CIHM
 Microfiche Series
 (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be blblographically unique, which may alter any of the Images In the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couvarture de couleur

\square

Covers damaged /

Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée

Cover title missing / Le tlire de couverture manque
Coloured maps / Carte ' géographlques en couleur

Coloured Ink (l.e. othe- than blue or black) /
Encre de couleur (l.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfllmé le mellieur exemplaire qu'll lui a été posslbie de se procurer. Les détalls de cet exemplare quil sont peut-etre uniques du point de vue blbllographlque, qul peuvent modilier une Image reprodulte, ou qul peuvent exiger une modification dans la méthode normale de filmage sont Indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages enclommagées
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages dilscoloured, stalned or foxed /
Pages décolorées, tachetées ou piquerrs
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du maténel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible Image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments /
Pagination is as follows: p. [2], [75]-91.
Commentaires supplémentaires:

This fem is filmed at the reduction ratio checked below I Ce document est fllmín aux de reduction Indiquet cl-dessous.

The copy filmad here has baan raproduced thanks to the generosliy of:

Library
Agrlculture Canada

The images appearing here are the best quality possibie considering the condition and iegibility of the original copy and in keaping with the filming contract specifications.

Original copies in printed paper covars are flimed beginning with the front cover and ending on the last page with a printed or iliustrated impression, or the back cover when appropriate. Ali other originai copies are filmed beginning on the first page with a printed or iliustrated impres. sion, and ending on the iast page with a printed or iilustratad impression.

The iast recorded frame on each microfiche shail contain the symbol \rightarrow (meaning "CONTINUED"), or the aymboi ∇ (meaning "END"), whichever applies.

Maps, plates, charte, etc., may be filmed at different reduction ratlos. Those too large to be entirely inciuded in one exposure are filmed beginning in the upper ioft hand corner, ieft to right and top to bottom, as many frames as required. The following diagrams iliustrate the method:

L'exemplaire firmé fut reproduit grace dia générositó de:

Bibliothèque
Agriculture Canada
Les images suivantes ont sto reprodultes avec ie pius grand soin, compte tenu de ia condition ot de in nettet' de i'oxemplaire filmb, ot en conformité avec ies conditions du contrat de filmaga.

Les exempiairea originaux dont is couverture en papior est imprimée sont filmés en commençant par ie premier piat et en terminant soit par ia dernilire page qui comporte une ampreinte d'impression ou d'liiustration, soit par le second piat, saion ie cas. Tous ies autres exempiairea originaux sont filmés en commençant par ia promidre page qui comporte une empreinte d'impression ou d'iilustration ot on terminant par ia dernilere page qui comporte une telie empreinte.

Un des symboies suivants apparaitra sur ia dernilore image de chaque microfiche, seion io ces: io symbole \longrightarrow signifle "A SUIVRE". io aymbole ∇ signifis "FIN".

Les cartes, pianches, tableaux, otc., peuvent Atre flimís des taux de réduction diffórents. Lorsque le document est trop grand pour itre reproduit en un seul ciiche, il est filim' ì partir de liangle supórieur gauche, de gauche âdroite. ot de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammea suivants iliustrent ia méthode.

MAGROCOFY RESOUUTION TEST CAART

(ANSI and ISO TEST CHART No. 2)

BIOLOGICAL CONTRIBUTIONS 1917-18

THE PEARLY FRESHWATER MUSSELS OF ONTARIO

By J. D. DETWEILER, M.A.
(With one igure in the text.)

OTTAWA
J. DE LABROQUERIE TACHÉ

III THE PEARLY FRESH-WATER MUSSELE OF ONTARIO.
 By Jomi D. Detw:nat, M.A., St. Dinlow's Collogro Tormito.
 (Will one fixure in the fext).

NTHルMCTHO.

 hegionl Bonrd of Commdn, "Immher of localitier, from which promixing reprorts had "unte in, wiofe wisiteml in Alugust, 1016.

The invertigutim hand atwofold ohjeet: first, to determine the abunduner, speries
 alvisable to introduce artiticiul propagation in any c'unadian witers.

In order to fucilitute the work, the Bural decided to vend the author to the Fuirport Biological Station it Fairmpt, Iowa, so that he might thoronghly nequaint himself with the problem in liand.

This atation was establisharl in 10 wn , und i the erentre of mussel propagation and of tho invostigation of uroblems relnting thereto.

In the praction! promanation of mmsols the station sorves as hondqumpters for field operations condnctel throughout the Missiswippi bnsin, inchuding the Nisajssippi river and its tributrries. There may be in the field at one time from two to six field parties

The methents of propasintion ure linsel upon the peruliar charncter of the normal

 order to pass throngh the next stage of their development. To this end these yonng minsely-glochidia, as they ure called it this stuge-athenh themerlyos to the fins or gills of a fish, if the opmortunity presents itself. They ulready have two shells. which under proper stimulus work like a small trap, and a very al phit wound seems to be produced which after attaclument hegias at unce to hemb ower. In this way the glochidia become morn or less sufely carystal na' now virtumbly live the life of parasites, subsisting on the juices of the fish. In the rourse of two weeks, more or lesa, having completed their metamorphosix. they bremk awne from their host. drop to the Initton and lexein an indepmendent existener:

If not over-infented, the tibh scem to suffer no injurions effects. Naturally, the limit of successful infection depends on the size und nuture of the fish. Careful investiontion oi naturnl und artificial infection hos shown that " moderntesized fish masy i. sy sur cossfully from 1.000 to 2,0 (0) plochidia.

Slusels do not uttach themselres indiseriminately, but for earch species of mussel there is a limite 1 mumber of species of fish that inay serve as host. In some cases

- GEORGE V. A. 1918

it may be mentioued that the gar, heludius nt leant the two npuriles fo. platontomua and L. osseus, has been found to be practically the only hout for one of the unmt denirullic. of shells, the Yellow sand-shell (Lampuilis anodontoides).

