PROCEEDINGS R-5

,

Second Annual Meeting;

OTTAWA, FEBRUARY $17,18,19$ and 20,1885 .

ortíve:

PROCEEDINGS

OF THE

ASSOCIATION OF

Dominion Land Surveyors

$$
{ }_{7}^{\text {AT ITS }}
$$

Second Annuál Meeting,

1
OTTAWA, FEBRUARY 17, P8, i9 and $20,1885$.

OTTAWA:
PRINTED BY A. S. WOODBURN, ELGIN STREET.
1885.

$$
25 \div 1018009
$$

ASSOCIATION OF DOMINION LAND SURVEYORS

OFFICERS FOR 1885.

HONOHARY, MEMBERS.

The Surveyor General,	Prof. Macoun,	Andrew Russell,
Capt. B. Deville,	Dr. Bell,	E. E. Taché,
W. F. King,	Prof. G. Dawson,	Bolton Magrath.
Prof. Selwyn,	Prof. Barrington,	,

y 3.j0yt9a

CONSTITUTION AND BY-LAWS
 7 wank

 -Or YHB-Association of Dominion Land Surreyors.

giff la subouir lorosing a

CONSTITUTION.

Abstract

 ARTICLEII. 4.2mums 10 " 5 The Association of Dominion Land Surveyors." vio' tath ARTICLE II. objeors of the association. - - , akstionio The promotion of the general intereste, and elevation of the standard of the Profession.

1. The Association shall consist of Active Members and Hpaorayy Members.
2. Active Members muet be Dominion Land Surveyors, and only such shall hold office.
3. Honorary Members shall be such persons only who ase distinf guished for Professional Attainments. They shall be exempt from dues:

ARTICLE IV.

Tavtrorvoses.

1. The Surveyor-General of Dominion Lende ahall be Elonotery Preaident of the Association.
2. The Officers of the Aseociation shall consist of an Hionoriety President, President, Vice-Preaident, Seoretary-Tremetres, and 4 ght Mrecukiven Committee, all of whom; exoept the Efonowiry Prwident, to be elected at the annual general-meeting by thallot. to thobsing 9 ift to

ARTICLE V.
 ELitotion of members.

1. Any Dominion Land Surveyor upon being proposed in writing by at least two members shall be eligible for election as a Member of this Associaton upon payment of the necessary fees.
honoriby members.
2. Honorary Members must be recommended by at least two Memberesoypyille lo Bil flotise.
3. All voting for the election of Members shall be by ballot and at a general meeting of the Association.
4. The majority of the ballots cast shall decide.

ARTICLE VI.

uereminas.

1. The Annual General Meeting shall commence on the third Tuesday in February, in Ottawa; and aneral Meeting shall be held on the third Tuesday in April, in Winnipeg. TYGA :
2. Special Meetings of the Association may be called by the President, or by the President, when requested in writing by three or more Members.
3. Five shall form a quarum at any meeting for the transaction of buainess.

ARTICLE VII.
 anemdients.

1. This Constitution may be amended at any of the General Meetings by a vote of at least two-thirds of the members present at such meeting, but no amendment shall be considered unless notice in writing thereof Bhall have been given at the next preceding General Meeting.
2. No By-law or Rule shall be altered, or new one adopted, except at a Gerieral Meeting. Notice of such proposed change and of the meeting at which it is to be considered shall be given to the Secretary one month before such meeting, the members to be notifled thereof by the Secretary.

ARTICLE VIII.

EXEOUTIVR OOMYITTERE.

1. The Executive Committee ahall consist of the President, VicePresident, Secretary-Treasurer, and three members; and shall heve the direction and management of the affirs of the Asiociation. Three, members to form a guorum. of. 2. The Meotinge of the Freoutive Committee to be held at the oell of the President or Seorotary-Treseurer.

5

ARTICLE IX. additors.

Two Auditors, to be elected by ballot, ehall audit the accounts of the Aspociation annually, and present their report of the same at the Annual General Meeting.

ARTICLE X.

subsoriptions.

1. The lee for membership for Active niembers shall be five dollars, and an annual subscriptfon of two dollars for each subsequent year; both payable in advance.
2. Any member twelve monthe in arrears shall be struck off the yoll, and no member in arrears shall be allowed to vote.

 The dit :

whtomeo xo kalk en

BY-LAWS

"ORDER OF buginess.

1. Reading of Minutes of previous meeting.
2. Reading Correspondence and Accoŭnts.
3. Propositions for Membership.
4. Balloting for Membership,
5. Reports.
6. Unfinished Business.
7. Election of Officers.
8. New Business.
9. Adjournment.
10. All motions must be in writing, and shall contain the names ${ }^{*}$ of the mover and seconder, and must be read by the Chair before being discussed.
11. Reports of Committees must be in writing, signed by the Chairman thereof.
12. No member shall speak on any subject more than once, except the intrgducer of the subject, who shall be entitled to 'reply; every member, however, shall have the right to explain himself, subject to the discretion of the Chair.
13. When a motion has been finally put to the meeting by the Chairman, all discussion thereon shall be closed.
14. The Chairman shall appoint two Scrutineers when a ballot is taken.
15. Every member while speaking shall address the Chair.
dUTIES OF OYFIGERS.
16. The President shall preside at all meetings at which he is present; in his absence the Vice-President; and in the absence of both the meeting shall appoint a Chairman.
17. The presiding officer shall only have the casting vote, but not a deliberate one.
18. The Secretary-Treasurer shall keep an accurate record of all meetings, conduct all correspondence, announce all meetings, receive all fees and subseriptions and other moneys, pay no bitls paless sanctioned by the Executive Committee कhd signed by their Cha/tman, make an snuual report of all his receipts and disbursentents, and shall perform such other duties as may from time to time be assigned bim by the Executive Committee.

SECOND ANNUAL MEETING
-OF THE-

ASSOGIATION OF DOMINION LAND SURUEYORS

2. .

Ottawa, February 17, 18, 19 and $20,1885$.

Tuesday, February 17-3p.m.

Routine business.
President's Addrese.
Election of Officers.
1
7:30 p.m.
Notes on the different aystems of Survey in the North-Weat Territoriesby W. F. King, Inspector of Surveys.

Selection, Equipment and Management of a Survey Party-by Thomas Fawcett.
Wedneaday, 18 - $10 \mathrm{a} . \mathrm{m}$.
Reffections on the Acoidents of Lif-by Jno. A. Snow.
470 A new form of Field Instrument-by G. B. Abrey.

- On motion the minutes of the preceding meeting were conifrmed.
od The following Dominion Land Burveyors were then duly elected members

George Rong, yather culdiqy en雨. D. F. Fiv. Fooster,

The President then delivered his Annual Address :

Gentlemen,-I congratulate the Association on its second annual meeting.
*t is gratifying to see that our membership has increased to seventy-two in number. The Association is still in its infancy, and will have to struggle for a few years before it is settled, upon a permanent basis. The latter can only be attained and maintained by the active interest of the members.

It is customary for a president to review the progress of the society and the progress of that branch of science especially pertaining thereto during the past year. With our society it is rather a difficult subject, partly on account of its recent organization, and far more so than were we an engineering society. The real progress of our society and profession will be when the surveyor will execute his work with greater care and precision and to the best of his ability. I do not wish to insinuate that the surveyor is deliberately careless, but public sentiment and opinion regarding surveyors is so lax,-preferring a quick, cheap survey, -the basis of operation uncertain-that the surveyor from force of circuinstances, has to comply with such requirements, and hence the standard of the profession is kept low.

Regarding progress in the science; this field is very limited, for our work is mostly confinnd to mathematical formulæ and instruments with which we obtain the necessary data therefor, Of the former we are amply supplied, and the same may be said of the latter, and is the limit of excellence of the latter about reached; no great discoveries or inventions are made, merely details. Were we only versed in both what has long been known, so that we could manipulate them thoroughly, our standard would certainly not be low. Furthermore, our sphere of action does not as yet reach to that extent which is practiced in other countries. This pertains to the broader view of the meaning of "surveyor."

The greatest drawback to the land surveyor in our countiy is that nefther the Federal nor Provincial Government has made or begun to make a systematic and accurate survey of the country, at least of the more densely settied part. Sooner or later such a survey must be made, and the sooner the better; the expense of such a survey, although apparently large, would be repaid tenfold, nay hundredfold, by saving of unnecessary costs of litigation respecting boundaries, by furnishing most nseful and valuable data for drainage of areas, for water basins, for preliminary surveys of projected railroads, for mineralogical development, for cadastral maps useful for purposes of assessment, and for various other matters conducing towards the welfare of the community and progress of the country. An eminent engineer states that in the State of Massachusetts alone about $\$ 20,000,000$ would have been saved in its public railway expenditure had accurate topographical maps been extanto Now such maps are in course of construction.

I think we are!the only; remaining civilized nation that has not commenced such a systematic survey. Had the extreme usefulness and expediency

ther

of such a survey not been shown and proven, there might be nome plea for procrastination, but with nearly the whole civilized, vorld tor witnees, there ie no excuse. We can take no better example for illustration than the Ordnance Survey of Great Britain.

