3 Mreadof do	15.414			55.67	2331：37	$3.16 \cdot 37$	$9 \cdot 00$
0 Lai Passc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	202.20			421	：335．58	$: 45 \cdot 5 \mathrm{~S}$	10.00
－Purtage du Fort Rapia．．．．．．．．．．．．．．．．．．	175.73				$248 \cdot 50$		
E Rocher Fendu Falls ．．．．．．．．．．．．．．．．．．．．．	183.00			－ 50	24930	25930	10.00
E Long Rapids Font．．．．．．．．．．．．．．．．．．．．．．．．．	18.50			$6 \cdot 40$	2.55 .70	26.470	9.00
\％Mat Marriure Fuot．．．．．．．．．．．．．．．．．．．．．．．．．．	$18 i 5.00$			16：30	272.00	$284 \cdot 00$	$12 \cdot 00$
\＃Muskrat．．．	157.00			$3: 30$	275：80	$28.5 \cdot 30$	9.00
	185.00 158.50			$6 \cdot 80$	282．10	$291 \cdot 10$	9.00
－Dlack Rapids．．．．．．．	15850 159.50			3：30	285.40	$293 \cdot 40$	5.00
\％Matek Fathe．．	15930 $190 \cdot 30$			15\％70	304.10	31.410	$10 \cdot 00$
－Elat kiupds．	1913 190 1900			17．50	321．90	331.90	$10 \cdot 00$
O －La Passe．	192.00 195.92		16.27	12.00	333．90	8.48 .90	10.00
Foot of Chapeatu．	2015＊69			$2 \cdot 55$	3：3816	349•16	11．00
Fead of do	215．4；	2343		76	335：92	349.92	11：00
Foot of Eitelet．	220.35			－60	$339 \cdot 52$	$350 \cdot 52$	11.00
Iead of Culbute	221－10	．．．．．．．．．．．		$\cdot 57$	$340 \cdot 09$	350．59	10－50
Fort Willian	$226 \cdot 40$	．．．．．．．．．．	$5 \cdot 69$	17.09	$357 \cdot 18$	364．18	7.00
Head of Deep River．	254．00	32.90		32	357.50	$36 \cdot+20$	6.70
Head of des Joachims liapids	255.64	329		$1 \cdot 30$	35 S S0	368.60	$9 \cdot 50$
Mouth of des Moines River	263：00	7.66	1．6．4	20.40	$385 \cdot 20$	$402 \cdot 20$	17.00
Goot of Mesorler＇s Rapids	2 HS －25	7		$1 \cdot 00$	356.20	$403 \cdot 90$	17．70
Hend of do do	269.00		4.30 .15	$3 \cdot 00$	$389 \cdot 20$		
Foot of Rucher Capitaine Rapids．	$272 \cdot 50$	3：50	．75	3.00	$392 \cdot 20$		
Fead of do do	273.85	3.5	1.85	$40 \cdot 00$	395.10 436	45100	14.00
Toot of Deux Rivieres Rapids．	285.55	11－70		$4 \cdot 30$	$440 \cdot 30$	455.90	15.60
read of do do	$236 \cdot 01$		46	$12 \cdot 60$	452.90		
Foot of Trout Rapids．	286.70		.69	－ 80	45		
Menl of Tront Ranids（at Mix：Macs）．．．．．．	$287 \cdot 15$		$10 \cdot 4.5$	$\bigcirc \cdot 40$	461.10	478．50	$17 \cdot 40$
Font of La Veillée ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	288.10		0.95	$2 \cdot 80$	461.10	48850	$17 \cdot 40$
Head of do	$2 \mathrm{~S} 5 \cdot 70$		0.60	7.50	$471 \cdot 40$		
Foot of Rocky Farm Rapids	296\％5	S05		11.40	$471 \cdot 50$	．．．．．．．．．．．	

F．－（Continued．）

Names of Rivers，Lakes，Rapids．de．	Distances．			Levels．			
	$\begin{aligned} & \text { 要䔍 } \\ & \text { 总总 } \\ & \end{aligned}$						－
Head of do do	301－50		4%	S． 50	$450 \cdot 30$		
Foot of Sohnson＇s liapids．	306.55	$5 \cdot 05$		$0 \cdot 8$	$4.51 \cdot 10$		
Head of do	307.00		$0 \cdot 45$	$4 \cdot 9$	． 86.00		
Foot of Matturan Rapils．	：307．60	± 00.60		0.1	$486 \cdot 10$		
Head of doifouth of Mattawan River	$30 \mathrm{~S} \cdot 00$		$0 \cdot 40$	2.9	$459 \cdot 00$	503－30	14.30
	305.00				$485 \cdot 00$		
		242．52	65				
Mattawan and French River Waters Unimproved．							
Mouth of the Mattawan．．．．．．．．．．．．．．．．．．．．．．．．．． Foot of Lae Plein Chants Rapid and Chute Foot of Lac Plein Chants \qquad	$305 \cdot 00$	$242 \cdot 52$	$65 \cdot 4 \mathrm{~S}$	｜．．．．．．．．．．．	489.00	｜．．．．．．．．．．．．	．．．．．．．．．．．
	\＄10．40	$2 \cdot 00$	$0 \cdot 40$	$5 \cdot 40$	$494 \cdot 40$	．．．．．．．．．．．．	
	$310 \cdot 50$	．	0.40	16.90	$511 \cdot 30$		．．．．．．．．．．
Foot of Des Epines Rapids ．．．．．．．．．．．．	316.25	$5 \cdot 45$		$0 \cdot 20$	$511 \cdot 50$		
Head of do do	316.30		0.05	$5 \cdot 60$	$517 \cdot 10$		
Foot of Rapide de la Rose	\＄16．85	0.55	0.0	$0 \cdot 20$	517.30		．
Head of do	317.00		$0 \cdot 15$	$5 \cdot 60$	$522 \cdot 90$		
Foot of Rapide des Rochers	$318 \cdot 20$	1．20		$1 \cdot 40$	52.4×30		
Head of do	$318 * 30$		$0 \cdot 10$	$4 \cdot 80$	$529 \cdot 10$		
Foot of Rapide des Aiguilles	319.00	$0 \cdot 70$		$0 \cdot 10$	529.20		
Hend of do	319.01		0.01	$0 \cdot 40$	529.60		
Foot of Chutes des Paresseux．	321.65	$2 \cdot 64$			$529 \cdot 60$		
Head of do	321.55		$0 \cdot 20$	33.50	$563 \cdot 40$		
Foot of Petite Paresseux Rapids．	322.20	$0 \cdot 35$		0.00	$563 \cdot 40$		
	322\％35		$0 \cdot 15$	S． 20	$571 \cdot 60$		
Foot of Lace Pimisi．	323．35		$1 \cdot 03$	12.50	584.40		
Foot of Talon Chate．．．	324．53	1－15			$584 \cdot 40$		
Head of do ．	$324 \cdot 71$		$0 \cdot 18$－	42\％0	$627 \cdot 10$.		
	$325 \cdot 15$	$0 \cdot 47$			$62 \mathrm{~T} \cdot 10$		
Foot of Lake Talon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	325：33		$0 \cdot 15$	0.90	625.00	$633 \cdot 10$	5：10
	：322．34	7.01			$625^{\circ} 00$		
Foot of Turtle Lake	3.360 S		3＇74	29.90	657.90	659．70	1．80
Foot of Trout Lake．，	33936	$3 \cdot 23$		0.00	$658 \cdot 80$		
Heal of do ．	$347 \div 9$	S．43			$65 \mathrm{~S} \cdot 50$	$661 \cdot 60$	$2 \cdot 80$
	351．9S		$4 \cdot 19$	Fall．	634－30		
East shore of Lake Nipissingue ．．．．．．．．．．．． Head of Chaudicre Portage ．．．．．．．．．．．．．	$382 \cdot 42$	$30 \cdot 44$			$634 \cdot 30$	6.4160	7\％0
Foot of do ．．．．．．．．．．．．．．．．．	$382 \cdot 72$		$0 \cdot 30$	25.30	（610）－10		
Foot of Chaudière Rapids．．．．．．．．．．．．．．．．．．．．	354.03		1－31	0.70	60850	613.00	$3 \cdot 70$
Head of Rapide du Pin．．．．．．．．．．．．．．．．．．．．．．．	391.60	$7 \cdot 57$			6118.30	61790	830
Foot of do ${ }^{\text {do }}$（．．．．．．．．．．．．．．．．．．．．．．．．	391.69		$0 \cdot 09$	$2 \cdot 60$	$605.70=$		
Head of Grande Faucelle Rapid ．．．．．．．．．．．．． Foot of do do	392.45	$0 \cdot 66$		$0 \cdot 10$	$605 \cdot 60^{7}$	609.00	$3 \cdot 40$
	392．53		0.08	$5 \cdot 60$	600.00	．．．．．．．．．	．．．．．．．．．．
Ilead of Rapide du Baisson	393.22	0.69		$0 \cdot 40$	$599 \cdot 60$		．．．．．．．．．．
Foot of do do	$393 \cdot 32$		$0 \cdot 1.0$	3：30	596.30	．．．	
Head of Petite Fancelle Rapid．．．．．．．．．．．．．．．．	393.75	$0 \cdot 46$			596－30		
Foot of do ．．．．．．．．．．．．．．．．	394.00		0.22	$4 \cdot 40$	$501 \cdot 90$	508．30	6.40
Mead of Rapide de Parisien ．．．．．．．．．．．．．．．．．．．．	395．49	14.4		0.80	$591 \cdot 10$		
Foot of do do．．．．．．．．．．．．．．．．	395．70		0.21	1.20	$589 \cdot 90$	503．70	$3 \cdot 80$
Head of Grand Récollet Rapids ．．．．．．．．．．．．． Foot of do do	$412 \cdot 72$	17.02		$0 \cdot 30$	589.60		
Foot of do do ．．．．．．．．．．．	$412 \cdot 74$		0.02	6.80	$582 \cdot 80$		
Ilead of Small Rapid ．．．．．．．．．．．．．．．．．．．．．．．．．	$413 \cdot 74$	1.00		$0 \cdot 1.0$	$582 \cdot 70$		
	$413 \cdot 82$		0.08	0.70	$582 \cdot 00$		
Head of Small Rapid．	$417 \cdot 54$	$3 \cdot 72$			582.00		
Foot of do	$417 \cdot 64$		$0 \cdot 10$	2.00	580.00	5S3．90	3.90
IIead of Petites Dalles Rapid．．	$427 \cdot 81$	10－17			580.00		
Foot of do do ．．．．．．．．．	428.02		0.21	6.00	574.00		
Mouth of French River ．．．．．．．．．．．．．．．．．．．．．．．．．．．	$430 \cdot 76$	$2 \cdot 74$			574．00		
		351.81	78.95				
			$\cdot 76$				

"G."

Ottana Waters Improved.-Table of Distances and Levels.

＂G．＂

Otrawa Waters Improved．－Table of Distances and Levels．－（Contimucd．）

Names．	Distaveles．			Levels．					
			产		为	\％	事号		
Locks and Dam．	$\begin{aligned} & 159.30 \\ & 100.43 \\ & 190.510 \end{aligned}$		． 12		$\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	12.00		．．．．．．．．．．．．．．．．．	
Black Falls Luck and Dan		1.13	\ldots	339．30	1.	2.00	11.11		
								．．．．．．．．．．．．．．．．．．	
		1.3 .32	1.05					104.00	
Lake Coulonge． Fuot of Cbapcau	215.43	24.93	．．．．．．．	$\begin{aligned} & 339.30 \\ & 339.30 \end{aligned}$	．．．．．．．	．．．．．．．．．．．．．	．．．．．．．．．．．．．	．．．．．．．．．．．．．．	
Lock and Dam \qquad ITIlet Luek ond Dom \qquad	$\begin{aligned} & 210 \cdot 50 \\ & 2020.35 \\ & 220.12 \end{aligned}$	4.	． 07	351.30	1	12.10	．．．．．．．．．．．．	．．．．．．．．．．．．．．．．．	
			． 07	3.357 .20	1	0.00	…．．．．．．．．．	．．．．．．．．．．．．．．．．．	
		4.85	． 14				2	15.00	
							32	294.50	
Fort William \qquad Euoi des Joachims \qquad	$\stackrel{226 \cdots 40}{25 \div \cdot 00}$	33.5 S	．．．．．．．．．．．	$\begin{aligned} & 357.50 \\ & 358.51 \end{aligned}$	…．．．	．．．．．	．．．．．．．．．．．．．．	．．．．．．．．．．．．．．．．	
		33.58							
Foot of des Joachims Rapids．．．．．．．．	$\begin{aligned} & 254.010 \\ & 254.57 \end{aligned}$		$\left\|\begin{array}{r} \\ 0.57 \end{array}\right\|$	$\begin{gathered} 355.50 \\ 396.50 \end{gathered}$	$\left\{\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right.$	$\begin{aligned} & 13.00 \\ & 13.00 \\ & 12.00 \end{aligned}$		．．．．．．．．．．．．．．．．．．．	
Locks and Canal．．．									
Fiot of M．Sorley＇s Rapids．．．．．．．．．．．．	$\begin{aligned} & 266.25 \\ & 266.35 \\ & 272.50 \end{aligned}$	13.68	0.13	406.80	\cdots	10.00	．．．．．．．．．．	．．．．．．．．．．．．．．．	
Lock aul approaches．．．．．．．．．．．．．．．．．．．									
Foot of Rocher Capitaine．．．．．．．．．．．．．．		4.12							
Locks and Canal．．．．．	272.95	．．．．．．．．．．	0.45	425．s0	$\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\begin{array}{r} 13.00 \\ 6.00 \end{array}$	．．．．．．．．．．．	．．．．．．．．．．．．．．．．．	
River to head of Rocher Capitainc．．．	273.65	0.70	．．．．．．．	．．．．．．．	$\left\{\begin{array}{l} \ldots . . . \\ \left\{\left.\begin{array}{l} 1 \\ 1 \end{array} \right\rvert\,\right. \end{array}\right.$	$\begin{array}{r} 13.1 \\ 13.00 \\ 6.00 \end{array}$			
Locks at do．do．	$\begin{aligned} & 273.55 \\ & 2 s 8.55 \end{aligned}$	$\begin{array}{r} \ldots \\ 11.70 \end{array}$	0.20	444.50					
Foot ¢f Denx Rivicres ．．．．．．．．．．．．．．．．					${ }^{11}$	\qquad	．．．．．．．．．．．．．	\qquad	
	286.01		0.46	486．50	$\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right.$	$\begin{aligned} & 12.00 \\ & 12.00 \\ & 12.00 \\ & 6.00 \end{aligned}$			
Locks and Canal．．．．．．．．．．．．．．．．．．．．．．．．							．．．．．．．．．．．．．．．．．．．．．．． $\ldots ~$ 	
Foot of Johnson＇s Rapids．．．．．．．．．．．．	306.55	20.54	0.45	507.00					
Locks and Canal．．．．．．．．．．．．．．．．．．．．．．．．	307.00				$\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\begin{array}{r} 12.00 \\ \text { S. } 20 \end{array}$		14．．．．．．．．．．．：	
							14		
Mouth of Mattawan River．．．．．．．．．．．．．	305.00	1.00			p.....				
－		51.74	2.26						

Otrawa Waters Lmprovei,-Table of Distances and Levels,-(Concluded.)

	Names.	Distances.			Letels.				
	(Munth of Mittawan River........	308.00							
	Foot of La Plein Chants........)	:70.41							
	[Ripins and Chute................)	9	2.40	.	507.00			-
	Luteks : min Dam...................	310.56		0.16	533.00	$\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	13.00 33.00	\cdots
	Foot of Rapids de la Rusc.........	316.85	6.29						
	Lock aud :tproaches	317.103		0.15	5.46.00	1	13.00		
	Foot of Paresseus Clunte..........	321.65	4.62			
	Lock and approaches	221.S5		0.20	57.4.00	$\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	14.00 14.00	-
	Foot of Petit Paressus Rapid...	:22.20	0.35						
	hack and approaches..............	322.40		0.20	596.00	$\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	11.00 11.00		.
	Funt of Talon Cluate	324.53	2.13					-	
	Lock und :uprouches	22.4.75	0.22	639.30	$\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$	14.50 14.50 14.50 ….......:
	Foot of hake Talon.	325.18	0.43						
	Lock ani approaches	225.30	0.12		1.	11.50		
			16.22	1.08				1.$]$	144.00
	(Taton Lake.	334.31)	9.00		651.00		
	Turtle Lake Outlet..................	$336 \cdot 08$	11.1	1.75	
	Trout and Turtle Lakes..........	347.79	11.71
	Summit Cut.........................	351.98	30.44	4.19		
	(Lake Nipissingue..................)	382.42	30.44		651.00	
			51.15	5.97					
	Head of Chatière Portage... $\{$	382.42			651.00			
	Locks and Basin	389.'72		0.30	621.00	$\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$	10.00 10.00 100		
						1	10.00	
	Head of Rapide du Buisson	393.22	10.50					
	Lock and approaches	393.3 S		0.16	611.00	1	10.00	
	Rapide de Parisicu	395.61	2.23						
	Lock and approaches.............	395.70		0.09	601.00	1	10.00	
	Grand Recollet Rapids	$41.2 \cdot 65$	16.95	-.....		.	13.7...	.	
	Lock and approaches	412.74		0.09	585.00	1	13.00
	Petite Dalles Rapid...............	427.84	15.10					
	Lock and Canal....................	428.02		0.18	574.00	1	14.00		
	Mouth of French River Georgian Bay.	430.76	2.74						
	Totals.....................		47.52	0.52				7	77.00
			401.44	29.32				64	- 663.70
			430.00	76.00					

H.

Abstract of Estimates.		
	S	$\begin{gathered} \$ \\ 469672 \end{gathered}$
Saint Anues		
Carrillon.	$\begin{array}{r} 307741 \text { So } \\ 144315.25 \\ 1197852.30 \end{array}$
Chute : Blondeau.		
Grenville		$\begin{array}{r} 1649909 \\ 136105 \\ \$ 16732 \\ 651932 \end{array}$
Chaudiere and Des Chênes...		
Snows..	$\begin{array}{r} 13333650 \\ 2 S 739610 \end{array}$	
Portage du Fort	
Rocher Fendu.		
		1256340 262514
Chapcau 『ISlet, \&c...		243507
Des Jonehims ...	32777362	
McSorlcy's........	76937515	-................
Rocher Capitaine	55354370	
Deux Riviires..	41994140
	28701920	1757653
Plein Chants De la Rose.. parressenx.. Petite Parresseux. Talon Chute. Talon Lake..	215744.35
	1.2357320	
	24209620 212116	…............
		-...............
	$\begin{array}{r}270105 \\ 98515 \\ \hline 65\end{array}$	
		$\begin{aligned} & 1162154 \\ & 2160369 \end{aligned}$
Summit Cutting...		
Chaudiere of French River..	46392502	$\text { . } 21$
Rapide do Duisson....	13261250	-...............
Parisien Rapid:..	108355 90	
Grand Recollet Petites Dalles	13634920
	13957090	SS6117
Add 5 per cent. for Engineeriact and Superinteodence		
		11483505
	\$	12057680

(Signed,)
January 2nd, 1860.

THOS. C. CLARKE, Engineer Ottawa Survey.

I.-(Continued.)

items.	Quantities.	Price.	Amonnt.	Total.
Work at Green Shoals, and dredging of the River betreen Green Shoals and Ottalwa.			5 cts	5 cts.
Excavation of rock within coffer dam; C. yds.........	$\begin{array}{r} 9402 \\ 200000 \end{array}$	$\begin{array}{ll} 2 & 50 \\ 0 & 30 \end{array}$	$\begin{aligned} & 2350500 \\ & 6000000 \end{aligned}$	
Dredging of Chamel, \%				
Ehs.				8350500
Pine Timber. Linl. feet.	166510	016	2604160
Stone Filling................................ C. yards.	17210	0.75	1297500
Wrought Iron lbs.	11750	030	1i10 00	
Llning with Earth, Ec. C. yards. coffer dams to be remored.	\%00			4190220
Pinc Timber Linl. feet.	30030	025	7507 :0	
Sining with Earth, \&c. yar.......	2470	1.00	= 72000	
	1200	060		1069750
				\$13610470
Work at Otrawa City, including all to the head of the Du Chene Rapids. Locizu ATs. 9. 1.0, 11, 12, 13 and 1.t.		\$ ets.	\$ ets.	\$ cts.
Excavation of Rock............................Cubic yds.	2437600	0911	21935400
Excavation of Rock at foot of Lucks within Coffer Dams, including pumping do	S333		1249950	
Excaration of Rock at the Remoux within	16000	150	
Coffer Dams including pumping ${ }^{\text {do }}$		2	$\begin{array}{r}32400 \\ 1849 \\ \hline 10\end{array}$	
Removal of idicribs do ${ }_{\text {do }}$	$\begin{array}{r} 107 \\ 34370 \end{array}$	$\begin{aligned} & 050 \\ & 0250 \end{aligned}$	$\begin{array}{r} 5350 \\ 559250 \end{array}$
Embankment .. ${ }^{\text {a }}$ do				
Masonry in Look Walls, face and coping..... do	12673748	10001600	$\begin{array}{r} 12673000 \\ 11965800 \end{array}$:
do di Culverts............... do				
do do Backing do	32166	500	
Coursed Rubble Masoury at bead of Lock 12 do	${ }^{3562}$	650450	2315300365550	-...............
Rubble Masoary in Cement do				
Concrete .. ${ }^{\text {do }}$ do		600 0	184200	
Timber in foundationsLinl. feet Wrought Iron in foundations..................		0) 15	1816800	
Wrought Iron in foundations.. ..	31120		391200312500	
	29120			….............
Lock Gates, complete	$\begin{array}{r} 2930000 \\ 3250 \\ 7000 \\ 7000 \end{array}$
Culvert Gates, complete			$\begin{array}{r}1 ~ \\ \hdashline 37857630\end{array}$
Swing Bridge			
Damesend Cazal Bankit.			2659200	
Pino Timber..............................Linl. feet	$\begin{aligned} & 166200 \\ & 310400 \end{aligned}$	${ }^{0} 016$	
Plank, includiug Spike......................... F. B. M.	$\begin{aligned} & 91690 \\ & 14540 \end{aligned}$	010	916900
Wrought Iron..bs.				
Stone fillingCuhic yds.	$\begin{array}{r} 14540 \\ 6500 \\ \\ \hline 0020 \end{array}$	0 1 1 50	1090500 97500:
Slope or Pavement Wall....................................... do Battored Wall. laid dry		300	S490 00	
Battered Wall in Cement do	1022435602770	$\begin{aligned} & 350 \\ & 045 \\ & 0.30 \end{aligned}$	$\begin{array}{r} 3578400 \\ 3.60200 \\ 331.00 \end{array}$
Puddle Wall do				
Lining with Chip Stone and Gravel Coffer Dams, ty to be remared.	2770	$0 \cdot 30$	S31.00	10995180
Pine Timber.......................................Linl. feet	$\begin{array}{r} 156260 \\ 15799 \\ 15249 \\ 5500 \end{array}$	$\begin{aligned} & 020 \\ & 100 \\ & 1010 \\ & 030 \\ & 0 \end{aligned}$	$\begin{array}{r} 3155200 \\ 1579900 \\ 152490 \\ 165000 \end{array}$
Stone fllingCubic yds.			
Wrought Iron ...tbs.				
Lining with carth, de...........................Cubic yds.				5382590
				\$816733 30

I.-(Continued.)

I.-(Continued.)

ITEMS.	Quantities.	Price.	Amount.	Total.
Work at Portage du Fort Rapids.				
\therefore iocks nos. 21 asd 22.		$\$$ cts.	5 cts.	S cts.
Excaration ot Rock C. yards.	47200	1.40	cooso 00
Embanlinient do ${ }^{-}$	14050	. 20	281120	$\ddot{i o}$
Masonry in Lock Walls, face and coping . . C. yds..	4016	14.	5622400 532800
Do. Culvert do	296	18.	532500	
Do. Backing do do	8709	6.75	5939325 \cdot.....
Fubble Masoury in Cement................... do	370	4.50	166500
Concrete do do	136	6.	Sic 00
Timber in foundations Linl. feet.	4040	. 17	GS6 00 \cdot.......
Wrought Iron in foundations.................... lbs..	9000	. 15	135000
Cast Iron lbs.	11560	. 10	115000
Mitre Sills complete			125000
Lock Gates complete			1070000	
Culvert Gates complete			1300,00	13986825
Pine Timber. DAM. Linl. feet.	134150	. 15	21343 00	
Plank, including Spike F. B. M.	330700	20.	667400
Wrought Iron 1 Ibs.	4.4575	. 10	448750	
Battered Walls in CementC. yauds.	8685	3.75	3256875
Stone Filling............................... do	13784	. 60	827040
Lining with Chips, Stone, Gravel, \&c... do	2190	. 50	109500	7443765
Coffel dasm-one-Thind to be nemored. Pine Timher....................... Linl. feet.	34110	. 20	268200	
Stone Filling C. yards.	1440	1.	144000 ${ }^{\text {- }}$
Lining with Earth, \&c.................... . C. Sards.	154	. 0	7700	419900
Work at Rogier Fendu Cmannel.				\$287396 10
Locks Nos. 23, 24, 25, 25, 27, 2S, 29 rum 31.		Scts.	S cts.	S cts.
Excavation of Solid liock.......................Cubic yds.	66020	150	09030 00	
Excavation of Loose Rock do	:3200	060	11920:00
Embankment do	41645	$0 \cdot 30$]2493 519	
Misonry in Luek-walls, fice and coping to	1.59 .45	1400	22:327200	
do do Culverts do	10.4	1800	1.579200
do ilo Bating do	36750	675	24326500
Rubble Masoury in Cement di	21.74	45	1032050	
Concrete Masoury do	4.4	650	2886	
Timber in foundations..........................Lineal feet	16680	017	283560	
Wrought Iron in foundationstss.	30120	015	457800
Cast Iron... do	40680	1) 10	406500
Mitre Sills, complete	457500	
Jock Gates, complete	3810000
Culvert Gates; complete....................................		4.550 (10)	5621SS - 10
Dine Time.				
Pine TimberLineal fuel	274070	(1) 15		
Plank, including Slike..........................F. B. M.	385500	2000	771000	
Wrought Iron...ths.	71550	010 100	71.5500 370.4800	
Stone fillingCubic yds.	37948	1.00 .100	37948 5149600 11100	
Battered wall in Cement.......................... do	12874	10 0 0 0	5149600 1111
Lining with Clip Stone Gravel................. . do	2222	050	11110	146665-50
			624.900
Pine Timber	31245 3450	125	4312 50	
	3450 410	1 0 0	$\begin{array}{r}40500 \\ \hline\end{array}$	
Wustc Wair.	540	025	13500
Oak Planks .. M.	3920	2500	9800
Wrought Iron...	1176	015	17640
Rubble Mas onry .. yds.	355	500	177500	……........
Masonry in Arches .. ${ }^{\text {a }}$ do	60	1400	84000	\cdots
				\$ 33605800

I.-(Continued:)

\begin{tabular}{|c|c|c|c|c|}
\hline Itoms. \& Quantitics. \& Prices. \& Amount. \& Total. \\
\hline \multicolumn{5}{|l|}{Work at Iake Couloyge and Culbute Channel.} \\
\hline \& \multirow[t]{2}{*}{\[
\begin{array}{r}
494500 \\
433300
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 5 \text { cts. } \\
\& 030 \\
\& 200 \\
\& 200
\end{aligned}
\]} \& \[
\begin{array}{cc}
S \& \text { cts. } \\
127350 \& 00 \\
56660 \& 00
\end{array}
\] \& S cts. \\
\hline Piers and Coffer Dam. \& \& \& \& 21401000 \\
\hline Pine Timber \& 214050 \& 076 \& \multirow[t]{3}{*}{34245
111660
3090
1090} \& \multirow[b]{2}{*}{....................} \\
\hline \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{18610
10301} \& \multirow[t]{2}{*}{060
080} \& \& \\
\hline \& \& \& \& 4850400 \\
\hline \& \& \& \& \$26251400 \\
\hline \multicolumn{5}{|l|}{Work at Cimafeau, L'Islet, and Culbute Rapids.} \\
\hline \multicolumn{5}{|l|}{Lucis, No. 31 runl 33.} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Exavation of Rock, Chapoau and LISlec......C. yds. } \\
\& \text { to do Cutbute do } \\
\& \text { do }
\end{aligned}
\]} \& \[
\begin{gathered}
22100 \\
2000
\end{gathered}
\] \& \multirow[t]{2}{*}{\[
\begin{array}{cc}
S_{1} \& \text { ctis. } \\
1 \& 41 \\
2 \& 109 \\
0 \& 30
\end{array}
\]} \& \multirow[t]{2}{*}{\(S\) cts. 40100100 3065700} \& S cts. \\
\hline \& 12190 \& \& \& \\
\hline \multirow[t]{12}{*}{\begin{tabular}{l}
Miauary in Luck-walls, frece and coping....... do \\
\(\begin{array}{lll}\text { iln Culverts................. do } \\ \text { ilu } \& \text { do } \\ \text { do } \& \text { Zacking } \& \text { do }\end{array}\) \\
Rublle Masonry in Coment............................ do \\
Chacrete Niesoury \\
Timber in fuandations \(\qquad\) \(\ddot{L i n l}_{\text {din }}^{\mathrm{ft}}\) \\
Wrourht Iron in do \(\qquad\) \\
Gat ron Lbs. \\
Mirre Sills complete \(\qquad\)
\(\qquad\) \\
Culvert Gates complete \(\qquad\) \\
Droms.
\end{tabular}} \& \& \& \& \\
\hline \& 4206 \& 1519 \& 60365800 \& \\
\hline \& 1184 \& \({ }_{6} 6\) \& 7094700 \& .. \\
\hline \& \({ }_{186}\) \& 475 \& S83 50 \& \\
\hline \& 130 \& 650 \& Ss4 00 \& \\
\hline \& 4040 \& 017 \& \({ }_{6}^{686} 80\) \& \\
\hline \& 9000 \& 015 \& 135000 \& \\
\hline \& 11500 \& 010 \& 115600 \& \\
\hline \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{......} \& \& \multirow[b]{2}{*}{.......} \\
\hline \& \& \& \multirow[t]{2}{*}{1040000
19000} \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{18355330} \\
\hline \& \& \& \& \\
\hline \multirow[t]{6}{*}{} \& 33240 \& \multirow[t]{2}{*}{015
0015
200} \& \multirow[t]{2}{*}{4956
1200
120} \& \multirow[t]{2}{*}{................} \\
\hline \& \multirow[t]{2}{*}{60170
13520} \& \& \& \\
\hline \& \& \& 135200 \& \\
\hline \& \multirow[t]{2}{*}{2776
4283} \& \multirow[t]{2}{*}{4
0
0
0} \& \multirow[t]{2}{*}{11104
2995
10} \& \multirow[t]{2}{*}{.....................} \\
\hline \& \& \& \& \\
\hline \& 726 \& 050 \& \& \multirow[t]{2}{*}{2200650} \\
\hline \multicolumn{4}{|l|}{Coffer Dam to be remored.} \& \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Pinc Timler. Linl. ft. \\
stone fillint \(\qquad\) \\
Lining with Earth, \&e. \(\qquad\) C. yds. do
\end{tabular}} \& \multirow[t]{3}{*}{51092
5710
1740} \& \multirow[t]{2}{*}{\(\begin{array}{ll}0 \& 20 \\ 1 \& 00 \\ 1 \& 0\end{array}\)} \& \multirow[t]{2}{*}{10218
5710
500} \& \multirow[b]{2}{*}{...........} \\
\hline \& \& \& \& \\
\hline \& \& 050 \& 87000 \& \multirow[t]{2}{*}{1679840} \\
\hline Werse Weir. \& \& \& \& \\
\hline \multirow[t]{2}{*}{Oak Timber..C. fect. Oak Plark. F. B. M.} \& \multirow[t]{2}{*}{\(\begin{array}{r}527 \\ 3920 \\ \hline\end{array}\)} \& \multirow[t]{2}{*}{0

25
2509} \& \multirow[t]{2}{*}{13175
9800} \& \multirow[b]{2}{*}{................}

\hline \& \& \& \&

\hline \& \multirow[t]{2}{*}{$\begin{array}{r}1176 \\ \hline 260 \\ \hline\end{array}$} \& \multirow[t]{2}{*}{\[
$$
\begin{array}{r}
015 \\
4550
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
17640 \\
117000 \\
97600
\end{array}
$$
\]} \& …................

\hline \& \& \& \& \multirow[t]{2}{*}{$1 . ~$
2552.15}

\hline \& \& \& \&

\hline \& \& \& \& \$243507 35

\hline
\end{tabular}

23 Victoria.

Sessional Papers (No. 21):
A. 1860°

I.-(Continued.)

I.-(Continued.)

I.-(Continued.)

ITEMS.	Quantities.	Price.	Amount.	Total.
Work at Rapide de la Rose. Lock No. 49.		\$ cts.	\$ cts.	\$ cts.
Escaration of Rock..............................Cubic yds. Embankment....................................... do	2650 8420	175 0	463750 252600
Masoory in Lock-walls, face and coping... do	2200	1800	3960000	
do do Culverts do	148	2200	325600
do do Backing do	5096	715	36436.30
Rubble Masonry in Cement du	280	575	161000	
Concrete Masonry in Cement do	70	800	56000	
Timber in Foundations........................Lineal feet	2020	0.17	343.40
Wrought Iron in Foundationstbs.	4500	015	67500	
Cast Iron.. do	5780	010	57500
Mitre Sills, somplete.............		62500	.
look Gates, complete ...			$\begin{array}{r}5650 \\ \hline 650 \\ \hline 60\end{array}$	
Culvert Gates, complete..................................				S9983 7)
Excavation.....................................Cubic yds.	370	050	18500	
Pine TimberLineal feet	61980	015	929700
Plank, including Spike.........................F. B. M.	181000.	2000	362000.	.
Wrought Iron ...ibs.	28660	010	256600
Stone Filling..................................Cubic yds.	S370	100	837000
Rubble Masonry do	358	475	154300	
Lining with Chip Stone, Gravel, \&c.......... do	490	050	24500	2642600
				\$123573 20
Work at Paresseux Chute.				
Locks Nos. 50 and 51.		\$ cts.	\$ cts.	\$ cts.
Excavation of Rock...........................Cubic yds.	33128	225	7456400	
Embankment................................... do	S100	025	2025i00	\%.1.......
Masonry in Lock-walls, face and coping... do	42.25	17. 00	7012500	
do do Culverts do	226	2100	474600
do do Backing do	9815	700	6870500	-
Rubble Masonry in Cement................... do	200	550	110000
Concrete Masonry in Cement do do	86	790	67940
Timber in FoundationsLineal feet	2540	017	431 so
Wrought Iron in Foundationstos.	${ }_{6050}$	015	90750	….............
Cast Iron .. do	8780	$0 \cdot 10$	87500	\cdots
Mitre Sills, complete......................................	94000	…............
Lock Gates, complete ... Culvert Gates, complete........	570000 97500	
Culvert Gates, complete...................................		15818770
Dam.				
ExcavationCubic yds.	330	050	16500	
Pine Timber .. Lineal feet	15120	015	226800
Plank, including Spike...............................F. B. M.	96000	2000	192000	
Wrought Iron ..tbs.	9140	0.10	91400	
Stone Filling....................................Cubic yds.	160	050	3000	
Battered Wall in Cement...................... do	150	475	71250	
Lining with Chip Stone, Gravel, \&c........... do	2520	050	126000	7319-50
				\$242096 20

I.-(Continued.)

ITEMS.	Quantities.	Price.	Amount.	Total.
Work at Petit Paresseux Rapids. Locks Nos. 52 and 53.				
Excaration of Rock..........................C. yds.	20675	\$ ${ }_{1}$ cts.	${ }_{36151}{ }_{25} \mathrm{cts}$.	\$ cts.
Embankment.. do	St 60	025	2190:00	
Masonry in Lock-walls, face and coping........ do	3727	1700	6335900	
do do Culverts do	226	2100	474600
do do Backing do	8464	700	5924800	
Rubble Masonry in Cement...................... do	310	550	170500	
Concrete do do do	SG	790	67940	
Timber in foundations............................Linl. ft.	2540	017	431 s0
Wrought Iron in doLbs.	6050	015	90750	...
Cast Iron.. do	S780	010	S7S. 00
Mitre Sills completc.			94000
Lock Gates complete.			802500	-..................
Culvert Gates complete..			97500	
Dam.				
Excaration...C. yds.	645	050	32250	
Pine Timber..ini. ft.	110900	015	1663500	
Plank including Spike.........F.B. M.	310700	2000	621400	
Wrought Iron.. Lbs.	51750	010	517500	
Stone filling..C. yds.	7440	040	297600
Battered wall in Cement do	40	475	19000	
Lining with Chip, Stone, Gravel, \&e do	676	050	33800	
				\$212116 45
Work at Talon Chute				
Locks, Nos. 54, 55, and 56.				
Excaration of RockC. yds-	27800	175	4865000	
Embankment ... do	29100	030	873000
Masonry in Lock-walls, face and coping....... do	6082	1350		5738000
do do Culverts................. do	304	1750	532000
do do Backing............... do	14631	675	9875925
Rubble Masonry in Cement...................... ${ }^{\text {do }}$	980	525	514500	……............
Concrete do do do	S6	775	- 66650
Flagging ... do	358	175	62650	..
Timber in foundations...........................Linl. ft.	2540	017	43150
Wrought Iron in doLbs.	6050	0.15	40750	-....................
Cast Iron.. do	11770	- 10	117700
Mitre Sills complete.			125000
Lock Gates complete ..			1167000	
Culvert Gate complete......................................		130000	-109360 55
Demm.				
Excavation..C. yds.	65			
Pine timber .. Lin . ${ }^{\text {a }}$. ft.	9700	015	145500	.-...............
Plank including SpikeF. B. M.	33800	2000	145500 67600	-...........i.i.
Wrought Tron..ibs.	5400	0 10	67600 54000
Stone filling ... C yds.	760	0 0	540.00 30400
Battered wall in Cement.................................... ${ }^{\text {do }}$ do	+ 47	040 450	30400 21150
Lining with"Chip Stonc, Gravel, \&c.............. ${ }^{\text {a }}$ do	226	050	21150 113	-...............
				336450
				327010505

I.-(Continued.)

I.-(Continued.)

I.-(Continued.)

ITEMS.	Quantities.	Price.	Amount.	Total.
Work at Rapide de Parisien. Lock No. 62.				
		\$ cts.	\$ cts.	\$ cts.
Excaration of Rock...............................C. yds.	S050	200	1610000	
Embankment do	6700	030	201000	1811000
Masonry in Lock-Walls, face and coping... do	1995	1525	304.2375
do do Culverts do	148	19.25	284900
do do Backing............. do	4382	725	3176950
Rubble Masonry in Cement do	177	575	101775
Concrete Masonry................................ ${ }^{\text {do }}$	70	680	47600
Timber in foundations.........................Linl. ft.	2020	017	34340
Wrought Iron in do lbs.	4500	015	675.00	
Cast Iron... do	5780	010	57500
Mitre Sills complete.			625.00
Lock Gates complete			520000	
Culvert Gates complete			65000	-
Dans and Picrs.				
Excaration of RockC. yds	270	075	20250	\cdots
Pino Timber.......................................Lini.ft.	43040	015	645600
Plank, including Spike..........................F.BM.	95000	2000	190000
Wrought Iron....................................... lbs.	16160	010	161600.
Stone fillingsC. yds.	5920	065	389350
Battered wall in Cement......................... do	320	450	144000
Lining with Chip Stone, Gravel, \&c........... do	267	050	13350	1564150
				\$108358 90
Work at Le Grand Recollet and Petit Recollet.				
Lock No. 63.				
Excavation of Rock.........................Cubic yds.	16950	200	3380000
Embankment "	5000	025	125000	
Masonry in Lock Walls, face and coping : "	2320	1475	3422000	
do do Culverts......... "	14 S	1875	277500	.
do do * Backing......... "	5095	700	3566500	
Rubble Masonry in Cement.................. "6	950	560	532000	
Concrete Masonry "	35	660	23100
Timber in Foundations.....................Lin'l. feet	1010	017	17170
Wrought Iron in dolbs	2250	015	33750	
Cast Iron in dolbs	5780	010	57800	
Mitre Sills complete.		62500	
Lock Gates complete.	.		565000	
Culvert Gates complete			65000
Loose Stono pavedCubie yds.	150	150	22500	
Dams and Piers.				
Excavation of Rock........................Cubic yds.	60	150	0000	
Pine Timber...................................Lin'l. feet	47650	015	714750
Plank including Spike......................F.B.M......	\$4200	2000	168400	
Wrought Iron................................. Ibs.........	13630	010	136300	
Stone Filling Cubic Jds.	5815	040	232600	
Battered Wall in Cement................... 6	18	425	7650	
Lining with Chip Stone, Gravel, \&c....... "	240	050	12000	
Coffer Dam to be removed. $\quad \square$				
Pine Timber........ Lin'l. feet	6540			
Stone filling..Cubic yds.	8500	060	130800 48000	
Lining with Earth, \&c........................ 6	260	060	15600	
				194400
				\$136349 20

I.-(Continued.)

ITEMS.	Quantities.	Price.	Amount.	Total.
Works at Les Petites Dalles, and OTHER OUTLETS. Lock, No. 64.				
Excavation of Rock.................................C. yds.	19240	\$ ${ }_{2}$ cts.	$\$ 8$ cts. 3848000	\$ cts.
Embankment ... do	3000	025	75000	
Masonry in Lock-walls, face and coping........ do	2268	1400	31752000....:
do do Culverts do	148	1800	266400	
do do Backing do	5331	700	3731700	
Rubble Masonry in Cement....................... do	147	550	- 80850	
Concrete Masonry.................................... do	70	650	45500	,
Timber in Foundations...........................Linl. ft.	2020	017	34340	...
Wrought Iron in doLbs.	4500	015	67500
Cast Iron... do	5780	010	57800	
Mitre Sills complete...			62500	
Lock Gates complete ..			580000	
Culvert Gates complete		65000	
Dams and Piers.				
Excavation ..C. yds.	100	125	12500	
Pine Timber...Linl. ft.	29300	015	439500
Plank including Spike...........................F. B. M.	73300	2000	146600
Wrought Iron ..Lbs.	11300	010	113000	
Stone filling...C. yds.	2110	060	126600	
Battered wall in Cement........................... do	750	425	331500	
Lining with Chip Stone, Gravel, \&c........... do	540	050	27000	
Coffer Dam, to be removad.				
Pine Timber...Linl. ft.	20910	020	415200	
Stone filling ...C. yds.	2320	100	232000	
Lining with Chip Stone, Gravel, \&c......................	1260	040	50400	700600
				\$139870:90

ITEMS.	Quantities.	Price.	Amount.	Total.
Locks Nos. 1, 2, 3, 4, 5 and Guard Lock.		$\$$ cts.	\$ cts.	\$ cts.
Excavation of EarthCubic yds.	93700	025	2342500
do Gneiss Rock.................... do	321270	250	80317500
do Limestone Rock do	155420	150	23313000
Embankment do	36810	030	1104300	
Masonry in Lock-walls, face and coping... do	10444	1200	12532800	
(do . do Culverts do	748	1600	1196800	
do do Backing do	24077	650	15650050
Rubble Masonry in Cement do	690	450	3105.00
Concreto Masonry............................... do do	1200	3.00	720000
Timber in Foundations........................Inineal feet	24459	016	391344
Wrought Iron in Foundationsibs.	16915	015	253725
Cast Iron .. do	29220	010	292200
Plank in Foundations............................F. B. M.	57300	2000	114600
Mitre Sills complete..	312500
Lock Gates completo	2543500
Calvert Gates complete	325000	34843019
Dam aud Cribs, Hudson's Point.				
Pine TimberLineal feet	92300	0.15	1384500
Plank, including Spike..........................F. B. M.	191500	2000	383000
Wrought Iron ...ibs.	28750	010	287500
Stone Filling....................................Cubic yds.	14201	080	1136080
Battered Wall in Cement....................... do	1515	400	606000
Slope or Pavement Wall do	3798	150	569400
Lining with Chip Stone, Gravel, \&c......... do	600	040	24000	4904 80
Coffer Dam to be Removed.				
Pine TimberLineal feet	11880	026	237600	
Stone Filling....................................Cubic yds.	1389	120	166680	
Lining with Earth, \&c........................ do	576	050	28800	4330 80
				\$1465438 79
(Signed,) THOS. C. CLARKE, Engineer Ottawa Survey.				

Jany. 2, 1880.

Comparison of Routes.
Chicago to Montreal viâ St. Lawrence ancl Ottawa.

REPORT.

Bureat of Agriculture and Statistics,

March 21st, 1860.
SIR,--I have the honor to formard herewith, for presentation to the House of Assembly, the Report of the Honorable the Minister of Agriculture for the year 1859.

> I am, Sir,
> Yours with respect,

WILLIAM HUTTON,

The Hon. Cifas. Alleyn; Provincial Secretary: \&c., \&e., de.

Bureau of Agriculture and Statistics, March 2nd, 1860.

To the Hon. Cifardes Aldeyn,
Provincial Secretary, \&c., \&ce., dec.
Sir, -In compliance with the 6th Section of 2 -nd Victoria, Cup. xaxi., the Minister of Agriculture has the honor to transmit herewith, for the information of the Houses of the Legislature, his annual Report.

The facilities of collecting correct statistical information in Agricultural matters are not, as yet, very grat, but the importance of such information is becoming more generally appreciated and acknowledged, and difficulties are not thrown in the way of procuring it as heretofore, not only in Canada but even in Great Britain, and more especially in England, where all inquiries as to crops, produce, \&c., were persereringly resisted. The taking of the Census in January next will probably lead to more enquiry as to the utility of Agricultural Statistics, and to less resistance on the part of the public to those who may be emplored to obtain the required information.

Erery means should be taken to convince all classes in the Proviuce that the Census caruirics have no reference to taxation whatever, but are merely to ascertian the true State of the Provincial wealth, so as to record the progress of the Colony, and, at all times, to compare her present with what has been her former and her future position, and also her relative position as compared with other countries.
"People are slow to see that questions relative to themselves and their households "can have any bearing on the general good, aud forget that in accounts of large numbers "the individual is wholly lost sight of in the average; but that the average can only be "ascertained by an accurate knowledge of all that pertains to the individual."

Circulars of Agricultural Queries were sent to the Presidents of all Societies in both Provinces, and to many others. One hundred and two replies were received- $i 2$ from Upper Canada, and 30 frum Lower Canada.

UPPER CANADA RETURNS.

In analizing the seventy-two Returns received from Upper Canada, it appears
There are six Counties out of the 24 from which there is only one Return each; four from which there are only two Returns each; and five from which there are three Returns oach : fire Counties give four Returns each, and the rest hare fire or six-none exceeding
the latter number. The highest is Carleton. Winter Wheat, 284 bushels to the acre Spriug Wheat, 32 . The next highest is Northumberlind;--272 for Winter, and 19 for Spring What. The aest is Simece;-26ł for Winter, $23 \frac{2}{3}$ for Spring. York gives, Winter Wheit, 97 , and Spring Whent, 20 ; but there is only one Returu. Bruce gives, Winter Wheat, 25 , Spring Wheat, 20 . Lecas,--Winter Wheat, 25, Spring Wheat, 162. Peel gives, $24 \frac{15}{5}$ Winter Whe:t, $18 \frac{3}{3}$ Spriug Wheat. Ontario gives, Winter Wheat, $22 \frac{1}{2}$, Spring Wheat, 233 . The total average is 21 bushcls for Winter Wheat, and $18 \frac{3}{3}$ for Spring What; ;and this appares reliible. There is great reason for rejoicing that the averages are so far beyoud those of last jear, which were for Winter Wheat, $11 \frac{3}{3}$ bushels, and for Spring wheat 133 ; heing an inprovement on last yen's growth of about 76 per cent. on one, and about 46 per cent. on the other, and being about 16 per cent. above the general average of the last twenty years.

As to danage done to the Wheat crop by midge and rust, forty-two report that no mischicf was done to Winter Wheat in 185!). Eightecn report that very slight damage was done; cieght report scrious and extensive injury--say from 10 to 25 per cent.; and three report a loss of 51 per cent,-one from the County of Welland; one from Haldimand; and one from Wentworth. Six Retaras further report serious injury by heary frost on the 5 th Junc.

The remedy for the midge universally given, is to sow carly kinds of Winter Wheat, very carly, and the Fife Spring Wheat, cither very carly, or not till after the 20th May. The Soule:, White, Flint, and Bluc Stem, and also the White Kcatucky, are mentioned in very many of the licturns as the carliest and best Winter Wheat, and the Fife as the best Spring Wheat. Goond daining and good cultivation are much recommended; and, in fact, good dauinupe is the graud cssential of successful husbandry. Without it there cannot be early and luxuriant crops, escept on rery peculiar soils. In five or six cases, however, it occurred that the earliest wheat was the most injured by the June frost; but this frost was exceptional; never having occurred in Canada, except once before, siuce wheat began to be cultivited in Upper Canadia, and but for this carly frost, this wheat would have been of the rery fincst.

The Im. Mr. French, in what is said to le one of the completest essays ever published on the subject of drainage, thus sums up the loss to undrained land which the excessive craporation from its surfice entails upon it:

1st. The drained land cones into condition for working a weck or ten clays earlier in the Spring than other lands.

End. The growth of the crops is quickened all through the summer by an increase of several degrees in the temperature of the soil. And,

3rdly. The injurious effects of frost are kept off several days later in the Fall.
In Lower Candia there is very little progress in this important branch of agriculture. Only seven report that a little dainage is done; all the rest report that none is done. Its value is evidently very little understood. If premiums were offered by S_{0}. cieties for the greatest extent of underdraining, the benefit would soon be manifest, and the prescut averages of grain crops greatly increased.

As to the proportion which Winter Wheat bears to Spring Wheat, 31 Returns state that the growth of Spring Wheat greatly predominates, being double that of Winter Wheat; the: whole crop consisting of two-thirds of Spring to ouc-third of Winter Wheat. Thirteen state that the srowth of both is about equal, -and fifteen state that the growth of Winter Wheat predominates over that of Spring, to the cstent of onc-third. From comparing the returns it may be estimated that the number of acres under Wheat, is about one-third of Winter Wheat, and two-thirds of Spring. Five years ago there was nut one acre of Spring Wheat in Upper Cauadia for cevery ten of Winter Wheat. This certainly is an extraordinary change, brought about chictly by the fearful invasions of the Wheat Midge, but will proba: bly be temperary, and will continue only until draining and high cultivation shall have rendered the insect imoctuous here, as it has been already rendered in Great Britain by what is called "high farming." The general arcrage of the Wheat erop in Great Britain is 28 bushels: (three-quarters and a half,) and the average weight 60 It 8 . bushel. There seems no good reason why the arerage of Upper Canada should not in a few years equal that of Greal Britain, by attention to drainage and high cultivation. Soil and climate are naturally woil adapted for the growth of wheat.

LOWER CANADA RBFURNS.

WINTER WHEAT.

Of the 30 Returns received from Lower Canada, there are only 4 which repore any grown, and they state the average to be 18, 15, 20, 15,-ecqual to 17 bushels per acre. The County of Laval gives 18 ; County of Ottawa $15-$ and two from Pontiac give 20 and 15.

SPRLNG WHEAT.

Twenty-three report the growth of some Spring Wheat-one from Terrebonne states the averare to be about 20 bushels; one from Pontiac, and one from Megantic give 1S; one from Grantham 17; one from Leeds 162; three from Pontiac and Lotbiniére 15; one from Megantic 14; one from Ottawa 13 ; three from Bellechasse, Bagrot and Lotbiniére give 11; one from Chicoutimi and Montmagne give 11; and six others state the average to be 9 bushels. The total average of Spring Wheat in Lower Canada, is 13 bushels per acre.

Ten of the returns state that very considerable injury has been done to Sping Wheat by the Wheat Midge:-Chicoutimi, Iberville, Bagot, Joliette, and Timiscouata, report from 25 to 50 per cent.; seventeen report that the damage done has been very little, if any, this year. The remedy suggested is, to sow very carly or very late, and by one to run a rope steeped with Turpentine over the heads of the Wheat when in blossom. The Black Sea Wheat is the most recommended. The Fife is mentioned only by five parties in Lower Canda, although universally esteemed in Upper Canada.

OATS.
The total average of Oats in Cpper Conade, is 342 bushels per acre.
Two Counties report 50 bushels per acre.

Three	45	"
Nibeteen"	40	"
Thirteen "	35	"
Twenty-two	" 30	"
Seven :	25	"
Two ،	20	"

Simeoe, Ontario, Kent, and Wentworth, give the highest returns, Lanark and Renfew, the lowest; the common Black Oats are the most recommended; the average of 1858 was 32 bushels per acre, so that there is an improvement of about 8 per cent. on the crop of last year.

Considering that the statute bushel of Oats here is only 34 ft , and that the average of Great Britain is 60 bushels acre, of 40 tb 笉 bushel, there is great room for improvement in the cultivation of this crop. There does not appear anything in the soil or climate of Toper Canada detrimental to the growth of this grain, and it may be inferred that the difficulty arises from inferior cultivation. The importation of new varicties of seed has taken place to a considerable extent; and it is to be hoped that the improvement will continue progressing, till we approximate somewhat nearer to British averages.

In Lower Canada the Returns show an average of 223 bushels per acre. Megantic returns 30, and Pontiac 25 bushels.

BARLEY.

The average return of this grain in Upper Canada is 272 bushels per aere; sisteen returns report but little grown-there are 56 returns. In Lower Canada the average is 23 bushels per acre; Chicoutimi, Bellechasse, Megantic; Nicolet; and Pontiac, give 30 bushels. The growth of this species of grain is very much on the increase in Lower Canada; there are only 3 Reports out of the 30 which state that very little is grown. Winter Barley is coming into use, and promises to be a prolific and valuable cercal. Some idea may be formed of the extensive growth of Barley, when it is stated that in the City of Albany, about 600,000 bushels were imported from Lower Canada in the Fall of 1859. Some : very fine crops of Winter Barley are reported to the Bureau. A Mr. Haven, near St. Catharimes, states that he grew 150 bushels on 3 acres. A Mr. McCarty, near Niagara, reaped a field on the 12 th July. He says:-"I sow 3 bushels per acre, and my yield has been in fallow 60 bushels-and on Corn-land 40 bushels per acre. The Corn-land was
erfually good as the fillow ; what made the difference in the yield in my opinion was, that the latter was sown on the -0 th September, and the former on the lst of that month." He adds:-"I believe under any circumstances it will yield double the quantity $^{\text {of Spring Barley; }}$ it is ripe on the 1st. July before the Milge can strike it-we sell it at $\$ 1$ per bushel.

This correspondent also remarks :-" It ought to be widely known, that Barley flour used as Buckwheat-flour, is far superior to it; it is delicate in flavor, and most wholesome.",

Winter Barley, it is stated, is chiefiy grown in mild climates where the Winters are short, and the Spring dry, such as the South of France, Italy and Spain, or in countries where deep snow covers the ground all Wiater, and goes off rapidly in Spring, such as Russia, Poland, and parts of North Americi.

That the introduction of this new species of Grain will be a valuable aequisition to Canada, is further shown by a report of Mr. Charles Chapman, of Ottawa, who has sent a sample to this Department, and states:
" My attention was drawn to ar remarkable plant of Barley (a single one) growing in a Cottage Garden in England, in the Autumn of 1851 , and 1 brought it with me to Canada in the Fall of that ycar. The amount of ears in that plant was 56, and on examination they proved to be 5 rowed, very strong in the straw, and averaged nearly 70 grains each. In the Spring 1859, I sowel a part of it, and although it produced an unprecedented amount of fodder, it never brought in ear. In the Fall of the same year I sowed some more, and was much gratificd to find in the Spring a fine healthy crop, and on July 11 th it was ripe, and cut, and as grood in quality as the parent plant. Since then I have been trying it in all the forms that suggested themselves to me-as to its hardiness-the best time for sowing it-the proper quantity of seed-the soil best adapted to it-and whether it varied in its habit of soil or productiveness-each year sowing being of the previous year's yield: And during all that time it never failed once when sown on land fitting for it, and at the proper time; but when sown late on sand or where water laid on it in the Spring, it has been killed, but when sown on pretty stiff land, well tilled, in fact as it should be for Fall Wheat, any time from the middle of August until about the 10 th September, the Winter has never injured it, and it retained all the characteristics of the first plant. It ripens ten days in advance of Fall Wheat, and its vigour of growth is wonderful, for from its manner of stooling, the average of cars from cach plant is not less than 50 , containing at least 60 grains; a far greater number being produced where the plants had more room. I have until this fall sown it in drills 15 inches apart, and the seeds 3 inches in the drills; but this year I have sown some at 10,12 and 15 inches, with the sceds 3 inches as before, which will enable me to ascertain if an increase of seed produces an increase of yicld. I commenced to sow on the 9th of August and continued at frequent intervals until the 9 th September. By adopting the last mentioned distances, the exact amount sown was 6 lbs. to the acre, or rather less than a gallon.

I shall here inform you that I am not a Farmer, but a Gardener, and the quantities grown have been mercly experimental, and I can therefore only give you the proportionate yield per acre, which I find on ordinary Wheat Land to be a minimum of 60 with a maximum excecding 80. Grass has never been tried with it, but as it is sown so thin upon the land, it appears tome likely that it would be sufficiently strong to escape being smothered by the luxuriant growth of the other; for on the 6th October the growth of that sown on the 9 th of August was as level as a piece of baize, 15 inches thick, of which I sent specimens, taken from the middle of the land, to Professor Buckland, at that date. The straw is fully proportioned to the weight of the ears, and I have never seen it laid. The fodder is of the best description; the sample I send you is not an average one, as there area few scattcring ears, the crop being thrashed in the Fall, but they may serve to guide your judgment of its properties. It is proved to be of first quality for matting, and it has another excellent property to which I beg to draw your attention. It has a most remarkable thin skin and a rico shaped grain, which will greatly increase its value to those who manipulate it into potand peal birley. A rentlenan largely engaged in that manufacture, pointed out to me the advantage from the improved appearance of the article, by leaving it when manufactured nearly as long as an ordinary grain in its natural state, which would in all probability induce a very extensive busincss. Since I have grown it I, have not seen a single plant, eur or grain injured by any insect or blight, and so far as my observation goes, it is the safest and the most profitable grain crop that com be grown in Canada, within, of
course, certain limits. I mean that every prudent Farmer should grow it where the Wheat Grop is so uncertain. The effect it might have, if grown for one season over a large contiguous area, in arresting the Wheat Fly, every intelligent Farmer will form his opinion upon. Some persons have raised an objection to drilling it, as being costly both in time and money. The method I adopted was this. I took a piece of wood about 6 feet long, 6 inches wide, 2 inches thick, and bored that with an auger at 10,12 and 15 inches distance, into which I put as maly pins as the distances gave me, the narrowest bcing 7 , to this I put a pair of train shafts and a pair of handles, and a couple of pins through the three where they intersected, and the whole affair was done. With a boy tolead the horse and a man to holdthe drill, itis surprising how soon and how casily an acre may be marked out. One of the barrow shaped sowing machines may then be used, and a man can go over an acre with ease to himself in 4 hours and deposit the grain with almost mathematical precision. The cost of such a machine is $\$ 4$, and can be used for all ront crops by merely setting the distributor according to circumstances. The increased expense of sowing in drills over broadeast is not so great as it would appear. But there is no reason why it should not be sown broadcast as well as any variety where two bushels are sown. It is only necessary to mix your 6 lbs . of grain with ashes or any other substance like it, and it can be scattered as well as if it was all grain, with the full knowledge that you have saved ncarly two bushels of Grain for cvery acre sown, and that you may get it into your barn, a very heavy crop, before your Wheat calls for your attention; and if you wish, you may get a good crop of White Turnips to follow the same season, to the manifest advantage of gour live stock, if it is not sown with grass. It was not my intention to have sold any this season, but all partics who had secn it growing became impatient that it should be let out, or they declared that they would steal it. I therfore exhibited it at Kingston last Fall, and intend to sell it to the general public. For the reason I have given you, that it has only been grown up to this time experimentally, I have no very large supply, and as one gallon is sufficient to sow an acre, I propose to charge $\$ 2$ for that quantity, which will be a trife in advance of the commonest articles at two bushels per acre, and would produce sufficient to sow a very large area the next year.

I will deliver it free to the Ottawa and Prescott Railway, and I intend to give ample notice through the Press next summer when it will be ready, so that all who are interested in it may come and see it; and judge for themselves. I beg to apologize for the length of this conmunication, but I thought it bist to tell you the matter in my own way that you might deal with the facts as you please.

> I remain, Sir,
> Yours \&c., respectfully,

CHAS. CHAPMAN.

RYE.

Of Rye the average return in Cpper Canada is 18 bushels per acre, but 50 of the returns report that there is very little or none grown.

In Lower Canada this grain is represented in 22 returns (ont of the 30 received,) to be cultivated for bread. The average is 13 bushels per acre, and cannot be a remuncrating crop. Lotbiniere and Megantic return the largest averages; the former 20, and the latter 18 bushels per acre. Chicoutimi returns 17.

INDIAN CORN.

Only 37 Returns from Upper Canada have furnished reports of this crop, of which the average is 30 and $20-60$ per acre. 28 report very little grown, and 10 report the crop much injured by the early frost of June, which, although very injurious to the crop of 1859, may be esteerned altogether exceptional, as a similar frost has not occurred since the year 1836 .

In Lower Canada Indian Corn, Peas and Buckwheat seem to be very little cultivated, and with very partial success.

PEAS.
Sixty-four Returns from Upper Canada have reported on this crop. The average is 232 bushels per acre-oniy six report injury by bug, and 58 are unanimous in declaring that no injury has been done by this insect, which, for many years previous to 1858 had been very destructive, but has this year nearly disappeared.

BUCKWHEAT.

The Returns of this crop in Upper Canada are so deficient that little can be said about
it. There are only 26 Returus with regard io it, and these show an average of 18 bushels per acre. The extent of land under this crop is very sinall.

POTATOES.

With regard to this crop there is a very great improvement in Upper Canada. The rot appears to prevail still, but to a very limited extent. The average of last year was 125 bushels per acre-that of this year is 176 . 45 of the Returns state positively that there was no rot this year; 14 state that from 25 to 50 per cent., of the crop was lost, and 12 state that the loss was slight, say from 5 to 10 per cent. None can account for it, but many attribute it to an insect, the ravares of which are always the worst in damp soil and situations, and in wet seasons. The "Irish Cup" seems to be the most generally recommended as the freest from rot, although stated by one to be the worst. New land is niuch recommended as a preventive, and dry situations.

In Lower Canada also the yichl of this crop appars to be very much on the increase. The average of 26 returns is 175 bushels per acre, being about 50 per cent. greater than last year. The rot is stated not to be so prevalent as usual. 11 report serious injury, and nineteen report that very little damage was done this year. It may be safely inferred, or at all events reasonably hoped, that the rot is leaving Canada.

HAY.

This crop was exceedingly deficient in Upper Cansda; 3 only out of 72 return the produce at 2 tons per acre; 26 return 1 ton and a half per acre; 15 return 1 ton per acre, and 28 return from $\frac{3}{4}$ to $\frac{3}{4}$ ton. 48 usc Gypsum or Plastor as top-dressing, and 10 use barn-yard manure occasionally.

In Lower Canada this crop was very far superior to that of the Upper Province.
The avcrages are nearly 2 tons per acre, and there has been a considerable export of it to the Upper Province. In this article of produce Lower Canada generally surpasses Upper Uanada.

TURNIPS.

Sixty-nine of the returns from Upper Canada report, that the cultivation of Turnip is on the increase, and that they are grown very successfully; one report 1,000 bushels; one 900 ; six report 800 ; 15 report from 500 to 700 bushels, and 18 report from 300 to 500 . This shows a great increase on former years, and it is a very favorable sign, as there cannot be successful cultivation of grain crops unless there be also that of green crops. In fact the extensive and proper culture of green crops is the very foundation of good farming. Last year the returns of green crops cultivated were so inconsiderable, that they were not included in the Report of this Department, but it is now becoming an important item in the production of the country.

In Lower Canada nineteen of the returns state that this crop is on the increase; sixteen have reported the growth of from 400 to 1000 bushels; one reports 1000 bushels; one 700 ; six 600 ; and two 500 .

FLAX AND HEMP

Forty Returns from Upper Canada state that ncither of these is grown ; 22 state thatvery little Flax is grown, and that chiefly for the seed; one states that the growth of Flax is on the increase, and one from the County of Lincoln states that hemp has been tried there this year. It may be satisfactory, however, to know that the transactions of the Board of Agriculture for December, report that the Messrs. Pcrine had 400 acres under this crop in the Township of Woolwich, in the County of Waterloo, this last season, (1859) and that it proved very remuncrative, producing 12 bushels per acre of flax-seed weighing 56 lbs . per bushel, and 325 lbs . of fibre per acre, which Messrs. Perine consider a pretty fair yicld, for dew-rotting; they prepare the fibre for clath thread, aud twine, but complain that they have no market in Canada West. This latter evil will soon be remedied, for if farmers will only produce the article of good quality, moveable scutching mills will soon be fortheoming. There is a great demand for flax in Great Britain at remunerating prices. At the present time flax is selling at from 6d. to 8ld., sterling, per lb in the North of Ircland, and the acre of flax is worth from $£ 72$ to $£ 20$ sterling.

In Canada the soil and climate are both suited for this crop, and there is abundance or water to allow of it being water-rotted, which is much superior to dew-rotting and produces much better quality of flax. Full particulars of method of cultivation and process of steeping were furnished to the Board of Agriculture in Toronto by this Department, and are to be found in the Canadian Agriculturist of February and March, 1860.

The Returns in Lower Canada all report that the cultivation of this crop is not on the increase. A very little is grown by many, and manufactured entirely by the hand for domestic use. There is no machinery for scutching or drossing; one returns the produce as 200 lbs . of Flar and 600 lbs . of seed per acre; another gives 125 lbs . of prepared Flax and 12 bushels per acre of Sceds; another gives 150 lbs . of Flax and 9 bushels of Seed per acre. This crop would be a very profitable one if machinery was available for scutching and preparing; and it would be well for Agricultural Societies to offer a handsone premium for the introduction of a movable machine for rendering the crop marketable.

It is stated that 60 tons of Flax werc prepared this last season in the County of Waierloo, and about 6,000 bushels of Flax Seed produced there. The value has not yet been fully ascertaincd, but Flax is now worth, in England, from $\$ 300$ to $\$ 350$ per ton. Mr. Hespeler, it is said, is about to crect a mill in this County. A portion of a letter addressed to the "Free Press," by Mr. Godfrey of Deleware, is subjoined. He says :-
"Had I been sure of obtaining a sufficient quantity of Flax for the English market, I as well as other agents in the Colony, could have obtained Orders to some thousands of tons. The price is now from £60 to £70, sterling, per ton in England. I have scen some specimens of growing Flax, unfortunately in but small patches, equal to that grown in Ireland or on the Continent. I intend to forward samples of the Lint to my mercantile friends in England, and would invite growers to send some specimens to me-P. O. Lambeth, late Junction, Westminster, near London, C. W."

SHEEP.

The whole 72 Reports from Upper Canada are unanimous in stating that the numbers of Shecp kept is rery mustincreased, and that both fleeces and carcasses are heavier than in 1851, and, with 10 exceptions, approring of the Cotswolds; 4 are in favor of Southdowns, and 2 in favor of Merinos and Cheviots. All recommend the Leicester Sheep as being very profitable. The actual weight of carcass is given per quarter as 17 lbs ., and that of fleece 4 lbs. 8 oz . The number kept on each 100 acres varies from 20 to 40 -one only stating the number at 16, and one making it 70 . The average (not including these) is 26 for every 100 acres, which must be understood to refer to old and long cultivated farms, and the queries haring been sent to the most prominent farmers in each county. According to the census of 1852 , there were 10 Shecp to every 100 acres of occupied land in Upper Canada, and the weight of fleece was only 2 lbs. 18 oz .; so that the improvement in the number and quality of Sheep must be very considerable. Taking the number of Sheep to bear the same proportion to the population that they did in 1852, viz : 9 Sheep for crcry 10 inhabitants, and calculating the average weight of flecce at $3 \frac{1}{2}$ lbs. for all Canada, we would have $2,592,000$ Sheep, and $9,072,000 \mathrm{lbs}$. of Wool, as the produce of this last year, a very important item in raw material for Canadian manufacturers, if it were retained in the Colony. But the Trade Returns of 1858 show an export to the United States of 1,545,412 lbs. at 22? cents per lb., against an import of $224,664 \mathrm{lbs}$. at $20 \frac{1}{2}$ cents; and the Returns of 1859 show an export of $1,630,531$ lbs. against an import of $121,830 \mathrm{lbs}$. In round numbers our net export of Wool was $1,500,000$ of lbs., whilst the export of the United States was only 951,938 lbs., shewing how much more extensire must be their home manufacture of this important staple. The Official Returns of the United States, taken from the Journal of the Society of Arts, show that the whole Union possessed in 1859, 30,000,000 of Sheep and $75,000,000 \mathrm{lbs}$. of Wool, making the average $2 \frac{1}{2} \mathrm{lbs}$. per fiecec,-rery many of their Sheep being Merinos, will account for this low estimate of the weight of fleece.

Several new woollen factories have been established in Canada within the last year, and the home manufacture of Woollen Goods will, without doubt, continue to increase to a great extent. The average price of Wool given in the Returns is 24 cents per lb ., and it may be of importance to know that the supply is so large as to induce others to embark in the manufacture of Woollen Fabrics. Upper and Lower Canada are both specially adapted to
the growth of Wool. The climate is very similar to that of Switzerland, where large flocks of Sheep are successfully kept with fair remuneration.

In Lower Canada the Returns show a very great improvement, both in the quality of Sheep and weight of fleece, and also in the number kept on each occupied 100 acres. Five farmers report as many as 30 -one 27 -four report 25 , and the rest from 11 to 20 ; and the weight of fleece is griven from 2 to 7 lbs., areraging on all the returns the large weight of 4 lbs. to the flecce. I have, however, taken 32 lb . as the general average.

The following very interesting correspondence on the subject of the culture of the Grape, and the manufacture of Winc in Canada, has been considered of sufficient importance to give it a place in the Report of this Bureau, if for no other parpose than to invite encuiry, and procure experimental knowledge upon a subject offering such promise of feasible and beneficial developement.
[Copy.]
Fal de Courtenay,
Bury, 3rd August, 1859.

To the Hon. the Minister of Finance :

Sir :-Circumstances hare lately come to my knowledge that conrince me of the certainty of being able to establish Vincyards on the hilly parts of this district, haring a rocky, gravelly and sandy soil, and of a Southern or Western aspect.

The Biue-Berry buds forth about a month before the Grape, and notwithstanding the growth being in frosty situations, it is as often as free from Spring frosts in this Country as in Northern Italy and Switzerland.

I have, within the last week, observed Blue-Berries situated at the base of a hill of mine, having a Southern aspect, and they are in a prosperous condition, notwithstanding the late frosts of this ycur.

It is an admitted fact that Vincs do not suffer from the most severe winter frosts when they are pruncd low. The Crimea is a proof of this axiom--as is also Neufchatel in Switzerlad, so remarkable for its wines, and where the climate is much less favorable than here.

Judgiug from the period of the budding of the Blue-Berry, the Grapes would, in fair situations, have here nothing to fear from the late Spring frosts, and Autumn frosts are beneficial to the Wine Grape, and I consider them absolutely necessary to the production of good Wines.

I forward the following opinion obtained from Messrs. Foigneux et Moreau, the best authority of Northern wine-growers:
"10. Où la culture du maïs starrête, doit s"arrêter aussi celle de la vigne; quand l'un ne "mûrit pas son épi, l’autre ne mûrit pas sa grappe.
"20. Où les haricots ne mûrissent plus leurs grains, vous aurez beaucoup de peine à " obtenir du raisin.
"30. Jinfin, vigno plantée en pleine argile, ou en terre humide, s'expose aux gelées "tardives, et vous donnera beaucoup d'acides, et peu de sucre, et qui dit sucre, dit alcohol, " puisque c'est l'un qui fait l'autre, ct qui dit alcohol, dit richesse et conserration des vins. "Après cela, voici les principales considérations qui derront rous déterniner.
" 10. Qu'elle s'accommode du terrain où l'on doit la cultiver.
"20. Que la végétation soit tardive au printemps, de telle sorte qu'elle échappe plus facile"ment al"action désastreuse des gelées printannères qui cuusent les rarages les plus considér"ables dans les vignobles.
"Cependant, ${ }^{c}$ cest moins l'cfict de la gelée que celui du soleil brûlant qui lui succede, qui " amène ce résultat-aussi, peut-on le prérenir cn soustrayant le vignoble a l'action innéédiate "du soleil matinal ; dans le cas contraire, il arrive aux bourres celées ce qui arrive a tous les vé " gétaux delicats qui passent brusquement d'un état de refrâchissement excessif it une tempé "rature élevée.
"Enfin, on doit choisir l'exposition du midi ou couchant pour les localités exposées aux "gelées blanches, afin que le solcil ne frappe les bourgeons qu'après que la gelée a disparu.":

From the above, and from many other reasons, I am convinced that I could produce ercellent wine in this country, and I have a grand hill of a Southern aspect of nearly 300 acres
in extent, and of sufficient declivity to increase considerably the natural heat of the country. I also consider the Eastern Townships the only part of the Canadas peculiarly adapted for a rine country. The West does not sufficiently preserve the covering of snow through the Winter, and the carly Springs expose the grapes to white frosts. The advantages of seemring the successful culture of the grape are manifold.

If this country had its plans corcred with sheep, and its hills with vines, it would be the Switzerland of America, and by taking from it those ideas of bleakness and excessive cold ever associated with Canada in the minds of Europeans, it would yuickly induce an increasing immigration, and draw towards it that capital and intelligence which is necessary to render the country prosperous.

Further, in the point of view of the political economist, it would be equally advantageous.
It would furnish all Canada with wines suited to the wants of every class, and the effect of wine camot be better demoustrated than by the fact that in wine countries there has never: been found a necessity for Temperance Societies, and the most barren hills become the nost productive and most pourishing part of a country ; for wine is nourishing, and cvery bottle of it used in a family will sare a pound of bread or a pound of meat, and this I have proved myself, as I, atone time in Italy, had two hundred (200) laborers in my service, and I supplied them with winc at their meals from economy.

In the year 1800 the Emperor Napoleon appointed a Commission to enquire into the causes of the poverty of the Province of Brittany. It reported that the use ot whiskey was the cause, the inland duties then cxisting preventing the use of wine in that Province. and the extreme moisture preventing the growth of wine. The excise duties were immeliately done army with, and that Province became one of the most flourishing in France, and dankenness became unknown there.

It a later period the Belgian Govermment introduced the cultivation of wine in order to prevent this vice, and fully succeeded, and Belgium now competes successituly with Champarne for its sparkling wines, which are found to become superior as they drat closer to the Northern limits of the wine-region.

The preparation of the soil, the importation of the cuttings required for the first 10 acres (about 50,000) from Neufchatel, and the other cxpenses attendant on a new enterprise, would be difficult for me to support.

To carry it on on a smaller scale than 10 acres (the quantity one man can take care of) would be almost the same expense and would demonstrate no positive result.
[Here Mr. Courtenay stipulates for certain encouragement from Government, in cate of entire success,-and thus proceeds: -]

I Tould engage :-1st. To prepare and plant next spring a grood Vineyard of Ten Acres, which in 3 years would produce 2,000 Bottles of good Wine, and 1,000 Bottles of inferior Wine to the Acre, and, within five years, would produce nearly double the quantity, besides some Brandy.

2nd. I would engage in Ten years to prepare a Vineyard of 100 Acres, producing at least 300,000 Bottles of excellent Wines, Red, White and Sparkling, and at least 100,000 Bottles of inferior Wine.

I would require no grant or remuncration of any kind, before I fulfilled to the letter, the frst part of my engarement, when if the Wine was found to be of inferior quality or quantity to the engagement, I would have no claim either to the Grant or to any other remuncration.

If, on the contrary, it was found at the end of three gears, that I produced 20,000 bottles of superior Wine, I shall then obtain the encouragement in question, on the condition of fulfilling within the given time the second part of ny obligation.

I have twenty years experience in Grape cultivation. I have a man who has this 20 years been 'always employed in cultivating' the Vine on the Northern limits of Italy, and as high as it would grow on the Alps. His experience and my own, I think, cannot fail to be correct.

I have now to declare myself,
Your Excellency's
Yery obedient humble Servant, W. DE COURTENAY.

On the receipt of the above letter, it was submitted to Professor Hincks, for his opinion, and also to Mr. Henry Parker, of Cooksville. The following are their replies :-
(Copy.)
To Wrlliay Hutron, Esruire, Sccretary.
Burcau of AgriculturediStatistics; Qucbec

Toronto, Scpt. $24,18.99$.
My Dear Sir :-I have carcfully considered Mr. De Courtenay's paper respecting Vine culture in Canada. He evidently understands the subject practically, and has referred also to good authorities. I must say, however, that I doubt the growth of Maize being any test of a climate suiting the Vinc, and although further experiments may be desirable, I incline to the opinion that the true Vine [vitis viniferca] does not come to perfection without the glass in this climate, and that our chance of successful Grape culture lies in choosing good varieties derived from our native species.

The Ohio Vine cultivators, in what would seem a more favorable climate than ours, thought themselves obliged to adopt this plan. (I am not aware of the extent of their esperimental trials, but they were experienced German cultivators, and would, no doubt, have employed the European Grape, if possible,) and I should recommend at least careful trial beforc any quantity of European plants is procured. It is quite possible that the hardier kinds derived from American stocks might answer and yield good Vine when the European species would fail.

Mr. Dc Courtenay asks Government encouragement for his enterprise, but he seeks thisonly in case of success, and undertakes the risk himself. The doubts I venture tosuggest do not, therefore, materially affect the case. They may deserve his attention if his experience has hitherto been European, but if he can succeed in introducing Wine-making as an additional branch of Canadian industry, I should think he would be a public benefactor, and I see no - improbability of its being done with American Vines, though I fear the length of our Winter not leaving sufficient time for European Grape to come to perfection.

I beliere that the Ohio Vineyardsalready producea good article, and are improving from year to year.

> Believe me to be, dearSir,
> Very faithfully yours,

WILLIAM HINCKS:
P. S.-Mr. De C. refers to the Blue-Berry, but he should observe that it is not the same species as the European, and is of course one adapted specially to our climate.

Clair House,
Cooksville, Sep. 30, 1859.
To William Hutton, Esquire, Secretary,
Bureau of Agriculture \&Statistics, Quebec.
SIR,-Absence from home prevented my replying to your letter, dated Sept: 20.
It gives me the greatest pleasure to coincide with Mr. DeCourtenay in many respects, as regards the cultivation of Vincyards. I cannot, of course, speak with certainty of the Lower Province, but I consider it a matter of vital importance to Upper Canada.

I have proved, beyond a doubt, that immense crops of Grapes can be raised without the necessity of either burying them, as in the Crimea, or pruning low, as recommended by Mr. De Courtenay.

Last year I cut several tons off a few acres, selling some ripe, turning some of the Green Grapes into Champagne, and also making some Red Champage, as well-as some Dry Sherry. I sold 100 gallons of Champagne to one person, who speaks highly of it, and I bottled a casl for home consumption, which is universally liked.

I am strongly of opinion that age will greatly improve the fabric, from the fact that a few bottles remaining from my first Vintage are now far superior, and evidentlystill improving.

My plan of action is this: I strike any quantity of cuttings, a foot apart, and six inches in the rows ; these remain two years, requiring little trouble to keep them free from weeds. In the meantime, I trench and underdrain the ground. This done, I take the two year old plants and plant them out Spring or Autumn, encouraging their growth by frequent tillare, and the following year I receive a small return.

If large crops be required, it is necessary to be particular about the under-draining, and for the rineyard to be permanent to trench the ground, making use of whole bones, extept the land be pure sand, when trenching may be dispensed with.

I have many vines growing orer wire trellises, formed like the roof of a house, others aimply tied to stakes. I have much larger crops from the wire trellises, but the expense of rection, and growth of grass and weeds under them would prevent my making use of them on a largerscale. The spriug frost has nerer iujured my vines till this year, when that of the tith June cut off my cutire crop, leaving, however, the vines uninjured. The white frost in the Autumn certainly improves the grapes, but I have proved that one, severe enough to att of the leares, injures the fruit.

I an of opinion that cuttings procured from abroad would certainly fail, from their requing to be buried in the Winter, thus causing a large amount of labour, and injuring the rineyard. On the other hand, the native grape, the Clintou, has stood the test of the hardest Winters unharmed, while the Black Hamburg, Black Chester, Sweet Water, Isabella, Catawbaind Royall Muscadine have been all killed to the ground. The Clinton, with sugar, makes a splendid wine. The resources of Canada can never be developed uuless such men as Mr. De Courtonay miect with cvery encouragement. His eugagerient is very fair but difficult. Canda corered with rines would be very different from Canada as it now is; and how many men have had gronts of land, on which nothing has been done but felling the timber and planting potatocs.

I hare tried everything in my power to spread the vine culture, but without sufficient means; what can I do siugle-handed. I have given away plants, and tried to impress upon numbers the great advantage accruing to themselves and the country from Grape cultare, but they will not incur the first necessary expense, and they also have a fear of the want of a warket. Let the engine, however, be once set in motion, and there can be no doubt of the country being soon covered with a splendid article of commerce.

The interest I feel in the matter must be my apology for the length of this letter.

$$
\begin{aligned}
& \text { Iam, Sir, } \\
& \text { Your Obedient Servant, } \\
& \text { HENRY PARKER. }
\end{aligned}
$$

On sending a copy of Mr. Parker's letter to Professor Hincks and Mr. De Courtcnay, the foliowing replies were receired :-

University College,
Toronto, October 7, 1859.

To W. Hutron, Ese.,
Burcau of Agriculture and Statistics,
Quebec.

My Dear Sir:-I ammuch obliged to you for the copy of Mr. Parker's letter, and anglad to find that an intelligent man, of considerable practical experience, confirms ny viewas to the culture of the Vine. The Clinton Vinc, which he thinks hardiest of all that are useful, is one of the varieties from the native species. It is probable, however, that with the system of close pruning the Catawba and Isabella Grapes, also of native origin, and which are so much cultivated in Ohio, would flourish aud yield valuable produce; but Mr. Parker confrms ms rier, that trying the European Grapes in this climate would be useless.

Undoubtedly Grape culture is a desirable branch of industry to introduce, and successful enterprize in it deserves encouragement. I only desire that Mr. De Courtenay should-not, through over confidence, run into expenditure in procuring European Vines at the great risk of disappointment. I would try some of the European with the short pruning. I would also try the principal American varieties, and increase most the stock of the kind which answers
best, and in this way itte time need be lost. It would be well worth while to make immediately a plantation of the Cimiton Vine, as it may be accounted that it will succeed certain and yield a and wiue. If Catawbit ad Isabella, and other finer Americau yarieties succeed, ther inay deserve preference on further phating, and if Europan rarieties succed, thay may be boter still, but of them I cannot help entertaining great doubts.

I will entearowr, at a suitable season, if Tlive, to visit Mr. Parker's Vineyard.
Beliere me to be, denrsir,
Very truly yours,
Willian hivens.
Valide Courtenay,
Bury, October 8, 1859.

> Soos, isuralu of Acriculturc and Statistics, evalue.

Mir Mear She,-i have just reswived your faror of the 4th instant, and am indeed yatulul to you ur the copy of Mr. Parker's most interestiag communication. The information le wires as to the Clinton Grape is most importain. I was aware that the most part of the viher Grapes he mentions could not succed; but there are two kinds of Burgundy Grapes wown in lecgiua that 1 ann certain would answer by being grafted on the Clinton in the way Incation.-"Grife ou fente Couture."

Thare no objection to your makiag what use you please of my letters, and, again thanking you for the interest ad kinducs you have shown me,

> I remain, my dear sir, $$
\begin{array}{l}\text { Very sincerely Xours, } \\ \text { W. DE COURTENAY. }\end{array}
$$

P. S.-I forent in say that I think Mr. Parker's plan of transplantiag Vines is a bad one, nor do I adnit that grod wine can ever be crown on any other soil than a sandy or gravelly ope. The art of producing sood wine is in the grafting and pruning, and if you think Mr. I'arker would noi think it a iberty, T would address him in detail on the subject of his able leter.

There has been a fuither corrcspondence with Mr. Dc Courtenay on the cultivation of the Silk Worm in Canada which may be found interesting and worthy of attention. His letters wiil speak for themsolves. The lirst was addessed to the Hon A. T. Gralt, and tranferred ly him to this Departmont.
(Cops.)

Val De Courtenay,
Thury, August 8, 1859.

The Fin. A. T. irant,
dec. ©e. Ece.
\because My Dear Sir,-I took the liberty of adderssing you a few days since througli Mr. "Machiut. Siuce then I hare been so fortunate as to make a remarkable discovery, and "one that in itself alune will insure the prosperity of the Country. It is that the Bass wood "so called, is a specics of "Morus Albu", Genus "Multiciule" and is the finest kind I ever "saw, and contains moresilk thau any kind I am acquainted with. My Italian Servant, who is "a first ratc Silk grower, came runving howe a few days ago to inform me that in a distant "part of my Woods he had discovered two magnificiont Silik Trees on a small clearing. On "examination I found they were a second growth of Basswood, and by proving them as we "are in the habit of doing, we found them to contain a great abundance of Silk, and to be "a very superior raricty of the "Morus Alba," "Muiti caule." I have some valuable "treatises on the silkworm, from the plates of which I find that the leaf is exactly that of " the "Morus Nigra," the frinit of the "Morus Alba," the taste, colour and vigour of growth "all belong to the "Muiti caule." It remains to be proved if the Silk Worm will prosper «in this climate. In Italy it will not do so in the low and too warm plains, but both there "a and in France it is known to always succeed where the Turkey can be raised without trouble.
"Frow this and many other indications both myself and my Italian Serrants are of opinion "that there is no doubt whatever of being able next Spring to raise any quantity of Silk in "this country. In addressing myself to so distinguished a Statesman, Inced not expatiate "on the immeuse advantages of such a discovery.
"Before concluding, however, I must remark that it is most important that if the \because Government should intend to procure some Silk Worm Seed, that it should be imported "before the Winter. In Spring the seed does not well bear changing. The best seed for "this country should be obtained from Constantinople, from Belgium, and from Russia. A
"little of each seed would be to be recommended."
"I always found the Italian Seed inferior, and I have always made it a point to obtain "ny own secd from Constantinople, where, however, there are two kinds, one of them "producing a coarser and therefore an inferior kind of Silk."
". Myself and servants will be happy, as far as it may be in my power, to instruct the "people in the cultiration, which is exceedingly simple. I have with me here an Italian "Fenuie servant, who always carried it on for me in Italy; the men of course providing " her with leaves.

> "I have the houor to remain, Sir, " Your very faithful servant, W. De COURTENAY.
\because B. B.-Sinee writiag this letter, I hare found another specics of Basswood or Moras, " buth rood."

Upon reccipt of this letter, it was inclosed to Professor Hiacks, of University College, aking lis opinion on the subject. The following is Mr. Hincks's reply:-
(Copy.)
Toronto, Scpt. 12th, 1859.
W. Eurtux, Esq., Secretary
Bureau of Agriculture and Statistics, Quebec.
My Dear Sir, - I have given my best attention to the subject of Mr. De Courtenay's letter, but unless I had before me specimens of the Tree or Treos referred to by him, I whould have no right to speak with confidence. My belicf, however, is that he must have been deceived by the resemblance of form of the leaf of the Basswood, (which is the American Lime or Linden,) especially the shoots after the tree has been cut down, to the leaves of the Mulberry. The method referred to of testing the Silk-producing quality of a tree which Mr. De Courtenay states to have been employed, is unknown to me, and I can form no opiniug respecting its efficiency, but I will state facts in relation to the subject which will enable you to form as good an opinion as I can on the probabilities of the case. The genus Morus Mulberry, contains various species, several of which are valued as the best food for the Silk Worm. Morus Nigra, the fruit-bearing Mulberry, though often used for tecding Silk Worms, docs not produce grood silk, is not carly in leaf, and is oflittle value in this connection. Morus Rubra, the American Mulberry, is still less valuable for silk culture. It grows in New England, but I have not heard of it in Canada. Morus Alba, the white Mulberry, has long been cultivated in Southern Europe as food for Silk Worms, and :uswers the purpose well. It is so late in producing its leaves in England, and so delicate that all attempts at silk culture dependent upon it have entirely failed. It was largely tried some years ago in Philadelphia, and after much expense proved afailure. Morus Multicaulis is a distinct species, said to come from the Philippine Islands, introduced into England a few years ago, and much valued for its large and copious foliage, its easy propagation, and eminent fitness for the Sill: Worm, as well as its earlier leaing. By using this species an English lady has succeeded in profitably raising silk in the south of England. I much fear our serere Winters and late Springs would be fatal to it. This species cannot be a native of Canada. The reason of species of Mulberry suiting the Silk Worm, and favoring its goodness of silk, is the presence of Caoutchoue (India Rubber), or some similar substance, which is found more or less in all the sections of the great Nettle family, to which the Mulberry belongs. This substance is not, so far as I know, present in the lime or Basswood

Trecs, but they possess mucilaginous qualities, similar to what are found in their near rela-: tious the Mallows, which might easily be mistaken for the gummy character given by the Caoutchoue.

I cannot think that Basswood would really suit Silk Worms for food, and if I did, I fear our harsh climate would prevent suceess in this branch of industry. I would not discourage any trial which a public spirited individual might be disposed to make with the assistance of those who have a practical accuaintance with silk culture, but it is manifest, from what I have stated, that there is no great prospect of success, and I fear that the suggess. tion originates in the external resemblance of plants, not really alike in qualities. If could sec a specimen of the Tree referred to, especially one showing the fruit, I could positively say whether the Tree is a Mullberry or a truc Basswood, but as it is, I do not feel much doubt.

> Believe me to be, Dear Sir, Very truly yours, WILLIAM HINCKS.
P. S.-Since writing the above, I hare been favored with your second note, and the enclosed extract, which I now also return. I camnot say that anything here added alters my prerious belief on the subject. In this communication Mr. De Courtenay speaks of the "Bass Tree" asa remarkable and beautiful species of Silk Mulberry." Now, if his Tree is really the Bass Tree, or American Lime Tree, it undoubtedly is no Mulberry, nor in any way related to Mulberrics, and is very umlikely to serve as food forSilk Worms, though, of course, if from uny indications he thinks it probable, it would be safest to try.

Mr. De C. endearours to prove that our climate must be favourable for winc. Repeated and varied experience has decided that a true or European grape will not come to perfection in the open air in this country; and crea in the fine climate of Southern Ohio, the wine makers are obliged to roly on varictics obtained from native rines, as the Catawba or Isabella. They cannot cultirate the raricties estecmed in Europe.

A copy of this letter was sent to Mr. DeCourtenay, who did not agree with Mr. Hincks in his opinion, and subsequeatly, after further consideration and curiuiry, addressed the following to the Department:-

> (Copy.)

Val De Courtenay,
Bury, Oct. 27, 1859.

To Wililam Hutron, Esquire,
Secretary,
Burc:u of Agriculture \&Statistics, Quebec.
My Dear Sir,-Some professors in Botany have been extremely irritated at my appearing to call in question their classification of the Basswood Tree as an American Lime or Linden.