In netual artifelal infection of tioh the operntion is ementially an follows: The grat d mussels and their suitable fish hoste are placed in a vat or tub containing a reyluolte amount of water. The mumel in now oppened, the maraiphal moueh split opell nhoure i in ventral border and the rlochidia are mjueezed out into onic of the rislvem of the musael, which valve also serves as a mall water container. The glochid'n ape then poured Into the tub and the water agitated, more or lean, no that they will be kept in sumpenmion. From time to time individual fiah are caught and gills examined to determine the extent of Infection. The optimm nmount of infection varies for different sizes and apecies of fish and alno for the condition the fish ure in. It is kenerully areomplinhed within the limit of 5 to 20 minutes. Over-infection must be Ruarded against.

Naturally, there cunnot be nuy deflinite mile as to the number of glechidia to be used with any number of fish, the germon in charge munt be quidel by his experienee.

When sumficlently infected, the fish are remored tc the river or pond. If develupment in the gilla in to the watched, they may the tramaferpel to cratey anchored in the river or pond.

The gravid femule clamx mus senepully to found hy lenking user muterinl where finhermen are at work. I'nless the glochidia are suffleiently levelopell. the operation is useless, for not until then will they open and "lowe their valres when atimulated. The firl ape conught with the seine of net.

From this it will be seen that the experimental shell-fish station and the fishcultural station go hand in hand. In fact it is a point of economy to conbine the two.

Although artificial infection would nppear to be n comparatively simple operation, a working knowledge of the procens has only been ohtained us a result of eureful and laborious research. As yet ml a few apecies of museels are thus propagated. The search for natural hosts is still being proseented. Experimental work in ulso being carried on with the object of determining the period of pirasitixm, and the life history of the soung mussel nfter parasitisns, and to lead to much improvemente of methocha as will make the work mont productive of practienl results.

It is interesting to note that within a period of two years, young nusmels of aufficient size to cut and finish buttons from their shells wepe reared at the station. These were raised from artificially infeeted fish, which were kept in floating erates or in earth ponds. They are not only the first mussels to lie reared to such a size from artificial infection, but they are the first commercial forms known to hare heen krown ill ponds.

HENULITA OF NKTIFICIAL, PHOPAOATIUN.

Although there is no means of definitely checking up the results of artiticial propagation on a large seale, where the museels nlready exist, yet the extent of the eonfidence the United States Goverament has in the undertaking may be shown by the fact that during the last niscal year, $331,451,490$ glochidin, in round numbers. were liberated in the parasi:ic en adition and $\mathbf{4 2 4 , 5 5 0}$ fish were employed in the operations. ${ }^{1}$ It is believed the 'onsiderable proportion of the glochidia fall upon unfavourable ground, or fail to reach maturity from other causes. However, since a large number can he liberated at a comparatively small cost, the attemut is deemed justifiable. So far restocking, only, has beell nttempted, aul in general fishermen remort that where artificial infection has been carried on, more young shells are found

[^0]
sESSIONAL PAPER No. 38.

than ever before. Sueh morourasink rejwint have ame in from lake Pegin, Wine conain; Wuite and Black rivern, Arknnene, and from Finipmer, in the vieinity of the atation.

TIN: mDJOAN IT TIN: NTITIV.
 pleanant. Laborntory nerommodation mal facilitiew were froly ufferenl. Vuluable instruetion, llomonstrationm and ndvion werve gladly given hy the birwetur and him ataff. Hy asintinge in the examinution of wills fur natural inferction, mued in rarrying out artificial infertion under the mupervinion of nu experieneed man, I wun ruabled
 -o obtain utherwine.

The kindnew with which I was rexciverl, the considerution mhown for my wants and omport, und the plensure taken in farilitating the objent of ing visit wern beyond $\mathrm{m} v$ hisheat anticipntions, In thix eonneetion I winh to purtionlarly mention Y:. A. Shirn, The Dirvetor: Mr. Cautiell, Superintembent of Finll C'nlture; P'ru' ark and Dr. Howarl, Acientifie Amintantm: Mr. (iurhmm, Fireman, mud IIr. Non wh, hell Exjert.
 - Ianaifieation here.

The identity of the nussel fnumn of rertain ('mundinn arrinn with that of the Mississipni waters at once mugnenta a probable ummon origin. Our forms no doult migrated northward on the retreat of the ies amp whiel im lelieved to have oovered northern North Anerivn during the great ine age. An this ire field potrenterl towaril the North Went, numerous lakem were formed, now repremented ly our mudern (irent Laken, and these probably all excrept lake Ontario drained into the Minmixminpi :y.tem. Several of the old Irainage comeses have been diseovered, mumar them tring the nueient Lake Erie outlet, by way of the Wrabesh into the Mississipni river, mad the glacinl lake Chicago along the Chiengo river. Even lake Superior nppears to have lond n watereourm into the Misnismippi ly way of the St. Croix river.! Numerns npecien of mumels mo doubt found thor way up thene waterways into the morient laken, mad ultimately populatid ther river mon flowing into them.

$$
\text { THI: likINH } \therefore \quad \mathrm{h}
$$

As fur ax I have been: nhle to asectain, the (irand river montains more mussels of commercial value than any other Ont-rion waters. This river rises in the township, of Melanethon, Dufferin county, with:" distance of almost twenty-five miles from lieorgian bay. Its sour - - , t an eleva inn: of approximately 1.7 m feet above sea-level muy be said to mark the - bahlands of the southwestern Ontario plateau. From ita souree to its outlet into lake Erie, at Sort Muitland, hy the river. the distanep is 17.: miles und the drainage area is approximately 2,500 spuare miles. Th.a drainage basin is wide at it headwater nrea, and narrow in the lower flat comntry, where most of the rivers flow directly into the lake.

The river may be topographically divided into two part--upher and lower. The upper part extends well into Waterloo County : ad includes the ('onestogn tributary. Here, on the flat headwater table lands, the deelivity is small; then fur a distance hecomes quite ateep. At Elora, for example, there is a sinule drop of over 40 feet whero the river enters a limestone porge. The fall of the lower river is gradual nnd uniform, and generally becomes flat towards the lake. The following table will show the epproximute fall of the whole river.

[^1]Table I.-Distance from Port Maitland approximate in sea level.

