IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporiation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempied to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue cu noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margiry/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intériaureBlank leaves added during restoration may appear within the text. Winenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut \& microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages do couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculéss
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
Showthrough,'
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/ Comprend du matériel supplémentaireOnly edition available/
Seule édition disponibla

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image!
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy fllmed here has been reproduced thanks to the ganerosity of:

D. B. Weldon Library
University of Western Ontario
(Regional History Room)

The images appearing here are the best quality possible considering the condition and leglbility of the original copy and In keeplng with the filming contract spaciflcations.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or lilustrated Impression, and ending on the last page with a printed or lliustrated impression.

The last recorded frame on each microflche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entrely included in one exposure are flimed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la génórositéd de:

ע. B. Weldon Library
University of Western Ontario
(Regional Histor Room)
Les Images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filme, et en. conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont flimés en commençant par le premier plat et en terminant soit par la dernìre page qui comporte une empreinte d'Impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmás en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniàre page qul comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniàre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliche, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, ot de haut en bas, on prenant le nombre d'lmages nécessaire. Les diagrammes suivants illustrent la méthode.

324. 3. Gage \& Co.'s flthematical Series.

ELEMENTARY TRIGONOMETRY

IY
J. HAMBLIN SMITH, M.A., Of GONVILLE AND CATUS COLLEGE, AND LATE LEOTUREB AE 85. PRTREB'S COLLEGE, OAYBBDDGI.

NHW EHDITION.

TORONTO :
W. J. GAGE \& COMPANY.

1882

Entered according to Act of Parliament of Canada, in the Office of the Minister of Agriculture, by ADam Miners \& Co., in the year 1878.

$$
\begin{aligned}
& 17,213 \\
& 10 / 61 / 1900^{\circ}
\end{aligned}
$$

PREFACE

I have attempted in this work io explaia and illustrate the principles of that portion of Plane Trigonometry which precedes de Moivre's Theorem. The method of explanation is similar to that adopted in my Elementary Algebra. The examples, progressive and easy, have been selected chiefly from College and University Ex. amination Papers, but I am indebted for many to the works of several German writers, especially those of Dienger, Meyer, Weiss, and Wiegand. I have carried on the subject somewhat beyond the limits set by the Regulations for the Examination of Candidates for Honours in the previous Examination for two reasons: first, because I hope to see those limits extended, secondly, that my work may be more useful to those who are reading the subject in Schools and to Candidateq in the Local Examinations.

J. HAMBLIN SMITH.

Cambridge, 1870.

CONTENTS

chap.
I. On the Measuremint of Lines page 8
11. On the Ra:io of the Circumperencli of a (itrcleto the Diameter
III. On the Me:Asurement of Angles 5
IV. On the Method of Convierting thic Measures of Angles from one to another System of Measurig- ment 18
V. On the Use of the Signs + and - to denotec Con- trariety of Directivn 96
Vi. On the Trigonometricai, Rattos 32
Vil. On the Changes in Sign and Mageitude of thir Trigonometrical. Ratios of an Angile as it in- CREASLES from 0° to 360°
39
39
Vili. On Ratios of Angides in the First Quadrant 46
IX. On the Reiations between the Trigonometrical, Ratios for the sami Angler 54
X. Comparison of Trigonometricai. Ratios por dip- ferient Angles 6
XI. On the solution of Trigonometrical. Equations 73
Xit. On thit Trigonomeirical. Ratios of two Angles 83
Xili. On the Trigonometrical. Ratios for Mulitiple and Sub-mul.tiple Angles 99
XIV. On Logarithms 12
XV. On Trigonometrical. and Logarithmic Tamirs 125
xig. On the Relations betweien time Sides of a Trianginand tile Trigonometrical. Ratios of the Ancliesof the Triangle
chap.
PACE
XVII. On the Solution of Right-angled Triangles 154
XVIII. On the Solution of Triangles other than Right- ANGLED 164
Yix. Measurement of Heights and Distances 17
XX. Propositions relating to the Areas of Triangles,Polygons, and Circles.187
Answfrs 206
Appendix

I. ON THE MEASUREMENT OF LINES.

1. To measure a line $A B$ we fix upon some line as a standard of linear measurement: then if $A B$ contains the standard line p times, p is called the measure of $A D$, and the magnitude of $A B$ is represented algelsaically by the symbol p. (See Alyebra, Art. 33.)

Since the stanclard contains itself once, its measure is unity, and it will be represented by 1.
2. Two lines are commensurable when a line can be taken as the standard of measmement (or, as it is commonly called, the unit of length) such that it is contained in each an exact number of times.
3. If the measures of two lines $A B, C D$ be p and q respectively, the ratio $A B: C D$ is represented by the fraction $\frac{p}{q}$. (See Algebra, Arts. 341, 342.)

EXAMPLES.-i.

1. If the unit of length be an inch, by what number will 4 feet 6 inches be represented?
2. If 7 inches be taken as the unit of length, by what number will 15 fect 2 inches le represented?
[s.T.]
3. If 192 square inches be represented by the number 12 , what is the unit of linear measurement?
4. If 1000 square inches be represented by the number 40 , what is the unit of linear measurement ?
5. If 216 cubic inches be represented by the number 8 , what is the mit of linear measurement ?
6. If 2000 cubic inches be represented by the number 16, what is the unit of linear measurement?
7. If a yards be the unit of length, what is the measure of b feet ?
8. A line referred to different units of length has measures 5 and 4 ; the first unit is 6 inches, what is the other?
9. A line referred to three different units of length has neasures $1,36,12$ respectively ; the unit in the first case is a yard, what is it in the others?
10. Express the ratio between $3 \frac{1}{4}$ inches and $3 \frac{1}{2}$ yards.
11. If the measure of m yards be c, wlat is the measure of n feet ?
12. Now suppose the measures of the sides of a right-angled triangle to be p, q, r respectively, the right angle being subtended by that side whose measure is r.

Then since the geometrical property of such a triangle, established by Euclid I. 47, may be extended to the case in which the sides are represented by numbers, or symbols standing ior numbers.

$$
r^{2}+q^{2}=r^{2} .
$$

If any two of the numerical quantities involved in this equation are given, we can determine the third.
For exauple, if $r=5$ and $q=3$,

$$
\begin{aligned}
p^{2}+9 & =25, \\
\therefore p^{2} & =16, \\
\therefore p & =4 .
\end{aligned}
$$

EXAMPLES.-11.

I. The lyypotenuse being 51 yards, and one of the sidea zontaining the right aiagle 24 yards; find the other side.
2. The silles containing the right angle being 8 feet and 6 feet; find the hypotenuse.
3. A rectangular field mensures 225 yards in length, and 120 yards in brealth; what will be the length of a diagonal path across it ?
4. A rectangular field is 300 yards long and 200 yards broad; find the distance from corner to corner.
5. A rectangular plantation, whose width is 88 yards, contains $2 \frac{1}{2}$ acres ; find the distance from corner to corner across the plantation.
6. The sides of a right-angled triangle are in arithmetical progression and the hypotenuse is $\mathbb{z} 0$ feer; find the other aides
7. The sides of a right-angled triangle are in arithmetical progression; show that they are proportional to 3, 4, $\mathbf{6}$.
8. A ladder, whose foot rests in a given position, just reaches a window on one side of a street, and when turned about its foot, just rerches a window on the other side. If the two positions of the ladder be at right angles to each other, and the heights of the windows be 36 and 27 feet respectively, find the width of the street and the length of the ladder.
9. In a right-angled isosceles triangle the hypotenuse is 12 feet; find the length of each of the other sides.
10. What is the length of the diagonal of a square whose side is 5 inches?
ir. The area of a square is 390625 square feet; what is the diagonal?
12. Each side of an equilateral triangle is 13 ; find the length of the perpendicular dropped from one of the angles on the opposite side.
13. If $A B C$ be an equilateral triangle and the length of $A D$, a perpendicular on $B C$, be 15 ; find the length of $A B$.
14. The radins of a circle is 37 inches; a chord is drawn in the circle: if the length of this chord be 70 inches, find ite distance from the centre.
55. The disiance of a chord in a circle from the centre is 180 inches; the diameter of the circle is 362 inches : find the length of the chord.
16. The length of a chord in a circle is 150 feet, and its distance from the centre is 308 fect find the diameter of the circle.
17. If $A B C$ be an isosceles right-angled triangle, C being the right angle, show that

$$
A C: A B=1: \sqrt{ } 2 .
$$

18. If $D E F$ be an equilateral triangle and a perpendicular $D G$ be dropped on $E F$, show that

$$
\pi G: R D: D G=1: \Omega: \sqrt{2}
$$

S.

et ; what is
; find the e angles on
length of of $A B$.
dis drawn es, find its
e centre is : find the
et, and its eter of the

II. ON THE RATIO OF THE CIRCUMFERENCE OF A CIRCLE. TO THE DIAMETER.

6. Ir is evident that a straight tine can be compared as to its length with a circular arc, and that consequently the ratio between such lines can be represented in the form of a fraction.
7. We must assume as an axiom that an are is greater than the chord subtending it: that is, if $A B D$ be part of the circumference of a circle cut off by the straight line $A D$, the length of $A \bar{B} D$ is greater than the length of AD

8. A figure enclosed by any number of straight lines is called a Polygon.
9. A regular polygon is one in which all the sides and angles are equal.
10. The perimeter of a polygon is the sum of the sides. Hence if $A B$ lee one of the sides of a regular polygon of n sides, the prrimeter of the polygon will be $n . A B$.
11. The circumference of a circle is greater than the perimeter of any polygon which can be inscribed in the circle; but as the number of sides of such a polygon is increased, the perineter of the polygon approaches nearer to the circumference of the circle, as will appear from the following illustration.

6 RATIO OF CIRCUMFERENCE TO DIAMETER.

Let $A B$ be the side of a regular hexagon $A B D E F G$ inscribed in a circle.

Then $A B$ is equal to the radius of the circle. Eocl. iv. 15.
Now the arc $A C B$ is greater than $A B$, and the circumference of the circle is therefore larger than the perimeter of the hexagon.
in cir

Hence

the circumference is greater than six times the radius, and greater than three times the diameter.
Now suppose C to be the middle point of the arc $A B$.
Join $A C, C B$.
These will be sides of a regular dodecagon, or figure of 18 sides, inscribed in the circle.

Now $A C, C B$ are together greater than $A B$: but $A C, C B$ are together less than the arc $A C B$.

Hence the perimeter of the dodecagon will be less than the circumference of the circle, but will approximate more nearly than the perimeter of the hexagon to the circumference of the circle.

BDEFG in-

So the larger the number of sides of a polygon inscribed in a circle, the more nearly does the perimeter of the polygon approach to the circumference of the circle; and when the number of sides is infinitely large, the perimeter of the pwlygon will become ultimately equal to the circumference of the circle.
11. To show that the circumference of a circle varies as the radius.

Let 0 and o be the centres of two circies.
Let $A B, a b$ be sides of regular polygons of n sides inscribed in the circles, P, p the perimeters of the polygons, and C, c the circumferences of the circles.

Then $O A B$, $o a b$ are similar triangles.

$$
\begin{aligned}
\therefore O A: o a & :: A B: a b \\
& : . \wedge \cdot A B: n \cdot a b \\
& :: P: p .
\end{aligned}
$$

Now when n is very large, the perimeters of the polygons may be regarded as equal to the circumferences of the circles;

$$
\therefore O A: o a:=C: c_{0}
$$

Hence it follows that the circumference c a circle varies as the radius of the circle.
12. Since the circumference varies as the radius, the ratio $\stackrel{\text { circumference }}{\text { radius }}$ is the same for all circles, and therefore the rution circumference $\frac{\text { diameter the same fir all circles. }}{\text { dial }}$

8 RATIO OF CIRCUMFERENCE TO DIAMETER.

13. Def. The ratio $\frac{\text { circumference }}{\text { diameter }}$ is denoted by the symbol π.
14. The value of this numerical quantity π cannot he determined exactly, but it has been approximately determined by various incthods.

If we take a piece of string which will exactly go round a penny, and another piece which will exactly stretch across the diameter of the penmy : if we then set off along a straight line seven lengtles of the first string, and on another straight line by the side of the first we set off twenty-two lenglhs of the second string, we shall find that the two lines are very nearly equal. Hence 22 dianeters are nearly equal to 7 circumferences, that is the ratio $\frac{\text { circumference }}{\text { diameter }}=\frac{22}{7}$ ncarly, or in other words the fraction $\frac{22}{7}$ is a rough approximation to the value of π

The fraction $\begin{aligned} & 355 \\ & 113\end{aligned}$ gives a closer approximation.
The aecurate value of the ratic to 5 places of decimals is 3•14159.
15. Suppose we call the radius of a circle r : then the diameter $=2 r$.

Hence
end

$$
\begin{aligned}
& \quad \frac{\text { circumference }}{\text { diameter }}=\pi ; \\
& \therefore \frac{\text { circumference }}{2 r}=\pi ; \\
& \therefore \text { circumference }=2 \pi r . \\
& \text { arc of semicircle }=\pi r, \\
& \text { arc of quadrant }=\frac{\pi r}{2} .
\end{aligned}
$$

EXAMPLES.-iil.

In the following examples the value of π may be taken as $\frac{22}{7}$,
I. The diameter of a circle is 5 feet, what is its circumference?
2. The circumference of a circle is 542 ft .6 in ., what is its radius?
3. The driving-wheel of a locomotive-eugine of diameter 6 feet makes 2 revolutions in a second; find approximately the number of miles per hour at which the train is going.
4. Supposing the earth to be a perfect sphere whose circumference is 25000 miles, what is its diameter?
5. The diameter of the sun is 883220 miles, what is its circumference?
6. The circumference of the moon is 6850 niles, what is its radius?
7. Find the length of an arc which is $\frac{1}{12}$ of the whole circumference, if the radins is 12 ft .6 in .
8. Find the length of an arc which is $\frac{5}{7}$ of the whole circumference, if the diameter is 21 feet.
9. The circumference of a circle is 150 feet, what is the side of a square inscribed in it ?
:o. The circmunference of a circle is 200 feet, what is the side of a square inscribed in it ?
II. A water-wheel, whose diameter is 12 feet, makes 30 revolutions per minute. Find approximately t) e number of miles per hour traversed by a point on the circum. lerenve of the wheel.
12. A mill-sail, whose length is 21 feet, makes 15 revolutions per minnte. How many miles per hour does the end of the sail traverse?
III. ON THE MEASUREMENT OF ANGLES.
16. Trigonometry was originally, as the name importa, the science which furnished methods for determining the magnitude of the sides and angles of triangles, but it has been extended to the treatuent of all theorems involving the consideration of angular nagnitudes.
17. Euclid defines a plane rectilineal angle as the inclination of two straight lines to each other, which meet, but are not in the same straight line. Hence the angles of which Euclid treats are less than two right angles.
In Trigonometry the term angle is used in a more extended sense, the magnitude of angles in this science being unlimited.
18. An angle in Trigonometry is defined in the following manner.
Let $W Q E$ be a fixed straight line, and $Q P$ a line which revolves about the fixed point Q, and which at first coincides with QE.

Then when $Q P$ is in the position represented in the figure, we say inal it has descrited the (m!!! IPQ:.

The advantage of this definition is that it enalles us to consider angles not only greater than two right anglea, but greater than four right angles, viz. such as are described by the revolving line when it makes more than one complete revolution.

OF

me imports, nining the it has been ng the con-
the inclinaeet, but are 3 of which
more exence being
e following
line which t coincides
of an angle is expressed by the number of degrees, minutes and seconds, which it contains. Degrees, minutes and seconds are marked respectively by the symbols ${ }^{\circ},{ }^{\prime},{ }^{\prime \prime}$: thus, to represent 14 degrees, 9 minutes, 37.45 seconds, we write

$$
14^{\circ} \cdot 9^{\prime} \cdot 37^{\prime \prime} \cdot 45
$$

23. We can express the measure of an angle (expressed in degrees, minutes and seconds) in degrees and decimal parts of a degree by the following process.
Let the given angle be $39^{\circ} .5^{\prime} .33^{\prime \prime}$,

60	$\frac{33}{}$
60	$5 \cdot 55$
$\cdot 0925$	

$\therefore 39^{\circ} \cdot 5^{\prime} \cdot 33^{\prime \prime}=39.0925$ degreet.

EXAMPLES.--iv.

Express as the decimal of a degree the following angles

1. $24^{\circ} \cdot 16^{\prime} .5^{\prime \prime}$,
2. $5^{\prime} .28^{\prime \prime}$,
3. $37^{\circ} .2^{\prime} .43^{\prime \prime}$,
4. $375^{\circ} \cdot 4^{\prime}$,
5. $175^{\circ} .0^{\prime} .14^{\prime \prime}$,
6. $78^{\circ} \cdot 12^{\prime} .4^{\prime \prime}$.

II. The Centesimal Method.

44. In this method we suppose a right angle to be dividea ib.o 100 equal parts, each of which parts is called a grade, eacal grade to be divided into 100 equal parts, each of which is carred a minute, and each minute to be divided into 100 equal parta, each of which is called a second. Then the magnitude of an angle is expressed by the number of grades, minutes and seconds, which it contains. Grades, minutes and seconds are marked respectively by the symbols ©, ', ": thus, to represent 35 gm des, 56 minutes, $84 \cdot 53$ seconds, we write $35^{8} .56^{\prime} .84^{\prime \prime} \cdot 53$.
The advantage of this method is that we can write down the ma utes and seconds as the decimal of a grade by inspectior
ees, minutes and seconds us, to repre-
expressed in mal parts of
ingles
be divided d a grade. f which is 100 equal nagnitude nutes and conds are represent $3^{\prime} .84^{\prime \prime} \cdot 53$.
cite down le by in-

Thus, if the given angle be $14^{8} .19^{\prime} .57^{\prime \prime}$,

$$
\begin{aligned}
& \text { since } 19^{\prime}=\frac{19}{100} \text { of a grade }=\cdot 19 \text { grades, } \\
& \text { and } 57^{\prime \prime}=\frac{57}{10000} \text { of a grade }=0057 \text { grades, } \\
& 14^{5} \cdot 19^{\prime} \cdot 57^{\prime \prime}=14 \cdot 1957 \text { grades. }
\end{aligned}
$$

25. If the number expressing the minutes or seconds has ouly one significant digit, we must prefix a cipher to occupy the place of tens before we write down the minutes and seconds as the decimal of a grade.

$$
\begin{aligned}
& \text { Thus } \\
& 25^{8} .9^{\prime} .54^{\prime \prime}=25^{\text { }} .09^{\prime} .54^{\prime \prime} \\
& =25 \cdot 0954 \text { grades, } \\
& \text { and } \\
& 36^{\text {² }} .8^{\prime} .4^{\prime \prime}:=36^{\text {² }} .08^{\prime} .04^{\prime \prime} \\
& =36.0804 \text { gradea }
\end{aligned}
$$

EXAMPLES.-v.

Express as decimals of a grade the following angles:

$$
\begin{array}{ll}
\text { 1. } 25^{\mathrm{r}} \cdot 14^{\prime} \cdot 25^{\prime \prime}, & \text { 4. } 15^{\prime} \cdot 7^{\prime \prime} \cdot 45, \\
\text { 2. } 38^{\mathrm{s}} \cdot 4^{\mathrm{\prime}} \cdot 15^{\prime \prime}, & \text { 5. } 425^{\mathrm{s}} \cdot 13^{\prime} \cdot 5^{\prime \prime} \cdot 54, \\
\text { 3. } 214^{\mathrm{k}} \cdot 3^{\prime} \cdot 7^{\prime \prime}, & \text { 6. } 2^{\mathrm{s}} \cdot 2^{\prime} \cdot 2^{\prime \prime} \cdot 22 .
\end{array}
$$

26. The Centesimal Method was introduced by the French mathematicians in the 18 th century. The advantages that would have been obtained by its use were not considered sufficient to counterbalance the enormous labour which must have been spent on the rearrangement of the Mathenatical Tables then in use.

III. The Circular Measure.

27. In selecting a unit of angular measurement we may take any angle whose magnitude is invariable. Such an angle is that which is subtended at the centre of a circle ${ }^{2}$ - an arc equal to the radius of the circle, as we shall now prove.

14 ON THE MEASUREMENT OF ANGLES,

28. T'o show that the angle subtended at the centre of a
circle by an arc equal to the radius of the circle is the same for all circles.

Let O be the centre of a circle, whose radius is r;
$A B$ the arc of a quadrant, and therefore $A O B$ a right angle;
$A P$ an arc equal to the radius $A O$.
Then: $A P=r$ and $A B=\frac{\pi r}{2}$. (Art. 15.)
Now, by Euc. vi. 33,

$$
\begin{aligned}
\frac{\text { angle } A O P}{\text { angle } A O B} & =\frac{\operatorname{arc} A P}{\operatorname{arc} A B}, \\
\frac{\text { angle } A O P}{\text { aright angle }} & =\frac{r}{\frac{\pi r}{2}} \\
& =\frac{2 r}{\pi r} \\
& =\frac{2}{\pi} .
\end{aligned}
$$

Hence

$$
\text { angle } A O P=\frac{2 \text { right angles }}{\pi}
$$

Thus the magnitude of the angle $A O P$ is independent of r, and is therefore the same for all circles.
e centre of a is the same for
29. In the Circular System of measurement the unit of - gular measurement may be described as
(1) The angle subtended at the centre of a circle by an arc equal to the radins of the circle,
or, which is the same thing, as we proved in Art. 28, as
(2) The angle whose maguitude is the π th part of two right angles.
30. It is important that the legimer should have a clear conception of the size of this angle, and this he will best obtain by considering it relatively to the magnitude of that angular unit which we call a degree.

Now the unit of circular measure

$$
=\frac{\text { two right angles }}{\pi}=\frac{180^{\circ}}{3 \cdot 14159}=57^{\circ} \cdot 2958 \text { nearly. }
$$

Now if $B C$ be the quadrant of a circle, and if we suppose the arc $B C$ to be divided into 90 equal parts, the right angle $B A C$ will be divided by the radii which pass through these points into 90 equal angles, each of which is called a degree.

A radius $A P$ meeting the arc at a certain point between the 57th and 58th divisions, reckoned from
 B, will make with $A B$ an angle equal in magnitude to the unit of circular measure.
Hence an angle whose circular measure is 2 contains rather more than 114 degrees, and one whose circular measure is 3 contains nearly 172 degrees, or rather less than two right angles.

31. Since the unit of circular measure $=\frac{2 \text { right angles }}{\pi}$, π times the unit of circular measure $=2$ right angles.
 Hence

an angle whose circular measure is π is equal to 2 right angles,
-.. $\frac{\pi}{2}$............. a right angle,

16 ON THE MEASUREMENT OF ANGLES.

32. To show that the circular measure of an angle is equal 10 a fraction, which has for its numerator the arc subtended by that angle at the centre of any circle, and for its denominator the radius of that circle.

Let $E O D$ be any angle.
About O as centre and with any radius, describe a circle cutting $O E$ in A, and $O D$ in R.

Make angle $A O P$ equal to the unit of circular measure. Then arc $A P=$ radius $A O$ (Art. 29).
Now, by Euc. vi. 33,

$$
\frac{\text { angle } A O R}{\text { angle } A O P}=\frac{A R}{A P} ;
$$

\therefore angle $A O R=\frac{A R}{A P}$. angle $A O P$

$$
\begin{aligned}
& =\frac{A R}{A O} \text {. angle } A O P \\
& \text { are }
\end{aligned}
$$

: the circular measure of angle $A O R$

$$
=\frac{\text { arc }}{\text { radius }} .
$$

GLES.
33. The units in the three systems, when expressed in terms of one common standard, two right angles, stand thus :
the unit in the Sexagesimal Method $=\frac{1}{180}$ of two right angles, the unit in the Centesimal Method $=\frac{1}{200}$ of two right angles, the unit in the Circular Method $=\frac{1}{\pi}$ of two right angles.
34. It is not usual to assign any distinguishing mark to angles estimated by the Third Method, but for the purpose of stating the relation between the three units in a clear and concise form, we shall use the symbol 1° to express the unit of circular measure.

Then we express the relation between the units thes:

$$
1^{\circ}: 1^{6}: 1^{\circ}=\frac{1}{180}: \frac{1}{200}: \frac{1}{5}
$$

35. We proceed to explain the process for Convertiva the Measjres of Analeis from each of the three systems of measurement described in Chap. III. to the other two.
36. To convert the mirisure of an angle expressed in degrese to the correspording measure in grades.

Let the given angle contain D degreea,

$$
\begin{aligned}
1 \text { degree } & =\frac{1}{90} \text { of a right angle; } \\
\therefore D \text { degrees } & =\frac{D}{90} \text { of a right angle } \\
& =\frac{D}{90} \text { of } 100 \text { grades } \\
& =\frac{100 D}{90} \text { grades } \\
& =\frac{10 D}{9} \text { grades. }
\end{aligned}
$$

Hence we ohtain the following rule: If an angle be expressed in degrees, multiply the measure in degrees by 10 , divide the result by 9. and you obtain the measure of the angle in grades.

Ex. How many grades are contained in the angle $84^{\circ} .51^{\prime} .45^{\prime \prime}$?

$$
24^{\circ} \cdot 51^{\prime} \cdot 45^{\prime \prime}=24 \cdot 8625 \text { degree }
$$

10.

VERTING

 ES FROM
TEM OF

Convertiva ree systems of two.
din degrecs to
be expressed ide the result

EXAMPLES.-Ti.

Find the number of grades, minutes, and seconds in the following angles:

1. $27^{\circ}, 15^{\prime}, 46^{\circ}$.
2. $157^{\circ} \cdot 4^{\prime} \cdot 9^{\prime \prime}$.
3. $24^{\prime} .18^{\prime \prime}$.
4. $19^{\circ} .0^{\prime} .18^{\prime \prime}$.
j. $143^{\circ} .9^{\prime}$.
5. 28°.
6. $10^{\circ} .25^{\prime} .48^{\prime \prime}$.
7. $27^{\circ} .38^{\prime} .12^{\prime \prime}$.
8. $300^{\circ} .15^{\prime} .58^{\prime \prime}$.
9. $422^{\circ}, 7^{\prime}, 22^{\prime \prime}$.
10. To convert the measure of an angle expressed in grades to the corresponding measure in degrees.

Let the given angle contain G grades.

$$
\begin{aligned}
1 \text { grade } & =\frac{1}{100} \text { of a right angle } ; \\
\therefore G \text { grades } & =\frac{G}{100} \text { of a right angle } \\
& =\frac{G}{100} \text { of } 90 \text { degrees } \\
& =\frac{90 G}{100} \text { degrees } \\
& =\frac{9 G}{10} \text { degrees. }
\end{aligned}
$$

Hence we obtain the following rule : If an angle be expressed in grades, multiply the measure in grades by 9 , divile the result by 10 , and you obtain the measure of the angle in degrees.

$$
42^{\circ} \cdot 34^{\prime} \cdot 56^{\prime \prime}=42 \cdot 3456 \text { gradem }
$$

9
$10 \mid 381 \cdot 1104$ degrees $38 \cdot 11104$
minutes $6 \cdot 66240$
seconds $39 \cdot 74400$
\therefore the angle contains $38^{\circ} .6^{\prime} .39^{\prime \prime} 744$.

ExAMPLES.-vil.

Find the number of degrees, minutes, and secondn in the following angles:
I. $19^{\circ} .45^{\prime} .95^{\prime \prime}$.
3. $29^{8}, 75^{\prime}$.
5. 154'. 7'. $24^{\prime \prime}$.
7. $38^{8} .71^{\prime} .20^{\prime \prime} \cdot 3$.
9. $170^{\circ} .63^{\prime} .27^{\prime \prime}$.
8. 50^{8} ، 76^{\prime}. $94^{\text {"'3. }}$.
10. $324^{\circ} .13^{\prime} .88^{\prime \prime} \cdot 7$.
38. If the number of degrees in an angle be given, to find its sircular measure.

Let the given angle coutain D degrees.

$$
\begin{aligned}
1^{\circ} & =\frac{1}{180} \text { of two right angles } \\
& =\frac{1}{180} \text { of } \pi \text { units of circular measure } \\
& =\frac{\pi}{180} \text { units of circular measure; } \\
\therefore \boldsymbol{y} & =\frac{D \pi}{180} \text { units of circular measure }
\end{aligned}
$$

d in the angle
secondn in the
5^{\prime}. 8".
' 15 "
$6^{\prime} .94^{\prime \prime} \cdot 3$.
$13^{\prime} .88^{\prime \prime} \cdot 7$.
iven, to find its
sure

Hence we obtain the following rule:
If an angle be expressed in degrees, multiply the measure in degrees by π, divide the result by 180 , and you obtain the circular neasure of the angle.

Ex. Find the circular measure of $45^{\circ} \cdot 15^{\prime}$;

$$
45^{\circ} \cdot 15^{\prime}=45 \cdot 25 \text { degrees ; }
$$

\therefore circular measure required is

$$
\frac{45 \cdot 25 \times \pi}{180}=\frac{4525 \pi}{18000}=\frac{905 \pi}{3600}=\frac{181 \pi}{720} .
$$

EXAMPLES.-viil.
Express in circular measure the following angles:

1. 60°.
2. $22^{\circ} .30^{\prime}$.
3. $11^{\circ}, 15^{\prime}$.
4. 270°.
5. 315°.
6. $24^{\circ}, 13^{\prime}$,
7. $95^{\circ} 20^{\prime}$.
8. $12^{\circ}, 5^{\prime} .4^{\prime \prime}$.
9. The angles of an equilateral triangle.
10. The angles of an isosceles right-angled triangle.
11. If the circular measure of an angle be given to find the number of degrees which it contains.
Let θ be the given circular measure.

$$
\begin{aligned}
1^{\circ} & =\frac{1}{\pi} \text { of two rigrlt angles } \\
& =\frac{1}{\pi} \text { of } 180 \text { degrees } \\
& =\frac{180}{\pi} \text { degrees; } \\
\therefore \theta^{\circ} & =\frac{\theta \cdot 180}{\pi} \text { degrees. }
\end{aligned}
$$

Hence we obtain the following rule:
If an angle be expressed in circular measure, multiply the measure by 180, divide the result by π; and you obtain the measure of the angle in degrees.

22 CONVERTING MEASURES OF ANGLES.

Ex. Express in degrees the angle whose circular measure is $\frac{5 \pi}{8}$.

The measure in degrees $=\frac{8 \pi \times 180}{8 \times} \frac{900}{8}=112.5$ degreea.

EXAMPLES.-ix.

Express in degrees, etc., the angles whose circular measurea
41. illustr: ing ch
(N
I.
measu
2.
unit o
3. ratio 8 each 0
4. ratio each
5. measu
'6.
7.
numb
8.
a line angles
9.
sion,
IO.
II. numb
` 12. order
13.

1. $\frac{\pi}{8}$.
2. $\frac{\pi}{5}$.
3. $\frac{\pi}{6}$.
4. $\frac{2 \pi}{3}$.
5. $\frac{3 \pi}{5}$.
6. $\frac{1}{3}$.
7. $\frac{1}{5}$.
8. $\frac{1}{8}$
9. $\stackrel{3}{i}$
10. $2 \frac{3}{10}$

lar measure

degreea
ir measure
$\frac{2 \pi}{3}$.
$\frac{2}{3}$.
equations
tems, 200
$=G \cdot \frac{\pi}{200^{\prime}}$
$=\theta \cdot \frac{200}{\pi}$.
250%
41. We shall now give a set of miscellaneous examples to illustrate the principles explained in this and the two preceding chapters.

EXAMPLES.-Xii.

(Note. Circular meagure is not introduced till Ex. 17.)
I. If the unit of angular measurement be 5°, what is the measure of $22 \frac{1}{2}^{\circ}$?
2. If an angle of $42 \frac{1}{2}^{\circ}$ be represented by 10 , what is the unit of measurenent?
3. An angle referred to different units has measures in the ratio 8 to 5 ; the smaller unit is 2°, what is the other? Express each unit in terms of the other.
4. An angle referred to different units has measures in the ratio 7 to 6; the smaller unit is 3°, what is the other? Express each unit in terms of the other.
5. If half a right angle be taken as the unit of angular neasurement, what is the measure of an angle of 42° ?
6. Compare the angles $13^{\circ} .13^{\prime} .48^{\prime \prime}$ and $14^{5} .7^{\prime}$.
7. If D be the number of degrees in any angle and G the number of grades, show that $G=D+\frac{1}{9} D$.
8. An equilateral triangle is divided into two triangles by a line bisecting one side; express the angles of these two triangles in degrees and grades respectively.
9. If the angles of a triangle are in arithmetical progression, show that one of them is 60°.
10. Reduce $39^{5} \cdot 012$ to degrees, minutes, and seconds.
II. If there be m English minutes in an angle, find the number of French seconds in the same angle.
' 12. What fraction of a right angle must be the unit, in order that an angle of $5^{\circ} .33^{\prime} .20^{\prime \prime}$ may be represented by 5 ?
13. What must be the unit angle, if the sum of the measures of 5 degree and a grade is 1 ?
14. If there be three angles in arithmetical progression and the number of grades in the greatest be equal to thr number of degrees in th" sum of the other two, the angles ar as $11: 19: 27$.
'r5. Prove that $\frac{180^{\circ}}{\sqrt{3}}=115^{\text {r }}$. 47' nearly.
16. The three angles of a triangle are in arithmetical progression, and the number of grades in the least : the number of degrees in the greatest $:: 2: 9$. Find the angles.
17. It being given that the angle subtended by an arc equal to the radius is $57^{\circ} \cdot 29577$, find the ratio of the circuniference of a circle to its diameter.
18. Two angles of a triangle are in magnitude as $2: 3$. If the third angle be a right angle, express the angles of this triangle in each of the three systems of measurement.
19. Two straight lines drawn from the centre of a circle contain an angle subtended by an arc which is to the whole circumference as 13:27; express this angle in degrees.
20. An arc of a circle is to the whole circumference as $17: 54$; express in grades the angle which the are subtends at the centre of the circle.
21. Determine in grades the magnitude of the angle subtended by an arc two feet long at the centre of a circle whose radius is 18 inches.
22. One angle of a triangle is 2 in circular measure, and another is 20° : find the number of grades in the third.
23. An arc of a circle, whose radius is 7 inches, subtends an angle of $15^{\circ} .39^{\prime} .7^{\prime \prime}$; what angle will an arc of the same length subtend in a circle whose radius is 2 inches?
24. What is the circular measure of $11^{\circ} .30^{\prime}$ if $\pi=\frac{355}{113}$?
25. If the numerical value of an angle measured by the cienlar eystem be $\left(\frac{\pi}{3}\right)^{2}$, how many degrees does it contain?
progression equal to thr the angles ar
hmetical prothe number es.
an arc equal ircumiference
as $2: 3$. If gles of this nt.
of a circle the whole rees.
ifference as sulbtends at
angle subrcle whose
asure, and rd.
, subtends the same
$=\frac{355}{113} ?$
d by the ntain?
26. The whole circumference of one circle is just long enough to subtend an angle of one grade at the centre of another circle: what part of the latter circumference will subtend an angle of 1° at the centre of the former circle 1
27. Taking 4 right angles as the unit, what numiver will apresent $1^{\circ}, 1^{8}, 1^{\circ}$ respectively ?
28. The earth being supposed a sphere of which the dianerer is 7980 miles, find the length of 1° of the meridian.
\therefore If ball a right angle be the unit of angular measure::cmi, express the angles whose measures are

$$
\frac{3}{2}, 4, \pi, 4 n+\frac{1}{3}
$$

(1) in degrees, (2) in units of circular measure.
30. If the mit be an angle subtended at the centre of a circle by an are three times as large as the radius, what number will represent an angle of 45° ?
31. Express in degrees:
(1) The angle of a regular hexagon.
(2) The angle of a regular pentagon.
32. Express in grades:
(1) The angle of a regular pentagon.
(2) The angle of a regular octagon.
33. Express in circular measure:
(I) The angle of an equilateral triangle.
(2) The angle of a regular hexagon.
34. Find the circular measure of the angle of a reguies polygon of n sides.
35. The radius of a circle is 18 feet, find the length of an are which subtends an angle of 10° at the centre.
36. The angles in one regular polygon are twice as many as those in another polygon, and an angle of the former : an angle of the latter :: 3:2. Find the number of the siden in mase

V. ON THE USE OF THE SIGNS + AND - O DENOTE DIRECTION.

42. In a science which deals with the distances measured from a fixed point it is convenient to have some means of distinguishing a distance, measured in one direction from the point, from a distance, measured in a direction exactly oppo. site to the former. This contrariety of direction we can denote by prefixing the algebraic signs + and - to the symbols denoting the lengths of the measured lines.
43. It must also be observed that magnitudes of things cannot properly be made subject to the rules and operations of Algebra, as these rules and operations have only been proved for algebraical symbols. We must therefore find some algebraical representative for any magnitude before we subject it to algebraical operations : such a representative is the measure of that magnitude with the proper sign prefixed.
44. We explained in Chapters I. and III. the principles of algebraical representation as applied to the measures of lines and angles, and we have now to explain the rules by which w.? ure enabled to express contratiziñ of aitusinion the case of lines and angles by employing the signs + and -
45. Suppose thas :wo straight roads $N S, W E$ intersect one unotier at right angles at the point 0 .

A

A traveller comes along $S O$ with the intention of going to E.

Suppose $O E$ to represtint a distance of 4 miles and $O W$ to represent a distance of 4 miles, and suppose the travellei to walk at the rate of 4 miles an hour.

If on coming to 0 left instead of the right, hour at $W, 4$ miles $f u$. reached 0 .

So far from making progress towards his object, he has walked away from it: so far from gaining he has lost ground.

In algebraic language we express the distinction between the distance he ought to have traversed and the distance he did traverse by saying that $O E$ represents a positive quantity and $O W$ a negative quantity.
46. Availing ourselves of the advantages afforded by the use of the signs + and - to indicate the directions of lines, we make the following conventions:
(1) Let O be a fixed point in any straight line BOA.

Then, if distances measured from O in the direction $O A$
L be considered positive, distances measured from 0 in the direction $O B$ will properly be considered negative.
Hence if $O A$ and $O B$ he equal, and the measure of each be m, the complete algebraical representative of $O A$ is m, whereas that cf $O B$ is $-m$.

The direction in which the positive distan es are measured is quite indifferent; but when once it has been fixed, the negative distances must lie in the ontrary direction.
(2) Let O be a fixed point in which two lines $A B, C D$ cut one another at right angles.

Then, if we regard lines measured along $O A$ and $O C$ as positive, we shall properly regard lines measured along $O B$ and $O D$ as negative.

This convention is extended to ines parallel to $A P$ of $C D$

T
leng and

BOA
rection $O A$ a the direc-

re of each

 $O A$ is m,measured the nega-
$B, C D$ c.ut

Lines parallel to $O D$ are positive when they lie above $A B$, negative \qquad below $\boldsymbol{A B}$.
Lines parallel to $A B$ are positive when they lie on the right of $C D$, negative when they lie on the left of $C D$.
47. We may now proceed to explain how the position of a point may be determined.
$N S$ and $W E$ are two lines cutting tach other at right anglea in the point 0 .

The position of a point P is said to be known, when the lengths of the perpendiculars dropped from it on the lines $N S$ and $W E$ are known, provided that we also know on which side of each of the lines $N S$ and $W E$ the point P lies.

If the perpendicular dropped from P to $W E$ be above $W E$, it is reckoned positive.
If the perpendicular dropped from P to $W E$ be below $W E$, it is reckoned negative.

If the perpendicular dropped from P to $N S$ be on the right of $N S$, it is reckoned positive.

If the perpendicular dropped from P to $N S$ be on the left of NS, it is reckoned negative.
48. Angles in Trigonometry must be considered not with respect to their magnitude only, but also with reference to their mode of generation; that is to say, we shall have to consider whether they are traced out by the revolution of the generating line from right to left or from left to right.
49. Let a line $O P$ starting from the position $O E$ revolve about O in the direction $E N W S E$; that is, in a direction contrary to that in which the bands of a watch revolve.

Then all angles so traced out are considered positive. When $O P$ reaches the line
$O N$ it will have traced out a right angle, OW
OS two right angles,

OE three right angles, If we suppose the four right angles. we may properly account the angles the direction ESWNE, regative angles.

For the sake of clearass we shall call $O P$ the revolving line, and $O E$ the primitive line.
dered not with th reference to 11 have to conolation of the ight.
on OE revolve in a direction cvolve.

Thus if the measure of $P M$ be p, the complete algebraicairepresentative of $P M$ will be p or $-p$, according as $P M$ is above or below $W E$.

So also if the measure of $O M$ be q, the complete algebrai al representative of $O M$ will be q or $-q$, according as $O M$ is on the right or left of NS.

FI. ON THE TRIGONOMETRICAL RATIOS.
51. Let the line $O P$ revolving from the position $O E$ about O from right to left describe the angle $E O P$, which we shall call the Angle of Reflerence.

From P_{1} let fall the perpendicular $P M$ on the line $E O W$.
We then obtain a right-angled triangle POM, which we shall call the Triangle of Reference.
(1)
(2)
(3)
(4)

In fig. (1) the angle of reference is an acute angle.
In fig. (2) it is an obtuse angle.
In fig. (3) it is greater than two right angles but less than three right angles.

In fig. (4) it is greater than three right angles but less than four right angles.

Then the ratio
(1) $\frac{P M}{O P}$ is defined to be the sine of the angle $E O P$,
(2) $\frac{O M}{O \bar{P}} \quad$....................... cosine
(3) $\frac{P M}{O M} \ldots \ldots$. tangent
(4) $\frac{O P}{\overline{P M}}$
cosecant
(5) $\frac{O P}{O M}$
secant
(6) $\frac{O M}{P M}$...................... cotangent
52. It will be observed that

$$
\begin{aligned}
\text { cosecant } E O P & =\frac{1}{\text { sine }} 2 J P^{\circ} \\
\text { secant } E O P & =\frac{1}{\text { cosine } E O P} \\
\text { cotangent } E O P & =\frac{1}{\text { tangent } E O P^{\circ}}
\end{aligned}
$$

53. The words sine, cosine, etc., are abbreviated, and the trigonometrical ratios of an angle A are thms written :
$\sin A, \cos A, \tan A, \operatorname{cosec} A, \sec A, \cot A$.
54. The defect of the cosine of an angle from unity is called the versed siue, thus:

$$
\text { versed sine } E O P=1-\cos E O P
$$

The words versed sine are abbreviated to versin.
55. The powers of the trigonometrical ratios are expressed in the following way:

$$
\begin{aligned}
& (\sin A)^{2} \text { is written thus, } \sin ^{2} A, \\
& (\cos A)^{3} \text { is written thus, } \cos ^{3} A,
\end{aligned}
$$

and so for the other ration,

$$
[\text { [., т. }]
$$

; 4

56. We have given the ratio-definitions in the most general
form, but we shall for the present confine the attention of the student to the particular cases of the Ratios of Acute and Obtuse Angles, with which we are chiefly concerned in this treatise.

Ratios for Acute Angles.

57. The six trigonometrical ratios are arithmetical quantities, denoting the relations existing between the sides of a rightangled triangle, which we call the Triangle of Reference, taken two by two.
58. clearl down angle, refere the fraction that side of our triangle of reference which is adjacent to the given angle: the denominator being in both cases that side of the triangle whioh subtends the right angle of the triangle.

Note.-Omitting the word acute in this Article, the remarks will be applicable to all the diagrams of Art. 51.
e most general tention of the of Acute and cerned in this
cal quantities, es of a rightReference,
the sides are nd the cosine
formed by posite to the
opposite to M the side
e sine of 8 he fraction site to the e call the merator of which is σ in both t angle of
59. If the remarks given in the preceding Article be clearly understood, the student will find no difficulty in writing down the ratios for the sine and the cosine of a given acute angle, whatever may be the position in which the triangle of reference for that angle may stand.

Sippose $P M$ to he perpendicular to $O M$, $D N$ to be perpendicular to $P M$.

Then POM, PDN, DMN are three right-angled triangles.

Mow

$$
\sin P O M=\frac{P M}{O P}: \cos P O M=\frac{O M}{O P} .
$$

$$
\sin O P M=\frac{O M}{O P}: \cos O P M=\frac{P M}{O P^{\circ}}
$$

Also

$$
\sin D P N=\frac{D N}{P D}: \cos D P N=\frac{P N}{P D}
$$

$$
\sin P D N=\frac{P N}{P D}: \cos P D N=\frac{D N}{P D} .
$$

And

$$
\begin{aligned}
& \sin D M N=\frac{D N}{D M}: \cos D M N=\frac{M N}{D M} \\
& \sin N D M=\frac{N M}{D M}: \cos N D M=\frac{D N}{D M}
\end{aligned}
$$

60. When once the student has acquired facility in fixing
cosine, he will be able to determine the other four ratios with. cat any trouble.

EXAMPLES.-Xiii.

