IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic
Sciences
Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14530 (716) $87 \%-4503$

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée
Covers restorisd and/or laminated/
Couverture resiaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou ncire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Elank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du poirtt de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pạ̧es décoloréos, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmad here has buen reproduced thanks to the ganarosity of:

D. B. Weldon Library
University of Western Ontario
(Regional History Room)

The images appearing here are the best quality possible considering the condition and legibillty of the original copy and in keeping with the fllming contract specifications.

Original copies in printed paper covers are flimed beginning with the front cover and ending on the last paga with a printed or illustratad impression, or the back cover when appropriete. All other original copies are flimed beginning on the first page with e printed or illustreted impression, and ending on the last page with a printed or illustrated imprassion.

The last recorded frame on eech microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applias.

Meps, plates, cha!ts, etc., miyy be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left nand corner, left to right and top to wottom, as many frames as required. The following diagrams illustrate the method:

L'examplaire filiné fut reproduit gràce à la générosité de:

D. B. Weldon Library
University of Western Ontario
(Regional History Room)

Les images suivantes ont été reproduitas avec le plus grand soin, compta tanu de la condition at de la netteté de l'exemplaira filmé, et an conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture an papier est imprimée sont filmés en commençant par le premier plat et an tarminent soit par la dernidre pege qui comporte une amprainte d'Impression ou d'illustration, soit par le sacond plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la pramiàre page qui comporta une empreinta d'impression ou d'illustretion at en tarminent par la derniàre pege qui comporte une talle empreinta.

Un des symboles suivents apperaitra sur la dernière image de chequa microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Las cartes, planchas, tablaeux, etc., peuvent ètre filmés à des taux de réduction différants. Lorsque le document est trop grand pour être reproduit en un seul cliché, il ast filmé à partir de l'angle supérieur gaucha, de gauche à droita, et de haut en bes, an pranant le nombre d'imeges nécessaire. Las diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

Gericg of National saljool Bookg.

A
 TREATISE ON ARITTIMETIC,

IN

THEORY AND PRACIICE.

FOR

Aathorizod by the Cauncil of Public Instruction far Upper Canada.

TORONTO:
PUBLISIIED BY ROBERT McPHAIL, 65, King Street East. 1860.
endt PREFAUE

Iv the present cdition a vest number of exercises have benn added, that no rule, however trifing, might be left w:thout so many illustrations as should serve to make it sufficiently familiar to the pupil. And when it was feared that the application of any rule to a particular class of eases might not at onee suggest itself, some question ealeulated to remove, or diminish the difficulty has been introduced annong the examples.
A considerable speec is devoted to the "nature of num bers," and "the principles of notation and numeration:" for the teacher may rest assured, that the facility, and ever the suceess, with whieh subsequent parts of his instruction. will be sonveyed to the mind of the learner, depends, in a wreat degree, upon an adequate aequaintance with them. Henee, to proeeed without seeuring a perfect and practical knowledge of this part of the subject, is to retard, rather than to aeeclerate improvement.
The pupil, from the very commeneement, must be made perfectly familiar with the terms and signs which aro introdueed. Of the great utility of techniea? language (accurately understood) it is almost superfluous to say anything here : we cannot, however, forbear, upon this oeeasion, recalling to remembranee what is so admirably and so effectively inculcated in the "Easy Lessons on Reasoning." "Even in the common meehanical arts, something of a tochnical language is found needful for those who are learn-
ing or exercising them. It would be a very great in convenience, even to a common carpenter, not to have a precise, well understood name for each of the several operations he performs, such as chiselling, sawing, planing, \&c., and for the several tools [or instruments] he works with. And if we had not such words as addition, subtraction, multiplication, division, \&c., employed in aia exactly defined sense, and also fixed rules for conducting these and other arithmetical processes, it would be a tedious and uncertain work to go through even such simple calculations as a child very soon learns to perform with perfect case. And after all there would be a fresh diffieulty in making other persons understand clearly the correctness of the calculations made.
"You are to observe, however, that technical language and rules, if you would make them really useful, must be not only distinctly understood, but also learned and remembered as familiarly as the alphabet, and employed constantly, and with scrupulous exactness; otherwise, technical language will prove an encumbrance instend of an advantage, just as a suit of clothes would b_{s} if, instead of putting them on and wearing them, you,were to carry them about in your hand." Page 11.

What is said of technical lanyuage is, at least, equally trice of the signs and characters by which we still further facilitate tho conveyance of our ideas on such matters as form the subject of the present work. It is much more simple to put down a charactor whici: expresses a process, than to write the name, or description of the latter, in full. Besides, in glancing over a mathematical investigation, the mind is able, with greater ease, to connect, and understand its different portions when they are briefly expressed by familiar signs, than when they are indicated by words which havo nothing particularly calculated to catch the eye, and which cannot even be clearly understood without considerable attention. But it must be borte in mind, that, while such 2. treatise as the present, will seem easy and intelligible
cnough if the signs, which it contains in almost every page, are as familiar as they should be, it must nccesearily appear more or less obscure to those who have not been habituated to the use of them. They are, however, so fow and so simple, that there is no excuse for their not being perfectly under. stood-particularly by the teaeher of arithmetic.
Should peculiar eircumstances render a different arrangement of the rules preferable, or make the omission of any of them, for the present at least, advisable, the judicious master will never be at lose how to act-there may be instances in whieh the shortness of the time, or the limited intelligence of the pupil, will render it necessary to confine his instruction to the more important branches. The teacher should, if possiblc, make it an inviolable rule to receive no answer unless accompanied by its explanation, and its reason. The refcrences which have been subjoined to the different questions, and which indicate the paragraphs where the answers are chiefly to be obtained, and also those references which are scattered through the work, will, be found of eonsiderable assistance ; for, as the most intelligent pupil will occasionally forget something he has learned, he may not at once see that a eertain prineiple is applicable to a particular ease, nor even remember where he has seen it explained.

Decimals have been treated of at the same time as integers, bceause, sinee botk of them follow precisely the same laws, when the rules relating to integers are fully understood, there is nothing new to be learned on the subject-particularly if what has been said with reference to numeration and notation is earefully borne in mind. Should it, however, in any ease, be preferred, what relates to then ean be omitted until the learner shall have made some further advanee.

The most useful portions of mentai arithmetic have been introduced into "Practice" and the other rules with which they seemed more immediately connceted.

The different rules should be very carefully impressed on the mind of the learner: and when he is found to have been
guilty of any inaccuracy, he should be male to correct him self by repeating each part of the appropriate rule, and exemplifying it, until he perceives his error. It should be continually kept in view that, in a work on such a subject as arithmetic, any portion must seem difficult and obscure without a knowledge of what precedes it.
The table of logarithms and article on the subject, also the table of squares and cubes, square roots and cube roots of numbers, which have been introduced at the end of the work, will, it is expected, prove very acceptable to the more advanced arithmetician.

him

 , and ald bo abject scuro , also roots f the more
CONTENTS

PART I.

Multiplication Table, Pare 1
Tables of money, weights, and measures,
Definitions, 3
12Section I.-Notation and Numeration,
14
Arabic system of numbers, 18
lan ar
lan ar Roman notation, 20
Sxcrion II.--Simple Addition,
33
33
To prove Addition,
36
36
Addition of quantifies containing decimals,
37
37
Simple Subtraction,
45
45
To prove Subtraction,
19
19
Subtraction of quantities contanning decimals,
49
49
Simple Multiplication,
53
53
To multiply when neither multiplicand nor mul- tiplier excceds 12 ,
57
57

- When the multiplicand exceeds 12 ,
57
57
To prove Multiplication,
60
60
To multiply quantities, when there are cyphers or decimals,
01
01
- When both multiplicand and multiplier ex- ceer 12,
65
65
To prove Multiplication,
66
66
To prove Multiplication, by easting ont the nines,
67
67
To multipiy, so as to have a certain number of decimal places in the product,
70
70
To multiply by a composite number, 72
To mutipl by a number not composite, 73
To multiply by a number consisting of nines, 7! Simple Division, 78
$a 2$
\leftarrow

contente

1/ 11

To divide, when the divisor does not exceed 12, nor the lividend 12 times the divisor,

- Wheñ the divisor does not exceed, 12 , but
the dividend is more than 12 times thedivisor,
To prove Division,
- Wher the divisor does not exceed, 12, but
the dividend is more than 12 times the, divisor,
To prove Division, To prove Division,
To divide when the dividend, divisor, or both, 85

contain cyphers or deeimals,
-When the divisor exceeds 12, 86
To prove Division, 89
To abbreviate the process of division, when there 94 94
are decimals,
To divide by a composite numb . . . 95 To divide by a composite number, 95
To divide by a number but little less than one
To divide by a number but little less than one
expressed by unity and one or more eyphers,
expressed by unity and one or more eyphers, 96 96
To find the greatest common measure of numbers,
To find the greatest common measure of numbers, 101 101
-To find their least common multiple,
104
104
Suction III.-Reduction Descending,
$10 ;$
$10 ;$
Reduction Ascending,
109
109
To prove Reduction,
To prove Reduction,
110
110
The Compound Rules,
The Compound Rules,
113
113
Compound Addition,
Compound Addition, 114
Compound Subtraction,
123
123
Compound Multiplication, when the multiplier does not exceed 12,
126
126
-When the multiplier exceeds 12 and is composite,
128
128
-When the multiplier is the sum of compo- site numbers, .
Compon the multiplier is not composite, 129 129
Compound Division, when the divisor is abstract, 130
and does not exceed 12 , 132
posite,
When the divisor exceeds 12 and is not com- posite, When the divisor and dividend are both ap- 134plicate, but not of the same denomination; ormore than one denomination is found in either
or both,130

$1 / 1 /$

 PageFaction IV.-Vulgar Fractions, 80 85

86
89
94
95
95
96
101
104
10'
109
110
113
114
123

126

128

123
130
132
134

134 To reduce fractions to lower terms,
 Page To reduce an improper fraction to a mixed ny her, To reduce an integer to a fraction, : $\quad 142$ 142
To find the value of a fraction in terms of a lower denomination, 143
To express one quantity as the fraction of another, 143
To add fractions having a common denominator, 144
To add fractions when their denominators are different and prime to each other,
145
145
To add fractions having different denominators, not all prime to each other, 146
To reduce a mixed number to an improper fac- lion, 147
To add mixed numbers, 148
To subtract fractions which have a common denominator,
149
149
To subtract fractions which have not a common denominator,
150
150
To subtract mixed numbers, or fractions from mixed numbers,
150
150
To multiply a fraction and whole number together, 152
To multiply one fraction by another, 153
To multiply a fraction, or mixed number by n mixed number,
154
154
To divide a fraction by a whole number, 156
To divide a fraction by a fraction,
156
156
To divide a whole number by a fraction, 158
To divide a mixed number by a whole number or fraction,
158
158
To divide an 'integer by a mixed number, 159
To divide a fraction or mixed number by a mixed number, 159
When the divisor, dividend, or both, are com- pound, or complex fractions,
160
160
Decimal Fractions, 162
Fo reduce a vulgar fraction to a decimal or to a
decimal fraction,
decimal fraction, 163 163
To reduce a decimal to a lower denomination, 163
To find at once the decimal equivalent to anynumber of shillings, pence, \&c.,
To find the number of shillings, \&c., equivalentTo find the number of shillings, \&c., equivalent
to a decimal, .
Circulating Decimals, 166
To change a circulating decimal into its equi- 166
valent vulgar fraction, 167
Then a vulgar fraction will give a finite decimal,
170
170

The number of dimal places in a finite decimal,

The number of dimal places in a finite decimal, 170 170
The number of digits in the period of a circulate,
171
171
finite When a circulating decimal will contain a finite part,
Contractions in multiplication and division, de- 172
rived from the properties of fractions,
Section V.-Proportion,
Section V.-Proportion, 173 173
Section V.-Proportion,
176
176
Nature of ratios,
177
177
Nature of Proportion,
Nature of Proportion,
179
179
Tn find the arithmetical mean of two quantities,
181
181
To find a fourth proportir al, when the first term is unity,

- When ihe second or third term is unity, 184 184 184 184
To find the geometrical mean of two quantities,
To find the geometrical mean of two quantities, Properties of a geometrical proportion, 184 184
Rale of Simple Proportion, 185 185
-When the first and sccond terms are not of 185
the sa:ne, or contain difforent denominations, 190
- When the third term contains more than one
- When the third term contains more than one denomination, 192
- If fractions or mised numbers are found in
- If fractions or mised numbers are found in
- If fractions or mised numbers are found in

any of the terms,
ule of Compound Proport
0 abbreviate the process,

any of the terms,
ule of Compound Proport
0 abbreviate the process, any of the terms,
Rule of Compound Proportion,
To abbreviate the process, any of the terms,
Rule of Compound Proportion,
To abbreviate the process, 195 195
any of the terms,
Rule of Compound Proport
To, abbreviate the process,
any of the terms,
Rule of Compound Proport
To, abbreviate the process, 202 202 204 204 204 204
PART II.
Srction VI.-Practice,
To find aliquot parts, 203
To find the price of one denomination, that of a higher boing given, 21]
xiii
To find the price of more than one lower denomination, .
To find the price of one higher denomination, $\quad 212$
To find the price of more than one higher denomination,
Given the price of one denomination, to find that
of any number of another,
W . . . 214
When the price of any denomination is the aliquot part of a shilling, to find the price of any number of that denomination, 215
When the price of any denomination is the aliquot part of a pound, to find the price of any number of that denomination, .

215
When the complement of the price, but not the price itself, is the aliquot part or parts of a
pound or shilling. pound or shilling.
When neither the price nor its complement is the aliquot part or parts of a pound or shilling, 217
When the price of each article is an even number
of shilhin,rs, to find the price of a number of
articies,
-When the price is an odd number and less than 20 ,

$$
219
$$

$\begin{array}{llll}\text { To find the price of a quantity represented loy a } & \\ \text { mixed number, } & & 219 \\ \text { Given the price }\end{array}$
$\begin{array}{lll}\text { Given the price per cot., to find that of cwt., } & 220 \\ \text { qrs., \&c., } & \text {. } & \text {. }\end{array}$
$\begin{array}{llll}\text { Given the price per pound, to find that of cwt., } & \\ \text { qrs., \&c., } & \text { • } & \text { • } & \text { • }\end{array}$
$\begin{array}{ll}\text { Given the price per pound, to find that of a ton, } & 222 \\ 223\end{array}$
Given the price per ounce, to find that of ounces,
pennyweights, \&c., . . . 223
$\begin{array}{lll}\text { Given the price per yard, to find that of yards, } \\ \text { qre., \&c., } & 223 \\ \end{array}$
To find the price of acres, roods, \&c., - . 225
Given the price per quart, to find that of a hogs
head, .
Given the price per quart, to find that of a tun, $\quad 226$
xip
CONTENTS
Given the prive of one article in pence, to find that of anv number,Given wages per day, to find their amount peryear,
Bills of parcels, 228
Tare and Tret, 229
233
Secrion VII.-Simple Intorest.
To find the simple interest on any sum, for a year,
-When the rate per cent. consists of morethan one denomination,
238
ro find the interest on any sum for years,
239
239
-For years, months, \&c.,
239
239
To find the interest on any sum, for any time, at $5,6, \& c$., per cent., .
240
240
-When the rate, or number of years, or both, are expressed by a mixed number,
242
242
To find the interest for days, at five per cent.,
243
243
To find the intorest for days, at any other rate,
244
244
To find the interest for months, at 6 per cent.,
244
244
To find the interest of money left after one or more payments,
246
246
Given the amount, rate, and time-to find the principal, 248the time:
Given the amount, principal, and time, to find the rate,
Given the time, rate, and principal-to find the amount,
Given the amount, principal, and rate-to find 249
250
250
Compound Interest-given the principal, rate, sud time-to find the amount and interest,
251
251
To find the present worth of any sum,
256
256
Given the principal, rate, and amount-to find the time,
Discount,
Discount, 257 257
To find discount, 260
To compute Commission, Insurance, Broterage, 261 261 203

Page

 227 228 229 233 237 238 239 239 240242
243 244 244 246 248CCNTEN'TS.To find what insurance must be paid that, if thegoods are lost, both their value and the insur-ance paid may be recovered,263
Purchase of Stock, 265
Equation of Payments, 266
Slection VIII.-Exchange,
268
268
Tables of foreign money, 269
To reduce bank to current money, 272
To reduce current to bank money, 273
To reduce foreign to British money,
274
274
To reduce British to foreign money, 277
To reduce florins, \&c., to pounds, \&c., Flemish, 281
To reduce pounds, \&o., Flemish, to florins, \&c. 282
Simple Arbitration of Exchanges,
283
283
Compound Arbitration of Exchanged, 285
_-To estimate the gain or loss per cent., 286
Prcfit and Loss,
287
287
To find the gain or loss per cent.,
288
288
Given the cost price and gain-to tind the selling price, 289
Given the gain or loss per cent., and the selling price-to find the cost price, 290
Simple Fellowship, 291
Compound Fellowship, 293
Barter,
296
296
Alligation Medial, 298
Alligation Alternate, 299
-When a given amount of the mixture is re- quired, 302
-When the amount of one ingredient is given, 304
Section IX.-Involution,
306
306
To raise a number to any power, 307
To raise a fraction to any power,
307
307
To raise a mixed number to any power, 308
Evolution, 308
To find the square root,
308
308
-When the square contains decimals,
111
111
To find the square root of a fraction, $\$ 12$
To find the square root of a mixed number, rage
To find the culbe root, 313
-When the cube contains decimals, 313
To find the cube root of a fraction, 315
To find the cube root of a mised number, 316
To extract any root whatever, 316
To find the squares and cubes, the square and 317
cube roots of numbers, by the table, Logarithms, 318
To find the logarithm of a given number by the ${ }^{\circ}$table,
To find the logarithm of a fraction, 321
To find the logarithm of a mixed number, 323
To find the number corresponding to a given logarithm,
If the given logarithm is not in the table, 324
To multiply numbers by means of their loga- rithms,
To divide numbers by means of their logarithms, 325
To raise a quantity to any power by means of itslogarithm,
To evolve a quantity by means of its logarithm, 327
Section $X_{0}-O n$ Progression, 327
To find the sum of a series of terms in arithmeti-cal progression,
In an aritlmetical series given the extremes andnumber of terms-to find the common differ-ence,
To find any number of arithmetical means be- 330tween two given numbers,331
To find any particular term of any arilihmetical
series,In an arithmetical series, given the extremes and332
common difference-to find the number of terms,
-- Given the sum of the series, the number of 332terms, and one extreme-to find the other,
To find the sum of a series of terms in geometri- oal progression, 3妾:
xrii
In a geometrical series, riven the artromes and Pa number of terms-to find the common ratio, 335
To find any number of geometrical means letween
two quantities,
To find any particular term of a geometrical series, $\quad 336$
In geometricai series, given the extremes and
common ratio-to find the number of terms, . 337
In a geometrical series, given the common ratio, the number of terms, and one extreme-to find the other 333
Annuities, 340
$\begin{array}{ll}\text { To find the amount of a certain number of pay- } \\ \text { ments in arrears, and the interest due on them, } & 340\end{array}$
To find the present value of an annuity, 342
When it is in perpetuity, . . . 343
To find the value of an annuity in reversion, . 344
Position,

Double Position,
347

| Miscellaneous exercises, |
| :--- | :--- | :--- |
| 347 |

Table of Logarithms, 361
Table of squares and cubes, and of square and oube roots,

377

Table of the amounts of $£ \dot{1}$, at compound interest,	377

Table of the amounts of an annuity of $£ 1, \quad 385$
Table of the present values of an annuity of $\mathscr{1}, \quad 386$
Irish converted into British acres, . . 386

- Value of foreign money in British, . . 386

TheATISE ON ARITHMETIC:

IN

THECRY AND PRACTICE

ARITHMETIC.

PART I.

TABLES.

MULTIPLICATION TABLE.

It appears from this table, that the multiplication of tho same two numbers, in whatever order taken, produces tho

signs used in this treatise.

7 times 1 are 7 2-14 3-21
 $4-28$ $5-35$
 $6-42$ $7=49$
 $8-56$
 $9-63$
 $10-70$
 $11-77$
 $12-84$

12 times
1 are 12
2 - 24
$3-36$
4- 48
$5-601$
C 72

- 84
$8-96$
9 - 108
$0-120$
-132
-144
+ the sign of addition; as $5+7$, or 5 to be addec to 7.
- the sign of subtraction; as 4-3, or 3 to be subtracted from 4.
\times the sign of multiplication; as 8×9, or 8 to bo multiplied by 9 .
\div the sign of division; as $18 \div 6$, or 18 to be divided by 6 .
the vinculum, which is used to show that all the quantities united by it are to be considered as but one. Thus $\overline{4+3-7} \times 6$ means 4 to be added to 3,7 to be taken from the sum, and 6 to be multiplied into the remainder-the latter is equivalent to the whole quantity under the vinculum.
$=$ the sign of cquality ; as $5+6=11$, or 5 added to 6 , is equal to 11 .
$\frac{3}{4}>\frac{1}{2}$, and $\frac{2}{3}<\frac{8}{9}$, miean that $\frac{3}{4}$ is greater than $\frac{1}{2}$, and that $\frac{2}{3}$ is less than $\frac{8}{0}$.
: is the sign of ratio or relation; thus $5: 6$, means the ratio of 5 to 6 , and is read 5 is to 6 .
$::$ indicates the equality' of ratios; thus, $5: 6:: 7: 8$, means that there is the same relation between 5 and 6 as between 7 and 8 ; and is read 5 is to 6 as 7 is to 8 . $\sqrt{ }$ the radical sign. By itself, it is the sign of the square root; as $\sqrt{ } 5$, which is the same as $5^{\frac{1}{2}}$, the square root of 5 . $\sqrt[3]{6}$, is the cube root of 3 , or $3^{\frac{1}{2}} \quad \sqrt{4} 4$, is the 7th root of 4 , or $4^{\frac{1}{7}}, \& \mathrm{c}$.

Example.- $\sqrt{\overline{8-3+7 \times 4 \div 6}+31} \times \sqrt[3]{9 \div 10^{\frac{1}{2}}} \times 5^{2}=$ $641 \cdot 31$, \&c. may be read thus: take 3 from 8 , add 7 to the difference, multiply the sum by 4 , divide the product by 6 take the square root of the quotient and to it add 31, then multiply the sum by the cube root of 9 , divide tho product by the square root of 10 , multiply the quotient by the square of 5 , and the produci will be equal to $641 \cdot 31$, \& .
These signs are fully explained in their proper places.
same result ; thus $[$ times 6 , and 6 times 5 aro 30 :- the reason will be explained when we treat of multiplication. There are, therefore, several repetitions, which, although many persons conceive them unnecessary, are not, perhaps, quite unprofitable. The following is free from such an objection:-

"Ten," or "eleven times," in the above, scarcely requiros" to be committed to memory; since we perceive, that to multiply n number by 10 , we liave merely to add a cypher to tho right hand side of it:-thus, 10 times 8 are 80 ; and to multiply it by 11 we have only to set it down twice :--thus, 11 times 20 aro 23.

30 :-tho tiplication. , although t, perhaps, n such an

8 aro 80
$9-90$
$0-100$
-110
$2-22$
-83

- 44
- 55
- 63
-77
- 88
-99
-24
- 36
- 48

60

- $\quad 72$
- 84
-96
-120
-132
-144

7 requiros: , that to cypher to 0 ; and to e:--thus,

The following tables are required for reduction, the compound rules, \&c., and may be committed to menory as convenionce suggests.

TABLE OF MONEY.

A farthing is the smallest coin generally used in this country, it is represented by . . Symbols. Farthings \quad • $\quad \frac{1}{4}$

The symbols of pounds, shillings, and pence, are placed
 means, three pounds, fourteen shillings, and sixpence. Sometimes only the symbol for pounds is used, and is placed bofore the whole quantity; thus, $£ 3,14,6 .{ }^{8 .}{ }_{9}^{d i}$ means three shillings and ninepence halfpenny. 2s. $63{ }_{2}^{3} d$. means two shillings and sixpence three farthings, \&e.
When learning the above and following tables, the pupil should be required, at first, to commit to menory only those partions which are over the thick angular lines; thus, in the one just given:-2 farthings make one halfpenny; 2 halfpence one penny; 12 pence one shilling; 20 shillings one pound; and 21 shillings one guinea.
$\frac{1}{4}, \frac{1}{2}, \frac{3}{3}$, really mean the quarter, hall, and three quarters of a penny. d. is used as a symbol, because it is the first letter of "denarius," the Latin word signifying a penny; s. wiss adopted for a similar reason-" solidus," meaning, in the same language, a shilling; and $£$ also-"Libra," signifying is pound.

$$
\begin{array}{rl}
\text { s. } & d \\
2 & 6 \text { make one lialf Crown. } \\
5 & 0 \\
13 & 4
\end{array} \text { one Crown. }
$$

AVOIRDUPOISE WEIGHT.

Its name is derived from French-and ultimately from Latin words signifying " to have weight." It is used in weighing heavy articles

$$
\begin{aligned}
& 14 \text { lbs., and in some cases } 10 \mathrm{lbs} ., \text { make } 1 \text { ton, } \\
& 20 \text { stones. } \\
& 1 \text { stone. }
\end{aligned}
$$

TROY WEIGHT.

It is so called from Troyes, a city in France, where it was first employed; it is used in philosophy, in weighing gold, \&c.

A grain was originally the weight of a grain of corn, taken from the middle of the ear; a pennyweight, that of the silver penny formerly in use.

APOTIIECARIES WEIGIIT.
In mixing medicines, apothecaries use Troy weight, but subdivide it as follows:-

Th, "Carat," which is equal to four grains, is used in weigeng dimmonds. The term carat is also applied in cutine the fineness of gold; the lattor, when jarfentig
pure, is said to be " 24 earats fine." If there are 23 parts gold, and one part some other material, the mixture is snid to be " 23 carats fine;" if 22 parts out of the 24 are gold, it is " 22 carats fine," \&c. ;- the whole mass is, in all cases, supposed to be divided into 24 parts, of which the number consisting of gold is specified. Our gold coin is 22 carats fine; pure gold being very soft would too soon wear out. The degree of finencess of gold articles is marked upon them at the Goldsmith's Hall; thus we generally perceive " 18 " on the eases of gold watches; this indicates that they are " 18 carats fine "-the lowest degree of purity which is etamped.

Λ Troy ounce contains	${ }^{\text {grs }}$
An avoirdupoise ounce	$437 \frac{1}{2}$
A Troy pound	5,760
An avoirdupoise pound	7,000

A Troy pound is equal to $372 \cdot 965$ French grammes.
175 Troy pounds are equal to 144 avoirdupoise; 175 I'roy are equal to 192 avoirdupoise ounces.

CLOTH MEASURE.

LONG MEASURE.
(It is used to measure Length.)

$\begin{aligned} & \text { Lines } \\ & 12 \end{aligned}$		$\because \cdot$		-	make 1	1 inch.
144 or	inches. 12					1 foot.
		feet				
432	36 or	$3{ }^{\circ}$				1 yard.
			yards			
2,376	198	162 or	512			1 English perch
8,024	252	21 or	7	.		1 Irish perch.
				perches		
95,040	7,920	660	220 or	40		1 English furlong
120,960	10,080	840	280 or	40		1 Irish furlong.
					furlongs	
760,320	83,860	5,280	1,760	320 or	8	1 English mile.
467,050	80,040	6,720	2,240	820 or	81	1 frish mile

Three miles make one league. $60 \frac{1}{\mathrm{~T} 5}$ English miles make 60 nautical, or geographioal miles; which are equal to one degree, or the three hundred and sixtieth part of the cirrumference of the globe-as measured on the equator.

4 inches make 1 hand (used in measuring horses).
3 inches 1 palm.

3 palms $\quad 1$ span.
18 inches $\quad 1$ cubit
5 faet $\quad 1$ pace.
6 feet $\quad 1$ fathom. 120 fathoms 1 cable's length.
100 links, 4 English perches (or poles), 22 yards, 66 feet, or 792 inches, make one chain. Each link, therefore, is ecaal to $7 \frac{92}{100}$ inches. 11 Irish are equal to 14 English milec. The Paris foot is equal to $12 \cdot 792$ English inches; the Roman foot to $11 \cdot 604$; and the French metre to $39 \cdot 383$.

MEASURE OF SURFACES.

A surface is called a square when it has four equal sides and four equal angles. A square inch, therefore, is a surface one inch long and one inch wide; a square foot, a surface one foot long and one foot wide, \&c.

Square inches

The English, called also the statute acre, consists of 10 square chains, or 100,000 square links.
The English acre being 4,840 square yards, and the Irish, or plantation acre, 7,840; 196 square English are equal to 121 square Irish acres.
The English sfuare mile being $3,097,600$ square yards, and the Jrish $5,017,600$; 196 English square miles are equel to 121 lrish:-wo have seen, however, that 14 English are equal to 11 Irish linear milea

measure of salids.

The teacher will explain that a cube is a solid having six equal square surfaces; and will illustrate this by models or examples-the more famiiiar the better. A cubic inch is a solid, each of whose six sides or faces is a square inch; a cubic foot a solid curb of whose gix sides is a square fool, \&c.
Cubic inches

WINE MEASURE.

In some places a gill is equal to half a pint.
Foreign wines, \&e., are ofien sold by measures differing from the above.

ALE MEASURE.

$\begin{gathered} \text { Gallons } \\ 8 \end{gathered}$	firkins 2	-	-	make 1 firkin.
16 or		$\begin{gathered} \text { kilderkins } \\ 2 \\ \hline \end{gathered}$	-	,
32	4 or			1 barre
			barrels	
48	0	3 or	112	1 hogshead.
64	8	4 or	2	1 puncheon.
06	12	6 or	3	1 butt.

MEASURE OE TIME.

firkin.

kilderkin

barrel. hogshead. puncheon. butt.
pottle.
gallon.
peck.
bushel.
sack. coomb. vat.
inches; or both h came ne bag;

Chirds

The following will exemplify the use of the above symbols:The solar year consists of $365 \mathrm{~d} .5 \mathrm{~h} .48^{\prime} 45^{\prime \prime} 30^{\prime \prime \prime}$; read "three hundred and sixty-five days, five hours, forty-eight minutes, forty-five seconds, and thirty thirds.

The number of days in each of the twelve calendar months will be easily remembered by means of the well known lines, "Thirty days hath Scptember, April, June, and November, February twenty-eight alone And all the rest thirty-ane."
The following table will enable us to find how many days there are from any day in one month to any day in another.

To find by this table the distance between any two days in two different monthis:

Rule.-Look along that vertical row of figures at the head of which stands the first of the given months; and also along the horizontal row which contains the second; the number of days from any day in the one month to the same day in the other, will be found where these two rows intersect each other. If the given day in the latter month is carlier than that in the former, find by how much, and subtract the amount from the number obtained by the table. If, on the contrary, it is later, ascertain by how much, and add the amount.

When February is included in the given time, and it is a leap year, add one day to the result.
Example 1.-How many days aro there between the fifteenth of March and the fourth of October? Looking dlown the vertical row of figures, at the head of which March is piaced, and at the same time, along the horizontal row at the left hand side of which is October, we perceive in their intersection the number 214:-so many days, therefore, intervene between the fifteenth of Marcli and the fifteenth of October. But the fourth of October is eleven days earlier than the fifteenth; we therefore subtract 11 from 214 , and obtain 203 , the number required.
Example 2.-How many days are there betweon the third of January and the nineteenth of May? Looking as before in the table, we find that 120 days intervene between the third of Jamary and the third of May; but as the ninetuenth is sixteen days later than the third, we add 16 to 120 and obtain 136, the number required.
Since Felbruary is in this case included, if it were a leap year, as that month would then contain 29 days, we should add one to the 136, and 137 would be the answer.
During the lapse of time, the calendar became inaccurate : it was corrected by Pope Gregory. To understand how this became necessary, it must be borne in mind that the Julian Calendar, formerly in use, added one day every rourth year to the month of February; but this being soinewhat too much, the days of the months were thrown out of their proper places, and to such an extent, that each had become ten days ton much in advance. Pope Ơregory, to remedy this, ordained that what, according
on any two figures at n months ; ntains the n the one und where given day former, from the ontrary, it mount. time, and
ween the Looking eh March tal row at e in their efore, inteenth of is earlier 214 , and
reen the oking as between the nine6 to 120
ea leap e should
inaccuerstand ind that y every being thrown at, that Pope ording
to the Julian style, would lave been the 5th of October 1582, should be considered as the 15th; and to prevent the recurrence of such a mistake, he desired that, in place of the last year of every century being, as hitherto. a leap year, only the last year of every fourth century should be deemed such.

The "New Style," as it is called, was not introduced into England until 1752, when the crror had beeome eleven days. The Gregorian Calendar itself is slightly inaccurate.

To find if any given year be a leap year. If net the last ycar of a eentury :

Rule.-Divide the number which represents the given ycar by 4 , and if there be no remainder, it is a leap ycar. If there be a remainder, it expresses how long the given year is after the preceding lcap year.

Example 1.-1840 was a leap year, because 1840 divided by 4 leaves no remainder.

Example 2. -1722 was the second year after a leap year, because 1722 divided by 4 leaves 2 as remainder.

If the given year be the last of a eentury:
Fule.--Divide the number expressing the eenturies by 4 , and if there be no remainder, the given one is a leap year; if there be a remainder, it indicates the number of centuries between the given and preeeding last year of a eentury which was a leap year.

Example 1.-1600 was a leap year, because 16, being divided by 4 , leaves nothing.
Example 2.-1800 was two eenturies after that last year of a century which was a leap year, because, divided by 4 , it leaves 2 .

DIVISI' ${ }^{\prime}$ N OF THE CIRCLE.

$\begin{gathered} \text { Thirds } \\ 60 \\ \hline \end{gathered}$			make	$1 \text { second }{ }^{\text {Symbols. }}$
3600 or	seconds 60			1 minute '
216,000	3,600 or	minutes 60		1 degree ${ }^{\circ}$
77,780,000	1,296,000	21,600 or	$\begin{aligned} & \text { degrees } \\ & 360 \end{aligned}$	1 circumference

fore, the circle, the greater or less each of these will be. The following will exemplify the applications of the symbols:$60^{\circ} 5^{\prime} 4^{\prime \prime} 6^{\prime \prime \prime}$; which means sixty degrees, five minutes, four seconds, and six thirds.

DEFINITIONS.

1. Arithnetic may be considered either as a science or as an art. As a-science, it teaches the properties of numbers; as an art, it enables us to apply this knowledge to practical purposes; the former may be called theoretical, the latter practical arithmetic.

- E. A Unit, or as it is also called, Unity, is one of tho individuals under consideration, and may include many units of another kind or denomination; thus a unit of the order called " tens" consists of ten simple units. Or it may consist of one or more parts of a unit of a higher denomination; thus five units of the order of "tens" are five parts of one of the denomination called "hundreds ;" three units of the denomination called "tenths" are three parts of a unit, which we shall presently term the " unit of comparison."

3. Number is constituted of two or more units; strictly speaking, therefore, unity itself cannot be considered as a number.
4. Abstract Numbers are those the properties of which are contemplated without reference to their application to any particular purpose-as five, seven, \&e.; abstraction being a process of the mind, by which it separately considers those qualities which eanot in reality exist by themselves ; thus, for example, when we attend only to the length of anything, we are said to abstract from its breadth, thickness, colour, \&c., although these are necessarily found associated with it. There is nothing inaccurate in this abstraction, since, although lengtl cannot exist without breadth, thickness, \&e., it has properties independent of them. In the same way, five, seven, \&c., can be considered only by an abstraction of the mind, as not applied to indicate some particular things.
5. Applicate Numbers are exactly the reverse of
vill be. The symbols :ninutes, four
is a science roperties of this knowy be called

3 one of tho clude many a unit of e units. Or of a higher "tens" are hundreds ;" enths" are ly term "the
ore units; ot be contheir applieven, \&c.; ich it sepat in reality n we attend to abstract ough these e is nothing ugh length it has profive, seven, tion of the alar things. reverse of
abstract, being applied to indicate particular objectsas five men, six houses.
6. The Uuit of Comparison. In every number there is some unit or individual which is used as a standard: this we shall henceforward call the "unit of comparison." It is by no means necessary that it should always be the same; for at one time we may speak of four objects of one species, at another of four objects of another species, at a third, of four dozen, or four scores of objects; in all these cases four is the number contemplated, thnugh in each of them the idea conveyed to the mind is different-this difference arising from the different standard of comperison, or unity assumed. In the first case, the "unit of comparison" was a single object ; in the second, it was also a single object, but not of the same kind; in the third, it became a dozen ; and in the fourth, a score of objects. Increasing the "unit of comparison" evidently increases the quantity indicated by a given number ; while decreasing it has a contrary effect. It will be necessary to bear all this carefully in mind.
7. Odd Numbers. One, and every succeeding alternate number, are termed odd; thus, three, five, seven, \&e.
8. Even Numbers. Two, and every succeeding alternate number, are said to be even; thus, four, six, eight, \&c. It is scarcely necessary to remark, that after taking away the odd numbers, all those which remain are even, and after taking away the even, all those which remain are odd.

We shall introduce many other definitions when treating of those matters to which they telate. A clear idea of what is proposed for consideration is of the greatest importance; this must be derived from the definition by which it is explained.

Since nothing assists both the understanding and the memory more than accurately dividing the subject of instruction, we shall take this opportunity of remarking to both teacher and pupil, that we attach much importance to the divisions which in future shall actually be mado, or slatl be implied by the order in whioh the different heads will be examined.

SECTION I.

ON NOTATION AND NUMERATION.

1. To avail ourselves of the propertics of numbers, we must be able both to form an idca of them ourselves, and to convey this idea to others by spoken and by written language ;-that is, by the voice, and by characters.

The expression of number by characters, is called notation, the reading of these, numeration. Notation, thercfore, and numeration, bear the same relation to each other as writing and reading, and though often confounded, they arc in reality perfectly distinct.
2. It is obvious that, for the purposes of Arithmetic, we require the power of designating all possible numbers; it is equally obvious that we cannot give a different namo or character to each, as their variety is boundless. Wo must, thercfore, by some means or another, make a limited system of words and signs suffice io express an unlimited amount of numerieal quantities:-with what beautiful simplicity and clearness this is effeeted, we shall better understand presently.
3. Two modes of attaining such an object present themselves; the one, that of combining words or charaeters already in use, to indicate new quantities; the other, that of representing a variety of different quantities by a single word or eharacter, the danger of mistake at the same time being prevented. The Romans simplified their system of notation by adopting the prineiple of combination; but the still greater perfection of ours is due also to the expression of many numbers by the same character.
4. It will be useful, and not at all difficult, to explain to the pupil the mode by whieh, as we may supposc, an idea of considerable numbers was originally acquired, and of which, mdeed, although uneonseiously, we still avail ourselves; we shall see, at the same time, how metlods of simplifying both numcration and notation were naturally suggested.
l.oi us suppose no system of numbers to be as yei constructed, and that a heap, for example, of pobbles, is placed before us that we may discover their amount. If this is considerable, we camot ascertain it by looking at them all together, nor even by separately inspecting them; we must, therefore, have recourse to that contrivance which the mind always uses when it desires to grasp what, taken as a whole, is too great for its powers. If we examine an extensive landseape, ats the cye cannot take it all in at one view, we look successively at its different portions, and form our judgment upon them in detail. We must act similarly with reference to large numbers; since we camot comprehend them at a single glance, we must divide them into a sufficient number of parts, and, examining these in succession, acquire an indirect, but aecurate idea of the entire. This process becomes by habit so rapid, that it secms, if carelessly observed, but one aet, though it is made up of mamy: it is indispensable, whenever we desire to have a clear iflea of numbers-which is not, however, every time they are mentioned.
5. Had we, then, to form for ourselves a numerical eystem, we would naturally divide the individuals to be reckoned into equal groups, each group consisting of some number quite within the limit of our comprehension; if the groups were few, our object would be attained without any further effort, since we should have acquired urate knowledge of the number of groups, and of mber of individuals in each group, and therefore : instory, although indirect estimate of the whole.

Ne ought to remark, that different persons have rery different limits to their perfect comprehension of number; the iutelligent can conceive with ease a comparatively large one; there are savages so rude as to be incapable of forming an idea of one that is extremely small.
6. Let us call the number of individuals that we choose to constitute a group, the ratio; it is evident that the larger the ratio, the smaller the number of groups, anc the smaller the ratio, the larger the number of groupsbut the smaller the number of groups the better.
7. If the groups into which we have divided the objects to be reckoned exceed in anount that number of which we have a perfect idea, we must continue tho proeess, and eonsidering the groups themselves as individuals, must form with them new groups of a higher order. We must thus proceed until the number of our highest group is sufficiently small.
8. The ralio used for groups of the second and higher orders, would naturally, but not neecssarily, be the same as that adopted for the lowest; that is, if seven individuals constitute a group of the first order, we would probably make seven groups of the first order constituto a group of the second also; and so on.
9. It might, and very likely would happen, that we should not have so many objects as would exaetly form a certain number of groups of the highest ordersome of the next lower might be left. The same might occur in forming one or more of the other groups. Wo might, for example, in reckoning a heap of pebbles, have two groups of the fourth order, three of the third, none of the second, five of the first, and seven individuals or "units of eomparison."
10. If we had made each of the first order of groups consist of ten pebbles, and each of the second ordur consist of ten of the first, each group of the third of ten of the second, and so on with the rest, we had selected the decimal system, or that which is not only used at present, but which was adopted by the Hebrews, Greeks, Romans, \&ce. It is remarkable that the language of every civilized nation gives names to the different groups of this, but not to those of any other numerical system; its very general diffusion, even among rudo and barbarous people, has most probably arisen from the habit of eounting on the fingers, whieh is not altogether abandoned, even by us.
11. It was not indispensable that we should have ased the same ratio for the groups of all the different ovders; we might, for example, have made four pebbles form a group of the first order, twelve groups of the first order a group of the second, and twenty groups of the second a group of the third order:-in sueh a
easo we had adopted a system oxaetly like that to bo found in the table of money (page (3), in which four fardhings make a group of the order pence, twelve pence a group of the order shillings, twenty shillings a group of the order pounds. While it must be admitted that the use of the same system for applicate, as for alstract numbers, would greatly simplify our arithmetical procosses-as will be very evident hercafter, a glance att the tables given already, and those set down in treating of exclange, will show that a great varicty of systems have actually been constructed.
12. When we use the same ralio for the groups of all the orders, we term it a common ratio. There appears to have been no particular reason why ten should have been selected as a "common ratio" in the system of numbers ordinarily used, except that it was suggested, as already remarked, ly the mode of counting on the fingers; and that it is neither so low as unnecessarily to increase the number of orders of groups, nor so high as to exceed the conception of any one for whom the system was intended.
13. A system in which ten is the "common ratio" is called decimal, from "deeem," which in Latin signifies ten :-ours is, therefore, a "decimal system" of numbers. If the common ratio were sixty, it would be a sexagesimal system ; such a one was formerly used, and is still retained-as will be perecived by the tables already given for the measurement of ares and angles, and of time. A quinury system would have five for its "common ratio;" a duodecimal, twelve ; a vigesimal, twenty, se.
14. A little reflection will show that it was useless to give diferent nanes and characters to any numbers except to those which are less than that which constitutes the lowest group, and to the different orders of groups ; because all possibie mumbers must eonsist of individuals, or of gronps, or of both individuals and groups:-in nei'aer case would it be repuived to specify more than the number of individnals, and the number of each species of grotp, none of which umbers-as is evident--can be grieater then the common ratio. This
is just what we have done in our numerieal kystem, except that we have formed the names of some of tha groups by combination of those ulready used ; thus, "tens of thousands," the group next higher than thousauds, is designated by a combination of words already applied to express other groups-which tends yet further to simplification.
15. ARAMC SYSTEM OF NOTATION:-

Uuits of domparison,

First group, or units of the second order, Second group, or units of the third order, Third group, or units of the fourth order, Fourth group, or units of the fifth orler, Fifth group, or units of the sixth order, Sixth froup, or units of the seventh order,

Uuits of Domprarison,	Nones. \quad C	Charseters.
	One . .	1
	Two	9
	'Ithree	3
	Four	4
	- Five	6
	Six .	6
	Se"en	7
	Fi, int	8
	Nife	8
Finst gromp, or units of the second order,	- Ten	10
Second group, or units of the third order,	- llamired	100
Third group, or units of the fourth order,	- Thousund	1,000
Fourth group, or units of the fifth order,	- 'Ten thousand	10,140
Fifth group, or units of the sixth order,	- flondred thousand	d 110,000
Sixth Hroup, or units of the seventh order,	- Milliou	1,000, 000

16. The characters which express the nine firat numbers are the only ones used ; they are called digits, from the custom of counting then on the fingers, already noticed-" digitus" meaning in Latin a finger ; they are also called significant figures, to distinguish them from the cypher, or 0 , which is used merely to give the dirits their proper position with reference to the decimal peint. The pupil will distinctly remember that the place where the "units of comparison" are to be found is that immediatcly to the left hand of this point, which, if not expressed, is supposed to stand to the right hand side of all the digits-thus, in 463.76 the 8 expresses " units of comparison," being to the left of the decimal point; in 49 the 9 expresses "units of comparison," the deeimal point being understood to the right of it.
17. We find by the tablo just given, that after the nine first numbers, the sume digit is constantly repeated, its position with reference to the decia point being, however, changed:-that is, to indicate each succeeding group it is moved, by means of a cypher, one place farther to the lofit. finy of the digitis may be used to
nerical system, of some of the y used; thas, ther than thonwords already nds yet further
Characters.
1
9
3
4
5
6
7
8
9
10
100
1,000
10,0160
and 10,000
$1,060,060$
nine first numed digrits, from ngeers, already user ; they are ish them from give the digits decimal point. he place where d is that immeich, if not exthand side of presses " units decimal point; on," the deciit.
that after the antly repeated, 1 point being, ach succeoding her, one place aly le used to
express its respective number of any of the gronps:thins 8 would be eight "units of comparison;" 80 , eight groups of the first order, or eight "tens" of simple units; 800 , eight groups of the second, or units of the third order ; and so on. We might use any of the digits with the different groups; thus, for exanple, 5 for groups of the third order, 3 for those of the second, 7 for those of the first, and 8 for the " uuits of comparison;" then the whole set down in full would be 5000, $300,70,8$, or for brevity sake, 5378-for we never uso the eypher when we can supply its place by a significant fignre, and it is evident that in 5378 the 378 keeps the 5 fiour places from tho decimal point (nnderstood), just as well as eyphers would have done ; also the 78 keeps the 3 in the third, and the 8 keeps the 7 in the seeond place.
18. It is important to remember that each digit has two values, an absolute and a relative; the absolute value is the number of units it expresses, whatever these units may bo, and is unchangeable; thus 6 always means six, sometimes, indeed, six tens, at other times six hundred, \&e. The relative value depends on the order of units indicated, and on the nature of the "unit of eomparison."
19. What has been said on this very important sabject, is intended principally for the teacher, though an ordinary amount of industry and intelligenco will be quite suffieient for the purpose of explaining it, even to a child, particularly if each point is illustrated by an appropriate examplo ; the pupil may be made, for instance, to arrange it number of pebbles in groups, sometimes of one, sometimes of another, and sonetimes of several orders, and then be desired to express them by figures-the "unit of comparison" being occasionally changed from individuals, suppose to tens, or hundreds, or to scores, or dozens, \&c. Indeed the pupils must be well acquainted with these introductory matters, otherwise they will contract the habit of answering without any very definite ideas of many things they will be called upon to explain, and which they should be expeeted perfectly to understand. Any trouble bestowed by the teacher at this period will be well repaid by the case
and rapidity with which the scholar will afterwards adrance; to be assured of this, he has only to reeollect that most of his future reasonings will be derived from, and his explanations grounded on the very principles we have endeavoured to unfold. It may be taken ass an important truth, that what a child learns without understanding, he will acquire with disgust, and will coon cease to remember; for it is with children as with persons of more advanced years, when we appeal successfully to their understanding, the pride and pleasure they feel in the attainment of knowledge, cause the labour and the weariness which it costs to be undervalued, or forgotten.
20. Pebbles will answer well for examples; indeed, their use in computing has given rise to the term calculation, "calculus" being, in Latiu, a pebble: but while the teacher illustrates what he says by groups of particular objects, he must take care to notice that his remarks would be equally true of any others. He must also point out the difference between a group and its equivalent unit, which, from their perfect equality, are generally confounded. Thus he may show, that a penny, while equal to, is not identical with four farthings. This scemingly unimportant remark will be better appreciated hereafter ; at the same time, without inaccuracy of result, we may, if we please, consider any group either as a unit of the order to which it belongs, or so many of the next lower as are equivalent.
21. Roman Notation.-Our ordinary numerical characters have not been always, nor every where used te express numbers; the letters of the alphabet naturally presented themselves for the purpose, as being already familiar, and, aecordingly, were very generally adoptedfor example, by the Hebrews, Greeks, Romans, \&c., each, of course, using their own alphabet. The pupil should be acquainted with the Roman notation on account of its beautiful simplicity, and its being still employed in inscriptions, \&c.: it is found in the following table :-
ill afterwards only to recolill be derived he very prinmay be taken learns without ust, and will ildren as with e appeal sucand pleasure e, cause the to be under-
ples ; indeed, te term calcule : but while roups of partice that lis rs. He must roup and its equality, are that a penny, things. This better appreat inaccuracy r any group elongs, or so
uperical chawhere used te bet naturally being already lly adoptedRomans, \&c.,

The pupil notation on ts being still in the follow-

22. Thus we find that the liomans used very few characters-fewor, indeed, than we do, although our system is still wore simple and effective, from our applying the principle of "position," unknown to them.
They expressed all numbers by the following symbols, or combinations of them: I. V. X. L. C. D. or Io. M., or $\mathrm{CL}_{\mathrm{S}} \mathrm{O}$. In constructing their system, they eridently had a quinary in view; that is, as we have sind, one in which five would be the common ratio; for we find that they changed their chanacter, not only at ten, ten times
ten, \&c., but also at five, ten times five, \&c.:-a purely decinal system would suggest a change only at ten, ten times ten, \&c.; a purely quinary, only at five, five times five, \&c. As far as notation was concerned, what they adopted was neither a decimal nor a quinary system, nor even a combination of both; they appear to have supposed two primary groups, one of five, the other of ten " units of comparison ; " and to have formed all the other groups from these, by using ten as the common ratio of each resulting series.
23. They anticipated a change of character; one unit before it would naturally occur-that is, not one "unit of comparison," but one of the units under consideration. In this point of view, four is one unit before five; forty, one unit before fifty-tens being now the units under consideration ; four hundred, one unit before five hundred-hundreds having become the units contemplated.
24. When a lower character is placed before a higher its value is to be subtracted from, when placed after it, to be added to the value of the higher ; thus, IV. means cne less than five, or four ; VI., one more than five, or six.

25 . To express a number by the Roman method of notation:-

Rule.-Find the highest number within the given one, that is expressed by a single character, or the " anticipation" of one [21] ; set down that character, or anticipation-as the case may be, and take its value from the given number. Find what highest number less than the remainder is expressed by a single character, or " anticipation;" put that character or "anticipation" to the right hand of what is already written, and take its value from the last remainder : proceed thus until nothing is left.

Example.-Set down the present year, eighteen huadred and forty-four, in Roman characters. One thousapd, expressed by M., is the highest number within the girnn one, indicated by one character, or by an anticipation; we put down and take one thousand from the given number, which leaves
ce. :-a purely nly at ten, ten five, five times ed, what they inary system, opear to have the other of formed all the is the common
aracter ; one it is, not one s under consine unit before eing now the ne unit before he units con-
ed before a when placed nigher ; thus, I., one more

1 method of
in the given acter, or the at character, take its value hest number ingle characor "anticipawritten, and proceed thus
teen hurdred thousard, exthe girnn one, ; we putdown
which loaves
eight hundred and forty-four. Five hundre ., , tho highest number within the last remainder (e ato wurdred and furty-four) expressed by one character, of an "anticipation ;"' we set down D to the right hand of M, MD,
and take its value from eight hundred and forty-four, which leaves three hundred and forty-four. In this the highest number expressed by a single character, or an "anticipation," is one hundred, indicated by C; which we set down ; and for the same reason two other Cs .

MDCCC.

This leaves only forty-four, the highest number within which, expressed by a single character, or an "anticipation," is forty, XL-an anticipation; we set this down also,
MDCCCXL.

Four, expressed by IV., still remains; which, being alse added, the whole is as follows:-

MDCCCXLIV.

26. Position.-The same charaeter may have different values, aecording to the place it holds with referenee to the decimal point, or, perhaps, more strictly, to the "unit of comparison." This is the principle of position.
27. The places occupied by the units of the different orders, according to the Arabie, or ordinary notation [15], may be described as follows :-units of comparison, one place to the left of the deeimal point, expressed, or understood; tens, two places; hundreds, three places, \&c. The pupil should be made so familiar with these, as to be able, at once, to name the " place" of any order of units, or the "units" of any place.
28. When, therefore, we are desired to write any number, we lave merely to put down the digits expressing the amounts of the different units in their proper places, according to the order to which each belongs. If, in the given number, there is any order of whieh there are no units to be expressed, a eypher must be set down in the place belonging to it ; the object of which is, to keep the significant figures in their own positions. A cypher produces no effect when it is not between significant figures and the decimal point; thus $0536,536 \cdot 0$, and 536 would mean the same thing-the
second is, however, the correct form. 536 and 5360 are different; in the latter case the cypher affects the value, because it alters the position of the digits.
Example.-Let it be re uired to set down six hundred and two. The six must be in the third, and the two in the first place; for this purpose we-are to put a cypher between the 6 and 2-thus, 602 : without the cypher, the six would be in the second place-thus, 62; and would mean not six hundreds, but six tens.
29. In numerating, we begin with the digits of the highest order and proceed downwards, stating the number which belongs to each order.

To facilitate notation and numeration, it is usual to divide the places occupied by the different orders of units into periods; for a certain distance the English and French methods of division agree; the English billion is, however, a thousand times greater than the French. This discrepancy is not of much importance, sinco we are rarely obliged to use so ligh a number,-we shall prefer the French method. To give some idea of the amount of a billion, it is only necessary to remark, that according to the English method of notation, there has not been one billion of seconds since the birth of Christ. Indced, to reckon even a million, counting on an average three per second for eight hours a day, would require nearly 12 days. The following are the two methods.

	english		
	method.		
Trillions.	Billions.	Millions.	Units.
$000 \cdot 000$	$000 \cdot 000$	$000 \cdot 000$	$000 \cdot 000$

method.			
Uillions.	Millions.	Thousands.	Units.
$0{ }_{0} 0$	${ }_{0}^{\text {Hund. }}$ - Ens. Units.	Lund. Tenas. Units.	Hund. Teris, Unith

30. Use of Feriods.-Let it be required to read off the following number, 576934. We put the first point to the left of the hundreds' place, and find that there are cxactly two periods-576,934; this does not always occur, as the highest poriod is often imperfect, consisting only of one or two digits. Dividing the number thus
and 5360 dre cts the value, six hundred the two in the pher between the six would mean not six
digits of the ng the num-
is usual to at orders of English and glish billion the French. ce, since we r,-we shall idea of the emark, that ation, there he birth of counting on ours a day, ing are the

Units. $000 \cdot 000$

Units. ${ }_{0}^{\text {und. Teas. Unita }}$ to read off first point it there are not always , consisting unber thus
into parts, shows at once that 5 is in the third place of the second period, and of course in the sixth place to the left hand of the decimal point (understood); and, thereforc, that it expresses hundreds of thousands. The 7 being in the fifch place, indicates tens of thousands; the 6 in the fourth, thousands; the 9 in the third, hundreds; the 3 in the scoond, tens; and the 4 in the first, units (of" comparison"). The whole, therefore, is five hundreds of thousands, seven tens of thousands, six thousands, nine hundreds, three tens, and four units, 一 or more briefly, five hundred and seventy-six thousand, nine hundred and thirty-four.
31. To prevent the separating point, or that which divides into periods, from being mistaken for the decimal point, the former should be a comma (,)-the latter a full stop (•) Without this distinction, two numbers which are very different might be confounded : thus, 498.763 and 498,763,-one of which is a thousand times greater than the other. After a while, we may dispense with the separating point, though it is convenient to use it with considerable numbers, as they are then read with greater ease.
32. It will facilitate the reading of large numbers not separated into periods, if we begin with the units of comparison, and procced onwards to the left, saying at the first digit "units," at the second "tens," at the third " hundreds," \&e., marking in our mind the denomination of the highest digit, or that at which we stop. We then commence with the highest, express its number and denomination, and proceed in the same way with each, until we come to the last to the right hand.

Example.-Let it be required to read off 6402. Looking nt the 2 (or pointing to it), we say "units;" at the 0 , "tons;" at the 4, "hundreds;" and at the 6, "thousands." The fatter, therefore, being six thousands, the next digit is four humdreds, \&c. Consequently, six thousands, four huudreds, no tens, and two units; or, briefly, six thousmend four hundred and two, is the reading of the given number.
33. Periods may bo used to facilitate notation. The pupil will first write down a number of priods of eyphers
to represent the places to be occupied by the various orders of mits. He will then put the digits expressing the different denominations of the given number, under, or instead of those cyphers which are in corresponding positions, with reference to the decimal pointbeginuing with the highest.

Example.-Write down thres thousand six hundred and fifty-four. The highest denc :ie being thousands, will occupy the fourth phace to the' !' 'the desimal point. It will be enough, therefore, to r down foar cyphers, and under them the corresponding digits-that expressing the thousands under the fourth cypher, the hundreds under tho third, the tens under the second, and the units under the first; thus

$$
\begin{aligned}
& 0,000 \\
& 3,654
\end{aligned}
$$

A cypher is to be placed under any denomination in which there is no significant figure.