In the upper stretches of the river. including its tributaries, extending roughly to the vieinity of Paris, the stream-bed is compmed of rocks and eourse gravel nlmost throughout, and flows in plaees over exposed limestone for considerable distances. From Paris somthwarl the bed minsists chietly of:-

Tamis: No. 2.
Vicinity-

> Nature of Bed-

> Paris to Brantford. Gravel, sand.
> Western Countien camal. Gravel, sand, silt and chay.
> Brantford to 12 miles behow. . . . Gravel, sand and dhy.
> To Caledonin. Fine gruvel. sand and silt.
> Caleelenia to York. Gravel, exposerl linnestone.
> York tu Dumnille. Fine gravel, sand and silt.
> Dumwille to Lake. Largely silt.

This seetion of the provinee. in eommon with all sonthwestern Outarin, is orronpied throughout by eomparntively undisturked limestone and other Silurian and Devonian strata with overlying drift, clays, sands and more reeent superfieinl deposits. The deep deposit of Irift muterial naturally lemis itself to crosiom, and consepnently the river eurries considerable qumbities of sand and gravel during heavy floods, seomring the chamel from the headwaters to lelow lBratford. Below this point a large area of the river channel with the small declivity produees such a eondition that light deposits may take phere rather than the seomring of the beal to any extent. All the tributaries nlwo briug down large guantities of materinal.

> MsTHMI TION OF MLONF:1.S.

Some sears ugo when repairs were being made on the freder cinal at Dumbille. shells were found in sueh abundnue that they were picked up by the wagon load. This discovery le. to the establishment of a small shelling industry at this point. Lust
 tons.

SESSIONAL PAPER No. 38a

Two or three years ago, during low water, three men pieked up and shipped five or six car-loads from a point about one or one and one-half miles below York, and shipped, it is reported, to Buffalo.

From the lower dam at Brantford to the old power-honse ut Eeho Plaee, there is What was at one time a harge comal, about 13 iniloa long. Where euts were mude it is about 50 feet wide and 5 or f feet deep. Thero is still in this system Mohawk lake, three-eighths of a mile wide by one-third mile long and 20 to 30 feet deep in plaers. Six or seven years ago, when the water was let out for repuirs, this was the lest phace in the immediate vicinity of Brantforl for clans, he to size, quantity and variety.

It is said that about ten years ago clanns were abundant at a point about half way between Brantford and Paris, called Mulloy's Farm.

I am also informed by the city enginere of Brantford that large numlers of clana are to be found in the vicinity of Bow Park farm.

Thic fall on the Speetl river, a tributary of the Grand, is well utilizad, and clams of good size are found behind nearl: nill the dans which hold bnek the water urer a 'onsiderable area of storage lasins.'

I have twise visited the Dummille aren, and found a considerable varioty of mussels of commereial value, My investigation there was much facilitated ly Mr. H. Clark, who superintends the shell-fishing. In diseussing the mussel funna, only such speries as ure of commercial value will be considered.

In the following list common names are alan given along with the weiontifie uncs:-2

No doubt this list does not contain all the speries of commercial paluio frount in this district. I have, in fact, pieked up the Fluted-shell, Symphynota costati, Kuf., a good many miles north of Dunnville, and it likely werurs here. I might in passmiz mention Lampsilis grarilix. Harnes, (l'aper shell), a large mmssel fomat here, but which is of no practicol value on acoount of the thimess of its shell. Of the above speries those most commonly occurring are L. alata. U. plicata, und U. undintata, I. alata is a good-sized henvy elam, quite a large momber of the shells weighing in the neighbourhood of a pomid. but its value is mueh reduced for button manufarture on account of its usual pink or purple colour. Q. plicata and (). undulata are wimilar in appearance and comprise the chiof commereial speries of this area. They grow to a large size, and as a rule have a good white lastre. I have in my collection one of the former species weighing 1 is monds, and of the latter, one $13^{\text {i}}=$ pounds in woight. I. luteola is naturally a valuable shell, as its quality is exeellent, and it cuts mad finishes with least waste. The area around Hummille, however, does not appar to be partien-

[^2]8 GEORGE V. A. 1918
larly far vurable to its development. It may perhaps be found more plentifully and of better quality farther up the river in localities more nearly approximating the condition in lakes. The other species are of good quality, but owing to their scarcity in this area, have little commercial inportance.

NETHODS OF THE DUNVILLE M1SREL FIBIIEKY.

On my visit to the fishing grounds at Dumville I found two gangs of men at work on the river above the town; one at a distance of about two miles, and the other some five and one-half miles farther on, near Morgan's island. In the former locality they had a pile of shc!le which would weigh about five tons. These were fished and shelled in about three and one-half days, by two nen and two boys. The men did the fishing, while one boy ran the gasolene launch and the other removed the meat from the shells. The outfit for procuring the clams consists of two scows fastened rigidly together by a plank at each end. The distance between the scows is 4 or 5 feet. The men stand on the stern plank while operating the scoops. The scoop, or dip-net is a dipper-like apparatus with a handle of from 12 to 18 feet in lenyth. The bowl consists of a wire cage about 16 inches in depth, and is attached to a triangular iron frame, 16 inches to a side. Thus the opening of the scoop is triangular and works in the manner of a dredge. To assist in the raking of the beds by this secop, a number of imon spikes about 3 inches long are fastened to the lower part of the triangular frame. and are set about 3 inches apart. This helps to draw the secop into the river shown and are set about 3 inches apart. This helps to draw the scoop into the river leed. A line passes from the lower end of the scoop to the forward plank and this is of such a length as to allow the handle to stand vertically against the stern plauk. The whole outfit is towed by a gasolene launch. The scows, though varying in size, are about 16 feet long by $3 \frac{1}{2}$ feet wide and 14 inchee depp. The following diagram may serve to illustrate the fishing outfit in operation:-

Fif. 1.
In order to remove the mussels from their shells they are subjected to boiling in water. This kills the animal, causes the relaxation of the powerful adductor muscles, which hold the valves together, and permits the easy removal of the muscles from their attachment on the valves. The boiling pans vary in size, but are usually about 6 feet long by 4 feet wide and 8 inches deep.

The bed near Morgan's island is about $\frac{1}{2}$ mile long and :of feet wide. Here the bottom is gravelly, and although the shells are numerous and of good quality, the number of dead oncs is considerably larger than farther down the 1 jer, where the bottom is muddy.

Last year the shelling was done below the town at a point a mile north of Port Maitland. Here 265 tons were taken from an area less than of a mile in length. The bed, I am told, showed no signs of depletion. This year the fishing has been done above the town, and although ahout 260 tons have been taken, the ground is apparently not as productive as was auticipated.

