

Photographic
Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black);
Encre de couleur (i.e. autre que bleus ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lare liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les details de cet exemplaire qui sont peut-ètre uniques du point de vue bisliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored andior laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages dotached/
Pages dètachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seuie édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, ure pelure etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public Archives of Canada

The images appearing here are the best quality possible conside: Ing the condition and legibility of the original copy and in keepling with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres. sion, or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les examplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'Impression oll d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et on terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ADVANCE PROOF-(Suliject to revision).
This Proof is sent to you for discussion oniy, and on the express understanding that it is not to be used for any other purpose whatsoever.--(See Sec. th of the Constitution.)

Ganadian soricty of © Civil Engineers. incolpolaten 1 mki.

TRANSACTIONS.

N. B. - This Soclety, as a body, does not hold itseli' responsible for tho facts and opinions stated in any of its publications.

THE CORNWALL CANAL.

By S. Keefer, M. Can. Soc. C. E.
 To be read Thureday, November 7th.

Of the first construction of the Cornwall Canal during the years 1834 to 1839, it is proposed in this paper to present to the Soeicty such an aceount, from personal knowledge, as an assistant engineer, resident on the works during those years, is quallified to give. Reference to the enlargement thereof, now in progress, will also be made as an engineering question.
The Cornwall Canal was the first of the series of canals on the St. Latwrenee, construeted for the larger seale of steamboat navigation. In 1832 the legislature of Upper Canada appropriated the sum of $\$ 280,000$ for the iuprovement of the Lavigation of the St. Lawrence, to admit the passage of vessels drawing nine feet of water, and recommending the imuediate commeneement of the improvement between Cornwall and the Longs Sault Rapids, stip lat 'ng for the eompletion of the Cornwall Canat before any other works leading to Lake Ontario should be undertaken. A commission was appointed iu 1833 to earry out the provisions of the aet, and by them the surveys and plans for the works were entrusted to experieneed engincers from the United States.
The preliuinary survey was conducted by Mir. John B. Mills as ehief eagineer, with Mr. Benjamin Wright, or Judge Wright, ehicf engineer of the Erie Canal, as consulting engineer. Mr. Mills brought with him three assistants, and the writer made the fourth. Mr. Willian J. MeAlpine took the levels. The writer made the survey, and Mr. James Worrall and Mr. Charles Mills were the draughtsuen. The field work was soon aeconuptished. It was begun the 13th May, 1833, and coupleted 2nd July of the same year. The engineers then proeeded, under the same authority, with the survey of the St. Lawrence thenee to Lake Ontario, and subuitted plans aud estimates for the canals proposed to be construeted at the Long Sault, Farran's Point, Rapid Plat, Point Carlimal and the Galops, amounting in all to $\$ 1,294,414$. In September and Oetober of the same year the writer assisted Mr. Mills in the survey for a eanal in continuation of the Cornwall Canal, and of the same dimensions, in Lower Canada to conneet Lake St. Franeis with Lake St. Louis, and to overeoue the rapids at Coteau, Cedars and Caseades. This suryey was confined to the North Shore, and referred to two routes, one "along the river bank at these rapids and the other inland.
Tho following year, 1834, the final location of the eanal was begun at Diekiuson's Landiug, at the head of the Long Siult Rapids, on the 20th May. On the 30th of the same month the Canat Comuissioners, of whou Mr. Jonas Joues of Brockvilte was president, eame down to examine the phas and proposel line of canal. 'They were necompatied by Captain Cole of the Royal Eugineers, by their chief engineer, Mr. J. B. Mills, by Judge Wright, the consulting engiueer, and by Judge Geddes, another engiucer frou the Erie and Champhain Canals. As the two Aureriean engineers, Judge Wright aud Judge Geddes, had borne conspieucus aud responsible parts in the construction of the Erie Canal, it was considered that their knowledge of canal works would be valua-