Example.-Set down five hundred and seven thousand, and sixty-three.

$$
\begin{aligned}
& 000,000 \\
& 507,063
\end{aligned}
$$

After a little practice the periods of cyphers will become unnecessary, and the number may be rapidly put down at once.
34. The units of comparison are, as we have said, always found in the first place to the left of the decimal point ; the digits to the left hand progressively increase in a tenfold degree-those occupying the first place to the left of the units of comparison being ten times greater than the units of comparison; those occupying the second place, ten times greater than those which occupy the first, and one hundred times greater than the units of comparison themselves; and so on. Moving a digit one place to the left multiplies it by ten, that is, makes it ten times greater ; moving it two places multiplies it by one hundred, or makes it one hundred times greater; and sc of the res'.. If all the digits of a quantity be moved one, two, \&e., places to the left, the whole is increased ten, one hundred, \&c., times-as the case may be. On the other hand, moving
the various gits expressven number, in corresmal pointhundred and ousands, will al point. It syphers, and pressing the ds under the ts under the than those les greater and so on. plies it by ring it two kes it one If all the places to idred, \&c., ad, moving
a digit, or a quantity one place to the right, divides it by ten, that is, makes it ten times smaller than before; moving it two places, divides it by one hundred, or makes it one hundred times smaller, \&c.
35. We possess this power of casily increasing, or diminisling any number in a tenfold, \&e. degree, whether the digits are all at the right, or all at the left of the decimal point; or partly at the right, and partly at the left. Though we have not hitherto considered quantitics to the left of the decimal point, their relative value will be very easily understood from what we have already said. For the pupil is now aware that in the decimal system the quantities increase in a tenfold degree to the left, and decrease in the same degree to the right ; but there is nothing to prevent this decrease to the right from proceeding beyond the units of comparison, and the decinal point;-on the contrary, from the very nature of notation, we ought to put quantities ten times less than units of comparison one place to the right of them, just as we put those which are ten times less than hundreds, \&c., one place to the right of hundreds, \&c We accordingly do this, and so continue the notation not only upwards, but downwards, calling quantities te the left of the decimal point integers, because none of them is less than a whole "unit of comparison ;" an" those to the right of it decimals. When there are decimals in a given number, the decinal point is actually expressed, and is always found at the right hand side of the units of comparison.
36. The quantities equally distant from the unit of comparison bear a very close relation to each other which is indicated even by the similarity of their names; those which are one place to the left of the units of comparison are called "tens," being each identical with,'or equivalent to ten units of comparison; those which are onc place to the right of the units of comparison are called " tenths," each being the tentli part of, that is, ton times as small as a unit of comparison; quantities two places to the left of the units of comparison are called "hundreds," being one hundred times greater; and those two places to the right, "huudredths," being one
hundred times less than the units of comparison; and so of all the others to the right and left. This will be more evident on inspecting the following table:-

We have seen that when we divide integers into periods [29], the first separating point must be put to the right of the thousands; in dividing decimals, the first point must be put to the right of the thousandths.
37. Care must be taken not to confound what we now call "decimals," with what we shall hereafter designate "decimal fractions;" for they express equal, but not identically the same quantities-the decimals being what shall be termed the "quotients" of the corresponding decimal fractions. This remark is made here to anticipate any inaccurate idea on the subject, in those who already know something of Arithmetic.
38. There is no reason for treating integers and decimals by different rules, and at different times, sinco they follow precisely the same laws, and constitute parts of the very same series of numbers. Besides, any quantity may, as far as the decimal point is concerned, be expressed in different ways; for this purpose we have merely to change the unit of comparison. Thus, let it be required to set down a number indicating five hundred and scventy-four men. If the " unit of comparison" be one man, the quantity would stand as follows, 574. If a band of ten men, it would become 57.4-for, as each man would then constitute only the tenth part of the "unit of comparison," four men would be only four-tenths, or 0.4 ; and, since ten wea would form but one unit, seventy men would be morely seven units of comparison, or 7 ; \&ce. Again, if it were a band of one hundred men, the number must be writen 5.74 ; and lastly, if a band of a chousand men, it would be 0.574
son ; and so will be more
, or Decimals.
h.
th.
sanalth.
thousandth.
into periods to the right first point
d what we after desigequal, but mals being the corresade here to t, in those
and decisinco they - parts ol y quantity cd, be exwe have hus, let it five hum-comparis follows, 7.4--for, enth part l be only form but units of nd of one - 74 ; and be 0.574

Should the "unit" be a band of a dozen, or a score men, the change would be still more complicated; as, not only the position of the decimal point, but the very digits also, would be altered.

39 . It is not necessary to remark, that moving the decimal point so many places to the left, or the digits an equal number of plaees to the right, amount to the same thing.

Sometimes, in changing the decimal point, one or more cyphers are to be added; thus, when we move $42 \cdot 6$ three places to the left, it becomes 42600 ; when we move 27 five places to the right, it is $\cdot 00027$, \&c.
40. It follows, from what we have said, that a decimal, though less than what constitutes the unit of comparison, may itself consist of not only one, but several individuals. Of course it will often be necessary to indicate the "unit of comparison,"-as 3 scores, 5 dozen, 6 men, 7 companies, 8 regiments, \&c.; but its nature does not affect the abstract properties of numbers; for it is true to say that seven and five, when added together, make twelve, whatever the unit of comparison may be:provided, however, that the same standard be applicd to both; thus 7 men and 5 men are 12 men ; but 7 men and 5 horses are neither 12 men nor 12 horses; 7 men and 5 dozen men are neither 12 men nor 12 dozen men. When, therefore, numbers are compared, \&c., they must have the same unit of comparison, or-without altering their value-they must be reduced to those which have. Thus we may consider 5 tens of men to become 50 individual men-the unit of comparison being altered from ten men to one man, without the value of the quantity being changed. This principle must be kept in mind from the very commencement, but its utility will become more obvious hereafter.

EXAMPLES IN NUMERATION AND NOTATION.

Notation.

1. Put down one hundred and four
${ }^{-9 n 5.5}$
2. One thousand two hundred and forty
1,240
3. Twenty thousand, threo liundred and forty-five $\quad 20,345$
4. Two hundred and thirty-four thousand, five hundred and sixty-seven
5. Three humdred and twenty-nine thousand, seven hundred and seventy-nine
6. Soven hundred aud nine thousand, eight hundred and twelve
7. Twelve hundred and forty-soven thousand, four hundred and fifty-seren
$1,247,457$
8. One million, three hundred and ninety-seren thousind, four hundred and seventy-live.
9. Put down fifty-four, seven-tenths

1,307,475
10. Nincty-one, five hundredths
$54 \cdot 7$
11. Two, threc-tenths, four thonsindths, and four hundred-thousandths

230404
12. Nine thousandths, and three hundred thousandths
0.00903
13. Make 437 ten thousand times greater $\quad .4,370,000$
14. Make 2.7 one hundred times greater - 270
15. Make 0.056 ten times greater . . 0.56
16. Make 430 ten times less
17. Make 275 one thousand times les $\cdot \quad .0 .00275$

Numeration

1. read 132
2. - 407
3. -2760
4. - 5060
5. - 37654
6. -8700002
7. read 8540326
8. - 5210007
9. - 6030405
10. - 56.0075
11. - $3 \cdot 000006$
12. - 0.0040007
13. S und travels at the rate of about 1142 fect in a second; light moves about 195,000 miles in the same time.
14. The sun is estimated to be 880,149 miles in diameter; its size is 1377,613 times greater than that of the earth.
15. The diameter of the planet mereury is 3,108 miles, and his distance from the sun $36,814,721$ miles.
16. The diameter of Venus is 7,498 miles, and her distanec from the sun $68,791,752$ miles.
17. The diameter of the earth is about $7,00.4$ miles; it is $05,000,000$ miles from the sun. and travels round the latter at the rate of upwards of 68,000 miles an hour.
18. The diameter of the noon is 2,144 miles, and her distance from the earth 236,847 miles.
19. The dianeter of Mars is 4,218 miles, and his distance from the sun 144,907,030 miles.
20. The diameter of Jupiter is 89,069 miles, and his distance from the sun $494,499,108$ miles.
21. The diameter of Saturn is 78,730 miles, and his distance from the sin $907,089,032$ miles.
22. The length of a pendulum which would vibrato sieconds at the equator, is $39 \cdot 011,684$ ineles; in the latitude of 45 degrees, it is $39 \cdot 116,820$ inches; and in the latitude of 90 degrees, $39 \cdot 221,956$ inches.
23. It has been calculated that the distance from the earth to the nearest fixed star is 40,000 times the diameter of the earth's orbit, or annual path in the heavens; that is, about $7,600,000,000,000$ miles. Now suppose a cannon ball to fly from the earth to this star, with a uniform velocity equal to that with which it first leaves the mouth of the gun-say 2,500 fect in a second-it would take nearly 1,000 years to reach its destination.
24. A piece of gold equal in bulk to an ounee of water, would weigh $19 \cdot 258$ ounces; a piece of iron of exactly the same size, 7.788 ounces; of copper, 8.788 ounces; of lead, $11 \cdot 352$ ounees; and of silver, $10 \cdot 474$ ounces.
Note. The examples in notation may be made to answer for numeration; and the reverse.

ruestions in notation and numeration.

[The references at the end of the questions show in what paragraphs of the preceding section the respective answors are principally to be found.]

1. What is notation? [1].
2. What is numeration? [1].
3. How are we able to express an infinite variety of numbers by a few names and characters? [3].
4. How may we suppose ideas of numbers to have been originally aequired? $[4, \& c$.$] .$
5 . What is meant by the common ratio of a system of numbers? [12].
5. Is any particular number better adapted than another for the common ratio? [12].
6. Are there systems of numbers without a common ratio? [11].
7. What is meant by quinary, decimal, duodecimal, vigesimal, and sezagesimal systems? [13].
8. Explain the Arabic system of notation? [15].
9. What are digits? [16].
10. How are they made to express all numbers? [17].
11. What is meant by their absolute and relative values ? [18].
12. Are a digit of a higher, and the equivalent numor of units of a lower order precisely the same thing? (20].
13. Have the characters we use, always and every where been einployed to express numbers? [21].
14. Explain the Roman method of notation? [22, \&e.].
15. What is the decimal point, and the position of the different orders of units with reference to it? [26 and 27].
16. When and how do oyphers affect significant figures? [28].
17. What is the difference between the English and French methods of dividing numbers into periods? [29].
18. What is the difference between integers and decimals? [35].
19. What is meant by the ascending and deseending series of numbers; and how are they related to each other ? [36].
20. Show that in expressing the same quantity, we must place the decimal point differently, aecording to the unit of comparison we adopt? [38].
21. What effect is produced on a digit, or a quantity by removing it a number of places to the right, or left. or similarly removing the decimal noint? [34 and 39]
e and relative uivalent numte same thing?
ays and every [21]. ion ? [22, \&c.]. he position of ce to it? [26
ect significant
c English and eriods ? [29]. integers and
nd descending lated to each
quantity, we according to
or a quantity right, or left. [34 and 39]

SECTION II.

THE SIMPLE RULES.

SIMPLE ADDITION.

1. If numbers are changed by any arithmetical process, they are cither increased or diminished; if increased, the effect belongs to Addition; if diminished, to Subtraction. Hence all the rules of Arithmetio are ultimately resolvable into either of these, or combinations of both.
2. When any number, of quantities, either different, or repetitions of the same, are united together so as to form but one, we term the process, simply, "Addition." When the quantities to be added are the same, but we may have as many of them as we please, it is called "Multiplication;" when they are not only the same, but their number is indicated by one of them, the process belongs to "Involution." That is, addition restricts us neither as to the kind, nor the number of the quantities to be added; multiplication restricts us as to the kind, but not the number; involution restricte us both as to the kind and number:-all, however, are really comprehended nnder the same rule-addition.
3. Simple Addition is the addition of abstract numbers; or of applicate numbers, containing but one denomination.

The quantitics to be added are called the addends; the result of the addition is termed the sum.
4. The process of addition is expressed by + , called the plus, or positive sign; thus $8+6$, read 8 plus 6 , means, that 6 is to be added to 8 . When 40 sign is prefixed, the positive is understood.

The equality of two quantities is indieated by $=$ thus $9+7=16$, means that the sum on indieated by 9 and 7 is equal
to 16 .

Quantitics connected by the sign of addition, or that of equality, may be read in any order; thus if $7+9=16$, it is true, also, that $9+7=16$, and that $16=7+9$, or $9+7$.
5. Sometimes a single horizontal line, called a vinculum, from the Latin word signifying a bond or tie, is placed over several numbers; and shows that all the quantities under it are to be considered, and treated as but one ; thus in $\overline{4+7}=11, \overline{4+7}$ is supposed to form but a single term. However, a vinculum is of little consequence in addition, since putting it over, or removing it from an additive quantity-that is, one which has the sign of addition prefixed, or understood-does not in any way alter its value. Sometimes a parenthesis () is used in place of the vinculum; thus $\overline{5+6}$ and $(5+6)$ mean the same thing.
6. The pupil should be made perfectly familiar with these symbols, and others which we shall introduce as we procecd; or, so far from being, as they ought, a great advantage, they will serve only to embarrass him. There can be no doubt that the expression of quantities by characters, and not by words written in full, tends to brevity and clearness; the same is equally truc of the procosses which are to be performed-the more conciscly they are indicated the better.
7. Arithmetical rules arc, naturally, divided into two parts; the one rolates to the setting down of the quantities, the other to the operations to be described. We shall generally distinguish these by a line.

To add Numbers.

Rute.-I. Set down the addends under each other, so that digits of the same order may stand in the same vertical celumn-units, for instance, under units, tens under tens, \&c.
II. Draw a line to separate the addends from their sum.
III. Add the units of the same denomination together, beginning at the right hand side.
IV. . the sum of any column be less than ten, set it down under that column ; but if it be greater, for every
teu it contains, carry one to the next column, and put down only what remains after deducting the tens; if aothing remains, put down a cypher.
V. Set down the sum of the last column in full.
8. Exampie.-Fiud the sum of $542+375+984-$

$$
\left.\begin{array}{l}
542 \\
375 \\
984
\end{array}\right\}
$$

375 \}addends.
1901 sum.
We have placed 2, 5, and 4, which belong to the order "units," in one column ; 4, 7, and 8, which are "tens," in onother; and 5,3 , and 9 , which are "hundreds," in another.
4 and 5 units are 9 units, and 2 are 11 units-equivalent to one ten and one unit; we add, or as it is called, "carry" the ten to the other tens found in the next column, and set dlown the unit, in the units' place of the "sum."

The pupil, having learned notation, can easily find how many tens there are in a given number ; since all the digits that express it, except one to the right hand side, will indicate the number of "tens" it contains; thus in 14 there are 1 ten, and 4 units; in $3:, 3$ tens, and 2 units; in 143, 14 tens, and 3 units, \&e.
The ten obtained from the sum of the units, along with 8 , 7 , and 4 tens, makes 20 tens; this, by the method just mentioned, is found to consist of 2 tens (of tens), that is, two of the next denomination, or hundreds, to be carried, and no units (of tens) to be set down. We "earry," 2 to the hun"reds, and write down a eypher in the tens' plaee of the "sum."
The two hundreds to be "carried," added to 9,3 , and 5 , hundreds, make 19 hundreds; which are equal to 1 ten (of hundreds) ; or one of the next denomination, and 9 units (of hundreds) ; the former we "carry" to the tens of hundreds, or thousands, and the latter we set down in the hundreds' place of the "sum."
As there are no thousands in the next column-that is, nothing to whieh we can "carry" the thousand obtained lyy adding the hundreds, we put it down in the thousauds ${ }^{\prime}$ place of the "suni;" in other words, we set down the sum of the last column in full.
9. Reason of I. (the first part of the rule).-We put units of the same denomination in the same vertieal column,
that we may easily find those quantities which are to be added together ; and that the value of each digit may be more clear from its being of the same denomination as those which are under, and over it.

Reason of II.-We use the separating line to prevent the sum from being mistaken for an addend.
Reason of III.-We obtain a correct result only by adding units of the same denomination together [Sec. I. 40]:-hundreds, for instance, added to tens, would give neither hnndreds nor tens as their sum.
We begin at the right hand side to avoid the necessity of more than one addition; for, beginning at the left, the process would be as follows-

542
375
984
1,700
190
11
1,000
800
100
1,901

The first column to the left produces, by addition, 17 hundred, or 1 thousand and 7 hundred; the next column 19 tens, or 1 hundred and 9 tens; and the next 11 units, or 1 ten and 1 unit. But these quantities are still to be added:-beginning again, therefore, at the left hand side, we obtain 1000, 800, 100, and 1, as the respective sums. These being added, give 1,901 as the total sum. Beginning at the right hand rendered the successive additions unnecessary.
Reason or IV.-Our object is to obtain the sum, expressed in the highest orders, since these, only, enable us to represent any quantity with the lowest numbers; we therefore consider ten of one denomination as a unit of the next, and add it to those of the next which we already lave.

After taking the "tens" from the surns of the different columns, we must set down the remainders, since they are parts of the entire sum; and they are to be put under the columns that 1 roduced them, since they have not ceased to belong to the denominations in these columns.
Reason or V.-It follows, that the sum of the last column is to be set down in full; for (in the above example, for instance, there is nothing to be added to the tens (of liundreds) it contains.
10. Proof. of Addition.- Cut off the upper addend, by a weparating line; and add the sum of tho quantities
under, to what is above this line. If all the additions have been correctly performed, the latter sum will be equal to the result obtained by the rule: thus-

$$
\begin{aligned}
& \text { 5,673 } \\
& \text { 4,632 } \\
& \text { 8,697 } \\
& \text { 2,543 } \\
& 21,545 \text { sum of all the addends. } \\
& 15.872 \text { sum of all the addends, but one. } \\
& 5,673 \text { upper addend. } \\
& 21,545 \text { same as sum to be proved. }
\end{aligned}
$$

This mode of proof depends on the fact that the whole is equal to the sum of its parts, in whatever order they are taken; but it is liable to the objection, that any error committed in the first addition, is not unlikely to be repeated in the second, and the two errors would then conceal each other.

To prove addition, therefore, it is better to go through the process again, beginning at the top, and proceeding downwards. From the principle on which the last mode of proof is founded, the result of both additions-the direct and reversed-ought to be the same.

It should be remembered that these, and other proofs of the same kind, afford merely a high degree of probability, since it is not in any case quite certain, that two errors calculated to conceal each other, have not been committed.
11. To add Quantities containing Decimals.-From what has been said on the subject of notation (Sec. I. 35), it arpears that decimals, or quantities to the right hand side of the decimal point, are merely the continuation, downwards, of a series of numbers, all of which follow the same laws; and that the decimal point is intendod, not to show that there is a difference in the nature of quantities at opposite sides of it, but to mark where the "unit of comparison" is placed. Hence the rula for addition, already given, epplies at whatever side all, or any of the digits in the addends may be found It is necerrary to remember that the decimal point in the sum, should stand precisely under the decimal points of the addends; since the digits of the sum must be, from the very nature of the process [9], of exactly the same valuer, respectively, as the digits of the addends under

Which they are ; and if set down as they should be, their denominations are ascertained, not only by their position with reference to their own decimal point, but also by their position with reference to the digits of the addends above them.

Example.
$263 \cdot 785$
$460 \cdot 502$
$637 \cdot 008$
$526 \cdot 3$
$1887 \cdot 595$

It is not necessary to fill up the columns, by adding cyphers to the last addend; for it is sufficiently plain that we are not to notice any of its digits, until we come to the third column.
12. It follows from the nature of notation [Sec. I. 40], that however we may alter the decimal points of the addends-provided they are all in the same vertical column-the digits of the sum will continue unchanged ; Chus in the followino:-

4785	478.5	$47 \cdot 85$	-4785	-004785
3257	$325 \cdot 7$	$32 \cdot 57$	-3257	.003257
6546	$654 \cdot 6$	$65 \cdot 46$	-6546	.006546
14588	$1458 \cdot 8$	$145 \cdot 88$	$\overline{1 \cdot 4588}$. 014588
		ExErci		

(Add the following numbers.)

uld be, their their position but also by the addends
s, by adding siently plain til we come
ion [Sec. I. al points of ame vertical unchanged ;

$$
\begin{array}{r}
\cdot 004785 \\
-003257 \\
\cdot 006546 \\
\hline .014588
\end{array}
$$

lution.
8)

(16)	(17)	(18)	(19)	(20)	(21)
5673	3767	3001	5147	34567	73456
1237	4567	2783	3745	47891	45678
2345	1234	4567	6789	41234	9120.
(22)	(23)	(24)	(25)	(26)	(27)
76789	34567	78789	34676	73412	36707
46767	89123	01007	78767	70760	46770
12476	45678	34657	45679	47076	36767
(28)	(29)	(30)	(31)	(32)	(33)
45697	76767	23456	45678	23745	87967
37676	4567	78912	91234	67891	32785
36767	76988	34567	56789	23456	64127
(34)	(35)	(36)	(37)	(38)	(39)
30071	45676	37645	47656	76767	45676
45667	37412	67456	12345	12345	34567
12345	37378	12345	67891	37676	12345
47676	45674	67891	10707	71267	67891
(40)	(41)	(42)	(48)	(44)	(45)
71234	19123	93456	45678	45679	76756
12498	67845	18767	34567	34567	34567
91879 92456	67777	37124	12345	12345	12345
92456	88899	12456	99999	76767	67891
(46)	(47)	(48)	(49)	(50)	(51)
37376	78967	34567	47676	67678	
12677	12345	12345	12345	12345	34567
88991 28478	73767	77766	67671	67912	23456
28478	12671	67845	10070.	46767	76799

ADDITION.

72. $£ 7654+£ 50121+£ 100+£ 76767+£ 675$ $=£ 135317$.
73. $\mathscr{L} 10+£{ }^{2} 676+\mathscr{L} 97674+\mathscr{L} 676+\mathscr{L} 9017$ $=\mathfrak{L} 115053$.
74. $£ 971+£ 400+£ 97476+£ 30+£ 7000+£ 76734$ =£182611.
75. $10000+76567+10+76734+6763+6767+1$ $=176842$.
76. $1+2+7676+100+9+7767+67=15622$.
17. $76+9970+33+9977+100+67647+676760$ $=764563$.
78. $\cdot 75+\cdot 6+\cdot 756+\cdot 7254+\cdot 345+\cdot 5+\cdot 005+\cdot 07$ $=3 \cdot 7514$.
79. $\cdot 4+74 \cdot 47+37 \cdot 007+75 \cdot 05+747 \cdot 077=934 \cdot 004$.
80. $56 \cdot 05+4 \cdot 75+\cdot 007+36 \cdot 14+4 \cdot 672=101 \cdot 619$.
81. $\cdot 76+\cdot 0076+76+\cdot 5+5+\cdot 05 .=82 \cdot 3176$.
82. $\cdot 5+\cdot 05+\cdot 005+5+50+500=555 \cdot 555$.
83. $\cdot 367+56 \cdot 7+762+97 \cdot 6+471=1387 \cdot 667$.
84. $1+\cdot 1+10+\cdot 01+160+\cdot 001=171 \cdot 111$.
$85.3 \cdot 76+44 \cdot 3+476 \cdot 1+5 \cdot 5=529 \cdot 66$.
86. $36 \cdot 77+4 \cdot 42+1 \cdot 1001+6=42 \cdot 8901$.
87. A merchant owes to A. $£ 1500$; to B. $£ 408$; to C. £1310 ; to D. £50; and to E. £1900; what is the sum of all his debts? Ans. £5168.
88. A merchant has received the following sums :$£ 200, \mathfrak{£} 315, £ 317$, £10, £172, £513 and £9; what is the amount of all ?

Ans. £1536.
89. A merchant bought 7 easks of merehandize. No. 1 weighed 310 tb ; No. 2, 420 tb ; No. 3, 338 tb ; No. $4,335 \mathrm{Hb}$; No. 5, 400 ib ; No. 6, 412 Hb ; and No. 7 429 fb : what is the weight of the entire?

Ans. 2644 fb.
90. What is the total weight of 9 easks of goods:Nos. 1,2 , and 3 , weighed each 350 ib ; Nos. 4 and 5 , each 331 Hb ; No. 6, 310 lb ; Nos. 7, 8, and 9, each 342 fb ?

Ans. 3048 Hb .
91. A merchant paid the following sums:-£5000, £2040, £1320, £1100, and £9070; how much was the amount of all the payments? Ans. £18530.
92. A linen draper sold 10 pieces of cloth, the first contained 34 yards; the second, third, fourth, and fifth, each 36 yards; the sixth, seventh, and eighth, each 33 yards; and the ninth and tenth each 35 yards; how many yards were there in all ?

$$
\text { Ans. } 347 .
$$

93. A eashicr received six bags of money, the first held £1034; the second, £1025; the third, £2008; the fourth, £7013; the fifth, £5075; and the sixth, £S9: how much was the whole sum? \quad ?ns. £ 16244.
94. A vintner buys 6 pipes of brandy, containing as follows :-126, 118, 125, 121, 127, and 119 gallons; how many gallons in the whole? Ans. 736 gals.

$$
\text { 95. What is the total weight of } 7 \text { easks, No. } 1 \text {, eon- }
$$

taining, 960 lb ; No. $2,725 \mathrm{lb}$; No. 3, 830 lb ; No. 4, 798 tb ; No. 5, 697 tb ; No. 6, 569 lb ; and No. 7, 987 lb ?

Ans. 5566 解.
96. A merehant bought 3 tons of butter, at $£ 90$ per ton; and 7 tons of tallow, at $£ 40$ per ton ; how much is the price of both butter and tallow? Ans. $£ 550$.
97. If a ton of merchandize cost £39, what will 20 tons eome to?
98. How much are five hundred and scventy-three; eight hundred and ninety-seven; five thousand six humdred and eighty-two; two thousand seven hundred aud twenty-one; fifty-six thousand seven hundred and seventyone?
99. Add eight hundred and fifty-six thousand, nine hundred and thirty-three; onc million nine hundred and seventy-six thousand, eight hundred and fifty-nine; two hundred and three millions, eight hundred and ninetyfive thousand, seven hundred and fifty-two.

$$
\text { Ans. } 206729544 .
$$

100. Add three millions and seventy-one thousand; four millions and eighty-six thousand; two millions and fifty-one thousind ; one million; twenty-five millions and six: serenteen millions and one; ten millions and two ; twelve millions and twenty-three; four hundred and seventy-two thousand, nine hundred and twenty-three; one hundred and forty-three thousand; one hundred and forty-three millions. Ans. 217823955.
101. Add one hundred and thirty-three thousand; seven hundred and seventy thousand; thirty-seven thousand ; eight hundred and forty-seven thousand; thirtythree thousand; cight hundred and seventy-six thousand; four hundred and nincty-one thousand. Ans. 3187000 .
102. Add together one hundred and sixty-seven thousand ; three hundred and sixty-seven thousaidd ; nine hundred and six thousand ; two hundred and forty-seven thousand ; ten thousand; seven hundred thousand; nine hundred and seventy-six thousand; one hundred and ninety-five thousand; ninety-seven thousand.
103. Add three ten-thousandtle Aus. 3665000. tenths; five hundredths ; six thousandths, forty-four, five

30 lb ; No. 4, and No. 7, Ans. 5566 tb. r, at £90 per ; how much Ans. £550. what will 20 Ans. £780. eventy-three ; and six hunhundred and and seventyAns. 66644. ousand, nine hundred and y-nine ; two and ninety-

206729544.

 thousand; millions and millions and as and two; andred and enty-three ; undred and 217823955. thousand; seven thouad ; thirtythousand; 3187000. even thou; nine hun-orty-seven and ; nine adred and3665000 . four, five ten-thou-
sandths; four thousand and forty one ; twenty-two, one tenth; one ten-thousandth. - Ans, $4107 \cdot 6572$.
104. Add one thousand ; one ten-thousandtl ; five hundredths; fourteen hundred and forty ; two tenths, three ten-thousandths; five, four tenths, four thousandths.

Ans. $2445 \cdot 6544$.
105. The circulation of promissory notes for the four weeks ending February 3, 1844, was as follows:-Bank of England, about $\mathfrak{£} 21,228,000$; private banks of England and Wales, £4,980,000; Joint Stock Banks of Tingland and Wales, $£ 3,446,000$; all the banks of Seotland, £2,791,000 ; Bank of Ireland, £3,581,000 ; all the other banks of Ireland, £2,429,000: what was the total circulation?

Aus. £38,455,000.
106. Chronologers have stated that the creation of the world occurred 4004 years before Christ ; the deluge, 2348 ; the eall of Abraham, 1921 ; the departure of the Israelites, from Egypt, 1491; the foundation of Solomon's temple, 1012 ; the end of the eaptivity, 536. This being the year 1844, how long is it since each of these events? Ans. From the creation, 5848 years; from the deluge, 4192 ; from the eall of Abraham, 3765 ; from the departure of the Israelites, 3335 ; from the foundation of the temple, 2856 ; and from the end of the eaptivity, 2380
107. The deluge, aceording to this calculation, oceurred 1656 years after the creation; the call of Abraham 427 after the deluge; the departure of the Israclites, 430 after the call of Abraham ; the foundation of the temple, 479 after the departure of the Israclites; and the end of the eaptivity, 476 after the foundation of the temple. How many years from the first to the last?

Aus. 3468 years.
108. Adam lived 930 years ; Seth, 912 ; Enos, 905 ; Cainan, 910 ; Mahalaleel, 895 ; Jared, 962 ; Enoch, 365 ; Methuselah, 969 ; Lamech, 777 ; Noah, 950 ; Shem, 600 ; Arphaxad, 438 ; Salah, 433 ; Heber, 464 ; Peleg, 239 ; Reu, 239 ; Serug, 230 ; Nahor, 148 ; Terah, 205 ; Abraham, 175 ; Isaare, 180 ; Jacob, 147. What is the sum of all their ages? Ans. 12073 years
13. The pupil should not be allowed to leave addition,
until he can, with great rapidity, continually add any of the nine digits to a given quantity; thus, beginning with 9 , to add 6 , he should say :-9, 15, 21, 27, 33, \&c., without hesitation, or further mention of the numbers. For instanee, he should not be allowed to proceed thus: 9 and 6 are $15 ; 15$ and 6 are 21 ; \&c. ; nor even 9 and 6 are 15 ; and 6 are 21 ; \&ce. He should be able, ultimately, to add the following-

5638
4756
9342
19736

in this manner:-2, $8 \ldots 16$ (the sum of the column; 10 which 1 is to be carried, and 6 to be set down); 5; $10 . . .13 ; 4,11 . .17$; $10,14 \ldots 19$.

QUESTIONS TO BE ANSWERED BY THE PUPIL.

1. To how many rules may all those of arithmetic be reduced? [1].
2. What is addition ? [3].
3. What are the names of the quantities used in addition? [3].
4. What are the signs of addition, and equality ? [4].
5. What is ihe vinculum; and what are its effects on additive quantities? [5].
6. What is the rule for addition ? [7].
7. What are the reasons for its different parts? [9].
8. Does this rule apply, at whatever side of the decimal point all, or any of the quantities to be added are found? [11].
9. How is addition proved? [10].
10. What is the reason of this proof? [.10].
add any of ginning with 7, 33, \&c., 10 numbers. oceed thus: even 9 and e able, ulti-
e column; down) ; 5;

UPIL.
thmetic bo
od in addi-
lity? [4]. effects on
ts? [9]. the deciadded are

SIMPLE SUBTRACTION.

14. Simple subtraction is eonfined to abstract numbers, and applicate which consist of but one denomination.

Subtraction enables us to take one number called tho subtrahend, from another ealled the minuend. If anything sleft, it is called the exceis ; in eommercial coneerns, it is termed the remainder; and in the mathematical seiences, the difference.
15. Subtraction is indicated by -, called the minus, or negative sign. Thus $5-4=1$, read five minus four equal to one, indieates that if 4 is substracted from 5, unity is left.

Quantities connected by the negative sign cannot be taken, indifferently, in any order; because, for example, $5-4$ is not the same as 4-5. In the former case the positive quantity is the greater, and 1 (which means $+1[4]$) is left; in the latter, the negative quantity is the greater, and -1, or one to be subtiacted, still remains. To illustrate yet further the use and nature of the signs, let us suppose that we have five pounds, and owe four; -the five pounds we have will be represented by 5 , and our debt by - 4 ; taking the 4 from the 5 , we shall have 1 pound $(+1)$ remaining. Next let us suppose that we have only four pounds and owe five; if we take the 5 from the 4-that is, if we pay as fur as we ean-a debt of one pound, represented by -1 , will still remain ;-consequently $5-4=1$; but $4-5=-1$.
16. A vineulum placed over a subtractive quantity, or one having the negative sign prefixed, alters its value, unless we change all the signs but the first:thus $5-3+2$, and $5-\overline{3+2}$, are not the same thing; for $5-3+2=4$; but $5-\overline{3+2}(3+2$ being considered now as but one quantity) $=0$; for $3+2=5$; -therefore $-\overline{3+2}$ is the same as $5-5$, whish leaves nothing; or, in other words, it is equal to 0 . If however, we change all the signs, exoept the first, the valuo of the quantity is
uot altered by tho vinculum; -thus $5-3+2=4$; and 5) -3-2, also, is equal to 4.

$$
\begin{aligned}
& \text { Again, } 27-4+7-3=27 \text {. } \\
& \quad 27-\frac{4+7-3}{}=19 \text {. } \\
& \text { But } \quad 27-4-7+3 \text { (changing all the signs of the } \\
& \text { origfaal quantitios, luat the first) }\}=27 .
\end{aligned}
$$

The following example will show how the vinculum affects numbers, according as we make it include an additive or a subtractive quantity:-

$$
\begin{aligned}
& 48+7-3-8+7-2=49 \text {. } \\
& 48+7-3-8+7-2=49 ; \text { what is under the vinculum heing } \\
& \text { adiditive, it is not not necessary to to } \\
& \text { change any signs }
\end{aligned}
$$

In the above, we have sometimes put an additive, and sometimes a subtractive quantity, under the vinculum; in the former casc, we were obliged to change the signs of all the terms connected by the vinculum, except the first-that is, to change all the signs under the vinculum ; in the latter. to preserve the original valuo of the quantity, it was not necessary to change any sign.

To Subtract Numbers.

17. Rues.--I. Place the digits of the subtrahend under those of the same denomination in the minuendunits under units, tens under tens, \&c.
II. Put a line under the subtrahend, to separate it from the remainder.
III. Subtract each digit of the subtrahend from the one over it in the minuend, beginning at the right hand side.

IV: If any order of the minuend be smaller than the quantity to be subtracted from it, increase it by ten; and either consider the next order of the minuend as lessened by unity, or the next order of the subtrahend as increased by it.
V. After subtracting any denomination of the sub-
trahend from the corresponding part of the minuend, set down what is left, if my thing, in the place which belongs to the same denomination of the "remainder."
VI. But if there is nothing left, put down a cypher-provided amy digit of the "remainder" will bo more distant from the decimal point, and at the same side of it. 18. Exampies 1.-Subtract 427 from 702.

Th2 mimnend.
427 sulternhem.
365 remninder, difference, or excess.
We cannot take 7 nnits from 2 units; lut "borrowing," ns it is called, one of the 9 tens in the mimend, and considering it as ten units, we add it to the 2 units, mad then have $1: 2$ mits; taking 7 from 12 units, 5 are left:--wo put 5 in the units' place of the "remainder." We nay consider the () tens of the minnend (one having been taken away, or borrowed) as 8 tens; or, which is the same thing, may suppose the 9 tens to remmin as they were, bint the 2 tens of the subtrahend to have become 3 ; then, 2 tens from s tens, or 3 tens from 9 tens, and 6 tens are lelt: :-we put if in the tens' place of the "remander." \& humbeds, of the sultraliend, taken from the 7 humdreds of the minuend, leave 3 humbreds-which we pat in the hundreds phate of the "remainder."

Example: 2-Tuke 5Gt from Tis.

$\frac{768}{204}$
204

When 6 tens are taken from 6 tens, nothing is left: we therefore put a cypher in the tens' place of the "remainder."
Wample 3.-Take 537 from 594.

$$
\frac{594}{537} \frac{57}{5}
$$

When 5 hundreds are taken from 5 lumdreds, nothing remains; but we do ant here set down a eypher, since no significant figne in the remainder is at the same side of, and farther fron the decimal print, tham the phee which would be occupied ly this cypher.
19. Reason of I.-We put digits of the same denominations in the sene vertical colum, that the different parts
of the subtrahend may be near those of the minuend from which they are to be taken; we arc then sure that the corresponding portions of the subtrahend and minueud may be easily found. By this arrangement, also, we remove any doubt as to the denominations to which the digits of the subtrakend belong-their valucs being rendered more certain, by their position with reference to the digits of the minuend.

Reason of II. -The separating line, though convenient, is not of sueh importance as in addition [9]; since the "romainder" can hardly be mistaken for another quantity.

Renson of III.-When the numbers are considerable, the subtraction cannot be cffected at once, from the limited powers of the mind; we iherefore divide the given quantities into parts; and it is clear that the sum of the differences of the corresponding parts, is equal to the difference beiween the sums of the parts:-thus, 578-327 is evidently equal to $500-300+70-20+8-7$, as can be shown to the child by pebbles, \&c. We begin at the right hand side, because it may be necessary to alter some of the digits of the minuend, so as to make it possible to subtract from them the corresponding oncs of the subtrahend; but, unless we begin at the right hand side, we cannot know what alterations may be required.

Reason of IV.-If any digit of the minuend be smaller than the corresponding digit of the subtrahend, we can proceed in cither of two ways. First, we may increase that denomination of the minuend which is too small, by borrowing one from the next higher, (considered as ten of the lower denomination, or that which is to be increased,) and adding it to those of tho lower, already in the minuend. In this casc we alter the form, brit not the value of the minuend; which, in the exannple given above, would become-

Hundreds.	tens.	units.
7	3	$12=792$, the minuend.
4	2	$7=427$, the subtrahend.
3	6	$5=365$, the difference.

Or, sccondly, we may add equal cuantities to both minuend and subtrahend, which will not altor the difference; then we would have
Humireds. tens. units.

$$
\begin{aligned}
& \stackrel{9}{7} \stackrel{7}{4}+10=792+10, \text { the minuend }+10 \\
& \frac{4}{4}-2+1 \\
& \hline 6
\end{aligned}
$$

In this mode of proceeding we do not use the given minuend and subtrahend, but others which produce the same remainder.

Reason of V.-The remainders obtained by subtracting, successively, the different denominations of the subtrahend from those which correspond in the minnend are the parts of
minuend from that the corresinueud may be we remove any gits of the subnore certain, by minuend.
convenient, is e the "remaintity.
considerable, com the limited ;iven quantities e differences of arence beiween vidently equal 0 the child by because it may minuend, so as corresponding the right hand equired.
nd be smaller we can proceed that denominawing one from denomination, to those of the we alter the , in the exann-
uend. trahend.
rence.
both minuend ence ; then we
$d+10$
1end +10 .
fference.
ven minuend ne remainder. subtracting, subtrahend the parts of
the total remainder. They are to be set down under the denominations which produced them, since they belong to these denominations.

Reason of VI.-Unless there is a significant figure at the same side of the decimal point, and more distant from it thar. the cypher, the latter-not being between the decimal point and a significant figure-will be useless [Sec. I. 28], and may therefore be omitted.
20. Proof of Subtraction:-Add together the remainder and subtrahend; and the sum should be equal to the minuend. For, the remainder expresses by how much the subtrahend is smaller than the minuend; adding, therefore, the remainder to the subtrahend, should make it equal to the minuend; thus

$$
\left.\begin{array}{ll}
8754 & \begin{array}{l}
\text { minuend. } \\
\underline{5839} \\
\text { subtrahend. }
\end{array} \\
\underline{2915} & \text { difference. }
\end{array}\right\}
$$

Sum of difference and subtrahend, $\overline{8754}=$ minuend.
Or; subtract the romainder from the minuend, and what is left should be equal to the subtrahend. For the remainder is the excess of the minuend above the subtrahend; therefore, taking away this excess, should leave both equal ; thus
3634 minuend.
7985 subtrahend.
Proof: 8634 minuend.
649 remainder. New remainder, $\frac{649}{7985}$ remainder.
In practice, it is sufficient to set down the quantities onec ; thus

8684 minuend.

$$
\frac{7985}{649} \text { subtrahend. }
$$ Difference between remainder and minuend, $\overline{7985}=$ subtrahend. 21. To Subtract, when the quantities contain Deci-mals.-The rule just given is applicable, at whatever side of the decimal point all or any of the digits may be found;-this follows, as in addition [11], from the very nature of notation. It is necessary to put the decimal point of the remainder under the decimal points of the minuend and subtrahend; otherwise the digits of the remainder will not, as they ought, have the samo value as the digits from which they have been derived.

Example.-Subtract 427.85 from 563.04 .

$$
\begin{aligned}
& 563 \cdot 04 \\
& 427 \cdot 85 \\
& \hline 135 \cdot 19
\end{aligned}
$$

Since the digit to the right of the decimal point in the remainder, indicates what is left after the subtraction of the tenths, it expresses so many tenths; and since the digit to the left of the decimal point indicates what remains after the subtraction of the units, it expresses so many units; all this is shown by the pusition of the decimal point.
22. It follows, from the principles of notation [Sec. I. 40], that however we may alter the decimal points of the minuend and subtrahend, as long as they stand in the same vertical column, the digits of the difference are not changed; thus, in the following examples, the same digits are found in all the remainders:-

ExERCISES in subtraction.

SUBTRACTION.
al point in the traction of the ce the digit to remains after many units;al point.
ation [Sec. I. nal points of they stand in the difference examples, the

S
.
.00040692
.0003547
.0000815

(5)
(6) 60377 40761

$704 \quad 745674$

 376789
(18)

69376576
$16 \quad 240910$

	(19)	(20)	(21)	(22)	(23)	(24)
From	35668	234100	4367676	345673	70101076	${ }_{6} 67360000$
Take	1709	990	256569	124799	37691734	$\begin{aligned} & 67360000 \\ & 31237777 \end{aligned}$
	(25)	(26)	(27)	(28)	(29)	(30)

$\begin{array}{llllllll}\text { From } & 1970000 & 7010707 & 67345001 & 1674561 & 14767674 & 4007070\end{array}$ T'ake $\begin{array}{lllllll}1361111 & 3441216 & 47134777 & 1123640 & 7476909 & 3713916\end{array}$

From	$\stackrel{(31)}{ }$	(32)	(33)	(34)	(35)
	7045676	37670070	70000000	70040500	50070007
	3077097	26716645	9999999	56767767	50070007
	(36)	(37)	(38)	(39)	(40)

From 11000000 Take 9910919		$\begin{gathered} (37) \\ 3000001 \\ 2199077 \end{gathered}$	$\begin{gathered} (38) \\ 8000800 \\ 377776 \end{gathered}$	$\begin{gathered} (39) \\ 8000000 \\ 62358 \end{gathered}$	$\begin{array}{r} (40) \\ 404005 \mathrm{~s} \\ 220202 \end{array}$
	(41)	(42)	(43)	(44)	(45)
Trame	$85 \cdot 73$	$805 \cdot 4$	594.763	$47 \cdot 630$	$52 \cdot 137$
	42•16	$73 \cdot 2$	$85 \cdot 600$	$0 \cdot 078$	$20 \cdot 005$
	(46)	(47)	(48)	(49)	(50)

51. $745676-567456=178220$. (62. $97777-4=97773$.
52. $566789-75674=501115 . \quad 63.60000-1=59999$.
53. $941000-5007=935993$.
64. $97001-50077=46024$.
65. $76734-977=75757$.

5f. $56400-100=56800$.
57. 700000-99=699901.
68. $5700-500=5200$.

5!. $9777-89=9688$.
60. $76000-1=75003$.
61. $90017-3=90014$.
64. $75477-76=75401$.
65. $7 \cdot 07-1 \cdot 05=6 \cdot 92$.
66. $1 \cdot 75-\cdot 074=1 \cdot 676$.
67. $97 \cdot 07-4 \cdot 769=92 \cdot 301$.
68. $7 \cdot 05-4 \cdot 776=2 \cdot 274$.
69. $10 \cdot 761-9 \cdot 001=1 \cdot 76$.
70. 12•10009-7•121=4•97009
71. $176 \cdot 1-\cdot 007=176 \cdot 093$. 72. $15 \cdot 06-7 \cdot 8: 33=7 \cdot 197$.
73. What number, added to 9709 , will inake it 10901
74. A vintner bought 20 pipes of brandy, Ans. 1192. 2459 gallons, and sold 14 pipes, containing 1680 gallons; how many pipes and gallons had he remaining?

Ans. 6 pipes and 779 gallons.
75. A merchant bought 564 hides, weighing 16800 ib , and sold of them 260 hides, weighing 7809 It ; how many hides had he unsold, and what was their weight?

Aus. 304 hides, weighing 8991 ib.
76. Λ gentleman who had 1756 acres of land, gives 250 acres to his eldest, and 230 to his second son; how many acres did he retain in his possession? Ans. 1276.
77. A merchant owes to A. £800; to B. £90; to C. £750; to D. £600. To meet these debts, he has but £971; how much is he deficient?

Ans. £1269.
78. Paris is about 225 English miles distant from London; Rome, 950 ; Madrid, 860 ; Vienna, 820 ; Copenhagen, 610 ; Geneva, 460; Moscow, 1660 ; Gibraltor, 1160 ; and Constantinople, 1600. How much more distant is Constantinople than Paris; Rome than Madrid ; and Vienna than Copenhagen. And how much less distant is Geneva than Moscow ; and Paris than Madrid? Ans. Constantinople is 1375 miles more distant than Paris; Roine, 90 more than Madrid; and Vienna, 210 more than Copenhagen. Geneva is 1200 miles less distant than Moscow; and Paris, 635 less than Madrid.
79. How much was the Jewish greater than the English mile ; allowing the former to have been 1.3817 miles English ?
80. How much is the English greater than the Roman mile; allowing the latter to have been 0.915719 of a mile Zinglish ? Ans. 0.084281 81. What is the value of $6-3+15-4$? Ans. 14
82. Of $43+\overline{7-3-14}$?

Ans. 33
83. Of $47 \cdot 6-\overline{2+1-24+16-34}$? Ans. 5294
84. What is the difference between $15+13-6-81+$ 62, and $15+13-\overline{6-81+62}$? Ans. 38 .
23. Refore leaving this rule, the pupii should be akie
to take any of the nine digits continually from a given number, without stopping or hesitating. Thus, subtracting 7 from 94, he should say, 94, 87, 80, \&c.; and should proceed, for instance, with the following example

$$
5376
$$

4298
1078
in this manner: $-8,16 \ldots 8$ (the difference, to be set down) ; 10, 17...7; 3, 3... $0 ; 4,5 . . .1$.

QUEStions to be answered by the pupll.

1. What is subtraction? [14].
2. What are the names of the terms used in subtraction? [14].
3. What is the sign of subtraction ? [15].
4. How is the vinculum used, with a subtractive quantity? [16].
5. What is the rule for subtraction? [17].
6. What are the reasons of its different parts ? [19].
7. Does it apply, when there are decimals? [21].
8. How is subtraction proved, and why? [20].
9. Exemplify a bricf mode of performing subtraction? [23].

SImple Multiphication,

24. Simple multiplication is confined to abstract numbers, and applicate which contain but one denomination.

Multiplication cuables us to add a quantity, cailed the multiplicand, a number of times indicated by the mulliplier. The multiplicand, therefore, is the number multiplied; the multiplier is that by which we multiply: the result of the multiphication is called the product. It follows, that what, in addition, would be called an "addend," in multiplication, is termed the " multiplicond;" and what, in the former, would be galled the "sum," in the latter, is designated tho "product." The quantities which, when mulingled together, give the
product, are called also factors, and, when they are integers, submultiples. There may be more than two factors ; in that case, the multiplicand, multiplier, or both, will consist of more than one of them. Thus, if 5 6 , and 7 , be the factors, either 5 times 6 may be considered as the multiplicand, and 7 as the multiplier-on 5 as the multiplicand, and 6 times 7 as the multiplier.
25. Quantities not formed by the continued addition of any number, but unity-that is, which are not the products of any two numbers, unless unity is taken as one of them-are called prime numbers: all others are termed composite. Thus 3 and 5 are prime, but 9 and 14 are composite numbers; because, only three, multiplied by one, will produce "three," and only five, multiplied by one, will produce "five,"一but, three multiplicd by three will produce " nine," and seven multiplied by two will produce " oourteen."
26. Any quantity contained in another, some number of times, expressed by an integer-or, in other words, that can be subtracted from it without leaving a re-mainder-is said to be a measure, or aliquot part of that other. Thus 5 is a measure of 15 , because it is contained in it three times exactly-or can be subtracted from it a number of times, expressed by 3 , an integer, without leaving a remainder; but 5 is not a measure of 14, because, taking it as often as possible from 14, 4 will still be left;-thus, $15-5=10,10-5=$ $5,5-5=0$, but $14-5=9$, and $9-5=4$. Measure, submultiple, and aliquot part, are synonymous.
27. The common measure of two or more quantities is a number that will measure each of them : it is a measure common to them. Numbers which have no common measure but unity, are said to be prime to each other; all others are composite to each other. Thus 7 and 5 are prime to each other, for unity alone will rueasure both; 9 and 12 are somposite to each other, because 3 will measure cither. It is evident that two prime numbers must be prime to each other; thus 3 and 7 ; for 3 cannot measure seven, nor 7 throe, andexcept unity-there is no other number that will measure either of thom.

Two numbers may be composito to each other, and yet one of then may be a mime number; thus 5 and 25 are both measured by 5 , still the former is prime.

Two numbers may be composite, and yet prime to each other ; thus 9 and 14 are both composite numbers, yet they lave no common measure but unity.
28. The greatest common measure of two or more numbers, is the greatest number which is their common measure ; thus 30 and 60 are measured by $5,10,15$, and 30 ; therefore each of these is their common measure ;-but 30 is their greatest common measure. When a product is formed by factors which are integers, it is measured by each of them.
29. One number is the ulliple of another, if it contain the latter a number of times expressed by an integer. Thus 27 is a multiple of 9 , because it contains it a number of times expressed by 3 , an integer. Any quantity is the multiple of its measure, and the measure of its multiple.
30. The common multiple of two or more quantities, is a number that is the multiple of each, by an integer ;thus 40 is the common multiple of 8 and 5 ; since it is a multiple of 8 by 5 , an integer, and of 5 by 8 , an integer.

Ths least common multiple of two or more quantities, is the least number which is their common multiple; thus 30 is a common multiple of 3 and 5 ; but 15 is their least common multiple; for no number smaller than 15 contains each of them exactly.
31. The equimultiples of two or more numbers, are their products, when multiplied by the same number ;thus 27,12 and 18 , are equimultiples of 9,4 , and 6 ; because, multiplying 9 by three, gives 27 , multiplying 4 by three, gives 12, and multiplying 6 by three, gives 18.
32. Multiplication greatly abbreviates the process of addition;-for example, to add 68965 to itself 7000 times by "addition," would be a work of great labour, and consume much time ; but by "multiplication," as we shall find presently, it can be done with ease, in less than a minute.
33. At first it may seem inaccurate, to have stated [2] that multiplication is a species of addition ; since we can know the product of two quantities without having
recourse to that rule, if they are found in the multiplication table. But it must not be forgotten that the multiplication table is aetually the result of additions, long since made ; without its assistanee, to multiply so simple a number as 4 by so small a one as five, we should be obliged to proceed as follows,

4
4
4
4
4
20

performing the addition, as with any other addends.
The multiplieation table is due to Pythagoras, a celebrated Greek philosopher, who was born 590 years before Christ.
34. We express multiplication by \times; thus $5 \times 7=$ 35 , means that 5 multiplied by 7 are equal to 35 , or that the produet of 5 and 7 , or of 5 by 7 , is equal to 35 .

When a quantity under the vineulum is to be multiplied by any number, each of its parts must be multi-plied-for, to multiply the whole, we must multiply each of its parts : -thus, $3 \times \overline{7+8-3}=3 \times 7+3 \times 8-$ 3×3; and $\overline{4+5} \times \overline{8+3-6}$, means that each of the terms under the latter vinculum, is to be multiplied by each of those under the former.
35. Quantities conneeted by the sign of multiplieation may be read in any order; thus $5 \times 6=6 \times 5$. This will be evident from the following illustration, by whieh it appears that the very same number may be considered either as 5×6, or 6×5, aecording to the view we take
of it :-

Quantities connected by the sign of multiplication,

he multipli-

 at the mulditions, long ly so simple e should bedends. ras, a cele590 years us $5 \times 7=$ 1 to 35 , or qual to 35 . be multibe multit multiply $+3 \times 8-$ ch of the ltiplied by
are multiplied if we multiply one of the factors; thus $6 \times 7 \times 3$ multiplied by $4=6 \times 7$ multiplied by 3×4.
36. To prepare him for multiplication, the pupil should be made, on seeing any two digits, to name their product, without mentioning the digits themselves. Thus, a large number having been set down, he may begin with the product of the first and second digits; and then proceed with that of the second and third, \&c: Taking

587634925867

for an example, he should say :- 40 (the product of 5 and 8) ; 56 (the product of 8 and 7) ; 42 ; 18 ; \&c., as rapidly as he could read $5,8,7$, \&c.

To Multiply Numbers.

37. When neither multiplicand, nor multiplier exceeds 12-

Rule.-Find the product of the given numbers by the multiplication table, page 1.

The pupil should be perfectly familiar with this table.
Example.-What is the product of 5 and 7 ? The multiplication table shows that $5 \times 7=35$, (5 times 7 are 35).
38. This rule is applicable, whatever may be the relative values of the multiplicand and multiplier; that is [Sec. I. 18 and 40], whatever may be the hind of units expressed-provided their absolute values do not exceed 12. Thus, for instance, 1200×90, would come under it, as well as 12×9; also $\cdot 0009 \times 0 \cdot 8$, as well as 9×8. We shall reserve what is to be said of the management of cyphers, and decimals for the next rule; it will be equally true, however, in all cases of multiplication.
39. When the multiplicand does, but the multiplier does not exceed $12-$
Rule.-I. Place the multiplier under that denomination of the multiplicand to which it belongs.
II. Put a line under the multiplier, to separate it from the product.
III. Multiply each denomination of the multiplicand by the maltiplier-begiuning at the right hand side.
IV. If the product of the multiplier and any digit of the multiplicand is less than ten, set it down under that digit; but if it be greater, for every ten it contains carry one to the next produc., and put down only what remains, after dederting the tens; if nothing remains, put down a eypher.
.V. Set down the last product in full.
40. Example. 1. -What is the product of 897351×4 ? 897351 multiplicand.

4 multiplier.

3589404 product.

4 times one unit are 4 units; since 4 is less than ten, it gives nothing to be "earried," we, therefore, set it down in the units' phace of the product. 4 times 5 are twenty (tens); which are equal to 2 tens of tens, or hundreds to :3 earried, and no units of tens to be set down in the tens' place of the produet-in which, therefore, we put a cypher. 4 times 3 are 12 (hundreds), which, with the 2 hundreds to be earried from the tens, make 14 luundreds; these are equal to one thousand to be carried, and 4 to be set down in the thousands' place of the product. 4 times 7 are 28 (thousands), and 1 thousand to be earried, are 29 thousands; or 2 to be carried to the next product, and 9 to be set down 4 times 9 are 36 , and 2 are 38 ; or 3 to be carrricd, and 8 to be set down. 4 times 8 are 32 , and 3 to be carried are 35 ; which is to be set down, sinee there is nothing in the next denomination of the multiplicand.
Exampies 2.-Multiply 80073 by 2.

$$
\begin{array}{r}
80073 \\
\quad 2 \\
\hline 160146
\end{array}
$$

Twice 3 units are 6 units; 6 being less than ten, gives nothing to be carried, hence we put it down in the units' place of the quotient. Twice 7 tens are 14 tens; or 1 hundred to be earried, and 4 tens to be set down. As there are no hundreds in the multiplicand, we ean have none in the product, except that which is derivel from the multiplication of the tens; we accordingly put the 1 , to be carried, in the hundreds' place of the product. Since there are no thousands in the multiplicand. nor any to be earried, we put a cypher in that denomination of the product, to keep any significant figures that follow, in their proper places. wn under t contains only what remains, down in y (tens); 9 carried, place of pher. 4 reds tu bo are equal n in the 28 (thouands ; or set down and 8 to 1 are 35 ; the next liundred e are no the proplication d , in the no thouve put a eep any
41. Reason of I.-The multiplier is to be placed under that denomination of the multiplicand to which it belongs; sineethere is then no doubt of its value. Sometimes it is necessary to udd eyphers in putting down the multiplier; thus,

Example 1.-478 multiplied by 2 hundred-
478 multiplieand.
200 multiplier.

Example 2.-559 multiplied by 3 ten-thousanilthig539 multiplicand.
0.0003 multiplier.

Reason of II.-It is similar to that given for the separating line in subtraction [19].

Reason of ILI.-When the multiplieand exceeds a eertain amount, the powers of the mind are too limited to allow us to multiply it at once ; we therefore multiply its parts, in suecession, and add the results as we proceed. It is clear that the sum of the prodnets of the parts by the multiplier, is equal to the product of the sum of the parts by the same multi-plier:-thus, 537×8 is evidently equal to $500 \times 8+80 \times 8+7 \times 8$ For multiplying all the parts, is multiplying the whole ; since the whole is equal to the sum of all its parts.
We begin at the right hand side to avoil the necessity of afterwards adding together the subordinate products. Thus, taking the example given above; were wo to begin at the left hand, the process would be-

$$
\begin{aligned}
& 897351 \\
& 4 \\
& 3200000=800000 \times 4 \\
& 360000=90000 \times 4 \\
& 28000=7000 \times 4 \\
& 1200=300 \times 4 \\
& 200=50 \times 4 \\
& 4=1 \times 4
\end{aligned}
$$

$3589404=$ sum of products.

Reason of IV.-It is the same as that of the fourth part of the rule for addition [9]; the product of the multiplier and any denomination of the multiplicand, being equivalent to the srom of a colum n in addition. It is easy to change the given wample to an exercise in addition; for 8978.51×4, is the same thing is

897851
897851
897351
897351
$\widehat{3589401}$

Reason of V.-It follows, that the last product is to be get down in full; for the tens it contains will not bo increased: thoy may, therefore, bo set down at onee.

This rule includes all cases in whish the absolute valuo of the digits in the multiplier does not excoed 12. Their relative value is not material f for it is as casy to multiply by 2 thousands as by 2 units.
42. To prove multiplication, when the meltiplier does not exceed 12. Multiply the multiplicand by the multiplier, minus one; and add the multiplicand to the product. The sum should be the same as the product of the multiplicand and multiplier.

Example.-Multiply 6432 by 7 , and prove the a wult. 6432 multiplicand.
$6=7$ (the multiplier) -1

$\left.\stackrel{6432}{\frac{7}{4502 t}}=6+1\right)=$| $\overline{38592}$ multiplicand $\times 6$. |
| :--- |
| $\frac{6432}{45024}$ multipliplicand multiplied by $\overline{6}, \overline{1}=7$. |

We havo multiplicd by 6 , and by 1 , and added the results; but six times the multiplicand, plus once the multiplicand, is equal to seven times the multiplicand. What we netain from the two processes snould be the same, for we have merely used two methods of doing one thing.