PEARLS.
A considerable number of pearls and slugs are also found. Some are of very fair size and good quality. In Mr. Clark's opinion, pearling alone wonld insure a sufficient return for nue's labours if followed up. The highest figure yet obtained for a pearl was $\$ 75$.

HECOMMENO.TTIONS.

In order to develop to the fullest extent the resources of the river. three main steps are urgent; first, to insure against depletion of the present stock of elams; second, to restoek and stock artificially all favourable areas, and third, to improve the river in general by stream regulation. Siner the last-mentioned object is an fundamentul, I shall deal with it first.

> STHEAM REUCLATION AND SOME: OF ITS NIDNANTMAES.

Through the progressive remural of the natural physical eonditions regulating stream-flow, the floods in the river have for some years been beeoming more and more violent and destruetive. This inereased flood-flow has naturally reduced the volume of low water-flow proportionately. These two eonditions, along with the seouring and general damage of river-bed, constitute an inereasing menaee to mussel life, to fisheries, and to power development along the riv \times.

Some idea of the truth of the above statements may be dednced from a study of the following table of volume of flow at different points. The maximum flow of greatest recent flond is also ineluded. This took place in the spring of 1912.

Apphonimate flow in euhie feet per seeond, period 1914, 191is and 1916.

| Grand River Stations. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Maximunı flows are mean of two pange beights, takell anill. and p.1n. daily. Mininum flows in mune stationn consist of leakage from dams.

The danger consequent upon these conditions camot reacily be overestimated. The faet that drainage areas of the Grand River and Great Miami river flowing through Dayton, Ohio, are approximately equal, is suffieient proof. No doubt far-reaching measures for the prevention of dangerous tioods will 'rave to be taken in the futnre. If sueh measures involve water eonservation, the resou,ces of the river will be enormminsly inereased.

In the fall of 1912 the Hydro-clectric Power Commission made a recomanassance anrvey of the river watershed eovering the main stream from Caledonia to the headwaters; also of the larger tributaries from their confluenee with the main stream to their headwaters. In this survey, the main objeet of which was to ascertuin what lorations, if any, merited examination as sites for storage reservoirs and regulating works, it was found that by the building of nine dams ranging from 30 to 65 feet, storage reservoirs ranging from 450 areses to 3,000 acres in area could be oltained; the aggregate acreage heing between ten and eleven thousand. While the above figures
are approximations, it is believed to be reasonably certain that the systelu of storage basins would have an aggregate impounding capacity of not less than five billion cubic feet. ${ }^{1}$ It will be evident that the economic advantage accruing from such pools of dependable character cannot be lightly esteemed. In relation to mussel life there would be uot only the addition of new flood areas, but also no doubt the improvement of the bell of the streams back of these areas. In these lake-approximations, or riverlakes as they have leen called, admirable conditions should be afforded for the particularly valuable shell L. luteola. Not only does this shell work up well into buttons but it also lends itself readily to artificial propagation on a commereial basis. Althongh it is rare to find shells of commercial value in lakes, these river-lakes form a uatural habitat for the above mentioned mussel. For example, Lake Peoria, a lake expansion in the Illinois R . forms at present probably the best mussel producing district in the United States. As the young mussels are parasitic on fish in the early stage of their life history, it would of conrse be necessary to construct offective fish-ways at these dams.

Further, ly a study of tables 1 and 2 it will ler seen that there are considerable stretehes in the river where apparcntly suitable mussel areas obtain. If mussels are not found here in a survey, the fault will probably be due to tlood conditions prohibiting their development in these areas. If sueh is the case, flow-regulation shonld overcome the unfavourable environment.

FOOD, S FMCTOR OF THF ENTMBOMENT.
In the discussion of favourable enviromments, due consideration must be given tor the food problem. This is donbtless the most important factor in the environuent of the mussel, and it is unfortunate that no extensive work has been done along this line. Actual records of stomach contents of fresh-water museels are rare. Records of analysis show that among tixe microscopic forms, minute plants, diatomaceer and other alge, constitute a part of the food of the mussels. With reference to the food habits, Professor Clark and Dr. Wilson report in part, as follows: "The stomach contents of mussels taken from the main current of the Sit. Mary's, St. Juseph, and Maumee rivens were rather noteworthy for their paucity of organic material. Through the large mass of muddy matrix filling the stomach were usually scattcred a few Scenedfsmus. varions diatoms, and an occasional Pediastrum or Cosmarium." Dr. Petcrsen, a Danish cenlogist and Director of the Danish Biological Station, has fully demonstrated that the tine dust-like detritus forming a thin top layer of bottom deposits constitutes a large part of the food of the oyster and other mollusks. Dr. Jensen, Petersen's colleague. concluded after investigating the somree of the detritus that its origin is primarily from sea plants, broken down until it assumes the fine dust like form. It has been suggested" that the "large mass of muddy matrix" referred to by Clark and Wilson was probably the kind of material described by Petersen as "dust-fine detritus." Although large bivalves may not be able to avail themselves of the layer of dust-fine detritus, it is no doubt taken in by water currents. Dr. Jensen also examined the water by centrifuging. and obtained material identical with the top layer of hottom deposits. In Oneida lake the surface of the bottom deposits, in bays and quiet bodies of water, is reportel to be of precisely the charaeter deseribed by Dr. Petersen. It would, indeed, be very interesting to establish the relationship between stomach-eontents of different species of inussels and the nature of the river bed in which they do, or do not thrive. It would, no doubt, lead to valuable information with regard to the choice and the establishment of nuw areas for their development. It may be found that the food

[^3]PEARLY FRENH-WATER MUSSELS
SESSIONAL PAPER No. 38\%
supply of the mussels is by no means fully dependent on the free-swimming organisms, and that the favourable localities, discussed above, are largely conducive to the development of the mussel on account of conditions favouring the deposition of the "detritus."

HESTOCKISG: AND STOCKING.

The restorking of areas where mussels at present exist, nud where active fishing is going on, and the stoeking of new areas, may be summed up under the head of artifieial propagation. As the method pursued in artificial propagution has been described in a general way, we shall now consider its application to the river in question.