I therefore beg leare to expose to you my views on this most important subject, and that may have some weight when you consider that I have been for many gears a practical Agriculturist and Silk Grower, and that the Italian servants I brought over to this country have from childhood been employed in the cultiration of Silk.

We discovered that: the sccond growth of the Basswood Tree was the fac-simile of the "Morus Multi caule," and presented the two varieties corresponding to the "Nigra" and "Alba" of the Mulberry. The leaf and bark of those varieties vary considerably from cach other: the leares of the "Alba" are longer, narrower, of a lighter green, and of a more acid flavour than the "Nigri.." A yellow dye produced from the roots, is of a deeper and richer hue in the "Nigra." These peculiarities are exactly the same in the corresponding varieties of the Bass Tree-the formation of the roots are the same-the extreme regularity of the branches the same-the taste of the leaves and their peculiar position on the stems is the same, and the external appearance of the tree is exactly the same.
. Under those circumstances it will not surprise you that, being no Botanists, we considered the Basswood to be a species of fruitless Mulberry, as the Wild Mulberry
produces no fruit; and we could discover none on the second growth of the Bass: wood, though some of the trees were more than twenty years of age.

We have since then discovered fruit on forest Bass trees resembling the Lime in appearance, though of quite a different flavor. That of the European Lime is to me quite familiar, having often used its infusion as a sodorific.
I have not the least pretensions to profound Botanical science, but, examining the question in a practical point of view, I was convinced that the Basswood leives were suited to the mants of the Silkworm, and this, I have since been able to ascertain, is correct, though the latencss of the season has prevented the investigation being carried on as far as the production of Silk. I have, however, no doubt but that I shall be able, next Spring, to produce the best qualities of Silk from the leaves of the Basswood tree, which I must persist in declaring as exactly resembling the "Morus Multi caule," and as baving nothing but the resemblance of the fruit in common with the European Lime Tree.

Silk can be produced from the leaves of the Currant Bush, but that shrub cannot support the severe pruning out of season, and the stripping of its leaves. The Bass Tree will support any hacking and cutting out of season, and this peculiarity is known to every moodsman.

The discovery that the Basswood leaves may be uscd as a substitute for those of the Mulberry, will, I consider, create quite a revolution in the Silk Trade: the Basswood being protected from the Spring frosts from its tardy vegetation, and from very severe Winter frosts from its vigorous and hardy nature. I am, however, of opinion that neither the Base Tree or any other tree can produce good Silk where the Summer heat does not surpass at least 2000 degrees (centigrade), accompanied by a pure atmosphere as sufficient heat and strong light is absolutely necessary, so that sufficient matter or fibre may be condensed in the Sill-producing plants.

Theorists and Botanical Professors declare that the long and harsh Winters of this country would render the production of Silk or Wine impossible.

Allow me positively to declare, as a practical man, that the length and severity of the Winter has nothing whatever to do with the production of either Silk or Wine.

Two thousand six hundred degrees (centigrade) of Summer heat is required for the successful and economical production of Wine; Silk, Indian Corn, and Hemp.

This part of the country produces Indian Corn in abundance.
Belgium produces Silk and Wine, and cannot produce Indian Coru.
It is further my opinion that the Winter here is neither as long or as severe (for all practical purposes) as that of Northern Italy, where Silk and Wine are grown in abundance. I have lived there for many years, and have always had from fifty to one hundred head of horned cattle, which I have been ever obliged to keep constantly housed from the fifteenth of October to the fifteenth of May.

Here, my cattle are now in their pastures, and will certainly return there before the first of May.

Believe me tó remain,
My dear friend,
Very faithfully yours,
W. De COURTENAY.

$$
\begin{aligned}
& \text { To William Hutron, Esquire, } \\
& \text { Secretary, } \\
& \text { Bureau of Agriculture \& Statistics, } \\
& \text { Quebec. }
\end{aligned}
$$

Val De Courtenay,

Bury, C. E., Jan. 16, 1860.

Dear Sir,-I Thave received the Silkworm Eggsin yood order, and haveno doubt but that this Spring I shall be able to furnish you with some fair specimens of Silk made of the Basswood leaf. The leaves that I forwarded to Italy arrived in good order, and were much approved of, and although much dryer than leaves generally given to the worms, were eaten by them with avidity:

If the Minister of Agriculture would allow me the expenses, I would be happy to prepare
ten acres of vineyard this Spriug, and I have every certainty of suceceding fully in producing caccilent Wine, which, I need not inform you, would be the fortune of this part of the country.

If you should think it advisable, I would memorialize the Honourable the Minister of Agriculture, and our hemesentative would present it for his consideration.

I take this oceasion of assuring sou of my high consideration, and remain,
My dearsir,
Yours faithfully.
W. De COUHTENAY.

FREE (GRINT ROADS.

Believing that a correct official statement of the condition, progress, and prospects of the Settlers on the Fre Grant Roads is a matter of deep interest to the Canadian public, and of great importance as cahioiting the successful working of the Free Grant system, and the material walue to the Colony aceruing thereupon, it has been thought desirable to put on record the more prominent features of the official reports which have beer furnished by the several Superintendents of these roads, more especially as these returns, in every case, exhibit a larger acreable walue of produce than older settled parts of the country hare realized-arising chicfy from the circumstences that the products of the farms in these lumbering regions have borne a much higher value there than even in the frontier towns, or what are gencrally considered the best markets of the country. The first is from Mr. French, the agent on the Ottawa and Opeongo Road.

Extract from Report ly, M. T. S. Freneh, as to the settement of the Free Grant Lands on the Ottmen and Opeonger Rocells.

OTTAWA AND OPEONGO ROAD AGENCY.

Sebastopol, Th January, 1860.
"I have the honor to submit for your information a complete list of the Free Grant Settlers on the Ottawa and Opeongo Roads up to the 31st December, 1859; showing the particular lots occupied, the periods at which they were severally taken up, the number of acres cleared and cultivated upon each, together with the actual produce which each settler has saised upon his grant during the past year.

You will perceive that the list now sent contains the names of tro hundred and thirtyfive settlers, of which mumber 51 have been located during the year 1859 ; and also, that upon the portion of the road that has been completed, there is scarcely a lot unoccupied. With a passable Summer road, distance does not seem to deter settlers, and if this roadi was once finished to Lake Opeongo, many are of opinion that ere two years there would be a thriving settlement on the fertile banks of that now remote but splendid piece of water.

In amalyzing the list of settlers, it will be found to consist of :

234
A church has been crected upon one of the lots. The foregoing classification exhibits a not undesirable blending of persons of various nationalities upon Canadian soil; and the presence of Poles and Germans forms a new feature in the progress of the settlement.

The resident agent personally visited every farm, and after ciutioning the settlers against giving an over estimate of thair crops, (which, however, they are not disposed to do,)
obtained the following return of each man's crops. From this it would appear that there have been 2,016 acres of the Free Grants cleared up to the 31st December, 1859; that there were 1,090 acres actually cropped, while 87 acres are now sown with Fall wheat.

Upon the 1,090 acres cropped there were raised :

Making the total value of the crops for 1859
\$35,184 66cts
And showing the average value of the produce of each acre cropped to be $\$ 32.27$, nearly $\$ 8$ per acre above that of last year. In the above return the important items of milk and butter, of which large quantities were produced, are not included ; neither are the sawed lumber, shingles, venison or furs taken into account, and it may be remarked that the corn suffered severely from the unusually late frosts in spring.

Some four years ago there were but six settlers in Sebastopol, while Brudenell could only boast of two. Sebastopol now contains close upon a hundred, while Brudenell can count nearly double that number, and the great majority of them are men with families. Sebastopol and another new Township (Griffith) adjoining, have now been organized for municipal purposes, and will henceforth be represented by their Recve in the County Council. Brudenell, not being within the bounds of any defined county, has not yet been organized.

Mr. French also remarks that, apart from the natural increase of the settlers' travel upon the road, the travel upon it during the past year far surpassed that of any former one; and that in one day more than fifty double teams passed his residence, all heavily laden with supplies for the lumber shanties.

ADDINGTON ROAD.

To W. Hutton, Esq.,

Secretary, Bureau of Agr. and Stats., Quebec.

Sir,-During the year ending the 31st December, 1859, there has been an increase of 117 in the population on the Free Grant Lots on the Addington Road ; $406 \frac{1}{2}$ ac:es have been chopped, 410 acres cleared, 119 seeded to grass, 10 bushels of rye and 4 of Fal Wheat sown, and 1517 apple trees planted out.

The length of the Addington Road is 56 miles from the Clare. River, in the Township of Sheffield, to the Madawaska River; and from thence, in an casterly direction, to Addington and Renfrew Road is $22 \frac{1}{2}$ miles to where it intersects the Opeongo Road, of whi there are $17 \frac{3}{4}$ miles completed, leaving $4 \frac{3}{4}$ miles to be made. The continuation of the Addington Road, north of the Madawaska River, runs north-westerly, and intersects the branch of the Hastings Road, which connects with the Opeongo Road, in the Township of Brudenell, about 4 miles from its junction; there are some 4 miles of this road constructed from the Madawaska bridge westwards.

There are now cleared on the Addington Road 1,008 acres, of which $213 \frac{1}{4}$ are laid
down in grass; the remainder is ready for Spring cropping ; the number of the population is 699 , and the nationality of the settlers.

Born in Canada	West	-			-	89
©	East - -				-	18
"، ${ }^{6}$	United States, A. -	-	-			11
"	England	-	-	-		$\underline{24}$
" "	Treland	-	-	-	-	26
، "	Scotland	-		-	-	4
" "	Prussia	-	-	-	-	4
، . "	Denmark	-	-	-	-	1
"	Cape Breton	-	-	-	-	1

The Settlers have 35 yoke of Oxen; 29 Horses; 75 Cows; 25 Sheep; and a goodly number of young Cattle and Swine. They raised and manufactured the following articles, in 1859, viz.; 16,158 lbs of Maple Sugar; 748 gallons of Molasses; 893 gallons of Vinegar; $\$ 52,000$ worth of Cooper work ; 164,000 fect of Sawed Lumber ; 291,000 of Shingles; 103 Deer killed ; $\$ 416$ worth of Furs taken; 127 yds. of Flannel; 67 yards of fulled Cloth were made ; $38 \frac{1}{2}$ tons of Artificial and 281 tons of natural Hay cut; and 472 bush. of Winter Wheat; 158 of Ryc; 333 of Peas; 348 of Barlcy ; 2,432 of Spring Wheat ; 4,455 of Oats; 515 of Corn; 31 of Buck Wheat; 11,656 of Potatoes; 11,075 of Turnips; 733 brls. of Potash were made and $11,125 \mathrm{lbs}$ of Beef, and $13,025 \mathrm{lbs}$ of Pork slaughtered; amounting in the aggregate, as per value of cash article in the statement, to the sum of 822,546-85.

The high price that provisions brought during the first three quarters of the year, operated against the increase of the settlement; Flour ranged from $\$ 10$ to $\$ 11$ for several months, and that of an inferior grade ; Pork, and other articles of consumption, were proportionate, and this prevented settlers from moving in their families, and another reason which prevented several settlers from locating, was the destruction of the Madawaska Bridge; those who proposed settling in the Township of Denbigh, expected to obtain supplies from the settlement, down the River; and from Renfrew, the loss of the Bridge cut off all communication, for there is no road on the South side of the Madawaski River, and having no crafts for water communication, they were compelled to abandon the settlement, until a more favorable opportunity ; since harvest, several families have gone on gift lots, in Denbigh, and several othershave prepared Shanties, and will move in during the winter.

The frost in June cut off all forward grain and grass, as well as corn, beans and garden vegetables; the winter grainstooled out, and bid fair to be an average crop, but it was so late thit the rust struck it, and rendered it totally useless, even for fodder. All late crops, such as corn and buckwheat, were caught by the early frosts of September, and totally ruined: The destruction of the winter grain crop in June, last, has deterred the settlers from sowing fall grain, so that but few bushels were sown.

Yet with all the disasters which befel the settlement, there is no one discouraged, and through the whole length of the settlement, all feel sanguine that, if blessed with health, they will succeed. No agues or fevers, so prevalent in new settlements in the West, are known on the Addington Koad; pure water abounds everywhere, and good feeling pervades the whole settlement.

I have the honor to be, Sir,
Your most obedt. servant, EBENFEZER PERRY.

BOBCAYGEON ROAD.

Mr. Richard Hughes, the resident Agent on this road, Reports as to the state of the Free Grants, to the 31st December, 1859 ; shewing the number of Lots located, the number of actual settlers, number of persons in each family, number of acres under crop, number of zeres cleared, Houses, Barns and Stables built, \&c.

$$
V_{\mathrm{TL}}:- \text { No. of Lots located }-\quad-\quad-\quad-195
$$

No. of actual settlers - - - - 168
No. of persons in families - - - - 697

No of acres under crop, 371, as follows:--

The balance of 371 acres was planted with vegetables, which although of great benefit io the settler, may not be worthy of being included in a Report.

Three Post Offices have been opened in the settlement during the past year, viz : at Silver Lake, in Galway, 9 miles-at Kimmount, in Somerville, 18 miles-and at the Gull River, 30 miles from Bobcaygeon.

The Bobcaygeon Road is completed to a distance of 36 miles from Bobcaygeon and a rinter road is made 3 miles further to the rear concession of Minden, where the settlers moving in to the Eastward have made a winter road for themselves on the boundary between Minden and Stanhope, about 3 miles long.

At this point a grood location has been found for a bridge between Little and Big Bushkonk Lakes, making a good opening for the road to run eastward to the Hastings Road. A bridge has been built, where the road crosses the Gull River, which cost about six hundred dollars.

THE HASTINGS ROAD.

Mr. Robert Bird reports the length of this road from the Township of Madoc to the Peterson Opeongo Branch to be 51 miles, and from the said branch-road north 15 miles. nuking the whole of the Hastings Road 66 miles long. The length of the Pcterson Road fromi the Madawaskia River where the bridge is now building up to the Hastings Road; is 21 miles, and from the Hastings Road west 10 miles. Making 31 miles of the Peterson-line of roid ; and making in all 97 miles.

The 51 miles of the Hastings Road up to the branch-road is now all good except two miles joining the branch-road, the amount appropriated for the improvement of the said road: not being sufficient to complete it. And for this purpose $£ 30$ more will be required. The ${ }^{15}$ miles north of Peterson's line is not so good as the line itself. Were these two miles imfroved, any ordinary team could take twenty hundred weight to any place on the Peterson line in the winter, and fifteen hundred weight in the summer, and the County Council has so improved the four miles in the rear of Madoc that the settlers cannot complain of the roads.

The improvement of the settlement up to the Peterson-line is greater than any person could antici pate for the time and the settlers seem to be contented, and to have a fair prospect tor the future. Ithink there must be at leastsix hundred fanilics in the whole. The Township of 'Tudor has been recently formed into a municipality. I never saw better crops of spriug Wheat, Oats, Potatoes and Turnips, than in this Township. The Fall Wheat was
injured by the rust, but the wheat midge has only made its appearance a little on the South end of the road. There is a saw mill five miles on the road and another on the outletof Lamab's Lake, 31 niles from its commencement, where it is expected that a Grist Mill will be shortly erected. There are three Stores on the line, and very good accommodation throughout for travellers.

It will be very necessary to complete the road up to the Bobcaygeon Road, as there will then be a through line of road from the city of Ottawa to Peterborough, and as we go West the land appears to be better adapted for farming.

Hastings Road Agency,
Madoc, January 9th, 1860.

Mr. M. P. Hayes sends a Report in detail of the progress of settlement on this Road -he says that-
"The number of Settlers in possession is 306 , of whom 78 were located during the year 1859-of the latter there were-

Natives of	England,	16
$"$	Ircland,	28
".	Canada,	16
".	Scotland,	11
".	Germany,	6
"	United States,	1

Of the whole number of Settlers

43 are natives of England,			
139	"	"	Ireland,
45	"	"	Scotland,
46	"	"	Canada,
18	"	"	Germany,
4	"	"	France,
1	"	"	Nova Scotia,
1	'	"	Now Jersey,
1	،	"	New Brunswick,
8	"	،	Orkney,
5	"	"	United States.

306

The total population of the Road is 728 souls;-the total number of acres cleared and under cultivation during the year, was 1657, of which 572 were cleared in 1859. There were also 424 acres chopped ready for burning, shewing the large number of 996 acres reclaimed during the year, and the total of 2081 acres cleared and chopped on the road.

The total number of buildings are 252, including two saw mills, three stores, tive houses of public entertainment, and one school house. Of these, 65 were erected in 1850 , many of which are a superior class of buildings, evincing a prosperous condition and confidence of the future on the part of the Scttlers. The increase in the live Stock owned by Settlers is also a very satisfactory indication of prosperity. The numbers arc-Horned Cattle, 226; Hogs, 120; Shecp, 26 ; Horses, 34 , showing an addition of more than 100 per cent to the stock of 1858.

The following is a synopsis of the crops and industrial products of the year:-

Wheat,	bushels,	4,350	(a)	\$ $1.00=$	84,350.00
Oats,	,	4,975	(a)	$00.40=$	1,990.00
Teas,	"	292	(a)	$00.60=$	175.20
Rye and Barley,	"	$\because 79$	(a)	00:60 $=$	167.40
Potatoes,	"	23,716	(a)	$00.40=$	9,486.40
Indian Corn,	"	373	(a)	$00.50=$	186.50
Turnips,	"	14,066	(a)	$00.30=$	$4,219.80$
Hay, 101	tons		(0)	$20.00=$	2,020,00

Maple Sugar,	tbs.	11,994@	8d. $=$	961.52
Potash,	cwt.	490 (a)	$6.00=$	2,949.08
Shingles,	M.	130 (a)	$1.25=$	162.50
Sawn Lumber;	M.	125 (a)	$8.00=$	1,000.00
Value of the year's Products................ \$27,659.32				
Increase over the value of last year'sProducts \& $5,851.00$				

By adding the value of the labour expended during the year in clearing land and the erection of buildings to the value of the products as above, we are cnabled to form a pretty accurate estimate of the productive value of the whole labour expended in the Settlement for the purpose of comparison with other branches of industry:-

$$
\begin{aligned}
& \text { Value of } 65 \text { buildings erected in } 1859 \text { (a) } 50=3,550 \\
& \text { Value of other Products as above..................... 27,659 } \\
& \text { Total realized value of year's labour......... } \$ 41,465
\end{aligned}
$$

As many of the settlers are obliged to work outside for a considerable portion of their time, we cannot estimate the number who have worked steadily on their lots throughout the year at more than two-thirds of the whole number, or 200 men, and of these fully onehadf are inexperienced hands at "bush"-work; and others expended a large portion of their time in shooting, fishing, and other pursuits, the products of which, Mr. Hayes remarks, are not included in his Estimate. With all these drawbacks, however, it will be found that the value of the year's work gives a realized product of $\$ 207$ per man, realized also in the most solid and productive shape possible for the interests of the country at large. If to this realized value be added the increase in value and accessibility of the public domain in the neighborhood of the grants, it is evident that the same amount of labor could hardly be expended in a more profitable channel.

The agricultural season of 1859 was one of many vicissitudes all over the Province, and from all I can learn, this Settlement has been as much favored, on the whole, as any part of Canada. The severe frosts of last June, which were general all over the Northern Contincnt, were notso seriously injurious to the crops in this settlewent as might have been expected from our comparatively high latitude. The Winter Wheat was injured, and suffered subsecfuently, in many cases, from rust, so as to be on the whole a short crop. Spring Wheat surcceded well, particularly in the variety called "Fyfe Wheat," which seems to be admirably adapted to our soil and climate. The crops of this grain averaged 22 bushels to the acre. It wass in the early part of May, and was free from fly and rust. Potatoes were planted largely, and pronised well in the early part of the season, but were thrown back tully a month by the June frosts. This occasioned many to be lost from the lateness of their maturity in the fall, but on the whole the quantity is satisfactory and quality good. Hay wis a very short crop all over this part of the Province, but those who have any to spare are eetting so high it price from the lumberers that the deficiency is almost compensated. Oits and Turnips werc also largely planted, and gave full returns; the former, particularly, has turned outia most profitable crop, as the settlers on the upper part of the road are now selling for cash at their own dours, 10 cents a bushel higher than my estimate. The scason for Sugar-naking was very favorable, aud was largely availed of. Indian Corn was almust a complete failure, owing chicfly to the frosts in Junc. This grain, however, does nut seem to be well adipted to our climate, and although it may be occasionally successful, I do not think it will ever be a staple product. The result of three years' experience leads me to think that the attention of settlers will be most profitably and successfully directed to the raising of Oats, Hay, and Green Crops for sale and fodder, and a sufficient quantity of Wheat to supply their ovn breadstuffs. These, with lurge crops of Potatoes, can be relied on with as much certainty as attends the farming operations of any part of the country:

The drive and traffic on the Road has becn considerably larger than in any previous yeur. This is attributable chiefly to the improvements of the Road, effected in the formation of the road; during last summer, by the Bureau of Agriculture.

The Lumber Merchants operating on Egan's Creck, the York branch of the Madawaska, and Papineau Creek, are getting the chief part of their supplics over the Hasting's Road this Winter; and the sleigh track from Madoc to the intersection of the branch roads, a distance of seventy miles, is as well broken as any thoroughfare in the country.

An excellent Saw Mill was erected last Summer by Mr. Wm. Robinson on Lot No 35, East of the Road, Township of Dungaroon, and has been in active operation for the last three months, to the grcat advantage and accommodation of the Settlement.

The number of barrels of Potash sold in this village by residents on the Hastings Road und the neighbouring townships in ny Agency, during 1859, was 428 ; from this, deducting 100 produced on the Road, we have $3 \geq 8$ barrels manufactured in the Townships;these, at an average value of $\$ 30$, amount to $\$ 9, \mathrm{~S} 40$. The other products of the Townships do not bear so large a proportion to those of the Road as exhibited in this item, the manufacture of potash being stimulated by proximity to a cash market, but they may be safely estimated as equal to those of the Road.

$$
\begin{array}{rr}
\text { Exclusive of this article; or..... } & \$ 2,619 \\
\text { Add } 328 \text { barrels of Potash..... } & 9,840 \\
\text { Total value of Road Products...... } & -27,659 \\
\hline & \$ 62,118
\end{array}
$$

making the aggregate realized produst of the labor expended in the Settlement, sixty-two thousand one hundred and eighteen dollars."

Mr. Hayes adds that the Settlement has been alnost entirely free from crime of any kind during the year-two or three trifling misdemeanours making up the whole criminal calendar.

PATENT OFFICE

The business in this Departuent is steadily increasing; the Fees for Patents and Assignments of Patent, amounting during the past year to $\$ 2,52775$, being an increase of \$42. 75 , as compared with 1858.

mMIIGRATION.

The 6ith sec: of 22 Vict: cap. 32, above referred to, enjoins the encouragement of Immigration from other countries. On this head the Minister of Agriculture has been extremely careful under the present circumstances of the country, not to induce the immigration of parties for whose industry there does not appear at present to be any demand; but to those who are able and willing to settle upon land, every possible encouragement has been afforded by the publication and extensive distribution of Pamphlets in the German and Norwegian languages as well as the Euglish, and also by the distribution of the valuable map of Canada, lately published by the Crown Land Departuent, which contains particulars of the Free Grant Roads specially marked thereon, so as to attract the attention of intending settlers to those parts of the back country which have been opened out and made casily accessible. The map also contains coloured designations of lands for sale en block, and terms of sale, dec., and also valuable statistics as to Fisheries, Mincrals, Population, \&ce, dce. Very many of these maps have been seut to Germany and Norway, under the care of competent persons well acciuainted with Canada, and able to give the most reliable information on every subject connected with the Province and the prospects of settlerstherein. Special instructions have been given to these gentlemen or to the classes of persons to be encouraged to come to the Colony, and those who, under present circumstances, should be discouraged, and they are put in full possession of the most prominent particulars regarding the chief resources of the country-its mincs, minerals, fisheries, climate, facilities of transit, routes, distances, \&ce., and such other information as is peculiarly desirable that intending Enigrants should passess.

A second edition of the valuable pamphlet called "Canada," has been published for gratuitous distribution with most important additions, and steps are being taken to disseminate it very widely in Great Britain, ulong with the Map. It is hoped that these two publications when extensively circulated will not ouly dispel much of the gross ignorance which exists in Europe with regard to Canada, but will also afford every possible information rogarding this Colony which intending Emigrants may desire to procure.

The Minister has also thought it advisable to open an office in Liverpool, for the diffusion of information ab it Canada to all who may be desirous of acquiring it,-availing himself for this purpose of ine services of Mr. Hawke, Emigration Agent, Toronto, who was despatched to Great Britain last ycar, to make enquiries into the subject of Emigration.
[For the Honorable the Minister of Agriculture] WILLIAM HUTTON, Secretary. $\left.\begin{array}{c}\text { The Honorable Joirs Ross, } \\ \text { Minister of Agriculture, } \\ \text { \&c., \&c., \&c., } \\ \text { Quebec. }\end{array}\right\}$

Willowdale, 29th February, 1860.
Sin,-I have now the honor to submit the following remarks on the operations on the ruads in Canada West, conducted under my superintendence, during the year 1859, viz:

1.-ROADS MADE FROM TMPROVEMENT FUND AND COLONIZATION GRANTS.

(1.) Elora and Saugeen Road.

In my report of 27 th January, 1859, I stated that the whole of this road had been made as originally intended, but at same time pointed out certain hills at Serpent River, between Arran and Saugeen, and one a little to the north of the village of Paisley, which stood greatly in need of grading. This was urgently applied for by the settlers, and, under instructions given to me in March last, I let out a contract for the work and hare had the hills reduced to an easy grade. The road has been thereby greatly improved and traffic facilitated.

It would be of great adrantage to the road were drains made along it in the low around, south of the Durham Road, to carry away the surface water and keep the road in a drier condition. But there seems much indisposition on the part of the township through or along which this and other roads opened by government are curried, to apply statute labour to the improvement of them, or even to keep them in such a state of repair as is essential to enable them to be travelled over.

2. Southampton and Goderich Road.

(1.) Winter Road.

The portion of this road in the township of Aslificld, contracted for by James Dalton, not having been completed agreeably to specification, he assigned his interest in the contract to another, who undertook to finish it as mentioned in my report of last year; but very little had been done towards this when the portion of the road was taken possession of by the municipal authorities for the purpose of making it under their own direction and at their own cost. I thereupon immediately stopped the work, and arranged to pay for what had actually been performed, less what it would cost to make the work conform to specificition; but some claims made by a partner of Dalton has hitherto prevented the settlement arrived at being carried out.

The bridge over Penatengore river and approaches, reserved as formerly reported, till the road should be made a summer road, were let last season. The bridge and south proach are now completed, and the north approach also is very nearly finished.

(2.) Summer Roarl.

In April last, contracts were given out to the extent of the appropriation of $\$ 6000$ for making the summer road. At that time much privation and distress were reported to prevail along the line of road, and to give employment to as many of the needy setthers as possible, the work was let in sections of $\frac{5}{8}$ of a mile each. In this way a great many were enabled to make a little money, and relieve themselves of the severe pressure upon them. Most of the contracts have now been completed, and those remaining will be proceeded with as soon as the ground admits of operations being resumed.

The whole of the road lying in the County of Bruce has now been cleared of timber to the width of 44 fect, and chopped to the width of 66 fect. A considerable amount of crosswaying has been laid; cxtensive ditching on both sides of the road has also been effected in the low grounds where this could be done to advantage, and the stumps on the space between the ditches grubbed and removed. A great improvement has this been made; but the amount of the appropriations was quite inadequate to the completion: of a good summer road, notwithstanding that the contracts were given out at rates so very low as enabled at least a third more work to be done than could have been effected a few years ago for the same sum. To make this a really good summer road, a farther expenditure of from $\$ 4000$ to $\$ 6000$ would still be necessary.

3. Woolwich and Huron Roab.

This road has now been completed and opened for travel from its terminus at the west side of Woolwich to the bridge over the river Maitland, at Zetland, between Turnberry and Wawanosh, and the following bridges have also been finished since the date of my last report:

1	Bridge over the Maithat River at Mapleton iu Wallace.	
2	Do	do
3	between Grey and Flowick.	
4	Do	do
4	at Morris Bank, in Morris.	
5	Do	do
6	Do	at Bluevale in Turnberry.
6	do	at Wingham in do.

7 Do over Eighteen Mile river, between Ashfield and Huron.
These bridges were all under contract prior to the date of last report; and the following, which were contracted for subsequent to that date, bave also been completed.
8. Bridge over Fast Branch of Nine Mile river, between Kinloss and Wawanosh.
9. Do over West Branch do do.

With reference to bridge No. 4, at Bluevale, for which Mr. Gabriel Hawke was contractor, it is proper to mention that having himself, or by ais sub-contractor, disregarded the specification and bill of material, and built the bridge disconform thereto, as regards the kind and size of timber as well as workmanship of it, and the framing and putting together of the parts ; I declined to pay him the price to which he would have been entitled, had he properly observed his contract. The price in such event payable to him would have been $\$ 91674$, but, for the reason referred to, I deducted from that price 330813 , and gave Mr. Hawke the choice of taking what remained unpaid of the bilance of $\$ 60861$ as in full of his contract, or of making the work conform to specification, \&c. He preferred taking the anount offered ; and on 4th March last granted receipt for $\$ 27860$ in full of the contract.

The road between the east boundary of Ashfield and the Southampton and Goderich roud, maly be reported as completed, there being now only a few drains to be cut to carry off the surface water.
ithat portion between the Sonthampton and Goderich road and Lake Huron is still unfinished. The party to whom it was let failed to complete his contract, and it was last fall given to another, whose operations were brought to a close by the wet weather which set in soon after they were commenced. As soon as the ground admits of the work being resumed, the road will be completed.

Subsequent to the date of my last report, a contract was given out for that portion of the road lying between the river Maitland, at Zetland, and the north east corner of Ashfield. The works are now well advanced and will be completed early in the spring.:

It will thus be obscrved that this important Road is now nearly completed, between its termini at Woolwich and Lake Huron, and it is at present travelled throughout. Formerly. the settlers along it were exposed to great hardships and disadvantages through the total want of roads. Now, by this and the various lines which intersect and branch from it, forming a kind of net-work of roads in the countries in and along which it passes, and connecting with other great leading roads, the country is well opened, and great facilities and encouragement given to the enterprise of the settlers. The results are becoming manifest, notwith standing the general depression and monetary scarcity that have for sometime prevailed in the extensive clearings along the line, which, a few years ago, lay in almost unbroken forest.

(4.) Bridge over Maitlani at Mancuester.

This contract remains in the same unsettled position as at the date of ny last report. The contractors applied for the balance admitted to be due, under a receipt so framed as to leave it open for them to make further demands, and having refused to sign a proper receipt in full of their claim, it has since remained in abeyance.

5) Road between Howich and Turnberry.

This road hat now been completed. The gravel road from the Lake Huron and Buffalo Railroad, at Harpurhay, intersecting the Woolwich and Huron Road, has been made about a mile over the Southerly end of this Road; and from that Railroad there is now a continnous line of Roud to the mouth of the River Saugeen, at Southampton.

(6.) Road eetween Holland and Gleneti.

The Contractor for the completion of the Road had very little dove on it during last season, owing to the low rates at which the work was taken, and the extreine scarcity and high price of provisions in that section. He has been repeatedly urged to make progress, and it has now been arranged that he do so as soon as operations can be commenced, or that the work be then given to another. It will be finished this season. Meanwhile the Road admits of being used and is travelled over.

(7.) Road from South-iwest corner of Proton to Elora and Saugeen Road.

The works on this Road have, since my last Report, been completed. Some additional small hills have beeu reduced to easier grades, drainage made in low grounds, and a grood Road constructed throughout.

(8.) Road South of Proton and Melancthon.

The contracts for this Road have been delayed much more than they should have been. The scarcity and high price of provisions with low rates for the work to a certain extent account for this. The Contractors for the portion along the South boundary of Melancthon, in answer to my urgeut representations, declared their inability to proceed, and they have been paid for the work actually performed, and the remainder has been given to the Gontractor on the South boundary of Proton. The more plentiful supply of provisions in that section and fall in the price of these, will this season enable the Contractor to proceed with greater energy, and I trust to be able to have the whole road finished this year.

(9.) Road in Kinloss.

This work is now completed and a good road opened. Its Northern terminus is the Durham Road, and its Southern terminus in the Woolwich and Huron Road, where it is met by the gravel Road leading to Goderich.

II. ROADS MADE FROM COLONI/ATON GRANTS.

(1.) Corlingwood and Meaford Road.

This Road is now completed and opened for travel. The portion of it lying in simeve has been gravelled by the Municipal authorities, and I understand that the portion within the County of Grey is to be gravelled by that County.
(2.) Hastings Road.

The damage done to this road by heavy rains during the Spring of 18.58 were last year repaired, and the Road put in good condition to within a very short distance of the point where it is intersected by the Peterson Road. It was also much improved by deriations made to avoid the abruptness of certain granite ridges which crossit. A small sum is yet recuired to be expended South of, and near to, the Peterson Road, and in improving a hill at the Bridge
over Papincau Creck over Papineau Creek.

(3.) Addington Road.

With a view to protect the Bridge built over the River Madawaska against the timber floated down, and to aid the passage of such timber, a strong boom was constructed early last year at a cost of $\$ 4448$. A short time afterwards, viz.: in the beginning of May, a jan of about 3,000 pieces of timber formed at the foot of Snake Rapids, about three-ruarters of a mile above the Bridge. This jam was broken by the lumbermen, and about one
third of it passed down along the boom and under the Bridge without doing harm; but the remainder, having come down in oue mass, struck against and broke the boom, overset the pier to which it was made fast, and lodged against the Bridge. Thereupon, to liberate the timber, the lumbermen cut down and destroyed the Bridge. Two Bridges, built by Governuent at this point, have thus been wilfully destroyed by those rufting timber down the River. It has now been resolved to build another Bridge, of one arch, spanning the whole width of the River, to prevent the recurrence of such destruction and loss.

Mcanwhile the Road leading from the River, to connect with the Opeongo Road, has been explored, and abont five miles of it, fron the River northwards, have been completed. A grood tract of country has been found suitable for settlement, and presenting no serious obstacles to the comstruction of the Road.

(4.) Frontenac and Madawaska Road.

This Ruad has now been completed by levelling, crosswaying, and bridging for nearly 04 miles from its commencement at Lot No. 11, Con. 2, in Hinchinbrooke. The money appropriated for it last year did not enable a large amount of work to be performed.
(5.) Bobcaytion Road.

The works on this Road have now been completed to the distance of about miles northwards from Bobcaygeon, and all the streams properly bridged.

6. Roan between Elma and Morningros.

This road remains in the same position as at the date of last Report. The appropriation for it has been expended; but it was altogether inadequate to make this bad line passable. As it now remains, the road is of little or no use.

7. Peterson Road.

At the date of last Report this road had been made from the Madawaska River to the south-west angles of the Township of Wicklow, where it intersects the Fastings Road,-a distance of nearly 21 miles. It has since been completed from the Hastings Road to the north-west angle of the Township of Herschell, a distance of over 10 miles,-making in all about 31 uiles of a finished and grood road.

The portion connecting with the Muskoka Road leaves that road about onc-quarter of a mile Sonth of the great Falls of Muskoka, on the District line, and ruus south-easterly to the line between Lots 5 and 6 of the Township of Draper; thence southerly along that line to the line between Concession 5 and 6 , and thence along the last mentioned line till near the Fast boundary of that Township, where a deviation has to be made round the North side of a small lake. This line was explored last Autumn. It passes through a tract of good land, and a contract for the road was entered into in Nuvember last. It is expected that it will be completed this season.

S. Muskoka Road.

This rond is now ahonst completed. It would have been finished last Fall, had snow not eome on so carly. It will be so as soon as the ground enables operations to be resumed. From the termination of the navigation on Lake Couchiching, where a wharf has been erected, to the Great Falls of Muskoka, - a distance of about 21 miles,-all streams have been substantially bridged, and the road bas been levelled and crosswayed. A very grod road between these points has thus been opened, and the country along it is being rapidly settled.

O. Addington and lienfrew Road.

Commencing at the point where the Addington Road intersects the Madawaska, this road rums in a north-casterly course through Griffith and Brougham to the Opeongo Road, in the Township of Grattan. The entire length is about 222 miles, and a good road has now been made for about 174 miles from the Madawaska, leaving about $4 \frac{3}{4}$ miles yet to be made.

10. Bowerman Road and Bridges over Balsam and Gutl Rivers.

This road commences at Balsam River, between Balsam and Cameron Lakes, over which a substantial bridge has been built. The road from it to Gull Rirer, and a bridgeover that river, are now under contract to be completed during the present year.

> 11. Victoria Road.

Commencing at the south end of Lot. No. 21, of the Township of Fenclon, -being
the straight line between Fenelon Falls and Beaverton,-this road runs northerly between the Townships of Fenelon and Bexley, on one:side, and Eldon and Carden, on the other. About $10 \frac{1}{2}$ miles were given out under contract last year, and the works have been so far adranced as to cnable it to be used most of that distance for sleighing this winter. It will be completed this season. There is some good land on this line, but near the Balsam Lake it is low and flat, and subject to floods from the streams which cross the road when the water rises in the Lake. A considerable extent of high crossway is thus rendered necessary.

12. Opeongo Road.

This road was formerly under the charge of Mr. Alexander J. Russell, of Ottawa, and 45 miles of it were made before being transferred to mc. Six miles additional have since been completed, but thesettlement,in its projected course towards Opeongo Lake, is reported to be about 10 miles in advance of the road.

13. Roads at Sault Ste. Marie.

These are the Sault Ste. Marie and Goulais Bay branclies of the great northern road. A contract was last year given out to the extent of the appropriations made therefor, and the work equal to about 5 miles had been performed when the early Winter of that region set in and closed the contractor's operations for the season. These will be resumed and pushed forward to the amount of the grant when navigation opens.

The preceding remarks embrace all the operations of last season, and appended hereto is an approximate statement of the whole works performed under my superintendence.

I hare the honor to be, Sir,
Your most ob't serv't,
DAVID GIBSON,
Sup't Colonization Roads, C. W.

APPENDIX.

Appooximate Statement of Work performed on the Roads in Canada West, under the Superintendence of David Gidson, at 31st December, 1859.

COUNTIES\& COLONIZATION ROADS.	Summer Roads.	Winter Roads.	Crosswayed.	Ditched.	Excavation laid in Embankm't.	Stumps Extracted.	Bridges compl'td
County of Bruce................................	Miles.	Miles.	Miles.	Miles.	c.43,783	5,789	$17 \frac{1}{2}$
	114		25.4	$41 \frac{1}{4}$			
¢\% Ifuron:..............................	672	152	$6{ }^{6}$	40,422	- 136	122
			$13 \frac{1}{4}$	$4 \frac{1}{4}$	4,731	18	$6 \frac{1}{2}$
do Grey	544	144	14.	4,784	1.677	6
do Waterioo	$\stackrel{2}{14 \frac{1}{2}}$			2,591	9	$\frac{1}{2}$
do Perth		$5 \frac{1}{2}$			9	2
	314	6	748	654	96,611	7,63S	45
COLONIZATION ROADS.	Miles opened	COLONIZATION ROADS.					$\begin{gathered} \text { Miles } \\ \text { opened. } \end{gathered}$
Colingrood and Meaford..	.. 18	Mus	oka.				21
Hastings..	6 S	Bobc	aygeon an	d Emily.			3
Adidington	61	Add	ngton and	Renfrew.			173
Elzevir and Kaladar	14	Victor	rin.........				6
Frontenae and Madawaska	33	Opeo					6
Bobcaygeon...		Saul	Ste. Mar	e			5
Elma.......................................	$\ldots \quad 7 \frac{1}{2}$						
Elma nad Mornington..	117						339

TABLES

OF TEE

TRADE AND NAVIGATION

OF THE
PROVINCE OF CANADA,

FORTHEYEAR

1859.

COMPILED FROM OFFICIALRETURNS.

Presented to both Houses of Parliament by Command of His Excellency.
A. T. galt, Minister of Finasce.

QUEBEC:
PRINTEDBITHOMPSON COOST.URSULESTREET,

TABLE OF DUTIES OF CUSTOMS INWARDS.

he jorce to 26 th Mureh, $\$ 859$, iuclusion:

gOODS PAYING SPECIFIC dUTIES.

A RTICLES.	5 cts.
Ate, beer and Porter, in casks, per gallou.	
Ale, Becr and Porter, in quart bottles, per dozen bottles.......................	025
Ale. Beer and Porter, in pint bottles, per dozen bottles.	
And 2 Duty of 15 per cent. ad valorem on the Bottles containing the same.	
Almonds, Walnuts and Filberts, per lb..	003
Corn Brooms, per dozen. .	
" Whisks, per dozen	
Cigars, per lb..	
chicory, raw and kiln-dried, per	
". rousted and ground, pe	
Coffiee, green, par lb...	
." roasted, per lb............ ..	0 04
:. ground, per lb	
Cordials, per gnilon...	
Currants, per lb....	
Dried Fruits, per lb	003
Figs, per lb.	
Ginger, Pimento and Pepper, unground, per	
Ginger, Pimento and Pepper, ground, per lb.. ..	
Macaroni and Vermicelli, per lb...	
Mustard, per lb.	
Molasss, per gallon	
Mace, per lb.	
Nutmegs, per lb	
Nuts not specially named, except Cocor Nuts, per lb	
Spirits and Strong Waters, of all sorts, for crery gallon of any strength not exceeding the strongth of proof by Syizer Hydrometer, and so in proportion for any greater strength or less quautity than a gallon, viz:	
Brandy, per gallon.......................	
Gin, per mallon..	080
Rum, per gallon	
Whisky, per gallou..........	
Spirits nud Strong Waters, including Spirits of Wine and Alcohol and not being Brandy, Gin or Whisky, per gallon.	
Spices, unground, not otherwise named, per lb	
" ground, " perlb.	
Starch, and all preparations of starch, per 1	
Soap, not otherwisc specified, per 100 lbs.	
Sugar, refined, whether in loaves, or lumps, candied, crushed, powdered or granulatod, or in any other form; White Bastard Sugar or other sugar equal to refined in pulity, per 100 lbs.	
White Clayed Sugar or Yellow Bastard Sugar, or any kind equal in quality to White Clayod Sugar or Yellow Bastard Sugar, hat not equal to Refined Sugar.	
White Clayod Sugar or Yellow Bastard Sugar, hat not equal to Refined Sugar, per 100 lbs.	
Brown Clinyed Sugar, Muscovado or Raw Sugar of any kind not equal in junlity to the sugars last named, per 100 lbs .	
kaw for refining purposes only, and uot within 20 per cent. of the value of the last named sugar, per 100 lbs .	
Tea, not exceeding in value 18 cents per lb ,-per lb . ." exceediug in valuo 18 cents per lb .,-per lb	
". exceediag in value 18 cents per 1b.,-pe	0 - 04
Tobacco, manufactured, not exceeding in value 20 cents per lb .,-per lb	005
.. exceeding 20 and not exceeding in value 40 oents per 1 b .,-per	0.073
O- over 40 cents in value per 1 b .,-per 16	$0-10$
Snuff, per 16...	$0=10$

Goods prying twenty per cent.

The following Goods shallbe chargeable with a duty of Twenty per cent. on the valut thereof:

Anchovies, Sardines, and all other Fish preserved in Oil:
Argentine, Alabetta, or Albata and German Silver madactures :
Articles embroidered with gold, silver, or other metals;
Baskets, and all other Articles made of grase, osier, palm leaf. straw, whalebong or willow, not elewhere specified:
Beads of every description;
Billiard Tables and Furnishings:
Bagatelle Boards and do.;
Blacking;
Bracelets, Braids, Chains, Curls, Ringlets or Hend-dresses, of any kind composed of hair, wr of which hair is a component part;
Brooms and Brashes, not elsewhere specified;
Cameos and Mosaics, real or imitation, when set in gold, silver or other metal :
Capers, Pickles, Olives and Suuces of all kinds, not elsewhere specified:
Candles and Tapers of Wax, Sperm, Belmont, Stearine, Adamantine and composition;
Chandeliers, Girondoles, Gas Fittings ;
Carriages, or parts of Carriages, not otherwise specified:
Cabinct Ware or Furniture ;
Cashmere:-Sec Manufactures.
Cocks, Taps, and Coupling Joints;
Carpets and Hearth Rugs, Velvet, Bruseels, Tapestry, 'Turkieh, Persian and oher kinds;
Confectionary, not elsewhere specified:
China Ware of all kinds;
Cutlery, polished of all sorts:
Coach and Harness furniture of all kinds;
Composition Tops for Tables or for other articles of Furniture:
Essences, Bulsams, Cosmetics Extracts, Pastes, I'erfumes, Tinctures, and Perfumery, of all kinds;
Feathers and Flowers, artificial or ornamental or parts thereof, of whatever material composed:
Faus and Fire Screens;
Fire Works;
Glass, plate :
Glass, silvered:
Glass-shades and Crystals for watches;
Glass Ware, cut, ground or coloured ;
Glass, stained, painted or coloured:
Glass bottles and vinls, not being wine and beer bottles:
Gold and Silver Leaf:
Gilt Frames;
Guns, Rifles aud Fire Arms, of all kinds:
Hats, Caps and Bonnets:
Inks, of all kinds, except printing ink :
Jewellery, real or imitation;
fapanned, Planished Tin, and Britannia Motal Ware, of all kinds;
Leather, Sole, Harness, dressed Kip, Calf, and Opper Leather, and all imitations of Léather:
Marble or imitation of Marble Mantle-pieces, or parts thercof;
Matresses of hair, moss, or other materinl ;
Millinery of all kinds;
Musical instruments of all kinds, including Musical Boxes and Clocky ;
Mowing, Reaping, and Thrashing Machines;
Manufnctures of Fur, or of which far is the principal part;
" of Cashmere;
: of Silk, Satin und Velvet, and of all other fabrics, of which Silk forms the principal part;
". of Bone, Shell, Horn. Pearl, Ivory or Vegetable Ivory;
.. of Gold, Silver or Electro Plate :
-. of Brass or Copper:
.- of Leather or imitation of Leather, or of which Leathcr or imitation of Leathor is the principal part, not otherwise specified;

Manufactures of Marble, of Marble more advanced in manufacture than siabs or blocks in the rough :
-. ol Papitr Maché ;

- of Caontchonc or India Rubber or of Gattia Percha, or of which auy of these articles forms the principal part:
ot Straw :
Patent Medicines and Medicina? Preparations, not olsewhere specitied;
Oil Cloths, of whaterer ma erial composed:
Snlad Oils. Table Oils, and Linseed Oils:
Opium;
Ornaments of Brouze, Alabaster, Terracotta ur Composition :
Plated and Gilded Warc, of all kinds:
Playing Cards:
Preserved Vegetables, Ments, Poultry, Fish and Ginne :
Railing or Fencing of Iron:
Riddles and Sieves;
Scales and Weights;
Shamls, Thibet wool or filled;
Silks, Satins or Velvets, and all fabrics of which Silk forms the principal part :
Spades, Shovels, Axes, Hoes, Rakes, Forlcs, and Edge-tools, Scythes and Saniths, Bolts, Nuts, and Washers :
Spikes, Nails, Tacks, Brals anil Sprigs:
Silk, Woollen, Worsted and Cotton embroideries and tambour-work :
Silk-twist and Twist composed of Silk and Mohair ;
Silver and Gold Cloth, Thread, and other articles embroidered with Gold or for embroidering ;
Skins, Sheep, Calf, Goat and Chamois, Iressed:
Soap, perfuned or fancy ;
Stoves and all other Iron Castings:
Toys:
Thread Lace and Insertions:
Writing Desks, fancy and ornamental Cases and Boxes of whatsocver material :
Woollen Goods.

Goods paying twonty-five per sont.

The following Goods shall be chargeable with a Duty of twenty-five per cent. on the value thereof:
Manufactures of Lenther, via:
" Boots and Shoes: - IIarness and Saddlery :

Clothing or Wearing Apparel made by hand or sewing machine.

> Goods paying fifteen per cent.

All artiches not hereinbefore cnumerated as charged with a siocific or ad palorem duty, and not exempted from the payment of duty, shall be chargeable with a duty of fifteen per cent. on the value therens

Table of Eree Gonds.

Acids of every description :
Agricaltural Societies-Seeds of all kinds, Farming Utensils and Lmplements of Husbandry, when specially imported hy, for the cocouragement of Agricniture:
Alum :
Anatomical preparations:
Anchors, over 6 cwt. in weight. :
Animals of all kinds :
Antiquities, collections of :
Apparel, wearing, and other personal effects, and Implemeuts of Husbandry, (not merchandise) in actual use of persons coming to settle in the Prorince and accompanying the owner :
Apparel, wearing, of British subjects dying abroad :
Arsol:
Arms for Army or Navy and Indian Nations, provided the duty otherwise payable thereon would be defrayed or borne by the Treasury of the United Kingdom, or of this Province:

20 per ct.

25 per ct.

15 pcrct .

Free.

Ashes, Pot, Pearl, and Soda:
Bark, T'anners' ;
Eark, used solely in dyeing:
Barley, except Pot arn Pearl :
Barley Meal:
Beana:
Eean Meal:
Bear and Bigg :
Bear and Biger Meal ;
Berries, used solely in dyeing:
Bleaching Powder :
Books, Printed, - Periodicals and Pamphlets-not being British Copyrizhts nor Blank, Account or Gopy Books, or Books to be written or drawn upon;

Borax :

Bottles containing wine, spiritums or fermented liquors of Officers' mens:
Erandy imported for do. :
Bran and Shorts:
Brimstone :
Bristles:
Broom Gorn :
Buckwheat ;
Buckwheat Meal:
Bulbs and Roots :
Bullion :
Burr Stones, wrought or unwrought, but not hound up into Mill-stonns :

Butter:

Coin and Bullion :
Cabinets of Coins:
Cables, Iron Chain :
" Tarr'd Hemp:
" Untarr'd "
" Grass;
Crmiages of Travellers, and carriages employod in carrying merchandise [Hawkers and Circus Troupes excepted];
Casks, ships' water, in use ;
Caoutchouc or Indian Rubber, and Gutta Percha, unmanafactured ;
Cement, marine or hydraulic ;
Charitable Societies-donations of clothing for gratuitous distribution by :
Cheese ;
Clothing for Army or Navy or Indian nations, or for gratuitous distribution by any Charitable Society;
Coal ;
Cochineal :
Coke ;
Commissariat Stores:
Copperas;
Corkwood, or the Barko of the Corkwood tree:
Corn, Indian ;
Cotton and Flay waste ;
Cotton Wool;
Cream of Tartar in crystals;
Diamonds and Precions stones;
Drugs used solely in dyeing;
Dye Stuffs, viz : Bark, Berries, Drugs, Nuts, Vegetables, Woods, and extract of Logrood
Earths, Clays and Ochres, dry ;
Eggs:
Felt Hat bodies and Hat Felts:
Fire Brick;
Firewood:
Fish:
do. Oil, in its crucle or natural state;
do. products of, unmanafactured:
Flax, Hemp and Tow. undresser:

Flour

Fruits, green;
Fruits, dried, from the United Slates only, While the Reciprocity Treaty is in force; Fars, Skins, Pelts or Tails undressed, when imported directly from the United Kingdom or British North American Provinces, or from the United States, while the Reciprocity Trenty is in force;

Free.
ce.

Gems, and Modals;

Gravel;
Arains-Barley and Rye;
Beans and Peas;
Bear and Bigg;
Bran and Storts;
Buckwheat; Indian Corn: Oats; Wheat;
Meal of above Grains;
Grindstones, wrought or unwrought ;
Gums and Resins, in a crude state;
Gypsum or Plaster of Paris, ground or unground:
Grease and Scraps :
Hams ;
Hemp;
Hides;
Horns;
Household effects, porsonal. not merchandize, of subjects of Her Majesty domiciled in Canada but dying abrosd;
Indigo;
Iuventions and Improvements in the Arts, models of-provided that no article shall be deemed a model which can be fitted up for use :
Junk and Oakum;
Lard;
Lime the produce of British North American Provinces only ;
Machinery, models of -provided the same cannot be put to actual use:
Manilla Grass:
Manures of all kinds;
Maps and Charts in sheets, not mounted nor on cloth :
Marble in blocks or slabs unpolished:
Meats, fresh, smoked and salt;
Menageries, Horses, cattle, carriages and harnesses of, subject to Regulations by the Governor in Council;
Military Clothing for Her Majestys Troops or Militia;
Military Stores and Materials for Military Clothing imported for the use of the Provincial Militia, under such restrictions and regulations as may be passed by Governor in Council :
Mosses and sea grass, for upholstery purposes ;
Musical Instruments for Military Bands:
Nitre or Saltpetre:
Oakum ;
Oil Cake or Linseed Cake;
Oils, cocoa nut, pine and palm-in their crude and natural state;
Old Nets;
Ordance Stores:
Ores of all kinds of Metals:
Osier or Willow, for basket makers' use
Packages of all kinds in which Goods are usually imported, except the following, viz.: Spirit, Wine, Oil, Beer, Cider, and other casks for the containing of liq uids, baskets of every description, trunks, snuff jars, enrtheaware jars, glass jars, bags and barrels containing grain, seods and peas:
Pig Iron. Pig Lead:
Pitch and Tar:
Philosophical Instruments and Apparatus, Books, Globes, Maps and Charts:-provided the same be specially imported hy and for the ase of Philosophical Societies, Universities, Colleges, Public Schools or Institutes:
Plants, Shrubs and Trees;
Provisions for Army or Navy, or Indian Nations:
Rags;
Resin and Rosin :

Rice :

Sail-cloth ;
Sal Sodn;
Sal Ammonia :
Salt;
Seeds of all kinds:

23 Victoria.

Slips' Dlocks;
Binnacle Lamps:
Bunting:
Canras, Duck;
Compasses;
Cordage:
Dead Eyes
Dend Lights ;
Deck Plugs ;
Shackles:
sheares;
Signal Lamps;
Travelling Trucks;
Ships' mater-casks in use;
Silk Hat Felts ;
Soda Asla :
Specimens of Natural Histors, Minerslogy or Batany ;
Stone, unwrought:
Slate:
Statues, Busts and Casts, of Marble, Bronze, Alabaster or Plaster of Paris; Paintings, and Drawings as works of Art; Specimens of Sculpture ; Cabinets of Coins, Medals; Gems, and all Collections of Antiquities:
Sulphur or Brimstone;
Expressly imported for Ship-huilding purposes and by Ship-builders or Sail-makers.

Tin and Zinc or Spelter, in block or pig:
Tallow;
Teasels:
Trimber and Lumber of all kinds, round, hewed, sawed, unmanufactured in whole or in part:
Tobacco, unmanufactured;
Tools and Implements of Trade of persons arriving in Canada, when accompanied into the Province by the actual settler, and brought in by such settler for his own use. and not for sale;
Treenails:
Turpentine, other than Spirits of Turpentine ;
Type Metal, in blocks or pigs:
Vegetables, not elswhere specified:
Vehicles of Travellers, except those of Flawkers aud Pedlars:
Water Lime:
Wine, Spirits and fermented Liqcors of all kinds, imported for any Officers' Mess, and the prickages containing the same;
Wood for Hoops, when not notched;
Woods of all kinds:
Want;
All importations for the use of Her Majesty's Army and Nary serving in Canad.

TABLE OF PROHIBI'IIONS.

The following Articles are prohibited to be imported, under a penalty of Fifty Pounds, together with the forfeiture of the parcel or package of Goods in which the same may be found:

Dooks and Drawings of an immoral or indecent character :
Coin, base or counterfeit.

TABLE OF DUTIES OF CUS'SOMS INWARDS,

In force firm the 26th Maroh, 1859, inclusive.

\square

Goods payiny one handred per cent.
Brandy :
Gin:
Cordials:
Rum :
Spirits and Strong Waters, inciuling Spirits of Wiac, and Alcolol, not being Whiskey.
Goods paying forty per cent from 1 at . Sune. 1589 to :30th Jume, 1860 . hoth deys inctuside.
Goods paying thirty-five per cernt firom 1 st . Fuly. 1860, to :30th:There. 1861, both duys inclusive.
Goods payiny twenty-fue per cent. from 1st .July, 18151. to 30 th . June, 1862, both duys inclusive.
Goods payinet fiftern per cent upon, from and after the 1st July. 18 G 2.

Tbe ;present duties remain in force until the emb of May, 185!
(sugar. retinell, whether in loaves or lumps, candied. erushed, or in any other form; White Bastari Sugar, or other sugar equal to refined in puality.

Grods payjiny forty per cent.
Cigars.
Goods payiny thirty per cent from 1st. Junc, 1859, to 30th June, $186^{\circ} 0$, both days inchusive.
Goods puiging teventy-five per cent from 1st jaly, 1560, 1030 oth June. 1861, buth"days inclusive.
Goods payiny fifteen per sent from 1st July, 1861, to 30th Jure. 1862. beth days inclusive.

Goods payiny ten per cent upon, from und after the 1st Sulbe 1862.

The present duties remain in force until the end of May. 1859.
$\left\{\begin{array}{c}\text { Sugar,-being neither refined, nor white bas- } \\ \text { atarl, ner other sugar equal to refined iad } \\ \text { quality. } \\ \text { Molases. }\end{array}\right.$


```
Gorls paying fifteen per cerit from 1st .foructry, 1860, to 31st De-Duty per cent cember, 1861, both deys inclusive.
Gouds payint ten por cent from 1 st Jomuary, 1862, to 31st Dccember, 1862 , both days inelusioc.
Goods paying five per ernt upon from and afier the 1st January, 1863.
The present duties remain in torce \(\{\) Coffec, green: until the end of the year 1859. \ Ten.
```

Goods paying thirty per cent.
Almonds, Waluats and Filberts;
(inger. Pimento and lepper, ground':
Mace, Nutmegs and Cinnamon:
Suts of all kinds :
Patent Medicines and Mulicinal lreparations, not elsewhere specified:
Spices, ground:
Sunff:
Wine of all kinds:
Currints :
Dried Finit:
figs:
Coffec, mround or roasted;
Blacking:
lobaces, manufac tured;
Soap:
Starch ;
Me, Beer and Porter.
Goods paying twenty-five per cent.
Manffuctures of Leather, viz,
Boots anil Shoes:
Marness and Siddulery;
Boots anil Shoes:
Marness and Siddulery;
Cloaining or wearing apparel made by hand or seming machine.
Goods paying fifteen per cent.

Book. Map and News-Printing laner.

Goods paying ten per cent.

Anehors f evt. and under.
Books. printed: periedicals and pamphlets not being reprints of British Copyrights: nor Blank decount Books, or Cony Books, or Books to be fritten or drawn upon. and excepting also Bibies, Prayer Books and Darotional Books:
lirtss in bars, rods and sheets;
Beas or Copper Wire and Wire Cloth:
Cameos and Mosaics, real or imitation, when set in yold, silver and other metal ;
Canada Plates, Tinned Plates, Galvanized Iton and Shect lyon:
Copper, in bars, rods, bolts or sheets ;
Silk Twist for hats, bonts and shoes:
Iron-Bar, Rod or Hoop.

- Nail and Spike Rod:
-. Ifoop or Tiro for driving wheels of locomotives, bent and Welded:
- Boiler Plate :
.. Railroad Bars, Wrought Iron Chairs and Spikes:
- Rolled Plate:
- Wirc:

Jewellery and Watcines :
Lend in slacet;
Maps, Charts and Atlases:
Sails, ready made ;

Spirits of Turpentine :
Steel, wronght or cast:
Cotton Candle Wick, Cotton Varn and Cotion Warp :
White Lead, dry ;
lhaster of laris ground and calcinen.
Hydraulic cement, ground and calcined ;
Red Lead:
Litharge:
Phosphorus:
Medicinal Ronts:
Drain Tites for armentaral purposes:
Engravintes aml Prints:
Straw, Tusean and (irnes fanc: Phits:
Tin, ormandated or bar:
Tubes and liping, of enper. limss, or jron when drawn:
Zinc or Spelter. in sheret:
Locomotive and Euçine brames, crank:, cank axies, malway car and locomotive axles, pintun mos, guide and slide bars, crank pins, connecting rods, wtamboat and mill: shafte and cranks forged inte roun! ;

Goods paying Zuenty per Cent.

All articles not herembefore enumerated as charged with an ad ralurem duty, or hereinafter charged with a Specific diuty, or dechared free of duty, shall be chargeable with a duty oftrenty per cent, on the value thereot.

Goods paying Specific Duties.

Whiskey of any strength not exceeding the strength of proof by Syke's bydrometer, shatl hie chargeable with a Duty of eighteen cents per gallom, and so in proportion for any greater strencth or less quantity than a gallon;

Table of Free Goods.

Acids, of every lescription, cxcept Vinegur :
Agricultural societies,--sceds of all kmds, faming utensils and implements of husban dry: when specially inported by for the encouragement of agriculture;
Alum:
Auatomical preparations:
Anchors, over 6 cwt .
Animals of all kinds;
Antimony:
Antiquities, collections of ;
Apparel, wearing, and other personal effects, and implements of husbandry, (not merchandise) in actual use of persons coming to settle in the province and accompanying the owner;
Apparel, wearing, of Dritish subjects dying abroad:
Argol :
Arms for the Army or Navy and Indian nations, provided the duty otherwise payable thereon would be paid or borne by the Treasury of the United Kingdom or of the Province:
Asb, Pot, Pearl and Soda;
Bark, Tanuers'
Bark, used solely in dying:
Barley, except Pot and l'earl;
Barley Mcal;
Beans;
Bean Meal;
Bear and Bigr :
Bear and Bigg Meal :
Berrica, used solely in dyeinur:
Bibles, Testaments, Prayer Books, and Devotional Books;
Bleaching Powder:
Bolting Cloths:
Borax:
Bookbinders' Tools and Implements ;

Books, Maps and Caurts, imported not as Merchandize, but as the personal Effects of persons :urnving in Canada to become bona fide residents of the Proviaz;
Botlee, contnining Wine, spirituous or fermented Liguors of Officers' Me;s;
Brandy inported for do. ;
Bran and Shorts:
firimstone:
Bristles:
Broom Cinn ;
Buckwheat:
Buckwheat Mcal;
Bulhs and Roots other than Medicinal ;
Bullion :
Burstones, wrought or unwrought, but not bound up into Millstones :
Butter:
Coin and Bullion
rabinets of Coins:
Cables, Iron chain over 3 of an inch diameter:
IEmp;
-. Grass:
Garriages of Travellers, and carriages employed in carrying. Merchandise (Hawkers anl Circus Troupes excepted) ;
Casks, Ships' water, in use ;
Gamtchouc or Iudian Rubber, and Gutta Percha, unnanufactured;
Cement, Marine or hydraulic, unground;
Charitable Societies-donations of clothing for gratuitous distribution by ,

Cheese ;

Clothing for Army or Navy or Indian Nations, or for gratuitous distribution by any charitable Society ;
Coal ;
Cocinineal :
Coke:
Commissariat Stores;
Copperas:
Gorkwood, or the Bark of the Corkwood tree:
Com, Indian;
Cotton and Flax waste;
Cotton Wool ;
Cream of 'lartar in crystals;
Diamonds and Precious Stones:
Urugs used solely in dyeing :
Dye stuffs, viz. : Bark, Berries, Drugs, Nuts, Vegetables, Woorls and extract of Log-
wood;
Barths, Clays and Ochres, dry:
Eges :
Emery:
Eine ry, Glass, and Sand Paper :
Felt hat bodies and Hat Felt :
Fire Brick:
Firewood:
Fish;
Do. Oil, in its crude or natural state;
Do. products of, unmanufactured ;
Fishing Nets and Scines ;
Fish JIooks, Lines and Fish Twines;
Flax IIemp and Tow, undressed;
Flour ;
Fruits, green:
Fruits, dried, the growth of the United States only, while the Reciprocity Treaty is in
force;
Furs. Skins, Pelts or Tails, undressed, when imported directly from the United Kinglom or British North American Provinces or from tho United States, while the Reciprocity Treaty is in force ;
Gems and Medals;
Gold Beaters' Brim Moulds and Skins ;
Gravels;
Grains-Barley and Rye;
Beans and Pcas;
Bear and Bigg ;
Bran and Shorts;

Grains-Buckwheat:

Indian Corn :
Oats;
Wheat;
Meal of above Grains ;
Grindstones, wrought or unwrought :
Gums and Rosins, in a crude state:
Ggpsum or Plaster of Paris, ground or unground, but not calcined;
Grease and Scraps ;
Hams ;
Hair, Angola, Goat, Thibet, Horse or Mohair; unmanufactured;
Hemp;
Fide :
Horns;
Houschold Furniture and Effects that have been in actual use for one month or more of persons coming to settle in this Irovince, and in clarge of the owner ;
Houschold Effects, picrsonal, not merchandise, of subjects of Jer Majesty romiciled in Canada but dying abroad;
Tudigo
Iuventions and Juprovements in the Arts, Madels, or patterns of,. provided that no article shall be deemed a model which can be fitted up for use;
Junk and Oakum ;
Lard;
Lime, the proiuce of Iritish North American Frovinces only:
Machinery, models and patterns of-provided the same be not put to actual use :
Manilla grass ;
Manures of all kinds;
Marble in blocks or slabs, unpolisbed;
Ments, fresh, smoked and salt;
Menageries-horses, cattle, carriages and hamesses of...suhject to Regulations by the Governor in Council;
Military CHothing for Her Majesty's troops or Militia;
Military Stores and Materials for Military Clothing imported for the use of the Provincial Militia under such restrictions as may be passed by Governor in Council ;
Mosses and Sea Grass, for Upholstery purposes:
Musical Instruments for Military Bands ;
Nitre or Saltpetre;
Oakum ;
Oils-Cocoal Nut, Pine and Palm, in their crule, unrectified or natural state;
Oil Cake or Linseed Cake ;
Ordnance Stores ;
Ores, of all kinds of Metals;
Osier or Willow, for Basket maker"s use ;
Packages of all kinds in which goods are usually imported, except the following. viz. : Spirit, Wine, Oil, Becr, Cider, and other casks for the cuntaining of liquid, Baskets of every description, Trunks, Snuff Jars, Earthenware Jans, Glass Jirs, Bot-tles;-and Barrels containing Grain, Seeds and Peas:
Pjg 1ron, Pig Lead and Pig Copper:
Pitch and Tar :
Philosophical Instruments and Apparatns, Globes;
Plants, Shrubs and Trees;
Printing Ink and Printing Presses;
Provisions for Army or Navy or Indian nations:
Rags;
Resin and Rosin;
Rice ;
Sail Cloth;
Sal Soda;
Sal Ammoniac ;

Salt:

Seeds, for Agricultural, Horticultural, or Manufacturing purposes only :
Ships' Blocks ;
Binnacle Lamps :
Bunting;
Canvas, Sail, Nos. 1 to 6;
Compasses;
Dead Eyes;
Dead Lights;
Deck Plugs;
Shackles;

Sheaves:

Signal Lamps:
Travelling Trucks;
Cordage which upon importation shall have paid the duty of customs, shall be entitled to draw-back under the Sth Sec. 22 Vic. ch. 76 , when applied to ship-building purposes, and under such regulations as the Governor in Council may make;
Ships' Water Casks in use:
Silk Hat Felts:
Sola Ash:
Sago Flour;
Specimens of Natural History, Mineralogry, anyand Bot:
Stone, unwrought:
Slate:
Stcoreotype Blocks, for printing purposes;
Statues, busts and casts, of marble, bronze, alnbaster or plaster of Paris, paintings and drawings as works of Art, specimens of sculpture, cabinets of coins, medals, gems, and all collections of antiquities:
Sulphur or Crimstone ;
Tin and Zine or Spelter in llock or Pig;
Tallow;
Tensels:
Timber and Lumber of all kinds, round, herred, sawed, unmanufactured in whole or in part;
Tobaceo, unmanufactured:
Tools and Implements of Trade of Handicraftsmen arriving in Canada, when accompamied into the Province by the actual settler, and brought in by such settler fohis orm use and not for sale ;
Treenials:
Turpentine other than Spinits of Turpentine :
Type Metal, in blocks or pigs ;
Fimish, bright and black, for ship builders, other than Copal, Carriage, Shellac, Mastic or Japan;
Yegetables, not elsewhere specified;
Yehicles of Trarellers, except those of Harkers and Pedlars :
Water Lime, unground;
Wine, spirits and fermented Liquors of all kinds; imported for Officers' Mess, and the packages containing the same;
Woud for hoops when not notched;
Woods of all kinds;
Wool:
All importations for the use of Her Majesty:s Army and Nary serving in Canada, or for the public uses of the Provinee.

Table of Prolizitions.

The following articles are prohibited to be imported under a penalty of fifty pounds, together with the forfeiture of the pareel or package of Goods in which the same may be found :

Bouks, drawings, paintings and prints of an immoral or indecent character; Coin, base or counterfeit.

CARRYING
 TRADEAND NAVIGATION
 of the
 PROVINCIAL CANALS
 OF
 CANADA,
 FOR THE YEAR 1859.

23 Victoria．

		7 8 8 8
		足
		－
佥宅		\％
		$\stackrel{?:}{8}$
\vdots		$\begin{aligned} & \text { 篤 } \\ & \text { 隹 } \end{aligned}$
		－
		$\stackrel{-}{\sim}$
		甬
$\underbrace{\infty}_{\infty}$		®
		\％
		－
		ב

No. 1.-GENERAL STATEMENT shewing the Quantity of each Article transported, \&ce.-(Continued.)

23 Victoria.

苞			
		完	
		$=$	
		－	¢ ¢ ¢ ¢ ¢ ¢
		\pm	：
		－	
		$\stackrel{\text { ® }}{\sim}$	
		$\stackrel{\text { ® }}{\text { ® }}$	
		$\stackrel{\text { ® }}{*}$	
		\pm	

23 Victoria．

	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{-}{\mathrm{E}} \end{aligned}$
표 Na	哃
	\cdots
	管
	$\stackrel{\mathrm{F}}{\mathrm{M}}$
	$\stackrel{\text { 少 }}{\text {－}}$
	5
	参
	\％
	$\begin{aligned} & \text { ㅍలㅇ } \\ & \text { 今心 } \end{aligned}$
	萮
	京

淾	$\stackrel{\text { 言 }}{\text { 寺 }}$	
	$\stackrel{y}{*}$	
	\pm	
	言	
	言	
	\pm	E Cow
	$\stackrel{\text { 㕩 }}{ }$	
	$\stackrel{\text { ¢ }}{ }$	
突		

Aktiches．	$\begin{aligned} & \text { romal } \\ & \text { rons. } \end{aligned}$	From Ganadiatı to Canadian Porte，		From Camadian $t 1$ American Ports．		From American t） Canadiain Yorts．		From American to American Ports．		totals．		AMOUNT $O F$ tolls．	
		Up．	Down．	v_{1} ．	Down．	is．	Down．	up．	Down．	Up．	Down．		
	${ }_{737}^{871}$	2	$\because{ }^{\circ} \mathrm{F}$	869			${ }^{\text {bi．．．．．．．．．．．}}$	．．．．．．．．．．．．．．．．．．			$73{ }^{2}$	$\begin{gathered} 8 \text { cts. } \\ \text { so } 96 \\ 7361 \\ . . \end{gathered}$	
Ases，Pot and Pearl．．．．．．．．．．iut													
	13，763		132	13，631		．．．．．．．．．．．	．．．．．．．．．．．．．	．．．．．．．．．		13，031	132	1，270 42	
Beef．	72						${ }^{-1 ~}$		｜．．．．．．．．．．．．．	3	\％	1，270 2	
		3	，．．．．．．．．．．．．．．．	．		．．．					69	705	
Bisenit inill Crackerers			17							－${ }_{\text {S }}^{36}$		$\begin{array}{r}020 \\ 855 \\ 805 \\ 205 \\ \hline 15\end{array}$	
（eran Mand Ship Sturf．．．．．．											1，94．		
Butter ．．．．．．．．．．．．．．．．．									＋．．．．．．．．．．．．．${ }_{\text {anem }}$				
Carts，Waggons and Sleigl				．．．．．．．．．．	．．．．．．．．．						4 4 48 4 4		
Catte，wi．wd Water Limo				．…．．．．．．．．			．．．．．．．．．．．． 46	．．．．．．．．．．．．．．．．．．．．．．					
Cheese．				．．．．．．．．．			．．．．．．．．．．．．	．．．．．．．．．．．．					
Charcoan		$\begin{aligned} & 29 \\ & \text { ss8 } \end{aligned}$	$\left\|\begin{array}{r} 10 \\ \hdashline 201 \\ 101 \\ 10 \end{array}\right\|$	$\mid=$	\qquad				．．．．．．．．．．．．．．．．．．．．．．．．．． 1				
Claverseed．．．．．．．．．										1710			
Con！．a．．．．．．．．．．．．				S22			8，672 ${ }_{28}$			1,710 \cdots			
Copperis．．．．．．：	${ }_{6}^{6}$	6						．．．		${ }^{\circ}$			
Corn．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		1				．．．．．．	s	．．．．．			8		
Corn Menl．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	78	78								783			
Wlar and Hax Seed．a．t．．．．．．．		$\begin{gathered} 482 \\ 138 \\ 138 \end{gathered}$		180			$2,064$						
Fiurutioro and laggige：												$\begin{array}{r} 4585 \\ \quad 885 \\ \hline 16 \end{array}$	
grpaime													

	－茄めーラ 0 －ロ～․․․․		\％	－		－
	¢モ®			（우ㅇㅜㅜ		范
	－－－	－¢	\％${ }_{\text {\％}}$			朢
		：：：			！	
		¢	（\％）			
	人	（ ${ }^{\text {conen }}$		（\％		－
						$\stackrel{8}{2}$
	（：Cun					\％
	－		（\％）		¢	等
	（\％or	（\％arat	（0）	（1）		\％
		（\％）	（\％）	－		$\stackrel{5}{9}$
			（			$\underset{\text { a }}{\text { ¢ }}$
						$\begin{aligned} & \text { " } \\ & \\ & \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

				－	（\％）
$\begin{aligned} & \text { 曾 } \\ & \stackrel{y}{e} \end{aligned}$	言			（1o	\％
	$\stackrel{5}{5}$			0	
	言				Co
	$\stackrel{ \pm}{ \pm}$		（\％）	\％	\％
	$\stackrel{\text { 墻 }}{ }$			（\％	－
	$\stackrel{\text { ® }}{\sim}$	8			CO
	妾				
	$\stackrel{\text { ¢ }}{ }$	苼			三퉁N
	言			（1）	（1）
	\pm	둔）	\％r90	¢o	¢
言离				－	7n mino

No. 4.-GENERAL STATEMENT sheriug the Quantity of each Article transported, \&e.-(Contsnuece.)

23 Victoria．Sessional Papers（No．23）．A． 1860.

	（\％		（1）	苍
		\％	（1）	产
	¢®		－	5
			（\％	
			\％	总
			－	E
	（\％o ¢ ¢		（1）	\％

23 Victoria．
Sessional Papers（No．23）．
A． 1860

第		
	它	
	\pm	
	客	
	$\stackrel{ \pm}{ \pm}$	（a）
	产	－
	㐫	
	突	
	$\stackrel{\text { ¢ }}{ }$	
	㐫	
	$\stackrel{ \pm}{\square}$	

Sessional Papers（No．23）．
23 Victoria．

No. 6.-GENE RAL STATEMENT shewing the Quantity of each Article transported on
Amount of Revenue

the Ottawa and Ripead Canals and their Locks, during the Year 1859, and the collected thereon.
 Sessional Papers (No. 23) A. 1860. No. 6. GENERAL STATEMENT shewing the
23 Victoria.
Sessional Papers (No. 23)
A. 1860.
quantity of each article transported, \&d.- (Continued.)

Total Tolls Derived from Property

Do do	do	Vessels
Do do	do	Passengers...
Do do	do	Wintering, Wharfage, \&c.,.

Total Revenue from all Sourcea \qquad

23 Victoria.
Sessional Papers (No. 23).
A. 1860.

No. 7-SUMMARY STATEMENT of the Welcand, St. Lawrence, Chambit, Locks, showing the Total Quantity of each description of Propenty passing through

23 Victoria.
Burington Bay, Ottana zad Ridead Canats, St. AnN's, St. Ouns, and other and on the sacae, and the Amount of tolls collected during the year 1859.

Cbambly Canal, includiag St. Ours Lacks.		Burlington Bay Canal.		St. Ann's Lock.		Octawa and Hideau Canals, und their Locks.	
Tons.	Tolls.	Tons:	Tolls:	Tons.	Tolls.	Tons.	Tolis.
198,052	$\$ 2,28210$	108,068	${ }_{1,137}^{8}{ }_{75}^{\text {cts. }}$	203,126	$\begin{aligned} & \underset{2,539}{\$} \text { Cts. } \end{aligned}$	323.221	${ }_{1,536}^{\$ 1 t s}$
4,037	6666			33,477	13777	3,618	12117
79,251	4,684 56	34,320	1,997 99	44,988	1,343 67	286,294	1,716 76
1,730	4430	1,678	1807	22,747	63248	110,338	2,214 41
66	1957	52	3250	536	1032	272	17.27
18	$1 \cdot 05$	17,923	1,814 26	730	5354	2,080	11094
15,357	1.63185	1,307	4032	529 344	1587 2385	2,298 41,067	10088 1,41027
96,452	6,381 33	55,280	3,702 14	69,375	2,13571	442,249	5,570. 53
216	731	7	145	239	1193	5	27
10	55	6	80	50°	388	2	20
226	786	13	225	319	1591	7	47
		3	${ }^{3} 38$				
69\%	6843	42	2247	468.	2340	804	10973
15	145	45	3507	124	618	212	3435
35	525	8	15.49			31	442
65	645	3	150			16	242
803	8158	187	7824	592	29.58	1,063	150.92
$\begin{array}{r}37,858 \\ \begin{array}{r}86\end{array} \\ \hline\end{array}$	3,62177 853	3,772 12	66599 840	2,500	12500	130 2	140
253	2525				2.25	32	3.99
9	- 85	486	7304		33	8	46
3,654	45485	8.061	2,382 00	1,584.	79.20	1,991	22718
1,183	11316	291	7971	22	1.08	122	985
2		3,914	54217	222	2103	2,413	22222
42,973	4,224 63.	14,536	2,443 31	4,359	21789	4,696	56529
184 825	1847 2780			293	173 1450	$49{ }^{4}$	32 29
		21	6 S1		288		
174	1714	19	1s 40				
2,447	13745	1	68	395	1383	4	32
3.130	22876	141	5938	748	31.34	495	$30 \cdot 59$
872	5696	113	27415	354	4770	1.622	18117
2.278	20527	355	5909	242	726	182	873
99	918.	264	2891	49	145	73	433
72	705	136	38.05	45	225	3	-39
65	285	206	7454	246	1228	104	1030
3,389	311 61	1,674	47464	1,536	7096	1,985	23506

No. 7.-SUMMary Statement of the Welland, St. Lawrence,

Chambly, Burlington Bay, Ottawa and Rideav Canals, \&c.- (Continued.)

.

luring the year 1809 .

23 Victoria.
No. 10-STATEMENT shewing the Aumber. National Character and Tonnage of Yessels Sessional Papers (No. 23).
during the year 1859, and the amount of Tolls collected thereon.

 Up and Down Trade.

	Wellam.				St. Larronce.				Chambly.				Burlington Bay.				St. Ann's Lock.				Otawa and Fideau.			
	1856.	183\%.	185.	1839.	1856.	1857.	1855.	1859.	1856.	1857.	1858.	1859.	1856.	1857.	1858.	1858.	1856.	1857.	1858.	1859.	18 stin	1857.	1853.	4859.
	$\begin{gathered} 26919 \\ 890,9 \% 7 \end{gathered}$	26.8.8in	193.141	$\begin{array}{r} 186,008 \\ \dot{j 23,003} \end{array}$	131,400 503,106	$\begin{aligned} & 1399,352 \\ & 459290 \end{aligned}$	$\begin{aligned} & 110,507 \\ & 41.751 \end{aligned}$	$\begin{aligned} & 18.590 \\ & 7.117178 \end{aligned}$	(107,57s	$\xrightarrow{112,634} \mathbf{}$	105.806	${ }_{\substack{143,747 \\ 33,246}}^{120}$	47.642 49,62	32,952 36,798	21,195	$\begin{aligned} & 18,179 \\ & 70,342 \end{aligned}$		(130,485	${ }_{1}^{11} 8.8 .59$	$\frac{13,44}{13,4535}$		$\begin{array}{r} 56,08 s \\ 410,417 \end{array}$
	97.006	901.072	S5. 5.112	709,611	634,536	593,652	600,55s	911.768	129,666	133,687	120,645	176,683	97,104	89,751	59,254	38,521	169, 101	145.545	154,44	\$8,696			22, 2,	47, 205
\%	29.266	(382.28	$\begin{array}{r} 382.406 \\ 56 i 6.365 \end{array}$	$\begin{aligned} & 418,922 \\ & 43,996 \\ & \hline \end{aligned}$	$\begin{aligned} & 367.142 \\ & 34759 \end{aligned}$	$\begin{aligned} & 351.324 \\ & 338.707 \end{aligned}$	$\begin{aligned} & 356,799 \\ & 371,020 \end{aligned}$	$\begin{aligned} & 396,790 \\ & 368,546 \end{aligned}$	$\begin{aligned} & 74.374 \\ & 76,696 \end{aligned}$	$\begin{aligned} & 77,676 \\ & 50,388 \end{aligned}$	$\begin{aligned} & 79,508 \\ & 00,015 \end{aligned}$	$\begin{aligned} & 99,509 \\ & 98,543 \end{aligned}$	$\begin{array}{r} 411,380 \\ 38,663 \\ \hline \end{array}$	$\underset{\substack{113,170 \\ 29,240}}{10,}$	$\begin{aligned} & 76,471 \\ & 76,562 \end{aligned}$		$\begin{aligned} & 90,179 \\ & 87,507 \end{aligned}$	$\begin{aligned} & 22,683 \\ & 34,273 \end{aligned}$	93,300 S?,104	$\begin{aligned} & 10+.526 \\ & 93,660 \end{aligned}$			$\begin{aligned} & 160,004 \\ & 163,217 \end{aligned}$
Far Temen er Yowelw and down	1.179.240	1.248,434	1.148.711	856,918	715:041	690,031	757, 10	765,636	151,070	158,064	159,523	198,052	450,043	142,410	153,033	108,008	177,686	170,056	128,703	200.126		310,226	323,221
rami Trmin Thatage of Property and Vessols !	2.150 .502	2. $0+5,500$	2, (19),	1.566.529	1,349,577	1.283.683	1,363,368	1,677,404	280,736	291,751	256,68s	374,740	547, 147	212,161	212,287	196,589	347,057	325,501	337,147	291,822			534,467	705,720

 Candis, Sr. Anrs and other Locks, for the year 1850 and three preceding years.

The arerage increase of the movement of Property on the six Canals in 1859 , compared with 1858 is 30.20 per cent.
The average decrease of the movement of Property on the six Canals in 1.859 with 1856 is 10.66 per cent.
(A) This table of percentage appiies to the first line of Totals shewing the movement of Property.

No. 14.-STATEMENT of the Number and Tonnage of all kinds of Vessels in the year 1859, and a Table shewing the

					A A	$\mathrm{I} \Lambda \mathrm{N}$					
SAILING AND OTHER VESSELS.						STEAM VESSELS.					
Tounage.	No.	Total Tonnage.	Tonnage.	No.	Total Tonnage.	Tonnage.	No.	Total Tonnage.	Tounage.	No.	Total Tonnaga
-		Br	ought up.	572	44,383			Br	ought up.	60	3,091
	12	48	170				,	4	100	2	200
	111	80 70	175	$\stackrel{3}{6}$	510	10	1	10	101	1	101
	20	300	180	4	7	20	4	80	103	1	103
15 20	8	$1 \mathrm{~B}_{0}$	185	3	555	22	1	22	120	1	120
20 25	9	225	190	1	190	24	1	24	12 S	1.	128
	4	120	195	2	390	31	1	31.	132	1	132
30 35	6	210	200	8	1.600	32	1	32	140	1	140
40	34	1,360	205	3	615	35	2	70	144	1	144
45	17	765	210	2	420	36	1	86	150	1	150
50	32	1,6011	215	1	215	39	1	39	156	1	156.
55	19	1,045	220	$:$	660	10	4	- 160	160	1	160
	28	1,680	225	3	875	41	1	41	170	2	340
60 65	13	345	230	2	460	42	1	42.	173	1	173
70	37	2.594	235	3	705	43	2	86	176	1	176
75	28	2.100	240	2	480	44	1	44	184	1	184
	39	3,120	245	1	245	48	4	192	156	1	186
80 85	31	2.635	2.50	3	750	50	2	100	195	1	195
85 90	19	1.710	255	3	365	52	3	156	210	1	210
95	15	1.710	260	4	1,040	53	1.	53	221	2	442
100	37	8.700	265	2	530	54	1	54	223	1	223
105	13	1,36.5	270	3	810	56	4	224	225	1	225
110	18	1,980	275	1	275	59	1.	59	228	1.	228
115	19	2.185	250	2	560	B_{0}	1	60	250	2	500
120	25	3,000	255	1	285	63	1	63		
135	12	1,500	290	5	1.450	6.4	2.	125
130	11	1,300	295	1	295	68	1	68	…...
135	9	1,215	300	2	600	72	2	144
	4	560	310	3	930	75	1	75
145150	3	435	320	4	1,280	79	2	158
	18	2,700	330	1	300	80	2	160
	4	${ }^{820}$	340	3	1,020	88	3	264
155 160	7	1,120	355	5	1,775	93	2	186		
165	2	330	365	1	385	95	1	95
						98	1	99		
Carried up.	572	44,383	Totals.	663	66,903	Carried up.	60	3,091	Totals.	S8	7;812
NUMBER AND AVERAGE TONNAGEOFALL											
CANADIAN.											
Class. S	Sailing and Other Vessels.			No.	Tonnage.	Class.	Steam Vescelis.			No.	Tonnage.
1 25 2 20 3 15 4 10 5 5 6 Un	250 to 365 Tons................			44	13,030						500
				28	6,075	200	to 2	50 Tons		8.	1.328
	200 to 250 Tons................			50	8,185	31150	to 2	00 Tons.		10	1,720
	100 to 150 Tons................			150	17,240	4100	to 1	50 Tons.		10	1,173
	50 to 100 Tons			264	19,035	55	to 1	00 Tons.		31	2,146
	Under 50 Tons................			127	3,338	Un	der 5	0 Tons.		29	945
Totals...............				663	66,903			Totals:		88	7,812

passing through and on the Canadian Canals, during the Season of Navigation, Number and average Tonnage in Six Classes.

AMERICAN

SAILING AND OTilde vessels.						Steam versels.		
Tonauge.	No.	Total Tonnage.	'lonnage.	No.	Total Tonange.	Tonnage.	No.	Totas Tomnage
			Bought up.	265				
10	5 6	311 90	180 185		1-590	25	1	10 25
20	6	120	190	4	370	30	1	30
25	7	175	195	j	70^{0}	35	1	35
30	${ }^{6}$	150	200	3	975	40.	1.	10
35	11	385	205	2	600	52	1	52
40	21	840	210	7	410	5.4	7	64
45	30	1,350	215	\%	1,470	65	1	- 68
511	33	1,650	290	2	6.45	80	1	80
85	22	1,210	225	1	$4+0$	85		${ }_{8}^{81}$
00	24.	1.449	230	10	225	10.4	1.	16.4
65	12	750	235	1	2.300 840	107	1	117
71	17	1,190	940	i	840	115	1	115
-5	3	225	$\because 45$	1	1,200	125	1	1 ± 6
80	1	s0	250	1.4	245	155	1	150
S5	$\stackrel{2}{2}$	170	25.5	8	3,500	225	1	295
90	3	270	260	\pm	2,040	298	1	295
95	1	95	285	7	1.040	321	1	321
100	$\stackrel{9}{9}$	900	270	5	1,855	826	1	326
105	2	210	275	3	1.350	3.41	1	? 3
110	1.	110	230	18	825	844	1	34
115	1	115	990	11	$5 \mathbf{5}, 040$	349	3	34.9
120	6	720	300	2.4	3,190	352	,	1,05k
125	2	250	320	12	-200	354	I	354
1319	,	130	330	6	3,¢40	330	1	380
135	2	270	340	12	1.980	367	2	93.4
141	2	280	350	22	4.080	372	1	372
1.45	\because	290	360	11	7.300	375	1	375
150	1	1:10)	3.0	2 \%	3,900	378	1	378
165	2	:310	330	10	8.410	355	1	885
1190	5	800	390	14	6.080	394	1	89.4
165	3	495	400	$\stackrel{2}{2}$	5.460	396	1	346
170	9	1.530	421	$?$	880		
150	4	69	45.7	1	1.236 457-..	
					457		
tarred up.	205	17.590	Totals.	8.33	as, -i \%	'Cutats.	35	8,09]

VESSELS DIVTDEDINTO SIX CLASESS.
AMERICAN.

Class.	Suiings and other Vessels.	No.	Touns\%e.	Clnas.	Steam Verselu.	No.	Tonauge
1	250 to 45t Tons...............	218	710.043	1	250 to :996 Tons	13	2,783
2	200 to 250 Tons...............	38	8,475	2	200 to 250 Tour	1	205
3	150 to 200 Tons................	38	6,630	3	150 to 200 Tons.........	1	155
4	100 to 150 Tons	28	3,275	4	100 to 150 Tous	4	451
5	50 to 100 Tons	118	7,110	5	50 to 100 Tons	5	337
0	Luder 50 Tons..	95	3,220	6	Under 50 Tons.................	5	
	Totals.	533	98,753		Totaje	35	8,091

No．15．－COMPARATIVE STATEMENT shewing the quantity of each article the amount of

tolls paid thereon．

ARTCHLES	155s．		1559.	
	Tons．	Tolls．	Tons．	Tolls．
Brought up．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	494,367	S9，350 ${ }_{\text {cts }}$	f．4S，5s：	$\begin{array}{cc} \$ & \text { ets. } \\ 62,771 & 68 \end{array}$
¢n ．．．	989	21303	1，678	34522
（0i Cake and Oil Meal ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	225	5296		$1,500] 5$
titas，all enta	17．56．）	1，00，it	753	12381
Piob，Tar and Rosiu ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	470	9128	342	$3941)$
Phesgis und Agricultural Yaplenents．．．．．．．．．．．．．	4.218	52623	6，618	3，06S 67
trik ．．．	75	12003	1，680	24807
Potatues Proci liay and Browm Corn	st．	470	2.717	35788
Prosed liey and Broum Corn ．．．．．．．．．．．．．．．．．．．．．．．．．．． Ha－s，hint ant gukum	632	974.3	862	$1: 68$
4ss，	36	900	2	${ }^{0} 33$
Bye und lue Mcal ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	${ }^{18893}$	－ $\begin{array}{r}206 \\ \hline 0.54 \\ \hline\end{array}$	116，403	［15．015 53
Sixi ．	16,907 273	－1， 2901	116，420	－ 2854
Sbere？			5	126
Shin Stare	698	719	304	41083
vate			958	21727
Suen ash	53.	9.4 it	695	13490
Apter	3，247	52480	3.533	74354 1
Sime ．．．	20，262	1,24623	14，092	1，05479
和；nt ．．．	11.685	2.59039	11，2＋5	1.473 .24
Tulio．．．	999	${ }^{69} 81$	1.142	248 80
Tit run Steel．．	－892	734	$68:$	10593
Tupder ．．	32	13） 44	135	2868
Tuncatim	30：\％，87．	\＄9．044 22	183，442	37.58195
Whent	2.512	70786	2，197	40135
Whiteey，other Spirita and Wher Whits Leud and laints \qquad \qquad			307	12953
Whits Leud and \qquad	1，122	24815	1，028	27467
Wool	185	5313	168	3393 $16: 900$
	11.189	2.21573	10，418	$1,6: 3900$ 10983
	24.901	12：081 55	24，427	10,08397
timbere er．				
	49.4	165 ss	S． 259	303 32
Sosaid，ull hinds and Sawed huraber ．．．	：71．877	16，426 29	912，854	19，485 12
Bat Euees ．．	－69	1292	31	8889
Gmpty surre ．．．	${ }^{718}$	－ 50.55	1，284	1212453
Wire Wowd ．．	421.026	$10.367 \quad 27$	396，093	12.26512
Ss．＊3．》к：．．	43.406	1.585	＋5．423	－370 95
bhingle \qquad \qquad	68，${ }^{4648}$	8，69798	62，63i	s．93145
未taras，uh kimds \qquad Fiabor and Wooden Articles \qquad	68,107	12，359 81	152.557	14，591 35
Grand Totala［Tonnage of Vessols and leasongeri not included］．．．．．．．．．．．．．．	2，025，24．5		2，447，794	
	45,091 2.712 .366	$\begin{array}{r} 1,60 \leqslant 41 \\ 39,55243 \end{array}$	$\begin{array}{r} 55.614 \\ 2.455,021 \end{array}$	$\begin{array}{r} 1,7 S 693 \\ 32,74020 \end{array}$
	2.712 .366	39，552 23		
？This E．ass Rrawhack	．．．．．．．．．	314.47130		229.24938
		12，036 92		5，535 03
Grail Tosa Tolbo．．．．．．．．．．．．．．．．．．．．．		302，434 38		\＄223．114 25

No. 16.-AN ACCOUNT of the Gross Revenue derived from Canal Tolls during the year 1859.