EXERCISES FOR THE PUPIL.

	(1)	(2)	(3)	(4)
Multiply	76762	67456	78976	57046
By	2	2	6	5
	(5)	(6)	(7)	(8)
Multiply	763452	456769	354709	456788
By	6	7	8	8
	(9)	(10)	(11)	(12)
Multiply	866342	738579	476887 an	8129763
By	11	12	11	12

et is to be set e incruasel:
the absolute not exceed for it is as s.
ltiplier does oy the multo the proproduct of
rwult.
$\overline{0} \cdot \overline{1}=7$.
the results; ultiplicand, t we ohtain or we have
43. To Multiply when the Quantities contain Cyphers. or Decimals.-The rules already given are applicable: those which follow are consequences of them.

When there are cyphers at the end of the multiplicand (cyphers in the middle of it,' have been already noticed [40])-

Rule.-Multiply as if there were none, and add to the product as many cyphers as have been neglected. For

The greater the quantity multiplied, the greater ought to be the product.

Example.-Multiply 56000 by 4. 56000

4
224000
4 times 6 units in the fourth place from the decimal point, are evidently 24 units in the same place ;--that is, 2 in the fifth place, to be carried, and 4 in the fourth, to be set down. That we may leave no doubt of the 4 being in the fourth place of the vroduct, we put three eyphers to the right hand. 4 times 5 are 20 , and the 2 to be carried, make 22.
44. If the multiplier contains cyphers-

Rule.-Multiply as if there were none, and add to the product as many cyphers as have been neglected.
The greater the multiplier, the greater the number of tines the multiplicand is added to itself; and, therefore, the greater the product.
Fxample.-Multiply 567 by 200.
567
200
113400
From what we have said [35], it follows that 200×7 is the same as 7×200; but 7 times 2 hundred are 14 hundred; and, consequently, 200 times 7 are 14 hundred ;--that is, 1 in the fourth place, to be carried, and 4 in the third, to be set down. We add two cyphers, to show that the 4 is in the third place.
45. If both multiplicand and multiplier contain cyphers-
Rule.-Multiply as if there were none in either, and add to the product as many cyphers as are found in both.

Each of the quantities to be multiplicd adds cyphers to the product [43 and 44].

Example.-Muhtiply 46000 by 800.

46000
800
36800000

8 times 6 thousand woold be 48 thousand; but 8 lundrech times six thousand ought to produre a number 100 times greater-or 48 hundred thousand;-that is, 4 in the seventh place from the decimal point, to be carried, and 8 in the sixth place, to be set down. But, 5 cyphers are required, to keep the 8 in the sixth place. After ascertaining the position of the first digit in the p. pupil already knows-there can be no diffieulty with the other digits.
46. When there are decinal places in the multipli-cand-

Rule.-Multiply as if there were none, and remove the product (by means of the decimal point) so many places to the right as there have been decimals neglected.
The smaller the quantity multiplicd, the less the product
Example.-Multiply 5.67 by 4.

$5 \cdot 67$
4
23.63

4 times 7 hundredths are 28 hundreths;--or 2 tenths, to be carried, ard, $\&$ hundredths-or 8 in the second place, to the right of the decimal point, to be set down. 4 times 6 tonths are 24 tenths, which, with the 2 tenths to be carried, make 26 tenths;-or 2 units to be carried, and 6 tenths to be set down. To show that the 6 represents tenths, we put the decimal point to the left of it. 4 tines 5 units are 20 units, which, with the 2 to be carried, make 22 units.
47. When there are decimals in the multiplier-

Rule.-Multiply as if there were none, and remove the product so many places to the right as there are decimals in the multiplier.

The smaller the quantity by which we multiply, the less must be the result.

Example.-Muhiply 563 by $\cdot 07$
0.07
$39 \cdot 41$
3 multiplied ly 7 hundredths, is the same [35] as 7 hundredths multiplied by 3 ; which is equal to 21 hundredths ;or 2 tenths to be carried, and 1 hundredth-or 1 in the second place to the right of the decimal point, to be set down. Of course the 4 , derived from the next product, must be one place from the decimal point, scc.
48. When there are decimals in both multiplicand and multiplier-

Rule.-Multiply as if there were none, and move the product so many places to the right as there are decinals in both.
In this case the product is diminished, by the smallness of both multiplicand and multiplier.

Example 1.-Multiply $56 \cdot 3$ by 08. $56 \cdot 3$
-08
4.504

8 times 3 tenths are 24 [46]; consequently a quantity one hundred times less than 8-or 08 , multiplied by threetenths, will give a quantity one hundred times less than $2 \cdot 4-$ or 024 ; that is, 4 in the thirl place from the decimal point, to be set down, and 2 in the second place, to be carried.
Example 2.-Multiply 5.63 by 0.00005 .

$$
\begin{aligned}
& 5 \cdot 63 \\
& 0.00005
\end{aligned}
$$

49. When there are decimals in the multiplicand, and cyphers in the multiplier; or the contrary-

Rule.-Multiply as if there were neither cyphers nor decimals ; then, if the decimals exceed the cyphers, move the product so many places to the right as will be equal to the excess; but if the cyphers exceed the decimals, move it so many places to the left as will be equal to the excess.
The oyphers move the product to the left, the decimals to the right; the effect of both together, therefore, will be equal to the difference of their separate effects.
$\underset{4600}{\text { Example }} 1$.-Multiply 4600 by $\cdot 06$.
0.062 cyphers and 2 decimals; excess $=0$ 276
Example 2.-Multiply 47.63 by 300.
$300 \quad 2$ decimals and 2 cyphers; excess $=0$.
14289
Example 3.-Multiply 85.2 by 7000.

$\underset{578 \cdot 300}{\text { Example }} 4$. -Multiply $578 \cdot 36$ by 20.
$20 \quad 2$ decimals and 1 oypher ; excess $=1$ decimal.
11567.2

Multiply By	(29) 56841 $0 \cdot 0003$	$\begin{gathered} (30) \\ 85637 \\ 0 \cdot 005 \end{gathered}$	$\begin{gathered} (31) \\ 72158 \\ 0 \cdot 0007 \end{gathered}$	$\begin{array}{r} (32) \\ 2176 \cdot 38 \\ 0 \cdot 06 \end{array}$
	(33)	(34)		(36)
Multiply	$875 \cdot 432$	78000	$51 \cdot 721$	32
13y	$0 \cdot 04$	$0 \cdot 3$	6000 .	$0 \cdot 00007$
				.00224

In the last example we are obliged to add cyphers to the product, to make up the required number of decimal places.
50. When both multiplicand and multiplier exceed 12-
Rude.-I. Place the digits of the multiplier under those denominations of the multiplicand to which they belong.
II. Put a line under the multiplier, to separate is from the prodnet.
III. Multiply the multiplicand, and each part of the multiplicr (by the preceding rule [39]), beginning with the digit at the right hand, and taking care to move the product of the multiplicand and each successive digit of the multiplier, so many places more to the left, than the preceding product, as the digit of the multiplier which produces it is more to the left than the significant figure by which we have last multiplied.
IV. Add together all the products; and their sum will be the product of the multiplicand and multiplier.
51. Examples.-Multiply 5634 by 8070.

5934 8,73 16902	$=$ product by 3.
39938	$=$ product by 70.
45072	$=$ product by 8000.
45483282	$=$ product by 8073.

The product of the multiplic:nd by 3 , requires no an nation.

7 tens times 4 , or [35] 4 times 7 tens are 28 tens:- 2 hundreds, to be carricd, and 8 tens (8 in the second place from the decimal point) to be set down, \&c. 8000 times 4 , or 4 times 8000 , are 32 thousind :-or 3 tens of thousands to bo carried, and 2 thousands (2 in the fourth place) to bo set down, \&c. It is unnecessary to add cyphers, to show the values of the first digits of the different products; as they are sufficiently indicated by the digits above. The products by 3 , by 70 , and by 8000 , are added together in the ordin:ry way.
52. Reasons or I. and II.-They are the same as those given for corresponding parts of the preceding rule [41].

Reason of III.-We are obliged to multiply successively by the parts of the multiplier ; since we eannot multiply by the whole at once.
ileason of IV.-The sum of the produets of the muitiplicand by the parts of the multiplier, is evidently equal to the product of the multiplieand by the whole multiplier; for, in the example just given, $5634 \times 8073=5634 \times \overline{8000+70+8}=$ [34] $5634 \times 8000+5634 \times 70+5634 \times 3$. Besides [35], we may consider the multiplicand as multiplier, and the multiplier as multiplicand; then, observing the rule would be the same thing as multiplying the new multiplier into the different parts of the new multipliend; whieh, we have already seen [41], is the same as multiplying the whole multiplieand by the multiplier. The example, just given, would become 8073×5634.

8073 new multiplicand
5634 ne:v multiplier.

We are to multiply 3 , the first digit of the multiplicand, by 5634, the multiplier; then to multiply 7 (tens), the second digit of the multiplieand, by the multiplier; \&c. When the multiplier was small, we could add the different produete as we proceeded; but we nov require a separate addition,-whieti, however, does not affect the nature, nor the reasons of the peocess.
53. To prove multiplication, when the multiplier exceeds 12

Rule.-Multiply the multiplier by the multiplicand ; and the product ought to be the same as that of the multiplicand by the multiplier [35]. It is evident, that we could not avail ourselves of this mode of proof, in the last rule [42]; as it would have supposed the pupil to be then able to multiply by a quantity greater than 12
:- - 2 hun. olace from nes 4 , or 4 rands to be) to be set show the ; as they e products e ordin:"y
e as those [41]. uccessively aultiply by e muitiplipual to the er ; for, in $+70+8=$ J, we may ultiplier as the same e different ready seen plicand by ld become
plicand, by the second When the roducte as n, 一whicti, ons of the
iplier extiplicand ; lat of the dent, that oof, in the a pupil to thi:m 12
54. We may prove multiplication by what is called " casting out the nines."

Rule.-Casi the nines from the sum of the digits of the multiplicand and multiplier ; multiply the remainders, and cast the nines from the product:- What is now left should be the same as what is obtained, by casting the nines, out of the sum of the digits of the product of the multiplicand by the multiplier.

Example 1.-Lot the quantitics multiplied je 9420 and 3785.
'Taking the nines from 94 ± 6, we get 3 ats remainder. And from 3785 , we get 5 .

47130
$754083 \times 5=15$, from which 9 65982 - being taken, 28278 - 6 are left.
Tiking the nines from $\overline{35677410}, 6$ are left.
The remainders being equal, we are to presume the multiplication is correct. . The same result, however, would have been obtained, even if we had misplaced digits, added or omitted cyphers, or fallei. into errors which had counteracterl each other:-with ordinary care, however, none of these is likely to occur.
F:xampin: 2.-Let the numbers be 76542 and 8436.
Toking the aines from 76545, the remainder is 6.
Taking them from 8436, it is 3 .

$$
\begin{aligned}
& \frac{259252}{} \quad 6 \times 3=18, \text { the } \\
& 306108 \text { remainder from which is } 0 \text {. } \\
& 612336
\end{aligned}
$$

Taking the nines from $\overline{645708312}$ also, the remainder is 0 .
The remainders being the same, the multiplication may be considered right.

Example 3.-Let the numbers be 463 and 54 . From 463, the remainder is 4. From 54, it i: 0 .

[^0]The remainder being in each easo 0 , wo aro to suppose that the multiplieation is eorrectly performed.
This proof applies whatever be the position of the decimal point in either of the given numbers.
55. To understand this rule, it must be known that "a number, from which 9 is taken as often as possible, will leave the same remainder as will be obtained if 9 be taken as often as possible from the sum of its digits."

Sinee the pupil is not supposed, as yet, to have learned division, he cannot. use that rule for the purpose of aasting out the nines; - nevertheless, he can easily effeet this objeet.
Let the given number be 563 . The sum of its digits is $5+6+3$, while the number itself is $500+60+3$.
First, to take 9 as often as possible from the sum of its digits. 5 and 6 are ${ }^{\circ} 11$; from which, 9 being taken, 2 are left. 2 and 3 are 5 , whieh, not eontaining 4 , is to be set down as the remainder.

Next, to taze 9 as often as possible from the number itself, $563=500+60+3=5 \times 100+6 \times 10+3=5 \times \overline{99+1}+6 \times$ $\overline{9+1}+3:=$ (if we remove the vinculum [34]), $5 \times 99+5+$ $6 \times 9+6+3$. But any number of nines, will be found to be the product of the same number of ones by $9:$-thus $999=$ $111 \times 9 ; 90=11 \times 9$; and $9=1 \times 9$. Henee 5×90 expresses a certain number of nines-being $\overline{5 \times 11} \times 9$; it may, therefure, be cast out; and for a similar reason, 6×9; after which, there will then be left $5+6+3$-from whieh the nines are still to be rejeeted; but, as this is the sum of the digits, we must, in easting the nines out of it, oltain the same remainder as before. Consequently "we get the same remainder whether we east the nines out of the number itself, or out of the sum of its digits."

Neither the above, nor the following reasoning ean offer any diffeulty to the pupil who has made himself as familiar with the use of the signs as he ought:they will both, on the eontrary, serve to show how mucb simplieity, is derived from the use of characters expressing, not only quantities, but processes; for, by means of such eharacters, a lony series of argumentation may be seen, as it were, at a single glanee.
56. "Casting the nines from the factors, maitiplying the resulting remainders, and casting the nines from this product,
will leave the same remainder, as if the nings were cast from the product of the faetors,"-provided the multiplication has been rightly performed.

T'o show this, set down the quantities, and take away the nines, as before. Let the factors be 573×464.
Casting the nines from $5+7+3$ (which we have just seon is the same as easting the nines from 573), we obtain 6 as remainder. Casting the nines from $4+6+4$, we get 5 as remainder. Multiplying 6 and 5 we obtain 30 as product; which, leeing equal to $3 \times 10=3 \times \overline{9+1}=3 \times 9+3$, will, when the nines are taken away, give 3 as remainder.

We can show that 3 will be the remainder, also, if we cast the nines from the product of the faetors;-which is effeeted by setting down this product; and taking, in suceession, quantities that are equal to it-as follows,

$$
\begin{aligned}
& 573 \times 464 \text { (the product of the factors) }= \\
& 5 \times 100+7 \times 10+3 \times \overline{4 \times 100+6 \times 10+4}= \\
& \frac{5 \times \overline{99+1}+7 \times \overline{9+1}+3}{5 \times 99+5+7 \times 9+7+3} \times \frac{4 \times \overline{99+1}+6 \times \overline{9+1}+4}{4 \times 99+4+6 \times 9+6+4}=
\end{aligned}
$$

5×99, as we have seen [55], expresses a number of nines; it will continue to do so, when multiplied by all the quantities under the second vineulum, and is, therefore, to be cast out; and, for the same reason, 7×9. 4×99 expresses a number of nines; it will continue to do so when multiplied by the quantities under the first vinculum, and is, therefore, to be east out ; and, for the same reason, 6×9. There will then be left, only $\overline{5+7+3} \times \overline{4+6+4},-$ from which the nines are still to be cast out, the remainders to be multiplied together, and. the nines to be east from their product;--but we have done all this already, and obtained 3, as the remainder.

exercibes for the pupil.				
	(37)	(38)	(39)	(40)
Multiply	765	732	997	767
By	765	456	345	347
Iroducts				
	(41)	(42)	(43)	(44)
Multiply	657	456	767	745
By	789	791	789	741
Products				

57. If there are cyphers, or decimals in the multiplicand, multiplier, or both; the same rules apply as when the multiplior does not exceed 12 [43, \&c.].

EXAMPLES.
$\left.\begin{array}{cccccc}(1) & (2) & (3) & (4) & (5) & (6) \\ 4600 & 2784 & 32 \cdot 68 & 7856 & 87 \cdot 96 & 482000 \\ \frac{57}{} & 620 & 26 \cdot & 0 \cdot 32 & 220 \cdot & 0 \cdot 37 \\ & & & & & \\ 262200 & 1726080 & 849 \cdot 68 & 2513 \cdot 92 & & 19351 \cdot 2\end{array}\right)$

Contractions in Multiplicatzon.

58. When it is not neccssary to have as many decimal places in the product, as are in both multiplicand and multiplier-

Rule.-Reverse the multiplier, putting its units' place under the place of that denomination in the multiplicand, which is the lowest of the required product.

Multiply by cach digit of the multiplier, beginning with the denomination over it in the multiplicand; but adding what would have been obtained, on multiplying the preceding digit of the multiplicand-unity, if the number obtaincd would be between 5 and $15 ; 2$, if between 15 and 25 ; 3, if between 25 and 35 ; \&c.
Let the lowest denominations of the products, arising from the different digits of the multiplicand, stand in the same vertical column.

Add up all the products for the total product; from which cut off the requircal number of decimal places.
59. Example 1.-Multiply 5.6784 by 9.7324 , so as to have four decimals in the product.

$\begin{gathered} \text { Short Method. } \\ 567844 \\ 42379 \end{gathered}$	Ordinary Method 5.575 t 9.7324
511056	
39749	113568
1703	1703.52
113	3974888
22	511056
$55 \cdot 2643$	$55 \cdot 2644.6016$

he multipliply as when

There are no units in the multiplier; but, as the rule directs, we put its units' place under the third decimal place of the multiplicand. In multiplying by 4 , since thero is no digit over it in the multiplicand, we merely set down what would have resulted from multiplying the preceding denomination of the multiplicand.
Exampie 3.--Multiply 4737 by 6731 so as to have 6 deeimal places in the product.

47370
1376
284220
33159
1421
47
318847

Ne have put the units' place of the multiplier under the sisth decimal place of the multiplicand, adding a eypher, or surnposing it to be added.
Exampiee 4.-Multiply 84.0332 by 0056, sc as to have fuur decimal places.

$84 \cdot 67 \dot{3} 2$ 65
4234 508 4742

Example 5.-Multiply 23257 by $\cdot 243$, so as to have four decimal places.

23257
342
465
93
7
.0565

We are obliged to place a cypher in the product, to make np the refuired number of decinnals.
60. To multiply loy a Composite Number-Ruls.-Multiply, successively, by its factors.
a the rule imal place thero is no own what ling denoto have 0
ander the ypher, or to have

Fxampt.f.- Multiply 732 by $96 . \quad 96=8 \times 12$ - therefore $732 \times 4=732 \times 8 \times 12$. [35].
$\frac{732}{5856}$
$\frac{12}{70272}$, product by 8 .
$\frac{8}{7}$, 8×12 or 90 .

If we multiply by 8 only, we multiply by a quantity 12 times too small ; and, therefore, the product will be 12 times less than it shonl? We rectify this, by making the product 12 times greater-wint is, we multiply it by 12 .
61. When the multiplier is not exactly a Composite Number-

Rule.-Multiply by the factors of the nearest composite; and add to, or subtract from the last product, so many times the multiplic 1 , as the assumed compusite is less or greater than the given multiplier

Example 1.-Multiply 927 by 87.
$87=7 \times 12+3 ;$ therefore $927 \times 87=927 \times \overline{7 \times 1} \overline{2+3}=$ $027 \times 7 \times 12+927 \times 3$. [34].

$$
\begin{aligned}
& \frac{927}{7} \\
& \hline 6489=927 \times 7 \\
& \overline{12} \\
& \hline 77868=927 \times 7 \times 12 \\
& 2781=927 \times 3 \\
& \hline 80649=927 \times 7 \times 12+927 \times 3, \text { or } 927 \times 87
\end{aligned}
$$

If we multiply only by $84(7 \times 12)$, we take the number to be multiplied is times less than we ought; this is rectified, by adding 3 times the multiplicand.

Example 2.-Multiply 432 by 79. $79=81-2=9 \times 9-2$; therefore $432 \times 79=432 \times 9 \times 9-2=432 \times 9 \times 9-432 \times 2$. 432

9

$$
\begin{aligned}
\frac{3888}{9} & =432 \times 9 \\
\overline{34392} & =432 \times 9 \times 9 \\
864 & =432 \times 2 \\
\overline{34128} & =432 \times 9 \times 9-432 \times 2, \text { or } 432 \times 79
\end{aligned}
$$

In multiplying by 81 , the composite number, we have taken the number to be multiplied twice too often; but the inaccuracy is rectified by subtracting twice the multiplicand from
the product.
62. Ihis method is particularly convenient, when the multiplier consists of nines.

To Multiply by any Number of Nines, -
Ruas.-Remove the decimal point of the multiplicand so many places to the right (by adding cyphers if necessary) as there are nines in the multiplier ; and subtract the multiplicand from the result.

* Example.--Multiply 7347 by 999.

$$
7547 \times 999=7347000-7347=7339653
$$

We, in such a case, merely muluiply by the next higher convenient composite number, and subtract the multiplicand so many times as we have taken it too often; thus, in the example just given-

$$
7247 \times 999=7347 \times \overline{1000-1}=7347000-7347=7339653 .
$$

63. We may sometimes abridge multiplication by considering a part or parts of the multiplier as produced by multiplication of one or more other parts.

Example.-Multiply 57839268 by 62421648 . The mile tiplier may be divided as follows :-6, 24,216 , and 48 .

$$
\begin{aligned}
6 & =6 \\
24 & =6 \times 4 \\
216 & =24 \times 9 \\
48 & =24 \times 2
\end{aligned}
$$ 57830268, multiplicand 62421648, multiplier.

347035608 : $:$ product by $6(60000000)$.

12493281888 : product by $24(2400000)$. 2776284864 product by 48. $\frac{2}{3610422427673664}$ product by 62421648 . The product by 6 when multiplied by 4 will give the product by 24 ; the product by 24 , multiplied by 9 , will give the product by 216 -and, nultiplied by 2 , the product by 48.
64. There can be no difficulty in finding the places of the first digits of the different products. For when there are neither cyphers nor decimals in the multiplicandand during multiplication, we may suppose that there are neither $[48,8 c$.$] -the lowest denomination of each pro-$
ve taken inaccund from hen the ultiplihers if ; and plicand in the
duct, will be the same as the lowest denomination of the multiplier that produced it;-thus 12 units multiplied by 4 units will give 48 units; 14 units multiplied by 4 tens will give 56 tens; 124 units multiplied by 35 units will be 4340 units, \&c. ; and, therefore, the beginning of each product-if a significant figure-must stand under the lowest digit of the muitiplier from which it arises. When the process is finished, cyphers or decimals, if necessary, may be added, according to the rules already given.

The vertical dotted lines show that the places of the lowest digits of the respeetive multipliers, or those parts into whieh the whole multiplier has been divided, and the lowest digits of their resulting products are-as they ought to be-of the same denomination.

48 being of the denomination units, when multiplied into 8 units, will produce units; the first digit, therefore, of the product by 48 is in the units' place. 216, being of the denomination hundreds when multiplied into units will give hundreds; henee the first digit of the produet by 216 will be in the hundreds' place, \&c. The parts into which the multiplier is divided are, in reality, $\left.\begin{array}{r}60000000 \\ 2400000 \\ 21600 \\ 48\end{array}\right\}=62421648$, the wh:ole multiplier.
We shall give other contractions in multiplication hereafter, at the proper time.

EXERCISES.
45. $745 \times 456=339720$.
46. $476 \times 767=365092$.
47. $345 \times 579=199755$
48. $476 \times 479=228004$.
49. $897 \times 979=878163$.
50. $4 \cdot 59 \times 705=3235 \cdot 95$.

ह1. $767 \times 407=312169$.
52. $\cdot 45{ }^{7} \times \cdot 606=\cdot 276942$.
53. $700 \times 810=567000$.
54. $670 \times 910=609700$.
55. $910 \times 870=791700$.
56. $5001 \cdot 4 \times 70=350098$.
57. $64 \cdot 001 \times 40=2560 \cdot 04$.
58. $91009 \times 79=7189711$.

6\%. $40170 \times 80=3213600$.
60. $707 \times 604=427028$.
61. $777 \times \cdot 407=316 \cdot 239$.
62. $7407 \times 4404=32620428$.
63. $5767 \times 1307=7537469$.
64. $67 \cdot 74 \times \cdot 1706=11 \cdot 556444$
65. $4567 \times 2002=9143134$.
66. $7 \cdot 767 \times 301 \cdot 2=2339 \cdot 4204$
67. $9500 \times 7100=68160000$.
68. $7800 \times 9100=79980000$.
69. $6700 \times 6700=44890000$.
$70.5000 \times 7600=38000000$.
71. $70.814 \times 901.07=63808 \cdot 37098$.
72. $97001 \times 76706=7440558706$.
73. $95400 \times 67407=6295813800$.
74. $\cdot 56007 \times 45070=25242 \cdot 35490$
75. How many shillings in £1395; a pound being 20 shillings ?

Ans. 27900.
76. In 2480 pence how many farthings; four farthings being a penny?
77. If 17 oranges Ans. 9920. had for 87 shillings?
78. How much will 245 tons. 1479. ton?
79. If a pound of any thing Ans. 6125. will 112 pounds cost?
80. How many pence in 100 Ans. 448 pence. which is worth 57 pence? 100 pieces of coin, each of
81. How many gallons in 264 Ans. 5700 pence. taining 63 gallons ?
82. If the interest of $£ 1$ be $\mathfrak{L 0} 05$, hus. 16632 , much will be the intarest of £376?
83. If one article cost $£ 0 \cdot 75$, what will 973 such cost?
84. It has been computed that the gold, silver, and brass expended in building the temple of Solomon at Jerusalem, amounted in value to £6904822500 of our money; how many pence are there in this sum, one pound containing 240 ? Ans. 1657157400000 .
85. The following are the lengtlis of a degree of the meridian, in the following places: $60480 \cdot 2$ fathoms in Peru; $60486 \cdot 6$ in India; $60759 \cdot 4$ in France; 60836.6 in England; and 60952 4 in Lapland. 6 feet being a fathom, how many feet in each of the above? Ans. $362881 \cdot 2$ in Peru ; $362919 \cdot 6$ in India; 364556.4 in France; $365019 \cdot 6$ in England; and $365714 \cdot 4$ in Lapland. 86. The width of the Menai bridge between the points of suspension is 560 feet; and the weight between these two points 489 tons. 12 inches being a foot, and 2240 pounds a ton, how many inches in the former, and pounds in the latter?

Ans. 6720 inches, and 1095360 pounds.
87. There are two minims to a semibreve; two crotchets to a minim ; two quavers to a crotehet; two semiquavers to a quaver : and two demi-semiquavers to a semiquaver: how many demi-semiquavers are equal
to seven semibreves?

Ans. 221
and being is. 27900. four farns. 9920. ny can be ns. 1479. at \&25 a us. 6125. Iow much 18 pence. , each of 0 pence. ach con. 16632. uch will - £18-8. 73 such 8729.75. ver, and lomon at 0 of our um, one 400000. 0 of the homs in $60836 \cdot 6$ being a Ans. 56.4 in apland. en the oetween ot, and former, oounds. ; two ; two vers to equal s. 22.4
88. 32,000 seeds have been counted in a single poppy ; how many would be found in 297 of these? Ans. 9504000 .
89. $9,344,000$ eggs have been found in a single cod fish; how many would there be in 35 such ?

Ans. 327040000.
65 When the pupil is familiar with multiplication, in working, for instance, the following example,
897351, multiplicand. 4, multiplier.
$\overline{3589404}$, product.
He should say:-4 (the product of 4 and 1), 20 (the product of 4 and 5), 14 (the product of 4 and 3 plus 2 , to be carried), $29,38,35$; at the same time putting down the units, and carryin ${ }_{0}$ the tens of each.
questions to be answered by the pupil.

1. What is multiplication ? [24].
2. What are the multiplicand, multiplier, and product? [24].
3. What are facters, and submultiples? [24].
4. What is the difference between prime and compon site numbers [25]; and between those which are prime and those which are composite to cach other? [27].
5. What is the measure, aliquot part, or submultiple of a quantity? [26].
6. What is a multiple ? [29].
7. What is a common measure ? [27].
8. What is meant by the greatest common measure? [28].
9. What is a common multiple ? [30].
10. What is meant by the least common multiple? [30].
11. What are equimultiples? [31].
12. Does the use of the multiplication table prevent multiplication from being a species of addition? [33].
13. Who first constructed this table ? [33].
14. What is the sign used for multiplication? [34].
15. How are quantities under the vinculum affected by the sign of multiplication? [34].
16. Show that quantities connected by the sign of multiplication may be read in any order? [35].
17. What is the rule for multiplication, when neither multiplicand nor multiplier excecds 12 ? [37].
18. What is the rule, when on!y the mulciplicand exceeds 12 ? [39].
19. What is the rule when both multiplicand and multiplier exceed 12 ? [50].
20 . What are the rules when the multiplicand, multiplier, or both, contain cyphers, or decimals? [43, \&e.]: and what are the reasons of these, and the preceding rules? [41, 43, \&c., 52].
20. How is multiplication proved ? [42 and 53].
21. Explain the method of proving multiplication; by " casting out the nines [54];" and show that we can ceist the nines out of any number, without supposing a knowledge of division. [55].
22. How do we multiply so as to have a required number of decimal places? [58].
23. How do we multiply hy a composite number [60]; or by one that is a little more, or less than a composite number ? [61].
24. How may we multiply by any number of nines? [62].
25. How is multiplication very briefly performed? [65].

SIMPLE DIVISION.

66. Simple Division is the division of abstract numbers, or of those which are applicate, but contain only onc denomination.

Division enables us to find out how often one number, called the divisor, is contained $i n$, or can be talien from another, termed the dividend; -the number expressing how often is called the quotient. Division also enables us to tell, if a quantity be divided into a certain number of equal parts, what will be the amount of each.

When the divisor is not contained in the dividend any number of times exactly, a quantity, called the remainder, is left after the division.
67. It will help us to understand how greatly division abbreviates subtraction, if wo consider how long a process would be required to discover-by actuallv sub-
tracting it-how ofien 7 is contained in 8.563495724, while, as we shall find, the same thing can be effected by dicision, in less than a minute.
68. Division is expressed by \div, placed between the dividend and divisor; or by putting the divisor under. the dividend, with it separating line between:-thus $6 \div 3=2$, or $\frac{6}{3}=2$ (read 6 divided by 3 is equal to 2) means, that if 6 is divided by 3 , the quotient will lee 2 .
69. When a quantity under the vinculun is to be divided, we must, on removing the vinculum, put the divisor under each of the terms connected by the sigu of addition, or subtraction, otherwise the value of what was to be divided will be changed;-thus $\overline{5+6-7} \div 3=$ $\frac{5}{3}+\frac{6}{3}-\frac{7}{3}$; for we do not divide the whole unless wo divide all its parts.

The line placed between the dividend and rivisor oecasionally assumes the place of a vinculum; and therefore, when the quantity to be divided is subtractive, it will sometimes be necossary to change the signs-as already directed [16]:-thus $\frac{6}{2}+\frac{13-3}{2}=\frac{6+13-3 \text {; }}{2}$ but $\frac{27}{3}-\frac{15-6+9}{3}=\frac{27-15+6-9}{3}$. For when, as in these cases, all the terms are put under the vinculum, the effect-as far as the subtractive signs are concernedis the same as if the vinculum were removed altogether ; and then the signs should be changel back again to what they must be considered to have been before the vinculuni was affized [16].

When quantitios connected by the sign of multiplication are to be divided, dividing any one of the factors, will be the same as dividing the product; thus, $5 \times 10 \times$ $25 \div 5=\frac{5}{5} \times 10 \times 25 ;$ for cach is equal to 250 .

To Divide Quantilies.

70. When the divisor does not exceed 12, nor the dividend 12 times the divisor

Rule.-I. Find by the multiplication table the greatest number which, multiplied by the divisor, will give a product that does not excoed the dividend: this will be the quotient required.
II. Subtract from the dividend the product of this number and the divisor ; setting down the remainder, if any, with the divisor under it, and a line between them.

Example.-Find how often 6 is contained in 58 ; or, in other words, what is the quotient of 58 divided by 6 .
We learn srom the multiplication table that 10 times 6 are 60 . $\mathrm{B} u^{\prime}$ is greater than 58 ; the latter, therefore, does not contain 610 times. We find, by the same table, that 9 times 6 are 54 , which is less than 58 :- consequently 6 is contained 9 , but not 10 times in 58 ; hence 9 is the quotient; and 4-the difference between 9 times 6 and the given num-ber-is the remainaler.
The total quotient is $9+\frac{4}{6}$, or $9 \frac{4}{6}$; that is, $\frac{58}{6}=0 \frac{4}{6}$.
If we desire to earry the division farther, we can effect it by a method to be explained presently.
71. Reason of I.-Our object is to find the greatest number of times the divisor ean be taken from the dividend; that is, the greatest multiple of 6 which will not exceed tho number to be divided. The multipliention table shows the products of any two numbers, neither of which exeeeds 12 ; and therefore it enables us to obtain the produet, we require; this must not exceed the dividend, nor, being subtracted from it, leave a number equal to, or greater than, the divisor. It is hardly necessiry to remark, that the divisor would not have been subtraeted as often as possible from the dividend if a number effual to or greater than it were left; nor would the quotient answer the question, how often the clivisor eould be taken from the dividend.
Reason of JI.-We subtract the product of the divisor. and quotient from the dividend, to learn, if there be any remainder, what it is. When there is a remainder, we in reality suppose the dividend divided into ivo parts; one of these is equal to the product of the divisor and quotient-and that product and the given dividend the difference between notation already explained, as still to be divide express, by the ple given, $\frac{58}{6}=54+4=54$, 4 still to be divided. In the exanple given, $\frac{58}{6}=\frac{54+4}{6}=\frac{54}{6}+\frac{4}{6}=9+\frac{4}{6}$.
72. When the divisor does not exceed 12 , but the dividend exceeds 12 times the divisor-

Rule.-I. Set down the dividend with a line under it to separate it from the future quotiont: and put the divisor to the loft hand side of the dividend, with a line between them.
II. Divide the divisor into all the denominations of the dividend, beginning with the highest.
III. Put the resulting quotients under those denominations of the dividend which produced them.
IV. If there be a remainder, after subtracting the product of the divisor and any denomination of the quotient from the corresponding denomination of the dividend, consider it ten times as many of the next lower denomination, and add to it the next digit of the dividend.
V. If any denomination of the dividend (the preceding remainder, when there is one, included) does not contain the divisor, consider it ten times as many of the next lower, and and to it the next digit of the dividend-putting a eypher in the quotiont, under the digit of the dividend thus reduced to a lower denomination, unless there are no signifieant figures in the quotient at the same side of, and farther removed from the decimal point.
VI. If there be a remainder, after dividing the " units of comparison," set it down-as already directed [70]-with the divisor under it, and a separating line between them; or, writing the decimal point in the quotient, proceed with the division, and consider each remainder ten times as many of the next lower denomination; proceed thus until there is no remainder, or until it is so trifling that it may be neglected without inconvenience.
73. Exampe. - What is the quotient of $64456 \div 7$?

$$
\text { Divisor 7) } 04450 \text { dividerd. }
$$ $\overline{9208}$ quotient.

G tens of thousands do not contain 7 , even onice ten thousand times; for ten thousand times 7 are 70 thousand, which is preater than 60 thousand ; there is, therefore, no digit to be put in the ten-thousimes place of the quotient-we do not, however, put a cypier in that place, since no digit
of the quotiont can be further removed from tho decimal point than this eypher; for it would, in such a case, [rodiuce no effeet [Sce. I. 28]. Considering the 6 tens of thrmsimls as 60 thonsands, and adding to thede tho $\&$ thousands ahready in the dividend, we have 0 th thoubinds. 7 will "go" into (that is, 7 can be taken fromn) 64 thonsand, 9 thonsand times; for 7 times 9 thonsand are 63 thousund -which is less than 64 thousand, and therefore is not too harge ; it does not leave a remainder equal to the divisor-and therefore it is not too small: -9 is to be set down in the thonsands' place of the quotient; and the 4 already in the dividend beinig added to ono thonsand (the differenco between 64 and 63 thonsand) considered as ten times so many hundreds, wo havo 14 hundreds. 7 will go 2 humbred times into 14 hundreds, and leavo no remainder ; for 7 times 2 lundreds are exaetly 14 hun-dreds:-2 is, therefore, to be pat in the hundreds' phace of the quotient, and thero is nothing to be carried. 7 will not go into 5 tens, even once ten times; since 10 times 7 are 7 tens, which is more thin 5 tens. But considering the 5 tens as 50 units, and adhing to them the other 6 units of tho dividend, we have 56 units. 7 will go into 56,8 times, leaving no remainder. As tho 5 tens ggave no digit in the tens, place of the quotient, and there are significant figures further removed from the decimal point than this denomination of the dividend, we have been obliged to nse a cyplier. The division being finished, and no remainder lett, the required quotient is fonnd to be 9208 exactly ; that is, $\frac{04456}{7}=0208$. 74. Example 2.-What is the quotient of 73268 , divided by 6 ?

$$
\text { 6) } \frac{73268}{19211 \frac{2}{8}}
$$

We may set down tho 2 units, whieh remain after the units of the quotient are found, as represented; or we maly proceed with the division as follows-

$$
\text { 6) } 73268
$$

$12211 \cdot 383, \& \mathrm{~s}$.
m
for
nill
bel
put
pro
tim
cal
7
whi
digi
wit
deci
divi case, prodien of thonsinult, sunds already 11 " $g(1)$ " into 11sand times; is less than oes not leave it is not $t(x)$ place of the ng added to 3 thonsand) ave 14 hunls, and leave etly 14 hunds^{\prime} phace of
7 will not mes 7 are 7 ring the 5 units of tho times, learin tho tens' ures further nination of pher. The 1e required $=9208$. C8, divided
after tho ore may

the divi-

 into them the times $t 3$ in the enths re6 wiin go e 2 hun-drodths. Considering these 2 hundredths as 20 thousandths, they will give 3 thousandths as quotient, and 2 thonsandths as remainder, \&o. The same remainder, constantly recurring, will evidently produce the same digit in the successive denominations of the quotient; we may, therefore, at onco put dowa in the quotient as many threes as will leave the final remainder so small, that it may be neglected.
75. Example 3.-Divide 47365 by 12.
12)47365

- 3947.08, \&c.

In this example, the one unit left (after obtaining the 7 in the quotient) even when considered as 10 tenths, does not contain 12 :--there is, therefore, nothing to be set down in the tenths' place of the quotient-oxcept a cypher, to keep the following digits in their proper places. The 10 tenths are by consequence to be considered as 100 hundredths, 12 will go into 100 hundredths 8 hundredths times, \&o.
This may be applied to the last rulo [70], when we desiro to continue the division.
Example.--Divide 8 by 5.

$$
8 \div 5=13, \text { or } 1 \cdot 37 \text {, \&c. }
$$

76. When the pupil fully understands the real denominations of the dividend and quotient, he may proceed, for example, with the following

$$
\text { 5) } \lcm{46325}
$$

In this manner:-5 will not go into 4 . 5 into 46,9 timos aid 1 over (the 46 being of the denomination to which 6 belongs [thousands], the first digit of the quotient is to be put under the 6-that is, under the denomination which produced it). 5 into 13 , twice and 3 over. 5 into 32,6 times and 2 over. 5 into 25,5 times and no remainder.

When the divisor does not exceed 12 , the process is called short division.
77. Reasois of I.-In this arrangement of the quantitieswhich is merely a matter of convenience-the values of the digits of the quotient are ascertained, both by their position with reference to the digits of the dividend, and to their own decimal point. The separating lines prevent the dividend, divisor, or quotient from being in any way mistaken.
Reason of il.-We divide the divisor successively into all the parts of the dividend, because we cannot divide it at once into the whole:- the sum of the numbers of times it can be subtracted from these parts is evidently equal to the number
of times it can be subtractel from their sum. Thas, if 5 goes into 600,160 times, finto 60, 10 times, nul intus b, once ; it will fo into $500+5\left(1-+5(=005)^{2}\right), 100+10+1(=111)$ times.

The pupil porceives by tho examples given above, that, in dividing the divisor successively into the parts of the dividend, ench, or any of these parts does not necessurily eonsiss of one or more digits of the dividend. Tlins, in finding, for example, the quoticnt $64466 \div 7$, we are not obliged to consider tho parts as $60000,4000,400,50$, and 6 : - on the contrary, to render tho dividend suited to the process of division, we nlter its finm, while, it the same time, wo leave its value unchanged; it becomes
 Ench part being divided by 7, the different portions of the dividend, with their respective quotients, will be,

$$
\begin{aligned}
& \text { Thousands. Hundreds. Tens. Units. }
\end{aligned}
$$

We begin at the left hand side, because what remains of tho higher denomination, may still give a quotient in a lower; and the question is, how often the divisor will go into the dividend-its different denominations being taken in any convenient way. We eanuot know how many of the higher wo whall have to udd to the lower denominations, unless we begin with the higher.
Reason of III.-Each digit of the quotient is put under that denomination of the dividend which produced it, because it belongs to that denomination; for it expresses what rumber of times (indicated by n digit of that denomination) the divisor can be taken from the corresponding purt of the dividend:thus the tens of the quotient express how many tens of times the divisor can be taken from the tens of the dividend; the kundreds of the quotient, how many hundreds of times it can be taken from the hundreds, \&c.
Reason of IV.-Since what is left belongs to the total remainder, it must be added to it; but unless considered as of a lower denomination, it will give nothing further in the quotient. Heason of V.-We are to look upon the remainder as of the highest denomination canable of giving a quotient; and preagh it may not contain the divisor a number of times expresser by a digit of one denomination, it may contain it some number of times expressed by one that is lower.
The true remainder, after subtracting each product, is the whole remainder of the dividend; but we "bring down" only much of it as is necessary for our present object. Thus, in looking for a digit in the hundreds' place of the quotient, it will not be necessary to take into account the tens, or units of the dividend; since they cannot add to the number of hundreds of times the divisor may be taken from the dividend.

1s, if 5 goes b. once ; it) times. ve, that, in 10 dividend, nsist of one ox examplo, r the parts render the r its firm, ged; it bo-
4456). ons of the a lower; , into the any condigher wo we begin
ut under , because rumber re divisor idend: of times end ; the es it can
total redas of a uotient. er as of nt ; and mes oxit somo ;, is the " only Thus, in tient, it or unitg of hun. nd.

A cypher must be ndded [Sec. I. 28], when it is required, to give significant fignres their proper valle --which is never the ease, except it comes between them and me decimal point.

Reabon of VL.-Wo buy continue the proeesy of division, if we please, as long as it is posible to obtain quotients of an! denomination. Quotients will ho produced although thore aro no longer any significant figures in the dividend, to which we can adid the successive renainders.
78. The smaller the divisor the larger the quotientfor', the sinaller the parts of a given quantity, the greater their number will be; lut 0 is the least possible divisor', and therefore any quantity divided by 0 will give the largest possible quotient-which is infinity. IIence, though any quantity multiplied by 0 is equal to 0 , any number divided by 0 is equal to an infinite number.

It appears strange, but yet it is true, that $\frac{6}{0}=\frac{1}{0}$; for each is equal to the grealest possible number, and one, therefers, cannot be greater than another-the apparent contradiction arises from ou being unable to form a true conception of an infinite quantity. It is necessary to bear in mind also that 0 , in this case, indicates is quantity infinitely small, rather than absolutely nothing.
79. I' prove Division.-Multiply the quotient by the divisor; the product should be equal to the dividend, minus the remainder, if there is one.
For, the dividend, exclusive of the remainder, contains the divisor a number of times indicated by the quotient; if, therefore, the divisor, is taken that number of times, a quantity equal to the dividend, minus the remainder, will be produced. It follows, that alding the remainder to the product of the divisor and quotient should fee the dividend.
Example: 1.-Prove that $\frac{0832}{4}=1708$.

$$
\text { 4) } 6832
$$

1708
Phons. 1708, quotient. 4, divisor.
683, mroduct of divisor and quotient, equal to the dividend.

$\text { 2) }{ }_{78845}^{(1)}$	(2) 8)91234	$\begin{gathered} \text { (3) } \\ \text { 3) } 67859 \end{gathered}$	$\begin{aligned} & \text { 9) } 71234 \end{aligned}$
$\begin{gathered} \left(E_{6}\right) \\ \text { 4) } 96707 \end{gathered}$	$\stackrel{(6)}{10) 134567}$	(7) 5)767456	(8) 11)37067
(9) 6)970763	(10) 12)876967	(11) 7)891023	(12) 9)763457

S0. When the dividend, divisor, or both contann cyphers or decimals. -The rules already given are appli . cable: those which follow are consequences of them.

When the dividend contains cyphers-
Ruie.-Divide as if there were none, and remove the quotient so many places to the left as there Lavo been cyphers neglected.
The greater the dividend, the greater ought to be the quotient; since it expresses the number of times the divisin can be subtracted from the dividerd. Hence, if 8 will go into 587 times, it will ge into 5600 (a quantity 100 tin.us greater than 56) 100 times more than 7 times-or 700 times.

Example 1.-What is the quotient of $568000 \div 4$?

$$
\frac{568}{4}=142 \text {; therefore } \frac{568000}{4}=142000 \text {. }
$$

Example 2.-What is the quotient of $4060000 \div 5$? $\frac{406}{5}=81 \cdot 2$; therefors $\frac{4060000}{5}=812000 \quad$ [Sec. I. 39.].

81. When the divisor contains cyphers-

Rule.-Divide as if there were none, and move the quotient so many places to the right as there are cyphers in the divisor.
The greater the divisor, the smaller the number of times it can he subtracted from the dividend. If, for example, 6 can be taken from a quantity any number of times, 100 times 6 can be taken from it 100 times less often.
Example.-What is the quotient of $\frac{56}{800}$?

$$
\frac{56}{8}=7 ; \text { therefore } \frac{56}{800}=0
$$

82. If both dividend and divisor contain cyphers-

Rule.-Divide as if there were none, and move the quotient a number of places equal to the difference between the numbers of cyphers in the two given quan-tities:-if the cyphers in the dividend exceed those in the divisor, move to the left; if the cyphers in the divisor exceed those in the dividend, move to the right.
We have seen that the effect of cyphers in the dividend is to move the quotient to the left and of cyphers in the divisor, to move it to the right; when, therefore, both causes act together, their effect must be equal to the difference between their separate effects.

Eramples.
(1)
7) $\frac{63}{9}$

7)
6300
9000

(3)
(4)
(5)
(6)

In the sisth example, the difference betweon the numbers of cyphers being $=0$, the quotient is moved neither to the right nor the left.
83. If there are decimals in the dividend-

Rule.-Divide as if there were none, and move the quotient so many places to the right as there are decimals.
The smaller the dividend, the less the quotient.
Example.--What is the quotient of $\cdot 048 \div 8$?

$$
\frac{48}{8}=6, \text { therefore } \frac{\cdot 048}{8}=006
$$

84. If there are decimals in the divisor-

Rule.-Divide as if there were none, and move the quotient so many places to the left as there are decimals.

The smaller the divisor, the greater the quotient.
Example.-What is the quotient of $54 \div 006$?

$$
\frac{54}{6}=9, \text { therefore } \frac{54}{006}=9000 \text {. }
$$

85. If there are decimals in oth dividend and di-visor-
Ruse.-Divide as if there were none, and move the quotient a number of places equal to the difference
between the numbers of decimals in the two given quan-tities:-if the decimals in the dividend exceed those in the divisor, move to the right; if the decimals in the divisor exceed those in the dividend, move to the left.
We have seen that decimals in the dividend move the quotiont to the right, and that decimals in the divisor move it to the left; when, therefore, both causes act together, the effect must be equal to the difference between their separate effects.

Examples.

$$
\begin{array}{cccccc}
(1) & (2) & (3) & (4) & (5) & (6) \\
5) 45 & 5) \cdot 45 & \cdot 05) 45 & \cdot 5) \cdot 045 & \cdot 005) 450 & \cdot 05) \cdot 45 \tag{6}\\
\hline 9 & \frac{90}{900} & \frac{1000}{900} & \frac{9}{9 \cdot 00}
\end{array}
$$

86. If there are cyphers in the dividend, and decimals in the divisor-

Rule.-Divide as if there wore neither, and move the quotient a number of places to the left, equal to the number of both cyphers and decimals.
Both the cyphers in the dividend, and the decimals in the divisor increase the quotient.
Example.- What is the quotient of $270 \div 03$;

$$
\frac{27}{3}=9, \text { therefore, } 270 \div 03=9000
$$

87. If there are decimals in the dividend, and cyphers in the divisor-

Rule.-Divide as if there were neither, and move the quotient a number of places to the right equal to the number of both cyphers and decimals.
Both the decimtls in the dividend, and the eyphers in the divisor diminish the quotient.
Example.-What is the quotient of $18 \div 20$?

$$
\frac{18}{2}=9, \text { therefore } \frac{18}{20}=000
$$

The rules which relate to the management of cyphers and decimals, in multiplication and in division-though numerous-will be very easily renembered, if the pupil merely considers what ought to bo the cffest wif either
 d those in nals in the the left.
move the ivisor move ogether, the eir separate

$$
\begin{array}{lr}
\frac{0}{0} & \cdot 05) \cdot 45 \tag{6}\\
\hline 9 \cdot 00
\end{array}
$$

and deciand move equal to
als in the
cyphers nd move equal to
rs in the
cyphers -though he pupil ither

88. When the divisor exceeds 12-

The process used is called long division; that is, we perform the multiplications, subtractions, \&c., in full, and not, as before, merely in the mind. This will be understood better, by applying the method of long division to an example in which-the divisor not being gr ater than 12-it is unnecessary.

Short Division :
8) 5763472 720434
the same by
Long Division.
8)5763472(720484 56

16
10

In the second method, we multiply the divisor ly the different parts of the quotient, and in ench case set down
the product, subtract it from the corresponding portion of the dividend, wiite the remainder, and bring down the required digits of the dividend. All this must be done when the divisor becomes large, or the memory would be too heavily burdened.
89. Rule-I. Put the divisor to the left of the dividend, with a separating line.
II. Mark off, by a separating line, a place for the quotient, to the right of the dividend.
III. Find the smallest number of digits at the left hand side of the dividend, which expresses a quantity not less than the divisor.
IV. Put under these, and subtract from them, the greatest multiple of the divisor which they contain; and set down, underneath, the remainder, if there is any. The digit by which we have multiplied the divisor is to be placed in the quotient.
V. To the remainder just mentioned add, or, as it is said, " bring down" so many of the next digits (or cyphers, as the case may be) of the dividend, as are required to make a quantity not less than the divisor ; and for every digit or cypher of the dividend thus brought down, except one, add a cypher after the digit last placed in the quotient.
VI. Find out, and set down in the quotient, the number of times the divisor is contained in this quantity; and then subtract from the latter the product of the divisor and the digit of the quotient just set down. Proceed with the resulting remainder, and with all that succeed, as with the last.
VII. If there is a remainder, after the units of the dividend have been "brought down" and divided, either place it into the quotient with the divisor under it, and a separating line between them [70]; or, putting the decimal point in the quotient-and adding to the remainder as many cyphers as will make it at least equal to the divisor, and to the quotient as many cyphers minus one as there have been cyphers added to the remainder-proceed with the division.
portion of on the redone when ld be too
the divi-
e for the
the left quantity
em, the contain ; there is e divisor , as it is gits (or as are divisor ; ad thus he digit ont, the s quanduct of t down. all that
of the , either it, and ing the the ret equal yphers to the
00. Example 1.-Divide 78325826 by 82.
82)78325826(955103

738
452
410
425
410
158
82
762
738
246 246

82 will not go into 7 ; nor into 78 ; but it will go 9 times into $783:-9$ is to be put in the quotient.

The values of the higher denominations in the quotient will be suffieiently marked by the digits whieh sueeeed them-it will, however, sometimes be proper to aseertain, if the pupil, as he proeeeds, is aequainted with the order's of units to whieh they belong.
9 times 82 are 738, which, being put under 783, and subtraeted from it, leaves 45 as remainder; sinee this is less than the dirisor, the digit put into the quotient is-as it ought to be [71]- the largest possible. 2, the next digit of the dividend, being brought down, we have 452, into whieh 83 goes 5 times:- 5 being put in the quotient, we subtraet 5 times the divisor from 452 , whieh leaves 42 as remainder. 42, with 5 , the next digit of the dividend, makes 425 , into which 82 goes 5 times, leaving 15 as remainder;-we put another 5 in the quotient. The last remainder, 15 , with 8 the next digit of the dividend, makes 158, into whieh 82 goes once, leaving 76 as remainder: -1 is to be put in the quotient. 2, the next digit of the dividend, along with 76 , makes 762 , into which the divisor goes 9 times, and leaves 24 as remainder ;-9 is to be put in the quotient. The next digit being brought down, we have 246 , into whieh 82 goes 3 times exaetly; -3 is to be put in the quotient. This 3 indieates 3 units, as the last digit brought down expressad units, Therefore $\frac{78325826}{82}=055103$.

Example 2.-Divide 6421284 by 642. 642) (0421284(10x02 642

1284
1284
642 goes once into 642, and leaves no remainder. Brinering down the next digit of the dividend gives no digit in the quotient, in which, therefore, we put a cypher aitor the 1. 'The next digit of the dividend, in the siune way, gives no digit in the quotient, in which, consequently, we put another cypher ; and, for similar reasons, another in bringing down the next; but the next digit makes the quantity brought down 1284, which contains the divisor twice, and gives no romainder:-we put 2 in the quotient. division, addingere is a remainder, we may continue the

$$
\begin{aligned}
& \text { Exampis: 3.-Divide } 790347 \text { by } 847 . \\
& 847) 790347(940 \cdot 19, \text { \&c. } \\
& 7623
\end{aligned}
$$

3404 3388
1670
847
8230
7623

92. The learner, after a little practice, will guess pretty accurately what, in each case, should be the next digit of the quotient. He has only to multiply in his mind the last digit of the divisor, adding to the product what he would probably have to cary from the multiplication of the second last:-if this sum can be taken from the corresponding part of what is to be the minuend, leaving little, or nothing, the assumed number is likely to answer for the next digit of the quotient.
93. Reason of i.-This arrangement is merely a matter of convenience; some put the divisor to the right of the dividend, and immediately over the quotient-believing that it is more corrvenient to have two quantities which are to be multiplied together as near to each other as possible. Thus, in dividing
5425 by 5.1 -
$\frac{6425}{\frac{54}{102}}\left(\frac{54}{118, \& \mathrm{c}}\right.$.
$\frac{54}{485}$
$\frac{432}{53}$, \&c

Reason of II.-This, also, is only a matter of eonvenienee
Reason of III.-A smaller part of the dividend would give no digit in the quotient, and a larger would give more than one.

Reason of IV.-Since the numbers to be multiplied, and the products to be subtracted, are considerable, it is not so convenient as in short division, to perform the multiplications and subtractions mentally. The rule direets us to set down each nultiplier in the quotient, beeause the latter is the sum of the multipliers.

Reason of V.-One digit of the dividend brought down would make the quantity to be divided one denomination lower than the preceding, and the resulting digit of the quotient also one denomination lower. But if we are obliged to bring down two digits, the quantity to be divided is two denominations lower, and consequently the resulting digit of the quotient is two denominations lower than the preceding-which, from the principles of notation [Sec. I. 28], is expressed by using a cypher. In the same way, bringing down three figures of the dividend reduces the denomination three places, and makes the new digit of the quotient three deneminations lower than the last-two eyphers must then be used. The same reasoning holds for any number of elaraeters, whether significant or otherwise, brourht down to any remainder.

Reason of VI.-We subtract the products of the different parts of the quotient and the divisor (these different parts of the quotient being put down sueeessively aecording as they are found), that we may diseover what the remainder is from whieh we are to expeet the next portion of the quotient. From what we have already said [77], it is evident that, if there are no decimals in the divisor, the quotient figure will always be of the same denomination as the lowest in the quantity from whieh we subtraet the product of it and the divisor.
Reason of VII.--The reason of this is the same as what was given for the sixth part of the preeeding rule [77].

It is proper to put a dot over each digit of the dividend, as we bring it down ; this will prevent our forgetting any one, or bringing it down twice.
94. When there are cyphers, decimals, or both, tho rules already given [(9), do.] are applicable.
95. To prove the Division.-Multiply the quotiont by the divisor ; the product should be equal to the dividend, minus the remainder, if there is any [79].

To prove it by the method of "casting out the mines"-

Rule.-Cast the nines out of the divisor, and the quotient; multiply the remainders, and cast the mines from their product:- that which is now left ought to be the same as what is obtained by casting the nines out of the dividend minus the remainder obtained from the process of division.
Eximple.-Prove that $\frac{63770}{54}=1181_{34}^{3}$.
Considered as a'question in multiplication, this-becomes $1181 \times 54=63776-2=63774$. To try if this be truc, Casting the "ines from 63774, the remainder is . . 0
The two remainders are equal, both being 0 ; henee the multiplication is to be presumed right, and, consequently, the process of division which supposes it.
The division involves an example of multiplication ; since the product of the divisor and quotient ought to be equal to the dividend minus the remainder [79]. Hence, in proving the multiplication (supposed), as already explained [54], we indirectly prove the division.

ExERCISES.

te quotient to the divi$9]$.
g. out the
-, and the the nines ought to the nines ined from true,
$2 \times 0=0$
hence tho sequently,
on ; since equal to a proving [54], we
(33)

- 17) 4675

275
(37)
) 9767
$443 \frac{21}{3}$
600
$335 \cdot 3425$

Division.
(41)
256)77676700
$303424 \cdot 6094$
(44)

54•25)123•70536
$2 \cdot 2803$

95
(48)
$\cdot \frac{153) \cdot 829749}{5 \cdot 4232}$
(46)
-0087) 555
150000

In example $40-$ and some of those which follow-after obtaining as many decimal places in the quotiont as are deemed necessary, it will be more accurate to consider the remainder as equal to the divisor (since it is more than one half of it), and add unity to the last digit of the quotient.

contractions in division.

96. We may abbreviate the process of division when there are many decimals, by cutting off a digit to the right hand of the divisor, at each new digit of the quotient; remembering to carry what would have been obtained by the multiplication of the figure neglected unity if this multiplication would have produced more than 5, or less than $15 ; 2$ if more than 15 , or less than 25, \&c. [59].

Example.-Divide $754 \cdot 337385$ by $61 \cdot 347$.