Of all mussels so far experimented with, L. luteola lends itself most readily to artificial propagation on a commercial basis. It is the species chiefly propagated at present by the Cuited States Goverument. Ax time and opportunity prevented my making an extensive survey of Grand River, I cannot state the extent to which this species occurs therein. It is, nevertheless, very generally distributed in Ontario waters, but in order to attain to a size and abundance suitable for commereial value it apparently must have the conditions more or less as described above in "river-lakes." The specimetrs so far obtained from the river are not of very good quality. This is prohably due to unfacourable conditions preventing their optimum development in the areas from which they come. In a conmercial appruisal made of some of our shells hy Mr. John B. Southall, Shell Expert at the Fairport Station, this particular shell Was reported on as follows: " medium size, no discoloration, brittle, third grade ${ }^{2}$ and vielding 788,16 -line, ${ }^{3}$ gross blanks per ton." In his remarks he further states that they were rather thin and of a steel-coloured naere und produced blanks that would chip and cleave during the processes of button manufacture.

With regard to this mussel I would suggest a careful examination of the areas lying belind the larger dams with a view to stocking them with the valuable species. Such a survey might include the dams at Dunville, Caledonia, Brantford und Cult on thr anin river, and also the larger ones on the Speed tributary, where the full is well utilized, and where clams of good size are said to be found in all such storage bonsins us hold baek water over a considerable area. Behind the dam at Caledonia there is a stretelt of praetieally dead witer for twenty miles whielt might lend itself fuvourably to the development of this mussel. Here the river bed cun be elassed as permanent, inasmuel as the usual freshet velocity of the river water uhove is greatly redueed on reaching this point. At Brantford the old barge eamal, desrribed alove, containing also Mohawk lake, might prove a very suitable locality for propagation on a small scale. For the purpose of stocking, I would strongly recommend that an attempt be made to introduce the partieularly fine luteolas of lake Pepin, in the Mississipi, about 30 miles down the river from St. Paul, Minn. In the Linited States gravid unssels, for purposes of infeetion, have not been shipped over a mueh grenter distance than 300 miles, but I am informed by the Director of the Fairport Station that they sent a couple of shipments of live mussels from Fairport to New York in the full of 1916, and that the majority reached their destination in gor rondition. The distance from lake Pepin to Galt, Ont., mould be about 835 miles h:

Fortunately, this species is not very exelusive in its choice of how, pither is its spawning period of short duration, as is the ease with some sther commercial mussels. All the Lampsiline, in faet, are gravid, more or less, during the whole year

[^4]but most ripe ones are found from April to July. In my survey in August I found quite a number of gravid luteolas but none that on microscopic examination proved to be ripe. This early and extended spawning period would be favourable to successful shipping, before the warm weather comes on. The fish that may serve as earriers belong mainly to the families Centrarehide and Pereide. The species are: P. sparoide (speckled bass); P. annularis (crappie); L. pallidus (blue suufish); M. salmoides (large-mouthed black bass); M. dolomien (small-mouthed black bass); S. vitreum (yellow pickerel); S. Canadense (sand piekerel); P.flavescens (yellow pereh) and R. chrysops (white bass), all well represented in our waters.

Since the artificial propagation of this mussel is past the experimental stage, I did not consider it advisable to repeat the operation here, on iny return fiom Fairport. particularly as iny time was limited and as the localities visited did not appear very favourable. It was kindly suggested at Fairport that gravidl mussels be shipped over here for infecting purposes.

Lampsilis recta, though not found plentifully in the Grand river, is a very valuable shell on account of its fine quality. Mr. Southall reported it to be of large size without discolor :im, firm and of first grade, making 369, 10-line and 470, 24-line gross blanks I m. Although the usual run of this specier is coloured, those from the Dunuvili ea seem to be of fise fuality. There are, however, some shells which show discoloration. In the fiscal year 1916, $11,288,300$ larval musels of this species werc planted at Fairport. The fish which nay serve as hosts for artificial propagation are: L. pallidux (blue sunfish) and A. cyanellus (grem sunfish). The former of these spesies occurs abundantly in some parts of lake Ontario and lake Erie and their tributaries, but the latter has not been reported from Ontario, although it is supposed that it will be found in lake Erie. P. annularix (crappie, also ealled silver hass) has been found naturally infected with this mussel. but it is rare in our waters. ${ }^{1}$

The spawning period of this mussel is similar to that of Lampsilis luteola and the river apıears to be adapted to this spacien. The sheilers at Dumurille seepn to prize this shell above all others.

Lampsilis centricosa.-This shell is not used very extensively in button manufacture, but it is worked up into novelties. Large shells, however, make buttons of good lustre. Last year 44,000 glochidia were used for infection at Fairport. The species of fish that may serve as hosts in artificial propagation are: P. annularis, L. pallidur. and M. salmoides (large-nouthed blaek bass). At present it would not nppear to beessential to inerease the atoek of this shell.

The Quadrula group is well represented in the (irand, but only two species appear in lurge quantities-Q. plicata and Q. undulata. These constitute at present our chief button shells, and the Canadian Pearl Button Company, of Trenton, Ont., whieh has the sole right to the Dumiville fishery at present, reports that the shells from the Grand compare favourably with those shipped to their plant from the United States. In the commerc al appraisal of these two speeies from the (irand, the report is a: follow:-

[^5]
SESSIONAL PAPER No. 38a

It is noted that they had a very uneven inner surface, (musing ..: in cutting blanks; the tips of the shells were too thin for buttons. The colour anu i.dere were not as bright as the usual run of the apzcies found in the Mississippi river; but it nevertheless makes a good button and, with proper care, the material could be worked up with profit. As the Button Company of Trenton works up tons and tons of these shells their statement as to the comparative value of the shells must also receive due consideration.

