IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or bleck)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/ Comprend du matériel supplémentaire

Only edition available/ Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Libsary of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when eppropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, pletes, charts, etc., may be filmed at different reduction ratios. Those too iarge to be en lrely included in one exposure are filmed be jinnite in the upper left hand corner, left to right a...' $p p$ to bottom, as many frames as required. I he following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canade

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contret de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivents apparaîtra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., seuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

PRELIMINARY REPORT ON THE

SURFACE GEOLOGY

OF

NEW BRUNSWICK

EY
R. CHALMERS.

PUBLISHED BY AUTHORITY OF PARLIAMENT.

MONTREAL:
DAWSON BROTHERS.
1885.
lfred R. C. Selwyn, Esq., LL.D., F.R.S., Etc.,
Director of the Geological and Natural History Surrey of Canada.
Sir,-I beg to present herewith a report on the Surface Geology of ar Province of New Brunswick, chiefly the result of observations ade during the summer of 1884. Illustrative maps showing the baracter and distribution of the surface deposits, are in course of reparation. These are based on the quarter-sheet topographical aps of the Survey, the surface geology being laid down upon them ccording to a system of coloring and notation. They will be issued soon as the necessary data to complete them have been obtained. My thanks are due to the New Brunswick Railway Company for a ee pass over their lines ; to Prof. Harrison, of the University of New runswick, for a list of barometric readings; to T. G. Loggie, of the forn Lands Office, Fredericton, G. F. Matthew, M.A., St. John, and ler. C. R. Matthew, Kingsville, Ont., for information relating to the epths of Grand and Washadamoak Lakes and the Kennebeckasis iiver, etc.

I have the honor to be,
Sir,
Your obedient servant,

R. CHALMERS.

PRELIMINARY REPORT

ON THE

SURFACE GEOLOGY OF NEW BRUNSWICK.

The explorations of the past season (1884) relating to the surface Area oxplored. sology of New Brunswick extended to all parts of the province, and a number of important facts were discovered. The area included in the eastern and northern counties was examined more in detail than oher portions, partly because its surface deposits had not hitherto been studied, except in a preliminary way, and partly owing to the Sect that data of considerable scientific value were found there in the curse of the season's investigations, which, it was considered, might sil in solving the perplexing problem of the glaciation of Eastern Canada.
The observations of geologists on the glaciation of New Brunswick, Observations previous to 1884, having keen largely confined to the southern and ${ }^{8884}$ rev. restern counties where the strix met with have a general southerly or yntheasterly bearing, it was therefore inferred that this direction inlieated the general ice-movement over the whole province. The inrestigations of the season of 1884*, however, show that north and east of the water-shed dividing the waters of the St. John River from those dowing into the Baie des Chaleurs and Gulf of St. Lawrence, there was an easterly and northerly ice-movement during the Ice Age, accompanied by a heavy transportation of drift from the interior towards the coast; that is to say, the water-shed referred to seems also to have shed Glaciation oi the iee of the glacial epoch northward and southward, the glaeier or ${ }^{\text {wiok. }}$ ghacers on the southern side moving in the direction of the Bay of Fundy, while those on the northeastern side moved down the opposite slope into the depression now occupied by the Gulf of St. Lawrence. In addition to these ice-movements, however, strixe have been frond on the last mentioned slope, indicating a separate and independent ice-flow, either directly northward or southward, which are referred to a later or second period of glaciation. All the facts relating to these will be found tabulated and details given in a subsequent fart of this report.

[^0]Quarternary
oscillations of levol.

Barometrie measurements.

The marino deposits along the coast were also studied and facts obtained which serve to show their horizontal and vertical distribution as well as the oscillations of level which the region underwent, approxi. mately, during the Quaternary epoch. The amount of these oscilla. tions is estimated on the evidence of marine fossils, old shore lines, and drift-filled estuaries.

A complete hypsometrical section of the province was made along the Tobique and Nepisiguit Rivers, in which the elevations of a number of the principal mountains and lakes of the interior above sealevel were measured barometrically, and the height of the general surface of the country ascertained with, it is hoped, a tolerable approach to accuracy. Many facts relating to its agricultural character, fauna, flora, etc., were also observed. From the upper waters of the Nepisi. guit a descent of the Upsalquitch River was made by way of Portage Brook and Upsalquitch Lake, and the general surface features and agricultural capabilities of that section were noted. A large tract of excellent farming land exists on the upper waters of the Restigouche, ns referred to by Mr. R. W. Ells, Report D., (Report of Progres, 1879-80) which will be available for settlement as soon as some meals, of communication are provided. This tract is sometimes called the "Fertile Belt," but above the mouth of the Pataperlia, owing to its remoteness, want of roads, etc., it is yet entirely unsettled.
Towards the close of the scason (1884) the Madawaska valley was visited and the character of the country along the upper St. John, in reference to its agricultural value, and otherwise, specially observed, and data regarding its surface geology collected. This section of the province, which includes Madawaska county and a par't of Restigouche, it may be remarked, comprises some tine intervales and uplands.
The discovery of true rock basins holding small lakes in the Laurentian and Huronian rocks lying to the northeast of the city of St. John, was not one of the least interesting results of the season's operations. Details regarding these, as well as many other matters not referrel to here, will be given in the following pages.
Collections of fossils were obtained from the marine clay of the Baie des Chaleurs basin, which are enmmerated under the head of "Leda Clay and Saxicava Sand." Among them is a claw of the lobster (Homarus Americanus) discovered for the first time in the Leda clay of Restigonche. Specimens of brick-clay for the museum were obtained from brick-yards in operation at St. John, Moncton and Fredericton, and considerable collections of the flora of the province were also gathered, partly by Mr. G. U. Hay, who accompanied me as a volunteer on a trip up the Tobique River, and partly by the writer.
In preparing this report it is considered necessary to revise, to some-
also studied and fact. and vertical distribution ion underwent, approximount of these oscilla. fossils, old shore lines,
ovince was made nlong e elevations of a numthe interior above seaheight of the general sed, a tolerable approach altural character, fauna, 3 waters of the Nepis. rade by way of Portage al surface features and oted. A lagge tract of ers of the Restigouche, l., (Report of Progress, t as soon as some means s sometimes called the Patapedia, owing to its ly unsettled.
Madawaska valley was ng the upper St. John, wise, specially observed, ed. This section of the d a par't of Restigouche, vales and uplands. all lakes in the Laurenof the city of St. John, the season's operations, matters not referred to
marine clay of the Baie fer the head of "Leda a claw of the lobster me in the Leda elay of museum were obtained ncton and Fredericton, he province were also anied me as a volunter he writer.
ssary to revise, to some
extent, the nomenclature in use pertaining to surface geology, and the rovison of new classification and notation are accordingly adopted ${ }^{k}$ which have of surface reference to the sub-divisions of the subject as outlined in the Geology of geolory. Canda, 1863, page 887. This classification will be employed in this report and in the preparation of maps illustrating the character, diswribution, etc., of the surface deposits, and it is hoped will be sufficiently practical and systematic for all investigations in this lranch of geology for some time to come. Details regarding the coloring and notation of these maps will be found elsewhere. The system now adopted will, no loubt, rer uire moditications from time to time as our knowledge asrances, and therefore is, to a certain extent, merely provisional, epecially that of Division M2 into "fresh-water" and " marine bels," the term "interior, flesb-water" deposits being employed for the present todesignate those beds supposed to be of the same age as the Leda day and Saxicava sand, but which occur in the interior apparently There the sea has not reached during the Quaternary epoch. The ridence as to their fresh-water origin, especially in New Brunswick, is still to a large extent negative, no fossils having been found in them. The names "Saxicava sand " and "Leda clay," first proposed for certain beds in the St. Lawrence valley by Principal (now Sir William) Darson, will be restricted exclusively to the known marine fossiliferolls deposits consisting of sand, gravel and clay, which are intermediate between the till or boulder-elay (division M1) and the recent deposits (division M3).

CLASSIFICATION OF SURFACE DEPOSITS.

M 3.

Alluviums, or Recent Deposits.
(a)

Fresh-water beds; (fluviatile and lacustrine); marshes, peat bogs, or caribou plains, and river flats (intervales).
(b)

Marine beds; salt marshes, sand dunes, estuarine flats, etc.

> M 2 .
> Siratified Sands, Gravels and Clays.
(a)

Interior, fresh-water sands, gravels and clays (fluviatile and lacustrine, etc.)
(b)

Saxicava sand and Leda Clay (marine fossiliferous beds).
M 1.
Till, or Boulder Clay.

[^1]The fresh-water and murine beds, (a) and (b) of division M 2 , aro supposed to be largely of contomporaneons formation, and the same remark applies to (a) and (b) of division M 3.

Moraines and kames are not elassed with any particular division at present, as they may belong, partly at least, to either M 1 or M2 Their occurrence is merely local and phenomenal, and moreover they do not occupy ureas of any great oxtent either on the surface or, so far as observed, beneath it.

The term kame is somewhat enlarged in signification from that usedin my last report (Report of Progress, 1882-83-84) and is here employel as including not only kames of the interior, such as those occurring on the higher lovels and in river valleys, but also thoso wide, flat ridges of sad and gravel mot with along tho consts of the Bay of Funly and Buie des Chaleurs. The latter have been regarded by Mr. G. F. Matthew as of marine origin (Report of Progress, 1877-78 E E), and seem to have been at least remolelled by marine currents.

Topographical Features of New Brunswick.

Chief topogra-
phical features.
The topographical and orographical features of New Brunswick are largely dependent upon the geological structure and the character of its rock-formations. The more salient points of these mag be thus outlined and succinctly stated in general terms:-

Main watershed. 1. A main axis or central water-shed traversing the province from the extreme northwest corner southeastwardly to the isthmus of Chignecto, or to the Nova Scotia boundary. This low axial ridge, while it has a general northwest and southeast direction, nevertheless sweeps round to the south with an extensive curve in the central part, and in Carleton county, along the upper waters of the South-West Mirnmichi, approaches near the St. John Rivor, thence, however, extending almost due castwardly past the northern oul of Grand Lake or Salmon River, Queen's county, its course from there being albout southeasterly to the isthmus as already mentioned. 2. A northeasterly slope from this water-shed to the coast, drained by the numerous rivers of this part of the hydrographical basin of the St. Lawrence, chief among which are the Restigouche, Nepisignit, Miramichi and Richibucto; and 3. A southwesterly slope drained by the St. John and its tributaries and also by the St. Croix, Digdeguash, Magaguadavic, New and other rivers into the Bay of Fundy. Traversing this latter slope is a second or sabordinate water-shed, referred to in report GG (Report of Progress, 1889-83-84) approximately parallel to the main one describel, and constituting a divide between the St. John valley and the Bay of lundy. It extends from King's county, in the vicinity of Long Reach on
ad (b) of division M2, an formatio:a, anll the same 3.
any particular division at t , to either M1 or M? nenal, send moreover they her on the surface or, so
nification from that used in 34) and is here employel as h us those occurring on the so wide, flat ridges of sand Bay of Funly and Baide des y Mr. G. F. Mathew as of E), and seem to have leen

aw Brunswick.

tures of New Brunswick structure and the char-- salient points of these ed in general terms:ing the province from the to the isthmus of Chig.
This low axial ridge, ast direction, nevertheless , curve in the central part, aters of the South-West River, thence, however, northern ond of Grand rse from there being about oned. 2. A northeasterly ed by the numerous rivers 3t. Lawrenee, chief among nichi and Ricluibucto; and hn and its tributaries and vic, New and other rivers r slope is a second or subIG (Roport of Progres, n one describel, and cony and the Bay of Fundy. nity of Long Reach on
muleas.] TOPOGRAPIHOAL FEATURES. 9 ag
ho St. John River, southwestwardly to the International boundary and Heiglit of main beyond $i t$. Ench of these has numerous minor axes or wator-sheds, somejimes branching off from the principal one, but often apparently withbut any comection with it, and irregular in direction; and thus while the chiel topographical features of the province are comparatively inple, they nevertheless present in detmi many complexities, monnain and hill ranges as well as onclosed valleys running to all points of the compuss, und contributing to torm, in many places, a highly diver. ,itied surface.
The general elevation of the principal water-shed referred to, in which re to be found the highest mountain ranges and peaks in the province, f, in Malawaska and Restigoucho counties, 800 to 1000 feet above eer-level ; at Nictor and Nepisiguit Lakes, 1,000 to 1,200 feet ; from these lakes to the upper waters of the Sonth-West Miramichi, 1,200 to 1,300 feat; on the divide between the Taxis and Nashivaak rivers, 900 to 1000 feet, where the road from Boiestown to Fredericton crosses it, 650 feet ; across the central part of the Carboniferous area between the Nashwaak and the head of the Cocagne River, 150 to 300 feet. Between Moncton and Shediac it is 100 to 150 feet; on the ridge between the Memramcook valloy and Cape Bald, 125 to 200 feet, and between Cumberlund Basin and Baie Verte, 10 to 20 feet. Along that portion of the wnter-shed lying betwcen the head of the Tobique River and the western limit of the Middle Carbonaceous area, mountain and hill rauges with scattered poaks rise to heights of 2,000 to 2,500 feet above the sea, giring the region, when viewed from some prominent summit, a bold and rugged outline, and leading the observer to imagine the general level to be much higher than it really is. The grandent and most picturesque scenery of the province occurs in this part, that is, between the Silurian area on the north and the Carboniferous on the south, where the Tobique, Nepisiguit and Miramichi rivers take their rise. (See report of Mr. Ells in Report of Progress, 1870-80.)
The height of the socond or subordinate water-shed between the St. Height of subJohn River and the Bay of Fundy does not, in general, exceed 700 to ohed. 800 feet above sea-lovel. Several peaks, however, rise to an elevation of 1000 feet; but this water-shed is interseeted by transverse, or north-and-south valleys, the bottoms of which are not more than from 300 to 500 feet above the sea. The general features of this region are described in my report on the surface geology of western New Brunswick already cited; but it may be stated, in addition, that the eastern extension of this water-shed is charaeterized by short, hilly ranges and isolated peaks, which include the Nerepis mountains, as well as Douglas, Bull Moose and Broke Neck mountains, and others east of the St. John River. Between this divide and the coast of the Bay of Fundy are numerous
hills and ridges described in Bailoy and Matthews' report (Report of Progress, 1870.71), through which the rivers have cut deep channelways; so that, although as high, and in some instances higher, chan the water-purting referred to, thoy nevertheless offer no obstacle to the drainage from it into the bay,

Cieneral Surface Features of tiee Slofes.

Surface features of slopes.