Ordinary Method. $\begin{gathered} 61 \cdot 347) 754 \cdot 337385(12 \cdot 296 \\ 61347)^{6} \end{gathered}$	Contracted Method. $\begin{array}{r} 61 \cdot 347) 754 \cdot 337385(12 \cdot 296 \\ 61347 \end{array}$
140867	
122694	$\begin{aligned} & 14096 \\ & 12260 \end{aligned}$
18173	1817
122694	1227
590398	
552123	552
382755	38
368082	37
1/46730	1

According as the denominations of the quotient become smull, their products by the lower denomination of the divisor become inconsiderable, and may be neglected, and, consequently, the portions of the dividend from vhich they would lave been subtracted. What should have been carrird from the multiplication of the digit neglected-since it belongs to n higher denomination than what is neglected, should still bo retained [59].
97. Wo may avail ourselves, in division, of contrivances very similar to those used in multiplication [60].
To divide by a composite number-
Rule.-Divide successively by its factors.
Example. - Divide 98 by $49 . \quad 40=7 \times 7$.
7) $7 \longdiv { 1 4 }$
$2=98 \div 7 \times 7$, or 49 .
Dividing only by 7 we divide by a quantity 7 times too small, for we are to divide by 7 times 7 ; the result is, therefore, 7 times too great :-this is corrected if we divide again by 7
98. If the divisor is not a composite number, we cannot, as in multiplication, abbreviate the process, except it is a quantity which is but little less than a number expressed by unity and one or more cyphers. When this is the casc-
Rule.-Divide by the nearest higher number, expressed by unity and one or more cyphers; add to remainder so many times the quotient as the assumed exceeds the given divisor, and divide the sum by the preceding divisor. Procced thus, adding to the remainder in each case so many times the foregoing quotient as the assumed exceeds the given divisor until the exact, or a sufficiently near approximation to the exact quotient is obtained-the last divisor must be the given, and not the assumed one. The last remainder will be the true one; and the sum of all the quotients will be the true quotient.
ent become the divisor and, consethey would wrived from belongs to $几$ uld still bo
of eontritiplication
times too therefore, in by 7

EXPRCISEAB.

47. $56789 \div 741=76473$.
48. $478407 \div 971=460$ 曻 4.
49. $977076 \div 47600=20^{25078}$.
50. $567897 \div 812=674: 1$ 17 6.
51. $7867674 \div 9712=810^{984}$.
52. $3070700 \div 457000=6 \cdot 7108$.
53. $6765168 \div 7891=857$.
54. $67.470 \div 3000=17 \cdot 3$.
$65.69000 \div 47600=1 \cdot 4496$.
55. $76767 \div 40700=1 \cdot 8862$.
56. $6114592 \div 764824=8$.
57. $9676744 \div 910076=10 \cdot 6329$.
58. $740070000 \div 741000=098 \cdot 7449$.
59. $9410607111 \div 45673=206043 \cdot 1132$.
60. $454076000 \div 400100=1134 \cdot 9063$.
62.. $7376465767 \div 845670=21839 \cdot 649$.
61. $47: 5789075 \div 26 \cdot 175=1 \cdot 8177$.
62. $47 \cdot 655 \div 4 \cdot 5 .=10 \cdot 59$.
63. $756 \cdot 08 \div 76 \cdot 72612=9 \cdot 806$.
64. $75 \cdot 3470 \div 3829=196 \cdot 7798$.
65. $0 \cdot 1 \div 7 \cdot 6345=0 \cdot 0000181$.
66. $5378 \div 0 \cdot 00096=5602083 \cdot 38$, \&c.
67. If $£ 7500$ were to be divided between 5 persons, how much ought each person to receive? Ans. £1500. 70. Divide 7560 acres of land between 15 persons.

Ans. Each will have 504 acres.
71. Divide $£ 2880$ between 60 persons.

Ans. Wach will receive $\mathscr{L} 48$. 72. What is the ninth of $£ 972$? Aus. $£ 108$.
73. What is each man's part if $£ 972$ be divided among 108 men? Ans. £. 9.
74. Divide a legacy of $£ 8526$ between 294 persons. Ans. Each will have £29.
75. Divide 340480 sunces of bread between 1792 persons. Ans. Each person's share will be 190 ounces.
76. There are said to be seven bells at Pekin, each of which weighs 120,000 pounds; if they were melted up, how many such as great Tom of Lincoln, weighing 9894 pounds, or as the great bell of St. Paul's, in Loudon, weighing 8400 pounds, could be made from them? Ans. 84 like great Tom of Lincoln, with 8904 pounds left; and 100 like the great bell of S't. Paul's.
77. Mexico producod from the year 1790 to 1830 a
quantity of gold which was worth $\mathcal{E 0}, 436,443$, or 6,178,985,280 furthing. How many dollars, at 207 farthings each, are in that sim? . Ans. 29850170 nearle 78. A siugle pound of cotton has been spun iuto thread 76 miles in' length, and a pound of wool into a thread 95 miles long ; how many pounds of each would he required for threads 5854 miles in length? Aus. $77 \cdot 0263$ pounds of cotton, and $61 \cdot 621$ pounds of woyt
79. The earth travels round its orbit, a space equal 10) $567,019,740$ miles, in about 365 days, 8765 honrs, te5948 minutes, 31556925 scoonds, and 1893415530 thirds; supposing its motion uniform, how much would it travel per day, hour, minute, second, and third? Aus. About 1553480 miles a day, 64691 an hour, 1078 a minute, 18 a scoond, and 0.3 a third.
80. All the iron produced in Great Britain in the year 1740 was 17,000 tons from 59 furnaces; and $\frac{1}{n}$ ' 1827, 690,000 from 2S4. What may be considered as the produce of each furnace in 1740, one with anoter, . £1500. rsons. 4 acres. and of each in 1827. Ans. $288 \cdot 1356$ in 1740 ; and 2429.5775 in 1827.
81. In 1834, 16,000 stean engines in Great Britain saved the labour of 450,000 horses, or 2 millions and a half of men ; to how many horses, and how many men, may each stean engine be supposed equivalent, one with another? Ans. About 28 horses; and 156 men.
99. Before the pupil leaves division, he should be able to carry on the process as follows:-
Lxample.-Divido 84380848 by 87532.

$$
\frac{\frac{87532) 84380848}{560204}}{350128}
$$

Ho will say (at first aloud) 4 (the digit of the dividend to The hought dorit). 18 (9 times 2); 0 (the remainder after Fil ating the right hand digit of 18 from 8 in the dividend). 23 (!) times $3+$ the 1 to be carried from the 18); 2 (the remainder after subtracting the right hand digit of 28 from O, or rather 10 in the dividend). 48 (9 times $5+$ the 2 to le carried from 28, and 1 to compensate for what we borrowed when we considered 0 in the dividend as 10); 0 (the
remainder whon we subtract the right hand digit of 48 from 8 in tho dividend). 67 (9 times $7+$ the 4 to be carried fiom the 48) ; 6 (the remainder after subtraetin, the right hand digit of 67 from 3 , or rather 13 in the dividend). 79 (9 times $8+$ the 6 to be carried fiom the $67+$ the 1 , for what we borrowed to make 3 in the dividend beeome 13); 5 (the remainder after subtraeting 79 from 84 in the dividend).

As the parts in the parentheses are merely explanatory, and not to bo repeated, the whole process would be,

First part, 4. $18 ; 0.28 ; 2 . \quad 48 ; 0$ 67; 6. $79 ; 5$.
Second part, 8. 12;2. 19;1 32; 0. 45;5. 53; 3. Third part, $8 ; 0.12 ; 0.21 ; 0.30 ; 0.35 ; 0$.
The remainders in this case being cyphers, are omitted.
All this will be very easy to the pupil who has prace tised what has been recommended $[13,23$, and 65]. The chief exercise of the memory will consist in recollecting to add to the products of the different parts of the divisor by the digit of the quotient under consideration, what is to be carried from the preceding product, and unity besides-when the preceding digit of the dividend has been increased by 10 ; then to subtract the right hand digit of this sum from the proper digit of the dividend (increased by 10 if neeessary).

QUESTIONS FOR THE PUPIL.

1. What is division ? [66].
2. What are the dividend, divisor, quotient, and remainder ? [66].
3. What is the sign of division? [68].
4. How are quantities under the vinculum, or united by the sign of multiplication, divided? [69].
5. What is the rule when the divisor does not exceed 12, nor the dividend 12 times the divisor? [70].
6. Give the rule, and the reasons of its different parts, when the divisor does not exceed 12, but the dividend is more than 12 times the divisor? [72 and 77].
7. How is division proved ? [79 and 95].

8 What are the rules when the dividend, divisor, or both contain cyphers or decimals ? [80].
9. What is the rule, and what are the reasons of its different parts, when the divisor exceeds 12? [89 and 93].
of 48 from e carried the right end). 79 the 1 , for ome 13); the divi-
olanatory, $70 ; 5$. - $53 ; 3$. 0.
mitted.
as pracind 65]. in recolts of the leration, uct, and dividend he right of the
and re-- united exceed ifferent out the ad 77].
isor, or s of its a3].
10. What is to be done with the remainder? [72 and 89].
11. How is division proved by casting out the nines? [95].
12. How may division be abbreviated, when there are decimals ? [96].
13. How is division performed, when the divisor is a composite number ? [97].
14. How is the division performed, when the divisor is but little less than a number which may be expressed by unity and eyphers? [98].
15. Hxemplity a very brief mode of performing division. [99].

the greatest common measure of numbers.

100. To find the greatest common measure of two quantities-

Rule.-Divide the larger by the smaller; then the divisor by the remainder; next the preeeding divisor by the new remainder:-continue this proeess until nothing remains, and the last divisor will be the greatest eommon measure. If this be unity, the given numbers are prime to each other.

Examples - Find, the greatest eommon measure of 3252 and 4248 .

$$
\begin{aligned}
& \text { iNf P P 4248(1 } \\
& 3252 \\
& \text { 996)3252(3 } \\
& 2988
\end{aligned}
$$

$$
\begin{aligned}
& \text { 264) } 996(3 \\
& 792 \\
& \text { 204) }{ }_{204}^{204(1} \\
& \text { 60) } 204(3
\end{aligned}
$$

996, the first remainder, becomes the second divisor 204 , the second remainder, becomes the third divisor, \&c. 12, the last divisor, is the required greatest common measure.
101. Reason of the Rule.-Before we prove the correctness of the rule, it will be neeessary for the pupil to be satistied that "if any quantity measures another, it will measure will multiple of that other;" thus if 6 go into 30,5 times, it will evidently go into 9 times 30,9 times 5 times.
Also, that "if a quantity measure two others, it will measure their sum, and their difference." First, it will measure their sum, for if 6 g into 24,4 times, and into 36,6 times, it will evidently go into $24+36,4+6$ times :-that is, if $\frac{24}{6}=4$, and $\frac{36}{6}=$
$6, \frac{24}{6}+\frac{36}{6}=4+6$. Seeondly, if 6 goes into 56 oftener than it goes into 24 , it is because of the difference between 36 and 24 ; for as the difference between the numbers of times it will go into them is due to this difference, 6 must be contained in it some number of times :-that is, sinee $\frac{36}{6}=6$, and $\frac{24}{6}=4, \frac{36}{6}-\frac{24}{6}\left(\right.$ or $\left.\frac{36-24}{6}\right)$ $=6-4=2, a$ whole number [26]-or, the difference between the quantities is measured by 6 , their measure.
This reasoning would be found equally correct with any other similar numbers.
102. Next ; to prove the rule from the given example, it is necessary to prove that 12 is a common measure; and that it is the greatest common measure.

It is a common measure. Beginning at the end of the process, We find that 12 measures 24 , its multiple ; and 48 , beeause it is a multiple of 24 ; and their sum, $24+48$ (beeause it measures each of them) or 60 ; and 180 , because it is a multiple of 60 ; and $180+24$ (we have also just seen that it measures eael of these) or 204 ; and $204+60$ or 264 ; and 792 , beeause a multiple of 264 ; and $792+204$ or 996 ; and 2988 , a multiple of 996 ; 996 or 4248 (the other (one of the given numbers) and $3252+$ eaeh of the given num given number). Therefore it measures - 103. It is also their greatest their common measure. some other be greater; then test common measure. If not, let process) measuring 4248 and measures their difference, 996 ; and this is the supposition), it of 996 ; nnd, beeause it measur and 2988 , beeause a multiple their difference, 264 ; and 792 , because and 2988 , it measures the difference hetween 996 and 792 or 204 ; ande of 264 ; and between 264 and 204 or 60 ; and 180 - and the difference and the difference between 204 and because a multiple of 60 ; a multiple of 24 ; and the difference between; and 48 , because Lut measuring 12, it cannot be greater than 12 and 48 or 12 .

In the same way it could be shown, that any other common measure of the given numbers must be less than 12-and eonsequently that 12 is their greatest common measure. As the rule might be proved from any other example equally well, it is true in all eases.
104. We may here remarlk, that the measure of two or more quantities can sometimes be found by inspection. Any quantity, the digit of whose lowest denomination is an even number, is divisible by 2 at least.

Any number ending in 5 is divisible by 5 at least. least.

Any number which leaves nothing when the threes are cast out of the sum of its digits, is divisible by 3 at least; or leaves nothing when the nines arc cast out of the sum of its digits, is divisible by 9 at least.

EXERCISES.

1. What is the greatest common measure of 464320 and 18945 ? Aus. 5.
2. Of 638296 and 33888 ? Ans. S.
3. Of 18996 and 29932? Ans. 4.
4. Of 260424 and 54423? Ans. 9.
5. Of 143168 and 2064888 ? Ans. 8.
6. Of 1141874 and 19823208 ? Ans. 2.
7. To find the greatest common measure of more than two numbers-

Rule.- Find the greatest common measure of two of them ; then of this common measure and a third ; next, of this last common measure and a fourth, \&c. The last common measure found, will be the greatest common measure of all the given numbers.

Exampie 1.-Find the greatest common measure of 679 , 5901 , and 6734.

By the last rule we learn that 7 is the greatest common measure of 679 and 5901 ; and by the same rule, that it, the greatest common measure of 7 and 6734 (the remaining number), for $6734 \div 7=962$, with no remainthr. Therefore 7 is the required number.
 736, and 142.

The greatest common measure of 936 and 736 is 8 , and the common measure of 8 and 142 is 2 ; therefore 2 is the greatest common measure of the given numbers.
106. Reason of the Rule. - It may be shown to be correct in the same way as the last; except that in proving the number found to be a common measure, we are to begin at the end of all the processes, and go through all of them in succession; and in proving that it is the greatest common measure, we are to begin at the commencement of the first process, or that used to find the common measure of the two first numbers, and proceed successively through all.

EXERCISES.

7. Find the greatest common measure of 29472, 176832, and 1074. Ans. 6.
8. Of $648435,10810,3672835$, and 473580. Ans. 5. 9. Of 16264, 14816, 8600, 75288, and 8472. Ans 8.

THE LEAST COMMON MULTIPLE OF NUMbERS.

107. To find the least common multiple of two quan-tities-
Rule.-Divide their product by their greatest common measure. Or; divide one of them by their greatest common measure, and multiply the quotient by the other-the resuit of either method will be the required least common multiple.
Example.-Find the least common multiple of 72 and 84. 12 is their greatest common measure.

$$
\frac{72}{12}=6, \text { and } 6 \times 84=504, \text { the number sought. }
$$

108. Reason of the Rule.-It is evident that if we multiply the given numbers together, their product will be a ciultiple of each by the other [80]. It will be easy to find the smallest part of this product, which will still be their ommon multiple.-Thus, to learn if, for example, its nineteenth part is such.
From whatere have already seen [69], each of the factors of any produ divided by any number and multiplied by the product of the other factors, is equal to the product of all the firerse divided by the same nuruber. Hence, 72 and 81 being
$\frac{2 \times 84}{19}$ (the nineteenth part of their product) $=\frac{72}{19} \times 84$, or $72 \times$ $\frac{84}{19}$. Now if $\frac{72}{19}$ and $\frac{84}{19}$ be equivalent to integers, $\frac{72}{19} \times 84$ will be a multiple of 84 , and $\frac{84}{19} \times 72$, will be a multiple of 72 [29]; and $\frac{72 \times 84}{19}, \frac{72}{19} \times 84$, and $72 \times \frac{84}{19}$ will each be the common multiple of 72 and 84 [30]. Sut unless 19 is a common measure of 72 and $84, \frac{72}{19}$ and $\frac{84}{19}$ cannot be both equivalent to integers. Therefore the quantity by which we divide the product of the given numbers, or one of them, before we multiply it by the other to obtain a new, and less multiple of them, nust be the cornmon measure of both. And the multiple we obtain will, evidently, be the least, when the divisor we select is the greatest quantity wo can use for the purpose-that is, the greatest common measure of the given numbers

It follows, that the least common multiple of two numbers, prime to each other, is their product.

EXERCISEs.

1. Find the least common multiple of 78 and 93. Ans. 2418.
2. Of 19 and 72. Ans. 1368.
3. Of 464320 and 18945. Aus. 1759308480.
4. Of 638296 and 33888 . Ans. 2703821856.
5. Of 18996 and 29932. Ans. 142147068.
6. Of 260424 and 54423. Ans. 1574783923.
7. To find the least common multiple of three or more numbers-

Rule. -Find the least common multiple of two of them; then of this common multiple, and a third; next of this last common multiple and a fourth, \&ec. The last common multiple found, will be the least common multiple sought.
Example.-Find the least common multiple of 9,3 , and 27. 3 is the greatest common measure of 9 and 3 ; therefore $\frac{9}{3} \times 3$, or 9 is the least common multiple of 9 and 3 . ${ }_{27} 9$ is the greatest common meusure of 9 an 27 ; therefore $\frac{27}{9} \times 9$, or 27 is the required least common multiple.
110. Rriason of the Rule.-By the last rule it is evident that 27 is the least conmon multiple of 9 and 27 . But since 9 is a multiple of 3,27 , which is a multiple of 9 , must also be a multiple of $3 ; 27$, therefore, is a multiple of each of the given numbers, or thoir common multiple.

It is likewiso their leust common multiple, because none that is smaller can be common, also, to both 9 and 27 , since they were found to have 27 as their least common multiple.

EXERCISES.

7. Find the least common multiple of 18,17 , and 43 . Ans. 13158.
8. Of 19, 78, 84, and 61. Ans. 1265628.
9. Of $51,176832,29472$, and 5862. Ans. 2937002688.
10. Of $537842,16819,4367$, and 2473.
11. Of $21636,241816,8669,9752$ Ans. 8881156168989038.

Ans. 1528835550537452616.

QUESTIONS

1. How is the greatest common measure of two quantities found? [100].
2. What principles are necessary to prove the correctness of the rule ; and how is it proved? [101, \&c.].
3. How is the greatest common measure of three, or more quantities found? [105].
4. How is the rule proved to be correct? [106].
5. How do we find the least common multiple of two numbers that are composite? [107].
6. Prove the rule to be correct [108].
7. How do we find the least common multiple of two prime numbers? [108.]
S. How is the least common multiple of three or more numbers found ? [109].
8. Prove the, ule to be correct [110].

In future it will be taken for granted that the pupi is to be asked the reasous for each rule, \&c.
is evident But since st also be ch of the tiple.
and 43.
2688.
989038.
2616.
quan-
orrect-
cc.].
ree, or
f two
of two
ee or

SECTION III.

REDUCTION AND THE COMPOUND RULES.

The pupil should now be made familiar with most of the tables given at the commencement of this treatise.

reduction.

1. Reduction enables us to change quantities from one denomination to another without altering their value. Taken in its more extended sense, we have often practised it already:-thus we have changed units into tens, and tens into units, \&c.; but, eonsidered as a separate rule, it is restricted to applicate numbers, and is not confined to a change from one denomination to the next higher, or lower
2. Reduetion is either descending, or ascending. It is reduction descending when the quantities are changed from a higher to a lower denomination; and reduction ascending when from a lower to a higher.

Reduction Descending.

3. Rule.-Multiply the highest given denomination by that quantity which expresses the number of the next lower contained in one of its units; and add to the product that number of the next lower denomination which is found in the quantity to be reduced.

Proceed in the same way with the result; and continue the process until the required denomination is obtained.
Lxample.-Reduce £6 16s. $0 \frac{1}{4} d$. to farthings.

6520 farthings $=\mathcal{E} 6,16,0\}$.

We multiply the pounds by 20 , and at the same time add the shillings. Sinee multiplying by 2 tens (20) ean give no units in the prodnet, there can be no units of shillings in it exeept those derived from the 6 of the 16 s.:-we at onee, therefore, put down 6 in the shillings' place. T'wico (2 tens' times) 6 are 12 (tens of shillings), and one (ten shillings), to be added from the 16 s., are 13 (tens of shillings) - which we put down. $\mathcal{L 6} 16 s$ s. are, consequently, equal to 136 s .
12 times $6 d$. are $72 d$.:-since there are no pence in the given quantity, there are none to be added to the $72 d$.-we put down 2 and carry 7. 12 times 3 are 39 , and 7 are 43. 12 times 1 are 12, and 4 are 16. £6 16s. are, therefore, equal to 1632 pence.
4 times 2 are 8 , and $\frac{1}{4}$ (in the quantity to he redueed) to be carried are 9 , to be set down. 4 times 3 are 12. 4 times 6 are 24 , and 1 are 25 . 4 times 1 are 4 , and 2 are 6 . Hence £6 16s. $0 \frac{1}{4} d$. are equal to 6529 farthings.
4. Reasons of the Rule.- One pound is equal to 20 s .; therefore any number of pounds is equal to 20 times as many shillings; and any number of pounds and shillings is equal to 20 times as many shillings as there are pounds, plus tho shillings.
It is easy to multiply by 20 , and add the shillings at the same time; and it shortens the process.
Shillings are equal to 12 times ns many pence; pence to 4 times as many farthings; hundreds to 4 times as many quarters; quarters to 28 times as many pounds, \&c.

EXERCISES.

1. How many farthings in 23328 pence? Ans.

 93312.2. How many shillings in "£348? Ans. 6960.
3. How many pence in £38 $10 s$. ? Ans. 9240 .
4. How many pence in £58 13s. ? Aus. 14076.
5. How many farthings in £う今 13s. ? Ans. 56304.
6. How many farthings in $£ 59$ 13s. $6 \frac{3}{4} d$.? Ans. 57291.
7. How many pence in £63 0s. 9d.? Ans. 15129.
8. How many pounds in 16 cwt., 2 qrs., 16 lb .? Ans. 1864.
9. How many pounds in 14 cwt., 3 qrs., 16 mb ? Ans. 1668.
10. How many grains in $3 \mathrm{tb} ., 5 \mathrm{oz} ., 12 \mathrm{dwt}, 16$ grains? Ans. 19984.

e time add

 an give no nillings in ve at once, co (2 tens' llings), to which wo $6 s$.ace in the 72 l.-we 7 are 43. therefore, duced) to 4 times j. Henco
to 20 s .; as many is equal plus tho
ss at the
pence to as many

Ans.
76.
6304. Ans.
5129.

16 fb ?
16 mb ?
11. How many grains in $7 \mathrm{lb} ., 11 \mathrm{oz}$., 15 dwt ., 14 grains? Ans. 45974.
12. How many hours in 20 (common) years? Ans. 175200.
13. How many fect in 1 English mile? Ans. 5280.
14. How many feet in 1 Irish mile? $\Lambda n s .6720$.
15. How many gallons in 65 tuns? Ans. 16380.
16. How many minutes in 46 years, 21 days, 8 hours, 56 minvies (not taking leap years into aecount)? Ans. 24208376.
17. How many square yards in 74 square English perehes ? Ans. 2238.5 (2238 and one half).
18. How many square inehes in 97 square Irish perehes? Ans. 6159888.
19. How many square yards in 46 English aeres, 3 roods, 12 perches? Ans. 226633.
20. How many square aeres in 767 square English miles? Ans. 490880.
21. How many cubie inehes in 767 cubic feet? Ans. 1325376.
22. How many quarts in 767 pecks? Ans. 6136.
23. How many pottles in 797 peeks? Ans. 3188.

Reduction Ascending.

5. Rule.-Divide the given quantity by that number of its units which is required to make one of the next higher denomination-the remainder, if any, will be of the denomination to b e reduced. Proceed in the sane manner until the ${ }^{\prime}$ net required denomination is obtained.
Example.-Reduce 8: . hings to pounds, \&e.

> 4) 856347
> 12 $\longdiv { 2 1 4 0 8 6 }$
> 20) $\lcm{17840}, 6 \frac{3}{80}$
> $892,0,6 \frac{3}{4}=856347$ farthings.

4 divided into 856347 farthings, gives 214086 pence and 3 farthings. 12 divided into 214086 pence, gives 17840 shillings and 6 pence. 20 divided into 17840 shillings, gives E892 and no shillings; there is, therefore, nothing in the shillings' plae of the result.

We divile by 20 if wo divide ly 10 and 2 [Soc. 1I. 97$]$. To divido by Io, wo have merely to cut off tho unita, if any, [Sec. I. 34], which will then be the units of shillinges in the result; and the quotient will be tens of shillings:dividing the iatter by 2 , gives the pounds as quotient, and the tens of shillings, if there are any in the required quantity, as remainder.
6. Reasone of the Rule.-It is evident that every 4 farthings are equivalent to one penny, and every 12 pence to one shilling, \&c. ; and that what is left after taking away 4 farthings is often as possible from the farthings, must bo farthings, what remains after taking away 12 pence as often as possible from the pence, must be pence, \&o.
7. To prove Reduction.-Reduction ascending and descending prove each other.

Example.--£20 17s. $21 d=20025$ farthings; and 20025 farthings=£20 17s. 21 d.

EXERCISES

24. How many pence in 93312 farthings? Ans. 23328.
25. How many pounds in 6960 shillings? Ans. £34S.
26. How many pounds, \&c. in 976 halfpence? Ans. \mathfrak{L} 0s. $8 d$.
27. How many pounds, \&c. in 7675 halfpence ? Ans. £15 19s. $9 \frac{1}{2} d$.
2S. How many ounces, and pounds in 4352 drams? Ans. 272 oz., or 17 Ht .
ine. 1I. $\left.{ }^{97}\right]$
to unita, if of shillings hillings :wotient, and uired quan-
at every 4 2 pence to g away 4 8, must bo ce as often ding and and 20025

17,21
arthings.

Ans.
s. £348.

Ans.
Ans.
drams?
29. How many cwt., qrs., and pounds in 1864 pounds? Ans. 16 ewt., 2 qrs., 16 lb.
30. How many hundreds, \&c., in 1668 pounds. Aus. 14 cwt., 3 qrs., 16 lt.
31. How many pounds I'roy in $11 \overline{5} 200$ grains? Aus. 20.
32. How many pounds in 107520 oz . avoirdupolse ? dus. 6720 .
33. How many hogsheads in 20658 gallons? Ans. 327 hogsheads, 57 gallons.
34. How many days in 8760 hours? $\Lambda n s .365$.
35. How many Irish miles in 1834560 fect? Ans. 273.
36. How many English miles in 17297280 inches ? fins. 273.
37. How many English miles, \&c. in 4147 yards? -Ins. 2 miles, 2 furlongs, 34 perches.
38. How many Irish miles, \&c. in 4247 yards? Ans. 4 inde, 7 furlongs, 6 perches, 5 yards.

3リ. How many English ells in 576 nails? Ans. 28 uils, 4 qrs.

4u. How many English acres, \&c. in 5097 square yards? Aus. 1 acre, 8 perches, 15 yards.
41. How many Trish acres, \&c. in 5097 square yards? Ans. 2 roods, 24 perches, 1 yard.
42. How many cubic feet, \&c., in 1674674 cubio inches? Aus. 969 feet, 242 inches.
43. How many yards in 767 Nlemish ells? Ans. 575 yards, 1 quarter.
44. How many French clls in 576 English? Ans. 480.
45. Reduce $£ 4614 s$. $6 d$., the mint value of a pound of gold, to farthings ? Ans. 44856 farthings.
46. The force of a man has been estimated as equal to what, in turning a winch, would raise 256 ib , in pumping, 419 ib , in ringing a bell, 572 fb , and in rowing, $608 \mathrm{fb}, 3281$ feet in a day. How many hundreds, quarters, \&e., in the sum of all these quantities? Ans $16 \mathrm{cwt} ., 2$ qrs., 7 ib.
47. How many lines in the sum of 900 feet, tho
length of the temple of the sun at Balbec, 450 feet its breadth, 22 feet the circumference, and 72 feet the height of many of its columns? Aus. 207936.
48. How many square feet in 760 English acres, the inclosure in which the poreelain pagoda, at Nan-King, in China, 414 feet high, stands? Ans. 33105600.
49. The great bel! of Moscow, now lying in a pit the beam which supported it having been burned, weighs 360000 lb . (some say much more) ; how many tons, \&c., in this quantity? Ans. 160 tons, 14 cwt., 1 qr., 4 ib.

QUESTIONS FOR THE PUPIL.

1. What is reduction? [1].
2. What is the difference between reduction deseending and reduction ascending? [2].
3. What is the rule for reduction deseending ? [3]
4. What is the rule for reduction aseending? [5].
5. How is reduction proved? [7].

Questions founded on the Table page 3, \&c.

6. How are pounds reduced to farthings, and farthings to pounds, \&c.?
7. How are tons reduced to drams, and drams to tons, \&c.?
8. How are Troy pounds reduced to grains, and grains to Troy pounds, \&c. ?
9. How are pounds reduced to grains (apotheearies weight), and grains to pounds, \&c. ?
10. How are Flemish, English, or French ells, reduced to inches; or inches to Flemish, English, or Freneh ells, \&c. ?
11. How are yards reduced to ells, or ells to yards, \&c.?
12. How are Trish or English miles reduced to lines, or lines to Irish or English miles, \&c. ?
13. How are Irish or English square miles reduced to square inehes, or square inches to Irish or English square miles, \&e. ?

450 feet its 72 feet the 36.

1 aeres, tho Nan-King, 55600.
x in a pit ned, weighs y tons, \&c., qr., 4 lb .
a doscend$?$
$?$
$\delta \%$
farthings
drams to
ins, and
thecaries
ells, reor Hrench to yards, to lines, reduced English
14. How are cubic feet reduced to cubic inches, or cubio inches to oubic feet, \&c. ?
15. How are tuns reduced to naggins, or naggins to tmis, \&e. ${ }^{2}$
16. How are butts reduced to gallons, or gallons to bults, \&c.?
17. How are lasts (dry measure) reduced to pints, and pints to lasts, \&c. ?
18. How are years reduced to thirds, or thirds to years, \&c. :
19. How are degrees (of the eirele) reduced to thirds, or thirds to degrees, \&c. ?

THE COMPOUND RULES.

8. The Compound Rules, are those which relate to applicate numbers of more than one denomination. .

If the tables of money, weights, and measures, were constructed aecording to the decimal system, only the rules for Simple Addition, \&e., wonld be required. This wonld be a considerable advantage, and greatly tend to simplify mereantile transactions.-If 10 farthings were one penuy, 10 pence one shilling, and 10 shillings one ponnd, the addition, for example, of $\mathfrak{£ 1}$ Эs. $\mathcal{E}_{4}^{\circ} d$. to $\mathscr{E} 668 s .6 \frac{1}{2} d$. (a point being used to separate a pound, then the "unit of comparison," from its parts, and 0.005 to express $\frac{1}{3}$ or 5 tenths of a penny), would be as follows-

$$
\begin{array}{cc}
& \begin{array}{c}
£ \\
1 \cdot 983 \\
6 \\
\\
\text { Sum, } \\
\\
\hline
\end{array} \overline{8.845}
\end{array}
$$

The addition might be performed by the ordinary rules, and the sum read off as follows-" eight pounds, eight shillings, four penee, and cight farthings." But even with the presont arrangement of money, weights, and measures, the rules alleady given for addition, sub. traction, \&e., might easily have been made to include the audition, subtraction, \&e., of applicate numbers consisting of more tham one denomination; since the
principles of both simple and eompound rules are precisely the sane-the only thing necessary to bear carefully in mind, boing the number of any one denomination necessary to constitute a unit of the next higher.

COMPOUND ADDITION.

9. Rule.-I. Sct down the addends so that quantities of the same denomination may stand in the same vertical column-units of pence, for instance, under units of penee, tens of pence under tens of pence, units or̂ shillings under units of shillings, \&e.
II. Draw a separating line under the addends.
III. Add those quantities whieh are of the same denomination together-farthings to farthings, penee to penee, \&c., beginning with the lowest.
IV. If the sum of any column be less than the number of that denomination whieh makes one of the next higher, set it down under that eolumn ; if not, for each time it contains that number of its own denomination which makes onc of the next higher, carry one to the latter and set down the remainder, if any, under the column which produced it. If in any denomination there is no remainder, put a cypher under it in the sum.

$\left.\begin{array}{rrr}\mathcal{L} & s . & d . \\ 52 & 17 & 3 \frac{3}{1} \\ 47 & 5 & 6 \frac{1}{1} \\ 66 & 14 & 2 \frac{1}{4} \\ \hline 166 & 17 & 0 \frac{1}{3}\end{array}\right\}$ addends.
$\frac{1}{4}$ and $\frac{1}{2}$ make 3 farthings, which, with ${ }_{4}^{3}$, make 6 farthings; these are equivalent to one of the next denominittion, or that of pence, to be carried, and two of the present, or one half-penny, to be set down. 1 penny (to be carrici) and 2 are 3 , and 6 are 9 , and 3 are 12 pence-equal to one
of the next denomination, or that of shillings, to be carried, find no pence to be set down; we therefore put a cypher in the penee' plaee of the sum. I shilling (to be carried) and 14 are 15 , and 5 are 20 , and 17 are 37 shillings-equal to one of the next denomination, or that of pounds, to be carried, and 17 of the present, or that of shillings, to be set down. 1 pound and 6 are 7 , and 7 are 14 , and 2 are 16 pounds-equal to 6 units of pounds, to bo set down, and 1 ten of pounds to be carried; 1 ten and 6 are 7 and 4 are 11 and 5 are 16 tens of pounds, to be set down.
10. This rule, and the reasons of it, are the same as those already given [Sec. II. 7 and 9]. It is evidently not so necessary to put a cypher where there is no remainder, as in Simple Addition.
11. When the addends are very numerous, we may divide them into parts by horizontal lines, and, adding each part scparately, may afterwards find the amount of all the suns.

Example:

13. Or, in adding each column, we may put down a dot as often as we come to a quantity which is at least equal to that number of the denomination added which is required to make one of the next-carrying forward what is above this number, if anything, and putting the last remainder, or-when there is nothing left at the end-a cypher under the column:-wo carry to the next column one for everv dot. Using the samo

E	s.	d.
57	$\cdot 14$	2
32	16	4
19	-17	$\cdot 6$
8	$\cdot 14$	2
32	5	.9
47	-6	4
32	17	2
56	$\cdot 3$	$\cdot 9$
27	4	2
52	4	4
37	8	2
404	11	10

2 pence and 4 are 6, and 2 are 8, and 9 are 17 penceequal to 1 shilling and 5 pence; we put down a dot and carry 5. 5 and 2 are 7 , and 4 are 11, and 9 are 20 pence-equal to 1 shilling and 8 pence; we put down a dot and carry 8 . 8 and 2 are 10 and 6 are 16 pence-equal to 1 shilling and 4 pence; we put down a dot and carry 4.4 and 4 are 8 and 2 are 10 -which, being less than 1 shilling, we set down under the column of ponce, to which it belongs, \&c. We find, on adding them up, that there are three dots; we therefore carry 3 to the column of shillings. 3 shillings and 8 are 11 , and 4 are 15, and 4 are 19, and 3 are 22 shillings-equal to 1 pound and 2 shillings; we put down a dot and carry 1. 1 and 17 are 18 , \&c.
Care is necessary, lest the dots, not being distinctly marked, may be considered as either too few, or too many. This method, though now but little used, seems a convenient one.
14. Or, lastly, set down the sums of the farthings, shillings, \&c., under their respective columns; divide the farthings by 4 , put the quotient under the sum of the pence, and the remainder, if any, in a place set apart for it in the sum-under the column of farthings; add together the quotient obtained from the farthings and the sum of the pence, and placing the amount under the pence, divide it by 12 ; put the quotient under the sum of the shillings, and the remainder, if any, in a place allotted to it in the sum-under the column of pence ; add the last quotient and the sum of the shillings, and putting under them their sum, divide tho latter by 20, set down the quotient under the sum of
the pounds, and put the remainder, if any, in the sumunder the column of shillings; add the last quotient and the sum of the pounds, and put the result under the pounds. Using the following example-

The sum of the farthings is 13 , which, divided by 4 , gives 3 as quotient (to be put down under the pence), and one fiuthing as remainder (to be put in the sum total-under the farthings). 3d. (the quotient from the farthings) and 47 (the sum of the pence) are 50 pence, which, being put down and divided by 12, gives 4 slinllings (to be set down under the shillings), and 2 pence (to be set down in the sum total-under the pence). 4s. (the quotient from the pence) and 82 (the sum of the shillings) are 86 shillings, which, being set down and divided by 20 , gives 4 pounds (to be set down under the pounds), and 6 shillings (to bo set down in the sum total-under the shillings). $£ 4$ (the quotient from the shillings) and 1 finl (the sum of the pounds) are 165.5 pounds (to be set down in the sum totalunder the pounds). The sum of the adlends is, therefore, found to be $£ 1655$ Gs. ${ }_{2}^{1}(d$.
15. In proving the compound rules, we can generally avail ourselves of the methods used with the sin.ble rulna [Sec. II. 10, 只c.]

EXERCISES FOR THE PUPIL

\& ${ }^{(5)} \quad$ s. $\quad d$
(6)
(7)
(8)

(9)
(10)
(11)

\&	s.	d.			
4567	14	6			
776	15	7			
76	17	9			
51	0	10			
44	5	6		2 s a 76 14 7 667 13 6 67 15 7 5 4 2 5 3 4${ }^{2}$	
---:	---:	---:			

(13)		
$£$	s.	d.
9767	0	64
7649	11	$2 \frac{1}{2}$
4767	16	104
164	1	1
92	7	24

(14)				
	s.	d.		
	11	$6 \frac{1}{2}$		
7676	16	94		
5948	17	$8 \frac{1}{4}$		
5786	7	6		
6325	8	24		

(15)		
$£$	s.	d.
5764	17	$6 \frac{3}{4}$
7457	16	5
6743	18	$0 \frac{1}{4}$
67	6	$6 \frac{1}{2}$
432	5	9

$f^{(17)}$	(18)	(19)
$\begin{array}{lrrr} \varepsilon_{0} & s . & d . \\ 0 & 14 & 7! \end{array}$	$\underset{5674}{ \pm}$ s. ${ }_{\text {c }}$ d	$\mathcal{L}^{\text {s. }}$ s. ${ }^{\text {d }}$
$6771{ }^{14}$		$\begin{array}{llll}5674 & 1 & 9 \\ 4767 & 11 & 105\end{array}$
$5767 \quad 2 \quad 6$	$\begin{array}{lll}1545 & 19 & 7 \frac{1}{2}\end{array}$	476711103
$369714 \quad 74$	1540 17	$\begin{array}{rrrr}78 & 18 & 11 \frac{1}{2} \\ 0 & 19 & 104\end{array}$
5634000	476610	$\begin{array}{rrrr}0 & 19 & 104 \\ 5044 & 4 & 1\end{array}$

COMPOUND ADDITION.

Avoirdupoise Weight.
(29) (30) (31)

COMPOUND ADDITION.

Troy Weight.

(41)

(41)						(42)		
1b	oz.	dwt.	grs.	Ib	oz.	dwt. grs		
7	0	5	9	5	9	7	0	
5	6	6	7	0	0	6	7	
9	5	6	8	8	7	6	4	
21	11	18	0					

Cloth Measure.

yds.
567

$\begin{array}{lllllllllll}176 & 3 & 2 & 147 & 3 & 3 & 157 & 2 & 1 & 156 & \text { qrs. nls. }\end{array}$ $\begin{array}{rrrrrrrrr}76 & 1 & 0 & 173 & 1 & 0 & 143 & 2 & 2 \\ 72 & 3 & 3 & 148 & 2 & 1 & 0 & 1 & 2\end{array}$

5	3	3	148	2	1	0	1
5	2	1		92	3	2	54

Wine Measure.
(55)

ts.	hhds.	gls.
29	3	9
80	0	39
98	3	46
87	2	27
41	1	26
407	3	21

Time.
(58)

yrs.	ds.	hrs.	ms.
99	359	9	56
88	0	8	57
77	120	7	40
265	115	2	42

(59)
(60)
(46)
${ }_{14}$ dwt. grs.
11
9
7
$13 \quad 14$
(50)

ds.	qrs.	
0	nls.	
0	2	1
5	3	2
0	0	3

(54)
61. What is the sum of the following:-three hundred and ninety-six pounds four shillings and two pence; five lundred and seventy-three pounds and four pence halfpenny; twenty-two pounds and three halfpence; four thousand and five pounds six shillings and three farthings? Ans. £4996 10з. $8 \frac{3}{4} d$.
62. A owes to B £567 16s. $7 \frac{1}{2} \mathrm{~d}$. ; to $\mathrm{C} £ 47 \mathrm{l}$ 16s. ; and to $\mathrm{D} £ 561 \mathrm{~d}$. How much does he owe in all ? Ans. £671 12s. $8 \frac{1}{2} d$.
63. A man has owing to him the following sums:£3 10s. 7 d .; £46 $7 \frac{1}{2} d$.; and £52 14 s . 6 d . How much is the entire? Ans. £102 5s. $8 \frac{1}{2} d$.
64. A merchant sends off the following quantities of butter: - -47 cwt., 2 qrs., 7 Ib ; 38 cwt., 3 qrs., 8 ib ; and 16 cwt., 2 qrs., 20 nb . How much did lie send off in all ? Ans. 103 cwt., 7 fb .
65. A merchant receives the following quantitics of tallow, viz., 13 cwt., 1 qr., 6 th ; 10 cwt., 3 qrs., 10 Ht ; and 9 cwt., $1 \mathrm{qr} ., 15 \mathrm{Hb}$. How much has he received in all ? Ans. 33 cwt., 2 qrs., 3 th.
66. A silversmith has $7 \mathrm{Hb}, 8$ oz., 16 dwt. ; $9 \mathrm{ft}, 7$ oz., 3 dwt. ; and $4 \mathrm{tb}, 1$ dwt. What quantity has he? Ans. $21 \mathrm{Ib}, 4$ oz.
67. A merchant sells to A 76 yards, 3 quarters, 2 nails; to B, 90 yards, 3 quarters, 3 nails; and to C, 190 yards, 1 nail. How much has he sold in all ? Ans. 357 yards, 3 quarters, 2 nails.
68. A wine merchant reccives from his cotwespondent 4 tuns, 2 hogsheads; 5 tuns, 3 hogsheads; and 7 tuns, 1 hogshead. How much is the entire? Ans. 17 tuns, 2 hogsheads.
-69. A man has three farms, the first contains 120 acres, 2 roods, 7 perches; the second, 150 acres, 3 roods, 20 perches ; and the third, 200 aeres. How much land does he possess in all? Ans. 471 acres, 1 rood, 27 perches.
70. A servant has had three masters; with the first he lived 2 years and 9 months; with the second, 7 years and 6 months; and with the third, 4 years and 3 months. What was the servant's age on leaving his last master, supposing he was 20 years old on going to the first, and that he went direotly from one to tho other? Ans. 34 years and 5 months.
71. How many days from the 3rd of March to the 23 rd of June? Ans. 112 days.
72. Add together 7 tons, the weight which a piece of fir 2 inches in diameter is capable of supporting; 3 tons, what a piece of iron one-third of an inch in diameter will bear ; and 1000 Hb , which will be sustained by a hempen rope of the same size. Ans. 10 tons, 8 cwt., 3 quarters, 20 ib .
73. Add together the following:-2d., about the value of the Roman sestertius ; $7 \frac{1}{2} d$., that of the denarius; $1 \frac{1}{2} d$., a Greek obolus; 9 d., a drachma; £3 15 s. a mina ; £225, a talent; $1 s .7 d$., the Jewish shekel ; and £342 3s. 9d., the Jewish talent. Ans. £5771 $2 s$.
74. Add together 2 dwt. 16 grains, the Greek drachma; $1 \mathrm{lb}, 1 \mathrm{oz} ., 10 \mathrm{dwt}$, the mina; $67 \mathrm{Ht}, 7 \mathrm{oz} ., 5 \mathrm{dwt}$., the talent. Ans. $68 \mathrm{Ht}, 8$ oz., 17 dwt., 16 grains.

QUESTIONS FOR THE PUPIL.

1. What is the difference between the simple and compound rules? [8].
2. Might the simple rules have been constructed so as to answer also for applieate numbers of different denominations? [8].
3. What is the rule for compound addition ? [9].
4. How is compound addition proved ? [15].
5. How are we to act when the addends are numerous? [12, \&c.]

COMPOUND SUPTRACTION.

16. Rule-I. Plaee the digits of the subtrahend under those of the same denomination in the minuendfarthings under farthings, units of pence under units of penee, tens of pence under tens of pence, \&e.
II. Draw a separating line.
III. Subtract each denomination of the subtrahend from that which corresponds to it in the minuendbeginning with the lowest.
IV. If any denomination of the minuend is less than that of the subtrahend, which is to be taken from it, add to it one of the next higher-eonsidered as an equivalent number of the denomination to be inereased; and, either suppose unity to be added to the next denomination of the subtrahend, or to be subtracted from the next of the minuend.
V. If there is a remainder after subtraeting any denomination of the subtrahend from the corresponding one of the minuend, put it under the column whieh produced it.
VI. If in any denomination there is no remainder, put a cypher under it-unless nothing is left from any higher denomination.
17. Example.—Subtract £56 13s. $4 \frac{3}{4} d$., from $£ 96$ 7s. $6 \frac{1}{1} d$.

$\begin{array}{lll}56 & 13 & 4 \\ 4\end{array}$, , subtrahend.
$\begin{array}{lll}39 & 14 & 1 \frac{1}{2},\end{array}$ difference.
We eannot take $\frac{3}{4}$ from $\frac{1}{5}$, but-borrowing one of the penee, or 4 farthings, we add it to the $\frac{1}{4}$, and then say 3 farthings from 5, and 2 farthings, or one halfpenny, remains: we set down $\frac{1}{2}$ under the farthings. 4 pence from 5 (we have borrowed one of the 6 penee), and one penny re. mains: we set down 1 under the penee ($1 \frac{1}{2} l$. is read "three halfpenee"). 13 shillings eannot be taken from 7 , but (borrowing one from the pounds, or 20 shillings) 13 shillings from 27 , and 14 remain: we set down 14 in the shillings ${ }^{\prime}$ plaee of the remainder. 6 pounds cannot be taken from 5 (we have borrowed one of the 6 pounds in the minueand)
but 6 from 15，and 9 remain：we put 9 under the units of pounds． 5 tens of pounds from 8 tens（we have borrowed one of the 9），and 3 remain：we put 3 in the tens of pounds＇ place of the remainder．
18．This rule and the reasons of it are substantially the same as those already given for Simple Subtraction［Scc． 11 ． 17，\＆ce．］It is ovidently not so necessary to put down cyphers where there is nothing in a denomination of the remainder．
19．Compound may be proved in the same way as simple subtraction［Scc．11．20］．

FXERC1SE\＆。

Troy Weight.

	(23)				(24)				(24)			
	1 lb	Oz.	dwt.	gr .		z.	Wwt				dv	
arom	554	9	19	4	046	0	10	0	917	0	14	9
fake	97	0	16	15	0	0	17	23	798	0	18	17
	457	9	2	13								

Wine Measure.

(27)
(28)
(29)
(26)
ts. hhds. gls. ts. hhds. gls. ts. hhds. gls. ts. hhds. gls. From
Take

31	3	15	54	0	27	304	0	54	56	0	1	
29	2	26	0	3	42	100	3	51		27	2	25
2	0	52										

(30)
(31)
(32)
38. A merchant bought 600 salt ox hides, weighing 561 cwt ., 2 lb ; of which ho sold 250 hides, weighing 239 ewt., 3 qrs., 25 lb . How many hides had he left, and what did they weigh! $A n s .350$ hides, weighing $321 \mathrm{cwt}, 5 \mathrm{lb}$.
39. A merchant has 209 casks of butter, weighing 400 ewt., 2 qrs., 14 db ; aud ships off 173 casks, weighing 213 cwt., 2 qrs., 27 lb . How many casks has he left; and what is their weight? Aus. 36 casks, weighing 186 cwt ., 3 qrs., 15 lb .
40. What is the difference between 47 English miles, the length of the Claudia, a Roman aqueduct, and 1000 feet, the length of that across the Dee and Vale of Llaugollen? Axs. 247160 feet, or 46 miles, 4280 feet.
41. What is the difference between 9S0 feet, the width of the single arch of a wooden bridge erected at St. Petersburg, and that over the Schuylkill, at Philadelphia, 113 yards and 1 foot in span? Aus. 640 feet

QUESTIONS FOR TIIE PUPIL.

1. What is the rule for compound subtraction? [16].
2. How is compound subtraction proved? [19].

COMPOUND MULTXPLICATION.

20. Since we cannot muitiply pounds, \&e., by pounds, \&c., the multiplier must, in compound multiplication, be an abstract number.
21. When the multiplier does not exceed 12-

Rule-I. Piace the multiplier to the right hand side of the multiplicand, and beneath it.
II. Put a separating line under both.

III. Multiply each denomination of the multiplicand

 by the multiplier, beginning at the right hand side.IV. For every time the number required to make one of the next denomination is contained in any product of the multiplier and a denomination of the multiplicand, carry one to the next product, and set down the remainder (if there is any, after subtracting the number equivalent to what is carried) under the denomination
weighing weighing he left, weighing weighing 3 casks, asks has 6 casks, h miles, nd 1000 Vale of 280 feet. eet, the ected at t Philil40 feet
[16]. pounds, lication,
hand
to which it belongs; but should there be no remainder, put a eypher in that denomination of the product.
22. Example.-Multiply $£ 62$ 17s. 10 d . by 6.
$\begin{array}{ccc} \pm & s . & d \text {. } \\ 62 & 17 & 10 \\ & & \text { multiplicand. }\end{array}$
6 , multiplier.
$\begin{array}{lll}377 & 7 & 0 \\ \text {, product. }\end{array}$
Six times 10 pence are 60 pence ; these are equal to : shillings (5 times 12 pence) to be carried, and no pence to be set down in the product-we therefore write a eypher in the pence place of the product. 6 times 7 are 42 slillings, and the 5 to be carried are 47 shillings-we put down 7 in the units' place of shillings, and carry 4 tens of shillings. 6 times 1 (ten shillings) are 6 (tens of hillings), and 4 (tens of shillings) to be carried, are 10 (tens of shillings), or 5 pounds (5 times 2 tens of shillings) to be carried, and nothing, (noten of shillings) to be set down. 6 times 2 pounds are 12 , and 5 to be carried are 17 pounds-or 1 (ten pounds) to be carried, and 7 (units of pounds) to be set down. 6 times 6 (tens of pounds) are 36, and 1 to be carried are 37 (tens of pounds).
25. The reasons of the rule will be very easily understood from what we have already said [Sec. II. 41]. But since, in compound multiplication, the value of the multiplier has no connexion with its position in reference to the multiplicand, where we set it down is a mere matter of convenience; neither is it so necessary to put cyphers in the product in those denominations in which there are no significant figures, as it is in simple multiplication.
24. Compound multiplication may be proved by roducing the product to its lowest denomination, dividing by the multiplier, and then reducing the quotient

Example.-Multiply $£ 43 \mathrm{~s} .8 \mathrm{~d}$. by 7.

7)7028, product reduced.
12) $\overline{1004}$
20)83
quotient reduced $\overline{438}=$ multiplicand.
£2.) 5. 8 . $8 d$. are 7 times the multiplicand; if, thegrefore, the process has been rightly performed, the soventh part of this should be equal to the multiplicand.

The quantities are to be "reduced," before the division by 7 , since the learner is not supposed to be able as yet to divide' £29 5s. 8d.

EXERCISES.

£	s.	d. \quad L	s	
1. 76	14	$7 \frac{1}{2} \times 2=153$	9	3.
2. 97	13	$6 \frac{1}{2} \times 3=293$	0	$7 \frac{1}{2}$
3. 77	10	$74 \times 4=310$	2	5
4. 96	11	$7 \frac{1}{2} \times 5=482$	18	$1 \frac{1}{6}$.
5. 77	14	$64 \times 6=466$	7	$1 \frac{1}{2}$
6. 147	13	$3 \frac{1}{2} \times 7=1633$	13	0it.
7. 428	12	$7 \frac{1}{2} \times 8=3429$	1	0.
8. 572	16	$6 \times 9=5155$	8	6.
9. 428	17	$3 \times 10=4288$	12	6.
10. 672	14	$4 \times 11=7399$	17	8.
11. 776	15	$5 \times 12=9321$	17	0.

12. 7 lb at $5 s .24 d$. \&', will cost $116 s$. 34 d .
13. 9 yards at $10 s$. $11 \notin d$. ${ }^{\prime}$, will cost $£ 418 \mathrm{~s}$. $54 \boldsymbol{d}$. 14. 11 gallons at $13 s$. 9 d . థ', will cost $£ 711 s$. $3 d$. 15. 12 mb at $£ 1 \mathrm{ss} .4 d$. ${ }^{\prime}$, will cost $£ 14$.
14. When the multiplier exceeds 12 , and is a composite number-

Rule.-Multiply successively by its factors
Example 1.-Multiply $£ 47$ 13s. $4 d$. by 56.
£ s. d.
$47 \quad 13 \quad 4$

$$
50=7 \times 8 \frac{}{} \frac{7}{333} \quad 13 \quad \underset{8}{4}=47 \quad \stackrel{13}{1} \quad \begin{aligned}
& 4 \times 7 .
\end{aligned}
$$

$$
2669 \quad 6 \quad 8=47 \quad 13 \quad 4 \times 7 \times 8, \text { or } 56
$$

Example 2.-Multiply 14s. 2d. by 100.

> | s. | d. |
| :--- | :--- |
| | | $14 \quad 2$

$$
\begin{aligned}
& \text { £70 } 168=14 \quad 2 \times 10 \times 10 \text {, or } 100 \text {. }
\end{aligned}
$$

ofore, the rt of this sion by 7 , to divide

Fxample 3.-Multiply $£ 8$ 2s. $4 d$. by 700.
$\begin{array}{ccc}£ & s . & d . \\ 8 & 2 & 4\end{array}$

$$
\overline{568113 \quad 4}=8 \quad 2 \quad 4 \times 10 \times 10 \times 7 \text {, or } 700
$$

The reason of this rule has been already given [Sec. II. 60].
26. When the multiplier is the sum of composite numbers-

Rule.-Multiply by each, and add the resalts.
Example.—Multiply $£ 3$ 14s. 6d. by 430.

$$
\begin{aligned}
&
\end{aligned}
$$

$$
\begin{aligned}
& 372 \quad 10 \quad 0 \times 4=\frac{1490 \quad 0}{} 0 \text {, or } 314 \quad 6 \times 400 .
\end{aligned}
$$

The reason of the rule is the same as that already given [sec. II. 62]. The sum of the products of the multiplicand by the parts of the multiplier, being equal to the product of the wultiplicand by the whole multiplier.

EXERCISES.

27 If the multiplier is not a composite number-
Rule.-Multiply suceessively by the faetors of the noarest composite, and add to or subtract from the produet so many times the multiplicand as the assumed composite number is less, or greater than the given multiplier.
Example 1 -Multiply $£ 6212 s .6 d$. by 76.

Fisample 2.-Multiply £42 3s. 4ll. by 27.

$$
\left.27=\overline{4 \times 7-1} \begin{array}{cccc}
\begin{array}{ccc}
£ & s . & d . \\
42 & 3 & 4 \\
& & 4
\end{array} \\
\hline 168 & 13 & 4 \\
& & 7
\end{array}\right]
$$

The reason of the rule is the same as that already given [Sec. II. 61].

EXERCISES.

£	s.	d.	£	.	d.
29. 12	2	$4 \times 83=$	1005	13	8.
30. 15	0	$04 \times 146=$	2193	3	$0 \frac{1}{2}$.
31. 122	5	$0 \times 102=$	12469	10	0.
32. 963	0	$08 \times 999-$	62040	2	54.

28. When the multiplier is large, we may often conreniently proceed as follows-
Rule.-Write once, ten times, \&c., the multiplicand, end, multiplying these respectively by the units, tens \&c., of the multiplier, add the results.
rs of the a the proassumed the given

Example.--Multiply $£ 47$ 16s. 2 d . by 5783. $5783=5 \times 1000+7 \times 100+8 \times 10+3 \times 1$.

Tens of the multiplicand, $\overline{478 \quad 1 \quad 8} \times 8=3824134$.
Hundreds of the multiplicand, $\overline{478016{ }_{10}^{8} \times 7=33465168 .}$
Thousands of the multiplicand, $\overline{47808 \quad 68} \times 5=239041134$.
Product of multiplicand and multiplier $=\overline{27647.51110}$.
EXERCISES.

38. 76 gallons at £0 134 丹', will ecst $£ 50 \quad 134$. 39. 92 gallons at $0 \quad 14 \quad 2$ df', will cost $65 \quad 3 \quad 4$.
40. What is the difference between the price of 743 ounces of gold at £3 17 s . $10 \frac{1}{2} d$. per oz. Troy, and that of the same weight of silver at $62 d$. per oz. ? $\Lambda n s$. £2701 2s. $3 \frac{1}{2} d$.
41. In the time of King John (money being then more valuable than at present) the price, per day, of a cart with three horses was fixed at $1 s .2 d$.; what would be the hire of such a cart for 272 days? Ans. $£ 1517 s .4 d$.
42. Veils have been made of the silk of caterpillars, a square yard of which would weigh about 4 grains; what would be the weight of so many square yards of this texture as would cover a square English mile? Ans. $2151 \mathrm{ib}, 1 \mathrm{oz} ., 6 \mathrm{dwt}$., 1C grs., Troy.

qUestions to be answered by the pupil.

1. Can the multiplier be an applicate number? [20].
2. What is the rule for compound multiplication when the multiplier does not exceed 12? [21].
3. What is the rule when it exceeds 12, and is a composite number? [25].
4. When it is the sum of composite numbers? [26].
5. When it exceeds 12 , and not a composite number ? [27].
6. How is compound multiplication proved? [24].

COMPOUND DIVISION.

29. Compound Division enables us, if we divide an applicate number into any number of equal parts, to ascertain what each of them will be; or to find out how many times one applicate number is contained in another.