1. Let $A B C$ be a triangle. Draw from B a perpendicular $B D$ on $A C$, and let it be within the triangle. Then write tine following ratios:

Let
In 0 angles
$\stackrel{T}{9}$

Henc
i.e. the is the s

The angle all ang

Show that

$$
\begin{aligned}
& \sin B A D, \cos B A D, \tan B A D ; \\
& \sin A B D, \cot A B D, \operatorname{cosec} A B D ; \\
& \sin B C D, \sin C B D, \tan B C D
\end{aligned}
$$

2. Let $A B C$ be a right-angled triangle, having B as the right angle, and let the angles be denoted by the letters A, B, C, and the sides respectively opposite to them by the

$$
\begin{aligned}
a=b \cdot \sin A & =b \cdot \cos C=c \cdot \tan A=c \cdot \cot C \\
b=a \cdot \operatorname{cosec} A & =a \cdot \sec C=c \cdot \sec A=c \cdot \operatorname{cosec} C \\
c=a \cdot \cot A & =a \cdot \tan C=b \cdot \cos A=b \cdot \sin C .
\end{aligned}
$$

Note.--These results are worthy of notice, as being of frequent use in a later part of the subject.
61. The trigonometrical ratios remain unchanged so long as the angle is the same.

Now respect The

Sor $C D$ of the?
perpendicular hen write tine
$\mathrm{ng} \boldsymbol{B}$ as the the letters hem by the
ing of fre-
so long as
Let $E O B$ be any angle.
In $O B$ take any points P, P^{\prime}, and draw $P M, P^{\prime} M^{\prime}$ at right angles to $O E$.

- en, since $P M, P^{\prime} M^{\prime}$ are parallel, the triangles $O P M, O P^{\prime} M^{\prime}$ are similar.

Hence

$$
\frac{P M}{O P}=\frac{P^{\prime} M^{\prime}}{O P^{\prime}} ;
$$

i.e. the value of the sine of $E O B$ is the same so long as the .ngle is the same, and this result holds good for the other ratios.

The figure represents the simplest case, where the given angle is less than a right angle, but the conclusion is true for all angles.

Ratios for Obtuse Angles.

62. Suppose $A C B$ to be an obtuse angle.

Draw $A D$ at right angles to $B C$ produced.

Then, regarding $A C B$ as an angle described by $C A$ revolving round C from the position $C B$,

$$
\begin{aligned}
& \sin A C B=\frac{A D}{A C^{\circ}} \\
& \cos A C B=\frac{C D}{A C} .
\end{aligned}
$$

Now suppose the measures of $A D, A C, D C$ to be p, q, r respectively.
Then the complete algebraical representative of $A D$ is $+p$, of $A C$ is +q , of $C D$ is $-r$.
for $C D$ is measured from C in a direction exuctly opposite to that of the primitive line $C E$.

$$
\therefore \sin A C B=\frac{p}{q}, \cos A C B=-\frac{r}{q} .
$$

63. In the application of Algebra to Geometry it is the practice of most writers to use the grometrical representative of a magnitude where the abgelraical representative ongint to be employed. Then suppose p and q to be the measures of two lines $A B, C D$, we often find the fraction $\frac{A B}{(D D}$ where we ought in strictness to find the fraction $\frac{p}{q}$. This loose methe ? ainotiotion is, however, sombtimes less cmmbersome, ant dhall therefore retain it at the risk of a slight want of clearness.
64. Whenever we represent the ratios of lines algebraically, we must be carefnl to put the complete algebmical representative for each line. This cannot be too strongly impressed on a beginner, and we therefore give another illustration of it.

Let $E O W$ be the primitive line and a diameter of a circle,
NOS a diameter at right angles to EOW , and $P O P^{\prime}$ any other diameter.
Draw $P M$ and $P^{\prime} M^{\prime}$ at right angles to $E O W$. Let p be the measure of $P^{\prime} M$ and $P^{\prime} M M_{\text {, }}^{\prime}$
r the measure of the radius.

Then the ratio $P M$: $P O$ is represented algebraically by $\underset{\boldsymbol{p}}{\mathbf{p}}$, but $P^{\prime} M^{\prime}: P^{\prime} O$ by $\frac{-p}{r}$.

rIOS.

etry it is the representative tive oughit to asures of two
ere we ought
the 1 at scotio-
nc. dhall eaness.
algclraically, representapressed on a 1 of it.
f a circle,

VII. ON THE CHANGES IN SIGN AND MAGNITUDE OF THE TRIGONOMETRICAL RATIOS OF AN ANGLE AS IT INCREASES FROM 0° TO 360°.

65. Lar $N S, W H$ bisect each other at right angles in the point O, and let a line equal in length to Oli be supposed to revolve in the positive direction from $O E$ round the fixed point 0 .

Let r be the measture of $O E$.

As the revolving line passes from the position $O E$ to the positions $O N, O W, O S$, OL, the exiremity traces ont a circle liNWS.

If we take a succession of points in $E N$, as P, P, P, P, and from them let fall perpendieulars $P M, P M, P M, P M$ on the line $O E$, and do the same in the other quadrants, it is clear that

In passing from E to N,
$P M$ continually inceedse, irom zero to \boldsymbol{p}. OM continually decreases irom r to zero. In passing from N to W,
$P M$ continually decreases from r to zero.
$O M$ continually increases from zero to r.
". passung from :V to S,
$P M$ continually iucreases from zero to r,
$O M$ continually decreases from r to zero. In passing from S to E,
$P M$ continually decreases frow r to zero, $O M$ continually increases irom sero to r.
Again,
$P M$ is positive in the first and second quadrants, negative in the third and fourth.
$O M$ is positive in the first and fourth quadrants, negative in the second and third.
$O P$ is always positive, and aiways $=r$.
66. To trace the changes in sign and magnitude of the sine of an ungle as the angle increases from 0° to 360°.
Let NOS, EOW be two diameters of a circle at right angles.
Let a radius $O P$, whose measure is r, by revolving from $O E$ trace out any angle $E O P$, and denote this angle by A.
From P draw $P M$ at right angles to EOW.
Then

$$
\sin A=\frac{P M}{O D}
$$

, P, P, and $P M$ on the , it is clear
sine of
angles. om $O E$

As A increases from 0° to $90^{\circ}, O P$ revolves fromı $O E$ to $O N$, $\therefore P M$ increases from 0 to r and is positive, $O P$ is always $=r \quad$...... positive;
$\therefore \sin A$ increases from 0 to I positive.
As A increases from 90° to $180^{\circ}, O P$ revolves from $O N$ to OW,
$\therefore P M$ decreases froin r to 0 and is positive,
$O P$ is always $=r \quad$...... positive;
$\therefore \sin A$ decreases from 1 to 0 positive.
As A increases from 180° to $270^{\circ}, O P$ revolves from $O W$ to OS,
$\therefore P M$ increases from 0 to r and is negative,
$O P$ is always $=r \quad$..... positive;
$\therefore \sin A$ increases from 0 to 1 negative.

As A increases from 270° to 360°, $O P$ revolves from $O S$ to OE,
$\therefore P M$ decreases from r to 0 and is negative, $O P$ is always $=r \quad \ldots .$. positive $;$
: $\sin A$ decreases from 1 to 0 \qquad negative.
6.. I'o trace the changes in the sign and magnitude of cosine of an angle as the angle increases from 0° to 360°.

Making the same construction as in Art. 66,

$$
\cos A=\frac{O M}{O P}
$$

As A increases from 0° to $9 C^{\circ}, O P$ revolves from $O E$ to $O N$,
$\therefore O M$ decreases from r to 0 and is positive, $O P$ is always $=r$...... positive;
$\therefore \cos A$ decreases from 1 to $0 \ldots .$. positive. As A increases from 90° to $180^{\circ}, O P$ revolves from $O N$ to
$\therefore O M$ increases from 0 to r and is negative, $O P$ is always $=r \quad$...... positive $;$
$\therefore \cos A$ increases from θ to 1 negative.
As A increases from 180° to $270^{\circ}, O P$ revolves from $O W$ to
$\therefore O M$ decreases from r to 0 and is negative, $O P$ is always $=r \quad r$..... positive;
$\therefore \cos A$ decreases from 1 to 0 negaiive. UR,

As A increases from 270° to $360^{\circ}, O P$ revolves from OS to
$\therefore O M$ increases from 0 to r and is positive, $O P$ is always $=r \quad$...... positive; $\therefore \cos A$ increases from 0 to 1 positive.
that i small,
69.
$\tan A$
greate
expre:
'n
To

$$
\tan A=\frac{P M}{O M}
$$

nitude of 60°.
$O E$ to $O N$,
om $O N$ to
$\mathrm{m} O W$ to
n $O S$ to
of the

As A increases from 0° to 90°, $O P$ revolves from $O E$ © ON,
$\therefore P M$ increases from 0 to r and is positive, $O M$ decreases from r to 0 positive;
$\therefore \tan A$ increases from 0 to ∞...... positive.
Au A iscreases from 90° to 180°, OP revolves from ON to $0 W$,
$\therefore P M$ decreases from r to 0 and is positive, $O M$ increases from 0 to r...... negative;
$\therefore \tan A$ dureases from ∞ to (1) negative.
As A increases srom 188° to 270°, $O P$ revelves from $O W$ to OS,
$\therefore P M$ increases from 0 to r and is negative, $O M$ de creases from r to 0 negative;
$\therefore \tan A$ insreases from 0 to ∞...... positive.
As A increases fiom 270° to 360°, $O P$ revolves from 08 to $O E$,
$\therefore P M$ decreases from r to 0 and is negative, $O M$ increases from 0 to r...... positive;
$\therefore \tan A$ decreases from ∞ to 0 negative.
Note - ithe symbol ∞ is used to denote numbers which are infinitely great, and the symbol 0 is used to denote numbers which cre infinitely small. When we say that $\frac{r}{\overline{0}}=\infty$, we mean that if any finite number r be divided by a number infinitely small, the quotient is a number infinitely great.
69. When A is less than, but very nearly equal to 90°, $\tan A$ is very large and positive; and when A is very litile greate than $90^{\circ}, \tan A$ is very large and negative. This is expressed by saying that the tangent of an angle changes sign n massing through the value ∞.
To explain this more clearly we give another method of cing the changes in the sign and magnitude of $\tan A$, as A theo from 0° to 180°.

Let NOS, EOW be two diameters of a circle at right angles.

Suppose a line $O P$ revolving from the position $O X$ to trace out any angle $E O P$, and denote this angle by A.

Draw $E C, W D$ at right angles to $E O W$, and let them meet the revolving line in any points P, P.
set the measure of $O E$ be r.

Then as A increases from 0° to 90°,

$$
\tan A=\frac{E P}{O E},
$$

$E P$ increases from 0 to ∞ and is positive
$O E$ is always $=r$...... positive;
$\therefore \tan A$ increases from 0 to ∞...... positive. ". A A increases from 90° to 180°,

$$
\tan A=\frac{W P}{O W}
$$

$W P$ decreases from ∞ to 0 and is positive,
72.

The
The infinity
73.
throug
74.
led to plaine If t ix on

Thu
passes
90°, th also k betwee that th
70. The changes of the cosecant, scoant, axis vianuat chould be traced for himself by the student for practice.

UDE.
ircle at right
a $O E$ to trace
let them meet
n'HANGES IN SIGN AND MAGNITUDE. . 45

7h. We now present the changes of the trigonometrical mation in a convenient tabular form.

Cinlumns $1,3,5,7,9$ give the values of the ratios for the narticular values of the angle placed above the columns.
Columms $2,4,6,8$ give the signs of the ratios as the angle nasses from 0° to 90°, from 90° to 180° from 180° to 270°, and from 270° to 360°.

A	0°		90°		180°		270°		360°
$\sin A$	0	+	1	+	0		-1	-	0
$\cos A$	1	+	0	-	-1	-	0	+	1
$\tan A$	0	+	∞	-	0	+	∞	-	0
$\operatorname{cosec} A$	∞	+	1	+	∞	-	-1	-	∞
$\sec A$	1	+	∞	-	-1	-	∞	+	1
$\cot A$	∞	+	0	-	∞	+	0	-	∞

72. The sine and cosine are never greater than unity.

The cosecant and secant are never less than unity.
The tangent and cotangent have all values from zero to infinity.
73. The trigonometrical ratios change sign in passing through the values 0 and ∞ and for no other values.
74. From the results given in the table (Art. 71), we are led to the following conclusion, which will be more fully explained hereafter.

If the value of a trigonometrical ratio be given, we cannot fix on one angle to which it exclusively belongs.
Thus if the given value of $\sin A$ be $\frac{1}{2}$, we know, since $\sin A$ passes through all values from 0 to 1 as A increases from 0° to 90°, that one value of A lies bet ween 0° and 90°. But since we also know that the value of $\sin A$ passes through all values between 1 and 0 as A increases from 90° to 180°, it is evident that there is another value of A between 90° and 180° for which

$$
\sin A=\frac{1}{2}
$$

VIII. ON RATIOS OF ANGLES IN THE EIRST QUADRANT.

75. We have now to treat of the values of the trigonometrical ratios for some particular angles in the first quadrant. These angles, which we shall take in their proper order, as they are traced out by the revolving line, are $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.
76. The signs of all the ratios for an angle in the first quadrant are positive.
77. To find the trigonometrical ratios for an angle of 0°. We have already proved in the preceding chapter that

$$
\begin{array}{lll}
\sin 0^{\circ}=0, & \cos 0^{\circ}=1, & \tan 0^{\circ}=0 \\
\operatorname{cosec} 0^{\circ}=\infty, & \sec 0^{\circ}=1, & \cot 0^{\circ}=\infty .
\end{array}
$$

78. To find the trigonometrical ratios for an angle of 30°.

Let $O P$ revolving from the position $O E$ describe an angle $E O P$ equal to one-third 0 ' a right angle, that is an angle of 30°.

Draw the chord $P M P^{\prime}$ at right angles to $O E$, and join $O P^{\prime}$.
Then angle $O P^{\prime} P=O P P^{\prime}=90^{\circ}-P O M=60^{\circ}$.
Thus $P O P^{\prime}$ is an equilateral triangle, and $O M$ bisects $P P^{\prime}$;

$$
\therefore O P=2 P M
$$

Let the measure of $P M$ be m.
Then the measure of $O P$ is $2 m$.
And the measure of $O M$ is $\sqrt{ }\left(4 m^{2}-m^{2}\right)=\sqrt{ }\left(3 m^{2}\right)=m \cdot \sqrt{ } 3$.
Then $\quad \sin 30^{\circ}=\frac{P M}{O \bar{P}}=\frac{m}{2 m}=\frac{1}{2}$,

$$
\begin{aligned}
& \operatorname{Oos} 30^{\circ}=\frac{O M}{O P}=\frac{m \sqrt{ } 3}{2 m}=\frac{\sqrt{ } 3}{2} \\
& \tan 30^{\circ}=\frac{P M}{O M}=\frac{m}{m \sqrt{3}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

So also $\operatorname{cosec} 30^{\circ}=2, \sec 30^{\circ}=\frac{2}{\sqrt{3}}, \cot 30^{\circ}=\sqrt{ } 3$.
79. To find the trigonometrical ratios for an angle of 45°.

Let $O P$ revolving from the position $O E$ describe an angle EOP equal to half a right angle, that is an angle of 45°.

Draw $P M$ at right angles to $O E$.
Then since $P O M$ und $O P M$ are together equal to a right angle, and $P O M$ is half a right angle, $O P M$ is also half a right angle.

Thus $P O M$ is an isosceles triangle, ard $O M=P M$.
Let the measure of $O M$ be m.
Then the measure of $P M$ is m.
And the measure of $O P$ is $\sqrt{ }\left(m^{2}+m^{2}\right)=\sqrt{ }\left(2 m^{2}\right)=m \sqrt{2}$.
Then

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{P M}{O P}=\frac{m}{m \sqrt{ } 2}=\frac{1}{\sqrt{\prime}^{2}}, \\
& \cos 45^{\circ}=\frac{O M}{O \bar{P}}=\frac{m}{m \sqrt{ } 2} \cdots-\frac{1}{\sqrt{ } 2}, \\
& \tan 45^{\circ}=\frac{P M}{O M}=\frac{m}{m}=1 .
\end{aligned}
$$

So also cosec $45^{\circ}=\sqrt{ } 2$, sec $45^{\circ}=\sqrt{ } 2$, coi $45^{\circ}=1$
80. To find the trigonometrical ratios for an angle of 60°.

Let $O P$ revolving from the position $O E$ describe an angle $E O P$ equal to two-thirds of a right avgle, that is, an angle of 60°.

Draw $P M$ at right angles to $O E$, and join $P E$.

$$
\therefore O P=2 O M \text {. }
$$

Let the measure of $O M$ be m.
Then the measure of $O P$ is $2 m$.
And the measure of $P M$ is $\sqrt{ }\left(4 m^{2}-m^{2}\right)=\sqrt{ }\left(3 m^{2}\right)=m \sqrt{2}$

Then

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{P M}{O P}=\frac{m \sqrt{ } 3}{2 m}=\frac{\sqrt{ } 3}{2}, \\
& \cos 60^{\circ}=\frac{O M}{O P}=\frac{m}{2 m}=\frac{1}{2}, \\
& \tan 60^{\circ}=\frac{P M}{O M}=\frac{m \sqrt{ } 3}{m}=\sqrt{ } 3 .
\end{aligned}
$$

So also $\quad \operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}}, \sec 60^{\circ}=2, \cot 60^{\circ}=\frac{1}{\sqrt{3}}$.
81. To find the trigonometrical ratios for an angle of 90°.

We have already proved in the preceding chapter that

$$
\begin{array}{r}
\sin 90^{\circ}=1, \cos 90^{\circ}=0, \tan 90^{\circ}=\infty, \\
\operatorname{cosec} 90^{\circ}=1, \sec 90^{\circ}=\infty, \cot 90^{\circ}=0 .
\end{array}
$$

EXAMPLES.-XIV.

If $a=0^{\circ}, \beta=30^{\circ}, \gamma=45^{\circ}, \delta=60^{\circ}, \theta=90^{\circ}$, find the numerical values of the following expressions:

1. $\cos \alpha \cdot \sin \gamma \cdot \cos \delta$.
2. $\sin \theta \cdot \cos \frac{\pi}{4} \cdot \operatorname{cosec} \delta$.
3. $\sin \frac{\pi}{2}+\cos \frac{\pi}{6}-\sec a$.
4. $\sin \frac{\pi}{3} \cdot \operatorname{cosec} \frac{\pi}{2} \cdot \sec \delta$.
5. $(\sin \theta-\cos \theta+\operatorname{cosec} \beta)\left(\cos \theta+\sec \frac{\pi}{4}+\cot \delta\right)$.

Also prove the following:
6. $(\sin \delta-\sin \gamma)(\cos \beta+\cos \gamma)=\sin ^{2} \beta$.
7. $\cot ^{2} \frac{\pi}{4}-\cot ^{4} \frac{\pi}{6}=\frac{\sin ^{2} \frac{\pi}{6}-\sin ^{2} \frac{\pi}{4}}{\sin ^{2} \frac{\pi}{4} \cdot \sin ^{2} \frac{\pi}{6}}$.
8. $\left(\sin \frac{\pi}{6}+\cos \frac{\pi}{6}\right)\left(\sin \frac{\pi}{3}-\cos \frac{\pi}{3}\right)=\cos \frac{\pi}{3}$.
[8.T.]
9. $\cos \frac{\pi}{3} \cdot \cos \frac{\pi}{6}=\frac{1}{2} \cos \left(\frac{\pi}{3}+\frac{\pi}{6}\right)+\frac{1}{2} \cdot \operatorname{con}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)$.
10. $\tan ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{6}=\frac{\sin ^{2} \frac{\pi}{3}-\sin ^{2} \frac{\pi}{6}}{\cos ^{2} \frac{\pi}{3} \cdot \cos ^{2} \frac{\pi}{6}}$.
82. We are now able to give some simple examples of the practical use of Trigonometry in the measurement of heighte and distances.
83. The values of the sines, cosines, tangents, and the other ratios have been calculated for all angles succeeding each other at intervals of 1^{\prime}, and the results registered in Tables.

Instruments have been invented for determining :
(1) The angle which the line joining two distant objects subtends at the eye of the observer.
(2) The angle which a line joining the eye of the observer and a distant object makes with the horizontal plane.

If the object be above the observer, the angle is called the Angle of Elevation. Angle of Depression.
84. To find the height of an object standing on a horisontal plane, the base of the object being accessible.

Let $P Q$ be a vertical column.
From the base P measure a horizontal line $A P$. Then observe the angle of elevation $Q A P$.

We can then determine the height of the column, $Q P=A P . \tan Q A P$.

P5. To find the breadth of a siows.

Let $R S$ be the horizontal line joining two objects on the opposite banks.

From 0 , a point in a vertical line with R, observe the angle of depression USR.
Then if $O R$ be measured, we can determine the length of $B S$, for

$$
R S=\frac{O R}{\tan O S R}
$$

86. To fincl the height of a flag-staff on the sop of a tovow.

Let $R Q$ be the flag-staff.
From P the base of the tower measure a $亡 v \operatorname{rizontal}$ line ΔP.
Observe the angles $R A P$ and $Q A P$.
Then we can find the length of $R Q$, for

$$
\begin{aligned}
R O & =R P-Q P \\
& =A P \cdot \tan R A P-A P \cdot \tan Q A \Gamma .
\end{aligned}
$$

87. To find the altitude of the sum.

The altitude of the sun is measured by the angle between 1 horizontal line and a line passing through the centre of the sun.

If $A B$ be a stick standing at right angles to the horizontal plane $Q R$, and $Q B$ the shadow of the stick on the horizontal plane, a line joining $Q A$ wiLi pass through the centre of the sun.

Then if we measure $A B$ and $Q B$, we shall know the altitude of the sun, for

$$
\tan S Q R=\frac{A B}{\bar{Q} B}
$$

EXAMPLES.-XV.

1. At a point 200 feet from a tower, and on a level with its base, the angle of elevation of its summit is found to be 60°; what is the height of the iower?
2. What is the height of a tower, whose top appears at an elevation of 30° to an observer 140 feet from its foot on a horizontal plane, his eye being 5 feet from the ground ?
3. Determine the altitude of the sun, when the length ot a vertical stick is to the length of its shadow as $\sqrt{3}: 1$.
4. At 300 feet measured horizontally from the foot of a steeple the angle of elevation of the top is found to be 30°; what is the height of the steeple?
5. From the top of a rock 245 feet above the sea the angle of depression of a ship's hull is found to be 30°; how far is the ship distant?
6. From the top of a hill there are observed two consecutive milestones, on a horizontal road, running from the base. The angles of depression are found to be 45° and 30°. Find the height of the hill.
7. A flag-staff stands on a tower. I measure from the bottom of the tower a distance of 100 feet. I then find that the top of the flag-staff subtends an angle of 45°, and the top of the tower an angle of 30° at my place of observation. What is the height of the flag-staff?
' 8. From the summit of a tower, whose height is 108 feet, the angles of depression of the top and bottom of a vertical column, standing on a level with the base of the tower, are found to be 30° and 60°; find the height of the column.:
'9. A person observes the elevation of a tower to be 60°, and on receding from it 100 yards further he finds the elevation to be 30°; required the height of the tower.
ro. A stick 10 feet in length is placed vertically in the ground, and the length of its shadow is 25 feet; find the altitude of the sun, having given $\tan 25^{\circ}=4$.
'ri. A spire stands on a tower in the form of a cube whose edge is 35 feet. From a point 23 feet above the level of the base of the tower, and 20 yards distant from the tower, the elevation of the top of the spire is found to be $56^{\circ} .34^{\prime}$. Find the height of the spire, having given $\tan 56^{\circ} .34^{\prime}=1 \cdot 5$.
8. The length of a kite string is 250 yards, and the angle of elevation of the kite is 30°; find the height of the kite.
9. The height of a housetop is 60 feet. A rope is stretched from it, and is inclined at an angle of $40^{\circ} .30^{\prime}$ to the ground. Find the length of the rope, if $\sin 40^{\circ} \cdot 30^{\prime}=65$.
10. A tower or the bank of a river is 120 feet high, and the angle of elevation of the top of the tower from the opposite bank is 20°; find the river's breadth, if $\tan 20^{\circ}=35$.
11. The altitude of the sun is $36^{\circ} .30^{\prime}$; what is the length of the shnilow of a man 6 feet high, if $\tan 36^{\circ} .30^{\prime}=745$?
IX. ON THE RELATIONS BETWEEN THE TRIGONOMETRICAL RATIOS FOR THE SAME ANGLE.
12. Let $F O P$ be any angle trated by $O P$ revolving from the position $1 E E$, and let a perpendicular $P M$ be dropped on $O E$ or $E()$ produced, thus :

Let the angle $E O P$ be denoted by A.
When we can prove the following relations:
I. $\tan A=\frac{\sin A}{\cos A}$.

For $\tan A=\frac{P M}{O M}=\frac{\frac{P M}{O P}}{\frac{O P}{O P}}=\frac{\sin \boldsymbol{A}}{\cos A^{\bullet}}$
II. $\sin ^{2} A+\cos ^{2} A=1$.

For $\sin ^{2} A+\cos ^{2} A=\frac{P M^{2}}{O P^{2}}+\frac{O M^{2}}{O P^{2}}$

$$
\frac{P M^{2}+Q M^{2}}{O P^{2}}=\frac{O P^{2}}{O P^{2}}=Y^{2}
$$

III. $\sec ^{2} A=1+\tan ^{2} A$.

Forsec${ }^{2} A=\frac{O P^{2}}{O M^{2}}=\frac{O M^{2}+P M^{2}}{O M^{2}}=1+\frac{P M^{2}}{O M^{2}}=1+\tan ^{2} A$.
IV. $\operatorname{cosec}^{2} A=1+\cot ^{2} A$.

For $\operatorname{cosec}^{2} A=\frac{O P^{2}}{P M^{2}}=\frac{P M^{2}+O M^{2}}{\mathcal{F} M^{2}}=1+\frac{O M^{2}}{P M^{2}}=1+\cot ^{2} A$.
89. We shall now give a number of easy examples ly which the student may become familiar with the formula which we have just obtainced.

He must ohserve that these formulæ hold good for all magnitudes of the angle which we have represented by the letter A, that is, not only
but also
and
sind
and
and

$$
\begin{aligned}
\sin ^{2} A+\cos ^{2} A & =1, \\
\sin ^{2} \theta+\cos ^{2} \theta & =1, \\
\sin ^{2} x+\cos ^{2} x & =1, \\
\sin ^{2} 45^{\circ}+\cos ^{2} 45^{\circ} & =1, \\
\sin ^{2} 60^{8}+\cos ^{2} 60^{\circ} & =1, \\
\sin ^{2} \frac{\pi}{2}+\cos ^{2} \frac{\pi}{2} & =1,
\end{aligned}
$$

And similarly for the other formulæ.
90. If thein any angle be represented by θ, we know from Arti 88,
(1) $\tan \theta=\frac{\sin \theta}{\cos \theta}$.
(2) $\sin ^{2} \theta+\cos ^{2} \theta=1$.
(3) $\sec ^{2} \theta=1+\tan ^{2} \theta$.
(4) $\operatorname{cosec}^{2} \theta=1 ; \cdot \cot ^{2} \theta$.

And we also know from Art. 52 ,
(5) $\quad \operatorname{cosec} \theta=\frac{1}{\sin \pi}$
(n) $\operatorname{sen}^{4}+\frac{1}{\cos ^{2}}$
(7) $\cot \theta=\frac{1}{\tan \theta}$.
91. EX. 1. Show that $\sec \theta-\tan \theta \cdot \sin \theta=\cos \theta$. $\sec \theta-\tan \theta \cdot \sin \theta=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} \cdot \sin \theta$, by form (6) and (1).

$$
\begin{aligned}
& =\frac{1}{\cos \theta}-\frac{\sin ^{2} \theta}{\cos \theta} \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta}{\cos \theta}, \text { by }(2), \\
& =\cos \theta .
\end{aligned}
$$

EX. 2. Show that $\cot a-\sec \alpha \operatorname{cosec} a\left(1-2 \sin ^{2} \alpha\right)=\tan a$. $\cot \alpha-\sec \alpha \cdot \operatorname{cosec} \alpha\left(1-2 \sin ^{2} \alpha\right)$

$$
\begin{aligned}
& =\frac{\cos \alpha}{\sin \alpha}-\frac{1}{\cos a} \cdot \frac{1}{\sin \alpha} \cdot\left(1-2 \sin ^{2} \alpha\right), \text { by }(7 ; 6 \cdot 5) . \\
& =\frac{\cos \alpha}{\sin \alpha}-\frac{1}{\cos \alpha \cdot \sin \alpha}+\frac{2}{\cos u \cdot \sin ^{2} \alpha} \\
& =\frac{\cos ^{2} \alpha-1+2 \sin ^{2} \alpha}{\cos \alpha \cdot \sin \alpha} \\
& =\frac{\cos ^{2} \alpha-\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)+2 \sin ^{2} \alpha}{\operatorname{cc} \alpha \alpha \cdot \sin \alpha}, \text { by }(1) \\
& =\frac{\tan ^{2} \alpha-\sin ^{2} \alpha-\cos ^{2} \alpha+2 \sin ^{2} \alpha}{\cos \alpha \cdot \sin \alpha} \\
& =\frac{\sin ^{2} \alpha}{\cos \alpha \cdot \sin \alpha} \\
& =\frac{\sin \alpha}{\cos \alpha} \\
& =\tan \pi .
\end{aligned}
$$

It will be observed that in working these examples wa commenced by express if, the othor rios os in terms of the sint in most cases.

EXAMPLES.--XVi.

Prove the following relations:

1. $\cos \theta \cdot \tan \theta=\sin \theta$.
2. $\sin \theta \cdot \cot \theta=\cos \theta$.
3. $\sin \alpha \cdot \sec \alpha=\tan \alpha$.
4. $\cos \alpha \cdot \operatorname{cosec} \alpha=\cot \alpha$.
5. $\left(1+\tan ^{2} \theta\right) \cdot \cos ^{2} \theta=1$.
6. $\left(1+\cot ^{2} \theta\right) \cdot \sin ^{2} \theta=1$.
7. $\frac{\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\sin ^{2} \alpha$.
8. $\frac{\operatorname{cosec}^{2} a-1}{\operatorname{cosec}^{2} a}=\cos ^{2} x$.
9. $\operatorname{ten} x+\cot x=\sec x . \operatorname{cosec} x$
10. $\cos x \cdot \operatorname{cosec} x \cdot \tan x$
$\alpha)=\tan a$.
$y(7,6.5)$.

$$
\therefore \cos \theta= \pm \sqrt{ }\left(1-\sin ^{2} \theta\right)
$$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1, \\
\cos ^{2} \theta & =1-\sin ^{2} \theta ;
\end{aligned}
$$

Again

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\sin \theta} U \\
& - \pm \sqrt{\left(1-\sin ^{2} \theta\right)^{\circ}}
\end{aligned}
$$

Auso $\quad \operatorname{cosec} \theta=\frac{1}{\sin \theta^{\prime}}$,

$$
\sec \theta=\frac{1}{\cos \theta}=\frac{1}{ \pm \sqrt{\left(1-\sin ^{2} \theta\right)}}
$$

$$
\cot \theta=\frac{1}{\tan \theta}=\frac{ \pm \sqrt{ }\left(1-\sin ^{2} \theta\right)}{\sin \theta}
$$

The double sign lefore the root-symbols is to be explained thus. For an assigned valne of $\sin \theta$ we shall heve more than one valne of θ (Art. 74). Hence we lanve an ambignity when we endeavour to lind $\cos \theta$ from the known value of $\sin \theta$. The double sinn may generally be omitted in the examples which we shall hereafter give
93. We shall now give two examples of another method of ariving at expressions for the other ratios in terms of a purticular ratio. These ex:muples should be carefully studied.
(1) To express the other trigonometrical ratios in terms of the sine.

Let $P A M$ be an augle, whose sine is s, a numerical quantity.

Let $P M$ be drawn perpendicular to $A M$.
Then if $A P$ be represented l.y 1 ,
$P M$ will be represented $1 / \%$, and $A M$ will therefor m represanted by $\sqrt{1-x^{2}}$.

Then denoting $P A M$ by A,

$$
\begin{aligned}
& \cos A=\frac{A M}{A P}=\frac{\sqrt{1-8^{2}}}{1}=\sqrt{1-8^{2}}=\sqrt{1-\sin ^{2} A}, \\
& \tan A=\frac{P M}{A} \bar{M}=\frac{8}{\sqrt{1-8^{2}}}=\frac{\sin A}{\sqrt{1-\sin ^{2} A}},
\end{aligned}
$$

explained nore than ity when of $\sin \theta$. examples
ethod of of a pardied.
m.s of thee
duantity.
and similarly the other ratios may be expressed in terms of $\sin A$.
(2) To express the other trigonometrical ratios in terms of the tangond.

Making the same construction as in the preceding Article,
Let $\tan A=t$.
Then if $A M$ be represented by $1, P M$, ill be represented by t, and $A P$ will be represented by $\sqrt{1+t^{2}}$.

Therefore $\sin A=\frac{r^{\prime} M}{A I^{\prime}}=\frac{t}{\sqrt{1+t^{2}}}=\frac{\tan A}{\sqrt{1+\tan ^{2} \bar{A}^{2}}}$,

$$
\cos A=\frac{A M}{A P}=\frac{1}{\sqrt{1+t^{2}}}=\frac{1}{\sqrt{1+\tan ^{2} A}}
$$

and similarly the other matios may be found.

EXAMPLES.-XVii,

1. Express the other trigonometrical ratios in terms of the cosine.
2. Express the other trigonometrical ratios in terms of the cosecant.
3. Express the other trigonometrical ratios in terms of the secant.
4. Express the other trigonometrical ratios in terms of the cotangent.
5. If any mue of the trigonometrical ratios be given, the others may be found.

Thus suppose $\sin A=\frac{3}{5}$.
If $P A M$ represent the angle, and $P M$ he perpendicular to $A M$, we naty reprosent $P M$ by $3, A P$ by 5 , and consequeutly $A M$ by $\sqrt{25-9}$ ur. 4.

Then

$$
\begin{aligned}
\cos A & =\frac{4}{6} \\
\tan A & =\frac{3}{6} \\
\operatorname{cosec} A & =\frac{5}{3} \\
\operatorname{sen} A & =6
\end{aligned}
$$

8. If $\tan A=\frac{a}{b}$, to find $\sin A$ and $\cos A$.

If $P A M$ represent the angle, and $P M$ be perpendicular to $A M$, we may represent $P M$ by $a, A M$ by b, and consequently $A I^{\prime}$ by $\sqrt{ } a^{\overline{2}}+\bar{b}^{2}$.

Then

$$
\begin{aligned}
& \sin A=\frac{a}{\sqrt{a^{2}+b^{2}}} \\
& \cos A=\frac{b}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

EXAMPLES.--XVIII.

icular to equeutly

1. Given $\sin \alpha=\frac{2}{3}$: find $\cos \alpha$ and $\tan a_{0}$
2. Given $\cos \alpha=\frac{4}{5}$: find $\sin a$ and $\tan a$.
3. Given $\operatorname{cosec} \theta=\frac{4}{3}$: find $\cos \theta$ and $\tan \theta$.
4. Given $\sin \theta=\frac{1}{\sqrt{3}}$: find $\cos \theta$ and $\tan \theta$.
5. Given $\tan a=\frac{a^{2}}{b^{2}}$: find $\operatorname{cosec} a$ and sec a.
6. Given $\quad \cos a=\frac{a}{b}$: find $\tan a$ and cosec a.
7. Given $\sin \theta=a$. find $\tan \theta$ and $\sec \theta$.
8. Given $\cos \theta=b$: find $\tan \theta$ and $\operatorname{cosec} \theta$.
9. Given $\sin \theta=6:$ find $\cos \theta$ and $\cot \theta$.
10. Given $\cos \theta=\dot{5}$: find $\cot \theta$ and $\operatorname{cosec} \theta$.
11. Given $\operatorname{cosec} \theta=2 \cdot \dot{4}$: find $\cos \theta$ and $\cot \theta$.
12. Given $\sec \theta=1.0^{\circ}$. find $\sin \theta$ and $\tan \theta$.
13. Given $\sin \phi=\frac{99}{10}$: find $\cos \phi$ and $\cot \phi$.
14. Given $\cos \phi=\frac{20}{101}$: find $\sin \phi$ and $\tan \phi$.
15. Given versin $\theta=\frac{1}{13}$; find $\sin \theta$ and $\sec \theta$.
16. We may here give the geometrical solutions of the pro. blem of constructing an angle, when its sine, cosine, or tangent is given.
(1) Given that the sine of an angle is $\frac{\mathrm{a}}{\mathrm{b}}$, to construct the angle.

The sine of an angle cannot be greater than unity.
$\therefore a$ is not greater than b.

Draw a line $A B=b$, and describe a circle with centre A and radius $A B$.

Let $B A C$ be a quadrant of this circle.
Mark off on $A C$ the line $A N=a$

Draw $N P, P M$ at right angles to $A C, A B$.
Then PAM is the angle required : for

$$
\sin P A M=\frac{P M}{A P}=\frac{A N}{A P}=\frac{a}{b} .
$$

(2) Given that the cosine of an angle is $\frac{\mathrm{a}}{\mathrm{b}}$, to construct the angle.
s.aking the same construction as before,
$P A N$ is the angle required : for

$$
\cos P A N=\frac{A N}{A P}=\frac{a}{b} .
$$

(3) Given that the tangent of an angle is $\frac{\mathrm{a}}{\mathrm{b}}$, to construct the angle.

Take a line $A M=b$, and draw $P M=a$ at right angles to $A M$ (fig. in Art. 95).

Join $A P$. Then $P A M$ is the angle required : for

$$
\tan P A M=\frac{P M}{A M}=\frac{a}{b} .
$$

97. We shall now give a set of examples similar to those in Ex. xvi., but presenting in some cases more difficulty.

EXAMPLES.-Xix.

Prove the following relations:

1. $\sin A=\frac{1}{\sqrt{\left(1+\cot ^{2} A\right)}}$.
$2 \cos A=\frac{1}{\sqrt{ }\left(1+\tan ^{2} \boldsymbol{A}\right)}$.
2. $\cos x=\frac{\cot x}{\sqrt{ }\left(1+\cot ^{2} x\right)}$.
3. $\tan x \cdot \cos x=\sqrt{ } /\left(1-\cos ^{2} x\right)$.
4. $\cos \phi=\frac{\sqrt{ }\left(\operatorname{cosec}^{2} \phi-1\right)}{\operatorname{cosec} \phi}$.
5. $\tan \phi=\sqrt{\left(\frac{1-\cos ^{2}}{\cos ^{2} \phi}\right) \text {. }}$
6. $\sin ^{2} \alpha=(1+\cos \alpha)$. versin α.
7. $\tan ^{2} \alpha-\tan ^{2} \beta=\frac{\cos ^{2} \beta-\cos ^{2} \alpha}{\cos ^{2} \beta \cdot \cos ^{2} \alpha}$.
8. $\cot ^{2} \alpha-\cot ^{2} \beta=\frac{\sin ^{2} \beta-\sin ^{2} \alpha}{\sin ^{2} \alpha \cdot \sin ^{2} \beta}$
9. $\sin ^{2} \theta \cdot \tan ^{2} \theta+\cos ^{2} \theta \cdot \cot ^{2} \theta=\tan ^{2} \theta+\cot ^{2} \theta-1$.
10. $\sec ^{4} \theta+\tan ^{4} \theta=1+2 \sec ^{2} \theta \cdot \tan ^{2} \theta$.
11. $\operatorname{cosec} \theta(\sec \theta-1)-\cot \theta(1-\cos \theta)=\tan \theta-\sin \theta$.
12. $\cot ^{2} b+\tan ^{2} b=\sec ^{2} b \operatorname{cosec}^{2} b-2$.
13. $\cot ^{2} A-\cos ^{2} A=\cos ^{4} A \operatorname{cosec}^{2} A$.
14. $\tan ^{2} \theta-\sin ^{2} \theta=\sin ^{4} \theta \sec ^{2} \theta$.
15. $(\sec \theta-\operatorname{cosec} \theta)(1+\cot \theta+\tan \theta)=\frac{\sec ^{2} \theta}{\operatorname{cosec} \theta}-\frac{\operatorname{cosec}^{2} \theta}{\sec \theta}$.
16. $\frac{\operatorname{cosec} \theta}{\sec \theta}+\frac{\sec \theta}{\operatorname{cosec} \theta}=\sec \theta \cdot \operatorname{cosec} \theta$.
17. $\cos \theta(\tan \theta+2)(2 \tan \theta+1)=2 \sec \theta+5 \sin \theta$.
18. $\cos x(2 \sec x+\tan x)(\sec x-2 \tan x)=2 \cos x-3 \tan x$.
19. $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
20. $\frac{\sec \theta \cdot \cot \theta-\operatorname{cosec} \theta}{\cos \theta-\sin \theta} \cdot \tan \theta=\operatorname{cosec} \theta \cdot \sec \theta$.
21. $\sec \theta+\operatorname{cosec} \theta \cdot \tan ^{3} \theta\left(1+n \sec ^{2} \theta\right)=2 \sec ^{3} \theta$.
22. $\quad(\sin \theta+\sec \theta)^{2}+(\cos \theta+\operatorname{cosec} \theta)^{2}=(1+\sec \theta \cdot \operatorname{cosec} \theta)^{2}$
$24 \frac{1+(\operatorname{cosec} \theta \cdot \tan \phi)^{2}}{1+(\operatorname{cosec} \alpha \cdot \tan \phi)^{2}}=\frac{1+(\operatorname{cont} \theta \cdot \sin \phi)^{2}}{1+\left(\cot (\Omega \cdot \sin \phi)^{2}\right.}$.
23. $\left(3-4 \sin ^{2} A\right)\left(I-3 \tan ^{2} A\right)=\left(3-\tan ^{2} A\right)\left(4 \cos ^{2} A-3\right)$.

X. COMPARISON OF TRIGONOMETRICAL RATIOS FOR DIFFERENT ANGLES.

98. The Complement of an angle is that angle which must be added to it to make a right angle.

Thus the complement of 60° is 30°, because $60^{\circ}+30^{\circ}=90^{\circ}$, and the complement of $14^{\circ} .36^{\prime} .15^{\prime \prime}$ is $75^{\circ} .23^{\prime} .45^{\prime \prime}$.
Also the complement of 80° is 20°, because $80^{\circ}+20^{\circ}=100^{\circ}$, and the complement of $42^{\circ} \cdot 5^{\prime} \cdot 28^{\prime \prime}$ is $57^{8} \cdot 94^{\prime} \cdot 72^{\prime \prime}$.

And the complement of $\frac{\pi}{6}$ is $\frac{\pi}{3}$, because $\frac{\pi}{6}+\frac{\pi}{3}=\frac{\pi}{2}$.
So generally, if α, β, γ be the measures of an angle in the three systems,

$$
\text { complement of the angle }=90^{\circ}-a=100^{8}-\beta=\frac{\pi}{2}-\gamma .
$$

Hence if the angle be negative (see Art. 48), and its measures be $-a,-\beta,-\gamma$ in the three systems, complement of the angle $=90^{\circ}-(-\alpha)=100^{\circ}-(-\beta)=\frac{\pi}{2}-(-\gamma)$

$$
=80^{\circ}+\alpha=100^{8}+\beta=\frac{\pi}{2}+\gamma .
$$

EXAMPr,ES.-XX.

I. Find the cumplements of the following angles:
(I) $24^{\circ}, 14^{\prime}, 42^{\prime \prime}$.
(2) $43^{\circ} \cdot 2^{\prime} \cdot 57^{\circ}$.
(3) $64^{\circ} .0^{\prime} \cdot 14^{\prime \prime}$.
$\lceil s, T$, ?
(4) $82^{\circ} \cdot 4^{\prime} \cdot 15^{*}$.
(5) $125^{\circ} \cdot 15^{\prime} .42^{\prime \prime}$.
(6) $178^{\circ} .27^{\prime} .34^{\prime \prime}$.
(7) 195°.
(8) 254°.
(9) -25°.
(10) -245°.
2. Find the complements of the following angles:
(I) $32^{\prime \prime} .23^{\prime} .24^{\prime \prime}$.
(2) $95^{\circ} .3^{\prime} .75^{\prime \prime}$.
(3) $46^{\mathrm{s}} .0^{\prime} .84^{\prime \prime}$.
(4) $2^{2} .5^{\prime} .4^{\prime \prime}$.
(5) $135^{\circ} .2^{\prime} .5^{\prime \prime}$.
(6) $169^{\circ} \cdot 0^{\prime} .3^{\prime \prime}$.
(7) 2435.
(8) 357 F.
(9) -35 .
(10) -245^{5}.
3. What are the complements of the following angles?
(r) $\frac{\pi}{4}$.
(2) $\frac{\pi}{3}$.
(3) $\frac{3 \pi}{5}$.
(4) $-\frac{\pi}{4}$.
(5) $-\frac{3 \pi}{4}$.
99. To compare the trigonometrical ratios of an angle and its somplement.

