

IMAGE EVALUATION TEST TARGET (MT-3)


Photographic Sciences

23 WEST MAIN STREET WEBSTER, N.Y. 14580


# CIHM/IC.MH Microfiche Series. 

CIHM/ICMH Collection de microfiches.


The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.


## Coloured covers/

Couverture de couleur

## Covers damaged/

Couverture endommagèe
Covers restored and/or laminated/
Couvertıre restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques er: couieur
Coloured :nk (i.e. other than blus or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank le aves adied during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages riont pas été filmées.

L'Instituz a microfilmé laz meilieur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent mudifier une image reproduite, zu qui peuvent exiger une modification dans la méthode normale de śilmage sont indiqués ci-desso:is.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes

Pages detached/
Fage3 détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, atc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.


The cupy fllmed hare has boen reproduced thanks to the generosity of:

Haroid Campbeli Vaughan Memorial Library Acadia University.

The images appearing hare are the best quallty possible considering the condtion and legibilty of the original copy and In keeping with the fllming contract speclfications.

Original copies in printed paper covers ase filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriata. All other original coples are fllmed beginning on the flrst page with a printed or lllustrated impression, and encing on the last page with a printed or illustrated impression.

The last recorded frame on each microflche shall cortain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\nabla$ (meaning "END"), whichevar applies.

Maps, plates, charts, etc., may be fllmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in tho upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplz' 9 filmé fut reproduit gràce à la générosité de:

Harold Campbell Vaughan Memorial Litrary Acadia University.

Les Images sulvantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la nettete de l'exempiaire filmé, et en conformite avec les conditions du sontrat de filmage.

Les exemplaires originaux dont la couverture an papler est imprimés sont fllmés en commençant par le pramier plat et en terminant soit par la dernidere page qui comporte une empreinte d'Impression ou d'lliustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont fllmés on commenfant par la promidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle ompreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microflche, setion le cas: le symbole $\rightarrow$ signifle "A SUIVRE", le symbole $\nabla$ signifle "FIN".

Les cartes, planches, tableaux, otc., pelivent être filmés à des taux de réduction différents.
Lorsque le document est trof grand pour êtra reproduit on un seul cllché, il ast filmé à partir de l'angle supérieur gauche, de gauche à droita, et de haut en bas, en prenant le nombre d'images nécessaire. Les dlagrammes suivants illustrant la méthode.


| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |



ANGUS ROSS,
Sec. N. S. Ins. Natural Science.
(Read before the N. S. Ins. Nat. Sci. on May 11th, 1874.)

## EVOLUTION.

Each animal* bcgins life at the same point of denarture-the egg-with every other, and certainly all the Vertebrata, in the early stages of their development, pass through apparently prceisely the same transformations, but all except man at some stage become specialized: he alone continuing a course of harmonious development unti! arriving at maturity; and all that is known of the animals that have existed on the Earth indieate that the metamorphoses, which each mature animal now living las undcrgone, (in its individual development,) are types of the changes which have taken place in the Kingdom, Sub-kirgdom, Class, Sub-class, Order, Sub-order, Family, Sub-family, Genus, Sub-gcnus, Species, Subspecies, Variety, and Sub-variety, to which it may belong.

The distinctive peculiarity of existing animals as compared with those of past Epochs, therefore, is that their organization is more specialized, so that as we go backward in time the distinctive peculiaritics of the natural groups gradually disappear, intermediate forms and increasingly gencralized or "synthetic" types continually appear, bridging over apparent chasms. Thus the Gencra Equus and Elephas, each consisting of but a few existing Species and widely separated from each other, and from every other Genus of living animals, are found to be in elose relation with many allied and inte:mediate forms, the remains of which are found in the rocks of the Recent, the Quaternary, and the Tertiary Periods; the types becoming more and more synthetic as we go backward in time, and the relative size of the brain eavity gradually i'minishing, until in the earliest Tertary it becomes comparable to that of the Reptilia. The most remarkable differentiation in the Equine family is in the

[^0]structure of the foot; passing gradually from the four toed Genus Orohippus of the Eocene, through such intermediate forms as the threc-tocd genus Anchitherium of the Miocenc, and Hipp,arion of the Pliocene, which had three toes, but only the middle one well developed, the other two not reaching the ground, to its present representative Equus, including the Horse, Zebra, \&e., with its single toed foot.

Birds are a highly specialized Class of Vertebrata, having however closer structural affinities with the Chelonia than would be supposed from external appcarance. One of their marked peculiariities is that they are all toothless. Few remains of the earlier Birds have yet been found, but among them is Ichthyornis dispar, of the earlier Fishes, living only in the water, breathing by means of gills, subsisting chiefly on vegetable food, without limbs but with a museular system adapted to use the tail in swimming as the sole well developed lungs and voice, all the change in the circulation of

[^1]the blood implied by the presence of the lungs, and all the great changes in the muscular and other systems of organs implied in the use of well developed limbs and in making insecte its only food, while other Families of this same Clasi illustrate, in the mature condition, almost every stage of the process by which so great a change is accomplished. Nor can it be without a decp significance that in all the ligl er Vertebrates-in Man himself, somewhat similar metanorioses ta se place in intra-uteriue life--the embryo having gills (not fully developed) before it has lungs, although as the blood. is not aerated within the embryo they can have no direct use.

All Vertebrates are Quadrupeds, and each limb, if complete, laas five digits, but while in the Ungulata many have but two well developed digits to cach limb, and in the Equine Family all but one" have become atrophied, in the Order Ophidia, the limbs are eompletely atrophied and functiouless (with rare exceptions), and not apparent externally, that Order being in this as in the "vegetativerepetition" of vertebrac, the most asyinmetrical and specialized of the land Vertebrates, so that the poison bag possessed by some of them, was scarcely needed to inake the "Serpent" the fitting eniblem of livil in every Mythology. In accordance with the general law which I have indicated, this highly differentiated Type does not appear among the early representatives of the Class, not having yet been found earlier than the Cretaccous Period.