If the divisor be an applicate, the quotient will be an abstract number-for the quotient, when multiplied by the divisor, must give the dividend [Sec. II. 79] ; but two applicate numbers cannot be multiplied together [20]. If the divisor be abstract, the quotient will be applicate-for, multiplied hy the quotient, it must give the dividend-an applicate number. Thercfore, either divisor or quotient must be abstract.
30. When the divisor is abstract, and docs not cxceed $12-$

Rule-I. Set down the dividend, divisor, and separating line-as directed in simple division [Sec. II. 72].
II. Divide the divisor, successively, into all the denominations of the dividend, beginning with the highest.
III. Put the number expressing how often the divisor is contained in each denomination of the dividend under that denomination-and in the quotient.
IV. If the divisor is not contained in a denomination of the dividend, multiply that denomiation by the number which expresses how many of the next lower denomination is contained in one of its units, and add the product to that next lower in the dividend.
V. "Reduce" each succeeding remainder in the same way, and add the product to the next lower denomination in the dividend.
VI. If any thing is left after the quotiont from the lowest denomination of the dividend is obtained, put it
down, with the divisor under it, and a separating line between:-or omit it, and if it is not less than half the divisor, add unity to the lowest denomination of the quotient.
31. Example 1.—Divide $£ 72$ 6s. $9 \frac{1}{2} d$. by 5.

$$
\begin{array}{rrr}
\text { £ } & s . & d . \\
5) 72 & 6 & 9 \frac{1}{2} \\
\hline 14 & 9 & 4 \frac{1}{4}
\end{array}
$$

5 will go into 7 (tens of pounds) onec (ten times), and leave 2 tens. 5 will go into 22 (units of pounds) 4 times, and leave two pounds or 40 s . 40 s . and 6 s . are 46 s ., into which 5 will go 9 times, and leave one shilling, or $12 d$. 12d. and $9 d$. are $21 d$., into which 5 will go 4 times, and leave $1 d$., or 4 farthings. 4 farthings and 2 farthings are 6 farthings, into which 5 will go onee, and leave 1 farthing-still to be divided; this would give $\frac{1}{5}$, or the fifth part of a farthing as quotient, which, being less than half the divisor, may be neglected.

A knowledge oif fractions will hereafter enable us to understand better the nature of these remainders.

Example 2.-Divide $£ 524$ s. $1 \frac{3}{4} d$. by 7.

\pm	s.	d.
$7) 52$	4	1_{4}^{3}
7	9	2

One shilling or $12 d$. are left after dividing the shillings, which, with the $1 d$. already in the dividend, make $18 d$. F goes into 13 onee, and leaves $6 d$., or 24 farthings, whieh, with $\frac{3}{4}$, make 27 farthings. 7 goes into 273 times and 6 over; but as 6 is more than the half of 7 , it may be eonsidered, with but little inaecuraey, as 7 -which will add one farthing to the quotient, making it 4 farthings, or one to be added to the pence.
32. This rule, and the reasons of it, are substantially the same as those already given [Sec. II. 72 and 77]. The remainder, after dividing the farthings, may, from its insignificance, be neglected, if it is not greater than half the divisor. If it is greater, it is evidently more accurate to consider it as giving one farthing to the quotient, than 0 , and therefore it is proper to add a farthing to the quotient. If it is exactly half tho divisor, we may consider it as equal either to the divisor, or 0 .
33. Compound division may be proved by multipli-cation-since the product of the quotient and divisor, plus the remainder, ought to be equal to the dividend [Sec. II. 79].
exercisles.

	d.
1. 967	$6 \div 2=48 \quad 3 \quad 9$.
3.3. 47 14	$7 \div 3=25 \quad 11 \quad 64$.
4. 4.9619	
5. 7716	$7 \div 6=12195$.
6. 3212	$2 \div 7=413 \quad 2$.
7. 4416	$7 \div 8=512 \quad 1$.
8. 9714	$3 \div 9=10 \quad 17 \quad 18$.
9. 14714	$6 \div 10=1415 \quad 5$
10. 15716	$7 \div 11=14 \quad 6 \quad 11$)
11. 17614	$6 \div 12=14 \quad 14$

The above quotients are true to the nearest for ching.
34. Whan the divisor exceeds 12 , and is a composite number--

Rule.-Divide successively by the factors.
Example.-Divide £12 17s. 9d. by 36.

$$
\begin{array}{r}
3 \lcm{12 \quad 17 \quad 9} \\
12 \lcm{4 \quad 5 \quad 11} \\
\hline 7 \quad 2
\end{array}
$$

This rule will be understood from Sec. II 97.

EXIRCIGES

		s.	d.		
12	24	17	$6 \div 24=$		83
13	576	13	$3 \div 86=16$	0	4t
14	447	12	$2 \div 48=9$	6	6.
15	547	12	$4 \div 56=$		
16	9740	14	$6 \div 120=81$	8	
17	740	13	$4 \div 49=15$	2	

35. When the divisor exceeds 12 , and is not a composite number-
Rule.-Procced by the method of long division; but in performing the multiplication of the remainders by the numbers whirh make them respectively a denomination lower, and adding to the products of that next lower denomination whatever is already in the dividend, set down the multipliers, \&e. obtained. Place the quotient as directed in long division [Scc. II. S9].

Fxample.-Divide $£ 87$ 16s. 4d. by 62.

C2 goes into $£ 87$ once (that is, it gives $£ 1$ in the quotient), and leaves $£ 25$. $£ 25$ are equal to 500 s. (25×20), which, with 16 s . in the dividend, make 516 s .62 groes into 516 s .3 times (that is, it gives $8 s$. in the quotient), and leaves $20 s$., or 240 d . (20×12) as remainder. (2 L goes into 240 , $\& \mathrm{c}$.
Were we to put $\frac{3}{4}$ in the quotient, the remainder would be 46, which is more than half the divisor; we consider tho quotient, therefore, as 4 farthings, that is, we add one penng to (3) the pence supposed to be already in the quotient. $\mathcal{E 1} 8 s$. $4 l$. is nearer to the true quotient than $£ 18 s .3 \frac{3}{4} d$. [32].
This is the same in principle as the rule given above [50]but since the numbers are large, it is more convenient actually to set down the sums of the differcut denominations of the dividend and the preceding remainders (reduced), the products of the divisor and quotients, and the numbers by which we multiply for the necessary reductions: this prevents the memory from being too much burdened [Sec. II. 93].
36. When the divisor and dividend are bnth appliaate numbers of one and the same denomination, and no reduction is required-

Rule.-Proceed as ahready directed [Scc. Il 70, 72 , or 59$]$.

Example.-Divide $£ 45$ by $£ 5$.
よ5)45
9
That is $£ 5$ is the ninth part of $£ 45$.
37. When the divisor and dividend are applicate, but not of the same denomination; or more than one denomination is found in either, or both-
Rule.-Reduce both divisor and dividend to the lom est denomination contained in eithor [3], and then pre ceed with the division.
Example.-Divide $£ 375 s .9 \frac{1}{4} d$. by $3 s .6 \frac{1}{2} d$.

s.	d.
3	$6 \frac{1}{9}$
12	

E s. d. 37 5 9 1

20
42

> 4
> 745
> $\overline{170}$ farthings. $\quad \frac{12}{8949}$
> 170) $\overline{35797}(211$ $\frac{340}{179}$
170 Therefore $3 s .61 \frac{1}{2} d$. is the 97 211th part of $£ 37^{2} 5$ s. $94 d$. 97 not being less than the half of 170 [32], we consider it as equal to the divisor, and therefore add 1 to the 0 obtained as the last quotient.

31. Λ cubic foot of distilled water weighs 1000 ounces what will be the weight of one cubic inch? Ans $253 \cdot 1829$ grains, nearly.
32. How many Sabbath days' journcys (each 1155 yards) in the Jewish days' journey, which was equal to 33 miles and 2 furlongs English ? Ans. $50 \cdot 66$, \&e.
33. How many pounds of butter at $11 \frac{3}{4} d$. per fb would purchase a cow, the price of which is $£ 14$ 15s. ? Ans. $301 \cdot 2766$.

QUESTIONS FOR The pupil.

1. What is the use of compound division ? [29].
2. What kind is the quotient when the divisor is an abstract, and what kind is it when the divisor is an applicate number ? [29].
3. What are the rules when the divisor is abstract, and does not exceed 12? [30];
4. When it exceeds 12 , and is composite ? [34];
5. When it exceeds 12, and is not composite ? [35] ;
6. And when the divisor is an applicate number? [36 and 377 .

SECTION IV.

Fractions.

1. If one or more units are divided into equal parts, and one or more of these parts are taken, we have what is called a fraction.

Any example in division-before the process has been performed-may be considered as affording a fraction:thus $\frac{5}{6}$ (which means 5 to be divided by 6 [Sec. II. 68]) is a fraction of 5 -its sixth part ; that is, 5 being divided into six equal parts, $\frac{5}{6}$ will express one of them ; or (as we shall see presently), if unity is divided into six equal parts, five of them will be represented by $\frac{5}{6}$.
2. When the dividend and divisor constitute a fraction, they change their names-the former being then termed the numerator, and the latter the denominator; for while the denominator tells the denomination or kind of parts into which the unit is supposed to be divided, the numerator numerates them, or indicates the number of them which is taken. Thus $\frac{3}{7}$ (read threesevenths) means that the parts are " sevenths," and that "three" of them are represented. The numerator and denominator are called the terms of the fra tions.
3. The greater the numerator, the greatir the value of the fraction-because the quotient obtained when we divide the numerator by the denominator is its real value; and the greater the dividend the larger the quotient. On the contrary, the greater the denominator the less the fraction-sinee the larger the divisor the smaller the quotient [Sec. II. 78]:-hence $\frac{6}{7}$ is greater than $\frac{5}{7}$-which is expressed thus, $\frac{0}{7}>\frac{5}{7}$; but $\frac{5}{8}$ is less than $\frac{5}{7}$-which is expressed by $\frac{5}{8}<\frac{5}{7}$.
4. Since the fraction is equal to the quotient of its numerator divided by its denominator, as long as this quotient is unchanged, the value of the fraction is the
to increase or diminish both the dividend and divisorwhich does not affect the anotient.
5. The following will rC_{r} resent unity, seven-sevenths, and five-sevenths. what been on :68]) ivided (as equal
fracthen tor ; n or 0 bo the reethat and alue wo real the nasor is $t \frac{5}{8}$ its his he an

```
ле
```

γ.

Unity.

The very faint lines indicate what $\frac{5}{7}$ wants to make it equal to unity, and idenlical with $\frac{7}{7}$. In the diagrans which are to follow, we shall, in this manner, generally subjoin the difference between the fraction and unity.

I'he teacher should impress on the mind of the pupil that he might have chosen any bther unity to exemplify the nature of a fraction.
6. The following will show that $\frac{5}{7}$ may be considered as either the $\frac{5}{7}$ of 1 , or the $\frac{1}{3}$ of 5 , both-though not identical-being perfectly equal.

In the one case we may suppose that the five parts belong to but one unit; in the other, that each of the five belongs to differen': units of the same kind.

Lastly, $\frac{5}{7}$ may be cousidered as the $\frac{1}{7}$ of one unit fivn times 3.8 large as the former; thus-

7. If its numerator is equal to, or greater than its denominator, the fraction is said to be improper ; because, although it las the fractional form, it is equal to, or greater than an integer. Thus $\frac{7}{5}$ is an improper fraction, and means that each of its seven parts is equal to one of those obtained from a unit divided into five equal parts. When the numerator of a proper fraction is divided by its denominator, the quotient will be expressed by decimals; but when the numerator of an improper fraction is divided by its denominator, part, at least, of the quotient will be an integer.

It is not inaccurate to consider $\frac{7}{6}$ as a fraction, since it consists of "parts" of an integer. It would not, however, be true to call it part of an integer ; but this is not required by the definition of a fraction-which, as we have said, consists of "part," or "parts" of a unit [1].
8. A mixed number is one that contains an integer and a fraction; thus $1 \frac{2}{5}$-which is equivalent to, but not identical with the improper fraction $\frac{7}{5}$. The foilowing will exemplify the improper fraction, and its equivalent mixed number-

Unity.

9. To reduce an improper fraction to a mixed number

An improper fraction is reduced to a mixed number if we divide the numerator by the denominator, and, after the units in the quotient have been obtained, sct down the remainder with the divisor under it, for denominator ; thus $\frac{7}{5}$ is evidently equal to $1 \frac{2}{5}$-as we have already noticed when we treated of division [Sec. II. 71].
10. A simple fraction has reference to one or more integers; thus $\frac{5}{7}$-which means, as we have seen [6], the five-sevenths of one unit, or the one-seventh of five
than its per ; beis equal mproper is equal into fivo fraction be exr of an r, part, n , since ld not, ut this -which, " of integer o, but te folnd its

nber er it after down ator; eady

mor

[6], five
11. A compound fraction supposes one fraction 10 refer to another ; thus $\frac{7}{6}$ of $\frac{3}{4}$-represented also by $\frac{3}{4} \times \frac{4}{8}$ (three-fourths multiplied by four-ninths), means not the four-ninths of unity, but the four-ninths of the three-fourths of unity:-that is, unity being divided into four parts, three of these are to be divided into nine parts, and then four of these nine are to be taken; thus-

12. A complex fraction has a fraction, or a mixed number in its numerator, denominator, or both; thus $\frac{\frac{2}{3}}{4}$, which means that we are to take the fourth part, not of unity, but of the $\frac{2}{3}$ of unity. This will be ezemplified by-

$\frac{8}{\frac{1}{5}}, \frac{\frac{2}{3}}{\frac{3}{6}}, \frac{1 \frac{1}{2}}{4}, \frac{14}{5 \frac{4}{4}}$, are complex fractions, and will be better understood when we treat of the division of fractions.
13. Fractions are also distinguished by the nature of their denominators. When the denominator is unily, followed by one or more cyphers, it is a decinal frac-
 -thus, $\frac{5}{9}, \frac{5}{6}, \frac{3}{2} \frac{3}{0}$, \&c.
Arithmetical processes may often be performed with fractions, without aclually dividing the numerators by the denominators. Since a fraction, like an integer, may be increased or diminished, it is capable of addition, subtraction, \&c.
14. To reduce an integer to a fraction of any denemination.
An integer may be considered as a fraction if we make unity its denominator: -thus $\frac{5}{1}$ may be taken for 5 ; since $\frac{1}{5}=5$.

We may give an integer any denominator we please if we previously multiply it by that denominator; thus, $5=\frac{25}{5}$, or $\frac{30}{6}$, or $\frac{35}{7}$, \&e., for $\frac{25}{5}=\frac{5 \times 5}{1 \times 5}=\frac{5}{1}=5$; and $\frac{30}{6}=\frac{5 \times 6}{1 \times 6}=\frac{5}{1}=5$, \&c.

EXERCISES.

1. Reduce 7 to a fraction, having 4 as denominator Ans. ${ }_{4}^{48}$.
2. Reduce 13 to a fraction, having 16 as denominator. Ans. ${ }^{3} 188$.
3. $\left.4=\frac{28}{7} \cdot\left|4.19=\frac{57}{3} \cdot\right| 5.42=\frac{504}{12} \cdot \right\rvert\, 6.71=6 \frac{67}{4} 4$.
4. To reduce fractions to lower terms.

Before the addition, \&c., of fractions, it will be often convenient to reduce their terms as much as possible. For this purpose-

Rule. -Divide each term by the greatest common measure of both.
Example. $-\frac{40}{72}=\frac{5}{9}$. For $\frac{40}{72}=\frac{40 \div 8}{72 \div 8}=\frac{5}{9}$.
We have already seen that we do not alter the quotientwhich is the real value of the fraction [4]-if we multiply or divide the numerator and denominator by the same number.

What has been said, Sec. II. 104, will be usefully remexbored here.

EXERCISES.

Reduce the following to their lowest terms.

In the answers to questions given as exercises, we shall, in future, generally reduce fractions to their lowest dinominations.
16. To find the value of a fraction in terms of a lower denomination-

Ruif.- Reduce the numerator by the rule already given [Sec. III. 3], and place the denominator under it.

Example.-What is the value, in shillings, of $\frac{3}{4}$ of a pound ? $£ 3$ reduced to shillings $=60$ s. ; therefore $\mathscr{£}_{4}^{3}$ reduced to shillings $={ }_{4}^{8!} s$.
The reason of the rule is the same as that already given [Sec. III. 4]. The ${ }^{4}$ of a pound becomes 20 times as much if the " unit of comparison" is changed from a pound to a shilling.

We may, if we please, obtain the value of the resulting fraction by actually performing the division [9]; thus $\frac{{ }_{8}^{4}}{4} s .=1 \tilde{5} s$. :-hence $\mathfrak{E} \frac{3}{4}=15 s$.

EXERCISES.

$$
\begin{aligned}
& \text { 25. } £^{\frac{3}{\mathrm{~h}}}=14 \mathrm{~s} .6 \mathrm{~d} \text {. } \\
& \text { 26. } £ \frac{13}{3}=17 \mathrm{~s} .4 d \text {. } \\
& \text { 27. } £ \frac{1}{2} \frac{9}{0}=19 s \text {. } \\
& \text { 28. } £_{4}^{3}=15 \text { s. } \\
& \text { 20. } \boldsymbol{夫}_{\frac{3}{12}=5 \text { s. }} \\
& \text { 30. } £_{\frac{1}{2} 0}^{10}=1 \text { ll. }
\end{aligned}
$$

17. Io express one quantity as the fraction of an-other-

Rule.-Reduce both quantities to the lowest denomination contained in either-if they aro not aiready of the same denomination; and then put that which is to be the fraction of the other as numerator, and the remaining quantity as denominator.
Example.-What fraction of a pound is $2 \frac{1}{4} d$? ? $£ 1=960$ farthings, and $21 d=9$ firthings; therefore $\frac{3}{600}$ is the required fraction, that is, $2 \frac{1}{4} d .=\mathcal{L}_{\dot{\varepsilon} \frac{9}{6 \sigma}}$.
Reason of the Rule.-One pound, for example, contains 960 farthings, therefore one farthing is $\mathcal{E}_{\overline{1}} \frac{1}{67}$ (the 960 th part of a pound), and 9 times this, or $2 \frac{1}{5}$, is $£ 9 \times \frac{?}{6 \pi}=\frac{9}{90}$.

EXERCISES.
31. What fraction of a pound is $14 \mathrm{~s} .6 \mathrm{~d} . ?$ Ans. $\frac{29}{4}$.
32. What fraction of $£ 100$ is 17 s. $4 d$.? Ans. $i^{\frac{1}{3} \frac{3}{0} \overline{0}}$.
33. What fraction of $£ 100$ is $£ 3210 s$? ? $\Lambda n s . \frac{1}{4} \frac{3}{3}$.
34. What fraction of 9 yards, 2 quarters is 7 yards, 3 quarters? Ans. $\frac{31}{3 y}$.
35. What part of an Trish is an linglish mile ? Ans. $1 \frac{1}{14}$.
36. What fraction of $6 s .8 d$. is $2 s .1 d$. ? Auts. $\frac{5}{18}$.
37. What part of a pound avoirdupoise is a pound Troy : Λ us. $\frac{14}{175}$.

QUESTIONS.

1. What is a fraction? [1].
2. When the divisor and dividend are made to constitute a fraction, what do their names become? [2].
3. What are the effects of increasing or diminishing the numerator, or denominator? [3].
4. Why may the numerator and denominator be multiplied or divided by the same number without altering, the value of the fraction? [4].
5. What is an improper fraction ? [7].
6. What is a mixed number ? [8].
7. Show that a mixed number is not identical with the equivalent improper fraction? [8].
8. How is an improper fraction reduced to a mixed number? [9].
9. What is the difference between a simple, a compound, and a complex fraction ? $[10,11$, and 12];
10. Between a vulgar and decimal fraction ? [13].
11. How is an integer reduced to a fraction of any denomination? [14]
12. How is a fraction reduced to a lower term? [15].
13. How is the value of a fraction found a lower denomination ? [16].
14. How do we express one of another ? [17].

VULGAR FRACTIONS.

ADDITION.

18. If the fractions to be added have a common denominator-

Rule.-Add all the numerators, and place the common denominator under their sum.

$$
\text { Example. - } \frac{5}{7}+\frac{6}{7}=\frac{11}{7} .
$$

Reason of the Rule.- -If we add together 5 and 6 of any kind of individuals, their sum must be 11 of the same kind
their nature. But the units to be added were, in the present instanee, sevenths; therefore their sum consists of sevenths. Addition may be illustrated as follows:-

to con-

 [2]. ninishing be mulalteringardises.

19. If the fractions to be added Lave not a common denominator, and all the denominators are prime to each other-
Rule.-Multiply the numerator and denominator of each fraction by the product of the denominators of all the others, and then add the resulting fractions-by the last rule.

Example.-What is the sum of $\frac{2}{3}+\frac{3}{4}+\frac{4}{7}$?
$\frac{2}{3}+\frac{3}{4}+\frac{4}{7}=\frac{2 \times 4 \times 7}{3 \times 4 \times 7}+\frac{3 \times 3 \times 7}{4 \times 3 \times 7}+\frac{4 \times 3 \times 4}{7 \times 3 \times 4}=\frac{56}{84}+\frac{63}{84}+\frac{48}{84}=\frac{167}{84}$
Having found the denominator of one fraction, we may at once put it as the common denominator ; since the same factors (the given denominators) must necessarily produce the same produet.
20. Reason of the Rule.-To bring the fractions to a common denominator we have merely multiplied the numerator and denominator of each by the same number, which [4] does not alter the fraction. It is necessary to find a common denominator; for if we add the fractions without so doing, we cannot put the denominator of any one of them as the denominator of their sum;-thus $2+3+1$ for instance, would not be correct-since it would suppose all the quantities to be thirds, while some of theuld suppose all and sevenths, which are less than thirds; neine fourths
 $\frac{7+i}{7}$ be correct-sinee it would suppese all on them to be
sevenths, although some of them are thirds and fourths, which are greater than seventlis.
21. In altering the denominators, we luave only changed the parts into whieh the unit is supposed to be divided, to an equivalent number of others which are smaller. It is necessary to diminish the size of these parts, or eaeh freetion would not be exactly equal to some number of them. I'his will be more evident if we take only two of the above fraetions. Thus, to add $\frac{2}{3}$ and $\frac{3}{4}$,

$$
\frac{2}{3}+\frac{3}{4}=\frac{2 \times 4}{3 \times 4}+\frac{3 \times 3}{4 \times 3}=\frac{8}{12}+\frac{9}{12}=\frac{17}{12}
$$

These fractions, before and after they receive a common denominator, will be represented as follows :-

Unity.

We have inereased the number of the parts just as much as we have diminished their size; if we nad taken parts larger than twelfths, we could not have found any numbers of them exactly equivalent, respeetively, to both $\frac{2}{3}$ and $\frac{3}{4}$.

EXERCISES.

25.
26.
27.
28.
29.
30.
31.
into the quoticat obtained on dividing the common multiple by its denominator-this will give the new numewators ; then add the numerators as already directed [18].
Example.-Add $\frac{5}{32}+\frac{8}{48}+\frac{3}{72}$. 288 is the least common multiple of 32,48 , and 72 ; therefore $\frac{5}{32}+\frac{4}{48}+\frac{3}{72}=\frac{288 \div 62 \times 5}{288}$ $+\frac{288 \div 48 \times 4}{288}+\frac{288 \div 72 \times 3}{288}=\frac{45}{288}+\frac{24}{288}+\frac{12}{288}=\frac{81}{288}$.
23. Reason of the Rule.-We have multiplied each numerator and denominator by the same number (the least conimon multiple of the denominators [4])-since $\frac{5 \times 288 \div 32}{288}$ (for instance $)=\frac{5 \times 288}{32+288}$. For we obtain the same quotient, whether we multiply the divisor or divide the dividend by the same number-as in both cases we to the very same amount, diminish the number of times the one can be subtracted from the other.
When the denominators are not prime to each other the fractions we obtain have lower terms if we make the least common multiple of the denominators, rather than the product of the denominators, the common denominator. In the present in. stance, had wo proceeded according to the last rule [19], we would have found $\frac{5}{32}+\frac{8}{48}+\frac{3}{72}=\frac{17280}{10592}+\frac{18432}{10592}+\frac{4608}{110592}=$ 40320

ExERCISES.

24. To reduce a mixed number to an improper frac-tion-

Rule.-Change the integral part into a fraction, having the same denominator as the fractional part [14], and add it to the fractional part.
Example.-What fraction is equal to $4 \frac{5}{6}$? $4 \frac{5}{8}=\frac{4}{1}+\frac{5}{6}=$
$80+\frac{5}{8}=\frac{47}{6}$.
25. Reason of the Rule. - We have already seen that an integer may be expressed as a fraction having any denominntor we please:-the reduction of Ω mixed number, therefore, is really the addition of fractions, previously reduced to a comunon denominator.

EXERCISES.
38. $16 \frac{1}{7}={ }^{113}$.
39. $18 \frac{5}{8}=19^{\circ}$.
40. $799^{1}={ }^{633}$.
41. $47 \frac{1}{4}=1 \frac{8}{4} 9^{\circ}$.
42. $74 \frac{1}{9}={ }^{66} \frac{6}{9} 7$.
43. $95 \frac{1}{5}=4 \frac{9}{5} 0^{\circ}$.
26. To add mixed numbers-
44. $99 \frac{1}{11}^{11}={ }^{1090} 1{ }^{0}$.
45. $12 \frac{1}{12}=\frac{145}{12}$.
46. $15 \frac{{ }^{2}}{6}=\frac{11}{6}$. ${ }^{12}$
47. $46_{8}^{5}={ }^{3} 7^{8} 3$.
48. $13 \frac{3}{9}=1 \frac{80}{8}$.
49. $27.15=\frac{4,47}{16}$.

Rule.-Add together the fractional parts; then, if the sum is an improper fraction, reduce it to a mixed number [9], and to its integral part add the integers in the given addends ; if it is not an improper fraction, sct it down along with the sum of the given integers.

Example 1.-What is the sum of $4 \frac{5}{8}+18 \frac{7}{8}$?

$$
\frac{7}{8}+{ }_{8}^{5}=\frac{12}{8}=1_{8}^{4}
$$

5 eighths and 7 eighths are 12 eighths; but, as 8 eighths make one unit, 12 eighths are equal to one unit and 4 eighths-that is, one to be carried, and $\frac{4}{8}$ to be set down. 1 and 18 are 19 , and 4 are 23 .
Eisample 2.-Add $12 \frac{5}{6}$ and 2911.

In this case it is necessary, before performing the addition [19 and 22], to reduce the fractional parts to ar common denominator.
27. Reason of the Rule.-The addition of mixed numbers is performed on the same principle as simple addition but, in the first example, for instance, eight of one denomina. tion is equal to one of the next-while in simpie addition [Sec. II. 3], ten of one denomination is equal to one of the next.

ExERCISES.
50. $4 \frac{7}{9}+3 \frac{2}{3}=8 \frac{4}{9}$.
51. $8 \frac{11}{6}+2 \frac{31}{35}=11 \frac{18}{81}$.

53. $10^{13}+111_{18}^{6}=23^{3} \frac{3}{16}$.
54. $11 \frac{1}{2}+31=10 \frac{1}{3}$.
$55.35+11 \frac{1}{6}+14 \frac{33}{3}=29131$.
56. $40{ }^{3}+38 \frac{1}{3}+40_{8}^{3}=119^{108}$.
57. $81{ }_{3}^{3}+63_{3}^{3}+11=99 \frac{1}{1}$.
58. $92{ }^{5}+37 \frac{8}{8}+7 \frac{4}{8}=137355$.
59. $173_{12}^{3}+8 \frac{1}{3}+91 \frac{11}{18}=27 \frac{1}{36} \frac{5}{36}{ }^{5}$.

29
kind
the 0 whic have eubt
that an denomi, thereduced to
len, if mixed gers in on, set

Unity.

EXSRCISES.

30. If the subtrahend and minuend have not a common denominator-

Rule.-Reduce them to a common denominator [19 and 22]; then proceed as directed by the last rule.

Example.-Subtract $\frac{5}{8}$ from $\frac{7}{8}$.

$$
\frac{7}{8}-\frac{5}{8}=\frac{63}{72}-\frac{40}{72}=\frac{23}{2} .
$$

31. Reason of the Rule.- It is similar to that already given [20] for reducing fractions to a common denominator, previousls to adding them.

EXERCISES.

32. To subtract mixed numbers, or fractions from mixed numbers.

If the fractional parts have a common denominator-Rule-I. Subtract the fractional part of the subtrahend from that of the minuend, and set down the difference with the common denominator under it: then subtract the integral part of the subtrahend from the integral part of the minuend.
II. If the fractional part of the minuend is less than that of the subtrahend, increase it by adding the common denominator to its numerator, and decrease the. integral part of the minuend by unity.
Example 1. $-4 \frac{3}{8}$ from $9 \frac{5}{8}$.

3 eighths from $5 \frac{1}{4}$ difference. from 9 and 5 remain. 5 eighths and 2 eighths $\left(=\frac{1}{4}\right)$ remain. 4

Lample: 2.-Subtract $12{ }_{4}^{3}$ from $18{ }_{1}^{1}$.
$18 \frac{1}{4}$ minuend.
12_{4}^{3} subtrahend.
$5 \frac{1}{2}$ difference.
3 fourths cannot be taken from 1 fqurth; but (borrowing one from the next denomination, considering it as 4 fourths, and adding it to the 1 fourth) 3 fourths from 5 fourths and 2 fourths ($=\frac{1}{2}$) remain. 12 from 17 , and 5 remain.

If the minuend is an integer, it may be considered as a mixed number, and brought under the rule.
Example 3.-Subtract $3 \frac{4}{5}$ from 17.
17 may be supposed equal to $17 \frac{0}{5}$; therefore $17-3 \frac{4}{5}=$ $17_{5}^{0}-3 \frac{4}{5}$. But, by the rule, $17_{\frac{0}{3}}^{0}-3 \frac{4}{5}=16 \frac{5}{5}-3 \frac{4}{5}=13 \frac{1}{5}$.
33. Reabon of the Rule.-The principle of this rule is the same as that already given for simple subtraction [Sec II. 19]:-but in example 3, for instance, five of one denomination make one of the next, while in simple subtraction ten of one, make one of the next denomination.
34. If the fractional parts have not a common deno-minator-

Rule.-Bring them to a common denominator, and then proceed as directed in the last rule.

Example 1.-Subtract $42 \frac{1}{4}$ from $56 \frac{1}{3}$.
$56 \frac{1}{3}=56 \frac{4}{12}$, minuend.
$42 \frac{1}{2}=42 \frac{3}{12}$, subtrahend.
$14 \frac{1}{12}$, difference.
35. Reason of the Rule.-We are to subtract the different denominations of the subtrahend from those which correspond in the minuend [See. II. 19]-but we cannot subtract fractions unless they have a common denominator [30].

exercises.

19. $27 \frac{4}{9}-3 \frac{1}{9}=24 \frac{1}{3}$.	26. $677_{4}^{1}-34 \frac{3}{10}=32 \frac{19}{90}$.
20. $155_{8}^{3}-7 \frac{18}{8}=7 \frac{9}{8}$.	27. $97 \frac{4}{2}-32 \frac{15}{16}=64 \frac{19}{9}^{6}$
21. $12 \frac{5}{4}-12_{1}^{1}=$	28. $60 \frac{4}{\frac{4}{5}-41 \frac{3}{10}=19 \frac{1}{1}^{6} \text {. }}$
8	29. $92 \frac{1}{1}-90 \frac{1}{12}=2 \frac{1}{12}$
	31. $60-\frac{3}{11}=59$

QUESTIONS.

1. What is the rule for the subtraction of fractions when they have a common denominator? [28].
2. What is the rule, when they have not a comnion denominator? [30].
3. How are mixed numbers, or fractions, subtracted from mixed numbers, or integers ? [32 and 34].

MULTIPLICATION.

36. To multiply a fraction by a whole number; or the contrary-

Rule.-Multiply the numerator by the whole number, and put the denominator of the fraction under the product.
Example.-Multiply $\frac{4}{7}$ by 5.

$$
\frac{4}{4} \times 5=\frac{20}{7} .
$$

37. Reabon of the Rule.-To multiply by any number, We are to add the multiplicand [Scc. II. 33] so many times a common denoming the multiplier; but to add fractions having put the common denor we must add the numerators [18], and

$$
\begin{aligned}
& \frac{4}{7} \times 5=\frac{4}{7}+\frac{4}{7}+\frac{4}{7}+\frac{4}{7}+\frac{4}{7}=\frac{4+4+4+1+4}{7}=\frac{4 \times 5}{7}=20 \\
& \text { Ne increase }
\end{aligned}
$$

We increase the number of those "parts" of the integer Which constitute the fraction, to an amount expressed by the multiplier-their size being unchanged. It would evidently without altering their ncroase their size to an equal extent dividing the denominator by -this would he effected by $\frac{4}{1,5} \times 5=\frac{4}{3}$. This will becone still given mulciplier; thus the fractions resulting from both methods to the if we reduce common denominator-for 20 (to others having a will then be found equal. $\frac{15}{15}\left(=\frac{4 \times 5}{15}\right)$, and $\frac{4}{3}\left(=\frac{4}{15 \div 5}\right)$
As, very frequently, the multiplier is not contained in the denominator any number of times expressed by an integer,
The rule will in the rule is more generally applicable. plied by a fraction-since the if an integer is to be multiwhatcver order the factors the same prodnct is obtained in
38. The integral quantity which is to form one of the factors may consist of more than one denomination
Example.-What is the $\frac{2}{3}$ of $\mathcal{L} 5 \mathrm{~s}$ s. 9 d. ?

\mathcal{L}	s.	d.	\mathcal{E}	s.	$l_{.}$	\mathcal{E}	s.	d.
5	2	$9 \times \frac{2}{3}=\frac{5}{5}$	2	$9 \times 2=3$	8	6.		

EXERCISES.

1. $\frac{4}{5} \times 2=1 \frac{3}{5}$.
2. $\times 8=6 \frac{9}{9}$.
3. $\frac{10}{10} \times 12=10 \frac{4}{5}$.
4. $\frac{7}{7} \times 12=9 \frac{1}{3}$.
5. $\frac{7}{10} \times 30=14$.
6. $27 \times \frac{4}{9}=12$.
7. $\frac{3}{14} \times 18=3 \frac{{ }_{9}^{9}}{9}$.
8. $\frac{15}{15} \times 8=7 \frac{1}{2}$.
9. $21 \times 3=9$.
10. $15 \times \frac{1}{5}=3$.
11. $17 \times 80=34$. 12. $\frac{1}{2} \times 20=19$. 13. $22 \times \frac{3}{5}=4^{\frac{3}{9}}$. 14. $\frac{1}{16} \times 17=1 \frac{1}{1}$ 15. $143 \times \frac{3}{4}=61 \frac{3}{4}$. 16. How much is $\frac{83}{106}$ of 26 acres 2 roods? Ans 20 acres 3 roods.
12. How much is $\frac{1}{4} \frac{4}{8}$ of 24 hours 30 minutes? $\Lambda n s$ 7 hours.
13. How much is $\frac{8770}{2219}$ of 19 cwt ., 3 qrs., 7 lb ? Ans 7 cwt., 3 qrs., 2 1b. $6 \frac{1}{2} d$.
14. How much is $\frac{13}{4}$ of $£ 29$? Ans. $£ \frac{3777}{4}=£ 819 s$ 39. To multiply one fraction by another-

Rule.-Multiply the numerators together, and under their product place the product of the denominators.

Example.-Multiply $\frac{4}{6}$ by $\frac{5}{6}$.

$$
\frac{4}{9} \times \frac{5}{6}=\frac{4 \times 5}{9 \times 6}=\frac{20}{54}
$$

40. Reason of the Rule.-If, in the example given, wo were to multiply $\frac{4}{9}$ by 5 , the product ($\frac{20}{8}$) would be 6 times too great-since it was by the sixth part of $5\left(\frac{5}{8}\right)$, we should have multiplied. - But the product will become what it ought to be (that is, 6 times smaller), if we multiply its denominator by 6 , and thus cause the size of the parts to become 6 times less.

We have already illustrated this subject when explaining the nature of a compound fraction [11].

20.	$\frac{7}{2} \times \frac{5}{6}=\frac{35}{3}$.
	$\frac{17}{15} \times \frac{5}{3}=\frac{7}{12}$.
22.	${ }_{8}^{8} \times \frac{4}{4} \times{ }^{3}=25$.
	$\times{ }^{\frac{2}{3}}=\frac{1}{5}$.

$$
\begin{aligned}
& \text { 24. } \frac{13}{13} \times \frac{74}{75}=\frac{48}{5} \frac{1}{3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 26. }{ }^{2} \times{ }^{4}={ }^{4}=1 .
\end{aligned}
$$

28. $\frac{19}{29} \times \frac{30}{50}=\frac{1}{3}$. 29. $\frac{2}{2} \times \frac{1}{2}=\frac{1}{2}$.
29. $\frac{4}{13} x={ }^{5}=1$. 31. $\frac{3}{12} \times \frac{3}{8}=\frac{3}{10}$
30. How much is the $\frac{2}{3}$ of $\frac{3}{4}$? Ans. $\frac{1}{2}$.
31. How much is the $\frac{3}{3}$ of $\frac{7}{6}$? Ains. $\frac{T^{7}}{2}$.
32. When we multiply ono proper fraction by another, We obtain a product smaller than either of the tactors. Nevertheless such multiplieation is a species of addition; for when we add a fraction once, (that is, when we take the whole of it,) we get the fraction itself as result ; but when we add it less than once, (that is, take so much of it as is indicated by the fractional multiplier,) we must necessarily get a result which is less than when we took the whole of it. Besides, the multiplieation of a fraction by a fraction supposes multiplieation by one number-the numerator of the multiplier, and (which will be seen presently) division by another-the denominator of the multiplier. Hence, when the division exeecds the multiplication-which is the case when the multiplier is a proper fraction-the result is, in reality, that of division; and the number said to be multiplied must be made less than before.
33. To multiply a tiaction, or a mixed number by a mixed number.

Rule.-Reduce mized numbers to improper fractions [24], and then procced according to the last rule.
Example 1.-Multiply $\frac{3}{4}$ by $4 \frac{5}{5}$.

$$
\begin{aligned}
& 4 \frac{5}{5}=\frac{41}{9} ; \text { therefore } \frac{3}{4} \times 4 \frac{5}{6}=\frac{3}{3} \times \frac{41}{6}=\frac{123}{36} \text {. } \\
& \text { PLE 2. Multinly }
\end{aligned}
$$

Example 2.-Multiply $5 \frac{7}{8}$ by $6 \frac{3}{5}$.
$5 \frac{7}{8}={ }_{8}^{47}$, and $6 \frac{2}{5}=\frac{33}{3} ;$ therefore $5_{8}^{7} \times 6 \frac{2}{5}=\frac{47}{8} \times{ }_{3}^{32}=\frac{1504}{40}$.
43. Reason of the Rute. - We merely put the mixed numbers into a more convenient form, without altering their value.
To obtain the required product, we might multiply each part of the multiplicand by each part of the multiplier.-Thus, taking the first example.

$$
\frac{3}{4} \times 4 \frac{5}{8}=\frac{3}{4} \times 4+\frac{3}{4} \times \frac{5}{8}=\frac{12}{4}+\frac{15}{36}=\frac{108}{38}+\frac{1}{38}=\frac{123}{36} .
$$

exerctses.
34. $8 \frac{3}{3} \times 7=7 \frac{71}{81}$.
35. $5^{5}{ }^{6} \times{ }^{\frac{6}{3}}=211$.
36. $4 \frac{1}{2} \times 7 \frac{1}{2} \times 3=3=101 \frac{1}{4}$.
37. $\frac{\rho^{2}}{10} \times 8 \frac{3}{3} \times \frac{9}{2} \times \frac{11}{12}=5 \frac{29}{29}$.
38. $5 \frac{9}{9} \times 16 \times 10 \frac{1}{9}=880_{8}^{\frac{6}{81}} 1$.

> 39. $3 \frac{2}{11} \times 19 \frac{1}{5} \times \frac{5}{5}=50 \frac{10}{1} \frac{0}{1}$.
> 40. $6 \frac{3}{4} \times \frac{7}{8} \times \frac{5}{4} \times \frac{6}{4}=27^{\frac{7}{11}}$.
> 41. $12 \frac{1}{2} \times 13 \frac{1}{4} \times 6=1097 \frac{1}{64}$:
> 42. $3 \frac{3}{2} \times 144_{8}^{4} \times 15 \stackrel{8}{=}=8181$.
> 43. $14 \times 15 \frac{1}{14} \times 3 \frac{5}{9}=749_{1}^{95}$.
44. What is the product of 6 , and the $\frac{2}{3}$ of 5 ? Ans. 20. ${ }^{\circ}$
45. What is the product of $\frac{2}{6}$ of $\frac{3}{5}$, and $\frac{5}{8}$ of $3 \frac{3}{7}$?
44. If we perccive the numerator of one fraction to be the same as the denominator of the other, we may, to perform the multiplication, omit the number which is common. Thus $\frac{5}{6} \times \frac{8}{8}=\frac{5}{6}$.
This is the same as dividing beth the numerator and denominator of the product ly the same number-and therefore does not alter its value; since

$$
\frac{5}{6} \times \frac{6}{6}=\frac{5 \times 6}{6 \times 9}=\frac{5 \times 6 \div 6}{6 \times 9 \div 6}=\frac{5}{9} .
$$

45. Sometimes, before performing the multiplication, we can reduce the numerator of one fraction and the denominator of another to lower terms, by dividing Woth by the same number:-thus, to multiply $\frac{3}{3}$ by $\frac{4}{7}$.

Dividing both 8 and 4, by 4, we get in thoir places, 2 and 1 ; and the fractions then are $\frac{3}{2}$ and $\frac{1}{2}$, which, multiplied together, become $\frac{3}{2} \times \frac{1}{7}=\frac{3}{14}$.
This is the same as dividing the numerator and denomiantor of the proluct by the same number; for

$$
\frac{3}{8} \times \frac{4}{7}=\frac{3 \times 4 \div 4}{8 \times 7 \div 4}=\frac{3 \times 1}{2 \times 7}\left(=\frac{3}{2} \times \frac{1}{7}\right)=\frac{3}{14}
$$

QUESTIONS.

1. How is a fraction multiplied by a whole number or the contrary? [36].
2. Is it necessary that the integer which eonstitutes one of the factors should consist of a single denomination? [38].
3. What is the zule for multiplying one fraction by another? [39].
4. Explain how it is that the product of two proper fractions is less than either? [41].

5 . What is the rule for multiplying a fraction or a mixed number by a mixed number? [42].
6. How may fractions sometimes be reduced, before they are multiplied? [44 and 45].

DIVision.

46. To divide a vulgar fraction by a whole number-Rule.-Multiply the denominator of the fraction hy the whole number, and put the product under its mymerator.

Example.- $\frac{2}{3} \div 4=\frac{2}{3 \times 4}=\frac{2}{12}$.
47. Reason of the Rule.-To divide a quantity by 3 , for instanee, is to make it 3 times smaller than before. But it is evident that if, while we leave the number of the parts the same, we make their size 3 times less, we make the fraction is to divide the fractionee to multiply the denominator by 3 ,
A similar effeet will by the same number. tor by 3 ; since the be produced if we divide the numerawhile we leave the size of the is made 3 times smaller, if, number 3 times less; the 8 same, we make their numerator is ness; thus $\frac{9}{9} \div 4=-\frac{8}{9}=\frac{2}{9}$. But since the method given in the rule is more renerally by the divisor, the The dive ore is more generaly applicable. been already illu of a fraction by a whole number has of a complex fraction [12].

EXERCISES.

12. $\frac{T^{7}}{15} \div 14=\frac{1}{30}$.

48 It follows from what we have said of the unltiplication and division of a fraction by au integer, that, when we multiply or divide its numerator and denominator by the same number, we do not alter its valuesince we then, at the same time, equally inerease and decrease it.
49. To divide a fraction by a fraction-

Rute.-Invert the divisor (or suppose it to be in., verted), and then proeed as if the fractions were to be

Example.-Divide ${ }_{5}^{5}$ by $\frac{3}{4}$.

$$
\frac{5}{7} \div \frac{3}{4}=\frac{5}{7} \times \frac{4}{3}=\frac{5 \times 4}{7 \times 3}=\frac{20}{21} .
$$

Reason of the Rule.-If, for instence, in the example just given, we divide $\frac{5}{7}$ by 3 (the numcrator of the divisor), we use a quantity 4 times too great, since it is not ly 3 , but the fourth part of $3\left(\frac{3}{4}\right)$ we are to divide, and the quotient ($\frac{5}{21}$) is 4 times too small.-It is, however, made what it ought to be, if we multiply its numerator by 4 -when it becomes $\frac{20}{21}$, which was the result obtained by the rule.
50. The division of one fraction by another may be illustrated as follows-

The quotient of $\frac{5}{7} \div \frac{3}{4}$ must be some quantity, which, taken three-fourth times (that is, multiplied by $\frac{3}{4}$), will be equal to $\frac{5}{7}$ of unity. For sinee the quotient multiplied by the divisor ought to be equal to the dividend [See. II. 79], $\frac{5}{7}$ is $\frac{3}{4}$ of the quotiont. Henee, if we divide the five-sevenths of unity into three equal parts, eaeh of these will be one-fourth of the quotient-that is, preeisely what the dividend wants to make it four-fourths of the quotient, or the quotient itself.
51. When we divide one proper fraction by another, the quotient is greater than the dividend. Nevertheless sueh division is a speeies of subtraction. For the quotient expresses how often the divisor ean be taken from the dividend; but were the fraetion to be divided by unity, the dividond itself would express how often the divisor could be taken from it; when, therefore, the divisor is less than unity, the number of times it ean be taken from the dividend must be expressed by a quantity greater than the dividend [See. II. 78]. Besides, dividing one fraction by another supposes the multiplieation of the dividend by one number and the division of it by another-but when the multiplieation is by a greaser
number than the division, the result is, in reality, that of multiplication, and the quantity said to be divided must be increased.

EXEIRCISES.

13. $7 \frac{4}{4}=1 \frac{3}{3 .}$.		
14. $\frac{1}{2} \div \frac{3}{3}=\frac{1}{2}$.	17. ${ }^{\frac{4}{3}} \div{ }^{7}=32$.	19. $\frac{15}{16} \div \frac{?}{11}=1 \frac{21}{14}$.
15. $\frac{3}{8} \div \frac{3}{\square}=1 \frac{3}{3}$.	18. $\frac{15}{15} \times \frac{5}{6}=1 \frac{1}{2}$	20. ${ }^{\frac{2}{7} \times \frac{8}{8}=5}$ 21.

52. To divide a whole number by a fraction-

Rule.-Multiply the whole number by the denominator of the fraction, and make its numerator the denominator of the product.
Example.-Divide 5 by ${ }_{3}^{3}$.

This rule is a consequence of the last; for every whole num-
ber may be considered as a fraction having unity for denominator [14]; hence $5 \div-\frac{3}{7}=\frac{5}{5} \div \frac{3}{3}=\frac{5}{1} \times \frac{7}{3}=\frac{35}{3}$. It is not necessary that the whole number but one denomination [38].
Exampie.-Divide 17s. $31 / d$, ly $\frac{3}{亏}$.

EXTRRCISES.

2.2. $3 \div{ }_{9}^{4}=63$.
23. $11 \div \frac{5}{9}=195$.
24. $42 \div-74=804$.

> | $25.5 \div 15=5 \frac{1}{3}$. | $23.8 \div 14=84$. |
| :--- | :--- |
| $26.19 \div 19=20$. | $29.14 \div 7=38$. |
| $27.9 \div \frac{1}{20}=63$. | $30.16 \div \frac{10}{2}=32$. |

31. Divide $\mathfrak{£} 716 s .2 d$. by $\frac{4}{9}$. Aus. $\mathfrak{L} 1711$ s. $4 \frac{1}{2} / l$
32. Divide $\mathfrak{£ 8} 13 \mathrm{~s}$. $4 d$. by $\frac{5}{6}$. Ans. £10 ss.
33. Divide $£ 50 s .1 d$. by $\frac{1}{1} \frac{1}{2}$. Ans. £5 $9 s .2 \frac{1}{4} d$.
34. To divide a mixed number by a whole number or a fraction-

Rule.-Divide cach part of the mixed number according to the rules already givon [46 and 49], and add the quotients. Or reduce the mixed number to an improper fraction [24], and then divide, as already directed [46
Example 1.-Divide $9 \frac{3}{7}$ by 3.

$$
9_{3}^{3} \div 3=0 \div 3+3 \div 3=3+1=3 \frac{1}{7}
$$

Example 2-Divide 143 bey 7 .

ality, that e divided he deno.
54. Reason of the Rule.- - ? n the first example we have divided each part of the dividerid by the divisor and added the results-which [Sec. II. 77] is the same as dividing the whole dividend by the divisor.
In the second example we have put the mixed number into a more convenient form, without altering its value.

EXRRCISRS.

36. $18 \frac{1}{15} \div \frac{8}{15}=308 \frac{8}{23}$.
37. $19 \frac{13}{212} \div$
38. $16 \frac{1750}{151} \div \frac{48}{48}=17_{1}^{18}$

> 30. $4 \frac{325}{232} \div \frac{41}{15}=5 \frac{6450}{250}$
> 40. $84 \frac{14}{17} \div 22=3181$.

$$
\begin{aligned}
& \text { 43. } 18 \frac{4}{9} \div 11=1 \frac{187}{87} \text {. }
\end{aligned}
$$

55. To divide an integer by a mixed number-

Rule.-Reduee the mixed number to an improper fraction [24]; and then proceed as already directed [52].
Example.-Divide 8 by $4 \frac{3}{5}$.

$$
4 \frac{3}{\partial}=\frac{23}{5} \text {, therefore } 8 \div 4 \frac{3}{3}=8 \div \frac{23}{3}=8 \times_{\frac{5}{23}}=1 \frac{1}{2 \frac{1}{2}} \text {. }
$$

Reason of the Rule.-It is evident that the improper fraction which is equal to the divisor, is contained in the dividend the same number of times as the divisor itself.

EXERCISES.
44. $5 \div 3{ }_{3}^{4}=12$.

$$
\begin{aligned}
& 4614 \div 1 \frac{3}{2}=7 \frac{7}{14} \text {. } \\
& 4721 \div 14_{\frac{4}{1 .}}=1 \frac{173}{158} \text {. }
\end{aligned}
$$

48. Divide £7 $16 s$. $7 d$. by $3 \frac{1}{3}$. Ans. £2 $6 s$ s. $11 \frac{3}{4} d$.
49. Divide $\mathscr{L} 33 s .3 d$. by $4 \frac{1}{2}$. Ans. $14 s .0 \frac{3}{4} d$.
50. To divide a fraetion, or a mised number, by a mixed number-

Rule. - Reduce mized numbers to improper fraetions [24]; and then proeeed as already direeted [49].
Example 1.-Divide $\frac{3}{4}$ by $5 \frac{7}{9}$.

$$
5 \frac{7}{8}=\frac{52}{8} \text {, therefore } \frac{3}{4} \div 5 \frac{7}{8}=\frac{3}{4} \div \frac{521}{8}=\frac{3}{4} \times \frac{9}{32}=\frac{27}{208} \text {. }
$$

Example 2.-Divide $8 \frac{9}{1 T}$ by $7 \frac{5}{6}$.

47 Reason of the Rule.-We (as in the last rule) merely change the mixed numbers into others more conveniently divided-without, however, altering their value

EXERCISES.

50. $3^{3} \div 5^{3}=2^{2}$ 51. $31 \div 4 \frac{1}{2}=\frac{23}{18} 8$

58. When the divisor, dividend, or both, are compound, or complex fractions-

Rule.-Reduce compound and complex to simpie fractions-by performing the multiplication, in those which are compound, and the division, in those which are complex; then proceed as already directed [49, \&c.]
Example 1.-Divide $\frac{5}{7}$ of $\frac{6}{8}$ by $\frac{3}{4}$.
$\frac{5}{7}$ of $\frac{8}{8}=\frac{30}{86}$ [39], therefore ${ }_{7}^{\frac{5}{7}} \times \frac{6}{8} \div{ }_{4}^{3}=\frac{30}{56} \div{ }_{4}^{3}=\frac{30}{56} \times \frac{4}{3}=1 \frac{20}{68}$.
Example 2.-Divide $\frac{\frac{4}{4}}{6}$ by ${ }_{8}^{5}$.
$\frac{\frac{4}{7}}{6}=\frac{4}{2}[46]$, therefore $\frac{\frac{4}{4}}{6} \div \frac{5}{8}=\frac{4}{43} \div \frac{5}{6}=\frac{4}{42} \times \frac{3}{5}=\frac{32}{215}$.
EXERCISES.
60. $\frac{4}{4} \times \frac{3}{8} \div \frac{8}{9}=\frac{9}{28}$.
61. $4 \frac{11}{12} \div \frac{5}{34} \times \frac{3}{11}=50 \frac{43}{20}$.
64. $\frac{3}{\frac{5}{5}} \div \frac{\frac{3}{4}}{5}=x 25$.
62. $\frac{5}{78} \div \frac{\frac{3}{4}}{6}=2 \frac{2}{0}$.
63. $\frac{\frac{2}{2} \frac{1}{2}}{97} \div \frac{2}{3} \times \frac{7}{13}=\frac{117}{268}$.

$$
\text { 65. } \frac{27}{\frac{5}{19}} \div \frac{21}{13} \times \frac{A}{23}=248_{73}^{33}
$$

$$
\text { 66. } \frac{\frac{19}{5}}{\frac{3}{7}} \div \frac{3}{4} \times \frac{5}{8}=3 \frac{221}{22}
$$

QUESTIONS.

1. How is a fraction dived by an integer ? [46].
2. How is a fraction divided by a fraetion? [49].
3. Explain how it oecurs that the quotient of two fractions is sometimes greater than the divider: : [51]. 4. How is a whole number divided by a fraction? 5. What is the Aule for dividing a mixed number by an integer, or a fraction ? [53].
4. What are the rules for dividing in integer, a fraction, or mixed number, by a mixes number? ? [55 and 567.
5. What is the rule when the divisor, dividend, or both are compound, or complex fractions? [58].
of Retumar only 80 ; what fraction of a degree in the latter expresses a degree of the former? $A u s$. $\frac{4}{9}$..
6. The average fall of rain in the United Kingdom is about 34 inches in aepth during the year in the plains; but in the hilly countries about 50 inches ; what fraction of the latter expresses the former? Ans. $\frac{17}{2}$.
7. Taking Chimborazo as 21,000 feet high, and Purgeon, in the Mimalayas, as 22,480 ; what fraction of the height of Purgeool expresses that of Chimborazo? Aus. $\frac{825}{5} \frac{5}{2}$.
8. T'aking 4200 feet as the depth of a fissure or crevice at Cutaco, in the Andes, and 5000 feet as the depth of that at Chota, in the same range of mountains; how will the depth of the former be expressed as a fraction of the latter ? Aus. $\frac{21}{2}$.

DECIMAL FRACTIONS

59. A decimal fraction, as aircady remarked [13], has unity with one, or more cyphers to the right haud, for its denominator; thus, $\frac{\sigma^{\frac{5}{0}}-\overline{0}}{}$ is a decimal fraction. Since the division of the numerator of a decimal fraction by its denominator-from the very nature of nutation [Sce. I. 34]-is perforned by moving the derimal point, the quotient of a decimal fraction-the equivalent decimal-is obtaiued with the greatest facility. Thus $\Gamma^{\frac{5}{0} \overline{0}}=005$; for to divide any quantity by a thousand, we have only to move the decima! point three places to the right.
60. It is as inaccurate to confound a decinal fraction with the corresponding decinal, as to confound a vulgar fraction with its quotient.- For if 75 is the y.totient of ${ }^{3} \frac{0}{4} 0$, or of $\frac{7500}{1.000}$, and is distinet from either ; so also is $\cdot 75$ the quotient of $\frac{3}{4}$ or of $\frac{75}{150}$, and equally distinct from either.
61. A decimal is changed into its corresponding decimal fraction by putting unity with as many cyphers as it contains decimal places, under it, for denominatorhaving first taken away its decima! point. Thus $5646=$

gree in the s. $\frac{4}{9}$

Kingdom the plains; lat fraction
ligh, and at fraction imborazo?
fissure or cet as the tountains; ssed as a hit hand, fraction. 1 fraction nutation derimal he equifacility. ty by a nt three
fraction a vulgar y.colicht so also distinct
ng decihers as
nator-
$5646=$
62. Decimal fractions follow exactey the same rules as vulgar fractions.-It is, however, senerally more convenient to obtain their quotients [55], and then perform on them the required processes of addition, \&c., by the methods already described [Sce. II. 11, \&e.]
63. To reduce a vulgar fraction to a decmal, or to a decinal fraction-
Ruse.-Divide the numerator by the denominatorthis will give the required decimal; the latter may be changed into its corresponding decimal fraction-as alleadey leseribed [61].

Examplar 1.-Reduce $\frac{3}{4}$ to a deeimal fraction. 4) $\frac{3}{0.75}=\frac{75}{100}$.

Example 2.-What decimal of a pound is 7_{1}^{3} d.?

$$
7_{4}^{3} d=[17] \mathcal{L}_{\frac{31}{260}} ; \text { but } \mathcal{L}_{061}^{31}=\mathcal{C} \cdot 0032, \text { \& } 0 .
$$

This rule requires no explanation.

exercises.

$7=\frac{875}{170}$.	5. $5=025$.	9. $\frac{95}{105}=904 \pi 6, \mathbb{S}$
${ }_{8}^{3}=375$.	6. $\frac{8_{3}}{3}=973$ \&c.	10. $\frac{4}{3}=8$.
3. $\frac{3}{5}=36$.	7. $\frac{1}{2}=5$.	11. $\frac{18}{16}=5695 .^{5}$
4.	8. $\frac{5}{16}=3125$.	12. $\frac{16}{85}=5375$.

13. Reduce 12s. ©d. to the decimal of a pound. Ans 625.
14. Reduce $15 s$. to the decimal of a pound. Ans. 75
15. Reduce 3 quarters, 2 nails, to the decimal of a yard. Ans. 875.
16. Reduce 3 cwt., $1 \mathrm{qr} ., 7 \mathrm{mb}$, to the decimal of a ton. Ans. • 165625
17. To reduce a decimal to a lower denomination-Rule.-Reduce it by the rule already given [Sce. III. 3] for the reduction of integers.

Baniphe 1.-Express $£ 6237$ in terms of a shilling. -6237

Answer, $\overline{124740}$ shillings $=\mathfrak{d} \cdot 6237$

Example 2.-Reduce $\mathfrak{£} 9734$ to shillings, Sc. $\cdot 9734$

20

$$
\overline{4} \overline{5 \cdot 6160} \text { pence }=468 s
$$

$2 \cdot 4640$ farthings $=616$ d
Answer, $£ \cdot 9734=10$ s. $5 \frac{1}{2} d$.
65. This rule is founded on the same reasons as were given for the mode of reducing integers [Sec. III. 4].
Multiplying the decimal of a pound by 20 , reluees it to shillings and the decimal of a shilling. Multiplying the decimal penny. Multiny 12 , reduces it to pence and the decimal of a to tarthings and the decie decimal of a penny by 4 , reduces it to tarthings and the decimal of a farthing.