The more prominent surface features of that part of New Brunswidt lying on the northeastorn slope of the chief water-shed mentionel, may lie brietly stated as follows:-

1. An elevated and rugged district in the interior, about the upper waters of the Miramichi, Nepisiguit and Upsalquitch Rivers, which is from 1000 to 1500 feet in height abovo sea level, but includea numerous mountuins from 2000 to 2500 feet in altitude; (2) an undnlating plateau in the north, oscupied chiefly by Silutian and CambroSilurian rocks, with a height varying from 800 to 1200 feet; and (3) a low, gently undulating, or nearly level area in the eastern pard underlaid by Carboniferous sandstones, ete., which has a gradual slope from a height of $\mathbf{4 0 0}$ to 600 feet along the western margin down to the shores of the Gulf. The whole enstern coast region of the province, indeed, from Baie Verte to the mouth of the Restigouche, is lor, form ing a sort of inclined plane, descending beneath the sea at a low angle
The southwestern slope exhibits much greater diversity of feitures, the St. John valley, which extends throughout the whole proriure from northwest to southeast, being, perhaps, the most noticeable From the summit of the principal water-shed describel, there is: gradual slope to this valley, as also from the shorter divide on the southwest. The highest land is in the Tobique region, and at the head of the Shiktehawk and South-West Miramichi rivers. Mountain: and broken ranges traverse this elevated tract in all directions an eross the St. John valley in the vieinity of Mars Hill (1088feet high) extending into the State of Mane. To the north and northwest, it Victoria and Madnwaska counties, the surface is rolling leyond th river valleys, and elevated 800 to 1000 feet on a genemal level abore th sea, with occasional summits, such as the Belloville and fircen Moun tains, ete., rising eonsiderably higher. To the south of Shiktharl River the country is also rolling and the general level bi00 to 800 fee above the sea. Whis latter tract, which comprises Carleton count and part of York, has already been described in report (ifi (Report o Progress 1889-83-84). The area occupied by (arthoniferous rocks ol the southwestern slope is here, as elsewhere, companatively low am flat, varying in height from 200 to 600 feet above sea level, but havin!
atthews' report (Report of ors have cut deep channelome instances higher, than cless offer no obstacle to the

of tie Slofes.

hat part of New Brunswith hief water-shed mentionel,
e interior, about the upper psalquitch Rivers, which is - sea level, lut includes t in ultitule ; (2) an undu. y by Silurian and Cambroom 800 to $1: 00$ feet; and el area in the eastern part ., which has a gradual siope western margin lown to the oast region of the provine 2e Restigouche, is low, form. reath the sea at a low angle. greater diversity of features, aghout the whole prorince hups, the most noticeable. -shed describet, there is a the shorter divite on the Tobique region, and at the iramichi rivers. Mountains tract in all directions and Mars Hill (10s8 feet highi), ne north and northwest, in face is rolling leyoud the on a general level above the Belleville and fircen Moun, the sonth of Sliktehark eneral level ti00 to 800 feet comprises Carleton county al in rejort (idi (Report of by Carhonifersus rocks on are, companatively low and atove sea level, lyu haring
a slight descent eastward to the limit of the Cambro-Silurian and other Character of rocks overlapped by it on the south. The country underlaid by these ing In iny of odder roeks, again becomos hilly and broken, and is traversed by ridges ${ }^{\text {Fundy. }}$ rising 500 to 1000 feet above the Bay of Fundy, their longitudinal direction being usually parallel to the coast line. These ridges occupy a considerable area in Charlotte, King's, Queen's, St. John and Albert counties, often with intervening valleys parallel thereto or to the coast, as well as those transverse valleys referred to, through which the rivers flow, the bottoms of which, as already stated, are at all levels from that of high tides in the Bay up to 400 and 500 feet above it. The general topography of this coast area has, however, been fully describel in former reports (Report of Progress, 1870-71, also Report for 1877-78), and it is, therefore, umecessaly to dwell upon it here. Suffice it to say, that the region referred to, from Shepody Mountain, in Albert county, to the St. Croix River, is extremely rugged and barren, and from the nature of the underlying rocks, much of the soil is poor and stony.

Heifhts of some of tie Principal Mocntains in or near the Main Water-shed.

From the foregoing outline of the topography of the province, it will be seen that the highest land is that oceupying the central part of the northern half, and, as already stated, lies in the area drained by the southeastern branches of the Tobique, the South-West and North-West Miramichi, and the Nepisiguit and Upsalquitch rivers. Bald (Sagamook) Mountain, at Nictor Lake, is 2537 feet above sea level; Mount 'Teneriffe, the highest peak immedialely south of the Nepisiguit, Lakes, is about the same elevation. Numerous other mountains are to be moinhts of seen in the vicinity of these lakes and along the upper reaches of the the interior. Nepisiguit River, their bate red summits often rising 2000 feet high. One of these, about three miles above Indian Falls, or fifty miles from the month of the Nepisiguit (also called Bald Mountain), was found to be 1922 feet above the level of the Baie des 'haleurs. From its summit, the Miramichi River and valley, and the Gulf of St. Lawrence, were distinctly visible. On the portage from Nepisiguit River to Upsalquiteh Lake, several remarkable mountains were noticel, among them a symmetrical, dome-shapel one, immediately southwest of the lake, stands up conspicnously in the valley, aftording a splendid outlook from its summit. Its elevation, according to Hind, is $\mathbf{2 1 8 6}$ feet. Upsalquiteh Lake is surromded with peaks, no fewer than ten being visible from its surface. Along the Tobique River, several ranges and isolated mountains also of great beauty were observed. Bald Head, on Riley

Brook, is one of the most striking, its elevation, according to Hind,

Hue Mountains, Tobique valley.

View from Sagamook Mountain.

Descent of rivers. leing 2240 feet above the sea. The Blue Mountains form the moil prominent feature of the Tobique valley, their highest peak being. The feet above sea level, and 1250 feet above the river at their hase, The loftiest mountains in this elevated tract, however, occur, acoo in the Nepisiguit, that is, between Nictor and Nepisiguit Lakes whe south, where some and the Right Hund Branch of the Tobique on the peaks attain a height of 2600 to 2700 feet above sea level.

Around the central highlands described, the surface of the country is rolling and broken, sloping away nevertheless almost imperceptibly in all directions from it, the descent, however, being less to the north. west than to any other point. From the summit of Sagamook Mountain, Nictor Lake, one can look over the great Silurian plain to the borth and northwest, and see beyond it the elevated range of the Notre Dame and Shickshock Mountains looming up; but the slope from this region is greater towards the Gulf of St. Lawrence than in any other direction, as evidenced by the rapid descent of the rivers The Nepisiguit River deseends 1,000 feet in ninety miles, and the Upsalquitch 800 feet in about forty-five miles. What the descent of the Miramichi waters is was not ascertained, but it must likewise be considemable, especially on the Little South-West. The Tobigne descends about 635 feet in its entire length of ninety-tive miles.

River Systems and Lake Basins.

Area drained
by the st. Jobn.

The rivers of New Brunswick are numerous, and some of them large. No country in America is better watered. The St. John is the great artery, draining about $\mathbf{1 0 , 5 0 0}$ square miles in the province alone, the total area of New Bronswick being computed at 27,490 square miles,*

Miramichi
River.

Restigouche
River.

Nepisiguit
Riser. Next in importance and drainage area is the Miramichi, with its numarous branches ramifying throughout Northumberland county and a part of Sunbury, York, Carleton and Victoria, and draining no less than 5,500 square miles of territory. The Restigonche is the third largest, and while forming the boundary between the provinces of New Brunswick and Quebec for a part of its course, is, above the confluence of the Patapedia, entirely within the first-named province. Its extreme length is about 150 miles, and its drainage area ini Serf Brunswick about 2,200 square miles. Next in size is the Nepisiguit, which is about ninety miles long, and truverses a rugged country, but has a much smaller drainage area than the rivers mentioned. It is, however, the swiftest and most difficult for the voyageur.

[^2]vation, according to Hind, Mountains form the most oir highest peak being 1724 3 river at their hase. The swever, occur, according to 0 Big South Branch of the isiguit Lakes on the north, - on the south, where some oove sea level.
he surface of the country is ss almost imperceptibly in , being less to the north. mmit of Stagamook Moungreat Silurian plain to the the elevated range of the hing up; but the slope from St. Lawrence than in any id descent of the rivers, in ninety miles, and the ailes. What the descent of d, but it must likewise be outh-West. The Tobique of ninety five miles.

e Basins.

us, and somo of them large. The St. John is the great in the province alone, the od at $\mathbf{2 7}, 490$ square miles.* e Miramichi, with its numehumberland county and a oria, and druining no less Restigouche is the third y between the provinces of its course, is, above the the first-1amod province. its drainago area in Nerr in size is the Nepisiguit, averses a rugged country, the rivers mentioned. It is, the voyageur.

[^3]Several of the tributaries of the St. John within the province are Tributarics of really rivers of considerable size, such as Oromocto, Nashwaak, Eel, the St. John. Tobique, Green, Madawaska, etc. The Tobique is one of the largest, rising in the highland region at Nictan Lake and draining an area of about 1,500 square miles. The St. Croix, Digdeguash and Magaguadaric flowing into the Bay of Fundy, are also important streams and along with New River drain the chicf portion of the slope on the sccondary or southwestern water-shed.
In reference to the drainage of the province, however, it appears to Problacial have been, in pre-glacial times, somewhat different from that which river valleys. at present obtains. While all rivers and streams of any size examinod, seem, from the depth of their valleys,-often cut into the hardest rocks,-and the presence of till in sueh valleys underlring the fluviatile deposits, to have had a preglacial existence, nerertheless, the changes produced on the surface of the country during the Iee Age have caused them, in certain places, to leave their old channels and excavate new ones, often through solid rock. Moreover, drainage areas around the heads of rivers, and also lakes, if such existed in pre-glacial ages, may have had larger or smaller catchment basins, and these too may have been partially drained in other directions than by existing water-courses. Further, the greater elevation of the region at that time relatively to the sen level, as evidenced by a number of facts, some of which will now be adduced, enabled the rivers to cut their channels, and the valleys through which they flow, more deeply, by giving them greater erosive power, especially in the lower part of their courses. The facts observed as fing agrenter indicating a greater pre-glacial elevation in the Bay of Fundy region pre-gracial may be summarized as follows:-the estuarine character of the the region. St. John River as far up as Fredericton; the tidal lake-like expansions of Kennebeckasis River and Belleisle Bay along with Washadamoak and Grand Lakes, these bodies of water being the result of the ponding back of the St. John owing to the obstruction at its mouth and the subsidence of the region in later Quaternary times. In pre-glacial ages, Salmon River, instead of emptying into Grand Lake, must have flowed along the bottom of the depression containing it into the St. John, and so with Canaan and Kennebockanis Rivers. These sheets of water Grand and are, therefore, arms of the lake expansions of the Lower St. John, and $\begin{aligned} & \text { Wakes, etco, how }\end{aligned}$ occupy valleys which were eroded partly by the streams flowing into originating. or through them, and partly by sub-aerial agencics in the period referred to. The maximum depth of Grand Lake, so far as can be ascertained, is about 30 feet; of Washadamonk, about 100 feet; of the St. John River, in Long Reach, 106 feet, but immediately above Indiantown, 198 feet (from the Admiralty charts); of Kennebeckasis Bay, 78 feet, and of Kennebeckasis River, in the deepest part, about 200 feet.

Estuaries of other rivers.

Sections of borings male aeross Restipouche and Miramichi valleys.

All the other larger rivers of the province flowing directly into t sea also have estuuries of considerable length, exeept the Nepisigui the probable cause of which will be explained further on. The ti flows up the North-West Miramichi to Redbank, ubout thirty-five mil from its mouth, and up the South-West about the same distance. Ti head on the Restigouche is twenty-four miles from its mouth; on Rich bucto River twenty-two miles; on the Nepisiguit the tide flows upon three miles above Bathurst Harbor. In the Bay of Fundy distri the river valleys are penetrated by the sea, to greater or less distance similarly to that of the St. John,-Magaguadavic as fur up as th "falls" at St. George, six miles from its mouth, and the St. Croix St. Stophen, sixteen to seventeen miles.

The sections of borings made across the Restigouche and Miramic river valleys during the construction of the Intercolonial railway, an represonted in the accompanying diagrams, will also illustrate th question under consideration us to the height of the region in th Tertiary or pre-glacial period.

At the mouth of the Motapedia River, where the Intercolonial rai way bridge spans the Restigouche, borings were mado which ar represented by Fig. III. The borings made for foumlations to th North-West and South-West Miramichi bridges are represented b Figs. I. and II.

These sections show that at some periol anterior to the deposition
Depth of river valleys in preglaciat times.

Conclusions as to greater preglacial eleva. glacial eleva-
tion of region. of these clay beds, the Restigonehe flowed in this part of its ralle 70 feet below its present level, and the Miramichi 112 feet belo the present sea level.

Correlating all the facts bearing upon this question in the north an south of the province, they indicate a pre-glacial elevation of the regid of 100 teet or more above that of the present day relative to sea leve The depth of the Kennebeckasis and eertain parts of the St. John ra ley which are in excess of this may be taken us indicating astillyreat elevation than that given above; but on the other hand it is prolat these depressions have been formed wholly by seculir rock deay ar subsequent scooping out by glaeiers instead of ly river action.
Probable difference in volume ol rivers, notat
bly the Nepisiguil.

But with regard to the drainuge of the province it may be sated fit ther, that some of the rivers seem, in pre-glacial times, to have a larger or smaller volume of water, as the case may be, from one can or another,-this supposition alone explaining some anomalons fac Taking the Nepisiguit River as an example, we find that from Narrows to its mouth, about twenty-tive miles, its valley appears to largoly of Post-Tertiary origin. Either the lower pirt of the ris took another course in pre-glacial nges, or the whole river itself been of smaller volume. The drift holding in the lakes at its he
ce flowing directly into the gth, except the Nepisiguit, ined further on. The tide bank, about thirty-five miles ut the same distance. Tide os from its mouth; on Richi. isiguit the tide tlows uponts the Bay of Fundy distriet to greater or less distances, aguadavic as fill up as the mouth, and the St. Croix to

Restigouche and Miramichi e Intercolonial railway, and ams, will also illustrate the reight of the region in the
where the Intercolonial rail rings were made which are rade for foumdations to the bridges are represented br

1 anterior to the deposition d in this part of its raller Miramichi 112 feet belom
his question in the north and placial elevation of the region ent day relative to sea level in parts of the St. John ral. :en us indicating a still greater he other hand it is provable iy by secular rock decay and ad of by river :action. province it may he stated fur-re-glacial times, to have had o canse may be, from one calle ining rome anomalous lacte. mple, we find that from the miles, its valley appears to te - the lower part of the river or the whole river itself has ding in the lakes at its hesl
being of glacial origin, it follows that prior to its deposition and arrangement around their borders a portion of the waters now drainel off by the Nepisiguit may have escaped by the Tobique,-Nictor Lake. which is only two und a half miles from the upper Nepisiguit Lake, being 165 feet lower than the latter and apparently connected with it across the water-shed by valleys now drift-filled. In this case, the ${ }^{-}$ preglacial Nepisiguit would not be as large as its successor, precipitation being equal. At all events, the limited drainage area of this river in comparison to its length, the absence of an old drift-filled channel at or near Grand Falls, und the rock-bound channel still being eroded more deeply at the Narrows, Grand Falls, Middle Landing, Pabineau Falls, ete., together with the fact of its flowing over a rock-bed till within three miles of its month indicate, when viewed in relation t, other river valleys, the post-glacial excavation of its valley especially in the lower part of its course. It should not be forgotten, however, that for the most part, this river flows through a district occupied by Pre-Cambrian and Cambro-Silurian rocks, which wear down much more slowly than those of other parts of the country.
Examples might be cited, were it necessary, to show that when lakes or drainage basins existing on water-sheds are drained by outlet, on opposite sides, as is sometimes the case, if one of these becomes, closed by any means, the volume of the other must naturally be increased and excavate a larger channel.
The changes in the drainage referred to, have, in some places, resulted Orisin of in prodacing water-falls and gorges from the damming up of pre-exist- andi forges. ing river valleys during the Ice Age, instances of which may be seen in sereral of the larger rivers. The singular phenomenon of a water-fall at the month of the St. John may be partly the result of the pre-glacial cutlet being blocked up with till, and partly due to the subsidence of the region. The present outlet, which has been excavated through solid rock to a depth of about 110 feet, is post-glacial in origin. Prior to it, formation, the pent up waters of the St. John must have spread over' a very large area inside of the barrier and played an important part in the formation of terraces and lacustrine beds. There is reason to believo that during the subsidence which took place when the Leda clay was deposited, the sea invaded the St. John valley and lake region deseribed, as far as the Keswick River, although no marine remains have yet been found above the Long Reach.
All the rivers of New Brunswick, as already stated, How over beds Erosion earried of drift which occupy their valleys, and are engaged once more in ${ }^{\text {on by rivers. }}$ wearing them down from the high levels to which they were raised by the material thrown into them during the Ice Age. The fact of their flowing over stratified gravel, etce, in certain parts of their courses would
almost seem as if they were filling up instead of cutting down the channels, and locally this does oecur to some extent even at the pr sent day, but appears to have played a more importunt part in the history in early post glacial times. Thore is, however, a constant wea ing down, us well as a general senward movement, of the materials river valleys going on together.
lakes and lake systems postglacial.

Lake basins how formed Elevations of lakes.