The remains of Fishes, the lowest and earliest, the most numerous and the most various or differentiated Class of Vertebrates, are found in rocks of the latest Silurian Epoch (and upwards), of two Orders, the Selachians or Placoids, and the Ganoids. The first of these, of which the Port Jackson Shax is one of the best living, representatives, was approximately homologically* symmetrical,. had an internal cartiloginous skeleton, and was covered externally with shagreen or roughened skin, protected by a spine at eaeh fin, and had teeth consisting of broad bony plates, somewhat similar tothose which formed a complete bony external skeleton in the only other then existing Order of Fishes-the Ganoids. These last were less symmetrical than the Selachians, and although at first the

[^2]internal skeleton was eartalaginous, yet afterwards in the Devonian the Coccosteus, has the internal skeleton osseous in the jaws and
muel has I no a ear and and tionc rem gene and peris no Ord exis repr prok may fishe of 0

## muc

 bleOrd
kno
flou
chat
earl
Pte
whi
and
oth
and
kno
the
sug
ene
much above the ordinary level of Fishes, the Amphioxus lanceolatus has no heart but only contractile arteries, no kidneys, a sac like liver, no vertebral arches, no distinct brain, no auditory organs, neither a cartilaginous nor an osscous skull, nor a inandible, nor any limbs, and even the Order represented anong living Fishes by the Lampreys and Hags, though much more highly organized than the last mentioned, seem devoid of any indurated tissuc. And here I would remark the great imperfection of the Geological Record, since generally speaking only highly indurated tissue could be preserved, and thus whole Orders, even, of Cartilaginous Fishes have probably perished, leaving no fossil trace, and if they should lappen to have no liying representatives, as is known to be the case with some Orders among the Reptilians, then no definite record of their existence may now remain. And if whole Orders have no fossi! representative, because devoid of well indurated tissue is it not probable that the earliest representatives of so. e existing Orders may have left no remains, especially as we have seen that the carliest fishes were devoid of any internal indurated tissue, and in the ase of one of the carlicst known Orders the Selachians, there was not much well indurated tissue in the exo-skeleton ; so that it is probable that it will ever remain impossible to trace back the various Orders of Fishes until they approximate so closely as do the earliest known representatives of the Sauropsidia or the Mammalia.

The Labyrinthodontia, an Order of extinct Amphibians which flourished abundantly throughout the Carboniferous Period, combine characteristics of existing Orders of Amphibians with those of the carly Ganoids, while the Ichthyosauria, the Plesiosauria, the Pterosauria, and the Dinosauria, are extinct Orders of Reptilians, which connect together the various Orders of existing Reptiles, and these again with Amphibians on the one side and birds on the other, so that all non-Mammalian Vertebrates are thus connected, and considering how imperfect the Geological Record as now known is, not only from its necessary imperfection, but also from the limited character of explorations yet made, enough is known to suggest, if not to warrant, the opinion that originally the differences were only " Generic" or even "Specific" in value.

The interval which separates the non-Mammalian Vertebrates
from the Mammalia as found on the great Contiuents, that is Asia, Europe and Afriea, is wide indeed. for of the threes Sub-classes into which, from their structure the Mammalia are naturnlly dividen, only one - the farthest removed-is found there, the Monodelphice or true Marmalia. Of the two remaining Sub-ch isess Didelphia or Marsupialia, and Ornithodelphia; the first, though once abundantly represented on each of the Continents, is now nearly extinct in America, and is found abundantly represented only in Australia, where its isolated position has protected it from the resulte which elsewhere have followed its contact with the more differentiated and with the more hignly organized tribes of the greater Continents ; and it is here also that the surviving represen-tatives-the Ornithorhyncus and the Euhidna-of the Ornithodelphia are found.

If the interval separating the Marsupialia from the Sauropsidia, seems insufficientily bridged by the two Genera, only, which are known of a single Order, the Monotremata, the only sarviving Order of the Sub-class Ornithodelphia, it should be remembered that every principle of analogy would lead us to anticipate, that when that Island Continent ehall have been well explored geologically, the remains of other Genera, Fannilies, and even Orders will, as in the case of the Ganoidia and Labyrinthedontia among the Ichthyopsidia, sestore to us the connecting links which in Mesozoic Periods gave an easy transition from the Sauropsidia to the Mammalia.

Of Moluusca, the Tetrabranchiate Cephalopods, of which the Genus Nautilus is the only living representatice, possesses some points of very special interest, as having chambered shells and continually moving outward as they grow, the shells, which have also the very great advantage of being exceedingly well preserved as fossils, present an epitome, perfect, so far as it goes, of the entire life of the individual ; so that there exists a singularly well preserved representation of the entire Order,-from its apparent origin in the Lower Silurian to the present day, when ii has almost become extinct,-alike as regards the successive Speejes and the successive phases in the development of the individual of each Species. Orthoceras, of the lowest Silurian Epoch, the earliest
and s had Cyrt cone, © m incre lobes beco has Nuu the 1

осси sion they only indi Spe

## char

 at n eigh plet the cess wor of 1and simplest known type, had a shell in shape a straight cone, and had simple concave septa. It was followed by such forms as Cyrtoceras ard Phragmoceras, with shells resembling a bent conc, and with septa laving shallow lateral lobes. After these comes Gyroceros, in whick the bending of the shell has so much increased as to give it the form of a loose coil, and in which the lobes have become deeper, followed by others in which the coil has become close, and the latter lobes more angular, until the shell has become involute and the umbilicus lide been obliterated, as in Noutilus ziczac, of the Tertiary, and the living representatives of the Family.