With regard to the propagation of the former suecies (Q. plicata). Dr. Howard, of Fairport, Jowa, makes the following statement:-
"Several factors favour the artificial propagation of this species upon n practical scale. It is common and at present one o: the most used shells in the button industry. It seems to be a form not nurrowly restricted as to hosts, and these are indicated to be among the commonest and most readily obtainable fishes. Although a river form, ita habit ns a dweller in stiller water and on mud buttom makes it susceptible to propagation or control under conditions readily innitable in artificial lakes or ponds. A continuous water supply is desirable; my observation has been, however, that it will survive rather adverse conditions in this respect. I have colleeted many live specimens from a slough which had gone dry to the extent that only mud remained. Under these conditions the majority of the pond mussels, Anodonta corpulenta, had died. I would cite also the finding of this species accidentally introduced in the parasitic stage into an artificial pond at Fairport, lowa. The pond had gone dry, and I found a specimenstill alive buriel in mud barely moist. It is evident, I think, from these observations that the species is hardy, at least as regards some of the more common vicissitudes to which mussels ane naturally subjeeted."1
In his experimental work with this species he found that P. annularis (crappie), \boldsymbol{P}. sparoides (speckled bass): P. flavescens (vellow perch), and L. pallidus (blue sunfish) were successful carriers. The spawning period is shost. being eonfined chiefly to the month of July. In the last fiscal year 147,000 glochidia of this species were set free in the parasitic stage at Fairport.

At present the safe-guarding of the beas against depletion is more urgent than experimental work in artificial propapation of this species. As experience and equipment are obtained, work on the more diffeult Quadrulas should no doubt be proreeded witl.

I have so far not obtained any data of experimental work done on Q. undulata. In general appearance the two forms ure similar. In plicata. the umbnes are nore rlevated and inflated thmin in molulatu.

> PROTECTION OF FILENI-WITER MOSAELLS.

For the protection of the present mussel beds the fol wing methond may be ronsidered of sufficient importance to merit discussion. ${ }^{2}$
(a) A closed season in each year.
(b) Restriction as to the methods of fishing.
(c) Restriction as to size of mussels retained by fishermen.
(d) Closed regions for speeified number of years.
(p) The imposition of lieenses.

[^6]8 GEORGE V, A. $19: 8$

(a) The main object to be attained by iastituting a closed season for fishing is the protertion of the beds during the breeding scason. Ineidentally, however, a second benefit naturally aecompanies the one sought, for by limiting the length of the season, the extent of the fishing will likewise be diminished. Sinee the chief commercial shells so far shipped are Quadrula plicata and undulata, and since these species have short periods of gravidity during the summer months, the elosed season restriction peculiarly applies to the Grand. But the river ulso supports other shells of some commereial value which have long breeding seasons, and thus the protection afforded would not be suffieie.tly wide-reaehing. This will lee purticularly true in cuse of urtificia! propag.: ion. Besides, an interruption of fishing operations during a few summer months would serionsly interfere with the industry.
(b) At present the shells are obtained in one way only, an deseribed ulove. This method is fortunately not the one against whieh complaints are generally made. Althongh it roots up the hed it does not unnecessurily injure the mussels whieh are too small for commercial purposes, and these should be returned to the water.
(c) It is obvious that there is a limit to the size of n shell beneath which it is pure wastefulness to retain it. The fishermen and the button manufacturers lowe time in handling the material and the beds are depleted at a much greater rate than they would otherwise be for the same finished product. A limit for every species is, as u rule, impracticable if for no other reason, at least for the faet that the determination of species is sometimes difficult. After a size limit has been decided upon, eonsiderable details will have to be worked out in order to satisfactorily enforce any regulations agreed upon.
(d) One of the most immediate protective measures is that of closed areas. This best meet the case of the long breeding species and gives them an opportunity to restock arens, preventing for a term of years the disturbance of gravid elams some of which, when disturbed, discharge the young even though not mature. It also favours the building up of beds by allowing the young elams to extablish themselves. The system on which a river or portions of it are to be elosed, and the time and duration of areas elosed ean best be determined by studying field and biological conditions.
(e) By the granting of fishing permits as at present on the Grand, no doubt the number of slellers is thereby limited. It is a nuestion, however, just how far the interests of a private person or firm are safeguarded as well as those of the fishing grounds. Although such a fishing permit was granted with a view to stimulating shell prospecting it nevertheless undoubtedly diserininates ngaiust other persons or firms. If fishing lieenses were granted to resident fishers. thereby momating the exploiters or such persons as would not wish to follow up the industry, no doubt geard results would be obtained. This would nlso leave to fishers the opportunity to sell to such firms as paid the best prices.

HIVER AI'X NABLEN.

In the brief survey of this river for shells I contined my attention chiefly to its lower stretches from whieh reports of abundance of slells had come in.

The east branch of the river rises a short distance north of Jaffa, in the township of Hibbert, county of Perth. The west braneh has its course several miles to the wist of this point and the two branches unite near the northern boundary of Stephen township. After a course of about 90 miles the river entera Lake IIuron at a point 12 miles, almost due west, from the confluence of the two branehes. This U-shaped river is remarkable for its meanderiug course und for its apparently recent geological listory.

Until about 25 years ago the river outlet was not as now, but at a distance of 10 miles further south, near the village of Port Franks. It is an artificial chanael

SESSIONAL PAPER No. 38.

Ine-quarter of a mile in length. Previous to this cit the river made minabrupt turn at Grand Bend when within one-quarter of a mile from the lake, and it Howed almoat rarallel to the lake shore to the imtural outlet, below Port Franks. This deviation of its course was probably due to the sand colleceting near its northwesterly banks, foreing the river mouthwards.

Owing to the frequently necurring flowds on the lewlands, the Cunada Company, whieli owna extensive tracks of land in the distriet, decided to make a ent from the northwestward Howink arm of the river to the wouthward arm. I shall refer to it as the "Canada Compmiy C'ut." It pmsen through the former luke Burwell and is $3 .{ }^{5}$ riles in length. Later on, wishing to further improve their hudn, the Company put the second ent through it Grand Bend, diverting the river directly into the lake. Although the npper part of the old river chamel, leetwent (irand bend and the lower cut is dry, it still crontaine a large volume of water. It approximates, inf fact, to a uarrow lake about s miles in lenuth. In place it is a few hundred fert :ride and quite deep. The grentest depth at which I took soundings was 17 feet. A fair und apparcutly continuous current of water Hows from it into the nain stream at the cut.

Previous to the construction of the artiticial elammels the river must have been admirably suited to the support of musem life. Even when the secoud 'unt was put in at Grand Bend, and the water let off, I am told ly an old resident, Mr. Bremer, that the bed was paved with shells for a consideralle distance, many of theme lucing of very
large size.

