The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree etou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numerisation sont indiqués ci-dessous.Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated)
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisees.

or the necessity of practical teaciling and practical training in public schools.

drawn than that our young mechanics have but little benefitted by their school education, when unaccompanied by practical teaching. In a large manufactory we lately visited, we were assured by the foreman that one half of the employess therein were incapable of setting up a piece of work in the lathe, and were mere living automatons, without a wish to learn, or to do more than earn a day's pay and spend it. But are we to consider that our young men are deficient in intellect to those born in other countries? Certainly not. There is a certain amount of innate talent in every individual, and although only one genius may be found among ten thousand boys, who in the face of every adverse circumstances will rise above the head of his fellows, yet, as a rule, the average talent of every civilized nation is nearly equal, and no matter what ability a boy may be gifted with by nature, it will remain inert until education, accompanied often by accidental circumstances, develope it.

But to come to the bearing of practical teaching and practical training upon the masses. Let us first consider its effect upon the students of the higher professions, who are afforded the means and opportunity of obtaining it in conjunction with their studies.

We will take first the case of a student for the Church. A student, after leaving a high-sehool for college, generally, before leaving, selects the profession, or it is selected for him, he is to follow, and direets his attention to a course of study and lectures bearing on it. If for the church, his mind is stored with biblical lore and trained in theology for his guidance, and that of others, in the path he is to walk, so that when he enters the ministry, he has had, to a certain extent, practical teaching to be followed by practical training, and be able at once to teach the doctrine he professes to believe in, and combat sophisms in his flock. Should a student be designed for the law, after fassing a preliminary examination he must pass a certain number of years in a lawyer's office, and in attendance at the Courts, which is practical training, but unless he is erudite also in all that appertains to the legal profession, he never will attain eminence. Should the medical profession be selected, the student must have a practical knowledge of chemistry, be well versed in pharmacopocia, botany and anatomy ; he is taught to
dissect and to learn, by practical illustration, the anatomy of the human body, and in walking the hospitals he sees the various diseases of mankind operated upon, and treated for cure-and this to him is practical training. Should a youth prefer to follow the profession of an architect or an engincer, he places himself, after leaving college, under the tutelage of one practising in either of those professions, and there he learns to draw and design, and then to superintend men in the construction of buildings: ; he has an opportunity to see the precautions used in obtaining a sound foundation, and the method of piling on unsafe ground ; he is taught the construction of stone walls and brick work, carpentry and all the other branches of a builder's trade, so that when he comes to start in the profession for himself, he is competent to direct the men under him and not be taught by them. And so, in one of the so-called higher professions, whether in chemistry, painting, music and others of a similar kind, every student thereof has an opportunity, after leaving school or college, to go into practical training, before entering into the practice of his profession. But how is it now with the ordinary classes of mechanics who neither possess the means nor opportunities of obtaining a practical training in all that appertains to their trades? It is quite evident that unless the youth who is to become a mechanic has not received practical training whilst at school, he stands but little chance of obtaining it in afterlife. Let us take for example the following trades: Agriculture, Masonry, Carpentry, Painting, and Mechanical Engineering in all its branches. Now upon the intelligence, talent, and practical acquirements of the men who follow these trades the progress of every new country depends. They are in fact the busy hive of workers who build the cells and store the honey for all the rest. They form a very large portion of the community, and from their more humble ranks have arisen many who have founded the wealth and greatness of nations, and yet those who follow these trades, whilst being educated in our public schools, are taught almost nothing in connection with the sphere of life they are destined to fill, and when they enter upon agricultural pursuits or into a machinist's shop, they know nothing of the practical application of what little they have been taught, and have to grope their way to knowledge the best way they can. Is it any wonder, then, that we have so very few talented mechanics or perfect workmen? If the education afforded at our public schools w .s more adapted to the sphere these wen have to follow in after-life, and mental study and practical instruction went hand in hand together, every subject would be more permanently impressed in the mind. One single lesson in Euclid or trigonometry, practically applied in the field, would do more to fix it clearly on a boy's mind than months of its construction or demonstration on the blackboard. Our children, in fact, are wearied with the study of subjects which are of little utility to them in after-life, and are at best but little anderstood.

The boy who, with a retentive memory, will rattle off a problen in mathematics, can receive little benefit from this gift of memory, unliss the practical application of a problem to things in life is explained to him. His school mate, less gifted perhaps, although unable to commit to memory the exact words of a problem or rule, will, when its practical application is explained to him, bear it on his mind, and perhaps never forget it, and eventually, under practical illustration and practica
training, far outstrip in knowledge more gifted boys. It is in the early dawn of life that children imbibe ${ }^{2}$ taste for certain studies, which, if encouraged, and made plain to their comprehension, stimulates them to the desire to learn, and the facility with which they set obstruse studies practically applied, goev a great way to remove their dryness, so that eventually, instead of feeling a disgust for study which they can never thoroughly comprehend the use of, a thirst for informa tion grows upon them. But let a boy he simply told by his master that learning by heart of certain rules and certain studies will be of service to him in after-life, and do not explain to him at the moment for what purpose and how they will be of service, he soon grows weary of school, and leaves it without a desire to improve his mind by after-self-study in those subjects, because never was taught their practical bearing in the trade he has adopted.

The term practical training, apart from practical teaching, has a much wider meaning than generally understood, and it will be well to inquire the meaning given by Webster to the word. First-What means practical? and, second-What is training? Under the first meaning a man may be a practical builder, that is, having * practical knowledge of his trade, and yet not be a profor tical man in another sense ; that is, he may not be capable of turning things readily to some use or account, nor will he waste time and money in endeavouring to turn to use or account things which are practically ith possible, as, for instance, endeavouring to extract metal from a rock which contains small particles of it, but which, when extracted, would not be worth half the cost of the labour expended. This is an instance in whick so much money has been uselessly expended in Cansds. When the late Sir William Logan, as a practical geolo gist, positively asserted that the copper in the Actol mine would terminate in a pocket, only one or two per sons connected with the mine could be brought to realise the truth of his assertion ; but those two were, in the end, the only persons who made money out of the transaction. The practical man would scarcely be guilty of the folly of attempting to do that which his experiende had taught him would be futile, but the unpractical man would run the risk, and only know the result when he had sunk his money in it.

Many mechanics having good practical knowledge, in the first sense of the word, have come to us with inven tions to patent for them, which have never been of any practical utility, simply because they had had no practical training in the working of their invention. Had they had experience beforehand, the unpractical use of it would have been foreseen. Now, as an instance of a practical invention, we may mention that of Howe in putting the eye of his needle in the point; he thus reddered a sewing machine possible and practical ; also that of Lyall, in carrying his loom shuttle by friction rollers (instead of batting it through), thereby rendering it possible and practical to weave a fabric of almost \boldsymbol{u}^{2} limited width. There is also another definition of the word practical given by Webster: "Evincing practioo or skill"-that is as a practical man, one who is always ready to solve new difficulties as presented. Of this class we may mention the sailor who, when the Pope's workmen were raising to its place the obeliak of Rome, and the tackle proved insufficient or ill-calculated, ariod out "Wet the ropes!" and by the contraction
caused to be crowned with success a task which had Otherwise failed. Also, in another instance of the sailor Who flew a kite over the top of Pompey's Pillar, by which means a party of British officers succeeded in getting a had over the top, and climbing up, discovered that it liad once been surmounted by a statue. It is the praciical man who, when a gaping wound in an arm or leg is spurting out the life-blood at a rate which blanches "' θ cheeks of other and less practical bystanders, places his thumb on the artery and directs the applying of a kaotted handkerchief as a tourniquet above the wound, :ud thereby saves a life. It is the practical man who sives a prompt emetic in a case of poisoning, never at a ${ }^{\text {lose }} 80$ long as there is warm water, or any of the dozen 'ther things to be had. It was the practical woman who, When threatened with a watery grave by means of the swamping of a boat in a storm, put her feet in the bottoon boops of her criuoline, and made the skirts a buoy to slypport her instead of a weight to drag her down. It is the practical person who is ready to roll in a woollen
shawd clowl or coat the terror-stricken woman or child whose clothes have caught tire. It is not "merr presence of mind" that leads or permits une to do these things in ":nergency. Any phlermatic person inay hwe pres nee of mind; but unless he is practical, absence of body is luych better in case of danger, and ju-t as nood in other, twed. It is the practical man who can rig up a tool to $i_{1}{ }^{\prime \prime}$ a special and unexpreted work in a conntry town, or ih a nei, bhburing wharf, io repair a disabled it amburt; Who can splice, when suapped, the heavy shatt of an
wean wean steamer; the practical geueral who always feets $h_{1,8}$ prog when on :t march, and allows n" rivers to block h_{18} progress, if he can mak. a poutuon or other tempuraty
bridge. ridge.
N_{ow} $\mathrm{N}_{\text {Ow, }}$ in contralistinction to the practical person, let
 lractical person whe unpractical people. It is the un
and his own time and substance and his neighbours' in seeking ifter perpetual motion, or, in other words, making a machine to run itseif, and "IPply the nower lost throurh friction. Another and liactical persun is the one who places four turbines in a mech as montal to get out of the second, third and fourth ing that the power as the first developed, while claim-
iheorst utilizes or developes 80 per cent. of the thooretical bower. It is unpractic 1 to drive a nail in Wood with the wedge end lengthwise of the grain, so in Wospith instead of crosswise, so as to cut and penetrate. Henty unpractical who bleeds to death when cobwebs are Henty to stactical who bleeds to death when cobwebs are
Who, blood. It was a practical monkey Who, when tied by the collar by a rope just too short to "back him to lay hands on the mantel ornaments, themed up" at the coveted treasures and deftly removed Tho with his hind feet; it was not a practical master pho did the tying, nor was it a practical woman who
permelf her ceilar steps from top downwards, and found The a prisoner.
Practical and forgoing are familiar instances of what is tical implical what is not, and will show that to be pracjud implies keen perception, retentive memory, good prompt action facility of combination and cool and By wation.
By Webster we further find that practical training cixe." "To teach and form by practice;" "to exerIt saver" The neressity of prectiond training is obvious of the the time moncy, lives, materiai. The apptication words is not to be restricted to any particular
trade, but to all; it is applicable to man, woman, boy, girl, father, mother, child. There is millions in it to the professional man, farmer, miner, laborer, artisan. It is of equal advantage to the employer and the employed. It has been the saving of nations, and the want of it has been the discomfort of others-as in the case of the late Franco-German war, in which the practical training of the German nation gave them the advantage. Then why should that system of education which makes one nation the vanquisher of another, equally powerful in numbers, be almost ignored in our public schools? "Practice makes perfect," it has been wisely said, but it does more. Practice in one occupation not only gives deftness, readiness, neatness and strength in execution in one line, but it gives the power of new conception, of invention and application.

Let it not be supposed for one moment that in advocating the necessity of practical training afterwards, that we ignore theoretical teaching, or we advocate a reduction or change in the usual course of school studies to those whose pareuts desire their children to follow up, but there is a class, and a numerous class, who leave school with a mere superficial knowledge of the higher studies which is su very superficial as to be of no practical use to them iu after-life-in fact time lost never to be recalled ; when, had they been permitterl to devoti: the time engared in endervoring to learn a smattering of elitssics, or the higher branches of mathematics, to practieal shhects of service to th. 1 m in any mechanical trade, or in agricultural pussuits, the advantage to them and the community would be tenfoll. We feel that the present system of publi, schosl eluotion in Canadt requires a radical refurm, and that it is not adaptel to the mass of the children who receive their education at the public schools.

By practical training, in contradistinction to practical teaching, we mean useful training, after leaving sihool, from books, from observation, from self-culture, and the exercise of sul reasoning powers; such training, in fact, would, if taught, save many from losing money, time, patienc, anl reven seuses, in seeking to do impossibilities, or losing themselves in a net work of absurditios, without any regard to tixed rules and laws, and which they could have thought out in a common suse way, or read in any common sense hook.

Practical training, therefore, means uspful training after leaving shool or collere, from books, from pactice, from observation, and, particularly, from self-culture. The mechanic who caunot make working drawings as well as work from them is at a disadvantage. The architect who can draw a chase and heautiful design of building, without being able to carry out his work in all its details, to supply the workiug drawings, to know when the work is properly executed, and have a practical knowledge of construction, is, in reality, but a mere draughtsman. The inventor who cannot put his thoughts in lines, loses half the value of his invention. The man of general practical information always commands a higher salary than his equal in all other respects, and the man who only knows one thing can never improve or increase his knowledge nor apply it, save in one way. The man with practical training will save money for his employer, receive promotion in his liur, and may eventually become an employer himseli. Practical teaching in the first place should be made cumpont-oy in all public schools. Every school teacher should be able
practically to illustrate, were illustration necessary and useful, every subject he or she teaches. Practical training should be taken into consideration by the Government, by forming training schools in the principal cities of the Dominion. It should receive also every encouragement from the public. Is not the lesson taught to us by the exhibition of arts and manufactures which have been exposed in Europe and America for the last thirty years an encouragement? Have they not shown the worderful results of the system of technical schools in Europe? And are they not well worth learning? Why should not we endeavour to afford to our artisans the advantages offered by foreign governments to their people, and by the Guilds of London, in particular, to the English people? These Guilds havirg nobly contributed large sums of money to the formation of technical schools, and the promotion of practical training, they waited not for the initiative to be taken by the government on a matter in which the industries of the country were in peril if she fell behindhand in the march of improvements. Let each parent encourage bome study, and insist upon their children being taught thoroughness and not a smattering of a varicty of subjects of little practical utility to the mass. The Royal families of England and (rermany have their children taught trades for twofold reasons, and many English noblemen excell in art working, designing, engraving, mechanics, \&c., and yet there are many in Canada, from a faulty education, who are foolish enough to consider that such work is lowering to their social status. Is it not time that we grew wiser, and that such false pricie and ignorance were dissipated!

THE KANSAS WHIRLWINDS.

On the evening of May 30, a severe storm swept over portions of Kansas, Nebraska and Missouri, developing locally two or more whirlwinds of limited scope,-but of terrific violence. The severest of these appears to have farmed on the Salina river, Kansas, crossing the country to Solomon river, then northeastward into Nebraska. Much of the country traversed has been but recently settled, and in the absence of complete telegraphic commanication, it is impossible to form a connected idea of the course of either of the whirls, or to gain any definite idea of the destruction wrought by them. Forfy or filty persons are reported killed and wounded; and many houses were wrecked at points so situated as to make it certain that no single whirlwind could have done all the mischief. Ercn where a definite line of disaster can be traced on the map, it tykes a curiously zig-zag direction ; and local reports describe the main course as having been diversified by many remarkable loops and curves.
In their general features, the whirls substantially repeat those of the whirlwind that wrecked the town of Richmond, Mo., jnst a year before. There was the same sort of funuel-shaped cloud, with its terific rotary motion and irresistible suction, sweeping across the country with a writhing motion, leaving in its track a lorped and sinuous line of ruin and death. Whatever came within its range was lifted bodily, torn to pieces, and scattered brsaicist over the country. Nothing was blown down; everything was iwisted and whirled into promiscuous ruin. Horses, rattle sult hings were caught up and carried to considerable distauces, the y thrown aside, crushed often into shapeless masses. To some: shaves the track would be straight and narrow; at others the terrible meteor would sway from side to side, leaving a luit cif partial destruction half a mile wide, with here and there a section eatirly unharmed, perhaps an island-like space in a loop of couplete devastation. In one of these loops, it is said, a house remains undisturbed, though the terrible whirl passed closely all around it.

Mr. Davidson, an American Artist, has had the good fortune to witness one or more of these unwelcome visitants, without experipsciug their immediate effect. It is impossible for the must lively imagination, uninstructed by actual observation or experience, to form any adequate idea of whirling storms. The folward motion of the whirl may be not more rapid
than that of a stiff breeze; yet the actual speed of the wind
in the whirl would seem to be immeasurably great. It is impossible to estimate the resistless violence of the air move ment at such times. Houses are swept up like straws, heary. wagons and machinery are crushed and carried for long distances, and the toughest trees are twisted off like reeds. The electrical action in connectom with these murderous whirls is naturally excessive, but the immediate rainfall is apt to be slight.-Scientific American.

HYPOSULPHITE OF SODA IN ERYSIPELAAS.

Anthony's Bulletin contains the following concerning the hyposulphite of soda as a remedy for erysipelas: "When erysipelas proceeds from a wound, it is more dolicate to manage, and requires the best surgical skill ; but when it is of the milder form, on the outside skin in the face or any other part of the body, proceed as follows: Take of hyposulphite of soda any quantity, and make a saturated solution in a bottle of any convenient size -six, eight, or ten ounces. If the individual is a strong, hearty man, and the disease has a good start, give your patient one tablespoonful every hour for twelve hours; then decrease the dose, as the benefits become manifest, say once in three hours. It may cause diarrhen; but never mind, it will destroy any febrile sympto:ns. Twenty-four hours is generally sufficient to prolluce a decided change for the better, unless it has six or sevent days' start, in which case it will take longer. The results aro generally so wonderful that I have never known the remedy to fail. With au old person you may substitate a teaspoonful for tablespoonful, and once every two hours. You may put this down : that the sonner you can get a good quality of the sode solution into the body, the sooner the trouble will be orer. Now, for an outward application : use equal parts of the sode, solution and glycerine; saturate cotton flannel with the above, and lay on the part affected. Eat simple food-avoid all exciting food and drink; farinaceous diet is absolutely necessary. If youn can bathe the part affected with the above solution, do so ; then lay on the saturated cotton.
" Hypo is equally as efficarious in any poisons from insects of vegetables ; old wounds in sores are healed by washing the parts in a solution of soda. It is also good in typhoid fever, carefully administered.
"Now. if a person has a furm of erysipelas that is not so docided, but (say) chronic, let him take a teaspoonful every night of the solution, and the disease will be entirely removed, if kept up for a month. The disease seldom or never attacks a pers the second time when cradicated by the soda treatment."

FOOD AND DIGESTION.

In a lecture before the Workingmen's Lyceum, Dr. Segran spoke as follows of food: "Au ordinary meal is generally con or posed of five ingredients-animal or nitrogenous tood, starchy sweet food, watery veg tables, beverages and condiments. food when digested is taken into the system by blood resselse For persons, and especially for workingmen, in this climate, meats are the noost easily digested, and at the san.e time are thest most nourishing food. Tripe is the easiest and pork the harder the to digest. Among vegetables, rice and boiled cabbage are the extremes. Anything that is boiled in fat is extremely indigigd tible. Milk contains the five ingredients referred to above, and so is really 'all-sufficient.' Mothers make a great mistake in trying to induce iufants under two years of age to eat gtaruby food, for thero is no alkaline fluid in the stomach of an infant by which the starch can be changed to sugar, and so infused inthe the system. It has been estimated that a man working in the open air daily needs 15 ounces of meat, 18 ounces of bread, $3 \frac{1}{1}{ }^{0}{ }^{0} t$ butter or fat, and 51 of water. 1 agree with many emine tho chernists who have proved that alcoholic drinks are an aid to to system in retarding the waste of tissues. So, too, for the sam of reason, I regard tea and coffee as nourishing. An excess ad starchy food is to be carefully avoided. Men who handle 'le the ought to abstain from alcohol, for if too much is taken the kidneys, which throw off the poison of the lead, are likely to become diseased."
Nature has supplied an infinite variety of food to suit every taste and the gratifications of every stomach. "What is on man's meat is another man's poison," is an old and true saying The whole of good health may be concentrated in the simp 0 observation to "eat only what agrees with yon." information can give no better or other advice. No physicial can prescribe a more efficacious remedy.

THE EDDY8TONE LGEFTH0U8E.

In the English Channel, fourteen miles south southwest of the port of Plymouth, and twelve aud a half from Rame Head, stand the Eddystone Rocks, a cluster of twenty-three gneiss rocks about 650 feet long from north to south, spurs and detached reefs covering about the same distance from east to west. They are almost in the line which joins the Start and Lizard points, and in the fair-way of all vessels coasting the southern shore of England. So exposed are they to the ocean swell from all the south and west, that even in comparatively calin weather the waves go raging and thunclering over their ledg's, and their name indicates the incessant swirl of the deep about them. Excursion steamors run there often during the summer, but rarely land their passengers. On these rocks three light-houses have beeu built in the last hundred and eighty years, since Europe became civilized enough to reake such works practicalle. Henry Winstanley, a retired London merier, was the architect of the first, which was begun in 1696 and completed in 1699 . He had wuch a taste for mechanics-for the bizartr in mechanics, that is-as Robert Houdin displayed so ingeaiously in his villa uear Paris, to the consternation of all his acquaintances, and unused his leisure at Littlebury, where he lived, by constructing chairs which tolded thrir arms round those who sat down on them and helil them prisoners, the, ugh less cruelly than the maiden statue filled with knives at Baden, and by arranging an innocent slipper in the middle of a room, which, when the unwary visitor paid it the passing tribute of a kick, caused a frightful ghost to start up from the Hoor. The ider of his light house was suggested to him by a pieture of a Cininese pagode, and he built it of wool, in a polvgonal shape. A' ut a humdreal leet high, and set it "pons a polygonal ston. lowe twelve fert high and twenty four feet in diameter. Its form of course rendered it peculiarly liable to be swept away by the waves, while its huge gables, vatues, cratios, and woolen caudlesticks exposed it to the action of the wiml. It wiss gaulily ornarmented wath painted alld gilded suas atid eompasse, and mottues, suc! us "Post Trenehras Lax," "Pax in Beilo," and "Glory be to Ciod," and to protect its oceupants ggainot the attarks of loreigh enemies, fienchmen, Dutchmen, Spaniards or Turks, there was a plaform from which, by meand of a movable shoot, masoc. if rock ronld be hurled upon assailants. There was : kitcholl, :acommodation for the kerpers, a state parlor carved and panital, with a chinney, two closets, and two wimdows giving upon a spacious balconv, and a splendad bed-chamber richly rilded and painted. Winstanley is represented in alt engmain: ot this light-house (which was via. thally a hage corkney summir-house set on stilts) as tishing out. of the purfor wimdox. Ensumers amb rementitic men even then knew that he was mat, and warned ham that the stmeture was : end-hontse, i, ut to nur etfe: He insisted on spending a por. tion of has hame in it as a puint of honor, and declared his ansiety to " be in it cmring the greatest storm that ever blew under the face ol heaven." 'His wish was gritilied. Ho had visited it in Noveminer, 1703, to sipermotenl solluerepors w!rn What is remeabured still as the "Garat storm" bursi over the English consts, the everememorable tempest which instroyed many of Sir Cloudesiey Shovel's veosels then it the Downs, unroofed half of London, and inspired Mr. dddionn, then "distressed by indigence," to compare the luke of Marlhorough, at Blenheim, with the angel riding in the whilwind and directing the atorm, a simile which rarned for its author the Commissionership of Apprals. When the sum rose on the 27 th . .ovember there was no vestige of the pagoda to he seell, and with it Winstanley and his five men had heen swrpt awiy.