Wellund Canal	124,700 81
St. Lamrence Caval	- 51,846 . 33
Cbambly Canal, including St. Ours Lucks..	. 6,40948
Burlington Bay Canal.	14,358 95
St. Ann's Lack...................................	5,654 17
Ottawa amd Ridean Canals nnd their Locke	10,743 90
Fotal Tolls collected	223,71425

No. 17.-AN ACOOUN of the Gross and Net Revenac derived from all Soarces from the Provincial Canals of Canada, for the year 1859.

No. 1.

GENERAL STATEMENT OF IMPORTS,

peing a detatled account
1)r rill:

PRINCIPAL ARTICLES

or
BRICISH AND FOREIGN MERCHANDIZE,
EATERED FOR CONSUMPTION IN CANADA,
Dantig the year ending the 31 st December, 1859 , shewing the Quantity and Value of each
Article, and indicating from what Country imported.

23 Victoria.
Sessional Papers (No. 23).

No. 1-GENERAL StATEMENT OF MPPORTS.-Continued.

23 Victoria.
Sessional Papers (No. 23).
A. 1860.

No. L.-GENERAL STATEMENT OF IMPORTS.-Continuced.

No. 1.-GENERAL S'IATEMENT OF IMPORTS.-Cuntinued.

23 Victoria.
Sessional Papers (No. 23).
A. 1860.

23 Victoria.

23 Victoria.
No. 1.-GENERAL STATEMENT OF MMPORTS.-Continued.

PORtS.	Total Quantity.	Total Value.	inks, of all kinds, except mixtiva-mported from				
			Grent Britain.	british colonies.		United Statos.	Foreign Countries.
				North Americn.	West Indies.		
Clifion		104	\$	\$	\$		\$
Creait		-142	2,52.	${ }_{142}^{14.4}$
	...	239 905	23 48 4 4	${ }_{216}^{1,291}$
	${ }_{342}^{661}$
	\ldots	5,662	3,006	2,656	
			LUMBER or PLANE,--Manufacturad				
Montreal Prescoth Other Port			\$ ${ }_{90}$	\$	\$.		$\$$
		N-.....................		
4 T Totals...................	$\stackrel{\text { 8,260 }}{ }$		${ }_{\sim}^{1 ~}$			
			90	\cdots	8,170	

23 Victoria.

23 Victoria.
Sessional Papers (No. 23).
A. 1860.

23 Victoria
Sessional Papers (No. 23).
A. 1860.

No. 1.-GENERAL STATEMENT OE MPOR'SS.-Cmimurd.

23 Victoria.

No. 1-GENERAL STATEMENT OF TMPORTS.-Continucel.

No 1.-GENERAL STATEMENT OF IMPORTS.-Continued.

23 Victoria.
Sessional Papers (No. 23)
A. 1860.

No1.-GENERAL STATEMENT OF TMPORTS.-Continued.
No. 1.-GENERAL S'LATEMENI OF MMPOR'IS.-Continued.

23. Victoria.

23 Victoria.
Sessional Papers (No: 23).

No 1.-GENERAL STATEMEN'S OF IMPOR'IS.- - Contimued.

	\square		\| \times -	1-30.an	sor			
\%								
)							
	s		s	s	*			
	Luxarmo oitaviadil avy siuva do yaisvia							
	\cdots	cosio^{8}	\cdots		961	${ }_{181 \%}$	\|………	
	-	, yizi	-				\square	
			$\sim \square$		9f.			
	s		\$	$\stackrel{ }{ }$	${ }^{18}{ }_{5}$			
\%		sovers inum	Sapuai soil	nupumy yos		$\begin{aligned} o_{101} w_{A} A_{A} \end{aligned}$		-s.unod
			צалхотол	hisiliua	чиуия \% wap			

No. 1.-GENERAL S'TATEMENT OK 1MPORTS.-Continued.

No. 1.-General statement of imports.-Contimued.

122

No. 1.-GENERAL STATEMENT OF IMPORTS-Comtinued.

			(1):			
	\|		(1)			$\stackrel{\rightharpoonup}{6}$
	*				-	
					-6	
					-	$\stackrel{\square}{8}$
						(
	电					

No．1．－－GENERAL STATGMENT OF LMPORTS．．．Contimerd．

				B		Ws．	\vdots \vdots \vdots \vdots \vdots \vdots	突	\％ 6 ¢	等
	䓓		Gri	］			家			
	$\begin{aligned} & \text { 窇 } \\ & \text { K } \\ & 0 \\ & \hline 8 \end{aligned}$		－			［				
	急		n							
	安			吕			$\stackrel{\infty}{\sim}$		\＆	＊
			岡:	管			哭		¢ 0^{2}	萲
	気突									
	8 \approx 0 \approx			总						

No. 1.-GENERAL STATEMENT OF IMPORTS.-C'ontimect.

No．1．－GENERAL S＇TATEMENT OF IMPOR＇TS．－Continued．

		s			\％ 6 \％	｜	范	
			2		$5-\frac{90}{5}$	\mid		
		$\%$						
		¢ 4	\because					
			8					
	兰		発		$\%$ 年	\％		
	位							
	\％ $=$ $=$ $=$							

No. 1.-GENERAL STATEMENT OF IMPORTS.-Contimued.

134
No. 1.-GENERAL S'IATEMENT OF IMPORTS.-Continucel.

No. 1.-GENERALA STATEMEN' OF TMPOR'S.... Cmimuthl.
(

23 Victoria.

-

| \cdots | \%24 | \|.................... | \|...................| | \|.................. | ${ }_{8} 2^{2} 11$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | J |
| -................... | | | | | | | |
| | | | ... | | | -...................... |"1010 |
| -....................... | | \cdots | | | | | |
| \% | | \$ | \$ | s | | -....................... | --..................................unato |
| | | | | | | | |
| \ldots | solt | | \|................... | (18 | 8814 | \|..................| | |
| | 0!\% | | | | 097 | | \|........................ spuw |
| (...................... | | .-............................. | . | n! | | -1..................... | |
| | $\begin{array}{r} 91 \\ 61 \\ 61 \\ \hline \\ \hline \end{array}$ | | | ${ }^{\text {and............. }}$ | | .1................. | |
| \$ | | \$ | * | ${ }_{\text {\% }}$ | ${ }^{61}$ | | |
| Stanvi | | | | | | | |
| \cdots | 6 m | - | | | 619 | | |
| ….................... | | | .….................. | -……........... | | -1.............. | |
| | | ….................. | | | | \cdots | |
| , | | | | | | (.................. | 1 |
| \$ | | \$ | \$ | \% | | | |
|
 | | | | - | | | 's, ¢ 0 0 d |
| | | | | | | | |
| | | sminotoo hisiluit | | | | | |
| | wowa denat | hodint-sivies an | แxassvat | | | | |

No. 1.--GRSERAL SMATEMENT OF IMPORTS....Comtinued.

10RT心。	Twtal Quantity.	Frabl Value.					
			Great Briakin.	BHITESHCOL.ONIES.		Conied stater.	$\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}\right.$
				Nurth America.	Weat Inlie		
Bruckrille		S*	\$	S	s	Sis	\$
Kinnestom.	\cdots		2.163
Montreal ..		6,!	4,980	…….............
- Murinhmprat................................	\cdot	789		723	-
Troronte ...		:1.016	1.1:11
Other l'orts.		1,44:;	17			A,:3isi
Totals		22,541	17			22,i4
			MEATS,--Fresh, zmoked, and salt.				
Bytown	Cw\%	(10, ${ }_{\text {¢ }}^{3}$	\$	*	8	${ }_{46}^{8}$	\$
Coaticook..				46,279 0,475
Fort Eric.....................................	1,418	11,34.4	11,344
Hope ...	Su:	7.238	7,2:32
Kingston Montreal	-2.822	-211,899	20,5:9
1reseott ..	15, 18.	223.427 112.50	22S,497
Qucbec...	-3,84i\%	? 30,7817	….................	112,550
Saint Johus	1,239	11, 1.15	29.201	1,375
Sarnia ...	- 899	S.tis	$\begin{array}{r}1,510 \\ 3,6.1 \\ \hline\end{array}$
Toronto	340	3.203			3,203	….......................
Windsor,...	1,403	11,103	1.......		11,103
- Other Ports...................................	12,730	10.,900	1,112	3,980		100,80s	
Totals...........................	67,472	B03,092	1,233	3,080	.i.................	601,454	\cdots 1,375

No. 1-General stathment of mports.-Contimed.

			\％
\qquad			
	（\％）		\square
$\stackrel{\text { en }}{\text { ¢ }}$	\％		
	（10）		
碳			－
为			（\％）
\％			

華			
			of

No. 1.-GENERAL STATEMENT OF MMPOR'IS.-Continued.

		asa ni silsvo hawia isdilis				
						$\begin{aligned} & \bar{\vdots} \\ & \vdots \end{aligned}$
						10
					\% 0 ¢	
			$8{ }^{\mathrm{F}} \stackrel{0}{0}$			

So. $\because-$-.gTMMARY STATEBiFNT of the Quantity and Value or, and Amount of Consumption during the Year 1859, and

Daty Collected on, the Principal Articles of British and Foreign Merehandise entered for indicating from what Country Imported.

No. ?.--SUMMARY STATEMENT of the Quantity and Value of, and
Amount of Duty Collected on, the Principal Articles, \&c.-Contimued.

No. 2 .--SUMMARY STATEMENT of the Quautity and Value of, and

Amount of Doty Collected on, the Principal Articles de.-Continued.

\$	S	\$	s	5	\$ ets.	
972			635		32190	
21,902	3.581		35,732	23,169	16,332 27.652	
111,027	124	29,462 12,080	\$817	27,082 97	
36,423 30224			12,020 31,951	2,214	12.30144	
30,224 3.200			1,393		90495	6
3.511			2,661	351	1.30417	7
12.463			1,286	1,799	:\% 105 J	S
421	ss	967	45	:04 2S	9
970			S,505	14	2.17S65	10
847,726	J		+6, 8.49	7,280	180.37117	11.
14,78.4	253	32,150	140	10.221 22	12
97.385	22	57,716	5.766	:1,703 30	13
97710.9			+0,338	2.140	28.685736 2704 25	14
12,431	15	11,300	1.200	$2.70+20$	15
3,98.		11,374	14,415	4.814 33	16
$4{ }^{3} 561$		${ }_{295,32 \mathrm{~S}}$	11,767	$8 \mathrm{S6} 767 \mathrm{~S}$	17
$3,195,374$ 67,045	3,19 1,125	3	255,325 165,569	6,29s	47, 46963	18.
					955152635	
11,305,572	22,151	:	3,225,204	$20+506$	2.501.0.0	
	01		47		14931	20
+2,747	0	12S, 2 bii	15,658	15,68.4 59	21
6,765	2.676 2.595	Tis 38	22
(3, 240	11,429		2,25943	24
25,091	15.339	35		25
2.520	515	27,047 108,115	713	16.24745	25
65,732	545	108,115	713	1873 39	27
3,890 $+7,712$in.	-	7.916	144	128090	29
10,00S		1,345	1.13213	30
3,36S	767 50786		11,045 47	81
49,697	27,280	2,138	22,5ss 49	32
200,354 61,454 ${ }^{\text {an...... }}$	T,930	6,94692	34
1S6,589			4,627	1.832	19, $13 \% 3$	35
554,959	204	32.070	315	57.20589	$8{ }^{3}$
9,586	7 7,56:	2.7521 .4	37 38
154,364			2:,601	17.8056	38
			-5,137	20580	40
39,108			19,015		3.64595	41
85S			2,58:		371 us	42
14,613	23		3,141	1,79511	43
73,593		S,767	\% 4.65	44
7,621 6,268			……........ 6	1.75743	46
6,266 5,522	815	63\% 69	47
2,409	2215		27190	48
	2,055		21808	50
2,409 126 408			10,456	.	- 1.095 28	51
27,192		2,602		2,979 37	52

No. 2.--SUMMARY STATEMENT of the Quantity and Value of, and

No. 2.--SUMIIARY STATEMEST of the Quantity and Value of, and

Amcunt of Duty Collected on the Principal Articles, dic.-.Comtinued.

No. 2.--SUMMARY STATEMENT of the Quantity and Value of and

Amount of Duty Collected on, Principal Articles, dic.-.Continued.

No. 3.-COMPARATIVE STATEMENT shewing in Contrast the Quantities for Consumption in Canada, during the Years

Amtiches.	1557.		
	Quantity	Talue.	Duty.
Ale, Beer and PorterGall	366.361	$102,0,1750$	$15,820 \mathrm{cts}$
Blatestur,			13565
Bramiy ..ills.		52.53100 38.573 300	20,47250 6,274
Erouns and Brustes of all kim	25,591		
Candles	73,160 00	10,969 40
Ciina Ware, Earthenware und Cruckery..	27,316	077050.00	41,649 93
Cigars		242.67200	:36,403 4 s
Claeks and Watcines, Juwellery and Plate			
Chenes, Reaty-made		16,105600	
Coftee, irreen	$\begin{array}{r} 1.374 .121 \\ 24,318 \end{array}$		
Confectionary and Swectuex..	3,239	41.19100	$\begin{array}{r} 51060 \\ 6,30025 \end{array}$
Curdials ..Galls.			3,23570979.413
Cottuns.			
Cutw-whick, Larn and War	1,531,293	(101,308	$\begin{aligned} & 3,844 \\ & 3 \mathrm{~S} \\ & 3 \mathrm{~S} 153 \\ & 36,475 \end{aligned}$
Drem Fuuts mad NutsLbs.			
Druse and Meitines.		24, 3,13900	
Fancy Goods..		60. 11200	91,22904
*eltis	5,297 7,958 1001	132921092041436
${ }^{\text {FFire-Brick }}$.			
FFishing-Hork, Nets, Lines, fi	16,572 00	
		$\begin{aligned} & 76,86900 \\ & 301029700 \end{aligned}$	69,9836045,049403
	99,976		
Cums. Mities and Firc-A			5.10 .10 .74
Ciumpuwder and Fireworks		
Hats. Caps and Ponnete.			34,36023,5068
Husiery	157.197100	
Iron-and Iturdware		1,959,760 in	293,955 s0
Bar. Rod, Shect. Hoop and Galvanizel	1.025.524 00	${ }^{25.5854} 587$
Boiler Plate, Rolled Plate, Canada Plate,			
Chains amd Chain-Cahl	155.19169,0841010 55,03710	1,493 06
Hoops or Tires for Railrond purpuece.....			2,752 05
Bars and Wrought Iron Chairs and Spikes for $\}$ Raihroad purposes..............................	849,74400	21,24440
Other articles for Railroal purposes.........			
	514,40300 325.74500 206.7990 100 334,98500	77,18215 65,0744 41,36191 50,24S 17
	317,65700	
	16,457		$\begin{array}{r} 47,66745 \\ 342 \\ \hline 35 \end{array}$
Macaroni iad Termicelli...........................LLss-		1,226 00	
Mamfactures of Brass or Copper	….........	103,44700	23,06215
Fur			
(tald, Silver and Plated Pare...	58,471 00	11,694 84
M			
Paner-Machic, Bone, Shell, Horns $\}$			
Straw (frass, Oier ani Puilm Leaf, \&e.	$\begin{aligned} & 190,571 \quad 00 \\ & 283,854 \end{aligned}$	
Wood.....			12.60102
Mohases ...Gells.	1,2s6,180	$\begin{aligned} & 466,39+00 \\ & 133,079 \end{aligned}$	53,59246
sical Insituments	$\begin{array}{r} \dddot{85,740} \\ 25,3,190 \end{array}$		$\begin{array}{r} 19,96238 \\ 4,287 \\ 32,287 \\ 32,147 \\ 00 \end{array}$
Mustari...Lbs.		$\begin{gathered} 13,40700 \\ 214 ، 30700 \end{gathered}$	
Oil .. ${ }^{\text {alls }}$			
Oil Cloths	\cdots	162,91800	4.05721
ckages			

and Values of the Principal Articles of British and Foreign Merchandize entered 1857, 1858 and 1859-Alphabetically arranged.

1 ¢̇⁄s.			1859.			
Quantity.	Value.	Duty.	Quantity	Value.	Duty.	
	\$ cts.	\$ cts.		\$ cts.	\$ cts.	
159,22S	46,51200	7.47685	92,480	30.52000	S,S14 08	1
	10,053 00	1,744 54	T,17600	2,051 36	2
......	2,99.4.00	74 S4		4,756 00		3
53,943	109,97300	43,67944	38,236	$\begin{array}{r}45,643 \\ 15330 \\ \hline 1800\end{array}$	39,386 3,673 42	4
..........	2,452 00	58160	15,335 52,2500	$\begin{array}{r}3,673 \\ 10,442 \\ \hline 84\end{array}$	5
........	51,596 29,542 000	5,611 5.72 .4 .21	52,i23 41, SS2	10,442 53711	7
...........	29,54200 192765	$\begin{array}{r}5,72+01 \\ 29,303 \\ \hline 83\end{array}$	190,969 00	37,76547	S
	192,046 00	11,4ss 34	33,433	20,722 00	11,60+ 36	9
15,135	144,698 00	23,723 64		131,643 00	15,S50 S4	10
...........	113,239 00	23,101 31		108,392 00	27,105 54	11
1,77¢,	203,357 00	20,20531	2,103,508	256,54300	21,035 03	12
27,633	3,686 00	.99270	35,925	3,052 00	92204	13
	39,967 00	6.55726		32,021 00	6,447 17	14
1,439	2,500 00	1,43S 35	2,613	4,109 00	3.12356	15
.....	3,315,119 00	497,234 20	4,863,444 00	902,150 21	16
	149,595 00	b,030 98		204,672 00	15,546 60	17
1,969,093	161,577 00	49.52666	2,739, 519	174,765. 00	53,02239	18
...........	183,495 00	$29,01+16$	$155,61 \pm 00$	40.5109	19
..............	20,656 00	$4,51+69$	315,143 00	63,59983	21
.	¢,680 00	11121	9,SSt 00		22
...	6,891 00	11239	17,934 00	23
............	25,622 00	S17 49	48,23700	$14+90$	24
	1,25100	$2+999$		S,34300	51,975 75	95
132,854	68,363 00	95,306 35	120.508	227,495 00	44,943 S6	$\frac{26}{27}$
.......	19.4,110 00	31,49690 974	7,146 00	1,429 02	28
..............	12,08400	1,877 \$1	13,517 00	2,587 39	29
...........	150,S10 00	25,099 64	256,S99 00	51,37S. 97	30
...........	46,98+ 00	7.04768	22,316 00	4,398 17	31
...........	1,331,983 00	216,448	1,347,167 00	266,592 52	32
…...........	751, 6400	20,369 9		263,6.47 00	26,149 33	33
\ldots	29,095 00	\% 35900	12,970 00		35
	36,909 00	1,511 S4	17,449, 00	1.744 94	36
	1,070,213 00	35,574 22	178,055 00	17,805 66	37
	15,658 00	2,348 63	62,364 00	4.0201103	2S
...............	447,34600	75.19995	332,502 00	66,49747	39
............	197,934 00	$\pm 2,16207$	133,109 00	33,275 0.3	40
...........	113,046 00	22.520 5S	96,600 00	19.695	41.
............	138,110 00	20,7640 18,799	203,071	\%s:519	42
	125,332 $9 \pm$ 1	1-4,000 S0		100,204 00	19,1シ6 34	43
18,518	1,50700	46241	54,200	2,517010	60563	45
				56,819 00	11,36.4 13	46
...........	65,202 00	10,208 73	62,3+3 00	12.44715	47.
...........	41.04500			47,96 0	9,598	48
...........	1,79600	8,21124 39	11,5is 40	2,302 S4	50
	22,559 00	$4,291 \mathrm{sy}$		27,118 00	5,422 SL	51
	93,33S 00	14,204 62		79,589 00	15.975 3.3	52
............	205,568 00	32,525 50		113,748 00	2:,081 17	53
1,360,073	314,94900	55,477 10	1,145,514	237,145 00	4,0.029 79	54
	100,179 00	17,783 46		105,993 00	2,798 20	55
79,459	11,79100	3,972 58	153,250	22,073 00	4.41603	56
245,484	181,681 00	25,302 20	414,43S	257,92500 42,898	35,899 8,579 58	57
...........	21,561 00	3,797 2,568 29	8s,649 00	1080831	58 59 59
...........	102,434 00	2,56S 29		ss,6+9 00	10.2031	59

No. 3.-COMPARATIVE STATEMENT shewing in Contrast the Quantities

(*) Dutiable in 1559.
and Values of the Principal Articles, \&c.-Continued.

23 Victoria.

No. 3.-COMPARATIVE STATEMENT shewing in contrast the Quantities

Dutiable in $185 s$ and 1:59.
Sheet Lead dutinhle in 185
Iutiable in 1859.

23 Victoria.
Sessional Papers (No. 23).
A. 1860.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Quantity. \& Value. \& Duty. \& Quantity. \& Value. \& Duty. \\
\hline \& \({ }_{10,465}^{\text {S }}\) cts. \& S cts. \& \& \({ }_{36,644} \mathrm{cts}\) \& \$ cts. \\
\hline 2,092 \& 2, 098700 \& \& \({ }_{5}^{40,5 \times 2}\) \& 36, 5 S74 00 \& \\
\hline \& 4,051 00 \& \& \& 10,409 00 \& \\
\hline 590, \({ }_{7}^{5929}\) \& 392,656
21,975
000 \& \& 759,534
54,646 \& 555,399
26,656
000 \& …......... \\
\hline 2,240,514 \& 1,647,459 00 \& \& 1,073,965 \& 1,092,205 00 \& \\
\hline 6,7ז2 \& \begin{tabular}{l}
29,734 \\
21,983 \\
\hline 100 \\
\hline 1200
\end{tabular} \& 1,659 17 \& 34,086 \& 21,111.00 \& 3,996 72 \\
\hline \& 21,264 00 \& \& \& 15,649 00 \& \\
\hline \(\cdots\) \& 495.37500 \& \& \& T10,S83 00 \& \\
\hline \& 10,059 00 \& \& \& 39,351
3,351 \& \\
\hline : 427,963 \& 41,412 00 \& \& 279,975 \& 33,454
1795400

17 \& 1,795.11

\hline \& 18,464
13,460 \& \& ... \& 17,954
12,721 00 \& 1,795 11

\hline \& S,9s0 0 \& \& \& 2,900 00. \& 29001

\hline $10,56,72 \mathrm{C}$ \& 549,419 09 \& \& 7,556,564 \& 60s,092 00 \&

\hline \& | 30,607 |
| :--- |
| 35,527 |
| 100 | \& \& \& 42,240 00 \&

\hline \& 1,37900 \& \& \& 2,337 00 \&

\hline 154,900 \& $34,55.3$
123,521 00 \& \& 109,316
201,498 \& 69,58900
$112,422.00$ \&

\hline | 6,717 |
| :--- |
| 2,705 | \& 124,905

7,670

00 \& \& | 8,603 |
| :--- |
| 4,107 |
| 108 | \& $153,701.00$

10,715 \& \ldots

\hline \& 24.41500 \& \& \& 22,663 00 \& -............

\hline 6,050 \& ${ }^{15.551} 00$ \& ... \& 16.759 \& 21,303 00 \&

\hline $$
\begin{aligned}
& 1.655,272 \\
& 1.713,696
\end{aligned}
$$ \& $\begin{array}{r}62,5650 \\ 327,92500 \\ \hline\end{array}$ \& \& $3,557,557$

$1,622,630$ \& $\begin{array}{r}109,755 \\ 261,255 \\ \hline 100\end{array}$ \&

\hline \& 36,030
3900
890118
000 \& \& 1, \& $\begin{array}{r}41,437 \\ 95 \\ 95 \\ \hline 15\end{array}$ \&

\hline \& S9,7115 360 \& ... \& \& 315,17000 \&

\hline \& 21,118 00 \& \& ... \& 65,643.00 \&

\hline \& 54,149 00 \& \& \& $2,156.00$
39,300 \&

\hline 4.000,054 \& | 401.575 |
| :--- |
| 151.54 |
| 150 | \& \& 2.976,216 \& 309,039.00 \& ..

\hline \& \& \& \& 135,101
25,025
00 \&

\hline \& 18,751 00 \& \& \& 66,523 00 \&

\hline \multirow[t]{3}{*}{...........} \& $\begin{array}{r}7,675 \\ 46,575 \\ \hline 1500\end{array}$ \& \& 413,570 \& 125,265 00 \& ..

\hline \& \& \& \& \&

\hline \& 29,078.527 00 \& 3,381,389 51 \& \& 33,555,161 00 \& 4,437, 44612

\hline \& 5,801,24, 00 \& 1,274,960 27 \& \multirow[t]{2}{*}{$$
\}
$$} \& 6,091,193 00 \& 1,275, 805 S6

\hline \& \& \& \& 245,710 00 \& 62,201 77

\hline \& 12,251,54900 \& 2,009,619 2 \& \& 14,521;066 00 \& 2,581,536 35;

\hline \multirow[t]{2}{*}{................} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 2,652,11900 \\
& \mathrm{~S}, 373,61400
\end{aligned}
$$} \& 96,509 52 \& \multirow[t]{2}{*}{...........} \& 2,246,601 00 \& 218, 30214

\hline \& \& \& \& $10,144,051$
3,510 \&

\hline \& 29,078,527 00 \& 3,381,389 51. \& \& 33,555,161 00 \& 4,437, S 4612

\hline
\end{tabular}

\because

No．5．－A DETAILED ACCOUNT shewing the Value of the Principal Articles，se．－Continued．

淢	－		
$\frac{\stackrel{\partial \theta}{\tilde{E}}}{\stackrel{\rightharpoonup}{E}}$	$\frac{\stackrel{0}{E}}{5}$		¢
	$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\begin{aligned} & \text { 잉 } \\ & \stackrel{-}{\circ} \end{aligned}$
	－		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{*} \end{aligned}$
			赵
为它	$\frac{\stackrel{\circ}{E}}{\underset{y}{\mid}}$		$\stackrel{\cong}{\approx}$
	$\stackrel{\text { ® }}{\text { ¢ }}$	জ্ন 会曷 ！ 5 号 荃 －	

No. 5.-A DH'JATHED ACCOUN'J shewing the Value of the Principal Artieles, \&e.-Comtimict.

1ORTS.	Ghass, Glassware, and Earthenware.	Iron and Intrdware.	Jewellery, Clocks and Watches.	Manufactures of Leather.	Linen.	Lace and Fancy Goods.	Silk.	Soap.
	Value.	Value.	Valuc.	Value.	Value.	Valuc.	Value.	Value.
Amherst.	$\$$	§	\$	\$	\$	\$	\$	\$
Bellevillo.		1,267	32	607		1	
Prantford.	974	${ }^{2} \mathbf{7 8 7}$	32	, 417	676	750
Bytoyn	1,043		1,215	
Clifton ..	939	9,431		4,023	6,709	16,039	
Cobourg ..	467	8,596					109	
Dalhousie,...	1,641	0,323	144	491	1,686		1,620	
Darlington...	138	,2023	14	491	1,212		2,598	
Dover ${ }^{\text {Dindis... }}$	115							
Dundas..	544	614						
Guelph ..	1,182	6,591	6,476	-	238
IIamilton ..	5,18.1	68,382		34 0,673			
IIope	-68,332	$\begin{array}{r} \text { 0, } ~ \end{array}$	6,673 0	6,468 135	6,073	32,855
Kingston London .,	2,754.	6,433	24	1,059	-13,580	$1,604$	441 4,460	
Mondreal.	5,166 185	7,667 405,135			4,444	6,519	
Owen's Sound	185,931	495,13S	29,095	25,276	76,540	125,601	167,805	20,120
Picton....	280				459		115
Quebee..	50,200	85,933	7,693	3,683	20,374	63,882	46,623	
Sault Ste. Marie	105			102	1,000	,	
Three Rivers.....	105	1,6S2				
T'oronto. Whitby..						1,353 31,774		
Whitby......	1422 422	58,001	6,519	3,178	25,465	31,774	66,762	1,077
Woodstock...		103						
Totals...	302,235	765,012	52,259	46,543	145,053	229,510	$\cdots 348,212$	41,791

No. 5.-A DETAILED ACCOUNT shewing the Value of the Principal Articles, \&e.-Continued

No. 5.- -DETAILED ACCOUNT showing the Value of the Principal Mrticles, de.-Continucal.

PORTS.	Rice.		Stcel.	Salt.		Sugar.		Sticos.
	Quantity	Valuc.	Valuc.	Quantity.	Valuc.	Quantity.	Value.	Spices.
	Lbs.	\$	\$	Dushels.	\$	Lles.	\$	\$
Amherst... Cobourg ...	4.	255		33,951	0,560	1,616	131	13
Dalhousic...					2,352	212	13
Caspé Mamilton \qquad	52	272	40 1.297	76,S12	7,587	11,901.	793
Kingston			3,989				250
London...			008	...		2,010	250	- 381
Montreal	17,060	59,526	51,6.40	33,450	3,3.15	1,618,30.1	113,492	
Quebec :.......... Sault Ste. Maric	769 2	26,348	5,9.12	831,782	88,510	1,657,000	131,783	4,4,303 5,303
Trorouto	2		2,586	10
Totals....	17,427	36,711	00,708	986,000	109,841	2,19.1,182	1.16,666	14505

No. 6.-CONTPARATIVE STATEMENT of the Quantity and Value of the principal Articles Imported into Canada, from Sea, riâ the St. Lawrence, during the years 1858 and 1859.

No. 7.-COMPARATIVE STATEMENT of the Quantity and Value of Goods

 enumerated in the Reciprocity Treaty-being the growth and produce of the United States and Imported into Canada during the Years 1858 and 1859.| $A R T I C L E S$. | 185 S. | | 1859. | |
| :---: | :---: | :---: | :---: | :---: |
| | Quantity. | Value. | Quantity. | Value. |
| | | \$ | | \$ |
| Animal:..No. | 10,170 | 240,156 | 10,547 | 234,677 |
| Ashes . | | 23,369 | | 12,526 |
| Bark... Cords. | 525 | 2,117 | 600 | 2,570 |
| Broomeorn | | 30,572 | | 30,301 |
| Burr and Grindstones.. | | 13,52S | | 14,383 |
| ! Butter..Lbs. | 43,120 | 7,037 | 246,719 | 40,335 |
| Cheese .. do. do. | 1,092,672 | 90,045 | 791,410 | 93,499 |
| Conl ..Tons. | 70,097 | 242,700 | 78,557 | 237,776 |
| Cotton Wuol | | 11,23S | | 17,207 |
| Dye Stuffs . | | 2S,545 | | 52,209 |
| Eess..Doz. | 20,735 | 2,487 | 14,713 |],593 |
| Fish .. | | 78,030 | | 105,584 |
| Fish Oil \qquad Galls. | 95,000 | 7S,936 | 129,983 | 73,008 |
| Fish, products of ... | | 708 | | |
| Firewood ...Cords. | 24,605 | 47,657 | 19,803 | 40,510 |
| Fruit, Dried ... | | 29,922 | 10,803 | 35,414 |
| do. Undried ... | | \$9,071 | | 215,609 |
| Flax, Hemp, and Tow, unmanufactured........................ | | 46,372 | | 57,301 |
| Fluur ..Brls. | 192,250 | 750,580 | 357,062 | 2,090,683 |
| Furs, Skins, and Tails, undressed | | 37,568 | | 114,532. |
| Grain of all kinds ...Bus. | 3,031,725 | 2,07S,464 | 1,750,835 | 1,709,073 |
| Gypsum | | 5,337 | | 11,763 |
| Hides and Pelts... | | 125,000 | . | 250,000 |
| Lard ..Lbs. | 347,963 | 41,209 | 275,205 | 33,049 |
| Marures. | | -12,13.4 | | 12,721 |
| Dicnl...Brls. | 6,492 | 21,064 | 33,964 | 125,902 |
| Meat of all kinds...Cwt. | 93,600 | 544,366 | 66,730 | 601,454 |
| Ores of Metals ... | | 9,038 | | 2,389 |
| Pitch and Tar ..Drls. | 2,308 | 6,204 | 3,345 | S,472 |
| Plamts and Shrubs | | 22,647 | | 24,423 |
| Poultry | | 1,582 | | 1,054 |
| Kags.... | | 943 | | 3,872 |
| Rice ..Cwt. | 182,160 | 1S, 142 | 600,254 | 15,562 |
| Seeds | | 78,356 | | \$2,111 |
| Slate.... | | 15,830 | | 12,763 |
| Stone and Marble, unwrought..................................... | | 51,469 | | 49,065 |
| Taliow ...Lbs. | 3,999,904 | 401,560 | 2,976,216 | 309,039 |
| Timber und Lumber ... | | 115,231 | | 97,435 |
| Tobacco, ummanufacturedLbs. | 1,390,074 | 135,025 | 1,964,483 | 146,974 |
| Turpentine . | | 31 | | |
| Yegetables ... | | JS,614 | | 66,109 |
| | | 11,101 | | 66,175 |
| Totals. | ... 8 | 5,j64, 115 | …....... 8 | 7,106,116 |

No. S.-COMPARATIVE STATEMENT of Goods in Warehouse under Bond; in the and shewing the Amount of Duty

ARTICLES.	31st December, 1857.		
	Quantits.	Value.	Duty.
		\$	\$ cts.
Ale, Beer, \& Porter..............................Gails. CofteeLbs.			
Cimars..L6s.	${ }^{115,226}$	13,590	1,477 82
Molases	190,530	c12,958	5,957 7,938 7
Mustard ..Lbs.	15,279	1,950	763:95
Snuff .. "	1,078	${ }^{2} 215$	107 S0
Starch................ ". ${ }_{\text {a }}^{\text {Soap }}$	63,130	5,326	2,104 33
Spirits-Wbisky ..alls.	[4,131	33,050	6,766 3s
		189,670	71,302. 40
Rin ${ }^{\text {Run }}$ "....................	50,912 19,212	43,541 10,005	56,635 56,40 8,40
Spirits \& Stroug Waters................................... "		10,005	
Cordiuls .. "	2,715	5,454	2,71500
Wine of all binds................................. "	325,577	361,399	12S,185 65
	${ }_{4}^{1555} 5$	11,086	2,769.50
Dried Fruits .. "	4, 4 S25,40S	350,065	64,63517
Macaroni \& Vermicelli "	117.74	41,060	9,747 70
Spices ... "	68,124	¢,458	245.30
Tea ... "	1,256,343	413,562	52,347 61
Tobaceo .. "	1,303,010	60,111	12,484 05:
Vinegar..Galls.	32,506	8,755	1,596:19
Patont Medicines.			
Blacking			
Goods paying 25 per cent.			
do do 20 do		14,877	2,975 38
do do 15 do		S99,031	134,854.67
do do 5 and $2 \pm$ per cont...		174,908	5,343 03:
Totals.		2,751,391	583,112 15

Prorince of Canada, for the Years ending 31st December, 1857, 1858, and 1859, chargeable thereon at those dates.

No. 9.-COMPARATIVE STATEMENT of Imports, exhibiting in contrast the Value of, and Amounts of Duties collected on Goods

New

No. 12.

gENERAL STATEMENT OF EXPORTS,

BEING A DETAILED ACCOUNT

PRINCIPAL ARTICLES

or

CANADIAN PRODUCE AND MANUFACTURE,

Shipped during the year 1859.
Shewing the Quantity and Value of each Article Shipped, and indicating to what Country Exported.

	${ }_{991}{ }^{\prime} / 98$	\|\%...	1.a.............	002	¢99' E \%	${ }^{16}{ }^{\prime}{ }^{\prime} 6$	\|........................... ¢moL					
-...................		-................	.	${ }^{0.007}$	008							
- 4	${ }^{59} 8$	\$	\$	8	$\stackrel{40}{5}$	${ }^{280} 0^{6} \mathrm{BaO}, \mathrm{L}$ пояеви!					
ayo Nou												
\cdots	¢fts ${ }_{\text {c }}$	\|..................		H1tcs	9s9001:	¢07¢					
-.......	(est		108'zez oci'								
-1...............		-......................										
s		\&	*	$\stackrel{1}{ }$								
: \%xo \%addos												
\cdots	\&s'\|	\ldots	$096{ }^{\text {cts }}$	2tio	19						
	$\underset{\substack{2968 \\ 8}}{ }$	$\$$	-1.............................ag's									
\pm			-.................	..969								
Peosunco uxtava	\%evs pomun				$\cdots{ }^{\text {and }}$	- A1\%uen \% [mo.	-9y ${ }^{\text {ad }}$					
		cariotoon hilluat										
al grlyodxa-yadaod												

No．12．－General statement of exports，\＆o．－Continued．

				Co	（\％）	（\％		言			－	
		噫	 									$\begin{gathered} 8 \\ 6 \\ 1 \end{gathered}$
	$\begin{aligned} & \text { 公 } \\ & \text { 鄙 } \\ & 8 \end{aligned}$	兑	os		\％	O						
			\％	－	－	\％	－				\％	
		㖪	os：	＋	\cdots	（\％	${ }^{20}$				\％	
			 								－\％intieneige	
			 道								Co：	
	n $\stackrel{y y}{*}$ $\stackrel{y}{0}$ $=$					E 穿言器 Eた						

No．12．－GENERAL STATEMENTS OF EXPORTS．－Continued．

		皆	A	1景		（n）		$\begin{aligned} & \text { 苞 } \\ & \text { 蔦 } \end{aligned}$	－		
		管		\％					\bigcirc		
			\％					6			
				$\stackrel{\square}{\square}$		（\％）	¢		き会合 oscosioi	品	
	烒									¢以	蓇
	\％		我粱品	\|		为	$\stackrel{9}{9}$				－
	10 $\stackrel{1}{2}$ 0 0 $=$					E． $\stackrel{3}{5}$ 2					

：					
$=$ $=$ $=1$	0	MAPIE．			
					س）
			$\Leftrightarrow \underset{\sim}{\infty}$		

No．12．－GENERAL STATHEAT OF RXPORTS，de．－Cmmued．

	，	－	（e）	（1）			（1）	T
		号	28：	\％¢	䓣		$\cdots 5$	芴
				1			－	1
	要		0	!	\bigcirc		\％ 0 \％	\％
			＊\times Mere	（\％）	哭		¢ 6	魯
	位							第
	曹							
	\％							

No. 12.-generial statement of exports.-Continuced.

No. 12.-Generala statembnt of exports-Continued.

No. 1.-GENERAL STATEMENT OF EXPORTS, \&e-Continucd.

No. 12.-GENERAI S'TATEMENT OF EXPORTS.-Continued.

No. 12.-GENERAL STATEMENT OF EXPORTS, \&e.-Continued.

					¢
				家	
	$\cdots$$\vdots$ \vdots \vdots \vdots \vdots 				
	\cdots				OAOA
	cren				
	\vdots \vdots \vdots \vdots				

23 Victoria．
Sessional Papers（No 23）．

				－
			安	
	总			
	总 总 总			
		$\begin{aligned} & \mathrm{e} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$		
	$\begin{aligned} & \dot{2} \\ & e \\ & 0 \\ & i \end{aligned}$			

No. 12.-GENERAL STATEEMENT OF EXPORTS.-Continued.

23 Victoria.

23 Victoria

	\square		\%			\square	
				员			
	\%		\approx)			
	\%		- 0 ¢	8			\%
	\%		\% ${ }_{0}$			\% 0 ¢	IE
			¢ ํ 낑ํ	\%		coibis	晨
	(\%ay			1			\%
				$\stackrel{\text { m }}{\stackrel{5}{E}}$			

33 Victoria: Sessional Papers (No. 23).
A. 1860.

A!Ttumes.	total exports.		to what country meporteio.				
	Quantiy.	Value.	(ircat litain.	britisil colomins.		United States.	Other Fureign Countries.
				North America.	West Iulices.		
		s	s	\$	\$	\$	s
manumatures.-Cmitiancol.							
Musieal Instruments	10,1977	.
	69			2,
		$22^{2}, 7101$:is		.	22,323
		(i,		[,041	-....................	IS, 310	
Oiil Cuke ..			22.943				
Bisseut ...crt.,	$1{ }^{1,1,1 i 0}$	20.103	32, 3,17		133
	${ }^{1,2350}$	-		$\begin{array}{r} 77.4 \\ \hline 1,23 \end{array}$	711
Grosud Ale, Beer, and Cider Whisky Vinegar .. \qquad \qquad Total, Manufactures. Galls. $، 1$ $،$							
			3,3, 30.	(1,120			29
		9,1131					\cdots
	447,231	205,153	${ }^{19,0205}$	196,501	15,7i7
coin asp buthrox-6olu.	\ldots.	3,652	3,652		\ldots	
Other articles......................................		111,732	5,303	1,15s		101,0.40	2,335

Sessional Papers (No. 23).
No. 16.--A COMPARATIVE RETURN of the value of the Exports of the Domestic Produce and Manufactures, the ralue of Goods entered for Consumption, aud the Amount of Duties Collected at each Port in Canada, during the years 1856, 1857, 1858 and 1859.

PORTS.	1556.			1357.			1858.				1859.		
	Exports.	Imports.	Daty.	Exports.	Imports.	Duty.		Exports.	Imports.	Duty.	Exports.	Imports.	Duty:
Amberst	$\begin{gathered} \$ \\ 82,953 \end{gathered}$	34,214	$\$ \mathrm{cts} .$	$140,432$	$\$$	$\begin{array}{ll} S & c t s \\ 1,722 & 80 \end{array}$		$\stackrel{5}{252,493}$	$\underset{49,994}{\mathbf{s}}$	$\begin{array}{r} \mathbf{S} \text { ects. } \\ 2,33938 . \end{array}$	266,656	${ }_{54,503}^{\$}$	$\mathbf{S y c t s}_{3,321 \quad 32}$
Amherstbur	57,143	57,246	5,668 :3	61,524	89,719	6,007 97		31,589	60,323	4,610 31	52,57S	56,963	5,121 72
Bath	${ }^{109,597}$	21,5:30	2,605 97	62,974	12,283	1,217 67	3	62,039	15,0ss	72257	37,640	${ }_{6}^{6,095}$	56986
Bayfield	253,711	${ }_{7}^{7} 1083$	45213	98,999	${ }_{5}^{3.128}$	30445 3767	4 5	$\underset{\substack{99,630 \\ 2,858}}{ }$	${ }_{6.005}^{2,932}$	$\begin{array}{r}341 \\ 34 \\ \hline 17\end{array}$	$\begin{array}{r} 37,777 \\ 2,550 \end{array}$	${ }_{5,405}^{3,460}$	539 $5 S$ 58
Beauce	3,135	4,101	${ }_{46}^{46} 52$	10,541 260516	$\begin{array}{r}5427 \\ 203515 \\ \hline\end{array}$	$\begin{array}{r}37 \\ \hline 27 \\ 21,704 \\ \hline 8\end{array}$	5	592,239	6.005 169,423	- $\begin{array}{r}34178 \\ \cdot 15015 \\ 51\end{array}$	2s9,726	159,794,	- $\begin{array}{r}\text { 53, } 231 \\ \hline 25\end{array}$
Beileville	342,771	3455,526	$\begin{array}{r}35,450 \\ 26,298 \\ \hline 27\end{array}$	26i, 616	20,32,073	31,042 4 S	7		235,467	23,947 50	260,780	189,003	25,069 68
Brighton	3S,005	8,706	90543	11,170	5.751	50960	s	13,309	4,514	25403	7S,6+4	8,100	52093
Brockvill	101,687	265,303	23,405 98	33,424	264,550	20,493 25	9	64,140	344,159	27,373 67	75,182	279,917	31,636 26
* Bruce	61,123	23,093	63307			597470	10						
Burwell	365,909	64,957	7,115 52	370,904 36,336	- ${ }^{76,081}$	35,883 45	12	-670,506	320.156	5,040 43,523 93	20S,773	401,756	2,920 60,388 68
Cetown	105,440	- 3344,944	36,624 19,375 97	${ }_{93,534}$	${ }_{186,375}$	-	13	101,233	125.1137	14,932 63	156,749	167,214	11,629 78
Chippawa	227,586	226,609	6,739 68	123,541	226,430	2,883 18	14	65,517	Ss,785	1,723 09	$46,671$.	148,414	2,496 022
Clareneeri	20,352	20,654	1,727 12	24,990	16,564	1.45372	15	37,497	14,328	1,490 82	42,075	13,231	$1,712{ }^{93}$
Cliton	1,001,674	714,347	$45,503{ }^{12}$	502,645	409,543	19,619 68	16	332,109	272,113	17,269	322,796	306,624	27,235 06
Coatic	1,338,540	171,335	11,326 65	1,S44,902	146,793	11,469 50	17	1,184,634	183,986	12,721 32	1,457,447	245,970	${ }^{17,541} 63$
Cobourg	391,444	291,311 20,581		267,098 26,470	255,692 36,387	29,44 1,595 98	19	172,842	181,867 40,105	18,494 2,118 51	351,563 55,022	233,862	$\begin{array}{r}24,675 \\ 2,135 \\ \hline 80\end{array}$
Codhorne	30	11s,209	3,065 7 S	730	155,629	5,197 85	20	2,598	125,S10	4,882 63	6.449	8,664	50416
Collingwo	63,921	35,3+1	29518		77,439	26755	21	20,942	16,253	52568	36,956	70,815	68423
Côtcau-du	17.565	3,632	42578	3,766	1,756	25685	22	14,316	2,138	16963	30,760	3,839	18503
Cranahe	70;242	44,774	3,333 00	67,797	37,146	2,215 70	23	46,955	12,996-	1,132 82	68,188	19,642	-114. ${ }^{185}$
Credit	364,984	946	${ }^{994} 95$	2093,953	7,191 682,248	-73380	24 25	1018,493	565,711	21,993 ${ }^{127} 48$	173,272 45,254	11,856 532,018	26,5s9 40^{-}
S ${ }^{\text {a }}$	446,290 54,920	- ${ }_{\text {S0,717 }}^{375,39}$	14, ${ }_{8,063} \mathbf{7 S}$	$23,3,93$, 16,025	${ }_{60,525}^{682,248}$	20,918 ${ }^{2} \mathbf{7}$	${ }_{28}^{25}$	122,819	-30;605	21,636 218	48,088	- ${ }^{32,723}$	2,697 38
- Dickens	9,594	7,260	222	25,220	17,561	52418	27						
Dorer	354,818	149,907	13,705 43	251,791	101,596		28	256,001	68,062	6,844 19	191,977	76,419	5,476 15
uudas	202,598	190,694	19,125 38	107,222	147,450	14,657 18	29	34,756	${ }^{80,627}$	10,630 18	50,2s7	79,258	9,949 22
Dundee	38,672	48,107	1,402 05	3,347	48,666	1,269 65	30	23,755	-37,981	1,153 89	34,455 150,301	60,155 39073	923 293 2.10361
Dunnril	422,665	-1,297	$\begin{array}{r}\text { 6,063 } \\ 114 \\ \hline 20\end{array}$	233,S79	${ }^{79,478}$	5,067 2517	31	175,006	${ }^{393}$	${ }^{2,384} 4$	1,676	5,333	
3 Fort	157,417	149,354	10,79473	525,323	151,279	10,791 63	33	7 7 \%,529	112,625	S,699 40	558,64S	212,781	10,025 34
Frelighsbur	72,017	44,397	3,127 65	64,338	37,900	2,784 92	34	63,147	41,078	2,775-20	72,269	37,355	3,497 93
3 Gapanomue	6,760	19,191	1,361 98	4,385	24,959	1,950 50	35	14,014	25,503	1,583 43	23,734	27,849	
d Gaspe	176,712	63,383	4,506 03	188.210	32,432	7,237 83	36	${ }^{217,855}$	82,128 10.590	$8,657.15$ 1,369 18		${ }_{\text {130,665 }}^{1064}$	${ }_{\substack{15,153 \\ 2 \\ 3 \\ 3 \\ 318}}$
Goderich..	65,645	107, 04.3	10,12948	32,315	95,416	6,056 55	$\begin{aligned} & 37 \\ & 35 \end{aligned}$	44,356	64,922	4, 50020	42,243	80,663	3,963 12
rafto	30, 192	5k:	6537	1,912	1,181		39		434	5008			
diph				6,562	66,679	7,734	40	13,658	97,126	12,596 59	68,478	136,487	18,583 69.
milton	1,785,505	5,400,026	621,75063	,145,547	693,091	416,933 17	41	962,576	2,100,801	260,634.62	688,523	,229,753	349,445 95
Hemmingf	45,21	13,5	2,290	28,520	18,790	2,626 18	42	40,675	17,662	2,513 94	47,695	19,896	2,879 11
Stic Verte	85,692	6,01		45,762	3,352		44 45	47,669			35,906		
Kingston	485,546	2,2ss,586	113,539 10	366,610	2,852,464	105,s11 02	46	378,071	1,754,794	94,757 56	445,931	373,350	97,792 07
Kingsvillo	11,116	4,101	46145	18,852	4,635	${ }^{613} 65$	47	3,633	4,437.	45500	7,524	5,561	${ }^{444} 14$.
Lacolle	55,304	14,563	64157	27,596	9,744	64567	48	43,447	9;374	73991	S3,596	8,375	
9 Londou..	301,749	1,169,001	144,650 92	196,171	842,281	104,599 35	49	289,811	659,954	37,985 00	410,812	734,589	109,976 95
Mailland	1,ss0	7,855	15970	S64	9,812	10650	50	792	${ }^{21,907}$	152: 54	15,197	29,992	
1. Morrishu	56,481	33,337	2,26.4 35	28,114	24,687	1,535 23	51	25,118	31,481	1,34548	40,189	31,300	1,147 89
2 Mifurd	35,621	2,500	${ }^{37} 10$	30,370	2,095	13445	52	$\begin{array}{r}29,706 \\ \hline\end{array}$	1,554.	-19990	${ }^{23,654}$	3,530	
Montre	,325,566	265,408	78,964 38	2,917,340	,524,523	1,543,616 33	53	$3,422,940$ 139,032	12,254,072.	1,673,841 ${ }_{2}^{1,781}$	$3,044,762$ 122,359	15,553,571	
4 Vapanee	99,627	$4,1,657$ 45,669	4,366 17	62,617	26,442 32,709	2,1961 4,193	54	43,325	16,403	${ }_{1,788}^{2,78}$	129;533	${ }_{20,139}$	${ }_{2,618} 81$
New Cast	157,500	+ ${ }^{429,1493}$	5,118 8.170 18	${ }_{4,220}$	78,026	6,119 07	58	43,525	78,446	, ${ }^{1}, 200011$	12,3s3	65,820	5,025 16
New Carl	145,304	115.233	10.11218	181,419	117,879	9,482 10	57	221,071	92,828	9,088 70	253,190	126,924	12,600 77
Oakrille	464,165	90,704	0,933 6S	134, 227	51,057	5,266 48	55	182,011	32,088	3,874 71	225,520	17,258	2,194 63
Oshnwa	95,505	54,320	5,047 02.	76,540	45,132	4,880 42	59	50,748	32,214	2,656 65	47,257	69,559	6,330 57
0 men's	1,553	16,992	1,442 30	20,10s	9,574	55015	80	1,738	9,833	1,077 50	1,714	14,658	1,425 50
Parix	115,853	191,575.	18,304 70	109,734	177,198	21,836 32	${ }_{6} 6$	115,766	35,302	3,577 82	S5,848	43,569	2,643 53
Pentang	5,721	573	3028	14,550:	410		62	17,191	90,103		-110,527	66,607	
${ }_{\text {Pbilipsbur }}$	102,938	01,634	3,086 47	75,2.9	${ }^{62,067}$	2,422 1020 0	${ }^{63}$	M18,661	45,475	5,543 93	111,101	58,827	6,470 78
Pitetou..		\% 11,161	9,056 344 3	75,019	11,993	10,326 60	65	${ }_{3,354}$	13,310	${ }^{566} 06$	13,039	13,960	73089
Prescot	400,594	671,575	29,108 40	410,300	476,422	31,090 60	66	149,134	471,062	22,451 52	216,199	491,959	19,070 31
Queboc	8,193,196	3,486,993	369,903 68	9,452,316	3,689,633	352,149 77	67	0,252,184	2,783,150	353,092 90.	5,381,290	3,003,752	43s,924 18
Queenstrn	17,502	101,766	13,354 70	15,752	85,605	8,693 10	68	18,996	47,214.	7,669 00	38,609	49,436	7,047 72
Rimuuski	75,502			,299			69	71,000			S2		
*Rivière-aux	3,519	934	11755	700	48	712	70		2143	26529		28	7403
Rondeau	65,451	5,056	672.98	24,925	22,321	1,519 07	71		14,353	1.51787	118,971	22,947	,229 92
Rowan.:	165,200	45,963	3,421 53	158,661	22,321	1,519 07	72	99, ${ }^{\text {a }}$	14,333		118,918		,229
Russelto Sarnia...	40,640 19,677	- $\begin{array}{r}4,743 \\ 152,510\end{array}$	$\begin{array}{r}\text { r } \\ 10,79298 \\ \hline 98\end{array}$	51,254 $\mathbf{2 1 , 6 5 0}$	4,484 197,788		73	- 134,378	212,742	12,043 94	144,683	+ $\begin{array}{r}10,566 \\ 210,024\end{array}$	9,205. 59
Sault Ste.	58,114	19,020	2,279 65	275,340	41,622	2,860 47	75	255,821	47,756	4,513 66	420;094	60,154	6,376 29
Saugeen		17, S5l $=$	1,457 27	1,623	7,602	60218	78	2,191	3;144	14297	9,348	5,766	${ }^{97} 57$
Stanstead	224,865	53,969	2,997 05	140.487	32,447	3,302 62	77	161,055	58,301:-	5,250 32	185,292	68,590	6,628 33
St. Johns	1,031,343	59,13S	1,971 78	1,059,415	75,938	2,377 53	78	1,327,393	66,139	3,888 28	135,730	201,078	4,004 12
Stratorl	35,592	2,200	24745	57,096	68,265	6,320 92	79	50,922	67,809	7,88893	70,414	68,366	8,16492
St. Re	17,370	34,423	68202	15,554	30,544	35177	80	5,566	32,519:	18291 5830	19,902	29,133	[185 26
tanley	271,882	211,636	-18,088 58	-125,596	${ }^{-92,821}$	6,224 58 -	81	140,045	81,232 11,758	5,83076	$\begin{array}{r}270,616 \\ 32,700 \\ \hline\end{array}$	97,624	1,535.64
Suttou	61,540	10,632	1,000 92	22.455	12,020	${ }^{935} 85$	8	12,140 28,297	110,234	1,089 27	18,181	12,883	1,150 18
Three River	96,023	6,349	[890.42	$\begin{array}{r}142,517 \\ 25,136 \\ \hline\end{array}$	8,401.	$\begin{array}{r}855 \\ 644 \\ \hline 0\end{array}$	84	12,855.	10,988	1,008 12	20,841	12,683	8
Trout Rivers	${ }^{4} 43,989$	\% 8,7609	89179 780909	- ${ }_{\text {25,136 }}$	5,085,459.	58100088	85	637,178		461,148 26	905;477		; 65154
Toront	2,205,333	-6,954,629	780,809 75	653,667	5,085,459.	581,000 68	85	637,178	3,768,934	461.153883	144; 737	4,019,207	99410
Trenton....	218,032	11,315	1,037 72	240,197	13,967	${ }^{1} 222818$	88	18,678	17, 197	+2,155 ${ }^{1,55}$	144,788	38,593	1,896 21
Wallacelur	20,003	21,171	1,667 12	69,017	36,146	2,098 27		26,411	-3,492	${ }^{154} 14$	23,349	${ }_{3,362}$	28920
Wellingto Whitby	130,551	6,242 95,588	70703 0,73688	41,428 293,452	$\begin{array}{r}5,547 \\ 62,550 \\ \hline\end{array}$	36512 $6,263.82$	88	-	$\begin{array}{r}3,485 \\ \mathbf{2 7 , 5 9} \\ \hline\end{array}$	2;797 66	286;152	43,055	3,753 44
Windsor	107,386	629,591	22,597 99	73,399	683;324	19,794 93	90	148,878	313,930	14,487 20	184,002	426,356	22,562 53
Woodstock	182,091	115,549	11,212 59	35,403	79,391	8,27437	91	13,793	50,602	6,375 21	20;442	49,079	6,50135
	29,508,117	43,584,357	4,508, 882 08	,450,419	,430;598.	3,925,051, 18		22,029,565	29,078;527	3,331,389 51	1,102,378	33,555,161	4:437,846 12
Estimated Amount of Exports short \}	2,233,900			1,556,205				1,443,044			1,664,603		
												\$39:555:761	
Totals.....wnman...........	32,047,017	43,584,387	4,505, SS2 08,	27,000,624	39,430,599	3;925,051 18		23;472,609	20,078,527	381,309			

23 Victoria.
Sessional Papers (No. 23)
A. 1860

		commerce.		SHIPPING.						
		V:alue of Exparts.	Value of Imports.	Tomage of British Tessels.		Tunnage of Foreign Vessels.		TOTAB.		
		Eintered Inwards.		Cleared	Eutered Inwarl:	Clearel	Cutered Iurards.	Cleared Out wards.		
Great Britain. North American Colonies British West Indies \qquad Enited states of A meriea Other Foreign Countries. \qquad \qquad \qquad \qquad				14.8850 .084						
		10,475 7,023	351533	1,768,459	1,685.670	2,491,525	2,359,609	1,273,254	4,01:13,279	
		$13,922,314$ 355,5014	$17,0902,916$ 793,573							
		Totak $23,102,37 \mathrm{~s}$	33,559,161							
Note.-For Tomuate of Sat-going Vessels Invaris and Outwards, included in this Table, see Tathe Nos. 23,25 and 26.										
No. 18.--COMPARA'IVE SIATLMEN' of the Value of Imports and Exports of Canada, during the years 1858 and 1850.										
	Exports.		Imports.		Total Inports and Exports		or 11 per cent.			
		\$		\$	$\$$ 52,551,136 58,322,142					
$\begin{aligned} & \text { 1858... } \\ & \text { 1859..... } \end{aligned}$	$\begin{aligned} & 23,472,600 \\ & 24,766,951 \end{aligned}$		$33,555,161$							
- Increase in 1s59............:		5,711,006					

No. 20.-RETURN of the Amount of Excise Duties collected on Malt Liquors brewed in the Province of Canada, with the Number of Licenses Issued, and Revenue derived therefrom, during the yoar 1859.

RECAPITULATION.

Armonat of Duties from Distilleris is 1859 \qquad $\$ 202,54587$

Do do Bruwerios in 1859 37.31354

Total Excise in 1850
S 240,164 41
No. $20 \frac{1}{z}$. -STATEMEN'T of the Description and quantity of Grain, and other substances used and Spirits and Malt Liquors manufactured
in the Province of Canada, for the year ending 1859.

No. 21-COMPARATIVE STATEMENT of the Gross and Net Revenue received from Customs for the years 1855,

No. 23.-RETURN of the Number and Tonnage of Vessele which arrived at and departed in the year 1859, distinguishing the

23 Victoria.

Sessional Papers (No. 23).
A. 1860.
from Quebec, Montreal, Amherst, New Carlisle, Gaspé, Rimouski and Isle Verte, by Sca, Countries to which they belonged.
PORTOFGASPE.

Araivers.			dramated.		
Under what Colours.	$\begin{aligned} & \text { No. of } \\ & \text { Vessels. } \end{aligned}$	Tonnage.	Under what Colours.	No. of Vessels.	Tonnage.
Pritish Unitod States...................	49 1	5,058 70	British	4	$\begin{array}{r}4,260 \\ 70 \\ \hline\end{array}$
Total.	50	5.12 s	Total...............	44	4.336

PORTOFRIMOUSKI.

Arrived.			DEPARTER.		
Conder what Colours.	$\begin{aligned} & \text { No. of } \\ & \text { Fessels. } \end{aligned}$	Tonnage.	Under what Coloure.	No. of Vessels.	Tonnage.
British	1	732	British	4	$\begin{array}{r}732 \\ 4.35 \\ \hline\end{array}$
United States	4	4,735	United Statcs	4 8	4,735 1.276
Norwegian	3	1,276	Vorwegian	3	
Total.....................	8	6.743	Total.....................	5	6.743

PORTOEISLEVERTE.

arrived.			Departed.		
Uuder what Colours.	$\begin{aligned} & \text { No. ot } \\ & \text { Vessels. } \end{aligned}$	Tonnage.	Under what Colours.	No. of Vessels.	Tonnagc.
3ritish ... Nurwegian	4 4	1.975 1.516	British Norwegian	4	1.975 1.516
Total....	\$	3.491	Total....................	s	3,491

MEOAPITULATION.

No. 24.-STATEMENT of British and Foreign Vessels clearcd Outwards, for Sea and
New Carlisle, Gaspé,

Countries for which they cleared	With Cargocs.					
	British.			Foreign.		
	No.	Tons.	Men.	No.	Tons.	Men.
United Fingdom...........................	775	45,,612	14,779	139	71,663 ${ }^{\circ}$	2,002
United States		2	457	14
Portugal..		1	180	2
Hamburgh			1	297	10
British West Indies..............................	2			1	327	9
Nora Scotia.....................................	27	2,260	351	
Net Brunswick	55	4.612	393			
Newfoundland...............................	36	$\stackrel{1}{2}$. 540	174			
Prince Edward Island.........................	1	70	4			
St. Pierre ,Miquelon......................		1	205	13
Total..	S96	464,650	15, 110	145	73,129	2.057
In ballast $\left\{\begin{array}{l}\text { United States................ } \\ \text { Nora Scotia............ }\end{array}\right.$	s		46	1	156	7
(New Brunswick..............	,	10.3	S		
Total...	205	465,850	15.770	146	73,285	2.064

PORT OFMONTREAL.

Countries for mhich they cleared.	With Cargoes.					
	British.			Foreign.		
	No.	Tons.	Men.	No.	Tons.	Men.
United Kingdom	56	55,045	3.223			
United Stites				2	785	20
Portugal....................................				1	150	9
Nova Scotia...............................	25	2.279	133		
New Brunswick..........................	7	357	25			
Newfoundland............................	27	2,868	15.4	1	205	13
Lower Ports-Canada	12	699	39			
Total..............................	127	61,278	3,574	4	1,173	42

PORTOFAMMERST

Countries for which they cleared.	With Cargoes.					
	British.			Foreign.		
	No.	Tuns.	Men.	No.	Tons.	Mcn.
United States	13	73.4	63	54	3.725	327
St. Pierre. Miquelon	1	35	4		
Nova Scotia................................	160	0,200	858	1	65	13
New Brunswick	15	334	101	
Newfoundind....	3	175	26	
Prince Edward Island..	21	586	98
Total..	213	S,664	1,150	55	3,790	340

Seaward, during the year 1859, from the Ports of Quebec, Montreal, Amherst, Rimouski and Isle Verte.
PORT OF NEW CARLISLE.

Countries for which they cloared.	With Cargoes.					
	British.			Forsign.		
	No.	Tons.	Men.	No.	Tons.	Men.
Unitod Kingdom..........................	17	4,816	160	1	412	11
United Stater..............................	7	079	44	
Portugal...	1	$\begin{array}{r}71 \\ 315 \\ \hline 8\end{array}$	23		
Niaples ...	3	600	34	
Italy	1	99	7	
Nov2 Scotiz................................	14	844	59	
New Brunswick	13	664	57	
Newfoundland.............................	15	1.305	76
Labrador	3	325	25
South America	5	1,188	59	
Total.	S2	10,384	551	1	412	11
PORT OFGASPE.						
Countries for which they cleared.	With Cargoes.					
	British.			Forcign.		
	No.	Tons.	Men.	No.	Tons.	Men.
United Kingdom	6	8.38	49			
United States				1	70	6
Portagal...................................	1	97	7		
Epain..	14.	1,169	53
Naples....................................	7	751	53	-
Roman States	3	391 339	23	.	-
Norid Scotia................................	7	${ }_{938}^{338}$	28	.	.	
New Brunswick...	2	1.93	16	\cdot	
Brazil ..	2	251	14			
Total...........................	43	4,266	299	1	70	6

PORTOFRIMOUSKI.

Countries for which they cleared.	With Cargoes.					
	British.			Foreign.		
	No.	Tous.	Men.	No.	Tons.	Men.
United Kingdom	1.	732	22			
United States.............................			4	4.735	98
Norway...................................		3	1,276	37
Total..	1	732		7	8.011	135

PORTOFISLE VERTE.

Countries for which they cleared.	With Cargoes.					
	British.			Foreign.		
	No.	Tons.	Men.	No.	Tons.	Men.
United Kingdom.........................	4	1,975	67	4	1,516	51
Total	4	1,975	67	4	¢ 1,516	51

23. Victoria. Sessional Papers (No. 23).
A. 1860 .

PORTS.	To TAL.			Great Britain.		British Colonies.		United States.		$\begin{gathered} \text { Other } \\ \text { Foreign C'ountries. } \end{gathered}$	
	No.	Tons.	Men.	No.	Tons.	No.	Tons.	No.	'I'ons.	No.	Tons.
Quebee .	970	310,08.	17,0.46	357	358,825	102	31,815	65	51,371	1513	63,973
Montreal..	193	85,319	4,393	92	72,02.4	79	6, 550	2	280	20	5,550
Amherst ...	37.4	17,14.4	2,13.4	3	305	29.4	11,6.15	76	5,159	1	35
New Carlislo.	112	12,853	T1.	16	2,601	81	7,113	11	2,182	4	897
Gnspé ..	:0	5,12s	367	22	2,514	1.4	1,075	3	376	11	1,163
Rimouski	8	6,743	157	1	732			7	6,011		
Isle Verte..	s	:3,401	118	3	1,0.42	1	311			4	2,138
'Total, 1850..................................	1,715	6.41,662	2.1,029	72.4	438,703	631	58,815	16.4	65,379	108	78,765
1858...................................	1,657	613,513	22,537	S20	475,451	576	51,155	60	12,557	195	74,050
1857.................................	2,017	748,425	30,490	396	477,263	101	63,237	348	88,902	312	110,023

No. 26.-SHIPS OUTWARDS.-S'Patement of the Number of Vessels entered Outwards for Sea, at the undermentioned Ports, shewing their Jonnage, number of Men employed, and to what Country cleared, for the year 1859, and the two preceding years.
PORTS.

Total 1859... 1853.

－6．－－		永
	$\frac{1}{1}$	
何		
	11	
	A ${ }^{\text {a }}$	B
	2000	
	\％ 101	\％
（응	耎	
		5
	－${ }^{\text {E }}$	$\begin{aligned} & \text { 复 } \\ & \text { 号 } \end{aligned}$
		景
		8

No．28．－STATEMENT showing the Number and Tonnage of Steamers and Sailing Vessels Built and Registered，and also of Steamers and Vessels not Regristered，at the un ermentioned Ports in Canada，during the year 1859.

	$\begin{aligned} & \dot{\text { 玉 }} \\ & \stackrel{\text { O}}{E} \end{aligned}$	-suod		
		－ A		∞
	$\dot{\vdots}$	－วャranod		$\begin{aligned} & \text { \#̈ } \\ & \stackrel{0}{\circ} \end{aligned}$
		－OS		3
			交	$\stackrel{\infty}{\infty}$
		－UN		－
a－$\approx$$\approx$$\approx$$\approx$$\approx$$\approx$$\approx$$\approx$$\approx$	$\begin{aligned} & \dot{\Xi} \\ & \end{aligned}$	－suod		
		${ }^{\circ} \mathrm{N}$		을
	$\dot{\tilde{\tilde{Z}}}$	\％Sburod．		es － －
		9 O		－
	完	osmand		遃
	先	$\cdot{ }^{\circ} \mathrm{N}$		\square
	淢	Pand		咢
		－ 0		8
	$\dot{\tilde{Z}}$			会
		$\cdot \mathrm{O}$		\％
	$\begin{aligned} & \text { 害 } \\ & \text { in } \end{aligned}$	\bigcirc－¢numoj		8
		${ }^{\circ} \mathrm{ON}$		∞
$\cdot \mathrm{SJ} \text { y Od }$				$\stackrel{\text { n }}{\substack{0 \\=-1}}$

INDEX TO TABLES

Paces 3Table of Duties of Customs Inwards, in force to the 26th of March, 1859
シ
Table of Duties of Customs Inwards, in force from the 26th March, 1859, inclusive
CANALS.
No. 1.-General Statement shewing the Quantity of each Article transported on the Welland Canal during the year 1859; and the Amount of Revenue collected thereon 15
No. 2.-General Statement shewing the Quantity of each Article transported on the St. Lawrence Canal during the year 1859, and the Amount of Revenue collected thereon. 22
No. 3.-General Statement shewing the Quantity of each Article transported on the Chambly Canal and St. Ours Lock, during the year 1859, and the Amount of Revenue collected thereon..... 20
Nio. 4.-General Statement shewing the Quantity of each Article transported on the Burlington Bay Canal during the year 1859; and the Amount of Rerenue collected thereon 30
No. S.-General Statement shewing the Quantity of each Article transported through the St. Ann's Lock Canal during the year 1859, and the Amount of Revenue collected thereon 34
No. 6.-General Statement shewing the Quantity of each. Article transported on the Rideau and Ottawa Canals and their Locks, during the year 1859, and the Amount of Revenue collected thereon. $3 S$
No. z.-Summary Statement of the business of the Welland, St. Lawrence, Chambly, Durlington Bay, Ottawa and Rideau Canal, St. Ann's, St. Ours, and the other Locks, shewing the total Quan- tity of each description of Property passing through and on the same, and the Amount of Tolls collocted during the year 1859 42
Nu. S.-Statement shewing the Monthly Receipt of 'Tolls at the different Offices of the several Canals during the year $1 \$ 59$ 46
Div. 9.-A Return of the business of the Welland, St. Lawrence, Chambly, Burlington Bay, Ottana and Rideau Canals, St. Ann's, St. Ours, and other Locks, shewing the total Revenue derived from each Class or Rate of Tolls on each Cinal, during the year 1859 47
No. 10.-Statement shewing the Number, National Character and Tonnage of Vessels which passed onand through the Welland, St. Lawrence, Chambly, Burlington-Bay, Ottawa and RideauCanals, St. Aun's, St. Ours, and other Locks, during the ycar 1859, and the Amount of Tollecollected thereon13
No. 11.-Comparative Statement of the Nuaber and Tonnage of Vessels and Goods passed through and on the undermentioned Caoals for the years 1555, 1557, 185 S and 1859, distinguishing the up and down Trade 49
Yo. 12.-Comparative Statement of the Cotal Movement of Property, Passengers and Vessels on the Welland, St. Lawrence, Chambly, (including St. Ours Lock) and Eurlington Eay, Ottawa and Ridean Camals, and-St. Ann's and other Locks; for the year 1859 and three preceding years so
No. 13.-An Account of the Gross and Net Rerenue derived from Canal Sulls for the year 1850, as compared with the five preceding years. 51
No. 14.-Statement of the Number aud Tonnage of all kinds of Vessels passing tbrough and on the Canadian Canals, during the Season of Navigation, in the year 1S5S, and a fable shewing the Number and average Tonnage in-Six Classes. 52
No. 15.-Comparative Statement slewing the Quantity of each Article transported on the Provincial Canals during the years 1858 and 1859. and also the amount of Tolls paid thereon 54
No. 16.-An Account of the Gross Revenue derived from Canal Tolls during the year 1859 56
No. 17.-An Account of the Gross and Net Revenue from all sources from the Provincial Canala of Canada, for the year 1859 56

IMPORTS AND EXPORTS.

PagesNo.'1.-General Statement of Imports, being a detailed Account of the principal Articles of Britishand Foreign Merchandise entered for consumption in Canada, during the year ending the31st December, 1859, shewing the Quantity and Value of each Article imported at the under-mentioned Ports, and indicating from what Country imported.58
No. 2.--Summary Statement of the Quantity and Value of and Amount of Duty Collected on the Prin-cipal Articles of British and Foreign merchandise entered for Consumption during the year1859, and indicating from what Country imported168
No. 3.-Comparative Statement shewing in contrast the Quantities and Values of the Principal Arti- cles of British and Forcign Merchandise, entered for Consumption in Canada during the years 1857, 1858, 1S59 180
No. 4.-Statement of the Importation of the following Articles into Canada from Foreign West Indies, distinguishing whether such Importations have been direct, or through any British Posses- sion, or Foreign Country, during the year 1859 186
No. 5.-A Detailed Account shewing the Value of the Principal Articles Imported into Canada by Sea, via the St. Lawrence, at each of the undermentioned Ports, during the year 1859 187
No. 6.-Comparative Statement of the Quantity and Value of the Principal Articles imported into Canada, from Sea, via the St. Larrrence, during the years 1858 and 1859 192
No 7.-Comparative Statement of the Quantity and Value of Goods enumerated in the Reciprocity Treaty-bcing the growth and produce of the United States and Imported into Canada during the years 1858 and 1850 193
No. S.-Comparative Statement of Goods in Warehouse under Bond, in the Province of Canada, for the years ending 31st December, 1857, $185 S$ and 1859, and shewing the Amount of Duty charge- able thereon at those dates 194
No. 9.-Comparative Statement of Imports, exhibiting in contrast the Value of and Amounts of Duties collected on, Goods entered for Consumption in Canada, during the years 1856, 1857, 1858 and 1859, respectively. 196
No. 10.-Return of the Quantity and Value of Goods imported into Canada, riâ St. Lawrence, from the Provinces of Nova Scotia, New Drunswick, Prince Edward's Island, and Newfoundland dur- ing the year 1859 197
No. 11.-Return of the Quantity and Value of Goods imported, first into the United States; and thence into Canada, distinguishing Goods parsing through under Bond, from those purchasel in the United States, also Goods, the Produce or Manulacture of the United States, during the year 1858 198
No. 12.-General Statement of Exports being a detailed account of the Principal Articles of Canadian Produce and Manufacture, Shipped during the year 1859; shewing tho Quantity and Value of each Article Shipped at the undementioned Ports, and indicating to what Country Ex- ported 202
No. 13.-A Summary Statement of the Quantity and Vilue of the principal Articles of Canadian Pro- duce and Manufacture, Exported during the ycar 1559, and indicating to what Country Ex- ported. 248
No. 14.-Comparative Statement of the Quantity and Value of the principal Articles of Canadian Pro- duce and Manufacture, Exported during the years 1857, 1558 and 1559 254
No. 15.-Comparative Statement shewing the Yalue of the principal Articles Exported from Canada, Seaward, viâ St. Lawrence, during the years 1858 and 1550 253
No. 10.-A Comparative Return of the Value of the Exports of Domestic Produce and Manufactures, the Value of Goods entered for Consumption, and the Amount of Dutics Collected at each Port in Canada, during the years 1856, 1857, 185S and 1859 2581
No. 17.-Statistical View of the Commerce of Canada, exhibiting the Value of. Exports to and Imports from Great Britain, her Colonies, and foreign Countries, together with the Tonnage of Ves- sels arriring and departing during the year 1859 , including in such Tonnage the Vessels en- gaged in the Inland Trade. 259
No. 18.-Comparative Statement of the Value of Imports and Exports of Canada, during the years 1858 and 1Sjo? 259
No. 19.-Comparative Statement of Excise Duties collected ou Proof Spirits Distilled in the Province of Canada, in the years 1856, 1857, 1858 ancl 1859, with the number of Stills and Amount of Revenue derived therefrom 260
No. 20.-Return of the Amount of Excise Duties collected ou Malt Liquors brewed in the Province of Canada, with the Number of Licenses issued and Revenue derived tberefrom, during the year 1859. 261
No. 201.-Statement of the description and Quantity of Grain and other substances used, and Spirits and Malt Liquors Manufictured in the Province of Canada for the year ending 1859 262
No. 21.-Comparative Statement of the Gross and Net Revenue received from Customs for the years 1855, 1856, 1857, 185S and 1859 262

INDEX TO TABLES-Continucd.

No. 22.-Statement of British and Foreign Vessels intered Inwards, from Sca, with Cargoes or in Ballast, at the Ports of Quebec, Montreal, Amherst, Nor Carligle, Gaspe; Rimouski, and Isle Verte, during the year 1859 264
No. 23.-Retarn of the Number and Tonnage of Vessels which arrived at and departed (for sea) from Quebec; Montreal, Amherst, Now Carlisle, Gaspe, Rimouski and Isle Verte, in the yoar 1859, distinguishing the Countries to which they belonged 265
No. 24--Statement of British and Foreign Vessels clearcd, Outwards, for Sea and seaward, during the year 1850, from the Ports of Quebec, Montreal, Amberst; New Carlisle, Gaspe, Rimouski and Isle Verte 270
No. 25.-Ships Inwards.-Statement of the Number of Vessels ontered Inwards from Sea, at the under- mentioned Ports, shewing their Tonnage, number of Men employed, and the Countries whenco they came, during the year 1859, and the two preceding years 272
No. 26.-Ships Outwards.-Statement of the Number of Vessels entered Outwards for Sea, at the under- mentioned Ports, shewing their Tonnage, number of Men employed, and to what Country cleared, for the ycar 1859, and the two preceding years 273
No. 27.-Statement of tho Canadian and American Tonnare, Inwards and Outwards, at the undermen- tioned Ports, shewing the intercourse (exclusive of ferryage) by Inland Navigation betricen Canada and the United States, for the ycar 1859 274
No. 28.-Statement shewing the Number and Tonnage of Steamers and Sailing Vessels Built and Regis- tered, and also of Steamers and Vessels not Registered, at tho undermentioned Ports in Canada, during the year 1859 276

INDEX in Detail of the Imports and Exports of the Province of Canada, for the year 1859.

를

INDEX-C'ontrinued.

INDEX-Continued

ARTICLES.	ImPORTS.	Exporls.
\mathbf{V}	\therefore -	
	Pages.	Pages.
	164 89
Varnish, other than bright or black...	$\begin{array}{r}188 \\ -165 \\ \hline\end{array}$	-1.......
Vinegar ..	101	... 236
Venison		227
Vessels, foreign Built .	116	
W		
Walnut ...		209
Wheat.	144	$\bigcirc 237$
Whisky	58	\therefore
Wine, Spirits. \&c., for Officers' Mess ..	165
Wine of all kinds, in wood..	69
do do in bottles ...	69:
Wood, not elsewhere specified	168	:............
do Manufactures of.....	89	244
Woods, other.		216
Wool.	166	$\cdots 223$
Woollens........	102	244
Z		
Zinc, orSpelter,sheet...	112

GE OLOGICALSURVEY

OF

CANADA.

REPORT OF PROGRESS

For the Year 1858.

filuntral:
pRINTED BY JOHN LOVELL, AT THE CANADA DIRECTORY OFFICE, bx: michoias stremt.
1860.

GEOLOGICAL SURVEY OF CANADA.

Sir,

Montreal, 1 st May, 1859.
I have the honor to request that you will do me the favor to present to His Excellency the Governor-General, the accompanying Report, shewing the progress made in the Geological Survey in the year 1858.

> I have the honor to be,
> Sir,

Your most obedient servant,

W. E. LOGAN,
Provincial Geologist.

To the Hon. C. Alleyn, M.P.P.,
Provincial Secretary,
\&c., \&c., \&c.

TO HIS EXCELLENCY

SIR EDMUN WALKERHEAD, BART.,

ONE OF HER MAJESTY'S MOST HONORABLE PRIVY COUNCIL,
Grobernor=(Gemcral of Gritisf Routly americu,

AND
GOVERNOR-GENERAL AND GOVERNOR-IN-CHIEF
in and over

tile provinces of canada, nova scotla, new brunswick, and the ISLAND OF PRINCE EDWARD,

AND VICE-ADMIRAL OF THE SAME.

Montreal, 1st May, 1859.

May it please Your Excellency:

I have the honor to present to Your Excellency a Report of the progress macie in the Geological Survey of the Province during the year 185s, and I accompany it with Reports from those associated with me in the investigation.

From these it will be observed, that the time of Mr. Murray was occupied in a farther examination of the physical structure of the copper-bearing rocks on the north shore of Lake. Huron; and that of Mr. Richardson in a continuation of his previous season's investigation, on the south side of the St. Lawrence, in the vicinity of the Shickshock Mountains, as well as higher up the river, between Matanne and Rivière da Loup, extending in one part as far south as the Ristigouche.

One of the recommendations embraced in the Report of the Select Committee on the Geological Survey appointed by the House of Assembly in 1854, was the publication of figures and descriptions of such new organic forms as might be discovered in the rocks of Canada. In compliance with this, it was determined that the publication of those descriptions should appear in parts, each of which, consisting of about ten plates, with accompanying text, should be a monograph on the subject to which it related. Before the appointment of Mr. Billings as palæontologist to the Survey, the first of these decades was confided to Mr. Salter, palæontologist to the Geological Survey of the United Kingdom, and the second to Professor James Hall of Albany, so well known for his researches in American palæontology. The preparation and publication of a third number, in the earlier part of the year, constituted a part of the labors of Mr. Billings, who subsequently devoted his attention to the study of the corals of the Devonian series of rocks, descriptions of which were so much required for the proper understanding of the geology of Western Canada. The results of this part of his investigations having already been published in the Canadian Journal, and the attention of Mr. Billings being engaged in the examination of the remaining fossils of the same series of rocks, his Report on the subject is reserved until the whole of the species known 10 characterise the Canadian portion of the series can be described together.

Mr. Hunt's Report contains a series of descriptions and analyses of the intrusive rocks of the district of Montreal, including various trachytes, dolerites, diorites and porphyries. To these succeed analyses of some of the metamorphic Silurian rocks and their associated minerals, followed by an account of the researches on the origin and formation of dolomite, commenced in the Report of the previous year and now brought to a conclusion. This investigation I may here remark, while explaining in a new and simple manner the origin of magnesian rocks, also throws light upon the formation of gypsums and many limestones.

The personal explorations which I have to report to Your Excellency relate to a farther examination of the physical structure of the Laurentian series of rocks, prosecuted chiefly on the River Rouge, which joins the Ottawa in the township of Grenville. In farther following the outcrop of one of the bands of crystalline limestone in this series, (the distribution of which bands was partially described in the Report of 1856, , it was found to strike upon the Rouge, and an ascent of the river beyond the range of present settlement became necessary in continuing the investigation. That part of the stream which is above the area at present laid out in townships was measured, the bearings being determined by a theodolite worked by the limb, and the distances by a micrometer telescope. The length thus measured on the main stream did not exceed about twenty miles but I now regret that I did not measure the river all the way from its mouth, for the purpose of ascertaining the relation of the range lines in the townships of Harrington and Grenville. Some of these lines, though all represented on the original plans as nearly equidistant, are in reality so irregular as to render it very difficult to represent the distribution of the rocks with truth without such measurement.*

In addition to the twenty miles on the main stream, the position and form of thirity-two tributary lakes of various sizes were determined, the iargest of them being upward of six miles in length.

The highest point attained on the river was the Iroquois Chute, about fifty miles from the mouth, and five above a farm cleared by Messrs. Hamilton Brothers, for the convenience of their operations on the river connected with their trade in timber. The farm consists of abcut 300 acres of land of good quality, producing excellent oats and potatoes, and is the lowest of three of a similar character possessed by the firm, at intervals of twenty miles from one another, on the river. To Mr. Houston, the agent in charge of the farm, I was kindly favored by Messrs. Hamilton Brothers with a letter authorising him to supply my party with whatever provisions we might require, at the same time requesting him to aid us in our objects in whatever way he could, and I have to express my obligations to both the firm and their agent, for the ready attention with which our wants were met.

In my explorations of the Rouge and the neighbouring country, I have been aided by Mr. James Lowe, formerly an artizan, and now settled as a fazmer in the township of Grenville, who possessing great skill as a woodsman, has shewn much aptitude in geological field-work; to his zeal I am indebted for a considerable portion of the detailed results which I have now to present in regard to the distribution of the crystalline limestones.

Considering that the exploration would afford an opportunity to a properly qualified person to collect objects of recent natural history without interfering with the main purposes in view, I induced my friend Mr. W. M. S. D'Urban to

[^8]accompany me. His attainments in natural history are well known, and to his industry we are indebted for a very illustrative collection of the fauna and flora of the district examined. Mr. R. Bell, who accompanied Mr. Richardson, was instructed to attend to a similar collection over the ground investigated by the later, and classified catalogues of the specimens obtained over both areas, prepared by Mr. D'Urban and Mr. Bell, are introduced into the Report as an AppendixOf Coleoptera upwards of 500 species have now been procured in the two areas in question, and in the neighbourhood of Ottawa and Montreal, and constituting the first known Canadian collection of this order, that has been properly named, they will form a nucleus around which to arrange such additions as may be hereafter obtained. In naming the Coleoptera, we are indebted to Dr. J. L. Leconte of Philadelphia, who is considered the first authority on the subject in America ; while we have to express our obligations to Dr. Isaac Lea and Mr. W. G. Binney, both of Philadelphia, for their assistance, the former in naming the fresh-water and the later the land shells.

We are also indebted to Dr. J. W. Dawson, Principal of M'Gill College, for his aid in determining many of the fishes and reptiles; 10 Col . Munro, of the 39th Regiment, in naming the grasses ; and to Mr. G. Barnston, of the Hudson Bay Company, in determining several other species of plants.

LAURENTIAN LMMESTONES.

In the Report of Progress for 1856, a description was given of the distribution of certain bands of crystalline limestone, belonging to the Laurentian formation, in the townships of Grenville, Harrington, Wentworth, Chatham, Chatham Gore, and Morin, and the seigniories of Argenteuil and Mille Isles. The number of these bands was supposed to be three. The lowest one was traced from the Ottawa, near the village of Grenville, to the vicinity of Lachute, the two points being distant from one another about eighteen miles in a straight line, while the linear outcrop of the band, followed in all its windings, was eighty miles. What was supposed to be the middle band, was traced from the fifth lot of the fifth range of Chatham Gore to the first lot of the fourth range of Wentworth, a distance of two miles; and the highest band, from the fourteenth lot of the southeast range of the St. Gabriel concession of Mille Isles to the fortieth lot of the first range of Morin, a distance of about four and a half miles.

As will be presently explained, the first and second bands mentioned have been found to join one another, and thus to be only parts of the same sheet; so that the calcareous exposures described in the Report of 1856 , would appear to belong in reality to no more than two bands, the Morin and Mille Isles band being considered the upper one.

In the Report of 1856 , it was stated as a probability, that the Morin exposures, and certain others at St. Jérôme and in the township of Rawdon, would be found to belong to one calcareous sheet. Nothing has been ascertained to contradict this supposition, but it cannot yet be proved that the Morin and St. Jérôme exposures will have any continuous outcrop connection. In tracing out the Morin band, Mr. Lowe has ascertained that from the fortieth it attains the middle of the fifty-eighth lot of the first range, where it turns upon a synclinal axis with a bearing nearly coincident with that of the range, and that at the exit of a lake in the thirty-sixth lot of the S. W. range of the Ste. Angélique concession of Mille Isles, it makes a similar turn on a parallel synclinal axis, about a mile to the southward; where the sheet folds over the intermediate anticlinal, the calcareous rock shews a wide exposure in the south-west end of the St. Gabriel concession, and it is there accompanied with an equal spread of fine agricultural surface. From the south or lower end of the lake just mentioned, the band pursues a nearly due east
course and crosses both ranges of the Ste. Angélique concession obliquely, traversing the concession road on the twenty-eighth and twenty-ninth lots, and following a branch of the Gagnon River into the Ste. Marguerite concession. . This concession also it crosses obliquely, in the range of two small lakes lying between the eighteenth and fifth lots, but upon the fourth lot it presents a synclinal spur extending to the westward of south nearly across the concession upon the River Gagnon. It ascends this river and passing out of Ste. Marguerite on the second lot, it enters into the Ste. Elmire concession, and runs across seven of its lots from the fifty-fourth to the forty-eighth, touching the north range of St. Godefroy and reaching Lake Godefroy. It has not yet been traced farther, but another lake occurs a little farther on in St. Godefroy, and two smaller sheets of water still beyond; the more eastern of which, from the south end of the lake of Ste. Angelique; is nine miles; all of these lakes lie in the due east bearing of the limestone, and it appears probable the band will pass through the whole. Including St. Godefroy, the unexamined part to the must eastern lake is about three miles, and beyond this it cannot yet be suggested what course the band may assume.

From the easternmost exposures of the supposed middle band of 1856 ; in the fifth lot of the fifth range of Chatham Gore, the outcrop has been found to make a turn southward, and crossing into the fourth range on the same lot, to join the band traced from Grenville about the middle of the lot. From the westernmost exposures in the first lot of the fourth range of Wentworth, the outcrop proceeds obliquely into the second lot, whence it passes into the second and third lots of the third range, in the latter of which, the property of Mr. Mann, it joins the Grenville band at the western end of a small lake to which allusion was made. Thus it appears that the supposed middle band is only a part of the Grenville band, deriving its position from an undulation.