On ascending the river for a few miles from Grand lsend we found lurge numbers of good-sized elam whells lying on the banks, evidently throwin up in dredging the bed efter the eut had been made. In the river we nlas) found quite a number of large mussels of commereial value, the species ψ undulata predominating. Other species frund were L. luteola, L. rentricosa, the large but uselews. A. grandis, and a dead s. costata. These mussels were lying ulyut on the bed of the river, in water about a foot deep. With the small anount of water Howing it is diftienlt to understand how such in qumetity of momsels of gownl size could le maintained. Hand pieking here would vield a fair quantity of commer.inl shells, but since the river is small the supply would soon be exhausted. From (irand Bend we went to Port Franks and crossing the Camada Co. Cut near its wentern terminus, investignted the wit:r for clams. We found an small bed near the bridge, in shallow water, momewhat proterted from the main current. Many of the shells werp of large size and also represented quite a vuriety of speries:-L. reeta, L. rentricosa, L. luteola, Q. undulata. Q. rubiginosaj and N. costata. In the commercinl uppraisul the ufoolas, sent from this locenlity, were reported on in comjunction with those from the (irmo so that I camnot state precisely what their grade is. We fomme 1 ., recta is inches in length and of very fine quality. It was gratifying to find such a collection of shells in an artificinl waterway, At Port Frame I was told that the vicinity contaned "ocems of shells." As I was nat set aequainted with the river bred. I loped for gened things from it. thinking 1 might fund a suitable area for l . luteola.

As stated alowe, this old chamel comstit "tes a rather long narrow luke from whieh a small stremm of water Hows. Thir bottom of this bed is in mane places densely covered with aquatic vegetation, C'hara predominating. The shores are usially, either steep or murshy. Jarge chmes in consederahle quantities were found in the shallow water along the shore, where they appar to bre somewhat generally distributed. The eommonest speeies is Q. undulata, although the Lampsilis group is also represented. I also found one Q. rubiynosa. I found it to be practically: impossible to determine the extent of the mussel life bevoml a short distaner fromi shore, except int very deen parts, and in the upper stretches where quite large barren areas of compaet botton obtain. The small crow-font bur which I had made for shell prospecting, proved in general absolutely valucless here on aceount of the dense mat of regetation eovering a large part of the river bed. With a good motor lamelh and a heavy dreige one might

\author{

- GEORCE V. A. 19:3
}
settle the problem, but I du nut conslder the undertaking worth the trouble or expense. In the deeper parts of the river I wai able to une the erow-font bar but mot no ahui except dead ones. The river may at one time have contalined large quantitles of mumatn but it seems too staguant to make good elam bers possible. This condition almo would promote the growth of the vegetation now so abundant.

Taklug all conditions Into consideration this area is of uo value for mumel culture. The shella that are there are perhapa only a remuant of a once larger supply and mas in time quite disappear. The L. lutoolas found were fairly large lint were badly stainel and seemed unhealthy.

In order to make a careful survey of this locality I decided to further investiguto the cut and work my way to the east braneh of the river to pronpect for shells there. The lower end of the cut is quite wide and approximates a emall river, bat we foun.l no elams with the exception of the bed near the bridge mentioned aluve. I was able to deternine that the upper part of the river's section between the ent and Grand Bend doen contaln the commercial shell Q. undulata. At one place where I went into the water to a depth of four or five feet, I found the bed to comsist of fine clay mud quite thiekly covered with musmels of thin species. They were, however, rather smaller than usual.

This river seema to be peculiar in haviur a very irregular chamel an to width and depth. At places it is shallow and narrow and then again it becomes wide and deep. Shells seem to be quite generaily distributed. Even at Ailsa Craig, which must be over 40 miles up the river from the eut, we found the species Q. undulata, L. rentrirosa. L. luteola and Unio gibbosun. They were not plentiful and of rather small size-too small to be of much value. (lood beds of shells may be found on a more thorough investigation. In fact, I am inelined to think that the shells found lyins in the shallow places near Grand Bend and in the Cnuada Company Cut may be washed down from native beds up stream from these points. Conditions in the lower stretches of the river seem to be very favourable to musmel development evel: with the small flow of water.

I also investigated the river near its mouth at Port Franks, hut evidently there are no mussel heds of any importance there. No douht the great quantities of sand carried down during floods do not permit their development.

It is singular that even small streams in this vicinity support mussels of commerc^{c} al valuc. At the nouth of Mud creek, a small stream near Port Franks, I found a 1. 1mber of Q. undulata of fairly grod size. Q. rubiginona and small lutpolas were nlan found here. Shells are reported to be plentiful further up this creek.

In the vicinity of Grand Bend and Port Franks a considerable qumntity of shells should be obtainable by hand picking at low water. As the arens are not hrge, however, the supply would soom be exhausted. Since $\$ 20$ per ton, delivered at the station. has been offered for them, some enterprisiug man might find his labours well repaid.

I should advise that the river above the Canada Compmay. Cut be examined with a view to determining its resources in mussel life.

POLXT FDW:ARD.

On my arrival nt the buy nt Point Edward, neur Samia, I was again several times assured of the abundance of shells by men about the lumber yards. I obtainel n row-boat from the Spanish River Lumber Companys, and crossed the North bay (north of the Cleveland lumber trimway) in search of shells. The water here has nit average depth of about 3.5 feet and the shells are therefore readily obtained with a dip net or by wading. The sandy bottom is free of weeds with the exception of the margins near the marshy borders. As the water was elear I could readily see the bottom. I found only small shells such as we find in any of our fresh water lakes, for example

SESSIONAL PAPER No. 38.

 the aromad thoromehly the next day in mmpmy with Captain (ilase of Sarmin, finding very little, hower ro of any value whutever. The current Howing thromsh the river
 in sufficient gmantity in be of commeroinl value, hut I devired to tharoughly settle the
 the fuet that wery few berple nuderatmal shedla from a commereind piant of view. With, regurd to take Smith, for exnmple, glawing reports of aluells were made. One man wi.-

 bear the month of the river, just ont from the Riverin hutel. III all. the following

The hottom, from which mut if the is as set mishown.
 siderable masiel life.

A great dond of imp:rtant informution arres in manle:
 the distriet hydrographers of the Mydro-elvetric. Powere Cumbinsind with thone of

 of Jume of hat yeur the
vintions
limrforl.
Onomblara.
Brant fird.
Toming.
Nicholsin,
(ihnimurris.
2:30,

Streatime.