In 1706 the erection of the secolid light-house was hegun at the expense of another Loudon silk mereer, Mr. John Kudyeri. It was completed in 1709, and was a very creditable piece of engineering. In form it was the frustum of a circulai cone. For twenty-seven feet it was nearly solid, the filling consisting of courses of cut-stone alternating with courses of squared timber, the outside casing being of seventy-two oak posts fastened into the rock by havy irons let into lewis holes, this being the first recorded application of the lewis for this use. The tower stood till the night of December 3, 1755, when it caught tire in the lantern and was destroyed. The keepers had to retreat from room to room as the fire gained till they reached the rock. For a wonder the weather was calm enough to admit of a boat landing in the morning and taking them off. Mr. John Smeaton was selected to build the third light-house, the type of all atruc. thres of the kibel that have since bern rereted. His studips of Wh ve arllin convinced him that no bunduag can stand the contibuous shuch of wave after wave if the blocks are merely laid
one upon the other as in ordinary masonry, so he set himself to make a tower which should ie practically a monolithic pros. longation of, and so be equally stable with, the rock beneath, He took stone for his material, and for the lines of his modes measurements of the proportions of the trunks of the old oaks in Windsor Forest. The general form of the "deep-sea lamp" post" is "the frustum of a solid of revolution formed by revolving a vertical plane bounded on one side by a concave curve around a vertical axis." It was built of large blocks weighing from a ton to a couple of tons of the strongest Portland oollite, cased in granite, the expense of using nothing but granite being thought too great. The stones of each course were joined by dovetailing, and the courses were connected by stone dowels, and the upper surface of the rock was cut in horizontal bed. !he combinations devised for obtaining the greatest strength by dovetailing, dowelling, cramping, and the use of hydraulic mot tar have never been surpassed; indeed Smeaton's discovery has been called "a ruvolution in architecture as great as the effected by the use of the keystone in the arch, or the introduction of the iron girder in buildings of the Italian style." The diameter of the lower partial course of masonry is 32 feet, that of the lowest entire course 26 feet. To a hright of 35 feet it is solid; the whole height of the masoury is 77 feet. Under the copiug the course is 15 feet in diameter; the tower is surmonnted hy a parapet wall $6 \frac{3}{4}$ feet high and $8 \frac{3}{4}$ feet in internal diameter. There are four rooms, one above the other, and at the top n gallery and the lantern. The stone floors are flat abofe and concave below, and are kept from pressing agairst the sides of the building ly a chain let into the walls. The light-hougt was began on the End of April, 1757, and when it was tinished, dugust 24,1759 , Smeaton said that nothing but an rarthquake could drstroy it

And yet this preadial tower had onr fatal fanlt-it was ton strong. The waves have smitten it in vain-the keepers say that each hlow sounds like a cannot-shot, and th. liginthouse vibrater like the trunk of a wind-shaken tree as the waves actudly orer bap the latuern, and the only accident in its history was thats burning of the womden part of the structure in 1770 . It stands
on an irregular shaped cray, the House liock, her upper surface of whieh more or less overhangs its actual foundations, and the w:aves have gradually unifrminmat thi precipitous submarine wall; at the same time so solid is the light-house that ind has piamed the prat of a righd cowhor thrus: into the rock and violemity worked tor and fro, creathen lisumes in the foundation arag: it has hoen ant immense lever, and sooner or later was. break or pry of the rock and tumble with it into the waves. In 18:39, and again in 156.5 , iron banl, were introduced into the interion of tie superior pertion; part of the projecting erag wa cut away to lessen the leremage of the water, and the cornice which simatan placed near the top, poriy for ornament, partly
 armaly, midel, on the 3ud if February, 1869, a!d on the 9th 0 Oetoher, 1sis, it his been reported as destroyn!. The Eidder Brethren of the Trinity beand have now prepured a light-ship,
 tumble ere time n"w one is completed. .-- Erehangr

CENTRIFUGAL FORCE AND FLY-WHEELS.

It is wot always that practical men are willing to admit the value and importauce of scientific knowledge as regulating operations and uccidents of a workshop. Wr had a valuable cident of the kind that forced itself upon our notice, says toreign contempurary, a few days back. A large pulley or riggers three feet in diameter, and very wide, was split ucross its rial by carelessness in unloading; at the same time it was poticod that two of the arms out of six were cracked by contraction to cooling. In order, however, to save expense it was proposed tes, patch the broken rim of the pulley with wrought-iron plates, which was done. Per se, the iron plates were stronger thanl the to original casting, but the whole weight of the patch amounted to about 15 pounds. As the pulley revolved at the rate of 600 revolutions a minute, this unbalanced weight on the rim becsis by calculation as much as $7 \frac{1}{2} \mathrm{cwt}$. radial force outwards. scientific result was brought to the knowledge of the practic men, but they could not see why the pulley would not do viles well if the patch was as strong as the rest of the rim. was accordingly run under protest, and harilly hail the maximan sited bee: uttained belore the pulley Hew in pieces, and mighy have been dangerous to life and limb. The pulley, undoubted the
broke, as above indicated, by centrifucal furce, which, by

unbal

at lanced patch of 15 pounds, caused a breaking radial pressure ewt. Then the broken rim at the position of the patch of $7 \frac{1}{2}$ enormis was quite sufficient to break the rim outward with ments ons force, so that the pieces flew about the shop like fragments of a bursting shell. It will be well for machinists to reWheels this incident when they have occasion to repair fly-Wheels.-Scientific American.

Abstract

EMORMOUS POWER REQUIRED FOR RLECTBIC LIAHT. illotwithstanding all the claims about the economy of electric bumination, it appears that it is hy no means cheap after all, that the contrary, highly expensive. It has often struck us ${ }^{0} v_{0}$ the power driving the magneto-electric machines used for only to this light was much greater than represented; one had dimen make an estimate by the combined consideration of the used to eledtric furnish the steam. Last winter, in order to furnish two York lights outside the Roman Catholic Cathedral in New corsp, quite a large fire was required under a good sized boiler, Fould hing an amount of coal, which, if converted into gas, tame have been sufficient to feed gas jets by the hundred. The l,000 has been observed in Paris; the furnishing of light for power, so thength of streets required an engine of 20 horsefeet of so that in order to furnish electric light for the 550,000 than of streets in Paris it would require a motive force of more ployed in 1000 horses, which is more than double the power emmilea in all the industries in Paris and the departments for 100 Statiatics a taken together. amed in show that for every 1,000 cubic feet of gas conrate in the streets of Paris, 9,000 cubic feet are burned in priamusemses, churches, hotels, operas, gardens and places of a force oft; so that in order to furnish light for all would require coal to of $1,000,000$ horses; taking the average consumption of $8,000,000$ lbs. per hour for every horse-power, it would require $\mathrm{P}_{0} 0,000$ pounds, or 1,500 tons of cosl per hour to furnish the -ach required to develop illumination by electricity. After ach exposes holders of gas stock may feel easier.

BRBERVL BOPATMA'S HESDIE:

Abstract

The London Metropulitan Board of Works recently took in had the subject of preserving their Cleopatra's Needle, which con caused so much trouble to float to its destination. After Brownation with experts it was decided to grant to one Henry colntiong the job of cleaning and coating the monolith with a The of his own invention. expectatioct, says the Times, has exceeded the most sanguine granitations of the Board of Works. In operating upon the ing all Mr. Browning first gave it a thorough cleansing, removindorated the sooty and greasy matter from the surface, and hatrated it with his invisible preservative solution. The effect chiseled to give a freshness to the granite as if only just ing the from the rock, retaining the original color, discloslife cryeveral veins, the white spas shining in the sun's rays merly eryats, and exhibiting the polished portions as they forhieroglypisted. More than this, the "intaglio," or the beforlyphic ingravings, come out far more pointedly than distinguish the injuries the stone has received are now plainly Well inguishable from the hieroglyphics. The solution soaks sider the the pores of the granite, and the best authorities conmonolith it will have the effect of thoroughly preserving the

THE WORLD'S COMIERCE.

Dr. Neuman, of Stuttgart, Germany, has completed a book on the subject of the world's commerce, upon which he has bestowed a great deal of labor, and which covers the subject very fully. He puts down the total wealth of Great Britain at $\$ 4,500,000,000$, with an average yearly increase of over $\$ 125,000,000$. The grain trade, or rather that part of it exported, which, of course, is but small compared with the whole, proves a teuth part of the international commerce of the world. The coal production he estimates at nearly $300,000,000$ tons; it has doubled since 1860 . Nearly $14,000,000$ tons of iron are manufacture. yearly, though the industry is comparatively in its infancy. The consumption of iron is yet less than one pound per annum for the majority of the inhabitants of the world. Such countries as Russia use up 10 pounds of iron per head per annum.

The imports and exports of each country may be stated in round numbers as follows :-

Millions. Millions.

Great Britain	3,260	
Germany	1,600	
France	1,520	
Balance of Europe	3,600	
United States	1,090	
Brazil.	210	
Canada.	180	
Balance of America.	620 -	2,100
British India	470	
China	230	
Japan	70	
Balance of Asia	340-	1,140
Australia.		460
Africr.		800

The internal, however, is the grent trade of the United States, which, of course, does not at all appear in the above figures.

Scientific.

There are said to be about 30,000 telephones now in service in this country, and only 500 in England-a fair sample of the greater quickness of the younger country to adopt new inventions. Prot. Wm. Henry Preece, an eminent English electrician, recently said he did not think that the telephone would be an instrument of the future, and be largely adopted by the puhlic; " for although it had been largely adopted in America, we had not the same necessity for it, for we had a superabundance of messengers for all purposes, which the Americans had not."-Ex.

Perhaps not. We must, however, give Prof. P. credit for his foresight. The telephone, truly, will not be on instrument of the future, because in this country, at least, it is an instrument of the present, and as to England, refer to the following:

Twelve sets of telephones have been sent out to Sir Garuet Wolseley, for use at the seat of war in South Africa. The great advantage of the telephone over the telegraph, is that the Gentral can carry on contidential talk with the officer at the district station, or a soldier can creep out toward the enemy's limes and whisper back the information as to position. A fine wire-the thinner the better-is all that is needed. This the solilier curries on a reel upon his back-a mile weighing only a few pounds. This will be the first time the telephone has been used as an in:strument of warfare.

Ligitining Rods.-Mr. E. S. Brough hias been discussing, in the Philosophical Magazine, the proper sectional areas of iron and copper lightuing rods. So far as mere conductivity is concerned, a comparatively thin wire of either metal would suffice for any conductor; but such a thin conductor would be dangerous, because it would be fused by a heavy discharge of lightning. Iron being more liable to be fused than copper, Mr. Brough sought to determine the relative sectional areas of rods of two metals, so that neither would be more liable to fuse than the other. Ordin. arily, it is stated that the iron rod should have four times the sectional area of the corper rod. Mr. Brough sliows that these areas should be as eight to three; or since the rods are invariably made circular, and circular areas are to each other as the suluare of their diameters, the diameters of iron and copprr rods of eupal etfectivellesh should he in the proportion of 1.63 to 1 . Iron is, therefore, much the cheaper metal for lightmus rods.

Artistic Brickwork. - Fig. 9.-Entrance to the Morse Building.-Concluded from page 241.

Artistic Brickwork.-Fig. 10.-Detail of the Basement Story of the New Morse Building.-Scale \ddagger Inch to the Foot.

ARTISTIC BRICKWORE.

(Concluded.)

In Fig. 9 is shown in perspective the front entrance, which of the on Nassau street, and which may be declared to be one Whole buildimportant features, artistically considered, in the in alto building. In general appearance it is very imposing, and - picnogether in keeping with the structure of which it is so conita details a part. Terra-cotta forms have been used sparingly in finialabors, as may be seen by inspection of the engraving; the rosetter the pediment, the capitals to the pilasters, and the In ${ }^{2}$ being of this material.
Which Fig. 10 is shown a detail of the arches in the basement, of enlarged mention has already been made. Figs. 12, 17 and 18 show are constructed. constructed.

Pis. 15 shows the first-story arches, also before mentioned. the 1 ill in this story is formed by means of a terra-cotta tiling, thils of the member of which is molded to form a drip. The dein ${ }^{\text {of }}$ of the molded brick used in the first-story arches are shown We $\mathrm{h}_{1} 11,14,16$ and 19 .
-nul Conaver mentioned that the building is fire-proof. The genfact, rosatruction being of brick, goes far toward rendering this a tron beamar than a mere name. In the construction of the floors, ploged beams, spanned by corrugated iron arches, have been emfo bhonld There is little in the building to be burned in case a Tphould originate in any part of it, while its solid brick walls, 4phating it from adjacent buildings, will reaist any fire which Noot. The be kindled against it. Iran beams are nsed in the toof. The corrugated iron arches are covered by a heary layer

Artistic Brickwork.-Fig. 13. Artistic Brickwork.-Fig. 14. Enlarged View of Brick No. 7. Enlarged Vievo of Brick No. 50, in Fig. 15. of cement, upon which are bedded flat, vitrified tile. A bonfire might be lighted upon this roof without endangering the build. ing in the least.
Concerning the use of molded bricks in connection with this building, one of our daily contemporaries says: "There are few cases, for instance, in New York, in which molded bricks have been used at all, in which they have not been so intemperatoly used as to mar the effect of the building they were meant to beautify. The use of them in this building as the modeling of the openings of the basement and the first story, in which they are chiefly employed, is positively delightful. It is clear that they have been used, not because the designer was anxious to introduce molded bricks, as commonly appears to be the case, but because he found them necessary to carry out his design." The same writer continues: "The same is true of the use of black bricks, generally employed merely for variety, and so either ineffective or distracting, bat here intelligibly to express or dofine an arch, to emphasize a needful line, or to add vigor to a springer, and consequently effective."

We have already mentioned that the molded brick used in the construction of this building were furnished by the Poerless Brick Co., of Philadelphia. This company has given especial attention to the problem of obtaining rich and durable colors in brick, as well as good quality in ornamental brick. We clip the following from a recent Philadelphis paper:-

- The Peerless Company has revolutionized the manufacture of bricks, and has gone far toward effecting a welcome revolution in brick architecture, not alone by the infinite variety of shapes and excellence of finish which the company imparts to the brieks it turns out, but also by reason of the beanty of their color. It is, doubtless, owing to the impossibility which architects have heretofore found of gotting rich and lasting shades in vari-colored
bricks, that a brick building up to this time has meant invariably a dull red pile, unrelieved by any other tint except in occasional instances, and then by the intioluction of a white that would turn green, or a black that was not black when viewed from certain angles. George E. Street, one of the ablest writers of the age on art and architecture, says: 'At the present day there is, I think, absolutely nu one point in which we fail so much, and about which the world in general has so little teeling, as that of color. Our buildings are, in nine cases out of ten, cold, culorless, insipid academical studies, and our people have no conception of the necessity of obtaining rich color.' And again: 'Our buildings should, both outside and inside, have had some of that warmth which color only can give; they should have enabled the educated eye to revel in bright tints of nature's own formation, while to the uneducated eye they would have afforded the best of all possible lessous, and by familiarizing it with the proper combination of color and form, would have enabled it to appreciate it.'"

The Morse Building as it stands, independeut of the ground, has cost ahout $\$ 175,000$, rendering it one of the cheapest buildings, all things considered, which have been orected ill this eaty since 1861. It will, no doubt, prove a profitable investment to its owners, while being a characteristic example of now ideas in the constuction of office buildings.

UTILVING IROX AND STEEL GHEAKINGS.

Thin shearings, or pieces of iron or steel-such, for example, as the scrap from cutting iron sheets for tin-plate making, and from yarious other operations in which thin sheet iron or steel is employed-are very frequently re-worked with other metal, either in the puddling furnace or in the refining furnace. In some cuses the scrap is placed loose in the puddling or refining furnace, but more commonly it is made into bundles. In any case the binding only serves to keep the material together while heating up, tor the lundle then falls apart, allowing the metal to mix with the remainder of the charge upon the bed or hearth of the furnace. There is much loss in this process of re-working, 30 cwit. of this scrap not producing more than a ton of manufactured metal. According to the invention of Mr. J. H. Rogers, of Llanelly, England, the shearings or waste pieces of thin iron or strel are compacted together into musses or blocks, and these are placed in a re-heating furnace, and, when heated to a proper temperature, are consolidated under a steam hammer, or in any other couvenient way. In this manner he can obtain a ton of manufactured metal from 23 cwt. of shearings. In order to form the shearings or pieces of iron or steel into masses or hlocks ready for heating, he places them in a hox or mold, and with a steam press or other suitable machine he prenses the contents of the box or mold until a compact block is obtained. The mass thus compacted is withdrawu from the box by an opeuing provided for the purpose, and which is closed by a door while the material is being molded. The compacting of the scraps is performed in a cylinder or mold, wherein they can be compressed by a kind of steam hammer. To discharge the molded mass, the box is opened, and by means of n bar inserted at a suitable hole it is forced out in a condition to go into the re-heating furbace. In the furnace, and in the subsequeut hammering, the blocks or masses are treated in the same way as piles or blooms.

Telikimones witholt Diaphragms.-M. Ader reports some experiments confirmatory of the views of Du Moncel, upon telephones without diaphragins. He lias often observed that the reproduction of worids and snunds, which are occasioned by the interruption of currents, can be ninde in these telephones with a different quality, and upon a higher or lower pitch, according to the degree of tension which is givell to the iron wite; but if the fundanental sound of the wire is muffled by holding it between the fingers, the sounds which are reproduced become dull, a little more leeble, and always in the samie tone. Hr concludes from his experiments, that the sounds which are produced by a magnotic nucleus are probably the result of shortenings and lengthenines of the wirr, determiued hy rapid maguetizing and demaguetizing, the molecular vibrations of the magnet producing the effects of the telephoue, and the iron diaphagen ouly strengthrning the vibrations, and rendering them motr sensible to the ear by its owu vibrations. We know it is possible to replace the iron plate of the receiver by non-magnetic nubstances, as a plate of copper, glasm, wood, and even card-board. The magnet does not exercise any particular action upon the diaphragin. The mistake was not in the fact but in the calls, the substance of the diaphragus receiving the molecular vibrations and communicating them to the ear.

ROOL DECORATION.

By William Hodgson.
I am not astonished at the fact that many persons have grey and white drawing-rooms, when I think of the hideous effects sometimps shown me as decorations, where, perhaps a pale emerald green, a grey aind a ghastly pink-th. very pink that will not harmonize with the crude green in question-are the colors employed. The hileonsness of some decorations, so called, is beyond ex!ression, and white walls are infinitely pro ferable to suth.

A dining-room we generally make rather dark; citrine, or blue of medium depth, and with greyish hue, looks wrll for the walls of a dining room, and a maron dado is very suitable. The ond blems of the feast-fish, birds, and beasts-may sometimes be in ${ }^{-}$ corporated with the decorations of a dining. room with malvantage. The effect of tightness is usually given to drawing-rooms. I think we generally make these ronms too light; we wive to them a colduess which is frepzing, rather thun that dupth of tiat which gives a snugness, und that cheer ulness which promotes conversation. Furniture cannot look well asainst a very light wall, and against this as a background every ohject seems cat out with offencive sharpures and harefnes.s.

Bediooms ure in rongly mule veiy light. The decorations of a bedroon shnuill e soothing. In the hour of sickness we all feel this-it is not whiteness to diazzle that we want, it is that which is soothing and which conduces to rest. There must be st absence of spots or specially attractive features from all good decoration, but in a bedroom tuis is especially necessary.

A smoking-room, or "sanctum," is the one room where we may indulge in the grotesque and humorous, but the grotesque unst always be clever and vigorous.

In these days of competition, when the brain is very active, and the nerve force is kept for many hours together in constapt play, it is peculiarly desirable that our rooms be soothing in effect and snug in appearance. If special richness is to be indulged in, bestow it upon the library.

ON THE WOOD-WORK OF ROOMS.

It the wood-work of a room, is simply varnished, or stained and varnished, then the decoration of the walls and ceiling mugt harmonise with it, for it is a tint we cannot alter; if, however, it is painted, then it can be colored as may be required. What ever acts as a frame to something clse is better darker than that which it frames, or in some way stronger in effect. A cornice, as the frame of a ceiling, should be stronger im effect than the ceilitig; in like manner a skirting which frames the floor should always be dark. I have never yel seen a room which was altogether satisfying to the eye where the skirting was light. I often make the skirting black, but in this case I generally varnish the grenter portion of it, yet leave purts "dead," thus getting a con" trast between a bright and dead surface. I sometines rua a few lines of color upon its mouldings, but I never in any way ornament it. It should be retiring yet bold in effect; hence its treatmeut must be simple. If not black it may be brown, rich maroon, dark blue, or bronze green. A dark colo gives the ides of strength; that portion of a wall on which weight appears especislly to rest should be dark.