Let NOS, EOW be two diameters of a circle at right angles.
Let $\&$ radius $O P$ revolving from $O E$ trace out the angle $P O E=A$.

Next, let the radius revolve from $O E$ to $O N$ and back again tbrough an angle $N O P^{\prime}=A$.

Then angle $E O P^{\prime}=90^{\circ}-A$.
Draw $P M$ and $P^{\prime} M^{\prime}$ at right angles to $E O$.
Now angle $O P^{\prime} M^{\prime}=N O P^{\prime}=A=P O E$:
Hence the triangles $P^{\prime} O M^{\prime}$ and $O P M$ are equal in an resprects (Eucl. 1. 26).
Therefore

$$
\begin{aligned}
& \sin \left(90^{\circ}-A\right)=\sin E O P^{\prime}=\frac{P^{\prime} M^{\prime}}{O P^{\prime}}=\frac{O M}{O P}=\cos E O P=\cos A, \\
& \cos \left(90^{\circ}-A\right)=\cos E O P^{\prime}=\frac{O M^{\prime}}{O \bar{P}^{\prime}}=\frac{P M}{O P}=\sin E O P=\sin A, \\
& \tan \left(90^{\circ}-A\right)=\tan E O P^{\prime}=\frac{P^{\prime} M^{\prime}}{O M^{\prime}}=\frac{O M}{P M}=\cot E O P=\cot A .
\end{aligned}
$$

And similarly it may be shown that

$$
\begin{gathered}
\operatorname{cosec}\left(90^{\circ}-A\right)=\sec A, \sec \left(90^{\circ}-A\right)=\operatorname{cosec} A, \\
\cot \left(90^{\circ}-A\right)=\tan A .
\end{gathered}
$$

This is a proposition of great practical importance. We have only proved it for the case in which A is less than 90°, but the conclusions hold good for all values of A.
100. The Supplement of an angle is that angle which must be added to it to make two right angles.
Thus the supplement of 60° is 120°, because $60^{\circ}+120^{\circ}=180^{\circ}$, and the supplement of $24^{\circ} .43^{\prime} .17^{\prime \prime}$ is $155^{\circ} .16^{\prime} .43^{\prime \prime}$.
Also the supplement of 80° is 120°, because $80^{\circ}+120^{\circ}=200^{\circ}$, and the supplement of $114^{\circ} .3^{\prime} .15^{\prime \prime}$ is $85^{\circ} .96^{\prime} .85^{\prime \prime}$.
And the supplement of $\frac{\pi}{8}$ is $\frac{7 \pi}{8}$, because $\frac{\pi}{8}+\frac{7 \pi}{8}=\pi$.
So, generally, if α, β, γ be the measures of an angle in the three systeme,

$$
\text { supplement of the angle }=180^{\circ}-\alpha=200^{\circ}-\beta=\pi-\gamma_{0}
$$

Hence if the angle be negative and its measures be $\boldsymbol{\sim}_{\boldsymbol{p}}$ $-\beta,-\gamma$ in the three systems, uupplement of the angle $=180^{\circ}-(-a)=200^{\circ}-(-\beta)=\pi-(-\gamma)$

$$
=180^{\circ}+\alpha=200^{5}+\beta=\pi+\gamma .
$$

EXAMPLES.-XXi.

1. Find the supplements of the following angles:
(i) $34^{\circ} .12^{\prime} .49^{\prime \prime}$.
(2) $132^{\circ} .24^{\prime} .47^{\prime \prime}$.
(3) $146^{\circ} .0^{\prime} .41^{\prime \prime}$.
(4) $28^{\circ}, 15^{\prime} \cdot 4^{n}$.
(5) $179^{\circ} .59^{\prime} .59^{\prime \prime}$.
(6) $100^{\circ} .49^{\prime} .53^{\prime \prime}$.
(7) 245°.
(8) $437^{\circ} \cdot 3^{\prime} \cdot 4^{\prime \prime}$.
(9) -49°.
(10) -355°.
2. Find the supplements of the following angles:
(1) $132^{\circ} .32^{\prime} .42^{\prime \prime}$.
(2) $195^{\circ} .2^{\prime} .57^{\prime \prime}$.
(3) $3^{5} .97^{\prime} .98^{\prime \prime}$.
(4) $65^{5} .12^{\prime} .8^{\prime \prime}$.
(5) $154^{8} .3^{\prime} .6^{\prime \prime}$.
(6) $174^{\circ} .0^{\prime} .4^{\prime \prime}$.
(7) 275 .
(8) $527^{\mathrm{x}} .2^{\prime} .14^{\prime \prime}$.
(9) -35 .
(10) -325°.
3. What are the supplements of the following angles?
(1) $\frac{\pi}{2}$.
(2) $\frac{\pi}{3}$.
(3) $\frac{4 \pi}{5}$.
(4) $-\frac{\pi}{4}$.
(5) $-\frac{3 \pi}{4}$
4. Find the difference between the supplement of the com. plement of an angle and the complement of its supplement.
5. To compare the trigonometrical ratios of an angle and its supplement.

Let the angle $E O P=A$.

Let
Dra
Dra
The angle, angl

Produce $E O$ to W, and make the angle $P^{\prime} O W=A$.
Take $O P^{\prime}=O P$, and draw $P M, P^{\prime} M^{\prime}$ at right angles to $E W$.

Then the tribingles $P M O, P^{\prime} M^{\prime} O$ are geometrically equal. (Eucl. r. 26.)

Therefore

$$
\begin{aligned}
& \sin \left(180^{\circ}-A\right)=\sin E O P=\frac{P^{\prime} M}{O} \bar{P}^{\prime}=\frac{P M}{O P}=\sin A, \\
& \cos \left(180^{\circ}-A\right)=\cos E O P^{\prime}=\frac{O M^{\prime}}{O P^{\prime}}=\frac{-O M}{O P}=-\cos A, \\
& \tan \left(180^{\circ}-A\right)=\tan E O P=\frac{P^{\prime} M^{\prime}}{O M^{\prime}}=\frac{P M}{-O M}=-\tan \Lambda
\end{aligned}
$$

And similarly the other ratios may be compared.
102. To show that $\sin \left(90^{\circ}+A\right)=\cos A$, and $\cos \left(90^{\circ}+A\right)=-\sin A$.

Let the angle $E O P=A$.
Draw $O P^{\prime}$ at right angles to $O P$, and make $O P^{\prime}=O P$.
Draw $P M$ and $P^{\prime} M^{\prime}$ at right angles to $E O W$.
Then, since the angles $P^{\prime} O M^{\prime}$ and $P O M$ make up a right angle, and the angles $O P M$ and $P O M$ make up a right angle, angle $P^{\prime} O M^{\prime}=$ angle $O P M$.

Also right angle $P^{\prime} M^{\prime} O=$ right angle $P M O$, and side $P^{\prime} O=$ side $P O$, opposite equal angles in each ;
\therefore the triangles $P^{\prime} O M^{\prime}, O P M$ are equas in all respects, and

$$
P^{\prime} M^{\prime}=O M \text { and } O M^{\prime}=P M .
$$

Then $\sin \left(90^{\circ}+A\right)=\sin E O P^{\prime}=\frac{P^{\prime} M^{\prime}}{O P^{\prime}}=\frac{O M}{O P}=\cos A$, and $\quad \cos \left(90^{\circ}+A\right)=\cos E O P^{\prime}=\frac{O M^{\prime}}{O P^{\prime}}=\frac{-P M}{O P}=-\sin A$.
103. To show that $\sin \left(180^{\circ}+A\right)=-\sin A$, and

$$
\cos \left(180^{\circ}+A\right)=-\cos A
$$

Let the angle $E O P=A$.
Produce $E O$ to W and $P O$ to P^{\prime}, making $O P^{\prime}=O P$.
Draw $P M, P^{\prime} M^{\prime}$ at right angles to $E W$.
Then the angle $E O P^{\prime}$ measured in the positive direction $=180^{\circ}+A$.

The triangles $P O M, P^{\prime} O M$ are geometrically equal.
Now $\sin \left(180^{\circ}+A\right)=\sin E O P^{\prime}=\frac{P^{\prime} M^{\prime}}{O P^{\prime}}=\frac{-P M}{O P^{\prime}}=-\sin \Delta$,
and

$$
\cos \left(180^{\circ}+A\right)=\cos E O P^{\prime}=\frac{O M M^{\prime}}{O P^{\prime}}=\frac{-O M}{O P}=-\cos \Lambda .
$$

104. To show that $\sin (-A)=-\sin A$, and

$$
\cos (-\Lambda)=\cos A
$$

Let the angle $E O P=A$.
Draw PM at right angles to $E W$, and produce $P M$ to P, making $M P^{\prime}=M P$.

Join $O P$.
Then the triangles $P O M, P^{\prime} O M$ are geometrically equal, and the angle $E O P^{\prime \prime}$, which is mumerically equal to $E O P$, will, if regarded as measured in a negative direction, be represented by $-A$.

and

$$
\cos (-A)=\cos E O P^{\prime}=\frac{O M}{O P^{\prime}}=\frac{O M}{O P}=\cos A
$$

105. To show thut $\sin \left(360^{\circ}-1\right)=-\sin A$, and

$$
\cos \left(360^{\circ}-A\right)=\cos A
$$

Making the same construction as in the preceding Article, augle $E O P^{\prime}$ measured in the positive direction $=360^{\circ}-A$.

Then $\sin \left(360^{\circ}-A\right)=\sin E O P^{\prime}=\frac{P^{\prime} M}{C P^{\prime}}=\frac{-P M}{O P}=-\sin$.
andi

$$
\cos \left(360^{\circ}-A\right)=\cos E O P^{\prime}=\frac{O M}{O V^{\prime}}=\frac{O M}{O P}=\cos A
$$

EXAMPLES.-XXiI.

1. Prove the foilowing relations:
(1) $\sec \left(180^{\circ}-A\right)=-\sec A$,
(2) $\operatorname{cosec}\left(\frac{\pi}{2}+\theta\right)=\sec \theta_{1}$
(3) $\tan \left(180^{\circ}+A\right)=\tan A$,
(4) $\sec (\pi+\theta)=-\sec \theta$,
(5) $\tan (-\theta)=-\tan \theta$,
(6) $\cot (2 \pi-\theta)=-\cot \theta$.
2. State and prove the relations subsisting between the cosecants of B° and $(90+B)^{\circ}$, also of ϕ and $\pi+\phi$.
3. State and prove the relations subsisting between the secants of A° and $(90+A)^{\circ}$, also of θ and $\frac{\pi}{2}-0$.
4. With reference to the trigonometrical ratios of different angles discussed in this chapter, it is to be observed that for an angle in the

First Quadrant all the Ratios are Positive,
Second all are Negative except the Sine and Cosecant, Third Tangent and Cotangent,
Fourth Cosine and Secant.

Also the following relations must be specially noticed : $\sin A=\sin \left(180^{\circ}-A\right)=-\sin \left(180^{\circ}+A\right)=-\sin \left(360^{\circ}-A\right)=-\sin (-A)$, $\cos A=-\cos \left(180^{\circ}-A\right)=-\cos \left(180^{\circ}+A\right)=\cos \left(360^{\circ}-A\right)=\cos (-A)$, $\tan A=-\tan \left(180^{\circ}-A\right)=\tan \left(180^{\circ}+A\right)=-\tan \left(360^{\circ}-A\right)=-\tan (-A)$.

EXAMPLES.-XXiii.

Find the values of the following ratios:

1. $\sin 120^{\circ}$,
2. $\cos 120^{\circ}$,
3. $\sin 135^{\circ}$,
$4 \cos 135^{\circ}$
4. $\sin 150^{\circ}$,
5. $\cos 150^{\circ}$,
6. $\sin 225^{\circ}$,
7. $\sin 240^{\circ}$,
8. $\tan 300^{\circ}$,
то. $\operatorname{cosec} 300^{\circ}$,
9. ser 315°. 12. $\cot 330^{\circ}$.

XI. ON THE SOI.UTION OF TRIGONUMETRICAL EQUATIONS

107. THE solution of a trigonometrical equation is th" process of finding what angle an unknown letter representin: an angular magnitude must stand for, in order that the equation may be true.
(1) Suppose we have to find the value of θ, which will satisfy the equation

$$
\cos \theta+\sec \theta=\frac{5}{2}
$$

Our first step is to put $\frac{1}{\cos \theta}$ in the place of sec θ, so that we may have only one function of the unknown angle in the equation, thus :

$$
\cos \theta+\frac{1}{\cos \theta}=\frac{5}{2}
$$

We then proceed to solve the equation just as we should solve an algebraical equation in which x occupied the place of $\cos \theta$, thus :

$$
\begin{gathered}
2 \cos ^{2} \theta+2=5 \cos \theta \\
2 \cos ^{2} \theta-5 \cos \theta=-2 \\
\cos ^{2} \theta-\frac{5}{2} \cos \theta=-1 \\
\cos ^{2} \theta-\frac{5}{2} \cos \theta+\frac{25}{16}=\frac{9}{16} \\
\cos \theta-\frac{5}{4}= \pm \frac{3}{4} \\
\cos \theta=2 \text { or } \frac{1}{2}
\end{gathered}
$$

Now the value 2 is inadmissible, for the cosine of every angle is not greater than 1.

The other value $\frac{1}{2}$ is the value of the cosine of 60°. (Art. 80.)
Hence $\cos \theta=\cos 60^{\circ}$.

That is, one value of θ which satistics the equation is 60°.
We slall explain hereafter our reason for writing the word one in italics.
(8) To solve the equation $3 \sin \theta=2 \cos ^{2} \theta$.

$$
\begin{gathered}
3 \sin \theta=2\left(1-\sin ^{2} \theta\right) ; \\
\therefore 3 \sin \theta=2-2 \sin ^{2} \theta, \\
\text { or } 2 \sin ^{2} \theta+3 \sin \theta=2, \\
\sin ^{2} \theta+\frac{3}{2} \sin \theta=1, \\
\sin ^{2} \theta+\frac{3}{2} \sin \theta+\frac{9}{16}=\frac{25}{16}, \\
\sin \theta+\frac{3}{4}= \pm \frac{5}{4}, \\
\sin \theta=\frac{1}{2} \text { or }-2 .
\end{gathered}
$$

The value - 2 is inadmissible, for the sine of angle cannot be numerically greater than 1 .

The other value $\frac{1}{2}$ is the value of the sine of 30°. (Art. 78.)
Hence, $\sin \theta=\sin 30^{\circ}$.

That is, one value of θ which satisfies the equation is 30°.

EXAMPLES.-XYIV.

Find a value of θ which will satisfy the following equations:
I. $\sin \theta+\cos \theta=0$.
2. $\sin \theta-\cos \theta=0$.
3. $\sin \theta=\tan \theta$.
4. $\cos \theta=\cot \theta$.
5. $2 \sin \theta=\tan \theta$.
6. $3 \sin \theta=2 \cos ^{2} \theta \cdot \psi$
7. $\sin \theta+\cos ^{2} \theta \cdot \operatorname{cosec} \theta=2$.
8. $\tan \theta=4-3 \cot \theta$.
9. $4 \sec ^{2} \theta-7 \tan ^{2} \theta=3$.
10. $\cos \theta \cdot \operatorname{cosec} \theta+\sin \theta \cdot \sec \theta=\frac{4}{\sqrt{3}}$.
II. $3 \sin ^{2} \theta-\cos ^{2} \theta+(\sqrt{3} \dot{r} 1)(1-2 \sin \theta)=0$.
12. $3 \cos ^{2} \theta-\sin ^{2} \theta+(\sqrt{ } 3+1)(1-2 \cos \theta)=0$.
13. $\sec \theta \cdot \operatorname{cosec} \theta+2 \cot \theta=4$. 14. $\sin \theta+\operatorname{ros} \theta=N / 2$
55. $\cot ^{2} \theta+4 \cos ^{2} \theta=6$.
16. $\tan \theta+\cot \theta=2$.
${ }^{V}$ 18. $\sin \theta+\cos \theta=2 \sqrt{ } 2 \sin \theta \cos \theta$.
19. $\sqrt{ } 3 \cdot \sin \theta=\sqrt{ } 3-\cos \theta$.
17. $\sin \theta-\cos \rho=\sqrt{2}$.
20. $\tan ^{2} \theta+4 \sin ^{2} \theta=$ is
108. We have already stated (Art. 74) that, if the value of a trigonometrical ratio be given, we cannot fix on one particular angle, to which it exclusively belongs. This statemert was confirmed by many of the conclusions at which we arrived in Chap. \mathbf{x}. For instance, since

$$
\sin \left(180^{\circ}-A\right)=\sin A_{3}
$$

It follows that the sines of the angles A and $180^{\circ}-A$ have the same value, that in, if we know that $\sin A=\frac{1}{2}, A$ may have either of two values, one of which is 30° and the other 160°.

Now we know that

$$
\begin{aligned}
& \sin \left(180^{\circ}-A\right)=\sin A \text { and } \operatorname{cosec}\left(180^{\circ}-A\right)=\operatorname{cosec} A, \\
& \cos \left(360^{\circ}-A\right)=\cos A \text { and } \quad \sec \left(360^{\circ}-A\right)=\sec A, \\
& \tan \left(180^{\circ}+A\right)=\tan A \text { and } \quad \cot \left(180^{\circ}+A\right)=\cot A .
\end{aligned}
$$

Thus for each given value of any one of the trigonometrical ratios there are two angles, and two only, between 0° and 360° for which that ratio is the same in magnitude and sign.
109. Suppose $O E$ to be the primitive line, and $O P$ the revolving line, and let the angle $E O P$, less than 360°, be denoted by A.

Now suppose $O P$ to make a complete revolution, that is, to ptart from the position indicated in the diagram and to revolve ulit it comes back to that position.

Then the revolving line will have described an angle $360+A$.

Our triangle of reference will then be the same for an angle $360^{\circ}+A$ as for an angle A.

Hence,
and

$$
\begin{aligned}
& \sin \left(360^{\circ}+A\right)=\sin A \\
& \cos \left(360^{\circ}+A\right)=\cos A .
\end{aligned}
$$

And the same holds good for the other ration.
the for w value
2π parti

No tion,

An the at

And out th
$2 n \pi$ particı

Now there vii any the ang

Hence, expressing ourselves for brevity in the symbols of the circular system, if a be the circular measure of an angle, for which any one of the trigonomotrical ratios has an assigned value,
$2 \pi+\alpha$ will represent an angle, for which the value of that particular ratio is the same.

Now let the revolving line make a second complete revolution, then it will have described an angle

$$
2 \pi+2 \pi+a, \text { or, } 4 \pi+a .
$$

And so $4 \pi+a$ will represent an angle, for which the value of the above-mentioned ratio will be the same.

And, generally, if the revolving line, after having traced out the angle α, makes n revolutions,
$2 n \pi+a$ will represent an angle, for which the value of pony particular ratio is the same as it is for a.

Now since n may have any integral value from 1 to ∞, there will be an infinite number of angles, for which the value (ii) any one of the trigonometrical ratios is the same as it is for the angle α.

Again, if \boldsymbol{a} be the circular measure of an angle traced out by a line revolving in the positive direction, $-(2 \pi-a)$ will $b s$ the measure of an angle traced out by the line revolving in the negative direction, for which the triangle of reference will be the same as for the positive angle a.

If the line then make n complete revolutions in the negative direction, $-2 n \pi-(2 \pi-a)$ will represent an angle, for which the value of any particular ratio is the same as it is for a.

We can now explain the way in which general expressions are found for all angles, which have a given trigonometrical satio.
110. To find a general expression for all angles which have a given sine.

Let a be an angle whose sine is given.

First, reckoning in the positive direction,

$$
\alpha \text { and } \pi-a
$$

are angles with the same sine. (Art. 101.)

$$
\begin{array}{cl}
\text { Also } & 2 n \pi+a \\
\text { and } & 2 n \pi+(\pi-a)
\end{array}
$$

are angles with the same sine. (Art. 109.)
Secondly, reckoning in the negative direction,

$$
\begin{aligned}
& -(2 \pi-\alpha) \text { and }-\{2 \pi-(\pi-\alpha)\}, \\
& -(2 \pi-\alpha) \text { and }-(\pi+\alpha),
\end{aligned}
$$

that is,
are augles with the same sine.
$\left.\begin{array}{l}\text { Also }-2 n \pi-(2 \pi-a) \\ \text { - } 2 n \pi-(-+a)\end{array}\right\}$
and $-2 n \pi-(-+a)\} \cdots \cdots \cdots \cdots$
Now the angles in (1) and (2) may be arranged thus:
$2 n \pi+a,(2 n+1) \pi-a,-(2 n+2) \pi+\alpha,-(2 n+1) \pi-\alpha$, all of which, and no others, are included in the formula

$$
n \pi+(-1)^{n} \cdot a
$$

where n is zero or any positive or negative integer, which is therefore the general expression for ail angies which have â given sine.
111. To find a general expression for all angles which have a green cosine.

Let α be an angle whose cosine is given.
First, reckoning in the positive direci ${ }^{\boldsymbol{n}}$,

$$
a \text { and } 2 \pi-a
$$

are angles with the same cosine. (Art. 105.)

are angles with the same cosine. (Art. 109.)
Secondly, reckoning in a negative direction,

$$
-(2 \pi-a) \text { and }-a
$$

are angles with the same cosine.

$$
\left.\begin{array}{rl}
\text { Also }-2 n \pi-(2 \pi-a) \\
n \mathbb{i} & -2 n \pi-a
\end{array}\right\}
$$

are angles with the same cosine, n beirg any positive integer.
Now the angles in (1) and (2) mer eo aranged thus:

$$
2 n \pi+a,(2 n+2) \pi-a,-(2 n \cdot-2) \pi+\alpha,-2 n \pi-a,
$$

all of which, and no others, are incuded in the formula

$$
2 n \pi \pm a,
$$

Fhich is therefore the general exrression for aili angien which have a given cosine.
112. I'o find a general expression for all angles which heee : !iven tanqent.

Let a be an angle whose tangent is given.
First, reckoning in the positive direction,

$$
\alpha \text { and } \pi+a
$$

arc angles with the same tangent. (Art. 108.)
$\left.\begin{array}{l}\text { Also } 2 n \pi+\alpha \\ \text { and } \\ 2 n \pi+(\pi+\alpha)\end{array}\right\}, ~ . ~$
are angles with the same tangent. (Art. 109.)
Secondly, reckoning in the negative direction,

$$
-(2 \pi-a) \text { and }-(\pi-a)
$$

are angles with the same tangent.

$$
\left.\begin{array}{rl}
\text { Also } & -2 n \pi-(2 \pi-a) \\
\text { and } & -2 n \pi-(\pi-a) \tag{2}
\end{array}\right\}
$$

are angles with the same tangent, n being any positive integer.
Now the angles in (1) and (2) may be arranged thus:

$$
2 n \pi+a,(2 n+1) \pi+a, \cdots(2 n+2) \pi+a,-(2 n+1) \pi+a,
$$ all of which, and no others, are included in the formula

$$
n \pi+\alpha,
$$

which is therefore the general expression for all angles whicin have a given tancout.
113. We shall now explain how to express the trigonometrical ratios of any angle in terms of the ratios of a positive angle less than a right angle.
First, when the given angle is positive.
If the angle is greater than 360°, subtract from it 360° or any multiple of 360°, and the ratios for the resulting angle are the same as for the original angle.

Thus we obtain an angle less than 360°, and if this angle be greater than 180°, we may subtract 180° from it, and the ratios for the resulting angle will be the same in magnitude, but the signs of all but the tangent and cotangent will be changea. (Art. 106.)

Thus we obtain an angle less than 180°, and if this angle be greater than 90°, we may replace it by its supplement, and the ratios for the resulting angle will be the same in magnitudt, but the signs of all but the sine and cosecant will be changed. (Art. 106.)

Thus
$\sin 675^{\circ}=\sin \left(360^{\circ}+315^{\circ}\right)=\sin 315^{\circ}=-\sin 135^{\circ}=-\sin 45^{\circ}$,
$\tan 960^{\circ}=\tan \left(720^{\circ}+240^{\circ}\right)=\tan 240^{\circ}=\tan 60^{\circ}$.
Secondly, when the angle is negative.
Add 360°, or any multiple of 360°, so as to obtain a positive angle, for which the ratios will be the same as for the original angle, and then proceed as before.

If the given angle be less than 180°, apply the formula obtaineå from Art. 104.

EX. $\begin{aligned} \sin \left(-825^{\circ}\right) & =\sin \left(1080^{\circ}-825^{\circ}\right)=\sin 255^{\circ}=-\sin 75^{\circ} \\ \tan \left(-135^{\circ}\right) & =-\tan 135^{\circ}=-\tan 45^{\circ} .\end{aligned}$

EXAMPLES, - XEN.

Find the values of the following ratios:
I. $\sin 480^{\circ}$.
4. $\cos 495^{\circ}$. [sm?

$$
\begin{array}{ll}
\text { 2. } \cos 480^{\circ} . & \text { 3. } \sin 455^{\circ} . \\
\text { 5. } \sin 870^{\circ} . & \text { 6. } \cos 870^{\circ} .
\end{array}
$$

7. $\sin 945^{\circ}$.
8. sin 960^{\prime}.
9. tin 1020°.
10. $\operatorname{cosec} 1380^{\circ}$.
II. sec 1395°.
11. $\cot 1410^{\circ}$.
12. $\cos 420^{\circ}$.
13. $\sec 750^{\circ}$.
14. $\tan 945^{\circ}$.
15. $\sin 1200^{\circ}$
16. $\sin 1485^{\circ}$.
17. $\cos 1470^{\circ}$.
18. $\sin 7 \pi$.
19. $\sec 8 \pi$.
20. cosec 930°.
21. $\cot 1140^{\circ}$.
22. $\tan 1305^{\circ}$.
23. cosec 1740°.
24. $\sin \left(-240^{\circ}\right)$.
25. $\cot \left(-675^{\circ}\right)$.
26. $\sec \left(-135^{\circ}\right)$.
27. $\tan \left(-225^{\circ}\right)$.
28. $\operatorname{cosec}\left(-690^{\circ}\right)$
'30. $\cos \left(-120^{\circ}\right)$.

EXAMPLES.-XXVI.

Write down the general value of θ which satisfies the following equations:

1. $\sin \theta=1$.
2. $\sin \theta=\frac{1}{\sqrt{2}}$
3. $\tan \theta=\sqrt{ } 3$.
4. $3 \sin \theta=2 \cos ^{2} \theta$.
5. $2 \sin \theta=\tan \theta$.
\%. $\tan ^{2} \theta+4 \sin ^{2} \theta=3$.
6. $\cos ^{2} \theta=\sin ^{2} \theta$.
7. $\tan \theta=4-3 \cot \theta$.
8. $\sec ^{9} \theta-\frac{5}{2} \sec \theta+1=0$
9. The symbol $\sin ^{-1} x$ denotes an angle whose sine is x, $\cos ^{-1} x$ \qquad cosine is x,
and a mimilar notation is used for the other ratios.
Hence if we know that, for instance, $\tan \theta=\frac{2}{3}$, we may write the general value of θ thus:

$$
\theta=\sin +\tan -\frac{2}{8}
$$

The the cas also, w less th he an rue fo rroved Leyond and sin

XII. ON THE TRIGOY OMETRICAL RATIOS OF TWO ANGLES.

115. Ws mum proceed to explain the trigonometrical functions of the sum and difference of two angles. These functions are the most important in the subject, and the student will find that his subsequent progress will depend much on the way in which he has read this Chapter.
116. We shall first establish the following formulm:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B, \\
& \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B, \\
& \sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B, \\
& \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B ;
\end{aligned}
$$

by means of which we can express the sine and cosine of the sum or difference of two augles in terms of the sines and cosines of the angles themselves.

The diagrams which we shall employ are only applicable to the cases in which A and B are both positive and leas than 90°, also, when we are considering the sum of the angles, $A+B$ is less than 90°, and when we are considering the difference of he angles, A is greater than B. The formula are, honcier, rue for all values of A and B. Particular cases may be rroved by special constructions of the diagrams, but it is leyond the scope of this treatise to enter into detail on this and similar points.
117. To show that

$$
\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B
$$

and

$$
\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B .
$$

Let the angle $B A O$ be represented by and $C A D$ by \boldsymbol{B}.
Then the angle $B A D$ will be represen. iy $A+B$.
From P^{*}, any point in $A D$, draw $P R$ a. ght angles to $A B$ and $P Q$ at right angles to $A C$.

From Q draw $Q M$ at right angles to $A B$, and $Q N$ at right angles to $P R$.
Then angle $Q P N=90^{\circ}-P Q N=N Q A=Q A M=A$.
Now $\sin (A+B)=\sin P A R=\frac{R P}{A P}$

$$
\begin{aligned}
& =\frac{R N+N P}{A P}=\frac{Q M+N P}{A P}=\frac{Q M}{A \bar{P}}+\frac{N P}{A P} \\
& =\frac{Q M}{A \bar{Q}} \cdot \frac{A Q}{A P}+\frac{N P}{P Q} \cdot \frac{P Q}{A P} \\
& =\sin A \cdot \cos B+\cos A \cdot \sin B .
\end{aligned}
$$

$$
\cos (A+B)=\cos P A R=\frac{A R}{A P}
$$

$$
=\frac{A M-M R}{A P} \cdot \frac{A M-N Q}{A P}=\frac{A M}{A P}-\frac{N Q}{A P}
$$

$$
=\frac{A M}{A Q} \cdot \frac{A Q}{A \bar{P}}-\frac{N Q}{P Q} \cdot \frac{P Q}{A P}
$$

$$
=\cos A \cdot \cos B-\sin A \cdot \sin B .
$$

- \vec{F} is taken in the line bouming the ang ha hrder consideration, that is, $B A D$.

2土e. To show that
and

$$
\begin{aligned}
& \sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B \\
& \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B
\end{aligned}
$$

Let the angle $B A O$ be represented by A and $C A D$ by B. Then the angle $B A D$ will be represented by $A-B$.

$$
\cos (A-B)=\cos P A R=\frac{A R}{A P}
$$

$$
=\frac{A M+M R}{A P}=\frac{A M+N Q}{A \bar{P}}=\frac{A M}{A \bar{P}}+\frac{N Q}{A P}
$$

$$
=\frac{A M}{A Q} \cdot \frac{A Q}{A P}+\frac{N Q}{P Q} \cdot \frac{P Q}{A P}
$$

$$
=\cos A \cdot \cos B+\sin A \sin B
$$

- P is taken in the line bounding the angle under consideration, that
BAD.

$$
\longrightarrow
$$

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 WEST MAIN Street WEBSTER, N.Y. 14580 (716) 372-4503
119. We shall now give some important examples of the application of the formulm which we have established.

E3x. 1. To find the value of $\sin 75^{\circ}$.

$$
\begin{aligned}
\sin 75^{\circ} & =\sin \left(45^{\circ}+30^{\circ}\right) \\
& =\sin 45^{\circ} \cdot \cos 30^{\circ}+\cos 45^{\circ} . \sin 30^{\circ} \\
& \left.=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{ } 3}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \operatorname{crts} 78,79\right) \\
& =\frac{\sqrt{ } 3}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2} \frac{\sqrt{2}}{}
\end{aligned}
$$

Ex. 2. To find the value of $\cos \mathbf{1 5}^{\circ}$.

$$
\begin{aligned}
\cos 15^{\circ} & =\cos \left(45^{\circ}-30^{\circ}\right) \\
& =\cos 45^{\circ} \cdot \cos 30^{\circ}+\sin 45^{\circ} \cdot \sin \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{ } 3}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{\sqrt{ } 3}{2 \sqrt{2}}+\frac{1}{2} \sqrt{2} \\
& =\frac{\sqrt{ } 3+1}{2 \sqrt{2}}
\end{aligned}
$$

a. result identical with the value of $\sin 75^{\circ}$, in accordance with Art. 99, for

$$
\sin 75^{\circ}=\cos \left(90^{\circ}-75^{\circ}\right)=\cos 16^{\circ}
$$

Ex. 3. To show that $\sin \left(90^{\circ}+\mathrm{A}\right)=\cos \mathrm{A}$.
Assuming the conclusions of Art. 117 to be true for all values of A and B,

$$
\begin{aligned}
\sin \left(90^{\circ}+A\right) & =\sin 90^{\circ} \cdot \cos A+\cos 90^{\circ} \cdot \sin A \\
& =1 \cdot \cos A+0 \cdot \sin A(\text { Art. 71) } \\
& =\cos A
\end{aligned}
$$

And similarly other relations between trigonometrical funotions established in Chapter 7. may be proved.

EX. 4. To find a value of θ which satisfies the equation $\sin \theta+\cos \theta=0$.

Muitiply both sides by $\frac{1}{\sqrt{2}}$.
Then

$$
\sin \theta \cdot \frac{1}{\sqrt{2}}+\cos \theta \cdot \frac{1}{\sqrt{2}}=0 ;
$$

$\therefore \sin \theta \cdot \cos 45^{\circ}+\cos \theta \cdot \sin 45^{\circ}=0$,

$$
\begin{gathered}
\sin \left(\theta+46^{\circ}\right)=0 ; \\
\therefore\left(\theta+45^{\circ}\right)=0 ; \\
\therefore \theta=-45^{\circ} .
\end{gathered}
$$

EXAMPLES.-XXVII.

Prove the following relations:
2. $\operatorname{cin} \cdot A+D_{1} \cdot \sin (A-B)=\sin ^{2} A-\sin ^{2} B$
2. $\sin (\alpha+\beta) \cdot \sin (a-\beta)=\cos ^{2} \beta-\cos ^{2} \alpha_{0}$
3. $\cos (A+B) \cdot \cos (A-B)=\cos ^{2} A-\sin ^{2} \boldsymbol{B}$
4. $\cos (\alpha+\beta) \cdot \cos (\alpha-\beta)=\cos ^{2} \beta=\sin ^{2} \alpha_{0}$
5. $2 \sin (x+y) \cdot \cos (x-y)=\sin 2 x+\sin 2 y$,
6. $2 \cos (x+y) \cdot \sin (x-y)=\sin 2 x-\sin 2 y$
7. $\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cdot \cos B}$.
8. $\tan a-\tan \beta=\frac{\sin (a-\beta)}{\cos \alpha \cdot \cos \beta}$

EXAMPLES.-XXVili.

4. Show that $\sin 15^{\circ}=\frac{\sqrt{3-1}}{2 \sqrt{2}}$.
5. Show that $\cos 75^{\circ}=\frac{\sqrt{3-1}}{2 \sqrt{2}}$.
6. Show that $\tan 75^{\circ}=2+\sqrt{3}$.
7. Show that $\cot 75^{\circ}=2-\sim 3$.
8. If $\sin \alpha=\frac{1}{3}$ and $\sin \beta=\frac{2}{3}$, find the value of $\sin (\alpha+\beta)$.
9. If $\cos \alpha=\frac{3}{4}$ and $\cos \beta=\frac{2}{5}$, find the value of $\sin (\alpha-\beta)$.
10. If $\sin \alpha=5$ and $\cos \beta=\frac{1}{\sqrt{2}}$, find the value of $\cos (\alpha+\beta)$.
11. If $\cos a=\cdot 03$ and $\sin \beta=\frac{1}{2}$, find the value of $\cos \{a-5$

EXAMPLES.-XXIX.

Apply the formulæ established in this chapter to show the following relations between the trigonometrical functions of angles.

1. $\cos \left(90^{\circ}+A\right)=-\sin A$.
2. $\sin \left(180^{\circ}+A\right)=-\sin A$.
3. $\cos (\pi+\theta)=-\cos \theta$.
4 $\sin \left(\frac{3 \pi}{8}+\theta\right)=-\cos \theta$
4. $\operatorname{cosec}\left(\frac{\pi}{2}+a\right)=\sec a$
5. $\tan (\pi+\alpha)=\tan \alpha_{0}$
6. $\sin (2 \pi-\theta)=-\sin \theta$.
7. $\tan (2 \pi-\theta)=-\tan \theta$.
8. $\sec \left(180^{\circ}-\theta\right)=-\sec \theta$.
9. $\operatorname{cosec}(\pi-\theta)=\operatorname{cosec} \theta$ 。

EXAMPLES.-XXX.

Find a value of θ to satisfy the following equations, by a process similar to that given in Art. 119, Ex. 4.

1. $\sin \theta-\cos \theta=0$.
2. $\sin \theta+\cos \theta=1$.
s. $\sin \theta-\cos \theta=\sqrt{\frac{3}{2}}$.
$4 \sin \theta+\cos \theta=\frac{\sqrt{ } 3+1}{2}$.
c. $\sin \theta+\cos \theta=\sqrt{ }$.
3. $\sin \theta-\cos \theta=\frac{\sqrt{3}-1}{2}$.
4. Collecting the formulæ of Arts. 117, 118, we next ara ange them thus:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B, \\
& \sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B, \\
& \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B, \\
& \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B .
\end{aligned}
$$

Hence, by addition and subtraction, we obtain the following:

$$
\begin{aligned}
& \sin (A+B)+\sin (A-B)=2 \sin A \cdot \cos B, \\
& \sin (A+B)-\sin (A-B)=2 \cos A \cdot \sin B, \\
& \cos (A-B)+\cos (A+B)=2 \cos A \cdot \cos B, \\
& \cos (A-B)-\cos (A+B)=2 \sin A \cdot \sin B
\end{aligned}
$$

Now let

$$
\begin{aligned}
& A+B=P \\
& A-B=Q .
\end{aligned}
$$

Then
$2 A=P+Q$, and $2 B=P-Q ;$
$\therefore A=\frac{P+Q}{2}$, and $B=\frac{P-Q}{2}$;

So that the formulde may be put in this form:

$$
\begin{aligned}
& \sin P+\sin Q=2 \sin \frac{P+Q}{2} \cdot \cos \frac{P-Q}{2}, \\
& \sin P-\sin Q=2 \cos \frac{P+Q}{2} \cdot \sin \frac{P-Q}{2}, \\
& \cos Q+\cos P=2 \cos \frac{P+Q}{2} \cdot \cos \frac{P-Q}{2}, \\
& \cos Q-\cos P=2 \sin \frac{P+Q}{2} \cdot \sin \frac{P-Q}{2},
\end{aligned}
$$

122. As these results are of very great inportance, we anal' repeat them separately, explaining each in words.
(1) $\sin P+\sin Q=2 \sin \frac{P+Q}{2} \cdot \cos \frac{P-Q}{2}$,
that is, the sum of the sines of two angles is equal to woice the
tha
the of h product of the sine of half the sum of the angles into the cosive of half their difference.

Ex. $\sin 10 \theta+\sin 6 \theta=2 \sin \frac{10 \theta+6 \theta}{2} \cdot \cos \frac{10 \theta-6 \theta}{2}$

$$
=2 \sin 8 \theta \cdot \cos 2 \theta .
$$

(2) $\sin P-\sin Q=2 \cos \frac{P+Q}{2} \cdot \sin \frac{P-Q}{2}$,
that is, the difference of the sines of two angles is equal to twice
furn by t the product of the cosine of half the sum of the angles into the sine of half their difference.

Ex. $\sin 8 a-\sin 4 a=2 \cos \frac{8 a+4 a}{2} \cdot \sin \frac{8 a-4 a}{2}$

$$
=2 \cos 6 a \cdot \sin 2 \alpha .
$$

(3) $\cos Q+\cos P=2 \cos \frac{P+Q}{2} \cdot \cos \frac{P-Q}{2}$,
that is, the sum of the cosines of twoo angles is equal to twice the product of the cosine of half the sum of the angles into the cosins of half their difference.

Ex. $\quad \cos \theta+\cos 3 \theta=2 \cos \frac{3 \theta+\theta}{2} \cdot \cos \frac{3 \theta-\theta}{2}$

$$
=2 \cos 2 \theta \cdot \cos \theta .
$$

(4) $\cos Q-\cos P=2 \sin \frac{P+Q}{2} \cdot \sin \frac{P-Q}{2}$,
that is, the difference of the cosines of two angles is equal to twice the product of the sine of half the sum of the angles into the sine of half their difference.

Ex. $\cos 3 a-\cos 7 \alpha=2 \sin \frac{7 \alpha+3 a}{2} \cdot \sin \frac{7 \alpha-3 a}{8}$ $=2 \sin 5 \alpha$. siri 2α.
122. As the formule at the end of Art. 12') teach ub awn to replace the sum ir difference of two sines or cosines by the product of two sines or cosines, so the formule at the beginning of Art. 120, when read from riglit to left, thus :

$$
\begin{aligned}
& 2 \sin A \cdot \cos B=\sin (A+B)+\sin (A-B), \\
& 2 \cos A \cdot \sin B=\sin (A+B)-\sin (A-B), \\
& 2 \cos A \cdot \cos B=\cos (A-B)+\cos (A+B), \\
& 2 \sin A \cdot \sin B=\cos (A-B)-\cos (A+B),
\end{aligned}
$$

furnish rules for replacing the product of two sines or cosines by the sum or difference of sines or cosines.