In describing the distribution of the Grenville band in the Report of 1556, it was stated (p . 22) that though no continuous exposures were met with between the fourteenth lot of the tenth range and the twenty-second and twenty-third lots near the line between the tenth and eleventh ranges of Chatham, a probability existed of an outcrop connection between the two positions. It has since been ascertained that between them two synclinal spurs point to one another, but that they do not join. From the thirteenth and fourteenth lots of the tenth range, the outcrop proceeds by the thirteenth lot across the eleventh range, and gaining the fourteenth lot in the twelfth range, it crosses the town line from that lot, and enters Wentworth upon the twelfih lot of the first range. It here supports a small lake which receives the waters of Lake Louisa, and following the upward direction of the channel connecting them, it enters Lake Louisa in the enst bay. By this bay it proceeds northward, forming a point on the west side in the thirteenth lot, and farther on it underlies an area composing the point which divides the east and west bays, on which point Mr. Robertson has cleared a farm. The connected cistribution under the waters of the lake is uot quite certain; but on the one hand a calcareous spur appears to lic under the west bay, coming partially on the south-eastern side of the bay in the sixteenth lot of the first range, and from this lot crossing into Chatham and terminating near the front of the nineteenth lot of the twelfth range; while on the other hand, the whole of an island which appears to be at the rear of the twelfth lot of the second range of Wentworth, and part of another to the eastward, consist of limestone. Both the spur and the islands. are supposed to be in one and the same synclinal form, and calcareous exposures: which are met with along the margin of the lake, running obliquely across the lots from the residence of Mr. Case on the sixteenth, to the thirteenthlot of the second range, are probably on the north-wost side of another synclinal. It is not yct ascertained how the band leaves the lake, but it may be by the valley of
the main inlet on the north side, the mouth of which is in the thirteenth lot of the third range.

From the marginal exposures on the sixteenth lot of the second range, near the residence of Mr. Case, a valley runs obliquely across the lots to the calcareous area which was described in the Report of 1856, as extending along the West Branch of the North River, from the twenty-second lot of the second range of Wentworth to the twenty-third lot of the tenth range of Chatham. On the line between the two townships this area, occupies the breadth of two lots, which is wider than was supposed, and in Chatham it presents a synclinal form around a mass of gneiss, which overlies the limestone on the line between the twenty-second and twenty-third lots. On the eastern rim it displays a spur which runs eastward nearly across the middle of the twenty first lot, and it is this spur which points to the corresponding one, as already mentioned, on the fourteenth lot of the tenth range. In the valley between the West Branch and Lake Louisa, the east rim presents another spur projected eastward from the main area at least half a mile, and this spur appears to correspond with that including the calcareous exposures near the house of Mr. Case. Whether a synclinal calcareous belt is continuous beneath the valley is uncertain; the interval betweea the nearest known exposures is over three-quarters of a mile.

The calcareous area on this part of the West Branch is the extremity of a trough, one side of "which has been found to run along the front of the second range of Wentworth, from the twenty-second to about the twenty-fifih lot, underlying two small lakes in the distance; it then appears to turn northward through a great marsh across this range into the next, entering it on the tiventy-sixth lot, and though no calcareous exposures were here seen, the gneiss bounding the marsh which it is supposed to underlie is conspicuously displayed. From this the band seems to sweep north-westward, and touching three small lakes in the distance of about a mile, it reaches a larger one, called from its shape Spectacles Lake, on the town line between Wentworth and Harrington. The southern end of this lake is divided into two deep bays, the eastern of which is on the third range of Wentworth, and the western on the second and third ranges of Harrington. The point between the bays is composed of limestone, and so is an opposite point between two deep bays in the north or lower end of the lake, in the eastward one of which is the discharging stream, very near the town line, on the twenty-eighth lot of the fourth range of Wentworth. The eastern side of the band follows the course of the ont-flowing stream, running obliquely across the fifth range, and on the line between the fifth and sixth ranges it passes close by the post between the twenty-fifih and twenty-sixth lots; it then passes eastward of a small sheet of water to the eastern extremity of Gate Lake. At the exit from Spectacles Lake the band has a breadth of about one-eighth of a mile, and the western side passes between fifty and sixty yards to the eastward of the post between the third and fourth ranges of Harringion on the town line. . Before reaching the fifth range of Wentworth, which is about twelve chains farther northward, the west side begins to diverge. It enters a small lake on the town line, leaving it near the same line on the north side, and turning northwestward into Harrington, where it approaches to within ten chains of the fifth range on the line between the first and second lots.

On the other side of the trough the calcareous band proceeding from the West Branch River on the twenty-third lot of the tenth range of Wentworth, appears to come in a short distance against the intrusive syenite of that part, and masses of the limestone confusedly associated with gneiss and trap are met with, enaangled in the syenite and surrounded by it, on the iwenty-fouth lot in the rear of the eleventh and front of the twelfth ranges. The band becomes freed from the
syenite in a small lake in the rear of the eleventh range, on the line between the twenty-sixth and twenty-seventh lots; and from this position it runs obliguely across the twenty-seventh lot and the one beyond; the south or under side of the band, with massive coarse grained porphyroid gneiss beneath,presenting a synclinal point towards the front of the latter lot. From this lot the band passes into the township of Grenville, and joins the exposures which were described in the Report of 1856 as cxisting near Mr. Dolan's, in the first, second and third lots of the tenth range. In this range the band still farther crosses the lots south of and parallel with Long Lake, which is in the rear of the range. It passes into the twelfth range on the eighth and ninth lots, and leaves it on the tenth, entering Harrington on the sixth lot of the first range. On this numbered lot it traverses three of the Harrington ranges, displaying on each side of it, a bold hill of porphyroid gneiss, that on the west being called Slavery Mountain. In this part the band appears to have a pretty uniform breadth of between 500 and 900 yards, and it is interstratified with a bed of gneiss nearer the top than the bottom, which presents a prominent ridge nearly the whole way. A stream, issuing from a small lake in the front of the eleventh range of Grenville, finds a channel on the band to the middle of the seventh lot of the fourth range of Harrington; here it joins the brook issuing from Gate Lake, but it is not quite certain how near the confluence of the streams the west or under side of the limestone band we have been following, joins the calcareous mass described in the Report of 1856 as passing eastward to Gate Lake; there is some reason to think it will be on the east side of the sixth lot. The upper side of the band, on reaching the fourth range bends to the eastward, and then proceeds in a moderate curve to within ten chains of the fifth range on the line between the first and second lots, the position to which it was traced from the other side of the trough.

By this modification of the distribution of the limestone as given in the Report of 1856 , a great addition is made to that part lying in Flarringlon and Wentworth in the neighbourhood of Gate, and Sixteen Island Lakes; a large portion of which supports a surface well adapted for the purposes of agriculture. The best present access to this agricultural tract is by the road which runs along the east margin of the calcareous outcrop on the west side of the trough. The site of this road is judiciously chosen, for while the calcareous valley affords a pretty even grade, it gives also much land capable of setulement along the line, and will thus facilitate the keeping of the road in repair. Some years since a road was opened by the Government to the limestone land in the north-west part of Wentworth, from the settlement on the West Branch River in the front of the township. But a line having been chosen as near to a straight one as practicable over the rugged surface of the gueiss, it happens that while the grades are difficult, there is little land fit for settlement along the road. The road, in consequence, is little used; a second growth of timber will very probably be allowed to spring up on it, and the expense of opening it will be entirely thrown away. If a road is required on the west side of Wentworth, it is probable that a better line might be obtained along the limestone on the east side of the trough; in general throughout the Laurentian region, the bands of limestone will be found to afford the best guide for the lines of roads.

The calcareous area which lies between the Big Lake of Harrington (Lac Erable or Maple Lake as it is called on the map of the Crown Land Office) was described in the Report of 1856 as having the form of a trough, and it has just been shewn that the area south of this, from the fourth range of Harrington to the north-west corner of Chatham is of the same geological shape. The limestone running across the lots from east to west, must therefore be an anticlinal, with an axis bearing east and west nearly. In conformity with this the underlying
gneiss presents a spur running in upon the east end of Gate Lake, and were it not for an accumulation of drift, the gneiss of Slavery Mounain would probably shew a similar opposite spur in the fourth range of Harrington.

Immediately west of Gate Lake, the breadth of the limestone is little short of two miles, and it presents an equal breadth approaching Sixteen Island Lake; but between these two positions the anticlinal spur of gneiss on Gate Lake reduces the breadth to less than a mile. On the north side of this spur the base of the limestone, leaving Gate Lake, sweeps along in a sinuous line from the twenty-sisth to the twentieth lot of Wentworth, passing at the same time from the front to the rear of the seventh range. A stream, tributary to Gate Lake, accompanies it at a moderate but variable distance the whole way. This issues from a small lake, which is one of a chain of lakes that with their connecting siteams occupy a valley running to the rear of Wentworth on the twentieth lot, but trenching a little occasionally on the adjacent lots on each side. Entering Montcalm near the south-east corner, the valley crosses the first range of the township, gradually bearing more to the westward of north, and in the second range it comes upon the head of Sixteen Island Lake, 10 which lake that portion of its waters flowing in the most southern range of Montcalm and the most northern one of Wentworth, is tributary.

Crossing the line between Harrington and Wentworth, about the middle of the seventh range of the latter, the summit of the limestone proceeds in a curve to the middle of the eighth range on the line between the twenty-fifth and iwentysixth lots. It here reaches the exit of a lake tributary to Gate Lake. The lake is about a mile in length, and by short channels receives on the east the waters of Long or Eagle Nest Lake, lying chiefly in the twenty-second lot; and on the north those of Sixteen Island Lake, which extends upwards of three miles in a direction east of north to the second range of Montcalm, where its head has already been indicated. These three lakes lie in one geographical depression, which narrows considerably at the foot of Sixteen Island Lake, and is separated from the eastern valley, previously mentioned, by a bold mountain mass of hornblendic gneiss, of which the lamination is so seldom apparent, that it might be mistaken for an intrusive rock. The southern limit of this mass of gneiss is at the rear of the seventh range of Wentworth, where it divides the limestone into two parts; one of which, with an average breadth of about 200 yards, paves the botiom of the eastern valley, while the other from a breadth of about a-mile and a half between the southern extremity of Eagle Nest Lake and of that to which it is tributary, graduaily tapers 10 a breadth of about 250 yards where it enters the southern end of Sixteen Island Lake.

From this distribution it is plain that the gneiss between the valleys is of a synclinal form, and that the limestone on its west side folds over an anticlinal axis, which runs through the length of Sixteen Island Lake. The widest part of this lake, occurring about the midcle of the eleventh range of Wentworth, measures about a mile; and from the distribution of the calcareous exposures on various islands, and on two localites on the eastern shore, it appears probable that the limestone either spreads out very much on the bottom of the lake, or splits into two bands, which re-unite before reaching the upper extremity. Approaching this extremity the calcareous rock is seen crossing a point projecting from the eastern shore in the first range of Montcalm, and on this shore, in the rear of the range, it finally enters upon the land, and proceeds to the front of the next range, there joining the limestone of the eastern valley.

In the first range of Montcalm, the eastern valley shews some good agriculural land, which is continued for some distance in a prolongation of the depression across the second range. In the rear of the range the waters are still
tributary to Sixteen Island Lake, but on the third range they fall northward, and the valley comes upon Balsam Lake. Between these lakes, the calcareous rock was traced with great difficulty; several exposures however, occurring at intervals the whole way, were ultimately met with, and these seemed to indicate that the band, before entering Balsam Lake, diminishes considerably in thickness. In an exposure about two-thirds of the way across the second range, where the dip was ${ }^{*}$ N. $80 \mathrm{~W} .>45^{\circ}$, and gneiss, belonging apparently to the mountain masses bounding the valley, was visible close on the opposite sides of the band, the breadth did not exceed twenty yards, which would give a thickness of little more than forty feet. In different parts of the valley, however, much pyroxenic rock was observed on the east side, and garnet-studded gneiss on the west; these may perhaps replace a part of the limestone.

Balsam Lake, with a length exceeding two miles and a bearing some what west of north, presents a large island in the middle, which nearly fills its breadth. The limestone, in addition to being observed at the opposite ends of the lake in the third and fifth ranges; was found composing opposite points in two of the narrowest straits in the fourth range, and these indicated an increase of breadib in this range to about 130 yards. But it leaves the lake with apparently about half that measure, and enters a marsh ; through this the stream discharging the lake gradually turns to the west, and then to the south of west after reaching the middle of the fifth range; and no calcareous exposures were observed for about a mile and a quarter, until reaching the twenty-second lot, where the marsh terminates. The limestone quits the marsh with about the same breadh it shewed on entering it; but in its continuation down the valley, obliquely across the ranges for the next three miles and a half, it gradually widens, and on reaching Round or Sugar-Bush Lake, a breadth exceeding 1000 yards is displayed, embracing the chief part of the northern and eastern shores. In these three and a half miles, the exposures are numerous, and the band is conspicuously bounded by mountain masses of gneiss on each side. One of these masses rises on the south side of Round Lake and stops the farther progress of the limestone in that direction, only a few yards of calcarzous rock having been found there skirting the margin of the lake, and as the gneiss appears also for some distance down the west side, the north-west corner would seem the only part by which the calcareous band can continue its course. Beyond the lake however in that tirection, a considerable space is covered by drift or marsh, and for three miles and a half the outcrop connection of the band will have to be proved without the aid of any exposures of the rock composing it.

Round Lake, with a length of aboat 1600 yards, and a breadih of between 700 and 800 , stretches across nearly five lots from the fifith to the ninth of the second range. It is about half a mile to the north-cast of Bevan's Lake, from which it is separated by the mass of gneiss on its south and west sides. Uevan's Lake is underlaid by limestone, and it will be convenient bere to shew the relation which this limestone bears to that of Round Lake.

It was explained in the Report of 1556 , that the limestone which issues northward from Slavery Lake valley, and turns on the one hand eastward to Gate Lake, procecds on the other a little eastward of north by the east side of Big Lake to its exit, displaying a breadth of nearly a mile and half, which is party covered by the lake. From the north end of Big Lake, turning a little to the westward of north, the limestone accompanics the discharging stream in a deep valley 10 Bevan's Lake, crossing the town line between Harrington and Montcalm, witha breadth of nearly half a mile on the ninth and tenth lots of the former, and the

[^9]fourth, fifth, sixth and seventh of the latter. A synclinal spur however returns to the town line on the second lot of Montcalm, shewing two minute undulations.

Bevan's Lake, with a length of about two miles and half, and an average breadth of less than half a mile, lies diagonally across the town line of Montcalm and Arundel, in a bearing nearly north and south, and stretches from the first range of the former to the third of the latter. The limestone which constitutes its bottom, occupies probably about three-fourths of its length. Whether it has any 1 mmediate outcrop connection with the limestone of Round Lake is uncertain ; but from the outcrop connection traced the other way by the circuit of Gate, Sixteen Island and Balsam Lakes, it is plain that in Bevan's Lake and Round Lake those sides of the calcareous area which approach nearest to one another, are equivalent, being in each case the summit of the band, and that the two areas are on the opposite sides of a synclinal form. But should they join, it will be seen that they must again immediately separate; for the gneiss underlying the limestone comes in an anticlinal spur to the shore of Bevan's Lake, on the left side, towards the southern end, and is again flanked by the limestone to the westward. Thus the calcareous band, leaving Bevan's Lake on the adjoining parts of the first and second ranges of Arundel, runs south across the former and the last ranges of Harrington, enclosing a small lake on the town line and another called Crooked Lake farther on near the house of Mr. Bigros, where exposures are seen on the road to Fitzallan. Matilda brook, discharging Crooked Lake into Bevan's Lake, runs on the limestone all the way. South of Crooked Lake, towards the rear of the tenth range of Harringion, the band turns with a sharp point on a synclinal axis, and enters a valley which runs westward on the eleventh range, and which in the distance of about three miles comes upon the River Rouge immediately below the Dog Rapid. The valley is well bounded on both sides by mountains of gneiss, but it has not yet been sufficiently examined to determine its sinuosities with accuracy, except on the north side; nor have any exposures of the calcareous rock been met with in it, being apparently deeply covered with drift. At the Dog Rapid, however, an exposure occurs, which there is litle doubt belongs to the band, and the strike would appear to indicate that it takes a turn northward.

Round Lake is disclarged from its north-west corner into the lower balf of Bevan's Lake, and the waters of this lake, issuing from its northern extremity, are conveyed to the Rouge, near Fitzallan, by a brook which meanders along the third range of Arundel. Not far from the exit of Bevan's Lake a tributary stream joins the north side. This tribulary issues from Bark Lake, the upper end of which is on the line between the sixth and seventh ranges of Montcalm, and the lower on the sixth range of Arundel. The extremes are about three miles and a half apart in a straight line, but a deep sinus in the general form, carries the most southern part to the front of the sixth range of Arundel, and gives to the lake a length of six miles. The shores are conspicuously indented with bays; one of which, about a mile in depth, terminates in the fifth range of Arundel. From the east side of this bay, a range of gneiss extends in a nearly straight line to the calcareous exposures within 200 yards of the north shore of Round Lake. The same rock constitutes the promontory which lies between this bay and the exit of Bark Lake, and it is seen in long stretches of the shore in so many other parts, as to leave little doubt that the lake is altogether surrounded by it. From the exit of Bark Lake it extends westward along the front of the sixth range of Arundel to within threeguarters of a mile of the River Rouge, and southward in the rear of the eastern river lots to the front of the fifth range. It is thus evident the limestone of Round Lake cannot pass north of the sixth range of Arundel before approaching pretty near to the Rouge.

From the range of gneiss between Bark and Round Lakes, there extends to the Rouge a horizontal area which occupies nearly the full breadih of the third and
fourth ranges. Much of it is occupied by swamp, and the general uniformity of its level is indicated by the fact that the waters of the Ronge, during the freshets of the spring, are poured up into Bevan's Lake and Round Lake, and for some distance up the brook discharging Bark Lake; so that occasionally saw-logs sent down the Rouge by Messrs. Hamilton Brothers have been floated into the two firstmentioned lakes. The first and second ranges of Arundel, from the Matilda brook limestone to the Rouge, are largely occupied by gneiss, and the only probable direction for the course of the limestone of Round Lake is therefore through the flat land of the third and fourth ranges. No evidence has been obtained to prove what sinuosities the outcrop may assume under this area; but where the line between the two ranges in question, comes upon the Rouge, a calcareous exposure is met with which must belong to the band. This occurs ai the Island Chute, where there exists a great bend in the river about half a mile above the house of Mr. Thompson, the postmaster. The limestone is flanked, immediately on the west, by a mass of gneiss, which occupies the left bank of the Ronge for about six hundred yards, and extending into the bed of the stream, produces the rapid which succeeds the Chute. Gneiss occurs also on the opposite side of the river, about three hundred yards removed from the margin, shewing a breadth of about two hundred yards across the measures. It occurs again about half a mile more westward on the west side of the brook discharging Otter Lake, and then gradually rises into the mountain range which flanks the Rouge at a variable distance in this neighbourhood. Otter Lake is situated on the west side of the Rouge, in the fourth and fifih ranges of the township. It is wholly surrounded by mountain masses of qneiss; that on the east side coming close on the Rouge, where its strike is south for a considerable distance, bearing exactly for the gneiss flanking the limestone at the Island Chute. I am thus inclined to think this calcareous exposure exhibits the base of the band.

What the distribution of the outcrop may be between the Island Chute and the Dog Rapid, which are about four miles apart, has yet to be determined; but it is probable that somewhere below the mouth of Bevan's brook the band will, by the effect of undulation, cross to the west side of the Ronge, and pass southward on that side by the valley in which a winter road has been established by Messrs.'Hamilton Brothers. To the west of this road the gneiss rises up boldly, and near the town line between Arundel and Harrington, presents a bare bluff point of rock, about three-quarters of a mile from the river. From this bluff a ridge runs to the south-eastward, approaching the river to about half a mile opposite the Dog Rapid. But between this ridge and the river there is a great accumulation of drift, with a rapidly sloping surface, which wholly covers up the limestone.

A deep covering of drift prevails also above the Island Chute, extending along: the valley of the river up to the Devil's Rapids, the distance between the two places being about three and a half miles. On the east side this detrital matter forms a plain about three-quarters of a mile wide nearly the whole way, but upon the west, as bas already been stated, the mountain flank running north comes close upon the stream for about a mile along the valley above the Island Chute. Beyond this the river gradually separates from the mountain flank, which still runs northward for about another mile. The slope of the higherground then turns more eastward and gradually approaches the river, and in this way the plain on the west side assumes a rude triangular shape, the apex of the triangle being about three quarters of a mile distant from the river on the line between the fifth and sixth ranges of the township. In this triangle a synclinal spur may project northward from the limestone, the west side of which would come close upon the mountain flank in the fourth and fifth ranges. No calcareous rock was met with in a position to prove this, but the probability of it is supported by the fact
that in the rear of the river lots, on the west side, toward the south part of the seventh range, the extremity of a calcareous trough opening northward occurs, which would correspond with such a structural form, and to this more northern calcareous area I shall now proceed to draw attention.

The rocky ridge on the west side of the Rouge in this part, called by the Indians Kokoko Pikwatina or Cuckoo Mountain, separates the sources of several small streams which flow down the eastern slope between the Island Chute and the Devil's Rapids from those of others which join the river below the former and above the latter. One of the eastern rills however has its origin in a small lake, which is situated at a pretty high level in the hills on the west side of the crest. The lower end of the lake occurs on the twenty-third lot of the seventh range precisely on the line of the crest, a deep notch in which permits the escape of the water. An exposure of calcareous rock occurs immediately at the exit, and while the bottom of the lake is composed of limestone, the shore on three sides consists chiefly of the more rugged gneiss. The edge of the limestone turns south-westward from the south-west side of the lake, and immediately beyond the lake this end of the trough, to which the limestone belongs, has a breadth of about 600 yards. Proceeding northward, the trough gradually widens, presenting on the west side a low smooth rim from which waters tributary to the Rouge, flow south on one hand and north on the other. While the sides separate the surface gradually falls, and about two miles and a half from the extremity, the trough meets with the Rouge, which in the upward bearing of the valley, makes a sweep to the northwestward, on reaching the town line between Arundel and Desalaberry, at the clearing of Mr. McIntyre, about a mile and a half above the Devil's Rapids. In this sweep the river passes through a breach in the strata of Cuckoo Mountain, the continuation of which on the left side of the river, separates the valley of the Rouge from that in which its tributary, the Devil's River, winds its very tortuous course. As we ascend the Rouge, the eastern limit of the limestone occurs just above a smooth ice-rounded bluff of gueiss on the left bank, called the Dog Rock, while the western one is seen in a range of hills whose flank runs for some distance along the line bounding the west side of Arundel and Desalaberry, the breadth between the limits being about a mile, which the river crosses obliquely, attaining the western side of the trough in the vicinity of the Huckleberry Chute.

At the Huckleberry Chute, the Rouge, which from the Island Chute upwards has a breadih of from one hundred to one hundred and fifty yards, becomes compressed into the space of twenty yards; but after making its leap, in which there is a descent of fifteen feet, it immediately expands into a pool three hundred yards wide, and on the upper side of this there is a considerable exposure of rock. In this it is perceived that the limestone is interstratified with bands consisting chiefly of quartz, but mixed or studded in various proportions with feldspar, pyroxene, hornblende; and occasionally with garnets, and a mass of this description, with a gneissoid character and a thickness of some importance, runs obliquely across the channel, where the wate is precipitated from the higher level into the pool. The limestone is much charged with graphite, and from this mineral is derived the Indian name of the place-Aboujnoumeneci Pawitil-or Blacklead Fall. The same Indian appellation, derived from the name of the fall, is given to the mountain of gneiss which bounds the limestone on the right bank below the pool, though there is little or no graphite in the strata composing it.

From the extremity, in the seventh range of Arundel, the general bearing of this calcareous trough for eight miles is very nearly north. It makes however a slight bend to the eastward, at the distance of two miles, where it crosses the line between Arundel and Desalaberry, and a slight bend to the westward, at the distance of six miles, where it leaves the western boundary of Desalaberry. In
these eight miles the average breadth is about one mile; bu through the influence of small longitudinal undulations, aided by transverse depressions and elevations of the strata, it in one place widens to the breadth of two miles, and in another narrows to one of half a mile. The longitudinal plications occur on both sides of the trough as well as in the centre, and the number and intensity of them shew a wonderfully corrugated condition of the strata.

The expansion to the breadth of two miles occurs immediately opposite to Huckleberry Chute, by a sudden turn to the west of the rim on the west side, which in its progress presents two small projections to the south, resulting from two small parallel undulations. About a mile farther north the rim returns by a corresponding opposite course round the extremity of the more western of these small synclinal forms, and the normal breadth is here restored by a fold which occurs farther south over an anticlinal axis on the east side. Beyond this northward another anticlinal fold on the east side narrows the calcareous area to half a mile; but the area immediately expands again to the average breadih by opposite turns of the rim over the same anticlinals. Where the gneiss comes from beneath the limestone on the anticlinal axes, there is in every instance, a bold mountain mass of the rock. From the position where the trough leaves the western town line of Desalaberry to the Silver Mountain, which is two miles farther up on the eastern side, the breadth of the trough is very uniform ; but a ridge of the subjacent greiss rises boldly up through the limestone towards the western side, and continuing the whole distance, presents several conical peaks; one of these standing on a base of a little over 250 yards across the measures, attains a height of about 700 feet above the river. The first view of this hill was obtained at Mr. McIntyre's farm at a distance of about five miles, and from its shape it went among us by the name of the Cone.

In the next mile northward the east side of the trough bends a little to the eastward, and the breadth increases to a mile and a half, but is immediately diminished again to less than a mile by a sudden turn on the west side, which shews two parallel anticlinal axes over which in succession the limestone folds, sending corresponding synclinal spurs northward. The more western of the anticlinals is a continuation of the form in which the gneiss penetrates through the limestone farther south, and as in that case it displays a ridge, but not of so marked a character. On the more eastern axis however a conspicuous mountain mass of gneiss presents a height nearly equal to that of the Cone.

This hill, as seen endwise from the summit of Silver Mountain, presents a bold and striking figure in the landscape. The calcareous plain stretching across the picture in front, running up the synclinal valley on the west, and occupying the banks of the Rouge for many miles up, gives to the hill an isolated aspect. It rises like a gigantic bee-hive from the horizontal surface of the plain, and this would suggest for it an appropriate name:

The Silver Mountain, which consists of porphyroid gneiss, has two summits, divided from one another by a shallov valley in which there is a small lake. The more eastern top, which is at the same time the more southern, has a height about equal to that of the Hive. Each of these summits appears to be on an anticlinal axis. At the base of the mountain there is a portage, occasionally resorted to by those ascending and descending the river in light canoes, for the purpose of saving the time that would be spent in navigating a great bend in the Rouge It is from the upper end of this portage that the eastern side of the calcareous trough begins to assume a little more easting in its course. This easting it maintains for about two miles and a half, and the effect of the Silver Mountain anticlinals on the calcareous rim is very distinctly seen as we proceed along, as well as the effect of three additional forms of the same character occurring in the distance-

The breadth across the whole of these five anticlinals in a straight east line would scarcely exceed a mile and a quarter, which would give a quarter of a mile as the average distance between each two.

Towards the east side of the calcareous area in this part there is a small crescent-shaped lake, deriving its form from the influence of the undulations on the distribution of the strata, and the breadth of the general trough on a line crossing this lake and running west to the flank of the ridge connected with the Hive, is about a mile and three-quarters. The whole length of the trough in a straight line from its southern extremity up to this point, is a litle over ten miles; in these ten-miles there appears to be no superior rock resting on the limestone. But here the point of a synclinal mass of gneiss presents itself in about the middle of the trough, and immediately rises into a hill which rather exceeds the Hive and the Cone in height, and reposing on the limestone divides it into two bands. Of these, the one on the right, looking towards the gneiss, continues to run northward, in which bearing it has been traced for two miles from Crescent lake, while that on the left gradually rounds to the west.

In the first two miles the westing is but slight, and the bandis confined to the valley of the main river; but in the succeeding two, turning up the valley of a tributary called George's Creek, the bearing becomes noarly due west. In these iwo miles the limestone encloses a small expansion of George's Creek called Lake Simon, and strikes the outlet of another small lake beyond. The outlet of this lake occurs at its north-eastern extremity; the main inlet is at the opposite end, where it contributes the waters of a considerable sheet, called the Lake of Three Mountains, by a short channel running across the stratification. Within about 150 yards of the outlet of the small lake, there is a tributary on the north-west side, through which run the waters of another small lake not quite half a mile to the north, and it is up the valley of this tributary that the limestone proceeds in its farther progress. This latter small lake presents two straight diverging limbs, the one bearing a little east of north from the outlet for about three hundred yards with the stratification, and the other east, at right angles across the measures nearly. The limestone underlies the northward-bearing limb, and at the north end of it enters the valley of a small brook, up which it bas been traced running N. 20 E. for nearly a mile.

The breadth of the band at this point cannot be made out to be greater than one hundred yards; the dip is eastward at an angle of between seventy and eighty degrees, giving a thickness of nearly 300 feet. At Lake Simon the breadth is about two hundred yards, and it gradually increases descending George's Creek; but where the band leaves the valley of the creek and enters on that of the main river, the upper part of the limestone and the base of the gneiss are concealed by drift. On George's Creek and its tributary lakes the limestone is immediately overlaid by garnet-studded gneiss, which occasionally holds much hornblende, and near the outlet of the small lake between the Lake of Three Mountains and Lake Simon, this mineral, in a considerable thickness of the strata, is in sufficient abundance to entille the mass to the name of hornblende rock. The eastern band of the limestone, north of Crescent lake, displays a breadth of about 500 yards, and garnet-studded gneiss is exhibited resting on it as conspicuously as on the western band.

A portion of the breadth of the eastern band is perhaps due to undulations in the strata. The effect of some of those, which have already been alluded to, is easily discernable in the modifications they produce in the distribution of that part of the base of the overlying gneiss which is north-west of Crescentlake, and the effect produced on the west band by the Hive anticlinal, and the one immediately West of it is conspicuous, while the courses of the axes are some what remarkable.

These axes, running north-west for a considerable distance and then north, are traceable to that part of the band which includes Lake Simon, each producing a northern projection in the band, the one above and the other below the lake. On the more western one the limestone, after plunging beneath the gneiss, breaks through it again about 850 yards farther north, and there displays a lenticular area on the crown of the anticlinal, running for nearly a mile and three-quarters to the north-east; thus shewing a change of ninety degrees in the bearing of the axis, with but a short radius to the sweep. The lenticular area is surrounded by a rim composed in general of gneiss and quartzite studded with garnets, but on the norh-west side, the garnets, of a pink color, are disseminated in a pure white crystalline orthoclase feldspar, producing a rock of striking beauty. A strip of garnet-studded rockiruns for some distance along the middle of the lenticular area. The more eastern axis takes a similar turn, but the limestone, after sinking beneath the gneiss near Lake Simon, does not give so sure an indication of the bearing farther to the north-westward. There is an isolated calcareous exposure at the distance of about three quarters of a mile; another at the distance of about two miles, and a third at three miles and a half. It is not certain, however, that they are all on the same anticlinal axis. In the third there is a mere trace of the limestone, but a very distinct exposure of the garnet-studded rock, and a very beautiful display of the anticlinal fold in a low cliff at the spot, in which the northwestern side shews an overturn dip.

Between these exposures and the Rouge there rises a mountain ridge of hornblendic gneiss, running north-east and south-west with the strike for about two miles; it is divided into three conspicuous tops, and has in consequence received from the Indians the name of Kan Soutaia, or the Three Mountains. The southeastern flank of the ridge slopes sharply down to a triangular drift-covered plain, in which the Rouge meanders in a very serpentining course. The side of the plain which runs along the flank of the Three Mountains, extends across the Rouge to the north-east, and reaches Lake Simon on the south-west, the distance from one end of the line to the other being about four miles and a half. On the east side it is bounded by a continuation of the range of hills, which limits, in that direction, the eastern band of limestone, the length of the line being two miles; and on the south its measure, from the eastern limit of the eastern band of limestone to Lake Simon, is fout miles. The most prominent part of the southern boundary is the mountain of gneiss which lies between the east and west bands of limestone near their junction; I have called it the Portage Mountain. Its summit stands nearly west of the exit of Crescent Lake, and the ridge running north dies in the plain at about the distance of a mile, where the stream which empties Crescent Lake, after flowing northward along the eastern limestone valley, turns west and then south for a short distance to meet the Rouge.

The exit of the brook is close by the south end of what is called the Horse-Shoe Portage, a part of Messis. Hamilton Brothers' winter road, by which several great bends in the river (on the ice covering which the road chiefly runs,) are avoided. The portage is upwards of a mile and a quarter long, and derives its name from the occurrence on it of a narrow horse-shoe lake, which indicates an ancient channel of the river; similar ancient channels are indicated in many parts of the plain by long, narrow, winding swamps, with high, precipitous banks of clay, sand and gravel.

The plain extends from the south side of the triangle over the surface of the bands of limestone in two spurs, and including as much of these as can be seen at once from the higher parts of the Three Mountains, the whole area comprehends about five square miles. It is upon this plain that Messrs. Hamilton Brothers have their lowest farm, the chief part of it being on the right bank of the river.

Excepting close upon the boundaries of the plain, no exposure of rock was met with in any part, and we were not able, in consequence, to determine with precision the unbroken outcrop continuance of the "eastern band of limestone farther than has been indicated, while the want of time prevented the farther pursuit of the western one.

The calcareous exposures, which are supposed to indicate the north-western prolongation of the Hive anticlinal, are met with in a valley which runs parallel with the ridge of the Three. Mountains on its north-west side, and with the exception of the garnet-studded rock, the hornblendic gneiss of this ridge appears to be the first great mass that rests upon the limestone. The strike of the ridge seems to be regular, and the dip, which is pretty uniform, is S. $45 \mathrm{E} .<55^{\circ}$. The breadth from the valley behind to the front is about 600 yards, which would give a thickness of about 1500 feet. ${ }^{\text {a }}$ The rock which succeeds is a mass of nearly pure quartz, in some parts obscurely granular, and in others almost vitreous; a-large portion of it is white. It was met with in two positions, at the distance of two miles from one another, and appeared to have a thickness of about 600 feet. One of the exposures was in front of the highest top of the Three Mountains, where the quartz was overlaid by about one thousand feet of gneiss, and the other an isolated hill to the north-eastward, to which we gave the name of the Quartz Mountain. The strike in the latter locality indicates a turn more northward in the stratification, and the gneiss beneath, where seen near what is called the upper clearing, runs parallel with the altered strike, and crosses the Rouge about a mile above Quartz Mountain. Where it does so, the distance between the beds exposed and the nearest exhibition of the gneiss which underlies the eastern band of limestone, is about half a mile, and the space displays a flat-surfaced accumulation of drift.

According to the stratigraphical position above given to the band of quartz and the gneiss beneath it, the strata of the synclinal gneiss in Portage Mountain, would be equivalent to those of the Three Mountains, and the distribution of the quartz band under the drift would conform in some degree with the triangular shape of the plain. But the quartz band where seen, being on the west side of the main synclinal axis, if it passed northward on that side through the half-mile drift-covered space, would have to return again on the east side of the axis under the same space. In this space however there is not room for the limestone, the garnet-studded rock, the gneiss, and the double band of quartz; the quartz therefore must come to a synclinal point before reaching this space. The bearing of the axis of the synclinal gneiss in Portage Mountain is west of north for upwards of a mile and a half, and to reach the position where the quartz band must urn on it, it must assume a north-east bearing for some distance, and in doing so would preserve in some degree a parallelism with the minor synclinals on the west side of the general trough.

From the position where the strata of the Three Mountains cross the Rouge, the upward course of the river, with the exception of one serpentine curve in the first mile, is nearly straight to the Iroquois Chute, the distance above the curve being about two miles and a half: The strike of the gneiss supposed to underlie the limestone, would bring near it the left bank of the river just above the curve, from which it appears to run parallel with the course of the stream up to the Chute, the gneiss in many places touching the bank. About 600 yards below the Chute a tributary joins the river on the left side, from the mouth of which there is a portage 10 Trembling Lake. Below the mouth of this brook there is a considerable exposure of gneiss on the left bank, and limestone is seen touching it at the margin of the stream for some distance down. This there is not much doubt is the base of the eastern band, which probably occupies the bed and the eft bank of the river in the straight part.

On the portage to Trembling Lake there are several small sheets of water. The general bearing of the path tothe first of these is about east, and almost exactly across the measures, and the distance in a straight line is a little under three-quarters of a mile. The rock which is exposed on or near the path for the chief part of the distance is gueiss, but about half-way there is a thick bed of white quartzite studded with garnets. The dip appears to be regular and the angle high, and the total thickness on the portage would be about 3500 feet. The first lake is a small one, being but three-quarters of a mile in length and between 200 and 300 yards wide; the bearing is very nearly parallel with the nearest part of the Rouge. The second lake, the Indian name for which is Kasagawigamog, or Long Lake, has exactly the same general bearing as the first one. The sides are straight and parallel with one another; they are about four hundred yards apart, and run very nearly in the strike of the strata, while the length of the lake is a mile and three-quarters. A small tributary lake falls in on the north by a connecting channel which is only a few yards long; this small lake is in the strike of the first lake, with an interval of less than a mile between them. Between the proximate sides of the first and second lakes, the shortest distance is not over 150 yards, and between the two lakes there is a water-shed, the first falling into the Rouge, while the second is a tributary of Trembling Lake, its waters passing however through an intermediate lake. On the east side of Long Lake, towards the south end, there is a narrow entrance to a long bay which is parallel with the main body of the lake, and on the west side of this, towards the south end, is the outlet. Through the first and second lakes there runs a group of three bands of limestone, the middle one being much the largest and occupying nearly the breadth of Long Lake. Of the two bands of gneiss which divide the calcarenus bands, the western one is the larger. The position of the gneiss is indicated by the separation between the first and second lakes; and between the main body of the second lake and the south-eastern bay. Other beds of gneiss are interstratified in the limestone, but they are not of much importance. The total breadth of this belt of strata is about half a mile, and the thickness is supposed to be about 2500 feet.

The lake into which Long Lake is discharged, stands at a short distance to the south-east. Its Indian name is Misámiko Sákaigan, or Great Beaver Lake. It has an irregular form, but may be compared to a rude triangle with the apex to the north, the base on the south side being about three-quarters of a mile, and the altitude over half a mile. From the base a deep bay runs southward, and from the vicinity of the apex a long, narrow bay runs eastward to the outlet. A small stream falls in at the apex of the triangle, which is about a quarter of a mile eastward of the main inlet. This small stream appears to mark the eastern limit of the calcareous belt, which is farther traceable by an island of gneiss standing about half way along the eastern side of the triangle and the east side of the southern bay. This is composed of gneiss, while limestone appears in the bight of the bay. The western limit of the belt appears to reach a bold precipice of gneiss, terminating northward in a bluff point. This bluff is situated south of the western corner of the lake, and as it stands exactly in the bearing of Long Lake, it is probable that the calcarenus belt, after leaving Long Lake and before reaching Great Beaver Lake, turns on an anticlinal; the axis of which would run through the bluff. The width of the whole belt still continues to be nearly half a mile.

Great Beaver Lake flows into Trembling Lake on the west side, not quite half a mile from its northern extremity, by a stream which is under a quarter of a mile in length, running across the measures. Trembling Lake has a length of six miles and a quarter, with a bearing a little souih of east, and a breadth of between a half and three quarters of a mile. It runs very nearly
with the stratification, and in a general way parallel with the Rouge on the west side it has several promontories and bays, the most conspicuous of the promontories being about two miles and a half down the lake. The east gide of the lake is nearly straight, but displays a sudden turn about a mile from the northern end, by which the breadth is reduced from its average measure to about a quarter of a mile. At this turn the main tributary stream comes in from the north. The outlet is close to the southern extremity of the lake on the west side, where the water is precipitated immediately from the surface of the lake, over garnet-studded gneiss, in a fall of twenty-nine feet.

A band of limestone, with a breadth of about 600 yards comes upon the east side of the lake from the north by the valley of the main tributary, of which the position has just been given. In its progress southward the limestone composes several islands, one of them being the largest in the lake, and it is displayed, below this island, in a white rock which comes above the surface of the lake, and from its shape, has been called by the Indians Fikalana Gwabik, or Lizard Rock. A little lower down it composes also the chief part of the most conspicuous promontory on the west side, but it is not seen again until reaching the outlet of the lake, where it occurs in a precipice facing the fall, its strike being southward and down the river. Garnet-studded rock occurs along the eastern side of the band, on one or two points of the main shore, and on several islands, and not having been observed immediately on the westernside, the garnet-studded rock of the fall is supposed to indicate that the whole breadth of the band must be to the west of it. But no examination having yet been made at the outlet, beyond the immediate border of the lake, this must for the present remain conjectural.

On the eastern side of the lake there rises up a vast mass of coarse-grained porphyroid orthoclase gneiss, constituting what is called the Trembling Mountain. Its Indian name is Manitouge Sootana, the translation of which would be the Spirits' Mountain, or Devil's Mountain. The Indians assert that low, rumbling noises frequently proceed from it, and that it has sometimes been felt to shake hy those who have been accidentally upon it. If this were true, it would in that respect resemble the country in the neighbourhood of Cromarty, in Scotland; but whether it be true or not, the belief of the Indians in the fact has established for it its English name. While I was in its neighbourhood, it seemed to me to be perfectly quiet and steady. The base of the mountain occupies a large portion of the township of Grandison. The highest point seen from the lake, as measured trigonometrically, is 1713 feet over its surface, or about 2061 feet above Lake St. Peter, between Montreal and Quebec, and it appears to be the loftiest summit for a considerable distance in the surrounding country.

The eastern limit of Grandison crosses Trembling Lake obliquely at the distance of about two miles from the southern extremity, and an old timber road, which is used as a portage, starts from the vicinity of the position where the lown line intersects the western margin of the lake. The road leads to the Rouge in the plain of the Three Mountains, the distance in a straight line being about four miles. Less than half-way there occurs a sheet of water, known to the lumberers under the name of Lake Sam. It has a length of about a mile and three-quarters, with the average breadth of about one-quarter of a mile. Its longitudinal bearing is S. 30 E, and it is very nearly parallel with Trembling Lake. The strike of the strata on its banks however appears to be about S. 20 W ., and a band of white quartzite about 150 feet thick, interstratified with hornblendic gneiss, was traced with this bearing for three-quarters of a mile into Lake Sam, crossing it very near the town line. A band of limestone comes upon the lake at its north-west corner; the exposures ascertained were not sufficient to determine its exact breadth, but nothing was found to contradict the supposition that
it might equal that of the band of Long Lake and Great Beaver Lake. No calcareous exposures were met with on the western side of the lake, but from the relative positions of the bed of quartzite and the limestone, which were separated by about hiry chains of gneiss, it is probable that the east side of the calcareous band would strike the western bank about midway between its extremes.

The interval between the supposed west side of this Sam Lake band, and the gneiss bounding the eastern side of the Grenville limestone on the plain of the Three Mountains, is about the same as that between the Great Beaver Lake band and the Rouge, while the distance between the lakes is not much more than four miles. It would thus appear almost certain that there is a direct outcrop connection between the calcareous rocks of the two lakes, and that the band would pass by the western foot of a sharp-pointed hill, to which we gave the name of the Hay Stack, the summit of which is removed nearly a mile from the Trembling Lake limestone, where it forms the conspicuous promontory below the Lizard Rock.

Allusion has been made to a lake deriving its name from the Three Mountains, which is situated on the west side of the Rouge, and discharges into Lake Simon through another small lake. The outlet of the Lake of Three Mountains is on its north-eastern side, about midway from its extremes, which are a little over three miles apart in the bearing N. 55 W . and S. 55 E . At its north-eastern extremity it is joined by a brook, which brings it the tribute of two small lakes in the same general bearing. Into the upper one of these flow the waters of three small lakes, lying in a valley nearly transverse to the previous bearing. Looking to the westward, one of these is on the right hand and the other two on the left. The brook, which issues from the lowest and largest of these five lakes, is joined on the left bank, about half way to the Lake of Three Mountains, by a tributary which comes from the eastward of north from a long, narrow marsh. On the south-westward side of the Lake of Three Mountains, about half a mile eastward of a small bay which is opposite the outlet, the lake is joined by a brook, which issues from Green Lake. This lake is upwards of two miles in length, and the lower half runs parallel with the lake of Three Mountains, while the upper half, which extends beyond that lake, takes a turn upivards of twenty degrees more to the south. At the upper end Green Lake is joined by a tributary which empties a small lake in the same valley, about half a mile further southward.

From this small lake a calcareous belt, interstratified with two heavy bands of garnet-studded quarizite and hornblende slate, has been traced to the western end of Green Lake, occupying a considerable portion of the ground between the lower half of this lake and the lake of the Three Mountains. Farther on the belt embraces two small lakes, in the same valley as Green Lake, which partially overlap one another, the waters of one of them flowing eastward to join the discharging stream of Green Lake, and the other northward to join the Jake of Three Mountains. On the Lake of Three Mountains the valley is represented by the channel which lies between the main shore, on the south-west side, and the only large island of the lake. The limestone is seen in this part of the lake, and exposures are met with a few hundred yards inland from the lake. The belt occupies nearly all the space between the north-western end of the Lake of Three Mountaius and the next lake to the westward, and turns up the valley of the tributary which falls in on the left side of the connecting stream. In this valley the heaviest bed of limestone of the belt leeps in the channel of the brook, which is pretty straight, and reaches the long, narrow marsh which has been mentioned, the upward bearing of which is N. 30 E .

At the north-western head of the Lake of Three Mountains, about ten chains
up the brook which falls in there, a rock occurs on the east side of the calcareous belt, composed of masses of pure white albite, several feet in diameter, and shewing large striated cleavage surfaces; inclosed in it are masses of translucent quartz, some of them a foot in diameter, and large crystals of greenish-brown and black mica. The rock may be intrusive, but it is in contact with micaceous gneiss, and there may be limestone on the east of it, as there certainly is on the west, beyond which garnet-studded gneiss is seen, the feldspar of some of which is albite. The gneiss forms a pretty thick band; limestone occurs on the west side of it ; garnet-studded quartzite follows, interstratified with one or two thin calcareous beds, and hornblendic gneiss limits the whole, the breadth of the belt being about 450 yards; it will be observed that as far as traced, about eight miles, the band maintains a course parallel in a general way to the curves presented by the Grenville band, on the west side of the trough, from a position opposite the Silver Mountain to that at which its investigation ceased.

The valley in which occur the two lakes next west of the Lake of Three Mountains, lies across the measures, and displays bold hills of gneiss on each side. The three small lakes farther on, which supply these two, occupy a valley coinciding with the strike. In it another band of limestone occurs, running parallel with the previous one as far as traced, the distance however scarcely exceeding two miles. The band appears to be interstratified with one or two layers of gneiss, and the breadth including these, is about three hundred and fifty yards.

The two outside calcareous zones on the western side of the general trough, are of course considered to be equivalent to those on the easteri, and the bearing presented by the whole three bands on the opposite sides, as the investigation now stands, are such as would bring each pair of equivalents to a junction northwards, unless they become deflected by the influence of undulations. There appears to be some probability that the opposite sides of the uppermost deposit will meet somewhere in the vicinity of the Iroquois Chute, but nothing can be said in respect to the farther distribution of the inferior two without additional exploration.

Within the trough, connected with that part of the distribution of the Grenville band which runs from Sixteen-Island Lake, and passing through Balsam Lake follows its discharging stream to Round Lake, there are three small lakes that require to be noticed. One of these, called Proctor's Lake, is situated on the thirly-first lot of Montcalm, on the line between the second and third ranges. The stream discharging it is at the southern end, and it has been traced to the front of the thirty-second lot of the second range, whence it is supposed to run into Sixteen-Island Lake. Another of the lakes crosses about the middle of the twenty-sixth, twenty-seventh and twenty-eighth lots of the fourth range. A stream flows into it on the south side; on the twerty-eighth lot, and the upward bearing of the valley points towards Proctor's Lake. The outlet is at the west end, and the discharging stream flows into Little Black Lake, which is on the twenty-first and twenty-second lots of the same range, and conslitutes the last of the three lakes. Its discharging stream joins a small expansion of the Balsam Lake brook, in the same range.

A band of calcareous rock, varying in thickness from ten to fifteen feet, was traced through the three lakes mentioned, from a position on the discharging stream of Proctor's Lake, about a quarter of a mile from the front of the thirty-second lot of the second range. Its course, as far traced, bears a general parallelism with that of the neighbouring main calcareous band, from which its nearest transverse distance is between thirly and forty chains, giving a vertical thickness of about 1500 feet. The difficulty of following so small a bed through the tangled forest induced us to relinquish the search for it at the outlet of Little

Balsam Lake; but the existence of two or three lakes, further south than Proctor's Lake, in nearly the same relation with respect to Sixteen-Island Lake that Proctor's Lake bears to Balsam Lake, makes them probable positions in which to meet with it.

Though this bed overlies the main Grenville band, it is not supposed to be equivalent to that of Morin, but to be a deposit intermediate between the two, and a great way beneath the Morin rock. If this be the true sequence, it wilk follow that the Grenville band, with the Proctor's Lake bed above it, should be repeated between Montcalm and Morin, on the east side of an anticlinal axis that must run in a direct line east of north through Howard. There is not much doubt that the repetition of the Grenville band will be found in a northern continuation of the limestone of Lake Louisa; one traverse, however, which has been made between Montcalm and Morin, by the town Jine common to Howard and Wentworth, has not been successful in detecting any calcareous exposures; but several drift-covered gaps were met with sufficiently wide to permit ihe outcrop to pass without being observed.

From what has been said, it will be observed that in the present stat? of the investigation, without counting the Proctor's Lake bed, which is tóo small for separate consideration, there appears to be a sequence of four imporiant bands of crystalline limestone in the Laurentian area examined. The wrinkled condition of the strata however is such that in a space of not more than fifty miles by twenty, one of the bands exhibits an outcrop exceeding 200 miles in length, and this renders it very difficult to determine with precision the volume of rock in which the four calcareous bands are enclosed; but according to the best estimate I have been able to make, it appears to me that the following would be an approximation to the thickness of the various constituent parts of the mass, arranget in ascending order:-

1. Gneiss composing the Trembling Mountain. Though the mass has not been especially examined, nor any geographical position shewing its inferior limit ascertained, yet the general aspect of the mountain induces the supposition that it must be of great thick- ness, and it is presumed that it will exceed the volume here given. 5000
2. Crystalline limestone of Trembling Lake. 1500
3. Gneiss between the limestone of Trembling Lake and that of Great Beaver Lake.. 4000
4. Crystalline limestone of Great Beaver Lake and Green Lake, including two bands of interstratified garnet-studded rock and hornblendic gneiss; which may equal half the amount. 2500
5. Gneiss intermediate between the limestone of Great Beaver Lake and Long Lake, and the Grenville limestone on the Rouge at the Iroquois portage, the lower part having se- veral bands of garnet-studded gneiss and quartzite, and the upper part much coarse grained porphyroid gneiss 3500
6. Crystalline limestone of Grenville, in some parts interstratified with a band of gneiss. The thickness appears to vary from about 1500 feet to 60 feet, and may be estimated at about. 7507. Gneiss intermediate betrreer the limestone of Grenville and that of Morin. This wouldinclude the rock of the Three Mountains, the limestone of Proctor's Lake, the quartzite ofQuartz Mountain; and the gneiss which overlies it. The nearest geographical approachof the two bands that has been ascertained is about two miles, and the present esti-mate of their stratigraphical separation is not perhaps extravagant........................5000
\&. Crystalline limestone of Morin 500

The more recent deposits observed on the banks of the Rouge, where they were undisturbed by fluviatile action, were clay in the lower part of the river, and sand and gravel in the higher. An undisturbed deposit of clay is seen on the left bank of the river, on the fourth "range of Grenville, in a high cliff, where the clay fills up the inequalities of the round-backed gneiss rocks on
which it rests. The height of the cliff was not measured, but it may be about 125 feet. The clay appears to reach from the top of the cliff to the level of the river, which is here about 280 feet above Lake St. Peter, while the smooth worn gneiss protrudes through it in different parts.

In the rear of Grenville and front of Harrington, not very far removed to the eastward of the Rouge, there spreads out a flat surface of several hundred acres in extent, which is underlaid by clay. A brook, called the Big Gulley Creek, runs through it on the twenty-sixth lot of the eleventh range of Grenville. The ravine in which it makes its way is in different parts probably from 140 to 150 feet in depth, and it shews on each side an evenly stratified argillaceous mass of a blue color, which would be an excellent material for the manufacture of common bricks. Between the western margin of this plain and the river there is interposed a low ridge of Laurentian strata, so that a comparison of levels does not immediately strike the eye; but judging from the relation of the brook and the river, it appears probable that the height of the plain would be about 500 feet over Lake St. Peter.

The Devil's River winds in a very tortuous course through a narrow driftplain, which occupies about three miles of the lowest part of its valley. The banks of the river are from ten to 1wenty feet in height, and where these have been broken down by the recent erosion of the stream, they uniformly display yellow sand, sometimes deeply stained with peroxyd of iron. The beight of the plain over Lake St. Peter would be about 550 feet.

The plain of the Three Mountains has been much broken up and modifed by the action of the Rouge. Many facts exist to shew that the river has very frequently changed its course, and has mixed up with the debris of the original plain, material brought from a distance by the stream. Some parts however of the ancient plain still remain; these shew an elevation of about thirty feet above the ordinary summer level of the river, which would give them a height of about 585 feet over Lake St. Peter. They consist in general of sand or fine gravel at the top, with clay interstratified towards the lower part, but the sand greatly predominates. The coarser material of the drift appeared to be all derived from Laurentian rocks.

The surface of these rocks, in almost all the parts examined, presented rounded forms, and parallel grooves resulting from glacial action, were observed in several places. The following is a list of the positions and of the bearings of the grooves:-

[^10]

The bearing of the grooves in the first position coincides with that preservei by the valley on the side of which they occur, for a mile above and a mile belor them. Between it and the second position there are three gentle turns in the valley of the river, in the upper two of which, the one south and the other eas of south, no grooves were observed, while the remaining one was marked by the grooves of the second locality.

The rock prevailing at the second locality is crystalline limestone, but it is interstratified with beds and irregular masses of quartzite, and the strata are tilted up to an angle of sixty degrees. The general surfaces of the exposures have rounded forms, coming down to the margin of the river and sinking beneath the water, but the parallel grooves appear only on the upturned edges of the quartzite, which stands out boldly and sharply from the limestone, six or nine inches. No doubt when the grooves were formed, the limestone and the quartzite presented a uniformly smooth surface, but the softer and more soluble material has since been worn or dissolved away, while the other remains without apparent change. If any estimate could be made, shewing the rate at which the limestone has been destroyed, it would be a means of establishing the time at which the grooves were formed. The effect of the water of the river on the limestone might perhaps be ascertained by experiments, but it would be difficult to determine how long or how much the surface may have been protected from solution by a covering of drift before the river ran over the beds. The bearing: of the grooves coincide with the course of the valley for two miles and a ball partly above and partly below the locality.

The third locality occurs where the valley of the Rouge, after having followed the bearing of the calcareous trough in which it flows from the Hive Mountain to the Huckleberry Chute, breaks through the gneiss hills bounding the lime stone eastward, to assume again a bearing west of south farther on ; the grooves at the third locality in some measure coincide in direction with the change in the valley, as they do farther on at the fourth locality, where the valley changes again. The valley maintains the bearing of the grooves of the fourth locality for between two and three miles, and is then deflected to the south and a little to the east of it, though not so much to the east as the bearing of the grooves at the fifth position, which would be a continuation and augmentation of the deflection. The grooves however here coincide with the strike of the limestone and the gneiss on the west of it, and it is difficult to say how deep a valley may be worn in the limestone farther on, as it becomes immediately covered up with drift.

The bearings of the grooves in the sixth and seventh localities accord in a general way with the direction of the valley. At the spot where the seventh occurs however the flow of the water is nearly at a right angle to the grooves; for at this spot the river makes a sudden turn to the west, toward a deep narrow gorge in the gneiss through which it rushes to form the Mountain Rapids; while a depression continues on to the southward in the bearing of the grooves over a limestone trough bounded on each side by bold ridges of gneiss; the ridge on the west being a continuation of the gneiss of the gorge and the Mountain Rapids. The grooves of the eighth locality are in the direction of the valley which the river attains after leaving the Mountain Rapids.

The grooves on Trembling Lake, in the ninth position, coincide with the direction of the valley of the lake and the flank of the Trembling Mountain which limits it on the east.

The tenth locality is in a valley of limestone, the bearing of which, coming from the north, coincides with that of the grooves, though the valley assumes more westing a little farther on while crossing a mass of intrusive syenite, but no grooves were observed where the change occurs. The eleventh locality is also in a valley of limestone, forming the termination of a trough, and shewing a depression out towards the Silurian plain to the southward. The bearing of the grooves agrees with that of the valley.

The twelfth and thirteenth positions are on surfaces of intrusive syenite, where the bottom of a depression gradually descends to the Silurian plain to the southward. The bearing of the depression coincides with that of the grooves.

In the fourteenth locality, that of Lake Louisa, the bearing of the grooves coincides with that of the depression containing the lake, and particularly with the direction of the east bay and the limestone valley running southward from the exit.

It would thus appear that in every one of the above instances, which are all that were observed, the grooves have such a relation to the valleys in which they occur, that the limits of the valleys appear to have guided the direction of the moving masses producing them.

The Rouge appears to bring to the Ottawa a considerable supply of sand, and it is probable that the great sand bank which occurs in the bay above the village of Grenville derives a large portion of its material from that source. In the navigable parts of the tributary great banks of sand appear above the surface of the water when the stream is at its lowest level, and these are known to be considerably modified in shape after every freshet, the sand being gradually shifted farther and farther down the valley. The sands are no doubt derived from the deposits accumulated in the upper part of the drift, and the instances met with of newly broken banks and ancient river channels afford numerous proofs of the erosive forces in operation.

The remains of ancient channels sometimes appeared in the shape of narrow crescent or horse-shoe lakes, close upon the margin of the existing stream. These are formed by the curves at the upper and lower extremities of a circular sweep in the river gradually wearing into one another and producing a shorter and therefore more sloping channel for the water. The stream flowing through this new channel leaves still water in the previous circular sweep, and the eddies formed at the extremities of this permit an accumulation of sand or silt, which uitimately closes them up and converts the part thus cut off into a lake of the form in question.

One of these was observed near the mouth of the Devil's River. The breadth clearly indicated that it was once a part of this tributary which had been cut off by a change in the channel of the main stream. Another was the Horse-Shoe Lake, giving a name to the portage in the plain of the Three Mountains. This lake, in the line of the curve, is three-quarters of a mile long, and from sixty to ninety yards wide, which is about the breadth of the present sweep in the neighbourhood. The lake shews an interference with an older channel, now filled up by a serpentining tamarack swamp of several miles in length. This also presents a breadth of about the same measure as that of the river, and in some places it lies between banks of thirty feet in height, composed of the original drift, while in others it has cut through still more ancient channels by which the original drift had been broken down. The best part of the farm of the Three Mountains appear to be a portion of the plain which has been modified by the action of the river. It consists of an area on each side of the stream of considerable breadth, on a level some fifteen feet lower than the original drift-plain by which it is bounded. Pines
of large dimensions appear 10 have been abundant on the surface of the original drift-plain of the Three Mountains, much of which has been destroyed by fire; but, on the parts modified by fluviatile action, maple and trees of other descrip. tions occur indicating a better soil.

Economic Materials.

The minerals of conomic value to be sought for as belonging to the Laurentian series of rocks, have been alluded to in different previous Reports. Most of these minerals are associated with the crystalline limestones of the series, and several of the localities in which some of them were met with in the more southern part of the area to which the geological description in this Report refers, were noticed in the Report of 1856 . In the more northern part, the limestone itself constitutes the mineral of chief importance, more particularly in respect to its relation to the land capable of settlement which almost always accompanies it, but the localities in which it is to be met with in the area in question have already been noticed in sufficient detail in what precedes. A few more localities of Laurentian economic minerals, however, have been ascertained in some parts of the country heretofore partially examined, and the practical test of mining has been applied in others to deposits which have been mentioned in former Reports. To these, as well as to minerals connected with the area of my personal explorations, it may be proper to draw attention.

Magnetic oxyd of iron.-One of the economic minerals associated with the Laurentian limestones is magnetic oxyd of iron, but the number and sequence of these calcareous bands being still a subject of investigation, it may be for some time doubtful whether the iron ore characterises one or several of them, and how those holding the ore may be related in sequence to the rest. Of the four bands of which the sequence has been ascertained, the upper and the two lower ones have not been followed sufficiently far 10 give much significance to the fact that they have not afforded any indications of the ore. But the Grenville band, of which the examination has been so much more extended, cannot as yet be said to give much promise of the mineral. Indications of it however were observed by Mr. Lowe, on the south side of Gate Lake, in the twenty-sixth lot, of the sixth range of Wentworth. Here according to his description two sets of beds, about a hundred yards apart, were traced for half a mile on the strike, which was N. 20 E . The ore ran in straggling layers of an inch or so in thickness, of which several in each set continued for short and irregular distances parallel to one another, often breaking into a succession of bunches or lamps of the size of musket balls. The ore was held in gneiss interstratified in the limestone, and many spots and crystals of the oxyd of iron marked the whole of the rock. In some parts of the farther extension of this band of limestone, the ore may possibly increase in quantity sufficiently to become available.

The great difference in bulk between the articles which in the course of trade are brought down the valley of the St. Lawrence, and those returned, produces a competition for back freight, which reduces it to a minimum rate; and one of the results is a growing inquiry for various crude materials to be obtained on the route, which can with advantage be applied to useful purposes at certain distant places; but the required value of the materials is so low that they cannotbear a heavy charge for carriage. Among these materials is to be enumerated the magnetic oxyd of iron. When this ore, with a produce of between sixty and se venty per cent. of pure metal, can be laid down at the smelting establishments of Pittsburgh, and other places at a price not exceeding about five or six dollars the ton, a ready sale may be found for a considerable quantity; and a
trade is in consequence gradually springing up between some of the ironsmelting localities of Pennsylvania, and shipping ports on the route which are favorably situated in respect to deposits of the mineral. The ore has been sent to Pennsylvania from Lake Champlain, but a more convenient position for export is Kingston on Lake Ontario, 10 which there is an easy access by the Rideau Canal, from some of the most important of the Canadian deposits. The first Canadian exports of the ore from Kingston, were the produce of the great deposit in Hull, from which since 1855, about 8000 tons have been forwarded; but during the last season about 2000 tons were mined and exported from the still more favorably situated deposit of South Crosby near Newboro, on the Rideau Canal. A stock of the ore is held constantly ready at Kingston, and the price at which it is placed on board of lake craft there, is I am informed $\$ 2 \frac{1}{4}$ the ton.*

Galena.-This ore of lead is another of the minerals that are to be looked for in connection with the limestones of the Laurentian series; but as in the case of the magnetic oxyd of iron, it is not yet determined whether it specially characterises one or more of the bands. None of it was met with in the calcareous exposures in the district of the Rouge, but I have been informed by Mr. McFarlane, formerly connected with the smelting forges of St. Maurice, that several veins holding galena have recently been discovered in the township of Bedford, not very far removed from those lodes which have already been described by Mr. Murray, in the twenty-first lot and near the line between the eighteenth and nineteenth lots of the eighth range of the township. \dagger

In the Report of 1851-2, Mr. Murray makes mention of the occurrence on the second lot of the eighth range of Lansdowne of a vein composed of galena disseminated in a gangue of heavy spar and calc spar, which had been unsuccessfully tried as a lead mine. Subsequent to his visit to the locality a lode was discovered on the third lot of the same range, from which specimens were obtained in 1855 for the Paris Exhibition. A trial shaft had been sunk on it to the

[^11][^12]depth it was said of fifty feet, and a sufficient quantity of ore obtained to pay the expense of sinking. The specimens procured by me, and the mass of ore exhibited to me, shewed a thickness of between two and three inches of pure galena asso ciated with calc-spar. I was informed that other lodes existed in the neighbourhood, but their position was kept secret. The two which had been tested are parallel to one another, with a bearing approaching to N.W. and S.E.

The bearings given by Mr. Murray to the three lodes examined by him in Bedford are N. 15 W, N. 32 W., and N. 85 W., the last being the course of the lode traced and tested farthest. The distance between the Bedford and Lansdowne lodes is not much over twenty miles, and considering the differences that may be allowed for the gentle windings which usually exist in the courses of metalliferous veins, it appears not at all improbable that the lodes of the two localities may be identical, or belong to one group, the bearing of the two positions being about N. 68 W. and S. 68 E. of one another. If a line from the Bedford to the Lansdowne lodes were continued twenty-five miles farther it would cross the St. Lawrence and strike Rossie in Lawrence County, New York, where a group of well known veins of lead ore exists, some of which, though just now abandoned, are not supposed to be exhausted, and two of which are known atone period to have yielded a great quantity of ore.

The rock cut by the lodes at Rossie is of the Laurentian series, but a line between Rossie and Lansdowne would intersect the outcrop of the Potsdam sandstone which lies between Rossie and the St. Lawrence. It has been ascertained that a vein of lead ore cuts through this sandstone at Redwood, which would not be far from the position of the line to Lansdowne. It is thus not improbable that there is a group of lead lodes running from Rossie to Bedford, and this metalliferous line appears well worthy the attention of explorers in search of lead ores. The dislocations in which the lodes exist are of course thus proved to be of a more recent age than the Potsdam sandstone, but this by no means establishes that the older rock may not be the source of the metal.

In 1853 Mr . Richardson ascertained the existence of a vein of galena on the third lot of the sixth range of Ramsay belonging to Mr. J. McLean; an analysis of the ore was reported by the chemist of the Survey, and specimens of it were shewn in Montreal as part of the contribution intended for the Paris Exhibition in 1855. The subsequent exhibition of specimens from the same locality in the Museum of the Survey has led to a practical trial of the vein during the last summer. A shaft of five fathoms in depth has been sunk on the lode, and about seventy-five fathoms in the plane of it having been excavated, they have yielded about twenty. six tons of galena containing eighty per cent of pure lead. The bearing of the lode is from N. 45 W . to N. 50 W , its underlie being to the north-east. The breadih varies from two and a-half to five feet, and the ore-bearing part from eight inches to occasionally two feet. Judging by the eye, the produce of the lode in galena of eighty per cent. may vary from nearly dead ground in some places to as much as nearly two tons to the fathom in others. The rock which the vein intersects is an arenaceouslimestone, the fossils of which prove it to belong to that division of the Lower Silurian series which is known as the Calciferous sandrock. In the bearing of the lode the base of this formation crops out about a mile from the shaft, and it is succeeded by the Potsdam sandstone, which prevails for three quarters of a mile farther, beyond which the gneiss and limestone of the Laurentian series present themseives.*

[^13]Sulpharets of Copper.-In the Report of 1851-2 the pyritous sulphuret of copper was mentioned by Mr. Murray as occurring in the Laurenian series in small quantity in a vein of calc spar; on which an unsuecessful trial shaft was sunk on the twenty-fourth lof of the tenth range of Bastard. He alludes also to its occurrence in loose masses of several pounds weight on Gananoque Lake in the same neighbourhood. One of the masses brought to the Museum weighs between seven and eight pounds. It is of great purity and contains upwards of thirty per cent. ot copper. No rock is attached to it, and the only foreign substance associated with it is hydrated peroxyd of iron in leaves as thin as paper, which run in what appear to be natural joints, while the masses are quite free from green carbonate. The source of the masses was not discovered.

In the same Report Mr. Murray mentions the cccurrence of specks of copper pyrites as characterising a six-inch bed of magnetic oxyd of iron interstratified in gneiss on the seventh lot of the second range of Escott, the property of Mr. W. Way. Subsequent to Mr. Murray's visit a cutting having been made for the convenience of the Grand Trunk Railroad at the spot, the bed became more exposed. The sub-contractors engaged in the excavation collected the iron ore as they proceeded in their work, with the view of selling it, but threw aside considerable masses of another mineral which tney conceived to be iron pyrites. On presenting some of the specimens however 10 the Museum of the Survey in 1857, they were made aware that the rejected mineral was copper pyrites. The masses obtained so strongly resemble those from Lake Gananoque that it appears probable the two come from similarly characterised deposits. In the Escott bed six or eight inches in thickness were nearly pure copper pyrites, in which thin leaves of hydrated peroxyd of iron ran in cracks or joints, while green carbonate was absent. In some parts calc spar was present in short thin veins and small specks; and iron pyrites was disseminated in others, increasing in quantity as it approached the north-west side, into which the copper ore appeared occasionally to run in small strings for short distances. The magnetic oxyd of iron occupied about six inches of what was considered the under part of the bed, while the greatest width of the cupriferous portion was about ten inches. This por: on

[^14]appeared to be of a lenlicular form, extending not much more than twelve feet continuously in the run of the bed. I understand that between eighteen and twenty tons of the copper ore were obtained, but after this bunch became exhausted I believe no excavation was made through the dead ground in search of a farther quantity. On testing the iron pyrites, Mr. Hunt has detected in it traces of cobalt, and as cobalt and nickel very generally accompany one another, the latter may very reasonably be expected in this deposit.

By British practical miners, copper ore when occurring in beds seems generally to be considered less certain than when found in well defined lodes. Yet it is in the stratification that the ore is obtained in the copper slates of Germany; which have been profitably worked for a great length of time ; and the copper deposit of Fahlun in Sweden, which has been mined for hundreds of years, is supposed to be subordinate to the strata. The prodigious mounds of copper slag accumulated by the Romans at Rio Tinto in Andalusia in Spain, from the smelting of the ore of that neighbourhood, show that its mines must have been productive for many centuries, and I believe they still continue to yield a profitable result; the copper ores there, are disseminated in a thick bed of iron pyrites. Interstratified deposits have yielded the copper ores which have for many years been shipped in such abundance from Cuba to Swansea; and from Sir Roderick Murchison's description of the copper mines of the Ural Mountains, it is evident that the ores there occur in deposits of a similar character.

In the Reports of the explorations made by the Survey on the south side of the St. Lawrence in 1847 and 1549 it was stated that indications of the pyritous and variegated sulphurets of copper were observed in many localities, usually in the vicinity of certain bands of dolomite, serpentine, soapstone and other mag. nesian rocks, which in various forms characterise a group of strata lying at the top of the Hudson River formation, and intermediate between what have occa sionally been called the Richelieu shales, and the Sillery sandstones. They are equivalent to the rocks of Quebec and Point Levi, and affected by undulations, range through the country between Cape Rosier and Lake Champlain in a very irregular manner, being distributed in long narrow synclinal forms, which carry their outcrops in stretches backward and forward in a general north-east and south-west direction, bending however in some parts towards north and south, and in others towards east and west. Proceeding from the St. Lawrence ina south-east direction the formation is thus found to be repeated a great many times in a transverse distance, which opposite to Quebec would equal nearly fifty miles, whilst at each repetition, the strata, which on the north-east are of a sedimentary nature and show characteristic fossils, become more and more crystalline, and ultimately lose all traces of their organic contents.

When the indications of copper ore in these rocks could be traced contin. uously to any distance, they in every instance that came under my observation, preserved a direction coinciding with the stratification. In three instances the quantity of ore appeared sufficient to justify the recommendation of crop trials, one being in Upton, another in Ascott, and a third in Inverness. In the first, which occurred on the fifty-first lot of the twenty-first range of the township men tioned, the copper ore, consisting of pure pyrites, was in a mass of greyish-white, and reddish-grey, compact, sub-crystalline, yellowish-weathering limestone, which it intersected in reticulating veins of from one quarter of an inch to an jnch in thickness, always inclosed between walls of highly crystalline calc spar, associated occasionally with a little quartz. These reticulating veins constituted bunches, and several of these bunches could be traced in succession in the strike of the limestone. These reticulating veins of copper pyrites did not differ essentially in their arrangement from the thin veins of quartz, which very frequently, and thin
veins of titaniferous, specular and magnetic iron ores which less often have been found intersecting the magnesian limestones of this formation in various places, and I presume must be regarded as veins of segregation, filling up fissures which do not pass beyond the limits of the limestone.

A bed of breccia or conglomerate, of which both the fragments and the matrix are calcareous, appears to overiie the greyish-white limestone, and like it is marked by copper pyrites. A reddish-grey limestone quarried in the neighbourhood is supposed to underlie the greyish-white rock, though not seen in contact with it. This towards the top was interstratified with yellowish-white beds, and towards the bottom with red shale; no copper ore was observed in the reddishgrey limestone. The breadth across the whole of the beds may be about a quarter of a mile. The general dip is toward the south-east, and the inclination varies from ten to twenty-seven degrees, but the data are not sufficiently clear to establish the total thickness.

In one of the Reports in question it was indicated that this band of limestone appeared to hold a course from its position in Upton, through the northern portion of Acton, into Wickham, where on the twenty-sixth lot of the last range of the township, it was again marked by the occurrence of copper ore. The bearing of the band in this course would approach to north-east, and about ten miles south-eastward from it another range of calcareous exposures exists in a nearly parallel course, one of the exposures occurring on the thirty-eighth lot of the seventh range of Acton, and another on the eighteenthlot of the ninth range of Wickham, where additional indications of copper ore exist. A third north-eastward run of the same description of limestone extends from the thirty-second lot of the third range of Acton to the fourteenth lot of the tenth range of Wickham, and on both these lots the rock is again marked by copper ore, as well as on the thirtysecond lot of the fifih range of Acton, which is intermediate between the other two positions. All these calcareous ranges it was there explained, most probably belong to one and the same band, the first and third being on the opposite sides of a trough-like form which stretches from the neighbourhood of the St. Francis River to Farnham, while the second is due to an anticlinal axis which divides this general trough into two subordinate synclinal parts. Other synclinals present themselves further to the south-eastward, a general description of which was given in the Reports.

The existence of the copper ore on the thiry-second lot of the third range of Acton was I believe, discovered by Mr. H. P. Merrill, and at the request of Mr. Cushing, the proprietor of the land, Mr. Hunt visited the locality in August last. As then seen, before any excavation had been made, the surface presented an accumulation of blocks of copper ore, evidently in place, and covering an area of about sixteen paces in length by ten paces in width. These masses consisted of variegated sulphuret of copper, intermingled with limestone and a silicious natter, without any thing like vein-stone, and evidently constituted a bed subordinate to the limestone, whose strike was about N. E., with a dip to the northwest at an angle of about forty degrees. In continuation of this bed for about seventy paces in either direction, the limestone was observed to hold little patches and seams of variegated ore and yellow pyrites, with stains of the blue and green carbonates of copper. The limestones in the immediate vicinity presented several veins of quartz crossing the strike, but containing only traces of copper.

During Mr. Hunt's visit, a small amount of excavation was made with pich and shovel, and a farther extent of work has been done since, but though this has not added materially to the information at first obtained, there can be no
doubt, even should the limits of the deposit extend no farther than those above indicated, that there is here an unusually rich bunch of copper ore*.

In the other two instances in which crop trials were recommended the gangue was opaque white quartz from one to two feet in thickness, in which was disseminated the pyritous sulphuret in Ascott and the variegated sulphuret in Inverness. The rock in both cases was described as chloritic and talcose slate.

Subsequent explorations in the townships of Inverness and Leeds by different individuals have led to the disclosure of a considerable number of localities marked by cupriferous indications; several of them have been tested in various degrees by the Megantic Mining Company and others, by shafts and excavations of moderate depths, and at the present time an efficient trial is in progress at Harvey's Hill in Leeds, by the English and Canadian MiningCompany,

[^15]who are pushing their work with considerable vigor, under the management of Mr. Herbert Williams. At Harvey's Hill, there occur on the seventeenth lot of the fifieenth range of the township nine courses composed chiefly of quartz with various proportions of bitter spar, chlorite and calc spar, and all holding in greater or less quantities the pyritous, variegated or vitreous sulphurets of copper. The width of these courses varies from a few inches up to seven feet in the thickest part of some of them. In the trials on the surface, some of them after yielding quantities of copper ore that seemed encouraging, have gradually thinned both horizontally and vertically, and disappeared. To prove their character more thoroughly in a downward direction an adit is now being driven on the north side of the hill at a level which is thirty-seven fathoms below the summit. This will intersect

Abstract

apparently broken beds and rounded forms, and hold irregular and ragged pieces of chertin more or less sbundance, with strings and spots of calc spar. The serpentine-like rock sometimes appears to surround these calcareous masses.

The copper ore appears to occupy a position immediately near the isolated masses of limestone; and very little of it to penetrate into the serpentine-like rock or the slate. Indications of it occur on both sides of the calcareous masses and in some places can be traced as if surrounding them; but the chief part appears to be beneath tliem and intermediate between them and the slates and serpentine-like rock. The ore consists of the pyritous, rariegated and vitreous sulphurets of copper, the second species being the most abundant and the third more abundant than the first. The green carbonate also occurs, but it must be regarded as a secondary product formed at the surface and in cracks. The chief excavation has been made in a cross-cut running S. 45 E., which is at right angles to the strike: The depth excarated is from four to eight feet, and the follorring is the succession of masses mot with in the crosscut, given in a descending order and reduced to vertical thickness from horizontal measurement.

Feet.

Concealed
Limestonc in place, belonging to one of the isolated masses; small irregular spots of the pyritous sulphuret of copper occur in the rock; this is probably part of the same mass as the first three feet, and the concealed three feet would also be a part, making the whole 8 feet.
2. Variegated sulphuret of copper enclosing numerous angular fragments of limestone in irre- gular aggregations ; this mass dipped with the stratification, but thinned out and termi- nated downwards
3. Limestone broken into various sized angular fragments by a number of reticulating cracks of from one quarter of an inch to three inches in width, and filled with variegated sulphuret of copper, with spots of white crystalline calc spar and occasional crystals of transpa- rent quartz.
4. Breccia or conglomerate with a paste composed of variegated and vitreous sulphurcts of copper mingled with fine grained silicious matter, enclosing fragments of limestone, some angular and some rounded; some of them almost wholly calcareous and others largely silicious. The sulphurets of copper run in parallel clouded streaks, the clouded claracter being occasioned by the presence of more or less silicious matter mingled with the steel- grey and the purple of the tiro sulphurets. 4
5. Limestone 2
6. Copper breccia or conglomerate of the same characters as before 4
7. Limestone 3
8. Slate with traces of copper (green carbonate on the surface). 12
9. Serpentine-like rock 14
10. Slate with traces of copper (green carbonate on the surface) 4
11. Concealed to the limestone. 25

The thickness of fifteen feet given to the brecciated limestone of No. 3 is deduced from a horizontal measurement of ten yards across the strike and a supposed slope of thirty degrees, which is about the dip of the bed and of the strata Where it can be made out in the vicinity. But no clear indication of bedding is risible in the body of the breccia, and as the excavation across it is yet only two feet deept it may hereafter be proved that by some irregularity the slope is less than thirty degrees; in tha, case the thickness would have to be reduced in proportion to the diminution of the slope. If the slope should be eighteen degrees the thickness will be ten feet.

The two brecias or conglomerate beds numbered 4 and 6 contain the great body of the copper ore. On the strike these beds are exposed for about eight yards to the south-west. There is then
nearly the whole of the courses, and until it is completed it would be premature to pronounce any positive opinion upon the success of the enterprise.

The rock of the hill is such as has usually been called talcose slate ;but though unctuous to the touch, analyses by Mr. Hunt of slates of a similar character in other parts in the vicinity of Harvey's Hill, have shewn that instead of magnesian they are aluminous, and that they should rather be designated micaceous, or as he has called them from their lustre nacreous slates. They are in general whitish or light grey, and are often thickly studded with chloritoid. These slates are interstratified with bands of a darker color, more resembling clay slates, and the darker appears to prevail over the lighter color at the mouth of the adit. The dip of the strata appears to be from N. 10 W . to N. 65 W . with an average slope of between fifteen and nineteen degrees. The bearings of eight of the quartz courses are from N. 15 E . to N. 35 E . while one of them runs N. 75 W . They all underlie to the westward at angles varying from fifty to nearly nincty degrees, and it would thus appear that none of them coincide with the strata either in dip or strike.*
an interruption by the presence of a wall of the serpentine-like rock, which crosses the strike in the shape of a slender wedge coming to a point north-westwardly and gradually spreading out into the strata in an opposite direction. A farther quantity of copper conglomerate, however, exists on the opposite side of this wedge-shaped wall. The condition of the rock to the north-east of the cross-cut has not yet been sufficiently ascertained to give any description of it except from an excavation at the distance of about fort-five yards. Here a mass of ore has been mined for about troo fathoms on the strike, commencing with a breadth of nine feet, and irregularly diminishing to the northwestward. Beyond the excavation it appears to diminish farther and probably thins out. On the north-west side this mass was limited by limestone belonging to the line of isolated masses, and:on the south-east by a mass of the serpentine-like rock, the face of which stands in a nearly rertical attitude.

In costeening pits, which have been carried across the strike of the upper part of the ore, at distances of about eighty yards on one side of the cross-cut and 110 yards on the other, indications of ore continue to exist in the stains of green carbonate and small masses of the sulphurets, but the work done is not sufficient to give facts that bear upon the mode in which the ore is connected with the rock.

In so far as the facts ascertained by the present condition of the excavations enable an opinion to be formed, it appears to me probable that the copper ore mingled with silicions matter constitutes the paste of a breccia or conglomerate, the fragments of which have been accumulated in a depression in the surface of the argillaceous and silico-magnesian sediments forming the slates and their associated harder masses, while the sulphurets of copper have been deposited from springs bringing the metal in solution from some more ancient formation. The whole conditions of the case appears to bear a striking resemblance to those of the copper deposits of the Urals as described by Sir Roderick Murchison, except that in Russia the ores are carbonates instead of sulphurets.

However this may be, there is no doubt the mass of ore is a very important one; already, after but nine weeks work, not far from 300 tons have been housed, supposed to contain about thirty per cent: of pure metal. The value of this quantity would be about $\$ 45,000$, while exclusive of lordship, the mining expenses, and those necessary to carry the ore to a market, will be comparatively smanl. The quantity of ore excarated appears to have produced but a moderate impression on the total mass in sight.

Whether such another bunch of copper ore will be met with associated with the limestones it is impossible to say; but even should one exist, it would perbaps be too much to expect that it would be found immediately at the surface.

Many of the facts connected with the mode in which the copper ore of the conglomerate is related to the fragments, were ascertained by slitting a slab of the rock by means of a lapidary's wheel and polishing the surface. The same test has been applied to a block of the Upton conglomerate, and it is found that there is some analogy in the two cases, except that the Upton ore is altogether pyritous sulphuret, and much more thinly distributed among the fragments. While large blocks of the Acton conglomerategive thirty per cent and upwards of pure metal, the best blocks obtained by me from the conglomerate of D pton do not yield more than five per cent. But this if the quantity of rock with such a percentage were large and the masses not too widely scattered, would constitute a valuable mine. It would, horever, require a: careful crop trial to determine whether the quantity is available.

- On a recent visit to the Harvey's Hill mine, I was informed by Mr. Williams that after sinking on the incline N. SO $\mathrm{E},<750$, on Fremont's lode aear the top of the hill for forty-five feet, the underlie changed to $\mathrm{S} .80 \mathrm{~W} .=75^{\circ}$ and the shaft being then sunk rertically for serenty-five feet more, a bed of three inches, holding disscminated copper ore, was met with at the depth of twenty-fire feet, and

Mica.-In the area of my personal explorations, no addition were made to the three localities shewing economic quantities of thismineral, mentioned in the Report of 1S56, and allusion is made to the mineral on the present occasion for the purpose of stating that the exhibition of Canadian mica at Paris in 1855 , has induced nquiries in regard to it, on the part of Mr. E. Goddier, No. 34, Rue du Faubourg St. Martin, Paris, who has informed me by letter, that for the purpose of several applications of mica, for which he holds patents, he could use about
another of six inches of the same character fifteen feet farther down, the latter constituting the top of a six-feet bed of soapstone. In this an opening was made for thirty feet each way in the slope of the bed, which met Fremont's lode in the rise, and continued beyond it. At the bottom of the incline a level was driven in the bed for nearly thirty-two feet. The copper ore was continuous the whole of the distances, and may be said to hare thus been proved orer an area of nearly 2000 square feet in the plane of the bed.

The shaft being full of water at the time of my risit, I had not an opportunity of inspecting the work ; but descending another shaft ata distance of about ten chains from the last, in a direction which is nearly in the dip of the strata, I examined what there is little doubt must be another bed. This occurs at a denth of ninety feet from the surface, and allowing for the fall in the surface between the two shafts, its position would be very nearly twenty fathoms above the upper bed in Fremont's shaft. An opening has been made in the bed of about seventy feet in length by twelve feet in width, partially on the strike, but gradually turning un to the full rise of the strata. In this opening the thickness of the bed, as measured by myself, varies from nineteen to thirty inches. The rock is a nacreous slate, and the copper ore is distributed in the bed in patches generally of a lenticular form; they are usually thin, but sometimes attain from one half to three quarters of an inch in the thickest part, and occasionally present in the section, lines of six inches or eren a foot in length. These patches interlock, one overlapping another, with variable distances between, while many single crystals and small spots of ore are disseminated throughout the whole thickness. In some parts the prritous, and in others the variegated sulphuret prevails, and the quantity of metallic copper in the mass may range from about three to about five per cent. producing an arerage of about four per cent. The estimate however has been made by the eye and not by assays. Supposing the bed to arerage tro feet in thickness, a cubic foot to weigh 180 pounds, the produce to be five per cent. and one fffth of the copper to be lost in dressing the ore up to twenty per cent, then each square fathom of the bed would yield 1.10 tons of dressed ore of the above produce, the value of which in Swansea would be about $\$ 110$. If the produce were four per cent the ralue of a fathom would be $\$ 88$; if three per cent $\$ 66$. It is only by an experiment on a large quantity of ore in the way of dressing that the true produce of the bed can be determined.

The mode in which the copper ore is distributed in the nacreous slates of Lieeds, precisely resembles that in which it occurs in the bituminous slates of Germany, and it is only the circumstance that the facts known in connection with the Canadian deposits are yet too few to give entire confidence in the persistence of similar conditions over a great area; which should moderate the expectation of an important result. As the copper in the beds is probably contemporancous rith them; it would of course be antecedent to that associated with the courses of quartz, the fissures holding which, it is unnecessary to state must have been formed subsequent to the strata in which they occur. The copper in the courses was probably derived from that in the beds, and though the former, not only in Leeds, but in other parts may in many cases prove to be economically unavailable, it may yet be serviceable as an index to the position of available beds, and materially aid in their discovery. The copper-bearing quartz courses, from contrast of color, are much more conspienous than the copper-bearing beds, and though the latter from the undulations in the strata, might be brought to the surface in many places, they would not readily attract the eye, unless from marks connected with the strata more prominent than the copper ore itself, which at the surface will often have disappeared from the influence of weather. At Harvey's Hill the soapstone underiging the lower cupriferous bed, might prove a serviceable mark by which to trace the copper ore on the surface. The soapstone, known to crop out at a certain distance beyond Fremont's shaft, though its accompanying ore has not been there remarked, could in all probability be followed for a considerable distance on the strike, with very little difficulty. Should the cupriferous character of the upper part prove continuous, which appears to me rery likely, the existence of a valuable copper ore deposit might thus be established as probable at:a very small expense. Cupriferous beds would of course be subject to the accidents of dislocation affecting the strata in which they are enclosed. One of these appears to affect the Harvey Hill bed where the lower shaft intersects it. At this spot, the copper ore suddenly ceases, and a mass of quartz presents itself, cutting a part of the stratification in a nearly vertical direction, while a little to the eastward, the inclination of the copper-bearing bed suddenly-increases from nineteen to thirty-nine degrees. These circumstances combined appear to me to indicate a dislocation with a down-throw to the northward.

The discovery of copper ore, subordinate to the stratification of the magnesian group in Upton, Acton and Leeds, of which the last two instances, and perhaps the first, afford quantities economically available, invest the traces so widely spread in connection with this group in Eastern Canada, with more importance than they previously possessed. These traces are not confined to the more crystalline

12,000 pounds annually. He could afford to pay the following prices for it according to size.*

From 10 centimeters to 15 centimeters, 3.75 francs per kilogram.

15	6	to 20	6	4.50	6
20	6		5.25	6	$: 6$
25	6		6.00	6	$:$

Phosphate of linc.-This mineral was met with in small crystals disseminated in the limestone in several places in the district of the Rouge, but no where in sufficient abundance to be of economic avail. Mr. J. McMullan in explorations connected with the Laurentian limestones on the south side of the Ottawa, met with larger crystals disseminated in greater abundance and associated with purple fluor spar in the limestone of Ross, on the seventh lot of the first range. \dagger

Rensselacrite.-The application of this mineral as a refractory material and as serving other purposes was mentioned in the Report of 1856. No instances of i were met with on the Rouge, but Mr. R. Oatey of the Ramsay lead mine, has presented to the Museum specimens of it from the Laurentian limestones in the neighbourhood of that mine. \ddagger

Shell marl.-Fresh-water shell marl was met with in the bottom of Long or Eagle Nest lake, on the twenty-second lot of the eighth range of Wentworth, and in a pond on the fifth lot of the fourth range of Harrington. The quantity in both cases was considerable.

Pcat.-A swamp underlaid with peat was met with toward the front of the first and second lois of the fifith range of Harrington. It has an area of about sixty acres, and the depth of some parts having been tried was found to be twenty-five feet.

Marble.-On the eighteenth lot of the first range of Wentworth, exposures of white limestone were met with, a some what coarse-grained variety of which was spotted with green serpentine, in a manner similar to the marble which has been described in a former Report as obtained on the sisteenth lot of the third range of Grenville. The green spots however seemed to be more uniformly small than those of the Grenville rock, and produced a more pleasing effect.

Mr. Lowe has brought me specimens of a limestone from the twelfth and

[^16][^17]thirteenth lots of the Ste. Marguerite range of Mille Isles, in which spots and streaks of a red color are mingled with spots of green; a few thin patches of chert are present in one of the specimens. If sufficiently large blocks can be obtained free from the chert, it is probable they would yield a handsome variegated marble.

GEOLOGICAL MAP AND GENERAL REPORT.

The number of township, seigniory and railroad plans which it has been found necessary to copy and reduce in order to represent with truth the topographical features of the country as far as they have been surveyed, and the unavoiddable interruptions resulting from periodically recurring new field-work presented 10 the draughtsman for delineation, have delayed the completion of the geological nap which is in progress, much longer than was anticipated. This, however, will afford the opportunity of placing on the face of it a much more correct and conrected view of the relations of the Lower Silurian series of rocks in the eastern part ff the province than would otherwise have been possible. The delay has also enabled the palæontologist of the Survey to make a more extensive examination of the great accumulation of organic remains which hare been collected. In he course of this examination he has published in the Reports and Decades of the Survey, and in the scientific journals of the province, descriptions of upwards of 200 new species peculiarly marking the Canadian rocks, and descriptions of half as many more will shortly appear. With the present knowledge of our materials in this branch of the subject it appears as if it would scarcely have been judicious to publish before this a Report giving a condensed view of our results, in which our own discoveries in palæontology wouid have necessarily been left out, and in which the student in Canadian geology, in so far as this branch is concerned, would have been made to depend upon what bad been done everywhere else but in Canada.

I have the honor to be
Your Excellency's
Most obedient servant,
W. E. LOGAN.

REPORT

FOR THE YEAR 1858,

or
ALEX. MURRAY, Esq., ASSIST. PROVINCIAL GEOLOGIST,
ADDRESSED TO
SIR WILLIAM E. LOGAN, F.R.S., F.G.S.
PROVLICLAL GEOLOGIST.
Montreal, 1 st March, 1 S 59.
In continuance of the investigation commenced in 1857 I have been engaged during the last summer and autumn in following out the structure of the copper-bearing rocks on the north shore of Lake Huron, and have examined the portion of country lying between the valley of the Thessalon River and the lake
coast south of it, in addition to that between the valleys of the Thessalon and the Mississagui.

Much inconvenience was experienced, especially during the early part of the season, from the difficuliy of obtaining good canoe-men. This arose in conse quence of the unexpected removal from that part of the country of two gentlemen to whom I had addressed communications on the subject early in the spring. and on whom I had relied to hire men for me. I was thus compelled to employ such hands as happened to be out of work at the time of my arrival, and as none of them were disposed to engage for the whole season, it became necessary to make frequent changes in my crew, and finally to pay off the whole party earlie: than was originally intended.