I like to see the wood-work of a ronm generally of darker tint than the walls. A door should always be conspicuous. that a room almost invariably looks better when the doors are darker than the walls, and the advantage of dark architraris must be abvious to all who have tried them. A door should rarely, if ever, be of the color of the wall, even if of darker tint; this is a resort of those who cannot form a harmony with the wall color. If a wall is citrine the door may be dark, low-soned Antwerp blue, or it may the of a dark bronze green, but in this case a line of red shuuld be run aronnd the inside of the archar for trave. If the wall is blue a dark orange-green will do well the the door, but a line of red rwund the door will improve it, or the loor mity be an orange-maromn. If the wall is bright curyuol in color the door may be indian-red (vermillion hrought to beautiful tertiary shade with ultramatinr). These rire mery llastrations of iumerous harmonious combinations whi,h may be made, but they serve to show my meaniug.
T'se architraves of doors mqy often be varnished black, or cor sist in part of bright and in part of "dead" black; if the architraves of the doors are black, one or two lines of color may be re, upon them. If the lines are very narrow, say 1.16 in . in width, they may be of the lightest colors; if broad, suy 8 in., they should be much subdued in tone, and hardly brighter in tiat
the panels of doors and shutters, and I never place ornaments on
"styles." If an ornament is placed on a panel it is better quaint or slightly heraldic in appearance. A monogram may it repeated.

on the decoration of walls.

Perhaps the best treatment of walls is that of arranging a dado apon then. Let a room be 12 ft . high ; the cornice will take ins. from the top of the wall, and the skirting will be 12 ins. ing the bottom. Let us now draw a lint 3 ft . above the skirting or a little over 4 ft . from the floor. The wall we make cream or chor, but the dado, a portion below the line, we paint maroon der chocolate ; on this lower portion we place a pattern called a dodo rail. A cream color wall comes well with a dark bluedado. In this case the blue should consist of ultramarine, with a little Whaste added to give a certain amount of neutrality; a ceiling must look pure, a wall somewhat neutral. A citrine wall looks looks with a dark blue dado; a grey blue wall of middle tint cooks well with a rich and slightly orange maroon dado. Dadns. may advautageously vary in height; in some cases they may he effect thirds the height of a room. This gives quaiutness of efiect. Dados may vary from 18 ins. to 7 ft . in height, accoriling to circumstances. A wall should never be divided iuto equal parts, the more difficult to detect proportions the hetter. A trelo in relation to a wall may he as four to eleven, as se ell 10 Trelve, aud so on, but not as three to six

CORNICES

Nothing in the way of deceration is so difificult as rightly to holor a cornice. Eacil member occupies a particular place, and ererg a particular sectional form; we have to color a cornice that to bery member shall appear to be in its proper position, and look ceiling exactly what it really is. A cornice is the frame to the fore ${ }^{\text {cil }}$, and the uppermost boundary of a wall ; it should thereto a a stronger in effect than the wall. It is also much smaller to a quatity than either walls or ceilings; it may therefore be With "colory" in effect. Strong colors may generally be used With advantuge on a cornice, even pure vermillion, carmine and a nuachiuc. But with these colors it is often necessary to have arach puler, and somewhat grey, shade of blue, and it is gentoiddly necessary to have also a soft shade of yellow (formed of ahould chrome and white). Yellow is an advancing color, and Lould therefore be used in advaneing or convex members. Red, Hearer nor, is about stationary; that is, a red object looks neither hearer nor farther from us than it actually is; it should there. light it ised chicfly on flat surfaces. It looks best in shades; in milapted is too attractive. Blue is a receding color. It is uifificulty in hollows, as covings or concave mouldings. Now the rifficulty in coloring a cornice rests in our haviog to render every redaber or distinct, and in so modifying our yellows, hlues und noumber whatever colors we employ, as to cause each separate it actoally appear to advance or recede to the exact rxtent that If a ctally does.

metionarnice is uncolored, it is often impossible to judge of its

 inch and shape. If there are flat members in a coruice of an imply a half or more in breadth, these may be euriched with colore patterns in blue and white or red and white, or in any colficiently demanded by the situation of the member; a coving, if not to cantly large, may be enriched. ('are must always be taken ano to canse a cornice to look liney; there must be a certain matrowt of breadth of treatment. If the cornice only consists of berre, us lines, it cannot look well. There must be broad memthat the well as those which are narrow. It is often necessary If the oolors ruployed in the decoration of a cornice, especially line, or be "primaries," be separated from each other by a white produe by a white memher. Red and blue, if of the same depth, this daza "swimmy" eff.ct if juxtaposed, and the production of Thite linzling is not desirable; it is prevented, however, by a to the line interposug between them. The principles that apply Hef ornaluring of cornices also apply to the treatment of all rejellow ornanent. Red is best in shadow, blue on receding surfaces, claw ou advaniug members. I will say a few urorls, in conHarnony the necessity t, r hatmony in all parts of a room.harnony brtweens the variuas decorations can be achieved in blay Ways. Acciling in which blue prevails, or even a plain maroon ceiling, a suitable colored cornice, citrine walls and a rich Garoon dado, will producr a harmoliy. A ceiling of blue green,
Beral ent Senal effect, will producr a harmotiy. A ceiling of blue green,
 The doors might wiil produce a harnony. In bronze yreelt, and the architraves black.
4hoors might be of bronze yreell, and the urchitraves black.
aflin blue ceihas, I have said, will harmonize with " citrine
various pure colors, so arranged that its gerneral hue is olive, and the wall ornaments are formed of bright colors so disposed that they yield a citrine tint, and the dado is made of such an admixture of colors that the general tons is russet, the three will produce a harmony ; for olive, citrine and russet are the three tertiary colors, and they together form a harmony, and the harmony prodnend will be retined, intricate, and peculiarly pleasant to dwell upon. When rooms open one into the other, it is often desirable to give one a genoral citrine hue, to arother a russet hue, and to another an olive hue; for in such a cass the three, when seen through the openings which lead tron one to the othrr, produce a harmony. If there are but two rooms adjoining, one may have a red hue and the other a grern hae, or one may: have a blue tone and the other an orange tone; in fither rase a harmony will be produced. It must be especially notiowd that I speak of hues and tones of colors only, and unt of positive tints, which are ulways too strong for walls.
If your readers will follow out these simple yut truthfin instructions, which I have gleaned from proficient masters in the decorative art, "lan from thirtv-five years' practical expurience, 1 will venture to say they will feel satisfied with the result of their labors.

A POWERFUL SPECTROSCOPE.

In the youns scier.ce of spectroscony, as in others, an important element of progress is the improvement of instruments for dealing with the phenouena prosented, and many minds are engaged on this. A new spretrosenpe of rem irkable power has jast heen hrought to the notice of the French Acadeiny by M. Thollon. Its chief feature is the use of sulphide of carton prisms, which are closed laterally, not by plates with marallel faces, hut by prisms of the form of Amici's -i.e., having curved sides mevting at an angle, which, however, is much smaller than Amici's prism. The refringent angles of these prisms are in an opposite direction to that of the sulphide prism. Two of these compound prisms are substituted by M. Thollou for the simple prisms in a spectroscope, which he formerly desiribed to the academy. Without going into further details, we may simply state that an enormous dispersion is obtained; with a magnifying power of 15 to 20 times, the spectrum has a length of 15 meters. The angular distance of the D lines of sodimin is ahout 12 ', whereas that produced by M. Gassiot was only $3^{\prime \prime} 6^{\prime \prime}$. This instrument should throw considerable light ou the structure of the spectrum, and M. Thollou has already noticed some interesting facts. The lines of sodium and magnesium present a dark nucleus passing into a nebulosity, which lipeomes gradually merged in the continuous spectrum. Many lines bare loen split up, and all that have been thus resolved have been found to helong to two different substances. Ont of the hydrogen lines presents a nebulosity without a nuclens. M. Thollon remarks on the amgnificence of the spectrum of carbon from the clectric are, observen with the new instrument. The spectra of iron, copper, and magnessinm in the same arc were also sern with admirable clearness and brilliancy. These new spectroscopes have been constructald for M. Thollon hy the alle optician, M. Laurent.

The Helmgraph.--Devices for signaling, very similar to the heliograph or "sun writer," have been in ase for ages. As far back as the Persian invasion of Greece, polished metal sulfices were used to flash the rays of the sun and give warnings of one kind or another. The sigualing in this and other cases was, however, impertect, and could not be carried on over a space of more than 18 miles. But the instrument now in use, the Mance heliograph, is a great inprovement, for it not ouly concentrates the sun's rays, but it flashes them with the utmost precision to any required spot, irrespective of the relative location of the sun. It is also provided with a finger key, so that flashes may be made of long or short duration, thus permitting the employment of the Morse telegraphic alphabet. Under favorable conditions intercourse has heen carried on through the modium of two of these instruments over a distance of nearly 100 miles, and at several point, oecupied by the English army in Afghanistan, regular commumestion is maintainel at distancess of mot less than 50

 proposed to estahiish a o-tminatic telegraphic: rommunications
 before long it will be adop:ed as a mann of aimating lownern

Artistic Brickwork.-Fig. 15.-Detail of First Story Windows of the New Morse Building.-Scale $亠$ Inch to the Foot.

Dr. E. M. Snow says, in his last report as Register of the city of Providence:
In connection with this subject I think it my duty to ask the attention of the poople of Providence, and especially of parents, to the following statements :

1. No case of diphtheria oscurs without an adequate cause. This is self-evident.
2. The cause of nearly all cases of the disease exists in the houses or premises, or within a few feet of the houses where the cases occur.
3. The cause of nearly all cases that occur in the city is breathing impure air from privy vaults or sink drains, or cesspools ; or drinking impure water.
Much observation and long-continued and careful investigation have perfectly satisfied me of the truth of these propositions, and they are applicable to all cases, whether in the tenements of the poor or in the mansions of the rich.-Med. and Surg. Reporter.

Fig. 18.-Enlarged View of Brick No. 8, in Fig. 10.

Fig. 19.-Enlarged Fiew of Brick No. 36, in Fig. 15. The Fluids of the Body.-Prof. Jager, of Leipgie, hes recently pablished a work in which he maintains that an in creased proportion of water in the tissues and humors of the hody is one of the most essential conditions of liability to disenco. the To guard against disease, therefore, it is necessary to mske the body yield as much water as possible through skin and lungh and to avoid all that favors the accumulation of water. To thing end he recommends the wearing of close-fitting woolen clothing throughout the year ; all bodily movements which promote per spiration; on outbreak of disease the use of vapor or swesting baths, of drinks that excite perspiration, and of foods that do the same ; constant ventilation of sitting and bedroomes, so that the moisture of the air may not become great. Dr. Jagos asserts that the specific gravity of a living body is an accurstio criterion of the strength of constitution of a man or a domestio animal-that is to say, for its capability of resistance to causes or diserses, such as chills, infection, ete., and its power of workn bodily and mental.

TEE PRINCE IMCPERIAT.
Born at the Tuilleries, Paris, March 16th, 1856. Kiiled during a reconnaissance near Stelezi, Zululand, June 1st, 1879.

Srimtific.

A NEW THEORY OF THE EARTH'S MAGNETIC POLES.

From a andy of the movement of the compass-meedle producing declination nt London, Mr. B. G. Jenkins, of the Royal Astronomical Society, has hecome convinced that the varinus vicissitudes of the needle during the last 300 years can best be explained by the supposition of a strong magnetic pole above the Pirth's surface, and revolving around the geographic north polt in ahout 500 years. He finds four maguctic poles, as maintained ly Halley and Handsteen, to be necessary to explain satisfac. torily all the phenomena of terrestrial magnetism, but he places these not in the earth, but in the atmusphere. These poles he regark as the free ends of as many broad magnetic helts, two ex. telling fom the virinity of the wirth pole to the equator, the other iro coming ap trom the south pole to meet them, the boreal maguetism of the northern belts uniting with the austral manurtism of the southern belts along the magnetic equator. These bands he believes to revolve at slow and unequal rates round the poles of the earth, producing secular variations.

It will be observed that Mr. Jenkins describes the magnetism of the northern hemisphere as "boreal." Contrary to the current theory, he holds that the north end of the compass-needle is a true north pole, and that the facts observed are, when properly understood, in full accord with the great magnetic truth that like poles repel and unlike poles attract.

After submitting the evidence in favor of this view, Mr. Jenkins argues in this wise: If the north end of the dipping needlo is a sonth pole, its pointing to the ground in Bouthia (where Sir James Ross located the earth's north maguetic pole) must be attributed to attraction. If it is attracted it is attracted by something either in the crust of the earth or at the centre of the globe. If there is something in the parth's erust which Ittracts the needl. in Boothia, it nught to attrant the needle in Lombon. Bu' bi.. needle in London is attracted neither to the "ant at Boothia nor to the earth's centre. The thuth is, Mr. Jenkins believes, that the north pole of the needle pointed to the gro ind almost perpendicularly in Boothia because it was repelled by the true north magurtic pole in the atmosphere above that region when Sir James Ross was there 50 years ago.

Further evidence as to the existence of the alleged magnetic belts above the earth's surface is promised. Meantime, it is of the first importance, Mr. Jenkins thinks, that it should be clearly settled whether the magnetic pode remains in or above Boothia. According to his calculation it should now be in latitude 72°, longitude 115°, in Prince Albert land.-Sciontific Amprican.

The Sphyimophose. -The sphygmophone is a recent application of the telephone, and is an instrument invented by Dr. Richardson, hy which the movements of the arterial pulse are transmitted into loud telephonic sounds. In this apparatus the neelle of a l'ound's sphygmograph is nade to traverse a metal or carben plate which is connected with the zine pole of a Leclanche cell. Tho the metal stem of the sphygmograph is then attached one lerminal of the telephome, the other terminal of the telephone heing connectel with the opposite pole of the battery. When the whole is watly, the sphyemograph is brought into use as if: tracing were ahoun to be laken, and when the polsation of the needle from the pulse-strokes is secured, the needle, which prevously was held back, is thrown orer so as to make its point just toucli the netal or "arbm plat", and to traverse the plate to and fro with each pulsation. In so moving, three sounds.-. ou long and two short-are given from the telephone, which sounds correxpond with the first, second and third events of sphygmograplice reading. In fact, the pulse talks tel p phonically, and soloully that when two rolls are used the sounds can be heard in an audience of severil handred people. By extending the teloghone wires, the sounds can also be conveyed long dis. tances, so that a physician in his consulting-room might listen to the heart or pulse of a patient lying in hed (speaking modestly as to distance) a mile or two nway

Bran Work and Skeht Gkowth. -The London Medical Record sums up as follows the results of some very interesting measurements of heads by two French physicians, Messrs. Lacassague and Cliquet. Having the pratients, doctors, attendants, and officers of the Val de Crace at their disposal, they measured the hrads of 180 doctors of medicine, 133 soldiers who had received an elementary instruction, 90 soldiers who could neither read nor wrice, and 91 soldiers who werepri. oners. The instram nt used was the same which hatters employ in measuring the heads of their
cu-tomers: it is ratled the conformator, and gives a very correct Whe: of the promertoms and dimensmon or the heats in question. Theresul:- w.re i: fivor of the doctors: the frontaldiameter was
 a1. both halco. it the heal ymmetrically developed; in stucente, the left frontal resion is move doveloped than the right; in illitenat. miwiduals, the right occinital region is larger than the l.ft. The authors have derived the tollowing conclusions from their experiments: 1. The heads of students who have worked much with their brains ar moneh more deset. oped than those of illiterate individuals, or what as have :llowed their brains to remain inactive. 2. In studentoth, tromtal region is nore developed than the occipital region, or, it there should be any difference in faver of the latter, it is ver! smal, while in illiterate people the latter region is the largest.
The Needed Motor. -- The demand to which we havesonoften referred-a motor fitted for street railways--is felt in Europe, uad the British Lords have been investigating the subject, and recom$m \times n d$ the passage of a law permitting the use of such. They approve a locomotive worked by compressed air as more promising and desirable than any other, and advocate the use of steam engines in streets until a better discovery is made. The demand is for a simple power that can be attached to any car and that will draw it without fire. It is out of belief that science is stalled by so simple a demand. Study has not heen given the problems. An insured reward would eventually discover it, and release countless horses, reduce fares, increase speed and avert injuries. We claim an unequaled ingenuity, and apply it to telephones and improve stoves and shoe-brushes. Here is a call for it, and every diay that call grows more urgent. The wonder is that it has not been heeded, and that some slight machine or agent hus not been found that will propel a car, a carriage, a sewing marhine, a churn, turn a lathe, and be many men and horses in one. Let us have this insteal of new designs for perpetual motion and new combimations for an elixir, and fortune will repay the inventor. - Varth American.

Instrument of Resuschation. - A Frenchman has the credit of inventing an apparatus for aiding in the resuscitation of persons apparently drownd, or who from any other cause have been temporarily deprived of animation. It consists of a cylinder of sheet iron large enough to contain the body of an adult person. It is closed at one end, and the inanimate individual is inserted, feet foremost, in the receptacle as far as the neek, round which there is placed a padded diaphragm, fastened to the cylinder so as to be air-tight. An air-pumpl, attarhed to an opening in the tube, creates a partial vacuum, and the outer atmosphere, by it own pressure, forces its way into the lungs by the mouth and nostrils, which are left exposed. By a reversed action of the panip the air is allowed to re-enter the rylinder, and respiration is thereby re-established. A glass plate inserted in the iror casing enables the operator to watch the movements of the chest, which rises and falls as in life with the working of the punp. The action may be repeated, it is stated, 18 times in a minute, an exact imitation of natural breathing being thus produced.
The South African Cable.- The telegraphic cable to connect the European and Asiatic telegraphic systems with the Cape of Good Hope will be 4,000 miles long, extending from the kee Sea cable, of Ailen around Cape Guardafui and along the east coast of Africa to Port Natal, where it made a junction with the puesent land line to Cape Town. The cable will be laid alons the coast, the depth being moderate along that side of the continent and the facility for repairing possible breakages has been carefully ascertained. The cable will touch at Zanzibar, Mozand hique, Sofal!, Delagoa Bay, and thence to Durban as the submarine terminns, from which point the land telegraph become nvailable to complete the circuit to Cape Town. The cost of con stru ting and layng the cable is estimated at $\$ 7,500,000$. The line from Durhan to Zanzibar is to be finished in July, and the whole cable by the midille of November.

Petmolecm as Fuel..- Producers are gradually beginning to use petroleum ats fuel unler boilers, and they find it cheaper by far than coal. One large producer in the lower oil country, who is trying it, says that one barrel of oil a day with the gas fron the wells, gives him sutficient fuel under a hiniler that is pumping three wells. Bufire nsing petrolenm, he was hurning $\$ 2$ wort of coal a day. In the Bradtod region, the petroleam burner is being introduced successfully, as well as in manufacturing estab be lishments. But many hundred harrels per day more conld thas consumed if producers wond hut interest themselves in thth aiding the consumprion of their product. Thounands of barre to dails could te used in this way, with a corresponding benefit to producers in beiter prices. -Ess.

Hucckanical Items.

BTERRING MADE RASY.

To avoid the slacking of rudder chains and the constant jerking Ithe rudder in a rough sea, Capt. Sam Martin, of New York, that hit upon a valuable invention. His plan is to cut out a rithin section of each rudder chain about midships of the vessel, Fond in the place of the detached pieces put cylinders. In each Whinder he placed a piston, and connected the radder chains With each pistou. This done he had to all purpose the same old toedder apparatus, for the pistons were sinuply links in the puder chains and could be moved liy turning the wheel in the pilot-house. The next thing to do was to apply steam to the Filinders. They were consequently joined by a steam pipe, the * Leer was tapped, and the steam supplied through a valve in the fe connecting the two cylinders. This valve he operated from the the pilot-house. When the lever in the pilot-house was hatong, it showed that there was an equal pressure on both thens, and that there was as much steam in one cylinder as the thered As the lever was moved, and the rudder turned, it transa percentage of steaill from one cylinder to the other, and Fthe piston of the right cylinder went in, the piston of the left mortionately ran out, taking up the slack chain at the stern holding the rudding tant in any position. By tarning the Wher to a certain point both cylinders were exhausted and the The shat off.
thight wheel in the pilot-house not ouly served as an indicator, Wand day, to show that the cylinders were answering the Wen of the lever, but it could be used in another way. If there Could break in the machinery, or the steam ran low, the vessel Whool be steered in the old-fashioned way with a man at the that leade pistons in the cylinders acting as a link in the chain on the gads from the wheel to the rudder. A practical experiment Orery oteamer Maryland from Jersey City to H irlem, satistied Tary one that a boy of ten years could manage the helin.
He the main point of Capt. Martin's invention is its cheapness. oom of any it can be put in any steam vessel for an eighth of the the of any steam steering appuratus now in use, and the cost of onkey is a mere bagatelle. Those now in use are run by ey enginea, requiring the services of extra men at the enCapt. Martin gets his steam from the boilers in actual , and dispenses with the services of men already employed.
Boblamaine Engingering.--Some very interesting experiWhate have lately been made.--Nome very interesting experiThe Berliu ohjects hy a plan invented by a Viennese engineer. Wiakerliu T'ribune says that the agent employed to lift the ot then objects is carbonic acid gas, generated below the surface
onater. In an otherwise empty balloon a hottle of sulPhatic water. In an otherwise empty balloon a hottle of sul-
tudd an placed, embedded in a quantity of Buller's salts, bod an arrangement is provided by which the bottle can be the boten at pleasure. The balloon, empty, with the exception of Sthechede and the salts, is taken down by a diver, and securely Whathed to the ohject to be raised. The bottle is then broken, The the sulphuric acid thus set free percolates the salts and WHine, cartopic acid gas, which inflates the balloon, and after Whached causes it to rise to the surface, bringing with it the olject Pophed to it. The trials which have been made with this new Wht they have, us yet, been only on a comparatively small scale, they are stated to have been, so far, eminently successful. A 1 veasel, weighing several handred pounds weight, was sunk feet of water, a diver was sent down and attached the
on $i t$, and in a very short time the machine appeared on arface of the water, bringing the vessel with it. On another toen five sacks filled with sand were thrown overboard in ot of water, and iu five minutes were similarly recovered.