For example,

$$
\begin{aligned}
\sin 5 \theta \cdot \cos 3 \theta & =\frac{1}{2}\{\sin (5 \theta+3 \theta)+\operatorname{si} \cdot(5 \theta-3 \theta)\} \\
& =\frac{1}{2}(\sin 8 \theta+\sin 2 \theta) . \\
\sin \theta \cdot \sin 33 & =\frac{1}{2}\{\cos (3 \theta-\theta)-\cos (\because \theta+\theta)\} \\
& =\frac{1}{2}(\cos 2 \theta-\cos 4 \theta) .
\end{aligned}
$$

EXAMPLES.-XXXI

Prove the following relations:

1. $\sin 6 A+\sin 4 A=2 \sin 5 A \cdot \cos A$.
2. $\sin 5 A-\sin 3 A=2 \cos 4 A \cdot \sin A$.
3. $\cos 7 \theta+\cos 9 \theta=2 \cos 8 \theta \cdot \cos \theta$.
4. $\cos \theta-\cos 5 \theta=2 \sin 3 \theta \cdot \sin 2 \theta$.
$5 \sin a+\sin 4 a=2 \sin \frac{5 u}{2} \cdot \cos \frac{3 a}{2}$.
5. $\cos 5 a-\cos 8 a=2 \sin \frac{13 a}{2}-\sin \frac{3 a}{2}$.
6. $2 \sin 5 \theta \cdot \cos 7 \theta=\sin 12 \theta-\sin 2 \theta$.
7. $2 \sin 3 \theta \cdot \sin 5 \theta=\cos 2 \theta-\cos 8 \theta$.
8. $2 \cos \alpha \cdot \cos 4 \alpha=\cos 5 \alpha+\cos 3 \alpha$.
9. $2 \cos \alpha \cdot \sin 2 \alpha=\sin 3 \alpha+\sin a$,
10. $\frac{\sin A+\sin B}{\sin A+\cos B}=\tan \frac{A+B}{2}$.
11. $\frac{\cos A-\cos 3 A}{\sin 3 A-\sin A}=\tan 2 A$.
12. $\frac{\sin 2 A+\sin A}{\cos 2 A+\cos A}=\tan \frac{3 A}{2}$.
${ }^{1} 14 \cos \left(30^{\circ}-\theta\right)-\cos \left(30^{\circ}+\theta\right)=\sin \theta$.
13. $\cos \left(\frac{\pi}{3}+\theta\right)+\cos \left(\frac{\pi}{3}-\theta\right)=\cos \theta$
14. $\sin \left(\frac{\pi}{3}+a\right)-\sin \left(\frac{\pi}{3}-a\right)=\sin a_{0}$
15. $\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\cot \frac{\alpha+\beta}{2}$.
16. $\frac{\sin \alpha-\sin \beta}{\cos \beta+\cos \alpha}=\tan \frac{a-\beta}{2}$.
17. $\frac{\sin 5 \theta+\sin 3 \theta}{\cos 3 \theta-\cos 5 \theta}=\cot \theta$.
18. $\frac{\cos \alpha+\cos \beta}{\cos \beta-\cos \alpha}=\frac{\cot \frac{1}{2}(\alpha+\beta)}{\tan \frac{1}{2}(\alpha-\beta)}$.
19. We can also express the sum or difference of a sina and a cosine as the product of sines or cosines,

For since $\cos \theta=\sin \left(\frac{\pi}{2}-\theta\right)$ (Art. 99),

$$
\begin{aligned}
\sin a+\cos \theta & =\sin a+\sin \left(\frac{\pi}{2}-\theta\right) \\
& =2 \sin \frac{1}{2}\left(a+\frac{\pi}{2}-\theta\right) \cdot \cos \frac{1}{2}\left(a-\frac{\pi}{2}+\theta\right)
\end{aligned}
$$

Again

$$
\begin{aligned}
\sin 40^{\circ}+\cos 60^{\circ} & =\sin 40^{\circ}+\sin 30^{\circ} \\
& =2 \sin 35^{\circ} \cdot \cos 5^{\circ}
\end{aligned}
$$

EXAMPLES.—XXXil.
Express as the product of sines and cosines :
I. $\sin \alpha-\cos \beta$,
2. $\sin \left(\frac{\pi}{2}+a\right)+\cos \left(\frac{\pi}{2}-a\right)$,
3. $\sin a+\cos a^{\prime}$
4. $\sin \alpha-\cos \alpha$,
5. $\sin 30^{\circ}+\cos 80^{\circ}$,
6. $\sin 20^{\circ}-\cos 80^{\circ}$,
7. $\sin \frac{\pi}{4}+\cos \frac{\pi}{6}$,
8. $\sin \frac{\pi}{3}-\cos \frac{\pi}{5}$.
124. We now proceed to explain how the tangent of the sum and difference of two angles can be expressed in terms of the tangents of the angles themsel ves.

$$
\begin{aligned}
\tan (A+B) & =\frac{\sin (A+B)}{\cos (A+B)} \\
& =\frac{\sin A \cdot \cos B+\cos A \cdot \sin B}{\cos A \cdot \cos B-\sin A \cdot \sin B^{\prime}}
\end{aligned}
$$

and, dividing each term of the numerator and denominator by $\cos A \cdot \cos B$,

$$
\left.\begin{array}{rl}
& \frac{\sin A \cdot \cos B+\frac{\cos A \cdot \sin B}{\cos A \cdot \cos B} \cos A \cdot \cos B}{\cos A \cdot \cos B+\sin A \cdot \sin B} \\
\cos A \cdot \cos B-\cos A \cdot \cos B
\end{array}\right] \quad \begin{aligned}
\tan (A-B)= & \frac{\sin (A-B)}{\cos (A-\tan A \cdot \tan B} \\
= & \frac{\sin A \cdot \cos B-\cos A \cdot \sin B}{\cos A \cdot \cos B+\sin A \cdot \sin B} \\
& =\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B}-\frac{\cos A \cdot \sin B}{\cos A \cdot \cos B} \\
& \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}+\frac{\sin A \cdot \sin B}{\cos A \cdot \cos B} \\
& =\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}
\end{aligned}
$$

Cor. We proved in Art. 79 that $\tan 45^{\circ}=$ i.
Hence $\quad \tan \left(45^{\circ}+A\right)=\frac{\tan 45^{\circ}+\tan A}{1-\tan 45^{\circ} \cdot \tan \boldsymbol{A}}$

$$
\begin{aligned}
& =\frac{1+\tan A}{1-\tan A}, \\
\tan \left(45^{\circ}-A\right) & =\frac{\tan 45^{\circ}-\tan A}{1+\tan 45^{\circ} \cdot \tan A} \\
& =\frac{1-\tan A}{1+\tan A} .
\end{aligned}
$$

126. The results of the preceding article may be obtained without assuming the formulæ for the sine and cosine, thus:

Taking the diagram of Art. 117, we have

$$
\begin{aligned}
\tan (A+B) & =\frac{P R}{A R}=\frac{N R+P N}{A M-M R} \\
& =\frac{Q M+P N}{A M-N Q} \\
& =\frac{\frac{Q M}{A M}+\frac{P N}{A M}}{1-\frac{N Q}{A M}}
\end{aligned}
$$

Now $\frac{Q M}{A M}=\tan A$,
and observing that $P N Q, M Q A$ ITA similar triangles,

$$
\begin{aligned}
& \frac{P N}{A M}=\frac{P Q}{A Q}=\tan B, \\
& \frac{N Q}{A M}=\frac{N Q}{P N} \cdot \frac{P N}{A \bar{M}}=\tan A \cdot \tan B ;
\end{aligned}
$$

$\therefore \tan (A+B)=\frac{\tan A+\tan B}{-\tan A \tan B}$.
Again, taking the diagram of Art. 118, we have
$\therefore \tan (A-B)=\frac{P R}{A R}=\frac{N R-P N}{A \overline{M+M \bar{R}}}$

$$
=\frac{Q M-P N}{A M+\overline{N Q}}
$$

$$
=\frac{\frac{Q M}{A M}-\frac{P N}{A M}}{1+\frac{N Q}{A M}}
$$

Now $\frac{\text { QM }}{A M}-\tan A$,
and observing that $P N Q, M Q A$ are similar triangle,

$$
\begin{aligned}
& \frac{P N}{A M}=\frac{P Q}{A Q}=\tan B_{1} \\
& \frac{N Q}{A M}=\frac{N Q}{P N} \cdot \frac{P N}{A M}=\tan A \cdot \tan B_{;}
\end{aligned}
$$

$\therefore \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}$

EXAMPLES.-XXXII.

Prove the following relations :

1. $\frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot } \frac{\operatorname{\beta }}{\boldsymbol{\beta}}=\tan \alpha \cdot \tan \beta$.
2. $\frac{\tan \alpha+\tan \beta}{\cot \alpha-\tan \beta}=\tan \alpha \cdot \tan (\alpha+\beta)$.
3. $\frac{\tan \alpha-\tan \beta}{\cot \alpha+\tan \beta}=\tan \alpha \cdot \tan (\alpha-\beta)$.
4. $\tan \frac{\phi+\psi}{2}+\tan \frac{\phi-\psi}{2}=\frac{2 \sin \phi}{\cos \phi+\cos } \bar{\psi}$.
5. $\sin \phi=\sin \psi \cdot \cos (\phi-\psi)+\cos \psi \cdot \sin (\phi-\psi)$.
6. $\cos \phi=\sin \psi \cdot \sin (\psi+\psi)+\cos \psi \cdot \cos (\phi+\psi)$.
7. $(\cos \alpha+\cos \beta)!1-\cos (\alpha+\beta)\}=(\sin \alpha+\sin \beta) \cdot \sin (a+\beta)$
8. $\frac{\sin (\alpha+\beta)}{\sin \frac{\beta+\sin \beta}{\beta}}=\frac{\cos \frac{a+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}$.
9. $\frac{\sin (a+\beta)}{\sin a-\sin \beta}=\frac{\sin \frac{a+\beta}{2}}{\sin \frac{a-\beta}{2}}$
10.
11.
12.

[8.2] .
10. $\cot \frac{\alpha+\beta}{2}+\cot \frac{\alpha-\beta}{2}=\frac{2 \sin a}{\cos \beta-\cos \epsilon^{\dot{1}}}$
11. $\tan \frac{\alpha+\beta}{2}-\tan \frac{\alpha-\beta}{2}=\frac{2 \sin \beta}{\cos \alpha+\cos \beta}$
12. $\frac{\cos \alpha-\cos \beta}{\sin \alpha+\sin \beta}=\tan \frac{\beta-\alpha}{2}$.
13. $\cot \beta-\tan \alpha=\frac{\cos (\alpha+\beta)}{\cos \alpha \cdot \sin \beta}$
14. $\cot \theta+\tan \phi=\frac{\cos (\phi-\theta)}{\cos \phi \cdot \sin \theta}$
15. $\tan ^{2} \alpha-\tan ^{2} \beta=\frac{\sin (\alpha+\beta) \sin (\alpha-\beta)}{\cos ^{2} \alpha \cdot \cos ^{2} \beta}$.
16. $1+\tan \alpha \cdot \tan \beta=\frac{\cos (\alpha-\beta)}{\cos \alpha \cdot \cos \beta}$
17. $1-\tan \alpha, \tan \beta=\frac{\cos (\alpha+\beta)}{\cos \alpha \cdot \cos \beta}$
18. $\frac{\cot }{\tan } \frac{\alpha+\tan \beta}{\alpha+\cot \beta}=\cot \alpha \cdot \tan \beta$.
19. $\frac{\tan ^{2} x-\tan ^{2} y}{1-\tan ^{2} x \cdot \tan ^{2} y}=\tan (x+y) \cdot \tan (x-y)$
20. $\cot \left(\theta+45^{\circ}\right)=\frac{\cot \theta-1}{\cot \theta+2}$
21. $\sin \theta+\cos \theta=\sqrt{2} \cdot \sin \left(45^{\circ}+\theta\right)$.
22. $\cos \theta-\sin \theta=\sqrt{ } 2 \cdot \sin \left(\frac{\pi}{4}-\theta\right)$.

2ј. $\frac{\tan \alpha-\tan \beta}{\tan \alpha+\tan \beta}=\frac{\sin (\alpha-\beta)}{\sin (\alpha+\beta)}$.
$24 \frac{\cot x-\cot y}{\cot x+\cot y}=\frac{\sin (y-x)}{\sin (y+x)}$.
25. $\cos (A-B)+\sin (A+B)=2 \sin \left(A+45^{\circ}\right) \cdot \cos (B-45)$.
26. $\cos (A-B)-\sin (A+B)=2 \sin \left(45^{\circ}-A\right) \cdot \cos \left(45^{\circ}+B\right)$
27. $\cos (A+B)+\sin (A-B)=2 \sin \left(45^{\circ}+A\right) \cdot \cos \left(45^{\circ}+B\right)$. [8.T .]
28. $\cos (A+B) \cdots \sin (A-B)=2 \sin \left(45^{\circ}-A\right) \cdot \cos \left(45^{\circ}-B\right)$
29. $\frac{\cos \alpha+\cos \beta}{\cos \alpha-\cos \beta}=-\frac{\cot \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$
30. $\sec 72^{\circ}-\sec 36^{\circ}=\sec 60^{\circ}$.
31. $\sin 108^{\circ}=\left(\sin 81^{\circ}+\sin 9^{\circ}\right)\left(\sin 81^{\circ}-\sin 9^{\circ}\right)$
32. $\frac{\cos 3^{\circ}-\cos 33^{\circ}}{\sin 3^{\circ}+\sin } \frac{23^{\circ}}{}=\tan 16^{\circ}$.
33. $\frac{\sin 33^{\circ}+\sin 3^{\circ}}{\cos 33^{\circ}+\cos } 3^{\circ}=\tan 18^{\circ}$.
3.' $\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}} \frac{-\sin 9^{\circ}}{}=\tan 85^{\circ}$.
35. $\frac{\cos 27^{\circ}-\sin }{\cos 27^{\circ}+\sin } \frac{27^{\circ}}{27^{\circ}}=\tan 18^{\circ}$.
36. $\tan 50^{\circ}+\cot 50^{\circ}=2 \sec \mu$

XIII. ON THE TRIGONOMETRICAL RATIOS FOR MULTIPLE AND SUBMULTIPLE ANGLES.

126. The angles $2 A, 3 A, 4 A$...... are called Multiples of A, and the angies $\frac{A}{2}, \frac{A}{3}, \frac{A}{4}$ \qquad are called Submultiples of A.

We shall first show how to express the Trigonometricai Ratios of $2 A$ and $\frac{A}{2}$ in terms of the ratios of A.
227. $\sin 2 A=\sin (A+A)$

$$
\begin{aligned}
& =\sin A \cdot \cos A+\cos A \cdot \sin A \\
& =\sin A \cdot \cos A+\sin A \cdot \cos A \\
& =2 \sin A \cdot \cos A .
\end{aligned}
$$

$$
\operatorname{Con}_{0} \mathrm{EA}=\cos (A+A)
$$

$$
=\cos A \cdot \cos A-\sin A \cdot \sin A
$$

$$
=\cos ^{2} A-\sin ^{2} A
$$

Now we may put $1-\sin ^{2} A$ in the place of $\cos ^{2} A$ (Art. 90), and we then have

$$
\text { Cons } \begin{aligned}
2 A & =1-\sin ^{2} A-\sin ^{2} A \\
& =1-2 \sin ^{2} A .
\end{aligned}
$$

Or we may put $1-\cos ^{2} A$ in the place of $\sin ^{2} A$ (Art. 90), and we then have

$$
\begin{aligned}
\operatorname{sog} 2 A & =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =\cos ^{2} A-1+\cos ^{8} A \\
& =8 \cos ^{8} A-1 .
\end{aligned}
$$

$$
\begin{aligned}
\tan 2 A & =\tan (A+A) \\
& =\frac{\tan A+\tan A}{1-\tan A \cdot \tan A},(\text { Art. 124) } \\
& =\frac{2 \tan A}{1-\tan ^{2} A} .
\end{aligned}
$$

128. If we put A in the place of $2 A$, and $\frac{A}{9}$ in the place of A, we have

$$
\begin{aligned}
\sin A & =2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}, \\
\cos A & =\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2} \\
& =1-2 \sin ^{2} \frac{A}{2} \\
& =2 \cos ^{2} \frac{A}{2}-1 \\
\tan A & =\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}
\end{aligned}
$$

Hence we can snow that $\frac{1-\cos A}{1+\cos A}=\tan ^{2} \frac{A}{2}$, a formula of great importance.
For $\frac{1-\cos A}{1+\cos A}=\frac{1-\left(1-2 \sin ^{2} \frac{A}{2}\right)}{1+\left(2 \cos \frac{A}{2}-1\right)}=\frac{2 \sin ^{2} \frac{A}{2}}{2 \cos ^{2} \frac{A}{2}}=\tan ^{2} \frac{A}{2}$.

EXAMPLES.--XXXIV.

Prove the following relations :

1. $\sin 2 A=\frac{2 \cot A}{1+\cot ^{2} \dddot{A}^{\prime}}$
2. $\frac{\sin 2 A}{1+\cos 2 A} \cdot \frac{\cos A}{1+\cos A}=\tan \frac{A}{8}$.
3. $\operatorname{cosec} A+\cot A=\cot \frac{A}{2}<$
4. $\tan \theta+\cot \theta=\frac{2}{\sin 2 \theta^{\circ}}$,
5. $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
6. $2 \operatorname{cosec} 2 A=\sec A \cdot \operatorname{cosec} A a^{\circ}$
7. $\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta^{\circ}}$,
8. $\sec ^{2} \theta=\frac{2 \sec 2 \theta}{1+\sec 2 \theta}$
9. $\frac{1-2 \sin ^{2} A}{1+\sin 2 A}=\frac{1-\tan A}{1+\tan A}$.
10. $\cot \theta-2 \cot 2 \theta=\tan \theta$ -
11. $\frac{1-\cos \alpha}{\sin \alpha}=\tan \frac{\alpha}{2}$.
12. $\sin 2 \phi=\frac{2 \sqrt{ }\left(\operatorname{cosec}^{2} \phi-i y\right.}{\operatorname{cosec}^{2} \phi}$,
13. $\cos 2 \phi=\frac{2-\sec ^{2} \phi}{\sec ^{2} \phi}$.
14. $\tan 2 \phi=\frac{2 \cot \phi}{\cot ^{2} \phi-1}$.
15. $\sin \alpha=\sqrt{ }\left(\frac{\sec 2 a-1}{2 \sec 2 a}\right)$,
16. $\cos a=\sqrt{\left(\frac{\sec 2 a+1}{2 \sec 2 a}\right)}$.
17. $\tan a=\operatorname{cosec} 2 a-\cot 2 a$.
18. $\cot \beta=\operatorname{cosec} 2 \beta+\cot 2 \beta$.
19. $\tan \left(45^{\circ}+A\right)=\frac{\cos 2 A}{1-\sin 2 A}$.

2a. $\cot \left(45^{\circ}-A\right)=\sec 2 A+\tan 2 A$
21. $\frac{1+\sin \alpha}{1+\cos a}=\frac{1}{2}\left(1+\tan \frac{\alpha}{2}\right)^{2}$.
22. $\frac{1-\sin \alpha}{1-\cos \alpha}=\frac{1}{2}\left(\cot \frac{\alpha}{2}-1\right)^{2}$.
23. $\tan \theta=\tan \frac{\theta}{2}+\frac{1}{2} \tan \theta \cdot \sec ^{2} \frac{\theta}{2}$
24. $\frac{1+\sin \theta}{1-\sin \theta}=(\sec \theta+\tan \theta)^{2}$.
25. $\quad \sin 2 A=\frac{1}{1+\tan ^{2}\left(45^{\circ}-A\right)}$ +tan${ }^{2}\left(45^{\circ}-A\right)$.
26. $\sin 2 \theta=\frac{\tan \left(\frac{\pi}{4}+\theta\right)-\tan \left(\frac{\pi}{4}-\theta\right)}{\tan \left(\frac{\pi}{4}+\theta\right)+\tan \left(\frac{\pi}{4}-\theta\right)}$
129. We shall next show how to express the ratios of 34 in terms of the ratios of A.

$$
\begin{aligned}
\sin 3 A & =\sin (2 A+A) \\
& =\sin 2 A \cdot \cos A+\cos 2 A \cdot \sin A \\
& =(2 \sin A \cdot \cos A) \cdot \cos A+\left(1-2 \sin ^{2} A\right) \cdot \sin A \\
& =2 \sin A \cdot \cos ^{2} A+\sin A-2 \sin ^{3} A \\
& =2 \sin A \cdot\left(1-\sin ^{2} A\right)+\sin A-2 \sin ^{3} A \\
& =2 \sin A-2 \sin ^{3} A+\sin A-2 \sin ^{3} A \\
& =3 \sin A-4 \sin ^{3} A
\end{aligned}
$$

$$
\text { 130. } \quad \begin{aligned}
\cos 3 A & =\cos (2 A+A) \\
& =\cos 2 A \cdot \cos A-\sin 2 A \cdot \sin A \\
& =\left(2 \cos ^{2} A-1\right) \cdot \cos A-(2 \sin A \cdot \cos A) \cdot \sin A \\
& =2 \cos ^{3} A-\cos A-2 \sin ^{2} A \cdot \cos A \\
& =2 \cos ^{3} A-\cos A \cdot 2 \cos A\left(1 \cdot \cos ^{2} A\right) \\
& =2 \cos ^{3} A-\cos A-2 \cos A+2 \cos ^{3} A \\
& =4 \cos ^{3} A-3 \cos A
\end{aligned}
$$

181. $\operatorname{Tan} 3 A=\frac{\sin 3 A}{\cos 3 A}$

$$
\begin{aligned}
& =\frac{3 \sin A-4 \sin ^{3} A}{4 \cos ^{3} A-3 \cos A}, \text { and, dividing by } \cos ^{3} A, \\
& =\frac{\frac{3 \sin A}{\cos ^{3} A}-4 \tan ^{3} A}{4-\frac{3}{\cos ^{2} A}}
\end{aligned}
$$

$$
=3 \tan A \cdot \sec ^{2} A-4 \tan ^{8} A
$$

$$
4-3 \sec ^{2} A
$$

$$
=\frac{3 \tan A}{4-3\left(1+\tan ^{2} A\right)}
$$

$$
=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}
$$

EXAMPLES.-XXXV.

In some of these Examples ihe studeat may employ with advantage the formulæ given in Art. 121.

1. (1) $\frac{\cos 3 \theta-\sin 3 \theta}{\sin \theta+\cos \theta}=1-2 \sin 2 \theta$.
(2) $\sin 2 \theta+\cos \theta=\frac{2 \tan \theta+\sec \theta}{1+\tan ^{2} \theta}$
(3) $\sin A=\tan \frac{A}{2}+2 \sin ^{2} \frac{A}{2} \cot A$.
(4) $\frac{\cot A}{\cot A-\cot 3 A}+\frac{\tan A}{\tan A-\tan 3 A}=1$.
(5) $\cos 4 A+\cos 4 B=2\left\{1-2 \sin ^{2}(A+B)\right\}\left\{1-2 \sin ^{2}(A-B)\right\}$
(6) $\tan \left(45^{\circ}+\theta\right)-\tan \left(45^{\circ}-\theta\right)=2 \cdot \frac{\sec 2 \theta-\cos 2 \theta}{\sin 2 \theta}$.
(7) $\cot ^{2} \theta-\tan ^{2} \theta=8 \frac{\cos 2 \theta}{1-\cos 4 \theta^{\circ}}$
(8) $2 \sin A \cdot \cos 2 A=\sin 3 A-\sin A \cdot$
(9) $\frac{\cos n A-\cos (n+2) A}{\sin (n+2) A-\sin n A}=\tan (n+1) A$.
(10) $\cos 9 A+3 \cos 7 A+3 \cos 5 A+\cos 3 A=8 \cos ^{8} A \cdot \cos 5 A$.
(1i) $\frac{\operatorname{cosec} 2 A-\cot 2 A}{\operatorname{cosec} 2 A+\cot 2 A}=\tan ^{2} A$.
(12) $\frac{1-\sin A}{1+\cos A}=\frac{1}{2}\left(1-\tan \frac{A}{2}\right)^{2}$.
(13) $\frac{2 \cos 2 A-3}{2 \cos 2 A+3}=\frac{\cos 3 A-2 \cos A}{\sin 3 A+2} \sin A$. $\tan A_{0}$
(14) $\tan \left(45^{\circ}-A\right)+\tan \left(45^{\circ}+A\right)=2 \sec 2 A$.
(15) $\cos a-\tan \frac{\alpha}{2} \sin a=\cos 2 a+\tan \frac{a}{2} \cdot \sin 2 a$
(16) $\cot ^{2} A-\tan ^{2} A=4 \cot 2 A \cdot \operatorname{cosec} 2 A$.
(17) $\operatorname{cosec} a \cdot \cot a-\sec a \cdot \tan a=\operatorname{cosec}^{2} 2 a\left(\cos ^{8} a-\sin ^{3} a\right)$.
(IS) $\cot ^{2} a-\tan ^{2} \alpha=\frac{4 \cos 2 a}{\sin ^{2} 2 a}$.
(19) $\operatorname{cosec}^{2} b-\sec ^{2} \dot{\delta}=4 \cos 2 b \cdot \operatorname{cosec}^{2} 2 b$.
(20) $\cot ^{2}\left(45^{\circ}+\frac{A}{2}\right)=\frac{2 \operatorname{cosec} 2 A-\sec A}{2 \operatorname{cosec} 2 A+\sec A}$.
(21) $\sin \left(\frac{5 \pi}{2}+\theta\right)-\sin \left(\frac{3 \pi}{2}-\theta\right)=\sin \left(\frac{5 \pi}{2}-\theta\right)-\sin \left(\frac{3 \pi}{2}+\theta\right)$.
(22) $\cot \left(\frac{\pi}{2}+\theta\right)-\tan \left(\frac{\pi}{2}+\theta\right)=2 \cot 2 \theta$.
(23) $\frac{(\operatorname{cosec} a+\sec a)^{2}}{\operatorname{cosec}^{2} a+\sec ^{2} a}=1+\sin 2 a$.
(24) $\frac{\tan \theta}{\tan 2 \theta-\tan \theta}=\cos 2 \theta$. (25) $\frac{\tan 2 \theta \cdot \tan \theta}{\tan 2 \theta-\tan \theta}=\sin 2 \theta$.
(26) $\tan (\alpha+\beta)=\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\sin \alpha \cdot \cos \alpha-\sin \beta \cdot \cos \beta}$.
(27) $4 \sin A \cdot \sin \left(60^{\circ}+A\right) \cdot \sin \left(60^{\circ}-A\right)=\sin 3$.
(28) $\operatorname{cosec} 2 \theta+\cot 4 \theta+\operatorname{cosec} 4 \theta=\cot \theta$.

Solve the equations :
(I) $\sin 2 \theta+\sqrt{3} \cdot \cos 2 \theta=1$.
(2) $\sin ^{2} 2 \theta-\sin ^{2} \theta=\sin ^{2} \frac{\pi}{4}$.
(3) $\sin 5 x \cdot \cos 3 x=\sin 9 x \cdot \cos 7 x$ (4) $2 \sin ^{2} 3 \theta+\sin ^{2} 6 \theta=2$.
(5) $\cos 2 A+\sin ^{2} A=\frac{3}{4}$
(6) $\cos 3 \theta-\cos 5 \theta=\sin \theta$.
(7) $\sin 5 \theta-\cos 3 \theta=\sin \theta$.
(8) $\tan 2 a=3 \tan a$.
(9) $\sin 2 \theta+\sin \theta=\cos 2 \theta+\cos \theta$.
(10) $\sin 7 a-\sin a-3 a$
(ii) $\operatorname{cosec}^{2} \hat{\theta}-\sec ^{3} \theta=\tilde{2} \operatorname{cosec}^{2} \theta \div 3$.
(12) $\sin 6 \theta-\sin 4 \theta-\sin 2 \theta$
132. To find the trigonometrical ratios for an angle of 18°.*

Let

$$
A=18^{\circ} .
$$

Then

$$
2 A=36^{\circ}
$$

and

$$
3 A=54^{\circ} \text {. }
$$

Now the sine of an angle is equal to the cosine of the como plement of the angle :

$$
\begin{aligned}
\therefore \sin 36^{\circ} & =\cos 5 r^{\prime} \\
\therefore \sin 2 A & =\cos 3 A ; \\
\therefore 2 \sin A \cdot \cos A & =4 \cos ^{3} A-3 \cos A
\end{aligned}
$$

Divide by $\cos A$.
Then

$$
\begin{aligned}
& 2 \sin A=4 \cos ^{2} A-3, \\
& 2 \sin A=4\left(1-\sin ^{2} A\right)-3, \\
& 2 \sin A=4-4 \sin ^{2} A-3, \\
& 4 \sin ^{2} A+2 \sin A=1, \\
& \sin ^{2} A+\frac{1}{2} \cdot \sin A=\frac{1}{4}, \\
& \sin ^{2} A+\frac{1}{2} \sin A+\frac{1}{16}=\frac{5}{16}, \\
& \sin A+\frac{1}{4}= \pm \frac{\sqrt{3}}{4},
\end{aligned}
$$

and taking the upper sign, since sin 18° must be positive,

$$
\sin 18^{\circ}=\frac{\sqrt{ } 5-1}{4}
$$

Hence we can find $\cos 18^{\circ}, \tan 18^{\circ}$, and the other ratios.

EXAMPLES.-XXXVi.

1. Given $\sin 18^{\circ}=\frac{\sqrt{ } 5-1}{4}$, find the value of the following .ratios :
(1) $\sin 36^{\circ}$.
(2) $\cos 36^{\circ}$.
(3) $\sin 54^{\circ}$.
(4) $\cos 54^{\circ}$.
(5) $\sin 72^{\circ}$.
(6) $\tan 72^{\circ}$.
(7) $\sin 90^{\circ}$.
(8) $\cos 90^{\circ}$.

- A goometrical proof is given in the Appendix.

2. Show that
$\sin \left(36^{\circ}+A\right)+\sin \left(72^{\circ}-A\right)-\sin \left(36^{\circ}-A\right)-\sin \left(72^{\circ}+A\right)=\sin A$, and that
$\sin \left(54^{\circ}+A\right)+\sin \left(54^{\circ}-A\right)-\sin \left(18^{\circ}+A\right)-\sin \left(18^{\circ}-A\right)=\cos A$.
3. We now proceed to the formula relating to submultiples of angles, and first we shall prove that

$$
\sin \frac{A}{2}= \pm \sqrt{ }\left(\frac{1-\cos A}{2}\right)
$$

Aines

$$
\cos A=1-2 \sin ^{2} \frac{A}{9}(\text { Art. 128) } ;
$$

$$
2 \sin ^{2} \frac{A}{2}=1-\cos A
$$

$$
\therefore \sin ^{2} \frac{A}{2}=\frac{1-\cos A}{2} ;
$$

$$
\therefore \sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}}
$$

If the value of A be given, we know whether $\sin \frac{A}{2}$ positive or negative, and hence we know which sign is to be taken. Thus, if A be between 0° and $360^{\circ}, \frac{A}{2}$ lies between 0° and 180°, and $\therefore \sin \frac{A}{2}$ is positive : but if A be between 360° and $720^{\circ}, \frac{A}{2}$ lies between 180° and 360°, and $\therefore \sin \frac{A}{2}$ Is negative.
184. We shall next show that

$$
\begin{aligned}
\cos \frac{A}{2} & = \pm \sqrt{ }\left(\frac{1+\cos A}{2}\right) \\
\cos A & =2 \cos ^{2} \frac{A}{2}-1(A x t 128) 8 \\
\therefore-\cos ^{8} \frac{A}{2} & =-1-\cos A ;
\end{aligned}
$$

Since

$$
\begin{aligned}
& \therefore 2 \cos ^{2} \frac{A}{2}=1+\cos A ; \\
& \therefore \cos ^{2} \frac{A}{2}=\frac{1+\cos A}{2} ; \\
& \therefore \cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} .
\end{aligned}
$$

It the value of A be given, we know whether $\cos \frac{A}{2}$ is posilue or negative, and thus we know which sign is to be taken. For instance, if A lies between 0° and $180^{\circ}, \cos \frac{A}{2}$ is positive : but if A lies between 180° and $360^{\circ}, \cos \frac{A}{2}$ is negative.
120. To prove that

$$
8 \cos \frac{A}{2}= \pm \sqrt{1+\sin A} \pm \sqrt{1-\sin A}
$$

$$
2 \sin \frac{A}{2}= \pm \sqrt{1+\sin A} \mp \sqrt{1-\sin A} .
$$

Since

$$
\begin{gathered}
\cos ^{2} \frac{A}{2}+\sin ^{2} \frac{A}{2}=1, \\
8 \cos \frac{A}{2} \cdot \sin \frac{A}{2}=\sin A ; \\
\therefore \cos ^{2} \frac{A}{2}+2 \cos \frac{A}{2} \cdot \sin \frac{A}{2}+\sin ^{2} \frac{A}{2}=1+\sin A, \\
\cos ^{2} \frac{A}{2}-2 \cos \frac{A}{2} \cdot \sin \frac{A}{2}+\sin ^{2} \frac{A}{2}=1-\sin A .
\end{gathered}
$$

Hence, taking the qquare root of each side of beth equer tions,
and

$$
\cos \frac{A}{2}+\sin \frac{A}{2}= \pm \sqrt{1+\sin A}
$$

$$
\cos \frac{A}{2}-\sin \frac{A}{2}= \pm \sqrt{1-\sin A} .
$$

Therefore, by addition,

$$
2 \cos \frac{A}{2}= \pm \sqrt{1+\sin A} \pm \sqrt{1-\sin \lambda},
$$

and, by Ealbtraction,

$$
2 \sin \frac{A}{2}= \pm \sqrt{1+\sin A} \mp \sqrt{1-\sin A} .
$$

136. If the value of A be given, we know the signs of $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$, as we explained in the preceding articles. We also know whether $\sin \frac{A}{2}$ is greater or less than $\cos \frac{A}{2}$. Hence, if A be known, we can assign with certainty the signs which the root-symbols are to have in the intermediate equations

$$
\begin{align*}
& \cos \frac{A}{2}+\sin \frac{A}{2}= \pm \sqrt{1+\sin A},(1) \tag{1}\\
& \cos \frac{A}{2}-\sin \frac{A}{2}= \pm \sqrt{1-\sin A},(2) \tag{2}
\end{align*}
$$

and hence we can select the proper signs in the final equations.

For instance, suppose A to lie between 180° and 270°.
Then $\frac{A}{2}$ lies between 90° and 135°.
Therefore $\sin \frac{A}{2}$ is positive and $\cos \frac{A}{2}$ is negative.
Also, for an angle between 90° and 135° the sine is numerically greater than the cosine.

Hence we must take the positive sign in equation (1), and the negative sign in equation (2).

EXAMPLES.-XXXVII.

1. Affix to the root-symbols the proper signs when A is 15°.
2. Affix to the root-symbols the proper signs when Λ is 300°.
3. If $\sin 378^{\circ}=\frac{\sqrt{ } 5-1}{4}$, determine $\cos 189^{\circ}$ and $\sin 189^{\circ}$.

4 If $\sin 19^{\circ} \cdot 29^{\prime}=\frac{1}{3}$, what is the value of $\sin 9^{\circ} .44^{\prime} \cdot 30^{\prime \prime \prime}$ I
5. If $\cos 315^{\circ}=\frac{1}{\sqrt{2}}$, find the value of $\cos 157^{\circ} .30^{\prime}$.
137. We mentioned in Art. 114 what are called the Inverse Trigonometrical Functions, $\sin ^{-1} x, \cos ^{-1} x$, etc. We shall now give an example to illustrate the method of combining these functions.

To prove that $\quad \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=45^{\circ}$.
Let

$$
\alpha=\tan ^{-1} \frac{1}{2} \text { and } \beta=\tan ^{-1} \frac{1}{3} ;
$$

then

$$
\tan \alpha=\frac{1}{2} \text { and } \tan \beta=\frac{1}{3} .
$$

Now

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta} \\
&=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}} \\
&=\frac{5}{5} \\
&=1 ; \\
& \therefore \alpha+\beta=4 \mathbb{x}^{8} \\
& \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=45^{\circ} .
\end{aligned}
$$

thait is,

EXAMPLES.--XXXVili.

1. If $A=\sin ^{-1} \frac{3}{4}$ and $B=\sin ^{-1} \frac{4}{5}$, show that $A+B=90^{\circ}$.
2. If $A=\tan ^{-1} \frac{1}{7}$, and $B=\tan ^{-1} \frac{1}{3}$, show that $A+2 B=45^{\circ}$.
3. Show that $\sin ^{-1} \frac{1}{\sqrt{6}}+\cot ^{-1} 3=45^{\circ}$.

4 Show that $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}=46^{\circ}$.
5. Show that $\cot ^{-1} \frac{3}{4}+\cot ^{-1} \frac{1}{7}=135^{\circ}$.
6. Show that $\tan ^{-1} \frac{3}{5}+\cot ^{-1} \frac{7}{3}=\cot ^{-1} \frac{13}{18}$.
7. Show that $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}$.
8. Show that $\sin ^{-1} x+\cos ^{-1} x=90^{\circ}$.
9. Show that $\sin ^{-1} \frac{4}{5}+\sin ^{\circ} \cdot \frac{5}{13}+\sin ^{-1} \frac{16}{65}=\frac{\pi}{9}$
s. Show that $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{230}=\frac{\pi}{6}$.

EIV. ON LOGARITHMS.

150. Def. The Logarithm of a number to a given base is the index of the power to which the base must be raised to give the number.

Thus if $m=a^{+}, x$ is called the logarithm of $\ldots, 2$ to the base a.
For instarese, if the base of a system of logarithms be $\&$, 3 is the logarithm of the number 8 , because $8=2^{3}$:
and if the base be 5 , then
3 is the iogarithm of the number 125, because $125=5^{3}$.
139. The logarithm of a number m to the base a fut written thus, $\log _{a} m$; and so, if $m=u^{\circ}$,

$$
n=i v g_{a}^{m}
$$

Hence it foliows that $m=a^{10} \mathrm{com}_{\mathrm{m}}$.
140. Since $1=a^{\circ}$, the logarithm of unity to any base is zero.

Since $a=a^{1}$, the logarithm of the base of any system is unity.
141. We now proceed to describe that which is called the Common System of logerithms.

The base of the system is 10 .

By a system of logarithms to the base 10 , we mean a succesaion of values of x which satisfy the equation

$$
m=10^{\circ}
$$

for all positive values of m, integral or fractional.
Sach a system is formed by the series of logarithms of the natural numbers from 1 to 100000 , which constitute the logarithms registered in our ordinary tables, and which are therefore called tabular logarithms.
142. Now

$$
\begin{aligned}
1 & =10^{0}, \\
10 & =10^{1}, \\
100 & =10^{3}, \\
1000 & =10^{3},
\end{aligned}
$$

and so on.
Hence the logaxithm of 1 is Q,
of 10 is 1 ,
of 100 is 2 ,
of 1000 is 3 ,
and so on.
Hence for all numbers between 1 and 10 the logarithm in a decimal less than 1 ,
between 10 and 100 the logarithm is a decimal between 1 and 2,
between 100 and 1000 a decimal between 2 and 3, and so on.
143. The iogarithms of the natural numbers from 1 to 12 stand thus in the tables:

No.	Log	No.	Log
1	0.0000000		7
2	0.3010300	0.8450980	
3	0.4771213	8	0.9030900
4	0.6020800	9	0.9542425
5	0.6989700	10	1.0000000
6	0.7781513	11	1.0413927
		12	1.0791818

The logarithms are calculated to seven places of decimate [B.,5.]
144. The integval parts of the logarithms of numbers higher than 10 are called the characteristics of those logarithms, and the decimal parts of the logarithms are called the mantissa.

Thus $\quad 1$ is the characteristic, 0791812 the mantissa, of the logarithm of 12 .
145. The logarithms for 100 and the numbers that succeec. it (and in some tables those that precede 100) kave no chiracteristic prefixed, because it can be supplied by the reader, being 2 for all numbers between 100 and 1000,3 for all between 1000 and 10000 , and so on. Thus in the tables we ahall find

No	Log
100	0000000
101	0043214
102	0086002
103	0128372
104	0170333
105	0211893

which we read thus:
the logarithm of 100 is 2 , of 101 is 2.0043214 , of 102 is 2.0086002 ; and 80 on.
146. Logarithms are of great use in making arithmetical computations more easy, for by means of a Table of Logarithms the operation
of Multiplication is changed into that of Addition,
... Division Subtraction,
... Involution Multiplication,
... Evolution Division,

147. The logarithm of a product is equal to the swm of the lognisinne of its factors.

$$
\begin{aligned}
m & =a^{4}, \\
n & =a^{\omega} . \\
m n & =a^{\bullet+n} ; \\
\therefore \log _{a} m n & =x+y \\
& =\log _{a} m+\log _{a} m
\end{aligned}
$$

Then

Hence it follows that

$$
\log _{a} m n p=\log _{a} m+\log _{a} n+\log _{a} p,
$$

and similarly it may be slown that the theorem holds good for any number of factors.

Thus the operation of Multiplication is changed into that of Addition.

Suppose, for instance, we want to find the product of 246 and 357 , we add the logarithms of the factors, and the sum is the logarithm of the product: thus

$$
\begin{aligned}
\log 246 & =2 \cdot 3909351 \\
\log 357 & =2 \cdot 5526682 \\
\text { their sum } & =4 \cdot 9436033
\end{aligned}
$$

which is the logarithm of 87822 , the product required.
Note. We do not write $\log _{10} 246$, for so long as we are treating of logarithms to the particular base 10 , we may omit the suffix.
148. The logarithm of a quotient is equal to the logarithm of the dividend diminished by the logarithm of the divisor.

$$
\begin{aligned}
\text { Let } & \begin{aligned}
m & =a^{y}, \\
n & =a^{y} . \\
\text { and } & \text { Then } \quad \begin{aligned}
m & \\
& =a^{n-y} ; \\
& \therefore \log _{a} \frac{m}{n}
\end{aligned}=x-y \\
& =\log _{a} m-\log _{a} n
\end{aligned} .
\end{aligned}
$$

Thus the operation of Division is changed into that of Sub. traction.

If, for example, we are required to divide $371 \cdot 49$ by $52 \cdot 376$, we proceed thus,

$$
\begin{aligned}
\log 371 \cdot 49 & =2 \cdot 5699471 \\
\log 52 \cdot 376 & =1 \cdot 7191323 \\
\text { their difference } & =8508148
\end{aligned}
$$

which is the logarithm of $7 \cdot 092752$, the quotient required.
149. The logarithm of any power of a number is equal to the product of the logarithm of the number and the index denoting the power.

Let

$$
\begin{aligned}
m & =a^{r} . \\
m^{r} & =a^{r} ; \\
\therefore \log _{a} m^{r} & =r x \\
& =r . \log _{a} m .
\end{aligned}
$$

Then

Thus the operation of Involution is changed into Multiplication.

Suppose, for instance, we have to find the fourth power of 13, we may proceed thus,

$$
\log 13=1 \cdot 1139434
$$

$\frac{4}{4 \cdot 4557736}$
which is the logarithm of 28561 , the number required.
1.50. The logarithm of any root of a number is equal th the quotient arising from the division of the logarithm of the number by the number denoting the root.

Let
Then

$$
\begin{aligned}
m & =a^{4} \\
m^{\frac{1}{r}} & =a^{\frac{!}{7}} ; \\
\therefore \log _{a} m^{\frac{1}{r}} & =\frac{\pi}{r} \\
& =\frac{1}{r} \cdot \log _{a} m
\end{aligned}
$$

If, for example, we have to find the fifth root of 16807, we proceed thus,

$$
5 \frac{4 \cdot 2254902, \text { the } \log \text { of } 16807}{8450980}
$$

which is the logarithm of 7 , the root required.
151. The common system of Logarithms has this advan tage over all others for numerical calculations, that its base is the same as the radix of the common scale of notation.

Hence it is that the same mantissa serves for all numbers which have the same significant digits, and differ only in the position of the place of units relatively to those digits.

$$
\text { For, since } \begin{aligned}
\log 60 & =\log 10+\log 6=1+\log 6, \\
\log 600 & =\log 100+\log 6=2+\log 6, \\
\log 6000 & =\log 1000+\log 6=3+\log 6,
\end{aligned}
$$

it is clear that if we know the logarithm of any number, as 8 , we also know the logarithms of the numbers resulting from multiplying that number by the powers of 10 .

So again, if we know that
$\log 1 \cdot 7692$ is 247783 ,
we also know that
$\log _{\mathrm{g}} 17 \cdot 692$ is $1 \cdot 247783$,
$\log 176 \cdot 92$ is $2 \cdot 247783$,
$\log 1769 \cdot 2$ is $3 \cdot 247783$,
$\log 17692$ is 4.247783 ,
$\log 176920$ is $5 \cdot 247783$.
152. We must now treat of the logarithms of numbers less than unity.

Stince

$$
\begin{aligned}
& 1=10^{\circ}, \\
& 1=\frac{1}{10}=10^{-2}, \\
& 01=\frac{1}{100}=10^{-2},
\end{aligned}
$$

the logarithm of a number

Fo inter

W
to be
I. place
II. place

Th
and

154 the ru
(1)
we fir add th

The the nu
the 1 changi
1 as
Hen

No. Ior
For instance, when we read in the tables $144 / 1583625$, to interpret the entry thus,

$$
\log 1 \cdot 44 \text { is } \cdot 1583625
$$

We then obtain the following rules for the characteristic to be attached in each case.
I. If the decimal point be shifted one, two, three ... n places to the right, prefix as a characteristic $1,2,3 \ldots n$.
II. If the decimal point be shifted one, two, three ... n places to the left, prefix as a characteristic $\overline{1}, \overline{2}, \overline{3} \ldots \bar{n}$.

Thus

$$
\begin{gathered}
\log 1 \cdot 44 \text { is } \cdot 1583625, \\
\therefore \log 14 \cdot 4 \text { is } 1 \cdot 1583625, \\
\log 144 \text { is } 2 \cdot 1583625, \\
\log 1440 \text { is } 3 \cdot 1583625, \\
\log \cdot 144 \text { is } \overline{1} \cdot 1583625, \\
\log \cdot 0144 \text { is } \overline{2} \cdot 1583625, \\
\log \cdot 00144 \text { is } \overline{3} \cdot 1583625 .
\end{gathered}
$$

154. In calculations with negative characteristics we follow the rules of algebra. Thus,
(1) If we have to add the logarithms $\overline{3} \cdot 64628$ and $2 \cdot 42367$. we first add the mantissæ, and the result is $1 \cdot 06995$, and then add the characteristics, and this result is $\overline{1}$.
The final result is $\overline{\mathrm{I}}+1 \cdot 06995$, that is, ${ }^{\circ} 06995$.
(2) To subtract $\overline{5} \cdot 6249372$ from $\overline{3} \cdot 2456973$, we may arrange the numbers thus,

$$
\begin{array}{r}
-3+2456973 \\
-5+6249372 \\
\hline 1+6207601
\end{array}
$$

the 1 carried on from the last subtraction in decimal places changing -5 into -4 , and then -4 subtracted from -3 giving 1 as a result.

Hence the resulting logarithm is 1.6207601 .
(3) To multiply $3 \cdot 7482569$ by 5. $\overline{3} \cdot 7482569$
$\overline{12} \cdot 7412845$
the 3 carried on from the last multiplication of the decima places being added to -15 , and thus giving - 12 as a result.

(4) To divide $\overline{14} 2456736$ by 4.

Increase the negative characteristic so that it may be exactly divisible by 4 , making a proper compensation, thus,

$$
\overline{14} \cdot 2456736=\overline{1} \overline{6}+2 \cdot 2456736 .
$$

$$
\text { Then } \frac{\overline{14} \cdot 2456736}{4}=\frac{\overline{16}+2 \cdot 2456736}{4}=\overline{4}+\cdot 5614184 \text { : }
$$

and so the result is $\overline{4} \cdot 5614184$.

EXAMPLES.-XXXIX.