The lakes and lake systems are so intimately connected with th rivers that the two have necessarily to be considered togethor. Buirbij wo have abundant evidence of the pre-glacial oxistence of rivers rather of river-valleys, we have none regarding lake basins. The late therefore, have to be studied as if they were solely of post-glaeial origi Nevertheless, that Tertiary lakes existed, or, at least, that the rivers the had somewhat similar sources of supply to those which now oltain, the seems no reason to doubt. The tendency of all lakes, however, is to el down their outlets and thus drain themsolves, and for this reason, fee lakes, if any, may have existed, oxcept on the water-sheds, at the cloof the Tertiary period. But if the precipitation in this region and th drainage basin of each river were the same then as at the present day the volume of water carriod down during the year would be about th samo also. If no lakes existed at their sources, however, the rivers woul probably be lower in dry seasons from lack of a reverve supply, an higher during the season of greatest precipitation, and this alone woul give them greater erosive power during floods. Their deeply ei rock-channels, and the fact that they nearly all flow over gravel lottoms now, might be considered as arguing a greater preghaif precipitation and erosive action; but the extensive filling up of the valleys during the Ice Age produced changes which render it difen to institute comparisons, even approximately correct, betreen pri glacial and post-glacial drainage, as the rivers here particular referred to have not had time since to clear out the drift from the valleys. From the traces of former high-wator levels finum along the banks, such as terraces and water-worn gravel, sometimes thrown in ridges or kames, it is obvious they mast have flowed at differe heights in the Quaternary period up to 150 to 200 above the prese water courses along the larger rivers, and have probably leld in lak or lake-like expansions here and there in enly post-glacial time.

The larger number of the lakes of the province are held np ty barrie of drift or morainic materials, and their configuration ind depth a largely the result of the denadation and arrangement of such materis by glaciers, as explained in my report already cited. The Nepisigg Lakes, the most elevated in New Brunswick, being 996 feet abore level, and 10 to 20 feet deep, have a general east and west directif corresponding with the course the glaciers pursued in that part of
steal of culting down their mo oxtent even at the pre ore important part in their is, however, a constaat wear. prement, of the materials of
timately connected with the nsidered togrether. Bucwhile facial existence of rivers of - ling lake basins. The later, e solely of post-glacial origin. ; at least, that the rivers then hose which now obtain, there ff nll lakes, however, is to ent ves, and for this reason, fer the water-sheds, at the close tation in this region and the e then as at the present day, the year would be about the ces, however, the rivers would ck of a reserve supply, and itation, and this alone rould
tloods. Their deeply cat arly all flow over gravells rguing a greater pre-ghacial oxtensive filling up of their nges whieh reader it diffent aately correct, between pre he rivers here particularly clear out the duift from their vater levels tound along their avel, sometimes thrown into st have flowed at different i0 to 200 above the present I have probably held in lakes enrly post-ghacial time. ovince ale held up by bardiers configuration and depth are rrangement of such materials eady cited. The Nepisiguit ck, boing 996 feet abore ses oral east and west direction, s pursued in that part of the
country. Nictor Lake, $8 \cong 8$ feet above the sea, and 50 to 60 feet deep, has the same trend longitudinully. Upsalquiteh Lake is 792 feet above the same datum line, and 55 foet deop, its general direction, however, being north and south. These and the other lakes at the head of the Right Hand Branch of the Tobique River, are all evidently drift dammed, and are surrounded by high mountains and lomantic scenery. Great quantities of trout (Salmo fontinalis) and fresh-water mussels (Unio complanatus), etc., are found in thom, and the black duck (Anas obscura), the loon (Colymbus torquatus) and other species of water-fowl are also common there.
Several small lakes, lying in rock-basins, oceur in the Laurentian or Rock-basins Pre-Cambrian bolt to the north of the city of St. John. Lily Lake, how formed. half a mile distant therefrom, occupying an area of 27 acres, 25 feet deep, and elevated 60 feet above sen-level is one; Howe's Lake, 145 feet high, is another; Dark Lake, 165 feet high, a third; also Lawlor's Lake on the site of the Intercolonial railway, and others. These lake basins have evidently been formod by the sub-aerial decay of the rocks in situ in Pre-Quaternary timos, the softer limestones, graplitic shales and ferruginous rocks having been more deeply acted upon than the gneisses and felsites. During the Ice Age the debris was scooped oat by the moving glaciers, leaving the depressions wherein lio the lakes. Glacial strix are invariably found on the sonthern borders of these lakes, the ice having moved in a southerly direction in this part of the country.*
Mr. G. F. Mntthew informs me that he regards some of these lake Cnves. hasins as having originated from the formation of cavities in the Laurentian limestones through the agency of running water together with atmospheric decay along certain lines of the strata, the rock above the cavities afterwards falling in or breaking away, and the loose materials having been subsequently scooped out by glacier ice. Caves are still foum in these limestones in the vieinity of St. John.
The depressions occupied by river systems and also the larger number Oripin of of lake hasins are therefore the result mainly of the wear of the rocks inequalitios of from running water and unequal sub-aerial decay in their natural situation, chiefly in ages preceding the glacial epoch, the softer strata having thus been more doeply acted upon by the degrading intluences mentioned. When the ice of the ghacial epoch accmanuated upon the surface of the country, a thiek mantle of rock debris is supposed to have oceupied the roek surface beneath it, which, becoming partially frozen into its bottom, would be moved along with

[^4]it, thus grooving and striating the rocks, breaking of the irregular knobs and projections which had not been so readily decomposed, and amoothing down to a large extent the asperities of rock surfices. This moving mass would conform to the various inequalities of the surface over which it passed, scooping out the decayed rock material from many of the deprensions formed by such unequal decily and forming hollows, somotimes rock-rimmed, but oftener purtly roek-rimined and partly enclosed by drift. On the retreat of the ice of the ghacial epoch. the drainage of the areas surrounding these depressions, in most cases,

Relation of lakes to drainage and precipilation. would find its way into them, thus forming lakes. If the lake happened to be on a slope, the overflow became a river, following some pre-existing river-valley which, as statel on a previous page, would tend eventually to drain the lake by wearing down the outlet. When a alake occurs on a water-shed, however, although it has more than one outlet, it may have no extent of drainage area around it, and its overflow being insignificant, it will, in this country, where the precipitation is always in excess of the evaporation, usually remain full all the year round The wearing down of the outlets from lakes on water-sheds is a very slow process, more especially if the drainage area around them is small, the outlets in that cuse being also small; and hence these will be the last lakes to lower their level or disappear, not only from the causes mentioned, but also from the fact that less sediment is carried iuto them.

In consideration of the facts above stated, therefore, it would appear that the present surfice features of the province are largely the result of the operation of such agencies as are seen around us at the present day, angmented and intensitiod by the excoptional condition of thing: which existed in the glacial epoch. The "hills and dales," river ral loys, lake basins and other depressions have been prowlucel either br atmospheric degradation, or the wearing action of flowing waters, or both, and at the advent of the Ice Age the rock surface of the region must have presented very nearly the same contour as at present.

Glacial Strif.

The following list includes all the strize observed, so far as knom throughout the province, except those alroady recorded by Mr. G. Matthew (Report of Progress, 1877-78) and by myself (Report Striep, by whom noted.
(R)解, Mr. Chas. Robb, Prof. IInd, and by the late Prot. Jas. Rohl which are embraced in this list and duly credited to them. Thogiven on the authority of Prof. Robb were obtained from a paper pul lishod in the Proceedings of the American Association tor the Adranc ment of Science (1850). The courses are all referred to the true me
breaking off the irregular so readily llecomposed, ant ities of lock surfices. This inequalities of the surface cayed rock material from nequal decay and forming er partly rock-rimined and the ice of the glacial cpoch. depressions, in most cases, g lakes. If the lake hap. ne a river, following some a previous pare, would tend on the outler. When alake has more than one outlet, it d it, and its overflow being the precipitation is always n full all the year round os on water-sheds is a rery e area around them is small, nd hence these will be the ot only from the canses mellnent is carried into them. , therofore, it would appear ovince are largely the result en around us at the present optional condition of things 'hills and dales," river rale been produced either br ction of tlowing waters, or rock surftue of the region contour as at present.
observed, so far as known, ady recorded by Mr. G. F. and by myself (Report of ifferent places by Mr. R, W. y the late Prof. Jas. Rolb, ly credited to them. Thooe , obtained from :a paper pulAbsociation tor the Adranceall referred to the true mer-
idian, and the direction of the ice-tlow is indicated by the hearings in the proper column. Where doubt exists as to the course the ice pursued, the reverse one is also given, us in the cave of Nos. 7 and 10. The "General Slope of Surface" is not to be understood as having any relation to the course of the ice-flow, but simply shows the general contour of the surface where the strise occur. All the heights given have reference to sea level, unless otherwise stated.

No.	LOCALITIES.	Coursrs.	$\begin{aligned} & \text { General } \\ & \text { SLopr } \\ & \text { OF } \\ & \text { Steracr. } \end{aligned}$	
	St. Joins County, -Continued.			
92	Near St. John, at brick.yard, (Robb.)	S. $20^{\circ} \mathrm{E}$.		
93 94	At penitentiary, E. side of Courtenay Bay (Robb.) At South Bay.................... . . . (Robb.)	S. $10^{\circ} \mathrm{W}$. S. $5^{\circ} \mathrm{W}$.		
95	At Musquash Mills (Robb)	S. $38^{\circ} \mathrm{E}$.		
96	E. of Musquash River (Robl.)	N. and S.		
97	At Hunter's Ferry, Quaco Lake..(Robl)	S. $32^{\circ} \mathrm{E}$.		
	Sunbury County.			
98	At Rushiagonish bridge........(Robb.)	S. $28^{\circ} \mathrm{E}$.		
99	Near Gagetown, at old mill. (Robb.)	S. $40^{\circ} \mathrm{E}$.		
100	Near Gillon's, Blissville or Nerepis Road.			
101	Two miles S. of last place. (Robb.)	S. $28^{\circ} \mathrm{E}$.		
	Victoria County.			
102	On Blue Mountains, Tobique $\begin{array}{r}\text { River, } \\ \text { (Hind.) }\end{array}$	N. and S. to S. $20^{\circ} \mathrm{E}$.		1650
	Westmoreland County.			
103	At Dorchester, on ridge behind penitontiary. Grooves in places. Ice moved up N.W. face of an escarpment following Memramcook valley.	S. $12^{\circ} \mathrm{E}$.	W.	17\%
104	At Jolicenr, Hall's Hill, polishing and roches moutonnes.	S. $20^{\circ} \mathrm{W}$.	N.	110 80
105	At Aulac, near Fowler's hill Ice-movement here was guided by Cumberland Basin and Westmoreland Ridge.	S. $38^{\circ} \mathrm{W}$.		
106	At Cape Tormentine, on Emigrant settlement road, 5 miles from Port Elgin. (Ells.)	S. $2^{\circ} \mathrm{E}$.		
107	At Cape Maringouin, near point on E side. (Ells.)	S. $2^{\circ} \mathrm{E}$.	E.	
108	Near Sackville, 1 milo S. of Intercolonia) railway on road to Maringouin..(Ells.)	S. $12^{2} \mathrm{E}$.		
109	Five miles N. E. of Dorchester, and 2 miles from Intorcolonial railway (Ells.)	S. $12^{\circ} \mathrm{E}$.		

No.	LOCALTTIES.	Covrsks.		
	York County-Continued.			
130	Near W. end of Oromocto Lake . (Robb.)	S. $48^{\circ} \mathrm{E}$.		
131	At mouth of Keswick. (Robb.)	S. $48^{\circ} \mathrm{E}$.		
132	In parish of Prince William..... (Robb.)	S. $28^{\circ} \mathrm{E}$.		
133	At Fredericton.(Hind.)	S. $30^{\circ} \mathrm{E}$.		330
134	Four miles out on Miramichi road.......) (Hind.)	S. $20^{\circ} \mathrm{E}$		400
135	On Hanwell road(Hind.)	S. $30^{\circ} \mathrm{E}$		400
136	On Maryland road in three places.(Hind.)	S. $30^{\circ} \mathrm{E}$.		400
137	In Prince William, near antimony mines.. (Hind.)	S. $20^{\circ} \mathrm{E}$.		400
138	On Gagetown road..............(Hind.)	S. $20^{\circ} \mathrm{E}$.		
139	In Harvey settlement (Hind.)	S. $20 . \mathrm{E}$.		
140	Opposite Fredericton............ (Hind.)	S. $30^{\circ} \mathrm{E}$.		330
141	On road at N.W.corner of Oromocto \{ older Lake, 2 sets........ (Chas. Robb) \{ later	$\begin{aligned} & \text { S. } 30^{\circ} \mathbf{E .} \\ & \text { S. } 50^{\circ} \mathbf{E} . \end{aligned}$		
142	On road from Fredericton to.. $\{$ first... Erina Lake, 2 sets. . (C. Robb.) second	S. $40^{\circ} \mathrm{E}$. N . and S .		
143	In Bird settlement (C. Robb.)	S. $45^{\circ} \mathrm{E}$.		
144	In Tay settlement(C. Robb).	S. $38^{\circ} \mathrm{E}$.		
145	Below Fredericton (C. Robb.)	S. $30^{\circ} \mathrm{E}$.		
146	At forks of Nashwaaksis(C. Robb.)	S. $35^{\circ} \mathrm{E}$.		
147	North of Lake George, in two or three places (C. Robb.)	S. $30^{\circ} \mathrm{E}$.		

M 1. Till, or Boulder Clay, Moraines, etc.

Till is but rarely met with on the surface in the northern part of the Distribution of province, but usually appears along banks of rivers and in bluffis on the $\begin{gathered}\text { till in northern } \\ \text { Now } \\ \text { Brung- }\end{gathered}$ coast of the Baie des Chaleurs, affording evidence from its sheet-like ${ }^{\text {wick. }}$ character that it extends under the stratified deposits in an almost continuous bed of greater or less thickness. The hcaviest deposit of till known in this district occurs on the coast just north of Nash's Creek, where it attains a thickness of fifty to sixty feet. Another ridge-like mass of till is met with on the left bank of the Nepisiguit River, through which the Intercolonial railway passes by a cutting, showing it to be composed largely of granitic and red sandstone debris (local rocks).
Till occurs on the left bank of Nigadoo River at the shore, and is overlaid by stratitied beds. It is also seen on the banks of the Tête-agauche River, neur the Dunlop settlement road. A high bank of till is seen in a cutting on the Intercolonial railway, on the right bank of the South-W est Miramichi. Glaciated boulders of granite, felsite, diorite, etc., from the belt of crystalline rocks to the west, occur in this deposit.

Another ridge of till is met with on the left bank of the Petitcodiac At MonetonRiver, behind Moncton, in a cutting of the Intercolonial railway.
At St. John a great mass of till lies on the west side of the harbor, At St. John. forming a headland known as Negrotown Point, which extends southward from Carleton.

Heavy deposits of till occupy the St. John valley above (irand Falls, Mong the St. as referred to in my last report, forming banks and mounds along the river as far up as St. Leonard's and above it. The village of Elmundston stands upona bed of till, and the same material occurs abundantly in the Madawaska valley, having been much less eroded along the upper' St. John and its tributaries than below Grand Falls.

Along the St. John River from Grand Falls to Andover, and indeed as far south as Woodstock, a ridge, or series of ridges, chiefly of till, which occasionally assumes the appearance of mounds, is traceable. A portion of it has been described in my report already cited, under the head of "Kames."

At St. Croix village, York county, and also on the opposite side of ${ }_{\text {At }}$ St. Croix. the St. Croix River, at Vanceboro, similar ridges occur. The one on the New Brunswick side is 300 paces wide and 50 to 60 feet high above the river, and appears to be some miles in length. Portions are stratified and kame-like.
At the head of the Magaguadavic River, iow, wide ridges, chicfly composed of till, are also met with.

Irregular thickness of beds of till.

Ite occurronce along river banks.

In some cases these deposits of till rise above the general level, as appears in ruilway cuttings passing through thom transversely; in other cases they are meroly the edges of the sheet which spreads over the surface of the country, but which must have been much thicker in river valleys and depressions than on the higher levels.

How is it that accumilations of till, resembling ridges, occur along or near the banke of many of the New Brunswick rivers? Has it been moved about and thrown into theso moraine-like ridges by moving river ice during spring floods, when the rivers in the early Post Tertiary period flowed at a higher level than now? Ridges have evidently been formed in this way in the same situations during the recent period, and shallow lakes are found in some localities with similar ridges around their borders. The latter are, however, in most eases, partially stratified.