The Anunonite serice, w which a similar succession of forms occur, are remarkable for complieation of their septa and the profusion of their ornamentat at at the time of the Jurassic Period, when they had the greatest number of Speeific forms. But this is true only of the adult individual, for the carlier stages of the ufe of the individual represented accurately in a modified for, , the carliest Speeies of the Series to which it belonged taking on successively the characteristies of the successive Species of such series until it arrived at maturity; in the keeled group changing from four rounded to eighteen foliated lobes, and in form from an open coil to a completely covered umbilicus, while in regard to ornament it takes on the characteristics of the Se:ies to which it belongs in regular succession during the successive stages of its growth: "In other words hese is an unceasing coneentration of the adult characteristics of lower Species in the young of higher Species, and a consequent displacement of other cmbryonic features which had themselves, also, previousi'y belonged to the adult periods of still lower forms." While the shell-covered Tetrabranchiates, have long ofen continually decreasing in numbers, in specifie forms, in size and in ornamentation, the naked Dibranchiates, rival in size the largest of the extinet Tetrabranchiates, or the largest existing Fishes or Reptilians. Many caisting Dibranehiates (such as the Cuttle fishes and Squids) have an internal skelaten or osselet, either calcareous, horny or membranous. The Connalaria, fossil osselets, which occur from the Trenton Epoch (of the Lower Silurian) to the Liassic Epoch (of the Jurassic Period,) irclusive, are still ahundant and are renre-
sented at present by such huge forms as Megaloteuthis harveyi, the oldest remains of the Dibranchiates; but since only the osselets are preserved it is plain that if the earliest Cephalopods, like the carliest Fishes, had no indurated internal skeleton, (and we know that in the Calamaries it is often not ealeareous, and that the Octopidie are destitute of it, the shell being represented by tivo small rudinentary stylets eneysted in the substance of the mantle), they may have existed abundantly without having left any definite traces. It is for a similar reason, doubtless, that the Aseidians though their structure would seem to indieate that they had a very remote origin, have never been recognized as fossils. Indeed it is probable that up to the time-the Devonian Periodwhen the highest of the then existing Ichthyopsidia began to have osscous tissue developed in their internal skeletons, no internal indurated tissue ever existed in the highest or central type of any Epoch, and it is probable that such highest type was always naked, or nearly so as at present, but possessed teeth, pavement or plate like at first, but gradually acquiring the more differentiated forms sinee the later Silurian Epochs. Now if this were so, it satisfactorily aecounts for the fact that previous to the time of the Fishes with an exo-skeleton in part at least osscous, no animals so far as known, at all approaehing to homological symmetry in type, have left reeognizable remains; and that while the carly Iehthiopsidians (in their grade) of remarkably homologieal symmetry, are well represented, the earlier (and more homologically symmetrical) representatives of the various Orders of the Sauropsidia, and of the Monotremata aud Marsupiatia, and of the true Mammalia, until the beginning of the Tertiary Period, are so very sparsely and imperfectly known to us, is doubtless due to the fact that these last inhabit dry land and eccil. only be preserved when some aceident burried their remains in "strata of such a character as would preserve them, so that not ene of them would be preserved for every thousand that would be preservid of the marine Species. It must also be remembered that they were probably much more limited as to habitat and numbers. Doubtiless senilar reasons account for the comparative searcity of fossil remains of Qutatrumana, known to

## rem

deve alth they exhi the
scav Nor in $t$
kno

> the
and
indi
Rac
of s
lowe

## Tur

and
repr
beed
shev
whic
ever
Tur
stru
Moi
type and that ented by of the left any that the nat they fossils. criodto have internal of any naked, r plate forms atisfacFishes far as , have sidians e well trical) of the , until $y$ and c last cident eserve thout also as to $r$ the yn to ad of

Man, known to have existed in Britain before the last Glacial Epoch there, and in France during the Epoch characterized by the existence of the eave bear. It should be well understood that Man differs physicaliy in no way from the other Mammals, excent that he is more advanced and is the central and only completely symmetrical existing type.

With regard to the other Orders of Mollusks, I will only remark that all we marine types are, at an early period of their development, free swimmers and possessed of functional eyes, although many afterward become sessile, and many blind before they reach maturity. And if the land Species do not so apparently exhibit this phase of development, it is because they pass through the corresponding transformations before leaving the egg.

The Iteropoda which swarm about the great banks of floating seaweed of the mid-Atlantic, and form in the open seas of the North the food of the Whalebone Whale, represent (approximately) in their adult form the free swimming stage of the Gasteropoda.

The Tunicuta (Ascidians) perhaps the most synthetic type known to us among the Mollusca, are remarkable as containing the proximate principle, cellulose, the basis of vegetable structures, and also as being, perhaps, the highest type of animal life in which individuals are repreduced by budding, so characteristic of the Radiates, both animal and vegetable. They have also peculiarities of structure which ally them with Amphioxus lanceolatus, the lowest knowu Vertebrate. The lowest known Genera of the Tunicata are the Appendicularia; resembling a tadpole externally, and swimming freely by means of the tail. These when mature represent the immature sorms of the higher Tunicata, before they become fixed or attached to rocks and their tails are absorbed; thus shewing the same tendency to shortening of the eaudal extremity which is found in the higher and later representatives of almost every organic type. The Appendicularia then at the base of the Tunicata, are perhaps the most synthethic of organic types having structural peculiarities which ally them to the Vertebrata, the Mollusca, the Articulata, and the Radiata, through the lowest types of er.ch of these respectively.

The common Ant, after reachiug the three stages successively, in which it represents the three elasses of Articulata-Vermes, $C^{\top}$ rustacea, and Irsecta-loses its wings before it begins to find food for itself or for the community. To what purpose then does it possess so exquisitely complicated an apparatus by which it sports for a few hours in the sunshine only to heve its wings dried up and destroyed, thus not only losing any advantage from the expenditure of vital force necessary to the production of wings and museles, nerves, \&e., necessary to use them, but also exposed to all the dangers of becoming the prey of insectivorous ereatures while on the wing and afterwards, before being cared for by the parent ants, or of being earricd out of reach of the community by the winds, \&c.? To what purpose unless it be merely because it is impossible for it to reach its adult condition except through those phases which characterized the adult eondition of its predecessors, just as all Vertebrates are furnished at one time in their development with gills, though at the present day only the lowest Classes have any use for them, and many of the Amphibia only before reaching the adult statc. In suceceding Species of Ants
not indiv eag struc rema sidc of a direc to orig

> and
lowe exan It w

> orga them life cone
two
two-

Silu ing
have at t
form

## Kin

are
far
nize
mic
Mol
plai
of $t$
pre

## cessively,

 - Vermes, to find then does it sports dried up from the ings and sed to all es while e parent by the cause it through s predein their e lowest oia only of Ants lly-fish, e quite polyp, les firstCchinontly in , when xisting ier and d older turity, Pentastages, leadduced,
not by direct development from the egg, but by budding from other individuals, so that a whole community has its origin in a single eqg, shews that in this as in some otlier respeets the Radiata have etruetural peculiarities akin to Plants. It is perhaps worthy of remark that in Madrepores the sop animal is always larger than the side animals, whether in the stem or the branches, as are the buds of a tree, the buds in either case being most vigorous in the most direct line, or in other words, less vigorous in direct proportion to the mumer of differentiations from the direct line of the original polyp.

At the base of the lower Silurian, the Cephalopods, Artieulates, and Radiates, disappear together, and save à few Fucoids a litîle lower, no well aseertained organic remains have been found in examining the rocks downwards through several miles in thickness. It was for this reason that Hugh Miller perceiving that the lines of organization (if I may use the expression) approximate as we trace them downwards in the rocks-backwards in time-speaks of the life of the past as suggesting the idea of an inverted truncated cone.

Dana estimates the maximum thickness of the Tertiary rocks at two miles, the Mesozoic at two miles, the Carboniferous at two two-thirds miles, the Devonian at two two-thirds miles, and the Siluria: at four miles-thirteen and one-third miles in all. According to Sir Wm. Logan the Cambrian and Laurentian Formations lave in Canada a thickness of about seven onc-half niles, and it is at the base of these that Eozoon (so called) has been fcund, forming a fitting apex to the cunc.

Th Protozoa, at the base at onee of the animal and vegetable Kingdons, are found, if Eozoon canadense and Eozoon bavaricum are really of organie origin, as clained by Dr. Dawson and others, far below, that is, of an carlier period, than any other well reeognized organic remains. Most of the existing Protozoane are mieroscopic. They have 'cen elassified as Plant-like, Radiate-like, Mollusk-like, and Artieulate-like; a elassifieation which indieate plainiy in these-whiclr it can scarcely be doubted are representative of the earlier organisms in the same sense that the Fishes of the present day are representative of the earlier Fishes, that is differen-
tiated asymmetrical modifications of the earlier types-there exists
a tendency to the differentiations whieh are fully developed in the in rank and in the period of their development.

The lowest Plants (Algat) are reproduced by srores (seeds or eggs) whieh develope powers of motion, swimming about freely by meais of vibratile eilia, antil, after a time, each attaches itself to a rock or other object, and develops into a plant which has no longer the power of voluntary motion, even in its frec extrenity. Very similar is the planula of the Polyp, having like locomotive powers unil it too fixes itself on some objeet, retaining, however, the power of motion in its frec extremity. Indeed very many forms that were once elassed with the Protozoa, are now known to be only the morc embryonic forms of the lowest Plants, Radiates, or Articulates, just as the embryonic forms of the higher Radiates have been classed as Polyps, and of the higher Articulates as Worms.

The simpler Protozoans seem to eonsist of a single eall or of an aggrcgation of simple eells, without any of that differentiation of tissue whieh eharaeterizes the higher Orders of animals, and though some of the higher Protozoans secrete silica, and others, earbonate of caieium, yet not so as to form a tissue; so that these first of Animals exhibit a protoplasmie basis for animal tife such as cxists in the earliesi stage of each individual animal (or eommunity of individuals in the case of such animals as are produced on numbers from the product of a single eggg) in the earliest stage of the egg. As we rise in the scale of animal life, or, as we follow the sueeession of fossils upwards in the formations, or as we follow the progress of differentiation in the cgg (in the higher animals) we find in each a eorresponding loealization of function, and suitable specialization of tissue. It is true that in comparing the first two it is necessary to allow for the greater specialization of the later animals as compared with the earlier of approximately the sanc grade, while we labor under the serious disadvantage of having so little of the tissue of earlier animals well preserved or in any way directly indicated; and that in eomparing the latter with the others it is necessary to allow for the faet that in the egg ncither armor for defence nor weapons for attack are necded, nor is there any
cxpr
Loga roek prob Palic estim of $t$ milii in th to e thous But and of an for a nitie for n Can size,

## (thot

 stud in w their in $t$ they leavi theeom onc
othe ing, first
rere exists ed in the zoa, alike
(seeds or freely by itself to a no longer v. Very e powers the power that were only the - Articuave been or of an ation of 1 though arbonate first of $s$ exists mity of umbers egg. succesow the
1s) we uitable st two e later saune ing so y way others armor e any
functional organization for reproduction. But allowing for all these the analogy scems perfect.

Dana estimates the comparative duration of the Post Tertiary, Tertiary, Mesozoie, and Palæozoic Periods, as approximately expressed by the numbers $1,2,4,14$, respectively. Sir Wm. Logan's estimate of the thiekness of the Cambrian and Laurentian rocks of Canada, be taken as the maximum thickness of these, it is probable that they represent a period equal in duration to the Palæozoie Period. So that the various fossiliferous rocks may be estimated to have occupied a Period equal to thirty-five times that of the Post Tertiary, which was probably not less than half a million ycars, so that for the accumulation of the twenty-one miles in the thickness of the various Zoic Formations, it will be safe to estimate the minimum duration at fifteen millions of years, though it may lave gratly exceeded even this mmense Period. But was the Epoch of Eozoon, indecd that of the "dawn" of life? and are we to consider this large and very complex community of animals as the primordial type? or should we not look rather for a series of types of increasingly complex, and numerous communities of Protozoans leading up to this? and is it not probably that for no inconsiderable peried previous to the existence of Eozoon C'anadensis, Protozooa flourished in great numbers and of great size, the sole living oecupants of the Earth?

The obscuritics of embryology may be enlighteued wonderfully (though I do not remember ever to have seen it remarked) by studying carefully the embryology of that Class of each Sub-kingdom in which individuals of eertain Orders change or partially change their habitat, during the free life of each, from water to land, since in those Orders in which the young are brought fort'. on land, they must have reached a very much more advanced stage before leaving the egg, thas in those in which the young become free in the water; and there is thus afforded admirable opportunity of comparing allied forms in the same stage of development, in the one case within the egg, whether intra- or extra-uterine, and in the other while living an active free life in the water ; these last occupying, from every point of view, an intermediate position betwcen the first and the Speeies in the past history of the Earth in which the
mature individuals, living of course in the water, represented the same stage of development.

All existing Radiates lave these remarkable peculiaritics, that they are all sessile at some stage of the life of the individual, and that none of them exhibit any of what we eall the five senses, but only simple sensation-the common basis of them all. All Radiates that live in the water, when they first leave the planula are free swimmers, and all the higher Orders of them become free again and continue so during their mature life. Land Plants of the higher Orders, which are radiate in strueture, and competely sessile in habit, seem almost destitute of sensation, and of the power of motion in their free extremity, and also of the power of digestion, although Drosera and some other Genera exhibit all three. The sessile Orders of Articulcta and Molluscoida are remarkable for the fact that as cach individual reaches the sessile stage it loses its sight, and the tendeney to Cephalization, which is a marked characteristic of the Orders of Animals, which preserve the power of free motion, and which progresses in each in time from the carliest period in which we can trace it as a distinct Order, by means of its fossil remains, to the present day. This is manifested by the inereasing comparative size of the brain cavity, the lessening and sometimes complete atrophy of the posterior extremity or tail, also by the coneentration of the limbs around the anterior extremity and their adaptability to serve its purposes. A shortening of the jaws and increase of the facial angle is also usually characteristic of
home come all of tivel. of $A$ grine nose entir preh ters
amos to th hand appe but more Fox. The Ame

> exist
them
mali
curic
with
does
reacl
Rod
bein
Fde
rem:
of 1
Mar
Rod
sion
aino
simi vidual, and senses, but 1l Radiates la are free a again and the higher scssile in power of digestion, urec. The rkable for $t$ loses its a narked the power from the Order, by nanifested lessening y or tail, extremity gig of the cristie of Man, as ns of the
homologieal symmetry as they approach maturity. Next to these eome suceessively other groups of Monkeys of the great Continent, all of which have the same number of teeth as Man, and comparatively narrow noses, hence called Catarrhines, while the Monkeys of Aincriea, except a pecuiiar gronp, have one tooth more, a grinder, on each side above and below, longer jaws and broader noses, hence called Platyrhines. In Man only is the attitude entirely erect, the fore limbs being thoroughly adapted for use as prehensile organs,-instruments of wonderful adaptability as ministers to his will. In these respects there is a corresponding gradation among the monkeys, the Catarrhines having the thumb op osable to the fingers, and the hand generally rather adapted for use as a hand than a foot, and many speeies are like man without a caudal appendage, while the Platyrhines have not the thumb opposable, but have long prehensile tails. Other groups of Monkeys are still more differentiated, and have been described as Squirrel-like or as Fox-like-these last being somewhat carnivorous in their habits. The remains of Monkeys have been found in the Eocene in America, and these are found to be of less differentiated types than existing American Monkeys, and have characteristics which ally them to the existing forms of the next lower grades of the Mammalia, the Carnivora and the Ungulata or Herbivora, and it is a curious and instructive fact that each of these Orders was at first, without exception, plantigrade, that is, walked on the entire foot as does man and do Monkeys, so that the later digitigrade types were reached in each case by a gradual differentiation. Insectivores, Rodents, and Marsupials present a similar series of types, the lower being plantigrade and the higher, and later, digitigrade. All the Edentata and Monotremata are plantigrade. All the Mammalian remains of the Eocene are of highly generalized types.

Didelphia consists of Series differcn iated so similarly to those of Monodelphia as to have the same names applied to them, viz: Marsupial Monkeys, Carnivores, Herbivores, Inseetivoies, and Rodents. That Didelphia had at the time of its greatest expansion marine representatives, corresponding to Cetacea and Sirenia among the Monodelphica is altogether probable. A somewhat similar parallelis:n exists between the various Orders of Reptiles
and Amphibians. Indeed as we trace each great group forwards in time we find a constantly progressive differentiation outward from the general to the particular, or special, from the ominivorous for example, to the more and more coinpletely herbivorous, carnivorous, or insectivorous, and from these to others having still mone specialized habits as to food, and all the corresponding peculiarities of organization and instinct.

Again there is the tendency outwards as to habitat-to oceupy the land, the water, or partly each of these, and that in every elimate. Each of these differentiate inso Hying and non-flying, and some of each of these into elimbers, and some into burrowers; in fact each subordinate group as it expands has a tendeney to repeat from its own starting point all of these differentiations, and a thousand minor ones; so that eaeh of these differentiations may be more or less fundamental than other co-existing ones. Thus in the Chieroptera the adaptability for flight seems more fundamental than that for a partieular variety of food, since some exist on almost every variety, while in the Flying Squirrel, and Galeopithecus the adaptability for flight seems of a mueh less fundamental eharacter.

There seems to have been a steady inerease in the size of the larger animals of each suceceding grade, corresponding to the inereasing induration of tissue; in the water from the Selaehian or Shark of the Upper Silurian to the hugh Cetaceans of the Recent Period; and on land from the Labyrinthodontia of the Devonian to the Recent Mastodons. ine larger animals of each grade seem to have been exterminated by the larger animals of the sueceeding higher grade, these having the advantage in the struggle for life in respeet of intelligenee, activity, strength and ultimately even of bulk. Thus the largest types of each grade, exeept the lighest, have been constantly and suecessively in every sense undergoing extermination, so that, as we go downwards in grade, we find the existing representatives smaller until we reach the Protozon where they are mostly Microseopie, although when each grade was in maximum it had representatives comparable in size, though not quite equal, to the largest of the succeeding grades. Now ns we have seen that directions taken hy the different Orders of each Grade, have been approximately parallel or similar, each to each,
p forwards n outward minivorous ous, carnistill more eculiarities
-to oecupy $t$ in every lying, and urrowers ; ndency to tions, and tions may Thus in adamental on almost hecus the charaeter. c size of ig to the achian or c Recent Devonian ade seem receding r life in eren of highest, dergoing find the $a$ where was in igh not xs we of each o each,
and as the lower and earlier grade had begun to differentiate soonest it is plain that only its more differentiated types would be well out of reach of this compectition of the higher, and that thus the less differentiated types of the lower :ould be constantly and sucecssively undergoing extermination, and thus only the most differentiated types continue to exist, exeept when the more synthetic types are preserved, by isolation from the aceess of types of a ligher grade, or by a difficulty of aecess arising from any other eause.

The Great Continent, partieularly the northern Grand Division of it, Asia-Europe, has been during the later Tertiary, the Post Tertiary and Recent Epoehs the theatie par excell :ars of progress in every organie type, which is represented there. It was not always so, however for North Ameriea in the Eoeene seems, both in regard to its Plants and Animals, to have reached a stage only reached in Europe and Asia in the Miocene, no doubt by a migration thither of the Plants and Animals of North America, implying, of course, a continuity of the Continents at that time. But while North Ameriea has made little progress comparatively in the differentiation of its Plants since the Eocene, it has been far different on the Great Continent, which is eonsequently now far in advance of North America, and though the differentiation of the higher Animals in North Atnerica has been much greater eomparatively than of its Plants, yet in this respect also it is in every way inferior and behinci the Great Continent. South Ameriea may be said to represent in a general way the Eocenc of North America, and Australia the Cretaceous of North Ameriea and the Cretaceous and the Eocene of the Great Continent, while New Zealand with its gigantic birds as the highest type, represents an earlicr Mesozoic Epoch, and the Gallapagos Islands with their gigantic Reptiles, probably represent a still earlier Epoch. In each of these cases the comparative eessation of progress referred to, seems to have been the result of isolation from the then Great Continents-the ehief eentre of progress and of differentiation, or in other words, of progress upwards and of progress outwards,-outwards, not only in space but in those adaptations whici have given to each great group representatives suited for every possible mode of existence.

South America has more recently been again united to North America, but elimatic causes have prevented a rapid migration of North American types.

These are a few typical illustrations of a principle illustrated everywhere, since in fact every considerable Island or Arehipelago dencons, great mountain ranges, deserts, $\mathbb{E}$. serve as barricrs to the migrations of land Species, and the Continents themselves to those which inhabit the sea, while to those which inhabit the shallow waters, the ocean depths present a barrier hardly less impassable than to land Species. It must be remembered too that each great group has its own centres, and subordinate groups theirs "lso, and that these all vary in position with the arying changes of elimate, clevation, \&c. As a single example of local centres for subordinate groups, the Humming-bird may be given, of which more than a thousane? Species inhabit South Ainerica, though none are known ever to have existed out of America. Species of the same Family found in localities long isolated from the elief existing ecutre of differentiation, for that family are usually smaller, less vigorous, and less fully differentiated than the o.hers, resembling the immature forms of the more differentiated Species.

A most interesting and suggestive fact in the distribution of Organic Types is the existence in Regions more or less recently isolated from each other, of representative Families, Sub-families, Genera, Sub-genera, Species, or Sub-species, according apparently to the length of time the isolation has existed, and to the rapidity with which differentiation takes place in the particular Group seicected for comparison, and that in lands long isolated from each other the Organic Types are very different, however similar may be the clinatic and other conditions. In Europe and North Ameriea, which have probably been separate since the Miocene Epoch, many Genera exist having a certain number of Species in the one corresponding to a certain number in the other, each to each.

I quote from Prof. Wyville Thompson: "On either side of the Isthmus of Panama the Echinoderm reder Echinidia, the seaurehins, are abundant; but the specics found on the two sides of the Istlunus are distinct, although they belong almost universally
to North gration of llustrated chipelago ranges, Species, ca, while s present must be tres, and position a. single ing-bird inhabit isted out ics long for that fferentihe more ution of recently amilies, parently rapidity Group m cach may be merica, , many corres side of he seaides of ersally
to the same Genera, and in most eases each is represented by species on each side which resemble one another so elosely in habit and appearance as to be at first sight hardly distinguishable, I arrange a few of the most marked of these from the Caribbean and Panamir sides of the Isthmus in parallel Columns.

## EASTERN FAUNA.

Cidaris annulata. Gray. Diadema antillarım, Phil. Echinocidaris punctulata, Desml. Echinometra michelini, Des.

Echinometra viridis, A. Aa. Echinometra rupicola, A. Ag. Lytechinus variegatus, A. Ag. Lytechinus semituberculatus,

Tripneustes ventricosus, Ag. Tripneustes dep;essus, A. Ag. Stolonoclypus ravenili;,

> A. Ag.

Mellita testudinata, Kı. Mellita hexapora, A. Ag. Encope michilini, AG. Encope emarginata, Ag. Rhyncholampas cariblwarum, A. Ag. Brissus columbaris, Ag. Meoma ventrosa, Liritk. Plagionotus pectoralis, Aa. Ayassizia excentricia, A. As. Moera atropos, Mich.

Lytechinus semituberculafus,
A. AG.

## WESTERN FAUNA.

Cidaris thouarisii, Val.
Diadema mexicanum, A. Ag. Echinocidaris Stellata, Ag.

Echinometra van brunti, A. Aa. Stolonoclypus rotundus, A. Ag.

Mellita longifica, Micr. Mellita pacifica, Ver. Encope grandis, Ag. Encope micropora, AG. Rhyncholampas pacificus, A. Ag.

Brissus abesus, Yer. Meoma grandis, Gray. Plagionotus nobilis, A. Ag. Agassizia scrobiculata, Val. Moera clotho, Mich.

The Isthmus must have been raised into dry land in Tertiary c" Post Tertiary times. It is dificult to doubt that the rising of this natural barrier isolated two portiuns of a shallow water fauna which have since slightly diverged under slightly different conditions. I quote A. Ag.: "The question naturally arises, have we not in the different Faunx on both sides of the Isthmus, a su.. dard by
which to measure changes which these species have undergone since the raising of the Isthmus of Panama and the isolation of the two Faunim?"

But it is not only in distinet " areas" that we fend "representative" Groups, but they occur suce"ssively in the same area, since in suceessive str".ca are found representative groups of Species, at
the gren beec of S Ag wider intervals, of Genera, and at still wider of Families. It is interesting to note in this connection the gradual differentiation of a Sub-kingdom by the steady increase of its Families, Genera, de., the expansion and differentiation securing in its central and characteristic types, while those types of a more intermediate, synthetic, or connect:ve character, tend to become extinet unless saved by some execptional cireumstance, as isolation, \&c.

No Sub-kingdom has left so good a record of itself in the Rocks as the Mollusca, and according to Woodward the number of Families for the Formations is apriroximately as follows: Silurian 20, Devonian 21, Carboniferous 30, Triassic 35, Jurassic 49; Cretaccous 56, Tertiary 62. The Genera for the same Formations ins the same Order were $53,77,79,81,108,148$, and 192 respectively. The decrease of such Families as have become extinet, or seem in process of extinction, is a similarly gradual process, and necurs first in the Genera, least typical of the Family, or most synthetic in type; so that both inerease and diminution seem to follow an organie law. which may be illustrated (though of course the analogy is far indeed from being perfect) by the growth of a branch of say a fir tree, and in the ease of the Families which have become extinet the gronlual withering and suceessive death of the branchlets, until finally firn wimost bud, and with it of course, the branches suceumbed to the crowding' and pressure of the superior and surrounding branches. Of course the regularity of this process in the family is interrupted by the fact that in isolated areas the older types may be preserved and even extended.

Anothes difficulty in defining the limits of Species arives from the fact of the intererossing of Species of the same Genus, and although the product is usurlly sterile except with cither of tho original Species, yet the incorporation by this means of an element from one Species into another, seems incompatible with the idea of
e undergone lation of the
" representaarea, since Species, at nilies. It is rentiation of Genera, \&c., and charace, synthetic, ss saved by

## in the Rocks

 number of : Silurian urassic 49; Formations 192 respecextinct, or rocess, and nost syntheto follow an the analogy nch of say ve become branchlets, e branches $r$ and surcess in the the older Genus, and her of the in element the idea ofthe two Species having been originally listinct and withont auy generie affinity; but the dificulty of entertaining such a supposition becomes still more striking when the product of such intererossing of Species is fertile inter se, as in a case described by the late l'rof. Agassiz, and where it is evident that the new Species (shall I say since there is no other possible way of elassifying it) might continue to exist, in its entirely distinct form, throughvit a Geological Epoch, it trought to a South Pacific Island, where it would be alike fiee from competition and from admixture with allied Species; indeed in the ease referred to below it seems :ikely to be continuod as such in a donestic condition for ceonomic rease :s. Agassiz says: "There are, however, two animals entirely distinct as to specific characters -the hare and the rabbit of Europe; (I do not speak of those of the United States, respecting which such obsorvations have not yet been made) : these animals have been crossec and offspring has proved to be fert.ic, not only with the original Spesies, the hare and the rabbit, but the cross bronds themselves, the individuals derived from the crossing of hare and rabbit have been fertile among themselves. Thus a new breed, which thus far exists only in domesticity, has been prodiced and is known under the name of lep_ride in the Paris market, where it is as common now as the lare or rabbit. This new breed differs in the colour of the flesh from both hare and :abbit, the former being dark the latter white, while the leporide has an intermediate condition of meat much estecmed for its flavor and delicacy."

The total number of known distinct existing Specics (so called) of Animals and Plants is about half a million. Of these it may be said that the higher the grade to whien they belong, and. the higher the group within that grade, the shorter lived or less persistent is the Species, ar.i the wider the iimits of its variation, so much so that in the case of maner it is difficult or impossible to decide as to the limits of each. Indeed every attempt to define absolutely what constitutes a Specifir distinction, has resulted in failure, and we are left to accept the opiniors of Agassiz, that a Specics is an idenl "ontity," in no way different in kind, but orly in degree, from Genera, Family, Order, \&?. A hurdred illustrations ruight be given of the difficulty, or rather the impossibility of
determining absolutely whether certain groups should be considered as constituting a Gencra consisting of a number of Specics, or a Species consisting of a number of Varicties. I avail myself of the
now ex been accom both as in exce approp said to all, wh tioni-t types a very day be by the ordial sense Specis minute I atten Specie proces which crahle as oth alinost each repres was 1 that si to and lower by A have 1 creatic we fin not a clarad for w
considered Species, or a myself of the nd doubtless ges 364-6.) ropean $R u b i$ hich are so ank upwards nstant to be cific type of