1. Add $\overline{3} \cdot 1651553, \overline{4} \cdot 7505855,6 \cdot 6879746, \overline{2} \cdot 6150026$.
2. Add $\overline{4} \cdot 6843785, \overline{5} \cdot 6650657,3 \cdot 8905196, \overline{3} \cdot 4675284$.
3. Add $2 \cdot 5324716,3 \cdot 6650657, \overline{5} \cdot 8905196, ~ 3156215$.
4. From $2 \cdot 483269$ take $\overline{3} \cdot 742891$.
5. From $\overline{2} \cdot 352678$ take $\overline{5} \cdot 428619$.
6. From $\overline{5} \cdot 349162$ take $\overline{\overline{3}} \cdot 624329$.
7. Multiply $\overline{2} \cdot 4596721$ by 3 .
8. Multiply $\overline{7} \cdot 429683$ by 6.
9. Multiply $\overline{9} \cdot 2843617$ by 7 .
10. Divide $\overline{6} .3725409$ by 3 .
II. Divide $\overline{14} \cdot 432962$ by 6 .
11. Divide $\overline{4} \cdot 53627188$ by 9 .
12. We shall now explain how a syatem of logarithms calculated to a base a may be transformed into another system of which the base is b.

Let m be a number of which the logarithm in the firat system is x and in the second y.

$$
\begin{array}{lc}
\begin{array}{l}
\text { Then } \\
\text { and } \\
\text { Hence }
\end{array} & \begin{array}{l}
m=a^{\prime}, \\
m
\end{array} \\
& b^{v}=b_{0}, \\
& \therefore b=a^{\frac{y}{y}} ; \\
& \therefore \frac{x}{y}=\log _{a} b ; \\
& \therefore \frac{y}{x}=\frac{1}{\log _{a} b} ; \\
& \therefore y=\frac{1}{\log _{a} b} x_{0}
\end{array}
$$

Hence if we multiply the logarithm of any number in the system of which the base is a by $\frac{1}{\log _{a} b}$ we sinall ontain the logarithm of the same number in the system of which the base is b.
This constant multiplier $\frac{1}{\log _{a} b}$ is called The Modulus of the system of which the base is b with reference to the system of which the base is a.
156. The common systern: rithms is used in all numerical calculations, but there ouner system, which we must notice, employed liy the discoverer of logarithms, Napier, and hence called the Napierian System.

The base of this system, denoted by the symbol e, is the number which is the sum of the series

$$
2+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots a d \text { info, }
$$

of which sum the first eight digits are 2.7182818 .
157. Our common logarithms are formed from the logariihms of the Napierian system by multiplying each of the
latter by a common multiplier called the Modulus of the Common System.

This modulus is, in accordance with the conclusion of Art. $165, \frac{1}{\log _{e} 10^{\circ}}$

That is, if l and N be the logarithms of the same number in the common and Napierian systems respectively,

$$
l=\frac{1}{\log _{6} 10} \cdot N
$$

Now loge 10 is $2 \cdot 30258509$;

$$
\therefore \frac{1}{\log _{e} 10} \text { is } \frac{1}{2 \cdot 30258509} \text { or } 43429448,
$$

and so the modulus of the common system is $\cdot \mathbf{4 3 4 2 9 4 4 8}$.
158. To prove that $\log _{a} b \times \log _{b} a=1$.

Let

$$
\begin{aligned}
x & =\log _{a} b b_{0} \\
b & =a^{4} ; \\
\therefore b^{\frac{1}{A}} & =a ; \\
\therefore \frac{1}{x} & =\log _{b} a_{b}
\end{aligned}
$$

Then

Thus $\quad \log _{a} b \times \log _{b} a=x \times \frac{1}{x}$

$$
=1 .
$$

169. The following are simple examples of the method of applying the principles explained in this Chapter.

Ex. 1. Given $\log 2=3010300, \log 3=4771213$

$$
\text { and } \log 7=8450980, \text { find } \log 42
$$

Since

$$
\begin{aligned}
42 & =2 \times 3 \times 7 \\
\log 42 & =\log 2+\log 3+\log 7 \\
& =3010300+\cdot 4771213+\cdot 8450980 \\
& =1 \cdot 6232493
\end{aligned}
$$

of the sion of mber in
and
$\therefore \log 96=5 \log 2+\log 3=1 \cdot 5051500+4771213=1 \cdot 982271 \hat{3}$.
Ex. 3. Given $\log 5=6989700$, find the logarithm of $\sqrt[7]{ }(6 \cdot 25)$.

$$
\begin{aligned}
\log (6 \cdot 25)^{\frac{3}{7}} & =\frac{1}{7} \log 6 \cdot 25=\frac{1}{7} \log \frac{625}{100}=\frac{1}{7}(\log 625-\log 100) \\
& =\frac{1}{7}\left(\log 5^{4}-2\right)=\frac{1}{7}(4 \log 5-2) \\
& =\frac{1}{7}(2 \cdot 7958800-2)=\cdot 1136971 .
\end{aligned}
$$

EXAMPLES.-xl.

I. Given $\log 2=3010300$, find $\log 128, \log 125$, and \log 2500.
2. Given $\log 2=3010300$ and $\log 7=\cdot 8450980$, find the logarithms of 50,005 , and 190 .
3. Given $\log 2=3010300$, and $\log 3=\cdot 4771213$, find the logarithms of $6,27,54$, and 576.
4. Given $\log 2=3010300, \log 3=\cdot 4771213, \log 7$ find $\log 60, \log \cdot 03, \log 1 \cdot 05$, and $\log \cdot 0000432$.
5. Given $\log 2=3010300, \log 18=1 \cdot 2552725$ and $\log 21=1 \cdot 3222193$, find $\log \cdot 00075$ and $\log 31 \cdot 5$.
6. Given $\log 5=6989700$, find the logarithms of $2, \cdot 064$, and $\binom{2^{\text {en }}}{5^{\frac{5}{10}}}^{\frac{1}{10}}$:
7. Given $\log 2=3010300$, find the logarithms of $5, \cdot 125$, and $\binom{500}{2^{10}}^{\frac{1}{10}}$.
8. What are the logarithms of 01,1 , and 100 to the base 103 What to the base $01 ?$
9. What is the characteristic of $\log 1593$, (1) to base 10 , (2) to base 121
10. Given $\frac{4^{3}}{2^{5+y}}=8$, and $x=3 y$, find x and y.
11. Given $\log 4=6(1206(\mu)$, lig $1 \cdot 04=0170333$:
(a) Find the logarithums of $2,25,83$-3, ($(22.5)^{\frac{1}{106}}$.
(b) How many digits are there in the integral part of $(1.04)^{6 \times 00}$?
12. Given $\log 25=1 \cdot 3979400, \log 1 \cdot 03=0128372$:
(a) Find the loginithms of 5, 4, 51:5, (0)(4-4) $\frac{1}{100}$:
(b) How many digits are there in the integral part of $(1.03)^{200} 1$
13. Having given $\operatorname{lng} 3=-17$ 万1213, $\log 7=8450980$,

$$
\log _{0} 11=10-113927:
$$

find the logarithms of $7623, \frac{77}{360}$ and $\frac{3}{539}$.
14. Solve the equations:
(1) $4096^{x}=\frac{8}{64}$
(4) $a^{n x} b^{2 x}=c$.
(2) $\left(\frac{1}{4}\right)^{*}=6.25$.
(5) $a^{8 x} \cdot b^{4-m}=c^{2 m-1}$.

(6) $a^{5} b^{m 0}=d^{-m}$,
XV. ON TRIGONOMETRICAL AND LOGARITHMIC TABLES.
160. We shall give in this Chapter a short description of the 'Tahles which have been constructed for the purpose of facilitating trigonometrical calculations.

The methods by which these tables are formed do not fall within the range of this treatise : we have merely to explain how they are applied to the solution of such simple examples as we shall hereafter give.

We shatl arrange our remarks in the following order:
I. On Tables of Logarithms of Numbers.
II. On 'Tables of Trigonometrical Ratios.
III. On Tables of Logarithms of Trigonometrical Ration.
I. On Tables of Logarithms of Numbers.
161. These tahles are arranged so as to give the mantissm of the logarithms of the natural numbers from 1 to 100000, that is of numbers containing from one to five digits.

We shall now show how by aid of these tables, first, to find the logarithm of any given number, and, secomilly, how to determine the number which corresponds i: a given logarithm.
162. When a number is given, to find its logarithm.

When the given number has not more than five digits, we can take its logarithm at once from the tables.

When the given number has more than five digits, we can determine its lograrithon by a process whicin will be best explained by an example.

Suppose we require to find the logarithm of 6276153.
We find from the tables
$\log 62761$ is 47976899,
and
Hence
and
$\log _{\mathrm{n}} 62762$ is 47976988 .
$\log 6276200$ is 67976988 ,
$\log 6276100$ is $6 \cdot 7976899$.
Thus for a difference of 100 in the numbers the difference of the logarithms is 00000189.

We then reason thus: If we have to add 0000089 to the logarithm of 6276100 to obtain the logarithm of 6276200 , what must we add to the logarithm of 6276100 to obtain the lofa. rithm of 6276153 ?

Assuming that the increase of the logarithm is proportional to the increase of the number (which is nearly bui not quite true), we shall have
$100: 53=\cdot 0000089$: that which we have to add;
\therefore number to be added $=\frac{53 \times 0000089}{100}=000004717$,
and therefore, omitting the last two figures,

$$
\begin{aligned}
\log 6276153 & =6 \cdot 7976899+\cdot 0000047 \\
& =: 6 \cdot 7976946 .
\end{aligned}
$$

If the first of the figures omitted be 5 or a digit higher
thad
163. We took in the last Article an integral number, but the same process will apply to numbers containing decinuals.

For suppose we have to find the logarithm of 627.6153 : we can find $\log 6276153$ as before, and the only difference to be made in the final result is to change the characteristic from σ to 2 , that is,

$$
\log 627 \cdot 6153=2 \cdot 7976946
$$

ios gain, in accordance with Art. 153, $\log \cdot 00006276153=\overline{5} \cdot 7976946$.

EXAMPLES.--XII.

1. Given
tund
$\log 52502=4 \cdot 7.201759$, $\log 52503=4 \cdot 7201841$, $\log 52502.5$.
2. Tiven $\log 3 \cdot 0042=47$ न7288,

$$
\log 3 \cdot() 4 ; 3=4777433
$$ $\log 3010 \cdot 425$.

3. Given $\quad \log 3202 \cdot 5=3 \cdot 5054891$, $\log 3202 \cdot 6=3 \cdot 5055027$,
$\log 32 \cdot 025613$.
$\log 23660=4: 374014{ }^{7}$;
$\log 23661=4 \cdot 3740331$,
$\log 236 \cdot 601$.
4. Given $\quad \log 67502=: 4.8293166$
$\log 6750: 3=4 \cdot 8293231_{4}$ $\log 67 \cdot 5021$.
5. Given $\quad \log 73335=4.865311$ =
find

$$
\log _{g} 733336=4 \cdot 865317 \dot{8}
$$

$$
\text { log } 007033533 .
$$

7.	Given	$\log 65931=4 \cdot 8190897$,
		$\log 65932=4 \cdot 8190962$,
find		$\log 000006593171$.
8.	Given	$\log 34 \cdot 077=1 \cdot 5324614$,
		$\log 34 \cdot 078=1 \cdot 5324741$,
find		$\log 3407.78$.
9.	Given	$\log 39097=4 \cdot 5921434$,
		$\log 39098=4.5921545$,
find		$\log 390974$.
10.	Given	$\log 25819=4 \cdot 4119394$,
		$\log 25820=4 \cdot 4119562$,
find		$\log 2 \cdot 581926$.

164. When a logarithm is $\mathrm{s}^{\text {iven, }}$ to find the number to whick it corresponds.

If the decimal part of the logarithm is found exactly in the tables, we can take out the corresponding number.

Thus if we have to find the number corresponding to the logarithm 2.8598645 , we look in the tables for the mantissa -8598645, and we find it set down opposite the number 72421, hence

$$
2 \cdot 8598645 \text { is the logarithm of } 724 \cdot 21 .
$$

Next, suppose that the decimal part of the logarithm is not found exactly in the tables, and that we have to find the number corresponding; to the logarithm 3.9212074 .

We find from the tubles

Hence a difference of $\cdot 1$ in the numbers gives a difference of 0000052 in the logarithms.

Then we reason thus: If we must add $\cdot 1$ to $8340 \cdot 7$ for an excess of 0000052 above the logarithm of $8340 \cdot 7$, what must we add for an excess of ($3 \cdot 9212074-3 \cdot 9212025$) or '(0)()0049?

Assuming that the increase of the number is proportional to the increase of the logarithm, we have
$\cdot 0000052: \cdot 0000049=\cdot 1$: what is to be added to $8340 \cdot 7$; therefore we must add

$$
\frac{0000049 \times \cdot 1}{0000052} \text {, or, } \frac{49 \times \cdot 1}{52}, \text { or, } \cdot 094 ;
$$

therefore number required is $8340 \cdot 794$.

If the given logarithm be negative, as - (2.1401355), we can change it into another of which the characteristic only is negative, thus $\overline{3} 8598645$, and we can lind the number corresponding to this logarithm, as befure. The number required is $\mathbf{0} 08340794$.

EXAMPLES.-xlii.

I. Given $\log 12954=4 \cdot 1124039$,

$$
\log 12955=4 \cdot 1124374
$$

find the number whose logarithm is $4 \cdot 112431$.
2. Given $\log 462 \cdot 45=2 \cdot 6650648$,

$$
\log 462 \cdot 46=2 \cdot 6650742,
$$

find the nuinber whose logarithin is 3.665065

$$
\text { 3. Given } \quad \begin{aligned}
\log 34572 & =4.5387245, \\
\log 34573 & =4.5387371,
\end{aligned}
$$

find the number whose logarithm is $2 \cdot 5387359$.

$$
4 \text { Given } \quad \begin{aligned}
\log 39375 & =4.5952206 \\
99376 & =4.5952316, \\
& \text { vis } 5.5952282 .
\end{aligned}
$$

5. Given $\log 3 \cdot 7159=5700640$,

$$
\log 3 \cdot 7160=\cdot 5700757,
$$

find the number whose logarithm is 3.5700702

$$
\begin{aligned}
& \text { 6. Given } \quad \log 96461=4.9843518 \text {, } \\
& \log 96462=4 \cdot 9843563 \text {, }
\end{aligned}
$$

and the number whose logarithm is $\overline{3} \cdot 9843542$
7. Given $\log 25725=4 \cdot 4103554$,

$$
\log 25726=4 \cdot 4103723,
$$

tind the number whose logarithm is $\overline{7} \cdot 4103720$.
8. Given $\quad \begin{aligned} \log 60195 & =4.7795532, \\ \log 60196 & =4.7795604,\end{aligned}$
find the number whose logarithm is $2 \cdot 7795561$.

$$
\text { 9. Given } \quad \begin{array}{r}
\log 10905=4.0376257, \\
\log 10906=4.0376655 .
\end{array}
$$

find the number whose logarithm is $3 \cdot 0376371$.

$$
\begin{aligned}
\text { so. Given } \quad \log 26201=4 \cdot 4183179, \\
\log 26202=4 \cdot 4183344,
\end{aligned}
$$

find the number whose logarithm is $2 \cdot 4183314$.

II. On 1ables of the Trigonometrical Ratios.

165. We have explained in earlier parts of this treatise

A an in how to find the values of certain trigonometrical ratios exactly or approximately.

Thus we showed that $\sin 30^{\circ}=\frac{1}{2}$, that is, 5 exactly.
Again, $\tan 60^{\circ}=\sqrt{\prime}^{\prime} 3$, that is, $1 \cdot 73205$ approximately.
Now the values of all the trigonometrical ratios for a regular succession of angles in the first quadrant have been
calculated and registered in tables. In some tables the angles succeed each other it intervals of $1^{\prime \prime}$, in others at intervals of $10^{\prime \prime}$, but in ordinary tables at intervals of 1^{\prime}, and to the lastmentioned we shall refer.

Thesc tables are commonly called Tables of Natural Sines, Cosines, etc., so as to distinguish them from the Tables of the Logarithms of the Sines, Cosines, etc., of which we shall hereafter treat.

We intend to explain, first, how we can determine the value of a ratio that lies hetween the ratios of two consecutive angles given in the tables, and secondly, how to determine the angle to which a given ratio corresponds.

166. To find the sine of a given angle.

Suppose we want to determine the sine of $25^{\circ} .14^{\prime} .20^{\circ}$, having given
$\sin 25^{\circ} .14^{\prime}=4263056$ and $\sin 25^{\circ} \cdot 15^{\prime}=\mathbf{4 2 6 5 6 8 7}$.
From $\sin 25^{\circ} .15^{\prime}=\cdot 4265687$
Take $\sin 25^{\circ} .14^{\prime}=-4263056$
. 0002631 is the difference for 1^{\prime}.
Now if we have to add 0002631 to the sine of $25^{\circ} .14^{\prime}$ to obtain the sine of 25°. 15^{\prime}, what must we add to the sine of $25^{\circ} .14^{\prime}$ to obtain the sine of $25^{\circ} .14^{\prime} .20^{\prime \prime}$?

Assuming that an increase in the angle is proportional to an increase in the sine, we have
$\mathbf{1}^{\prime}: 20^{\prime \prime}=0002631:$ that which we have to add; therefore we must add

$$
\begin{aligned}
& \frac{20 \times \cdot 0002631}{60}, \text { or, } \cdot 0000877 ; \\
& \therefore \begin{aligned}
\therefore \text { dne } 25^{\circ} \cdot 14^{\prime} \cdot 20^{\prime \prime} & =4263056+\cdot 0000877 \\
& =4263933
\end{aligned}
\end{aligned}
$$

167. To find the cosine of a given angle.

If we have to determine the cosine of $74^{\circ} \cdot \mathbf{4 5 ^ { \prime }} \cdot \mathbf{4 0 ^ { \prime \prime }}$, having given

$$
\cos 74^{\circ} \cdot 46^{\prime}=\cdot 4263056 \text { and } \cos 74^{\circ} \cdot 45^{\prime}=4265687
$$

we proceed thus :

$$
\begin{aligned}
& \cos 74^{\circ} .45^{\prime}=\cdot 4265687 \\
& \cos 74^{\circ} .46^{\prime}=\frac{4263056}{0002631} \text { is the decrease corresponding to } 1^{\prime},
\end{aligned}
$$

observing that the cosine decreases as the angle increases from 0° to 90°.

Hence

$1^{\prime}: 40^{\prime \prime}=0002631$: what we have to take from 4265687 ;
therefore we must take away

$$
\begin{aligned}
\frac{40 \times \cdot 0002631}{60} & =0001754 ; \\
\therefore \cos 74^{\circ} \cdot 45^{\prime} .40^{\prime \prime} & =\cdot 4265687-.0001754 \\
& =4263933 .
\end{aligned}
$$

Similar methods are to be taken to find the values of the ther ratios, observing that the tangents and secants increase and the cotangents and cosecants decrease as the angle inrreases from 0° to 90°.

1.	Given	EXAMPLES.-xlili.$\begin{gathered} \sin 42^{\circ} \cdot 15^{\prime}=6723668, \\ \sin 42^{\circ} \cdot 16^{\prime}=6725821, \\ \sin 42^{\circ} \cdot 15^{\prime} \cdot 16^{\prime \prime} . \end{gathered}$
2.	Givall	$\sin 72^{\circ} .14^{\prime}=9523071$,
	\because \%	$\sin 72^{\circ} \cdot 15^{\prime}=9523958$,
find		$\because \sin 72^{\circ} .14^{\prime} .6^{\prime \prime}$.

3. Given $\quad \sin 54^{\circ} .35^{\prime}=8149593$,	
$\sin 54^{\circ} .36^{\prime}=8151278$,	
find	$\sin 54^{\circ} .35^{\prime} \cdot 45^{\prime \prime}$.

4. Given $\sin 87^{\circ} \cdot 26^{\prime}=\cdot 9989968$, $\sin 87^{\circ} .27^{\prime}=9990008$, $\sin 87^{\circ} \cdot \mathbf{2 6 ^ { \prime }} \cdot \mathbf{1 5 ^ { \prime \prime }}$.

Given \quad| $\cot 35^{\circ} .6^{\prime}=1 \cdot 4228561$, |
| :---: |
| $\cot 35^{\circ} \cdot 7^{\prime}=1 \cdot 4219766$, |
| $\cot 35^{\circ}, 6^{\prime} 23^{\prime \prime}$ |

find $\cot 35^{\circ} .6^{\prime} .23^{\prime \prime}$.
9. Given $\sin 67^{\circ} .22^{\prime}=\cdot 922986{ }^{\prime}$, $\sin 67^{\circ} .23^{\prime}=9230984$, $\sin 67^{\circ} .22^{\prime} .48^{\prime \prime} \cdot \kappa$
10. Given $\cos 34^{\circ} \cdot 12^{\prime}=88270806$, $\cos 34^{\circ} .13^{\prime}=8269175$ find $\cos 34^{\circ} .12^{\prime} .19^{\prime \prime} \cdot 6$.
168. To find the angle which corresponds to a given sina

Suppose the given sine to be $\mathbf{5 0 8 2 7 8 4}$.
We find from the Tables

$$
\begin{aligned}
\text { sine } 30^{\circ} .33^{\prime}= & 5082901 \\
\text { sine } 30^{\circ} .32^{\prime}= & \frac{5080 ; 396}{.0002505} \text { difference for } 1^{\prime} \\
\text { given sine }= & 5082784 \\
\text { sine } 30^{\circ} .32^{\prime}= & \cdot \frac{5080396}{.0002388}
\end{aligned}
$$

Hence if in ve the number of seconds to be added to $\mathbf{3 0}^{\circ} .{3 Z_{11}^{\prime}}^{\prime}$

$$
\begin{aligned}
& \cdot(00025() 5: \cdot 0002388=60 \cdot x ; \\
& \therefore x=\frac{2388 \times 60}{2505}=\frac{9552}{167}=57 \cdot 2 \text { nearly } .
\end{aligned}
$$

\therefore the required angle is $30^{\circ} .32^{\prime} .57^{\prime \prime} \cdot 2$.
169. To find the angle which corresponds to a given cosine

Suppose the given cosine to be 5082784
We find from the Tables

$$
\begin{aligned}
\cos 59^{\circ} \cdot 27^{\prime}= & \cdot 5082901 \\
\cos 59^{\circ} \cdot 28^{\prime} & =\frac{\cdot 5080396}{.0002505} \text { difference for } I_{6} \\
\cos 59^{\circ} .27^{\prime}= & .5082901 \\
\text { given cosine }= & \frac{.5082784}{.00001 \frac{17}{}}
\end{aligned}
$$

Hence if x be the numicer of seconds to be added to $59^{\circ} .27^{\prime}$,

$$
0002505: \cdot 0000117=60: x ;
$$

\therefore required angle is $59^{\circ} .27^{\prime} .2^{\prime \prime} 8$.

$$
\therefore x=\frac{117 \times 60}{2505}=2.8 \text { nearly; }
$$

EXAMPLES.-xliv.

1. Given $\quad \sin 48^{\circ} .47^{\prime}=\cdot 7522233$,

$$
\sin 48^{\circ} \cdot 46^{\prime}=7520316
$$

find the angle of which the sine is $\mathbf{7 5 2 1 4 0}$.
2. Given $\cos 2^{\circ} .34^{\prime}=\cdot 9989968$, $\cos 2^{\circ} .33^{\prime}=\cdot 9990098$, find the angle of which the cosine is 999000 .
3. Given $\sin 43^{\circ} \cdot 14^{\prime}=\cdot(6849711$, $\sin 43^{\circ} .15^{\prime}=\cdot 68518: 30$, find the angle of which the sine is 685 .
4. Given $\quad \cos 32^{\circ} .31^{\prime}=8432351$, $\cos 32^{\circ} .32^{\prime}=8430787$, find the angle of which the cosine is 8432 .
5. Given $\quad \sin 24^{\circ} \quad 11^{\prime}=4096577$, $\sin 24^{\circ} .12^{\prime}={ }^{\prime} 4199230$, find the angle of which the sine is $\cdot 4097559$.
6. Given $\sec 82^{\circ} .22^{\prime}=7 \cdot 528249$, $\sec 82^{\circ} .23^{\prime}=7 \cdot 552169$,
find the angle of which the secant is $7 \cdot 5 \dot{3}$.
7. Given $\quad \cos 53^{\circ} \cdot 7^{\prime}=6001876$,
$\cos 53^{\circ} .8^{\prime}=5999549 ;$
find the angle of which the cosine is $\cdot 6$.
8. Given \quad cosec $25^{\circ} .3^{\prime}=2 \cdot 36179$,
cosec $25^{\circ} .4^{\prime}=2 \cdot 36020$,
find the angle of which the cosecant is 2.361 .
9. Given $\sin 73^{\circ} .44^{\prime}=\mathbf{9 5 9 9 6 8 4}$,

$$
\sin 73^{\circ} .45^{\prime}=9600499
$$

find the angle of which the sine is $\mathbf{9 6}$.
10. (tiven $\quad \tan 77^{\circ} \cdot 19^{\prime}=4 \cdot 44338$,
$\tan 77^{\circ} .20^{\prime}=4.44942$,
find the angle of which the tangent is $4 \cdot \dot{4}$.

[II. On Tables of Logarithms of Trigonometrical Ratios.

170. The trigonometrical ratios, being numbers, havs logarithms that correspond to then, and these logarithms are in practice much more useful than the numbers themselves.

Now since the sines and cosines of all angles and the tangents of angles less than 45° are less than unity, the logarithms of these sines, cosines, and tangents are negative. In order to avoid the inconvenience of printing negative characteristics, the logarithms of all the ratios given in the tables are increased by 10. The numbers thus registered are called The T'abular Logarithms of the sine, cosine, etc., and they are denoted by the symbol L, that is, $L \sin A$ denotes the tabular logarithm of the sine of A.

When the value of any one of these Tabular Logarithms is given, we must take away 10 from it to obtain the true value of the logarithm in question.: thus
$L \sin 25^{\circ}$ is set down in the tables as $9.625^{\prime} 9483$,
and the true value of the logarithm of the sine 25° is therefore

$$
9 \cdot 6259483-10, \text { that is },-3740517,
$$

or we might adopt the usual logarithmic notation of Art. 152, and say

$$
\log \cdot \sin 25^{\circ}=\overline{1} \cdot 6259483
$$

The Tables to which we refer are calculated for all angles is the first cuadran! nt intervals of l^{\prime}.
171. To find the logarithmic sine of an angle not exactly given in the tables.

Suppose we have to find $L \sin 6^{\circ} .32^{\prime} .37^{\prime \prime}$.

$$
\begin{aligned}
& L \sin 6^{\circ} .33^{\prime}=9 \cdot 0571723 \\
& L \sin 6^{\circ} .32^{\prime}=\frac{9.0560706}{001} \mathbf{1 0 1 7} \text { difference for } 1 .
\end{aligned}
$$

Then if x be the number to be added to 9.0560706 to give us $L \sin 6^{\circ} .32^{\prime} .37^{\prime \prime}$, we have

$$
\begin{aligned}
60: 37= & \cdot 0011017: x ; \\
\therefore x=\frac{0011017}{60} \times 37 & =0006794, \text { nearly } ; \\
\therefore L \sin 6^{\circ} \cdot 32^{\prime} \cdot 37^{\prime \prime} & =9 \cdot 0560706+\cdot 0006794 \\
& =9 \cdot 05675 .
\end{aligned}
$$

172. To find the logarithmic cosine of an angle not exactl given in the tables.

Suppose we have to find $L \cos 83^{\circ} .27^{\prime} .23^{\prime \prime}$.
$L \cos 8 \%^{\circ} .27^{\prime}=9 \cdot 0571723$
$\overline{\mathrm{L}} \cos 83^{\circ} .28^{\prime}=9 \cdot 0560706$
$\cdot 0011017$ difference for 1^{\prime}.
Then, if x be the number to be subtracted from 9.0571723 i. give us $L \cos 83^{\circ} \cdot 27^{\prime} \cdot 23^{\prime \prime}$, we have

$$
\begin{aligned}
& 60: 23=0011017: x ; \\
& \therefore x=\frac{.0011017 \times 23}{60}=0004223 \text { nearly; } \\
& \therefore L \cos 83^{\circ} .27^{\prime} \cdot 23^{\prime \prime}=9 \cdot 0571723-.0004223 \\
&=0 \cdot 05675 .
\end{aligned}
$$

Similar methrds must be taken to find the tabular loganithms of the other trigonometrical ratios: it being remembered that the tangent and secant increase, and the cotangent and cosecant decrease; as we pass from 0° to 90°.
EXAMPLES.-XIV.

1. Given $L \sin 55^{\circ} .33^{\prime}=9.9162539$, $L \sin 55^{\circ} .34^{\prime}=9: 91633416$,
$L \sin 55^{\circ} .33^{\prime} .54^{\prime \prime}$.
find
2. Given $L \sin 29^{\circ} .25^{\prime}=9 \cdot 6912205$, $L \sin 29^{\circ} .26^{\prime}=9 \cdot 691+445$, $L \sin 29^{\circ} .25^{\prime} .2^{\prime \prime}$.
3. Given $L \cos 37^{\circ} \cdot 28^{\prime}=9 \cdot 8096604$, $L \cos 37^{\circ} .29^{\prime}=9 \cdot 8995636$, $I \cos 37^{\circ} .28^{\prime} .3 \mathrm{~s}^{\prime \prime}$.
4. Given $\quad L \sin 54^{\circ} .13^{\prime}=9 \cdot 9091461$, 1 sin $54^{\circ} .14^{\prime}=9 \cdot 9092371$, find $L \sin 54^{\circ} .13^{\prime} .19^{\prime \prime}$.
5. Given $\quad L$ tan $27^{\circ} .42^{\prime}=9 \cdot 7201690$, L timl $17^{\circ} \cdot 43^{\prime}=9 \cdot 7204759$, find $L \tan 27^{\circ} .42^{\prime} .34^{\prime \prime}$.
6. Given $\quad L \tan 5^{\circ} \cdot 13^{\prime}=-\quad .9604728$, $L \tan 5^{\circ} .14^{\prime}=8 \cdot 9618659$, find $L \tan \cdot 5^{\circ}$. $13^{\prime} .23^{\prime \prime}$.
7. Given $L \cot 3^{\circ} 37^{\prime}=11 \cdot 1992368$, $L \cot 3^{\circ} .38^{\prime}=11 \cdot 1972347$, $L \cot 3^{\circ} .37^{\prime} .50^{\prime \prime}$.
8. Given $L \sin 39^{\circ} .25^{\prime}=9.8027431$, $L \sin 39^{\circ} .26^{\prime}=9 \cdot 8028968$,
tind
$L \sin 39^{\circ} .25^{\prime} .10^{\prime \prime}$.
9. Givan $L \sin 70^{\circ} .34^{\prime}=9.9745: 68$, $L \sin 70^{\circ} .35^{\prime}=9 \cdot 9745697$, .nd $L \sin 70^{\circ} .34^{\prime} .17^{\prime \prime}$.
10. Given $L \cos 88^{\circ} .54^{\prime}=8.2832434$, $L \cos 88^{\circ} .55^{\prime}=8^{.} 2766136$, find $L \cos 88^{\circ} .54^{\prime} .16^{\prime \prime}$.
11. To find the angle which corresponals to a given Tabuke: Logarithmic Sine.

Let the given L sine be 8.878594 .
We find from the tables

$$
\begin{aligned}
& L \sin 4^{\circ} \cdot 21^{\prime}=8 \cdot 8799493 \\
& L \sin 4^{\circ} \cdot 20^{\prime}=\frac{8 \cdot 8782854}{.0016639} \text { difference for } 1^{\prime} . \\
& \text { given } L \sin =8.8789540 \\
& L \sin 4^{\circ} .20^{\prime}=\frac{8.8782854}{0.0006686}
\end{aligned}
$$

Hence if x be the number of seconds to be added to $4^{\circ} .20^{\prime}$,

$$
\cdot 0016639: \cdot 0006686=60: x ;
$$

$$
\therefore x=\frac{6686 \times 60}{166 ; 39}=24 \text { nearly; }
$$

\therefore required angle is $4^{\circ} .20^{\circ} .24^{\prime \prime}$.
174. To find the angle which corresponds to a given Tabular Logarithmic Cosine.

Let the given L cosine be $8 \cdot 878954$,
We find from the tables

$$
\begin{aligned}
& L \cos 85^{\circ} .39^{\prime}=8.8799493 \\
& \tilde{L} \cos 85^{\circ} .40^{\prime}=8.8782854 \\
& \xlongequal{\circ}(6) 16639 \\
& \text { difference } \operatorname{for} 1_{0}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& L \cos 85^{\circ} .39^{\prime}=8 \cdot 8799493 \\
& \text { given } L \operatorname{cosine}==8.8789540 \\
& \hline 0009953
\end{aligned}
$$

Hence if x be the number of seconds to be added to $85^{\circ} .39^{\prime}$,

$$
\begin{aligned}
& 0016639: 0009953=60: x ; \\
& \therefore x=\frac{9953 \times 60}{16639}=35.8 \text { nearly } ; \\
& \therefore \text { required angie is } 85^{\circ} .39^{\prime} .35^{\prime \prime} \&
\end{aligned}
$$

EXAMPLES.-XIVI,

1. Given $L \sin 14^{\circ} .24^{\prime}=9 \cdot 3956581$, $L^{\prime} \sin 14^{\circ} .25^{\prime}=9 \cdot 3961499$, find the angle whose $\bar{L} \sin$ is $9 \cdot 3959449$.
2. Given $L \sin 54^{\circ} .13^{\prime}=9 \cdot 9091461$,
$L \sin 54^{\circ} .14^{\prime}=9 \cdot 9092371$, find the angle whoce $L \sin$ is $9 \cdot 9091760$.
\therefore 3. Given $L \sin 71^{\circ} .40^{\prime}=9 \cdot 9773778$,

$$
L \sin 71^{\circ} .41^{\prime}=9 \cdot 9774191
$$

find the angle whose $L \sin$ is 9.9773897 .
4. Given $\quad L \cos 29^{\circ} .25^{\prime}=9 \cdot 9400535$,
$L \cos 29^{\circ} .26^{\prime}=9.9399823$,
find the angle whose $L \cos$ is $\mathbf{Q} \cdot 9400512$.
5. Given $L \tan 30^{\circ} .50^{\prime}=9 \cdot 7759077$,
$L \tan 30^{\circ} .51^{\prime}=9 \cdot 7761947$,
find the angle whose $L \tan$ is $9 \cdot 7760397$.

$L \cot 86^{\circ} .33^{\prime}=8^{\circ} 7802218$,
find the angle whose $L \cot$ is 8.7814643 .
v. Given $L \sin 24^{\circ} .8^{\prime}=9 \cdot 6115762$,
$L \sin 24^{\circ} .9^{\prime}=9 \cdot 6118580$,
find the angle whose L sin is 9.6117876 .
8. Given $L \tan 11^{\circ} .39^{\prime}=9 \cdot 3142468$,
$L \tan 11^{\circ} .40^{\prime}=9 \cdot 3148851$,
find the angle whose L tan is $9 \cdot 3148011$.
9. Given $L \operatorname{cosec} 46^{\circ} .23^{\prime}=10 \cdot 1402787$, $L \operatorname{cosec} 46^{\circ} .24^{\prime}=10 \cdot 1401584$ find the angle whose L cosec is $10 \cdot 1402567$.
10. Given L sec $29^{\circ} .54^{\prime}=10 \cdot 0620326$,
I sec $29^{\circ} \cdot 55^{\prime}=10 \cdot 0621053$,
find the angle whose L sec is 10.462063 .

XVI. ON THE RELATIONS BETWEEN THE

 SIDES OF A TRIANGLE AND THE TRIGONOMETPICAL RATIOS OF THE ANGLES OF THE TRIANGLE.175. A Triangle is composed oî six parts, three sides and three angles.

Three of these parts being given, one at least of the three being a side, we can generally determine the other three parts.

If only the three angles be given, we cannot determine the sides, because an infinite number of triangles may be constructed with the three angles of the one equal to the three angles of the other, each to each.
176. We shall denote the angles of a triangle by the letters A, B, C; the sidea respectively opposite to them by the letters a, b, c.

The student must remember the resuits established in Art. 101,

$$
\begin{aligned}
& \sin \left(180^{\circ}-A\right)=\sin A_{2} \\
& \cos \left(180^{\circ}-A\right)=-\cos A .
\end{aligned}
$$

Thus, if $A C B$ be an exterior angle of the triangle $A C D$,

$$
\begin{aligned}
& \sin A C B=\sin A C D \\
& \cos A C B=-\cos A C D
\end{aligned}
$$

The resulto of Eramples xiii. 2, on page 36, are also froquently employed in this and the next Chapters.
17. To show that in any triangle

$$
c=a, \cos B+b \cdot \cos 4 .
$$

[THE

 THE THEree sides
he three ree parts. mine the be conthe three
he letters he letters lished in $A O D$,
H. 2

Let A, B be any two angles of the triangle $A B C$, and as onc of them must be acute, let it be A.

Then, according as B is acute or obtuse, draw $O D$ at right angles to $A B$ or to $A B$ produced.

Then, in fig. 1 ,

$$
\begin{aligned}
c & =A D+D B \\
& =A C \cdot \cos A+B C \cdot \cos B \\
& =b \cdot \cos A+a \cdot \cos B ;
\end{aligned}
$$

and in fig. 2,

$$
\begin{aligned}
c & =A D-D B \\
& =A C \cdot \cos A-C B \cdot \cos C B D \\
& =b \cdot \cos A+a \cdot \cos B, \text { since } \cos C B D=-\cos A B C .
\end{aligned}
$$

If the angle at B be a right angle, the theorem holds good, fatiz then $\cos \vec{B}=\cos 90^{\circ}=0$, and $\therefore a \cdot \cos \vec{B}=0$, and we have

$$
c=b \cdot \cos A
$$

178. I'o show that in every triangle the sides are proportional to the sines of the opposite angles.

Fig. 1.

Let A, B be any two angles of the triangle $A B C$, and as one of them must be an acute angle, let it be A.

Then, according as B is acute or obtuse, draw $C D$ at right angles to $A B$ or to $A B$ produced.

Then, in fig. 1 ,

$$
\begin{aligned}
& \sin A=\frac{C D}{b} \\
& \sin B=\frac{C D}{a} ; \\
\therefore & \frac{\sin A}{\sin B}=\frac{C D}{b} \div \frac{C D}{a}=\frac{C D}{b} \times \frac{a}{C D}=\frac{a}{b} ;
\end{aligned}
$$

and in fig. 2,

$$
\begin{aligned}
& \sin A=\frac{C D}{b}, \\
& \sin B=\sin \left(180^{\circ}--B\right)=\sin C b=\frac{C D}{a}, \\
\therefore & \frac{\sin A}{\sin B}=\frac{C D}{b} \div \frac{C D}{a}=\frac{C D}{b} \times \frac{a}{C D}=\frac{a}{b} .
\end{aligned}
$$

If the angle at B be a right angle, the theorem still holds good, for then

$$
\begin{aligned}
& \sin A=\frac{a}{b} \\
& \sin B=1 \\
\therefore & \frac{\sin A}{\sin B}=\frac{a}{b}
\end{aligned}
$$

Similarly it may be shown that in any triangle

$$
\frac{\sin A}{\sin C}=\frac{a}{c} \text { and } \frac{\sin B}{\sin C}=\frac{b}{c^{2}}
$$

and therefore we conclude that

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin O_{0}}{c} * .
$$

179. To express the cosine of an angle of a triangle in terms of the sides.

Fis. 1.

Fig. 2.

Let A, B be any two angles of the triangle $A B C$, and as one of them must be acute, let it be A.

Then, according as B is acute or obtuse, draw $C D$ at right angles to $A B$ or to $A B$ produced.

Now, in fig. 1, by Euclid ir. 13,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-2 A B \cdot B D \\
b^{2} & =c^{2}+a^{2}-2 c . B D .
\end{aligned}
$$

0
Now, from the right-angled triangle $B C D$,

$$
\begin{gathered}
\frac{B D}{B O}=\cos B, \text { or } \frac{B D}{a}=\cos B, \text { or } B D=a \cdot \cos B ; \\
\therefore b^{2}=c^{2}+a^{2}-2 a c \cdot \cos B .
\end{gathered}
$$

Again, in fig. 2, by Euclid II. 12,
$\boldsymbol{\sigma}$

$$
\begin{aligned}
A O^{2} & =A B^{2}+B \dot{O}^{2}+2 A B \cdot B D, \\
b^{2} & =c^{2}+a^{2}+2 c \cdot \bar{B} D .
\end{aligned}
$$

- For another proof of this proposition, 200 Art. 221. [8.2.]

Now $\frac{B D}{B C}=\cos C B D=-\cos \left(180^{\circ}-C B 1\right)=-\cos B$;
$\therefore B D=-B C \cos B$, or $B D=-a \cdot \cos B$;
$\therefore b^{2}=c^{2}+a^{2}-2 a c . \cos B$.
Hence, in each case,

$$
2 a c . \cos B=c^{2}+a^{2}-b^{2},
$$

$$
\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c} .
$$

So also

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c},
$$

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} .
$$

If B is a right angle, $\cos B=0$, and the theorem still holds true, for then

$$
b^{2}=a^{2}+c^{2} .
$$

180. To show that

$$
\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cdot \cot \frac{0}{2}
$$

Since

$$
\begin{aligned}
& \frac{a}{b}=\frac{\sin A}{\sin B}, \\
& \frac{a-b}{a+b}=\frac{\sin A-\sin B}{\sin A+\sin B} \\
&=\frac{2 \cos \frac{A+B}{2} \cdot \sin \frac{A-B}{2}}{2 \sin \frac{A+B}{2} \cdot \cos \frac{A-B}{2} \cdot} \text { (Art. } 120 \\
&=\frac{\tan \frac{A-B}{2}}{\tan \frac{A+B}{2}} \\
&=\frac{\tan \frac{A-B}{2}}{\cot \frac{C}{2}}, \operatorname{since} \frac{A+B}{2}=90^{\circ}-\frac{1}{b} \\
& \therefore \tan \frac{A-\bar{B}}{2}=\frac{\bar{a}-\dot{0}}{a+b} \cdot \cot \frac{0}{2}
\end{aligned}
$$

181. If $s=\frac{a+b+c}{2}$, we can prove the following results:
(1) $\sin \frac{A}{2}=\sqrt{\frac{(8-b)(8-\theta)}{b c}}$.
(s) $\cos \frac{A}{2}=\sqrt{\frac{s \cdot(s-a)}{b c}}$.

The method of proof will be given in the next two Articlea.
182. First, to show that

$$
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}
$$

Since

$$
\begin{aligned}
\cos A & =1-2 \sin ^{2} \frac{A}{2} \\
8 \sin ^{2} \frac{A}{2} & =1-\cos A \\
& =1-\frac{b^{2}+c^{2}-a^{2}}{2 b c}\left(A r^{+} \cdot 179\right) \\
& =\frac{2 b c-b^{2}-c^{2}+a^{2}}{2 b c} \\
& =\frac{a^{8}-\left(b^{2}-2 b c+c^{y}\right)}{2 b c} \\
& =\frac{(a+b-c)(a-b+c)}{2 b c}
\end{aligned}
$$

Now if

$$
s=\frac{a+b+c}{2}, 2 s=a+b+c ;
$$

$$
\cdots a+b-c=2 s-2 c \text { and } a-b+c=2 s-9 h .
$$

$$
\begin{aligned}
& \therefore 8 \sin ^{2} \frac{A}{2}=\frac{2(8-c) \cdot 2(8-b)}{2 b c} ; \\
& \therefore \sin \frac{A}{2}=\sqrt{\frac{(8-b) \cdot(s-c)}{b c}}
\end{aligned}
$$

We must take the positive sign with the root-symbol, because A being an angle of a triaugle must ies less than 180°, and therefore $\frac{A}{2}$ less than 90°, and consequently $\sin \frac{A}{2}$ is positive. ..
183. Next, to show that

$$
\begin{aligned}
& \cos _{2}^{A}=\sqrt{\frac{s \cdot(s-a)}{\text { lic }}} \\
& \cos A=2 \cos ^{2} \frac{A}{2}-1 ; \\
& \therefore 2 \cos ^{2} \frac{A}{2}=1+\cos A \\
& =1+\frac{b^{2}+c^{2}-a^{2}}{2 b c} . \\
& =\frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c+a)(b+c-a)}{2 l} . \\
& s=\frac{b+c+a}{2}, \\
& b+c+a=2 s \text { and } b+c-a=2 s-2 a \text {. } \\
& \therefore 8 \cos ^{2} \frac{A}{2}=\frac{2 s .2(s-a)}{2 b c} \text {; } \\
& \therefore \cos ^{2} \frac{A}{2}=\frac{8(8-a)}{b c}: \\
& \therefore \cos \frac{A}{2}=\sqrt{\frac{8 \cdot(8-a)}{b c}} .
\end{aligned}
$$

Since

Now, if
184. From the preceding Articles we may at once derive two other formule: :
(1) $\min A=2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}$.

$$
\begin{aligned}
\lambda & =2 \sqrt{\frac{(s-b)(s-c)}{b c}} \cdot \sqrt{\frac{s \cdot(s-Q}{b c}} \\
& =\frac{2}{b c} \cdot \sqrt{s \cdot(s-a)(s-b)(s-c)}
\end{aligned}
$$

(8) $\tan \frac{A}{2}=\sin \frac{A}{2} \div \cos \frac{A}{2}$

$$
\begin{aligned}
& =\sqrt{\frac{(s-b)(s-c)}{b c}} \div \sqrt{\frac{s \cdot(s-a)}{b c}} \\
& =\sqrt{\frac{(s-b)(s-c)}{s \cdot(s-a)}}
\end{aligned}
$$

EXAMPLES.-XIVI.