While in the neighbourhood of the Bruce Mines, which I made my heac quarters during the earlier part of the season, I re-examined the whole coast from Point Thessalon to Portlock Harbour, making several excursions to the northwarc between the coast and Thessalon river, and completed a measurement of Walke: Creek, and Walker Lake, which is discharged by the creek into Portlock Harbor Subsequent to this I ascended the Thessalon, a measurement of which had beer: made in 1845 up to Desert or Thessalon Lake, the second sheet of water from the mouth; I surveyed a third expansion called by Mr. Salter, Rock Lake, as well as the stream connecting the two. The measurement of the main stream being then continued for a few miles above Rock Lake, I left the Thessalon to make an excursion north-westward from it, and join the work with that carried on from Echo Lake the previous season. Many excursions were also made from points on Lake Thessalon, and from the lower parts of the river, both by my assistant Mr. Johnston and myself, in the endeavor to trace as far as possible any well-marked band of the formation, by the aid of which to elucidate the arrangement of the whole series of rocks.

The latter part of the season was employed in examining the country and coast between the Thessalon and Mississagui, and in continuing the measurement of the latter river above the twenty-five miles which had been completed in 1848.

Geographical Characteristics.

It has been remarked in former Reports that the north coast of Lake Huron, in many parts picturesque, appears too rocky near the margin to be suited for agricultural settlement, though likely in time to become of importance to the province by the development of the metalliferous ores; which the geological formation of the region is known to contain. But while this description is applicable to the coast line and the margin of some of the rivers and larger lakes of the interior, it is by no means so to the country in general. On the contrary there are in many parts, especially in the valleys of the Thessalon and its tributaries, extensive tracts of the finest lands, covered with a luxuriantgrowth of hard wood interspersed with stately pine trees, probably equal in average size to any of the same species known in the province.

In the immediate veighbourhood of the Bruce and Wellington mines and thence to Porllock Harbour, the country is for the most part broken by low rocky ridges, the flat land between which is in general densely covered with thickets of spruce, balsam, or in marshy parts with tamaracks; but occasional patches display a stout growth of maple and white birch. In many parts the low grounds open out into extensive prairies or marshes, usually well covered with wild grass, and pretily dotted with clumps and little groves of small tamaracks or bushy spruce. The timber on the wooded flats is certainly not such as in general is supposed to indicate a very fertile soil, but much of the surface is
nevertheless susceptible of cultivation, and there can be little doubt that with successful mines to produce a market for surplus produce, farming to a considerable extent might be advantageously followed. Admirably adapled for grazing, the prairies might also supply an ample stock of winter fodder for catle, while nearly all the ordinary spring crops might be raised from the arable portions of the land.

The Thessalon River as heretofore stated empties into Lake Huron in latitude $46^{\circ} 16^{\prime} 2^{\prime \prime}$ N., and longitude $83^{\circ} 27^{\prime} 31^{\prime \prime}$ W. nearly. The upward course, independent of minor turns is a little westward of north for about nineteen miles, within which distance two lakes of considerable size are included, namely Otter-tail Lake between twelve and fourteen miles from the mouth, and Desert or Thessalon Lake at the termination of the distance formerly measured. Above Thessalon Lake the stream takes a northerly direction for about a mile and a half, and then turning easterly for another mile reaches Rock Lake. This lake stretches away to the southward until wilhin about-a mile and three quarters of the north shore of Otter-tail Lake, and between the two there is an Indian portage. The main stream falls into Rock Lake near its most northern part, and the general upward course is northerly for about a mile and a half, after which it-bears-northeasterly as far as we ascended.

Below Otter-tail Lake the navigation of the Thessalon is interrupted by two sets of rapids and two falls, the former severally about six and eight miles and the latter under nine and eleven miles from the mouth of the river. Excepting when the river is swollen by freshets, both of the rapids can be ascended and descended by canoes, but the falls of course require portages to be made. These rapids and falls constitute the only difficulties of navigation as far as we ascended, but I was informed by the Indians that farther up the river becomes very swift and turbulent.

The tributaries of the Thessalon are very numerous, but with the exception of the east branch, which joins the left side about three miles above the mouth, they are all very small, and navigable for only very short distances. Small trading ressels might ascend the Thessalon to the lowest rapid, and no doubt they will do so whenever the country becomes settled or the lumber trade introduced.

Much of the surrounding country is well qualified to sustain the operations of either the farmer or the lumber-man. On a line north-east from the lowest rapid there is a breadth of over four miles, which with the exception of the first fifty or sixty chains, presents either a dead levelor a very gently undulating surface, all of which supports a growth of heavy hard wood mixed with white pine, some of the latter measuring from twelve to fifteen feet in circumference. South-eastward of this line, and from one to two miles from the river, a precipitous broken ridge of quartzite and red jasper conglomerate breaks the continuity of the good land, but the ridge dies down farther on and the rich flat land reappears at the junction of the east branch. From this it appears to extend a considerable distance to the eastward in a belt parallel to the coast of Lake Huron.

The immediate shores of the surveyed lakes of the Thessalon are for the most part bold, rocky and barren, but there are many parts at no great distance from them, especially west of Thessalon Lake and north-westward of Rock Lake, where the land is of excellent quality. The country between Rock Lake and Echo Lake, is marked by a series of high and frequently precipitous parallel ridges ranging about W:N.W. and E.S.E. The valleys alternating with them are in some cases wide and extensive and in others contracted, but almost in every instance they are covered with a luxuriant vegetation of the finest maple, elm and birch, with occasional large sized white pines, and it is only in comparatively few places, where the ground is either swampy or subject to occasional
inundations, that tamarack and spruce prevail, while thickets of hemlock frequently fringe the edges of the more abrupt and precipitous ground. The region is spangled with numerous ponds and lakes, some of which are extremely picturesque, and each valley has a stream of excellent water, usually well stocked with speckled trout.

One of the lakes of this part, lying rather nearer to Echo than to Rock Lake was represented in the Report of 1557 as being one of the sources of Echo River. The upward course of this river instead of turaing south-eastward to this lake has been ascertained by Mr. Salter to turn north-eastward, and the outlet of the lake in question, which commences with a downward south-easterly course, is now supposed to maintain it to a junction with the stream connecting Rock and Thessalon Lakes, meeting it about a mile below the former.

The Mississagui joins Lake Huron about twenty-six miles to the eastward of the Thessalon in latitude $46^{\circ} 11^{\prime} 13^{\prime \prime} \mathrm{N}$. and longitude $52^{\circ} 55^{\prime \prime} 53^{\prime \prime}$ W. nearly. At the mouth it splits into a serics of channels forming a group of marshy islands: Through these channels the river is easily entered either from the east or from the west, and it is navigable up to the Hudson Bay Company's trading post for boats and small coasting vessels. The trading post stands at the union of the channels; immediately above it the current becomes pretty strong, and at the end of about a mile, in which the ascent is about north, the navigation is interrupted by a break in the river. This sometimes assumes the character of a fall, at others that of a rapid, its condition depending upon that of the great lake below. When visited in 1848 Lake Huron was considerably below its average height, and this part of the river displayed a fall of 3.3 feet; but on the occasion of my late visit, the lake being unusually high, the fall was reduced to a moderate rapid, and we ascended it without difficulty in our canoes by the aid of paddles. About half a mile north above the fall the upward bearing of the river turns westerly and makes a course nearly N. W. for about hirty miles, presenting however many minor turns in the distance. It then assumes a general bearing of N. N. E. for a little overfifteen miles, and afterwards N.W. for three or four miles more. Here our measurements ceased.

Many tributary streams fall into the Mississagui, but only two of them are of much importance or capable of being ascended in canoes. These are the Pakowagaming and the Little White River. The former joins on the right side about nine miles above the fall, and the latter on the left from fourteen to fifteen miles farther up. The former flows from a suit of fine lakes severally named by the Indians Wahbiquekobing, Wahbiquekobingsing and Pakowagaming. These stretch in a north-westerly direction somewhat parallel to the main stream for a distance of twelve or thirteen miles from their outlet into it, and the head of the largest of the lakes, Wahbiquekobing reaches to within fourand a half miles of the Thessalon River. The Little White River is a rapid and tortuous stream flowing from N.E. to S. W. as a general course, as far as we ascended it, which did not exceed from six to seven miles in a straight line.

The navigation of the Mississagui is rendered tedious by interruptions of heavy falls and violent rapids, together with a strong current prevailing for the whole length of its course from the highest part we reached. To illustrate this character, the following estimate of the rise of its channel is given in a tabular form, but being founded on observations by a clinometer level and rough guesses at the rate of the current, it must be regarded merely as an approximation to the truth.

Levels of the Mississagui River.

The river scenery of the Mississagui is for the most part very beautiful, and much of it, especially above the Grand Portage, is grand and imposing, There
is however but little land fit for cultivation and the timber generally is of inferior size and description. A considerable tract north of Lake Pakowagaming has a good soil, and there the Indians have opened up several small clearings; but it is south of the Lake Wabibiquekobingsing and between it and Lake Huron that the finest land was observed. This appears to be a continuation of the belt of good land running eastward from the east branch of the Thessalon, for I was given to understand from the Indians to whom it has been reserved, that the same character of soil is maintained more or less all the way.

Character and Distribution of the Rocis.
The order of succession in which the various rock masses were found in the area examined last season corresponds with the descriptions given of them as seen around Echo Lake in the Report of 1857. The close resemblance in mineral character of individual strata in one part of the series with strata in another, all equally destitute of organic remains to constitute a distinctive guide, and the frequent large intervals of ground wholly void of exposures, occasionally produce much embarrassment in attempting to identify masses widely apart: The band of limestone which was followed the previous year from Echo Lale is undoubtedly the best characterized feature of the whole series, and were it always exposed, the difficulty of making out the structure would be comparatively small; but its course appears usually to run in low swampy ground, in prairies or in lakes. It comes to the surface only in small irregular sections, often at long distances from one another, and it in consequence frequently becomes necessary to take what is ahove or below it as a guide. The position of the limestone band in the series is evidently near the base of the slate conglomerate masses. Slate conglomerate was the superior rock in every instance in which the next succeeding rock above the limestone was seen; it was generally also the rock below it; but the lower slate conglomerate appears sometimes to pass imperceptibly into a greenstone or to be replaced by one, and it sometimes has happened therefore, as at the Bruce Mines, that the limestone has been found resting on greenstone, without conglomerate perceptibly near. It was principally by tracing the slate conglomerates of the series, with the actual exposure of the limestone at intervals as a guide, that the conclusions stated in the present Report were arrived at, and the lines of stratigraphical division on the accompanying map were constructed.

But before proceeding to explain the distribution of the rock masses it will be proper to give an enumeration of them as they succeed one another. In the following list they are given in ascending order, with the nearest estimate I have been enabled to arrive at in respect to their thicknesses on the line selected for the representation of a vertical section.

1. Greenish chioritic red-meathering silicious slates; of these the thickness is tery doubtful 2000
2. White quartzite sometimes becoming a fine conglomerate with pebbles chiefly of White quartz; the beds are interstratifed with fine silicious slate, and divided by occasional intercalated masses of greenstone 1000
3. Slate conglomerate and greenstone, the conglomerate generally very coarse, the pebbles consisting chiefly of syenite and gneiss with occasionally some of red jasper 1280
4. Limestone 300
5. Slate conglomerate as before, but not so coarse, with interstratifed beds of red- dish or grey quartzite, and fine compact silicious slate sometimes marked by epidote, with intercalated masses of greenstonc. 3000
6. Red quartzite and greenstone 2300
7. Red jasper conglomerate, the matrix composed chiefly of white quartz sand and many of the pebbles of blood-red jasper ; it is interstratified with masses of greenstone 2150
8. White quartzite frequently of vitreous aspect, generally in massive beds, which are sometimes separated by thin silicious layers resembling chert, and interstratified with masses of greenstone
9. Yellowish chert in thin and very regular beds interstratified with layers of impure limestone, and green and pale drab very compact slaty layers, with a stratum of red and yellowish fine grained sandstone at the bottom......................
10. White quartzite frequently of vitrcous aspect, occasionally mottled with leadengrey patches.

The only difference between the preceding list of rock masses and that given in the Report of 1857, in so far as the latter reached in the ascending series, consists in the accidental portion of intercalated greenstone, and the thickness given to the masses. In the present list however there are added three numbers, $\mathrm{s}, 9$ and 10. Number 9 is the limestone of the Thessalon lakes, which it was suggested in the Report of 1857 might possibly be a continuation of the Echo Lake band, represented above by number 4. It will be found however by what follows, that from the physical structure of the area now examined, the Thessalon band must be much higher in the Huronian series than that of Echo Lake, and that it is not yet quite certain whether there may not be a third partially calcareous band still higher up.

In the investigation of the structure it appears to be one of the results of the season's work, that two main troughs exist in the Huronian rocks of the area in question, divided from one another by an anticlinal axis, which seems to run up the Mississagui for over twenty miles from its mouth, then leaving it to continue a course nearly north-west. These two troughs may be distinguished as the Thessalon and Mississagui troughs, and it will be convenient to consider them separately.

The Thessalon trough may be roughly described as extending transversely from the lower part of Echo River to some point beneath the unconformable fossiliferous rocks to the south-west. The longitudinal axis extends along the valley of the Thessalon from the lowest rapid to the south-west side of Thessalon Lake, and proceeds thence toward the St. Mary River between Little and Great George Lakes. It is divided into several subordinate parallel troughs, two of them arising from an anticlinal form, the axis of which was shown in the Report of 1857 to pass a little south of Echo Lake, and two more occasioned by a similar form at the Bruce Mines, to which allusion was also made.

Resuming the work of the previous year at the Bruce Mines, the band of limestone which was used as the index to the general structure was easily traced For about two miles west of the point near the French Islands, where it emerges from the water. It skirts the shore for rather more than half the distance and then bears off in a N.W. direction for the remainder, presenting a well-marked escarpment to the N. E. Here it suddenly breaks off and the ground beyond becomes swampy; but south of the supposed continuation of the band, the upper slate conglomerate is largely displayed. The lower part is seen resting on the limestone where the latter leaves the coast, and as it runs westward higher and higher beds come up from the lake upon the shore, until the mass assumes a breadth exceeding a mile, presenting irregular low broken but parallel ridges, generally showing small dips to the south or westward of south. Interstratified with the conglomerate are strong beds of pale reddish and grey quartzite, and layers of fine grained greenish-black and light olive-green silicious slates, some of which yield hones of a very fine description. The slates are well aisplayed on the eastern shore of Portlock Harbour and on the islands opposite, where it was observed that they were marked by epidote running both in streaks with the
layers and in strings across them; calc spar was observed investing small fissures and rents in the rock.

Proceeding along the east side of Portlock Harbour the dip appeared gradually to assume more westing, and on reaching its north-east corner it became nearly north, in which direction, some distance inland, a ridge of greenstone showed itself, beneath which the conglomerate appeared to sink. From the north-east corner of the harbour, the conglomerate bends eastward across the Hincks location, and the distribution thus indicated results from the effect of the Bruce Mines anticlinal.

How far the summit of the upper slate conglomerate may extend westward on the axis of the anticlinal is not yet quite certain, but from the facts ascertained by yourself along the strait between St. Joseph Island and the main land in 1848, it seems probable that it will not turn before reaching the western side of the Hart location, and that its southern slope, in addition to many of the smaller islands, will include rather more than the northern half of the Island of Campment d'Ours.

On the axis of the anticlinal across the Keating location, to the eastward of the supposed position of the limestone, the ground is low and swampy, and the rocks are altogether concealed, but on reaching the neighbourhood of the Wellington mine, near the line between the Keating and Cuthbertson locations, at the distance of fifty-five chains from the margin of Lake Huron, there is an exposure of the limestone which by its northern dip marks the north side of the anticlinal form. From this to the eastward the limestone rises to the surface in low irregular knolls, with flat and generally swampy land between, until reaching Cameron's lot on the Cuthbertson location. Here it shews itself pretty regularly for nearly a mile, striking on the average E. N. E., and dipping northerly from eighteen to $\mathfrak{t w e n t y}$-five degrees. Beyond this it runs into a swamp, and in its probable course there is a succession of swamps, prairies and marshes; but the rock appears on the line separating the Belanger and Delorme locations, about ninety-five chains south from the Thessalon River, striking in thedirection of the lower rapid, which is about four miles beyond.

Immediately north of the limestone band across the mining locations there appears in general to be a greater or less breadth of low swampy or prairie land without exposures; but beyond this the exposures were frequent, and wherever they were met with, they proved to be for a considerable breadth either the slate conglomerate, the quartzites and silicious slates associated with it, or masses of greenstone. On the line between the Keating and Cuthbertson locations as determined by yourself in 1848 , the slate conglomerate and its associated beds occupy a breadth exceeding two miles, and their breadth appears to be undiminished farther to the east on the Starnes location, until approaching to within a short distance of the north-east corner. Here the rock displays a dip north, but following on the strike it suddenly ceases and is replaced by a white quartzite with a dip S. $20 \mathrm{~W} .<30^{\circ}$, from beneath which on the Thessalon about a quarter of a mile to the northward there rises a set of thin yellowish chert beds, interstratified with layers of impure limestone. These chert beds in their strike follow the bearing of the river to the immediate vicinity of the upper fall, the rock of which seems to be the white quartzite above them. The slate conglomerate, from the position where it displays the northern dip on the Starnes location, can be traced at intervals until it comes upon the river at a turn on the Belanger location below the fall, and to the position where the line between the Belanger and Delorme locations intersects the river; but in each successive exposure the rock breaks off obliquely to the strike, the dip remaining north, and the beds displayed occupy a lower and a lower place in the vertical section. At the intersection of the
boundary line and the river the distance from the underlying limestone as has been said does not much exceed a mile. The same phenomena continue to the rapid below the lower fall at the eastern boundary of the Delorme location, where the distance from the underlying limestone would notexceed half a mile; while on the opposite side of the river, a succession of white quartzite beds approaches the stream with a dip to the S. W., the two different rocks on the opposite sides apparently coming up to one another in the shape of a \mathbf{V}. The only explanation of such an arrangement is in the existence of a fault or dislocation running up the stream.

Between the exposures of limestone on the opposite sides of the anticlinal on the Keating and Cuthbertson locations, the rock seen is chiefly greenstone, and it is in cracks which occur in it on the crown of the anticlinal, that are found the copper ores of the Bruce and Wellington mines. The lower conglomerate however with which this greenstone is associated, is seen in several parts of these locations close beneath the limestone or the north side of the anticlinal, and in the same relation beneath the exposure of the limestone on the line of division between the Belanger and Delorme locations. In all of these places its breadth is inconsiderable and in all of them it is followed by great masses of greenstone. A larger exhibition of the conglomerate rock however is met with on the south side of the anticlinal in the Palladeau Islands, the whole of which with the exception of the southern half of the largest one (where we meet with quartzite, are composed of this rock. The conglomerate of the Palladeau Islands is occasionally of very coarse material, being a mass of rounded boulders of syenite, gneiss and other crystalline rocks, among which red jaspers are not uncommon, the whole cemented together by a coarse greenish silicious paste. The Palladeau rock is no doubt an inferior part of the lower slate conglomerate, which the greenstone of the Bruce mine either replaces or overlies. In its extension to the eastward on the north side of the anticlinal the masses belonging to this division of the series are supposed 10 occupy the breadih of about a mile.

At a point in the bay between the Bruce mine and Eagle Point, beds of white quartzite, in parts becoming slightly conglomerate by the presence of small pebbles chiefly of white quartz, pass below the greenstone of the mine, dipping northward, and the east coast of the bay farther south displays similar measures interstratified with greenstone, shewing a moderate westerly dip on the axis of the anticlinal arch. Rocks of a similarcharacter compose the coast opposite the Palladeau Islands with a southerly dip, as they do the rest of the coast eastward to the boundary between the two Ferrier locations, with a northerly dip, the axis of the anticlinal running between. The islands in front of those two locations consist of the same rock, and northward on the line between them exposures of the same character were met with for a mile and a half from the coast.

An island about three quarters of a mile outside of the Palladeau group is composed of the same quartzite. The dip of the strata is northward at a very moderate angle; and as the quartzite on the south side of the largest of the Palladeau islands dips northward, though at so high an angle as to seem almost perpendicular, (to which the conglomerate in contact conforms,) a synclinal axis must run through the conglomerate of this island of the Palladeau group.

Thessalon Point is composed of detrital matter up to the mouth of the river, but the coast a short distance to the east of the river consists of green chloritic slates, which weather red in some parts. The strata are so much disturbed that it is difficult to determine the dip, but the position of the rock in relation to those which have been previously described leads to the supposition that it comes from beneath them, thus constituting the lowest division of the series.

Immediately north of the upper slate conglomerate and its associated strata,
on a small stream on the east side of the Desbarats location there was met with an exposure of red quartzite with a moderate dip northward, and the rock was visible at intervals for a breadth across the stratification of about a quarter of a mile. West of this on Walker Creek and-the south part of Walker Lake other exposures of a similar rock occurred, which were supposed to succeed the previous beds; and these, interstratified with occasional masses of greenstone, occupied a breadth of about threc quarters of a mile, the dip being much the same as before. This division of the series was not followed eastward, but between what was considered the position of the slate conglomerate and the base of the succeeding division (the red jasper conglomerates,) there always appeared to be sufficient space for the red quartzites.

The interstratified greenstone of this division near the exit of Walker Lake is intersected by a white quartz vein holding copper pyrites. The breadth of the lode is about two feet, but the copper ore is rather thinly disseminated in it; the bearing of the lode is about east. A mass of greenstone is met with towards the north termination of the dividing line between the Hincks and Keating locations, and a corresponding one on the dividing line between the Keating and Cuthbertson locations. Both masses are supposed to hold the same stratigraphical place among the red quartzites as the greenstone of Walker Lake, and a copper lode intersects the rock in each of the localities. On the west side of the Keating location the lode is about two feet wide; the vein-stone is white quartz and it holds a promising quantity of copper pyrites. On the east side of the location the lode is pretty much of the same character, and itseems probable that the three instances are exhibitions on one and the same lode, the extreme distance between them being eight miles.

The red jasper conglomerate rocks overlying the red quartzite are displayed in great furce on the north side of Walker Lake. They are here interstratified with occasional beds of greenstone, and occupy a breadth of about a mile and three quarters, which is greater than their breadth to the eastward. The dips which they display are moderate, seldom exceeding ten or fifteen degrees, but as often happens, in such cases, the bearings of the dips are somewhat variable, ranging from about north in some places, to nearly west in others. This division was not traced farther westward than Walker Lake on the south side of the Thessalon; but its full breadth was traversed on one of Mr. Salter's side lines about four miles to the eastward. On this line the base of the division occurred in a small bay in the south-east corner of a moderately large sheet of water about three miles from Lake Thessalon, and what was considered the summit was met with not far from the outlet at the southern extremity of a smallerlake, the position being about a mile and a half from the shore of Lake Thessalon, thus giving a mile and a half as the breadth of the division in this part. The beds here, as near Walker Lake, are interstratified with occasional masses of greenstone, and the dip which is about norlh, shews a somewhat higher inclination than near that lake, being between twenty and thirty degrees, and in one instance towards the summit, where there was perhaps some disturbance, so much as seventy degrees were observed. The strike of the beds would carry the summit of the division, in a distance of two miles, and the base in one of four miles, to the flank of a hill overlooking Otter-tail Lakc. This flank however being covered with soil shewed no exposure of rock. Coming down on the lake however, we met with a continuation of the white quartzites and cherty limestones mentioned as occurring lower down the Thessalon, dipping as before south-westward, and proving a continuance of the dislocation to which allusion has been made.

North of the red jasper conglomerates a set of white quartzites succeed. On Salter's side-line the space which they would occupy measures aboutfifty chains; but in this part the only exposures seen were about a mile to the west of the side.
line, where an escarpment of from 100 to 200 feet rose above a prairie. The rock was very white and vitreous, with a uniformity of aspect that made it very difficult to distinguish what might be joints from beds. The dip was in consequence not very satisfactorily made out, but such evidences as were obtained appeared to indicate that the inclination was not less than forty-five degrees, and towards the north, the run of the escarpment shewing that the strike was a little north of west. From the escarpment exposures of the same character were met with at intervals on a north line for a distance somewhat under half a mile, when they terminated in an escarpment of thin yellowish chert beds with a dip N. 19 E. $<18^{\circ}$. The exposures on this line include the chief part of this division, but there is probably some portion wanting at the base, which was not any where seen on the south side of the Thessalon.

The yellowish chert beds were well displayed on Salter's side-line, dipping eastward of north at an angle of eighteen degrees, and maintaining this inclination across a breadth of about quarter of a mile. The beds of chert were interstratified with liard calcareous layers and beds of silicious slate, and they formed a ridge with low ground on both sides. To the eastward the ridge died down at no great distance into the low land which limits the south side of Thessalon Lake, but to the westward it was followed two miles in a nearly due west course, after which the bearing of the band seemed gradually to turn about north-west, which it maintained for two miles more, obliquely crossing in that distance the outlet of a small lake which is tributary to Walker Lake, and including more than the southern half of the small lake itself. From this lake it turned again nearly west, in which bearing it was followed for about another mile. Along this course the dip of the beds gradually diminishes, and the breadth of the band increases until it measures about balf a mile, with a dip not far removed from horizontality on the souh, not over eight degrees about half-way across, but suddenly increasing to forly-five degrees where it disappears on the north, plunging beneath a mass of quartzite with the same dip. Where the examination of the chert ridge ceased there was a dingle of about two chains in width to the south of it, beyond which the underlying white quartzites rose into a pretty bold hill. This appeared io run for some distance to the westward, and from it the water of Great George Lake could be well seen about nine miles off, there occurring no land north of the white quartzite ridge high enough to interrupt the view. The intermediate ground however still remains to be investigated.

Chert beds very similar in aspect to those just described are met with on the north-east side of the small lake which is tributary to Walker Lake. Between those and the nearest approach to the previous beds there is a distance of no more than a quarter of a mile. They dip to the south-west with a slope of thiry-five degrees, and they might well be supposed to be the same beds as before on the opposite side of a synclinal axis. There is some suspicion however, as will be seen from the sequel, that they are higher strata on the north side of a great downthrow fault:

These beds in the attitude above mentioned are seen along the north-east side of the lake for a distance of a quarter of a mile; they are followed northward by a mass of greenstone, and that again by a great display of white quartzite, both running parallel with the chert beds. Three quarters of a mile south-eastward chert beds again appear, dipping to the south-west, with greenstone coming out from beneath them and in this relation they can be traced for two miles to the southeast. Here the chert beds are within eight chains of the south-west corner of Thessalon Lake and the greenstone lies between them and the margin. This position is about half a mile from Salter's side-line, but the farther progress of the chert beds towards the side-line appears to be interrupted by a mass of white quartzite.

The low ground on Salter's side-line, mentioned as occurring to the north of the chert ridge first described, forms a hollow of a few chains in width, beyond which the mass of white quartzite just alluded to rises pretty sharply, constituting a hill which fills the space between the hollow and the lake, with the exception of a narrow mass of greenstone at the water's edge, and overlooks the low ground on the south margin of Lake Thessalon to the east.

On this low ground there is an interval of marsh, but beyond the marsh there is a point about half a mile above the outlet of the lake, where the strata make their appearance. They consist of yellowish chert interstratified with impure limestone, and they dip S. $37 \mathrm{~W} .<19^{\circ}$. The band is about a quarter of a mile wide, and it can be traced without much difficulty in a pretty straight line for upwards of eight miles down the river to the higher fall, dipping in the same direction and nearly at the same inclination the whole way. In this course the band obliquely crosses in succession the terminal edges of all the divisions which have been described on the south-east side of the river to the middle of the upper slate conglomerate, its relation to which has already been pointed out.

At the point which has been mentioned on the south side above the exit of Thessalon Lake, 'the chert band proceeding north-westward enters the lake, but some uncertainty exists as to the position at which it leaves it. On the north. east side of the peninsula of Otter-tail Lake, there is at the base of the chert band a bed of a red and yellowish fine grained sandstone. A similar bed is seen at the upper end of Thessalon Lake with a bed of yellowish chert resting on it, and it is probably here that the band again enters upon the land ; but the dip at the spot is irregular, and the band has not been traced beyond it. There is no doubt from the sequence of the rocks beneath the band that it is equivalent to the one overlying the white quartzite on Salter's side-line, and should it on farther investigation be found to continue westward from the upper end of Thessalon Lake, then the south-west-dipping chert band which faces the first described one, would necessarily occupy a higher stratigraphical place, and would prove the continuance of the fault which no doubt reaches Salter's side-line. The extent of this downthrow is not quite certain, but it appears to me it cannot be less than 1500 feet at this part.

The rock which would lie between these two chert bands is seen in a hill forming a point north of the south-west corner of Thessalon Lake. It occupies three quarters of a mile across the stratification and consists of white quartzite: A dip of eighteen degrees would give to this a thickness of nearly 1500 feet, to which if 200 feet be added for the upper chert band the dislocation would appear to approach even 1700 feet on Salter's side-line.

The downthrow however, if the dislocation result from a vertical movement, must be progressively much greater to the south-east, for the chert band terminating near the upper fall against the middle of the upper slate conglomerate, would there shew a displacement equal to the whole volume of strata between, which according to the thicknesses given in the list of strata would be 9,320 feet additional, or upwards of 11,000 feet.

Having thus shewn the distribution of the various divisions of the Huronian series on the south side of the Thessalon trough in ascending order, I shall now proceed to describe their distribution on the north side in an opposite order.

On the north-east side of Thessalon and Otter-tail Lakes the white quartzites underlying the lower chert band are displayed in a bold ridge which separates these two lakes with their connecting stream from Rock Lake. These quartzites are wellseen on the Indian portage between the latter and Otter-tail Lake, where, as on the south side of the Thessalon, they are interstratified with greenstone. Their breadth in this neighbourhood is upwards of a mile, and their average dip
nearly south-west, wiith a slope of about twenty-five degrees. The hills which they lorm continue down on the left side of the river, gradually approaching nearer to it below the upper fall, and at the lower fall the ridge occupies a breadth of about half a mile with low land on the north-east side of it. At the upper rapid the base of the white quartzites is about thirty-five chains from the stream, immediately beyond which the beds begin to shew blood-red jasper pebbles. At the lower rapid the red jaspers are a little farther back. The white quartzites in front of them shew leaden-grey patches, but farther on in the strike the ridge dies down, and the surface becoming low extends into a great cedar swamp.

This swamp is situated on the east Ferrier location, where the Thessalon begins to take a more southerly course for Lake Huron. From the river it has the breadth of about a mile, and on the north side of the swamp there rises to the height of 100 or 150 feet a well marked hill, which has a breadth of nearly a mile. The bill consists of strong beds of red jasper conglomerate interstratified with
 the division near the lower rapid has already been mentioned, and the traverse from the river at this place did not extend beyond it. On the traverse from the lower fall, the ground north-eastward of the white quartzite was flat for a considcrable distance, and showed no red jasper conglomerate in place, but where it was to be expected there occurred a great number of large angular blocks of the rock.

The next exhibition of the division examined was on Rock Lake. Here the summit of the division strikes upon the lake in its south eastern bay, whence it runs parallel with the Thessalon, forming the promontories of the south-west side of the lake, leaving the bights of the bays for the white quartzite. From the southwestern bay the trend of the summit is to that turn in the stream discharging Rock Liake, where its course changes from about west to about south. The upper part of the division is much mixed with greenstone, and an exemplification of the interstratification is seen on the island of the south-east bay, where the dip is westward of south with a slope of twenty degrees. In the middle part of the division there is a great mass of greenstone seen in conspicuous promontories on opposite sides of the lake, while the rocks on the opposite sides of the outlet present a section of the lower part. Here the beds, dipping to the south-westward, present a pretty regular slope of forty degrees, and unless some unperceived dislocation in the bed of the river occasion a repetition of strata, this part alone must measure nearly 1500 feet.

Between the exposures of red jasper conglomerate on the stream connecting Rock and Thessalon Lakes, and those met with in my exploration from Echo Lake, the distance is about three miles. From the latter lake the division comes upon a lake mentioned in the Report of 1857 as tributary to the lower part of Echo River. The rock appears to occupy upwards of a mile on the northern part of this lake, the base reaching the northern extremity. Masses of greenstone are interstratified with the other beds, and the whole seem to turn southward across the lake, probably folding over the axis of the anticlinal which was ascertained to affect the limestone band to the west of Echo Lake. The strata again turn westward and have been traced for about a mile and a half from the lake in that direction. The strike would apparently bring them out to the flat land bordering the lower half of that part of Echo River which discharges Echo Lake, but the nearest exposures seen are two or three miles from its bank.

The red quartzites which underlie the red jasper conglomerates have not been recognized as yet on Echo Lake. They might be expected on the lower part of the lake and the upper half of its discharging stream, but this space is occupied by great masses of greenstone in which copper lodes are known to exist,
and perhaps it may be worthy of remark that this copper bearing greenstone has here the same relation in stratigraphical place, as the greenstone holding copper veins on Walker Lake and in the rear of the Cuthbertson location. The red quartzites are seen on the north shore of Rock Lake, where pale brownish flesh-red and pale and dark grey beds of a somewhat granular character are interstratified with one another, and sometimes present ripple-marks on their surface. Masses of greenstone are often intercalated, those toward the summit being of considerable thickness. The dip,-which is south-westward, varies from twenty eight to fifty-five degreesininclination, and the breadth assigned to all that belongs to the division is about a mile. On the traverse from the lower fall of the Thessalon the red quartzites were met with a little under three miles from the river, near a small lake on the western Ferrier location. Some of the beds were of a light brownish flesh-red and others grey, and greenstone was interstratified with them. The dip of the strata was S. S. W. $<23^{\circ}$. The exposures spread over a transverse distance of about half a mile, but as the land both in front and rear of them was flat and the rock was concealed, it is not probable that the whole breadih of the division comes to the surface. Beyond this to the south-east this division was seen no more. It was searched for north of the red jasper conglomerate on the east Ferrier location, brit the lani being flat presented no exposures whatsoever.

The upper aid lower slate conglomerates with the limestone band between them on the north side of the Thessalon trough, were so necessary as guides to one another ial tracing them out on the surface, that it will be convenient to describe them together.

In the Report of 1857 all the facts known in respect to the distribution of the lower limestone band on the west side of Echo River were given in considerable detail. The upper slate conglomerate follows the limestone in a belt having a breadth of from one half to three quarters of a mile, and presenting nearly the same sinuosities of outline. In the upper part of this belt there is here a more than usual amount of pale and dark grey quartzite, which however is supposed to belong to the slate conglomerate group, from the occasional occurrence of beds similar to these in the lower part of this group elsewhere. In the Report of 1858 on page 26, there is a diagram representing a vertical section running north-eastward from the upper end of Great Lake George, in which under the several letters l, g, and h are given, upper slate conglomerate, fine grained black and grey quartzites, and whitish and grey quartzites. All these are now supposed to belong to the division No. 5 of the present Report. In the tabular list of rocks on page 24 of the Report of 1857, the division No. 6 is described from exposures on the east side of Echo River, and it was supposed that the whitish or whitish-grey quartzites there mentioned were equivalent in part to the whitish and grey quartzites, h of the diagram.: It is now however considered that the former are higher in the series, and that the red quartzites No. 6 of the present Report come in between. These red quarizites have not yet been seen on the west side of Echo River, the only rock met with there above what is now included in No. 7 being greenstone.

The Report for 1857 gave all the details known of the limestone for ten miles south-eastward of Echo Lake, to a position about half a mile from the small lake then supposed to be the head of Echo River, but now known to be tributary to the Thessalon. The supposed position of the limestone in this part was indicated by: the presence of loose angular blocks of the rock. Characteristic exposures of the slate conglomerate rock occurred both north and south of the position, with interstratified quartzile and greenstone. To the south the breadth is three quarters of a mile, which is precisely the breadth which the rock shows south of the limestone on the east shore of Echo Lake, where it is well displayed; so that the
breadth may be considered pretty uniform the whole way. Between the rock on Echo Lake and the most western exposures of the red jasper conglomerates, there is a distance of two miles in a due south bearing. In this space rise up the great masses of greenstone already mentioned as holding copper lodes. One of the masses with a breadth of half a mile extends three miles and a half east and west, terminated westwardly in a great bluff; round the extremity of this the summit of the slate conglomerate appears to bend to the south-eastward, proceeding to its position southward of the small lake tributary to the Thessalon. Between the summit of the slate conglomerate at this place and the base of the red jasper conglomerates the distance is about thirty-five chains, and in this space the red quartzites are supposed to be represented by some reddish-grey and dark grey beds of this description of rock.

Two miles in a direction a little south of east from the supposed position of the limestone in this part, we meet with Mr. Salter's side-line, and about a quarler of a mile beyond it the limestone band is seenin place, dipping S. $25 \mathrm{E} \ll 37^{\circ}$. From this the limestone was not again seen in place to the eastward, and it became necessary to depend on the slate conglomerate in the endeavour to trace out farther its probable course.

From Mr. Salter's side-line the strike of the slate conglomerate appeared to be rery regular all the way to the Thessalon, the distance being about four miles and the bearing about S.S.E. The position 10 which this would carry the limestone band on the river, is about a quarter of a mile below the turn which the upward course of the river takes to the eastward within a short distance from the end of my measurements. Alhough there was no limestone seen here, there was nothing to contradict its possible presence beneath the high clay banks between which the river makes its way. Considerable masses of greenstone rose up immediately north of the position, along the foot of which there was a clay-covered depression, and across the measures to the south-westward the slate conglomerate with its associated masses was spread out for a mile and a quarter, leaving upwards of three quarters of a mile beyond, between them and the red jasper conglomerates, for the red quarizites.

On the east side of the river, about a mile farther in about the same strike, slate conglomerate is associated with greenstone on the northward side of the place assigned to the limestone band, and the same breadth and description of rock as before extends to the southward. The same breadth is in front of it half a mile still farther on the strike, and in this place the summit of the slate conglomerate reaches to the margin of the north-eastern bay of Rock Lake where the dip, is S. $33 \mathrm{~W}<350$. For about three miles beyond this the strike appears to turn slightly more south, but the supposed position of the limestone, which would be somewhat over two miles and a quarter east of the north-eastern bay of Rock Lake, has the same relation to the slate conglomerate as before. An east line from the bay would cross the measures obliquely, and on it the summit of the slate conglomerate was met with about thirty chains from the lake.

Between this position and the next at which the slate conglomerates were examined, there occurs an interval of six miles on the strike. The exposures connected with it were reached by the traverse from the lower rapid of the Thessalon. The distance across the measures from the nearest of these exposures to the base of the red jasper conglomerates wouid be about two miles. But though there appears to be a diminution in the inclination of the strata over a considerable area in this neighbourhood, the distance is considered too great to be filled up by the red quartzites alone, which as already stated are concealed in the interval. It is therefore supposed probable that a portion of the slate conglomerates is also covered up, and the place of the summit of the division might be indicated as half a mile farther south than the exposures.

From this position the slate conglomerate was traced for about five miles on the strike to the west end of Wahbiquekobing Lake. In this distance it presented low flat hills and shewed a dip somewhat to the west of south seldom exceeding ten or fifteen degrees in inclination. If the summit has been correctly indicated above, the formation would have a breadth of over two miles. At that distance it ivas every where limited by a great and continuous mass of greenstone, which extends in a nearly straight line from the north-west bay of lake Wahbiquekobing for six miles, while the north side of the lake presents a continuation of the same mass for seven miles more in an opposite direction. The greenstone was thus found to continue in a straight line without an interruption for thirteen miles, the bearing being about $\mathrm{S} .20^{\circ} \mathrm{E}$. At the west end of the lake this rock was found to extend two miles northward on Mr. Salter's side-line, and southward it composed nearly all the west end of the lake to the bight of the south-west bay. From the bight of the north-west bay however, a narrow valley, commencing south of the brook which enters at the corner, runs westward in front of the continuous range of greenstone. The depression at the end of a mile comes upon a small lake which discharges into the south-west bay. Towards the east end of this lake, slate conglomerate, dipping south at a small angle, was overlaid with greenstone. The depression from the north-west bay was covered with clay, which may be underlaid with slate conglomerate.

With the exception of a long tongue-like promontory about a mile below the portage to Lake Wahbiquekobingsing, and the drift-covered bays on each side of the promontory, the whole of the south side of Lake Wahbiquekobing consists of slate conglomerate, in some parts nearly flat, and in others dipping southward at an angle seldom exceeding six degrees; so also does the north-east side of Lake Wahbiquekobingsing, as far to the south-east as a promontory cutting the lake nearly in two about a mile above the portage. The promontories on both lakes are greenstone, and a ridge inland appears to connect them. Slate conglomerate probably composes also the north-eastern shore of Lake Pakowagaming for upwards of two miles above the exit, being seen at both ends of the distance, dipping to the south at the south-eastern end at an angle of five degrees. It seems probable also that it will extend over the area between this part of Lake Pakowagaming and the west end of Lake Walibiquekobing, for it lies along the shore of the west end uninterruptedly as far as the porlage to the Mississagui from the most eastern bay. The next promontory north is composed of greenstone ; the next bay shews strata belonging to the slate conglomerate; while the coast from the succeeding point to the portage at the north-east corner of the lake, and for half a mile farthei is greenstone; but a narrow strip of slate conglomerate skirls the shore for balf a mile farther, coming against the greenstone which has been mentioned as running along the north shore.

This greenstone in a narrower mass than it presents on the north-eastert shore, seems in its continuation to outflank the slate conglomerate of the west end of the lake. It occupies the north portage all the way to the Mississagui, and the south one to within a quarter of a mile of the river. It constitutes mountain masses two miles to the east of south, and reaching Lake Pakowagaming it is seen in a wide and moderately bold promontory, the point of which is under a mile and a half above the outlet, but a cape which forms the southern horn of a cove three quarters of a mile further up the lake, consists of nearly horizontal beds of grey and pale reddish quartzite, which is supposed to belong to the slate conglomerate division, and to indicate that this is the farthest eastern extension of itbelonging to the Thessalon trough.

Opposite the greenstone promontory on the north-eastern side of Pakowagaming there is a square bluff of the same rock standing conspicuously out
between two bays on the other side of the lake. The next point abovc this is also composed of greenstone, which is the rock of the shore for a mile farther. Above this, opposite a small island, the only one of the lake, the rock is again slate conglomerate; but instead of displaying the nearly horizontal attitude of the formation on the opposite side of the lake, the strata are here disturbed and corrugated, and plunge under the water with a dip N. $23 \mathrm{E}<$ from 56° to 60°. With a strike corresponding to this dip, the front of the mass gradually separates from the shore of the lake, and is traceable in a well marked ridge for two miles, leaving between the foot of the hill and the margin to the west end of the lake, a flat land in which there are no exposures.

An attempt to separate the upper from the lower slate conglomerate in this part, and thereby fix the position of the lower limestone band, has presented great difficulties, and I have been obliged to content myself with çoosing a line of division, in regard to which I have met with nothing to contradict its possibility rather than much to support its probability. The only masses of limestone here met with were loose angular blocks, which occurred in some abundance near the westend of the north portage from Lake Wabbiquekobing to the Mississagui; but these may be derived from some more northern exposure of the band. To the south however of the greenstone promontory which cuts Lake Wahbiquekobingsing nearly in tivo, there is on the east side of the lake a breccia consisting of fragments of greenstone cemented together by a calcareous paste, while veins and cracks in the rocks both of quartzite and greenstone on both sides of the lake were filled with cale spar. A rock of a some what similar character to this breccia was observed on Lake Wahnapitaeping in 1856, and described in the Report of that year at page 177. The calcareous paste in it however bore a much larger proportion to the fragments than in the breccia of Wahbiquekobingsing. If this breccia indicates the true position of the limestone band, the band probably enters Lake Wahbiquekobing at the south-west bay and passes along the lake to the east side of the tongue-like promontory of quartzite mentioned on the south side, thence crossing the land to Lake Wahbiquekobingsing.

At the south-east end of Lake Pakowagaming there are red quartzies, slates and other rocks of the Huronian age, whose place in the series is yet uncertain, but they are all twisted, highly tilted northward or vertical, and on the south-west side of the lake for two miles up in the bights of the bays and in positions behind the greenstone points and promontories, there are exposures of well characterized massive gneiss. The same rock fornis the south side of Lake Wahbiquekobingsing, and the fact that these positions are not much out of the direct line of the great dislocation of the Thessalon valley makes if very probable that we have here an exhibition of a portion of the Laurentian series, brought up against the Huronian from a great depth. On the coast of Lake Huron four miles south of Wahbiquekobingsing, there are exposures of greiss, and these continue along the coast for twelve miles to the eastward. Great masses of intrusive greenstone are also seen along this line, and dykes emanating from them are often found cutting the gneiss. How the gneiss is related to the chloritic slates near the mouth of the Thessalon has not yet been ascertained.

From beneath the greenstone which outflanks the slate conglomerates of the east end of Lake Wahbiquekobing there appears to emerge a group of strata consisting of fine dark olive-gray or grayish-black slates weathering some what brown, associated with reddish-grey, brownish-grey or reddish-brown quartzites. The slates are very thin bedded and often breal into rather regular rhomboidal forms. The quartzites appear to have disseminated through them in many places very minute grains or cubes of ron pyrites, and they occasionally present pebbly layers, giving them the characters of fine conglomerates. The slates and
quartzites are interstratified, the slates predominating at the bottom, and the quartzites at the top. These strata come upon the Mississagui, on which exposures of them exist from a position about a mile below the mouth of the Pakowagaming to the second fall, being that immediately above the southern portage to Lake Wahbiquekobing, and from the north portage to the mouth of the Little White River. On that part of the Missisagui which is between the two portages the prevailing rock is greenstone.

The dips of these rocks present slopes in opposite directions from the general upward course of the river, as far as a turn northward occurring about half-way between the north portage above mentioned and the Little White River. The angles of inclination are usually small, shewing a rather flat anticlinal arch with a sballow saddle-shaped depression between the two portages, over which the greenstone passes from one side to the other. Near the mouth of the Pakowagaming however there are some corrugations and sharp opposite dips in the slate, but these are probably local and may not extend far on each side.

Along the crown of this anticlinal arch there were met with several veins holding more or less copper pyrites; their courses were parallel with the axis of the anticlinal. Near the mouth of the Pakowagaming they intersected the slates, and consisted of calc spar in which both copper and iron pyrites were observed. At the south portage the gangue of a vein cutting quartzite and holding copper pyrites was quartz and bitter spar. A vein of from one to two feet in width met with at the north portage intersected greenstone; the vein-stone was quartz in which both iron and copper pyrites were disseminated. Though the quantity of copper ore disseminated in these veins was small, yet as the veins occurred incracks on the crown of an anticlinal where dislocations may be expected, they are deemed worthy of notice, as they may become of more importance in their farther prolongation.

With what division the slates and quartzites which come from beneath the greenstones on the anticlinal of the Mississagui should be classed, is not yet quite certain; nor am I able in respect to the structure of the area through which the riverflows, to do more than give some isolated facts to be connected at some future time after further exploration.

From the north portage the greenstone which there crosses the Mississagui runs up the valley of the river in two pretty bold flanks which separate as they proceed; that on the eastside bears a few degrees west of north to the Little White River; that on the west about north-west for about two miles and a half, when it comes to the valley of a tributary joining the Mississagui on the right side near the bend half way to the Little White River. Here the flank of the hill is about half a mile west of the bend, and while greenstone composes the top, the slates and quartzites come from beneath it at the bottom, the dip being apparently W. S. W. at a very small angle. The flank continues on the north side from the valley of the tributary and comes close upon the right bank of the Mississagui under two miles above the Little White River. Here again the slate and quartzite come from beneath the greenstone. They also come from beneath the greenstone of the Little. White River, about three quarters of a mile below its mouth.

Greenstone is the rock of the Litlle White River all the way to the first fall, which is two miles up. About four miles due east from the mouth of the Little White River a band of limestone was met with dipping S.E. $<$ from 5° to 8°; it was overlaid by slate conglomerate and underlaid by quartzite. About a mile and three quarters west of north from this on the bank of the Little White River there occurred a farther indication of the band, with a dip only a litlle east of north, and here it was again associated with slate conglomerate.

If this band of limestone be considered equivalent to the lower one of the Thessalon trough, then the strata between it and the greenslone at the fall lower down the stream would come in the place of the lower slate conglomerate. In this part of the stream there are several good exposures of strata, and though some of them resemble the beds of the lower slate conglomerate in character, others as much resemble beds of the red jasper conglomerate. Although red jasper pebbles have been occasionally met with in the slate conglomerates of ihe Thessalon, white quartzite containing them never has. White quartz pebbles however, are occasionally by no means deficient, and it would not be surprising therefore that the finer part of the rock should take the form of white quartz sand. Though the dips in this part of the Little White River are irregular, none of them present higher angles of inclination than might result from gentle undulations, and from the dips prevailing near the greenstone, it is evident the congiomerates sink beneath it. It thus seems probable that the conglomerates on the one side of the greenstones of the Little White River belong to the same division as the slates and quartzites cn the other. It would follow that the slates and quartzites of the Mississagui are equivalent to the lower slate conglomerates on Wahbiquekobing Lake and that both underlie the intermediate greenstones.

From the mouth of the Little White River the greenstone ridge on the left bank of the Mississagui continues its northward bearing in a pretty straight line to the vicinity of the Grand Porlage. At the Grand Portage the channel of the river, whose ordinary breadth is from sixty to eighty yards, suddenly becomes contracted to eight or ten yards, with vertical banks rising to the height of seventy or eighty feet, and through this the water rushes in a torrent for nearly a mile and a half. This deep cut is through greenstone all the way. At the lower end of the portage this greenstone has a breadth of nearly a mile on the left side of the river, forming a hill of 300 or 400 feet in height; beyond the foot of this to the north-east the re extends-a level country, which for another mile and a quarter is underlaid with slate conglomerate, fine green slate and quartzite in a nearly horizontal attitude; the dip is northward, and does not appear to exceed three or four degrees in inclination. The greenstone probably overlies these beds.

The hill of greerstone appears to extend up the river on the left side to Salter's side-line, which is some three miles above the portage. A corresponding ridge, but not so high, extends along the opposite bank of the river. On the west side of the portage it forms a plain about 100 feet above the river for a moderate breadth and then gradually falls to the south-west; but about half a mile above the head of the portage, and not quite half a mile from the river, it presents a hill of about 300 feet high, while the part intermediate between it and the river, and a small strip on the opposite side with a height of not more than thirty feet above the river, have an even surface underlaid with slate conglomerate in a nearly horizontal attitude. Similar strips of slate conglomerate on opposite sides of the stream are seen near Salter's side-line, dipping at moderate angles in several directions, but horizontal on the average. South of the river on Salter's side-line there are two sinall lakes, one a mile and the other three miles distant. Betveen the river and the first lake, with the exception of slates and quartzite on the margin of the river, the space is flled with greenstone. Between the two lakes the rock is slate conglomerate in a horizontal attitude, and it is probable that the same horizontal slate conglomerate extends to the greenstone of Wahbiquelobing Lake as it does to the foot of the greenstone hill at the head of the Grand Portage.

The same arrangement of greenstone and slate conglomerate continues for some few miles farther on the river to the eighth fall, in latitude $46^{\circ} 30^{\prime} \mathrm{N}$. Beyond
this there is a change in the character of the rocks, and what appear to be red syenite, red granite and occasionally red gneiss (all associated with greenstone) prevail on the more immediate banks of the river as far as surveyed, with the exception of slate conglomerate, which comes in on the left bank about a mile in continuation of Salter's side-line beyond his base line. This conglomerate appears at intervals for two miles up the stream with a dip northward at a moderate angle. The lowest exposure seems to approach close upon the gueiss on the opposite side of the stream. The facts ascertained in regard to these apparently older rocks being wholly confined to the banks of the river, their relations are not yet understood.

At both ends of the Grand Portage and along the portage path, as well as at Salter's side-line, indications of copper ore were met with in quartz veins intersecting the greenstone and slate conglomerate. The bearings of those near the portage coincide with the bearing of the deep straight narrow chasm through which the river here makes its way. The chasm is not far removed from them and may possibly mark the position of another vein, though nothing was observed to confirm the supposition. A list is given at the end of the Report of all the lo. calities where traces of copper ore were met with on the Mississagui, and though the quantity of the ore does not in the case of any of the veins appear very encouraging they may become the means of leading to the discovery of veins of a more promising character in the neighbourhood:*.

The examination of the area connected with the Mississagui has not yet been sufficiently extended to determine the relation between the copper-bearing veins of the Grand Portage and the physical form to which they are subordinate. The veins of the lower part of the river are evidently related to the anticlinal existing there. Those of the south part of Echo Lake also belong to an anticlinal; so do those of the Bruce and Wellington mines; and it would almost appear as if the importance of the metalliferous indications rose with the sharpness of the fold. But whatever be the cause of the dislocations in which metalliferous minerals are secreted, it would seem to be a probable supposition that in a metalliferous district the greater the dislocations the greater the chances of valuable metalliferous lodes. If this be the case, the great dislocation of the valley of the Thessalon would become invested with much importance. But though there is no doubt whatever that it is a master fault, it would I fear be a somewhat expensive affair to prove or disprove that it is a master lode, for although the proximate position of it has been more or less examined for upwards of fifty miles, never in any place have I been so fortunate as to find the rocks on the opposite sides of the fault in juxtaposition. On arriving at the spot where the junction was expected there ivas always a swamp, a marsh, prairie, river, lake, or some flat surface covered over with drift. The only mode of proving the matter would be by costeening, and it is probable that the thickness of the covering would cause this to be attended with much outlay.

DRIFT.

A deposit of clay usually of a brownish-drab color is spread over a large portion of the region examined. This clay occupies the lower part of the hollows and valleys, and was exposed occasionally in considerable thickness on the banks of the streams. On the Thessalon and Mississagui it was observed to be distinctly stratified, and frequently to contain calcareous concretionary nodules of various shapes and sizes. Near the top of some of the highest sections of clay;

[^18]such as are seen on the Mississagui and Little White Biver, inin seams of yellowish sand becone interstratified, and the whole mass is overlaid with sand of a similar character higher up the main stream. The sand extends far and wide over the highest table lands and 2 : great part of the country generally, concealing the clay beneath, except in ravines and the banks of rivers, where the action of the water has made sections.

The clays on the banks of the Litle White River were observed at several places to be tijted; just below the first fall on that stream the dip was N.W. 25°. About three miles above the fall, where the bank is from seventy to eighty feet high, the lower fify of which were clay, the strata were again tilted in the same direction as before and at about the same angle. One bed of the clay about a foot thick was observed to be curiously corrugated, while those above and below were perfectly even and regular. This corrugated bed and its associated strata were exposed for no more than thirty feet, the face of the section on each side and above being concealed by clay and sand which had fallen from above, mingled with a few small boulders. The debris presented a talus on each side of the exposed strata, the surface of which shetwed a slope of about forty-five degrees. The cliff faced south-east, and the section of the folds in the corrugated bed induced the opinion that their axes were at right angles to the strike of the general mass or nearly so. In your Report for $1844-5$, p. 32, you mention an analogous case in the limestone and shale of Cape Bon Ami near Cape Rosier, where the corrugated bed was traced for upward of a mile.

The clay deposits of the Mississagui and Litle White River do not appear to attain a height of much more than 160 feet over Lake Huron, or 738 feet above the sea. That is the greatest height found on the banks of the tributary, whilst on the main stream above the lead of the Grand Portage, the height of which I have given as 732 feet, the clay is replaced by a great accumulation of sand and gravel, the gravel becoming coarser and more prevalent as we ascend the river. On the banks and flats above Salter's base-line, where the height is 830 feet above the sea, the shingle consists of rounded masses almost all of syenite, the smallest of which is rarely under the size of a man's fist and the average as large as a twelve-pound cannon ball. Many of the masses are much larger, and in addition there are a great number of huge boulders.

Between Wahbiquekobingsing and Lake Huron there is a remarkable piece of table land, about a mile wide from north to south, which stretches to the east and west, rudely parallel with the shore of Lake Huron It rises by abrupt banks of from eighty to one bundred feet over the flats on either side, which may be between thirty and forty feet above the lake, making the table land about 700 feetabove the sea. One of the banks faces Lake Huron, which is from wo to three miles distant, the other Lake Pakowagaming. The sides and upper edges of the banks expose coarse gravel at intervals, but the upper surface, which is Hat is covered with a good loamy soil, growing timber of mixed hardwood and evergreens. No running streams were observed on this table land, although there was abundance of water on either side. From these circumstances it appears probable that the whole of the upper part is of loose material such as gravel and sand, and that it is supported on clay, from above which the surface water, percolating through the looser material, issues on to the flat below.

Glacial grooves and scratches were observed on the smooth rounded faces of the solid rock at many parts of the coast of Lake Huron, in the valley of the Thessalon and in the lower part of Mississagui. The following is a list of such as were registered, with their bearings:

[^19]3. North of Walker Lake in a shallow depression on the top of a hill and from 200 to 300 feet over the lake which is very little higher than Lake Huron; the valley of Walker River discharges the lake in front of this shallow depression and has the same general bearing as the grooves
S. 17 W
4. Right side of Thessalon River a short distance above Rock Lake in the general bearing of the valley of the river for several miles above
S. 25 W.
5. West and south sides of Rock Lake. There is higli land in the direction of these grooves to the southward
S. 15 W.

7. North side and cast ond of the larger castern Jsland of the Palladeau group, in three places
S. $15=W$
3. Entrance of the Thessalon River, cast side... 18 W.
10. North-west end of Wahbiquekobingsing Lake .

12. South-west shore of Pakowagaming Lake a mile from the south east end.................... S. 25 W.
13. Coast of Lake Huron, nine miles west of the Mississagui.

15. Right side of the Mississagui below the first fall.. S. 12 W.
16. Right side of the Mississagui a mile and a half above the mouth of the Pakowagaming. S. 10 W.

The effect, of recently moving ice was noticed in a few instances on the Mississagui River north of Salter's base-line, where the coarse shingle was loose ly piled up into great conical heaps. The accumulations were usually at a turn in the river where there was a strong current above. The ice brought down with violence and impinging on the side at the turn appeared to have ploughed up the shingle and pushed it forward on to the bank. One of these heaps was estimated to be about ten feet high at the apex, with a diameter at the base of from forty to fifty feet; it rested on closer packed material of the same kind, which also formed the bed and the margin of of the stream in the neighbourhood.

I have the honor to be, sir, Your most obedient servant,

A. MURRAY.

REPORT

OF

MR. JAMES RICHARDSON, EXPLORER,

ADDRESSED TO
SIR WILLIAM E. LOGAN, F. R. asd G. S.
PROFINCIAL GEOLOGIST.

Montreal, 1st March 1859.

Sir,
In the month of May last you were pleased to direct me to prosecute a geological examination of the Gaspe peninsula in entinuation of the previous season's investigation, and to carry' the work to a connection with that of yourself and Mr. Murray inthe years 1843-4-5 and 1849 at Cape Ste. Anne on the one hand and Rivière du Loup on the other, as well as to follow out a line of research across the peninsula from some such point on this part of the St. Lawrence as I might deem expedient, to the Restigouche and Bay of Chaleur.

Leaving Montreal on the 13th May in company with Mr. R. Bell, I reached Riviere du Loup on the 16 h . We here landed our camping materials with a small quantity of provisions, and forwarded the bulk of what was intended for
the work of the season, to Rimouski, to be placed under the charge of Mr. J. B. St Laurent of thal place.

The first part of our season's operations was an examination of the country between Rivière du Loup and Ste. Anne des Monts. In this, removing forward our camping materials from point to point by means of carts, we required the aid of but one permanently hired hand. The whole distance, 176 miles, was measared by pacing, the measurements being made along the shore and along the roads running parallel with it, as well as along occasional transverse lines extending from ten to twenty miles into the interior. Being provided with Bayfield's charts of the St. Lawrence, our distances were checked by means of them, when practicable, at the end ofevery two or three miles, and every day's work was registered on a map in our tent at night, care being taken to introduce in its proper place every rock met with, together with its dip and strike. We reached Ste. Anne des Monts on the 23rd of June, and continued our measurements in the same manner for thirty miles more along the coast, terminating this part of our work at a point seven miles below the Marsouin River.

Hiring two Indians at Ste. Anne, we ascended the Ste. Anne River in a canoe for thirty-two miles to the junction of the north branch with the main stream. Here, leaving the canoe, a pedestrian measurement was made for twenty miles south-eastward over the Mount Albert of Mr. Murray, to within six miles of that part of the Great Cascapedia, (tributary to the Bay Chaleur,) which is south from a hill called in your Keport for 1844-5, the Barn-shaped Mountain. This mountain we visited on our route back. Returning to Ste. Anne, another transverse measurement was made up the valley of the Marsouin River for twelve miles in a bearing $S .12$ W. which was continued in a bearing S. 45 E. for about ten miles more to the top of the high mountains that rise between the Ste. Anne and the Magdalen Rivers. Returning from this, we kept a nearly straight line to a point on our southward line within a mile and a half of the mouth of the Marsouin, in a general bearing a few degrees west of north. On this return line, after leaving the higher ground, our route was up the valley of a stream which flows southward to the main north branch of the Ste. Anne, and then along a tributary of the Marsouin (called by us Henley's Brook) which runs in a course opposite to that of the previous stream, but in the same depression.

After this, procuring a boat at the Marsouin we ascended the coast to the Great Metis River, reaching it on the 14th August. Here, hiring a third Indian and another canoe, we made a portage to Lake Matapedia, measuring the road by pacing, and registering on our map, as in all other parts, the various bands of rock which crossed our path. We descended the Matapedia in our canoe, and from ihe mouth of it, made an excursion to Dalhousie for the purpose of obtaining a vollection of fossils required to determine the age of the rocks in the vicinity, on both sides of the Restigouche.

At the mouth of the Matapedia, I obtained through the obliging kindness of Messrs. Daniel and Alexander Fraser, a good plan of the Restigouche for fiftyfour miles from its mouth, which, in connection with the valuable information regarding the interior of the country, derived from those gentlemen, saved me nuch time. The distance especially examined on the Restigouche was about thirty-six miles, extending from the mouth of the Matapedia to that of the Patapedia.

Having determined to return across the Peninsula by this stream, and possessing no map of it, a measurement of the river was made for about thirty-one and a quarter miles to a tributary called the Awaganasees or Pass Brook, the bearings being determined by prismatic compass, and the distances by Rochon's micrometer telescope. The Awaganasees was measured for about nine miles and
a quarter more, and from this, a portage of three-quarters of a mile brought us to the head of the lakes of the Metis. These lakes, three in number, and the River Metis were measured in the same way to the junction of their waters with the St. Lawrence, the distance being fifty-one miles and a half.

We reached the mouth of the Metis on the 2 Sth of September, and subsequent to this various measurements and examinations were made in the townships of Macpes and Duquesne in the rear of Rimouski, and in those of Denonville, Viger, and Whitworth in the rear of Trois Pistoles, Cacouna and Riviere du Loup, as well as in various parts as far up as the Seigniory of St. Denis.

After my return to Montreal on the 14th of November, an excursion was made to the Thousand Islands in the neighboarhood of Gananoque to continue certain partial explorations made in 1855-56, but further examinations will lave to be made in that neighbourhood before the facts connected with the rocks of those islands can be satisfactorily combined.

Geographical Characteristics.

Valley of the Marsouin and neighbourhood.

The Marsouin falls into the St. Lawrence nearly thirly-hree miles below Cape Chat. Where it meets the highest tides, which is about balf a mile up from the open gulf, the stream is about one chain wide, and there is at the mouth of the river a lagoon behind a barrier of sand which runs out from a rocky point on the west side of a not very deep bay. The lagoon forms a very good harbour for fishermen's boats and such small schooners as can effect an entrance in moderate weather, but a small rocky island, and the narrowness of the channel render the entrance dangerous at other times.

The hills near the mouth of the river are not more than from 20010400 feet in height, and their crests appear to run parallel with the coast; but a few miles in. land, they become lofty and their run appears to be about north and south. At about six miles from the coast, between the main trunk of the Marsouin and Henley's Brook, they were estimated to rise to the height of from 2500 to 3000 feet, while east of Henley's Brook and west of the Marsouin they do not attain 2500 feet. In a shallow depression on the ridge between the Marsouin and the north branch of the Ste. Anne, the height was supposed to be about 2600 feet, and two streams belonging to this branch crossed on our south-east line in a mile and a half keyond this, were respectively about 270 and 310 feet lower.

The first of these two streams takes its rise in the depression already mentioned, which is four miles to the north-east. Its source is a pond about a quarter of a mile in diameter, which is immediately followed by two small lakes, each three-quarters of a mile long by a quarter of a mile wide. The second, which is the larger and the main stream of the north branch, takes its rise about two miles to the south-east of these lakes, in a sheet of water which is a mile and a half long by half a mile wide.

A mile and a half beyond these streams, we reached the summit, which was estimated at about 3500 feet above the sea. It displays a narrow ridge running west for two miles between the north branch and another of its tributaries, and then rapidly falling toward their junction; but in an opposite direction the ridge sweeps round to the south with a breadih not exceeding a quarter of a mile, flanked on either side by a narrow ravine sinking precipitously 800 or 1000 feet. Continuing southwardly for about a mile, the ridge widens out and meets the equally high surfaces coming from the opposite side of the ravines. This increased breadh constitutes a sort of table land of some two or three miles wide, ex-
tending southwardly for about eleven miles, to the summit over-looking the valley of what was last season called the middle branch of the Magdalen. With the exception of one point, the inequalities of this table land scarcely exceed 100 or 200 feet, and they are chiefly due to a somewhat raised rim which occupies each side of the top. The rim however is broken through by various gaps, permitting the escape of the water which collects in the central depression.

The point just referred to is situa: d on the eastern rim about four miles from the north end of the teble, and it © nstitutes a peak which attains a height estimated to be about 4000 feet above the level of the sea. It is this part of the mountain to which Mr. Murray alludes in the Report of 1845 and 1846 (p. 104) as interrupting his view from Mount Albert on the west side of the Ste. Anne River. Mr. Murray ascertained by barometrical measurement that Mount Albert is 3778 feet over the sea, and this height has been taken as a standard by which to compare the heights of the varions summits that could be seen from it, so that it is partly by this aid that the elevations here given have been computed.

The waters collected in the central depression are discharged partly into the Ste. Anne and partly into the Magdalen from a multitude of small lakes or ponds. The most northern group of these consists of thirteen sheets of water, none of them exceeding fifty acres in superficies. They spangle an area of about three square miles and unite in a stream, which running northward, falls into the ravine on the esst side of the narrow ridge at the north end of the table top. These are tributary to the north branch of the Ste. Anne. A little south of these, there is a group of five ponds occupying an area of two square miles, of which the discharging stream flows eastward round the south side of the peak, and another group of two, whose outlet joins the previous stream at the east base of the mountain. The united waters of hese brooks flow northeast ward and then southward, being what in the Report of last season, was termed the northern branch of the Magdalen. About five miles southivard of the peak there is a group of seven or eight more lakes and ponds scattered over an area of about the same number of square miles. The brook resulting from these flows first to the westward, but turning south within the western rim, gradually winds farther round, and flows eastward through a profound gorge as the middle branch of the Magdalen.

The western flank of this table-topped mountain stands at the distance of about four miles east of the junction of the north branch with the main stream of the Ste. Anne. The base is about four miles wide, and ts eastern flank in its progress southward comes to within about four and a half or five miles of the junction of the north, south and middle branches of the Magdalen, being the point reached by the measurements of 1557.

The central depression of the top might be supposed to be continued in a pretty straight course along the line which we kept in returning to the mouth of the Marsouin, and approaching the coast to be represented by Henley's Brook; the whole mounta:n being thus continued north. But as the table-topped mountain is composed of intrusive rock, while the mass between the north branch of the Ste. Anne and the coast, is sedimentary, with an east and west strike, the north and south-ridge-like character of the latter must be only an accident arising from transverse valleys, the position of which give the sedimentary rocks the semblance of being a prolongation of the unstratified mass.

The bearing of the central depression on the intrusive hill, is about S.S.E., and the whole mountain mass has the same bearing. The mass is continued beyond the gorge of the middle branch for six miles, making the whole length about eighteen miles. These six miles, however, do not display summits of such great height as the general surface of the table land, none of them being estimated to exceed 3000 feet. The southem part separates the Ste. Anne from the
south branch of the Magdalen ; but from a bulge toward the Ste. Anne on the western flank and the occurrence of a bare mountain mass on the east side of the stream of the same general aspect, it is supposed that the intrusive rockmay cross the stream at the spot. The whole intrusive mass occupies an area of about seventy-two square miles, the greater part of which is bare rock.

What was considered to be the south limit of the unstratified mass was determined by a bearing from the Barn-shaped Mountain, and by another bearing from it, the position of the supposed igneous rock on the east side of the Ste. Anne, was ascertained to be in a line between the Barn-shaped Mountain and the profound gorge which gives egress to the middle branch of the Magdalen from the table top. The Barn-shaped Mountain as conjectured in your report of 1844, was also found to be composed of igneous rock.

In the depression of the table land and in some of the gorges, especially near the ponds, moss has accumulated to a thickness of from one to three feet, supporting spruce trees growing widely apart and from fifteen to twenty feet high. The greatest diameters of the stems vary from eight to twelve inches, and the stems preserve a very uniform measure to within a few feet of the top. These trees are very ancient and very hard; their wood taking a high polish might be valuable to cabinet makers if it were more accessible. In a stem of four inches in diameter I counted 161 rings of growth, and the largest seen I computed to be 600 years old. Under these trees, various grasses and small flowering plants, all of the most lively green, are met with. In various parts of the central depression patches of snow still lay many feet deep, on the 1st of August; and through its agency, were brought together plants just springing up from the ground, and others of the same kind in blossom only a few yards removed. Between the table land and the coast, around the small lakes at the head of the north tributary of the north branch of the Sie.Anne, spruce and balsam stand in clumps widely apart, while the surface is wet and the open spaces are covered with short wiry grass. The upper part of the Marsouin and the valley of Henley's Brook afford a thin soil, supporting balsam-fir, spruce and some white birch; but in the valley of the main stream, for six miles up from its mouth, good land prevails. There are probably from fifteen to twenty square miles of excellent agricultural soil, which at present supports a heavy growth of maple and birch, with some spruce and balsam intermixed.

Coast between Marsouin and Great Metis Rivers.

From the Marsouin to within three miles of the Ste. Anne, the coast is generally bold, the heights within half a mile of the shore, attaining from 300 to 1000 feet above the sea. At the mouths of some of the streams, considerable areas of good land exist, with maple and birch, and I was informed that the less elevated grounds some distance inland, displayed many patches of excellent soil, supporting a heavy growth of maple, birch and spruce.

From three miles below the Ste. Anne to Cape Chat, there is a distance of fifteen miles. It was stated in your report of 1844, and in Mr. Murray's of 1845, that there was here a considerable area of land fit for cultivation near the shore, which is rather low. The whole distance is now occupied by settlers, and back from the shore for two or three miles I observed clearings in the woods, on the sides of the hills, giving excellent crops of oats, barley, potatoes and timothy grass.

From the Chat to Cape Whale, between twenty-six and twenty-seven miles, the coast is generally bold and rugged, and but rew settlers are as yet met with; but a new government road is now in course of construction under the superintendance of Mr. Dugald Fraser, who notwithstanding the dificulties
of the ground has succeeded in laying out the road. This will not only afford a means of communication with the fine settlements already made al Cape Chat and Ste. Anne, but encourage the establishment of farms on the good lands along the route; of these at the time of my visit, people from the different parishes above, were availing themselves rapidly.

From Cape Whale to the Great Metis River, the coast is in no place much elevated, with the exception of a few points from two to three miles inland connected with ridges running parallel with the St. Lawrence, none of these appear to exceed from 500 to 600 feet above the sea, as far back as probably ten or twelve miles, and in the neighbourhood of the Tartigo River, even as far back as Lake Matapedia. Settlements are more or less established all along the coast, being continuous on approaching Matanne, and in some places between Matanne and Metis penetrating as far back as from two to four miles.

On the road from Metis to Matapedia the settlements may reach ten miles back, and although the country on this road appears to rise a little higher than it does some distance to the north-eastward, no part of it that I observed would much exceed 750 feet, with the exception of a ridge south-west of the road about ten miles from Metis. The height of this ridge is probably not under 1000 feet. It runs parallel with the other ridges met with on the road, their general bearing being from N. 32 E. to N. 30 E., and it presents a sharp rocky summit with bare rock on the north side. South of Matapedia Lake however, and as far as the Restigoucbe River, the principal hills, often attaining the height of 1000 or 1200 feet, and occasionally shewing rocky escarpments running for a few miles on one side or the other, appeared rather to stand up as detached masses, than to preserve any great degree of parallelism as ridges.

Except on some of the highest points, the whole of this country, from Metis to the Restigouche, for a distance of more than seventy miles in a straight line, may be said to possess a rich agricultural soil. At the head of Lake Matapedia, which is about 480 feet above the sea, Mr. Pierre Boucher has a large cleared farm, and his son has another at the outlet. On the latter, I saw a field with an excellent crop of barley ready for harvesting on the 18th of August; and both farms presented good crops of oats, potatoes and timothy grass. Thirteen miles below the lake, at the mouth of the Capscoult (a considerable tributary of the Matapedia, Mr. Noble has about fifty acres in cultivation ; the crops growing on them at the time of my visit I have seldom seen surpassed. They consisted of oats, barley, pease, potatoes, turnips and timothy grass. In their thick strong stems, and long branching heavy loaded ears, and the closeness with which the stalks stood upon the ground, the oats resembled more what is met with in a field in England than what I have usually seen in Canada. A large area of land in this neighbourhood has been denuded of its forest by fire, and much of it is of the same description as that occupied by Mr. Noble, requiring little more than ploughing to render the natural fertility of the soil available.

At the junction of the Matapedia with the Restigouche the land, except on the highest parts, which may be 800 or 1000 feet above the sea, has a soil of the richest description, and well cultivated farms are met with on the banks of both rivers. The farms on the Matapedia extend about four miles up the stream. Mr. Daniel Fraser, at the mouth of the Matapedia, feeds from seventy to a hundred head of cattle and from 150 to 200 sheep, which as well as those of his neighbours are large and unusually well conditioned. In this neighbourhood and farther down towards the Bay Chaleur, a large number of cattle and sheep are annually raised, but the want of a favorable outlet to a market naturally keeps down the value of farm produce. A government road is now being constructed in a most solid manner, and at low grades, under the superintendence of Mr. J. B. Lefebvre, from
the Bay Chaleur along the east bank of the Matapedia to Matapedia Lake, and thence to some point of the SL Lawrence. This road, in addition to affording a means to the settlement of the country across the peninsula, may become of great advantage to the farming community of the Restigouche, as well as to the inhabitants of Quebec, for with steam communication up the St. Lawrence from some point near Rimouski, Quebec might be benefited by an additional supply of cattle and sheep, as well as by the establishment of a general commercial intercourse with the Restigouche scarcely now existing.

The Restigouche River to the Mouth of the Patapedia.

About eight miles below the Matapedia the Restigouche meets the tide and there are about two miles more to the head of the Bay Chaleur. For several miles above the bay the river is from a mile to half a mile wide, and it is thickly set with low islands forming good meadow land. Above this to the Matapedia, the breadih becomes contracted 10 less than half a mile, and in some places, a considerable current prevails. From the Matapedia to the Patapedia the distance in a straight line is a little over twenty-one miles, in a bearing about S .65 W .; but following the windings of the river, the distance given by the boundary commissioncrs is thirty-seven miles. About seven miles above the Matapedia, at a great bend to the right, a large tributary joins on the New Brunswick side. It is called the Upsalquitch and is five chains wide at the mouth. About six miles higher up a tributary not more than ten feet across, called the Brandy Brook, joins on the Canada side, and while the distance by water from the Matapedia is thus thirteen miles, it is only six and a half miles over land. Above this, several other conspicuous bends occur; the bow at Cross Point, which is the most remarkable, is thirty-one miles above the Matapedia by the river. In this curve, the distance by water is two miles, while across the land it appears to be not much over a hundred yards.

As far up as Brandy Brook the hills stand somewhat back from the river, and rise with gently sloping sides, well covered with soil, to the height of from 300 to 500 feet. Within a short distance of this both sides of the river are settled, but farther up the hills come close upon the river and often rise upabruptly to heights of from 400 to 600 feet. It is thus only on flats at intervals of several miles that sites can be obtained for settlement on its banks. The sides of the hills in this part appear to be thinly covered with soil, but farther back the land is said to be capable of cullivation. Above the Patapedia the Restigouche is wholly within the province of New Brunswick. At its mouth the Patapedia is six chains wide, including a small island dividing it into two channels, but above this the breadth does not exceed about fifty yards.

Patapedia and Great Metis Rivers.

According to my measurements the whole of the distance from the month of the Patapedia on the Restigouche to the mouth of the Great Metis on the St. Lawrence, following the curves of the rivers, is 91 miles, 51 chains and 90 links; while the distance between the same two points reduced to a straight liye would be 64 miles. The distance in a straight line between the same two points as deduced from the survey of the Boundary Commissioners on the Restigouche, and that of Bayfield on the St. Lawrence, would be 64 miles, 8 chains.

The distance measured on the Patapedia and its tributary the Awaganasees or Pass Brook, was 40 miles, 19 chains, 52 links. The first main stretch of the valley in an upward bearing N. 61 W. is a little over twelve miles, while by the
water it is a little over fifteen miles and a quarter. The aspect of the river and its banks varies but little the whole way. In the lower half the hills rise irregularly to from 100 to 400 feet, generally close upon the river, but sometimes from 100 to 300 paces back, and where intermediate flats occur they produce ash, elm, yellow birch, spruce and poplar, while the slopes are covered with white birch, spruce and balsam, with a few white pines. Except on the flats the soil appears to be in many instances adapted for pasture only. The upper half resembles the lower, except in that the bills gain a little in height, and support more white pine. It is probable, however, that the greater part of the white pine has already been carried away from both parts by those engaged in the timber trade. I observed a few heads of timothy grass growing on the edge of the river, the seeds of which had probably been carried there by the lumber-men ; the stalks measured fifty-five inches in height; The largest tributary brook seen in this part of the river is sixteen feet wide at the mouth; it falls in on the east or Canada side, seven miles and a quarter from the Restigouche.

The second upward stretch of the valley in a straight line N. 8 E. is a little over seven miles and three quarters; by the bends of the river the distance is upwards of thiiteen miles. A little over a mile and a balf up, a tributary called Pollard's Brook joins on the right side ; a short distance above its mouth it is seventy links wide. About four miles and a half above Pollard's Brook we reach the forty-eighth parallel of latitude, on which the boundary line between Canada and New Brunswick is continued to the westward from the river. The spot is marked by an iron monument on the right bank, numbered 59 . The measured distance by the river from the post numbered 60 at the mouth, is 22 miles, 16 chains, 94 links, and the distance reduced to a straight line is 15 miles, 11 chains. The distance as deduced from the measurements of the Boundary Commissioners is 15 miles, 17 chains ; a little below the forty-eighth parallel a brook, measuring about twelve feet across, comes in on the right bank, and about seven miles above the parallel, there is at the end of this general bearing another tributary stream; it is called Indian Brook, and with a breadth of about eighty links, it joins on the left side. For about half a mile up the tributary the bearing is about ten degrees south of west, and it then turns to ten degrees north of east. The place where this stream joins is sometimes called by the lumber-men The Fork.

The aspect of the river as far as Pollard's Brook in this stretch resembles the upper half of the part below, hut above the brook the hills are less elevated, and excepting on the flats, which are not extensive, there appears to be a thin soil. Near the stream in this part much of the country has been overrun by fire, and the new timber springing up in place of the old is spruce, white birch and cypress, occasionally in thick groves. About a mile from the right bank the hills rise to the height of from 400 to 600 feet, and at the same distance from the opposite side they are from 300 to 400 feet.

The next general bearing of the valley is $N .52 \mathrm{~W}_{\text {: }}$ to the mouth of the Awaganasees. The distance in a straight line is a little over three miles, and by the river nearly four miles. Beyond this the Patapedia is said to have a bearing a little north of west for six miles, and then west of north for six miles more; it there issues from a lake which has an upward length of three quarters of a rniie; this lake three quarters of a mile farther is followed by another of double the length, and by an additional one of two miles and a half in length a mile beyond, all three in the same bearing as the river.

Although the Patapedia is rapid it is well adapted for canoes, but the lumberers use scows or flats from eight to twelve feet wide and from twenty to thirly feet long, which are drawn by horses. As they draw the scow up the stream the
horses wade in the shallowest part or sometimes walk on the bank, while the steersman guides his vessel in the deepest or most convenient water. Coming down stream the horses are embarked, and all are carried down by the current, the vessel being guided by the aid of poles. It is by such means that provisions for men, as well as oats and hay for horses and cattle, are conveyed for lumbering purposes up the Restigouche and its tribularies.

The bearing of the Awaganasees from the mouth to where we left it is \mathbf{N}. 12 W ., the distance in a straight line being seven miles, by water nine miles and a quarler. At its mouth the tribulary is about half a chain wide, but somewhat over six miles up, after an expansion in a beaver meadow of from three to five chains, which continues for a mile, it splits into 1 wo equal branches, and where we landed our canoes from the western branch it was not over five or six feet across. The navigation all the way up this brook was very troublesome from overhanging bushes and fallen trees. The expansion in the meadow is flanked on either side by upwards of half a mile of swampy ground supporting a growth of spruce and tamarack. Near the brook the land is generally low, but detached hills rise at the distance of one or two miles to heights of from 200 to 400 and even 500 feet. The aspect of these hills as seen from the brook induced the opinion that they bore a considerable quantity of hard-wood, and might possess a good soil.

From this the upward course of the Awaganasees turns gradually eastward, while the portage continues in the same direction as the previous bearing of the brook; the length of the portage is three quarters of a mile, and it comes upon a long narrow bay or creek of the Upper Metis. Lake, near a small run of water coming from the west. The height of land on the portage is about five feet, and the waters on the opposite sides appear to be about the same level.

In the upper part of the Metis there are three lakes which in the absence of other names, we called the Upper, Middle and Lower Metis Lakes. The first bearing from the head of the Upper Lake was N. 29 W . and the distance in a straight line nine miles and a half, but a little more following the curves of the water. This bearing included two of the lakes, the bearing touching the outlet of the first and terminating at the outlet of the second. The length of the Upper Lake is four miles, the stream connecting the first and second is nearly a mile; and the second lake is again about four miles. The average breadth of both the lakes is half or three quarters of a mile; the shores of both are low and they are furnished with a dense fringe of cedar and alders, the latter overhanging the water. The land rises gradually for half a mile on either side to the height of from fifty to seventy feet, while at the distance of three quarters of a mile more, the hills attain the height of 300 or 400 feet; the slopes appear to be moderate. Near the lakes some black ash was occasionaliy observed, and further back some maple trees, but the principal wood of the hills is spruce.

The only difference in the aspect of the two lakes is that the second one has several small islands. At the head of this lake is a well marked depression running to the right and to the left, nearly at a right angle to the axis of the two lakes. From these depressions a brook of six feet wide falls in on the east, and a some what larger one on the west. About the middle of the lake a stream fifteen feet wide comes in on the west side; it has a general upward bearing S. 65 W . for about a mile, where it issues from a lake said to extend a mile and a balf farther in the same bearing with a breadit of half a mile, and three quarters of a mile still farther there is another lake, said to be nearly round, with a diameter of three quarters of a mile. Just above the outlet a stream measuring twenty-four feet across comes in on the east side, with an upward bearing of N. 70 E. for half a mile, where it splits into two branches, the one branch maintaining the same
upivard bearing, and the other bearing north six or seven miles, in which direction it comes from among a group of mountains which appear to be not under 1000 feet in height.

The stream connecting the middle and lower lakes meanders through a low swampy tract, and presents several small expansions on its sides; a bearing \mathbf{N}. 63 W . and a distance of two miles and a half reaches from one end to the other.

The Lower Metis Lake is two and a half miles long in a bearing S .73 W. which runs nearly along the middle of it. The breadth is from an eighth to a quarter of a mile, the shores like those of the other two lakes are low, and the hills which bound the lower ground at a distance varying from half a mile to a mile, are of moderate height.

The respective heights of these lakes over the sea are computed to be as follows :

From the outlettor the lower lake a bearing of N. 27 W. takes us fifteen miles and a half down the valley in a straight line, to which distance the curves of the stream would add three miles more. In the first three miles, in which the stream is very rapid and broken, there is an estimated fall of 115 feet, or thirtycight feet per mile; in the next mile there is a fall of 143 feet, and three portages are necessary to accomplish the descent; the upper and lower ones are only from twenty to thirty yards each, but the middle one is nearly half a mile in length and comprehends the greatest falls. In about the middle of the portage there are two vertical cascades, of which the upper gives a fall of ten or eleven feet, and the lower one, fifty paces farther, a leap of about thirty-five feet, in addition to which there are several other leaps of different heights. Both above and below these falls the river runs through a narrow gorge in which it is for the most part inaccessible. Two miles below these falls we come to the mouth of a tributary about sixty links wide, called the Rouge, which joins on the east side; and four and a half miles farther to the Misquegegish, a chain and a half wide, joining on the west side. The fall from the cascades to the Rouge is estimated at fifty-five feet, and between the tributaries twenty-six feet. In the remaining six miles the fall is estimated at seventy-eight feet. Independent of the vertical falls, the river in all those parts that are capable of descent in a canoe, has a very rapid current.

The breadth of the river above the Rouge is about one chain, and below it is two chains; except at the portages the banks of the river are generally low, but at a little distance from the stream detached hills rise up to heights of 100 or 200 feet, and occasional escarpments of twenty and thirty feet come close upon the river. In the neighbourhood of the cascades and as far back as the lower lake the soil appears to be thin, while below the River Rouge, although spruce is most abundant, maple and yellow birch are not wanting, and elm is occasionally met with near the river. Below the Misquegegish after a shortinterval of comparatively level land, low ridges begin to appear, rising to heights of 100 and 200 feet, and towards the end of the distance they attain 300 feet. The ridges are unlike the detached hills above, for they preserve a general parallelism with one another, with courses varying from N. 45 E. to N. 83 E.; except in two cases where the summits were bare rocks, the ridges both on their sides and tops support a heavy growth of spruce, maple and yellow birch, with balsam fir. The flats, which are sometimes extensive, in addition to these species of trees, produce elm and ash, which are occasionally abundant.

The next bearing in the general course of the river is N .87 W ; ; the distance in a straight line is three miles, and following the course of the channel, half a
mile more, The fall is thirty-seven feet. Between this part and the lower portion of that which precedes it, the difference is confined to an extension of the flats; which are here under cultivation. The breadth of the valley is now from threequarters of a mile to a mile in width, and on each side of it ridges rise up gradually to heights of 150 and 300 feet; approaching the end of the distance the River Neigette comes in on the west side; its width is seventy-five links at the mouth, and its upward course is westward with the general bearing of the ridges; in this direction it reaches to within a few miles of the River Rimouski, and to a position not exceeding five or six miles south-east from the St. Lawrence; it then turns southward for some distance to a lake of no great extent, from which the stream issues.

The last general bearing of the River Metis to its mouth in Metis Bay is north; in a straight line the distance is six miles, and following the sinuosities of the channel ten miles and a little over. The first six miles and a halt present no new feature with the exception of ridges which occur three miles down, rising to the height of 300 feet at the respective distances of 100 and 300 paces on opposite sides of the stream, and run parallel with the other ridges. The fall in these six miles is forty feet, and in the rest of the distance to the mouth 215 feet; the remaining distance is upwards of three miles and a quarter, in the upper half of which there occurs a vertical fall of ninety feet, and another of fifteen feet over the dam of Messrs. W. Price \& Sons' saw-mill, with still another a mile and a quarter farther down over the grist-mill dam, of twelve feet. These three vertical falls, amounting to 117 feet, leave ninety-eight feet for the slope of the intervening spaces. From the upper fall to the grist-mill the river forces its way between banks rising from 50 to 100 feet over its bed, and from three to four chains separated from one another.

The entrance to the Metis from the bay is at a point or bluff of rock rising on the west side to the height of about fifty feet, and at low water the channel is not over two chains across to a low point on the east side composed of sand and clay. In side of this, a basin sixty-seven chains long and about half that measure in width, affords a good harbor for schooners of moderate draught. The bay outside of this is protected by a point a mile out from the mouth of the river, projecting from the west side eastwardly, and this with two low narrow elongated islands lying a little within the point, yields shelter for a larger class of vessels. Any vessel however drawing more than nine or ten feet would be in danger of injury from the numerous large boulders of Laurentian rocks that lie scattered over the bottom of the bay.

Country between Metis and River du Loup.

To the westward of Metis as far up as the River Rimouski, a distance of twenty-seven miles, the rise, either immediately upon the shore or in a distance of from 100 to 200 paces from it, is from thirty to forty feet. Beyond this for a breadth of from one to two miles the surface is nearly level; a great part of it is swampy and covered with moss. This swampy tract is widest about half-way up, narrowing considerably toward the two extremes; for two or three miles beyond the breadth of this low ground, the surface rises gradually to the height of from 400 to 500 feet above the sea, and then breaks into undulations which extend as far as the Neigette River. Opposite to where this river takes its upward turn to the south, the ridge on the north, over-looking its valley, is about 400 feet high. This ridge at this place and for some distance eastward and westward presents an exposure of bare rock. From the turn on the Neigette, the depression of the eastward and westward portion of its valley continues west-
ward, and it becomes occupied by another small stream called the Bois Brule, which flows westward until it joins the River Rimouski, about six miles above the mouth of the latter. An apparent continuation of the valley of the Bois Brule brings the Little River Rimouski from the westward, to join the main stream a little above the former, so that there is a marked continuation of one valley for upwards of thirty miles.

Below these tributaries the Rimouski flows towards the St. Lawrence through a deep and not very wide gorge, which continues to within a mile of its mouth, where Messrs. W. Price \& Sons have a saw-mill, which is situated a little above high water mark. Below the mill the banks of the river become less elevated, and they are quite low at the nouth. Above the junction of the two tributaries the Rimouski is rapid, and continues confined in a narrow gorge as far up as eight miles in a straight line. The breadth of this gorge at the top is from five to six chains, but the breadth of the channel, which is from 100 to 200 feet below, does not exceed a chain or a chain and a half. In the whole distance given, (eight miles) only one place was observed where an approach to the water from the top is tolerably easy; it was at the mouth of a brook coming from an extensive marsh in the township of Macpes, and falling into the Rimouski on the fifteenth lot of the third range of Duquesne.

The falls of the Rimouski are situated on the iwenty-third lot of the fifth range of the same township. The descent is in two cascades; the height of the upper is about sixty feet, while that of the second, which is about a hundred paces farther down, is only twenty feet. Immediately above the falls the river is but little below the top of the banks, and a moderate current and good land on each side of the stream are said to prevail from the falls to the head waters of the river.

From the falls to within a mile of the Bois Brule River the hills are detached, but not elevated; below them swamps and small lakes are abundant. The timber is spruce, balsam, white and some yellow birch, with now and then a pine tree. The soil appears to be thin, and the timber is not large. Between Metis and Rimouski, to the north of the Neigette valley, and in it, the very best soil prevails. This is evident in the numerous well built farm steads. Approaching the village of Rimouski the country is highly cultivated, and the beautiful village itself shews considerable wealth in its many tasteful large and substantial buildings.

