Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

TREE WASTE AND TREE CULTURE.

里N an article that appeared some months past in this Magazine, we drew attention to the rapid destruction, from fire and waste, going on in the forests of Canada, and the immense pecuniary loss to the country that must ensue, if some stringent steps are not soon taken to save our pine forests from annihilation. If not, then we need no prophetic gift to say that half a century hence merchantable lumber will be as hard to find up the tributaries of our great rivers, as it is now in the denuded woods around us, in which, not more than thirty pine of the finest description, from which the wooden ${ }^{8 h} \mathrm{pips}_{\mathrm{s}}$ of the finest description, from which the wooden masts and spars. The subject is one of so much imPortance to the Dominion, that this wholesale destruction
of Wealthat has hitherto been one of the largest sources of tions, to our merchante, and has, in its various ramificaend in , given so much employment to our people, must sarkets iof cessation of the export of lumber to the W_{θ} of Great Britain.
W_{θ} might readily suppose that, if stringent laws ${ }^{\text {forem }}$ passed by the Government of the country to save fires in the truction and waste its forests, caused by lightning ing in the bush during the heated term, or from burnthese laws should land - except at certain seasons - that
 look for examore easily made than enforced; and if we far their example to the United States to observe how many ir State laws have been effective in putting down $b^{2}{ }^{2}$ y ovils of this nature, we will find that they have of sof little use, and that it has been to the formation breacieties and the energy of their people, that lawrobbing, and destructive habits, horse stealing, orchard put down and similar offences, have been almost entirely Way, then where such societies exist. The most effective doestruction, would save the forests of Canada from early
society, supported by law, whose members should be spread over the whole country, giving information of infractions of the law, and bound to take the necessary steps to bring infringers of it to punishment. But irrespective of the necessity of such a society for the protection of our forests, it would have another object in vicw, of equal importance, and of equal benefit to the community ; and that would be to stimulate the agriculturist to the planting of trees on every spot of their farms which are too rocky, or too unproductive, to produce grain crops. Hard-wood timber will grow to a great size on rocky land, because the soil is generally strong, and the roots will find nourishment where nought else can be cultivated. Pine trees will attain a great height on sandy soil, where little else will grow ; and on swampy lands, tamarack, which is a very valuable timber, particularly for railway ties, can be grown with little trouble.
There are two most important points to be considered in relation to the subject.

First : How to save our forests from destruction.
Second: How to renew the waste land of the country with a new growth.
If any one is disposed to think that the pine districts of our forests are inexhaustible, let him look at the map of Canada, and he will see how much of its surface has already been cleared of its trees in a single century ; and then he can judge that, if the cultivation of the soil and destruction by fire proceed in the same ratio with the increase of the population, how much will be left of pine lumber at the close of another century. Let him not suppose, because he sees on the map an area of wild land, equal to a large portion of Europe, that that immense tract is all covered with forest-land bearing merchantable timber-or, that the banks of the rivers and their tributaries are studded with pine. Why, more than nine-tenths of that immense space is composed of mountains, lakes, swamps, grass plains and barren land, and the greater portion of it is in a northern latitude where the pine tree does not flourish. The greater portion of the water-sheds slope towards the Labrador coast, Hudson's Bay, and the Arctic ocean, and enter the sea where no lumbering could be carried on with profit, even if merchantable timber did exist in those cold regions.
Ask the lumberer, and the settlers on the

Ask the lumberer, and the settlers on the great tributaries of the St. Lawrence and Ottawa, what they know
about the lumber of those districts, and they will tell you that year after year they are obliged to push further back from the river's edge into the depths of the forest, to find, with difficulty, any of that magnificent growth of pine of which, at one time, Canada could proudly boast.

It will not be many years, therefore, at the present rate of consumption, as well as needless destruction of the pine regions, before Canada will need all that remains of constructive timber for home consumption, and then a source from which her merchants have hitherto derived great wealth and her people employment, will be closed for ever, unless speedy and prompt measures are taken to check the waste and renew the growth.

There could be no nobler stimulant for the formation of a society than one chartered and organized for this gieat object, and the first men in the country might feel proud to be at its head. A contemporary, in writing on the subject of the destruction of trees going on in the United States, makes some most sensible remarks, a few of which are coutained in the following extract:-
" Now consider the enormous amount of lumber used yearly in manufactures. Nearly $\$ 144,000,000$ is invested in the sawn lumber industry alone, that is, the productiont of laths, shingles, and boards. Add to this the fact stated by Professor Brewer, that wood forms the fuel of two-thirds of the population, and the partial fuel of nine-tenths the remaining third, and some general idea of the enormous drain constrntly in progress upon our forests will be reached. This, howe"er, is only the direct draught for purposes of utility. Immenst areas of woodland are yearly denuded by forest fires, large tracts are purposely burned as a speedy way of clearing, and thus the wooded regions are rendered more and more sparse. If forest fires were prevented as far as is practicable, if trees wefe constantly being planted, and if the reckless denudation of woodlands could be stopped by the laws already in existence, but apparently not enforced, there is little doubt but that we possess timber enough to supply indefinitely all our needs either as finel or for manufacturing purposes; but save in isolated instances trees are not being planted, we have no schools of forestry such as exist in Europe to encourage sylviculture, and, as the recent proceedings in Congress have shown, a part of the population claims the right for private ends to denude the woodlands now owned by the whole country, and defenders in the Legislature are not wanting to support them.
"We have already taken occasion to point out the dangers which result from tree destruction. The exact relation of forests and rainfall is not definitely settled ; but there are very numerous cases on record where the destruction of forests has resulted in the production of desert wastes, and where trees have been replanted humidity has returned. It is laid down, however, by such authorities as Dr. J. Croumbie Brown, of Scotland, and others who have made especial studies of the subject, that "within their own limits and near their own borders forests maintain a more uniform degree of humidity in the atmosphere than is observed in cleared grounds. They tend to promote the frequency of showers, and if they do not augment the amount of precipitation they probably equalize its distribution through the different seasons.' 'In India,' says Mr. B. G. Northrop, in a late address before the Connecticut State Board of Agriculture, 'three quarters of a million people have been starved to death since the forests have been cut off, carsing the springs to dry up.'
" It is needless to multiply warnings of this kind. In the thickly settled countries of Europe each generation is bound by law to leave the forests in as good condition as it found them. Forests are protected from fire, and they are regarded as public property. Until we adopt some similar course, each succeeding generation will transmit to posterity woodlands more and more depleted. The result is only a question of time. The natives in parts of South Africa tell of giant trees and forests, fertile lands, and abundant floods and showers, all existing or occurring in a region now little more than a dry and arid desert; such will be the traditions of our own descendants. As the soil becomes unfit for agriculture, migration will follow, favored regions will receive an overplus of population which cannot obtain all its supplies from the soil, and dependence upon other nations for necessaries of life, the first step downward in a country's decadence,
is taken. Exhaustion of resources must ultimately succeed, and with it the end of national existence."

We will not go so far as the writer of the above in agreeing entirely in the concluding portion of his remarks, for any country inhabited by an intelligent and thinking mechanical race, like Canada or the States, would anticipate, before too late, the loss, and find the remedy necessary to check the evil by replanting the land. But, in the meantime, there are thousands who never can realize the idea that the timber of this vast country is fast becoming exhausted and destroyed, until the facts are brought in truthful figures before them.

One of the first things necessary for a society to do would be to endeavor to renew the forests, which could be done at a very trifling cost, and these forests would, in half a century, become a source of future wealth to the country. If all agriculturists whose farms are bare and bleak from being denuded of the primeval growth of timber, of every description-this is particularly the case on the prairie farms in the Province of Quebec-would commence at once to plant groups of trees, for shade and cattle shelter, and plant the unproductive spots which are to be found on every farm with quick-growing timber, they would not only beuefit from its influence on the climate, by breaking the sweep of the bleak and cutting winds, and by retaining a moist atmosphere in their neighbourhood, which otherwise would be parched up with dry winds and heat, but they would be erecting on the soil a savings bank and a mine of wealth, on which their children, in years hereafter, could, from time to time, draw a cheque. The subject is one of great importance, and well worth the gravest consideration of our statesmen.

SEEING THE EARTH GO ROUND.

The directors of the forthcoming Paris Exhibition propose to repeat Foucaull's experiment on a large scale, and to demonstrate to tout le monde that the earth does revolve. The exper iment depends upon the property of a pendulum to keep swingo ing in the same plane if its support is free to move ; and if ${ }^{\circ}$ could set up a suitable pendulum at the North Pole, we should see it swinging round the circle once in twenty-four hours, but at the same time we should not know that it was the earth that was moving, and not the pendulum. At any place not directly over the axis of the earth the point of suspension partakes, of course, of the rotation of our planet, and a correction for thed movement would have to be made; but, as that can be calculated to a nicety, the demonstration of its correctness afforded by the pendulum would be proof of the rotation of the earth. Foucault's experiment was made under the dome of the Pantheon at Paris, and it was repeated in America; but the proposed exhibition will carry it out on a larger scale. The weight of the pendulum to be erected in the Champ de Mars will be about 660 pounds, the length of the rod being some 220 feet. It will be hung in such a manner that the points of suspension will be free to move, and consequently the pendulum will continue.to swing in the same plane, or nearly so, because the friction of the supports w necessarily exercise some effect. The spectator, standing what appears to be a stationary floor, will notice that the penda. lum changes its line of osciliation as regards the floor, and if ${ }^{\text {bo }}$ understands the question to be answered he will know that the floor upon which he stands is being carried round the pendulum by the rotation of the earth. Professor Tobin, of Richmond, Kentucky, has recently devised an improvement on Foucault apparatus, his pendulum being hung to a stand about 6 feet high, in such a manner that the rotation of the earth is shown by th changed position of an index which moves over 1 deg . of the scale in about six minutes. His pendulum is moreover so delicately suspended that it maintains its motion for about 12 hours, ${ }^{\mathfrak{g n}}$ d yet can be retarded, or even stopped, by blowing upor it. - Echo.

DOBBIN'S IMPROVED HAREOW.

The advantages claimed for the improved harrow illustrated in the accompanying engravings are as follows. It is easily portable, and need not be placed upon a wagon to transport it to and from the field; the construction of the teeth enables work to be done equally well at the sides as at the middle; the parts being hinged, the harrow can be folded into small space; the teeth are especially adapted to sod ground, and work well whether the soil be rough or smooth; by removing two or three teeth for each row, three rows of corn can be cultivated at once, and this can be carried on until the plants are several inches high.

The frame is made in two sections, each consisting of five parallel crossbars with transverse pieces as shown in Fig. 1. The sections are linged by the long bolt, A, passing through the overlapping ends of the bars. The ends of the transverse bars, B, are rounded to adapt them to serve as runners when the harrow is turned over to enable it to be drawn from place to place. The teeth are separately shown in Fig. 2, and are made wedge-shaped so that they will cut sods, etc., clear themselves of rubbish, pass through the ground easily, and enter it to greater depth. The shanks of these teeth are passed through holes in the bars and secured by nuts. Projections, C, on said shanks prevent the teeth from turning. To the front and rear bars are attached hooks, so that the harrow may be drawn with the inclined or the straight edges of the teeth forward, as may be desired. By means of the hook, D, the draught may be applied to the lower section when the two sections are folded together.

Corrobion of Machinery by the Uby of Animal Oils. cerates or ordinary dressinga would give pain. A conservs--Often in removing the cylinder head and plate covering tism, founded more on prejudice and want of proper inforthe valves of an engine, we see evidences of corrosion or mation than anything else, has existed for some years, which action on the surfaces differing entirely from ordinary wear, clings to the use of animal oils in defiance of reason and and the engineer is generally at a loss how to account for it. economy; but which, like all the so-called conservatism, is According to the general impression grease or animal oil is a gradually yielding to the advancing scientific spirit of the preservative of the metal, and is the last thing suspected ci age. There are but few cases in which mineral oils cannot being the cause of its gradual disintegration. now supersede the old-fashioned organic or animal oils. Im-
Animal fats consist of what are known as the "fatty acids," provements have been and are now being made, and oils such as stearic, margaric, oleic, etc. These acids are com-from petroleum are now produced suitable for nearly every bined with a base, and under ordinary conditions are neutral mechanical process for which the animal oilshave heretofore to metals generally, and on being applied they keep them been used, not excepting those intended for cylinder purposes. from rusting by shielding them from the action of air and Another objection attaching to the old animal oils is absent moisture. But in the steam cylinder, a new condition is in petroleum. Thus if, through the exhaust steam, some of reached. These oils are subjected to the heat of high-pres- the animal oil be carried into the boiler, foaming or priming sure steam, which dissociates or frees these acids from their is the conscquence, but the same thing happening in the case base, and in this condition they attack the metal and hence of petroleum is rather of benefit than otherwise, for it not destroy it. This applies as well to all oils of animal origin, only does not cause foaming, but it prevents incrustation or fish or sperm oil included, although a pure article of the latter adhesion of the scale or deposit and this aids in the preservadoes so only to a very slight extent, but its very high price tion of the boiler, and the latter is perhaps the best preventaand exceptional purity preciudes its economical use. Petro. tive of the many everywhere suggested.-Iron, ix, 284. leum and oils derived therefrom (generally called mineral oils) are entirely free from this objection. Petroleum contains no oxygen, and hence without that it cannot form an acid and therefore eannot attack metal. It is entirely neutral, and so bland that it may be, and is, used medicinally as a dressing to wounds and badly abraded surfaces where

New Sucrces of India-rubere.-It is well knuwn that rubber abounds in the milky juires of many plants besides the csoutchouc tree ; for example, lettuce $x^{\text {nid }}$ daudelion. A company has been formed in London, Ontario Proviuce, for the extraction of croutchouc from ailkweed (Euphortia corolutn), the juice of which contains some four per cent. of rubber. The plant is partially decomposed, steamed, then freated with cosl-tar naphtha, which, being distilled, leaves the residuary caoutchouc in the solid form.

THE BRITISH FLEET.

Vessels in the Neighbourhood of the Dardanelles. Deschiption of the Ironcladis.

The London Standard of the 16th March has the follow-ing:-The total effective force of the British Navy at present consists of nearly 400 vessels-inclading ships specially constructed to take part in great naval engagements, and others adapted for the purpose of cruising and coast defence. This aggregaie does not include any in course of building, and 134, oither laid up or permanently employed in harbour service, are also omitted. When it is remembered, however, that six armourplated war ships and a single wooden despatch vessel constitute the entire naval detachment ordered from Besika Bay to the Sea of Marmora, and that this small number includes no turretships of the first-class, or breastwork monitors, it will be admitted that, in proportion to the complete naval strength of Great Britain, the demonstration which the Government has deemed it expedient to make before Stamboul in the present menacing aspect of events, is of a compar tively moderate character. But it may assist the public to realize the stupendous naval force at our command, and the unrivalled supremacy we are consequently justified in claiming upon all waters, to know that even the limited portion of the fleet now quietly gnarding British interests before the Turkish capital, possesses destructive appliances which the collective navy of Kussia could not possibly withstand. The six figh ing ships now told off for duty at the Bosphorus are the Temeraire, the Alexamdra, the Sultan, the Swiftsure, the Agincourt, and the A-hilles. The despatch boat which attends them is the Sulamis. If the strenuous efforts of the English Government to preserve peace should unhappily fail, and the honour of this country should demand that Great Britain must declure war, the present equadron would soon be reinforced by a fleet of invincible ironclads whose fighting power would cast into obscurity that wielded by the wooden walls which twenty-five years ago gallantly attacked Sebastopol.

Four of the vessels we have mentioned as anchored in the Sea of Marmora belong to the category of armourcd broadside ships of the first-class; and as the Temeraire carries the largest number of heavy guns, she is entitled to precedence antong them. The feature in her construction which essentially distinguishes her from all other armour-phated vensels in the British Navy, is an upper-deck armament with two fixd turrets open at the top, instead of the ordinary arrangement of a central battery. At each end of her upper-deck is a pear-shaped tower, measuring about 33 feet fore and aft, by 21 feet 6 inches across. On a turn-table which this battery contains is mounted a 25 . ton gun, worked by hydraulic machinery, by which it is raised to be fired over the edge of the tower, and lower d under cover immediately afterward to be reloaded. The forenost turret is protected by iron plates 10 inches thick, and the one situated aft by armour 8 inches thick. The guns have a clear sweep all around the ends of the ship. That fire may not b: obstructed in action the bulwarks are only allowed to rise four feet above the deck. One of the 25 -ton guus can be fired straight ahead and another straight astern, but both have a wide range over the broadside. Again on the main deck is a battery in two divisions, the foremost of which contains two more 25 -ton guns, with angles of training extending about the beam, on each side, across the fore and aft line, so that a converging fire at some distance ahead of the ship is secured. This latter pair of guns are fired from corner ports, and the sides of the ship are set back several feet above the main deck, to afford the requisite facilities for handling them; so that this vessel fires three guns right ahead, two on either bow, one on each quarter and two on each beam-all of the calibre we have specifiedbesides two 18 -ton guns on each beant; making four 25 -ton and 1218 -ton guns. The guns of the Temeraire are more efficiently protected than those of any other broadside ship in the service.

Her most vital parts are plated with 14 -inch armour. To guard her from exposure to the raking fire of the enemy when she is pitching in the trough of the sea, the armour is carried down over the sharp point of the ram, and equal protection in a similar emergency is given to the magazines by an armoured bulkhead across the hold, plated with 5 -inch arnour. The hull has the usual double bottom, and is divided into numerous water-tight compartments. The engine and boiler rooms are so constructed as to prevent the entrance of water in case of contact with hostile rams or torpedoes. The gross weight of the armour and backing is about 2,300 ions, and the guns, ordnance
stores, engines, boilers, and other equipments weigh 2,200 tons. The aggregate weight of her broadside fire amounts to 2,600 pounds; of her bow fire, 1,800 pounds, and of her stern fire, 600 pounds. In common with all our great war ships of recent construction, the T'emeraire is fitted with an apparatus for discharging Whitehead torpedoes under water through openings in her sides.
The Alexandra carries a central battery, and her construction admits of a satisfactory all-round fire; she can dispense with gun-towers at stern and bow. Her battery is furnished with two Woolwich rifled muzzle-loading guns of 25 -tons each, and 10 of 18 -tons each. She is 325 feet long, being 40 feet longer than her sister ironclad already described, and is worked by engines of 8,000 indicated horse-power, being 1,000 horse-power geater than those of the Temeraire. Her tonnage reaches 6,050 tons, and the total weight of her armour and backing 2,350 ton.: In many characteristics she resembles her companion, so that the necessity for repeating details is suporseded. The Sultan is the same length as the Alexandra, but mounts eight 18 -ton and four 12-ton guns, while her armour-plating ranges from six to nine inches; the force by which she is propelled exceeds that of the Alcxandra by 629 horse-power, and the peculiar formation of her ram renders that vessel one of the most formilable of sea-going vessels in the fleet. The Swiftsure, though a ship of similar dimensions and inferior armament to those hitherto described, is nevertheless capable of inflicting incalculable injury on hostile ships. She is 280 feet long, carries ten 12 -ton guns, exclusive of others of smaller size, and is covered to the water-line with iron plating from six to eight inches thick. Her engines work with a propelling force equal to 4,913 horse power. The Aginwourt and Achilles are classed under a different head from the four vessels which have been noticed. They come under the designation of iron broadside of the old type, of which the Warrior is a prominent example. Though lacking the advantage resulting from the most recent application of science to navigation and the art of uaval warfare, they are, nevertheless, still commanding vessels. The length both of the Agincourt and the Achilles is much greater than that of the longest of the preceding ships. The former is 400 feet and the latter 383 feet. Seventeen 12 -ton guns are mounted in the Agincourt, and ten 12 -ton guns and sixteen $6 \frac{1}{2}$-ton guns in the Achilies. The engines of the one vessel exert a force equal to 6,621 indicated horse-power, and the registered propelling power of the eugines of the other is 5,723 horse-power. Yet the glimpse of the naval power of England conveyed by an analysis of the dimensions of these few vessels in on an extremely limited scale. If we attempt to exhaust the long list of vessels belonging to the classes which include the ships already enumerated, and then advance to a consideration of the still more formidable characteristics of such tuiret-ships as the Dreadnought, the Thundercr, the Devastation, the Agamemnon, the Ajax, and the Monarch-to say nothing of the Inflexible, which latter is destined, when ready for commission, to carry four 81 -ton guns-the combined navies of the world sink into insignificance before this unparalleled array of naval might controlled by the British Govermment. It is also satisfactory to know plovision has been made for the protection of our shipe, when at anchor, from all risks of attacks from torpedoes. But even the list and deseription of the Admiralty does not exhaust the measure of British naval power. The British mercantile marine possesses 419 steamers over 1,200 tons and under 5,000 tons register-not a few of which are capable of high speed. In the event of war a considerable proportion of these ships wonld be placed at the disposal of the Government. They could readily be armed with light rifled-guns and torpedoes, and may always be relied upon as a reserve naval force. If the "decisive battles of the world "' in future were to be fought at sea, the enormous naval advantage enjoyed by Eugland over all other nations would infallibly coustitute her the undisputed arbitor of the destinies of nations.

gigantic advertising.