What use is there for the rising surveyor to acquire more knowledge in his profesion than his predecessor if, when he enters upon his practice, he finds the same inaccuracies and vagueness in official plans, maps and documents, -what occasion will he have to apply his superior skill? To build a mansion upon quicksand.

The maps of our country (either as counties or as a whole) are inaccurate, for the surveys upon which these mapa rest or are mostly based, were made with the old chain and compass through woode, nearly one hundred years ago. To give an idea of the reliability of maps where no survey of precieion has been made we may take the weallhy State of New York. The best map of this state up to the present time is, at places, as much as two miles in error. The State Legislature has since some years appointed a Board of Commissioners of thoroughly competent men, authorizing them to have a trigonometrical and topographical survey of the etate made, which is now in progrees, In the most of the other atates and territories similar surveys have been made or are in progress, besides the grand work of the Coast and Geodetic Survey carried on by their Federal Government. The Arst work neccessary to be pertormed will be a triangulation of the country; this must precede the topographical work proper ; just as in the erection of a building, a molid foundation must be laid ere a lasting superatructure oan be erected. In a triangulation the public of course sees little or no use of covering the whole country with a "spider"s web," yet such is absolutely neceessary. It has been thought possible and practicable that if the Goverument laid down the framework, i. e. estabibh points throughout the country, that the detail work could and would be performed by each municipality; but this ides has proved fallacious and the attempt futile, so that it is also a settled matter that if the whole work is to be efflcient it must be oarried on by the Government and with a permanent and competent tataff of survegora. In the first few years of such a survey the publio will reecive little direet beneft ere the detail mape are publisbed ; on this acoount the citizens are hpt to become impatient. It muat be remembered, too, that moneys expended on suoh survers do not bring benefits so patent as dividends of a gas company. The former mast be likened to those bestowed upon the nation by our free publio schools. Such a burvey must be energetically carried forward so that its completion, at least of the more populous parts, may not be too much protraoted, and the citizena gain the beneflit thereof.

Without dilsting on this subject any further or entering into any of the other branches with which the surveyor comes in contact, I would urge overy aurvegor to bring thio subject to publio notioe and to keep it there until the Gorernment begine the primary work.

1

10
We following amusing note is copied from one of Senator Cox's books. "The scientific books printed by Congress have often provoked humorous irony from the facetiously frugal mind. -This is the queerest brok inside of lids,' said Senator Fessenden. 'Take a box of common shoe blacking, and a brush, and a little white paper; smear it all over, and then take a pepperbox of white sand and sprinkle it all about, and you will have as good a book as this Exploring Expeditions.'"

Having also taken during the past season on my "Exploratory Survey to Hudson's Bay," some magnetic observations, a communication of some of the results thereof may not be uninteresting.

Magnetism is a peculiar quality possessed naturally by one kind of iron ore called "loadstone," and may be artificially produced in iron and steel (especially the latter) by certain processes, which, without altering any of their other properties, such as their weight, hardness, \&cc., give them certain additional properties of which the most obvious is that of attracting and in some cases repelling other bodies, hut the most useful is, that of "pointing" in a certain direction, when allowed to move freely. This directive power or characteristic is from the present knowledge confined to the earth; what position a straight magnet (not considering its weight) would assume in space is not known, for the cause of the earth's magnetism and the laws which govern the same are still imperfectly understood.

A straight steel magnet we term a needle.
Magnetism is distributed over the whole surface of the earth, and every where exerts its power in a greater or less degree. When a magnetic needle is suspended, and free to move, it alwaye assumes a constant direction, but this power, or force is only of direction, not of translation, herein differing from gravitation; this peculiarity may be illustrated by attaching small pieces of cork to the needle and floating it in water, it will immediately assume its north and.south position but otherwise remain stationary.

We find by experience that if two needles are brought near each other that the "seeking" ends, or those pointed towarde the north (in the N. hemirphere) will repel each other, but that the north end of the one will be attracted by the south end of the other, i. e. like poles repel and unlike attract each other, so that strictly speaking, considering the earth as a huge magnet the seeking end of a magnet in the northern hemisphere is the "south" poleThis directive property in azimuth is termed declination, formerly variation.

Furthermore we will ind by observation on our freely suspended needle that in different latitudes it will not preserve its same position towards the horizon (slthough evenly balanced as far as its weight is concerned), this is the second part of its directive power and is called dip or inclination. On this account surveyors in changing their latitude are obliged'to "balance" the needle (when doing compass work) by means of a small shiting weight, generally a brase wire wound around the needle.

There is yet a third magnetic element which is subject to varistion, both from time and place, namely, the "intensity" of the force by which the needle is pulled into its peculiar position. This is found to be generally greatest near the earth's poles and diminishes therefrom, but it varies irregularly over the surface.

Concerning the history of magnetism we gather that in China more than 2;000 years B.C. the directive praperty of the magnetic needle was known and. made use of, and through then the knowledge reached Europe, but not till about the llth century of our era. The Norsemen were the first who made use of the loadstone in Europe. From a Chinese work in the beginning of the 12th century we learn that thep the needle was suspended by a thread and the mode of determining the declination long understood. Columbus is probably the firat who recorded the change of declination with a change of position. When he left Spain he had east declination, and on his voyage in lat. 28°, long. 28° he had 11° west; he necessarily cronsed the agonic line, or line of "no angle," i.e., where the magnetic and astronomic meridians coincide, which fact he noticed. Hence on our magnetic records and observations slowly but steadily increased. But it remained for the great Alexander Von Humboldt, in the beginning of the present ceutury, to bring the study of magnetism to a science. It was he who first published the law that the intensity of the force increases (in general) with the magnetic latitude, supported by observations at 104 places. During hie travels in the tropical regions of America, he observed the oscillations during ten minutes of the same needle at different stations, and from the number of oscillations deduced the relative magnetio force (especially Paris) using as standard or 1.0000 that on the magnetic equator in the Peruvian Andes. This method is now superseded by the superior one of determining the absolute magnetic force. Humboldt was the first to demand the establishment of magneticstations throughout the world, and in April 1836 wrote to the Duke of Sussex, at that time President of the Royal Socityy, on this point, urging amonget other places the eetablishment of etations in Canada. In magnetic surveys which followed and the contributions to magnetism, the name of the late Major Sobine is inseparably connected.

Friedrich Ganse (1777-1855) made an elaborate mathematical investigation of the problem and gave ue a "general theory of terrestrial magnetiem." Besides these there are other names worthy of mention, but space does not permit.

While in the magnetic force upon the earth we have the deolination, inclination and intensity theroof inseparably connected, yet to the surveyor and navigator it is ooly the first which specially interests them. Its determination for the surveyor is quite simple. By means of his transit theodolito he takes either a solar or ateliar observation for asimuth (the latter is more aocurate but not so convenient to take, and for this purpose the former anawers all purposes,) then comparing the delermined true aximuth with the magnetic
gives the required declination,-expressed as west or plus when the north end of the needle points west of the true meridian and east or minus when in the opposite direction.-When such an observation is taken the place, year, day and hour, should be recorded as each influences the declination.

Beginning with the last we come to consider the solar-diurnal variation, which shows us, a systematic movement of the needle during the 24 hours. About sunrise it is at its easterly elongation, and then follows the sun till 1 p. m., reaching its westerly elongation, when itretraces its movement. At about 101 a. m., it passes its normal position for .abe 24 hours, and a second time about $8 \mathrm{p} . \mathrm{m}$. In summer this diurnal range is greater than in winter, and also during years of maximum sun-spots greater than during minimum sunospots. For our latitude the diurnal range is about 9 minutes of arc. Besides this movement, irregular disturbances will occur, as observed along the Nelson during the past season. I generally took with each astronomic azimuth determination a magnetic one also, for which latter several readings would be taken, naturally expecting the needle to settle at the same point, (it is better to take the reading between the vibrations,) but in several instances found over half of a degree variation in thedeclination. I took out the needle, examined its pivot and bearings, lest they might have been damgged, but both were in good order, I remagnetized the needle with the two long bar magnets of the dip circle, but all to no avail. The reason of such abndrmal behavior, I failed to discern. Similar behavior with the dipping needles occurred. When perhaps the amplitude of vibration was fast diminishing, all of a sudden it would start off again and swing, I might almost say violently, as if some fresh magnetic current had seized it. Whether the azoic rocks amongst which I was could produce any such fluctuation does not seem probable, although their attraction was often quite evident; but this, is a constant for the same spot of observation.

It is beet not to theorize upon the strength of a few isolated observations, but to keep on gathering facts, until from them, collected from all quarters of the globe, an hypothesis may be deduced, and when established become a law of nature.

The next variation is the annual, but for practical. purposes it may be neglected.