On the uplands of the interior of the province, till cau be seen alnost everywhere forming the lowest member of the surface deposits, but usually thinning out on the elevations, and perhaps disappearing, except locally, on hills and mountains. Accumulations of considerable thicinness occur on the slopes, and more especially at the hase of the hills and around the borders of lake-basins.

Moraines are met with in all parts of the province, but are not so numerous anywhere as on the water-shed between the St. John Rirer and the Bay of Fundy, especially in York and the northern part of Charlotte counties. In Nictor Lake, one was seen forming a small islet, and another occurs at the western end of the upper Nepisiguit Lake, forming a promontory which is covered by a grove of red pine; aloo along the Nepisiguit valley small moraines were observed in sereral places. One at the Devil's Elbow, fifty-five miles from the mouth of the river, stands up in the centre of the valley, kame-like, lut is probably underlaid by rock.

Kames.

In classifying the kames of western New Brunswick in the report on the surfice geology of that region (Report of Progress, 1889-93-8t), two principal divisions of these deposits were made. It hecomes neces sary now to udd a third, as explained on a previous pare, which will include all those gravel ridges, mounds and hummoeks which appear to have been under the sea and partly, at least, remodelled by maring currents. A number of these occur in a well developed condition on the coast of the Bay of Fundy,* and a romurkable one is found in Restigouche county along the bank of the Baie des Chateurs. Three

[^5]bove the gencral level, as gh them transversely; in 9 sheet whieh spreads over aave been much thicker in gher levels.
nbling ridges, occur along swick rivers? Has it been ine-like ridges by moring rivers in the early Postn now? Ridges have eriame situations during the pd in some loc:lities with atter are, however, in most
ince, till eam be seen almost o the surface deposits, but nd perhaps distippearing, pumulations of considerable pecially at the hase of the
e provinee, but are not so etween the St. John River a and the northern part of seen forming a small istet, e upper Nepisiguit Lake, a grove of red pine; aloo were observed in several miles from the mouth of the kame-like, but is probally

Brunswiek in the report rt of Progress, 1882-83-84), - mado. It hecomes neces - previous page, which will hummocks which appear east, remodelled ly marine ell developed condition on markable one is found in Baie des Chaleurs. Three
divisions or classes of kames will, therefore, be treated of:-(1) those Threo divisions on the higher levels, at the sources or along the upper part of rivers of kames. and around lake basins, and which are not confined within narrow ralleys, but have usually swampy or peaty grounds on one or both sides; (2) those found in narrow river-valleys which are usially enclosed by high slopes or hills; and (3) kames partly or wholly of marine origin, whieh appear to be composed of material derived either from pre-existing beds of till along the coast margin, or of gravel, ete., carried down by rivers during that part of the Quaternury epoch when the land stood 150 to 200 feet below its present level relative to the sea. In the following brief deseription of the kames examined during the Descrition of season of 1884, all the courses given are referred to the true meridian, and the heights to sea level.

Kames of Class I.

1. A kame is seen crossing the highway between Kouchibouguac River and Chatham, at Lake settlement, on the right bauk of Little Black River, near its source. Length unknown, the district boing wooded; course, nearly east and west; height above general level, 10 to 20 feet; above sea level, probably 150 feet.
2. On the left bank of a small stream (the head of a branch of Portage Brook, a branch of the N.W. Miramichi,), about four miles south of Bartibogue station, Intercolonial rail way, a emall kame crosses the track ; course, about east and west ; longth unknown; height above sea level, 500 feet.

Clase II.

3. A kame, or elongated mound, occurs at the Devil's Elbow, Nepisiguit River, which is probably morainic to a large extent; courso, nearly east and west, or parallel to the valley ; length about one-fourth of a mile; height above the river, 50 to 75 feet, above sea level, 650 feet.
4. Several short, broken ridges (kames), are found at the confluence of the Taxis and South-West Miramichi Rivers, their genoral courso being parallel to the last-mentioned river; height above its surface, 10 to 15 feet.
5. Aong the Tobique River, on right bank, between Arthurette and Three Brooks, a number of hills occur in the valley, which are left from erosion of the surrounding deposits. They consist of saulstone beneath, and drift on the summits, chiefly water-worn gravel. Height, 75 to 100 feet; general lougitudinal course, parallel to the river. Some of these hills are angular in outline, and there has evidently, been a channel on the west sido in early post-glacial times.
6. Oprosite the mouth of the Odell River, a branch of the Tobique, a bill stands upon the right bank, apparently in the middle of the Tobique valley. It is composed chiefly of rock, with gravel on the summit and lower end, and is evidently a mass of red sandstone and drift left from denudation.
7. At Gagetown, Queen's county, a monnd oceurs in the St. John valley. is composed largely of glacial drift, with water-worn materialso its summit. General course parallel to the river. A marshy flo surrounds it.
8. Mounds or short ridges of gravel occur on the left bank of tho Petitcolia River, at Bonndary Creek, along the west side of the Intercolonis railway. A gravel pit has been opened in a terrace here. Thee mounds are not more than 40 to 50 feet ubove the river, whic is tidal up to this point.
9. A short, low, kame or hummock, 200 to 300 yards long, oceurs on the lef bank of Memramcook Rivor, just above the angle formed by it an the second stream flowing into it north of Dorchester Corner.
10. Near Hillsboro', Albert County, on the marsh skirting the Petitcodia River, a kame, called "Gray's Island," occurs. General directio N.E. and S.W.; height, above tide level in letitcoliac Rive $3 \overline{5}$ feet ; length 700 paces, width 220 paces. It is composed sand and gravel, with small rounded boulders, almost wholl derived from Lower Carboniferous rocks. Being surrounde entirely by salt marsh, it is a conspicuous example of a part of terrace left from the denudation of the materials around it, which it formed a part.

Class III.

11. One of the longest and most remarkable kames of this gronp occurs i Restigouche county along the coast of the Baie des Chaleur stretching from the Eel River valley to the shore just north of th mouth of Nash's Creek. Longth about twelve miles; cours nearly east and west; height above the soa at the western en 150 to 175 feet, and at the eastern end 50 to 75 feet. It is intel sected by streams in many places, and overlaid by Leda clay an Saxicava sand, the materials of which are often derivel from This kame runs pretty close to the shore of the bay, exter at Charlo and Eel Rivers, receding from it into the socond cor cossion, at Shannonvale, and in Dundee settlement appears o both branches of Eel River in the form of hummocks, which abu against the higher ground to the north-west. In the neighbon hood of River Charlo the shoreward side is terraed. Th materials of this kame are almost wholly derived from local rock and seem to have been first carried down to their present situatio by currents from the land, and afterwards partially worked ore by the sea.
12. Along the coast of the Bay of Fundy there uccur a number of kames this class, which have heen tabulated and described by Mr. Ma thew (Report of l'royress, 1877-78), but the olevations above se level were not given. One, oxtending from lairville, St. Joh, county, southward nearly to Spruce Lake, and called by Mr. I the " middle ridge in Lancaster," was found to be 175 feet high at th northern end, and 130 to 140 feet at the southern. It is a wid
curs in the St. John valley. It with water-worn materials on 1 to the river. A marshy flat
the left bank of the Petitcoliac e west side of the Iutercolonial rened in a terrace here. These 50 feet above the river, which

0 yards long, oceurs on the let ove the angle formed by it and rth of Dorchester Corner.
harsh skirting the Petiteodiac dd," occurs. General direction e level in l'etitcodiac River, 220 paces. It is composed of aded boulders, almost wholly s rocks. Being surrounded picuous examplo of a part of a of the materials around it. of
kaines of this group occurs in st of the Baie des Chaleurs, to the shore just nerth of the about twelve miles; courso e the sea at the western end and 50 to 75 feet. It is interand overlaid by Leda clay and ich aro often derivel from it. he shore of the bay, exeept from it into the second conundee settlement appears on orm of hummocks, which abut orth-west. In the neighbourard side is terraced. The holly derived from local rocks, lown to their present situation arwards partially worked over
occur a number of kames of d and described by Mr. Matbut the elevations above sea ling from Fairville, St. Johu Lake, and called by Mr. M. ound to be 175 feet high at the it the southern. It is a wide,
flat-topped ridge of gravel and boulders, overlaid by marine deposits, the materials of which seem to have been derived from beds of till in the vicinity, and has been remodelled by the combined action of fluviatile and marine currents along tho coast when the land stood at a lower level. In its external features this kame is altogether unlike those of the interior.
13. The extensive gravel deposit known as Pennfield Ridge, Charlotte county, (No. 17 of Mr. Matthew's table) occupies part of the valley or basin between the Magaguadavic hills on the north and those extending along the coast from L'Etang to New River. It appears to be only partially stratified, but is terraced. Height, 175 to 200 feet.
The origin of kames, which is one of the vexed questions of surface $\begin{gathered}\text { Theories } \\ \text { regaing }\end{gathered}$ geology, still continues to be a fruitful source of discussion. Various formation of theories have been advanced to account for them, and the literature of this subject alone is quite voluminous. A study of those phenomena in the Maritime Provinces of Canada for many years has convinced the writor that it is useless attempting to explain all kames as originating from uny one general cause, such, for example, as glacial fioods, the action of marine currents, etc. On the contrary, I am inclined to regard their formation as due to several causes, which may be, to a large extent, local, arising from peculiarities in the conformation of the land-surface affecting the drainage within certain aroas at the close of the glacial epoch and since, and also to marine currents, such as those in the Bay of Fundy, acting upon the drift along the coast line, or that carried down by rivers. I have, therefore, thought it best to arrange the kames met with in New Brunswick into three classes as already mentioned. The probable mode of origin of those included in classes II. and III. has been briefly outlined. It is only those belonging to class I. Which prosent the difficulties referred to, and, in the present state of our knowledge, no satisfactory theory regarding them seems possible. They are, undoubtedly, to a considerable extent, morainic, these and moraines, to all appearance, having been of contemporaneous formation; but, on the other hand, the fact that they occur, so far as my observations have extended, along the heads of streams where there are dead waters, or on tho borders of lakes, not being confined within narrow valleys, and usually with swampy or peaty areas on one or both sides, and, moreover, have tortuous courses resembling those of rivers, leads to the conclusion that the streams along which they are found inust have, in early post-glacial times, participated in their formation, although the precise mode of action is not evident. Additional data and a closer study of these very interesting phenomena will, no doubt, reveal to the student some general law respecting their origin ; all that can be done, meantine, is to collect and correlate the facts bearing upon them.

General Conolusions Regardina tie Glacial Puenomena of New Brunswick.

Gilaciation of the province.

Two systems.

Evidence of later icemorements.

From the foregoing facts with reference to strie, till, transported bonlders, etc., it is evident the whole area of the Province must hare been mantled by an ice-covering in the oarlier part of the Quaternary ejoch which, by its movement seaward, scarped and sconred the surface transported drift, and produced marked changes in the physical fea tures, more especiully with respect to its drainage. Whether this ied mantle formed one glacier, or a number of smaller local glaciers, each moving as it was influenced by the contour of the land, I will not undertake to say from the data on hand; but the latter view is cer tainly supported by the greatest amount of ovidence. As already stated, two principal and apparently independent systems of glaciation seem to have prevailed, one sonthward from tho principal water-shei of the province, and the other northward. Besides these, howerer there have been luter ice-movements as evidencel by finer strixt whether from loeal glaciers controlled more by minor inequalitien 0 the surface than the larger glaciers, indicating that ice may har slid down the slopes more directly into the nearest depressions, or by ieebergs impinging against the coast area when the land stool at lower level, is doubtful, although cortain facts, in counection with thr strie producel, favor the former conclusion. The evidence relating t these later ice-movements, it may be stated, is found chicfly on th northern slope, where the tine strie with a more northerly course tha those of the chicf ice masses occur. On the Carboniferous are these murkings of the later iee are not very distinet nor regular; bu on the slates and crystalline rocks of the Baio des Chaleurs distrie they are well defined and numerous. They oecur in many places on the same rocks as the oldor strie and eross the deep wide glacia grooves of the latter going down one side, across the bottom and up on the other side of these, the slope of the land here leeing northwar towards the Baie des Chaleurs basin. In a few eases they were see to run into each other, but, on the whole, are regubir and paratle over areas of many square miles, the direction being towards som point between north and northeast. The iee which producel them whether small glaciers moving northward or icebergs driftel agains the ascending surface of the land, evidently transported but little drit material. The great denuding and transporting agents were the prin cipal ice-masses which moved southeastward on the matin souther slope, and northeastward on the northern slope.

1weai klaciers.

On the isthmus of Chignecto there appear to have been loeal glacie: formed on the higher grounds, which crept down the valleys into th

Glaclal Puenonesa op

- to strime, till, traasported of the Province must hare lier part of the Quaternary ped and scoured the surface, hanges in the physieal fen. rainage. Whether this iee smaller local glaciess, each our of the land, I will not but the latter view is eel of evidence. As already endent systems: of glaciation om the principal watershed 1. Besides these, lowerer, a evidencel ly finer strin, re by minor inequalitie of icating that ice may kare nearest depressions, or by when the liund stool at a aets, in connection with the
The evidence relating to ted, is found chicfly on the more northerly course than On the Carboniterous area ry distinct nor regular; but Baie des Chaleurs distict y occur in miny places on ross the deep wide glacial neross the hotton and up on land here heing northrawl a few cilses they were seen e, are regul:ur and paralled ection being towards some ice which prowlucel them, or icebergs dritited against y transported but little drift orting agonts were the prinrard on the main southern lope.
or to have been local glaciers t down the valleys into the

Bay of Fundy, or rather into Shopody Bay and Cumberland Basin ; oriceberg have passed over it during the Quaternary depression, grating the more prominent ridges. Very little foreign drift is met with here lowever. (See table of strim, Nos. 103 to 116.)
The general sequence of events in the region now constituting the Gencral province during its occupation with ice seems, the efore, to have heen senuensen of snowhat as follows:Ico Age.
(1) The accumulation of a mass of ice on the surface of the country, from what causes will not here he discussel.
(2) The movement of this ice from the higher interior region (in other words, the shedding of this ice by the principal water-shed), towarls the coasts of the Bay of Fundy on the one hand, und the hydrographical basin of the St. Lawrence, or the depressions now oecupicil ly the bays and straits connected therowith, on the other. This movement was accompanied by agreat transportation of drift, or decayd rock-material, which had been formed on the surface previous to the lee Age. River valleys were partly filled, and the rivers themselves damined up. Lake basins were formed, not, so far as the evidence goes, from erosion of the roeks by the grinding power of the ice, but by (a) the scooping out of loose materials from hollows in rock, thus forming roek basins, and (b) ly leaving depressions in the drift nceupying pre-existing valleys which afterwards eaught the drainage of the areas surrounding them.
(3) On the melting and breaking up of this icc-covering, either smaller ice-masses have slid down the slopes more direetly towards the low marginal areas, or into the adjoining seas ; or, as the land sank, icehergs may have grated the slopes, especially of the northern and easteru const areas of the province.
At what height the land stood relatively to the sea during its oceru- Height of land pation with this ice-covering does not seem possible to determine with during Iee Age. any approach to aceuracy from the data at hand, but as the rocks are ererywhere striated down to sea-level, and in a few cases below it, and moreover as the depressions now forming estuaries, hays and struits seem to have intuenced the movement of the ice, such for example as the entuary of the Restigouche, the western half of the Baie des Chaleurs, Nepisignit Bay, Shepody Bay und Memmacook estuary, Cumbertand Bawin, ote., the land must have heen as high as at the present day, if not higher during the period referred to.
In regard to the ice movement of the glacial ejoch in Now ritereness Brunswick one or two inferences may be drawn, and these are:1. That ice will flow down low inclined surthees even if obstrueted by hills and ridges as high as the ground which gave it momentum, provided there are valleys or passes by which it can creep, through
to a still lower level. The principal water-shed in New Brunsri is a comparatively low one, the average descent or slope from it tot waters of the Gulf of St. Lawrence being about 14 to 15 feot 1 mi while on the southern side, towards the Buy of Fundy, thestope is ot

Slopes of sur face affecting ice-moveuren if to 7 feet a mile. The direct descont, i.e., in a staight line, fry the higher portion, however, towards the Baie den Chaten's is 25 f a mile, towarls Miramichi Bay 12 feet a mile ; on the sonthward slo from the higher elevation to the Bay of Fundy, it is only about 9 fee mile. The ice in its sonthwayl flow from this water-shed was int cepted (1) by the St. John valley, out of which it hud sufficient mome tum to rise; (2) by the minor water-sherl, between that valley a the Bay of Fundy, which it also surmounted, und (3) by the hills sha the coast in Charlotte county and southern Kings. Notwithstandi these obstacles, it seems to have pursued an almost direct course fro the grounds of the interior to the Bay of Fundy, crossing ralle creeping through ravines and gorges, and passing over the small for on the coast nearly at right angles thereto. This latter feat it was, course, the better evabled to perform from the momentum it receis from the minor water-shed referred to.
Whole surface of rocks n^{n} placialed.