From the Rimouski for a distance of seven miles to a small stream called the River Athie, within two miles of Bic Harbour, the coast is still low except in two places, one of them opposite Barnaby Island, where the bank has a height of fifty feet, and another two miles farther up the coast, where the bank is about sixty feet high. From the low ground of the shore there is a gradual rise in the surface for two miles back, where it attains 400 feet above the sea, and then breaks into parallel ridges, which succeed one another to the valley of the Little Rimouski River.

From the River Athie to Pointe aux Trembles, two miles below Trois Pistoles church, the coast is rock-bound nearly the whole way; the distance is twentysix miles and a half, and except at Bic Harbour and another place a little below St. Fabien, no settlement can be effected along it. Towards the east end there are three indentations in the coast line; one of these is Bic Harbour, which is bounded on the east by a rocky point lying between Bic River and the St. Lawrence, and by two small islands, the larger called L'isle Massacre, lying in continuation of the point ; and on the west by Cape Enragé, which runs into a peninsular form in the same line as the islands and point on the opposite side. Another of the indentations forms a deep bay between Cape Enrage and a jagged sided
promontory of a peninsular form, running out a mile from the continuous line of coast and called Cape Orignal. The third is Haha Bay, which lies on the west side of the peninsula of Cape Orignal.

This uninhabited part of the coast forms a belt of from one to two miles wide, which is ribbed by sharp longitudinal ridges rising over the sea from 400 to 500 feet, and even occasionally 600 feet, with an elevated point which on Bayfield's chart is called the Highland of Bic, and to which is given the height of 1263 feet. To the south of this belt, long stretches of a flat valley run parallel with it, having. a breadth of from half a mile to a mile, succeeded by another sharp ridge from a quarter to half a mile across. These valleys and ridges follow one another in the neighbourhood of St. Fabien and St. Simon, for about four miles, to a well marked depression holding the waters of a stream called Rivière du SudOuest, which in its course expands into several long narrow lakes and empties intc the south-west corner of Bic Harbour; beyond this the country is more elevated but less broken.

From Point aux Trembles, two miles below Trois Pistoles church, to Rivière du Loup a distance of nearly thirty miles the coast is in in no place bold, and it is all the way accessible from the land. The only prominent rocky points are one just above the church of Trois Pistoles, running up from it a mile, and from twenty to fifty feet high; another about a mile above Trois Pistoles River, which runs along the coast for another mile with the height of forty feet; and a thirdover three miles above Green Island River, which runs along the coast for three miles and a half, making straight for Cacouna Peninsula, and separated from it about half a mile. The ridges behind are not so well marked as farther to the east, but there are indications that the spaces between them are well filled up with drift clays and sands, two terraces of which run along the country from the east of Green Island River to the River of Trois Pistoles. The first is abcut a mile from the St. Lawrence and 110 feet above its surface; the second is 170 feet higher and a mile farther back. The greatest development of these terraces is to the west of Trois Pistoles River, but before reaching Green Island River their marked outline is lost.

To the east of Rivière du Loup village several low rocky ridges and hills are seen, but these have been already described by yourself in your Report of 1849. A well displayed ridge crosses the falls above Rivière du Loup, but it loses its marked outline in its easterly extension in the rear of the village of Cacouna. On the south of this the waters of Green Island River flow to the eastward, and farther south in the townships of Viger and Whitworth higher lands rise up, the north side of which may be the continuation of the highland already mentioned as lying to the southward of the valley of the river.

DISTRIBETION OF THE ROCK FORMATIONS.

The rocks prevailing in the district of which some of the geographical features have been given above, are similar to those of the previous season's Report. Without repeating the explanations then given, I shall describe their characters as they appeared to me, the following being their supposed sequencein ascending order.
$\begin{aligned} & \text { A, Graptolitic shales and sandstones, } \\ & \text { B, Conglomerate limestones often magnesian }\} \text {, Lower Silurian. }\end{aligned}$
C , Pillars and stonesand red shales, . . Middte Silurian.
D, Gaspé limestone, Upper Silurian.
E, Gaspé sandstone, Devonian.

Section between the mouth of the Marsouin and the Table-topped Mountain.

A little below the mouth of the Marsouin River there occurs a set of grey. slightly calcareous sandstones; divided into beds of from two to three feet thick; some of the beds are coarse grained and hold small translucent fragments of blackish quartz, little pebbles of grey and black chert,and small fragments of black shale and of brownish-weathering magnesian limestone. The coarse beds under atmospheric influences become rough on the surface and present the character of fine conglomerates, the pebbles seldom exceeding the size of peas, but in fresh fractures this character is not so conspicuous. These sandstones at the spot present a vertical attitude with a strike bearing N. 49 E., but at a point about three quarters of a mile eastward very nearly in the strike, the dip becomes N. $41 \mathrm{E} .<64^{\circ}$. Crossing obliquely southward from this it soon becomes S. $26 \mathrm{E} .<30^{\circ}-55^{\circ}$, and for two miles and a half in a coast line oblique to the measures it continues aoutherly, bringing out higher and higher strata, though from disturbances and irregularities it is difficult to say what the thickness may be. Still farther on the coast continues to cross the measures obliquely, but several undulations occur, and the measures acquire a general but irregular dip, apparently southward at a somewhat high angle. The sandstones become yellow-weathering and fragments of bivalve shells are met with in them, while black shales holding graptolites become more and more interstratified.

The irregularities of the dip render it difficult to determine the thickness exposed, but the mass appears very much to resemble part of a group of strata described by yourself in the Report for 1844, as occurring four miles below the Magdalen River on the south side of an anticlinal, and then again on the north side of it at Gros Male. The group below the Magdalen includes certain strata still underlying those given above; they are stated to be a set of splintery sandstones with very large yellow-weathering calcareous nodules or patches, interstralified with grey slates. Perhaps this portion may be exposed somewhat farther below the Marsouin, but the section was not followed far enough to ascertain it. The total thickness given to the whole group in 1844 is 2000 feet; the part seen below the Marsouin may represent half the amount. The beds are supposed to belong to Division A.

A little above the mouth of the Marsouin there occurs a set of black bituminous shales highly charged with nodules of iron pyrites and interstratified with thin layers of limestone, and in these beds graptolitic remains are abundant, with an occasional Orthoceras replaced by iron pyrites. On a small island at the mouth of the river, masses of black and green compact rock resembling jasper occur, very similar in aspect to masses described in the Report of 1852-3, as met with in association with black graptolitic shales on the north-west side of the St. Lawrence, a mile and a half above Cap Rouge River. Immediately above the black pyritiferous graptolitic shales at the mouth of the Marsouin there occurs a band of red shale, interstratified with green shale, and associated with a bed of conglomerate from six to twelve inches thick, in which a multitude of rounded masses of black chert, with some softer masses resembling the chert, are set in a dolomitic limestone, the masses being somewhat flattened and some of them reaching an inch in diameter.

Although these strata are somewhat disturbed, the red sbales can be traced several miles up the coast. The black graptolitic pyritiferous shales are considered to belong to the top of the Division A, and the red and green shales with

[^20]their thin conglomerate band to the Division B. But between the obscurely fossiliferous sandstones below, and the black graptolitic shales above the mar h of the Marsouin, though they both belong to the same division, there is supposed to be wanting a considerable thickness of black graptolitic shales interstratified with black yellow-weathering dolomites, which on the Magdalen River were found to overlie the sandstones. It would be hazardous to assign to the beds wanting any specific thickness; but it would seem probable that there is a dislocation running up the Marsouin, with an upthrow on the east side of it, the value of which would be represented by the beds wanting.

Passing up the valley of the Marsouin about a mile and a quarter, sandstones resembling those seen on the coast below the month are met with, interstratified with black shale, and dipping S. $<48^{\circ}$. A mile farther the debris in the stream was black calcareous shale, and black shales were again seen in the bed of the stream two miles still farther up. Upwards of two miles beyond this we came upon a set of black slates, which though uniform in color, presented a diversity in mineral character, some of them being somewhat calcareous, while others appeared to be destitute of carbonate of lime, and shewred small scales of mica on the surfaces. The divisional planes were nearly vertical, with a strike N. 47 E . Rock of a similar character prevailed for two miles, and at the end of the distance the divisional planes shewed a dip N. $11 \mathrm{~W} .<64^{\circ}$. The thicknesses of the slates were very regular, varying from a quarter to three-eighths of an inch; and with these thicknesses slabs of eight or ten feet square might be obtained. Loose masses indicated that from some beds, which were not seen in place, slabs of from two to three inches might be obtained, capable of yielding excellent flag-stones, while the others would form good tile-stones or good roofing slates, provided the calcareous parts were avoided. No change in the character of the rock was ob served for upwards of three miles farther, the planes of division about half-way shewing a dip N. $26 \mathrm{~W} .<60^{\circ}-70^{\circ}$.

In the valley of Henley's Brook, rock of a similar character was observed about four miles from the coast. It prevailed in the upward course of the brook for two miles and a half, and the rock of this valley would be a material of a very superior description for roofing slates and flag stones. The position of the most northern exposure of these slates on Henley's Brook would be in the strike of the divisional plane of the most northern exposure on the main stream, while the strike of the more southern exposures does not differ materially from what may be considered that of corresponding positions in the two valleys, though the slope in the one is northward and in the other southward, the dip in the more southern exposure on Henley's Brook being S. 8 E. $<50^{\circ}$ - 80°. From this, it appears probable that there is not much difference between the cleavage planes and the bedding of the rock.

Beyond these roofing slates no exposures of rock were seen for some distance. The nearest south of the position on Henley's Brook was on the small lakes at the source of the north tributary of the north branch of the Ste. Anne, where the rock that forms the sides and the bottom of the lakes is a black hard brittle slate, holding cubes of iron pyrites; and the nearest to the slates of the Marsouin was at the junction of the south tributary with the main stream of the north branch. This was also a hard and brittle black slate; it was traversed by strings of white quartz, but contained no observed pyrites; the dip was S. 26 E. $<60^{\circ}$. The whole of the rocks from the sandstones at the mouth of the Marsouin up to this point, are supposed to belong to the group A.

A mile and a half southward of the black brittle slates an exposure occurs on the high narrow ridge constituting the north end of the table-topped mountain. The beds dip S. $64 \mathrm{E} .<70^{\circ}-80^{\circ}$, and the following is the section which they present in ascending order:

Blueish-grey slate in beds of from one quarter to one half an inch; it appears to have disseminated through it very small grains or imperfect crystals of chloritoid.	510
Blueish-grey slate as before, interstratified with beds of from two to six inches of grey sandstone; some of the beds are coarse enough to constitute a conglomerate, the pebbles of which consist chiefly of colorless transparent and transiucent quartz as large as small peas.	319
Reddish-grey slate with a nacreous or pearly lustre, showing a great abundance of imperfectly formed crystals of chloritoid.	49
Blaeish-grey slate in beds of from a quarter to half an inch with very small grains of chloritoid; the slates are interstratified at intervals of ten, fifteen, and twenty feet with thin bands of white crystalline feldspar....	828

The stratigraphical place of these beds is somewhat uncertain, but the pearly lastre of part of the slates, and the presence of chloritoid give them the aspect of slates often met with near the dolomites and serpentines of the Eastern Townships, and they may represent some part of the summit of Division. A., or the base of division B .

These strata appear to plunge under the great mass of igneous rock of which the table-topped mountain is chiefly composed. As already stated this mass extends probably eighteen miles to the southward, with a breadth of four miles in general, but opposite the middle branch of the Magdalen, it becomes broader and extends across the Ste. Anne. The rock appears to be a fine grained granite, composed of flesh-red feldspar and brown mica, with so sparing an amount of quariz in some places that it is very difficult to detect it, while boulders, supposed to be derived from the mountain, show it to be abundant in others. The northern limit of the mass was traced from the neck of the narrow ridge where it turns from east and west to south, as far as the small lake which gives origin to the main stream of the north branch of the Ste. Anne.

The position of this mass of intrusive rock makes it probable that the dislocation supposed to exist at the mouth of the Marsouin will have some connection with it, in which case the most likely course for the dislocation would be up the valley of Henley's Brook and of the small lakes at the source of the north tributary of the north branch of the Ste. Anne, from which it would gain the west side of the igneous mass, passing close in front of the chloritoid slates mentioned above.

Section from the Ste. Anne to the Barn-shaped Mountain and the Valley of the Cascapedia.

Mr. Murray in his survey of Mount Albert established three stations for the purpose of triangulating the peaks of various mountains in the neighbourhood. The traverse line which I followed from the junction of the north and south branches of the Ste. Anne to the neighbourhood of the Cascapedia and the Barnshaped mountain, led me in the first instance by two of these stations, and the following are the bearings and distances of the courses followed to within six miles of the Cascapedia.
S. 53 W .2 miles 8 chains, to Mr . Marray's ist station.
S. 35 W. 2 " 60 " to " 2nd "
S. 29 W. 10 " 40 " to within 6 miles of the Cascapedia River.

The Barn-shaped mountain was visited as we returned, but for the convenience of description I shall give the bearings of our courses in reverse order, starting from Mr. Murray's second station; they are as follows :
S. 39 W. 7 miles 38 chains to Barn-shaped Mountain.
S. $\quad 2 \quad$. 77 " \quad to within six miles of the Cascapedia.

In the section along the coast the rocks at the mouth of the Ste. Anne belong to division B .

The description given by Mr. Murray in his Report of 1844 of the brecciated or conglomerate limestones in that part of the stream which runs along the foot of the Shickshock range, shews that there must there be a repetition of the coast rocks. In successive exposures along this part of the stream, Mr. Murray has traced the conglomerate limestones, associated with black slates and black thin bedded limestones, for between twelve and thirteen miles, showing that for this distance the stream probably runs in the strike. The last exposure of the conglomerate limestones in ascending the stream reached to within two miles and a half of the union of the north and south branches, and the black slates and thin limestones to within a mile and a half. According to Mr. Murray, green slates appeared to occupy the interval, and these slates resembled some that he had seen among the Shickshock Mountains.

The black slates and thin calcareous layers must be repeated at the mouth of the north branch, or another band of them be interstratified there, as they constitute the beds from which my traverse started; the breadth visible was only a few yards, and the thickness would not exceed twenty or thirty feet. They were immediately succeeded by a mass of dark green serpentine, holding disseminated crystals of diallage in some abundance; exteriorly the rock weathered to a brownish-yellow. The breadth of the mass on the measured line was 230 yards, and this taking the dip of the nearest strata above and below, would give a vertical thickness of 430 feet, which appears to preserve much uniformity of character hhroughout. After a concealed interval of nearly half a mile, part of which, from the form of the surface, is supposed to be underlaid by the serpentine, the next rock seen was a green coarse tough chlorite slate, with a somewhat fibrous or ligneous structure, partly marked with spots of epidote; it had a tendency to break into long splinters. The breadth was about sixty yards and the dip S. $24 \mathrm{~W} .<45^{\circ}$, which would give a vertical thickness of 115 feet. The succeeding 1100 yards were concealed, but they were followed by 1000 yards, in which only 250 yards towards the commencement were deficient in exposed strata. The exposed strata consisted of green chloritic and epidotic slate similar to the previous, some parts of it displaying thin patches of whitish quariz irregularly distributed among the layers. The dip of the mass was S. 29 $\mathrm{W} .<42^{\circ}$, and the thickness would be about 600 feet. To this succeeded a belt of black rather coarsely crystalline hornblende slate, divided into beds of greater or less thichness, some not exceedirg a quarter of an inch, interstratified with grey layers scarcely exceeding the eighth of an inch, deriving their tint from the presence of more or less white feldspar. Nearly the whole mass was more or less studded with small red garnets, sometimes thickly distributed in clusters. The breadth of this mass was 250 yards, and the dip S. $14 \mathrm{~W} .<74^{\circ}$ the thickness would be about 570 feet. The summit of this rock passed close by Mr. Murray's first station.

The two miles and three quarters to the second station were wholly occu-: pied by serpentine, which continued for four miles and nearly three quarters farther on the S .39 W . course. On all the lines it generally presented evidences of stratification, in some parts remarkably clear and distinct, in other parts more obscure. That part which immediately rested on the hornblende slate displayed the bedding very beautifully by differences of color on the weathered exterior, as well as on freshly fractured surfaces. The weathered exterior was marked by a set of red and opaque white bands, the white broader than the red, and varying from the eighth of an inch to an inch, and becoming often interstratified with layers of a brownish fawn color, which varied in breadth in the same way.

The interior when cut and polished displays parallel bands of a rich mahoganybrown, with thin blood-red vein-like lines running through those beds which are red on the weathered surface; these blood-red lines are sometimes disposed after the manner of false bedding. With the red layers there are parallel bands of asbestus not much thicker than stout paper, looking like mere partings among the broader layers, and these asbestus partings, as well as occasional crystals of diallage, when in the proper light, give golden reflections. With the redtinted beds chromic iron is associated, which is sometimes diffused in grains along the layer in a clouded manner, and sometimes is arranged in a manner somewhat resembling false bedding; occasionally minute faults dislocate the beds, and when these cross the layers containing chromic iron, the fissure connected with the fault is also filled with the mineral for a considerable distance on each side.

The thickness of this well stratified red and brown part appeared to be about 400 feet. But the great mass of the serpentine exposed was of various shades of green, much of it bottle-green, and came in succession to the well stratified part. To calculate the thickness of this part it would not be safe to take the measures on the second and third courses on the line of traverse as these very probable run much in the strike. In its aspect this purtion resembles the serpentine first met with near the Ste. Anne, and as the measure there was clearly transverse, though a little oblique to the strike, the elements of a calculation for thickness are much more certain. Taking the thickness thus ascertained this part of the rock would probably exceed 600 feet, giving 1000 feet for the whole.

Somewhat above the well stratified serpentine, chromic iron was observed in considerable quantity, in loose angular blocks, which were traced on the strike for a considerable distance; and there were indications on the traverse line, of a repetition both of the well stratified rock and the ore, near the commencement of the third course. At the southern limit of the serpentine black shales and thin limestone beds, similar to those on the Ste. Anne were met with, shewing the probability of an outcrop connection between the two places. The dip of the shale was S. $44 \mathrm{E} .<80^{\circ}$, which would be an overturn ; but the exposure being only a couple of yards in extent the attitude is too near the vertical to contradict the supposition of the structure you have suggested as deducible from the other facts ascertained; namely that the serpentine of the Ste. Anne and that at Mr. Murray's first station are the same, on the opposite sides of a synclinal form, with an overturn dip on the south side, and that the hornblende slate and the chloritic and epidotic rocks overlie the serpentine; so that the repetition of the well stratified serpentine and chromic iron on the line of traverse is due to an anticlinal axis, over which the serpentine foids so as to give another synclinal form on the south side.

Beyond the base of the serpentine on the S. 39 W . line, and above 250 yards from it, a mass of intrusive rock presented itself. The same intrusive rock was met with on the S. 29 W . line at the distance of about two miles and a half, which would be very nearly in the strike of the black shales and limestones underlying the serpentine on the other line. This intrusive rock continued on the west line for about the breadth of 540 yards, and on the east one for upwards of a mile and a quarter,appearing thus to widen to the eastward. This intrusive rock has the aspect of a trachyte, pasoing into a granite. It has some resemblance to the granite of the Table-top Mountain. Its color is a yellowish-flesh tint, and it is composed chiefly of teldspar, distinct crystals of the mineral of about an eighth of an inch in diameter being imbedded in a fine feldspathic paste. Brownish mica is present in small quantity, and quartz in still less amount, being indeed detected with difficulty. Many small druses exist in the rock, lined with a red-dish-brown film, which may be peroxyd of iron.

The descent from the summit of Mount Albert is very rapid on the serpen. tine; less so on the intrusive rock. It is still less on the succeeding rock, which consists of greenish-grey shale, occupying a valley. This rock was not seen il place; but its presence was indicated by the fragments brought up on the roots of overturned trees, and these fragments prevailed for a distance of three quarters of a mile or a mile.

Beyond this we again came upon an intrusive rock, identical in its composition with the previous one, which rose rapidly up to form the Barn-shaped Mountain. The breadth of this mass on our lines of traverse exceeded two miles; its length appeared to be about three miles from east to west, and in this direction it displayed two summits about two miles apart, of about 3400 feet each in height above the sea, with a ridge between them about 400 feet lower. The hill was about 700 or 800 feet bigher than the valleys on each side of it.

At the foot of the south flank fragments of greenish-grey sandstone in abundance, with a few of yellow-weathering chert were met with, mixed up with fragments of the intrusive rock, in the bed of a brook, and in pieces brought up on the roots of overturned trees. They appeared to belong to beds of from one to four inches thick, and the faces of many of them were marked by the presence of carbonized comminuted plants. Thin beds of sandstone were met with in place about a mile south of the intrusive rock, interstratified with shaly limestones holding obscure fossils. The dip of the beds was from S. 15 W . to S. 16 W . and the slope three degrees. These beds prevailed to the termination of the traverse ; they are supposed to belong to the very summit of the Gaspé limestones, or group D, and to the same group are probably to be referred the shales on the north side of the mountain.

The shales between the two masses of intrusive rock, and the sandstones and limestones on the south of them, appear to be unchanged at the contact. They present at the same time a very moderate dip, approaching indeed to horizontality. They thus appear to overlie and finish against the intrusive rock as if it had been an elevated mass when they were deposited, and this may account for the absence of the great body of the limestones belonging to group D , which yet appears in great force where you crossed it in your traverse from the Chat to the Cascapedia in 1844, its breadth between the forks of the Chat and the intrusive mass of the Conical Mountain being from eight to tea miles.

As seen from the summit of the Barn-shaped Mountain, the country to the westward appeared to offer no obstacle to the supposition that the group D, from the position near the intrusive rock, will at a short distance to the westward come upon the serpentine, from which it will follow the flank of the Shickshock range, gradually widening as it proceeds, until it reaches the position where you met with its base, on the River Chat north of the range. In an opposite direction it will probably present a much narrower zone, if it does not become altogether covered up by the sandstones of group E. But it is evident from the dips shewn in the map of your exploration, that the sandstones of group E.gradually round toward the south-east from the turn of the river near Berry Hill, and this course may give room for the limestones to curve round the southern extremity of the intrusive mass connected with the Table-top Mountain.

Coast Section from the Marsouin to the Metis and to the River du Loup.

The black graptolitic shales and thin interstratified limestones which occur above the mouth of the Marsouin and constitute the top of group A, have already been mentioned. They are seen along the foot of the cliff and have a thickness of about thirty feet.

The strata which overlie them are, first a band of red shale, succeeded by rather hard olive-green shales which do not effervesce with an acid, interstratified with pale olive-green beds slowly effervescing, and brownish-black beds which effervesce a little more freely. These calcareous beds weather to a brownish tinge, and it appears to me not improbable that they may be of a magnesian character, and possibly fit for hydraulic purposes. The lighter olive-green beds are from one to four inches in thickness, and peculiarly marked on their under sides by short ridges, all ranging one way and overlapping one another, and all coming to a pointed termination in one direction. They are very probably the casts of furrows made in the lower bed by munning water. On these surfaces there are occasionally many small flat pebbles of black chert. The blackishbrown beds are some of them a foot thick; they have a conchoidal fracture, and an impalpable grain, and are sufficiently hard to receive a polish. Above these were olivegreen shales with thin greyish-brown limestones. These beds occupied the coast more or less all the way from the Marsouin to the Martin River, a distance of nearly five miles, with a general dip towards the land; the cliff in which they are exposed rose abruptly from the shore and shewed so many violent twists, that it is difficult to be assured either of the sequence or the thickness. After much trouble in endeavouring to disentangle the details, the following is the best arrangement I could make of them in ascending order.

1. Red shale,		eet.
2. Olive-green shale,.	10	*
3. Pale olive-green slightly calcareous beds,	8	${ }^{6}$
4. Brownish-black dolomite,	22	${ }^{6}$
5. Olive-green shales and greyishobrown limestones	200	4
	250	*

Above the Martin River, strata of a similar character continue to a prominent cliff about a mile up, where they become capped by about forty feet of light grey fine grained sandstones, in beds of from two to six feet. On the top of the cliff they appear to be in a nearly horizontal position, but out a little way from the foot of it similar sandstones occur, with a small dip towards the water; proceeding along the shore the beds of the cliff descend, and those of the shore approach the cliff, and the two bands joining shew a turn related to the north side of an anticlinal form.

Beyond this, and apparently overlying the previous beds, the rock of the cliff consisted of black shale with thin dark colored limestones and yellow-weathering limestone conglomerates, with which were associated grey sandstones, some of the beds sufficiently coarse to constitute fine conglomerates, the pebbles of which, consisting chiefly of white quartz and black shale, were about as large as peas. The cliff was about a hundred feet high, and it extended from the sandstones to the Ruisseau Vallee, a distance of a mile and a half, and for two miles farther; but the disturbances exhibited in it were so numerous that it was impossible to determine the thickness of the mass with any approach to truth.

Fartber on, a change occurred in the character of the rocks composing the beach and the cliff, and the new strata were supposed to overlie the previous beds, though I was not successful in tracing the connection. On the shore there occurred light grey strongly calcareous sandstone in massive beds of from four to six feet thick, giving an aggregate of about ninety feet. The rock was free and somewhat coarse grained, and displayed small fragments of black shale with small green specks resembling chlorite; it was intersected in many directions by veins of calc-spar. Above the sandstone blackish and greenish banded shale occupied the cliff, with a bed of lead-grey shale of about thirty feet thick in the
middle. These beds were followed by a set of brownish-grey limestone beds of from one to two inches thick, interstratified with black shale and grey sandstone. These strata, most of which were yellow-weathering, occupied the cliff for up. wards of a mile and a half.

About seventeen miles of the coast are occupied by the rocks given thus far, and from the Marsouin they reach to within two miles of the Ruisseau Castor. The whole of them are supposed to belong to the Division B. The bills which this division forms to the distance of perhaps two miles south from the coast, do not appear to be higher than between 300 and 400 feet, but those resulting from the succeeding group suddenly rise to about 1000 feet. This rise is seen in an escarpment which faces the east; the most salient part of it in that direction is over a mile and a half above the RuisseauVallée, and removed about a mile or a mile and a half from the coast. From this position the rocks which compose it sweep round towards the coast and come upon it at the place attained by the last strata described. The coast is occupied by these new rocks from this spot to Cape Tourette, a distance of seven miles. They consist of massive greenish sandstones, weathering to a drab color. They have been particularly described in your Report for 1844 p. 22, as the Pillar sandstones, the name being derived from the remarkable pillars worn out of the strata in this neighbourhood by the action of the sea.

Along the coast these sandstones run upon the axis of an anticlinal, on which, at the spot where the inferior strata plunge beneath the sandstone at the east end of the seven miles, the dip is $\mathrm{S} .74 \mathrm{~W} .<84^{\circ}$. The inferior strata emerge again on the axis about a mile below Cape Tourette, near the east limit of the bay immediately below the cape. On the north side of the axis the sandstones, in a nearly vertical attitude, cross the bay to the pillar or tower which gives the cape its name, and run along the front of the cape to the west, while on the south side they turn inland, and sweeping round at some distance behind the cape, come out again upon the coast about 1000 yards above it. Beyond this they occupy one third of a mile along the shore, with dips towards each other on the opposite sides of the exposure, exhibiting a synclinal form, in which it can be shewn that the sandstones extend under the water for at least two miles to the westward, the continuation of the rock on the south side of the trough being observable between high and low water mark about 200 paces out in front of Little Cape Ste. Anne. This trough is very probably subordinate to a much more important one south of it, connected with the great escarpment lower down, which has been mentioned as rising to 1000 feet. This forms a mountain which keeps its height until reaching a position behind Cape Tourette, and there gradually falls in an escarpment facing westward, but before the base of the sandstone crops out on the axis of the synclinal, it appears to reach the eastern side of the valley of the Little Ste. Anne River, as exposures of the rock were met with about a mile back from the mouth of that stream, with the subjacent calcareous strata coming from beneath. This great synclinal mass of sandstone may have a length of about eleven miles. Its precise breadth was not ascertained, but probably it does not exceed between three and four miles. The axis of the anticlinal over which the rock folds on the north, is as has been said coincident with the coast, and the great amount of disturbance affecting the coast section all the way from the Marsouin may very probably be duc to it.

The subjacent strata emerging from beneath the sandstone on the anticlinal near Tourette are as follows in descending order.

The beds which succeed these are brownish-grey limestones interstratified with brownish-black shales, all weathering yellowish; they are similar to those which sink beneath the sandstones seven miles to the eastward. The first 120 feet of the above section may be considered beds of passage, but the red and green shales appear to be a new feature, and are worthy of remark, as they are in the stratigraphical place of the red shales which make so conspicuous a-figure at Cap Rouge near Quebec, being there as you have described, 1000 feet thick.

The coast is occupied by the strata of group B from the vicinity of Little Ste. Anne River to the River Chat, and the best exhibition of the beds belonging to it in the whole distance, which is between three and four miles, is met with at a prominent point between two and three miles west of the Ste. Anne. But as you have given the details of this section in your Report for 1544, it is unnecessary for me to repeat them here, and I shall only remark that among the black shales of the locality which come next in succession to the red and green shales, Phyllograpsus, one of the new genera of graptolites from Point Lévi described by Mr. Hall, is frequent.

In your Report for 1844 , you allude to a hill of about 320 feet in height which stands on the right bank of the River Chat, about a mile and a half from the mouth, and state that the hill is composed of sandstone, apparently of the group C, the strike of which would bring the rock out upon the coast near the mouth of the Ste. Anne. This hill it is probable is not far removed from the eastern extremity of a trough on the same synclinal axis as the one which has been shewn to pass in front of the Little Ste. Anne. The axis westward appears to come upon the coast just above Cape Chat in a small cove in a well marked notch. On the north side of the axis are all the sandstones and interstratified red shales mentioned by you as forming the coast from the river to the cape. The beds at the cape dip S. 11 E. $<44^{\circ}$, while those on the south side of the axis at the notch dip S. $17 \mathrm{~W} .<64^{\circ}$, shewing an overturn. Red shales interstratified with greenish sandstones, still belonging to the same group, come upon the coast about a mile above the cape and continue along the shore for a mile more. At the east end of the distance the dip is S. $9 \mathrm{~W} .<32^{\circ}$ and at the west end S. $25 \mathrm{E} .<40^{\circ}$. But notwithstanding the reduction of the slope the beds must still be considered as inverted; for in the bay of the Little Capucin River, about four miles above Cape Chat, black shales and black limestones, with black and green shales above them, which are supposed to belong to group B, make their appearance. These however cannot be far removed below the green sandstones, for while the strike on the east would bring the sandstones into the east side of the bay, they re-appear on the west side in considerable force, occupying a mile of the coast, and constituting the point between that bay and another two miles to the westward which receives the Great Capucin River.

On the west side of the river a band of red shale is met with, in which occurs a small vein of quartz, running with the beds and holding a few spots of yellow sulphuret and green carbonate of copper. North of the red shale the sandstones again present themselves, and form a point on the west side of the bay marked by a pillar of twenly feet in height and eight feet in diameter, similar to those of Tourette. The strata dip S. $25 \mathrm{E} .<45^{\circ}$ and shew a thickness of 700 feet. The
mass maintains a pretty uniform course along the coast for four and a half miles, and terminates at a point within a quarter of a mile of the Little Michaud River, where it dips S. $45 \mathrm{E} .<43^{\circ}$. That this mass is inverted is made manifest by the attitude of the strata at the west horn of the bay into which the Little Michaud empties. Along the shore of the bay between the river and the point, a distance of three quarters of a mile, the black and green shales occur, above which there is a band of 100 feet of red and green shale followed by green sandstones. The shales dip N. $<80^{\circ}$, and a turn occurs in the sandstones above them giving a dip S. 57 E. $<60^{\circ}$, shewing the axis of the trough to which the sandstones belong.

About a mile and three quarters west from the Little Michaud River, and about 200 yards back from the coast, massive coarse limestone conglomerates, interstratified with grey calcareous sandstones, rise at once in vertical strata to the height of sisty or eighty feet, and run for some distance either way parallel with the coast. These strata would come in beneath the red shales of the west horn of the Little Michaud bay, and black shales seen near the mouth of the Great Michaud River a mile farther up, would come in between, - but in what volume is uncertain, though it must be considerable.

Conglomerates and sandstones of the same character are again seen about a mile above Great Michaud River, and they run along the coast for another mile, to a point opposite two small islands called Les Islets. These islands are composed of similar rocks underlying the beds at the point. The dip is S. $25 \mathrm{E} .<$ 30°, and while the verical strata near the Little Michaud are on the south side of a synclinal form, those of Les Islets are supposed to be on the north, and to leave the coast before reaching the Grand Michaud to run north of the Cape Chat sandstones.

The masses exposed at Les Islets consist of grey calcareous sandstones, composed of translucent colorless quartz grains of the size of pin-heads, cemented together with calcareous matter. The beds are from one to two feet thick, and the divisional planes are sometimes marked by a film of black unctuous material, probably argillaceous. The sandstones are interstratified with an equal and perhaps greater amount of beds of conglomerate of from one to three feet thick, consisting of rounded and flattened masses of compact grey and black limestone in a matrix of calcareous sandstone similar to that of the sandstone beds, with cracks that are often lined with a black mineral resembling coal, being identical with the altered bitumen you have mentioned as existing at Cape Ste. Anne, Point Lévi, Quebec, Sillery, and other places. Among the sandstones and conglomerate beds, are interstratified deep brownish-black shales, with obscure graptolites, resembling some of those of Point Lévi.

Strata of this character occupy the coast for three quarters of a mile above Les Islets, and after an interval of the same distance showing black shales and interstratified thin limestones, the conglomerates and calcareous sandstones again appear, and continue for a mile and a half. In this mile and a half they strike more into the land, and present an anticlinal axis about half-way, the bearing of which is S. W. On the south-east side the dip is S. $45 \mathrm{E} .<41^{\circ}$, and on the north-west N. $45 \mathrm{~W} .<56^{\circ}$; but a quarter of a mile farther, beds of the same character show a dip N. $76 \mathrm{E} .<36^{\circ}$, apparently indicating that the anticlinal fold is not of great importance. These limestone conglomerates reach to within half a mile of Rivière a Crapaud, the interval to the river being concealed. Above the river, for a mile and a quarter, but one band of limestone conglomerate is met with, its position being about half-way; the space on the east side is occupied with grey calcareous sandstones interstratified with thin hard grey limestones and black shale, and then red and green shales interstratified
with hard grey limestones and black shales, each of the groups of strata being about equal in amount. West of the conglomerate band are compact grey limestones interstratified with black shale, with nearly half a mile of fine black shale beyond, terminated with an interstratification of thin black limestones.

Above this on the coast, about a mile is occupied with a mass of limestone conglomerates with sandstones more or less calcareous, and these are considered to be a repetition of the sandstones and conglomerates of Les Islets. At about mid-distance of this exposure an anticlinal axis is displayed, and the masses in the balf mile on each side of it appear so nearly to correspond that they are supposed to represent one another, notwithstanding that a part of the western side shows a dip which must be overturned, in which the overturn inclination is reduced to twenty-six degrees. The following is a description of the strata as they succeed one another in what is supposed to be an ascending order, with the thicknesses on the east and west sides of the anticlinal.

Black shalet.t.....................................	East sid 20 feet	West sid 20 feet.
Limestone conglomerates, with pebbles of grey limestone and light		
Grey mottled hard slightly calcareous sandstone resembling quartzite; no indication of subdivisions into beds, though looked for, was observed.		149
Greyish-brown calcareous sandstone, yielding with facility to the		
Grey calcareous sandstone interstratifed with coarse Timestone		
conglomerate beds, the sandstone predominating		
Grey calcareous sandstone in beds of from two to four feet ; the stone crumbles readily under the influence of the weather		
Limestone conglomerate,a............................		
Grey mottled hard slightly calcareous sandstone resembling quartzite		
Light grey calcareous sandsione.		
Grey compact limestone in beds of from two to three inches associated with greenish shale.		
Concealed on the west side; limestone conglomerate on the east:side 113) Limestone conglomerate with pebbles and boulders of compact grey		
Limestone conglomerate with pebbles and boulders of compact grey		
limestone weighing from half an ounce to several tons; smaller		
trap weighing from one to thirty pounds ; the conglomerate		
beds are from one to six feet thick and are interstratified with		
light grey calcareous sandstones of from one to three feet thick;		
the whole mass is cut by numerous veins of calc spar, and iro pyrites is disseminated in nodules in all the beds in some abun		
dance... 90		
	667	691

The coast composed of these limestone conglomerates and sandstones is known under the name of Les Crapauds. The rocks render the shore very rough and broken, büt though a somewhat bold cliff rises from the beach, the country inland is moderately smooth. About two miles and a half above Les Crapauds a bold headland rises over the sea, and from it to Cape Whale, about three quarters of a mile farther up, the coast is almost inaccessible. I was here under the necessity of examining the coast line from a boat; but inland at a distance of a quarter or half a mile I was aided by a road. The rocks on the coast line and the road were found to consist of the greenish sandstones and associated red and green shales of group C. These composed also the shore as far as Long Point, a dis tance of five miles more.

About a mile below Long Point the sandstones are massive; the beds are
from six inches to six feet thick and very even. The rock is fine grained, and whils the main body of it appears to be free from carbonate of lime, there are included portions of various shapes and sizes, from one to several inches in diameter, which when reduced to powder, effervesced with an acid. The sandstones at irregular intervals are interstratified with bands of red and green shale, which include greyish-green layers of from one to six inches thick, weathering to a whitish-yellow. These effervesce with an acid, but with difficulty until reduced to a powder, and are probably magnesian. The red shales are spotted and striped with green, and the green with red.

Where the greenish sandstones of group C terminate at Long Point, the dip is S. $21 \mathrm{~W} .<46^{\circ}$, and about 250 yards in the direction of the dip, the grey calcareous sandstones and conglomerates of group B again make their appearance, continuing along the coast for about two miles, where the following section occurs:

Grey calcareous sandstones interstratified with limestone conglomerates, each in beds of from six inches to two feet; among the beds occur a few lajers of grey quartzite, and the whole resemble the strata of Les Islets.
Brownish-black arenaceous limestone, sometimes finely laminated, and occasionally weathering to a whitish hue and pulverulent condition on the exterior ; the limestones are interstratified with black shale, and the whole mass is cut with many strings and veins of calc spar; in the cracks occurs the black mineral resembling coal so often met with in the rocks of Point Lévi and Quebec

The dip of these strata is $\mathrm{S} .19 \mathrm{~W} .<53^{\circ}$, and as this would apparently place them over the sandstones of group C at Long Point, while in reality they are stratigraphically inferior, it is evident that the dip must be an overturn.

From Long Point upwards the coast is occupied with the rocks of group B for thirty-one miles, with the exception of a small interval about a mile below Little White River; although there appear to be several small folds in the strata, the coast line and the strike seem nearly to coincide the whole way, and it is the upper parts of the formation that occur in most of the exposures, consisting of red, green and black shales, or of the summit of the limestone conglomerates and calcareous sandstones. These conglomerates, in addition to the exposure near Long Point, were seen about half way between the Little and Great Matanne Rivers, at the mouth of the Tartigo, also between two and a half and three miles above the Trent, as well as three miles below the Little Metis River. Black shales which would seem to come in a little north of the exposure of the Tartigo, display fragments of encrinites and broken shells, but too obscure to be determined.

The following is the section about a mile below the Little White River, where one of the folds above alluded to occurs, the beds being given in ascending order.
Feet.1. Greenish-grey compact limestones weathering to a whitish-yellow and supposed to be mag-nesian, separated by thin layers of olive-green shale. .22
2. Greenish-grey compact limestones of the same character, separated by layers of red shale of
2n inch thick, striped and spotted with green. 5
inches of red shale striped with reddish-black bands and spotted with green........... inches of red shale striped with reddish-black bands and spotted with green 10
The whole of these limestones would be well adapted for flagging were they not:cut by two sets of joints, parallel in strike but different in slope, the underlie ofthe one being S. $43 \mathrm{~W} .<18^{\circ}$ and the other S. $43 \mathrm{~W} .<80^{\circ}$. The joints of the first setare from two to three feet apart and of the second from five to ten feet apart.
4. Olive-green fine grained shale striped with black 30
5. Indian-red shale interstratified with beds of greenish-grey compact limestone as before, of two or three inches thick 24
6. Measures concealed 30
7. Greenish sandstone of group \mathbf{C} in one bed 6
8. Olive-green and black shale, interstratifed with greenish-grey compact limestones as before of two and three inches thick, finely laminated.
53
9. Greenish fine grained even bedded sandstones seen out in the tide-way; the thichness it doubtful, but at least 30

The dip of these strata is $\mathbf{N} .67 \mathrm{~W} .<80^{\circ}$ but strata resembling number 8 are seen with a sharp rise at the mouth of the Little White River, so that the sandstones of group C scarcely do more than touch the coast at this part.
The exposure of conglomerate about two miles and a quarter above the Trent dips S. $40 \mathrm{~W} .<34^{\circ}$, and north-east of it about 300 yards there is an exposure of the greenish sandstones of group \mathbf{C} with red shale in the interval, which appears to curve round the south-eastern end of the sandstone, as if these constituted the extremity of a trough with an overturn dip on the south side.

About two miles below the mouth of the Little Metis the greenish sandstones of group C again succeed the conglomerates, and in addition oforming the coasts for the two miles below the river, they extend for two miles along the coast above it, running into Metis Point. About a quarter of a mile out from the mouth of the Little Metis River there appears to be an anticlinal axis running about W. S. W., over which the sandstones fold, assuming the form of a trough in Metis Point. It is probable that the sandstones run for about a mile on the anticlinal axis, and the synclinal form which they present on the south may have the breadth of a mile in this part.

Where the sandstones cease at the upper corner of Metis Point the following section was,observed, in ascending order:

1. Red shale 252. Green and black shale interstratified with greyish fine grained limestones, weathering yellow-ish and supposed to be magnesian, in beds of from one to two inches, with a few bands ofgrey compact pure limestone of the same thickness.25
2. Greenish sandstones in even beds of from six inches to two feet, interstratified with blackand green shales180
3. Greenish sandstones of the same character, without shales 187

Between Metis and Green Island River, a distance of about seventy five miles the coast is occupied with the rocks of group B only; but a strip of between nine and ten miles extending from Green Island River to the point at Rivière au Moulin, and passing thence to the upper end of the island of Cacouna, consists of the greenish sandstones of group C, and though it has not a breadth of more than half a mile, presents several folds subordinate to a general synclinal form.

These sandstones form another narrow strip, running about two miles along the coast and terminating at a point about two miles below Riviere du Loup; they seem here to be brought into this position by a transverse dislocation with a down throw on the south-west side.
In the vicinity of Bic Harbour there is a great display of the limestone conglomerates and the associated calcareous sandstones of group B,and it is to the resistance which they have offered to the destroying agencies that have worn away the other rocks of the coast, that the formation of Bic Harbour is due. A great deal of very beautiful structural detail might be obtained in the neighbourhood of Bic, but it would have required too much time for me to have attempted its minute investigation without abandoning other parts of the work. One point ascertained, however, which may prove useful at a future time is the existence of a small synclinal patch of the green sandstones of group C, as it furnishes the
means of determining the summit of the subjacent rocks so much spread around. Bic Point is about two miles below Bic Harbour, and the sandstones in question were met with about three quarters of a mile inland from the bight of the bay below the point. The bearing of the synclinal axis is N. 65 E . and the area of the sandstone trough measures about three quarters of a mile long by 250 yards wide. The sandstones appear to be surrounded by red and green shales, and the limestone conglomerates come into their place on the outside of the shales. The relations of the strata are here better shewn than in many other parts, as none of the dips are overturned.

In the limestone conglomerates the masses inclosed are sometimes very large; a boulder of dark grey limestone inclosed in one of the bands at Metis. was measured and computed to weigh twelve tons; another in another part of probably the same band measured eleven feet long by six feet broad, and was supposed to weigh upwards of twenty-five tons. At Trois Pistoles there is a band with a multitude of large boulders which may be the continuation of the same one. The following section, of which the details were obtained in a mile along the coast from the church of Trois Pistoles, will shew the place of this band in relation to other parts of the deposit. The beds are given in ascending order :
Feet.
Limestone conglomerate in which occur rounded masses of amygdaloidal trap, weighing from a pound to a ton; of dark grey arenaceous limestone from a few ounces to a ton; of grey compact limestone from an ounce to a pound; with pebbles of white quartz from the size of snipe shot to that of musket balls. The matrix is a grey cal- careous sandstone, and iron pyrites is frequently met with in it, 13
Grey calcareous sandstone, 3
Limestone conglomerate the same as above ; butwith no trap, and much smaller constitu- ent masses,. 3
Grey calcareous sandstone in beds of from a quarter of an inch to an inch thick, 4
Limestone conglomerate, 2
Grey thin bedded calcareous sandstone, 9
Limestone conglomerate, 4
Grey.calcareous sandstone, 2
Limestone conglomerate occupying the whole thickness of the bed in some parts, but in others becoming gradually a grey calcareous sandstone, the conglomerate character being confined to a width of three inches, 2
Grey calcareous sandstone in beds of one foot, alternating with thin bedued aggrega- tions of a foot, 42
Limestone conglomerate, 3
Grey coarse grained calcareous sandstone, becoming a limestone conglomerate in the run of the bed, 8
Grey coarse grained calcareous sandstone, 2
Limestone conglomerate, 7
Grey coarse grained calcareous sandstone, 11
Limestone conglomerate, 2
Grey calcareous sandstone, 4
Grey calcareous sandstone beds, alteraating with beds of limestone conglomerate, 24
Limestone conglomerate, in one bed 16
Measures concealed, 36
Reddish-grey fine grained shale, interstratified with bands of reddish-black shale, and beds of greenish-white compact limestone of from one to three inches thick, 71
Chocolate-red shale, 5
Green shale, 2
Red shale with a thin layer of green shale, 1
Red shale interstratified with greenish-white compact limestone beds of one and two inches thick, 10
Green shale with similar beds of greenish-white compact limestone, 4
Green shale-interstratified with beds of grey limestone, and a one inch bed of black shale, 2
Green and black shale, interstratifed with one another, 2
Green and chocolate-red shale, interstratified with one another. 6
Red shale interstratified with green shale 4
Reddish-grey shale with two beds of grey limestone of three inches each, 2
Brick-red shale interstratifed with light grey bands of pure limestone of from one to four inches thick, at intervals of from six to twelve inches 10
Feet.
Brick-red shale and light grey compact pure limestone, with two masses of limestone conglomerate of about 200 pounds Weight each, imbedded about the middle of the Whole; the pebbles of these two masses are in part of light grey very fine and compact limestone, with some of red limestone not so compact, others of black limestone, and a. few of green and yellow limestone; the pebbles are flattened and fitted against one another,. 12
Red shale interstratified with grey limestone of a coarser grain than before, 4
Grey arenaceous limestone, sometimes becoming conglomerate in the run of the band 1
Green and red shale interstratified with thin beds of greenish white compact lime- stone, 3
Green shale, 1
Greenish-white thin even bedded limestone, 2 1
Green and red shale,
Green and red shale,
Greenish-white thin even bedded compact limestone, interstratified with two bands of black shale, 1
Grey even thin bedded compact limestone, interstratified with green shale, 9
Red shale interstratified with beds of greenish-white limestone of two inches thick, 1
Green shale with greenish-white thin bedded compact limestone, 2
Green shale interstratified with bands of chocolate-red shale and two inches of greenish- white limestone at the base, 3
Green shale, 2
Grey thin bedded limestone, 2
Green shale with thin greenish-white compact limestone and two bands of black shale of one inch each, 6
Red and green shale, 3
Grey thin bedded limestone 1
Black shale interstratified with green bands and greenish-white compact thin bedded limestone, 7
Green and red shale, 1
Green shale interstratifed with black shale, 3
Brick-red shale, 15
Greenish-white thin bedded compact limestone tinged with red, 5
Brick-red shale, 12
Green shale, 2
Red shale, β
Reddish-grey drab-weathering shale striped with reddish-black- with strings of calcspar, 6Reddish-grey drab-weathering shale striped with reddish-black shale and holding iron
pyrites in nodular aggregations of cubic crystals,15
Reddish-grey drab-weathering shale striped with redaish-black bands, with less iron pyrites than the last, 250

Section of the Metis and Patapedia Rivers.

As has already been stated, an anticlinal axis bearing about S. 65 W . runs about a quarter of a mile north of the mouth of the Little Metis River, throwing the greenish sandstones of group C in Metis Point into the form of a trough. These strata on the lower part of the Little Metis River assume a corresponding synclinal form on the snuth side of the axis. The north rim of the latter trough would cross the Great Metis River about three quarters of a mile inland from the mouth. No exposure of the sandstone is seen on the stream, but over a mile southward of west from the river, there occurs an escarpment of it, which can be traced running in a pretty straight line for about two miles farther, with a dip of $\mathrm{S} 35 \mathrm{E} .<36^{\circ}$; its place on the river would be about the position indicated. The breadth which these sandstones might have on the stream would not exceed between 700 and 800 yards, as exposures of the lower rocks occur on both sides of this breadth, the calcareous conglomerates of group B are conspicuous in two parallel bands below the position, one of them being at the very outlet of the river, and the other about half a mile from it up the stream. In weathered fragments, resting on the lower band and of the same character with it, were obtained well defined examples of a coral
allied to Favosites Gothlandica, which occurs at Cape James in Anticosti, near the summit of the Hudson River group.*.

Above the position assigned to the sandstones of group C, the banks of the Great Metis in the first mile transverse to the measures, shew grey quartzite, green shales and grey calcareous sandstones with limestone conglomerates; in the second there are no exposures, and in the third the only rock seen is a band of black shale. There then occurs an exposure of red shale, followed by the green sandstones of group C immediately above. The distance of this from the mouth, across the measures, would be about four miles. On the east side of the river the sandstones present a breadth of about 600 yards, and appear to stand in the form of a double trough, the sandstones only of the south synclinal belonging to which cross the river to the west, their breadth on the immediate bank of the river being reduced to about 300 yards.

In the next half mile south of the sandstones, limestone conglomerates and black shales belonging to group B are met with, the conglomerates being not far removed from the green sandstones. Farther southward to the Neigette, there are no exposures. Beyond this as far up the river as cultivation extends, a distance of about three miles in a straight line, the only rocks seen were green shales. In the third mile still beyond this, the calcareous conglomerates are again seen, and black shales beyond them, in which there occur the remains of graptolites. For three miles farther on to the mouth of the Musquegegish, the only exposure met with was one of smooth unctuous black shales interstratified with thin limestones, which with all the rocks from the exposure of green sandstone, are considered to belong to group B.

In the first four miles above the Neigette, the river makes a semi-circular sweep to the north-east, in which it passes round the north-eastern extremity of Mont Commis. This mountain, with a breadth of from one to two miles, extends for about twelve miles to the south-west and appears to be composed of the sandstones of group C. In its highest part it may rise about 700 feet above the valley of the Neigette.

A little below the mouth of the Musquegegish large loose angular blocks of fine grained white sandstone are abundant, the rock being similar to that which you describe in your Report of 1844 as underlying the Gaspé limestones at the forks of the Chat, and in the Report for 1849 as being found in a similar stratigraphical place in relation to the same limestones on Lake Matapedia; at the mouth of the Musquegegish, cacareous rocks occur, which would come in the same sequence in regard to these sandstones as the limestone of the Chat and Matapedia. These calcareous rocks, with a dip S. $66 \mathrm{E} .<45^{\circ}$, presented an escarpment of about twenty feet high, and consisted of grey nodular fossiliferous limestone, divided into beds of two and three feet. In one of the fragments near the escarpment were obtained a Pentamerus resembling P.Knightii, a Strophomena like S. inequiradiata, and another species which is resupinate and resembles S. punctilifera; I may here mention that in passing Lake Matapedia going south, I met with a fossil in the white sandstones strongly resembling Pentamerus oblongus.

Farther up the stream at a distance of about 850 yards at right angles to the strike, another exposure occurred, and here the beds consisted of limestone of the same character interstratified with greenish shale, the dip being S. $65 \mathrm{E} .<320$. About fifty chains still farther up, another exposure was met with, but here the dip was N. $75 \mathrm{E} .<$ from 20 to 60 . These beds consisted of dark grey argillo-calcareous shale interstratified with greenish shales; at the base a bed of about

[^21]three feet thick consisted of greenish arenaceous limestone, and conained obscure fossils, one of which resembled Pentamerus oblongus. There is little doubt the beds of these three exposures overlie one another. Their total thickness, with what is concealed, is computed to be about 2000 feet.

For two miles above this, no exposures occurred, but in the succeeding two and a half miles to the River Rouge several were met with, consisting in the first exposure of greenish crumbling arenaceo-calcareous shale, and in the others, of grey micaceo-arenaceous limestones or strongly calcareous sandstones, well fitted for flagging stones, interstratified with purplish-brown arenaceo-calcareous shale. Masses of similar character constituted the rocks of the falls between the Rouge and the Metis Lakes and near the lowest lake, but both above and below the Rouge, they showed various and sometimes opposite dips, with occasionally very high angles. In part of the distance the rocks exhibited a cleavage independent of the bedding, and it was often difficult to distinguish the one from the oiher. I have in consequence found it impossible to compute the thickness; but the rocks, from the amount of calcareous matter which they contain, are supposed to belong to group D, and to represent a higher part than before mentioned of the Gaspe limestones.

No rocks were seen on the lower Metis Lake; on the middle lake, strata were observed in several places in the up half; they consisted of grey granular limestone, weathering brownish-yellow, and containing obscure fossils. The beds were from six to twelve inches thick, and were interstratified with less calcareous layers, greyish-green in color, and weathering to a brown. An obscure cleavage existed in the less calcareous layers, and they separated with difficulty in the direction of the beds. The strata, with several minor undulations, appeared to preserve a general horizontality. These rocks were supposed to be a repetition of the lower part of the Gaspé limestones.
The shores of the upper lake are strewed with many large flat fragments of calcareo-arenaceous shale mixed with sandstones, and in one place the bottom of the lake was paved with a greenish sandstone interstratified with greenish shale, and the beds appeared to be horizontal. After passing the watershed, an exposure about half-way down the Awaganasees consisted of greenish calcareous sandstones in beds of from six to eight inches, dipping N. $3 \mathrm{~W} .<24^{\circ}$, and below this to within a mile of the Patapedia, there appeared flagging stones very similar in character to those below the lower Metis Lake and near the Rouge, excepting that they are more even and regular in their divisional planes; in some parts the thicker slabs are separated by calcareous slates, which split into large and remarkably even slabs, no thicker than the eighth of an inch, of a dark grey internally, but changing rapidly in the weather to a greyish-yellow or light drab. Rocks of a similar character, but not so evenly bedded, prevailed for the remainder of the distance to the Patapedia, and they were considered to be a repetition of the upper part of group D, to which is here assigned a breadth of between fourteen and fifieen miles.
Between the mouth of the Awaganasees and Indian River, and half a mile below the latter, the rocks are dark grey compact thin bedded limestones, interstratified with blackish calcareous slates, recurring twice, and followed on each occasion by dark grey calcareous shales. Below this for seven miles, as far as Pollard's Brook, there prevails greenish-grey arenaceous shale weathering yel-lowish-brown, sometimes calcareous and sometimes not. At Pollard's Brook and a short distance below, we have a recurrence of dark grey calcareo-argillaceous finely laminated slates, splitting into large slabs of about the thickness of roofing slates, and weathering to a greyish-yellow or drab, like those of the Awa-ganasees. With the exception of these drab-weathering slates, the prevailing
rocks, for five miles below Pollard's Brook, are dark grey argillaceous and calca-reo-argillaceous slates, interstratified with occasional more calcareous layers; for four miles below this the rock is a dark grey calcareous slate or shale, and this is succeeded by two miles of slates of a similar character interstratified with more calcareous bands. For a mile and a half farther, thin bedded black and often very pure limestone, occurs a third time, interstratified with black and dark grey argillaceous shales, beyond which the only rocks for two miles to the mouth of the Patapedia are dark grey calcareous shales or slates, interstratified with greenish arenaceous shales and greenish sandstones.

In all these rocks on the Patapedia, there is a cleavage independent of the bedding, and it is very often very difficult to say which is cleavage and which bedding. Occasionally the strala are much contorted, and it is impossible for me to state what the thickness may be, or how many repetitions there may be of equivalent groups of strata. No fossils were found in these rocks, and it is in consequence difficult at present to determine the age of the mass, but it is not supposed to be older than the Gaspé limestones.

The greenish arenaceous shales and sandstones of the mouth of the Patapedia appear to have a dip up the river, and to underlie the thin bedded limestones and dark grey shales beyond; they can be traced down the Restigouche to Cross Point, a distance of about four miles, where the beds associated with them are calcareous and hold fossils consisting of fragments of trilobites and bivalve shells, but too much broken to be identified. The sandstones attain the neck of Cross Point, while the thin bedded limestones above them occur at the north part of the turn in the river. To this point the strike and the general valley of the river run about north-east; lower down they turn together, and the sandstones and their associated dark grey calcareous shales are every now and then seen for seven miles in a bearing nearly east. Here the river separates from them, and while they appear to continue in a pretty straight course to the junction of the Upsalquitch, the Restigouche makes a turn to the north-eastward on the thin bedded limestones to Brandy Brook, and returns upon them south-eastward to the sandstones at the Upsalquitch. From the Upsalquitch, the Restigouche appears to flow on the thin bedded black limestones to the mouth of the Matapedia. According to your Report of 1844 the thin bedded black limestones strike away from the river on the north side of the Restigouche a short distance below the mouth of the Matapedia, followed farther down, near the mouth of Seller's and Anderson's Brooks by a fossiliferous limestone which directs its course to the road-bridge on Little River. The succession which you give at this place shows a set of calcareous and arenaceous shales coming in between th fossiliferous limestones and the thin bedded limestones, and these probably represent the calcareo-arenaceous rocks at the mouth of the Patapedia. The fossils of Little River I believe, are supposed to resemble some of those of the Gaspé limestones, and it may thus be inferred that the rocks of the Patapedia, which are all more or less calcareous, may be related to these fossiljferous strata, as a higher part of the group D.

Section of Rimouski River.

In describing the coast section from Metis to Rivière du Loup, mention was made of a synclinal patch of the green sandstones of group C, which lies about three quarters of a mile inland from the bay below Bic Point. The axis of this synclinal would cross the Rimouski River probably not far above its mouth. On the south side of the synclinal patch of green sandstones there appears red shale, and a whiteweathering green shale, succeeded by limestone conglomerate. The whiteweathering green shale appears upon the road up the Rimouski River about four miles back from its mouth; it has south of it a grey sandstone, and somewhat to
the east grey sandstone and blueish-grey brown-weathering limestone, which probably represent the limestone conglomerate. The strata appear to dip to the north at a very high angle. The blueish-grey limestone is repeated in a short distance down the stream with a south dip, but independent of this there are no exposures of rock to the mouth, with the exception of two, one of them shewing red shale interstratified with thin hard greenish siliceous beds.
About a mile farther south than the grey sandstones, the green sandstones of group C make their appearance, with red shales to the north of them, and it is probable that on the south of the anticlinal axis, which must pass between the exposures of the grey and green sandstones, the conglomerate band, or the grey sandstone representing it, is repeated although concealed. The green sandstones are traceable to the east for some distance, and after five miles in that direction they form the south limit of Great Lake, which is tributary to Rivière au Moulin. From this, with the conglomerate band north of them and the red shale between, they trend for five miles toward the escarpment belonging to group C, which it has been stated crosses the Metis about three quarters of a mile from its mouth.
The Rivière au Moulin, into which Great Lake discharges, joins the St. Lawrence about two and a half miles below the Rimouski, and the conglomerates just alluded to would cross the stream about half a mile below the outlet of the lakeThey were traced for a mile to the south-westward, and about two miles and a half to the north-eastward, with the red shales accompanying them. Vast masses of the conglomerates, some of them weighing fifty tons, occasionally marked the outcrop, and from these were often obtained the coral allied to Favosites Gothlandica, some of the shales also in the vicinity of the band were fossiliferous, but the shales were too soft to permit the successful extraction of the fossils. About two miles farther down the Rivière au Moulin, limestone conglomerates were again met with, and here also the same coral was obtained. Westward of this from one to two miles, large exposures of grey calcareous sandstone of the group B were observed in two places, about half a mile from one another across the measures, and their strikes so converged that they would meet to the north-eastward before reaching the Riviere au Moulin. The sandstones were largely made up of dark transparent grains of quartz and small fragments of green shale, and contained much iron pyrites. Similar sandstones were observed a mile nearer Great Lake, and being in this position still a mile and a half from the margin of the lake, they were supposed to be on the north side of ihe anticlinal which limits the green sandstones of group C on the Rimouski.

These sandstones on the Rimouski have a breadth of about a mile, with a synclinal form, and their southern outcrop appears to be on the flank of the ridge which overlooks the valley of the Bois Brule River, and farther to the north-castward, of the Neigette River; after folding over an anticlinal axis to the south-east, the outcrop follows the Neigette to the Metis. South of the outcrop of the sandstones on the Rimouski thers are exposures of striped green and black shales, interstratified with hard silicious beds of from one to two inches thick, and also of green argillaceous shales, which are studded with scales of mica and are somewhat pyritiferous. These strata, which are on the Bois Brulé, and above it on the Rimouski, dip northward at high angles. They belong to group B, and are probably not far removed from an anticlinal axis; southward from them however we have a new series of rocks.
These rocks are the Gaspe limestones. Where they cross the Rimouski they are about nine miles and a half in a straight line from the mouth, but no more than seven miles from the coast between Rimouski and Bic. They rise in a well marked escarpment over a hundred feet high, on the right bank of the Rimouski. The rock at the base is a whitish-grey calcareous sandstone, of which between twenty and
thirty feet are seen, probably representing the sandstone of Matapedia Lake and the Chat River; it shews a dip S. 39 E. $<$ from 7^{0} to 9°. This is succeeded by beds of from six inches to two feet thick of blueish argillaceous limestone, which constitutes the remainder of the escarpment. Limestone of a similar character is met with at intervals for about five miles up the Rimouski to a large swamp on the fourteenth lot of the third range of the township of Duquesne. This would be about two and a quarter miles across the measures, and the dip is here S. $60 \mathrm{E} .<45^{\circ}$. The rock is here a datk grey calcareo-argillaceous shale, interstratified with greenish calcareous sandstones in beds of from one to two inches. A ridge rises south of the swamp to the height of about 150 feet, and there is a depression on the south side of the ridge, which on the east side of the river contains Lake Macpes and its discharging stream, and on the west the River Touradif. The depression is over half a mile from that of the swamp, and the rocks seen in it are much the same as those just described, with perhaps a somewhal smaller quantity of shale; the dip was $\mathrm{S} .59 \mathrm{E}:<30^{\circ}$. A mile and a quarter above this, across the measures, there is another depression, occupied on the west side by the Rivière à France; aud two miles and a half farther up, we have the fall of the Rimouski on the twenty-fourth lot of the sixth range of Duquesne. The rock at the fall is a greenish-grey calcare. ous sandstone in beds of two or three inches, separated by grey calcareous shale, the shale and the sandstone being about equal in quantity, but irregularly interstratified. The dip at the fall is S $44 \mathrm{E} .<60^{\circ}$, but just below the fall there is a small undulation, by which the same beds are kept at the surface for a distance of about forty-five yards across the measures. The Rimouski for a considerable distance below the fall flows in a very deep and inacessible chasm; the strata in consequence were examined only at considerable intervals, and if there should be many undulations similar to that at the fall, these would materially diminish the thickness deducible from the dips ascertained.

About a hundred yards below the fall the rock is very evenly divided into beds of from one to four inches thick, and would yield excellent flagstones of from two to three feet wide and from four to six feet long. They very much resemble the flagstones already described on the Metis, and their stratigraphical place may very possibly be the same in the vertical sequence. Fossils were observed in several parts of the series, but the only one that could be identified was the pear-shaped variety of Favosites basaltica.

From the position where the escarpment of the Gaspe limestones is seen on the Rimouski River, the outcrop, after crossing the stream to the west side, appears to keep on the south side of its tributary, the Little Rimouski, very nearly to the water-shed between it and the east tributaries of the River Trois Pistoles. Turning here more southward it runs a course about parallel with the Toledo, and comes upon Lake Temisquata, where you have described it as forming Mount Wissik or Lennox. In an opposite direction it runs N. 60 E . on the south side of the valley of the Bois Brule for some three miles and a half. It then turns about east for a mile and gains the south side of the valley of the Neigette, running with it for about five miles. From this the escarpment turns south-east for about five miles and crosses the south-western extremity of Mount Commis, leaving a small valley between it and the mountain, and again sweeping round to the northeastward, in about fourteen miles it gains the Metis at the mouth of the Misquegegish.

DRIFT.

From Rivière du Loup to the Marsouin, clays, sands and gravels are met with in numerous places on the coast. Inland, long stretches between sharp ridges are deeply covered with them, and this is particularly the case in the parishes of St . Simon and St. Fabien, below Trois Pistoles.

Two terraces, already mentioned, were observed in the drift to the west of Trois Pistoles River, with the respective heights of 130 and 300 feet above the sea, and there was another at the mouth of the Matanne and below the Metis River, the height of which was from forty-eight to fifty feet. Stratified clay occurred at the head of Lake Matapedia, where a surface was computed to be 480 feet above the sea, and near the outlet of the lake there were deposits which appear to be of the same character, of which the height was computed to be 530 feet, but no marine shells were met with at these heights.

Marine testacea were found in clay and sand on the east side of the Matanne River at the summit of a terrace fifty feet above the sea; the species were Mya arenaria, Tellina Grenlandica and Mytilus edulis. At Metis River they were observed at the same height on the east side, and again about two miles to the west at 130 feet. In the last place the species were Saxicava rugosa and Mya. arenaria. Eight miles up the Metis River the following species were observed at 245 feet above the sea, Saxicava rugosa, Natica clausa and Balanus hameri. To the east of Rivière du Loup Mya arenaria and Scalarea borealis were found in: abundance at ten feet and twenty-four feet above the sea, in numerous places.

At the Ste. Anne River there are five or six distinct terraces in a height of twenty four or twenty-five feet, each abounding in fragments of Mya arenaria and Saxicava. rugosa, and it would seem as if there had been an interval of rest in the elevation of the coast after every few feet of rise.

Ice grooves were observed in two places only. One of them was half a mile bclow Trois Pistoles church, sixty feet above the level of the sea; the course of the grooves was S. 32 E. The other was on the Kempt road about two miles from Lake Matapedia; here the grooves run S. 50 E., and the height of the spot above the sea is 630 feet.

ECONOMIC MATERIALS.

The substances capable of economic application met with in the course of my investigations, were bog iron ore, wad or bog manganese, copper ore, chromic iron, serpentine, roofing slates, tile stones, flagstones, building stones, limestone for burning, mill stones, shell-marl, peat, and the water of mineral springs.

Bog iron ore. This ore was abundant in the second concession of the seigniory of Green Island, on the land of Mr. Felix Avril. About the middle of his lot it occurred in patches of from three feet up to eight feet in diameter and from twelve to twenty inches thick. Between these patches there were intervals of thirly or forty paces. With a breadth that was not observed to exceed a hundred yards, the length of the area over which these patches were disseminated extended across ten lots, in the bearing S. 27 W ., and half a mile in rather less abundance, in a contrary direction.

In the seigniory of Cacouna at the village of La Plaine on the lot belonging to Mr. Stanislaus Roy, a patch of the ore was seen, measuring fifty feet by fifteen feet, with a thickness of four inches. On the adjoining lot to the east, another patch of about the size of the previous one, was met with; yellow ochre occurred in the same place in small quantity.
Another locality was in the seigniory of Villeray about three miles west from Green Island River. On the land of Mr. Narcisse Marquis there is a patch of the ore about 270 feet long, and from twenty to thirty feet wide, with a thickness of from six to twelve inches. The ore was likewise observed on several adjoining farms in smaller quantities, but from the information I obtained from the farmers, it appeared not unlikely that the spread of such patches of the ore is considerable in the neighbourhood.

Traces of the ore were seen in several other places in the seigniories of Green Island, Villeray, Cacouna and Rivière du Loup, as well as in the townships of Viger and Whitworth, but the quantity was too small to require particular men. tion. As a whole, the ore-bearing tract is about twenty-four miles east and west by about five or six north and south. Whether the ore can be found in sufficient abundance to warrant the establishment of a smelting furnace is perbaps as yet doubtful. From the wooded character of a great part of the country to the soith of the tract, charcoal for smelting purposes could be procured easily for many years to come.

Wad or bog manganese. This ore was found in the seigniory of Cacouna, on the lot of Stanislaus Roy already mentioned, in a patch measuring twenty-five feet by twenty feet; it occurs in nodules of from a half to a quarter of an inch in diameter, imbedded in sand, and forming a layer of the thickness of four or five inches.

Copper ore. Notwithstanding the great area over which the limestones and limestone conglomerates of the same age as the copper-bearing rocks of Upton, Acton and Leeds were examined, the only traces of copper ore met with were near the mouth of the Great Capucin River. Here, as already has been mentioned, the pyritous sulphuret is disseminated in small specks in a bed of greyishgreen quartz, interstratified in red shale, while the green carbonate invests some of the cracks in the two inches of thickness containing the sulphuret.

Chromic iron. On the summit of Mount Albert, near the second station established by Mr. Murray for his measurements, chromic iron was strewed in abundance on the surface among the fragments of serpentine. It occurred in loose masses weighing from a few ounces to twenty pounds. It was almost all quite free from rock, and the masses, continuing for a little over half a mile in a bearing N. 44 E . gave indication that this was the probable direction of its run, though the bed itself was not seen. The loose masses were so abundant that in a few hours a ton of the ore might have been collected by a single person; and their cleanness leaves little doubt that there must be a rich deposit close to the surface beneath the moss and soil.

About four miles to the north-east of this, a bed of the ore of about one inch thick was observed in the serpentine; but the ore was not so pure as the masses on the summit of the mountain. The bed was traceable in the strike of the serpentine for about fifty paces.

Serpentine. The serpentine of Mount Albert, occupying an area of not less than ten square miles, would yield an inexhaustible supply of material capable of economic application. The rock appears to be unusually solid, and in several places vertical cliffs of several hundred feet in height shew nothing but bare serpentine ; while masses of eight and ten feet in diameter, fallen from them, lie at-their base. The general colors, as far as observed, were green, or green mottled with red, and mahogany-brown striped with red; occasionally a blueish tint was mingled with the other colors. The distance of the locality from the St. Lawrence by the valley of the Ste. Anne River is thirty-four miles. By the valley of the north tributary branch of the Ste. Anne and the valley of the Marsouin the distance is twenty-four miles. In either direction roads could be easily constructed, while a great part of the way is well adapted for settlement.

Roofing slates, tile stones and flagstones. The best roofing slates were observed on Henley's Brook. The nearest exposure of the rock yielding them is about two miles and a half above the junction of the brook with the Marsouin, or about four miles from the St. Lawrence, and it prevails for a breadth of two and a half miles up the valley of the brook. The slates might be obtained in thicknesses varying from an eighth to a quarter of an inch, and in slabs of eight or ten feet square,
with very smooth surfaces. Some part of the rock gave thicker slabs, measuring from two to three inches, and would serve as excellent flagstones. The color of the rock is a dark blueish-grey or black. Some bands of the slate are calcareous, and these, for roofing purposes, should be avoided.
The same rock comes out in the strike upon the Marsouin River from seven to nine miles from the St. Lawrence, and would here give a material of much the same character.
Allusion has already been made in the geological description to the flagstones of the Metis. They occur about twenty-six miles and a half from the mouth of the river, and consist of calcareous sandstones weathering to a light drab. Slabs might be obtained of two feet square, with thicknesses ranging from two to four inches.
Another locality for flagstones is on the Awaganasees Brook about thirty-four miles and a half from the mouth of the Patapedia. They so much resemble those of the Metis River that they are supposed to be of the same geological formation. The slates however were of larger dimensions, some of those seen being two feet square, and others four by eight feet, the thicknesses being from one to two inches: Another exposure about a mile lower on the Awaganasees would yield as large but thinner slabs, which would form excellent tile stones.
Another locality of the same description of material was met with on the Patapedia about seventeen miles and three quarters from the mouth. Here good tile stones might be obtained.

On the Rimouski River below the fall, on the twenty-fourth lot of the sixth range of Duquesne, flagstones might be obtained of a character so similar to those of the Metis, that they are supposed to have the same stratigraphical place. The dimensions observed, as already stated, were two by three feet, and four by six feet, with thicknesses varying from one to four inches.
Mill stones. On Lake Matapedia the white sandstones which underlie the Gaspé limestones would answer the purpose of mill stones. When I passed the lake Mr. Pierre Boucher shewed me a stone which he had prepared from the rock to be used in a mill about to be erected by him. The rock is undoubtedly hard and solid enough for the purpose, but wants the small cavities required for mill stones of the best description.
Building stones. From the grey calcareous sandstones of group B excellent building stones may be obtained, and so many localities in which these sandstones occur, have been named in the geological description, that farther allusion to them is unnecessary. The more solid beds at the base of the Gaspé limestones, as they appear on the Middle Metis Lake and Lake Malapedia, would give good building stone.
Lime. In the limestone conglomerates of group B masses of the rock are found, in most localities, which yield stone of sufficient purity for burning into quick-lime. At Metis a single boulder of dark grey limestone imbedded in one of the conglomerate bands was calculated to weigh twenty-five tons. It was being quarried for lime-burning at the time of my visit to the place. Pretty good stone for burning might be obtained from the base of the Gaspé limestones as far as they were traced.

Shell-marl. About five miles below the Matanne River just over the bank of the St. Lawrence, on the lot of Mr. Denis Gouge, there occurs a deposit of freshwater shell-marl. It is at the outlet of a swamp, and where dug through it had a thickness of fifteen inches. I was informed that on an occasion when the swamp became dry in summer, the deposit had been seen in other parts of it: The swamp has an area of between fifty and sixty acres.

The only other locality in which shell-marl was observed was on the Lower

Lake Metis. In the upper part of this lake wherever the dredge was used it always brought up shell-marl, but the thickness of the deposit is uncertain.

Peat. A large area in the seigniory of Riviere du Loup is covered with peat. The locality is called the Savanne de la Plaine. The exact boundaries were not ascertained, but the area cannot be less than nine or ten square miles. It stretches along both sides of the river from the third to the sixth mile, and to the eastward it has a length of three miles, diminishing to the breadth of a mile at the east end. Its length on the west side of the river I was not able to ascertain.
Peat was observed in abundance on the first and second concessions of Green Island Seiguiory, and from a point two miles below the Rimouski River there is a belt of it extending nearly all the way to Metis River, a distance of over twenty miles. The northern edge of the belt approaches in some places to within a quarter and in others to within half a mile of the St. Lawrence, and its width is from a quarter of a mile to a mile. The thickness of the deposit where observed was from one to six feet.

The swamp which has been mentioned on the Rimouski in the third range of Duquesne is underlaid with peat; from within half a mile of the Rimouski it extends two miles to the east in Duquesne, and from ons to two miles more in Macpes. Its breadth is about three quarters of a mile, and its thickness from five to twelve feet. Where tried by me, a pole was sunk in it nine feet; but I was informed by one of the inhabitants that a pole had been sunk in it to a depth of thirty feet on Bouchette's road.

Mineral springs. Mineral springs occur in abundance in the neighbourhood of Cacouna and Green Island, and from the circumstance of this part of the St. Lawrence being a considerable place of resort in the summer for persons in search of health it would perhaps be desirable that the medicinal properties of the most important of the springs should be ascertained. Without attempting a description of any of them, the following is a list of those which came under my own observation and of which I obtained information:

1. I was informed that one mile south from Cacouna village there is a copious saline spring but I could not ascertain the proprietor's name.
2. About half a mile below the village, a spring was observed about three feet under high water mark; it appeared to be sulphurous and saline.
3. Abouta quarter of a mile farther down the coast, another of the same character was met with about three feet above high water mark.
4. Three miles west from Green Island, on the farm of Mr. Narcisse Marquis, in the second concession of the seigniory of Villeray, there are two strong saline and sulphurous springs, specimens of which were brought to Montreal.
5. On the next farm to the westward belonging to Mme. Marie Beaulieu, there is another strongly saline and sulphurous spring.
6. Just below the bank to the west of Green Island River, at the village there are several springs. The first is 200 yards from the river, on the land of Mr. Paradis. On the next adjoining lot belonging to Mr. J. B. Dumont, there are two springs, and in the suceeding one, the property of Mr. Coté, there are two more. These five springs. occur on a nearly east and west line, within a length of 200 yards. They are not so copious nor so strong as those mentioned to the west. I was informed that there are many otner mineral springs in the same neighbourhood, but I was not able to ascertain their exact localities.
7. About six miles below Cap Balêine or Whale Point, at the upper end of Les Crapauds, there is a sulphurous spring below high water mark. The water had also a saline taste, but as the tide had just left the spot it was not certain whether the taste was not derived from an admisture of sea-water.
8. About two miles farther down the coast there are two springs about half a mile apart; with the Rivière à Crapaud wetween them. These are both under high-water mark; they had a strong sulphurous odor and saline taste.
9. There are two springs above Ste. Anne River. One of them is two and the other five miles from the river. Both are under high-water mark, and they are both sulphurous and may be saline.
10. Another of a similar character occurs between high and low water mark, about 200 paces below Little Ste. Anne River.

Abstract

11. In the valley of the Marsouin, on the east side of the river about nine miles up, there is a spring with a small flow of water; but it is strongly sulphurous and slightly saline. Well beaten paths lead to it , shewing that it is much resorted to by the wild animals of the country.

I have the honor to be,
Sir,
Your most obedient servant,
JAMES RICHARDSON.

REPORT

FOR THE YEAR 1858

0 O
Mr. T. STERRY HUNT, F.R.S.
chemist and atineralogist to the geological survey of canada,
ADDRESSED TO
SIR W. E. LOGAN, F.R.S.
DIRECTOR OF THE GEOLOGICAL SURVEY OF CANADA.

Montreal, 1st May, 1859.
At the close of my Report for 1856, I had occasion to call your attention to the composition of some varieties of intrusive rock, occurring in the vicinity of Montreal, and locally known as white traps. These rocks, which are some times compactly crystalline, at others are porphyritic, the base being dull and earthy in aspect, and enclosing crystals of feldspar. My analyses showed these rocks to be essentially composed of a feldspar approaching orthoclase in composition, with occasional admixtures of a silicate of alumina and alkalies decomposable by acid together with carbonates of lime, magnesia and oxyd of iron. These carbonates were sometimes entirely wanting, but in other varieties of the the rock equalled five or six per cent. In like manner certain varieties gave to muriatic acid only traces of alumina from the decomposable silicate, which in other specimens equalled five or six per cent. and in one case from 36.0 to 46.0 per cent. and had the composition of natrolite, gelatinizing with acids the insoluble portion in this as in the oher cases consisted of a feldspar resembling orthoclase. This rock which contained besides, about seven per cent. of carbonates, I described under the name of phonolite. (Report for 1856, p. 490.)

The feldspathic residue from these white traps contains from 60.0 to 66.0 per cent. of silica, and only traces of lime, with from 10.0 to 13:0 per cent. of alkalies, in which potash sometimes predominates, while more often soda makes up the larger portion, a fact observed in many orthoclase feldspars, especially those from trachyte; for to this class of rocks, the white traps are for the most part to be referred, as you have already indicated by describing as a trachytic porphyry, the feldspathic trap from Chambly, whose analysis is given at page 486 of the Report just cited, (see also your Report for 1847, p. 17.)

Under the title of trachytes lithologists have included a large class of igneous rocks, generally more or less rough to the touch (as the name indicates,) white or of pale colors, and composed essentially of orthuclase or a closely related feldspar, with small portions of mica, hornblende and more rarely pyroxene. Some varieties contain disseminated grains of quariz. The typical trachytes have an uncrystalline base, which is sometimes porous and at others compact, generally dull and earthy in aspect; the base is sometimes vitreous and passes into obsidian and pumice while in others it is finely crystalline. These varieties often become porphyritic from the dissemination of crystals of glassy feldspar and other minerals, passing into the so-called argillophyre or clay porphyry. The base is sometimes highly silicious and becomes a sort of petrosilex, which is probably nothing more than an intimate mixture of quartz and feldspar; through such trachytes, and those which contain disseminated quartz, we have a passage to true granites, which consist of orth inlase feldspar mingled with quartz and mica. There are not wanting trachytes whose whole mass is coarsely crystalline, constituting granitoid and even gneissoid trachytes. Such are some of the rocks about to be described, which are only distinguished from true granites and syenites by the absence of quartz. The analyses of other trachytic rocks show them to consist of orthoclase mingled with more basic feldspars, or with hydrated silicates like natrolite, thus passing into phonolites. The accidents of structure which are supposed to characterize this class of rocks are however so little dependent upon chemical composition that in many of the so-called trachytic rocks of Hungary and Guadaloupe the predominant mineral is a basic feldspar like labradorite, containing large amounts of lime and soda, with but little potash.

Among the trachytic rocks of Lower Canada, I have met with none which are porous or vitreous. The white trachytic dykes at Lachine are finely granular, and sometimes earthy in texture; they occasionally assume a concretionary structure, and are often porphyritic from the presence of crystals of feldspar. The reddish-gray trachytic porphyry of Chambly offers an example of well-defined feldspar crystals in a paste consisting of finely lamellar orthoclase with a slight excess of silica and small portions of mica. Several dykes about Montreal consist of a trachytic porphyry with large feldspar crystals in a compact purplish or lavender-gray base of a waxy lustre, which effervesces with acids from an admixture of carbonates, and closely resembles in appearance certain trachytes from the Siebengebirge upon the Rhine. Other varieties can hardly be distin guished from the so-called domite, the trachyte of the Puy de Dôme, and exhibit small drusy cavities. The presence of carbonates in trachytes has generally been overlooked; Deville however found seven per cent. of carbonate of lime in a trachytic rock from Hungary, and I have observed it disseminated in some of the trachytes of the Siebengebirge.

In my Report already referred to I have shown that some of the trachytes of our vicinity apparently contain carbonates of magnesia and iron, and perhaps of manganese, in addition to carbonate of lime. Many of these rocks weather to some depth of a reddish-brown from the peroxydation of the iron. One of this kind, which forms a large dyke in the limestones at the Mile-End Quarries, is remarkable for its large proportion of carbonates. It is grayish-white with dark gray spots, granular, sub-vitreous in lustre, and has the aspect of an impure quartzite. It loses by ignition 110 per cent. of its weight; reduced to powder it effervesces freely with nitric acid, disengaging carbonic acid, which when heat is applied is mingled with nitrous fumes from the peroxydation of the iron. 100 parts of the rock gave in this way to the acid, 484 of alumina, besides lime, magnesia and iron, which represented as carbonates equalled carbonate of lime $11 \cdot 60$, carbonate of magnesia $3 \cdot 58$, carbonate of iron $3 \cdot 82=19 \cdot 00$; a small portion of
these bases was perhaps united with the alumina in a silicate. The insoluble residue gave as follows:

	I.
Silica,	61.62
Alumina,	21.00
Lime,	2-69
Magnesia,	
Potash,	4-66
Soda,	$5 \cdot 35$
Volatile,.	2-37

It will be seen that this residue is near to orthoclase or rather to oligoclase in composition; as I have suggested in a previous Report, the decomposition of a portion of the feldspar, which has been converted into a hydrated silicate of alumina with loss of the alkalies and a portion of silica, will explain the presence of water and an excess of alumina, not less than the deficiency of silica and alkalies, in the feldspathic matter of the more earthy of these trachytes.

These trachytic rocks occur in dykes cutting the dolerites and melaphyres of the Mountain of Montreal, and constitute the little island known as Moffatt's Island, but the most remarkable exhibition of them is met with in the mountains of Brome and Shefford. The former occupies an area of about twenty square miles in the township of Brome and the western part of the township of Shefford, and consists of a great mass of trachyte rising into several rounded hills, of which Brome and Gale Mountains are the principal, and may have an elevation of about 1000 feet above the surrounding plain, from which the intrusive rock rises boldly. It shows divisional planes, giving it the aspect of stratification, and is divided by other joints into rectangular blocks. Another similar mass, covering an area of about nine miles, is met with in the township of Shefford a little to the N. W., and distant in the nearest point only about two miles from the last. These masses of rock, as you have shown in your Report for 1847, break through the slates and sandstones of the upper portion of the Hudson River group, which in that vicinity, although on the confines of the metamorphic region, are but little altered.

The rock of these two mountainous areas presents but very slight differences, being everywhere made up in great part of a cleavable feldspar with small portions of brownish-black mica or of black hornblende, which are sometimes associated. The proportion of these two minerals to the mass is never above a few hundredths and often less than one-hundredth. The other minerals are small brilliant crystals of yellowish sphene and others of magnetic iron, amounting together probably to one-thousandth of the mass; in some finer grained varieties rare crystals of sodalite and nepheline are met with.

These rocks never contain quartz, but being made up entirely of cleavable grains of feldspar without any cementing material, are very friable and subject to disintegration; so that for some distance around the mountains, the soil is almost entirely made up of the disaggregated crystals of feldspar, which however show but little tendency to decomposition, and retain their lustre. The rock is sometimes rather finely granular, but is often composed of cleavable forms, which are from one-fifth to one-half of aninch in breadth and sometimes nearly aninch in length. The cleavages of the feldspar are those of orthoclase. The lustre is vitreous and in the more opaque varieties pearly, but the crystals never exhibit that eminently glassy lustre nor the fissured appearance which characterises the feldspar of many foreign trachytes, identical with these in composition. The color of the feldspars of these mountains is white, passing to reddish on the one hand and to pearl or lavender-gray on the other.

Specimens of the rock of Brome Mountain were taken from the side near the village of West Shefford; it was coarsely crystalline, lavender-grey in color, and contained a little brown mica, sphene and magnetic iron, but no hornblende. The density of fragments of the mass was found to be $2 \cdot 632-2 \cdot 638$. Selected grains of the feldspar had the specific gravity of 2.575 and did not yield anything to the action of hydrochloric acid. The analysis was effected in the usual way by fusing with an alkaline carbonate. The alkalies were determined from another portion, which was decomposed by ignition with a mixture of carbonate of lime and muriate of ammonia. The analyses of two portions from different specimens gave as follows:

	II.	III.
Silica,	$65 \cdot 70$	$65 \cdot 30$
Alumina,	20•80	20.70
Lime,	-84	- 84
Potash,	$6 \cdot 43$	
Soda,	$6 \cdot 52$
Volatile,	-50	
	100.79	

A specimen from the south side of Shefford Mountain was next examined. A little above the place where it was collected the rock was a coarse greyishwhite feldspar with a little black mica, and closely resembled that just described, but the portion selected contained a little black brilliant hornblende in crystalline grains about the size of those of rice, with very small portions of magnetite and yellow sphene, disseminated in a base, which although completely crystalline, was more coherent and finer grained than that of Brome, rarely exhibiting cleavage planes more than one-fourth of an inch in length. Its colour was yellowishwhite, and it was sub-translucent with a somewhat pearly lustre. Fragments of the rock gave a specific gravity of 2:607-2.626-2.657. By crushing and washing the mass, the white feldspar grains were separated from the heavier minerals, and hadin powder a specific gravity of $2 \cdot 561$.

The cornposition of this feldspar is almost identical with that from the trachytes of Brome and Chambly. For the sake of comparison, the analysis of the crystals from the latter is subjoiied. (A) See Report for 1856, p. 486.

Analysis gave for the feldspar of Shefford:

	IV.	A.
Silica	65.15	$66 \cdot 15$
Alumina,	$20 \cdot 55$	19.75
Lime,.	-73	. 95
Potash,	6.39	7.53
Soda,..	$6 \cdot 67$	5-19
Volatile,	- 50	- 55
	99.99	$100 \cdot 12$

Going westward from the mountains of Brome and Shefford, which from their proximity and their identity of composition may be looked upon as forming but one great trachytic mass, we meet with a series of intrusive masses, less extensive, but similar in attitude, and which as you have remarked are placed along the line of an anticlinal, traceable as a gentle undulation for 180 miles across the country as far west as the Lac des Chats on the Oitawa. The hills lying to the west of Brome and Shefford are in the order of their succession, Yamaska, Rougemont, Belœil, Montarville, Mount Royal and Rigaud, all of which are intruded through Lower Silurian strata. A few miles to the south of Belæil is Mount Johnson or Monnoir, another intrusive mass, which although somewhat out of the range of those just mentioned, apparently belongs to the same series. The
mineral composition of these intrusive masses varies considerably, not only for the different mountains, but for different portions of the same mountain.

Yamaska Mountain.-The greater portion of this mass is a granitoid trachytic rock, which differs from that of Brome and Shefford in being somewhat more micaceous and more fissile. The dark brown mica is in elongated flakes, and hornblende is absent in the specimens collected, which however hold small portions of magnetite and minute crystals of amber-yellow sphene; these seem to be disseminated in veins of segregation, which are of a lighter colour than the mass.* The feldspar grains which make up this rock are brilliant, of a vitreous lustre and often yellowish or reddish-gray in color. Separated by washing from the crushed mass, the crystalline feldspar in powder had a density of $2 \cdot 563$, and gave by analysis as follows (V.) Another specimen of this granitoid trachyte, having been crushed and separated by a sieve from the greater portion of the mica, gave for the composition of picked grains (VI.) :

The south-eastern part of the mountain offers a composition entirely different from the last, being a dolerite made up of a pearly white crystalline translucent feldspar, with black brilliant hornblende, ilmenite and magnetic iron. This rock is sometimes rather fine grained, though the elements are always very distinct to the naked eye, while in other portions large cleavage surfaces of feldspar half an inch in breadth are met with, which exhibit in a very beautiful manner the striæ characteristic of the polysynthetic macles of the triclinic feldspars. The associated crystals of hornblende are always much smaller and less distinct, forming with grains of feldspar a matrix to which the larger feldspar crystals give a porphyritic aspect. Finer grained bands, in which magnetite and ilmenite predominate, traverse the coarser portions, often reticulating; while the whole mass is also occasionally cut by dykes of a whitish or brownish-gray trachytic rock, which is often porphyritic. If, as is not improbable, these dykes belong to the great trachytic portion of the mountain, it would show that here as in Mount Royal the trachytes are more recent than the dolerites or diorites, but the relations of these different rocks have yet to be made out.