Probebly the largest advertisement in the world is that of the Glasgovo Newos, which displays its name on the slope of the Ardenlee, Scotland. The length of each letter is 40 feet; the total length of the line is 323 feet, and the area covered is 14,845 feet. The botders of the letters are sown with a pure white flower, the center is set with dwarf beet, the daris purple of which shows well at a distance, and an each side of this there is a row of light purple candytuft.

NOILIGIHXG SI甘Vd GHL HO MAIA TXG S، GצIG

The cut represents the style of locomotive built by the Hinckley Locomotive Works (Boston) for the Billerica \& Bedford two-foot gauge railroad. Two of these engines, named "Ariel" and "Puck," duplicates of earch other, were built for the road previous to its formal opening in October last. The plan upon which they are constructed was devised and patented by Mr. M. N. Forney several years ago, and has been adopted by this miniature road as the best suited for its traffic. A brief account of their peculiarities was contained in the Car-Builder for October, in connection with a description of the road, but we now give a more complete statement with the accompanying engraving.

It will be observed that the boiler, machinery, cab and ten der, are all on one set of wheels, and that the whole is run in reverse order, namely-the tender in front and smoke-stack in the rear. A number of manifest advantages are secured by this arrangement. The weight of the boiler and machinery is entirely on the drivers, and that of the tender on the truck. thus securing the necessary adhesion and slability, and a wheel-bese sufficiently long and Hexible to pass curves with ease. The smoke and cinders from the chimmey are carried over the cars to a greater degree than when they are discharged from the front; the engincer has a more unobstructerl view of the track, with no smoke or steam beating down before him, the cab being in the center, and resting on the continuous frame which also supports the tender. is much steadier than with ordinary engines, and is consequently a more comfortable riding place for the engineer and fireman. The cal can be completely closed in cold or stormy weather, and the heat of the boiler in summer forced out of it, backwards, by the speed of the train, so that it is warmer in cold weather and cooler in hot weather. The whole arrangement secures com pactness, and we believe the performance of the engines on this road has so far been entirely satisfactory. The drivers are only 30 inches in diameter, which brings the weight very near the track. This, with nice balancing, causes them to run with as little oscillation as a Pullman car.

The weight of each engine, in working order, is 23,750 los. weight on drivers 14,370 lbs.; capacity of cylinders 8×12 inches; inside diameter of boiler 30 inches; driving wheel-base 3 ft .6 in. ; total wheel-base 13 feet; cupacityof water tank 400 gyllons.-Nat. Car Builder.

Imitation Ebony.-The following recipe, which we take from the Revue Industrielle, will answer numerous correspondents who have inquired how to turn oak black so as to cause it to resemble ebony. The wood is immersed for forty-eight hours in a hot satursted solution of alum, ard then brushed over several times with a logwood decoction prepared as follows: Boill part of best logwood with 10 parts of water, filter through linen, and evaporate at a gentle heat until the volume is reduced one-half. To every quart of this add from 10 to 15 drops of a saturated solation of indigo, completely neutral. After applying this dye to the wood, rub the latter with a saturated and filtered solution
of verdigris in hot concentrated acetic acid, and repeat the operation until a black of the desired intensity is obtained. Oak thus stained is said to be a close as well as handsome imitation of ebony.

In-Growing Toe Nails.-These aftlictions are a source of excessive discomfort and sometimes of almost insufferable pain ; formerly the savage mode of treatment was to take a pair of pincers and drag the whole nail out, but now a prompt and painless cure may be effected simply by inserting the dry sesquichloride of iron between the nail and the flesh and powdering the latter with it also, then apply a dry bandage, and a cure follows after two or three applications, a day or two apart.

The following United States Patents were granted to Canadians during the month of March last:
James Burns, of London, Ont., March 5, 1878, No. 200,820, " Gas Retort."
M. L. Hitchcock, of Cornwall, Ont., March 5, 1878, No. 201, 014, " Slashers."
A. McLean, of Toronto, Ont., March 5, 1878, No. 201,032, " Stone Preservative."
T. Robertson, of Toronto, Ont., March 5, 1878, No. 201,049, "Lozenge Machine."
G. P. Clapp, of Montreal, Que., March 12, 1878, No. 201,094, " Nail Blank Machine."
J. Currie, of London, Ont., March 12, 1878, No. 201,097, " Gaing Plow Frame."
J. Foley, of Montreal, Que., March 12, 1878, No. 201,103, " Water Filter."
H. B. Dyer, of Toronto, Ont., March 12, 1878, No. 201,171, "Sidewalk."
W. H. G. Savage, of Kingston, Ont., March, 12. 1878, No. 201, 203, "Brush Bridles."
C. T. Brandon, of Toronto, Ont., March 19, 1878, No. 201,322, " Painting Machines."
J. Farrar, of Montreal, Que., March 19, 1878, No. 201,338, "Tobacco Cutters."
T. Hodgson, of Amherst, N.S., March 19, 1878, No. 201,416, "Saw Sharpening Machines."
J. Briggs, of Montreal, Que., March, 19, 1878, No. 201,494, "Ranges."
T. H. Paling, of Woodstock, Ont., March 19, 1878, No. 201,553, "Window Shades."
L. F. Lash, of Toronto, Ont., March 26, 1878, No. 201,799, "Curtain Fixture."
昷

TEE CYLINDER SHIP CLEOPATRA.

STRAIGETENING WROUGET ICETAL PLATEA.

The straightening of iron plates is an operation to properly perform which requires a great deal of juigment and careful minipulation. Every blow delivered should be directed to a definite end, for one misdirected blow entails the delivery of many others to correct its evil influcnce; and hence, if several of such misdirected blows are given, the plate will have upon it a great many more hammer marks, or " hammer sinks" as they are sometimes termed, than are necessary. As a result, not only will the painter (in fine work) be given extra trouble in stopping the hollows to make a smooth surface, but the following evil will result: Every blow struck by the hammer compresses and proportionately stiffens the small surface upon which it is delivered, and creates a local tension u on the surrounding metal. The misdirected blows then cause a tension acting in opposition to the effect of the

properly delivered ones; and though the whole plate may be stiffened by the gross amount of blows, yet there will be created local tensions in various parts of the plate, rendering it very likely to spring or buckle out of truth again. If, for example, we take a plate of iron and hammer it indiscriminately all over its surface, we shall find it very difflerlt to straighten it afterwards, not only on account of the foregoing reasons, but for the additional and most important one that the effect of the straightening blows will be less, on aecount of the hammered surface of the plate offering increased resistance to the effects of each blow; and after the plate is straightened, there will exist in it conflicting strains, an equilibrium of which holds the plate straight, but the weakening of any of which will cause the preponderance of the others to throw the plate out of straight; for the effects of the blows cannot be permanent unless the whole body $\mathrm{r} f$ the iron is acted upon to an equal extent by the hammer. Suppose, for example, that we take a flat plate, and deliver upon it a series of blows round about its center. The effect will be to make it hollow one side and rounding on the other, the effect of th; blows being, not only to indent the plate in the spots where they fell, but to carry the whole body of the

middle out of true; because, the area of the iron being increased by the stretching effect of the blows, the ceuter
leaves the straight line to accommodate the increased area. Thus, if we mark off a square foot in the middle of a plate, and hammer it so as to stretch it and increase its area $\frac{1}{8}$ inch each way, the form of the plate must alter to suit this added area, and the form of a dish or curve is the only one it can assume.' If, however, the outside metal is also stretched to the necessary degree, the plate may be made flat. The skillful workman takes advantage of the stretching of the plate; and so soon as he has ascertained where the plate is out of true, be sets to work to stretch it so as to draw the crooked placed straight, taking care that the shape and weight of the hammer and the weight of the blows delivered shall bear a proper relation to the thickness of the plate and the material of which it is composed. If it is of consequence that the finished work shall bear no Fig. 3. marks of the hammering, as in the case of engravers' plates a flat-faced hammer is employed; but for other work, the shapes, as well as the weigits, or the hammers vary. The hammer shown in Fig. 1 is called a "long crossface:" " long" because it is intended to be used in both hands as a sledge, and is provided with a long handle (being used for heavy work) and "cross" face" because the length of the face on one end stands crosswise with the length of the face at the other. This hammer causes the metal to rise or lift in front of it, the direction in which the rise takes place depending upon the direction in which the length of the hammer face strikes the plate. Suppose, for example, that we strike the blows shown at the end, A, or end plate shown in Fig. 2, and that we then turn the hammer upside down and strike the blows denoted by the marks at B in the same figure (this the wotkman can perform, by reversing the hammer, without changing his position); the result will be to curl up the plate as denoted by the dotted lines.
This effect is produced by two causes, the first of which is the shape of the hammer face, and the second is the direction in which the blows fall. Fig. 3 represents an iron plate with one each of the blows, respectively shown in Fig. 2, at B and C, delivered upon it. Then, the indentation of the plate being denoted by the full line, the tension caused to the surrounding iron will be indicated by the dotted lines. It wilr be noted that these dotted lines are in each case longer on one side of the mark than on the other, and the reason is that the effect is greater on tast side, or rather in that direction, because the hammer does not fall vertically upon the plate, but somewhat aslant. If the plate shown in Fig. 2 be turned up on edge so as to appear as in Fig. 4, the direction in which the hammer would travel when striking the blows at B (in Fig. 2) is denoted by the arrows, B, in Fig. 4. While if we turn up the same plate so that its edge, D, in Fig. 2, will appear as the edge, D, in Fig. 5, the direction of the blows shown at C, in Fig. 2, will be denoted by the arrows, B, in Fig. 5 ; so that both the
shape of the hammer face and the direction of the blow conjointly act to draw or bend the plate in the required di: oction. If we take a ball-faced hammer, the effect will be produced as shown in Fig. 6, in Which the circle, A, represents the mark left by a ball-face or pene hammer, and the diverging dotted lines show the effect
 of the blow upon the surrounding iron. B represents a blow delivered by the same hammer, which, while falling, traveled also in the direction of the arrow, C, the direction effects of the blow being denoted by the dotted lines.

We next come to the twist hammer, shown in Fig. 7 in perspective, and in Fig. 7 in front view. This is a hand hammer with the two faces standing parallel to each other, but diagonal to the body of the hammer; so that, by turning the handle in the band, the direction of the hammer marks will be reversed. Suppose, for ${ }^{\text {esample, that in Fig. } 8 \text { the out- }}$ lines represent a plate; the lines slanting one way, as at A, will represent hammer marks made With one face, and those slanting the other way, as at B, are marks made by the other face of the wamoer, the direction or line in Which the hammer fell being the same in both cases. By very little moving of the position of the hammer handle, then, and by turning the hammer as required, the workman can place the ham-
 mer marks in any necessary direction, as shown by the remaining marks in Fig. 8, without requiring to change his position. In referring to the hammer marks, as above, it is
not to Dot to be supposed that the hammer indents the work, producing "hammer sinks:" the term marks being intended to
represent the surface of the metal which received the direct impact from the hanmer face.
In addition to the shape of the hammer and the direction of the blows, there is to be considered the weight of the hammer and the velocity at which it travels; and in this connection the following remarks may be made: The effect of a quick blow is to cause indentations or hammer siaks, be-
cause the speed of the hammer is of as much importance as its weight. A heavy body traveling slowly may represent the same amount of stored-up energy as that of a lighter one traveling at a greater velocity; but the effect of the impact with another body will be quite different. Thus, to use a familiar example, a tallow candle fired from a gun will pass through au inch board, making a hole clear through the board; so likewise the effect of a light hammer and a quick blow will be productive of indentations. Quick blows, therefore, are never employed, the weight of the hamreer being proportioned to the size of the work.

We next come to the straightening block, that is, the iron block upon which the iron plates are to rest (as shown upon

Fig. 8.

an anvil) while being straightened. The size of this block should be about 12×18 inches, and. say 12 inches deep, which is large enough for the largest work, as will be perceived from the following considerations: It is necessary that the plate should be solid on the block, directly beneath the part of its surface which is being hammered, otherwise the effect of the blows will be entirely altered. If, for instance, A, in Fig. 9, represents the straightening block, and B , a plate resting thereon, then the blows struck upon the plate auywhere save over the rery edges of the anvil will havs but little effect, because of the spring and rebound
 of the plate; and the effect of the blow will be distributed over a large area of the metal, tending to spring it rather than give it a permanent wet. If the blow is a quick one, it may indeed indent the plate without having any straightening effect. On the other hand, by stretching the skin on the upper side of the plate, it will actually, under a succession of blows, become more bent. In fact, to use a straightening block, so large in proportion to the size of the plate that the latter cannot be adjusted so that the part of the plate struck lies solid on the block, renders all the principles above explained almost walueless, and is a process of pounding, in a promiscuous way, productive of hammer marks, and altogether fatal to the production of true work. In the method of manipulation here explained, every blow delivered is given with the object of liberating the strains which may exist in the plate, holding it out of flat, or of drawing the plate so as to bring into lime with the general surface those parts which are not in line with the main body of the plate.

Dangerous Valle.

Ladies in traveling at this season of the year frequently wear vails of gauze, most commonly light green in color. It appears that the use of these is not wholy safe; as a case has lately been published of a child, in Troy, N Y., whose face while asleep was covered with a green vail to protect it from ties. The infant managed to get the fabric in its mouth, sucked it, and died shortly afterward, with all the symptoms of poisoning.

Portable Washstands.

With all the inestimable advantages accruing from systems of water-works and sewerages, it cannot be gainsuid that under cortain conditions they are subject to inherent whjections, and this even of a serious na ture. The fixed washstands in bedrooms are illustra tions of some of these objectionable features; it is es pecially the connection with the sewers that is the great nuh inngerond enemy. The phumbing of n house may be ever so perfect, still from time to time the

Fig. 1.
sewer gases will be amelt around the basins, ascending through the drain pipes. It is now well establisheti that the sewer gases ascending through the latter are the principal soirce of all zyinotic diseases of our cities, and even of our country towns.
Convinced of this, and seemin no certnin way to pre vent the evil so long as drain pipes are allowed in bedromma, many people have given up fixed wash. stands altogether and substituted the old-fashioned arrangement of a movable piece of furniture with movable apparatus, the water being brought in pitehers and the slops carried away in the old fashioned sloppails.
If to this we add the expense of plumbing arrangements, their liability to get out of order, the frequency with which they get stopped up, the freezing in winter, and the other evils water and drain pipes are heir to, such as the sudden stoppage of the water by drawing it on the lower floor when needed on the upper ones, the violence of the pressure, which sometimes is quite inconvenient, and other little items, it is quite natural that a reversion of opinion has set in in regard to the devirability of fixed washastancls.
The old-fashioned way of having pitchers and bowls on a movable washstand, and a slop-pail next to it, is subject to the objections of inconvenience, liability of spilling water over the carpets, and the danger of breakage, which becomes very expensive when a neat and costly set is used.
Housekeepers are thercfore largely indebted to the N. Y. Portable Washatand Co., of 706 Brodiway, New York, who are introducing an arrangement which combines the convenience of the fixed washatand with the sanitary virtues of the old-fashioned washatand with bowl, pitcher, and slop-pail, and costs no more than a neat arrangenent of the latter kind, and considerably less than a fixed washstand and its plumber's connec tions. The exterior appenrance is represented in Fig. 1, and is made in different styles, according to the price, which varies from $\$ 16$ to $\$ 88$ and over. In
order to supply the bowl with water, all that is neces sary is to press down the knob on the top of the verti cal rod seen at the right side of the bowl ; when the washing is done the plug is withdrawn by means of the chain attached and the water flows out. The manner in which this is accomplished is seen in Fig. 2, which represents the stand with the doors open, showing the interior arrangements; at the left is the slop-pail, in which the water from the basin is collected, and which may be emptied once in 24 hours; at the right is the supply tank, which is filled from time to time. according to the amount of water used; it contains a pres sure pump, which is represented it detail in Fir. 3. The globular top of the pump is a hemisphere of Indiarubler, which is pressed down by the rod; by valves closing nt the bottom of the cylinder, the water is forced upward in the vertical tuhe, the top of which is connected by means of a piece of rubber hose to a side opening in the base. We nre satisfied that this stand fully deserved the medal and diploma at the Centenninal Exhibition for "originality of principle, combined with usetulness and convenience."
Summing up the advantages of this arrange ment, we would say: No sewer gas odors, no expensive plumbing connections, no choking up of the discharge pipe, no running over and in undation of the floor. no freezing up of the supply pipe, etc., as is the case in fixed wash stands; no inconvenient lifting of heary pitchers or full bowls, no spilling of water over the car pets, no alop-pail in the way, 10 breaking of bowl or pitcher, etc., as is the case with the oldfashioned movable washstands. In place of all this, we have here the simple pressing on a knob to fill the bowl with dean water, the pulling of a chain to empty it, while the sapply of clean water as well as the removal of the stops is left to the servants. No doubt that all who see its practical operation will appreciate it and form a better opinion of it than we can give by a mere description. These stands are'manufactured under letters-patent girnted Feb. 15, 1876, and sold only by the N. Y. Portable Washstand Co.

Adulteration of Monet and Maple Stigar.-Glycerin is now so chenp that honey is being adulterated with it, and also with sugar. Maple syrup is adulterated in the same way, especially with dissolved brown

Fig. 3.
sugar. Ten per cent of honey or maple sugar is sufficient to give to a mixture of glycerin and sugar syrup, or of sugar alone, the flavor of the article it is intended to imitate.

To Heal Cuts.