EXERCXSES

23. What is the value of $£ 86875$? Ans. 17 s. $4 \frac{1}{2} d$ 24. What is the value of $\mathfrak{S} 5375$? Ans. 10 s .9 d . 25. How much is ' 875 of a yard? Ans. 3 qrs., 2 nails. 26. How much is ' 165625 of a ton? Aus. 3 cwt., 1 qr., 7 fb .
24. What is the value of $\mathfrak{e} \cdot 05$? Ans. $1 s$. 21 Hb .
25. What is the value of $£ \cdot 95$? Aus. 19 s .
26. How much is 95 of an oz. Troy? Ans. 19 dwt.
27. How much is 875 of a gallon! Ans. 7 pints.
28. How much is ' 3945 of a day? Ans. 9 hours, $28^{\prime}, 4^{\prime}, 48^{\prime \prime \prime}$.
29. How much is 09375 of an aere? Ans. 15 perches.
30. The following will be found useful, and-being intimately connected with the doctrine of fractionsmay be advantageously introduced liere:
fo find at once what decimal of a pound is equivalent to any number of shillings, penee, \&e.

When there is an even number of shillings-
Rule.-Consider them to be half as many tenths of a pound.

Example.-16s=E. 8 .
Every two shillings are equal to one-tenth of a pound; therefore 8 times $2 s$. are equal to 8 tenths.
67. When the number of shillings is odd-

Rule.-Consider half the next lower even number, as so many tenths of a pound, and with these set down 5 hundredths.

Example.-15s.=£. 75.
For, $15 . s=14 s .+1 s . ;$ but by the last rule $14 s=\mathcal{E} \cdot 7$; and
were given
it to shilhe decimal cinal of a reduces it

17 s. $4 \frac{1}{2} d$ s. $9 d$. , 2 nails. 3 ewt.,

3 qus.,

19 dwt. pints. hour's,

1ns. 15
being tions- since $3 s=1$ tenth-or, as is evident, 10 hundredths of a pound -1 s. $=5$ hundredths.
68. When there are penee and farthings-

Rule.-If, when reduced to farthings, they exeecd 24 , add 1 to the number, and put the sum in the seeond and third decimal places. After taking 25 from the number of farthings, divide the remainder by 3 , and put the nearest quantity to the true quotiont, in the fourth decimal place.

If, when reduced to farthings, they are less than 25 , set down the number in the third, or in the second and third decimal places; and put what is nearest to onethird of them in the fourth.

Example 1.-What decimal of a pound is equal to $8_{4}^{3} d$. ?
$8_{4}^{3}=35$ farthings. Since 35 contains 25 , we add one $t c$ the number of farthings, which makes it 36 -we put 36 in the second and third decimal places. The number nearest to the third of $10(35-25$ farthings $)$ is 3 -we put 3 in the fourth decimal place. Therefore, $8_{4}^{3}=£ \cdot 0363$.

Example 2.-What decimal of a pound is equal to $1 \frac{3}{4} d$.?
$1:=7$ farthings ; and the nearest number to the third of 7 is 2. Therefore $1 \frac{3}{4} d=£ .0072$.

Example 3.-What decimal of a pound is equal to $5 \frac{1}{4} d$.?
$5_{4}^{1} d$. $=21$ farthings ; and the third of 21 is 7 . Therefore $31 d=E \cdot 0217$.

69 Reason of the Rule.--We consider 10 farthings as the one hundredth, and one farthing as the one thousandth of a pound-because a pound consists of nearly one thonsand firthings. This, however, in 1000 farthings (taker as so many thousandths of a pound) leads to a mistake of about 40since $£ 1=($ not 1000 , but) $1000-40$ farthings. Hence, to a thonsand farthings (eonsilered as thousandilis of a pound),
forty, or one in 25, must be adled; that is, about the onethirtieth of the number of farthings. It is evident that, us added-or, which ine-thirlieth of their number, also, must be in the fourth or next low same thing, one-third of their number, If the furthings are decimal place.
correction should still be abs than 2 J, it is evident that the or one-third of it, in the fourth the thirtieth of their number,

FXERCISES
17. $19 s .11 \frac{1}{2} d=E \cdot 9977$.
18. $78 d=£ \cdot 0322$.
19. £27 5s. 10 d . $=£ 27 \cdot 2915$.
20. 14s. 3 ? d. $=£ \cdot 7155$.
21. 19 s. 11 दे $\mathrm{l} .=£ \cdot 9987$.
22. £42 11s. $6 \frac{1}{2} d=£ \cdot 42 \cdot 577$.
70. To find at once the number of shillings, pence, *c., in any decimal of a pound
Rule.-Double the number of tenths for shillingsto which, if the hundredths are not less than 5, add one. Consider the digit in the second place (after subtracting 5 , if it is not less than 5), as tens, and that in the third as units of farthings; and subtract unity from the result

Example,-£. $6874=13 s .9 \mathrm{~d}$.

6 tenths are equal to twelve shillings; as the hundredths are not less than 5 , there is an additional shilling-which makes 13s. Subtracting 5 from the hundredths and adding the remainder (reduced to thousandths) to the thou. sandths, we have 37 thousandths from which-since they exceed 25, we subtract unity; this leaves 36 as the number of farthings. $£ \cdot 6874$, therefore, is equal to $13 s$. and 36
farthings-or $13 s .9 d$.
This rule follows from the last three-being the reverse of them.

CIRICLATING DECIMALS.

71. We cannot, as already noticed [Sec. II. 72], always obtain an exact quotient, when we divide one number by another :-in such a case, what is called an in-terminate or (because the same digit, or digits, constantly recur, or circulate) a recuring, or circulating
decimal is produced.-The recimal is suid to be terminute if there is an cxact quount-or one which leaves no remainder.
72. An iuterminate de inal, in which only a single figure is repeated, is callel a repelend; if two or mere Migits constantly reetur, thoy form a perindical 1nciun al. Thins 77 , \&e., is at repetrnd; but 597597 , we. is a periodical. For the sake of brevity, the repeated digit, or period is set down but once, and may be marked as follows, '5' ($=5555, \& \mathrm{E}$.) or ${ }^{\circ} \mathrm{C} 493$ ' $(=103493493, ~ \& c$. . $)$

The ordinary method of marking the period is somewhat different-what is here given, however, seems preferable, and can searecly be mistaken, even by those in the habit of resing the other.

When the de cimal eontains only an imfinite rartthat is, only the repeated digit, or period-it is a pure repetend, or a pure_periodical. ' But when there is both a finite and an infinite part, it is a mixed repetend or mixed circulate. Thus
-量' ($=333$, , \&ce.) is a pure repetend.
$578^{\prime}(=57888$, \&co. $)$ is a mixed repetend.
'397' ($=397397597$, se.) is a pure circulato.
$86564271^{\prime}(=805642716427104271,8 \cdot \mathrm{c})$ is a mixed circulate
73. The number of digits in a period must always be less than the divisor. For, different digits in the period suppose different remainders duing the division; but the number of remainders can never exceed--nor cven be equal to the divisor. Thus, let the latter be secen: the only remainders possible are $1,2,3,4,5$, and 6 ; any other than one of these would contain the divisor at least once-which would indieate [Sec. II. 71] that the quotient figure is not sufficiently large.
74. It is sometimes useful to change a decimal into its equivalent vulgar fraction-as, for instance, when in adding, \&e., those which cireulate, we desire to obtain an exact ressult. For this purpose-

Rule-I. If the decinal is a pure repelend, put the repeated digit for numerator, and 9 for denominator.
II. If it is a pure periodical, put the period for numerator, and so many nines as there are dirgits in the period, for denominator.

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

Example 1.-What vulgar fraction is equivalent to 3^{\prime} ? Ans. $\frac{3}{9}$.
Example 2. What vulgar fraction is equivalent to
854^{\prime} ? Ans. $\frac{785}{8789} 9$. -7954'? Ans. $\frac{78}{8754} 9$.
75. Reason of I. $-\frac{1}{g}$ will be found equal to $\cdot 111$, \&c.-or $\cdot 1^{\prime}$; thereiore $\frac{3}{y}\left(=8 \times \frac{1}{9}\right)=333$, \&c. $=(3 \times 111, \& \mathrm{c}$.) For if we multiply two equal quantities by the same, or by equal quantities, the products will still be equal.
In the same way it could be shown that any other digit diviled by 9 would give that other digit as a repetend.-And, consequently, a repetend of any digit will be equal to a vulgar fraction having the sarae digit for numerator, and 9 for deno-
minator.
Reasols of it. - $\frac{1}{9 g}$ will give 0101 , \&e.-or ' 01 ' as quotient. For before unity can be divided loy 99 , it must be considered as 100 hundredths; and the quotient [Sec. II. 77] will be one hundredth, or 01 . One hundredth, the remainder, must be made 100 ten thousandths before it will contain 99 ; and the quotient will be one ten thousandth, or 0001 . One ten thousandth, the remainder, must, in the same way, be considered as ten millioneths; and the next quotient will be one millioneth, or 000001 and so on with the other quotients, which, taken together, will be $\cdot 01+0001+\cdot 000001+\$ c$. , or $\cdot 010101$, \&c. - represented
by $\cdot 011^{\prime}$. $3 \frac{37}{2}$ ($=$
quotient. Thus

$$
\frac{\sum_{37}^{010101, ~ \& c}}{30303}
$$

373737, \& $\mathrm{c} .=37 \times{ }^{\prime} 01^{\prime}$.
In the same way it could be sho n that any other two digits divided by 99 would give those ocher digits as the period of a digits as a period, consequently, a circulate having any two sane digits for numerator, and to a vulgar fraction having the
For similar reasons , and 2 nines for denominator. quotient. But 001001, $8^{\frac{1}{3} \overline{5}}$ will give 001001 , \&c., or ' $\cdot 001$ ' as Thus (c.., \times (for instance) $563=563563$, \&e $001001001, \$ \mathrm{sc}$.

563

3003002003
6006006006
5005005005

$563563563563, \& c=563 \times \cdot 001$.
divided by 999 would give a circulatiat any other three digits

- Gits as a period.-And, consequently, a circulating decimal having any threo digits as period will be equal to a vulgar fraction having the same digits for numerator, and 3 nines for denominator.

We might, in a similar way, show that any number of digits divided by an equal number of nines must give a circulate, each period of which would consist of those digits.-And, consequently, a cireulate whose periods would consist of any igits must be equal to a vulgar fraction having one of :'s periods for numerator, and a number of nines equal to the number of digits in the period, for denominator.
76. If the decimal is a mixed repetend or a mixed vircalate-

Rule.-Subtraet the finite part from the whole, and set down the difference for numerator ; put for denominator so many cyphers as there are digits in the finile part, and to the left of the cyphers so many nines as there are digits in the infinite purt.

Example.-What is the vulgar fraction equivalent to $\cdot 978734^{\prime}$?

There are 2 digits in 97 , the finite part, and 4 in 8734 , the infinite part. Therefore

$$
\frac{978784-97}{999900}=\frac{978637}{900900} \text {, is the required vulgar fraction. }
$$

77. Reason of the Rule.-If, for example, we multiply $\cdot 9788^{\prime} 84^{\prime}$ by 100 , the product is $97 \cdot 8734=97+\cdot 8734$. This (by the last rule) is equal to $97+\frac{873}{973} \frac{5}{9}$, which (as we multiplied by 100) is one hundred times greater than the original quantity-but if we divide it by 100 we obtain $\frac{97}{100}+\frac{3734}{98950}$, which is equal tho original quantity. To perform the addition of $\frac{9 \%}{10 \%}$
 denominator-when they become
$\frac{97 \times 994000}{99990000}+\frac{873400}{99990000}=\frac{97 \times 9999}{999900}+\frac{8734}{999300}=($ since $\quad 9999=$ $10000-1) \frac{97 \times 10000-1}{999900}+\frac{8734}{999900}=\frac{97 \times 10000-97}{999900}+\frac{8784}{999900}=$ $\frac{970000--97}{999900}+\frac{8734}{999900}=\frac{978734-97-978637}{809900}-999900$, which is cxactly the result obtained by the rule. The same reasoning would hold with any other example.
78. $\cdot 5^{\prime}=5$.
79. ${ }^{18} 8^{\prime}=\frac{8}{9}$.
80. $\cdot 73^{\prime}=73$.
81. $\cdot 1455^{\prime}=\frac{14}{0} \frac{5}{9}$.
82. $\cdot 1057^{\prime}=\frac{57}{87}$.

exercises.
83. $\cdot 574^{\prime}=\frac{574}{87}$.
84. $\cdot 83$ '25' $=\frac{3}{2} 242$.
85. $\cdot 147658^{\prime}=\frac{147511}{9}$.
86. $\cdot 432,0075^{\prime}=4329645$
87. $875 \cdot 49^{\prime} 65^{\prime}=875 \times \frac{916}{6}$.

88. Nxcept where great accuracy is required, it is not necessaly to reduce circulating decimals to their equithem, \&c., like other decimals-merely taking care to put down so many of them as will secure sufficient accuracy.
89. It may be here remarked, that no vulgar fraction will give a finite decinal if, when reduced to its loction terms, the denominator contains any prime to its lowest tors that are prime numbers-and prime factors (facbe roduced to such) except twos all the factors, can 10, 100, 1000, \&c, nopt twos or fives. For neither 30, 400,5000, \&c., nor any multiples of these-as ples-as $6420(5000+$ nor the sum of any of their multi. tain any prime numbers, but 9 , 抆., will exactly condered as 30 tenths 2 oi 5 . Thas $\frac{3}{5}$ (consi5 will give an exact quotient; so also will $\frac{7}{2}$ (considered as $\frac{70 \text { tenths }}{2}$.). But $\frac{1}{7}$ will not give one; for $\frac{1}{7}$ (considered as $\frac{10 \text { tenths }}{7}$, or $\frac{100 \text { hundredths, }}{7}$ \&c.) does not contain 7 exactly. For a similar reason $\frac{4}{7}$ will no tient ; since $\frac{4}{7}$ (considered 40 tenth give an exact quo \&c.) $\frac{7}{7}$ or $\frac{400 \text { hundredths, }}{7}$ \&c.) does not exactly contain 7.
90. A finite decimal must have so many decimal places as will be equal to the greatest number of twos, or fives, contained as factors in the denominator of the original vulgar fraction, reduced to its lowest tor of the original I'lus $\frac{1}{2}$ will give one decimal terms. once in its ${ }^{2}$ denominator) is contained place; for 2 (found therefore 10 tenths tenths, $\frac{2}{2}\left(=\frac{1}{2}\right)$ will give some digit (in the tenths' place [Sec. II. 77]), that is, one decimal as
quoïent.

需 $\left(=\frac{3}{2 \times 2}\right)$ will give two decimal places; because it will not be enough to consider the mumerator as so
red, it is not their equiad subtract ing care to c sufficient
rar fraction its lowest ctors (facictors, can or neither these-as eir multi. actly con$\frac{3}{5}$ (consit; so also not give dredths,
ct quo dredths, places r fives, riginal
found ; and in the as
many tenths; for $\frac{30 \text { tenths }}{4}\left(=\frac{3}{4}\right)$ cannot give an exact quotient- 30 being equal to $3 \times 2 \times 5$, which contains 2 , but not 2×2. It will, however, be sufficient to reduce 300 hundredtlis the numerator to hundredths; berause $\frac{300}{4}$ will give an exact quotient-for 300 is equal to $3 \times 2 \times$ $2 \times 5 \times 5$, and consequently contains 2×2. But 300 hundredths divided by an integer will give hundredthsor two decimals as quotient. Hence, when there are two twos found as factors in the denominator of the vulgar fraction, there are also two decimal places in the quotient.
${ }_{4}^{6} 0\left(=\frac{6}{2 \times 2 \times 2 \times 5}\right)$ contains 2 repeated three times as a factor, in its denominator, and will give three decimal places. For though 10 tenths-and therefore 6×10 tenths-contains 5 , one of the factors of 40 , il does not contain $2 \times 2 \times 2$, the othes; consequently' it will not give an exact quotient.-iVor, for the same reason, will 6×100 hundredths. 6×1000 thousandths will give one-that is, $\frac{6 \times 1000 \text { thousandths }}{40}\left(=\frac{6}{40}\right)$ will leave no remainder ; for $6 \times 1000(=6 \times 2 \times 2 \times 2 \times 5 \times$ 5×5) contains $2 \times 2 \times 2 \times 5$. But 6×1000 thousandlhs divided by an integer will give thousandlhs-or three decimals as quotient. Hence, when there are three twos found as factors in the denominator of the vulgar fraction, there are also three decimal places in the quotient.
81. Were the fives to constitute the larger number of factors-as, for instance, in $\frac{4}{50} \frac{6}{5} \frac{6}{5}$, \&c., the same reason ing would show that the number of decinal places would be equal to the number of fives.

It might also be proved, in the same way, that were the greatest number of twos or fives, in the denominator of the vulgar fraction, any other than one of those numbers given above, there would be an equal number of decimal places in the quotient.
82. A pure circulate will have so many digits in its period as will be equal to the least number of nines, which would represent a quantity measured by the denomina-
tor of the original vulgar fraction, reduced to its lowest terms. For we have seen [74] that such a circulate will be equal to a fraction having some period for its numerator, and some number of nines for its denominatorthat is, it will be cqual to some fraction, the numerator of which (the period of the circulate) will be as many limes the numerator or the given vulgar fraction, as the quantity represented by the nines is of its denominator. For if a fraction having a given denominator is equal to another which has a larger, it is because the numerator of the latter is to the same amount larger than that of the former-in which case the increased size of the nu. merator counteracts the effect of the increased size of the denominator. Thus $\frac{5}{8}=\frac{25}{3} \frac{5}{0}$; because, if the numerator of $\frac{25}{3} \frac{5}{0}$ is 5 times greater than that of $\frac{5}{6}$, the denominator of $\frac{35}{3}$, also, is five times greater than that of $\frac{5}{5}$.

Let the given fraction be $\frac{5}{13}$. Since $\frac{5}{13}={ }^{-} 38461 \sigma^{\prime}$;
 and, therefore, whatever multiple 384615 is of $5,9994,-99$ is the same of 13.-But 999905 is the least multiple of 13, consisting of nines. If not, let some other be less. Then take for numerator, such a multiple of 5 , as that lesser number of nines is of 13--and put that lesser number of nines for its denominator. The numerator of this new fraction will [75] form the period of a circulate equal to the original fraction. But as this new period is different from 384615 (the former one), the circulate of which it is an element, is also different from the former circulate; there are, therefore, two different circulates equal to $\frac{5}{13}$-that is two different values, or r otients for the same fraction-which is impossible. ance it is absurd to suppose that any less number of nines is a multiple of 13 .
83. The periodical obtained does not contain a finite part, when weither 2 nor 5 is found in the denominator of the vulgar fraction-reduced to its lowest terms.

For [76] a finite part would add cyphers to the right hand of the nines in the denominator of the vulgar fraction, obtained from the circulate. But cyphers would suppose the denominator of the orisinal fraction to contain tros, or fives-since no other prime facturs
to its lowest circulate will or its numeoominator e numerator be as many tion, as the enominator. is equal to numerator an that of of the nu. size of the numeratur nominator
‘884615’; $\frac{8}{9} \frac{4}{9} \frac{8}{9} \frac{1}{9} \frac{5}{8}$; 5,999599 ultiple of r be less. 5 , as that lat lesser crator of eirculate period is culate of foriner ireulates ootionts mee it nes is a a finite minator 1s. he right vulgar s would tion to factura
could give cyphers in their multiple-the denominatur of the vulgar fraction obtained frem the eirealate.
84. If there is a finite part in the decimal, it will contain as many digits as there are units in the greatest number of twos or fives found in the denominator of the original vulgar fraction, redued to its lowest terms.

- Let the origiual fraetion be $\frac{-5}{56}$. Sinee $56=2 \times 2 \times$ 2×7, the equivalent fraction must have as many nines as will just contain the 7 (cyphers would not cause a number of nines to be a multiple of 7), multiplied by as many tens as form a product which will just contain the twos as factors. But we have seen [SO] that one ten (which adds one eypher to the nines) contains one two, or five; that the product of two tens (which add two cyphers to the nines), contains the product of two twos or fives; that the product of three tens (which add three cyphers to the nines', contains the product of three twos or fives, \&c. That is; there will be so many eyphers in the denominator as will be equal to the greatest number of twos or fives, found among the factors in the denominator of the original vulgar fraction.

But as the digits of the finite part of the decimal add an equal number of eyphers to the denominator of the new vulgar fraetion [76], the cyphers in the denominator, on the other haad, evidently suppose an equal number of piaces in the finite part of a circulate:- there will thereSore be in the finite part of a circulate so many digits as will be equal to the greatest number of twos or fives found among the factors in the denominator of a vulgar fraction containing, also, other factors than 2 or 5.
85. It follows from what has been said, that there is no number which is not exactly contained in some quantity expressed by one or more nines, or by one or more nines followed by cyphers, or by unity followed by cyphers.

Contractions in Multiplication and Division (derived from the properties of fractions.)
86. To multiply any number by 5-

Rule.-Remore it one place to the left hand, and divide the result by 2

87. 'Tu maltiply ly $2.5-$

Rivas.- licmore the quatity two places to the left, and divile ly 4 .

IEAson--25=101"; therefure 6732 $\times 25=6732 \times{ }^{100}$.
88. 'Io multiply by 125-

Rume-- Kennove the quantity three places to the left, and divide the result by 8.

licason-125= $=_{8}^{10 n 0}$; therefore $7365 \times 125=7865=1000$.
89. 'Tu maltiply by $75-$

Rors.-- Remove the quantity two places to the left, then multiply the result by 3 , and divide the product by 4. .

Example.-685 $\times 75={ }^{9850 n} \times 3=20.550 n=51375$.
Reanon.- $75=300=100 \times 3$; therofore $685 \times 75=685 \times$
90. To multiply by $35-$

Ruse.-To the multiplicand removed two places to the left and divided hy 4 , whe the multiplicand removed ono pace to the left.

Example 1-67896×35 $=67391000+678060=1697400$ $+678060=2376360$.

Many similar abhreviations will easily suggest themselves to bot! pupil and toacher.
91. To divide by any one of the multipliers-

Jule.-Multiply by tia equivalent fraction, inverted.
Exampre. - Divide 847 by 5. $\quad 817 \div 5=847 \div \frac{10}{2}=847 \times$
$=160 \cdot 4$.
Reason.-We divide by any number when we divide by the fraction equivalent to it ; but wodivide by a fraction when we invert it, and then consider it as a multipher [49].
92. Sometimes what is convenient as a multip not be equally so as a divisor. thes a multiplier will easy to divide, ass to multiply by 100 . For it is not so mised number.

QUESTIONS FOR TIIE PUPIf.

1 Show that a decimal fraction, and the correspondtug decimal are not identical [59].
2. How is a decimal changed into a decimal frac tion? [61].
3. Are the methods of adding, \&c., vulgar and deciimal fractions different? [62].
4. How is a vulgar reduced to a decimal fraction : [63].
5. How is a decimal reduced to a lower denomination? [64].
6. Ilow are pounds, shillings, and pence changed, at once, into the corresponding decimal of a pound : [66, 67, and 68].
7. How is the decimal of a pound changed, at once, into shillings, pence, \&c. ? [70].
8. What are terminate and circulating decimals? [71].
9. What are a repetend and a perio lical, a puro and a mixed circulate ? [72].
10. Why cannot the number of digits in a neriod bo equal to the number of units contained in the divisor? [73].
11. How is a pure circulate or pure repetend changed into an equivalent vulgar fraction ? [74].
12. How is a mixed repetend or mixed circulate reduced to an equivalent vulgar fraction ? [76].
13. What kind of vulgar fraction can produce no equivalent finite decimal ? [79].
14. What number of decimal places must necessarily be found in a finite decimal ? [80].
15. How many digits must be found in the periods of a pure circulate ? [82].
16. When is no finite part found in a repetend, or circulate ? [83].
17. How many digits must be found in the finite part of a mived circulate? [84].
18. On what principal can we use the properties of fractions as a means of abbrcviating the processes of multiplication and division? [$86, \& c$.

SECTION V.

PROPORTION.

1. The rule of Proportion is called also the grolden rule, from its extensive utility ; in some cases it is termed the rule of three-because, by means of it, when three numbers are given, a fourth, which is unknown, may be found.
2. The rule of proportion is divided into the simper, and the compound. Sometimes also it is divided into the direct, and inverse-which is not aecurate, as was shown by Hatton, in his aritl netic published nearly one hundred years ago.
3. The pupil to have accurate ideas of the rule of proportion, mu"t be acquainted with a few simple but important pri .ciples, connected with the nature of ratios, and the dor' rine of proportion.
The following truths are self-evident :-
If the same, or equal quantities are added to equai quantitics, the sums are equal. Thus, if we add the samer quantity, 4 for instance, to 5×6 and 3×10, which are equal, we shall have $5 \times 6+4=3 \times 10+4$.

Or if we add equal quantities to those whieh are equal, the sums will be equal. Thus, sinee

$$
\begin{aligned}
& 5 \times 6=3 \times 10, \text { and } 2+2=4 \\
& 5 \times 6+2 \times 2=3 \times 10+4 .
\end{aligned}
$$

4. If the same, or equal quantities are subtracted from others which are equal, the remainders will be equal. Thus, if we subtract' 3 from each of the equal quantitics 7 , and $5+2$, we shall have

$$
7-3=5+2-3
$$

And since $8=6+2$, and $4=3+1$.
5. If equal quantities are mulliplied by the same, or by equal quantities, the products will be equal. Thus
if wo multiply the equals $5+6$, and $10+1$ by 3 , we shall have

$$
\overline{5+0} \times 3=\overline{10+1} \times 3 .
$$

And since $4+9=13$, and $3 \times 6=18$.

$$
\overline{4+3} \times 3 \times 6=13 \times 18 .
$$

6. If equal quantities are divided by the same, or ly

0 the golden it is termed when three wn, may be the simpue, livided into ate, as was nearly one
the rule of simple but c of ratios,
to equai d the sum. which aro
which are
subtracted s will be the equal

- equal quantities, the quotients will be equal. Thus if we divide the equals 8 and $4+4$ by 2 , we shall have

$$
\frac{8}{2}=\frac{4+4}{2}
$$

And since $20=17+3$, and $10=2 \times 5$.

$$
\frac{20}{10}=\frac{17+3}{2 \times 5} .
$$

7. Ratio is the relation which exists between two quantities, and is expressed by two dots (:) placed between them-thus 5: 7 (read, 5 is to 7); which means that 5 has a certain relation to 7 . The former quantity is called the antecedent, and the latter the consequent.
8. If we invert the terms of a ratio, we shath have their inrerse ratio; thus $7: 5$ is the inverse of $5: 7$.
9. The relation between two quantities may consist in one being greater or less than the other-then the ratio is termed arithmetical; or in one being some multiple or part of the other-and then it is geometrical.
If two quantities are equal, the ratio between them is suid to be that of equality; if they are unequal it is a ratio of greater inequality when the antecedent is greater than the consequent, and of lesser inequality when it is less.
10. As the arithmetical ratio between two quantities is measured by their difference, so long as this difference is not altered, the ratio is unehanged. Thus the ratio of $7: 5$ is equal to that $15: 13-$ for 2 is, in each ease, the difference between the antecedent and consequent.

Hence we may add the same quantity to both the antecedent and consequent of an arithmetical ratio, or may subtract it from them, without ehanging the matio. Thus $7: 5,7+3: 5+3$, and $7-2: 5-2$, are equal arithmetical ratios.

Wit we cannot multiply or dieide the terms of an arith-
metical ratio by the same number. Thus $12 \times 2: 10 \times 2$, $12 \div 2: 10 \div 2$, and $12: 10$ ure not equal arithmetical ratios; for $12 \times 2-10 \times 2=4,12 \div 2-10 \div 2=1$, and $12-10=2$.
11. A geometrical ratio is measured by the quotiont obtained if we divide its antecedent by its consequent ;therefore, so long as this quotient is unaltered the ratio is not changed. Hence ratios expressed by equal fractions are equal; thus $10: 5=12: 6$, for $1_{5}^{0}=\frac{13}{6}$.-Hence, also, we may multiply or divide both terms of a geometrical ratio by the same number without-altering the ratio; thus $7 \times 2: 14 \times 2=7: 14$-because $\frac{7 \times 2}{14 \times 2}=\frac{7}{14}$.
But we eannot add the same quantity to both terms of a geometrical ratio, nor subtract it from them, with:out altering the ratio.
12. Whea the pupil [Sce. IV. 17] was taught how to express one quantity as the fraction of anothar, he in reality learned how to disoover the geometrical ratio between the two quantities. Thus, to repeat the question formerly given, "What fraction of a pound is $2 \frac{1}{4} d$.?"-which in reality means, "What rclation is there between $21 d$. and a pound ;" or "What must we consider $2 \frac{1}{3} d$., if we consider a pound as unity;" "or," in fine, "What is the value of $2 \frac{1}{4}: 1$ "-

We have seen [See. I. 40] that the relation between quantitics cannot be aseertained, unless they are made to have the same " unit of comparison:" but a farthing is the only unit of comparison which ean be applied to both $2 \frac{1}{4} d$. and $£ 1$; we must therefore reduce them to farthings-when the ratio of one to the other will become that of $9: 960$. But we have also seen that a geometrical ratio is not altered, if we divide both its terms by the same number ; therefore $9: 960$ is the save
 $2 \frac{1}{4} d$. and $£ 1$ may be expressed by $2 \frac{1}{9} d$. : $£ 1$, or $9: 960$,
 farthing will be represented by $\frac{9}{6} \bar{\sigma}$.
13. The geometrical ratio between two numbers is the same as that which exists between the quotient of the fraction which represents their ratio, and unity. Tbus,
 It is not necessary that we should be able to express by integers, nor even by a finite decimal, what part or multiple one of the terms is of the other; for a geometrical ratio may be considered to exist between any two quantities.' 'Thus, if the ratio is $10: 2,5\left(\frac{10}{2}\right)$ is the quantity by which we must multiply one term to make it equal to the other; if $1: 2$, it is $0.5\left(\frac{1}{2}\right)$, a finite decimal ; but if $3: 7$, it is $428571^{\prime}\left(\frac{3}{5}\right)$, an infinite decimal-in which ease we obtain only an approximation to the value of the ratio. But though the measure of the ratio is expressed by an infinite decinal, when there is no quantity which will exactly serve as the multiplier, or divisor of one quantity so as to make it equal to the other-since we may obtain as near an approximation as we pleasethere is no inconvenience in supposing that any ono number is some part or multiple of any other ; that is, that any number may be expressed in terins of anotheror may form one term of a geometrical ratio, unity boing the other.
14. Proportion, or analogy, consists in the equality of ratios, and is indicated by putting \doteqdot, or : :, between the equal ratios; thus $5: 7 \doteqdot 9: 11$, or $5: 7:: 9: 11$ (read, 5 is to 7 as $9: 11$), means that the two ratios $5: 7$ and $9: 11$ are equal ; or that 5 bears the same relation to 7 that 9 does to 11. Sometimes we express the equality of more than two ratios; thus $4: 8:: 6: 12:: 18: 36$, (rcid, 4 is to 8 , as 6 is to 12 , as 18 is to 36), means there is the same relation between 4 and 8, as between 6 and 12 ; and between 18 and 36 , as between either 4 and 8 , or 6 and 12-it follows that $4: 8: 18: 36$-for two ratios which are equal to the same, are equal to each other. When the equal ratios are arithnetical, the constitute an arithmetical proportion; when geometri cal, a geometrical proportion
15. The quantities which form the proportion are called proportionals; and a quantity that, alorg with three others, constitutes a proportion, is called a fourth proportional to those others. In a proportion, the two outside terms are called the extremes, and the two middle terms the means; thus in $5: 6:: 7: 8,5$ and 8 are tho
extremes, 6 and 7 the means. When the same quantity is found in both means, it is called the mean of the extremes; thus, since $5: 6:: 6: 7,6$ is the mean of 5 and 7. When the proportion is arithmetical, the mean of two quantities is called their arithmetical mean; when the proportion is geometrical, it is termed their geometrical mean. Thus 7 is the arithmetical mean of 4 and 10 ; for, since 7-4=10-7, 4:7::7:10. And 8 is the geometrical mean of 2 and 32 ; for, since $\frac{2}{8}=\frac{8}{32}$, 2:8: :8:32.
16. In an arithmetical proportion, " the sum of the means is equal to the sum of the extremes." Thus, since $11: 9:: 17: 15$ is an arithmetical proportion, 11-9
ans of the f 5 and rean of when seomen of 4 nd 8 is $\frac{2}{8}=\frac{8}{3}$, of the , since $-9=$ ies, we 15 to ; but e sub-$-15=$ $1=0$: $17+9$ ht be and, whish of the -that atities les us given rence rean; f the rtion, puals, m of ng 7 , ano 1 the ining. havg
anfwered just as well-hence what we have said is true in all cases.

18. Example.-Find a four:in proportional to 7, 8, 5.

Making the required number one of the extremes, and putting the note of interrogation in the place of it, we have $7: 8:: 5:$? ; then $7: 8:: 5: 8+5-7$ (the sum of the means minus the given extreme, $=6$) ; and the proportion completed will be

$$
7: 8:: 5: 6 .
$$

Making the required number one of the means, we shall have $7: 8:: ?: 5$, then $7: 8:: 7+5-8$ (the sum of the extremes minus the given mean, $=4$) :5; and the proportion completed will be

$$
7: 8:: 4: 5 .
$$

As the sum of the means will be found equal to the sum of the extremes, we have, in each case, completed the proportion.
19. The arithmetical mean of two quantities is half the sum of the extremes. For the sum of the means is equal to the sum of the extremes; or-since the means are equal-twice one of the means is equal to the sum of the extremes; consequently, half the sum of the means-or one of them, will be equal to half the sum of the extremes. Thus the arithmetical mean of 19 and 27 is $\frac{19+27}{2}(=23)$; and the proportion completed is

$$
19: \Omega 3:: 23: 27, \text { for } 19+2 f=23+23 .
$$

20. If with any four quantities the sum of the means is equal to the sum of the extremes, these quantities are in arithmetical proportion. Let the quantities be

$$
\begin{array}{llll}
8 & 6 & 7 & 5 .
\end{array}
$$

As the sum of the means is equal to the sum of the extremes

$$
8+5=6+7
$$

Subtranting 6 from each of the equal quantities, wo have $8+$ \& $-6=6+7-6$; and subtracting 5 from each of these, we have $8+5-6 \div 5=6+7-6-5$. But $8+5-6-5$ is equal to $8-6$, sinee 5 to be added and 5 to be subtracted are $=0$; and $+6+7-6-5=$ $7-5$, since 6 to be added and 6 to no subtracted $=0$;
therefore $8+5-6-5=6+7-6-5$ is the same as $8-6=7-5$; but if $8-6=7-5,8: 6$ and $7: 5$, are two equal arithmetical ratios; and if they are two equal arithmetical ratios, they constitute an arithmetical proportion. It might in the same way be proved that any other four quantities are in arithmetical proportion, if the sum of the means is equal to the sum of the oxtremes.
21. In a geometrical proportion, "the product of the means is equal to the produci of the extremes." Thus, since $14: 7:: 16: 8$ is a geometrical proportion, $7^{4}=16[11]$; but, multiplying each of the equal quantines by 7, we have $\left(\frac{1}{7}{ }^{4}{ }^{7}\right)=\frac{18}{8} \times 7$; and multiplying sach of these by 8 , we have $14 \times 8=16 \times 7\left(\frac{1}{8} \times 7 \times 8\right)$:out 14×8 is the product of the extremes; and 16×7 s the product of the means. The same reasoning would nold with any, other geometrical proportion, and thereore it is true in all cases.
22. This equation (as it is called), or the equality of the product of the means and the product of the extremes, is the test of a geometrical proportion: that is, it shows us whether or not four given quantities constitute a geometrical proportion. It also enables us to find a fourth geometrical proportional to three given quanti-ties-which is the object of the rule of three; since any mean is, evidently, the quotient of the product of the extremes divided by the other mean ; and any extreme, is the quotient of the product of the means divided by
the other extreme.
For if $7: 14:: 11: 22$ be the geometrical proportion, $7 \times 32=14 \times 11$; and, dividing the equals by 7 , we have 22 (one of the extremes) $=\frac{14 \times 11}{11}$ (the product of the menns divided by the other extreme); and, dividing these by 11 , we have $\frac{7 \times 22}{11}$ (the product of the extremes divided by one mean) $=14$ (the other mean). We might in the same way find the remaining mean or the remaining extreme. Any other proportion would have answered just as well-and therefore what we have suid is true in every case.
23. Exasmpie.-Find a fourth proportional to 8, 10, and 14. Making the required quantity one of the extremes, we shall of the
duct of remes." portion, quantitiplying <8) :16×7 would thereality of tremes, shows tute a find a yuantice any of the treme, led by havo of the these Lave $8: 10:: 14: ?$; and $8: 10:: 14: \frac{10 \times 14}{8}$ (the product of the means divided by the given extreme, $=17 \cdot 5$).
And the proportion completed will be

$$
8: 10:: 14: 17 \cdot 5
$$

Making the required number one of the means, we shall have $8: 10:: ?: 14$; and $8: 10:: \frac{10}{10}$ (the product of the extremes divided by the given mean, $=11 \cdot 2$) : 14 .
And the proportion completed will be
$8: 10:: 11 \cdot 2: 14$.

EXERCISES.

Find fourth proportionals

24. If with any four quantities the product of the means is equal to the product of the extremes, these quantities are in geometrical proportion. Let the quantities be

$$
\begin{array}{llll}
5 & 20 & 6 & 24,
\end{array}
$$

As the product of the means is equal to the prod et of the extremes,

$$
5 \times 24=20 \times 6
$$

Dividing the equals by 24 , we have $\frac{5 \times 24}{24}=\frac{20 \times 6}{24}$; and, dividing these by 20 , we have $\frac{5 \times 24}{20 \times 24}=\frac{20 \times 6}{20 \times 24}$. But $\frac{5 \times 24}{20 \times 24}=\frac{5}{20}$; and $\frac{20 \times 6}{20 \times 5}=\frac{6}{24}$; therefore $\frac{5}{20}=\frac{6}{24}$; consequently the geometrical relation between 5 and 20 is the same as that betweon 6 and 24 ; hence there are two equal geometrical ratios-or a geometrical propor-

PROPORTION.

tion. It might, in the same way, bo proved that any other four quantities are in geometrical proportion, if the product of the means is equal to the product of the extremes.
25. When the first term is unity, to find a fourth proportional-

Rule.-Find the product of the second and third. Example.-What is the fourth proportional to 1, 12, and

1 : $12:$: $27: 12 \times 27=324$
We are to divide the product of the means by the given extreme; but we may neglect the divisor when it is unitysince dividing a number by unity does not alter it.

EXERCISES.
Find fourth proportionals

R When either the second, or third term is unityby the first.
Example.-Find a fourth proportional to 8,1, and 5.

$$
8: 1:: 5: \frac{5}{8} .
$$

of th Henc tities plied to fin of th and 28 the fo
that any ortion, if act of the
a fourth third. 1,12 , and

5.

given

as the

 multi-ed.
of the extremes is equal to the mean multiplied by itself. Hence, to discover the geametrical mean of two quantities, we have only to find some number which, multiplied by itself, will be equal to their product-that is, to find, what we shall term hereafter, the square root of their product. Thus 6 is the geometrical mean of 3 and 12 ; for $6 \times 6=3 \times 12$. And 3:6: 6: $6: 12$.
28. It will be useful to make the pupil aequainted with the following properties of a geometrical proportion-

We may consider the same quantity either as a mean, or an extreme. Thus, if $5: 10:: 15: 30$ be a geometrical proportion, so also will $10: 5:: 30: 15$; for we obtain the same equal products in both eases-in the former, $5 \times$ $30=10 \times 15 ;$ and in the latter, $10 \times 15=5 \times 30$-which are the same thing. This change in the proportion is called inversion.
29. The product of the means will continue equal to the product of the extremes-or, in other words, the proportion will remain unchanged-

If we allernate the terms; that is, if we say, " the first is to the third, as the second is to the fourth"-

If we "multiply, or divide the first and second, on the first and third terms, by the same quantity"-

If we " read the proportion backwards"-
If we say " the first term plus the second is to the second, as the third plus the fourth is to the fourth"If we say "the first term plus the second is to the first, as the third plus the fourth is to the third"-\&e.

RULE OF SIMPLE PROPORTION.

33. This rule, as we have said, enables us, when three quantities are given, to find a fourth proportional.

The only dificulty consists in stating the question; when this is done, the required term is easily found.

In the rule of simple proportion, two ratios are given, the one perfeet, and the cther imperfeet.
31. Rule-I. Put th:t given quantity which belongs to the imperfect ratio in in third place.
$=$ II. If it appears from the nature of the question that ihe required quantity must be greater than the other,
or given term of the same ratio, put the larger term of the perfect ratio in the second, and the smaller in the first place. But if it appears that the required quantity must be less, put the larger term of the perfect ratio in the first, and the smaller in the second placc."
III. Multiply the second and third terms tegether, and divide the preduct by the first.-The answer will be of the same kind as the third term.
32. Example 1.--If 5 men build 10 yards of a wall in one day, how many yards would 21 men build in the same time?

It will facilitate the stating, if the pupil puts down the question briofly, as follows-using a note of interrogation to represent the required quantity5 men.
10 yards. 21 men.
? yayds.
10 yards is the given term of the imperfect ratio-it must, therefore, be put in the third place.
5 men, and 21 men are the quantitios which form the perfect ratio ; and, as 21 will build a greater number of yards than 5 men , the required number of yards will be greater than the given number-hence, in this case, we put the larger term of the perfect ratio in the second, and the sinaller in the first place-

$$
5: 21:: 10: ?
$$

And, completing the proportion,

$$
5: 21:: 10: \frac{21 \times 10}{5}=42, \text { the required number. }
$$

Therefore, if 5 men build 10 yards in a day, 21 men will build 42 yards in the same time.
33. Example 2.-If a certain quantity of bread is sufficient to last 3 men for 2 days; for how long a time ought it to last 5 men? This is set down briefly as follows:

$$
\begin{aligned}
& 3 \text { men. } \\
& \text { 2 days. } \\
& 5 \text { men. } \\
& \text { ? days. }
\end{aligned}
$$

2 days is the given term of the imperfect ratio-it must, therefore, be put in the third place.
The larger the number of men, the shorter the time a given quantity of bread will last them; but this shorter time is the
rger term maller in required he perfect place. together, swer will
all in one me time? lown the gation to
required quantity-hence, in this case, the greater term of the perfect ratio is to be put in the first, and the smaller in the second place -

$$
5: 3:: 2: ?
$$

And, completing the proportion,

$$
5: 3:: 2: \frac{3 \times 2}{5}=1 \frac{1}{b} \text {, the required term. }
$$

34. Exampie 3.-If 25 tons of coal cost $£ 21$, what will be the price of 1 ton?

$$
25: 1:: 21: \frac{1 \times 21}{25} \text { pounds } f_{\overline{25}}^{21}=16 \text { s. } 9 \frac{1}{2} d .
$$

It is necessary in this case to reduce the pounds to lower denominations, in order to divide them by 25 ; this causes the answer, also, to be of different denominations.
35. Reason of I.-It is convenient to make the requirel quantity the fourth term of the proportion-that is, one of the extremes. It could, however, be found equally well, if considered as a mean [23].
Reaton of II.-It is also convenient to make quantities of the same kind the terms of the same ratio ; because, for instance, we can compare men with inen, and days with daysbut we cannot compare men. with days. Still there is nothing inaceurate in comparing the number of one, with the number of the other; nor in comparing the number of men with the quantity of work they perform, or with the number of loaves they eat ; for these things are proportioned to each other. Hence we shall obtain the same result whether we state example 2, thus

$$
\begin{array}{rllllll}
5 & : & 3 & :: & 2 & :
\end{array}
$$

When diminishing the kind of quantity which is in the perfect ratio increases that kind which is in the imperfect-or the reverse-the question is sometimes said to belong to the inverse rule of three; and different methods are given for the solution of the two species of questions. But llatton, in his Arithmetic, (third edition, London, 1753,) suggests the above general mode of solution. It is not accurate to say " the imverse rule of three" or "inverse rule of proportion;" sinee, although there is an inverse ratio, there is no inverse proportion.
Reason of III.-We multiply the second and third terms, and divide their product by the first, for reasons already given [22].
Tho answer is of the same kind as the third term, since neither the multiplication, nor the division of this term has changed its anture ;-20s. the payment of 5 days divided by 5
gives $\frac{20 s .}{5}$ as the payment of one day; and $\frac{20 s}{5}$, the payment of one day multiplied by 9 gives $\frac{20 s .}{5} \times 9$ as the payment of 4 days.
If the fourth term were not of the same kind as the thirl, it would not complete the imperfect ratio, and therefore it would not be the required fourth proportional.
36. It will often be convenient to divide the first and second, or first and third terms, by their greatest common measure, when these terms are composite to each other [29].
Example.-If 36 cwt. cost $£ 24$, what will 27 cwt. cost ?

$$
30: 27:: 24: ?
$$

Dividing the first and second by 9 we have

$$
4: 3:: 24: ?
$$

And, dividing the first and third by 4 ,

$$
1: 3:: 6: 3 \times 6=£ 18
$$

exercises for the pupil.
Find a fourth proportional to

1. 5 pieces of cloth : 50 pieces : : £27. Aus. \&270
2. 1 cwt. : 215 cwt. :: 50 s. Ans. 10750 s.
3. $10 \mathrm{Ib}: 150 \mathrm{It}:: 5 \mathrm{~s}$. $\Lambda n s .75 \mathrm{~s}$.
4. 6 yards $: 1$ yard $:: 27 \mathrm{~s}$. Ans. 4 s . 6 c .
5. 9 yards $: 36$ yards $:: 18 s$. Ans. $72 s$.
6. $5 \mathrm{fb}: 1 \mathrm{lb}:: 15 s$. Ans. 3 s .
7. 4 yards $: 18$ yards $:: 1 s$. Ans. $4 s .6 d$.
8. What will 17 tons of tallow come to at $£ 25$ per ton? Ans. £425.

9 [f one piece of cloth cost $£ 27$, how much will 50 pieces cost? Ans. £1350.

- 10. If a certain quantity of provisions would last 40 men for 10 months, how long would they suffice for 32 : Ans. $12 \frac{1}{2}$ months.

11. What will 215 cwt. of madder cost at 50 s . per cwt.? Ans. 10750 s .
12. I desire to have 30 yards of cloth 2 yards wide, with baize 3 yards in breadth to line it, how much of the latter shall I require? $\Lambda u s$. 20 yards.
13. At 10 s. per barrel, what will be the price of 130 barrels of barley? Aus. £65.
14. At $5 s$. per tb , what will be the price of 150 lb of tea? Ans. 750 s .
15. A merchant agreed with a carrier to bring 12 cwt. of goods 70 miles for 13 crowns, but his waggon being heavily laden, he was obliged to unload 2 cwt.; how far should he carry the remainder for the same money? Ans. 84 miles.
16. What will 150 cwt. of butter cost at \mathscr{L} per cwt. ? Ans. £450.
17. If I lend a person $£ 400$ for 7 months, how much ought he to lend me for 12 ? Ans. £233 6s. Sd.
18. How much will a person walk in 70 days at the rate of 30 miles per day? Ans. 2100.
19. If I spend $£ 4$ in one week, how mueh will I spend in 52 ? Ans. £208.
20. There are provisions in a town sufficient to support 4000 soldiers for 3 months, how many must be sent away to make them last 8 months? Ans. 2500.
21. What is the rent of 167 aeres at $£ 2$ per aere? Ans. £334.
22. If a person travelling 13 hours per day would finish a journey in 8 days, in what time will he aceomplish it at the rate of 15 hours per day? Ans. $6 \frac{14}{5}$ days.
23. What is the cost of 256 gallons of brandy at $12 s$. per gallon ? Ans. 3072s.
24. What will 156 yards of eloth come to, at £2 per yard? Ans. £312.
25. If one pound of sugar cost $8 d$., what will 112 pounds come to? Ans. 896d.

26 . If 136 masons ean brild a fort in 28 days, how many men would be required to finish it in 8 days? Ans. 476.
27. If one yard of ealico cost $6 d$., what will 56 yards come to? Ans. 336d.

28 . What will be the priee of 256 yards of tape at 2d. per yard? Ans. $512 d$.

29 . If £100-produces me £6 interest in 365 days, what would bring the sane amount in 30 days? Aus $2121613 s .4 a$.
30. What shall I receive for 157 pair of gloves, at 10d. per pair? Ans. 1570 d .
31. What would 29 pair of shoes come to, at $9 s$. per pair? Aus. $261 s$.
32. If a farmer lend his neighbour a cart horse which draws 15 cwt. for 30 days, how long should he have a horse in return which draws 20 cwt ? Ans. $22 \frac{1}{2}$ days. 33. What sum put to interest at $\mathscr{\&} 6$ per cent. would give $\mathfrak{L} 6$ in one month ? Aus. £1200.
34. If I lend £ 400 for 12 months, how long ought $\mathfrak{£ 1 5 0}$ be lent to me, to return the kinduess? Ans. 32 months.
35. Provisions in a garrison are found sufficient to last 10,000 soldiers for 6 months, but it is resolved to add as many men as would cause them to be consunied in 2 months; what number of men must be sent in ? Ans. 20,000.
36. If 8 horses subsist on a certain quantity of hay for 2 months, how long will it last 12 horses? Ans $1 \frac{1}{3}$ months.
37. A shopkeeper is so dishonest as to use a weight of 14 for one of 16 oz . ; how many pounds of just will be equal to 120 of unjust weight? Ans. 105 fth .
38. A meadow was to be mowed by 40 men in 10 days; in how many would it be finished by 30 men ? Ans. $13 \frac{1}{3}$ days.
37. When the first and second terms of the proportion are not of the same denomination; or one, or both of them contain different denominations-

Rule.-Reduce both to the lowest denomination contained in either, and then divide the product of the second and third by the first term.
Example 1.-If threo ounces of tea cost 15d. what will 87 ponnds cost?

The lowest denomination contained in either is ounoes.

$$
\begin{array}{cc}
\text { oz. } & \text { lb } \\
3: & d . \\
& 16
\end{array}:: 15: \frac{1392 \times 15}{3}=6960=£ 29 .
$$

1392 ounces.

There is evidently the same ratio between 3 oz and 87 ib as between 5 oz . and 1392 oz . (the equal of 87 tb).
gloves, at , at $9 s$. per horse which he have a . $22 \frac{1}{2}$ days. cent. would ought $\mathfrak{E 1 5 0}$ 32 months. ufficient to resolved to consumed e sent in? tity of hay es? Ans e a weight f just will fl.
nen in 10 30 men ?
proportion r both of ation conct of the rat will 87 ounces.
and 87 lb

Exampae 2--If 3 yards of any thing cost 4s. $9_{4}^{3} l$., what can be bought for $\mathcal{L Z}$?
The lowest denomination in eithor is farthings.

1920 farthings.

There is evidently the same ratio between ' $4 s .9$? d. and $5: 2$, as between the numbers of farthings they contain, respectively For there is the same ratio between any two quantities, as between two others which are equal to them.

Fixample 3.-If 4 owt., 3 qrs., 17 ib , cost $\dot{L 19, ~ h o w ~ m u c h ~}$ will 7 cwt. 2 qris. cost?

The lowest denomination in either is pounds.

EXERCISES.

Find fourth proportionals to
39. 1 cwt. : 17 tons : : £5. Ans. £1700.
40. $5 s$. : £20 : : 1 yard. Ans. 80 yards.
41. 80 yards : 1 qr. : : 400s. Ans. 1 s .3 .
42. 3s. $4 d$. : £1 10 s . : : 1 yard. Ans. 9 yards.
43. 3 cwt. 2 qrs. : 8 cwt. 1 qr. : : £2. Ans. £4.
44. 10 acres, 3 roods, 20 perches : 21 acres 3 roods : £60. Ans. £120.
45. 10 tons, 5 cwt., 3 qrs., $14 \mathrm{lb}: 20$ tons, 11 cwt , 3 qrs. : : £840. Ans. £1680.
46. What is the price of 31 tuns of wine, at $\mathcal{C 1 8}$ per hhd. Ans. \&22 32.
47. If 1 ounce of spice costs 4 s ., what will be the price of 16 db ? Aus. £゚ラ1 4s.
48. What is the price of 17 tons of butter, at $£ 5$ per cwt.? Ans. £1700.
49. If an ounce of silk costs $4 d$., what will be the price of 15 lb ? Ans. £4.
50. What will 224 fb 6 oz . of spice come to, at 3 s . per oz.? Ans. £538 10s.
51. How much will 12 lb 10 oz . of silver come to, at 5s. per oz. ? Ans. £38 10s.
52. What will 156 cwt 2 qrs. come to, at $7 d$. per lb ? Ans. £511 4s. 8d.
53. What will 56 ewt. 2 qrs. cost at 10s. 6d. per qr. ? Ans. £118 13s.
54. If 1 yard of cloth costs $£ 15 \mathrm{~s}$., what will 110 yards, 2 qrs., and 3 nails, come to ? Ans. £138 7s. 21 d.
55. If 1 cwt. of butter costs $\mathfrak{£ 6} 6 \mathrm{~s}$., how much will 17 cwt., 2 qrs., 7 Hb , cost? Ans. £110 12s. 101 d .
56. At 15 s . per cwt., what can I have for $\mathfrak{e} 615$ 15s. ? Ans. 821 cwt .
57. How much beef can be bought for £760 12s., af 32 s . per cwt. Ans. 475 cwt ., $1 \mathrm{qr} ., 14 \mathrm{fb}$.

58 . If $12 \mathrm{ib}, 6 \mathrm{oz}, 4 \mathrm{dwt}$., cost $£ 150$, what will 3 lb , 1 oz., 11 dwt., cost? Ans. £37 10 s.
59. If 10 yards cost 17 s., what will 3 yards, 2 qrs. cost? Ans. 5 s. $11 \frac{1}{4}$ d.
60. If 12 cwt .22 ib cost $£ 19$, what will 2 cwt .3 qrs. cost? Ans. £4 5s. $8 \mathrm{f} d$.
61. If $15 \mathrm{oz} ., 12 \mathrm{dwt}$., $16 \mathrm{grs} .$, cost 19 s ., what will 13 oz .14 grs. cost? Ans. 15 s .10 d .
38. If the third term consists of more then owe deno-mination-
Rule.-Reduce it to the lowest denomination which it contains, then multiply it by the second, and divide the product by the first term. -The answer will be of that denomination to which the third has been reduced ned may sometimes be changed to a higher [Sce. II. 5].
clsper ill be the at $£ 5$ per ill bo the to, at 3 s . mo to, at
t 7d. per
6d. per
will 110 7s. 21d. auch will $01 / d$. 15 15s.?

12s., al
will 3 fb ,
$\mathrm{l}, 2$ qrs.
cwt. 3
hat will
© deno-
n which 1 divide 11 be of educed [Sce.

Example 1.-If 3 yards cost $9 s .2 \begin{aligned} & \text { d } l, \text {, what will } 327 \text { yards } \\ & \text { ant }\end{aligned}$ The lowest denomination in the third tern is farthings.

$\overline{110}$ pence.
$\frac{4}{441}$ farthings.

Example 2.-If 2 yards 3 qrs. cost $11 \frac{1}{4} d$., what will 27 yards, 2 qra., 2 nails, cost?

The lowest denomination in the first and second is nails, and in the third farthings.
 $\overline{11} \mathrm{qr} . \quad \overline{110} \mathrm{qr} . \quad \overline{45}$ farthings.
$\overline{44}$ nails. 442 nails.
Reducing the third term generally enables us to perform the required multiplication and division with more facility.-It is sometimes, however, unnecessary.

Example.-If 3 lb cost $£ 311 \mathrm{~s}$. $4 \frac{1}{3} d$, what will 96 lb cost?
 $3: 06:: 311$ 4 $4_{4}^{3}: \frac{3114_{3}^{3} \times 96}{3}=311 \quad 43 \times 32=11448$

EXERCISES.

Find fourth proportionals to
62. 2 tons : 14 tons : : £2S 10s. Ans. 199 10s.
63. 1 cwt : 120 cwt : : 18 s .6 d . Aus. £111.
64. 5 barrels : 100 barrels : : 6s. 7 d . Ans. £6 11 s . $8 d$
$65.112 \mathrm{fb}: 1 \mathrm{tb}::$ £3 $10 s$. Ans. $7 \frac{1}{2} d$.
$66.4 \mathrm{Hb}: 112 \mathrm{H}:: 5 \frac{1}{4} d$. Ans. $12 s .3 d$.
67. 7 cwt ., 3 qrs., $11 \mathrm{fb}: 172$ cwt., 2 qrs., $18 \mathrm{fb}:$: £3

9s. $4 \frac{1}{2} d$. $\Lambda n s . ~ £ 575 s .4 d$.
68. 172 cwt ., 2 qrs., $18 \mathrm{lb}: 7 \mathrm{cwt}$., 3 qrs., $11 \mathrm{lb}:$: £ 87 6s. 3d. Ans. £3 19s. $4 \frac{1}{2} d$.
69. 17 cwt ., 2 qrs., $14 \mathrm{Hb}: 2 \mathrm{cwt}$., 5 qrs., $21 \mathrm{lb}:: £^{2} 73$ Aus. £12 3s. $4 d$.
70. $\mathfrak{£ 8 7} 6 \mathrm{~s}$. $3 d$. : £3 19s. $4 \frac{1}{2} d$. . : 172 cwt., 2 qrs., 18 ib. Ans. 7 cwt., 3 qrs., 11 fb .
71. £3 19s. $4 \frac{1}{2} d$. : £87 $6 s .3 \mathrm{ll}$. :: 7 cwt., 3 qrs., 11 lb . Ans. 172 cwt., 2 qris., 18 tb .
72. At $18 s .6 d$. per cwt., what will 120 cwt. cost ? Ans. £111.
73. At $3 \frac{1}{4} d$. per pound, what will 112 lb come to ? Aus. £1 10s. $4 d$.
74. What will 120 acres of land come to, at 14 s . $6 d$. per acre? Ans. £87.
75. How much would 324 pieces come to, at $2 s .8 \frac{1}{2} d$. pcr piece? Ans. £43 17s. 6d.
76. What is the price of 132 yards of cloth, at 16 s . 4ll. per yard? Ans £i07 16s.
7%. If 1 ounce of spicc costs $3 s .4 d$., what will 18 ib 10 oz cost? Ans. £49 13s. $4 d$.
78. If 1 tb costs 6 s . 8 d ., what will 2 crrt. 3 qrs. como to ? . Ans. $110213 \mathrm{~s} 4 \mathrm{~d}^{2}$.
79. If £1 $2 s$. be the rent of 1 rood, what will be the rent (i 156 acres 3 roods ? Ans. £689 14s.
80. At 10 s . 6 cl . per qr., what will 56 cwt .2 qrs. be worth? Ans. £118 13s.
81. At 15s. $6 d$. per yard, what will 76 yards 3 qrs come to? Ans. £59 9s. $7 \frac{1}{2} d$.