A portion of the coarse grained diorite selected for examination, contained besides the minerals already enumerated, small portions of black mica, with grains of pyrites, and a little disseminated carbonate of lime, which caused the mass to effervesce slightly with nitric acid. The macled feldspar crystals, sometimes half an inch in length and beautifully striated, were so much penetrated by hormblende that they were not fit for analysis, but by crushing and washing the rock a portion of the feldspar was obtained which did not effervesce with nitric acid, and contained no visible impurity except a few scales of mica. The specific gravity of the powdered feldspar was 2.756-2.763. It was attacked by hydrochloric acid with separation of pulverulent silica, but the complete analysis by this means was somewhat difficult, a portion of the mineral escaping decom-

[^22]position, so that the ordinary method of fusion with an alkaline carbonate was had recourse to. Two analyses gave as follows:-

	VII.	VIII.	B.
Silica..............	46.90	47.00	47.40
Alumina	$31.10\}$	32.65	30.45
Peroxyd of iron.....	1.35	2.65	. 80
Lime..	16.07	15.90	14.24
Magnesia. 65 87
Potash.	. 58 38
Soda.	1.77	2.82
Volatile............	1.00	. \cdot.	2.00
	$99 \cdot 42$		98.96

This feldspar then approaches closely in composition to anorthite, which although formerly regarded as a rare species, has recently been shown by Deville, Damour and Forchammer to enter into the composition of the volcanic rocks of Iceland and Teneriffe, and Scott has lately described a coarse-grained diorite from near Bogoslowsk in the Urals, which contains a feldspar of specific gravity 2.72 , composed of silica 46.79 , alumina 33.16 , peroxyd of iron 3.04 , lime 15.97 , potash 0.55 ; soda $1.28 \approx 100.79$. It is associated with a greenish-black aluminous hornblende, containing some soda and tilanic acid, together with a little mica and some quartz. (Phil. Mag. (4,) xv. 518). Quartz was also observed by Delesse in the orbicular diorite of Corsica, the feldspar of which contains according to him silica 48.62 , and lime 12.02 , approaching to anorthite in composition. In all of these feldspars however, the proportion of silica is somewhat greater than in pure anorthite, which contains only 43.2 per cent. of silica. I have already in a previous Report discussed the question of the composition of these feldspars, and my reasons for regarding them as mixtures of two or more species. (Report for 1853-56, p. 383, and Phil. Mag. (4) ix. 262.) I may here call attention to my analysis of the Bytownite of Thompson from near Ottawa; this is a granular feldspar, forming with occasional grains of hornblende a diorite, and having a specific gravity of 2.732 , which in my Report for 1850 , p. 39, I described as an impure anorthite. Its analysis is for comparison placed along side of that of the feldspar of the Yamaska diorite, and marked B.

Mount Johnson or Monnoir, is composed of a diorite which in general aspect greatly resembles that of Yamaska except that it is rather more feldspathic ; the finer grained varieties are lighter colored and exhibit a mixture of grains and small crystals of feldspar with hornblende, brown mica and magnetite. Frequently however the rock is much coarser grained, consisting of a mixture of feldspar grains with slender prisms of black hornblende often half an inch long and onetenth of an inch broad, and numerous small crystals of amber colored sphene.

In this aggregate there are imbedded-cleavable masses of the feldepar often an inch long by half an inch in breadth. At the southern foot of the mountain large blocks of the coarse grained diorite are found in a state of disintegration, affording detached crystals of feldspar with rounded angles, and weathered externally to an opaque white from partial decomposition. Near the base of the mountain a coarse grained variety of the diorite encloses small but distinct crystals of brown mica, and a fine grained micaceous variety near the summit contains sphene.

The feldspar in all the specimens which I have examined appears uniform in its character ; it is white, rarely greenish, or grayish; lustre vitreous inclining to pearly. In its cleavages it resembles oligoclase, to which species itis shown to be related by its specific gravity and chemical composition; but I have never seen among its crystals the polysynthetic macles so common in triclinic feldspars. The
specific gravity of a carefully selected fragment was 2.631 , of another specimen in powder 2.659. The analyses of two different specimens gave as follows:

Beloeil or Rouville Mountain.-The specimens which I have examined from this nountain may be described as a micaceous diorite. The feldspar, which predominates so far as to give a light grey colour to the rock, is in white translucen vitreous cleavable grains, with small distinct prisms of black hornblende and scalei of copper-cololed mica. Magnetic iron is also disseminated, and the rock resembles the micaceous portion of Yamaska. A portion of the feldspar separated by washing, still retained a little mica, and gave by analysis :

It will be seen that this feldspar approaches very closely to that from Yamassa numbered VI., and there is much resemblances between the two rocks.

Montarville or Boucherville Mountain.-The collection of specimens from this intrusive mass offers two or three remarkable varieties of rock not met with in the mountains already described; and characterized by the presence of augite and oli vine. The first variety consists almost entirely of coarsely crystalline black augite, with small scales of brown mica, and rare grains of white feldspar; other of calcite are also scattered throughout the mass, and their removal by solutio has left numerous little pits on the weathered surface; it may be described as highly augitic dolerite. Another and remarkable varity of dolerite appears th form the greater part of the mountain; it consists of olivine in rounded crystallin masses, from one-tenth to half an inch in diameter, associated with a white on greenish-white crystalline feldspar, black augite and a little brown mica and mag netic iron. The augite appears both in the form of small grains, and of well defined. crystals, often an inch in length by half an inch in diameter, and partially coated with a film of brown mica; the olivine is evidently the predominant mineral.

An average specimen of this olivinitic dolerite was reduced to powder, it did not effervesce with nitric acid, and when ignited lost only 0.5 per cent. When heated with sulphuric acid the olivine was readily decomposed with separation of silica, and by the subsequent use of a dilute solution of soda, followed by bydrochloric acid, and a second treatment with the alkaline ley, 55.0 per cent. of the mass were dissolved. The dissolved portion consisted of,

$$
\begin{aligned}
& \text { XII. } \\
& \text { Silica... } 37.30 \\
& \text { Magnesia. ... } 33.50 \\
& \text { Protoxyd of iron } 26.20 \\
& \text { Alumina .. } 3.00
\end{aligned}
$$

Another portion of the same pulverized specimen was gently warmed with dilute sulphuric acid, and the silica being removed from the residue by a solution of soda, some grains of olivine which still remained, were decomposed by a repetition of the process. The undissolved portion equalled 44.7 per cent., and appeared to consist of feldspar and pyroxene, with some mica and a little magnetite. The acid solution gave a quantity of magnesia equal to 18.0 per cent. of the rock.

Selected grains of the olivine were now submitted to analysis. The powdered mineral gelatinized with hydrochloric acid even in the cold, and was almost instantly decomposed when warmed with sulphuric acid diluted with an equal volume of water, the silica separating for the most part in a flocculent form and enclosing small grains of undecomposed mineral, which were left after dissoving the ignited silica. One or two hundredths of silica were however retaind in solution, and were precipitated by ammonia" with the oxyd of iron. Two analyses of separate portions of the olivine gave as follows, after deducting the undecomposed mineral.

	XIII.	XIV.		Oxygen.
Silica,	37.13	$37 \cdot 17$	$=$	$19 \cdot 82$
Magnesia,	$39 \cdot 36$	39.68	=	15.87
Protoxyd,	22.57	22.54	=	$5 \cdot 10$
	99.06	99.39		

If we suppose the 18.0 per cent. of magnesia found above to corresponct olivine containing $39 \cdot 5$ per cent. of magnesia, we shall have 45.5 per centit of olivine in the rock examined. The silicates not attacked by sulphuric acid wre decomposed by fusion with an alkaline carbonate, and gave as follows:

Silica	XV. 49.35
Alumina	18.92
Protoxyd of iron	4.51
Lime..	18.36
Magnesia.	6.36
Loss (alkalies?).	2.50

A crystal of the black cleavable augite from the olivinitic dolerite had a hardness of 6.0 and a density of 3.341 ; its powder was ash-gray. Analysis gave,

In some portions of the dolerite of Montarville, the feldspar is more abundant and appears in slender crystals, with augite and a smaller proportion of olivine than the last. A specimen of this variety crushed and washed, gave 3.9 p. c. of magnetic iron, and 10.0 p . c. of a mixture of ilmenite with olivine. The feldspar was obtained nearly pure, in the form of slightly yellowish vitreous grains having a density of 2.731-2.743. Its analysis gave the composition of labradorite :

Rougemont.-The rocks from this mountain offer very great varieties in composition and appearance. Some portions are a coarse grained dolerite in which augite greatly predominates; grains of feldspar are present, and a little disseminated carbonate of lime. In some specimens the augite crystals are an inch or more in diameter, with brilliant cleavages, and grains of pyrites are abundant, with calcite, in the interstices. This rock approaches closely to the highly augitic dolerite of Montarville. The olivine which characterises the latter mountain is also very abundant in two varieties of dolerite from Rougemont. One of these consists of a grayish-white finely granular feldspathic base, in which are disseminated well defined crystalline grains of black augite and amber coloured olivine, the latter sometimes in distinct crystals. The proportions of these elements vary in the same specimen, the feldspar forming more than one-half the mass in one part, while in the other the augite and olivine predominate. By the action of the weather the feldspar acquires an opaque white surface, upon which the black lustrous augite and the rusty-red decomposing olivine appear in strong contrast.

Another variety of dolerite from this mountain may be described as a finegrained grayish-black basalt enclosing a great number of crystals of dark bottlegreen translucent olivine, which appearin high relief upon the weathered surfaces, and are often half an inch in diameter.

In yournotes upon this mountain you have remarked that dykes of a fine grained granitic trap cut the augitic mass; and I find among the collections from this locality specimens of a light gray rock which is made up of a white crystalline feldspar with small prisms of black hornblende and scales of brown mica, resembling somewhat the finer grained diorite of Mount Johnson, while others more micaceous approach to that of Belœil.

Mount Royal or Montreal Mountain.-A large portion of this mountain consists of a dolerite in which augite greatly predominates, resembling the highly augitic varieties of Rougemont and Montarville. The white crystalline feldspar, which is often very sparsely disseminated, is at other times more abundant, and occasionally predominates in bands, which traverse the dark coloured rock and appear to be veins of segregation. At the east end of the mountain a variety of dolerite containing olivine occurs; it consists of a base of grayish-white granular feldspar, which constitutes in the specimen before me about one-half the mass, and incloses crystals of brilliant black augite, and others of semi-transparent amber-yellow olivine. This rock closely resembles the feldspathic olivine rock of Rougemont described above, but the imbedded crystals are somewhat larger, although much smaller than the crystals of the same mineral in the dolorite of Montarville. A portion of the feldspar freed as much as possible from augite, gave by analysis the following result, which shows that it approaches labradorite in composition:

	XVIII.
Silica,	$53 \cdot 60$
Alumina,	$25 \cdot 40$
Peroxyd of iron,	$4 \cdot 60$

The silica contained 1.60 of matter insoluble in carbonate of soda, apparently titanic acid from intermingled ilmenite, from whence a portion of the oxyd of iron is also derived.

Rigaud Mountain.-This, the most western of the series of intrusive masses under consideration, is in great part made up of a rock which approaches in character those of Brome and Shefford, being an aggregation of large crystalline grains of what appears to be a reddish orthoclase, often without any cementing medium; at other times the feldspar crystals are imbedded in a fine grained grayish base, and the rock closely resembles the trachytic porphyry of Chambly. Quartz and hornblende are both however sometimes present, the rock passing into a granite or syenite. These rocks are cut by thin veins or dykes of a hard reddish-brown jasper-like feldspathic rock.

A portion of Rigaud Mountain however consists of a rather coarse grained diorite, which is made up of a crystalline feldspar, white or greenish in colour, with small prisms of brilliant black hornblende and crystals of black mica, in some specimens the feldspar and in others the hornblende predominating. These diorites resemble closely those of Belœil and Rougemont.

The rocks of all these mountains, and especially of Montreal and Rigaud, still demand a great deal of study, and these observations and analyses are to be looked upon only as preliminary to a more extended examination, which shall determine the mutual relations of the trachytes, diorites, dolerites and olivinitic rocks above described, as well as their probable relations to the stratified deposits of more ancient periods.

The eruption of these augitic and olivinitic rocks was evidently antecedent to the deposition of the Lower Helderberg rocks, since in the dolomitic conglomerate of that age we meet with fragments of angite, oliv and mica identical with those found in the dolerites just described (Report 1857, p. 202.)

The metamorphic action exerted by these intrusive masses upon the Silurian strata in their immediate vicinity appears to have been very local, but is not less worthy of study, inasmuch as its results on a small scale resemble those produced by the wide-spread action which has altered such vast areas of similar rocks in the Green Mountain chain, far removed from the influence of intrusive rochs.

Among the sandstones and shales of the Hudson River group which surround Rougemont, there occur beds of those highly ferruginous dolomites so often met with in this formation, and similar to those which I have described in previous Reports.

In one of these, which is conglomerate or concretionary in its structure, the paste has been converted into a dark greenish crystalline hornblende, which retains its colour on the weathered surfaces, while the nodules of buff coloured dolomite have become reddish-brown and pulverulent.

In another specimen of this rock, also from Rougemont, and made up of thin layers of white crystalline red-weathering dolomite with others of a compact greenish-gray mineral, are interposed layers of blackish-green crystalline hornblende from one-sixth to one-fourth of an inch in thickness; like the other bands they are variable in thickness and interrupted. Occasionally the cleavages of the hornblende, which are nearly perpendicular to the beds, are seen cutting through thin layers of the dolomite, which as before, weathers reddish-brown.

A portion of the rock free from hornblende was attacked with efferrescence by warm dilute nitric acid, which dissolved 54.0 per c. of carbonates of lime, magnesia and iron. The soluble portion had the following composition.

Minute grains of pyrites were disseminated through the rock, which gave to the acid traces both of copper and nickel. The residue decomposed by fusion with carbonate of soda was found to contain-silica 65.40 ; alumina 10.10 ; lime 0.56 ; magnesia 2.05 ; protoxyd of iron 4.80 ; titanic acid 7.30 ; volatile 2.20 ; loss (alkalies ?) $7.59=100.00$.
The fossiliferous limestones around the mountain of Montreal appear to have suffered very little change from the proximity of the igneous rocks. In one instance a portion of the limestone for the distance of five or six inches from the dolerite was seen to be whitened, and intermixed with a portion of a greenish matter having somewhat the aspect of serpentine. Nitric acid dissolved from the crushed rock carbonate of lime with some alumina and a trace of magnesia, and the residue dried at 212° F., gave by analysis, silica 40.20 ; alumina 9.30 ; protoxyd of iron 5.22 ; lime 36.40; magnesia 3.70 ; volatile $0.20=95.02$. The insoluble matter of these limestones is generally aluminous, and contains only traces of earthy protoxyd bases. A portion of the gray fossiliferous limestone from the vicinity of the mountain left by the action of a dilute acid a residue black with carbonaceous matter, which became white by ignition, and equalled 12.8 per cent. of the rock. It was an impalpable powder which gave to dilute soda ley, 9.5 per cent. of its weight as soluble silica, while the residue had nearly the composition of a potash feldspar; analysis giving me silica 73.02 , alumina 18.31 , lime 0.93 , magnesia 0.87 , potash 5.55 , soda $0.89=99.57$. (See Report for 1857 ,, p. 198.) It would appear that under the influence of the heat of the intrusive rock this argillaceous matter combines with lime, magnesia and oxyd of iron to form the silicate whose analysis has been given above, a portion of alumina being set free in a soluble form.

Intrusive Rocks of Grenville.

In your Report for 1856, you have described a series of intrusive rocks which cut the gneissoid rocks of the Laurentian system in Grenville, and are evidently older than the Silurian strata, which in some instances rest upon the worn surfaces of these intrusive rocks. The syenite, which is more recent than the dykes of a variety of dolerite found there, is cut by a quartziferous porphyry; while all of these are intersected by dykes of a porphyritic dolerite or melaphyre, whose relations to the Silurian strata you have not yet determined.
These syenites and porphyries are very distinct from the rocks which we have found intruded among the Silurian strata, and being the oldest known intrusive rocks upon the earth's surface, their composition presents no small interest. My examinations of them are as yet incomplete, but I give the results of analyses of the porphyry, dolerite and melaphyre.

The Grenville porphyries belong to what has been called felsite porphyry, hornstone porphyry and orthophyre, having a base of petrosilex, which may be regarded as an intimate mixture of orthoclase and quartz, colored by oxyd of iron, and varying in color from green to various shades of red and black, according to the state of oxydation of this metal. Throughout this paste, which is homogeneous and
conchoidal in its fracture, are disseminated well-defined crystals of a rose-red or flesb-red feldspar, apparently orthoclase, and although less frequently, small grains of nearly colorless translucent quartz. Some varieties of this rock which you have caused to be wrought, rival for the fineness of texture, brilliancy of polish and beautiful contrasts of color, the rarest antique porphyries. An analysis was made of a characteristic variety, the paste of which was greenish-black, jasperlike, and slightly translucent on the edges; its fracture was conchoidal and its lustre somewhat waxy. The hardness was nearly equal to that of quartz and the specific gavity $2 \cdot 62$. A few well-defined crystals of flesh-red feldspar and some small grains of quartz were found disseminated; the composition of the paste, as free as possible from these, was found to be:

	XIX.	
Silica.	72.20	Oxygen 38.51
Alumina	12.50	5.84
Protoxyd of iron.	3.70	. 82
Lime.	. 90	-26
Potash.	3.88	. 66
Soda	5.30	1.36
Volatile.	. 60	

The oxygen ratios of the alkalies and the alumina are 2.02: 5.84; or very nearly as $1: 3$; the alumina requires 43.50 of silica to form with the alkalies 65.4 S of orthoclase or a feldspar with the oxygen ratios 1:3:12 ; leaving 28.40 of silica, of which a small portion only is combined with the lime and oxyd of iron.

The intrusive syenite of this region is generally made up of flesh-red orthoclase and grayish vitreous quartz, with a portion of blackish-green hornblende, which is sometimes almost or altogether wanting. The feldspar is generally distinctly crystalline and cleavable; at other times it is nearly compact. In some portions the syenite has undergone a peculiar decomposition which has reduced it to a soft unctuous greenish-matter, having somewhat the aspect of serpentine or rather of steatite. This change, as you have remarked, is observed in the vicinity of those remarkable veins of chert so much resembling buhr-stone, which are here found cutting the syenite, and is more or less complete for a distance of 200 yards on either side of them. In specimens of this altered rock, the quartz remains unchanged, while the feldspar, still preserving its cleavages, has a hardness no greater than carbonate of lime; it is somewhat unctuous to the touch and has a feeble waxy lustre; its color is sometimes reddish, but more often of a pale green; such a specimen was selected for analysis and gave:

It will be seen from the oxygen ratios of the alumina and alkali, that the feldspar has lost nearly two-thirds of its alkali, the iron and other bases having also for the most part disappeared. This change is therefore in fact a conversion of the feldspar into raolin, and as the process involves a separation of silica as a soluble alkaline silicate, it is not improbable that this decomposition has been the source of this chert, which I have found to be nearly pure silica approaching to calcedony.

The oldest dykes of this region are cut by the syenite, and are of a finegrained dark greenish-gray dolerite or green-stone, which weathers grayish-white, and is seen by the aid of a glass to consist of a greenish-white feldspar with a scaly fracture, mixed with pyroxene, occasional scales of mica and grains of pyrites. These dolerites contain no carbonates. The analyses of specimens from two dykes varying a little in texture, gave the following results:

	XXI	XXII.
Silica.	50.35	50.25
Alumina.	17.35	32.10
Peroxyd of iron	$12.50\}$	32.10
Lime	10.19	9.63
Magnesia.	4.93	5.04
Potash.	. 69	. 58
Soda.	2.28	2.12
Volatile	. 57	1.00
	99.04	100.72

The iron although represented as peroxyd, exists in the form of protoxyd, and in the case of XXI., in part as sulphuret. These rocks evidently correspond to mixtures of basic feldspars with pyroxene, and present nothing in their composition to distinguish them from ordinary dolerites.

The newer dykes, which cut the quartziferous porphyries, have a grayish black, very fine-grained base, earthy and subconchoidal in its fracture, somewhat resembling the dolerite just described, but contain occasional crystalline masses of black augite, sometimes half an inch in diameter, brilliant black grains of titaniferous iron ore, and small cleavable masses of white carbonate of lime, with which indeed the whole rock seems penetrated. A portion of the paste when reduced to powder and treated with dilute nitric acid, was attacked with abundant evolution of carbonic acid, followed on the application of heat, by red fumes. The acid solution contained an amount of alumina and oxyd of iron equal to 6.50 per cent., 0.50 of magnesia, and lime equal to 8.7 per cent. of carbonate, in which state it evidently existed in the rock. The sum of the dissolved matters equalled $15 \% 0$ per cent. and the residue dried at $2129=80.30$. There had evidently been a decomposition of an aluminous silicate by the acid, but the examination was not carried farther, and the dried residue gave on analysis:

Except in the somewhat greater proportion of potash it will be seen that the insoluble portion of this melaphyre (deducting a little silica,) approaches very nearly in composition to the older dolerites described above.
You have described as occurring at Lake Simon on the River Rouge, (ante, p. 28,) a peculiar gneissoid feldspathic rock, whose composition offers considerable interest. The rock has a granular base, which is perfectly white, crystalline, and resembles in appearance a coarse-grained marble; it encloses large masses of a white semi-transparent orthoclase feldspar, having three distinct cleavages, one of 90°. The specific gravity of selected fragments of this orthoclase was 2.564 -2.566. Its analysis showed no traces of iron or magnesia, and gave as follows:

	XXIV.
Silica,	65.75
Alumina,	$19 \cdot 40$
Lime,	. 45
Potash,	13.60
Soda,	$\cdot 69$
Volatile,	. 25

By the analysis of the finely granular portion of the rock, which contained no carbonate of lime, the following results were obtained :

Disseminated through this rock were small rounded masses of garnet from onetenth to one-half an inch in diameter. They were much fissured and very fragile; the fragments were transparent and rose-red inclining to brownish, the powder a pale pink, becoming a bright buff by ignition. The analysis of selected grains of this garnet gave:

98.6'

A fragment of reddish feldspathic gneiss from Grenville, gave by analysis as follows:

	XXVII.
Silica,	69.00
Alumine	$17 \cdot 90$
Lime,	$2 \cdot 80$
Potash,	3:86
Soda,..	$3 \cdot 70$
Volatile	1.00

$98 \cdot 26$
ON SOME MINERALS FROM THE SILURIAN ROCKS.
In many localities in the Eastern Townships the altered clay slates hold small crystalline plates of a mineral which has been designated in your Report for 1847, as phyllite. This name was applied by Dr. Thompson to a similar mineral said to occur in like rocks in Massachusetts, but which has never been re-examined, nor satisfactorily identified. The mineral in question is abundant in a fine grained grayish wrinkled micaceous schist from Brome, and in larger specimens from Leeds, where it occurs in a similar rock, which is pearl-gray in colour passing to greenish-gray, and is made up of quartz with a mineral having a talcose aspect, but aluminous in its composition, and apparently a mict. The rock resembles somewhat the mica schist of St. Gothard, in which are found
the well known kyanite and staurotide crystals. The mineral about to be described occurs in this mica schist of Leeds in small lamellar masses, rarely more than one-fourth of an inch broad and one-eighth thick; in some specimens there occur spherical masses of it, a half an inch or more in diameter, composed of lamellæ radiating from a centre, and often making up one-half the volume of the rock. It has a perfect cleavage in one direction, and two less distinct transverse cleavages; the lamellæ are often curved, and are not easily separable. The mineral somewhat resembles hypersthene in appearance. Its hardness is 6 , and its density 3.513. The color is dark greenish-gray to black, and appears brilliant black upon the faces of perfect cleavage, which have a vitreous lustre the surfaces of fracture have a feeble waxy lustre. The streak and powder are greenish-gray. The analysis of carefully selected fragments gave as follows :

	XXVIII.
Silica,	$26 \cdot 30$
Alumina,	$37 \cdot 10$
Protoxyd of iron. .	25.92
Protoxyd of manganese,	-93
Magnesia,	$3 \cdot 66$
Water,	6.10
	100.01

The analysis shows the mineral in question to be chloritoid, with which its physical characters correspond. This same species has been described under the name of barytophyllite, chlorite-spar and sismondine; it is the masonite of Jackson, which occurs in argillaceous slates in Rhode Island, and the phyllite of Thompson may prove to be the same species.

Epidotic Rocks.-The presence of epidote characterizes great portions of the altered rocks of the Eastern Townships. It is generally associated with quartz, and often forms veins or patches in a granular quartz rock, which passes into argillite; chlorite is not an unfrequent accompaniment. In many localities there is found a rock which is made up entirely of quartz and epidote, sometimes in distinct grains, but at others forming an apparently homogeneous mass, generally of a pale yellowish-green colour. Characteristic specimens of this rock are found in various localities in the range of metamorphic rocks, from St. Armand on the line of Vermont to the Shick-shock mountains in Gaspé, where upon the Grand Matanne River, the epidotic rock forms large beds among the chloritic schists. The specimens which I have examined are compact, very tough, sonorous, and have a granular sub-conchoidal fracture; the colour is pale olivegreen or pea-green, occasionally stained or barred with brick-red; the rock has a feeble waxy lustre and is translucent on the edges. In some parts grains or thin layers of quartz become apparent. The hardness of the compact homogeneous specimens is equal to that of quartz, and the specific gravity $3.04-3.09$. A portion of density 3.04 was submitted to analysis and gave as follows:

The oxygen of the protoxyds and peroxyds in the above analysis equals $4 \cdot 43$ and $8 \cdot 60$. If to these we add the silica corresponding to $13 \cdot 00$ of oxygen,
we shall have $61 \cdot 33$ parts of epidote, leaving $35 \cdot 22$ parts of silica uncombined. The density is that of a mixture of quartz and epidote in these proportions, and in portions where the rock becomes granular the two species are easily distinguishable.

On the green colouring matter of some sandstones.

The quartzose sandstones of the Quebec group are often colored by disseminated rounded grains of a peculiar greenish matter, having very much the aspect of glauconite; they have the softness of gypsum and give a pale green powder. It was not possible to separate the grains for analysis, but as I found them to be decomposed by hydrochloric acid, a specimen of the sand-stone from Indian Cove at Point Levi, which was free from calcareous matter and contained a large proportion of the green grains, was pulverized and digested for some days with warm hydrochloric acid until the green colour disappeared. The acid solution was then submitted to analysis, and the soluble silica removed from the residue by a dilute solution of caustic soda. In this way there were obtained from five grams of different portions of the sandstone the following elements.

The soluble portions of this sandstone amounted only to twenty-eight per cent ; and as the results might be vitiated by the presence of some decomposable silicate other than the green mineral, we could only conclude as to the existence of a silicate containing a large amount of protoxyd of iron and considerable potash. Last summer however, I discovered a more abundant supply of the green grains, in thin layers of sandstone among the magnesian conglomerates of the Island of Orleans. The rock consisted of little more than a very friable aggregation of colorless quartz sand with grains of the green mineral, the whole cemented by a little carbonate of lime. After crushing and sifting to separate the coarser grains of quartz, the carbonate of lime was removed by cold dilute nitric acid, and the green grains were obtained free from all apparent impurity other than the grains of quartz. This mixture was analyzed as before by digestion with hydrochlorie acid, and the soluble silica separated from the residue by a boiling solution of carbonate of soda. There were obtained in two analyses, respectively of 2.5 and 2.0 grams, as follows, calculated for 100 parts:

	XXXII.	XXXIII.
Silica,	31-32	$31 \cdot 30$
Alumina,	$12 \cdot 20$	12.15
Protoryd of iron,	$5 \cdot 29$	$5 \cdot 27$
Magnesia,	$2 \cdot 26$	
Potash,..	$5 \cdot 05$	$5 \cdot 60$
Soda,	. 33	
Water (by ignition)	5.25	
Insoluble quartz,...	$35 \cdot 96$	
	97-66	

If we subtract the quartz we shall have for the composition of the green grains :

It is evident from these results that this green matter differs chemically from the glauconite or green-sand of the cretaceous and tertiary strata, which is a hydrous silicate of protoxyd of iron and potash, with only a few hundredths of alumina; at the same time the physical characters of the green grains from the Silurian sandstones, not less than the presence of a large proportion of potash, suggest relations which should not be overlooked. This Silurian green-sand may be looked up on as a glauconite in which alumina replaces a large portion of the protoxyd of iron, just as in pyrophyllite it is substituted for the magnesia of talc. The connection of this material with what I have described as parophite, and with the dysyntribite of Shepard, hydrated aluminous rocks, containing much potash, deserves to be considered. The history of these substances is as yet but very imperfectly known. (See my Report for 1852, p. 94, and G. J. Brush, Am. Jour. of Science, (2) xxvi., p. 63.)

farther contributions to the history of magnesian LIMESTONES.

In my Report for 1857, after describing a number of our magnesian limestones, and recalling the principal facts in the history of magnesian rocks, I proceeded to notice the different theories which had been proposed to account for their formation. I then detailed the results of some experiments made for the purpose of ascertaining the action of waters containing alkaline bicarbonates. upon sea-water and other waters holding in solution muriates and sulphates of lime and magnesia. It was she wn that at the ordinary temperature, and in somewhat dilute solutions, the whole of the lime may thus be separated as a crystalline carbonate retaining only one or two per cent. of carbonate of magnesia, and that the addition of an excess of the alkaline bicarbonate gives rise to a very soluble bicarbonate of magnesia, whose solution deposits by evaporation a hydrated monocarbonate.

Previous experimenters had already shown that solutions of magnesian carbonate have the power of decomposing solutions of muriate and even of sulphate of lime; a solution of the latter is according to Mitscherlich slowly but completely decomposed when digested at the ordinary temperature with carbonate of magnesia or dolomite. I found, however, that under certain conditions these affinities are apparently reversed, so that sulphate of magnesia may be decomposed by bicarbonate of lime with formation of gypsum and bicarbonate of magnesia. As I conceived this reaction to be of great importance in a geological point of view, I have since carefully investigated it, and have now to submit the results.

The observations of Bischof and other chemists shew that at the ordinary temperature and pressure, water charged with carbonic acid will hold dissolved about one-thousandth of carbonate of lime; such a solution according to Lassaigne contains about six equivalents of carbonic acid for one of lime, while from an experiment of Bischof it would appear that water may retain about six-tenths of this amount of lime combined with only one and a-half equivalents of carbonic acid. According to the latter author however, one
thousand parts of water saturated with carbonic acid dissolve only 1.35 of magnesian carbonate, but the experiments of Bineau and my own show: that in the presence of neutral salts at least; its solubility is many times greater. The liquids obtained by adding bicarbonate of soda to an artificial sea-water, gave more than four parts of magnesian carbonate to 1000, and by adding known quantities of carbonate of soda to a solution of carbonate of magnesia through which was passed a current of carbonic acid, I found it easy to produce permanent solutions retaining 21.0 grams of bicarbonate of magnesia in a liter of water. Bineau by prolonging the action of the carbonic acid obtained 11.2 grams of magnesia (equal to 23.5 grains of monocarbonate, dissolved in a liter of water, with very nearly two equivalents of carbonic acid. This comparatively great solubility of bicarbonate of magnesia, is', as we shall hereafter see, of much importance in a geological point of view.

It has long been noticed that alkaline carbonates, sulphates and chlorids as well as the neutral salts of magnesia, augment the solubility of the carbonate of magnesia in water, but these for the most part do not sensibly affect the solubility of the carbonate or bicarbonate of lime. I have however found that the sulphates of soda and magnesia offer in this respect a remarkable exception; in fact a litre of water which contains a small portion of either of these neutral salts, is capable of dissolving in the presence of carbonic acid at the ordinary pressure, from 1.56 to 1.82 grams of carbonate of lime, or nearly twice as much as pure water under the same circumstances. A farther investigation of this unexpected reaction showed me that the lime existed in these solutions in the state of sulphate, of which they are in fact nearly saturated solutions. The solubility of this salt has been variously stated; according to Bucholz it requires 450 parts of hot or cold water, while Giese found it soluble in 380 parts of cold and 388 parts of hot water. I found a solution prepared by agitating pure gypsum frequently for several days with distilled water, to contain one part of sulphate in 483 of water, but by evaporating a portion of this same solution at a gentle heat until crystals of gypsum separated, the clear liquid decanted after twelve hours of repose at 609 F , contained one part of sulphate of lime ($\mathrm{CaO} \mathrm{SO}_{3}$) in 372 parts of water, a result which approaches closely to the determination of Giese.

When a solution of bicarbonate of lime is mixed with one of sulphate of soda or sulphate of magnesia, or when a current of carbonic acid gas is passed through a solution of either of these salts holding carbonate of lime in suspension, there are formed by double decomposition, sulphate of lime and bicarbonate of soda or magnesia. The addition of alcohol to these solutions determines a copious precipitate of sulphate of lime, and the filtrate by evaporation gives a residue of bicarbonate of soda or of carbonate of magnesia. The following, among other experiments, were made in illustration of this reaction.

To 400 cubic centimeters of a recent solution of bicarbonate of lime, free from all traces of chlorid or sulphate, were added two grams of crystallized sulphate of soda and an equal volume of alcohol; the white flocculent precipitate which immediately separated was collected after a few hours, and washed with dilute spirit of wine; it was completely soluble in water, from which it was again thrown down by alcohol, with the addition of a few drops of hydrochloric acid. It was pure sulphate of lime, weighing after ignition $0 \cdot 428 \mathrm{grs}$. which correspond to 0.915 gr . of carbonate of lime to the liter.

400 c . c. of a similar solution of bicarbonate of lime were mingled with two grams of sulphate of magnesia and precipitated by alcohol ; the sulphate of lime equalled 0.467 gr ., and by boiling a copious precipitate separated, which contained a little lime and $0 \cdot 276 \mathrm{gr}$ of carbonate of magnesia, theory requiring 0.288.

500 c. c. of a solution of bicarbonate of lime, with two grams of hydrated
sulphate of soda and an equal volume of alcohol, gave a precipitate of gypsum, which dissolved and reprecipitated as in A, gave 0.570 of sulphate of lime, corresponding to $0: 838 \mathrm{gr}$. of carbonate to a liter. The alkaline filtrate was evaporated to dryness; the residue dissolved and precipitated at a boiling heat by a dilute solution of chlorid of calcium gave an amount of carbonate of lime, free from sulphate, which was equal to 0.445 gr . of carbonate of soda; theory demands $0 \cdot 442$.

To a little more than 200 c. c. of lime-water were added four grams of sulphate of soda, and a current of carefully washed carbonic acid was then passed through the liquid for four hours, at the end of which time the solution of the lime was nearly complete. The liquid now gave with alcohol 0.555 gr . of sulphate of lime, and by the indirect method described above, the carbonate of soda was found to be equal to 0.434 gr., theory requiring 0.432 .

In order to determine more carefully the increased solubility of carbonate of lime in the presence of sulphates, the following experiments were made.

250 c . c. of water containing ten grams of hydrated sulphate of soda and two grams of pure carbonate of lime, were exposed for an hour and a-half to a current of carbonic acid gas, and the solution was then left for four hours in a covered flask, after which 150 c . c. of it were mixed with an equal volume of absolute alcohol. The precipitate of gypsum thus obtained was completely soluble in water, and equalled 0.363 grs . of sulphate of lime, being $2 \cdot 420$ grs. to a liter.

In a similar experiment the precipitate of gypsum from 200 c . c. was dissolved in pure water and thrown down as oxalate of lime. It gave an amount of carbonate equal to 1.820 grs. to the liter, or 2.475 of sulphate of lime.

A current of carbonic acid gas was passed for an hour and a quarter through a solution of sulphate of magnesia containing suspended carbonate of lime. The filtered liquid remained transparent after many hours of exposure to the air, but 200 c. c. of it gave with alcohol a precipitate of gypsum, which was collected after twelve hours, and was completely soluble in water, from which solution the lime was thrown down as oxalate, giving an amount of carbonate equal to 1.565 gr., or $2 \cdot 128 \mathrm{gr}$. of sulphate of lime to the liter. The filtrate, being evaporated to dryness over a water-bath, gave a little carbonate of lime, and an amount of carbonate of magnesia equal to 1.100 grs. to the liter; theory requires 1.312 , but it is difficult to separate in this way the whole of the carbonate from the sulphate of magnesia. The solutions in the last three experiments contained respectively one part of gypsum in 413, 405 and 459 parts of water.

When a solution like the last is evaporated at a gentle heat gypsum is deposited, while bicarbonate of magnesia remains in solution. I have already alluded to this unexpected reaction in my Report for 1857, p. 216, and the following experiments were made in confirmation of it. The sulphate of magnesia was carefully recrystallized and free from all traces of lime; its solution did not alter the color of curcuma, but slowly restored that of reddened litmus. The carbonic acid was evolved by hydrochloric acid from limestone, and carefully washed, so that its solution was not disturbed by nitrate of silver.

To 500 c . c. of water were added twelve grams of sulphate of magnesia and half a gram of precipitated carbonate of lime, and a current of carbonic acid gas passed for two hours through the liquid, when the carbonate of lime was nearly all dissolved. The solution was now evaporated in a porcelain basin at a temperature varying from 90° to $110^{\circ} \mathrm{F}$., until crystals of sulphate of magnesia separated; a little water was then added, and the solution being immediately filtered, contained no lime-salt, but was strongly alkaline to curcuma paper. When heated it became turbid before boiling, and after fifteen minutes ebullition depo-
sited a flocculent precipitate containing 0.208 gr . of carbonate of magnesia. The basin in which the evaporation had been conducted was covered with a crystalline crust, which effervesced but slightly with hydrochloric acid; it was soluble in a large volume of water, and was principally gypsum.

To 500 c . c . of water were added twenty grams of sulphate of magnesia and one gram of pure carbonate of lime ; a current of carbonic acid gas was now passed through the liquid for an hour and a half, when the lime was nearly all dissolved; the solution was saturated with the gas, but contained no trace of chlorids. It was neutral to curcuma, and gave with alcohol a precipitate of gypsum. A portion of it heated to boiling remained clear for five minutes, but then grew turbid and deposited an abundant precipitate of carbonate of lime.
$200 \mathrm{c} . \mathrm{c}$. of this solution were evaporated at a temperature of $150^{\circ}-190^{\circ} \mathrm{F}$., until crystals of sulphate of magnesia separated; after twelve hours repose in the cold a little water was added and the solution decanted from a precipitate, of which $\cdot 272 \mathrm{grm}$ were collected ; when this was treated with hydrochloric acid and dilute alcohol, a portion of carbonate of lime was removed, and there remained 236 gr. of crystalline gypsum, weighing when ignited, $\cdot 185$, equal to $\cdot 925$, gr. of sulphate of lime to the liter. This filtered solution of sulphate of magnesia was strongly alkaline to curcuma, and gave by boiling a precipitate, which contained no lime, but a portion of carbonate of magnesia equal to $\cdot 490 \mathrm{gr}$. to the liter ; theory demands $5 \% 0$.

A solution of twelve grams of sulphate of magnesia in 300 c . c. of water was mingled with carbonate of lime and saturated with carbonic acid. It was then filtered and evaporated at about $160^{\circ} \mathrm{F}$., until sulphate of magnesia separated. By this means a sparingly soluble crystalline precipitate was formed, which contained gypsum equal to 235 grm . of sulphate of lime, with a little carbonate. The filtrate gave by boiling a precipitate of carbonate of magnesia, which equalled $\cdot 098$, while theory demands $\cdot 145$.

To 600 c . c. of a solution of bicarbonate of lime were added twenty grams of sulphate of magnesia, when the liquid, which was before turbid from a portion of suspended carbonate, became clear, and gave by evaporation at $90^{\circ} \mathrm{F}$. a precipitate containing .144 of sulphate of lime, with some carbonate of lime and a trace only of magnesia.

A solution of five grams of sulphate of magnesia was mingled with a portion of solution of bicarbonate of lime, and evaporated at $160^{\circ}-180^{\circ} \mathrm{F}$., further portions of the latter amounting in all to 300 c. c. being added as the evaporation went on. There was deposited a mixture of carbonate of lime, with crystalline gypsum equal to 373 gr . of sulphate of lime to the liter.

It will be remarked, that while the recent solution, containing gypsum and carbonate of magnesia with excess of carbonic acid, is neutral to curcuma, and may be boiled for some minutes before a precipitate of carbonate appears, the liquid from which gypsum has been deposited by evaporation is strongly alkaline to curcuma paper, and lets fall a precipitate of carbonate of magnesia even before attaining the boiling point ; this precipitate is in part redissolved as the liquid cools. When this alkaline liquid is mixed with a solution of gypsum, it deposits in a few hours, especially if gently warmed, a crystalline precipitate of carbonate of lime, resulting from the decomposition of the sulphate of lime by the carbonate of magnesia.

The sulphate of magnesia retains the carbonate of magnesia in solution in such a manner that the latter is not rendered completely insoluble, even when the liquid is evaporated to dryness over a water-bath. Hence the deficiency observed in the determinations of carbonate of magnesia whenever in the preceding experiments, a large portion of sulphate was present The filtrate from the
carbonate in these cases is still alkaline to curcuma paper, and gives with nitrates of silver and copper, precipitates of carbonates.

In the preceding experiments all salts other than those concerned in the reaction, were excluded, but similar results were obtained in the presence of sea-salt and chlorid of magnesium. Twenty grams of pure chlorid of sodium, and ten grams of sulphate of magnesia, with a portion of carbonate of lime, were added to 800 c. c. of water, and the solution saturated with carbonic acid gas. Of this liquid 400 c . c. were evaporated at $160^{\circ}-180^{\circ} \mathrm{F}$., until sea-salt separated, and gave 045 grm . of sulphate of lime, mixed with 291 of carbonate.

Ten grams of chlorid of sodium and twenty grams of crystallized chlorid of magnesium were added to 600 c . c. of solution of bicarbonate of lime, containing two grams of sulphate of magnesia; 300 c . c. of this solution were now evaporated at $160^{\circ}-180^{\circ}$ F., until crystals of sea-salt appeared ; there were obtained -057 gram. of sulphate of lime.
A saturated solution of one part of sea-salt and two parts of sulphate of magnesia was exposed to a cold of $32^{\circ} \mathrm{F}$., when a large amount of sulphate of soda separated. The mother liquor, containing besides some sea-salt and sulphate of magnesia, a large amount of chlorid of magnesium, was diluted with four parts of water. 500 c. c. of this solution were mingled with carbonate of lime, saturated with carbonic acid and then evaporated at a temperature of $85^{\circ}-90^{\circ} \mathrm{F}$., to one-twelfth, when crystals of sea-salt separated, and a crystalline residue. of gypsum was obtained. It did not effervesce with hydrochloric acid, and was soluble in a large volume of water. The saline liquid by evaporation to dryness, gave 331 of carbonate of magnesia, equal to 535 of gypsum.

To another portion of 100 c . c. of the saline solution employed in the last experiment, 500 c . c. of a solution of bicarbonate of lime were gradually added, the mixture being meanwhile evaporated at a temperature below $100^{\circ} \mathrm{F}$., and at length carried to dryness. On treating the mass with water, the strongly saline filtrate was found to contain no salt of lime, but sulphate of lime was abundant in the washinge, and the residue on the filter, when treated with hydrocbloric acid, left crystalline grains of gypsum.

In the foregoing experiments it is not easy to separate the more soluble salts from the gypsum, which although insoluble in saturated saline liquids, is readily dissolved by washing wilh water, in place of which a solution of gypsum may be used. In either case, as a solution of sulphate of lime is decomposed by the dissolved carbonate of magnesia, the washings should not be mingled with the alkaline filtrate in which we wish to determine this salt. As a solution of magnesian carbonate which has lost its excess of carbonic acid by evaporation, is incompatible with dissolved gypsum, it is evident that the presence of an excess of this acid must be one of the conditions required for the crystallization of gypsum from such a solution. It often happens that some slight variations in the conditions of the experiment with two portions of the same solution, will give in nne case abundance of gypsum and in the other chiefly carbonate of lime.

The power of bicarbonate of baryta to decompose sulphate of magnesia and even sulphate of soda, is well known; and I have found that the insolubility of the sulphate of strontia determines a similar result. A solution of bicarbonate of strontia, prepared by passing carbonic acid gas through water bolding the carbonate in suspension, was divided into two portions, one of which was mingled with a portion of sulphate of soda and the other with sulphate of magnesia. The mixtures, at first clear, soon became troubled from the separation of a precipitate, which adhered to the sides of the vessels, and like ammonio-magnesian phosphate, along the lines marked by the rod in stirring. After twelve hours the
liquids decanted from the precipitate, which was in each case sulphate of strontia, were evaporated at a gentle heat to a small volume, during which process they deposited a portion of carbonate of strontia. The first contained some sulphate, with a large proportion of carbonate of soda, and the second, which gave no trace of dissolved strontia, let fall by boiling a copious precipitaie of magnesian carbonate.
An analogous reaction between the sulphates of iron and zinc and the bicarbonate of lime, resulting in the production of gypsum and carbonates of zinc and iron, has already been suggested by Monheim to explain the association of these minerals in a modern deposit from the waters of a mine. The experiments of Bischof have established the fact of such a decomposition for the sulphate of copper, as well as for the sulphates of zinc, and protoxyd of iron.-(Leirbuch, iis, 1198-1209.')

The carbonates of lime and magnesia, although so frequently combined in nature in the form of dolomite, exhibit under ordinary circumstances, little disposition to unite with each other. The carbonate of lime, as we have seen, separates nearly pure from solutions of bicarbonate of magnesia at ordinary temperatures; and if by the aid of heat a portion of magnesian carbonate is at the same time precipitated, the two appear to be only in a state of admixture.

Karsten long since observed that dilute acetic acid, at temperatures below $32^{\circ} \mathrm{F}$., readily dissolves carbonate of lime, but is without acticn on the double carbonate of lime and magnesia, which constitutes dolomite. By this means he was enabled to make proximate analyses of many magnesian limestones, which he found to be mixtures of dolomite with carbonate of lime. Before undertaking a series of experiments on the production of this double carbonate, I endeavored to fix by experiment the limits of error in Karsten's process.
For this purpose I took a pure acetic acid containing $\overline{\mathbb{z}} 9 \cdot 4 \mathrm{p}$. c. of glacial acid; this was mixed with an equal volume of water, so that the dilute acid used in the following experiments contained about 15.0 p. c. of glacial acetic acid. Unless otherwise specified, it was employed at $32^{\circ} \mathrm{F}$. (lower temperatures being difficult to regulate), and this temperature was maintained by a bath of ice and water. In these conditions the acid dissolved precipitated carbonate of lime and pulverized. limestone with lively effervescence, even when farther diluted. A pure crystalline dolomite in fine powder was however slowly attacked, subsiding to the bottom of the liquid, and disengaging small bubbles of gas from time to time. After six hours digestion with a large excess of the acid at 32° F., 1.680 grs . of this dolomite had lost .082 of carbonate of lime and 063 of carbonate of magnesia, equal to 5.63 p . c. of dolomite. At a temperature of $60^{\circ} \mathrm{F}$. the same acid caused a slow but continued disengagement of gas bubbles from the powdered dolomite, which after thirty hours had lost 28.0 p . c. of its weight, the dissolved portion containing 45.0 p . c. of carbonate of magnesia. At $125^{\circ} \mathrm{F}$. the action of the acid upon the powdered dolomite was accompanied with gentle effervescence, and the amount dissolved after two hours digestion, was 13.6 per cent.
A white crystalline magnesite from Styria, whose only impurity was a portion of carbonate of iron equal to 0.9 p . c. of peroxyd, and which was slowly but completely soluble in hot hydrochloric acid, was also slightly attacked by dilute acetic acid at $60^{\circ} \mathrm{F}$.; after twelve hours digestion there were dissolved 0.63 p. c. of the carbonate. At $125^{\circ} \mathrm{F}$. however a distinct effervescence was produced with the acid, and at the end of three hours 11.0 p . c. of the magnesite were dissolved.
From these experiments it was evident that although not insoluble in acetic acid of 15.0 p . c. at $32^{\circ} \mathrm{F}$., this liquid might serve to separate dolomite from carbonate of lime, and also to effect a partial separation of dolomite from magnesite.

In subsequent experiments I found that a much more dilute acid, prepared by mixing one part of the above acetic acid with nine parts of water, and consequently containing only about 3.0 p . c. of glacial acetic acid, attacks pure carbonate of lime with lively effervescence at 60°, and even at $32^{\circ} \mathrm{F}$., and may be therefore used with still greater advantage in the investigation of these mixed carbonates.
The insolubility of the double carbonate of lime and magnesia in carbonic acid water is also an important fact in the history of dolomite. Bischof found that by the prolonged action of a solution of carbonic acid upon a limestone containing 11.54 p . c. of magnesian carbonate, there were dissolved 4.29 p. c. of carbonate of lime, and not a frace of magnesia. In like manner a manganesian iron-spar which contained 14.0 p. c. of carbonate of lime and 15.0 p. c. of carbonate of magnesia, gave to carbonic acid water four parts of carbonate of lime for one part of magnesian carbonate.-(Lehrbuch, ii, 1176.)

The following experiments were made to determine the solubility of dolomite in carbonic acid water. The magnesian limestone of Galt, which is a nearly pure crystalline dolomite, was selected, and one gram of this in fine powder was suspended in a little more than half a liter of water, which was then saturated with carbonic acid gas, and the mixture digested for eighteen hours at about 65° F. with frequent agitation, when the quantity of dissolved carbonates in a liter of the filtered liquid was found to be 0.150 grs., consisting of carbonate of lime 37 , carbonate of magnesia 43. In order to determine the influence of time and a greater surface of the solid matter, two grams of the same dolomite were treated as above for five days, when there were dissolved of the double carbonate - 390 grs. to a liter.

A mixture of one gram of the dolomite and one gram of artificial carbonate of lime were digested as above with half a liter of carbonic acid water for eighteen hours, when there were found in solution, of carbonate of lime 330 , and of carbonate of magnesia 007, equal to 015 of dolomite, so that only four parts of dolomite were dissolved for ninety-six parts of carbonate of lime.

Accepting the idea that dolomites have been formed by the alteration of beds of carbonate of lime, Haidinger long since suggested that a solution of sulphate of magnesia at a high temperature might produce this change, giving rise by double decomposition to carbonate of magnesia and sulphate of lime, although Mitscherlich had shown that at ordinary temperatures sulphate of lime and carbonate of magnesia are mutually decomposed. Von Morlot subsequently verified this conjecture of Haidinger ; he found that by heating together to 200° centigrade, for six hours in a sealed tube a mixture of two equivalents of carbonate of lime and one equivalent of crystallized sulphate of magnesia, the latter was completely decomposed with the production of sulphate of lime and carbonate of magnesia, which he seems to have regarded as forming with the excess of carbonate of lime a double carbonate.-(Liebig and Kopp, Jahresbericht, 1848, ii, 500). Desirous of verifying this observation I bave repeated the experiment of Von Morlot, but have found that although the sulphate of magnesia is indeed completely converted into carbonate, this remains for the most part in the form of magnesite, mechanically intermixed with the excess of carbonate of lime which may be separated by the aid of dilute acetic asid.

100 parts of pure precipitated carbonate of lime (two equivalents,) and 123 parts of crystallized sulphate of magnesia (one equivalent,) were intimately mingled and exposed in sealed glass tubes for six hours to a temperature of $392^{\circ} \mathrm{F}$. ($200^{\circ} \mathrm{C}$.) The resulting white tasteless mass was treated with cold dilute acetic acid, which immediately caused a strong effervescence. When this action had subsided the residue was washed with cold water and then treated with
dilute hydrochloric acid, which produced no effect in the cold, but by the aid of a gentle heat dissolved a large portion with effervescence. The addition of alcohel threw down abundance of gypsum from the solution, and the filtrate from this being evaporated to dryness and then moistened with hydrochloric acid, was digested with absolute alcohol, by which the chlorids alone were dissolved, leaving a small residue of gypsum, and were found to consist of chlorid of magnesium with but very litlle chlorid of calcium. The acetic acid on the contrary had dissolved a large portion of carbonate of lime, with but little carbonate of magnesia, and a little gypsum. Thus in one experiment the acetic solution gave besides 079 of sulphate, $\cdot 523$ of carbonate of lime and $\cdot 016$ of carbonate of magnesia, equal to 3.0 p . c. of the dissolved carbonates, while the portion insoluble in acetic acid, separated from gypsum by the process just described, gave 459 of carbonate of magnesia and 0.17 of carbonate of lime, or 96.3 p. c. of magnesian carbonate. In another experiment there was obtained from the residue insoluble in acetic acid, carbonate of magnesia 437 , carbonate of lime $0 \cdot 20$.

The crystallized sulphate of magnesia undergoes the aqueous fusion at about $230^{\circ} \mathrm{F}$., and contains sufficient water to render the mixture with car bonate of lime somewhat moist after heating. The above experiment was however repeated with the addition of a portion of water, but with the same result as before; the carbonates not dissolved by acetic acid consisted of 242 of carbonate of magnesia and - 005 of carbonate of lime.

A subsequent experiment in a metallic tube upon a larger quantity of the mixture of crystallized sulphate of magnesia and carbonate of lime, with the use of an acid of only 3.0 p. c., confirms the previous results, and shows the sparing solubility of the carbonate of magnesia which is formed. Of the carbonates from the acetic solution, that of magnesia equalled only seven thousandths, while the carbonate of magnesia remaining with the gypsum retained but 1.3 p.e. of carbonate of lime. In separating small portions of lime from magnesia I have repeatedly had occasion to verify Scheerer's observation that an excess of magnesian salt hinders the precipitation of oxalate of lime, so that it is necessary to separate the two bases as sulphates by the aid of spirits of wine.

The experiments of De Senarmont have shown that when carbonate of magnesia is formed at a temperature of $150^{\circ}-175^{\circ} \mathrm{C}$. by the reaction between solutions of sulphate of magnesia and carbonate of soda, or by the decomposition of a solution of bicarbonate of magnesia, it separates as a crystalline powder sparingly soluble in acids and apparently identical with magnesite.-Ann. de Chim. et de Plys. [3], xxxii, 148. It is evident from the results just detailed that a similar result takes place when carbonate of lime is substituted for the carbonate of soda, the carbonate of magnesia formed in the presence of an excess of carbonate of lime retaining only a very small proportion of this carbonate.

According to Marignac when carbonate of lime is heated in sealed tubes with a solution of chlorid of magnesium to $200^{\circ} \mathrm{C}$. for six hours, here is obtained, besides a portion of chlorid of calcium, a product consisting of 48.0 parts of carbonate of lime and 52.0 of carbonate of magnesia; at the end of two hours' heating, the proportion of magnesian carbonate was less. (Bul. Soc. Geol. de France [2] vi. 315.) It does not appear whether Marignac examined the product by the aid of acetic acid, but I find that in this process a portion of double carbonate of lime and magnesia is really formed.

A mixture of six parts of pure precipitated carbonate of lime with five parts of pure crystallized hydrated chlorid of magnesium, dissolved in a little water, was placed in sealed tubes, and heated for eight hours to a temperature of 150° C., which was gradually raised to $220^{\circ} \mathrm{C}$. Two hours after cooling, the matter was removed from the tubes, washed, dried and treated with dilute acetic acid,
which caused a violent effervescence ; as soon as this had subsided, the liquid, which contained a large excess of acid and still attacked carbonate of lime with energy, was separated by filtration from the undissolved residue, which was but little more than one-fifth of the whule. The dissolved portion consisted of carbonate of lime $96 \cdot 56$, carbonate of magnesia $3 \cdot 14$.

Previous experiments had shown me that in operating with glass tubes, a portion of silicate of magnesia is always formed, and as this is decomposed by mineral acids, acetic acid was employed in the analysis of the undissolved carbonates, of which - 500 gr . from the last experiment were treated with acetic acid of 15 p . c. at $60^{\circ} \mathrm{F}$. No action was apparent even after some minutes, but with a heat of $120^{\circ} \mathrm{F}$. a gentle effervescence ensued. When this ceased there remained a flocculent residue equal to $15^{\circ} 7 \mathrm{p} . \mathrm{c}$., and the undissolved portion gave carbonate of lime $37 \cdot 6$, carbonate of magnesia $62 \cdot 4$.

A portion of 500 gr. of the same carbonates was now digested with dilute acetic acid at $60^{\circ} \mathrm{F}$. for several hours. The soluble portion contained carbonate of lime 40.0 and carbonate of magnesia 60.0 , while the undissolved residue equalled 22.5 p . c. It effervesced freely with warm somewhat dilute hydrochloric acid, and left a silicious residue of 032 grm ., while the dissolved portion gave -007 of carbonate of lime and 060 of carbonate of magnesia.

In a sabsequent experiment in which metallic tubes were used, the formation of this silicate was obviated. The misture of six parts of carbonate of lime and five parts of crystallized hydrated chlorid of magnesium with a little water, was heated during six hours from 150° to $220^{\circ} \mathrm{C}$., then rapidly cooled and exhausted with water. The solution contained rather more than four equivalents of chlorid of magnesium for three of chlorid of calcium, and the mixture of carbonates gave only 15.0 p . c. of carbouate of magnesia. Treated with acetic acid of 3.0 p . c. at $32{ }^{2} \mathrm{~F}$. the mixture effervesced strongly, leaving a residue which no longer effervesced with a farther portion of the same acid. The acetic solution gave 2.72 parts of carbonate of magnesia for 97.28 of carbonate of lime, while the portion undissolved was carbonate of magnesia with 12.6 p . c. carbonate of lime; in another experiment upon the same mixture of carbonates, the residue from acetic acid contained 13.0 p . c. of carbonate of lime.

The results of different trials with mixtures of carbonate of lime and chlorid of magnesium were somewhat variable; while in the last experiment the proportion of carbonate of magnesia formed equalled only 15.0 p . c. of the carbonates, in another trial it was found to be 24.4 p . c . and the residue from acetic acid, instead of $13 \cdot 0$, contained $30 \cdot 3$ p.c. of carbonate of lime, and in a third under similar circumstances 23.6 p . c.

It is evident from the above results that these magnesian carbonates, which retain after the action of acetic acid from $13: 0$ to 37.0 p . c. of carbonate of lime, are mixtures of a double carbonate of lime and magnesia with a less soluble carbonate of magnesia, from which the double salt may be partially separated by the prolonged action of acetic acid at ordinary temperatures.

It would appear that the carbonate of magnesia unites at the moment of its formation with a portion of carbonate of lime to form the double carbonate. It remained to be seen-whether mixtures of the two carbonates would combine directly, and experiments were made with the Styrian magnesite before mentioned, which was mingled in fine powder with carbonate of lime and heated for some hours in sealed tubes $10200^{\circ} \mathrm{C}$. with a dilute solution of chlorid of calcium. No combination took place, and the carbonate of lime was afterwards completely removed from the magnesite by cold dilute acetic acid.

The dense insoluble magnesite, as might be conjectured from its occurrence in the products of the previous experiments, exhibits none of that aptitude to
combine with carbonate of lime which seems to characterize the newly formed magnesian carbonate before passinginto this sparingly soluble condition, a change which from the experiments of De Senarmont, takes place at from 155° to 175° C. The amorphous hydrated carbonate of magnesia formed at low temperatures and readily soluble in dilute acids, is in like manner, when heated under pressure to prevent the loss of carbonic acid, converted into magnesite ; ifunder these conditions carbonate of lime be present, the two combine to form a double salt, possessing the chemical characters of dolomite.*

In his researches on the double carbonates, H. Deville has described an anhydrous crystalline salt composed of one equivalent each of the carbonates of magnesia and soda. This double carbonate is insoluble in cold water, but readily dissolves in acetic acid. When it is beated with a solution of chlorid of magnesium in sealed tubes to $200^{\circ} \mathrm{C}$., chlorid of sodium and sparingly soluble magnesite are obtained. When warmed with a solution of chlorid of calcium, this double carbonate is decomposed and gives rise to a mixture of carbonates of lime and magnesia readily soluble in acetic acid; at a higher temperature under pressure the two carbonates unite to form a double salt.

Three parts of the finely pulverized carbonate of magnesia and soda were added to two parts of chlorid of calcium dissolvedin a linle water and rendered slightly acid by hydrochloric acid. The mixture being placed in hermetically sealed glass tubes, these were heated for some hours in a bath of boiling water with frequent agitation, and then in an oil-bath for eight hours, the temperature being slowly raised from 130° to $220^{\circ} \mathrm{C}$. On cooling, the saline liquid in the tubes was found to contain besides chlorids of sodium and calcium, a considerable amount of chlorid of magnesium. A portion of the double salt became coated over by the precipitated carbonate of lime and thus protected from the fuxther action of the chlorid of calcium.

The carbonates from the above experiment were treated with a large excess of dilute acetic acid at $60^{\circ} \mathrm{F}$. till effervescence ceased. 600 gr . of the residue were now digested for two hours with dilute acid at $60^{\circ} \mathrm{F}$; the action was accompanied with a slow and constant disengagement of carbonic acid gas, and the solution gave 302 grm . of carbonates, of which the carbonate of lime constituted 41.3 p.c. The undissolved portion effervesced with warm hydrochloric acid, which dissolved $\cdot 178$ of carbonates containing only $12 \cdot 3$ p. c. of carbonate of lime, leaving 116 grm . of insoluble silicious residue.

In a repetition of the above experiments the carbonates were treated with acetic acid at $32^{\circ} \mathrm{F}$. till effervescence ceased, and a portion of the remaining double carbonale was digested for some time with acetic acid at $125^{\circ} \mathrm{F}$., which took up 80.0 p. c. of carbonates containing 38.4 p.c. of carbonate of lime. The insoluble portion did not effervesce with hydrochloric acid, which howe ver removed from it a portion of magnesia, but no lime, and left a silicious residue. Another portion was digested for several hours with acetic acid at $60^{\circ} \mathrm{F}$., which took up 78.0 p . c. of carbonates containing 40.8 of carbonate of lime. The insoluble residue effervescerl freely with warm sulphuric acid, which dissolved a portion of magnesia, but no trace of lime.

[^23]Experiments were now made with directly prepared mixtures of the two carbonates. When concentrated solutions of sulphate of magnesia and carbonate of soda are mingled in equivalent proportions, the pasty mass is after a few days repose at ordinary temperatures entirely converted into a mass of crystals of the ter-hydrated monocarbonate of magnesia. $\quad \mathrm{MgO} . \mathrm{CO}_{2}+3 \mathrm{HO}$. The salt thus prepared contained 29.0 per cent of magnesia, which is exactly the quantity indicated by theory. A portion of this crystalline hydro-carbonate (which is readily soluble in dilute acetic acid,) was intimately mingled with a little more than an equivalent of precipitated carbonate of lime and one-fifth of an equivalent of bicarbonate of soda. The mixture made into a paste with water was heated in a close metal tube for two hours, to from 120° to $130^{\circ} \mathrm{C}$. and then slowly raised to $180^{\circ} \mathrm{C}$. At the end of six hours it was removed, washed with water; and treated with acetic acid of 3.0 p . c. which at $32^{\circ} \mathrm{F}$. produced a lively effervescence. The residue from the action of the acid was slowly but completely dissolved with effervescence in hydrochloric acid, and was carbonate of magnesia with but 3.2 p . c. of lime, while the portion dissolved by the acetic acid consisted of carbonate of lime 96.7, carbonate of magnesia 3.3. The crystalline condition of the hydro-carbonate appears then to prevent the formation of a double carbonate. When however a mixture of the chlorids of calcium and magnesium is precipitated in the cold by a slight excess of carbonate of soda and the moist and bulky precipitate of carbonates is treated as above, the double salt is readily formed. But if the precipitate formed in the cold and still suspended in the liquid, is heated for some hours to $130^{\circ} \mathrm{F}$. it becomes dense and granular, and when subsequently heated under pressure to $400^{\circ} \mathrm{F}$. the combination is imperfect. A mixture of the two carbonates prepared in this way was treated for ten minutes with an excess of acetic acid of 3.0 per cent. at $60^{\circ} \mathrm{F}$; the portion dissolved consisted of carbonate of lime 66.7 , carbonate of magnesia $33: 3$, while the residue contained 39.0 p. c. of carbonate of lime, the remainder being carbonate of magnesia. This was however a mixture, for after digesting it for half an hour with an excess of dilute acetic acid at $60^{\circ} \mathrm{F}$. it was in great part dissolved, leaving a residue which was completely soluble in hydrochloric acid, and was carbonate of magnesia without any lime, while the portion dissolved by this second treatment with acetic acid consisted of carbonate of lime 55.4 , carbonate of magnesia 44.6.

A solution of the mixed chlorids of calcium and magnesium was precipitated by a slight excess of carbonate of soda in the cold, and the partially washed and pasty mixture of carbonate heated as before under pressure to $180^{\circ} \mathrm{C}$. for six hours. The precipitate, which had become very dense and granular contained an excess of carbonate of magnesia. Acetic acid of 3.0 p . c., which rapidly dissolved pure carbonate of lime and even finely pulverized limestone at $32^{\circ} \mathrm{F}$., with lively effervescence, attacked the prepared carbonate but slowly even at 60° F . the powder subsiding to the bottom of the vase and only giving off bubbles from time to time, while the admixture with it of a small portion of pure carbonate of lime, sufficed to produce a brisk evolution of carbonic acid. These comparative results are decisive as showing the formation of a double carbonate of lime and magnesia. In a preparation of this kind, the portion dissolved by the prolonged action of acetic acid at $32^{\circ} \mathrm{F}$. contained 48.4 p . c. of carbonate of magnesia, and that dissolved by the further action of the acid upon the residue at $65^{\circ} \mathrm{F}$. contained 47.0 p. c., a residue of carbonate of magnesia free from lime remaining. Another portion treated directly with acetic acid of $3: 0 \mathrm{p}$. c., at $60^{\circ} \mathrm{F}$. gave carbonate of lime $\cdot 420$, carbonate of magnesia 395 ($=48.4$ p. c.) and left a residue of 296 of carbonate of magnesia free from lime. Similar results were obtained from another preparation which contained 52.0 p . c. of magnesian carbonate; a portion
of magncsia, apparently in the form of a basic carbonate, seems to be generally present in these products, and hence the first action of a dilute acid dissolves a larger proportion of magnesia than is obtained afterwards. Thus the first portion dissolved by acetic acid from the above preparation contained 51.7 p. c. of magnesian carbonates, while a repetition of the process with the residue gave only 50.0 p . c. of carbonate of magnesia. The action of 500 c.c. of water saturated with carbonic acid, prolonged for two and a half hours, dissolved from a gram of the combined carbonates, $\cdot 453 \mathrm{gr}$. containing 48.5 p . c. of carbonate of magnesia, but the residue from which the more finely divided portion ad been removed by the carbonated water, was very slowly attacked by the same solvent, 500 c . c. of which took up $\cdot 145 \mathrm{gr}$. after four hours, and $\cdot 162 \mathrm{gr}$. after eighteen hours digestion, the dissolved portion in each case containing 47.0 p . c. of magnesian carbonate.

The foregoing experiments show that when a misture of carbonate of lime with an excess of carbonate of magnesia is exposed to the requisite conditions, a true dolomite is formed, while the excess of magnesia remains intermingled as a sparingly soluble carbonate.

The whole theory of the formation of dolomites now becomes very simple and easily understood. In my Report for 1857, p. 217, I pointed out two reactions which may give rise to deposits of carbonate of magnesia in lakes or sea basius without an outlet, where an abundant evaporation is going on. The first is the mutual decomposition of bicarbonate of lime and sulphate of magnesia, yielding gypsum and bicarbonate of magnesia which are successively deposited by evaporation. This reaction which is illustrated at length by the experiments detailed in the present Report (pp. 200-204), explains the constant association of magnesian rocks with stratified gypsums. In the second process the action of waters containing bicarbonate of soda upon basins of sea-water, causes, as I have shown in the Report for 1857, already cited, p. 212, the separation of all the lime as carbonate, and the subsequent formation of a very soluble bicarbonate of magnesia, which by further evaporation separates in a hydrated form. Now these alkaline waters generally contain an abundance of bicarbonate of lime, which in thiscase, as well as in that of the gypsiferous basins, will be precipitated as carbonate and mingled with the carbonate of magnesia. We have then a mixture of the two carbonates, which as we have already shewn, readily combine when heated under pressure, and give rise to the double carbonate which constitutes dolomite. The lowest temperature at which their union can be slowly effected, remains to be determined by experiments.

The contraction which must follow the conversion of mixtures of the two carbonates into the denser double salt gives rise to the porous or cavernous structure of many magnesian limestones, and the rock being thus rendered readily pervious to water any excess of carbonate of lime as well as any calcareous fossils will ofien be dissolved out.

The intervention of alkaline waters in the production of a large class of magnesian limestones will explain the fact that these are frequently metalliferous, since these waters, although in part derived from the decomposition of rocks at the surface, often arise from buried strata, and bring to the surface, not only iron, but smaller quantities of most of the rarer metals in solution, all of which being precipitated with the carbonate of magnesia, enter into the composition of the dolomite. For some considerations as to the origin and importance of these alkaline water I may refer to my Report for 1856; pp. 468-472. The formation of alkalines carbonates by the decomposition of feldspathic rocks, gives rise to the production of clays and aluminous silicates on the one hand, and to sea-salt, limestones and dolomites on the other; the study of these relations tends to
throw much light upon the history of sedimentary rocks, and many other important points in the chemical history of the earth's crust.*

I have the honor, to be,
Sir,
Your most obedient servant,
T. STERRY HUNT.

APPENDIX.

J.

Levels of the River Rouge.

While ascending the Rouge, an attempt was made to determine the general rise in the stream by a measurement of the precipitous falls and the rapids interrupting the upward navigation in canoes; and by an estimate in the navigable parts, taking into consideration the rapidity of the current, the breadth of the stream and the depth of water. The following is the result:-

[^24]- from the mouth of the Maskinongé to the head of the Mountain Chute at Millway's.
- in navigable water between Mountain Chute and Dog Rapid.................
- in the Dog Rapid or Chute..........
- in navigable water between the Dog Chute and Iroquois Rapids...........
- in Iroquois Rapids.
..................
- in navigable water to Fitzallan.
- in Beran's or Cutlog Rapids.
........
- in Island Chute.......................
- in navigable water to foot of Devil's Rapids.
- in Devil's Rapids
- in navigable water to Devil's River. .
—— in navigable water to foot of Huckleberry Chute. in Huckleberry or Blacklead Cbute.
- in navigable water to mouth of George's Brook
in narigable water to foot of Iroquois Chute
——in:Iroquois Chute

Height above Lake St. Peter.
Rise.
Feet.
90.00477. is Head of Mountain Chute.
1.50
5.00
.25
15.10
-50 22.35 500.10 Fitzallan.
16.50
5.00
$1.00 \quad 22.50 \quad 522.60$
12.50
0.7513 .25 535.85 Devil's River.
0.75
14.80
3.00 18.55 554.40 George's Brook.
2.66: 557:06 Foot of Iroquois.

13:50 16.16 570:56 Head of Iroquois.

Levels of Lakes on George's Brook.

Height of the Rouge at the mouth of George's

Brook.
Rise to Lake Simon.
— to 2nd Small Lake.

- to Lake of Three Mountains.
- to Green Lake.
554.40
31.60586 .00 Lake Simon.
83.75 669.75
2.25 672.00 Lake of Three Mountains:
76.00 748.00 Green Lake.

Levels of Lakes N. W. of Lake of Three Mountains.

Levels of Lakes East Side of the River Rouge.

Height of Rouge below Iroquois Chute..
Rise to Small Lake on Portage to Trembling Lake.
Fall to Long Lake

- to Great Beaver Lake
- to Trembling Lake.
................ to pool below cascade at the outlet of Trembling Lake.

Rise and Height abrve
Fall.
Feet.
Lakee. St. Pteter.
Feet.
557.06
195.00752 .06
15.00 737.06 Long Lake.
11.25 725.81 Great Beaver L.
82.00 643.81 Trembling Lake.
29.00614 .81

II.

List of Localities shewing traces of Copper ore in the Lower Silurian rocks of Canada East, more particularly in the magnesian group of Quebec occurring at the summit of the Hudson River formation, and intermediate between what has occasionally been called the Richelieu shales and the Sillery sandstones. The localities are given going from west to east, and the list is intended, not to shew workable quantities, but the distribution of the metal in the magnesian rocks.

1. St. Armand, Lot 59 or 60 . On the road at Cook's Corner at the base of the magnesian limestones, but in clay slate : Copper pyrites: in a vein of white quartz running with the stratification.
2. Sutton,

3. ${ }^{\text {a }}$	" 5		4.-Green carbonate of copper associated with feldspar, quartz, and ratile, in a vein cutting nacreous slates.
4.	2,	"	9.-Green carbonate investing joints in a bed of iron ore.
5. "	9,	"	7.-The property of Mr. D. Farnsworth : Green carbonate investing joints in a bed of iron ore.
6.	5,	"	4.-Copper pyrites in small quantity in a bed of iron ore.
7. Potton,			5.-Copper pyrites in a vein of quartz two or three inches
	14,	"	10.-North side of Owl 's Head mountain : Copper pyrites appears to be sandstone.
9. Brome,	16,	"	11.-Spots of green carbonate in dolomite.
10.	6,	"	4.-Spots of green carbonate in slate.
11. "	1,	${ }^{\prime \prime}$	3.-The property of Nr . Reed Sweet: Filmy spots of green carbonate in a bed of iron ore.
12.	" "		3.-Filmy spots of green carbonate in a bed of iron ore.
13. "	6,		4.-Spots of green carbonate in a thin vein of quartz in iron ore.
			Green carbonate: in soapstone and serpen
Orford,	Lot		

16. Ascot,
17. "
18. Windsor,
19. Upton,
20. "
21. "
22. "
23. Acton,

	32,	5.-The property of Mr. C. Gauthier. Variegated salpharet in dolomitic limestone.
25.	31,	4.-Variegated sulphuretin dolomitic limestone.
26. Wickham,	26, Range	12.-Copper pyrites in dolomitic limestone.
27.	13, "	12.-Copper pyrites in dolomitic limestone.
28.	19,	10.-Copper pyrites in dolomitic limestone.
29.	14,	10.-Copper pyrites in dolomitic limestone.
30.	15,	10.-Variegated sulphuret with calc spar in dolomitic limestone.
31. Wendover,	1,	1.- Variegated and vitreous sulphurets, in brecciated or conglom rate slate.
32. Shipton,	16,	5.-Green carbonate in potstone or compact chlorite, near serpentin
33. Somerset,		8.-Copper pyrites in conglomerate limestone.
34. Halifax,	6,	7.-The property of the Megantic Mining Company.: Coppor pyrites dolomitic limestone.
35.	6	9.-Variegated sulphuret.
36.	$4{ }^{4}$	9.-Variegated sulphuret.
37.	6,	11-Variegated sulphuret.
38. Inverness,	4,	2.-The property of the Megantic Mining Company : Variegated sulphuret in a two feet vein of quartz in nacreous slates,
		4.-Copper pyrites in dolonitic limestone.
40. Ireland,	4,	11.-The property of Mr. Bailey: Variegated sulphuret.

III.

Localities shewing copper lodes and traces of copper ore on the Mississaugui River, Lake

 Huron.1. Head of islands below Hudson Bay Company's Post: Specks of copper pyrites disseminated in greenstone.
2. Half a mile above H. B. Co's Post: Specks of copper prrites in granite dykes; the bearing of the dykes is N. 24 E. and S. 24 W .
3. Little island below the first or lowest fall: specks of copper pyrites disseminated through the rock of the island.
4. A mile below the Pakowagaming River: Small calcareous veins with small spots of copper. pyrites; the general bearing of the reins is N .70 W .
5. A mile and a half above the Pakowagaming : A vein of quartz and bitter spar with small spots of copper pyrites; the bearing of the vein is $S .71 \mathrm{~W}$.
6. Second fall: A vein of two inches of quartz and bitter spar with copper pyrites cutting green stone; the bearing is N. 50 W .
7. East end of Lake. Wabiquekobing : A vein of quartz two feet wide with small spots of copper pyrites cutting greenstone; the bearing of the rein is N. 84 W .
8. North portage to Lake Wabiquekobing within twelve or fourteen chains of the Missisaugui ; A vein of quartz from one to two feet thick with small spots of copper pyrites cutting greenstone; the bearing of the vein is N .15 W .
9. Fourth fall: A vein of quartz and bitter spar one foot wide with copper pyrites in small spots, cutting quartzite; the bearing of the vein is N. 55 W ., running nearly parallel with a greenstone dyke which comes to the river obliquely.
10. Opper end of the portage at the fourth fall : Small veins of quartz, one of them about a foot thick, with small spots of copper pyrites cutting quartzite; the bearing is N .72 W .; this vein varies in width and at some parts is two feet, and it is occasionally stained with the green carbonate of copper.
11. At the Grand Portage: A complication of veins with a general bearing of about N. 60 W. The largest, which was at the foot of the portage, was from one to three feet in width, and consisted of red stained quartz, with copper pyrites in spots and strings, and green carbonate in stains; Red unctuous scaly homatitic iron discolored the rock and the vein. A vein of bitter spar marked with copper pyrites occurs near the head of the Grand Portage, cutting slate and quartzite. All the main veins are nearly parallel with the narrow cut through which the river runs, and most of them intersect greenstone; but run also into the slates, the slate conglomerates and the quartzites.
I2. At the turn of the river three miles above the Grand Portage: A calcareous vein of from two to three feet wide holds spots of copper pyrites and cuts greenstone in a bearing S. 70 W .; it is seen for only a little way on the right bank, and not at all on the opposite side of the river, where there is a brook falling into the river through sand.
12. At the eighth fall: Several veins of quartz intersecting slate conglomerate; the main ones are from one to two feet wide and they bear from N. 67 W. to N .77 W . Numerous small veins reticulate from the main veins; some greenish stains were detected but the indications of copper Were very indistinct.

IV.

Catalogue of Animals and Plants,* collected and observed in the Valley of the River Rouge and the neighbouring Townships, in the Counties of Arginteuil and Ottawa. By Mr W. S M. D' Urban, Assistant to Sir W. E. Logan in 1858.

VERTEBRATA.

CLASS MAMMALIA.
Order Cheiroptera.

1. Vespertilio subulatus, Say.-Rouge, August 8th and 10th. There are probably several species of bats in the district, but this is the only one of which a specimen was obtained.

- The list of plants having been taken by Mr. D.Urban to England for the purpose of reference in regard to some points, was unfortunately loston its return in the Hungarian, and there has not been time to prepare another.

Order Carnitora.

2. Ursus Americanus, Pallas.-Although no bears were actually seen by us, yet the evidence afforded by recent traces of them, and tie information received from settlers and others, induced me to believe that they were numerous in the district.
3. Mustela martes, Linn.-The pine marten does not apperr to be plentiful.

One specimen was seen at Hamilton's Farm on the Rouge, about fifty miles from its mouth.
4. "Canadensis, Schreber.-Said to be common about Hamilton's Farm; I saw a specimen which had been shot there.
5. "vison, Gmel-Abundant throughout the district.
6. Mephitis chinga, Tiediman.-Common about the settlements in Grenville, de.
7. Lutra Canadensis, Sabine-Many were seen in the lakes throughout the district.
8. Vulpes fulvus, Desm.-Reported to be common.

Order Rodeytia

9. Castor fiber, Linn.-Appears to be nearly extinct in the parts we explored, but seen by Sir. W. Logan between troo and three miles east of Hamilton's Farm, and said to be numerous about forty miles above it.
10. Fiber Zibelhicus, Cuvier.-Very numerous throughout the district.
11. Arctomys monax, Linn.-Said to be common about clearings in Grenville. A specimen was given to me which had just been killed in that township.
12. Tamias Lysteri, Ray.-Township of Montcalm and about Hamilton's Farm ; rarc.
13. Sciurus Hudsonius, Pennant.-Very numerous throughout the district.
14. Hystrix dorsata, Linn.-This species is believed to occur in the district.
15. Lepus Anericana, Erxlebein.-Common.

Order Ruminamtia.

16. Cervus alccs, Linn.-This animal seems to be tolerably numerous above Hamilton's Farm, but none were seen in the district we passed through.
17. "Virginianus, Gmel.-Tracks of this deer were frequently met with,and two were reported to have been seen near Sixteen Island Lake.
18. :" tarandus, Linn.-One was shot on Hamilton's Farm while we were camped there. Traces of them were observed on Trembling Mountain.
Besides the animals above enumerated, I may mention the racoon, Procyonlotor, said by the Indians to occur in the district; a wild cat, Lynx: Canadensis, is supposed to have been heard in the township of Montcalm; a flying squirrel, Pteromys volucella? is said to occur, and near the Lake of Three Mountains I had a momentary riew of a small Arvicola.

CLASS AVES.

Order Raptores.

2. Buteo-? -A buzzard was frequently seen hovering around our camps, but I was unable to obtain a specimen.
3. Pandion haliatus, Linn.-On the 21 st of May I shot the female of a pair of this species which had their nest on the summit of a large dead pine tree on an island in a small lake situated in the 8th and 9th ranges of Montcalm. Sir William Logan has called this sheet of water Eagle Nest Lake. An osprey was afterwards seen on several occasions when ascending the Rouge.
4. Falco sparverius, Linn.-Sixteen Island Lake; very numerous on Hamilton's Farm in August, and last seen on the 7th of October.
5. Astur palumbarius, Linn.-Hamilton's Farm, in the end of August and beginning of September.
6. " fuscus, Gmel.-Near Gate Lake, May 16th; very numerous at Hamilton's Farm in the end of August.
7. Circus cyaneus, Linn.-Hamilton's Farm, end of August and in September.
8. Syrnium nebulosum, Linn.-Observed near Trembling Lake.
9. Otus brachyotus, Linn.-I saw a specimen of this species which had just been shot on Hamilton's Farm, and was informed that it is not uncommon there after harvest.
10. Bubo Virginianus, Gmel.-Numerous throughout the district.

Order Insessores.

10. Chordeiles Virginianus, Briss.-A single bird seen at Hamilton's Farm in August.
11. Chetura pelasgia, Linn.-Common throughout the district. They were last seen by me at Hamilton's Farm on the 25th of August.
12. Hirundo purpurea, Linn.-Common at Grenville Village, May 13th, but not afterwards met with.
13. " birolor, Vieill.-Townships of Grenville and Montcalm, middle and latter part of May. Noticed near Hamilton's Farm about the middle of August.
14. " fulva, Vieill.-Townships of Grenville and Harrington, from May 14th to 24th, and last seen at Hamilton's Farm, August 21st.
15. :: rustica, Linn.-Common in Grenville and Harrington, May 14th and 15th; Wentworth, June 4th; Hamilton's Farm, July 15th to the middle of August.
16. Muscicapa tyrannus, Linn.-Bevan's Lake; near the Indian Village at the Devil's rapids on the Rouge ; about Hamilton's Farm.
17. «a acadica, Gmel.-Observed near Beran's Lake, July 1st ; Hamilton's Farm, August 25th.
18. Sylvicola coronata, Lath.-About Sixteen Island and Eagle Nest Lakes; Hamilton's Farm; Trembling Lake. Very numerous from May 19th till September 9th.
19. " virens, Lath.-Common about Sixteen Island Lake, May 24th.
20. " Blackburnia, Lath.-Numerous about Sisteen Island and Eagle Nest Lakes, May 22nd and 24 th, in company with the last two species.
21. Sylvicola cestiva, Gmel.-Observed in the township of Grenville, May 24th and about Hamilton's Farm August 23rd and 25th.
22. "Canadensis, Linn.-Hamilton's Farm; Trembling Lake; Lake of Three Mountains. From August 28th to September 23rd.
23. " maculosa? Lath.-Mouth of Devil's River, July 20 th:
24. Certhia familiaris, Linn.-Throughout the whole district.
25. Troglodytes hyemalis, Vieill.-Seen occasionally at numerous localities up to September 26th.
26. Parus atricapillus, Linn.-First observed, August 17 th, when we were camped about a mile below Hamilton's Farm, occasionally seen till the end of September.
27. Regulus satrapa, Lich.-First obscrved August 28th, at Hamilton's Farm.
28. Sialia Wilsoni, Swains.-Grenville, October 14th.
29. Turdus migratorius, Linn.-Throughout the district up to October 15th.
30. "mustilinus, Gmel.-Not uncommon throughout the district up to the end of September.
31. Sciurus aurocapillus, Lath.-Very numerous throughout the district.
32. Alauda alpestris, Linn.-Hamilton's Farm, end of September.
33. Emberiza socialis, Wils.-About all clearings visited, up to October 18th.
34. Niphrea hyemalis, Linn.-Throughout the district.
35. Fringilla melodia, Wils.-About clearings throughout the district.
36. " Pennsylvanica, Lath.-Very common in the woods throughout the district.
37. Erythrospiza purpurea, Gmel.-Balsam Lake, June 14th; Hamilton's Farm, July 15th.
38. Coccoborus ludovicianus, Linn,-Clearings about Gate Lake, May 16 th and 17 th.
39. Agleaius Phcniceus, Linn.-Grenville ; Sugar-bush or RoundLake; Bevan's Lake; near Hamilton's Farm.
40. Icterus Baltimorus, Linn.--Said to have been heard singing at Balsam Lake, June 14th.
41. Quiscalus versicolor, Vieill.-Grenville, May 14th.
42. Corvus Americanus, Aud.-Common throughout the district.
43. Garrulus cristatus, Linn.-Abundant everywhere. They were seen in flocks of thirty or forty at Hamilton's Farm.
44. " Canadensis, Linn.-Abundant throughout the district.
45. Vireo olivaceus, Linn.-Common throughout the district, up to August 25 th.
46. Bombycilla Carolinensis, Briss:-Observed only about clearings.
47. Sitta Canadensis, Linn.-Throughout the district, from May 26 th till September 20th.
48. Trochilus colubris, Linn.-Occasionally seen from May 27 th till A.ugust 12 th.
49. Alcedo alcyon, Linn.-Very abundant the whole way up the Rouge till October 11th. Rarely seen on the lakes.
50. Picus pileatus, Linn.-One shot on Sixteen Island Lake, May 27 th, and another seen on the Ronge August 8th.
51. " villosus, Linn.-Grenville, Harrington and Wentworth.
52. " pubescens, Linn.-Throughout the district.
53. " varius, Linn.-Sixteen Island Lake, May 27th; Trembling Lake, September 13th.
54. Picus articus, Swains.-One specimen observed in Harrington, October 15th.
55. "auratus, Linn.-Hamilton's Farm, end of August and beginning of September.
56. Coccyzus erythropthalamus, Wils.-Sugar-bush Lake, June 25th; Indian Village on the Rouge, July 16th.

Order Rasorts.

57. Eciopistes migratoria, Linn.-Throughout the district, from spring till the beginning of October. Not common.
58. Tetrao umbellus, Linn.-Abundant throughout the district.

Order Grallatores.

59. Fulica Americana, Gmel.-A pair seen, September 14th, in a small lake near the Lake of Three Mountains.
60. Totanus macularius, Wils.-Common all along the Rouge and in the numerous lakes of the district. 61. * solitarius, Wils.-Along the Rouge from August 12th to September 13th.
61. "vociferus, Wils.-One specimen seen on Trembling Lake, September 11th.
62. Microptera Americana, Aud.-Said to hare been heard in the swamps about Hamilton's Farm, September 2nd.
63. Ardea nycticorax, Linn.-A pair seen fiying over head, when we were camped near Gate Lake, May 17th.
©5. " lentiginosa? Swains.-Bevan's Lake during Juls.
Order Natores.
64. Anas obscura, Gmel.-Sixtenn Island and Bevan's Lokes; Rouge, and the small lakes on either side of it.
65. " sponsa, Linn.-One seen on Bevan's Lake, October 16th.
66. "discors, Linn.-One observed on Trembling Lake, September 11th.
67. Fuligula marila? Linn.-Sixteen Island Lake, May 20tb.
68. " clansula, Linn.-Sixteen Island Lake in May; Devil's River, July 20th.
69. Mergus serrator, Linn.-Ronge, and almost every lake we visited.
70. "cucullatus? Linn.-Lake of Three Mountains, September 23rd and 25th.
71. Larus argentatus, Brunnich.-A large gull, supposed to be of this species, was frequently seen at the end of May, on Sixteen Island Lake.
72. Colymbus glacialis, Linn.-Seen in almost every lake visited by us.
73. Podiceps Carolinensis? Lath.-I observed a grebe on Balsam Lake, June l4th, which appeared to be of this species.
The rice bunting, Dolichonyx orizivora, and the red-headed moodpecker, Picus erythrocephalus, were observed about Point Fortune on the Ottawa, but, were not met with in the woods.

CLASS REPTILIA.

Order Chblonia.

1. Chelydra serpentina, Schw.-Emysuturus serpentina, Linn.-I was given a shell of this species by G. W. Albright, Esq., P. L. S., who obtained it on the Devil's River. The carapace is one foot long and nine inches broad.
2. Glyptemys insculpta, Agassiz.-Emys insculpta, Leconte.-I was shown the slell of a specimen of this species, which had been obtained on a small sandy island in tho Rouge in Arundel, and I also obtained a fragment of a shell at the mouth of the Deril's River.

Order Opmidia.

3. Eutainia sirtalis, Baird \& Girard. Tropidonotus sirtalis, Holbrook.-Abundant in the Townships of Grenville, Harrington, De Salaberry, and at Hamilton's Farm.
No other Ophidian reptile was seen, but reports of a water snake, said to inhabit the lakes, came to my knowledge.

Order Batrachia.

4. Rana Catesbiana, Shaw.-R. pipiens, Holbrook.-Abounds in every lake and pond throughout the district.
5. " nigricans, Agassiz.-Abundant at Balsam, Sixteen Island and Sugarbush Lakes in Nay and June.
6. "pipiens, Gmel. R. halecinu, Holbrook et aliorum.-Abundant inSugar-bush Lake in June.
7. Hyla versicolor? Leconte.-Said to have been heard about Sixteen Island Lake.
8. Bufo Americana, Leconte.-Common throughout the district.
9. Plethodon erythronota, Green.-Abundant in the townships of Wentworth and Montcalm in May.
10. Spelerpes bilineata, Green.-Township of Montcalm.
11. Thiton? (undetermined).-One specimen taken in Sixteen Island Lake June 2nd.

A "lizard" was reported as ialabiting a small stream crossing the portage between Gut and Gate Lakes.

CLASS PISCES.

Order Acanthopteri.

1. Perca flavescens, Cuvier.-Numerous in Sugar-bush, Beran's and Bark Lakes, Montcalm; in a small lake on lot 11 , range 3 , of the same township, and also in a lake about three miles onst of Hamilton's Farm.

Order Malacopteri.
2. Pimelodus canosus, Richardson.-Very abundant in the same lakes (with the exception of the last) as tine perch.
3. Esox boreus ? Agassiz.-The specimen preserred, was caught in the small lake on lot 11, range 3, Montcalm, and agrees very well with the description of E : boreus in Agassiz's "Lake Superior," p. 317, with the exception, that the lateral line is very indistinct, instead of being "very distinct." Pike were numerous in the same lakes as the cat-fish and perch and-in the Rouge as far up as we ascended.
4. Salmo fontinalis, Mitchill.-Abounds in nearly all the lakes and streams in the district. In those lakes where cat-fish, pike and perch occur, no trout were caught.
5. Salmo.-A species of trout, which I have been unable to determine, was found in Sirteen Island, Trembling and Three Mountain Lakes.
6. Coregonus.-I saw several specimens of a Coregonus which had just been taken in Bevan's Lake, October 15 th, but was unable to preserve a specimen.
7. Catastomus.-Two species of "sucker" were said to have been taken-in Sixteen Island Lake whilst I was absent, and were spoken of as the "mullet" and " black sucker."
s. Leuciscus.-A large fish known as the carp, usually about seventeen inches in length and about two pounds in weight, was abundant in all the lakes and in the Rouge and Devil's Rivers. On the sides, the scales have a beautiful bronze or golden lustre, and the basal half and margin of each is black. The fin-rays are as follows: Br.3, D. 9. C. 20. V. 8. P. 16. This fish may be Cyprinus Corporalis, Mitchill, but does not agree satisfactorily, with any species I have seen described.
9. "pulchellus, Storer.-This was the most abundant fish in all the lakes and rivers throughout the district.
10. Leuciscus frontalis, Agassiz.-Abundant in streams flowing into the small lake on lot 11; range 3, Montcalm. The specimens collected agree exactly with the figure and description of this species in Agassiz's "Lake Superior," except that instead of fourteen, they have sisteen rays in their pectoral fins.
11. " ? A small species which I cannot find described, though evidently very distinct, was common in the same stream with the last.
All the lakes swarmed with the young of various Leucisci, which are called dace and chub. Several species besides those above mentioned were met with in Trembling and Three Mountain Lakes, but I had no means of preserving specimens.

ARTICULATA.