Probable
thickness of Quarternary ice-covering.
2. Although it has been generally supposed that ico scored the wh surface of the rocks beneath it by the movement of the roek deb which, purtly frozen into it, formed its basal portion, yet there are are which do not seem to have been seraped or grooved, the decayel to material lying upon the solid rocks apparently undisturbed. Pro of this can be seen along the southern side of the Baie des Chalen between Bathurst and Caraquette. In certain places along this coa especially at Clifton, whero bold eliffs present grool sections, undisturbed material alluded to is found overlaid by what appears to till, while the surface is strewn with transported boulders derived fro the Pre-Cambrian and other rocks of the interior to the west. Simi phenomena were observed also in other places.
3. The thickness of the ice, even when the glacial period had atain the maximum degree of cold, cannot have been very great. In Restigouche estuary, strine are found on the side of a hill facing the ley, 600 feet above sea level. Here the ice may have been 900 to 1, feet thick,-a less thickness would not explain the facts-and it p bably did not much exceed this in any part of the province. The f of its having enveloped mountains 2,000 feet high in the interior d not require that it should be much thicker, because it would necessar have a slope on the surface corresponding with the slope of the coun from there down to the marginal arca.
el-shod in Now Brunswids sscent or slope from it to the g about 14 to 15 feet a mile, y of Fundy, the slope is only Ce., in a struiglit line, from Baio dos Chaleur's is 20 feet ile; on the somthward slope, ndy, it is only about 9 feeta an this water-shed was inter. hich it had sullicient momend, between that valley and ed, and (3) by the hills alleng n Kings. Notwithstanding in almost direct course from of Fundy, crossing valleys, passing over the small forts

This latter feat it was, of a the momentum it received
sed that ice scored the whole wovement of the rock dibris al portion, yet there are areas or grooved, the decayel rods arently undisturbed. Proofs side of the Baie des Chaleus, rtain places along this const, presont grod sections, the verlaid by what appears to be ported boulders derived from interior to the west. Similar daces.
he glacial period had attaned ave been very great. In the te side of a hill facing the wale may have been 900 to 1,000 plain the facts-and it proart of the province. The fatt feet high in the interior does ; because it would necessaily with the slope of the country

M 2. Stratified Interion on Fiesil-water Deposits.

The sand, gravel and elay beds described under this head are those position of overlying the till and intermediato in age between it and the alluri- the hese bediles in ums of fluviatile and lacustrine origin. They comprise the gravels and other deposits forming terraces along river valleys and uround lakes, which although partly belonging, in some places, to the recent deposits, especially the loamy portion covering many of the intervales, are, nerertheless, supposed to be mainly deposits contemporanoons with the Leda elay and Saxicava sand of the coast series. In other words, while the terraces belong to Division M2 of our classitiention, the intervales or lowest terraces poriodienily overflowed by freshets beloner to the alluviums or Division M3. Reference will also be made to the deposits of stratified sand, gravel, etc., on the higher levels, and their probable origin explained.
The terraces of the St. John valloy und its trihutaries were pretty Terraes of fully described in my last report alrendy referred to, and it will, there- river valless. fore, be unnecessury to notice them in detail here. Those of other rivels in the province were examinod however, among which were the Restigouche and its affluont the Upsalquitch, the Nepisiguit, NorthWest and South-West Miramichi, etc. Along these, termees of greater or less dimensions occur in endless variety of form, some of them very beautiful and nffording a considerable breadth of rich soil, but none can compare in elevation and extent, nor in picturesque shapelinoss, with those along the main St. John.
A brief description of the terraces of several of those rivers will now be given by way of comparison with those occurring in the St. John valloy, described in the above mentioned report. (Report of Progress, 1882-83-84.)
In the Restigouche valley, no terraces were observed more than 50 Along Restito 7 is feet in height above the river at the nearest point. They are, however, of considerable area, occurring chiefly below the mouth of an aftluent or a bend in the river.
The banks of the Upsalquitch have a considerable width of intervale tpsulquitch. and terrace land. Generally speaking, none of the terraces exceed a height of 30 to 40 feet above the river, and all have a slope down stream corresponding to it. At the upper falls, just above the mouth of Ramsay's Brook, there is one, however, which seoms to have been formed under exceptional conditions, the result of a lake-like expansion of the siver which formerly existed above this point. It is 65 feet higher than the rivor at the upper end of the falls.
Along the Nopisiguit also, there are numbers of low terracer, -one Nopisiguit. obserred at the Grand Falls on the left bank being probably the highest.

North-West Mirnmichi.

South-West Miramichi.
l'elitcodiac.

Tobique.

It is 65 to 70 feet above the river at the upper insin, mal consinte of gravel undernenth, mixed with cobble stones, und mpped hy a few feet of loam. Area unknown, but appurontly limited.

On the North-West Mirmmichi no tervacer of any eonsequence are met with till we reach the hend of the tide at the conflaence of the Little South-West. On both sides of the mouth of the latter stremm extensive terracos oceur, that on the right being 75 to 80 feet in height above tide level and covering an area of two equare milen or more extending up the river some distance. It is composed chictly of and , but becomes coarwer an we proceed up atream. A lower terrace, 30 to 40 feet in height, and another 18 to 20 feet, lie between it and the point of junction of the two rivers mentioned, the surfaces of which are partially covered with loam. Other terraces were seen along the Little South-West for six or seven miles up, which are of much conarer materials.
Along the main North-West above Red Bank, as tar as Chaplin Island, terraces of considerable width ocemr on both sides. The highest on the left bank was found to be $\mathbf{7 5}$ to 80 feet above tile-level, and probally 50 to 60 feet above the river at the nearest point. Lower ned intervene, one of which measured 65 feet in height above tidelevel.
The highest of these tergaces have probably been formed when thee parts of the river valleys were estuaries, with the land 80 to 100 feet below its present level, and the deposits are really marine or cstumine, although deriving their materials from the rock debris nbore which has been carried down by the rivers. The boulders are of granite, gneiss, felsite, diorite, slate, ete., all belonging to rocks of the interin?

On the main South-Went Miramichi, terraces are not seen cither till we reach the head of the tide, or confluence of Renoms River. Hior that they skirt the valley everywhere, but wre not high, sellon exceeding 30 to 40 feet above the level of the river at the nement priut Sometimes three are scen together, one rising ahove the other, but oftener only two. At Doaktown and the moath of Taxis River the attain a considerable breadth, and when cleared aftord exeellent soil At the later place mounds or river-valley kames necur.

The Petitcodiac River has some low terraces thonking it which ar neen at Boundary Creek (where a provel-pit has been openel in one and at Salisbury and Petiteodiae villages.

The valley of the Tobique River exhibits many beatiful termaces a far up as the confluence of the Mamozekel and Right Hand brancl One was seen immediately above the "Narrows" on the right lan at a height of 40 feet, and a second irregular one somewhat ligher These are lacustrine and have been formed when the river wa dammed back by drift and held in a lake. At the foot of the Re
ipper insill, and connists of s, und enpled by u few feet nited.
of uny eonsequence are met - conthence of the Little f the later stream exten. Ig 75 to 80 feet in height two square miles or more * eomposed chietly of sand, m. A lower terrace, 30 to eet, lie betwean it und the ned, the surthces of which rraces were seen along the which nre ot' much conreer

Bank, as filr as Chaplin pr both sides. The highest feot above tide-level, and nearest point. Lower ones height above tide-level. bly been formed when there ith the land 80 to 100 feet really marine or cetuarine, 3 rock débris above which he boulders are of granite, ng to rocks of the interim. aces are not seen either till e of Renoms River. Ahove but are not high, seldom to river at the nearest point. rising above the other, but nouth of Taxis River they eared athord excellent soil. kianes oceur.
aces thmking it which are it. has been opened in one),
many beuutiful terraces ol mud Kight Inand Branch. arrows" on the right bank gular one somewhat higher. mod when the river was :e. At the foot of the Red

Rapils there are wide intervales on the right bank, composed of gruvel, which have u helght above the 'Iohique of 20 to 30 feet. At the month of the Wrapsehegan, low terrinces oecur on both sides, that on the right heing called "Wapske Flat." At Bhe Monutain bend and the month of Riley Brook, similar low teruces skirt the river; while at the "forks," a terrace, 5 to 8 feet high and "t mite long or more, ruas along the left bunk, which, at the lower end, is bucked by another rising 30 to 50 foet ubove the river. On the Little 'Tobigue or Nictor Branch a fow narow terraces are seen at intervils, the heights of which are 20 to 40 feet, becoming higher, however, as we approach Nictor Lake, the source of the river. Near the mouth of Cerar Brook, they are alt to 60 feet above the stremm, the valley being comstricted there.
On Salmon River, an aflinent of the St. John, a tow miles above the samon River. Tobigue, noteworthy und peculiar terraces occur at Uphan's miths, three miles from its month, two of which wre short ones, resembling artiticial embankmonts. None exceod a height of 40 feet above the stream. Ridges of slate rock were seon to underlie some of them.
At the mouth of Mmlawaska liver, a series of terraces oceurs Maidawask. ground the site of Old Fort bilinundston, the two highest of which are respectively 65 to 70 feet and 85 to 90 feet above tho St. John, ut the coufluence of the two rivers. A trift-dam seems to have existed across the mouth of the Madawaska River in early post-glaciul times, forming alake of lake-like expansion above, which has beon instrumental in carving out the torruces reforred to. The St. John valley ubove this point becomes constrictod and, as stated in my previous report, a lake has prolubly stretched from here to the Granil Falls immedintely at the close of the Ice Age and before the remodeting of the drift into terneces bogan. The latter lake must have held in a body of water; the surface of which was 90 to 100 feet above the present level of this part of tho St. John.
So terraces of uny consequence were seen along the Madawaskit River as fin as the Queboe boundary, but extensive intervales indiente a lake bot tom.
Some of the narrow terraces bordering the St. John valley between peculiar fornaGruml Falls and Edmundston uppem to have been formed by the terroess ine
 is supposed to have once occupied it, thus forming a bink under the surface along its margin while it remained at its highest tevel, the smmit of whieh would be levelled otr by the action of the lake waters. Atmospherie agencies of this kind ntone seem to attord a reasonable explanation of the origin of several ternees in this locality, as they ure not netir the mouthe of tributary streams, and the river valley here is a mile or more wide.

Relation of lerraces to the drainage, und size of rivers.

Conclusions respecting the orikin of lerraces.

A somewhat detailed investigation of river-terraces in New Brut wick, shows that these formations bear a elose relation to the draina area surrounding them, to the size and depth of the valley, the solur of the river, etc., along the banks of which they are found. Thelary rivers, enpecially when they flow through deep valleys, have invarial the largent termees and vice versá. The correspondence is so mark that it is comparatively easy to judge, from the size of the river, wh the height of the termaces is, the relation apparently holding good n only at the present day, but evidently during all post-glacial time.

In my report on the surface geology of western Now Brunswia already several times cited, a theory in regard to the origin of the termees was tentatively advanced, and a finther stuly of them duri the summer of 1884, has brought out the following faets and conel sions, all tending to support it, viz. :-(1). Tormees are usually shon even the highest and longest seldom exceed two or threr miles, al they havealmost invariably a longitudiual slope corresponding to th of the rivers; (2), the highest teraces, while often having con sponding ones on the opposite side of the river, at alout the same let are, generally speaking, without it : and moreover, each terrace, exee in a few cases, seems to have been formed separately and independent! (3), their greater development below the monthe of tributaties at constrictions and bends in the river valleys, and where the flow is mo rapid, is a characteristic feature ; and (4), their heights, relative the rivers, are greater where the valleys are narrowest and deepest, ar lowest where thene are widest.

The data at hand seem, theretore, to lead to the conclusion that t larger number of terraces, along river-valleys, have been formed the rivers croding and modifying the drift which occupisel these ralle at the close of the Ice Age and since, in the process of re-excaraling su drift. After the retreat of the ice, it would appear that the salleys we partly blocked up, the rivers forming lake expansions at heights eorry ponding to the size of the rivers and depth of the valleys, not exceeli ?00 feet along the St. John above that of the river of the present da but correspondingly less on smaller streams. Erosion and tramsper tion, in other words, the gradual cutting down of their chandeln to low levels, would then be suflicient to account for all the observel pt nomena.*

It is to be understood, however, that the above explanation is intended to exclude the sipposed existonee of icc-barriers damming river-valleys at certain places during the shacial epoch, which ato will serve to account for the origin of a few of the termaces.

[^6]ver-terraces in New Brunslose relntion to the danage th of the valley, the volumg they ure fouml. The larger eep valleys, have invariably prespondence is so marked I the sizo of the river, what pparently holding good not ing all post-glacial time. f western New Brunswick, pgard to the origin of these rther sturly of them dining following facts und concluTermaces are usially short, ced two or three miles, and slope corresponding to that while often having correiver, at about the same level, oreover, each terrace, except parately and independentry; mouthes of wibutaries and s, and where the thow is most , their heights, relative th e narrowest and depent, and

1 to the conclusion that the Hleys, have been formed by which oceupiest these vallers process of re excavatinge veh appear that the salleys were expansions at heights corteof the valleys, not exceeding he river of the present day, 1s. Erosion and tamsportawn of their chamels to lower at for all the observel phe
lie above explanation is not of icc-barriers dimming up arlacial epoch, which atone w of the terrares.
ess 1871-72, p p. iff 56 : adla 1or if M. and inferences retating to terraces of
chalmers.]
Drift-dams seem to have existed at various points along the valley of brit dams, the St. John about the close of the Ice Age, maintaining the river at an elevation equal to that of the highest terraces referred to. Evidence of one having oceupied the valiey immediately above the mouth of the Aroostook, was obsorved, and others appear to have existed between that and Grand Falls, where the termees are developed on a magniticent scale. The wholo St. John valley, indeed, from Woodstock to St. Francis, has been occupied with drift obstructions at the period mentioned.
The former existence of lakes, or lake-like expansions of rivers, lake expan(notably along the St. John,) is evidenced, as stated above, by terruces fivers. and other phenomena, and the large lake, which is supposed to have been held in between Grand Falls and the mouth of the Madawaska by the drift-dam at the firmer point, prevented the erosion of the original drift beds ia this part of the valley to as great an oxtent as elsewhere. The elay beds and intermingled materials are less oxidized, and wherever covered by sand or gravel, have generally a bluish tint. This color may be partly due to their calcareous nature, as they are largely derived from the Silurian slates of the distriet; bnt it is also prolable that at the time of their original deposition they were excludel tron the atmosphere, and, lying almost undisturbed since, have retained the colors they then had. The whole appearance of the deposits in question is indicative of their lacustrine eharacter.
The materinls composing the beds occupying river-vallers and lake- Clurneter of bavins were deseribed in my report of $188 \div-83-84$, and shown to be, $\begin{gathered}\text { mitreriats ind } \\ \text { riverer ralless }\end{gathered}$ ℓ 'emally speaking, (1), loam on top, (2), sand and gravel, and (3), chay w.h probably till in the buttom. One or other of these divisions, is however, often absent. On the higher grounds, where the land is dry, the surface deposits usually consist of (1), stratified saud or gravel of saried texture, with lenticular shcets of stratified clay beneath. and generally till in the bottom. In the hollows on this surface there on higher are often thin chayey on loamy sheets, which have been depowited as ${ }^{\text {grounds. }}$ the wash from the surrounding slopes. The sand, gravel and till almost always contain boulders of the underlying or subjacent rock. The thickness of these bets varies from a few inches to 10 or 20 feet or even more, but often one or the other of the sories is wanting. Generally speaking, the thickness depends upon the mature of the underlying roek, whether hand or soft. The deposits overlying the Silurian and Carboniferous areas constitute a deep soil, while orer the Presilurian it is thin and gravelly.
In the lower parts of the uplands, which are often wet and time characer of swamp("swales," or "earibou phans"), the series is (1) a stratum of untands. decayed vegetable, or peaty mater from a few inches to several feet in
thicknoss; (2) a hardpan heneath, composed of tine samd and day and almost imporvious to water, nsua!ly a foot or two deep; and (3) sand and gravel with boulders, and sometimes till in the bottom, generally chasely packed. As on the drier gromnds, the thiekness of the deposit, in the swamps varies, but is nsually considerable, the till heing evidenty much thicker there than upon the low ridges or upland.

The origin of the till, moraines, etc., was exphaned under: a formem

Remarks on orikin of stra titied beds.
hear, and in this connexion it may be remarked, as regartin the calley drift and the materials occupying the higher levels, that they consis largely of sand, gravel, ete., derived from the till. In the shifing process which large portions of the rock debris underwent during the ghacial epoch, the elevations would maturally become denuled and grenter quantities deposited in the valleys. This valley mift, when the ice legan to retreat, would be arranged into moraines and kames ly the smaller heal glaciers which would hang abom the water-sheds and elevated portions of the comitry, and by waters flowing therefrom; and in the river valleys and hake batins the work of erosion and remodelling into stratitied beds would be carried on and the process of reexamating the drift-illed river-chanels commence. On the higher levels, many lakes and pombs would ocenpy the hollows, and portions of the drift would thereby be remolelled. Dont of these have since become dry by dramage, evaporation. ett. Oren

Probblile moile of formation on hisher terels. all the higher grounds, however, there is almost invariably a atratitied deposit of sand and gravel to be formend resting on the till of greater or less thickness, which must havo been formed from its modifi. eation by atmupheric agencies, as, for example, by thaws every pring loosening the materials and moving them down to a lower level: by rains washing down the tiner materials to the hollows in which maty low tound the lenticular elayey patehes referred to ; but principally. per. haps, by the morlitication of the till by water resulting from the melting of the glacier or glaciess at the chose of the Iee Age. Inded the conclusion seems unavoidable, that the beds of sand and gravel referpet 10, with which intercalated sheets of clay oecur sometimes heselly, al of which are beyond the reach of fluviatile and lacustrine antion, mus have heen proxduced by some sul-aerial agencies of the kiad mentioned

M 2.-Leda Clay ani Sanicaya Sind.

locatitjes of leda clay and Saxicava saml.

The deposits chassed under this head, which usmally cembair marine fossils, are contined, so far as known, to the roastal area am river estuaries in New Branswick. For the most part the Lela day tioms detached sheets, of greater or less breadth, and is mint prean continuously over the maritime district referred to, but apmats hette deceloped at or near the monthe of rivers than elsewhere. In the bai des (lablenes basin, the two (Ledn clay and Suxicava samd) neell
;ed of fine sand and clay, ot or two deep; and (3) and 11 in the hottom, generally te thickness of the deposits able, the till heing evidently os or uplands.
explained muler a former rked, as regramis the calley. rer levels, that they consist te till. In the shifling prorris underwent during the ally become dennted and This valleydrift, when onged into moraines aml In would hange :lbont the conntry; and ly waters a and lake bawins the work beds would be carried on -filled river-chamnels comad ponds wouth ocerlipy the reby be remotellel. Mont , evaporation, etc. Orep lost invariably a st ratitied ting on the till of greater formed from its moditi. ple, by thaws every pringe down to a lower leved: by e hollows in which may he I to; but prineipally, perresulting fiom the melting Lee Age. Indeed the consand and growsel referred ceur nometime lucally, all end lacustrine artion, must cies of the kind mentiond.

cava Sind.

, which ismally contain II, to the comatial area and e most part the Lela day readth, and is thet opread red to, but appears hetter an elsewhere. In the Baie nd Saxicava sand) necur
together in patches all around its southern border and up the Restigrouche valley as far as the mouth of the Upsalquitch usually in regular position, that is, the sand overlying the clay: Their greatest ${ }_{\text {fireales }}^{\text {firkess }}$ thicknew, as seen together to the west of Bathurst harbor, is Leda clay, hinose docsonosits Fin fee Susicava sand, 50 to 60 feet; but in the Restigouche estuary at New brun in eet, Sanconn sac, Oak and Battery Points, the Saxieava sand alone is seen to be 150 feet thiek. On the banks of the Tête-i-gauche liver; the clay is found as high as 90 above sea level, while in St. Ann settlement the Saxifeasa, or overlying sand, reaches an elovation of 150 to 175 feet. This is the greatest height of these beds in the Baie des Chaleurs distriet, so tiar as observed. In the Bay of Fundy region they present similar features and characteristics, but penetrate the interior along the rivers tinther, and are nowhere found at greater elevations above sea llevel than 200 feet. The total vertical thickness of the series in New Bramswick must exceed the above estimate considerably, however, as ererywhere along the coast it descends beneath the seal, and some of the richest fossiliferous beds pertaining to the Leda clay are found below high-tide level, as at Charlo and Jacquet Rivers at the Baie des Chaleurs, and Suml Cove on the Bay of Fundy coast.
In regard to the materials constituting these deposits, they seem to be souree of the derivel partly from the denudation of the eoast area by the sea, but these deposits. chictly from the detritus of the numerons rivers and brooks debouching into the bays and straits along the coast, the thickest accumblation being found a the mouths of livers and along e.tuaries. And the nature of the roek or duift-beds, whence the materials were derived, seems to have been influential in determining the character of the Leda chay and Saxicava samd. For example, in the Baie des Chaleurs basin, where cal- Their rolation careons rocks prevail, they have furnished considerable quantities of the the ronarks of material suitable tor clay, and hence the Leda chay is well developed there and from its calcareons mature is prolitic in well preserved fossils. In the Bay of Fundy region on the other hancl, there is a mixture of calcareous and other sediments, and hence it is only in certain localities that we tind clay beds and fossils. Along the coast of the central Carboniferous aroa, the beds, being ehiefly derived fiom the Carboniferonss sandstones, are largoly composed of saud, henee fossils are marely, if at all, detected. It is thus apparent that the materials oll these clays and sands are largely derived trom the rock debris of their own immediate neighborhood. Where they overlie kame depasits, they are invariably packed with honlders from them. At the mouth of rivers rumning through a limestone distriet, blue calearcous day prevails, while reddish clay is invariably met with in listriets in which red Lower Curboniferous rocks occur. In the middle Camber iferons district the clay is generally grey in color.

Leda clay not divisible with upper and lower．

Fossils．

Saxicava saml．

No separation of the Leda clay into upper and lower divisinns seen possible，but in some places the upper portion is yellow or browni－ from oxidation by percolation of surface waters and other atmospher causes．The lower portion indicates deposition in moderately deep， ＇quiet waters．There would seem，however，to have bem a gradu shoaling during the deposition of the Leda chay the upher part oft bearing traces of having been formed in shallow seas，hagrons om estuaries，the material being coarser and boulders not mommon．Tt tossils are largely confined to lenticular，mudy strata it the urp portion of the Leda clay．
The Saxicava sand is wholly a shallow water deponit，and contai gravel and small boulders dorived from pre－existing duift deposits，a like the Leda clay partakes of the chameter and even color of the In the somewhat extensive terraces of Saxicasa sand，near Bathur the pebbles consist chiefly of granite，telsite and slate．The materi： appear to be such as were carried down be the rivers and worn oft coast area by the sea；but，from their greater thickness at the moul of rivers，principally from the former source．

The Saxicava sand seldom contains fossils．Mr．G．F．Math． states（Report of Progress，1876－78）that Mya archatit and Macon fusca oceur in it on the coast of the Bay of Fundy．In the Baice Chateurs sand，fossils were found only in one patee，viz，at Benjam River，and at ahout its contact with the underlying clay，the eperi met with being Mytilus edulis，var．elegans of Sir W．Dawsmis lis．T Leda clay abounds in fossils here，which are found principally in upper strata，however，and considerable beds torming the hower purti along the Baie des Chaleurs coast are quite unfossiliferous．Theoe lat
Why portinns of Leela clay are untowil iferous．
are often impregnated with iron or other matter dentmetion to hel to which canse they may partly owe their unfosiliterone condition．

The following shells were collected in 188 t，from the Ledal clay the Baie des Chaleurs basin：－

LIST OF POST－TERTIARY FOSSILS，COLLECTED バトート，FR THE LEDA CLAY OF THE SOUTH SHOE OF THE BA DES CHALEURS．＊

Cbestacea．
1．Balanus crenatus，Brug．River Charlo，Beaser Point，dad River，Tete－i－gauche River．Very common．
2．Homarus Americanus，Edw．（Claw of．）In railway cmang，ut Beaver Point．

[^7]er and lower livinions seems ortion is yellow or brownith aters and other at mospheric sition in moderately deep, or er, to bave been a gradual chay, the uprer part often shallow seas, lagoons and oulders nut uncommon. The muddy strata in the uppre

Water deposit, aml contains e-exinting duift deprosits, and er and even color of theoe. xicava sand, near Bathurst, te and shate. The materials the rivers amb woon oft the ater thicknese at the mouth ce.
osisils. Mr. (i. F. Matthew
Mya arcmaria :mel Macomal if Fundy. In the Baie des one platee, viz., at Benjamin anderlying claty the vecies of Sir W. Hatwenis liot. The aro found principilly in the Is torminge the lower pution unfossiliferou. These latter matter destructive to defls. unfossiliterons condition.
S4, from the Leda char of
 TH sthe: of THE Bate
ro, Bearer Proint, Jacquet - (1)mmon.

In railway conting near

Mollusca.

Lamellibranchiata.

3. Leda minuta, Fabr. River Charlo, Beaver Point. Rare.
4. L. pernula, Muller, " « Abundant.
5. Mya arenaria, Linn. " " Common.
b. Mr. truncata, Linn. " " "
i. M. truncata, Linn., vur. Udecallensis. River Charlo, Beaver Point. Common.
6. Mytilus edulis, Linn. Benjamin River.
7. Nucula tenuis, Montagu. River Charlo. Rather scarce.
8. Saxicava rugosa, Lam. River Charlo, Beaver Point. Very common. This and Balanus crenatus are the two most abundart species.
9. Nacoma calcarea, Chemnitz. River Charlo, Beaver Point. Common.
i.. M. fragilis, Fabr: = M. Granlandica, Beck. Last two localities.
10. Yoldia arctica, Surs $=$ Portlandia glacialis, Gray $=$ Leda truncata, Brown. Last two localities and Jacquet River. Rare, except at latter place.

Giasteropoda.

14. Buccinum undatum, Limn. River Charlo. Not common.
15. Leptunea despecta, Lim., var. tornata. Riser Charlo. Rare.
16. Murgarita striuta, Brod. and Sowl. " Very rare.
17. Natica clausa, Brodl. and Sowb. " Not common.

IS. Serripes Grumbudicus, Chemn. River Charlo, Beaver Point. Rather abundant.
19. Bela harpularia? Conthugy. River Charto. Searce.
20. Trichotropis borealis, Brod, and Sowb. River Charlo. Scarce.*

These fossils are usually intermingled and packed together in lenticu- Mode of oevurlar strata in the upper portion of the chay, as alrealy stated, so that it is ${ }^{\text {rence of fessils. }}$ imposible to separate aretic from sub-irctic or other species, and their ralue, as indieative of the depth of water in which they lived, is not to be greatly relied on. It appears probable, however, that the sea which they tenanted has been comparatively shatlow, tor not ouly has the upper surface of the clay been eroded and chamelled by eurrents

[^8]previous to the deposition of the Saxicava sand, but the fossils them selves, in many cases, indicate that they were washet about currents and throwia together in masses, occurring often compacted tri or three inches deep, with the valver mostly sepmated and broken Occasjomally, too, they seem to oceupy poekets or holes in the appe part of the chay and are heaped up sometimes on one side on the othe of the larger boulders. The frequent commingling of deep water an littoral species may thas be accounted for, the sea having washe those from shallower waters into greater depths and vice cersí.
The assemblage of shells in the foregoing list, along with thos recorded by Mr. G. F. Mntthew from the same region, indicate that th climate of the Baie des Chaleurs district was prohably sub-aretic eharacter at this stage of the Quaternary epoch, as similar specia inhabit the seas on the coasts of Labrador and the south of Greentan at the present day. Nevertheless, its waters must have formed favourite retreat for marine life, for the shells are not only abundan but remarkably strong and well developed.

The shells of the Bay of Fundy Leda clay show some molionation elimnte there from that which obtained in the Gulf of St. Lawrenee, shown by Mr. Matthew, so that the existing geographical barrier influenced the character of the shallow-water marine fana then a they do now. Only a few of the species fomud in the Leda clay of Sen Brunswick now inhabit the seas along its coast.*

The Leda clay and Saxicara sand often form terraces, unally two three together, exampler of which may be seen near Bathurst, a Charlo River and along the Restigouche, also at the confluence of th North-West and South-West Miramichi Rivers, as well as at many plae on the coast of the Bay of Fundy; deseribed by Mr. Mathew.

Sections of ma rine deposits.

The lossils indicative of sub-aretic climate.

Marine lerraces.
sand, but the fossils them. 4 were washed about by urring often compacted two tly separatel and broken. ckots or holes in the upper new on one side on the other mingling of deep water and or, the se: having washed epths and vice cersá.
sing list, along with those mo region, indicate that the was probably sub-aretic in y opoch, as similar species nd the south of Greenland vaters must have tormed a hells are not only abundant,
show some anelionation of the Gult' of St. Lawrence, as ting geographical barriers ater marine faum then as nd in the Leda clay of Ser oast.*
orm terraces, usually two or be seen near Bathurst, at liso at the contluence of the urs, as well as at many places 1 by Mr. Matthew. on were mate at the under. case descembing.
ear mouth of Mill-tream :-
FEET.
anging to gravel ., 5 to 10 ous chay, hohling d Mисомк), , 1 to 5
fragmentary slowis:
ndierts and Mruonne
t above the river
\qquad
5 to 10

Lawrence valley; Mr. Mathew on : Also a paper by the writer, Can.

These beds here form a terrace 15 to 25 feet nbove ticie level in the Restigouche estuary.
2. Another section of the stratified beds was measured in the Resit At mouth of gouche valley, at the Intercolonial Railwaty bridge, near the mouth of ${ }^{\text {Metapedia. }}$ the Metapedia, The course of the Restigouche River, at this point, is about $\mathrm{N} .50^{\circ} \mathrm{E}$. A hill 400 feet high rises on the right bank sheer from the rivor's margin. Course of the section N. 40° W., or about at right anglos to the direction of the river.

1. River, width of, following above course, 210 yards.
2. Intervale on left bank, 5 to 7 feet high; 345 paces wide. Chielly loam with pebbles intermixed. Sandy loam on summit, and in some places pure sand.
3. Terrace, 12 to 15 feet high; 90 paces wide. Gravelly loam.
4. 'lerrace, 35 feet high; 50 paces wide. Gravel.
5. Terrace, 45 feet high; 10 paces wide. The same as the last, with boulders.
6. Terrace, 55 feet high; 10 paces wide. The same.

Behind these, a mound rises 175 feet high, apparently composid of till. It is irregular in outline, and occupies a position opposite a gap in the hills behind, through which a small stream flows. These hills rise 400 to 500 leet above the river.
3. Behind the Metapedia Sulmon Club honse, at the confluence of Behind the Metapedia and Restigouche Rivers, an interesting serice of beds Melabedian House. oceus, which appears to be partly marine and partly thuviatite. It forms a terrace 160 prees long and 35 wide; height above the Restigouche River, at the railway bridge mentioned, 70 feet, above tide level 88 feet. The following is the succession in descending order:-

FEET.

1. Fine, friable, yellow or brown earth..... 1 to :
2. Dark gray sanly loam.................................. 3 to 4
:i. Gravel, with nmmerons water-worn pebbles, almost wholly of calcareons slate, from one to six inches in diameter...... 1 : to
3. Sandy loam, becoming chayey in bottoms to
i. Dark grey clay, in places bluish, holding marine fossils, i.e., Myu and Macomer depth unkuown. In
entting. 15 to
20
49
The above measurements are only approximately correet, the face ot the section being denuded.
 at least 1 and 2 are closely similar to loams overlying terraces along marine. rivers in the interior, while No. 3 is perhaps the tramsition deposit.

No. 4 has an uneven smface as if it had been eroded previous to deposition of the overlying beds. On the surface of the terrace, beach, a transported boulder of diorite, three fect in diameter, another of trap, one foot in diameter, were seen.
Neweastle.
4. At a brick-yard on the bank of the Miramichi Rever, just abu Neweastle, the following seotion was measured.

1. Sand, with coarse layers towaris the top, and lenticular
sections in Bay of Fundy region. stratification in some places............................
2. Reddish-brown clay, the same as No. 3, but oxidized....
3. Dark groy, finely-stratified, arenaceons clay, with carbonaceons matter. Thickness unknown, height above tide level in river.
i
5
$\frac{6}{19} \quad \frac{6}{0}$
These deposits extend along the bank of the Miramichi "ppos Beaubair's Istand half a mile or more, with a width of a quarter of mile, and appear to have been haid down in an eddy or cove while land stood at a lower level.

Mr. Matthew has given sections of the Leda elay and Saxicava sa in the Bay of Fundy, in the report cited (Report of Progress, 187.7 from which further information can be obtained.

M 3. Alluviums, on Recent Iepontts.

Fresh-uater Beds.

Alluviums.
These include all the fluviatile and lacustrine deponits, such marshes, peat bogs or caribon plains, marl-beds, river-fits (int vales), ote.
Formations
around marsins of lakes.

Aromed the margins of the lakes, small areas of marshy or peaty by oceur, formed of sediments washed down from the surrounding shop mingled with vegetable matter, such as remains of mosses and cri ceons plants which have grown and died in situ. These are increasing breadth from the causes mentioned, but their extent is, on the whe inconsiderable. Some lakelets are bordered with a ridge of gravel a sand resembling a kame, which appears to have been formed ly expansion or movement of the ice which gathers on their surfa every winter against the shores. Phenomena of this kimi can be st at Lake Elsie, Kent county ; Spruce Lake, St. John comnty, ete, : in certain places aloug river banks.

Intervales.

 extend along the St. John and other rivers. Some of these n described in detail in my former report. Below Fredericton, m especially in Sunbury and Queen's counties, they form wide trabeen oroded previous to the e surface of the terrace, or three feet in diameter, and seen.
Miramichi River, just abore ured.
and lenticular
It oxidized.... y, with carbonin, height above

of the Niramichi upposite ith a width of a quarter of a in an eddy or cove while the

Joda clay and Saxienva sad Roport of Progress, 187.75$)$, tained.

ent Deposits.

ds.
lneustrine deponits, such as marl-beds, river-thats (inter-
reas of murshy or jeaty beds from the surpoumling slopes, mains of mosses and ericasitu. These are increasing in heir extent is, on the whole, ad with a ridge of gravel and o have been formed by the h gather's on their surlaces nena of this kind can be seen o, St. Joln county, ete., also
of which are called marshes, vers. Some of these were

Below Fredericton, more ties, they form wide tracts,
which are overflowed every spring, and comprise some of the riehest lands in the country. Similnu intervales are found along all the rivers, occupring a greater or loss breath.
Peat bogs are met with in all parts of the province, and are of varions peat bogs. sizes from fi mere patch uf to areas of many sifure miles in extent.
A few of these raay be onumernted. vi\% :-

1. At Bolledune, Gloucester county, one half a mile loug, and 300 to 400 paces wide occurs. Underlain at the dep,th of 2 to 4 feet by shell marl. Height of the surface of the peat above sea levol, 5 to 10 feet.
2. At River Charlo another occurs ; length, 11 to 2 miles along the coast : width 1 to 1 mile.
3. A peat \log crosses the Intercolonial railway about three miles south of Weldforl station; width abuut a quarter of a mile; length nuknown.
4. At about a mile or a mile and a half south of Canaan station. Intereolonial railway, a peat bog a quarter of a mile wido crosses it, and some distanco further south, another, inalf a mile wide. These two are merely portions of one bog, and seem to mite a short distance east of the railway.
5. About three miles north of Berry's Nills station, another is crossed by the railway track, which is a quarter of a mile wide or less.
6. A small peat bog ocenrs at Kont Junetion, Intercolonial railway, and sevoral others along the Kout Northern railway. One, about two miles or more in diameter, is seen six to seven miles above Kingston village, Kent county.
7. A parat bog, a quarter of a mile wide, crosses tho Intercolonial railway just north of Bartibogno station, and four to five miles further north another was soen of about a mile in width. These two, I am informed, join to the west, and form an extensive "caribon plain."
s. Near Point Escuminac, Northumberland county, a peat bog soveral miles in length is met with, referred to by Mr. Ells in one of his reports. It is said to be 30 feet deep.
8. Peat occurs on Shippegan and Miscou Islands, but the deposits were not visited.
9. In the south of the province they are numerous,- $-\Omega$ peat bog is crossed by the Now Brunswick railway, about haltway between McAdam and Watt Junction, along the dead waters of the upper Digdeguash River. Hillocks of till and gravel oceur hore and there in it. This is also called a "caribou plain," or "cranberry barren."
Peat bogs are common in the valleys among the erystalline roeks of the southern countios, but they are usually of limited extent.
10. Penty bogs or marshes occur along the thoroughfares between the two Magaguadavic Lakes, also between Grand and North Lakos, and along the head of Eel River, York County.
11. Behind some sand hills in Lincoln, Sunbury county, peat bogs lie. Their area is small.
12. A peat bog, a mile long, amal a gumerter to lialf a mito wide, lies on the . branch of Portage Brook, an alluent of the Nepisignit liver. eral direetion, N.E. and S.W.; height above sea level, what feet. depression cecupied by it once formed a lake-hasiu.
13. At the hemb of the Keswick and Naeknwieac Rivers thereate patt then One, five or six miles coast of Millville, is half a mile or mone diannater, and shaky when walled uron.
14. In the st. John valley, in Madawnska comenty, where it is wide and thero are peat-covered areas overlying the stratified inpesils. of these, helow St. Basil, forms a tamarac swamp.
15. Along the Madawaska Liver, five to soven miles from its mouth, "ct berry harrens" owcor in tho valley. The paly matter is a few inches deep, and is moderlaid hy a clayey hardpan.
16. Peat also oceurs at Lawlor's Lake, St. Jolun county, umderlait with a as deseribed by Mr. Mathew.

Peat bogs on coasl.

Area and character of intervales or river thate.

In many places along the const of the Bay of Fimely and Baie Chnleurs, peat heds are seen to extend below sea level, showing a slis subsidence of the region since the period of their growth.*

Intervales acompany every river in New Bronswiek with greater less breadth, and comprise thousands of acres of the very bees han Thoy are generally composed of sanal and gravel underneath, with covering of loam of variable thickness, and are overthowe every san The freshets deposit a thin stratum of silt upon them, which, by yea increments, hats given them their present thickness, and thores sems reason to doubt that these intervales have been wholly fimmed in way, that is, from the sediments of spring tieshets. Thoy othenat a thickness of 5 to 10 feet, and are usmally unstratified ; ther comsin very tine sand :und clayey matter which were held in su-pension ly Probable monde waters, till reaching a quiet phace they were dropped. The mastratio of orikin. character may be partly owing to the fart that each layer of silt, a became dried after the recession of the freshets, wats liable to the turbed by the rains and frosts and blown about by the winds. roots of growing vegetation wonld likewise have the same cilfect: that ultimately. from the incoherent nature of the matheriak, th would assume an unstratitied, homogeneous appeazace. The lomat our river vallegs appems to be, therefore, of the natme of the be of the Mississippi valley and other comntries.

The whole amount of loam or river silt, described in this and preceding report, ulrendy cited, seems thas to have aremmatatel yearly or periodical increments in past ages, and in the lower interva is still aceumulating.

[^9]alf a mile withe, hess on the S.E. it of the Nepisiguin liver: Gen. ht abowo sea levil, she frot. The ned a lake-basin,
ieac Rivers therwate mat huss. ;illa, is half a mile of more in ирон.
anty, whero it is wide and hat, ting the stratitied deprasis. One tmarac swmin.
en miles from its mouth, "craney. The penty matter is only A by a clayey hardpan.
lin county, underlaiill with marl,

Bay of Funly :and Baie des w sea lovel, showinys a light of their growth.*
w Brmanwick with greater or acres of the very hest lams, d gravel underneath, with a 1 are overtlowed every seasm. upon them, whirh, by yenty thickness, and there secmu no o been wholly firmed in this, ; treshets. Ther often ataing unstratitien : ther consin of ere held in su-pension ly the re dropped. The mastratified that each haye of silt, in it reshets, was lialbla to be dirIn about by the wimk. The fe have the satme ctlect: so ature of the matheriais, they us uppearance. The loan of , of the nature of the bess ios.
It, described in this and the us to have aceumulated br s, and in the lower intervales

[^10]Infusorial onrth oceurs at Pollet River Lake, King's county, and Trinolite. Fitzereald Lake, St. John's connty. At the latter place there is a large deposit.

Marine Beds.

These deposits consist of salt marshes, sand dunes, estuarine flats, ete. Churucer of The salt marshes occupy a large area on the Bay of Fundy eonst, more eprecially in Wentmoreland and Albert countion. The material comprsing them is largely derived from the waste of the Upper and Midde cartoniferous rocks of this part of the province, and is a reddish-brown mul, in some places varying to grey, which is well described in Dawsn's teadian Geology. In other localities it changes to a loam. Along the inner margin, near the drier gromads, the loam or clay is often covered with a peaty deposit, whter-soaked a great part of the year. Trigs, aticks, logs and other mattor are sometimes found buried up. The level of these marshes is about equal to that of the highest tides of Heizh and the Bay of Fundy, and their area in Shepody Bay and Cumberland area. Bisin, in New Bronswiek, is many thousands of ueren. Marshes of smaller extent oceur near St. John city.
Along the Gult shores, salt marshes are met with in many phees satt marshes. tordering the lagoons which are enclosed by the sand barriers interrupfellys stretching from Baic Verto to the entrance of Baie des Chaleurs. They secour chielly at the mouths of rivers, as at Richibncto, Kouehilouguac, Baie du Vin, ete; luat are, on the whole, of small extent compared with those of the Bay of Fundy. The sand dunes and heaches whicls enclose the lagoons referred to, skirt the shores along the Carboniferous aroat, but are best developed northward of the mouth of the Richibneto, and from there to Miscou Island torm a serios of long, bar hanks, or islands along the const, chiefly of blown sand. Some of them are covered by a stunted growth of spruce and birch, and also with coarse grasses and carices. On the Baie den Chalears coast, these Dunepertliar tormations are absent, or rather are replaced by dunes of much carrer sand jutting out into the hay, forming what are enlled " points." Yotewthy examples oceur at Bathurst, Belledune, Heron Island and other places. These danes appear to have been tormed by annual or perimlical increments of sand and pebles thrown up by the waves. Fituarine flats are in process of formation at the mouths of many of Estuarine flats the principal rivers, which are usually laid bare at ebb-tides and covered with eel-grass (Zostera marina), diteh-grass (Ruppia maritima), ete. In the upper part of the Restigouche estuary a busin five to six miles long fonl two to three wide exists, which is tilled, chiefly with sand, up to the level of low tides. An extensive flat stretches from here to the fatern end of the estuary at Dalhonsie, the material becoming finer
in that direction. Clay beds are being depowited in the cover lomeril it, in which wholls of Maroma fusea are imbodded. A wndy of the esturine deposits would exemplify the formation of the marin P_{N} Tortiary beds which occur in the vicinity.

Grological Relations of the Surface Debomits

Relathom of surface demasil tothe solit prok".

Hon firmel.
suile of New Brmoswick.

The geologienl structure and mineralogical composition of the ruckNew Brunswick have had an importment influence upon the character the surfuce deposits, and more especially or " "n ugricultural capabi ties. In genernt, an intimate relation may .d to exint hetweent unconsolidated materinls and the strata immorliately underlying then but there are oxceptions to this rule to which I shall presently reff In preceding puges an attempt has been male to show how these loo deponits originated, and it was inferred that they were prexlured ly series of cames which may be briefly stated as follow:-(1) Ti arulnal decay or degralation of the roek surface of the combtry chiet by subaerial ciowion; (2) the subsequent shifling and grimling don of portions of these materials, and the abrasion of the rorksuma beneath through the agency of glaciers and iceber, ; and (3) It re-arrangement of the uppermost portion of these materials liy the actio of water, either thwiatile, lacustrine or marine, throngh which tha have been reasiorted and st matied into clay, sand, or gravel heek, et
'The deposits constituting the soils and s' ails of the prowine a mainly divisible into two chasses-(1) tho amost wholly derived from the underlying , rich rest upoun and a abjacent rork- :and (: those which consist, to a considerable extent, of transmitel materia and have merely a partial relation to the roeks immedialdy bena The first may be found mon the surface of the great silurian pha which extends from the Gaspe peninsula across the northern part New Bronswick into the Now Enghand States. They alow wedr up the central Carboniteroms area, but in the case of the latter diatrict is fimme that those of local origin are intermingled with a certain portion of foreign material derived chietly from the Pret'armiter band to the northwest.

On the silurim area referred to, the depusits muler romsiderati are largely made up of the debris of the eadeareous slatr- Which th cover and to which the soil, in a large degree, owes its firetility. Th - Waten are traverned, however, by mumerous dykes of tehite, doler and other eruptive rocks, the debris of which has been intermixed wi these calcareous materials. The suporficial deposits mantling this tri of country are often deep, more especially in the interior, and while some places tolerably freo from boulders, in others there is a lar admixture of them derived chiefly from the intrinsive rock- mention
onited in the roves bordering ahedded. A sturly of these mation of the marime Pant.

Surface Drionits.

al composition of the rock of Hence upon the character of
*agricultural capatilio.
.d to exist het ween the modiately underly ying them; hich I whall presently refer. ade to show how the loove it they were produred bya ated as follow:-(1) The urface ot the comutry chiefly hitting sull grimding duwn hamsion of the rock-surtice anl ieebers- ; and (3) he these material- by the :cction arime, through which they y, sind, or spaved hell, ate. soils of the prowinceare
bich rest upum and are nijacent rock: : and (?) nt, of tramoporten materials rocks immerliately beneath. of the great simmian pain across the northern part of tes. They alow wecur upon case of the latter diavict it rmingled with a certain pron from the Prectirlm nitierow
leponits muler romsilatation aleareous slatco whicla ther ee, owes its furtility: Theee us dykes of telsite, dulerite ch has been intermixed with I deposits mantling this traet in the interior, and while in in other. there is a large e intrusive rocko mentional.

The land is high, as atrealy stated (800 to 1,000 feet), except along the inmelliate const of the Buie dew Chatenrs, and having a rolling surface in generally well drained by the numerous stremms which traverse it.
On the Carboniferous plain a tolerably deep and uniform covering of prpasingerv. surfuce deposita is found, principally furnished from the dextruction of trintur tarbon. the underlying strata. Disseminated through them, however, but chielly seatered almot over the surfice, oreur bouldersilerived from the Cambro-Silurian and Pre-Cambrian rocks to the west, and which have been transported thither by glaciers or the force of rumning water aw stated above. The general surface of this region is low and flat, rising gently from the const to a height of' $\mathbf{4 0 0}$ to 600 feet. The rivers have ent deep trenches or channel-ways through it, and usully their banks have gently rounded, flowing outlines forming long sloper, a result of the sotter nature of the rocks. On the level tracts between the river ralleys, swamps and peaty barrens extend over large areas, in which the soil and sub-soil seem, so fin as examined, to he composet? of materinls such as (1) penty mutier, (2) clay, gravel, etc., and (3) till, the whole constituting cold, harren land. From the character of the rovk which have furnished the surface deposits overlying the Carboniferons area, it will he seen that they contain little or no lime in their composition, and hence the soil is, exceptalong the river banks, not by any means to he compared, as regards fertility, to that constituting the Silurian uphats.
In the sonthern part of the province, the relations between the super- Difiriren gevur
 combitions. The geological tomations there truserse the country in binthern New. comparatively narrow bands, and the iee of the ghacial epoch, having crosed these nearly at right angles to their strike, considerable roek debris has. by this metms, been moved from the surtace of one formation sumbwird to that of another. To such an extent has this transportation of materials prevailed that it is only on the hills and ridges that the loose materials hear my direct relation to the rocks beneath. There has, therefore, been a greater intermingling of the materials helonging to the different geological formations of this district, those of each belt overlapping, as it were, the adjoining rocks to the south, although in a very irregular manner. It is also observed that the quintity of material derived from each rock-formation in this, as well as in wher parts of the province, is directly in proportion to the yielding mature of each kind of rock to the sub-aerial and other erosive influences to which it has been subjected, and that consequently those Which were more easily decomposed have furnished the largest quantities of surface materials and vice versa. The Carboniferous sandstones and shates, as well as the slates of the Silurian series, have suffered

is generally flat and the soil usually stony and liable from its a mature to he wet in rainy semsons; nevertheless, certain tracts, once cletred and brought under cultivation, form perhapis the stro and best soil in the country for hay and cerenls. It is possible, sit as some of these tracts are near the nouthwestern limit of the Silurian phin just described, that portions of the calcareons mad trom the latter may have been transported thither in the lee A which, in some degree, they may owe their fertility.

Trees on crystalline bell.

Soil on Lower Carboniferous.

Respecting the forests on the aren described, it may the reme that a difterence is at once apparent to a botunical eye when the compared with those ot the Silurim area. Hemlock spruce, spruce, white and red pine, and other trees, which are rau altogether absent on the latter, in some localities, are here con forms. Hardwood ridges are less frequent and great stretches of interior hilly country are barren and almost denuded of forest fires. Heath plants are more abundant in the valley hotome ar bogs among the hills.

The narrow band of Lower Carboniferons sediments, which hed the man tringular-whaped area of the Midalle Carboniferons to tion, crumbles down into a rich, friable soil, containing. usa considerable quantities of calcareous matter. A wide area of t reddish beds occurs in the Tobique valley, and a smaller ono on Beceaguimic. In some places the belts are so narrow that they wholly overlapped by debris from contignous rocks; but, in genemal presence of materials derived from them is easily reeognised, owin their reddish color and their effect upon the fertility of the dist The agricultural capabilities of the Tobique outlier have been 1 extolled by Genner, Hind and othors. During an explomation of river, in the summer of 1884 , it was noticod, however, that many la in the distict, after having been partly cleared and buildings ere thereon, were subsequently abandoned. The cause of this waascertained, but it cannot be denied that, while the region is of: a his fertile character, its remoteness and inaccessibility militate agains successful settloment. Portions, however, ure llat and imperfe drained, the resutt of the existence of a clayey hard-pan formiug sub-soil. Only where the land has sufficient slope to drain it well really good farms available, and in localities characterized ty a sul of this kind there are some thriving settlements.

The bands of these rocks, stretching along the southwestern ri the middle Carboniferous basin in York, Sunbury, Kings and Al counties, comprise tracts of excellent farming lands, which have described in previous reports.

The mineral fertilizers occurring in them are gypsum, at the Pl
ny and liable from its clayes ertheless, certain tracts, when on, form perhajs the strongest ereals. It is possible, situated uthwestern limit of the great ous of the caleareons material ted thither in the lee Age, to eir fertility. lescribed, it may the remarked a botanical eye when they are rea. Hemlock spruce, black ter trees, whicla are rafe or - localities, are here common ent and groat stretches of the almost denuded of forests by in the valley hotoms and in
ous sediments, which horders Middle Carboniferous tormar ble soil, containing, ussally, atter. A wide area of these ey, and a smaller one on the are so narrow that they are ous rocks ; but, in genesul, the is easily recognised, owing to I the fertility of the district. ique outlier have heen much During an exploration of that ed, however, thatt many farms cleared and buildings erected
The cause of this wit not while the region is of a highly cessibility militate against its er, are that and imperfectly clayey hard-pan forming the ent slope to drain it well, are ien charmeterized ly a surface tlements.
long the southwestern rim of Sunbury, Kings and Albert ming lands, which have been
m are gypsum, at the Plaster

Cliffs, Vietorin county, and at Petiteodiac, Westmoreland county, Hillsboro', Albert County, etc.; also lime and marly shales in the last mentioned localities.
A luxuriant growth of wood is generally found upon soil derived from Forest growth these rocks. White and black spruce, hemloek, white, yellow and blaek boniterous. birches, two or three species of maple, which, with beech, usually form groves, are the commonest trees on the uplands, and cedar, hacmatac, ash, ete., on the low grounds.
The soils which overlie the Middle Curboniferous series are almost soils overlving wholly derived from the disintegration of the grey sandstones and con-iferous caries. glomerates below, and partake in a large degree of their coarse bilicions nature. The area occupied by them, which comprises fully one-third of the province, is, generally speaking, flat, with a gentle slope towards the Gulf of St. Lawrence. Low, wide undulations, having ageneral east and west course, are met with over a large part of the area, but more especially south of the Miramichi River. The soil is, for the most part, deep, but often stony ; and when level, usually has a clayey barl-p:on forming the sub-soil upon which water lies, giving rise to peat bogs, "earibou plains," or " barrens." The best lands for agricultural purposes are those met with along the banks of rivers already described, where the nutural drainage is sufficient to carry off the surplus waters due to precipitation. With ta eopious supply of lime, in which the soil orerlying these rocks is almost entirely deficient, together with orgamic manures, it becomes excellent land for hay and grain. Several traets might be particularized, such as Nappan valley and Doaktown, in Northumberland county; St. Louis, Richibucto and Buctouche, in Kent; tho Petitcodiac valley in Wextmoreland, ete.
The farms along the const and around the estuaries in this district are, all things considered, much better adapted for general agricultural purposes than those of the interior, as manures and fertilizers of different kinls are to be obtained there, which are beyond the reach of farmers occupying the latter. Oyster beds, forming what is called "mussel mud," "Musel mud." are common everywhere in the lagoons and ereeks, and yield a material of highly enriching qualitios for the hatvier clay soils. The calcurcous skeletons of fish are often applied to the land also with greal alvantage. Much benefit is atforded the drier gravelly soils, too, by supplying them with quantities of vegetable matter from the wet bors and swamps, more espeeially if it is tirst formed into a compost by misture with barn-yard manure.
But the principal cause of the superior quality of the land along the painuge. coast and river margins, within the Carboniterous district, lies in the fact that it is better drained than that of the interior overlying the same formation. And here, it may be remarked that the
general question of the drainage of the land in New Brunswid important one, and noxt to the quality of the soil is worthy of t est consideration by the practical ugriculturist. In a comntry this, where the precipitation is so much in excess of evaporat absorption for the groater part of the year, unlens some meanso is provided for the surplus waters, either naturally or arti more especially for those arising from thaws every spring, they 1 the flat elayey surfaces till late, not only retarding farming ope but keeping the ground cold and materially hindering the gr vegetation. If the spring and summer continue wet, crops on lands are thus rendered almost worthless and cannot mature p and the character of the land and the climate are often comdemne in reality the defects are largely owing to imperfect dranage.

Sulection of farms.

The ehief considerations, therefore, in selecting land on which t on agricultural pursuits most suceesstully in this province are quality of the soil, hy which is meant its physical eharacteristios, " clayey, sumly, loamy, ete.; (2) its height above seal level, arpec and (3) its drainage. Uuless land is well drained by stre: rivers. although the component materials of the soil may maticate tertility, yet it will be found unprotitable. One of the physical tions rendering the soils overlying the Lower Carloniferous ands rocks so mach more valuable, agriculturally, is, no doubt, the ex drainage resulting from their rolling surface.
$\underset{\text { Gara of Miterous }}{\text { Mille }}$ Carboniterous areas.

Soils of
Permo-Carboti-
iferous rocks.

The flora of the Middle Cartoniferous area, including the syts sents some features different from those of other parts of the co especially of the Silurian tracts, as already mentioned. The tr characterized by the prevalence of hemlock apruce, scoub pine Banksiana), white bireh and poplar ; and on the flat, swampy gr by hacmatac (lareh), cedar, serubby black spruee and lense ma ericacous plants. The peat bogs are often without :my lint ceous forms, and are, no doubt, shallow lake-hasius filled with d vegetable matter, chiefly mosser, and bordered by stumted apu hamatac trees. In some of the longs, dead trunks of the trees ri to oceur standing amidst the wet sphagnous mass, showing that change in the condition of the hog, or in the climate, has taken since they began to grow, unfarorahle to their existence. The may have heen very slight, perhaps caused by the inereasel gro sphagni around their roots, or to a difference in the drainage, a existence, which at best is but a precarious one, would he terminated.

The enstern part of Westmoreland county is underlaid to a co able extent by Upper or Permo-Carboniferous sediments, similar to those of the chief part of Prince bidward Island, -whi
vick.
laud in New Brunswick i; ap f the soil is worthy of the highulturist. In a comitry such so h in excess of evaporation and car, unless some means of escape ither naturally or artificially, aws every spring, they lie upon y retarling furming operations, rially hindering the growth of continue wet, crops on the lom as and cannot mature properly, mate are often conclemned when to imperfect drainage.
selecting land on which to carry ly in this prowince are (1) the ohysical characterintics, whether ht above seal level, aspect, ete; well drained by streaths of Is of the soil may minate: lind le. One of the physical cendiower Carboniferons: and Silurian rally, is, no dontb, the excellent rhace.
area, including the sylva, pe of other parts of the comitry, aty mentionet. The tree are lock spruce, scrub pine (Pinus d on the flat, swanpy grounds, ack spruce and dense mawe of often without :my lut hertho lake-hasins filled with derared ridered by stunted spmere and ad trunks of the trees referted hous mass, showing that some the climate, has taken place their existence. 'The change hed by the increasel growth of rence in the drainage, as their carious one, would he easily
nty is underlaid to a considerboniferous seclintents,-rwhs ce bidward Island, -which far-
nish perhaps, all things considered, the most friable, easily cultivated and productive of the soils of the Maritime Provinces of Canada. The land in the vicinity of Sackville, and the slopes of the ridges between that and the Nc. . Scotia boundary, also the peninsula of Cape Tormentine, and the coast region thence westwardly as far as Cape Bald, are covered by a soil largely derived from these rocks, and comprise many excellent and highly cultivated farms. Contiguous to these are the extensive salt marshes of Tantramar and Missiquash, already alluded $t o$, a large portion of which is dyked.
The tract of country lying between the central Carboniferous area ${ }_{\text {Suils of distriet }}$ and the Bay of Fundy, extending from Albert county on the east, to the Finnd Bay of St. Croix River on the west, and including the southern part of Albert, a part of Kings, Queens, and the whole of St. John and Charlotte counties, is underlaid by rocks of different geological ages, neally all of' which are remarkable for their highly altered and erystalline character, and forming in general a rugged, broken and boulder-strewn surface. The ehief topographical features and agricultural capabilities of this section were deseribed in some detail in previous reports (Report of Progress, 1870-71, also for 1877-78), by Prof. Bailey and Mr. Matthew, and it was seen that while the valleys are generally fertile, the summits of the hills are often bare, and the slopes usually strewn with stones, nevertheless, when once cleared and brought under cultivation, the soil is often productive. The valleys, which are sometimes of considerable width, have generally a rich loamy soil, and near the coast, the ereeks and inlets contain sult marshes, which, when reclaimed, are similar to the dyked marshes of Westmoreland and Albert.
The surface of Charlotte county is almost similar to that of St. John and the western part of Kings as regards its soil and agricultural charaeter. Large portions of it are boulder-strewn, and among the hills are peat bogs and barrens, rendering considerable tracts almost worthless for agricultural purposes. Overlying the Cambro-Silurian band there is some good soil when it is once cleared of boulders.
The northern margin of the area now deseribed, which is overlapped to a greater or less distance by debris from the Lower Carboniferous ${ }^{\circ}$ sandstones, comprises the best land in it. In Kings county there are rome excellent farms along the Kennebeckasis, particularly at Sussex Vale, which is sometimes called the "garden" of this county. It is a wide, flat-bottomed valley; which at one time must have contained a lake, the land being chiefly alluvium. The rivers in these counties are usually skirted with a greater or less breadth of intervale, and the country is extensively settled, notwithstanding the sterile character of much of the soil, by a thrifty, enterprising population, and agriculture is now receiving more attention than formerly.

The matural fertilizers are lime, mantactured near so. dohn, in eral places, from Lanrentian limestone, and marl, found in wome os shallow lake-hottoms, motahy at lawhors lake.

The flora prosents no maked contrast to that of the intertior toms of the province, except that a few aretic or subtaretic toms to find a more comgenial habitat there than in the interior. owing douln, to the chilling inthence of the aretic "ament whieh here along the eotast, and th the figs which preatil in the Boly of fin cansing a lower summer temperature. This aroa is now almont wh demuded of it, timher, and the finests everywhere are but thin stragesling.

Matemals af Eiconomic Imbomene Forno in the Surface bepos
Bog iron ore (limonite) is of frequent oceurrence in the allurit oremine the Cartoniferons rocks, more expecialy in the vicinit the st. John liver, the beds sometimes attaining a thickness of tw three feet.

Wad, or bug manganese, is found at Queenshary, York comuty, in one or two place in sumbury comenty. It likewise oremen on the a branch of the sonth-West Miramichi. 1212 miles above the fink, in rivers bank.

Infusorial earth (tripolite) is found at litagerald Lake, St. county. The Lake has heen drained drey by the st. John Witer 0
 Pollet River Lake. Mechamis's settement. King's commy.

Mat in met with at Lawlor's Lake, St, John countr: alon at B dme amd River Charlo in the Baie des Chateme districh. (lipur
 low lakes in limentome districts in other pate of the provines.

Brick ray oceurs in a mumber of places both in manine and tir water heds. Leeda day is mamufactured inte briek at Camphelly
 :pparenty of thatatile origin, is wrought tor similar purpure Fremerimon, Wowhtock, shiktehaw and elsewhere on the si. J River.

[^0]: - The writer first treated of the glacial phenomena of the northern part of the province in raver published in the Canadian Naturalint in 1881, Vol. X., No. 1.

[^1]: - Sce Report of Progress, 1880-81-82.

[^2]: * Twenty-third Annual Rejort of the Crown Land Department of New Brunswich, 1834.

[^3]: ment of Now Bruuswick, Bst

[^4]: - For the theory here alopted regarding the sub-acrial formation of rock basins holding lakes, by the secular atmospheric degradution of rocks, glacial denudation, etc., see Dr. A. R. C. Seltryn, Geological Magnzine, vol. IV., p. 94 (1877): R. Pumpelly, American Journal of Seience and Arts, vol. XVII., Third scries, p. 133 (1879); Dr. T. Sterry llant, ibid. vol. XXVI., Thirl series, p. 190 (1883), etc.

[^5]: - See Report on the Superficiul Geology of Southern New Brunawick, by Mr. (i. Y. Mather 18T1-78.

[^6]: * See report of Dr. A. K. C. Selwyn, leport of Progress 1875-72, i p. 54.56; atow Mr ti Dawson, In lippert for 1877-78, 1p. 145-194 B., for facts and inferences relating to terraces Britislı Columbia.

[^7]: －Vide Report of Progress，1877－78，for Report on the Superfieial（ieutugy if suthern Brunwiek，by（3，F．Mathew，M．A．，containing a list of Post－Tertiary fossile，a number of \boldsymbol{T} belong to the Baie des Chaleurs basin．

[^8]: - Lam indebted to Mr. Whiteaves, l'alieontologist to the survey, for the identification ol' some of the species and a revision of the above list.

[^9]: - This subsidence may, however, be chiefly local, and due to a compression of the beds.

[^10]: ue to a compression of the beds.