We have received the following communication, which we publish with our comments:
"On jage 19 of your January number for this year. a remedy is given to stop bleeding. Do not on any account recommend anything for a cut, but endeavor
co persuade some of your numerous readers to try the following experiment: Take a fine needle anil n double thread. (No. 60 to 80 .) knot it, and sew up the wound immedintely after it is cut : do not go deeper than the skin. If any one can be induced to try this, they will never do anything clie for a cut. It requires oo wral ${ }^{-}$ ping up-just keep it clean. I saw it practiced in the workshop by one of the workmen forty years ago. and "as reconmended to try it. I tried it a short time ayo and it was quite sativfactory. By exposure to the air, the matter that oozes out sets and hardens in a short tume. For a man at his work there is no tine lnst."

Philaddphia, Az.

Daniel micalpin."
Remarks-The writer is partially correct, but not entirely, for the renson that he overlowhs circumstances with which only surgical !ractitioners, by their large experience, can become famliar. When by a deep cut

Fig. 2.
a small artery has been wounded, the closing up of tho skin will not stop internal bleeding, and a swelliig, inflammation and suppuration may result, which $\mathrm{m}^{\mathrm{a}} \mathrm{y}$ necessitate the opening of the cut ngain; therefore, when there is much bleeding, it is better to introdico into the wound at first some lint or its equivalent, and when the bleeding has subsided, then it may be send up. We ourselves, during our practice in former yeart, have had more than one case where a druggist bad sewn up a cut, when, after a week of much swelling and throbbing pain, the re-opening of the wound, which had been healed on the surface but not from the bottom, became necessary. Wounds must heal from the inside outward, and as long as the inside is not healed, it is not only useless but a positive harn to close the skin. When, on the contrary, the wound is shallow and only skin-deep, or slightly more, the remedy of our correspondent is correct, and It is much better to sew $\mathbf{u p}$ the wound with a few stitches than to cover it with" plaster and shut off the access of air, which is decidedy injurious. It is a most hurtful idea that it is good to shut of the air ; on the contrary, the nccess of air mast not be shut off ; the akin is made to be in contact with the air and it will heal much better without coverigg. if dirt and dust is only kept out of it.
Our correspondent agrees perfectly with us in that respect, as wo have repeatedly insisted on these truthe. In one of our back numbers we published an article headed, "Beware of Plasters and Salves," in which simple sewing up was recommended. When we practiced surgery some years ago, it was almays our custom, except in such cases as referred to above. Wo also stated that the blood or other liquid which ooses out of a sewed up cut, and dries as a crust on the surface, is better than any sals or anything elso that can be possibly put upon a wound. Thise truth has been recognized by the surgical profession, and it it now the rule among many to use the blood for a dreesing, and to put it on and let it dry on the wound when it does got come on it of ite own accord.

PRACTICAL GEOMETRY APPLIED.

($\mathrm{B} \mathbf{Y}$ G. MAGNFLL.)

PRObley 124.-To Construct an Extehior Epicycloin, nescribad by A fonst in the chrumperence of a Given Cimele, in ab Motion round another given Cibcle.

Let \mathbf{A} be the centre of the fixed circle, and \mathbf{C} the centre of the generating
circle. 1. - D raw the two given circles, touching at \mathbf{B}, and from the cent \mathbf{A} draw
2.-Diride the of centres $\mathbf{Z} \mathbf{C G}$.
\&e., the generating circle into any number of equal part:
the, and t'lrough these points draw circular ares from the
8. - the fixed circle.
of set off, on each side of B, upon the circle D B E, half the number of points as the generating circle is divided into, and whose common distance is equal to the length of one of these parts, reduced to a 4. From traight line, as $1^{\prime}, 2^{\prime}, 3^{\prime}$, se.

From the centre A draw radii, passing through each of the points, $1^{\prime}, 2^{\prime}, 3^{\prime}$, \&c., producing them till they cut the circle $H \mathrm{CG}$, in the 5.-Th l'ints a, b, c, de.
cutting the point a, with the radius C B or $a 1^{\prime}$, describe an arc, cutting the fifth circular are in the point ∇; and from the point b, 0 , C, same radius, cut the third, in the point III, and so on. These are points in the curve through which draw the Epicycloid.
Paobley 125. -To Construct an Jnterioh Epicyclohd, the Diameters of the Two Cueles ueing given.

The geometrical construction of this figure is identical to the previous
, the only difference being, that the rolling circle is inside the fixed one.
1.-Draw the two given circles, touching at \mathbf{B}; then divide the generating
circle into equal parts, as $1,2,3, \& c$. : through these points draw concentric circles with DBE.
2-Then draw radii from the centre Δ to the points $1^{\prime}, 2^{\prime}, 3^{\prime}, \& c$., in the circle D B E which correspond to the divisions indhe generating circle; and from the points of intersection of these radii; with the circle OCE, describe arcs of circles, with the radius CB.
3.-The intersections of these arcs with the circles, passing through the divisions of the geuerating circle, will be so many points in the carve required.

PARABOLA.

Ter Parabola is a cuive produced by the section of a cone parallel to one of itg sides, and is such, that every point in the curve is equal distant from'the directrix and the focus.

Problet 188.-To Draft a Parabola, by mbans of Interseoting Ancs, the Axis and Ordinates being given.

Let CD be the axis, and AC and CB be the ordinates.
1.-Draw $\mathbf{A B}$ and $C D$ at right angles to each other, bisecting $\mathbf{A} \mathbf{B}$ in the point C.
2. - Bisect the ordinate $\mathbf{A C}$ in the point \mathbf{E}, and join $\mathbf{D} \mathbf{E}$.
3.-Draw $\mathbf{E} F$ perpendicular to $\mathbf{D} \mathbf{E}$, meeting $\mathbf{D} \mathbf{C}$ produced in \mathbf{F}.

4- From the vertex of the Parabola D, set off a distance upon the axis from \mathbf{D} to f, equal to the produced part $\mathbf{C P}$; then f is the focus of the parabola.
5. -Draw a line $\mathbf{G}^{\prime} \mathbf{a}^{\prime \prime}$, at the same distance from \mathbf{D}, as \mathbf{D} is from the focus f. This line is called the directrix.
6. -Divide the given axis CD into any number of equal or unequal parts, as $1,2,3,4, \& c$., and through each of these points draw lines indefinitely, and parallel to the double ordinate $\mathbf{A B}$.
7.-Then, from f, as centre, $G 1$ as a radius, describe small arcs on both sides of the axis, and cutting the first parallel line in the points $1^{\prime} 1^{\prime \prime}$; and from f again as centre, $G 2$ as radins, cut the second parallel in the point $2^{\prime} 2^{\prime \prime}$; and from f again, $G 8$ as m dius, cut the third, and so on, always measuring the radii from G, and drawing it from f as centre. Through these points of intersection draw the curve of the Parabola required.

Probley 127.-To Dllaw a Parabola by Intersecting Lineb, itsAyis and Double Ordinatre being given.

Let $\mathbf{A B}$ be the base or double ordinate, and $\mathbf{E} \mathbf{F}$ the axis or height of the curve.
1.-On the base $\mathbf{A B}$ construct the rectangular parallelogram $\triangle \mathbf{B C D}$, its height being equal to E. F.
2. -Divide the side $\triangle D$ into any number of equal parts, as $1,2,3$, sc., aod the half of the base, $\Delta \mathrm{E}$, into the same number of equal parts.
3.-Join the points on $\mathbf{\Delta} \mathbf{D}$ to the apex of the curve \mathbf{F}.
4.-From the points on $\mathbf{A} E$, draw perpendiculnrs, meeting thege lines in the points a, b, c, \&c., and, through these points of intersection, draw the curve of the Parabola required.

The Lusus Naturf of St. Benoit. Thé Monomphalian Girls.

THE LUSUS NATURA OF ST. BENUIT.

Nothing like these monomphalian children of a certain M. Drouin, of St. Benoit, in the Province of Quebec, has ever been seen on the American Continent. They are two beautiful female infants, two months old, who are united below the ribs, and terminate by an ordinary basin and two perfect legs. In front these children present no deformity whatever, but the posterior plane offers the rudiments of a third leg inserted on the median line of the basin. For the use of this curiosity during five years, American exhibitors or showmen have offered the parents $\$ 25,000$. This they have refused. But we understand that they are now exhibited in this city. We have published a pen-and-ink sketch of it entirely in the interests of science.

Perspicuity.__Remember that in writing, perspicuity is half the battle. The want ofit is the ruin of more than half the poetry that is published. A meaning that does not stare you in the face is as bad as no meaning, because nobody will taise the pains to poke for it.

THE MARBLE QUARRIES OF PAROS.

In some notes of a tour in the Cyclades and Crete a contributor to the Academy gives the following account of the marble quarries of Paros :
"At the mouth of that which is considered the finest there is a curions sculptured tablet on the rock, containing numerous group of figures, conspicuous among which is a seated female deity, with a dedication to the nymphs below. This is figured in one of the plates to Stuart's 'Antiquities of Athens,' but now a large piece has been broken off the face of it. With deep indignation it was ascertained that last year an Englishman (who shall be nameless) cut this piece off and carried it to England; subsequently, on a letter of remonstrance being addressed to him, he returned it, and it is now at the monastery in the packing-case in which it was sent. When the point was reached where daylight ceases, tapers were lighted, and the dogs that accompanied the party first whined dismally, and finally returned to the upper air. The visitors had expected to find the quarry worked in regular shafts, but, instead of this, the dip of the strata has been followed, and consequently the passage descends at a considerable incline, winding about in different directions, and the roof slopes from left to right. It varies in height from 16 ft . to less than 3 ft ., so that sometimes it is necessary to crawl on hands and knees; in these places the passage must have been wider fornierly, to allow of the stone being carried out. At one point 200 bats were hanging from the roof, but fortunately they were not disturbed by the lights. The marks of the tools of the old workmen were visible everywhere on the roof and sides, the groovings being about 2 in. apart ; the amount excavated must have been immense, for the whole place has the appearance of a labyrinth, and the guides declared a stranger might wander for a day without finding the end. The marble on the surface is not usually white, but where it is broken it is brilliantly pure ; in some parts the grain is very fine. After being fifty minutes under ground the visitors returned to daylight, and proceeded to t. sesond quarry, where, however, the marble is somewhat in-
ferior. In places there were stalactites in process of formation, but none were to be compared with those of Antiparos. It is deeply interesting to think that from these quarries came the material for most of the famous (Ireek statues that have come down to us, and for several important temples, such as that of Apollo at Dulphi, which was rebuilt of thia stone by the Alcmæonidm." Scieniifo American.

Careats.-The Official Arzette of the United States Patent Office says: Inventors filing caveats in the office should be careful to describe their invention or improvement withac curacy, and illustrate such inventions as are capable of illate tration with care and thoroughness. Caveats are placed in the hands of the examiners, who should not be expected to understand what the inventor means unless tire latter has sufficiently matured his invention to clearly describe and illustrate it. C veats are sometimes filed in the Patent Office, stating that the caveator is engaged in a series of experiments intended to accomplish certain results, and giving nothing more than a vagre hint of the means by which the result is to be attained. As the courts have frequently decided that results are not patentable, the practice of the Patent Office is to the effect that a caveat oannot cover more ground than a patent. So, where a caveat descriles more than one invention, the examiner frequently overlooks a portion of the caveat, knowing that under the rulef caveators are confined to a single invention. Complaints are often made that caveats have overlooked and patents issued to subsequent applicants, when the fault lies in the hasty preparation of the caveat papers. The rules are explicit, that the caveat must describe the invention as fully as the inventor is able to do ; that the drawings shall be of the same size as the drawings to accompany an application for a patent (8 ky . 18 inches, on a sheet 10 by 15 inches, with an inch margip all around), and on tracing muslin, or light bristol board, or drawing paper, which can be folded without breaking. A carefu! compliance with the rules greatly facilitates the work of the office, and will go a lon- way tow ord insuring the accuracy which is so necessary in wecuring their just rightis to inventor:.

Compre an Antidote for Sthychnia.--In a toreign journal are given the details of some experiments made by Dr. A. Lelli on the antidotal 00Wer of coffee against strychnia. The experiment were made in consequence of Dr. Lelli having were made in eonsequence of Dr. Lell a case in which a large dose of stry met with a case in which a large dose atal consequences resulting. The animals employed were rabbits, and by comparative trials od found that a dose of five centigrammes provod fatal in a short space of time; when the same or a larger dose was given in a very strong infabion of coffee, he found that the confee either actod as a complete antidote in preventing the poisonous effects of the strychnia, or that it materially diminished the violence of the action.

A "Half Stone" House for $\$ 3,000$.

 ir a. b. weed, arcaitect, corona, long island, n. y.This plan is designed for a substantial, convenemt, and inerpengive country house. It has two tull finighed stories with well lighted apartments of good size, and a large cellar and attic. It has atho the merit of architectural beauty, well adapted
to the windows of this story. One such balcony is shown over the wing roof (tig. 1); the others may be similar. The smalt cost of these devices is fully repaid in their usefulness for airing purposes, be sides imparting a cheerful appearance diarret or Attic. - This story is thoroughly floored, but otherwise unfinished. Should additional chambers be required, partitions may be set over those of the second story, duplicating that plan, with rooms having the same hight of ceillngs. The Stairs are placed immediately above thosc of the lower stories, are ceiled in, and have a door at the foot... Con-strucelon.-The durability, yencral abuadance, and substantial appearance of stone, make it the most desirable and appropriate material known for the exterior walls of any building. The cost of cutting and dressing such material ready for use is the principle barrier to its gencral adoption. By using bricks for corners and for the finlish around the openings, the most expensive item of stone work is saved. They need only to be "random dressed " and laid uearly in the shape in which they are quarried, as \#bre particularly described in the July American Agriculturist, 1876. Whes such walle are carried beyond the hight that is convenient for the handifing of the materials, the expense of their construction is largely increased. It ${ }^{-}$is for this reason that the "half-stone" method is particularly valuable. In this plan the stone-work extends only to the hight of the ceiling of the first story; to this hight the materials may be readily wheeled on trestled scaffolding, while to double this hight would require the use of the tedious derrick, and additional help. The upper stories are framed of the ustal sized timber, and raised on the stone walls, which in this case become their foundation. The main roof is constructed as shown in the American Agricullurist for June, 1876. The
Fig. 1.-FRONT view of hoves.
to commanding location.... Eriterior (fg. 1)
-The "half-stone" composition of the side walls,
give the strong outlines and slating of the main roop per to this structure a rustic, yet substantial apnearance, affording both diversity and picturesqueness, as shown in the variety of the openings, and rear tran elevations are similar: by changing the enroad doors and stairs, either side may front the road. The details of exterior finish are so simple, rear" easy of execution, that any "modification for the tear" is undesirable. Inharmonious and unsightty curtailments in the rear finish have a depressing Which on those obliged to face them dally, - good can never be overcome by knowing there is of good front.... Cellar (ig. 2).-Hight, bt feet of which $4 t$ feet is below the ground surface, and a/ways imph its thick wails), frost proof. It is poisonimportant to provide for carrying off the Por this papors always generated in damp cellars. Por this purpose side openings are made near the celling into ones of the flues of each chade near the
inese with extendiag to the top and warmed by contact dith the fires of the opper stories, have sufficient Pent to constantly change the cellar air and preGit tery ascent through the lifing rooms.... Firest are con (ig. 3).-Hight of cellings, 10 feet. Here ebina cloniently placed: three large rooms, a hall has commot, and large pantry. Each large room $H_{0 \text { ng }}$ minodious windows with views in two direc rear of The Pleasant Piazras at both the front and trace doo Parlor, extend over, and protect the enof ceningors....Second Etory (fig. 4).-Hight - hall ing, 8 feet. The divistons are very straple, ioom, four chambers, lour closets, and a bath oom. Light chambers, lour closets, and a bath-
he Wloging may be put on the roofs of
hight requiring siding is it feet, or including water table and cornice, 64 feet from the stone-work of the first story to the slating of the roof. The main roof covering is of dark slate laid on tarred felt. At or near the floor line dividing the upper stories, it is appropriate to indicate the division by the use of tinted slate, which may be laid in close courses or in sicuple flgures as shown on the elcration. The roofs of the Hooded and Dormer Windows are also slated. The deck of the main root, and the roofs of the plazzas, are covered with I. C. charcoal tin. The wood finish is made of simple design, devpla of all efforts at pretentious display, cach part boing chooen with especial regard for its uthlity and appropriatedess. The Trusses, Plazza Col-

Fig. 2-plan of cellat.
umns, and Soffts are worked of timber neatly stopchampered, imparting a rustic appearance to them, in keeping with the stone work. The Water Tank
is placed in the attic, directly above and in line with the Bath-tub and Kitchen-range, favoring the most practical plumbing. The Soil-pipe leading from the Bath-room fioor passes down through the closet adjoiuing the kitchen chimney, to the Sewerpipe, which is laid below the cellar bottom. The bad smelle and gases arising from contined sewage may be casily disposed of by the insertion of a

Fig. 3.-plan of first floor.
2-inch pipe into the closet trap (at its highest point), and connecting it with a flue of the adjoining chimney. All inside phastering is of three-cout work. The casing of the bath-room and around all plumbing is in hard wood; all other trimming of clear pine. The Newel Rail and Baluster on the first story flight of stairs are of black walnut. All work usually painted has two conts of best lead and lin-secd-oil, with staliners to give the body (outside), a light gray, and trimmings in fmitation of "Nora Scotia stone." Inside, Parlor and Hall, in grays Dining-room in grays and drabs; Kitchen in drabs ; Chambers, white....Cont.- Prices of building materials are nearly as low as they were before the war ; manykinds are really sciling for the cost of their production or manufacture. Labor is also very cheap, ucarly at old figures. Those contemplating bulding, aud having the means at band to

Fig. 4-plan of beoond floor.
do so, need not wait for a more favorable time. As soon as general business improves, there must be a "rise" in materials, especially such as requires to be manufactured. The estimate appended includes the cost of all materiain and labor for good work at the prices now ruling near New York city.

Gilding Glass.-Thoroughly clean the elass, then take some very weak isinglass size, and while warm float the glass where you intend the gold to be laid, with the size and a soft brush, then lay the gold on with a gilder's tip, previously drawing it over the hair of your head to casse the gold to adhere to it. Tilt the glass aside to allow the superfluous slze to run away then let it ciry, and If it does not look sufficiently solid apon the face give anotber liyer of gold the same way. Where the black lines are to show, take a plece of polited fireword, cut to the width the lines are needed, and with straight edge draw a line with the plece of wood, which, if made true and smooth, will take the gold off clean, and so square aud sharpen op all the edges, lines, \&c. When this is done give a coat of Brunswick blnck thinned with a little turpentine, and the lines will show hlack, and it will preserve the gohit. Try a small plece tirit, so as to get all in order.

ANCIENT AND MODERN MORTAR.