Prove the following relations wher A, B, C are the angled of a triangle :
I. $\sin (A+B)=\sin O_{0}$
2. $\cos (A+B)=-\cos 0$.
3. $\sin \frac{A+B}{2}=\cos \frac{O}{2}$.
4. $\cos \frac{A+B}{2}=\sin \frac{0}{2}$.
5. $\tan \frac{A+B}{2}=\cot \frac{O}{2}$.
6. $\cot \frac{A+B}{2}=\tan \frac{O}{2}$.
185. Many other relations may be established by the use of the inportant formulme explained in Art. 120, and the set of examples just given.

Thus, to show that, if $1+B+C=180^{\circ}$,

$$
\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cdot \cos \frac{B}{2}: \cos \frac{O}{2}
$$

we proceed thus,

$$
\begin{aligned}
\sin A+\sin B & =2 \sin \frac{A+B}{2} \cdot \cos \frac{A-B}{2} \\
& =2 \cos \frac{C}{2} \cdot \cos \frac{A-B}{2} ;
\end{aligned}
$$

$\therefore \sin A+\sin B+\sin C=2 \cos \frac{C}{2} \cdot \cos \frac{A-B}{2}+2 \sin \frac{C}{2} \cdot \cos \frac{C}{2}$

$$
\begin{aligned}
& =2 \cos \frac{C}{2}\left(\cos \frac{A-B}{2}+\cos \frac{A+B}{2}\right) \\
& \left.=2 \cos \frac{C}{2}\left(2 \cos \frac{A}{2} \cdot \cos \frac{D}{2}\right) \quad \text { (Art: } 120\right)
\end{aligned}
$$

$$
=4 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2} .
$$

EXAMPLES.-Xlviii.

I. If A, B, C be the angles of a triangle, prove the following relations :
(1) $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$.
(2) $4 \sin A \cdot \sin B \cdot \sin C=\sin (-A+B+C)$

$$
+\sin (A-B+\cdots)+\sin (A+B-\sigma)
$$

(3) $\frac{\cot \frac{A}{2}+\cot _{2}^{C}}{\cot \frac{B}{2}+\cot _{2}^{C}}=\frac{\sin B}{2}$ si. $A^{\text {a }}$
(4) $\tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan O$.
(5) $\cot A \cdot \cot B+\cot A \cdot \cot C+\cot B \cdot \cot C=1$.
(6) $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$.
(7) $4 \cos A \cdot \cos B \cdot \cos C=-(1+\cos 2 A+\cos 2 B+\cos 2 O)$.
(8) $\cos A+\cos B+\cos C=4 \sin \frac{A}{2} \cdot \sin \cdot \frac{B}{2} \cdot \sin \frac{O}{2}+1$.
(9) $4 \sin A \cdot \cos B \cdot \cos O=-\sin 2 A+\sin 2 B+\sin 2 O$.
(IO) $\sin A+\sin B-\sin C=4 \sin \frac{A}{2} \cdot \sin \frac{B}{5} \cdot \cos \frac{C}{2}$.
(II) $\sin 2 A+\sin 2 B-\sin 2 C=4 \sin C \cdot \cos A \cdot \cos B$.
(12) $\cos A+\cos B-\cos C=1 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \sin \frac{C}{2}-1$.
(13) $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=2+2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}$.
(14) $\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}=1-2 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{O}{2}$.
2. In a right-angled triangle where C is the right angla prove that
(1) $b+c=a \cdot \cot \frac{A}{2}$.
(2) $2 \operatorname{cosec} 2 A \cdot \cot B=\frac{c^{2}}{b^{2}}$
(3) $\sin \frac{B}{2}=\sqrt{ }\left(\frac{c-a}{2 c}\right)$.
(4) $\cos \frac{B}{2}=\sqrt{ }\left(\frac{a+c}{2 c}\right)$.
(5) $\frac{\cos 2 B-\cos 2 A}{\sin 2 A}=\tan A-\tan B$.
(6) $\tan 2 A-\sec 2 B=\frac{b+a}{b-a}$.
(7) $(\sin A-\sin B)^{2}+(\cos A+\cos B)^{2}=4 \sin ^{2} \frac{0}{2}$.
(8) $\sec 2 A=\frac{c^{2}}{b^{2}-a^{2}}$.
(9) $a b c=a^{3} . \cos A+b^{3} . \cos B$.
(⿺夂) $\cot (B-A)+\cot 2\left(A+\frac{C}{2}\right)=0$.
3. In any triangle prove the following relations:
(1) $\frac{\sin A-\sin B}{a-b}=\frac{\sin C}{c}$.
(2) $\frac{\sin (A-B)}{\sin C^{-}}=\frac{a^{2}-b^{2}}{a^{2}}$.
(3) $\tan A=\frac{a \cdot \sin \frac{C}{b-a \cos } C^{c}}{}$
(4) $\cot A=\frac{c}{a} \cdot \operatorname{cosec} B-\cot B$.
(5) $a+b+c=(a+b) \cos O+(a+c) \cos B+(b+c) \cos A$.
(6) $(a+b) \sin \frac{\sigma}{2}=c \cdot \cos \frac{A-B}{2}$.
(7) $(a-b) \cos \frac{C}{2}=c \cdot \sin \frac{A-B}{2}$.
(8) $\frac{\tan B}{\tan C}=\frac{a^{2}+b^{2}-c^{2}}{a^{2}} \frac{b^{2}+c^{2}}{2}$.
(9) $c=a(\cos B+\sin B \cdot \cot A)$.
(10) $a^{2}+b^{2}+c^{2}=2(a b \cdot \cos C+a c \cdot \cos B+b c \cdot \cos A)$.
(ii) $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+2 \cos A \cdot \cos B \cdot \cos O=1$.
(12) $\cos B-\cos A=\frac{a-b}{c} .2 \cos ^{2} \frac{O}{2}$.
(13) $\cos A+\cos B=\frac{a+b}{c} .2 \sin ^{2} \frac{\sigma}{2}$.
(14) $a^{2} \sin A+a b \cdot \sin B+a c \cdot \sin C=\left(a^{2}+b^{2}+c^{2}\right) \sin A_{0}$ -
(15) $\cot \frac{A}{2}: \cot \frac{B}{2}=b+c-a: a+c-b$.
(16) $\cot \frac{A}{2} \cdot \cot \frac{B}{2}=\frac{a+b+c}{a+b-c}$.
(17) $\quad a \cdot \sin (B-C)+b \cdot \sin (C-A)+c \cdot \sin (A-B)=0$.
4. If a, b, c be in arithmetical progression, show that

$$
\sin \left(A+\frac{B}{2}\right)=2 \sin \frac{B}{2}
$$

;. If $A B C$ be a triangle, and $A D$ be drawn at right anglee $\therefore B C$, show that

$$
A D=\frac{b^{2} \sin C+c^{2} \sin \bar{B}}{b+c} .
$$

6. The sides of a triangle being $4,9,12$, show that the length of the line bisecting the angle between the two shorter sides is $2 \frac{4}{13}$.
7. If $\sin A=2 \cos B \cdot \sin O$, show that the triangle is isosceles.
8. If $\cos A \cdot \cos B \cdot \sin C_{0} \frac{\sin A+\sin B}{\sec A+\sec B^{\prime}}$, show that $C=90^{\circ}$.
9. If $\sin ^{2} A=\sin ^{2} B+\sin ^{2} O$, show that $A=90^{\circ}$.
10. If $\frac{a^{3}+b^{3}+c^{3}}{a+b+c}=c^{2}$ and also $\sin A \cdot \sin B=\sin ^{2} C$, show that the triangle is equilateral.
11. If $C=120^{\circ}$, show that $c^{2}=a^{2}+a b+b^{2}$.
12. If $C D$ bisect the angle C and meet $A B$ in D, show that

$$
\tan A D C=\frac{a+b}{a-b} \tan \frac{0}{2^{\circ}}
$$

18 If $O D$ bisect $A B$, show that

$$
\alpha D^{2}=\frac{a^{2}}{2}+\frac{b^{2}}{2}-\frac{c^{2}}{4^{0}}
$$

XVII. ON THE SOLUTION OF RIGHTANGLED TRIANGLES.

186. Let a, b, c be the sides of a triangle and A, B, C the angles opposite to them. Of these six elements which present themselves in every triangle three must be known in order that we may determine the others, and one of these three must be a side.
187. The three angles of every triangle are together equal to two right angles : that is,

$$
A+B+C=180^{\circ} .
$$

Hence, if two of the angles be known, the third will he known also.
188. Several of the results obtained in Chap. xvi. are to be carefully remembered, and especial attention must be given to the forlowing formulæ, established in Arts. 178, 179, 180.
I. The Sine-ruie, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.
II. The Cosine-rule, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.
III. The Tangent-rule, $\tan \frac{A-B}{2}=\frac{a-b}{a+b}$. $\cot \frac{\sigma}{2}$.
189. We may now proceed to explain the method of nolving right-angleil triangles.

We shall denote the right angle by C. Then we may have he following data :
(1) Two sides and an angle,
(2) Two angles and a side.

When two sides of a right-angled triangle are known, we can determine the third side; thus, in this case,

$$
a=\sqrt{c^{2}-b^{2}},
$$

and so a is determined.
Next, $\sin A=\frac{a}{c}$, from which we can find A.
Lastly, $B=90^{\circ}-A$, and so B is determined.
191. Next, when two angles and a side are given, as c, A, C.

First, $\frac{a}{c}=\sin A$, from which we can find a.
Next, $\frac{b}{c}=\cos A$, from which we can find b.
Lastly, $B=90^{\circ}-A$, from which we can find B.
192. If A be one of the angles of a triangle, and the valne of $\sin A$ be given, we cannot determine the value of A without previously knowing whether A is an acute or an obtuse angle.

Thus. :uppose we know that $\sin A=\frac{1}{2}$, one value of A which satisfies llix "pmation is 30°, but another value of A which satisties the "plation is 150°, for since the sine of an angle is equal to the sine of the supplement of the angle,

$$
\sin 150^{\circ}=\sin \left(180^{\circ}-150^{\circ}\right)=\sin 30^{\circ} .
$$

In a right-angled triangle A, when not the right angle, must be acute, and so in the cases we have considered no ambiguity can occur.

In triangles other than right-angled we shall find only one case in which we camnot determine with certainty the value of A from the known value of $\sin A$.
193. We shall now give some Examples of the practical application of the methods of solution described in the preceding Articles.

To take the first of the two cases, suppose we have the following data :

$$
b=5, c=13, C=90^{\circ} .
$$

Then

$$
a=\sqrt{c^{2}-b^{2}}=\sqrt{169-25}=\sqrt{144}=1 \Sigma
$$

and

$$
\sin A=\frac{a}{c}=\frac{12}{13}=\cdot 9230769 .
$$

Now, from the tables, we find

$$
\begin{aligned}
& \sin 67^{\circ} .22^{\prime}=9229865, \\
& \sin 67^{\circ} .23^{\prime}=9230984 .
\end{aligned}
$$

And hence, by the method explained in Art. 168, we find the value of A to be $67^{\circ} .22^{\prime} .48^{\prime \prime} \cdot 5$.
194. Again, 1, t:ike the second case, suppose we have given

$$
c=25, \quad A=60^{\circ}, \quad C=90^{\circ} .
$$

Then

$$
\frac{a}{c}=\sin A ;
$$

$$
\begin{aligned}
\therefore \frac{a}{25} & =\frac{\sqrt{ } 3}{2}, \therefore a=\frac{25 \sqrt{ } 3}{2} . \\
\frac{b}{c} & =\cos A ; \\
\therefore \frac{b}{25} & =\frac{1}{2} ; \therefore b=\frac{25}{2} .
\end{aligned}
$$

Also,

$$
B=180^{\circ}-(A+C)=180^{\circ}-150^{\circ}=30^{\circ}
$$

EXAMPLES.-xlix.

Solve the triangles referred to in the following examples by the use of natural sines, cosines, etc., C being a right angle.

1. Given $b=3, c=5, \sin 53^{\circ} .7^{\prime}=\cdot 7998593$, $\sin 53^{\circ} .8^{\prime}=8000338$.
2. Given $b=15, c=17, \sin 28^{\circ} .4^{\prime}=4704986$, $\sin 28^{\circ} .5^{\prime}=\cdot 4707553$.
3. Given $b=21, c=29$, $\sin 43^{\circ} .36^{\prime}=6896195$, $\sin 43^{\circ} .37^{\prime}=6898302$.

4 Given $b=7, c=25, \cos 73^{\circ} .44^{\prime}=\cdot 2801083$, $\cos 73^{\circ} .45^{\prime}=-2798290$.
5. Given $b=33, c=65, \cos 59^{\circ} .29^{\prime}=\cdot 5077890$,

$$
\cos 59^{\circ} 30^{\prime}=\cdot 5075384
$$

6. Given $c=13, A=67^{\circ} \cdot 22^{\prime} .48^{\prime \prime} \cdot 5$, $\sin 67^{\circ} .22^{\prime}=\cdot 9229865$, $\sin 67^{\circ} .23^{\prime}=9230984$.
7. Given $c=41, A=77^{\circ} \cdot 19^{\prime} \cdot 10^{\prime \prime} 6$, $\sin 77^{\circ} \cdot 19^{\prime}=9755985$, $\sin 77^{\circ} .20^{\prime}=9756623$.
8. (Hiven $c=73, B=48^{\circ} .53^{\prime} .16^{\prime \prime} 5, \cos 48^{\circ} .53^{\prime}=6575944$, $\cos 48^{\circ} .54^{\prime}=6573752$.
9. Given $c=89, B=64^{\circ} .0^{\prime} .38^{\prime \prime} \cdot 8, \cos 64^{\circ}=\cdot 4383711$, $\cos 64^{\circ} .1^{\prime}=\cdot 4381097$.
10. Given $a=40, A=77^{\circ} .15 \cdot 10^{\prime \prime} \cdot 6$, $\tan 77^{\circ} .19^{\prime}=4 \cdot 443376{ }^{\circ}$, $\tan 77^{\circ} .20^{\prime}=4 \cdot 4494156$.

195 The process of solution by means of natural sines, cosines, etc., can only he applied with advantage to cases in which the measures of the sides are small numbers.

We proceed to show how the use of logarithmic calculations assists us in the solution of triangles.
196. It must be observed that a formula is adapted to logarithmic calculation only when it consists of the product or quotient of two or more numbers.

For instance, we derive no advantage from logarithms in finding c from the equation $c^{2}=a^{2}+b^{2}$, when a and b are given.

But if a and c be given, we can apply logarithms with advantage to find b from the equation

$$
b^{2}=c^{2}-a^{2} ;
$$

for instance, if $a=644$ and $c=725$,

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
& =(c+a)(c-a) \\
& =1369 \times 81 ;
\end{aligned}
$$

$$
\begin{aligned}
\therefore \log b^{2} & =\log (1369 \times 81) ; \\
\therefore 2 \log b & =\log 1369+\log 81 \\
& =3 \cdot 1364034+1 \cdot 9084850 \\
& =5 \cdot 0448884 ;
\end{aligned}
$$

$$
\therefore \log b=2 \cdot 5224442 \text {; }
$$

$$
\therefore b=333 .
$$

11,

 81097. 433768, 1494156.al sines, cases in ulations
apted to product
thms in re given. ms with
197. Let $a=644, c=725, C=90^{\circ}$.

We first find $b=333$, as explained in the preceding Article.
Then

$$
\begin{aligned}
\sin A & =\frac{a}{c} ; \\
\therefore \log \sin A & =\log a-\log c .
\end{aligned}
$$

Now $L \sin A$ is the true $\log \sin A$ increased by 10, Art. 170, hence we put here and in all similar cases $L \sin A-10$ in place of $\log \sin A$.

Thus

$$
\begin{gathered}
L \sin A-10=\log a-\log c, \\
L \sin A=10+2 \cdot 8088859-2 \cdot 8603380 \\
=9 \cdot 9485479 .
\end{gathered}
$$

Now, from the tables,

$$
\begin{aligned}
& L \sin 62^{\circ} .39^{\prime}=9.9485189, \\
& L \sin 62^{\circ} .40^{\prime}=9 \cdot 9485842 .
\end{aligned}
$$

Hence, by the method of Art. 168 , we may find $A=62^{\circ} .39 \quad 20^{\prime \prime}$ nearly ; and therefore $B=27^{\circ} .20^{\prime} .33^{\prime \prime}$.

EXAMPLES.-1.

Solve the triangles referred to in the following tixam: ley by Logarithmic calculations, C being a right angle :

1. Given $a=104, c=185, \log a=2 \cdot 0170333$,

$$
\log c=2 \cdot 2671717, \log 153=2 \cdot 1846914
$$

$$
\log 289=2 \cdot 4608978, \quad \log 81=1 \cdot 9084850,
$$

$L \sin 34^{\circ} .12^{\prime}=9 \cdot 7498007, L \sin 34^{\circ} .13^{\prime}=9 \cdot 7499866$.
2. Given $a=304, c=425, \log a=2 \cdot 4828736$, $\log c=2 \cdot 6283889, \log 297=2 \cdot 4727564$, $\log 729=2 \cdot 8627275, \log 121=2 \cdot 0827854$,
$L \sin 45^{\circ} .40^{\prime}=9 \cdot 8544799, \quad L \sin 45^{\circ} .41^{\prime}=9.8546033$.
3. Given $a=840, c=841, \log a=2 \cdot 9242793$, $\log c=2 \cdot 9247960, \log 41=1 \cdot 6127839$, $\log 1681=3 \cdot 2255677$, $L \sin 87^{\circ} . \mathrm{i} 2^{\prime}=9 \cdot 9994812, L \sin 87^{\circ} .13^{\prime}=9 \cdot 9994874$.

4 Given $a=336, c=625, \log a=2 \cdot 5263393$, $\log c=2 \cdot 7958800, \log 527=2.7218106$, $\log 961=2 \cdot 9827234, \log 289=2 \cdot 4608978$, $L \sin 32^{\circ} .31^{\prime}=9 \cdot 730+148, L \sin 32^{\circ} .32^{\prime}=9 \cdot 7306129$.
5. Given $a=1100, c=1109, \log a=3 \cdot 0413927$, $\log c=3.0449315, \quad \log 141=2 \cdot 1492191$, $\log 2209=3 \cdot 3441957, \quad \log 3=\cdot 4771213$, $L \sin 82^{\circ} .41^{\prime}=9 \cdot 9964493, L \sin 82^{\circ} .42^{\prime}=9 \cdot 9964655$.
6. Given $b=195, c=773, \quad \log b=2 \cdot 2900346$, $\log c=2 \cdot 8881795, \log 748=2 \cdot 8739016$, $\log 968=2 \cdot 9858754, \log 578=2 \cdot 7619278$, $L \cos 75^{\circ} .23^{\prime}=9 \cdot 4020048, L \cos 75^{\circ} .24^{\prime}=9 \cdot 4015201$.
7. Given $b=273, c=785, \quad \log b=2 \cdot 4361626$, $\log c=4 \cdot 8 \cdot 486 \cdot 97, \quad \log 736=2 \cdot 8668778$, $\log 1058=3 \cdot 024+457, \quad \log 2=3010300$, $L \cos 69^{\circ} .38^{\prime}=9 \cdot 5416126, L \cos 69^{\circ} .39^{\prime}=9 \cdot 5412721$.
8. Given $b=609, c=641, \log b=2 \cdot 7846173$, $\log c=2.80685850$,
$\log 1250=30.9969100, \quad \log 2=\cdot 3010300$, $L \cos 18^{\circ} .10^{\prime}=9 \cdot 9777938, L \cos 18^{\circ} .11^{\prime}=9.9777523$.
9. Given $a=276, b=493, \quad \log a=2 \cdot 4409091$, $\log b=2.6928469$,
$L \tan 29^{\circ} .14^{\prime}=9 \cdot 7479125, L \tan 29^{\circ} .15^{\prime}=9 \cdot 7482089$

苔.
10. Given $x=396, b=403, \log a=2 \cdot 5976952$,

$$
\log b=2 \cdot 6053050,
$$

$L \tan 44^{\circ} .29^{\prime}=9 \cdot 9921670, L \tan 44^{\circ} .30^{\prime}=9 \cdot 9924197$.
198. We shall now give a few Problems to illustrate the practical use of the methods of solution of triangles explained in this Chapter.

EXAMPLES.-14.

1. Having measured a distance of 220 feet in a direct horizontal line from the bottom of a steeple, the angle of elevation of its top was found to be $46^{\circ} .30^{\prime}$. Required the height of the steeple.

Given $\log 220=2 \cdot 3424227, L \tan 46^{\circ} .30^{\prime}=10.0227500$,

$$
\log 231835=\cdot 3651727
$$

2. A river $A C$, whose breadth is 200 feet, runs at the foot of a tower $C B$, which subtends an angle $B A C$ of $25^{\circ} \cdot 10^{\prime}$ at the edge of the bank.

Required the height of the tower, given

$$
\begin{gathered}
\log 5=6989700, \quad L \tan 25^{\circ} \cdot 10^{\prime}=96719628, \\
\log 9397=39729928 .
\end{gathered}
$$

3. A person on the top of a tower, whose height is 50 feet, observes the ang!ss of depression of two objects on the horizontal plane, which are in the same straight line with the tower, to be 30° and 45°. Find their distances from each other, and from the observer.
4. At 140 feet from the base of a tower, and on a level with the base, the angle of elevation of the top was found to 46 $61^{\circ}, 27^{\prime}$. Find the height of the tower, having given

$$
\tan 54^{\circ} .27^{\prime}=1 \cdot 300 ; 364
$$

5. A person observes the angle of elevation of a hill to be $32^{\circ} .14^{\prime}$, and on approaching 500 yards nearer, he observes it to be $63^{\circ} .26^{\prime}$. Find the height of the hill, having given

$$
\tan 32^{\circ} \cdot 14^{\prime}=633, \tan 63^{\circ} .26^{\prime}=1 \cdot 998
$$

6. A tower 150 feet high throws Ω shadow 75 feet long upon the horizontal plane on which it stands. Find the sun's altitude, having given $\log 2=\cdot 3010300$,

$$
L \tan 63^{\circ} \cdot 26^{\prime}=10 \cdot 3009994, \quad L \tan 63^{\circ} .27^{\prime} \doteq 10^{\prime} 3013153
$$

7. A tower stands by a river. A person on the opposite bunk finds its elevation to be 60° : he recedes 40 yards in a direct line from the tower, and then finds the clevation to be 60°. Find the brealth of the river, having given tan $50^{\circ}=1 \cdot 19$.
8. A rope is fastened to the top of a building 60 feet high. The length of the rope is 109 feet. Find the angle at which it is inclined to the horizon.

Given $\sin 33^{\circ} .23^{\prime}=5502, \sin 33^{\circ} .24^{\prime}=\cdot 55048$.
9. A tower is 140 feet in height. At what angle must a rope be inclined to the horizon, which reaches from the top of the tower to the ground, and is 221 feet in length?

Given $\sin 39^{\circ} \cdot 5^{\prime}=\cdot 63045, \sin 39^{\circ} \cdot 6^{\prime}=\cdot 6306758$.
10. A person standing at the edge of a river observes that the top of a tower on the edge of the opposite side subtends an angle of 55° with a line drawn from his eye parallel to the horizon ; receding backwards 30 feet, he then finds it to subterd an angle of 48°. Find the breadth of the river.

Given $L \sin 7^{\circ}=9.08589, \quad L \sin 35^{\circ}=9 \cdot 75859$.
$L \sin 48^{\circ}=9 \cdot 87107, \log 3=\cdot 47712, \log _{\delta} \dot{ } \cdot 0493=02089$.
11. Standing straight in iront of the corner of a house which is 150 fect long, I observe that the length sulbtends an angle whose cosine is $\frac{1}{\sqrt{5}}$, and its height subtends an angle whose sine is $\frac{3}{\sqrt{34}}$; determine the height.
12. Standing straight in front of one corner of a house, I find that its length subtends an angle whose tangent is 2, while its heigh: subtends an angle whose tangent is $\frac{3}{5}$: the beight ot the house is 45 feet, tind its length

XVIII, ON THE SOLUTION OF TRIA MGLES OTHER THAN RIGHT-ANGLED.

199. Is the solution of triangles other than right-angled, ussually called Oblique-angled Triangles, we mest with fous distinct cases, the following being the data.
(1) The three sides, a, b, c.
(2) Two angles and a side, as A, C, b.
(3) Two sides and the angle between them, as a, b, C.
(4) Two sides and an angle opposite one of them, as a, b, A.
Thesu cases we shall discuss in order.

Case I.

200. Given the three sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

We first find A from one of the formula

$$
\begin{gathered}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \\
\tan \frac{A}{Z}=\sqrt{\frac{(8-b) \cdot(8-0)}{8 \cdot(-c t)}}
\end{gathered}
$$

The formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ is not adapted to logarithmic calculation; but if a, b, c contain less than three digits, we may use it to find A by aid of the table o_{i}^{c} natural cosines.

Thus, if $a=6, b=5, c=10$,

$$
\cos A=\frac{25+100-36}{100}=89
$$

And hence we find $A=27^{\circ} \cdot 7^{\prime} \cdot 36^{\prime \prime}$.

201 When a, b, c, contain three or more digits, we may employ with advantage the formula

$$
\tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s .(s-a)}}
$$

from which we have

$$
L \tan \frac{A}{2}-10=\frac{1}{2}\{\log (s-b)+\log (s-c)-\log s-\log (s-a)\}
$$

and then we may find $\tan \frac{B}{2}$ or $\tan \frac{C}{2}$ by means of the same logarithms, thus

$$
L \tan \frac{B}{2}-10=\frac{1}{2}\{\log (s-a)+\log (s-c)-\log s-\log (s-b)\} .
$$

For example, let $a=9459 \cdot 31, b=8032 \cdot 29, c=8242 \cdot 58$.
Then

$$
\begin{gathered}
s=12867 \cdot 09, s-a=3407 \cdot 78 \\
s-b=8434 \cdot 80, s-c=4624 \cdot 51
\end{gathered}
$$

$L \tan \frac{A}{2}-10=\frac{1}{2}\{\log (s-b)+\log (s-c)-\log s-\log (s-a)\}$
$=\frac{1}{2}\{3 \cdot 6843785+3 \cdot 6650657-4 \cdot 1094804-3 \cdot 5324716\}$
$=-\cdot 1462539$;
$\therefore \bar{L} \tan \frac{A^{4}}{2}=9 \cdot 8537461$.

$$
\begin{aligned}
& \text { Whence } \frac{A}{2}=35^{\circ} \cdot 31^{\prime} \cdot 47^{\prime \prime} \cdot 6 \text {, } \\
& \text { and } \quad A=71^{\circ} \cdot 3^{\prime} \cdot 35^{\prime \prime} \text {. }
\end{aligned}
$$

Similarly we may find $B=63^{\circ} \cdot 26^{\prime}$, and $C=55^{\circ} \cdot 30^{\prime} .25^{\prime \prime}$.
202. When A has been found, we can find B from the relation

$$
\frac{\sin B}{\sin A}=\frac{b}{a},
$$

and then σ may be found from the relation

$$
C=180^{\circ}-(A+B) .
$$

203. If we are required to find only one angle, as A, wo may take the formula
where

$$
\begin{aligned}
\sin \frac{A}{2} & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
s & =\frac{a+b+c}{2}
\end{aligned}
$$

Taking the example given in Art. 200, we have

$$
\begin{aligned}
& \sin \frac{A}{2} \sqrt{ }\left\{\frac{\frac{11}{2} \times \frac{1}{2}}{5 \times 10}\right\}=\sqrt{\frac{11}{200}} ; \\
& \therefore L \sin \frac{A}{2}-10=\frac{1}{2}\{\log 11-\log 200\} \\
&=\frac{1}{2} \cdot\{1 \cdot 0413927-2 \cdot 3010300\} ; \\
& \therefore L \sin \frac{A}{2}=10-\cdot 6298186 \\
&=9 \cdot 3701814 .
\end{aligned}
$$

And hence we find from the tables $\frac{A}{2}=13^{\circ} .33^{\prime} .48^{\prime \prime}$, and thus we know that the value of A is $27^{\circ} \cdot 7^{\prime} \cdot 36^{\prime \prime}$.

Cabz II.

204. Aiven two angles and a side, A, O, b.

First, $B=180^{\circ}-(A+C)$, from which we can find B.
Next, $\quad \frac{a}{\bar{b}}=\frac{\sin A}{\sin B}$, from which we can find a_{0}
Lastly, $\frac{c}{b}=\frac{\sin C}{\sin B}$, from which we can find o.
205. Here we have no difficulty, and we shall merely give an exmmple to illustrate the methed of finding a \quad or the formula

$$
\frac{a}{\bar{b}}=\frac{\sin A}{\sin B}, \text { when } b, A, B \text { are known. }
$$

Let

$$
b=40, A=12^{\circ} .40^{\prime}, B=77^{\circ} .10^{\circ}
$$

Then $\log a=\log b+L \sin A-L \sin B$

$$
\begin{aligned}
& =1 \cdot 6020600+9 \cdot 3409963-9 \cdot 9890137 \\
& =9540426,
\end{aligned}
$$

whence

$$
a=9 \text { nearly. }
$$

206. It is in practice an easier method to write the equation thus,

$$
a=b \cdot \sin A \cdot \operatorname{cosec} B,
$$

mo as to save a subtraction of decimals.
Thus, taking the same Example, we have

$$
\begin{aligned}
\log a & =\log b+L \sin \cdot A+L \operatorname{cosec} B-20 \\
& =1 \cdot 6020600+9 \cdot 3409963+10 \cdot 0109863-20 \\
& =\cdot 9540426 .
\end{aligned}
$$

Case III.

207. Given two sides and the angle between them, a, b, \mathbf{a}

We may find c from the formula

$$
c^{2}=a^{2}+b^{2}-2 a b \cdot \cos 0
$$

Then from $\frac{\sin A}{\sin C}=\frac{a}{c}$ we can find A.
Lastiy, from $B=180^{\circ}-(A+C)$, we can find B.
Or we may proceed to find A and B before we find c, thus: by the formula established in Art. 180,

$$
\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cdot \cot \frac{C}{\ddot{2}},
$$

and from this we can find $\frac{A-B}{2}$.
Then, as we know that $\frac{A+B}{2}=90^{\circ}-\frac{O}{2}$, we shall have two equations hy which we may he:cmine A and B.

Then we can find c irrom the equation $\frac{c}{a}=\frac{\sin C}{\sin A}$.
208. The first formula given,

$$
c^{2}=a^{2}+b^{2}-2 a b . \cos 0
$$

is not adapted to logarithmic calculation.
We minst take then, in all cases where a and b are not small integers, the formula

$$
\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cdot \cot \frac{C}{2},
$$

for finding the vilum wit : : an: $1:$

Suppose then we have given

$$
a=12.96, b=9.78, C=57^{\circ} .48^{\prime} .32^{\prime \prime},
$$

we proceed thus :

$$
a-b=3 \cdot 18, a+b=22 \cdot 74, \frac{C}{2}=23^{\circ} \cdot 54^{\prime} \cdot 16^{\prime \prime}
$$

Then

$$
\begin{aligned}
& L \tan \frac{A-B}{2} \\
& \begin{aligned}
\therefore L \tan \frac{A-B}{2} & =\log 3 \cdot 18-\log (a-b)-\log (a+b)+L \cot \frac{\sigma}{2}-10, \\
& =5024271-1 \cdot 3567905+10 \cdot 2579579 \\
& =9 \cdot 4035945 .
\end{aligned}
\end{aligned}
$$

Whence $\frac{A-B}{2}=14^{\circ} .12^{\prime} .46^{\prime \prime}$.
Also $\frac{A+B}{2}=61^{\circ} \cdot 5^{\prime} \cdot 44^{\prime \prime}$ (the complement of $\frac{C}{2}$);

$$
\begin{aligned}
\therefore A & =75^{\circ} .18^{\prime} .30^{\prime \prime}, \\
B & =46^{\prime} .52^{\prime} .58^{\prime \prime} .
\end{aligned}
$$

The other formulm of this case require no special remark.
209. Though the formula $c^{2}=a^{2}+b^{2}-2 a h . \cos C$ is not adapted to logarithmic calculation, we can: find c from it (in any case where we do not require the values of A and B also) by the following process :

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cdot \cos \theta \\
& =a^{2}+b^{2}-2 a b \cdot\left(1-2 \sin ^{2} \frac{\sigma}{2}\right) \\
& =a^{2}+b^{2}-2 a b+4 a b \cdot \sin ^{2} \frac{2}{2} \\
& =(a-b)^{2} \cdot\left\{1+\frac{4 a b}{(a-b)^{2}} \cdot \sin ^{2} \frac{\sigma}{2}\right\} .
\end{aligned}
$$

Now, since the tangent of an angle may be of any magni tude, there is some angle (suppose θ) such that

$$
\tan ^{2} \theta=\frac{4 a b}{(a-b)^{2}} \cdot \sin ^{2} \frac{\sigma}{2}
$$

Knowing a, b, C we can apply logarithms to find θ from this equation.

Then, from the equation
that is,

$$
\begin{aligned}
& c^{2}=(a-b)^{2}\left\{1+\tan ^{2} \theta\right\} \\
& c^{2}=(a-b)^{2} \cdot \sec ^{2} \theta
\end{aligned}
$$

we can apply logarithms to find c.
An ungle introduced, as in this case, to assist the solution of an equation, by breaking it up into two or more equations, is called a Subsidiury Angle.

Casm IV.

810. Given two sides and an angle opposite one of them, $a, \cdot b, A$.

$$
\frac{\sin B}{\sin A}=\frac{b}{a}, \text { from which we have to determine } B
$$

If we can find B, we have
$O_{w=1} 180^{\circ}-(A+B)$, from which we can find O,
and $\quad \frac{c}{a}=\sin \theta$ (in A, from which we can find r.
211. Thus the solution of this case depends on the posaibility of determining B from the equation

$$
\frac{\sin B}{\sin A}=\frac{b}{a}(1) .
$$

Now since we know a, b, A, we obtain from this equation $\sin B=a$ known numerical quantity (2).

But, as has been explained in Art. 74, we cannot determine the value of B from a given value of sin B, unless wo know whether B is greater or less than 90°.

The only way in which we can tell whether the greater or the emaller value of B which satisfies equation (2) is to be taken, is by knowing that a is greater than b. In that case A is also greater than B, and therefore B must be less than 90°, otis arwise $A+B$ would not be less than 180°, which is impossible.
212. This, which is called The Ambiguous Case, may be sbown geometrically in the following manner.

If from O we can draw a line $O D$ equal to $O B$, to meet $A B$ produced on the side of B, both the triangles $A B C, A D O$ have the given parts a, b, A.

We can always draw $O D=O B$, so long as $A O$ is greator than $B C$, for then a circle described with centre O and radius $O B$ wil: cut $A \bar{S}$ produced in two points both on the same side of A.
213. The following is a more complete discussion of The Ambiguous Case,

$$
\sin B=\frac{b \cdot \sin A}{a} \text { a known numerical quantity. }
$$

Now, provided $b \sin A$ be not $>a$,

$$
\frac{b \sin A}{a} \text { is not }>1
$$

and this numerical quantity is a possible value to be the sine of an angle.

We have now two cases.
I. If $b \sin A<a, \frac{b \sin A}{a}<1$, and there are two angles which have this value for their sine, supplementary to one another, and therefore one acute and one obtuse.

Now when a is $>b, A$ is $>B$, and therefore we cannot take this obtuse value for B, for then A and B would be together $>$ two right angles.

But when a is $<b, A$ is $<B$, and we can take both the acute and the obtuse value for B, and then we shall have two corresponding values for C, and two for c, and thus we get two triangles having the given parts the came.
II. If $b \sin A=a, \sin B=1$, and B has only one value, viz. 90°.

Of course, if $a=b, B=A$ at once, without using the equation $\sin B=\frac{b \sin A}{a}$ at all.

This ambiguity can be exhibited geometrically as follows:

Fig. 2.
 Let $C A X=A, A O=6$,

Draw $C D$ perpendicular to $A X$, then $C D=b \sin A$. With centre C and radius equal to a deseribe a circle.

Now provided $C D$ be not $>a$, this circle will meet $A \boldsymbol{X}$.
I. If $C D<a$, this circle will meet $A X$ in twe points, B_{1}, and B_{2}.

Now when a is $>b, B_{1}$ and B_{2} will fall on the opposite siders of A as in fig. 1 , and we have only one triangle, vi\%. C $A B_{1}$, having the given angle A, and the sides $C A, C B_{1}$, equal to b and a.

But when a is $<b, B_{1}$ and B_{2} will fall on the same side of A as in fig. 2, and we have two triangles, vi\%. $C A B_{1}, C A B_{2}$ having the griven angle A and the sides $C B_{1}$ and $C B_{2}$ equal to a, and the side $A C$ equal to b, and in this case $C B_{2} A$ is supplementary to $C B_{2} X$ and therefore to its equal i $B_{1} A$.
II. If $C D=a$, the circle will meet $A X$ in one point only, viz. at D, and $C A D$ will be the requirerl triangle.

Of course, if $b=a, B_{y}$ will coincide with A and we have only one triangle $C A B_{1}$.
214. The formulæ to be used in this case are simple, and we have only to give instances of cases. (1) ambiguous, (2) in which no ambiguity exists.
(1) To take a very simple case, suppose

$$
a=5, b=6, A=30^{\circ} .
$$

Theu

$$
\frac{\sin B}{\sin A}=\frac{b}{a} ;
$$

$\therefore \sin B=\frac{b}{a} \cdot \sin A=\frac{6}{5} \times \frac{1}{2}=\frac{6}{10}={ }^{\circ} 6$.
Now from the tables we fivd g to be the value of the sine of $30^{\circ} . \frac{5}{2} 2^{\prime} \cdot 1 z^{\prime \prime}$, and sine $143^{\circ} \cdot 7^{\prime} \cdot 48^{\prime \prime}$ is the supplement of $36^{\circ} .52^{\prime} .12^{\prime \prime}$, it, also has ' 6 for the value of ite sine. Thus there is an annlignity in the resultio

Next, suppose $a=178 \cdot 3, b=145, B=41^{\circ} .10^{\prime}$.
Then $\sin A=\frac{a}{b} \sin B$;

$$
\begin{aligned}
\therefore L \sin A & =\log a-\log b+L \sin B \\
& =2 \cdot 2511513-2 \cdot 1613680+9 \cdot 8183919 \\
& =9 \cdot 9081752 .
\end{aligned}
$$

(2) Now if we change the values of the sides a and b wo shall get

$$
\begin{aligned}
L \sin A & =9 \cdot 7286086 \\
\therefore A & =32^{\circ} .21^{\prime} .54^{\prime \prime}
\end{aligned}
$$

and the supplement of A cannot belong to the proposed triangle, because if A were $147^{\circ} .38^{\prime} .6^{\prime \prime}$, then, since B is greater than A, A and B wouid be together greater than 180°, which is impossible. So in this case there is no ambiguity.
215. The following are applications of the principles laid down in this chapter.

EXAMPLES.-lii.

1. Find A from the following data :
(1) Given $a=37, b=13, c=40, \sin 67^{\circ} .22^{\prime}=9229865$, $\sin 67^{\circ} .23^{\prime}=\cdot 9230984$.
(2) G'ven $a=101, b=29, c=120$, $\sin 43^{\circ} \cdot 36^{\prime}=\cdot 6896195$,

$$
\sin 43^{\circ} .37^{\prime}=\cdot 6898302
$$

(3) Given $a=37, b=13, c=30, \log 9=9542425$,

$$
\log 13=1 \cdot 1139434,
$$

$L \sin 56^{\circ} .18^{\prime}=9 \cdot 9200994, L \sin 56^{\circ} .19^{\prime}=9 \cdot 9201836$.
(4) Given $a=409, b=241, c=600, \log 723=2 \cdot 8591393$,

$$
\log 360=2 \cdot 5563025
$$

$L \sin 29^{\circ} .51^{\prime}=9 \cdot 6969947, L \sin 29^{\circ} .52^{\prime}=9 \cdot 6972148$.
or nc given
2. If $a=5780, c=7639, B=43^{\circ} .8^{\prime}$, find A and C, having

$$
\log 185 \cdot 9=2 \cdot 26928, \log 13 \cdot 419=1 \cdot 12772
$$

$L \cot 21^{\circ} .34^{\prime}=10 \cdot 40312, L$ tani $19^{\circ} .18^{\prime} .50^{\prime \prime}=9 \cdot 54468$.
3. If $A=41^{\circ} \cdot 13^{\prime} \cdot 22^{\prime \prime}, B=71^{\circ} \cdot 19^{\prime} \cdot 5^{\prime \prime}, a=55$, find b, having given $\log 55=1 \cdot 7403627, L \sin B=9.9764927, L \sin A=9.8188779$, $\log 79 \cdot 063=1 \cdot 8979775$.

4 If $B=84^{\circ} .47^{\prime} \cdot 38^{\prime \prime}, C=41^{\circ} .10^{\prime}, c=145$, find b, having given
$\log 145=2 \cdot 1613680, L \sin 41^{\circ} .10^{\prime}=9 \cdot 8183919$.
$L \sin 84^{\circ} .47^{\prime} .38^{\prime \prime}=9 \cdot 9982047, \log 219 \cdot 37=2 \cdot 3411808$ 。
5. If $a=567 \cdot 2341, b=351^{\circ} 9872, B=31^{\circ} .27^{\prime} .18^{\prime \prime}$, find \boldsymbol{A}, having given

$$
\begin{gathered}
\log a=2 \cdot 7537623, \log b=2 \cdot 5465269 \\
L \sin B=9 \cdot 7175280, L \sin 57^{\circ} \cdot 14^{\prime}=\dot{9} \cdot 9247349 \\
L \sin 57^{\circ} \cdot 15^{\prime}=9 \cdot 9248161
\end{gathered}
$$

6. When $C=30^{\circ}, b=16, c=8$, is the triangle ambiguons or not?
7. Simplify the expression $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ in the case of an equilateral triangle.
8. Given $\log 3=\cdot 4771213$ and $L \tan 57^{\circ} .19^{\prime} .11^{\prime \prime}=10 \cdot 1928032$, show that, if one angle be 60°, and the two sides containing it as 19 to 1 , the other two angles are $117^{\circ} .19^{\prime} .11^{\prime \prime}$, and $2^{\circ} .40^{\prime} .49^{\prime \prime}$.
9. The sides of a triangle are $2, \sqrt{ } 6$, and $1+\sqrt{3}$: find the angles.
10. If a, b, B had been given to solve a trianigle, where ou is less than a, and if c_{1}, c_{2} be the two values found for determining the third side, prove that $b^{2}+c_{1} \cdot c_{2}=a^{2}$.

Ir. Two sides of a triangle are to each other as 9:7, and the included angle is $64^{\circ} .12^{\prime}$; determine the other angles.

Given $\log 2=30103, \quad L \tan 57^{\circ} .54^{\prime}=10^{\prime} 2025255$,
$L \tan 11^{\prime} .16^{\prime}=9 \cdot 2993216 ; L \tan 11^{\circ} .17^{\prime}=9 \cdot 2999804$.
12. The sides a, b, c of a triangle are as the numbers 4, 5, 6. Find the angle B.

Given $\log 2=\cdot 3010299, \quad L \cos 27^{\circ} .53^{\prime}=9 \cdot 9464040$, $\log 5=6989700, \quad L \cos 27^{\circ} .54^{\prime}=9.9463271$.
3.3. If in a triangle $A B C, B C=70, A C=35$, and $\angle A C B$ $=36^{\prime \prime} .12^{\prime} .12^{\prime \prime}$, find the remaining angles.

Given $\log 3=\cdot 4771213$ and $L \cot 18^{\circ} \cdot 26^{\prime} .6^{\prime \prime}=10 \cdot 4771213$.
216. Up to this point we have supplied the student with all the materials required for the solution of each example. But as he ought to have some practice in making extracts from the tables, we shall suppose him to be in possession of a set of tables, and we shall now give a series of examples by which he may test his ability to apply the formula fur the solution of Triangles.

EXAMPLES.-liii.