82 What will 76 cwt. 8 it come to, at $2 s .6 d$. per ib? Ans. £1065.

83 At $14 \mathrm{~s} .4 d$. per cwt., what will be the cost of 12 cwt. 2 qrs. ?. Ans. £S 19s. $2 d$.
84. How much will 17 cwt. 2 qrs. come to, at 19 s . 10d. うer cwt. Ans. £17 7s. 1 d .

S5. If 1 cwt . of butter costs $£ 66 \mathrm{~s}$., what will 17 cwt , $2 \mathrm{qrs}, 7 \mathrm{Hb}$, come to? Ans. $\mathscr{L} 10212 \mathrm{~s} .10 \frac{1}{2} d$.

86 If 1 qr. 14 等 cost $8215 s .9 d$, what will be the cost of 50 cwt., 3 qrs., 24 lb ? Aus. £378 16 s. $8 \frac{1}{4} d$.
87. If the shilling loaf weigh 3 tb 6 cz , when flour sells at £1 13s. 6 d . per cwt., what should be its weight when flour sells at $\mathscr{L}^{1} 17 \mathrm{~s}$. $6 d$? Ans. $4 \mathrm{ib} 1 \frac{4}{5} \frac{3}{5} \mathrm{oz}$.
88. If 100 th of anything cost $£ 256 s .3 d$., what will we the price of 625 Hb ? hins. $\mathscr{L} 1584 s .0 \frac{3}{4} \mathrm{~d}$.

S9. If 1 ib of spice cost 10 s . Sol., what is half an oz. worth? $\Lambda n s .4 d$.
90. Bought 3 lhhds. of brandy containing, respectively, 61 gals.; 62 gals., and 62 gals. 2 qts., at $6 s .8 d$. per gallon; what is their cost? Ans. \&61 16s. 8d.
39. If fractions, or mixed numbers are found in ono or more of the termis-.

Rule.-Having reduced them to improper fractions, if they are complex fractions, compound fractions, or mixed numbers-multiply the second and third terms together, and divide the product by the first-according to the rules already given [Sec. IV. 36, \&c., and 46., \&e.] for the management of fractions.

Exampie.-If 12 mien build $3 \frac{5}{7}$ yards of wall in $\frac{3}{4}$ of as week, how long will they require to build 47 yards?

$$
\begin{gathered}
3 \frac{3}{7} \text { yards }=\frac{26}{7} \text { yards, therefore } \\
\frac{26}{7}: 47:: \frac{3}{4}: \frac{\frac{3}{4} \times 47}{\frac{26}{7}}=9 \frac{1}{2} \text { weeks, nearly. }
\end{gathered}
$$

10.-If all the terms are fractions-
liule.-Invert the first, and then multiply all the terins together.
Example.-If $\frac{3}{4}$ of a regiment consume $\frac{11}{12}$ of 40 tons of flour in $\frac{4}{5}$ of a year, how long will $\frac{5}{6}$ of the same regiment tako to consume it ?

$$
\frac{5}{8}: \frac{3}{4}:: \frac{4}{5}: \frac{3}{4} \times \frac{4}{5} \div \frac{5}{6}=\frac{3}{4} \times \frac{4}{5} \times \frac{6}{5}=\frac{72}{100}=262 \cdot 8 \text { days. }
$$

This rule follows from that which was given for the division of one fraction by another [Seo. IV. 49].
41. If the first and second, or the first and third terms, are fractions-

Rule.-Riduce them to a common denominator (should they not have one already), and then omit the denominators

Example.-If $\frac{3}{\frac{3}{2}}$ of 1 cwt . of rice costs \mathcal{L}, what will $\frac{\rho}{10}$ of a cwt. cost?

$$
\frac{2}{3}: \frac{9}{10}:: 2: ?
$$

Reducing the fractions to a common denominator, we have $\frac{20}{30}: \frac{27}{30}:: 2: ?$
And omitting the denominator,

$$
20: 27:: 2: \frac{27 \times 2}{20}=£ 2 \cdot 7=£ 214 \mathrm{~s} .
$$

This is merely multiplying the first and second, or the first and third terms by the cominon denominator-which [30] does not alter the proportion.

EXERCISES.

91. What will $\frac{3}{4}$ of a yard cost, if 1 yard costs $13 s$ 6d. ? Ans. 10 s. $1 \frac{1}{2} d$.
92. If 1 Hb of spice costs $\frac{3}{4} s$., what will 1 fb 14 oz . cost? Ans: 1 s. $4 \frac{7}{8} d$.
93. If 1 oz . of silver costs $5 \frac{2}{3} \mathrm{~s}$., what will $\frac{3}{4} \mathrm{oz}$. cost ? Ans. 4s. 3d.
94. How much will $\frac{1}{4}$ yard come to if $\frac{7}{8} \operatorname{cost} \frac{5}{6} s$? Ans. $\frac{{ }_{2}^{5}}{2}$ s.
95. If $2 \frac{1}{2}$ yards of flannel cost $3 \frac{1}{5} s$., what is the price of $4 \frac{3}{4}$ yards? Ans. $6 s .4 d$.
96. What will $3 \frac{3}{8} \mathrm{oz}$. of silver cost at $6 \frac{1}{3} \mathrm{~s}$. per oz. ? Ans. £1 $1 s .4 \frac{1}{2} d$.
97. If $\frac{3}{1^{\frac{1}{6}}}$ of a ship costs $£ 273 \frac{1}{8}$, what is $\frac{5}{3^{2}}$ of her worth ? Ans. £227 12s. $1 d$.
98. If 1 Hb of silk costs $16 \frac{3}{3} s$., how many pounds oan I have for $37 \frac{1}{2} s$. ? Ans. $2 \frac{1}{4} \mathrm{Hb}$.
99. What is the price of $49_{\frac{3}{17}}$ yards of cloth, if $7 \frac{5}{8}$ cost £7 18s. $4 d$. ? Ans. £51 3s. $1 \frac{5}{6} \frac{3}{7} \frac{1}{2} d$.
100. If $£ 100$ of stock is worth $£ 98 \frac{7}{8}$, what will £363 8s. $7 \frac{1}{2} d$. be worth ? Ans. £358 7s. $1 d$.
101. If $9 \frac{1}{7} s$. is paid for $4 \frac{5}{6}$ yards, how much can be bought for $£_{1_{1}^{3}}^{3}$? Ans. 24 yards, nearly.

MISCELLANEOUS EXERCISES IN SIMPLE PROPORTION.

102. Sold 4 hhds. of tobacco at $10 \frac{1}{2} d$. per lb : No. 1 weighed 5 cwt., 2 qrs. ; No. 2,5 ewt., 1 gr., 14 H ; No. 3, 5 cwt., 7 th ; and No. 4, 5 cwt., 1 qr., 21 tb . What was their price? Ains £104 14s.9d.
103. Suppose that a bale of merchandise weighs $300 \mathrm{\# b}$, and costs $£ 154 \mathrm{~s} .9 \mathrm{~d}$. ; that the duty is $2 d$. per pound; that the freight is 25 s .; and that the porterage home is $1 s .6 d$.: how mueh does 1 lb stand me in?

$$
\begin{aligned}
& \text { £ s. d. } \\
& 1549 \text { cost. } \\
& 2100 \text { duty. } \\
& 150 \text { freight. } \\
& 016 \text { porterage. }
\end{aligned}
$$

$$
\begin{aligned}
& 20 \\
& 391 \\
& 12 \\
& 3 0 0 \longdiv { 4 5 7 5 } \\
& \text { 151 } \frac{1}{4} \text { d. Answer. }
\end{aligned}
$$

104. Reeeived 4 pipes of oil containing 480 gallons which cost $5 s .5 \frac{1}{2} d$. per gallon; paid for freight $4 s$. per pipe; for duty, $6 d$. per gallon; for porterage, 1s. per pipe. What did the whole eost; and what does it stand me in per gallon? Ans. It eost $£ 144$, or $6 s$. per gallon
105. Bought three sorts of brandy, and an equal quantity of each sort: one sort at $5 s$.; another at $6 s$.; and the third at $7 s$. What is the cost of the wholeone gallon with another? Ans. 6 s.
106. Bought three kinds of vinegar, and an equal quantity of each kind: one at $3 \frac{1}{2} d$. ; another at $4 d$. ; and another at $4 \frac{1}{2} d$. per quart. Having mixed them I wish to know what the mixture cost me per quart? Ans. $4 d$.
107. Bought 4 kinds of salt, 100 barrels of each; and the priees were $14 s ., 16 s ., 17 s$., and $19 s$. per barrel. If I mix them together, what will the mixture have cost me per barrel ? Ans. 16s. 6d.
108. How many reams of paper at $9 s .9 d .$, and 12 s .3 d . per ream shall I have, if I buy $£ 55$ worth of both, but an equal quantity of each ? Ans. 50 reams of each.
109. A vintner paid $£ 171$ for three kinds of wine : one kind was £8 10 s .; another £9 5s.; and the third

C10 $15 s$ s per hid. He had of each an equal quantity, the amomet of which is required.

$$
\begin{aligned}
& \text { © } 8 \\
& \text { (8) } 10 \\
& \text { !) } 5 \\
& 10 \quad 15 \\
& 28 \text { 10, the price of three hogsheads of each. }
\end{aligned}
$$

110. Bought thres kinds of salt, and of each an equal quantity; one was 14s., another 16s., and tho third $19 s$. the barel ; and the whole price was $\mathfrak{C} 490$. How many barrels had I of each? Aus. 200.
111. A merchant bought certain goods for $\mathfrak{L 1 4 5 0}$, with an agreement to deduct $\mathfrak{x} 1$ per cent for prompt payment. What has he to pay? Ans. £1435 10s.
112. A captain of a ship is provided with 24000 th of bread for 200 men, of which each man gets 4 itb per week. How loug will it last? Aus. 30 weeks.
113. How long would 3150 mb of beef last 25 men, if weeks.
114. Λ fortress containing 700 men who consume each 10 th per weok, is provided with 184000 th of provisions. How long will they last? Ans. 26 weeks and 2 days.
115. In the copy of a work containing 327 pages, a remarkable passage commences at the end of the 156th page. At what page may it be expected to begin in a copy containing 400 pages? Ans. In the 191 st page.
116. Suppose 100 cwt., 2 qrs., 14 it of becf for ship's use were to be cut up in pieces of $4 \mathrm{Hb}, 3 \mathrm{Hb}, 2 \mathrm{Ht}$, 1 tb , and $\frac{1}{2} \mathrm{lb}$-there being an equal number of each. How many pieces would there be in all? Ans. 1073; and $3 \frac{1}{2} \mathrm{ib}$ left.
117. Suppose that a greyhound makes 27 springs while a hare makes 25 , and that their springs are of equal longth. In how many springs will the hare be orectaken, if she is 50 springs before the hound?

The timo tuken ly tho greyhound for one spring is to that required by the hare, aty $25: 27$, as $1: \frac{27}{2}$, or us $1: 12^{2}$ [12]. The greyhound, therefore, gains ${ }^{2}$, of a Epring during every spring of the hare. Therefore

25: $50:: 1 \mathrm{spring}: 50 \div 5=075$, the number of springs the hare will make, before it is orertakea.
118. If a ton of tallow costs. L35), and is sold at tho rate of 10 per cent. profit, what is tho selling price? Ans. L3S 10s.
119. If a ton of tallow eosts .23710 s , at what rate must it be sold to gain by 15 tons the price of 1 ton? Ans. L4O.
120. Bonght 45 barrels of beef at $21 s$. per barrel; among them are 16 barrels, 4 of which wonld be worth only 3 of the rest. Llow mach must I pay? Ams. L43 1s.
121. If 840 eggs are bought at the rate of 10 for a permy, and $24 C$ more at S for a pemy, do I lose or gain if 1 sell all at 18 for $2 l$.? Ans. I gain $6 d$.

12:. Suppose that 4 men do as much work as $\overline{5}$ women, ind that 27 men reap a quantity of corn in 13 days. In how many days would 21 women do it? Ans.

The work of 4 men=that of 5 women. 'Therefore (dividing each of the equal quantities by 4 , they will remain equal), $\frac{4 \text { mon's work }}{4}$ (one man's work) the work of 5 women . Consequently 1 ! times tho work of one woman=1 man's work:that is, the work of one minn, in torms of a womanis work, is $1 \frac{1}{4}$; or a woman's work is to a man's work : : $1: 1$ if Hence 27 men's work $=27 \times 1$! women's work; then, in place of saying

21 women : 27 men : : 13 days :?
say tho work of 21 women : the work of $27 \times 1 \frac{1}{4}\left(=33_{4}^{3}\right)$ women $:: 13 .: \frac{33_{1}^{3} \times 13}{21}=20_{2}^{35}$ days.

1:23. The ratio of the diameter of a cirele to its eircumference being that of $1: 314159$, what is the circumference of a circle whose diameter is 4736 feet? Ans. $145 \cdot 78618$ feet.
124. If a pound ('Iroy woight) of silver is worth G6s.,

What is the value of a pound avoirdupoise? Ans. e4 0 s. $2 \frac{1}{2} d$.
125. A merchant failing, owes $£ 40881871$ to his creditors; and has property to the amount of $£ 12577517$ 10s. 11d. How rauch per cent. can he pay? Ans. £30 $15 s$. $3 \frac{3}{4} d$.
126. If the digging of an English mile of canal costs $£ 1347$ 7s. 6 d., what will be the cost of an Irish mile? Ans. £1714 16s. $9 \frac{3}{4} d$.
127. If the rent of 46 acres, 3 roods, and 14 perches, is $£ 100$, what will be the rent of 35 acres, 2 roods, and 10 perches? Ans. £75 18s. $6 \frac{3}{4} d$.
128. When A has travelled 68 days at the rate of 12 miles a day, B, who had travelled 48 days, overtook him. How many miles a day did B travel, allowing both to have started from the same place? Ans. 17 . 129. If the value of a pound avoirdupoise weight be £4 0s. $2 \frac{1}{2} d$., how many shillings may be had for one pound Troy? Ans. 66s.
130. A landlord abates $\frac{1}{3}$ in a shilling to his tenant; and the whole abatement amounts to £76 $3 s .4 \frac{1}{3} d$. What is the rent? Ans. £228 10s. 1 d. 131. If the third and tenth of a garden comes to $£ 4$ $10 s$., what is the worth of the whole garden? Ans. £10 7s. $8 \frac{1}{4} d$.
132. A can prepare a piece of work in $4 \frac{1}{2}$ days ; B in $6 \frac{1}{3}$ days; and C in $8 \frac{1}{2}$ days. In what time would all three do it? Ans. $2_{T^{\frac{1}{4} \frac{3}{7}} 7 \text {. }}$
$4 \frac{1}{2}$ days : 1 day :: 1 whole of the work $: \frac{3}{9}$ part of the whole$6 \frac{1}{3}$ days : 1 day : : 1 whole of the work what A would do in a day. 81 dars : 1 day : : 1 whole of the or what B would do in a day. work: $\frac{3}{14}$ part of the wholeor what C would do in a day.
 day (the time all would require to $: 1$ whole of the work $:: 1$ $2_{\frac{1}{14} \frac{3}{4}}$ days, the time all would take to do $\frac{1}{2447}$ of the work) : 133. A can tren a the to do the whole of it. days; but when A, B arden in $8 \frac{1}{2}$ days; B in $5 \frac{1}{4}$ finished in 11 , and C work together, it will be able to do it by hinself ? how many days would C be able to do it by himself? Ans. 21 $\frac{1}{2} \frac{1}{7}$ days.

1871 to his £12577517 Ans. £30 canal costs Irish mile?

14 perches, roods, and
the rate of s, overtook
, allowing Ans. 17. weight be ad for one
ais tenant;
3s. $4 \frac{1}{3} d$.
mes to $£ 4$
n? Ans.
days; \mathbf{B} would all
whole o in a day. e whole in a day. e wholein a day. in a day. rork : : 1 e work) :
it.
3 in $5 \frac{1}{4}$ will be d 0 be
A, B, and $\mathrm{C}^{\prime} \mathrm{s}$ work in one day $=\frac{3}{4}$ of the whole $=\frac{10}{1} \frac{1}{2}{ }^{\prime}{ }^{\prime}$ $\begin{aligned} & \text { Subtract- } \\ & \text { ing }\end{aligned}\left\{\begin{array}{l}\text { A's work in } 1 \text { day }=\frac{2}{14} \\ B ' s \text { work in } 1 \text { day }=\frac{4}{21}\end{array}\right\}=\frac{110}{35 \%}$ of the whole $=\frac{440}{14 \frac{0}{28}}$

C's work in one day remains equal to . . . $\overline{\frac{631}{1428}}$
Then $\frac{031}{1428}$ (C's work in one day) : I whole of the work : : 1 day: $2 \frac{166}{83}$, the time required.
134. A ton of coals yield about 9000 cubic feet of gas; a street lamp consumes about 5 , and an argand burner (one in which the air passes through the centre of the flame) 4 cubic feet in an hour. How many tons of coal would be required to keep 17493 street lamps, and 192724 argand burners in shops, \&ic., lighted for 1000 hours? Ans. $95373 \frac{4}{9}$.
135. The gas consumed in Jondon requires about 50,000 tons of coal per annum. For how long a time would the gas this quantity may be supposed to produce (at the rate of 9000 cubic feet per ton), keep one argand light (consuming 4 cubic feet per hour) constantly burning? Ans. 12842 years and 170 days.
136. It requires about 14,000 millions of silk worms to produce the silk consumed in the United Kingdom annually. Supposing that every pound requires 3500 worms, and that one-fifth is wasted in throwing, how many pounds of manufactured silk may these worms be supposed to produce? Ans. 1488 tons, $1 \mathrm{cwt} ., 3$ qrs., 17 tb .
137. If one fibre of silk will sustain 50 grains, how many would be required to support 97 lb ? Ans 13580 .
138. One fibre of silk a mile long weighs but 12 grains; how many miles would 4 millions of pounds, annually consumed in England, reach ?

Ans. 2333353333 $\frac{1}{3}$ miles.
139. A leaden shot of $4 \frac{1}{2}$ inches in diameter weighs 17 tb ; but the size of a shot 4 inches in diameter, is to that of one $4 \frac{1}{2}$ inches in diameter, as $64000: 91125$: what is the weight of a leaden ball 4 inches in diameter? Ans. 11•9396.
140. The sloth does not advance more than 100 yards in a day. How long would it take to crawl from Dublin to Cork, allowing the distance to be 160 English miles? Ans. 2816 days; or 8 years, nearly.
141. Euglish race horses have been known to go at the rate of 58 miles an hour. In what time, at this velocity, might the distance from Dublin to Cork be travelled over? Aus. 2 hours, $45^{\prime} 31^{\prime \prime} 2^{\prime \prime}$
142. An acre of coals 2 feet thick yields 3000 tons; and one 5 feet thick 8000 . How many acres of 5 feet thick would give the same quantity as 48 of 2 feet thick? Ans. 18.
143. The hair-spring of a watch weighs about the tenth of a grain; and is sold, it is said, for about ten, shillings. How much would be the price of a pound of crude iron, costing one halfpenny, made into steel, and then into hair-springs-supposing that, after deducting waste, there are obtained from the iron about 70000
graius of stel? graius of steel? Aus. $£ 35000$.

COMPOUND PROPORTION.

42. Compound proportion enables us, although two or more proportions are contained in the question, to obtain the required answer by a single stating. In compound proportion there are three or more ratios, one of them imperfect, and the rest perfeet.
43. Pule-I. Place the quantity belonging to the imperfect ratio as the third term of the proportion.
II. Put down the terms of each of the other ratios in the first and second places-in such a way that the another. In setting one column, and the consequents effect it has upon the answ each ratio, consider what the larger term as conseger-if to incroase it, set down cedert; if to diminish it, consequent, and the larger down the smaller term as III. Multiply the larger as antecedent. product of all the quantities in the third term by the the result by the produantities in the second, and divide A1 eroduct of all those in the first. 44. Esamples 1.-If 5 men build 16 yards of a wall in 20 days, in hotr many days would 17 men brild 37 yards?
The cucstion briefly put down [32], will be as follows :
on to go at ae, at this o Cork be

3000 tons ; of 5 feet of 2 feet
about the about ten pound of steel, and leducting out 7000
agh two stion, to ag. In ios, one to the ratios at the quents what down anterm as
y the livide
$\left.\begin{array}{l}5 \text { men } \\ 10 \text { yarls }\end{array}\right\}$ conditions which give 20 days. 20 days imperfect ratio.
? days, the number sought.
$\left.\begin{array}{l}17 \text { men } \\ 37 \\ \text { yards }\end{array}\right\}$ conditions which give the requived number of days.
The imperfect ratio consists of days-therefore we are to put 20, the given number of days, in the third place. Two ratios remain to be set down-that of numbers of men, and that of numbers of yards. Taking the former first, we ask uurselves how it affecta the answer, and find that the nore uren thore are, the smaller the required number will be-since the greater the number of men, the shorter the time required to do the work. We, therefore, set down 17 as antecelent, and 5 as consequent. Next, considering the ratio consisting of yards, we find that the larger the number of yards, the longer the time, before they are built-therefore increasing their number increases the quantity required. Hence we put 37 as consequent, and 16 as antecedent; and the whole will be as follows:-

$$
\begin{aligned}
& 17: 5:: 20: ? \\
& 16: 37
\end{aligned}
$$

And $\begin{aligned} & 17: 5:: 20: \frac{20 \times 5 \times 37}{16: 37}=13 \cdot 6 \text { days, nearly. } \\ & 176\end{aligned}$
45. The result obtained by the rule is the same as would be found by taking, in succession, the two proportions supposed by the question. Thus
if 5 men would build 16 yards in 20 days, in how many
's wonld they build 37 yards ?
.̛̀ $: 37:: 20: \frac{37 \times 20}{16}=$ number of days which 5 men would require, to build 37 yards.
If 5 men would build 87 yards in $\frac{20 \times 37}{16}$ days, in how many days would 17 men build them?
$17: 5:: \frac{20 \times 87}{16}: \frac{20 \times 37}{16} \times 5 \div 17=\frac{20 \times 5 \times 37}{17 \times 16}$, the number of days found by the rule.
46. Exampis: 2.-If 3 men in 4 days of 12 working hours cach build 37 perches, in how many days of 8 working hours ought 22 men to build 970 perches?

CUMFUUND PROPORTION.

The number of days is the quantity sought; therefore 4 days constitutes the imperfect ratio, and is put in the third place. The more men the fewer the days necessary to perform the work; therefore, 22 is put first, and 3 seeond. The smaller the number of working hours in the day, the larger the number of days; hence 8 is put first, and 12 second. The greater the number of perehes, the greater the number of days required to build them; eonsequently 17 is to bo put first, and 970 second.
47. The process may often be abbreviated, by dividing one term in the first, and one in the second place; or one in the first, and one in the third place, by the same number.

Example 1.-If the carriage of 32 cwt . for 5 miles costo 8s., how much will the earriage of 160 cwt .20 miles cost ?

$$
\begin{gathered}
32: 160:: 8: \frac{160 \times 20 \times 8}{5} 5: 20 \\
32 \times 5
\end{gathered}=160
$$

Dividing 32 and 160 by 32 we have 1 and 5 as quotients. Dividing 5 and 20 by 5 we have 1 and 4 ; and the propor-
tion will be-

$$
\begin{aligned}
& 1: 5:: 8: 5 \times 4 \times 8=160 \\
& 1: 4
\end{aligned}
$$

48. We are to continue this kind of division as long as possible-that is, so long as any one number will measure a quantity in the first, and another in the second place; or one in the first and another in the third place ihis will in some instances change most of the quantities into unity-which of course may be omitted.

Examples: 2-If 28 londs of stone of 15 fwt . each, build a wall 20 feet long and 7 feet high, how many loads of 19 cwt . will build ono 323 feet long and 9 feet high ?

$$
\begin{array}{r}
19: 15 \\
20: 323 \\
7: 9
\end{array}{ }^{10}: 28: \frac{15 \times 323 \times 9 \times 28}{19 \times 20 \times 7}=459 .
$$

Dividing 7 and 28 by 7 , we obtain 1 and 4.-Substituting these, we have

$$
\begin{aligned}
& 19: 15:: 4: ? \\
& 20: 323 \\
& 1: 9
\end{aligned}
$$

Dividing 20 and 15 by 5 , the quotients are 4 and 3 :

$$
\begin{aligned}
& 19: 3:: 4: ? \\
& 4: 323 \\
& 1: 9
\end{aligned}
$$

Dividing 4 and 4 by 4 , the quotients are 1 and 1 :

$$
\begin{aligned}
& 10: 3:: 1: ? \\
& 1: 323 \\
& 1: 9
\end{aligned}
$$

Dividing 19 and 323 by 19 , the quotients are 1 and 17 :

$$
\begin{aligned}
& 1: 3:: 1: 3 \times 17 \times 9=459 . \\
& 1: 1_{1} .: 1 \\
& 1: 9
\end{aligned}
$$

In this process we morely divide the first and second, or first and third torms, by the same numbor-which [29] does not alter the proportion. Or wo divido the numorator and denominator of the fraction, found as the fourth term, by the same number-which [Sec. IV. 15] does not alter the quotient.

EXERCISES IN COMPOUNB PROPORTION.

1. If $£ 240$ in 16 months gains $£ 64$, how much will $£^{6} 6$ gain in 6 months? Ans. $£ 6$.
2. With how many pounds sterling could I gain $£ 5$ per annum, if with $£ 450 \mathrm{I}$ gain $£ 30$ in 16 months? Ans. $£ 100$.
3. A merchant agrees with a carrier to bring 15 cwt of goods 40 miles for 10 crowns. How much ought ho to pay, in proportion, to have 6 cwt . carried 32 miles : Ans. 10 s.

. 2019

1. If 20 ewt. ato carvied the distance of 50 miles for Li') how much will 40 ewt. cost, if carried 100 milos? Aus. $\mathrm{E}_{2} 0$.
2. If 200 ith of merehandiso are carried 40 miles for $3 s$, how many pounds might be carried 60 miles for $\mathscr{L 2} 14 s .6 d$. Ans. 20200 lb .
3. If 286 fb of merchandiso are carried 20 miles for $3 s$., how many miles might 4 cwt .3 qrs. be carried for £32 6s. 8d. ? Ans. $2317 \cdot 627$.
4. If a wall of 28 feet high were built in 15 days by 68 men, how many men would build a wall 32 feet ligh in 8 days? Ans. 146 nearly.
8 . If 1 db of thread make 3 yards of linen of $1 \frac{1}{4}$ yards wide, how many pounds of thread would be required to make a piece of linen of 45 yards long and 1 yard wide? Ans. 12 lb .

9 . If 3 lb of worsted make 10 yards of stuff of $1 \frac{1}{2}$ yards broad, how many pounds would make a piece 100^{2} yards long and $1 \frac{1}{4}$ broad? Ans. 25 ib .
10. 80000 cwt. of ammunition are to be removed from a fortress in 9 days; and it is found that in 6 days 18 horses have carried away 4500 ewt. How many horses would be required to carry away the remaindor in 3 days? Ans. 604.
11. 3 masters who have each 8 apprentices oarn £36 in 5 weeks-each consisting of 6 working days. How much would 5 masters, each having 10 apprentices, earn in 8 weeks, working $5 \frac{1}{2}$ days per week-the wages being in both cases the same? Ans. £110.
12. If 6 shoemakers, in 4 weeks, make 36 pair of men's, and 24 pair of women's shoes, how many pair of each kind would 18 shoemakers make in 5 weeks? Ans. 135 pair of men's, and 90 pair of women's shoes.
13. A wail is to be built of the height of 27 feet; and 9 feet high of it are built by 12 men in 6 days. How many men must be employed to finish the remainder in 4 days? Ans. 36.
14. If 12 horses in 5 days draw 44 tons of stones, how many horses would draw 132 tons the same distance in 18 days? Ans. 10 horses.
15. If 27 . are the wages of 4 men for 7 days,

50 miles for 100 miles?

40 miles d 60 miles

20 miles be carried n 15 days all 32 feet
en of $1 \frac{1}{4}$ e required d yard
uff of $1 \frac{1}{2}$
picee 100
removed
in 6 days
ay horses
ar in 3
arn £36
s. How rentices, te wages
pair of pair of weeks? hoes.
7 feet; 6 days. emain.
stones, disdaye,
what will be the wages of 14 men for 10 days? Ans. f6 1 ūg.
16. If 120 bushels of corn last 14 horses 56 days, low many days will 90 bushels last 6 horses? Ans 98 days.
17. If a footman travels 130 miles in 3 days when the days are 14 hours long, in how many days of 7 hours eaeh will he travel 390 miles? Aus. 18 .
18. If the price of 10 oz . of bread, when the corn is $4 s .2 d$. per bushel, be $5 d$. ., what inust be paid for 3 to 12 oz , when the corn is 5 s . $5 d$. per bushel? Ans. 3 s . 3 d .
19. 5 compositors in 16 days of 14 hours long can compose 20 shects of 24 pages in each sheet, 50 lines in a page, and 40 letters in a line. In how many days of 7 hours long may 10 compositors compose a volume to be printed in the same letter, containing 40 sheets, 16 pages in a sheet, 60 lines in a page, and 50 letters in a line? Ans. 32 days.
20. It has been ealeulated that a square degree (about 69×69 square miles) of water gives off by evaporation 33 millions of tons of water per day. How mueh may be supposed to rise from a square mile in a week ? Aus. $48519 \cdot 2187$ tons.
21. When the mereury in the barometer stands at a height of 30 inches, the pressure of the air on every square inch of surface is $15 \mathrm{\# b}$. What will be the pressure on the human body-supposing its whole surface to be 14 square feet ; and that the barometer stands at 31 inches? Ans. 13 tons 19 cwt.

QUESTIONS IN RATIOS AND PLIOPORTION.

1. What is the rule of proportion; and is it ever called by any other name? [1].
2. What is the difference between simple and compound proportion? [30 and 42].
3. What is a ratio? [7].
4. What are the antecedent and consequent? [7].
5. What is an inverse ratio? [8].
6. What is the difference betweon an anithmetioal and a geometrical ratio? [9].
7. How can we know whether or not an arithmetical or geometrical ratio, is altered in value? [10 and 11].
8. How is one quantity expressed in terms of an other ? [12].
9. What is a proportion, or analogy ? [14].
10. What are means, and extremes? [15].
11. What is the arithmetical, or geometrical mean of two quantities? [19 and 27].
12. How is it known that four quantities are in arithmetical proportion ? [16].
13. How is it known that four quantities are in geometrical proportion? [21].
14. How is a fourth proportional to three quantities found ? [17 and 22].
15. Mention the principal changes which may be made in a geometrical proportion, without destroying it? [29].
16. How is a question in the simple rule of three to be stated, and solved? [31].
17. Is it necessary, or even correct, to divide the rule of three into the direct, and inverse? [35].
18. How is the question solved, when the first or second terms are not of the same denomination; or one, or both of them contain different denominations? [37]
19. How is a question in the rule of proportion solved, if the third term consists of more than one denomination? [38].
20. How is it solved, if fractions or mixed numbers are found in the first and second, in the first and third, or in all the terins? [39 and 40].
21. How is a question in the rule of compound proportion stated, \&c. ? [43].
22. Can any of the terms of a question in the ruln of compound proportion ever be iessened, or altogethige banished? [47 and 48].

A RITIIMETIC.

PART II.

SECTION VI.

Practice.

h may be destroying
f three to divide the].
first or 1 ; or one, as? [37] on solved, denominanumbers nd third, und prothe ruln Itogethige

1. Practiee is so called from its being the method of calculation practised by mercantile men: it is an abridged mode of performing proeesses dependent on the rule of three-particularly when one of the terms is unity. The statement of a question in practice, in general terms, would be, " one quantity of goods is to another, as the price of the former is to the price of the latter."

The simplification of the rule of three by means of practice, is prineipally effected, either by dividing the given qu, tity into "parts," and finding the sum of the prices u^{ρ}. these parts; or by dividing the price into "parts," and finding the sum of the prices at each of these parts: in either case, as is evident, we obtain the required price.

2 Parts are of two kinds, "aliquot" and "aliquant." The aliquant parts of a number, are those which do not measure it-that is, which cannot be multiplied by any integer so as to produce it ; the aliquot parts are, as we have seen [Sec. II. 26], those which measure it.
3. To find the aliquot parts of any number-

Rule.-Divide it by its least divisor, and the resulting quotient by its least divisor:-proceed thus until the last quotient is unity. All the divisors are the prime aliquot parts ; and the product of every two, every three, \&u., of them, are the compound aliquot parts of the given number.
4. Example.- What are the prime, and compound aliquot-
its of 84 ? parts of 84 ?
2) 84
2) $\sqrt[4]{2}$
3) $\overline{21}$
$\overline{7) 7}$
The prime aliquot parts are 2,3 , and 7 ; and
$\left.\begin{array}{r}2 \times 2=4 \\ 2 \times 3=6 \\ 2 \times 7=14 \\ 3 \times 7=21 \\ 2 \times 2 \times 3=12 \\ 2 \times 2 \times 7=28 \\ 2 \times 3 \times 7=42\end{array}\right\}$
are the compound aliquot parts.
$2 \times 3 \times 7=42$ $14,21,28$, and 42 .
5. We may apply this rule to applicate numbers.-Let it be required to find the aliquot parts of a pound, in shillings and pence. $240 d=£ 1$.

> 2) 240
> 2) 120
> 2) 60
> 2) 30
> 3) 15
> $5 \longdiv { 5 }$
> $\overline{1}$

The prime aliquot parts of a pound are, therefore. $2 l$, $3 l$. , and $5 d .:$ and the compound,

$$
\begin{array}{cc}
2 \times 2= & d . \\
2 \times 3=6 \\
2 \times 5=10 & \\
2 \times 2 \times 2=8 & s . \\
2 \times 2 \times 3=12=1 & 0 \\
2 \times 2 \times 5=20=1 & 8 \\
2 \times 3 \times 5=30=2 & 6 \\
2 \times 2 \times 2 \times 2=16=1 & 4 \\
2 \times 2 \times 2 \times 3=24=2 & 0 \\
2 \times 2 \times 2 \times 5=40=3 & 4 \\
2 \times 2 \times 3 \times 5=60=5 & 0 \\
2 \times 2 \times 2 \times 2 \times 3=48=4 & 0 \\
2 \times 2 \times 2 \times 2 \times 5=80=6 & 8 \\
2 \times 2 \times 2 \times 3 \times 5=120=10 & 0
\end{array}
$$

And placed in order-

Aliquot parts of a shilling, obtained in the same way-

Aliquot parts of avoirdupoise weight-
Aliquot parts of a ton.
qr.

$$
\begin{aligned}
& \text { ton cwt. qr. } \\
& \frac{1}{4}=\frac{1}{2}=2 \\
& \frac{1}{2}=1=4 \\
& \frac{1}{10}=1 \frac{1}{4}=5 \\
& \frac{1}{10}=2=8 \\
& \frac{1}{0}=2=2 \\
& \frac{1}{2}=2,10 \\
& \frac{1}{5}=4=16 \\
& \frac{1}{4}=5=20 \\
& \frac{1}{2}=10=40
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{cwt} \text { Ib } \\
\frac{1}{56}=2 \\
\frac{1}{2}=4 \\
\frac{1}{18}=7 \\
\frac{1}{16}=8 \\
\frac{1}{14}=8 \\
\frac{1}{8}=14 \\
\frac{1}{7}=16 \\
\frac{1}{4}=28 \\
\frac{1}{2}=56
\end{gathered}
$$

Aliquot parts may, in the same manner, be easily obtained by the pupil from the other tables of weights and measures, page $3, \& c$.
6. To find the price of a quantity of one denomina-tion-the price of a "higher" being given.

Rule.-Divide the price by that number which expresses how many times we must take the lower to make the amount equal to one of the higher denomination.

Example.-What is the price of 14 ib of butter at 72 . per $\mathrm{cw}^{\text {L. }}$?

We must take 14 ib , or 1 stone 8 times, to make 1 cwt . Therefore the price of 1 cwt. divided by 8 , or $72 s . \div 8=9 \mathrm{~s}$., is the price of 14 lb .

The table of aliquot parta of avoirdupoise weinht showe that 14 lb is the $\frac{1}{8}$ of a cut. Therefore its price is the $\frac{1}{6}$ of the price of 1 cwt .

FRACTICE.

EXERCISES.

What is the price of

1. $\frac{1}{4}$ cwt., at 29s. 6d. per cwt. ? Ans. 7s. $4 \frac{1}{2} d$.
2. $\frac{1}{2}$ a yard of cloth at $3 s .6 d$. per yard? Ans. $4 s .3 d$
3. 14 It of sugar, at $45 s$. $6 d$. per cwt. ? Ans. $5 s .8 \frac{1}{4} d$
4. What is the price of $\frac{3}{4} \mathrm{cwt}$., at 50 s . per cwt.?

$$
\begin{aligned}
& \text { £ } s . d \text {. } \\
& 50 s=2100
\end{aligned}
$$

Therefore the price of $\overline{2+1}$ qrs. $\left(=\frac{3}{4} \mathrm{cwt}\right.$.) is $\overline{1176}$
$\frac{3}{3}$ cwt., or 3 qrs. $=\overline{2+1}$ qrs. But 2 qrs. $=\frac{1}{2}$ cwt. ; and its price is half that of a cwt. $1 \mathrm{qr} .=\frac{1}{2} \mathrm{cwt} \div 2^{2}$; and its price is half the price of 2 qrs. Therefore the price of $\frac{3}{4}$ cwt. is half the price of 1 cwt. plus the half of half the price of
one owt.

What is the price of
5. $\frac{1}{2}$ oz. of cloves, at $9 s .4 d$. per ib ? $\Lambda n s .3 \frac{1}{2} d$.
6. 1 nail of lace, at $15 s .4 d$. per yard ? Ans. $11 \frac{1}{2} d$.
7. $\frac{1}{2} \mathrm{Hb}$, at $23 s .4 d$. per cwt.? Aus. $1 \frac{1}{4} d$.
8. $\frac{3}{4} \mathrm{fb}$, at $18 s .8 d$. per cwt. ? Ans. $1 \frac{1}{2} d$.
7. When the prica of more than one "lowar" denomination is required-

Rule.- Find the price of each denomination by the last rule; and the sum of the prices obtained will be the required quantity.

Example.-What is the price of 2 qrs. 14 解 of sugar, at 45 s. per owt. ?

$$
\begin{array}{ll}
s . & d . \\
.45 & 0 \text { price of } 1 \mathrm{cwt.}
\end{array}
$$

cwt. $2 \mathrm{qrs}=\frac{1}{2}$ $14 \mathrm{fb}=\frac{1}{8}$, or $\frac{1}{4}$ of 2 qrs. And $28 \quad 1 \frac{1}{2}$ is the pricc of $\frac{1}{4}$ of 2 . $2 \mathrm{qrs}=\frac{1}{2}$ of 1 cwt. Therefore 45 s . (the of 2 qrs. 14 lb . on $26.5 .6 l^{2}$., is the price of 2 qres.

14 lb is the $\frac{1}{8}$ of 1 cwt ., or the $\frac{1}{4}$ of 2 qrs. Therefore $45 \mathrm{~s} . \div 8$, or 22 s . $6 d . \div 4=5 s$. $7 \frac{1}{2} d$., is the price of 14 tb . And $22 \mathrm{~s} .6 \mathrm{G} l .+5 \mathrm{~s} .7 \frac{1}{2} d$., or the price of 2 qrs. plus the price of 14 tb , is the price of 2 qrs. 14 mb .

EXERCISES.

What is the price of

9. 1 qr., 14 fb at $46 s .6 d$. per cwt. ? Ans. $17 s .5 \frac{1}{4} d$. 10. 3 qrs. 2 nails, at $17 s$. $6 d$. per yard? $1 u s$. 15 s. $3 \frac{3}{4} d$.
10. 5 roods 14 perches, at $3 s .10 d$. per acre? Ans. 5 s. $1 \frac{1}{2} d$.
11. 16 dwt. 14 grs., at $£^{4} 4$ s. $9 d$. per, oz.? Ans. £3 10s. $3 \frac{1}{4} d$.
12. 14 if 5 oz , at $25 s .4 d$. per cwt.? Ans. 3 s. $2 \frac{3}{4} d$.
13. When the price of one "higher" denomination is required-

Rule.-Fiud what nimber of times the lower denomination must be taken, to make a quantity equal to one of the given denomination; and multiply the price by that number. (This is the reverse of the rule given above [6]).
Example:- What is the price of 2 tons of sugar, at 50 s. per cwt. ?
1 cwt . is the $\frac{1}{4 \pi}$ of 2 tons; hence the price of 2 tons will le 40 times the price of 1 ewt .-or $50 \mathrm{~s} \cdot \times 40=£ 100$.

50 s. the price of 1 cwt. maltiplied
by 40 the number of hundreds in 2 tons, gives 2000 .
or $\overline{E 10} 0$ as the price of 40 ewt., or 2 tons.

exerciseg.

What is the price of
14. 47 cwt., at 1 s . $8 d$. per lb? Ans. £438 13s. 4 d
15. 36 yards, at $4 d$. per nail : A ns. £9 912 .
16. 14 acres, at $5 s$. per perch? Ans. \&i5fo.
17. 12 fb , at $1 \frac{3}{4} d$. per grain? Ans. 8504 .
18. 19 hhds., at $3 d$. per gallon! $A n s$. £14 19s. $3 d$.
9. When the price of more thun one "higher" denomination is required-

Rule.-Find the price of each by the last, and add the results together. (This is the reverse of the rule given above [7]).
Example.- What is the price of 2 cwt .1 qr . of flour, at 2 s . per stone?
1 stone is the $\frac{1}{16}$ of 2 cwt. Therefore
2 s., the price of one stone,
multiplied by 16 , the number of stones in 2 cwt., gives $\overline{32}$ s., is. rise of 16 stones, or 2 cwt.
There are 2 stones i. . \quad - ; therefore 2 s. (the price of 1 stone) $\times 2=4 s$. is the privo of 1 qr . And $32 s .+4 s=36 s=$ $£ 116 \mathrm{~s}$., is the price of 2 cwt. 1 qr .

exercises.

What is the price of
19. 5 yards, 3 qrs., 4 nails, at $4 d$. per nail? Ans. £1 $12 s$.
20. 6 cwt .14 Hb , at $3 d$. per lb ? Ans. £\& 11 s . $6 d$. 21. 3 It 5 oz ., at $2 \frac{1}{4} d$. per oz. ? Ans. $9 s .11 \frac{1}{4} d$.
22. $9 \mathrm{oz} ., 3 \mathrm{dwt}$., 14 grs ,, at $\frac{3}{4} d$. per gr.?
£ 1315 s ? $4 \frac{1}{2} d$.
23. 3 acres, 2 roods, 3 perches, at $5 s$. per perch ? Ans. £140 15s.
10. When the price of one denomination is given, to find the price of any number of another-

Rule.-Find the price of one of that other denomination, and multiply it by the given number of the latter.

Example.-What is the price of 13 stones at 25 s . per cwt. ? 1 stone $=\frac{1}{8} \mathrm{cwt}$. Therefore 8) 25 s.; the price of 1 ewt. divided by 8 , gives $31 \frac{1}{2}$, the price of 1 stone, or $\frac{1}{8}$ of 1 owt. Multiplying this by 13 , the number of stones, we obtain $\begin{array}{llll}£ 2 & 0 & 7 \frac{1}{2}\end{array}$ as the price of 13 stones. 1 stone is the $\frac{1}{8}$ of 1 cwt . Hence $25 \mathrm{~s} . \div 8=3 \mathrm{~s}$. $1 \frac{1}{2} d$., is the price of one stone ; and 3s. $1 \frac{1}{2} d . \times 13$, ihe price of 13 stones.
st, and add of the rule
qr. of flour,
cwt.
price of 1
$4 s .=36 s=$
il? Ans.
811 s. $6 d$. $1 \frac{1}{4} d$. Ans. r perch? given, to denomior of the

25s. per
d by 8 , of 1 owt .
s.
d., is the 3 stones.

EXERCISES.

What is the price of
24. 19 Ib , at $2 d$. per oz.? Ans. 22 10s. $8 d$.

26. 14 Hb , at $2 s .6 d$. per dwt. ? Ans. \& 420 .
27. 15 acres, at $18 s$. per perch ? Ans. £2160.
28. 8 yards, at $4 d$. per nail ? Ans. $£ 22 s .8 d$.
29. 12 hhds., at $5 d$. per pint? Ans: $\mathfrak{L} 126$.
30. 3 quarts, at $91 s$. per hhd.? Ans. $1 s .1 d$.
11. When the price of a given denomination is the aliquot part of a shilling, to find the price of any number of that denomination-

Rule.-Divide the amount of the given denomination by the number expressing what aliquot part the given price is of a shilling, and the quotient will be the required price in shillings, \&c.

Example.-What is the prico of 831 articles at $4 d$. per?
3) 831
$277 s .=£ 1317 s$. , is the required price.
$4 d$. is the $\frac{1}{3}$ of a shilling. Hence the price at $4 d$. is $\frac{1}{3}$ of what it would be at 1 s . per article. But the price at 1 s . per article would be 831s.:-therefore the price at $4 d$. is $831 s . \div 3$ or 277 s .

exercises.

What is the price of
31. 379 Hb of sugar, at $6 d$. per Ib ? Ans. £9 $9 s .6 d$.
32. 5014 yards of calico, at $3 d$. per yard? Aus. £62 13s. $6 d$.
33. 258 . yards of tape, at $2 d$. per yard ? Ans. £2 $3 s$.
12. When the price of a given denomination is the aliquot part of a pound, to find the price of any number of that denomination-

Rule.-Divide the quantity whose price is sought by that number which expresses what aliquot part the given price is of a pound. The quotient will be the required price in pounds, \&c.

PRACTICE.

Example.-What is the price of 1732 tb of tea, at 5 s per 1b ?

5 s . is the $\frac{1}{4}$ of $£ 1$; therefore the price of 1732 ib is the $\frac{1}{4}$ of what it would be at $£ 1$ per 1b. But at $£ 1$ per, Ib it | would be £1732; therefure at 5 s. per 1 lb it is $£ 1732 \div 4=$ |
| :--- |
| 433 . |

EXERCISES.

What is the price of

34. 47 cwt .; at 6s. $8 d$. per cwt.? Ans. £15 13s. $4 d$. 35. 13 oz , at 4 s . per oz. ? Ans. £2 12 s .
35. 19 stones, at $2 s .6 d$. per stone? Ans. £2 7s. $6 d$.

36. 115 qrs., at $8 d$. per qr. ? Ans. £3 16s. $8 d$.
37. 976 Hb , at 10 s . per ifb ? Ans. £488.
38. $112 \mathrm{1b}$, at $5 d$. per fb ? Ans. £2 6 s. $8 d$.
39. 563 yards, at $10 d$. per yard? Ans. £23 9s. 2d. 42. 112 jb , at 5 s . per fb? Ans. £28.
40. 795 Hb , at 1 s .8 d . per Hh ? Ans. $£ 665 s$.
41. 1000 It , at $3 s .4 d$. per tb ? Ans. £166 13s. $4 d$.
42. The complement of the price is what it wants of a pound or a shilling.

When the complement of the price is the aliquot part or parts of a pound or shilling, but the price is not-

Rule.-Find the price at $£ 1$, or $1 s$.-as the case may be-and deduct the price of the quantity calculated at the complement.

Example.-What is the price of 1470 yards,' at 13 s .4 d . per yard?

6 s .8 d . (the complement of 13 s .4 d .) is $\frac{2}{3}$ of $£ 1$.
From $£ 1470$, the price at $£ 1$ per yard, and the difference, $\overline{980}$, will be the price at per yard, $13 s .4 d$. per yard. 1470 yards at 13 s . 4 d. , plus 1470 at 6 s .8 d ., are equal to 1470 at $13 s .4 d .+6 s .8 d .$, or at $£ 1$ per yard. Hence the price of 1470 at $13 \mathrm{~s} .4 d \mathrm{~d}=$ the price of 1470 at $£ 1$, minus the price of 1470 at 6 s . 8 d . per yard.
tea, at 5

2 ib is the 1 per 1 lb it $1732 \div 4=$

13s. $4 d$
2 7s. $6 d$. $8 d$. $8 d$.
$39 s .2 d$.
$13 s .4 d$
ints of a
uot part
sot-
the case lculated

13s. $4 l$.
1.
lement)
er yard.
qual to ice the minus
respective numbers, in the given price; and add the products. Using the same cxample-

And the price at £5 19s. $34 d$: is £4903 14101
16. Rule 3.- Tind the price at the next number of the highest denomination ; and deduct the price at tho difference between the assumed and given price.

Using still the same example-
$£ 6$ is next to $£ 5$-the highest denomination in the given prico.
 Deduct the price $\left\{\text { the price at } 8 d, \dot{=}=27^{\circ} \dot{8} \dot{0}\right\}^{\text {or }} 4932 \quad 0 \quad 0$ at $84 d$. $\quad\left\{\begin{array}{ccccc}\quad, & 4 d=0 & 17 & 1 \frac{1}{2}\end{array}\right\}$ or $28 \quad 5 \quad 13$ The difference wiil be the price at $£ 519 s .34$ or $£ 49031410 \frac{1}{2}$ 17. Rule 4.-Find the price at the next higher aliquot part of a pound, or shilling; and deduct the price at the difference between the assumed, and given price Exampie.-What is the price of 84 mb , at 6 s . per mb ?

$$
6 s .=6 s .8 d . \operatorname{minus} 8 d .=\frac{1}{2} \operatorname{minus} \frac{1}{3} \div 10 .
$$

Deducting of this $=2160$ is the price at $6 s .8 d$. per th.
we have $\overline{£ 2540}$, the price at $6 s$.

EXERCISES.

What is the price of
49. 73 lb , at 13 s . per Ib ? $\Lambda n s . \mathscr{\&} 479 \mathrm{~s}$.
50. 97 cwt., at 15 s . 9 d . per cwt. ? Ans. £76 7s. 9 d .
51. 43 Hb , at $3 s .2 d$. per fb ? Ans. £6 $16 s .2 d$.
52. 13 acres, at £4 $5 s$. 11d. per acre? Aus. £55 is. $11 d$.
53. 27 yards, at 7 s. $5 \frac{3}{4} d$. per yard? Ans. $£ 10$ 1 s. $11 \frac{1}{4} d$.
18. When the price is an even number of shillings, and less than 20.
add the
rive at £5
19s.
$3 d$
$4 d$.
mber of co at tho
he given
$\begin{array}{ll}2 & 8 \\ 0 & 0\end{array}$
8513
$31410 \frac{1}{2}$
higher
he price n price
Ib?

- per tb.
7.s. 9 d .
d.
s. $£ 55$
£10
illings,

Rule.-Multiply the number of articles by half the number of shillings; and consider the tens of the product as pounds, and the units doubled, as shillings.

Example.-What is the price of 646 mb , at 16 s . per ib ?

$\begin{array}{r} 646 \\ 8 \\ \hline 516 \mid 8 \\ 2 \end{array}$

2s. being the tenth of a pound, there are, in the price, half as many tenths as shillings. Therefore hals the number of shillings, multiplied by the number of artieles, will express the number of tenths of a pound in the priee of the entire. The tens of these tenths will be the number of pounds; and the units (being tenths of Ω pound) will be half the required number of shillings-or, multiplied by 2-the required number of shillings.
In the example, $16 s$., or $\mathcal{E} \cdot 8$, is the prico of eaeh article. Therefore, since there are 646 articles, $646 \times £ .8= \pm .516 .8$ is the priee of them. But 8 tenths of a pound (the unitsin the product obtained), are twiee as many shillings; and henee we are to multiply the units in the product by 2 .

exercises.

What is the price of
54. $32 \downarrow 5 \mathrm{ells}$, at 6 s . per ell ? Ans. £964 10s.
55.7563 Hb , at $8 s$. per lb ? Ans. £3025 4ε.
56. 269 cwt ., at 16 s . per cwt.? $A n s$. £215* 4 s .
57.27 oz , at 4 s . per oz. ? Ans. £ 8 s.
58. 84 gallons, at $14 s$. per gallon? $\Lambda n s$. £ $516 s$.
19. When the price is an odd number of shillings, and less than 20--

Ruace.-Find the amount at the next lower even number of shillings; and add the price at one shilling.

Example.-What is the price of 275 mb , at 17 s . per mb ?

The price at 16s. (by the last rule) is
$\overline{220 \quad 0}$
The price at 1s. is $275 s=$
1315
Hence the price at $16 s .+1 s$, or $17 s$. , is $\overline{£ 23315}$.

The price at 17 s . is equal to the price at 16 s ., plus the price at one shilling.

EXERCISES.

59. 86 oz , at 5 s . per oz. ? Ans. 221 l 10 s . 60. 62 cwt., at 19 s . per cwt. ? A us. \&is 18 s .
©1 14 yards, at $17 s$. per yard? Ans. elll 18 s .
60. 439 tons, at 11 s . per ton? Aus. C241 9 s .
61. 96 gallons, at 7s. per gallon? Ans. £33 $12 s$.
62. When the quantity is represented by a mixed number-

Rule.-Find the price of the integral part. Then multiply the given price by the numerator of the fraction, and divide the product by its denominator-tho quotient will be the price of the fractional part. Tho sum of these prices will be the price of the whole quantity. 10 2

Fxample.-What is the price of 83 ib of tea, at 5 s . per

$$
\text { The price of } 8 \mathrm{lb} \text { is } 8 \times 5 \mathrm{~s}=\begin{array}{ccc}
\dot{L} & \text { s. } & \text { d. } \\
2 & 0 & 0
\end{array}
$$

$$
\text { The price of } \frac{3}{4} \mathrm{Hb} \text { is } \frac{3 \times 5 s}{4}=\begin{array}{lll}
0 & 3 & 9
\end{array}
$$

And the price of $8 \frac{3}{4} \mathrm{HD}$ is $\quad . \overline{239}$
The price of $\frac{3}{5}$ of a pound, is evidently $\frac{3}{4}$ of the price of a

EXERCISES.

What is the price of
64. $5 \frac{1}{2}$ dozen, at $3 s .3 d$. per dozen? $\Lambda n s .17 s .10 \frac{1}{2} l$. 65. $273 \frac{1}{4} \mathrm{th}$, at $2 s .6 d$. per tb ? Aus. £34 3s. $1 \frac{1}{2}$ d.
66. $530 \frac{3}{4} \mathrm{jb}$, at 14 s . per ib ? Ans. 371 l 10 s . $6 d$.
67. $178 \frac{3}{8}$ cwt., at 17 s . per cwt.? Ans. £151 12 s $4 \frac{1}{2} d$.
68. $752 \frac{3}{5}$ cwt., at £1 12s. 6d. per cwt. ? Ans. £1239 4s. 6!
69. 817 3 ewt., at £3 7s. $4 d$. per cwt.? Ans. $\mathrm{f}^{\circ} 275111 \mathrm{~s}$. $6 \frac{1}{4} d$.

18s.
18s.
9 s.
$312 s$.
a mixed
t. Then the frac-ator-tho
rt. Tho
ole quan-
at 5 s . per
price of a
s. $10 \frac{1}{2} d$.
$1 \frac{1}{2}{ }^{2} \mathrm{~d}$.
$6 d$.
51 12s
£. 1239
Ans.
21. The rules for finding the price of several denominations, that of one being given [7 and 9], may be abbreviated by those which follow-

Avoirchupoise Weight.-Given the price per owt., to find the price of hundreds, quarters, \&e.-

Rule.-Having brought the tons, if any, to cwt., multiply 1 by the number of hundreds, and consider the product as pounds sterling; 5 by the number of quarters, and consider the product as shillings; 2f, tho number of pounds, and consider the product as pence:the sum of all the products will be the price at $£ 1$ per cwt. From this find the price, at the given number of pounds, shillings, \&c.

Example.-What is the price of 472 ewt., 3 qrs., 16 lb , at X 59 s . 6 d . per ewt. ?

$\overline{4721710 \frac{1}{4}}$ is the price at $\mathcal{L l}$ per cowt.
$23 \begin{array}{lll}2364 & 9 & 3 \frac{1}{4}\end{array}$ the price, at $£ 5$ per cwrt.
$212160_{\frac{3}{4}}$ the price, at $9 s .\left(£_{\frac{1}{2}}^{5} \times 9\right.$.)
$11165 \frac{1}{4}$ the priee, at $6 d$. (£ $\frac{1}{20} \div 2$.)
$\overline{2589 \quad 1 \quad 9 \frac{1}{4}}$ the price, at $£ 59 \mathrm{~s} . \mathrm{C} d$.
At $£ 1$ per ewit., there will be $£ 1$ for every cwt. We multiply the qrs. by 5 , for shillings ; beeause, if cne cwt. eosts $£ 1$, the fourth of 1 cwt., or one quarter, will cost tho fourth of a pound, or 5 s.-and there will be as many times $5 s$. as thero are quarters. The pounds are multiplied by $2 \frac{1}{9}$; because if the quarter costs $5 s$., the 28 th part of a quarter, or 1 ib , must eost the 28 th part of 5 s ., or 212 r . -and there will be as many times $2 \frac{1}{\eta} d$. as there are pounds.

EXERCISES.