It would be a useful inquiry to ascertain the nature and qualities of some of the old mortars used in buildings noted for their durability. The Romans, we know, paid great attention to the mortar they used, and Vitruvius gives us as much insight into the practical chemistry of the subject as many writers of the last century until the time of Smeaton or Higgins. Vitruvius speaks of the lime burnt from white stone or fint, the hardest being used for walls and the soft for plaster. As usual now in specifications, he gives the conventional proportion of three parts of pit sand to one of lime, and speaks of the improvement made by adding ground potsherds. The age of mortar as an element in its value is well understood. A hundred and fifty years ago we have a recipe for making good mortar that shows as practical a knowledge of the conditions necessary to produce mortar as any directions to be found now, even though aided by eil the chemical investigations of the last century. In Moxon's "Mechanical Exercises," published in 1700, it states: "Well-burnt good lime and sharp sand, if very sharp, a load of sand (about 36 bushels) to a hundred of lime (being 25 bushels or a hundred pecks), to wit, to one lushel of quick lime, a bushel and a half of sand. But if the sand be not very sharp, then you may put a greater quantity of sand for mortar, which hath its due proportion of sand, is stronger than that which has less sand in it, although some think otherwise. When you slack the lime take care to wet it everywhere a little, but do not overwet it, and cover with sand, every laying or bed of lime being about a bushel at a time as you slack it up, that so the steam or spirit of the lime may be kept in and not flee away but mix itself with the sand, which will make the mortar much stronger then if you slack all your lime first and throw on your sand altogether at last as some do." It further informs us that to make strong mortar for repairs, "heat the mortar well and let it lie two or three days, and then beat it well again when it is to be used." Thiese directions are enough to show that in actual mortar making we have not learnt much since Moxon's time, however mucln advanced we may have become in theoretical knowledge of limes and cements. Langley, in his "London Prices," mentions eight kinds of mortar--namely, 1 , inside and outside mortar, made of lime and sand; 2, terrace (tarras) mortar, made of redstone, brickdust and lime; 4, bastard tarras, made of smith's forge ashes and lime; 5 , pargetting, made of lime and horsedung; 6, furnace mortar, made of Woolwich loam; 7. plaster mortar, made of calcined alalaster; 8 , fine mortar called putty, for rubbed and gauged work, made of lime only." Another useful quotation may he noticed in which it is stated that where sea coal ashes acleain from wood ashes and dirt, can be had, they are preferable to drift sand, provided that the mortar is well beaten.
But let us go back a little further, and we shall find that in the mediæval times the mortar bore, in many instances, a strong resemblance to concrete. In some old Saxou work we find a very coarse mortar; and we have repeatedly observed the large stones in much of the mortar found in old monasteries and churches. According to the "Architectural Dictionary" Bishop Gundolph (1077 -1108) mixed blood with lime to mike it hard, und we constantly hear of blood and wax being mixed with mortar. Britton, in Westminster Palace, notices that in 1330 wax and pitch were thought for cement. The foundation of St. Clement Danes (1605) is also described as being laid with two hundred of lime, two loads of screened rulbish, and one of sand. Another remarkable point to notice is that the Roman builders, who were masters of cement masonry, invariably used coarse sand. Seldom do we discover the fine sand used by builders now; a coarse matrix has been found ly all authorities who have investigated the sulject. Brickdust, chippings, pozzulana, and othes ingredient:. have been found added in most instances. We have observed invariably that the best and strongest mortar is that made from coarse sand or small angular gravel, with fine sand combined. Higgins, an old but one of the best authorities, says, that the best proportions are three parts of fine, four of coarse sand, one of quicklime recently slaked, and as little water or lime- water as possible. One of the best ingredients for mortar for redbrick work is coal ashes or ground mine dust. It has the effect of hardening the mortar, and in giving it a pleasing grey color.-(London) Building Neres.

An excellent blacking for fine harness can be made by dissolving five or six sticks of black sealing wax in a pint of alcohol.

THE JAGUAR OR SOUTH AMERICAN TIGER.

Among the many handsome and formidable creatures which are natives of the western hemisphere the juguar is entitled to the first place for beauty, strength, and ferocity. In these particulars it rivals the royal tiger of Bengal, resembling it aiso in subtlety. It is occasionally seen in North America as far north as Louisiana; but the southern continent is its home. Wo herewith publish an admirable engraving, showing a fine specimen of the race, enjoying the coolness of the shade and the river in one of the tropical forests. The picture was drawn by Mr. Joseph Wolf, and engraved by the brothers Whymper ; and it first appeared in "The Life and Habits of Wild Animals," pablished by Messrs. Macmillan \& Co., of New York and London.

The artist has well succeeded in portraying the ferocious beast in an attitude of perfect repose. But for the blinking eyes and the curl on the tip of the tail (which has evidently just touched the surface of the water), the animal gives no sign of life; and its watchfulness, even when at rest, is the only indication of its remarkable cunning, which never allows it to be surprised. In this state of rest, we can admire the immense muscles of the shoulders and neck, and the great size of the thighs and legs, as well as the ascending beauty of the coat and the configuration of its spots. Of all the larger specimens of the tribe felis, the jaguar most resembles in counterance the domestic cat ; and the likeness is very apparent in our engraving, the pose of the monster increasing the similarity.
A terrible tragedy took place some time since, in a monastery in Santa Fé, New Mexico, in which the strength and courage of the jaguar were forcibly shown. One of the brothers entered the sacristy, and found himself face to face with a large jaguar. The beast clutched him at once, and dragged him into a corner. The screams of the victim brought another monk to the room, whom the jaguar also despatched with promptitude; and another comer met a similar fate. A gentleman named Irondo attearpted to approach the sacristy by another door, but unfortunately the jaguar had left the roon through this door, and before Mr. Irondo could reach the spot he was saluted by the cries of a fourth victim. The doors were, however, finally shut upon the jaguar, and he was shot through a hole bored in one of them.
It seems to be a merciful dispensation of Nature that the most terrible quadrupeds are not gregarions, but hunt alone or in couples. If lions, tigers, and jaguars herded like wolves, whole provinces would be depopulated by their ravages, and man would hardly be able to hold them in any sabjection. But by destroying them in detail, their numbers can be kept within bounds, and their depredations confined to their native forests and jungles.

TRUST YOUR WIFE.

If you are in any trouble or quandary, tell your wife-that is, if you have one-all about it atonce. Ten to one her intervention will solve your difficulty sooner than all your logic. The wit of woman has been praised, but her instincts are quicker and keener than her reason. Counsel with your wife, or your mother, or your sister, and be assured light will flash upon your darkness. Women are too commonly adjudged verdant in all but purely womanish affairs. No philosophical students of the sex thus judge them. Their intuitions, or insights, are the most subtle, and if they caunot see a cat in the meal, there is no cat there. I advise a man to keep none of his affairs a secret from his wife. Many a home has been happily saved, and many a fortune retrieved, by a man's full confession to his wife. Woman is far more a seer and a prophet than man, if she is given a fair chance. As a general rule, wives confide the minutest of their plans and thoughts to their husbands. Why not reciprocate, if but for the pleasure of meating confidence with confidence? I am certain no man succeeds so well in the world as he who, taking a partner for life, makes her the partner of his purposes and hopes. What is wrong of his impulse or judgment she will check and set right with her almost universally right instincts. And what she most craves and most deserves is confidence, without which, love is never free from a shadow.'

Quicksilver Alarm.-A singual to indicate the breaking out of a fire, has just been patented. When the temperature rises above a certain point, a quicksilver thermometer is cansed to break, and the quicksilver runs into a dish, where by its weight a clock:-work is set in motion which operates an alarm bell.

THE SIESTA.

CURIOUS BRAIN WOUNDS.

A FEW years ago an insane seamstress in one of our asylums made a practice of running needles into various parts of her person, several hundred being removed by the attending surgebus, before and after her death. The practice had been developed, apparently, from the employment of hypodermic injpctions for neuralgic pains.

The St. Louis Clinical Record reports a still more remarkable case of a man in Kansas who had a habit of running wires, and even nails, into his brain through lioles made with a brad-awl. The habit was discovered during his residence in a penitentiary; and when he died subsequently of morphia a careful autopsy was made. Three openings were found in the skull, two near the inferior posterior angle of the right parietal, the other near the superior posterior angle of the same bone. In the brain was found a wire which had been thrust in at the upper hole, and, just missing the superior Iongitudinal sinus, had pierced to the base of the brain, a little in front of the fissure of Silvius. Beside the wire was a nail, one and three fourths inches in length. Although wires had been removed during life from the lower apertures, to trace of their course was discovered, no distarbance of brain function appeared to result from this strange habit. The prisoner could do his work with correctness and understanding; and, excepting a suicidal tendency, gave no signs of insanity.

The trial of Landis for shooting Carruth has given prominence to the power of the brain to withstand gun-shot and other wounds; but, barring the case of the Irishman who had an iron drill shot through his head and survived, we recall no case of brain lesion so remarkable as this.

Ficte and simple Formulse for Mechanics, Farmers, and Englineorn.

Velocity of circular saws at periphery, 6,000 to 7,000 feet per minute. Rate of feed for circular saws, 15 to 60 feet per minute. Velocity of band saws, 3,500 feet per minute. Velocity of gang saws, 20 inch stroke, 120 strokes per minnte. Velocity of scroll saws, 600 to 800 strokes per minufe, Velocity of planing machine cutters at periphery, 4,000 to 6,000 feet per minute. Travel of work under planing machine. $\frac{1}{2} \delta$ of an inch for each cut. Travel of molding mashine cutters, 3,500 to 4,000 feet per minute. Travel of squaring up machine cutters, 7,000 to 8,000 feet per minute. Speed of wood carving drills, 5,000 revolutions per minute. Speed of machine augers, $1 \frac{1}{2}$ inches diameter, 800 revolutions per minute. Speed of machine augers, $\frac{t}{2}$ inch diameter, 1,200 revolutions per minate. Gang saws require, for 45 superficial feet of pine per hour, 1 horse power indicated. Circular saws, for 75 superficial feet of pine per hour, 1 horse power indicated. In oak or hard wood, $\frac{t}{4}$ of the above quantitios require 1 horse power indicated.
The area of a safety valve should be 008 times the area of the fire grate.
On railway car axles, 20 pints of oil lubricate 8 journals of cars for 5,000 miles, or 1 , pint for 250 miles.

The following is the effective horse power for different water motors, theoretical power being 1 : Undershot water wheels, 0.35 ; Poncelet's undershot water wheel, 0.60 ; breast wheel, 0.55 ; high breast, 0.60 ; overshot wheel, 0.68 ; turbinu, 0.70 ; hydraulic ram raising water, 0.60 ; water pressure engine, 0.80 .

The following are the ordinary dimensions of windmill wils : Length of whip, 80 feet; breadth at base, 12 inches;
depth at base, 8 inches ; breadth at tip, 6 inches ; depth at tip, 4t inches. The effective horse power is found by dividing the product of the total are of sails in square feet and the cube of the velocity in feet per second of the wind by $1,080,000$.
Rule for speed of screws: Velocity in miles per hour $=$ pitch of screw in feet multiplied by the number of revolu. tions per minute, and divided by 88 .

With hydrogen gas, having a buoyancy of about 13.3 feet to 1 lb ., the diameter of balloons=the cube root of 25.5 times the weight to be raised, including that of the balloon itself, or the weight $=0.0892$ times the cube of the diameter.

The unit of heat is the quantity required to raise the tomperature of 1 grain of water at its maximum density $1^{\circ} \mathrm{Frab}$. The absolute mechanical equivalent thereof is 772 foot grains, and the thermal equivalent of the absolute unit of work $=0.000040224$.

The proper proportion for the width or hoist of the American ensign is if its length. The thirteen horizontal stripes should be of equal breadth and begin with the red. The blue field is 0.4 of the length of the striped portion, and in 7 stripes in depth. The 37 stars are ranged in equidistant horizontal and vertical lines.

The actual horse power of pumping engines = quantity of water raised per minute in cubic feet multiplied by hight elevated in feet, multiplied by 0.0023 . The indicated horse power of engines is found by dividing trice the product of the area of the piston in square inches \times the average pressure of steam in lbs. per square inch in cylinder \times the nam. ber of revolutions per second \times the length of the stroke in feat by 550 .

Useful numbers for pumps: The square of the diameter multiplied by the stroke, mulriplied by 0.7854 . gives capacity of the pump cylinder in cubic inches; by 0.002833 , in gallons: by 0.0004545 in cubic feet ; by 0.02833 , in lbs. fresh water.

THE SEA GULL.

A traveler, making his first yoyage across the ocean, is aston ished to find birds following in the ship's wake a thousand or more miles from land. That such small animals should be gifted with the endurance necessary for keeping on the wing continuously, with the exception of an occasional rest on the surface of the ocean, is certainly an extraordinary proof of the muscular power and vitality of the species of the winged tribe.
These birds are nearly all members of the gull specles (lafus of Linnæus,) of which the largest genera are larus glaucus (Brinnich,) which measures 30 inches in length, and has ${ }^{\text {a }}$) wing breadth of 5 feet, and the larus marinus (Linneus,) which is nearly or quite equal in size to the l. glancus. The gull family has several general characteristics, among which may be mentioned the curvature at the end of the biil, the length and pointed form of the wings, and the web betweep the toes, the hind toe being short and elevated. The l. murinus, commonly called the black-backed gull, may be distinguished by the dark slate color of its back and wings, its black priniary feathers tipped with white, and its yellow legs and feet. This species is found in summer on the coasts of New England, and in winter travels as far south as Florida, its favorite breeding places being on the coast of Labrador. It flies high, and has a majestic carriage in the air: it encounters the fiercest gales, and swims well but slowly. It preys on fish, young birds, and carrion, indeed on anything buit vegetable food; it is tyranuicas towards weaker birds, but is naturally very cowardly. Its eggs are good eating, and the young birds are killed and salted by the fishermeu of Labrador and Newfoundland; but the old ones are very tough and too fishy in taste for food.
Our illust, utiou shows a flock of black-backed guils surround ing a wrecx, and hurrying with screams of delight after small pieces of garbage or refuse food that firat away from the wrected vessel. Mir. Wolf, the artist, shows wrll the great wing power of these birds, and the easy grace with which they carry them suves in gale. Their endurance in flight is aided by the light of uess of their bodies, which, however, makes them the sport of a high wind ; but this obstacle they overcome by a nove species of tacking, which enables them to make headway agninet the tempest.
Many of the high rocks and almost inaccessible cliffs of Scot land and North Wales are the homes of conntliss millions of sea birds ; ari t the fursuit of them, for their eggs and plumage, is one of the most hazardous pursuits in which men ever ${ }^{\circ} \mathbb{I}^{\circ}$ gage.

THE GLEANERS OF THE SEA.

Constructive Carpentry.

Framod and Double Fhoors.-In this kind of floor there is a member in addition to those forming the assemblage of timbers in a single floor. This additional 'member is called a binder, or binding joist, as b in Fig. 4, a a being the flooring joists, corresponding to $a \boldsymbol{a}$ in Fig. 1, page 35 ; c the ceiling joists, and $d d$ the flooring boards; e e indicates the line of plaster on the ceiling. Fig. 5 is a side elevation of this double floor; Fig. 6 is 2 crose section, a a being the flooring joists, aleo sometimes called bridging joints, $b b$ the binder or binding joists, ec the ceiling joista, and e e the line of lath and plaster ceiling. Fig. 8 is part plan.
The thicknens of the binding joists varies with the bearing; as a rule, they are made half as thick again as the flooring joists of the correaponding floor; the bearing on the wall will be ample if at 6 inches. The distance between the binders, measured from center to conter, (see Figi. 4 and 5), is generally from 5 to 6

TMo. 4.
feet. When in the arrangement of the timbers of a double floor the binding joists are placed to, or come near a wall, their thickness is reduced one-third; thus, If the binder in 9 inches thick in the central part of the ficor, it is only 6 inches when near a wall. When a fire-place interrupts the line of joisting, or when a hole is required to be made in a floor to receive a staircase, a trap-door, etc., an arrangement known as a trimmer, or trimming joist, is introduced, as illustrated in Fig. 9. In this drawing the jambs of a fire-place projeoting from the wall ehow two of the ordipary floorlag joists; the other joists are broken off, and instead of resting upon the wall, which cannot be used an a oenring surface for them in consequence of the fireplace, they are jointed to and are carried by a crosa

joist, which is termed a trimmer, this being at its end jointed to and carried by the trimmer, which runs parallel to the flowring joista. The trimmers and trimming joists are thicker than the flooring joiste, onesixth or one-ighth of thiotnese of the flooring joith being added for each joist carried or supportod by the trimmer.

Molding and Founding.

Molding Hollow Ware.-Withont a proper division of Labor, the art of 'molding hollow objocte would never have attained the perfection which is the admiration of all reflecting minds. An iron pot; kettio, or stove may be a very common thing, but if any one reflecte upon the construction of the mold which made it possible not only to cast such objects, but to cast them light, sharp, smooth, and with well defined outhines, he must confess that a great deal of skill and dexterity, aided by the experience of more than one generation, was necensary to accomplish the production of these now so common and cheap objecta.

There are at present foundries in which the casting of hollow ware is made a specialty. In such foundries the sand is fine and liberally mixed with coal powder. Nowhere in the world at present are such elegant pat-

terns of atoves manufactured as in the United States, where it is a rightful bosest that the art of atove and grate making hes been so much improved, as well in elegant form as in adaptability to the parpose and economy of fuel.
In casting hollow ware, the main point in to have well-finished patterns, and as the articles are always thin, there is no danger of the sand borning and adhering to the metal. It is the eame with amall artioles, such as hinges, knife-blades, latches, parts of locks, etc., of which a dozen or more are nexally molded in one flask and cast at once, being connected by a small channel from the gite to the patterns.
Patterne for hollow ware require to be very aocarate, if we expect the molding to be well done. The originals of these patterns are generally moldod in loam, cast in brass, and turned in a lathe, or, if not of a round form, worked by other means until a perfect form in obtained. A pattern haring been amoothed and polished, is then cat into such parts at are conaidered neoossary to make it available. Píss, ears for handles, and studs for feet or handles, are geverally put on loove. All dished utensils are generally caet with their mouth downward, except covers. Where the neck of a core is narrow, and there is any danger of the hot metal lifting the core, as may occur in the case of a coffee-pot, the core is fastened to the bottom of the flask by a thin fron rod with a cmes at the upper end, buried in the core and fastened below the botiom Hollow ware molders need a variety of peculiarly ahaped tools and sleekers. Most of the tools are but-ton-shaped, with ahort atude for handles, more or less round, or even cylindrical, to anit the varions hollow forms of the patterns; othera are plain and beartahaped; and others again have double plain anfacea at certain angles with ench other, to suit cortain corners in the mold.