Solve the triangles for which the following parts are given.

$$
\begin{array}{ll}
\text { 1. } & a=4, b=3, C=90^{\circ} . \\
\text { 2. } & b=55, c=73, C=90^{\circ} . \\
\text { 3. } & a=272, b=225, C=90^{\circ} . \\
\text { 4. } & b=399, c=401, C=90^{\circ} . \\
\text { 5. } & c=445, A=10^{\circ} .52^{\prime} .50^{\prime \prime} \cdot 4, C=90^{\circ} . \\
\text { 6. } & c=629, A=46^{\circ} .59^{\prime} .49^{\prime \prime} \cdot 7, C=90^{\circ} . \\
\text { 7. } & c=449, B=51^{\circ} .25^{\prime} .11^{\prime \prime} \cdot 7, C=90 . \\
\text { 8. } & c=349, B=58^{\circ} .57^{\prime} .6^{\prime \prime} \cdot 4, C=90^{\circ} . \\
\text { ㄱ. } & z=520, A=66^{\circ} .2^{\prime} .52^{\prime \prime}, C=90^{\circ} . \\
\text { 10. } & b=31, A=86^{\circ} .18^{\prime} .17^{\prime \prime \prime}, C=90^{\circ} .
\end{array}
$$

EXAMPLES.-liv.

Solve the triangles, not right-angled, for which the following parts are given :

$$
\begin{aligned}
& \text { 1. } a=197, b=53, c=240 \text {. } \\
& \text { 2. } a=500, b=221, c=480 \text {. } \\
& \text { 3. } a=533, b=317, c=510 \text {. } \\
& \text { 4. } a=565, b=445, c=606 \text {. } \\
& \text { 5. } a=409, b=241, c=182 \text {. } \\
& \text { 6. } b=29, A=43^{\circ} \cdot 36^{\prime} \cdot 10^{\prime \prime} 1, C=124^{\circ} .58^{\prime} .33^{\prime \prime} 66 \text {. } \\
& \text { 7. } b=149, A=69^{\circ} .59^{\prime} .2^{\prime \prime} \cdot 5, C=70^{\circ} .42^{\prime} .30^{\prime \prime} \text {. } \\
& \text { 8. } a=101, b=29, C=32^{\circ} .10^{\prime} .53^{\prime \prime} \cdot 8 \text {. } \\
& \text { 9. } a=401, b=41, C=96^{\circ} .57^{\prime} .20^{\prime \prime} \cdot 1 \text {. } \\
& \text { 10. } a=221, b=149, C=30^{\circ} .40^{\prime} .35^{\prime \prime} \text {. } \\
& \text { I1. } a=109, b=61, C=66^{\circ} .59^{\prime} .25^{\prime \prime} \cdot 4 \text {. } \\
& \text { 12. } a=445, b=83, C=87^{\circ} .55^{\prime} \text {. } \\
& \text { 13. } a=229, b=109, C=131^{\circ} .24^{\prime} .44^{\prime \prime} \text {. } \\
& \text { 14. } a=241, b=169, O=104^{\circ} .3^{\prime} .51^{\prime \prime} \text {. } \\
& \text { 15. } a=241, b=169, C=15^{\circ} .22^{\prime} .37^{\prime \prime} \text {. } \\
& \text { 16. } a=13, b=37, A=18^{\circ} .55^{\prime} .28^{\prime \prime} \cdot 7 \text {. find } B \text {. } \\
& \text { 17. } a=445, b=565, A=44^{\circ} .29^{\prime} .53^{\prime \prime} \text {, find } B \text {. } \\
& \text { 18. } a=212 \cdot b, b=836 \cdot 4, A=14^{\circ} \cdot 24^{\prime}, 25^{\prime \prime} \text {, find } B \text {. } \\
& \text { 19. } \quad 379 \cdot 5, b=564 \cdot 8, A=40^{\circ} \cdot 32^{\prime} \cdot 16^{\prime \prime} \text {, find } B \text {. } \\
& \text { 20. } a=9489 \cdot 31, b=8032 \cdot 29, A=71^{\circ} \cdot 3^{\prime} \cdot 34^{\prime \prime} 7 \text {, find } A
\end{aligned}
$$

XIX. MEASUREMENT OF HEIGHTS AND DISTANCES.

217. In this chapter we shall give examples of the application of Trigonometry in determining heights and distances.
The problems which occur most frequently in practice, in addition to those given in Chap. VIII., are the following:
(1) To find the height of an object standing on a horizontal plane, when the base of the object is inaccessible.

and grou line

Let $P Q$ be a tower, of which the base P is inaccessible.
Measura a distance $A B$ in the same horizontal plane with $P_{\text {. }}$
Observe the angies of elevation $Q B P$ and $Q A P$.
Then we can deternsine the height of the tower, for
and

$$
\begin{aligned}
Q P & =Q B \cdot \sin Q B P, \\
Q B & =A B \cdot \frac{\sin Q A B}{\sin B Q A} \\
& =A B \cdot \frac{\sin Q A P}{\sin (Q B P-Q A P)} ; \\
\therefore Q P & =A B \cdot \sin Q B P \cdot \frac{\sin Q A P}{\sin (Q B P-Q A P)}
\end{aligned}
$$

(2) To find the height of an olject whose foot is inaccessibic, when a direct line between the observer and the base cannot be measured.

AND

a applicatances.
actice, in ring :
horizontal

Let A and B be the objects.
Measure a line $C D$, and suppose A, B, C, D to be in one plane.

Suppose $P Q$ to be a tower standing on the bank of a river, and B to be a point on the opposite bank. Suppose the ground to rise suddenly from B, so that no distance in a direct line with $B P$ can be measured.

Measure a line $A B$ up the rising ground.
Observe the angles $Q A B$ and $Q B A$.
Then in the triangle $Q A B$ two angles anc the side $A B$ are known, and therefore we can find $Q B$.

Then if we observe the angle $\tilde{\varepsilon}_{S} P$ we may determine $Q P$.
(3) To find the distance between two inaccessible objects.

.
Then if we observe the angles $A C D$ and $A D C$ we can determine $A C$, because we know two angles and a side in this triangle $A C D$.

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

Again, if we observe the angles $B C D, B D C$ we can detey mine $B C$, because we know two angles and a side in the triangle $B C D$.

Thus knowing $A C$ and $B C$ and the included angle $A C B$ (which is the difference between the known angles $A C D, B C D$), we can determine $A B$.
(4) To find the distance of a ship from the shore.

Let S be the position of the ship.
Measure $A B$, a straight line between two points on the shore
Observe the angles $S A B$ and $S B A$.
Then we can deternine the distance of S from A, for

$$
\begin{aligned}
A S & =A B \cdot \frac{\sin S B A}{\sin A \bar{S} \bar{B}} \\
& =A B \cdot \frac{\sin S B A}{\sin \left(180^{\circ}-A S \bar{B}\right)} \\
& =A B \cdot \frac{\sin S B A}{\sin (S A \bar{B}+S \bar{B} A \cdot)^{\circ}}
\end{aligned}
$$

218. In the first twenty-one of the examples that we shall now give the results may be obtained without the nid of Tables,

EXAMPLES.—lv.
I. Wishing to know the height of an inaccessible hill I took the angle of elevation of its top to be 60°, I then measured 100 feet away from the hili and found the angle of elevation to be 45°. What is the height of the hill ?
2. Each of two ships, which are a mile apart, finds thp angles subtended by the other ship and a iort to be respectively $35^{\circ} .14^{\prime}$ and $42^{\circ} .12^{\prime}$. Find the distance of each from the fort. Given $\sin 35^{\circ} .14^{\prime}=577$, $\sin 42^{\circ} .12^{\prime}=671$, $\sin 77^{\circ} .26^{\prime}=976$.
3. Wach of two ships, half a mile apart, finds the angles subtended by the other ship and a fort to be respectively $85^{\circ} .15^{\prime}$ and $83^{\circ} .45^{\prime}$. Find the distance of each from the fort. Given $\sin 85^{\circ} .15^{\prime}=\cdot 9965, \sin 83^{\circ} .45^{\prime}=9940, \sin 11^{\circ}=\cdot 1908$.
4. Find the angle which a flag-staff 5 yards long and standing on the top of a tower two hundred yards high subtends at a point in the horizontal plane 100 yards from the base of the towar.

$$
\begin{aligned}
\text { Given } L \tan 34^{\prime} & =7.9952192, \quad L \tan 33^{\prime}=7.9822534 \\
\log 102 & =2.0086002 .
\end{aligned}
$$

5. The angle of elevation of the top of a steeple is 60° from a point on the ground. That of the top of the tower on which the steeple rests is 45° from the same point. What proportion does the height of the steeple bear to that of the tower ?
6. On the bank of a river there is a column 200 feet high supporting a statue 30 feet high. The statue to an observer on the opposite bank subtends the same angle as a man 6 feet high standing at the base of the column. Find the breadth of the river.
7. A pole is fixed on the top of a mound and the angles of elevation of the top and bottom of the pole are 60° and 30°, show that the length of the pole is twice the height of the mound.
8. A person at a distance a from a tower which stands on a horizontal plane, observes that the angle of elevation a of its highest point is the complement of that of a flag-staff on the top of it. Show that the length of the Ilag-staff is $2 a \cdot \cot 2 a$.
9. If the distance of the person from the tower is unknown, and if, when he recedes a distance c, the angle of elevation of the tower is half of what it was before, show that the length of the flag-staff is $c \cdot \operatorname{cosec} \alpha \cdot \cos 2 a$.
10. Two spectators at two given stations observe at the same time the altitude of a kite, and find it to subtend the eame angle a at each place. The angle which the line joining one station and the kite subtends at the other station is β, and the distance between the two stations is a : find the height of the kite.
11. Two towers stand on a horizontal plane, and their distance from each other is 120 feet. A person standing successively at their bases obseives that the angular elevation of one is double that of the other; but when he is half-way between them their elevations appear complementary to each other. Show that the heights of the towers are 90 and 40 feet respectively.
12. $\boldsymbol{A}, \boldsymbol{B}$ are two inaccessible points in a horizontal plane, and C, D are two stations, at each oi which $A B$ is observed to subtend the angle 30°. $A D$ subtends at $C 19^{\circ} .15^{\prime}$, and $A C$ subtends at $D 40^{\circ} .45^{\prime}$. Show that $A B=\frac{C D}{\sqrt{3}}$.
13. The length of a road in which the ascent is 1 foot in 5 , from the foot of a hill to the top is $1 \frac{2}{3}$ miles. What will be the length of a zigzag road in which the ascent is one foot in 12 ?
14. Two objects, \boldsymbol{A} and \boldsymbol{B}, were observed to be at the same instant in a line inclined at an angle 15° to the east of a ship's course, which was at the time due north. The ship's course was then altered, and after sailing 5 miles in a N.W. direction, the same objects were obsorved to bear E. and N.E. respectively. Required the distance of A from B.
h stands evation a flag-staff g-staff is
er is un. le of elehow that
ve at the otend the line jointion is β, he height
their disg succeson of one between ach other. et respec-
tal plane, observed . 15 ', and
foot in 5 , at will be oot in 12 ?
be at the he east of The ship's n a N.W. and N.E.
15. The elevation of a tower at a place A due south of it is 30°; and at a place B, due west of A, and at a distance a from it, the elevation is 18° : show that the height of the tower is

$$
\frac{a}{\sqrt{(2 \sqrt{ } 5+2)}}
$$

16. A circular ring is placed in a vertical plane through the sun's centre, on the top of a vertical staff whose heigh' is eight times its radius; and the extremity of the shadow of the ring is observed to be at a distance from the foot of the staff equal to the staff's height. Determine the altitude of the sun.
17. The hypotenuse c of a right-angled triangle $A B C$ is trisected in the points D, E : prove that if $C D, C E$ be joined, the sum of the squares of the sides of the triangle $C D E$

$$
=\frac{2}{3} c^{2} .
$$

18. A person stands in the diagonal produced of the square base of St. Mary's Church tower, at a distance a from it, and observes the angles of elevation of the two outer cornere of the top of the tower to be each 30°, and of the other 4°. Show that the breadth of the tower is $a \sqrt{ }(3 \pm \sqrt{ } 5)$.
19. A tower standing on a horizontal plane is surrounded by a moat which is jusi as wide as the tower is high. A person on the top of another tower whose height is a and whose distance from the moat is c, observes that the first tower subtends an angle of 45°. Show that the height of the first tower is $\frac{a^{2}+c^{2}}{a-c}$.

2o. A and B are two points 100 feet apart, and C is a point equally distant from A and B; what must be the distance of C from A and B that the angle $A C B$ may be 150° ?
21. A headland C bore due north of a ship at A : and after the ship had sailed 10 miles due east to B, the headland bore N.W. Required the distance of the headland from A and \mathscr{H}.
22. The aspect of a wall 18 feet high is due south, and the ${ }^{1} j^{\text {th }}$ of the shadow cast on the north side at noon is 16 feet. Find the sun's altitude.
23. At a distance of 200 yards from the foot of a church tower, the angle of elevation of the top of the tower was observed to be 30°, and of the top of the spire of the tower 32°. Find the height of the tower and of the spire.
24. The distances of three objects, $A B C$, in the same horizontal plane, are $A B=3$ miles, $B C=1 \cdot 8$ mile, $A C=2$ miles; from a station D in $C A$ produced the angle $A D B=17^{\circ} .47^{\prime} .20^{\prime \prime}$ is observed : find the distance of D from B.
25. In an oblique triangle A, B, C, given $\angle A C B=139^{\circ} .58^{\prime}$, $\angle A B C=22^{\circ} .18^{\prime}, B C=840^{\circ} 5$ yards, find by how much $A B$ differs from a mile.
26. In an oblique-angled triangle $A B C$, given $A B=2700 \mathrm{ft}$., $\angle A=50^{\circ} .20^{\prime}$, and $\angle E=110^{\circ}$. 12^{\prime}, find $B C$.

To determine the height of the top C of a mountain, a base $A B$ of 2700 feet was measured in the horizontal plane, the angle sultended by $C B$ at A was observed to be $50^{\circ} .20^{\prime}$, the angle subtended by $A C$ at B was observed to be 110°. 12^{\prime}, and the angle of elevation of C from B was observed to be $10^{\circ} .7^{\prime}$; find the height of the mountain.
27. A flag-staff 20 feet high stands on a wall 40 feet high. At a point E on a level with the bottom of the wall the flag. staff sybtends an angle of 10°. Find the distance of E from the wall.
28. From the top of a hill the angles of depression of two consecutive mile-stones on a straight level road are found to be $12^{\circ} .13^{\prime}$ and $2^{\circ} .45^{\prime}$. Find the height of the hill.
29. From the top of a tower by the sea-side 150 ft . high, it was found that the angle of depression of a ship's hull was $36^{\circ} .18^{\prime}$. Find the distance of the ship from the foot of the tower.
30. Given $a=6383 \cdot 53, b=3157.76$ and $C=37^{\circ} .26^{\prime}$, find the other parts of the triangle.
a church was obower 32°.
the same $=2$ miles; ${ }^{\circ} .47^{\prime} .20^{\prime \prime}$
$139^{\circ} .58^{\prime}$, much $A B$
$=2700 \mathrm{ft}$,
in, a base plane, the ${ }^{\circ} .20^{\prime}$, the . 12 ', and e $10^{\circ} .7^{\prime}$;
feet high. the flagof E from hull was oot of the
31. From each of two ships a mile apart the angle which is subtended by the other ship and a beacon on shore is (hserved: these angles are 55° and $62^{\circ} .30^{\prime}$. Determine the distances of the ships from the beacon.
32. Fron the lower window of a house the angle of elevation of a church tower is observed to be 45°, and from a window 20 feet above the former 40°. How far is the house from the church?
33. A line $A B$ in length 400 yards is measured ciose by the side of a river, and a point σ close to the bank on the otiner side is olserved from A and B. The angle $C A B$ is 50°, and $C B A 65^{\circ}$, find the perpendicular breadth of the river.
34. Two railways intersect at an angle of $35^{\circ} .20^{\prime}$: from the point of intersection two trains start together, one at the rate of 30 miles an hour ; find the rate of the other train, so that atter $2 \frac{1}{2}$ hours the trains may be 50 miles apart. Show that there are two velocities that will satisfy this condition, and calculate approximately either of them.
35. A base line of 600 yards was measured in a straight line close to the bank of a river, and at each end of the line the angles were observed between the other end and a tree clcse to the edge of the river on the opposite side of it : these angles were found to be $52^{\circ} .14^{\prime}$ and $68^{\circ} .32^{\prime}$. Find the breadth of the river.
36. The angle of elevation of a tower 100 feet high, due north of an observer, was 50°; what will be its angle of elevation after the observer has walked due east 300 feet?
37. A flag-staff, 12 feet high, on the top of a tower, subtends an angle of $48^{\prime} .20^{\prime \prime}$ to an observer at the distance of 100 yards from the foot of the tower: required the height of the tower,
38. At the foot of a hill a visible object has an elevation of $29^{\circ} .12^{\prime} .40^{\prime \prime}$, and when the observer has walked 300 yards up the hill away from the object, he finds himself on a level with it. The slope of the hill being 16°, and the places of observation in a vertical plane with the object, find the distance of the object from the first place of observation.
39. $A B, A C$ are two railroads inclined at an angle of $50^{\circ} .20^{\prime} ;$ a locomotive ergine starts from A along $A B$ at the rate of 30 miles an hour : after an interval of one hour, another locomotive engine starts from A along $A C$ at the rate of 45 miles an hour: find the distance of the engines from each other, three hours after the first started.
40. A church tower stands on the bank of a river which is 150 feet wide, and on the top of the tower is Ω spire 30 feet high. To an observer on the opposite bank of the river the spire subtends the same angle that a pole six feet high subtends placed upright from the ground at the base of the tower. Slinw that the approximate height of the tower is 285 feet.
elevation 300 yards on a level places of dil the disа.
angle of $A B$ at the ur, another rate of 45 from each
er which is ire 30 feet river the high subthe tower. 35 feet.

XX. PROPOSITIONS REL.ATING TO THE AREAS OF TRIANGLES, POLYGONS, AND CIRCLES.

219. Expressions for the area of a triangle.

The area of a triangle is equal to half the rectangle contilined by one of the sides and the perpendicular drawn to meet that side from the opposite angle.

Let $A B C$ be the triangle, and as one of the angles A, B must be acute, let it be A. Draw a perpendicular from C to neet $A B$ or $A B$ produced in D.

Then, area of triangle $A B C^{\prime}=\frac{1}{2} . A B . C D$

$$
\begin{aligned}
& =\frac{1}{2} \cdot A B \cdot A C \cdot \sin A \\
& =\frac{1}{2} c b \cdot \sin A ;
\end{aligned}
$$

that is, the area of a triangle is equal to half the product of two sides and the sine of the angle between them.

Also, since sin $A=\frac{2}{b c} \cdot \sqrt{8 \cdot(s-a)(s-b)(s-c)}$, by Art. 184,
area of triangle $\left.A B C=\frac{1}{2} c b \cdot \frac{2}{b c} \cdot \sqrt{8 \cdot(8-a)(s-b)(s}=c\right)$

$$
=\sqrt{8 \cdot(8-a)(s-b)(s-c)},
$$

which gives an expression for the area in terms of the sides.
For this expression the symbol used is S.
220. To find the area of a regular polygon in terms of it

Let $E A, A B, B F$ be three consecutive sides of a regulw polygon of n sides, and let each of them $=a$.

Bisect the angles $E A B, A B F$ by the lines $O A, O B$ meeting in 0 .

Draw $O R$ at right angles to $A B$.
Now angle $A O R=\frac{A O B}{2}$,
and

$$
\text { angle } A O B=\frac{2 \pi}{i i} \text { (Eucl 1. 15. Cor.); }
$$

\therefore angle $A O R=\frac{\pi}{7 v}$.

Hence area of polygon $=n$ times area of triangle $A O B$

$$
\begin{aligned}
& =n \cdot A R \cdot R O \\
& =n \cdot A R \cdot A R \cdot \cot A O B \\
& =n \cdot \frac{a}{2} \cdot \frac{a}{2} \cdot \cot \frac{\pi}{n} \\
& =\frac{n a^{2}}{4} \cdot \cot \frac{\pi}{n} .
\end{aligned}
$$

221. To find the radius of a circle described about a triangle in terms of the sides of the triangle.

Let \mathbf{O} be the centre of the circle diescribed about the triangle $A B C$, and R its radius.
Through O draw the diameter $O D$ and join $B D$.
Then $C B D$, being the angle in a semicircle, is a right angle.

And $B D O=$ angle $C A B$ in the same segment $=4$.
Now

$$
\frac{C B}{C D}=\sin B D O_{1}
$$

that in,

$$
\begin{aligned}
& \frac{a}{2 R}=\sin A ; \\
& \therefore a=2 R \cdot \sin A ; \\
& \therefore R=\frac{a}{2 \sin A} .
\end{aligned}
$$

But, by Art. 184, $\sin A=\frac{2}{b c} \cdot S$;

$$
\therefore R=\frac{a b c}{4 S^{\prime}}
$$

Note. Since $\frac{a}{2 R}=\sin A$, and similarly $\frac{b}{2 R}=\sin B$, and $\frac{c}{2 \tilde{R}}=\sin C$, we dernve another proof of the Theorem

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} .
$$

222. To find the radius of a circle inscribed in a, triangls in terms of the sides of a triungle.

Let O be the centre of the inscribed circle, and r its raline
Then $S=$ area of $A B C$

- area of $B O C+$ area of $C O A+$ area of $A O B$
$=\frac{O D \cdot B C}{2}+\frac{O E \cdot A G}{2}+\frac{O F \cdot A B}{2}$
$=\frac{r a}{2}+\frac{r b}{2}+\frac{r c}{2}$

$$
=r \cdot \frac{a+b+c}{2}
$$

- 8 ;

$$
\therefore r=\frac{8}{8}
$$

223. To find the radii of the circles escribed, that is which touch one of the sides of a triangle and the other sides produced.

Let O be the centre of the escribed circle that touches the side $B C$ and the other sides produced, and let the radius of this circle be r_{3}.

Then quadrilateral $A B O C=$ triangle $A O C+$ triangle $A O B$ and quadrilateral $A B O C=$ triangle $A B C+$ triangle $B O O$

$$
\begin{aligned}
& \therefore A O C+A O B=A B C+B O C, \\
& \therefore \frac{A O \cdot O E}{2}+\frac{A B \cdot O F}{2}=S+\frac{B C . O D}{2}, \\
& \therefore \frac{b r_{1}}{2}+\frac{c r_{1}}{2}=S+\frac{a r}{2} ; \\
& \therefore \frac{b+c-a}{2} \cdot r_{1}=S ; \\
& \therefore(b-a) r_{1}=S ; \\
& \therefore r_{2}=\frac{S}{3-a} .
\end{aligned}
$$

Similiarly it may ke shown that if r_{2}, r_{3} are the radii of the circlen touching $A C$ and $A B$ respectively,

$$
\begin{aligned}
& r_{3}=\frac{S}{8-b} \\
& r_{3}=\frac{S}{8-c}
\end{aligned}
$$

224. To find the asca of a regular polygon inscribed in a arrcis

Let O be the centre of the circie, r the radius of the circle $A B$ a side of the polygon.

Join $O A, O B$.
Then area of polygon $=n$ times area of triangle $A O B$

$$
\begin{aligned}
& =n \cdot \frac{1}{2} A O \cdot O B \cdot \sin A O B(\text { Art. 210 }) \\
& =n \cdot \frac{1}{2} \cdot r \cdot r \cdot \sin \frac{2 \pi}{n} \\
& =\frac{n r^{2}}{2} \cdot \sin \frac{2 \pi}{14}
\end{aligned}
$$

225. To find the area of a regular polygon described about a circle.

Let O be the centre of the circle, r t'ie radius, $A B$ a side of ihe circumscribing polygon.

Draw the radius $O R$ at right angles to $A B$.

Them aree of polygon $=n$ times area of triangle $A O B$

$$
\begin{aligned}
& =n \cdot O R \cdot A R \\
& =n \cdot O R \cdot O R \tan A O R \\
& =n \cdot r \cdot r \cdot \tan \frac{\pi}{n} \\
& =n r^{2} \cdot \tan \frac{\pi}{n}
\end{aligned}
$$

226. To find the area of a circle.

Taking the figure and notation of the preceding Article, area of circumscribing polygon $=n$ times area of triangle $A O B$

$$
\begin{aligned}
& =n \cdot \frac{1}{2} \cdot A B \cdot O R \\
& =\frac{1}{2} O R \times n \cdot A B \\
& =\frac{1}{2} O R \times \text { perimeter of polygon. }
\end{aligned}
$$

Now if the number of sides of the polygon be indefinitely incrensed and the length ,if win side indefinitely diminished [s.т.]
the perimeter o_{i}^{*} the polygon coincides with the circumference of the circle, and the area of the polygon is the same as the area ol the circle ;
\therefore area of circle $=\frac{1}{2}$ OR \times circumference of circle

$$
\begin{aligned}
& =\frac{1}{2} r \times 2 \pi r \\
& =\pi r^{2} .
\end{aligned}
$$

227. To find the area of a quadrilateral which can be inscribed in a circle in terms of its sides.

Let $A B O D$ be the quadrilateral. Join $A O$.
Let $A B=a, B C=b, C D=c, D A=d$.
Then, area of figure $=$ area of $\triangle A B C+$ area of $\triangle A D O$

$$
=\frac{1}{2} a b \cdot \sin B+\frac{1}{2} c d \cdot \sin D .
$$

Now the angles at B and D are supplementary (Eucl. III. 22);

$$
\begin{aligned}
\therefore \sin B & =\sin D(\text { Art. 101 }) ; \\
\therefore \text { area of figure } & =\frac{1}{2}(a b+c d) \cdot \sin B .
\end{aligned}
$$

We have now to express $\sin B$ in terms of the sides of the figure.
Now, in $\triangle A B C, A C^{2}=a^{2}+b^{2}-2 a b . \cos B$, aud, in $\triangle A D O, \quad A C^{2}=c^{2}+d^{2}-2 c d . \cos D$.

Hence; observing that

$$
\cos D=-\cos B(\text { Art. 101) }
$$

$a^{2}+b^{2}-2 a b \cdot \cos B=c^{2}+d^{2}+2 c d . \cos B ;$

$$
\begin{aligned}
\therefore \cos B & =\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)} ; \\
\therefore \sin ^{2} B & =1-\frac{\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}}{\{2(a b+c d)\}^{2}} \\
& =\frac{(2 a b+2 c d)^{2}-\left(c c^{2}+b^{2}-c^{2}-d^{2}\right)^{2}}{4(a b+c d)^{2}}
\end{aligned}
$$

$\therefore(\text { area of figure })^{2}=\frac{1}{4} \cdot(a b+c d)^{2} \cdot \sin ^{2} B$
$=\frac{1}{4} \cdot(a b+c d)^{2} \cdot \frac{(2 a b+2 c d)^{2}-\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}}{4(a b+c d)^{2}}$
$=\frac{1}{16} \cdot\left\{(2 a \dot{b}+2 c d)^{2}-\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}\right\}$
$=\frac{1}{16} \cdot\left\{\left(2 a b+2 c d+a^{2}+b^{2}-c^{2}-d^{2}\right)\left(2 a b+2 c d-a^{2}-b^{2}+c^{2}+d^{2}\right)\right\}$
$=\frac{1}{16} \cdot\left\{(a+b)^{2}-(c-d)^{2}\right\} \cdot\left\{(c+d)^{2}-(a-b)^{2}\right\}$
$=\frac{1}{16} \cdot\{(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)\}:$
and if

$$
s=\frac{a+b+c+d}{2}
$$

(atea of figure $)^{2}=\frac{1}{16} \cdot\{(2 s-2 d)(2 s-2 c)(2 s-2 b)(2 s-2 a)\}$

$$
=(s-d)(s-c)(s-b)(s-a) ;
$$

\therefore axea of figure $=\sqrt{ }\{(s-a)(s-b)(s-c)(s-d)\}$.
228. On the Dip of the Horizon.

Suppose the earth to be represented by the circle $A B C$, with centre 0 .

Let $E B$ be a tangent from the eye of an obscrver, looking from a height $A E$, to the earth's surface at B, and let $E A C$ be a straight line through the earth's centre.

If we draw a horizontal line $E H$, the angle $H E B$ is called ${ }^{*}$ The Dip of the Horizon."

Then, since $E A$ is very small as compared with $A O$, and therefore the arc $A B$ very small as compared with the circumference of the earth, $\angle A O B$ is a very small angle.

Hence at spots of small elevation the Dip of the Horizon, which is equal to $\angle A O B$, is very small.

The distance of the horizon at sea may be approximately round by the following rule:

Three times the height of the place of observation in feet is equal to twice the square of the distance seen in miles.

This rule may be proved thus :
Let $A E$ be an object whose height in feet is $f,=\frac{f}{5280}$ miles,
TEB a tangent to the earth's surface whose length in miles is m.
10 the diameter of the earth $=d=8000$ miles nearly.

Then
sq. on $B \bar{E}=$ rect. $C E, E A$ (Eucl. III. 36);

$$
\begin{aligned}
\therefore m^{2} & =\left(d+\frac{f}{5280}\right) \frac{f}{5280} \\
& =\frac{d f}{5280} \text { nearly } \\
& =\frac{8000 f}{5280} \text { nearly }=\frac{3 f}{2} \text { nearly. }
\end{aligned}
$$

229. To show that if θ be the circular measure of a positive angle less than a right angle, $\sin \theta, \theta$, and $\tan \theta$ are in ascending order of magnitude.

Let Q be the centre of a circle, $Q E$ a radius cutting the chord $P P^{\prime}$ at right angles, $T T^{\nu}$ a tangent to the circle at E.

Let the circular measure of the angle $E Q P$ be 0 .
Then

$$
\begin{aligned}
\sin \theta & =\frac{P M}{Q P}, \\
\theta & =\frac{P E}{Q P} ; \\
\tan \theta & =\frac{T E}{Q E}=\frac{T E}{Q P} .
\end{aligned}
$$

Now agaming that $P F^{\prime}$ is greater than $P M$ buti lewn tinan $T E, P M, P E, T E$ are in ascending oider of magnitud 6
Therefore $\sin \theta, \theta, \tan \theta$ arr in ascending order of magnituide.

The assumption which we here make that $P E$ is intermediate in magnitude between $P M$ and $T E$ requires some explanation.

Suppose $P P^{\prime}$ to be a side of a regular polygon of n sides inscribed in the circle.

Then $T T^{\prime \prime}$ will be the side of a regular polygon of n sides described about the circle, and $Q E$ will bisect $P P^{\prime}$ and $T^{\prime} T^{\prime}$.

Now the perimeter of the inscribed polygon is always less than the circumference of the circle, as we explained in Art. 10, and we might show by a similar process that the perimeter of the circumscribed polygon is always greater than the circumfereace of the circlo.

Now $P M=$ the $2 n$th part of the inscribed polygon,

$$
T E=
$$

\qquad circunscribed $P E=$ \qquad circumference ;
$\therefore \boldsymbol{P E}$ is in magnitude intermediate between $P M$ and $T E$.
830. To show that when θ is indefinitely diminished,

$$
\frac{\theta}{\sin \theta}=1 .
$$

Since $\sin \theta, \theta, \tan \theta$ are in ascending order of magnitude, $\sin \theta, \theta, \frac{\sin \theta}{\cos \theta}$ are in ascending order of magnitude.

Divide each by $\sin \theta$, then
$1, \frac{\theta}{\sin \theta}, \frac{1}{\cos \theta}$ are in ascending order of magnitude:
$\therefore \frac{\theta}{\sin \theta}$ lies between 1 and $\frac{1}{\cos \theta^{\circ}}$

Now when $\theta=0, \quad \cos \theta=1$, and therefore

$$
\frac{1}{\cos \theta}=1 ;
$$

theratore when $\theta=0$,

$$
\frac{\theta}{\sin \theta}=1
$$

EXAMPLES.--lvi.

1. The angle included between two sides of a triangle whose lengths are 10 inches and 12 inches is 60° : find the area of the triangle.
2. Two sides of a triangle are 40 and 60 feet, and they contain an angle of 30° : find the area of the triangle.
3. What is the area of a triangle whose base is 4 feet, and altitude $1 \frac{1}{4}$ yards?
4. What is the area of a triangle whose sides are $5,6,5$ inches respectively?
5. If $a=625, b=505, c=904$, what is the measure of the area of the triangle?
6. If $a=409, b=169, c=510$, what is the measure of the area of the triangle?
7. If $a=577, b=73, c=520$, what is the measure of the area of the triangle?
8. In a right-angled triangle arei $=s .(s-c), C$ being the right angle.
9. If $a=52 \cdot 53, b=48 \cdot 76, c=44 \cdot 98, \log 146 \cdot 27=2 \cdot 1651558$,

$$
\log 56 \cdot 31=1 \cdot 7505855, \quad \log 48 \cdot 75=1 \cdot 6879746
$$

$$
\log 41 \cdot 21=1 \cdot 6150026, \quad \log 2=\cdot 3010300
$$

$$
\log 1 \cdot 0169487=0072990, \text { finl the measure of area. }
$$

10. The sides of a triangle are in arithmetical progression, and its area is to that of an equilateral triangle of the same perimeter as 3 : 5. Show that its largest angle is 120°.
11. In the rectangular sheet of paper $A B C D$, the angulas point A is turned down so as to lie in the side $C D$, while the crease of the paper passes through the angular point B; show that the area of the part turned down is

$$
\frac{1}{2} \cdot \frac{A B^{2}}{B C}\left\{A B-\sqrt{ }\left(A B^{2}-B O^{2}\right)\right\}
$$

12. Show that the area of a triangle

$$
=\frac{a^{2} \cdot \sin B \cdot \sin C}{2 \sin (B+C)}
$$

13. In any triangle the area

$$
=\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}\left(\frac{a^{2}}{\sin A}+\frac{b^{2}}{\sin B}+\frac{c^{2}}{\sin C}\right)
$$

14. If the radius of the inscribed circle be equal to half that of the circumscribed circle, the triangle is equilateral.
15. In any triangle

$$
(b-c) \cos \frac{A}{2}=a \cdot \sin \frac{B-C}{2}
$$

16. If the points of contact of a circle inscribed in a triangle with the sides be joinel, show that the area of the triangle so formed

$$
=\frac{2}{a} b c^{\frac{1}{2}}\{(s-a)(s-b)(s-c)\}^{\frac{3}{2}}
$$

17. The diagonals of a quadrilateral are in length a, b respectively, and intersest at an angle A. Show that the ares of th, quadrilateral

$$
=\frac{1}{2} a b \sin A
$$

18. The area of any triangle

$$
=\frac{a^{2}-b^{2}}{2} \cdot \frac{\sin A \cdot \sin B}{\sin (A-B)}
$$

19. In an isosceles right-angled triangle, show that the radius of one of the equal escribed circles is equal to the radius of the circumscribed circle.
20. In any right-angled triangle, C being the right angle,

$$
\cot (B-A)+\cot 2\left(A+\frac{\sigma}{2}\right)=0
$$

21. The area of any triangle

$$
=\frac{2 a b c}{a+b+c} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{\theta}{2} .
$$

22. In any isosceles triangle, C being the vertical anglo,

$$
\operatorname{area} \times 32 \cos ^{4} \frac{A}{2}=\sin 2 A^{\prime}(2 a+c)^{2}
$$

23. The length of a perpendicular from A to $B O$

$$
=\frac{b^{2} \sin C+c^{2} \sin B}{b+c}
$$

24. Taking the notation adopted in this Chapter, prove the following relations:
(I)

$$
\begin{aligned}
& \text { (1) } r=\frac{a}{\cot \frac{B}{2}+\cot \frac{C}{2}} \\
& \text { (2) } r=\frac{2 R \cdot \sin A \cdot \sin \frac{1}{2} B \cdot \sin \frac{1}{2} O}{\cos \frac{1}{2} A}
\end{aligned}
$$

(3) $r_{1}=\frac{a}{\tan \frac{B}{2}+\tan \frac{0^{2}}{2}}$
(4) $r_{1}=4 R \cdot \sin \frac{A}{2} \cos \frac{B}{2} \cdot \cos \frac{0}{2}$.
(5) $T_{1}+T_{9}+T_{3}=R(3+\cos A+\cos \vec{B}+\cos (\bar{C})$.
(6) $R+r=R(\cos A+\cos B+\cos n)$
25. Show that the area of a regular polygon inscribed in a circle is a mean proportional between the areas of an inscribed and a circumscribed regular polygon of half the number of sides.
26. The distances between the centre of the inscribed and those of the escribed circles of a triangle $A B C$ are

$$
4 R \cdot \sin \frac{A}{2}, \quad 4 R \sin \frac{B}{2}, \quad 4 R \sin \frac{C}{2}
$$

\boldsymbol{R} being the radius of the circumscribing circle.
27. The points at which the lines bisecting the angles A, B, C of a triangle cut the opposite sides are joined. Show that the area of the triangle so formed bears to that of the triangle $A B C$ the ratio

$$
\frac{2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{B-C}{2} \cdot \cos \frac{O-A}{2} \cdot \cos \frac{A-B}{2}} .
$$

28. If r_{1}, r_{2}, r_{3} be the radii of the escribed circles, and st the mami-perimeter of the triangle, show that

$$
s^{2}=r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}
$$

29. If A, B, C, D, be a quadrilateral capable of being inscribed in a circle, show that $A C \cdot \sin A=B 1) \cdot \sin B$.
30. Show that the distances from the centre of the inscribed circle to the centres of the escribed circles are respectively equal to

$$
\frac{a}{\cos \frac{A}{2}}, \frac{b}{\cos \frac{B}{2}}, \frac{c}{\cos \frac{C}{2}} .
$$

ed in a scribed ber of
31. r is the radius of a circle inscribed in a triangle $A B C$; show that

$$
a=r \cos \frac{A}{2} \operatorname{cosec} \frac{B}{2} \operatorname{cosec} \frac{\sigma}{2} .
$$

32. If R, r be the radii of the circles described about and inscribed in the triangle $A B C$, and st the semi-perimeter of the triangle, prove that

$$
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}+\frac{B}{r}=4 R\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) .
$$

33. $A B C$ is a triangle inscribed in a circle, and a point \boldsymbol{P} is taken on the arc $B C$: show that

$$
P A \cdot \sin A=P B \cdot \sin B+P C \cdot \sin O
$$

34. Given the distances d_{1}, d_{2}, d_{3} from the angles of the point at which the sides of a plane triangle subtend equal angles, find the sides and area
35. If the lengths of three lines drawn from any point within a square to three of its angular points be a, b, c, find a side of the square.
36. The areas of all triangles described about the same circle are as their perimeters.
37. If a, b, c be the sides of a triangle, and a, β, γ the perpendiculars upon them from the opposite angles, show that

$$
\frac{\alpha^{2}}{\beta \gamma}+\frac{\beta^{2}}{a \gamma}+\frac{\gamma^{2}}{\alpha \beta}=\frac{b c}{a^{2}}+\frac{a c}{b^{2}}+\frac{a b}{c^{2}} .
$$

38. A person standing on the sea-shore can just see the top of a mountain, whose height he knows to be 1284.80 yards. After ascending vertically to the height of 3 miles in a balloon, he observes the angle of depression of the mountain's summit to be $2^{\circ} .15^{\prime}$. Find the earth's radius.

$$
\begin{aligned}
& \text { Given } \log 3=4771213, L \cot 2^{\circ} .15^{\prime} \\
&=11 \cdot 4057168, \\
& \log \cdot 73=\overline{1} \cdot 863229, \quad \log 7986 \cdot 4=3 \cdot 9023533, \\
& \log 76 \cdot 3551=1 \cdot 8828381 .
\end{aligned}
$$

39. If an equilateral triangle have its angular points in three parallel etraight lines, of which the middle one is perpendicularly distant from the outside ones by a and b, show that its side

$$
=2 \sqrt{ }\left(\frac{a^{2}+a b+b^{2}}{3}\right) .
$$

40. In a triangle $A B C, A G=2 B C$. If $C D, C E$ respectively bisect the angle C and the exterior angle formed by producing A), prove that the triangles $C B D, A C D, A B C, O D E$ have their areas as $1: 2: 3: 4$.
41. If R, r be the radii of the circles described about and in the triangle $A B C$, the area of the triangle

$$
=\operatorname{Rr}(\sin A+\sin B+\sin C)
$$

42. In the ambiguous case prove that the circles circumscribing the triangles will have the same radius. If the data be $a==605, b=564, B=50^{\circ} .15^{\prime}$, find the radius of the circumscribing circle.
43. The angles of a quadrilateral inscribed in a circle takin in order, when multiplied by $1,2,2,3$, respentively, are in Arithmetical Progression; find their values.
44. If from any point P in a circle lines are drawn to the extremities A, B, and to the point of contact C of a side of the circumscribing square, show that

$$
\frac{(1+\cot P C A)^{2}}{\cot P B A}=\frac{(1+\cot P C B)^{2}}{\cot P A B} .
$$

45. If $R, r, r_{a}, r_{b}, r_{a}$ are the radii of the circumscribeci, inscribed anc ${ }^{\mathfrak{c}}$ escribed circles respectively of a triangle, and C one of the angles, then $4 R \cos O=r+r_{0}+r_{0}-r_{r}$
46. If r be the relizo of the circle inscribed between the luse of a right-any micagle and the other two sides proluced, and r^{\prime} the radius of the circle inscribed between the sititude of the triangle and the other two sides produced, show that the area of the triangle $=r . r$.
47. horiz be 40
48. moun miles
49. by a eurth'
50. sumn an ob of its of th the ea
51. From the top of the peak of Teneriffe the dip of the horizon is found to be $\mathrm{i}^{\circ} .58^{\prime} \cdot 10^{\prime \prime}$. If the radius of the earth be 4000 miles, what is the height of the mountain?
52. What is the dip of the horizon from the top of a mountain 14 miles high. the radius of the earth being 4000 miles?
53. A lamp on the top of a pole 32 feet high is just seen by a man 6 feet in height, at a distance of 10 miles; find the eurth's radius.
54. A ship, of which the height from the water to the summit of the top-mast is 90 feet, is sailing directly towards an observer at the rate of 10 miles an hour. From the time of its first appearance in the offing till its arrival at the station of the observer is 1 hour 12 minutes. Find approximately the earth's radius.
55. If the diameter of the earth be 7912 miles, what is the dip of the sea-horizon as seen from a mountain 3 miles in height?
56. The angle subtended at the sun by the earth's radius being $8^{\prime \prime} .868$ and the earth's radius being 4000 miles, show that the distance of the sun from the earth is approximately 93000000 miles
57. If the distance of the moon from the earth be 241118 miles, show that if the earth's radius is 4000 miles it subtends an angle of $57^{\prime} .1^{\prime \prime} \cdot 5$ nearly at the moon.
58. The tops of two vertical rods on the earth's surface, each of which is 10 feet high, cease to be visible from each other when 8 miles distant. Prove that the earth's radius is nearly 4224 miles.
59. What is the limit of deviation in order that a circulap target of 4 feet diameter may be struck at a distance of 200 yards ?
60. Explain how it is that a shilling can be placed before the eye so as to hide the moon.

ANSWERS.

1. (Page 1.)

I. 64.
2. 26
3. 4 inches.
45 inches.
5. 3 inches.
6. 5 incles.
7. $\frac{b}{3 a}$.
8. $7 \frac{1}{2}$ inches,
9. 1 inch and 3 inches.
10. $13: 504$
11. $\frac{c n}{3 m}$.
ii. (Page 3.)

1. 45 yds .
2. $\quad 7 \mathrm{ft}$.
3. 255 yds .
4. $360 \cdot 5 . . . \mathrm{yd}$.
5. $163 \cdot 25 \mathrm{yds}$, nearly.
6. $12 \mathrm{ft} ., 16 \mathrm{ft}$.
7. $63 \mathrm{ft} ., 45 \mathrm{ft}$.
8. $6 \mathbb{N} / 2 \mathrm{ft}$.
9. $5 \sqrt{ } 2$ inches.
10. $625 \sqrt{ } 2 \mathrm{ft}$.
11. $\frac{13 \sqrt{ } 3}{2}$.
12. $10 \sqrt{ } 3$.
13. 12 inches.
14. 38 inchea.
15. 634 ft .
iii. (Page 9.)
$\begin{array}{lll}\text { 1. } 15 \frac{6}{7} \mathrm{ft} & \text { 2. } 86 \cdot 306 \dot{8} \mathrm{ift} & \text { 3. } 25 \cdot \dot{7} 1428 \dot{5}^{\text {miles }}\end{array}$ + $7954 \frac{6}{11}$ miles. \quad 5. $\quad 2775834_{7}^{2}$ miles. \quad 6. $\quad 1089 \frac{17}{2}$ miles
16. $6 \mathrm{ft} .6 \frac{4}{7}$ in.
17. $47 \frac{1}{7} \mathrm{ft}$.
18. $\frac{525 \sqrt{ } 2}{22} \mathrm{ft}$.
19. $\frac{350 \sqrt{ } 2}{11} \mathrm{ft}$.
II. $12 \frac{6}{7}$ miles.
20. $22 \frac{1}{2}$ miles.
21.
22.
23.