Next comes the secular change of the magnetic declination. This is the most important of the various changes to which the needle is subject. Knowing the same, the surveyor is enabled to re-establish old lines, which have been obliterated, and thereby save costly litigation. Without this knowledge it would often be impossible to establish such lines correctly. In this connection it may not be out of place to state the desirability of having all maps and descriptions in deeds of land expressed in astronomical bearings which are constant, to which might be added in parenthesis, as explanatory only, the original begring (compass) of the lot line \&c. as given in the first patent

18

thereof. But, if in the backwoods it is found expedient to run "compass" lines the date of such survey upon which the bearings are dependent should be always given in every conveyance consequent thereto. The neglect of giving the date of magnetic bearing leads to much confusion. In my own municipality I have found four different bearinge-varying several degreesrecorded for one and the same line; and all the bearings are from the same surveyor. The difficulty of giving readings to single minutes of are with the needle, the fluctuations thereof, and the ever increasing value of land should necessitate such a change in the descriptions as above alluded to, in fact it should be compulsory by statute. This refers to the older provinces. In the North-west the needle is banished.

If year after year the magnetic azimuth of a certain line be taken it will be found to change steadily and in one direction until it has reached its maximum either to the east or to the west, when it will begin to return and move steadily in the opposite direction. This motion is not uniform but least near its eastern and western elongations.

At Toronto, during the last four years the mean has been four minutes late annually westward. The declination for August, 1884 there being $3^{\circ} \mathbf{5 7}^{\prime} .25$ west. There is no record of observations on this continent which comprises the whole range from eastern to western elongation, but such is found for Paris. The earliest declination there recorded is for the year 1541. From this latter record it appears that the time elapsing between the eastern and western elongations at Paris is 233 years, from which may be assumed that the magnetic pole makes a complete revolution around the actual pole in 466 years. The variation in declination between the extremes amounted to nearly 34°.

The agonic line, or line of no declination, passed in 1877 through Detroit and is steadily moving westward.

It is found that lines of equal declination isogonic lines or magnetic meridians differ farmore from the astronomic meridians than do the lines of equal inclination -_isoclinic lines, from parallels of latitude.

The north and south magngtic poles are far from being diametrically opposite each other. Captain J. Ross found the former in 1831 to be near lat. 70°, N, long. 96° west, and in 1840 the latter to be at about 72° lats, and 152° long. east. Between these two poles there must be a line along which the needle turns neither to the north nor to the south, and that line is called the magnetic equator. It crossed the geographical equator in the Gulf of Guinea and eastward of New Guinea. The points of intersection are of course variable, and at present are moving westward. From these facts is seen that the magnetism of the earth is unsymmetrically distributed whether caused by the want of homogeneity in the mass of the earth is not fully known. From my observations extending from the Forks of the Saskatchewan to Hudson's Bay, about 13° in longitude, the declinations along the Saskatchewan, where there are no
rock exposures until Cedar Lake is reached, where sedimentary limestone is found, are far more uniform than those along the Nelson, the banks of which for three-quarters of its length are of igneous rocks. Along the former river in general an eastward motion gave a decrease of declination, but along the latter a similar motion produces sometines an increase sometimes a decrease in declination, and not until we pass the igneous rocks, which are succeeded for a short distance by limestone formation and then by clay until Hudson's Bay is reached, do we find a somewhat unitorm decrease in declination as we proceed eastward.

If we find from a series of observations that there is some regularity in the change of declination with change of longitude, it may be safely assumed that such dechnations express the horizontal direction of the magnetic currents of the earth better than those where such regularity does not exist. Our case in point: The declination along the Nelson should lie between that of Grand Rapids and York Factory, be less than the former and more than the latter; but instead, out of 37 intermediate stations 15 have larger declinations than Grand Rapide, and one has less than York. At none of the atations was there any mass of iron ore seen nor anything special noticed to cause "local" attraction. From this it is seen that granitic, gneissoid and hornblendic rocks intersected by trap dikes exert a greater influence upon the needle than diluvium or silt deposits or sedimentary limestone. Ere this might have been asked-what is magnetism? But the echo answers "What?" Mauy of its effects are known, but as to its origin, or whence it emanates is still a mystery. Were the earth's magnetism dependent solely upon the magnetism inherent in certain particles of its mass, we should expect practically no change from year to year, and furthermore the concentration of this magnetism would be near the centre of the earth Now as we have changes of magnetism although our magnetic particles where such do exist remsin constant or nearly so, there must be some other magnetism and this must exist in the form of currents. These are not evenly distributed over the surface of the earth nor do they continue constant in their uneven distribution of any particular time. As before remarked the magnetic energy is coincident with the sun-spot cycle; it seems probable that the source of magnetism is the sun-our: origin of light and heat of which magnetism may be a form.

Returning to the record of my observations of the past season, and conparing them with those made in $1843-44$ by, Sir J. H. Lefroy, we find the following differences for declination :-
5. 14. Near Forks of Saskatchewan a decrease of.
$2^{\circ} 55^{\prime}$
At Cumberlandtyliouse an increase of.
$0^{\circ} 36^{\prime} .5$
" Grand Rapide, Sasketchewan, a decrease of
$2^{\circ} 41^{\prime}$
c) Norway House a decrease of.
$0^{\circ} 36^{\prime}$
" York Faejory a decrease of.
$2^{\circ} 22^{\prime}$
These variations are made more apparent from the accompanying figure. From this it is seen that during the last 40 years the magnetic pole bas beed
Forks of Saskatchewan
Cumberland
House
Cumberland
House
moving weatward. Laying down the magnetic meridians from the above observations at the five stations occupied by me in 1884, the magnetic pole resulting therefrtm would be situated in lat. $68^{\circ} 46^{\prime}$ and long. 87° west. In 1831 Capt. J. Ross is said to have found the north magnetic pole in lat. 70° 05^{\prime}, long. $96^{\circ} 46^{\prime}$ west ; in 1819 the declination at York was found by Siz John Franklin to be 6° east, and in 1843 at the same place by Lefroy to be $9^{\circ} 00^{\prime} .6$ east. Now if in 1831 the magnetic pole was in long, $96^{\circ} 46^{\prime}$, York being in lat. 57° long. $92^{\circ} 26^{\prime}$, must not the declination at York have been weat? Again if in 1831 the magnetic pole was in long. $96^{\circ} 46^{\prime}$, and by observations since then it has moved westward, it would follow that it is west of long. $96^{\circ} 46^{\prime}$. Now, how could the declination at York now be east? The maguetic pole, as found by Captain Ross does not appear to me to agree with observations taken elsewhere, especially when we have observations north of latitude 50°, which should be of more weight than more southerly ones. It is questionable whether a point at which the inclination is 90° and the declination indeterminate is "the" magnetic pole, the point of concentration of magnetic currents. In the vicinity of the magnetic pole there is an accumulation of magnetic currents and it is not difficult to imagine that within this area that local attraction at any particular point might be sufficient to satisy the conditions of the magnetic pole. It is a difficult matter to separate the effect caused by formations (not an isolated body) from that of magnetic currents.

When we make a comparison of the variations in inclination at the five principal stations alluded to during the past 40 years the difference is slight. (Lefroy \& Klotz).

Forks Saskatchewan, a decrea	$12^{\prime} .0$
Cumberland House	$1^{\prime} 7^{\prime}$
Grand Rapids	${ }_{9} .6^{\prime}$
Norway House an increase of	$0^{\prime} \cdot 3^{\prime}$
York Factory, a decrease of	0.3

These variations bear no similarity or ratio at all to the variations of declination before stated.

Again when we similarly compare the aboolute force in British units we find at

Forks Saskatchewan an increase of. Cumberland House a decrease of .		0.062
		0.102
Grand Rapids	"	0.038
Norwey House	6 \%	0.054
York Fectory	4	0.125

In this we find an incrcase of force for the Forks where there is a decrease in the declination as well as in the inclination.

The accumulation of data apperently makes the true soultion of magnetiom more complex, nevertheless a vast amount of information is gained, and finally its true origin and cauce known, and add to the development of the latest science-meteorology.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stations. \& Dates. \& Latitude. \& Longitude. \& Declination. \& Inclination. \& Force in British Units. \\
\hline Near Forks of Saskatchewan \& \multirow[t]{2}{*}{\begin{tabular}{l}
May 26, 1884 \\
Aug. 18/44 1859. \\
June 17, 1884
\end{tabular}} \& \multirow[t]{2}{*}{} \& 104 \({ }^{\circ} 5^{\prime} 34^{\prime \prime}\) \& \begin{tabular}{l}
\(21^{\circ} 0^{\prime} \mathrm{E}\) \\
\(245^{20}\) \\
\(22^{\circ} 30^{\prime}\)
\end{tabular} \& \[
\begin{aligned}
\& 78^{\circ} 59^{\prime} \cdot 3 \\
\& 79^{\circ} 11^{\prime} \cdot 2
\end{aligned}
\] \& 13.976
13.924 \\
\hline \multirow[t]{2}{*}{Cumberland House} \& \& \& \(102^{\circ} 19^{\prime} 13^{\prime \prime}\) \& \& 80\% 21.62 \& 13.991
14.492
14.143 \\
\hline \& \multirow[t]{2}{*}{July 19, 1884 . 2843-448} \& \({ }^{5} 3^{\circ} 8^{\prime}\) \& \& \({ }_{15}{ }^{3}{ }^{38} 8^{\prime}\) \& 80
\(80^{\circ} 24^{4}, 87\) \& 14143
14.103 \\
\hline Grand Rapids \({ }_{\text {" }}\) (Saskatchewan) \& \& \multirow[t]{2}{*}{53 \(3^{\circ} 59^{\prime} 33^{\prime \prime}\)} \& \& \(18^{\circ}\)
\(14^{\circ}\)