Iron bozes are generally used in this kind of molding; these are the cheapest. In iron flasks the work is done fast, well, and eafe, while imperfectly made or wooden flasks always cause more or less delay in the work. From well made flasks many advantages may be derived; if they are well made and fit one upon the other promiscuously, there is no need of boards after the first drag-box is molded. Upon the first box which

is molded ita complement, the upper box, is rammed in. Aftor parting upon the upper box, the next lowor box ia molded, leaving of course the pattern alwayi in that box which serves as the bottom of the fiask. In this way the top box of the first flatk serves as the bottom to the next bottom box, and so on through the whole range of boxes.
In molding a water-kettle, the pattern in exactly a the kettle in to be, except the pife, which may be solid. The filask consista of three boxes, of which the middle box ia divided by a vertical division in two halves-
cheeks. This division runs through the pipe and divides the mold into two halves, so that when both boxes are removed, the pipe, which is not fastened to the pattern, may be withdrawn. The upper part of the pattern may be divided just in the division of the middle box; but this leaves an unsightly division, and is likely to expose the pettern to injury. It is better to have the middle box in one piace, and divide above and below. At the pipe the upper box reaches down into the middle box, as far ns the pipe goes down, add divides the sand just along the bend of the pipe; the middle box parts with the lower at the rim of the ketthe, where the core also separates. In molding a ketthe the lower half is put on a board and the upper box rammed in, this boy turned upside down, and the other half of the pattern put on. The middle box is then set in its place and fastened to the upper box. Both boxes

$\operatorname{mif}_{6} 8$.
may also be put together, and rammed in together, juat as conveniently. Sand is then filled in the middio box around the patters, and after this the sand is rammed inside the lettle. The parting is made between the lower and middle box, and the lower box filled. The fiask stands now inverted, and the kettle on its bottom. The lower box-as the flask stands it is the upper box-is now withdrawn, then the middle box lifted, and the upper half of the pattern withdrawn. First the middle and then the upper box is put on agnain, and the flask turned over, which will then stand in its original position. We may now draw the upper box, remove the lower part of the pattern, and put in the core for the pipe, which is made in a separate core-

box. The git-pin is now withdrawn; this is very nurob tapered one way, and thin; the other way three or foar inches wide, formed like a blunt wedge, with the edgb t of an inch thick. The box is now put on agaid, and the mold is ready for casting.
Emplotment or Carritr Pigwong. -The experiment which was tried last year of employing carvier pise ${ }^{\text {ons }}$ to bring early intelligence every morning from. the fishing grounds off the Scotish coast, of the reoults on the night's labor, is again being resorted to this seanon. One of the birds is taken out in every boat in the after noon, and after the nete have been hauled on the foll lowing morning, the pigeon is dispatched with a small piece of parchment tied around its neck, containing information as to the extent of the catch, the position of the boat, the direction of the wiod, and the prospecto of the return journey. If there be not wind enough to take the boat back, or if it is blowing in an unfavorable direction, 4 request is made for a tug, and from the perticulars given as to the bearing of the crafl, sho coll be picked up easily by the ateamar.
Burnishing Gold Dust.-Gold dast candot be burnisbed in a proper manner on frames, sc. Gold paint will dry what is called dead gold; to buraish it would be to destroy part of the $\mathrm{gof}^{\mathrm{fd}}$ and the result woild not please. If bright gis is required it should be gilt with gold lear; the frame may be then burnished in various partit It is not usual to burnish the whole of any giv frame, at least in best work, the dead gold gl tone and effect to the burnished parts.

Large White Pigs.

The distribution of the different classes of pigr, both as regarls color and size, would be a curious and interesting study. When the main object is pork, bacon, or hams, and their must economical production, it would seem that there must of necessity be one class of pirs that would meet these Wants most completely, "od which would oust all others from the competition. But instead of this on ing the case, we have, on the contrary, a seom ingly most varied opinion as to which is the most a most inte size of pig, and a most inconstaut fashion as to color. It has long black cousidered that the for the pigs were the best is the Southern States, ed they mosst easily resisthat sue ill effects of the hot sun, and if it is true, ${ }^{4} 8 \mathrm{~m}$ mas been tuthoritative ly stated, that they can for age with impunity upon pome of the common wild plants, which are fatal to the White pigs, we have a Bon more satisfactory rea terer this popular prethe tee. But in the north the taste has very largely run to the white breeds, lated in have many excellent varieties so nearly reaband character, that it would be entirely safe to as to all distinctions between them, excepting as to size, and to clase them, as is now done in Would as the large and small white breeds. It diating puzzle the most acute judge of swine to $\mathrm{f}_{\mathrm{ol}} \mathrm{k}_{\mathrm{k}}$, or ${ }^{\text {anh }}$ some small Yorkshires from some Sufcould or to state so clearly that the wayfaring man Unguigh be misled, wherein they differ; or to disshire, the in the same way between the large Yorkorfre, the improved Cheshire, the Jefferson County,
or One he of the Chester White swine. At the fairs, to discoper to bunt up the show-cards or the catalogue to the difthe name given the the different animals, hin to be one that meets the approbation that meets pert in iwine. The snub,
retron ase no thire teres nose of the Yorkpen of th bome in the Chen of the well fattened White bire, and the Chester Ing eara as the droopotherwise requently as not it Whether or thoply expediteoand juth fy matters for the justibittees fors for comabotish at the fairs to ${ }^{1} 0^{0} n_{8}$ than other distincgested, is that here sugthink, is a question we "Large white breed." if aifoiaceant enough, and of the good points of each tere different varieties be bard to ind one that Then not claimed one that Whas, nor one fault that nas not repudiated. Our
and tration represents and we would resents model large white pigs, readera who we content to leare those of our pecial variety of thisudiced in favor of any one Dot 2 goorlety of this class of pigs, to say if this is throrite bread repentation of what they claim their White breeds are to be. Without doubt, the large

FIg. 2.-THE IMPROTED bERESHIRE PIG.
a pair of "large white pigs," only so designated, bred by the Earl of Eilsmere, Worsley, England. And in this age of improvement, when a "dash of new blood" is considered useful or necessary to make certain desired points to perfect a hog, and breeds become rather mixed, this designation would seem to be safficient for all purposes.
and good nurses, good feeders, hardy, and if they do unt arrive at profitatide maturity as soon as the small breeds, yet they will make an amazing quantity of pork from a bountiful supply of corn. As a manafactures of bulky corn into readily movable ani merchantable produet, there is monitig berter, :mi protaps mothing
equal to them, unless it be the deservedly popular Poland-China of the Western States. What was the origin of the larger white breeds, is Iost in obscurity. Probably the " old English hog," which, being found most numerously in the two larger countics of England, Yorkshire and Lancashire, became more especially identified with these names, and were in later years known as cither or both the Yorkshire and Lancashire hogs, was the original progenitor of all our lacge white breeds. At any rate, what is ${ }^{\prime}$ known as the large Yorkshire, is so much like the higs here illustrated, that if they be not in fact the same, they may well be accepted as very near relatives. They are, in fact, portraits of

The Berkshire Swine.

Decidedly the most pupular breed of swine of the preseat day, is the Berkhire. That it is black in colo: is only an objection to those who form their odge, as the color is not edge, as " skin deep," and a
even Berkshire han, or side of bacon, when freed from hair, is not to be distinguished from the same parts of a white pig. The Berkshire is not classed amongst the large breeds, nor can it be placed nonongst the small breeds. In this respect it holds an intermediate place,though specimens occasionally reach a very respectable size, and compete favorably with the heaviest swine. No breed has undergone a mole elaborate process of improvement than the Berkshire. Originally of a tawny or reddish sandy color, spotted with black, with large lop cars, hanging down over the eyes, and coarse in form and feature, the inced has been brought to a nearly entirely black color, the face, tail, and and not turned up , as in some small breede, ears generally pricked, arthough drooping eare, while not desirable, are not incompatibie with puHty of blood, color black, with parplish tinge, and not a dead black like that of the Easex, sometimed the color shows a slaty-bluish tinge, doubtiess derived from crosaing with the Neapolitan. The oyen
are not sumtien and small, but :arce, bright, and intelligent the back is hroad and level, but the barrel is not so round; as in the Essex or the Suffolin the sides are deep, and the rump drooping, witi the cail often set lower down than the line of the hips; the legs are sbort and strong, and the feet white; the hair varies, according to the kind of mnnagement, from a thick coat, suft, silky, and free from harshness and bristles with those that have plenty of out-door exeruise, to a thinner, finer, but not weak coat in those that are closely penned; the flesh has a good mixture of tat and lean. When properly fed, the pis- reach a weight of from 300 to 500 pounds, at a year wh, if the animat is well kept from birth. The bistory of the berkshire as a favorite with fceders and breeders, dates buck only for 15 years, and it can justly be said that it is coly now that it is finding its proper position amongst farmers, in spite of tho prejudive aquinst Its color and wholly through ita undeniable merits.

Beware of Dust.

Trox idjuries done by dust are among the most serions to which mechanics and operatiyes are subjected. Wherever filings and fine particles of any kind are produced, it is very important to prevent their introduction into the lungs; even an occasional exposure may do harm, and one continued for months and years will certainly produce fatal results.

Dr. B. W. Richardson, of Inndon, after several experiments with inlialing air through cotton, layers of crape, etc., informe us that he finds the best arrangement to be a nomber of fenthers arranged around the outaide of a perforated breathing tube of convenient fise, so as closely to cover all the perforations; by breathing through the tube the feathers are drawn down to the perforntions by inspiration, and by expiration they are lifted from the openings, and all the intercepted dust is blown off. The latter makes the arrangements with cotton or crape objecticnable, as their pores are soon filled with the dust as well as the moistare exhaled by the breath. The tube is attached to an arrangement which allows it to be put on and taken off as easily as a pair of spectacies.

A nataral protection against breathing dust is also afforded to most males of the Caucasian race in the beard and hairs around the mouth. These should not be removed by any persons exposed to a dusty atmosphere, who therefore do a very unwise thing if they induige in the vice of shaving, which is nothing less than an attempt to improve opon nature's protective provisions. Three evils result from this pructice: 1st. Stimulating the continual growth of the hair, (which whl become slow, and finally casse if not interferred with, while this stimulatcal $g^{\text {oow }}$, is ateady unnecessary drain on the powers of the vital system. 2d. The removal of a gatural protection against cold from a place where this protection is more needed than is generally supposed. sd. The removal of a dustprotector, above referred to. Men inclined to pulawnary consumption should eapecially guard againot shaving, and let their beards grow as nature intended, only curtailing a little when it becomes incorveniently i long.

Another natural protection against dust may be secured by accustoming oneself to breathing axclusively ; through the nose, and only through the mouth when speaking. The benefits of this habit are threofold: Ist. The olfactory sense secures it against the entrance of impure air. 2d. The molsture of the nasal passages : gives a certain degree of aqueous saturation to the inspired sir, the contact of which is thus rendered less - Irritating to the mucous membrane of the throat and larynx. 8d. The inequalities of the organ retain solid particies suspended in the air, which is proved by the quantity of dust sometimes found accumnlated in the nostrils. These functions are all lost by breathing through the mouth. Furtier, the contact of dry air soon produces circulatory tronbles in the pharyngeal region, and even no habitual eatarri, susceptible of , easy transmission by consinaity to the eustacian tube and cavity of the tympatiam. Oranular anedold pha-- ryngitis often has his origin. Niemejer belioved that attacks of pseudocroup in children have their origin
in dryness of the glottis produced by oral respiration. To enable the $\mathrm{q}^{\text {nitient to }}$ breathe through the nose, we aunt restore tir nuse to its p:oper condition. Many cnsen of catarithai deafness have been cured in this way alone.
The habit of keeping the mouth shut and hreathing through the nose alone, if persisted in for a long time. has a tendency to widen the nostrile and improve the shanys of the nose, white the habit of breathIng turough the continual!y opened mouth tends, on the contrary, to make the nostrils uselees, readers them smaller, and also infuences the shape of the nose, interferring with ite proper growh. According to the theory of evolution, the habit of not using the nose for breatining, must, after severnl generatione, end in pro ducing a race with amall, miserable, turn-up nises.
Prenkntive Aaanget Lead Porbomtivo.-"At efficient preventive against lead poisoning would, no dontht. be welcomed by pottery glaziers ani workers in the poilionons preparations of lead: but the preventive must be nomething that can be taken or applied wilh the minimum of trouble. It is stated that washing the hands thoroughly with petroleum three times a dny has been found to prevent all symptoma of leal poison: ing among some workers who have given it a fair trial. and who are so satisfied that they recommend it fo trial by those liable to injury froni salts of coppier, lead. mercary, etc."-Exchange.

Coffee-Drinking,

How strong should coffee be taken is an inquiry of miech practical importance. How much should be taken at a meal is scarcely of less momeal. Coffee, like any other bevernge, may wholly ruin the health; the very use of it tends to this, as certainly does the use of wine, cider, beer, or any other artificial, stimulating drink. There is only one safe plan of using coffee, and that is dever, under d ny circumstances, except of an extraordinary character, exceed in quantity. frequency, or strength-take only one cup at the regular meal, and of a given, unvarying strength. In this way it may be used every day for a lifetime, not only without injury, but with greater advantage than an equal amount of cold water, and for the simple reason that nothing cold should be drank at a regular meal, except by persons in vigorous health.
We have personally known of the case of a lady who was for a long time in proor health, to the nyysification of sereral physicians whom she consulted, when at last we discovered that she made a most extravagant use of atrong coffee many times a day-in fact, she had a pot of coffiee aiways at hand. Following the advice to abstain from coffee, resulted in an immediate end of all her trouble.
In regard to the strength, it is maintained by some that one pound of the bean should make 60 cups of the very best coffee. If a man takiee coffee for brenkiast only, one pound should last him two months, or ${ }^{6}$ pounds a year. One pound of coffee should be made to last a family of ten persons, young and old, one week. Put about two ounces of ground coffee in a quart of water, or rather divide the pound into seven portions, one for each brealfast in the week, and make a quart of coffee out of it, which will be 64 tablespoon. fuls. Give the youngest two tablespoonfuls and the oldett dozen, the remainder of the one cup being filled up with boiled milk. This will give a cup of coffee sufficiently strong for all healthful purposes, for the respective ages; and for various reasons, pecuniary as well as physical, some such systematic plan as this should be adopted in every family in the land.
How to make the cup of coffee good is a third question. It is perhaps as good and as emsy a plan as any to buy the coffee unground, pick out those grains that are imperfect, wash it, parch as touch as will last a day or two, with your pye upon it all the time, until it is of a rich brown, with no approach of black about it. Grind only enough for the day's use; grind it fine, for the greater the surface exposed to the hot water the more of the essence you will have; pour the boiling water on the coffee, and close it up. Sunte boil it a little: others prefer not to boll it at all, but let it stand to clear ton minuter, then use.

Constructive Carpentry,

If a brace has to be supported at ite lnwer end by a vertical beam, it is well to cut the face of a part of the plane of support at such angles that no displacement can take place, but that the direction of the pressure tends to keep the brace in place. Thus in Fig. 102, the lower end is cut like a double wedge, fitting in ${ }^{*}$ corresponding recess in the vertical beam, and as long as the pressure takes place no displacement is possible. When, however, there is danger that the brace may come out from want of pressure, it is well to provide it with an iron strap going around the bean, and fit ting in a notch cut out of the brace, as indicated by the dotted line.

Fig. 108 represents another way of cutting the end of the brace, which is preferable in case the vertical beam is not heavy and we do not want to make a deep cut in the same.
Sometimes it is necessary to support such brsces from a hanging beam; but then it is necessary to apply them at both sides, so as to equalize the sideward pressure. Fig. 104 represents such a case where the horizontal beams support the braces. This method of ounstruction is very strong, and is applicable in cases where we wish to avoid the use of vertical props on the floor, which is objectionable in many cases.
If an oblique brace is to be supported by a wall, it is best to leave or cula square crpeoing in the wall of the size of the thickness of the brare, and a little deeper than this thickness: place a short piece of the beam in, after cutting its face obliquely and nearly perpendicular to the direction of the strain-that is, at rigbt angles to the sides of the brace. This case is represeated in Fig. 105.

Fig. 105 represents
the manter in which a vertical beam, and brace sup. ported by it, are both kept in phace by a piece of cut stone inserted in the wall while it was being built. It is a very reliable method, and far superior to that repreeented in Fig. 107, where the end of the brace is inserted in a hollow left in the wall. One of the ob. jectione to this method, ia that if the wall is, or becomes damp, the lower end of the brace is very apt to, rot, while, being hidden, it cannot readily be perceired.
Fig. 108 represents as metherl not subject to his ob jection, and is very strong; it is applied wher a wall is diminished in its thickness, snd the level at which this is done is a very appropriate place for the support of beame and braces.
The Bhanss of Crimanal,-Says the British Medical Jourmal: "We lately published a very interesting let ter from our Vieuna correspondent, in which a bries summary was given of Prof. Benedict's researches on the brains and akulls of criminals. The subject is an important one, both from a physiological and a posobo logical point of view, and it is to be hoped that more extended and more precise inquiry will be made upon it, for the results which Prof Benedict has obtained, though very important, are not sufficiently numerous to warrant any large induction. Up to the preseab time Prof. Benedict has examined the brains of sixtees criminals, sll of which, on comparison with the healthy brain, he finds to be abnormal. Not ouly has he found that these brains deviate from the normal type, and approach those of lower animale, but he has been able to classify them, and with them tise skulls in which they were contained, in three categories. These consist in: 1st. Absence of aymmetry between the two halves of the brain. 2d. An obliquity of the interior part of the brain or sbull-in fact, a continuation uf ward of what is termed a sloping forehead. Sd. A diftinct lessening 8 f the posterior cerebral lobes, so that, as in the lower animals, they ara not large enough the hide the cerebellum. In all these particulars the criminal's brain and skuli are distinctly of a lower type than those of nurmal men, and the interesting question arises: How far aro evil tendencios of the criminal to be attributed to this retrograde development?

Oxpaen and Hyprogen explode by the electric sparts when mixed with fire times their tulk of steam. A mixture of ais and entureted hydrogen requires* : hicicl of kicum to prevent its iufammation.

ARCHITECTURAL.

CONSTRUCTIVE CARPENTRY.

Fig. 103.

Fig. 104.

Fig. 105.

Fig. 106.
TEG GREAT WALL OT CEMA.

The Great Wall of China was measured in many places by $\mathbf{M r}_{\mathbf{r}}$. Unthank, an American engineer, lately engaged on a survey for a Chinese railway. His measurements give the height at 18 feet, and a width on top of 15 feet. Evers few hund d yards there is a tower 24 feet square, and from 20 to 25 feet. igh. The foung dation of the wall is of solid granite. Mr..Unthank brought with him a brick from the wall, which is supposed to have been made two hundred years before the time of Christ. In building this immense stone fence to keep out the Tartars, the builders never attempted to avoid mountains or chasms to save expense. For 1300 miles the wall goes over plain and mountain, and every foot of the foundation is in solid granite, and the rest of the structure solid masonry. In some places the wall is built smooth up against the bank, or canons, or precipices, where there is a sheer descent of 1,000 feet. Small streams are arched over, but on the larger streams the wall runs to the water's edge, and a tower is built on each side. On the top of the wall there are breastworks, or defences, facing in and out, so the defending forces can pass from one tower to another without being exposed to any enemy from either side. To calculate the time of building, or cost of this wall, is beyond human skill. So far as the magnitude of the work is concerned it surpasses everything in ancient or nodern times of which there is any trace. The Pyramids of Egypt are nothing to it.-London News.