Whiteman: C'ruk,
Fuirulihl: Creek,
Grand Riser.
Nith River.
Nuthumampa River. Grand River.

B GEOROE V. A. 1918

.Sfationn.

Gult,

Kimberley,
! Inswelier,
Markdule,
Horning Milla,
Welland Canal,
()

Senford,
Y'irk,
Severil.
Waslingo,
l'urt Filgin,
Walkirton.
sulem,
H.elwimal, Conestogo mind St. Juroben, - al milnera.
liilworth, Fenslaw, Fialing, kime Inrley,
Arkonn,

Nircum*.

Grand River, leaver Iliver, Speed liver, liocky Hangeen liver, l'ine River, Welland liver, Sydeuhan Rivar, Hig llead liver, Graml ltiver, Severn River, Bluck River, Sanmern IRiver, Sungren River, Irwillo, (imul and (onestigu) livor. Speal River,

Thames, theme liruluches, dur Salilet Itiver.

In the prowelit venr a pool unny other stutions will probubly be nded. Witls u car at their diegmal the points eould le remblily rearhoul and often mueli time ared.
 St. Johan river. N.IB., lasa a large aren that may paswibly he suitable for mussel culture. 'Tan miles alove Fruleriotom the lieswiek strmun enters from the north, and below this puint the bed in litorally chokenl with alluvial induds. Ac St:sur island, the largest of the kroub, the rivar mensuris es miles from lank to bank. From Frelorictun t" lingetown, " listune of 31 miles, the surreunding land is very nw. On the rast n mope alluvinl fat of gront extent wimpotes the waters af die St. John frout these of the Jemseg. Sume farmers hore ohtain anmally arop of fixh and Vgotablow. I fiw of the nipur simmes that bramblof to the enst from the river might alon lar suitable for rlams. Ono would mut expert to find our larger species flure saw, hat it daes mot meressurily fullaw thint thes would nat thrive if introduced. "The grontost dittioulty would probably be fomm in prosuring the proper species of fish to ant a-luwt. Ifere it may lon mentioned that in the flood areas of tha Missigsipli mans fish, rut off from the river when the floml anbsides, are eanght. infected and liberutof agnin. In this why the donble murpose of restoking river with clams and revelanime the fish is served.

In Manitoba there serms ta have heen an immizration from the nuper waters af
 Eng.) IV.. $1 \uparrow$, $3: 39-346,18 \times 5$, there is minteresting acomme of the Mollusen of Manitola hy IR. M. ('hristy. In a letter received from 13r. Bryant Walker. Detroit, Mieh. relative to this article, it is stated that the author (Mr. ('hristy) lista ninetern speries of whirh six are mideutitied. 'They are: L. recta, radiafo. luteola, borralis, and alata. Q. rubiginosa. plinata, lachrumosa, (and asperimo). unlulata and hrros. Symp. romplannta: siroph. edenlula. Mussels in that region were abundant and esprially in the

 oceurred.

[^7]11.. Walker nhtainerl through the Aili. X: A. of Nat. Ilist. of N.Y., the following speas from the Awiniboine: Iamp. recta, rentricoa, hifeola, and alata; Sym. complane 1; An. gmandin and Quad. undulata, lachrymosa and rubiginosa.
hany species of comnicrcial numels are thus represented in our weatern waters. Finally. since the meintenanee of a mussel supply dependa on our freah-water fish muply, it will be necewsary to direet our attention to the greater and more important problem of fish conservation. It is nbvious that the two problems an hand in hand, ninl a station wet aside for the latter should be supplemented by a department working in the iuterests of the former wherever the monditions of the surroundiug eountry dermand it. Fish monde in which the proper spercies of fish could be reared for the purpones of infertion and experiment, might at the wame time yichl viluable information in the interests of fish-eulture. Such information would be of the areatent importanco in hastening the day when the furmer would raise his fish as uaturally an he raises his poultry. In tho near future fresh-water research laboratories, in which our fivtery prollems are sciedtifically worked out. will have to be established. But our inhani: fishury problems rall never he satisfactorily solved until the still more basio problem of water innservation is suriously dealt with. Of all the prohlrms relative to untional emonom none is more likely to enguge our arrions attention in the future than that of water conservation.

[^0]: 1 Annual Report of the Commissioner of Fisheries to the Secretary of Commerce for Fiseal Year ended June 30, 1916.

[^1]: ${ }^{1}$ Pop. Se. Monthly XLVI No. 2, p. 21-. IV.S. Geol. Survey Monographe, XXXVIIa.

[^2]: 1 ant indebted to the Hydro-blectrle l'ower commiasion offie at Hrantford for valuable data, and also for reports on clam distribution on the firand river aymem

 2 For nomenclature Ree Synolsis of Nalades, or pearly frest whter
 U.S. Natlonal Mumeum, Vol. NXil, No, 120 ades, or pearly fresh whtel musseis, J'rocepdinga,

[^3]: ${ }^{1}$ Sixth Annual Report. Hydro-Electrlc Power Commission of Ontario, 1916 .
 : Relation of Mollusks to Fish in Oneida Lake, by Frank Collins Baker, University of Syracuse, N.Y., July. 1916.

[^4]: In the report of the appraisal the iuteohs sent frem the Canarda Co. Cut ard from the Grand River were combined in one rejort.

 2 In grading the material I sent him, the texture and lustre of the nigrerhead (0. ebenis) was taken as the standard.

 3 A line in button measurement is $1 / 40$ of an inch.

[^5]: 1 Manual of Vertebrates of Ontarto, by C. W. Nash, has been consulted for fish distribution in our waters.
 ${ }^{2}$ The plicuta from Mud Creek, near Port Franks, were evidently grouped with those of the Grand river, for there ts but a single repurt.

[^6]: 1 Experiments in propagation of Fresh Water Mussels of the Quadrula group. By. Dr. A. Howaid, Bureau of Fisheries, Document No. 801
 ${ }^{2}$ See also, Protection of Fresh Water Mussels, by R. F. Coker, I'h.D., Hureau of Fisheries,

[^7]: 1 Tue Si. John River. Dr. W. Bailey.