Specics, the in itself an , be rememshallow seas p sea forms Challenger" te nature of ss of later, at is, forms c synthetie, ch as those nore differose pertainwith those a organs of atrophy in sibilities of ralleled by rlier times e Types of ssile Types of extinet ary imperimperfeet ertain that than those
now existing, so that it is clcar that many millions of Species have been ereated, during a period of millions of years; and this was all aecomplished in the most gradual and systematic manner possible, both as to ereation and extinction; the apparent exceptions occurring in exceptional circumstances, and themselves conforming to their appropriate laws, and being therefore of that kind which have been said to " prove the rule." It is not therefore surprising that while all, who have any considerable knowledge of the subjeet, are Evolu-tioni-ts in the sense of comprehending that ereation of the successive types exhibit the gradual evolution or unfolding of certain ideas, a very large majority of the leading Men of Science of the present day believe that the Creator formed the various Species, so ealled, by the operation of His Laws from a single protoplasmic prinordial Type, rather than by a direct, miraculous (in the ordinary sense of that word) creation of, as I have said, of many millions of Speciss spread over many millions of years, and governed in the minutest particular by laws involving complieations, a fcw of whiel I attempted to indicate. It is perlaaps wortliy of remark that if Species were ereated by an immediate aet instead of by a continuous process, and each put into a particular spot of the land or watcr, which was to become its home, they must, unless created in considcrathle numbers, have been mirazulonsly preserved also, inasnuch as otherwise, in many cases, they would be sure to be exterminated almost immediatcly. Again, a bclief in the miraculous creation of each Specics almost neeessarily leads to a belief in the creat:on of representatives of it in distinet and often widely distant centres, as was held by the late Prcf. Agassiz, and also to this difficulty, that since the various Races of Mankind, exhibit differences equal to and even greater than those which are considered Specifie in the lower animals, we are driven to the conelusion, which was reached by Agassiz, viz.: that Man consists of distinct Specics and may have had many while he must have had several distinct eentres of creation. I quote the words of Agassiz: "Now, then, what do we find anong men? Similar differences again. For men have not all the same complexion, nor do they all exhibit the same characteristic features. And here let me urge upon you this fact, for we cannot consider the relations of mankind to monkeys unless
we are aware how widely men differ from one another. While they have all the characteristies of human "; there are yet among them differences about as striking as the anences which distinguish some of these geaera of monkeys from one another-as striking unquestionably as the differences of some of the species of monkeys from one another. And I am bound to say that unless we recognize the differences arong men, and we recognize the identity of these differences with the differences which exist among animals, we are not triue to our subject. And whatever be the origin of these differences, they are of some account, and if it ever is proved that all men have a common origin, then it will be at the same time proved that all monkeys have a conmon origin, and it will by the same evidence be proved that men and monkeys cannot have a different origin. This is the appalling feature of the subject -that the elaracteristices which distinguish the different races of
study in ur Relig
great and in $t$ Ame Vert isheo whil that the 1 and to ta
the
unp:
most
choo is co is no purp are whic the poss bilit + leein for re yet among which distin-another-as he species of $y$ that unless recognize the exist among tever be the nd if it ever ill be at the rigin, and it keys cannot f the subject ent races of distinguish reason that have had an g when the he question n might. be mmunity of s a fallacy,

But if it must admit the differad quite as akeys, and
ginal unity as Agassiz necessarily Genera of en, from a t the view $y s$, and if ail organic

I have thus endeavored, in intervals snatched from professional study and daily avocations, to sketch in utline this great subject, in undoubting faith that fidelity to truth is the only true fidelity to Religion and to God.

When Man began to arm hinself with weapons against the greater Animals within his reach, these had reached their maximum, and began to be specdily exterminated before his attacks, for while in the earlier Post Tertiary the greater Continent and North America were the homes of the greatest Megasthenes (or higher Vertebrates) that ever lived, almost equally great Edentates flourished in South America, and similarly vast Marsupials in Australia, while Cetaceaans probably the largest, without exception, of animals that ever lived, flourished in the Polar Seas. Of all these most of the largest have perished already, while as Man improves his arms and adds to his intelligence, the greater animals which he refuses to take under his protection are rapidly disappearing before him.

The process of extinction, therefore, has been proceeding during the Recent or Human Epoch with a constantly accelerating and unparalleled rapidity. But while Man is rapidly exterminating most Species which aro within his reach, and which he does not choose to protect, the number which he takes under his protection is continually increasing, and it so happens (though of course there is no ehance in the matter) that the species, which for ceonomic purposes he takes under his protection, are precisely tinse which are the repr sentative types of the Families or great Gromps to which they belong, -the topmost buds of the greater bramehes of the tree of life. They are thus the natural centres of differentiation, possessing at once the greatest vital power and the greatest possibilities of variation, hence also of eultivation and of naturalization Cevery part of the Earth, -processes which I need not say are being accelerated yearly, almost daily, with the inereasing facilities for locomotion which are so elaracteristic of the current eentury, processes which have already afforled results the most invaluable to Mankind, and promise incalenlable advantages in the future.

But it is in Man, himself, the representative of the entire Gronp of organic Types,-the topmost "upright" stem of the Tree of Life, that all the possibilities of differentiation and of culture cul-
minate, and I do not therefore share the gloomy anticipation of Prof. Dawson, that there will "ensue a period of decadence until it (the human race) becomes extinct," but believe that in Man as in the lower Animals, while the inferior and more synthetic types will be successively exterminated, the higher and more differentiated types will be continually expanding, and that the " meek sha" inherit the Earth," and rejoice in the life that now is and th: assurance of that which is to come, by faith in Him, who is the Way and the Life-the Son of Man and the Son of GOR.
otion of
nce until
Ian as in
ypes will
rentiated
ek sha"?
and $t$ :
10 is the



[^0]:    * Except certain of the lower Grades in which a whole community is developed from the product of a single egg, by budding, subdivision, \&c.

[^1]:    * The tail is 11 inches long, and $3 \frac{1}{2}$ inches broad. It consists of 20 vertebre, and has a row of feathers along the sides. These few feathers are in pairs corresponding with the number of the vertebres, and diverge from the axis $8 . t$ an angle of $45^{\circ}$; the last pair extends backwards nearly in a line with the last vertebrae, and $3 \frac{1}{d}$ inches beyond it. The wing appears to have a two jointed finger. The breadth of the wing was made by feathers as in birds, and not as in a Pterodactyl by an expanded membrane. The feet are like those of Birds."

[^2]:    * Man being taken as the type.