18

a blerssing of Labor.-I believe that for most men more byical hours' work per day is required for the maintenance hncluding mental, and moral health. I think that for most thin eight hours' labor per day is neceasary, in order to Chin eight hours' labor per day is necessary, in order to
On ann and utilize the forces of the auimal nature and I helieve that if improvements in machivery shoald menf frou the uecessity of laboring more than six hours 6, wociety would rot in measureless and fatal animalism. I THorked more than ton hours per day during most of my life, W) Well, it is lext for us all to be compelled to work. It would *) on the think, if we could make it impussible for an idler to Wponsililitye o the orrth. Religions texchere ate nut without
curse. The world owes most of its growth hitherto to men who tried to do as much work as they could. Its debt is small to the men who wished to do as little as possible.-June Atlantic.

Wrldine Cast-Iron.-The Chinese process of welding cracked iron wares by cementing them with molten iron is thus described: In the case, for example, of a cast-iron pan requiring such treatment, the operator commences by breaking the edges of the fracture sightly with a hammer, so as to enlarge the fissures, after which the fractured parts are placed and held in their natural positions by means of wooden braces ; the pan being ready, crucibles made of clay are laid in charcoal and ignited in a small prorahle sheet-iron furnace, with bellows working horizontally. As soon as the pieces of cast-iron with which the crucibles were charged are fused, it is poured on a layer of partly charred husk of ruugh rice, previously sprend on a thickly doubled cloth, the object of this being to prevent the sudden cooling and hardening of the liquid metal. While in the liquid state, it is quickly conveyed to the fractured part under the vessel and forced with a jerk into the enlarged fissures, while a paper rubber is passed over the obtruding liquid inside of the vessel, making a neat, strong, substantial, and in every respect thorough operation.
Marking Patented Articles.-The Patent law says: All patented articles must be marked with the word "patented," together with the day and year the patent was granted. If the article itself cannot be so marked, a label containing the notice must be affixed to the package containing one or more of the articles. The marking is intended as a notice to the public that the thing is patented, and in any infringement suit by the party failing so to mark, no damages shall be reported by the plaintiff, unless it is proved that the defeudant had due notice of the infringement. Auy person who falsely marks an article patented that is not patented, or marks anything for which he has not obtained a patent with the name of another who has obtained a patent, or who marks an unpatented article with the word "patent," or any word importing that the thing is patented, for the purpose of deceiving the puhlic, is liable to a penalty of $\$ 100$ for every such violation of the law, one half to go to the informer.
To Temper Drills, Gravers, Etc.-Select none but the finest and best steel for your drills. In making them, never heat higher than a cherry red, and always hammer till nearly cold. Do all you.r hammering in one way, for if, after you have flatened your piece out, you attempt to hammer it back to a mquare or a round, you spoil it. When your drill is in proper shape, heat it to a cherry red, and thrust it into a piece of resin or into quicksilver. Some use a solution of cyanuret potassa and ruin-water for tenpering their drills, but for my part, I have always found the resiu or quicksilver to work best. Gravers and other jinstraments larger than drills may be tempered in quicksilver as above; or you may use lead instead of quicksilver. Cut down into the leal, suy half an inch; then, having heated your instrument to a light cherry red, press it firmly into the cut. The lead will melt around it, and an excellent temper will be imparted.
Babbitt anti-Friction Metal. - The metal is maile of one part copper, three parts tin, two parts antimony, and three parts more tin are added after the composition is in the molten state. This composition is called harilening, and when the 'meral is used for filling boxes, two parts tin are used to one of hardening. The above alloy constitutes the best anti-attrition metal in use, but on account of its expense it is very little used. The anti-attrition metals commonly ased are principally composed of lead, antimony, and a litsle tin, but they are not nearly so good as the above.
Low Water in Boiler.-Whenever the water in a boiler becomes dangerously low, the attendant should immediately draw the fire and allow the boiler to cool. He should not admit any cold water to the boiler, or attempt to raise the safety valve, as this is a dangerous proceeding. It lessens the pressure by allowing the steam to escape from the boiler and thus permits the water to rise and come in contact with the overheated iron. Probably many explosions have been caused in this way.
Stexl wire strings of pianofortes are annealed by making the wire red hot and then plunging it into boiling water. The water should be quite at the boiling point, and the steel at a bright red heat. The wire should be fairly surrounded by the water. These conditions being fulfilled the steel remains red hot under water for some time. It seoms to be surrounded by a film of vapor, and is not in actual contact with the water. The toughoniug is, it is thought, due to the unifornity of cooling thus e\{f...1....

Smith's fadaxk.

\triangle SPRIVG HORSE BEOE.

This progressive age suggests another valuable invention in the form of a steel spring horse shoe, that has been thoroughly tested on a number of valuable horses, having various shaped hoofs, in good as well as sore condition, and found to have had a very beneficial effect in every instance. Horse shoeing in general must be regarded as a necessary evil to enable the horse to perform his duty on the artificial, hard, stony roads and streets, and the art of successful horse shoeing consists in surmounting the obstacles nature has thrown in the way. Very little attention has, as a general thing, been paid to the peculiar growth of the hoof. The gradual transformation from the normal to the abnormal form caused through domestication and violation of the laws of nature, such as confinement in stables, lack of moisture in hoofs, owing to the dryness of climate and inattention, as well as wrongly calculated proportions of metal improperly distributed over the foot in the form of shoes, is the main cause of so many hoof evils, which ruin many horses.

Such is the peculiar construction of this shoe that with every step it gives a yielding resistance, and arrests the vibration caused by jarring or pounding on hard roads, this vibration usually having a very destructive effect on the nervous system and muscular action of the animal. The severe concussion following the blow of every step upon the old style of horse shoe is entirely obviated. The new shoe gives an equal bearing around the wall of the hoof. After the yielding resistance of the downward blow, there follows a lifting power, estimated by Mr. Yates at over 200 pounds, at every step of each frunt foot. The increased weight in the toe of the shoe gives a firm knee action to reach out further, calculated to materially improve the gait of the horse.

This shoe is made by hand of a good tough quality of steel, and by skilled mechanics. It must be put on cold, as it is tempered in oil, and a man without experience could not re-temper it with any certainty of success. In ordering these shoes, therefore, parties at a distance should send a paper pattern made from an old shoe.

A shoe of this kind is a cheap remedy to apply to horses' feet. The inventor states that by its use he expects to 'see horses trot a mile in two minutes on a hard track. He informs us that Mr. Soloman, of the Grand Central market, declares that his horse has been benefited $\$ 75$ in a month by using these shoes. And also that a three-minute horse has gained 28 seconds on spring shoes, with a decidedly improved action, increasing his value some \$200. Mr. H. G. Yates, of San Francisco, is the inventor.

Horse-Shoe Pads.-Hartman's Patent Horse.Shoe Pads are constructed of vulcanized india-rubber, and made in sizes to fit every shoe. It is a simple contrivance, the pad being merely slipped into the horse-shoe with a pair of tonga, and can be removed in the same manner instantaneously. Among other advantages which these pads possess, we are informed that horses whose shoes are provided with these appliances require no "roughing," and in snowy weather there is no possibility of the shoe "balling." They prevent slipping on asphalte, snowy, or frozen roads ; avoid concussion, and relieve the legs and feet on hard stony roads; and dispense with leather and all artificial means of shoeing. The pad is said to be most comforting to the foot, especially in chronic weakness or disease, while the grip of the hoof is rendered so secure that a considerable reduction in the labour' of drawing is thereby afforded the animal.

COWDERY'S PAEATT EAIIPE CERANHR.

Messrs. R. Hodd \& Son, of Hatton Garden, London, E.C., sre introducing to the trade a remarkable effective little implement, called "The "Lady-Help' Knife Cleaner" (Cowdery's Patent) of which they are the sole makers and licensees. As will be seen from our illustration, the "Lady-Help" machine is more com" pact than any other knife cleaner in the market, the dimensions of the apparatus complete being only 7 in . by 6 in ., and 9 in. high. There is no casing required, all the mechanism, which is of the simplest kind, being exposed to view, so that the operator can see the progress of the work which this machine accomplishes so readily and well. It consists of a japanned iron frame within which are enclosed a pair of cylindrical rollers of india-rubber

in suitable bearings, the rollers being made to revolve by cog wheels turned by a small handle. The motion is smooth, rapid, cleanly, and easy, and can scarcely be put out of running gess even by the most inexperienced domestic "help." The opert" tion of this machine thoroughly cleans any size knife, including carvers, with a smooth polish like silver, imparting to table cutlery in daily use an appearance hitherto unattainable by any known process of ordinary knife cleaning. It is claimed that Cowdery's patent knife cleaner cannot damage knives or their handles, whether ivory or silver, nor wear them away, as they only come in contact with the india-rubber. Carving forks can also be thoroughly cleaned in every part. From its compactnees the new knife cleaner is well suited for shipment to colonisl and other foreign markets.

Origin of Krrosene.-A Russian paper says that the farmest in the District of Kabilianki (Poltava) have given up the use of kerosene lamps because this sort of oil (petrolenm) comes from rot the decomposed part of Satan, who has been confined to rot beneath the mounts of Caucasus since he rebelled against the heavenly powers. The Boston Journal of Chemistry sites this to show the Russian superstitious sentiments, but no longer that one month ago an individual in Pennsylvanis circulated a petition to the Legislature of that State to prohibit the sinking of any more oil wells, because the oil was needed to lubricato the axle of the eartly, which was already beginning to grind throug loss of oil. He obtained many signatures, so it is said. imagination sharpened by a constant diet of baked beans cannot be expected to find any superstition except in some foreig country.

The Herald of Health says that sleeping after dinner is a bed practice, and that ten minutes before dinner is worth more that an hour after. It rests and refreshes and prepares the systerm for vigorous digestion. If sleep be taken after dinner it should be in the sitting posture, as the horizontal position is unfarour able to healthful digestion. Let those who need rest and sleop during the day take it before dinner instead of after, and they will soon find that they will foel better, and digestion will bo improved thereby.

Laborious mental exercise is healthy, unless it be mado anxious by necessary or unnecessary difficulties. Regular ments labor is best carried on by introducing into it some variety. Business and professional men wear ont their hearts by aoquiring habits of express-train haste, which a little attention to methoo would render unnecessary.-Chambers' Journal.

Fig. 1.

Fia. 2.

HEW SURFACE PLANER, WITH FRICTION FEED.

The new surface planer represented on this page, recommends itwelf by its compactness of design and strength, resulting from aling a heavy frame cast in one piece, with a broad base, At eard a firm support, although occupying but little room. ing each side of the cylinder pressure bars are applied, the lead-ing-in bar being hinged and weighted, allowing it to yield to bequalities in the surface of the lumber, while the two bars, in lop placed very near to the cut, enable pieces 6 inches or less length to be planed with perfect facility.
${ }^{\text {An }}$ in improved friction feed is applied, having two changes lontrolled by a single lever, dispensing with cone pulleys. The ther being moved in one direction produces the fast feed, and in abopposite direction the slow; , when midway between the Ande the feed is stopped. These feed works are very strong hold reliable, and cannot get out of order; their position in the domt frame of the machine keeps them fully protected from thant and shavings, and renders the whole more compact and firm comphen otherwise located.
trone feed rolls, four in number, are made of cast-steel and diongly geared, two friction rolls being also placed in the table, beyetly under the first and last upper rolls. The broad bearor thus afforded holds the stuff firmly and prevents the clipping Hechopping of the ends of the boards. A great cause of compalint with the small planers of other makers, has been the zalt mentioned above, and the lack of feed power, hoth of which finted, and overcome in this machine. The leading-in rolls are sated, and the carrying-ont rolls are plain, the latter being proVent the a shaving cap, and provided with steel scrapers to preThe them from marking the board.
made manufacturers, the S. A. Woods Machine Company, have ghate planing and molding machines a specialty for the last entiffaction a century, and guarantes that this machine will give in use. as it does in all the leading establishments where it

[^0]
ROUSE'S IMPROVED WRBACEESS.

R. R. Rouse, of Indianapolis, Ind., is manufacturing some new and improved wrenches, of which we give illustrations on this page. Fig. 1 represents an axle nut wrench. When the sliding jaw C is in its proper position, the set-gcrew B is screwed up against it. This not only makes the jaw fast, but also tips it, so that when loose the nat is held and prevented from falling. When the wrench is adjusted the loose handle A is held in one hand, while the other handle shown can be turned rapidly. This wrench fits any vehicle, from a coach to a track sulky.
In Fig. 2 is shown a machinist's wrench, for which strength and simplicity are claimed. This wrench, with the exception of the handle, is made entirely of steel. When the set-screw is brought in contact with the sliding jaw, which is wedge-shaped, the latter is prevented from opening further, though not from closing. The handle is of hollow iron. It is slipped over the main steel beam and riveted solid.

Spiders Killing Trout.-Seth Green, the noted piciculturist, has been for a long time puzzled by the terrible destruction of very small tr ut, and his investigations have at length resulted as follows: "There is a small worm which is a favorite food of tront and many other kinds of fish. This worm is one of the greatest enemies which the young fry have. It spins a web in the water to catch young fish, just as a spider does on land to catch flies. I have seen them make the web and take the fish. The web is as perfect as that of the spider, and as mach mechanical ingenuity is displayed in its construction. It is made as quickly and in the same way as a spider's, by fastening the threads at differents points, and going back and forth until the web is finished. The threads are not strong enough to hold the young tront after the umbilical sac is absorbed, but the web will stick to the fins and get around the head and gills, and soon kills the fish. I have often seen it on the young tront, and it has been a great mystery and caused me many hours, days and woeks of wonder to find out what was wound around the heads and fins of my young trout and killed them. I did not find out until lately, while watching recently-hatched white-fish. These are much smaller than the trout when they begin to swim, and they were canght and held by the web. I found ten amall whitefish caught in one web in one night. The web was span in a little whitefish preserve into which I had pat 100 young fah."

Engineexiug.

THE RAIIWAY OF THE FUTURE

Comparatively uovel methods for improving railway operations in various ways, appear to be under serious consideration. One of these directions was probably indicated in a speech delivered by Mr. Edmund Smith, one of the vice-presidents of the Pennsylvan:a railroad, at a banquet given by the Wholesale Grocers' Association of Philadelphia in Long Bratheh a few weeks ago. After referring to the marked improvements which have resulted from the introduction of steel rails and the increase of the lomil of freight cars from one ton per wherl to five tons, he said: "shall we go on to improve and develop the sistem in the future as in the past! There is no reason why we should not. I ventur. the opinion that the day is not far distant when our main lines of railway will be illuminated at night hy the clectric light, anold other and greater improvements will keep pace with the spmit of the age."

The same subject was discussed more at length in a paprer recently contributed by Sir Edward Watkin to the London T'im's. He suggests that there "is no renson why the railway machine should not be so improved as to far more than double the industrial forces." 'T'o promote this result he adrocates a great increase of the rate of speed of all passenger and freight trains, accompanied with facilities which would enable any passenger "who chooses, to utilize undisturbed the flying hours of the ac". cellerated railway train." He estimates the time now consumed by the Euglish travelling public in railway journeys at 200,000, 000 ho us, which, at the low rate of sixpence per hour, is worth $£ 5,000,000$, or the capitalized sum of $£ 125,000,000$, and he contends that appliances might be devised which would enable many travelers to use advantageously time that is now lost. He also suggests " the use of stations tor purposes of business, of deposit, of merchandise, and of bankiug." He also strongly alvonates: a great increase in the average rates of speed, contending th.it "if one train can go 60 miles an hour with given loads others can do the same."
Sir Edward declares that what is wanted is, equality of speed and the means of passing stations of second importance instead of stopping at them. As regards any railway with traffic enough in costly regions of property, we could establish, if need be, a second stury. The former is a question of the equalization of the power of the rngine and of the provision of a kind of carriage for goods, minerals, and cattle which could sately run at maximum velocity. The essentials of this latter are the best ma trrial, propre springs, wil-hoxes, spring-huffers, four-feet or four-feet-six-inch wheels. The railway loader nould have to learn his business of storage fir spered. The increasi and equalization of sperd wouid double the timesaving at present effected by railways, and then let me ask the reader to realiar the new power "f probuction, the new p.wer of competition, the mew lengthen. ing of life resulting."

CEMENTS, MASTICS AND CONCRETES.

Mann of our readers have occasion to use cements or mastics, especi-dyy in putting down erlar floors or making old walls tight. They will find the following hints upon the suhject valuable:-

A cement of one part sand, two parts ashes and there parts clay, mixed with oil, makes a very hard and darable suhstance like'stone, and is said to resist the weather almost like marble.

Damp brick walls are common, especially in houses in the country where they are exposed upon the morth and east sides. So common is this that, in many places in the country, a strong prejudice exists against brick houses on account of their constant dampuess. Last year a gentleman having a brick house exposed on all sides, and sutfering from dampness in the kitehen, which was in a wing upon the movt exposed side, tried an exneriment which has proved very satisfactory. A larrel of the best English Portland sement was purchased, and a common tin wash basin used for mixing it. The cement was mixed with water till about the consistency of crean, and then applied thickly with a large paint brush. Of course the mixture had to be constantly stirred to prevent the cement from sottling to the bottom. Ant on account of its very rapil settling it could only be mixed in verv small quantities; half a gallon is ahout as liarge a quantity as can be readily handled at a time. When first dried it seemed somewhat of a failure, because it could he so easily brushed off, but after it had had 24 hours to harden it formed a strong, dur able coating. The color is a neutral tint, somewhat like Ohio
stone. This coating kept the wal perfectly dry, and as it is not expensive and does not need skilled lahor in its application, ought to be extensively used. We do not know just whac Portland cement (Euglish) is worth at the present time, but the last quotation was about $\$ 3$ per barrel in New York. The gentleman who put on the cement suggests that a damp or foggy or misty day is best for its application. The coating should be brushed into all the crevices and openings of the work, and it may he found desirable to apyly two coats in order that all the openings, \&e., may be complitely closed.
Cement is much stronger than mortar, and can be used to great advantage in many plares instrad of lime, even in the face of the fact that it is much more costly than lime, except in a are favored localities wher it is made. The u*ual proportions aro 1 part of the hydraula. lime to 5 of sand. In pointing, the pro portion is sometimes as low as 3 parts sand to 1 of the hydraulc be hime wr cement. Cinarse clean sand-almost pebbles-can be usid to the extent of 3 parts to 1 of the cement. Some adpise mortar, to be allowed to set and then wet and worked agaid This course will not answer with cement, which is greatly injured ly such a method of working. The greatest enemy of both mortar and cement is the frost. The power with which walere expands at the freezing point is practically unlimited, and wher it penetrates into the crevices and pores of mortar and freezes, when wet mortar is allowed to freeze, its strength is destroyed.

For making Hoors, the following method is said to produce very desirable results : Four parts coarse gravel, or broken stone and sand, and 1 part each of lime and rement, are mixe $1{ }^{14}$ shallow box, and well shovelled over from end to end sind, gravel and cement are mixed together dry. The line is slaked separately and mixed with just mortar enough to cemen ${ }^{\text {n }}$ it well together. Six or eight inches of the mixture is thell pul on the bottom, and when well set another coating is put on or consisting of 1 part cement and 2 of sand. This will answer for making the bottom of a cistern that is to be cemented up directil upon the ground without a lining of bricks This will also for at very good cellar floor.