Improved Dumb-Waiters.
Any city dwelling-house pretending to possess the least modern improvement. has a dumb-waiter securing communication between different floors, anving a great desl of stair-climbing otherwise required to carry things up and down. They are especially de sirable between dining.room and kitchen, and they can only be dispensed with where land is so cheap as to have these apartments on the same floor; but any one

accustomed to city life knows the necessity of dumbwaiter arrangements.
However, the dumb-waiters as usally constructed nre very defective; they work often with difficulty and slowly, and frequently get out of order; they are noisy, improperly balanced and wear ropes and pal. leys out rapidy; thay are not fit for transporting anything in the least heavy, will not stop when you want them to, and with ad enat they cost too much.
These circumstanoes naturally led some inventor to improve their construction and some enterprising tirm to make the construction of such improved dumb waitels a specialty. This was accomplished by Mr. Jas. Murtangh, who patented certain improvernenty, and by Mr. Isanc Ricbards, of 2217 Cheatnut street, Phila delphia, Pa., who manufactures all kinds of elevators and hoisting machines for warehouses, dwellings, factories, ctc.
One of these forms of dumb-waiters is represented in our engraving, and is in use in several private houses, such as the new residence of the British Legation in Washington; and larger kinds have been placed in many public buildings, where they may be seen, such as the Uaiversity Hospital, Went Pliladelphia; the North Carolina Insune Asylum; the Illinois Southern Insane Agylum; the Towa Insane Asylum; Jefferson College, Philadelphia; the Episcopal Hospital; the Pennsylvania Hoapital; the St. Jozeph Convent, Chestnut Hill; the Sisterm of Mercy, Philadelphia ; and handreds of private dwellings. All who use them testify in favor of their capacity and durability.
We call the attention of architecte, builders, and othèrs desiring a gafe and practical dumb-waiter or elevator to the claims of the manufacturer, which are that it is adapted to any place where an old dambwaiter has been, as well as new buildings; thas all the purchase necessary for heavy thinge, such as trunks, cosl, atc., while its apeed is such that it embta run up and duwn four stories in less than a minuta; it requires less head-room than any other dumb-waiter. is durable, and cannot get uut of order; it stops where you lenve it without fastening, with an ordinary load,
or without one; can be raised or lowered from any floor with which it communicates; it has a peculiar mode of hoisting corl or lowering ashes without soiling the waiter, and also a peculiar mode of indicating and making fast on any floor with which it communicates. Being a pulley arrangement, there is no noise from gearing or undue wear of ropes, and all the working parts are complete within the inclosure. It is cheaper than any other, considering its durability and the advantages gained; besides being the best dumb-waiter in all other respects, it can be used as a fire-escape in case communication with the stairs is cut off. The maker guarantees to give entire satisfaction, and thinks it should be from the cellar to the attic in every house in the land.
The manufacturer also makes large elevators for raising carriages and atreet cara, which are exceedingly useful in car factories, while his safety appliances according to Merrick's patent, are so perfect that he can load one of the elevators with 2,000 pounde and cut the rope by which it is suspended, simply to demonstrate the perfection of the action of the safety arrangement.
We ought also to mention in this connection a noiseless safety elevator for invalids, worked by the invalid himself, and requiring but a amall place in a house, often only an unoccupied closet.
We advise those building new houses, or denirous of improving defective arrangements, to correspond with the manufactorer. The American Agriculturist.

Do not Face the Light when at Work.

Statistics kept by oculists employed in infirmaries for eye diseases, have shown that the habit of some persons in facing a window from which the light falls directly in the eyes as well as on the work, injures their eyes in the end. The best way is to work with a side light, or, if the work needs a strong illumion. tion, so that it is necessary to have the working table before the window, the lower portion of the latter should be covered with a screen, so as to bave a top light alone, which does not shine in the eyes when the head is slightly bent over and downward toward the work.
In the schools in Germany this matter has aiready been attended to, and the rule adopted to have all the sents and tables so arranged that the pupils never face the windowa, but only have side lights from the left; and as a light simultaneously thrown from two sides gives an interference of shaduws, it has been strictly forbidden to build school-roms with windows on both sides, such illumination having also proved to be injarious to the eyes of the prupils.
We may add to this the adrice not to place the lamp in frout of you when at work in the esening, but a litthe to one side; and yever to neglect the use of a shade, ao as to prevent the atrong light shining in the eyes. This is especially to be considered at the ${ }^{\text {rreseat }}$ time when the use of kerosene lampa, with their intensely luminous flames, becomes more and more common,

The Dibtancy or thi Sun,-If some celeatial.railway could be imagined, the journey to the ann, even if our trains ran 60 miles an hour, day and night withont a atop, would require over 175 years. Sensation even would not travel so far in a human lifetime. To borrow the curious illustration of Prof. Mendenhall, if we could imagine an infant with an arm long enough to touch the sun and burn himself, he wonld die of old age before the pain could reach him. According to the experiments of Helmholtz and others, a nervous shock is communicated only at the rate of about 100 feet per second, or 1,687 miles a day, and would need more than 150 years to make the journey. Sound would do it in about 14 years if it conld be transmitted through celestial space, and a cannon-ball in about 8 years if it were to move uniformly with the same speed as when it left the mazzie of the gun. If the earth could be suddenly stopped in her orbit, and allowed to fall nnobstructed toward the sun under the accelerating influence of his attraction, she would reach the central fire in about four months. Wo sey if she could be stupped; but such is the compass of ber orbit, that, to
muke its circuit in a year, she has to move nearly 19 miles a second, or more than 50 times faster than the swiftest rifle-ball; and in moving 20 miles she deviates from perfect atraightness by less than t of an inch. And yet, over all the surface of this tremendous orbit, the sun exercises his dominion, and every pulsation of his surface receives its response from the subject earth.
White Cument for Crockiry, Olasg, myc--Take4 pounds of white glue, $1 \$$ pounds of dry white lead, $\frac{1}{}$ a pound of isinglass, 1 gallon of soft water, 1 quart of alcohol, and $\frac{1}{2}$ pint of white varnish; disoolve the glue and isinglass in the water by gentle heat if preferred, atir in the lead, put the alcohol in the varnish. and mix the whole together. This is useful for woodwork, and will firmly unite painted surfaces.

A Cement for Womp Vresels required to be watertight may be formed by a mixture of lime-ciay and oxid of iron, separately calcined and reduced to fine powder, then intimately mixed, left in a close vessel, and mixed with the requisite quantity of water at the moment when ready to he used.

Eptormic Diseasks and'Parasitic Life.--

 Prof, Tyndall in the Popular Seience Monthly says: The power of reproduction and indefinite self-multiplication which is characteristic of living things, coupled with the undeviating fact of contagia "breeding true," has given strength and consistency to a belief long entertained by penetrating minds that epidemic diseases generally are the concomitants of parasitic life. "There begins to be faintly visible to us a vast and destructive laboratory of Nature wherein the diseases which are moet fatal to animal life, and the changes to which dead organic matter is passively liable, sppear bound together by what must at least be called a very close anaogy of causation." According to this view, which, as I have said, is daily gaining converts, a contagious disease may be defined as a conflict between the person smitten by it and s. specific organism which multiplies at his oxpense, appropriating his air and moisture, disintegrating his tissues, or poisoning him by the decomposition incident to its growth.Let the Brain Rest the Hands.-"There are many who get up in the morning weary from effects of the preceding day's labor. To such let me say, dear sisters, stop and think, Use your head more and feet less. Having poor health, and my own work to do, till within few years, I soon learned to plan my wort ${ }^{\text {so }}$ save time and every feasible step. Thought and experience will teach you many ways of economizing strength.

Relative Cost of Water and Steam Power. -The cost of the water power equipment at Lowell was, for canals and dams, \$l(0), and for wheels, ete., another $\$ 100$ per horse power. Bat this, as a first experiment, was more costly than a similar equjpment need be. A Maine news paper says that at Saco the expeuse incurred was $\$ 175$ per horse power; but at a latter period. for turbines with high heads the expense would be less. A construction and equipment, solidy carried out, with the latest improvement in whets, would not cost over $\$ 200$ per horse power, and would under favorable circumstances cost less. An estimate at Penoiscot was for $\$ 113.50$ per horse power. If the construction be with woodeu dams, and the equipment wita lower grade wheels, then the cost would be about $\$ 50$ per horse power, and although the construction would be less permanent than the more solid, it would outlast any steam apparatus. On the other hand. Fall River estimates of stearn equipments, exclusive of foumidations and engine houses, run from $\$ 100$ to $\$ 115$ per hors power. A Boston authority gives \$115 per horse power for nominal 300 horse power and upward, inclusive of foundations and masonry. Smilarly, a Portland authority places it at $\$ 100$ per horse power. The actual cost of stoam equipment in the water works of varions citief of the United States varies from $\$ 150$ to $\$ 30$ per horme power.

A BEAUTIFUL ORCRID.

We lately illustrated some beautiful varieties of orchids, and bost ellastration which we present this week represents one of the wost elegant of the species known. Its flower hangs in graceful
bunches from the bases of the spreading leaves. The color is a deep yellow ground spotted with rich crimson points of velvet. Each flower on the bunch is spotted like a leopard's skin. It is an extremely delicate plant and hard to raise. It is known to botanists as the renanthera Lowii.

American Method of Preparing Canned Salmon.

The American method of canning salmon differs in some important respects from the modes of putting up fish practiced in Europe. As time and labor are of importance in the United States, the effort in preparing food has been mainly directed to arrive at immediate results. The salmon is cooked in the canin which it is put up. In all fish put up in oil or canned in Europe, the fish is first partially or entirely cooked in distinct vessels, and then transferred to the cans, where another cook ing or heating takes place before the closing of the tins is effected. The process of canning the salmon of the Columbia River, at Astoria may be briefly described as follows: As soon as the fish caught during the night are landed at daybreak at the factory, gangs of Chinamen take the fish, scale and clean them, cut off heads, tails, and fins, and place the fish in tanks filled with salt and water. Here the salmon remain for a certain length of time, and the cleansing process is known as "sliming" Now the tish are brought into the factory. A Chinaman with a peculiar machine, at a single stroke of a lever, cuts the fish into exactly the proper sized slices which will fit the cans. Another set of liands take theses bits of fish, place them deftly in the cans, whence they go to other workmen, whose duty it is, by meaus of an apparatus, to put in each can a small amount of lirine ; nothing else is added, the kalmon being cooked au $j u s$. Now the cans filled with the raw fish pass to workmen, who apply the lid and solder it on. Next, the cans are placed, hundreds together, in iron rings, each form holding 800 cans, and, by means of cranes, all lowered into steam-boilers, where they are cooked for an hour. Now quite a nice operation takes place, similar to that employed by the champagne-wine manafacturers, which is called venting. A hole is pricked in the top of the can, and the air and the gases generated are allowed to escape, when the little vent-hole is instantly re-soldered again. A second cooking now takes place, when the culinary portion of canning is ended. The cans are again taken from the boilers. and are showered with cold water. If the vacuum is perfect, and the package sound, the top of the can hollows in and assumes a concave fo:m. If, however, there is the least convexity. this condition of " swell heads," as it is called, causes the rejection of the package, for the salmon would not keep a week, and manufncturers know that a single spoiled can would injure the reputation of a thousand packages. It will not even do to tinker with these "swell heads." as they would cost too much to put in order. If they are worked over, however, they are never shipped as first-class goods. It is a necessity, in order to insure the excellence of the canned product, that each day's catch of fish should be prepared within twenty-four hours. Should there be any hitch in the factory and the all day's salmon cannot be conned, what remains over is salted and barreled. So far, the burreling of salmon has by no means been profitable, a barrel of salted salmon being worth only seven dollars the two hundred pounds; and three and one-half cents a pound is very cheap food indeed. These salted fish are, however, finding a market in the United States, where they are freshened and smoked. It is, perhaps, not out of the way to say that the can of salmon, before it is completed, with a handsome label put no it, and boxed, goes through as many as a hundred different operations, from the catching of the fish until it is sold as a finished product. Through April, May, June, and July the factory has no idle moment. The fishermen ply their nets all night, and the Chinamen work all day and up to ten o'elock at night, when the camning is carried on by gas-light.

Oregon shlmon, as a canned product, has nearly driven out all other similar preparations of the fish, and the Eustern establishments are fast passing out of existence. In 1875 England took 165,600 cases of Oregon shlmon ; New England, 2400 ; Sonth America, 1500; Australia, 14,190; and New York and the Atlantic coast, some in7,571. The European demand for the canned salmon product of Oregon is steadily increasing, and the cry is a constant one for more. The value of salmon as put up on the Columbia River alone is cestimated at $\$ 2,500,000$. General Reprot of the Judyea of Gromp V, Centennial Ewponsition.

For yemping crackers dry, unslaked lime is recommended. The wooden boxes for the crackers should be about 12 inchea deep, and have a tray 1 inch deep to rest just beneath the lid, which should fit tightly. The lime is placed on the tray, and is said to keep the crackers dry fot six months if the box is not opened.

PREHISTORIC RELICS IN ARIZONA.

Arizona Territory is perhaps less known, to the majority of our inhabilants, thats any other part of the coustry ; and yet it has a remarkably line climate, moderate te:nperature, fertile soil, and mbounded mineral wealth. No rallways, however, have as yet been constructed in Avizona: but the Atlantic and Pacific and the T'exas Pacific comparies have obtained charters and land grants, and, when these loads are constructed, there is every liketihood of this beautifui region being reached by setthers from the East; and its land, now riniefly occupied by noma:lice tribes of Pimas, Maricopas, Mohatres, Vtas, and Apaches, will be brought into cultivation.

To the traveler and antiquary, Arizona is a land possossing espocial interest, as it abound with ryics of two populations, probably widely sparate in point of time. There are to be found here numerous ruins of Aztec sculptures and buildings, which were probahly of great antiquity when Cortes arrived in Mexico, and Don Juse de Vasconcellos crossed drizona towams the Great Canon, in 1526. But the remarkable painted rocks, shown in our illuntration, are doubtless much older than the Aztec relics; and thare is no history, legend or tradition that even attempts to explin the orisin of the inscriptions. The marks are not painted but seratched on the surface of the rock, which is a kind of gitty sandstone, of red colour; and many of the animals thus rudely depicted are not, and perhaps never have been indigenous to Arizona. The alpaca, for instance, belongs to the uplands of South America; and the buffalo's native land is far to the northeast of these rocks. It seems reasonable, therefore, to believe that the inscriptions were part of an account of some travelers' wanderings, who thus recorded news of the remarkable countries the g had visited.

The pitahiya, or giant cactus, several specimens of which are shown in our eugraving (which we select from the pages of the illusciatrd Lonlon Noxs), sometimes reaches the hight of sevinty feet. It has a curiouly weird appearance, with its huge pronged branclies lomaing in the distance. The fruit is a favorite food with the natives, who knock it down with their arrows. They also use the fibres of the trunks, matting them together to roof their wigwams with.

The Aztec relics are very numerous on the Colorado platesu, in the northwestern part of Arizona; and the Spaniards subsequently erected reservoirs, terraces, and buildings of great extent. Stone fortifications are also very frequently met; and it has been estimated from such indication that at least 100,000 people inhabited the Gila valley at one time. It is probable, noreover, that some further light may be thrown on the history of this wonderful region, as much of the northern part of the country has never been explored. Scientific American.

A CURIOUS CLOCK.

The Reading (Pa.) Eagle has the following: "In Mengel's building is now on exhibition in all probability the most curious clock in the world. It was built by Stephen D. Engle, a watch. maker at Hazleton, Pa. He is about 45 years of age, and has spent 20 years in perfecting the clock, for which he has received $\$ 5,000$. Engle never saw the Strasburg clock-in fact, he b not travelled more than 200 miles from home at any time. This clock stands 11 feet high; the Strasburg clock is 30 feet high, yet its mechuuism is not so intricate, nor has it so many figures as the Hazelton clock. The Strasburg clock's figures are about 3 feet high, while those of the American clock are about 9 inches. Every hour a pipe-organ inside the clock plays an anthem. has five tunes. Belis are then rung, and when the hour is struck, doors open and a figure of Jesus appears; doors to the left then open, and the Apostles appear one by one in procession. As they pass Jesus, they turn towards him, and Jesus bows: the Apostles then turn again and proceed through the door in an alcove on the right. As Peter approaches, Satan looks out of ${ }^{s}$ window above and tempts him. Five times the Devil appeass, and when Peter passes, denying Christ, the cock flaps its wing and crows.

DIAMOND STONE-DRESSERS.

Carbonite has been applied to the dressing of freestonen ashlar by fixing a number of diamonds in a gun-metal or stew block, and giving them a reciprocating and traversing notion over the face of the stone. This machine will dress from 600 to 1000 square feet per day, or as much as 100 or 150 mon can do in the same time.

HOW TO PREPARE PHOTOGRAPHIC BACKGROUNDS.

T
HE following practical directions for making photographic backgrounds are translated from the paper by Hans Hartmann by the British Journal of Photography. The best foundation for a background is a stretcher such as a painter uses for stretching his canvas. It must have cross-pieces at
the corners, and the wood should be strong eoough the corners, and the wood should be strong enough not to warp, as it is liable to do when the paper is stretched upon it. For a stretcher eight feet square the framework should be from three, and a-half to four inches wide, and from three quarters of an inch to an inch in thickness. If the frame can be suspended by an iron roller from a groove it may be moved easily. An arrangement by which the frame can be inclined very advantageous, as it allows of the same background producing either a light or a dark effect as is most suited to the costume of the sitter. The background may also be darkened at pleasure by furni-
ture, curtains, or screens, by methods often ture, curtains, or screens, by methods often
described in these pages, and . Which cannot be too described in these p
strongly commended.
Paper and linen, fine or course (shirting, twill, Sc.), are the starfs upon which one can paint best. good deal of ploss and dressing. Fasten it then upon the frame by nails only half driven in, and, having carried the first coat of paint (for which directions will be given later) over it, observe carefully whether it shrinks together. If, as is frequently the case with shirting that has been hot-pressed, it do not shrink enough, take out some of the nails, especially those
at the corners, and stretch the staff back before it at the corners, and stretch the staff back before it
gets dry. Twill is betber in this respect, and on gets dry. Twill is betber in this respect, and on
account of its roughness it is easier to paint upon it but, on the other hand, it is heavier. If it be intended to stretch paper-say wall-paper-upon the linen foundation it is as well not to paste the latter to the edges, but, if possible, an inch or so back This, to some extent, prevents warping. One can make excellent backgrounds pasting upon the foundation a paper with a tasteful patiern not too harsh in colouring, and atout filling op the space between the wall-paper and the simulated panel with a moulding. The latter can be mode more natural-looking if small semicircular sticks be stuck on so as to form squares or rectangles; and, if it be thought desirable, the
ground inclosed may be filled up with painted ornaground
ments.
I now come to the colours which are easiest to use, and which are so constituted that one can trust to their appearance to the eye without afterwara finding that one bas been deceived, and that their photo