He to the Commissioners. Captain Cole and Judge Geddes had been specially retained to advise the Board in reference to the selection of the best line for the canal. Mr. Mills had served under Mr. Moncure Robinson, an aceomplished and distinguished engineer of Virginia, and came to his work in Canada well informed, and with perfect confidence in his own ability. He was a man of great determination, and having once made up his mind as to his plans, and the course he intended to pursue, he was immovable.
As the result of this examination by the Commissionel"; and the engineers both eivil and military who attended them, the ehief engineer's plan was approved, and the works were placed under eontract the same year. It may here be stated that with the exception of a few changes of the centre line at the Long Sault, to throw the eanal more inland, the location of the eanal as now constructed is the same as that originally projected by Mr. Mills, and adopted by the commissioners.
The engineers determined on locks 55 feet wide 200 feet long between the gates, and with nine feet of water on the sills. These dimensions would allow the passage of vessels $\mathbf{1 7 5}$ to 185 feet long, aeeording to their build. The canal 100 feet wide at bottou and 150 feet at surface to admit of the side paddle stcamboats then in use passing each other in any part of the eanal. The great eapabilities of the serew as a means of propelling vessels had not at that time been developed, and propellers were not then employed in our inland navigation. This aeeounts for the very generous width given to the canal.
The length of the canal is $11 \frac{1}{2}$ unles. There is one guard loek at the head, and there are six lift locks of 8 feee lift each, to overeome the whole fall in the river of 48 feet, from the head of the Long Sault to Cornwall bay at the head of Lake St. Francis. This seale for the navigation of the St. Lawrence was approved by the enmmissioners and adopted by the government, and became the standard for the other short eanals above Cornwall, except that as vessels could there deseend the rapids outside these eanals with safety the bottom width was redueed to 50 feet. The width of the locks on the Cornwall Canal 55 feet, as fixed by the Auerican engineers, was not in reality available for vessels of that widthi, owing to the peeuliar form of the loekwalls, and therefore when the Williamsburgh eanals (the name given to the short canals at Farran's Point, Rapid Plat, and tho Gallops) were afterwards eonstrueted, as well as Beauharnois and Laehine canals, the width was redueed to 45 feet, which was considered in better proportion to the length and draught.
An arcount of these loeks as built, with plans of loeks, lock gates and the machinery for operating them, was published with the report of Col- Philpotts, R. E., on the proposed eulargement on the Welland Canai in 1840, and need not be repeated here. This report was made under instructions frou the Earl of Durham, and was addressed to the Right Honorable Sir Charles Poulett Thonipson, Governor Generall, and published in the "Professional Papers of the Royal Engincers," Vol. V, pp. 140 to 193.

TIIE LOCATION.

In tiking his departure from the navigable waters of the St. Lawrence above the Long Sault, the choiee of two lines was presented to the engineer. One was to follow along the river bank down to the channel dividing Sheek's Island from tho min shore, and the other an inland route up Iloople's Creek, and by a depression half a mile back of the river to ureet the same chanuel at Sand Bridge on Brownell's Bay. The first was along a high bluff bank risiug 30 to 50 feet above the river, all side cutting, and the other a thorough eut.

The engineer haviug instituted a comparison between these two lines deeided in favour of the one by the river, as being a mile and a quarter shorter, and saving $\$ 120,000$ in cost. An engineer's assistant may not question the superior juikment of his chief, but layally aceept his decision, seeng he is in no way responsible.

The correctness of this estimate has recently been ealled in question, but whether right or wrong no grod end can be served by the diseussion
of it now, for the very good reason that the offieiully adopted line has been constructed, and iu nse for hall' a century without aceident or failure of any kin\}. The subject is now a dead issue.

It may be ob-crved, lowever, that the front or river line being all in side-cuttiug with short delivery into the river, a eubic yard of material eould be moved at less cost than in a thorough cut inland, where it has first to be elevated, and then carried some distance into spoil bank. Probably two yards conld be moved on the front line at the same cost as one yard on the inland routo, or double the guantity for the samo eost.

THE SUMMIT LEVEL.

There can be no doubt that the engineer was perfeetly right in maintaining his summit level, and carrying it on as far as he eould, so as to command the table-land eastward of Milleroches, to his first lift lock, but his loeation of the canal along the three miles of eireuitous side eutting, from the Long Sault to Milleroehes, c:nnot be approved, when there was, as will appear frow what follows, no neeessity for resorting to such a hazardous location, but in view thercof a safe and less costly means of keeping up the summit level. The maintenance of the summit level was correct in principle, beeanse when the line had reached Milleroches, the eugineer was iudepeudent of the river, and thenee te Cornwall eould locate his lock to the best advantage. On the other hand, many of the contemporary engineers, both civil and military, who had other plans to suggest seemed to have lost sight of this essential principle. They proposed to loek down into the Sheck's Island channel, and to render it navigable by dams at Moulinette and Milleroehes, or simply by oue dam at the latter place made high enough to drown out the rapids at the former. It appears this was suggested in order to avoid the great cost and risk of hanging up the canal in side cutting on the north shore ; but by this proposed drop to a lower level they had to eneounter a deeper cucing of some seventeer feet or more eastward of Milleroehes till the first lift lock was reached. They all suggested that a low dam, to serve merely as a coffer-dam, sloould be thrown across the shallow chanuel, called the "Snye" at the head of Sheek's Island, to shut off the water eoming down that channel during the construetion of the proposed works at Moulinette and Milleroches, or possibly to serve, if maintuined, as a regulating bulk head for the snpply of the canal after it had been built. Mr. Peter Fleming, Mr. Samuel Clowes, Judge Geddes and Captain Cole, R. E., favor plans of this sort ; but Mr. Clowes went beyond the other engineers, and suggested a lock in the dam at Milleroches, and consinuing the canal along the margin of the opeu St. Lawrence to the head of the Cornwall Rapids, aud thence along in front of the town to the bay below Cornwall.
Of all these rival schemes the assistant eugineer was at the time entirely ignorant, aud in no way concerned with them, being then actively employed in the location survey of the chief engineer's adopted line. But while so eugaged, he had naturally beeome familiar with the physical features and capabiities of the country for canalization, and began to form opinious of his own on the subjeet. To him it appeared a surprising circumstauce, that after all the array of professional skill that had been convened to assist the Commissioners in the selection of the most feasiblo plan, they slould all have overlooked oue simple and obvious idea that would have giveu a satisfactory solution of the main difficulty with whieh they were all contending-uanely, the cost and hazard of earrying the sumuit level of the eanal along the left bank of the river, where the surfaee of the cimal would be from 16 to 24 feet above the surface of the river, and where the suitabloness or otherwise of the material for making sound banks was as yet unknown.
The idea that presented itself to the wind of tho writer was to have uo camal at all on the northsbank, but in lieu thereof, to raiso the dams at the head and foot of Sheek's lshad, high enough to retuin the summit level of the canal, and transtorm the river valley into a fue broad basin, making that the cunal. If' both dams were raised to the
same level, they would obviate the neeessity of ennstructing three miles of eanal along the north whore. The foundations for these dams would be secure, for they would be on hard, grawilly earth or solid rock. The width of the ehannel at the liead of the I land in 230 feet, nee rding to the survey presently to be reforred to, and at the foot of the Islan? 3330 fect. In both eases the water is quite slatlow-the same fuantity passing at both phaces, and the banks are hiph. Slueck's Island would foru the south, and the main land the north bank of the canal, or basin, ereated by the two dams. 'Itw upper dam, it' raised five fect above eanal surface, would stand 26 feet high in the middle, and the lower dam 40 feet ligh, allowing in both eases for fimer feet of water in the rapids, whieh is believed to be in exeess of the actual depth.

The idea of two dams of the same height, both raised to summit level does not appear to have been craspal by nuy of the engineers before mentioned, and when the assistant chgimeer ventured to suggest it to his ehief, it was treated with scant conrtesy, and at onee dismissed, and was never again referred to. Could it be that the ehief did not understand what his assistant proposed? It is believed that a survey and comparative estimate, if made at that time, wouk eertainly have settled the question in favor of his plan.

TIIE CONSTRICTION.
Mr. Mills renained in charge of the works as ehief engineer, until 1st June, 1836 ; when, owing to a difference that arose between him and the Commissioners, he gave in his resignation, and was sueeceded by Colonel Phillootts, of the Royal Engineers. In the two years of his offieial conncetion with the canal, he had, with the approval of $\mathbf{M r}$. Benja uin Wright, settled all the phans for the mechanieal struetures and earth works, and eonsiderable prouress had been made in their eonstruetion befure Colonel Phillpotts assuued command. The writer had been placed in eharge of the works on the upper thivision, a little over seven mites in leagth, inclodiug the guard loek and the frst lift loek, and eontinued in charge of the satue unter Colonel Phillpotts until the work was suspendel.

A map of the river St. Lawrenee, immediately south of the eanal, has been prepared (Phate), shewing the several ishands and ehannels between them, through which the main navigable channll downwards pursues its tortuons emur-e, and also the bomdary line between Canada and the United States. This map has been eopied from the very eareful hydrographie survey of the U.S. Corps of Engineers, made in the years 1871,1872 and 1873, and is the must recent, as well as the most eorreet, ehart extant. From this, it will be seen that Sheek's lshand is Canalian, while Barnhart's Island is Ameriean, and that the ehannel dividing them, through which the bonmalay line is drawn, is not navigathe, nor is the suall chamel between theek's Island and tho Cimadian shore fit for navigation. 'Therefore, there ean be no reason why Sheek's Ishand shoull not be utilized for comal purposes, seeing it is only intended to rest the embs of the two dams upon it, and toflood a few aeres of the low land fringing its northern border.

THE EARTH WORKN.
In order to represent more clearly the peenliar eharacter of earth works on the first reach, tour crossenctions have beeu ploted from the original ficld notes and records, and numbered $1,2,3$, and 4 . (Plate). A hand sketeh maked (A) is also given on the face of the map in further expianation.

Cross-section No. 1 in given to shew the deepest cutting on Section No. 1 ; the Long Sault section, which is 9294 tect in length, and the enormous amount of material that was wasted in these rapids-all earried away by the eurrent to the lower parts of the river, in order that the prism of the canal might be ent ${ }^{\text {gout }}$ of the solid gromed without eneroaching on the bed of the viver.

The material through which the eanal was made along the rapids is eharaeterized by sir Willian Loran, as "Cilucinl drift with boulders." The upper part of this seetion, lor uearly a mile, is covered with a stiff
brown ehy, which was soon lissolved and carried off when thrown into the decp swift eurrent, whieh at this place runs smonthly at the rite of ten miles an hour. No attempt was male to save it by crib-work or othewise. The rracelly earth undrrlying this brown day beeomes gradunlly harder and deeper as the lower end of the seetion is approached, until it is devehped into hard pan, and beyond the limit of the section into inlurated or cemented gravel that required to be blasted before it could be removed. There was no more clay at the lower end of the seetion, and the boulders amounted to one-sixth of the entire mass. The mixture of gravelly earth and hardpan was the very best material for making a solil water-tight bank, and it might have been aconomized mueh more than it was fir that purpose. The military engineers, who oecasioually visited the werks during their progress, entertained the opinion that it was impossible to eneroaeh upon the bed of the river, that the current would have its own way, that the artificial works put in it would not stand, and that the river would ultimately return to its original bed! It is very possible these opinions might have influenced the management, for the centre line was moved at the upper end from 30 to 70 feet, and then back to zero again, by gentle curves over 4,200 feet ; and at the lower end from 0 to 74 feet and baek again to 0 , over 3,000 feet, leaving only some 2,100 feet of the original eentre line unchanged.

But facts are stronger than opinions. It is a faet that the bed of the river was eneroached upon along the swift broken water towaids the lower end of the seetion, viz., on sub-sec. F. of No. 1 (Plate). The hand-sketeh (A) on the map (Plate) explains how this was done. By taking advantage of certain salient nnyles or points along the rapids, a bank of earth and stones was run out to the outer slope of the canal embankment and protected by a mass of boulders. Then the boulders kept in reserve for the oceasion were used to form a barrier against the river between these salient points aloug the onter edge of the slope, enelosing a poud of stili water, whieh was then filled with earth to form the base or body of the embankment, the abrasion of the natural bank by the eurrent dnring the ages past had favoured these operatious by forming a maryin of comparatively shallow water between the projucting points, varying frou 6 to 10 fect deep, whereas further out, from soundings taken in the rapids, the depth was from 20 to 30 feet. The bauk built in this way has stood firm to this day, and must be considered permanent. Mueh more good work of this kind might have been accomplished to economize the material, had the plans been previously arranged for it.

Cross-section No. D.-TThis section is taken a short distanee below Moulinette, and is a fair sample of the doubtful charaeter of the soil on whieh the integrity of the navigation depends. It was near this that the first breach oeeurred in December, 1843 , shortly after the canal was first opened. Suall streaks of sand were found in exeavating the eanal, whieh made their way in some unknown manner through the natural "drift" on whieh the embankment rests. These where diseovered were cut off by a puddle treneh, six to eight feet deep, another bank and canal bottom proteeted by an apron of puldte three feet in thickness. The second breaeh took plaee on the 30th October, 1850, just above the road culvert at Moulinette, ufter the caual has been seven years iu use. The cause of the breach in this instance was attributed to a small rivulet that crossed the eanal nearly at right angles, some fifteen feet below the bottom of the canal. It was a sort of blind water-course that had uot been thoroughly cleared of the sand and verutable deposits before the bank was built teross it. Through this, without any previous warning, the eanal water found a passage, and in a very short time, a gap 280 feet long and 26 teet deep was made, emptying the cunal, and carrying away some 1500 cubie ynrds of the bank. The gap took the following shape. Fig. 1.

The writer at this time was Chicf Eugineer of Public Works, and on him rested the duty of reatoring the navigation in the shortest pussible time, so that the fall fleet might be passed throngh beforo the elose of navigation. He at once repared to the mpot, and with the assistance of Mr. Duncan Melonald, the loeal superintendent, and a strong foree of men and horses wotking nipht and day, the breach was made up to full height in ten days-the water let in on the wh day-and on the 1 th of November he was ahle to report to the Department, that the navigation was filly restored, ind all the delayed ressels had passed through,
Before the eanal was filled, the writer walked down the canal bank to Milleroches to unke an inspection of the empty eanal. He found a leak in the bottom of the canal some distance below the cross-section No. 2, when the water was runniug out in a considerable stream into the Freneh drain that had been put in to drain off the springs in the natural soit. This drain was five feet nuter eanal bottom, and near the toe of the bank; See Fig. 2. Some bad material was found

in the botton of the camal through which the water found a passage to the drain in a stream the size of one's arm, and passed under the oank to the river by tho 'reneh drain here shown. If' the breaeh had not oceurred at Monlinette as it did, one would most surely have happened here. The bank had a narrow eseape.

Cross-section No. 3.-This seetion is taken 1400 feet east of No. 2, near the place where the third breach, the most serious of all, oceurred on the 11 th Oct., 1888. It will be observed that there is no exeavation here. The work is altogether in embankment-an embankmeut that rests half' on the land and half in the bed of the river, which at the eud of the slope is $38 \frac{1}{2}$ feet below the Lotom of the eanal. The river bank is 8 feet below eanal bottom. The soil is clay ont of whieh arise natural springs, which during constrnction were led out to the river by lougitudinal and transverse French drains under the seat of the cubankment. This expedient was by no ueans effeetual, for when the bank had been raised nearly to its full height, even before the water was let into the caual, the outer slope began to shide off towards the river. The springs received into the draius rose up in the outer slope and softened the bank, and of course it uu-t yield to the superincumbent weight of the more solid unterial resting against it. To reunedy this evil a series of cross diagonal drains was sumk in the outer slope to earry off the leakage. A grood deal of this kind of protection had to be resorted to during the progress of the work; but when all was done and the outer stope protected by rip-rap, it is evident, from the fuets stated, that there could be no assuranee that the bank would be pernanent. A elay soil iufested with natural prings, whose rource is unknown, is submitted to a pressure of 92 to 24 feet head of water-the difference between the water in tho canal aut the water in the river. The quantity of water that leaks out throlgh the bamk may be trifling at first, but the power exerted by it for mischief is not measured by the aetual volume of water that leaks through (an is well understood by what is known us the "hydrostutic permeor"), but is in direct proprortion to the sum of the vacant spaces within the bank or area on which the pressure is mplied. This power, constantly aeting on the clay soil forming the outer slope of the bank, tirst softens it, and then it gives way to the pressure from above, eausing slides.

A gravelly soil on the other hand stops its own leaks. The earth nud sand and gravel rush in and close them. Iterein is the great difference between the banks eonsirueted past the long Sault where the material is gravelly earth, mind sand, and stones, and the treacherous clay soil over which the eanal hats been formed between Moulanette and Milleroehes. The former have uever failed, the latter have failed
three times, anil many more failures have beell averted by enostant inspertion and prompt repairs.
'the breath which necurred in this viefuty in thetuler hast, no doubt exemplified the hydrontatie law lufire reterred to, for after it was menrly elosed amother slide took phace and materially retarded it- comphetion. This, with the almo-t ineensint ribins, delayed the mavigation :38 days, and raised the eont of repaiss to mearly 800,000 .

It mast be almithel that the fimmbition of the embankment here is by no means reliable, nor is it likely that it ean bue made so at any rensomable const. Certainly it is mot a fomdation such as an equineer would select for the base of a dan, for whit" the bamk of the eanal must mantain the water in it from 16 to $2+$ feet above the river, it is in reality a dam in every part of it throughout its three miles of length.

Although your attention has not haen particularly direeted to the charaeter of the eanal, between Doulinete and the Long Sault-or rather l'ownell's Bhy, it must not be inferrel that this part affords no cause of approhension. So far, it is true, no breach has happenet here, but it must be observel that it rests on a elay soil, eovered with a deposit of sind and loan, and the water in the eanal stands 16 feet above the water iu the river. I great borly of this sand and elay was carricd from the side eutting to form the embankment in Brownell's Bay, whieh had many years to settle and consolidite before the sixteen feet of pressure was put upon $i t$. At the sime time the removal of so large a mass of material from the side eutting for building this bank prepared a more secure site for the eamal. Still it is a eanal in side cutting, and for that reason is less secure ant more exposed to aceident than a canal in a thorough eut.

Cross-section No, 4. 'This section is taken about a quarter of a mile above the fist lift loek, and represents the retaining wall built in the bank by Mr. Mills. Before the canal wos begar, land slides were observed in the high bank aloug the river, which at this phee is forty feet below the surfiee of the camal. They were eatused by springs in the natural bank. As a mater of proteetion to the eamal, a wall, as shown, was built for a fuarter of' a mile in length along the line of the outer edge of the towing path, founded on a stid timber phatform, supported on piles. The wall is built of heavy ashlat uasoury, laid dry, so as to allow the spring water to pass anywhere freely through it. The elay exeavated from the prisu of the canal was thrown in spoil bank in rear of this wall, and as the top of it was: 3 feet under top bank it is now entirely covered in and hidden from view. It extonds from sta. 335.50 to 5 ta, 349,60 of the orizinall survey, and contains 9,037 eubie yards of utisoury.

In eonstrueting the canal, sand streaks roming through the elay were diseovered inthe bothur, by which the water found a passage to the revetment wall and through it to the opoil bank outside. In Angist, 1833, a thite tonk place here. which carried away part of the original bank within fice feet of the fonnelation of the wall, and exposed 6 to 8 feet of the natural bank below it. From a note made at the time, it Wias thought that the part (A) sunk down to the place (B) and pushed out (C') before it-(B) and (C) having first been softened and prepared to Nide by the water lakiug through the wall. To stop the leaks a pudde trenel s ta 10 feet deep and 4 feet broad at bottou Was placed along the foot of the slope, and joined to an arron of pudde three fert in thickness, protecting the bomk to its top. This method of proteetion was entirely suceessfal, and there havebeen no further slides, nor any tialure of the wall up to this time.

The rebellion of 1837 interfered verionsly with the progress of the works on this simst, and finally, with the finameial embarrassments that followed, brousht it to a staml. The writer left in 18:39. In 18.41 a "Botred of Works" (afterwards " the Depurement of I'ublic llorks") was estathialsed for the mited provimes of Upper and Jawer Camada with the Jlon. II. II. Killily, C.E., as chairuan, and the writar as Chicf Enginect. Unter that Board the camal was so firr eompleted in

1842, that the steamboat "Hiqhhmelir" wis pasecel through in December of that gear, but the formal openiug did not take place until June, 1843. No impronant works in ennertion with this canal have since been executed, with the exception of the enustruetion of regulating weirs and sluices around the locks, to supply water power to the uills at Cornwall.
The total expenditure on this canal up to the date of emfederation 1st July, 1867, was s1,933, 1002 .

tile enlariement.

The Canal Comuission of 1871 made an attempt to fix the scale of navigation for our eanals, 'i hey recommented the enlargenent of the Welland and St. Lawrenee Canais for a draught of twelve feet, with locks $2700^{\prime} \times 45^{\prime} \times 1{ }^{\prime}$ ' ia the chamber. That seale wis npprovel and adopted by the (invernment; but when the enlargement was begun on the Welland, strong represcutations were made by tho merchants of Montreal and others interested in the navigation, that the draught should be inereaved to fourteen feet, and the Welland and Lachine Canals have been finished to that depth, while the length and breatth of the loeks remain the same as recommended by the C'inal Coumurission. Skipping the Beauharmeis Canal for the time, the enlargement of the Cornwall Canal was begue at ench ent-the middle portion was net placed under contract until near the end of last year.

Three years before this work was placel under contract, the writer ventured to lay before the Minister of Lailways and Canals the faets that had come to his kin seekge, in relation to the doubtful nature of the foundatit -a which the old canal rests. This was done by a memorandum dated 17 th Ficb., 188.5, which has recently been printed by order of larliament, along with the correspondence in reference to the great breach of October last, and in which will be found the reply of the Government engineer to the writer's surgestion. His letter is dated 27 th Feb., 1889.

It will be observed that the chief engincer does not guestion the facts stated, but hraws a different conclusion from them. Ife states that although the materials deseribel may not be suitable for making banks. in the usual way, they are yet of such a nature that, when thoronghly mixed by bucket dretging, and placed on the manner speeified on the south side of the cmbankinent, will form "modivately grod brikis."

It will further be observed that he has tearned from the last breach, and from information subsequently obtainel, that it would be injudicious to cut into the north side of the embankment, and says that the widening most all be done on the landward sitie, the soath bank allowed to remain undisturbed, and the slope on the eanal site continued down to the new bottom line at the sitme angle as at present. Thus it appears that all the material dredged out is to be put on the suath side of the bank.

On this point, the Governuent engineer does not speak with that confidence one might expeet from this respmaible offieer in vindieation of his own plans. He says: "It is true that placing the dredged material on the outsite is not the pusition where it wonld be most serviceable to banks of the deseription these are represented to be, still the material will have a sectional area, and be of a nature that when fully eonsolidated would almost, if unt eltogether, retain the water in the eamal, were the old banke opposite the re-pective places removed altogether. "

Coupling this with the previous admiss ion that the dredged natecial will form only moterately grod banks, it is not easy to follow him to the contident enchelusion that eomes imuccliately after. "Of the feasibility, efficiency and safety of cularging the present canal, in the manner deseribed in the specification on which the works are led, the slightest doubt is not entertained by me."

In order to illustrate the effect of the modus operemali to be pursued in the enlargeurent, both on the bottom and slopes of the bank, your
 ou which the bottom line and slopes of the enlarged canal are drawn.

In sinkiug the hotem fis feet deeper, the dratge will remove the pudde treneh and judile apron mon the buttom of the ohl camal, and will expose the streaks of nand in the origitual bank of No. 2 to a severe pressure. 'The banks at both phaces, being on nnsount lootow, car not be benefitted hy ull the apmil bruk dumped on the outside of it, but on the contrary must be rendered more liable to aceident than at present, by these operations.
:
It is perhaps neeessary here to state that the cross-section No. 4 reveals a condition of thing apparently munown to the chief engineer, since his specification for Ser, 5 makes no reference to the revetwa?nt wall, and the puddle trench and apron in front of it. Special means will have to be adopted in order to protect the canal from leakage along the srout of this wall, and thereby prevent land slides.
THE "sNYE.""

The Government engincer can see no alvantage to the canal whatever in the suggestion to convert the Shcek's Island channel, or "Snye," into slackwater nuyigation, by meaus of dams at either end. On the contrary, le proceeds to denounee it iu most unmeasured terms. He nlleges: (1) Tb t the closing of the "Suye" may produce the most serious floods, and lead to complications with a foreign country. (2) That however insiguifieaut this small channel may be, compared with the great St. Lawrence, it runs in the satne direction as this branch of the river at the lead of the uhlarmois canal, the closing of which led to a vast deal cu' trouble aud outlay for land damages. (3) That "the St. Lawrence is on too grand? iscale to admit of the probable result of interference with it, to be eveu approximited by the use of formulio fairly applicable to ordinary streams." And finally, (4) That all dams are insecule. On the question of comparative cost, no opiniou is expressed.
It is proper and right that an engineer's plans should be fully and fairly considered in all their bearings; but iu placing his views before the Minister, the Government engineer has given a loose rein to his imagimation, through wiich ine reac ces the most astounding conclusions, and by foreed exaggeratious ha* made the most and the worst of the writer's plau to serve his own purpose. He has conjured up a bugbear to frighten the Minister and divert attention from the weakness of his own position.

It is now proposed to examine his four allegations: (1) Any person acquainted with the locality would be surprised to learn that the closing of the "Suye" could possibly lead to complications with a foreigu power! It seems too absurd to be seriously statel. The term "Siye" is applied in this immediate neighbourhood more partieularly to the small chamel at the head of Sheck's Island. It starts from about the middle of the length of the Lost Chamel, nearly at right angles with the same. The banks of the St. Lawrenee on either site are high, and caunot possibly be affeeted by the closing of the "Suye." (2) It is an unusual thing for the rapids of the St. Lasrence to be frozen over in win. ter. The ice jam that oceurrel at Weaver's P'oint, in January, 1887, was unpreecdented. It may never laypen again, but if it should, it can do no harm to the propresel dam at the "Snye, "for it will be five feet above the flood, and will effectualiy protect the cinna'. As for the main river, the banks being high, they camot suffer damace. They are nature's barrier arainst such disturbing forees. The relernee to the dam at the head of the Beauharnois camal, which closed up a branch of the river, is altogether uneatled for and unnecessary, because, as the engheer aduits, it is not a parally case, although the thinks there is danger in elosing the "Suyc," from the fact that it runs in the same direction! (3) The St. Lawrence is iudeed a mighty riven, graud and lovely in its strength. The writer, having dwele along its borders all his lifetime, respecss its: - gnitude, and lowes its: beaty and the purity of its waters. Still he conss iors it amenable to the hatis of nature, and must uot be preveuted tracing out the effect of elosing an unavigable chaunclaud turning it to the service of uan. At Fort Eirie, where it issues from Lake Erie, uuder the mame of the Niagara river, its dis-
eharge, as measured by Mr. Barratt, is $24,000,000$ e. feet per minute, that being the least quantity eontinually flowing nver the Niagara Falls. At the Caseades, where it fills into Lake St. Louis, Mr. James Stewart found the discharge $2 \overline{7}, 38+, 6+0$ e. feet prominute. It may therefore fairly be assumed that the wolnme dischargel through the various chanels, between the lilandsat the Loug Sault, is $26,500,000 \mathrm{e}$. fect per minute, and yet the St. Lawrenee is in ta torrer.tial river, while from the remoteness of i its sourees of smpply it is affected but very little by local rains or floods, and the renge between high and low water is of very limited extent. It is a gently flowing stream all the way from Kingston to Montreal, exeept where broken by rapids. As regards the "Snye," its ordinary discharge is about 200,000 e. feet per minute. Compare this with the whole volume of the main channcl, and then adopting Dr. Ruberton's law, that "the squares of the discharges ure as the cubes of the hydraulic mean depths," and it will be found that the only effeet of elosing the "Suye" will be to raise the water about one inch in that part of the main channel, immediately opposite Sheek's Island and Barnhart's Istands, for both above and below these islands the discharge will be constant-dam or no dam. Horeover, the main chamel here is divided by an imaginary boundary line between the two neighbouring eountries, and the theoretical rise of one inch will not be observable south of that line, while on the American shore, the rise will be nit. Two eivilized countrics are not likely to quarrel over a paltry question of this kind. (t) As before statell, the foumbations for the dams, and the materials at hand for their construction, are of the best order. An enginecr conld desire nothing better. There is no reason, therefore, why they should not be made as permanent as the hills. If all dams are ruled out as insecure, it follows that a canal batrk three miles long, every patt of which is a dam, must be nore liable to aceident than two dams aggregating about a quarter of a mile in length, incluting the approaches.

Practieally, the best interest of the mavigation will be served by the dams, for it must be obecrved that they can be constructed without any interference whatever with the navigation. The old emal will not be enemubered by the dredges, and the dams could be completed in half the time requirel for the dredginge, and at kess than half the cost.

Referenee has been made in the printed correspondence before mentioned, to the water power that will be created ly making Sheek's Island channel a portion of the cansil. Lucidentally this is a grout advantage ; for while uavigable eanalsare not constructed to supply water power, still mill privileges have in many instances beengranted wherever it was deemed rafe to do so withont himbrance to the mavigation, and much to the adrantage of the manufacturing interents of the comery. For instance, at Moutreal and Côtest. l'aul, on the Lachine canal, and also at Cornwall. lint when the water has to be passed aromel many loeks hefore reaching the millw, it becones twoblesome at times to regnInte the emal, and still kiep up the supply to the mills. 'This has been the case, both on the Lachine and C'urnwall camak, where the mills are established at their lower omls, Not so on the Bennlarinois canml. Ifere the water is tiken from the dan, at the heal of the canal, direet from Lake St. Francis, where the suply is mulimited, ant the camal itself is in un way affectel by any quantity of water, great or sumall, that may be used fir the mills.

It weuld be ment the same fir millse established at Milleroches, Here mill races could be taken off at hoth ents of the dim, and rum down as fir as may be areesary on cither sille of the river, affording a elear houd and fall of 25 tif 30 fert, nut sulyject, at at Cornwall, to back water from the main chamel of tle river, and therefore not liable to be :thpled in winter or smmer.

It is sugqeated that the dime whill he en fert wide at top, in order to form a good roal aver them. Aecording to the dinermunt phans, there is tu be a wind-bridge at Milleroches, wo that theme will be complete and comvenient neeess to the mills and the island from all parts of the main laud.
N.03. Cross siecliont of thu embantment on Sec.6.at sra. shiearing whare spreiges scaurred we Tre foundation, and h
 "cappeaced.

 \qquad

Bottom of cotronged camal.
-7. 1. 'cross. Seclion of the canal on see. ir- upper react, at sto
Shewing sueciove of aic whaning wall cullt to porotiel the bans Jhis wruld wras cularidy covered, oul of right, by thic can from the canal.


```
VALL
conaticueled in. 1834,5,6.y,9.9 cuad 1840.
```

tement or Sec.6.at Srax.zu0 (original survey 6 me the found ation, and hor incy harne bease out

$20^{\prime} \%$
-

$\begin{array}{llllll}\mathbf{C} & \mathbf{O} & \mathbf{R} & \mathrm{N} & \mathrm{W} & \mathrm{A}\end{array}$

Cross.section J?R.
takicn oelow Moulinette an scokion $1-6$ at Sta. 2eG(onginal Barvy)
fiwaz liene the first breach orpwried.