The World in Wax.-Mr. Grube, a maker of wax images in New York city, has constructed what is claimed to be the larger globe of the world, showing the ranges of mountains and other peculiarities of the surface of the earth, in relief, now in ex istence. Its diameter is four feet and about one inch, the scass being one in $10,004,000$. The range of even the Himalayas would not be visible upon this globe if the scale were adopted for the elpvations as for the map, und accordingly the relief is man, upon a scale which exaggerates heights twency times. The oceane ar as and rivers are colored hlue: the continents are yellow; tad glaciers, icebergs and floating cakes of ice white. Ilains monntain rances are clearly shown, and every part of the wo is whibited in its true character. Ked, black and white line of cross the globe to indicate the isothermal belts, the variations ${ }^{\text {d }}$ the magnetic needle, the date line where ships morrect their lab liy skipping from Siturday to Monday, and rice wrsa, and othat fict: of like character. The map has been corrected in the therd of the latest diso overies down to two months ago. The northe the coast of siberia has been much alterea in the atlases by the Nordenskjold expedition, the ships sailing in deep watrr or ${ }^{\circ}{ }^{\circ}$ plaers marked as 500 miles inland, and being compelled to ${ }^{\text {d }}$ d hundreds of miles around promontories, etc., whi h are occup pod. on the maps by bodies of water. The globe is made of wor in The relief is formed by wax. Mr. Grube bas been two years perfecting his globe, and Chief Justice Daly and other geographer have lately been giving attention to it.
Prehistoric Remains in Orfgon.--The coast of the Pacific orean some distance below the mouth of the Columbia and above, even to the colder latitudes, shows in its shell mounds or bedsy evidences of a dense population that must have long ago ides. and thrived on the bounteous sea-food that the oce:an provind. Ip the little streams and inlets may theee leeds also be fou sir Excavations made at Clatsop beach, Oregon, show a depth of ded fret of shells, human bones and skulls without having res own the original dirt stratum. The length of this bed is unknome, and its uge can only be inagined. It is in-shore half a mila and in ancient times must have been the beach proper. h.ve passed since these wild people encamped by the boon, are waves, for immense old firs, five and six fret in diamerer, imple. yrowing over the giant trees that preceded them ments of any kind have as yet been found in these beds. sail that similar beds are found on the Alacka coast, also remains of ancient junks.-Americu", Antiqumrim"

PRACTICAL HINTS.

lingeaning ani Polishing Oak Fernture. Hail pint of of tur oil mixed with half that quantity if vinegar and spirits of turpentine. Method: wet a woollen rag with the hyuid, and cloth wood the way of the ghain, then polish with a clean soft cloth. A brighter polish may he obtained by the following mix ture : Raw linseed oil, 6 nzs . : vinegar, 3 ozs.; methylated spirit,
ozs, Vine.; butter of amtimony. $\frac{1}{2}$ w. Mix the linued iol with the adidegar by degrees, and shake well to prevent spparation, then bed the spirit and antimony, and max theroughly. If a gold line calefully ped inside, when the frame has hal one a...it :wtine calefully with samd-pary any japan that has ram on the part to any git, then varnish carefully all other parts, but aroid letting procarticle of the japau run on the part to be gilt. When drr; procure a small quantity, say half a gill, of best japanners' gold liztle, warm the size by standing the bottle in warm water, pour a very of the gold size in a saucer, and with a camel hair brush go ${ }^{\text {Tery }}$ carefully over the part to be gilt; place the frame uside for gold in three hours, lay a sheet of leaf gold on a cushion, cut the gold in strips with a blunt knife, take up a strip, of gold on the the, lay it evenly on the gold sized line until the whole is covered, When press gently the gold leaf with a pad of the best cotton wool; ine tiduite dry, say after forty-eight hours, procure a sheet of the tisisue paper, wrap it round a paper-knife, and gently burnish gold in by rubbing carefully backward and forward; should the of in any place be rubbed off, touch with gold size, add a piece of gold leaf, and when wet, burnish carefully. Those who care
not to not to take the trouble may use the gold bronze powder, put on Fart.
Finctres.-Plaster figures may be treated in tho ways, both n Which have - Plaster figures may be treated in tho ways, both of
like fealiny plazed china, brush them over with a mixtur: of p^{i} ap (it max dissolved in spirits of wine. Break the sealing-w. and (it must be the best), and pour a little spirits of wine in it, and as it dissolves keep adding more until it is of the consistency
of treacle. of treacle; then brush it over evenly; one coat ought to he
enough. becongh. Sometimes two are required, but no varnish. The theond mode gives plaster figures the appearance of marble, and this is the receipt : Dissolve 1 oz. of plure curd soap grated in
Water Wholer, ind add 1 oz. of white wax cut in thin slices? when the Wefore the incorporated it is fit for use. Having dried the figure before the firperated it is fit for usend it by a string and dip it in the the mixgure
When
that it has alisorbed the varnish dip it in a second time, and that generally suffices. Cover it carefully from the dust for a
week, week, then rub it gently with soft cotton wool, which gives a
brilliger Whill perfoss like polislied marble. By immersing the cast When perfectly dry in pale linsead oil, it produces an appearance brash, wax. If the cast be large, the oil must be laid on with a 'luant, which is a tedious process, as the plaster alsorbs a great 'IUantity. Dis, the cast in melted stearrec, and this. will harden transpaster aud give it a waxy appearance. Stearic acid is semipraparedit, anil closely resembles spermateti. Figure, thus Propared may he washed wilh soal, and water.
Akrifleial. Sandutunk.- dilastr's Annalen comtains a deschiption of an improved method and apparatus for the manu-
fhecture of incture of artificial saudstone. I thorough mixture of four to
six party 8ix parts of fine samal, and one part of slaked lime is exposed for
abount about three days tor a high temperature and a pressure of more han three dayss to a high temperature and a pressure of more causing the formation of a silicate of
linne whit Tine whice atmospheres, causing the formation of a silicate of
to the acts as a cement, so that the mass, when conled down continurdinary temperature, hardens. This hardening process a produes fir some weeks by exposure to the air, so that finally stone prot is oltained which is as hard and solid as good sandi_{s} filled The apparatus consists of a tank, into which the mixture provided, and in whish it is heated and stirred by a steam pipe, ing. Af with a number of arms and rotated by belting or gearsteam ifter the mixture has reached the proper temperature the steam is cut off, ithl a second vessel, inclosing the tank on all
sides, is the hex, is put afta ...mmunicition with the boiler. By this me.nm a brick wheratel for the period neeessary. It is then yan into
 Halmalatis elaimed, eftrets groat economy, especially for the largunature of whinow sille, etc. The apparatus use. is made "hrge phough to produce 250 cubic: fert of material in every He-riguiring, genetally, three to four days.
to how to Prepale Wood for Pobishing.-It is quite an art
been given for this purpose ; but the following is an excellent methon, which catn be used for any kind of woond and in all spasous of the yerr. The wood is first stained the desired color and then sized with varnish or polish. For walnut or similar woods it is best to finith with fine glass paper, No. O. Color linseed oil with alkanet root and ruh into the wond well, and afterwards let it stand for a time until the oil has thoroughly soaked in ; then proceed to fill the pores with a composition of plaster of Paris 3 parts, tallow 1 part, and a lit tle red polish. This is to be thorongh y worked until it is mixed and becomes a crumbly mass. It can lir rubhed into the wood with a piece of rag, after which all the superfluou-pieces are removed, and the sufface is ready for the final polish.
'anera': Squezang Wax.--This preparation is used for ohtaming the יxart patterns of carvings, and to gise thr workman a clearer ide: of projections or depths than a drawing would do, unless a considrable time were expended upon it. In cases where it is required to match furniture which is at a distance, and cannot be removed, the wax can be applied without injury to the carving, and can be made from either of the following Suet, I part ; beeswax, 2 parts. Wax, 5 parts, olive oil, 1 part. Wax, 4 parts ; common turpentine, 1 part. The parts only need be melted together, and allowed to cool ; the wax is then fit for use. It should be well pressed into the carving. Sometimes it is only possible to take the front or side of an object at a time, as it must be drawn off in the form of a mold. The sections, when ready, should be filled with plaster of Paris and water, wade into a thick paste, and allowed to set. The mold is then removed, and the plaster cast is ready to work from.

Whrms in Fibriturf...-Syringe carbolic acid over the wood, allow it to dry, and atter rubbing the furniture down, apply the following preparation : Melt 12 ozs . resin in an iron pot, add 3 gals. of train oil and three or four rolls of brimstone, and when the brimstone and resin are become thin, atd as much Spanish hrown or red and yellow ochre, or any other color best matching the tint if the furniture, grinding the same in oil to the desired shate. Lay on this preparation with a brush in a hot state, and a- thin as jossible, and oone time after the first coat has dried, put on a second. The above is also effective in cases of dry rot.

Painting on Wood.-Wood for painting on is generally prepared with a light coating of gesso or vome other mineral preparation to prevent the color sinking in. The gilding must be done by a decorator before the wood is painted. The design marked on it with a tine crochet needle or stile by means of a tracing paper. The paint used is oil color, which will be more brilliant from being put on over the gold. Some of the oid masters adopted this plan in order to give greater effect to their colors.

Fietwork Pulishing. - The piece of wood should lie French prolished before cutting, on the shown side at least. You cannot polish it after ; but you may varnish it, giving two or three coats of spirit varnish, rubbing duwn with flour paper, and repeating the coats. The enges can be done with a quill brush, th. faces with a camel hair brush about an inch broad. When polished before cutting, the edges need omly be touched up with raw linseed oil, using quill brush.

Polishisg Horn.-The surlace must first be prepared by scraping with a stepi scraper ; the polishing can then be effected by means of a buff wheel, in the lathe, dressed with powdered brick dust ; to produce a fine gloss use another buff with dry whiting. Or the surface can be made smooth by seraping with a piece of glase, and then rubbing with sand paper, finally pelishing with rottenstore on a piece of old cloth.

Glues.-To resist water, boil 1 lb . of common glue in 2 quarts of skimmed milk; for gutta percha, 2 parts of common black pitch and 1 part of gutta percha; to resist heat or moisture, mix a handful of quicklime in $\frac{1}{4} \mathrm{lb}$. of linseed oil, hoil them to a good thickness, and then spread it on tin plates in the shade, and it will become very hard, but may be easily dissol-ed on the fire as glue.
 of turpentme, and the same guantity of Japan dryer, then mix with it $1 f$ ponats of corn ntarch. A_{1} ply to the work with a goud stif bish: when, ntarly dry, but not sticky, rub off with a clean cloth, after which let stand until it is hard dry, then rul duwn and varnish or polish as may be required.

Fhiments Vamish. - lour the varnith through maslin, which will prevent dirt, etc., from going through.

PROPOSKD NEW BRITXBH POLAR EXPEDITION.

Comr readers are probably aware that an influential Central Promittee has been forned in England, to which forty-nine $i^{\text {in }} \mathrm{I}_{\mathrm{g}}$ an in exper Committees are affiliated, for the parpoee of organizComan expedition to the North Pole on the plan recommended by bullomand er Cheyne, R.N., who is strongly of opinion that explonstion fill form an important element in all future Arctic realorations. Our illustration depicts the three balloons as firady to start from the winter quarters of the ship during the are week in June, their destination being the North Pole. The average temperature in the early part of June is about 25°
Pabrenheit Pahren temperature in the early part of June is about 25°
$D_{i \text { econe }}$ three carrying will be capable of lifting a ton in weight, the for fiftrarying a sledge party intact, with stores and provisions ror fifty one days. The ascent will be made on the curve of
rooghly riifhly-ascertained wind circle, a continuation of which curro then carry them to the Pole, but should the said curve deflect the the required current of air can again be struck by rising to corrents of of altitude, as proved by experiments that different Corrents of air exist according to altitude ; this fact Commander baylloons in inself observed when, in charge of the Government moment in his last oxpedition, he sent up four at the same took font to different altitudes, being differently weighted; they Biving four different directions to the four quarters of the compass,
him first practical idea of balloouing in the Arctic Sinig him his first practical idee of balloouing in the Arctic from Wool Captain Temple's experiments with the war balloons deoideraolwioh Arsenal have fally confirmed this important
to to lloratum in aerostativa. About thirty hours would suffice Welloat our aeronauts from the ship to the Yole, should all go
beck We asked Comnander Cheyne how he was going to get back ; his asked Commander Cheyne how he was going to get
be maid he geid. his answer was cautions-"A According to circrmstancos,"
to uent to
My first duty is to get there. When there, leave it and to get back. We have many uncertainties to deal with, and a deet back. We have many uncertainties to deal with,
When denite programme made now might be entirely changed Rhen the time came to carry out the journey soath. Condensed Th moold be taken in steel cylinders, hillsy would be floated over by expansion and contraction of the balloons, and in the event of
Gny acent My a accident occurring, we always have our sledge party with
ded ge, boot, stores, and provisions for fifty days intact and readd for, boat, stores, and provisions for fifty days intact and Aretic for service." Scotland has taken up this novelty in caatione exploration with avidity, and England, though more Project in the matter, has at last given her adhesion to the monact being carried out. Canada is likely to join, and ComMinder Cheyne has received an invitation fron the Canadian lectures in Canance, Sir Samuel Tilley, K.C.B., to deliver his in Canada, with the promise of a warra reception.

The williay fotheraill coore.
$\mathrm{T}_{\text {gla }}$ projector and constructor of the first telegraph line in $\mathrm{R}_{\text {nge }}$ projector ind constructor or the hirst telegraph line in
$\mathrm{bor}_{\text {orn }}$
Sir William Fothergill Cooke, died recontly. He was ormat Ealing, in 1806, and after graduation at the University of Edinbaling, in 1806 , and anter graduation at the Univeraity
4rmy bargh, spent five years in the service of the East Indian physiolon his return he took up the stady of anatomy and physiology frat at Paris, contiuuing at Heidelberg. At the latter
Mlace, in Place, ing first at Paris, contiuuing at Heidelberg. At the latter
tricity 1836 , his attention was directed to the subject of elecrotrocted to which he soon devoted himself exclusively. He con${ }^{\text {to }}$ R ${ }^{\text {Ry }}$ tod an experimental telegraphic instrument, which he took To Ragland and endeavored to introduce on the Livernool and had priter Railway. This was two years after Professor Morse ciatin privately demonstrated the success of his invention. Asso. so farg himseli with Wheatstone, Cooke perfected his invention, Ond Whe least as to make it practicable, and in June, 1837, Cooke helegreatstone together took out the first patent for an electric thagraph, the mechanism of which, however, was quite unlike hat of t:"e Merse mechanism of which, however, was quite unt ike
Whearument. The frst line constructed by other tritone and Cooke was finished early in 1839, and several toner lines had been set up in England before Morse's Washing. ton and Balad been aet up in England before Morse s Washing.
kiighte Baltimore line was constructed in 1844. Cooke was $\xrightarrow{\text { aighted in } 1869 \text {, and pensioned in } 1371 \text {. }}$

Bex mantications.

[^1]
ciluxesprondente.

To the Editor of The Sc:rntific Canadian :
Sir.-In reply to "R. J.," in your July issue, I would state, that traps to water-clodets, \&c., as ordinarily constructed, are a delusion, and but very imperfectly perform the duty expected of them.
I do not know what is considered a proper seal, but it has been demonstrated that a three inch seal will only resist a pressure of four ounces to the square inch, and, further, that it only requires from three to four hours for the gases in the soil pipe to impregnate the water in the trap and make their presence known in the hopper. In addition to this the seal can be broken by what is known as "syphoning," as well as by suction caused by the discharge of a large volume of water from the bath pan, or another closet emptying into the same soil pipe.
" R. J." is perfectly correct in his supposition that the water in the trap is always foul ; this is especially the case during the night, or when the closet has not been used for several hours, and in the morning when the lever is raised a small magazine of foul air is at once discharged through the hopper into the room. Neither can he depend upon several flushings clearing all the soil out of the trap.

Let your correspondent construct his closet on the "Downward Ventilation" plan, and he will find that not only will he have perfect safety from the assent of foul air, but will also have the room in which it is situated ventilated.
This consists in inserting a breathing pipe into the soil pipe of the hopper, six or eight inches above the level of the water in the trap, and at such an upward angle therefrom that paper or other frreign matter cannot block its orifice. This breathing pipe should not be less than three inches in diameter, and can be made of galvanized iron, having the seams and joints well soldered. It must then be carried to a chimney in which there is a constant draft (usually the kitchen chimney is the best). Now let that bright and beautiful pan at the bottom of the hopper be entirely removed, its presence there is only an obstacle to the free ventilation of the closet.

If this simple mode of ventilating is only properly carried out, there will be a constant current of air downwards through the hopper and into the breathing pipe, thence to the chimney, where all the gases are deodorised and disinfected by mingling with the smoke from the fire below. Yours, etc.
N. T.

Toronto, July 25th, 1879.

DRUG TAKING MANIA.

Women are rather more given to drug taking than men, though both are bad enough in this respect. Here is what une of our most eminent physicians has to say on this subject
" Dr. Holmes has said that it would be well for the world if nost medicines were thrown into the sea ; that it might be bad for the fishes, but it would be better for mankind. For this unasked and impertinent suggestion he has received a good deal of orthodox censure, which I have now to share with him, for I am of the same opinion as Dr. Holmes, and this opinion has long beeu a part of my Christian faith. That the major part of the world does not agree with us is plain. Indeed most people seem to think that the chief end of man is to take medicine. Babies take it in their mother's milk; children cry for it; men and women unceasingly ask for it. Shrewd men have taken advantage of this instinct, and in most civilized nations it is to-day one of the chief articles of manufacture and commerce. It is one of those things which are never permitted to be out of sight; but are thrust upon you in the narsery, in the streets, upon the lamp posts and apon the curbstunes, along the highways, from the rocks which border the rivers; the medicine chest follows you at sea, as if the sea itself, a vast gallipot of nauseants, were not enough. One might naturally suppose that the supply would at length exceed the demand ! but it does not. Everywhere the people are stretching out their arms and begging for medicine, blessing him who gives and cursing him who withholds. They believe, in their simplicity, that if medicine does no good, they can at least do no harm. They imagine, also, that there is a medicine which may be regarded as a specific for every human malady, and that these are known to science, and that therefore we have the means of curing all diseases ; but the people imagine a vain thing. Whatever medicine is capable, when properly administered, of doing good, the same medicine is equally capable, when improperly administered, of doing harm ; and drugs often substitute a malady more serious than that which they were intended to care. The Irishman said his physician stuffed him so with medicine that he was sick a long time after he got well.Dr. Fíank Hamilton.

JEWELLERS' AND WATCHMAKERS' NOTES.

(From the Horological Review.)

Restoring temper of soft wire.
To Secretary Horological Club:
The advertisement of "Jenkins" Patent Pin Point, in the March number of the Circular, su:gests the use of the following method of restoring the temper of any kind of wire after having been hard soldered. For pin tongues, fasten the point securely in the pın vice. Hold the point end with a pair of flat plyers. Turn the vice, thus twisting the wire, which will give it a spring temper without injury to the form of the wire.

Ebersole.
Mr. McFuzee said that when the wire was not too soft, this would give considerable elasticity, although not equal to draw or roll temper. If the tongue showed roughness after twisting, it could be removed by burnishing.

defective detached lever encapement.

Serretary of the Horological Club :

I shall be thankful for any detailed information you may give me, through your Club. pertaining to grinding of locking faces of club escape-wheel terth; the best manner of moving pallet jewels forward and adjusting them accurately in their slots; and how to turn down an eccentric pallet arbor. This information is desired to learn best practical mode of remedying too shallow pitched escapements, and rounded front corners of club-wheel teeth. I have a small dinerican lathe. O. M. K.
Mr. Uhrmacher said that the teeth should not be ground off at all. By grinding them back far enough to square up the rounted front corners, the length of the incline on the ends of the teeth would be shortened, and the impulse angle of the escapement lessened by that amount. The proper remedy for a defective wheel is to replase it with one which is properly formed and perfect.

It will also be casier to fit a new wheel than to turn an eccentric pallet arbor, to remedy a shallow escapement. In most cases, however, the pallets can be moved forward on the arbor enough to correct a shallow pitching. Directions for doing this, and also for moving and adjusting the pallet jewels, are given in Excelsior's articles on the detached lever escapement, published in the Circular about two years ago. It is seldom advisable to move the pallet jewels, as it produces a radical change of the entire wheel-ana-pallet action. But if they have become loose, they must of course be adjusted in position, and Excelsior's articles tell how it should he done. Every workman should study them carefully, both for the practical information anl processes given, and also for the knowledge of the principles oil which the escapement is based, and which should goveru wir operations, that is conveyed.

REMOVING TARNIRH AND BLEEING.

Secretary of Horological Club :

Will some of your honorable body state the best receipt for removing tarnish from the bright parts of a watch quickly, wit". out injuring the surface of same? Also, for removing lilueing from a pinion that has been heated?
S. E. G.

Mr. O'Lever said there was no way of brightening the gilded parts without affecting the surface at least a little. But with proper care, the injury would be very slight. The most common way is to dip the tarnished pieces in a weak solution of cyaniue of potassium. If dirty or greasy, they should first be washed with soap and water, and a brush more or less stiff, according to the surface, and the thickness and nature of the gilding. Some scour the pieces in soap and water containing enough of ammonia to give it a strong smell. Spots could be removed by applying a little of either cyanide or ammonia solution to them, with gentle rubbing. Care must be used, as, if the plating is thin, either solution will take it all off, if used too strong or too long. The ammonia process is preferable when there are steel parts on the pieces, which are inconvenient to take off, as the cyanide is liable to rust them.

Blueing is generally removed by weak nuriatic acid,-say one drop of acid to five of water. The piece is either dipped in this, or rubbed with a bit of peg-wood wet with it. As for himself, he did not favor the use of acids for that and other purposes, so much as many workmen seemed to. He thought it better to polish off the pinion with fine oil-stone dust, and finish up with sharp or hard rouge, used on a slip of boxwood with oil, -bring careful, of course, not to grind the pinion leaves any more than enough to take the color off, as too much scouring wrould alter their shape.

What to do with a magineligel watril.

Secretury of the Horological Club:

Please inform me, through the columms of the Circular, what course to take with a watch that has become magnetized ! 1 know of a tine English lever watch, that was magnetized by the
owner holding a magnet near the balance-wheel. Is it ruined owner holding a magnet near the balance-wheel. Is it ruined
for correct time,
A. E.

Mr. Horologer replied that a magnetized watch was worthless
for keeping time. No dependence could be placed on its correctfor keeping time. No dependence could be placed on its correct.
ness, nor could it be told in what direction its error would show itself. His own opinion, as was well known to the Club, was that there was no way to thoroughly demagnetize steel parts, which had unfortunately become charged with magnetism, except to heat them red hot. That view was also taken by 90 excellent an authority as "Excelsior," in his book. Othert however, were confident that it could be done without heating. This subject has been discussed at different meetings of the Club, some three years ago, and reports would be found in onf proceedings, published in the Circula, at that time. Mr. could try the methods there given, if he choose, and satisfy him self as to their value.

Secretary of Horological Club :

Will you please tell how Morrisou's gold and silver solution, for electro-plating without a battery, can be made more durable? I have used it according to directions, and the process does as recommended, but seems easy to wear off. It don't seem as har
as it ought to be. There is probably some one of your members as it ought to be. There is probably some one of your membern who can give me some light in regard to it. It is highly recon mended for small jobs, but don't seem to last long. W. W. J.

Mr. Electrode suggested that perhaps Mr. J. did not get on coating thick enough to be durable. If the directions were wol
followed, there could be no trouble but that, and that could be remedied by longer exposure in the solution.

BAD TEMPER AND INSANITY.

Passionat ${ }^{2}$ people - the hasty kind-who flar. u, in a blaze, like fire to tow or a roal to powder, without taking time to in quire whether there is any ground for such pyrotechnic display, and then get more furious when they find out there was no calas for their fiery feats, may learn a useful as well as a serious lessos from an item in Dr. Blancliard's report of the King's County L.unatic Asylum, that "three men abl three women became ins.tne by uacontrollable temper."

Wr all feel a sympathy for one who has hecome demented from loss of kindred, from disuppointment, and from a hard lot in life; but we can have no such feeling for fuarrelsome, illnatured, fretful, fault finding, complaining, grumbling cres* tures. the greater part of whose every day life tends to make those whose calamity it is to be hound to them as miserable as themselves. Bal temper is a crime, and like other crimes, its ordained in thr course of nature to meet, sooner or later, its neerited reward. Other vile passions may have some points oir extenuation-the pleasure, for example, which may atteud their indulgence; but ill-nature-that is a fretful, fault-finding spirith in its origin, action and end, has no extenuating quality; and in the application of the old principle, " with what measur" ye mete, it shall be measured to you again," will find a most pitiable end. Therefore, with all the power that has been given you, strive and strive for life, to mortify this deed of the flesh. Watch hourly, watch every moment agaiust the indulgence of \& hasty temper, as being offensive to yourself and contemptible in the eyes of your fellow man-contemptible because for the person who pussesses it, and knows it, yet indulges in it, and maxes no effective efforts to restrain it. no human being can have any abiding attachment or respect, founded as it is in low morals, or low intellect, or both.