For size colour chalk, ochre, umber, and Casse brown are most snitable. The chalk, ochre, and umber must all be steeped in cold water before being mixed with the size, and the last (umber) must be left somewhat longer on account of its tendency to swell. Caesel brown is sold, rubbed down in water. and is kept in a pot under wnter. It it be allowed wo dry it becomes as hard as stone, insoluble in chalk it gives a most beautiful warm grey tint with it willingly, notwithstanding. When mixed with chalk and size it may be easily and equally put on. chaik and size chay be easily and equaily put on.
If one wish to change the tone the ground tone can If one wish to change the tone the ground tone can
be modified hy English red, chrome green, or any blue.
As a binding medium for the colour take a lukewarm 10 per cent. solution of size hi water, or a strong freshly-made starch paste. The quantity of size required cannot be epecified exactly, but mustand therein lies the difficulty, a dificulty which binders many from using size colours-bedetermined by experiment, because the quantity of size required varies according to the under-ground. Take a thin solution of size and mix it well (preferably in a mortar with a porcelain pestle) with the colour previously stirred into water, and make a trial apon the sams piece of stuff and with the same brush as
you intend to use afterwards. Paint upon three you intend to use afterwards. Paint upon three
places near each other-on the first somewhat places near each other-on the first somawhat
thickly; on the second with natural even strokes; and on the third with colour comerrhat dry. If there be too little size the colour will come off after drying if the band be drawn across it. If there be too much it will be streaky ; more raw colonr and Water should be added, and then the strength must
be tested again. If the mixture be right the surbe tested again. If the mixture be right the surface will be equal. The degree of thickness is
casily found by experience, and the addition of water pasily found by experience, and the addition of water
is not likely to do much harm, eqpecially if it be tepid.
Now paint away with regular stroken, taking care thot to stop at half-dry places, or the result will cortainly be streaky. If it be found, on trial, that the colour sinks too much into the stuff-as is always
the case with strong linen-then, before painting,
groand layer of chalk and strong size water, which must be sifted before use, should be passed over it if a perfectly clean surface be desired. This sub stratum must become thoroughly dry. If it have a
great deal of size it will be bard and smooth; if it great deal of size it will be bard and smooth; if it follows it, and which, consequently, requires more size. This substratum may be smoothed down, to evenly-samn piece of pumice-stone, and when per fectly dry it may be rubbed down evenly with soapy water (roft roap dissolved in hot water); then an extremely equal tint may be expected when it is painted over
If it be intended to draw lines, panels, or divisions apon the beckground, the measurements are set eff exactly with a raler, and the lines are beat drawn with a charconl-blackened cord, which is strained upon the given measurement, and is then taken hold of by the middle between the finger and thumb raised out a little way from the background so that when suddenly let go it flies back, striking against the backgronnd and marking on it a perfectly straight line. If a mistake occur the charcoal carr easily he removed by dusting.
Ornaments are easily stencilled on. Take a piece of paper the size and form of the panel to be decorated with an arabesque, double it together, and draw upon one half the half of the symmetrical figure, so that the middle of the latter ahall correspond to the fuid of the paper. Then take a needle and prick the pattern pretty closely through both folds of the paper. Now spread the paper out flat, and you have the design complete. If a square design or a rosette be wanted, fold the paper twice, taking the corner as a centre; then, by pricking, the design will be trangferred to tbe three other quarters, and a double symmetrical figure is obtained. The derign can now be traced upor the subject to be paintel by dusting finely-powdered charcoal, mixed with a little gum, through the holes in the paper. The design is then gone over with a pencil. As the background is generally not very sharp a very great degree of accuracy in the details is of less importance than the proper tone; the neighbourhood of the figure does not require the anme lively ornamentation as the more distant places.
Good examples (models) are to be found in the numerous journals devoted to art and manufactures, in every paperhanging establishment, and, lastly, in the photographs of the ancient and modern genre pictures which abound in every style.
Patterns may also be cut out of oiled paper; but this plan is only to be recommended in the case atiffer bristles is required for this, and it must be carefully drawn across the stencil paper for fear of any of the superfluous colour running down between the pattern and the ground and disturbing the clean ness of the outline.
The materials for size colour painting are cheap. A ferr paint-pots a ruler, a line, and suitable brusbes -that is all. The latter are, unfortunatels, not alwaya to be had good; but, at all events, get them as large and long in the bristle as possible. Fine hair pencils are not used for size colour. The fine lines are drawn with a long, thin pencil madefor the special parpose.
The adrantages of size colour, its great cheapness, the equality of its washes, and, above all, the absence of gloss, adapt it for use in backgrounds in a way that is not counterbalanced by the ease with
which it is injured by damp or frequent rubbing Which it is injured by damp or frequent rubbing against ; but when it comes to be a matter of painting farniture, pillars, balustrades, and such oftenhandled requisites, wax paint is preferable. It stands damp, can be as equally laid on, and is as free frou gloss as the size colour. When it is used the chall is replaced by zinc white or white lead, rubbed down
with oil or finely powdered. Cassel brown must also be laid aside, and in its stead Russian sienus burnt ochre, or burnt umber may be taken. The binding medium is equal parts of wax and mastic resin melted together in turpentine over a slow fire The greatest care must be taken during this process, as the substances employed are very inflammable. To this mixture a small quantity of copaiba balsam may he added. If it be found necessary during use to thin yet further colours to which this mixture has been added, a weak cmulsion of wax in turpentiue will be found suitable.

If it be desired to paint a large surface of linen with size colour the linen must first get a foundation coat of chalk and linseed varnish, and be thoroughly dry. Upon wood, carton-pierre, metal, porcelain,
\&c., the paint can be laid on at once. - By brushing lightly any degree of gloes can be conferred upon it If the glogs be too greate asingle coat of turpentin is enough to render the surface perfectly dead. This method is more costly and is not so easy for the amateur, but it gives more durable results, and
the painted parts may remain glossy linseed oil can be added to the colour instead of the solution of was
Oil colour may also be made pretty matt by a thin On colour may aiso be made
conting of turpentine or wax
coating of turpentine or was. also be made out of
Very good ornaments can als vases, boxes, and similar accessories by gilding them with gold bronze mixed with gum water. A simple box with a coat of paint cleanly put on, and a pret ornament painted upon it, has a very good effect
Finally, upon paper backgrounds one can word with water-colours. Take some cakes of sepia aid dissolve them the evening before using in a sufficient quantity of water ; then paint in pale washes, wired a soft flat hair pencil fixed with tin, until the desirar tone be secured. When the first wash is dry it mas be gone over again, only care must always be takea not to touch the balf-dry places, or streak hess
be the result. While it is best to keep the frame be the resalt. While it is best to keep the fral is perpendicular during the time the backgronnd 1 , heing painted with size colour, it is preferable to the it flat while being painted in water colour, as

Colouring Drawinga. - I did not intond to answer this query, as most of my exped rienco has boen in no to know about tints nued in architectaral drawings. However, as I think Mr. Fennell has hardly given the answer you want, the following is pretty nearly correct as far as it goes :As to metals, the following tints are mostly nsed: Cast iron, neatral tint if you mix it yourself mixtare of bla. Wrour is best, and Indian ink and Brase: Ind. Wroaghtand malicable: Prussian blae. Copper: Indian yellow; or, failing that, gambore Copper: Indian yellow and crimion lare. Sto 75 per parple, crimson iske, and Prassian blue (abon 75 per cent. of the former. Other metals, such ${ }^{2}$ ink and patent metala: Prussian blae and Indian ink. For olher materiale the following tints aro done with Indiag ink. Brick, lige grainiog Firebrick many other tints and mixtores, with this are initang to the kind and state of the alone. architect in the set of drawinga I once did for abge and Indian ink and the rough sto blates, indigo ; tiles and earthenware ornamenty Indian red; concrete, foundations, do. mirtures of copia, yellow ochre, and Indian ink. Most of thethe colvurs are nsed almost universally to reprecent the in different offices, bat others are used differenty in years peit has been in come of the loeding engineers' drawing offices-and I have had to do
with wort from very many others-I think warrant this list to be, "take it for all in all," the one most usually adbered to.-MATEETrs.

Noveltion in Paper.- When the usefolness of compresebd paper for railway wheels was deinore gtrated Thest use of paper appeara to be for chimnoy-pothe They sre made in Breaian, and are light and anrabed Bofore the paper palp is monided and compre into the required shape, it is treabed which render it noa.infimmable. Specime paper and oioth made from the California
were reobatly exhibited before the Marylan were reobontly oxhibited before the Maryland Ace demy of Sciences. The cactun grows abundand in many of the Westorn Stetes and Territo cultirated. The success that has been met with in making paper from this plant is m_{o} marked that the busine.

Choosing a Scrthe -The disposition o steel in a scythe is to be best understood by aeing one which has been broken across the blade. Sometimes tools of thia class are steeled "naked," so that all the steel shows itsell a once on the top side of the blade, but this pla not to be recommended. It is better to hav iron on both sides of the steel which just shat itwelf along the edge, and runs in toward back to stiffen the blade and to form a constar. cutting edge as the tool weara away. buying a tool, bear in mind that the most stoell may show in the one steeled naked, because
that is there in in sight, but in the other there would be a great deal more steel usefu for carrying an edge, although it would sh less because the bulk of it would be hidden ween the iron. It will not do, then, to be de ceived by appearances. The best plan is to d pend on a good maker for good steel ind cient of it.

The French Broeds of Poultry.

 The American Agriculturist.If proht in the chief end of poultry keeping, and thote tertainly the purpose for which farmers and thote who raise pouitry for the market, as well as thow who compete for prizes at the poultry shows, are all in purstit of, of the French breeds of fowls are worthy of high consideration. There is no other country in the world where poultry to world where product in the market, or so trequent a dish Pran the tables an in Prance, and a breed that is in favor there mast possess positive werit In addition to Wherast number of eggs Which are consumed in - ${ }^{\text {opery }}$ possible shape in arts, mullions in various Wrts, mallitions of dollars Forth are exported and France every year, and the pouled, various. ${ }^{1}$ a presented, is not only 2 rery conspicuous item on the bills of fare, but oulence entitia sucpromine entitie it to the prominence it there enDoys. That it is acceptbe to in France should be to a breed a passport ${ }^{4}$ popular favor everyTowhe. Yet the French ${ }^{20}{ }^{2}$ popare not nearly
${ }^{20}$ poppular in America as they deserve to be. We contess we never conld banish thẹ light Brahma 40 m
or the
or yard to replace it with either the Houdan or the Crevecosur, but this is rather for its friendly, plentifut disposition, and its excellent, and fairly plentiful exgs, especially in winter, rather than fer the quallty of its flesh; for a Brahma is inclined to
be " form in winter, rather than fer bo "scrawny" in its youth, and yellow and tough
in itt ticularige, and not paracularly toothsome paraly period of its life; the Creve Houdans and prolise ecoers are both Prolific egg producers,
frow grow rapldly, and posfrese. White and juicy raith. Yet we have adratred these fowlo in the vid have other people, ibly to freguned favorof to frequent praise of their profit and their
beauty. The doaty. The lioudan is tombless a very handblade and attractive them, and a flock of Well well bred and Thowyin carer, le very deld. They yard or the and maceley are aquare body, with about the sptrited or short legs, a cartiage, or even a fierce therriage, on account of beard peculiar crest, the livel rauffing, and their pely tuarkings of When perfect ; which, malxed "perfect, is of a and white "pebly" black the fifth. They have Whleb they a useless, objectionable member. then they linherit from the Dorking strain in ithe ancestry, although along with it they have Tore. Their led flesh and plump breast of that The. Their legs are gray and their bones remark-
breeders, and if properily fed, the hens will lay on without stopping to "sit." They will thrive in confinement, when properiy kept, es well as when roaming ai large, and when allowed to range, exercise the llberty now and then with greater freedom than is convenient upon the farm. The standard of excellence of the poultry fanclers for the

\triangle PADR O HOUDAY FowLA
Houdan ts subject to some variation as to minor points, such $2 f$ the shape of the comb; the afth toe, however, is instated upon; the feathering should be of black and white, evenly mixed, and not patchy; the seddle of the cock is tipped with straw yellow; the creat is of black and white feathers, evenly mixed, and thrown back so as to show the comb, which is double, evenly toothed
and stragging or ahagg7. The fifth clew is large and turned upwards, as with the cock. If good birds are procured to start with, they should breed very true to the marks, bat if long closely bred they will in time become mixed in appearance.
The Crevecceur, Ite the Hondan, is named from the village in France, in the neighborhood of which it has long been largely bred for market. These birds are remarkably stately and handsome, although sombre in color, except in the sanlight, when the golden green rellections from the plumage make them very brilliant, kut thla peculiarity is" only brought out in a fevor able light. They are mach more ravely seen than the Houdans, al though as producers of egge, and for non-sitting, as well as for early maturty, and whitenéss, and sweetness of desh, they surpass these. They are not winter layers, which is an objection, but when the cock is crossed upon Brahma hems, the eggs produce table birds of heavy weight, excellent quality, and in time for early marketing. They suffer nothing from conflinement, and a dozen can be easily kept in a yard of 20 feet equare. This are very tame and friendly when petted. They excel as table birds, notwithstanding their black legs, which, however they may be objected to by the market mea or the cooks, have no 111 effect upon the color, fiavor, or tenderness, of the fesh, which is very white and of delicious lavor. Yonng birds wif fatten when 3 months old, and have been made to weigh 4 pounds at that age, and at 6 monthn, with two weeks fattening, have weighed 7 pounds. The Crevecoeur cock should bea heavy, compact bird, mounted upon shart, thick lege; the thlybsa being well feathered, tend to give the blrde \& heavier and more solid build. The back is broad and flat, glving a robustness to the igure, and slopea bat slightly towards the tail, which is carried high. The geberal car riage is digniffed, their sedateness being somewhat hightened by their sombre coloring. The comb is two-horned or "antlered," and the crest is formed of lance let shaped feathers which fall backwards and do not straggla willdiy in all directiops as in the Hoadan. The chlcks are hardy when properly cared for, but
upon each side, and with both sides alike in shape ; the hackie is black and white, the beard and muffle almost hide the face, and the wattles are long and evenly rounded at the ends. The hen is square bodied, and low framed, with plumage like that of the cock; the crest is full and round and not loose

\triangle crevecgue cock $\triangle N D$ hens.

early chicks of this breed are rare, on acconnt of the late habits of the hen. The breastis full ; the hackle is long and sweeps gracefully down the neck ; the beard and muftle are full and low on the throat, and the plamage, as previously described, when periect is of a solid black with greenish and soractimes bri-

Hant reflectims. The hen is sfmilar in color and special points to the cock; her body is massive, and her legs strong to match her stout body. Her plumage is perfectly black, the crest is large, and the beard full and profuse, and the comb, which is homed, is much hidden in the crest. As these birds become aged a few stray white feathers will appear in the crest, which, however, should be an objection in young birds. When but one breed is kept, the Houdan would be preferable to the Crevecreur, on account of its more lively color, but were cross-bred birds are not objected to, a few of the latter with their remarkably beautiful celor, when in a bright light, their large size and haudsome carrlage : their desirable table qualities, and the babit of the hen to lay when all others are broody, would make a very desirable addition to a flock of light Brahmss, or white Cochins. Black fowls do not seem to become popular sery readily, just as black breeds of cattle have few admirers, in spite of their many clains on the grazicr and the butcher, but if any black fowl is to be chosen, we would certainly give the prefercuce to the Crevecopur.

Hints and Helps for Farmers

Fagtening for nwinging Doors-L. M. St John. Canajoharie, N. Y. aends the sketch of a fasteniug for a swinging ham-door, shown at fig. 1. The cobter-bar is made of a picee of baril wood, 1 in inch thick, and 3 inches wide at the euds, tapering gradu ally from the eads to the central part of the door. They are made to slip lonsely through iron staples on each batten of the door, and are joined together hy halving the ends, and putting a bolt through them, and also through the narrow end of the guide which lies be neath then. The latter is fastened to the door, as shown in the engrav
Fig. 1.-famtening. ch permits it to play bac sgg, by a rivet or screw which permits of the bars and the guide are pushed to the right or left, the ends of the bars are made to project beyoud the door, and engage with the straps or mortises made to receive them. The bars are then firmly held in place by the guide, as shown by the dotted lines. The advan tages of this fastening are that it is always in place
 is easily openco aml shut; and when frozen fast at the bottom, the power of the toggle-join easily lousens and draws the end. The dooris also twatened at the strongest place, and cannot spring open; the ha: will hold without slipping, although the mortises sfombl become worn, and although it should be but elightly caurht. becartse the guide holds it rigidly. The ends, tor, are entirely out of the way when the door is openct, and if it should how to, they will not drej of theme.lven
As Inos Pig-tionoth - In louking over a cata

Fig. 3.-Waren-sack-down.
hegue of the New York Plow (ompany, wo find an fron piry frough mentioncd. Having some time ago

Fig. 4.-WAGON-JAOK-RA1SED

ased similar iron troughe, we found them very durable. and very cleanly, and far preferable to wouden ones of any kind. The trough referred to ts shown at figure 2 , and can be procured at cheap enough rate to make them generally used.
An Improved Wagon-jack.-A reader of the American Agriculturist sends a drawing of a wayon jack, which speaks for itself. It is shown at figure 8, as down, and at fig. 4 as raised. As seen by its structure, the weight is thrown over the center of the pin, or pirot, so that the jack can not come back, and no tastening for the handle is necessary

A Case for Carrying or Keeping Egga.

Eggs are the most fragile of things, and to be carried or even stored safely, they peed to be packed in the most careful manner. Many derices have been used for this purpose, but although some of them have been found araileble for business pur poses, none of them have been adapted to domes

Fig. 1.-rge carrizr oomplete.
tic uses for the storage of eggs. A "Safety Egr carrier," devised and patented by A. R. Sprout, of Lycoming Co.. Pa., here illustrated, seems to moet both of these requirements in the most effective

Fig. 2.-single tray of ego carrier.
manner. Figure 1 ohows the box, with the trays, of which it contains eight, and hotds aitogetber 36 tozen egge. The eggs are held in place by means of pins inserted in the bottom of each tray, and forming a circular supporting wall around each egy, as shown at figure 2. Some soft material is wound around each pin, forming an elastic padding by which the ekgs are held frmly and securely. The trays, when filled. are placed in the package, one above the other, the bottom of one forming the cover of the one belor it; the lid of the box bolds all tightly in place. Small holes are bored through the bottom of each tray, the small end of each egg, rests, and is thus held in the position, which is the best for long and safe keeping. Each tray of eggs may be inspected at any time, by loblaing it to the light to determine their soundness. For bousebold use, earh tray forms an independent receptacle for eggs : the packace or box beling provided only for the purpose of the shipper or dealer.

Stove for a Poultry-House.

A simple and safe method of warming a poultryhouse in winter, is as follows. With a few brick and common mortar, build up a wall in the shape of an oblong rectangle, twice as long as it is wide. learing au open space in the front aboul a foot
wide and the same in hisht. Lay upon this wall when 19 inches high, so as to cover the space within the wall except about. 6 inches at the further end, plece of sheet-iron. Build up the wall over the iron another foot, and then bulld in another sheet of iron, covering the space enclosed all but a fow inches at the front. Then turn an arch over the top, and leave a bole at the end for a stove-plpe

Fig. 1.-stove.

Fig. 2.-section.

The stove thus made will appear as at figure 1 , add a aection of it as at figure 2. A small fire made the bottom at the front, will then heat this store very moderately, the heat passing back and forth, as shown by the arrows, will warm the whole jubl sufficient to make the fowlic comfortable, and ther will be no danger of injury to their feet by fillof up upon the top, as it will never be hot if a moderato fine only is kept. The stove will be perfectly sale in and may be closed by a few loose bricks laid up front, through which sufficient air will pass to koed the fire burning slowly. Ordinarily a fre neor ouly be made at pight during the coldest weathe

Grinding Tools.

The usefuil effect of miny tools depends greatly upos the exact grinding of their elges to a proper

device for grinding mill-pices.
A cold chive?. for instance, requires an edre of acertaia bevel to eat hard metal, and one of different ancle for: softer metal: the harder the work to ine cut, the greater should be the aga formed by tiac edre, and the softer the material, the more acute the edse. The same rule is be observed in wood cutting tools. But there ard no 100 ls which require inore exact and carcful grind ing than mill-picks, and the first business of a bll ler is to know how to grind his pieks. Upon then depends the dress of the stones, and the quality of work turned ont by them. The illustration repre sents a small grindstone for sharpening pie which is run by means of friction wheels cover with leather, and provided with a gauge for settion the pick at a variable angle to the stone. To gainge has been recently patented, hut is so server it ill i as to be worth a moleate fee for its use. consists of a series of stcps raisecl upon a slotted the phank, which is screwed upon the frame of the grimkione. Br weans of the slot and a set scres sen below tic pick, the gaiage call be set for too tol of different kughis, and each step causes the too set in it wo ground at a different angle.

Some Household Conveniences.