19 \& 800 ${ }^{\circ}{ }^{\circ} \mathbf{2 6 \prime}$ \& 14.141
14.152

\hline \multirow[t]{2}{*}{} \& \multirow[t]{6}{*}{| July 23,1884 . |
| :--- |
| Oct. 4, 1884 |
| 1843-44. |
| Sept. 12, 188 |
| Sept. 13, 188 |
| Sept. ${ }^{11,}{ }^{188}$ |
| July 1843. |} \& \& \& \& - $811^{\circ} \mathrm{O5}, \cdot 37$ \& | 14.152 |
| :--- |
| 14.074 |
| 1508 |

\hline \& \& \& \& \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{} \& 14.008
14.017

\hline York Factory \& \& \& 92° \& \& \& 14.136, 14.098

\hline \multirow[t]{3}{*}{} \& \& \multirow[t]{2}{*}{} \& \& \& \multirow[t]{3}{*}{} \&

\hline \& \& \& \& \multirow[t]{2}{*}{$9^{\circ} 00^{\prime} 6$} \& \& 13.930

\hline \& \& \& \& \& \& 14.05 ${ }^{1}$

\hline \multicolumn{7}{|l|}{Notr.-The darker figures (Antique) are by Lefroy. Latitudes and Longitudes as given by him}

\hline
\end{tabular}

The officers for the ensuing year were then elected :-
officers for the ensuing year were then eleole
President.

It was moved by J. J. Burrows, and seconded by C. E. Wolff, and
Resolved, That A. F. Cotton receive the sum of fifty dollars for his services as secretary-treasurex for the past three years, the same to be paid out of the surplus funds of the Association.

It was moved by E. Bray, and seconded by C. E. Wolff, and
Resolved, That the railroad agenta be interviewed by a committee of this Association' to ascertain what they will do in regard to reduced rates for surveyors and their parties over their respective roads, and that the following gentlemen be the said committee:-The President, J. F. Snow, J. J. Burrows, T. Kains, C. F. Miles, J. P. B. Casgrain, S. M. Starkey, and the Secretary.

Kany of the members being unable to attend the evening session, it was resolved to dispense with the same.

Wadiesday, February 18, 10 A. M.
Opro J. Klotz, President, in the Chair.
Jho. A. Snow read a paper on "Reflections on the Accidents of Life."
Whereupon W. F. King, Inspector of Surveys, read the following paper on

NOTES ON THE DIFFERENT SYSTEMS OF SURVEY IN MANI.

 TOBȦ AND THE NORTH-WEST TERRITORIES.History tells us that man, in his primitive state, subsiated by hunting wild animals and fishing, and on the natural products of the earth.

Afterwards, as population increased, game and wild fruits became scarce, and he found it neceesary to domesticate cortain animals such as sheep and other cattle, so that by keeping them within his resch and protecting them from the ravages of beasts of prey, he might always be assured of his sustenance. He was still a nomad, as he was obliged continually to drive his herds to where the best pasturage and water could be obtained.

As population increased, and flocks and herds multiplied, it became necessary for each cattle owner to restrict himself to a particular holding, where he would not interfere with his neighbors. These holdings, no doubt, were governed in the first place by natural boundaries such as oreeks, rivers, mountains, and so forth. In support of this contention, I may refer you to Uhapter 16 of the Book of Joshus, in which the boundaries of the lot of Judih are very partioularly described, showing that thie wan the syetem practised by the laraelites at a time when they seem to have made some edrance in civilisation. The holdings being thus restricted in aren, the promure of dry semsons, in diminishing the phaturage and therefore hindering
the natural increase of the flocks, upon which the inhabitants depended for their föod, would be severely felt. This drove them to tilling the ground as a supplementary means of subsistence.

It does not appear, however, that agriculture was carried on to any great extent among Kastern nations at the duwn of history except in countries such as Egypt, where the fertile belt on each side of the Nile at once attracted and supported a large population who lived by hushandry. We read in the book of Genesis, that during a season of famine, Jacob sent his sons to Egypt to buy corn, showing that even at that early date Egypt must have been an agricultural country.

A large agricultural population crowded into a small space, required the sub-division of the country into small holdings, which had to be determined by means of lines instead of natural boundaries.
The science of geometry, which is the foundation of all surveying, is said to have taken its inception here, where every year landmarks swept away by the inudations of the Nile had to be re-established. Among the foremost ranks of mathematics is placed by common consent, Euclid, of Alexandria, who first placed geometry upon the footing of a logical science, and whose elements of geometry are used in schools to the present day with very little alteration in the order of the propositions.

The Pyramids no doubt were used as points of reference in these surveys, and it is probable that the Great Pyramid, in which there is a passage pointing to the Pole Star, was so constructed under the orders of the monarch by akilled astronomers for the purpose of establishing a meridian of reference to be used by surveyors who, in that day of primitive instruments, had not the means of readily and frequently observing the stars.

It would be impossible for me in such a short paper as this to trace the history of our profession from that time to the present day, or to enter into the different systems of survey which have been practised according to the varying needs of different countries. What I wish more particularly to direct your attention to is the systems of survey which we have adopted in our Provinces, and more particularly in the vast extent of country which we have been called upon of late to survey in the North-W est.

It was impossible in Ontario, Quebec, and the Maritime; Provinces, which were wooded countries, and where the first settlers selected their locations along the banks of large rivers or lakes, to have any one syatem of survey for the whole country, and the exigencies of each case had to be met by surveys which would cover the wants of the people. For this reason there has never been any uniform system in these Provinces. But where surveys were to be made in a large extent of territory, and the opportunity was had of surveying it ahead of settlement, it became the duty of the Government to select such a comprehensive survey system as would obviate all the difficulties arising from irregular aystems.

For the sake of greater simplicity in making the surveys, it is necessary that all boundaries of lots shall be atraight lines; that is, parts of great circles of the earth, and as the lots are intended for farms, they should be as nearly as possible square, the square of all four-sided figures containing the greatest area of land for the length of fencing required, and any other angles than right angles causing inconvenient corners.

Now the curved form of the earth prevents our making all the lots in an extensive aystem exactly square, and we have therefore to resort to an approximation to the square, which may be done in several ways. In this respect a system of survey may be likened to the projection of a map. While it is impossible to represent any portion of the earth's surface on the plane surface of a piece of paper exactly in all respects, as to its ares, the directions and curvatures of its lines, and so on, it is conversely equally impossible to

19

lay down on the earth's surface any system of rectangular conterminous lots as projected on a plan, without overlapping or distortion.

But as in choosing a projection for a map, we are quided by what we want
to show most correctly, whether it is the areas, or the directions or the curvatures of the lines, or the distances between pointe, so in selecting our system we must first decide in what respects we require the most accurate accordance between our lines upon the earth's surlace and the squares laid down on the plan.

The requisites of a good asstem of survey are these :-
(I.) Every nine must be straight, and must be continued straight as ar picking up of the line again when grown up tate both the first survey and the picking up of the line again when grown up with brush, or when the monuments have been destroyed.
(2.) Areas muat be as nearly as possible equal and similar in form, in order to simplify descriptions as by townóhips and ranges.
(3.) Independence of the surveys of different parts of the country, so that any accidental error may be cul out and not carried throughout the system.
(4.) The directions of analogous lines in two townships or two sections must be alike, both to simplify the observations and calculations needed in surveying, and to make it possible to readily re-establish obliterated survey lines.
(5.) Directions of all lines must be referred to the astronomic meridian.

Our North-West surrey system fulfils very fairly all these conditions. To show its advantages, I shall compare with two other aystems which might have been adopted.

First-Suppose equal distances of six miles each laid off along a central meridiar, and let transit lines be run from these points at right angles to this meridian, and continued indefinitely. Measure off six mile lengths along these and join the points so obtained. Here the townships are of equal area and of similar form, but only for a short distance from the central meridian. The effects of errore of measurement along the base lines would not be eliminated, but would affect the form of all the townships and the bearings of the exterior outlines, as far west as the system extended. Even if all the surveys were correct, each range line, and each part of a base line would have a different bearing which fact of iteelf would make the survey work very complicated,

This system of survey may be compared to the projection ordinarily used for small maps, where the meridians are sll parallel to one another, and the circles of latitude are represented by parallel straight lines at right angles to the former. As for larger maps, we use the simple conic projection, so as an improvement on the last system we pass naturally to the following:

Let a base line be established along a parallel of latitude central to the country to be surveyed, using chorde of the latitude circle eix miles in length, and let the meridians through the corners be the east and weat boundaries of townshipg. Let these meridians be posted for tomnship corners at every six miles. Here all the conditions woufd be fairly well satisfed, except that the township areas would increase considerably to the south and decrease to the north. Also, while theoretically the north and south outlines would in all cases be chords of latitude circoles, yet the accumulation of ordinary errors of measurement along the meridians would soon make this untrue, and any chainage error on the base line would operate on the whole range of townships north and eouth of it. Further, the survey of a large extent of country at once would be difficult, and outlying regions would have to wait for surveys until the whole country between them and the central parallel had been outlined.

The defects of this latter gystem are at once remedied by passing, as we may say, from the simple oonic projection to the polyconic, i.e, by employing, instead of one, a number of base lines. The convergence and divergence of
the meridians run from the successive bases can thus be allowed to fall, together with the errors of the survey, on lines midway between the bases, or correction lines.

We thus arrive at our own system of survey. In this the extreme differences of area in the gections are practically insignificant. An error in measuring a base line only affects the width of two townships on each side of it. An error of chainage on a meridian outline affects only two townehips directly, and two more, or four at most, indirectly, and all these errors are rendered unimportant by the manner in which the sub-division of townships is done. Several base lines can be syrveyed at the same time, as was done in the North-West in the years 1882 and 1883 , so as to render a very large tract available for immediate sub-division. When greater speed is necessary base lines can even be surveyed backwards from one principal meridian to the next one east of it, the result being a, perhaps, considerable closing error, which yet affects the width of only four townships in one range. The eastern and, western boundaries of townships being all true meridians, and the north and south boundaries having nll very nearly the same bearing, almost due east and west, the finding or re-establishment of an old line is a very simple matter.

The most apparent defect in this system is the rapid increase of jogs on correction lines, which, in thirty ranges west of the initial meridians, amount to nearly a mile and a half. This makes the ranges appear irregular, while, where these large jogs occur, the curvature of the earth affects considerably the width of the rodids.

In order to stop at once both the increase of jogs, and the accumulation of chainage and other errors on the base lines, the device of new initial meridians, from which the surveys might be started afresh, was resorted to.

The second initial meridian was established in 1875 by the operations of the Special Survey by a triangulation, for a description of which I beg to refer you to the Surveyor-General's Report for 1883. The other initial meridians were established in the following years, by ordinary chain measuremente along certain of the bases.

These meridians were intended to lie on even degrees of longitude from Greenwich, four degrees apart. This was to facilitate the calculation shead of survey of the widths of the broken ranges adjoining them. As the longitude, however, of those after the second meridian depends each upon the chainage of one line only, it was to be feared that their errors of position would be very large. It has been found, however, that in general they are very near their intended position as far as that can be proved by the subsequent chainage of many base lines. These chainages, howerer, may all have large constant errors in the same direction. There is, unfortunately, no astronomical check which can be applied to the longitudes except by means of the electric telegraph. At the time the pripcipal meridians were established, the telegraph line which then extended as far as Edmonton, was in a very bad condition, and although attempts were made on three occasions to obtain longitude determinations by this means, they all failed. It is to be hoped that another attempt will be soon made, as there are now two good telegraph lines across the North-West.

I may remark here, that in laying down these meridians allowance was always made in the broken section adjoining them for the discrepancy between survey and true longitudes caused by the elevation of the base line above the sea level. This correction amounts to between sixty and seventy links for each one thousand feet of altitude, and the broken section adjoining a meridian on any base line should therefore be found longer than theory gives it by from one to two chains.

A check on the north and south errors was obtained by astronomical observations ior latitude. A point was thus fixed on each meridian, from which the chainage was commenced, and two or more check points were also

est

21

established on each meridian in order to cut out the accumulated errors of the chain. Unfortunately, astronomical observations, whether for latitude or longitude, are affected, sometimes very greatly by the attraction of masses of hilla, etc., on the levels of the instrament.

On the survey of the International Boundary, where a great number of stations were carefully observed, these station errors, as they are called, were found in many cases to be as much as 100 feet and upwards. In one case the error was even as large as eleven chains, but this was an exception, caused by the attraction of a very high hill, one of the Three Buttes, to which the station was in close proximity.

If it were possible always to select a place for observation away from any high hills or deep valleys, I think that in a country like the North-West, where the geological formations are generally regular, these errors might be conflied to reasonable limits, but it must be remembered that if hills or valleys affect the result, so also must underground cavities or parts of the earth of greater density than the surrounding areas.

For this reason it is well to confine corrections marie from these determinations to the initial meridians, and not to employ them to check base lines, as has been done in one or two instances, between the principal meridians. This is objectionable as introducing an irregularity into the azimuth of the base line, and perhaps a greater error than before existed.

Had not the necessities of settlement in the far west made it imperative to push forward the surveys of principal meridians sofar ahead of the base lines, these astronomical checks might well have been dispensed with, for the surveyor of a new principal meridian, if he had had several base lines already established to tie to, could have compared his chainage at each one, anft would have at once noted and corrected any large diecrepancy. With the present perfection of instruments, base lines can be surveyed as far as regards their azimuth, with greater accuracy than can with certainty be obtained by the best latitude observations.

The International Boundary or 49th parallel, which forms the first hase of our system, was surveyed in the years 1872 to 1874 by a Joint Commission appointed by the British and American Governments. There were two methode of surveying this line from which choice could be made. One was to establigh one point on that parallel, say at Red River, and to run a serieg of transit lines west therefrom, similar to the surveys of base lines, and to measure offsets to the true parallel at convenient distances. The other way Was to locate astronomically 2 number of points on the parallel and to run transit lines between, measuring offself as before. This plan was adopted hecause it enabled several parties to work at once instead of only one, and the survey could therefore be more rapidly as well as economically carried on. This method was also considered to be more in accordance with the treaty by which this line was named as the boundary, as will be explained below.

The points for astronomical determination were taken about twenty miles apart. These, by reason of the extreme dry ness of the seasons, were located in or near the valleys of large streams, the choice of level country for stations being generally impracticable from scarcity of water. The station errors, therefore, an mentioned above, were frequently very large. The transit line from one station might meet the meridian of the next one or two hundred feet too far north or south. The transit line, and the parallel depending ty calculated offeets upon it, had therefore to be swung into position, the error being distributed evenly throughout the twenty miles. This makes the angles of deflection along the boundary line very irregular. The monuments over the greater part of the line are about three milea apart. The deflection angle therefore, is in general about three minutes, the lite curving regularily to the north, but when one of the astronomical stations is reached the observer will be surprised to find a sudden and often large change in the angle. It may be
increased to as much as fffeen minutes or more, or perhaps the line makes a sudden turn to the south instead of north. Alter the station is passed the deflection continues regular as before.

A proposal was made that when all the forty-one stations had been determined, and their relative station errors found by the survey, a mean parallel should be adopted, such that the sumi of the errors on one side of this mean line should balance the sum of the errors on the other. Such a parallel would have been a true latitude circle and a amall circle of the sphere, but not necessarily in latitude 49° at any one place. This proposal was rejected for the reason that the boundary was by treaty to be the 49th parallel of astronomical latitude, and therefore ought to depend on the astronomical observations. Now taking two stations twenty miles apart, one of them may have hills to the north, and the other hills to the south. There will theretore be station error between them. Now it is natural to suppose that along the line joining them the aturaction of one range of hills will diminish and that of the other increase in proportion to the distance on the line, so that the probabilities are in favor of an obseryeysat any intermediate point of the oblique parallel laid down by the hpundary survey finding himself in true astronomical latitude 49°

For these reasons the boundary line is nearly valueless as a base line. It should have been made a correction line. However, at the time our system of sürvey was framed this line had not been established, and it could not be predicted in what manner the survey would be made.

Bince the inception of surveys in the North-West, three systems of survey have been in force. The differences between them are, however, very slight.

In what is known as the first or old system, the base and correction lines were established in a manner very similar to those of the present system, but the subdivision of townships was made on a system of squares based on the eastern outline of the township, the resalting irregularities of area being thrown into the western tier of quarter sections.

In the second system, adopted in 1880, the east and west boundaries of sections were made meridians to conform to the directions of the boundaries of townships, while the third syatem agreed with the second as to the manner of subdividing the townshipe, thut differed from it in reducing the number of roads and decreasing their width to one chain, while in the first and second systems the roads were one chain and a half wide and surrounded every section. Another important difference was the method of surveying the standard lines. In the first as in the third aystem, the base lines were surveyed as standard, while the correction line served, as its name implies, for the reception and correction of all errors. But in the second system the correction lines were run by the block surveyors instead of the base lines. This method defeated the main object of correction lines. The exterior meridians of the blocks, which by theory are straight lines from correction line to correction line, had to be deflected in the quarter sections closing on the correction lines to allow for differences of measurement along these latter, while the base lines being run through the centres of the blocks by the surveyore of township outines, had to be also deffected in closing on the exteriors, and the last quarter sections had also to be made of irregular width.

No comprehensive system of rules was ever laid down to guide surveyors as to where or how these discrepancies were to be allowed for, and the system was, alter one year's trial, abandoned altogether on the adoption of the better planned methods of the third system.

Some difficulties arose in connecting the purveys of the third syatem with those of the second تhich had been previously established. A notable error arone in this way. The new system whs three chains narrower in each range than the old. The first section on a new base line west of the old system has therefore to be made narrower than the theoretical eighty chains. In order to obtain the width of this section, the usual plan adopted was to subtract from
eighty chains three times the number of ranges of the old system. This gave an erroneous result, as allowance was not made for the divergence of the meridians. Suppose, for example, the eleventh base was to be eurveyed weat from the line between ranges sixteen and seventeen of the old syatem. Here the new base being forty townships north of the 49th parallel is forty times six chains, or three miles south of the old eleventh base. The divergence of the sides of one township in three miles is about forty links, and therefore this divergence in sixteen ranges will amount to sixteen times forty or six hundred and forty links. The widtb of the first section in range 17 of the new system therefore, instead of being, as appears at first sight, 80 chs. -3×16 chs. $=32$ chs., in reality should be 32 chs. -6.40 chs. $=25.60$ chs., and a surveyor who had not allowed tor this would find, at his frat closing, a correction line with a correct base line of the new system, an error in the jog of 6,40 chains. For computing this correction accurately, the best plan is to take from table 2 of the Manual the number of seconde of longitude in one range according to the new system for the base in question, A similar quantity for the base line of the old system will be found in a table publighed in the Surveyor-General's Report for 1879. The difference of these longitudes is to be multiplied by the number of ranges. This result in seconds, multiplied by the length of one second of parallel in chains at the latitude of the new base line (the logarithm of which is given in table 2 of the Manual, under the heading of Log. P. Sin. I) gives the number of chains in the required correction,

Another difficulty which occurred was in properly surveying the broken townships or narrow ranges adjoining the old system. However, as this is covered by the instructions in the Manual and is now well understood by all surveyors, I need not dwell upon it.

In all these systems of survey, the establishment of the correction line has been the most intricate part, and many difflicult cases have arisen. Instances are not wanting where a large error in chainage on one of the meridian outlines has thrown the correction line so far out of position that the sub-divider in running the correction line has found his line of posts on the north side of the.road actually crossing the line of posts on the south side. In a case like this, the only remedy which can properly be applied is the entire re-survey of the, outlines.

A similar difficulty often occurs in the broken range adjoining a principal meridian. The jog on the correction line at the eastern boundary of this last range being very large (about a mile and a half) if the posts on the meridian are some chains too lar north compared with the base lines, the surveyor who establishes the correction line according to the instructions contained in the Manual of Survey, by joining the post on the ineridian south of the road with the other southern post may flid that his line actually passes north of the post planted by the outliner as the south-eastern corner of the township north of the correction line, or if the error is not so serious, yet the width of the romd is greatly decreased. Or, on the other hand, if the error on the meridian is to the south instead of the north, he may find his road several chains wide opposite the western end of the jog. This case is not governed by the instructions given in the Manual, although it occurs to a greater or less extent at every correction tire where it adjoins a principal meridian. It has been ruled, however, that the proper procedurs in guch a case is to eatablish a temporary corner one chain south of the outliner's iron post at the western end of the jog, and to conneet this point by atraight lines with northeeastern and northwestern corners of the township south of the correction line, so ss to make the road the proper width throughout, although the northern boundary of the southern township will be made crooked.

Again, where there is one more range line rua from the southern base than there is from the north, a turning point may bo established one chain north of the bar at its northern oxtremity, making in this case the southern
boundary of the northern township crooked. These methods should not however be resorted to, unless the error seriously increases or decreases the width of the road. Perhaps fifty links of increase or decrease would not be too great a limit.

Some minor difficulties in the interpretation of the Manual have arisen, but is not necessary to refer to them here, as they are merely matters of detail, and not material to the principles of the system.

In this brief paper I have endeavored to examine into the advantages, and also the defects of our system of survey, and I have tried to show that the system is as good a one as could have been devised. Now that the surveys have been extended over such a wide extent of country, comprising almost all the prairie regions of the North-West, we can look at them as a whole, and consider whether a system, so perfect in principle, has given in practice correspondingly good results. I think the verdict of an impartial observer would be that this has been the case, and that the surveys of the North-West as regards accuracy, economy, and the rapidity of their execution, can compare favoraby with those of any other country in the world.

The next paper read was by G. B. Abrey, on "A new form of Field Instrument." Two solar instruments of his design' were exhibited in connection therewith.

A NEW FORM OF 'FIELD INSTRUMENT.

Some years ago I had a transit made at Philadelphia to order, of somewhat special and elaborate design with horizontal circle reading to $10^{\prime \prime}$ of arc, \&c. This instrument had attached to the lower plate a solar which was capable of a good degree of precision in adjustment and use, but from its exposed position extending on one side of the main instrument, was liable to get out of adjustment as well as-from the same cause-preventing good adjustment of the main instrument. I detached this solar and had one of my own design constructed and placed on the top of the telescope. The principle of this last one was good, but was on rather small a scale, and it also threw the instrument out of symmetry too much for precise adjustment, and therefore I removed it also and had another one similar in principle but aymmetrically mounted and on a larger scale, made during last summer. This is the instrument you see here and the one I desire now particularly to describe. You will observe that it is not an attachment to a transit, but is a part of the transit instrument capable of all the precision and convenience of the best transit theodolite, and when set equatorially, will do all the work of an equatorial instrument of equal power and dimensions. It consists of plates, tangent screws, standards \&co., same as other transits of its class. The new feature for your attention being the telescope, its method of mounting and its attachments.

First the telescope is mounted in \mathbf{Y} bearings on the standards. The cross axis may be reversed in these Y g end for end, and the telescope may be revolved over between the standards at the eye end. The cross axis has a large hollow ring turned in its centre, and the telescope is mounted in the centre of this riug in \mathbf{Y} bearings so as to be capable of revolution on its own longitudinal axis in these, or turned end for end in them similar to that of the cradle theodolite. It is capable of adjustment to centre over spindle to centre of its cross axis, and to a right angle with the cross axis, atriding levels are provided, reading to $10^{\prime \prime}$ of arc, for the crose axis, and for the telescope tube. There is a verticle circle of 5 inches diameter reading to $20^{\prime \prime}$ by two opposite double verniers. This circle is provided with a latitude level to $10^{\prime \prime}$ attached (and adjustable for index error) to the vernier limb. This cirole may be used
with the vernier clamped either to its circle or to the standards as may be desired, and in either case there are convenient adjustments for eliminating the index error or as the circle is secured to the cross axis by a clamp nut only, it may be easily removed from the instrument altogether. A long diagonal eye piece accompanies the instrument for sighting when the telescope is in a vertical position.

The eye piece for ordinary use is provided with a revolving dise covering an open sight, a colored glass for sun observations and a prism converting it into a diagonal for use when required, either may be revolved to the eye lens or changed to another without any risk of disturbing the setting of the instrument.

There is attached to the telescope, in front of the object glase, a small reflector that is fixed to an axis with adjusting screws, the axis itself being placed at right angles to the collimation of the telescope." The reflector axis is clamped at one end by an arm carrying a veruier that subdivides an arc of a circle attached to the telescope to $10^{\prime \prime}$, or in reality to $20^{\prime \prime}$ effective reading, as it is used for measuring angles of objects seen by their reflections. This arc extends both ways from its zero point so as to read to about 30° plus or minus, and sufficient to include the sun in its range of declination, and in connection with this instrument it is the declination arc.

The cross wires at the focus of the telescope are six in number; two of them are at right angles to each other, placed in the collimation axis; the others are placed one on each side of these, at equal distances from them and parallel therewith, so as to form a square around the collimation, the size of the square being calculated to just enclose the sun's disc when at its greatest distance from the earth.

There are also graduated semicircles attached to the ring of the cross axis, having their centres adjustable to coincidence with the centre line of the telescope ; either one of these may be read by means of an index or pointer on the telescope. They are intended to serve as hour arcs when the instrument is set equatorially. They are graduated to 4 minutes of hour spaces only, and are not subdivided by a vernier, this being close enough for the purposes of the instrument. Hour circles are not essential to the use of the instrument as a solar, but often are very convenient as finders. Only one of these arcs is used at the same time; the other one is necessary when the telessope tube is changed in its Y 's.

When the instrument is used as an equatorial for finding the meridian the adjustments should be very carefully made ; they consist of say about nine in number, as follows:-

Placing collimation in centre of telescope.
Adjusting plate levels to right angles to spindle.
Latitude or cross wires and its stridinglevel to rightangles with the spindle.
Centre of cross wires to right angles with cross axis, and in centre over spindle.

Collimation horizontal, latitude zero and tube, striding level, and latitude level.

Reflector axis (declination axis) perpendicular to collimation and hour circle zero.

Reflector parallel to its axis.
Equatorial cross lirfes parallel to declination axis.
Declination zero, or the reflector at 45° to the collimation.
Several methods may be adopted for performing any one of these, and any one may be made independently of another or without reference to the sun or other heavenly object. It is not thought to be necessary to tire your patience

[^0]with explanations of any methods of doing these now, but should anyone desire I will be glad to explain.

When all is adjusted, in order to find the meridian, I would suggest the following routine: Set up the instrument over the desired point with the latitude ascertained and laid off on the verticle circle, and the telescope (either end of it) elevated to that of the Pole, and with the sun's declination calculated for the time and place and corrected for the refraction, due to the latitude, declination, and hour angle of the observation, laid off on the declination arc, and also with the telescope revolved in hour arc to the apparent time of the day, turn the instrument on its spindle till the sun's image is seen by reflection through the telescope nearly in its centre, clamp the plates, then by either the lower or venier plate tangents, and by revolution of the telescope in hour arc bring the sun's image precisely into the centre of the cross web square. The collimation of the telescope should then be in the meridian. The plates may be read at this or a mark set up in line. Next elevate the other end of the telescope to that of the Pole by laying off the latitude on the other side of the zero on the verticle circle; also set off the corrected declination on the other side of its zero on the declination are as before. Revolve the vernier plate around 180° in azimuth, and by revolving the telescope in hour arc, etc., as before, bring the sun's image again into the centre of the web square, when the collimation should again be in the meridian. Read the plates or set a mark, and if not in same line as the first the mean between should be a close approximation.

If now the telescope be reversed end for end in its own Ys, two more settings may be obtained for the meridian and the meán of all may be had; during all these the striding level for the cross axis may remain on and the cross axis kept horizontal during the series, it being only necessary to keep the striding and latitude levels in their places for good results.

I had intended making some observations with the instrument to put its theory to a practical teet, but have been so long getting it from the instrument makers, arranged as I desired that no satisfactory series of observations has been taken. I might say that during last fall I had the instrument with me on a survey, but only during one day did I get time to attempt to put this use of it in practice. The instrument then was not arranged quite as it is now; the declination was read off the verticle circle by means of a level instead of an arc of its own as now; neither was there the conveniences for adjustment. I took some observations for meridian in the manner above suggested; the result was, on the first trial with the declinating zero, not well defined, a difference of 24^{\prime} in plate readings with circle first E., then W., or an error of 12^{\prime} from the mean. I moved the instrument to the mean and adjusted the declination zero on the sun in this position. Then repeated the observation for meridian and obtained closely the same reading of the plates at both observations.

Since the instrument has been completed I have only been able to observe the sun a short time on Sunday last. I had not finished all the preliminary adjustments, but on the sun appearing a short time, I set it up out of doors and got a couple of paire of observations on it, the result of which was a difference of , or $2 y^{j}$ from the mean; both pairs gave the same mean. From my experience, I believe the mean of a pair of observations will ordinarily be much within a single minute of the true meridian. There is, of course, no calculation necessary after the observation is taken in the field, but the meridian is ascertained instrumentally, and lines in any desired azimuth may al once be set out. Also observation of this kind may generally be taken as quickly as they could on a back picket, and therefore on sunshine days lines may be produced or checked by an astronomic setting at every atation.

All other field equitorials, or solars as they are uenally called, that I have seen, or seen described, arranged as they are so as only to be capable of single
settings for meridian, and their various arces reading only on one side of their zero points, and never capable of accurate adjustment, must necessarily always, if any or every part is not precise and as intended, run a curve on one side of the meridian during one half of the day and probably a curve more or less similar during the other half of the day.

Those defects, it is assumed, are eliminated by the mounting of the instrument described in the presebt, paper.

The Auditor's report was read, and on motion adopted.

AFTERNOON SESSION.

Orto J. Klotz, President, in the Chair :
Thomas Fawcett read the following paper on "Selection, Equipment and Management of a Survey party."

THE SELECTION, EQUIPMENT AND MANAGEMENT OF A SURVEY PARTY.

Mr. Chairman and Gentlemen:-

A subject like the one I have selected would doubtless have been treated much more exhaustively by one of the veterans in the profession, whose experience has extended over many years of work in the field. The subject is one in which all of us who have any experience whatever have had to interest ourselves. And my paper if it serves no better purpose may be the means of briuging out the experiences of those who are the moet competent to deal with the matter. I may say in justification of myself for having brought the subject before you that in my practice as far as it has extended I have met with a fair degree of success, and without wasting your time over preliminaries, I will at once proceed to the matter of my paper as announced.

It is well known that the success of any expedition depends not only on the chief, the captain, or general, but upon every mermber of that expedition doing his part and co-operating with a view to the accomplishment of the work in hand. This can only be realized in the case of a survey party when every member of that party is a man of principle, and not that species which we sometimes resd about that is always "looking for meal time and sundown." The important question here is- how are we to avoid worthless men? Some, in order to avoid imposition select their party from acquaintances. Should a sufficient number of desirable persons of our acquaintances wish to go there would be no necessity for selecting from strangers, and I can only see one objection to such a party, i. e. if there should , be a dieposition on the part of the members of the party to oppose the wishes of their chief. A party of old acquaintences would be more likely to form a combination against their chief than strangere would be, especially if restraint had been placed upon the familiarity with which they hed been in the habit of meeting under other circumatances. That too much familiarity should exist between the chief and the members of his party is very undesirable. The position should be such that the word of the chief would be regarded as law and beyond questioning by every member of the party. The prerogative of the chief to direct and that of the members of the party to carry out the directione given-but more on this topic under the head of management of a survey party. I have adranced what appears to me to be the principal objections to a party made up entirely of acquaintances. But pioked and tried men who have hed years of experi-

While endure men, y powers conside to heal place t who 8 with t pay, 3 much them. ment exper the le know sble, gurve evide ask a while as ev surve they out 0 or a requ perfo soms his Ehou mist ann
part
need thet atta inct this ma suf ins so ins abs ma
ha In the cr tl. da to

While some such may be benefited, and may acquire strength enough to endure the hardships, and return after the season's labors better and stronger men, yet they are liable to find themselves in positions which would tax the powers of endurance of the strongest, so that such run a risk which I would consider unwise, and not to be compared with many other methods of restoring to health. Another clasg is composed of those who think a survey an easy place to secure a good time, and at the same time earn some money; those who speak of a survey as a goverument pic-nic, and who wish to get a position with the party-not for the purpose of doing a fair day's work for a fair day's pay, but whose design is to do as little work as possible, while they expect as much pay as the best. Such men are indolent and the party is better without them. Nor are men who profess to know all about the work from the management of the instrumeut down always much of an acquisition. As far as $\mathbf{m y}$ experience goes in the matter, those who professed to know the most knew the least, and were much more stupid than others who made no boast of their knowledge. In fact you sometimes meet men of this nature who are unteachable, and whom years of experience will not fit for becomimg andations alway a survey. Nor are an armful of certificates and recommendains always evidence of ability. So little confidence do 1 place in certicatag had never ask a man to produce one. I found the best men I ever engaged had none, while other men whom I considered inferior could prod engaging men for a as evidence of ability which them that they will be expected to do all the work survey, I do not fail to tell them expect to have an easy time. It may not be they can, and that they needn words in regard to the appointmen of assistants out of place here to say a iew in important element. Since the absistant will of an asgistant. This is an according to the nature of the survey to be require different qualificailions be appointed by the surveyor himself, or by performed, he should sequainted with the man appointed with a knowledge of some one personally acquainance of the duties required of him. That men his finess for the perrionsoitions they are in no way qualified to fill is a mistake-shows a lack of judgment-as it is the cause of mistakes, which are annoying, diagraceful, and a source of loss in time and money,
In regard to the second part of my paper, viz: the equipment of a aurvey

In regard to the second little, as experience has taught most of us what is party, need say very hou, and those who have not had experience themselves can easily avail themselves of the experience of others in this respect. The great object to be attained is to secure as great an amount of comfort as possible, without increasing the bulk and weight of the outfit to unnecessary proportions. How this can be accomplished may be best studied out by every man for himself.

Persons who have had no experience in camp life are liable to take a great many things out to camp which are unnecessary, while they may not take a suficieient supply of such things as they require. It is therefore better to instruct each member of the party in regard to this matter betore starting out, so that each may be properly equipped for the expedition, In regard to instruments, no one should start out without two of each kind that are abeolutely necessary for continuing the work, as no one can tell what day he may find it necessary to use the second. At two different times last season, had I not taken two instruments, I could not have proceeded with my work. In the first place, while fording the Cascade river, I wae swept About six weelk later, after 1 had got the broken part repaired and returned to me, when crossing the Bow river, where the current was very rapid, my boat sank, and th.e instaument, which was on the tripod, was all broken 10 fragmente by dashing againat the rocks. From that learned hal. It one should be besoary to have two instrumente, but to have them in repair. to at once take steps to have it repaired. Of course mine was an exceptionally
dangerous locality, but in any locality it is always better to be on the safe side, and have duplicates of everything that is perishable or liable to be lost or broken.

But leaving this matter to your own judgment, we will proceed to make a few remarks concerning the management of a survey party. And here a great deal depends on a proper organization, which will not be a difficult matter if the selection has been a good one. That surveys should be conducted, as far as possible, on a military basis is a provision eminently calculated to insure success, and as before ptated, the word of the chiff should be law when it becomes necessary for him to give directions; but that he should have to interfere where his experience and professional knowledge does not make it necessary-in matters where intelligent men should be able to discern their duties-is not desirable. In the first place, every man should receive the fullest information in regard to what he is expected to do. The sooner he is made acquainted with what is yequired of him the better; not only that, but let it be understood that no other course would be eatisfactory or admissible. Let this be fully understood at the commencement, and as a rule there will be no trouble afterward, and it only becomes necessary for the interference of the chief when he sees on the part of any member of the party a disposition to neglect or shirk his duties. If the party should be made up of strangers it is needful that the chief should keep his eyes open, so that the person neglecting his duties should have his attention immediately directed to the matter. Should there be several disposed to shirk their duties, by discharging the worst one the defect would generally be remedied. If the party should be travelling in the absence of the chief, the movements should be directed by the person best fitted by experience and judgment to direct the movements: I need not say that this person should not always be the ascistant. A person might be fitted by education and experience to assist in survey operations and perform the calculations who would be in no way competent to direct the movements of the party ; and in that case it would only be necessary to ask the assistant to accompany the party which were travelling under the direction of the person appointed. It is always well to place someone in authority, and the person appointed should be a man who would put his shoulder to the wheel and take the lead-someone who, if the horses and carts got fast in a mud hole, would say come, and not a person who, from his seat in the saddle or buckboard, would say go. To illustrate my meaning, I may relate an incident which occurred to my knowledge. While two parties were travelling out with their carts together in the season of 1882, they came to asbad mud hole. In connection with one of the parties the aseistant and all the men plunged into the mud up to their middle and lifted on the wheels to help the carte through, while every man of the other party sat on the top of his loaded cart and whipped his poor beast until it managed to plunge through if it could. One of the horses, with the teamster on the cart, got mired and down in the slough, while the poor fellow was on his load in the middle of the mud and water. I don't know what he would have done had not the aesistant who had taken the water called to his men to come and give a hand. While they unhitched the horse and got it out, the man on the top of his load started to take off his boots, but the assistant told him to sit still or he might get his feet wet; so he sat there on the top of his cart while the members of another party pulled it out of the mud and took him to dry land, where he wouldn't have occasion to wet his precious feet. There we have an example of a party of men who knew their duty and who did it, while the other party were certainly making a bad atart, whatever the end might be. On the one hand we see experience and ability displayed, ou the other inexperience and donothingness. Nor do the men respect the chief who requires them to do thinge which are in themselves disagreeable any the less. They can see the wisdom of the step and are more likely to admire than dierespect. It raises within them a
competi expedili they are exertion Son ties, obs regard thing tt way pr plane 8 worth to acco seen, g ous pro we are cult ta if the necess erally or, if i the an questi horses it wou experi party clusiv heavy outfit work to lay when
bol no
kind
must
dang
ing 0
battl
comi
that
guag

80 m
Hi

31

competitive spirit and they begin to take an interest in the succeess of the expedilion. When once that feeling of interest is aroused the men feel that they are laboring towards an end, and that that end can only be reached by exertion on their part individually.

Sometimes surveyors meet with what seem to be insurmountable difficulties, obstacles which seem insuperable, and the surveyor himself is puzzled in regard to what method to adopt in overcoming the obstacle. If it is something that must be overcome, it is not best to admit that the task would in any way prove difficult. It might be best in inone cases to camp for the night until plane shall have been matured. It is not best to act too hurriedly, nor is worth while to spend as much time thinking out an easy way as it would take to accomplish the work by labor. If a way of overcoming the difficulty is readily seen, go in with a will, and what at the first view seemed to possess mountainous proportions will dwindle down untilit is transformed into a small hill, and we are led to wonder after the work is done, that we ever thought it such a difficult task. When ordinary obstacles are met with it always facilitates things if the picket man or some man ahead on the line is competent to take the neceassary steps to overcome it. A lake or stream to be triangulated will generally involve much less loss of time if there is some one to lay out the base or, if in the woods, have the timber cut away and have all ready for measuring the angles when the instrument is brought forward. I have been asked the question: When you come to a place so rough that you cannot use your horses in packing without spending more time in making a good road than it would take to pack the camp along the line how do you proceed? In my experience I have had the camp carried along as the line was produced. The party being too small to appoint any of the men to that part of the work exclusively. Every man was required to carry a pack at times, but in very heavy timber the chainman and cook were generally able to keep the camp outat up to the line, but every one was expected to take hold and assint in the work when there was occasion for him to do ao. But it would be imposeible to lay down any set rules for guidance in the management of an expedition when the circumstances vary so often as they do on our surveys. There will be no auch thing as sucoess attend the movements of an expedition of any kind unless there is executive ability on the part of the leader. Not only must he be ready to encquater difficukies, endure hardshipa, be exposed to danger, submit to isolation, but he must be determined to succeed. Let nothing cause him to lose courage. As the courage of the leader on tier under his battie aeems to electrify ana to impart nerve energy of the leader of a party that is battling with the forcees of unsubdued nature.

In conclusion I would say to every member of the profession in the language of the poet, Holmes,

Be frm ; one oonstant element of luck
Is genuine, solid, old Teutonic pluck,
But only crowbars loose the build og's grip;
Small though he looks, the jaw that never yields
Drags down the bellowing monarch of the fields !
Houorary Member Psor. Macoun, upon request of the President, made some very practical and useful remarks regarding the "Colleotion of Natural History Specimens by Surveyors."

Honorary Member Da. Buil, who was also present, was unable on account of a severe cold to favor the meeting with' some remarks. It was moved by Wm. Ogilvie, seconded by G. B. Abrey, and

Resolved, That a deputation consisting of the President, Secretary and Executive Committee wait upon the Honorable the Minister of the Interior and urge upon him the necessity and justice of having the survey of that part of the Province of British Columbia, granted to the Dominion Government by the Government of that Province for railway purposes, made in accordance with the system of survey which governs the survey of other Dominion Lands, and by Dominion Land Surveyors only.

It was moved by.Tom Kains, seconded by Wm. Ogilvie, and
Reoolved, That the voice of, this Association be conveyed to the Minister of the Interior, that when the vacancy of Chief Inspector of Surveys is to be filled, the appointment of the present Inspector of Surveys to the same would give universal satisfaction to the Profeseion.

It was moved by Thomas Fawcett, seconded by C. E. Wolff, and
Reaolved, That the words "be held" in clause seven of the Constitution be changed to "commence," notice of such proposed change having been given at the last annual meeting.

It was moved by Jno. A. Snow, seconded hy J. P. B. Casgrain, and
Resolved, That the Association of Domifion Land Surveyors in their annual meeting assembled, considering the advantages that they would derive from incorporation, apply at once to Parliament for such legislation.

It was moved by Wm. Ogilvie, seconded by W. Chipman, and
Resolved, ;That the President, Vice-President, J. A. Snow, E. J. Rainboth, J. F. Snow, P. Dumais,' C. A.;Bigger, Tom Kains, C. E. Wolff and the Seoretary form a committee to frame a Bill, to be presented to Parliament to incorporate the Association of Dominion Land Surveyors, with such powers, privileges and prerogutives as may, in their opinion, conduce to the existence and well-being of this Association.

It was moved by C. F. Miles, seconded by Wm. Ogilvie, and
Resolved, That the necessary incidental expenses in connection with the incorporation of the Association of Dominion Land Surveyors be defrayed by this Association, and that the Secretary pay the expenses so incurred upon the order of the President.

It was moved by W. Chipman, seconded by Thomas Fawicett, and
Resolved, That the proceedinga of the Association of Dominion Land Surveyors at its second annual meeting be printed, and that the Constitutino as amended, with the By Lawe, be incorporated in the proceedinge; also that the addresses, as well as the names of all the members of the Association be given.

It was moved by C. F. Miles, seconded by E. Bray, and
Resolved, That a vote of thanks be tendered the President, Messrs. Snow, King, Abrey, and Fawcett for their very interesting papers read before the Aseociation during this session.

The annual meeting then cloeed.

The Railway Committee succeeded in making favorable arrangements for reduced rates with the Grand Trunk Railway, the Ohicago \& Northwestern, the Chicago, Milwaukee \&d St. Paul, and the St. Paul, Minneapolia \& Manitoba Bailway.

The Incorporation Committee was busy considering the various clauses for the proposed Bill.
(Friday, February 20.)
The Incorporation Committee again met and discussed the various clauses for the proposed Bill. As soon as the compilation thereof is made it will be submitted to the Minister of the Interior for his approve the latter case it would not be brought before the House.

The proposed Bill contsins amendments to the Dominion Lands Act, and will be a Public Act.

HONORARY MEMBERS PRESENT.
W. B. King,

Inspector of Surveyd.

Otto J. Klotz,
Wm. Ogilvie,
Thoman Fanceet,
Edgar Bray,
C. T. Miles,
A. C. Talbot,

Willis Chipman,
C. A. Bigger,
G. B. Abrey,

MEMBERS PRESENT.
Prof. Macoun.

Jno. A. Snow, Tom Kains, J. F. Bnow, J. J. Burrows, 8. L. Brabazon, J. E. Sirois, P Dumais, J. W. D'Amours, C. E. Wolff,
J. P. B. Cargrain. J. B. O'Dwyer, A. Niven, T. D. Greene, S. M. Starkey, E. J. Reinboth, A. 0. Wheoler, J. A. Kirk, S. Bray, A. F. Cotton.

LIST OF MEMBERS WITH RESIDENCE.

[^0]: This axds and reflector standing in front of the object glass obscures, of course, some of the light from the object glass, but not enough to be a seriois detriment for ordinary work, and observations may be had directly through the tolescope or indireetly by refiection.