Sawdust mixed with blood, or some other agglutinative substance, and compressed by powerful pressure in heated dies, is formed into door-knobs, hardware, furniture trimmings, buttonb, and other useful and decorative articles; oyster shells are burned is to make lime; the waste of the linseed oil manufacturers engerly sought after as food for cattle ; the waste ashes of wool fires are leached for potash; river mud is mingled with chals, and burned and ground to make the famous Portland cement ; the fiuest glue is made from the waste of parchment skins, and even the slag that has served for years only to decorate the hilug si lpa around mining ramps is now cast int" paving anl buildiug blocks.

SIGHT AND READING.

M. Javel, ma recent lecture, tries to answer the question, "Why is reading a specially fatiguing exercise?" and also sug. gests some remedies for this fatigue. First, M. Javel says read. respequires an absolutely permament application of the eyesight, mealting in a permanent tension of the organ, which moy he mansured by the amount of fatigue on by the production of jw.rmanent myopy ; secondly, books are printed in black on a white groand. The eye is thus in presenere of the most absolute comteast which can be imatimed. The thiril puculiarity lies in the orrangement of the chirrantelis in horizontal lines, over which run otr eyes.
If we inaintain, during reading, a prrfert immohility of the
book and the head, the printed lines are appid successively to also affeparts of the retina, while the interspaces, more bright, must affect certanu legions of the retin., alway, the same. There must result from this a fatigue analogous to that whith we exphysice when we make experiments in " accidental images," and sigysicists will admit that there is nothing more disastrous for the and than the prolonged contemplat on of these images. Lastly, and most important of all, in M. Javel's estimation, is the con-
tion on thation of the distance of the eye from the point of fixaton on the book. A simple calculation demonstrates that the tion as thation of the eve to the page undergoes a distinct varia-
and the eye passes from the beginning to the end of each line,
and that this variation is all the greater in proportion to the Aearness of the book to the eye and the length of the line.
jurio to the rule which M. Javel inculcates in order that the inperma effects of reading may be avoided, with reference to the to takent application of the eyes, he counsels to avoid excess, roll take notes in reading, to stop in order to reflect, or even stopp cigarette ; but not to go on reading for hours without stopping. As to the contrast butween the white of the paper and intrank characters, various experiments have been made in the of a sligetion of colored papers. M. Javel advises the adoption us a slightly of collow tint. But the nature of the yellow to be saltin not a matter of indifference; he would desire a yellow re. palting from the absence of the blue rays, analogous to that of laper made from a wood paste, and which is often mistakenly corrected by the addition of an ultra-marine blue, which produces Rray, and not white. M. Javel has been led to this enntlusion rela from practical observation and also theoretically from the the rpation which must exist between the two eyes and the colors of His pectrun.
His third aivice is to give preference to small volumes which being held in the hand, which obviates the necessity of the book cidentept fixed in one place, and the fatigue resulting from ac-
long linal images. Lastly, M. Javel alvises the avoidance of too ong lines, and, therefore, he prefers small volumes, and for the Of reason those journals which are printed in narrow colnmms. read with every one knows that it is exceedingly injurious to cotamon rusnificient light, or to read too small print, and other M. Javeles.
tion Javel concludes by protesting against an invidious asser. (German whas reently b. en made "in a neighboting country"
of a peop no doubt), according to which the degree of civilization of a people is proportional to the number of the short-sighted abown to exist hy statistics; the extreme economy of light, the tion of reading to the detriment of reflection and the observatoo of real facts, the employment of Gothic characters and of a Which Mroal colunin lor hooks and journals, are the conditions
generationsel belipues lead to myopy, rspecially if successive Eenerations have bern subjected to these injurious influences.--
London Times.

BREAKING UP SLAG WITH ROCK SALT.

Thore Phess :-An item gathered in Carson we judge worthy perial unte for the benefit of all, gas makers in particular. slurnaces of gias works there always gathers a very hard, ttend 8 ug, very difficult to remove even with iron bars. The dant in the works at Carson told as that, by areident, vat, a hanitul or so of common ruck salt rendered this "ut, a haniful or so of common ruck sult rendered this " a few minntes, rasily draw" out likr coarse, pebbly sand. fulnilful should not loosen "p the whole inass, another nl could he also thrown in, and the result was certain ; the Ho of all be drawn forward the same as ashes. This fact in of thonsanus of dollars' valne to the many gas manufacthe land, and it is free for their use. Experimenting will vident lac best manner of usius the salt fir the purpose. S. V. B.

EPIDEMICA.

The limitation of epidemic pestilential disease, as the yellow fever, typhus and typhoid, diphtheria, etc., is at all times a question of intense interest to every thoughtful person. The July number of the New York Sanitarian contains interesting and valuable matter upon the subject of epidemics, which we unhesitatingly appropriate :

The cholera is a product of the jungles of India and Burmah, and the yellow fever is as surely of West Indian origin. That it is an exotic as relates to the United States is the opinion of the last national commission; and that it never originates de novo, except in its primal birth-place, whatever elsewhere may be the excess of heat moisture, filth, and vegetable and animal decomposition, is almost demonstrated, perhaps established. As to communicability, it is certainly conveyed from individual to individual, not piecisely by whit we understand to bo direct contagion, but through various media, especially by bed and body clothing, by articles of furniture, by apartments, cars and steam and sailing vesspls, by haggage and hy carroes; and these propagators, deriving from the sick the pestilential material (inten. tionally not called gerno), hold it with wonderful tenacity, and convey it to mankind with. intense effect. Buth may be held at bay by quarantine and literally "fenced out." In 1851 cholera prevailed in Southern Europe and in Algeria, but not one case occurred that year in Spain by reason of vigorous quarantine. Two years later, when the embargo was not strictly maintained, it ravaged the Spanish peninsula. It always followed the lines of travel and was always carried by mankind. The infectious gerin might be long in germinating, but it could always be traced to individuals. Quarantine, to be effectual, however, must have a very wide applicability. It will not suffice to limit it to vessels from foreign ports. It must extend to all convey. ances for the transportation of passengers and merchandisemust have relations with municipal, State and national authority. It is estimater that the cost of the late yellow fever epidemic in loss amounted to $\$ 200,000,000$.

Typhoid fever is certainly communicated through a tainted water supply exposed to the taint of infected vaults. Poisoned springs have been traced to this infection, and in a celebrated English diary case, where poisoned milk was claimed to have been sold, scientific examiliation disclosed the fact that the milk had been contaminated through the cows having lain upon ground mannred from infectel vaults. Another source is in the ice supply, often taken from shallow ponds in the neighborhood of large cities, freezing not destroying the germ as supposed. The air in localities becomes contaminated from sewage deposits ; and Budd states, as early as 1859, that the germ of this disease never originates de novo, but proceeds from a special and specific posson, capable of great diffusion and preserving its noxious qualities for a loug period, even if buried for many months. In England the preventability of typhoid fever is so thoroughly established that an innkeeper who has a guest ill with it, is held ctiminally responsible if any other case could be traced to the ont under hiv rool. By this means infectious substances are destroyed and the spread of the disease prevented. Boiling water ajp, lied to the discharges is said to destroy the infection. But when the substance is allowed to escape as sewage it must be disinfected hy prompt measures.

Diphtheria is much more prevalent and much worse in localitips supplied with bad water. The microscope can detect a few of the germs of epidemic diseases either in the water or in the system, and the only sure method is to watch the slightest approaches of disease and investigate the sources of our water suplly, whether in city or country. Chlorine gas, from recent experiments, seems to be a disinfectant as well as a deodorizer. This greenish-colored gas effectually seizes upon and destroys any hidden germs existing in dwellings, ships, etc. This gas has been used successfully at Bellevue hospital and other places. W'e must purify and quarantine. Mediums of communication have been marle available to epidemics as wrll as to mankind in his business affairs.

Eucalyptus in a Cold of the Head.-Prof. Strambio, in a note in an Italian medical journal, says that notwithstanding the failure of all remedies hithorto recommended for the immediate cure of a cold, he wishes to communicate to the profession the great success hr har found attending a new one in his own person, and to ask thrm to test its rffiracy. He found prolonged mastication and swallowing of n dried leaf or two of the Eucalyptus glubulus almost immediately liberated him from all the effects of a severe cold.

塱ackine Constuxtion \& 思xaming.

(From Collin's Elementary Science Series.)
(Continued from page 259.)
circumference into 16 equal parts, and the distance AA $^{\prime}$ into 8 equal parts. Through the points I, II, III, dre., draw the cam shown in dotted lines, as for fig. 162; if the roller were a point, or the knife edge of a sliding bar, this would be the required cam; but the roller has a diameter of $2^{\prime \prime}$, therefore, from the points $A^{\prime}, ~ I, ~ I I, ~ I J I, ~$ \&c., as centres with a radius of $1^{\prime \prime}$, destribe ares of circles inside the dotted cam; a curve touching these ares will be the outer edge of the required cam.
91. The following are the dimension of its several parts:-Thickness of rim $c 1^{\prime \prime}$; width of rim $h 3^{\prime \prime}$; diameter of shaft $a 3^{\prime \prime}$; key $g \frac{7^{\prime \prime}}{8} \times \frac{1_{2}^{\prime \prime}}{2 \prime}, 6^{\prime \prime}$ long; diameter of boss l $5 \frac{1}{2}$ ", and $4 \frac{1}{2}^{\prime \prime}$ through; the arms f are $\frac{3^{\prime \prime}}{4}$ thick, and $2^{\prime \prime}$ wide at the narrowest part, increasing to $24^{\prime \prime}$ for the longest arm; the others aro in the same proportion; inside the rim and outside the boss is a feather $d \frac{3}{4}^{\prime \prime}$-ide and $\frac{3^{\prime \prime}}{4}$ thick; on each arm there are two feather's $e \frac{3}{4}^{\prime \prime}$ thick and $\frac{3^{\prime \prime}}{4}$ decp, increasing to $7^{\prime \prime}$ in the longest arm. The inside of the rin c and the feathor d are curves parallel to the outside of the rim.

Fig. 164 is a front-elevation, fig. 165 is an cud-eleration, and fig. 166 is a sectional end-elevation, wade b_{j} the plane SP, fit. 164.
92. During one half revolution of the cam, as the radii increase from CD to CL , the roller is moved outwards from A to Δ^{\prime}; but in the return half revolution the radii decrease from CL to CD , it is therefore necessary to apply some means of keeping the roller in contact with the cam, which may be accomplished by means of a spring or a weight, or by using another roller B, and connecting the two with a link, so that to prodace the return of the roller A the cam acts upon the roller B, and thus brinas back A, together with the slide attached to it.
93. Inking-in a Drawing.-It is usual to put drawings of machinery in ink, whether working or finished drawings, since by constant use the blacklead lines would remain only for a very short time. Indian ink is the kind of ink used; it may be obtained either in the solid or liquid state : the former will be the best for the general student to obtain it in. Sticks of a good quality can be had for one shilling and upwards; cheaper qualities are not to be recommended. Having prepared the ink for use by rubbing it in a clean slab with a little water, and having satisfied yourself that it is of the required shade, by trying it with your drawing-pen on the margin of the drawing, commence to ink-in. But, before doing so, the following general hints will be of service to the student:-Clean off with india-rubber all surplus blacklead, learing the lines just visible, as the lead is liable to get between the nibs of the pen, and so cause the lines to be irregular. When you have supplied the pen with ink, before using it try it on the margin of your drawing, so as to get the line of the required thickness. Never put away your pens with ink in, but clean them with a picce of wash-leather or linen rag; it will also be necessary to clean between the nibs occasionally while asing the pens.
94. The following order should be observed in inking-in: -First ink-in all circles, portions of circles, and curved lines, to which straight lines are to be joined, keeping both the nibs and the needle point of the bow-pen as nearly perpendicular to the drawing board as possible;
if the nibs are inclined too much to the surface of the paper the circular lines will be irregular in thickness, and if the needle point is inclined too much the hole will be enlarged, which is objectionable. The pen for drawing straight lines, or curved lines by means of moulds or curves, should be held nearly perpendicular, being inclined a little towards the right and outwards, so that the point of the pen may be seen. The lines are to be drawn from left to right, as in penciling. Particular care should be taken in joining a curve and a straight line; the best way is to commence the straight line from the curved one, and not try to join the former to the latter. If the lines of the drawing, both full and dotted, are correctly shown in pencil, it is immaterial whether the full lines are put in first and then the dotted ones, or otherwise; but if this is not the case, then begin by inking-in the lines which are furthest from the plane upon which the view of the object is projected, as such lines will be in full; the outline* of the object will also be in full, the remaining lines must be determined by the ordinary principles of pro jection.
95. The beginner should be extremely carcful in irk ing-in his drawings, so as to avoid having to use the knife, or any other means, for scraping out or erasing a wrong line; it will therefore be advisable for him to pencil-in all lines as they are to be inked-in.

After considerable practice he may deviate a little from this order; but, as a rule, the less it is deviated from the better, as the dotted lines should be distinguished from full lines; not necessarily by dots of equal length, but just sufficient to show the difference.
96. Shade or Dark Lines.- In the examples given up to Plate XXIII., except in Plate II., we have considered the drawings to be plain oucline drawings, having all the lines, which form the boundaries of the surfaces repro sented in each figure, of the same thickness; we will now explain the use of shade or dark lines.

The figures in Plates XII. to XXIII. may be taken as types of those termed working drawings, that is, draw. ings from which the object is to be constructed; in such drawings all the lines are to be of the same thickness. For finished drawings, which are usually made to a small, scale ($\frac{1}{8}$ and under) and used for the purpose of reference, \&c., shade lines are often employed, whose chief use the to convey to the mind a better idea of the form of the several parts of the object, and to give what is considered by many to be, a better finish to the drawing; however, thicir use is a matier of taste. In Plate II, shade lines are employed. Figs. 190 to 192, Plate XXVI., repre sent, as a finished shade-lined drawing, the pedestal shown in Plate XXIV.
97. For the purpose of shade-lining drawings, the light is assumed as coming from the left-hand and from behind the observor towards the object, and at such an angle that the projections of each ray + aro inclined to the horizontal and vertical planes at an angle of 45°.
Figs. $167 a$, $167 b$, Plate XXIIIA., are the plan and eleration of an object made up of plane surfaces, having a square hole through it. The lines $a b$ represent the direction of the rays of light; those lines upon which the light falls directiy are fine lines, the remainder are made thicker, and are termed shade or lark lines. We may say generally, for clevations, the shade lines are put on the right-hand aces lottom edges of projecting surfaces; where two surfaces

* By the term outline we mean the boundary lines of the objectr
outside of which there are no lines.
${ }^{\dagger}$ The rays are considered to be parallel.
are in contact, if the upper one does not project beyond the lower one the shade line is not used, as shown in the bottom line of fig. $167 b$; the object is supposed to be resting on a horizontal plane. In the case of sections and hollows, the shade lines are on the left, as shown in fig. 168b. Figs. $167 a$ and $168 a$ show how shade lines are employed for plans; fig. $168 a$ is a sectional plan.

98. For cylindrical objects there is a little difference in the use of shade lines. Figs. 169a, 169b, represent in front and ond-elevation a portion of a shaft; fig. $169 a$ is shaded; along the line ab the light is most intense, gradually decreasing towards $g h$ and $c d$; along $c d$ the if ${ }^{\text {s }}$ ade is greatest, and gradually decreases towards $a b$, ef; if now we put a shade line for ef, the effect which the linading produces is destroyed; for this reason shade the ene not employed for cylindrical objects,* except for the ends and projecting parts, as $f h$, fig. $169 a$, and $a b, c d$, and eff, fig. $171 b$.
The circular ends are represented as shown in figs. $1696,170 a$ a and $171 a$, the circular line increasing in thickness from the points a, k, to c, fig. 169b, where it is thickest. In hollow cylindrical objects the inside and outside are shade-lined, as shown in fig. 170a, and sections of the same have shade lines, as shown in fig. $170 b$.
Fig. $170 a$ is an end-elevation, and fig. 170 b a front sectional elevation. It is important to notice the difference in the use of shade lines for plans and elevations; if We consider fig. $170 a$ to be a plan, and fig. $170 b$ an elevaion, then the shade lines as shown would not be correct.
Figs. $1716,171 a$, represent in front and end-elevation a shaft having a neck and collars, upon which are shown the usual shade lines. The angles formed by the coilars and the shaft are filled-up, as shown, with a curved sur face, and the outside edges of the collars are rounded these curved surfaces are not shade-lined, for a sinnilai rearen as that given for fig. 169 a.
99. Conical objects are treated in a manner similar to that of cylindrical objects, as shown in figs. 172a, 172b, Which are respectively plan and elevation of a portion of a right cone. The elevation, fig. 172b, is assumed to be traised above the surface $A B$, that is to say, its lower surface $c d$ is not in contact with another surface, thereTore the line ad will be a shade line. If the lower surface
of the of the cone rested upon a surface larger than its own, the has a would not be a shade line. The plan, fig. $172 a$, has a shade line, as in the case of the circular ends of cylinders, for its bottom surface $c d$, but not for its top Surface ef; if the bottom surface, were in contact with a surface larger than its own, the circular shade line would not be used.
Figs. 173a, 173b, represent in plan and sectional eleration a portion of a hollow cone, upon which are shown the shade lines for the position of the object indicated with figures. If the bottom surface were in contact and a surface larger than its own, the line $c d$, fig. 173b, lind the outer circle in fig. 173a, would not be shadeare shed The two right-hand edges of the section, fig. 1733 , aro shade lines, ras would be the case if the object were a Fige cylinder.
Figs. $174 a, 174 b$, represent in plan and elevation a
portion to the of a bolt with a hexagonal head, the part next a plenead being cylindrical. The object is resting upon baind e, as shown in fig. $174 b$; the bottom and two rightfig. 174 edges of the head are shade lines. The circle in a. $174 a$ is shade-lined, as in the previous examples, and

* However, if we consider the use of shade lines to be a matter
of taste, and therefore liable to difference of opinion, we may
otate that in may
three sides of the hexagon are shade lines.
Figs. 175a, 175b, represent the same object in front and end-elevation; fig $175 a$ shows two faces of the head, and fig. $175 b$ shows the under side of the head and the end of the cylindrical part of the bolt. The object in these figures is assumed not to be resting upon a surface; if, however, it did, then the bottom line in each figure would be a fine line, unless the surface upon which it rested was smaller than the surface of the object.
If the view, plan, or elevation, of an object is inclined at the same angle and in the same direction as the projections of the rays of light, as in fig. 176, the lines of the view which are parallel to these projections are fine lines. Fig. 176 represents the elevation of the bolt shown in fig. $174 b$, the centre line $a b$ of which is inclined at 45°, and slopes from left to right, having the same inclination and direction as the rays of light; the line $c d$, ef, \&c., which are parallel to $a b$, are fine lines. The lines $d f$ and $g h$, which are at right angles to $a b$, are shade lines. If we consider fig. 176 to be a plan, the lines $d f$ and $g h$ would be fine lines; and $e k, l h$, shade lines. In the examples of shade lines which have been given, we have considered each of the atraight lines in the views of an object to be of the same thickness; and also the thickest part of each circle to be of the same thickness. Sometimes there is a difference in the thickness of the shade lines of a drawing, which is governed by the distance and inclination of each line from the assumed souice of light.
By a proper use of shade lines one view of the drawing of an object will convey a much better idea of the form of the object represented, than if they were not used; cylindrical forms can be distinguished from other forms by the omission of the shade line in the former; and projecting surfaces can be distinguished from other surfaces, and also from recesses, by the position of the shade line. Where dotted lines are used in shado-lined drawings, they should be all of the same thickness.

100. Working and Finished Drawings.-We will now give examples of the two chief kinds of drawings used, taking a Pedestal or Plummer-Block as the object for representation. In Plate XXIV. is shown an ordinary working drawing of the whole pedestal (figs. 180 to 183 are added for another purpose, as will be explained shortly) ; the dimensions are not given, as the parts are shown in detail in Plate XXV. The cast-iron and brass portions are shown in Plate XXV. in detail with all the dimensions added and also the radii of-the arcs of circles: this may be taken as a type of drawings such as should he supplied to the Pattern or Model Maker, along with Plate XXIV., which shows the arrangement of the whole as put together. The wrought-iron work is also drawn in detail for the Smith. In Plate XXVI. is shown the pedestal as a finished shade-lined drawing.
101. Pedestal or Plummer-Block.-In Plates XXIV. to XXVI. are shown in elevations and plans, a pedestal as defined in Art. 29, page 29. Fig. 177, Plate XXIV., is a front-elevation, the right-hand half being in section, as made by a vertical plane $S_{1} P_{1}$, fig. 178. Fig. 178 is a plan, a portion of which is in section, as made by a horizontal plane $\mathrm{S}_{11} \mathrm{P}_{11}$, fig. 177; and fig. 179 is an endelevation.
A is the body of the pedestal which supports the steps B; attached to A is the sole-plate or base-plate C , by which the pedestal is connected by bolts E to the frame of the machine, either directly, or by means of an intermediate bracket; D is the cover or cap connected to the body by the bolts F, the object of which is to keep the top step in contact with the shaft; on the top of the cap is an oilcup
(Continued on page 284.)

(aseful Iuformation.

Can a Steam Pipe Set Fire to Wood?-At the Crescent Steel Works in this city, a steam pipe two and one-hall inches in diameter, carrying 90 to 100 pounds pressure, was laid underground about three years ago, encased in common pine boards about one inch thick. A few days since occasion was had to dig up the pipe, and the whole length of the wooden drain was found to be charred, and apparently burnt, about three-fourths of the thickness of the wood, the other fourth being partially rotted. The whole inside of the drain was turned to charcoal, with here and there spots of white ashes, showing the ignition had actually taken place. It seems probable that if the casing had not been excluded from the air by the earth covering, it would have blazed and been entirely consumed. It is generally believed that a steam pipe cannot set fire to wood, but this case seems to prove the contrary, and it may explain the origin of many mysterious fires. It indicates at least that care should be taken to prevent the close proximity of easily combustible material to steam pipes carrying a high pressure of steam. The temperature of steam due to a pressure of 100 pounds per square inch is about 337° Fahr.-American Manufarturer.

Presence of Mind.-Prof. Wilder gives these short rules for action in cases of accident: For dust in the eyes, avoid rubbing; dash water inte them. Remove cinders, etc., with the round point of a lead pencil. Remove insects from the ear by tepid water; never puta hard instrument into the ear. If an artery is cut, compress above the wound; if a vein is cut, compress below. If choked, get apon all fours and cough. For light burns, dip the parts in cold water; if the skin is destroyed, cover with varnish. Smother a fire with blankets, etc. ; water will often spread burning oil and increase the danger. Before passing through smoke take a full breath, and then stoop low, but if carbon is suspected, walk erect. Suck poison wounds, unless your mouth is sore, enlarge the wound, or, better still, cut out the wound without delay, holding the wounded part as long as chn be borne to a hot coal, or end of a cigar. In case of opium poison, give strong coffee and keep moving. If in water, float on the back, with the mouth and nose projecting. For apoplexy, raise the head and body; for fainting, lay the person flat.

Flavoring Meat on Foot.-M. Monclar, a noted agriculturist in France, advocates the flavoring of meat on foot, by appropriate feeding. He says that by flavoring the food of cattle, sheep, pigs and poultry, their flesh may be rendered much more agreeable to the palate than it often is. He is substantially right, for reasoning by contraries, we know that rabbits, quail, deer, etc., which feed and browse upon the artemisia and bitter seeds, have a disagreeable flavor when eaten. Any flavor may be given the meat-mint, anise, thyme, etc., and several tastes may be given the meat, or a compound flavor be added by a variety of flavors of any selection. For invalids particularly, or for epicurean palates, the common meaty flavor can be modified in flavor to suit the palate, and the aversion to healthy, nutritious meat be overcome by a delicious conglomeration of swe et flavors. We hope to see the experiment tried in this county.

Formation of Coai.- - E. Fremy holds that there are several kinds of isomeric cellulose, consticuting the skeleton of plants. Coal is not an organized substance. The vegetal impressions presented by eoal are produced as in shales or other mineral matters. The chief substances contained in the cells of plants under the double influence of heat and pressure produce bodies having a great analogy to coal. The pigments, the resin, and the fats of leaves, if submitted to heat and pressure, yield compounus which approximate to bitumens. The vegetable matter which gave rise to coal has undergone, first, the peaty fermentation, the coal being then formed by a secondary transformation.

Enamel for " Porcelain" Kettles.-Grind together 100 parts of powdered calcined flints (or white quartz sand, free from iron), 50 parts of calcined borax (borax glass), and 20 parts of kaolin (white potter's clay), pass the mixture through an $80-$ mesh sieve, and mix it with water to form a thin paste. Line the clean vessel with this and let it dry slowly. Tl en fuse together $1 \because 5$ parts of white glass, 25 of borax, amd 20 of soda; powder when cold, and make into a thin paste with four parts of soda and a sufficient quantity of hot water. Cover the first coating with this, and, after thoroughly drying, heat in a muftie until the glazing has properly fused.

A New Paint for Plastered Walls.-An excellent paint for ceilings and walls has been invented by a German named

Reissig. It prevents the fomation of fungi, and renders the surfaces coated with it impermeable to fluids or vapors, and capable of being washed down with boiling water without injury. This paint is a solution of about 50 grammes of stearate of soda in l, 000 grammes of spirit having a specific gravity of 66 . The solution mey be given any desired tint by the use of the aniline dyes, or of ocher, ultra-marine or such other colors as are not subject to decomposition.

To Preserve Natural Leaves.--The fresh leaves art spread and pressed into a suitable dish with alternate layers of fine, thoroughly dry sand, as hot as the hand can bear. When the sand has cooled they may be removed, smoothed, and dipped for a few moments in clear French spirit varnish, and allowed to dry in the air. By many melted white wax is preferred to $\nabla^{8 /}$ nish. This latter must not be too hot. The dried leaves are dipped in the melted wax, drawn several times over the edge of the vessel to remove excess, and hung up until the film of war is thoroughly cooled and hardened.

Preserving Insects.-A. Laboulliere recommends plunging the insects, in the fresh state, into alcohol which has been saturated by digestion with arsenious acid ($1 \frac{1}{2}$ pint will take up about 14 Troy grains of arsenic). The living insect put into thin preparation absorbs about 0.003 of its own weight. When soaked in this liquid and dried the specimens are safe from the ravages of moths, anthrenus or dermestes. This treatment dom not affect the color of blue, green or red beetles, if dried after soaking for 12 to 24 hours. Hemiptera and orthoptera can bes treated in the same way; also the nests, cocoons and chrysalides of insects.

Protecting Vulcanized Rubber.-To protect vulcanized rubber against the action of oils and fats, Herr C. Schwanitry Jr., of Berlin, works in the rubber by rolling through hesto of rollers a mixture of 6 pounds of prepared chalk, 3.2 ounces of sulphur, 1.67 onnces of litharge and 1 pound of glycerine of 1.20 specific gravity. In order to vulcanize articles nade and shaped from this material, they are placed in a bath of glycerine, ${ }^{\text {a }}$ all exposed to a pressure of steam of two to three atmospheres.

A Brick-Lined Tank.-The Metal Worker says that solnd years since Prof. Chandler, President of the New York Board of Health, built a tank which was not on!y serviceable but cheap; He had made of stout plank a large box carefully braced, and lined it with bricks, each one of which was dipped in melte coal-tar just before it was laid in plase, the coal-tar serving in stead of mortar. A thin coat of this substance was spread 0 the inside, which made the tank thoroughly water-tight.

Gutra-Percha Solvents.-Caoutchouc and gutta-percha gre both quite soluble in naphtha, benzole and carbon disulphide. The latter, when mixed with about 6% of absolute alcohol, is ond of the best solvents. The solution is performed in the cold to (best in the open $a i_{1}$), as it would not be safe or economical th heat these volatile and inflammable liquids. Exposed to the air the solutions soon evaporate, leaving the gums in their original condition.

Indelible Ink.-The Apotheker Zeitung gives the following formula: 1.75 grammes aniline black are ground up with 60 drops hydrochloric acid and 42 grammes alcohol, and the liq 170 is diluted with a hot solution of 2.5 grammes gum arabic in 17 grammes water. If the aniline black solution is diluted with of solution of 2.5 grammes shellac in 170 grammes spirit instesd gum water, the

Brass Casting from Old Metal. - A white scum of oxide sometimes forms very rapidly, and going into the molds with the metal makes the castings porous and rotten :'especially is this the case when old metal is used. To prevent, stir the molten metry well with a stick of green wood, and sprinkle with a little dry argol and sal ammoniac before pouring.

Solid Emery Whtels.-Many of the best wheels ar cemented with vulcanized rubber, borax or zinc chloride (or oxychloride) and barium carbonate ; other materials, such ${ }^{\circ}$ feldspar and clay, alkaline silicates, litharge and japan, shellsa, and other resinous and gummy matters, albumen and lime, ett

Cement for Bisulphide Prisms. - A good cement to fast of the sides of hisulphide of carbon prisms is made of a mixture for good glue and concentrated glycerine, the compocition used for making rollers in printing presses.

Lime Water. - Agitate an ounce of pure caustic lime in pint bottle nearly filled with water, and after the lime has sab in sided decant the clear supernatant liquid. It must be kept ${ }^{\text {i }}$ well stoppered bottles.

THE SCIENTIFIC CANADIAN.

Nkw Use for Paper.--A great diversity presents itself in the beon applious purposes to which paper, or papier mache, has been applied of late years. Besides ornamental articles, cloth${ }^{\text {stoped}}$, beding, stamps, boxes, barrels, picture frames, furniture, car whep, chimney-pots, bricks, partition walls, carriage and of wheels and boats, it would seem as if the inventive ingenuity to manufacturers has succeeded in adapting this single substance papier new use every day. The last remarkable application of apier mache is the manufacture of a revolving dome for the Institute feet, and at Troy. This dome has an interual diameter of ' 29 or sixd if constructed in the usual manner, would weigh fivi ${ }^{0}$ sanix tons and require powerful and complicated machinery to depipulate it, hesides also requiring foundations of considerable depth for its support ; whereas the total weight of the paper dome Forking noteed a ton and three-quarters, and, mounted on pivots Working in iron grooves, is capable of being revolved in any
direction apection required without the assistance of any machine or of wood of any kind. The paper is put upon a light framing of wood, and is, by means of a special preparation, rendered fully hard and even more rigid than wood.
Commixications with lightholsms. A new description of Rocket, called the "hooyant rocket," has been produced by the Royal Laboratory Department, at the request of the Board of
Trade betwe. A rocket was required as a means of communication bain land thore and lighthouses a lew hundred yards from the the land during bad weather, and in circumstances under which veyed to ordinary life-saving rock apparatus by which a line is conhave to a wrecked vessel would he una vailable. The lathoratory greve answered the demand by inlopting the old-fashioned Contajne rocket to meet the required end. A small iron tube con to a sting the composition is raclosed in a casing, of cork, and fitted tremitek in primitive fashion, with a line made fast to the ex. Three of and the simple arrangement has admirably succeeded. from of the rockets have been tried at Shoehuryness, heing fired coure trough at the surface of the sea, and plowing a direct of whe through the nater with a strong line attached, hy means Which an assistant or a boatload of provisions collit b. coned the lighthouse $k+e$ per
Winu Gatgr: A simpli apparatu, for contimuously recording the direction of the winh, constructed by M. Redier, is now form in at the observatory at lycolls. I weathercock of suitalile upon suplorted by a sort of trijond of erooved wheels running borizontal axiar rail of steel the wheels having individually a cork passaxis, but collectively a vertical). From the weather(placed passes down a vertical rod to wommect with a cylinder pivot with axis vertical), whech is supported below by a stacl by horsting on a plate of agate, and is guded at the upurs part is $t_{\text {orizontal }}$ puileys. Thus each movement of the weathercoek *heet of ${ }^{2}$ mitted to the cylimder. The latter has wound round it a divislon paper, graduated verucally and hol izontally (the vertical and a pencil resenting the hours, the horizontal the directions), hy a pencil applied to the paper is move! in vertical directiom
 cock, and indicates the succesiser po-itions taken' 'y the weather-

sequently required for the management of the fire, as well as in the construction of their ovens. These are built in the most substantial manner, so that when the fire is at its greatest height the hand may be applied to the outside without any fear of burning.

Selfnilm ('amera.-The Scientific American refers to some very ingenious and curious applications of selenium, in which its peculiar property of changing its electrical conductivity when exposed to light varying in intensity, is utilized. The several devices are the invention of Mr . George R. Carey, of Boston, Mass. Perhaps the most curious of these instruments is the selenium camera obscura, which is capable of transmitting, telegraphically, an image of any object and making a perutanent impression of it at a distant point. In this case a person may sit hefore the camera in New York while his photograph is made in Boston

A NFW process for the production of a superior artificial stone is descrited to consist of the employment of a thorough mixture of six parts of tine sand and one of slacked lime, which is exposed for about threp days to a high temperature under a pressure of some three atmospheres. The result is affirmed to be the partial decomprsition of the silicious particles with the formation of silicate of lime, which acts as a cement, so that the mass, when cooled down to the ordinary temperature, hardens. This hard. rning process is said to continue for some weeks after exposure to the air, and the final product is declared to be as hard and solid as grood sandstone.-Mining Journal.

Wuhking Steam at High Pressure.-- It is well known that great effiriency in steam engines is obtained by an increase of pressure and the use of expansion. To accomplish this, the pinint lies not so much with the engine as with the boiler, e? gio neers finding no difficulty in working an engine with stc: m at 150 to 200 pounds her square inch ; therefore Mr. Walt, an em:nent Liverpool encrinerr, thinks there i- mo limit to the practical workiner pressure. Some pngineers will be inclined to differ with this ophion, as the management of steam used expansively in simple reriprocating engines at tanges of pressure much r.xceed. ing those named, is considered by many risky practice.

The Deej Mines of the World....-Ja reply to the buther of Mr. H. Musgrove and others, lake City, Colorado, inquiring as to the depth of the deepest mine now being worked in the worih, we mily say, this distinction probably belongs to the Adilber mine, Austria, in which the workings are probably rarmel an through a perpendicular shaft 1,000 meters- 3,280 feet deep. This is a lead-silver mine, and has been worked many years. Tla next deepest mine on the continent of Europe is the Viviers coal mine in Belgimm, 2, 847 fert drep.

Steel-Facen Ifon Plates. Ie st-imon mold is dividedinto two sections be means of a transers plate of thin sheet iron The two metals are then poured into the respertive compartments. The sheet iron partition prevents the mixture of the metals and facilitates the welding by itself being hought into a state ol fusion. It is said that the poduct is woil adipted for safes, and that it resists drills
 of the Lomion Miming , Im 'm, wh wherears to be well informed, states that very large quantities of tin plates made from steel are branded charcoal and best charcoal, and so exported ; and these plates, he affirms, are exceptionally well received, especially for stamping purposes, in the United States.

New Dye.--Sulphoamidoazobenzolic and sulphoamidoazotoluolic acids have been made petmanent canary and orange yellow dyes by the conjugation of the sulphoacids with amidoazobenzol and amidoazotolual, the excess of acid nentralized by dissolution in alkali and concentrated. The colors are dyed in a slightly acid bath.

Sixty-three years of age is said to be the grand climacteric or turn of life, a critical period for masculine humanity, more men dying at that age, or near it, than at auy other, leaving aceidents and violent deaths aside. A like critical period for feminine humanity is 47 years.

To Cut a Hole in Glass. -'To cut a round hole in a pane of glass of any required size so as to save the pane, use a copper tube of the size of the required hole; revolve it in contact with the glans, and supply it with emery and water.

The Hotel de Ville. - 'The Hotel de Ville in Paris, the old seat of the Municipal (iovernment, which was destroyed in, 1871, sfal allanced in rebuilding, and will be completed in 1851, at a total cost of about $\$ 4,400,000$.

G; the oil passes down the hole M through the step on to the shaft; to distribute the oil over the neck of the shaft, oihways' N (see also figs. 188, 189, Plato XXV.) are cut in the steps. For millwright purposes thera is generally a packing of wood inserted between the base-plate and the frame, to which it is connected, as shown in Plate XXVI.; but for many purposes this lining of wood is not employed, as the object is to get a rigid connection between the pedestal and the frame, corresponding as ncarly as possible to the case where the pedestal and frame are cast together. Where the wood packing is not used, the whole of the bottom surface is planed, or more cominonly clipping-pieces H are cast to the baseplate, so as to reduce the amount of surface to be planed or chipped; the chippiug-pieces are shown in dotted lines, their width and depth vary according to circumstances, from $\frac{1^{\prime \prime}}{}$ to $1^{\prime \prime}$ wide and $\frac{1^{\prime \prime}}{}$ to $\frac{1}{2}$ " thick.

To allow of a slight change of position of the pedestal, and for convenience in fixing, the holes K through which the bolts E pass are elongated, as shown in fig. 178; after the exact position has bcen determined, pieces of hard wood or metal are inserted at the ends, between the baseplate and the lugs on the frame, to prevent the possibility of the pedestal moving lengthwise. The body and baseplate are made of cast-iron and are cast together, the cap is elso cast-iron; the steps are usually made of brass, but the top step is often made of cast-iron; the bolts are made of wrought-iron, those for the cap are $\frac{1^{\prime \prime}}{}$ diameter, and those marked E are $5_{8 \prime \prime}^{\prime \prime}$ diameter. The dimensions for the body, cap, and steps, are marked on the figures in Plate XXV.; the radii of the circular arcs are also shown, which should be the case in all working drawings. On each side of the cap and body of the pedestal are facings O, whose surfaces are in contact with the flanges \mathbf{P} of the steps. The body of the steps is cylindrical, but thicker at the bottom and the top than at the sides, as shown in figs. 187 to 189; chipping-pieces Q are cast at each end next to the flanges. The space between the steps is to allow of their being brought together as their inner surfaces wear; the space between the cap and the body of the pedestal is for the purpose of regulating the position of the top step.
102. The figures on Plates XXIV. and XXV. the student will be able to draw without any special instructions, excepting perhaps the curve a'b'a', fig. 179, v.hich is the intersection of the cylindrical part aba, fig. 178, of the body of the pedestal with the interior of the cylindrical surface $c d, c^{\prime} d^{\prime}$. Figs. 180 to 183 show half the curve drawn full size; the method employed is similar to that used in former figures, and the construction lines show clearly how the curve is determined. If the angles at a, fig. 178, are filled-up, as is shown in dotted lines on the left-hand half of the figure and in fig. 191, there would be no line of intersection, and we should have the end-elevation as represented in fig. 192.
103. In Plate XXV., fig. 184 is a front-elevation of the pedestal with the steps and bolts removed; fig. 185 is a plan of the same with the cap removed; and fig. 186 is a plaia of the cap. In figs. 184, 185, we have shown the chipping-pieces H on the base-plate. The stcps are shown in figs. 187 to 189; the left-hand half of fig. 187 is in section; fig. 188 is a plan of the top step, showing the oil-hole, the oil-ways N, and tho chipping-picces Q; fig. 189 is a plan of the bottoin step, showing the inside in full lines. The cylindrical surfaces of the stcps are not concentric, on account of the difference in the thickuess of metal at the bottom and at the sides; for small steps this difference is not always taken into account, the thickness at
the sides being made the same as at the bottom. Figm; 177 to 179 , and 184 to 189 , aro drawn to a scale of $\frac{1}{2}$; figs. 180 to 183 are drawn full size.
104. The usual proportions for the several parts aro as follow*:-

The diameter of the neck $=\mathrm{D}$
Thickness of base-plate............................ $=\mathrm{D} \times 3$.
Thickness of cap............................. $=\mathrm{D} \times \mathrm{D}^{4 .}$. Diameter of bolts (if 2 used) $\ldots \ldots \ldots=\mathbf{D} \times 25$. Ditto (if 4 used) $=\mathrm{D} \times 18$.
Thickness of metal at bottom $=0.15^{\prime \prime}+$ from 0.09 to $0.12 \times \mathrm{D}$. Thickness of metal at sides $=75$ of thickness at bottom.
105. In Art. 96 we stated the purpose for which finished drawings are usually made; there are several kinds of such drawings, but we shall confine ourselves to simple line drawings. The object for which the drawing are required must decido what kind of drawing is to be made; if there is a good scale working drawing of the whole machine, then the finished drawing may be sinply an outline drawing without dotted lines, the lines nasy be all of the same thickness, or shade lines may be adde according to tasto. If however the drawing is require for general reference, then the dotted lines should b shown; the teeth of wheels should also be shown, and the centre lines omitted in all such drawings.
As an example of the former kind of finished draw. ings we have shown the pedestal, figs. 190 to 192, Plate XXVI. In this example shade lines are used as explain but in Arts. 96 to 99. As there are no lines introduced no what have been explained, the student should have no difficulty in drawing the figures.
106. We have given in Plates XXIV. and XX X. examples of working drawings, as explained in Art. 100, page 75; we shall now give further examples of such drawings, including those for the smith. The object selected for the examples is the Slide-Rest of a Horizontan Boring and Surfacing machine, made by Messrs. Fair bairn, Kennedy, and Taylor, Leeds. In this example ${ }^{6}$ shall treat of the colouring of working drawings, and one of the plates, showing a section, will be coloured.

In making working drawings, the draughtsman must exercise his judgment by selecting such plans, elevations, sections, and details, as will best explain the form ${ }^{\text {and }}$ arrangement of every part of the machine which ho wishes to represent; and, in addition, the drawings should show the extreme positions of each of the moving piecee
In making sections, it is sometimes convendent to assume the object cut by a number of section planes, wh the sections thus made being projected upon one view; that is to say, instead of making one section of the whole object, two or more sections are made of different partan and each of these projected upon one view. All suah sections should be made by parallel planes, and the po of tion of each should be indicated by lines in the view the object from which the sections are projected. By this means we can show the parts we wish, witho is making separate views for each section; however, ther hould a limit to the number of sections, and in no case sho ect they be so numerous as to destroy the simple and correct reading of the drawing.
In the following example we shall show, by a simple case, a sectional elevation upon which are projected sec tions made by three different planes (see fig. 197, Plate XXVIII).

10\%. Slide-Rest.-In all Machine Tools there is amt ployed a cutting instrument or tool, and the positions and motions of this tool depend upon the kind of work
*Taken from Molesworth.

Which it is designed to perform. In the example we
have selected the tool is carried by the sliderest, and the material to be operated upon is made to rotate; however, for some purposes this order is reversed, the material -到的. carried or supported by the slide-rest, or by another tool The different motions which can be given to the forthen it is carried by the slide-rest will be stated In thes on.
In Plates XXVII., XXVIII. is shown in elevations and plans the slide-rest mentioned in Art. 106. Fig. 193, Plate XXVII., is a plan, and fig. 194 is a sectional frontelevation or longitudinal section. Fig. 195, Plate fig. 194; fis an end-elevation, takeni n the direction Y, fi. 194; fig. 196 is a plan of part of the bottom piece D; and fig; fig. 196 is a plan of part of the bottom piece \mathbf{D}; The slide-rest is attached to a compound slides, of which A is the top of the top slide; by means of this compound slide the slide-rest, as a whole, can be moved in two
direction directions in the same a plane, one parallel to the axis or
centre line ${ }^{\text {centre line }}$ CC of the nachine, and the other at right aggles to it.
The slide-rest proper consists of three movable pieces
T, G , and N ; the bottom slide G can be moved backWards and N; the bottom slide G can be moved backthe axis CC; it is fixed in any required position by the boits B, B. In the top part of D there is a circular Theaded slot or groove E , in which are placed bolts F, F. contact with portion H of the slide G is circular, and is in
extere except that Dhe slide D, the two surfaces being similar,
holes; $\mathrm{L}_{\mathrm{ol}} \mathrm{I}_{\mathrm{e}}$; the tho slides are connected by the bolts F, F. a pin common vertical centre KK of the slides is fixed ${ }^{2}$ pin or pivot R, round which the slide G can be turned; When the required position is determined, the two slides top portion G firmly connected by the bolts F, F. In the ${ }^{\text {top }}$ portion of the slide G there is a screw $L l$, which can Movinged round in its bearings, but is prevented from to the lengthwise, in the direction of its axis; attached tho screw is a nut M.
N is the top slide or tool rest which slides upon G; the two slides G and N are connected by means of the Molined surface O and the strip P; the nut M is fixed to the slide N, and the motion of N is obtained by turning and nuts L l. Attached to the slide N are four holts meanuts, the former are marked Q; S, S are clamps by
cutts of which, together with the bolts Q, the tool or cuans of which, together with the bolts Q, the tool or
similan fixed to the rest N . The strip arrangement is similar to that given in Art. 31, page 30 ; the angle which
the ind the inclined surface makes with the horizontal plane Thries between 50° ard 60°, according to different makers. The screw $L l$ has a circular collar T, which fits into a re-
Cense cens in the slide G; outside the collar is a plate U, the end which passes the end l of the screw; a portion of Placed l is of a square cross-section, and upon this is
roundle or lever when the screw is to be turned round. Thale or lever when the screw is to be turned
toct tect; the latter is attached to the slide by means of two netsecrews V,V, and thus the screw is prevented from The lengthwise.
Thow dotted lines $a a^{\prime} b^{\prime}$, cc' d^{\prime}, fig. 194, Plate XXVII., 'isable the extreme positions of the top slide N; it in ad-
most cases to show the extreme positions of looving in most cases to show the extreme positions of
no as to see at a glance whether or not the tonded piece can occupy the positions which it is inIn it should.
In addition to the scale of the drawing being given, mor dimensions, of at least the principal parts, shoold be
dremed upon the drawings, even in the case of full-size In Plate XXV. the dimensions are given; in

Plates XXVII.; XXVIII., and XXIX., the principal dimension lines are shown, but the dimensions are omitted. In fig. 194, Plate XXVII., the dimension lines are not shown, on account of the colouring, but they, should be shown in the drawing.
108. In Plate XXIX. are shown the pieces of the sliderest which are made by the smith; such drawings are called Forge drawings, drawings of Forge work or Smith work. Forge drawings are generally made full-size, except in the case of very large pieces, and have all the dimensions added;-not only those which the smith requires, but also those necessary to finish the article, as the forge drawings pass into other hands besides the smith's. The dimensions put on forge drawings are finished dimensions, so that the smith must make allowance for the material which has to be cut away in the different operations each piece has to undergo. It is usual to mark, in writing or otherwise, those pieces which are to be finished, as, finished all over, or bright; those not so marked being left in the black, that is, as they leave the smith.
In Plate XXIX. are shown two ways of marking the pieces, and the quantity of each piece required. In the case of screws, worms, de., the pitch or number of threads per inch, the hand, right or left, and whether single thread or otherwise, are marked upon the drawings; sometimes the threads are drawn by one of the approximate methods given in figs. 96 and 98, Plate VIII. There are many other notes to be made upon the drav. ings which depend upon circumstances, but as these valy considerably, we can only indicate the more general case:s.
In Plate XXIX. are shown the following figures:Figs. 198, 199, are front and end-elevation of the scre N Ii for the slide G. Figs. 200, 201, are front and cudelevation of one of the screws Q for the tool clamps S, \mathbf{S}. Figs. 202, 203, are front and end-elevation of oue of the nuts for the screws Q. Figs. 204, 205, are front and endelevation of the pin or pivot R. Figs. 206, 207, are plan and front-elevation of one of the clamps S for holding down the tool or cutter. Figs. 208, 209, are front elevation and plan of the plate U for holding the screw $L l$ in position.
The set-screws and bolts, except the bolts or screws Q, are not shown in this example; they are, however, generally put on the forge drawings, whether they are made by the smith who makes the other parts or not.
109. We shall consider it unnecessary to enter into a description of the drawing of the figures in Plates XXVII., XXVIII., and XXIX. ; however, we will explain more fully the sections, figs. 194 and 197. Fig. 194, Plate XXVII., is a longitudinal section, as made by a plane passing through the centre of the screw $\mathrm{L} l$, fig. 193; one of the clamps S is also in section; the cylindrical parts, as the screws $L l, Q, Q$, and the pin R, are not shown in section. Fig. 197, Plate XXVIII., is a cross-section, as made by the three planes $\mathrm{S}, \mathrm{P}, \mathrm{S}_{\|} \mathrm{P}_{\mu}$, and $S_{u} P_{1,}$, fig. 193, Plate XXVII.; we have only shown such portions of the sections, made by these planes, as will explain more fully the connection between the several pieces, which is, in fact, the object of making such sections.
The figures on Plates XXVII., XXVIII., are drawn to a scale of $\frac{1}{4}$; those on Plate XXIX. to a scale of $\frac{1}{2}$.
110. Colouring of Working Drawings. - In the examples given in this book, except fig. 194, Plate XXVII., we have employed diagonal lines to distinguish sections from other surfaces (see foot-note to page 23); these lines convey no idea of the kind of material of which the several parts are made; but by employing

river taying in kigland.

The English Government is now at work on a problem which is engaging attention in this and in other parts of the world, viz., the devising of some method by which the surplus water from the mountains may reach the sea without the destructive floodings of the low lands, which now follow the rain storms or snow meltings on the highlands. In England, this flooding of low-lying districts has become more destructive during recent years, because the systematic ditching and underdraining of the uplands give quick passage through the soil into the rivers to the surplus water which formerly was long held on the surface or percolated but slowly through the soil. We find but meager information concerning the provisions of the act which is now before Parliament for the averting of floods, and can do but little more than state the fact without description of methods proposed. It may be said, however, that the suhject has been studied by a royal commission and that a scheme has been elaborated from the report of their investigations. The Agricultural Economist thinks that the whole project is endangered by the fact that the proposed act orders that a part of the expense of carrying off the water shall be taxed upon the uplands whence the waters come. This, our exchange thinks, will awaken much opposition to the contemplated improvements. We suppose the uplands will hold that as water is prone to run down hill, it is no fault of the hill, but the iniquity is rather in the water, and if those below do not care to suffer injury they must get out of the way, or else corral the water so that its destructive power is held in check. This it is proposed to do by widening the rivers, and the power to carry out these improvements is to be vested in "River Conservancy Boards," who shall have full authority to condemn adjacent property, mill rights and the like, as their plans may require. One recommendation of the report is, that all arterial strean's insufficient to carry their waters after heavy rains be widened very considerably indeed, and that the new banks be formed gradually shelving down to the banks of the stream, that they may be available to bear grass either for mowing or for feeding of stock, when the waters are low. If this were carried out, the conservancy boards would no doubt let these river banks by the season, the revenne derived from which would lifhten the taxation tor the conservancy rate. Although most of the rivers would require considerable widening, this shel cing bank system might, in a great measure, prevent the waste of land which would take place if ronducted on any other principle.

In addition to preserving the lowlands, it seems that the system of upland reservoirs, for irrigating low land meadows, is also contemplated, and this the Economist regards as a very promising feature. This has also been proposed for our own turbuleit rivers. It is interesting to mote the testimony brought for ward in England in favor of irrigation, and comparing their moist climate with our ard one, we can but say if irrgation will do these things in the green tree, what will it do in the dry? Our exchange says that if "there is one thing we are behind in more than another in our British husbandry, it is in making that exleisive use of water which is made on the continent and in the East l,y processes of irrigation." It then proceeds to read English feed growers the following lesson: "The recommendations of old Arthur Young for laying out fresh water meadows might still be studied to advantage by the owners and occupiers of numerous districts, and as to benefits derivable theretrom, the same writer rerords an instance where nearly five pounds an acre was realized tor the feed of a water meadow during six weeks of spring, and that nearly two tons per acre of hay was reaped from the land atter wards the same summer, which, tegether with the alter-grass in autumn, made a splendid return. Yet when the same meadow could not be irrigated owing to some dispnte respecting the water rights, very little whatever was grown on it."

These propositions to curb rivers from their wild work and harness them lorever in the serviec of the farm, is one of the most interesting and important which is now advanced for agricultural engineers to reduce to practical operation.

The Earth Belonge to China.-Dr. Schliemann has found Chinese vases and gauze linen on Trojan soil, dating 1,200 years before Christ. They were on this coast in the fifth century, and ar. now taking possession of it by right of prior discovery. La-Fing-pao contends that the Hyperboreans were Chinamen, while liere it is claimell that the Lepers are Chinamen.

To Insulate Wike.--She liac varnish makes a good insulatur for wire, provided the wire is wound before the varnish
becomes thorougly dry. becomes thorougly dry.

IMPROVEMESTT IN FIRE RSCAPES.

We recently witnessed from the upper window of the old pootoffice some very successful performance of a new fire-escapp patented by Edward M. Ball, of Stanstead, Quebec, Canadi. ber of persons (one at a time) from a window, roof, or portico
the upper stories of buildings of any height.

It consists, first, in inclosing within a case of iron or other metal a spool (carrying a rope of sufficient strength) connecte
by gearing to a coiled spring, which as the person descends, by gearing to a coiled spring, which as the person descends, be wound up, and thus made to serve to rewind the rope on
spool, in order that another person may take advantage of means thus afforded for escape; second, in a metallic f strap brake, automatically worked by a governor, which to regulate the speed of descent to a sufficiently moderate to prevent injury when reaching the ground.
$A^{\prime} d^{\prime}$ is the case ; B, the cap; C, the spool ; D, the intore mediate double gear-wheel, and E'the spring.
Figure 1 represents a vertical transverse section taken on the line $z z$ of the case; Fig. 2, the cap B, a portion of the spool C, and the governor of a machine embodying the invention. 3 is an interior sectional view, taken on the line $y y$, Fig. 1 , of the cap B and friction-strap m. Fig. 4 is a sectional line $x^{\prime} x^{\prime}$ of Fig. 2.

The case is composed of two parts, A being the cylindricy part, with the vertical ribbed plate surmounted by the eye e, A^{\prime} the back, being a ribbed plate conforming in shape to contour of the spring
plates A d and the cap B serving as a frame, in which the bearings for the machinery within.
The spool ' ' is journaled at one end in the cap B, and at the other in the back A^{\prime} of the case. Nar the left-hand end of th spool-shaft s is mounted and securely fastened thereto a piniont u, which gears with the periphery of the wheel D , the smaft
wheel of which gears with the wheel c, mounted on the shaft wheel of which gears with the wheel c, mounted on the shaft that The coiled spring E is hooked to this shaft in the usual mand
the outer end of the spring being attached to the pin t in the outer end of the
substantial manner.
The spool C may carry any kind of rope; but I prefer to wire-rope composed of very fine wire. The rope should be wound on the said spool in such a manner that when unwinding bot tension of spring E, by means of its connection, w increased to the extent necessary to rewind the rope.

A person being attached to the free end of the rope (whid passes through the case by the opening o at the bottom of cylindrical portion), by means of a belt or other safe contrivanceof the speed of descent is regulated by the governor, composed the parts and operated as follows

The weights $a a^{\prime}$ are rigidly connected by arms $i i$, to the nea $j j^{j}$, respectively, which are pivoted on the pins $h h$, screwed The otherwise secured to the contiguous flange of the spool C. head j carries a pin, k, the said flange carrying a similar one, hal In wardly projecting knobs $l l^{\prime}$ enter a connectiug block, d, ing for its axis the spool-shaft s, thus connecting the weig with the one a^{\prime}, making the centrifugal force of the latter supplement that of the weight a. The centrifugal force a rated by the motion of the spool C separates the weights a a^{\prime}, which, swinging on the pins $h h^{\prime}$, causes the pins g and
approach each uther, and they, being connected to an ordin metallic friction-strap, m, which encircles the inwardly cir portion of the cap B, cau-e the said friction-strap to be dr closely in contact with it, "reating friction, which arrests speed of the spool C and its connections. To counteract the trifugal force of the weights $a a^{\prime}$, and prevent them acting the requisite speed is attained, the spring f is provided. spring is secured to the connecting block d, as shown in Fig. its free end bearing on the head j. The tension or force which the spring so bears determines the tension of the friction strap m, and, consequeutly, the speed of descent, a stiffer causing the revolutions of the spool C to be more rapid.

Location of the Garden of Eden.-Of the four rivers encircled the Garden of Eden in Genesis, the Phrat and dekel have long ago bzen identified as the Euphrates and A cuneiform monument in the British museum has a geographical names, and among them occur Pisan and both cruals of the Euphrates. Pisan was a canal running of the Eaphrates, and in the epoch of Alexander the Great under the name of Pullakopus canal ; it is the Pisan or of the Bible, and Guchan is the Gihon. therefore

THE SCIEN'IIFIC CANADIAN.

Haltix and Home.

HOW TYPHOID FEVER MAY BE PROPAGATED.

In a recent number of the Popular Science Monthly, Ely Van Pe Warker, M.I)., of Syracuse, N.Y., under the title" "Tylihoid suburb poison," reports seventeen cases of the fever man isilated firot c of the city in which there were but fourteren honses. The privy in was imported; thence through the overflowing of the a well in which all the excrement of the patient had been thrown, il] Nell became contaminated. All the furons who wore taken supply this well. It was the constant or occasional source of the hof seven of the fourteen families. No cases occurred in Were diseholds who did not drink from this well. some cases fare developed in every family who drew water from it. The that of who escaped were exposed to every other influence but same this particular well; their own water supply was the their less the privy contamination. It is not unlikely that Vaults, wells received some of the overflow from their own ensued. but as these were free from typhoid poison, no ill results About
a great eight years since, Dr. Flint, who has studied and written typhoid deal on the subject, became satisfied that a source of firt thouer existed which was little dreamed of, and which at ent thought would seem impossible. This source, as he then ledge hated it to his home medical society (and not to his knowis the having been before suggested), is found in ice. If this idea atical. paired In the first place, the poison is not destroyed or impaired by freezing (some one long ago remarked that ice often our ics or conceals what it does not kill). Now, whence comes Deigh supply? Often from shallow reservoirs in the midst of drainage fods of large towns purposely made to receive surface mill ege from all around, under the erroneous idea that no harm What mighe, as freezing is supposed to purify and render harmless are takeght otherwise be objectionable. Great quantities of ice are taken from canals, from creeks, from stagnant ponds, and rom streams that are either the natural or artificial recipients of nesace drainage, of the outpourings of sewers, and of uncleanliproper from various sources. The danger from ice taken from im. lae in places is not only from that waich is drunk, but from its Peget refrigerators and preservatories, where milk, butter, fruits, it papores and meats are subjected to its saturating influence as observarizes. Several instances have fallen under the doctor's conld nation where the disease, by the most careful investigation, fact the be traced to any other source; and if we accept as a fact the statement positively made by Budd in the London ceedy fet, in July, 1859, that it never originates de novo, but prodiffusion a special and specific poison, which is capable of qualities to a great extent, and which preserves its noxious canant for a long period, even if buried for many months, we that it reject the hypothesis of ice infection; and it is hoped investigation made the subject of very thorough and careful

THE EFFECTS OF DRINKING COFFEE.

The
brown beverage prepared from the berry, improperly soi_{1} its, of the Levant leads more than half the world vanquished employed to hal train, mocking the energetic and barbarous means numeyed to combat it and check its march. It has found inAfrica, bute friends and willing subjects, not only in Europe and it has but in America. In the Orient and in Middl. Germany tering the tea-canister to the colfee-pot. The reason of this ex-
ted bithed popularity, and the physiological artion of collee have not to whom been clearly understond. Prof. C. Binz, an investigator
 ${ }^{8} \mathrm{tan}_{\text {ne }}$ ituents of coffee, namely, coffeine, the empyreumatic subModerateded during the burning, and its potash salts.
peraturate doses of calfeine produce an increase of bodily temsame timp without any symptoms of illness being perceived at the the time. Large doses, which caused perceptible stiffiness of crease of tern, disquiet, and flow of saliva, were attended with inaud the temperature, reaching a maximum in one or two hours, This action of caffeine renders it an antidote to that of alcohol,
and it is and it is employ caffeine renders it an antidote to that of alcohol,
periments monteract the effects of opium also. Ex. periments made upon dogs show that it is able :o check the fall
Waternerature cured by alcohol, and to produce a continued Walcefulurature capon dogs show that it is able alcohol, and to produce a continned efularess in plate of the stupefaction of opium.

Empyreumatic compounds found in burning, and called in France caffeon, consisting chiefly of burned oils and bitter principles, also contribute to the action of coffee upon the system. To test their action when isolated from the caffeine, Binz employed the aromatic distillate of a strong decoction of coffee, which smells strongly of coffee. It caused increased activity of the heart with more frequent breathing, and reduced the pressur. of the blond.

The increase of temperature assigned to caffeine, by Binz, can result only from an increased decomposition and consumption of matrrial. For most coffee drinkers, the real effects of the drink are due solely to the moderate excitement of these oils.

Cold Feet and Sleeplessness.-The association betwixt cold feet and sleeplessness is much closer than is commonly imagined. Persons with cold feet rarely sleep well, especially women. Yet the number cf persons so troubled is very considerable. We now know that if the blood supply to the brain be kept up sleep is impossible. An old theologian, when weary and sleepy with much writing, found that he could keep his brain active by immersing his feet in cold water ; the cold drove the blood from the feet to the head. Now, what this old gentleman accomplished by design, is secured for many persons much against their will. Cold feet are the bane of many women. Light boots keep up a bloodless condition of the feet in the day, and in many women there is no subsequent dilatation of the blood-vessels when the boots are taken off. These women come in from a walk, and put their feet to the fire to warm-the most effective plan of cultivating chilblains. At night, they put their feet to the fire and have a hot bottle in bed. But it is all of no use ; their feet still remain cold. How to get their feet warm is the great question of life with them-in cold weather. The effective plan is not very attractive at first sight to many minds. It consists first in driving the blood-vessels into firm contraction, after Which secondary dilatation follows. See the snow-baller's hands. The first contact of the snow makes the hand terribly cold, for the small arteries are driven thereby into firm contraction, and the nerve-endings of the finger-tips feel the low temperature very keenly. But, as the snow-baller perseveres his hands commence to glow ; the blood-vessels have become secondarily dilated, and the rush of warm arterial blood is felt agreeably by the peripheral nerve-endings. This is the plan to adopt with cold feet. They should be dipped in cold water for a brief period; often just to immerse them and no more, is sufficient ; and then they shoulid be rubbed with a pair of hair flesh-gloves, or a rough Turkish towel, till they glow, immediately before getting into bed. After this, a hot-water bottle will be successful enough in maintanuin; the temperature of the feet, though, without this preliminary, it is impossible to do so. Disagreeable as the plan at first sight may appear, it is efficient ; and those who have once fairly triel it, contiuue it, and find that they have put an end to their bad nights and cold fect. Pills, potions, lozenges, " night-caps," all narcotics, fail to enable the sufferer to woo sleep successfully get rid of the cold feet, and then sleep will come of itself.

Hearing and how to Kfep It.-Lindsay \& Blakiston, 25 South Sixth street, Philadelphia, iave published a valuable work under the above title. The book is Vol. l. of a serit of A merican Health Primers edited by W. W. Keen, M.D. From the mass of information contained in it we learn that the ear should not be tampered with, sweet oil and other greasy substances should never be dropped into the ear ; they make it heavy, sticky and cloggy. The oil soon becomes rancid and affords a fit soil for the growth of a fungus which may entirely destroy the hearing. Poultices should be avoided both in eye and ear, for they are apt to induce proud flesh. Care should be taken of the bodily com. fort, warmth, etc., and the ears protected against cold drafts and other changes. Great care also should be taken not to pull the ears of children, or " box" their ears, a practice which may endanger the hearing in after-life. If the ear should becone affected through any cause a simple treatment should be adopted. If the ear runs, it should not be stopped up with cotton or any other substance. The matter must be allowed free egress, and the syringe should be gently used with lukewarm water. The great delicacy of the ear requires the gentlest manipulation, and all the nostrums advertised to drop in it, or sponges to scrub it nut, must be avoided. As to the eye bright colors and pleasant objects are grateful, so to the ear sweet music, pleasant company, etc., are beneficial. Brightness of nature and cheerfulness of character have more to do with the preservation of health than is dreamed of.

Fig. 4

[^0]: Comparative Strength of Wood and Iron.-Heim finds unore in most cases, a uniform strength of structure can be une of ironomically secured by the use of wood than by the ity, and iron. The strongth of wood is proportioned to its dendhy, and can be increased by its immersion for two or three tamporature of from 160° to 212° F.-Fortschr. der Zeit.

[^1]: $\mathcal{E}_{\mathrm{W}}^{\mathrm{E}}$ are in receipt of Lamb's Illustrated Catalogue of inchesiastical Work. In some of past numbers we gave several Londtrations of charch furniture from designs by Cox \& Co., of beodon, but the cost of fright and duty combined has always tor a drawback to the importations to the Dominion of church
 toriture and other ecclesiastical work. We recommend all inHerestere and other ecclesiastical work. We recommend all in-
 Cermb, 59 this subject to obtain a circular from the firm, J. R. Lamb, 59 Cormis subject to obtain a circular from the firm, , $\& \mathrm{R}$.
 8tong ${ }^{\text {Iolllows :-Woodwork and Furniture, }}$ Work, 10c. ; Banners and Embroideries, 10c.