5
I.
3.
6.
9.
1.
5.
9.
iv. (Page 12.)

1. $24 \cdot 2680 \mathbf{5}^{\circ}$.
2. $37 \cdot 04527$.
3. 175.0038.
4 .09i.
4. $375 \cdot 06$.
5. $78 \cdot 201$.
V. (Page 13.)

5 inches.
77 inches.
11. $\frac{c n}{3 m}$.
360.5...yd.

63 ft ., 45 ft . $625 \sqrt{ } 2 \mathrm{ft}$.

12 inches.
1285° miles.
$1089 \frac{17}{2} \frac{1}{2}$ miles $\frac{525 \sqrt{ } 2}{22} \mathrm{ft}$. $22 \frac{1}{2}$ miles.
viii. (Page 21.)

1. $\frac{\pi}{3}$
2. $\frac{\pi}{8}$.
3. $\frac{\pi}{16}$.
$4 \frac{3 \pi}{2}$.
4. $\frac{7 \pi}{4}$.
5. $\frac{1453 \pi}{10800}$.
6. $\frac{143 \pi}{270}$.
7. $\frac{2719 \pi}{40500}$
8. $\frac{\pi}{3}$.
9. $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}$.
ix. (Page 22.)
10. 90°.
11. 60°.
12. 45°.
430°.
13. 120°.
14. $\frac{90}{\pi}$ degrees.
15. $\frac{60}{\pi}$ degrees.
16. $\frac{45}{\pi}$ degrees.
17. $\frac{30}{\pi}$ degrees.
18. $\frac{120}{\pi}$ degrees.
X. (Page 22.)
I. $\frac{\pi}{4}$.
19. $\frac{\pi}{8}$.
20. $\frac{\pi}{32}$.
21. $\frac{5 \pi}{4}$.
22. $\frac{5 \pi}{2}$.
23. $\cdot 0652525 \pi$.
24. $\cdot 120751075 \pi$.
25. $\cdot 6250065 \pi$.
26. 00015π.
27. 0000025π.
xi. (Page 22.)
28. $\mathbf{6 6} \cdot \dot{6}$ grades.
29. 40%.
30. $33 \cdot \dot{3}$ grades.
31. $133 \dot{3}$ grades.
32. 120 .
33. $\frac{200}{3 \pi}$ grades.
34. $\frac{40}{\pi}$ grades.
35. $\frac{25}{\pi}$ grades.
36. $\frac{120}{\pi}$ grades.
37. $\frac{460}{\pi}$ grades.
xii. (Page 23.)
I. 4.5.
38. $4 \cdot 25$ degrees
39. $3 \frac{1^{\circ}}{5}, \frac{5}{8}, \frac{8}{5}$.
40. $3 \frac{10}{2}, \frac{6}{7}, \frac{7}{6}$.
41. $\frac{14}{15}$.
42. $70: 67$.
43. $90^{\circ}, 60^{\circ}, 30^{\circ} ; 100^{8}, 66 \frac{28}{3}, 33 \frac{1^{8}}{3}$.
44. $35^{\circ} \cdot 6^{\prime} \cdot 38^{\prime \prime} 88$
II.
45. 3
46. 1
47. $\frac{1}{6}$
48. 2
49. 18
$\frac{3 \pi}{8}, \pi$
50. 15
51. π
I.
52. $\frac{1}{2 \sqrt{ }}$
53. $3 \sqrt{ }$
54. 346
55. 173
(1. $\frac{5000 m}{27}$.
56. $\frac{1}{81} \quad 13.1 .9^{\circ}$.
57. $20^{\circ}, 60^{\circ}, 100^{\circ}$.
58. 120°.
degrees.
59. $\frac{5 \pi}{2}$.
3250065π
$3 \cdot 3$ grades.
$\frac{0}{\pi}$ grades.
10 grades.
$\frac{5}{8}, \frac{8}{5}$
: 67.
$.6^{\prime} \cdot 38^{\prime \prime} \cdot 88$
xiii. (Page 36.)

І. $\frac{B D}{\overline{A B}}, \frac{A D}{\bar{A} \bar{B}}, \frac{B D}{\overline{A D}} ; \frac{A D}{\overline{A B}}, \frac{B D}{\overline{A D}}, \frac{A B}{\overline{A D}} ; \frac{B D}{\overline{B C}}, \frac{C D}{\overline{R C}}, \frac{D B}{\overline{D O}}$
xiv. (Page 49.)

1. $\frac{1}{2 \sqrt{2}}$.
2. $\sqrt{\frac{2}{3}}$.
3. $\frac{\sqrt{ } 3}{2}$.
$4 \cdot \sqrt{3}$
4. $120^{\circ}, 150$.
5. $\frac{\pi}{3}, \frac{2 \pi}{3}$.
6. $\pi-\frac{2 \pi}{\pi}$.
7. π feet
8. 8 and 4.
9. $\frac{133 \pi}{6}$ miles. \quad 29. $67 \frac{1}{2}, 180^{\circ}, 45 \pi^{\circ},(n .180+15)^{\circ}$;
$\frac{3 \pi}{8}, \pi,\left(\frac{\pi}{2}\right)^{2}, n \pi+\frac{\pi}{12}$.
10. $\frac{\pi}{12}$.
11. $120^{\circ}, 108^{\circ}$.
12. $173 \frac{1^{\circ}}{3}$.
13. $125 \cdot \dot{9} 2 \dot{5}$ grades.
14. $\frac{800}{3 \pi}$ gradea.
15. $\frac{1600 \pi-3600}{0 \pi}$ grades. $\quad 23.54^{\circ} \cdot 46^{\prime} .54^{\prime \prime \prime} \cdot 5$. $24 . \quad 1775$.
16. 20π degrees. $\quad 26 \frac{1}{144000}$ th part. $\quad 27 . \frac{1}{360}, \frac{1}{400}, \frac{1}{2 \pi}$.
17. $3 \sqrt{2}+\sqrt{3}$.
xv. (Page 52.)
18. $346 \cdot 4101$... feet
19. 173.20 n ... feet. [n.T]
20. $85 \cdot 829037$... feet.
21. 60°.
22. 424.352 ... feet from foot of rock.
23. $1 \cdot 366 \ldots$ miles. $7 \cdot 42 \cdot 265 \ldots$ fect above the tower. 8. 72 feet.
24. $50 \sqrt{ } 3 . y d$
25. 25°.
26. 104•25. feet above the tower.
27. 125 yd . $13.92 \frac{4}{13}$ feet. $14.342 \frac{8}{7}$ feet. $\quad 15.8 \cdot 053 \ldots$ feet.
xvil. (Page 60.)
28. $\sin A=\sqrt{1-\cos ^{2} A}, \quad \tan A=\frac{\sqrt{1-\cos ^{2} A}}{\cos A}, \quad \sec A=\frac{1}{\cos A}$,

$$
\operatorname{cosec} A=\frac{1}{\sqrt{1-\cos ^{2} A}}, \quad \cot A=-\frac{\cos A}{\sqrt{1-\cos ^{2} A}}
$$

2. $\quad \sin A=\frac{1}{\operatorname{cosec} A}, \quad \cos A=\frac{\sqrt{\operatorname{cosec}^{2} A-1}}{\operatorname{cosec} A}$,
$\tan A=\frac{1}{\sqrt{\operatorname{cosec}^{2} A-\overline{2}}}, \quad \sec A=\frac{\operatorname{cosec} A}{\sqrt{\operatorname{cosec}^{2} A-1}}$,
$\cot A=\sqrt{\operatorname{cosec}^{2} A-1}$.
3. $\sin A=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}, \quad \cos A=\frac{1}{\sec A}, \quad \tan A=\sqrt{\sec ^{2} A-1}$, $\operatorname{cosec} A=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}, \quad \cot A=\frac{1}{\sqrt{\mathrm{~s}} \frac{1}{\mathrm{c}^{2} A-1}}$.
4. $\quad \sin A=\frac{i}{\sqrt{1+\cot ^{2} A}}, \quad \cos A=\frac{\cot A}{\sqrt{1+\cot ^{2} A}}, \quad \tan A=\frac{1}{\cot A^{\prime}}$ $\operatorname{cosec} A=\sqrt{1+\cot ^{2}} \bar{A}, \quad \sec A=\frac{\sqrt{1+\cot ^{2} A}}{\cot A}$.

Kvili. (Page 61.)

1. $\frac{\sqrt{6}}{3}, \frac{2}{\sqrt{5}}$.
2. $\frac{3}{5}, \frac{3}{4}$.
3. $\frac{\sqrt{7}}{4}, \frac{3}{\sqrt{7}}$
4. $\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{2}}$.
5. $\sqrt{ } \frac{\left(a^{4}+b^{4}\right)}{a^{2}}, \frac{\sqrt{ }\left(a^{4}+b^{4}\right)}{b^{2}}$.
6. $\frac{\sqrt{ }\left(b^{2}-a^{2}\right)}{a}, \frac{8}{\sqrt{\left(b^{3}-a^{5}\right)}}$
7. $\cdot \frac{a}{\sqrt{\left(1-a^{5}\right)}}, \frac{1}{\sqrt{\left(1-a^{\infty}\right)}}$.
8.
9.
10.
11.
12. (
r. 8. 72 feet
ve the tower.
$8^{\prime} 053 . .$. feet.
$\sec A=\frac{1}{\cos A}$,
$\overline{3^{2} A}$
$\frac{A}{A-1}$,
$=\sqrt{\sec ^{2} A-1}$

$\overline{-1}$

$\tan A=\frac{1}{\cot A^{\prime}}$
$\frac{\sqrt{7}}{4}, \frac{3}{\sqrt{7}}$
$\frac{\sqrt{ }\left(a^{4}+b^{4}\right)}{b^{2}}$.
$\frac{1}{1\left(1-\omega^{2}\right)}$
8. $\frac{\sqrt{ }\left(1-b^{2}\right)}{b}, \frac{1}{\sqrt{\left(1-b^{2}\right)}}$
10. $\frac{5}{2 \sqrt{14}}, \frac{9}{2 \sqrt{14}}$.
12. $\frac{\sqrt{ } 61}{31}, \frac{\sqrt{ } 61}{30}$.
14. $\frac{99}{101}, \frac{99}{20^{\circ}}$
9. $\frac{4}{5}, \frac{4}{3}$.

1. $\frac{\sqrt{403}}{22}, \frac{\sqrt{403}}{9}$.
2. $\frac{20}{101}, \frac{20}{99^{\circ}}$
3. $\frac{5}{13}, \frac{13}{12}$

XX. (Page 65.)

I. (I) $65^{\circ} .45^{\prime} .18^{\prime \prime}$.
(2) $46^{\circ} .57^{\prime} .3^{\prime \prime}$.
(3) $25^{\circ} .59^{\prime} 46^{\circ}$.
(4) $7^{\circ} .55^{\prime} .45^{\prime \prime}$.
(5) $-\left(35^{\circ} .15^{\prime} \cdot 42^{\prime \prime}\right)$.
(6) $-\left(88^{\circ} .2\right.$ ² $\left.^{\prime} .34^{\prime \prime}\right)$.
(7) -105°.
(8) -164°.
(9) 115°.
(Io) 335°.
2. (I) 67' $^{\circ} \cdot 76^{\prime} \cdot 76^{\prime \prime}$.
(2) $4^{8} .96^{\prime} .25^{\prime \prime}$.
(3) $53^{\prime} .99^{\prime} .16^{\prime \prime}$.
(4) $97^{8} .94^{\prime} .96^{\prime \prime}$.
(5) $-\left(35^{\Sigma} .2^{\prime} .5^{\prime \prime}\right)$.
(6) $-\left(69^{\circ} \cdot 0^{\prime} \cdot 3^{\prime \prime}\right)$.
(7) -143^{8}
(8) -257^{5}.
(9) 135°.
(Io) 345.
3. (I) $\frac{\pi}{4}$
(2) $\frac{\pi}{6}$.
(3) $-\frac{\pi}{10}$.
(4) $\frac{3 \pi}{4}$.
(5) $\frac{5 \pi}{4}$.
xxi. (Page 68.)
8. (1) $145^{\circ} .47^{\prime} 11^{\prime \prime}$.
(2) $47^{\circ} \cdot 35^{\prime} \cdot 13^{\prime \prime}$.
(3) $33^{\circ} .59^{\prime} \cdot 19^{\prime \prime}$.
(4) $151^{\circ} \cdot 44^{\prime} \cdot 56^{\prime \prime}$.
(5) $1^{\prime \prime}$.
(6) $79^{\circ} .10^{\prime} .{ }^{\prime \prime \prime}$.
(7) -65°.
(8) $-\left(257^{\circ} \cdot 3^{\prime} \cdot 4^{\prime \prime}\right)$.
(9) 229°. (ıо) 535°.
2. (I) $67^{\circ} .67^{\prime} .58^{\prime \prime}$.
(2) $4^{5} .971 .43^{\prime \prime}$.
(3) $196^{\prime \prime} \cdot 2^{\prime} \cdot 2^{\prime \prime}$.
(4) $134^{\circ} .87^{\prime} .92^{\prime \prime}$.
(5) $45^{\mathrm{s}} .96^{\prime} .94^{\prime \prime}$.
(6) $25^{8} .99^{\prime} .96^{\prime \prime}$.
(7) -75^{8}.
(8) $-\left(327^{5} .2^{\prime} .14^{\prime \prime}\right)$.
(9) 235°. (10) 525°.
3. (1) $\frac{\pi}{8}$
(2) $\frac{2 \pi}{3}$.
(3) $\frac{\pi}{5}$.
(4) $\frac{5 \pi}{4}$.
(5) $\frac{7 \pi}{4}$.
4π
Xxiii. (Page 72.)

1. $\frac{\sqrt{3}}{2}$.
-. $-\frac{1}{2}$.
2. $\frac{1}{\sqrt{2}}$.
$4-\frac{1}{\sqrt{2}}$
3. $\frac{1}{2}$.
4. $-\frac{\sqrt{3}}{2}$
5. $-\frac{1}{\sqrt{2}}$
6. $-\frac{\sqrt{ } 3}{2}$.
7. $-\sqrt{3}$.
8. $-\frac{2}{\sqrt{3}}$.
9. $\sqrt{2}$
10. $-\sqrt{3}$

Xxiv. (Page 75.)

1. -45°.
2. 45°.
3. 0°.
4. 90°.
5. 0° or 60°.
6. 30°.
7. 30°.
8. 45°,
9. 30°. 10
10. 60° or 30°.
11. 30° or 60°. 12. 30° or 60°.
12. 45°.
13. 45°.
14. 30°.
15. 45°.
16. 135°.
17. 45°.
18. 30° or 90°.
19. 45°.
xxv. (Page 81.)
1: $\frac{\sqrt{3}}{2}$.
20. $-\frac{1}{2}$.
21. $\frac{1}{\sqrt{2}}$.
22. $-\frac{1}{\sqrt{2}}$
23. $\frac{1}{2}$
24. $-\frac{\sqrt{ } 3}{2}$.
25. $-\frac{1}{\sqrt{2}}$.
26. $-\frac{\sqrt{ } 3}{2}$.
27. $-\sqrt{ } 3$.
28. $-\frac{2}{\sqrt{3}}$.
29. $\sqrt{2}$.
30. $-\sqrt{ } 3$.
31. $\frac{1}{2}$.
32. $\frac{2}{\sqrt{3}}$
33. 34.
1. $\frac{\sqrt{3}}{2}$.
2. $\frac{1}{\sqrt{2}}$.
3. $\frac{\sqrt{ } 3}{2}$.
4. 0 .
5. 6.
1. -2 .
2. $\frac{1}{\sqrt{3}}$.
3. 4.

$24-\frac{8}{\sqrt{3}}$
25. $\frac{\Lambda^{/ 3}}{2}$.
26. 1.
27. $-\sqrt{2}$.
28. -1 .
29.2.
30. $-\frac{1}{2}$.
I.
4.

$$
7
$$

9.
10.
11.

I.
5.

1. 2
2. 2
3. 2

42
6. 2
8. 2
XXVi. (Page 82.)
$-\frac{1}{\sqrt{2}}$
$-\frac{\sqrt{ } 3}{2}$.
$-\sqrt{8}$
4. 90°.
8. 45°,
30° or 60°.
16. 45°.
$)^{\circ}$. 20. 45°.
4. $-\frac{1}{\sqrt{8}}$
8. $-\frac{\sqrt{ } 3}{2}$.
2. $-\sqrt{ } 3$.
16. $\frac{\sqrt{3}}{2}$.
20. 10
4. $-\frac{8}{\sqrt{3}}$
28. - 1 .

1. $n \pi+(-1)^{n} \cdot \frac{\pi}{2}$.
2. $2 n \pi$.
3. $n \pi+(-1)^{n} \cdot \frac{\pi}{4}$
4. $n \pi+\frac{\pi}{3}$.
5. $n \pi+(-1)^{n} \frac{\pi}{6}$.
6. $n \pi$ or $2 n \pi \pm \frac{\pi}{3}$.
7. $n \pi+(-1)^{n} \cdot \frac{\pi}{4}$.
8. $2 n \pi \pm \frac{\pi}{4}$ or $2 n \pi \pm \frac{3 \pi}{4}$.
9. $n \pi+\frac{\pi}{4}$.
10. $2 n \pi \pm \frac{\pi}{3}$.
xxviii. (Page 88.)
11. $\frac{\sqrt{5}+4 \sqrt{ } 2}{9}$.
12. $\frac{2 \sqrt{ } 7-3 \sqrt{ } 21}{20}$.
13. $\frac{\sqrt{ } 3-1}{2 \sqrt{2}}$
14. $\frac{\sqrt{ } / 3+\sqrt{ } 899}{60}$.
XXX. (Page 89.)
15. 45°.
16. 0°.
17. 105°.
18. 60° or 30° or -30°.
19. 45°.
20. 60°.
XXxii. (Page 93.)
21. $2 \cos \frac{1}{2}\left(\alpha+\frac{\pi}{2}-\beta\right) \sin \frac{1}{2}\left(\alpha-\frac{\pi}{2}+\beta\right)$.
22. $2 \cdot \sin \left(\frac{\pi}{4}+a\right) \cdot \cos \frac{\pi}{4}$.
23. $2 \sin \frac{\pi}{4} \cdot \cos \left(a-\frac{\pi}{4}\right)$.
24. $2 \cos \frac{\pi}{4} \sin \left(a-\frac{\pi}{4}\right)$.
25. $2 \sin 20^{\circ} \cdot \cos 10^{\circ}$.
26. $2 \cos 15^{\circ} . \sin 5^{\circ}$.
27. $2 \sin \frac{7 \pi}{24} \cos \frac{\pi}{24}$.
28. $2 \cos \frac{19 \pi}{60} \cdot \sin \frac{\pi}{60}$.

Xxxv. (Page 105.)

2.

(1) $\theta=45^{\circ}$ or -15°.
(2) $\theta=30^{\circ}$ or 45°.
(3) $x=0^{\circ}$ or $7 \frac{1}{2^{\circ}}$.
(4) $\theta=15^{\circ}$ or 30°.
(5) $A=30^{\circ}$ or 150°.
(6) $\theta=0^{\circ}$ or $7 \frac{1}{2}^{\circ}$.
(7) $\theta=15^{\circ}$ or 30°.
(8) $\alpha=0^{\circ}$ or 30°.
(9) $\theta=180^{\circ}$ or 30°
(10) $a=0^{\circ}$ or 15° or 60°.
(ii) $\theta=\frac{\pi}{6}$.
(12) $\theta=0^{\circ}$ or 30°.

xxxvi. (Page 106.)

1. $\frac{1}{4} \sqrt{ }(10-2 \sqrt{5})$.
2. $\frac{1}{4}(1+\sqrt{ } 5)$.
3. $\frac{1}{4}(1+\sqrt{5})$.
4. $\frac{1}{4} \sqrt{ }(10-2 \sqrt{ } \sqrt{15})$.
5. $\frac{1}{4} \sqrt{ }(10+2 \sqrt{ } 5)$.
6. $\frac{\sqrt{ }(10+2 \sqrt{ } 5)}{\sqrt{5}-1}$.
7. 8.
1. a

Xxxvil. (Page 110.)

1. $\cos \frac{A}{2}+\sin \frac{A}{2}=+\sqrt{1+\sin A}$;

$$
\cos \frac{A}{2}-\sin \frac{A}{2}=+\sqrt{1-\sin A}
$$

2. $\cos \frac{A}{2}+\sin \frac{A}{2}=-\sqrt{1+\sin A}$;
$\cos \frac{A}{2}-\sin \frac{A}{2}=-\sqrt{1-\sin A}$.
3. $\cos 189^{\circ}=-\frac{1}{4}\{\sqrt{5-\sqrt{5}}+\sqrt{3+\sqrt{5}}\}$;
$\sin 189^{\circ}=\frac{1}{4}\{\sqrt{5-\sqrt{5}}-\sqrt{3+\pi / 5}\}$
$4 \frac{\bar{z}-\sqrt{2}}{2 \sqrt{3}}$.
4. $-\frac{\sqrt{2+} \sqrt{2}}{2}$.
xxxix. (Page 120.)
I. $\overline{1}-2187180$.
5. $4 \cdot 740378$.
6. $\overline{5} \cdot 3790163$.
7. $\overline{2} \cdot 1241803$.
8. $\overline{7} 7074922$
9. $2 \cdot 924059$.
10. $\overline{40} \cdot 578098$
II. $\overline{3} \cdot 738827$.
xl. (Page 123.)
I. $2 \cdot 1072100 ; 2.0969100 ; 3.3979400$.
11. $1 \cdot 6989700 ; \overline{3} \cdot 6989700 ; 2 \cdot 2922560$.
12. $7781513 ; 1$-4313639; 1 •7323939; 2•7604226.
13. $1 \cdot 7781513 ; \overline{2} \cdot 4771213 ; ~ 0211893 ; \overline{5} \cdot 6354839$.
14. $\overline{4} \cdot 8750613 ; 1 \cdot 4983105$.
15. 3010300 ; $\overline{2} \cdot 8061800 ; \cdot 2916000$.
16. 6989700 ; $\overline{1} \cdot 0969100 ; 3.3910733$.
17. $-2,0,2: 1,0,-1$.
18. (I) 3.
(2) 2.
19. $x=\frac{9}{2}, y=\frac{8}{2}$.
20. (a) 30102,$10 ; 1 \cdot 3979400 ; 1 \cdot 9201233$; $1 \cdot 9979588$. (b) 10%
21. (a) ${ }^{2} 69897 . \quad$ 2 $2600 ; 1 \cdot 7118072 ; \overline{1} \cdot 9880618$.
(b) 8.
22. $3 \cdot 8821260 ; 1 \cdot 4093694 ; \overline{3} \cdot 7455326$.
23. (1) $x=\frac{1}{6}$.
(2) $x=2$.
(3) $x=\frac{\log m}{\log \frac{1}{a+\log b}}$
(4) $x=\frac{\log c}{m \log } \frac{\log }{a+2 \log }{ }^{\text {b }}$
(5) $x=\frac{4 \log b+\log c}{2 \log c+\log b-3 \log a}$
(6) $x=\frac{\log c}{\log a+m \log b+3 \log o^{\circ}}$
xli. (Page 127.)
24. $4 \cdot 7201799$.
25. $2 \cdot 4777360$
26. $1 \cdot 5054974$.
27. $2 \cdot 3740165$.
$7 \quad 6.8190943$.
28. 1:8293173
29. $\overline{3} \cdot 8653132$.
30. 3.5324716 .
31. $\mathrm{B} \cdot 6921478$.
xlii. (Page 129.)
I. 12954 . 8 .
32. $4624 \cdot 5095$.
33. $345 \cdot 7291$.
34. 393756.9
35. $3715 \cdot 953$.
36. $009646153 \dot{1}$
37. 00000025725982.
38. $601 \cdot 95403$.
39. $1090 \cdot 5286$.
40. 262.01818.
xliii. (Page 132.)
I. $\quad 6724242$.
41. 9990000 .
42. 240028.
1. 8270272 .
2. 9523159 .
3. 6850417.
1. $1 \cdot 4225100$.
2. 8150856 .
3. 7521403.
1. 9230769 .
xliv. (Page 135.)
I. $48^{\circ} .46^{\prime} .34^{\prime \prime}$.
2. $2^{\circ}, 33^{\prime}, 45^{\prime \prime}$.
3. $43^{\circ} \cdot 14^{\prime} \cdot 8^{\prime \prime} 18$.
4. $32^{\circ} \cdot 31^{\prime} .13^{\prime \prime} \cdot 5$.
5. $24^{\circ} .11^{\prime} .22^{\prime \prime} \cdot 2$.
6. $82^{\circ}, 22^{\prime} .12^{\prime \prime} .8$.
7. $53^{\circ}, 7^{\prime} .48^{\prime \prime} 4$.
8. $25^{\circ} .3^{\prime} .27^{\prime \prime} \cdot 2$. 9. $73^{\circ} .44^{\prime} .23^{\prime \prime} \cdot 2$.
9. $77^{\circ} .19^{\prime} .10^{\prime \prime} \mathrm{b}$.
xlv. (Page 138.)
10. 9.9163319 .
11. 9.6912280 .
12. $9 \cdot 9091749$.
13. $9 \cdot 7203429$.
14. $9 \cdot 8996023$.
15. 11•1975684.
16. $9 \cdot 8027687$.
17. $8 \cdot 9610068$
18. $8 \cdot 2814755$.

Xlvi. (Page 14@.)

$1 \cdot 5054974$. --8653132. 5•6921478.
$45 \cdot 7291$. $0964615 \dot{3}$ $01 \cdot 95403$.
I. $14^{\circ} .24^{\prime} .35^{\prime \prime}$.
2. $54^{\circ} .13^{\prime} .19^{\prime \prime}$.
3. $71^{\circ} .40^{\prime} .18^{\prime \prime}$.
$4.29^{\circ} .25^{\prime} .2^{\prime \prime}$.
5. $30^{\circ} .50^{\prime} .27^{\prime \prime} 6$.
6. $86^{\circ} .32^{\prime} .24^{\prime \prime} \cdot 5$
7. $24^{\circ}, 8^{\prime} .45^{\prime \prime}$.
8. $11^{\circ} .39^{\prime} .52^{\prime \prime}$.
9. $46^{\circ} \cdot 23^{\prime} \cdot 11^{\prime \prime}$.
10. $29^{\circ} .54^{\prime} \cdot 29^{\prime \prime} 6$.

xlix. (Page 157.)

1. $\quad \Delta=4, A=53^{\circ} \cdot 7^{\prime} \cdot 48^{\prime \prime} \cdot 4, B=36^{\circ} .52^{\prime} .11^{\prime \prime} \cdot 6$.
2. $a=8, A=28^{\circ} .4^{\prime} \cdot 20^{\prime \prime} \cdot 9, B=61^{\circ} .55^{\prime} .39^{\prime \prime} \cdot 1$.
3. $a=20, A=43^{\circ} .36^{\prime} \cdot 10^{\prime \prime} \cdot 1, B=46^{\circ} .23^{\prime} .49^{\prime \prime} \cdot 9$.
$4 a=24, A=73^{\circ} .44^{\prime} .23^{\prime \prime} \cdot 3, B=16^{\circ} .15^{\prime} .36^{\prime \prime} \cdot 7$.
4. $a=56, A=59^{\circ} .29^{\prime} \cdot 23^{\prime \prime} \cdot 2, B=30^{\circ} .30^{\prime} .36^{\prime \prime} \cdot 8$.
5. $a=12, b=5, B=22^{\circ} .37^{\prime} .11^{\prime \prime} \cdot 5$.
6. $a=40, b=9, B=12^{\circ} .40^{\prime} .49^{\prime \prime} \cdot 4$.
7. $a=48, b=55, A=41^{\circ} \cdot 6^{\prime} \cdot 43^{\prime \prime} \cdot 5$.
8. $a=39, b=80, A=25^{\circ} .59^{\prime} .21^{\prime \prime} \cdot 2$

ร. $b=9, c=41, B=12^{\circ} .40^{\prime} .49^{\prime \prime} 4$.

1. (Page 159.)

I. $b=153, A=34^{\circ} .12^{\prime} .19^{\prime \prime} \cdot 6, B=55^{\circ} .47^{\prime} .40^{\circ} \cdot 4$
2. $b=297, A=45^{\circ} .40^{\prime} .2^{\prime \prime} \cdot 3 . B=44^{\circ} .19^{\prime} .57^{\prime \prime} \cdot 7$.
3. $b=41, A=87^{\circ} \cdot 12^{\prime} .20^{\prime \prime} \cdot 3, B=2^{\circ} .47^{\prime} .39^{\prime \prime} \cdot 7$.
4. $b=527, A=32^{\circ} .31^{\prime} .13^{\prime \prime} \cdot 5, B=57^{\circ} .28^{\prime} .46^{\prime \prime} \cdot 5$.
5. $b=141, A=82^{\circ} .41^{\prime} .44^{\prime \prime}, B=7^{\circ} .18^{\prime} .16^{\prime \prime}$.
6. $a=748, A=75^{\circ} \cdot 23^{\prime} .18^{\prime \prime} \cdot 5, B=14^{\circ} .36^{\prime} .41^{\prime \prime} \cdot 5$.
7. $a=736, A=69^{\circ} \cdot 38^{\prime} \cdot 56^{\prime \prime} \cdot 3, B=20^{\circ} .21^{\prime} \cdot 3^{\prime \prime} \cdot 7$.
8. $a=200, A=18^{\circ} \cdot 10^{\prime} \cdot 50^{\prime \prime}, B=71^{\circ} .49^{\prime} \cdot 10^{\prime \prime}$.
9. $c=565, A=29^{\circ} .14^{\prime} \cdot 30^{\prime} \cdot 3, B=60^{\circ} .45^{\prime} \cdot 29^{\prime \prime} \cdot 7$.

1a. $c=565, A=44^{\circ} \cdot 29^{\prime} \cdot 53^{\prime \prime}, B=45^{\circ} \cdot 30^{\prime} \cdot 7^{\prime \prime}$.

11. (Page 161.)

I. $231-835$ feet.
2. 93.97 feet.
3. $36 \cdot 6 \ldots$ feet ; $70 \cdot 7 \ldots$.feet ; 100 feet.
4. 196 feet nearly.
5. 460 yds nearly.
6. $63^{\circ} \cdot 26^{\prime} .6^{\prime \prime}$.
7. 88 yds. nearly. .
8. $33^{\circ} .23^{\prime} .55^{\prime \prime} 7$.
9. $38^{\circ} \cdot 5^{\prime} \cdot 47^{\prime \prime} \cdot 9$.
10. 104.93 feet.
11. 45 feet
12. 150 feet.
lii. (Page 174.)

1. (I) $67^{\circ} .22^{\prime} .48^{\prime \prime} \cdot 5$.
(2) $43^{\circ} \cdot 36^{\prime} \cdot 10^{\prime \prime} \cdot 1$.
(3) $112^{\circ} .37^{\prime} .11^{\prime \prime} \cdot 5$.
(4) $29^{\circ} .51^{\prime} \cdot 46^{\prime \prime} \cdot 1$.
2. $A=49^{\circ} \cdot 7^{\prime} \cdot 10^{\prime \prime}, C=87^{\circ} .44^{\prime} \cdot 50^{\prime \prime}$.
3. $b=79.063$.
4. $b=219 \cdot 37$.
5. $57^{\circ} .14^{\prime} .21^{\prime \prime}$ or $122^{\circ} .45^{\prime} .39^{\prime \prime}$.
6. No, for $B=90^{\circ}$. 7. $\quad \cos A=\frac{1}{2} \quad$ 9. $45^{\circ}, 60^{\circ}, 75^{\circ}$
7. $69^{\circ} \cdot 10^{\prime} \cdot 10^{\prime \prime}$ and $46^{\circ} \cdot 37^{\prime} \cdot 50^{\prime \prime}$. \quad 2. $65^{\circ} \cdot 46^{\prime}$, It
8. $A=116^{\circ} \cdot 33^{\prime} .54^{\prime \prime}, B=26^{\circ} .33^{\prime} .54^{\prime \prime}$.

1ili. (Page 176.)

I. $c=5, A=53^{\circ} \cdot 7^{\prime} .48^{\prime \prime} \cdot 4, B=36^{\circ} .52^{\prime} .11^{\prime \prime} \cdot 6$.
2. $a=48, A=41^{\circ} .6^{\prime} .43^{\prime \prime} \cdot 5, B=48^{\circ} .53^{\prime} .16^{\prime \prime} \cdot 5$.
$3^{n \cdot 7}$.

9n'7.
feet nearly.
yds. nearly.
$104 \cdot 93$ feet.
$10^{n} \cdot 1$.
$46^{\prime \prime} 1$
$45^{\circ}, 60^{\circ}, 75^{\circ}$ $35^{\circ} .46^{\prime}$. $1 t$
3. $c=353, A=50^{\circ} \cdot 24^{\prime} \cdot 8^{\prime \prime} \cdot 1, B=39^{\circ} .35^{\prime} .51^{\prime \prime} \cdot 9$.
4. $a=40, A=5^{\circ} .43^{\prime} \cdot 29^{\prime \prime} \cdot 3, B=84^{\circ} \cdot 16^{\prime} \cdot 30^{\prime \prime} \cdot 7$.
5. $a=8.1, b=437, B=79^{\circ} \cdot 7^{\prime} \cdot 9^{\prime \prime} \cdot 6$.
6. $\left.a=460, b=429, B=43^{\circ} .0^{\prime} .1\right)^{\prime \prime} 3$.
7. $a=280, b=351, A=38^{\circ} .34^{\prime} .48^{\prime \prime} 3$.
8. $a=180, b=299, A=31^{\circ} .2^{\prime} .53^{\prime \prime} b$.
9. $b=231, c=569, B=23^{\circ} .57^{\prime} .8^{\circ}$.

1a. $a=480, c=451, B=3^{\circ} .41^{\prime} .43^{\circ}$.
llv. (Page 177.)

1. $A=31^{\circ} .53^{\prime} .26^{\prime \prime} \cdot 8, B=8^{\circ} .10^{\prime} .16^{\prime \prime \prime} \cdot 4, C=139^{\circ} .56^{\prime} .16^{\prime \prime} \cdot 8$.
2. $A=84^{\circ} .32^{\prime} .50^{\prime \prime} \cdot 5, B=25^{\circ} .36^{\prime} .30^{\prime \prime} \cdot 7, C=69^{\circ} .50^{\prime} .38^{\prime \prime} \cdot 8$.
3. $A=76^{\circ} \cdot 18^{\prime} .52^{\prime \prime}, B=35^{\circ} .18^{\prime} .0^{\prime \prime} \cdot 9, C=68^{\circ} .23^{\prime} .7^{\prime \prime} \cdot 1$.
4. $A=62^{\circ} .51^{\prime} .32^{\prime \prime} \cdot 9, B=44^{\circ} .29^{\prime} .53^{\prime \prime}, C=72^{\circ} .38^{\prime} .34^{\prime \prime} 1$.
5. $A=150^{\circ} .8^{\prime} .14^{\prime \prime}, B=17^{\circ} .3^{\prime} .41^{\prime \prime} \cdot 5, C=12^{\circ} .48^{\prime} .4^{\prime \prime} \cdot 6$.
6. $u=101, c=120, B=11^{\circ} .25^{\prime} .16^{\prime \prime} 3$.
7. $a=221, c=222, B=39^{\circ} .18^{\prime} .27^{\prime \prime} \cdot 5$.
8. $c=78, A=136^{\circ} .23^{\prime} .49^{\prime \prime} \cdot 9, B=11^{\circ} .25^{\prime} .16^{\prime \prime} \cdot 3$.
9. $c=408, A=77^{\circ} \cdot 19^{\prime} .10^{\prime \prime} 6, B=5^{\circ} .43^{\prime} .29^{\prime \prime} \cdot 2$.
10. $c=120, A=110^{\circ} .0^{\prime} .57^{\prime \prime} \cdot 5, B=39^{\circ} .18^{\prime} .27^{\prime \prime} \cdot 5$.
11. $c=102, A=79^{\circ} .36^{\prime} .40^{\prime \prime}, B=33^{\circ} .23^{\prime} .54^{\prime \prime} 6$.
12. $c=450, A=81^{\circ} .27^{\prime} .16^{\prime \prime}, B=10^{\circ} .37^{\prime} .44^{\prime \prime}$.
13. $c=312, A=33^{\circ} .23^{\prime} .54^{\prime \prime} 6, B=15^{\circ} .11^{\prime} .21^{\prime \prime} \cdot 4$.
14. $c=332 \cdot 97, A=45^{\circ} \cdot 46^{\prime} .16^{\prime \prime} \cdot 5 . B=30^{\circ} .9^{\prime} .52^{\prime \prime} 5$.
15. $c=30, A=154^{\prime \prime} .45^{\prime} \cdot 36^{\prime \prime} 6, B=29^{\circ} .51^{\prime} .46^{\prime \prime} 4$
16. $B=67^{\circ} .22^{\prime} .48^{n \cdot 1}$ or $112^{\circ} .37^{\prime} \cdot 11^{n} \cdot 9$.
17. $B=62^{\circ} .51^{\prime} .32^{n} \cdot 9$ or $117^{\circ} \cdot 8^{\prime} \cdot 27^{n \cdot} 1$.
18. $B=78^{\circ}, 19^{\prime} .24^{\prime \prime}$ or $101^{\circ} .40^{\prime} .36^{\prime \prime}$.
19. $B=75^{\circ}, 18^{\prime} .28^{\prime \prime} \cdot 2$ or $104^{\circ} .41^{\prime} .31^{\prime \prime} a^{\circ}$
20. $B=53^{\circ} .26^{\prime} .0^{\prime \prime} \cdot 6$.

1v. (Page 181.)

I. $236 \cdot 602 .$. feet.
2. 1210 yds . and 1040.5 jda
3. 4596 yds. nearly and $4584 \cdot 48$ yds. \quad 4. $33^{\prime} .48^{\prime \prime}$.
5. $\quad \sqrt{ } 3: 1 . \quad$ 6. 107 feet nearly. \quad 10. $\frac{a}{2} \sin a$. sec R 13. 4 miles. 14. $5(3-\sqrt{ } 3) \mathrm{m}$.es. $\quad 10 . \tan -\frac{4}{3}$.
20. 51/76...feet.
21. 10 ax.d $14 \cdot 1$ t....miles.
22. $48^{\circ} .22^{\prime}$.
23. $\quad 115.47 \mathrm{yds}$, and 9.503 yda
24. 5•71307...miles,
25. 15 yds
26. $6236 \cdot 549 \mathrm{ft}$; $\quad 1095 \cdot 47 \mathrm{ft}$

27 . $85 \cdot 28$ ft. or 28.14 ft.
28. $108 \cdot 64$ yds nearly. 29. $204 \cdot 2 \mathrm{ft}$.
30. $A=116^{\circ} .13^{\prime} 20^{\prime \prime}, B=26^{\circ} .2 \sigma^{\prime} .40^{\prime \prime}, c=4325 \cdot 26$.
31. 1 mile and $\$ 23497$ mile.
32. 124.3 feet.
33. $306.4178 ; \mathrm{ds}$. $34,34 \cdot 42284$ or 14.524 miles an hour.
35. 513.7045 yds
36. $17^{\circ} .47^{\prime} .50^{\prime \prime}$
37. 134 yds.
38. $169 \cdot 4392 \mathrm{yds}$.
39. 76.5455 miles.
lvi. (Page 199.)

1. $30 \sqrt{3} \mathrm{sy}$. in.
2. 600 sq . ft.
3. $7 \frac{1}{2}$ sq. ft.
4. 12 sq . in.
5. 151872.
1. 30600 .
2. 12480.
1. 1016.9487.
2. $\quad a=\Delta^{\prime}\left(d_{2}{ }^{2}+d_{3}{ }^{2}+\left(l_{2} d_{3}\right)\right.$,
$b=v^{\prime}\left(l_{1}^{2}+d_{3}{ }^{2}+d_{1} d_{3}\right)$,
$c=\sqrt{ }\left(d_{1}^{2}+d_{2}^{2}+d_{1} l_{2}\right)$,
area $=\frac{\sqrt{ } 3}{4}-\left(d_{1} d_{2}+d_{1} l_{3}+d_{2} d_{3}\right)$.
yda
$48{ }^{\circ}$
a. sec \boldsymbol{B}
$-\frac{4}{3}$
3. $\left.\sqrt{\frac{1}{2}\left\{a^{2}+c^{2} \pm \sqrt{4\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}-b^{4}\right)-\left(a^{2}+c^{2}\right)^{2}}\right.}\right\}$.
4. $3992 \cdot 835$ miles.
5. $\frac{6 \pi}{17}, \frac{7 \pi}{17}, \frac{11 \pi}{17}, \frac{10 \pi}{17}$.
6. $1^{\circ} .26^{\prime}$. 49. $4017 \cdot 79 \ldots$ miles.
7. $8^{\circ} \cdot 13^{\prime} \cdot 50^{\prime \prime}$. 55. $\tan ^{-1} \cdot 00$ B $^{\circ}$
8. $366 \cdot 785 \ldots$
9. $2 \cdot 36$ miles
10. 4224 milea
11.

feet.
es an hour.
$0^{\circ} .47^{\prime} .50^{\prime \prime}$.
$9 \cdot 4392$ yds.

APPENDIX.

1. To find the trigonometrical ratios for an angle of 18°.

Take the figure and construction used by Encl. iv. 10 in describing an isosceles triangle having each of the angles at the base double of the third angle.

Hence $\angle B A D=\frac{1}{5}$ of $2 \mathrm{rt} . \angle^{\prime}=\frac{1}{5}$ of $180^{\circ}=36^{\circ}$.
Bisect $B A D$ by $A E$, which will bisect $B D$ at right angle
Let $A B=m, A C=n$, and $\therefore B D=n$.
Then, since rect. $A B, B \dot{C}=\mathrm{sq}$. on $A C$,

$$
m(m-n)=n^{2}
$$

$$
\therefore \frac{n}{m}=\frac{2}{\sqrt{5}+1} .
$$

$$
\therefore m^{2}-m n+\frac{n^{2}}{4}=\frac{5 n^{2}}{4} ;
$$

$$
\therefore m=\frac{\sqrt{ } 5+1}{2} n ;
$$

Now $\sin 18^{\circ}=\sin B A E=\frac{B E}{A B}=\frac{\frac{n}{2}}{m}=\frac{1}{2} \cdot \frac{n}{m} ;$ $\therefore \sin 18^{\circ}=\frac{1}{\sqrt{5}+1} ;$
\therefore multiplying numerator and denominator by $\sqrt{5}-1$,

$$
\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
$$

So the other ratios may be found.
2. To explain geometrically why in determining $\sin \frac{\mathbf{A}}{2}$ or $\cos \frac{\mathrm{A}}{2}$ from $\cos \mathrm{A}$, we get twoo, but from $\sin \mathrm{A}$ four different values.

Let A be an angle whose cosine is known, and describe $P A M$, the least angle which has the given cosine.
Make $P^{\nu} A M=P A M$.

Then A must be an angle whose bounding lines are $A M$ and either $A P$ or $A P^{\prime}$, that is, it must be either the angle $M A P$, or the angle $M A P^{\prime}$, or some angle formed by adding (or taking) a multiple of four right angles to (or from) one of these.

Now bisect $M A P, M A P^{\prime}$ by $A Q, A Q^{\prime}$, and produce $Q A$, $\boldsymbol{q} A$ to R, R^{\prime}.
Then ${ }_{2}^{A}$ must have $A M$ and one of the four $Q A, R^{\prime} \Lambda, R A$. $\boldsymbol{Q} A$ for its bounding lines.

Now the ratios of all these angles are of the same magnitude and can only differ in sign, there being a pair of angles which nave each ratio + and a pair-.
\therefore in determining from the cosine we get two values.
Next, let A be an angle whose sine is known, and describe $M A P$ the least angle which has the given sine.

Make MAP $P^{\prime \prime}$ equal to the supplement of MAP.

Then A must be either MAP or MAP', or some angle formed by adding (or taking) a multiple of four right angles to (or from) either of these.

Bisect these angles as before

Then $\frac{A}{2}$ must be an angle which has $M A$ and one of the four $Q A, R A, Q^{\prime} A, R^{\prime} A$ for its bounding lines.

Now those which have either $Q A$ or $R A$ as one of their boundaries have ratios equal in magnitude but opposite in sign. So also for those having $Q^{\prime} A$ or $R^{\prime} A$ as one of their boundaries; but the magnitudes of the ratios of the former sets differ from those of the latter.
\therefore the ratios of $\frac{A}{2}$ may be either of two sets of magnitudes nod of either sign, and therefore have four different values
agnitude
es which
describe
ne angle t angles
e of the
of their posite in of their e former
gnitudes
alues:

