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PREFACE.

IN the first edition of this treatise the subject of Attractions

was presented only in its gravitational aspect. This limitation

was formerly customary, when electricity was less studied than

now, but the result has become somewhat unsatisfactory. When
lecturing on the subject the Author found that some of the most

striking examples of Attraction were those derived from the

theory of electricity. While it was impossible wholly to pass

these over, it appeared that the interest in them was sensibly

diminished if they were discussed without explanations of their

meaning. Examples on the attractions of thin layers of matter,

subject to what appeared to be arbitrary laws, seemed to have

no real applications.

For these reasons a selection has been made of those pro-

positions in Magnetism and Electricity which appeared most

forcibly to illustrate the theory of Attraction. These have been

joined together, with brief introductions, so as to form a con-

tinuous story which could be understood without reference to

any other book.

These illustrations have been so far separated from the rest

of the volume that any portion of them may be omitted by a

reader who desires to confine his attention chiefly to gravitational

problems.

Some theorems, which it was not deemed expedient to include

in the text, have befn shortly discussed in the notes at the end

of the volume. These are not always closely connected with the

theory of attractions, yet, being natural developments of the text,

will probably assist the reader in following the argument.

Q>5\



VI PREFACE.

The general arrangement of the gravitational part of "At-

traction " has been only slightly altered. New theorems have,

however, been introduced and the demonstrations of some of the

old ones simplified.

The second part of this volume is on the stretching and

bending of rods. The investigation of the stretching, and

consequent thinning, of a rod is founded on Hooke's lav/. The

fact that (with certain restrictions) the stress couple is pro-

portional to the bending is assumed as an experimental result

and applied to determine the bending of rods and springs under

various circumstances. The problem, when put into this form,

is properly included in a treatise on Statics. Although this

chapter is not a treatise on the theory of Elasticity, it did not

seem proper wholly to omit the theoretical considerations by

which the truth of the fundamental law is confirmed. Accordingly

3ome simple examples which had been briefly discussed in the

last edition have been retained.

The theory of Astatics occupi( s the third part of this volume.

It was discussed with sufficient fulness in the first edition and

only very slight alterations have now been made.

A separate index to each of the three chapters has been given.

So many results are included under the head of Attraction that

it was found impossible to mention them all without unduly

lengthening the list. It was also necessary to classify some

theorems only under one heading.

Finally, I desire to express my thanks to Mr J. D. H. Dickson

of Peterhouse for the very great assistance he has given me in

correcting most of the proof-sheets and for his many valuable

suggestions.

EDWARD J. ROUTH.

Peterhouse,

December, 1901.
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ATTBACTIONS.

Introductory remarks.

1. Law of attraction. If two particles of matter are

placed at any sensible distance apart, they attract each other with

a force Arhich is directly proportional to the product of their

masses and inversely proportional to the square of the distance.

Let m, m' be the masses of two particles, r their distance

apart ; if ^ be the mutual attraction which each exerts upon the

other, then F is given by the equation F=^ k —— .

If/ be the acceleration produced by the attraction of m at the

distance r, then f=K~^.

The quantity k is called the constant of attraction. Its magni-

tude depends on the particular units in which the masses m, ni,

the distance r and the force F are measured. To avoid the

continual recurrence of this constant running through every

equation, it is usual to so choose the units that /c = 1. When this

is done the units are called theoretical or astronomical units.

Putting « = 1 in the ec^uations, we see that when m and r are

both unity the acceleration / is also unity. We infer that the

astronomical unit of mass is that mass which, when collected into

a particle, produces by its attraction at a unit of distance the uuit

of acceleration. The expression for F shows that the unit of force

is the attraction which a particle whose mass is the astr »nomical

unit of mass exerts on an equal particle at a unit of distance.

To avoid the continual repetition of the same set of words, we
shall use the phrase attraction at a point to mean the attraction

on a unit of uiass collected into a particle and placed at that point.

R. S. II. 1



ATTRACTIONS. [art. 3

It is convenient to use different systems of units for different purposes. The
astronomical units should be used in analytical investigations. In any numerical

applications we may choose such units of space and time as we may find convenient,

and then introduce into our formulsB the factor k with its appropriate value.

It may be noticed that in using different units for different purposes we are

following the analogy of other mathematical sciences. In practical trigonometry

we measure angles in degrees, in theoretical trigonometry we adopt that unit by

which our analytical formula:; are most simplified. Also in algebra we have one

base in logarithms for use in calculations and another for theoretical investigations

;

and so on through all the sciences.

i I:

I

i 111

il

I

w

2. Numerical estimate. To obtain a numerical estimate

of the magnitude of the force of attraction, we must determine by

experiment the mutual attraction of some two bodies. We may
exhibit the result in either of two forms: (1) we may determine

the value of k when the units of space, mass, &c. have been

chosen
; (2) we may determine the magnitude of the astronomical

unit of mass by expressing it as a multiple of some other known

mass.

The two bodies on which the experiment should be tried are

obviously the earth and some body at its surface. Regarding the

earth as a sphere, whose strata of equal density are concentric

spheres, it will be shown further on that its attraction on all

external bodies is the same as if its whole mass were collected

into a particle and placed at its centre. If then m be the mass

of the earth and a its radius, the acceleration of a body at its

surface is KHija^. Let g be the acceleration actually produced by

the attraction of the earth on any body placed at its surface. We
thus form the equation Kmla^ = g.

Several experiments have been made to determine the mean

density of the earth. One of these is the Cavendish experiment,

but there have been others conducted on different plans. The

result is that the mean density has been variously estimated to

be from 5J to 6 times that of water. According to Baily's

repetition of the Cavendish experiment the ratio is 5'67. Repre-

senting this ratio by /8, we learn that the attraction of a sphere

of water, of the same size as that of the earth, will produce in a

body, placed at its surface, an acceleration equal to gj^.

3. To find the value of k when the units of space, 7nass, and time are the

centimetre, the gramme and the second. Since the mass of a cubic centimetre of

water is one gramme nearly, the mass m of a sphere of water of the same size as

the earth is ^ira^ grammes, where the radius a is measured in centimetres. By
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Kffb

the experiment just described .^
="-

; taking /3=5'67, <; = 981 (see Vol. i. Art. 11),

3g 1

^^^"'*''=4^«^-1543xl(H-

If therefore the attracting masses are measured in grammes and the distances

in centimetres, the expression for F with this value of k gives the attraction in

dynes.

Iiet m be the mass, measured in grammes, of a particle which produces by its

attraction at the distance of one centimetre a unit of acceleration. Then m is the

astronomical unit of mass. The formula /=(c7n/r* gives l—Ktri, .•.ni=1543xlO*

grammes.

Let F be the force measured in dynes which one astronomical unit of mass

exerts on another at the distance of one centimetre. The formula F=Kmm'lr'

gives F=1Ik since m=m' and j«k= 1. The force F is 1643 x 10* dynes.

4. To find the value of k when 'h'- units of space and time are the foot and the

second, and those of mass and force are tht pound and the poundal. Since the weight

of a cubic foot of water is the same a^ that of 7=61 pounds nearly, the mass m of a

sphere of water of the same size as the earth is ^va^y, where the radius a is measured

in feet. By the experiment just described —^ = ^

,

If we take a = 20926000 feet

this gives «=—j^,.

If therefore the attracting masses are measured in pounds and the distances in

feet, the expression for F with this value of k gives the attraction in poundals.

The astronomical unit of mass, when the foot and the secord are the units of

space and time, is 93x10^ jMinds and the astronomical unit c. force is 93x10'

poundals. A poundal is rougniy ^qual to the weight of half an ounce. See Vol. i.

Art. 11.

6. Dimensions of k and m. When the unit of mass is arbitrarily chosen the

attraction F of a particle of mass m on a particle of equal mass is F=Km^li^. It

follows that the dimensions of k are the same as FL^/jt'^ or L^fi~^t~^ where F, L, /x, t

stand for force, length, mass, and time. When the factor k is omitted the dimen-

sions of astronomical mass include those of k and become the same as those of

/UK* or, which is the same thing, F^L or L^n^ ( ~ ^. This also follows at once from

the formula F=m^jr'^. These dimensions are the same as those of the electrostatic

measure of electricity. See Maxwell's Electr city, Arts. 41, 42.

6. Ex. 1. Prove that the mass of the particle which at the distance of one

centimetre from a particle of equal mass attracts it with the force of one dyne is

3928 grammes. Everett's Units and Physical Constants.

Ex. 2. Show that a cubic foot of water, collected into a particle, attracis an

equal particle placed at the distance of one foot with a force equal to the weight of

1/(8 X 10«) pounds.

7. Law of the direct distance. There are other laws

besides that of the inverse square which may govern the attraction

of bodies in special cases. Some of these will be mentioned as we

proceed. But the most useful is that in which the attraction

1—2
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varies as the distance. In this case the attraction of two

particles, each on the other, is represented by F = fnm'r, where

m, m are their masses, and r, the distance between them. >

8. When tlie attraction obeys the law of the direct distance,

the resultant attraction of any body at any point is found at

once by using Art. 51 of Vol. i. Let be any point, A^, A^,

&c. the positions of the attracting particles; let w,, wi^, &c. be

their masses. The component attractions at are then given by

X = Xmx = x%m, Y=y1.m, Z=z^m, where x, y, z are the

coordinates of the centre of gravity of the body or system of

attracting points.

It immediately follows that the resultant attraction at is the

same as if the whole mass ^vi of the attracting system were

collected into a single particle placed at the centre of gravity.

The resultant force on a particle at tends there/we towards the

centre of gravity of the attracting system, and is proportional to the

distance of the attracted point from it

9. In what follows, when no special law of force is mentioned,

it is to be understood that the law meant is that of the inver.se

square. This is often called the Newtonian law.

When the law of attraction is said to be f{r), it is meant that

the mutual attraction of two particles whose masses are m, m'

placed at a distance apart equal to r is mmf{r).

Attraction of rods, discs, dx.

10. Attraction of a rod. To find the attraction of a

uniform thin straight rod AB at any external point P.

Let m be the mass of a unit of length, then m is called the

line density of the rod. Let p be the length of the perpendicular

PN from P on the rod. Let QQ' be any element of the rod,

HfQ = x; let also the angle NPQ = 6, then x = p tan 6.

The attraction at P of the element QQ' is

mdx _ md (p tan 6) _ mdd
~PQ'~ Jpsecey ~ p '

Let X, Y be the resolved attractions at P parallel and perpen-

dicular to the length AB. Let the angles NPA, NPB be a, /S,

X= \m — sin 6 = - (cos a — cos /3) (1),
J p p^then
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deY—\m — cos 6 = — (sin B - sin a)
J p P

(2).

£ Q' Q A

11. Substitute for cos a, cos /3 their values obtained from

the triangles PNA, PNB\ the resolved attraction parallel to the

rod takes the useful form X = -^—, — 4^ (3).PA'PB
It should be noticed that this is the attraction at P of the rod

AB resolved in the direction from A towards B.

12. Describe a circle with centre P and radius PN and let

the portion CD included between the distances PA, PB represent

a thin circular rod of the same material and section as the given

rod AB.

The attraction at P of the element RR' of the circular rod is

therefore
m RR' pd0 dd
PWa ~ ""

2
— "" ^"^ ^^^^ ^^ ^^^^ been proved

to be the same as tho attraction of the element QQ'. Thus each

element of the rod AB attracts P with the same force as the

corresponding element of the rod CD. The resultant attraction of
the straight rod AB is therefore the same in direction and magnitude

as that of the circular rod CD.

13. The resultant attraction at P of the circular rod CD
must clearly bisect the angle CPD: It

immediately follows that the direction of

the residtant attraction at P of a straight

rod AB bisects the angle APB.
To find the magnitude of the resultant

attraction at P of the circular arc CD, we
draw PE bisecting the angle CPD. Let

the angle any radius PR makes with PE
be -f. Let 27 be the angl. CPD. Since

RR' = pdy^ the attraction of the whole

circular arc when resolved along PE is
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/
,^ COS ^ = .2 sin 7, the limits of the integral being -^ = — 7

and 1^ = 7. The magnitude F of the remdtant attraction at P of

2m AP^
a straight rod AB is given by /'=" sin

14. When the rod AB in infinite in both directions the angle

APIi is equal to two right angles. The residtant attraction of an

injinite rod at any point P is equal to 2mjp, and it acts along the

direction of the perpendicular p drawn frow P to the rod.

This proposition leads to a useful rule which helps us to find

the attraction of any cylindrical surface or solid which is infinitely

extended in both directions. We pass a plane through the

attracted point P perpendicular to the generating lines and

cutting the cylinder in a cross section. If the attracting body

be composed of elementary rods of line density m, each of these

attracts P as if a mass 2m were collected into its cross section and

the law of attraction were changed to the inverse distance. The

attraction of the whole cylinder is then equal to that of this cross

section. If the cylinder be solid and of volume density p, the

cross section is an area of surface density 2p ; if the cylinder is a

surface of surface density o-, the cross section is a curve of line

density 2o-. The same rule will apply to a heterogeneous cylinder

provided the density along each generator is uniform.

Three laws of attraction are therefore especially useful. These

are (1) the law of the inverse square, (2) that of the inverse

distance, and (3) that of the direct distance.

15. When the point P moves about and comes to the other side of the

attracting rod AB, crossing AB produced but not passing through any portion of

the attracting rod, the components A', Y remain continuous functions of the

coordinates of P, and will continue to represent the component nttraotiona. When
P lies \n AB produced 1' takes the singular form 0/0, but it is evident that it

changes sign through zero. The resultant attraction is then given by (3) which

is free from singularity.

When P passes through the material of the rod the case is somewhat different.

When P approaches the thin rod, the angles ^ and o become ultimately ^tt and
- ^TT, the r component becomes infinite while A' remains finite. The attraction

is therefore ultimately perpendicular to the rod and finally changes sign through

infinity. When P is inside the indefinitely thin rod the Y component is zero by

symmetry and the X component represents the attraction.

In the preceding analysis we have regarded the linear dimensions of the

transverse section of each element QQ' as infinitesimal when compared with the

distance from P. This however is not true for any "laterial rod when P approaches

bisects the an
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very oloitely to any point of it. The rod (or at leaHt the portion which is near to P)

in..Ht then be regarded as a oylindrical solid.

16. Ex. 1. If two furceH be applied at /' acting along AP, Pli taken in order,

and each equal to mjp, prove that the-r resultant is equal in magnitude to the

attraction of the rod AH and acts in a direction perpendicular to that attraction.

Ex. 2. The sides of a triangle are formed of three thin uniform rods of equal

denHity. Prove that a particle attracted by the sides is in equilibrium if placed at

the centre of the inscribed circle.

If one side of the triangle repel while the other two attract the particle, prove

that the centre of an escribed circle is a position of equilibrium. [Math. T.]

This follows at once from Art. 1*2. Draw straight lines from the centre / of the

inscribed circle to the corners A, D, C oi the triangle, cutting the circle in A', U',

The attractions of the sides AJi, liC, CA are the same as those of the arcs A'li',

li'C, CA', that is their resultant attraction is the same as that of the whole circle

on the centre. This attraction is clearly zero.

Kx. 3. Four uniform straight rods of equal density form a quadrilateral, and

their lengths are such that the sum uf two opposite sides is equal to the sum of the

other two opposite sides. Find the position of equilibrium of a particle under the

attraction of the four sides.

Ex. 4. Every particle of three similar uniform rods of infinite length, lying in

the same plane, attracts with a force varying inversely as the square of the distance

;

prove that a particle will be in equilibrium if it be placed at the centre of gravity of

the triangle AUG enclosed by the rods. [Math. Tripo. 1859.]

The attractions at P are perpendicular to the sides of the triangle and therefore,

when P is in equilibrium, their magnitudes are proportional to those sides. Hence

by Art. 14 the areas APD, DPG, CPA are equal and therefore P is the centre of

gravity.

Ex. 5. A particle is placed at any point P on the bisector of the angle C7 of a

triangle. Show that the direction of the resultant attraction of the three sides at P
/I 1\ APB

bisects the angle APB and is equal in magnitude to 2m ( ) sin .. , where a
\7 «/ 2

and 7 are the perpendiculars from P on the sides liC, AB respectively.

Describe a circle centre P to touch the sides AC, BC. The resultant attraction

of these two sides is equal and opposite to that of the arc of the circle which lies

between the straight lines AP, HP on the side remote from G (Art. 12).

Ex. 6. Two uniform parallel straight rods AB, GD attract each other: show
that the components of their mutual attraction, respectively perpendicular and
parallel to the rods, are

Y='!^(BC-BD.
V

AC+AD), A'= mm' log
BG' + BC AD' +AD
AC' + AG' BD'+BD'

where G', D' are the projections of C, D on the rod AB, p the distance between the

rods, and m, m' the masses per unit of length.

Ex. 7. P is a particle in the diagonal AG of a square ABGD, and within the

square ; show that the attraction of the perimeter of the square upon P is equal to

OP
PA.PB.PG

[Trin. Coll., ISg"*.]

Ex. 8. Let the finite rod AB be produced both ways to infinity and lei. the

portion beyond A attract and the portion beyond B repel P, the portion between A

M where M is the mass of the perimeter, the centre of the square.
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and li exerting no force at P. Prove that the remiitant force at P bisectii the angle

external to A Pit and ih etiiial to com .
- .

p '2

Describe a ciroi*!, centre /', to touch AH and intemect PA in C and HP produced

in H. The renultant force at /' iH therefore equal to the attraction of the arc CH.
Art. )'i.

Ex. 0. The law of attraction of a uniform thin straight rod in the inverse

Kth power. Prove that the components of attraction at a point /' parallel and

perpendicular to the rod are respectively

-v= ^(-* - ' ). y= '"

f {̂009 6)''-^ lie,

the latter integral can be found by a formula of reduction in the usual way.

Ex. 10. The law of attraction of a cylindir infinitely extended in both

directions is the inverse ncth power. Prove that the attraction at a point P in

equal to that of the cross section provided (1) the law of attraction of the section

is the inverse (k - l)th power and (2) ratio of its density to the cylindrical density

is 2J(cos
9)"-! (10, the limits being to }ir, (see Art. 14).

17. Curvilinear roda. The method by which the attraction

of the straight rod AB in replaced by that of the circular arc CD
in Art. 12 may be extended to other curves.

Two curvilinear rods AB, CD are so related that if any two

radii vectores OAC, OBD are drawn, the attractions of the inter-

cepted arcs AB, CD at the origin are the same in direction and

magnitude. It is required to find the relation between the densities

of the rods.

Since the attractions are equal for all arcs, they are equal for

infinitesimal arcs. Let OQR, OQ'R
be two consecutive radii vectores ; ds,

ds' the arcs QQ, RR \ m, m' the

masses at Q, R per unit of length.

Then if the law of attraction is the

inverse Acth power of the distance we

, mds m'ds'
have —r- = —v »

where r = OQ, r' = OR. If <^, ^' be the angles the radius vector

OQR makes with the tangents at Q and R, this gives

(1).
m _ m

r*~' sin <^ r'*~^ sin <^'

The densities of the curvilinear rods at corresponding points

must therefore be proportional to r*~^sin0.
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If tlie law n( attrvstinn be the inTerte qiiare, two ourvilinMr toA» in one plane

equally attract thu origin, if the denHiticH at correNpondiiiK imintH in the two rodi

arc pro|>ortional to the p«rpeiidicularfl from the orit<in on the tanK*>ntM. ;

IS. If the two ctirveH are ho related that each it Iht tnvrrte of the other, wo

have ()Q,()R = ()Q' .Oil'. A circle can therefore bo duHcribed about the quadri-

lateral <^liR'(^'. In the limit when W'l I^' become tanKcntu thin Kivea

Hin0 = Hin0'. If also k = 1, we see that m = m'. It followH therefore that when

thu law of attraction is the inverne dlMtanoe, any curvilinear rod and its invente,

if of equal uniform line dennity, e(|ually attract the origin.

10. Ex. 1. Let the law of attraction be the iuverse distance and let P be any

jwint attracted by a uniform Htraight rod .1//. Draw PS perpendicular to the rod

and di'Hcribe a circle on PN as diameter. I'rove that the attraction of A li at P is

the Hiimc aH that of tlie correHpondiug arc CD of the circle intercepted between tlie

straiKht lines PA, Pli, if the line densities ara equal. Compare Art. 12.

Ex. 2. Two ri^id and equal semicircular arcs of matter with uniform section

and density are hinged together at botli extretnities. The matter attracts according

to the law of gravitation. If equal and opposite forces applied along the line join-

ing the middle points of the semicircles keep them apart with their planes at right

angles, the magnitude of each force will be 4m'' log (1 -l-\''2), where m is the mass of

unit length of arc. [Math. Tripos, 1874.]

ao. Soma Invars* problcnu. Ex. 1. A uniform rod is bent into the form

of a curve such that the diiectioii of the ottruction of any arc P(jf at the origin

biiiectii the an()le POQ. Show that the curve is either a straight line or a circle

whose centre is O.

The data lead to the differential equation | ^8inS=tan- I ^costf. The

limits of the integrals being and $. The eciuation may be solved by differ-

entiation.

Ex. 2. Find the law of density of a curvilinear rod of given form that the

direction of the attraction at a given point O of any arc PQ may hUect the angle

POQ. If the law of attraction be the inverse itth power of the distance, the result

is thnt the line density m at P must be proportional to pr*~* where r=OP and p is

the perpendicular on the tangent at P.

Draw any circle, centre 0, intersecting OP, OQ in C, D. The attraction of CD
(regarded as a uniform rod) at O is by hypothesis the same in direction as that of

PQ and may (by giving CD the proper density) be made the same in magnitude

also. Include the additional elements QQ', DD'. It is clear that unless their

attractions at O are equal the attraction of PQ' cannot coincide in direction with

that of CD'. The attractions at O of corresponding elements of the two rods are

therefore equal. Hence as in Art. 17 the density m at every point of PQ varies as

pr"'-. The proposition may also be proved analytically as indicated in the last

example.

Ex. 3. A uniform rod is bent into a curve such that the direction of the

attraction at the origin of any arc PQ passes through the centre of gravity of the

arc. Prove that, either the law of attraction is the direct distance, or the curve is a

straight line which passes through the origin.

Ex. 4. If any uniform arc of an equiangular spiral attract a particle placed at

the pole, prove that the resultant attraction acts along the line joining the pole to

the intersection of the tangents at the extremities of the arc.
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Prove also that if any other given curve posaeas this aame property, the law

of attraction must be F= .,-/-,
p^ dr

where p is the perpendicular drawn

from the attracted particle on the

tangent at the point of which the

radius vector is r.

Reversing the attracting forces,

we may regard the rod as acted

on by a centre of repulsive force.

Since the resultant force on any

arc PQ acts along OT, where T
is the intersection of the tangents

at P and Q, we may resolve that

force into two componsnts which m.!, It follows that thelv;ng TP and TQ.

resultant force on any arc PQ may be balanced by two forces or tensions acting

along the tangents at P and Q.

To complete the analogy of the force at P to a tension, we must show that that

force is always the same whatever the length of the arc PQ may be. To prove

this let PQ, QR be two contiguous arcs, and let the tangents at P, Q meet in T,

those at Q, li in U, those at P, R in V. Resolving the forces at T, U, V as before,

the components along PT, QT aud RU, QU must together be equivalent to the

components along PV, RV. We have to deduce from this that the components

along PT and PV are equal. This follows at once by taking moments about U.

The conditions of equilibrium of the rod arc therefore the same as those of

a string acted on by a central force. Referring to Art. 474, Vol. i., the tension is

obviously T=Ajp and the force /(r) has the value given above. See the Solutions

of the Senate House problems for the year 1860, page 61. The analytical aolution

leads to an interesting differential equation which can be solved without great

difficultj'.

21 Attraction of a circular disc. To find the attraction

of a uniform thin circular disc at any point in its axis.

Let be the centre, ABA' the disc seen in perspective;

OZ the axis, i.e. a straight line drawn through perpendicular to

the plane of the disc. Let a be the rxdius of the disc, m the

mass per unit of area, usually called the surface density. Let P

independent of
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be the point at which the attraction is required, OP -• p, and the

angle OPA = a.

Describe an elementary annulus, represented in the figure by

QQ. Let x, a; + dx be its radii, and let 6 be the angle OPQ. The

resultant attraction of the disc at P is F= I

—

7yp'~ cosO,

where the limits of the integral are w = and x = a. Since

x=pta,n6 and QP =p sec 0, we find

F = 27rw4/sin ddd = 2Trm (I — cos a).

Here a is the acute angle subtended at the attracted point by the

radius of the disc.

It appears from this that the attraction of a uniform thin

circular disc at a point P in its axis depends only on the surface

density and on th'^ angle 2a subtended at P by a diameter of the

disc. It will be presently seen that if tw be the solid angle sub-

tended at P by the disc, the attraction is ma), (Art. 26).

22. From this we deduce the attraction of an infinite thin

plate or disc by putting a = ^tt. We thus find that the attraction

of an infinite thin plate at any point P is 2'7rm and is tlierefore

independent of the distance of P from the plate.

We also infer that the attraction of a circidar disc of finite

radius a at a point P on the axis very near the disc is idtimately

2'jrni. The attraction is A — /2'7r(l —pjr)pdp where r = PA, p is

the density, t the thickness, m = pt, and the limits are p=p to

p + t. After integration this reduces to 27rm, provided p/a and

tla are idtimately zero.

At first sight it may appear anomalous that the attraction of an infinite plate

!<hould be independent of the distance of the particle from the plate, but we may
understand how it can happen by considering what elements of the disc are effective

in producing the attraction. Each element of an annulus QQ', whose centre is O,

attracts P with a force acting along the straight line joining P to that element, and
the component of force along PO is obtained by multiplying this attraction by

cos OPQ. When the point P is near O, this cosine is small and therefore it is only

the portion of the disc near O which exerts any sensible attraction in the direction

PO. As P recedes from O, the cosine for each annulus gets larger and the resolved

attraction becomes greater. Thus the area of effective attraction increases in size

as the particle recedes. At the same time as the particle P recedes from O the

actual attraction of each annulus on it decreases. It follows from the analysis in

the last article that the increase of effective area just balances the decrease of

attraction due to increased distance, so that on the whole the attraction ia

independent of the distance.

b

!i;

1-1!

lii
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23. If g, g' be the attractions due to gravity on two table-

/ 5 co\

lands whose difference of level is x, show that g' =g{\ — - -

j

approximately, where a is the radius of the earth.

To obtain this result, we regard the attraction of the table-land

as sensibly the same as that of an infinite plate, Art. 22. The

attraction is therefore ^irpx, where p is the density of the table-

land or flat mountain. If p be the mean density of the earth,

its attraction, viz. g', is f Trp'a, There are reasons for believing

that the mean surface density of the earth is about half the mean

density of the whole earth ; when therefore the true density of the

table-land is unknown we may as an approximation put p = ^p.

The attraction of the table-land is thus approximately ^gxja. The

1 2-)
aj

attraction of the earth at the altitude a; is </ (

—

'—-
] =q

approximately. Adding this to the attraction of the table-land we

arrive at the result given.

This theorem was first used by Bouguer in his Figure de la Terre. A short

account of this treatise is given iii Art. 363 of Todhunter's History of Attractions,

Ac. A similar result is also given by Poisson in Art. 629 of his Traits de

M^canique. See also Clarke's Geodesy. It is often called Dr Young's rule.

According to Nature, Feb. 10, 1898, a good account of the controversy about the

second term of Bouguer's formula is given by G. R. Putnam in the scientific work

of the Bostru party on the sixth Peary expedition to Greenland. Report A.

Ex. Sir W. Siemens invented an instrument to measure the depth of the sea

under a ship on the principle of balancing gravitation by the force of a spring. If

the mean surface density of the earth be three times that of sea water, and thn

mean density of the whole earth five and a half times that of sea water, show that

at a depth h in the sea, the diminution of gravity is T^hgja, where a is the radius

of the earth.

24. iittraetlon of a Cylinder. Ex. 1. Find the attraction of a uniform solid

right circular cylinder at a point P on its axis.

Let p be the density of the cylinder, a its

radius. Let be the centre of gravity, OP=p.
Let us take as the element of volume the slice

of the cylinder between two planes drawn per-

pendicular to the axis at distances x and x + dx

from 0, measured positively towards P.

First, let P be outside the cylinder. Let 26 be

the angle su'otended at P by any diameter QQ'

of the slice, and let PQ = r. Since the mass per

unit of area of the slice is m-pd.v, the attraction

at P is 2vpdx (I -COB 6) = 2irpdx {l-^~^\. But (p - j;)2 + a*= r-, .: (x - p) dx= rdr.

The whole attraction of the cylinder at x' is therefore F-2irpj(dx + dr), where the

limits of int

attraction if

and A is tb(

of the distar

Next, let

Since is tl

must equate

avoid this di

midway betw
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A
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through A ar
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liform solid

^==>
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Let AB, A'B' be two thin parallel laminae of the same

thickness dt. Let p be the density of

the cone. With the same vertex de-

-fccribe an elementary cone cutting the

laminae in Qi2, Q'i2'. The attractions

of Q,R, Q'R' at are to each other as

their masses divided by the squares of

the distances. Since the thicknesses are

equal, the masses are proportional to the

areas, and these b} similar figures are

proportional to the squares of the distances OQ, OQ'. Thus the

attractions of the elements QR, Q'R' at are equal. Hence the

attractions of the laminae AB, A'B' at are the same both in

direction and rnagnitude.

This being true for all thin laminae must, by integration, be

also true for all thick sections. And in general ariy two parallel

slices of the same cone, whether thick or thin, attract the vertex in

ike same direction with forces proportional to their thicknesses.

26. As the attraction of the element QR at any point is

wanted in several theorems further on, it is convenient to determine

an expression for its magnitude

Let d<r be the area of the element QR, vi its mass per unit of

area, r its distance from ; the attraction at is then mdajr^.

To simplify this expression, we use the solid angle subtended

at by the area. Just as in plane trigonometry an angle is

measured by the arc subtended in a circle of unit radius, so the

solid angle contained by any cone is measured by the surface cut

off by the cone from a sphere of unit radius with its centre at the

vertex.

Let the elementary cone whose base is QR intercept on the

unit sphere an elementary area qr, and let this area be dw, then d(o

measures the solid angle subtended at 0. Let -^ be the anglo the

normal to the elementary area QR makes with the radius vector

OQ, then da- cos i/r is the area of a section of the cone made by a

plane drawn through Q perpendicular to OQ. Hence by similar

figures da cos "^jr^ = area qr = dw.

The attraction of the element is therefore m sec i/r . dw. If p be

the perpendicular from on the plane of the element, then

r cos y{r=p, and the attraction of the element at may also be
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written in the form mrdco/p. If r, 6,
<f)

are the Eulerian polar

coordinates of a point referred to any axes with the origin at 0, it

is clear that d(o = sin 6ddd^. !

27. It follows from this result that the attraction at of an

element da when resolved perpendicular to its plane is mdto.

Hence we may deduce by integration that the attraction at

of a plane uniform lamina of anyform when resolved perpendicidar

to the plane is ma, where m is the mass of a unit of area of the

lamina, and co is the solid angle subtended at by the lamina.

This theorem is due to Playfair, Edin. Trans. Vol. vi., 1812.

Ex. If I, rt>., n be the direction cosines of the radius

vector of an element of a surface, and if /, m, n can be ex-

pressed in terms of two parameters a and b, show that the

normal attraction of the element on the origin is Adadbdk,

where dk is the thickness of the element and A is the deter-

minant in the margin. [Caius Coll.]

28. The method explained in Art. 17 by which the attraction

at the origin of one thin rod may be replaced by that of another

of a more convenient form may be extended to surfaces.

Let the law of attraction be the inverse «th power of the

distance. Refer to the figure of Art. 17 and equate the attractions

of the elementary areas QR, Q'R', we have

I,
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To prove this we notice that the enveloping cone is a quadric

cone and that therefore the portion of the spherical surface (centre

0) enclosed within it is symmetrical about the internal axis of the

cone. The resultant attraction of the spherical surface at must

therefore act along that axis. By a known theorem in geometry

this axis is normal to the ellipsoid which passes through and has

the given ellipse for a focal conic.

ao. Ex. 1. Show that the attraction at a point O of any portion of a thin

plane disc is the same in direction and magnitude as that of the corresponding

portion of a spherical surface having for a diameter the perpendicular ON drawn

from O to the plane. The two attracting surfaces are supposed to be homogeneous

and of equal mass per unit of area.

Ex. 2. A tetrahedron is constructed of thin metal, the faces being of equal and

uniform density. Prove that if the law of attraction were the inverse cube of the

distance, a particle would be in equilibrium if placed at the centre of the inscribed

sphere. See Art. 1(5, Ex. 2.

Ex. 3. Prove that the ratio of the attractions of a solid right cone at the centre

V2-log(v'2+l)

x/2-1
, the angle at the vertex being aof the base and at the vertex is

right angle.

Ex. 4. An infinite laipina is boundea by two parallel straight lines. Prove

that its component attractions A' and 1' respectively parallel and perpendicular to

its plane are X=2Hilogr7r and Y=^m.d, where r', r are the distances of the

attracted point P from the two edges, d the angle these distances make with each

other and m the surface density. See Art. 14.

Ex. 5. Prove that the resultant attraction of a uniform rectangular plate at a

point P on its axis is im sin~* (sin a sin |3) where a, /3 are the angles subtended at P
by perpendiculars drawn from the centre on the sides and m is the surface density.

Playfair, Edin. 'Pram. 1812.

Ex. 6. Prove that the attraction of a uniform elliptic disc at the focus is

{l-s/(l-e^)} where m is :he surface density.

The attraction is X=jjinrdddr cos Olr'^. Describe a circle of arbitrary radius c

with its centre at the focus : the attraction of the enclosed area is zero. Integrate

from r=c to the elliptic rim and from ^= to 27r. In this way we avoid the

infinite logr at the origin.

31. The solid of greatest attraction. To find the solid of revolution of given

mass tvhich exerts the greatest attraction at a point situated on the axis.

Let us trace the surface such that the attraction at the given point O, of a particle

of given mass m placed at any point of the surface, when resolved along the given

axis, is equal to a given constant C. Taking O for origin and the given axis as the

ni
axis of reference, the equation of that surface is clearly -, cos d=C. By giving C

r-

different values we obtain a system of surfaces. It is evident from the definition

that the surface defined by any value of C lies outside that defined by a greater

value of C. It follows that the resolved attraction of a particle lying on any one

surface is greater than that of an equal particle situated on any external surface.
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le focus is

It is evident from the equation that all these surfaces are similar and similarly

situated, and that they all touch a plane drawn through perpendicular to the

given axis.

Let us select that surface whose volume would just contain the given mass.

The solid of greatest attraction must coincide with the surface thus selected ; for if

any portion lies outside the selected surface, the attraction would be increased by

moving that portion into the vacant places within the selected surface and thus

filling them up.

The solid of greatest attraction has therefore such a form that the attraction at

the given point of a given particle placed at any point of the surface when resolved

along the given axis is always the same.

The problem of finding the solid of greatest attraction was proposed and solved

by Silvabelle. The principle used above, that the resolved attraction must be

constant over the surface, is due to Playfair, Edin. Tram. 1812. The following

example is also due to him.

33. Ex. Supposing the law of attraction to be the inverse xth jiower of the

distance, find the form of an infinitely long cylinder so that the attraction may be a

maximum at an external point.

Take the point for origin; pass a plane through it perpendicular to the

generating liner; of the cylinder. Let r be the radius vector of any point on this

section, d the angle made by r with the direction of the resultant attraction. The

equation of the curve is included in coad=Cr''~^. When the law of attraction is

the inverse square the required cylinder is nght circular.

33. Attraction of mountains. It is a matter of some

importance to determine by direct experiment the effect of the

attraction of a neighbouring mountain on the direction of the

plumb line. This was attempted by Bouguer in Peru but without

any great success. In 1772 Maskelyne, then Astronomer Royal,

proposed to repeat the experiment. He pointed out a mountain

in Yorkshire as suitable for the purpose. He suggested also that

the defect of matter in the valley between Helvellyn and Saddleback

might produce an effect of an opposite character which would be

sensible. The mountain Schehallien in Scotland was finally chosen.

It is a narrow ridge running east and west in a comparatively flat

[country and is about 2000 feet above the general level.

Let/,/' be the horizontal attractions of the mountain at two

[stations north and south. The angular deviations of the plumb

line from the direction of gravity will then be a =f/ff, and a' =f'/g.
The meridional distance between the two stations was found by a

survey over the mountain to be 4364*4 feet. By dividing tliis by

Itlie radius of the earth, the difference of latitude of the two stations

jwas found to be 42""9. By observing the zenith distance of the

Isame star at both stations the difference of the angles which the

R. S. II. 2

1:3
f!

I'J

O ' ''-^
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direction of the star made with the directions of the phimb line

at the two stations was found to be 54"6. The difference between

these two angles, viz. H"'7, is evidently equal to the sum of the

angular deviations a, a' produced on the plumb lines by the

attraction of the mountain.

84. To find the attraction / at a station A, a contour map of tlie country was

made. This was divided into twenty rings by circles having A for a common
centre, their radii being in arithmetical progression. These rings were subdivided

into rectangular spaces by radii vectores drawn from A. The mountain was thus

theoretically divided into elementary columns placed on these rectangular bases.

Let GP be a vertical drawn through the centre of gravity O of any base cutting the

surface of the mountain in P. Let z be the angle PAG subtended by PG at A.

The attraction of this column is nearly equal to 2m sin i^zIA G and its direction

bisects the angle PAG, where in is the line density of the column (Art. 13).

Let r, be the polar coordinates ot G referred to A as origin and the meridian

AM as axis of x. Let Ar be the difference of two consecutive radii, and A0 the

angle between two consecutive radii vectores. Then »t=jur.Ar.A9 nearly, where

fjL is the density of the column. The resolved attraction of the column along the

meridian is therefore

2in . z z
siu - cos ^ cos = /t sin z .Ar .A sinX=

2

nearly. The constant difference Ar was taken to be 666^ feet. The radii vectores

were drawn according to the following law. The first being directed along the

meridian, the others were drawn making with the meridian angles whose sines were

successively 1/12, 2/12, 3/12, &a. There were therefore 48 columns over each ring.

Also A am 6 was constant and equal to 1/12. It is now evident that the attraction/

of the mountain may be found by forming the sum

sin ?! + sin Zj + sin a, + . .

,

for all the columns and multiplying the result by ^^fx . Ar. The twenty rings drawn

round each station included 960 columns. This space was bounded by a circle of
{

radius 2^ miles. It was assumed that the attraction of the matter beyond this

distance might be neglected.

35. By such processes as these the sum of the two opposite

attractions at the two stations was found as a known multiple of I

the density /u, of the hill. If R be the radius of the earth, p its

density, we have g = ^irpR, Art. 77. We thus have a + a' expressed

as a known multiple of p-jp. By equating this result to the

circular measure of \1"*J, we find that the mean density of the

hill is §ths of that of the earth.

A geological survey was subsequently made by Piayfair to I

discover the average density of the hill. After many corrections

Hutton gave 4*95 as the mean density of the earth, that of water
j

being unity.

radius r, show ti
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Other mountains also have been used for this pui-pose. The

observations of James and Clarke on Arthur's Seat gave 5"316,

while those of Mendenhall in Japan led to 5*77 as the mean

density of the earth.

36. There are two other methods of finding the mean density,

one by observations in mines and the other by processes analogous

to the Cavendish experiment. These have been used many times

and lead to results which differ slightly, in excess or defect,

from 5^.

A bhort history of the older experiments may be found in Airy'a Figure of the

Earth. Much however has been done since 1830, the date of this treatise. An
aucount of the experiments up to the year 1894 is given in Poynting's essay on the

mean density of the Earth.

37. At the end of a paper on the Schehallien experiment {Phil. Trans. 1821)

Hutton suggested that one of the great pyramids of Egypt might be used instead of

a mountain to find the mean density of the earth. He calls to mind the great size of

one of these, its height being nearly double that of St Paul's Cathedral. Its regular

figure and known composition would, he sayn, yield facilities in the calculation of

its attraction. Observations could then be made at four stations, one on each face,

and these could be placed much nearer to the centre of gravity of the attracting

mass than was possible in an irregular mountain. Such was his enthusiasm, that

he declared that even his age of eighty years would hardly prevent him from joining

an expedition for this purpose.

38. Ex. 1. The tide in the Bay of Fundy rises 100 feet from low to high water

mark. It has been proposed to find the density of the earth by determining the

attraction of the tide-wave on a plumb-line at high and low tide on the same

piiuciple as Maskelyue's experiment at Schehallien. Supposing the attraction of

the tide-wave at a point O on the shore to be represented by that of the water

within a cylinder whose axis is the vertical at 0, whose height I is 100 feet and

31 2r
radius r, show that the deviation of the plumb-line is s— or; ^^K t » where R is the

radius of the earth, D its mean density, and r is large compared with I.

Show that this expression increases slowly compared with r, and that if r be

taken between 2 and 4 miles, the deviation to be observed will be about two-fifths of

a second. This is much smaller than the deviation to be observed in Maskelyne's

experiment, which was about eleven seconds. On the other hand the attracting

mass is a homogeneous body instead of a heterogeneous mountain.

Ex. 2. The section of a long wedge-shaped mountain is an equilateral triangle

Laving BC for base. If P be the point on the face AB at which the horizontal

attraction is greatest, prove that log
^
—- =,^3 sin"^ -^— where x=BP, y = CP

and a is the length of any side of the section. The equation is nearly satisfied

by x = Ja.

t

2—2
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The Potential.

39. Let ^1, Ai, &c. be the positions of any number of fixed

attracting particles; y/ij, nit, &c. their masses. The potential of

these particles* at any proposed point P is defined to be

— + &C. = S—

,

/•j r

where r,, r^, &c. are their distances from P regarded as positive

quantities. For the sake of distinction this is sometimes called

the Newtonian Potential. See Art. 9.

This may be called the geometrical definition of the potential.

Another definition founded on the principle of work will be given

a little further on. Ir discussing the attractions of geometrical

figures the former is the more convenient for use, but in many

physical applications the latter will be found the more satisfactory.

We may notice that a.s' the point P moves in space the potential

is, by the definition, c continuous function of the position of P.

We must however except the case in which any one of the

distances r,, r^, &c. vanishes or changes sign, for then the term

nijr ceases to represent the potential of the particle from which r

is measured. The potential is also a one-valued function of the

cor dinates of P.

40. If in be the mass of any one of the attracting particles,

A its position, r its distance from a point P, the potential of m at

P is w/r. Let P' be any point adjacent to P, and let PP' = ds.

The difference of the potentials of m at P and P' is then

d /m

ds\r
, nidr J

ds =—7,Tds.
r^ ds

* The function now called the Potential was used by Legendre in 1784 who
refers to it when discussing the attraction of a solid of revolution. Legendre
however expressly ascribes the introduction of the function to Laplace and quotes

from him the theorem connecting the components of attraction with the differential

coefficients of the function. M, Bianco in the RirUta di Matematica, 1893, gives

quotations from Bist {histitnt Paris, 1806) and from Baltzer (Geschichte des Po-

teniiah, 1878) showing that Lagrange used the same function in 1777 when
discussing the motion of several bodies mutually attracting each other (Academy

of lierliii, 1777). See also "II problema Meecanico della fignra della Terra'
{Toi-ino, 1880) by M. Bianco. The name, Potential, was first used by Green in his

Essaij on the application of Mathematical Analytsis to the theories of Electricity and

Maijnetism, published in 1828. Green gave many of the theorems on this

function now in continual use, which have been since associated with the

names of others who have discovered them a second time. Gauss also uses the

name in Art. 3 of his memoir en Forces actiuj inversely as the square of the distance,

Leipsic 1840, translated in the third volume of Taylor's Scientific Memoirs, The
reader may also consult Todhunter's History, Arts. 790, 1138, and Thomson and

Tail's Treatise on Natural Philosophy, Art. 483.
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If
<f>

be the angle APT, we have co8
<f)
= dr/ds. The attraction

of m at F acts in the direction

iM, and is equal to m/r^; hence

it8 resolved part in thedirection

n TV • wi . n D/ w dr
PP 18 - cos APP^ = - -5 J- •

Comparing this with the above

result we wee that if P, P' be

two adjacent points, the excess

of the potential at P' over that at P, divided by the distance PP',

is e(|ual to the resolved attraction in the direction PP'.

This, being true for every particle of an attracting system, is

necessarily true for the whole. We have therefore the following

theorem. If V, V be the potentials of a system at two neighbouring

points P, P\ the attraction at P resolved in the direction PP' in

V — V dV
which s is measured is the limit of ,>!./ = i •

'' PP ds

So long aa the point P is situated outside the attracting mass the potentials V
and V are both finite and this proof is free from ambiguity. The case in which P
lies within the attracting mass will be considered a little further od.

41. By taking the displacement PP' parallel to the axes of

X, y, z in turn, we see that the components of the attraction in the

positive directions of the axes are respectively

^^dV Y^^Z z=^^dV
dy'dx '

dy
'

dz
'

In the same way the components of the attraction in polar

coordinates may be expressed. Let r, 6,
(f>

be the polar coordinates

of any point P, let F, G, H be the components at P in the

directions in which dr, rdd, r sin dd^ are drawn, then

F= dV G =
dV H = dV

dr
'

rdd '

'^
r sin t)d<t>

'

In the theory of gravitation the attraction of one particle on another is taken to

be vim'jr^ (Art. 3), and repulsion is then represented by supposing that the mass
of one of the particles is negative. In other theories, for example in that of

electricity, repulsion is taken as the standard case and then attraction occurs when
the masses have opposite signs. In both cases the geometrical definition of the

potential is V='Zmjr (Art. 39). When therefore repulsion is takeu as the standard

the signs of the forces given above must be changed. Thus tJie force in the positive

direction of the axis of x is X= - dVjdx, and so on.

42. It appears from this proposition that, when the potential

F of a body fixed in space is given, its resolved attractions at any
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point P can be found by simply differentiating the potential with

regard to the coordinates of that point. It follows that, if two

different bodies have eijual potentials throughout any space, they

equally attract any particle placed in that space. Thus the at-

traction of a body is determinc<l by the single function V instead

of the three components X, V, Z,

One chief reason for the use of the potential is that a body, so

far as its quality of attraction is concerned, is analytically given

by a single function tvithout the necessity of stating either theform

or the structure of the attracting body.

When the potential is used merely to find the forces, it is

obvious that we may add an arbitrary constant to its value as

defined in Art. 39. We then have V='!i m/r + C, where C is

the constant added. When the attracting bodies are finite, it is

convenient to choose C so that V is zero at an infinite distance

;

this assumption makes (7 = 0. When the attracting bodies extend

to infinity, the potential, as defined in Art. 39, is sometimes found

to contain an infinite constant. It may then be preferable to

keep C arbitrary and to absorb into its value all constants not

immediately required. There is a certain inconvenience in having

different definitions of the potential for finite and infinite bodies,

especially when we wish to proceed from one to the other as a

limit. In stating the results therefore for the Newtonian law of

force we shall adhere to the definition of Art. 39. In special cases

such a constant may then be added ps may most simplify the

expression for V.

43. Potential for other laws of force. When the law of

force is the inverse /cth power, the potential is F= —-2 —^.

We then find by the same reasoning as in Art. 40 that dV/ds is

the resolved force at P in the direction in which ds is measured.

When the law of force is the inverse distance, the potential is

F= (7 — Sm log r. This is sometimes called the logarithmic potential.

44. Work and potential. A definition of the potential may
also be given founded on the principle of work. Referring to the

figure of Art. 40, let a particle of unit mass travel along the

elementary arc PP'. It has been already shown that the resolved

attraction in the direction PP' is dV/ds. The work done by the

attraction is therefore {dVJds)ds. If the particle continue its

in the direc
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journey alonjSf ftny curve, Rturting from flome point P and arriving

lit some other point Q, the work done by the attraction is

{ilV= V.J— V,, where F", and V^ are the potentials at P and Q.

Thus the excess of the potential at Q over that at P is the work

done by the attraction on a particle of unit mass as it travels by

any path from P to Q. /

"

If the attracting body is finite in all directions, the potontial at

a point P infinitely distant is zero. It follows that, the potential at

any point Q is the work done by the attracting forces on a particle

of unit 7nass, as it travels from an infinite distance along any path

to the point Q. In the same way the potential at Q is the work

which must be done against the attniction by some external cause

to move a unit particle from Q to an infinite distance.

The several particles of the attracting mass are supposed to

rer.iain fixed in space while the attracted particle makes its

journey from P to Q.

45. Level lurfEtces. The locus of points at which the

potential has any one given value is called a level surface. It

is also called an equipotential surface.

At any point of a level surface the resultant force acts ahmg the

normal to the surface. To show this, let P, be a point on a level

surface, and let Pa be any neighbouring point also on the surface.

If Vu Fa be the potentials at these points, the component force

V — V
in the direction of any tangent PiPj will be the limit of p-p—-

This is zero since Fj = V.,. The resultant force must therefore

act along the normal at Pj.

46. Let two neighbouring level surfaces be di-awn at which

the potentials are respectively V^ = c and Fa = c + he. The normal

attraction at any point P of either surface is inversely proportional

to the length of the normal at that point intercepted between these

level surfaces. To prove this, let the normal at any point Pj on

the first surface intersect the second surface in Pg. The normal

V - V 8c
force at Pj is then ultimately F= p u

' = p p • It is therefore

evident that F varies inversely as PiPj.

If a rigid surface were constructed having the form of a level

surface and coincident with it, it is clear that a particle, placed at

any point of the surface, would be pulled by the attracting body

m

m
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in a direction normal to the surface. The particle, if placed on

the proper side, would therefore be in equilibrium. Level surfaces

are therefore also called surfaces of equUibriiuii.
,

47. A Line of force is a curve such that the direction of the

resultant force at any point is a tangent to the curve. It is

evident that the whole system of level surfoces is cut orthogonally

by the system of lines of force.

48. Ex. 1. A free particle placed at rest at any point of a line of force will

move alonjj; tlie curve in such a direction that the potential increases.

Ex. 2. Show that, if attracting matter be arranged so that the direction of

the resultant attraction at any external point V shall always pass through a fixed

point O, the magnitude of the re»sultant attraction will be a function only of the

distance Ol\ and will not depend on the angular coordinates of OIK

To prove this we notice that the level surfaces are spheres, because the normal

at every point P passes through 0. Hence the potential is a function of r only.

Art. 45.

49. Potentials of rods. To find the level surfaces and the

potential of a thin uniform straight rod AB at any point P.

It has already been proved that the direction of the attraction

of a rod AB Sit any point P
bisects the angle between the

distances PA, PB (Art. 13).

It follows from Art. 45 that

the level surfaces are jyrolate

spheroids having their foci at

the extremities of the rod.

To find the potential we notice that at all points on the same

level surface the potentials are equal. It is therefore sufficient to

find the potential at some convenient point on each spheroid.

Let C be the middle point of the rod, 2/ its length, m the line

density. Let r, r' be the distances of P from A, B. Let 2a and

e be the major axis and eccentricity of the spheroid, then ae = I,

2a — r + r'. The potential at the extremity of the major axis and

therefore at any point on the spheroid is

Q Q'A

-n
mdx , a + l , r + r +21

= ni log -— , = m log , -,

,

^ a-l ^ r + r -21X

the limits of the integral being x = — I io I.

50. When the rod is infinite in both directions the potential

is easily deduced from the attraction already found in Art. 14.

foui and that i\
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Since the magnitude of the attraction is 2w/p and its direction is

PN, it is evident that the potential must be V=C—2m\ogp,
where C is a constant and p is the distance of P from the rod.

We may also deduce this result from the expression for the

potential of a finite rod. Suppose the point P to be situated in

the straight line drawn through C perpendicular to the rod.

Then r = (l^ +p''y = ^ + i^ and we have

r +

1

V — m log - . = 2m log 21 — 2m log p.

We thus see that the constant C is really infinite and equal to

2m log 21 when we adhere to the definition of Art. 39.

51. Ex. 1. Let the rod 4B be produced both ways to infinite distances. Let

the portion beyond A attract and that beyond B repel P, the part between A and B
exerting no force. Prove that the level surfaces are hyperboloids having A and B for

21+ r' — r
foci and that the potential at P is wilog-r -.— . Prove also that if the portion AB

21 — r +T
is evanescent the level surfaces are right cones and that the potential is 2m log cot ^^
where \j/ is the angle of the cone.

Ex. 2. Show that the potential of a thin rod AB at any point P is

V=m log (cot iP,( 7; . cot iPBA).

Ex. 3. A thin uniform rod AB is attn. d by a body of any form : show that

the component of the attraction along the length BA of the rod is 7)J (r^- Fa),

where Fy and V„ are the potentials of the body at A and B, and in is the mass of

the rod per unit of length.

By Art. 11 this theorem is true when the rod is attracted by a single particle
;

it is therefore true by summation when attracted by any body.

Ex. 4. A uniform thin chain AB is enclosed in a smooth curvilinear tube

which it just fits, and is attracted by a body of any form. Show that the force

urging the chain to move in the tube is wi(F,y-F„). Hence show that the

position of equilibrium may be found by equating the potentials of the body at

the extremities of the chain.

That the force depends only on the positions of the extremities of the chain,

and not on its length or form, may also be .shown by another kind of reasoning.

Let the chain be completed into a circuit by uniting two chains in different tubes

at their extremities. If the forces were not equal the chain would begin to move

round the circuit, and thus a perpetual motion would be caused by the mere

presence of an attracting body.

Ex. 5. When the law of attraction is the inverse cube, the potential of a

uniform thin rod AB at any point P is myj2p, where 7 is the angle APB, j) the

perpendicular from P on the rod, and m is the line density.

When the law is the inverse fourth power, the potential is jh (sin^-Bina)/.^^;*,

where (3, a are the angles p makes with PB and PA.

Ex. 6. A plane lamina is bounded by two parallel straight lines whose distance

apart is 2/. The surface density at any point Q is /3 (QM . QNf where QM, QN are

ii ',11

if:.

i :|t
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the distances of Q from the bounding straight Hues and 2\=k-3. The law of

attraction is the inverse Kth power of the distance. Prove that the level surfaces

are confocal elliptic cylinders having the foci on the bounding straight lines. Find

also the potential for any cylinder.

First find the attraction at P of an elementary strip Q whose breadth is dx. Put

x=p tan 6 where p=PO is the perpendicular from P to the lamina. The attraction

, ,, . . .u u * • * *u » /I /sin itfPQ. sin ATPQX* /costs'* ^^of the strip can then be put into the form - I -;

—

^..,„—:

—

tttts I ( I d6,•^ 1^

p \sm OMP . sin ONPJ \ p J
where ^ is a constant and /i=k-S-2\. If then k and X are so related that the

exponent n=0 the attraction of the elementary strip at Q is a symmetrical function

of the angles PQ makes with PM, PN. The elements on each side of the bisector

of the angle MPN will then equally attract P, The direction of the attraction

therefore bisects the angle MPN. The magnitude of the attraction is found by

resolving along the bisector and the potential by using the method of Art. 49.

In this proof the plane PMQN is taken to be perpendicular to the boundaries.

52. Ex. A number of infinite straight attracting rods are arranged at equal

distances on the surface of a circular cylinder of radius a. If n be the number of

rodR, m the mass of each per unit of length, prove that their potential at any point

P is given by V= (. ..t log (r=« - 2a»r» cos n0 + a^"),

where r is the distance of P from the axis of the cylinder and the angle r makes

with a plane through the axis and one of the attracting rods.

By making n infinite while the whole mass is given, show that the potential of

a uniform thin cylindrical shell at the point P is C-47rrt3/loga or C-47rail/logr

according as P is inside or outside the cylinder, the mass per unit of area being M.

These expressions follow from Art. 50 by using De Moivre's property of the

circle.

These results are of considerable interest because they help us to understand

how the potential of a thin cylindrical shell is a discontinuous function of the

coordinates, being constant at all points within the cylinder and depending on

the logarithm of the distance from the axis at points outside. Supposing the

number of rods to be very great but not infinite, the potential at any point P is

represented by a continuous function of the coordinates of P, i.e., as P travels from

the interior to the exterior through the interstices between the rods the potential is

always the same function of the coordinates. When P is inside the cylinder, rja is

less than unity, and by expanding the logarithm in powers of rja we see that

V=C-- 2nm log a + 2m (
-

j
cos nd+ &o.

It follows that when n is large the potential is sensibly constant throughout the

interior except in the immediate neighbourhood of the surface of the cylinder on

which the rods lie. When P is outside, ajr is less than unity and by expanding

the logarithm in powers of a/r we find K=C-2nmlogr + 2m (- j coan0 + &c. It

appears that, except in the immediate neighbourhood of the surface of the cylinder,

the potential when n is large does not sensibly differ from C - 2mn log r at any point

outside.

As n increases, the small space within which the potential differs from the first

term of these series gets continually less, and in the limit is zero, so that we may

say that the potential is constant tliroughout the interior of the cylinder and, except

for G, varies as the logarithm of the distance throughout external space.

53.
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53. Potentials of discs and cylinders. To find the poten-

tial of a circular disc at any point P situated in its axis.

Referring to the figure of Art. 21, the potential at P of the

annulus QQ' is iTrmxdxjPQ, where x and x + dx are the radii of

the annulus, and m the mass of the disc per unit of area. If p be

the perpendicular from P on the disc and r the distance PQ, we

have r^ = x^+p^ and rdr = xdx. Substituting, we find that the

potential V of the disc is F= 27rmJdr= 2'irm (r^ — p), where r,

is the distance from P of any point on the perimeter.

If a be the radius of the disc, we may also write this in the

form F= 27rm
{
^a'+p' - p] .

When the radius a of the disc is infinite we expand the

rndical and retain only the lowest power of p/a. We thus find

V^A-lirmp where A is an infinite constant.

54. Ex, 1. The law of force being the inverse (cth power of the distftnce,

prove that the potential of an infinite disc at a point distant p from its plane is

O— til *i3—IC

C- , ,,,., , where C is infinite or zero according as k<3 or k>3. When
(k - 1) (3 - k)

K = 3 the potential is C-irmlogp, where G is infinite.

Ex. 2. Show that the potential of a circular cylinder of density p, radius a,

and small thickness h at an external point P on the axis close to the cylinder is

2Trph(a-p), where p is the mean of the distances of P from the two plane faces of

the cylinder. See Art. 9.

55. Infinite Cylinders. An indefinitely thin homogeneous

layer of attracting matter of surface density m is placed on an

infinitely long right circular cylinder. It is required to find the

potential and the attraction at any internal or external point P.

We replace the cylinder by a fine ring of line density m' - 2m
which occupies the position of the cross section through P and

attracts according to the law of the inverse distance. Art. 14.

n0 + &c. It

Let QR, Q'R be two chords passing through P and making a

small angle dd with each other. Let PQ = u^, PR = u.^, QQ' = ds^,

RR' = ds^. Let be either of the equal angles OQR, ORQ.
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The attractions at P of the elements QQ', RR' are respectively

m'dsjui and rnds^ju^. But since iiidO/dsi and itidd/ds^ are each

equal to cos <^, we see that each of these attractions is equal to

m'd6/cos
<f).

The attractions are therefore equal.

If P is inside the circle, these attractions balance each other.

The resultant attraction of the whole circle is zero. The potential

is there/ore constant and equal to that at the centre.

53. If P is outside the circle as at P', let 6 = OP'Q, r' = OP'
;

then r' t?in ^ = asin ^. The attraction of each of the elements at

Q and R being m'd6/cos
<f),

the resolved attraction at P' of the

whole circle along P'O is

X-/
m'dd

cos 6 = 2wi'"/,
2m'a

sin
—

1

r'sin^"

a

cosddO

cos
(f) J V(a^ - r'^ sin'-'^)

'

The limits of 6 are found by drawing two tangents from P' to the

circle; the integral is to be taken from sin 6 = — a/r' to +a/r'.

We therefore find X = Mjr where M — liram'.

The attraction therefore of the ring is the same as if its whole

mass were collected into its centre. The attraction of the cylindrical

layer at an external point is the same as if its whole mass were

equally distributed along the ams.

The potential is deduced from the attraction by integrating

dV/dr = — Mj'r. The potential at an external point is therefore

V=G—M\og7\ We know by Art. 50 that the constant G is

really infinite.

57. The attraction of a solid cylindrical shell bounded internally

and externally by coaxal Hght circtdar cylinders may be deduced

from the preceding results.

By dividing the body into elementary cylindrical shells we see

at once that the attraction and potential at an external point are

the same as if the whole mass were equally distributed along the

axis.

At an internal point the attraction is zero and the potential is

an infinite constant

Lastly, let P be any point in the substance of the shell, r its

distance from the axis. Let us describe a coaxal cylinder passing

through jP and dividing the whole attracting body into two sheila.

The attraction at P of the outer shell is zero; the attraction of

the inner is the same ass if its mass were arranged along the axis.
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The line density is pir {r^ — a*) where a is the radius of the

inner boundary of the attracting cylinder and p the density.

The attraction is by Art. 14

27rp (r^ - a«)/r.

58. Hetarogeneous cylinder. An indefinitely thin layer of attracting matter

in placed on an infinitely long cylinder of radius a, so that the surface density m is

uniform along any generating line but varies from one generating line to another. It

is required to find the potential at any point P.

We replace the cylinder by a fine ring, of line density m'= 2m, which occupies

tlie cross section through P, the law of attraction of the ring being the inverse

distance. Art. 14.

Let the plane of the circle be that o» xy, the centre being the origin. Let the

polar coordinates of P be r, <p. Let QQ' be an element of the ring, the angle xOQ
heinii q; let g-0= ^.

The line density m' at Q is some given function of q, this we expand (using

Fourier's rule if necessary) in a series ol the form

m'= X(AneoBnq + B„6mnq) (1),

where S implies summation for integral values of n from 7i= to oo . We write

this in the form
m'= S(£„cos«^ + F„8inn^) (2),

where £„=.J„cos/i(^ + 5„sinn(^, F„= -^„ sin n0 + ii„ cos n^.

Tbe element of mass at Q being m'adf, and the distance PQ being m, the

potemial at P of the whole circle is

V= - jad\j/m' log M + C= - i jad\j/m' log (a- - 2ar cos \j/ + r'^) + C,

where the limits are \{/ = to 27r and C is a constant.

By writing 2cosi/'=^ + l/| where | is an imaginary exponential we have

loK (1 - 27i cos 1^ + h") = log (1 - 7(|) + log (1 - hj^)

= -2{/icos^ + Jfe2cos2^ + J7i3(,o8 3f + &C,}.

This series is convergent when h is less than unity.

To obtain a convergent series for V, we expand the logarithm in powers of rja

or ajr according as P is inside or outside the circle. We therefore write the

potential in the forms

F=-j«d^.'~log il_2%08f+^^yj- -fadV-y log a2+C,

m'
logr2 + C,V=- jad4. .

1' log |l - 2 2 cos ^ + ('i

j
I - (adi,

.

according as P is inside or outside the circle.

Suppose first that ln' = EJ^C0Bn\|/. Then by remembering that JcosHY'COSw.^d^=
or TT according as m and n are unequal or equal, the limits being and 27r, we

easily find that r=£„— f- j +C7 or £„— (
-

j
+G according as P is inside or

outside, except when n = 0.

Next suppose that m'= i''„ sin n^, then since jco8n^8in»rt^(Ji/>= 0, the limits

being and 27r, we find by the same reasoning that the potential at P is constant,

whether P is inside or outside.

When n = 0, we have m' = Eq and the potentials take the form - EqWO log a^ + C,

or - £„7ra leg r* + C, according as the point P is inside or outside.
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When the line density at Q is given by a single term of the series (1), it is

evident from (2) that £„ represents the line density of the ring at the point where the

radius vector OP cuts the ring.

Finally, the potential for the whole ring is found by adding together the

potentials for the separate terms of the series (1).

Ex. The density of a thin stratum, on a right circular cylinder of radius a, is

proportional to the distance from a plane through the axis, and its greatest value is

D. I'rove that the potential at any point F is 2ira^D^lr^ or 27rDf according as P
is outside or inside, where ^ and r are the distances of P from the given plane and

from tlie axis respectively.

59. Systems of particles. If a particle of mass m/ travel

from a position at which the potential is zero along any path to

any assigned position B^, it is clear from what precedes that the

work done by the attracting forces is Fjm/, where Fj is the

potential at Ej. If a second particle m^' travel from a position

of zero potential to the position B^, it is clear that the additional

work is F^m./, where Fj is the potential at i?2 of the same

attracting forces.

Generalizing this, let there be two systems of particles ; let the

masses of the first be nij, m^, &c., and let these be situated at the

points Ai, A^, &c. Let the masses ol the second be mi, m^', &c. and

let these be situated at the points Bi, JSg, &c. Let Fi, Fj, &c. be

the potentials of the first system at B^, B^, &c. ; F/, Fg', &c. the

potentials of the second system at ^i, -^a. &c. Let us also suppose

that each particle of either system acts on all the particles of the

other, but does not attract any particle of its own system. The

work done by the attracting forces in moving the particles of the

second system from positions of zero potential to their assigned

positions is W = Virrii + ^2^2'+ ...

In the same way the work of bringing the particles of the first

system from positions of zero potential to the positions Ai, A2, &c.

under the influence of the attracting forces of the second system is

If 1*12 be the distance between the particles mj, m^', and rjj

that between the particles Wa. ^i'> and so on, the values of the

potentials Fi, F/ are

*'*i ,^2,0 rrf fill .
fn^'

F, = ^ + -^ + &c., F/ =
^11 f<a.

+ - + &C.
^2

Substituting, we find that each of the expressions W, W is

equal to
wiiWi miWa m^mi

+ +
'u 12 '21

+ . . . — Zi ,

r
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If the forces were repulsive instead of attractive this formula

expresses the work the system would do if the particles (under the

influence of their repulsions) retired to infinite distances.

This symmetrical expression is called the mutual potential

energy or the mutual work of the two systems according as the

standard of force is repulsion or attraction (Art. 41).

The work done when either system moves from one given

position to another under the influence of the attractions of the

other system is the difference of their mutual works in the two

positions. If both systems are moved, each from one given position

to another, under the influence of their mutual attractions, it easily

follows, by moving them one at a time, that the work done is tite

excess of their mutual work in their final positions over that in

their initial positions.

60. If the particles are elements of a solid body the argument

is still the same. Let dv' be an element of the volume of any

finite mass M', p its density, V the potential of any fixed system

of attracting bodies at the element dv' ; the work of collecting

together the mass M' is JVp'dv'.

This formula may be put into the form of a rule. To find the

mutual work of two attracting masses in assigned positions, we

multiply the mass of each element of one body by the potential of the

other at that element, and then integrate the result throughout the

volume of the first body.

61. The particles of a system mutually attract each other and

are in assigned positions. Supposing them to have been originally

at distances so far apart that their mutual attractions were zero, it

is required to find the work done by their attractions as they are

collected together and brought each into its assigned position.

Let us suppose that the ^articles wij, n^, ... m„_i have been

brought into their proper places. We now bring m^ from infinity

into its place under the attraction of 7ni...w„_i. The work is

ji-i_^
. Thus wi„ is taken once with each of

' n—1, nj

the masses mi, m<i, ... m„_i. When we bring in succession m„+i,

?/(„+n, &c. from infinity we obtain « similar series for each and

therefore m,i is taken once with each of these masses as it is

brought in. Thus nin is taken once with every mass except itself.

If m, m' are the masses of any two particles, r their distance apart

m
m, mo

^.;>i

H
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in the final arrangement, the work of the attractions when

collecting the system is TT = S
mm

Let Vi be the potential in the given final arrangement at the

particle m, of all the particles except mj ; V.^ the potential at m.^

of all the particles except m^ and so on. Then

V, = Vb + 'Ib + &c., r, = ^' + ^«+&c.
13 13 12 '23

Let us consider how often the mass m^ occurs in the expression

F,Wi + F2ma+ It occurs once in FiWij combined with r?<i,

once in V^vii combined with m^ and so on. Again it occurs in

VnTti^ combined with every other mass. Thus on the whole m„

occurs twice combined with every other mass. It follows that the

work of collecting the system is

W=^(V,m,+ V,m,+ ...) = ^tVm.

We thus arrive at the following rule. To find the work done

by the attractions of a system of particles brought from infinite

distances to any assigned positions we multiply the mass of each

element by the potential at that element, integrate throughout the

volume, and halve the result.

This rule, when the final sign is reversed, also gives the work

when the particles move from any assigned positions to infinite

distances. To find the work when the particles move from one

assigned arrangement to another, we add together the v/ork

when taken from the first arrangement to infinite distances and

the work when brought from infinite distances to the second

arrangement. If the system be moved, like a rigid body, from one

place to another so that the relative positions of the particles in

the two places are the same, it is clear that no work is done by the

mutual attractions of the particles.

63. In this investigation we have treated the masses hIj, m^, &c, as if their

linear dimensions were infinitely small compared with their distances apart. In

the case of a continuous body the portions of matter not in contact can be divided

into elements so small that the above assumption is correct, but the argument

might be supposed to fail for two elements which finally become contiguous.

We notice hk. vever that in finding the potential of any solid mass at a point P
we may omit the matter within any indefinitely small element of volume enclosing

P if its density ia finite. For since potential is "mass divided by distance" and

the mass varies as the cube of the linear dimensions, it follows that the potentials

of similar bodies at points similarly situated must vary as the square of the linear

dimensions. The potential must therefore vanish when the mass becomes ele-
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meiitary and the distance indefinitely small. In applying therefore the form

)(' = iilF'ft to a solid body we vrite pdv for m and take V to be the potential of the

whole mass at the element dr.

In the same way, in finding the potential of a surface at a point P on the

surface we may omit the element contiguous to P if the surface density is finite.

Fur, the potentials of similar areas at similarly situated points vary as the linear

dimensions, and are zero when the areas become elementary. .

63. It appears from the definition of potential that its dimen-

sions are not the same as those of work. The potential of a particle

whose mass is w- at a point P distant r is m/r. If a particle of

mass m' is situated at the point P, the mutual potential energy

or work of these two particles is mm jr. The dimensions of

potential are therefore mass divided hy distance, those of work are

mass squared divided by distance.

Spherical Surface.

64. To find the potential of a thin uniform spherical shell at

any point.

Let be the centre of the shell, a the radius of either bound-

ing surface, w the mass per unit of area. Let P be the point at

which the potential is required, OP = r.

Taking on the surface of the shell an annulus QQ' whose axis

is OP, let the angle

POQ = e, and QP = u.

Since the mass of the an-

nulus is m . add . 2'jra sin 6

by Pappus' theorem (Vol. i. (

Art, 413), the potential at

P of the whole shell is

'2irma^ sin 6d6V
-P u

Since it^ = r* + a*^ — 2ar cos 6, we have udu = ar sin 6 dd.

Substituting, we find V= Jdu. If the point P is external

to the surface as shown in the figure, the limits of u are u = PC to

u = PC, i.e. u = r-a to r + a. In this case F= ^'^^ . If the
r

point P is inside the shell as at P', the limits of u are u = P'G to

u = P'G', i.e. M = a - r to a + r. In this case V= ~ —

.

a

R. S. II. 3

m

I %
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If M be the whole mass of the shell, M = ^irma'^, and these

expressions take the form F=— or F™ accordinti as the^ '^ r a ^
^

attracted point P lies outside or inside the shell.

When the point P is at tlin centre, n \h constant and cannot be properly taken

as the iniU'pendent variable. But nince every element of the attracting mass is

equally diHtant from /', it if* evident that the potential at the centre in eiiual to the

masB divided by the rulius, and this agrees with the above rcflult.

66. Since the potential is the same at all points within the

spherical shell, it follows that its differential coefficient with regard

to each of the coordinates is zei'o. 'J'hus the attraction of a thin

uniform spherical shell at an internal point is zero.

Since a thick shell bounded by concentric spheres may be

regarded as composed of a sufficient number of thin shells, it

follows that the attraction of a thick shell bounded by concentric

spheres at an internal point is zero.

This theorem is also true for a heterogeneous thick shell provided

the strata of equal density are concentric spheres. For in this case

each of the thin shells into which it is analysed is homogeneous.

66. Since the potential at an external point of a uniform thin

shell is M/r, we see that the force at an external point P resolved

in the direction OP is equal to - M/r^ The attraction therefore

acts in the direction from P towards the centre, and is the same as if I

the luhole mass were collected at its centre.

As before, since a thick shell may be analysed into elementary

thin shells, it follows that the attraction of a thick shell bounded by

concentric spheres or of a solid sphere at any external point is the

same as if the ivhole mass were collected into its centre. Also this

is true for heterogeneous shells provided the strata of equal density

ure concentric spheres.

These theorems on the attraction of a spherical shell as well as that of a

spheroid at an internal point are due to Newton.

67. It remains to find the attraction of a thin uniform shell

on an elementary area which is ^iart of itself. Let the attracted

point P be at G, then CQ = u, r = a, and cos QGO = tt/2a. Pro-

ceeding as before, we find the attraction X at is

„ [2'rrma'^sva.6d6 u trni .,

\M
the limits of u being and 2a. This gives X = 2'irm = -^ — .\
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The attraction of a thin uniform shell on an element of its surface

is the same as if half the mass of the shell tvere collected at its

centre.

68. That the attraction of a thin uniform nhcll bounded by

concentric spheres at an internal point P is zero, may be shown by

an elementary geometrical argument which applies also to the case

of some ellipsoidal shells.

With V as vertex describe an elementary cone cutting the

Hurtaces of <-bc ohell in QQ'qq', RR'rr' respectively. Let PQ = r,

Q'l
- dr ; PR = r, Rr = dr'. If d(o be the solid angle of the

elementary cone, the volumes of the elementary solids at Q and R
will be respectively r^dmdr and r'^dtodr. Their attractions at P
arc therefore pdatdr and pdcodr', where p is the density. These

attractions will balance each other whenever the form of the shell

is such that the intercepted parts Qq, Rr of the chord qQRr are

ecjual. This being true for all chords through P, the attraction of

?i U

every element is balanced by that of the opposite element, and the

resultant attraction on P is zero.

When the shell is bounded by concentric spheres these in-

tercepted parts are evidently equal. The resultant attraction on

any internal point is therefore zero.

When the shell is bounded by similar and similarly situated

concentric ellipsoids the same is also true. To prove this we

[notice that, since the chords parallel to QR have in the two

I

ellipsoids a common diametral plane, the chords QR and qr must

I

have the same middle point. It follows that the intercepted parts

[
Qq and Rr are equal.

3—2

I m
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Since II thick sholl may be analysed into elementary thin

shtills, it foUowH that the attraction of any homoijeneous shell

bonmhd by nimilar and .similarly situated concentnc ellipsoids

at any internal point is zero.

69. If 7* is on the outside of a thin ellip.S()i(hil .shell, bounded

by similar concentric elli|).soids, we may show by similar re* ..oning

that the enveloping cone whose vertex, is P divides the surface into

two poHions whose attractions at P are the same in direction and

maynitude.

When P is indefinitely clo.se to the outer margin of the shell,

the infinitely small portion on the nearer side of the polar plane

exerts the .same attraction at P as all the rest of the shell. If the

thin shell is spherical, the resultant attraction is known to be the

same as if the whole ma.ss were collected at its centre. Pjitting m
for the mass per unit of area, the attraction at P of each of the

portions on the two sides of the polar plane is 27rm.

70. We may apply these results to the solid bounded by two

concentric similar and similarly situated hyperboloids. If one

sheet attract and the other repel, the attraction on P is zero,

provided both sheets are on the same side of P.

Also a paraboloidal shell bounded by two ecjual paraboloids

having their a.xes coincident but their vertices separate exerts no

attraction at an internal point.

71. If the thin shell is ellipsoidal and P is very clo.'ie to the

outer margin, the distance of P from the polar plane is infinitely

smaller than the linear dimensions of the curve of contact. The

attraction at P of the portion on the nearer side of the polar plane

is therefore the same as that of an intmite plate of the same thick-

ness, see Art. 22. The attraction at P of each of the portions on

the two sides of the polar plane is therefore 27r?/i, where m is the

mass of the shell in tlie neighbourhood of P per unit of area. The

attraction of the whole shell at a point P, just outside the shell, is

therefore twice that of an infinite plate of the same thickness as

that of the shell at P, i.e. the attraction is '^irm. It also follows

that the direction of the attraction is the same as that of the

infinite plate and is normal to the shell. This line of argument i

will be more fully considered further on.

Let a, h, c be the semi-axes of the inner boundary of the shell,

ut (in extei
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p a perpondiculiir drawn from the centre to the tangent plane, p

the iinitorin dtinsity of the shell, then m^^pdp. The vohune v of

the ellipsoid is ^iriv^ {bcju:*), and the volinne dv of tlie shell (bising

tilt' differential obtained on the snpposition that bja and cja are

constants) is 4nr bcdu and the mass M of the shell is pdv. Also

since the bounding surfaces are similar da/a «= dp/p. The residtnut

attraction of a thin ellipsoidal shell bounded by similar ellipsoids

at an external point close to its surface is therefore eipial to
Mp
a be

and its direction is normal to the surface.

72. Cylindrical elliptic shell. By making one axis of the

ellipsoidal shell intinite, we deduce that the attraction of any

houKHjeneous shell bounded by similar and similarly situated con-

centric elliptic cylinders at any internal point is zero.

Let fjL be the mass per unit of length of a thin cylindiical shell,

and let the infinite axis be c; then the whole mass of the shell is

/t'f. The resultant attraction at ciy point just outside is equal to

fi'pjab and its direction is normal to the surface.

73. Ex. 1 Prove tliat, if the attraction of a shell in zero at all internal points

nnd the inner surface is an ellipsoid, the outer surface is a similar and similarly

situated concentric ellipsoid.

If possible let the outer surface have some other form. Describe a similar

ellipsoid to enclose and touch the outer surface at some point 'I'. The difference

between the ellipsoidal shell thus formed and the given shell possesses also the

property that the attraction is zero. This shell has no thickness at the point T of

contact, and the surface density m at T is zero.

Let P be a point inside this shell very near T, dra.v a plane through P parallel

to the tangent plane at T. The attraction of the matter on one side of this plane

balances that on the other. But the attraction of the matter on one side is

ultimately zero (being in fact 2wm), hence the attraction of the other is unbalanced

and the particle P cannot be in equilibrium. [Todhuuter's Hixtory, &c. Art. 1473.]

Ex. 2. If the matter composing a thin shell bounded by concentric spheres

attract according to the inverse Kth power of the distance, prove that the resultant

force on an internal particle P acts towards or from the centre according as k is

less or greater than 2. Cavendish, Phil. Truns. 1771.

The plane section whose centre is P is such that the longer segment PQ of every

chord QVR of the sphere is on the same side of the plane as the centre oi" the

sphere. Since the masses of the elements Q, R are as PQ[^ to PiJ*, the attractions

are as PQ'^'" to PW^'". The first is greater or less than the second according as

K<2 or >2.

Ex. 3. If matter attracting according to the law of gravitation be uniformly

distributed upon the circumference of a circle, show that the chord of contact

of tangents drawn to the circle from any external point divides the circle into

two arcs, such that the potentials at the point due to each arc are the same.

[Math. Tripos.]

M
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74. Potential of an annulus. We may use the method of

Art. 04 to find the potential of an annulus of a thin uniform

spherical shell at a point P on its axis.

Let DD'EE' be the annulus ; let PD = u„ PE = u,„ OP = r.

Ihe potential of an elementary annulus QQ' being the same as

before, the poiontial V of the

whole annulus is

F= 27rma
fdu = 2'irma

-(u«_-u,),
r J r

since in our case the limits of

integration are u = PD and

u = PE. In the same way the

mass M of tb(; annulus is

M= 2Trma

r
\adu=

irma

r
{ni-ih^).

The potential of the whole armulus is F= M

76. If we suppose the annulus to form a complete sphere except for two small

holes DD\ EE', we have an expression for the potential which applies equally to

points inside and outside the shell, provided they lie on the axis. Let y be the

radius of either hole. When P is inside the shell the sura of the distances Hj and

j/a
differs from the diameter only by small quantities of the order y'^ and the

potential is therefore sensibly constant. When JP passes through the hole DU
the distance Hj has a minimum value equal to ij and then begins to increase

without vanishing or changing sign. When P is outside the shell the sum of

the distances «, and w^ differs from twice the distance of P from the centre by

quantities of the order //'-, so that the potential sensibly follows the law of the

inverse distance. See Art. 39.

76. Ex. 1. The internal and external ridii of a thin spherical shell of density

p are a-t and a. Prove that the difference of the potentials at two points, one

inside and the other outside, both close to the surface, is 'lirpt-. We notice that

this difference is of the second order of the small quantity t.

Ex. 2. A thin spherical shell of radius a attracts an internal particle P at a

distance /• from the centre. If the shell bo divided into two parts by a plane

through P perpendicular to the radius the resultant attraction of each part at P is

—-^- {a - (a- - c^)*} where m is the surface density. [Todhunter's History, 1615.]

77. A soHd sphere. To find the attraction of a solid uni-

form sphere at an internal point P.

Describe a sphere concentric with the given surface to pass

through P. The attraction at P of the matter between this

sphere and the given surface is zero ; Art. 65. The attraction

at P of the matter within this sphere is the same as if it were

portion includt
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collected at the centre, Art. 66. If r be the distance of P
from the centre 0, the attraction is f^irpr^/r'^, where p is the

density. It follows that the attraction of a solid homogeneous

sphere at an intenml point distant rfrom the centre is ^rrpr.

If (w, y, z) be the coordinates of P referred to the centre as

origin, X, Y, Z the components of attraction, we have also

Z = — iirpx, Y= — ^frpy, Z= — ^trpz.

These are obtained by resolving the resultant attraction, viz. ^Trpr,

parallel to the axes.

78. To find the potential of a solid sphere at an internal point P.

If X and X + dx are the radii of an elementary shell, taken

within the sphere passing through P, its potential at P is

^irpxHxIr, Art. 64. In the same way, if y and y + dy are the

radii of an elementary shell outside the same sphere, its potential

at P is 4nrpy'^dy/y. The potential at P of the whole sphere is

therefore

_ C>'4f7rpx^dx r«^4nrpy'^dy

"
.'() r Jr y

irp{b -a)

y

If the density p of the sphere is uniform, this integral becomes

o

If the density is any function of the distance from the centre,

the integration can be effected when the function is given.

79. Ex. 1. A portion of a homogeneous spherical shell is cut off by a cone

whose vertex is at the centre and whose solid angle is da. Show that the

attraction, per unit of mass, of the rest of the shell on this portion is

lfl + 2nb+^a^
b'^ + ab + a'^ '

where a and b are the internal and external radii of the shell. Hence show that

when the shell is indefinitely thin the attraction is half that just outside.

Since the resultant attraction of a body on itself is zero, the attraction of the

rest of the shell is the same as that of the whole shell. The attraction on the

portion mcluded is
|
-- p'^ .

.^
- r^drdu ; dividing this by the mass attracted, viz.

Ip (r* - «•') du, we have the result above given.

Ex. 2. Prove that the pressure per unit of length, on any normal section of a

spherical shell of mass il/and radius a, due to the mutual gravitation of the particles

tends to the limit M'-/lQir(v^, as the thickness of the shell is indefinitely diminished.

[Math. Tripos.]

Ex. 3. A solid homogeneous sphere is divided by a plane through its centre

into two hemispheres. These being placed with their plane faces coincident, show

m
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F=

that the force required to pull them apart is -^^M-ja^, where M in the mass of the

sphere and a its radius.

Ex. 4. The density of a solid sphere varies as the nth power of the distauoe

from the centre. Show that the potential at an internal point is
'

where p is the density at the surface and k + 2 is positive.

Ex. 5. A homoReneous sphere is divided into two parts by a plane QNR
bisecting OP at right angles, P being any point within the sphere and O the

centre. If a be the radius of the sphere and c = OP, prove that the attraction

at P of the larger part of the sphere cut off by the plane QNR is n times the

attraction at P of the whole sphere, where n= {3a - c)/4e.

Ex. (5. If / be an external point and C the centre of a sphere, prove that the

sphere on IC as diameter, the sphere with centre / and radius IC or the polar plane

of / will divide the sphere into two parts exerting equal attractions at /, according

as the law of attruotion is the inverse square, tl;e inverse cube, or the inverse fourth

power of the distance. [St John's Coll., 1885.]

If the law be the inverse nth power, and a radius vector from / as origin cut the

sphere in Q, R and the dividing surface in S, then 2 (/«)'-"= (/y)»-»+(Zii)^-"

except when n= 'd. The results given follow at once.

Ex. 7. If a homogeneous solid hemisphere of radius a and density p be referred

to the centre of the complete sphere as origin, the bounding plane circle as plane of

xy and the radius of the hemisphere perpendicular to the plane of .r// as axis of z,

then the attraction at the origin is along the axis of z and is equal to irpa. Further

show that if V be the potential at a point xyz near the origin, then

V=:wp(i^-i-Trpaz-lvp{x'^ + y^ + 4z'^} (within the hemisphere),

and V=vpa^ + vp(iz- ifirp {.c'' + y--2z^} (without the hemisphere).

[St .John's Coll., 1886.]

Ex. 8. The potential of a solid hemisphere of radius a and unit density, at an

external point P situated on the axis at a distance ^ from the centre, is

F=';;'^|{(«'^ + a^)3-^»- f"'^},

the upper or lower sign being taken according as P is on the convex or plane side

of the body. The potential at an internal point may be found by subtracting from

the potential of the complete sphere, that of the missing half.

Ex. 9. A point P is situated very near to the rim of a thin hemispherical shell

on a prolongation of a radius of the rim. Prove chat the component of attraction

at P of the shell in a direction perpendicular to the plane of the rim is ultimately

2in log 8rt/.r, where a is the radius, ,r the infinitely small distance of P from the

rim, and vi the surface density.

Ex. 10. Two mutually attracting spheres are placed at rest in a vacuum. The

radius of each is one foot and the distance apart (surface to surface) is l/4th inch,

and the density the same as the mean density of the earth. Prove that they will

meet in less than 250 seconds. This problem is due to Newton who gave a wrong

numerical result. [Todhunter, Hintory, &c. Art. 725.]

80. Otber laws of force. Ex. 1. Let the law of force be the inverse

Kth power of the distance. Let the potential of a thin homogeneous spherical

Prove also tha
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surface at a point P be Vk' or !'« according as P is external or internal. Prove

the following results

M (r-a)»-«-(»- + a)»-* . . _ M (a - r)*"" - (a + r)"^-*
r/=

(K-l)iK--S) '2a r («-1)(k-3)' 2ar

where ^1/ is the mass and a the radius.

Ex. 2. Prove that the potential of a homogeneous solid sphere of unit density

at I n internal point P distant r from the centre is

i
-;•)«-* -(o + ?•)»-' («-?•)»-* + («+?•)«-''>

2(5-(c)r
" "*"

" 2X4-K) |*

To this we add an infinite constant when k>4. The integral takes another form

when K = 4.

Ex. B. Let the law of attraction be the inverse cube. Prove that the potential

of a thin spherical shell at a point P distant r from the centre is V^' or V^ according

as P is external or internal, where

_ 47r !(«->•)

'"-(K-Iji^-S) V

F» = . log — ,

^ i(ir "^r-a
^^ M , a + r
r.,= J- log—

.

4a>' a-r

Prove also that the potential of a solid sphere of unit density at an internal point is

r \ 2 a-r ]

81. To find the potential of a shell hounded by any two non-

intersecting spheres.

Let A and B be the centres of the spheres, a and h their radii.

Let p be the density of the attracting matter which fills the space

between these spheres.

The potential at any point P is evidently the difference of the

potentials of the spheres each regarded as a solid sph',re of density

p. If r, r be the distances of P from A and B respectively, the

potential at P is

V = f,rp (^^ - ^;)
or -^^ (3a^ - 36= - r^ + r'«).

according as P is outside or inside both spheres. If P lie between

the spheres

82. We may use the same principle to find the attraction of a

shell bounded by two non-intersecting spheres.

Suppose, for example, that the attracted point lies within both

spheres. The force at P is evidently the resultant of two forces,

(1) an attraction equal to ^irp.PA acting along PJ., and (2) a

repulsion equal to f-n-p . BP acting along BP. By the triangle of

H }\

,:»%;

4

tSiitI
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forces, the resultant of these is equal to ^Trp . BA acting parallel

to BA. Thus the attraction at all internal points is the same in

direction and magnitude. The attraction at an external point may

be found in the same way.

88. Ex. Two spheres touch at a point 0, and the space between is filled with

homogeneous attracting matter. Show that, when the radii differ by an infinitely

small quantity, the attractions at two external points, one at O and the other at the

opposite extremity of the diameter through O, are as 1 : 5. What is the ratio if the

points are inside both spheres ?

84. A theorem of Gauss. The mean value of the potential

of anij attracting system, taken for all points on any spherical sur-

face, is equal to the potential at the centre due to that part of the

attracting system which lies outside the sphere plus the quotient of

the mass inside the sphere by the radius.

Let da be any element of surface of the sphere, V the potential

if all the attracting mass at this element. Let M be the mass

inside the spliere and M' that outside, and let Fj be the potential

of the latter at the centre C. Let a be the radius of the sphere,

then we have to prove that
JVda-

y^ +
M
a

Let m be the mass of any particle of the attracting system, and

let it be situated at a point A. Its potential at any point Q of

the sphere is therefore m/AQ. The part of the integral JVda- due

CO this mass is therefore jnida/AQ. The integral Jda/AQ is

evidently the potential at J. of a thin stratum placed on the

sphere, of unit surface density, and is therefore equal to 4nra^/AC

Ox 4i'jra^la siccording as the point A is situated outside or inside the

sphere.

Taking all the particles of the attracting system, every particle

m outside the sphere contributes a term ^ira^ . m/AC to the integral

JVda while every particle m' inside contributes a term 47ra'^. m'/a.

We therefore have
JVda
47ra='

^ m
-^ AC^

Imf^

a
Since Vi is the potential

of the external mass at the centre of the sphere, the result follows

at once.

Ex. Prove that the mean value of the potential of a body, taken for all points

equally distributed throughout the volume of a sphere which is external to the

body, is equal to the potential of the body at the centre. This theorem was given

by Poisson for the component of uii,uctwn on any given direction. Comptes liendus,

vol. VII., 1838.

have the sa

therefore have
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85. Heterogeneous spherical shells. The potential of a

heterogeneous spherical shell may be found by the help of La-

place's functions more easily than by any other method. Although

there are several cases of heterogeneous shellfj whose attractions

may be found by special artifices, it does not &eem useful to stop

over these when they can all be treated hy one comprehensive

method. We must however postpone the discussion o^ this

method until after we have reached Laplace's equation. In the

meantime there are some general theorems on heterogeneous

shells which are independent of Laplace's functions, and to these

we shall now turn our attention.

86. The potential of a thin heterogeneous spherical shell being

supposed known at all internal points, it is required to find the

potential at all external points.

Let be the centre, a the radius of the sphere. Let P, P' be

two points on the same radius, one inside

and the other outside, such that

OP.OP' = a\

The points P, P' are called inverse

points. Let OP = r, OP' = r'.

Let Q be any point on the surface,

then since OP.OP'^OQ" the triangles QOP, P'OQ are similar.

It follows that the ratio QP/QP' is constant for all points on the

sphere, and that this ratio is equal to a/r'.

Let V, V be the potentials of the whole shell at P, P'. If m
be an element of mass at Q, the potentials of m at P and P' are

respectively m/QP and m/QP'. Since these have a constant ratio

for all positions of Q and all values of m, the potentials V, V must

have the same ratio. We therefore have F' = V ,.

If the law of force is the inverse /fth power of the distance, the potentials of

the mass m at P and P' respectively are in the ratio IKQP)"'^ to 1/(QP')''~^ We

therefore have r..v(^f. If the law of force is the inverse distance we find in

the same way that V - r=il/log a/r' where M is the whole mass of the shell.

We notice that these theorems do not require the shell to be homogeneom or the

sphere to be complete. They apply to any distributions of attracting matter on the

surface of the sphere.

Ex. The potential at an internal point of a thin homogeneous shell of radius a

being V=Mla, prove that the potential V at an external point distant r' from the

centre is V' = Mlr'.
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87. A tliiiorein of Btokes. Let A', A" be the radial componentn of the attrac-

tions at P, P', estimated positively when directed from the centre. Then since

dr dr dr r * r^ )•* »•
-

when the points P, P' approach indefinitely near to the surface ?•'= «, and this

equation reduces to A'' + A'= - Vja.

We therefore have the fol' jwing theorem. The sum of the inward normal attractiom

at Uvo points on the same radius, one just inside and the other just outside a thin

heterogeneous spherical shell, is equal to the potential at either point divided bij the

radius. This theorem is given by Sir G- Htokes in his article on the Figure of the

Earth, and is there proved by the use of Lawlace's functions.

88. Let Y, i" be the components of the attraction at P, P' perpendicular to

OPP'. Let the radius vector OPP' turn round O tUrough an angle dd. Then

~r'de ~ de '
r'-^

~ rdd \r' ) ~ \r'}
'

When the points P, P' approach indefinitely near to the surface we have Y'= Y.

80. A convenM problem. To determine the laic of force when it is given that

the attraction of every thin uniform spherical shell at evenj external point is the same

as that of an equal particle placed at the centre. Laplace, Mec. Celeste, vol. i. p. 163.

Let the potential of a particle m at a distance u iae mf(u). The potential of the

shell at a point P is {"/(") <'"> tlie limits being r-a to r + a or a-r to a + r

according as P is external or internal, Art. 64. Since the attractions are equal, the

potentials of the shell and the central point must differ by a quantity independent

of r. Hence — - juf(u)du= iirma\f(r) + 2winaA (1),

where A may be a function of a but is independent of r. If the potentials of the

shell and the central point are also to he equal we must have ^=0.
Put uf{u) = ¥'{u), the equation (1) then becomes

F()- + «)-i''()--a) = 2aF'(r} + Jr (2),

where r>a. Since the equality is to hold for shells of all radii, we may dift'erentiate

this equation with regard to a. Ditferentiate twice with regard to ?• and twice with

regard to a, we then have F"(r + «) = !'''*' (»•-«) (3).

Since r and a are independent variables this equation cannot hold unless each side

is a constant, for if we write »•= «, we have 2'''^(2a) = a constant. We therefore have

i''(/-)=a + /3r+ 7r= + 5r* + er* (4),

where o, /3, 7, 8, e are constants. Since (3) has been obtained from (2) by

differentiation, this value of F (r) may not satisfy (2). Substitute in (2) and we

find 5= 0, ^=8u''e. We thus have

/(M)=^ + 27 + 4e«' (5).

The only laws offorce therefore which can make the attraction of every shell equal

to that of its central point are the inrerse square, the direct distance and any com-

bination of these. It is unnecessary to include the case in which the potential is

constant, since the attraction is then zero. // the potentials also are to he equal we

must have ^=0 and therefore e = 0. The potential must then vary as the inverse

distance. If the potential of m is -^mu'^ the force varies as the distance. It is

easy to prove by direct integration that the potential of the shell cannot be equal to

that of the central point, but exceeds it by - ^Ma'-.

where 2/3= .J.
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90. iVe may also enquire the law of force r' n it is given that the attraction of

every thin spherical shell is zero at all internal points. We then find

F(a + r)-F(a-r)= Ar (6).

Differentiate twice with respect to r, we find F" (a + r) = F" (a-r). Since both a

and r are independent variables, this as before requires that each side should be

equal to some constant j8. We then find

/(H) = ~H-^ (7).

where 2;8= J. The only law offorce is therefore that of the inverse square.

91. We have assumed in this investigation that the law of force is required to

be independent of the radius of the spherical shell. If toe remove this restriction,

there may be other laws of force which make the attraction of a given shell at all

extenuil points equal to that of a central mass*.

To determine these laws we must solve equation (2) without differentiating it

with regarr' to a, because a is no longer arbitrary. Since (2) is linear, we follow

the rule in differential equations and put F{r) = er* + MeP'', where the first term

represents a particular integral introduced to clear (2) of the term Ar. Substituting

this value of F(r) in (2) we arrive at the equation ei'"-e~'^= 2pa. This equation

gives all tlie possible values of p.

This equatiou has three roots equal to zero and has no other real values of pa.

These lead to the value of F{r) given in (4). To find the imaginary roots ^e put

pa = a + pi, we then have cos /^ . sinh a= a, sin /3 . cosh o = /3.

By roughly tracing these carves (regarding a and ^ as coordinates) we find that

there is an intersection between j3= 2nn- and (2» + ^)7r, where n is any integer

except zero. There is therefore a possible law of potential which however is a

function of the radius of the spherical surface.

We may obtain a simpler result if we enquire i^hen the potential of a thin shell

can be equal to that of a central particle whose ma^s is /j. times that of the shell.

The right-hand side of (2) must then be multiplied by n and we have ^=0. We
then find e^" - e~i'" = 2ij,pa. This equation determines fi when p has any given real

value. The law ci potential is/(r) = (Be>'^+Ce-i"')!r. Thit; law is the same for all

spheres but the ratio of the central mass to that of the shell dtpends on the radius.

That this law of potential satisfies the conditions given above is easily verified by

actual integration.

92. Method of differentiation. Let the potential of a

homogeneous body of density p at any point P, (f, rj, ^), be

V = ^{^^V> 0- If W6 move the body a small distance d^, the

point P remaining fixed, the potential at P of the body in its new

position is V—{clV/d^)d^. Let us now construct a composite

body whose density at any point Q is the difference of the densities

at Q of the given body in its two positions. Since the boundaries

are not the same, the composite body consists solely of a thin layer

of matter placed on the boundPvry of the given body. The surface

* It is stated in Nature, No. 1572, Dec. 1899, that Dr Bakker has written a
paper on this subject in the Proceedings of the Eoyal Academy of Sciences of
Amsterdam. The author has not been able to see this memoir.

It

^hi.

im
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densnty at any point R is p cos <^rff, where
<f>

is the angle the

outward normal at M makes with the axis of f. We therefore

arrive at the foUowing rule ; if V=<j}(^, rj, ^) is the potential at P
of a solid homogeneous body, the potential at P of a layer on its

boundary of surface density Ap cos is — AdV/d^, or, which is the

same thing, AX where X is the ^ component of attraction at P.

Here -4 is a constant for all elements of the attracting body.

If the body is heterogeneous, let its density be />' = i/r (x\ y', z');

the interior of the composite body is not now vacant, its density is

Adp'/dx\vfhilti the surface density at R is, as before, Apcos<f),

where p is the density at R of the given body. We notice that

when the density of the given body is zero along the bounding

surface, the potential of a body of density dp'/dx is dV/d^.

99. Ex. 1. Ab an example consider the case of a homogeneom solid sphere.

The f components of attraction at P are J Tra^'pf/c^ or ^wpf according as P is external

or internal. Hence these are also the potentials of a surface layer of density p cos 0,

or px'ja if x' is measured from the centre.

Ex. 2. If V be the potential at P of a homogeneous body, prove that the

potential at the same point of a thin layer on its surface of surface density

/ dV dV\
A {xfi - y\) is A ix -.—

if 'i~ )
where X, n, v are the direction cosines of the

normal. [Turn the body round the axis of z through an angle 50. ]

Ex. 3. The surface density at any point Q of an infinitely extended plane is m,

i? is a given point distant EO=z from the plane. The potential of the plane at

any point P on the side of the plane opposite to E is V. Let EQ = r', EP=r and

let 6 be the angle EO makes with EP. Assuming the first of the following theorems

deduce the others.

2irfi

zr
'If

•>A

3u
|.'8

then V=

m=
3 5fi

,, Sttju (1 cos^l

i

m= Ax'+By'
r'S

F=

V=

+
2irp. j3 3costf

,
Scos^tf

«*r \z^ zr

2ir A^+ Bf)

-'}•

3 zr,•3

To deduce the second result from the first we perform the operation— , on
z dz

both TO and V. The third is similarly deduced from the second and so on. To

obtain the fourth we refer E to fixed coordinates x, y, z and operate on the first

with didx and djdy.

The first result for a point P on the axis EO produced is obtained by an easy

integration. It follows by a theorem of Legendre on the attraction of solids of

revolution (to be proved presently) that this result being true for a point P on the

axis is necessarily also true when P does not lie on the axis.

where V=
(f> (f

,

density is ^ (.t,
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94. Similar lolidi. Let dv, dv' be the volumes of two

corresponding elements Q, Q'
; p, p' their densities; r, r' their

distances from two corresponding points P, P'. The lines Q,P,

(/P' are parallel and the forces have the ratio pdnjr^ to p'dv'/r'^,

which is the same as the constant ratio pr to p'r'. The resultant

attractions of similar and similarly situated solids at corresponding

points are therefore parallel and have the ratio pr to pr'.

In the same way the attractions of similar surfaces at corre-

sponding points are in the ratio of their surface densities.

Heterugeneuus bodies. Let the density of a solid body at any

point Q be p = y{r (a^, y, z), where >|r is a homogeneous function of

the coordinates of s dimensions. Let the potential at a point P

Licrease the dimensions of the body and the distance of P
from the origin in any given ratio 1 : /9. We thus have two

bodies bounded by similar surfaces S, S' attracting two points

P, P' similarly situated. Since the potentials at the points P, P'

ot corresponding elements at Q, Q' are proportional to the masses

divided by the distances, the potential at P* of the enlarged body

The potential at P' of a thin shell bounded by the surfaces yS and /3 + rfj8 may be

found by ditferentiating V with regard to (i on the supposition that the coordinates

of 1" (viz. /3f, &c.) are constant. If we finally put /3= 1, this shell will become a thin

layer placed on the surface S. Since d|/|= - d/3/|3, &c. we have for the potential

dF=|(« +2)F-|--,^-f-^-|d^%

where F=0(f, t], f). Since this shell is bounded by similar surfaces, and its

density is \//(x, y, z), its surface density a at x, y, z, is <j=p\p(x, y, z)d^, where p
is the perpendicular on the tangent plane. Also if M, M' be the masses of the

original body and the stratum, M'= M(8 + 3) dp. We may substitute for d^ one or

other of these values according as we wish to express the potential in terms of the

surface density or the mass.

Laplace's, Poisson's and Gauss' theoreris.

95. Laplace's theoremf. Let (f, rj, ^) be the coordinates

of any particle A of the attracting matter, and let m be the mass

of that particle. Let {w, y, z) be the coordinates of any point P.

* This formula for the potential of a heterogeneous stratum placed on the

surface of a known body was given by Ferrers in Q. J. vol. xiv. 1877.

+ Mecanique Celeste, T. ii.
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Taking tho particle //» apart from the rest of the matter, its

potential at P is Vj = tn/r,

where r' = (a: - ^)^ + (ij - vf + {z - ^Y (1).

Since
^'rfi

= ^-f'

we find

Also,

dx

df

dx^ r* r*

^ _ w 3m (y - rjY d" F, _ _ wi 3w(^-_p'

Adding these three expressions and remembering equation (1)

dn\
. d'Fi rf'F,

rfy»
"^

dz"
we find

d^""^
0.

Let now F be the potential of the whole attracting matter at P,

Then, since F is the sum of the potentials of the several particles,

d^V d^V d^V
it immediately follows that j ^ *"

V7 a
"*""//

a
~ ^"

In this investigation we have assumed that the point P does

not coincide with any one of the attracting particles. If it did the

meaning of the potential of that particle would require some

further consideration. The theorem hiis therefore been proved to be

true only for a point external to the attracting matter. It will be

presently shown that the right-hand side is not zero when the

attracted particle forms a part of the attracting mass.

Laplace's equation is a differential equation which must be

satisfied by the potential of every body at all points not occupied

by attracting matter. If a g' neral solution of the equation could

be found, that solution woui.. comprise within its compass the

potential and therefore the component attractions of all bodies.

d'V d'V d'V
Laplace's function —r^

abbreviated form V^F.

+
dy

» ''
dz"-

is often written in the

96. When the law of attraction is the inverse Kth power of the distance we

1 „ m
have Vk=

rK-\
,

(Art. 43). We may then prove that

When therefore the potentials of a body at an external point P are known

functions of the coordinates of P for the laws of the inverse cube and the inverse

fourth power, this theorem enables us to find by simple differentiation the potentials

of the same body for any higher inverse power. [Jellett, Brit. Assoc, Dublin 1857.]



ART, 101] LAPLACE S THEOREM. 49

Kx. If the point P in internal and the body Im homogeneous and of ^enaity p,

prove thHt the left-hand Hide of Jellett'H equation Hhould be increased by the

coiiHtaiit 4irpO'-'-". [Hee ArtH. HO, lOo.]

97. When the attracting body w a heterogeneous spherical surface we find that

^-=.Tia»U|'^^'i!r^(-^)»'«}'
wliore a is the radius and r the distance of the point P from the centre.

result boldH whether P is external or internal.

Tbia

1 fttulff
We have K« =—, | - ,u^=a' + i^- 2apr, where da is an element of area at Q,

(t+a-

u-QP and p = oosQOP. To obtain the result, substitute this value of Vg on the

rlKht-haiid Hide and eliminate p.

ThiH theorem may be used to find the potential of a circular ring or of any curve

which can be drawn on a sphere.

08. When the attracting body is a lamina of finite extent, not necessarily

homogeneous, and the potentials at points in the plane of the lamina only are

rei|uircd, the formula takes either of the forms

1 <iv,

K + 1 dz^''

When the potential of the lamina is required at a point P not in its plane, we
notice that the componeut of force at P normal to the plane due to any particle m
of the attracting plane is - imlr"^^ where r is the distance of wi from P. Summing

up for all the particles we find V^^.^^ —, [James Roberts, Quarterly
K 'T' * ZttZ

Journal, 1881.]

00. The potential V^ of a body wlien the law of force is the inverne Kth power

cannot be constant throughout any finite space unoccupied by matter unless the late of

force is the inverse square. It is assumed that all the ni's have the same sign, that is

every particle mmt attract or every particle must repel. For if Vk = 0, we have by

Jellett's theorem either ^^+2= or k = 2. But V^^ is by definition the sum of a

number of terms all of which have the same sign, and therefore cannot vanish. In

the same way the potential of a lamina cannot be constant throughout any finite area

in its plane unless the law offorce is the inverse distance.

lOO. Another important theorem should be noticed. If we transform the

coordinates from one system of rectangular Cartesian axes x, y, z

to another .r', y\ z' according to the scheme in the margin, it is

well known that x'

.r'= a,x + a,y + a,z, ^,=a,£ +a,^ + a,^^. y'

Thus X, y, z and djdx, djdy, djdz are transformed by the same

rules. It immediately follows that since x^ + y^ + z^=x'^ + y'^ + z'*

rf^F d'^V d'W d?V d'^V d^F

x
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to bo Imlr. It ih evident fruin tluM dotinition that, if a Jinite nunntity of matter

be situated at any one of the pointH /(,, A.^, ko. in a oondeniwd form, thu )N>tentitl

at a point /' in tho inmiudiatti nui(<hbuuriiood of that point iH vory great, and at

that point itxulf thia dvAnition would make t)iu i)otential intinite. liut if the

attracting matter ia ho <iiMtrihutud in Hpace that the maHH which ououpiea any

elementary volume dv ia pilv where p w Hnite, we ahall now Hhow that the potential

in this portion of Hpaoe need not be intinite.

The potential at a point /' in the interior of a body of finite dennity may be

found by taking /' an the origin of polar coordinates and integrating all round

throughout the body. /» thi» way we make r jMnilive lor every particle, Art. 39.

DeHcribe a Hiuall Hurfuoe .S' encloning I' (vnd let itH «>(|uution be r = t/{6, <p), where t

is a small oouHtant factor. An element dv of the volume diHtant r from P is equal

to r'^dudr, where dw in the Holid angle Hubtended at P. If then V,^ he the potential

at P of the matter tilling this nurface, we have F',^ = | =jjp<lu>rdr (1),

where the limito of integration for r are and tf{0, ip). It in evident therefore that

Kj is of the order «'».

It follows that when t is evanescent the value of V,j is zero. Thus the matter

filling the surface may he removed without altering the potential of the whole

attracting mass. In findiiiii there/ore the potential of a body at any internal point

P we may regard P as situated in an infinitely xmall cavity, and determine tht

potential as if P were an external point.

Let UB conHider next the resolve.l attraction at the point P of the matter tilling

the small surface described above. Let A'^ be the component parallel to the axis of

X, then A'j=|-j| coBO^jjpcoaddutdr (2),

where is the angle the radius vector r makeu with the axis of x. It is evident

that Xj is at least of the order e of small quantities, and therefore vanishes when the

size of the surface is evanescent. Since oosd is negative when d>ir the order of the

term may be higher than e.

Lastly let us tind the order of dVJdx. To simplify the iutegrutionH let us

suppose that the surfacb is spherical, so that we may use the formula for the

potential already obtained in Art. 78. Let the radius of the sphere be e, let the

coordinates of its centre be (a, b, c) and those of P be {x, y, z). Then

V^= ^irp{3e'-(x-a)'-(y-bf-(z-cy\ (3).

It tollowB at once that ^L''j=J'P(a:(x-a),
d^V.a_ .^""P (A)

Since x - a is less than e, it is clear that dl\ldx is a small quantity of at least the

order t, and vanishes when e is evanescent. In the same way the first differential

coefficients of V.^ with regard to y and z are evanescent with e. The second

differential coefficients of V,^ with regard to x, y or z are however not small.

We have supposed the density of the matter within the evanescent sphere to be

uniform. It is however clear that, if we substituted for p an expression of the form

p=p,^ + A (x-a)+&c.

we should merely add to the expression for V^ terms of the order e".

103. To prove that the relation X^dVJdx which has been established for an

external point also holds for an internal point. Let Vi, l\ and X,, X, be the

potentials and components of force at P due respectively to the matter outside and

inside a small spherical surface S. Then V= Vi+ V^ and X=A'i + A'j. Since Pis
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fxtoriittl to tliat part of the body which 18 outuide .S', A', =<iK,/</x, We have junt

proved that J.'ytix and A'.j aro each equal to zero when the size of the aurfaoe i»

fviiiK'ncmit. Hence A' = (/ l^/<ijr.

Kx. 1. Let the point /' be mtuated at tlie midillo point of the axio of a right

circular cylindrical cavity of altitude 'ih, and h x he measured along the axiH.

Prove that ','= - 4wp
( ^

i )
where I is the distance of P from any point of either

rim. ThcMcu whow that in a Hat cylindrical cavity dXJdx is - iwp and in a long

cylindi-r ih zero.

Kx. 2. Let the law of force be the inverse Kth power of the diHtanoe. Prove

that for a homoneneoiw body the relation X-dVfdx holdH for an internal point 1',

It in HuttlcitMit to prove thJH for a sphere enoloHiug the point P. Take P for

origin, wo then Hnd by an easy polar integration the value of A'. The value of V at

the Name point has been given in Art. 80. The integrations are shortened by taking

P near the centre.

lOa. We shall now prove that, when a point P patsen from the interior of a

hodij iif finite dentity into external njmce, both the potential and the attraction

underjio no Hudden change of magnitude, b»t the tecond dijferential coefficienti of the

poti'ntitil are diHcontinuous in value,

UeHcribe round the point A of emergence a small surface S of any convenient

form. Since both the potential and the attraction due to the matter within S are

zerc, the points near A may be regarded as both external and internal.

All that is meant is that there is a numerical continuity in the potential. The
potentials of a solid sphere, for example, are represented by diflferent analytical

expressions at points inside and outttide, but at the surface both these have the

same numerical value, viz. Mfa, Art. 78.

104. When P traverneit an infinitely thin stratum whose surface deniity is finite

tbe volume density is not finite. It will be shown further on that the potential is

continuous, but that the attraction does undergo a sudden change of value, and an

expression will be found for the change.

It is at ouce evident from Arts. 15 &o. that when P arrives at an infinitely thin

line offinite Wie density, both the attraction and the potential are infinite.

105. PoisBon'a theorem*. If V be the potential of a body

at an internal point P at which the density p is finite, then

d'V <PV d'V

dx^ dz^

Describe a spherical surface of radius e enclosing the point P,

let (a, b, c) be the coordinates of its centre, (a?, y, z) those of P.

Let the radius e be so small that the matter enclosed by the

sphere may be regarded as of uniform density.

Let Fg be the potential at P of the matter within the sphere,

i
•SB)

* This theorem is given by Poisson in the third volume, page 388, of the
Nouveau Bulletin des Sciences par la Society Philomathique de Paris, 5* Ann^e 1812.
He proceeds very nearly as in Art. 105.

4—2
^^'l
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V, that of the rest of the body, then F= F, + Fj. But by

Laplace's theorem VF, = 0, hence

V!^F = V=F =
d'Vo . d'V, _

d-'V,
+ +

dX,_^dY,_^dZ,

dx dy dz
'

daf drf dz""

where X.^, Y^, Z^ are the resolved attractions at P of the matter

v.'ithin the sphere. But by Art. 77

X., = - i-rrp (x - a), Fa = - ^Trp (y - h), &c.

It easily follows by substitution that V''F=— 47rp. Another

proof of this theorem founded on Gauss' theorem is given a

little further on.

We may notice that the centre of the sphere, though arbitrary in position, must

not be taken coincident with P. The reason is that we differentiate V^ with regard

to the coordinates of P, i.e. w^ make P travel from the point (x, y, z) to a neigh-

bouring point {x + dx, &c.). But since the centre of the .sphere is fixed, it cannot be

made to coincide with both the positions of P.

Ex. When the law of force is the inverse distance and the attracting body

(VV cPV
is a lamina attracting particles of its own substance prove that ^y-^ + -r-^ = — 27rp.

dx^

[Deduce this from the attraction of a cylinder (Art. 14) or from that of a circular

area (Art. 57) by the method of Art. 105.]

106. Gauss' theorem. Let S be any closed surface, and let

Ml be the sum of the attracting masses which lie within the surface,

jl/a the sum of the masses outside. Let da- be any element of area of

this surface, Fthe normal resolute at this element of the attraction

of the whole mass both internal and external. Then JFda- = ± 47rJ/,

where the integration extends over the ivhole surface of S and the

upper or lower sign is taken according as i is estimated positive or

negative luhen the normal force acts inwards*.

* This theorem was given by Gauss in 1839, his paper is translated in Vol. in.

of Taylor's Scientific Memoirs. It was also given by Sir W. Thomson in 18'12 in

his papers on Electrostaticn and Magnetic Tue demonstration given by Sir G.

Stokes in 1849 has been followed here, :. . also deduces the Cartesian form of

Poisson's equation from GauHs' theorem. See his Mathematical and Physical

Papers.
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Let m be the mass of any particle of the attracting system, and

let it be situated at the point A. A straight line drawn through

A to intersect the surface *Si in any point will also intersect it in

some other point, but, if the surface is re-entrant, it may enter and

issue from the surface any even number of times. Let the points

of intersection, taken in order, be Pj, Pj, &c., and let the direction

PiP.2, &c. be called the positive direction of the straight line.

Let 01, 6.,, &c. be the angles the positive direction of P P2, &c.

makes with the normals F^Ni, PgiV^a. &c. drawn outwards. It is

evident that where the line enters the surface cos is negative,

and wiiere it issues from the surface cos^ is positive, thus the

angles 0^, 0.^, &c. are alternately obtuse and acute.

With A for vertex describe about this straight line an elemen-

tary cone whose solid angle is da, and let it intersect the surface S
in the elementary areas da-i, dtr^, &c. If the distances AP^ = i\,

AP.2 = r2, &c., these elementary areas by Art. 26 are

d<Ti = r\-d(i} sec (tt — 0i), da^ = r^-dto sec 0.^, &c. ..... (1).

If the point A is external to the surface as in the upper part

of the figure, the normal resolutes taken positively when acting

outwards are Pi = —
;; cos (tt — ^1), Pj = ; cos ^2, &c (2).

Since the signs of these terms are alternately positive and

negative, it follows that when A is external

F4(Ti + F4<r., + &C' = (3).

If the point A is internal and lies between Pi and Pa, as

represented in the lower part of the figure, the sign of the force

Pi must be changed. We therefore have

PiC?o-i + PiiC?o-2 + (Sec. = - do (4).

If the point A lie between Pg and P3, the signs of the first two

terms in the series (2) are changed, and the equation (4) resumes

the form (3), and so on.

If we now let the straight line AP^P^ &c. revolve round A into

all positions, all the elements of the surface will be included in the

integration. We therefore find for an external point fFda = 0(5).

Fur an internal point the integration of the right-hand side of

(4) is limited to a hemisphere of the unit sphere, Art. 26. We
therefore have JFda = — 4nrm (6).

Let now the system consist of any number of particles nii, m^, ^m
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&c. inside, and m,', mj', &c. outside the surface 8. The particles

outside contribute nothing to the integral fFda, while the particles

inside contribute respectively — 47rmi, — 47rm3, &c. On tl-. whole,

when F is measured positively outwards, we have

SFda^-^trM, (7),

where Mi stands for the sum of the internal particles rui, rtiiy &c.

The truth of the theorem is not affected if some of the matter,

instead of being attractive, he repulsive. Such matter must however

be regarded as having a negative mass.

107. The product Fd<r represents the product of the normal

resolute of the attraction at an element multiplied by the area of

the element across which it is supposed to act. This product is

sometimes called the flux or flow of the attraction across the

elementary area d<T in the direction in which the component F is

measured. When the particles of the body attract, the proposition

asserts that the whole inward flux across any closed surface is equal

to 47r multiplied by the mass inside. The product Fdcr is also

called the induction through the element ; see Maxwell's Electricity.

We Bometimes require the flux or induction across a portion only of the surface

<S instead of across the whole. Let this portion subtend a finite solid angle w at

any one attracting point »i. Then by what precedes the flux or induction across

this portion due to the attraction of m is mu. If there are several attracting points

we may find the flux due to each and add the results together.

108. To deduce Laplace's and Poissori's theorems from Gauss' tlieorevi. To

effect this we take as the closed space to which we apply Gauss' theorem the

element suited to the coordinates we intend to use. Let P be any point of space

and let d^, drj, d^ be the lengths of the three edgos which intersect at P.

In Cartesian coordinates the element has its edges parallel to the coordinate

axes and therefore d^=dx, drj=^dy, d^=dz. The sides of the polar element are

d^= dr, dri = rd6, dl^= r sin 0d<f), while those for cylindrical coordinates are d^= dR,

dr)= Rd<f>, d^=dz.

It should be noticed that in all tlume cases the three edges which meet at any

corner of the element are at right tngles. The mass inside the element is

M=pd^di)d^ in every case.

Let V be the potential at P. Consider first the two faces perpendicular to the

edge at df ; the inward flux for the one and the outward flux for the other are

F=^-J^dr,d^,
dFF^-dl

dF
The total outward flux for these two is therefore "^ d^. Treat the two other pairs

of faces in the same way and equate the whole flux to - 4irM. We then have

therefore have
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If we now substitute for d^, dri, d^ their values in Cartesian coordinates and

divide by the product dxdydz, this becomes

d^K dW dW

If we substitute the polar values of rff, drj, df and divide by r'dr sin 6 d6d<t) we

find

Id/ ^dV\ 1 d^( . <IV\ \

r^ dr \ dr ) '^
r^ sin 6 dd v'" de J

^ r* sin^ d,f>-

If we substitute the cylindrical values we have

dW

1 d /„dV\ 1 d^V d^V

JidTi\^dIi)^-k^d^^-^d£^^-^'"'-

therefore have X, =-^, ti, = ^

Poisson^n equation in oblique Cartesian coordinatea takes the following form.

Let a, /3, 7 be the sines of the angles between the axes ; A, B, C the angles between

the coordinate planes, then

W=D^|a^g+ ^;;;;4..^'S^-2a^coscf^-2^,cos.|^-2,acosfi|L[.

where D = o/3sin C= /37sin^ = ya8inB.

lOO. Orthogonal and elliptic coordinates. Let the equations of three

surfaces which intersect at right angles be

«=/i('". 2/. 2). ?=f-Ax, y, z), 7=/3(^. 2/. ^) (1).

where a, /3, y are three parameters whose values determine which surface of each

system is taken. These parameters may be regarded as the coordinates of the point

P of intersection of the three surfaces.

Let P|, Pr}, Pf be normals to the surfaces a, /3, 7 at the point P of intersection.

Let the direction cosines of these normals be (X, /Xj cj), (Xj jUj •'2). (^3 /ts "s). We

= .*;
/ii'''

= Oj(*+oj,* + o,* where suffixes denote

partial differential coefficients.

Let PQ=df be an element of the normal P? and let {xyz), {x + dx, Ac.) be the

coc-dinates of the extremities of df . Then

J-
= T-{ajidx + ai/dij + a,dz)= \idx + fiydy + Vjdz.

"1 "1

The right-hand side represents the sum of the projections of dx, dy, dz on the

normal and this is d{. Hence

''^=;V '^"=7^- ''^=7^-

The general equation of flux for the orthogonal element d^di/df is by Art. 108

k (?'^''''0 d| + d'C.= -47rpd^d7;df.

Substitute the values of df, dt), df, and we find after division by dadfidy

do VV's da)'^ dp \hj^ /j., d^"/
•
d7 \hih^ dy )

~
ft, ft^/jj

"

The quantities /ij h.^ h.^ are given by

imd are supposed to be expressed in terms of the orthogonal coordinates ojSy, the

Cartesian coordinates xyz being eliminated by using the equations of the orthogonal

surfaces. This equation is sometimes called Lamp's transformation of Poisson's

equation.
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1 lO. Since V is regarded as a function of a, /3, 7, we have

dV dV dV
''+;i^^'+d-7^-

dV__
dx ~ da

with similar expressions for dVldy and dVjdz. These we differentiate again and

substitute in Poisson's equation. Since the surfaces a, ^, 7 are orthogonal the

coeflScients of d^Vjdad^ Ac. are zero. We therefore have

- ^TTp = ^^ (a^- + ay^ 4- o,^) + -^- (a„+ ay,j + a„) + &c.

Let the arbitrary functions o, /3, 7 be so chosen that they satisfy Laplace's

equation. The Poisson equation then becomes

.(1).

that this force is /jj=— = - y , ,, where j/ is the perpendicular from the centre

Let a be the potential of a thin ellipsoidal shell of unit mass, such as that

described in Art. 68. Let (ahc) be its seniiaxes. It will be shown in the chapter

on the attraction of ellipsoids that the level surfaces of tlie .shell are the coufocal

ellipsoids. Let [a'h'c'), (a" <&c.), («'" &c.) be the semiaxes of the three confocals

which pass through any external point P.

Since /)i-
=a/ 4-0^^ + 0,^, it is evident that /tj is the component of force at P due

to the shell in a direction normal to the ellipsoid (a'h'c'}. It will also be shown

''" = -
a'h'c'

on the tangent plane. Similar expressions must hold for the hyperbolic confocals

by the principle of continuity.

If Z)j, Dg, are the semi-diameters of the confocal ellipsoid respectively parallel

to the normals a,t P to the confocal hyperboloids we know that p'D^D.^ = a'b'c' by

the properties of conjugate diameters. Also by the properties of confocal quadrics

D^^= a'^-a"'', V^^=a"^-a""^ and p'dp'= a'da'. By using these expressions, we put

the equation (1) into the form

d«r dJT , „, „„, d^r

dy'^

Since p'dp'= a'da' the potentials a, /3, 7 are to be found from

do 1 d/3 1 dy 1

(a"« - a'"*) y, + (a'"-' - «'«) ^-^^ + (a"^ - «"2) "
J.^
= 47rp (a"^ - a'""-} (a'"'' - a'«) («'« - a"%

da'' b'c' da" b"c" du" b"'c'

This form of Poisson's equation agrees with that given by Lam6.

Theorems on the Potential.

111. The potential ofany attracting system cannot be an absolute

maximum or minimum at any point unoccupied by matter*.

If V be the value of the potential at any point P whose

• The theorems in this section may for the most part be found in Gauss'

memoir on Forces varying inversely as tlie square of the distance, 1840. In the

Cambridge and Dublin Mathematical Journal, Vol. iv. 1.S49, there is an interesting

collection of theorems on the potential by Sir (x. Stokes. Most of these were already

known, but the proofs were much improved and put into new and better forms.

This paper is reprinted in his collected works Vol. i. p. 104. The reader may a'so

refer to papers by Lord Kelvin in various volumes of the Cambridge and Dublin

Mathematical Journal, 1842 and 1843, reprinted in his Kleclricity and Magnetism.

There is also a memoir by Chasles in the additions to the Vonnaissances dea Temps

for 1845.
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coordinates are a;, y, z, the value V of the potential at any

neighbouring point P' whose coordinates are on + |, y + V' ^ + S"

will be given by

+ \ ( Vx,^ + Vvyi' + F„r^' + 2 v^y^r^ + 2 r,,,77r + 2 F,,ri) + &c.,

.vliere partial differential coefficients are represented as usual by

suffixes.

If V were a maximum or minimum at the point a-, y, z, the

first differential coefficients Vx, Vy, Vg would each be zero, and the

three second differential coefficients Vxx^ ^ynt ^zz (besides fulfilling

some other conditions) would have the san-^^ sign. But since the

point P is unoccupied by matter, they must satisfy Laplace's

o(juations, Art. 95. Their sum must therefore be zero. It is

therefore impossible that all three should have the same sign.

It has not been assumed that the masses of all the particles

have the same sign. The theorem is still true if the fo/rces due to

some particles are attractive, and those due to others are repulsive.

When the law of force is the inverse distance and the attracting body is a

lamina, we have at all points in that plane r„+ V^y^O, Art. 105. It follows that

in this case also the potential cannot be an absolute maximum or minimum at any

point in the plane of the lamina unoccupied by matter. For other laws of force in

which the sum of V^^, Vyy, V„ is not zero, the argument does not apply.

We have here assumed that we may apply Taylor's theorem to the potential.

That we may do so follows from the definition given in Art. 39. It is clear that

the potential at P of a single particle and therefore of a system of particles whose

total mass is finite is a function of the coordinates of P which is continuous and

finite as long as P does not traverse any attracting matter. We may however put

the argument into another form which has the advantage of avoiding the use of

series.

112. Another proof. With P as centre describe a sphere of

small radius. If the potential V were an absolute maximum at

P, the potential at any point Q of the sphere must be less than

that at P. Thus V is decreasing for a displacement along every

radius of the sphere. It follows from Art. 41 that the outward

normal force /'' at Q is negative at every point of the sphere. But

by Gauss' theorem jFda = (Art. lOH), which requires that F
should be positive for some elements of the sphere and negative for

others. In the same way it may be shown that the potential

cannot be an absolute minimum at P.

113. If the point P he situated within the svbHtance of a continuom attracting

hodji of finite positive density p, the potential may be a nia.rimuin but cannot be a
minimum at P. . ^

'
i

J^m
1«
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To prove this we observe that the potential function V here satisfies Poisson's

equation instead of Laplace's. Since the sum of the three diiferential coetticieuts

F„, Vyy, V„ is negative, it is possible that each may be negative. In that case V

is in general a maxiniuni.

If we adopt the second proof, we notice that (iauss' theorem requires JFda to be

equal to - AirM, where ^^ is the mass inside the sphere of small radius. It follows

that t' may be negative, and therefore V be decreasing, for a displacement along

every radius. The quantity V may therefore be a maximum at P.

114. If any arbitrary curve is drawn in space not intersecting

any portion of the attracting matter, the potential may vary from

point to point of the curve. At some points the potential may be

a maximum and at others a minimum for displacements restricted

to that curve. For example, if the curve touch a level surface the

space differential coefficient of the potential is zero at the point

of contact and the potential may be either a maximum or a

minimum. What we have proved in Art. Ill is that the potential

cannot be a maximum or minimum at any point for displacements

in every direction.

If the curve is a line of force, it cuts the level surfaces at right

angles and the space differential coefficient of the potential cannot

vanish unless the resultant force is zero, (Art. 47). The potential

at a point P which travels along a line of force always in the

same direction must therefore continually increase or continually

decrease until P arrives at a point of equilibrium.

At a point of equilibrium there are some directions in which

the potential increases and others in which it decreases (see

Art. 120). The point P may therefore resume its journey (though

not necessarily in the same direction as before) so that the

potential at P continues to increase or decrease. The journey

can be continued to an infinite distance unless stopped by arrival at

a point of the attracting mass.

115. If the potential is equal to any given constant quantity A
at all points of a closed surface S which does not contain any portion

of the attracting mass, it must be constant and equal to A at all

points of the space contained within the surface S.

For if it were not constant, there would be some point at which

either it is greater than at all the other points or less than at all

other points. But this has just been proved to be impossible.

116. Ex. 1. As an example of this theorem consider the case of a spherical

shell of uniform thickness and density. Describe a concentric sphere within the

shell. By symmetry the potential must be the same at all points of its surface.
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Since there is no attracting matter within this sphere, it follows that the potential

i8 constant throngliout its interior.

Kx. 2. If the potential is not constant throughout the superficies of any closed

Kurfiice .S', let A be the greatest and li the least value. Prove that the potential at

all points within S lies between A and li. [Stokes.]

Ex. 8. A level surface .S completely encloses all the attracting matter of a

svHtcHi. If the consecutive level surfaces extending from S to infinity be drawn,

provH that the potential continually decreases outwards from each to the next until

it vanishes at an infinite distance.

117. If the potential is coyistant throughout any finite space, it

is also constant throughout all external space which can he reached

withoutpassing through any portion of the attracting mass. [Stokes.]

The external boundary of the space is necessarily a level surface. If possible

let A bfc a point outside the space at which the potential is a little greater than

within the space. Since the level surface through A cannot cut the boundary, the

potential at all points in the neighbourhood of A is greater than within the space.

We can therefore describe an indefinitely small sphere, passing through A and

having its centre within the space, such that the potential is increasing outwards

along every radius drawn from O to any point on the sphere outside the space and

is constant along every radius which lies wholly within the space. It follows that

the normal force has the same sign at every element of this sphere. This however

by Gauss' theorem is impossible. In the same way it may be shown that no point

A can exist in the neighbourhood of the space at which the potential is less than

within the space.

Another Proof. It has already been pointed out in Art. 39 that the potential at

P IS a continuous function of the coordinates of F. It follows that when an

expression has been found which represeuvS the potential throughout any finite

empty space that expression must also represent the potential throughout all

external space which can be reached without passing through any portion of the

attracting mass.

118. Points of equilibrium. If an isolated particle placed

at any point P be in equilibrium under the attraction of any

system, that point is called a point of equilibrium. When every

point of a curve is a point of equilibrium, the curve is called a line

or curve of equilibrium.

When the potential of the attracting mass is known, the

positKis of the points of equilibrium are found by equating the

tirst differential coefficients of the potential to zero, viz. dVjdx,

dVjdy, &c. ; for these represent the resolved parts of the forces

parallel to the axes.

119. The equilibrium of a free isolated particle attracted by

fixed bodies cannot be stable for all displacements or unstable for
all displacements, but must be stable with reference to some

displacements and unstable with I'eference to others. Earnshaw's

theorem. Camb. Transac, 1839.
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If the equilibrium were stable wlien the particle occupied a

position P, the- potential must decrease in all directions from P,

i.e. the potential would be an absolute maximum at P, which has

been proved impossible. In the same way the equilibrium could

not be unstable for all displacements.

120. A particle is in equilibnuia at a point P. It is required

to find the equa*'on of the cone which, having its vertex at 1\

separate, il-s d ,. iceirents for ivhich the equilihrium is stable from

those for '^'^irh ^t unstable.

The lev "I'^inc; which passes through any given point has in

general a tangent pi.! at that point, but when the given point is

a point of equilibrium, such as P, the first differential coefficients

Vx, Vy and V^ are zero, and the ei{uation of the plane is nugatory.

Hesun)ing the expression for the potential V at any point

(./ + ^, &c.) neighbouring to (x, y, z), we have, (Art. Ill)

V - V= i^V^x^' + &c. + V^y^rj 4- &c. + cubes (1).

For any small displacement from P which makes V greater

than V, the force on the particle will act from P, and the equili-

brium will therefor-, be unstable (Art. 41). For any displacement

from P which makes V less than V, the equilibrium at P will be

stable. To find the directions which separate the stable and

unstable displacements, we put V = V. The equation of the

separating cone is therefore found by equating to zero the terms

of the lowest order on the right side of equation (1).

The separating cone is therefore a quadric cone, unless all the

differential coefficients of the second order are also zero. It is a

real cone, since by Laplace's theorem Vxx, V^yy and Vgg cannot all

have the same sign whatever rectangular axes it is referred to.

The level surfaces in the immediate neighbourhood of a point

P unoccupied by matter are in general planes, but if P be a

position of equilibrium, they are hyperboloids with the separating

cone for a common asymptotic cone. If PQ be any radius vector

of one of these hyperboloids, the force of restitution for a given

s nail displacement along PQ varies inversely as PQ.

X2X. Ex. 1. Bhow that three straight lines at right angles can always be

drawn through the vertex on the surface of the separating coue. There is an

infinite number of such systems of straight lines.

Ex. 2. If the attracting body is symmetrical about an axis and the point of

equ librium lie on tho axis, prove that the separating coue is a right circular cone
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of Hoini-vertioal angle tan"' y/2. [This follows at once from Laplace's theorem,

Art. %.]

Ex. 3. The lines of force in the immediate neighbourhood of a point of equili-

brium, when reftirred to the principal diameters of the separating cone as axes, are

z<'=M.r"-Ni/', where a, b, c are the reciprocals of K„, Vyy, V„ at the point of

((jiiilibrium, and M, N are two arbitrary constants.

Ex. 4. If a number of mutually repelling particles are enclosed in a rigid

boundary, show that when in stable equilibrium they all reside on the surface.

[If any one were not on the surface, that particle would be in unstable equilibrium,

the remaining particles being held at rest.] Kelvin, see Papers on Klectrostatics,

*c., p. 100.

Ex. 5. Three uniform thin rods Ali, liC, CA, which form a triangle, attract a

particle /' placed at the centre of the inscribed circle. The particle is therefore in

equilibrium. Show that the equilibrium is unstable for all «':splaceraent3 i' he

plane of the triangle.

122. If two sheets of a level surface intersect along line

every point of that line is a point of equilibrium.

Let P be such a point, then at least three tangents 3a he

drawn to the sheets of the level surface not all lying in c >e plane

and making finite angles with each other. Since the foi ilong

each of these is zero, it follows that the particle is in equilibrium.

123. At every point of the curve of intersection of two sheets

of a level surface, the tangent cone becomes two planes which are

the tangent planes to the two sheets. The tangent cone may
therefore be written in the form

(a| + bv + cO ia'^ + b'v + c'O = 0.

Comparing this with the form already found (Art. 120), we have

aa' + bb' + cc' = V^^ + Vyy + V„.

This is zero by Laplace's theorem; the tangent planes are therefore

at right angles. We therefore infer that, if two sheets of a level

surface intersect, they intersect at right angles.

124. Ex. 1. The tangent cone becomes two planes whenever its discriminant

is zero. Prove that in a level surface these planes cannot be imaginary. [If it were

possible, the cone could be reduced to the form (a? + ir; + cf)^ + (a'f + 6'r; + c'f)'2= 0.

This would make a'^ + a''^-\-h^Jr&c. = 0, by Laplace's theorem, which is impossible.]

Ex. 2. Show that an isolated line in free space cannot form part of a level surface.

If the potential at a point P were greater than that at some neighbouring point

Q and less than that at R, it would follow from the principle of continuity that there

must be some point between Q and R on every path from one to the other at which

the potential is equal to that at P. If then an isolated line form part of a level

surface, the potential must be either greater than at all neighbouring points not on

the line or less than at all such points. On either alternative the second proof, by

which it is shown that the potential cannot be an absolute maximum or minimum,
is contradicted, Art. 112.
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196. Sanklnc's thaornn. If at any point of a level surface all the differential

coefticieiitH of V up to the /ith incIiiHive with reKunl to .r, y and z are zero, we know
from Holid Keoiiietry that there in a tangent cone of the (>t+ l)th order at that point.

If (» + l) HheetH interHect along a line, the tianie thing will be true at every point of

that line, and the tangent cone will be the product of the (» + l) tangent planeH.

Let UH Huppose that the level surface is such that at two consecutive points 1', /"

all the differential coefficients of V up to the nth are zero ; let us examine the form

of the surface in the immediate neighbourhood of those two points.

Taking P for origin and PP' for the axis of z, we have at the origin all the

following differential coefticieuts equal to zero

:

dT (i'T </»K ilT </»F d«V
dx»' dx"-^dij"" dy"' dx'*-^dz' (<i/"-'(/z' dx>*-^dz-

r..&c. .(1).

•(2),

These are alwo zero when z receives an increment dz ; hence their differential coeffi-

cients with regard to z are all zero. It therefore follows that every differential

coefficient of V of the {n+ l)th order which has dz, dz'-, &c. in the denominator is

zero at the origin. If therefore V be the value of the potential at a point f, i^,
f,

we find on making the expansion by Taylor's theorem

V - r=^„r+' + ^,r'»+ ... + ^,.+,'?"+'

,

+ powers of f , t;, f of (n + '2)th order '

where Af^, A^, &c. are constants. It follows that the terms of the lowest order in

the expansion do not contain f.

The level surface which passes through the origin is given by I" - J'=0. This

level surface has therefore (h + 1) tangent planes at the origin given by

f/=.>lor+' + ^,f"'?+.-. +-!„+,';"+' = (3).

All these tangent planes pass through the two given consecutive points P, P'.

]Ve shall now prove that all these tauqent planes are real, and that each makes the

same angle with the next in order. The expression for V given in ("2) must satisfy

Laplace's equation, hence the expression for U given in (3) must also satisfy that

equation. Transforming to cylindrical coordinates, U becomes f7 = Pr"+', where P

is some function of <p. By Art. 108, Kince z is absent from U, we have

d^i' 1 dU 1 dHr „

dr' r dr r- d(f>'

(jap

Substitute, and we find {(n + l)n + ii + l\ P + -r-,=0.
atp'

:. P=^ cos {(71+1) + a}.

The equation (3) therefore reduces to cos {(n + l)<^ + a} =0, which gives w-i-l planes,

making equal angles, each with the next in order.

126. Tubes of force. If we draw a line of force through

every point of a closed curve, we construct a tube which is called

a tube of force. By choosing the closed curve properly we can

make the section of the tube indefinitely small ; it is then called a

filament. It is evident that the resultant attraction at any point

P of a filament acts in the direction of the tangent to the length

of the filament.

127. The magnitude of the attractive force at any point of the

same filament is inversely proportional to the area of the normal

section of the filament at that point.

at the same po
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Lot a, <t' be the areavS of the normal sections of the filament at

any two points P, P\ Let F, ¥' be the attractive forces at the

.siuno points. These forces act along the tangents at P, P' to the

kMi<i[th of the Hlament and are supposed to be measured positively

in the sanje direction along the arc.

L(3t us apply Gauss' theorem to the space enclosed by the

filament and the two normal sections. Since the filatnent contains

no attracting matter the total flow of the attraction across the

xvhole surface is zero. The flow across the sides of the tube is

zero, because at each point the resultant force acts along the

length of the tube. The flow across the two normal sections must

therefore be zero, hence Fa — F'a' = 0, that is F<r is constant for

the same tube.

128. Ex. 1. Let tlie nttracting body be a sphere. Tlie lines of force are by

Hyiuinctvy nonniils to the surface ; the filaments are therefore conical surfaces of

small an^le. If /• be the distance of P from the v;entre, (T = r^du; hence i'V ia

constant along any line of force. Thus it follows at once that the force of attraction

at any external point varies inversely as the square of its distance from the centre.

Ex. 2. If F be the normal force at any point P of a level surface ; p, p' the radii

of curvature of the principal sections and ds un element of the arc of a line of force

at the same point P, then will
(/ log F

d»
+ - + -=0.

P P

Construct on the level surface an elementary rectangle PQSR such that the sides

PQ, PR are elements of the lines of curvature at P. Let the tube of force having

this rectangle as bane intersect a neighbouring level surface in P'Q'S'li'. If y, j'

are the areas of these rectangles and ds = PP', we have by the properties of similar

figures
a pp' \p p)

If F, F+dF be the forces at P, P', we know that Fa = (F + dF) a', Art. 127.

This immediritely reduces to the required result. See Bertrand on isothermal

surfaces, Liouville's J. 1844, vol. ix.

129. If two different bodies have equal potentials over the

surface of any space not including any attracting matter, they

have equal potentials throughout that space, and also at all external

space luhich can he reached without passing through any of the

attracting matter of either body.

For let the attraction of one of the bodies be changed into

repulsion. Then the potenlifl due to both bodies is zero over

the surface of the given space. That is, the united potential

is constant over the surface ; it is therefore also constant and zero

throughout the enclosed space, and at all points of external space

which can be reached without crossing any attracting matter;

!!

p.t

i_.) *"

P4

, y
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Arts. 11.') luul 117. Hctiiniiii^ thou to the original Hupposition

that both the bodiv • attract, it caHily t'ollow.s that ihcir potentials

are e<|ual.

130. If two different bodies have e({U(d j)otenti(ds over the whole

boundary of any surface enclosing both, they have eqwd potentials

thronyhoid all e^rternal space.

Aa before, changing the attraction of one body into repulsion,

let us consider the poti-ntial of both bodiew regarded as one system.

Their united potential is therefore zero over the whole boundary of

the surface. It is also zero jver the boundary of an infinite sphere.

Since the space between the surface .and the sphere contains no

attracting matter, the potential is also zero throughout that space,

Art. 11.5. Returning to the original supposition, that both bodies

attract, we see that their potentials must be equal.

Ex. An unknown body ia Burrounded by a Hphere of radius a. The direction

of the attraction at all pointR of this sphere is normal to the nphere and its

maRnitude is ri|Uftl to a given constant F. Prove that the attraction at any

external point \h Va'^jr'^.

The Hphere Ih a level surface because the force is normal. The potential of the

body at any point of the sphere is therefore equal to that of a particle whose mass

is Fa'^ placed at the centre.

181. If two different bodies have the mime level sHrfdces thronijhoHt aiii) empty

space, their potentiaU throujihoiit that space are connected by a linear relation.

Let V and V be the two potentials. Since when V is constant, V is also

constant, it follows that V is some function of V, say V'=f{ V). Then by differen-

tiation we easily find

d^V dW
.

d^V df jd'-T^d'T^rf-'Fl ^ d^f \(<1V\^
_^ (^^XY ^ ('^^WdH \fdV\-' (dVy /dVV}

dV-' \\dx) '^[dy) '^[dzj^
d^V _ ^ ^ _ _ __

dx'^ ' dn'
' 'dz*~dV \dx^^ dt/'^ dz-^\

'^ dV^ W'dx) '^ \dy )
"^

[d~z ) if

Since the space is external to both bodies, this, by Laplace's equation, reduces to

= ",V.'„ . unless V is constant throughout the space considered
dV^

If V is constant, the

level surfaces for both bodies are indeterminate and therefore V also is constant.

We therefore have in both cases V' = AV+ B,\vhere A and B are two constants.

Suppose the space considered includes the points at infinity, then when the

attracting masses are finite in size and density both V and V vanish at such

points. We then have B = 0. Again V and V must vanish at infinity in the ratio

of the attracting masses; we therefore find V'lV—M'jM if M, M' be the masses of

the attracting systems. We thus have the theorem ; if txvo finite bodies have the

same external level surfaces and have equal inasses, their attractions at all external

points are the same in magnitude and direction. Quarterly Journal of Mathematici,

18C7.

When the space in which the two bodies have the same level surfaces encloses

both bodies, this theorem follows at once from that proved in Art. 130. Since the

two bodies have the innermost level surface common, we can by altering the mass

of one of them make their potentials equal over that surface. The potentials of the
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eliiiiiKf'l bodiofi are th(*n equal over all external upacc and the potontialt of the orU

giniil bodieH iiave a ounHtaiit ratio.

189. Ah an example of this thenrvni, uonHider the oaHe of a sphericnl xhell.

Thu oxteriial level Hurfao«>H of Hiich a hIioU and thoHu of an equal niaHH placed at itH

teutrt! are both HphercH. Hence tlie attraction of a Hpherical tthell at any external

point in tbi> name au that of an equnl niaHH placed at itx centre.

AKiiiii, the level HurfaceH of two equal and parallel intlnite platen are both planen.

Hfnce their iittiactinnn at any point are in a conittant ratio. But at an infinite

diHtancG the attraction)* of two such plates when Heparatfld by a finite interval tend

til equality, hence the ratio of the attractions itt unity. It follows that the attraction

of an infinite plate at an external point is independent of its distance. In the same

way the attraction of an infinite circular cylinder is the same as if the whole mass

were uniformly distributed along the axis.

133. The theorems in this section have been enunciated with

.spt'cial rt't'erence to the potential of an attracting system, but a

little consideration will show that they have a more extended

application.

If V be any continuous one-valued function which satisfies

Liiplivce's ecjuation and is not infinite within any given space, it

follows from the argument in Art. Ill that V cannot be an

absolute maximum or minimum at any point within that space.

Most of the other theorems are simple corollaries from this one

general principle, and apply therefore to any finite continuous

function which satisfies Laplace's equation.

For example, if such a function be constant over the boundary

of any space and not infinite within that space, it must be constant

throughout that space.

To take another example, let F be a finite continuous function

v'hich satisfies Laplace's equation, then V=c is a system of

surfaces. If any member of this system intersects itself in a

singular line, the two sheets are at right angles. If several sheets

intersect in a singular line, each tangent plane makes the same

angle with the nett in order.

Let V, V be two continuous solutions which are both finite

and one-valued at all j oints of space bounded by a surface /S and

are equal at every point of that surface, then they are equal

throughout that space. The space considered may be external

to S provided the functions are also equal at all points on the

surftice of some sphere of infinite radius enclosing S. This

theorem shows that when the values of a function V are known at

all points of the boundary of a space, it is determinate throughout

K. S. II. 6

ji
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that space, provided it is known to satisfy Laplace's equation and to

be finite throughout that space.

134. To trace level curves and llnea of force. Ex. 1. Three equal

particles are placed at the corners ABC of an equilateral trianple. Trace the level

curves and lines of force in the plane of the triangle.

We first search for the points of equilibrium. The centre of gravity G is evidently

one such point, .he level curves near G are conies

(Art. 120) which must have G.-l, GB, GC for three

principal diameters. The conies are therefore

circles. The equilibrium is clearly stable for a

displacement perpendicular to the plane and is

therefore unstable for some (and therefore also for

all) displacements in the plane (Art. 111). The

potential is therefore a minimum at G for displace-

ments in the plane ABC.

Let D, K, F be the feet of the perpendiculars from

the corners. Since the force at F tends towards G and G is a point of minimum

potential, there must be a point of equilibrium between G and F. There are

therefore three points of equilibrium which are //, K, L. The level curve which

passes through these points governs the whole sketch and is exhibited in the figure,

Some of the other level curves till up the four vacant areas and others surround the

three loops.

To sketcli the lines of force. It will be found convenient to mark the level

curves or surfaces with small arrows to indicate the direct'on of the normal

force. We then have the following rule ; no line of force can pao^ from a point A

on one level surface to a point B on another unless either the arrows at both A and

B tend in the same direction along the line of force or the line of force passes

through a point of ecjuilibrium which lies between A and B.

The arrows on the sides of the curvilinear triangle HKL all tend outwards from

G, while those on the three curvilinear triangles which surround .-1, B, C tend

inwards towards those points. Hence a line of force beginning at A must either

proceed to an infinite distance or cross KL. If it enter the triangle IlKL it cannot

emerge without passing through G. It must then proceed onwards to either B or C.

There are conical points at H, K and L. The level surfaces near G are not

closed but bend over A, B, C, and surround the conical points.

Ex. 2. Two particles whose masses are m, m' are placed at A and B, both being

attractive. Trace their level surfaces.

Ex. 3. Three equal particlos are placed at three points A, B, C in a straight

line. The particles A and C attract while B repels. Trace the level surfaces.

135. Potential at a distant point. To find the potential of

a body finite in all directions at any distant external point*.

Let the origin be a point not far from the body. Let Q be

* The expansion of the potential at a distant point is originally due to Poisson,

but was put into a convenient form by MacCuUagh, i, . Irink Trans. 1855. Some

of the following theorems were given by the author in the (Quarterly J. 1857. The

name ccntroharic is due to Lord Kelvin, who gave several theorems on these bodies

in the Froc. R. S. E. 1864. The results in Arts. 140, 141 are taken from Thomson
and Tait, 1883.
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the position of any particle of the body, m its mass, {x, y, z) its

coordinates, r its distance from the origin. Let (^, 77, f) be the

coordinates of the point P, OP = r, and the angle POQ = 6.

To generalize the investigation we shall assume that the law of

attraction is the inverse /ctli power of the distance. We then have

7= ^ -S —--
« -- 1 «-i

{r- - 2rr' cos 6 + r«)~2~

. m \ \ rcosd (k + 1) cos!' 9-1 fry )

r * ' (« — 1 r 2 \r /
J

^ ^

M^//2' 1
The first term of the series is —.—

: r . Hence the attraction at
r ""1 « — 1

a very distant point is ultiviately the same as if the whole mass

were collected into a single particle and placed at 0.

To find a closer approximation to the true attraction, let

the point be such that the second term of the series vanishes.

This re([uires that l7ur cos ^ = 0. Since rr' cos 6 = w^ + yrj + z^,

this gives ^Inix + rj^my { ^linz = for all values of ^, 77, ^. The

point loill therefore he the centre of gravity of the body.

We have now to consider the third term of the series. Let

A,B, C be the moments of inertia of the body about any three

straight lines at right angles meeting in 0, I the moment of

inertia about the straight line OP, then

2Smr' =A-\-B-\-G, 1= Sm (r sin Of.

Writing 1 — sin''' for cos- 6 and making these substitutions we
find for the third term

k(A + B + G)-2(k+1)I 1_

4 /k+1 \'^)-

When the law of force is the inverse square and the centre of

gravity is the origin we arrive at MacCullagh's expression for the

potential, viz. V=—+ — + (3),

where M is the mass of the body.

Ex. When the law of attraction is tlie inverse distance, the potential of a

single particle takes the form C -m log r'. Prove that the potential of a body at &

distant point is V=C - M \ogr' + '^~-^^,^
~

"^^+ (4).

136. If two bodies have equal potentials at all external points,

their centres of gravity must coincide and their masses must be

equal. If the law of force is the inverse Kth power the bodies are

5—2

is
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equimomental, unless /e = — 1 . If the law is the invei'se square, the

difference of their moments of inertia about every straight line must

be constant.

The potential of each body can be represented by the series

described in Art. 135 and these series must be equal, term to

term. The equality of the first terms requires that the masses

should be equal. Taking the origin at the centre of gravity of

one body, the second term must be mijsing for both series and

therefore the centre of gravity of the second body must also be at

the origin.

Comparing the third terms of the series we have

K {A + B + C)-2(k + 1) I = ^ (A' + B' + C) - 2(k + 1) r ...{o),

where unaccented and accented letters refer to corresponding

quantities in the two bodies. It follows that (unless « = - 1)

/— /'is the same for all axes passing through the common centre

of gravity. The axes of maximum and minimum moments of

inertia in the two bodies are therefore the same. Since these

are the principal axes of inertia, the two bodies must have the

dissections of their principal axes coincident. Since I — I' is the

same for every axis, it follows that the four differences A —A',

B~B', C — C, and / — /' are equal. The equation (5) then

becomes («- 2)(/-/') = (6).

Unless K = 2, we have I •= F and therefore the moments of

inertia of the two bodies about every axis are equal, each to each.

If however k = — \ these conditions are not necessary. When

K has this value the law of attraction is the direct distance. In

this case it has already been proved that a body, whatever be its

form, attracts any particle as if it were T'ollected into its centre of

gravity (Art, 8).

These are necessary conditions that two bodies should be

equipotential (unless « = — !), but they are not sufficient. It is

also necessary that all the subsequent terms of the potential series

should be equal, each to each.

We have assumed here that the law of attraction is some one integral iuveise

powpr of the distance. If the law he represented hy a scries of inverse powers such

- /li/)-* + m7'''''*'' + '^c., it is evident that so far as the series (1) in Art. VAb is

concerned we need only consider the three lowest powers of r in the law of

attraction. The remaining powers eiter only into the terms of that series iitt

included in our approximation. Proceeding in the same way we ayain arrive at the

results stated in the enunciation.
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ART. 139] CENTROBARIC BODIES. m
137. Centrobaric bodies. When a body is such that its

potential at every point is equal to that of a particle of mass M
situated at some fixed point 0, the body is said to be centrobaric.

In other words, the body is equipotential to a particle. We infer

immediately from Art. 136 that M is equal to the ma^s of the body

and that is its centre of gravity. Since for a particle /' = 0, it

follows that the moment of inertia / of the body about every axis

is the same. The body therefore cannot be centrobaric unless every

axis at the centre of gravity is a principal axis.

The condition (6) now becomes (« — 2) / = 0. It appears

therefore that the series (1) of Art. 135 cannot reduce to its

first term unless k=2 or / = 0. The latter condition cannot be

satisfied unless the masses of some of the particles are negative,

that is unless some of the particles attract and others repel P.

Assuming that all the particles attract P, according to some inverse

power of the distance, we see that the attraction of a body cannot

be the same as if the whole mass were collected into its centre of

gravity unless the law offorce be either the direct distance or the

inverse square of the distance.

188. Ex. If the law of force be the inverse square, the potential of a body at

all external points cannot be the same as that of two masses 37, and M.^ placed at

two points A, B fixed in the body unless (1) the body and masses have their centres

of gravity coincident, (2) the moments of inertia of the body about every axis

through the centre of gravity perpendicular to Ali are equal.

139. Potential constant in a cavity. In a similar manner,

when a body has a cavity within its substance ice may determine the

nece.'^sary conditions that the potential should be constant throughout

the cavity. Taking the origin within the cavity, we have at all

points clo.se to the origin

F=:£— 1_ 7-^os d (« -M) co.s2 ^ - 1 r'y

the expansion is in powers of r'jr because ?•' is less than r.

This cannot be independent of r unless the coefficient of each

power of r' is zero. Equating the coefficient of r''^ to zero, we have

ni

rK+ ,
{(/c + l)cos^^-lj 0.

Writing «./?. 7 for s ::;:;, s^,s;
mz^

,.r. ^+:.' - ,.^s an^ putting the point P

in succession on the axes of x, y, z we have «a = /8 + 7, /e/3 = 7 + a,

Ky-a + ^. These give /c = 2, or « = — 1 and a 4-/3 + 7=0, or



70 ATTRACTIONS. [art. 142

a. /S, 7 each zero. The two latter alternatives require that all the

m's should not have the same sign. Hence if every particle of the

body he attractive, the potential cannot he constant throughout any

cavity unless the law of attraction is the inverse square, (Art. 99).

140. As8uraii)g that a body attracts all points in external space as if the whole

mass were collected into its centre of gravity, prove that (1) the centre of gravity is

inside the external boundary, (2) the external boundary is a single closed surface.

If the centre of gravity O were in the same external space as the attracted point

P, we could surround it by a small sphere, centre 0, radius e, which does not enclose

any particle of the attracting mass. The flux across this .sphere is therefore zero,

Art. 106. But since the force on P tends always to O, the flux is also 47ril/. These

results contradict each other unless the whole mass is equal to zero.

Again, if the attracting system consist of two separate portions, tho centre of

gravity must lie inside one of them. Enclosing the other portion in a sphere, the

flux across the surface is iirM', if .1/' be the mass of this portion. But since lies

outside the sphere, it is also zero. These results caunot coexist unless the mass of

that portion is zero.

141. A body /J is such that the resultant attraction between it and a given

body A is a force which always passes through the centre of gravity " uf h, in

whatever position A is placed. Prove that the resultant attraction between li and

every body is a force which passes through the centre of gravitv of B.

Let the body .-1 be turned about a fixed point P sufficiently distant from B, that

the body A in its motion never meets the fixed body B. In all these positions the

resultant attraction of A on B is a force which passes through the centre of gravity

of B. Hence if every particle of the mass of A be uniformly distributed over the

surface of the sphere which that particle describes in its motions, thu ivesultant

attraction of the mass thus obtained is also a force which passes through the centre

of gravity of B. The mass thus obtained i.s h, syherical shell whose resultant attraction

at any point of B is the '^ame as if it 'ected at the centre P The resultant

action between the body i> and a pauicltj xu ,ced at P is a force which passes both

through P and the centre of gravity oT B. The body li is therefore centrobaric for

all points P beyond a certain distance and therefore for all points of space which can

be reached from P without passing over any of the attracting mass. Art. 129.

Attraction of a thin stratum.

142. A theorem due to Green*. Let a thin heterogeneous

stratum of attracting matter be placed on a surface which has no

* The theorem A''- A'= 47rm is of great importance in the theory of attraction.

Th\' principle of the demonstration given in Art. 142 was used for a spherical shell

by Jjagrange in 1759 and was afteiwards applied by Coulomb to the case of a thin

ele -tncal film of any form {Paris Mrmoiim, 1788). Poisson gives a generalization

of the theorem to any film {Mem. tie.. VIiiKtitnt, 1811, Coundissaiice den Temps (ot

"'8;29, p. 37")). Cauch; deduces the same result for any film from the general

ii rmuliB of attraction '^ \Hullitiii...Si)c. PhiloiiKithiiiue, 181i>, j). 53). The theorem is

cvM imoi .y called (ireen's theorem {K!<ii(n)...oit Kleciricitii and Mai/netisw, 1828). It

v,H- afterwards re discovered by Gauss, 1840. A proof on the same general prinoiple

as that in Art. 14a was given by Kelvin in 1842, see the reprint of his papers on

Jlerl'-ogfatics and Mai/netism, 1842, and Thomson and Tait, Art. 478.
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conical points or other singularities. Let p be the density and t

the thickness at any point A of the surface, and let m = pt, so that

m is the surface density at the point A. In what follows we shall

regard m as finite and t as indefinitely small, so that p is very

large.

Let P, P' be two points situated on the normal at A, one

inside the surface and the other outside,

both close to the stratum; it is required

to find the attractions at P and P'.

With centre A, and a small geodesic

radius a, describe on the surface a circle

whose circumference is DE, and let DN
be a perpendicular on the normal at A
drawn from any point D. The radius a

of this circle is infinitely greater than

either AN or the thickness t but in-

finitely less than either radius of curva-

ture of the surface.

This circle divides the whole attract-

ing stratum into two parts whose attractions at P and P' will be

separately consideied. Let us first find the attraction of the

small portion DAE which we may suppose to lie in the tangent

plane at A.

We take the attracted point P for origin and the normal PA
for the axis oi x, let PA =p. By Arts. 21, 22, the attraction is

X
2'7rpjdx{ 1 - ,, .,

=.27Tp[t-{a^-\-(p + t)i-{a-+pil

lirpt 1- = 27rm.

the limits being p to ^) + 1. Now ultimately pja and tja are zero,

while pt — ni. We have therefore for the attraction

2p + f
2a

The attractions at P, P' are therefore each equal to 27rm. They

are directed along the normal in opposite directions, and their

difference is 4tTnn.

We have supposed the stratum DAE to lie in the tangent plane at A. But the

effect of the curvature would be simply to change the attraction 2irm of a plane disc

into 2irni(l- jijr), where /3 is a (luanlity of the order a or p. These adi ' onal

teims are zero because both a and p are infinitely smaller than r. That this is so

uiay be iii!\de dearer by considering the case in which the surface is spherical. The

disc DAE ia then bounded by a rij^bt cone whose vertex is at the centre and whose

1
t?'l!i?i'f"l'
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semi-angle ia air. By using Art. 74 and retaining the first powers of pja, tfa and

ajr we find /3 = j (a + 2jt)),

Consider next the attraction of the portion of the stratum

remote from A. Let F, F' be the ^-components of attraction at

P, P'. Since these depend on the attracting mass, each contains

the factor pt or m. Also, since the distance PP' is infinitely

smaller than the distance of either P or P' from the nearest

attracting element, F' differs from F by {dFjdx) t The difference

is therefore of the order pf or mt We may therefore regard

F, F' as equal.

Taking both portions of the attracting stratum into the account

and representing by X, X' the normal attractions of the whole

system at P, P' we have

Z = ^-27rm, Z' = i?"f 27rm (1),

where X, X' are measured positively from P' to P. Since F, F'

are ultimately equal, these give

Z'-Z = 47rw, F=i{X' + X) (2).

The equation X' - X = 4>'7rm shows that when attraction is taken

as the standard case, 47r»i is qual to the sum of the normal

attractions at each side of the stratum, the attractions being

measured towards the stratum. When repulsion is the standard

case, 47rm is equal to the sxim of the normal repulsions, the

repulsion being measured on each side from the stratum.

If therr are any other attracting bodies in the field which are

at finite distances from the points P and P', their attractions at

these points are ultimately equal. It follows that in both the

formulte (2) we may suppose X, X', and F to mean the normal

comporents due to all causes.

1-13. The equation F=\{X + X') enables us to find the

norinrJ aturuv'tion of a thin heterogeneous stratum on an elemen-

tary portion o\ itself.

Let the ele.ient be a small cylinder whose base is the area

da situated at A •^.nd whose altitude is the thickness t of the

stratum. The normal attraction of the adjacent portion DAE on

uhe cylinuiical elemert is ultimately zero because it is the same as

the normal attraction of an infinite plate on a portion of iiioii

The attraction of the remote portion of the stratum is Fmda. It

follows therf; tore from (2) that the whole norriud force per unit of

mass acting on the element is the arithmetic mean of the normal
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attractions just inside and just outside the stratum. The normal

force on the matter md<r which covers an element of area da- is

Y'2 Y*
Fnida- and is therefore equal to —^ da, where X, X' are the

o7r

normal forces at each side of the element.

144. We may also show that the parallel tangential compo-

nents of attraction just inside and just outside the stratum are

equal. Let the axis of y be parallel to a tangent at A to either

boundary of the stratum. Let F, Y' be the components of attrac-

tion at P, P'. Considering first the adjacent portion DE of the

stratum, it has already been shown that the resultant attractions

at P, P' are each directed along the normal PP' ; hence this

portion contributes nothing to Y or Y'. Considering next the

remote portion of the stratum, it may be shown as in Art. 142

that the components Y, Y' differ by terms of the order mt. In

the limit therefore when t is very thin, we have Y' = Y.

145. We shall now show that the potentials at P, P' are also

equal. The potentials due to the remote portion of the stratum

for the same reasons as before can differ only by terms of the

order mt. Consider next the portion of the stratum adjacent to A
;

the potentials at two points equally distant from the two faces of

the stratum evidently differ by terms of an order higher than mt.

See also Art. 76, Ex. 1. Taking both portions of the stratum, we

see that the potentials at P and P' are ultimately equal.

146. It follows from this proposition that if a point travel

from a position P just luithin a thin stratum to another P' just

outside, both on the same normal, the norm,al component of the

attraction is increased by the quantity ^irni, where m is the surface

density. At the same time the tangential components of the attrac-

tion and the potential are unaltered.

147. We may also deduce Green's theorem from the propo-

sition, due to Gauss, that the flux of the attraction over a closed

surface is 47r multiplied by the mass inside. See Art. 106.

Let the axis of « be a normal to the stratum, measured

positively inwards, and let it cut the boundaries in the points

A, A'. Let us consider the flux of the attraction across an

element of volume whose edges parallel to the axes x, y, z are

respectively AA' = t, dy and dz.

L ,5

13

n
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'illl

Proceeding as in Art. 108 we have

{X' — X) dydz + , tdydz + , - tdydz = ^irptdydz,

where X' - X has not been equated to (dX/dx) dx because there

is attracting matter on one side only of each of the two faces

perpendicular to the axis o{ oc. Substituting m=pt in the equation,

dividing by dydz and taking the limit, we find X' — X ~ 4nrm.

148. Ex. 1. A thill layer of heterogeneous attracting matter is placed on a

sphere of radius a. If V be the potential and m the surface density at any point A,

show that the normal attractions on each side of tlie stratum are Vj'ia ± 'iirm. Art. 87.

Ex. 2. Prove that, if matter attractinj^ according to the law of the inverse

square be so distributed over a closed surface that the rewultant attraction on every

external particle in the immediate neighbourhood is in the direction of the normal,

the resultant attraction on every internal point is zero.

The outer boundary of the stratum is by definition a level surface. The inner

boundary is therefore also a level surface. The result then follows from Art. 115

because there is no attracting matter within that surface.

Green's Theorem.

149. Let a portion of space be enclosed by a surface which

we shall call S. Let V, P, Q, R be any one-valued finite functions

of X, y, z, and let dv = dxdydz. Let us integrate

U:
,dV
dx ^%-^K^)'^'''^y'^' ^^>'

throughout the given space S. The first term becomes by an

integration by parts

lJ[PV]dydz-jjjv'^^Jxdydz (2).

We have here integrated all the elements which lie in a column

parallel to the axis of x. Let AB he one of these columns and

let it intersect the surface S at A and B in the elementary areas

da; da'. If {X'fi'v') be the direction cosines of the outward normal

at the upper limit B we have dydz = \' da'. In the same way if

(Xfiv) be the direction cosines of the outward normal at the limit A,

we have dydz = — Xda, since X' is positive and X, negative. The

quantity in the square brackets in the first term of (2) is to be

taken between the limits A and B and is therefore

(PV)^X'da'-(PVU{-Xda) (3),

where the suffix indicates the place at which the value of the

quantity in brackets is to be taken. The two terms in (3) have
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now to be integrated, the first for all elements such as fi on the

right-hand side of the bounding curve CD and the second for all

elements such as A on the left. These together are the same as

fPVxda taken for all elements of the surface, where X now stands

for the cosine of the angle the outward normal at da makes with

the axis of x.

Treating the other terms of (1) in the same way we have

Let P, Q, R be the components of a vector / and let / cos i be

the normal component at the element da: The equation (4) then

becomes

In this way the volume integral (1) has been replaced by a

surface integral, when the vector is such that

dP dQ dR^
dx dy dz

Let this vector be the attractive force of some system whose

potential is V. To be more general, let P = dV'jdx, Q^dV'jdy,

R = dV'jdz, then

U = dVdV^ dVdT l^^n^^.^ ^^ (Q^
dx dx dy dy dz dz J

where V, V are two arbitrary functions of xyz. Let dn be an

element of the outwai'd normal at da-, then

dV'^ dV dV ^dV^
dy dz dn

'

dx
.(7).

Also let p, p be such functions oi xyz that

- 47r/j = V^ V, - 47r/3' = V» V.

'•* ^

! II

I

i
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Then by (4) the symmetrical expression U takes either of the

fonns U=jv~-da + i7rjVp'dv (9)

= [F'^^^rf«r + 47r[F>r/v (10).

The equality of the expressions (G), (9) and (10) is usually called

Green's theorem.

f/=/r^d., dc .(11).

160. If the functions V, V satisfy Laplace's equation we

have p = 0, p' = 0, the equality then becomes

r,dV
du

151. Let F, V be the potentials of two attractini^ fljBteiiia. Let W be the

mutual work of the first and that portion of the Hecond Bystem which is internal to

8 ; let W be the mutual work of the second and that portion of the tirst which ig

internal to S. Then, by Art. 59, Green's equation becomes

V= \VFda->r\-KW=\V'Fda->i-'^itW' (13),

where ¥, V are the outward ".mal components of force at the element d<r.

The expression for t/^t-amits also of interpretation. Let (A'i'Z), {X'Y'Z') be the

components of force due to the two systems at any point ^xijz) within S. Let

72, i2' be the resultant forces, the angle between the directions of 7?, R'. Then,

by (1), t7=j(XA"+lT' + .^Z')rfv = j7J«'co80f/i; (14).

If the two systems are the same, i.e. if the particles occupy the same positions

in the two .vsteras and have equal masses, Green's equation bGcomcs

V=\n-dv= \VL''d<r + ^i(\Vpdv,

where ¥ is the outward normal force at the element d<j.

1A2. Instead of considering the space internal to S we may integrate through

the space between S and a sphere of infinite radius enclosing S and having its centre

at a fnite distance from S. We must then of course include this sphere in the

surface integration over S. I^et V, V be the potentials of some masses M, M' respec-

tively, then for points on the surface of the Hphere V=Mla and dV'jdn— -M'ja''

also dff = a^du), where a is the radius and dw is the elementary solid angle subtended

at the centre by da. We therefore have for the sphere

J dn J a a

and this is zero when a is infinite. We may therefore in this case apply the equality

(9) and (10) without further change to the space outside S. We notice that dn

is always to be measured outwards from the space over which the integration

extends.

163. To deduce Gauss' theorem. Let us put unity for V.

Since this value satisfies Laplace's equation, we have p = 0. The

equality (9) and (10) takes the form

I , rfo-= — 47r \pdv (15).
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Let the space of integration be the finite space enclosed by a

surface S. We thus avoid the integration over the surface of a

sphere of infinite radius. Supposing V to be the potential of any

attracting mass, the function of x, y, z repnsented by p becomes,

by Poisaon's theorem, the density of the mass at the element dv.

The right-hand side of this equation is therefore —4nrM, where

M is that portion of the mass which is inside S. Also dV/dn

represents the outward normal force. The equation therefore

asserts that the whole outward flux across any surface S is

-47riT/. This is Gauss' theorem.

154. Green's equivalent layer. Let V = l/r' where r' is

the distance of any point within the space of integration from some

given point P. Let the integration extend throughout the space

internal or external to S according as P is external or internal.

In this way we make l/r finite throughout the integration.

Since 47r/3' = — V^ V, p is now zero, and Green's equation

becnes /r|-, (>) rf. -/f ^^ = *^f^' dO-

Here the r' on the right-hand side is the distance of P from dv

and on the left-hand side ?•' is the distance of the same point

from the element da of the surface.

We shall now suppose that V is the potential of some

attracting system, part of which may be inside S and part outside.

The right-hand side of the equation is evidently 47rFi where Vi is

the potential at P of that part of the attracting mass which is on

the side of S opposite to P.

The equation asserts that the potential at P of that part of the system on the

oppoKite Hide is equal to that of a thin layer placed on the surface S whose surface

density D at any point Q, {PQ=r') is given by

where V is the potential at Q of the whole system. To make D independent of the

position of P we shall get rid of the terms which contain r'.

155. Let the surface S be such that the potential V of the

whole attracting system is constant and equal to Vg over its area.

Then S is a level surface, or a closed portion of a level surface, of

the whole system. Since l/r' is the potential at da of a unit

mass placed at P, we have by Gauss' theorem

t, tec
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according as P is within or without the finite space enclosed hv

the surface S. The plus sign is given to 4t7rVg because we are

integrating throughout the space on the side of S opposite to P,

and dn is therefore measured towards P.

Lastly let us place on the surface S a thin layer of matter

1 dV
whose surface density p" is given by p" = —— -%—, where dn' is

measured outiuards from the finite space enclosed by 8. Let V"

be the potential of this layer at P, then

y,, _ j'/a" da __ 1 fdV da-

J r' 4!'irjdn' r'
'

In the equation (16), when P is, internal dn is measured inwards

and therefore dn = - dn ; when P is external dn = dn'. That

equation therefore becomes

V,-V"-=V„ or V" = V, (17).

according as P is internal or external. We deduce the three

theorems enunciated in the next article.

156. Let ^ be a level surface of an attracting system. Let a

thin layer of attracting matter be placed on the surface *Si such

that its surface density p" at any point Q is given by the equation

*-""-& ^'«)'

where V is the potential at Q due to the attracting system, and

dn' is measured positively outwards from the finite enclosed space.

(1) The potential of the layer at any point P, external to the

level surface S, is equal to the potential at the same point of that

portion of the attracting system which is within S.

(2) The potential of the layer at any point P internal to S,

increased by the potential at the same point of that portion of the

attracting system which is external to S, is constant for all

positions of P, and is equal to the potential Vg of the whole

attracting system at the level surface S.

(3) The whole mass of the stratum is Jp'da; and by Gauss'

theorem, this is equal to the mass of that portion of the attracting

system which is inside 8.

If the surface 8 encloses all the attracting system, the second

theorem asserts that the potential of the layer at all internal

points is constant and equal to that of the attracting system at

the level surface S.
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This form of the theorem will enable us to find the law of

distribution of a charge of electricity, given to any solid insulated

conductor whose boundary is a level surface of some known

attracting system.

167. Ex. It is known that a prolate spheroid is a level surface of a uniform thin

attracting rod whose extremities are at the foci S, II of the spheroid, Art. 49. Find

the surface density of the thin stratum which, when placed on the spheroid, has

the same attraction at all external points as the rod.

The surface density p" at any point Q of the spheroid is given by iirp"= F,

where F is the resultant attraction at Q. Also F=2m mn ^SPHjy, where y is the

distance of Q from the rod. By using some geometrical properties of conies this

leads to the result that p" is proportional to the perpendicular p from the centre on

the taigent plane at Q. The whole mass of the etratum is equal to that of the rod.

158. Points at which V is infinite. If P be any arbitrary

point taken in the interior of the space bounded by the surface 8,

it is evident that one of the columns of integration parallel to each

coordinate axis will pass through P. It is necessary that in each

of these three columns the subject of integration should be finite.

We have therefore assumed in the proof given in Art. 149 that

(1) both the functions V, V are finite and continuous, (2) that

their first and second differential coefficients with regard to x, y, z

are each finite throughout the space considered. If any of the

functions be infinite at some point A within <S, we must sur-

round that point by an infinitesimal sphere, and integrate only

over the space between the sphere and the surface *Sf.

159. Green's equation is

-r— do- + 47r
an

jv—dj + iw jvp'dv= lv'^d<r + iw j V'pdv (I.).

Let us suppose that one term of V is l/r', where r' is a distance measured

from P. We shall substitute this term in Green's equation, and the space of

integration shall be that between a small sphere, centre P, radius e, and the

surface S.

Consider first the integrals taken over the surface of the sphere. Since

da= fMu), we have by changing to polar coordinates

dV
dn

e«dw= 0.

where dn has been measured from the space of integration, that is inwards on the

sphere, and Vp has been written for the value of V at P.

Consider next the volume integrals. Since r' is finite throughout the space of

integration, p' = and the term jVp'dv disappears. The integral jpdvjr' is to be

taken only for the space outside the sphere, but since dv = r''^du if we include the

integral for the space within the sphere we have only added zero (see Art, 101).
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4irD"^10) (Vr')

Green's equation for the term V = \jr' takes the iorm

/-j!;CO'"-/s?^----/'? <n...

where the surface integrals are taken only over the surface S and the volume

inter^rals throughout the space .S, ignoring the sphere altogether.

Since Vp is the potential at an internal point P of the whole mass and jpdvfr'

the potential of the mass inside S, this equation becomes identical with (16) of

Art. 154 when we change the sign of dn.

Let V be the potential of some attracting system, part of which may be

inside S and part outside. Also let

dV_ _ld^
dn ~

r' dn
"

give the surface density D at any point Q of a thin layer placed on .S', where r' = PQ
and V is the potential at Q of the whole mass. The equation (II.) then asserts that

the potential, at a point P inside S, of that part of the attracting system which is

also Inside S, exceeds the potential of the stratum by the potential Vp of the whole

muss at P.

X90. We may notice that if V or V be the potential of a system of bodies of

finite density, neither V nor its first differential coefficients are infinite at any point

of the mass, see Art. 101.

If one term of V were mfr' we may regard the particle m as the limit of a small

sphere of radius e and density p^, where iirpQe^=m. The integrations in (I.) can

then be made throughout the space enclused by S without reference to the sphere.

The integral iwjVp'dv will supply an additional term equal to iirVpVi. Tn this

way we arrive at once at the final equation (II.).

161. Multiple-valued ftuietlona. It has been supposed in these theorems

that the functions V, V have only one value at the same point of space. If they

are potentials of attracting masses, they are each of the form 2m/r and can have

only one value. But if they are obtained as solutions of Laplace's equations, as in

hydrodynamics, they may be many-valued functions. Thus let a fluid be running

round in a ring-like vessel. If V be the velocity potential at any point P, we know

by the principles of hydrodynamics that dVlds= u, where s is the arc described,

and M is the velocity at P. Since the velocity is always positive, the velocity

potential V must always increase as P travels round the ring. When P has made

a complete turn, it comes to the point it started from, and V has a different value.

If we put Laplace's equation into cylindrical coordinates (Art. 108), we easily see

that V=:t&n~^ylx = <p satisfies the equation and represents such a motion.

162. In order to apply Green's equation to a multiple-valued function by

integrating throughout the space enclosed ia a ring-shaped surface we must deprive

the function of its multiple values by placing a barrier at any point and including

this barrier as one of the boundaries. In this way the point P is prevented from

making a complete circuit and the function is reduced to a single-valued form. It

may be that the surface has several ring-like passages interlacing, and it may then

be necessary to insert several barriers before the function is reduced to a single-

valued form.

Taking the simpler case of a single ring-like surface, let us suppose that the

potential V is always increased by the same quantity c when the point P startiug

from any position has made a complete circuit and has returned to the same position
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again. Similarly let V be increaBed by c'. Let da be an element of the area of a

barrier placed anywhere across the ring-like cavity. Let s be an arc measured from

the barrier round the ring to the barrier again, say from j«=0 to «= I. Consider the

part of the boundary formed by the two sides of the barrier ; remembering that dn is

measured outwards, we have dn= -da for the side defined by 8=0, and dn= d8

for the side a = l. We thus have, when we integrate over both sides of the barrier,

f,.dV' (-.rdV' f ... ,d{V' + c'), fdV'

Supposing V and V to be solutions of Laplace's equation, Green's theorem becomea

„ f^,dV' fdV' [ „,dV ^ ,(dV,

where along the surface S, dn is measured outwards, and across the barrier ds is

measured in the positive direction round the ring.

163. Ex. 1. Let V, V represent as before any two functions of {x, y, z), and

let a be a third finite function of the same variables. Beginning with

^dVdV dVdV dVdV'\ ^ ^ ,

dz }
^^^y^'^

8bow, by the same succession of integrations as in Art. 149, that

dV

HlHi

where

U= j aW^dff + in jv'pdv= j a^V ^J- dir + iir jvp'dv,

d / „dV\ d f „dF\ d ( „dr\
-^''^=TA'" T^j^dyK:" '^J'^dzKf T,)^

and - 47rp' represents a similar expression with V written for V. This is Kelvin's

extension of Green's theorem. See Thomson and Tait, Part i., p. 167.

Ex. 2. If V, V be two solutions of the differential equation

dx\ dx ) dy\ dy ) dz\ dz )~ '

and if also F= V at all points of a closed surface S, prove that V= V throughout

the enclosed space.

Let u= V- V, then u also is a solution of the differential equation. Writing u
for both V, V in the general theorem of Ex. 1, we have

M(i:)'-(S)^(S)]-/"'4:-
The right-hand side is zero since u vanishes at all points of the surface S. But the

left-hand side is the sum of a number of positive quantities and cannot be zero

unless each vanishes. Thus dujdx, dufdy, dufdz are each zero at all points inside

S, i.e. the function u is a constant. Since it is given equal to zero at the surface S,

it must be zero at all points within S. Lejeune Dirichlet uses a similar argument

in Crelle, x"xii. 1844.

This differential equation is of great importance in the analytical theory

of heat.

Ex. 3. Show in the same way that if dVldn=dV'jdn at all points of the surface

S, then V— V throughout the space enclosed. [Here du/dn=0.]

Ex. 4. If both V and V, besides being solutions of the differential equation,

also satisfy the equation dVldn= - kV at all points of S, where /c is a function of

the coordinates which is always positive, prove that Vz= V. [Here the right-hand

Bide of Ex. 2 would otherwise be negative. ]

K. s. II. 6

.< .1
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Ex. 5. If V be oi ^ solution of the differential equation in Ex. 2 such that

dVldn= -kV at all points of a surface .S', where k is always positive, prove that

there is no other solution of that differential equation which satisfies this condition.

[Use a proof similar to that in Art. 133.]

Give7i the potential, find the body.

164. Poisson'a ecjuation 4eirp = — V^F supplies a partial solution

to this question. The potential V being given throughout all

space we find p by differentiation. This value of p, if finite

throughout space, determines the only body which could have the

given potential. If the potential is given as a discontinuous

function of the coordinates difficulties may arise in applying

Poisson's equation at the points or surf&ces of discontinuity. The

following theorem will therefore be necessary.

165. Let the potential V throughout a given space >S be the

given function ^ {x, y, z), throughout a neighbouring space *S", let

the potential be i/r {x, y, z), and so on. In this way we regard all

space as divided into compartments within each of which the

potential is a different function of the coordinates. We suppose

in the first instance that the given potentials tire nowhere infinite.

As a point P moves in space, passing from one compartment

to the next, we know by Art. 145 that there should be no sudden

change in the numerical value of the potential. We therefore

suppose that the given potentials <j>, '^ have equal values at all

points of the common boundary. This implies that the space rates

of the potential tangential to the common boundary are equal.

The tangential componejits of force must therefore be equal.

If the normal forces at the boundary are not also equal, there

will be a film of attracting matter at the boundary (Art. 146)

whose surface density a- is given by Green's equation

, d6 dyjr

an an

where dn, dn' are measured in directions outwards from the spaces

8, S', and therefore, at points inside each space, towards the

boundary.

We have now proved that the only arrangement of matter

which could produce the given system of potential values is one

consisting partly of solid matter given by Poisson's equation filling

the compartments and partly of films on the boundaries. It
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remains to prove by integration that this arrangement does

actually fulfil the given conditions. The results of these inte-

grations are supplied by Green's theorem.

166. Let us write if> for the arbitrary function V in Green's theorem and let

/;=
^ Y'(p y ( T' ) ~

i\ '^^ defined in Arts, 164 and 159. Then the potential at

P wheu P is outHide S is equal to that of a stratum of surface density D placed on

,S', and wlien P is inside S, the potential at P exceeds that of the stratum by

^{x, ij, z). Let this stratum be included {with the sign of D changed) as part of

the attracting system, the potential at a point outside .S' is then zero and at a point

inside .S' the potential is <(>. The proposed conditions are satisfied for iihe space S.

Treating the neighbouring space S' in the same way, we obtain an internal

density determined as before by Poisson's equation and a superficial density which,

wlifH its sign is changed, is the same as that given by D except that the function
<f>

is replaced by
\f/

and the element dn of the normal is measured in the opposite

direction.

Adding together the two superficial densities and remembering that and ^ are

equal at those points of the boundary which are common to S and S', we observe

that the first terms of each destroy each other. We therefore find for the density

of the superficial stratum

where dn and dn' inside each compartment are measured towards the boundary, so

that dn = - dn'. We notice that this law of density is independent of the position

of P.

If the jiiven potential (p is infinite at any point A within the apace S we must

suppose that a finite quantity Q of attracting matter is situated at A (Art. 101).

The quantity Q may be found by enclosing A within a small sphere and using

Gauss' theorem, iirQ= jFdiT. If the potential is infinite along a curve, the line

density may be found by ..nclosing an elementary arc within the sphere.

167. Ex.1. The potential at a point (^ is (p = 2ir(b--a'^), i// = g7r(36"''-r2-2a»/r)

or x^^"" (''''- a^)/'*> according as the distance r of ^ from the origin is less than a,

lies between a and b, or is greater than b. Find the attracting system.

Considering the space in which r is less than a, we see that both the volume

density and the part of the surface density d<f>l4irdn are zero.

Considering the space in which r lies between a and b, the volume density is

found by substituting in p= -
1 d^xpr

Art. 108, and is equal to unity. The
47rr dr-

part of the superficial density found by substituting in d\j/liirdn is zero at the inner

boundary and - (U^ - a^)ISb^ at the outer.

Lastly in the space in which 7- is greater than b, the volume density is zero and

the part of the superficial density dxl^vdn= (W - d^)j^b^.

Joining these together, we find that each of the two surface densities is zero and

that the attracting body is a spherical shell of radii a and b and unit density.

Ex. 2. Find the attracting system whose potential V is equal to

lj.{\-Lx*-Mif-Nz^)

at all points within the ellipsoid Lx^ -^-My'+ Nz^—l and zero at all external points.

The system is a homogeneous ellipsoid whose density is n{L + M+N)l2ir,

6—2

\

Is

A
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together with a superficial stratum whose surface density at (^ is - nl2vp, wheio p
is the perpendicular on the tangent plane at Q.

Since this s'-atum is equivalent to a thin honiogeneouH confocal shell (see Vol. i.

Art. 430), this result supplies a simple relation between the potential of a homo-

geneous solid ellipsoid and that of a homogeneous confocal Hhell. See Art. 2'24.

I
Method of Inversion.

168. Inversion fi'om a point*. Let be any assumed

origin, and lot Q be a point moving in any given manner. If on

the radius vector OQ we take a point Q' so that OQ . OQ' — k\

then Q and Q' are called inverse points. If Q trace out a curve,

Q' traces out the inverse curve ; if Q trace out a surface or solid,

Q' traces out the inverse surface or solid. The points Q, Q' are

sometimes said to be inverse with regard to a sphere whose centre

is C and radius k.

Let F, Q' be the inverse points of P, Q, then since the products

OP . OP', OQ. OQ' are equal and the

angles POQ, P'OQ' are the same, the

triangles POQ, P'OQ' are similar.

We therefore have

l__± OQ
P'Q'~PQOF

Let m, m be the masses of two particles placed respectively at

k
Q, Q', and let the densities be such that m' = m^r^ (2).

Multiplying equations (1) and (2) together, we see that the

potential at P' of m is equal to that at P of m, after multiplication

by a quantity kjOP' which is independent of the position of Q.

Let any number of particles of given masses mj, mg, &c. be

placed at different points Qi, Q^, &c., and let the corresponding

masses m/, m^', &c., be placed at the inverse points Q/, QJ, &c.

Then since an equation similar to (2) holds for each pair of masses,

we have by addition

Potential at P' \ / Potential at P \ k
(«>)

,(1).

\of the inverse system/ Vof the given system/ OP'

k
which may be compendiously written ^' = ^7757-

* The Method of Inversion is due to Sir W. Thomson, now Lord Kelvin. In a

letter addressed to M. Liouville and published in Liouville's Journal, 1846, a short

history and a brief account of some of its applications are given. This letter may

also be found in the Reprint ofpapers on Elevtrostatics and Magnetism.
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169. If the given masses m,, m^, &c. are amxnged so as to

form an arc, surface or solid, the inverse masses will also be

arranged in the same way. It will therefore be necessary to

discover some rule by which we can compare the density at any

point of the given system with that at the corresponding point of

the inverse system.

Using the same figure as before but changing the meaning of

P, let PQ now represent any elementary arc of the locus of Q,

then P'Q' represents the corresponding inverse arc. If the locus

of Q is a curve, we infer from the similarity of the triangles POQ,
P'OQ' that the lengths of the elementary arcs P'Q\ PQ are in the

ratio OQ'/OP, i.e. OQ/OQ ultimately. Hence by (2) the ratio of

the line densities of the arcs P'Q', PQ is equal to kjOQ'.

If the locus of Q is a surface, the elementary areas P'Q, PQ are

ill the ratio of the squares of the homologous sides, i.e. as OQ'^ to

0^'. Hence by (2) the ratio of the surface densities at Q' and Q
is t'ciual to (k/OQy.

If Q travel over all points of space enclosed by a surface, the

elementary volumes at Q', Q are ultimately in the ratio OQ"*

dw.diOQ') to OQ'da).d{OQ). Since OQ.Oq = k\ this ratio is

equ;il to OQ^jOQK Hence by (2) the ratio of the densities at Q
and Q is equal to {k/OQ'y.

Humming these results, we see that

density at Q' \ _/ density at Q \ / k V-^-^

of the inverse system/ \of the given system/ * \OQ'J

where d represents the dimensions of the system, i.e. c? = l, 2, or 3

according as the system is an arc, a surface or a volume. When
the system is a point, d - ; the equation (4) then agrees with (2)

anil gives the relation between m and m'.

170. The mass of any portion of the inverse body is equal to

the pote7itio,l at the centre of inversion of the corresponding portion

of the primitive body multiplied by the radius k of inversion. By

Art. 168, we have m =mk/OQ, i.e. m' is equal to the potential of

m at 0, multiplied by k. The theorem being true for each ele-

ment of mass is necessarily true for any finite portion of the body.

171. Ex. If the law of force be the inverse nth power of the distance, the

1. irt

potential of a particle tii takes the form r ,._, . Prove that the equations
n - 1 r' '

corresponding to (2), (B), and (4) become

/ k \i-»
, / k \!M+i-»

...(4),

»» 'H^r-

$ »i"
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When the law of force ih the inverse diHtance n = l, and the potential of the

attracting nianH taken a dilTerent form. In this cane the quantity here called V

becomcH Sm/(«-l), and is therefore proportional to the maun of thf. bodjf. The

theoromH therefore of inverHion, though they no longer apply to the attractiont* of

bodies, will still enable us to find their maHses when their densities vary ait some

power uf the distance from a point. See Quarterly •>,, 1HG7.

179. om« flMomatrioal prop«rtl«a. It is convenient to notice that if the

points P, Q invert into P', Q', then
P'Q'

(jp~ir6 '
^*'*"* ^^' ^"^' "^ *^'® ''"^""^

distances between P, Q and P', Q' respectively. For example the ratio
jf''

,' is

unaltered by inversion; becauHe each letter occurs the same number of times in the

numerator and denominator.

Xt9. To find the inverse of a sphere. Let Q describe a sphere whose centre is

C, and let OQ.OQ'= k^. Let OQQ' cut the primitive sphere in li, then since

OQ . OR is constant, it follows that OQ'jOli is constant. The locus of Q' is there-

fore similar to that of It, that is, the inverse is a sphere and O is a centre of

sijnilitude.

T'

The centre D of the inverse sphere lies in OC produced, and by the properties of

similar figures, is at such a distance from O that ODjOC is equal to the constant ratio

OQ'jOR. The centre C of the primitive sphere does not invert into the centre D of

the inverse sphere, but into some point C such that OC . OC' = k\ It is easy to see,

by similar triangles, that C" lies on the polar line of the centre of inversion with

regard to the inverse sphere.

A sphere inverts into a plane when the centre of inversion O is on the surface of

the primitive sphere. The inverse of a plane with regard to any centre O of inver-

sion is a sphere which passes through O.

A circle is the intersection of two spheres and in general inverts into a circle,

but when the centre of inversion lies on the circle, the inverse is a straight line.

Ex. Let P, P' be two inverse points with regard to a sphere S; prove that

every sphere passing through P P' cuts »S' orthogonally. Conversely, if a sphere

.S" cuts S orthogonally and CPy is any chord through the centre of ,S', then P, P'

are inverse points with regard to .S'. See figure of Art. 86.

174. An angle is not altered by inversion. Let PQ, Pli be elementary arcii of

two curves which meet in P and are not necessarily in the same plane with the

centre O of inversion. Let P'Q', P'R' be the inverse arcs, we have to prove that

the angles QPR, Q'P'R' are ultimately equal. Describe a sphere through the four

points P, Q, R and P'; then since the products OP . OP', OQ . OQ' and OR . OR' are

equal, the sphere also passes through Q', R'. The planes OPQP'Q' and OPRPB!

cut the sphere in two circles whose planes intersect in OPP'. The opposite angles

QPR, Q'P'R' contained by the tangents to these circles are evidently equal by

symmetry. It is also evident that the planes of the angle and its inverse, viz. QPR

and Q'P'R', make equal angles with the opposite directiom of OPP'.
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17». It followB at once, from the theorem, that two given orthogonal »phere»

invert into ortliotjonal »i>here».

176. Ex. 1. T)iu potential of a bomogeneoiiH upherioal Hurfaoe at a point P
w \irap or 4mt''plVP according as /' is inwiile or outside the Burface, where C in the

centre and <i is eijual to the radius. It is re(iuired to invert this theorem with regard

to an external point O.

Since the product of the Begments OQ . <)Q' is constant in a sphere, it is clear

that if we take A; equal to the length of the tangent OT, the sphere will be its own
inverse. When only one sphere occurs in tlie system this choice of the value of k

will simplify the process, hut when there are several spheres it will be more
convenient to keep the value of k indetrrminate.

0-

If P is within the sphere, the inverse point P' is also within the sphere. By (4)

the density of the inverse sphere at Q' is equal to p(klOQ')^, and its potential at P'

is iwapklOP'.

If P is without the sphere, P' is also without. The density at Q' of the inverse

system is the same as before, but the potential at P' is p . —p, . Let C be the

point on the straight line 00 such that C and C" are inverse points. Then by the

similar triangles COP, COP' we have CP .OP' = OC .C'P'. The potential at P' is

therefore
J'~/

. ^„^,

.

If .1/' is the mass of the inverse system, the relation between M' and p may be

easily deduced from either of these expressions for the potential. Take the first,

where P' is inside the sphere, we notice tiiat since every element of the sphere is

equally distant from the centre, the potential at the centre is M'ja. Hence putting

P' at the centre and comparing the two values of the potential, we have

ir=ivpa"klOC. Take the second case, when P' is without the sphere, we notice

that the potential at a very distant point must be mass divided by distance. By
equating these two values of the potential, we arrive at the same value of M' as

before. This v.a.ue of .1/' may also be easily deduced from Art. 170.

Taking both these results, we arrive at the following inverse theorem.

Let a tnass M' he distributed over a spherical surface, centre C, so that its

density at any point Q' is p (A/OQ')^, where is an external point, and k is the

length of the tanyent from 0. Then p= M'cliva^k, where c = 0C ; and the potential

c 1 1/'

at any point F is M' -
^^^^,

or
J,^,

,

according a» P' lies within or without the

sphere. The points C and C are inverse points with regard to 0, and it is easy to

see liutt C lies on the polar line of O.

The potential of this heterogeneous spherical stratum at all external points is the

same as if its whole mass M' were collected at 6", and at all internal points is the

same as if a mass M'cja were collected at 0.
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It follows from Art. 1B(( that the centre of gravity of the hcterogeneouH itratum

ii at C and thnt every ntruiKht line through C ia a principal axia.

Ex. '2. If the (louHity of a Hpherioal Hurfaoe vary aH the inverse cube of itx

diHtanco from an internal point (), tind its potential at any point.

If the centre of inversion O is inside the primitive sphere we can still make

the sphere its own inverse by drawing OQ' from O in the direction opposite to UQ,

and taking k'' equal to the product of the segments of all chords through O. With

these changes we may show that the potential at nil external points is the same m
if its whole mass .1/' were collected i:t O, and at ull internal points is the same as if

the mass il/'c/a were collected at C.

Ex. 8. The potential of a homogeneous solid sphere at an external point 1' is

^wfHV^ICP, where V is the centre and a the radius. Invert this theorem with regard

to an external point 0.

The result is that the potential at an external point of a heterogeneous sphere,

whose density at any point Q' in p(k/()Q')'^, is the name as if its whole mass M' were

collected into a fixed point C. This point C" is the inverse of the centre with regard to

O and is also the centre of gravity of the Hphere. The constant p may be found from

the relation il/'f = Jirpd^A:, where c = OC', and k is the I'sngth of the tangent from 0.

Ex. 4. A heterogeneous spherical shell is bounded by ecpjntrio spheres whose

radii are a, b, and its density at any point Q is mjOQ'', where m is a constant and

O a given external point. Show that its ])otential at any internal point I' is

where A and It are the points where the polar planes of O intersect the diameters

drawn through O, and /, ij are the tangents from O.

Ex. 5. An iutinitely thin layer of matter is placed on the surface of elasticity

e*r'=a''j;'' + i-)/''' + r'«', so that the surface density at any point distant r from the

centre varies as ;*/»-', where p is the perpendicular from the origin on the tangent

plane. Show that the potential at any external point is the same as if the whole

mass were collected at its centre of gravity.

177. If *S is a level surface of any attracting points, the

inverse of S is not in general a level surface of the inverse of the

attracting points, because the ratio of the potentials (being given

by V — Vk/r') is not constant. But if S is a level surface of zero

potential, the inverse of S is also a level surface of ze'*'o potential of

the inverse attracting points,

178. Let P, P' be inverse points with regard to a sphere B.

If Q be any point on the surface, the ratio PQ/P'Q is constant by

the similar triangles OPQ, OP'Q, (Art. 86). Let this ratio be

o/y8, then a/PQ - ^/P'Q = 0, that is the sphere is a level surface

of zero potential of tivo particles placed at P, P', whose masses are

measured by a and — /9.

179. Two points P, P' are inverse to each other with regard

to a sphere S. Let the inverse of this system, taken with regard

potential at P
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to a now origin 0, be the pointH Q, Q' and the sphere S'. Then

the pointH Q, Q' are inverse points with regard to the sphere S'.

By putting particles of proper niasst^a ut P, P\ the sphere ean

bo made a level surface of zero potential. The inverse of »S with

ro^'ufd to the new origin is therefore also a level surface of zero

potential of the inverse masses at Q, Q'. Hence Q, Q' are inverse

points with regard to H'.

A |)urely geometiical proof of this theorem is Kiven iu Laohlan's Modem
(litiiiu'try.

ISO. If a particle of finite inaaR m iH at the centre of inverHion 0, the inverse

ig a (liHtribution of matter at infinitely ure&t diBtances from <). Tlie theory of

iiiveision ^i\en tlie potential of the whole inverse system incluilinn tlie infinitely

diHtaiit matter. If we wish to remove the latter from the field under consideration

we must subtract its potential. Now by equation (H) of Art. 108 its potential at any

point P' iH V'—V — = = i , We may therefore disregard this infinitely

dJHtunt matter if we subtract from the potential of the inverse body as given by the

theory, the constant mjk.

If tiie mass at O merely forms part of a stratum passing through O, the mass

actuully at O is zero and the constant to be subtracted is also zero.

181. Inverilon flrom a line. Instead of inverting the

attracting system with regard to a point we may invert it

with regard to some straight line Oz. Let a point Q move in any

manner, and let QN be a perpendicular on the axis Oz. If on NQ
we take a point Q' so that NQ . NQ' = k*, where k is a given

constant, then Q' is the inverse of Q with regard to the axis of z.

With this definition it is clear that any cylindrical surface

with its generators parallel to Oz inverts into another cylindrical

surface also having its generators parallel to that axis. This

method of inversion will therefore help us to deduce the potential

of one cylindrical surface or solid from that of its inverse. We
shall suppose that the density of the cylindrical body is uniform

along any generating line but varies from one generator to

another.

182. If an infinite rod is paralhd to the axis of z, its attraction at any point P
oil the plane of xy is known to be 2iiilQP, where Q is the intersection of the rod

with the plane of .ry and m is the line density. The potential of such a rod at P is

therefore V= C - 2m log QP, where C is some constant, Art. 50. Let us invert

this rod with regard to the axis of z into a parallel rod, and P into another point

F. Supposing the inverse rod to have the same Une density as the primitive rod, its

OP'
potential at F is )"= C - 2hi log Q'P'. But by Art. 168 P'Q' = PQ . ^ . Hence

V' + 2mlogOP' =V+2mlog OQ (1).
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lift tlioro be ii HyHtoin of rodw intcrHiM^tiiiK tlio pinne of ,n/ in this pointH (^,,

Vj, »Vc., uiid let tlu^ inverse rodw intersect t)io Hivnie plane in (^,', Q^, Ac. Iict w.,

Wj, kc. l)e th(' line denHities of tlie Heveml pairs. Then for ouch pair we have an

eipiation siniilai to (1); addinj^ nil these to><ether we (ind

(Potential at /" i)f inverse system)

(Potential at /'' of the wliole mass collected at the iixIh)

•-(Potential at /' of j^iven system) (Potential at O of f?iven system).

183. If the primitive system of rods intersect the platie of ,r// in an arc oriin

urea, the inverse system will also he arranged in the same way. To compare the

densities we observe that tin- nianscs of thr ijinm m/stem iind the imwrnf arr tlif same

lull diffcrcutlij iliDlriliiit<'il. If the locns of (,> is an are, tlie ratio of the elenientiiry

arcs at Q', (,> i-i eiiual to OQ'jOQ, and the ratio of the lino densities is therefere

ocjnal t(! <tQj()Q', i.e. ( A
/( >(,)')'. If the loens of (^ is an area, the ratio of the surface

densities is e<inal to (klOQ')*.

We shonld notice that tii is the mass per iniit of len^^th of a rod. Hence when

the attracting; rods form a cylindrical surface whose surface density is p, we have

m=:pilii, where </.< is an element of arc of the section of the cylinder by a plane

perpendicular to the axis. For t'xample, in tlie case of a rij^ht circular cylinder of

radius <t we have ^m = '2irap. If tlie rods form a cylindrical voiume of density p, we

have lu-pdA, whi'ie </.( is an element of area of the curve of section.

Kx. 1. .( Iictcnuii'iit'oiis stnitum i.i ploci'd on a rii/ht circiil<irciiliii(lfi; the dem\i\i

hcinn uniform uloiiij aiii/ iifiifnitor. It in miniird to compuri' the potentialu at an

hiteniiil (tiid mi e.vteriKi} inrerse iwin/. If we invert the system with rej^ard to the

axis and the radius A' of inversion be the radius of the cylindtr, the stratum inverts

into itself. If /', /"be the internal and external points, ?', P' the potentials, we

have by Art. 182 V'-('" - '2^m loj? (>/")= V - I',, . CoUectiiiK all the constant terras

into one, we have I"- I'— .(
- '2i;m loj; <^/''. The corresponding proposition for a

sphere is >;iven in .Art. H(>.

Ex. '2. Invert the followinj; theorem with regard to an eccentric inteinal

straifjht line. The potential of a homoyeucouc. ri^ht circular cylindrical surface at

any internal point is constant and eijual to that along the axis.

The resnltiiig theorem is as follows. If matter be distributed in a thin stratum

over a right circular cylinder so that the surface density at any point Q' is

proportional to the inviise stpiarc of the distance of (/ from an internal straight

line ()/ parallel to the generators, the poiontial at any external point is the same

as if the whole mass were evenly distributed over the straight line OZ.

184. Extended theory. Let (,), , (^)..,...Q„, be n points arranged at eciiiiil

distances on the circumference of a circle of radius p. Taking the centre " as

origin, let the polar coordinates of these points be (p, (f>), {p, <p + a), {p, <p + '2a) etc.,

where )ia=:'27r. Let /' be any point and let (c, ti) be its coordinates. 13y De

Moivre's property of the circle we have

,» '2yp" tiO» n {0 - ,p) \-
p-"=^ Pi^^- . PQ.r...l>Q,;^ (1).

Let us now i.ike two other points (^', i" whose coordinates {p, -p') and (*', 6') are

such that p' = <' (()/()", V'' =«</>; r' = e (rjc)", 6'=-ii0, where <• is any constant. It

immediately follows that the left side of (1) is equal to (•it'»-ii
. (I>'(^'y\ Taking the

logarithm of both sides, we tind

log ."'V' + ("-!) lot.' <• = log PQi + log PQ.^ )- A'c. + log 7V» (-'•

Let uri now !*uppose that two infinite thin rods, each of uniform line dtuaity m,
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r we have nn

urn placu'd pnrpcndicularly to the piano of the circle at /* and V rpupectively. It

follows at once trom equation (2) tliat the potential of the Hccond rod at Q' differs

by a constant from the Hiim of the potentialH of the firHt rod at the points Q^, (f.^' *"•

In the Hanie way, hy properly placinj? pairs of corresjJondinK rods we may build

up two corresponrlin^ cylindrical bodies, which have the [iroperty that the potential

of the second body at (/ dillers by a constant from the sum of the potentials of the

first at V,...V«-

We may express this result in the form of a theorem. An injinitdhj Itttuj

cjlliiidrinil hoibj liiin Hk ilcnuitif nniform (lUtuij uiii) (ii'iicnitinn line anil (ittrnctg

(tcninlinn to tlii' law of naturv. The hoily, beinii n-ferred to vijliiidriml coordiuateH

iiilh till' axis of' z jKiralli'l lo thf (ii'iicrdtorn, ix triiiiKfoniwd into anothi'r vylindrical

li(:ili/ hi) niorin;) each ei)lindrieiil element {r, 0) into the yoxition (>', 0'), where

;' -e(rle)", 0' -nO, without (ilterin;! the W(Ihk of element. If the potentiah of the

oriijimil lioilij r.t 'he n points (p, <f>), {p, <p + a), (p, i^ + '2a) dr,. he V^, V.,, F., dtc, then

the potential of the tramformed hodij at (p , <(>'), wliere p' -c(ple)'^, <(>'=: n<p, dijf'erii by

a nnistantfhin the miiii T, + V.^ + itr. + 1',,.

If one be a continuous cylindrical solid, the other body may be made also

continuous by alterinf^ the an^as of the sections of the transformed elements,

keeping the mass unchani^ed. Since the elementary areas at I', I" are respectively

rdddr and r'dO'dr' we easily see that the volunui densities at /', 1'' must be in the

ratio of (nr')'^ U. /'•'.

If one body be a continuous surface, the other may be made also a continuous

suiface. Since the masses on the correspondinK arcs ds, da' are equal, the Hurface

densities tr, cr', must he Hueh that <t dx = a'dit' . This ratio may be put into other

forms. Let ^, i^' b(! the angles these arcs make with their respective radii

vectorcs, then since /•' = /•"/<;"', 0' = nO,

tan xLi =r , ,= r , = tan J-.

It appears that the radial angle
\f/

is unaltered hij the trannformation. Since

Bin \p-rd9l<l>i, sin
\l/'
= r'dO'lds', we see that d!<ldK' = rjnr', and therefore r<T — nr'a'.

Since the coordinates of the correspondinf^ points of the two fi^^ures are connected

by the relations r' — r'^je""^, O' = n0, it is clear that when 0' has increased from to

'iff, lias vitried from to 2irln, and thus an arc only and not a closed curve is

obtained. If J" travel n times round its curve, the curve traced out hy P will

consist of 1/ equal and similar arcs, tittinp; toKother and forming a closed curve.

Since a = '27r/H, it is also evident that these n arcs are similarly placed with regard

to tiio (( points (^,, (^.^, itc, and that therefore the potential of the whole closed

curve at each of tl!"se points is the same.

The potential therefore at Q' of the n coincident cylindrical strata generated by

the rod /'' in n revolutions (which of course is n times that of the cylinder taken

once) is iqual to n times the potential of tlie complete cylindrical stratum

^ji'nerated by the rod I' at any one of the points Q^, Q.,, iVc. It follows that the

putintialsof the two elosed cijlinders (eaeh taken onee) are equal at the corresponditig

points y, and Q'. If one stratum (like an electrical stratum) is equipotential

througluiut all space on one side of the surface, the other is also equipotential on

tlic corresponding side.

Ex. Thin layers of attracting matter are placed on the cylinders

.•l(.T* + j/'») + 2yu'V=l.

J.r« + 3 (3/( - 2.^) x*if + 3 (3.-I - 27^) xY + 1^*/ = 1

;

...)
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if the surface densities are proportional respectively to r^p and r*p, wliere r is the

distance from the axis and p is the perpendicular on the tangent plane, prove that

the potentials are constant at all internal points.

If a thin stratum is placed on the cylinder Lx'^ + My'^=l whose surface deuHity

is a'=Kp', the potential inside is constant, /.rt. 72. Transform this theoreii< by

writing r' — r^lc, d'= 20. The elliptic cylinder becomes the first of the two cylinders

in the example. The surface density a follows at once from (rr=;i(rV', if we

remember that pjr-p'jr^ at corresponding points.

Circular rings and anchor rings.

185. When the potential of a thin heterogeneous circular

ring for any law of attraction is known at all points in its plane

within the circle, the potential at every point of space may be

deduced by inversion.

Let the plane of the circle be the plane of wy, the centre

being the origin. Let the

plane of xz contain the C
poini R at which the

potential is required and

let it cut the circle in

A', A.. In the figure the

attracting circle is repre-

sented by the dotted line.

Describe a circle through

the p ints A, A' and E,

then

CP.CR = CO.CC' = CA'\

The points P and E are therefore inv rse with regard to C. if

then 1'', V" are the potentials of the ring at P and R, when the

law of force is the inverse /tth power, we have V" = V i-^,,)

where c = CA and r" = CE.

When the law of attraction is the inverse distance, the

potential takes a logarithmic form. Art. 43. Let vi be the mass

of a particle of the ring situated at Q. Its potentials at P and R
are C — m log QP and C — » log QE. But since the triangles QGP,

QCR are similar (Art. 168) QP/QR = njCR. If then V and V"

are the potentials of the whole ring at P and R, we have

c
V" = F+ if log -y,, where M is the mass of the heterogeneous ring.
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186. The geometrical relations betiveen the positions ofP and R
are most easily obtained by describing an ellips.^ or hyperbola

whose foci are A, A' and which passes through R.

Since the angles ARC, A'RG stand on equal arcs, these angles

are equal and RFC is therefore a normal to the ellipse. We thus

have r —- e-x where r = OP, x is the distance of R from the axis Oz

of the ring, and e is the eccentricity. We also have CA/CR or

cjr" = e. If p, p are the least and greatest distances of R from

the ring, the focal distances AR = p, A'R = p'. Hence, a being the

radius of the ring, ex = { {p — p) and aje = ^{p' -'r p)-

The semi-major axis of the ellipse is a' = aje.

187. The result may be stated as follows. Let the potential

at an internal point P in the plane of the ring he V=f(r). Then,

if the latu of force is the inverse Kth power of the distance, the

potential at R is V" = e''"^f(e^x). If the law of force is the

inverse distance V" =V+M log e. We may use any of the preceding

geometrical results to express e in terms of the coordinates of j.L

The points R and P' are inverse points with regard to a sphere whose centre is

C" and radius C'A. These may be uied to deduce by the same rule the potential ai

R from that at the external point P'. Instead of the ellipse we then use the

hyperbola which has its foci at A', A and which passes through R.

188. Ex. Prove that the component forces at R along the tangents to the

ellipse and hyperbola are e'+iJ^sin RPA and e'^+^F' sin RP'A, where F, F' are the

forces at P and P' resolved in the directions OP, OP respectively ; and e, e' are the

eccentricities of the ellipse and hyperbola. Prove also that et' = alx, and that

P, P' are inverse points with regard to the ring.

180. Ex. The potential of a uniform circular ring, when the law of force is

the inverse distance, is known to be constant at all points within the circle

and in its plane. Art. 55. The potsntial at any point R of space is therefore

V" = C + Mloge. It follows that the level surfaces are oblate spheroids having the

circle for a focal conic.

Prove that the resultant force at R takes either of the forms

F=M.nlpp'=M.(l-e^)ln,
where p, p' are the focal distances and n is the length of the normal RP.

If the ring is heterogeneous, Ici its law of density be given as described in

Art. .58. The potential at any point R of space is then F" = 2£„ — I — 1 +C'

(except when n = 0), where a is the radius of the ring.

190. To find the potential of a thin uniform circular ring of

line density m, the law of attraction being the inverse Kth power of

the distance.

First, let the point P at which the potential is required be in

t!fil
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the plane of the circle. Taking the figure of Art. 55, let OA = a,

OP = r, we then have

a sin <^ = r sin 0, w" — 2ur cos 6 + r^ — a* = (1),

where = OPR, u = PR. When P is outside the circle both the

values of u given by the quadratic are positive and represent

geometrically the distances PQ, PR ; these we distinguish as

u,, W.J. When P is inside the circle the geometrical distances are

— Ml and u^.

The elementary masses at Q, R being muy d0/cos
<f>

and

mu-i d0/cos <f),
the potential V of the whole ring at an external

d0 .. .-. 1 1
point is

cos 9
**^'«-2 = —.-.> + .(2);

III'' '
''-i

when P is inside we write — Ui for i/j ; we notice that when k

is an even integer, the same formula represents the potential

whether P is internal or external. The value of *S«_2 may be

deduced from the quadratic, thus So = 2, Si = 2r cos 0/(7-^ — a^).

The limits of the integral are different according as P is

outside or inside the circle. When P is outside,
(f>

varies from

to ^TT and sin from to air, the final result being doubled.

When P is inside, varies from to ^tt and sin ^ from to 7'la,

the final result being doubled. To simplify the limits we express

the integral V in terms of ^ oi according as P is outside or

inside.

Representing these potentials by F,' and V^, we have after

using (1)

•
"
K-'l 1 (r"^- a- sin-' <f>f '

"

~

k- 1 j (a'^-r^sin^^

'

the limitfi in both integrals being to \it. When the law of force

is the inverse square,

-~j(r'-a'^sin»*' ' ~
J {a' - r' sin' 0)^

'

When the law of force is the inverse cube we find for an ext&iml

point (using (1))

The potential at an internal point may be deduced from the

general expression for F„, if we remember to write —Ui for Wp

It follows however at once from the expression for Fg' by using

the rule of inversion (Art. 171), We write a'Y^'i for r and

'mad(f> 2rcos0
' cos r* — a*

7)117(1

r^ - tt'
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multiply by (a/r,)''-^ where 7\ = OP and « = 3. We thus find

- vnra
'.\
~

a^ - ri"

The attraction of the ring at any external point P' in the plane

of the ring is the sum of resolved attractions of the elements at Q
M f

and R. In this way we find X' = —
j S^-idcf), where the limits are

to ^TT.

The potentials for these two laws of force being known, the

corresponding potentials for any other inverse law may be deduced

from the theorem (Art. 97)

V - — 1

(C+2 2r
dl
-X«-1)F,|

« + 1 a' - r" (" dr

The potentials at points in the plane of the ring being known,

the potential at any point R of space may be found by the rule

of Art. 187. If (.T, z) be the coordinates of R, we write e'^x for r

and multiply by e*~'.

For example, when the law of force is the inverse square, the

potential at jB is I tt—, ^'~t-. ,„ . ., ,„., the limits being

to ^TT.

Instead of usiuf^ th« angles OPR= d, ORP=<l>, we may use the third angle

POR = \p of the triangle OPE, or the angle x subtended by OR at A, so that

Supposing the law of force to be that of the inverse square of the distance, the

potential at P is then

_ /" mds _ f 2mad\p _ /" imadx

^~J PR ~
J (a^ + r^ -2arcoaxl/)^~ J {(a+r)^-iaram^x}^'

where the limits are ^=0 to tt, and x=0 to ^tt, and ds is an element of arc. These

results hold whether P is internal or external, provided it is in the plane of the circle.

191. Ex. t. Investigate Plana's theorem that the attraction of a uniform

circular ring at an external point in the plane of the ring is

2M 1 ff. a^ . „\i .

the limits being to ^jt. [Turin Memoirs, 1820.]

Ex. 2. Prove that the potential of a thin uniform attracting ring at an internal

point P in its plane very close to the circumference is ultimately 2m log 8a/|, where

i is the distance of P from the ring.

We take the general expression for the potential given as an elliptic integral in

Art. 190 and put r/a = it, where k is to be ultimately put equal to unity. We have

li=[ 'J—,= j de IC-di^Y

.

im J(l-k sin2^)* J l\l + A-8intf/

k sin
.(1).

(1-k sin2^)* J IM + A-sintf/ (1 - A;« sin" e)i)

The last integral can be found, and is equal to -log{(l- A;''')*/(l + fc)}. The other

I

...i IH-4'W"

Ml

f pi'iji^, ]•'.['



5

M

I

96 ATTRACTIONS. [ART. 193

integral presento no singularities and we may put k= l before integration; its

value is then log 2.

This value of the potential agrees with that given by H. Poincard in his Thforie

du Potentiel Newtonien, 1809, p. 132. The use of the first integral on the right-

hand side of (1) to find the elliptic integral K when ^= 1 was suggested in a College

examination paper, Dec. IH'.Hi.

A plane drawn through the axis of the ring will cut the level surfaces in a serieg

of curves. By using the theorem V" = eV of Art. 187 we may prove that these are

circles in the immediate neighbourhood of the ring.

Ex. 3. Prove that the level surfaces of a thin circular ring, when the law of

attraction is the inverse cube, are given by pp'=ij?, where p, p' are the greatest and

least distances of any point R from the ring, and the constant p. is given by 2p?= il// V ".

199. Anchor rings. An anchor ring is generated by the revolution of a circle

of radius a about an axis Oz in the plane of the circle, the centre G describing a

circle of radius c. A thin homogeneous layer is placed on its surface. Prove that

the potential of the layer at any point P of the axis is

-S/V(fi- - rt' sin* ^) d0, ^= C to 5-

,

where R= CP, and M is the whole superficial mass. If m be the surface density,

M= 2irn . 2wc . m by (luldin's theorem.

Let QQ' be an arc of the generating circle; let PQ make an angle with the

outward normal CQ to the pnchor ring.

Let the angles GPQ= 0, CPO=p, and

PQ—p. Since the arc QQ'= pdO see <p,

the potential at P of the annulus gene-

rated by the revolution of QQ' about

Oz is

V=mj sec <pde . 2irp sin {6 + 13)

= 2jr»iJ sec 0(Wp (cos tf sin /3 + sin ^ cos /9)

.

Since the integration extends over the

whole circumference of the generating

circle, the last term is zero. Also

sin = sin ^(a/ii),

.•. coBdd$=coB(pd<l){alR).

.-. V=2irm Bin ^{alR)jpd<t>.

The limits are to tt if we double the result. Produce PQ to cut the circle again

in R and let PR=p'. Then

Since p + p' = 2.PN:
without difficulty.

2J(R-'-

ac
^„J(p + p')di>, = to ^TT.

a- sin*
<f))

this reduces to the result given above

193. Ex. 1. The potential of a solid homogeneous anchor ring at any point P

of the axis may be expressed in either of the following forms

V= „„ / cos* <piJ(R^ - o' sin* tt>)d(p=— / -r/Da"- „ „ d -^^ •

ttR^ J
^ ^'

IT J J{R^ + d'-2aR COB
\f/)

The limits for are to ^ n-, and for
\f/,

to ir. If ft be the density the whole mass

M=va^,2wc ,fi.

We now find

where the limi
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Let r, d be the polar coordinates of an element of area at S of the generating

circle referred to P as origin and PC as axis of x. The potential is then

. 2irixr sin (tf + /3) = 25r/i sin pfjrdddr cos $,
'

-II'
gince, as in the last example, one term of the integral is zero. Let tu integrate this

jint with regard to r. Then using the geometrical relations connecting 0, <p, p, p'

given in the last article, we find

The limits of sin are - ajli to ajR and those of <p are - Jt to ^tt.

Let m integrate the double integral first with regard to 0. Let the circle whose

centre is P and radius r=PS cut the generating circle in T, T'. Let the angles

CPT=ei, PCT= \p. Then

sin Oi = 8in^ («/)•), r' =/{'' + a* -2a7i cos ^.

V a
We now find „ -.

—- = (rdr . 2 sin 0, = {alt sin \l/d\l/ . 2 sin i^ ,
2ir/i sin /3 •' ' •' ^ ^ ^ r

the limits of ^ are evidently to w. This i.i equivalent to the second expression

given above. The second expression for V agrees with that given by Dyson, Phil.

Tram. 1893, p. 55.

Ex. 2. Express the potential of a solid anchor ring in elliptic functions. Let

X-^l-k-sm^(p, k = alR, then

J= J cos* 4>Xd(f>=jX cos <pd sin

= j sin* ^Xd<f> + k^j sin* tf> cos* (d0/X)

by integrating by parts. The integrated part is zero at each II nit.

.-. I=jXd<t>-I+j(l-X'^)eos'^<t>(d,t>IX)

=jXd(t>-U- f(l - sin* 0) (d0/X).

Substituting for sin* <p its value in terms of X, we find

s,=(..-)/.v...(,-5)/^*,

where the limits throughout are = to J ir.

Attraction of Ellipsoids.

194. For the sake of brevity we shall iidopt in this section two

new terms taken from Thomson and Tait'i Natural Philosophy.

A homoeoid is a shell bounded b} two surfaces similar a,nd

similarly situated with regard to each other. In what follows we
shall somewhat restrict this definition and use the term only

when the shell is bounded by concentric ellipsoids.

k focaloid is a shell bounded by two confocal ellipsoids.

Thomson and Tait restrict these terms to infinitely thin shells,

but it will be convenient for us to use them in a more general

sense, distinguishing the shells as thick or thin according as the

thickness is finite or infinitely small.

A shell bounded by two similar and similarly situated surfaces

K. S. II. 7
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I

(

i

I

has been called a Iiomothetic shell by Chasles in the Jour, Pol.,

Tome XV., 1887. This is a convenient term when the surfaces are

either not concentric or not ellipsoids.

195. Let (a, b, c) be the semi-axes of the internal surface of a

thin ellipsoidal shell, (a + da, &c.) those of the external surface.

Let OPQ be any radius vector drawn from the common centre

cutting the ellipsoids in P and Q, let OP = r. Let p be the

perpendicular from on the tangent plane at P, p + dp the

perpendicular on a parallel tangent plane to the outer ellipsoid.

Then dp is equal to the thickness at P.

When the thin shell is a homoeoid we have by the properties

„ . ., „ da db dc dp dr „
01 similar ngures — =

, =— = -^ = =ak.° a b c p r

Since the volume of a solid ellipsoid is ^Trabc, we find by differen-

tiation that the volume v of the shell is v = ^irabcdk. Two thin

homoeoids are said to be confocal when their inner boundaries are

confocal conicoids.

When the shell is a focaloid, we have a'^ — a^ + \, b'' = ¥ + \,

&c., where (a', b', c') are the semi-axes of the external sunace.

These give for a thin shell ada = bdb = cdc = pdp = ^dX. The

volume V of the shell may be shown by differentiation to be

_ 4^ 6^0" -f c-' a" + a:'¥ dX
*'"

3 "~
abc' 2

•

If we regard either shell as a thin stratum placed on an

ellipsoidal surface the mass on any elementary area dA is pdp . dA

where p is the density. The surface density is therefore pdp and

it varies directly or inversely as p according as the stratum is the

limit of a homoeoid or a focaloid.

196. Thick homoeoid, internal point. To find the poten-

tial of a thick homogeneous homoeoid at an internal point.

It has been shown in Art. G8 that the attraction of such a shell

at all internal points is zero. The potential is therefore constant

throughout the interior, and it will be sufficient to find the potential

at the centre.

Taking polar coordinates with the centre as origin, the mass of

any element is prHrdto, where p is the density of the element.

The potential V of the whole solid at the centre is therefore

V= pffrdrdco. If r,, ?'2 be the radii vectores of l}he two surfaces

of the shell, we have V= ^pfr^^dco — ^pjr^'dto.
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The (leterniination of the potential at the centre of a thick

shell, bounded by any concentric ellipsoids, depends therefore ou

the evaluation of the integral fr'^do) taken over the superficies of

an ellipsoidal surface.

When the shell is a homoeoid these surfaces are similar. Let

(a, b, c), (ma, mb, mc) be the semi-axes of the external and

internal surfaces. We then find V= ^p(l —m^)Jr^d(o, where r is

the radius vector of the external boundary.

When the shell is a thin homoeoid vi is early equal to unity.

The surface density is pdk.p and the potential is pdkji'^dto where

dk=l — m. When the surface density is fip the potential is fifr'^dco

and the whole mass is ^irabcfi.

It ea.sily follows that the potential of a thin homoeoid is two-

thirds of the potential at the centre of a solid homogeneous

ellipsoid of equal mass and having the same external boundary.

197. To find the integral Jr^dto we write da) = sin 6d6d(f).

Substituting for ?- its value found from the equation to the

ellipsoid, we have
sin ddOd(l>

^[ a^ + ¥~)+ sm
C"

where the integi'ation extends over the whole surface of the

ellips(nd. Taking only an octant, the limits are ^ = to 6 = ^tt,

^ = to <^ = ^TT. The order of integration is immaterial.

Let us integrate first with regard to <^. Dividing both

numerator and denominator by cos*0, we find

sin dddd tan <}>

Jr-d(o = [[.
cos^ 6 sin"'^

c- a-

T
+ ,., |tan-<^

c^ b'

By obvious processes in the integral calculus

Jo

dt

A + £t'

1

_^{AB)
tan

"'V^Jo"2^
IT

2^/(ABy

It therefore follows that

iJ7'-d(o=^~.y
sin Odd

//cos- 6^ sin^ tl\ liiCOS'* d sin^^

To interpret this expression, let us produce the radius vector OP
or r to cut the tangent plane drawn at the extremity G of the axis

of z. Let R be the point of intersection and let CR = u, then

7—2

Bsi'i
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M = c tan B. Since the limits of $ are and W, those of u are

and 00 . Substituting, we find

where the integration on the left side extends over thx. whole surface

of the ellipsoid.

198. If we write /= / rr u/ia ". ^r-T".— vi» ^^ fin*!

that the potential of a thick homoeoid is

F= p (1 - mO irabc . / = UII \
~ '''[

.

The potential of a thin homoeoid is F = ^3/./, where, in oach

case, M is the mass of the attracting body.

It follows that the integral I may also he defined as the ratio of

the internal potential of a thin homoeoid to half its mass. If the

homoeoid represent an electrical stratum 2// is the capacity.

199. Since the first integration in Art. 197 has been made

with regard to it is evident that we may introduce any function

of as a factor without disturbing the argument. We therefore

have

Jr^ cos'' ddo) = 2'rrabc . „
, ,,. , .,„ - - .^ / -j . 2\\ •

jj

Since u = c tan 6 and ^ = ?• cos ^, this gives jz^du) = — lirahc -c-^-,

.'. Jx^d(i) = — 2'irabc.a-j-, fy'-d(o = — 2'7rabc,b-w,

where the integrations extend over the whole surface of the

ellipsoid.

The polar equation of the ellipsoid is

,.2
-

a-j
+

fj2
+

c" ' "• H dc
~

c3

Differentiating ^rhlw= 2irahcl with regard to c, we have l,*n-du) = irahc^ ——

,

with similar expressions for jHI-rfw and jHw^dw.

aoo. Ex. 1. Prove fW'"'»'-'*<iw= /" /' ^-^^ ^-J^Ji^^ , where (X, m-
•' 2n + l L(n)

v) are

the direction cosines of a radius vector, n=:f+o + h, and /--(/) stands for the

quotient of all the natural numbers up to 2/ by the product of the same numbers

up to /, both included. A short proof is given in the author's liigid Dynumics,

Vol. I. Art. 9.

Ex. 2. Show that the integral I, and therefore the potential V, may be

expressed as an elliptic integral. Thus
^(l-Xsin'-*^)'
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where X= .^ -y^ and the limitBare ^ = t0 8in^= . / -^—-. The integral is real

'
i

if the axis of c is the lonKest of the three.

To prove tlas we revert tu the value of / (Art. 197) after the integration with

re^'ard tu
<f,

hai* been performed. Putting co8 9=v, the integral takes a known

form. This is reduced tu the Htandard form Kiven in the example by putting

(c'''-//'')i;* = c'''8inV-
'

•

Ex.3. Show that (~. + ,^ + /,i)/=-„L.

(«._^^,.A^,. t^^h)i=o,
da'^ ' " db* ' " dc

Let g»= (a2 + li) (6" + H) (c» + h), then I=jdulQ

;

dQ
du

2 (a* - 6«)
d'l

da^db'^
''

dl

da*

dl

dfi''

dZ ^ / du 2 d

da'~ ' j ly («» + «)• Qd
1^—

+

d* + u ' b* + u c'* + u

The reHults follow by simple subntitution.

Uy writing h = ma, i' = tia, u = va'*, we see that / i« a homogeneom function of

a, b, c of - 1 dimen»ionii. The second result then follows from Euler's theorems on

homogeneous functions.

Ex. 4. If jr"'^du = abcR,„, prove that

The first result follows from Euler's theorem on homogeneous functions. By
ditferentiating jr^'"dw=nbcK,n with regard to c* we obtain jr^"+''nMu as in Art. 199.

The two other results follow easily.

Ex. 5. Instead of the standard integral represented by I we may use the

integral

We then have

/"" iibcdu

~
j u((f + w)4 (62 + M)i {&' + «)"i

'

dJ_ bc^dl

da (I du
'

If we write a, /3, y for the reciprocals of «*, b", c* we easily find

d.7 _ cadi

db~ ~
li db'

lz^d.= -i.'^, |Afa,= -i.[l.,^^ + ^^J= 2.abcI,

4ir (-!)•+>+*

i) [da) \d^) \dy)
'^'

J '^ ^(^+7 + A:)

where the integrations extend over the surface of the ellipsoid.

Differentiating jr'*n-du= - iwdJIdy, i times with regard to a, j times with regard

to j9 and k-1 times with regard to y we arrive at the last result.

Ex. 6. If /(/-, m*, n") be a homogeneous function of l^, in^, n^ of » dimensions,

/ rf d d\ f" vP-idv

27r .
2P

(
- 1)«

prove that

where A'=.-
1.3.5...(2j)-lj*1.2.3...(»-p)

Prove also that
j
f^^l^^Y^'^= Nf ( f-

' ^) f"
''-^

J r''-»
•' \da d/3 dyJJ » Q

and q = 2(s+l-p).

idv
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201. Theorems on thin homoeoidi. The potential at any

internal point of a thin hotnoeoid being known it is required to find

the potential at any e.vternal point.

Let two uUipsoids have tor their Heini-axos (a, b, c), (a', b', c');

points on these are said to correspond when their coordiiu\tos

are connected by the relations

w x y _v' * *'

a"a" b'b" c"c'
.(I).

X y 2

ar, y, z,

a;.,y.,z.

Let rfff, da' be two triangular elem«;nts of area at P, P' t uch that

the corners are corresponding points; let p, p' be the perpen-

diculars from the centre on the tangent planes. The volumes of

the tetrahedra whose bases are da, da' and common vertex are

respectively ifpda and )^p'da'. The first of these volumes is ex-

pressed by one sixth of the determinant in the margin,

where the several rows express the coordinates of the

corners. The second volume is expressed in the same

way with accented letters to represent the corresponding points

on the second ellipsoid. It is evident from the relations (1) that

these determinants are in the ratio abc : a'b'c. We therefore infer

that the elements of surface of the two ellipsoids are connected by

pda _ abc

p'da'~ a'b'c'

Since any elementary areas at P and P' may be subdivided into

triangles, it is evident that this relation holds for elementary areas

da, da' of any shape, provided only their boundaries are formed by

corresponding points.

Since the thickness of a thin homoeoid is represented by kp,

it follows that the volumes of corresponding elements of two thin

homoeoids are in a constant ratio. Adding these elementary volumes

together, it is easily seen that this constant ratio is equal to that

of the whole volumes of the two shells. If the shells are of such

thicknesses that their whole volumes are equal, then the volumes

of all corresponding elements are equal. See Vol. i. Art. 428.

the equation .(2).

rem

202. We shall now require the following geometrical theo-

-the distance betiveen two points one on each of two confocal

ellipsoids is equal to the distance between their corresponding points.

A proof may be found in Smith's Solid Geometry, Art. 166. This

theorem is usually called Ivory's theorem after its discoverer, who
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also applied it to dctormine the potentiul of an ollipHoid at an

cxtvrnal point.

Let i', J*' bo two corresponding points, one on each of two

confocal thin honioooids of eijual volume ; let also Q, Q' be any

two corresponding elementary volumes each eipiul to dv. Let the

t'(|ual distances PQ', P'Q be represented by Ji. U/'(li) represent

the law of attraction, the potentials at P and P' of these elo-

mentary volumes an^ each /(li)di). Integrating over the whole

siirfaces of the; shells, we see that the potential of the inner thin

honioeoid at the e.i'ternal point P' in eipud to that of the outer thin

Iwiiioeoid (it the correspondinff intermd point P, provided the

densities ore e(pml at correspondinrf points*.

Thus when the potentials of thin homoeoids at all internal

points are known, their potentials at all external points are also

known.

203. It is evi(ient that the potentials of these shells are equal

wliatever be the law of attraction provided the potential is a function

of the distance only.

The potentials are also equal if the shells are heterogeneous, and

the d£nmty at any point is a function of (.v/a, yjh, zjc). In this

case it is evident that the densities of the shells are equal at

corresponding points. The equality of the potentials is also true

when the shells are incomplete, provided only the existing parts

" correspond " to each other.

204. The theorem may also be used (though not so simply)

to compare the potentials even when the density is any function

of the coordinates. It will be convenient to express this result in

an analytical form.

Let the density p of a thin homoeoid (semi-axes a, h, c) be

f{x, y, z), and let v be the volume of the shell. It is required to

find its potential at any external point (^', t/', f). Let a confocal

ellipsoid be described passing through the point (^', V. ?') so that

* Chasles in his Nouvelle golution dit prohlrme de Vattraction d^mi eUipmlde
hfti'mji'iie Kiir nn point exterieur, Liouville, vol. v. 1840, shows that thin confocal
honioeoidH have potentials at corresponilinf? points proportional to their masses,
but considers only the case in which they are homogeneous. Knowing that the
potential of the outer at an internal point is constant, he deduces several theorems
on the attractions of the inner shell at external points. He finds the attraction of
a solid heterogeneous ellipsoid by dividing it into thin elementary homoeoids, the
strata of equal density being the elementary homoeoids. The case in which the
homoeoid is heterogeneous is not discussed.

I'ii a

.1 ,7.1
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its semi-axes a , h',
c' are given by a- — a^ = \, h"^ — b^ = \, c'^ — c" = \,

where \ is a root of the equation

a^ + X 6- + \ c' + \
= 1 •(1).

Let this ellipsoid be the inner boundary of a second thin homoeoid

whose vohime is equal to that of the former. Let its density at

any point {x', y' , z') be p' =f{ax/a', by/b', czjc'). The potential of

this second homoeoid at the internal point {a^'/a, brj'jb' , c^'/c) is

equal to the potential required.

We shall in general take a", b\ c^ to be in descending order of

magnitude. If X, is either positiv^'. or negative and numerically

greater than c'-, the surface (1) is an ellipsoid. If \ is negative

and numerically greater than c^ the surface is one of the hyper-

boloids or is imaginary. The root of the cubic to be chosen must

therefore be the algebraically greatest root. Since the attracted

point is external to the ellipsoid t/- + \ is necessarily greater than

a*, the greatest root is therefore positive.

205. Taking the case in which the two thin homoeoids are

homogeneous, the potential of the outer has been proved constant

for all internal points, Art. 68. It immediately follows that the

potential of the iimer is the same at all external points which lie

on the same confocal. We therefore infer that the level surfaces

of any thin homogeneous homoeoid are confocal ellipsoids.

It follows from this proposition that the direction of the

attraction of a thin homoeoid at any external point P' is normal

to the confocal ellipsoid which passes through that point.

It is proved in treatises on solid geometry that this normal is

also the axis of the cone which has its vertex at P' and envelopes

the ellipsoid.

This result was j^iven by Poisson {Mem. de Vlmtitut, IHBo). There is an

elementary demonstration bj' Steiner iu Crelle'it Journal, vol. xii.

206. Since two thin confocal homoeoids have the same level

surfaces, their potentials can bo made equal over any level surface

enclosing both by properly adjusting their masses. It immediately

follows that their potentials are also equal throughout all external

space. Art. 180. Since the potentials of finite bodies vanish at

infinity in the ratio of their masses, it is evident that the nia-^ses

of the two homoeoids must be equal. We have therefore the

following theorem, the potentials, and tlierefore also the resolved
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There is an

attractions, of two confocal thin homoeoids of equal masses are

equal throvghotit all space external to both.

207. Lines of force. The lines of force of a homogeneous

thin homoeoid are the orthogonal trajectories of all the confocal

ellipsoids. Let {a, h', c'), (a", h", c"), {a", b"\ c'") be the semi-

axes of the confocal ellipsoid and hyperboloids which pass through

any external point (^', tj
,

^'). Then by a theorem in solid

geometry
aa"a"' h'h"h'

^'
V(a' - ^'Ka' - c^)

'

'^
V(i'- tt') (6'-

-., cc c

see Salmon's Solid Geometry, Art. IGO. Since these conicoids inter-

sect at right angles, the curve of intersection of the two hyperbo-

loids is an orthogonal trajectory of all the confocal ellipsoids. The

required trajectories aie therefore found by regarding (a", h", c")

and {a'", h'", c'") as constants. It follows that ^'ja', rj'/b', ^'/c' are

constant for the same orthogonal. Thus it appears that any line

of force of a hoinogeneous thin homoeoid intersects all the confocal

ellipsoids in corresponding points.

208. Thin homoeoid, external point. To find the potential

and the attraction of a homogeneous thin homoeoid at an e.rternal

point P'. The potential V of the given homoeoid at P' has been

proved equal to that of a confocal homoeoid of equal mass having

P' just outside (Art. 206). This again is equal to the potential at

a point just inside (Art. 145). It foUowis frora Art. 198 that the

potential at P' is

where M is the mass of the homoeoid and (a, b', c') the semi-axes

of the confocal which passes through P'.

This integral may be put into another form which contains the

semi-axes a, b, c of the given homoeoid instead of those a, b', c'

of the confocal. Putting a''^ = a" + \, b'- = b- + \, c'- = c- -f- \ and
/(' = u — \, we have

~ 2 Ja (^- + m)*{b^+WW+W '

where \ is defined in Ail. 204.

209. I'o deduce the residtant attraction, we notice that the

level surfaces of the given homoeoid are confocal quadrics. The
resultant force F therefore acts parallel to the perpendicular p'

?*;

«£1

-IK
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> .

drawn from the centre on the tangent plane at P'. Hence

F=dV'jdp, and

P^dV d\^_M 2/ ^_¥v'_
d\ dp' 2 (a- + \)i (6^ + \)i {c' + X)i ~ a'h'c'

'

since, by Art. 195, d\ = 2p'dp'.

The expression for the attraction F may be obtained inde-

pendently. The attraction of the homoeoid at P' is equal to that

of a confocal homoeoid having P' just outside (Art. 206) and

therefore, by Art. 71, F=- rrri*''' abc
Again, assuming this value of F, the potential V follows at

once by integration.

aiO. Ex. 1. If an attracting body has an ellipsoid enclosing the whole

attracting mass for one of its level surfaces, prove that all the external level

surfaces are confocal ellipsoids. See Art. 130.

Ex. 2. The attractions of a given thin homoeoid on two corresponding elementary

areas taken on any two confocal ellipsoids are equal. [Chasles, Journal Polytech-

nique, 1837, Tome xv.]

Ex. 3. The attraction of a thin homoeoid at any point situated on its external

surface is proportional to the thickness of the shell at that point. [Chasles.]

Ex. 4. A thin prolate spheroidal shell of mass M is divided into two portions

by a diametral plane perpendicular to its axis. Prove that the pressure per unit of

length on the line of .reparation, due to the mutual attraction of the parts, is

M- log a -log b ... ,, rn- '„._/• • [Math. Tnpos.]

The resultant force on any element of the shell is half the force just outside,

Arts. 68 and 143. If d<T be an elementary area, / the cosine of the angle p makes

with the axis, the resultant pressure is ^jjFldadp, where F has the value given in

Art. 209. Putting d(7= 2injds, dpjp-dajn, the integration can be effected.

Ex. 5. The mutual potential of a thin homoeoid (mass ..1/, semi-axes a, b, c)

and any internal mass M' is ^MM'I, where I is the integral defined in Art. 198.

The mutual potential of the same homoeoid and any external mass M' placed as

a stratum on a confocal quadric (semi-axes a', b', c') is hMM'I', where I' is the same

integral with a', b', c' written for «, b, c. [See Arts. 61, 208.]

211. Solid homogeneous ellipsoid. To find the potential

at an internal point P whose coordinates are (^, t), ^).

Describe a double cone with vertex P cutting the surffice

in two opposite elementary areas Q^, Q«.. If Ri, R^ are the

distances PQi, PQ2, the potential of the double cone at P is

^pJ(R^-+ R./)do) (Art. 196). It is evident that if we integrate

this expression all round the point P every element of volume of

* This expression for the resultant force is given by Chasles in the Journal

Polytechnique, 1837, Tome xv. See also the Quarterly Journal, 1867.
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'he ellipsoid will be taken twice over; we must therefore halve

the result. The potential at P is then

V^\pJ(R^' + R^)doy (1).

The dictances R^ , R« are the roots of the quadratic

(f±^)V('H^)V(ftiL«y=x <,,

where (I, m, n) are the direction cosines of QiPQu This quadratic

may be written shortly — + 2FR-E^0 (3),

where r is the semi-diameter parallel to Q.^PQi. Hence

Ri + R;^ ^ ^F-t-i + -lEr",

It is obvious that the term containing the product Im disappears

on integration, for the elements corresponding to {I, m) and (/, — m)

destroy each other. The terms containing mn and nl are also zero.

Hence V=l^'^^ - £) f + &c. + &c. + rj rfo, (4).

We have Jr^doi = ^trahcl (5).

By differentiating (5) with regard to a, as in Art. 199, we have

After substituting from (5) and (6) in (4), we find

Z__ = /+^ fc2 ^ 4^ - + ^^
K- (7)

irpabc add bdb cdc

212. If we substitute I=Jdu/Q this becomes

-Z-^f'^Ml- ^' - ''^ ^'
\ (8)

TTpabc Jo Q \ rt- + w 6^ + ?* c-+u\ ^ ^'

where Q- = (a^ + u) (6- + u) (c- + u). These two important expres-

sions are often written, for brevity, in the form

V=^p[B-A^-^-Bv^-CX-^ (9).

^''^
iirabc

'~
i Q' 27rtt6c

" ~
ttrfc^

~
Jo W+u)q

'

'

'^ ^'

with similnr values for B and C
The component forces at any internal point P are then

X = -Apl Y = -Bp'n, Z = -Cp^ (11).
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111

I

213. By putting ^, rj, ^ equal to zero, we see that ^pD is the

potential at the centre of the solid ellipsoid. We also notice thai

by A-rt. 199

A^j'^^dco, B = j^^da^, C = j^Ja> (12).

where the integrations extend over the whole sunace of the body,

Aa' + Bb'-\-Cc' = Jr"-d(o = 27rabcI-^D]
^^•^^•

The first of the results (13) follows also from Poisson's theorem

since d^V/dx^ = — Ap &c. The second may also be deduced from

(4) ; for the sum of the coefficients of ^^ n)-, ^- after multiplication

by a^, 6^ c^ is evidently — 7'^.

Since — = -

?'^ a

vv n-
2 +

J.,
+ ~

. we see by substitution either in (4) or
0" C"

(12) that the constants A, B, C are functions of the ratios of the

axes and are therefore the same for all similar ellipsoids.

314. The four integrals A, li, C, D bave here been expressed in terms of the

integi'al I and its differential coefilcients with regard to a, h, c. Other standard

integrals might also have been taken. Thus we mighl, use the integral called J in

Art. 200, Ex. 5. We might also express the components A', 1', Z in terms of any

one of the four integrals A, li, C, D. We deduce from the third part of Ex. 3,

lih- - Aa- , ilA Cc^ Ad^_ dA
a? ~ dc'

.(14).Art. 200. ^_^^ -.^^^, ^-

These relations enable us to deduce the formulae for A', 1', Z given by Laplace in the

Mecanique Celeste, vol. ii. p. 12.

aia. Ex. Prove that the three numerical constants A, h, C lie between

vja^ and v/c* where v is the volume and <i, c are the greatest and least axes of the

ellipsoid. Prove also that D lies between iiru^ and 4irc".

To prove the first theorem we notice that the integral (10) ia decreased by

writing a for b and c ; the integration can then be effected. A siperior limit is

found by writing r for a and b. The second theorem follows from the equations

(13) Art. 213 by eliminating first A and then C.

216. To find the level surfaces inside the attracting ellipsoid.

These surfaces are given by A^"^ + Brj"^ + C^^ = K, where K is a

constant. Since A, B, C are necessarily positive, the level surfaces

are similar and similarly situated ellipsoids.

To trace their forms, we must consider the magnitudes oi the coefiicients

A, n, C. We have (Art. 212)

A=:2irabci --,., ., Ii=:2wabcl ^,,-, —:,
y,) (^(a-'+ft)' jo Q(i-' + w)'

A-n_f'' 2Tr abc.du Aa^ - Bb'^ _ p 2vabc.udu
' "

a* - 62 ~ j Q{a:^ + " i
[b^^ + ^l) ' a'^ - &'^^ ~

Jo Q («* + «) (b^ + «)

"

intersects its
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Both these integrals are essentially positive. It follows that when a, b, c are in

descending order of magnitude, both IjA, 1/B, 1/C and /la^, Bb^, Cc^ are also in

descending order.

A level surface so far resembles the attracting ellipsoid that both quadrics have

their longest, their shortest and their mean axes respectively in the same directions.

The axes of a level quadric are (KjA)^, (AT/T?)*, (KIC)^. If c be the least axis of

the attracting ellipsoid and K—Cc'\ the level quadric touches the ellipsoid at the

extremities of the least axis, while the other two axes are less than the corre-

sponding axes ot the ellipsoid. The level <iuadric therefore lies wholly within the

ellipsoid, for if not it would cut the ellipsoid in two curves one on each side of the

plane of xy and also touch it at the extremities of the axis of z. This of course is

impossible. Any level quadric therefore lies tcholly loithin the attracting ellipsoid or

intersects its surface according as K is less or greater than Cc^.

217. Ex. 1. Frove that the level quadrics are more spherical than the

bounding surface of the attracting ellipsoid.

The eccentricities of the sections of the two quadrics by the plane of xy are

respectively given by e"^ = l-AIB and e^=l-b-la^. It follows immediately that

e"--e'^ is negative.

Ex. 2. If a concentric ellipsoidal cavity be cut out of a solid homogeneous

sphere, show that within the cavity the equipoten*.ial surfaces are given by

{2A - B - C) x^+(2B - C - A)y^ + (2C - A - B) z^- = constant,

wliere A, B, C are constants dependmg on the shape of the cavity.

[St John's Coll. 1887.]

218. Otber laws of fdree. The potential of a solid homogeneous ellipsoid at

an internal point P when the law of force is the inverse Kth poioer of the distance

may be found by the method used in Art, 211.

By describing a double cone with the vertex at P as before, we find that the

potential is F= ^ ,
~]—, - \ Sdu +C, S= TJ.*-* + ( - R.,)*-".

(f— 1) (k-V J

When K is even, S is a symmetrical function of the roots of the quadric (2) of

Art. 211. The double integrals take forms similar to that in equation (4) and may
be reduced to single integrals by differentiations of Jr''dw = 27ra6(;7.

We notice that when )(>4 the expression S is an integral rational function of

tlie direction cosines (I, m, n) and the final integrals CB.n be evaluated without

difficulty (Art. 200, Ex. 1). The potential for these laios of force can therefore be

found in finite terms free from all signs of integration.

When the law of foice is the inverse fourth power of the distance we have for

the potential at an internal point f , ij, f, V^ — ^irp log E + C,
e V^

r.2'

From this result the potential for the inverse sixth, &c., powers may be deduced

free from integrals by usinp Jellett's theorem (Art. 96).

The component attractions at an external point may be deduced by Ivory's

theorem (to be presently proved). Thence by integration the potential for the

inverse fourth power of the distance is found to be

-.-"/l-'v-'x <-"»)
The potential of a thin homogeneous homoeoid may be found in a similar

manner, but it may also be deduced from that of a solid ellipsoid by taking the

total differential with regard to a, b, c on the supposition that the ratios a : b ; c
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are unaltered. See Arts. 195 aud 92. The potentials at an internal and external

point are for the law of the inverse fourth power,

da 1 ^, „ , , (fa abc L I x'^ y- z'' \

219. Spheroids. To find the potential and attraction of the

solid spheroid whose semi-axes are a, a, c at an internal point.

To find the constants A, G we use the equations

2A + C = 4'rr, 2Aa^ + Cc"- =fr^da>=: j! Z!^%rr
J J cos-* 0/r/ + sin^ 0/a^

The limits of integration are ^ = to rr and = to 27r. If we

put cos 6 = 2, the second equation becomes

where the limits are ^^ = 1 to 2 = — 1.

If the spheroid is oblate, a is greater than c, and

D=2Aa--\-ac^ =
^Tra'c . _j ^/{a-c^)

tan"

If the spheroid is prolate, a is less than c, and

D = 2Aa- + Cc' =

(1).

4.a^c ^^^c + ^i^-a^)
^^^

^/(c'' -a'') ^ a

We also have 2'irahcl = jr'^do) = D. Thus the values of A and C

may be found either by solving these equations or by using the

formulae A=- — 2'7rabcdI/ada &c. The potential at any internal

point is then V = ^ p {D - A {^^ + 7f) - G^% We notice that

tan~^ sj{a^ — c-)/c in an oblate spheroid is equal to the angle

subtended at the extremity of the axis of revolution by the distance

between the centre and either focus.

aso. Ex. 1. The earth being regarded as an oblate homogeneous spheroid

the ratio 1/0 = 1 -e where e is the ellipticity. Since the value of e is 1/300 nearly,

it is generally sufficient to retain only the first powers. Prove that

-V'(-I'). "-'iH')- -=^'K-s<)-
TTTr u r, f^^ ^ a''^ f f coh'^0 sin Odd d(p „ . ^. ,.,-.,[WehaveC=r 1—

,
aw= -;2 I I 1—9 ^ Expand the subject of integration

in powers of e.]

Ex. 2. Show that an attracting homogeneous oblate spheroid of eccentricity J,

in the centre of which there acts a repulsive force fir, will have its own surface for

one of its level surfaces if 3^ = 87rp (57r^/3 - 27). [Coll. Ex. 1888.]

aai. Nearly spherical elUpsolds. Ex. 1. The axes of an ellipsoid are 80

nearly equal that the square of the difference can bo neglected. Prove that

,
& + c - 2a)

a-aTJl + s ^ ^
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Put 6/a = 1 - ^, cja = 1 - 7 ; then since /( is a function of ft/a and cja we have

A = \ir{L + Mp + Ny) nearly where L, M, N are independent of the axes. Now A

cannot be affected by interchanging 6 and c, hence M=N. Also when /3=0 and

y = € the ellipsoid becomes a spheroid and the expression for A must become

identical with that found in Ait. 220. Hence L = l, N= -^. This proof is

commonly ascribed to D'Alembert.

Ex. 2. Prove that to a second approximation the constants of the attraction

(Art. 212) are

^ = j7r{l-H/3 + 7)- A ("^'- 8^7 + 97')+...},

/i = ^7r{l-i((-2^ + 7)-T,'5(-18^- + 4i37 + 97«) + ...},

U=.^r{l-|(/3-27)-^V(9^'H4^7-187') + .-}.

7J = 47r(iMl-ii(/3 + 7)-TV(¥'-8;J7 + 37-^) + ...l,

r= „{l + AO- .7) + TV(2^^ + 3i37 + 272) + ...},

wher. 6/a = 1 - /3 and cja - 1 - 7. We notice that since A + Ii C = iir for all

values of /3 and 7, the sum of the coefficients of any power in the thrpe first

expansions must be zero.

222. Ivory's theorem. To find the attraction of a solid

homogeneous ellipsoid at an eocternal point P' whose coordinates

are f , 17', ^'.

Let R be the distance of any element QQ' of the ellipsoid from

P', and let <^ be the angle this

distance makes with the axis of

X, Thus R = QF,
(f>
= P'QQ'.

If/' (R) be the law of attraction,

the X component of the attraction

of this element at P' is

pdxdjdzf (R) cos
<f>.

Draw Q'n perpendicular to

Qn

f
\M'

L/^

FQ, then cos
<f>
= ^_dR
QQ' dx

•

The X attraction at the element at P, measured positively in the

positive direction of x, is therefore pdydzf {R)dR. Let LM be a

column having its length LM parallel to the axis of x and the

elementary area dydz for base. Integrating with regard to R we
find that the x component of its attraction at P' is

pdydz!/' {R) dR = pdydz [f{PM) -f(P'L)].

Let us now describe an ellipsoid through P' confocal to the

external surface of the attracting solid. Let a', b', c be the semi-

axes of this new ellipsoid. If L', M', P be points corresponding to

L, M, F, the column L'M' will have for its base the elementary

area dy'dz', where y'/b' = yjb and z'/c' = z/c. The coordinates

'

Kt

m
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f, 7), f of P are known in terms of those of P' by similar relations

;

see Art. 201. The attraction of the column L'M' at P is

pdy'dz' {f(PM') -f(PL')].

By Ivory's theorem, P'M=PM', P'L = PL\ Art. 202; the x

attractions of the columns LM, L'M' are therefore in the ratio

of the areas dijdz, di/'dz' of their bases, i.e. the x attractions are

in the constant ratio be to b'c'.

If we fill one ellipsoid with columns like LM, the other ellip-

soid is filled by the corresponding columns, and the a; attractions

of the corresponding columns are in the same ratio. We therefore

x att" of inner ellip'' at P' _ be

6V-
infer that

X att" of outer ellip"' at P
Similar theorems apply to the y and z components of the

attractions of the two ellipsoids.

This theorem was enunciated and proved by Ivory in the Phil, Trans, for 1809.

We ought perhaps to speak of it as Ivory's demonstration of Laplace's Theorem.

But Ivory's own proof is not now exactly followed, as further simplifications have

been introdiiced. The extension of the theorem to any law of force is due to Poisson,

Bulletin... la Hociete Philomathique 1812, 1813.

223. WhpM the laiu of attraction is the inverse square, the

axial components of the attraction of the outer ellipsoid at the

internal point P or (^, rj, ^) are

X = - A'pi F = - B'pr^, Z = - G'pt;.

The axial components of the inner ellipsoid at the external

point P' or (f', q, ^') are therefore given by

Here a, b', c' are the semi-axes of the confocal drawn through the

attracted point P', and A', B', C are the same functions of the

ratios of the axes a, b', c thi^t A, B, C in Art. 213 are of the ratios

of a, b, c.

224. From these valaos of X', Y', Z' we may at once deduce

a theorem often called Maclaurin's theorem. If we compare the

attractions at the same point of two different ellipsoids bounded

by confocals, we notice that «', b', c are the same for each, so that

each of the components X', Y', Z' is proportional to abc, i.e. to

the product of the axes. 'The attractions therefore at the same

external point of different homogeneous ellipsoidal bodies bounded

by confocals are the same in direction and their magnitudes are

'
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proportional to their masses. The law of attraction is that of the

inverse square of the distance. -,

Let V, V be the potentials of the two ellipsoids at any

external point P', then since the component attractions are pro-

portional to the masses M, M', the ratios V/M and V'/M' can

diffor only by a quantity which is independent of the coordinates

of P'. Since both potentials are zero at an infinite distance this

constant must also be zero.

Hence the potentials of two confocal solid homogeneous ellipsoids

at any point external to both are proportional to their masses.

Since a focaloid is the difference of two confocal ellipsoids, it

follows that the potentials of thick focaloids are also proportional

to their masses.

225. To find the potential V of a solid homogeneous ellipsoid

at (in external point P' whose coordinates are f, i/', ^'*.

Through the external point P' describe an ellipsoid confocal

with the given ellipsoid. If the matter composing the given

ellipsoid be made to fill the confocal (by changing the density

from p to p) the attraction, and the potential, are unaltered at

all external points. Let a', V, c be the semi-axes of the confocal

ellip.soid, then p'a'h'c = pahc.

Since the point P' is on the surface of the confocal ellipsoid

the potential is the same as that found in Art. 212 for an internal

point. We therefore have by (9)

r = ),p
-f^^,

[u -^T - B'v'' - c'n

where A', B', C. D' are the same functions of a, b', c' that A, B,

C, D are of a, b, c. The potential may also be written in either of

the two other forms given in Art. 211.

V
irpabc a'da' b'db'

'24. ^^
f'i^ c'dc'
^

=
f.

* du'

Q
1- rf

'a V'2

where Q'2 = (a'2 + il') (6'2 + u') {c'^ + u').

* The expressions for the potentials of a homogeneous ellipsoid at an external

and internal point were given by Rodrigues as early as 1815 (Correspondence sur

I'Ecnle Roi/ale Poliftechnique, vol. in.). An analysis of his method is given by

Cayiuy in the Quarterly Journal, vol. 11. 1858. There is a memoir by Poisson on the

attrftctiou of a bomogenbous ellipsoid (Mimoires de VInstitut de Fram-e, 1835) in

which he gives a history. He finds the component attractions of the ellipsoid.

1

R. 8. II. 8
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Trpabc ~Ik Q a'+ u~ ^ Jo (a'' + it')
Q'

226. If we put a''' = a'4-X, 6'« = 6» + \, c'« = c« + \, and

m' sa u — \, the last expres-sioti becomes

7r/>((6c
~

J X y i
a" 4- w i" + « c' + u]

'

where Q* = (a:^ + u) (b'^ + u) (c^ + ii) and \ is to be found from the

cubic of Art. 204.

To deduce the component forces X', Y', Z' we differentiate V
with regard to f', ?/', f ' respectively. Since the lower limit \ is a

function of the coordinates we shall here require the value of

dV'/d\. But the subject of integration is zero when we write \

for 11, hence d V'jdX = 0. Wo therefore have at once

~
'rra'b'c'

'

by Art. 212. This agrees with the result in Art. 223.

aa7. Ex. Let p, q, r be the lengthfi of the axial intercepts of any external level

surface of a Holid homogeneous ellipsoid (a>b>c). Prove (1) that ;> is greater thanr/

but less than qajb, (2) that p^ - a* is greater than q^ - a' but less than q'^ - h'^.

Putting V' = TpabcK, the intercepts are given bv

Jpi-a»\ «" + «/ Q J Q'-bA b^ + uj Q
See Art. 2i"<. If the inequalities to be proved were reversed it may be shown that

these equations could not be true.

228. Bom* special eases. Ex. 1. The attraction of a thin homoeoid at any

external point is the same as that of a thin disc bounded by its elliptic focal conic

/ x- y-\^
and having the surface density at any point P inversely proportional '" ( 1 - —j - r^ I >

where (x, y) are the coordinate's of the point P and 2a, 2b the axes of the focal conic.

Prove also that the level surfaces of the disc are confocal quadrics.

This follows from the theorem in Art. 20(5, since the disc may be regarded as a

confocal homoeoid in which the axis c is evanescent. To find its law of density we

dz
notice that the mass on any elementary area dxdy is 2p dxdydc.

because z--c

Now T- =
dc i

-:; x'^ - —
,
y", and, the surfaces of the disc being similar, cja and t/i are

constants. The masses being made equal, the result follows.

Ex. 2. The attraction of a solid ellipsoid at any external point is the same as

that of a thin disc, of equal mass, bounded by its elliptic focal conic, axes 2«, 26,

1
—2~ ri) '

^^^

Maclaurin's theorem, Art. 224.

Ex. 3. The attraction of a thin prolate sphenoidal homoeoid at any external

point is the same as that of a thin homogeneous straight rod joining the foci.

This result may be deduced from that given in Art. 224, but it follows more easily

from Art. 131. The thin shell and the straight line have the same level surfaces

(viz. confocal conicoids) and masses, hence their attractions are also the same.
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Kx. 4. The uttractioa of a Holid prolate spheroid at any externa! point is tlie

suiiiu »s that of a 8trui|i(ht rod joiuiug the fooi, and having its linn density at any

point /' proportional to SP.PH.

Kx. a. If V, he the potential of a thin focaloid at an internal point P, prove

wliure V is the volume encloHud by the shell, 8v that of the shell itself, K is the

potuiitiiil at the same point of the unclosed volume supposed to be of the same

density us the shell itself, and \ is the dilTerence of the squares of the semi-axes of

the two boundaries of the shell. See Art. 1U5.

V dl
For a solid ellipsoid we have , =1 + 2 ,--f* + (ko., as in Art. 211.

rrpabc da'
To deduce

the potential of a thin focaloid we find SV on the supiKtsition that a', b'^, c'^ are each

increased by the same ijuantity \. This is evidently effected by performing on both

sides of the equation, as it stands, the operation S= \( ,„ + -„.-,+ i-5)
\da- db^ dc'J

result follows at once from Ex. 3, Art. 200.

The

Ex. G.
iv

,

Show that the potential of a thin focaloid at an external point is — V.

330. Mutual attraction. Ex. 1. A homogeneous ellipsoid attracts a body

.1/ according to the law of the inverse square ; prove that if M be a spherical or

cubical portion of the mass of the ellipsoid itself, the resultant attraction will be

the snine as if the mass M were collected at its centre of gravity. Prove also that if

M ')e a segment of a thin exterior confocal ellipsoidal shell, and if its principal axes

at its centre of gravity be parallel to the axes of the ellipsoid, the attraction of the

ellipsoid on it will reduce to a single force through its centre of gravity.

[Math. Tripos.]

Ex. 2. A solid homogeneous ellipsoid is divided into two parts by a plane

peipendicular to an axis. Prove that the mutual attraction of the parts for varying

positions of the plane varies as the square of the area of section.

[May Exam. 1881.]

Ex. 8. Show that any plane divides a solid homogeneous ellipsoid into two

parts such that the attraction between them reduces to a single force.

[Em. Coll. 1891.]

330. Slliptle coordinates. We may express the potential of an attracting

ellipsoid at any internal or external point P in terms of its elliptic coordinates by

using II geometrical theorem usually ascribed to Chasles.

Let ii', a", a'", be the semi-mujor axes of the three confocal quadrics which pass

through the point f, 7;, f ; let A, li,G he the semi-axes of any arbitrary confocal, then

(A-^ - a'«) {A^ - en [A'^ - a'"-^ = A'^B^C^ |l _ ll _ g _
g^|

.

To apply this theorem, we put A- = a- + u, B'^= b--\-u, C-= c- + u and substitute in

the formulBB already found for the potential in Arts. 212 and 225. We thus find

that the potential of a solid homogeneous ellipsoid at the point a', a", a'", is given by

V fdu,

irpabc ~
J
Q*

At an external point the limits are u=a"--a' to m=oo ; at an internal point m=0
to « = » .

8—2

(a- + u- a'-') {a- + u- a"*) (a* + u- a'"^).

>

)

li

l\
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291. Xtlnaar and quadratio lajrara. Kx. 1. If a thin layer of attracting

mntt'T, diHtributed ovlt tlio Hurfaou of an cllipMoid, he Rucli that tlu< xiirfacc durixity

f,
ut any i)()int (.r, ij, z) in i>{l,.c + Mji + S:), whore ;> ih the pt'riiciidicular on the

tanRcnt plane, provi- (1) that the axiul ctniipdiienl* of tin- attraction at aiiij iittfriml

point are conxtimt and rcHpoetively ecjual to La'^.l, Mb'^lt, Nc^C, where A, II, V, liave

the meaning given in Art. '2V2 and (2) tiiat the jxitential it a linear Junction oj tht

coorilinate$.

To prove thiH we refer to Art. 02. Since the component attrantionH of a

homoKcneouH ellipnoid at an internal point are Ap^, Hpij, Cpf, the potential of a

thin Huperflcial layer of surface density pcoH^ Ih Ap^. Since coH<l>=pxja'', the

potential of a layer of Hiirfaco density pLx is I.a'A^. The x component of attraction

iH therefore I.a^J, while the i/ and ; components are zero. It is evident from

the symmetry of the law of density that the mass is zero. The potential ig

La'^A^ + Mh^Uri + Nc^C!:.

Thin example han an electrical meaning. An imchar^ed ellipsoid is placed in a

fleld of uniform force, the direction cosines of the constant force being proportional

to the arbitrary quantities La'^A, Mb'*H, Nc'C, Since the resultant force due to the

electricity and to the field must bt; zero at all internal points, the electrical density

must be represented by - p. The result shows that the ratio pip is a linear function

of the coordinates.

In the same way we enquire in the next example what roust be the field of force

that pIp may be a quadratic function of the coordinates.

If the ellipsoid is ohttrged witli a quantity K of electricity, this quantity is to be

so distributed over the surface that its attraction at any internal point is zero (Art.

68). The additional electrical surface density is therefore np, where le is such that

the whole quantity is equal to A'. By Art. 71 or 195 this gives K = KI4vahc,

Ex. 2. If a thin layer of attracting matter, distributed on the surface of an

ellipsoid, be such that the surface density at any point (.r, y, z) is p/(x, y, z), where

/ is a homogeneous quadratic function of (x, y, z), prove (1) that the potential at

any internal point is also a quadratic function of tht .. jrdinates of that point

together with a constant, and (2) that the axial components of the attraction at any

internal point are linear functions of the coordinates of that point.

Let us regard the layer as occupying the space between two concentric ellipsoids

having their axes nearly coincident in direction. The second ellipsoid is derived

from the first by small rotations 5^, 5<p, 5^ round the axes and a change of the axes

fl, h, c into a + Sa &c. By choosing dO, 50, 5\f/ and 5a &c. properly, this thin layer

may be made to represent the given quadratic distribution over the surface.

Consider first the rotation dxp. The component displacements of a point Q are

Sx= - yix//, dy = x8\l/, 8z = 0; the direction cosines of the normal at Q are \=pxla'^!ic.

The thickness of the layer is the sum of the projections on the normal. Omittiiii;

a'' - b-
the factor 5^, the surface density becomes j>

—
^y^- xy, and the potential of the shell

,iV ,IV dV ,, „.
,

, =x- y —- = {A -B) xy.
d\j/ dy •' dx ' •'

at an internal point

When the surface density is vxiilab the potential becomes 2wabc i 'r'-,'—; „i
•^ ^ -" ^

J (a- + «)(//- + (()(?

by substituting for A, li their values. Art. 212. The upper limit is oo and the lower

limit is zero or \ (Art. 22()) according as the point is internal or external. See

Art. 93, Ex. 2.
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Held of force

1 of the shell

CoiiHider next tlie chsDKe of a into ,i + ia. Lot r bo the radiun veotor moaiiured

from the centre. The thickneHH of the Hhell at Q, hoinK the projeotion of 8r ou

till- riorinul, Ih pSrIr. Hut, Hince l/H«r''/«' + Ac., whore /, m, n are the direction

coHiiieH of r, we have irjr = x*iiijivK After omitting the factor iaja the mrfave dentity

ofthf nhfll hi-comet px^la* and itH potential at P in adVldn, where V ii4 the potential

of the solid cUipHoid at the same point. After HubBtitutiuR for V the potential

bmnncH We/' ,f^, ii«(l- f - ,"' - -/' U^U. -

whirt; the liniitit are to oo or \ to oo according as the point V is inoide or outHide

the xhull.

232. Elliptic oyllnderi. To find the attraction at an in-

termtl point of a solid homoffeneoua cylinder whose cross section is

an ellipse and luhose length is infinite in both directions.

The axial compontMits of this attraction may be immediately

de(hiced from those of an ellipsoid by making one of the axes

iniiiiite. Let us make c = oc , so that the infinite cylinder stands

OH an ellipse whose axes are along the axes of a; and y. The axial

components of the attraction at any internal point (f, tj, ^) are

A' = - Ap^, Y=- Jiprj, Z=0, where A =
j
~ day and -8 =

I r, dco.

Since in a cylinder (x, y) may be regarded as the coordinates

of any point ou the elliptic section, we have obviously

A+B^^TT, Aa' + Bb' = jr'^da,

where r is the radius vector of the cross section in the plane of

xy. Putting for dta its usual polar value sin 6d9d<f> we have

li'''d(o=J sin 6dd.fr'-'d<f>,

where the limits are ^ = to tr and <^ = to 27r. The first

integral is obviously equal to 2 and the second integral is twice

the area of the ellipse, i.e. 27ra6. We thus have Aa^ + Bb^ = 4nrab.

The axial components are therefore

^a+ba ^a+bb

233. The potential also may be deduced from that for an

ellipsoid, Art. 212. After substituting the values of A, B, and

putting (7 = 0, we find

V=yD-27rp ab

a + b a"^ bJ'
(1).

Since the potential of the cylinder is infinite at points on its

axis, Art. .50, it is evident that D is an infinite constant which

may be omitted when the axes a, b are not varied. This ex-
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pression for V may also be obtained by integrating the expressions

dV/d^ = X, dV/drj^Y.

The level surfaces inside the attracting cylinder are similar and similarly

situated concentric cylinders. Considering a cross section we deduce from (1) that

the longest axis of a level surface is in the direction of the longest axis of the

attracting cylinder. See Art. 216.

334. Ex. If in a spheroid the axis of revolution c is very great, the spheroid

becomes a cylinder. Prove that C and Cc are ultimately zero, while CV is infinite,

Art. 219.

235. To find the attraction at an external point of a solid

homogeneous elliptic cylinder.

The attraction at an external point may be deduced from

that at an internal point by an application of either Ivory's or

Maclaurin's theorem. Let a'b'c' be the semi-axes of a confocal

through the attracted point P'. Then a'* - a^ = J'a -b^ = c''' - c".

Since a''^ — aJ^ is finite it follows that when c and c' are both

infinite their ratio is unity. Since the components of attraction

of the given cylinder and the confocal are proportional to their

masses, we have (as in Art. 224)

X'=-A'(.
abc

f.,
. h' ah g,

Tf+h'a'h'^'P '1' '
'^ abc

by substituting for A' its value found in Art. 232.

In this way we find that the axial components X', Y', Z' of

the attraction of a solid cylinder at an external point (^', ?;', ^') are

ah f „, ah tj'

Z' = -47rp Y' = -^7rp Z' = 0,
a' + b'a" ' ^"^a' + h'b"

where (a', b') are the semi-axes of a cross section of a confocal

cylinder drawn through the attracted point.

236. Ex. 1. Show that the resultant attraction of an infinite cylinder is the

same in magnitude at all internal points situated on a coaxial cylinder nimilar and

similarhj situated to the boundary. Show also that the direction of the attraction

at any point on the surface of such a cylinder is parallel to the eccentric line of

that point.

Ex. 2. Show that the resultant attraction of an infinite cylinder is the same in

magnitude at all external points situated on a cylinder confocal with the boundary.

Show also that its direction at any point on a confocal is parallel to the eccentric

line of hat point.

Ex. 6. If a thin stratum of attracting matter distributed on the surface of an

infinite elliptic cylinder be such that the surface density p at any point (.r, y, z) is

/ X 7/ \plL'- + M~ + Nj, prove that the axial components of the attraction at an

internal point (|, rj, h are A'=L ^"
, , Y=M-~, , Z = 0, where the coordinate

' a + b' a + b

axes are the principal diameters of a cross section and the axis of the cylinder.

the surface o
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X v.^{{L-N)^ + Mr)}, with a similar expression for the y component.

This result has an electrical meaning. If the electrical density on the surface of

tho elliptic cylinder be represented by -p, the electricity will be in equilibrium

when the system is placed in a iield of uniform force whose components are

A', 1', Z ; see also Art. 231, Ex. 1.

Ex. 4. If the surface density p of a thin stratum of attracting matter placed on

the surface of an infinite elliptic cylinder be given by p=p ( L'—^ + M-~+N "^ 1

,

prove that the x component of the attraction at any internal point (f, rj) is

iirdb

a+bf

Ex. 5. Show that the potential at an internal point of an infinite cylindrical

mass bounded by two coaxial cylinders is infinite. Art. 50.

Ex. 6. The components of the attraction of a right elliptic cylinder whose

section is (x/rt)2 + (2//6)- = l, and whose ends are any two planes perpendicular to the

axis, at an external point |', r;', f , are A', 1", %'. A confocal cylinder having the

same ends is described through ^', t;', f , and attracts an internal point f, jj, f,
with

components A', Y, Z. Show that if ^la = i,'la', 7;//> = V/6', f=f', then A"/A'= 6///,

riY^aja'. [Math. T. 1879.]

237. To find the potential at an external point of an elliptic

cylindei' we use Maclaurin's theorem.

Let V, V be the potentials of two confocal cylinders whose

semi-axes are respectively a, h and a\ h' . Since their component

attractions at all external points are p' nortional to their masses,

we must have
a

?4i+^''

where the constant E is independent of the coordinates f', r}' of the

attracted point but may be a function of the axes of either cylinder.

Let the external cylinder (a', h') pass through the attracted

point F, then by Art. 233

V __ a'b' /p !r\ jD V ^_ ah

27rp
"

a' + 1/W^ h'l'^ ^ir' '' ^irp
~

a' + b'

where D and E' are independent of |', r)' but are functions of a', h'.

Let 2/ be the distance between the foci of the given elliptic

cylinder, then a'-'^h''=f-.

To find E', we place the attracted point on the axis of x, then

f ' = a' and rji = 0. By Art. 235 we have

rfF „ ab ah , ,,.

7 = A = - 47r/o
^^,
,y^- '^'^P Jl (« - ^ )

;

da:

after ssubstituting b' = \/(a''^ —/'), we find by an easy integration

V=- 2'rrp
j^

[a-^ - a' sj{a'^ -f') +f^ log {a + b')] + G,

where the constant G of integration is independent of a , b'.

^V.
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Comparing the two values of F we see that E' =^ — ab\og{a {h').

Hence F= - 27ro J^ ^, {^'^, + y) ~ ^'^^'^^ '°^ ("' + ^'^ + ^-

23B. The four variables ^', 77'. «'. ^' i'l the expression for F are connected by

the relations ^'2/a"'^ + ij"-'///'-=l and a"- -b''--f-. It is often convenient to reduce

these to two independent coordinates. Let

i'= tt' cos^, V = '''8in^; a' =y (e"^ + e-% b'=y (e'^' - e'^).

The value of
<f>

determines the particular confocal elliptic cylinder on which the

attracted particle P lies, and d (being the eccentric angle) determines the position

of P on that cylinder. Substituting we find*

r= - irpab (t'-^* cos 26 + 2(p) + (i,

where some constant terms, functions of a, h, have been included in the infinite

constant G.

239. Heterogeneous ellipsoid, similar strata. To find

the potential of an ellipsoidal shell luhose strata of equal dmsity

are similar to, and concentric with, a given ellipsoid.

Let a, b, c be the semi-axe.^* o',' the given ellipsoid ; ma, mb, mc,

(m + d7n)a &c. those of the inner and outer boundaries of an

elementary homoeoid. If {w, y, z) be any point on this homoeoid,

the value of ni is given by "^ + ^ + "^ == ^'^^ (!)•

Let the density at any point {xyz) of this homoeoid be p =f{n\/).

The mass of the element is therefore /(»*''). 47ra6cm*o??/i.

The potential of this homoeoid at any point P is (by Art. 208)

/"* dv
2Trabcni:-dnif(m^) i

. „ ,,;„,„ ,,, ,
, ri ...(2),

where the lower limit V is when the point F is internal and is

the greatest root of the cubic

wAi- + \'^ m'b- + \' m'& + V ^
^'

when P is external (Art. 204). The potential of the heterogeneous

shell may be obtained by integrating (2). To simplify the integra-

tion we put v = ni-n, X' = ni'fi. The potential V of the shell is then

^^^'^" '"^

^6c=/2"^^'"-^'^"^^^>/"t
^^^'

where Q^ = (a- + u) {¥ + u) (c- + "), and //. is zero, or the greatest

root of ^-4. /'L^^.^ = ,,^2 (5)
a'^ + fi b- + fi c- + fi

^

according as P is internal or external. The limits for m depend on

the internal and external boundaries of the shell.

* See a paper by Prof. Lamb in the Messenger of Mathematics, 187H.
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First, let us find the potential Fj at an external point of the

mass enclosed by the ellipsoid defined by m = n. To effect this we

change the order of integration in (4).

To make this process clear we tra?e the curve AB whose ordinate u is given as

a function of the abscissa m by the equation

e +
v r _

7/1'' .(«),
a'^'+u b'- + u c'-' + u

say <p (ii) = III-. When vi = 0, u is infinite, and when

m-ii, u has the value e given by

f T r+ —
• + -^

—

a' + € b'- + e c'^ + e
= 11' .(7).

Jf

Q

n

mIn the order of integration indicated in (4) we integrate

along a column LM from «= /* to m= oo and then sum
the columns from j» = to m=OC= n. In the reversed order we integrate first

along a row P<^ from m.-=:(p(u) to m- = n^ and then sum the rows from u=CB= e

to 1/ = au ,

The equation (4) then becomes

where Q^ = (a^ + u) (6' + u) (c* + u), m- is given as a function of u by

(6) and e by (7). This formula gives the potential of the mass

enclosed by the ellipsoid defined in equation (1) by putting m = n.

If rhc attracted point P is on the surface of this ellipsoid, we have,

by (7), 6 = 0. If the potential of the whole mass enclosed by the

ellipsoid x^jaJ^ + tC'c. = 1 6e required, we have n = \ and e = \, where

\ is defined in Art. 204.

240. Secondly, let us find the potential V^ at an internal point

of the mass between the ellipsoids defined by m = n and m = n. The

limits for the integral (4) are now m = to oo and m = n to ?i'.

These are constants and the order can be immediately reversed.

The potential is therefore given by

[;,=i/,(o-/,Mi/;f (9).
7ra.

241. Lastly, let us find the potential V^ at a point P situated

in the substance of a solid ellipsoid bounded by the surface m = n.

Let the point P be situated on the ellipsoid defined by m = n.

The potentials at P of the two portions of the solid separated by

this ellipsoid are given by the values Fj, F^ found above. We find

Fa by adding (8) and (9) together.

ife=ri'
'/("'*>-/<'"'»

irabc
.(10),

Ml

»«'
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where Q^={a^ + u) {¥ + n) (c- + u), and m? is given by (6) as a

function of u.

One result may be briefly stated, as follows. The potential V at

P of the solid ellipsoid x'^ja^ + t&c. = 1 is given by

«6. = /|'W<'>-^<"">l <1'>'

where the limits are to oo when P is internal and \tooo when P
is external. The value of > is given in Art. 204, and

V'

a?-\-u ¥ + u c^ + u
.(12).

242. The component forces X, Y, Z due to the attraction of the

solid ellipsoid may be found by differentiating the expression for

F just found. Since both m'-^ and X are functions of the coordinates

we must find dV/dX and dV/dm\ When ii = \, m^ becomes unity

and the subject of integration vanishes. Hence dVjdX is zero,

Z _ p _ dm^du___
1

1» 2p^ du
• • Trabc'J, -^^""^ d^ Q- !, a' + u Q

'

The corresponding values of F, Z follow at once. For an internal

point \ = 0.

243. The expression (11) for the potential of a solid ellipsoid

may be put into another form in which the limits are constant by

putting u = v+\, a^ + \ = a'^ &c. Writing the formula at length

we have at an external point

F
Trabch: /i(i)-/i

^..

a'^+v
- + V iLM dv

b'^+v '' c'^+vj
]
{a'^^+v)i{b'-'+v)i{c''+v)^'

The axes of the attracting ellipsoid have disappeared from the

right-hand side and are replaced by the axes a', b', c' of the

confocal which passes through the attracted point.

244. Ex. The density at any internal point 2' of an ellipsoid is fc. ORjOT,

where OR is tlio semidiameter which passes through T and A; is a constant. Prove

that the integrations to find ^V, Y, Z can be eifected in finite terms.

Prove also that the axial components are the same, at all internal points on

any given radius vector.

The last result is proved by noticing that before integration each component is

a homogeneous function of $, t), f of zero dimensions. It should also be remarked

that though the density at the centre is infinite the components A', F, Z are fin: ;.

Poisson, Connaisgance dc, 1837.

245. If we write f(m'^) = A(1 — w")", the density p at (x, ij, z)

of the solid ellipsoid, and the potential F at (^, rj, ^), become

.A\ ^
'^'' 'V

z2\n F=^
TTiabc

n + 1
1-

a'^-\-u

^2 |«+l^t
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where the limits are \ to oo for an external point and to x for

an internal point, Art. 204.

Since the density is zero at the surface of the ellipsoid, it

follows from Art. 92 that we may differentiate each of these

expressions, so that if the density is p' = dp/dx, the potential is

V' = dVld^. This enables us to tind the potential of a hetero-

geneous ellipsoid when the density is x, xy, x-, t&c.

Let

then

a- b^

^~ 2rfF'

,.s'

wT. ^y=-

R = l-
a' + u b'^ + ti c' + u'

8 dxdy

a* d^K'i a'

8 dx' n^-

p=Axy,

7= Ax^,

. a^-^R\ du __

p= Axyz,

p= Ax^,

The potentials for these three laws of density are

p= Ax, V^.a^bcA^j--^^^^^^,

V=.a^b^cA^r,j^-^:^^,

V=.a%cA CUuR^^'^T^] -J^^.
The proper forms for the three following laws of density may be found by

differentiating £*. We then have

p=Axhj, V=ira-<b^cAri j U

J [^ «' + M I («^ + w)-* Q
The case in which p= Axfyi'z^ is considered by Ferrers in the Quarterly Journal,

1877, vol. XIV.

It will presently be proved that the potentials of a homoeoid, whose surface

density <t is numerically equal to pp (where p is the perpendicular on the tangent

plane), may be deduced from that of the solid ellipsoid by difierentiating with

regard to R and doubling the result, Ait. 249.

The potentials for a homoeoid are therefore

^= Apx, V=2na%cA^jj^-^^,

a= Apxy, V= 2na^V^cA^r,
j ^^,, ^ ^/^l, ^ ^^^

^ ,

a = Apx% F= 27ra^bcA / -! f '' + \ urI , „
'^" --

.

The limits are to oo for an internal point and X to « for an external point.

See Art. 20-1.

These agree with the results obtained in Art. 231 by an elementary method.

346. We may use the method of Art. 211 to find the potential at any internal

point P, (I, ri, f), of a heterogeneous ellipsoid whose density at any point Q is

<(>(', y,z).

We describe as before a double cone with its vertex at P cutting the ellipsoid in

two elementary areas Q^, Q.^. The distances P^j = iij, PQ.i= -R,^ are given by the

quadratic (2) of Art. 211. Let PQ = R.

P3 .
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The density p at any point Q of the cone in

p= <t>{i + lli, r) + vtH, f+n/J)

=
(P + RS<p+...+Iii!ii(f>IL(i)+ (1),

where d = Ujd^ + vidjdri + itdld^ and L (j ) = 1 . 2 . . . e.

'

The potential at F of the positive side of the double cone is S JR*'*'^dRdu)i*<plL (i),

where the limits ate R=0 to li = Ri and Z implies dumniation for all existing values

of /. To find the potential of the negative aide of th" double cone we let R be the

distance of one of its elements Q' taken positively. The density at Q' is found by

writing - R for R in the series for p. Tlie potential at P of the negative side of the

cone is therefore 2 jR^+hlR ( - l)hlud'<pl[j (/), and the limits are R = to R= - R.^.

Taking the two conical elements togetlier we find for the potential of the ellipsoid

y=iidu>-^'>lj^'^iy S^^= R,i+-^ + R,i+^
(2).

As we shall integrate all round the point P, every element is taken twice over, we

must therefore halve the value of V thitu found.

The quantity -S', is a symmetrical function of the roots of the quadratic (2) of

Art. 211. We therefor) have .S'i+2 + 2Fr='.S',+j -£r2Sj= (3).

The initial terms are 61,= 2, S'j= -2Fr'^. Assume that S^ and S,-+i contain only

terms of the form Hki"'*'* and HK'r*+>+', where H^ represents a homogeneous

function of (/, in, n) ol k dimensions. It follows that .S'^^.^ contains terms of the same

forms, viz. ^k7'*+'+^, H'k+,?'*'*'''^*. Again 6'0 is a function of I, m, n of i dimensions,

hence S,^^.,3'0 is of the form //k+jJ"*'*'''*''^. 'The determi lation of V is therefore reduced

to the integration of expressions in which the index of r exceeds by 2 the sum of the

indices of I, m, n.

The terms of (2) which contain any odd exponents of /, m, n give zero after

integration, as in Art. 211. Omitting these it is clear thf.t every term of V is of the

form ^Ai/i'if"i, where u= I l ,- ...
——^, ... ,.,^..i ,

and a, /3, y are the reciprocals of a-, b'^, c'K Now by Art. 197

where Q'^=(a^ + u) (b^ + n)(c- + u), (?,- = (a + v) (j3 + 1') (7 + r) and v = llu and the

limits for m and v are to ao . Differentiating this, we find

( _ y+o+h
f dV / d\o / d N*., f v-i dv

u=
L(f+g + h)\

[1.3.5...(2/-1)][1 3. .(2.7-1)1[1.3...(27j-1)]

J Qi(a + v

2irv~^dv

y{^+v)o{y+vy-'2/+'H-al (/+// + /()

where the limits are f = to 00 .

The remaining integrations cannot be effected. The potential has thus been

found expanded in powers of the coordinates ^, 1;, f of the attracted point, with

single integrals with regard to v for coefficients. The several powers of J, ij, f may

be collected together, once for all. We then arrive at the formula given in Art. 247.

The algebraic process of collection is however tedious when the density p contains

high powers of x, y, z. It is given at length in the Phil. Trans. 1895, vol. clxxxvi.

Ex. 1. The density of a solid ellipsoid at any point Q is a homogeneous

function of i dimensions of the coordinates of Q. Prove that the potential of the

ellipsoid at an internal point P is the sum of a series of homogeneous functions of

the coordinates of P of the dimensions i + 2, /, i - 2, Ac.

I
!
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nee over, we

[Thio may be deduced from the equation (3) by noticing that S^ and S^ are

respectively of zero and one dimension. Thence by induction the dimensions of S^

in terms of the coordinates can be found.]

Ex. 2. The density of a homoeoid is Ax and the law of force is the inverse

fourth power of the distance. Prove that the potential at an internal point is

la 2x
•' a bj

247. Two theorems. Let the density of a solid hetero-

geneous ellipsoid (when «>0) be

. /, x" 2/' z-Y~^ ± (^ y z\

Let R=\ e v'

a^ + u ¥ + u c^ + u'

^ a'^ + u d'' b'' + u d^ c*-|-w d^

a-

72"+'

d^^

uD7?"

jW =— 4-

drf dt;^'

Jl.+n unj)n

Q^ = (a'-' + ii) {¥ + v) (c^' + u) and L (n) = 1 . 2 . 3 . . . n.

The potential of the ellipsoid at any point (^, 7), f) is

du ^, . f a^ br) c^

+ &C.,

V^mibcA (I),
\a? + u' b'^ + u' c^ + u)

where the limits are w = to x for an internal point, and u = \
to X for an external point, Art. 204.

Let the surface density of a thin homoeoid be

-Mt i

The potential at any point (f, rj, ^) is

V^2-rrabcAl'^'3r^(^^~, ,p- , -^) (II).

where the limits are to x or \ to x , according as the attracted

point is inside or outside.

The advantages of these formulae * are (1) that the only

differentiations to be performed are those on the expression for

* These formuhe were first given in this form by Dyson in the Quarterhj
Journal, 1891, vol. xxv. By computing the potentials of a homoeoid for several

laws of density he discovered by induction the forms assumed by the potential when
the density is AxhjOz'^. Assuming the potentials to be known he deduces the
attracting body by reasoning similar to that given in Art. 164. He gives the
necessary difierentiations at length.

fc^il i
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the density, and (2) that most of the terms containing ^, r), ^

have been collected together and expressed in powers of the

function R.

Tlie component attractionR at any point may be deduced from these potentials

by dilTerentiatioa with regard to ^, rj, j*. When the attracted point ia internal the

limits are absolute constants and we merely differentiate the subject of intenration,

When the point is external, the lower limit \ is a function of (, ?>, f (Art. 204) which

makes lt = when u = \. Hence (as in Art. 22()) we may treat X us a constant

during the ditferentiation, except in the first term of M'.

248. To prove the two theorems* in Art. 247 we shall adopt

the method described in Art. 164. We assume as given the two

expressions for the potential of a homoeoid at an internal and

external point, and we shall deduce the attracting body.

Let the potentials at an internal and external point be

distinguished as V and V. Then since \ = at the surface of

the ellipsoid we have V = V at all points of the separating

ellipsoid. It is also evident by inspection that V is zero at

infinitely distant points.

The expressions for V, V are found by actual ditFerentiation

to satisfy Laplace's equation. Art. 95. As these diflFerentiations

with regard to ^, rj, ^, present no peculiar difficulties but lead to

long algebraical processes they will not be reproduced here. We

infer however from the result that the attracting matter resides

solely on the separating ellipsoid, Art. 164.

Let o- be the surface density of the separating stratum. If dn

* The potentials of heterogeneous ellipsoids and shells have been investigated in

several ways. First there is Green's paper, Camb. Phil. Soc. 1833, where the law

of attraction is the inverse xth and the density E'\f{x, y, z) where E=l - x'^/ii' - &c,

Green uses Cartesian coordinates, but a solution by means of Lam6's functions is

given in Ferrers' Spherical Harmonics. The values of A', i', Z given in Art. 242 are

due to Poisson, Connaissance des Temps, 1837 (published three years earlier). He
begins with the formulae for the component attractions of a homogeneous ellipsoid

which he had obtained in 1835 (Mem. de Vlnstitut de France). Cayley gives a

formula for the potential of certain heteroj^eneous ellipsoids in his memoir on

Prepotentials, Phil. 2'rans. 1875, which is really an extension of the theorem of

Art. 239 to the case in which the force varies as the inverse Kth power of the

distance. In the Quarterly Journal, 1877, Ferrers applies these results to determine

the potential of a solid ellipsoid whose density is xfyiz^, see Art. 245. He also first

discovered the rule to find the pot^^tial of a shell by differentiating with regard to

R. His proof is different from that in Art. 249. In vol. xxv. of the Quarterly

Journal IJyson gave the important formulae mentioned in Art. 247. There are

other valuable papers by W. D. Niven, Phil. 'Trans, 1879, and by Hobson, London

Math, Soc. 1893. There is also a paper by the author on these potentials, Phil,

Tram. 1895. A second memoir is given by Hobson in the Land. Math. Soc. 1896.

There is also a paper by G. Prasad ia the Messenger of Math. 1900. Most of these

give the applications to discs and laminae and assume that the law of force is the

inverse Kth power.
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be all element of the normal to the ellipsoid drawn outwards we

have (since V, V differ only in the limit \)

dn dn d\ dn ^ ^*

No V \ = at every point of the ellipsoid and f = a;, »&c., hence

dV ^ , A , fx '

y z\

rfX=-2'^"^^«6c^U' ^h' c)'

Again \ and p are given by the equations

..

--- + &C. = 1, - + &C. = - .

a- + \ a* p^

Differentiate the former and put \ = 0, we have

1 d\ 2x dx 2
-. T- = „ J- + &C. = -

,

p^ dn a- dn p
since the direction cosines dx/dn, &c., of the normal are px/a^, &c.

Substitute these values in (1) and we find that a- = Apyff(x/a, &c.).

This is therefore ihe density of the stratum which produces the

potentials V, V.

240. The potential of a xolid ellipsoid io1io»e density is p^Arc^y^zl^ heinij known

we cau immediately deduce that of a thin homoeoid having the some law of density.

We write n = )na^, h^mb^, c = mci, u-niHii and then differentiate with regard to m.

The thickness dp of the homoeoid thus obtained is given by dpjp = d (.»Hrtj)/m«i = dm/m,

Art. H)5. The surface density ff= pdp=:ppdm/m. iter the dififerentiation has

been effected it is convenient to put m= l, so that «,, 6j, Cj, Wj become again

a, h, c, u. We may also omit the factor dm and regard the homoeoid as a layer

of finite density a= pp. It is supposed that A is independent of the axei a, b, c.

The potential of the solid ellipsoid becomes after these changes have been made
/» ,1,1 ti '^fh -Or '^i"-

(since /c = l) V=na,b,c,A\ "r^ (m-i»/,) ?Vf\- „ -/7, .7 - *^ ...

The operator D is unaltered, \ = \^m^, and

where S represents the quantity in brackets. Since R = when ti = \ and therefore

S = () when «i = Xi , we may as before treat Xj as constant when differentiating with

regard to vi. We now see that m enters into the expression for V only implicitly

through .S. The differential coefficient of V is therefore 'ImdVjdS. When wi= l,

S=li and exactly replaces R in the formula for V, hence dVldm = 2dVldR. The

piiteiitidl of the homoeoid is therefore found by differentiating that of the solid

i'lUp!<oid with regard to R and doubling the result.

360. The potential of a heterogeneous homoeoid whose surface density is

a^Apxfyi'z'^ being known, that of a solid ellipsoid whose density is

p = (1 - a;>2 _ &c.)*-i arVz*

can he deduced by integration. Let a, b, c be the semi-axes of the ellipsoid whose

potential is required, ma, &c., (ni + dm)a, &c. those of an elementary homoeoid as

k

i'>-

h-

mhf,
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c
f

described in Art. 230. If p' he the density of the homoeoid, its Burfaoo density ii

p'pdmjv. The potential of this element may bo found by writing ihm, Ac, wj'm, m-'\,

for ' , Ac, H, X in the j?cneral expreHsion (II.) of Art. 247, and multiplying the

d.aaity by «//>"<•'' f/wi/m. The potential is thus seen to bo
^

iiralM-A
I

--(mdmM')l-;r--) (,. '
| (-/ I .

where
L <i' + « J //»•"' (/wi)''"2«»"

We shall write ?«" ~1 + R for the quantity in square lirackets, this being its value

when expressed in terms of Jl.

To find the potential of the ellipsoid we multiply by (1 - m^)"'^ (see equation (1)

of Art. 23',)) and intograte from /n = to m=l. The potential of the solid

heterogeneous ellipsoid at an external point is tliereforo

"=^//'""/I
du (1 - my-^ {m^ - 1 + JJ)" F (u),

where F{h) contains all the factors which are independent of m, thus

Since the attracted point is external to the ellipsoid, X, is not zero and it is

necessary to change the order of integration by the process described in Art. 239.

The
<f>

(it) of that article is here called I- It and since n = l, we have e = X. The

new limits are at once seen to be m^ = l - 72 to 1 and m = X to oo . The potential V

IS now "=/!"" /o
dm-^ (1 - w")*-! (Hi« - 1 + «)" F (m).

The integration with regard to m" is effected by putting l-m^=Ro so that

dm^= -Rdv and the limits become v = l to 0. We then find by using Euler's

gamma function, F' = S /

"
d«iJ«+'' ^,1") ^^"^\\^ F («).

Substitute for F (u) its value given above and this at once reduces to the expression

for V given in Art. 247.

251. To find the potential at an external point of an elliptic

disc whose surface density at any point x, y, z is o- = (
1 •2~%]

where n is not necessarily integral.

We regard the disc as the limit of a solid ellipsoid whose axis

of c is zero. By Art. 245, corresponding values of the density/)

and potential V of the ellipsoid are

^ = ^ ["-a^-l-?) ' ^=^ « Jjl-cTT^-M W
where the limits are \ to oo .

The mass enclosed by a prism standing on the base dxdy and

extending both ways to the surface of the ellipsoid is

Afpc

2dxdy (p'c^
Jo

^'y-'~^.dz,
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where p^=l — ar'/rt* - y'^/h*. Put z=i pc sin 6 and this when k is

positive reducea to dxdy \\ -
,^ — j-A ^'-^'Ac.

We now put K«=n + \ and ilc = F (/c + i)/r(ie) r(i), and the

mass of the pristn is adxdy. Since V (^) = Vt, the potential at an

external point of the heterogeneous elliptic disc is

r(n + i)r(i)/'»a6rfjt/ p _ ^^_rY^i
r(n + $) Jx Q V tt'^ + w b^ + u u) '

where Q"^ = (a" + «) (6* + n) u, n> — ^, and \ is defined in Art. 204,

To find th? potential of a homogeneous elliptic disc at any

external point, we put n = 0. The potential is therefore

_ p 2abdu /, _ _ r_ _ V' r^V
Jx Q \ d' + u b' + u u)'

By using Cbasles' geometrical theorem (Art. 230) we may express the potential

of the disc in elliptic coordinates. We find at once for a homogeneous disc

V'=( ^"^.f" [(a'' + « - a'2) (a» + u - a"') (a^J^u- o"'»)]i

where the limits are a'* - «^ to oo .

as2. Ex. 1. The surface density of an elliptic disc is

where k is positive. Prove that the potential at an external point is

where Q^=(a^ + u) (b^ + u) u, the limits are X to oo , Mk has the same meaning as in

Art. 247 and R = l- f-* V^ P ^ gg + u (P b^ + u <P

d^' b^ di^a'^ + u b^ + xi M

'

[Proceed as in Art. 251, using Art. 247.]

Ex. 2. The line density of an elliptic ring is p'=p(p{x,y). Prove that its

potential at (^r;^) may be deduced from that of the elliptic disc in Ex. 1 by putting

K=^, differentiating V with regard to R and doubling the result.

Ex. 3. The density of a solid elliptic cylinder iBp=:A{l- x^ja? - y^lb")"-^ .xfyOz^.

Prove that the potential at an external point is

J Qi ' W + uJ \b* + uj

where Qi^={a^ + ti)(b^ + ii), and the limits are X to oo . If the attracted point is

internal the limits are to oo

.

The potentials of an elliptic cylindrical shell follow by the rule of differen-

tiation.

[Put 4,=(ax)f{by)a (ez)ii and c= oo in the formula of Art. 247.]

263. Confoeal level surfaeea. Ex. Let the law of force be the inverse Kth

power. Prove that the level surfaces of an elliptic disc whose surface density is

I- —^-^\ , where n=i (k - 3), are confoeal quadrics of the disc. Conversely

R. S. II. 8

ii
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prove tlint if thu level HurfiioeH an; ounfocul ({iindrioH tlie Rurfaco density in that

Kivon by thu expreHHion fur 7.

Tht'tioi tliul th«t potcntiiil for any level Hiirface hy placing the attracted point on

the axiH uf thu diHc. The proofH may be found in the I'liil. Tvan*. 1895.

254. The ootuponent attraction iit /' of a uniform elliptic diHc in a direction

I)er|u>ndioular to itH plane may be found by UHin« I'layfair'a theorem (Art. 27). We
describe a cone whoHe vertex ih P and bnue the elliptic area. The normal attractiui

of the disc Ih equal to the Holid an^le of the cone multiplied by the surface denHit;

of the thin diHc.

When the attracted point lien on the hi/perlwlir focal conic 0/ the attracting

ellipxe, the cone in known to he a rijfht cone and the tolid angle may be found by

elementary noUd i/eonietnj.

If in this last case the dintance of P from the plane be j", and the major axin of

the confocal ellipsoid through P be a', we have

'2ir W'-hV "(aTHt*)'*'

2ir h\(a'-^-h-')i~(''h\wi:-i + b*) a)'

.£ = ^{a'-(a'»-a«)»} = (f» + 6ii-f.

where 2/t is the distance between the foci of the attracting disc, and the surface

density is unity.
'

fiu^dii
Ex. 1, Prove that the solid angle of the cone Ax'^ + Ity'^- Cz''=0 la

j

where Q'^= (C - u) {A +u) (B + u). The -imits are h = to C, where A, B, C are

positive quantities.

Ex. 2. Prove that the solid angle of the cone

Ax^ + By^+Cz^ + 2Dyz + 2Ezx + 2Fxy =
. [2Judu , ^ . ,. , , . ^ . ^u • \A+u, F , E
18 I

J
., where A is the determinant in the margin. „ „

The limits are M = to that root of the equation A = which
\
E , D , C+u

has a different sign to the other roots.

wliei't' w is no

Potentials of rectilinear fiqures.

965. Potential of a lamina. To find the potential at any point P of a plant

lamina of unit surface density.

Let PN be the perpendicular from P on the plane. Let the plane of the lamina

be the plane of xy, N the origin and NP the axis of 2. Let ^P= f. Let (r, 6) be

the polar coordinates of a point on the plane of xy.

If QQ' be any elementary arc of the curvilinear boundary, the potential of the

triangular area NQQ' is /
, , where the hmits of integration are r=0 and

r=r. If R = PQ, this reduces to (R-^)de.

Integrating this again for all the elements of the boundary, we see that the

potential V at P of the area of any closed plane curve is j(R - f) dd. In this

expression the limits are determined by making the point Q (whose coordinates are

r, e) travel completely round the curve in the positive direction, the elementary
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an^Ic lie linvinK ittt ptopur hIxii aucordinK aH the radial angle in inorcaaing or

di'crt'HHiiig whtiti Q piiHHeH over oaoh eleinnnt of thu perimeter.

When the perpendicular I'N fallH within tlio lamina, the limits of $ are and

2ir, tilt' expreflaion for the potential ih then jlid0-'2w(. When thd perpendicular

fglJH outHide the lamina the upper and lower limitH of 9 are the name, ho that

\!;dd-0 and the expreasiou for the potential ia aimply jlldd.

206. We may put the expreHaiun juat found for the potential Into another

form which is aometimea more uaoful.

If nWdr ia any element of the area of the triangle NQQ', u its distance from P
nnd (f>

the angle ii makea with the normal to the plane, the solid angle du

subttiided at P by the triangle ia

d.=
j ^,,

coa0 =j^^, =(l-{^jrf«.

the liniita of u being f and ii.

The potential of the triangular area NQQ' at P is, by Art. 256, equal to

N0 =
r^de

ide ( i\_r^de
fdw.

R-'dd

R ' R
In Ht?. 1. the perpendicular PN falla within the attracting area. We then tind, by

integrating all round thu perimeter of the area, that the potential at P 'u

where u ia now the b'>lid angle aubtended at P by the area.

Fig. 1. Fig. 2.

In tig. 2, the perpendicular PN falla without the area. In this caae we must
subtract from the potential of NQQ' that of NSS'. Since dff is positive for QQ' and

negative for S'S when a point travels round the curve in the positive direction, the

form of the result is unaltered.

Let ds be the length of any elementary arc QQ' of the perimeter, p the perpen-

dicular from N on the tangent at Q. Then since r^dd=pdg, the potential at P of

the area takes the form /' = / ,, - fw. where the integration extends all round

the perimeter, and u is the solid angle subtended by the lamina at P.

Ex. If the law of force be the inverse fifth power of the distance, show that

1 f fids
the potential of a plane lamina of unit density at a point P is —j / ^ , where

the integration extends all round the perimeter and the letters have the same

meaning as in Art. 255.

9—2

^'
1;)'|l

F

; i
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907. When the lamina is bounded by rectilinear sides, p is constant for each

side and may therefore be brought outside the integral sign. The integral \dslR ig

then the potential of that side at P. We therefore have the following theorem.

IfV he the potential at any point P, of the area contained by any plane rectilinear

figure regarded as of unit surface density; F, , Fj, <&c. the potentials at the same point

of its sides earh regarded as of unit line density, u the solid angle subtended at P by

the area, then V'= - fw + "^ Fj +p>^V2 + (&c., where f is the length of the perpendicular

PN on the area, and Pi,Pi, dr. are the perpendiculars from N on the sides taken

with their proper signs.

The signs of the perpendiculars are determined by the following rule. If the

point Q travel round the perimeter in the direction of the motion of the hands of a

watch, the perpendicular p is positive or negative according as the origin N lies on

the right or left-hand side of the tangent at Q.

368. Potential of a soUd. If V" be the potential at any point P of a solid, of

unit density, and bounded by plane rectilinear faces; Fj', Fj', etc. the potentials at

the same point ofitsfaa. each regarded as of unit surface density, then

2F"= fiFi' + f,F2'+...,

where fj, fj, dc. are the perpendiculars from P on the faces taken with their proper

signs.

Describe an elementary cone whose vertex is P and whose base is any element

of area of the boundary of the solid. Let du> be its solid angle. The volume of an

element of the cone beiqg r^dwdr, the potential of the cone at P is

/
r^dudr

= ir*Jw= i
pdff

r
' ' r

where r is now the radius vector drawn from P to the elementary area da and p is

the perpendicular from P on the tangent plane. The potential of the whole solid

body at P is therefore i I
-— .

When the boundaries of the solid are planes, p is 3onstant for each plane and

\pda\r is the potential of that plane face at P. We have at once V"=}^ipV'.

359. The solid angle subtended at any point P by any triangle AUG is the area

of the unit sphere enclosed by the planes PAB, PBC, PCA. This area is the same

as that of the spherical triangle traced on the sph. .'e by these planes, and a finite

expression for its value is given in books on spherical trigonometry. Since any

polygonal area can be divided into triangles it follows that the solid angle subtended

at P by any rectilinear figure can always be found. The result may be complicated

but it involves no integrations which cannot be effected.

It immediately follows from Arts. 257, 258 that the potentials of all rectilinear

figures and the potentials of all solids bounded by plane rectilinear faces can he

found. Thus the three integrals which express the components of the attraction of a

rectilinear lamina or solid can be found infinite terms.

3GO. Components of Attraction. Some simple expressions may be found for

the components of the attraction of the lamina. We know by Playfair's theorem,

that the component along the perpendicular PN on the lamina is equal to the solid

angle subtended at P by the lamina, see Art. 27.

We may obtain an expression for the resolved part of the attraction along a

straight line draton in the plane. If this straight line be called the axis of x and

the boundary of the lamina be a closed curve in the plane of xy, the x component

direction P

\h
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of the attraction is X'= / -^ , where R is the distance of an element of the boundary

from the attracted point P.

Divide the lamina into elementary rectangles having their lengths parallel to

the axis of x, and let the breadth of each be dy. If AB be any one of these

(regarded as of unit surface density), its x attraction on P in the direction AB ia

( —
j
dy, see Art. 11. The attraction of the whole lamina is therefore jdyjR,

where R stands for either PA or PB, and dy is taken positive or negative according

as the ordinate y is increasing or decreasing when a point Q travelling round the

curve passes A or B.

adl. A solid body of unit density is bounded by plane faces: it is required to

find the resolved part of its attraction at a given point P in a given direction Px.

Whatever the form of the solid may be, its component of attraction in the

direction Px is X"=
j p » where dj is an element of the surface, ^ the angle

the normal at dj makes with the given direction Px and R is the distance of d<r

from P.

When the solid is bounded by plane faces, cos <p is the same for all the elements

of the same face. It may therefore be brought outside the integral sign. Since the

integral jdffjR is obviously the potential at P of the face, we have at once

X"= Vi' COS ^^+V„' cos tpf^+ = 2;Fcos^,

where Fj', Fj', &c. are the potentials at P of the plane faces regarded as of unit

surface density, and <Pi, ^<i< <^^- ^^^ ^'^^ angles the normals measured inwards make

with the direction in which X is measured.

262. Ex. 1. If a, /3, y, 5 be the quadriplanar coordinates of a point P referred

to the faces of a tetrahedron, show that the potential of the solid contained by the

tetrahedron regarded as of unit density is i(Vla+V^^+V^y+V^^) where Fj, Fj,

F3, F4 are the potentials at the same point of the several faces regarded as of unit

surface density.

Ex. 2. Show that the solid angle <o subtended at any point P by a triangular

area ABC is given by

{q+ry^-a^ {r + pY'-b^ (p + q)^-ci
I \v cosec - 1 =

4 4 4'
where v is the volume of the tetrahedron ABCP and p, q,r are the distances of P
from the angular points of the triangle.

Ex. 3. The triangle OBC is right-angled at B, and at a straight line OP is

drawn perpendicular to its plane. If the triangle be of unit surface density, prove

that its attractions at P resolved parallel to OP, OB, and BC respectively are

tan-i -- (a^ + 6« + c')i - tan-' -
ac^ '

c

_c_
j^

(tM.c2)i + (a2+6Hc2)i_j^ c + (a"- + b^ + c'^)i

(ft-i + c-')i

°^
a °^

(a2+6^)*

log
b+(a^ + b'i)^

log
(b^ + c'^)i + {a^ + b^ + c^)i

a (b'^ + c^)^ " «

where a = OP, b = OB, c = BC. Since any rectilinear figure in the plane of xy may
be divided into right-angled triangles having a common corner by dropping

perpendiculars from O on the sides and joining to the corners, these results give

the three resolved attractions of any plane rectilinear figure. [Knight's problem.

Todhunter's History, p. 474.]

\

stal
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Laplace's Functions and Spherical Harmonics.

263. In many parts of the theory of Attractions, the integrations are shortened

and made more comprehensive by the use of Laplace's functions. In other parts

the necessary processes could not be effected without their help. There are several

treatises on these functions from which the reader may acquire a knowledge of this

important branch of Pure Mathematics. The propositions however which are

wanted in Attractions are not very numerous and these books contain much more

than is here required. At the same time the subject of Attractions is generally

approached by the student at a period of his course when he has not yet reached

the proper study of these functions. For these reasons it seems proper to make

a preliminary statement of a few elementary theorems which the reader acquainted

with Laplace's functions may pass over,

264. Expansion of the inverse distance. Let P, P' be

two points, one of which will afterwards be taken as a point of the

attracting mass and the other as the point at which the attraction

is required. Let {x, y, z), (x', y\ z') be their Cartesian coordinates

referred to any rectangular axes, (r, 6, <f)), (/, $', 0') their cor-

responding polar coordinates. Let R be the distance between the

points and let p = cos FOP'. We therefore have

1^ I - = JL___
(1)R ^{{cc-xy + iy-yy + iz-zJl ^/{r^-2rr'p + r'^Y"^

^

It will be found convenient to expand 1/R in a convergent

series of ascending powers of either r/r' or r'/r. Supposing first

r < r', we write h = r/r'. We ihen have by the binomial theorem

(l-2ph + h^)-i=l+^(2ph-h') + ^{2ph-hy+...

Expanding these terms and writing Pj, P^,, &c. for the

coefficients of the several powers of h

{I - 2ph + h")-^ = 1 + P,h + PJi^ + (2).

The terms containing h^ are evidently the first in (2ph - A-)",

the second in {2ph — /t*)"~', and so on. It is therefore clear that

Pn is a rational integral function of p, whose highest power is ^"

and whose powers descend two at a time, the terms being alternately

positive and negative. Thus Pn is of the form

Pn=AnP'' + An-,p''-'+ (3),

where An, 4,1-2. &c. are constants.

These constants are easily found when n is a small integer by

the use of the binomial theorem in the manner shown above, thus

p,=i>. p,=hi^p'-n p.=wp'-^p\
P, = |(35p*-30joM-3), &c.
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265. The function Pn is usually called a Legendre's function

of the nth. order. It is sometimes written in the form P„ {p)
when it is desired to call attention to the independe. t variable.

Regarding one of the two radii vectores OP, OP' as a fixed axis

and the other as capable of moving into all positions round the

origin, P„ is a function of the inclination of the latter to the fixed

axis. The fixed radius vector is called the axis of reference of the

function or more shortly the axis of the function.

266. If (a', /8', 7') are the direction cosines of OP', we have by

projecting OP on OP' pr = ax + ^'y + r^'z,

.'. Pnr''=An(a'x+^'y+y'z)''+A,^_.,(a'x+0'y+y'zY-^{x'+y^+2;')+.. ..

Regarding OP' as fixed in space and OP as moving about we

see that P^r" is a homogeneous rational and integral function of the

coordinates of P.

The quantity IjR, regarded as a function of the variables {x, y, z),

is known to satisfy Laplace's equation, Art. 95. Since this is true

whatever (x, y', z') may be, provided they are fixed, it follows that

the coefficient of every power of 1/r' in the expansion

1 1 P,r P,r^

It r r^ r*
.(4)

satisfies Laplace's equation.

267. Any homogeneous function of (x, y, z) which satisfies

Laplace's equation is called a spherical harmonic function. Its

degree may be any positive or negative integer, it may be

fractional or imaginary.

When the function is such that it may be written in the form

r^f{6) where d is the inclination of the radius vector to a fixed

straight line, it is called a zonal spherical harmonic. We therefore

see that Pn^" is a zonal spherical harmonic of the nth order.

268. The expansion (4) has been made in powers of r/r' on

the supposition that r is less than ?•'. If the contrary be the case

we must make the expansion in powers of y'/r in order that the

series may be convergent. We then have

1 1 . Py . P,r"
.= 1 + ^^'-.--

R r f^ ' r^
(5).

It follows in the same way that the coefficient of r'", viz.

P„r-'"+i>, is a homogeneous function of the -(w + l)th order

at]

5if
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which satisfies Laplace's equation. Thus both P^r" and P„r-<''+"

are zonal harmonics of different orders.

269. It is useful to notice that the values of P„ when p=±l
and p = follow at once from the series (2). Thus when ^= + 1,

P„ is the coefficient of h^ in the expansion of (1 + h)~\ When

p — 1, Pn = 1 and when p = — l, P„ = + 1 or — 1 according as n is

even or odd. Both cases are included in the statement that P„ =p^

when p= ±1.

It follows that the sum of the coefficients of the several powers

oip in the expansion of P„ is unity.

After differentiating the series (2) k times we find

?5±' /y«P //«P /J*P
^(l-2ph + P) » = '^ ^ * + —̂ *+i h + &c. + **--

» /»»-« + &c.,
dp" dp'^ dp"

where «=! .3.5...(2/f- J). It follows that when 2)= ±1,
dp" ~ L{n-K)L{K) 2^

The vfilue when p= is somewhat more complicated.

270. Any integral rational function of p of the nth degree,

say F (p), can be expanded in a series of the form

F(p) = BnPn + Bn-^Pn-i + • . . + PoPo-

Since the highest power of P„ is Anp^, we can, by properly

choosing the constant Bn, make F{p) — BnPn = F^ip) contain

p^~^ as the highest power. Choosing again the constant P„_i

properly we can make F^ip) — Bn-iPn-\ contain p^^ as the

highest power and so on until we arrive at zero. In this way,

we find

^^ = ^ {iP, + Po), f = ^ (2P, + 3P0, p' = uV i^P* + 20P, + 7Po), &c.

It follows from Art. 269 that the sum of the coefficients of the

functions Pn in any one of these expressions is unity.

271. To prove that

Let u=p + ^(u^—l)/i, then by Lagrange's theorem

^ = ^2>|^>(^^-1)" (A).

By solving the quadratic and differentiating we find

f^= + (i-2ph + hr^

The coefficient of A" in the expansion (B) is by definition P^. By

differentiating (A) and comparing the two expansions the theorem

(B).



ART. 276] legendre's functions. 137

follows at once. The positive sign in (B) must be taken, because

when n=l, Pn=p. This expression for P„ is due to Rodrigues.

272. Cor. Since all the roots of (/)« - 1)» = are real and lie

between ± 1 inclusively, those of -r-(p^ — 1)'* = are also real and

lie between those of (jo" — l)** = 0. By continuing this process we

see that all the roots of Pn = are real and lie between ± 1.

273. The two following equations are important

|{(l-^^)f1+^('^^l>^" = ^ (1)'

(n+l)P„+,-(2n + l);>Pn + nP,„_i = (2).

The first is usually called the differential equation and the second

the equation of differences and sometimes the scale of relation.

To prove these we notice that, if m = '^Pnh^, the left-hand sides

of the equations are the coefficients of h^ in the expressions

By substituting u = (1 — 2ph + ^*)~i these expressions are found to

be zero.

The following theorems are also useful

..(3),

U.

c+/P„dp= :?»+» ^"-' pPn
2n + l

These may be proved by substituting in

^=(«+i)'^'^:r" <^)-

(i-P^)%Hi-P'C-pu=o.

374. The equation P„ = has no equal roots, for if P„ and dPJdp were zero

Eimultaneously it would follow from the differential equation (Art. 273) that either

])= ±1 or iPPJdp^=0. The first alternative is impossible since these values of p
make P„= ±1. Differentiating again we prove in the same way that dI^PJdp^=0

aud so on. But this would make rf'*P„/dp"=0 which it is not, for by Art. 264 it is

equal to A,^ \n.

375. The roots of P„= lie between those of P„+i=0. Let a,, oj, ... o„ be the

M roots of P„= in increasing order of magnitude. Then dPJdp is alternately +
and - when we give these values to ;> ; it has the same sign as P,^ when p > o„ aud

is therefore positive when p= o„. But by (4) of Art. 273 P„+i and dPJdp have

opposite signs when P„ = and p < 1. Hence P„+i is alternately - and + when we

put jj = Oi, &c. a„, and is negative when ^=o„. Again P„+, is positive when p=l
(beiug in fact unity), hence one root of P„^.i= is >a,„ n - 1 roots lie between those

of /^,j = 0, and the (n + l)th root must be <Oi.

276. The reader is recommended to trace the polar curve r=a + bP,^ for the

values H = l, 2, 3, &o. where P,, Pj, &c. have the values given in Art. 264 and

™'
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c

p= cos$. The constant b should be regarded as much sinaller than a. The two

theorems of Art». 274 and 275 will be found useful in tracing the relations which

exist between the several functions.

377. It is important to notice that the function P„ is not numerically greater

than unity for any value of p less than unity. For the proof of this we have here

no room.

Supposing h to be less than anity, the series

(1 - 2ph+h^]i= P^ + Pih + PJi^+... '

is convergent even when we replace every coetticiont by its greatest numerical value

and make every term positive. The series is then/ore absolutely convergent when.

both p and h are less than unity.

278. To prove that I f(p)Pndp = 0, ivhere f{p) is any

integral rational function of p of less than n dimensions. It

follotvs from this that when m and n are unequal (so that one is

r+i
less than the other)

j P^Pndp = 0.

By a theorem in the integral calculus we have

Judv = uv — u'vi'^-ii"vu — ... +(— iy\[it^dvn (1),

where accents denote differentiations and suffixes denote in-

tegrations. Let Q he finite between the limits and let

V =
d''-'Q'' _ d^'-'Q''

&C.

Each of the terms v, Vi ... Vn-i contains the factor Q at least once

and therefore vanishes when p is put equal to any root of Q = 0.

If we also put u =f(p) the series terminates before we arrive at

the final integral. It follows that the integral (1) is zero when

the limits are any two unequal roots of Q=-0. Let Q =p^ — 1 , the

integral is then zero when the limits are p= ±1. See Art. 27L

370. If f{p) is of n or higher dimensions, the only term on the right-hand

side of (1) (Art. 278) which is not zero is the final integral. This is also true if

/(?)=?" (where k is a positive quantity = or >n) and the limits are p= Q to p = l.

In this case all the terms up to u^Vk are zero because the first factor vanishes when

p= and the second when p = l. The final integral is made one of the standard

forms in the integral calculus by putting p= cos 6 and its value can be written

down. As these integrals are not required here, it is sufficient to state the result

in the form
|

p''P„dp=-—-^ I p^P^^odp.
Jo Ac + l+Ji jo "

^

This result is also true when the limits are - 1 to + 1 and « is integral. For if

(c + n is even each side is then doubled and if odd each side becomes zero.

Ex. Prove |i>*-P„dp=- I P^'^Pn-i'^P where the limits are to 1, and

K is a positive quantity greater than or equal to n.
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aso. To find iPm^n^P between any limits. The lunctions P^, P„ satisfy

Multiply the first by P„ and the second by P^ and integrate each product by parts.

We then obtain by subtraction

(m-«)(m + «+l)|P„P„rf/,=:(l-p») jp^'^J'-P,^^ ,

where the right-hand side is to be taken between the given limits.

It immediately follows that where the limits are - 1 to + 1 the integral is zero.

When m is even and n odd, we deduce from Art. 269

(^ p p , _ n(-l)*("-^'"- ') 1.^^5...(»i-l) 1.3.5^.. (n- 2)

j ^
mP» P- 1- _

„,j (,j ^. ,„ ^ 1)
• 2 . 4.6 . , . w '2.4.6.

. . (n - 1)

When in and n are both even or both odd, the integral is half that of the same

integral with the limits ±1 and is therefore zero.

Since Pp = 1 w iind »i (m + 1 ) I Pm^P i^ equal to the value of dPy^ldp when p=0.

AIbo / P„^dp= 0.

281. To prove that Pn^dp = ,r~~..
J -\ iin + 1

This important result may be deduced from Art. 278 by putting

f{p) = Pn, but the following method is of more general application.

We multiply the equation of differences, viz.

wPn - (2W - V)vPn-^ + (w - 1) Pn-, = 0,

by Pn and integrate between the limits /)= ± 1. We then have

n^P,Hp - (2n - l)JpPnPn-idp -= 0.

In the same way, if we multiply by Pn-i and integrate between

the same limits, w j find

- (?'i - l)IpPn-rPn-,dp + (n - l)JP'n-.dp = 0.

We now write ?i + 1 for n in the last equation and eliminate

jpPnPn-\dp. We thus arrive at

{2n + l)JPnhip = {2n - l)jP^n-,dp,

provided n is not zero. By continued reduction we find that each

of these is equal to JPo^dp = 2. The result follows at once.

282. Ex.1. Prove j_^(^»)rf„=n(n + l),
j _^[-^) dp=-i-:^,

where p = cosO,

To prove the first, integrate by parts and notice that since d''PJdp^= P"
is of lower dimensions than P„, jPnP"dp= Q. To prove the second, write

dd= -dpU(l-p^), integrate by parts and me the differential equation.

dP dP"^ -df =m(m + l) if n>m, and m + n is even. ItEx. 2. Prove that /
-,"*

_,

; -1 dp dp

is evidently zero if m + n is odd.

!!!l"

:

;

:l
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I

I

m ^=0, if m and n are unequal.
"* dp"

[It

Ex.3. Let (l-2p/i + ;»")-*<«-"= 2<?„7»», 0(p) = (l -i)«)*'«-2).

Prove ^ |(1 -p») (p) *^^^»| + n (« + « - 1) (p) (^„ = 0,

(n + l)<?n+i-J'(2« + 'c-l)<?n + (« + *-2)g„-,=0,

/0 iP) QmQndp = 0, \<p (p) Q^\lp = N\^ (p) QVi''i>,

where iV= (2n + k - 3) (n + k - 2)/i (2n + « - 1) and the limits are - 1 to +

1

Ex.4. Prove that / (1-pY—
follows at once from Ex. 3 by using Art. 209.]

283. Potential of a body*. To apply these expansions to

find the potential of a body, we regard {x', y\ z') as the coordinates

of any particle m of the attracting mass. We now multiply 1/ii

by m and sum or integrate the result for all the attracting

particles. At some points of the body we may have r > r, at

others r>r' ; we may therefore have to use both the expansions

in Arts. 266 and 268 each for the appropriate portion of the

attracting mass. In this way we find

V-
m5;^=r„+y>+F,r« +

^0 ^l ^2

r r- ?**
.(6),

where Yn = % '^'i^^
and Z, = lmr-l\.

These summations cannot be e**ected until the form and law

of density of the heterogeneous body are known. We notice

however that both F„ and Zn are the sums of a number of

Legendre's functions with coefficients and axes depending on the

given structure and shape of the body. Regarded as a function

of (x, y, z) both F„?'" and Z^r" are integral rational spherical

harmonics. When therefore we use Cartesian coordinates we

write the series in the form

T T T
F=^o + 'Si + -Sf, + ... + -'' + -./ + ^^+...

where 8n, Tn are spherical harmonic functions of x, y, z oi n

dimensions.

284. Laplace's equations. In this way we have been led

to an expansion of V in powers of ?• which must hold for all

attracting masses. Let this be written F= SF,ir", where ?«- may

be either a positive or a negative integer. Substituting this

* This expression for the potential a is given by Sir G. Stokes in his memoir on

the Variation of Gravity, &c. Camb. Trans. 1849. He obtains the expression by

solving Laplace's equation.



ART. 286] POTENTIAL OF A BODY. 141

series for V in Laplace's equation as expressed in polar co-

ordinates (Art. 108) and equating the joefficient of r" to zero,

we have •

where /j, = cos 6.

The corresponding equation for F,„ is found by writing m for

n. If we choose m so that m (m ^• 1) = n (n + 1 ) we have m = w or

m = — (n + 1). It follows that there are two powers of r, and only

two, viz. r" and i-- <»+>', such that their coefficients in the series

(6), viz. Yn and Zn, satisfy the differential equation (7). It

appears therefore that F„ and Zn are both solutions of the

differential equation (7) and differ only in the arbitrary functions

or constants which occur in the solution.

Any function of two independent angular coordinates (such as

the direction angles 6,
<f)

of the radius vector) which satisfies

equation (7) is called a Laplace's function. Thus F„ is a Laplace's

functio.. of the order n. The corresponding function F„r" when

expressed in terms of (x, y, z) satisfies Laplace's equation and is a

spherical harmonic, Art. 267. A Laplace's function when expressed

as a function of the Cartesian coordinates of the point at which

the radius vector intersects some given sphere with its centre at

the origin is called a spherical surface harmonic.

285. If 0', <!>' be the direction angles of a fixed radius vector OF and

cos i^OP'=p, we have p = cos tf cos tf' + sin ^ sin 5' 008(0-^').

The Legendre's function P,, is therefore a symmetrical function of 6, and

d\ 0'. Regarded as a function of d, <p, we see, by comparing the series (4) and

(5) of Alts. 266, 268 with (6) of Art. 283, that P„ is a special case of r„. It follows

that P„ must also satisfy Laplace's equation (7).

If the axis of the function P„, i.e. OP', be taken as the axis of reference, we
have ix=p and dPJd<f> = 0. The differential equation then becomes

ll^'-^'^'S"}-*-"^"-'')''"^'
<'^-

The general solution of the differential equation (8) has two arbitrary constants.

To find the general solution when a partial solution has been found we use a rule

given in the theory of differential equations (see Forsyth's Diff. F '. Art. 58).

The general solution is thus found to be

^Pn + BP^j pJl^^ZT)'
where A and B are the two arbitrary constants. Since P„ is an integral rational

function of p we may by using partial fractions effect this integration. The process

is rather long and the results will not be required. It will be sufficient to notice

that the part of the solution derived from the integral is not an integral rai;ionaI

function of p. It follows that the only integral rational solution ia AP^.
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In the Banie way the general solution of the e(iuation of ditTerenceH

(h + 2) ii„+,j - (2« + 3) />»/„+, f-(H+ 1) »„ =

is M„ t=APn + UQn where

'2« - 5 P„_„ ^ '2n -ir + 3 P,.-or4.i
,.-1+ .. -, ^ '' + &C.4 " '^*' + &C.

M " • M - 1 3 « - r + 1 '2r -

1

Both these partial RolutiouH are integral vatiunal functionH of p. This result is

eaoily verified by substitution : if we rememljer that the equation is .satistiei] by

«„= P„, we find that the coetHcient of every i'„ is zero.

386. We have seen in Art. 283 that the potential of any body can he expanded

in a series of spherical harmonics of integral orders. In this e.^pauwion !'„»•" ami

Z„»'" are both integral and rational functions of r, y, z ot & positive integral order.

Changing to jiolar coordinates we find tliit }'„ is an integral function of co«e,

sin cos (p, sin sin ip. Expanding the powers of sin <p, cos (p in multiple angles,

we liave

y„ = i4ft4-(/JiCos^ + /i,Rin0) + (,-l.jCO82(^+/i;j8in2«/») + ...+(i4„cosH0 + ii„Bin«0)...(9),

where Aq, A^...A,^, /}, ...7}„are all integral and rational functions of sintf and cosd.

Substituting this value of F„ in (7), we see that both Ai, and Bi, satisfy

rfM^'^'^'^l^"<"^'^^*^r-V'* <'">'

where ju = cos 6*.

Since the equation (10) reduces to the form (8) when k = 0, we have AQ = a^P,^{^.),

where «„ is an arbitrary constant.

The values of Ai, B^ &c. will not be required; it will therefore be sufficient to

mention that their values found from equation (10) are

/i,= 6fc(8in<?)*'^-^»,<''>,^, = «,(sin<?)*^^^i^^

where a^ and bif are arbitrary constants.

rf*P (u)
The function (rt;^ cos fc0 -t- ^^ sin /r^) (sin tf

)* —-^"^. is called a tesseral surface

liannonl^ of degree n and order k. In the particular case in which k = n, the

function is called a sectorial surface harmonic of degree n.

287. The case in which Y,^=PJ^(p) is iometime& useful in the theory of

attractions. Since p is the cosine of the . gle between the directions {d, <p),

(0', <p'), P„ is a symmetrical function of (0, <p), {6', <p'). We therefore have

dJ'P difP '

i'n (p) = «o-Pn^n' + 2«, (sine sin fl')*^''
jf,

cos fc (0-0'),

where P„= P„(;it), P„'=P„(/ix'), jit=cose, /*'= costf' and S implies summation from

fc=l to 71. By putting ^=0, ^' = we see that aQ=^l. In a similar way by putting

L (n — k)
0=hir, 0'=hv we deduce that ai.=2 , , ... When /:= 0, we take half this value.

* ' " * L{n + k)
'

288. Three theorems. The great utility of Laplace's

functions depends on ihree theorems. To these we now turn

our attention.

Theorem I. If Ym, Yn be two Laplace sfunctions of different

orders then JYmYnd(o= 0, where dw is an elementary solid angle

and the integration extends over the whole surface of the unit sphere.
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The following is Kelvin's proof. Put V= F^.r"*, V" = YnV' anJ

apply Green's theorem (Art. 150) to the surface of a sphere of

radius a, whose centre is at the origin, then *

dV (iV

' dr •' dr

Substitute for V, V and we have

a"*+»+'«/F,„ Yndto = a'^+^+'m/y^,, Vndo) ;

hence unless rn and n are eqiuil, /F,„F,irf&) = 0.

When m and n are positive these values of Fand V are both

finite throughout the sphere. If however m, or n, is negative it is

necessary to integrate over the two surfaces of a spherical shell, to

avoid the infinity at the centre. If a and b be the radii we then

have (a"'-t-"+> - 6'«+«+i) ri/F,„7„c?« = (a'"+"+' - 6"'+"+') mJY„,Ynda>.

It follows that /F,„F„rfa) = unless m = n or w + w+ 1=0.
We have also /F,„P„rf<u = and since Po = l, fYmdto = 0, where

the integration extends over the whole unit sphere.

289. Theorem II. Let Yn be a Laplace's function of the

angular coordinates (6, <^) and P^ a Legendre's function of the

same coordinates having {&, ^')for its axis. Let both these be of

47r
the same order, viz. n, then JYnPnd(o= ^

F/, where the

integration extends over the whole unit sphere, and Yn is the value

of Yn when (6', <^') have been substitutedfor {6, <f>).

To find the value of JYnPndto, let us take as the axis of z, the

axis of P„, (Art. 265) so that P„ =Pn{fi), where /m = cos 6. Also

rfft) = sin 6d6d<f> becomes — d/idcf). The limits of integration are

/x = l to -1, <^ = 0to27r.

Taking the value of Yn given in Art. 286, viz.

Yn = ttoPn (/*) + 2 (.4 j; cos k<f> + B^ siu k<f>),

we notice that /cos k(f)d<f) = and /sin k<f)d(f> = when the limits

of (j) are to 27r. Hence
2

JYnPndo) = - tto JJPn^dfidcf) = a„ . 27r . g" X i
•

It remains to find the value of ao. Referring to equation (10)

of Art. 286, we see Ak = and Bk = when fi=l except when
^'=0. Also Pn{fji')= 1 when /*= 1. Thus a,, is the value of F„

at the point where the positive direction of the axis of z cuts the

unit sphere. Since the axis of P„ has been taken as the axis of z

I

I

i..t ^^

I
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ii

it follows that o„ is the value of K„ at the positive extremity or

poh of the axis of P„, and this value has been represented in the

enunciation by F,/.

290. Theorem III. Any /unction of the two angular co-

ordinates of the radius vector can be expanded in a serien of

Laplace's functions, and the expansion can he made in only oneway.

For a dlBouflsion of this important theorem we must refer the reader to the

treatiacB on these functions. It will sulDce here if we consider how we may
practically use the theorem in those simpler cases which generally occur in the

theory of attraction.

Let ua first suppose that the given function is an integral rational function of

the direction cosines of the radius vector, i.e. of sin cos ^, sin sin ^, and uog0.

On transforming to Cartesian coordinates and multiplying each term by the proper

power of r the function becomes an integral rational function of x, y, t, which we

can arrange in a series of homogeneous functions. Taking any one of these,

Bay /„ (as, y, z), we shall show how it may be expanded in a series of spherical

harmonics combined with powers of r. Thence (if it be necessary) we deduce the

expansion in Laplace's functions by giving r any constant value.

Subtract from /„ the expression (x" + !/'* + «'') /„_.j, where /„_j is an arbitrary

integral and rational function of (x, y, z) r>f the (;t - 2)th degree, viz.

Substituting V=f^- (x" + y'' + z^) fn-^i in ^"V, there results a homogeneous function

of (x,
J/,

z) of the (n - 2)th degree, which therefore contains as many terms as there

are ways of making homogeneous products of x, y, z of that degree. But /„_., is an

arbitrary homogeneous function of the same degree and contains an equal number

of terms. There are therefore just enougli arbitrary constants A^, /Ij, B^ &c. to

enable us to make the coeflBcients of every term in VW equal to zero. Assumint;

that the linear equations thus forD-.ed to find Aq, A^ &c. are not inconsistent with

each other, the expression /„ - {x^ + y'^ + z^)fn-'i = ^n satisfies Laplace's equation and

is therefore a spherical harmonic.

Repeating this process with the function /„_2 , we have

/„_j--(j;« + j/ + /'')/„_4=S„-3,

and so on. We finally end with a constant or an expression of the first degree

according as n is an even or odd integer.

Writing r^ for x"^ + y'^ + z"^ we have /„=S„+ r-'S„_3 + H-S„_4+--. where S„, S,.,

Ac. are all spherical harmonics. It should be noticed that this equality is a mere

algebraical transformation, and involves no assumptions as to the meaning of the

letters.

If we now regard r as the radius of the unit sphere or any suitable sphere, S„,

'^n-2 *^- become Laplace's functions, and the required expansion has been made.

When the function does not contain powers of x, y, z above the cube, this

process will be unnecessary, for the arrangement in harmonics can then be generally

performed at sight.

391. When the Cartesian equivalent of the given function is not an integral

rational function of the coordinates, an expansion in a finite number of terms cannot

be obtained. We then proceed in another way. Assume that the expansion can be

effected in a convergent series, 8ay/(tf, (I>)=Yq+Y-^^ + Y^+ ..., where y„ is a Laplace's
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function of t)ie nth order. Let P„ bo tho Legendre'fl function having (6\ 0') for iti

axix, HO that l\ w a Hymmetrical function of (0, <p) and {6', ip!) ; Art. 28Q. Multiply

buth Hides uf the equation by l\ and integrate over the whole surface of the unit

Hphere ; then by Art. 289 \\f{d, 0) I\d^d<f,= '—-^ r„',

where y„' is the value of \\ when {$', ip') have been written for (0, 0). When the

intt'^'rution on the left-hand Ride has been effected, the result will be a known

function of 0', tf>' only. Hince 6',
<f>'

are arbitrary we can replace them by 6, (f> and

tliUM the form of F„ has been found.

liuplace's expansion ia an extension to two independent variables of Fourier's

expanHion of a function of one variable in a series of sines and cosines of its

multiples, and like that theorem is subject to limitations. The process of expansion

given above is not in any way a proof, it is to be regarded as merely a convenient

method of applying Laplace's tiieorem to special cases. It fails to give the limita-

tions and must be used with caution when the function to be expanded is not single

vahu'il.

aoa. Ex. 1. What are the conditions that

(1) ax + by + cz, (2) Ax' + By*+Cz^+ 2Dyz + 2Ezx + iFxy

may be spherical harmonics? The first is always so, the second when A + B + C=0,
Ex. 2. Expand sin^dcos^^ in Legendre's functions.

This is the same as p^ if the axis of x be taken as the axis of reference. Now
P3=Uof-dp), hence p3- J /'a=8 p. The result isi)» = |P3 + ^Pp

Ex. 3. Expand sin^ sin ift cos <f> + cob' in Laplace's functions.

The result is Y^+Y^+Y^, where Yi = ^oosd, l'a=sin*^sin^co8 0, Y3=\{5cos^0

-Scos^).

Ex.4. Expand log (l + cosec^0) in Legendre's functions. [Coll. Ex.]

The result is P^ + JFj + iP^ + iPj + . . ..

Ex. 5. Prove by successive induction or otherwise the equalities

Po« + 3Pi« + &c. + (2« + 1) P„='= (n + 1)'» P„« - (i,2
- 1) (^^y

.

iip tPP
Ex. 6. If -^

"

=

^arPr and
^^

» = 26, P, , prove that

a,=2r + l and 6, =i(2«-f !)(»-«) (n + l + «).

Multii)ly the series by P^ and P, respectively and integrate by parts between the

limits ± 1. The expansion of the with differential coefficient of P„ is investigated in

the Proceedings of the London Math. Sac. 1894.

Ex. 7. If p* = a^ Pk + . . . + a,jP„ + . . . prove that

2n-3K + 7i+l

2n + l/c-n + 2' a„ = .

(2n + l)|K

2.4.6...(K-«).1.3.5...(K + n+l)'

The polar equation of a nearly spherical surface is393. Ex. 1.

r= a{l + /3(Fo+Fi+...)},

where ^ is a small quantity whose square can be neglected. Prove the following

results,

(1) The volume is iira* (1 + 3/3 Fo) and the surface is 47ra2 (1 + 2pYg).

(2) ltrY^=Ax + By + Cz, the coordinates of the centre of gravity of the volume

R. S. II. 10
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are x=pAa, p=pDa, z=^Ca. The centre of gravity of the surface coincides with

that of the volume.

(3) If j^\\ = Ax^ + lh/ + Cz^ + 2Dyz + 2Ezx+2Fxy, the moment of inertia

ahout the axisof z is (1 -^C+5j31'o), and the product of inertia about the

axes of X, y la - — 2a'

5
/3F.

It follows from this example that when the origin is placed at the centre of

gravity of the volume the term I'l is absent from the equation. When the constant a

is 80 chosen that it is equal to the radius of the sphere of equal volume, the term \\

is absent.

To obtain any of these results, we proceed as follows. Let 31 be the volume,

I\ = co(id, &c., then M z = \fr-drdu . z— j^r*dwP^. Substitute for r, expand and use

Art. 289. The result is lwa*^l\', where 1\' is the value of I'l at the extremity of

the axis of z and in the small terms this is C, Similarly the moment of inertia ia

jjr'^didu . r'^ sin* d = jirhlu . |(1 - Pj). We then proceed as above.

Ex. 2. The polar equation of a nearly spherical surface is r= a (1 + /3P,,) where

/3 is a small quantity whose powers above the second may be neglected. Prove that

1^ + w + 2
the area of the surface exceeds the area of a sphere of radius a by 27ra^8- . „

2n + l

except when H = 0. [Math. T]

Ex.3. Prove that the surfaces r= a(l+p\\), r= a{l + /3 (ro+ 1^+ I'g)}, where

the square of /3 can be neglected, are respectively a sphere and a conicoid. The

coordinates of the centre are the sime as those of the centre of gravity already

found.

294. Attraction of a spherical stratum. A thin hetero-

geneous stratmn of attracting matter is placed on a sphere of

radius a. It is required to find its potential at any internal or

external point.

Let p be the surftice density at any point Q of the sphere, da

an element of area at Q ; 6, (^ the polar coordinates of" Q, then

d(T = sin 6d6d(f). Let P be the point at which the attraction is

required, and let the coordinates of P be (/•', d\
(f>').

If R be the distance between the points Q and P, the potential

of the whole stratum at P is V = jpda-jR. Let p be the cosine

of the angle between the positive directions of the radii vectores

OQ and OP, then R' = a^ + r'- - 2apr'.

If the point P is inside the sphere, r' is less than a, and we may

expand IjR in a convergent series of ascending powers of r'ja. If

the point attracted is outside the sphere, we must expand in powers

of ajr. Since 72 is a symmetrical function of a and r we have

or

K a a

r r
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The surface density p is a given function of the coordinates of

Q ; let it be expanded in a series of Laplace's functions or surface

harmonics, thus p = Fo + Fi + Fa +
Substituting these values of p and l/K in the expression for

V, we have by the theorems I. and II. in Arts. 288, 289,

V= 47ra

47ra''

1 r'
V' 4.-Y- 1

V' = 5V + gF/^-;,+^F/(^P

.F/ '-) + -i-F' ^)"^

Y

'

+
'ay 1

r(' '6 • r b - \r')
"

" 2?i + 1

according as r' is less or greater than a. The first of these two

expansions gives the potential at any internal point, the second at

any external point.

If Yn is expressed as a function of the angular coordinates

{d, <j)) of Q, then as already explained (Art. 289) 3V is the value

of Yn when the polar coordinates 0', (/>' of the attracted point P
have been written for {0, ^). If however F„ is expressed as a

homogeneous function of the Cartesian coordinates (x, y, z) of Q,

then Yn is obtained from Yn by writing the Cartesian coordinates

of P for (x, y, z) and multiplying the result by (a/r')".

We notice that by Art. 86, the potentials at ttvo inverse points

are connected by the equation V = Va/r'. It follows that either

of the series in the brackets must change into the other when we
write a^ji'' for r'.

295. Ex. 1. The surface density at any point Q oi a sphere is a quadratic

function of the Cartesian coordinates of Q. Find the potential at any point whose

coordinates are (.r', y', z').

Let the surface density p be given by p= Ax^ + By'^ + Cz'^ + 2Dyz + 2Ezx + 2Fxy.

Let us represent this function by/(.r, y, z).

As this function would be a spherical harmonic if A + B+(^ = 0, we make the

necessary expansion in surface harmonics by subtractin;? and u ang G (x^ + y- + z''),

where 'dG =A+B + C. We therefore have p = i q + Y.^ , where

Y, = Ga\ Y,=f{x, y, z)-G{x^ + y^ + z^).

The required potential at the point P is therefore

r=4.«{r„'4-iiv (;;)] or T"=^;?{iv+ir.'(^)].

according as P is inside or outside the sphere. Here Y.^'={f{x', y', z') - Gr'^}(-,
J

,

and Y„' = Ga-. Substituting these values for i'/ and IV in the formulas for V and

V the required potentials have been found.

Ex. 2. The surface density at any point of a sphere is p-mxy : show that its

potential at any point (x , y , z) is —— xy' or —
point is within or without the sphere.

10—2

xy' (
-

I . according as the

c.; C
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Ex. 3. The surface density at any point of a sphere is mxyz : show that the

potential at an internal point is 4 wamx'y'z'.

Ex. 4. Matter of mass M is distributed on a spherical surface whose centre is

at and radius a, so that its density at any point is proportional to the square .;'

its distance from a point C outside the sphere where 00 = 1; prove that the

potential at an external point P distant r from the centre ia M

\

— aTa /2\i5[>

where a;= r cos POC. [Caius Coll. 1897.]

Ex. 5. If the surface density at any point Q be an integral rational function of

the Cartesian coordinates of Q of a degree not higher than the nth, prove that the

potential at any internal point P is an integral rational function of the Cartesian

coordinates of P also of a degree not higher than the ?ith.

296. Attraction of a solid sphere. To find the potential

of a solid heterogeneous shell bounded by concentric spheres 'when

the density p at any point is a homogeneous function of the

coordinates of the kth degree.

Let the density p be expanded in a series of the form

p = rMFo+F,+ F, + }.

where F,i is a Laplace's function of the angular coordinates. The

potentials of an elementary shell whose radii are r and ?•+ c?r at

an internal and external point respectively are

Fn fry ,,^r> 47rr*+^dr^ F,'
dF=47r?-*+irfrS riF' = ^!^^S

+ 1 \r)
'

2n + 1 \rj r 2n

The potentials of the solid sphere are found by integrating

these expansions between the limits a and b, where a, b are the

internal and external radii of the given shell.

Ex. 1. The density of a shell bounded by concentric spheres of radii a

and b is given by p= mxy. Show that the potential at an internal point is

I nm (h^ - «2) x'y'.

Ex. 2. The density of a solid sphere of radius a is given by p= mxyz. Show

that its potential at an external point is ^*^ n-ma" x'y'z'jr''',

297. Nearly spherical bodie:i. The strata of equal density

of a soUd are nearly spherical and both its inter nal and external

boundaries are surfaces of equal density. Find to a first approxi-

mation its jwtential at an internal and an external point*.

Let any surface of equal density be r = a + af{6, 0, a), where

a is a constant and / a function whose square can be neglected.

* The formulre here given are those used by Laplace to find the potential of the

earth regarded as a stratified heterogeneous body, Mec. Celeste, vol. ii. p. 44.

When the strata are not so nearly spherical that the square of /{0, 0) can be

neglected the algebraical processes become very complicated. For these the reader

is referred to memoirs by Poisson in the Connaissance des Tempa for 1829 and 1831,
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The quantity a is the parameter of the strata, i.e. by its variation

we pass from one stratum to another. Let the internal and

external boundaries be defined by a = ao and a = aj . Let the

density of any stratum be p = F{a).

Let the equation of the stratum be expanded in a series of

Laplace's functions, viz. r = a (1 + 2 Fn) (1).

The solid bounded by this surface may be regarded as a sphere of

radius a, together with a stratum of surface density a1,Yn placed

on its external boundary.

The potentials of this solid, regarded as homogeneous and of

unit density, at an internal and an external point are respectively

{a;'

2
U=^7r

6
"''

2n + 1 a''-'
.(2).

Y

'

an+s\

r' |3^^2n + l/"
j

.(3).

Tf we differentiate each of these with regard to a, we obtain the

potentials of a stratum of unit density bounded by the surfaces

whose parameters are a and a + da. The actual density of the

stratum is p = F (a); if then we multiply the differential coefficients

by p and integrate between the limits a = ao and a = aj , the

required potentials at an internal and external point are found

Yn r'

to be F=47r[ ^^ da 2/1 + 1 a"-''
da

da 2w + 1

an+3")

'n f
da

.(4),

.(5).

the limits of the integrals being ao and ai.

We may also find the potential at any point of the solid

defined by the value a = a' of the parameter. In this case the

point is external to the strata between ao and a' and internal to

those between a and aj. The required potential V" is therefore

the sum of the two expressions for V and V, the first between

the limits ao and a and the second between a' and ai. The result

r'^ d ( F,/>
IS F" = 47r

47rl;7rr«
+ 4- p ja'-' + S

"* "^ ^ 2n + 1 rfa U"--

1 d

da

(lVa"+^)Ma ...(6),
?-'" 2?i -\-\da

where S implies summation for all the values of n which occur in

the equation (1), ?•', 6', <j>' are the coordinates of the attracted

point P, Yn is a known function of 0\
<f>',

a, and p is a function of a.

«: t*

m



150 ATTRACTIONS. [art. 299

t
c
(

I

After the integration has been effected, the potential V" is expressed as a

function of r', 0',
(f>',

and a'. In the terms which contain the small factor Y,^' we

may put a'=r'. In the first term of the second line where there is no small factor,

we use the equation /= a' (1 + S F„').

To obtain the component attractions at P it is necessary to differentiate the

potential with regard to the coordinates of P. If no subxtitiitioh has been made

for a' we must remember that a' is a function of r', d', <t>'. We shall however

immediately prove that the partial diji'crential coefficient dV"lda'= 0, so that the

first differential coefficients of V" with respect to r', 6',
<f>'
may be correctly found by

treating a' as a constant.

We have by differentiating (6)

We now put a"^\r'= a' (1 - y„') and in the remaining terms r' = a'. It is then easily

seen that the terms independent of y„' cancel, while the coefficients of both 1\' and

dY'jda' are zero. There are some remarks of Poisson on this point in the memoir

already referred to.

Another proof. The change of a' into a' + da' transfers an element from one

integral of (6) to the other and this is equivalent to movinj,' the stratum bounded by

the surfaces a' and a' + da' from one side of the point P to the other. But this

change does not alter the potential of that stratum at a point on its surface,

(Art. 145), that is dV"jda'= (i. The potential at P is therefore only altered by the

direct chan^,!. of the coordinates of P.

a08. Ex. There is some reason to suppose that the strata of the earth are

ellipt;cal and that the density decreases from the centre to the surface. Assuming

then that r=a(l + Y^) and that p= ga^'^, where m is greater than - 2, prove that the

potential at any internal point is

iirff -I-
-—

I

—

=

m 3 +m r' r'" 5 + m }
where a is the value of a at the boundary, and r' = a (1 + IV).

299. Let the potential be given at every point of the surfaces of

two concentric spheres, radii a and b, there being no attracting

matter between the spheres. Find the potential throughout the

intervening space.

The potentials, being given functions of 6,
<f>
when r = a and

r = b, may be expanded in one way only in a series of surface

harmonics, Art. 290. Let these expansions be respectively

V= ^Sn and V' = 'ESn, where Sn and Sn are known functions of

6, (j). The general expression for the potential is

V=^{Y,r- + ZJr-+^).

The conditions of the question are satisfied if we take

Yn a^ + Z„/a»+i = S, , Yn b" + Zn/b^'^' = ^V-

Thus Yn and Zn are found. We know by Art. 133 that there is

but one value of V which satisfies the given conditions.
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If the inner sphere (radius a) include all the attracting matter

we may put 6 = x , and then Yn = 0. The potential V takes the

form V=1Sn (a/r)"*"' and has only the inverse powers of r.

If all the attracting matter is outside the sphere r = 6 we may
pu b a = 0. We then have Zn = and the potential has only the

direct powers given by F = lE^Sf^ (r/a)^.

300. Solid of revolution. To find the potential of a solid of

revolution at any point P not occupied by matter.

Let the axis of the solid be taken as the axis of z with any

suitable origin. We have then by Art. 283,

F=Fo+-"+F,r + ^+ (1).

Since the attracting body is symmetrical about the axis of z it is

evident that F cannot be a function of the angular coordinate ^.

Hence by Art. 286, Y^ = CoPq, Z^ = Cq'Po, Fi = c^Pl, &c., where Co, Co'

&c. are as yet undetermined constants. To find these we put the

attracted point on the axis; we then have Po= 1, Pi = 1, &c. The

equation (1) thus becomes

F=c„ +
Ci

+ Cir + ^, + ....(2).

Suppose then we know the potential of the solid at all points

of its axis in a convergent series, then (2) is a known series, and

therefore the coefficients Co, c^, &c. are also known. The series (1)

for the potential at P then becomes

F = Co + ^^lP„ {^^^i Pi + .(3).

Thus the potential has been found.

In this way we arrive at a theorem of Legendre, viz. if the

attraction of a. solid of revolution is J'nown for every external point

which is on the prolongation of its axis, it is known for every

external point. See Todhunter's History, Arts. 782, 791.

301. It may happen that the expansion (2) giving the

potential at points on the axis takes different forms at different

points. Thus when r is less than some quantity a there may be

only positive powers of r, and when r is greater than a there may
be only negative powers. Again, if the solid of revolution have a

cavity extending to the axis, (2) may assume one form witfiin the

cavity and another outside the solid.

\
!
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If the solid have a ring-like hollow symmetrically placed about

the axis of revolution but not extending to it, it is clear that

a point P situated in this hollow has no corresponding point Q on

the axis from which the potential may be derived. In such a case

the values of some of the constants Cq, Cj, &c. may be determined

when we know the values of V along some line passing through

the cavity and making an angle 6 = 0. with the axis. It should

however be noticed that one of Legendre's functions may vanish

when 6=a and the unknown constant which accompanies that

function would remain undetermined. Since each Legendre's

function is unity when ^ = this does not occur when the values

of the potential along the axis are given.

d^ _302. By integration I

tr

\ 1 T— // ., 7.A- We write
' a + cos y v(a" — b^)

a = 1 —hp, h = h \J{p'— 1) and expand both sides in powers of h.

Since only the first power of h occurs in the denominator on the

left-hand side, the general term is easily found. Comparing the

coefficients of /i" we have

-T b±V(2>'-l)cosVr}"c?^^-P„ (4).
Try

This formula is given by Laplace, Mecanique Celeste, Tome v.,

page 40.

Since p is less than unity, this integral appears to be imaginary.

If however we expand the ?ith power, the integrals of the odd

powers of cos i|r will vanish between the limits, and a real

expression for P„ will remain. We may therefore take either of

the signs before the radical. There is another integral which may

be deduced from (1), viz.

dyfr
.(5).

(^ + Vp^ - i cos ^|r)"+l

Suppose that for any portion of the axis the potential is given

by V=f{r), where /(?•) is such an expansion as (2) Art. 300 with

either positive or negative powers of r or both. Substituting

for Pn in (3), the integral (4) in the terms with positive powers

of r, and the integral (5) in those with negative powers, we have

V = - I ' f(rp ± r ^Ijf
-'

1 cos T^) rfx|r (0).

Thus when the potential is known along the axis in the form

V=f(r),t

definite int

other forn
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the form

V=f(r), the potential at other points is known in the form, of the

definite integral (6).

other forms for P,^ and therefore for V may be obtained by other substitutions.

For example if we begin with r -
Jo a +

df
6 cos 2^ + c sin 2^ sj {d^ - b- - c'^)

and put

a = l-ph, b=ph, c=t''v'(-1) we find

2" /"
P„=-

I
(8in^)''{2)sin^±^(-l)coBt;'}"d^.

This result is due to Catalan, Bulletin de Soc. Math, de France, 1888, vol. xvi.,

p. 129.

303. Ex. 1. To find the potential of a uniform circular ring of infinitely small

section at any point not on the axis.

Let the origin be the centre of the ring and let the axis of the ring be the axis of

2, Let a be the radius of the ring, M its mass.

The potential at any point Q on the axis distant r from the origin is evidently

lllja'^ + f^. We shall expand this in powers of rfa or ajr according as r is less or

greater than a. Taking the fiist supposition, we have

-- J/(, l/r\2 1.3 /r\* 1.3.5 /r\» 1

When r is greater than a the expression may be deduced from that just written

clown by interchanging a and r.

The potential of the ring at any point P not on the axis is therefore

,. Mi. l^/ry 1.3„/rV 1.3.5„/rV,o 1

according as ?• is less or greater than a.

Ex. 2. A solid ring is generated by the revolution of a closed curve about an

axis Oz and is symmetrical about the equatorial plane. Prove that the level

surfaces in the immediate neighbourhood of the intersection O of the axis with that

plane are given by 2z'^ -x--y'^=p where ^ is a constant.

Since the potential at a point on the axis is of the form A + Br^, the result

follows from Legendre's rule. Art. 300.

Ex. 3. A solid anchor ring is generated by the revolution of a circle of small

radius «, the centre describing a circle of radius c. Prove that in the neighbourhood

M ( a- 2z^ — a;* - v'^\
of the origin tht potential at the point xyz is V= — ]l - ^^ 42— f

•

Ex. 4. Prove that the potential V of a homogeneous oblate spheroid of massM
at an external point P is

-?{'-'^'(?y^i^^'(vy-
(-1)"-3.P„, (ae\

(2k+1)(2h + 3) V'-y/

2»

+ &C[•

ofwhere r, d are the polar coordinates of P referred to the centre and axis

revolution, and e is the eccentricity of the generating ellipse.

To prove this we first find the potential V at an external point on the axis and
then use Legendre's rule.

By using Laplace's rule. Art. 297, we at once deduce that the potential of a

'*«'
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heterogeneous spheroid whose strata of equal density are co-axial Bpheroids and

f dV
whoBt boundary is a surface of equal density is jp da, tlie limits being «=0

to a. Here a is the semi-axis major of any spheroid, p =/(</), e = yf/(a) are the

corresponding density and eccentricity and rt = a at the surface.

If this body represent the earth, we notice that e is very small and a few terms

only of the series are necessary to find the potential even at points near the surface.

304. Clairaut'B theorem. To investujate the law accurdituj

to which gravi at w loint on the surface of the earth varies with

the position of "' int*.

Without mat- ' hypothesis respecting the distribution of

matter in the intc.ior of ! .

'> earth, we assume the principle that

the surface of the earth is a level surface of the attraction of the

earth and of the centrifugal forces. If w be the angular velocity

of the earth, the centrifugal acceleration at a distance p from the

a.xis is (o'-p and the potential is itw'^jo-. At all points of the surface

we have therefore F+^w-r- sin- ^ = /c (1),

where B is the co-latitude of the point, r the radius vector and k a

constant.

The potential V is 'Iierefore such that at all points of the

surface its value is given by (1), and at all points infinitely

distant F=0. It follows by Art. 133 that the potential V is

determinate at all points of space external to the surface.

Let the equation of the surface of the earth be

/•-:C(l + J<i + Mo+...) (2),

where Ui, u.., &c. are Laplace's functions of the first and higher

* This famous theorem was given by Clairaut in his Th6orie de hi figure de la

terre, 1743. No assumption was made about the law of density in the interior

except that the strata of equal density are spheroids of small ellipticity, and that

the external surface is one of equilibrium. The theorem was extended by Laplace

who, assuming only that the strata are nearly spherical and the surface stratum

one of equilibrium, v. tablished a connexion between the form of the surface and the

variation of jjravity which in the particular case of an oblate spheroid gives directly

Clairaut's theorem. Stokes, without making any hypothesis respecting the state of

the interior of the earth but assuming that the surface is one of equilibrium nnd
nearly spherical, obtained Laplace's equations. Canib. Phil, Trans. 1849. O'Brien

in his Mathematical 'Tracts, 1840, remarks that if the surface of the earth and also

the law of variation of gravity are known the effects of the earth's attraction on the

moon follows as a natural consequence independently of any theory except that of

univer8;il gravitation. These effects may also be deduced from MacCuUagh's theorem

on the potential of a body given in Art. 135. See also the author's treatise on Rigid

Dynamics, vol. ii. chap. xii.

The extension of Clairaut's theorems to include terms of the second order of

small qnantities was first effected by Airy, Phil. Trans. 182(5, part in. This is also

investigated by Callandreau, Annates de I'Observatoire, Paris, 1889. There is also

a paper by G. H. Darwin iu the Monthly Noticei, of the Astronomical Society, London,

1899, who gives a short summary of the works of Helmert, Callandreau, Wiechert

on the terms of the second order.
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orderrt. Wc shall assume as the result of observation that the

surface is so nearly spherical that all the terms after the first are

siiKill quantities. The origin of coordinates is either on the axis

or distant from it by small quantities of the first order. In the

latter case the term (o'^r-iim- d in (1), which already contains the

siiiall factor to", is altered only by terms of the second order. The

constant c is the radius of the sphere of equal volume and the

term i/o has therefore been omitted, Art. 293. The term Wj would

also be zero if the origin were taken at the centre of gravity of the

volume.

The potential at all points external to the earth is given by

F„V=^+^' + (3).
r r^

where the constants in Yq, Fj, &c. depend on tho.se in w,, u^, &c.

Since w- is small, it follows from (1) that Vis nearly constant

over the surface of the earth. Hence when we put r = c, ^e

expression (3) for V must differ from its first term only by sn. ii

quantities. It follows that the functions Fj, K, &c. are small.

Using (1) and (3) we find

where sin*^ has been arranged as the sum of two Laplace's

functions. This equation gives r as a function of 6,
<f)
and must

therefore reduce to an identity if we substitute for r from (2). In

this substitution we write the value of r true to a first approxi-

mation in the term Y^/r, but in the subsequent small terms it is

sufficient to put r = c. We therefore have

Y
- (1 — ?<1 — l(.,

c
-

C' C
Equating to zero the functions of the same order, we deduce that

&c.) + „' + ^' + &c. + i w^c^(K ^ - cos' 0) = K.
C"

0, Fi = cFoi<i, F2 = c''FoM2-i(wV(^-cos''^), &c.

F= Fo ( - + J + ..,- + &c.
j
-

2^3 (i - cos'' d)... (4).
\,r r r

This formula expresses the potential of the attraction at any point

of e.dernal space when the form of the surface is known. It is

evident that Y^ is here the mass of the earth.

305. The force of gravity at a point on the earth's surface is

the resultant of the attraction of the earth and the centrifugal

'S''i
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force due to the rotation. If v be the angle between the vertical

and the radius vector, gcosv is the component along the radius

vector. Since v is very small, we have

^ = _A(F + ia)Vsin*^)

= ^
(^p

+ -^ + ^,
- + &c.j - -^^ (J

- cos* $) - co'r sm" ^,

after substituting for r from (2) and rejecting the squares of small

quantities we find

5f = ^ (1 - 2m, - 2w, - &c.) +^ (2m, + 3m2 + &c.)
c c

- fwV (^ - cos' 6) - a)*c (f + J
- cos'' (9).

Let G be the mean value of g taken over the whole surface of the

earth, then (Art. 288)

G = JJg sin eded(f>/4>7r = ?* - ^a'c.
C

Let m represent cd^c/G, we then have

(jf = (? {1 -'fm (^ - cos' ^) + u^ + 2m3 + 3m4 + &c.} (5).

The law of vanation of gravity is thei'efore found, when the form

of the surface is given.

306. The surface of the earth is known to be very nearly an

oblate spheroid of such small ellipticity that the difference of the

polar and equatorial semi-diameters is only 1 /300th part of either.

We may therefore write its equation in the form

r = a(l-ecos'^) (6).

Putting 6 — ^7r and ^ = in turn we see that the equatorial

and polar semi-diameters are a and a (1 — e). In order to make a

comparison between the equations (6) and (2) we write (6) in the

form r = a {1 - ^e -f € (^ - cos' 6)} = c {1 + e (^ - cos' 6)].

We have therefore

c = a (1 — I e). Ma = e (^ — cos' 0), u^ = 0, M3 = 0, &c.

The expression for g therefore becomes

g=G{l- (fm - e) (^ - cos' d)} = G'{l+ (fm - e) cos' 0}

.

. .(7),

where G' = G {I - ^(^m-e)}. Putting =W we see that G'

represents the acceleration due to gravity at the equator.

The centrifugal force at the equator is co-a and the time of

rotation of the earth (viz. 27r/a)) is 24 hours. Taking a to be

I
' I
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about 3963 miles, and mean gravity to be 321 8, we find that

at'ajG = 1/289. Since this ratio contains the small factor w", we

may put a = c and G = 0'. We may therefore define the quantity

m-oi'c/G to be the ratio of the centrifugal force at the equator to

equ'iturial gravity.

307. The potential of the earth at any external point follows

from equation (4). If we put E for the mass of the earth, we

have Y^ = E, (a'c — mG = mElc\ The potential is therefore

.(8).

If P, Q be the polar components of the attraction at any external

point, say the moon, we have

p dV E
^
„ ,. .Ec\ -^ ,,^ = -rf-^-=,-:.+3am-e)-^ (cos^^-J).

^" rdB^ -2(im-5)—-sm^cos^.

308. By comparing Laplace's expressions for the potential,

(4) or (8), with that given by MacCullagh (Art. 135) we may
obtain some information respecting the distribution of matter in

the interior of the earth. If the origin in (2) be taken at the

centre of gravity of the volume, the term u^ becomes zero. Since

the term containing 1/r'^ in the potential is then absent the origin

is also at the centre of gravity of the mass (Art. 135). The centres

of gravity of the volume and mass must therefore coincide.

Since by (8) ^he potential is independent of the longitude, the

same must be true in the expression

r 2r»
-r ^'-

This requires that the axis of rotation should he a principal axis of

the mass. Again writing B = A, and I=A sin- d + C cos'^ 6, we see

fU .
G-A 2 ( m\

that
iV =3V'-2J-

309. Clairaut's theorem to a second approximation. It is not difficult to

carry the approximation to the second order of small quantities if we follow the

same reasoning. We make no assumption about the law of density of the earth

except that the potential is symmetrical about the axis of rotation and on each side

of the plane of the equator. As a trial solution, we omit the even powers of 1/r

and take instead of (1) and (<3) of Art. 304 the equations

V-\-\u)^r'^^iv?e= K. .(1). v=- +^-+-^^ +..
r r^ J*

.{3),

m

m

'
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tbu Maine way. We then include a fourth term iPJr'' in o(|uation (9) in whicii S ia

a Hinall ({uatitity of the third order. We have aUo an additional term in (2). The

nntncriual culculationa are troublHtiome and the additional tern, i too Hniall to be of

any inturoHt.

310. Figure of Saturn. 2'o Jind, to a first approximation,

the effect on the figure of Saturn of the attraction of the ring. We
suppDHC the form o\ Saturn to be nearly Hpherical, the ring to be

circular, concentric, homogeneous, of small section and situated in

the plane of the planet's equator. The planet rotates with a small

iuigular velocity. The principle of the investigation is that the

surface of Saturn is a level surface of the attractions of the planet,

ling and the centrifugal forces.

Let the polar equation of the surface of Saturn be

r = c(l + F,+ F, + &c.) (1).

Since the surface is nearly spherical, all the harmonics Fj, Fj,

kc. are small (pmntities whose squares and products are to be

neglected. By omitting the term Fo, we have made c to be the

radius of the sphere of equal volume. Also the mass ilf =|7r/3c',

where p is the density. By Art. 294 the potential of Saturn at

an external point is

/ = '^'ii-^-.f.+ ^-5^^ (^>

We now substitute from (1) in the first term of (2) and put r = c

in the small terms. We thus find

F, = -^(l-F,-F,-&c.) + ^f(^^' + ^^ + &c.)...(3).
c c \ o o /

The centrifugal force at any point is (o^x, where w is the

angular velocity of the planet and x the distance from the axis

of rotation. Putting x = r sin 6, the potential of the centrifugal

forces becomes

v,=!!:^=^'(i-P,( (4).

Since or is small, we put /• = c in this formula.

Lastly if Mjn is the mass of the ring, supposed to be condensed

into a circle of radius a, the potential of the ring is, by Art. 303,

/'4:{'-i^»O'-o^'0-H <^)-

Since l/?i is small, we again put r = c in the small terms.

We now substitute these three potentials in the equation

V,+ Vc+Vr = K (6),

I
I

3
> c

« a
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M

( C'.f

iz>r

where /e is a constant. Since there can be but one expansion of

the potential in harmonic functions, the sums of the several

potentials of each order must separately vanish.

The potentials Vc and Vr contain no harmonics of an odd

order; hence those in Fg must also vanish. We therefore have

71 = 0, ¥3 = 0, &c, After substituting for Vg, Vc, Vr and

equating to zero the sums of the harmonics of the second and

fourth orders, we have

c8 G)'N T. TT 9 fcYp
[a)

^*'K = -f
2 V2«a='

"^ 47rp
j '^-' F.=

16/i

The remaining terms contain higher powers of cja. Since this

fraction is nearly ^, these terms may be disregarded in a first

approximation.

Representing these results by F, = — /3Po and Yi = 'yPi, we see

that a near approximation to the form of Saturn is given by

r = c[\- /3P, (cos d) + 7P,(cos 6)] (7),

where 6 is the angle the radius vector makes with the axis of

rotation. \

If the last term of (7) were omitted the surface would be an

oblate spheroid, Art. 306. The effect of the small term ',P^ is to

lengthen slightly both t\\v polar and equatorial diameters and to

shorten those in middle latitudes.

The real shape of Saturn was at one time a matter of great controversy. The

first observations were made l)y Sir W. Herschel who found that the deviation of

the figure from that of an oblate spheroid was so great that the longest diameter

was in latitude 4S° 20'. Herschel believed that this peculiarity was due to the

attraction of the rin^- But it was soon discovered that this opinion was not

confirmed by a theoretical examinatioii. of the effect of the ring. Bessel however

afterwards proved by direct measurements of several diameters that the true form

was very nearly that of an oblate spheroid. Probably the discrepancy was due to

an optical distortion of the planet when seen through its atmosphere. These

measurements of Bessel are given in a memoir On the dimemions and position

of the ring of Saturn (Did those of the planet. See a translatii)n in the Additions a

la Connaiss'inee des Temps for the year 1838, page 47.

311. Ex. 1. If the free surface of equilibrium of the earth is an ellipsoid, and

if € is the mean ellipticity of the meridians, r; the ellipticity of the equator, and /

the longitude reckoned from the meridian of greatest ellipticity, and X the latitude,

provethat
f/
= G {1 - (fm- e) (^ -8in2\) + i,,cos-Xcos ?/}. [Math. T. 1807.]

Ex. 2. Jacohi's ellipsoid. An ellipsoic revolves about a pr'ncipal diameter with

an angular velocity which is not necessarily small. Prove that the internal level

surfaces due to the attraction and the centrifugal forces are similar ellipsoids.

Prove also that the resultant force at any point P on a given level surface is
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proportional to the length of the normal intercepted between P and the principal

plane perpendicular to the axis of revolution. If the boundary of the ellipsoid is

itself a level surface and the angular velocity is small, prove by comparing this

result with Clairaut's formula for gravity that e= 5wt/4.

By adding to the value of V in Art. 212 the terms due to the centrifugal forces,

viz. 01* (x- + »/), we see at once that the level surfaces are similar ellipsoids. By
Art. 46, the force at any point P on a given level surface is inversely proportional

to the distance dp between two neighbouring level surfaces. In our case dp is

proportional to p (Art. 195) and therefore inversely proportional to the length of

the normal. For points on the axis of rotation but on different level surfaces, the

force is Cpz, (Art. 213).

313. Ex. Let the earth be a solid heterogeneous nearly spherical nucleiis

completely covered by a homogeneous ocean. If the system is made to rotate, with

equal angular velocities, about the principal axes at the centre of gravity of the

nucleus in succession, the ocean will assume three different forms. Prove that the

mean of the three radii vectores in any given direction is the same as the radius

vector of the ocean when supposed to be in equilibrium on the nucleus without

rotation.

Let r = a (1 + SjtJ, /=?/ (1 4 Si'„) be the equations of the surfaces of the nucleus

and ocean as in Art. 304. Then since the nucleus and the mass of the ocean are

given, rt, h and h„ are known and we have to find v„. The potential of a homo-

geneous masd of fluid ex 'lending from the centre to the surface of the ocean is given

in (3) of Art. 297. Tht potential of the excess of the nucleus above that of an

equal volume of fluid, and the potential of the centrifugal forces are given in Art. 304.

The sum of these three potentials is constant along the surface. By equating to

zero the sum of functions of the same order, we notice that r„ is independent of w
except when n= 2. We find that y.j= Zj + A{^- cos'^ d) where Z^ is independent of w,

and A is a multiple of w. Since the sum of the squares of the direction cosines of

a radius vector is unity, the mean of the three values of v, is independent of w.

313. Ex. Let the earth consist of a spheroidal homogeneous fluid nucleus

surrounded by a consolidated crust whose external surface is also a spheroid, the

two spheroids being level surfaces of the attractions and centrifugal forces. If e', e

1)6 the ellipticities ; a', a the mean radii of the inner and outer spheroids ; p', p the

densities of the two substances, prove that

(6'-6)p + lf'p'= JmA,

p'-p=(^-p)[l)\

where the mean density A is given by the last equimou. The whole mass is

supposed to rotate about a principal axif at the centre of gravity with a small

angular velocity w.

To obtain the first two equations we use the formulte (2) and (3) of Art. 297 to

find the potentials of the two portions of the earth. The sum of these together

with that of the centrifugal forces is constant along each spheroid.

Ill the case of the earth A = 2p, jn= 1/289, e = 1/300, and a = 3958 miles. With
these numbers the Rev. S. Haughton deduced from these equations that the

thickness of the crust is 768 miles. Tram. Royal Irixh Academy, 1851. vol. xxii.

dated 1855. It is remarkable that the thickness should be so great. The first

K. S. II. 11
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attempt to discover the thickness of the crust was made by W. Hopkins, who

estimated the minimum thickness to be not less than one-fourth or one-fifth of

iiie earth's radius, Phil, Trans. 1842. Much has been written on the subject

since then.

Magnetic Attractions.

314. Potentials of Magnets. Two equal particles, each of

mass m, are placed at two points A, B, whose distance apart is 2a,

Any particle being placed atP one of these repels the particle at P,

while the other attracts it. Such a combination may be called a

simple magnet*'. See the figure of Art. 316.

It will be con\^enient to take repulsion as the standard case.

Let the mass of the particle at A be called positive, then that at

B is the negative mass. The particle at P, if of positive mass,

will then be repelled by the particle at A and attracted by that

at B. The ends -^1 and B are called respectively the positive and

negative poles of the magnet.

Since the particle at each end of a magnet repels a particle of

the same sign, it is a matter of convention to call one positive

and the other negative. The convention adopted in Maxwell's

Electricity is that when used as a compass the positive pole points

north (A.rt. 394). It follows that the north pole of the earth

attracts the positive pole of the magnet. The south pole is

therefore the positive pole of the earth.

315. The line BCA is called the axis, and the distance BA
the length; the positive direction is BA. The middle point C is

called the centre. The quantity m is called the strength and the

product of the length by the strength, viz. '2am or M, is called the

magnetic moment.

If the point P lie in the axis, the magnet is said to be end on.

If the axis is perpendicular to the distance CP, the magnet is

broadside on.

The strengths are so measured that the force exerted by m on

m' at a distance r is nim'/r^ As explained in Art. o the dimensions

* The latin treatise of W. Gilbert of Colchester, De Magnete iZr., 1600,

(translated by F. Mottelay), 1893, is generally referred to as one of the earliest. The

boo) ' scudses in general terms, and withoui Mathematics, the magnetic theory of

the lb. Tl"^ mathematics of Magnetism was first properly discussed by Poisson,

and he was scon followed by other great mp.thematicians. In 1H4!) Kelvin gave a

complete theory which, without assuming any hypothetical magnetic fluid, is

founded on facts generally known, s'?e the Reprint of yri^wns on Klectrostatics (iml

Hlag)tetism. The student of Magnetism will find the treatise of J. J. Thomson of

great assistance, and also that of Maxwell when more advanced in the subject.

I
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of strength are LF^ where /- represents length and F force. The

dimensions of magnetic moment are L^F^.

lu all that is here said (unless when otherwise specified) the magnets are supposed

to be used in air. The effects of the medium are not included.

316. To find the potential of a simple magnet at any point P.

Let r be the distance of P from the middle point C of AB and

let 6 be the angle PCA . We notice that the angle $ is measured

from the positive end towards P. We have in a field without

induction

"ap^bp
m m

'^{r^ + «'•*- 2ar cos 6) V(^''" + a"' + 2 ar cos 6)

Zam
cosd + P. (" + &C.

When the length 2a of the magnet is small compared with the

distance r, it is often a sufficient approximation to reject all but

the first term of this series. Put M—2am, the potential of the

maffnet as given by its principal term %s then V = ^^
—

.

The

order of the first term rejected is the fraction (a/r)' of the term

retained. Magnets in which it is sufficient to take account of the

principal term only are sometimes called small magnets.

Since repulsion has been taken as the standard case the

component forces (Art. 41) at P in the direction GP and perpen-

dicular to CP are respectively

dVF=- : = 2il/cos^ _dV _Msme
dr ~

r» ' rd6~ r* '

the latter being measured positively in the direction which makes

6 increase. In the figure the arrow-heads

indicate the directions of the forces at

P due to the repulsion of A and the

attraction of B ; while the double arrows

indicate the positive directions of the

components F and G.

It appears from the invooi/igation that both the potential and

the force at any point P are not altered by changing the length

2a and the strength m provided the product 31 = 2am is kept

unchanged. A small magnet is therefore given when we know

(1) the position of its centre C, (2) the positive direction of its axis

nnd (3) the magnetic moment M.

11—2

::a.

":3

«
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317. Resolution of TJagnets. When a small magnet of

moment M' is end on to P so that ^ = 0, it follows from Art. 316

that the resultant force at P is directed along CP and is equal to

2M'/r^. When a small magnet of moment M" is broadside on to

P so that 6 = ^TT, the resultant force at P is perpendicular to CP
and is equal to if"/r*. If we take M' =M cos 6, M" = M sin 6,

we notice that the component forces at P due to the magnet M
are the same in direction and magnitude as those due to tAvo

magnets M\ M". It therefore follows, that the small magnet M
may be resolved into two components M cos 6, M sin 6. This rule

being true for a rectangular resolution may be extended to include

all cases. Hence small magnetic moments may he compounded and

resolved by the parallelogram law.

One advantage of the resolution into components "end o/i"

and " broadside on " is that the direction of the force due to each

component is a,t once evident, the direction being in every cam

parallel to the axis of the component magnet. The force a.t P due

to a magnet "end, on" acts in the positive direction of its axis;

the force due to a magnet "broadside on" acts parallel to the

negative direction of the axis.

318. Mutual action of two small magnets. Ldt the two

small magnets BCA, B'G'A' be in one plane and let their moments

be M, M'. Let CC =:r, and iet r ^ measured positively from

C to C. Let 0, 6' be tbe angles- iie , jsitive directions of the

axes make with the positive diredion of r, that is with GO'

produced, and let B'G'A' = 2a'.

We resolve the acting magnet M into M cos6, Msin 6. These

produce forces F and G at the

centre G' of the magnet B'G'A' nA
,

respectively where //_ ,J-f???^.

i'= 2# cos (9/r«

and G = Main 6/ 7-^. The former

acts aloiig CG' and the latter perpendicularly to GG' in a direction

icnling to increase 6.

These may also be regarded as the forces at any point in the

neigh 'jourhood of G', v'.rovided the magnets are so small that we

can reject I'a'/r and Ga'/r. We therefore apply them without

alln>ation of magnitude or direction to the pole A' and also with

B
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their signs reversed to the pole B'. The action of the one magnet

on the other is therefore a couple. See Art. 320. <

To find the magnitude of the couple, we take the moment about

the centre C of the force which acts at the positive pole A' only and

double the result. The couple tending to increase B' is therefore

r = - 2m'a' (Famd'+G cos 0')

MM' '

= - -^ (2 cos 9 sin $' + sin 6 cos 6').

319. When the two jaognets are not in one plane we proceed in

the same way. Let CC be taken as the axis of x, and let (X/av),

[y^fi'v) be the direction cosines of the positive directions of the

two magnetic axes. We resolve the acting magnet into M\, Zffi,

Mv. The former being "end on" produces a force at C" which acts

in the positive dii'ection of its axis and is therefore X = IMXjrK

The two others being *' broadside on " produce forces which act in

the negative direction of their axes and are Y= — Mfijr^ and

Z= — Mv/r^. These forces are transferred to act at the positive

pole J.' whose coordinates are x' = a'\', y' = a'fi, z' = a'v. Twice

their moments about any axes having C" for origin give the

couples which represent the action of one magnet on the other.

The couples about the axes of x, y, z are (by Art. 257, vol. i.)

To simplify the results, let the plane containing GC and the

magnetic axis B'C'A' be the plane of xz. Let 6, 6' be the angles

the magnetic axes make with the axis of x and let ^ be the angle

between the planes in which 6, 6' are measured. The coordinates

of A' are then x' = a'cos6', y' — 0, z' = a'sin6'. The forces

X = 2M cos djr^ and Z= — M sin 6 cos ^/y-^ act in the plane xz and

produce a couple

r' = -
MM'

{2 cos 6 sin 6' + sin 6 cos 6' cos 0}.

This couple when positive tends to increase 6'. The force

r= — il/sin ^sin<^//^ produces a couple A' in the plane yG'A'

wher(
., MM' . . . ^A = ., sm C'sm 0.

When positive this couple tends to increase
(f)
and acts from A' to ;/.

When the plane xz contains the axis B'C'A', X = cos^, fx= Bin d sin q^,

v--9.in0cos<f>, \'=:cose',
fj.'
= 0, »'' = 8in^'. The couples Jk'= - K^sind' + KfCOsd',

and 1"= - A'y may then be at once deduced from those of K^', Ky, K,'.
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aao. The component forces at the poles A', B' have been regarded as equal in

magnitude but opposite in sign. To this degree of approximation the forces which

tend to move the centre of gravity of the magnet B'A' are zero. This means that

the expressions for their magnitudes contain an additional factor r in the

denominator so that tlie forces vary a» the invene fourth power of the distance.

These forces are very small and are generally neglected. We must however

notice that, though the moment about C" of the forces in Art. 318 which act between

the poles of the magnets is F', the moment F about C of the same forces differs

from F' by the moments of the forces which act at the centre C. Though these

forces are very small, yet the arm r is here very great and the resulting couple is of

the order l/r^.

It is sutlicient to indicate the method of finding these forces and to state their

magnitudes. Let (x, y, z), (x', y', z') be the coordinates of the positive poles A, A'

of the two magnets referred to origins C, C" respectively. Tho distance D between

^. ^' is D^=z(r + x'-x)^ + {y' -yf+(z'-z)^.

The forces A', Y, Z are then

X'= ^^'^ (r + x'-x), Z' = &c.

We now expand these expressions in inverse powers of r and effect the summation

of each terra for positive and negative values of m, m'. Finally we write .r = rt\,

x'= a'\' &c. We then tind

X'=-^^ (2\X' - mm' - .'/), Y' = ^-^' i\u' + W), Z'= ^-{\v' + \'v).

Ex. Two small magnets float horizontally on the surface of water, one along

the direction of the straight line joining their centres and the other at right angles

to it. Prove that the action of each magnet on the other reduces to a single force

at ri^ht angles to the straight line joining the centres and meeting that line at one-

third of its length from the longitudinal magnet. [Coll. Ex. 1900.]

321. Potential energy. A small magnet, whose, moment is

M\ is acted on by a number of given magnets; it is required to find

the potential energy. Let m' be the strength, 2a' the length of the

small magne*- B'G'A', then M' = 2a'm'. Let V, V be the potentials

of the f elu Ht the negative and positive poles of the small magnet,

then y - - {V -~''^)j2a' is the component of force, due to the

field, at the sraall magnet in the positive direction of the axis,

Art. 40. The umtiu"' potential energy is, by Art. 59,

The regtiired potential energy is therefore found, by multiplying the

monunt M' of tue small magnet by the axial component of force F'

and changing the sign.

322. To fi,nd the potential energy of two small magnets. We

use the same notation as in Art. 319. The component forces due
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to the magnet M&re X= 2M\/r^, F= - Mfi/r^, Z= - Mv/r^. The

resolved part F' of these along the axis of the magnet M' is

-f" = -3 (2W' — fifi — vv).

The required potential energy is, by Art. 321,

MM'
F=.-^(2\\'-/./-vO (1).

If yfr is the angle which the positive directions of the magnetic

axes make with each other

cos yjr = W' + fifi + vv
;

MM'
W^-^'^'^ (3X\'-C0S^/r) (2).

If the magnetic axes BCA, RCA' make angles 0, 6' with CO'

and if the planes ACC, A'CC make an angle
<f>

with each other

we may p\it, as in Art. 319,

\ = cos 6, /i = sin $ sin <^, p = sin 6 cos
<f),

X' = cos 0\ /J.' = 0, v = sin 0',

MM'
.-. W=- ^ {2 cos d cos 6' - sin 6 sin ^' cos <^} (3).

The potential energy W being known, we deduce without

difficulty the couples which represent the action of the magnet

M on M'. Referring to the figure of Art. 318 we see that

V ^ — dWjdO' is the moment of the couple in the plane in which

6' is measured (Art. 41). The couple in the perpendicular plane

(that is the plane yC'A') is ^' = -dWlsind'd<\>.

Ex. 1. If the law of force be the inverse xth power of the distance, prove

(1) that the potential of a small magnet at any point P is F=il/ cos ^/r* and

(2) that the potential energy of two small magnets is

W= ' {COSI/'- (K + l)C0S^C03e'},

where the notation is the same as in Art. 322.

To prove the first part we proceed as in Art. 316. To obtain the second result

we follow the method of Art. 322, using the rule in Art. 321.

Ex. 2. A small magnet free to move about its centre is acted on by another

fixed magnet and the law of force between the poles is the inverse xth power of the

distance. The magnets are placed with the axis of one along and that of the other

perpendicular to the straight line joining the centres. Prove that the couple

tending to produce rotation in the free magnet when the fixed magnet is " end on "

is K times that when "broadside on."

By making experiments on the magnitudes of these couples Gauss determined

the value of k and thus proved that the law of force is the inverse square. The
experiments are shortly described in J. J. Thomson's Electricity and Magtutiam.

'
f^ I
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323. A series of particles whose masses (positive or negative)

are itiy, m^, &c. are placed in a straight line Ox at given points

A^, A.i, &c. Find the equations of the lines of force.

Let r^,r^, &c. be the distances of any point P from Ai,A^,kc.\

6i,di, &c. the angles these distances make with Ox, Let </>!, <^a, &c.

be the angles the tangent to the line of force through P makes

with the radii vectores r^, r.^, &c. ; then taking any one of these

sin
<f)
= rdOjds.

Since the resultant force at P acts along the line of force, we

have S — sin <f) = 0, .'. Swi— = 0.

When the points -4i, A^, &c. lie in the axis of a;,

7-1 sin 6i — ?'„ sin $^ — &c.

Hence Sm sin 6d6 = 0, .". "^.m cos 6 = K.

The equations of the lines of force and the level surfaces written

at length, are therefore

nil cos 6i + 7?ia cos $2 + &c. = K,

nii/ri + mz/r^i -f &c. = A",

where K and K' are arbitrary constants.

In a magi^et m^ = — nii , the lines of force and the level

surfaces reduce to

cos 6 — cos 6' — A'l, l/7'i — 1/ro = Ki'.

Line of force from one particle to another. When a line of

force passes through one of the attracting or repelling particles,

the radius vector at that particle becomes a tangent and 6 is then

the angle that tangent makes with the positive direction of the

axis of X. Let a line of force pass between the points Ai, Ak,

Then, equating the values of K at these two points, we have

nil + &c. + nii cos di — nii+i — &c. = nii + &c. + nik cos Ok — nik+i — &c.

.
•

. nil sin-' i ^i + mt+i + &c. + mk-i + nik cos^ ^ Ok = 0.

If all the masses have the same .sign the only line of force

which can pass from one particle to another is the straight line Ox

on which all the particles are situated.

Line offorce from a particle to an infinite distance. Let a line

of force pass from the particle nii to a point at an infinite distance

in a direction which ultimately makes an angle /3 with the axis

of X. We then have in the same way

Wi + ma + &c. + nii cos di — nii+i — &c. = (S??t) cos (i.

Il
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In a magnet where Svi = 0, no line of force can pass to an

infinite distance except the one along Ox.

Parallel rods. We may obtain a corresponding theorem for a

series of thin parallel attracting rods. Let the rods be cut by

a perpendicular plane in the points ^i, A^, &c. and let (rj, 6i),

{r.., 6.), &c. be the polar coordinates of any point P in this plane

referred to Ai, A^, &c. as origins. If wij, Wg, &c. are the line

densities of the rods, the lines of force and level curves in this

plane are respectively Xmd = K, Sw log r — K'.

324. Ex. 1. Prove that the lines of force of a Bimple mj^^net BCA (not

necesaarily small) are symmetrical curves concave to the magnet ..'"I pissing

tliruuj^h its poles. If P be the middle point of one of the lines of force, prove that

the curvature at V is three halves that of the circle BPA, and that the curvatures

at B and A are zero. If BPA be an equilateral triangle prove that the line of

force meets the magnet at right angles. [Math. T. 1871.]

Ex. 2. A small fixed magnet BCA acts on a small magnet B'G'A' free to turn

about its centre. Prove that when the free magnet is in equilibrium its axis lies in

the plane ACC and that tan 0'= -^ tan 0.

Let the magnetic forces of the earth be represented by those of a small magnet

placed at the centre with its positive pole pointing south. The north-seeking pole

of the compass needle is then its positive p^/le. It follows that in north magnetic

latitude \, the dip D below the horizon of a small magnet free to turn about its

centre of gravity (usually called a dipping needle) is found by writing iir + \ for

and IJTr - D for d'. Hence the tangent of the dip is twice the tangent of the magnetic

latitude.

Ex. 3. A small fixed magnet BCA acts on a small magnet B'C'A' free to turn

about its centre in the plane ACC. Prove that the two positions of B'G'A' in

which the couple T', tending to produce rotation, is greatest and zero are at right

angles. Prove also that the maximum couple is £ (1 + 3 cos* 6)i where E = MM'/r'^,

and that when the magnet B'C'A' makes an angle with its position in equilibrium

tlie couple is proportional to sin <p.

Ex. 4. A compass needle B'C'A' is free to turn about its centre C in a

horizontal plane and is acted on by a small vertical magnet whose centre C lies oa

the circumference of a horizontal circle having its centre in the vertical C'Z.

Prove that, if (p, ^' be the angles the planes ZC'C, ZC'A' make with the magnetic

meridian, sin (0 - 0')/sin 0' is approximately the same for uil positions of >:he

di.stin))ing magnet.

Ex. 5. Three small magnets are placed with their centres at the angular points

of ail equilateral triangle ABC and being free to move about their centres rest in

the following positions. ' The magnet at A is parallel to BC whilst those at B and

€ are at right angles to AB and AC respectively. Prove that the magneti;!

moments are in the ratios ^3:4:4. [Math. T. 1880.

)

(Use Art. 318.)

Ex. 6. Two small magnets of moments M, M' are fixed at two corners of an

equilateral triangle with their axes bisecting the angles. A third small magnet is

1; '!:^
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free to move at the other lingular |)oint. Prove that Uh axift maken with th«

bisector of the third angle ivn angle whose tangent is ^d (M~ M')ll {M + M').

(Math. T, 1882.]

Ex. 7. Point charges e, -e', -e' are placed nt O, A, li respectively which are

in a straight line and OA = Oli. Prove that, if e -'ie', the greatest angle a line of

force leaving and entering A can make with OA is o, where <!8in''Ja= «'.

[Coll. Ex. 190(1.]

[If the line of force pass from O to an infinite il'stance we must have

ecos(?<e-2e' ; if it arrive at A, we have fitiin''ii0 = e'sin^^6', where 0, 0' are the

angles the tangents at O, A make with OA and AO respectively. If is greater tlian

the value of a given above, the line cannot go to /J ; if less it cannot go to an

infinite distance. See Art. 32.S.]

825. To determine by experiment the numerical values of (1) the horizontal

force // due to the earth's magnetism and (2) the magnetic moment .1/ of a given

magnet. There are several ways of effecting this, but in general two experiments

have to be made, one to determine the ratio ///.I/ and the other the product //.I/.

The two following examples will explain tlm process without details. A minute

account of the methods of conducting these and other experiments for the same

purpose is given in Maxwell's Klecliicity, vol. ii. chap. vii. The (luantity //

represents the horizontal component of force on a unit pole and is directed towards

magnetic north.

Ex. 1. A small compass needle free to turn round its centre in a horizontal

plane is acted on by a fixed magnet of moment M whose length is perpendicular to

the magnetic meridian and whose centre is in the horizontal plane. If the

deviation of ti o compass needle from the magnetic meridian be ^, prove tbat

tan (^ = 2J// //»•*. This determines il//// when (p has been observed. It also gives

the value of M or i.' when the other is known.

Ex. 2. A magnet of moment M is suspended by two fine threads of length (

from two points T), E of a horizontal bar. The strings are attached to two points

D', E' of the magnet which are equally distant from the centre. The magnet

being acted on by the earth's horizontal force assumes a position of equilibrium. Let

the bar be turned round a vertical axis until the magnet, when again in equilibrium,

is perpendicular to the magnetic meridian. In this position let the bar make an

angle d with the magnet. Prove that (f- - Ab- sin- i?)i= IW sin ejHM, where IC is

the weight of the magnet and 2b the length of either DE or D'E'. This experiment

determines the product i/.V.

326. Potential of a magnetic body. We have hitherto

supposed that the attracting and repeUing particles of a magnet

were situated at two definite points of the axis, called the poles.

But there are no such ideal magnets in nature. When a real

magnet is broken into pieces the fragments continue to exhibit

polarity. We must therefore suppose that the magnetism (what-

ever that may be) is distributed throughout the body. We shall

here assume as a working hypothesis that each element of volume

of a magnetic body acts on an external magnetic element as if

it were occupied by a small simple magnet whose strength and
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lon^4h are indefinitely small. Let m ami 2rt be the strength and

length of the small magnet which occupies the element dv of

volume, and let M= 2ani be its moment. The moment per unit of

vulnnie is 2ani/(lv. Representing this ratio by /, we have the

relation Idv = 2ain = M. The positive direction of the axis of this

ideal magnet represents the positive direction of magnetisation of

the body at the element Jv, and the intensity of the magnetisation

is measured by /. The potential of any element of a magnetic body

at (I point P which is at a finite distance r from the element is

,
cos 6 where 6 is the angle which the distance r makes with the

positive direction of magnetisation.

327. Elementary rule. The potential Idv cos d/r^ is the

same as the repulsion of the element dv, supposed to be of density

/, when resolved in the direction of magnetisation. It immediately

follows that when the direction of magnetisation is uniform

throughout the body the potential at a point P is the same as the

rej>iilsion at P of that body, supposed to be of density I, when

resolved in the direction of magnetisation. If the intensity / is

not also uniform, the body is supposed to be heterogeneous. This

simple rule frequently enables us to write down the potential of

a magnetic body.

328. Magnetic rod. The potential of a thin uniformly mag-

netised rod AB of volume v and length I at any external point P
Iv ! \ \ \ Iv a \

(sm/3 — sma),IS or
I \AP BPJ Ip

by Alts. 10, 11, according as the direction of magnetisation is

along, or perpendicular, to the length. In the former case we see

that the magnetic rod acts as if it were a simple magnet of equal

length whose strength is Iv/l.

This result may also be arrived at by d priori reasoning. The

effect of the elementary magnet in any element dv of volume is

not altered if its length is increased (without changing the

moment Idv) so that the magnet occupies the full length of each

element. The positive and negative ends of the successive

magnets then destnty each other, leaving a positive ekiment of

magnetism at one end of the rod and a negative element at the

other.
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It follows from Art. 27 that the potential at P of a ^hin

circular disc, of volume v, area A, uniformly magnetised per-

pendicularly to its plane is IvatjA where o) is the solid angle

subtended by the disc at P.

329. Magnetic sphere. Since the attraction or repulsion

of a homogeneous solid sphere of volume v and unit density is

v/?-*, it follows immediately that the potential at P of the same

sphere when uniformly magnetised is Iv cos Ojr-, where r is the

distance of P from the centre and $ the angle r makes with the

direction of magnetisation. The potential of a uniformly magnetised

solid sphere is therefore the same as that of a small concentric simple

magnet, (called the equivalent magnet), ivhose moment is M = Iv

and whose aords is in the direction of magnetisation.

Whe7i equivalent magnets can be determined for two bodies we

can at once deduce from Art. 322 their potential energy. In this

way we see that the mutual potential energy of two tpheres

uniformly magnetised in different directions is

H'vv . , _ ^ ^,.

^ (cos -v/r — 2 cos cos ff ),

where r is the distance between the centres and yfr, 0, & have the

same meaning as in the Art. just referred to.

330. Magnetic ellipsoid. The potential of an ellipsoid

uniformly magnetised in a given direction can be obtained at

once by using the rule. The component repulsion.^ of a homo-

geneous ellipsoid at an internal point are IAx, IBy, ICz. By

resolving these in the direction of magnetisation {I, m, n) we find

that the magnetic potential at an internal point (f, r}, ^) is

V=I(Al^ + Bmv + CnO

where A, B, C are the quantities defined in Art. 212. The

components of magnetic force at any internal point are therefore

X = -IAl, F = - IBm, Z = - ICn : Art. 41. These are constant

in magnitude and direction at all internal points.

At an external point, the magnetic potential is

r = I^(A'l^+B'mv + C'n^),

where A', B', C and a, b', c have the meanings defined in Art. 223.

ICT
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331. An ellipsoid is placed in a field of uniform magnetic

force, it is required to find the magnetism induced in the ellipsoid.

The theory of induced magnetism is discussed in the section on

magnetic induction. It is enough for our present purpose to say

that when certain neutral bodies are acted on by magnetic forces

each element dv of volume becomes magnetised in the direction

of the resultant force F which acts on that element and that the

intensity / = kF. The constant k is called the magnetic sus-

ceptibility ; another constant fi = l + 4nrk afterwards introduced

is called the magnetic permeability.

Let I, m, n be the direction cosines of the direction of the

induced magnetisation at any point P of the ellipsoid. Let

X, Y, Z be the components of force at P due to the field,

X', Y', Z' those of the force due to the ellipsoid now become

magnetic. The force F is the resultant of X, Y, Z and X', Y', Z'.

Since the intensity / at P is given by /= kF, we have

Il^kFl = k{X-vX'\ lm = k{Y^Y'\ In = k{Z+Zy

Let us assume as a trial solution that the ellipsoid becomes

uniformly magnetised in direction and magnitude. We then

have X' = — lAl, &c. while X, Y, Z are given constants. The

equations give at once

11 =
kX

\JfkA
Im = JcY_

\+kB'
In =

kZ_
l+ifc(7"

Since these equations give constant values for the components

of magnetisation the trial solution satisfies the conditions of the

problem. This therefore is one solution. If we use the constant

H instead of k, these equations become

47r + (/i-l)^' 47r + (;ii-l)5' 47r + (/i- 1)(7*

332. £x. 1. A sphere and a circular cylinder, constructed of the same kind

of material, are placed in succession in a uniform magnetic field, the axis of the

cylinder being perpendicular to the force. Prove that the intensities of the

induced magnetisms are in the ratio 3 (^ + 1) to 2 {n-^2). [In a sphere A, B, C are

each equal to 4n-/3. Their values for a cylinder are given in Art. 232.]

Ex. 2. An elliptic cylinder, which has one transverse axis very much longer

than the other, is placed in a uniform magnetic field with its infinite axis

perpendicular to the direction of the force. Prove that the intensity of the

induced magnetism when the transverse longest axis is in the direction of the force

is approximately ju times that when the same axis is perpendicular to the force.

ir.::S

I
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Ex. 3. Prove that the potential of a thin plane lamina uniformly magnetised

perpendicularly to its plane ai, a distant point (|^^) is

v.here the axes of coordinates are the principal axes of inertia at the centre of

gravity, va^, vb^ the moments of inertia about the axeo of x and y, and r Ir the

r^.istance of the point from the origin. [To prove this we differentiate with regard

to ^ MacCullagh's expression for V, Art. 135.]

338. asagn«tie eyUndor. Prop. 1. The density at any point of an infinite

right circular cylinder {radius a) is <p (x, y), the axis of the cylinder being the axis

of z. Prove that, if <f>
{x, y) satisfy Laplace's equation and be of i dimensions, the

potential of the cylinder at an internal point (f, jj) is

-' I? -^ri *«•'>•

We obtain thi» result by making c infinite in the first theorem of Art. 247,

noticing that Q/c=a* + it when a= 6. The potential is therefore

^^'"'jji^a \^L(n + l)L(n)2in\[a-. + u) ^<^' "^^

a^ + u ( d* rf* \
The operator D=—g-

( jSj + Jl ) ' *°^ ^ satisfies Laplace's equation, hence all

the terms except that given by «= are zero. The potential becomes

At an internal point, the limits are to oo

,

.
[a'' e+-n\

At an external point, the limits are X to oo
,

Prop. 2. The x arid y components of magnetisation of a right circular cylinder

are Il=dfldx and Im=dfldy, where f(x, y) is a homogeneous function of x and y of

i dimensions which satisfies Laplace's equation. Prove that the potential of the

cylinder at an internal point is 2irf{^, ri).

The potential of a magnetic cylinder whose intensity is II is equal to the

resolved repulsion of a cylinder whose density is II (Art. 327). The potential of

the cylinder due to both components of magnetisation is therefore—|{(7^-"-:'')l}-ll(r-i-'-f')l}

since dfjd^ and dfjdrj are both of i - 1 dimensions.

The potential at an external point is found in the same way. Since a'^ + \ = {- + 1/",

the result is F' = 27r (^^Jf{^, ,).

Prop. 3. A light circular cylinder is placed in a field of force whose potential is

/({, »j). Prove that, if /(|, ri) is a homogeneous function of i dimensions which

satisfies Laplace's equation, the magnetic potential ituide the cylinder is

l'^-^dr

the form
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Assume as a trial solution that the x, y components of magnetisation are

Ldfldx and Ldfjdy, The equation of condition (Art. 331) Il=.k(X+X') becomes

L j^
= - fc {^ + 2irL ^M . Hence L (1 + 2irfc) =-k. The other equation of

comlition leads to tiie same result. The potential inside the cylinder is therefore

f 2f
^

•' -^ l + 2irA; l + /«

The potential at a point outside the cylinder is ;

'v-{>-:-;(/^)'}m,).

Ex. A right circular cylinder is placed in a field of magnetic force whose

potential is A (^-rp}' Prove that the potential of the magnetic force within the

cylinder is A'(^- ij«), where A' (1 + iJ.) = 2A. [Coll. Ex. 1899.]

In the same way, if the potential of the field were Axy, the magnetic potential

would be A'xy, where A' has the same value. This result follows at once from the

former because ^^ - ri^ becomes - 2£'V when the axes are turned round OZ through

half a right angle.

334. I'o find the mutual potential energy of two magnetic bodies. By Art. 321

the potential energy of a magnetic body and an elementary magnet of moment M'
is -M'F\ where F' is the component of force due to the magnetic body in the

direction of the axis of the elementary magnet. If the elementary magnet

represent the magnetism of an element dv' of a second magnetic body, we have

M'=I'dv'. The 2>otential energy of the two bodies is therefore W= -jF'I'dv' where

the integral extends throughout the volume of the second body.

If V be the potential of one magnetic body, X', /u', v' the direction cosines of the

direction of magnetisation at any point of the other, the expression for W takes

the form W^=///(S ^' + g^ m' + '^, ^' ) I'dx'dyW.

This integral is the same as that considered in Green's theorem (Art. 149), and is

equivalent to W= I VI' cos i'd<r' -
/
^ ( -^/ + ~t^ + -irr ) dv'.

If the magnetisation I' is such that its components I'\' = dfldx', and where /is

a function which satisfies Laplace's equation, the expression for W is reduced to a

surface integral.

335. Terrestrial magnetism. The phenomena of terrestrial

magnetism can be roughly represented by the action of a powerful

small magnet placed near the centre of the earth (Biot, Traits de

Physique, 1816). This supposition is equivalent to treating the

earth as a sphere uniformly magnetised in direction and magnitude

(Art, 329). The theory altogether fails in accuracy when applied

to explain the irregularities at special places. An attempt was

therefore made by a Norwegian observer, Hansteen, to explain

the observed facts by the action of two large magnets within the

earth, both being excentric. But the results, though superior to

those derived from a single magnet, were not satisfactory.
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336. Gauss investigated the potential of the magnetism at

a point P on the supposition that it was distributed irregularly

throughout the earth. To effect this he used a formula equivalent

to that given in Art. 283, viz.

a r
0' + &C. .(1).

where a is the radius and r the distance of P from the centre of

the earth. If the causes of magnetism are inside the earth the

second of these series alone is to be retained. When P is at a

great distance from the attracting mass, this reduces to Z^ajr.

It follows that Zott is the attracting mass and is therefore zero.

After some preliminary trials Gauss decided that it would be

sufficient for a first approximation t( retain only the terms up to

and including {a/r)*. This is to be regarded as a trial solution

to be accepted or rejected after a comparison of its results with

the observed facts of magnetism. With this limited value of V
the theoretical components of force in three rectangular directions

can be found by differentiation. Let the directions be, one parallel,

a second perpendicular to the meridian, and a third vertical.

Representing these components by X, Y, Z, the declination B of

the needle and the dip i are given by {X^+ Y^) taxx' i — Z^ and

X tan 8 = Y. The values of the declination, dip, and intensity were

known in Gauss' time at nearly 100 places. The observations

at 12 of these (properly chosen) were used to determine the 24

unknown constants which occurred in the functions Zy &c. Gauss

then tabulated side by side the observed and computed values of

the declination, dip and intensity at 91 places on the surface of

the earth, so that an easy comparison could be made.

337. In general the agreement was so accurate as to leave

no doubt on the fundamental correctness of the theory. The

observations made since Gauss' time are also in sufficient accord-

ance with the theory. The small discordances which remain are

ascribed by Gauss partly to errors in the observation:^ and partly

to the fact that all the observations used do not correspond to

the same year. The terms beyond the fourth order in (1) may

have sensible effects and possibly other less influential causes of

magnetism may exist.

* Gauss' paper is translated in Taylor's Scientific Memoirs, vol. ii., 1841.
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338. The causes of magnetism have been assumed to be

inside the earth. If there are any external causes, their effects

could be represented by including some terms of the first series

in (1). If the causes were wholly external to the earth the

potential would be represented .solely by the first series in (1).

The vertical force would then be — XnYn/a instead of 2 (w + 1) Zn/a.

Since the observed vertical force does closely satisfy the latter

of these two very different expressions Gauss considers it proved

that onli/ a small part of the terrestrial magnetic force can be due

to causes external to the earth. This argument does not apply

to the periodical changes of the needle which have not been

considered by Gauss.

339. Polsson'g theorem. To investigate a general formula

for the potential of a magnetic body. We resolve the intensity /

into three components A = I\, B = I/m, C = Iv. Let us find the

potential due to the first of these. Let QQ'= dx be an element of a

column LM parallel to x (figure of Art. 222). Let QP = r and let

Q'n be perpendicular to QP, then Qn = — dr and cos PQQ'=-dr/dx.

The potential of the column at P is then

|^i?^?.<«- CO. PQQ' = dydzJA^ ds.

and the potential of the whole magnetic body at P is

Following the same reasoning as in Green's theorem (Art. 149)

we put this into the form

r J\dx dy dzj r
'

where dS is an element of the boundary and dv of the volume of

the magnetic body.

It follows from this equation that the magnetic potential at P
is the same as that of a quantity of matter distributed partly

internally and partly superficially. The volume density p of the

internal distribution, and the surface density a of the superficial

distribution, are

fdA dB dC\ , . •

P—Ux^dy'-dz)' ^ = /cos*.

Here i is the angle the direction of magnetisation at any point

of the surface makes with the outward normal at that point.

R. S. II. 12
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340. Since the total quantity of attracting matter in each

elementary magnet is zero, it is evident that the sum of the

internal and superjicial distnbutions in Poisson's theorem is also

zero.

The mass distributed over the Hurface >S' of the magnetic body, being j I ooa ids,

is evidently the flux of the vector / across the boundary of S,

So also, if the surface S' is the boundary of any portion of the body, the niasg

distributed internally is equal and opposite to the flux across the surface S'. Thus

-pdxdydi is equal to the outward flux across the six faces of the Cartesian

element dxdydz. We may therefore deduce the value of p for polar, cylindrical, or

other orthogonal coordinates by finding as in Art. 108 the flux across the faceu of

the corresponding element.

If Ij, i<2i I'i Ai'B ^^6 polar components of / in the directions in which r,

are measured, then (Art. 108)

9,<t>

'^ /» dv r»me de

1 dl^

r sin 6 dip
'

In cylindrical coordinates R, <p, z

_ld(IiK) .
1 dl„

,
(ir,

-''=R dR ^ Rd^"^ dz

841. Ex. A magnetic shell is bounded ^

direction of the magnetisation at any distance

magnitude is kt^. Find the potential at an interi

The internal distribution is p= -
;;2^ (f ''"'*"'') ^^^ the superficial distribution

'leres of radii a, b. The

- i.ie centre is radial and its

^uu external point.

The potential of all these

K=
/,

r^dr

<ri=-Ka" and (r2=+(fb" on the two boundaries,

at an internal point (Art. 64) is

inr^dr AwV^ iwa;^ , k (6»+i - a»»+n
"^ - 6 • a n+1

The potential at an external point is zero.

342. The force of induction*. The magnetic force at a

point P of space void of magnetised matter is the force on the

positive pole of a magnet of unit strength, the positive pole being

placed at P. To find the force at a point P situated within a

magnetic body we imagine an infinitely .small space round P to be

removed and a positive unit pole placed at P in the cavity.

Consider the effect of this removal ; the attraction of the solid

distribution of Poisson which once filled the space has disappeared,

and there is now a superficial distribution on the inside of the

cavity. Since the attractions of similar and similarly situated

bodies on thfe same point vary as their linear dimensions (Art. 94),

• The distinction between the magnetic force and the force of induction is due

to Kelvin and is fully explained in his Theory of Magnetism, Arts. 479 &c. The

former name is due to him, and the latter to Faraday and Maxwell,
treatise on Electricity and Magnetism, Art. 428.

See the
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the solid distnbution is not affected by the removal of the infinitely

siiiidl quantity of matter (Art. 101). But the superficial distribu-

tion on the inside of the cavity does affect the force in a manner
which depends on the form of the cavity.

Thus the resultant force at a point inside a magnetic body is

made up of two components. One of these is due to (1) all external

causes, (2) the whole solid distribution, (3) the superficial distribu-

tiou on the external boundary. The other is due to the superficial

distribution on the inside of the cavity alone. The former com-

ponent is defined to be the magnetic force at a point within the

vuignetic substance.

343. Let the cavity have the form of an infinitely small

cylinder whose length is 26 and radius a, and let the generating

lines be in the direction of magnetisation. Let P be at the

central point of the cylinder. The superficial surface density,

being / cos i, is zero along the generating lines and + / at the

two circular ends. The " outward " normal for the cavity tends

toiuards the point P and therefore the surface density is + / for

the negative end of the cavity and — / for the positive end. The

repulsion of the two ends at P is 47r/ jl—TTTTTfix^ ^Y ^^^' 21

acting in the direction of the magnetisation of the body in the

neighbourhood of P. It appears that the force depends not on

the absolute dimensions of the cavity but on the ratio of the

length to the breadth. Hence however small the cavity may be

made, the force due to the superficial distribution on its walls will

in general remain finite. If the radius a is infinitely smaller than

the length 6, the force due to the superficial distribution is zero.

If the radius is infinitely greater than the length the force is 47r/.

The actual force, due to all causes, on a positive unit pole

situated at the central point P of a cylindrical cavity, whose

length is in the direction of magnetisation and is infinitely greater

than the breadth, is the same as the force already called the

magnetic force at P. The actual force, due to all causes, on the

pole when situated at the central point of a thin disc-like

cylindrical cavity, whose plane is perpendicular to the direction

of magnetisation, is called the force of induction at P.

By taking cavities of different forms we may contrast the two

forces in other ways. Let the cavity be of a thin disc-like form,

the normal to the plane making an angle i with the direction of

12—2

I

;;[iii

':[/i%
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magnetisation. The distribution on the curved side is ultimately

zero. The distributions ±/cosi on the two plane faces act on P
as if they were distributed on infinite planes ; the repulsion ut P
is therefore 47r/cost. Thus the actual force on P is the magnetic

force or the force of induction according as the plane of the cavity

contains or is perpendicular to the direction of magnetisation.

844. Ex. Prove that when the cavity is spherioal the force at the centre due

to the Buperlicial dintribution is Jtt/ (see Art. 98).

345. It appears from what precedes that the force of induction

at P is the resultant of the magnetic force at P and a force 47r/

acting at P in the direction of magnetisation of the body in the

neighbourhood of P.

Let A = /\, B = Ifjb, C = Iv be the Cartesian components of the

vector /; X, Y, Z and ^i, Fj, Z, the components of the magnetic

force and the force of induction. Let V be the potential of the

whoit magnetic body at any internal point P, as given by Poisson's

theorem, Art. 339. Then
'

X = -dVldx, Z,= X + 47r^,

Y=-dVldy. Y,= Y+4irB,
Z=-dV/dz, Z, = Z+^7ra

346. Bodies not uniformly magnetised. When the mag-

netism of a body is not uniform, either in direction or intensity,

it becomes necessary to choose special forms for the elements.

The magnetic lines are curves such that the direction of

magnetisation at any point is a tangent to the curve at that

point. In a line of force the direction of the force is a tangent,

Art. 47. If we draw a magnetic line through every point of a

closed curve we construct a tube which is called a magnetic tube.

When the section of the tube is very small it is sometimes called

a filament. By analysing a magnetic body into elementary tubes

or filaments we may of.;en find its magnetic potential at any external

point P with great ease.

347. Solenoids. Let da- be the area of a section of a

magnetic filament at any point Q, ds an element of length

measured in the direction of magnetisation and / the magnetic

intensity. Using the same notation as before (Art. 316) we notice

that 6 is the angle in front of the radius vector QP and that

therefore cos 6= -dr/ds. Hence since dv = d<r.ds the potential

of the filament at P is F= / ^ cos0 = - lldt
dr
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When the magnetiam of the body is ao diatrihuted that Ida = dfi

is comtant for each magnetic filament, the body ia called a aolenoid.

The integration can then be effected at sight. If R, S be the

intersections of the filament with the surface of the body, R8
being the positive direction of magnetisation, the potential at any

1 • i Ti • tr du dfjt r^ '

external point F la Y = 7^ - ^-p ,
'

.

j

The potential of a aolenoidal filament ia independent of ita

form and depends solely on the magnetism Ida of a cross section

inid on the positions of its extremities, A closed solenoid exerts no

action on any external magnet.

348. The potential of a solenoid, or of any portion of a

solenoid, may be found by summing up the potentials of the

filaments which compose the body. Let any filament intersect

the boundary in an area dS and let the direction of magnetisation

nuiko an angle i with the outward normal. Then since

Ida = Ids cos i,

the potential of the body is the same as that of a thin superficial

strntum on the boundary, and this stratum is the same as that given

in Poissons theorem (Art. 339).

349. Since this must be also true for every element of volume

of the body, it follows that the solid distribution of Poisson must

u \\j u 4.\.
dA dB

.
dC

be zero. We have then —p= +

where A, B, C are the components of / at the point x, y, 2. This

is a necessary condition that the magnetism is solenoidal.

To prove that this condition is sufficient. By Poisson's theorem the potential

of every portion of a body ia equivalent to that of a surface distribution I cos 9

and a volume distribution p. Let this portion be an arbitrary length I of a

magnetic filament. The potential of the filament is

J \r/ »i To J r as

where the suffixes refer to the ends of the filament. The potential of the fila-

ment is therefore the same as that of a surface distribution I cos 9 and a volume

distribution p' = -r- , ~- Since the surface distribution of the arbitrary filament
dff as

U the same as that given by Poisson, the density p' of the volume distribution

must also be the same as p. Hence when p=0 we must have Id<r constant for any

filament. .
. .

350. Lamellar shells. If the magnetic lines can be cut

orthogonally by a system of surfaces we can conveniently analyse

dy dz '

'

~>^ I
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^
the body into elementary HhellH. Let the equation of tht-so

surfaci'H be /{x, i/, z) s* c. Consider the shell bounded by the

surfaces c and c + dc. Let da bo an element of area at any point

Q of the first surface, t the thickness of the shell ; the volume i»f

the corresponding element of the shell is then dv = tda, Let t be

measured in the direction of magnetisation and let / bo the

intensity. The magnetism of the element dv is equivalent to that

of a small magnet whose moment is Idv and whose axis is normal

to the surface. The potential at any point P is IdvcoH0/r^, where

r and 6 have the same meanings as in Art. 347.

Let dto be the solid angle subtended by da- at P, then

da cos 61r' ^do) (Art. 26). The potential of the shell at P in

therefore V=fldv cos 6/1'* — fltdo).

Here the sign of day follows that of cos 6. Let that side of da

be called the positive side to which the direction of magnetisation

points. Since B is the angle QP makes with that axis, the solid

angle d(o is positive or negative according as P lies on the positive

or negative side of the elementary area da.

Let P travel from a position P^ close to d<T on its positive side to a position P.^

also close to dff on its negative side, the journey being made outside the clementHiy

area. When P crosses the tangent plane to da at some external point, the Holjd

angle subtended at P changes from positive to negative. The solid angles at /',

and Pj are 2ir and - 2ir, hence if we suppose P to travel from Pj to P^ through the

element of area the solid angle is increased by 4ir.

351. The product It is called the strength of the elementarij

shell at Q. When the shell is such that the strength is every-

where the same the shell is called a simple magnetic shell and the

distribution of magnetism is said to be lamellar. If the streHgth

varies from point to point, the shell is called a complex magnetic

shell and the distribution of magnetism is said to be complex

lamellar. Let It = ^.

352. When the distribution of magnetism is lamellar the

potential takes a simple form. Putting to for the whole solid

angle subtended at P by any portion of the elementary shell, we

find that the potential at P of that portion is

V=JItd(o^Itio.

It follows from this result that if two thin lamellar shells have

the same rim and the positive sides are turned *he same way, the

potentials and therefore the forces at any point P are equal each to

each. The dimensions of tf) are those of potential.
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Lot a thin lamellar shell enclose a space. The potential at P
of any portion han been Hhowu to bo It to. Let this portion

increase and finally cover the shell. If P be inside the empty

Hpiice the solid angle o) subtended at P increases and is finally 47r.

If P be outside, the angle o) will presently begin to decrease and

will be finally zero. It follows that the potential of a closed lamellar

shell (it an intermil point is 47r It, at an external point the potential

is zero.

363. If a thin lamellar shell is in the presence of a number

of magnets, the mutual potential energy of any element dv and

the field is — FIdv by Art. 321, whore F is the axial component of

force at the element dv. Since Idv = (f>da and
(f)

is constant when

the distribution of magnetism is lamellar, the mutual potential

eiiergi/ of the whole shell and the field is — <f>JFda: The integral

jFda represents the flux of the force due to the field entering the

negative side of the shell.

364. To determine the conditiom that the distribution of nuiguetigin it lamellar.

Let X, /u, V, expreHHed as functionB of x, ij, z, be the direction coHineu of the

tatit^ent at any point i2 of a magnetic line. The analytical condition that the

ma){iietic lines can be cut orthogonally by Bome Bystem of surfaces is that

\tir + fidy + vdz can be made a perfect differential of some function f(x, y, z) by

multiplication by a factor, and the orthogonal surfaces are then /(.e, y, z)=:c. Let

p hti one of these factors, the three equations

. <l.f df df
f^ = di' '"*=%• '"'=

d-z
<^)

roust then be satisfied by simnltaneous values of p and /. U A, H, C be any

(inantities proportional to \, ft, v, say A:=m\ &o., we find, by eliminating pfm and/,

,(d1i dC\ „fdC dA\ ^(dA dB\ . ,„,

Let a shell be formed by the two surfaces/= c, /= c + dc. Let x,y,z\ x + dx, Ac.

bu the coordinates of two adjacent points R, S, one on each surface. The thickness

t of the shell at R is the sum of the projections of dx, dy, dz on the normal at R,

hence pt=p{\dx + ndy+vdz)=df.
The product pt is therefore constant and equal to dc for the shell. Now two

quantities (say pt and It) cannot both be constant for the same shell, unless I bear

a constant ratio to p. Thus It will be constant only if I=Pp, where P is a function

of X, y, z which is constant all over the surface /=c. Hence P=F {/), and it is

evident that p' = Pp is another factor which also makes \dx + &o. a perfect

differential, viz. the differential F (f) df. It is therefore necessary that I should

be equal to some one of the values of p which satisfy the conditions (1).

Let the magnetism of the body be given by the components A,B,C o( the vector

/ expressed as known functions of x, y, z. The necessary and sufficient conditions

that the distribution of viagnetism should be lamellar are tliat

A = df

dx'
B =

dy' ^-dz'
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where f i» an arbitrary function of x, y, z. The condition (2) that the magnetic

lines can be out orthogonally by some Hystem of surfaces is satisfied by these values

of A, B, C. The function / is called the potential of magnetisation. It must be

distinguished from the magnetic potential V, ^

365. Ex. Each element Q of a thin spherical shell is magnetised along the

direction OQ, where O is a given point on the surface, with an intensity I which

varies as the distance OQ. Prove that the potential at any external point P is

proportional to cos dlr^, where r is the distance of P from the centre C and d is the

angle r makes with OC.

Besolve the magnetism at Q into the two directions CQ and OC. Taking the

former alone, the distribution is lamellar and the external potential is zero.

Taking the latter, the distribution is unifcrm and the potential is known.

330. To find the magnetic force exerted by a lamellar shell of strength <p on a

unit pole at P.

Describe a cone whose vertex is P and whose generators pass through the rim

or margin AQQ' of the shell,

and let this cone be cut by a

sphere, whose centre is P and

whose radius c is very great,

in the spherical segment

BRR'. We replace the given

shell by another shell with

the same rim, but having for

its surface the spherical seg-

ment and that portion of the

cone which lies between the

rim and the segment (Art.

352).

The small magnet equiva-

lent to the magnetism at T'l" on any elementary area dS of the cone is " broadside

on" to P and the force exerted at P is therefore (pdSjr*, where r = PT. When P is

on the positive side of the given shell the positive pole of the small magnet at T is

directed inivards towards the given shell and the force at P tends outwards in the

direction indicated by the arrow (Art. 317). Let the angle QPQ' = d\j/, then

dS=rd\l/dr. The force at P due to the magnetism on the strip QQ'RR'

becomes by integration
O-O*"*'

whi?re r is now PQ. This reduces to its first

term when c is very great.

The equivalent magnets which represent the magnetism on the siiherical

segment BUR' are "end on" to P. The force on P due to any elementary area

dS is 2(pdSlc-K Since dS = c-do. (where du is the solid angle subtended at P) this

force is zero when c is very great.

To find the force at P due to a thin lamellar nhell toe divide the rim into elements.

The force due to the element QQ' in equal to <pd\f/lr and also to <f>dAjr\ where r= PQ,

QPQ' = d\p and dA i." tvnce the area QPQ'. This force acts at P perpendicularhj to

the plane QPQ'. The resultant of these elementary forces is the force on a unit pole

at P.

367. We notice that the magnitude of the force due to the elementary arc QQ'

and its direction relatively to the plane PQQ' are not changed by rotating that
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plane about QQ' as axis. The side of the plane to which the force tends (when

not already obvious) is therefore easily found. If P is brought by the rotation from

the positive to the negative side of the shell, the force on a positive unit pole at P

actH in the direction of motion.

When the rim is a plane curve and the point P lies in that plane, the force at P
is normal to the plane and equal to if>\d\plr,

3S8. To find the Cartesian components of the force at P due to a lamellar shell.

Let (i, ri, i) be the coordinates of P, (x, y, z) those of a point Q on the rim.

Let (X, Ml ") be the direction cosines of the normal to the plane PQQ'. The 2

component of force is therefore v<f>dAI^^. By projecting the area dA on the plane

of xij we have {x - ^) dy - {y - ti) dx= v dA

.

Hence Z =
(l> j

^ ^ ^, and similarly

f ) dx - (x - f) dz

The integrition in each case is conducted round the rim in the positive direction.

The left-handed system of coordinates being used (vol. i. Arts. 97 and 272) ; the

positive direction is clockwise as seen by an observer with his feet on the shell and

his head on the positive side.

We may pu* *,hes,e expressions for the forces into another form. Let

^'=/7' «=/t' ^=/?-

Then since r^-(x-$)^ + &c., we have — ( -
j
= ^* , &c.,

369. To find the potential of a lamellar magnetic body. Let the components

of / be A =dfldx, &c., and let r be the distance of a point P from any element of

volume dv. The potential at P is (by Art. 339)

J \ dx ay dzj r J \ax dx dy u

l/r dfd\lr\
+

ly dz dz
dv

bv (ireen's theorem. Now
<l l/r

(in
-. - = -, cos 0, where d is the angle the
1'^ tin r-

(Ustance /• makes with the outward normal (Art. 347). Also v21/r = or -4t
nccori^lng as P is without or within the substance of the body. Hence

^coa ddS
J.2

.=//' + 4»r(/) (1),

where (/) is the value of / at the point P.

.cos edS , i , , ^
./ —-^— be represented by Q.Let the surface integral / ./

Then r=« + 4ir (/) (2).

The components of magnetic force at an internal point P are given by

dVjdx &c., and the components of magnetisation by A = d(f)ldx &o. It

li

41
I I

-^

NX

X
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follows at once from Art. 345 that the components of magnetic induction are related

to Q by the equations ^, = - diljdx &c.

Let ill, ^2 ^^ t^6 values of fi at points Pj, Pj respectively just outside and just

inside the surface J. Now cos BdSfr^ is the solid angle subtended by dS at. P and

hence, by the same reasoning as in Art. 142, Q, -02=(/)("i- "a)' where (.•;,«„ are

the solid angles subtended at Pj , P, by the elementary area dS, The difference of

these solid angles is 4ir by Art. 350. We thsrefore have flj -U^^^iv (/). If l\, F„

are the values of V at the same points, Pj and Pg, we have by (2) ^,=(2, and

Kjj= Ii., + 47r (/). Hence Vi=V.^. The magnetic potential is therefore continuous

whei^ the point P enters the substance of the magnetic body, but the potential fi is

not continuous.

360.

the formula W—

The mutual potential energij of two thin lamellar shells may be found by

f f COS €
'

I I
- -- dsds', which involves only integrations round the two

rims. Here as, ds' are elements of the two rims, e is the angle their positive

directions make with each other, and <p, if>' are the strengths of the shells.

Let us hj'st find the mutual potential energy of the shell whose strength is (/>

and a portion of the other shell which is so small that we may regard its rim as a

plaae curve. Let this plane be taken as tLe plane of xy and let (^', t)') be the

coordinates of any elemert da' of the area. The potential energy is by Art. 321

= - ^Zl'dv'^ -j ZI'tUW--= -
4><P' jj(^^,

-
'j^,) d^'dr,'.

By the application of Green's method to plane curves (Art. 149) this surface

integral is replacd by an integration round the rim which in our case gives

({Fd^' + Gdrj'). We now substitute for F and G their values from Art. .358 and

remember that df' = 0. The expi°3sion for the potential energy is then

dzdt'
.00' f f

dxd^' + dydn' + dzdt' ^ _ , f f cose
dsds'.

To find the energy when the second shell is of finite size we integrate the

.ixr 38sion just found. Let two adjacent elements touch along the arc AB. When
int -grating round these two elements, we pass over the arc AB in opposite directions

and therefore for this ?rc the angle « (being the angle the direction of integration

makes with an arc ds of tlie first shell) has supplementary values in the two

elements. The sum of the integrals for both elements may therefore be found by

integrating round both as if they were one, omitting the common arc AB. The

s'lrie reasoning applies to all adjacent elements, hence the total energy lor two

shells of finite size may be found by integrating round their perimeters.

361. The theory of thin lamellar shells derives additional importance irom its

connection with electric currents. According to Ampere's theory the forces on a

magnetic pole due to a closed electric circuit are the same as those of a thin

'.'. .cellar magnetic shell, of proper strengih, whose rim is the closed circuit.

The direction of these currents may be usefully remembered thus : if the earth's

magnetism were due to currents round the axis, their general direction v ould follow

the sun, that is, would be from east to west. Now the south pole of th.T earth has

been taken as its positive pole (Art. 314). Hence the currents equivalent to a small

magnet flow rjund it anti-clockwise when viev/ed by a person with his head at the

positive and feet at the negative pole.

362. Ezamplea. Ex. 1. Prove that the force 'Jiue to a thin lamellar shell,

whose rim is a circle of radius a, (1) at the centre is Z^^-^ittpja and (2) at a point
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P situated in its plane at a small distance f from the centre is Z=Zo(l + 3^lia'').

[Use the formula Z = 0Jrf^/r.]

Ex. 2. Prove that the potential of a thin lamellar shell whose rim is a circle of

radius « at a point P distant f from the plane and at a small distance | from the

axis IS --H-M=S-^-).
where v-= a'' + t'-- Prove also that the component forces at P are

^=2t0^+&o.. Z = 2^0-3^1 +^ 3|'-'(a2-4n + &C.
4 V*

It is evident from the symmetry of the figure on each side of the plane rji^ that the

potential can contain only even powers of f. The expression for V is therefore

correct up to the cubes of the small quantity ^.

Ex. 3. Prove that the mutual potential energy W of a thin circular lamellar

shell and a small magnet v/hose centre C is on the axis of the circle is

W= - 2Tr<t>a'M (sine +
4/t«-a-i

p'^ sin e (2 sin- 0-3 cos* 0) + &c.

where a is the radius of the shell, h, I the distances of C from the centre and rim of

the shell respectively, p the half-length of the magnet, 6 the inclination of its axis

to the plane of the shell, and .1/ its moment.

If the magnet C be placed on the axis of the shell at a diataiice from its plane

equal to half the radiun, the terms of the order p^ are zero. It follows that the action

(// tlie shell on the small magnet C is equal to that of another small r ignet whose

moment is i)/'= 7ra*0/5,^5 placed end on at the centre of the shell. A similar theorem

for electric currents is given by M. Gaugain in the Comptes Rendits, 1853.

We may obtain this result by expanding the expression for the potential found

in Ex. 2 in powers of p, then twice the sum of the odd powers after multiplication

by the strength of the small magnet is the energy required.

Ex. 4. If the law of force be the inverse Kth power of the distance, prove that

the mutual potential energy 11' of two thin lamellar shells of elementary areas is

where R is the distance between two points one in each area. It appears that we

cannot extend the theorem to shells of finite area unless the law of force be either

the inverse square or the direct distance.

Electrical Attractions.

363. Introductory statement*. When certain bodies are

t'lectrified one evidence of the presence of electricity is the

* Many theorems in Attractions are important because they are used in the
theory of Electricity and would seem almost purposeless without some notice of
these applications. To enable these to be properly understood it is necessary to
Hive a brief introductory account of the principles to be afterwards assumed. In
this statement only so much of these principles is given as is required in what
follows. For example, the experimental proofs of the laws of electricity are not
described. These may be found fully discussed in Everett's edition of Deschanel's
Natural Philosophy, 1901, in J. J. Thomson's Treatise on Electricity, and in that
of 5!axwell.

f

I

'I ?
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attructiou exerted on other electrified bodies. For the purpose

of illustrating the theory of attractions we shall here replace the

electricity by that system of repelling particles which exerts an

equal force at every external point.

364. If ni, in' be the masses of two particles we assume here

that the force of repulsion exerted by one on the other is Dim'lr-

(Art. 1). But the masses are not restricted to be positive, two

particles whose masses are of opposite signs attract each other.

The electricity is called positive or negative according as it is

represented by particles of positive or negative mass. Since like

particles repel each other the fundamental formulae connecting

potential and force are X= — dVjdx &c. (Art. 41).

It is obvious from this definition that either kind of electricity

may be called positive, provided the other is called negative.

A convention is therefore necessary. Let a piece of glass and a

piece of resin be chosen which exhibit no signs of electricity. Let

these be rubbed together and separated. Each body is now found

to attract the other. The 'ilectrification on the glass is called

positive, that on the resin negative. If a bod}' electrified in any

manner repels the glass and attracts the resin, it is positively

electrified. If it attract the glass and repel the resin, its

electricity is negative.

365. When a particle A, say positively electrified, is brought

into the presence of certain bodies it is found that electricity is

immediately developed in them. 8ome positive electricity is

repealed and driven to the parts of the body most remote Irom A
and some negative electricity is attracted to the nearer parts. If

a second and then a third particle be made to act on the body

more positive and negative electricity are developed and separated

as before. In all these cases the arrangement of the electriciiy

when in equilibrium is altered by the approach of a new particle.

This result is interpreted to mean that when electricity is in

equilibrium the force acting on each element of the volume of the

body is zero. If it were not zero, more electricity would be

developed and the existing arrangement would not be in equi-

librium. It follows that the electric potential due to its own charge

and to the external electrical particles is constant throughout the

body.



[art. 365

the purpose

replace the

h exerts an

assume here

ler is inm'jr-

lositive, two

each other.

ing as it is

Since like

connecting

f electricity

:d negative,

glass and a

ricity. Let

3 now found

iss is called

ified in any

s positively

e resin, its

, is brought

'lectricity is

ectricity is

lote from A
parts. If

n the body

d separated

; electriciuy

ew particle.

•icity is in

ume of the

would be

)e in equi-

own charge

'jughout the

i
'

ART. 369] INTRODUCTORY STATEMENT. 189

366. We have here supposed that the electricity is able to

move without constraint from one element of volume to another.

A body which permits this transference is called a perfect con-

ductor. There are also bodies in which the electricity cannot

travel through the volume bat is forced to remain iti the place

where it has b(en developed. These are called perfect non-con-

ductors. There are in nature no perfect conductors and no perfect

non-conductors, but in some bodies the developed electricity

travels so easily and in others with such difficulty that they are

usually distinguished as conductors and non-conductors. Metals,

fluids and living bodies are conductors, while dense dry gases,

glass, silk are non-conductors.

367. If we represent the electricity by repelling points we

nuist be able to apply Poisson's theorem to a body which is

without constraints, Art. 105. We then have 47rp = — V^F, where

pdv is the excess of the positive over the negative electricity in

the elementary volume dv. Since X, Y, Z are zero in equilibrium,

Art. 365, this equation gives p = 0. The element therefore contains

equal quantities ofpositive and negative electricity.

This holds at every internal point but not at the boundary of

the solid, for here the surface constraint comes into play. The

conductor is supposed to be surrounded by a non-conducting

medium through which the electricity cannot pass. This medium

by its pressure constrains the electricity to remain in the con-

ductor. There may therefore be an indefinitely thin layer of

attracting or repelling particles on the boundary.

When equal quantities of positive and negative electricity

occupy an element, that element is said to be neutral. It exerts

no force at any external point. When there is an excess of either

kind in any element, that excess is said to he free. In a conductor

the free electricity resides on the surface.

368. The potential of the electricity is the same as that

of an indefinitely thin layer of repelling matter placed on the

surface of each electrified conductor. We measure the amount of
the electricity at any point by the surface density of this equivalent

layer. The whole quantity of electricity is measured by the mass

of the layer.

369. Suifuje density. Since the potential is constant through-

out the interior of a conductor, the theorem of Green proved in

i
«
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Art. 142 takes a simpler form. Let p be the surface density at

any point P, let X be the normal force in the non-conducti no-

medium at a point infinitely close to P and let the positive

direction of X he from the conductor into the non-conductor, then

^•np = X. If dn be an element of the normal drawn outwards,

V the potential due to all causes, this equation may be written in

the form 4t'irp = ^ rf V/dn. ^
\

The repulsive force on the electricity which covers any element

da of the surface is \Xpda, (Art. 143). This may be written in

either of the equivalent forms ^irp-da or {X'^/b7r)da: Since this

is always positive, the direction of the force is necessarily outwards.

370. If an electrified conductor is joined by a wire of con-

ducting material to the earth its potential must become the same

as that of the earth (Art. 365). At the same time the potential

of .so large a body as the earth is not affected by any transference

of electricity to or from it. Supposing the earth to be in its

ordinary neutral state, the potential then becomes zero. When a

body is thus joined to the earth, it is said to be uninsulated.

Electrified bodies are in general supposed to be insulated

by air, unless otherwise stated. When the density of the air is

diminished its resistance to the escape of the electricity also

decreases. When the pressure is still further reduced its resistance

increases again. A vacuum, that is to say, that which remains in

a vessel after we have removed everything which we can remove

from it, is a strong insulator. Maxwell's Electricity <L'c. Art. 51.

371. Capacity. If one conductor is insulated, while all the

other conductors in the field are kept at zero potential by being

put into communication with the earth, and if the conductor,

when charged with a quantity E of electricity, has a potential V,

the ratio ofE to V is called the capacity of the conductor.

In this definition the capacity is supposed to be independent of the special

nature of the non-conducting medium which surrounds and separates the con-

ductors. But the medium is itself acted on and reacts on the conductors. To

take account of these actions it is necessary to introduce into the definition a new

factor called the Specific Inductive Capacity of the medium. The effect of this

factor is a subject for separate discussion. In what follows (until otherwise

stated) it will be supposed that the medium is such that the effects of the induction

on it can be disregarded. This is the case if the medium is air or generally auy

dry gas. In these media the specific inductive capacity is nearly equal to unity.

Ex. Let a sphere of radius a be at a great distance from all other bodies

and let it be charged with a quantity E of electricity. The pot'intial is Efa,

(Art. 64). The capacity of an insulated sphere is therefore equal to its radius.
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372. The electrical problem. Let a conductor have a

charge M of electricity and be acted on by an external charge M'.

Then in equilibrium a mass Jl/ + /x, of free positive electricity and

a mass —/a of negative electricity (where /tt is one of the unknown

quantities to be found) will be an-anged on the surface of the

conductor in such a manner that the sum of the potentials of

W, M+ fi and — /* is constant throughout the interior. The

electrical problem is to find the superficial density at every point.

Conversely, if the electricity be thus arranged it will be in

equilibrium. First, we notice that the component forces at every

internal point are zero. Next, the tangential component just

inside the surface is zero and therefore by Art. 146 the tangential

force at any point of the stratum ib zero. The resultant force on

any superficial element of the electricity is therefore normal and

by Art. 369 acts outwards. It is therefore balanced by the

reaction at the boundary, (Art. 367).

373. Ex. 1. The potentials of an electrical system at the corners of a small

tetrahedron are l\, Fj, Vg, V^; prove that the potential at the point which is the

centre of mass of particles m^, m„, m^, m^ placed at the corners is ^niVjXm.

This follows at once from Taylor's theorem. [Trin. Coll. 1897.]

Ex. 2. An insulated conductor of finite volume is charged; prove that the

electrical layer completely covers ••'"' conductor.

If there were any finite area on the surface unoccupied by electricity, the

potential must also be constant throughout all external space which can be reached

without passing in the immediate neighbourhood of repelling matter. Art. 117.

Hence A'-O both on the inside and on the outside and the surface density would

be everywhere zero.

Ex. 3. A conductor is charged by repeated contacts with a plate which after

each contact is re-charged so that it always carries the same charge E. Prove

that, if e is the charge of the conductor after the first operation, the ultimate

charge is Eel(E-e). [Coll. Ex.]

When the plate touches the conductor the whole charge on both is divided

between the two bodies, so that their potential, become equal. If the whole charge

were increased in any ratio the potentials would be incre"sed in the same ratio and

equilibrium would still exist. It follows that just after each contact the quantities

of electricity on the plate and the conductor are in a ratio j8 : 1 which only depends

on their forms.

Let Xn be the quantity on the conductor after n contacts. After the next

contact, x^+i - ar„ is taken from the plate. Hence the ratio of £ - a:„+i + ar„ to

.T„^, is /3 : 1. After the first operation the quantities on the plate and conductor

are E - e and e, and this ratio also is /3 : 1. To find the ultimate ratio (when n is

very great) we put a!„+i= a;„. We then find x^+i by eliminating /3.

Ex. 4, A soap bubble is electrified
; prove that the difference between the

pressures of the air inside and outside is 2Tlr-2irp\ where T is the surface

tension, r the radius and p the surface density of the electricity.

m
•m %'
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374. Two ipheres Joined by a wire. Two small spheres

of radii a, b, placed at a considerable distance from each other, are

joined by a thin wire and the system is insulated from all other

attracting bodies. The spheres and the wire are made of some

conducting material. A charge E of electricity is given to the

system, determine approximately how it is distributed over the

several bodies.

Let / be the distance between the centres A, B of the spheres;

w, y the quantities of electricity on their surfaces, z the quantity

on the wire. The electricity is so distributed that the potential

is constant throughout the interior and therefore the potentials at

A, B are equal. Since the centre A is equally distant from every

point of that sphere, the potential at A of the electricity on its

surface is xja. Since A is very distant from every point of the

other sphere, the potential at A of the electricity on the sphere B
is very nearly yjl. Neglecting the electricity on the wire for the

moment we have the two equations

X y _x y
x + y = E. •d);

when the radii are very small compared with their distance we

can reject the terms with / in the denominator. The electricity is

then distributed over the surfaces of the two spheres nearly in the

ratio of the radii.

We shall now prove that the quantity of electricity on the cylindrical wire may

be neglected if the radius c is sufficiently small. Let D be the average surface

density on the wire, then z = 2nclD, The potential of a cylinder of length I and

of uniform surface density at the middle point of its axis is

very nearly, since cjl is very small. Since V is nearly equal to xja or yjb it is

clear that z can be made ac small as we please by using a wire sufficiently thin

compared with its length.

G76. Ex. 1. A conducting sphere, of radius a, is joined to the earth by a

fine wire and is acted on by an electrical point Q at a distance b from the centre

of the sphere. Prove that the electricity on the sphere is - Qajb. Prove also that

the mutual attraction between the sphere and the point approximately varies

inversely as the cube of the distance and as the square of the charge,

Ex. 2. Two conducting spheres (radii a, b) are joined by a long thin conducting

wire, and the total charge is zero. A cloud charged with a quantity E of electricity

passes much nearer to one sphere than the other, but at a considerable distance

from both. Prove that the transference of electricity from one sphere to the

other is nearly abEI{a + b) I', where l is the distance of the cloud from the nearest

sphere.
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Ex. H. i . : conduoting spheres of capacities c, c' are at a great distance / from

cacli other and are connected by a long tine wire. Prove that the capacity of the

conductor so formed is approximately c + c' -^cc'll. [Coll. Ex. 1900.]

376. An ellipsoidal Conductor. Let a solid ellipsoid be

charged with a quantity M of electricity and be not acted on by

any external forces. We know by Art. 68 that the stratum

enclosed between the given ellipsoid and a similar and similarly

situated concentric ellipsoid exerts no attraction at any internal

point. We therefore infer that the infinitely thin stratum of

electricity will be in equilibrium, when distributed on the given

ellips(»id so that the surface density p at any point P is proportional

to the thickness of the thin shell. By Art. 71 the surface density

Mp

on the tangent plane at P.

at P \% p , where p is the perpendicular from the centre

377. Let points on two ellipsoids be said to "correspond" when their

cooidinates referred to the axes are in the ratio of the parallel axes, thus xlit=x'ja'

Ac. Let two curves be drawn, one on each ellipsoid, such that the points on

one correspond to those on the other and let the spaces enclosed be called

corresponding spaces. The quantities of electricity on corre*ponding spaces are

in tlic ratio of the whole charges given to the ellipsoids.

This theorem follows at once from the proof in Art. 201, if we regard each

electrical stratum as a thin homoeoid. It may also be proved by the method of

projecting one ellipsoid into the other as explained in vol. i. Art. 428.

Ex. 1. Prove that the quantity of electricity on the portion of the ellipsoid

bounded by any two parallel planes is the same fraction of the whole electricity

that the portion of the diametral line betioeen the planes is of the whole diameter.

If a portion of an indefinitely thin shell formed by two concentric spheres

be cut off by any two parallel planes we know that the intercepted volume is

proportional to the distance between the planes, (vol. i. Art. 420). Projecting the

spherical shell into an ellipsoidal one, the plane sections project into planes and

the theorem enunciated follows at once.

Ex. 2. Two planes drawn through any diameter POP' of the ellipsoid intersect

the diametral plane of POP' in OR, OK', and D is the diameter porallel to the

chord lilt'. Prove that the electricity E on the lune included by these two

planes is given by E= (l\Ilir) sin"' (RR'jD) where M is the whole electricity on the

ellipsoid.

378. The constant potential inside the electrified ellipsoid

can be found only as a definite integral, (Art. 197). When the

ellipsoid is one of revolution so or; at a = b the integration can be

effected >^ ithout difficulty.

Let the axis of z be the axis of revolution. The quantity of

K. S. II. 13
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m
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i

electricity between the planes z and z + dz is dz . J//2c, Art. .S77.

The potential at the centre is therefore

2cv r C

Effecting the integrations we find

V = M
sin

.V(«'-c-)

according as the spheroid is oblate {a>c) or prolate (c>a). The

internal potential of the prolate spheroid is found more easily by

taking V to be the potential at the focus, for then r = c + ez.

The potential of the ohkite spheroid is also V = M(t>/f, where /'is

half the distance between the foci of the generating ellipse and ^
is half the angle subtended by 2/ at the extremity of the axis of

revolution.

379. We know by Art. 20.j that all the external level Rurfaces of the ellipsoidal

conductor are confoeal ellipsoidfl. If P be any point situated on the confocal

whoHe semi-axes are a', b', c' tlie potential at P is i.l/ /

where the limits are X= rt'--«'^to x, (Art. 20S).

\)(//^ + \)(t''' + .\)li'

380. The external surface of a conductor charged with a

given quantity of electricity is not acted on by any external

body. Prove that the electricity at every point has the same siyn.

Let Fo be the potential and first let this be positive. If there

be any point P on the surface at which there is negative

electricity, dV/dn must there be positive because the surface

density m is given by 4>'7rm = — dV/dn (Art. 369). Hence the

potential increases outwards along the line of force at P. But

this is impossible since the potential at every point between the

surface of the conductor and the surface of a sphere of infinite

radius must lie between V^, and zero, (Art. 110, Ex. 2). A similar

proof applies if Vq is negative.

381. A conductor, charged with a given quantity of electricity,

is acted on by given forces. Prove that there is but one arrange-

ment of the electricity which coidd he in equilibrium.

If possible let there be two distributions of the electricity,

either of which could be in equilibrium, though the potentials

are not necessarily the same. By subtracting one of these from

the other, as in Art. 129, we obtain a distribution of electricity in

equilibrium in which the external forces axe absent and the total
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iniws is zero. This distribution must have both positive and

negative electricity on the surface, but this has just been proved

to be impossible.
'

382. Elliptic Dlic. To deduce the distribution of electricity

oit an insulated elliptic conducting disc from that on an ellipsoid

we put c = 0. Then ''

]

(;y=»'(M5 + -o =

The surface density p at atiy point (x, y) of the disc is then given

b = ^ = ^^ I
^ ^~47ra6c 47r ab V( 1 - x'^ja^ - ifjb*)

'

where ^f is the whole charge on the disc. This value of p gives

the surface density on either side.

The internal potential due to the electricity on both sides is

F = M [frdedr 2

Jj r '.
<!' =

COS* e sin'g

a?
"^ ¥^-rrabj] r 'V(l-^7')'

where the limits are r = to l/q and ^ = to 27r. Effecting the

integration with regard to r and writing ^=^7r — ^, we find

M fi" d<f)._ M /•*"

a Jo V(l-e'sin-'<^)*

For a circular disc we have, if p be the surface density at any

distance r from the centre,

M 1 , ,_ /27rrdr2p Mtr

The capacity M/V is therefore 2a/7r.

3B3. The quantity of electricity on any elementary area cLcdij of the disc is

— ' If then two elliptic discs (say an ellipse and its auxiliary
iirab ^/(l-x^la^-i/lb'^)'

circle) have equal charges, the quantities of electricity on corresponding elements

are also equal, for in these elements x/a = .t7a' Ac, dxja= dx'la' &c. The quantities

on any corresponding finite areim are therefore aha equal. This result follows at

once from Art. 377.

384. The potential V of the elliptic conductor at an external

point P follows from the result stated for an ellipsoid in Art. 379.

Let the confocal on which P is situated cut the axis of the disc in

C, C" and let its semi-axes be ct', h' , c'. We find after putting

c = 0, \= p? and p, = h tan 6,

dp. Mf d0

'l{(a'^ + p,'){b' + p?)]i aj{l- e^ sin'' e\^

'

13—2
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whoH' the liniits arc ^«c' to /i*«»x and ^=»^7r — «^ to ^-^tt
whort' <^ is half thf angle Hnl)teinle«l hy the minor axis of the (Uhc

at (J or C.

For u circular disc the potential at an external point is Mi^ja

where <^ is half the angle Hubtended at C by any diameter of tlu-

disc.

•86. FiX. 1. A ohonl Ih drawn on an filliptic inHiilatt'd (Uhc, piovu tliat tlie

quantitioH of eloctricity on ciicli Hide of th« chord are in tliu ratio of tlie Hc^iuontH

of the conjugate diameter, (Art. H??).

Kx. '2. Prove that the (innntity of electricity on an elliptic Hector bounded

by the Henii-diunioters CP, ('/'' iH M (tp' - <p)l'2r, where <p, <f>'
are the eccentric aiiKlim

of P, i'' and M in the whole (juantity of electricity (Art. HHH).

Ex. H. A Biniilar coaxial ellipne whoHe Heini-axeH are iia, nh is dencribed on the

electrified disc. Prove that the (jnantity of electricity between thiH ellipne and thi!

rim of the diBc ic iV^'(l - h").

Ex. 4. Prove thr.t the line demity of a thin i-lertrijled inxulnted rod i» vonMuut.

Regard the rod &* an evaneucent ellipsoid in which a and b are zero and c

finite. The line density p' is hucIi that p'dz repreHcntH the maMS between two

planes whose abscissBB are z and z + dz. This we know is Mdzj'lr, Art. 877.

386. Condilctor with a cavity. A body is bounded by

two surfaces *S,, S-i vnich do not intersect. It is charged with a

given quantity M of electricity and is acted on by a given systein

of electrical points (ma,ss Mi) situated within S^.

Let a; be the quantity of electricity on S^ M — x that on S,.

These are so distributed that the sum of the potentials of A/,,

X and M—x is constant throughout the space between S,, *J»V

Describe a surface a between »S,, S^ and enclosing *S\, then by

Gauss' theorem (Art. 106) 4nr{Mi + x) is equal to the flux of force

across a, and this is zero. Hence x=^ — M^', the charge on ti^ is

therefore - M^ and that on S-i'is M + M^.

387. If the charge M = — M^, the total quantity on S.^ is zero.

It immediately follows from the argument in Art. 380 that the

charge an each element is also zero. For by that article, the

electricity on every element of *S'.j must have the same sign, which

is impossible when the whole quantity is zero. The whole of the

free electricity is therefore concentrated on Si.

The sum of the potentials of the system Mi and of the

electricity x = — Mi is constant throughout the space between *S'|

and S2 and therefore throughout all space which can be reached

without passing in the immediate neighbourhood of attracting

matter, Art. 117. It is therefore constant throughout all space
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external to Si and in the Hamc an that at an inHnitcly distant

point. The Hurn of tlie potentials of Af, and x is therefore zero.

It ap[)ears that the fornti of the nurface »Vj may be changed

without in any way disturbing the electricity on the surface iS,.

388. Let a solid conductor whoso boundary is the surface S^

be acted on by a given external system of electrical points

(nuiHs Mi) and let the chargi^ given to the conductor be y. The

condition of equilibrium is that the sum of the potentials of

}f., and // is constant throughout the interior. Since this condition

is not atiected by removing any portion of the inside matter the

e(|uilibrium of the electricity on aSj will not be disturbed when the

surface *S', is made the internal boundary.

389. If we now superimpose these two conductors, we have a

conductor bounded by the surfaces »S,, S.^ with a given electrical

mass Ml inside Si and a mass M., outside S.^. Let the charge

given to the conductor be M.

There will now be a charge .« = — Mi on <S, so arranged that

the sum of the potentials of Mi and x is zero at all points external

to Si. There will be charge y = M-\-Mi on S^ so arranged that

the sum of the potentials of M.j and y is constant at all points

internal to S.i. The condition that the equilibrium should remain

tmdisturbed is that the sum of the four potentials should be

constant at all points between Si,S.i and this condition is evidently

satisfied.

We observe that the distributions of electricity on the two

boundaries are independent of each other.

390. Screens. We notice how completely the electricity on

the surface S^ screens the repelling masses il/j from observation by

an external spectator. If the masses forming the system il/, be

moved about in any way within the cavity the electricity on Si

rearranges itself continually so that in equilibrium the resultant

force at every external point is zero.

In the same way if the external masses i/g be moved about,

the electricity on the surface S^ is rearranged and the motion is

imperceptible to an observer within the cavity.

301. We shall now prove that there in hut one possible distribution in equi-

Uhriiim on the two surfaces .S\, .S'^ when the charge M and the electrical masses

•U,, .v., are given.

If possible let there be another arrangement. Then subtracting one of these

1
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law of distribution of a certain quantity of electricity can oe found

when the boundary of the conductor is a level surface of a known

system of repelling bodies. This method has been already dis-

cus.sed in Art, 156. Before however proceeding to its application

we shall give an elementary proof in small type which more fully

illustrates the principles of attraction.

394. Let il/j, il/j, be two given systems of attracting or repelling particles

and let .S' be a surface enclosing il/j only within its finite space. If the masses M.j

were removed and S made the inner boundary of a conductor, a quantity of

electricity, equal to -M^, would be found on the surface S and its potential

together with that of the system M^ would be zero throughout all space external

to ,S' (Art. 387). Let this distribution of electricity on .S' be called E^.

Let us now change the sign of every element of the electricity E^ and constrain

it to remain, otherwise unaltered, on the surface .S'. Let this new distribution

be called E^. The quantity of the electricity E.;, is then equal to +Mj and the

potential of A', in the mime ns that of .1/j throughout all space external to S.

Let us next suppose that S is a level surface of M^ and M.y and let the potential

at any point of S be F,. It must therefore also be a level surface of E^ and il/.,.

The sum of the potentials of E^ and ili.j is therefore constant and equal to F, at

all points of a surface just inside .S'. Since no particle of either E^ or M.^ lies

within this surface, the mm of the potentials of En and M^ is constant and equal to 1'^

thnnujhout the interior of S (Art. 115).

If .S be made the external boundary of a conductor and the system M^ removed,

the distribution of electricity E.j would be in equilibrium under the influence

of its own attraction and that of M. (Art. 372). We also know th»t no other

distiil)ution of the same quantity M^ of electricity will be in equilibrium (Art. 381).

Brieriy, 7!,',, when acted on by 31^ is in equilibrium if S is the inner surface

of a conductor, and E.^, when acted on by M.,, is in equilibrium if .S' is the outer

surface. Also A'j and E„ differ only in sign.

The surface density p.j at any point P of the stratum E^ when placed on the

external surface of a conductor follows at once from Green's theorem, (Art. 142).

By that theorem \irp., —X where A' is the sum of the normal forces due to M^ and

K., at a point just outside the substance of the conductor. But the normal force

due to 7% has been proved equal to that of ..17j. Hence A' is the sum of the

noinial forces at l\ due to .17, and JI7._,, measured positively from the conductor

towards the non-conductor.

The density pj at any point V of the stratum Ey when placed on the inner

sinface of a conductor has the sign opposite to p.,. Since the non-conductor is

now on tlie opposite side of .S', the density p^ is given by the same rule, 47r/3, = A',

whert' X is the sum of the normal forces due to M^ and Jfo measured towards

the non-conductor.

395. We arrive at the following rules.

1. Let aS' be any closed portion of a level surface (potential Fi,)

of a given electrical system, il/j being inside and M.^ outside. We
may remove either the mass M^ and regard *S' as the internal

boundary of a solid conductor acted on by the internal mass Mi, or

in I'

iinii

(j H il'

i il:
^'\

i
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ti

we may remove if, and regard S as the external boundary of a

conductor acted on by the external mass M^. In either case the

density p at P is given by the rule 4nrp = X, where X is the

normal force at P due to both M^ and i/j measured positively

towards the non-conductor.

2. The quantity of electricity on (S is — M^ or + Mi according

as S is an internal or external boundary.

3. The potential of the electrical stratum at any point R on

the side opposite to M^ is numerically equal to that of M^. It

follows that the stratum and M^ have not only the same mass, but

also the same centre of gravity, (Art. 136). Their principal axes

at the centre of gravity also coincide in direction and the difference

of their moments of inertia about every straight line is the same.

4. The potential of the stratum at any point R' on the same

side as M^ is equal to Vg—V.^ where V^ is the potential of J/, at

R', when S is an external boundary. It follows that when S is

an internal boundary, the potential at R' is given by the same

expression with its sign changed.

396. If the quantity Q of electricity which covers any given

portion a of the surface S is required we use Gauss' theorem,

(Art. 106). We describe a surface closely enveloping the given

portion of *Si both inside and out, then 4nrQ=jFd<T. Just inside

the conductor S the force F is zero and all this portion of the

integral may he omitted. The required quantity Q is therefore

given by the above integral, where F is the normal (or resultant)

force due to the given system M^, M^ measured towards the

non-conductor at the element da of the given area, and the

integral extends over that area.

When the systems Jl/,, M,, consist of isolated particles of

masses m,, m.i «&c. the integral can be put into a more convenient

form. For any one particle m we have, as in Art. 106, Fd<T= md(o

where d(o is the solid angle subtended at m by da. This elementary

solid angle is to be estimated as positive when a repulsive force

emanating from 7h travei'ses da outwards into the non-conducting

medium. Adding up the corresponding portions for all the

particles, we see that the required quantity Q of electricity is given

by 4:7rQ = Imo).

linage. When an imaginary system of ^joints, if properly placed on one side

of a 8urface, would produce at points on the other side of that surface the same
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attraction or repulsion which the actual electricity on the surface produces that

system of points is culled an image. Thus, when the surface S is the external

surface of a conductor, M^ is the image of A/,, because the attraction which it

exerts at points on the other side of <S' is the same as that due to the electrification

on S when acted on by M^.

397. Electricity on a sphere. To find the distribution of

electricity on a sphere of conducting matter ivhen acted on by an

electrical point.

Let A be the centre of the sphere, B any external point, BD a

tangent and DC a perpendicular

on AB. Let the distances of

A, B, C from D be respectively

(/, b, c, so that a is the radius.

Let the distances of B and C
from the centre ^4 be f and /'.

Since a- =^ff'. the points B
and C are inverse with regard to

the sphere. If Q be any point

on the sphere, the ratio OQ/BQ

is constant and therefore (by

putting Q at D) equal to c/b (Art, 80). We also have, by the

similar triangles BDO, BAD, c/b = ajf.

If then we place at B and G respectively quantities of

electricity E = fib, E' = — /mc*, where fi is any constant, we have

at any point Q of the surface

A
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stratum thus formed is in equilibrium under its own repulsion

and the action of the electricity E at the external electrical

point B.

The potential of the stratum at any point R outside the

sphere is equal to that of the electrical point E' and is therefore

E'/GR. At a point R' inside the sphere, the potential of the

stratum is equal and opposite to that of the external electrical

point E, because the sum of these two potentials is zero at all

points inside the conduct' >r,

399. If the sphere is the boundary of a cavity in the conductor,

we remove the electrical point B. The surface density p, when

the electricity is acted on by the electrical point E' = — Eajf

situated at C, is the same as that just found for a solid sphere,

but with the sign changed (Art. 395).

The potential of the stratum at any point within the sphere is

therefore equal to that of E at the same point. The potential of

the stratum at a point outside the sphere is equal and opposite to

that of E'. 1

Another proof. Let us surround the system by a .sphere of infinite radius with

its centre near C. The point II is now inoluded witliin the boundary formed by the

given sphere and the infinite sphere. We remove the point It and spread its

electricity over the double alieeted boundary. By Art. 386 the quantity on the

given sphere is equal and opposite to that of C and is therefore - E'; the quantity

on the infinite sphere is therefore K + E'. Since this is a finite quantitj' spread on

a sphere of infinite radius, both its potential and attraction at points near B or G

are zero. This electricity may therefore be removed from the field.

400. We may at once deduce either of the results yireit in Arts. .S98, 399 from

the otiier by an easy inversion with reiiard to the centre A of the sphere, the radius

beiiiK the radius of inversion (Art. H6).

When the sphere is an outer boundary the potential of a charge E at li together

with that of a surface, distribution p on the sjjhere is zero throu;;liout the interior.

When we invert this system with reganl to the centre, the distribution on the

sphere is unaltered while the charge at Ji is moved to C and becomes Kajf

(Art. 1(58). It follows, from Art. 177, that the potential of the same distribution

on the surface of a spherical hollow together with that of a ch /ge Eajf ai C is zeu

at all points outside the sphere. This distribution is therefore in equilibrium when

placed on the inner surface of a conductor and acted on by the charge at C. This

last result is the same as that obtained in Art. 399 except that the signs of both K'

and p have been changed.

401. To find the surface density p at any point Q in terms of

the distance of Q from either electncal point.

The outward normal force F due to the repulsions of the

points at B and G is the resultant of E/BQ^ and E'/CQ'\ see

m
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figure of Art. 397. Hence resolving perpendicularly to CQ, we

have j^^:^8m BQC=- F. sin AQC.
j

But BQ sin BQC : AQ sin AQC is equal to the ratio of the per-

pendiculars from B and A on CQ and is therefore equal to

BG : GA.
EBC^a

^~ BQ' GA

By similar triangles we have BG/GA = b^/a", hence (Art. 369)

(1).47r^a = aF=--g-^-

In the same way we find by resolving perpendicularly to BQ,

(2).4>7rpa = aF= ^^-

Either of these results may be deduced from the other by

using the known relations E/b + E'jc = 0, b/BQ = c/GQ. Art. 397.

If the sphere is the boundary of a solid conductor, F is to be

measured outwards from <^he sphere into the non-conductor, and

these expressions give the density at any point. If the sphere is

the boundary of a cavity, the force F must be taken positively

inwards and the signs on the right-hand sides of (1) and (2) mv^t

be changed.

In both cases let the point (B or C) at which the acting charge is situated be

called O and let the charge {E or E') be called E^. If k- be the product of the

segme'Hs of a chord drawn through O, the surface density p at any point Q on the

sphere is given by iirpa = - ' .

402. In the case of a solid conducting sphere we may super-

impose a uniform stratum of any surface density p„. This addition

changes the potential to F„, where VQ = 4nrpaa-/a. If p' be the

resulting surface density at any point Q, we have

4iTrp' = —
'^

a,

1 Eb' ^ V, 1 E'
(3).

aBQ'' a ' a GQ'^

The quantities of electricity on the sphere due to the two

strata respectively are V^^a and E', and the total qurintity is

E" = V^a + E' where E'ja = — E/f The potential at any external

point R is the sum of the potentials of two electrical points, one of

mass E' placed at G, the other of mass V^a = E" — E' placed at the

centre A of the sphere.



204 ELECTRICAL ATrRACTIONS. [art. 405

k a

'^™

408. The gurfuce densiti/ may also be easily found by the method of inversion*.

Proceeding as in Art. 17<> we invert the theorem "the potential of a tiiin spherical

stratum of density p„, radius a, at an internal point P is Ko=4irpo«*/«'" I'et k'^ be

the product of cliords through the centre of inversion, so that the sphere inverts

into itself. We immediately arrive at the theorem "the potential at a point P'

of a thin spherical stratum of density p„' = /j„(A/ 0^)=' is jy= ^0(^/0^')," where F
lies on the side of the sphere opposite to O.

Since the expression just found for r„' is clearly the potential at P' of a particle

VqU placed at O, it follows that " the sum of the potentials at P' of the electrical

stratum and of the particle ( - V„k) placed at O is equal to zero." Let the arbitrary

density p,, be such that - V„k=K, then the sum of the potentials at P' of a utratum

whose density P=r""" (/)/)) > "'"^ ".'' "'" partirle K placed at (), is zero, and is

therefore constant thronphout the space on the side of the sphere opposite to 0.

If the sphere is to be a solid sphere of conducting matter we place O outside, say

at /} in the figure of Ait. 397. If the sphere is to be a cavity in a conductimj

medium we place O inside, say at C in the same figure. In either case the density

of the stratum at any point Q ivhen acted on by an electrical point of mass K at is

a. 01^
given by 4»rp=

—
'—75, and the conducting matter is at zero potential.

1'^

I

404. In the case of a solid conducting sphere the potential of this stratum

alone at any point R' within the sphere (being equal and op^ osite to that of K)

is - EjOR'. Placing W at the centre, we see that the quantity F/ of electricity ou

the sphere is given by E'la= - Ejf where f=OA. We also find the potential T at

any external point R by inverting the stratum with regard to its centre A aa in

Art. 399. The stratum is unaltered by this inversion. Its potential at R is

therefore '= (
-

fjip) -rn • ^^ ^' ^^ * point such that AO . AO'=a-, the triangles

OAR', O'AR are similar a,\\d OR' . AR-O'R . OA. The potential of the stratum at

any point R is therefore E'jO'R and is equal to that of a particle of mass A" placed

at o:

405. Lines of force and level surfaces. To simplify the discussion of tliese

curves, let ur. consider the case in which the sphere is at potential zero. We may

* The first determination of the law of distribution of electricity on a sphere

when influenced by an electric point was made by Poisson whose method required

the use of Laplace's functions. Sir W. Thomson discovered the powerful metliod

of inversion and used it to obtain an easy geometrical solution of tiiis problem.

He also expressed the surface density in a much simpler form than that given

by Poisson. See Section v. of the Reprint of his papers on Electrostatics and

Magnetism. The first application of Green's theorem to this problem is to be found

in Maxwell's Treatise on Electricity, &c.

II
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s zero, and h

e that cos 0^ must

tliin represent the attractions by two electrical points K, A" situated at B, C ; in

our case K'= - Kajf is negative. We shall put «//=n for brevity, and we notice

that «< 1. See figure on page 206.

The equations of the curves have been found in Art, 323. If (r, d), {r', ff) are

tli<! polar coordinates of a point P referred to B and C as origiuw, BGA being the

axiH of reference, the lines oi" force and the level curves are given by

K cos e + K' cos d' = K, Kfr + E'ir'= A".

It is clear that the lines of force emanating from one electrical point must either

pass to the other or proceeii to an infinite distance, (Art. 114).

When a line of force proceeds from H to an infinite distance we equate the

ViiUies of A' at B and at infinity. Since the radius vector at the origin B coincides

with the tangent and the angle 9' is there eqr.al to ir we have

E cos On - A" = (K + ;•,") cos /3,

where ^^^ and /3 are the angles the tangent at // and the asymptote make with the

axis of reference BCA. Since cos/S must lie between ±1, we

lie between - 1 and 1 - 2n.

Wiien a line of force proceeds from C to an infinite distance we have

K + A" cos e^ = {K + K') cos /3',

hence cos S,,' mus^ lie betw.jen 1 and (2 - n)jn. Since the latter fraction is greater

than unity, no line of force can pass from C to an infinite distance, except that

which coincides with the straight line BCA *.

When a line of force proceeds from B to C we have

K cos ^j - K'=E + E' cos d^',

where d^, 6^' are the angles the tangents at B, C make with BGA. As cos^j

decreases from unity to 1 - n, the sign of cos 6^ is negative and the lines of force

arrive at C on the aide nearest B, When cosSj = l-» the line of force at C is

perpendicular to BCA. When cos ^, lies between 1 - Jt and 1 - 2;t the sign of cos d^'

is positive and the lines of force enter C on the side furthest from B. When
cos ^j < 1 - 2;/ the line of force goes to an infinite distance.

To tru -".e the level surfaces we proceed as in Art. 134. The level surface which

passes through the point of equilibrium A' governs the whole figure. This point

lies in BC produced so that CX= BX^,/n. There is a conical point at X, the

tangents making an angle ±tan-i^2 with BCA produced (Art. 121, Ex. 2). This

surface when complete consists of two sheets ; one of these passes between B and C
because its potential ia less than the infinite positive potential near B and

algebraically greater than the infinite negative potential near C. The other

sheet cuts ACB beyond B becaust its potential is less than that near B and

greater than that at an infinite distance. The two sheets therefore turn from X
towards B and C, one enveloping C only and the other both B and C. This level

surface is represented by the thick line in the left-hand figure. Its potential is

K{l-^n)'^ll, where BC = l.

The other level surfaces fill up the enclosed spaces and surround the two sheets.

A few of these are represented by the dotted lines. The level surfaces within the

smaller sheet and those outside both are at potentials less than that at A', while

* Since the sphere of zero potential surrounds C (but not B), it is clear that no
line of force (except CA produced) could proceed from a point on that sphere to a
point at an infinite distance at which the potential is also zero (Art. 114). It is

also clear that there can be no points of equilibrium except on the axis BCA.
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thoHe between the two sheetH are at Kieater potential. The complete level surfaces

whose potentials are Ums tiian that at A' anil greater than zero are therefore two-

sheeted surfaces. The two sheets of the level surface of zero potential are a sphere

inside the smaller sheet and a sphere of infinite radius.

Since .Y lies on the axis of reference, any line of force which passes from /)' to .Y

is defined by K cos 0^-E'=E + K' or cos e^ — \- 2n. If the potential is to continue

to decrease, this line must make a sharp turn at A', Art. 114. By doinR this it

could either reach (' or proceed to an infinite distance in the direction BGA. The

line of force from D to A' is represented by the thick lino in the figure on the rif^ht-

hand side. The nlosed surface formed by all the lines of force which proceed from

D to .Y separates the other lines of force into two systems, those inside this space

pass from Ji to C, those outside proceed from B to an infinite distance. „ few of

these are represented by the dotted lines.

The figures represent the level surfaces and lines of force due to two particles

placed at B and C. When C is surrounded by a spherical conductor the lines of

force are cut off by the sphere, and exist only outside the sphere. The potential

beinR constant within the conductor the level surfaces become indeterminate.

The figures are only roughly drawn. The outer sheet, for example, of the level

surface whicli passes through .Y should be very much larger.

406. Ex. 1. A sphere charged with a given quantity of electricity is acted on

by an external electrified point B and a tangent from B touches the sphere at D.

Prov' that the potential at B of the heterogeneous stratum of electricity is the

same as if it were homogeneous and its density equal to that of the heterogeneous

stratum at D.

Ex. 2. A conducting sphere (radius a) is at potential zero under the action of

a quantity K of electricity at a point B distant / from the centre A. The sphere is

cut by a plane perpendicular to the diameter BA. Prove that the quantity of

electricity on the side remote from B is _ - y-~ hq) ^^^^^ Q IS any point

on the curve of section.

Problems of this kind may be solved in three ways : (1) by Gauss' theorem the

quantity Q on any area is given by iirQ = E<a + E'w' as explained in Art. 396;

(2) the heterogeneous stratum is known to be inverse of a homogeneous stratum,

hence Q/k is equal to the potential at the centre B of inversion of the corresponding

portion of the homogeneous stratum
;

(H) the result may be obtained by direct

integration.

Ex. 3. Prove that the potential at any point R on the diameter BA of

the electricity cut off by the plane section as described in the last question is
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Ex. 4. A spherical insulated conductor, charged with a given (juautity E" of

eUctricity, is in a iiiiifonn field offorce defined by the potential F.t, Prove that the

Hurface density at Q is given by 47rprt*= A'" -Hrtf'.c where x is the abscissa of Q
referred to the centre. [In Art. 401 make U very distant and KjHQ'-^ - F.']

Ex. 5. A solid sphere being charged with a given quantity K" of electricity is

acted on by an electrical particle of mass K situated at a distance /' from the centre

.1 of the sphere. Prove that the mutual repulsion between the sphere and particle

if' - a'f

'

Thence show that if the sphere be close enough la the particle, the mutual force

is attractive ; and if the sphere is uncharged the force is attractive at all distances.

If the sphere be allowed to fall from rest towards the particle tiud the velocity in

any position.

fiX. <). A unit charge is brought to a point //, at a distance / from the centre

of an insulated sphere, of radius a and charge E ;
prove that the total work done is

K
_

«•'

Ex. 7. Outside a spherical charged conductor there is a concentric insulated

hut uncharged conducting spherical shell which consists of two segments : prove

that the two segments will not separate if the distance of the separating plane from

the centre is <:obl(a'^ + lfi)^, where a, h are the internal and external radii of the

shell. [Coll. Ex, 1897.]

Ex. H. If a uniform circular wire charged with electricity of line density - e is

presented to an uninsulated sphere of radius «, the centre of which is in the line

through the centre and perpendicular to the plane of the circular wire, prove that

the electrical density induced at any point on the sphere, whose angular distance

from the axis of the ring is d, is

f'^-tt' Eef sin a

va {a- - 2«/co8 (d + a) +f^]^ {a!^ - 2rt/cos (0 - a) +/-}
'

where/" is the distance of any point of the ring from the centre of the sphere, a is

the angle subtended at the centre by any radius of the ring, and

4«/'sin a sin 5

[Coll. Ex. 1897.]

/•Jrr

k - hin^ <p) i1(t), h'^=
a-- 2(ifcos{e + a)+f^'

[Math. Tripos, 1879.]

The density at any point Q of the sphere due to an element of electricity

m-(fiimad(2(p) at a point B on the ring is given in Art. 401 and is a known
multiple of wt/ZJ^''. To effect the integration between the limits and ^ir we first

prove by geometry that BQ is a known multiple of A = ^(l - fc-cos-0) and then use

the theorem (1- k'^)j\-'-^d(f> — JA''^d<p. This analytical result may be obtained by

differentiating sin <p cos 0/A and then integrating the result between the limits

and W.

407. Electricity on cylinders. We may apply either

Green's theorem or the method of inversion to find the distri-

I

m
'ill
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bution of oloctrieity on an infinit*' circular conducting cylinder

when acted on by a thin uniformly oloctritied non-conducting rod

placed parallel to the axis either inside or outside.

Referring to the figure of Art. S!)7 we ace that since CQIliQ

is constant, \o^ ('Q — log BQ is also constant for all points on

the circle. Let two non-conducting thin rods infinite in both

directions bo placed at li and C perpendicularly to the plane of

the paper; let these rods be uniformly ami equally electrified but

with opposite signs. The infinite cylinder wl'o.se cross section is

the circle is then a level surface of the two rods (Art. 4.'i).

If the cylinder is the boundary of a solid conductor, we remove

the electrical rod C and distribute its electricity over the cylinder.

The repulsion of the stratum ; t any external point M is the same

in direction and magnitude as that of the rod C. Its magnitude

is therefoi-e 'Imji-R, where m is the line density of the rod. At

any internal point li' the renulsion is equal and opposite to that

of B, Art. :i()5.

If the cylinder is the boundary of a hollow in a conductor we

remove the rod A The distribution of the electricity on tlie

cylinder is the same as that found for the solid cylinder but

opposite 'n sign.

To find the surface density p at any point Q we follow the

analysis in Art. 401. We notice that the attractions are 'ImjBQ

and - 2mlCQ instead of E/BQ- and E'jCQK Making the corre-

sponding changes in tht result we find that for a solid cylinder

. 2mlf 2mc-
^""P''^- B(^ = CQ^'

The external rod has here the positive line density in. If the

cylinder is hollow and the internal rod has a negative line density

— m, the sign of p must be changed.

408. The same results follow from the method of inversion. Thus let the

rod be inside the cylindrical hollow as at C. We know, by Art. 183, Ex. 2, that if

the surface density at Q is proportional to IjCQ- the attraction at all external

points is the same in magnitude and direction as if the attracting mass were

equally distributed over the rod C. The condition of equilibrium is that the

attraction due to both the surface density and the rod should be zero at all

external points. This is satisfied if the surface density have a sign opposite to that

of the line density of the rod.

The result for the case in which the rod is outside a solid cylinder may be

deduced from this by an inversion with regard to the axis of the cylinder, see

Art. 399.

ART.
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409. Let the positions of the rods B, C bo given ; let

bisect BG, and let BC = 2t. Let ns describe the system of

co-axial circles whose radical axis is perpendicular to BC and

passes through 0. Let the length of the tangent drawn from

to any circle be t, then obviously B, G are the evanescent circles

of the system. Let A be the centre of any circle, then

AB.AC==(A0 + 0B){A0-0G) = AO'-t^ = a^

The points B and C are therefore inverse points with regard to

any co-axial circle. The cross section of the cylinder may be any

of these circles.

Since the line densities of the two rods are equal and opposite,

it follows from Art. .S23 that the lines of force are defined by

0^-$^=K and the level curves by ri/r.i = K, where (r,, ^,), (r^, 6.^

are the polar coordinates of any point P referred to B and G
respectively as origins and BGA as the axis of reference. The

lines of force are therefore the circles which pass through B and C
and the level curves are the co-axial circles.

410. We may also find the laiu of distribution on two circular

non-intersecting cylinders (radii a, a') having their axes parallel to

'jack other and their charges equal and opposite.

Let A, A' be the centres of the two circles made by a

perpendicular cross section of the cylinders. Then two points

B, C can be found (and only two) which are inverse to each

other with regard to both circles. Each cylinder is a level

surface of two parallel rods passing throng B and C equally

electrified but with opposite signs.

Let the cylinders be solid conductors, each external to the

other, and let them be separated by a non-conducting medium.

We remove each rod and spread its electricity over the cylinder

within which it lies, according to the law found in Art. 407.

Since the attraction of one electrified cylinder (say A) a.t all

external points is the same as that of the rod which was inside

its conducting matter, the attraction of the other cylinder (A')

is in equilibrium when acted on by the electrified cylinder (A).

The electricity on each cylinder is therefore in equilibrium when
acted on by the other.

Several arrangements of the cylinders may be made. First, each cylinder may
be external to the other as just explained, or one cylinder may contain the other

and be separated from it by the non-conducting medium. In both these cases thd

R. S. II. 14
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)

ruilM Hro rtiiuuvuti ind t^ach cylinder In ououpiud by thu ulootrioity of thu rod wliioh

wan within itM conduuting iiiatUir. Sfcoudly, thu cyhndurH nmy bu Heparatu holluwit

in a.i iutkuitu condiiutiiiK luediuni, or one uylindcr may contain the otliur with the

oondiictinK nioiliuni butweon their MurfaouR. In thmtt two caHOH thu rodii aru nut

runiovod ; uauh cylinder iH oooupiod by tluutriuity equal in quantity but uppunite in

Hign to that of tliu rod within thu nuaruHt nonconduotur.

411. Kx. An intinitu conduutint{ cylinder of radluM a in placed with itH itxiit

)iaralltil to an uniuHuliitud conducting plane 'iml at a diNtancti c from it. The

cylinder ix maintained iit potential I', prove that thu rharKu (m) pur unit of lenKtli

Prove alHo that the uurface denHity at any point

of the cylinder ix pro|K)rtional to the diHtance from the plane. [Coll. Ex. IHHO.j

Prove alHo that the mutual attraction between the cylinder and the plane Ih

»•»/(«"- «")*. [Math. T. IHHH.J

[Let the poiutM A, H (throuKh which the rodH paHH aH deHoribed in Art. 407) bu

BO placed that the plane biHectx their diHtance apart ut right anglex. Hoth the

plane and the cylinder are then level surfaoes of the two rodH.]

412. Electricity on plan«i. To find the distribution of

electricity on an uninsulated infinite plate when acted on by a

quantity E of electricity collected into a point B at a distance h

from the plate.

Draw BM perpendicular to the plate antl produce it to C so

that MC = BM. The surface of the plate is

then a level surface of zero potential of E
placed at B and — E at C.

The surface of the plate may be regarded

as a sphere of infinite radius enclosing con-

ducting matter on the side C. The eh •

tricity { — E) will then be in equilibriuri if distributed on the

surface; so that 47rp is equal to the normal force at Q due

to the electrical points measured towards the non-conductor. We

therefore have 4Tr/3 = 5- sin BQM =— -^—

,

where r = BQ. The total quantity of electricity on the surface is

— E. We obtain the same results by inverting the sphere described

on BM as diameter.

413. Ex. 1. Show that half the whole electricity on the infinite plate in

comprised within any right cone whose vertex is at the influencing point II and

whose semi-angle is GO^.

Use the theorem 4irQ= ^Eu, Art. 3'J(). It also follows that all areas on the

plate which subtend the same solid angle at the intlucucing point contain equal

quantities of electricity.

Ex. 2. Prove that the quantity of electricity, on one side of any straight line

X drawn on the plate, ia Q= - Efflir, where 6 is the angle a plane drawn through A
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uiid the inHiienoiiiK point inakeH with the plate. The arirle 9 in meaRurcxl

on thnt HJdu of A' which tnakoi (j liiid nunierioally inoreano together, when X it

iiKivi'd pitralii'l to itHulf.

The Holid anglu u Huhtended at the intluenoinK point in here enoloned by two

|)luiu!H. ThoHO form a lune on the unit Hphure wlioHe area in '20.

Kx. H. A Hphi'rioal body with an eltiutrio ohar»{u K m at a height h above the

Hiirfacu of tlio eartli, tlie livight being large compared with the dimenHionii of

the body. Prove tliat the body iM attracted downwardn with a force approximately

('i|uai to /-."/'i/t'^ in addition to itH weigtit.

Trove alHo that itn capacity ix incroaned by the preHence of the ground in the

ratio l + (i/3/i: 1 approximately, where a is the radiuH. [Coll. Ex. 1900.]

414. The planes xOy, i/Oz intersecting in Oy are the boundaries

of a conductor ; the non-conducting medium being in the positive

(jnudrant. The system is acted on by an electrical point at A
whose com'dinates are f, ^. To find the distribution of electricity

on the planes (1) when the angle xOz is a Hght angle, and (2) when

thai angle is -rr/n where n is an integer.

(1) Lot us try to find a system of electrical points such that

the two planes ny, yz form part of one level surface. One of these

puints must be at A, all the others will be inside the conductor.
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I

Ex. A st'-aight line Y is drawn on the plnne xy parallel to Oy. Prove that

the quantity of electricity on the side of Y remote from is - Kipjir where
<f>

is the

angle AYJi'.

415. (2) If the angle xOz = 7r/3 we divide the circle into six

parts by three diameters and place A, A', A"; B, B', B" just

before and just after the alternate divisions. If we suppose each

A to be occupied hy -\- E and each B hy — E, it is obvious that

both the planes xy, yz are level surfaces of zero potential. In the

same way we may sketch the figure for the angle xOz = Trjn and

in all these cases the surface density at any point Q on either

boundary can bo written down by Green's rule, (Art. 395).

Ex. Prove that the quantity Q of electricity on the plane xOij is - £ (ir - 3fl)/]r

where tf is the angle /K).r.

410. Ex. 1. A long rod uniformly charged with electricity is placed perpen-

dicular to a large conducting plane and with an end nearly in contact with the

plane; show that if the plane be put in connexion with the earth, the density

of the electricity induced on the plane will vary inversely as the distance from

the rod. [Caius Coll. 1880.J

Place a similar oppositely electrified non-conducting rod on the other side of

the plane. The plape is then a level surface of zero potential of the two rods and

the electricity can be found by Green's method.

Ex. 2. A uniformly attracting rod is placed parallel to a large conducting

plane. Prove that, if the plane is put in connexion with the earth, the density of

the electricity at any point of the plane will vary inversely as the square of the

distance from the rod.

Ex. 3. A conductor is bounded by the surface of a sphere, whose centre is at

the origin, and by the rectangular planes xy, yz ; the non-conducting medium

being the portion of the positive (luadrant inside the sphere. The system is acted

on by an electrical point of given intensity, situated in the non-conducting medium,

whose coordinates are x, y, z. Find the surface density at any point of the

boundary. [Use seven other electrical points situated in the conducting medium.]

417. A simple condenser. Let a portion <Sf of the surface

of a conductor A be so near the surftice of another conductor A'

that the distance 6 between them at any point is a very sniall

fraction of the radii of curvature of each surface, and let fS, /8' be

the potentials of the conductors. It is required to find, to a first

approximation, the distribution of electricity on the neighbouring

surfaces.

^<et P, P' be two points on the conductors on the same line of

force
; p, p the surface densities at these points ; F, F' the forces

just outside the conductors at P, P' measured in the direction PF.

Then ^irp = F, ^irp = - F'. By Taylor's theorem

dV dV
dn

K
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o _ ft'

As a first approximation, we have F=F', and 47rp= —>,—

;

u
3' -0

similarly 4nrp' ——^— . Hence, 4nr times the surface density on

either conductor is ultimately equal to the fall of the potential

from that conductor to the other divided by the distance.

We notice that when the potentials /9, /3' are given the electrical

densities on the neighbouring surfaces can be made very great

by diminishing the distance 6.

If d<T be an element of the area S, the quantity of electricity

on S is ^^' te. This is (/3 - ^')Sli7rd when the distance d

is constant.

If the conductor A' is joined to the earth, its potential yQ' = 0,

and by the definition in Art. 371 the capacity of /S becomes *S/47r^.

To obtain a nearer approximation we take a second term in Taylor's theorem.

dV d'^Vd^
We then have ^' ' ^= Wi^'^^ di^^2

+*"•

Here, as before, dVjdn= -F, and in the small additional term we write for d^V/dn'

its mean value, viz. -(F' -F)ld. Substituting for F and F' their values iirp and

-itrp', we find "a"- = -P^+ ^ ^^^ (!)•

To obtain another equation connecting the ... arly equal quantities p and-p', we
construct a tube of force joining P, P'. Let the areas at P, P' be da, d<r', then

Fd(r = F'd<T', (Art. 127) and therefore pdir + p'd(T'= (2).

Let R, R' be the principal radii of curvature at P measured positively in the

direction FP. Then, as in Art. 128, Ex. 2,

dff' , /I 1\^
d^-'-'WE')' (3).

Solving these equations we have

These two approximations were given by Green in his Essay on Electricity and

Magnetism, pages 43, 43.

418. Ex. 1. A condenser is formed of two flat rectangular plates, each of

area A, which are very near together but not quite parallel, one pair of parallel

edges being at distance c and the opposite pair at distance c'. Prove that the

A c
capacity is approximately — -7. log -,

.

The lower part of the condenser is fixed in a horizontal position and the other

is free to turn about a horizontal axis through the centre of its under face. Show
that a slight tilt which draws one pair of opposite edges together and the other apart

through 1/nth of their distance will increase the capacity approximately by the

I

m

r
I

if

I
I

r«

'

V
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fraction l/dn* of its value. Prove that, when the upper plate is delicately balanced

on its axis, charging the condenser will make its equilibrium unstable.

[St John's Coll. 1897.]

Ex. 2. A conducting plate A is inserted between two conductors B, B' terminated

by plane faces parallel to those of A. Let 0, 0' be the distances of B, B' from the

nearest face of A, and let <S* be the area of either face of A. If B, B' be maintained

at equal potentials V^ and the potential of ^ be F, , prove that the ratio of the

quantity Q of electricity on both faces of A to the difference ^'l - F^ is t- ( - + -, )

.

4ir \9 6 J

[Coll. Ex.]

419. Cylindrical Condenser. A long straight electric cable,

consisting of a conducting cylindrical core surrounded by a shell

of non-conducting matter whose external surface is a co-axial

cylinder, is placed in deep water. The perpendicular sections of

the two cylinders are concentric circles whose external and internal

radii are a!, a. To find the capacity of the cable.

Let nil, m^ be the charge" per unit of length on the outer

and inner surfaces of the shell ; a, fi the potentials of the outer

and inner conducting media.

When a non-conducting shell separates two conductors the

sum of the potentials of the charges on the two surfaces of the

shell is constant (and therefore zero) at all great distances. It

follows from Art. 136 that the charges are equal and opposite.

The proof for the special case of cylinders is nearly the same as

for the general case. The potentials of the two cylinders at a

point P in the external conducting medium distant r from the

axis differ only by constants from 2nii log r and 2^2 log r (Art. 56).

The sum of these cannot be constant when r varies unless ni2 = — nii

(Art. 365).

The potential of the inner cylinder at a point R in the non-

conducting shell differs only by a constant from 2m2 log r while

the potential of the outer is constant
;
(Arts. 55, 56). The potential

at R of both cylinders is therefore

V= 2m2 log r -t- -4

where J. is a constant. The difference of the potentials at the

two surfaces of the shell is

a — /3 = 2ni2 (log a' — log a).

The capacity C of a length / of the core, measured by the ratio of

the quantity of electricity to the difference of potentials, is

a — ^ log a'ja

'
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When the radii a, a' are nearly equal, the thickness of the

shell is very small and the capacity is very great. Putting

x = (a' — a)/a, the capacity becomes

^log(l+a;) ^x ^a'-a'

We may deduce this result from Art. 417. The capacity is

there proved to be approximately Sj^'jrO, where the area 8 = ^iral

and the thickness 6 = a —a.

When th^ axes of the cylinders bounding the shell are parallel but not coincident,

we proceed in the same way. Let A, A' he the centres of a cross section of the two

cylinders ; a, a' the radii, a'>a. Let B, C be the points in which this cross section

is intersected by the two rods described in Art. 407, C being inside the core and B
in the water. Let m^, m^= - ni^ be the line densities of the rods B, C respectively

;

rj , r.j the distances from B, C of any point R between the cylinders. The potential

at R of the electric cylinders is (by Art. 407)

V= 2»n2 log Tg + 2mj log r^ + A
= 2mn log (r2lri) + A.

When R is on the circle whose radius is a, we have rjr^=alf, where/ is the distance

of B from the centre A . A similar result holds for the other circle. The difference

of potentials at the two surfaces is therefore

a-^ = 2m., (log a'If - log ajf).

The capacity C of a length I of the core is therefore

«M _i __ ^ _
"^ -a-/3~*logV/a-log/'//'

where /, /' are the distances of the axes of the two cylinders from the external rod

B. Since /' ->/, we see that the capacity is least when the two cylinders are co-axial.

420. Nearly spherical surface. To find to a first approxi-

mation the distribution of electricity on the surface of an insulated

conductor which is nearly spherical.

Let the given equation of the surface be expanded in a series

of Laplace's functions

r = a{l+F,+ 7,+ ...} .(1).

The term Yq has been omitted because all constants may be

included in the factor a. The terms Fi, Y^ &c. are so small that

their squares can be neglected. Let the required distribution of

electricity be p = D\l + Z^-'v Z^-\- ...] (2).

If the surface were strictly spherical, the distribution of

electricity would be uniform and every Z would be zero. It follows

that when the surface is nearly spherical each Z is of the first

order of small quantities.

Let (r, 6,
<f>)

be the coordinates of any elementary area da- of

I
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the surface
;

(r', $', <}>') the coordinates of any internal point P.

Let da = sin 6d0d(f>. The potential V of the electricity at P is

F=f P^^-^ ^^[P'^'^IP (-T (B)
}^/{r•'-2rr'p + r'') J r ^^""[rj

^^^'

where the limits of integration are ^ = to ir, and <^ = to 27r.

This series is convergent for all positions of P which are at a

distance r' from the origin less than the least radius vector of the

surface. Let i^ be the angle the radius vector r makes with the

normal to the element da, then r^dfo = da cos y(r. Since i/r is a

quantity whose square can be neglected, we have r'd(o = da.

The electricity is so distribL.ted that the potential V is

constant throughout the interior, we therefore equate to zero the

coefficients of the several powers of r' in the series (3). Hence

for all values of w>0, /^^« = (4).

We now substitute for r and p their values given by (1) and (2)

and reject the squares and products of the small quantities Fj, Fj,

&c., Z^, Z^, &c. We then have by Art. 290

![-{n-\)Yn + Zn]Pnd<o = (5).

Now jYnPnday =-^^ F„, /Z„P„(fa, = g^^^'n, where F„, Z'^

are the values of F„, Zn when 6',
cf) are written for 0, (j) ; Art. 289.

We thus find Z'„=F'„(n-l) (6).

The conclusion is that the surface density of the electricity

on the surface (1) is

p = D{l + Y, + 2Y,+ ...+(n-l)Yn+...}.

It may be noticed that the term Fj is absent from the expression

for p. The reason is that the surface r = a(l + Fj) is approximately

a sphere when Fj is small, Art. 293, Ex. 3. The surface density

is then uniform.

If E be the quantity of electricity on the surface, we have,

since JYndw = and the squares of F„ are neglected,

E = Jpr^dco = 47ra2l>.

This equation determines D when E is given. The potential

at the origin is V=fprdo) = 4!7raD.

The capacity is therefore equal to a.
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Face density
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To find the potential of the stratum at an external point we

make the expansion (3) in powers of r/r. We then have

r=/pdo,2P„-,
,.n+i

n+i

= 2i)a"+'^ jdco {1 + &c. + Z,„ + (n + 2) F^ + &c.}

= 47ri>2, ^——^j
,„ ,- .

2w 4-

1

r*
"+^

After substituting for Z'n its value, this reduces to

r r (^J
+ &C.

431. Ex. 1. The surface r=a (l + pcos-$), where /3 is very small, is chargeu

with a quantity E of electricity. Prove that the surface density is

(l-j3sin2^)£/47ra2.

Ex. 2. A nearly spherical conductor whose equation is r=a (1 + 2m„) is enclosed

in a nearly spherical shell, the equation of whose inner surface is r= 6(l + Si;„)

where u„, w„ are Laplace's functions of (6, <p). If the potentials of the solid and

shell are respectively a and /3, find the potential at any point P between the conductor

and shell. See Art. 392, Ex. 1.

The potential at P is, by Art. 283,

r=r„+Fir + &c.+ ^ + ^+&o (1).

If the surfaces were truly spherical, the distribution of electricity on each would

be uniform and the expression for F would take the form A + Bjry/heTe A, B are

constants. It follows that Y^, Y^, &c., Z^, Z^, c&c. are in our problem small

quantities. Proceeding as in Art. 299 and rejecting the squares of small quantities

we have
Z Z

YQ+Y^a+ yja'-' + fto. + ~5(l-«i-W2-&c.) + -i + &c. = o,

Fo + i'lft + raft*+ &0. + ^? (1 - Vi - Vj - &0.) +^ + &c. = /3.

Equating the functions of like order, we find

Thtov- give

V 4. ^O
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where 1//*

=

V^^ - a"^' and the summation S begins at n= 1. The surface density

p' at any point of the external conductor is found by interchanging {a, b) and (u, v),

the sign of the first term being also changed. This problem is discussed in a

nearly similar manner in Maxwell's Electricitij.

Ex. 3. A shell is bounded internally by a nearly spherical surface whose

equation is r=:&(l4-2)rj and is acted on by an electrical point situated at its

approximate centre, Prove that the eleci/ical density p at any point P of the

surface is given by iirb^p= - £ { 1 - S (n + 2) r„}, where the origin is at the electrical

point, E is the quantity of electricity at that point and the summation 2 begins

at n= l.

Ex. 4. A nearly spherical condwtor, which is also a solid of revolution with

the approximate centre near the axis, is placed in a uniform field of force whose

potential is Mx ichere the axis of x is the axis of the solid conductor. Find the law

of distribution of electricity on the surface when the charge is given.

The surface being one of revolution about the axis of reference and also

nearly spherical, its equation referred to an origin on the axis can be expressed

in the form
r=a(l + /liPi + ^„P.j + &c.) (1),

where all the coefficients A^, A^, &o. are small. Similarly we may express the

surface density in the form

p=D(l + BiP^ + B^P._ + &e.) (2).

If the conductor were accurately spherical, the exprnsion for p would be of the form

D(l + BiCos^) (Art. 406, Ex. 4). It follows that when the surface is nearly

spherical the coefficients B„ , B^ &c. are small, but B^ is not necessarily small.

Proceeding as in Art. 420, we make the potential at an internal point R

whose coordinates are (/, 6') equal to a constant K.

l'frT^^^hrT2,+^ir'co6e'=K (3),

where q is the cosine of the angle between the radii vectores r, r'. Expanding and

equating the several powers of »•' to zero, we find

f^~iQn-=0 or -Moose' (4)

according as n>l or =1. Here p„ is a Legendre's function of g.

To find the constants B^, B,^, &c. it will be sufficient to put the point R in some

convenient positions. L.^t us place R on the axis, then q=p, the Legendre's

function <?„ becomes P„, and cosfl'=l. We then have when n= l

Dj(l + Z?iPi + i?„Po + ...)Pirfw--M (5).

Since \P^P^dp=:(i, this gives B^= -MIl^irD (6).

When n>l we have, since B.^ Ac, A^ &c. are small

|{l + PjPi + &c.}{l-(n-l).-JiPi-&c.}P„dj>=0,

.'.

J{1 + BjPj + Ac. - (n - 1) JjP, - &c.} P„d/j

-B,(«-l)J{.4iP, + ^2P2 + &c.}PiP„dp=0 (7).

The first line presents no peculiarity and reduces to {P„-(n-l)i4„}2/(2?t + l).

Since Pi=p the integral in the second line may be written S^^k j^^KP„pdp. Now

by Art. 273 (n + 1 ) P„+, - (2n + 1) pP„ + n P„_, = 0,

.-. (2n + 1) JPk PnVdp= (n + 1) JP« P„+i dp^n\P^ P„_i dp.



[art. 421 ART. 423] SPHERE WITH A RING. 219

i surface density

(a, b) and (u, v),

I discussed in a

,1 surface whose

situated at its

point P of the

at the electrical

nation Z begins

' revolution with

i of force whose

>: Find the law

jrcnce and also

!an be expressed

(1).

Tiay express the

(2).

Id be of the form

urface is nearly

ssarily small,

iternal point R

(3).

Expanding and

(4)

point R in some

the Legendre's

1

(5).

(6).

dp=0 (7).

l)^,.}2/(2» + l).

\P„pdp. Now

dp.

'^»+' 2^+3
+"*

2n_)

"->2n-ir

This is zero except when « = n±l. We then have

fPn+iPnPdp=
^2„ + ]y(2T+ 3) '

-f
''~-^^"^''^=

(2n~+T) (2/1-1.)
*

The latter of these results follows also from the first by writing n - 1 for n. The

second line of the equation (7) becomes

^''2«+l

Finally we have, when k>1,

7i„=(H-l).J,,+ («-l)Zi,||±l.f„+, + 2-"-j^„_,j (8).

If E' be the quantity of electricity on the surface we have

E'= jpr^^du = ivDa^l + ^A^B^),

.: 4irDa^-E'(l-iAiB^) (9).

Substituting in (2) the values li^ , iJ„ and D given in (6), (8) and (9) we find the

value of the surface density p when the surface of the conductor is given.

The potential at the origin is K=4irl)a (1+ i^AiBi).

422. Sphere wltli a ring. Ex. 1. A uniform circular wire (radius b),

charged with electricity of line density -e, surrounds an uninsulated concentric

spherical conductor (radius a). Prove that the electrical density at any point

of the surface of the conductor is

1-5 Ht)%»i-.,f»)'-i.j-
3.5 © + &C.

2a( 2 ^\bj 2.4*\bJ 2.4.6

Ex. 2. A uniform circular wire (centre C), charged with electricity of line

density -^.influences an uninsulated spherical conductor (centre 0), the plane

of the wire being perpendicular to OC. Prove that the electrical density at any

point R of the surface of the conductor is

'^ S (2h + 1) P„ (cos a) P, (cos 6) (jj,

where S implies summation from n= to n= QO. Also a is the radius of the

sphere, b the distance of any point M on the rim of the ring from 0, a the angle

subtended at O by any radius of the ring and the angle OR makes rvith the axis

OC of the ring.

The potential of the ring at any point Q on the axis referred to as origin is

V- ^^ _- -^^ ,J(b-^-2brcoBa + r^) b
'

and il/= -27r6esina. The potential at any point S not on the axis is found by

introducing the f.ictor P„ (cos d) into the general term, where is the angle COS.

The potential V„ of the spherical layer is given in Art. 294. The sum of the two

potentials being zero, the value of i',j follows at once.

423. Orthogonal spheres. The boundary of an insulated

conductor is formed by two orthogonal spheres. Find the law of

distribution of a charge of electricity*.

* The problem of finding the law of distribution of electricity on two orthogonal

spheres when acted on by an electrical point is solved in Maxwell's Treatiae on

Electricity dtc. He also gives the solution for spheres intersecting at an angle irfn,

for three and also four ortliogonal spheres.

:P„(cosa)(^^y,

-1:3
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Let A, B he the centres, a, b the radii and let AB cut the

plane DD' of intersection of the

spheres in C. Then, as before,

the distances of A, B, G from D
are a, b, c. Let mass particles

E, E', E" be placed Sit A, B, C
such that

E_E[_-E"_
a~ b

~
c ~ '

Since the sphere -4 is a level

surface of zero potential of the particles at the inverse points B, C
(Art. 397), it is a level surface of potential e of all the three particles.

In the same way the other sphere is also a level surface of the

same three particles and is at the same potential.

Using Green's theorem, we see that the quantity of electricity

(a + b — c) e, if distributed properly over the whole surface, will be

in equilibrium at potential e, (Art. 395).

The normal force at any point Q on the sphere A due to both

the points B, C, has been proved to be proportional to 1/CQ^ and

also to 1/BQ^ (Art. 401). The normal force due to the particle

at A is E/a^. We have therefore

e H e K
^'^P = a^CQ^ = ~a^Bq^

where H, K are some constants. Since two sheets of a level

surface intersect in the circle DD', the normal force and therefore

p vanishes when Q is at D (Art. 122), that is when CQ = c or

BQ — b. The density may therefore be written in either of the

forms

The density at any point Q' on the other sphere is given by

424. We m ^y also consider the solid bounded by the convex

portion of the sphere A and the concave portion DND' of the other

sphere. The quantity on the solid is then ea, the potential is e,

and the electricity is acted on by the external electrified points

E' = eb, E" = — ec The densities are given by the same formulae

as before, except that the sign of that on the concave portion must
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be changed, becaiu'e the normal force outwards into the non-

conductor (Art. 369) tends towards the centre of the sphere B
instead of from the centre, as oi. the convex portion of that sphere.

435. Ex. When both portions are convex the quantities Q, Q' of electricity

on the spheres A, li respectively are

Q = },e{a-c + b + c{a^-b-^)lab},

Q'= ie{a-c + b-c{a^-b^)lab}. •

When one portion, as DND', is concave, the electricity on that portion is

Q"= iie{a + c-b-c(a^-b-')lnb}.

426. To find the law of distribution of electricity on a conduc*^r

hounded by the convex portions of two orthogonal spheres when acted

on by an external electrical point.

The two orthogonal planes xOy, yOz in the left-hand figure

are the planes of zero potential of four equal particles A^, A-i,

Bi, B,i\ A^, A., being of positive and Bi, B<s of negative mass,

see Art. 414. Let us invert this with regard to any point D.

Consider first the section by the plane xOz. The straight lines

Ox, Oz invert into orthogonal circles which intersect in D and in

another point U lying in DO produced. The radii a, b of these

circles are arbitrary because D is any point. Let their centres

be A and B as represented in the right-hand figure. The circle

A^B^A^B^ inverts into another circle cutting the two former

orthogonally and (being symmetrical about BOD') has its centre

K in DD'. The radius of this circle is such that the perimeter

passes through the inverse point of the arbitrary point A^.

Let the points Ai, A.^ invert into F^, F^ and the points Bi, B^

into Gi, Oi', all these four points lie on the circle whose centre is

K. Since the plane xy is a level surface of zero potential of ^i,

li

:flll

' '' "
!^

'
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E
I'

r

\l

c:>

Bi, the inverse sphere (say the sphere whose centre is il) is a level

surfj'.oe of zero potential of F^, Gi, Art. 179. It thence follows

that Fi, Oi are inverse points with regard to that sphere. In the

same way F.^, G.j are inverse with regard to the same sphere, while

Fi, O3 and (r,, F.2 are inverse with regard to the sphere B. Thus

FiG^A, FiG^B, GiF-iA, G^F^B are straight lines. It also follows

that if Fi is external, the other three points F.^, Gi, G.i are inside

one or other of the two spheres A and B.

The ratio of the masses m, in' at any two inverse points Q, Q'

is known by the rule m'/m = DQ'/k, Art. 168. The quantities of

electricity at Fi, F,, Gi, G^ are therefore proportional to their

distances from D. Let these be

E, = e.DFu E, = e.DF,, E^^^e.DG,, E,' = -e.DG,.

The potential at D of each electrical point is therefore

numerically the. same. We may also use the rule (proved in

the footnote to Art. 397) that the squares of the quantities of

electincity which occupy points inverse to a sphere, and make the

sphere to be of zero potential, are proportional to the distances

of those points from the centre. Thus E^^jE^'^ = AF^jAG^;

E^JIE;-' = BF^\BG[ and so on.

If we take the convex portions of the spheres ^, 5 to be the

boundary of a solid conductor, that boundary will be a level surface

of zero potential of the four particles at F^, (?,, ^2. G-i. Hence

the quantity of electricity Q — e {DF^ — DG^ — DG^) will be in

equilibrium under the influence of a quantity E^^e.DF^ placed

at Fi if distributed according to Green's law.

427. The surface density at any point P on the sphere whose

centre is A is found by considering the two doublets F^, Gi and

F^, G^. We have by Art. 401

4<7rpa = — +
{F,py {G,py

where a'* and ^ are the products of the segments of chords of that

sphere drawn from ^1 and G^. Since p must vanish when P is

any point D of the intersection of two sheets of a level surface,

we see that

Since D lies on the sphere B with regard to which Fi, G^ are

inverse points, we may write G2D/F1D = blFiB, Art. 397. Also

w
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a'^ = (FiAy — a^ where a and b are the radii of the spheres whose

centres are A, B,

Let the position of the influencing point Fi be at an infinite

distance from the sphere. The electricity at Fi is then infinite

but its potential, viz. E^jDFx, becomes the constant e. Tlie

conductor being at zero potential, the sura of the potentials

of the electricities at the three remaining points Gx, G^, F^ is

therefore — e. The positions of these points are evidently A, B
and C, where C is the intersection of AB and DD'. We thus fall

back on the ca^c of a solid conductor charged with a quantity of

electricity e{-DA-JJB + DC) and at potential - e
;
(Art. 423).

428. If we insulate the conductor and give it such a charge

that the potential becomes e, we have, by superimposing the

density found in Art. 423,

{G,py

490. The rule to find the distribution of electricity on two orthogonal spheres

at zero potential may be summed up in the following manner. The point t\ being

given, we seek (1) the inverse points of F^ with regard to the two ipheres A and B,

let these be Gj, G,^; (2) the inverse point of Gj with regard to the sphere B or the

inverse point of G^ with regard to the sphere A, let this be F^. These four points,

any F being taken with any G, form two doublets. The sphere is a level surface

of zero potential of each doublet. The ratios of the quantities of electricity at the

points of each doublet, and the resulting surface density due to each, follow from

the elementary rules given in Arts. 397, 401. The electricity at any G has an

opposile sign to that at any F.

430. Ex. An uninsulated conductor consists of a sphere and an infinitely

large and infinitely thin plane passing through the centre B of the sphere. If it

be exposed to the influence of a given charge of electricity at the point F^ where

f'jii is perpendicular to the plane, prove that G^ being a point on F^B produced

such that JiGx is equal to BF^, the superficial density at any point P on the

Ldmispherical surface nearest to F^ is proportional to ,i
- pj

.

[Math. Tripos, 1877.]

The infinite plane may be regarded as the limiting case of an orthogonal sphere.

We then follow the rule in Art. 429. The inverse point of F^ with regard to the

plane is Gj, the inverse points of Fj, Gj with regard to the sphere are G^,F^. The

given system of sphere and plane is a level surface of zero potential of these four

points. We use Green's method as explained in Art. 401.

431. Oeometrleal properties. Ex. 1. Prove (1) that the centre of each of

the three orthogonal circles lies in the radical axis of the other two, and that the

orthocentre of the triangle ABK formed by joining the centres is the radical centre

of the circles. Prove (2) that the diagonals of the quadrilateral FiG^F^G., intersect

in the orthocentre of ABK.

i

I

iffiHIl
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fj

The first reHultH Imvi; b^en proved in Art. 426 for the centre A' and the two

circloH wlioK«i centroH are at A and 11, and arc therefore true for all the oiroles. The

diaKoniilH interHoct on the polar linoH of A and li, and since the circleii are orthogonal

thin JH alHo the interHeotion of the radical axen.

Ex. 2. Prove (1) that J.,+ J„--rJu- ti.=0- I'rove (2) that, If porticlcH

whoHO maHHes are proportional to 1//?,', l/f'.,', - l//''"i'''i - l/^'-'V '^''o placed at i'u ^

pointH i*', , h\, O,, rt,j, the Hum of their niomentn about every straight line Ih zorc.

Trove (3) that the centre of gravity of 1//'-',* and l/A'/ coincidcH with that of l/Zt.",''

and 1/A"./ a»d also with the orthocentre of AUK.

We notice that the centre of gravity of each of the doublets l/A','', - \lt<l\* and

l/A'.j'^ l/A'V'' iaat /J, Art. !H)7. Thus the centre of gravity of all four particles is

at A. Similarly it is at li and this la imposBible unless the rcKults (1) and (2) are

true. To prove the third result we take moments about the diagonals of the

quadrilateral i'',G,i''^O.j.

4aa. Ex. A conductor is formed by the outer surfaces of two equal spheren,

the angle between the radii at a point of intersection being 2ir/3, Prove that the

5 /3 - 4
capacity of the conductor is -^ «, where n is the radius. [Coll. Ex. 189i>.]

This result follows by inverting with regard to ,( the second figure of Art. 414.

The inverse of the electrical point A contributes only the constant potential Elk to

the inverse figure (Art. IHO). Omitting tliis point, the inverse of tlie rest of the

system is in equilibrium at potential - Elk. By Art. 170 the mass of any portion

of either system is equal to k times the potential at A of the corresponding portion

of the other system. In this way wi^.iout drawing the inverse figure we find both

the quantity of electricity on the spheres, and its potential. The ratio is the

capacity required.

The capacity of the inverse »\i»tem i» therefore kWjQ where Q i» the quantity

of electricity on the original ttysteni. and V its potential at the centre of inversion.

In our case the point A iu Art. 414 bisects the arc xz and k=:a. Also Q= -E and

V is twice the potential at ^ of ii plus twice that of A' plus that of li'.

433. The boundary of a conductor is fanned by the external boundary of three

spheres ichich have a common circular intersection, each sphere making an angle ir/3

with the next in order. To find the law of distribution on this conductor we invert

the right-hand figure iu Art. 414 just as we inverted the left-hand figure of that

article when we required the distribution on two ortliogonal spheres (Art. 426).

Let the plane of the paper contain the centre of inversion D and be perpendicular

to the common intersection Oy of the three planes. These planes invert into

spheres whose centres C^, C^, C^ lie on a straight line perpendicular to DO. Let

the planes Ox, Oz which bound the conductor invert into the spheres whose centres

are Cj, C.j, the third plane, which is entirely in the conductor, inverting into the

spliere whose centre is C.^. In the inverse figure therefore the centres of the

outer spheres are C\, C^. Since these centres lie on the perpendiculars drawn

from D to the planes, the angles C^DC^, C.^DC^ are each ir/3. These spheres have

a common circle of intersection and D is any point on that circle.

434. If the position of the centre of inversion D is arbitrary the six electrical

points in the fi^'ure invert into six L\, G^, F^, G^, F^, G.^ which lie on the circle

inverse to that containing A, B, &c. and the general results are very similar to
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thomi obtained in Art. 42(J. If we place I) on the circle ABA'Ii'A"li" (say between

A and z) our roHultH will corruHpoiid to thone found in Art. 428 by the uxe of Ureeu'a

nit'thod. Let uh conmder uonciHcly this last eaHu uh presenting soinu novelty.

Hinco 1) lieH on the circle AHA'li' An. the arcs AA', A'A" &c. subtend at I) onglea

each equal to ir/3 ; hence in tlie inverse figure also the itnijli'» iuhtended by l'\t\,

'''J''j< 'h'^i> ^'/'ii' t/V'':i "'"' ^'/'j "' ^^ '"'" ''"'* '''/«"' '" "/3' Ho again i-'it?,,

/'/'J' ^'a^'a
subtend equal angles at D. The six electrical points i-',, O,, &c. now

lie on the diameter L\C,^C^. Let a radius vector starting from DA turn round Z),

it evidently pusses in order through the points l\, <#,, C, ; /,,, 0,^, C,, ; I'\, G^, (7,.

Tbe electrical points and the centres in the inverse figur«« are therefore arranged

fniin right to left in thin order. By considering the triangles t\DC.^, C^DC^ we see

that the three radii are connected by the equation l/r,= l//-, + 1/r.j. In the same

way if (fi, fa. fa)> (Vi>Vi,Vi) ^'^^^ ">« distances of (i'',, F.^, F.^), ((/,,«a> ^'a) ^^om D we

have l/fj= 1/fi + l/fa. l/'?j= l/'?i+ ^ha- The perpendicular /> from D on the straight

line C'lC'jt'a is given by /)^(/V'' + ra''' + r3'') = iv'3r,r.j.

^1'3 * 3 "2 - i

The points (F,, 0,), (Fj, 0.^), (Fg, G.,) are inverse points with regard to the

point C,; (Fg, G.^), (F, , G.^), {F.,, Gj) are inverse with regard to C.,, and (Fj, Gj),

(Fp G,,), (F.,, G,) are inverse with regard to C^. The arrangement of the suffixes

nuggests an obvious rule to find the inverse of any point with regard to any sphere.

The point F, being arbitrarily taken outside the spheres G, , C.^ , all the other five

are within th') boundary.

The quantities of electricity at the points F, , F.j , Gj Ac. are respectively

£i = e.7)Fj, E^=e.DF^, E\ = -e.DG^ &c. by Art. 169; the potentials at D of the

six electrified points are therefore numerically eqnal.

Since each sphere is a surface of zero potential of the six points Fj, Gp &a. we
may apply Green's theorem. In this way we can find the law of distribution on the

surface formed {say) by the two spheres whose centres are C^ , C, tohen acted on by an

electrical point situated at any external point Fj on the diameter C^C^C^.

435. Let us place the point F, at an infinite distance from the spheres. Since

the attraction of F, is then zero (though the potential is finite) we may remove this

point from the system. We now have the case of an insulated conducior bounded

(M hifore by the spheres C^, C, and charged with a given quantity of electricity.

The points Gj, G,, G^ now coincide with Cj, C^, Cj respectively. Also since

i',/';,, F.J'\ each subtend an angle tt/S at D, the triangle F.^F.^D is equilateral. The

potential at D of F^ is e . DF^jDF^ and is therefore equal to e. When the point Fj

is removed from the system (which was at zero potential) the potential V^ of the

remaining five is - e. The quantity of electricity on the two external spheres is

the sum of the electricities at the five points and is therefore the sum of -er^,

-tr,, -er.^, 2e,DF.^. The capacity is therefore

Q

R. S. II. 15
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439. Three orthogonal spheres. Let ABC be any triangle; a, h, c the
lengths of its sides. Let AF, BG, CH be the perpendiculars drawn from A, B, C
on the opposite sides. Let O be the orthocentre. Let us describe three spheres
with centres A, B, C and radii o, ^, y such that the spheres taken two and two are

orthogonal. Then since the square of the distance between the centres of two
orthogonal k^pheres is the sura of the squares of the radii, we have

Let the chord of intersection of the circles whose centres are A, B made by the plane

of the paper intersect AB in S. Then
AS^-BS»=a:'-fi'=b^-a^=AH^-BH'.
The point S therefore coincides with H.

The three chords of intersection of the

circles, taken two and two, are there-

fore the three perpendiculars AF, BG,
CH. If the lengths of these chords are

respectively 2/, 2g, 2lt we have af=py,
each of these being twit 3 the area of the

triangle whose base is BC and altitude/.

Similarly bg = ya, ch= a^,

A circle can be drawn about CFOG,
hence

AO . AF=AG . AC=bc cob A

Thus the systems of points (O, F), (G, C), (H, B) are each inverse with regard to

the sphere A. Similar results hold for the points in each of the lines through

B and C.

Let US place at the points A, B, C ; F, G, H, quantities of electricity re-

spectively equal to ea, e/3, ey ; - ef, - eg, - eh, as explained in Art. 423. Also,

since F and are inverse points with regard to the sphere A, we place at a

quantity of electricity Q = ef.alAF, (Art. 397). Sin^j AF.a= 2A where A is the

area of the triangle ABC, we find il = eapyl2A. It appears that (2 is a symmetrical

function of the radii of the spheres.

It follows that any sphere, as ^, is a level surface of zero potential of the

particles placed respectively at (B, II), (F, 0), (C, G) while its potential due to the

particle placed at its centre is e. Each <if three spneres is a level surface of potential

e of the seven particles placed at A, B, C, F, G, H and O.

Let the external surfaces of the three orthogonal spheres he the boundary of an

innulated conductor charged with a quantity E of electricity, then the law of

distribution may be found by Green's methoil. If p be the surface density at any

point Q on the external surface of the sphere A, we have by Art. 401

4.pa=eil-(/-y
\cqJ ^i'V'l

where t is the tangent drawn from F to the sphere A. If we wish to express our

results in terms of the rauii a, /3, y, we may prove that

The potential is e and the quantity K is

E = e{a+ p + y-f-g-h + aPyl2A}.

437. The law of distribution on three orthogonal spheres may also be deter-

mined very simply by inversion. The three coordinate planes xOy, yOz, zOx are

level surfaces at zero potential of eight points, four of which are represented by
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y also be deter-

yOz, zOx are

represented by

AiB^A^B^ in the figure of Art. 426 and the other four are on the opposite side of

the plane of xz. The coordinates of these are ±x, ±2/, ±z and the charges

numerically equal. After inversion with regard to any point D the planes become

orthogonal spheres. We may thus find the law of distribution on the external

surface of three ortJiogonal spheres at potential zero when acted on by an external

electrical point t\

.

The three coordinate planes and a sphere whose centre is the origin are lovel

surfaces at zero potential of sixteen points, viz., the eight described above and

their inverse points with regard to the sphere. By inverting this system with

regard to any point D we find the distribution on four orthogonal surfaces at

potential zero when acted on by an external electrical point F^.

By proceeding as in Art. 427, we deduce the law of distribution when the

conductor is insulated and not acted on by an external electrical point. Finally,

by superimposing the two distributions thus arrived at, we obtain the law of

distribution when the conductor is insulated and acted on by the external electrical

point F^,

438. Theory of a system of conductors. Let A^,

Aiy.-.An be a system of insulated conductors, each being ex-

ternal to all the others. Let p^, pi2,--- be the potentials due

to a charge unity given to A^, the others being uncharged. In

the same way let p.^, p^, .. be the potentials when a charge unity

is given to A^ alone, and s>^ on. If we give to A^ alone a charge

El ov to A<i alone a charge E^, &c. these potentials will be respec-

tively multiplied by E^, E^, &c. Superimposing these states of

equilibrium, we see that the potentials inside Ai, A^, &c. when

charged with Ei, E^, &c. are respectively

Vi=pnEi+p.,iE^ + ... \

V,=pi,Ei+p^E,+ ... I (1).

&c. = &c.
J

If we now solve these equations we have a second set of linear

equations which we represent by

Ei = qnVi + q,iV., + ...
]

E\ = q,,Vi + q,,V, + ... I (2).

&c. = &c.
j

The coefficients ^11, j9i2, &c. and qn, q^, &c. depend only on the

forms and relative positions of the conductors in the field and are

independent of the charges given to them.

The coefficients </„, q^i, &c. (in which the two numbers forming

the suffix are the same) are called the electric capacities of the

bodies A^, A.^, &c. The capacity of a conductor may be defined to

be its charge when its own potential is unity and that of every other

conductor in the field is zero.

15—2
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The coefficients 9,2, q^, &c. (in which the numbers in the suffix

are different) are called the coefficients of induction. Any one of

them, as qrg, denotes the charge on Ag when Ar is raised to

potential unity, the potentials of all the conductors except Af
being zero.

The coefficients p^y Pi2> P23, &c. are called the coefficients of the

potential. Any one of them as j3„ denotes the potential of A,

when a charge unity is given to Ar, the charges on all the other

conductors being zero.

Since the dimensions of potential are quantity/distance, it

follows that every coefficient of potential is the reciprocal of a

length. For the same reason every coefficient of induction has

the dimensions of a length.

439. To prove that pn, = Psr and q^s = qsr- Let the conductors

Ai...An when the charges are Ei...En and the potentials Fi...F„

be called system I. Let the same conductors when the charges

are Ei...En and the potentials V(...Vn be called system II. Let

us treat these as independent coexistent systems.

The mutual work between two systems has been proved in

Art. 59 to be equal to the sum of the products of each element of

mass of either system by the potential of the other system at that

element. In the body Ar each element of electricity in one system

is to be multiplied by the potential of the other system at that

body, and the product is either ErVr or Er'Vr. We may therefore

form the equation

^,F/ + ^,F/ + ...=^/F-i + ^/F,+ (3)

which may be shortly written ^EV = '^E'V.

Let us now put each of the electricities E^, Eo, &c., Ei, E.2, &c.,

except E,. and Eg, equal to zero. Then by equations (1), Vg=prgEr,

Vr=p8rJ^8'- The equation (3) then gives j5^g = p«;..

In the same way if we put each of the potentials Fi, V^, &c.,

Vi, F2' &c. except Vr and F/ equal to zero we deduce from (2) and

(3) qrs = qsr-

Ex. 1. Three small conducting spheres, whose radii are r^,rn,r^, are placed

with their centres at the corners of a triangle whose sides a, h, c are very much

greater than the radii. Prove the following approximate relations

r^r.2'3

n'r-i

1 1 2

c'^'u abc

'

- (ah - cr.^) _ -(ac- br^) _ 1

a^r.,7YJii al'cr.jqi^ «&<^''i(Zi3 'I's's ""'i " '2 "-"'a

Proceeding as in Art. 874 we find that the potentials l\, V^, Fg, at the centres

of the spheres are given by three linear equations of the form l\ = EJvi + E^jc + EJb.
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These correspond to equations (1) of Art. 438. Solving these we find £j expressed

as a linear function of Fj, Fj, Fg, the three coefficients are respectively jj, , g,2, 9,3

.

Ex. 2. Two insulated electrified spheres (radii r,, r.,) are at a considerable

distance c from each other ; prove that the coefficients of potenti 1 and induction

are approximately given by

rjPji=cpiij=r2Pj2=l,

r2g„=-C5,3=riqf22=»"i»"a(l+'-i'-2/c'^)-

440. The lines of force. Consider the lines of force which

intersect the surface of a conductor. Since at any point of the

surface 4"rrp = — dV/dn, it is clear that the potential decreases or

increases outwards along these lines according as they intersect

the conductor at a point of positive or negative electricity, (Art. 114).

Let a point P travel along a line of force in such a direction

that the potential at P continually decreases. 2%e line offorce is

said to issue from or terminate at a conductor according as the

point P crosses its surface in an outward or inward direction.

It follows that a line of force can issue from a conductor only

at a point of positive electricity and will then either proceed to an

infinite distance or terminate at a point of negative electricity on

some conductor of lower potential.

If a line of force proceed from one conductor to another, it

joins points A, B on the two conductors which are oppositely

electrified.

441. If a tube offorce intersect two conductors, the quantities

of electricity at the two ends are equal and of opposite signs.

Divide the given tube into elementary tubes ; let the areas at

the extremities A, B oi any one of these be da, da'. Let the

forces a,t A, B measured outwards from the conductors be F, F\
then Fda=--F'd<r', (Art. 127). Since ^p = F, iTrp' = F', we

have pd<r = — p'da-'.

442. The conductor of greatest positive potential can have only

positive electricity on its surface. For, if any element of its surface

v/ere negatively electrified, a line of force could terminate at that

element. Such a line must have issued from a conductor of greater

positive potential. Similarly the conductor of greatest negative

potential can have only negative electricity on its surface. See

Art. 380.

443. To prove that all the coefficients of the potential (p^,

Pii, &c.) are positive and that the coejfficient p^ is less than either

Prr or pts.

Let the body Ar be charged with a positive unit of electricity

'

3

I :|,;
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<f4
c. .4

m'^ II

1

and let all the others be uncharged. Then Vr^prr and Fg = jp„,

by Art. 438. The body Ar cannot be entirely covered with

negative electricity and is therefore not the body of greatest

negative potential, Art. 442. Any other conductor Ag has both

positive and negative electricity on its surface and cannot be the

body of greatest positive or greatest negative potential. The

chai'ged body Ar must therefore be the conductor of greatest

positive potential, and there is no conductor of greatest negative

potential. Hence all the conductors are at positive potential and

Prr>Prs-

Let the body ^g be placed in a hollow excavated in A^ and completely surrounded

by it, then, since Ag ia uncharged, there is no development of electricity either on

its surface or on the inside of the shell A,., Art. 389. The potential throughout the

interior of ^4^ is p^^ and hence in our present notation Pr>=Prr- ^^ ^^^ same way,

if Ag is enclosed by a shell Af, then Prt=Prf
The case in which ,4, is enclosed by one of the other bodies is thus only a

limiting case of the theorem and is not an exception.

444. To prove that qrr is positive and qrs negative, and that the

sum of the series S = qir-\- ^ar + • • • +qrr + •- +qnris positive.

Let the body Ar be charged to potential unity, all the others

being at zero potential. The charges given to the conductors

^1, J. 2, &c. are therefore q^r, q^, &c. (Art. 438). The body

Ar is the conductor of greatest positive potential, its charge qrr is

therefore positive, (Art. 442).

The body Ag is at zero potential. If there were a point of

positive electricity on its surface a line of force could issue from it

and must terminate at some point of lower potential, but there are

no such points. The body Ag is therefore covered with negative

electricity, that is qrg is negative.

The unoccupied space outside the system is bounded by the

surfaces of the conductors and by a sphere of infinite radius.

Hence the potential at every point of this space lies between the

greatest and least potential on the boundary, (Art. 116). These

potentials are respectively unity and zero. The potential of the

system at a very distant point is the same as if the whole quantity

of electricity were collected into its centre of gravity (Art. 109)

and its sign is therefore the same as that of the series S. The

sum of this series must therefore be positive.

If Ag is enclosed by any body Af and both are at potential zero, no line of force

can piiss between A, and the shell Af 'iijcr«>. is therefore no electricity on the

body Ag, (Art. 440), and in thiy case the charge g'„=0.
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If A, is enclosed by A^. and A,, be al potential inity, A, at potential zero, all the

lines of force between A^ and A, must issue from A,, and arrive at A,. The body

Ag is therefore charged only with negative electricity (Art. 440) and g„ is negative.

44ft. Ex. Prove that when r and s are unequal

and when r=g, the sum is unity. Thence show that the series represented by S
in Art. 444 lies between and 1/Prr-

The first two results follow from Art, 438, by putting £,.=1, and every other

£= 0. The third follows from the first two, since p„>pj.,.

446. To find the mutual potential energy W of a system of
conductors. It has been proved in Art. 61 that W is equal to half

the sum of the products of each element of mass by the potential

at that element. As in Art. 439 this product for the body A^ is

EyVr. We therefore have

W=\{E,V, + E,V,+ ...) = \^EV (4).

By substituting from equations (1) and (2) of Art. 438 we see

that this may be written in either of the forms

W=^\pnE,'+p,,E,E, + ...\

447. Ex. 1. Prove analytically that the expression for W is always positive.

Since q^g is negative, let 5^,= -/3„. Hence by Art. 444 q„->^^j.+ ^^-'r&(i. It

follows from the expression (5) in Art. 446 that

Ex. 2. A given charge is distributed over a number of conductors so that the

potential energy of the system when in electrical equilibrium is least. Prove that

the conductors are at the same potential. [Math. T. 1897.]

Make the expression (5) for W in Art. 446 a minimum with the condition that

2£ is given.

Ex. 3. Bnergy of condensers. Two conducting surfaces are separated from

each other by a plate of some non-conducting substance so as to form a condenser; as

described in Art. 417. Find the potential energy.

Let j3, p' be the potentials of the conductors ; p, p' the surface densities. Let

dS be an element of area of either surface, the thickness of the conductor at this

element. The potential energy due to this ele neut is (by Art. 446)

dW=iPpdS + ii^'p'dS (1).

Since iirp is equal to the fall of the potential divided by the thickness, we have

iwp = (^-p')ie, 4V=03'-i8)/e (2).

The capacity per unit of area, if measured by the ratio of the quantity of electricity

on either conductor to the difference of the potentials, is

Ci = pl(p-p') (3).

Using the equations (1) and (2) we can express dW in terms of either fi-p' or p.

We find dW={p- ^y^ ^. = 2wp'^edS.
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centre is

therefore W=,

,
= ^j , the ca'-.aoity C is QIV=a^ie. The potential energy is

The value of W may then be found by integration. If d is constant at all pointH of

an area S, and Q the quantity of electricity on that area, we have

W = 2wp'eS = '2irQ''eiS.

In the case of a spherical conductor Heparated from a concentric oondnctint;

shell by a thin non-conductor (Art. 392) we have S' = 4irrt'-. The potential V at the

Q Q
a + e

'2a^'^2C~ 20'
'

As u second example, let the condenser hi' formed hy a cylindrical conductor

separated from & concentric cyiindrical shell by p thin non-conductor, (Art. 41!))

The area of a unit of length is S=.2itii. The capacity C per unit of length is

2irapj(^ - fi') which by (2) reduces to a/2tf. The energy per unit of length is

'^~7i ~2C''

448. Junction of conductora. Ex.1. Two conductors ^,, ^j, of a system

are joined together by a fine wire. Prove that the capacity of the united bodies is

9n + 2'7i2 + (7iH- Prove also that this is less than the sum of the capacities before

the junction. [Coll. Ex.]

Let the conductors be charged with such quantities of electricity A'j , E^, &c.

that the potentials of A^, A^ are equal. By joining these no change is made in the

distribution of the electricity. The total quantity on the united bodies is E^ + E^,

and the n equations of Art. 438 become the following » - 1 h(juations

£l + £2=(<7l,+2(^,.j + ,/3i,)Fi + (?i3 + f/23)r3+...

^'l! = (713+ ?23)^1+ 933^^3+ ••

&C. =&C.

The results follow at once, since ^jo is negative.

Ex. 2. Five equal uncharged and insulated conducting spheres are placed with

their centres at the angular points of a reguiar pentagon. Another charged sphere

is moved so as to touch each in succession at the point nearest the centre of the

pentagon. Prove, that if ^j.-.^g are the charges on the spheres when they have been

each touched once

^2 ~ ^1

e-A-ei»

^S' «l + <'2

= 0, <'2-^l.

«3 - ''1

.

eK-e1'

e,, , <'j

ei + Ci, Co + e.^

= 0.

Let Aj...A;ihe the fixed spheres, A^ the moveable one.

[Coll. Ex. 1901.]

When Wg is close to ^,,

but not touching it, we have six equations expressing Fj-.-Fg in terms of any

charges E,...£g which may be given to them, (Art. 438). When A^ and Ag touch,

El and Eg are so modified that Fj=Kj, but the sum E^-hEg remains unaltered.

Equating the potentials Fj and Fg we see that A', is a linear function oi E.,...E(,.

Let this linear relation be

£i = a/!:g + /3 (£.,+ £j) + 7 (£3 + £,).

Since the five spheres are equal and arranged in a regular figure, this relation will

hold at each successive contact, provided E^ always represents the electricity on the

sphere which is being touched. We therefore have just after the contacts in order

have occurred,

c,=a£g, e2 = a(^g-ei)+/3ei, e.^ = a{Eg- ej-e„)-h^e.., + yei,

«4=<» (-^6 - «i - «2 - ^3) +/3^3 + 7 (''2 + «l).

<«= « (^'e
- f1

- ^2 - «3 - «j) + /3 (''1 + 64) + 7 (^0 + Pa).

ART.
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Eliminating a, /3, 7 from these five equations we .otain the two results to be

proved.

449. Zntroduetlon of a conductor. An insulated uncharged conductor B is

introduced into the Hystem of conductors Ai, A^, <fec. Prove that the coefiScient

of potential p„ of any one of the others on itself is dimiuiRhed.

Let the body li be brought into its place as an uncharged non-conductor and

let it Huddenly become a conductor. At this instant the potential energy of the

Bystem, viz. ^SAT, is not altered, because the E of the new body is zero. The

electricity is not now in equilibrium and must tend to assume a new arrangement.

It is a dynamical principle that when a system is in stable equilibrium the potential

energy is a minimum. It follows that in the new position of equilibrium the

energy is less than before.

To separate the effect on p^^ from that on the other coefficients, let the

conductor A^ alone have a charge, all the others, as well as the new body B, being

uncharged. The energy before the introduction of B was^^J^p^, and after that

event became { rP'rr- '^^^^ "^^ value of the coefficient of the potential, viz. p'^,

is therefore less than p^r-

460. Potential Bnergy. Ex. 1. A conductor having a charge Q and being

at potential V^ is acted on by a quantity E of electricity situated at an external

point B ; in this state the potential at an external point B' is V^i. The same

conductor with a charge Q' and at a potential V^ when acted on by E' placed "* W
has a potential Vg at B. Prove ttuit Q' V^ + E'V^,= Q F/ + E Vj/.

This is the mutual work of the two states described above when regarded as

different s; stems, see Art. 439.

Ex. 2. An uncharged insulated conductor is acted on by a quantity E of

electricity situated at an external point B. Pro^'e that the potential at any

external point B' is a symmetrical function of the coordinates of B and B'.

This theorem is also true if the conductor is uninsulated, for we may join it to

earth by a fine wire and include the earth as part of the sysfem.

The first result follows from Ex. 1 by putting <^= 0, Q' = 0, E-E',

Ex. 3. The locus of a point B at which a given quantity E of electricity must

be placed to dcelop a given quantity Q. of electricity in an uninsui'ated conductor,

is that level surface of the same conductor (when insulated, charged to potential V^'

and not acted on by any external point) at which the potentiui is - QVq'JE,

451. A circular disc. To find the distribution of electricity

on a circidar disc when acted on hy an external electrical point

B situated in its plane*.

The electric density at an}^ point Q on either side of an

circular disc is P = 2^mW^"^*
insulated where R, R' aro

* The problem of finding the law of distribution of electricity on a circular

disc and spherical bowl when influenced by an electrical point was first solved by
Kir W. Thomson, see section xv. of the r''print of his papers. In the Quarterly
Journal for 1882 Ferrers found the potential due to the bowl at any point of space.

He uses the method of spherical harmonics. In the same Journal 1886, Gallop
applied Bessel's functions to find the distribution on a circular disc. He also

investigates the distribution on a spherical bowl and finds the capacity of the bowl

;

for this purpose he uses the method o7 inveroion.

> 3
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the intersections of a chord BQ with the circle. The internal

potential is Fq and the quantity

M of electricity is i/=2aFo/7r,

(Art. 382).

If we invert this with regard

to an external point B, with a

radius of inversion k equal to the

tangent BD, we shall obtain the

law of distribution of electricity

on the same disc when acted on

by an electrical point at B.

Let Q' be the point inverse to Q, then since R, R' also are

inverse points,

QR QR _ ¥ _1^ 1^

Q'R' • Q'ii
~ BQ'.BR' BQ' . BR ~ BQf'

by Art. 172. The surface density p' at Q' is given by

The potential at any point P' within the disc is V^k/BP'. Put

Vok = E, then the potential of a quantity — E situated at B
together with that of the distribution

, E 1 fAB'-a'\i .,

27r-'BQ''W-AQ'V

is zero at all points within the disc. Here we have written

k^ = AB' - a", Q'R' .Q'R = a^-AQ'^ where A is the centre of the

disc and a the radius."

'

The expression (1) gives the required surface density at any

point Q' on one side of the disc when the internal potential is

zero, and the electricity at i^ is — E.

452. To finvb the quantity M' of electricity on the inverse disc

we use the rule M' = kVi where V^ is the potential of the original

disc at the centre of inversion, Art. 170. This gives by Art. 384

M' = kM<jila, where
<f)

is the angle subtended by any radius of the

disc at the apex of the confocal spheroid through B. Since

M = 2aFo/7r and E = Vok, we have M' = 2£'<^/7r. Let a, c' be the

semi-axes of the confocal which passes through B, then tan
<f>
= afc',

c''^ = a''^ - a^ and a = AB. Hence
<f>

is also half the angle subtended

by the disc at the electrified point B, i.e.
<f>
= DBA.
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463. To find the potential at any exteimal point P in the

plane of the disc. The potential at P of the original disc is

F = ^ =~ °
sin~' —, where a' = AP is the semi-major axis of the

a TT a

confocal through P, (Art. 384). The potential V at P' of the

inverted disc is therefore

TT \CP'' ifc" J'BF

where k is the length of the tangent BD, and C, the inverse point

oi A, is the foot of the ordinate of D, see Art. 172.

4S4. To find the dwtribution of electricity on a plane circular disc, centre A,

when acted on by a quantity —E of electricity situated at a point on the axis.

Let us cover the area of the plane outside the disc (regarded as a non-oooductor)

Eh 1
with a layer of electricity whose surface density at any point B is p= - —— zjy^

and let this layer be fixed in the plane (Art. 412). Then if Q be any point on the

conducting disc, the induced density at Q is (by Art. 451)

,_Eh^ f fxdOdx _1_ 1 /x«-a«\J

''~27rjj 0B» '2ir^BQ*W-r^)

where x= AB, r=AQ, ia the angle QAB. We now substitute

01}2= a;3 + /j2, BQ^=x^ + r^-2xrcoae,

where h=OA. We first integrate with regard to $ between the limits and 27r,

using the integral
/ ,--„„„ ^ = -jn—:r^' To effect the integration with regard to x,^h

,2
_''*+»"

a'-r'

coos^ 1^(1 -e-y

write x=/ttan^ and express the result in terms of cos^. The ordinary rules of

the integral calculus then show that we should put (h^ + a^)cos^\l/= h^-y^. The

limits for x being a to oo , those for y are to h. We thus find

,_Eh t-tan->(
''~2^'

(/i3 + r2)»

The result is that the potential due to the forced distribution p outside the disc

together with that due to the distribution p' on each side of the disc is zero at all

internal points.

Now by Art. 412 an electrical point - E situated at O and an infinite plane

whose density is that represented above by p (but with its sign changed) exert no

attraction at all points on the side of the plane opposite to 0, and the sum of their

potentials at all such points is zero.

Superimpose this second electrical system on the first ; then the forced

distributions outside the disc cancel each other. The sum of the ). .^oential due to

- E situated at and that due to the electricity on the two sides of the disc is zero

at all points within the conducting substance.

The densities on the sides most remote from and nearest to are respectively

Eh t - tan-i t

P'= P +
Eh

''
27r2 (/i2 + r2)3 ' ''

''^
2ir{ffl + r')^'

These formulae represent the density at any point Q when the internal potential

is zero and the disc is acted on by an electrified point - E situated at 0.



236 ELECTRICAL ATTRACTIONS. [art. 466

Here t^^K^^w-r'
It iH eaBily spcn that t = cot^, where ^ is half the angle

subtended at by the chord drawn at Q perpendicular to the diameter AQ.

45S. To find the potential of the electrijud di»c at any external point P, and

also the quantity of electricity on the dine.

Consider two dibcs whose surface densities are respectively

" (a»-r^)i
'^''

(;t» + r»)»V 2/

By differentiation we find that f' = f* „ ,,, and that at the rims where r=o and
•^ da da a" + h*

tan-*t = ^7r, the densities also have the ratio 2m to a^ + A". Let F, and V^ be the

potentials of the discs at external points nimilarly situated. Now dVJda is the sum

of the potentials of a disc whose density is dpjda and of an annulus round its rim.

It immediately follows that —,- = -, ' —,—rr, •

da da a* + h'

Now by Art. 384, V^ is the potential of the electricity on one side of a circular

disc charged with a quantity i»/=4ir«, hence Vi — 2ir(p. If we put m= Ehl2v'^, V^

becomes the potential of a circular area whose density is the sum of the densities on

the two sides of the disc. We therefore have

_2Eh fa 1 d</>

where 4> is the angle subtended by any radius of the disc at the apex of the confocal

spheroid drawn through P.

When the point P lies in the plane of the disc, the integration is easy. Let

X be the abscissa of P, then x is also the semi-axis major of the confocal through

P and 9,m<p=ajx. We therefore have

yJ^EhC dj, ^2E _1_ -1 \^fx2 + t^\i\

"
IT J h^ + x'Bin^,p TT (;ts + x2)i \h\xi-ay\'

1 21*^ fi

When X is infinite, this takes the simple form V^=- . — tan~i - . Now at a great

disc is therefore —-' tan"' r
TT h

h'

distance, potential is mass divided by distpice; the quantity of electricity on the

This is the sa^ae as 2£^,/7r where
</>i

is half the angle

subtended at the electrified point O by any diameter of the disc.

When the point P is on the axis, we have t8,n^=a/z where z is the ordinate of

P. The potential is then
"~

' a_2£ 1
I

'"
IT z^-h^ \

z tan"'

When z= h, this expression takes the form 0/0

potential at the electrified point O is

1

?ttan~' -I

.

We easily find however that the

When the point P has a position defined by any values of x, z, both the process

of integration aijd the final result are somewhat complicated. The whole of the

work is given by Gallop in the Quarterly Journal, vol. xxi.

466. SpberleiU bowl. To find the distribution of electricity on an insulated

spherical segment with a plane rim.
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where r=a and

of the confocal

the ordinate of

»wever that the

on an insulated

The electrical distribution on the bowl tnay be deduced by inversion from v.mt

on a circular disc at 7.ero potential with a quantity

of electricity - K at a point on the axis.

Let MN he the rim of the disc, O the centre

and OM = k the radius of inversion. We I'egard

as the centre of a sphere of small radius e.

This sphere inverts into a large sphere of radius

Jt'^/e. The quantity M' on the inverted sphere is

given by M'=:kVi (Art. 180) and is evidently equal

to - Ekie. The attraction at any internal point is

therefore zero but the potential is - Ejk.

The disc inverts into the segment MA'N, the

sides nearest to or farthest from corresponding

to the convex aud concave sides of the bowl.

To deduce the density at Q' from that at Q we use the formula of Art. 169 as applied

to surfaces. Since klOQ' = OQIk and 0(p=)i?-{-r^\ve deduce that the surface densities

at any point Q' on the concave and convex sides are respectively

E h Eh

The sum of the potentials of the electricity on the bowl and of that on the

sphere of infinite radius being zero, the internal potential V„ of the electricity on

the bowl alone is Ejk.

Let A'Q' = i-', A'M=a', OM=k, and let the diameter OA' of the sphere be/.

We then have since hf=ik^

The densities at any point on the concave and convex sides of the insulated

bowl then take the forms

Pi = 25^(«-tan-i0, /'u= Pi + 2^.

where Fj is the internal potential.

467. To find the quantity M' of the electricity on the bowl, we use the rule

M' = kVi, Ajt. 170. We have therefore merely to write E = kV(, in the expression

for the potential of the disc at (Art. 455) and to multiply the result by k. Let 2a

be the angle subtended at the centre of the sphere by any radius of the rim, then

a = /jtana and ft=/co8'^a. The quantity ill' is therefore given by

^^; = 2^(sin2a + 2a).

The potential V of the bowl at any point P' may be deduced from that of the

disc at the inverse point P. The result takes a simple form when P' lies on the

unoccupied part of the sphere. We then have

a'
F'=-^nan-i

where a'= A'M=fs'ma.
(P'M.P'N)^'

458. Ex. Prove that the density at any point Q' of a spherical bowl at zero

potential when acted on by a quantity - E' of electricity at any point B' on the

unoccupied part of the sphere is

,
_ E^ 1 / 0Jli2 - OB"^\i

I :»

•If
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See the flRure of Art. 466. This follows from tJie result in Art. 451 by inversion

with regard to a point O on the axis.

459. aiMtrlolty on two apharas*. Two electrified conducting tphrret are

in prcgenci' of each other; it in required to find the re»ullant force, due to their

mutual action. The spheres may be either insulated or maintained at a con itant

potential, Ray, by being joined to a distant large reservoir of electricity by a due

wire. The investigation depends on the following theorem.

The electricity on a sphere (radius a) is maintained at comtant potential and is

in equilibrium under the action of any number of electrical points. Another

electrical point A, charged with a quantity /<>' of electricity, is placed at a distance x

from the centre of the sphere. The new distribution of electricity may be repre-

sented by the addition of a layer on the sphere such that its potential plus that of

the electrical point A is zero throughout the interior. The potential of such a

layer at all external points is the same as that of an electric particle K'= - Kajx

placed at the image or inverse point of A. The increase in the quantity of

electricity on the sphere is then A", Art. 402.

If the sphere is itimlated, the additional layer representing the change produced

by A must be such that its mass is zero. The potential of this layer at any external

point is equal to the sum of tlie potentials of two electric particles. One of these

has a mass i<,"= -F.ajx and is to be placed at the image of A, the other has an

equal and opposite mass and is to be placed i,; the centre. The potential inside the

sphere is then increased by - E'ja or A'/x.

It is evident that the former case is less complicated than the latter. We shall

therefore in the first instance suppose that both the spheres are maintained at

constant potential, and finally deduce the case of insulation from the former.

460. Let the radii of the spheres be a, b, and let the distance between the

centres A,,, JIf, be c. Since c is necessarily greater than either a or b, wo can

express the force in a convergent series by regarding «/c and bjc as small quantities

of the first order. Let the given * ccentials inside the spheres A, li be u, v. If the

distance c were very great the quantities of electricity on the spheres would be

ua = E and vb = F, and the mutual force of repulsion would be EFjc^.

The electrical point E placed at A,, will disturb the electricity on the sphere B.

The external effect of this disturbance is represented by a mass particle placed at

the image ^'J of A^ with regard to the sphere B, Since this mass is proportional

to E we represent it by Ep,/. In the same way the effect of the electrical point F
is represented by a mass particle Fq^' placed at B^' the image of Bq with regard to

the sphere A. For another approximation we seek the images of A„', Z/„' and so on

continually.

To fix our ideas, let 1, P(^', Pi, p^, &o. denote the masses of the series of which

the first term is a mass unity placed at the centre Aq . Then Pi, p^, &o. are within

* The problem of determining the distribution of electricity over two spheres in

presence of each other was attacked by Poisson in 1811, who expressed the results

by definite integrals, see Mem. de I'Imtitut. There is a solution founded on the

method of successive images by Kelvin, Phil. Mag. 1853, reproduced in his Papen on

ElectroHtatics and Magnetism, page 86. In Maxwell's Electricity, edition of 1892,

page 281, there is a short discussion of Kirchhoff's results by J. J. Thomson. He
also gives references to other papers on this subject. The principle of successive

infiuences was first enunciated by MurpLy in his treatise on Electricity, 183.1. In

the case of two equal spheres whose distance apart is 100 times either radius he

finds the difference of densities at the ends of the symmetrical diameter.
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ART. 461] TWO BEPARATK SPHERES, 239

the sphere A ; j»„', /»,', Ac. are within tlie sphere U. Let /„, /, , /j, *o. denote the

distances of 1, /), , ;>.j, Ac. fnin .^„; /„', /,', Ac. denote' tlie distances of /<„', p^', Ac.

from //„. Then /u = 0, /o' = ''''/'' and so on. In the same way, if a unit of mass Ib

placed at It^, let 1, </„', 7,, Ac. denote the masses, and n^, Oq, f/|, fl,', Ac. the

distances of the successive points of the correspond -ig series from //„ and Aq

alternately. Then
,(/o
= 0, (;o'

= "''A"» *°' ^^ obviously have the following equations

f ', J' P» =

/n+1— c-/«

C-fn
.(1).

The corresponding relations for the points of the other series are obtained by

interchanging a, /, p with It, ij, q.

We notice that all the masses p^, 7„ are independent of the electrical conditions

of the spheres and are functions of a, b, c only. If we regard ajc, bjc as small

quantities of the first order, p^ and q,^ are small quantities of the order 2n, while

Pn> 'In
^""^ of ths order 2n+ 1. The distances /„, /„', j/^, [;„' are all of the second

order. We also notice that the distance between the masses p^, Pt is /,-/<, the

distance between p,, (ji
is c-J',-jii, and so on.

The whole repulsion between each sphere and the other is equal to the repulsive

force exerted by the fictitious masses inside one sphere on those within the other

sphere. It is therefore represented by

A'= 2 KFp,'qt' K^p,pt' F^q,q,'

rl
(2),

-/,-/«T {c-U,-9i

where the summations extend from s= to x and t=0 to oo , &ndpQ=l, qo= ^-

The total quantities of electricity on the spheres are

E' = Elp, + F^q^', F= EZp„' + Flq^ (3),

where the summations extend from h=0 to 00 .

It follows that (2) also represents the mutual force X between the spheres when

insulated and charged with quantities A", F" of electricity.

401. When the spheres are not very close to each other it is sufficient to take

a few terms only of this doubly infinite series. Let us reject quantities of the order

EFjc^ when multiplied by (ajc)* or (blc)*. In this case we require only the repulsive

forces between the points E, Fq^', Ep^ , Fr/,' inside the sphere A and the point?

F, Eptf', F'q^ , Epi within the sphere B. Taking any two of these we see (since all

the /'s and y'a are of the second order) that their distance apart may be regarded as

equal to c, except in the case of the particles E and Ep^^' and the particles F and

Fq^'. The force between E and F^Pf,' is

^V _E"-p„\2E-'p,' f,'

-T. + —:.^ (4),

with a similar expression for that between F and Fq^,'. The whole repulsion is

therefore

where

E'F' ^ 2E^ Pill ^ 2^ 9oVo'

c2 ^ c' ' c c^ c

E'=E+ Fqa' + Ep^ + F?i' |

F'=F+ Epo'+Fqi + Epi'!

•(5).

.(6).

ill

It is evident that E' and F" are the quantities of electricity on the spheres.
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Since the masses 1, p^', pj, Pi occupy successive inverse points we have when
terms of the fourth order are neglected

-ap„' _ab „,_-bPi ^ _
C

Jo- ^,

Pi=. -.3

.(7);

c-/o' c--'' ''-c-/i

these resii-lts follow directly from (1). Substituting these expressions in (5) and

again rejecting all terms of the fourth order, we find

where u=Eja, v = Flh are the given potentials of the two spheres.

402. To find the force of repulsion when both the spheres are insulated we

notice that the expression (5) gives the force between the spheres when charged

with tlie quantities E', F' of electricity and that their potentials are respectively

u= Ela, v = Flb. It follows immediaiely from (5) that

F^ 2a»
"72" ~3'

E'F' E"i 2fc»

,.a .» .(9).

463. When the spheres are close to each other the method of finding the

functions p^, g„, &c. by continued approximation becomes laborious. If we put

Pn = 1/P„ and eliminate /„' and p^ from the equations (1) we arrive at the equation

of differences
»> ,.

The solution is obviously

"»»+!+ "n-l— ^jij -^n-

.AlV' + Bh-'\ where /j-t

—

h

1 c'^-a"--}fi

ah

We shall suppose that h is the root which is less than unity. To find the constants

A, B we have by (2) the conditions Po=l, Pi= -y— • In the same way we find

that P„' satisfies the same equation of differences, with the conditions

P ' —^0 — P. = -^Ac'-<^'-b').
c

b' ^'~~aU^'

The reader will find methods of reducing the doubly infinite seriej for the force

X to a single series, and also a discussion of the case in which the two spheres are

in contact in Kelvin's PuperH on Electrostatics, i£-c., page 89.

464. Ex. 1. Two conducting spheres touch each other externally and are

charged with eljctricity. Prove that the density at the point of contact is zero.

[Use Art. 142.] [Murphy.]

Ex. 2. A conducting sphere, of radius a, having an electric charge E, is in

front of a large plane conducting surface connected to earth, its centre being at a

distance c from this surface, which is large compared with a. Prove that the

sphere experiences an attraction towards the plane which is approximately equal to

^(l+g"^^). [St John's Coll. 1897.J

Place on the other side of the plane at the same distance a second sphere of

equal radius and let its charge be -/<'. The required attraction is the force A', given

by (9), which one sphere exerts on the other (Art. ''U).

Ex. 3. Two equal conducting insulated Kpheres of radius a are placed with their

centres at a distance c apart in a uniform field of force, of intensity /'', and whose
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direction in at right angles to the line joining the centres of the spheres,

if the spheres are initially uncharged, their mutual repulsion will be

241

Show that,

ri-2(^y -sf^y + 1. [Math. Tripos, 1900.]

The force F acting alone would cause a distribution of electricity on each sphere

whose surface density is p=ky, where 47rofc= 3J?'(Art. 406, Ex. 4), and the straight

line joining the centres of the two spheres is the axis of x. The potential at any

external point of a thin layer of surface density ky placed on a sphere is the

y component of the repulsion of a solid sphere, of density ka, (Art. 92). This

potential, again, is the same as that of a small doublet, or quasi-magnet, whose

moment is a^F placed at the centre with its axis parallel to the axis of y, (Art. 316).

Such a doublet (strength m, length I), if placed at the centre A of one sphere,

would change the distribution of electricity on the other sphere. By Art. 459, the

changes produced by each mass m acts at external points like a second mass

particle 7/t'= -male, placed at the inverse point of the particle m. These form an

inverse doublet of strength m' and length l'=la^lc^. This inverse doublet has

therefore a moment -a^F{alc)^ and is placed at the inverse point of the centre A,

with its axis parallel to that of the first doublet.

To find approximately the mutual action of the two spheres, we consider each to

be occupied by two doublets. The force exerted by one broadside doublet on

another is proved in Art. 320 to be X= 3MM'I)-*. The force exerted by one of the

larger doublets on the other is therefore Sa^F^jc*. The force exerted by each large

doublet on the opposite small one is 3a^F {
- a?F (alcY}jr*, where r= c- a^jc. This

when doubled reduces to -6afP^(c'' + ia^)lc^. The force exerted by one small

doublet on the other is of an order higher than the terms given in the enunciation.

Adding these together we arrive at the result to be proved.

Ex. 4. Two spheres (centres A, B; AB — c; radii a, b) are charged with

electricity and mutually influence each other. Let / (
-

)
and -/ ( - ) be the

potentials of the sphere A at any internal and external point respectively, the point

being situated on the line AB (Art. 294). Prove that / must satisfy the equation

.fr\ a?b f ac-ur \ bk

c-r '

where h and k are the potentials of the two spheres.

If the spheres ure in contact, deduce

,,, , mz ,/, mz \ hz hmz
Zf(l-Z} fl 1 =

,
,, .r—j-,

•'

^ ' m + z' \ vi+zj a a{in+(l-m)z}

t t

where m=hl(a + b) and rla=l-z. Prove also that a solution of this functional

... , . mh f^l-i
equation IS 2/(1-2)= — / -

' a Jo i-

Deduce the potential of the sphere A at any point P not on the axis. See Art. 178.

To prove these results, let F be the function corresponding to / for the other

sphere. Equate the potentials inside the spheres to h and k. Then eliminate F,

See Poisson'B two memoirs, M4m. de I'Institut, (&c., 1811, pages 1 and 163. Also

Plana, Mem. de dtc. Torino, ser. ii. vol. vir., 1845, and vol. xvi., 1854.

R. S. II. 16
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r. I'A

Magnetic Induction.

465. When magnetism is induced in a neutral body A by the

influence of a magnetised body B, it is supposed that each element

dv of the volume of A becomes magnetic*. Let R be the resultant

magnetic force (Art. 342) on a positive unit pole situated in the

element, due to the influencing body B and the induced magnetism

in -^. In an isotropic body the axis of magnetisation of the

element dv is in the line of action of the force B. The intensity

/ is nearly proportional to the force B provided that force is not

very large. We therefore put / = kB. When k is positive the body

is said to be parainagnetic and the direction of magnetisation

coincides with that of the force F, when k is negative the body is

diamagnetic and these directions are opposite. The value of k for

soft iron is positive and great, but for bismuth it is negative

and very small. Thus for soft iron k may vary under different

circumstatices from 10 to nearly 200, but for bismuth (which is

one of the most highly diamagnetic substances known) k is about

1/400000. The coefficient k is called the magnetic susceptibility;

it is also called Neumanns coeficient.

466. Let U be the magnetic potential of the magnetism of the

influencing body B and 11 that of the induced magnetism in A.

Let V— U -\-VL he the potential due to all causes. Let {I, m, n)

be the direction cosines of the direction of magnetisation of any

element dv of the body A. It immediately follows that

,;=_,^<^), /™=_it^(_^. i„^._,^A£^±S^ ...(1).

We may in Poisson's manner represent the potential due to

the induced magnetism by that of a distribution of fictitious

matter throughout the volume and over the surface of the body A.

The density p of the former is given by

P =
d{Il)

,
d{Im) d(In)]

, ,„ ,^ „^
da; ' di/ ' dz ^

Here we have introduced the condition that k is constant for

* The mathematical theory of induced magnetism was first given by Poisson,
Memoires de VInstitut, 1824. Tlie difference between his tlieory and that of Weber
cannot be discussed here. The reader will find the fundainental principles of

induced magnetism explained in the reprint of Kelvin's papers. The theory of

Faraday and Maxwell, that the dielectric is the seat of a peculiar kind of stress,

does not come within the limits of a treatise on attractions.



[ART. 466

y il by the

ich elemeat

le resultant

lated in the

magnetism

tion of the

tie intensity

force is not

ive the body

agiietisation

! the body is

alue of k for

is negative

ier different

th (which is

a) k is about

iisceptibility ;

hetism of the

letism in A.

Let {I, m, n)

nation of any

lat

i^ ...(1).

jntial due to

of fictitious

the body A.

constant for

iven by Poisson,

id that of Weber

tal principles of

The theory of

r kind of stress,

ART. 469] MAGNETIC INDUCTION.

the body A. Since the element dv is outside the body B and

inside A we have

V^U=0, V''fl = -47rp; .-. (1 + 47^^^)p = 0.

It follows that when the magnetic susceptibility is constant, the

volume density p is zero. The potential of the magnetism induced

in the homogeneous isotropic body A at any internal or external

point may therefore be represented by that of an imaginary layer of

matter on the surface of that body. The surface density a of this

layer is known by Poisson's proposition to be or = 1 cos 0, see

Art. 339.

If F is the normal component of force at any point P close

to the surface but in the substance of the body, the surface

density at P is o- = kR cos 0= ± kF, the upper or lower sign being

used according as F is measured positively from P in direction

pointing outwards or inwards from the boundary.

467. The actual distribution of induced magnetism is both

solenoidal and lamellar. Since p = the condition that the

magnetism is solenoidal is satisfied, (Art. 349).

The level surfaces due to the acting forces are defined by

U+Cl = c. Each element of the body is magnetised at right angles

to the level surface which passes through it, and, since I= kR, the

intensity is inversely proportional to the normal distance between

two consecutive level surfaces c and c + dc (Art. 46). The dis-

tribution is therefore lamellar, Art. 351.

468. The boundary condition. Let Fi, F^ be the normal

components of the magnetic force due to all causes at points

Pi, Pa respectively just inside and just outside the stratum but

situated on the same normal. Let these forces be measured

positively in each medium from the stratum on its boundary.

Then by Arts. 142, 466,

Pi + P2 = 47ro-, <r = -kF, (2).

From these we deduce the equation

(l + 47r^-)Pi + P. = (3).

469. When two substances, both of which are susceptible of

induced magnetism, arc separated by a surface S the conditions at

the boundary are slightly altered. Let ki, k^ be their respective

susceptibilities. Pi, Pj the normal components ' of the magnetic

16—2
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force in the two substances at any point P of the boundary S, each

being measured positively from S.

The surface of each substance is bounded by a fictitious layer

whose surface densities are respectively

o-, = -^iFi, a^^-hF^ (4).

The minus sign is used because each F is measured inwards as

explained above:

We then have by Green's theorem (Art. 142)

47r (o-i + o-a) = i^i + i^2 (5).

Eliminating o-j, a^ we deduce the condition

(1 + 47rA;i) ^1 + (1+ iTrA;^) i?'^ = 0.

The coefficient 1 + ^irk is called the magnetic permeability and

is often represented by the letter fi. The equation then takes the

form /Aii'\ + /i2^2 = (6)'

It is often convenient to measure the normal forces F^, F^'in

the same direction. Let either direction of the common normal to

the separating surface he chosen as the positive direction, we deduce

from (6) the following theorem. The normal forces just within the

two substances at any point of the boundary (when there is uo

charge on the boundary) are inversely as the permeabilities of the

substances.

When the body is not susceptible of magnetisation k = and

therefore /i = 1. In a paramagnetic body k is positive and fi is

greater than unity. In a diamagnetic body k is negative and /i is

less than unity.

470. In some applications of this theory to electricity the

separating surface S is also occupied by a thin layer of matter

capable by its repidsion of inducing polarisation in the two media.

This layer is to be regarded as part of the influencing body. Let

p be its surface density.

We then have by Green's theorem (Art. 142)

47r(p + (ri + o-2) = i^i + i?'3 (7),

as in Art. 469. Eliminating o-j, o-j by using the fundamental

equations <ri = — A^i^i, <T2 = — k-iF^ we arrive at the generalised

equation fiiFi + fi.iF.i = 4nrp (8).

All the conditions are included in the two statements briefly

expreised by <T='—kF and the equation (8).
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471. Let H represent the resultant magnetic force and B
the magnetic induction at any point P respectively. When the

magnetism of the body is due solely to induction, the direction of

magnetisation coincides in direction with that of the magnetic

force H, (Art. 465). It follows that the force of induction B (being

the resultant of the magnetic force H and a magnetic force 47r/,

Art. 342) must also coincide in direction with that of the magnetic

force. We therefore have B= H + 4<TrI, and since / = IcH, this

gives B = fiH.

The equation (6) of Art. 469 then asserts that the normal

component of the magnetic induction at P is unaltered in magnitude

when P passes from one medium into anotLsr, the components

being measured in the same direction along the normal.

472. We know by Art. 144, that the tangential component

of the magnetic force is unaltered in magnitude when P passesfrom
one medium into another, the components being measured in the

same direction along the tangent. The magnetic potential at P
is also unaltered, (Art. 145).

Let Hi, H2 be the resultant magnetic forces in the two media

at any point P of the boundary ; d-^, 6^ the angles their directions

make with the normal at P, then

Hi sin 61 = H^ sin 6^ , fi^Hi cos 61 = fi2H^ cos 0^

,

.
' . tan di/fjLi = tan d^^ffi^'

When therefore a line of magnetic force passes from one

medium into another in which the permeability is greater than

in the first its direction is bent away from the normal.

473. Specific inductive capacity. In the problems on

electricity which have been hitberto solved in this treatise the

non-conducting medium or dielectric which surrounds the con-

ductors has been supposed to be air or some other gas. But the

capacities thus determined do not agree with experiment when

some solid non-conductor is substituted for the air. In this case

the elements of the solid become excited in such a manner that

each assumes a polarity analogous to the magnetic polarity induced

in the substance of a piece of soft iron under the influence of a

magnet. To take account of this state, called polarisation, we

apply the same analysis as that used for induced magnetism.

We suppose each element dv of the dielectric to become an
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:8

I
i

elementary dotiblet whose poles are occupied by ecjuai and opposite

quantities of electricity. The direction of polarisation is that of

the electric force F due to all causes and the intensity is I = kF.

This polarity is then replaced by a fictitious stratum of electricity

on the surface of the dielectric whose repulsive force at any point

is equal to that of the polarised dielectric. One effect of the

repulsion of this stratum is to alter the potential of each conductor

and therefore to change its capacity.

The coefficient 1 + 47r^ is called the specific indiicthe capacity

of the dielectric and is generally represented by the letter K. It

is evidently analogous to the permeability /x in the theory of

magnetism. The two however iliffer in this particular ; the

specific inductive capacity of a dielectric is very approximately

independent of the intensity of the electric force, while the

permeability is not an absolute constant but varies with the

magnetic force when that force is not small. The reader will

find in J. J. Thomson's Electricity and Magnetism (Art. 154) a

diagram which clearly exhibits the variations of /x produced by

changes in the magnitude of the magnetic force.

A short table is given in Dewchanel's treatise (edited by Everett) Art. 158 of

the correHponding values of the magnetic force //, intensity /, and perueubility n,

for a specimen of soft iron.

H=0-3, 1-4, 3-5, 40, 10-2, 78, 585.

1= 3, 32, 674, 917, 117H, 1337, 1530.

M= 128, 299, 2070, 2350, 1450, 215, 84.

The values differ in different speciinens. We notice that as the magnetic force

increases, ^ is at first nearly constant, then rapidly increases and arrives at a

maximum and again decreases. The value of ju dopends also on the temperature.

At first it increases slowly with the temperature but at such high temperatures as

600° to H00° the rate of increase is very rapid. It then begins to decrease as

rapidly as it rose.

The specific inductive capacities of ti e following subEtances are taken from

J. J. Thomson's treatise, (Art. (17). Solid piiruttiu 2 '29, sulphur 3-97, flint glass

6-7 to 7-4, distilled water 76, alcohol 20.

474. Effect of the substitution of a solid dielectric

for air. Let there be any niimber ot closed conductors A^, A.,,

&c. separated from each other by air as the non-conductor. Let

E^, Ei, &c. be the charges on the conductors, C/",, U^, &c. the

constant internal potentials, pi, p.^, &c. the surface densities at any

points Qi, Q.^, &c. on the several conductors.

When the conductors are separated by a dielectric of specific
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inductive capacity K we represent the repulsions and attractions

of the dielectric by eipiivalent strata placed on the boundaries of

the condtictors. Let their surface densities be respectively o-,, o-,,

&c. We suppose that the dielectric is uniform so that there are

no equivalent strata in the field except those on the surfaces of

the conductors. If the dielectric have a boundary at an infinite

distance both the force and the density vanish at that boundary.

Let us assume as a trial solution that er, = Xp,, o-3 = \pa, &c.

where \ is an unknown constant multiplier which is the same at

every point of every conductor. The sum of the potentials of all

the conductors at any point P in the field will then be changed

by the introducticm of the dielectric in the constant ratio 1 to 1 + \.

The potentials t/",, U-i, &c. will also be changed in the same ratio

and will remain constant. The conditions of equilibrium will

therefore not be disturbed (Art. 872).

The test that the trial assumption leads to a correct solution

is that all the boundary conditions can be satisfied by the same

constant value of \. The conditions at the boundary of any

conductor A are given in Art. 470. These are

<T = -kF, KF+K'F' = ^7rp,

where K has been wiitten for /x. In our case, F and F' are the

normal forces respectively just inside the dielectric and just inside

the conductor. The latter being zero, we have

a- = -kF, KF= 4'7r/(), a = \p.

Eliminating F and e, and remembering that 1 + Aiirk = K, we

have at once 1 + \= IjK. Similar equations apply at the boundary

of each conductor and give the .same value of \.

The result is that the distribution of real electricity on the

surfaces remains unaltered, but the potential inside each conductor

is changed by the attractions and repulsions of the dielectric and

reduce i to 1/Kth part of what it was when the separating medium

was air.

475. 7'o find the change of force at any point. Since the

surface density of each equivalent stratum is \ times that of the

real electricity at the same point, the force X' at any point P in

the field, due to both the equivalent strata and the real electricity,

must coincide in direction with the force X at the same point P
due to the real electricity alone, and the maijnitudes are such that

X' = {1+ \) X. We therefore have X' = X/K.

'pfi-Jmii
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If, when the dielectric is introduced to replace the air, the

potentials of the conductors are kept unaltered, the charges of real

electricity are increased in the latio 1 to iiT and the force at

any point will then be unaltered. The force which one conductor

exerts on another will be increased in the ratio 1 to K.

The potential energy is W=^'^Vm (Art. 61) where m is the

quantity of electricity on the conductor whose potential is V. It

follows that tl enr ^ will be divided or multiplied by K
according as tht s, >; or the potentials are kept unaltered.

476. The case in oii O)" viductor A is entirely surrounded by a shell

formed by another conductor B net'-.. . vne special attention. We suppose at first

that there are no other conductors in the field. The separating medium being in

the first instance air there is a distribution of electricity on the external surface S

of A and the internal surface S' of /}. Let the surface densities at any points Q, Q'

be respectively p and p'. If the conductor li has no external boundary, but extends

to infinite distances, the distributions on S and S' are such that the sum of their

potentials is constant throughout all space external to S' and is the same as at an

infinite distance. The potential at every point external to .S" is therefore zero and

the charges on S, S' are equal and opposite. We may now remove any portion we

please of the neutral matter outside the surface S' and reduce the conductor B to a

finite size.

In this state of the system, there is no electricity on the external boundary of

the shell B. The potential of the system is zero within the substance of the con-

ducting shell B and equal to some constant a within the conductor A. See Art. 386.

When the whole space between A and B is filled with a dielectric, we represent

its repulsions by those of equivalent strata placed on the surfaces S, S'. Assuming,

as before, that their densities are <r = \p, cr' = \p', >vhere X is some constant, we find

that the conditions at the boundary of A (viz. ff= - kF, KF—i-irp) give immediately

1 + \= 1/^. The conditions at the other boundary give the same value of \.

The result is that the distributions of real electricity on S and S' remain

unaltered, but the potentials inside A and B are reduced to 1/A'th part of what they

were when the medium was air. The potential inside B was zero and remains zero.

The potential inside A becomes ajK.

The capacity of the conductor A (being measured by the ratio of the charge to

the potential, when the conductor B is at potential zero. Art. 371) is therefore K
times as great as when the two conductors locre neparated by air.

477. Effect of external conductors. Let us next suppose that the e'.ternal

surface .S"' of the shell B is charged with electricity and that other ooviuuciors are

placed in the field outside S". These additions to the system will not disturb the

equilibrium of the charges on the surfaces S, S', but will increase the potential

throughout the interior of S" by some constant (3. Supposing the conductors A and

B to be separalod by air, the potentials inside B and A become /3 and a + p= a'.

The system thus formed (as explained in Arts. ,389, 390) consists of two parts

which are independent of each other. Let ua therefore fill the space between the

shell 'J and the conductor A with a dielectric of inductive capacity K, leaving the

conductors outside the shell still separated by air. The distributions of electricity
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on <S' and iS" are not disturbed by this change, the potential inside B remains equal

to /3, but that within A becomes a"=/3 + o/A' where o = a' -/3. The difference between

the potentials of A and li is therefore decreased in the ratio 1 to K.

The capacitij of the conuuctor A (if measured by the ratio of the charge on A to

the difference of the potentials of A and H) is therefore K times as great as when A
and B were seimrated by air.

478. A plane dlelaetrlo. Two conducting plates of infinite extent are placed

with their nearest plane faces A and B parallel to each other and at a distance 0.

A plate C, of specific inductive capacity K and thickness t, is introduced into the

intervening space with its two faces parallel to the planes A and B, the space on

each side of G being occupied by air. Find the effect of the introduction of the

dielectric C ou the capacity and potential energy of the system.

Let a, h be the distances of the faces L, L' of the dielectric C from the planes

A, B, L being the nearest to A and L' to B, then d= a + t + b.

Let p and p'= -p be the surface densities of the charges on the planes A and h.

Let <r and a'= -<r be the surface densities of the strata on L and L' which 3

equivalent to the polarity of the dielectric.

At a point P between the planes A and L the force F, measured from A tc /„i jS

B, is constant and equul to 4n-p (Art. 22). The constant force L", measured 'n th

same direction, at a point R between I^ and L' is found from the condition tl t the

induction is unchanged when P crosses the boundary of the dielectric (Ar. ''^],

hence KF'= F. At a point Q between L' and B the force is again F=47ip.

Let a, /3 be the potentials at the planes A, B, and X, X' those at L, L'. The

force at a point P distant x from A is -dVldx= F, .: V=a-Fx. Similar reasoning

applies to the points Q and R, We have therefore

\= a-Fa, \'= \-F't, /3= X'-F6.

Adding these three equations together and substituting for F, F' their values, we

find /3 - o= - 47rp (a + b + tjK)

= -inp(e-t + tlK) (1).

The capacity C (when measured by the ratio of the charge on either of the

conductors A, B to the difference of their potentials) is given by

i=.,{.-(i-i.),|.

We notice that this is independent of the position of the dielectric C.

If the whole space between the plates A, B w filled with air, we have t= and

the capacity is Ijiirff. The capacity is therefore increased by the introduction of

the dielectric C. When the dielectric C fills the whole space between the plates

A, B, we have t= and the capacity is K times as great as when the separating

medium was air.

The potential enerpy per unit of area due to the charges =tp on the plates is by

Art. 61,
'

fF=iSi?F=Jpa-ip^=4p(a-/3).

We may express this result either in terms of p or o -/3. We have by (1),

w=2.^ie-t^tiK)J'^-f^_y-^^.

It follows that the introduction of the dielectric decreases or increases the potential

energy according as the charge p or the difference of potentials is kept unaltered.

The force per unit of area which one conductor .-1 exerts on the other /? is ^ Fp

(Art. 143). Since F='iiri. this becomes 27rp'^. The force is therefore not changed

by the introduction of the dielectric C provided the charges are kept unaltered.

w
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If the difference of the potentials m kept unaltered, we Bubstitnte for p from

equation (1). The force per unit of area is then (/3 - a)'''/8ir (6 -t + tjK)''.

\ >g

470. A eyllndrlcal dlelaotrlo. The outer and inner boundaries of two

conductors A, B are infinite co-axial circular cylinders whose radii are a, b. A
co-axial circular cylindrical dielectric C of specific inductive capacity Kia introduced

into the space between A and li, the rest of the space being filled with air. To find

the effect of the shell G on the capacity and potential energy.

Let p, p' be the densities of the charges on the surfaces A, B ot the conductors;

ff, a' those of the strata on C whose repulsions represent the forces due to the

dielectric. Let the radii of the two surfaces L, L' uf the shell C be a', //; L being

nearer A than B. Let a, /3 be the potentials at the conductors, \, X' those at the

surfaces L, L'.

The iepulsion of any one of these cylinders at an internal point is zero. At an

external point the force varies inversely as the distance r from the axis and is equal

to 2mjr where vi is the charge per unit ot length (Arts. 55, 56). For the cylinder A,

m= 27rpo.

The force at any point P between A and L is iirpalr. Putting r= a', and using

the rule that the product of the force and K is unaltered when P passes into the

dielectric (Art. 409), we see that the force just outside L 's iirpaja'K. The force at

any point R between L and L' is therefore iwpalr'K where r' is the distance of M
from the axis. Similarly the force at a point Q between L' and B is ivpajr"

where r" is the distance of Q from the axis.

We now find by easy integrations

X - a = - 47rpa log —
, X' - X= -

Adding these together we have

tirpa

K~

/3 - a= - 4rrpa ( log- +
a

, b'

1 , b'

/3 - X' = - 47rpa log
b''

^O- .(1).

The capacity C per unit of length (measured by the ratio of the charge on A to the

difference of potentials) is given by --=log - - ( 1 - t;. ) log -;

.

Since the whole quantity of matter given by Poisson's equivalent strata is zero

(Art. 340), we have aa! -ira'h' = 0. Also since the potential of the whole system at

any point external to B is constant, the quantity (pa-Vp'b + aa' \-a'b')\oq,r is

independent of r, and this is impossible unless pa + p'b = 0. The charges on the

conductors A and B are therefore equal and opposite.

The potential energy per unit of length (Art. 61) is given by

W- i (27rpfl a + 27rp'6 j3) = irpa (a - /3),

which can be expressed in terms of either the charge or the difference of potentials,

by substituting from (1).

480. A repelling point of mass E is placed at a point A in a

medium of inductive capacity K ; prove that the potential at any

point P distant r from, A is E/Kr.

The point may be regarded as the limit of a small sphere of

equal mass, radius a, whose specific inductive capacity is unity.

in
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This sphere is then the inner boundary of the dielectric and the

equivalent distribution on its surface must be taken into the

iccount. The force due to the charge E at all points just inside

the surface is Ejti^- and, a being small, all other forces in the field

may be neglected. Since there is no real electricity on the

sphere, the normal forces on each side are inversely as the specific

inductive capacities (Art. 469). The force at all points just out-

side the sphere but within the substance of the dielectric is

therefore F = E/Ka''. The surface density <r of the stratum on

the sphere is o- = — kF, and is therefore uniform. The resultant

repulsion of the charge E together with that of the uniform stratum

is therefore E/Kr'^ at all points external to the sphere (Art. 64).

If another charge of mass E' be at a point B distant r from A,

we replace it by a small sphere of mass E' and radius b. The

force on the sphere E' due to a uniform distriV>ution of attracting

matter on this sphere is zero, (Art. 65). Whin therefore two point-

charges, separated by a uniform dielectric, repel each other, the

force if. EE'jKr\

481. Problems on dielectrics. To find the effect of in-

duction on a dielectric we have generally to begin with a trial

solution. Sometimes we assume the density of the equivalent

stratum on the boundary S of the dielectric to be an unknown

constant multiple (say X) of some quantity suggested by a corre-

sponding problem when the dielectric is air (Art. 474). We can

then deduce the potentials on each side of the equivalent stratum

and determine the constant \ by using some one of the forms of

the boundary condition.

In other cases it is more convenient to assume some expressions

for the potentials fl, H' due to the repulsions of the dielectrics

;

these must be suggested by the circumstances of the case. They

must obviously satisfy the following conditions, (1) the functions

n, n' must satisfy Laplace's equation at all points not occupied

by attracting matter, and be finite and continuous each on its own
side. If the medium c»n one side of *S extend to infinity, the

potential corresponding to that side must be zero at an infinite

distance. (2) The two functions n, il' must be such that at

every point of 8,

n = n', fjL,^{n+U)+fi,-^,{n'+U)=o,

•-«
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where dv, du are elenien • of the tiormal to S, meaHiuod positively

from S, and U Im the potential of the iiiHueiioinj^ body. These

are caUed PoisHonn conditions. When 11 has beerj found, the

magnitude and direction of the induced pohvrity follow from

equations (I) of Art. 4()(). The siirfaco density of the e4uivalcnt

strata can be found by (4) of Art. 469.

489. Kx. Find the polari.'.ation induced in two media of capacitiem K^, A'.j

tepa lilt I'd III/ (I ]>l(ine and acted on hi/ an electric charge K nituatcil at a point li which

Id IM the Jirxt iiiediitm at a dintance Itil — h from the neparatinfl plane.

Fimt Molution. I'roduce ILM to C and inaku Mt' — h, h»;o tlio tiKuri! of Art. 412.

Let (r, , r,'), (r.^, r./) he tlic diHtnnccH of any two poiiitH /', , I'.j in tlio two media

from II, C renpectively, AsHume an u trial solution tiiat the potentialH due to all

N
caUHes at /', , P,^ are ^^=: (1).

where M, X are two unknown conHtautH. These potentialfl are Unite at all points

unoccupied by matter, zero at infinity, and Hatiwfy Laplace'H eijuation. They

must alHO satisfy the boundary conditions F, = r^ and A",/'', +
A'.j/''a

= 0, at all point|

which moke r, =:ri=r^. We lind by resolution

'-(-r«)^; ^==?' <»'•

These eciuations give M and N, we therefore have

'IE

From these the values of the components of polarisation //, Im, In follow at

once, Art. 4<)6.

The density tr of the equivalent layer on the boundary plane at a point P distant

r from either li or C is given by
A'j - AT,

•
r^

ff= -A-,Fi-fc.jF3--=
2liK

••3 '47r (A-.j + A',)A',

In forming the trial solution (1) we may assume that the potential at a point P,

in the first medium is the sum of the potentials due to the electric point li and any

imaginary electric points properly placed in tlie other medium. No electric pomt

(other than the real point H) in the first medium can be used, because the potential

would then be infinite at that point. Similarly in forming a trial potential at P.^

in the second medium, any suitable imaginary points situated in the first medium,

but none in the second, may be used.

Second solution. Instead of assuming some values for the potentials Kj, V.^, we

may take as our trial assumption some form for the density a of the equivalent

layer on the plane. By referring to Art. 412 we are led to the assumption

The repulsion due to the stratum at any point P on either side is the
2Eh

ff = \.—...

47r*-^

same as that of a charge \K situated at a point (li or C") on the side opposite to P.

The normal forces on each side of the separating plane (measured from that plane)

due to the electric point at li and the stratum are therefore

„ / 1 \ J2/i ,. / 1 X \ AVt
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The boundary condition A',f', + A'-jFj-O kivch at once \= - Since

Tho potentiaU are evidently

(Ar,+ A-,)A-,

thiH value of \ Ih oouHtant the trial Holution ih verified.

The value of 9 thuH found obviounly a^reeH with that found in th(> tiiHt Holution.

K \E
L- + — •

483. Effect of the •ubitltution of a dielectric ihell for

lome of the air. A conductor A Ih surrounded by another B at

zero potential, tho space between being occupied by air. Charges

E and — E being given to these bodies respectively, let F^ be the

potential inside A. Let a shell C in the space between A and B
be bounded by two equipotential surfaces L, L' of the charges on

A and B, L being the nearest to A. Let f/, V be the potentials

at these surfaces. If a dielectric of capacity K he substituted for

the air in the shell G (the rest of the space between A and B being

still occupied by air) the whole effect of the dielectric is to diminish

the potential in the interior of A by ^A -
j^j

{U—U'\ see Art. 476.

This theorem is due to Kelvin [reprint, &c. Art. 45].

When the separating medium is air the potential of xhe

system at the interior surface S' of the conductor B and at every

point without its surface is zero (as explained in Art. 476) while

the potential at the surface and within the interior of A has some

constant value a.

Let us place on the surfaces L, L indefinitely thin layers

whose surface densities a, a are respectively given by 47ro- = \F
and 47r(r' = — \F' where F, F' are the normal components of

force due to the charges on A and B, both forces being measured

from A towards B. The total masses of these layers are re-

spectively \E and - \E (Art. 156).

Since L is a level surface, the potential due to the charge on

it at any external p iut P is \Fi, where Fj is the potential at P
due to the charge E {ji\ A', and at an internal point Q its potential

is \{U— V,i) where Fj is the potential at Q due to the charge

— E on B (Art. 156). Similar remarks apply to the layer on the

surface L' except that the sign of \ is altered.

Hence at any point P external to both L and L', the effect of

the introduction of one stratum is to increase the potential by

XFj and the effect of the other is to decrease the potential by the

same amount. The potential at any external point is therefore

unaltered.

II

I

'"::•
.f
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At any point Q internal to both L and L' the potential is

increased by the sum of X{U — V^) and —\{U'— Fa). The

potential is therefore increased by the constant quantity \ ( f/ — V).

At any point R between L and L' the potential is increased

by the sum of \Fi and —\{U'— Fj). The potential is therefore

increased by \(F— U'}, where Fis the potential at R due to the

given charges on A and B, i.e. F = Fj + Fg. v
The introduction of these strata therefore increases the

potential inside ^ by a constant quantity and does not alter

the potential within ohe substance of B. The electric equilibHum

of the two conductors is therefore not disturbed.

The layers placed on L and L' will be the equivalent strata of

the dielectric C if the densities a, a are respectively equal to -h
times the normal components of force due to all causes at points

just within the two boundaries of the dielectric each measured

from its own stratum. The potential at a point R just outside

L being F+\(F— f/') the outward normal force (obtained by

differentiation) isj (1 -^X)F. We therefore have the two equations

O- = - ^' (1 + \)F, ^TTO = \F.

Hence l+X=l/i^. The conditions at the other boundary give

the same value of X.

The effect of the introduction of the dielectric is not to alter the

level surfaces, but to decrease the potential a in the intenor of A by

a known quantity.

Since no restriction has been placed on the size of the external

conductor B, we may replace it by a sphere of infinite radius.

The charge on its surface being finite, we may then eliminate

that conductor altogether from the field. Kelvin's theorem may

therefore be applied when the shell (J surrounds a single conductor

A, provided the boimdaries of G are equipotential surfaces.

484. Let UB now suppose that the shell B and the conductor A are placed

in a field of constant potential (see Art. 477), so that the potential at every point is

iucreased by the same quantity ^. The electrical equilibrium is not disturbed, but

the potentials inside the conducting matter of li and A (when separated by air)

become respectively /3 and /3 + o — a'. Each of the potentials /, V is also increased

by /3, but their difference is not altered.

After the introduction of the dielectric shell C, the potential inside li remains /3,

while that inside A becomes «-('4) (U - U'). The capacity C (if measured by
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the ratio of the charge Q on A to the difference of the potentials o{ A, B) is then

given hy 9 = a'_^_ ^i_^^(I7_ f/').

When the dielectric ,fills the whole space between A and B, we have U=a', U'=P;
so that the effect of introducing the dielectric is to multiply the capacity by K.

The potential energy of the system is by Art. 61 equal to iSA'F. The effect of

introducing the dielectric shell C is to diminish the internal potential of the shell

A, leaving that of B unaltered. The potential energy is therefore diminished by

),K(^i-^yu-u').

48S. Ex. 1. A spherical shell (whose inner radius is c) and a solid concentric

conducting sphere (radius a) are charged with quantities =t£ of electricity. The

space between is filled with two dielectrics separated by a third sphere of radius b.

Prove that the capacity y is given by - = ( — ijlr'^ii ) W ' [Coll. Ex.]

This result follows at once from Kelvin's theorem (Art. 483). Let Q be the

charge on the sphere of radius a. When the separating medium is air, the

potentials V and U at the surfaces of the spheres a and b are

V^QIa-Qlc U=Qjb-Qlc.

The effect of the dielectric is to reduce the potential within the sphere a to the

value V' = V-{l-^yV.V)-(l-^^y

The capacity required is QIV.

Ex. 2. A spherical conductor of radius a is surrounded by a concentric

spherical conducting shell of radius b and the space between is filled with a

dielectric of specific inductive capacity /Me~'''/p^ (where p = rja) at a distance r from

the centre. Prove that the capacity of the condenser so formed is 2/ta/(e'' - e)

where c = b'^ja'^. [Coll. Ex. 1896.]

Ex. 3. Prove that the capacity of two parallel plates, separated by air and

placed at a distance apart equal to d, will be increased n-fold by introducing between

them a slab of substance whose specific inductive capacity is K and thickness

7? — 1 KO
„ , where h<K. [Coll. Ex. 1000.]

n K-1
Ex. 4. A condenser is formed of two parallel plates, whose distance apart is h,

one of which is at zero potential. The space between the plates is filled with a

dielectric whose specific inductive capacity A' incieases uniformly from one plate to

the other. Prove that the capacity per unit area of the condenser is

K^ — Ki i , ^^2

where Ki and Kn ^^^ ^^'^ values of A' at the surfaces of the plates, the inequality of

the distribution at the edges of the plate being neglected. [Math. Tripos, 1899.]

Ex. 5. Three closed surfaces 1, 2, 3 are equipotentials of an electric field; if an

air condenser is constructed with faces 1, 2, its capacity is A ; with faces 2, 3 the

capacity is B; if with 1, 3, the capacity is C. Prove ^, = -: + y,

.

L/ A £>

If a dielectric K fill the space 1, 2 and one K' fill 2, 3, prove that the capacity of

K i

III :,.

the condenser having 1,3 for faces is
'ak'^bk''

[St John's Coll. 1898.]

I
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Ex. 6. A condenser consists of two confocal ellipsoids, the squares of whose

eemi-axes are respectively a', b'^, c" and a^ + tt, Ac. If the dielectric be air and ^
the capacity for electricity, prove that

2 _ fu du

^~J0 {{a'^ + u)(¥+ u)(c'i + u)\i'

If the dieleccrio be a solid arranged in ellipsoidal shells confocal with the

conductors, ri,nd such that the specific inductive capacity of each shell is inversely

proportional to the volume of the enclosed ellipsoid, prove that the capacity is

2Kabclu, where K is the specific inductive capacity of the innermost layer.

[St John's Coll. 1879.]

486. Ex. 1. A charge F. is placed at a distance / from the centre of a sphere

of 8.1. c. K and outside the sphere. Prove that the potential at any point inside the

E
sphere at a distance r from the centre is - 2

2h + 1

« + lG)^"'
where the sum-

J Kn +

1

mation extends from n= to oo

.

[Coll. Ex, 1897.]

Let (r= 2/l„P„ represent the surface density of the charge equivalent to the

polarity of the dielectric. We write P„ instead of y„ because the system is

symmetrical about the straight line joining the charged point to the centre of

the sphere. The potentials duo to this stratum are given in Art. 294 at points

inside and outside the sphere. Adding to these the potentials of the external charge

and using the equation (6) of Art. 4(J9 we obtain the result to be proved.

Ex. 2. A sphere of s.i.c. K is placed in air, in a field of force due to a potential

X^ (before the introduction of the sphere) referred to rectangular axes through the

centre of the sphere, where X„ is a solid harmonic of degree n. Prove that the

potential inside the sphere is X„. [Coll. Ex. 1898.]

Ex, 3. Find the potential at any point when a sphere of specific inductive

capacity K is placed in air in a field of uniform force.

A circle has its centre on the line of force which passes through the centre of

the sphere and its plane perpendicular to this line of force. Prove that if the plane

of the circle does not cut the sphere, the presence of the sphere increases the

induction through the circle in the ratio 1 + 2
K-l
A'+ 2' to 1, where 2a is the

angle of the enveloping cone drawn from any point on the circumference of the

circle to the sphere. [Coll. Ex. 189G.]

Proceeding as in Ex. 1 we find that the potential due to all causes at any point

outside the sphere is V' = f{x- vr—^ ,._, ] where F is the given force of the

' dV

.

field. The fiux of force through the circle is then
/ dx

2injdy, Art. 107.

Ex. 4. A circular wire is situated in a uniform magnetic field, with its plane at

right angles to the lines of force ; prove that the effect of introducing into the

middle of it a sphere of soft iron of permeability /x, which exactly fits its section, is

to increase the induction through it in the ratio of 3 to 1 + 2//*.

[1 rt. 471 the induction is n times the flux,] [St John's Coll. 1896.]

Ex. 5. A spherical shell of radii «, h (hxi) and specific inductive capacity A' is

placed in a field of uniform force F; prove that, if F^ is the force in the space

within both spheres, Tr=l+ ,

\iK'"'H)-
[Coll. Ex. 1399.]
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Ex. 6. An infinite solid with a plane face is acted on by a small magnet, of

unit moment, situated at a point E outside the solid, the axis of the magnet

being perpendicular to the plane face. Prove that the magnetic potential at any

point P within the solid is
2co8tf

where r~EP, $ is the angle EP makes with
in + 1)7^

the axis of the magnet and
fj,

is the permeability of the solid. [Coll. Ex. 1897.]

We represent the repulsion of the solid by that of a thin stratum of variable

density v on its surface. The normal force at a point Q close to that surface is due

ultimately to the repelling matter in the neighbourhood of Q and is therefore 2iriT.

If X be the normal force due to the magnet, the condition at the boundary is

(2Tr(T + Z)iu.-^{2w(T-Z).= 0.

This gives by Art. 316 <r = ~^- ,- ,- ( -,t, 1 where r' = EQ and z is the distance of'
2ir fi+ldz \r'^J

^

K from the plane. The potential due to a stratum */»•'•' is given in Art. 412, that

due to a is then deduced by differentiation as explained in Art. 93, Ex. 3. Finally

the given result is obtained by adding the potential of the magnet itself.

Ex. 7. A sphere of specific inductive capacity A' and of radius a is held in air

with its centre O at a distance c from a point A where there is a positive charge E.

Prove that the resultant attraction on the spbere is

wlwire ^^ (A.' - 1)/(A'+ 1). [Math. Tripos, Part ii. 1897.]

The potential at an internal point is given in Art. 486, Ex. 1, thence tbe surface

density <t of the stratum equivalent to the polarity of the dielectric may be found by

an obvious differentiation. Art. 466. If It be the distance of any elementary area

(/-> of the sphere from A, the resultant force on the sphere is A'= / ™ -j, ailH.

J Ii' H

The expansion of ^, =—, i) (« + l)P„/i", where h—alc is found by differentiating

that for L'lli (Art. 264) with regard to It. The integrations can be effected at sight

by using Arts. 288 and 289. The series thus found for X agrees with that obtained

by expanding in powers of d/c the result given in the enunciation.

Ex. 8. The space between two concentric conducting spheres is filled on one

side of a diametral plane with dielectric of specific capacity A', and on the other

sidi! with dielectric of specific capacity K'. The inner sphere is of radius ii and has

a charge /.'. Prove that the force on it perpendicular to this diametral plane is

K-K' K2_
[Coll. Ex. 1901.]

The potential T in either dielectric is i; (A^,r"+ ^^^A I'„, but since Fmust be

independent of both when r-a and r-h we find V=A + Illr. Since V has the

same value on both sides of the dianietnil plane {Art. 481) for all values of /

between r — ii and r=:b, this for"" ula, with the same values of .1 and Ii, gives the

ptitontial in both dielectrics. By Art. 470, we find that the real densities p, p on

the two halves of the sphere are given by iirp^^Klila^, 47rp' = A" />'/«'-. Since

l-n-{f) + p)a--K, we find ^. = ?.,==.,
'

,, ,, ,.,. The pulling force on an element
A K iiTU A 4- A

fids is i,pdH . (
- (/ Vjilr), which reduces to 2np-dSIK. We now write dS = 2va^ sin d . dO

and multiply by cos/> to resolve the force parallel to .r. The integral from ^^0 to

K. s. II. 17

ill'

is 11}
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conductor and the dielectric is V'= -iirtrcosO^

Jtt gives the resolved force on ^"\f the sphere. Interchanging K and A'' we have

the resolved force on the other half. The difference is the force required.

Ex. 9. A dielectric hemisphere of radius a and inductive capacitj' K is placed

with its base in contact with the plane boundary of an otherwiee unlimited

conductor. Prove that the potential at any point of the field outside both the

9 ~i I
' where the origin is

at the centre of the hemisphere, and <r is the surface density of the charge on the

plane conductor at a great distance from the hemisphere. ^ [Coll. Ex.

J

487. Magnetic abeUs. Ex. 1. An iron shell (radii a, h, a>h) is placed in a

field of uniform magnetic force /. Find the induced magnetism and the force .Y

inside the hollow.

Put p= Sl'„, p' = Sy^„ for the surface densities on the spheres. Their potential

within the material is

^ i„ /ry M\ z„ /by
"2k + 1 \aj I- "-211 + 1 \rj '

The boundary conditions to be satisfied are

n = 4n-((

:

P= -kl\-- k (^-fcoBe+~^y p'=-k(^j
dr )' •"" "Y ,lr

where a and h are to be written for r respectively after the diffeientiatioiss liuve

been effected. These show that l'„= 0, /^,i
= except when n=l. Wo find

li =
Hkfcone

z,=
- 9A7'cos e

where N= 9(l+iirk)+2(iwk)- ]l-(^,)
[

The potential V and fciec A' inside

A':
9fif

the hollow, due to all causes, are

47r . ,

Ex. 2. A solid uniform sphere (r.idius a) is placed in a uniform field of force

whose potential is -fx, say the magnf^' iV'. of the earth. Prove that the

potential of the induced magvivitism at aV, extern i points is the same as that of a

concentric simple magnet whose moment is «V
,M-1

/ix + 2'

Ex. 3. A small magnet of moment ^1/ is placed at the centre of an iron shell,

radii a, b. Prove that the potential at any point external to the shell, due to all

causes, is ., ,. ,, ,,.,,, ;,t where p = b a and u is the permeability of
)- yM + 2(M-l)-(l-F)

the shell. Tlience show that if fi is great and ;> not nearly equal to unity, the

potential is zero. In this case the induced magnetism on the shell neutralises that

of the magnet at all external points.

488. To find the surface integral of the magnetic induction

through any closed surface S.

To iind the component of the magnetic induction at any point

P In a direction PN we construct a disc-like cavity at P which

has its ]\i\ne Dormal to PN. The normal component of the

in<hieiion is then the same as the actual normal component of

i/r'^'^ 'It P due to all causes, (Art. 343).

l!
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To find the surface integral of the magnetic induction we

remove a thin layer of matter all over the surface 8 or, at least,

over that part of S which lies within the magnetic body. We
shall now apply Gauss' theorem to the repelling matter situated

within the internal boundary of this empty shell, i.e. within the

surface 8.

Since each magnetic molecule has two equal and opposite poles,

and no magnet lies partly within and partly without the empty

shell, the algebraic sum of the magnetic matter within the surface

S is zero. For the sake of generality, let us suppose that there

may be other repelling particles (besides the magnetism) situated

withiii *S*. Let M be their total mass.

Let H be the magnetic force, B the magnetic induction and

/ the intensity of magnetisation at any point P of 8. Let d, 6'

and i be the angles their directions respectively make with the

outward normal at P. Then

J5 cos 0' = ZT cos ^ + 47r7 cos I (1).

Applying Gauss' theorem to the surface 8, we have

^•ttM == JB cos 6'dS (2),

= J{H cos d+4>'7rl cos i)d8 (;3).

488. Another proof. We may also arrive at these results very easily, if we
first replace the magnetism by Poisson's solid and superficial distributions. Let p'

be the density of the solid distribution, I cos I the surface density. If the surface

S lie wholly within the magnetic body, the superficial distribution on the body will

be outside »S'. We then have by Gauss' theorem

iir {M+ jp'dv)=:jH COR edS (o).

Since Poisson's rule applies also to any portion of a magnetic body (Art. 340)

have also
j
p'dv + jl cos idS=0 (/3),

where the surface integral extends over the surface S. Eliminating p' we have

iTrM=: j (II cos + iwl cosi) dS (3).

If the surface S intersect the boundary of the magnetic body, we suppose 7 = at

all points of S which are outside the body.

We must also include on the left-hand side of (a) that portion of the superficial

density on the body which lies within S ; lot this portion be called /. At the same
time we must add J to the left-hand side of (fi), since j/cos idS only extends over

that portion of the surface .S' which lies within the body. When therefore we
I'liininate jp'dr, the quantity J also disappears and we again arrive at (3).

490. If there is no repelling matter besides the magnetise,,

M=0. We then find that tlie surface integral of the magnetic

induction across any closed surface 8 is zero.

17—2
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to

491. If the magnetism is whol'y induced we have B = fiH,

and ^' = i, (Art. 471). We then have

'inrM = JfiH cos i dS (4).

We infer that in a dielectric of specific capacity K the outward

flux across a closed surface S (f K times the normal force is equal

to 4nr times the repellivg mass inside. This is also called the

outward induction across the surface S.

492. Let us apply the modified form (4) of Gauss' theorem

to a Cartesian element of volume of a dielectric. The value of

the right-hand side of (4) for the two faces perpendicular to x is

(as explained in article 108) d{KX)dydz. Treating the other

faces in the same way and writing M = pdxdydz, we find

d{KX) d(KY) d(KZ)
'^

dx dij dz

If we use the potential F, this becomes

where p is the density of any real repelling matter which may

occupy the space S independently of the Poisson volume density

p' due to the presence of the heterogeneous dielectric.

If wt) write I=kII, (Art. 471), the equation (/3) takes the form

\p'(lv + \}dIcoH0(lS= O.

Applying this also to a Cartesian element we have

, d /, dr\ d /, dV\ d /, dV\

where p' is tlio density of Poisson's solid distribution.

The equation (a) becomes in the same way

.(7).
, , „ d-v d-v dn-

-47r p + p' = + — +
dx' dy' dz-

Since K--1 +4nl;, any rue of these three equations follows from the other two.

483. To deduce the conditiun at the common boundanj of two dielectrlcti from

Hie modified Gchihh equation {*)

Let p thin stratum of repelling matter of surface dc.isity m separate two

dielectric media f capacities A', K
'

; see Art. 470. Wc follow the same reasoning

as in Art. 147, but wnti-iK A',V, A'l', KZ for X, Y, X. If we take .r normal to the

separating surface we then have

{K'X'-KX)dndz+('^ ^j^^'^ +
'^^lif^)

tdiidz^inmdydz.

In the limit this becomes A''A'' - A'.V = 47r/;/,
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where X, X' are the normal forces on each side of the fleparatin^' stratum, both

mtasured in the same direction, viz. from the medium A' towards the medium K',

This of course is the same as the result arrived at in Art. 470.

We may put this argument in another way. Let uh enquire 'nhat form the

equation (5), yiz. ^{KX) + ^^(KY) + ^JKX) = 4rrp (6),

iiHmmeH when the specific inductive capacity chanuen from K to K' at any mrface.

Taking x normal to the surface we notice that dV/iix increases rapidly on crossing

the surface, while dVldy, dVjdz do not. The left-hand side of (.5) is therefore

ultimately reduced to its first term. Integrating from .c = to x = t, we have

A"r-A'.Y = 47rp'f = 47r/H.

404. Am tin example, let us consider the problem solved in Art. 482. At all

j)ointR ill the medium which contains the point charge K, the density p = 0, except

al that charge, while in the other medium p = at all points. We may therefore

take as the trial values of the potential

N
1 |. (• ' '

V.,= -

since these satisfy etjuation (5) of Art. 492 at all points at a finite distance from K.

To find L we apply (5) (or equation (4) of Art. 4i)l from which (.')) was derived) to

the points of space near the charge K. To avoid the difficulties of infinite terms,

we shall choose the equation (4). Taking as the surface S a sphere whose centre

is at E and whose radius is a, we have

47r7'J= K jH cos idS = A'
J

( ^ -
[ ,,j

cos /'

J
a-dw,

where /' is the angle r/ makes with the normal to the sphere. In the limit, when
a is very small, we reject the term containing .1/. We immediately have L = EjK,
and the solution may then be continued as in Art. 482. .

We notice that, when a is not very small, the term containing .1/ is zero by

(iauss' theorem (Art. 10(5) because the point € hom which r/ is measured lies

outside the surface .S'.

495. To deduce from the eaiended form of Gauss theorem an

e^i'pressionfor the potential of an electric system.

By Art. 61 the potential energy of a system of repelling

particles is ' W = ^'S.Vm — ^JVpdv,

where V is the potential and p the density at the element of

volume dv. If there be no repelling particles within the element,

then for that element p = 0. The integration extends throughout

the volume of some closed surface S within which all the repelling

particles lie. Substituting for p its value given in Art. 492, we

have

^(j7-dV\ d

di/\ di/J dz
J^ ^-jld^dydz,

^ttJ]] ' [dx\ d.i

where K is the specific inductive capacity of the medium which

occupies the element dxdydz.

4'
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We now integrate each term by parts, following Green's method,

(Art. 149). We have

J aic\ div J
K\

rdV
dx K?^'

H.,r=-/.r-.../.{('^:)V(: rin-

where the square brackets imply that the term is to be taken

between the limits of integration. These are represented by A to

B ii. the figure of Art. 149. Treating all tlie terms in the same

way, we have

If the integration extend throughout a sphere of large radius

R, the product VdVjdn is of the order l/iJ' while dar is of the

order R^. The surface integration therefore vanishes when the

integration extends throughout all space. We thus find

Ex. Find the potential energy of tbe system described in Art. 47H.

We have Hwll'= jKF'-(i.i; where /'"= -tU'ldr and JC is the energy per unit of

area.

Between A and L, F=iirp, A"=l and tlie limits of intefjration are .t = to a.

Between /. and I/, F=iirplK, and the limits are .!• = « to a-t-t. Between L' and D,

F=\irp, V-1 and the limits are .r — a + t to 0. Outside A and Ii, F=0. Effecting

these inti .;;ation8 and adding the results, we arrive at the result given in Art. 478.

In the same way the energy of the cylindrical condenser described in Art. 470,

is given by HTrjr^:^ |" F'^dr + f' {F-^IK)dv+ /
' F'dv,

J o- J
"'

J f>'

where /•'=4jrp«/r and dv = 'lir)dr. This evidently reduces to the result given in the

article just referred to.

l\

1 \.
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THE BENDING OF RODS.

^ per uiiit of

It given iu the

Introductory Remarks.

1. Our object in this chapter is to discucs the stretching,

bending, and torsion of a thin rod or wire. We may define a rod

as a body whose boundary is a tubular surface, of small section.

The surface is therelbre generated by the motion of a small plane

area whose centre of gravity describes a certain curve and whose

plane is always normal to the curve. The curve is generally called

Ihe central axis or central line of the rod.

The rod or wire is to be so thin, that, so far as the geometry of

the figure is concerned, it niay be regarded as a curved line having

a tangent and an osculating plane. Although this limitation will

be generally assumed it wil! be seen in the sequel that some of the

theorems apply to rods of considerable thickness. It is not pro-

posed to enter into the general theory of the elasticity of solid bodies,

except where it is necessary for the elucidation of the point under

discussion, and even then the reference will be restricted as far as

possible to the n»ost elementary considerations.

2. In general the deformation of the body will be regarded as

very small, so that each element of the body is only slightly

strained from its natural shape. It .vill therefore be assumed that

the whole effect, when properly measured, of any number of dis-

turbing causes may be obtained by superimposing their separate

effects.

3. By reference to Art. 142 of the first volume of this treatise,

it will be seen that the action across any section C of a thin rod

AB consists of a force and a couple. On this is founded the

mathematical distinction between a string and a rod. The action

across any section of the former is a force, called its tension, wliich

acts along the tangent to the string, Vol. i.. Art. 442. In the case

of a rod the force may act at any angle to the tangent and there is

in addition a couple.

1, 1(1
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7. Tbcorjr of a tratehcd rod. Let the unutretched roil form a cylinder with

a croHH section of any f<irin and Bizu. When stretched the rod becomeH tliinner, ho

that the Heveral piirtideH undergo lateral as well aH h)nKitudinal dinplacenientH.

Tliere is one fibre or line of particleH which in undisturbed by the lateral contraction.

Let this straight line, which we may regard aH the central lini , be taken as the axis

of x, and let the origin be at the fixed extremity of the rod. We suppose that the

stretching foroeH at the two ends are distributed over the extreme cross sections in

Huch a manner that after the rod is stretched these sections continue to be plane

and perpendicular to the central axis. It will aj)pear from the result that the force

at each end should be eciually distributed over the area.

Let X, ?/, ; be the coordinates of any particle 1' in the unstrained solid, x + n,

!l + v, z-i-w the coordinates of the same pnrticle I'' of matter in the deformed body.

Then u, v, w are such functions of .r, //, z that the equationw of eiiuilibrium of all

the elements of the solid are satisfied. We shall now prove that if we take u = Ax,

1 = - Jiij, w= -It: all the ecjuations of eiiuilibrium niiiy be satisfied by properly

choosing the constants ,/ and Jl. According to this supposition the external

boundary of the stretched rod will be a cylinder and the particles of matter which

occuiiy any normal cross section of the unstrained rod will continue to lie in a

plane perpendicular to the axis when the rod is stretched.

Let P(^I{S be any rectangular element of the unstrained solid having the faces

y'V and US perpendicular to the central axis, liy the given conditions of the

question this element assumes in the strained solid a form P'Q'R'S' in which all tho

angles are still right angles and the sides parallel to their original directions. The

direction of the stress across each face of the strained element is therefore perpen-

dicular to that face. To mc asure these forces we refer each to a unit of area. Let

Sj., Ny, Nj be the forces, so referred; let these act on tiie three faces which meet

,/
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The constants X and ii are the same as those chosen by Lam^ to measure the

elastic properties of a solid; see his Legonn sur la theorie matMmatique de I'elasticite

des corps solideH.

8. In the problem under consideration the sides dx, dy, dz of the unstrained

element become d.v + du, dij + dv, dz + dw. It follows that o = -j-, fi=— , 7=—

.

Substituting the assumed values of u, v, w, we have

N^= 2nA + \{A-2B), Ny=-2nIi + \{A-2n), N,= -2fiB + \(A-2B).

These values are independent of x, y, z, so that the opposite faces of any element

wholly internal are acted on by equal and opposite forces. It follows that every

internal element is in equilibrium.

Consider next the elements which have one or more of their faces on the

boundary of the rod. Such faces must be parallel to the central axis and in a

vacuum are not acted on by any pressure. It is therefore necessary for their

equilibrium that the constant forces represented by Ni, and A', should be zero.

w .1 « I
n \ „ ('d\ + 2iM)fiWe therefore have -r = .^,, v 1 Aj.= A.
A 2(\-bfi) * \ + ti

Since Ax is the extension, liy the contraction of a rod of length x and breadth
//

and Nj. is the stretching force per unit of area of the section, it follows that

increase of length _ \ + w ., decrease of breadth \

original length;
N. N^

2(\n-M).,

\

Ai(3\ + 2;Lt)"'" o 'ginal breadth 2m(3\ + 2/x)'

Comparing the first of these with the statement of Hooke'.s law 'jiven in Vol. i.

Art. 489, we see that the constant K, usually called Young's modulus, is the

reciprocal of the coefficient of A'^.. If /<," be the corresponding coefficient for the

decrease of breadth we have K= ~ ,

A-rjtt

It follows from this solution ..Lat when a rod has been stretched, each fibre (01

column of particles parallel to the central axis) is stretched and contracted indepen-

dently of the others and exerts no action on the neighbouring fibres. The total

force required to produce a given extension is therefore independent of the form of

the cross section provided its area remains unaltered.

In this investigation the action across eacli cf the six faces of the element is

normal to that face. In many problems in elastic solids this simplicity does not

exist and there are tangential actions also across the faces. For the discussion of

these questions the reader is referred to A Treatise on the Mathematical Theory of

Elasticity, by A. E. H. Love, 1892.

9. Ex. 1. Show that E and )jE' are the forces which would stretch a rod of

unit section to twice its original length and half its original breadth respectively.

Show also that E' is greater than 2E.

If the stretching tension be N^, v the volume, 5v the increase of volume, prove

8v E'-2E
that

EE'
A'

Ex. ?. If the side faces of the rod are exposed to a uniform normal pressure

equal to p per unit of area, prove that the force required to produce a given

extension is less than that in a vacuum by \pl{\ + fx) per unit of area of cross

section.
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ART. 11] EQUATIONS OF EQUILIBRIUM.

The Bending of Rods.

\

267

10. To form the equations of equilibrium of a thin inextensible

rod bent in one plav,e.

First Method. In this method we consider the conditions of

equilibrium of a finite portion of the rod or wire. The method

has been used in Vol. I. Arts. 142—147 to determine the stress at

.any point of a rod naturally straight and slightly bent by the

action of given forces, and the same reasoning may be applied to

rods whose natural forms are curved.

Let P be any section of a thin rod APB regarded as a curved

line. Let T and U be the resolved parts of the stress force along

the tangent and normal at P, and let L be the stress couple.

'f^ ese represent the mutual action of the two parts AP, PB of the

rod on each other. These stresses are then obtained by considering

the conditions of equilibrium of the portions AP, PB separately.

Let ^1, F-i &c. be forces acting at the points D^, D» &c. of the

portion PB in directions making angles 8i, h., &c. with the tangent

at P. Taking any directions along the tangent and normal at P
as positive, let T and Uact on the portion PB in these directions;

we then have by resolution

T + XFcosS = {), U-htFsm8 = 0.

In the same way if j^i , p^ &c. be the perpendiculars from P on

the lines of action of the forces, we have by moments L + ^Fp — 0.

These three equations determine T, U and L when the form of the

curve is known.

11. Second Method. In this method we form the equations of

equilibrium of an elementary portion of the rod or wire.

Let PQ be any element of the rod and let the arc s be measured

from some fixed point D on the rod up to P in the direction AB,
so that s = DP. Let the stress forces oi AP on PB be represented

:l!

: W
if

li
I

K'

;

!.ii
,

1'!^
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268 BENDING OF RODS. [art. 11

by a tension T acting, when positive, in the direction PA and a

shear U acting in the direction opposite to the radius of curvature

PC. Then the stress forces of QB on QA are represented by

T+dT in the direction QB and U + dU m the direction QC, these

directions being represented in the figure by the double arrow

heads. Let the stress couple at P on PB be represented by L, the

T
i

positive direction being indicated by the arrow head on the circle

at P; then the stress couple at Q on ^Q is represented hy L + dL

acting in the opposite direction, i.e. in that indicated by the double

arrow heads on the circle at Q. Let Fds, Gds be the impressed

forces on the element PQ resolved in the direction of the tangent

PQ and normal PC, taken positively when acting respectively

in the directions in which the arc s and the radius of curvature p

are measured. Let dyjr be the angle between the tangents at P
and Q, and let y be so measured that yjr and s increase together.

Resolving the forces in the direction of the tangent and normal

at P, we have

- T+{T+dT) cos dyfr - ( U+dU) sin dy}r + Fds = 0,

- U+ {U+dU)cos df + (T+dT) sin c^^^ + Gds = 0.

In the limits these become

dT-Udylr + Fds^O (1),

dU+Tdylr+Gds = (2).

Also taking moments about P
-L + (L + dL) + (U + dU)ds + i^Gds{^ds) = 0,

..dL+ Uds = (3).
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.(4).

Writing rf>/r = ds/p, these equations take the form

as p

p as

f+U =0
as

If each element of the rod is acted on by an impressed couple,

as Avell as by the impressed forces Fds, Gds, it must be taken

account of in the equation of moments. Let Ids be its moment
taken positively when the couple acts on the element PQ in the

opposite direction to the couple L. We then add Ids to Uds in

equation (3) and therefore add / to the left-hand side of the last

of equations (4).

The positive directions. The positive direction of the couple L
at P on that part of the rod towards which the arc s is measured

is opposite to that in which the angle d-^ = dsjp is measured. The

positive direction of the shear U on the same part of the rod is

opposite to that in which the radius of curvature is measured.

The positive direction of the tension at P on the same part of the

rod is opposite to that in which the arc s is measured.

12. When we compare the advantages of the two methods of solution we notice

that the second gives differential equations which must be integrated, and the

constants must be determined by the conditions at the .xtremities. On the other

hand the first method, though it gives expressions for 2', U, and L, introduces into

the equations the action of all the forces on the finite arc PB. When, therefore,

the form of the strained curve is so well known that we can calculate the resolved

parts and the moments of the impressed forces the first method gives the required

stresses at once. When however the form of the strained curve is very different

from that when unstrained, and is itself unknown, the second method presents

several advantages over the first.

13. Experimental Results. When a thin rod or wire is

bent under the action of forces we have to determine not merely

the components of stress, i.e. T, U and L, but also the form of the

strained rod. The equations of equilibrium found above supply

three equations, so that a fourth is required to m.ake up the

necessary number. For this purpose we have recourse to experiment.

Vol. I., Art. 148, If px,p are the radii of curvature at any point P
before and after the deformation, the stress couple L is given by

\P PJ
•(5),
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where K is some constant depending o^ the material of which the

rod is made and on the section at P. It is usually called the

flexural rigidity of the rod. This expression for L agrees very

well with the results of experiment when the change of curvature

is not very great.

Since the moment L represents the product of a force and a

length, it is evident that the dimensions of K are represented by

a force multiplied by the square of a length. If E be Young's

modulus for the material of the rod and <u the area of the section,

E(i) will represent a force, so that the constant K is often written

in the form K= Eonk", wnere k is a length.

It will be shown further on that in certain cases (ok^ is the

moment of inertia of the area of the normal section about a straight

line drawn through its centre of gravity perpendicular to the plane

of bending. This result does not agree so well with experiment as

that represented by (5).

14. It is hardly necessary to remind the reader of the remarks

made in Vol. i. Art. 490, on the limits to the laws of elasticity.

When the stretching or bending of the rod exceeds a certain limit,

the rod does not tend to return to its original form, but assumes a

new natural state different from that which it had at first. In

all the reasoning in which the equation (5) is used, it is assumed

that the bending is not so great that the limit of elasticity has

been passed.

16. The theoretical considerations which tend to prove the truth of the

equation (5) depend on the theori/ of elasticity and therefore lie somewhat outside

the scope of the present chapter. As however this theory clears up some of the

difficulties which belong to the bending of rods, it does not seem proper wholly to

pass it over. One case can be presented in a simple form, and that case will be

discussed a little farther on after the use of the equation (5) has been explained.

16. The work of bending^ an element. To find the work

done by the stress couple L when the curvature of an element of the

rod is increased from its natural value 1/pi to the value l/pa-

Let FQ be an element of the central line and let ds be its

length. As PQ is being bent, let yfr be the angle between the

tangents at its extremities; let p be its radius of curvature. If i|^i

be the value of yfr when the rod has its natural form, the stress

ds
couple L is K
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The work done by the couple L when yjr is increased by dyjr is

— Ld^fr, (see Vol. i. Art. 292). The negative sign is given to the

expression because, as explained in Art. 11, Z is measured in the

direction opposite to that in which -^ is measured. The whole

work done by the couple when ^ is increased from -v/r, to yjr.^ is

therefore equal to —^K
ds

Replacing yjr^, yjri by their values in terms of p^, p^, we see that

the work Wds done by the couple L may be written in either of

the forms Wds = -\Ki--^-
\P2 Pi

ds = —
D'ds

If the change of curvature at every point of the rod is known,

the whole work done by the stress couples in the rod may be found

by integrating the first of these expressions along the length of the

rod. If hoivever the change of curvature is unknown, and the

cotiple is given, the work is found by integrating the latter

expression.

RasiUenea. Resilience denotes the quantity of work that a spring, or elastic

body, gives back when strained to some stated limit and then allowed to return to

the condition in which it rests when free from strain. The word " resilience " used

without special qualifications may be understood to mean extreme resilience or the

work given back by the spring after being strained to the extreme limit within

which it can be strained again and again without breaking or taking a permanent

set. See Kelvin's article on " Elasticity " in the Enajc. Brit. 1878.

17. Deflection of a atraight rod. A heavy rod, originally

straight, rests on several points of support A, B, C d'C. arranged

very nearly in a horizontal straight line, and is slightly deflected

both by its own weight, and by a weight W attached to a point H
between B and C. It is required to explain the method of finding

the deflection at any point of the rod and to determine the relations

which exist betiveen the stresses at successive points of support.

Let A, B, C he three successive points of support. These are

so nearly on the same level that the distances AB = a, BC=b,
may be regarded as equal to their projections on a horizontal

straight line. To simplify the process of taking moments the

order of the letters used is exhibited in the upper figure, as if

they were all strictly in a horizontal line, instead of being only

very nearly so.

Let X be measured horizontally from B in the direction BC.

The rod, when bent by its weight, will assume the form of some

li: :;
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n
'

curve which differs very slightly from the nearly straight line

ABC Let y be the orJinate at any point Q, between B and C,

measured positively upwards, from a horizontal straight line drawn

through B and let the radiuy of curvature be positive when the

concavity is upwards. The stress couple at the point Q is K/p
;

when p is positive the fibres of the under part of the rod are

stretched while those above are compressed, hence the stress couple

at Q acts on QC in the clock direction and on BQ in the opposite

direction. Let the shear at Qhe U and let its positive direction

when acting on QC be downwards.

Let L, and l\ be the couple and shear at a point D indefinitely

near to B on its right-hand side. Let w be the weight of the rod

per unit of length, then the weight of DQ is wx, and this weight

acts at the centre of gravity of DQ. Let BH=^. Taking

moments about Q for the finite portion DQ of the rod, we have

^^ =U- JJ.,x-\xvx'- Tf (.r-^) (1).

The term containing W is to be omitted when Q is on the left-

hand side of H, i.e. when x < ^.

In forming the right-hand side of this equation the rod has

been supposed to be straight and horizontal, because the deflections

are so small that only a very small error is made by neglecting the

curvature. If this were not so, the shear would not be vertical,

and the arm of its moment would be different from that used in

the equation. In the same way the thickness of the rod has been

neglected, and in all its geometrical relations the rod is regarded

as if it were a line coincident with its central axis, Art. 1.
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The rod is supposed to be of such material that a considerable

effort is required to produce a alight curvature; the coefficient K
is therefore large. On the left-hand side of the equation all the

small terms cannot be rejected because these are multiplied by K.

It is however sufficient, in a first approximation, to retain only the

largest of these small terms. We therefore put

p'^dx'l '^[dxj] ~^da^-

The upper sign must be taken because p is measured positively

when the concavity is upwards, and in this case dy/dx is increasing

and therefore d^y/dx^ is positive.

The general rule followed in these problems is, (1) that all

terms not containing K are formed on the supposition that the rod

has its mttural shape, (2) that in all terms containing K as a factor

only the first power of the deflection y is retained. The natural

shape in our case is a horizontal straight line.

18. The equation (1) now takes the form

^'^.^^L^-U.x-^wx'-Wix-^) (2)K
rfa,"

where cc is restricted to lie between a? = and a; = 6 and the term

containing W is to be omitted when a? < f. Let L^' and U^ be the

stress couple and shear at a point D' indefinitely near B on its

left-hand side, and let R^ be the pressure of the point of support

B on the rod upwards. Consider the equilibrium of the small

portion D'D of the rod. The stress couples and the stress forces

at the extremities act on this element in the directions opposite

to those represented in the figure, the weight wrfs acts downwards

and the pressure R2 upwards. We have, by taking moments about

D', and resolving,

Za' -L,= U^ds - ^w {dsy + R^ . BD' =
U^' - f/2 - i?2 = - wds =

Hence in the limit

L2 = L2, U2 — U^ — R-i (3).

If we take a point P between A and B so that BP represents a

negative value of x, we have K ,^ = L^ — U^x — {wa^ . . .(4),

where x is restricted to lie between a; = and x= — a. Since

L^ — Li this equation differs from (2) only in having U^' written

for Ui, the term in W disappearing naturally.

R. S. II. 18
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Lastly, if U be the shear at any point of the rod we have by

equation (3) of Art. 11 ^=~^^ = "^JI^
(*''^-

It is evident that the two arcs AB, BC of the rod must have

the same tangent at B and therefore the same value of dyjcUc. It

follows from the first of equations (3) that the stress couples on

each side of B are equal ; the two arcs have there/ore the same

curvature. But the shears on each side of B differ by the pressure

iJg, and therefore thei'e is an abrupt change in the value of(fy/daf

at a point of suppoH.

These equations are sufficient to determine the stresses when

the terminal conditions are known. But the integrations must be

effected for each span separately and the conditions at the points

of junction allowed for. To shorten the mathematical labour we

require some method ofpassing over a point of discontinuity. This

is effected by the theore.a or equation of the three moments, by

which a relation is found between the stress couples at any three

successive pointp of support.

19. Equation of the three moments*. Let us integrate

(2) over the length BQ of the rod. The limits for every term,

except the last, are a; = to x, and for the last term a; = f to x.

We thus have

K{^^-^)=L^-\U,x-^-lwx>-\W{x-^r..

where /3 is the inclination of the rod at B to the

Integrate again,

K{y-M = hL^"-W.co'-^^wx*-^W(_x-^)\..

Eliminating U^ between (2) and (7) and writing L — Kd^y/dx^,

we have

QK (y - ^x) = {L + 2Z,) x' + Iwx' + W^ {x - f) (2a; - f) . . .(8).

This equation holds at any point Q between H and C. When

Q lies between B and H, the term with W is to be omitted.

Since U^ does not appear in the equation, it also holds when Q

* The theorem of the three moments in its first form is due to Clapeyron,
Comptes Rendm, 1857, Tome xlv. ; but it has been greatly extended since then.

A sketch of these changes is given by Heppel in the Proceedings of the Royal Society,

1870, vol. XIX. The extension to include the case of variable flexural rigidity is due

to Webb, Proceedings of the Gamb. Phil. Soc. 1886, vol. vi. The allowance for the

yielding of the supports is given by K. Pearson, Messenger of Mathematics, 1890,

vol. XIX.

....(6)

horizon.

...(7).
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lies between A and Ji, provided x is then regarded as negative.

Let y, and i/a be the altitudes of the points of support A and C
above B. The equation (8) becomes when x=b and x = —a

GK (y, - /96) = (/v., + 2Z,) 6' + \w¥ + IKf (6 - f) (26 - f

)

GA" (y, + ^a) = ( />, + 2/v,j) a' + \ wa*.

Eliminate /3 and we find '

QK
(I'

+ '^A = L,a ^ 2Z, (a + b) + L,b

^i,,(a3 + i3)+^i(^.zm:i|) .(9).

Here w is the weight of a unit of length of the rod. If the

spans AB, BC have unequal values of w, say Wi and Wj, we write

\ (Wja' + W36') for the fourth term on the right-hand side.

This important relation between the stress couples at any three

successive points of support is usually called the equation of th^

three moments. By help of this equation, when the stress couples

at two of the points of support are known, the stress couples at all

the points may be found.

To find the shear at the point B of support, we take moments

about either C or A. We then have

L, = L,-U,b-iw¥- W{b-^) (10)

Li = Li+ U^a-\iua'' (11)

which may also be derived from (2) by putting x = b and x = — a.

The pressure R^ on the point of support may then be found by (3).

If the point H at which the weight W is attached lie between

A and B instead of B and C, we reverse the positive direction of

X. Let the distance BH = f' measured positively from B towards

A. The last term of (9) must then be replaced by

Wr {a -n (2a - |')/a.

This may also be derived from the last term of (9) by writing - ^'

for ^ and — a for 6.

20. The equation of the three moments when written in the

form (9) may be regarded as the relation betiveen the ordinates

iji, 2/3 of any two points and the stress couples Li, L3 at those points.

It may be used, for example, to find the deflection 3/3 at the free

end of a rod where Z3 = 0.

21. If the rod rest on n points of support, the equation of the

three moments supplies n — 2 equations connecting the n stress

18—2
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I I

J

couples //,, L.i,...Ln at the points of support. Two more equations

are therefore necessary to find the n couples, and these may be

deduced from the conditions at the extremities.

If one end of the rod is free, and at a distance c from the

nearest point of support, the stress coiiplo Ln at that point of

support is found, by taking moments about it, to be Z/„= —^100*.

If an extremity rest on a point of support the stress couple at

that point is zero.

If an extremity be built into a wall so that the tangent to the

rod at that point is fixed in a horizontal position we may imagine

that the fixture is effected by attaching that end of the rod to two

points of support indefinitely close together. The required condi-

tion at that end then follows at once from the equation of the three

moments. Let Z„+, be the couple at the wall, //„ that at the

nearest point of support and let c be the distance, then writing

a = c, 6 = in the equation of the three moments we have

The pressures on the points of support may be obtained by

combining equations (10), (11) and (8). If R^ be the pressure on

the rod measured upwards at B, we find by eliminating U-i, U.J

The case in which W = has also been attained in Vol. i. Art. 145.

The weight W has been included in the equation of the three

moments to facilitate the calculations. It is however evident that

we may regard the point of the rod to which the weight W is

attached as a point of support at which the pressure is known.

Such a point may be included in the equation of the three

moments as one of the three consecutive points A, B, C. The

deflection at each of these points being unknown, the extended

equation of the three moments fails to determine the stress couple.

But the pressure being known, the equation (12) gives an additional

equation connecting the stress couples, and the extended equation

of the three moments then gives the deflection.

Yielding of the supports. In some cases the points of support

are the tops of vertical columns which are themselves elastic. Let

the bases of the columns be on the same level, A,, /tg &c., Zi,z.i &c.

their original altitudes and their altitudes under pressure; <ri,
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-^

P, pi
•^*

where />, = A'lO-,//*, &c. and E is Young's modulus.

aa. Ex. 1. A uniform rod, weight W, is supported at itn extrctnitiefi; the de-

flcGtion at its middle point is observed and (cund to be h. Hliow that the value of the

conHtant K for the rod is given by 48/i . A'= fia'Jr, where 2a is the length of the rod.

If the inclination to the horizon of the tangent at either end of the rod be observed

by a level and found to be 6, show that the value of A' is also given by K=(i'^Wj60.

This example dIiowh how the value of K may be found by experiment for any
given rod.

Ex. 2. A uniform heavy rod is supported at its extremities A, C and at its

middle point li; A and C are at the same level and li such that the prewsures on
the three supports are equal. Prove that the depth of H below AC is 7/16tb8 of the

whole central detlection of the beam AC when supported only at its ends.

Thi» example shows that when a long heavy bridge i» supported on three columns

of equal strength, their summits ought not to be on the same level.

Ex. 3. A heavy rod restw on a series of points of support which are very nearly

in a horizontal line. Let .-l, B be any conseoutive two of these points, a their

distance apart, y^, t/, their altitudes above a horizontal plane. Let Lj, /<, be the

stress couples, 0^, 0^ the inclinations of the rod to the horizon at A, li. Prove that

K (tan ^3 - tan ^j) = i (L, + Lj) a + tV ""»*i

^ (y-i
-

2/1
- « tan 0i)

= J (2L, + L,) a" + ^j wa*.

The stress couples having been found, the first of these equations enables us to

find the inclination of the rod at any point of discontinuity when the inclination at

some point is known. The second determines the inclination at any one point.

Ex, 4. A uniform slightly elastic rod rests on live supports in the same

horizontal line, two at the ends and one at each of the points found by dividing the

rod into four equal parts. The second and fourth supports from either end are now

removed. Prove that the ratio of the new to the old pressure on an end support is

as 21 : 11. [Coll. Ex. 1893.]

Ex. 0. A uniform bridge of weight W formed of a single uniform plank is

supported at its ends : a man of weight W stands on the bridge at a point whose

distances from the ends are a and b. Prove that the deflection just under the man
is ab{lV' (a:^ + 3ah + b'') + SlVab}l2i{a + b)E,

where E is the bending modulus. [Coll. Ex. 1893.]

Ex. 6. A naturally straight weightless wire of ilexural rigidity G has its ends A
and B built in horizontally at the same level, and is slightly bent by a weight W
attached to it at a point Q. Prove that the deflection j/ at a point P in AQ ia given

1 W
by the equation cy=l^,J^Q'-^^'i^^Q BP-BQ.AP).

Find the points of inflection of the axis of the wire and show that the point at which

the axis is horizontal is in the longer segment, and that its distance from the

corresponding support is bisected by one of the inflections. [St John's Coll. 1893.]

Ex. 7. A uniform heavy beam rests on three points of support, A and C at its

ends and B at the middle. The middle support is at first so placed at a depth y^

'U



278 BENDING OF RODS. [art. 24

I
•!

i I

tig

below AC that the beam is entirely supported by A and C. The support B is then

gradually raised to a height t/j above AC such that the beam ib wholly supported by

B. Prove that as B is being raised, the pressure at B is proportional to the height

raised. Prove also that the ratio y^ : y^ is equal to 5 : 3. [Fidler's Treatise on

Bridge Construction, 1893.]

23. Brltanala BrldKe. Ex. 1. A uniform heavy beam ABC is supported at

its extremities A, C and at its middle point B, and the three points are in one

horizontal line. Prove that 3/16thB of the weight is supported at either end and

5/8ths at the middle point. We notice that the pressure at the middle support is

morF, than three times that at either end.

P/ove also that the stress couple is a maximum at a point which uivides either

span in the ratio of !; : 5, but the stress couple at either of these points is 9/16ths of

the stress couple at the central point of support. Prove that the latter is equal to

the stress couple at the middle point of a beam supported at each end whose length

is equal to that of either span.

Prove that there is a point of contrary flexure in each span dividing it in the

ratio 1 : 3.

Ex. 2. A uniform beam is supported at its extremities and at two other points

dividing the beam into three equal spans, all the four points being on the same

level. Prove that the pressures on the supports are in the ratios 4 : 11 : 11 : 4.

Ex. 3. A uniform beam ABCDE is supported at its extremities A, E and at

three points B, C, D', all five being on the same horizontal line. To assimilate this

problem in some measure to the case of the Britannia Bridge the two middle spans

are supposed to be twic<? the lengths of the outside ones, i.e. BC=CD— 2AB = 2DE.
Provri that the pressures on A, B, C are in the ratios 4 : 27 : 34.

The examples in this article are taken from a treatise on The Britannia and

Conway Tubular Bridges by Edwin Clark, resident engineer, 1850.

The tubes AB, BC, CD, DE, which form the four spans of the Britannia Bridge,

were raised separately into their proper places and then rigidly connected into one

long tubs. The connections at B and D were such that the tubes adjacent to each

had a common tangent. The junction at C was howevsr so arranged that the

tangents to BC and CD should make a small angle with each other. The object of

this was to diminish the inequality between the pressure on C and that on either B
or D. It was found convenient to make the angle between the tangents equal to

-tan"' •002. In Example 3, given above, the analytical condition io be satisfied at

( « that the tangents to BC and CD should be continuous, but in the bridge the

..OJidition is that these tangents should make a known smail angle with each other.

I't. Ex. 1. A rod without weight is supported at its extremities A, C and at

some other point B, all three being in the same horizontal line. Given weights P,

Q are suspended &t the points D, E, bisecting /I /} and BC. Show that the inclination

to the horizon of the tangent at A and the deflection y at the weight P are given by

32 (a + h) K tan o ^ - Pa:^ {a + 2b) + Qah-,

708 {a + b) Ky=-P (7u •; IQb) a'> + {)Qa"b'i,

where y^/?= a, BC= b.

It appears from this result that when the point of support B bisects AG and

Q — 3P the trngent at A should be horizontal. Moseley describes three experiments

with different rods supported on knife edges by which this curious result has been

verified. See his jlechanical Principles of Engineering and Architecture, 1855.
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Ex. 2. A uniform thin rod of length 2{a + b) rests on two points of support in

a horizontal line whose distance apart is 2a. Show that, if the middle point and

the two free ends are on the same horizontal line, bja must be the positive root of

the cubic 3r» + Or* - 3r - 5 = 0.

Ex. 3. A uniform heavy rod rests on any number of points of support in the

same horizontal line. Let A, B, C, D, E be any consecutive five of these, and let

their distances apart be a, h, c, d. Prove that the pressures R2, R^, R^, at B, C, D
are connected by the linear relation aRf^ + pR.^+yRi=^wd, where

o= a* (6 + c) (c + d) (6 + c + d),

P=(a + b){c + d){b^(d + 2c) + 2bc{a + d) + c^(a + 2b) + ad(b + c)},

y= d''{b + c)(a + b){a + b + c),

S=(a + b){b + c)(c + .l) {b + c + d)(a + b + c) (a + b + c + d).

Ex. 4. Prove that the deflection y at any point Q between B and C, in Ex. 3, is

given by
-GKby=BQ.CQ{L2(b\-CQ)+L3{b + BQ) + ^wb(b^ + BQ.CQ)}.

Ex. 5. A wire is bent into the form of a circle of radius c, and the tendency at

every point to become straight varies as the curvature. Show that, if it be made to

rotate about any diameter with a smp'' angular velocity u, it will assume the form

of an ellipse whose axes are 2c I 1 ± -T,y~ )
> '« being the mass of a unit of length,

and /.t/c the couple necessary to bend the straight line into the circle. [Math. T. 1868.]

Ex. 6. A heavy elastic flexible wire originally straight is soldered perpen-

dicularly into a vertical wall. If the deflection is not small prove that the

difference between the tension at any point P and the weight of a portion of the

wire whose length is the height of P above the free end is proportional to the square

of the curvature at P. [May Exam.]

Ex. 7. A flexible wire is pushed into a smooth tube forming an arc of a circle,

and lies in a principal plane of the tube ; prove that it will only touch it in a series

of isolated points, and that if it only touch the inner circumference at one point,

the pressure there will be iEcaa (sin a - sin y)la^ sin- a, where a is the inner radius

of the tube, 2a tho angle sub' ^nded at the centre by the wire, y the angle at which

either end of it meets the wire, and E the coefficient of flexibility. [Math. T. 1871.]

Ex. 8. Three very slightly flexible rods are hinged at the extremities so as to

form a triangle, and are attracted by a centre of force attracting according to the

law of nature situated in the centre of tiie inscribed circle. Show that the curvature

of any side, as AB, at the point of contact of the inscribed circle varies as

cos ^A+ cos i /i - cos A C
cos J C

Ex. 9. Equal distances AB, BC, CD are measured along a light rod wbich is

supported horizontally by pegs at B, D below the rod and U above. A weight is

now hung on at /, producing at that point a deflection. Find how much B must be

moved horizontally towards A that the deflection may be unaltered when the peg 7)

is removed. [Coll. Exam. 1888.]

as. Ex. 1. A uniform heavy rod rests symmetrically on 2»n-l supports placed

at equal distances apart, and the altitudes arc such that the weight of the rod is

(lis «(f
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G
b'

Eliminate /3 and we have

V, w, , ^ , /A' B'\ , B fA" B"\ _.

which is the equation of the three moments when the flexural rigidity is not uniform.

When the weight w per unit of length is not constant, we may include the weight

in the tenn W. We put W=wdx and integrate that term throughout each of the

spans.

27. A bent bow. A uniform inextensible rod, used as a bow,

is slightly hent by a string tied to its extremities. It is required to

find its form.

Taking the string as the axis of x, the statical equation is

(1).
K

, rrd'y mevidently
^ -^^da-

where T is the tension of the string. Let A, Bhe the extremities

of the rod, G a point on the rod at which the tangent is parallel to

the string. Let OG be the axis of y. Then since dyjdx vanishes

when x = and decreases algebraically as x increases, d'y/dx' is

negative. In forming (1), p has been taken as positive, we must

therefore give the second term the negative sign. Putting T=Kn^
for brevity, the equation gives y =hco8nx (2),

where h is the versine of the arc formed by the bow. It is obvious

that unless the conditions of the problem make h small, we cannot

reject the terms containing {dy/dxY in the expression for p in

equation (1).

Thp form of the curve given by the equation (2) is sketched in

the diagram. It appears therefore that the bow may take the form

ACB, the string being attached at A and B. It may also take the

form AOB' with the string attached at A and B', and so on.

28. We may easily find a second approximation to the

solution of the differential eq«iation. This is perhaps necessary,

for, owing to the smallness of the inclination of the rod to the

string, if the ordinates near B were slightly decreased, a considerable

change might be made in the distance OB.

If we substitute for p its full value, the differential equation

becomes _g = nv{l+(|)]' (3).

1

:;: m

:i*!ii
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Expanding the right-hand side we have

We see that the terms on the right-hand side are of the third

order of small quantities. We therefore assume as a trial solution

y = k cos cnx + Bk^ cos *icnx (4)

where A; is a small quantity analogous to h, and c, B are as yet

undetermined constants. Substitute in the differential equation

and neglect all powers of k above the third, we then have

(1 — c") n^k cos cnx -1- (1 — 9c*) Bk\Y cos Scnx

— ~
I*** (^ cos cnx) (k^c^n' sin''' cnx)

^

— ~ i'n*k'c' [cos cnx — cos 2cnx].

The equation is therefore satisfied if we put

l_c'' = -|n*A;V; .:c=l +j%n'k'', B=--^n\
The solution to the third order of small quantities is therefore

i/ = k cos cnx - ^jri'k' cos Scnx (5)

where c exceeds, unity by the small quantity fjrn^k*. Let, as before,

h represent the distance OC; we have y = h when ^r = 0, hence

h = k--g\n^k^ (6).

Let the lengths of the string and the rod be 2a and 21, then

when x = a, y = 0, and the least value of a is given by cna = ^v.

We also have

1=^" [l + {^^'^ dx = a{l + lri%''c') (7)

when terms above the order k^ are neglected. Eliminating a, we

have ^ = ^ (1 - -h^'^') (1 + i^''^'^^') = 1^ (1 + i-^^'k') ' • -(8)

when the fourth powers of k are neglected.

Since n' = TjK we have (|)' = |^
(l + V,^ .

r=^(l+-*) (9,

when the fourth powers of hjl are rejected. This equafion

determines the tension necessary to produce a given deflection OG = h.

29. Let us regard the half CB of the bow as a uniform rod

having one end C and the tangent at C fixed while the other end

B is acted on by a force T whose direction is parallel to the

tangent at G.
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I uniform rod
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Let the length I be given, then the equation (8) shows that k

is imaginary unless I exceeds 7r/2n. Let n^ = 'jr/21 and let To = Kn^^

be the corresponding value of the force T. It follows that the rod

cannot begin to bend unless the force exceeds To, where To^Km^j^l-.

Let T= To (1 + ^) where ^ is a small quantity, then

w = Wo(l+il).
The equation (8) gives

n = rj„ ( 1 + ij^no^k") ; .-. k"" = 32l'^/'rr\

Since dk/dl^ is infinite when k = 0, we see that k (and therefore

also h) increases much more rapidly than the force does. A slight

increase in the force makes a considerable change in the valve of k.

30. When the terms containing dy/dx are included in equa-

y"
tion (1), we have -K ^Ty (10),

with regard lo x.

{l+yy
where accents denote differential coefficients

Multiplying by y and integrating, we find

\-coB^ = ^n"{h^-y'') (11),

where i^ is the acute angle made by the tangent at any point P
with the string of the bow.

Let y = h cos ^, then sin i>^ = ^ nh sin 0. The equation may be

written in the form d-^/ds — n^y. Put e = \nh, substitute for y
and -^ and integrate between the limits s = to s = ^, we then have

di^/•if

^'^io(r--
.(12).

e'sin^i^)*

If the length I and the force T are given, iv^ = T/K is also known.

This equation then determines e and therefore h.

The integral (12) is lessened by writing unity for the denomi-

nator. We then have nl > ^tt. Since n^=T/K it immediately

follows that the tension or force must exceed the value ofir^K/^il^.

This is the result already arrived at in Art. 29, and it has now
been proved without the use of series. The equations (8) and (9)

of Art. 28 may be obtained by expanding the integral (12) in

powers of e" and neglecting all powers of e above the second.

31. The importance of the case considered in Art. 29 lies in

its application to the theory of thin vertical columns. The rod

may be regarded as a vertical column having the tangent at its

lower end C fixed in a vertical position, while a weight, much
greatar than that of the column, is supported on the upper ex-

tremity. It appears from what precedes that if the weight on

;i.
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the summit is gradually increased, the column will remain erect,

without bending, until the weight becomes nearly equal to a

certain quantity depending on the flexibility and dimensions of

the column.

Since the constant K is equal to E(ok' (Art. 13) it follows that

the bending weight, for columns of the same kind, varies as the

fourth power of the diameter directly, and as the square of the

length inversely. This result is usually called Euler's* law.

Columns yield under pressure in two ways, first the materials

may be crushed, and secondly the column may bend and then

break across. In some cases both etfects may occur at once. If

the column is short it follows from Euler's law that the bending

weight is large, so that short columns yield by crushing. Long

columns on the other hand break by bending and are not crushed.

Many experiments have been made to test the truth of Euler's

law. The results have not been altogether confirmatory, possibly

because Euler's law applies only to uniform thin columns, in which

the central lind in the unstrained state is a vertical straight line.

For the details of these experiments we must refer the reader to

works on engineering. See also Mr Hodgkinson's Experimental

researches on the strength of pillars, Phil. Trans. 1840.

lu this investigation we have supposed that the weight has been placed centri-

cally over the axis of the column. The weight of the column itself has also been

neglected and no allowance has been made for the shortening of the column due to

the weight it has to support.

33. Heavy colnmnB. Ex. 1. A vertical column in the form of a paraboloid

of latus rectum 4»i with its vertex upwards is fixed in the ground. Show that it

will bend under its own weight when slightly displaced if the length be greater than

ir (2£wj/a.')2, where w is the weight of a unit of volume, E the weight which would

stretch a bar of the same material and unit area to twice its natural length.

Ex. 2. A vertical cylindrical column of radius r is fixed in the ground. Show

i /9£r2\i
that it will bend under its own weight if its length be greater than c'l tttt— j.

where c is the least root of J.i (; ) - 0.

Let A be the area, r the radius of a section of the column (supposed to be thin

and straight) at a distance x from the base C, then (Art. 13), K=EAk^. When the

* Euler, Berlin Memoirs, 1757. Petersburg Commentaries, 1778. Lagrange,

Acad, de Berlin, 1769. Poisson, Traite de Mecanique, 1833. See also Thomson
and Tait, vol. i. Art. fill, where some figures are given. Also the Proceedings of the

Roy. Irish Acad. 1873, wheie Sir R. Ball notes an error in Poisson's analysis. In

the Proc. London Math. Soc. 1893, vol. xxiv., Prof. Love discusses the stability of

columns. A discussion of Euler's theory is contributed to the Canadian Society of

Civil Engineers, 1890, by C. F. Findlay, C.E.
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column is a paraboloid Ak:^=\irr* and r'=4m(2-x), when the column is a cylinder

Ak"^ is constant. In the figure of Art. 27, let x', y' be the coordinates of any point

P' between P and li. Taking moments about P the differential equation is seen to

dh,
be -A'

dx^
l:=j'^wA'dx'.{y-y'),

where A' is the area of the section at P'.

to X, we find after some reduction

Differentiating this equation with regard

U^th^i^W-"-
where ^z=l-x, /3^=;w/2m£, and the column is supposed to be a paraboloid.

At the free end where f =0, we have ^dyjd^ = and, since the stress couple ia

there zero, d^yld^=0. At the base where {=Z we have dylc^=0 and this leads to

the condition that the column cannot begin to bend unless ip>r.

When the column is a cylinder, the differential equation becomes

di^
"^

Er'^

which may be reduced to Bessel's form. To effect this put dyld(=^^z, p=f*', we
then see that \= ^ , /x= ^

.

Both these examples are due to Prof. Oreenhill, Proceedings of the Camb. Phil.

Sac. 1881, vol. IV.

33. Theory of a bont elronlar rod. A uniform thin straight rod without

weight is bent without tension into the form of a circular arc of great radius; it is

required to find the stress couple at any point P. See Art. 15.

We shall obtain a particular solution of this problem by making an hypothec is

which simplifies the process, and which we afterwards v > ifv by showing that all the

equations of equilibrium are satisfied.

We assume (1) that all filaments of matter parallel to the length of the rod are

bent into circles with their centres on a straight line perpendicular to the plane of

bending. This straight line will be referred to as the axis of bending. We assume

(2) that the particles of matter which in the unstrained rod lie in a normal section

continue to lie in a plane when bent, (3) that this plane is normal to the system of

circles above described.

Let ABCD be a short length of the straight rod bounded by two normal planes

AOC, BMD. To examine the small changes which this length undergoes we take

the plane AOC as that of yz and let some perpendicular straight line OM be the axis

of X. To avoid confusing the figure only the lines on the positive octant have been

:!)i;B
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drawn. Lot the plane of iz bo the plane of bonding, ho that the axis of y Ir parallel

to tlio ttxiH of bonding. ThuH <)A in thti axiH of 2, <)C that of ;/. Let QR be any

elementary ti lament parallel to the axiH of x, let (0, y, z), (x, y, z) be tlie ooonlinates

of (,) and li. Let the poHitionH of thoHo pointH and linen in the bent rod be denoted

by corroHpondinn letters with aceunt!i. Accordin)i to the hypothoHit) A'O'd', H'M'D'

are normal to all the tllamentH of the bent rod, and (when produced) these planeB

interHoot in the axiH of bendin({. Any tilanicnt, Huoh &h Q'll', m a circular are whose

unBtrutched loiiKth is OM,
Thii rod bein^ bent without tension, the tilamentH near A'li' are compressed

while those on the opposite side of the rod are extended. There is therefore some

surfa.!o Hueh that the filaments which lie on it have their natural length. This

surface is usually called the iifutnil mtrfare, nnd the lines on it parallel t<> the length

of the rod are called neutral linen. Since the filaments on this surface are circular

arcs of the same length with their centres on the axis of bending, the neutral surface

is a cylinder which cuts the plane of yz in a straight line parallel to the axis of

bending. Let the origin O' bo taken on the neutral surface, the axis of .r is there-

fore a tangent to a neutral line, and the unstretched length of every filament, such

as Q'll', is equal to OM or O'M', Let p be the radius of curvature of this neutral

line. Since the rod is thin, all the linear dimensions of the mass AliCD are small

compared with p.

When the unstretched length Qlt has been compressed or stretched into the

length Q'R', it remains sensibly parallel to the axis of x, but its distances from the

planes xz,xy may have been altered. Let these distances be y' — y + i\z'= z + w,a,xid

let the stretched lengtli Q'R' be x' = x + u. Since R' lies in a plane normal to the

. . .r (z + w)x
z-w) sin - =x- —

.

P P
neutral lino at M', we have •i^'=(/>-

The difference x'

length is .r. The tension per unit of sectional area is therefore equal to - E

X represents the stretch of the fibre QR whose unstretched

,z + w

P

When the rod is only slightly deformed by the bending (as in Art. 17) the displace-

ment to must be small compared with z. We may then, as a first approximation,

equate the tension to - Ezjp.

Since the rod has been bent without altering its length, the resultant tension

across the section AOC is zero, and we have

jj(Ezlp)dydz= 0.

It immediately follows that the centre of gravity of the section lies in the plane of

xy. The neutral surface therefore passes through the centre of gravity of every

normal section. In a cylindrical 7'od therefore, bent toithout tension, the central line

is also a neutral line.

S'mne the elementary tensions have no components parallel to the axes of y or z,

it follows that the shear is zero.

If L be the moment about the axis of y of the tensions which act across tlie

section AOC, measured positively from z to x, we have

L = ((z^dydz.~=E~,
^^ •' P P

where wU^ is the moment of inertia of the sectional area about the axis of y, i.e.

about a straight line drawn through the centre of gravity of the section perpendi-

cular to the plane of bending, see Art. 13. Since the rod is a uniform cylinder bent

into a circular arc, the corresponding couples about O'C, M'D' balance each other.
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hose unBtretched

resultant tension

In the same way the moment abi> t tlie axiH of 2 of the tensions which act across

the section AOC is jjyzdyih. Kjp. This couple cannot be balanced by the equal

couple about M'll' because their axes are not parallel. It is therefore necessary that

this moment should vanish. It follows that the rod will not remain in the plane of

bonding unless the product of inertia of the nrea of the normal section about the

axis of 1/ and any perpendicular straight line in its piano is zero. In other words,

the plane of bendinK must be perpendicular to a principal axis of the section at its

centre of gravity.

84. If we suppose, as already explained in Art. H, that each fibre or filament of

the rod is contracted or extended in the same manner as if it were separated from

the rest of the rod, the mutual pressures of these filaments transverse to the length

of the rod and also the tangential actions are zero. Each element of th. rod is

therefore in equilibrium, and the surface conditions are also satisfied. Kacli

filament is slightly displaced, like those discussed in Art. 8, and slightly turned

round. These displacements are those represented by v, w, and are such that,

when the fibres are stretched independently of each other, the body remains

continuous.

The expressions for the coordinates y' — y + v, z'=:z + w, of (/ in terms of the

coordinates y, z oi Q may <>» deduced from the theorems given in Art. 8. It

follows from that article that when the filament Qli is stretched into the filament

Q'R' by a tension Ng, the rectangular base QLMN remains rectangular and similar

to its original for n, and is of such size that corresponding sides are connected by

the relation (Q'l.' - QL)IQL= - NJK'.

Let be the angle which the side Q'L' makes with the axis of y, measured posi-

tively from 2 to y ; then

Q'L'coB,f>=^dy = (^l + '^^dy, -g'/Zsin^:

Bejecting the squares of the small quantities v, w and remembering that QL=dyy
dv N^_

dy'

Treating the side Q'N' in the same way, we have -—=--?, tan * = -p .

az h az

Substituting for N^ its value - E(z + w)lp, and neglecting wjp as before, we £ud by

_E^y2+f(x)
.

-K z'^ + F(y)

dz' , dxo ,

-d^^y-d^^^'

we have
K'

'

. ^ dw
- tan = 3-

dy

integration w=-
p 2E' p

Equating the two values of tan and substituting for v and w, we find that

-hF'{y)=y +/'{')

It follows that f{z) = az + b, and therefore

v =
K (y + a)z + h

w =
K z'^-{y + ay-c

E' p
'

2E' p

The terms containing b and a?-c represent a translation of the section as a whole,

those containing the first powers of y, z represent a rotation through an angle EajE'p.

If neither of these displacements exist, we may omit these terms.

The expressions thus found for w, v, w, give the displacements of Q referred to

the axes O'M', O'A', O'C. They also give those of R referred to corresponding

axes with M' for origin. The displacements of R referred to the axes with 0' as

origin are therefore given by

«= - xz E yz
V= -rr,-

p E'

where x, y, z are the coordinates of R.

w ''

2p
"^
E'

E^z^-y^

2p
•

m

:' 1
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••. If the section of the beam Ih a reutaiiKle having the Hide* KF, Oil perpen-

dicular to the plane of bending, we wee by examining the expreHHion for v and w that

these aideH bqcoine curved when the rod is bent, and that they have their oonvexitieii

K

a H

turned towards the centre of curvature of the rod. The sides KQ, h'll which before

bending were parallel to the plane of bending remain straight lines but are inclined

to the plane of bending and tend outwards on the concave side of the rod.

The expressions found in Art. 84 for the displacements u, v, xo agree with those

given by Saint-V^nant for one case of bending. Hut what flan been maid in that

article in not to he taken for a complete diiicuHsion of hi» problem ; for that the reader

should consult a treatise on the theory of Elasticity.

The second and thinl assumptions of Art. 33 are included in the first, either if

the circle is complete, or if proper forces are applied at the extremities of the arc.

The first assumption may be regarded us following from the statement in the

enunciation that the rod is uniform, without weight and bent into the form of a

circular arc.

In the theory of Bernoulli and Euler these assumptions are applied to the case

of any thin rod *. The theory thus extended leads to the result that the bending

moment is proportional to the curvature and this result agrees with experiment.

But other results of the theory are not so nearly in agreement with facts. To

obtain a correct theory it is necessary to have recourse to the general equations of

equilibrium of an elastic solid. In this treatise the expression for the bending

moment is intended to rest on experiment (Art. 13), and the bending of a circular

arc has been considered merely as the simplest example of the theory of elasticity.

86. Airy's Problem. In using standards of length two considerations have

attracted attention, (1) the application of suppo.-ts in such a manner as to produce

no irregularities of flexure and (2) the application of such supports as will permit

the expansive or contractive effects of temperature. The importance of the former

WHS made known by Kater, that of the latter by Baily. Freedom of expansion is

usually secured by supporting the body on rollers. Excessive flexure is avoided by

making the rollers rest on levers which are so arranged that the weight of the body

is either equally distributed over the points of support or distributed in such ratios

as may be thought proper.

The flexure is so small that the mere curvature of the central line does not

produce a sensible alteration of its length. If however the measured length i»

nuirhed on the upper surface of the measuring rod, this length may be either stretched

or shortened by the curvature of the central line. There may therefore be a small

error in each length measured by the rod, which would be multiplied indefinitely

when the whole distance measured is great. The problem is to determine how this

* Prof. Pearson shows in The Quarterly Journal for 1889 that the results of the

Bernoulli-Eulerian theory give fairly approximate formulae for the stress and *rain

of beams whose diameter is one-tenth, or less, of their length.
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(•rror may be av()ide<l. .\iry'H principle is that the extension of each element of the

upper Hurfuce of the inuaHuriiig rod is proportional to the bending moment f,. He
theri'foru infers that thf nupporlK of thf rod ihoidd be to ananijed that jl.dx-Q, the

limits of intHgrati(m being from one end of the measured length tu the other.

We may deduce the eorrectneHs of this principle from the theory given in Art. 88.

The extension of the tilamont Qll has been shown to be approximately Qli (zip),

where p is the radius of curvature of the central line and z the distance from the

central line of tlic projection of Qlt on the plane of bending. If then z bo the half

thickness of tlu; rod, the (ixtension of an element d.r on the surface is zdrjp, Hincu

L-h'jp, it immediately follows that the extension of any element on the surface of

a uniform rod is proportional to the bending moment.

Kx. 1. A bar, of length a, is supported at two points symmetrically placed, and

the marks defining the extremities of the measured length are close to its ends;

prove that the distance between the points of support should be (i/^/8.

Kx. 2. A Htandard of length a is supported on in rollers placed at equal distances,

and the weight is e(iually distributed over the rollers. The measuring marks are

placed at distances e from the ends. If /> be the distance between two consecutive

rollers, prove that /) ^/(m' - 1) = a ^(1 - H««/a'*).

MemoirA of the lloynl Astronomical Society, Vol. xv., 1840, and Monthly Notices,

Vol. VI., 184)').

37. Bending of Circular rods. The natural form of a thin

inextensible rod is a circular arc; supposing it to he slightly flexible,

it is required to find the deviation from the circular form produced

by any forces*.

Let ABhe the arc of the circle when undeformed, its centre,

a its radiuH. Lot P be any point on

the circle, P' the cori-esponding point

im the rod when bent. Let a, 6 be the

polar coordinates of 7*; a{\ + u), d +
(f>

those of P', referred to as origin.

Ifp be the radius ofcurvature at P',

we have bya theorem in the differential

II 11 1 / '^"'A /-i^
calculus = h^+j/i., •••(!).pa n\ d&^J

where the squares of u are neglected. Let us represent either side

of this equation by q/a.

If the central line be extensible, let dsi and ds be the un-

stretched and stretched lengths of an element of arc, then

ds, = add, (dsy = (adu.y + a^l + uf (dd + d<^)\

* The case of a circular arc is important because the periods of its vibrations,

both when inextensible and extensible, can be found. See the second volume of the

Author's Rigid Dynamics, where also the expression for the work of the stresses is

found in a different manner.
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3

Nitgleeting the s({iiar('H oi small (|iiiitititi(>H, thi» given

(la t" (i{l +11) Ud + ad<f>.

If /) hi' the propoitioiial elongation of the clcnu'titary niv.

(Im - r/,s-| d<t> .„,

'"
,/-, =,w + " • (->

If till! ro<l is ini'xtt'nsibh.', wo have p = 0.

The i'(juations of LMjuilibriiuu of an inextensibli" rod tnay be

formed by either of the methods described in Arts. 10, 11. Taking,

for example, the three eipiations marked (4) in Art. 11, and joining

them to L = K
f,
= Q .(3).

we have five cqnations to find T, If, L, ii,
(f>

in terms of 6.

as. i ' <e rod \h Hli^litly cxtenHiblu us well ns Hcxible, the equationn become

Hoinowlmt inK<'(l. The are iIh in the e(|iiati(>nH of e(|uilibriiiin in Art. 11 lueaiiH

uow the i ched length of th»' element, while /•' and (I ropreHcnt the ImpreHHcd

forceH refer M to a unit of leiif^th of the wtretehed rod. The e(|Uiition /) = must

ivIho bo rcpliiced by another conneetinj,' p with the tennion.

The relations which connect fj and '/' with p and (/ are perhaps most easily

deduced from Iho expression for the work done by the Htr«SHeH when the rod is

defornmd. If ll'iln^ be the work done by the stresse vhen the element is stretched

and bent, we have }niH, k<lH, (""-•-';') .(4),

where 11 and A' are the constants of tension and flexural rij^idity. TIiIh result

follows at once from those given in Art. Ki of this volume and in Art. 4!)H of Vol. i.,

wlieu we (iKHume that the irork dm' to u defonuation of bciidiiiii i/i iudependent of

that of utrctrliiii!/.

From this expression for 11' we may deduce the values of T and L. Keeping

one end i" of an element P'Q' fixed, let the element be further stretched, without

tlti — (Ih

altering the curvature, so that its length dK becomes dn', then dp =— . The
tfHt

work done by the tension T at the end Q' is - 7' (dx' - dn), and that done by the

flu __ ffff

« .uple at O' is - Z. . The sum of these is dW . di>, . We therefore have

'^''
(5).

Next let the element, without altering its length, receive an increase of curvature

so that the radius of curvature is changed from p to p' ; then ' = - -
. The

<i p p

tension at Q' does no work, while the work of the coujjle L at Q' is - /,

Also d>i = {I +p)dK,, .-.--'=
'J

^ ^' I' a dq l+p

These expressions give for a slightly extensible and flexible rod

(0).

L = ^«, T=Hp~!^q .(7).
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41. It. tlie same way we find tlitit the tenfiion of the fibres which cross tlie

aroa %f/r is Edytlzl p- q(l+p) l' + ("j i (7).

Rfineniberinn that O is the centre of >j;ravity of the section, we find by an obvious

integration that tlie resultant tension 7' and the resultant couple /. are given by

r=/<;w
I
P - ,i'/(l+i') L=Ewa v/ (!+/') *"*)•

Tliese reduce to the forms given in Art. 3H when the product ;;(/ is neglected.

42. If we examine the expressions for the work, tension and couple given by

C'luations ((!) and (8) of Arts. 40, 41 we see that they contain two constants of

elasticity, viz. Eus and Eu}k'-. These were represented by the letters //, A' in the

corresponding expressions in Art. HH.

When the rod is such that the constant of elasticity Eu is infi nite or very great,

a s:nall change in the proportional extension p alters the product Kup very con-

siderably. If, therefore, the tension is finite or not very great, p must be very

nearly equal to zero. It follows that in all the r/t'owc// vii iclatioini of the figure

we nuiy regard j> as equal to zero. At the same time the product Eup which occurs

in the tension is not to be regarded as zero, but as a quantity analogous to the

singular form oo . 0. If the tension is finite, the term Ep- which occurs in the

work is zero.

Since the other constant of elasticity, viz. f'wA-'Vj-, is not necessarily large in

thin rods, it does not follow that <j must be small, because Eu is large.

Rods in which Ew is very great are said to be inextensible. Such rods niny be

bent, and the bending couple is proportional to the change of curvature.

43. Very flexible rod. When the flexibility of the rod is such that it may be

maiie to pass through several small rings not nearly in one straight line the

integrations of the differential etiuation become more intricate. To simplify the

problem we suppose that though weights may be attached to any points, the rod

itself is without weight.

Let A, ]i, C &c. be a series of small smooth rings through which the rod is

passed. Let the stress couple at .^ be />,, and let 7',, I\ be the tensio'i and sheai

at the same point. Let /.._,, 7,,, ('„ be the corresponding stresses at II and so on.

The stress L,, Tj, Vy acting at A may be reduced to a single resultant I<\ acting

along some straight line A'li', whose position is found hi Vol. i. Art. 118. If P' be

any point between the rings A and /}, the stress at P' must be equivalent to tlu*

same force, for otherwise the portion AP' of the lipht rod would not be in

?>*>.
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equilibrium. In the same way the stress at every point of the rod between the

rings li and C is equivalent to a single resultant !•'., acting along some other

straight line li'V, and so on for every i)ortion of the rod lying between contiguous

rings. These straight lines may be called the liucxof prennure. We shall suppose

the forces /'', , 1<\,, Ac. when positive to be pulling forces, so that for instance

the action of AP on FH is equivalent to the force /'', acting in the direction li'A',

The stress forces at points one on each side of any ring, as Jt, being 1<\ and i'^, it

follows that the pressure on the ring li is the resultant of 1<\ acting along I!'A' and
/<'.. reversed and thus made to act along li'C. The pmssure at B therefore acts

ahintj ll'li, and thin liiw is a normal to the rod at li-

Let us consider the e(|uilibrium of any portion HP of the rod, where Pis a point

between li and C. Let f be the angle the tangent Vll makes with li'V, and let

/."(" be the axis of ^. Let t; be the perpendicular distance of P from that axis.

Ijet /-, 7', I' be the stress couple, tension tmd shear at /'. Then

V— /•'ocosi/', f^ =-/•'„ sin ^, Jj = F.^ri (I).

Taking moments about i'for the portion HP we have - =K y =.F„r) (2).

Multiplying both sides by sin \j/~dr)/ds and integrating, we find -'27v cos \j/= F.,r)- + C

.

This result may be written in the form

2KF.,cosyl' + F.^y,-^[ (3),

where i is a constant for the portion HP of the rod. We notice that iu this

equation i-'jcos \p is the tension and F.^i] the stress couple at the point P.

A similar eijuation holds for each portion of the rod which lies between

contiguous rings. If /' move along the rod and pass through the ring C, the

tension and stress couple undergo no sudden changes of value, though the shear is

altered discontinuously. It follows that /'ocosi/' and F.^r) are the same on both

sides of (' and that therefore / is the same for both portions of the rod. The
constant I has therefore the same valnc throiKjhont the whole length of the rod.

If one e.rtremity of the rod is free, let A be the ring nearest the free end. The
tension and the stress couple at A are therefore zero; hence, by equation (3) the value

of 1 is zero. In this case, since the stress at A is reduced to the shear only, the

line of pressure between the rings A and />' is the normal at A.

Since pcuHtl/ ={dsld\j/) {<m<ls) = d^ld\{/, we imve by (2)

(1^ _ A" cos xp
__

Kcos \p

d\l/ F.,ri (/-2A'K,co8i/.)i

where ^ is measured positively opposite to the direction of F.,. Putting ^-:w-26,

we reduce this to the difference of two elliptic integrals,

F.,i = ( / (1 - (- sin- 0)i de-^ I
--'^

J ij (l-c-ain-d)^

wlierc i'-^I + '2KF.^ and f'-/-"4A7''o.

44. To show that these results supply a suilicient number of equations, let us

suppose, as an example, that both ends of the rod are free and that it has been

made to pass througli five small rings at A, />', C, 1), E.

Beginiii.ij at the ring .-I, the line of pressure .-l' li' is the normal at A ; let d be

the angle it makes with any Hxed straight line iu the plane of the rings. Taking

.iy>" U" the axis of ^ and A as origin, the coordinates of li, viz. ^, rj, are known

functions of 0. The equations (3) and (4) give ^, t), in terms of \p and F^, the

constant in (4) being determined from the condition that when f = the value of ^
is known, viz. in this case \p is a right angle. Eciuating these two values of ^ and r)

>|'|l

mm

^iSiii
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we have two equations to determine >', and the value of i/- at 11. The tangent at

B having been found, the normal lIJi' can be drawn and the position of />'

determined.

In the figure of Art. 43 we have /•', sin A'B' 11=1''., sin BB'C. When therefore we

repeat the process just described and take B'C as a second axis of ^ and the foot of

the perpendicular from B on B'C as the origin, with the object of finding F., and the

value of yj/ at C, we really have sufficient equations to find the angle BB'C also.

In the same way we next take CD' as the axis of ^ and finally D'E'. But since

this last line of pressure must be the normal at K, the value of \p at E must be a

right angle. This supplies a final equation from which d may be found.

Ex. A light rod 1)E is made to pass through two small rings A, C in the same

horizontal line at a distance apart equal to 2/^ and has a weight W applied at a

point B so that the vertical through B bisects AC at right angles. If 'l<f> be the

angle between the normals at .-1 and C prove that

.'/:-2 cos
<t>

(cot
(f))" + (cos (/»)=

I
(sin (p)- tl<p = h cosec (0

Hi

a!;

1:1

r u\

C)



[art. 45

The tangent at

J poBition of .')'

hen therefore we

^ and the foot of

nding F., and the

e lili'l'' also,

D'E'. But since

i/' at E must be a

be found.

A, ('in the same

t W applied at a

Bs. If 2<t>
be the

ART. 47] RESOLVED CURVATURE. 295

)

lormal U> the

let K lie on

{ is called a

son and Tait.

on the central

'P', P'P" &c.

drawn at the

;t the normal

)lane K'P'P"

rse, and so on.

ecutive two of

lindrical it is

plane passing

le extremities

it line on the

f the rod and

,1 section at P
n the normal

angents PP',

K" &c. ti-ace

1. The twist

between the

normal planes at P, P' is measured by the infinitesimal angle

which the tran8ver.se P'K' makes with the plane KPP\ or, what

is ultimately the same, by the angle which the planes KPP',
PP'K' make with each other. If the arc PP' of the central line

be (is, and if the angle which the planes KPP', PP'K' make with

each other be rf;^, the ratio d^/ds represents the twist of the portion

ds of the rod referred to a unit of lei)gth, and is usually called the

twist at P.

It is sometimes useful to so choose the transverses I'K, i^A" Ac. in the unstrained

rod that the angle which the i)lanes Kl'P', FI-'K' make with each other has any

convenient value. Let dxi be tliis angle and let dxi^T^ds, then t, is an arbitrary

function of the arc x. If dx or t(/ii be the corresponding angle in the strained rod,

the twist is measr-od by r-r^.

46. Resolved Curvature. Let a straight rod be stramed

by bending, so that the central line takes the form of a curve of

double curvature. If de be the angle between the normal planes

to the central axis at P, P', the curvature at P is measured by

the ratio dsjds, and the central hne is said to be curved in the

osculating plane.

It is sometimes more convenient to resolve the curvature in

two directions at right angles. Let the normal planes at P, P'

intersect each other in a straight line CO, then CO intersects the

osculating plane at right angles in some

point C. Since PC, P'C are two con-

secutive normals lying in the osculating

plane, the point C is the centre of the

circle of curvature ; let CP = p. Let us

now draw a plane through the tangent

PP' to the central line making' an arbi-

trary angle <^ with the osculating plane, and let this plane cut CO
in Q. Then since PQ, P'Q are two consecutive normals to the

central line, the point Q is the centre of a circle of curvature

drawn in the plane QPP'. If the radius PQ of this circle be R,

we have from the right-angled triangle QCP, ., = - cos (j).

r

It follows that the curvature in a plane drawn through the

tangent may be deduced front the curvature in the osculating plane

by the same rule that we use in statics to resolve a force.

47. Let us draw two planes through the tangent at P to the

central line, and let these be at right angles to each other. Let

ililll

m\

ill

111 'M^
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A"

the resolved curvatures of the central line in these planes be

called K a'ld \. Then the curvature in the osculating plane is

\/(«" + ^"), and the tangent of the angle the osculating plane

makes with the first of these planes is \\k.

These two planes intersect the normal plane at F to the

central line in two straight lines at right angles. Let these be

PK, PL, the straight line PK being perpendicular to the plane

in which the resolved curvature is k.

The three straight lines PK, PL, PP' thus form a conveniens

system of orthogonal axes to which we may refer that part of the

rod which lies in the immediate neighbour-

hood of P. The resolved curvatu'cs of the

central line in the planes perper)dicul;xi to

PK, PL, being k, \ and the twist about

PP' being t, it follows that in passing from

the point P to P' the three axes are screwed

into positions P'K', PI/, P'P" by a combination (1) of the rota-

tions Kds, \ds, rds about the axes 1*K, PL, PP', and (2) of a

translation of the origin P along the tangent to P'. It should

be noticed that each of the three quantities k, \, t is of — 1

dimension as regards space.

The quantities k, \ are the resolved curvatures of the strained

rod and are the same as the resolved bendings produced by the

forces, only when the unstrained rod is straight. To find the

bending produced by the external forces when the unstrained rod

is itself curved we must subtract from k, \ the resolved curvatures

of the unstrained rod.

48. Since Kds, \ds, rds are "otations about the axes of

reference, we know by the parallelogram of angular velocities

that they may be resolved about other axes by the parallelogram

law. If then we wish to refer the strains to a different set of

axes, say P/v", , PA,, P7', , we ehange k, \, t into k^, \,, t, by the

usual formulas for the transformation of coordinates or for the

resolution of forces. In this way we may refer the bending and

twist in the neighbourhood of P to any arbitrary system (jf axes

having the origin at P. These generali/ed axes may be screwed

from their positions at the origin P to those at P' by the three

rotations K^ds, \,rf.v, rids and the translation ds along the

tangent.
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40. In many of tht; ivpplicatiouH of analytical geometry to physical problems

it is found advantagoouH to make the coordinate axes moveable, so that they may
always be in the most convenient position. Thus if a point travel along the strained

rod and successively occupy the positions P, P', P", Ac, the axes change their

directions in space. To specify the motion of these axes we may either use a

second system of axes fixed in space or we may refer the motion to the moving

axes theniselv(!S in the manner above described. The first method requires

the use of the formuloB of transformation of axes which are often complicated, in

the second we avoid the introduction of a second system of axes. Moving axes are

of great importance in Dynamics and are also of much use in discussing the

geometrical properties of curves and surfaces. For these applications the reader is

referred to the second volume of the Author's Trealim' on Itiriid iJynamic.t.

50. Ex. 1. A straight line iti marked on the surface of a thin unstrained

cylindrical rod, parallel to the central line. If the rod is bent along any curve on

a spherical surface so that the marked line is laid in contact with the spherical

surface, show that the twist is zero.

If the rod is laid on a cylindrical surface so that the marked line is in contact

with the cylinder, show that the twist is sin ocosa/«, where n is the radius of u.e

cylinder and a is the angle the rod makes with the axis of the cylinder. Both these

results are given by Thomson and Tait, Art. I'iti.

If P, P' be two consecutive points on the central line, the transverses PK, P'K'

are normals to the surface. The first result follows, because the transverses pass

through the centre of the sphere, so that tlie angle between the planes KPl",

PP'K' is zero. Since the radius of curvature at any point of a helix lies on the

normal to the cylinder on which the helix is drawn, the second result follows from

the ordinary expression for the radius of geometrical torsion.

E)i. 2. A straight thin rod has a straight line marked along one side. If the

rod is bent and laid on a surface so that this line lies in contact with a geodesic,

show that the twist at any point P is A sin d cos d, where A is the difference of the

curvatures of the principal sections of the surface at /' and 9 is the angle the rod

makes with either line of curvature.

51. Relations of stress to strain. Let P be any point on

the central line ; the mutual action of the parts of the rod on each

side of the normal section at P can be reduced to a force and a

couple with any convenient point of that section as base.

Let three rectangular axes be taken at the point P to which

we may refer the strains and stresses in the neighbouring portion

of the i-o(l. Let K, L, T be the components of the stress couple

about these axes. If the unstrained rod is straight, let «, X, t be

the resolved parts of the curvature and twist about the axes ; if

thi' unstrained rod is itself curved, then «, \, r represent the

changes in the curvature and twist produced by the external forces.

We shall n(»w assume the two following principles*:

—

( I ) that the changes in the twist and curvature of the rod in

* See Thomson and Tait, 188a, Art. -jyi.

mf:' . int
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t 1

^1 I

the neighbourhood of P are independent of the force and are

functions only of the couple
;

(2) that the couples K, L, 2' are linear function? of the strains

K, \, T.

These Jissumptions are necessary because we do not in this

place enter into the theory of elasticity.

If we suppose, as usual, that the strains are so small that we

may neglect all powers but the lowest which enter into the

equations, the second principle is equivalent to the assumption

that when K, L, T are expanded in powers of k, \, t the lowest

powers in the series are the first.

52. Since the three couples K, L, T are each expressed in

terms of k, \, r by a different linear equation, it might be supposed

that we shall have to deal with nine constants. But if the elastic

forces form a conservative system we may reduce these to six by

using the work function.

Let Wds be the work function of an element of the rod

bounded by the, normal sections at P, P'. Supposing the end P
fixed, let one strain, say \, become \ + dX, the other two remaining

'iialtered. Since the element of the rod has been rotated about

the axis of the couple L thiough an angle equal to d\ . ds, the work

done by the couple L is LdXds, while that done by each of the

couples K and T is zero. We therefore have dsdW = LdXds.

Similar expressions hold when K and 2' are increased by o?« and

dr, so that in general

K=d W/dK, L = d WJdX, T=d WIdT.

Since K, Z, T are linear functions of k, \, t it follows that W is

a quadratic function of k, \, t, i.e.

W=^{Ak--\- BX' + Cr^ + 2ft\T + 26t/c + '2ckX).

.-. K = Ak + cX + bT, L = CK + BX + aT, T=bK + aX + CT.

53. Wo have already seen that if we refer the strains to

another set of axes the quantities k, X, t are changed by the

ordinary formula? for transformation of coordinates, Art. 48.

Since a homogeneous (juadratic expression can always be cleared

of the terms containing the products of the variables, it follows

that by a proper choice of the axes of reference the expressions for

W, and therefore those for K, L, T may be reduced to the simplified

forms W = ^ {A^k;' + i?,\i' + (-\t^%

K, = A 1*1 J //. = B,X\ '1\ = CI'l-
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These axes are called the principal axes of stress and the constants

i4,, ^j, C'l, are the principal flexure and torsion rigidities.

In what follows it will generally be assumed that the tangent

to the central line at P is one principal axis of stress at P ; this is

of cou'-se the axis of torsion. If also the constants of rigidity for

the other two principal axes are equal, we have

where the suffixes have been dropped as being no longer re<pured.

The expression lor the work is not complete if the rod is

extensible, for we have not yet taken account of the extension or

stretching, of the element PP' of the rod. This additional term is

given in Vol. i. on the supposition that the tension obeys Hooke's

law. It will not be required in the problems considered in this

chapter.
'

54. Helical twisted rods. A uniform, thin rod, naturally

straight, whose principal stress axes at any point are the central line

and any two perpendictdar axes, is bent into the form of a helix of

given angle and receives at the same time a given uniform twist.

It is required to find the force and couple which must he applied at

one extremity, the other being fiAed, that the rod may retain the

given strains.

Let APQ be an arc of the helix, A the fixed extreniity, Q the

terminal at which the forces are applied. Let AMB be a circular

section of the cylinder on which the helix lies, OZ the axis of the

cylinder.

The mutual action of the portion AP of the helix and the

portion PQ consists of a force and a couple. From the uniformity

of the figure it is clear that

the force and couple must

be the same in magnitude

wherever the point P is

taken on the helix, and

that their direction and

axis respectively must

make the same angles

with the principal axes of

the curve at P.

The stress force at P
may be resolved into two '^y

rm
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components, one acting along the generating line MPF of the

cylinder and the other acting parallel to the plane XY. Ihe

latter, if it is not zero, must be in ecjuilibrium with the compo-

nent at Q parallel to the same plane. This however is impossible,

because as P is moved along thi' helix the direction of the com-

ponent at P makes always the same angles with the principal

a.\e8 at P and is therefore changed, while that of the component

at Q remains unaltered. Both these components must therefore

be zero. It follows that the renultaitt stress force at any point

P viust act along the generator through that point.

Let R be the stress force at any point of the rod. The force

R may be transferred to the axis OZ oi the cylinder by Mitroducing

the couple Ra acting in the plane OZFM. The force R this

becomes independent of the position of P.

Let us now turn our attention to the stress couples at P. Let

Px be dx'awn perpendicular to the axis of the cylinder and let

TPz be a tangent at P to the helix. Then by the known

properties of the curve, the plane TPx is the osculating plane

at P. Let Py be the binomial. If p = l//c be the radius of

curvature of the helix, the strains round Py and Pz are re-

spectively K and T, each being measured in the positive direction

round the axes, i.e. froni z to ./• and ./ to y. There is no strain

round P,r because the rod is naturally straight. If A and C are

the constants of flexure and torsion, the corresponding stress

couples are Ak and (W. These couples may be resolved into two

components, one having the generator PF for axis and the other

having its axis pandiel to the plane of XY.
Let the resultant of the latter couple and of the couple Ra be

called H. The couple H at /* together with the force R acting

along OZ must be in equilibrium with the corresponding reversed

couple H' and the reversed force R at Q. The forces are equal

and opposite, hence the couples //, H' must be in equilibrium.

Since the axis of the couple H always makes the same angle with

OM, its direction is altered when the point P is moved along the

helix while that of the couple Q is fixed. Equilibrium cannot

exist for all positions of P unless both H and H' are zero. The

stress at P is therefore eqnivalent to a wrench whose force acti>

along the axis OZ of the cylinder and whose couple acts in a plane

perpendicular to that axis.

Consider the equilibnum of the portion AP of the helix. The
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fibre.s of the rod which are nearest to QZ are compressed and those

more remote are stretched. Hence the arc QP tenda to turn AP
round the binormal Py in the direction z to x. Also, as P travels

along the wire in the direction APQ the po.sitive direction of the

torsion is from ./; to y, hence the twist couple exerted by PQ on

AP is in the same direction, viz. ./ to y.

The stress couples which act at P on the portion AP oi the

rod are therefore L = 0, M = Ak, N = Or round Px, Py, Pz respec-

tively. These together with the force at P arc equivaleiit to a

wrench, let G be the couple measured clockwise round OZ and let

R be the force acting along OZ. By ecpiating the moments of

these about MP and also about a parallel to AIT drawn through

P, we find that

G — Ak cos a + Cr sin a,

Ra = — Ak fiin a + Ct cos a.

Here R tends to pull out the spiral AP, and G to twist it round

OZ from A to B.

These equations determine R and G when the angle a of the

spiral, the curvature k and the twist t of the material are known.

By giving the proper twist, we can make G = and then the

spring can be maintained in the spiral form by a force R only.

65. Spiral Springs. A thin rod or wire, whose natural form
is a, fjiven helix and ivhose principal axes of stress at any point are

the tangent to the central line and any two perpendicular axes, is

bent into theform of another given helix. It is required to find the

f.rces and couples ivhich must he applied at one end, the other being

fixed, that the rod may retain the given form.

Let a,, a be the radii of the cylinders on which the unstrained

and strained helices lie; a^, a the angles of the helices. Let the

axes of the two cylinders be coincident and let it be taken as the

axis of Z, the plane of XF being perpendicular to it.

Let P, P' &c. be a series of con.secutive points on the central

line of the unstrained rod and let P^, P'^' &c. be the principal

normals at these points. The angle between the consecutive

planes ^PP', PP'^' is ds sin aiCosa,/ai where ds is the arc PP'.

Let Pr], P't)' be the binormals at the same points, then the

curvature of the unstrained rod, measured, as in A.rt. 47, round

the binormal, is dscon^ajai. Let P^, P'^' be the tangents to the

helix taken positively in the direction in which s is measured.

w
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Lt't the axes of f, »; bv Hxfd in the material of the nni and be the

transver.ses of referencu'. When the rod is strained, let Pa; Py, Pz
be the piincipal normal, binomial and tangent at P, then Pf
coincides with Pz, and P^ makes some a.igle ^ with P.v. The
figure of Art. o't may be used to represent the strained position

of the rod, the axes P^, Pt}, P^ are not drawn but may easily be

supplied by the <lescription just given.

The stress at the point P of the strained rod consists of (I) a

force which we may suppose to be resolved into two components

one along the generating line of the cylinder and the other

parallel to the plane of AT. (2) A couple (*(t — t,). whose a.xis

is the tangent Pz, and two couples Ak and -Aki, whose axes are

Py and Pij respectively : where

T| =
sni a, cos a. cos- cf

«i = K =
COS- a

(I

and rd.s is the elementary angle between the piaues ^PP', PP'^'

in the straineci rod.

Examining first the stress force, we find, as in Art. 54, that

the component parallel to the plane of XY is zero. The uti'esN

force at every point P therefore acts along the generating line of the

cylinder; let this force be R, and let it be transferred to the axis of

the cylinder by intioducing a couple Ra.

Taking next the stress couples, we fiinl by the same reasoning

that the component about any axis paralle' to the plane of XY is

zero. Let us first ecpiate to zero the moment about Pa?; since

Px is perpendicular to Py, Pz and to the axis of the couple Ra,

and makes with Prj an angle ^7r-t-<^, we have /Ci sin = 0. Since

«! is not zero (as it was in Art. 54), it follows that </> = 0. The axes

P^ and Px therefore coincide and the couples Ak and — Ak^ have

a common aods Py, viz. the binomial of the strained helia;. The

angle rds is also equal to the angle between the consecutive

osculating planes to the strained helix, i.e. t = sin a cos a/a.

Equating to zero the moment about a perpenciicular to the

plane passing through Pa- and the generator of the cylinder, we

have Ra = — A sin a (« — «,) -H (7 cos a (t — t,) (1 ).

Equating the moment about a generator to the correspording

moment at the terminal we have

G = A cosa(K — «i) + sin a (t — r,). .(2).
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AKT. .>7] EQUATIONS OF KQUILIHKIUM.

The curvatures and torsions are

30»

«i =
cos"' a, COS'' a sin Si cos a,

a,
K =

a
T, =

(It

sui a coH a

a

66. If the spiral spring have a great many turns so that

a, and a are both small, we have when the s(|uareH of a^, a aru

neglect(,-(l J{a = - Aa (^ - ^) + f" - "')
^ \u aJ \a oj

\(i aj

If there be no couple G but only a force at each end pulling the

spiral out, we deduce from these equations that (> = (/,, so that the

spring occupies a cylinder of the same radius as before the strain.

We also have Ra = C '

,

a

which is independent of the constant of flexure. It appears there-

fore that the sprint/ resists the palling out chiefiy by its torsion.

It is stated by both Saint-Venant and Thomson and Tait, that

this result was first obtained by Binet in 1815.

Let I be the length of the spiral spring, h the elongation of its

axis produced by the force R ; then

I sin a — I sin a, = /*.

Rejecting as before the squares of Oi and a we find that R = C . . „

.

This expression determines the force required to produce a given

elongation in a given spring of small angle.

67. Equations of Equilibrium. To form the general equa-

tions of equilibrium* in three dimensions of a strained rod.

Let P, P' &c. be a series of consecutive points on the central line

of the unstrained rod. Let a series of transverses PA", P'K' &c.

be drawn such that the angle of twist Tj is either zero or some

arbitrary function of the arc s. Taking the transverse PL per-

pendicular to PK, let the resolved curvatures about these lines

be \j and «,. If these transverses are the principal flexure and

torsion axes at each point of the rod they form a convenient

* The general equations of a rod in Cartesian coordinates may be found in the
Treatixe on Natural Philosophy by Thomson and Tait, 1879. The intrinsic equa-
tions, or those referred to moving axes, are given in the Treatise on Statics by
Minchin, 1889.
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In the saint! way wince /i,, /v,, La are the coniponentH of u vector

we have '' - q,J,, + m.L, + G^ + fill, - vH.^^O (4)

^^' - w,A, + 0),,/., + «, + v/e, - X/^a = (5)

^ - o>,/., 4- tajj., + G, ^ \Il,-fiRi^O (()),

whore \, /*, p are the direction cosines of the arc PP' referred to

the ax<!S at P.

The relations betwiion the couples A,, &c., at«d the strains

w, — 6,, &c., may be deduced from the expri'ssion for the work W
given in Art. 52, by writing tu, - ^, , &e. for k, t, \. Supposing for

the sake of brevity that the axes nrv the principal flexure and

torsion axes, we have

A, = ^l (av, - (?, ), L, = B (cu, - 0,), L, = C (ft);, - ^,). . .(7).

If the axes are the tangent at P to the central line and two per-

pendicular axes, Wi! have \ = 0, /a = and v=\; but in all cases

\, n, V art! known from the given conditions of the rod.

We thus have nine equations to liotermine the (piantities

Hi, Rj, R,,; Lx, L.i, La] w,, w.j, W;,. If the rod is extensible there

will be another equation supplied by Hooke's law.

58. The meaning of these equations will be made clear if we

apply thom to the simpler case in which the rod is uniform and

when unstrained is straight and without twist. In this case

^, = 0, ^... = 0, <:':i
= 0, and to,, Wj, o),, are the components of the

curvature and twist. Let us also take the tangent PT as the

axis of j; and the principal flexure axes PK, PL as axes of y and z

The rotations about P.r, /'// canuot alter the arc .r//, but the rotation about Pz will

move //' away from .r by the arc w^dx. In the same
way the rotations about P.v and Pz cannot alter the ;
arc .!•:, but the rotation about Pi/ will move z' to-

wards .r by the arc w.,dn. Therefore

AIho the eosine of the arc .rr' ditTers from unity by
the square of a small quantity. Substituting; we
tind that the dilference of the resolved parts alon^;

the axis of .r i:< dU - Vu.fdn + WumIk.

If IJ, V, W stand fc /fj, K.^, A'y we join to this the

force l<\d/i ; equating the result to zero and dividing

by dx, we obtain the first of the six equations. If

I', r, W stand for L, , L.,, L.^ we add the couple (lids

and the moments of the forces 7i', + dli^ «kc. acting at /''

same way the fourth of the six equations.

We thus obtain in the

K. S. II. 20
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ASTATICS.

On Astatic Couples.

1. The conditions of astatic equilibrium in two dimensions

have already been investigated in the first volume of this treatise.

We have now to consider what other conditions are necessary

when the body is displaced in any manner in three dimensions*.

* The subject of Astatlcs appears to have been first studied by Moebius, who
published his results in his Lehrbuch der Statik, 1837. Moigno also, in his Statique,

has discussed the subject at great length. Minding in the fifteenth volume of
Crelle's Journal gave the theorem that, whenever the l)ody is so placed that the
forces admit of a single resultant, that resultant intersects two conies fixed in the

body. Many proofs have been given of this curious theorem ; we may mention that

by Darboux, Tait's proof by quaternions modified by Minchin; Larmor's proof with
the use of the six coordinates of a line.

Darboux published in the Memoires de la Society den Sciences phi/Hiqiies et

miturellex de Jiourdeanx, t. ii. [2" S^rie], 2" Cahier, a very long paper on this subject.

In contradiction to Moebius, he showed that when one point of a body is fixed there

are in general four positions, and only four, in which the body can bo placed so that

the forces are in eciuilibrium. These he called the initial posit i of the body.
His investigation is rather long and a different proof is given re. He also

introduced the idea of a central ellipsoid analogous to the monieutal ellipsoid

used in discussing moments of inertia. This result is given in Art. 14 of the text,

and the general lines of his argument have been followed in that article. By the

use of this ellipsoid he gave a geometrical turn to the proof of Minding's theorem,
but it remained rather complicated. Extending the theory by considering all

positions of the body, he showed that Poinsot's central axis formed a complex
of the second order, such that each straight line is the intersection of two perpen-
dicular tangent planes to the conies used by Minding. The first part of this result

was 8ub8e(iuently arrived at by Scmioff in 1879.

The theorems on Astatics given hy Moigno may be found in his Lemons de

Mgcauiqne Analytique, 18()8, which he tells us are chiefly founded on the methods of

Cauchy. As his demonstrations are different from those given in this treatise, it

may be useful to indicate the plan of his work. First, hy a transformation of axes,

he obtains the twelve equations of equilibrium given in Art. 11. Thence he deduces
the conditions that a system of forces can be astatically reduced to a single force by
considering what single force can be in equilibrium with the system. Supposing
the.se conditions not to be satisfied, he shows that the system can be reduced to two
forces i)rovided two conditions are satisfied. These conditions agree with the two
last determinantal eijuations given in Art. 73. He next shows that the system can
always be reduce 1 to a force and two couples and that the point of application of

the force may he arbitrarily chosen on a plane fixed in the body. This plane is

defined to be the central plane. He then shows that if the arbitrary point is

projierly chosen the directions of the forces and of the arms may he simplified in the

manner described in Art. 27. This point is defined to be the central point. Pro-
ceeding next to consider the case in which the holy is so placed that the forces

admit of a single resultant, he shows that that single resultant must intersect two
conies fixed in the body. He next discusses the case in which the equilibrium is

astatic only for displacements of the body round a given axis; following the same
plan as before, he enquires into the conditions that the system can be reduced to

one, two or three forces. He concludes with an application to magnetic forces and
investigates the positions of the central plane and central point.

20—2
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2. We shall suppose, as before, that each force acting on the

body retain!-; the same direction in space, the same magnitude and

continues to act at the same point of the body, for all displace-

ments.

The forces of a couple remain parallel, equal, and unaltered in

magnitude as the body is moved, but the length of the arm is

not necessarily the same. Let A, B he the points of application

of the forces, then the distance AB is unaltered, and is called the

astatic arm of the couple. If in any position of the body the

inclination of the astatic arm to the forces is 0, the arm of the

couple is AB sin 6.

The product of either force into the astatic nrm is called the

astc.tic moment of the couple. The astatic moment is of course un-

altered by any change in position of the body. Representing the

astatic moment by K, the actual moment in anv position of the

body is K . sin 0.

The angle d which the astatic arm makes with the force is

called the astatic angle of the couple.

Two couples are said to have the s(tine astatic effect when they

are equivalent in all positions of the body.

For the sake of brevity the couple whose force is P and astatic

arm \s AB is represented by the symbol (P, AB).

3. The astatic effect of a couple is not altered if we replace it

by another having the same astatic moment, the astatic arms being

parallel, and the forces acting in the same direction in space as

before.

Let the astatic arm AB be moved to a new position A'B' in

the body. The extremities of the astatic arm of a couple are

fixed in the body and move with it ; thus as the body is displaced,

AB and A'B' continue to be parallel to each other. The astatic

angles of the two couples continue therefore to be equal to each

other. Since the astatic moments are e(pial, it follows that the

actual moments of the couples are e(|ual. The two couples are

therefore equivalent.

It may be noticed that we cannot in general turn the awtatic arm of a couple

through any angle in the manner explained in Vol. i. Art. !»'2; for the planes of the

couples may not remain parallel to each other, unless the displacements of tlie body

are restricted to be parallel to the original plane of the couples.

4. To find the astatic resultant of two couples whose forces are

parallel but whose astatic arms are inclined at any angle.
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m

Let AB, A'B' be the astatic arms of the couples, the forces at

A, A' being supposed to act in the same direction in space.

Through any point draw OL, OM to represent the directions

of AB, A'B' and let the lengths of OL, OM be proportional to the

astatic moments of the couples. We shall now pi'ove that the

diagonal ON of the parallelogram described on OL, OM will

I'epresent in direction the .astatic arm of the resultant couple and

in length the magnitude of the sistatic moment of that couple.

Let the straight lines CL,IjN be fixed in the body. By Art. 3

the two couples may be replaced by two others having OL, LN
for their astatic arms and having the four forces all equal. The
two forces acting at L l)eing ecjual and opposite may be removed,

so that the two given couples are equivalent to two equal and

opposite forces acting respectively at and N. These two forces

constitute a single couple having ON for its astatic arm and

having its astatic moment proportional to the length of ON. The

proposition is therefore proved.

From this proposition we infer that the theorems used to

compound forces apply also to compound the astatic arms of

couples having their forces parallel. It is hardly necessary to

add that the forces of the resultant couple are parallel to those of

the two constituents.

5. To find the astatic resultant of two couples tuhose astatic

anus are parallel but whose forces are inclined at any angle.

Let AB, A'B' be the parallel astatic arms of the couples, both

AB, A'B' pointing in the same direction in the body. Through

any point draw OC parallel to AB and also two straight lines

OL, OM parallel to the forces at A and A' and proportional to

the astatic moments of the couples. We shall prove that the

diagonal ON of the parallelogram OLM represents the moment

of the resultant couple, the plane of the couple is parallel to the

plane NOC, and the astatic arm is in the direction of OC.

Let the couples be referred to a common astatic arm along 00,

the forces at are then represented by OL and OM. Proceeding

as in Art. 4 the results stated are easily seen to be true.

6. Working rule. Uniting these two propositions we may

construct a rule to resolve or compound couples.

When the forces are parallel we resolve or compound lengths,

measured along the astatic arms and proportional to the astatic
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moments, by the parallelogram law, the new forces being supposed

to act parallel to their former directions.

When the arms are parallel we resolve or compound lengths,

measured along the directions of the forces and proportional to

the astatic moments, by the parallelogram law, the new arms

being parallel to their former directions.

7. There is one resolution of a couple which will be found

useful afterwards.

Let Ox, Oy, Oz be any set of Cartesian axes, not necessarily

rectangular. Let {x, y, z) be the coordinates of any point D, and

let OD = r. Then a couple whose astatic arm is r and forces + P
may be resolved into three other couple;^ whose astatic arms are

situated in the axes of coordinates and whose lengths are equal to

X, y, z. The forces of these couples are parallel to that of the

original couple and their astatic moments are Px, Py, Pz.

Let us now take any three points A, B, G on the axes and let

OA = a, OB = b, OC=c. These three couples may be replaced by

three others having OA, OB, OC for their astatic arms. It follows

that any force P acting at any point D may be replaced by four

parallel forces acting at any four points A, B, G and whose

magnitudes are respectively equal to Pxja, Py/b, Pzjc and

P{\-xla-ylb-zlc).
Conversel} , since these four parallel forces may be compounded

into a single force equal to their sum and acting at the centre of

gravity of -4, B, G, 0, it is evident that they are equivalent to the

force P acting at the point (x, y, z). See Vol. 1., Art. 80.

8. Two couples cannot be aittaticaUy compounded together into a sinyle resultant

couple tinless either the four forces are parallel or the two astatic arms are parallel.

If possible let three couples be in astatic eijuilibrium. Transfer these parallel to

themselves so that one force of each couple acts at the point O. Let OA, Oil, OC
be the astatic arms, let OP, OQ, OH be the directions of the forces. Then as the

body is displaced, OA, Oli, OC are fixed in the oody, OP, OQ, OR are fixed

in space.

If the four forces of any two of the 'luee couples are parallel, the forces of their

resultant couple are also parallel to them, by Art. 4. Thus equilibrium could not

exist unless all the six forces were parallel to each other. In what follows, we may
therefore suppose that no two of the three lines OP, OQ, OR are coincident. In the

same way no two of the three arms OA, Oli, OC are coincident.

I'lace the body so that OC, OR are in one straight line. Since in this position

the couples (P, OA), {Q, Oli) are in equilibrium, the planes POA, QOli coincide.

Thus OA, Oli lie in the plane POQ and continue to lie in that plane as the body is

turned round OC. It follows that the axis OC must be perpendicular to this plane

and therefore to both OA and Oli. Similarly OA is perpendicular to both OB and OC.
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Supposing as before that OC, OR are in one straight line, it is clear that the

body may be turned round OC until OA coincides with OP. The axis 02i must
then coincide with OQ, for otherwise equilibrium could not exist. Summing up, the

axes OA, On, OC are at light angles and the body can be so placed that the forces

of the respective couples act along their astatic axes.

Referring to the figure of Art. 76, Vol. i., we see that if the couple (P, OA) is a
stable couple, the couple (Q, OB) must be unstable, for otherwise they would not act

in opposite directions when the body is rotated about OC. Similarly by rotating

the body about On we see that (R, OC) is an unstable couple. Therefore (R, OC)
cannot balance (Q, on) when the body is rotated about OA. The three couples

cannot therefore be in equilibrium in all positions of the body.

2Vte Central Ellipsoid.

9. Tyj reduce any number of frnxes ostatically to a single force

and three couples.

Let the forces be P,, P._,, &c. and let their points of application

be Ml, M.,, &c. respectively. Let Ox, Oy, Oz be any axes, not

necessarily rectangular, which are fixed in the body and move

with it. Let {x, 3/, z) be the coordinates of the point of applica-

tion M of any one force P, and let 0M= r.

Take three arbitrary points A, B, G on the axes of coordinates

;

let OA = a, OB = 6, OC=^c. By Art. 7 the force P acting at x, y, z,

is equivalent to an equal and parallel force acting at 0, together

with three astatic couples whose arms are OA, OB, OC respec-

tively, whose astatic moments are Px, Py, Pz and whose forces

are parallel to P.

In this way all the forces may be brought to act at the origin

parallel to their original directions. These may be compounded

together into a single force, whose magnitude and direction in

space are the same for all positions of the body. Let us represent

this force by R.

Each force P will also give a couple having OA for its astatic

arm. Compounding the forces at the extremities of this common
arm, all these couples reduce to a single couple. The arm OA of

this couple is fixed in the body while the magnitude and direction

in sp.tce of the forces are the same for all positions of the body.

Let us represent tTie magnitude of either of its forces by F.

The couples having OB, OC, for their astatic arms may be

treated in the same way. Their astatic arms also are fixed in the

body, while the magnitude and direction in space of the forces are

always the same. Let these forces be G and H.

w
Ii

!

3! lili

'I
ill

I' ii

,J« 'IBmi' is
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Summing up, we see that a system of forces can be reduced to

a principal force R acting at any assumed base point 0, together

with three couples (F, OA), (G, OB) and (H, OC), having their

astatic arms arranged along any three assumed straight lines

OA, OB, OC fixed in the body and not all in onti piano.

It may be seen that this reasoning, as far as we h^.ve gOi.e, is

the same as that used in the corresponding proposition when the

body is fixed in space (Vol. i.. Art. 257). The difference is, that

when the body has only one position in space these three couples

may be compounded into a single couple. But ao single couple

can be found which is equivalent to these, when the body may
assume any position in space (Art. 8).

10. Consider any one position of the forces and of the body.

In this position let X, Y, Z, be the components along the axes of

any force P. To find the resultant force R, we bring all these P's

to act at the base 0, The force R is therefore the resultant of

SX, S F, SZ acting at along the axes. To avoid the continual

recurrence of the symbol 2 it will be convenient to represent ^hese

components by Xo, Fq, ^o-

To find the force F we seek the resultant of all the forces

similar to Fxla acting at A. The force F is therefore the resultant

of the three forces ^Xxja, XYxja, ^Zx/a acting at A parallel to

the axes. In the same way the forces G and H are the resultants

of 2Zy/6, lYyIb, XZijjh and of SA'ir/c, ^Yzjc, "LZzjc. It will be

found convenient to represent the summations 1,Xx, XXy &c. by

the symbols X^, Xy, &c.

In this way the three couples {F, a), {G, h), (H, c) are resolved

into nine elementary couples whose astatic moments are repre-

sented by the constituents of either of th'^ following determinantal

figures

couple (F, a)= IXx, SFa', ^Zx = Xx, F^, Zx

couple {G, b)=lXy, lYy, lZy = X,j, F„ Zy

couple (H,c) = SXz, ^Yz, IZz^X,, F„ Z,

where the common arms of the three couples in the first, second

and third rows are OA, OB, 00 respectively. Thus the small

letter or suffix indicates the axis on which the astatic arm is

situated, while the large letter indicates the direction of the force.

This convenient notation is the same as that used by Darboux.

These will be referred to afterwards as the nine elementary
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couples. Together with Xq, Y^, Zq, the three force components, we

thu8 have twelve elementary quantities for each base point.

For the sake of brevity we shall represent the couples (F, a),

(G, b), (H, c) by the symbols K^, K,,, Kg.

As we are chiefly concerned with the astatic moments of the

couples, the forces and arms are separately of only slight import-

ance. It is often convenient to choose the arms of all the couples

to be unity and positive. The signs of the forces alone then

detennine the signs of the moments. In other cases it is found

advantageous to make the forces of all the couples equal to theforce

R. The forces then divide out of the equations, leaving relations

between lengths only.

AZ»

M
w

ml

m

It will be found useful to remember that the direction ratios of

any one of the forces F, G, H are proportional to the constituents

of the corresponding row of the determinantal figure. An inter-

pretation of the symbols when taken in columns will be found

later on.

The figure represents the relation of the elementary couples

to the axes. To avoid complication the forces at are omitted.

The directions of the forces at the extremities 1, B, of the

astatic arms are shown by the nrrow-head, while each arrow-head

is marked by the astatic moment of the corresponding couple.

11. Conditions of equilibrium. // a system offorces be in

astatic equilibrium, each of the ttvelve elements is zero.

Resolving parallel to the axes we have X„ = 0, Yo = 0, Z^ — 0.

Taking moments about the axes of coordinates we have

Z,,— F2 = 0, Kg — Zx = 0, Yx — Xy = 0.

But the body must be in equilibrium in all positions. Instead

of turning the body round any axis, let us turn every force in

i
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the opposite direction round a parallel axis through its point of

application. First let the rotation be about ai» axis parallel to x
through a right angle. The A' forces are all unchanged, but the

Y forces now act parallel to z in the positive direction while the

Z forces act parallel to y in the negative direction. Hence, writing

Y for Z and — Z for 1' in the equations of moments already found,

we have

Yy + Z,^0, X,-Y^ = 0, -Z,-Xy = 0.

Joining these to the preceding ecjuations we find Zx=0,
X,,=:0, X^^O, Yx = 0, i.e. every constituent with an x in it

(except Xj.) is zero.

Ill the same way by turning the system round y we find that

all the constituents are zero except X^, Y,,, Zg. But we also find

that Yy + Z,==0, Z^ + Xx = 0, Xx+ Yy = 0. Hence each of the

three X^, Y,,, Z^ is also zero, l^ua all the tivelve elements are

zero.

That these conditions of equilibrium are sufficient as well as necessary follows

at once from the previous article. Thus, since the force F is the resultant of XJa,

YJa, ZJa, it is clear that F is zero. Similarly <i and // are zero. Since A'q, y^,

Zq, are zero the principal force R is zeio, so that the body is in equilibrium in all

positions.

We may however also arrive at the same result independently. The body and

forces in any one position being referred to axes x, ?/, z, let the twelve elements be

zero. The axes x, y, z remaining fixed in space, let the body be moved about the

origin into any other position, and let the coordinates of the point (x, y, z) become

(x', I/', z'). Since x, y, z are linear functions of .i', y', z' whose coefficients are

independent of the coordinates, it is evident that the twelve elements -,Xx' &o. are

also zero. The six statical equations of equilibrium referred to in Art. 11 are

therefore satisfied in this new position of the body.

12. If two systems offorces be referred to the same origin and

axes they cannot be astatically equivalent unless the twelve elements

are equal each to each.

Let the twelve elements of the two systems be A'^; &c., Xx &c.

If we reverse the forces of the second system, the two systems

together would be in equilibrium. Hence X^ — X^ — 0, &c. = 0.

Thus all the elements are equal each to each.

13. Ex. 1. If the same system of forces can be astatically represented in either

of two ways, viz. (1) by three forces (/-', G, H) acting at [A, B, C) or (2) by throe other

forces (F', G', H') acting at (A', B', C), prove that (unless the system can be reduced

to two astatic forces instead of three) the planes AJiC, A'li'C must coincide.

Let us first suppose that the three forces F, G, H, arj not all parallel to one

plane. Take the plane A'li'C as the plane of xy. We have A',, 1',, Z^, the same

for both systems. But since the ordinates of the points of application of F', G', H',
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are zero, each of the three A',, i',, '/, must be zero. Co.^sider the equation Z,=0.

Place the body in such a position that the forces F, G kct parallel to the plane

A'li'C, This is possible since a plane can be drawn paruMel to any two Htraight

lints. Then by hypothesis the direction of // will not be parallel to the plane

A'li'C. The components of the forces F, (}, parallel to the axis of z are now zero.

Hence Z, must be zero "or the single force 11. Thus either 11 = or the ordinate

of its point of application is zero. Supposing F, G, II to be all tinite, it follows

that (' lies in the plane A'li'C. By similar arguments we prove that the other points

A, U also lie in the same plane A'li'C.

Next, let us suppose all the three forces F, G, H are parallel to one plane. In

this ct\Be one of the forces as H can be resolved into two components/ and g parallel

to F and G respectively. Each of the two sets of parallel forces (/, i**) and {g, G)

can be replaced by a single force at its centre of parallel forces. The system

F, G, II can therefore be reduced to two astatic forces.

Ex. 2. If a system of forces F, G, II, acting at the corners of a triangle AliC,

can be reduced to two astatic forces F', G' acting at two points A', li', then either the

forces F, G, H are all parallel to one plane or the triangle AliC is evanescent.

We need only to examine the case in which F, G, U are all finite, for, if one be

zero, the other two are necessarily parallel to one plane.

The system F', G' can be regarded as the limiting case of a triangle of forces

i'", 0', //' acting at the corners of a triangle A'li'C where //' is zero and the position

of C is arbitrary. If then the forces F, G, II are not all parallel to the same plane

it would follow from Ex. 1 that all the corners A, li, C lie in the plane A'B'C. But

this is impossible since C" is an arbitrary point, unless the triangle AliC is evanes-

cent and lies in the straight line A'li'.

14. The central ellipsoid. A base point having been

chosen, the rectangular axes Ox, Oy, Oz are arbitrary. We shall

now show that there is one system of axes which will enable us

to analyse the system of forces more simply than any other.

Let Ox, Oy', Oz' be a second system of axes also fixed in the

body. Let A', B', C be points taken arbitrarily on these axes,

let their distances from be a', b', c'. Let F', 0', H' be the

forces which act at A', B', C. We shall suppose both systems of

axes to be rectangular.

As the body is moved about, the forces F', O', H' keep their

directions in space unaltered, so that as regards the body the

points of application and the magnitude of each force are the

only elements fixed. Let us then find the magnitude of the

force F' which acts at A', the forces 'Ai 0, A, B, G being regarded

as given. To effect this we shall resolve the arms of each of the

nine elementary couples along 0A\ OB', OC, keeping the forces

unaltered. We shall reserve for examination only those com-

ponents whose arras are along OA'.

Let (I, m, n) be the direction cosines of the axis Ox. Then

m
:i!ii!i!;»B«

ill
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;

;
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m

M.
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ii i

the groups of couples (X^, Xy, Xt); (V^, V,,, F^); (Z^, Zy, Zj)

yield three componeno cotiples having their forces parallel to

X, Y, Z respectively. Their astatic moments are (Art. 6),

XJ + XyVi + X^n = Z,

,

' YJ+ Y„vi + Y^n = Zj,

ZJ + ZyVi + Z^n = Za.

These couples have a common arm OA' and their forces are at

right angles. Compounding them we have

{F'ay={XJl+Xym+X,n)-MYM Yym-\-Y,ny + {Z^l + Zym+ Z,ny.

The direction cosines of the force F' are proportional to the three

moments Z,, Z^, Z;,.

We notice that this expression for F'a' contains only the

direction cosines of OA', and does not depend on the position

of OB' or 0C\ except only that these must be at right angles to

OA'. We are thus able to consider the couple whose arm is OA'

apart from those whose arms are OB' and OC.
Let r.H measure along OA' a length OP', such that OP' is

inversely proportional to the astatic moment of the couple whose

arm is OA'. For convenience we shall suppose the product of

OP' and this asttitic moment to be unity. Thus OP' . F'a = 1.

Let OP' = p, and let f, tj, ^, be the coordinates of P' referred to

the original axes Ooc, Oy, Oz. Then ^ — Ip, r} = mp, ^=np. We
therefore find for the locus of P' the quadric

1 = (A',^ + Xyv + X,^r + {Y^^+ Yyv + Y,^y + {Z^^ + Zyv + Z,^r.

16. This quadric may be regarded as defined by a statical

property, viz. if any radius vector be taken as the axis Ox', the

astatic moment of the corresponding couple (F', a') is measured

by the reciprocal of that radius vector. It follows that whatever

coordinate axes Ox, Oy, Oz are chosen we must have the same

quadric. The equations of the quadric when referred to different

sets of axes may be different, but the quadric itself is always the

same. The quadric is therefore to be regarded as fixed in the

body. Any point of the body may be chosen as the base 0, and

every such base has a corresponding quadric whose centre is at

the base. This quadric is called the central ellipsoid of that point.

It is also called Darboux's ellipsoid.

16. Let us represent the astatic moment of the couple whose

astatic arm is directed from a given base along the radius vector

p by the symbol Kp. In the same way the astatic moments, Fa,
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Gb and He, of the couples whose astatic arms are directed along

the axes will be represented by K^^, K,,, Kg. With this notation

we have

X/ + IV + Z/ = FH,^ = AV.

X;-' + IV +/,»-//v = AV;
XyXz + y„ Yj 4- Z,)Zt = KjfKi cos a,

X,X^ + n Yx + Z,Z, = KJ{, cos /6'.

X^X,, + \\ Yy+Z^Z,, = K^.K,, cos 7;

where a, 0, 7, are the angles between the directions of the forces

{(}, H), {H, F), {F, G) of the couples K^, K,„ K,.

Expanding the squares in the equation of the central ellipsoid

at the origin, it may be written in the form

h'/^'- + Ky-rr + A'/i""'* •(- '-i A',/A', COB ar)^ + 'll<^,l<ic ^o" ^ff + '^I'^x^'^v cos 7^?;= 1.

Also if K' be the moment of the couple corresponding to the

arm OA', whose direction cosines are I, m, v, we have

K"i rr A7/'- + A7»/i« + K^hfl + 2 A'„AV« n cos a + 2K^x^iil cos fi + 2K^K/m cos y.

It may be UHeful to state tlie rule by which the sij^ns of any of the astatic

moments A'^, A'„, A'^ are determined. The directions ot tlie forces beinj? fixed in

space, there is for eacii line of action a positive and a negative direction determined

by reference to some axes fixed in space. The astatic arms are measured in

the body, and for each of these also there is a ])ositive and a negative direction. Now
imagine the couple moved parallel to itself until either extremity of its astatic arm

is placed at the origin, so that one force acts at the origin. The moment is then

the product of the astatic arm into the other force, when each is taken with its

proper sign.

17. Ex. 1. Show that the discriminant of the central ellipsoid at the origin is

equal to (0 Ki<'(i //)'-, where V is the volume of the tetrahedron OABC.
Prove also that the minors of the coetHcients of ^-, r/', f- in the discriminant are

{KyKg aiu a)'^, (A'jA'_5 8in/S)- and (A'^Ji'^ sin 7)*, respectively.

If parallels to the directions of the forces F, G, H are drawn from the centre of a

sphere to cut the surface, the area joming the points of intersection form a spherical

triangle whose sides are o, /3, 7. If 0, <p, \p be the opposite angles, the minors of

the coetticients of t;^, ff , ^77 in the discriminant are respectively

- 7v',,A'jA'/ sin j8 sin 7 cos 0, - K^Kj^Ky^ sin 7 sin a cos (p and - Kj.KyK^-sin a sin /3 cos \j/.

Ex. 2. An astatic arm OP moves about any given base point O so that its

corresponding astatic moment is constant. Show that Ol' traces out a cone in the

body coaxial with the central ellipsoid at (>.

Ex. 3. If ().r, Oy, Oz be any rectangular axes meeting at a fixed origin I),

K^, Ky, K^ the corresponding astatic moments, prove that K^^ + Ky" + K^- is invari-

able for all such axes.

Since this expression is the first invariant of the central ellipsoid at O the pro-

perty follows at once. It also follows from the geometrical property of an ellipsoid,

that the sum of the squares of the reciprocals of three diameters at right angles is

constant.

ii'i
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18. If we refer the ('cntriil ellipsoid to its principal diameters

aH axes of rcTcMvnce, the e(jUutioii loses the tcjrtns containing the

pnxiucts of the coordinates. If F, G, II represent the forces of

the three conples for thi? position of the axes, the ecpnition is

The (nmdric is therefore in general an ellipsoid. If one of the

three forces is zero, i.e. if one of the couples is absent, the quadric

reduces to a cylinder.

Since thu terms containing' the products f?;,
r;^, ff are absent,

it follows that if the three forces /', G, II are all finite, their

directions are at right angles to each other. If one force is zero,

the other two must be at right angles.

Sunniiing u|), we s(ie that tohatevev point of the body we choose

as base, there ate altuaya three strahjht lines at right angles, fixed

in the body, such that, when these are taken as the astatic arms of the

couples, the forces of the couples act in directions at right angles

to each other and are Jived in space.

In this way we have for each base point two coi>venient

systenis of rectangular axes, one iixed in the body, viz. the astatic

arms of the couples, the other fixed in space, viz. -le directions of

the forces.

The axes fixed in the body are called the principal axes of the

base. The couples are then called the principal couples.

19. The initial position. The base point bring regarded

as fixed, and the body referred to principal axes, it is evident that

we may turn the body about until the system of axes fixed in

the body coincides in position with the system fixed in space.

The peculiarity of this position of the body is that the forces

of each of the three couples act along the astatic arm of that

couple. The moments of the couples are therefore zero. The

forces Pj, P.2, &c. of the given system reduce to the single resul-

tant R whose line of action passes through the given base.

This is called an initial position of the body and the couples

are then said to be in their zero positioiis.

The body being placed in an initial position, it is clear that if

we turn it roimd any one of the astatic arms through two right

angles, the sun\e property will recur again, i.e. the force of each

couple will act nlong its astatic arm. Thus any base being given

therv> are at least four corresponding initial positions.
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Though in all these four positions of the body the two systems

of axes coincide in position, yet the positive liirection of an axis

of one system may be the same as either the positive or the

negative direction of an axis of the other system. It is usual to

choose the positive directions of on(> system so that in one of these

four poK'^ions of the body the two systems ()f axes may have the

same positive directions as well as coincide in positit>n. This

initial position is called the positive initial position.

20. When the body is placed in a positive initial position the

nine elementary couples described iit Art. 10 are leduced to

The etjuation to the central ellipsoid then takes the simple

form J^^»f^+lVV + Z,»t'=l.

If {I, 111, n) be the direction cosines of any other ai n OA' the

direction cosines of the forc9 F' acting at its extremity are

proportional to Xxl, Yfi'in, Zfii,

and {F'aJ = X^n"" + F„«w* + Z,^n\

Thus the direction and magnitude of F' have been found. If

the body is now moved into any other position, F' contimies to act

in the same direction in space and therefore continues to make
the same angles with F, G, H that it made in the initial position.

21. There are no other po»itio;,ii heniden the four iiiitiiil ponitioim in which a hody

can he placed ho that the injHtem offorces may reduce to a xiiKjle remltant which pa»ne$

through the given base, except when the central eUipgoid at the given bane point it a

surface of revolution

Let OA, Oli, ()C be the principal axes at the niven base O. Let 0I'\ OO, Oil be

three straight lines at right angles drawn parallel to the forces of the corresponding

couples. In order to use conveniently the formulie of spherical trigonometry we
suppose these axes to cut the surface of a sphere whose centre is at in the six

points A, li, (', F, G, H. The planes of the couples are the planes which contain

the astatic arms and the forces, and are therefore the planes of the spherical arcs

AF, lid, CH. If their astatic moments are K^ = F<i, K,i=Gh, K,= llc their

moments in any position of the body are A^-sin AF, A'^sin lUi and AT, sin CH.

When the body is in an initial position the spherical triangles coincide. Starting

from this position, the body may be brought into any other by turning it round

some axis <>/. If this axis intersect the sphere in /, the spherical arcs IA, Hi, IC

are respectively equal to IF, 10, lU, and if 2w is the angle of rotation, the angles

AIF, BIG, CIH are each equal to 2w. Join AF, liG, CH by arcs of great circles

and draw the perpendicular arcs IL, IM, IN.

If this position of the body can be one of equilibrium when the base is fixed, the
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-..t.

three couples must balance each other. Resolving the axis of each of these along

and perpendicular to OI, the motaents of the three latter components are respect-

ively K^nin AF ooa IL, K^mn BGcoalM, and A', sin 67/ cos /iV. Since the three

components are in equilibrium, these moments must be proportional to sin MIN,
sin NIL, sin LIM, that is to sin BH!, sin VIA and sin A IB.

C
c y

P'or brevity let a, /i, y lepresent the arcs lA, IB, W, Since BC is a right angle

we have cos ji cos y f sin j3 sin 7 cos BIC = cos BC= 0,

. . sin- /3 sin- y sin- BIC - sin- /3 sin- y - cos" /3 cos* 7
= 1 - cos- 13 - cos'^ 7

'

—cos'-' a.

Again, sin AFcoHlL = 2s\n A.-l/''cosa = 2 sin ocososinw.

Similar expressions hold for the other angles.

Substituting these values in the condition of equilibrium, and dividing out the

common factors, we have K^— K,/^— K^K Thus the proposed position of the body

cannot be one of equilibrium when the base is fixed unless the ellipsoid is a sphere.

This argument assumes that none of the factors divided out are zero. We must

therefore examine separately the case in which / lies on one of the principal planes.

If I lies on BC, the first component is zero, and the other two are 7v,, sin BG cos IM

and A', sin (7/ cos IN. Tlie condition of equilibrium is that these moments should

be equal ; heuce K,f sin- (i cos- ^ = K^- sin- 7 cos''' 7.

Since ^ and 7 are complementary, this requires that Ky- — K^-, i.e. the ^h^psoid is

one of revolutio''..

Lastly, if I is at the point C, each of the three component couples is zero. The

component having 01 for its axis is then the sum or difference of the couples

ATjjSin'iw, A'ysin'iw. Since this component also mast vanisli we again have

K/= K,/-, i.e. the ellipsoid is one of revolution,

33. Ex. 1. The body being placed in a positive initial position, prove that the

direction of F' is parallel to the normal to the ellipsoid A'j.|-+ Y,,r)- + J^2<^-=1 drawn

at the point where OA' cuts the ellipsoid. This ellipsoid is called the second cential

ellipsoid of Darboux.

Ex. '2. I lie body being placed in a positive initial position, a straight line O^is

drawn from the base parallel and proportional to the force 1" for all positions of

OA' in the body. Prove that the locus of Q is the ellipsoid

This is called the third central ellipsoid of Dnrboux.

1.
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Prove also that, if the arms OA', OB', OC be at right anglex, the corresponding

forces y, G', H' are parallel to a system of conjugate diameters in the third ellipsoid.

This and the last example are due to Darboux.

Ex. 3. When the body is in a positive initial position for any base, prove that

the direction of the force corresponding to any astatic arm OA' is parallel to the

eccentric line of OA' in the central ellipsoid of the given base.

m

!Hil
11'.

the ilupsoid is

The Central Plane and the Central Point.

23. To compare the central ellipsoids at different points of the

body.

Suppose the forces to be referred to any base and any axes

Ox, Oy, Oz, and that the nine elementary couples and the three

force-components are known for these axes. We shall now find

the corresponding quantities when some point 0', whose coordi-

nates are (p, q, r), is taken as the base.

Through 0' we draw axes OV, O'y', O'z' parallel to (x, y, z).

The nine elementary couples may be transferred to these new

axes without any change (Art. 3). But tu^ three force-components

will introduce new couples. By Art. 9 the component X^, acting

at may be transferred to the origin 0' if we introduce the new

couples {X^^ ,
— p), {Xq, — q), (Xq, — r), the coordinates of referred to

0' being (— />, —q, —r). Similar reasoning applies to the components

Yo, Z^. Hence we have for the nine elementary couples at 0'

Xx = X^ — Ao/>, t X = Yx — JojP* Ar' = Zx — Z^p,

Xy = Xy — X^q, Yy = Yy — Ifl?. Zy = Zy — Z^q,

A7 = X, - X,r, Y; = F, - 7„r, Zl = Z, - Z,r.

The equation of the central ellipsoid at 0' is therefore, by

Art. 14,

[{Xx - A» f + iXy - X,q) rj' + (X, - X,r) f^
+ l(5^x-5»r + (n- Y,q)ri'^{Y,- Y,r)t;'Y

+ [{Zx - Z,p) f -^ {Zy - Z,q) r,' + {Z, - Z,r) r'}-'
= 1

;

the origin of the i-urming coordinates ^', »/', ^ being 0'.

24. If the principal force R is zero, we have A'o = 0, ]', = 0,

Z^ = 0. Int his case the central ellipsoid at 0' is the same as that

at 0. Thus the central ellipsoids at all base points are similar

and similarly situated.

25. The Central Plane. If the principal force R be not zero

u. s. II. 21

I

E
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the form of the central ellipsoid will depeud on the position of the

base point. We notice that the three planes

(X, -A» r + (A-, - X,q) v' + {X, - Xov) ?' = 0,

( Y, - Y,p) ^ + ( r, - 1 >/) v'+(Y,- Y,r) r = 0,

{Z^ - Z,p) r + {Z, - Z,q) v' 4- {Z, - Z,r) r =

are conjugate planes.

If the central ellipsoid is a cylinder the conjugate planes pass

through the axis of the cylinder, and the equations to the three

conjugate planes are then not independent. We thus have the

determinantal equation

X^ - Xop, X,, - Xoq, X, - XoV, = 0. . . (1).

Y^ - Yop, Yy - IVy, Yg - For,

Zx -Zop, Z,, -Z^q, Zg - Z^r,

This equation may be written in the form

^0
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tes, this is evi-

b/ this 'plane is

il ellipsoid is a

is fixed in the

is a cylinder is

the body. In

,0 any position

le, and let the

all the nine

o. Since the

Z^ is also zero,

he equation to

at it becomes

Zz is zero, the

ihese are finite,

Hows therefore

ly point of the

27. This leads to a simplified reduction of the forces

Pi, Pa, &c. Let us take the base of reference at any point

of the central plane, and the principal diameters of the central

cylinder as axes of coordinates. The moment of that principal

couple whose astatic axis is along the infinite axis of the cylinder

is measured by the reciprocal of that axis, and is therefore zero.

Thus all the forces have been reduced to two couples (instead of

three) and a force R. The astatic arms of the couples lie in the

central plane and tlie forces of one couple are perpendicular to

those of the other.

28. The Central Point. It has been proved in Art. 10 that a

system of forces may be reduced to a principal force R at the base

of reference and three couples having their arms directed along

any three straight lines at right angles. Let us now enquire if a

base 0' can be found such that each of the forces of the couples

is perpendicular to the principal force.

If one system of axes O'A, O'B, O'C at any base 0' possess this

property, then every system of axes at that base will also possess

the same property. To prove this, let O'A', O'B', O'C be any

other such system of axes. To deduce the forces at A', E, C
from those at A, B, G, we resolve the arms OA, OB, 00 in the

directions OA', OB', OC and transfer tlie forces parallel to them-

selves, see Art. 6. Since each of the forces at A, B, G is

perpendicular to the force R, it follows that the forces at A',

B', G', which are compounded of these, are also perpendicular

to R.

Let Ox, Oy, Oz be any given rectangular axes, and let p, q, r

be the coordinates of 0'. Through 0' draw a system of axes

O'.r', O'y', O'z' parallel to Ox, Oy, Oz. Then, by what has just

been proved, the couples corresponding to these axes must have

their forces perpendicular to R. If the nine corresponding ele-

mentary couples are XJ &c., the conditions of perpendicularity are

XqXx + FqF^ + Z^^Zx = 0,

and two similar equations obtained by writing y and z for x in the

suffixes. Substituting for AV, &c. their values given in Art. 23,

R^p = A oA a; + i F-j + Z^Zx ,

R^q = XoX,, + VoYj, + ZaZff,

R:h'=XoX, + Yoy^ + Z,Z,.

21—2
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Since these give only one set of values for p, q, r there is but one

point which possesses the given property. This point is called

the central point.

29. The central point lies on the central plane. To prove this

let us consider the principal axes at the central point. Since the

forces of the three couples are at right angles to each other, they

cannot all, if finite, be perpendicular to the principal force. One
of these must therefore vanish. The central ellipsoid is therefore

a cylinder, i.e. the central point lies on the central plane.

That the central point lies in the central plane may also be

proved by substituting its coordinates in the equation (2) of the

central plane found in Art. 25. These coordinates p, q, r are

given in Art. 28, and a simple inspection shows that the equation

is satisfied.

Thus it, appears that there is a certain point, lying on the central

plane, such that the forces of the two principal couples at that point

are at right angles to each other and to the principal force. This

point is called the central point.

The central point in the three-dimensional theory has not the same signification

as tlie central point defined in Vol. i., Art. 1(50, with reference to two dimensions.

In the latter the displacements of the body are confined to one plane, and for such

displacements the single resultant always passes through a central point fixed in

the body. In the former the displacements are unrestricted so that the lines of

action of the forces do not necessarily remain in one plane.

The preceding theorems on the central plane and central point are generally

given in treatises on Astatics though the demonstrations in each may be different.

i

hr '-a %

30. We may express the formidce for the coordinates of the

central point in the form of a working ride.

As already explained in Art. 9 the forces are represented by

Pj, Pa. &c. Their points of application are i/,, M», &c. and their

coordinates are {x^, y^, Zi), {x.,, y.^, z^), &c. Also let the direction

cosines of Pj, Pa, &c. be respectively (aj, h^, Ci), {a^, h^, Co), &c.

I'hen • X^ = PiO^x^ + P^^a.^^ + . . . Xf, = P^a^ + P-m-^ + . .

.

\\ = PAx, + P,b./c, + . . . Fo = PA + PA + . .

Z^ = PiC^X, + P.fi.^^ + ... Zo = PiC + P^c, + . .

.

Let ^12, On, &c., be the inclinations of the forces- (P^, Pj,), (Pj, P.,)

&c. Then cos ^12 = ttitta + hA + CiC.,, &c
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Substituting in the expression for p, Art. 28, we have

p =

where Qi = Py + P-i cos ^12 + Ps cos On +

Qa = Pi cos ^12 + P-i + P3 cos 023 +
&C. &C.

It is evident that Q, is the sum of the resolved parts of all the

forces in the direction Pj, Q^ is the sum of the resolved parts in

the direction P2, and so on.

The equation just arrived at is the common formula for the

centre of gravity of weights PiQi, P2Q2 &^- Similar equations

hold for q and r. Hence we have this rule. To find the central

point of any number of forces, we first multiply each force by the

sum of the resolved parts of all the forces along the direction of that

force. We then place weights proportional to these products at the

points of application of the forces. The centre of gravity of these

weights is the central point required.

31. Ex. Show that the equation to the central plane, referred to any axes,

when expressed in terms of the forces and their mutual inclinations takes the form

where M=-^P,P.,P,V,^

Ztit Zo

and Fja,-:

'!>

"l,



326 ASTATICS, [art. 3.1

J*

! &3

the plane. The forces also of each couple are perpendicular to those of the other.

This plane in called the central plane.

4. In Art. 28 it was shown that if the base point is placed at a certain point on

the central plane the forces of the couples are perpendicular to the force li. Thus

the forces of the original system can finally be reduced to a force Jl together with

two couples whose arras are at right angl-ss and such that the forces of each couple

are not only perpendicular to those of the other but are also perpendicular to the

force E. Tnis bas<' point is called the central point.

The principal axes at the central point are two straight lines lying in the central

plane and a third, perpendicular to that plane. The two former are called the cfiUnil

lines of the central plane. The latter is sometimes cdllid the central axib. But it

must not be confused with Poinsot's central axis with which it coincides only when

the huCiy is properly placed. It bears indeed a certain resemblance to Poinsot's

central axis, for the system is reduced to a force and two couples (instead of one)

snch that the forces of the couples are perpendicular to the force.

83. Analogy to BKomenta of Inertia. Ex. 1. If A' be the astatic moment of

the couple corresponding to any astatic arm OP drawn from the central j)c)int o,

prove that the astatic moment K' of the couple corresponding to any parallel arm

O'F' drawn from any point O' is given by K''^= K^ + R'^p'^ where p is the projection

of oO' on either Estatic arm.

Thus, a motion of the base in a direction perpendicular to the astatic arm does

not alter the magnitude of the astatic moment, but a motion along the arm from the

central point increases the moment.

Ex. 2. If A',, A'o, A'.j be the astatic moments Corresponding to the principal

astatic axes Ox, Oij, Oz drawn from any point 0, prove that the astatic moment K
corresponding to any arm OP making angles a, /3, y with the axes is given by

K^=K^- cos2 a +AV cos^ /3 + A'3- cos^ y.

It appears from these two propositions that the theory of astatic moments

of couples has an analogy to the theory of moments of inertia. The square of the

astatic moment about an arm drawn from O in any direction OP corresponds

to the moment of inertia of a rigid body with regard to a platie drawn through

perpendicular to OP. By noticing this correspondence we may deduce the

analogous propositions in the two theories one from the other.

It is clear from these two propositions that the mass of the rigid body is

analogous to the square of the principal force It, and that the centre of gravity

must be at the central point. For any base in the central plane the moment

of the couple whose astatic arm is perpendicular to that plane is zero, hence the

rigid body must be a lamina whose plane is the central plane of the forces.

The analogy may be made more distinct by adding another proposition. Lot

be the central point, Oy, Oz the principal astatic axes in the central plane,

Ox that perpendicular. The astatic moment A' about any axis OP, whose

direction cosines are /, m, n, is given by

K''= K.rnfi + K./n- (1).

Let a lamina be placed in the plane of yz with its centre of gravity at O, having

the axes of x, y, z for its principal axes of inertia ; and let K.^, A'/ be its moments

of inertia at the origin with regard to the planes respectively perpendicular to the

axes of ?/ and z. The equation (1) then shows that K'^ is the moment of inertia of

the lamina with regard to a plane drawn through O perpendicular to OP.
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Let 0' be any other point whose coordinates are ^, ^, i, and let O'P' be parallel

to OP. The astatic moment A" at O' corresponding to the arm O'l" is given by

,
. K'^=:Ki +nY (2),

where ti is the prHection of 00' on OP. This is also the formula which gives the

moment of inertia of the lamina with regard to a plane drawn through ()'

perpendicular to O'P', provided /{'•' is the mass of the body.

It follows that the moment of inertia of the lamina with regard to a plane

drawn through any point O' perpendicular to any straight line O'P' represents the

square of the astatic moment at the base O' for the arm O'P'.

Since the moments of inertia for all arms through O' represent the squares of

the astatic moments for the same arms, it follows that they have the same maxima
and minima and are connected together by the same rules. The principal axes of

inertia at O' are therefore the same in direction as the principal astatic axes at 0',

That the principal astatic moments at O' are the normals to the confooals (4) of

Art. M, and that the astatic moments are the three values of M given by the cubic,

follow at once from the propertiec of the principal axes of inertia, see Ripid

Dijnaiuiai, Vol. i. Art. 50.

Since the moments of inertia of the lamina about the axes of // and z are

respectively K.^ and K.?, it follows that the lamina might take the form of a

homogeneous elliptic disc, whose semi-axes of // and z are respectively 2KJ11 and

2K.Jlt, and v.hose mass is ii*. The boundary is therefore similar to the imaginary

focal conic.

The Cunfocals.

34. To investigate the mode in which the central ellipsoids at

different bases are arranr/ed about the central point.

Let the central point be chosen as the origin and the principal

diameters of the central ellipsoid as a.xes of coordinates. Let the

infinite axis be che axis of w, then the plane of ijz is the central

plane.

As we are enquiring into the positions of the neighbouring

central ellipsoids, and as these are fixtures in the body, we may
put the body itself into any position we may find convenient.

Let it be placed in its positive initial position with the central

point as the base.

In this position all the nine elementary couples are zero,

except F„ and Z^. Also Xq = R, Fo = 0, Zo = 0. Tlie central

ellipsoid at the origin is Yy-r)- + Z^^^^ = 1 (1).

The central ellipsoid at any point 0' whose coordinates are p, q, r,

is Yy^v" + Zzf' + R' ip^' + qv H- <')" =5 (2),

where (^', r]', ^') are referred to axes meeting at 0' parallel to the

axes iv, y, z, Art. 23.

Let an astatic arm O'A' move about 0' so ta it the correspond-
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ing couple (/", 0^4') has a constant astatic moment equal to M,

and in any position let (/, m, w) be its direction cosines. Then,

since the moment M (Art. 14) is the reciprocal of the correspond-

ing radius vector of the central ellipsoid, we see that /, m, n are

connected together by the relation

r,/w» + Z>» + 72* {pi + qm + rnf = M'
;

... Mr + (M*-Yy')m' + iM'-Z,')n' = R*(pl + qm,+ rn)\..(S).

Now, after division by R*, the left-hand side of equation (3)

expresses the square of the perpendicular drawn from the central

point on a tangent plane to the ellipsoid

Z,'^ R'
"•••(4);

and the right-hand side of (3) expresses the square of the perpen-

dicular from the central point on a plane through 0' parallel to

that tangent plane. The equation (3) therefore shows that this

tangent plane passes through 0'. Hence we infer that if O'A'

move about 0', so that the corresjmnding astatic moment is constant

and equal to M, then O'A' is always pei-pendicxdar to a tangent

plane drawn from 0' to touch the confocal (4).

These tangent planes all touch the enveloping cone of the

confocal (4), and the axis 0'A' traces out the reciprocal cone of

this enveloping cone. These two cones are known to be co-axial

and their axes (Art. 17, Ex. 2) are in the same directions as those

of the central ellipsoid at 0'.

If M is so chosen that the confocal (4) passes through the

point 0', the enveloping cone becomes the tangent plane and

therefore the cone traced out by O'A' reduces to the normal at 0'.

Hence the principal diameters of the central ellipsoid at any

point are the three normals to the three quadrics which pass

through 0' confocal to the quadric (4<). Also the astatic moments

of the three corresponding couples u/e the values of M given by the

cubic (4) when we write for ^, ij, f the coordinates of 0'.

36. Instead of rising the three confocals we may use any one of

them, say the ellipsoid. By known properties of solid geometry the

three normals at any point 0' are (1) the normal to the ellipsoid,

(2) parallels to the principal diameters of the section of the

ellipsoid diametral to 00'.

Let Ml, M,i, Mi be the three values of M given by the cubic

(4), Ml being the greatest. Let D.,, /);, bo the lengths of the
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principal semidiameters of the section of the ellipsoid, D^ being

parallel to the normal at 0' to the confocal M^, and A parallel to

the normal to M^, Then it is known by solid geometry that

Thus M^, M.^ are known in terms of il/, and quantities connected

with the ellipsoid.

36. As these confocals play an important part in the theory

of astatic forces, it is necessary to state distinctly their position.

Let the body be referred to the central point as origin, and the

principal diameters of the central cylinder as axes, the plane of yz

being the central plane. Let K^, K.^ be the astatic moments of

the couples whose astatic arms are along y and z. These astatic

moments are the same for all positions of the body and are

represented by Yy and Zg when the body is in its initial position.

The equation to the eonfocals is therefore

The focal conies of these are obtained in the usual manner by

putting M = K.„ i; = 0; M = K^, f=0; and ilf=0, f = 0. We
thus have

r=o;

K,^
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conies Kfill he re/erred to us the focal conies, and a straight line

intersecting both conies may be called a focal line.

The figure represents the positive octant of a set of confocal

quadrics intersecting in 0'. The semi a--axes are represented by

OAi, OA.,, OAg and are respectively equal to Mi/Ix, M^/R, M-JR.

As is well known the vertices F.^, F.^ of the two focal conies lie

between A,, A, and ^3. We have OF, = K^/R, OF-, = KJR.
If K.y—0, the ellipfloid and the hyperboloid of one sheet are Huvfftces of revolution.

The hyperboloid of two HheetB reduces to any two planes througli Oz, and the hyper-

bolic conic becomes the axis of z. The central plane is now indeterminate and

is any plane through the astatic arm of K^.

If both K„— and A'., = 0, the ellipsoid becomes a sphere, one hyperboloid is a

right cone, and the other any two planes through the axis of the cone.

87. Tbeorem on foeal llntts. A strniijht line in drawn from nnij point P on

one focal conic to ani/ point Q on the other, it in required to prove that

where «,, a.,, «., are the direction nmineH of PQ, and p in the perpendicular distance

from the origin.

We know that the tangent planes drawn through any right line to the two

confocals which that line touches are at right angles to each other, see Salmon's

Solid Oeometry, Art. 172. Since the focal conies are evanescent confocals, the

planes througn PQ and the tangents at P and Q to the conies are at right angles.

If p, p' are the perpendiculars on th<>He planes, /, m, n ; V, m', n' their direction

cosines, we have

RY = K-;^l' - (AV - AV) ««, RY- = ^s-l" + (
K./ - K.J') »»'*.

.-. «V= iJ« (iJ" +p'^) = K.J' {l^ + n^ - Hi'-) + A7 {V^ + iu"^ - »('•«).

Since the straight lines p, p' and PQ are mutually at right angles, this becomes

KJ' (1 - ni' - w'-*) + A7 (1 - «-^ - n'-^) = K^^aJ> + A'.,%.,».

The theorem may be more easily proved by taking as the coordinates of P and Q
{x, y, z) and (x', ij', z') where

Rx=K„sBad, Ri/ = 0, Rz = (K^^ - K.^)^ nd,

Rx' = K3COS<p, Ri/'rziK.J'-KVjisinip, Rz' = 0.

The direction cosines a.,, «., and the length p may then be found by elementary

formulaB, and it will be seen that the relation to be proved is satisfied.

It follows from this theorem that every focal line is a generator of the right

circular cylinder whose radius is p and whose axis passes through the common
centre of the conies and is parallel to the iocal line.

Ex. 1. Show that four real focal lines can be drawn parallel to a given

straight line.

Let a generator parallel to the given straight line travel round the hyper-

bolic conic and trace out a cylinder. This will cut the plane of the other conic

in a hyperbola. Each branch of this hyperbola passes inside the elliptic

conic, because it goes through the focus ; it therefore cuts the ellipse in two

points.

Ex. 2. If a straight line PQ intersect one focal conic and if its distance from

the central point be p, where p is given in the theorem above, show that that

straight line will intersect the other conic also.
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If poHBible let PQ intersect ono focal conic in P and not intersect the other.

Describe two cylinders whoso bases are the focal oonics and whose generators are

parallel to PQ, By Ex. 1 these intersect in four liiieH, and each of these four is also

a generator of the right circular jylindur whose radius is p. Now by supposition

PQ lies on one of the elliptic cylinders and also on the circular cylinder, hence

these two quadric cyli iders intersect each other in five lines, which is impossible.

Ex. 8. The locus of all the straight lines drawn from any given point P on the

hyperbolic conic to intersect the elliptic conic is a right cone, the tangent of whose

semi-angle is (A'^*- K.^-)jKj^Uz where z is the ordinate of P.

Ex. 4. Hhow that four real focal lints can be drawn through a given point P,

and that they are the intersections of the two ((uadric cones

W AV ' A'.," - AV ~
ii'^

where {p, q, r) are the coordinates of P and f, i), ^ are referred to parallel axes

meeting at P.

¥j\. 5. Prove that the circular sections of the central ellipsoid whose centre is

at O' are perpendicular to the generating lines at O' of the hyperboloid of one

sheet. [Darboux.]

Ex. G. If the base is situated on one of the principal planes at the central

point, show that one principal axis at that base is perpendicular to that plane

and the astatic moment of the corresponding couple is the same for all base

points in that plane.

Ex. 7. If the base is situated on one of the principal axes at the central point,

prove that the three principal axes at the base are parallel to those at the central

point.

Ex. 8. If a straight line is a principal axis at every point of its length, prove

that it is one of the principal axes at the central point.

Ex. 9. Find the locus of the base point ()' at which the central ellipsoid is a

surface of revolution.

In order that two of the three quantities .Vi, M.^, M.^, in Art. 35 may be equal we

must have either D., = or D.^ = Dg. In the first case 0' lies on the elliptic focal

conic. In the second case 0' is at an umbilicus U and the locus is therefore the

hyperbolic focal conic. In both cases the unequal axis is a tangent to the focal

conic.

The same results follow from the equation to the central ellipsoid in the form

y/i' + ^z'i:- + K' (i>«

+

<iv + rn-"= 1,

see Art. 34. By applying the usual analytical conditions that this is a surface of

revolution we obtain the required relation between p, q, r.

Arrangement of Poinsot's central awes.

38. In whatever position the body is placed relatively to the

forces it has been shown in Vol. I. that the forces acting on the

body can be simplified into a single force, acting along a straight

line called by Poinsot the central axis, and a couple round that

axis. As the body takes different positions relative to the forces
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Poinsot's axis aNo moves relatively to both. In order to determine

the arrangement of Poi.iwot'a axes tor all poasiblo positions of the

body and forces it will be convenient to have two systems of axes,

one fixed in the body and the other fixed relatively to the forces.

Let the axes fixed in the body be the principal axes at the

central point. These we shall represent by Or, Oy, Oz. Following

the same notation as before, the forces are represented by the

astatij couples {G, b), {H, c), whose astatic arms are placed along

y and z, together with a force R acting at 0. The astatic

moments of these couples are represenued by A'j, A'^ respectively.

Let the axes fixed in space be parallel to the forces R, G, H.

These are represented by Ow', Oi/\ Oz', We shall sometimes

speak of them tis the axes of the forces.

Let the direction cosines of either set of axes relatively to the

other be given by the diagram. The positive

directions of these axes are so chosen that by

turning one set round the common origin the

positive directions of x, y, z may be made to

coincide with those of x
, y\ z The advantage

of this choice is, that in the determinant of direction cosines every

constituent is equal to its minor with the proper sign as given by
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forces (J, II acting at /.' and (' are measured by tlie astatic moments A'o, K3,

Art. 10. The axes <).v', Oij', <)z' being tlie axes of reference, the coordinates of li

and C are respectively «._,, h.,, c.,; «.,, //,, Cj. Sincj A',, acts parallel to Oy', its

moment about Oz' is K./t.,, and since A'., acts parallel to Oz' its moment about

Oy' is -yvV'ii- •''^ *h® same way their moments about O.i' are Ay;., and - K^c^,

Equating these to the moment of II acting along Px" and of V we have the same

results as before.

40. When the body is rotated about Ox, the direction cosines

a,,, a., are invariable. It follows that the straight line whose

position is determined by the ec^nations (2) and (3) is fixed

relatively to the forces. Hence we infer, that, when the body is

rotated about an anns passing through the central point and parallel

to the jirincijml force, Poinsot's awis always coincides with a

straight line fixed in space.

This straight line traces out a right circular cylinder in the

body whose radius p is given by the equation

R'p^ = AV'tt/ + AV«i.' .(4).

This cylinder is fixed in the body and moves with it. In one

complete revolution of the body each generator in turn passes

through the straight line fixed in space and becomes the Poinsot's

axis for that position of the body.

Referring to the figure of Art. 38, the axis of this cylinder cuts

the sphere of reference in R. We may also imagine the sphere of

such size that the cylinder envelopes it along the circular boundary

of the figure. In the figure the direction of the force R and the

generators of the cylinder are supposed to be perpendicular to the

plane of the paper.

As the body tui'ns round OR as its axis, the dotted part of the

figure remains fixed in space while the part indicated by the

continuous lines moves round R.

Let a plane through the axis of the cylinder and the straight

line fixed in space cut the sphere in the arc RP, Let RP
produced backwards cut the circle GH in P'. Then the position

of P OY P' may be found from the equations

.(5).tan GP = tan GP' = K = !9"
'

ij Kid.,

In every position of the body Poinsot's central axis is a

straight line drawn through P [)erpendicular to the plane of ^^e

circle GH. Here P is distinguished from P' by the sign of either

f}' or ^' as given by the equations (2) and (3).
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Under in the

It follows from these results, that all the straight lines, each of

which would be a Poinsot's axis if the body were properly placed,

may be classified as the generators of a system of right circular

cylinders. The axes of these cylinders pass through the central

point and are always parallel to the direction of the principal

force.

Conversely, a straight line being given in the body it may be

required {when possible) to place the body in such a position that

the straight line may be a Poinsot's aacis. To effect this, we turn

the body about the central point until the given straight line

is parallel to the principal force. If «i, a.,, a,, are the direction

cosines of the given straight line referred to the principal axes of

the body at the central point, then, in this position of the body,

ai, rt.j, «;, are also the direction cosines of the principal force. If

the distance of the given straight line from the central point does

not satisfy equation (4) the straight line cannot be a Poinsot's

axis. If however the equation is satisfied, we turn the body

round the principal force as an axis of rotation through the angle

GP determined by ecjuation (.t), or, which is the same thing, we

turn the body until the given straight line passes through the

point 1]', f in the plane y'z determined by the equations (2), (3).

The body has then been placed in the required position. When
the straight line fixed in the body has been made parallel to the

principal force the body may be inverted, so that the given straight

line is again parallel to the force but points in the opposite

direction. If the condition (4) is satisfied in one case, it is

satisfied in the other. Thus if the construction yield one position

in which the given straight line is a Poinsot's axis, it will yield

another.

41. In every position of the body the couple-moment of

Poinsot's axis is given by

r = K3 cos Gz — K2 cos Hy
= /Ct (cos <^ sin ^ + sin y^ cos cos 6)

+ iiTa (sin -x/r cos <^ + cos i/r sin ^ cos 6),

by using the spherical fornmlce for the triangles GIz and Hly.

This may be written in the form

r = r„sin(<^-</>o) (6),

where To is the maximum value of F, and </) = (^o determines the

'm

W- 'iS
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position of the body when the couple-moment is zero. We easily

„ , , ,
K., + Kacoad ^ , .^.

^"^ ^^" *" = - ^, cos ^ + ^,
*^" ^ <^>'

r„a = (K^ + K, cos fiy sin- -^ + (/T, cos 6 + i^^)' cos'' yfr

Make the arc MN'o = <f>n,
then the arc JVo(t = ^ — <^„ and

r=rosiniVyG. As the body rotates about the axis OR, both

JkT and N^ move with it. When ^ — <f>o
= or tt, the point Nq

coincides with eitiier P' or F ; the couple-moment vanishes and

the system is equivalent to a single resultant. As the body is

turned from either of these opposite positions through any angle

the couple T increases and its magnitude varies as the sine of the

angle of rotation. The couple reaches a maximum in either of the

positions given by ^ — </>o
= ± Jtt and then decreases again. Thus

there are in general two positions of the body in which the couple-

moment r has a given value, and two more in which it has the

same value with an opposite sign.

42. We may interpret this result in a slightly different

manner. We may ascribe to each generator a certain couple-

moment r peculiar to itself, which becomes the couple-moment

when the body is so placed that that generator is a Poinsot's axis.

Make i¥iVi = MN„ + GP, then for any generator of the cylinder,

say the one which passes through P, we have F = T^ sin NiP.

It will be useful to state this result in words. Through the

line of action of R draw two planes, one po,ssing through the two

generators whose couple-moments are each zero, and the other

arbitrary and cutting the cylinders in two other generators. If V
he the couple-moment for these last two generators and x ^/'^ angle

bettveen the planes, then F = To sin ^ where F,, is given by either of

the forms in equation (8).

4S. In what precedes it has been supposed that both the direction and the line

of action of the principal force li are f^iven in the body. In this case the body can

only be rotated about Ox' as an axis. If the direction of 7i is not given, but only its

line of action, the body can also bo inverted by rotating it through two right angles

about an axis perpendicular to Ox'. To avoid complicating the figure it will be more

convenient to effect this last change by rotating the forces in the opposite direction,

each about its point of application, so that the angles between their directions

remain unaltered.

The effect of this inversion is easily seen to be, that the positive directions of x'

and of one of the two y', z' are reversed. As it will be convenient that they should
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have the same positive directions in space as before, we shall represent the effect of

the inversion by changing the signs of the force R and of that of one of the astatic

moments K^, K^, The sign of the couple-moment F about Poinsot's axis also must

be chan; '.d (even if its magnitude remains unaltered) when the positive direction of

X in space is to be the same after inversion as before.

One result of these changes is that the arc P'P (Art. 40) takes up another

position (say Q'Q, not drawn in the figure of Art. 38) making the same angle with

GR as before, but on the other side. The angle ^g and the couple Fg are also

changed. Thus the positions in which Poinsot's couple vanishes are changed by

the inversion of the body.

44. To find the equation of Poinsot's axis referred to the prin-

cipal axes at the central point.

Following the notation already described in Art. 39, the

equations of Poinsot's axis referred to the axes of the forces

are i2i;' = — ifatta, E^' = — K3a3 (1),

and the couple-moment T is given by F = K3ba — K^c^ (2).

Transforming these to the axes fixed in the body, we obviously have

^ {bi^ + biV + bsO = - -^a«2.

J2 (c,^ + C2V + C3O = -^3(13-

Eliminating f , tj, f in turn, and remembering that each constituent

of the determinant of transformation in Art. 38 is equal to its

minor, we have

Il{ — V^3 + ^o,i) = - K^a^i + Ksaabi "I

R(-^ai+ ^Us) = - K^a^^c^ + if30363 > (3).

-R ( - ^Oa + rjai) = - K^a^Ca + Kiajbs)

These may also be written in the form

R(-ria3+ ^ag) - Tai = - KJ)3 + K^^ \

i2(-r«. + W-r«2=-- -KacA (4).

R{-^a.,^-',)a,)-Ta3 = KjH
J

Any two of these are the equations to Poinsot's axis when the

relative positions of the body and the forces are given by the

direction cosines a^, &c. They are also the equations of the fixed

generator of the circular cylinder. Art. 40.

Adding together the squares of the equations (3), we obtain

the equation of the cylinder traced out by Poinsot's axis as the

body is turned round Ox . This cylinder is easily seen to be a

right circular cylinder and its radius p is given by

Ry = K,W + K./a3' (5),

as already proved in Art. 40.

When the body is so placed that the forces reduce to a ^lingle

K. s. II. 22
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resultant, the equations (4) may be put into a more convenient

form. Since r = 0, the first of those equations reduces to

R{-Vtta + ^(h) = — KJ)^ 4- K^c^

also, by (2) = - K^^ + KA)
'

Subtracting the squares, we have

Ji' i-vas + ^a,y = (V - c,») (if/ - ^3').

Let us seek the intersection of the single resultant with the plane

of xy; putting therefore ^= 0, the two first of equations (4) become

RW V
K^ — Ky

— ^2 Us , .(6).

A straight line drawn through the point thus determined parallel

to the force R is the single resultant.

Adding these equations together and remembering that

63' + as" = 1 - -
" = -

»

we have, after division by ag^,

C3 ~ ^i ' Ca I

K;'
'?! 4.11-1

.(7).

This is the equation of a focp.l conic, Art. 36. The single resultant

therefore intersects th3 focal conic in the plane of xy. In the

same way, it intersects 'hat in the plane of xz. We thus arrive at

a theorem due to Minding, viz. that when the body is so placed that

the forces are equivalent to a single resultant, the line of action of

that resultant is a focal line. A fuller consideration of this mode

of proof and of Minding's theorem will be found a little further on.

An apparent exception arises when either 03=0 or 03 = 0. Supposing that a.^=0

the equations (3) become Rnjt^^ - Ara''2'^i' iiflif= A'2rt2C2.

Since -C2= aib^-a.J)i, we have r = K^b.^- K^C2=(K^ + K2ai)b^= 0.

Thus either /';,= or A'a + ZTaa, =0. Joining the former to T-O, we have 0^=0.

The latter is impossible if A'g is greater than K^ ; if K^ is less than K^ the focal

conic (7) is a hyperbola and the single resultant is parallel to an asymptote. Thus

in both cases the sin^^ie resultant inters>?cts the focal conic.

Ex. 1. Show that the single resultant intersects the plane of the imaginary focal

„-2 fa
conic in the conic

^2'^ ^ A'a

This conic is fixed in the body when a^ is given.

Ex. 2. Show that the circular cylinder (6) intersects the plane of xy in the

conic whose equation is

7i2 {^ ^. ,a _ (^a, + -na^f) = K^^a^^ + ATsV-

46. The direction of the principa" force R, and a point ?, ri, f on a generator

of the circular cylinder being given referred to the principal axes of the body, it is

required to find the couple-moment about that generator when the body is so placed

that the generator is a Poinsot's axis.



, ^^

[art. 45

J convenient

IS to

ith the plane

18 (4) become

^^ (6).

lined parallel

ig that

L (7).

ngle resultant

f xy. In the

thus arrive at

so placed that

le of acti&n of

I of this mode

tie further on.

jposing that 0^=0

we have c^=0.

than ffa the focal

asymptote. Thus

he imaginary focal

lane of xy in the

7, f on a generator

of the body, it is

le body is so placed

ART. 46] ARRANGEMENT OF POINSOTS AXES. 339

For the sake of brevity bt ua write

Maltiplying the second and third of equations (4) Art. 44 by K^^n^ and /Tg'a,

respectively we have

K,*a^ (Rq - raj) + i^sS (^'" " Toj) = K^K^ ( - K^^^ + K^a^b^) = KjK^Rp.
The couple-moment F is therefore given by

(ii:,V + -«^3V)r---/i(A:»»aa9 + ^3'V--K»^3P) (1).

If tlie line of action of It only is given and the force may act either way along

it, we obtain another value of F by inverting either the body or the forces. If F* be

the couple-moment after inversion we have by Art. 43

(/f,V + -fi^sV) T' = R(K^'a^q + K3''a^r + K^K^p) (2).

The force R then acts along the negative direction of its line of action.

We may write (1) in the form

We therefore see that the plane through the line of action of R and the two genera-

tors whose couple-moments are zero (Art. 41) is

-(K^^-K^^)a^a^ + K\{K.^i + IQa^V-K,{K^i + K3)a,f=0 (4).

Conversely, when the magnitude of the couple F is given, either of the equations

(1) or (3) enables us to find the generators tohich have the given moment F when the

body is so placed that one of them is a Poinsot's axis. When F is given, either of

these equations represents a plane intersecting the circular cylinder (6) in two

straight lines which are parallel to the principal force. These are the generators

required ; see also Art. 41. If we change the sign of F we obtain another plane,

parallel to the former, giving two other generators, each of whose couple moments
has the given magnitude but an opposite sign. These four are obviously sym-

metrically arranged round the principal force.

Another construction for Poinsot's axis and moment is indicated in the follow-

ing examples.

Ex. 1. A straight line OQ is drawn through the central point perpendicular

to the plane containing the force R and its corresponding fixed generator. Prove

that p, q, r are the coordinates of the point Q in which this straight line outs the

circular cylinder. Prove also that Q is one of the poles of the great circle repre-

.-^ented by PF in the figure of Art. 38,

Ex. 2. Let OS be the straight line whose direction cosines are proportional to

- A'jX^j, K^'^a^, A'3*«3, when referred to the principal axes of the b'^dy at the central

point 0; thus OS is fixed in the body when the position of OR is given. If

be the angle contained by the lines OQ, OS, prove that

T_ ^ {K^Kl + K^^al +K^n
^

cos(p \ K./a^^ + K/a3^ \

Show also that the straight line OS lies in the plane containing the force R and the

two generators whose couple-moments are zero.

46. If the magnitude of the couple-moment F is given as well as the line

of action of R, we may obtain other cylinders which will intersect the right cylinder

already found in the corresponding Poinsot's axes.

The first of equations (4) Art. 44 is

•fi ( - iJ^a + f«2) - fai = - K^b^+ K^p^,

and F= - K^c^+ K^b^.

22—2

i

'i
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Hence subtracting the squares, as in Art, 44,

{ /J ( - ,^3 + f«„) - ra, }-^ - r*= (b/ - c,2) (ATj* - ATs*).

Now by Art. 38, b.^^-c^^-c-^-a^^, hence, substituting for c,'* from the second of

equations (4), we have

_____ + __ _a, (1).

Again b^-c^=a,?-h^, substituting for h{^ from the third of equations (4), we have

V--fi7 ^ ~ * ^
^'

Lastly, the last two of equations (4) give

V "* IQ ^""' ^^^•

The three surfaces (1) (2) and (3) are cylinders, for the equation to any one of them

shows that an expression of the first degree in {, i), ^ is some function of another

expression of the first degree. Also the axis of each cylinder is parallel to the

straight line f/ai = '7/a.j = ^/a3, i.e. the axis of each is parallel to the line of action

of the force R.

It may be noticed that the direction cosines h^, b„, b.^\ c,, Cj, Cj have been

eliminated so that the equations to these cylinders contain only the principal force

R, the direction cosines of R and Poinsot's couple T.

47. Supposing that the coordinates (^, 17, ^) of some point on the cylindrical

locus (5) are given, and that the line of action of the force R is also known, any one

of the equations (1), (2), (3), of Art. 46 may be regarded as a quadratic to find the

couple-moment when the body is so placed that the corresponding generator is a

Poinsot's axis.

If we seek the corresponding equations when the forces are inverted we change

the signs of R, T and one of the £'s (Art, 48), But these changes leave the

quadratics unaltered. Thus the two values of F given by any one of these

quadratics correspond to the two directions in which R can act along the same

given line of action.

Ex. The given point (^, rj, f) being supposed to be on the circular cylinder, prove

that the three quadratics (1) (2) (3) of Art. 46 reduce to the same, viz.

r« {K^^a^' + K^ai') - 2Rr {K^^a./i + K.,\,r) + R^ (K^Y + A?'^) = K./K/ («/ + a^^). .

Prove also that the roots of this quadratic are given by

r {K^'a^^ + K.'^a./) =R (K^'a^q + K^^r =f K.,K.,p)

where p, q, r have the meanings specified in Art. 45.

48. aUndlng's Theorem. By joining any one of the three cylinders (1), (2),

(3) to the circular cylinder we have sutiicient equations to find the generators which

can have a given couple-moment and are also parulel to any given straight line.

It will often be more convenient to use the intersections of the cylinders with one

of the coordinate planes. Thus putting f=0, the cylinder (1) cuts the planti of xy

m the conic - ' t
., Ih + va

^' =<'/ (!)•

When the forces are equivalent to a single resultant we have r=0 and in that

Tj'-* f- 1
case equation (1) reduces to the focal conic ^ .^

+ -^-^ = ,
.- (2).

The single resultant therefore intersects the focal conic in the plane of xy.

Similarly it intersects that in the plane of xz. See Art, 44.
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49. Conversely, let a straight line intersect both focal conies, then by Art. 87

it is a generator of the circular cylinder. If the direction cosines of this straight

line are a,, <i.^, a,, the corresponding couple-moment F is given by the quadratic (1)
'

of Art. 48.

This quadratic gives two values of F. Multiplying (2) by R^a^^ and subtracting

the result from (1) we find that one root is F=:0 and that the other is given by

(K,W + K3W)1^= ^Ji<^3{K.iHa^ + K3^r,a,-ia^)} (8).

The result is that the couple-moment for the generator is zero for one of the

two directions in which the force li can act along £hat generator.

These two values of F follow also from equations (1) and (2) Art. 45, for when

the value of V given by (1) is zero, the value given by (2) agrees with that shown in

equation (3) of this article.

Finally, we see that // any straight line can be the line of action of a tingle

resultant force that line must intersect both the focal conies, and if a straight line

intersect both the focal conies it can be the line of action of a single resultant if the

body be properly placed,

ftO. Ex. 1. The direction of the principal force R being given by the direction

cosines (ij , a., , a^ referred to the principal axes at the central point show that each

of the planes (l .. l) K,^ ^ (^ - ^]^^^+ ( ^ - 1)k,^=

passes through the line of action of R and intersects the focal conies in four points,

which are the corners of a parallelogram formed by the focal lines, two of which are

parallel to the direction of R. Prove also that the focal lines parallel to the given

direction of R are the corresponding single resultants.

This follows easily from Art. 45.

Ex. 2. If the body is so placed that the force R acts along an asymptote of the

hyperbolic focal conic, prove (1) that the circular cylinder contains the elliptic focal

conic on its surface; (2) that as the body '.s turned round OR Poinsot's axis lies in

the plane containing R and parallel to the force H which corresponds to the

greater astatic moment A'3
; (3) that Poinsot's couple F is always zero as the body

is turned round OR provided the force R acts in the proper direction, but is zero

only when the plane of the hyperbolic conic contains the force If if 22 act in the

other direction.

61. Belatlona of Poinsot's axis to the eonfoeaXa. The manner in which the

single resultant is connected with the coufocals is given by Minding's theorem.

We may also find the relations of Poinsot's axis with the same oonfocals in the

general case in which the couple is not zero. To effect this we require the following

lemma in solid geometry.

53. Lemma. Let the squ^es of the semi-axes of two confocals be a^-(-\,

^ + \,y' + \ and o'' + \', (P + \\ y* + \'. Let the direction cosines of any straight line

be {I, m, n) and its distance from the origin be p. If two planes at right angles can

be drawn through the straight line to touch the two confocals, then

p- + a^P + /3«»i2 + yhi^ -a^ + ^^ + y^-^-X + X.

It follows that when the confocals are given the left-hand side is constant for all

straight lines.

Let {V, m', n'), (I", in", n") be the direction cosines of the tangent planes, and

p, p' the lengths of the perpendiculars on them. Then

p^={a^+ \) l'^
+{pi+ \) m'2 + (y^ + \) m'2,

2)"-'= (a* + V) i"* + (i3« -f- V) w'"' + (7* + V) «"*.
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Noticing that /)»=p»+;)'" we find by addition

p" = a" (/,'« + J"=)+ /3« (m'« + m"a) + 7" (»'»-!- n"a) + X + V.

Hence since P + T'' + /"* = ! drc, we have
j

p3 -(. a»P + /S^ni" + 72«»= o« + /9« + 7» + X + X'.

AS. Let us now apply this Lemma to any generator of the cylinder. Let

a, /3, V be the semi-axes of the imaginary focal conic, then, by Art. 36,

a«= 0, ^^=-AV-/M 7'=-AV//e».

The values of X, X' are the squares of the semi-major axes ->f ttie two confocals ; let

these be represented by MJR" and M^'jK^ as Art. ?' The direction cosines of

any generator an ^a,, a^, a.^ and its distance / .'or. ... j central point is given by

R^p'^=K.^^a,^ + K^a^. Hence, substituting, the i. <!!:.;; 4 . i of the equation in the

Lemma reduces to zero. We therefore have .'f * i i\ -K^-\-K^.

If therefore any two planes at right aniiles are drawn throu vo»sible Poinsot's

axis and two confocals are drawn to touch theae planes, the sum of t le squares of the

semi-major axes of these confocals is constant This constant when multiplied hy ii* is

the sum of the squares of the astatic moments of the principal couples at the central

point.

From this we may deduce as a corollary a theorem discovered by Darboux.

Let a plane he drawn through any possible Poinsot's axis to touch one of the focal

conies, then a perpendicular plane through tlie same axis will touch another focal conic.

For in the limit these conies may be regarded as the bounding rims of two flat

confocals whose semi-major axes are respectively KJR and KJIt.

54. Ex. 1. If a possible Poinsot's axis touch two confoc kis prove that the sum
of the squares of their semi-major axes is equal to K.^^ + K^^ after division by E*.

If a straight line touch two confocals, and tangent planes are drawn at the points

of contact, these planes are known to be at right angles. If we apply the general

theorem in Art. 53 to these two taugent planes, the result follows at once.

Ex. 2. If a possible Poinsot's axis intersect one of the focal conies prove that it

must intersect the other also.

For suppose it intersects the plane of xy in the elliptic focal conic, it may be

regarded as touching the confocal surface whose semi-major axis is K^jR. Hence

it also touches the confocal surface whose semi-major axis is K^IR (by the last

example), i.e. it intersects the plane of xz in the hyperbolic focal conic.

Reduction to Three and to Four Forces.

55. We have seen that the forces of any astatic system may
be reduced to two couples and a single force. This representation

of the forces, though very simple in its character, may not always

be convenient. These couples and the force have an intimate

relation to the central point and central plane, and the positions

of this point and plane may not suit the circumstances of the

problem we wish to consider.

We shall now examine sorae other representAtions of an astatic

system. We shall show that J^he forces may be reduced to three

forces which act at three arbitrary points in the central plane.
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These points however must not in general lie in one straight line.

We shall show that the forces of the system may also be reduced

to four forces which act at any four points fixed in the body at

which we may find it convenient to apply them. The four points

must not in general lie in one plane.

We can see another advantage of these representations of the

forces. For the points of application may be regarded as the

corners of a triangle or tetrahedron of reference. We are thus

enabled to use the systems of coordinates called trilinear and

tetrahedral with considerable effect.

66. To show that all the forces of any system may be reduced

to three forces which act at three points lying in the central plane.

Following the same notation as in Art. 9, let the forces of the

system be Pj, Pj, &c. and let il/j, Jl/j, ... be their points of

application. Let these be referred to any axes Ox, Oy, Oz, either

rectangular or oblique, which are fixed relati/ely to the body.

Let the coordinates of il/i, M^, &c. be (x'l, 3/1, ^,), (a?j, ya, ^a). &c.

Let Ox', Oy', Oz , be another system of axes, not necessarily

rectangular, to which we may refer the forces. These are fixed

relatively to the forces. Let the components of the forces along

these be (X„ F„ Z\\ {X'„ Y',, Z',), &c.

Consider the system of parallel forces X\, X'^, &c. All these

are astatically equivalent to a single force "ZX' acting at their

centre of parallel forces. In the same way the two other systems

of parallel forces, viz. F',, Y^ &c. and Z'l, Z'^ &c., are equivalent to

%Y' and "liZ' each acting at its own centre of parallel forces in

directions parallel to y' and z respectively. These forces we may
represent by F, G, H, and their points of application hy A,B, C.

The centre of parallel forces is known to possess the astatic

quality. If then we move the arbitrary axes Ox', Oy', Oz' in any

manner about the origin, keeping their inclination to each other

unaltered, the system will yet he equivalent to the same three forces

p f.
r, H acting at the same three points A,B,C in directions always

parallel to the axes Ox', Oy', Oz'.

To find the coordinates of these points we may therefore

consider any one position of the forces and the body. In this

position let X, Y, Z be the components of any force P resolved

along the axes Ox, Oy, Oz. Then

X' = IX + 1'Y + l"Z, F=mX^m'Y+ m"Z, Z' = &c.

I

v*^
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where (i, m, n), (V, in, n'), (/", m", w"), are the direction ratioa of

the axes (x, y, z) referred to (x', y\ z').

Let {x, y, z) be the coordinates of A, then »

with similar vahies for t/, and 5,. Taking the same notation

as in Art. 10 we write %Xx = Xx &c,, S-X = X^ «S[c. We thus

have Fx, = lXx + l'Yx-\- V'Z^]

Fy,^lXy\-l'Yy + l"Zy\

Fz,=^lX^ + l'Y^ + l"Z^\

F=lX,^l'Y, + l"Z,

Hence it ap] tears that the point A lies on the plane

.(1).

Yx Zx

I M Z,,y

n Z,

=

.(2).

^ Xx

In the same way the points B and C also lie on this plane.

67. We notice that the directions of the axes Ox' , Oy', Oz\

are perfectly arbitrary except that they cannot all lie in one plane.

We may therefore obtain an infinite variety of triangles ABC
with corresponding forces at the corners. Any one of thtse may

be called an astatic triangle, and the points A, B, C, may be

called astatic points.

We may obviously make the inclinations of the forces F, 0, H
to each other whatever we please, though of course the position of

the triangle ABC is dependent on our choice of these inclinations.

It is generally most convenient to make the forces F, 0, H act in

directions at right angles to each other.

We have seen that when we want to find the positions of

A, B, C we may consider the body to have some fixed position

relative to the forces. For this position Xx &c. are all constant

whatever the positions of the axes x, y' , z may be. The equation

(2) therefore gives, as the locus of the points A, B,C,8i plane fixed

in the body. We also see that the locus is a unique plane

except when all the coefficients are zero. An independent and

elementary proof that the plane ABC is unique has been given

in Art. 13.

Comparing the equation (2) with that found in Art. 25 we

notice that this plane is the same as that already called the
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central plane. i

68. To find ths central plane and one astatic triangle with

rectangular forces.

The theorem proved in Art. 50 supplies us with a useful

method of finding the position of the central plane. To effect

this we resolve all the forces of the system into any three direc-

tions we may find convenient. Taking the forces in these three

directions separately we have three sets of parallel forces. We
then find the centre of parallel forces of each set by any method

we may find convenient. We thus arrive at three points which

we call A, B, C. The plane through A, B, C is the central plane.

We have also found one astatic triangle.

Suppose the system referred to rectangular axes Ox, Oy, Oz

and consider any position of the body relative to the forces.

All the iP-components form a system of parallel forces which may

be collected into a single astatic force '^X = F acting at a point A

whose coordinates are

_ _ '%Xx _ _ "ZXy . _ "^Xz
""'' tX y'~ tX ''~tX'

In the same way the y-components may be collected into a force

SF= G acting at a point B whose coordinates are

The z-componenta may be similarly treated.

These three points lie on the central plane. The forces

F, G, H act in directions at right angles to each other and their

magnitudes have been found.

If the principal force is finite, the axes may always be so

chosen that ^X, SY, SZ are not zero. If the principal force is

zero, the coordinates of the three points are either infinite or take

an indeterminate form; and in this case the central plane is either

at an infinite distance or is indeterminate in position. Thus

whenever there is a central plane this construction may be used

to find it.

59. Referring to the table of elementary couples given in

Art. 10 these expressions for {x, y, z) «&c. give a new interpreta-

tion to those symbols. It has been shown in Art. 10 that the

m

1
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constituents in any row of that tablts are thn componeutH of the

corresporuling couples. It has now been p..)ved that the consti-

tuents in any cvlumn are proportional to the coordinateH of an

astatic point with rectangular forces, Art. 57.

60. To reduce all the forces of any system to four forces

which act at four given points not all in one plane.

Let A, B, C, D be any four points fixed in the body. These

wo shall regard as the corners of the tetrahedron of reference.

Let P,, Pa. &c., be any forces acting on the body and let

Ml, M.^, &c. be their points of application We pro^/ose to replace

each of these by four forces acting at the corners A, B, G, D
parallel to the original direction of the force. Consider DA, DB,
DC to be a system of oblique axes, let f, r},

{f,
be the coordinates

of any point M and let DA = a, DB - b, DC=c. Then by Art. 7

the forces acting at A, B, G, D are respectively

Pf/a, Pr)lh, P^/c, P-P^/a-Pv/b-P^fc.

Now if/c is equal to the ratio of the perpendiculars drawn from

M and G on the face ABG, and this ratio is the tetrahedral

coordinate of M. Representing the four tetrahedral coordinates

of M by a, /?, y, 8, and remembering that their sum is unity we see

that the four forces at the corners A, B,C, D, are respectively Pa,

P/3, Py, PS.

We therefore have the following working rule. Any force P
acting at the point whose tetrahedral coordinates are a, fi, y, B may
be replaced by four parallel forces acting at the corners of the

tetrahedron of reference whose magnitudes are respectively Pa, P^,

Py, PB.

The several forces acting at each corner may now be com-

pounded together. The result is that any system of forces can be

replaced by four forces, one at each corner of the tetrahedron.

61. We may prove in the same way that a force P acting at

any point M in the plane ABC may be replaced by three parallel

forces respectively equal to Pa, P^, Py, and acting at A, B, G,

where a, y9, y, are the areal coordinates of M referred to the

triangle ABG.
We may also deduce this result from the general theorem for a

tetrahedron. We notice that tetrahedral coordinates become areal

when the point considered lies in a coordinate plane. We may
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therefore disregard the coonlinate 8 and treat the tetrahedral

coordinates a, /9, 7, aH if they were areal.

62. To show that the system can be reduced to three forces

acting at any three points in the central plane which form a

triangle.

Let the system be reduced to three forces acting at the corners

A, B, C of some astatic triangle; then this triangle lies in the

central plane. Let A', B', C, be any three points in the same

plane, but not in a strnight line, and let D' be a fourth point not

in that plane. Regarding A'B'C'D' as the tetrahedron of refer-

ence we shall tranafer the forces from A, B, C to the corners of

this tetrahedron.

To find the force at D', we multiply each force by its 8 coordi-

nate. Sinci this coordinate is zero for each of the points A, B, C,

the resultant force at D' is zero.

63. Traniformation of Trianglei. One astatic triangle

ABC and the rectangular forces F, 0, H at its corners being given,

it is required to transfer this representation to any other triangle

A'B'C and to find the rectangular forces F', G', H' at its corners.

Let axes drawn through any point parallel to either of these

sets of forces be called the axes of those forces. We thus have

two sets of rectangular axes. Let thoir mutual direction cosines

be given in the usual way by the diagram.

Then any force F may be resolved into

Fl, Fni, Fn, acting respectively parallel to the

axes of F', G', H'. Treating the forces G, H in

the same way we have F' = Fl + Gl' + HI",

G' = Fm + Gmf + Hm", H' = &c.

We also havo

F=F'l + G'm + Hn, G = F'l' + G'm ^H'n\ H = kc.

The point of application of the force /" is the centre of the

parallel forces Fl, Gl', HI" which act at A, B, 0. Thu.s the point

A' at which F' acts is the centre of gravity of three weights

(positive or negative) proportional to Fl, Gl', HI" placed at the

corners A, B, C oi the given triangle. By properly choosing these

ratios we can place the corner A' at any point we please.

The areal coordinates of the corners of either triangle referred

to the other can also be found very simply by using the theorem

of Art. 6L Let («i, /8,, 71), {cts, /^a. 72), («», /9», 73) be the areal

he



348 ASIATICS. [art. 65

VI )

II-.

I'

F'y, = Hl'\

H'ys - Hn".

coordinutes of the points A', B', C referred to the given triangle

ABC. If we transfer the forces F', G', H' back again to the

triangle ABC, the three forces at A will be F'oli, G'a^, H'as. But

these are the components of F. The forces at B, C, may be

similarly found. ,

Hence F% = Fl F'^, = Gl'

G% = Fm G'0, = Gm
H'a,^.Fn H'fi,= Gii

By choosing the nine direction cosines in any way which their

mutual relations permit we can use these formula? to transform

from one triangle to another.

If the forces of the two triangles are oblique we regard (i, m, «), (/', m', n'),

(I", in", »"), as the direction ratios of F, G, H referred to the axes i**, G', H'. The

direction ratios of F', G', H' referred to the axes of F, G, H, are proportional to the

minors of (/, V, I") &o. If these direction ratios be (\, \', \") {fi, fi', ix") (v, v', v") we

have F=F'\fG'ix + H'v, G-^&c, H= &c.,

instead of the expressions given above. With this exception all the other equations

in this article apply to oblique forces.

64. The Imaginary focal Conic. Let us suppose that the forces of the tv.-o

triangles ABC, A'B'C are rectangular. The nine direction cosines are connected

by relations such as lm+l'm' + l"m"= &o. Hence the coordinates of A', 13', C are

connected by the three equations

,^i/32 , 7i72_/
2,-2 + (.V! + H!*~"'

a::'! , ^1 , 737i_rt i-i\

F

If therefore A' be taken at any point (a, /3, 7), both B' and C must lie on the

straight line «l|+f|f + ^J= o (2).

where a, (8, 7 are current coordinates. Taking B' anywhere on this line, then Q' is

found as the intersection of two straight lines.

This straigb* line (2) is evidently the polar line of (aj, /Sj, yj), with regard to the

imaginary coh.
F-'

^ G-i^ H-'
.(3).

Thus the three astatic points are always at the corners of a self-conjugate triangle

with regard to this conic.

The statical property of this conic is that each side of every astatic triangle with

rectangular forces is the polar line of the opposite corner. But as two different

conies cannot have the polar lines of every point the same in each conic, it follows

that this conic is unique. Whatever astatic triangle ABC we take as the triangle

of reference, the conic given by this equation is the same.

00. Ex. 1. Show that, whatever astatic triangle with rectangular forces is

taken as the triangle of reference, the quantities

(1) i-'HG^ + H^ (2) FGHA, (3) a'GHn-*-b'^IPF^ + c^F^G"-,

are invariable, where a, b, c are the sides, A the area of the triangle, and F, G, H
the forces.

'
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We have also the invariant property that the centre of gravity of three weights,

proportional to F^, G^, H\ placed at the corners is the same for all triangles.

Ex. 2. Show that, whatever astatic triangle with oblique forces i6 taken as the

triangle of reference, the quantities

(1) F'2 + G« + H2 + 2I''GooS7 + 2GHcoso + 2if2i'cos/3

(2) FGH^t, ..^;

(3) a'^G'H'
{
i<"2 (cos a - cos /3 cos 7) - FH' (cos /3 - cos 7 cos a)

- FG' (cos 7 - 008 o cos j8) - G'W sin's 0} ^ ^^ ^ ^^j^

are invariable, where a, /3, 7 are the mutual inclinations of the forces and

H= \- cos* a - co8*/3 - 008*7 + 2 COS a cos j3 cos 7.

We notice that n is six times the volume of the tetrahedron formed by unit lines

drawn from any point parallel to the forces. It follows that 11 cannot vanish unless

the astatic forces are pavallel to one plane.

Ex. 3. A system of forces is equivalent to a force R, acting at a point 0, and two

couples, whose astatic moments are K.^, K^, and whose astatic arms are placed along

the rectangular axes OY, OZ, the forces of the couples being perpendicular to each

other and to the force R, see Art. 32. If these are transferred to an astatic triangle

A'B'C situated in the plane yz, the coordinates of the corners being (r/j, fi), (ijj, ^2)*

(Va I fs) and the rectangular forces F', G', H', prove that

F= Rl F'rii= K^l' F^i= KJL" i

G'=Rm G\=K.im' G%= K3m"
H'= Rn. H%=K^n' H'i3=KX

*here I, m, n &c. are the nine direction cosines of F', G', H', as in Art. 63.

^f the forces F', G', H' are all equal, prove that the sum of the distances of the

three corners from each of the axes of y and z io zero.

00. To find tlie Central Point. Tlie astatic triangle ABC with rectangular

forces F, G, H being given, show that the central point is the centre of gravity of

three weights proportional to F'\ G-, H^ placed at the corners.

This follows easily from the theorem proved in Art. 30. We multiply each

force, such as F, by the resolved part of all the forces along it, i.e. by F ; the

product is F^. The rule asserts that the central point is the centre of gravity of

the three products F^, G^, H'^, placed at the points of application of F, G, H,

Ex. If the forces F, G, H of an astatic triangle ai'e not rectangular prove that

the central point is the centre of gravity of three weights proportional to

;?'(i''+Gcos7 + //co8/3), G(Fcos7 + G + //co8a), H(Fco8/9+ coeo + H)

placed at the corners, where o, /3, 7 are the angles between the forces (G, H), (H, F),

(F, G).

This result follows at once from the general theorem given in Art. 30.

•7. I'he central point coincides with the centre of the imaginary conic. To find

the centre of the conic we follow the rule given in treatises on Conies. Differentiating

the equation of the conic (Art. 64) with regard to the areal coordinates o, /3, 7
separately, and equating the results, we find that a, /3, 7 are proportional to

F^, G'^, H'K The result follows at once.

6a. The imaginary conic being given, it is required to find the central lines and

the principal moments of the system.

Let the system of forces be reduced to its simplest form (Art. 32), i.e. let the

i'i

i'
^ fi

1. t

m
{Imi
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forces be represented by a force R acting at the central point together with two

astatic couples whose r.rms are placed along the central lines Oy, Oz, Let the

astatic moments be K^, K^.

Consider the origin as one cot ner of an astatic triangle and produce the arms

of the couples to very distant points B pad C, replacing the forces by two others,

viz. G And //, both very small. Then OBC is an infinitely large astatic triangle

with rectantfular forces. Let OB= b, OC = c, then bQ:=K^ and cH=K^, also F=R.
We shall now use this triangle to find the equation to the imaginary conic by the

formula given in Art. 64.

Let 71, j^he the Cartesian coordinates referred to the rectangular axes Oy, Oz of

any point. Let a, |3, y be the are al coordinates of the same pi)int referred to the

infinitely large triangle 0£C Then u = l, ^= 7//i, 7= f/c. The conic

,=0
2

i3''
7

therefore reduces to

a'

2
V 1

+ - 4- - - =0

We therefore infer (1) that the centre of the imaginary conic is the central point,

(2) the principal diameters are the central lines of the system, (3) that the lengths

of the principal semidiameters are A'^ \^ - 1/JJ and K.^sf -IjR.

Referring to Art. 36, we see that the imaginary conic is the same as the

imaginary focal conic.

09. Ex. 1. If ABC be an astatic triangle with rectangular forces show that

either central line makes an angle $ with the side BC where

_ JAh"^
[
IPb cos C - &c cos />')

a tan iO - -.2^^^.,^ fpi^-ii^-. c^s '2C + F-G'^c' cos 2i?

'

and A is the area of the triangle.

Ex. 2. If a triangle having its orthocentrp at the central point be piojected

orthogonally on the central plane, prove that the projection is a possible astatic

triangle with rectangular forces, provided the self-conjugate circle projects into the

real conic '
*

70. TranBibrinatlon of tetrataedra. The forces being referred to one

tetrahedron as- ABCD, it is required to refer them to any other tetrahedron as

A'B'C'D'.

If the coordinates of the corners of the first tetrahedron with regard to the

second are known, the transference may be effected at once by using the rule given

in Art. 60. But if the coordinates of the second tetrahedron with regard to the first

are given, we may proceed in the following manner.

Let the tetrahedral coordinates of A'B'C'D' referred to the first tetrahedron be given

by the diagram, and let the whole determinant be A. Then
the coordinates of A referred to the second tetrahedron are

the minors of the s veral terms in the row opposite A after

division by A. The coordinate f B are the minors of the

terms in the row opposite B aHi livision by A, and so on.

The coordinates of the corners of the first tetrahedron

are now known and the transference may be effected as before.

71. Ex. 1. If one corner as D be changed to D' without altering the opposite

face show that the direction of the force at D' is parallel to the force at D, and that

A' B' C D'

A
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73. To investigate the condition that the forces of an astatic

system can he reduced to two forces.

We have seen in Art. 57 that the forces of the system can be

reduced to three forces, viz. Xq, Yo, Zq, acting at three points

A, B,G whose coordinates (a;^, y^, z^) {x^, y^, z^) {x^, y^, z.^) are given

by XqXx = Xx Xoyi - Xy XoZi = Xg,

J 0^2 '^ •* X '02/2 '^
'J/ -» 0^2 ^^ -* «>

ZaXs = Zgi Z(,y3 = Zy Z0Z3 = Zg.

We shall suppose in the first instance that the principal force

is not zero, and that the axes are so chosen that Xo, Yo, Zq are all

finite.

If the three points A, B, G lie in a straight line we may make

a further reduction. We can replace each of these forces by two

other forces parallel to it and of proper magnitude, acting at any

two points Ml, M2, which lie in the straight line. By compound-

ing vhe three forces at M^, and also those at M^, the whole system

can be reduced to two forces. In order therefore that the system

of forces may be reducible to two forces it is sufficient that the

three points A, B, C should lie in a straight line.

It is also necessary, for otherwise the system is equivalent to

an astatic triangle with rectangular forces. Now by Art. 72 such

a system cannot be reduced to two forces unless either the triangle

is evanescent or one at least of the forces X^, Y^, Z,,, is zero.

If the three points A, B, C lie in a straight line a pKiirv? c./n be

drawn through that straight line and the orig' u. Hen- e

Xx, Xy, Xz
Y Y Y
Zx, Zy, Zz

= 0.

Xo, Xy, Xg\ ~ 0,
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points A, B,C lie in a straight line except when the three force

components are zero.

These determinants are the coefficients of ^'
j several terms in

the equation to the central plane. That plane is therefore inde-

terminate.

Expressions for these determinants in terms of the forces,

without the intervention of coordinate axes, have been given in

Art. 31.

74. To find the equivalent forces. We have seen that they may be made to act

at any two points iVj, il/j which lie on the straight line ABC. The equation of

this straight line is evideutlv
"^1 y-i-iji ^a-^r

This straight line is called

the central line of the txoo forces.

If two forces, not parallel to each other, are together astatica ly equivalent to

two other forces, we may prove in an elementary manner that the four points of

application lie in one straight line.

Let F. 1\ acting at M^ ,
M„ be equivalent to Qj , Q., acting at Nj , Nn. Make P^

act parallel, to A'jiV.j and take moments about N^N.>. It immediately follows that

3/.J
lies oii NyN.,. Similarly il/o lies on N^N.^. Thus the ceiitral line is fixed in the

hodii.

Take any two distinct points il/,, M., on the central line. Let the coordinates

of the points thus chosen be (/, n, h) and (/, g', h'). Let (h\ G, H), {F, G', H') be

the components of the forces at these two points. The forces will then be known
when we have found [F, G, H) and (F', G', H').

SincP this system of two forces is equivalent to the given system, the twelve

elements must be the same for each system (Art. 12).

We therefore have

X^= Ff+F'f', X„ = Ff, + F'g', X,= Fh + F'h; X^.^F+ B"

Y^=Gf+G'f', Yy^G(i + G'g', Y,= Gh + G'h', r„=G + G'

Z^= Hf+H'f', Zy=.Hg + H'g', Z,=Hh + H'h', Z, = H+H'.

Any six of these equations determine F, G, H; F', G', H' when /', g, h and/', g\ h

are given.

76. To show that tchatever points are chosen on the central line, the forces at

those points are always parallel to the same plane.

Supposing the system to be already reduced to two forces Pj , P., acting at some

two points i)/j , il/o , let us replace these by two other forces Qi , Q„ acting at any other

points jVj , N.^ on the central line. The force Q^ is the resultant of two forces which

act parallel to Pj and P^ ; it is therefore parallel to any plane to which Pj and Pj

are both parallel. In the same way the force Q.^ is parallel to the same plane.

It should also be noticed that the resultant of the two forces Pj , P^, when

transferred parallel to themselves to act at the same point, is a lorce fixed in

direction and magnitude.

76. lleferring to the determinantal conditions given in Art. 73, we see that if

ice substitute f, t}, I^ for th'' terms in any row in the first

determinant (repeated here in tiie margin) we have the

t'(iuation of the plane containing the origin and the central

line of the two resultant forces.

A',in

'»'

Zr, Zw

=

R. 8. II. 23
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t .;..i

n. &0. ^iven in

=

// however we substitute f, rj, f for the terms in any column of the fliime deter-

znin^ntal equation, we have the equ<vtion of the plane to whJch the two resultiiut

forces are parallel whatever be their points of application.

The first of these theorems follows at once from the values of

Art. 73. The second is easily proved by substituting in

the terms of the first and second columns the values of .Y^.

Ac. given in Art. 74, and in the third column |, 77, f. After

an obvious reduction and division by /(/'-/'//, the equation

reduces to the form shown in the margin, which is the plane required

exceptional case when the divisor vanishes, for the equation to the plane then takes

the form = 0.

r,

O',

H,

There is no

77. We have hitherto assumed that X^ ,Y(,,Zq are all finite. The case in which

any one or any two are zero may be treated as a limiting case and the corresponding

conditions may be derived from those obtained when A'o ,Yq,Zq have finite but general

values. As long as the conditions thus obtained are not nugatory thty will be the

conditions required. If however the principal force Ji is zero, the three compo-

nents A'„, Fq, Zf) vanish for all axes and the reasoning in Art. 73 faik from the

beginning.

The equations of Art. 74 supply a method of arriving at the conditions that the

given forces can Is reduced to two forces without making any assumption about the

principal force. TLo body being 1:1 any position, let the components of the two

forces be, as before (F, G, H), {F', G', H'), and let t'leir points of application be

(/» Sf< '*)> if'^ .'/' '*')• '^^^ required conditions may then be deduced from the twelve

equations given in Art. 74. it is evident by simple inspection that the four

determinantal eqiuitions given in Art. 73 are satisfied.

if the principal force is zero and the system can be reduced to two forces, those

two forces must be equal and opposite, i.e. they must form a couple. Let ±F, =fc(r,

±ii be liip resolved parts of the forces of this couple, (/, (j, h) (/', tj', h') the coor-

dinates of the extremities of iti astatic arm. Then equating the nine finite elements

of the system to those of the couple we have

X^= F{f'-f), Xy = F(g'-!i),

Y^=G {/'-/), Yy= G(o'-g),

Z^= IIif-f), Z,^H(g'-g),

X,= F[h'-h)
Y,= G(li'-h)

Z,= II{li' -h).

The necessary and sufficient conditions that the system should be equivalent to two

forces are therefore that {X^, Y^, ZJ, {X,,, Yy, Z^), (X^, Y^, Z,), should be each

proportio u \ to the diiection cosines of or.d straight li/ie. This straight line is

parallel to the forces of the coupit!.

78. Ex. 1. Show that any forco i'CijHng at h point A may be replaced by forces

Pj, P., acting paiallel to F at any two point.) Jl/,, Jil-. such that AM^M^ is u straight

line. Show also that these forces are

AM., , „ „ /filfj
P, =FAM,- AM,

and 1\~F
AM\- IJV/3

Ex. 1. Two given forces P, , i',,, acting at the points 1/, , M., , are changed into

two foices ^j, Q,2 which are at /ight angles i^o each other, and act at two other

points N^, N„ in the straight li.ie M^M.j,. If y^, y^ a.-e the distances oi N^, iV^ from

the central point of the fore s Pj, P,^, prove that Ji^j?/2 = - (PjPjD sin tf)* where

ija= Pjii -(. 7'.^2 ^ QPjPj cos 5 , D is tho distance ..lijil/j and tf is the inc'ination of the

forces I\ , ±'2 to each other. It follows that the product y^y^ is the same for all

equivalent rectanpnlar forces.
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Ex. 3. In all transformations of two forces P, , P^ into two others in which the

points of application remain on the same straight line, the quantities

(1) P,* + iV + 2Pir.,coBtf,

(2) P,Pj/)8intf,

(3) Pi{I\ + P.iCoa0).Xi + P.,(P^cose + P.^)Xi,

are invariable, where x^ , Xj are the distances of the points of application Jlf, , M^
from any fixed point on the central line, D is the distance M^M.^ and is the

angle made l)y the forces with each other.

Ex. 4. A system consists of two forces P, , Pj acting at M^, M^ and the inclina-

tion of the forces to each other is $. Show that (1) the central point is the centre

of gravity of weights proportional to P, (P, + Pj cos 0) and P.^ (Pj cos + Pj) placed at

M^,M.,. (2) The centra' ellipsoid at O is two parallel planes perpendicular to

MiM., . (3) The principal axes at O are M^M.^ and any two perpendicular straight

lines.

79. To deterniiiie the conditions that the forces of an astatic

system reduce to a single force.

Let the single ft)rce be Pi, let it act at the point (a?i, y,, z^),

and let its components be Xi, Y^, Zi. Comparing the elements

at an}' base we have

X.x^^X^Xi, X,, = Xiiji, Xz^XiZi, &c.

Hence we see that the constituents in any column of any of the

four determinants of Art. 73 bear to each other the ratios

(Xi, Fi, Zi) of the components of the single force and that these

ratios must be the same for every column.

We also notice that the constituents in any row of any of the

four determinants bear to each other the ratios (a;,, yj, Zi) or

(1, t/i, Zi) &c. of the coordinates of the point of application.

We have twelve elementary equations and six arbitrary

quantities (Xi, Fj, Z^), (x^, y^, z^) leaving six conditions to be

satisfied by the elements of the system.

Since Xo = X,, &c., it is clear that the single equivalent force

is equal and parallel to the principal force, Art. 11. Also, since

the coordinates of the central point depend on the twelve ele-

ments, it is evident that the central points of the two equivalent

systems coincide, Art. 28. Thus it follows that the point of

application of the equivalent single force is the central point of

the system.

23—2
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NoTK A, Art. 149. ; re«n'a tbaorem. We may deJuce from equation (5) of

Art. 145) an externum of Gautiit' theorem, Art. 106. Let P, Q, It be the components

of a vector I and lot F= 1, bo that, by (1), f7 = 0. We then have

(1).

(2)

If therefore the components P, Q, R oi a vector satisfy the condition

dP dQ dli „

dx dy dz

the sir'''"e integral or Jinx of the vector taken through any eloxed surface is zero.

It is 01 course obvious thut when / as in Gauss' theorem represents the force due

to an attracting body, P= dVldx &c. , where F is now the potential of the body, and

(2) becomes Laplace's equation.

I. Let two surfaces S, S' be bounded by the same rim. Let that side of either

be called the poni tire side towards which the normals are drawn.

Since these surfaces enclose a space the surface integral of the vector taken over

fcoth surfaces is zero, provided the normals are drawn all outwards or all inwards,

i.e. pi'ovided their positive sides are /"/posed to each other. Reversing the directions

•of the normals for one surface, it follows that the surface integrals for two surfaces

with the same rim or boundary arc equal provided their positive sides are the same.

II. Let a curve, such that the direction of tlie vector / at any point of the curve

is a tangent, be called a vectorial curve (Art. 47). Let a tube or filament be formed

by drawing vectorial curves through any small closed curve, as in Art. 126. Let

a, ff' be the areas of the normal sections at any two points P, P'.

By the extension of Gauss' theorem just proved, the surface integral of the

vector over the boundary of the tube PP' is zero. The surface integral taken over

the whole space PP', as in Art. 127, is /V - I(T where /, /' are the magnitudes of the

vector at the bounding sections. Hence when the vector is such that its components

satisfy the equation (2), the flux across every section of a vectorial Jilament is the same.

III. It is shown in Art. 149 that in some cases a volume integral can be

replaced by a surface integral. We may also show that in some cases a surface

integral can be replaced by a line integral taken round the rim of the surface.

Let A', Y, Z be the components of a vector whose line integral is to be taken

round a closed curve. Let .S' be a continuous surface bounded by this curve as its

rim. Let P, Q, 11 be the components of another vector related to X, \\ 'A by the

equations ^=
^^

"
rf,

'
'^=

d^
-

dx ' ^^^dz'Ty ^^^'

The theorem to be proved is that the surface integral of the vector (P, Q, R) taken

over the surface iS' is equal to the line integral of the vector (A', 1', Z) taken round
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the rim. Let (I, m, n) be the direction cosines of the normal to dS, the theorem

then asserts that l{Pl + Qm + Rn)dS=j(Xdx + Ydy + Z(h) (4).

That side of S is called the positive side towards which the normals (2, m, n) are

drawn. The line integral is to be taken clock-wise when viewed from the pouitive

side.

If we construct an infinitely small sphere whose centre C is at {xyz), the

components of the vector (.Y, Y, Z) at the point x + ^, y + i), z + f are by Taylor's

theorem X' = X + 'lf i + '^^
r, + '^^

i;,
Y'=Y+'^^ ^ + &o., Z'=&o.

ax dy dz dx

The sum of the moments of the vector round a parallel to the axis of z drawn

through C, taken for every element of volume dv of the sphere, is

^ilY dX\
^dx ~ dy)'

where i^vh^ has been written for the equal integrals \^'^dv, \ti^dv. It is obvious that

in a sphere |fi;(iy = 0, Jff<ii' = 0, Ac. = 0.

It follows that if (A', 1', Z) are the components of one vector, (P, Q, R) are

the components of another vector connected with the former at every point by a

geometrical relation ivhich is indejiendent of all coordinates.

We shall now prove that the theorem (4) is true for any area which is so small

that it may be regarded as plane. Taking the plane of xy to contain the area, we

J{Y'i-X'r,)dr = ),vk'^(*^^

have ^'''''=\0x -
t)

'i-rdy^iiYdy + Xdx),

where the third expression follows from the second by an integration between

limits in the manner described in Art. 149. Thus, if Ali, drawn parallel to x, cut

the rim in A, It,
j j

-j- dxdy—f{Yg- Yj,)dy. But at li, dy is positive and at A

dy is negative, hence taking the integral round the rim and therefore giving dy its

proper sign, this becomes jYdy. Since / = 0, w=0, w=l and dz = 0, this equation

asserts that the flux of the vector (P, Q, i?) parallel to the positive direction of the

axis of z is equal to the line integral round the rini taken clock-wise.

To prove the theorem for a surface of finite size we add the results obtained for

each element of area. Let two adjacent elements meet along the arc AB. When
integrating round each element we pass over AB in opposite directions so that the

signs of dx, dy, dz in one integration are opposite to those in the other. The sura

of the integrals may therefore be found by integrating round both elements as if

they were one, omitting the arc AJi. The same reasoning applies to all the elements

and the sum of the line integrals may be found by integrating round the rim.

The surface integrals of the vector (P, Q, R) taken over two surfaces bounded

by the same rim are each equal to the same line integral. Hence the surface integral

of the vector (P, Q, R) for any closed surface is zero. This also follows at once from

the extension of Gauss' theorem, for the vector (P, Q, R) as defined by (3) evidently

satisfies the condition (2).

The following results show how some volume integrals can be replaced by

surface integrals.

(1) The volume of a solid enclosed by a surface S is if jr cos (pdff where d<r is an

element of the surface, and ^ is the angle the outward normal at d<r makes with

the radius vector produced. [Gauss.]

(2) The potential at the origin, of the solid (if of unit density) is ^fco8<pdff.

[Smith's Prize, 1871.]
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(3) The integral j con <f>dfflr^ is 4ir or according an the origin is innide or

outside S.

(4) Tlie X component of attruotion is Jooh 0'(/(r/r wliore 0' Ih the angle the

normal at dcr makes with x. [GauHu.]

In Arts 85U, 860, 3(>2 and Note M there aro nomc exampleH of Hurfacc iutu^rala

replaced by line integraln.

Note B, Art. 190. rotantlal of a thin olreular rlnS' When the law of force

is the inverHe square of th<3 distance, Dickson puts th<! potential at any point li into

the form K,

=

r- ,, —

,

where Hp + p') is the mean of the greatest and least distances of i? from the ring,

M is the masH, and A' is the complete elliptic integral of the tirst kind to modulus

OPja. See the figure of Art. 185.

Note C, Art. 211. Attraction of a aelld •lllpaold. In the text the potential

at an internal point P ia found first and the axial components of force are deduced

by differentiation. The following method of finding the components of force is so

simple as to deserve attention.

Through P we pass an ellipsoid concentric with and similar to the boundary of

the solid. The attraction at P of the portion of the solid external to this ellipsoid

has been proved to be zero in Art. <)8. It is therefore necessary only to find the

attraction at P of the portion of the solid bounded by this ellipsoid. The problem

is thus reduced to that of finding the attraction of an ellipsoid at a point on its

surface. Let the semi-axes of this ellii)Hoid be ma, mh, inc.

We now construct an elementary cone whose vertex is P and whose be ,e is an

element Q of the surface. If dui be the solid angle of the cone, its attraction at P
is jprMwdijr- taken between the limits r = and ' =r. The attraction is therefore

prdu.

The axial components of the attraction of the > hole ellipsoid at /' are therefore

X= - pjr\du, Y= - pjr/jidu, Z~~ii^rvdw (1),

where (\, /x, v) are the direction cosines of QP and the integrations are to be taken

80 as to include all the elementary cones which lie on one side of the tangent plane

at P.

Let (f , ri, f) be the coordinates of P when referred to the centre. Since Q lies on

the ellipsoid we have
(|2/i2 iiiSii'i iiiiJ/'

Since the point ({, 17, ^) lies on the surface tliis gives

= 1. .(2).

-(^r^svc-^::) (3).

This value of r has to be substituted in the expressions (1) and the integrations

effected. As the radius vector turns round P, it is evident by (3) that no values of

X, fi, V make r imaginary. Since the value of ) determined by X, yu, v differs only

in sign from that determined by - X, - /u, - «<, the equation (3) represents the surface

twice over. Since the signs of .Y, Y, 'A depend on the signs of the prodiiets r\, r/n,

rv, it is clear that if we integrate the equations (1) taking all positions of the radius

vector and not merely those on one side of the tangent plane, we iihall obtain in

each case twice the required attraction. We therefore have



in is itiHide or

the angle the

irfaoe iutet^rala

lie law of force

ly point li into

from the ring,

ind to modulus

d the potential

CG are deduced

:h of force is so

he houndary of

;o this ellipsoid

mly to find the

The problem

a point on its

hose br .c is an

attraction at P
ion is therefore

are therefore

(1).

ire to be taken

tangent plane

Jince Q lies on

.(2).

(3).

|e integrations

It no values of

V differs only

Its the surface

of the radius

liall obtain in

}

NOTES. 859

where (\, n, i>) have all possible values. It is obvious that the term containing the

product X/. disappears on integration, for the elements corresponding to (X, n) and
(X, - n) destroy each other. In the same way the term containing the product \p

disappears. We therefore have

X=-pi

Xa
du

xf
+ ^

J'
Y=- PV

i;^

du

X2 i?^
a + TJ + -

T
rt' 6» c'

These may be written in the form

X=-Ap^, Y=-npv, Z^.-Cpt
We notice that the constants A, fi, C nre function* of the ratios of the axes and

are therefore the same fur all similar ellipsoids.

The integrals given above for A, D, C may also be written in the form

.(4).

'=/^>'-' ^^jP'^^ ^ = /:-^
du. •(5),

where the integration extends over the whole surface of the ellipsoid. It easily

follows that A + Ii + C= iir Aa^ + Bh^ + Cc' = ]r^du (6),

where r is the radius vector of the bounding ellipsoid drawn from the centre as origin.

The potential is seen by an easy integration to bo F=Jp {D-.-lf-*-/iij'*- Cf"},

where D— jr^du, since JpD must evidently be the potential at the centre.

Note D, Art. 218. Other laws of foro*. The potential of a thin homogeneous

homoeoid at an internal point (^Tjf) when the force varies as the inverse »cth power

of the distance can be found, free from all signs of integration, when k is an even

integer > 2. Let up be the surface density at any point Q, where p is the perpen-

dicular from the centre on the tangent plane at Q. The potential is

'^~(k-1)(k-3)\e) t2'''c-4 2*1.2. (k-4)(,c-5) + **°7

where

and

^=a'~ + h^i;zi + '=-^i< b* ' c

The general term is
1

.•-1 !: "' t

L{K-i-f) EfW and L(n) = 1.2.3....n.
2VL(/)L(»c-4)

The series has ^(k-2) terras. Thus for the law of the inverse fourth power it

reduces to the first term ; for the law of the inverse sixth power, there are two

terms and so on.

At an external point P' whose coordinates are ^', rj', f , we have

abc 2iru ' " ^'^'^

V'=
a'b'c' {k -1)(k .)(!){ 2- K-i

where
„, a'* d"- ?/•» rf2 .

a' d^- b^ dr) •
P' = -~ + —

\p'i(«-l)

b'«
&c.

E'= l-''f, -&c. = e2(V, + ?r4 + ^4)a * \a* b'* €*/

Here a', b',c' are the semi-axes of the confocal drawn through P', and «'= o'* - a*=&o.

It should be noticed that the differentiations implied in the operator V are to be

performed on ($', V. t') on the supposition that a', b', c' are constant. The potential

at an external point may be deduced from that at an internal point by a method

which is practically one of inversion. See Art. 203. [Phil. Trans. 1895.]
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Note E, Art. 250. Heterosoneons ellipaold. When the attracted point P
lies within the substance of the ellipsoid, a little more explanation may be added.

Through P we describe an ellipsoid similar to the external surface of the given body.

Let it be defined bym=n as in Art. 241. The potential of the inner portion at P is

Fi= S f
"' dm" r du (1 - m^)" " ^ (m* - 1 + il)»F (u).

Now \ satisfies + (&c. = 1 (Art. 204) and since P lies on the ellipsoid (n),

-^+&c.= l. It follows that X=0 and therefore, since X= X,m^ Xj= (Art. 249).

Next consider the shell outside the ellipsoid (n). As explained in Art. 240, we

put Xi=0 and integrate from m^—n^ to 7«''=1. We have therefore

^2=s[Vm'' r du{l-my-^{m^-H-R)''F(u).

Adding Fi and Fa we have V=XJ dm^ I d«[&o.].

The order of the integrations may evidently be reversed, and the argument may be

continued as in Art. 250, and in the result we have X=0.

NoTK F, Art. 264. Otber laws of force. When the law of force is the inverse

Kth power of the distance we require the expansion of l/iJ*"^ . There are two ways

of extending Legendre's series.

First we may continue to make he expansion in powers of h and put

{l-2ph + h")-i''''-'^^ = l + Q^h + Q.^h +...

If K- 1 is an odd integer, say equal to 2m +1, we have

= 1 d""
p^" 1 . 3 . 5. . .(2m - 1) dp^
»»+"•

If K - 1 is an even integer, say equal to 2m + 2, we have

^ _ 1 d'" sin (n +m+l)^
^"~ 2.4.6...2ni dp»» sintf

'

where p= cos 0. The four most important theorems relating to the function Q„ arc

given in Art. 282, Ex. 3.

Secondly, we may retain Legendre's functions of p as the coefficients, but cease

to expand in powers of h. We then have when k is even and greater than 2

(1 - 2;)ft + ;«')* ("-^J " (l-/i2)«-3-

There is a similar expansion when k is odd and >1, except that P„ is replaced by

sin (« + l)fl/8in 6 and that the coefficients of the function xf/ (h) are different.

The function ^[h) is an integral rational function of h containing only even

powers, the highest being /t*"*. Thus the function does not increase in complexity

as n increases, but has always the same number of terms.

When the body considered is a thin spherical surface or a circular ring, h is the

ratio of the radius to the distance of the attracted particle. Thus \j/ {h) is constant

for an integration over the surface of any portion of a sphere or along the circum-

ference of the ring.

When the law of force is the inverse fourth power K=i and ^(fc) = (2n + l);

when the law is the inverse sixth, k= 6, and

l..S^(/j) = (2tt + l){-(2n-l)/i2 + 2n + 3}.
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The general value of ^ (h) is given in the Proceedings of the Mathematical Society,

vol. XXVI., 1896, page 481.
, ,

Note G, Art. 281. Z.«g«ndre'a th«or«m. There is another proof of the

theorem j P^dp "-21(2n + 1) which is in general use. We have

rr2pAT7r«=(^o+^'''-^^=''*^+-)^-

We multiply both sides of this equation by dp and integrate between the limits

-1 and +1. We then have, by Art. 278,

h
dp

Integrating the left-hand side, we have

{log(l + /0-log(l-«)}//t= SJiVft2»rfp.

Both series being convergent, we find the value of \P,?dp by equating the

coefficients of fe*" on each side.

We may deduce some other interesting results from the equation of differences

(H + 1) P„+i - (2h + 1)/>P„ +«/>„_, =0.

Multiplying both sides by Pk and integrating between the limits - 1 and + 1, we

have (2w + l)j/)P„P«dp= (TH-l)JP„+,P,#-t-n/i'„_iP«diJ.

It follows from Art. 278 that ^pP^P^dp is zero except when k and n differ by

2(» + l)
unity. In that case we have JpPnPn+idp = ,^ as in page 219.

(2?t+l)(2tt + 3)

In the same way we may show that jp'^P,^Pgdp is zero except when k and n

are equal or differ by 2. In these caRCs

ip'P^^dp=
2(2»*+ 2»-l)

jP'PnPnWfP
2(n + l)(« + 2)

(2«+l)(2n + 3)(2n + 5)*(2«-l)(2n+l)(2» + 3)'

where the limits of the integrals are - 1 to + 1.

We may, by successive induction, deduce from the equation of differences, that

p J,
_^A {m-r)A{r)A (n-r) 2m +2m- 4r-H

'»"""'
A (m + 71- r) 2h + 2m - 2r + 1

'^'»+»-2"

where S expresses summation from r = to the lesser of the two quantities m, n.

1.3.5...(2w-l)
. ,, , jB + 1

1.2.
3

"

Also A{m) =
m M^n) =^^^A(7n + l).

We may interpret A (m), when m is zero or a negative integer, by supposing this

relation to hold generally, so that putting 7n=0 we have A(0) = 1. Similarly

^(-1) = 0, and hence, when m is any negative integer, A{m) = 0.

In the series r is supposed to vary from r=0 to either m or n. If however r is

taken beyond these limits, for instance if r= - 1 or m + l, then (in consequence of

the property of the function A just stated) the coefficient of the corresponding term

is zero. Hence practically we may consider r to be unrestricted in value.

We notice that in this expansion the suffixes of P are all even or all odd according

as m + n is even or odd. If then we multiply by P^ and integrate the product

between the limits -1 and +1, we have JPjP„,P„dj)=0 if l + m + n is odd

(Art. 278).

Supposing l +m + n to bs even, it follows (by subtracting the even number 21)

that m+n-l is also even and that there may be a term on the right-hand side in

which the suffix is given hy tn + n-2r=l. This term, aftev multiplication by Pj,

supplies the integral jPi'dp and is not zero. We then fii 1

/:PlPmPndp =
2 A{8-l)A{8-m)A{s-n)

28 + 1 A(s)
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where »= ^(l +m + n). In order that thin integral may not be zero, no one of the

quantities I, m, n must be greater than th" sum of the other two, and l +m+n must

be an even integer.

The reader may consult a paper by the late Prof. J. C. Adams in the Proceedings

of the Royal Society 1878, No. 185. The value of the integral is also given by

Ferrers as an example on page 156 of his Treatise on Spherical Harmonics, 1877.

By using the results referred to in Art. 292 we also find

f d"^P^+^ _wt(»t+l)... (w +8- l) 1. 3.5...(2m + 2n -2g + l).

*y ' dp"' ^~~. 1.2.. .s • 1.3.5... (2?t-2« + l)'"
•

when l=n~ 2«. When n - iis odd or i>«, the integral is zero.

1.2.3...K

2.4...((f-m)1.3.5...(if + wi + l)'

when K>m. The integral is zero if k-vi is odd, or if K<m, In both integrals the

limits are - 1 to + 1.

When the law of force is the inverse fcth power of the distance, the equation of

differences takes the form

(n+l)<;)„+,-2)(2« + «-l)Q„+(n + K-2)(?„_i= 0,

as explained in Art. 282, Ex. 3. We may use this equation in a similar manner to

find /<)(2))g„2rfp and jXi>)2j2<3„2tij) where 0(;)) = (l-i)»)*(''-2).

Note H, Art. 288. Xiaplaca'a theorem. Laplace deduces the equation

^Y^Y^du^Q from the equation (7) of Art. 284. What follows is an extension

of his method, Mecanique Celeste, livre troisi^me 12. Let us write (7) in the form

-|('''|")-.^(4t)-'--.
'"•

•-it('t)-.^('t)-"-. <»'•

where b=l-fi?, c= 1/(1 -/it*), p=m (m + 1), p'-n(n + l).

Multiplying these equations by r„ , F^ respectively and subtracting, we find

Integrating by parts, we find that the unintegrated parts cancel, we therefore have

dYn
»»

dfi

dY.,

1

(J0
V ^A~\ d/x . .(3),

where the quantities in square brackets are to be taken between limits, the first

between /x=±l, the second from 0=0 to 27r.

Now b= l-fi^,\i therefore Y^, Y^ and their differential coefficients with regard

to fjt are finite all over the sphere, tha first integral is zero.

The range of <p from to 2v, carries a point P round the sphere on a small circle

to the point from which P started. If then the quantities c, Y^, Y,^, and their

differential coefficients with regard to
<f>

are "one valued" on the sphere, the second

quantity in square brackets is the same at both limits, and the second integral is zero.

It follows that if p and p' are unequal (that is, if neither m=n nor m+n= -
1)

the integral |F^y„dw = 0.

If we generalise (7) and write it in the form

aY„,-
d

dtx V du. ) dA d4> ) d^V d,p ) dtpV dn
)-P^Y^-W>
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where a, b, c, e and A are given finite functions of fi, <p, but not of p, while p is a

given function of m, the function Y^ is not now a Laplace's function, but the

equation (p-p')jfY^Y^Ad^d<f>=0 (5)

will in certain cases be true. This may be proved by the same reasoning as before.

The unintegrated parts cancel and the integrated parts vanish provided (1) b and e

are zero when ^= :tl, (2) Y^, Y^ and their differential coefficients with regard to n
and

<l>
are finite one-valued functions of ft, tp. Other cases in which the integrated

parts are zero will suggest themselves to the reader and need not be particularised

here.

We may also extend the theorem to the case in which the integration is effected

only over the area within some closed curve drawn on the sphere, provided T^ , Y^

are such that
Ym <</* ^n <*M ,

d0 Y„ dip
at all points of the boundary.

For example, the equation (5) is true if F„ and y„ vanish at all points of the

boundary.

The equation (5) is also true if both Y^ and r„ satisfy the condition

'b sin\j/-( - + «;co8^YMc sm d cos \j/ + -;—- sin \Y
sin''' e

' ^
J d9 '

\'~' '' ' sin 6

at all points of the boundary, where f is the angle the arc 6 makes with the

elementary arc of the boundary and X is an arbitrary function of 0, tp b'-it not of m
or n. When b = llc — l-/i^ and e=0, \=0, this implies th<\t the space variation

of Y perpendicular to the boundary is zero.

Note I, Art. 329. BKagnetle «pliere. The expression in the text for the

potential applies obviously to an external point. At an internal point, the potential,

by the same rule, is equal to ^wlr cos 6. This also follows at once from the result

given in the next article for an ellipsoid. The force due to a uniformly magnetised

solid sphere at an internal point P is therefore - |n-I. The direction, wheu taken

positively, is opposite to the direction of magnetisation, and tends to demagnetise

the body.

NoTB K, Art. 342. BCagnetie forces. Kelvin, when speaking of the two

definitions of resultant force in a crevasse (1) tangential and (2) perpendicular to

the lines of magnetisation, sometimes calls the former " the polar definition " and

the latter "the electromagnetic definition " (Reprint &c. Art. 517). This latter force

is called "(Ae magnetic induction" by Maxwell and this phrase has been generally

adopted in the text. A slight modification has however been made in Art. 342 and on

a few other occasions when the change seemed to make the meaning of the context

dearer. Maxwell's phrase is not entirely unobjectionable and it is much to be

desired that some short term could be generally agreed to.

NoT£ L, Art. 345. The magnetle Induotioii. At a point outside a magnetic

body the magnetic force and the magnetic induction are the same. It follows that

their components satisfy Laplace's equation, and we have

dX dY dZ „

dx dy az

dX, dYy dZ
dx

»=0
dy dz

At a point inside a magnetic body, we have by substitution (Art. 345)

<iX, dr, dZi^/dX ^\ ^ (dA ^ \

dx dy dz~\dx ') \dx ')'

.(1).
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364 NOTES.

Since the magnetic force is by u^ Inition that dne to Poisson's two diBtribntions,

the Hura of the terms in the first bracket on the right-hand side is equal to iwp

(Arts. 105, 41). The sum of the terms in the second bracket is - iirp (Art. 389).

We therefore have

.(2).
dX dY dZ . dX. dY, dZ, .

'

I . dx dy dz dx dy dz

It follows that the components (X, Y, Z) of the magnetic force satisfy different

differential equations according as the point under consideration is external or

internal. The compotients of the magnetic induction satisfy the same equation (viz.

Laplace's equation) whether the point is inside or oiitside.

Since the equation satisfied by the components of tlie magnetic induction is the

same as the condition (2) given in Note A, page 356, it follows immediately that

the surface intep"-! of the magnetic indtwtion taken through any closed surface is

zero. This surface may be wholly within or wholly without or partly within and

partly without the magnetic body. See also Art. 488.

It also follows that the surface integrals of the magnetic 'nduction taken through

any two surfaces having the same rim are equal. See Note A.

Note M, Art. 358. Vector potential. Since the surface integral of the

magnetic induction depends on the closed rim and not on the form of the surface

(Note L, page 363), it should be possible to find the induction through a closed

curve, without constructing a surface to act as a diaphragm.

This is effected by finding a vector A whose components F, G, H satisfy the

equations
dH dG ,. dF dH „ dG dF ,„,

> ^1= Tc -
-J- \PhX,=

dr, dj;' ^'>=.f df df dt]

where {Xj, Y,, Zj) are the components of the induction at a point P whose

coordinates are (|, ri, ^). Then, as proved in Note A, page 356, the induction

through any closed surface is equal to the line integral of the vector (FGH) round

the rim. This neiu vector is called by Maxwell the vector potential of magnetic

induction. [See his Electricity, Art. 405.]

The relations (3) are satisfied at an external point for a simple lamellar shell of

unit strength by taking

dz
'=/1. «=/t- "=/!• w.

where the integration extends round the rim of the shell, and R is the distance of

an element of the rim (xyz) from a point (^ijf) in space. This follows at once from

the values of X, Y, Z given in Art. 358.

Example. Prove that for a simple magnetic shell of strength m, in the form of

a small circle of radius a and centre O, the vector potential at a point P is

approximately

r* \ 2r^'^ 8 r*

where r= OP and p is the distance of P from the axis of the shell. [Coll. Ex. 1896.]

To prove this we take the plane of the circle as the plane of xy, the centre as

origin and the plane of xz to contain P. We then have x=a cos ^, y=a sin ip, z=0
and R'^=r'^-2apcoB^ + a^. Substituting in (4) and expanding the denominator in

powers of afr, we see that F=0. Bejecting all odd powers of oos<f> in the

expansion for G we find at once that G has the value given in the enunciation.

)
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NOTES. 365

We must refer this to axes of x, y which are independent of the position of P if

we wish to use equations (.*}). We then have

F-^-Avlp, G = Ailp, H=0, 1

where (f , rj, 0) are the coordinates of P and p- =^ + 1)*.

For an elementary lamellar shell, the vector potential is A=Msindlr'\ tchere

r=OP, 6 is the angle r makes with the axis Oz and M=irahn. The direction of the

vector is perpendicular to the plane POz and its positive direction is clockwise

round Oz.

For an olemuutary magnet whose moment is M, centre O, and axis the axis of z,

we assume the magnitude of the vector to be M sin 01r' and its direction to be as

just described. The components are then evidently F= - Mn
~i > «4«, «=o.

Since the potential of an elementary magnet is M cos 0/r^, it in not difficult to see

that the equations (3) are satisfied.

To find the components of the vector potential of a small magnet when the

direction cosines of the axis are X, fi, v, we resolve the magnet into M\, M/x, Mv.

The F component of M\ is zero, those of M/t, M» are Mn^jR^ and -Mvt^lR^

respectively. The F component for a magnetic body at P is therefore

"=/// dxdydz,

where R is the distance of any point (xyz) of the body from the point P in space

whose coordinates are (|, ^, f) and M—Idv, Art. 326.

NoTK N, Art. 397. Bleetrtfled apbere. The figure has been drawn by Dickson

to show the distribution of electrical density on the surface of a sphere under the

influence of a point-charge at S (where 05=10, 0^ = 6). Let a radius vector from

the centre O cut the curve drawn inside the circle in P, the circle itself in Q, and

the dotted circle outside in R. The length PQ then represents the density of the

(negative) charge at any point Q of the sphere, when uninsulated ; while the length

QR would represent the uniform density of an equal (positive) charge freely

distributed on the sphere, when the point-charge at S is absent and the sphere

insulated. Consequently, if the sphere be initially uncharged and at zero potential.
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and if the point-charge be then brought to S, QR - PQ will represent the (positive)

density at the point Q. This density will be negative from A to F, at which latter

point the total density is -'.ero. If the whole figure be rotated about OS, F will

trace out the line of no force. For the data given, the angle FOS is about S6|°,

and if the tangent from S touch the circle at T, the angle SOT will be about 68|°.

Note P, Art. 486. Dtseontlnnlty. The result in Ex. 8 is interesting as it

exhibits a discontinuity. The difficulty thus introduced would disappear if we

supposed the value of K to be continuous but to change rapidly from K to K'. See

some brief remarks on this subject in chap. xiii. of the second volume of the

Author's treatise on Rigid Dynamics (Art. 620 of the fifth edition).

C

C

D

D
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AiBY. Clairaut's theorem to a second approximation, 304, note.

Bertband. Relation of force to the curvatures of level surfaces, 128.

Bunco. Remarks on the history of "potential," 39, note.

BioT. Terrestrial magnetism explained by a central magnet, 830. '

Gapacitt. Electrical, defined, 371. Condensers, 417. Several cases, 418, 419. (ftc.

Capacity found by inversion, 432. Specific inductive capacity, 371, 478.

Effect of a change of dielectric, 474, 483. Plane, cylindrical and other con-

densers, 417, 419, 478, 479, 484, &c. Spheres, &o., 486.

Centbobaric bodies. Defined, 137. The fixed point is the centre of gravity and

every axis is a principal axis, 137. The law of force is the inverse square or

the direct distance, 137. The boundary of the body is a single closed

surface and the centre of gravity is inside, 140, 141.

Clairaut's theorem. Expression for gravity, 304. Potential at any external

point, 307. Second approximations, 309.

Condensers. Green's solution, first and second approximation, 417. Examples,

392, 418. Cylindrical condenser, 419, 479. Energy of condensers, 447. With
dielectrics, 484.

Conductor. Defined, 366. Conductor with a cavity, 386. Two conducting

spheres, 374. Ellipsoid, 376. Disc, 382. Bod, 380. Cobcentric spheres, 392.

Sphere acted on by a point-charge, 397; diagram, page 365. Cylinders, 407,

<&o. nearly spherical conductor, 420. Enclosed in a nearly spherical shell,

421. A nearly spherical solid of revolution in a uniform field of force, 421,

Ex. 4. Spheres intersecting orthogonally, 423, 436, and at an angle ir/n, 433.

Theory of a system of conductors, 438, &o. Mutual potential energy, 446.

Junction of conductors, 448. Introduction of a conductor, 449.

Cones. Attraction of sections at the vertex, 20.

Cylinder. Various problems, 24. Infinite circular cylinder, attraction at any

internal or external point, 00, 06. Heterogeneous cylindrical shell, 08.

Elliptic shell, 72. Solid elliptic cylinders, 232, &c. Potential of an elliptic

cylinder, 237. Potential of a heterogeneous cyUnder, 333. A magnetic

cylinder and the magnetism induced in any field of force, 333.

Cylindeb of rode. Limiting case of a cylinder and consideration of the resulting

discontinuity, 02.

Darwin. Clairaut's theorem to a second approximation with references, 304, note.

Dickson. Potential of a circular ring, No*o B, page 358. Diagram of the distribu*

tion of electricity on a sphere. Note N, page 365.

DiELECTBic. See Induction. Defined, 473. Substitution of a solid dielectric for

air, 474. Plane and cylindrical dielectrics, 478, 479, 482. Poisson's con-

ditions, 481. Kelvin's theorem, 483. Various problems and results, 484,

485, 486. Extension of Poisson's theorem for dielectrics, 492.
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DiFKKUKNTi/VTioN. Mutiiod iipplifd to find attractions, 93.

Dip. TanKent ih twico that of tho luaKnotic latitude, 834. •*

DiBKCT i)i8TANCK. MaKnitudu and direction o( attraction, 7, 8.

Disc. Sec Siuathm, Pi.ank conkoctouh. Attraction of a circular disc at a point

on the axiH, 31. Attraction of an infinite diHC, 33. Table-land, 38. Elliptic

disc ut focuu, 30. Elliptic (Uhc at any point, for the law of the inverHe cube,

39. lioctanKular disc, 30. DIhc bounded by two parallel linea, 30. Gonfooal

level Hurfacm, SI. Infinite heteroKeneoUH dlHc, 93. Elliptic discs, special

laws of denHity, 338. Any law of dennity, 361, 363. Condition that the

level HurfaceH are confocalH, 383. Electrified elliptic disc, 883. See

EM.IPHOIHAIi coNKitcrou.

Dybon. Anchor rin^, 193. EllipHoidH, 347, note.

Eahnhhaw. TointH of equilibrium are unHtablu, 119.

ELECTRiCAii I'lioiii.KM. Eiiunciation, 373. Oreen'H method of solution, 164, &o. ;

another proof, 393, i&c Method of inversion , 168, i^c.

Eijji'HoiD. Potential of a solid ellipsoid at an internal point, 311, &q, and Note G,

paKe B.'>8. At an external point, 333, 336. Other laws of force, 318, and

Note 1), page 3.'i<.>. Level surfaces, 316. Spheroids, 319, 330. HeteroKeueoiis,

with similar "tmta, 339. Any law of density, 346, 347, Note E, page 360.

Kefereuces, 348, note. Nearly spherical ellipsoids, first and second approxi-

mations, 330, 331. Potential of a magnetic ellipsoid, 3S0. Induced magnetism

iu an ellipsoid, 331i

Elliphoiual conductor. Surface density Mpliwdbc, 376. Quantity on a portion

of the ellipsoid, 377. Potential, 378. Only one arrangement, 881. Elliptic

disc, 383. Quantity on the portion bounded by parallel chords, 386.

Insulated rod, 386.

Elliphoidal hhkll. Internal attraction of a homoeoid is zero, 68. The converse

theorem, 78. Attraction at an external point close to the surface, 71, 309.

Theorem on the polar plane of an external point, 69. Potential of a

homoeoid at an internal point, 196. The fundamental integrals I and J, 300.

Potentials of confocal homoeoids at corresponding points, 303. Level

surfaces, 306. Lines of force, 307. Thin homoeoid, external point, 308,

309. Linear and quadratic law of density, 331. Any law, 347.

Elliptic coordinates. Poisson's theorem, 110. Potential of an ellipsoid, 330 ;

of an elliptic disc, 361.

Equilibrium. Points of equilibrium are unstable, 119. The separating cone, }30.

Level surfaces near a point of equil'.ljii'.im are quadrics, 130. Bepelling

particles lie on the surface of the containing vessel, 131.

Equally attractive bodies. Bodies attract equally if their potentials are equal

over an including surface, 139, &c. Also, if of equal mass and have the same
level surfaces, 131. Their centres of gravity and principal axes coincide,

136. A prolate spheroid and a straight line, 338. Discs and homoeoids, 338.

Everett. Units of attraction, 6. Beferred to, 368, note. Numerical values of

magnetic force, intensity and permeability in soft iron, 473.

Faraday. Magnetic induction, 343, note. Dielectrics, 466, note.

Ferrers. Attraction of a stratum, 94, note. Heterogeneous ellipsoids and
ellipsoidal shells, 346. Spherical Harmonics, 348, note. Electricity on

spherical bowl, 461, note. Expression for jPiPj^P^dp, limits i^l. Note O,

page 361.
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Filament. Hee Lines or roHCB. Definition, 120. ' "

Fi.ox. The product Fdtr, 107.
II

F0CAI.0ID. Detiiicd, IM. Potentials, 228.

FoNDY. Attraction of the tide in tlio Bay of Fundy, 38.

Oallop. Electricity on a circular disc and spherical bowl, 481, note.

Oaush. Mean potential over a sphbre, 84. The theorem
J
fW<r» ±4ir3/, 106. Also

deduced from Oreen's theorem, 103. Terrestrial magnetism, 336, Xco.

Ohken. Attraction of a stratum, 142, 147. A volume integral replaced by a surface

integral, 149, and a surface integral by a line integral, Note A, pa^e 3>jr>.

Equivalent layer, 1S4. Infinite and multiple-valued functions, 108, 161.

Kelvin's extensions, 163. Oreen's mathematical papers, 248, note. Green's

method of solving electrical problems, 106, 303. Green's theoreu on a

condenser, 417. Origin of the name "potential," 89, note.

Hanhtekn. Terrestrial magnetism explained by two magnets, 330.

Havohton. Problem on a fluid earth with a spheroidal crust, 313.

HoBSON. Two memoirs on attractions, 248, note.

HoMOEOiD. Defined, 194. See Ellipsoidal shell.

HoMOTHExic BUELL. Defined by Chasles, 194.

Imaoe. Defined, 396.

Induction. Magnetic force and magnetic induction defined, 342. How related,

340, see Note L, page 303. Other names, Note K, page 363. Coeflicients of in-

duction, 438. Magnetic induction in a solid, 460. Boundary condition, 468, 493.

Induction problems, 486. Surface integral of magnetic induction, 488, Note

M, page 364.

Inverse Prodlums. Find the curved rod such that the attraction of the arc PQ at

(1) bisects the angle POQ, 20, (2) passes through a fixed point, 20,

(3) passes through the intersection of the tangents at P, Q, 20. Given the

potential, find the body, 164.

Inversion. Kelvin's point inversion, 168. Geometrical properties, 172, &c. In-

version from a line, i.e. in two dimensions, 181, &c. The cylindrical trans-

formation r'= Ar'\ 0' = n0, 184, &o.

Ivory. Geometrical property of confocal ellipsoids, 202. Theorem on attractions,

222. Application to infinite cylinders, 230. Finite cylinders, 336.

Jellgt. Potentials for different laws of force, 96.

Kelvin, Lord. Theorems on attraction, 111, note, 131. Attraction of a film,

142, note. Centrobaric bodies, 136, note. Extension of Green's theorems,

163. Method of Inversion, 168. Magnetism, 314, note. Magnetic force and

magnetic inductio a, 342 and Note K, page 363. Solenoids, 347. Lamellar

shells, 36U. Electricity on a sphere, 403, note. Electricity on a circular

disc and lipherical bowl, 461, note. On two spheres by successive images,

460, note. Induced magnetism, 466, note. Theorem on dielectrics, 483.

Lachlan. Theorem on inversion, 179.

Lamb. Potential of an elliptic cylinder, note to 238.

Lam^. Poisson's equation in orthogonal and elliptic coordinates, 109, 110.

Lamellar shells. Defined, 380. Theory, 360—354. Elementary rule to find

the magnetic force at a given point, 366. Cartesian components of force,

368, see Vector Potential. Potential of a lamellar body, 369. Mutual

potential energy of two thin shells expressed by integrations round the

rims, 360. Force due to a thin circular lamellar shell, 362. Mutual potential

E. S. II. 24
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of a thin oirculnr hIicII and n Miiiall mnKiict on the axix, 363, F<x. S. OUior

lawH of forco, 362. lU'liition of Intunlliir hIicIIh to olpctrio currontH, 361.

Lapimcb. Thti ciiiiaticn VT=0, 9S. CornmponditiK equation lor oti)or lawn of

foroo, 94. I'ropciticM of fiiiictionH wliiuli HatlHfy l\iH equation, 133, lic.

Laplace'H functiouH and IiIh xcnond eiiuation, 384. Tiireo fundamental

theoreniH on Lapliice'H funutionH, 388—290. Kxt<>nHion of Tlicorem I., NotuH,

page !)(/J. KxpanHJon of tlie potential in a Heritm of Ijaplaue'H funotionn, 283.

General exprt-HHion for }'„, 286. i'roperUeK of the Hurfaoo r = ti(l+p^Y„),

293. VariouH cxpanHioiiH, 292. Hee SoMii or kkvomition. Laplace'n rule to

Hnd tlio potential of certain heturoKoncuuH bodieH, 297. Clairaut'H theorem,

304.

Leoendhk'h Fitnctionh. Theoromn on thoHO functionH, 264, i^u. ExpreHsionB for

/'„, 269— 271. Four equations, 273. KootH of i'„ = 0, 274, 276. The intoKral

j/(p)P„(lp, 278-280. The integral jl'n^dp, a»id otherH, 281, 282, Note O,

page 3U1. ExpreHHioD for i „ (}>) with any axiH of reference, 287. Expansion

o{ p", dPJdp, d'PJdp' &o., 393. See Houd ok iiBvoiinrioN. Expansion of

the potential for other lawH of foroo, Note F, page 300. ExpresHiona for

\l\l\J\,dp, liniitH J. 1, jp''l',n''P> i"'l //'mf''*^,./''/'*)''/'. NoteG, page .S61.

Level HnaFACEH. Definition and theoreniH, 40, &c. Uf a rod, 49, 61. Of a

homocoid, 200, 306. Cut at right angles, 133. llankinc'B theorem, 120.

To trace level Hurfaces, 134.

Lines of kokck. Delinition, 47. Direction in which a particle tends to move, 48,

114. Of a rod, 49. Of a homoeoid, 207. Attraction varies inversely as tho

area of a tube of fon^e, 127, extension, Note A, page 35(). To trace lines of

force, 134. Lines uf force duo to a rectilinear row of particles, 323. Also

due to a series of parallel infinite rods in one plane, 323.

MAcCuLLAon. Potential at a distant point, 130.

Maclaubin. Attraction of confocal eliipHoidH at an external point, 224.

Magnet. Potential, 316, 322. Resolution, 317. Mutual action of two small

magnets, couples, 318, forces, 320. Potential energy, 322. Lines of force

and level curves, 323. Examples of magnets actirg on each other, 324.

Magnetic nony. Elementary rule, 327. Applied to a rod, a sphere, an ellipsoid, a

cylinder, a lamina, 328—332. Earth's magnetism, 320, 330. Mutual potential

energy of two bodies, 334. Bodies not uniformly magnetised, 346. Induced

magnetism in spherical shells, uniform field, also a magnet inside, 487.

Maxwell. Treatise referred to, 314, note; 363, note; 370; a nearly spherical

conductor enclosed in a nearly spherical shell, 421, Ex. 2. Electricity on a

sphere, 403, note ; orthogonal spheres, &c., 423, note. Two spheres, 460, note.

Stress in dielectrics, 460, note.

Mountains. Attraction of, 33—38. Density of earth, 30. Pyramid of Egypt, 37.

Murphy, Electricity on two spheres by successive influence, 460, note. Two
spheres in contact, 464.

Permeability, maonetic. Defined, 469. Boundary condition in induced magnetism,

469. Relation to specific inductive capacity, 473.

Plana. Attraction of a circular ring, 191.

Plane conductors. Acted on by a point-charge, 412. Quantity of electr-'-ity on a

portion of the plane, 413. Two planes, 414. Acted on by a perpendicular

and also a parallel rod, 416. A circular disc acted on by a point-charge (1) in

its plane, 401, &o,, (2) on the axis, 404.
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Pi.AYrAin. Cylinder of greatest attraction, 24. Attraction of a lamina, 37. Solid

of greatest attraction, 31. Ucctaiiguhir disc, 30. Density of Sohchallion, 80.

PoiHHON. The theorem V*V -- - \wp, 108. Deduced from Oauss' theorem, 108.

Polar, cylindrical and obilciue Cartesian coordinates, 108. Kllipti>i coor<

dinates, 110. Mean potential througli the volume of a sphere, 84. Potential

at a distant point, 130, note. Attraction of u tlim, 143, note. I^vel surfaces

of tt homueoid, 200. Ivory's theorctn, 223. Heterogeneous ellipsoids, 248.

Attraction of cUipaoids, 248, note. Magnetism, 314, noio. Iteprescnts

magnetism hy an e(iuivalent solid and supuilicial distribution, 339. These

expressed in various kinds of coordinates, 340. Electricity on a sphere acted

on by a point-charge, 403, note. Electricity on two separate spheres, 409,

note ; 464, Ex. 4. Induced magnetism, 460, note. Poisson's oonditions

for dielectrics, 481.

Potential. Origin of the name, 39, note. Geometrical definition (1) at an external

point, 39, (2) at an internal point, 101, ko. Definition derived from work, 44.

Itesolved force, 41. Other laws of force, 43. Potential of a rod, 40, 00.

Discs and cylinders at points on their axes, 03. Infinite cylinders at any

point, 00, 06. Heterogeneous infinite cylinders, 08. Mutual potential of two

systems, 09. Gauss and Poisson on the mean potential of a body, 84.

Relation between the potential of the same body for different laws of force,

96—98. Potential cannot be an absolute minimum, i&c., 111. Consideration

of an internal point, 113. Various theorems, 110, 116. At a distant point,

130. MacCullagh's theorem, 130. Ccntrobario bodies, 137. Potential

constant in a cavity, 99, 139. Continuity at the surface, 103, 146. Given

the potential, find the body, 164, &c. Potential given over two concentric

spheres, find it generally, 299. Poisson's general expression for the potential

of a magnetic body, 339. See Holknuidh, Lamullaii siiblls, Conduciorb.

Potential energy of an electric system, 490.

Bankink. The angles of intersection of the sheets of a level surface, 120.

Hkctilinkar fiuuueh. See Discs. Potential of a lamina found in terms of

potentials of the sides, 207. Potential of a solid in terms of those of the

faces, 208. Potcntiuls of all rectilinear figures can be found in finite terms,

209. Solid angle subtended by a triangle at any point, 262.

BiNos, cmcuLAB and anchor. Polar line of P divides a uniform ring into parts

equipotential at P, 73. Potential at any point for the law of the inverse

distance, 00, 66. General method of inversion for any law of force by using

an ellipse, 186. Several formula for the potential of a ring, 190^ also Note

li, page 358. Theorems of Plana and Poincar^, 191. Anchor rings, 192.

Roberts' theorem. Potential of a lamina for different laws of force, 98.

Rod. Components of attraction, 10, &c. Infinite rod and the attraction of

cylinders, 74. Singular form, 10. Other laws of attraction, 16. Various

problems, 16. Condition that two curvilinear rods equally attract the origin,

17, &c. Inverse rods, 20. Potential, 49, 60. A cylinder of rods, 62.

Magnetic rod, 328. Electrified rod, 386.

RoDRiouEs. Potential of a homogeneous ellipsoid, 226, note. Legendre's

functions, 271.

Saturn. Figure of Saturn, acted on by the ring, 310. Measurements by Herschel

and Bessel. 310.

Screens. Electrical, 390.
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Siemens. Instrument to find the depth of tlie sea under a ship, 23.

STMiLAa noDiEB. Their attractions and potentials compared, 94.

Solenoids. Defined, 347. Potential, 348. Condition that magnetism is sole-

noidal, 349.

Solid angles. How mtasured, 26. Solid angle subtended by a triangle at any

point, 262. Of a cone, 264. Normal attraction of a disc, 27.

Solid of greatest attraction. Playfair's theorem, 31.

Solid of Revolution. Expression for the potential (1) ir Legeudre's functions,

300, (2) in a definite integral, 302. Potentials of a thin ring, solid anchor

ring, oblate spheroid, &c., in Legendre's functions, 303.

Spheres. Potential of uniiorm shell, 64. Annulus, 74. Theorem of Cavendish,

•«3. Discussiouof a discontinuity, 76. Attraction of a segment at the centre

of the base, 76. Solid sphere, 78, 79. Attraction of a shell on an element of

itself, 79. Mutual pressure of two parts of a shell, 79. Potential of a shell

near the rim, 79. Attraction for other laws of force, 80. Eccentric shells,

81. Heterogeneous shells, V'=Valr', 86. Stokes' theorem, X+ A''=- F/a,

87. Find the law of force that the attraction may be the same as that of a

single particle, 89. Laplace's expressions for the potential of a thin shell

with any law of density, 294. Also solid sphere, 296. Nearly spherical

bodies, 297, 420. Potential of a niagni tic sphere, 329.

Spherical Conductohs. Two spheres joined by a wire, 374. Concentric spheres,

392. Single spbeie acted on by a point-charge, 397. Diagram, page 365.

Lines of force and level surfaces, 406. Sphere in uniform field, 406. Sphere

surrounded by a ring, 406, 422. Quantity on a segment and potential, 406.

Nearly spherical bodies, 420, 421. Two orthogonal spheres, 423. Acted on

by a point-charge, 426. Geometrical properties, 431. Spheres intersecting

at an angle tt/u, 433. Three orthogonal spheres, 436. Spherical bowl, 466,

(fee. Two separate spheres, 469—463. Examples, 464.

Spherical Harmonics. Defined, 267. Zonal harmonics, 267. Tesseral surface

harmonics, 286. Sectorial, etc., 206.

Spheroids. Potential at an internal point, 219. Nearly spherical, first and second

approximations, 220, 221. Potential of an oblate spheroid found in Legendre's

functions, 303.

Stokes. Attraction of a spherical shell, 87. Theorems on potentials, 116, 117,

111, note. Potential of a body in general, iS3, note. Generalisation of

Clairaut's theorem, 304, note.

Stratum. See Discs. Green's theorem X' -X='iirm, 142, 147. Attraction of a

stratum on an element of itself A" -t- A'— 2/', 142. Green's equivalent stratum,

164. Linear and quadratic layers on an ellipsoid, 231.

Surface. Condition that two surfaces equally attract the origin, 28. Surface of

equilibrium defined, 46. Surface integral. Note A, page 356. See Induction.

Susceptiuility, maonktic. Defined, 466. llelation to permeability, 469.

Table-land. Bouguer's rvle to find the attraction, 23. Other authors, 23.

Terrestrial ma(inetism. Gauss' iiivestigation, 336, &c. Dip, 324, Ex. 2. Horizontal

force, 326. Biot and Hansteen, 336.

Tetrahedron. Potential in quadriplanar coordinates found in terms of the

potentials of the faces, 26'^. Potentials of the triangular faces, 267,

262, Ex. 2.

TnoiiibON, J.J. Magnetism, 314, note. Law of magnetic attraction, 32:2. Referred
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to, 368, note. Discussion of some results of Kirchhoff, 460, note. Diagram of

permeability referred to, 473.

Tbianole. Attraction of the sides, 16. Position of equilibrium when attracted by

the sides produced indefinitely, 16. A particle at the centre of inscribed

circle is in unstable equilibrium, 12jl, Ex. 5.

Tubes of force. Defined, 126. See Lines of fokce.

Units. Theoretical and astronomical, 2. c.o.s. system, 3. Foot, pound and

second system, 4. Dimensions of k and m, 6.

Vector Potential. Induction through a surface equal to an integral round the

rim, 368, Note M, page 364.

Work. Relation to potential, 44. Mutual work, 69, Ac, 439, &c. Potential

energy of conductors, with examples, 460. Potential energy of an electric

system, 496.

INDEX TO THE BENDING OF RODS.

JEoLOTitopic. Defined, 6.

Airy's PROBLEM. How a standard of length should be supported, 36.

Ball, Sir R. Notice of an error made by Poisson, 31, note.

Bent bow. Its '.'quation and the tension, 27—30.

Bent rod. Two methods of forming the equations of equilibrium, 10, 11. The

experiment'\l law, 13. A heavy rod rests on n supports with weights, find

the stresses, 21, 22. Inequality of pressures, 22, &c. Altitudes of the supports

to equalize the pressures, 26. Problems on heavy rods, 24, &c.

Britannia Bridge. Problems on the bridge, 23. How the inequality of pressure

was diminished, 23.

Central axis. Defined, 1.

Circular rods. Equations to find the deformation, 37. Extensible circular rods,

38. Expressions for the tension, bending moment and work, 40—42.

Limiting case when the rod is inextensible, 42.

Clapeyron. The equation of the three moments, 19, note.

Columns. Theory of their flexure and Euler's laws, 31. Hodgkinson's experi-

mental researches, 31. Greenhill's problems, 32.

Contraction. Found by theory (1) for a stretched rod, 7, (2) for a circular rod, 34.

Deflection. A heavy rod rests on n supports, find the deflection, 17.

Equations of equilibrium. In two dimensions, 10, 11. In three dimensions, 87.

EuLER. His laws on columns &c., 31.

Experiment. Hooke's law, 6. Bending of a rod, 13.

Findlay. Euler's laws, 31, liote.

Flkxural rigidity. Defined, 13. Its magnitude found by experiment, 22 ; variable,

26. Principal flexural rigidity, 63.

Helical twisted rods. A straight rod is bent into a helix, 64.

Heppel. History of the equation of the three moments, 19, note.

Hooke's law. Enunciation, 6. Corresponding contraction, 8, 34.

Isotropic. Defined, 6.

Kelvin. See Thomson and Tait. Resilience, 16.

KiRCHBOFF. His analogy, 69.
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Gone of equaIj astatic moment. Its axes coincide with those of the central

ellipsoid, 17.

GoNFOCALB. The principal astatic axes are the normals, 34.

36. Relation to Foinsot's axis, 61.

GonPLEs. Gonditions of equilibrium, 3, 8. Astatic angle,

find resultant couple, 6.

Dabboux. His memoir, 1. His ellipsoids, 16, 22. Theorems, 22, 87.

Elements. The twelve elements, 10. Interpretation (1) in rows, 10, (2) in

columns, 69.

Equilibbidm. Equilibrium of three couples, 3, 8. General conditions of astatic

equilibrium, 11, 12. If three forces balance three others, the six points of

application lie in a plane, 13.

Fool lines. Definition, 36. Distance from the centre, 37. Four focal lines can

be drawn (I) through every point, 37, (2) parallel to a given line, 37. Locus

of focal lines which pass through a point on a focal conic, 37. Minding's

theorem, 44.

FoDB F0BCE8. Rcduction of f. system to four forces, 60. Working rule, 60. Trans-

formation of tetrahedra, 70. Intersections of the central plane with the

edges, 71.

Imaginaby conic. Defined, 36, 64. Its centre, 67, &c.

Initial position. Definition, 19, 20. These are the only positions of equilibrium

with the base fixed, 21.

Invabiants. Of astatic moments, 17; of astatic triangles, 66; of two forces, 79.

Labmob. Proof of Minding's theorem referred to, 1, note.

MiNCHiN. Quaternions, 1, note.

Minding's theobem. Proof, 44. Further consideration, 48. Minding's memoir, 1.

MoEBiDS. First studied Astatice, 1, note.

MoiGNO. His treatise, 1, note.

Moments of inebtia. The analogy to astatic moments for all arms, 33.

Poinsot's axis. Its position in space as the body turns round R and bous in the

body, 38, 40. Its equation referred (1) to the axes of the forces, 39; (2) to

axes in the body, 44, 46. Three elliptic cylinders, 46. Case in which the

principal force acts along an asymptote of a focal conic, 44, 60. Its relation

(1) to confocal surfaces, 61; (2) to the focal conies, 64. Tu place the body so

that a given straight line may be (when possible) a Poinsot's axis, 44.

Poinsot's couple moment. Its magnitude referred (1) to the axes of the forces,

39 ; (2) to axes in the body, 41, 46. Found by a quadratic, 47. Axis of no

moment, 41, 44, 60.

Points astatic. Definition, 67.

Pbin(;ipal astatic axes. Principal couples, 18. Principal axes at various points, 37.

Pbincipal fobce. Definition, 9.

Reduction of \ system of fobces. To three couples and a principal force, 9.

To three rectangular couples and a force, 18. To two rectangular couples

and a force, 27. To two rectangular couples, with forces perpendicular to

the principal force, 29. Summary, 32. Reduction to four forces, 60;

three forces, 66 ; two forces, 73 ; one force, 79.

Single besultant. To place a body so that the forces are equivalent to a single

resultant at a given point, 19, 37, 40, 44, &c.

Somoff. His treatise referred to, 1, note.
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Three forces. Reduction to three possible, S6. Working rule, 60. Astatic points

lie on the central plane, 13, 67. Position of the central plane of three

forces, B8. Transformation of astatic triangles, 63. The imaginary conic,

64. The invariants, 65. The central point, 66; the central point is the

centre of the conic, 67. Determination of the central lines and principal

moments, 68. A reduction to fewer forces than three not generally possible,

72.

Triangle astatic. Definition, B7.
^

Two FORCES. Conditions that a reduction to two forces is possible, 73. The forces

are parallel to a fixed plane, 78. Invariants of two forces, 78.
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