4 Silp-Wínding Clothes Line.-A elothes line well cared for will last vers much longer than one cxposed to the weather, and though it is but very little trouble to take in a line, it is often left

Fig. 3.-coat-hanger.
out from one week to another to the great annoyance of those who have to pass across the place it occuples. It is not difficult to contrive an affair Which shall be self-acting and will wind up the line as soon as it is loosened. Figure 1 shows a large $B_{\text {is ab }}$ ooden with an axle or journals; the spool is about six inches, and the journals about one

inch in diameter, the journal A being four inches
long The while the other is but one inch in lepgth. the ends of these rest in holes in supports which ened to here shown. A small strong cord is fastened to and wound around the journal A, and there is attacbed to the cord a weight T, of about six pounds. A common cotton or Lemp clothes the is shown at. U, this is fastenad by onc cad to

Fig. 5.-extra leaf for table.
a stick will anawer. When the weight T falls three heches, the spool will revolve once, and wind ap 18 nap 30 of the line; if it falls five feet it will wind apthes line of line. For convenience, both the Tonad line and that carrying the weight, are shown opad ap. In use when the clothes line is wound and the spool, the weighted line will be unwound, take the weight at the floor. To stretch the line, It is to be ofthe ring and walk to the poing where Wind op attached; this will unwind the line and down, uphe weight. When the clothes are taken Wolpht unhiltch the line, and the descent of the Without will wind it up at once, and it will be housed convent trouble. The spool may be placed in any bonvenlent shed or out-building, or a columu may constructed for it which will at the same time
Husarig up Coats and Vissts.-II coate are
bung up by the Mhl, especially if heary, and not frequently worn becompecially if heary, and not frequently worn, show atretched out of shape, and when put on
careful unpleasant distortion. To avoid this, Careful persons nse some kind of a hanger, which commonp the back and shoulders in shape. A very hoop, but expedient is to use a portion of a barrel sonis 8 , which is made from a piece of $3 /$-inch
boand 5 and bard 5 inches wis made from a piece of $3 / /$ inch beligg an ine according to the size of the.garment, it oulalide of one arm to the outside of the other
mensan bevared olther arm to the outside of the other, rests. Wire, bent as in figure 4, answers to bang up
fop. Supports for Hents. Supports for both vests and coats, made of Citiea, bopper wire, are soid by the street venders in show, bat any one can malre equally useful, if less

Extension Leaf yor a Common Table.-It is often desirable to extend or enlarge a common adde-leaf table, and this may be readily done by a contrivance shown in figare 5. This shows a board, B, about 18 iuches wide, and as long as the table is wide. Two hard wond sticks, P, P, one inch square, and three feet long, are secured to the leaf B by screws; two holos one inch square are made in the end close under top A, through which the supports P, P pass as indicated
 by dotted lines. This in a very convenient method of attaching a portable leaf, the only objection being the disfigurement of the table by the two scuare holes. To avoid this wo would suggest the plan shown in gigure 6, in which W, W, are the side-leaves,
and E the extrs or pori and E the extrs or porFig. 6.-table extended. table leal, which is connected with the table by swinging arms R, R, loosely attached to leaf E, each by one small bolt, placed near X, X, in the figure ; when in use, the arme R, R, are in the position indicated by dotted lines, when not in use, fold lengthwise of leaf and occupy but little room.

The Effects of Cigarette Smoking.

Several of the prominent phymicians of New York city unite in declaring that cigarette smoking is much more injurious than cigar smoking, because the smoke is generally inhaled, and oiten ejected through the nose. It has a particularly harmful local effect on the mucous membrane of the nasal passage. People who use cigarettes are more liable than others to be afflicted with local irritations that produce catarrh. In persons of nervous temperaments the doctors may cigarette smoking afways produce constitutional effects. The pulse is incressed in frequency, is smaller shan is natural, and is irregular. Such persons aresaid by physicians to have a "tobecco pulse," and a "tobacco heart." The action of the pulse in this respect is not to be mistaken. Persons who constantly smoke cigarettes are said by physicians to be easily excited, and to have a tendency to vertigo and dimness of vision, benides being troubled by dyspepsia. Bronchial and throat diseases are much more readily caused by cigarette smoking than by cigar smoking, and during the last six or seven years a large increase in diseases of the air passages, due alone to this habit, has been observed. Physicians state that there is not one-fiftieth as much of the mucous surface covered by cigar smoke as by the inhaled smoke of a cigarette. Excessive indulgence in any form of tobacco smoking may produce general paralysis, while by enfeebling the circulation, lowering the vitality of the system, and interfering with assimulation of food, it tends to produce anæmia, which is one of the first steps towards softening of the brain. Vertigo, when resulting from smoking strong cigars, or from the inhaling of cigarette smoke, is due anæmia, or in other words to a diministbing supply of blood to the brain.
By some it is claimed that the paper wrapping of cigarettes is as hurtful as the tobsacco. This claim is grounded upon the belief that the products of the imperfect combustion of the paper or other vegetable tiber are pyrogallic and pyioligneous acids, which make their presence unpleasantly felt in the mucous membrane.
Silveriva Misitais, - The process of deposit
Ing metallic silver upon glass is as followe:(A) Dissolve ten parts of nitrate of silver in 50 parts of distilled water, and deutrsise with about 6 parts of liguor ammonies; add to this a solution (B) of 1 part tartaric actd lu 41 parts of water, and dilute the whole A and B solution with 500 parts of water. The things to be silvered should be placed convenlently in a vessel, the solution poured in, and then put away in a quiet place for a few hours at a temperatare of from 40 deg. to 50 deg . C. When sllvered they may be washed by a gentle solution of water, dried, and varnished with a solution of amber in chloroform

Cure for Burns.

Glycerine, which may be considored the ethereal part of oil, has the property of penetration to a most remarkable degree; it penetrates the solid bone. Being thus penetrating it is recommended by Hall's Journál, as the very best application for all feverish sores, for inflamed or dry surfaces simply from its quality of pepetration and want of evaporability; the first and highest value of any poultice is its capability of keeping moist for the longest time; no one ever thinks of a dry poultice; glycerine keeps a part moist longer than any substance known, hence its value as above mixed with an innoxious dry powder, called sub-nitrate of Bismuth, so as to make a thin paste or poulice. It is one of the very best applications knowu for burns, whether in children or adults, giving an almost instantaneous relief from suffering, by its entire exclusion of the air and by its moistening, hence cooling, soothing effects, promotes a speedy healing process, always safe, simple and efficient. A few cents will buy half a pound of it at any good drug store, and every family should have some at hand, in a bottle, plainly labelled, witk a bottle of glycerine at its side.

A Simple Remedp fok Cinuers in the Eye.-Yersons traveling much by railway are subject to continual annoyance from the flying cinders. On getting into the eyes thoy are not only painful for the moment, but are often the cause of long suffering, that ends in a total loss of sight. A very simple and effective cure, is within the reach of every one, and would. pervent much suffering and expense, were it more generally known. It is simply one or two grains of flax seed. They may be placed in the eye without injury or pain to that delicaterorgen, and shortly they begin to swell and dissolve a glutinous substance that covers the ball of the eye enveloping any foreign substance that may be in it. The irritation or cutting of the membrane is thus prevepted, and the annoyance may soon be washed out. A dozen of these grains stowed away in the vest pocket may prove, in an emergency; worth their number in gold.

Foreten Bodins in the Stomach.-. L'homme a la fourchette, so famous in Paris a year or to ago, is distanced by a man in Australia now undergoing imprisonment for being unatle to restore a gold ring which he swallowed, being to the prosecutor. He is being treated by the visiting surgeon of the jail with the view of making him diagorge a large steel Albert chain and a common brass ring. The chain can be distinctly folt at the bottom of the atomach, and the prisoner states it is now nine months since he swallowed it, and it is the only one he has had any difticulty about. The jail. or has a collection of objects, such as Albert chains, penknives, and rings, which he has procured by making him vonit by emetics. The prisoner is an intelligent young man of twentythree.

Warped Fhetwork - Well damp it on the hollow side with warm water, and well warm it in fropt of ere; so soon ss quite warm lay it on a flat sturface and place a flat board on top of fret-work, on which place heavy weights. It not quite fat, go over the same process; when you have it flat it would be quite as well to glue a thin slip of wood the reverse way of the grain on the back of the fretwood.

Varnisil Brusil Keepre - Into a wide: nouthed glass jar, placed on a rack for keeping it in the proper position, place a wire shelf titted so as to keep its place in a horizontal position; then fll a jur to wiluin an iuch of the shelf with spirits of turpentine, cover the mouth with a close fitting tin cover, and the keeper is complete. Varnish brushes way be kept in this way by simply wiping them out on the varalah cop, aud layiug them on the wire shelf until they are wanted again.

saw makime.

The manufacture of asws, from the plain hand-saw to the immense circular and gang saw, has been brought to such perfection by the firm of H. Disston \& Sons, in this city, that a description of the process as carried on in their establishment, at Front and Laurel streets, might be of interest.

Their raw material consists of "blister bars," which are blistered from a particularly pure brand of Swedish iron.

These bars, together with steel scraps, are melted in crucibles; furnaces used for this purpose are of the ordinary conatruction. The melted steel is poured into moulds and the ingots are forged out into blooms under a heavy steam-hammer.

In hammering, as well as in rolling, great care hat to be exercised to obtain uniformity of density and tevtion, otherwise the hardneas and temper could not become uniform, and there would be a tendency to buckling and consequent heating.

These blooms are brought under a train of rolls, similar to those used in plate mills, and, after having been re-heated several times, at last acquire the necessary thickness and width. It is of course important to raske the saw blade as thin as can be for its work, so as to eflect a saving in first cost, in the lumber to be cut, and in the power for cutting. (As a good anwyer can cut with a thinner saw than a poor one, it is but questionable economy to employ groen hands.) After being annealed they pass to the trimming shears, where the ragged edges and all other superfluous material is removed, and they are then ready for teeth cutting.

The big cuarse teeth of the larger circular and gang saws are cut ont by punches; some of them are driven by power and resemble an ordinary punching machine, the punches and dies being formed according to the shape desired for the teeth. A number of hand presses are also used for some particular kind of work.

The machine for cutting the teeth of hand cawi consists of a rapidy ravolving disk, into which a steel cutter of proper shape is inserted. In front of it are four friction rollers, which take the steel blade between them and propel it past the revolving cutters at such speed that the proper pitch of teeth is attained. For onvall hand mws, with very tine tecth, a number of hand lever presses are still used, although they work liuch slower, and at greater expense, than the above power machine.

The angle and frequency of teeth must be adapted to the work to be performed, and conscquently differ greatly; but a general rule is that they should be a uniform distauce apart and all of equal length. Clearance or chamber space is required in large saws, to hold the sawdust until it can escape, and in some gang saws a spocial deeper clearance space is arranged after every second or third tooth. Soft wood, roquiring greater feed, thus also necesoltates more clearadoe. With large teeth the clearance space or gullet should have rounded outlines, to provent cracks frons starting, s* they frequeutiy do in sharp corners.

Another importsint point in shaping teeth is to adopt a form.that will allow the greatest amount of sharpening (and refiling) with the leant expenditare of material, thhor, files and time, and diminish, in circular sawe, their diameter, in gang saws thoir width, by the least possible amount, so that they can be used for a longer time with the same efficlency.

Mcsars. Disston \& Sons have adopted and patented a system for shaping teeth, in eonformity with the above couditions, and their saws have lines marked oa them, to cerve as guides for sharpening and adjustment.

The saws now go to the hardening and tempering room where they are heated in ordinary reverberatory furnaces, and then plunged into an oil bath, which makes them hard and hrittle as glass; sometime they are also distorted and twisted out of ohape. All thie io to be corrected in the tempering furnace, to which they aro ow taken

The tempering furnace is built around a hydraulic prem, the head of the plunger being surrounded by the flames; this head is of such size as to take in the largest circular saw. When suoh a one, or a number of smaller naw blades are placed upon it, the premure is put on, it rises slowly, and at last premes the saw blades agninst the top p'ste of the presa, and holds them until the neceseary temper is given. When the blades come out they are straight and surprisingly flexible. They are generally tosted by being forcibly bentinearily double, and if any one should crack, or not return to its original straightness, it is rejected.

The principal requisites in hardening and tempering are that the metal be bard enough to cut well and to remain keen, while not so hard as to crack, to prevent swedging or to resist flling. It should aloo have aufficient stiftem, without brittlenees, so an to permit setting.

The saws now go to the hammering benches, where they are placed upon iron straightening blocks and treated with peculiar hammers. Theog hammers have long narrow fices at both ende, parallel to each other, but at 450 to the direction of the handle; it will thas be seen that the marks made ty one face will be at right angles to those made by the other, so that the hammerser can place hife marks in almost any dirteotion without changing his poaition.

Thic hammering procese requires great andl, so as not to produce deep hammar narks, or create any unequal atrains that might cause buckiling.

The same are now ready for griading; some of peculiar shape, especially thowe that require a thicker cutting edge, are ground on ordinary grindstones by boing pressed againat them by the grinder. This is of course a very show process and must be a terrible strain on the workmen.

Thore are ceveral very ingenious grinding machines in use; in thowe for circular saws, a bed is placed acroen the fice of the grindatone. A frame siliding on this bed contains a pivot pin, on which the circular sawis is slowly revolving, and this is effigeted by two friction rollere (eleo attached to the aliding frame), which take the edge of the an between them.

Opposite the grinding thes of the stone the maw is apported by a set of rollera, and thus it is ground while it is alowly rovolving, and moved along on the sliding bed. In another machine the naw moves between two grindatones opposite each other, and thus the tre faces are ground at the aame time. In another machine, destined for large gang anws, two grindstiones are aleo uned, one above the other, while the maw in Blowiy dragged between thom horisontally.

Commore hand enwis aro ground on a machine with one stone, the maw bledes briny pleced in an arched block conniected by arma with a swing shat in front of the atooe.

The arc of this block is deacribed from the centre of the swing chat, at the same Hme forming a tangent to the stone; the block, after the saw is put in being moved up and down, will ineure a uniform thictrnemo of blade.

After being ground the sawn go into tho,polishing dopartment; a rapidly revolving pulley, oncircted by a leather bolt, on which emery inglued, if the meana by which small mina are poliched, On eoves of shose palloye the emery ia not glued on, hut the
article to be ground is wetfod, dipped in emery, and then held to the poliehing whol The circular saws are fixed on a shaf, which is then revolved at great apeed, apd polishing block with emery is pressed against them.

In grindiug and polishing, great oare has to be taken to obtain a miform thickness and a amooth surface, 50 as to reduce friction in sawing.

After being polished the hand same go through the blocking process, that ia, thery are hammered on a block of hard wood, whereby any buckle or twist is taken entiody out

Undergoing all these different treatments, the saws have become a little too loce and fexible, and it becomes necessary to give them a certain stiffess, which is dow by heating them in a amall reverberatory furnace untll they attain a violet or hue. When they come out they are wiped with diluted murnatic acid, which takes ${ }^{d}$ any color, leaving them bright and shining as before. The acid is removed by tor mersing them in lime water, and they are then putinio saw-dust, which takee up the moisture.

The grinding and polishing has still left some croes marks and irregular lines a the surface of the saw ; to give them a smooth appearance with a uniform stroke polish they are subjected to the rubbing process. A bpx, running on alides, is recipro cated by a connecting rod from a rapidly revolving crank+haft; into this box the se is put, covered with polishing powder, and a block fixed to a lever, which can be rain and lowered, is presmed hard down on it while the box is reciprocating; when tel out, the blade has a beautiful glose, and a regular and uniform stroke of polish.

The saws are now taken to the work benches, where their teeth are set by bell -ith a small hammer; they are then put, two and two together, in a vise and and so as to give their cutting edges the proper bevel.

The teeth of large circular and gang naws are beveled by a machine with an ery wheel having a rim in accordance with the shape of the teeth.

The hand sawn are now ready to have their handles put on; the neceseary bolet are punched, the blade is put into the alit of the wooden handle, and a number brass screws are put in and tightened up by counter-sunk nuts. The sawn are then again overhauled on the block and any little irregularity corrected by hammering.

They are now taken down to the storeroom, where they are again overbanici, cleaned and packed into packages, which are properly labeled and put into proper placea.

In the sample room of Messrs. Disaton \& Sons', their maqnificent glass case exhiblh shown at the Centennial Exhibition, can still be seen. Innumerable drawert ale. closets contain samples of all the different saws and other tools manufactured by the firm, and their systematic arrangement clearly ahows the spirit that pervadet entire management.

The transportation of materials, etc., throughout this entire establishment ${ }^{\text {s }}$ effected by means of mall cars running on a railway of about 16 in . gauge; con
cation with the diserant floors of the building is kept up by several elevators.
employed, mad aboit 40 tona of new ateel used up per wrek
J. Hate

The Engineering News kays: When steam cars are once succespfully introduced apab treet railways, we shall look for the adoption next of traction engines for handling heavy loads, which are now conveyed from foundries and iron working shope by aid of large teame of horses, taking up much space and seriously interfering with lic convenience. These engines have been used in considerabie aumbers in come al cities of England ard Scotland, but we believe the ouly shape in which steam apperp in the streets of our American cities, except as previously noted, is in driving the hest rad rollers, so effective in consolidating the roadway.

Black INE. - Nutgall ink writee very pate at first; manufacturers uned to "age" it by keesing it several months, etirring two or three timen daily, in order to darkel the color. This time can be considerably shorteded by blowing air through the inlin which can very conveniently be done by meana of a sof rubber ayringe. Since idea is io oxidize the iron salt, the oxidation can be obtained in a short time by pp ting chlorates of potasan and cupric oxide (or powdered alase, or simaliar subetance a test-tube; cloee the latter with a cort, through which pawees a beat tube, and fuld-ounit 0 . Oxygen will be evolved, and ire grallo of int The no of addition of cupric oxide to the chlorate is merely mechanical, to smellitate its fueloo -Drugg. Cir., xxi, 67.

Spongy Gold.-From our contempotary, Industrieblitur (i876, 401) we glean the following method of obtaining the finely divided gold so much used by dentista. solution of gold is made with aqua regia, not necesserily free from copper, is o rated uutil the excess of nitric acid is driven off. Oxalic acid and carbionate of pot sium are then added in such quantity as will retain almost all the gold in sol An excess of oxatic acid is then added and the so'ution boited. The gold is then P cipitated, while such impurities as copper remain in solution. The precipitated is carefully wasbed until it is entirely free from acid. It is dried on filter papar is then ready for use.

An English engineering paper commences a lengthy illustrated articla on "Ty Ashtabuls Bridge," as follows: "When a bridge gives way suddemby under weight of its ordinary working load, it may be taten for granted that thare in
thing radicaily wrong in either the design or the construction, and the event be called an accident." This is a proposition that can neither be fanked nor climb over.-Hardvare Roporter.

Hardenina Papir.-The French papers apeak of a method of roldering paped extremely hard and tenacious by subjectivg the pulp to the action of chloride of zinc. After it has been treatod with the chloride it is submitted to a mtrong presure, these after becoming as hard as wood and as tough as leather. The handnose varies accord ing to the atrength of the metalicic solution. The material thus produced can be ensily colored. It may be employed in covering toors with advantage, and may be made to replace leather io the manufacture of courne shoes, and is a grod material for whiphandes, the mountings of saws, for buttons, combs, and other articles of various deecriptions. An excelient use of it is in large sheeta for roufing. Papor alrendy manufectured scquires the seme consistency when pluared, undized, into solutios of the chlorde.