CLASS INSECTA.

Order Coleoptera.

Besides the 114 species of Colcoptera enumerated in the following catalogue, many others were coIlected, but were unfortunately lost by the accidental fracture of the bottle which contained them:
I have added a list of 34 species, not observed in this district by myself, but brought by Mr. Robert Bell from the Augmentation of Grenville on the north, and the neighbourhood of L'Orignal on the south bank of the Ottara.

1. Cicindela longilabris, Say:-Hamilton's Farm on the River Rouge; 2nd September.
2. "" vulgaris, Say.-Very abundant on sand-banks, River Rouge, August.
3. "Baltimorensis, Herbst. (repanda, Say.)-Common on sand-banks, River Rouge, July and August.
4. Lebia viridis? Say.-Huckleberry Rapids, River Rouge, DeSalaberry, 30 th July.
5. Patrobus longicornis, Say.-Sisteen-Island Lake, \&c., Montcalm, May and June.
6. Platynus sinuatus, Dej.-Under dead logs, Sixteen Island Lake, \&c., township of Montcalm, May and June.
7. " retractus, Lec.-With the last species.
8. " obsoletus, Say.-With the last two species.
9. Pacilus lucublandus, Say.-Under stones near the town of Grenville, 13th May.
10. Pterostichus fastidatus, Dej.-Under bark of decaying logs, Sixteen Island Lake, Montcalm, end of May; Lake of Three Mountains, end of September.
11. " patruelis, Dej.-River Rouge
12. " caudicalis, Say.-Under stones near Grenville, 13th May.
13. " orinomum, Leach (vitresis, Esch.)-Township of Montcalm, June.
14. " Luczotii, Dej. (var. præc?)-Sixteen Island Lake, Montcalm, May and June.
15. Lophoglossus scrutator, Lec. Wrac -Vnder stones near Grenville, Montcalm,
13th May.
16. Rembus major
17. Rembus major, Lec.- " " " " " "
18. Chlanius impunctifrons, Say - " " " "
19. Cychrus (Spheroderus) Brevoorti, Lec.-Under dead logs, Beran's Lake, Montcalm, 4th July.
20. Notiophilus punctatus, Lec.-On rocks, Huckleberry Rapids, River Rouge, DeSalaberry, 27 th Juls.

20 Bembidium impressum, Fabr.-On wet sand, River Rouge, 13 th August.
21. "punctatostriatum, Say - Very 'abundant on wet sand, River Rouge, July and August.
22. "~patruelis, Dej.-Abundant on wet sand, River Rouge, 13th August.
23. ": lucidum, Lec.-Under stones near Grenville, 13th May.
24. Agabus striatus? Say.-In Sixteen Island Lake, Montcalm, end of May.
25. Coptotomus interrogatus, Fabr.-In Sugar-bush Lake, Montcalm, 23 rd June.
26. Hydroporus proximus, Aube.- With the last species.
27. Haliplus immaculaticollis, Harris.- With the last two species.
28. "cribarius, Lec.-Very abundant in Sugar-bush Lake, Montcalm, 23 rd June.
29. Gyrinus (several species not determined)-In various Lakes.
30. Dineutes (not named)-Very abundant, Sugar-bush Lake, Montcalm, 23rd June.
31. Philhydrus cinctus, Say:-In a small stream crossing the portage between Gate and Gut Lakes', Wentworth, and in Sugar-bush Lake, Montcalm.
32.

保
33. " pysmaus, Eirby.-Township of Montcalm, 20th June.
34. Silpha marginata, Fabr.-Abundant under putrid fish, Sixteen Island Lake, Montcalm, Ist June.
35. Homalota (not determined) -Township of Montcalm, June.
36. Tachyporus (not determined)
37. Tachinus fumipennis, Say.-In bear's dung, Chain Lake, Montcalm, 17 th June.
38. "conformis, Dej.-Township of Montcalm, June.
39. Philonthus cyanipennis, Fabr.-In a fungus on a rotten tree, River Rouge, 13th August.
40. " (not determined)-Under stones near Grenville, 13th May.
41. Stenus (not determined̃)-Numerous on wet sand, River Rouge, Arundel, July.
42. " (not determined)-Numerous on wet sand, River Rouge, near Hamilton's Farm, 13th August.
43. Oxytelus Pennsylvanicus, Er.-Common in our tents throughout the district.
44. Anthobium dimidiatum, Mels.-Township of Montcalm, June.
45. Platysoma parallelum, Say.- " " "
46. Carpophilus niser, Er.- " " " "
47. Epurœa, (not determined) " "s "
48. Cucujus clavipes, Oliv.-One specimen taken as it pitched on the mane of a horse, Township of Harrington, lith May.
49. Pediacus planus, Lec.-Very abundant in the tents, Huckleberry Rapids, end of July.
50. Dermestes lardarius, Linn.-Observed about the provisions, Sixteen Island Lake, Montcalm.
51. Anthrenus castanea, Mels.-Township of Montcalm, June.
52. Platycerus depressus, Lec.-Near Huckleberry Rapids, River Rouge, DeSalaberry, July.
53. Onthophagus Hecate, Pz.-Near Huckleberry Rapids, River Rouge, DeSalaberry, 2nd August.
54. Geotrupes Egeriei, Germ. (microphagus, Say.) Woods near Hamilton's Farm, 31st August.
55. Aphodius fimeturius, Fabr.-Abundant in cow-dung, Hamilton's Farm, August.
56. Dichelonycha subvitlata, Lec.-Abundant throughout the district, June to August.
57. Osmoderma scabra, Beauv.-River Rouge, July and August.
58. Nichius piger, Fabr.-On blossoms of Viburnum opulus, Sugar-bush Lake, and on white clover blossoms, and bleeding stumps of yellow birch, Bevan's Lake, Montcalm, end of June and beginning of July.
59. Ancylocheira maculiventris, Say.-Near Silver Mountain, River Rouge, 12th August.
60. Cryptohypnus silaceipes, Germ.-Under stones near Grenville, 13th May.
61. Dolopius fucosus, Lec.-Township of Montcalm, June.
62. " stabilis, Lec.- " " "
63. Corymbites triundulatus, Randall.-Township of Montcalm, end of May.
64. Pyractomena angulata, Say.-Common, Sugar-bush Lake, Montcalm, 23d to 26 th June.
65. Ellychnia corrusca, Linn.-Under stones near Grenville, 13th May.
66. " lacustris, Lec.-Abundant in the woods of Harrington, middle of May; Hamilton's Farm, and Lake of Three Mountains, August and September.
67. Digrapha terminalis, Say.-Bevan's Lake, 29 th June, and 5th July, and Hamilton's Farm, 31st August.
68. Eros coccinatus, Say.-Sixteen-Island Lake, \&c., Montcalm, end of May.
69. " molis, Lec.-Huckleberry Rapids, River Rouge, DeSalaberry, 2nd August.
70. Podabrus modestus, Say.-About clearings, Bevan's Lake, Montcalm, 2nd July.
71. Telephorus rotundicollis, Say.-Abundant " " "
72. 6. carolinus, Fabr:- 6 : 4
73. " fraxini, Say.-Township of Montcalm, Junc.
74. Anobium foveatum, Kirby.-Abundant in a rotten tree, Beran's Lake, 4th July.
75. Cis (not determined)-Township of Montcalm, June.
76. Pedilus collaris, Say.- " " "
77. Mordella nigricans, Mels.- " "
78. Meloe rusipennis, Lec.-Hamilton's Farm, 31st August, and Grenville, 14th October.
79. Cistela (not determined)-Very abundant on leaves of bass-wood, Sugar-bush Lake, Montcalm. 26th June.
80. " (not determined)-River Rouge.
81. Nyctobates (not determined)-Under logs on grass-land, Hamilton's Farm, August.
82. Upis reticulatus, Say.-(ceramboides, Linn.)-With the last species.
83. Bolitophagus cornutus, Pz.-Larvæ and Pupa in a boletus, Huckleberry Rapids, DeSalaberry, 3rd August.
84. Apion (not determined)-Township of Montcalm.
85. Sitona lepidus, Sch.-Near Hamilton's Farm.
86. Hylobius (near pineti)-Sixteen Island Lake, 1st June.
87. " pales, Herbst.-Township of Montcalm, June.
88. Tomicus (not named)
89. Saperdu tridentata, Oliv.-Base of Silver Mountain, Rouge, 10th Aug.
90. Monohammus confusor, Kirby.-
91.
scutellatus, Say.-Numerous, Bevan's Lake, 7th July ; and abundant the whole way up the Rouge, to the end of August.
92. Encyclops cceruleus, Say.-One specimen taken on blossoms of Viburnum opulus, Sugar-bush Lake; Montcalm, 26 th June.
93. Acmaoops proteus, Kirby.-Township of Montcalm, June.
94. Evodinus monticola, Randall.-Sisteen-Island Lake, 30th May; and abundant on blossoms of Viburnum opulus, Sugar-bush Lake, end of June.
95. Leptura Canadensis, Oliv.-Abundant on blossoms of Spircea salicifolia, River Rouge, July and August.
96 " vittata, Oliv.-Near Huckleberry Rapids, DeSalaberry, 15th July.
97 " pubera, Say.-Abundant on blossoms of Viburnum opulus, Sugar-bush Lake, Montcalm, 25th June.
98. " proxima, Say.-Near Huckleberry Rapids, DeSalaberry, 26 thJuly.
99. "" mutabilis, Lec.-On blossoms of Viburnum opulus, Sugar-bush Lake, end of June.
100. Donacia palnata, -In Oliv. blossoms of Nuphar advena, (Yellow Water-lily), Sugar-bush Lake, end of June.
101. " subtilis, Kunze.-In a small Lake"near Lake of Three Mountains, 14th September.
102. " pusilla, Say.-Sugar-bush Lake, Montcalm, end of June.
103. " flavipes, Kirby.—" " "
104. Syneta tripla, Say.-Township of Montcalm.
105. Chrysomela scalaris, Lec.-Abundant on alders throughout the district, from the end of June to the end of September.
106. " spira, Say.-Very abundant, Sugar-bush Lake, 25th June.
107. " interrupta, fabr.-Abundant on alders, Sixteen-Island and Sugar-bush Lakes, MontcaIm, Nay and June. Larva abundant on alder leaves; June 25.
108. Chrysomela Vitelline, Linn.-Abundant on oak and poplar leaves, Sixteen Island and Sugar-bush Lakes, May and June.
109. Systena pontalis, Fabr.-Township of Montcalm, June.
110. Phyllobrotica decorata, Say. (Olivieri, Kirby,)-Very abundant on Scutellaria galericulata and laterifolia, River-Rouge, July and August.
111. Adoxus vitis, Fabr.-Amongst dead leaves, Gate Lake, Wentworth, 16th May.
112. Chrysochus auratus, Fabr.-Abundant on Apocynum androsemifolium and cannabinum, Beran's Lake, Huckleberry Rapids, \&c., July.
113. Galleruca sagittaria, Kirby.-Township of Montcalm, June.
114. Coccinella picta, Randall.-

The following are the thirty-four species of Coleoptera from L'Orignal and the Augmentation of Grenville, collected by Mr. R. Bell.

> Cymindis reflexa, Lec.
> Calathus gregai ius, Say.
> Platynus capripennis, Say.
> Pterostichus erythropus, Dej.
> " adjunctus, Lec.
> Amara angustata, Say.
> " impuncticollis, Say.
> Anisodactylus Baltimorensis, Say.
> " Harrisii, Lec.
> " rusticus, Say.
> Harpalus Pennsylvanicus, Geer.
> " herbiragus, Say.
> Chlanius sericeus, Forst.
> " tricolor, Dej.
> Acilius fraternus, Harris.
> Silpha Surinamensis, Latr.
> Pederus littorarius, Grar.

> Hister perplexus? Lec.
> Ips quadrisignatus, Say.
> Cytilus varius, Fabr.
> Lachnosterna fusca, Frolich.
> Osmoderma eremicola, Knoch.
> Photuris Pennsylvanica, Geer.
> Trichodes Nuttalii, Kirby.
> Thanasimus dubius, Fabr.
> Tenebris molitor, Linn.
> Ipthinus Pennsylvanicus, Geer.
> Orthosoma unicolor, Drury.
> Saperda vestita, Say.
> Chelymorpha cribaria, Fabr.
> Haltica collaris, Fabr.
> Chrysomela trimaculata, Fabr.
> Helodes trivittata, Say.
> Hippodamia 13-punctata, Linn.

Order Lepidoptera.

With the exception of the Rhopalocera, the greater portion of the Lepidoptera collected are stil ${ }^{1}$ undetermined. Some of the Heterocera enumerated below were named for me at the British Museum by Mr. Francis Walker, to whom I am much indebted.

Rhopalocera.

115. Papilio turnus, Linn.-Abundant throughout the whole district, from May 30 th till the end of July. 116. " asterias, Fab.-A large black butterfly, seen on the 17th June at Balsam Lake I supposed to be of this species.
116. Colias philodice, Godt.-Grenville Village, June 5th; along the Rouge from the 30 th June till the middle of September; again seen at Grenville, October 14th and 18th
117. Pieris oleracea, Harris.-Abundant thronghout the whole district, from the middle of May till the end of June. A few seen at Hamilton's Farm, end of August.
118. Danais Archippus, Fab.-A single specimen seen flying across the Rouge a little above Silver Mountain on the 12th of July.
119. Debis Portlandia, Boisd.-First seen on the 2nd July, at Beran's Lake. Abundant in the woods along the Ronge as far as Silver Mountain till the first week in August. As this is generally supposed to be a southern species, it is not a little remarkable that it should be so abundant to the north of the Ottawa.
120. Hipparchia nephele? Kirby.-Abundant amongst grass on Hamilton's farm, from the 22nd August till the beginning of September.
121. Limenitis Arthemis, Drury.-Very abundant throughout the district, from the 26 th June till the end of July, a few lingering till the middle of August.
122. Cynthia cardui, Linn.-One specimen met with at Hamilton's Farm on the 21st August.
123. Vanessa Atalantu, Linn.-I observed a butterfly which appeared to be of these species, at Sagarbush Lakes on the 24th of June.
124. ". Antiopa, Linn.-Grenville Village, May 13th; a few seen in the township of Montcalm in June and near Silver Mountain on the 12 th of August.
125. \& Milberti, Godt., furcillata, Say.-Grenville Village, May 14th; Rouge, July 10th, and occasionally seen at Hamilton's Farm, up to the 31st of August. . .
126. "J. album Boisd.-Common throughout the district, from May 19 th till the end of September. One observed near Grenville on the 18th of October.
127. Grapta Progne, Fab.-Abundant crerywhere, from the 14th May till the middle of September.
128. "C. album, Godt.-I took several specimens of a Grapta along the Rouge which I believe to be of this species.
129. Argynnis Dalphnis (?), Cramer.-First seen, July 2nd, and last, September 12th. Abundant. I am of opinion that Boisduval was in error in considering A. Aphroditc, Fab. and A. Cybele, Fab., as the same species. There are at least three closely allied species of Argynnis inhabiting Canada, but nothing short of breeding each from the larra will satisfactorily separate them. My specimens are all too small for A. Cybele, Fab.
130. Argynnis Myrina, Cramer.-From June 5th till August 31st. Common.
131. "t Bellona, Fab. The only specimen met with, was captured in Arundel on the 30th June.
132. Melitaa Tharos, Cramer.-Sugar-bush Lake, June 29th; Bevan's Lake,July 2nd ; Devil's River, July 14th.
133. Thecla (?)-I obserred a large Thecla at Huckleberry Rapids, July 30th, but did not succeed in capturing it.
134. Lycæna Americana, Harris.-Numerous on grass land at Hamilton's Farm, from the 21st to the 3ist August.
135. Polyommatus pseudargiolus, Boisd.-Numerous in Grenville and about Sixteen Island Lake in May. Worn speciniens were seen about Beran's Lake as late as the 2nd of July.
136. Pamphila.-One specimen of a species resembling P. paniscus of Europe was captured near Bevan's Lake, July 2nd. Specimens of a dingy grey species and of two or three other Pamphilas were taken in various localities in June, July and August. I cannot find descriptions of any of these and some of them are probably new.

Meterocera.

138. Sphinx.-Two species of Sphinx were captured in July, in Arundel and DeSalaberry, allied to S. Kalmia, A. \& S. and S. gordius, Cramer, but not agreeing satisfactorily with Dr. Harris's descriptions of these species given in the Amer. Jour. Sci. Vol. 28.
139. Smerinthus.-Two larra belonging to this genus were obtained at Hamilton's Farm on the 3rd and 4th September, of which the following are descriptions.-No. I. Pale green, whitish on the back, with oblique stripes of white and dark green on the sides.-No. 2. Green, with oblique taberculated stripes on the sides and two tubercles on each of the second and third segments.
140. Trochilium.-On the 25 th June, at Sugar-bush Lake, I captured a beautiful and apparently undescribed species of Trochilium, sitting on the blossoms of Viburnum opulus (high-busb cranberry). The anal tuft is deep orange; antenne black; expansion of the wings 11 lines; length of the body 5 lines.
141. Ctenucha Latreillana, Kirby.-One specimen taken in Arundel, July 16 th.
142. Crocota brevicornis, Walker.-Township of DeSalaberry ; Hamilton's Farm, July and August.
143. Medaria mendica, Walker--Near Beran's Lake, July.
144. Arctia Parthenos, Harris.-I took a fine Arctia on the Devil's River, July 19th; agreeing in every respect with the description and figure of this species in Agassiz's "Lake Superior," with the exception that it has five, instead of threc cream-coloured spots on the costal edge of the anterior wings.
145. Hypercompa Lecontci, Boisd.-Montcalm, Arundel and DeSalaberry, during the month of July.
146. Halesidota aunulifascia, Walker.-Cocoons, apparently of this species, were found near Sixteen Island Lake, May 22nd.
147. Orgyia leucostigma, A. \& S.-Hamilton's Farm, end of August and beginning of September.
148. Telea Polyphemus, Hübner.-Throughout the whole district.
149. Thyatira scripta, Gosse.-Montcalm and Arundel, end of June and beginning of July.
150. ". cymotaphoroides, Guen.-Montcalm and Arundel, June and July ; Trembling Lake, September \uparrow th.
151. Graphiphora C. nigrum, Linn.-One specimen taken in DeSalaberry, July 24th, and another at Hamilton's Farm, August 28th.
152. " Dahlii, Hübner.-One specimen taken in Wentworth, May 17th.
153. Euplexia lucipara, Linn.-Common in Montcalm in June.
154. Plusia mortuorum.-Hamilton's Farm, end of August.
155. Angerona crocataria, Fab.- Common in Arundel and Montcalm in July.
156. Sicya solfatarina, Guén.-Not uncommon in DeSalaberry, end of July.
157. Ellopia aqualiaria.-Montcalm, June.
158. Nematocampa filamentaria, Guén.-DeSalaberry, July 22nd.
159. Endropia tigrinaria, Guen.-Very abundant in Montcalm at the end of June.
160. Melanippe Gothicata, Guén.-Extremely numerous in Montcalm during the month of June.
161. Scotosia undulata, Linn.-Common in Montcalm, end of June and beginning of July.
162. Pyralis n. sp?-DeSalaberry, June 27th. Mr. Walker supposes this to be a new species, and the following is a description of it.-Anterior wings, dull pink, crossed by two black transverse lines, the first of which, situated near the base; is straight and has a yellow spot on its inner side, occupying the angle which it forms with the costa; the second; situated beyond the middle, is bent, forming an obtuse angle before it reaches the costal margin, where it has a yellow crescent-shaped spot on the outer side. Posterior wings, dusky-white at the base with a broad, pale black, sub-marginal band and crossed by two black transverse lines. Expansion of the wings $12 \frac{1}{2}$ lines ; length of body 4 lines.
163. Bleptina surrectalis, Guén.-DeSalaberry, August 4th.
164. Anania octomaculata, Linn.-One specimen taken in Montcalm, July 2nd.
165. Hydrocampa.-A species of Hydrocampa was abundant near Hamilton's Farm, August 15th.
166. Botys verticalis, Linn.-DeSalaberry, not uncommon about the first of August.
167. Eubulea.-A small species apparently closely allied to the European E. sambercalis, Schiff., was very numerous on the blossoms of the raspberry (Rubus strigosus), near Bevan's Lake, at the beginning of July.
168. Tortrix.-Several pupæ of a Tortrix, which I collected on the D vil's River, produced the perfect insect, but I have' been unable to determine either this or any other of my Micro-Lepidoptera.

MOLLUSCA.

CLASS GASTEROPODA.

Order Pclmonifera.

1. Tebennophorus Carolinensis, Bosc.-Throughout the district.
2. Succinea obliqua, Say.-Occurred plentifully at Hamilton's Farm, and sparingly in wild parts of the district.
3. Helix albolabris, Say.-Wentworth ; Montcalm; Harrington.
4. ". exoleta, Binney.-Wentworth; DeSalaberry; Harrington.
5. " monodon, Rackett.-Arundel; Hamilton's Farm; near the Lake of Three Mountains.
6. "concava, Say.-Wentworth; Montcalm- Arundel. Abundant.
7. ". pulchella, Müller.-Under stones at Carillon, but not elswhere met with.
8. " Sayii, Binney.-Near Doran's Lake, Grenville.
9. ." labyrinthica, Say.-Wentworth; Montcalm ; Arundel. Common.
10.: "" alternata, Say.-A bundant throughout the district.
10. " striatella, Anthony.-Very abundant throughout the district.
11. " arborea, Say.-Plentiful throughout the district.
12. $"$ chersina, Say.- "... 6
13. u lineata, Say.-Abundant throughout the district.
14. Bulimus marginatus, Say.-Sugar-bush Lake and near Gate Lake.
15. Achatina lubrica, Müll:-Bevan's and Gate Lakes. Common.
16. Fertigo Gouldii, Binney.-Sixteen Island Lake.
17. Pupa (undetermined).-With the last species.
18. Carychium exiguum, Say.-One specimen found near Sixteen Isiand Lake.

(Fresh Water.)

20. Physa heterostropha, Say.-Sugar-bush Lake, and near Grenville Village.
21. "aurea, Lea.-Small Lake near Hamilton's Farm.
22. Physa clliptica, Les.-In a small lake one mile west of the Indian Village in Arundel.
23. " elongata, Say.-Near Grenville Village.
24. Limnca exigua, Lea. (young).-In a small lake near Hamilton's Farm.
25. " galbanus, Say.-Abundant in shell marl from the bottom of Eagle Nest Lake.
26. " plicata, Lea.--Sugar-bush Lake. Abundant.
27. " reflexa, Say.-Near Grenville Village.
28. " umbilicata, Say.-With the last species.
29. Planorbis truvolvis, Say.-In the small lake one mile west of the Indian Fillage in Arundel.
30. " bicarinatus, Say,-Eagle Nest Lakc and a small lake near Hamilton's Farm.
31. "campanulatus, Say.-Near Grenville Village and in numerous lakes throughout the district.
32. :4 parvus, Say.-In shell marl in Eagle Nest Lake, and liying in the lake one mile west of the Indian Village, Devil's Rapids, and in the lakes near Hamilton's Farm.
33. "deffectus, Say.-Sixteen Island and Sugar-bush Lakes.

Order Prosobrancitata.

34. Puludina decisa, Say.-Very abundant the whole way up the Rouge and its tributary the Devil's River. Those collected are of a reddish-brown color, very unlike the light green of specimens from L'Orignal, opposite the mouth of the Rouge, and from the St. Lawrence near Montreal.
35. Valvata tricarinata, Say.-A few specimens found in shell marl from the bottom of Eagle Nest Lake.

CLASS LAMELLIERANCHIATA.

1. Unio complanatus, Lea.-This was the only species of Unio met with. It inhabits nearly erery lake in the district, and was abundant in the Rouge as far as we ascended it. It was extraordinarily abundant in the shallow stream by which the waters of Bevan's and Bark Lakes are discharged into the Rouge; in fact they were crowded together as closely as they could lie, in the same manner as a bed of mussels on the sea shore.
2. Margaritana rugosa, Barnes.-One fine specimen obtained in the fourth small lake west of Balsam Lake, lot 11, range 3, Montcalm.
3. Anodonta cygaiea (?), Linn.-This species was found in almost every lake we visited.
4. Anodonta edentula, Say.-One specimen obtained from the lake on lot 11, range 3, Montcalm.
5. " fragilis, Linn.-Sixteen Island, Eagle Nest, and Bevan's Lakes.
6. "Footiana, Lea.-With the last species.
7. Cyclas similis, Sas.-Sixteen Island and Sugar-bush Lakes; lake one mile west of the Indian Village; in shell marl in Eagle Nest Lake.
8. :: partumeia (?), Say.-Ponds near Eagle Nest Lake; Sugar-bush Lake; small lake near Hamilton's Farm.
9. "dubia ??), Say.-In shell marl, Eagle Nest Lake; liring in the small lake near Hamilton's Farm.

Catalogue of Animals and Plants collected and observed, on the south-east side of the St. Laurence from Quebec to Gaspé, and in the Counties of Rimouski, Gaspe and Bonaventure. By Mr. Robert Bell, Jr., Assistant to Mr. James Richardson, Geological Explorer under Sir W. E. Logan, in 185S.

VERTEBRATA.

CLASS MAMMALIA.

Order Caeiroptera.

3. Vespertilio subulatus, Say.-Restigouche, Matapedia and Patapedia Rivers.

Order Insectivora.
2. Sorex Forsteri, Richardson.-Counties of Rimouski and Bonaventure.

Order Carmivora.

3. Ursus Americanus, Pallas.-Throughout the district.

| 4. Mustela martes, Linn.- | $"$ | " |
| :--- | :--- | :--- | :--- |
| 5. "t vison, Gmel.- | $"$ | $"$ |
| 6. " vulgaris, Linn.- | " | " |
| 7. M Canadensis, Schreber.- | " | " |
| 8. Mephitis Chinga, Tiedimann-- | " | " |
| 9. Lutra Canadensis, Sabine.- | " | " |

10. Canis fulvus, Desm. - "
11. " lupus, Linn.-Said to come no farther north than the St. John River.
12. Lynx Canadensis, Linn.-Gaspe, and probably throughout the whole district.

Order Rodentia.
13. Castor fiber, Linn.-Throughout the district.
14. Fiber zibethicus, Cuv.,- " "
15. Mus musculus, Linn.-In settled parts throughout the district.
16. Pteromys volucella, Desm.-Gaspé.
17. Tamias Lysteri; Ray.-Rimouski and Gaspe.
18. Sciurus Hudsonius, Penn.-Throughout the district.
19. Hystrix dorsata, Linn.- " "
20. Lepus Americanus, Erxl.— \because

Order Rcminantia.
21. Cervus alces, Linn.-Rimouski, Bonarenture and western part of Gaspe.
22. "tarandus, Linn.-Among the Shickshock Mountains.

CLASS AVES.
Determined by Mr. D'Urban.
Order Raptores.

1. Halietus leucocephalus, Linn.-Along the St. Lawrence from Green Island to Martin River, in June and July; seen on the Restigouche in August.
2. Astur fuscus, Gmel.-Capucin, August 8th.
3. Surnia funerea, Gmel.-Green Island, middle of October.
4. Syrnium nebulosum, Gmel.-Marsouin River, end of July.

Order Insessores.
5. Chordeiles Virginianus, Briss.-Chat River, June 18th ; Ste. Anne, June 28th to July 17th; at the mouth of the Matapedia, August 28th.
6. Hirundo bicolor, Vieill.-Chat River, June 18th; Ste. Anne, June 30th: Martin River, July 20th.
7. " fulva, Vieill.-Metis, beginning of June.
8. " rustica, Linn.-Trois Pistoles, May 30th; Metis, June 10th; Long Point, June 15th.
9. " riparia, Linn.-Ste. Anne, June 28 th.
10. Sylvicola coronata, Lath.-Green Island Village, May 25th.
11. Troglodytes hyemalis, Vieill.-Patapedia River, September 5th.
12. Parus atricapillus,? Linn.-First seen on the Patapedia River, September 5th, and afterwards in various localities.
13. Regulus satrapa, Lich.-Rivière du Loup, May 18th.
14. Turdus migratorius, Linn.-In settled parts, throughout the district.
15. Anthus Ludovicianus, Lich.-Rivèire du Loup to Rimouski, from May 10 th to June 5th.
16. Aladua alpestris, Linn.-Rimouski Village, beginning of October.
17. Plectrophanes nivalis, Linn.-Kamouraska, beginning of November.
18. Emberiza socialis, Wils.-Various localities from Rivière du Loup to Cape Chat.
19. Niphaa hyemalis, Linn.-Throughout the district.
20. Carduelis tristis, Linn.-Along the coast from St. Fabien to Martin River, from May 3lst to July 19th; on the Restigouche, September 2nd.
21. Fringilla Pennsylvanica, Lath.-About clearings along the whole coast.
22. Erythrospiza purpurea, Gmel.-St. Fabien, May 30 th; Ste. Anne, July 18th.
23. Agelaius Phœniceus, Linn.-Ste. Anne, July 17 th.
24. Quiscalus ferrugineus, Lath.-Metis River, and between Metis and Rimouski, September and October.
25. Corvus Americanus, Aud. - Along the whole coast, and on the Restigouche, buit not seen in inland parts.
26. Garrulus cristatus, Linn.-Lake Matapedia, August 19th.
27. " Canadensis, Linn.-Throughout the district.
25. Bombycilla Carolinensis, Briss.-Metis, June Sth; Ste. Anne, in July : Marsouin River, August 2nd.
29. Trochilus colubris, Linn.-Metis, middle of August.
30. Sitta Canudensis, Linn.-Matapedia Lakes, August 19th.
31. Alcedo alcyon, Linn.-Throughout the district; observed from May 10 th to the end of September.
32. Picus pileatus, Linn.-Green Island Seigniory.
33. "villosus, Linn.-Bic, Ste. Anne, Marsouin and Martin Rirers.

Order Rasores.

34. Ectopistes migratoria, Linn.-From Metis to Ste. Anne; about Lake Matapedia, and along the

Restigouche, from June 18th to August 31st.
35. Tetrao umbellus, Linn.-Near Rimouski. This species was not met with in Gaspé, and is believed by the Indians not to extend so far to the north-east.
36. "Canadensis, Linn.-Throughout the district.

Order Grallatores.

37. Strepsilas interpres, Linn.-Green Island Village, October 26 th.
38. Tringa pusilla, Wils.-Rivière du Loup and Green Island in May; Chat and Martin Rivers in July.
39. Tringa (undetermined).-Mouth of Marsouin, August 4th.
40. Totanus solitarius, Wils.-Matapedia and Restigouche Rivers in August.
41. " vociferus, Wils.-Rivière du Loup, May 20 th.
42. Scolopax Noveboracensis, Gmel.-Green Island, May 25th.
43. Ardea nycticorax, Linn.-Dalhousie, N. B., August 25th; Patapedia River, September 9th; Metis Lake, October 1st.

Order Natores.

44. Anser Canadensis, Linn.-Rimouski, beginning of June; Cape Chat, June 17th, and near Green Island and Cacouna in the end of October.
45. " leucopsis, Bechst.-Rimouski and Green Island in October.
46. Fuligula fusca, Linn.-Const of Rimouski and Gaspe in June and July.
47. ¿ perspicillata, Linn.-Green Island and rarious localities further down.
48. " clangula, Linn.-Dic and Green Island in October, and Metis Lakes, September 18th.
49. " histrionica, Linn.-Ste. Anne River in July; Restigouche in August, and Patapedia in the beginning of September.
50. Mergus serrator, Linn.-Along the whole coast and on every river visited; first seen_at Ste. Anne, June 30 th.
51. Phalacrocorax carbo, Linn.-Between Bic and Green Island, middle of October.
52. Larus atricilla, Linn.-Whole coast.
53. Uria Grylle, Linn.-Hare Island; Green Island; Ste. Anne and near Martin River.
54. Colymbus glacialis, Linn.-Metis Lakes; Marsouin River and Rimouski.
55. 6 septentrionalis, Linn.-Skins of this bird were procured by Mr. Richardson in Anticosti.

CLASS REPTILIA.

1. Tropidonotus sirtalis, Linn.-Throughout the district.
2. Rana pipiens, Gmel.-
"
3. Salamandra erythronota, Green.-"
4. Bufo Americana, Leconte.-

CLASS PISCES.

Order Acanthopterf.

1. Gasterosteus (not determined). -Metis River, above the high falls.
2. " pungitius, Linn.-In numerous localities along the coast, from Rivière du Loup downwards.
3. " biaculeatus, Mitch.-With the preceding species, but more abundant. Found also in Lake Matapedia.
4. Cottus Virginianus, Willughby.-Coast of Gaspé and Rimouski
5. " gracilis? Heck.-Hestigouche River and Metis Lakes.
6. Scomber vernalis, DeKay.-Ascends the St. Lawrence to Rimouski.

Order Malacopteri.

7. Salmo salar, Linn.-Ascends all the rivers in the peninsula which are free from mill-dams.
8. ${ }^{\text {. " }}$ " fontinalis, Mitch.-In every stream and lake tbroughout the district.
9. "trutta, Linn.-Abundant for a short distance up the clear streams of Gaspe.
10. Osmerus viridescens, Lesueur. -Whole coast below Green Island.
11. Alosa prastabilis, DeKay.-Coast of Rimouski, middle of May.
12. " tyrannus, DeKay.-Rimouski Village.
13. Clupea virescens (?), DeKay.-Whole coast as far up as the salt water extends.
14. " elongata, Lesueur.-Whole coast also.
15. Mallotus villosus, Cuvier.- With the last two species ; extremely abundant.

Order Anacanthini.

16. Ammodytes Americanus, DeKay.-Coast of Gaspé.
17. Morrhua Americana, Storer.-Ascends the river as far as Trois Pistoles.
18. " aglefinus, Cuvier.-Taken with cod on the Gaspé coast.
19. " pruinosa, DeKay.-Caught at the mouths of various rivers from the Chat upwards.
20. Motellacimbria (?), Parnell.-Ste. Anne.
21. Zoarcus viviparus, Cuvier.-Off the mouth of Marsouin River.
22. Hippoglossus vulgaris, Cuvier.-Ascends the river to Green Island.
23. Platessa vulgaris, Flem.-Several. of the fishing stations on the Gaspé coast.
24. Cyclopterus lumpus,-Linn.-Ste.Anne; Green Island.

Order Plagiostomi.

25. Spinax acanthias, Curier.-Les Islets.
26. Raia radiata, Don.-Ste. Anne.

MISCELLANEOUS.

27. Coregonus.-Herring Trout, probably C. clupeiformis, are abundant in the Metis Lakes and River.
28. Cyprinus.-Lake Matapedia and the Restigouche Rirer.
29. Catastomus.-Black Suckers occur in the Restigouche and the larger lakes of the district.
30. Anguilla.-Probably A. acutirostris, about the mouths of the rivers all along the coast.
31. Salmo.-An important species of Salmo, known as "Toag," abounds in the lakes of Rimouski County, but as no specimens were preserved nothing certain can be said about it.
articulata.
CLASS INSECTA.
Order Coleoptera.

Detcrniined by Dr. J. L. Leconte of Philadelphia.

1. Cicindela longilabris, Say.-Green Island Seigniory ; between Metis and Lake Matapedia; Ste. Anne.
2. " vulgaris, Say.-Ste. Anne; Ruisseau de la Grande Vallée; between Metis and the mouth of the Matapedia.
3. "duodecimguttata, Dcj.-Metis River; between Metis and the Matapedia; Ste. Anne.
4. " Baltimorensis, Herbst. (repanda, Say.)-Rimouski ; Metis River ; Capucin.
5. Brachinus, (not determined).-Abundant on Metis River.
6. Cymindis reflexa, Lec. (marginata, Kirby).-Rivière du Loup ; Rimouski; Metis; Matanne.
7. Calathus gregarius, Say.-St. Simon; from the mouth of the Marsouin to the Shickshock Mountains, fourteen miles up thatriver; Mount Commis on the Metis River.
Platynus sinuatus, Dej.-Point Levi: St. Simon; Marsouin River.
8. "i extensicollis, Say.-Metis River.
9. " melanarius, Dej.-Point Leri, opposite Quebec.
10. " tenuis, Say.-Berthier and Ste. Anne.
11. " cupripenne, Say.-Point Levi, St. Simon and Ste. Anne.
12. " retractus, Lec.-Berthier, Riviere du Loup, and Ste. Anne.
13. " picipennis, Kirby, (lenum, Lec.)-Berthier, Marsouin River, and between Metis and the Matapedia.
14. Lutulentus, Lec.-Point Levi.
15. " placidus, Say,-Berthier, Matanne, and Ruisseau de 1a Grande Vallée.
16. Pacilus lucublandus, Say.-Very abundant at Point Levi, Berthier, Rivière du Loup, Green Island Village, St. Simon and Metis.
17. Pterostichus erythropus, Dej--Point Levi.
```
19. " \("\) patruelis, Dej.-Green-Island Seigniory.
20. " " mandibularis, Kirby.-Between the mouth of the Marsouin and the Shickshock Mountains.
21. ". " caudicalis, Say.-Berthier and Green-Island Seigniory.
22. " corvinus, Lec.-Point Levi.
```


Order Lefidoptera.

Determined by Mr. DVGrbun.

(a) Rhopalocera.
74. Papilio turnus, Linn.-From Cape Chat to Martin River, from June 18th till the end of July. Extremely abundant.
75. Colias philodice, Godart.-Cape Chat and Ste. Anne, from the middle of June till the middle of July; between Metis and Lake Matapedia, August 17th ; along the Restigouche during the latter half of August ; last seen September 1st.
76. Pieris oleracea, Harris.-St. Simon, May 28th; Ste. Anne, from June 20 th to the middle of Juls. Common.
77. Limenitis Arthemis, Drury.-Ste. Anne, July 16th : Marsouin River July 26 th.
78. Cynthia cardui, Linn.-Seigniory of Grand Metis, August 16th; Dalhousie N. B., August 25th.
79. Vancssa J. album, Boisd.-Junction of the Patapedia and Awaganasees, September 12th.

So. ". Antiopa, Linn.-Metis and near Rimouski, September 29 th.
si. Grapta Prosnc, Fab.-From Riviere du Loup to Ste. Anne, from May 18th till July 19th ; Lake Matapedia, August 17th; along the Restigouche and Patapedia Rivers till September 12th.
S2. Grapta C. aurcum, Cramer (?)-Mouth of Awaganasecs Brook, September 12th.
83. Argyni is Aphrodite, Fab.-First observed at Ste. Anne on the 20th of June and very abundant there for the next month; Marsouin River, July 26th; between Metis and Lake Matapedia and along the Restigouche in August, and last seen at the mouth of the Awaganasees, September 12th.
84. :: myrina, Cramer.-Ste. Anne, end of June and beginning of July; between Metis and Lake Matapedia, August 16th.
s5. :: Bellona, Godart. - Mouth of Matapedia River, August 27 th.
S6. Melitea Tharos, Cramer.-Ste. Anne, beginning of July.
87. Polyommatus pseudarsiolus, Boisd.-Rivière du Loup, May 19th, and thence as far down as Chat River, till June 18th.
8s. Hesperia - (?) -Metis, August 13th; Lake Matapedia, August 1 7th.
(b) Hetcrocera.
89. Orgyia - (?) -Matapedia River, August 20th.
90. Ctenucha Latreillana, Kirby.-Ste. Anne, June 28th. Abundant.
91. Phragmatobia fuliginosa, Linn.-Matanne, June 12th.
92. Mamestra - (?) Ste. Anne.
93. Plusia - (?) -Common in Gaspé and on the Restigouche.
94. Pyralis - (?) - Mouth of the Matapedia River.
95. Crambus -(?) - Very abundant in meadows at Ste. Anne, and at the mouth of the Matapedia. Five undetermined species of Geometric Moths.

Class crustacea.

Order Decapoda.

i. Cancer irroratus, Say.-Whole coast below Green Island.
2. Hyas fissirostra, Saj sp.-With the preceding species.
3. Pagurus Bernhardus, Fabr.-Coast of Gaspé and Rimouski.

4 Homerus Americanus, Milnc-Edw.-Rare on the coast of Rimouski and on the north coast of Gaspe but abundant in Gaspe Bay, on Anticosti and in the Bay of Chaleur.
5. Astacus Bartonii, Bosc.-Metis, Matapedia and Restigouche Rivers.
6. Crangon vulgaris, Fabr.-Coast of Gaspé and Rimouski.
7. "" sculptus (?), Bell.-Off Cape Chat.
8. Hippolyte (not determined)-Near Metis.
9. Orchestia (not determined)-Whole coast.

Class annulata.
Order Tubicoles.
Determined by Dr. J. W. Dawson.

1. Spirorbis porrecta,-North coast of Gaspé.

2. " cancellata,-- " $"$ spittoral Algae, whole coast below Rivière du Loup.
3.
4. Serpula (vermilia) serrula, Stimpson.-North coast of Gaspé.

MOLLUSCA:
CLASS GASTEROPODA.
Order Pclmonifera.
(Terrestrial.)

1. Helix alternala, Say.-Common from Quebec along the whole coast into Gaspe ; it appears to be diffused over the whole peninsula.
2. " albolabris, Say.-From Quebec to Metis; Lake Matapedia; along the Restigouche River from Dalhousie to the mouth of the Patapedia. I never met with this species in the County of Gaspe.
3. "monodon, Rackett.-Point Levi; along the banks of the Restigouche from Dalhousie to the mouth of the Patapedia.
4. "S Sayii, Binney.-Restigouche River, about five miles above the mouth of the Matapedia.
5. " concava, Say.-Point Levi; abundant.
6. "hortensis, Müll.-From all that I could ascertain regarding this species, it appears to have diffused itself over a strip of country several miles in width, bordering on the St. Lawrence and extending from Metis to Gaspé Bay.
7. " arboreu, Sar.-Throughout the whole district; very abundant. Occurs on the Island of Anticosti.
: striatelle, Anthony. With the last species and equally abundant.
: lineuta, Say.-Numerous localities on the coast, from Berthier to Narsouin River.
" labyrinthica, Say.-Rivière du Loup and Green Island.
Helix pulchella, Mül.-Berthier, mouth of Magdalen River and Dalhousie, N. B.
: usteriscus, Morse.-Valley of the Marsouin River.
: chersint, Say:-Trois Pistoles; Capucin; Ste. Anne; along the vallies of the Marsouin, Magdalen and Matatapedia Rivers, and at the mouth of the Patapedia.
8. Helix (undetermined).-1 young shell of one of the larger species, but differing from any of the preceding ; Rivière du Loup.
9. Succinea avara, Say.-Matanne; mouth of Magdalen River; several localitics on the Restigouche.
10. " ovalis, Gould.-Metis, Matanne and Ste. Anne.
11. ": obliqua, Say.-Thronghout the district.
12. Achatina lubrica, Müll - Rivière du Loup; Trois Pistoles; Metis Lakes and along the Restigouche.
13. Bulinus harpa, Say sp.-Metis; month of Magdalen River, and very abundant in the Marsouin Valley.
14. Vítrint pellucida, Drap.-Rivière du Loup; Trois Pistoles; Ste. Anne; Restigouche River ten miles above its junction with the Matapedia.
15. Pupa (Vertigo) simplex, Gould.-Valley of the Marsouin; along the Restigouche and at Metis.

(Fresh Water.)

. Physa hetcrostropha, Say.-Throughout the district; very abundant.
23. "aurea, Lea.-Sereral localities in the County of Rimouski.
24. "c elonguta, Say.-Green Island Village ; Metis; Ste. Anne.
25. " ancillaria, Say.-Rimouski Village.
26. " murginata, Say -Near Rimouski Village.
27. Limnea stagnalis, Lam.-Extremely abundant in the Metis Lakes, and in the lakes on the Rimouski River.
28. "caperatu, Say.-Lakes Metis and Matapedia, and the Metis and Restigouche Rivers. Abundant.
29. "umbrosa, Say.-Ste. Anne; a creek about two miles below Chat River; Metis and Restigouche Rivers.
30. "caliscopium, Say.-Rimouski, Restigouche, and Dartmouth rivers.
31. " apacina, Lea.-Living in the St. Lawrence at Point Levi; in the Metis, Rimouski and White Rivers.
32. " acuta, Lea.-Opper Lake Metis; abundant in Marl Lake, Anticosti.
33. $\because \quad$ umbilicata, Say.-Metis and Ste. Anne.
34. " reflexa, Say.-Upper Metis Lake.
35. 4t pullida, Adams.-Large Lake Matapedia; near Cape Chat.
36. "
37. " purva, Lea.-Ririère du Loup.
38. " decollata, Say.-Large Lake Matapedia; Rimouski Village.
39. "alternata, or ner.-Point Levi.
40. Planorbis trivolvis, Say.-Rimouski, Metis and Restigouche Rirers.
41. " campunulatus, Say--Lakes Metis and Matapedia.
42. " bicurinatus, Say.-Restigouche 'iver.
43. " parrus, Suy.-Thronghout the district.
44. " deflectus, Say.-Large Lake Matapedia.

Order Prosobranchiata.

(Fresh Water.)

45. Amnicolaporata, Say-Little Lake Matapedia.
46. Valvata tricarinata, Say.-Matapedin Lakes.
47. " humeralis, Say (or a new specirs). Matanne; small lake at the head of Awaganasees Brook; Little Lake Matapedia.
48. " sincera, Say.-Marl Lake, Anticosti. Abundant.

Note.-Many of the above species of land und fresh water Gasteropoda were kindly determined for me by W. G. Binney Esq., of Burlington N. J. and Dr. Isaac Lea, of Pbiladelphia.

(Marine.)

```
Fusus scalariformis, Gould.-Pcter River; Ste. Anne ; Marsouin.
    " gracilis Alder .-Trent; Ste. Anne ; Marsouin.
    " tornatus, Gould.-Rimouski Village; near Ste. Anne.
    " decemcostatus, Say.-Near Cape Gaspé (collected by Sir W. E. Logan in 1844.)
    " rufus, Gould.-Ruisscau de la Grande Vallée.
    " Bamfius, Flem:- ":
        "
    Bela canceilata, M. \& A.- "
    Pleurotoma bicarinata (?), Conth.— "
    Buccinum undatum, Linn.-Whole coast below Rivière du Loup.
        " Donovuni, Gray.-Several localities below St. Flavie.
    Nassa triviltata, Say.-Gaspé Bay and Bay of Chaleur.
    " obsoleta, Say.-Vicinity of Cape Guspé.
    Purpura lapillus.-Lam. - Whole coast below Metis.
    Trichotropis borealis, Sowerby.-Ste. Anne and near Cape Chat.
    33. Velutina chalioloides, Müll.-Ste. Anne and Marsouin.
    64. Lamellaria perspicư, Lovèn.-Ruisseau Vallée.
    65. Natica heros, Say, ampullaria, Lam. -In sandy bays on the Gaspe constat Dalhousie, Bay of Chaleur.
    66. " clausa, Brod. \& Sow.-Several localities between Bic and Marsouin.
    67. " triseriata, Say.-Magdalen Bay.
    63. " flava? Gould.-Rimouski; Les Islets; Claude.
    69. " helicoides, Johnston.-Marsouin.
    70. Chemnitzia.-One or more species of Chemnilzia dredged off Marsouin.
    71. Aphorhais occidentalis, Gould.-Bic; Ste. Anne; Claude; Marsouin.
    72. Rissoa minuta, St.-Green Island and Long Point.
    73. Lacuna vincta, Turt.-Whole coast below Rimouski.
    74. Littorina littoralis, F. \& H., palliata, Gould.-Whole const below Rivière Ouelle.
    75. Littorina rudis, Gould, (including tencbrosa).-With the preceding species.
    i6. Murgarila cinerca, Gould.-Ste. Anne; Ruisscau Vallée; Peter River and Marsouin.
    77. " undulata, Sow.-Ste. Anne; Ruisseau Vallée.
        ". helicina, Müll.-Trent; Les Islets; Ste. Anne.
    Slenea costulata, F. \& H.-Marsouin.
    Diadora Nouchina, Gray-Capucin ; Ste. Anne ; Marsouin.
    Crepidula fornicata, Lam.-Dalhousie, Bay of Chalcur.
    Acmaca testudinalis, Hanley. - Whole coast below Rivière du Loup, also in Bay of Chalcur.
        " caca.-Marsouin.
    Chiton marmoreus, Fabr.-Bic, and whole coast of Gaspe.
```

 CLASS LAMELLIBRANCHIATA.
 (Marine.)
 Pholas crispata, Linn.-Bic; Rimouski; near the Trent.
 Saxicava rugosa, Lam.-Les Islets; Ste. Anne; Cape Chat; Marsouin Claude.
 MIja arenaria, Linn.-Whole coast below Rivière Ouelle, and in Bay of Chaleur.
 "truncata, Linn.-Numerous localities on the coast of Rimouski and Gaspe.
 Glycymeris siliqua, Lam.-Cape Chat; Ruisseau Vallée; and Marsouin.
 Osteodesma hyalina, Couth.-Ste. Anne.
 Machera costata, Gould.-Rimouski.
Solen ensis, Linn.-Bic ; Rimouski, and numerous localities on the coast of Gaspé.
Tellina proxima, Brown.-Ste. Anne ; Ruisseau Vallée ; Marsouin.
" Granlundica, Beck.-Whole coast below Bay St. Paul (fifty-five miles below Quebec), and in
the Bay of Chaleur.
Mactra ovalis, Gould.-Bic ; Rimouski; Metis, and in sandy bays everywhere on the Gaspe coast.
Mesodesma arctatum, Gould.-Whole coast below Green Island. Extremely abundant.
Venus gemma, Tott.-Green Jiland.
Aphrodite Grœelandica, St.-Bic; Rimouski; Metis; Ste. Anne; Ruisseau Vallée.
Cardium Islandicum, Linn.—Bic ; Rimouski; Metis ; Ste. Anne.
Cardita borealis, Con.-Marsouin ; Capucin ; Ste. Anne ; Ruisseau Vallée.
Astarte sulcata, Costa.-Bic, and various localities on the Gaspé coast.
" elliptica, Brown.-Marsouin.
" compressa, Mont.-Marsouin.
Lucina flexuosa, Gould.-Ste. Anne; Ruisseau Vallee and Marsouin.
Lima subäuriculata, Mont.-Ste. Anne.
Mytilus edulis, Linn.-Whole coast below Kamouraska.
Modiola discors, Linn.-Ste. Anne; Marsouin.
" plicatula, Lam-Vicinity of Gaspé Bay.
25. " glandula, Tott.-Ste. Anne; Ruisseau Vallee ; Marsonin.

```
26. " pectinula, Gould.-Ruissean Vallée; Marsoun.
27. " nexa, Gould.-Ruisseau Vallee.
25. Nucula myalis, Couth.-Numerous localities on the Gaspe coast.
29. " tenuis, Turt.-Capucin; Ste. Anne ; Ruisseau Tallée.
30. Peclen Mugellenicus, Lam.-Ste. Anne; Claude and Gaspe Bay.
31. " Islandicus, Müll.-Whole coast below Metis.
32. Anomia cphippium, Liun.-Ste. Anne; Marsouin.
(Frcsh Water.)
33. Unio complanatus, Lea.-Living in the St. Lawrence as far down as Berthier. Valves both of this species and of \(U\). radiatus were frequently found on the beach the whole way to Gaspé. They had probably drifted from the fresh water of the St. Lawrence, as no species of Unio was found in any of the rivers or lakes of our present district.
34. Mrargaritana arcuath, Barnes sp.-Gireen and Rimouski Rivers, and both the Matapedia Lakes.
35. Anotonta subcylindraceu, Lea.-Grand Lac (ten miles south of Rimoushi Village); Lake Matapedia ; small lake six miles S. W. of Metis.
36. " new species.-Berthier.
37. " cidentula, Say.-Lake Matapedia.
38. " frasilis, Lam.—Metis Lakes.
30. " implicata, Say--Berthier.
40. Cyclas similis, Say - Metis Lakes and a small lake six miles S. W. of Metis.
41. "dubia (?), Say.-Throughout the district.
42. " (undeterinined).-Ste. Anne.
```


CLASS BRACHIOPODA.

1. Hypothyris psiltacea, King.-Ste. Anne; Ruisseau Valléc; Marsouin. Abundant.

CLASS POLYZOA.

Order Cifeilostomata.

The Polyzon dredged at Marsouin on the north const of Gaspé, were kindly determined by Dr. J. W. Dawson, Principat of MeGill College. The following is his communication in full.

The Poly\%oa in Mr. Bell's Collections are numerous and fine, but much time and care would be required for their accurate determination. The appearances presented in varions stages of growth and preservation, are so perplexing, and the characters given for the species of authors, of so little value, that little can be done with a collection of dead cells, except to indicate the described species with which they scem to be identical. The following species were all attached to dead shells and stones; from a depth of about thirty fathoms.

1. Hippothoa cat enuluria, Jameson.
2. "" divaricata, Elliot.
3. Hippolhoa expansa. New specics. Description. Cells oral, depressed, and expanded at the sides, not contracter at the base, branching dichotomously. When magnified the surface presents indistinct transverse wrinkles and delicate longitudinal lines. Aperture, small, round, with a slight sinus. Texture hyaline, but iess delicate than H. dituricata.
All the three species above mentioned are found associated on small pebbles and skells.
4. Lepralia pertusa, Thompson.-Very abundant.
5. " Peachii, Johnston.-Very abundant also.
6. "t trispinosa, Jolinston.-Abundant.
7. " hyalina? ", Johnston.-Rare.
8. "~ punctata, Hassal.-Rare.
9. " puncturata, Busk.-A little group of three cells on a shell of Mactra ovalis have the precise characters of this species, obtained by Busk from the English Crag. It appears still to live, though as a rare species, in the Gulf of St. Lawrence.
10. "Belli. New species. Description. In large patches. Young cells granular, semihyaline, confluent; mouth immersed, sinuated, with a vibraculum or avicularium inside the middle of the lower lip; ovi-cells rounded, granulons like the cells. Old cells white, opaque, flat above, and separated by a deep sinuous furrow. Cells having a strong tendency to form rows radiating from the centre of the patch. I can find no described species possessing the above characters. It is allied to L. concinna, Busk, but differs in essential points from his description and figure.
11. Lepralia plana, New species. Description. Cells flat, confluent, shallow; walls decrly and irregularly furrowed; mouth rounded above, straight below, often with it narrow sinus in the middle. Young cells hyaline ; old cells, opaque and deeply furrowed in a stellate manner. Forms very thin and 'flat expanding crusts. L. adpressa, Busk, from Chilæ, resembles it more nearly than any other species known to we.
12. Membranipora Lacroixi, Busk, or a nearly allied species.
13. " lineate *, Busk, Flustra lineata, Fabricius, "Fauna Groenlandica."
14. Cellepora pumicosa*, Ellis.-On Sertularia.
15. " " cervicornis, Borlase.
16. " ramulesa, Linn.,-or allied species.
17. Carbasea papyrea, Gray.-The frond is narrower than in British examples, bat the cells are of the same form.
18. Diastopora obclia, Fleming, or closely allied species.
19. Tubulipora flabellaris.* Fabricins.
20. " hispidu.* Johnson.-It is the Mudrepora verrucariu of Fabricius.
21. "phalangea? * Couch-Of the form of T. flabcllaris, but dotted with pores and having larger tubes, which are grouped in bundles. Perhaps it is T. densa, Stimpson. Its colour is often light bluc. Fabricius seems to hare seen it and placed it with 7. flabellaris.
22. Cellularia (species undetermined.)

Many more species were dredged but have not yet been determined.

RADIATA.

CLASS ECHINODERMATA.

Order Asteroidea.

1. Ophiocoma bellos, Link.-Ste. Anne and Marsouin; abundant.
2. " Gordsiri? Forbes.-Marsouin.
3. Astrophyton scutatum, Link.-Green Island; Gaspé Bay; St. Nicolas (north shore). Said to be common on the coast of Rimouski.
4. Cribella oculata (?) Pennant.-Near Ste. Anne.
5. Solaster papposa, Linn.-Marsonin.
6. Asteracanthion polaris, Müll.-Very abundant along the whole coast below Rimouski.
7. " rubens, Linn.-Les Islets.

Order Eceinoidea.

8. Echinarcchnius Atlanticus.-On muddy and sandy bottoms, along the whole coast below Rimouski. 9. Echinus grunularis, Lam.-Whole coast below Rivière du Loup.

Order Holothuridea.

10. Cucumaria communis, Forbes.-Between Cape Chatand Ste. Anne; abdt.
11. Psolus phantapus, Linn.-Various localities between Metis and Ste. Anne.

CLASS ACALEPHAE.
Order Hidrompea.

1. Sertularia polyzonia *, Johnston.-Dredgred off Marsouin.
2. " argentea*, Ellis.— " "
3. " filicula, Ellis.- " "
4. " latiuscula?, Stimpson, or a closely allied species.

None of the above have ovicapsules.
Sis or more different Sponges, some of them beautiful forms, were collected.
PLANTS.
I am indebted to Mr. D'Urban, late of the Geological Surrey, for preparing the following catalogue of Plants collected by me in the eastern peninsula of Lower Canada. Numerous species, about which Mr. D'Urban was in doubt, were kindly determined by George Barnston Esq., of the Hudson's $\mathrm{B}^{2} \mathrm{~J}_{\text {Company. }}$

Ranunculacea.

1. Anemone Pennsylvanica, Linn.-F.F.*, August 12th, Metis.
2. Thalictrum cornuti, Linn,-F. F., July 16 th, Ste. Anne.
[^25]$\begin{array}{lll}\text { 3. Ranunculus repens, Linn. " } \\ 4 . & \text { acris, Linn. }\end{array}$
4. ": acris, Linn. "No "
6. Caltha palustris, Linn.-F. F., June 5th Rimouski.
7. Aquilegia Canadensis, Linn.-F. F., May 16th, L'Islet.

Nymphocacea.
8. Nuphar advena, Ait., (a very small form.)-F. F., August, west end of Lake Matapedia. Sarraceniacer.
9. Sarracenia purpurea, Linn.-F. F., June, Ste. Annc. Fumariacea.
10. Corylalis aurea, Pursh.-F. F., August 30th, Restigouche River. Crucifera.
11. Sinapis arvensis, Linn.-F. F., July IIth, Ste. Anne.

Violacea.
12. Viola cucullata, Ait.-F. F., May 30th, St. Simon.

Cistacer.
13. FIudsonia tomentosa, Nutt.-F. F., August 31st, River Restigouche.

Parnassiucea.
14. Prarnassia Carolinianum, Michr.-F. F., August 30ť. Caryophyllacece.
1:. Silene inflata, Smith.-F. F., July Gth, Ste. Anne.
16. Mæliringia lateriflora, Linn.-F. F., July 23rd, Portage between Martin and Marsouin rivers.
17. Spergula arvensis (?), Linn.-No flower, August 12th, Metis.

Oxalidacea.
18. Oxalis acetosella, Linn.-Very abundant up the River Marsouin.
19. " stricta, Linn.-Going to seed, August 30 th , River Restigouche.

Anacardiacea.
20. Rhus Toxicodendron, Linn.-Fruit ripe, August 31st, River Restigouche.

Sapindacea.
21. Acer spicatum, Linn.-Abundant everywhere on low land; just out of flower, July 5th, Ste. Anne. In seed, Sept.11th, mouth of the Awaganasees Brook.
22. " saccharinum, Wang. (Hard Maple).-On rich soil only.

Leguminosce.
23. Trifolium repens, Linn.-Abundant round clearings, \&c., throughout the district.
24. Desmodium Canadense, D. C.-F. F., August 12th and 31st, River Restigouche.
25. Vicia Cracca, Linn.-F. F., July 1lth, Ste. Anne.
26. Lathyrus palustris, Linn.-F.F., August 4th, mouth of the Marsouin.
27. Oxytropus Lamberti, (?) Pursh.-F.F., August 31st, River Restigouche.

Rosacea.
28. Prunus pumila, Linn.-Fruit nearly ripe, August 31st, River Restigouche.
29. " Pennsylvanica, Linn.-Abundant throughout the Counties of Rimouski and Bonaventure.
30. " Virginiana, Linn.-Fruit ripe, Sept. 1st, River Restigouche.
31. Agrimonia Eupatoria, Linn. -In seed, August 21 st, fifteen miles up the River Matapedia.
32. Potentilla anserina, Linn.-F.F., August 4th, mouth of the River Marsouin.
33. Fragaria Virginiana, Ehrhart.-Grass land throughout the district. Fruit ripe beginniug of July, Ste. Anne.
34. Rubus triflorus, Rich.-Fruit ripe, July 12th, Ste. Anne; mouth of the Awaganasecs.
35. "strigosus, Miche.-Extremely abundant on burnt land and about fences throughout the district.
36. Rosa blanda, Ait.-In blossom, July 5th and 20th at Ste. Anne, and August 12th at Metis.
37. Gratægus tomentosa, Linn.-River Restigouche.
38. Pyrus Americana, D. C.-Moderately abundant throughout the district.

Onagracca.
39. Epilobium augustifolium, Linn.-F.F., July 16th, Ste. Anne.
40. " coloratum, Muhl.-In seed, July, three miles up the River Marsouin.
41. Enothera biennis, Linn.-F.F., July 11th, Ste. Anne; August 30th, mouth of the River Matapedia.
42. Circæa Alpina, Linn.-In flower, July 31st, mouth of the River Marsouin.

Saxifragacea.
43. Mitella nuda, Linn.-Seed ripe, July, 3 miles up the River Marsouin.

Umbellifera.
44. Heracleum lanatum, Michx.-F. F., July 16 th, Ste. Anne.
45. Sium lineare, Mich.-F. F., August 12 th, Metis.

Cornacea.
46. Cornus Canadensis, Linn.-F. F., July 5th, Ste. Anne.
47. " stolonifera, Michx.-F. F., June, Ste. Anne.

Caprifoliacec.

48. Linnea borealis, Gronov:-F. F.; June, Ste: Anne, and abundant everywhere.
49. Lonicera ciliata, Muhl.-In fruit, July 30th, Marsouin river.
50. Diervilla trifida, Mrench:-F. F., August 30th, River Restigouche.
51. Sambucus Canadensis, Linn.-Abundant on low land.
52. Viburnum opulus, Linn.-F. F., July 16th, St. Anne.

Compositce.
53. Eupatorium purpureum, Linn.-F. F., Sept. 3rd, month of the Rirer Patapedia.
54. " ageratoides, Linn.-F.F., July 3lst, mouth of the River Marsouin, and August 30th, River Restigouche.
55. Aster miser, Linn, Ait.-F. F., August 12th, Metis.
56. " simplex, (?) Willd.—" " "
57. " longifolius,(?)Lam.-" " "
58. Diplopappus umbellatus, Torr. and Gr.-F. F., June 30 th, mouth of the River Matapedia.
59. Solidago bicolor, Linn.-Going out of flower, Augnst 30th, River Restigouche.
60. " Canadensis, Linn.-F. F., August 12th, Metis.
61. Achillea millefolium, Linn.-F.F., July lith, Ste. Anne, and mouth of the Awaganasees, September.
62. Leucanthemum vulgare, Lam.-F. F., July 4th, Ste. Anne, and August 30th, River Restigouche.
63. Cirsium Muticum, Michx.-F.F., August 30th, mouth of the River Matapedia.
64. " pumilum (?), Spreng.-Out of fower, August 30 th, River Restigouche.
65. Hieracium Canadense, Michx.-F.F., Angust 30 th, River Restigonche.
66. Nabalus racemosus, Hook. (" variety with truncate and obcordate leaves." G. B.)-August 30th; River Restigouche.
Lobeliacec.
67. Lobelia Kalmii, Linn.-F. F., August 30th, River Restigouche.

Campanulacere.
68. Campanula rotundifulia, Linn.-F. F., August 4th, mouth of the River Marsouin, and August 30th, River Restigouche.

Ericacea.

69. Vaccinium Pennsylvanicum, (?) Lam.-In great profusion on hills which had been burnt over.
70. Chiogenes hispidula, Torr. and Gr.-In great abundance throughout the district.
71. Andromeda polifolia, Linn.-F. F., July 16th, Ste Anne.
i2. Pyrola rotundifolia, Linn.- " " "
Plantaginacere.
72. Plantago maritima, Linn.-F. F., August 4th, mouth of the River Marsouin.

Primulacee.
74. Primula farinosa, Linn.-Abundant all along the southern shore of the Gulf. F. F.., end of May and June.
Lentibulacea.
75. Utricularia vulgaris (?).-Linn.-Metis.

Scrophulariacece.
76. Chelone glabra, Linn._F. F., August 12th, Metis.
77. Veronica Americana, Schweinitz.-Nearly out of flower, July 12th, Ste. Anne.
78. Pedicularis Canadensis, Linn.-F.F., August 10th, Matan.

Labiata.
79. Lycopus Virginicus, Linn., (a very coarse form).-In flower, August 30th, River Restigouche.
80. Brunella vulgaris, Linn.-In flower, July 11 th. Ste. Anne.
81. Scutellaria nervosa, Pursh.-In flower, August 12th, Metis.

Borraginacece.
82. Mertensia maritima (?), Don.-In flower, beginning of July, Ste. Anne.

Apocynacece.
83. Apocynum androsæmifolium, Linn.-F. F., August, between Metis and Lake Matapedia.

Asclepiadacece.
84. Asclepias cornuti, Decaisne.-Abundant all along the Restigouche.

Oleacer.
85. Fraxinus sambucifolia, Lam., (Black Ash). In valleys, and along the shores of the Lakes.

Polygonacece.
86. Rumex acetosella, Linn.-Coming into flower, July 16th, Ste. Anne.

Urticacece.
87. Ulmus Americana, Linn., (Swamp Elm).-Very abundant, and of large size, along the River Restigouche.

Cupuliferc.
88. Corylus rostrata, Ait., (Hazel-nut).-Marsouin River.

Betulucea.
89. Betula papyracea, dit., (White Birch).-The most abundant deciduous tree throughout the eastern peninsula, and reaching a large size.
90. " excelsa, Ait., (Yellow Birch).-Most abundant round Lake Matapedia, and in the valleys of the Rivers Marsouin and Restigouche; generally associated with Hard Maple on rich soil.
91. Alnus incana, Willd., (Alder.)-Ererywhere bordering the streams and rivers, forming dense thickets.
Salicaccre.
92. Populus tremulnides, Michx., (Common Poplar).-Abundant on bigh lands.
93. "، balsamifera, Linn., (Balsam Poplar, Balm of (iilead).- Abundant on the borders of rivers and lakes.

Coniferce.

94. Pinus resinosa, Ait., (Red Pine).-Abundant, but of small size, along the upper part of the River Patapedia.
95. " strobus, Linn., (White Pine).-Abundant everfwhere.
96. Abies balsamea, Marshall, (Balsam Fir).-Very abundant.
97. "nigra, Poir., (Black Spruce). The principal, and in many places the sole tree covering the hilly country of the eastern peninsula.
98. "alba, Michx., (White or "Sca Spruce" of the Indians). -The commonest tree along the coast and rivers.
99. Larix Amcricana, Michx., (Tamarack). - Rather scarce, but occurring in every variety of situation throughont the district.
100. Thuja occidentalis, Linn., (White Cedar).-Very abundant in the vallies of all the rivers, reaching a very large diameter, but no great height.
101. Taxus baccata, Linn., var. Canadensis, (Ground Hemlock).-Abundant amongst trees on low ground.
Alismacec.
102. Sagrittaria variabilis, Eugelm.-F. F., August 15th, Metis.

Orchidacece.
103. Platanthera flava, Gray.-F.F., September 1st, River Restigouche.
104. " psycodes, Gray.-F. F., August 17 th, West end of Lake Matapedia.
105. Spiranthes decipiens, (?) Hooker.-Coming into flower, July 30th, Marsouin River.
106. Corallorhiza Macrei, Gray.-Going to sced, July 31st, three miles up the River Marsouin.

Iridacca.
107. Iris versicolor, Linn.-F. F., July 4th, Ste. Anne.
108. Sisyrinchium Bermudianum, Linn., (variety macronatum, Gray).-In flower, July 16th, Little Stc. Anne.
Smilacer.
103. Trillium erectum, Linn., (very large).-Fruit ripe, July 31st, three miles up the Marsouin River Liliacec.
110. Smilacina stellata, Desf.-F. F., June, Stc. Anne.
111. " bifolia, Ker.-In secd, but not ripe, July 20th, Marsouin River.
112. Clintonia borealis, Raf.-Throughout the district.

Melanthucece.
113. Streptopus roseus, Michr.-F. F., June, Ste. Anne.
114. Toficlda glutinosa, Willd.-Seed ripe, August 30th, River Restigouche.

Cyperacece.
115. Eriophorum vaginatum, Linn.-Ste. Anne.

Gramineæ.
116. Phleum pratense, Linn., (Timothy).-Table-topped Mountain, $3800 \mathrm{ft} .{ }^{-}$above the sea; upper part of Magdalen River, growsluxuriantly along roadsides in openings in the woods, \&c.
117. Calamagrostis Canadensis, Beauv.--Shickshock Mountains.
118. Elymus Canadensis, Linn.-River Restigouche.
119. Avena striata, Michr.-('Trisetum purpurascens, T'orr.) Shickshock Mountains.

Equisetacec.
120. Equisetum pratense, Ehrh.—Mctis.

Filices.
121. Asplenium felix-fœmina, R. Br.-Mouth of the Awaganasees Brook.
122. Aspidium spinulosum, Swartz- " $"$ "
123. Osmunda regalis, Linn.-Round Metis Lake, \&c.
124. Botrychium Virginicum, Swartz.-Fertile fronds ripe, July 28th, River Marsouin.

Lycopodiacece.
125. Lycopodium lucidulum, Michx. -In fruit Sept. 1st, River Restigouche.
126. " \quad dendroideum, Michx.-"
127. " clavatum, Linn., " "
"
128. " complanatum, Linn.,_" " "

Musci.
129. Polytrichum communc. Linn.-Collected on the River Marsouin.
130. Hypnum splendens, Hedw.- " 6

131.	"	Schrebcri, Willd.-	"	"	"
132.	"	Crista-Castrensis, L.-	"	"	"
133.	"	reptile, Michx.-	"	"	"

Lichencs.

134. Peltigera aphthosa (?) Hoffen, infert. River Marsouin.
135. Sticta pulmonaria, Ach.-

TABLE OF CONTENTS.

FOR THE
REPORT OF PROGRESS OF THE GEOLOGICAL SURVEY OF CANADA.
For 1858.

I.

Refort of Sir. W. E. Logan.
Survey of the River Rouge.
Distribution of Laurestian lisestones.
Section of the limestone scrics.
Drift and glacial grooves.
Economic Materials; Iron ores.
Lead ore of Bedford and Lansdowne.
Ramsay lead mine.
Copper ore of Bastard and Escott.
Beds of copper ore in the Eastern Townships.
Acton copper mine.
Copper ores of Leeds.
Mica, phosphate of lime, Rensselacrite, shell-marl.
Peat, marble.
Grological map and general report.

II.

Report of Alexander Murraf, Esq.
Tee Thessalon and Mississagui Rivers.
Levels of the Mississagui.
Distribution of the rock fobmations.
General section.
Relations of the copper veins.
Drift and glacial grooyes.

III.

Report of Mr. Jamis Riciardson.
Valley of the Marsouin River and neighbourhood.
Const between the Marsouin and Great Metis Rivers.
The Restigouche River.
Patapedia and Great Metis Rivers.
Region between Metis and Rivière du Loup.
Distindetion of the rock formations.
Scction from the mouth of Marsouin River.
Section from the Ste. Anne.
Mt. Albert; its stratified serpentines.
Coast sections from the Marsouin.
Section at Trois Pistoles.
Section of the Metis and Patapedia Rivers.
Section of Rimouski River.
Drift and glachal grooyes.
Economic Matemals; Iron ore, manganese ore, copper ore, chromic iron, serpentine, slates, tile and flagstones, millstones, building stones,lime, shell-marl, peat, mineral springs.

Report of T. Sterry Hent, Ese.
Intaustre Rocis ; Trachytes of Montreal. Trachytes of Brome and Shefford Mountains. Yamaska Mt. trachyte and diorite ; anorthite. Mount Johnsun, diorite ; oligoclase. Belccil Mountain, diorite. Montarville, dolerite ; olivine and augite. Rougemont, dolerite and basalt. Montreal Mountain, dolerite; labradorite.
Rigaud Mountain, trachytic rocks, diorite. Altered rocks of Rougemont and Montreal.
Introsive rocis of Grenvilies.
Quartziferous porphyry. Syenite ; its alteration. Dolerite, melaphyre.
Garnet-bearing gnciss.
Minerals from Silurian rocks. Chloritoid, epidote. Green coloring matter of sandstones.
Contributions to tie History of Miagnesian Limestones.
Formation of gypsum.
Solubility of the double carbonate of lime and magnesia.
Artificial production of the double carbonate of lime and magnesia.
Theory of the formation of dolomites.
V.

APPENDIX.
Levels of the River Rovge, \&c.
Localities of copper ores in tie Silerian roces of Loweat Cañada.
Localities of copper ores in the Huronian roces, Missipagit River.
Catalogue of animala and plants collected by Mír. D'Urban in the counties of Argenteull and Ottawa.
Catalogue of ayimals and plants collected by Mr. R. Bell, on the south-east side of the St. Lawrence from Quebec to Gaspe.

This volume contains the following maps and diagram:

1. Distribution of Laurentian limestones.
2. Section of Thessalon trough.
3. Distribution of Huronian rocks.
4. Distribution of formations in a portion of Gaspe.

[^0]: * Note.-When the dip of the strata is in the direction of the current, the water has only an erosive force; but where it is against the current; the strata are undermined, fall from their own weight; and are broken to pieces, and the next flood carries the debris aray down stream.

[^1]: *The investigation of the laws that govern the flow of rater over weirs, is one of the mostimportant branches of hydraulic engineering, and has receired the attention of many eminent sarans, among whom may be particulary mentioned, Du Buat, Castcl, Poucelet, Lesbios, Dauhuisson, in France, Egleweir, Weisbach, in Germany ; The Kennies, Sir John Leslie, and Thomas E. Blackwell, in England; and James B. Francis, of Lowell; in the United States.

 All the rules and formula derived from their investigations are founded on that natural law governing the velocity of fluids, known as the theorem of Tonicelli, modified by coefficients obtained by comparing the results derived from it, with those furnished by experiment. As these experiments have as ret been made on a comparatively small scale, we cannot apply the rules deduced from them to circumstances widely differing from those under which the experiments were made, without discrepancies more o: less great being found in the results.

 The case with which we have to deal is fortunately one where we procend from the greater to the iess, so that an error, whatever it is, is diminished instead of being increased. Were we calculating the amount of arailable waterpower from the height on the crest of our dam, a rery small error cither in observation, or in the coefficient itself, would give results widely differing from the truth; but where We have already gauged the flow of the stream, and only calculate the height for a given length of dam, we know that the calculated result must at least be as close an approximation to mathematical truth, as is the quantity expressing the number of cuibic fect of water passing a given arca in a second, as obtained from our gauges.

 Nevertheless it weuld be very desirable to hare a series of experiments made with special reference to determining the actual longitudinal section of a large river, dammed entirely across; during different volumes of discharge from extreme high to low water. Such experiments, if properls made, would not only be a very raluable contribution to encincering science, bat are almost indispensable to the proper carying out of a scheme of the magnitude proposed in this Report.

[^2]: *When the question of the enlargement of the Erie Canal came up several years ago, this point was discussed very thoroughly, and the opinion of formarders was that, if the Erie Canal were large cnough to admit vessels of 1000 tons, they mould still prefer to tranship to Buffalo.
 fin this I am supported by the opinion of Mr. Shanly, who has in his report so well expressed the character of this route, that I shall make no apology for quoting it here.
 "It is a Steam Navigation, and more especially for that denomination of Steamers known as "Propellers," that I believe the Ottawa and French River route is destined to hold a first place as a Channel of Trade. For ressels of that description the character of the waters, and of the region on cither side of them, is peculiarly fitted. Land locked for the greater portion of the way, the route will not in that respect be as adrantageous for Sailing Craft as that by the great Lakes, but the inexhaustible supplies of wood at all points along it, and the facilities for taking their fuel on board at frequent interrals, will forever render the cost of working Steam Vessels lower on this than on any equal length of Navigation on the continent. Here, too, the Propeller can keep the even tenor of its way heedless of the storms which, sweeping across the Lakes in the Autumn of each year, cause such inmense destruction oflife and property.

[^3]: *At the time we took our levels, the fall between Des Chenes Lake and Ottawa harbor was 59:5 feet ; but the difference between the recorded levels of low water is 63 feet. If this is correct, of which I have some doubts, it is owing to the greater evaporation on the longer level below. It has been thought prudent to provide for sixty-three feet of lockage.

 Below, the river rises more than at any other point, some 20 to 24 feet. This is attriouted to the fact that the Gatinean, a very large river: comes in a little below at right angles to the main river,
 and draws back its waters.

[^4]: * The cross section of this point gives an area equal to that of a chisnnel 420 feet wide, by 20 feet deep. The river above arerages 1000 feet wide, by 20 feet deep. By the formula for discontinuous wairs, where

 $$
 \begin{aligned}
 & b=\text { breadth of channel.. }=420 \text { feet. }
 \end{aligned}
 $$

[^5]: * The mouth of French River is a deep fissure or cleft in the rock, extending from the Lakeinto the lant. Its course is alout North-east and South-west, which is that of the "strike" of the strata in that locality, and consequently of the ridges on land and the reefs in the water. Thus, although the niwigation is dangerous to those who are coasting and have to pass over the ends of the reefs, there cin always be fonnd a direct entrance between them, unobstructed by shoals or sunken rocks. I have myself sounded from the foot of the Petites Dalles, out in to the open Like, and found a gradual increse of $6,7,8,9$ and 10 fathoms, where my soundings ceased, abouthalf a mile from the point where the sifer may be said to end.-T. C. C.

[^6]: "The arrangement of Locks and Dams connected, will be as follows:-
 "At Les Petites Dalles," one lock, fourteen feet lift, on the south side of the r iver.

[^7]: * Thesc quantities include the supply drawn from Lake Nipissingue in addition to the present disclarge of the Mattawan.

[^8]: - A re-survey of four of the ranges of Grenville having some years ago been made by order of the Crown Land Department, it is chiefly in Harrington that the difficulties exist.

[^9]: - The bearings in tivis Report are magnctic, the variation bsing 10° west of true north.

[^10]: 1. On the left side of the Rouge, at a very sharp turn, about threequarters of i mile in a straight line down the east side of the ralley from the lower end of the Horse-shoe portage, and about half a mile above the position where the limestone divides into two bands between the Crescent Lake and the Hive ridge
 S. 12 E.
 2. On the right bank of the Rouge, a mile and a quarter up the valley

 3. On the left bank of the Rouge at the Dog Rock, lot 31, range 1, of Desalaberry.
 S. 5 W. \&S.
 4. On the left bank of the Rovge lot 13 renge 3 of Arundel 30 E.
 5. On the left bank of the Rouge, just below the Island Chute, , lot 18, range 3 , of Arundel.
 S. 20.E.
 6. On the right bank of the Rouge, at the head of the Dog Rapid, lot 22, range 10, of Harrington
 S. $25 . \mathrm{W}$.
 7. On the left bank of the Rouge, at the head of the Mountain Chute, north half of 10 t 17, range 4 , of Harrington
 S. 7 W .
 8. On the left bank of the Rouge, about thirteen chains below the mouth of a brook near the town line between Harrington and Grenville
 S. 15 W
 9. On the east-side of Trembling Lake, halfa mile belor the east town line of Grandison
 S. 25 E.
[^11]: - The Newboro iron-ore bed, which has a breadtli of about 200 feet and is situated in the twentysirth and twenty-seventh lots of the sixth range of South Crosby, on Mud Lake on the Rideau Canal; has been described in a prerious Report. The trade in the ore has naturally excited a keen search for other deposits in favorable positions, and Messrs. G. Chaffey and Brothers, who mine the South Crosby ore, have informed methat this search has been rewarded by the discovery of the continuation of the ore bed across the first and second lots of the sixth range of North Crosby. They hare also informed me that a deposit of ore has been met with on Black Lake in the eighth lot of the fourth range of Bedford, and another one on the sixth lot of the third range. These may be a continuation of the bed which has been described by Mr. Murray in a previous Report as existing on the twenty-first lot of the ninth range of the same township.

 The ore bed of Hull was opened and mined by Messrs. Forsyth and Co., iron smelters of Pittsburgh. Their chief object in the enterprise appears to have been the supply of the ores to their own smelting works. The ore was transported from Hull through the Rideau Canal to Kingston, and stocked there ready for shipment by lake craft to Cleveland. But the Newboro bed being much nearer to Kingston, and more favorably situated for loading into canal barges, the ore from it can be placed at the shipping port at a lower cost; and Messrs. Forsyth \& Co., now taking their supply from Messrs. G. Chaffey and Erothers, have ceased for the present their operations at Hull. Messrs: G. Chaffey and Brothers, I understand have this season exported about 4000 tons of the Newboro ore, making with last year's export 6000 tons, and from the deposit and that of Hull, I am informed that there have been shipped from Kingston, up to the present time (December 1859;) about 15,000 tons.

[^12]: \dagger Mr. Weston Hunt of Quebec, who is the proprictor of the lodes described by Mr. Murray and I beliere of the newly discovered lodes, has favored me with specinens from the latter. He informs me that the reappear to be five new lodes, running nearly parallel to one another in a bearing approaching N.W. and S.E. and all comprehended in a breadth of a little over a quarter of a mile. According to his information they are upon the nineteenth lot of the seventh range of the township, and would be less than the length of a lot to the westward of the lodes in the same numbered lot mentioned by Mr. Murray. One of the masses presented to me by Mr. Hunt, weighs twenty-eight pounds, and shews a breadth across the vein of five inches of pure galena, which is associated with sulphate of barytes or heary spar and calc spar.

[^13]: - Founding his opinion on lithological characters and stratigraphical sequence Professor Hall is I believe disposed to regard the lead-bearing rock of Missouri as of the age of the Calciferous formations but the want of fossils in the Missouri rock must of course render the identification somewhat uncertain. The Ramsay rock is undoubtedly the Calciferous, but whether the Missouribe so or not, the masses of

[^14]: galena which occur in it as well as those of Wisconsin, the rock of which from fossil evidence is considered to be of the Hudson River formation, are not the same in their mode of occurrence as those of Ramsay, The Wisconsin and Missouri masses, though considerable, never run deep. As described of Mr. Whitney, they do not occur in true veins, but fill up fissures, druses or vertical and horizontal caverns, which do not owe their existence to dislocations, and are confined in vertical range 10 a certain set of strata of no very great thickness. The Ramsay ore on the contrary occurs in a true vein, filling a crack connected with a dislocation, and on a late visit to the mine, I had an opportuinty of observing a clear eridence of this in one of the walls of the lode, (both of which are well lefined,) in the parallel grooves occasioned by the grinding of the terminal edges of the strata on the opposite sides of the crack when the displacement happened: Whatever quantity of ore the lode may carry with it there is little doubt of its great depth, a depth to which indeed no certain limit can be placed. In addition to the Calciferous sandrock the lode will intersect-the Potsdam sandstone and the Laurentiar series beneath, and in this respect resemble the Rossie lodes. Little hesiution can be felt in pronouncing it to be a lode of the same age as these, and the interesting fact is now for the first time shewn that not only these lodes, but probably all the yet known lead veins of the Laurentian rocks, are newer than at least the Calciferous formation, and possibly than some of the formations above it, thus extending considerably the area in which such veins may be looked for.

 There appear to be indications of other lodes with nearly the same bearing as the one opened at Ramsay, not far removed from it, and it may belong to a group, which running parallel with the Bedford and Rossie group, would be about forty miles distant from it to the north-east.-Additional excarations have been made on the Ramsay lode during the last summer (1859) and the company who have mined it have erected a smelting furnace and reduced a large portion of the ore obtained. A ten horse-power engine is used to give blast to the furnace and pump the water from the mine. The shaft has been sunk to the depth of seven and a-half fathoms, but a considerable spring of water having been struck, it will require a much more powerful engine to make an effectual trial on the lode, of which it appears to me well worthy.

[^15]: - During the present ycar (1859,) Mr. Cushing has made an arrangement for the working of the copper ore on his property, and under it Mr. Louis Sleeper of Quebce, (who has heretofore been engaged in mineral explorations in the county of Megantic, and in testing for different mining companies by trial-shafts and other excavations, various quartz courses marked by copper ore in the townships of Inverncss and Leeds, commenced mining the Acton copper ore on the 23rd of September last. After several weeks bad been spent in the excavations, I had an opportunity of visiting the mine and of spending several diys in the examination of the facts observable in the natural exposures of rock in the ncighbourhood, as well as those brought to light by the excavations.

 The mine is just half a mile to the south of the Acton station of the Grand Trunk Railway. The road to it is over a marshy piece of ground, and it is crossed by one or two low mounds of yellow sand. At the end of the road, a hill rises to the height of about 105 feet above the marsh, and descends to a marsh on the other side. It stands on a base of a quarter of a mile in width, and for nearly one half the distance is composed of a sub-crystalline marnesian limestone dipping to the N.W. with an inclination varying from thirty to forty degrecs. The limestone is light grey in fresh fractures, and weathers to a dull pale yellowish tint on the exterior. It is in some parts studded with concretionary nodules consisting of concentric layers of carbonate of lime with a transrerse fibrous structure. The exterior of these is of a botryoidal form, and the layers are in some places partially replaced by chert preserving the fibrous structure. These nodules very much resemble corals, but they also resemble some concretionary forms of travertine, and the occasional intercalation of magnesian layers in the nodules makes it probable they are the latter. As stated by Mr. Hunt the limestone of the hill is intersected by several small veins of quartz, and one of them, more conspicuous than the rest, carries traces of the yellow sulphuret of copper and of galena. The mass of limestone visible, extending a short distance beyond the summit of the hill, has a thickncss of about 270 feet. It is divided into heavy beds, in which irregular masses of chert are disseminated in unequal quantities in different places, being mostabundant towards the bottom.

 The summit of the limestone from the north-castern corner of the lot proceeds south-westward for about thirty chains, and in the succeeding 300 yards turns gradually south and ultimately a little to the cast of south, before becoming zoncealed. In the other direction, after running some distance, it sinks bencath a marsh on the thirty-first lot of the third range, and again makes its appearance on the rail road, which it crosses about three-quarters of a mile to the east of the Acton station, mecting and crossing the Black River about 220 yards north of it.

 The rock underlying the limestone is concealed, but that which immediately overlies it at the mine, appears from pariial cxposures to be a lavender-grey shale or slate with a cleavage independent of the bedding. In this slate there appear to be irregularly distributed large masses of a harder rock, which is internally of a light olive-green, uniformly and finely speckled with darker green spots, looking like serpentine, many of which are surrounded with a bluish-grey film. The rock under atmospheric influences becomes light yellowish-brown on the surface, and in its weathering strongly rescmbles some of the serpentines of the Eastern Townships. Some of the masses measure fifty yards in length by twenty in breadth, and on the north side of the rail road there is one of twice those dimensions, apparently sunk into the top of the limestone. Thin layers of the rock occasionally appear to be interstratifed crenly among the slates. In thick masses spots of calc spar are sometimes disseminated, giring the rock a cellular and somewhat trappean aspect, but there is no eridence that it is intrusive, and it occasionally assumes the character of a sandstone with small quartz pebbles running in the direction of the beds. In the speckled part of the rock very thin partitions of the same color and hardness as the darker green spots run in several directions. These partitions on analysis prove to be a ferraginous chlorite, and the whole rock may be described as a hydrous silicate of alumina with much iron and magnesia.

 These slates and harder masses hare a thickness of about eighty-five feet. They are succeeded by isolated masses of limestone of various sizes and somewhat rounded or lenticular forms, some of them attaining magnitudes of thirty yards in length by twenty in breadth, and even eighty yards in length by ten in breadth. As seen on the surface they present a succession of protruding lumps, which run in a line parallel with the summit of the limestone, turning with it to the southward at the south-western part of the exposures. These calcareous masses consist of grey limestone made up of irregular and

[^16]: and altered parts of the deposit, but extend to the portion which is so far unchanged as to be marked by characteristic fossils, and the ores being found to occur mingled with the original sedimentary matter of the beds, there is no geological reason why such traces may not lead to the discovery of economical quantities of the ore at Quebec and Point Levi, as well as in other parts. There are Colomites however in a lower part of Silurian series than this group, and both these dolomitic groups are found to exist below Quebec on the St: Lawrence, the one on the north side at Mingan, and the other on the south side all the way to Cape Rosier, and in various islands near both sides; and the fossils being the only sure guide by which the one group can be distinguished from the other, the study of these becomes an important part of the investigation.

 In the Appendix is given a list of all the positions known to me, in which traces of copper have been met with in what we have sometimes termed the Quebec formation. Though most of these may lead to no arailable deposits, they will yct serve to shew the wide distribution of the metal.

[^17]: - The centimeter is in round numbers, very nearly four-tenths of an inch, and the kilogram about. two and one-fifth pounds avoirdupois; the franc is about nineteen cents.
 \dagger My friend Dr. J. Wilson, of Perth, has informed me, that crystals of the phosphate have been found in great abundance on the twenty-fifth lot of the eighth range of North Elmsley, the property of Mr. George Oliver.
 \ddagger In examining the Laurentian rocks-in the neighbourhood of the Ramsay mine, I found a band of Rensselaerite from which the specimens above mentioned were obtained, on the eighth lot of the sisth range of Ramsay. It is on the east side of the lot, toward the front; and runs in a general way with the length of the lot; it appears to be between a bed of quartz on the one hand, and crystalline limestone on the other, and considerable masses might be obtained from it.

[^18]: * The list is introduced into the Appendix.

[^19]: 1. Island south side of Echo Lake.
 5.55 W .
 2. Half a mile below island south side of Echo Lake.
 S. 70 W .

 These two bcarings are in the general run of Echo Lake, on the south side of Thich rises a bold hill.

[^20]: * The bearings in this Report are in reference to true north.

[^21]: - All that occurs in this Report in respect to the fossils is stated on the authoriy of Mr. Billings.

[^22]: * For an examination of the sphene of the Yamaska Mountain see the Report for 1851, p. 119. By an error of the press, the determined specific gravity is said to be $2 \cdot 76$ instead of $3 \cdot 76$.

[^23]: * I hare shown, from a consideration of the densities of the rhombohedrla carbon spars, that supposing them to possess a common atomic volume, we may represent calcite by $15\left(\mathrm{C}_{2} \mathrm{M}_{2} \mathrm{O}_{6}\right)$ while dolomite and chalybite are $18\left(\mathrm{C}_{2}, \mathrm{M}_{2} \mathrm{O}_{6}\right)$ and magnesite and carbonate of zinc (smithsonite) $20\left(\mathrm{C}_{2} \mathrm{M}_{2} \mathrm{O}_{6}\right)$. Farther examples of polymerism in mineral compounds are seen in sillimanite and cyanite, in meionite and zoisite (saussurite), and in hornblende and pyroxene. These latter, accepting the late analyses of Rammelsberg, may be represented respectively by 25(SiMO_{3}) and $28\left(\mathrm{SiMO}_{3}\right)$, Wollastonite being $22\left(\mathrm{SiMO}_{3}\right)$; these formulas correspond to three types of homœomorphous isomeric silicates. (See American Journal of Science, [2], xvi, 203, and Comptes Rendus de l.Acad. 1855r

[^24]: * See my paper in the Canadian Naturalist for January 1860; On some Points in Chemical Geology.

[^25]: * The species marked thus were found by Fabricius in Groenland.