What is the price of
70. 499 cwt., 3 qrs., 25 lb , at 25 s . 11d. per cwt. ? Ans. $\mathfrak{f} 647$ 17s. ${ }^{17 \frac{1}{2} d .}$
71. 106 cwt., 3 qrs., 14 lb , at 18s. $9 d$. per owt. ? Ans. £100 3s. $10 \frac{3}{4} d$.
72. 2061 cwt., 2 qrs., 7 fb , at $16 s .6 d$., per cwt.? Ans. £1700 15s. $9 \frac{1}{4} d$.
73. $106 \mathrm{cwt} ., 3 \mathrm{qrs},. 14 \mathrm{fb}$, at 9 s .4 d . per cwt. ? Ans. £49 17s. $6 d$.
74. 26 cwt., 3 qrs., 7 lb , at 15 s .9 d . per cwt. ? Ans. £21 $2 s .3 \frac{1}{4} d$.
75. 432 cwt., 2 qrs., 22 lb , at 18 s . 6 ll . per cwt.? Ans. £400 4s. $10 \frac{1}{2} d$.
76. 109 cwt ., 0 qrs., 15 mb , at 19s. 9d. per cwt.? Ans. $\mathfrak{£} 107$ 15s. $4 \frac{3}{4} d$.
77. 753 cwt., 1 qr., 25 fb , at $15 \mathrm{~s} .2 d$. per cwt. ? Ans. £571 7s. $8 d$.
78. 19 tons, 19 cwt., 3 . qrs., $27 \frac{1}{2} 1 \mathrm{lb}$, at $£ 10$ 19s. $11 \frac{3}{4} d$. per ton? Ans. £399 19:. $6 \vec{d}$.
22. To find the price of cwt., qrs., \&e., the price of a pound being given-

Rule.-Having reduced the tons, if any, to cwt., multiply $9 s .4 d$. by the number of pence contained in the price of one pound :-this will be the price of one errt. Divide the price of one cort. by 4 , and the quotient will be the price of one quarter, \&c.

Multiply the price of 1 cwt . by the number of cwt.; the price of a quarter by the number of quarters; the price of a pound by the number of pounds; and the sum of the products will be the price of the given quantity.
Example.-What is the price of 4 ewt., 3 qrs., 7 ib , at 8d. per 1b. ?
s. d.

94
8
4)74 8 the price of 1 cwt . $\times 4$, will give 2988 the price of 4 cwt . 28)18 8 the price of 1 qr . $\times 3$, will give 560 the price of 3 qrs . 8 the price of $1 \mathrm{ib} \times 7$, will give 48 the price of 7 lb .

$$
20 \lcm{3594}
$$

And the price of the whole will be $£ \overline{17} 184$
At 1 d . per ib the price of 1 cwt . would be 112d. or 9 s . 4 cl .: therefore the price per cort. will be as many times $0_{s} .4 d$. as there are pence in the price of a pound. The price of a quarter is $\frac{1}{4}$ the price of 1 cwt .; and there will be as many times the price of a quarter, as there are quarters, \&e.
79.
80.
81. $2 s .9 d$
82.

10s. 5
83.
23.

Ru
contai
Exa

If
Hence
of a
84.
85.

86
87
The
tiply
24
find t
Ru
set d
shillis
price
\&c.,

EXERCISES.

What is the price of

79. 1 cwt., at $6 d$. per Ib ? Ans. £2 $16 s$.
80. 3 cwt., 2 qrs., 5 ib , at 4 d . per Ib ? Ans. £6 12s. $4 d$.
81. 51 cwt., 3 qrs., 21 Hb , at $9 d$. per Hb ? Ans. £218 2s. 9 d.
82. $42 \mathrm{cwt} ., 0 \mathrm{qrs} ., 5 \mathrm{fb}$, at $25 d$. per B : ${ }^{\text {: }}$ Ans. $£ 490$ 10 s .5 d .
83. 10 cwt., 3 qrs., 27 lb , at 51d. per Hb ? Ans. £261 11s. 9d.
84. Given the price of a pound, to find that of a ton-

Rule.-Multiply $£ 96 \mathrm{~s}$. 8 d : by the number of pence contained in the price of a pound.

Example.-What is the price of a ton, at $7 d$. per fb ?

$$
\begin{array}{llll}
\hline & s . & d . \\
9 & 6 & 8 \\
& & 7 \\
\hline 65 & 6 & 8 \\
\text { is the price of } 1 \text { ton. }
\end{array}
$$

If one pound cost $1 d$. , a ton will cost $2240 d$. , or $£ 96 s .8 d$. Hence there will be as many times $£ 96 \mathrm{~s} .8 \mathrm{~d}$. in the price of a ton, as there are pence in the price of a pound.

EXERCISES.

What is the price of
84. 1 ton, at $3 d$. per Ib ? Ans. £28.
85. 1 ton, at 9 d. per lb ? Ans. £84.
86. 1 ton, at 10d. per lt ? Ans. £93 6s. $8 d$.
87. 1 ton, at $4 d$. per 1 lb ? Ans. £37 6s. $8 d$.

The price of any number of tons will be found, if we multiply the price of 1 ton by that number.
24. Troy Weight.-Given the price of an ounce-to find that of ounces, pennyweights, \&c.-

Rule.-Having reduced the pounds, if any, to ounces, set down the ounces as pounds sterling; the dwt. as shillings; and the grs. as halfpence :-this will give the price at $£ 1$ per ounce. Take the same part, or parts, \&c., of this, as the price per ounce is of a pound.

Example 1.-What is the price of 538 oz ., $18 \mathrm{dwt}, 14$ grs., at 11s. 6 d . per oz.?

$$
\text { 11s. } 6 d .=\frac{£ 1}{2}+\frac{£ \frac{1}{3}}{10}+\frac{£ \frac{1}{2}}{10} \div 2 .
$$

fin
the
2) $261811 \frac{1}{4}$ is the price, at $10 s$. per ounce.
13
$\begin{array}{lll}13 & 9 & 5 \frac{3}{4} \text { is the price, at } 6 d \text {. per ounce. }\end{array}$
And $309178 \frac{1}{2}$ is the price, at 11s. $6 d$. per ounce.
14 halfpence are set down as 7 pence.
If one ounce, or 20 dwt cost $£ 1,1$ dwt. or the 20 th part of an ounce will cost the 20 th part of $£ 1$-or $1 s$.; and the 24 th part of 1 dwt., or 1 gr . will cost the 24th part of 1s.—or $\frac{1}{2} d$.
Example 2.-What is the price of 8 oz .20 grs , at $£ 3$
2 s .6 d . per oz. ?

\mathcal{E}	s.	d.
8	0	$\underset{3}{10}$ is the price, at $£ 1$ per ounce.

$24{ }^{2} 6$ is the price, at $£ 3$ per ounce. Price at $£ 1 \div 10=0 \quad 16 \quad 1$ is the price, at 2 s . per ounce. Price at $2 s \div 4=0 \quad 4 \quad 0 \quad 1 \frac{1}{4}$ is the price, at $6 d$. per ounce. And $£ 25 \quad 2 \quad 7 \frac{1}{4}$ is the price, at $£ 32 \mathrm{~s}$. 6 d . per oz.

exercises.

What is the price of
S8. 147 oz., 14 dwt., 14 grs., at 7 s . $6 d$. per oz.? Ans. £55 7s. $11 \frac{1}{2} d$.
89. $194 \mathrm{oz} ., 13$ dwt., 16 grs. , at 11 s . 6 d . per oz.? Ans. £111 18s. $10 \frac{1}{4} d$ d.
90. $214 \mathrm{oz} ., 14$ dwt., 16 grs., at 12s. $6 d$. per oz. ? Ans. $£ 1344$ 4s. $2 d$.
91. $11 \mathrm{lb}, 10 \mathrm{oz} ., 10 \mathrm{dwt}$., 20 grs ., at 10 s . per oz. ? Ans. £71 5s. 5 d.
92. $19 \mathrm{ft}, 4$ oz., 3 grs ., at $£ 25 \mathrm{~s} .2 d$. per oz. ? Ans. £523 18s. $11 \frac{1}{2} d$.
93. 3 oz., 5 dwt., 12 grs., at $£ 16 s$." $8 d$. per oz. ? Ans. £4 7s. 3 柔 d.
ounce.
25. Cloth Measure.-Given the price per yard-to find the price of yards, quarters, \&c.-

Rule.-Multiply £1 by the number of yards; $5 s$. by the number of quarters; $1 s .3 d$. by the number of nails; and add these together for the price of the quantity at £1 per yard ? Take the same part, or parts, \&c., of this, as the price is of $£ 1$.

Example 1.-What is the price of 97 yards, 3 qrs., 2 nails, at 8s. per yard?
 From this subtract 9159 the price, at 2 s . per yard.
And the romainder $39 \quad 3 \quad 0$ is the price, at $8 s$. ($10 s$. $-2 s$.)
If a yard costs $£ 1$, a quarter of a yard must cost 5 s . ; and a nail, or the 4th of a yard, will cost the 4th part of 5 s . or $1 \mathrm{~s} .3 d$.
Example 2.-What is the price of 17 yards, 3 qrs., 2 nails, at £2 5 s .9 d . per yard?
${ }_{21} 5 \mathrm{~s} .1 \mathrm{~s} .3 \mathrm{~d}$.
Multipliers $\begin{array}{lll}17 & 3 & 2\end{array}$
$\overline{1717 \quad 6}$ is the price, at $£ 1$ per yard
$\overline{35150}$ is the price, at $£ 2$ per yard.
The price at $£ 1 \div 4=49 \quad 4 \frac{1}{2}$ is the price, at 5 s.
The price at $5 s . \div 10=0 \quad 811 \frac{1}{4}$ is the price, at $6 d$. The price at $6 d . \div 2=0 \quad 4 \quad 5 \frac{1}{2}$ is the price, at $3 d$.

And £40 $\overline{47 \quad 9 \frac{1}{4}}$ is the price, at $\mathrm{E} 25 s .9 d$.

exercises.

What is the price of
94. 176 yards, 2 qrs., 2 nails, a $15 s$. per yard? Ans. £132 9s. $4 \frac{1}{2} d$.
95. 37 yards, 3 qrs., at £1 5 s. per yard ? Ans. £47 $3 s .9$ d.
96. 49 yards, 3 qrs., 2 nails, at £1 10s. per yard ? Ans. $87416 s .3 a$.
97. 98 yards, 3 qrs., 1 nail, at $\mathscr{L} 15 s$. per yard? Ans. $£ 172$ 18s. $5 \frac{1}{4} d$.
98. 3 yards, 1 qr., at $17 s$. $6 d$. per yard? Ans $£ 2$ $16 s .10 \frac{1}{2} d$.
99. 4 yards, 2 qre., 3 nails, at $£ 1$ 2s. $4 d$. per yard ? Ans. £5 $4 s .8 \frac{1}{4} d$.
26. Land Measure.-Rule.-Multiply £1 by the number of acres; 5 s . by the number of roods; and $1 \frac{1}{2} d$. by the number of perches:- the sum of the products will be the price at $£ 1$ per acre. From this find tre price, at the given sum.

Example.-What is the rent of 7 acres, 3 roods, 16 perches, at $£ 38 s$. per acre ?

$$
\begin{array}{lccc}
& f & s . & d . \\
& 1 & 5 & 1 \frac{1}{2} \\
\text { Multipliers } & 7 & 3 & 16^{2} \\
\hline
\end{array}
$$

Sum of the products $\overline{717} \begin{gathered}0 \\ 3\end{gathered}$, or the price at $£ 1$ per acre.

23	11	0
3	the price at $£ 3$ per acre.	
3	6 the price at 10 s. per acre.	

$\overline{2796}$ the price at $£ 310 \mathrm{~s}$. per acre. Subtract $0158 \frac{1}{2}$ the price at $2 s$. per acre.

And $\overline{2613} \mathrm{~S} \frac{1}{2}$ is the price at $£ 38$.
If one acre costs $£ 1$, a quarter of an acre, or one rood, must cost 5 s . : and the 40 th part of a quarter, or one perch, must cost the 40 th part of $5 s .-$ or $1 \frac{1}{2} d$.

EXERCISES.

What is the rent of
100. 176 acres, 2 roods, 17 perches, at £5 6s. per acre? Ans. £936 0 s. $3 d$.
101. 256 acres, 3 roods, 16 perches, at $\mathscr{L}^{6} 6 s$. $6 d$. per acre? Ans. £1624 11s. $6 \frac{1}{4} d$.
102. 144 acres, 1 rocd, 14 perches, at £5 6s. $8 d$. per acre? Ans. £769 16s
103. 344 acres, 3 roods, 15 perches, at £4 1s. $1 d$. per acre? Ans. £1398 1s. 1 d .
27. Wine Measure.-To find the price of a hogshead, when the price of a quart is given-

Rude.-For each hogshead, reckon as many pounds, and shillings as there are pence per quart.

Ans £2 per yard?
by the and $1 \frac{1}{2} d$. oducts will tro price,
roods, 16
per aore.
acre.
er acre.
per acre. r acre.
$8 s$
rood, must erch, must

5 6s. per
6 6s. $6 d$.
s. $8 d$. per

4 1s. 1 d.
a hogs-
y pounds,
example.-What is the price of a hogshaad at $0 d$. per quart? Ans. £9 9s.

d.

One hogsheal at $1 d$. per quart would be 63×4, since there are 4 quarts in one gallon, nad 63 gallons in one hhd. But $63 \times 4 d .=252 d .=111 s$. ; nd, therefore, the price, at $9 d$. per quart, will be nine times as much-or $9 \times \& 11 \mathrm{~s}=£ 99 \mathrm{~s}$.

EXERCISES.

What is the price of
104. 1 hhd. at $18 d$. peer quart? Ans. £18 $18 s$. 105. 1 hhd . at 19 d . per quart? Ans. $£ 1919 \mathrm{~s}$. 106. 1 hhd. at $20 d$. per quart? $A n s$. £21. 107. 1 hhd. at 2 s . per quart? $1 n s$. £25 4 s . 108. 1 hhd. at $2 s$. $6 d$. per quart? Ans. £31 10s.

When the price of a pint is given, of course we know that of a quarc.
28. Given the price of a quart, to find that of a tun-

Rule.-Take 4 times as many pounds, and 4 times as many shillings as there are pence per quart.

Exampie.-What is the prico of a tun at $11 d$. per quart?

$£$	s
11	11
	4

464 is the price of a tun.
Since a tun contains 4 hogsheads, its price must be 4 times the price of a hhd.: that is, 4 times as many poands and shiltings, as pence per quart [27].

EXERCISES.

What is the price of
109. 1 tun, at 19d. per quart? Ans. $\mathscr{C} 79$ 16s. 110. 1 tun, at $20 d$. per quart? Ans. £S4.
111. 1 tum, at $2 s$. per quart? Ans. $\mathfrak{£} 10016 s$. 112. 1 tun, at $2 s .6 d$. per quart? Ans. $£ 126$. 113. 1 tun, at $2 s$ scl. per quart? Ans. £134 $8 s$.
29. A number of Articles.-Given the price of 1 article in pence, to find that of any number-

Ruaf.--idide the number by 12 , for shillings and
pence; and multiply the quotient by the number of pence in the price.
Example.-What is the price of 438 articles, at $7 d$, eacin ${ }^{n}$ 12) 438

36s. $6 d$., the price at $1 d$. each. 7
$2 0 \longdiv { 2 5 5 \quad 6 }$
£12 $\overline{2156}$ the price at $7 d$. each.
438 articles at $1 d$. each will cost $438 d .=36 \mathrm{~s} .6 \mathrm{~d}$. At 7 d . each, they will cost 7 times as much-or $7 \times 36 \mathrm{~s} .6 \mathrm{~d} .=255 \mathrm{~s}$. $6 \mathrm{~d} .-$ £12 15s. $6 d$.

exercises.

What is the price of
114. 176 Hb , at $3 d$. per Hb ? Ans. £2 4 s .
115. 146 yards, at $9 d$. per yard? Ans. £5 $9 s .6 i$
116. 180 yards, at $10 \frac{1}{2} d$. per yard? Ans. £7 17s. firb
117. 192 yards, at $7 \frac{1}{2} d$. per yard? $\Lambda n s$. £6.
118. 240 yards, at $8 \frac{1}{2} d$. per yard? Ans. £ $\$ 10 \mathrm{~s}$
30. Wages.-Having the wages per day, to find their amount per year-

Rule.-Take so many pounds, half pounds, and 5 pemuies sterling, as there are pence per day.

Example.-What are the yearly wages, at $5 d$. per day?
£ s. d. 1105

5 the number of pence per day.
7121 the wages per year.
One penny per day. is equal to $365 d=240 d \cdot+120 d .+5 d=$ $£ 1+10 s .+5 d$. Therefore any number of pence per day, must be equal to $£ 110$ s. 5 a . multiplied by that number

What is the amount per year, at 119. $3 d$. per day? Ans. £4 11s. 3d. 120. 7d. per day? Ans. £10 12s. 11 d . 121. 9 d. per day? Ans. £13 13s. 9 d. 122. $14 d$. per day? Ans. £21 5s. 10\%. 123. $2 s .3 \dot{d}$. per day ? Ans. 241 1s. $3 \dot{d}$. $1248 \frac{1}{2} d$. per day? Ans. \&12 1Ss. $6 \frac{1}{4} d$.
mber of
id. cao ${ }^{2}$

7d. each, 5s. 6d. $=$
s. $6 i$

17s. 616
$10 s$
to find and 5
day?
$+5 d=$ y, must

bills of parcels.

Dublin, 16th April, 1844.

Mr. John Day

Bought of Richard Jones.
s. d. $£$ s. d.

15 yards of fine broadcloth, at
13
6 per yard

| 10 | 2 |
| :--- | :--- | :--- |

2210 0 2t yards of superfine ditto, at 18 27 yarls of yard wide ditto, at 115 yards of drugget at . . 63 12 yards of serge, at . . 210
12 yards of serge, at at ands of shalloon, at . $\quad . \quad 218$
$\begin{array}{lrrr}" & 11 & 5 & 0 \\ " & 5 & 0 & 0\end{array}$
$" 101140$
Ans. $\overline{£ 53410}$
Dublin, Gth May, 1844.
Mr. James Panl,
Bought of Thomas Norton.
s. d.

9 pair of worsted stockings, at 460 per pair
6 pair of silk ditto, at . . 159
17 pair of thread ditto, at . 54 ",
23 pair of cotton ditto, at . 410 ",
$1+$ pair of yarn ditto at $\quad 24$ ",
18 pair of wamen's silk gloves, at 4
19 yards of flamel, at . . 1 7 $\frac{1}{2}$ per yard
Ans. $\overline{\mathfrak{L g} 3154}$
Dublin, 17th May, 1844.
Nr. James Gorman,
Bought of John Walsh \& Co s. d.

40 ells of dowhes, at . 16 per ell
3.t clls of diaper, at
$141^{1} \quad "$
31 ells of Hollant, at
2:) yards of lrish choth, at 17! yards of mustin. at 133^{3} yods of cambrie, at 10
54 yards of printen calico, at 1

Ans. $\bar{x} 34 \overline{510!}$
1.?

Lady Demny，

Dublin，20th May， 1844.
Bought of Richard Mercer s．d ．

Ans．£44 1510
Mr．Jonas Darling，

Dublin，21st May， 1844.

Bought of William Roper．
$15 \frac{1}{1} \mathrm{lb}$ of cmrrants，at
s．d．
17 i tb of Malara ruisins，at－ 04 per lb
$10 \frac{3}{7}$ it of raisins of the sun，at
17^{4} th of rice，at ．．$\quad . \quad 0 \quad 3 \frac{1}{3} \quad$,
$8 \frac{1}{4}$ it of pepper，at $\dot{\therefore} \quad . \quad 1 \quad 6^{\frac{1}{2}} \quad$＂，
3 loaves of sugar，weight $32 \frac{1}{2} 1 \mathrm{~b}$ ，at 0
13 oz of cloves，at

Mr．Thomas Wright，
Dublin， 27 th June； 1844.

> Bought of Stephen Brown \& Co. s. d.

252 gallons of prime whiskey，at 64 per gallon
252 gallons of ohd malt，at
252 gallons of old malt，at $\quad .8100$
Ans．$\overline{2} \overline{264120} 0$

miscelidaneous exercises．

What is the price of
1．4715 yards of tape，at $\frac{1}{4} d$ ．per yard？Ans． £4 18．s． $2 \frac{3}{3} d$ ．

2． 3.44 lb ，at $1 \frac{1}{4} d$ ．per th ？Ans．\＆1 16 s ． $10 \frac{1}{2} d$ ．
3． 47.56 to of surar，at $12 \frac{1}{4} d$ ．per th：Ans．£242 15s． $1 / d$ ．
4．12\％phir of silk stockinge，at 6s．per pair？Ans C127 los．
5. 3754 pair of gloves, at $2 s .6 d$.? Aus. © 469 5s
6. 3520 pair of gloves, at 3 s . 6d.? Ans C 616 .
7. 7341 cwt., at 2.6 bs. per cwt. ? Ans. £16884 6s.

9. 4514 cwt., at $2 \sum_{2}^{2} 17 s .7 \frac{1}{2} d$. per ewt.? Ans. £13005 19 k. 3 d .
10. $3749 \frac{3}{8}$ cwt., at $\mathfrak{e} 315 \mathrm{~s}$. 6icl. per cewt.? Aus. $\mathfrak{C l} 415317 \mathrm{~s} .93 \mathrm{~d}$.
11. $17 \mathrm{cwt} ., 1 \mathrm{qr} ., 17 \mathrm{lb}$, at $£ 14 \mathrm{~s} ., 9 \mathrm{l}$. per ewt. ? £21 10s. $8 \frac{1}{4} l$.
12. 78 cwt., 3 qrs., 12 青, at $\mathrm{S}_{2} 17 \mathrm{~s}$. 9 l . per cwt. ? Aus. £2:27 14s.
13. 5 oz., 6 dwt., 17 grs., at 5 s. 10 d . per oz. ? Aus fel 11s. $1 \frac{1}{2} d$.
14. 4 yards, 2 yrs., 3 nails, at $212 s .4 d$. per yard? Ans. $\mathscr{L}^{5} 4$. $8 \frac{1}{1} l$.
15. 32 acres, 1 rood, 14 perches, at $6116 s$. per acre ? Ans. L5s 4s. $1 \frac{3}{4} d$.
16. 3 gallons, 5 pints, at 7 s . 6 d . per gallon? Ans. \&1 7 s .21 d .
 per ton? Ans. Le:20 9s. $11 \frac{1}{2} d$. nearly.

1s. 219 tous, 16 cwt., 3 qus., at fll 7 s . 6 l . per ton: Λ irs. $\mathfrak{E} 2500$ 13s. $0 \frac{1}{2} d$.

QUESTIONS IN PRACTICE.

1. What is practice: [1].
2. Why is it so called ? [1].
3. What is the difference between aliquet, and aliquant parts: [2].
4. How are the aliquen parts of abstract, and of applicate numbers found: [3].
5. What is the difference between prime, and compound aliquot parts? [3].
6. How is the price of any denomination found, that of another being given ? [6 and $s]$.
7. How is the prise of two or more denominations found, that of one being givan? [7 and 4].
8. The price of ons dmmmantion bing given, how do we find that of :my mander of :mother: [10].
9. When the price of any denomination is the aliquot part of a shilling, how is the price of any number of that denomination found? [11].
10. When the price of any denomination is the aliquot part of a pound, how is the price of any number of that denomination found? [12].
11. What is meant by the complement of the price ? [13]. mination is the aliquot part of a pound or shilling, but the price is not so, how is the price of any number of that denomination found? [13].
12. When neither the price of a given denomination, nor its complement, is thic aliquot part of a pound or shilling, how do we find the price of any number of that denomination? [14, 15, 16, and 17].
13. How dn we find the price of any number of articles, when the price of each is an even or odd number of shillings, and less than 20? [18 and 19].
14. How is the price of a cuantity, represented by a mixed number, found? [20].

1t. How do we find the price of cwt., qes., and 1 b , when the price of 1 ewt. is given? [21].
17. How do we find the price of cwt., qrs., and lb, when then price of 1 th is given! [22].
18. 1h, w is the price of a ton found, when the price of 1 lin is gren? [23].
19. How do we find the price of oz. diwt., and grs. when the price of an ounce is given! [24].
20. How do we find the price of yards, qrs., and nails, when the price of a yard is given : [25].
21. How do we find the price of acres, roods, and perches: [2.5].
22. How mey the price of a hhd. or a tun be found, when the mire of a quart is given ? [27 and 28].
23. How may the price of any number of articles bo rimul, the price of each in pence being given? [29].
24. How are wages per year found, those : f day being given? [30]

TARE AND TRET.

3.. The eross weight is tho weight both of the goorls, and of the bag, \&c., in which they are.

Tere is an allowance for the bag, \&c., which contains the article.

Suttle is the woight which remains, after deducting the tare.

Trel is, usually, an allowance of 4 lb in every 104 lb , or $\frac{1}{2}$ of the weight of goods liable to waste, after the tare has been dedueted.

Cleff is an allowance of 2 lb in every 3 ewt., after both tare and tret have been deducted.

What remains after making all deductions is called the net, or neal weight.

Different allowances are made in different places, and for different goods; but the mode of proceeding is in tall eases very simple, and may be understood from the following-

EXERCISES.

1. Bought 100 carcasses of beef at $18 s .6 \mathrm{~d}$. per cwt.; gross weight 450 civt., 2 gres., 23 lb ; tret 8 Hb per carcatss. What is to be paid for them?

2. What is the price of 400 raw hides, at 19 s .10 d . per ewt. ; the gross weight being 306 cwt., 3 qus., 15 ih; and the tret 4 tb per hide? Aus. £290 3s. $2 \frac{3}{8} \ell$.
3. If 1 ewt. of butter enst \mathfrak{f} e3, what will be the price of 250 firkins; gross weight $127 \mathrm{cost},{ }^{2} 2$ qrs., 21 Hb ; tare 11 Hb per firkin? Ans. $\mathscr{L} 3098 \mathrm{~s} .0 \frac{3}{7} d$.
4. What is the price of 8 ewt., 3 qes., 11 lb , at 15 s . fill. per cowt., allowing the usual tret? Ans. \&iti $11 s$. $10_{3}^{2} \%$.
5. What is the price of 8 cwt 21 lb , at $18 \mathrm{~s} .4 \frac{1}{2} d$. per cowt, allowing the usual tret? Aus. £.7 $4 s .8 \frac{1}{2} d$.'
6. Bought 2 hihds. of tallow; No. 1 weighing 10 cwt., 1 qr., 11 lb , tare 3 qrs., 20 hb ; and No. 2, $11 \mathrm{cwt} ., 0 \mathrm{qr}$., 17 tt , tare 3 qris., 14 db ; tret 1 tb per cwt. What do they come to, at 30 s. per ewt.?

Gross weipht of vo	cwt. qres. 1 lb .	cwt. qrs. 1 lb .
(iross weight of No.	11111	Tare $0{ }^{1}$
,	017	Tare 0×314
(iross weight, Tiare,	.21 1 1	13
Suttle, ${ }^{\text {rre }}$.	$19 \quad 222$	
Tret 1 lb per cwt.	$\begin{array}{lll}0 & 0 & 1939\end{array}$	
Net woisht cwt., is (20) 5s. $7{ }^{3} 17$,	$192217 .$	The price, at 30

It is evident that the tret may be found by the following proportion-

$$
\begin{aligned}
& \text { cwt. cwt. qqrs. } \mathrm{tb} \text {. } \mathrm{Jb} \text {. } \mathrm{mb} \text {. } \\
& 1: 19 \text { 2 } 22:: 1 \text { : } 19 \frac{39}{56} .
\end{aligned}
$$

7. What is the price of 4 hhds. of copperas; No. 1, weighing gross 10 cwt., 2 qrs., 4 tt, tare 3 qrs. 4 ll ; No. 2, 11 civt., 0 qr., $10 \mathrm{1t}$, tare 3 qris. 10 Jt ; No. 3, 12 cwt., 1 qr., tare 3 qrs. 14 Ib ; No. 4, 11 cirt., 2 qres, 14 lb , tare 3 qrs. 18 lb ; the tret boing 1 lb per cwt.; and the price 10 s . per cut.? Ans. $\mathfrak{L} 2017$ s.

8 . What will 2 bags of merehandise come to; No. 1, weighing gross 2 cut., 3 qrs., 10 lb ; No. 2, 3 cwt., 3 qrs., 10 lb ; tare, 16 lb per bag; tret 1 ll per cwt.; and at 1 s . $8 d$. per fb ? Ans. £59 2s. $8 \frac{1}{7} d$.
9. A merchant has sold 3 bags of pepper; No. 1, weighing gross 3 ewt. 2 qurs. ; No. 2,4 cwt., 1 qr., 7 hi'; No. 3,5 ewt., 3 qus., 21 lb ; tare 40 lb per bag; tret 1 it, per cwt.; and the price being $15 d$. per fit. What do they come to? Ans. £74 1s. $7 \frac{2}{2} \frac{3}{8}$ d.
10. Bought 3 packs of wool, weighing, No. 1, 3 cwt., 1 qr., 12 Hb ; No. 2, 3 crvt., 3 qrs., 7 lb ; No. 3, 3 cwt., 3 irs., 15 it ; tare 30 lb per pack; tret 8 ib for every on stons; and at ios. 3d. per stone. What do thes
 0 qr., lat do

Net weight, $\overline{68} 4$, at 10 s . $6 d$. per stone $=\left\{3516 s .7 \frac{1}{2} d\right.$.
11. Sold 4 packs of wool at $9 s .9 d$. per stone ; weighing, No. 1, 3 cwt., 3 qus., 27 th. ; No. 2, 3 cwt., 2 qis., $16 \mathrm{lb} . ;$ No. 3, 4 cwt., 1 qr., $10 \mathrm{ib} . ;$ No. 4, 4 cwt., 0 41., $6 \mathrm{Hb}: \operatorname{tare} 30 \mathrm{fb}$ per pack, anci tret 8 tb for every 20 stone. What is the price? $\Lambda u s$. $\mathscr{C} 49$ 15ss. $21_{1 \frac{3}{2} \frac{9}{8}} l$.
12. Bought 5 packs of wool ; weighing, No. 1, 4 ewt., 2 qris., 151 b ; No. 2, 4 ewt., 2 qus. ; No. 3, 3 cwt., 3 qrs., 21 lb ; No. 4, 3 cwt., 3 qrs., 14 lb ; No. 5, 4 cwt., $0 \mathrm{qr} ., 14 \mathrm{lb}:$ tare 28 lb per pack; tret 8 lb for every 20 stone; and at $11 s .6 d$. per stonc. What is the price? $A n s . \mathfrak{L} 7715 \mathrm{~s} .8 \frac{1}{1} \frac{3}{16} d$.
13. Sold 3 packs of wool ; weighing gross, No. 1, 3 cwt., 1 qr., 27 \# ; No. 2, 3 cwt., 2 qrs., 16 it ; No. 3 , 4 cwt., 0 qr., 21 lb : tare 29 Hb per pack; tret 8 lb for every 20 stone ; and at $11 s .7 c l$. per stone. What is the price? Ans. ©41 13s. $7 \frac{3}{6} \frac{3}{4} \frac{1}{0} d$.
14. Bought 50 casks of butter, weighing gross, 202 cwt., 3 qrs., 14 It ; tare 20 ib per ewt. What is the net weight?

15. The gross weight of ten hhds. of tallow is 104 ewt., 2 qus., 25 th ; and the tare 14 tb per ewt. What is the net weight? Aus. 91 ewt., 2 qus., $14 \frac{7}{8}$ th.
16. The gross weight of six butts of currants is 58 ewt., 1 qr., is th ; and the tare 16 tb per ewt. What is the net weight? Ans. 50 ewt., 0 qr., $7 \frac{3}{7} \mathrm{th}$.
17. What is the net weight of 39 ewt., 3 qrs., 21 Hb ; the tare being 18 lb per covt.; the tret 4 lb for 10.1 it ; and the cloff 2 th for every 3 cwt.?
cwt. qrs. ib. eirt. qrs. ib.
ib. ib. cwt. $18=\left\{\begin{array}{c}16=\frac{1}{1} \\ 2=\frac{1}{2} \div 8\end{array}\right.$
 2 lb in 3 cwt . is the ${ }_{10}^{1} 8 \mathrm{t}^{2}$ th part of 3 cwt . $\quad 32 \quad 0 \quad 20$

Net weight, $\overline{320} 4$
18. What is the net weight of 45 hhds. of tobaceo; weighing gross, 224 cwt., 3 qrs., 20 lt ; tare 25 cwt . 3 qrs.; tret 4 ib per 104 ; cloff ? it for every 3 owt. ? Ans. 190 cwt., 1 qr., $14 \frac{9}{2} \overline{8}$ bl.
19. What is the net weight of 7 hhds. of sugar, weighing gross, 47 cut., 2 quss., 4 Hb ; tare in the whole, 10 cwt ., 2 qrs., 14 ib ; and tret 4 lb per 104 Hb ? Aus. 35 cwt., 1 qr., 27 it.
20. In 17 ewt., 0 qr.. 17 lb , gross weight of galls, how much net; allowing 18 lb per ewt. tare; 4 lb per 104 it tret; and 2 ib per 3 cwt. cloff? Ans. 13 civt., 3 qres., 1 to nearly.

questions.

1. What is the gross weight? [31].
2. What is tare " [31].
3. What is suttle ? [31].

4 What is tret? [31].
5. What is cloff? [31].
6. What is the net waight? [31].
7. Are the allowances made, always the same? [317.

237

SEOTION VII.

INTEREST, \&c.

1. Interest is the price which is allowed for the ase of money ; it depends on the plenty or searcity of the latter, and the risk which is run in lending it.

Interest is either simple or compound. It is simple when the interest due is not added to the sum lent, $\%$ as to bear interest.

It is compound when, after certain periods, it is made to bear interest--being added to the sum, and considered as a part of it.

The money lent is called the principal. The sum allowed for each hundred pounds "per annum" (for a year) is called the "rate per cent."-(per £100.) The amount is the sum of the principal and the interest due.

SIMPLE INTEREST.

2. To find the interest, at any rate per cent., on any sum, for one ycar-

Rule I.-Multiply the sum by the rate per eent., and divide the product by 100 .

Exampie.-What is the interest of $£ 672$ 14s. 3dl. for eno year, at 6 per cent. (£6 for every む100.)

£ $\boldsymbol{s} . \quad d$
672143

$40 \cdot 36 \quad 5 \quad 6$
20
7.25 The quotient, f40 7 s .3 ll ., is the interest required.
3.06

We have divided by 100, by merely altering the decimal point [Seo. I. 34].

If the futcrest were 1 per cent., it would be the handredth
 being 6 per cent., it is 6 times as much-or the principal multiplied by $\frac{4}{10} \overline{0}$.
3. Rule II.-Divide the interest into parts of $\mathfrak{E 1 0 0}$; and take corresponding parts of the principal.

Exnmme.-What is the interest of $£ 324 \mathrm{~s}$. $2 d$., at 6 per cent. ?

At 5 per cent. the interest is the $\frac{1}{2 / 0}$ of the principal ; at 10\%. per cent. it is the $\frac{1}{10}$ of what it is at 5 per cent. Therefore, at $£ 510$ s. per cent., it is the sum of buth.

EXERCISES.

5. What is the interest of $837119 s .7 \frac{1}{2} \%$. for one year, at l3 $1,5 s$. per cent.? Ans. Li3 18s. 113 l .
6. What is the interest of $88411 s .10 \frac{1}{2} d$. for one year, at £4 5 s . per cent.? $1 \mathrm{~ns} . \mathrm{E} 311 \mathrm{~s} .10 \frac{3}{4} \mathrm{l}$.
7. What is the interest of $2910 s .3 \frac{3}{4} \ell$. for one year, at $\mathfrak{C 6} 12 \mathrm{~s}$. 9 cl . per cent.? Ans. £6 Os. $10 \frac{1}{4} d$.
8. What is the interest of L9fis 5 s . for one year, at £ 14 s .6 d . per cent.? Aus. £5j 8 s .8 d .
9. To find the interest of any sum, for sererab years-

Rule.-Multiply the interest of one year by the number of years.

Example.-What is the interest of $£ 3214 s$. $2 d$. for 7 years, at 5 per cent.?

20) | \mathcal{E} |
| :---: |
| 3 | 14.

$112 \frac{8}{7}$ is the interest for one year, at 5 per cent.
And $11 \quad 8 \quad 11 \frac{1}{2}$ is the interest for 7 yeirs, at 5 per eent. 'This rule requires no explanation.

ExERCises.

9. What is the interest of $£ 142 s$ for 3 years, at 6 per eent.: Ans. ee 10s. 9 d .
10. What is the interest of $\mathfrak{f} 72$ for 13 years, at $\mathfrak{L} 6$ $10 s$. per cent.? Ans. Lego 16s. 90d.
11. What is the interest of LiS3 0 s . $6 \frac{1}{2} d$. for 11 years, at $2412 s$. per cent.? Ans. 尺\& 431 12s. $7 \frac{3}{4} d$.
12. To find the interest of a given sum for years, months, \&c.--

Rule.-Maving found the interest for the years, as already dirceted $[2, \& e$.$] , take parts of the interest$ of one year, for that of the months, \&e. ; and thon add the results.

Example. What is tho intorest of $£ 868 \mathrm{~s} .4 \mathrm{~d}$. for 7 years and 5 months, at 5 per cout. ?

£.s. d. $\overline{30} 411$ is the interest for 7 years. $465 \div 3=1893$ is the interest for 4 months.
$1893 \div 4=0 \quad 72 \frac{1}{2}$ is the interest for 1 month.
And $32011 \frac{1}{4}$ is the required interest.

EXERCISES.

13. What is the interest of £211 5 s. for 1 year and 6 months, at 6 per cent. ? Ans. £19 0s. 3cl.
14. What is the interest of $£ 514$ for 1 year and $7 \frac{1}{2}$ months, at S per cent.? Ans. £66 16s. $4 \frac{4}{5} \mathrm{~d}$
1.4. What is the interest of $£ 1090$ for 1 year and 5 months, at 6 per cent. ? Ans. $£ 9213 s$.
15. What is the interest of 217510 s .6 d . for 1 year and 7 months, at 6 per cent.? Aus. $1613 \mathrm{~s} .5_{-107}^{97} d$.
${ }^{1} \mathrm{~S}$. What is the interest of £571 15s. for 4 years and 8 months, at 6 per cent. ? Ans. \&160 1s. $9 \frac{3}{5} c$.
16. What is the interest of £500 for 2 years and 10 unonths, at 7 per cent.? Ans. £99 3s. $4 d$.
17. What is the interest of $£ 3317 s, 4 d$. for 7 years and 11 months, at 6 per cent.? Ans. e44 $11 s$. $7 \frac{1}{2} d$.
18. What is the interest of E8-t 9s. 2d. for 8 years and 8 months, at 5 per cent.? Ans. £36 11s. $11 \frac{1}{4} d$.
19. To fiad the interest of any sum, for any time, at 5 , or 6 , \&c., per cent.

At 5 per cent.-
Rule.-Consider the years as shillings, and the months as pence ; and find what aliquot part or parts of a pound these arc. Then take the same part or parts of the principal.

To find the interest at 6 per cent., find the interest at 5 per cent., and to it arll its fifth part, \&c.

The interest at 4 per cent. will be the interest at * per eent mimus its fifth part, \&c.

d. for 7 years

s.
ths.
th.

1 year and ear and $7 \frac{1}{2}$
year and 5
for 1 ycar s. $5 \frac{97}{9707} d$.
or 4 years s. $9 \frac{3}{5} l$.
ars and 10
or 7 yeass $1 s .7 \frac{1}{2} d$.
or 8 years
s. $11 \frac{1}{4} d$.
y time, at
and the or parts tor parts
c interest
aterest at
8. Example 1.-What is the interest of $\mathcal{L} 4275 \mathrm{~s} .9 \mathrm{~d}$. for 6 years and 4 months, at 5 per cent.?

6 years and 4 months are represented by 6s. 4 d. ; but Cs. $4 l=$ =s. $+1 s+4 d==\frac{1}{4}+\frac{1}{20}$ of a pound + the $\frac{1}{3}$ of the $\frac{1}{20}$.

$$
\begin{aligned}
& \text { 4) } \begin{array}{lll}
8 & 8 & 8 \\
\hline 2 & 5 & 9 \\
\hline
\end{array} \\
& \text { 5) } 10616 \quad 51 \text { is the } \frac{1}{4} \text { of princinal. }
\end{aligned}
$$

And $\overline{1: 35} \quad 6 \quad 1_{4}^{3}$ is the required interest.
The interest of $£ 1$ for 1 year, at 5 per cent., would be 1 s. for 1 month $\mathrm{i} d$; for any number of years, the same number of shillings; for any number of months, the same number of pence; and for year's and months, a corresponding number of shillings and pence. But whatever part, or parts, these shillings, and pence are of a pound, the interest of any other smm, for the same time and rate, must be the same part or parts of that other smo-since the interest of any sum is proportional to the interest of $\mathcal{L} 1$.

Exampee 2. What is the interest of $\mathcal{E} 1422^{2}$. $2 d$. for 6 years and 8 months, at 6 per cent. ?
6. $8, l$. is the $\frac{1}{3}$ of a pound.
8) $14 \quad \begin{array}{lll}14 & s & 2 \\ 2\end{array}$
5) $41+0_{3}^{3}$ is the interest, at 5 per cent.
$0189_{3}^{\frac{3}{3}}$ is the interest, at 1 per cent.
$51210 \frac{1}{2}$ is the interest, at $6(5+1)$ per cenc.

EXERCISES.

20 . Find the interest of $£ 109017 \mathrm{~s}$. 6d . for 1 year and 8 months, at 5 per cent.? Ans. £90 18s. $1 \frac{1}{2} d$.
21. Find the interest of 297614 s . 7d. for 2 ycars and 6 months, at 5 per cent.? Ans. £122 1s. $9 \frac{7}{8} d$.
22. Find the interest of $£ 78017 \mathrm{~s}$. Gid. for 3 years and 4 months, at 6 per cent.? Ans. $\mathfrak{f} 1563 \mathrm{~s}$. fid.
23. What is the interest of $£ 19711 \mathrm{~s}$. for 2 years and 6 months, at 5 per cent.? Ans. $42+13 s .10 \frac{1}{2} d$.
24. What is the interest of 227911 s , for $7 \frac{1}{2}$ months, at 4 per cent. ${ }^{2}$. Ans. $\mathscr{L}^{6} 19 \mathrm{~s} .9 \frac{3}{10} d$.
25. What is the interest of Lz90 16is. for 6 year and 8 months, at 5 per cont.? Aas. 2263 12s.
26. What is the interest of £124 $2 s$. $9 r l$. for 3 yeara and 3 months, at $\overline{5}$ per cent.? Aus. E20 $3 s$. $5 \frac{3}{4} h$.
27. What is the interest of $\mathcal{L} 18374 s .2 d$. for 3 yearz and 10 months, at 8 per cent.? Ans. $£ 563$ ss. $3 d$.
9. When the rate, or number of years, or both of them, are expressed by a mixed number-

Rule.-Find the interest for 1 year, at 1 per cent., and multiply this by the momber of pounds and the fraction of a pound (if there is one) per cent. ; the sum of these products, or one of them, if there is but one, will give the interest for one yan. Multiply this by the number of years, and by the fraction of a year (if there is one) ; and the sum of these products, or one of then, if there is but one, will be the required interest.

Example 1.-Find the interest of $\dot{5} 212 \mathrm{~s}$. 6 l . for $3 \frac{3}{4}$ years at 5 per cent.?
$£_{21} 2$: $6 d . \div 100=4 s .22_{4}^{3} d$. Therefore
0 s.d.
$\begin{array}{llll}0 & 4 & \frac{23}{23} \\ 5 & & \text { is the interest for } 1 \text { year, at } 1 \text { per cent. }\end{array}$
$\overline{11} \overline{3_{3}^{13}}{ }^{\frac{1}{4}}$ is the interest for 1 year, at 5 per cent.
$3 \quad 3 \quad 5{ }^{\prime}$ is the interest for 3 years, at do.
$01510 \frac{1}{4}$ is the interest for ${ }^{3}$ of a year ($£ 11 \mathrm{~s} .1_{4}^{3} d . \times \frac{3}{4}$), at do.
$3193 \frac{1}{2}$ is the interest for $3 \frac{3}{4}$ years, at do.
Example 2.-What is the interest of $\mathcal{L} 300$ for $5 \frac{3}{4}$ years,
3 per cent. ?

$$
\mathcal{L} 300 \div 100=\begin{array}{ccc}
\mathcal{L} & \text { s. } & d . \\
3 & 0 & 0 \\
0 & \text { is the interest for } 1 \text { year, at } 1 \text { per cent. } \\
3
\end{array}
$$

$\overline{9} 00$
2
2
11

$56 \quad 5 \quad 0$ is the interest for 5 years, at $3 \frac{3}{3}$ per cent
5126 is the interest for $\frac{1}{2}$ yeur $\left(\mathcal{L}^{11} 5 \mathrm{ss} \div 2\right)$
2163 is the do. for $\frac{1}{4}$ yent (L5 122 s. $63 d \div 2$) And 04139 is the interest for 54 years, at 38 do.

EXERCISES

28. What is the interest of $\mathfrak{e 3 7 9} 2 s$. $6 d$. for $4 \frac{1}{3}$ years, at 5 点per cent.? Ans. $\mathfrak{L} 915 \mathrm{~s}$. 5 d .
29. What is the interest of $\mathscr{L} 64010 \mathrm{~s}$. 6 d . for $2 \frac{1}{2}$ yeurs, at $4 \frac{1}{2}$ per cont.? Ans. £ 72 1s. $2 \frac{7}{7} \frac{7}{0} l$.
30. What is the interest of $\mathscr{L} 60010 \mathrm{~s}$. 6il. for $3 \frac{1}{3}$ years, at $5 \frac{3}{4}$ per cent.? Ans. E115 $2 s .0 \frac{3}{2} d$.
31. What is the interest of $\mathfrak{L 2 1 2}$ Ss. $1 \frac{1}{2} d$. for $6 \frac{2}{3}$ years, at $5 \frac{3}{4}$ per cent.? Ans. £S1 Ss. $5 \frac{3}{8}$ d.
32. To find the interest for days, at 5 per cent.-

Rule.-Multiply the principal by the number of days, and divide the product by 7300 .

Example.-What is the interst of $£ 264 s .2 l$. for 8 days?

$\begin{array}{lll} \mathcal{L} & s . & . \\ 20 & 4 & 2 \\ 8 \end{array}$	
$\begin{array}{r} 209 \\ 20 \end{array}$	$13 \stackrel{4}{4}$
4193	
12	
6520	

The required interest is $6 \frac{386}{65}$, or $7 d$.-since the remainder is greater than half the divisor.
The interest of $£ 1$ for 1 year is $£_{\frac{1}{2} \frac{1}{6}}$, and for 1 day $\frac{1}{26} \div 365=$ $\frac{1}{20 \times 365}=7300$; that is, the 7300 th part of the prineipal. Therefore the interest of any other sum for one day, is the 7300th part of that sum ; and for any number of days, it is that number, multiplied by the 7300 th part of the principalor, which is the same thing, the principal multiplied by the number of days, and divided by 7300 .

ExERCISEs.

32. Find the interest of $£ 14010$ s. for 76 days, at 5 per cent. Ans. £1 9s. $3 \frac{9}{3} \frac{1}{6} 5 l$.
33. Find the interest of $\dot{d} 300$ for 91 days, at 5 per cent. Ans. £3 14s. $9 \frac{3}{7} \frac{9}{3} d$.
34. What is the miterest of 8800 for 61 days, at 5 per cont.? Ans. $£ 613 \mathrm{~s} .8 \frac{2}{7} \frac{8}{3} d$.
35. To find the interest for days, at any olher rate-

Ruse.-Find the interest at $\overline{5}$ per cent., and take parts of this for the remainder.
Exampies.-What is the interest of $£ 33246$ s. $2 l$. for 11 days, at $£ 610$ s. per cent. ?
£3324 6s. $2 l . \times 11 \div 7300=£ 50$ s. $21 / d$. Therefore ${ }_{5}{ }^{£} \quad s . d$.
5) $50 \quad 2 \frac{1}{1}$ is the interest for 11 days, at 5 per cent.
2) $100 \frac{1}{3}$ is the interest for 11 days, at 1 per cent. $010 \quad 0$ is the interest for 11 days, at 10 s . per cent.
 む $1+10$ s.)
This rule requires no explanation.
ExERCISES.
35. What is the interest of $\mathscr{2} 200$ from the 7th May to the 26th September, at 8 per eent.? Ans. $\mathfrak{L} 64 s$. $5 \frac{{ }_{7}^{\frac{1}{3}}}{3} d$.
36. What is the interest of $\mathfrak{L} 15015 \mathrm{~s} .6 \mathrm{~d}$. for 53 days, at 7 per cent.? Ans. £1 10s. $7 \frac{3}{4} d$.
37. What is the interest of $£ 371$ for 1 year and 213 days, at 6 per cent.? Ans. £355s. 0 d .
38. What is the interest of £240 for 1 year and 135 days, at 7 per cent.? Ans. £23 0s. $3 \frac{2}{7} \frac{1}{3} d$.

Sometimes the number of days is the aliquot part of a year; in which case the process is rendered more easy.
Example.- What is the interest of $£ 175$ for 1 year and 73 days, at 8 per cent. ?
1 year and 73 days $=1 \frac{1}{5}$ year. Hence the required interent is the interest for 1 year + its fifth part. But the interest of $£ 175$ for 1 year, at the given rate is $£ 14$. Therefore its interest for the given time is $\mathfrak{E 1 4}+\mathfrak{L}^{1+}=£ 14+£ 2$ 1Gs.二 £16 16s.
12. To find the interest for months, at 6 per eent-

Ruie.-If the number expressing the months is even, multiply the principal by half the number of months and divide by 100 . But if it is odd, multiply by the half of one less than the number of montlis; divide the result by 100 ; and add to the quotient what will be obtained if we divide it by one less than the number of montils.
nd take
d. for 11
re
r cent. r cent. per cent.
s. (£5+
for 53
nd 213
and 135
part of e easy. ear and
intercot crest of fore its $16 s=$ is even, months by tho de the vill be ber of

Exampla: 1.-What is the interest of $\mathbf{L i 2} 6 \mathbf{6} .4 \mathrm{fl}$. for 8 months, at 6 per cent?

| f | s | 4. |
| ---: | ---: | ---: | ---: |
| 72 | 6 | 4 |
| | | 4 |
| 2089 | 5 | 4 |
| 20 | | |

17.85s. The required interest is $£ 217 \mathrm{~s} .10 \mathrm{~d}$. 12
$10 \cdot 24 d$.
4

$$
\overline{0 \cdot 96}=1 d \text {. nearly, }
$$

Solving the question by the mle of three, we shall have£100: £72 6s. 4 ll : : : £ $6: \mathrm{E}_{2} \mathrm{I} 2 \mathrm{~s}$. $4 \mathrm{ll} . \times 8 \times 6$
$12: 8 \quad \frac{100 \times 12}{12}=$ (dividing both numerator and denominator by 6 [Sce. IV. 4

L72 (is. $4 \mathrm{ll} \times 8 \times 6 \div 6 \cdot \mathcal{L} 726 \mathrm{~s} .4 \mathrm{l} . \times 5$
$100 \times 12 \div 6=\frac{100 \times 2}{100}=$ (dividing both numerator unl derominator by 2) $\frac{\text { sig } 6 s .4 d . \times 8 \div 2}{100 \times 2 \div 2}=$ $\frac{£ 72 \text { 6s. } 4 d . \times 4}{100}$
-that is, the required interest is efual to the given sum, multiplied by half the number which expresses the monthe, and divided by 100 .

Exampas 2.-What is the interest of $£ 846 \mathrm{~s} .2 \mathrm{~d}$. for 11 months, at 6 per cent. ? $\quad 11=10+1 \quad 10 \div 2=5$. む s. d. $84 \quad 6 \quad 2$

One less than the given number of
$\mathscr{L}+211019$ months $=10$.

\& s. d.				
4:30s.	10)4			is the interest for 10 months, at o per ecut.
12	0			is the interest for 1 nuabl, at same rate.
$3 \cdot 7$	14			is the interest for $11(10-f-1)$ monthis, at

$2.80 \mathrm{f}=3$. d nearly.

The interest fur 11 months is oridently the interest is 11-1 month, plus the interest of $11=1$ month $\div 11-1$.

FRERCISEG.

39. What is the interest of $2=25017 s, 6 d$. for 8 months, at 6 per ce.t.? Ans, £10 0s. S ${ }^{2} d$.
40. What in the interest of $\mathfrak{L} 57115 \mathrm{~s}$, for 8 months, at 15 per whet. Ans. £22 17s. $4 \frac{4}{5}$ d.
41. What is the interest of $\mathfrak{E} 840$ for 6 months, at 6 per cent.? Ans. $2254 s$.
42. What is the interest of $£ 3790$ for 4 months, at 6 per cent.? Ans. £75 16s.
43. What is the interest of $\mathfrak{C 9 0 0}$ for 10 months, at 6 per cent. ? Aus. £45.
44. What is the interest of $£ 432 \mathrm{~s} .2 \mathrm{~d}$. for 9 months, at 6 per cent. ? Ans. el 18s. $9 \frac{1}{2} d$.
45. T'o find the interest of mony, left after one or more payments-

Rule.-If the interest is paid by days, multiply the sum by the number of days which have elapsed before any payment was made. Subtract the first payment, and multiply the remainder by the number of days which passed between the first and second payments.

Therefore

$$
\left.\begin{array}{r}
f \text { days. } \mathcal{E} \text { day. } \\
117 \times 6=702 \times 1 \\
100 \times 7=700 \times 1 \\
80 \times 15=1200 \times 1 \\
48 \times 66=3168 \times 1
\end{array}\right\}=\$ 5770 .
$$

Exampee.- A person borrows $£ 117$ for 94 days, at 8 per cent., promising the principal in parts at his convenience, and intel ist corresponding to the money left unpaid, up to the different periods. In 6 days he pays $x 17$; in 7 days more $£ 20$; in 15 more $£ 32$; and at the end of the 94 days, all the money then due. What dues the interest come to? Subtract the second payment, and multiply this remainder by the number of days which passed between the second and third payments. Subtract the third payment, \&e. Add all the products together, and find the interest of their sum, for 1 day.
If the interest is to be paid by the weck or month, substitate weeks or months for days, in the above rule.

$$
0
$$

$$
0
$$

eme whe the interest
3) 18113 is the interest, at 6 per cent.
$\begin{array}{lll}0 & 6 & 4\end{array}$ is the interest, at 2 por cent.
And $\overline{1} 5 \quad 38$ is the interest, at 8 per cent., for tho given sumas and times.
If the entire sum were 6 days unpaid, the interest would be the sarne as that of 6 times as much, for 1 day. Next, $\& 100$ due for 7 days, should produce as much as £700, for 1 day, \&c. And all the sums die for the different periods should produce as much as the sum of their equivalents, in 1 day.

ExERCISES.

45. A merchant borrows 2250 at 8 per cent. for 2 years, with condition to pay before that time as much of the principal as he pleases. At the expiration of 9 months he pays $\mathfrak{L} 80$, and 6 months after $£ 70$-leaving the remaindor for the entire term of 2 years. How much interest and principal has he to pay, at the end of that time? -1ns. $£ 127$ 16s.
46. I borrow £300 at 6 per cent. for 18 months, with condition to pay as much of the principal before the time as I please. In 3 months I pay $\mathscr{L} 60 ; 4$ months after $£ 100$; and 5 months after that $£ 275$. How much principal and interest an I to pay, at the end of 18 months? Ans. \&79 15s.
47. \mathbf{A} gives to B at interest on the 1 st November, $1804, £ 6000$, at $4 \frac{1}{2}$ per cent. B is to repay him with. interest, at the expiration of 2 years-having liberty to pay before that time as much of the principal as he pleases. Now 13 pays

	£
The 16th December, 180	900
The 11th March, 1805,	126
The 30 h March,	60
The 17 th August,	800
The 12th February, 1806,	1048

How much principal and interest is he to pay on the

48. Tent at interest $\mathscr{E} 600$ the 13th May, 1833, for

INTEAEST.

1 year, at 5 per cent.-with condition that the receiver may discharge as much of the principal before the time as he pleases. Now he pays the 9 th July $\mathscr{C} 200$; and the 17 th September $£ 150$. How much principal and interest is he to pay at the expiration of the year?

14. It is hoped that the pupil, from what he has learned of the properties of proportion, will easily understand the modes in which the following rules are proved to be eorrect.

Of the principal, amount, time, and rate-given any three, to find the fourth.
Given the amount, rate of interest, and time ; to find the principal-
Rule.-Say as $£ 100$, plus the interest of it, for the given time, and at the given rate, is to $£ 100$; so is the given amount to the principal sought.
Example.-What will produce £862 in 8 years, at 5 per cent. ?
$£ 40(=£ 5 \times 8)$ is the interest for $\mathcal{L} 100$ in 8 years at the given rate. The: aforo
$£ 140: £ 100:: £ 862: \frac{862 \times 100}{140}=£ 61514 \mathrm{~s} .3 \frac{1}{2} d$.

EXERCISES.

52. What will $\mathfrak{£} 350$ amornt to, in 5 years, at 3 per cent. per amnum? Ans. £402 10s.
53. What will $£ 540$ amount to, in 9 years, at 4 per cent. per annum? Ans. £7348s.
54. What will $£ 248$ amount to, in 7 years, at 5 per cent. per annum? Ans. £334 16s.
55. What will $\mathfrak{£ 9 7 3} 4 s$. $2 l$. amount to, in 4 years and 8 months, at 6 per cent.? Ans. £1245 14s. $1 \frac{3}{4} d$.
56. What will £ 42 3s. $9 \frac{1}{2} d$. amount to, in 5 years and 3 months, at 7 per cent.? Ans. £57 13s. $10 \frac{1}{2} d$.
57. Given the anount, principal, and rate-to find the time-
Rule.-Siay, as the interest of the given sum for 1 year is to the given interest, so is 1 year to the repuired time.

Example.-When would $\dot{L} 281$ 13s. 4l. become £338, at 5 per cent.?
£14 1 s . 8 d . (the interest of $£ 28113 \mathrm{~s} .4 \mathrm{~d}$. for 1 year [2]) :
 tequired number of years.
17. Thence briefly, to find the time-Divide the interest of the given principal for 1 year, into the entire interest, and the quotient will be the time.

It is evident, the principal, and rate being given, the interest is propowional to the time; the longer the time, the more the interest, and the reverse. That is-

The interest for one time : the interest for another : : the former time : the latter.
Hence, the interest of the given sum for one year (the interest for one time) : the given interest (the interest of the same sum for another time) :: 1 year (the time which produced the former) : the timo sought (that which procuced the latter)-which is the rule.

EXERCISES.

57. In what time would f300 amount to £ £372, at 6 per cent.? Ans. 4 years.
58. In what time would £211 5s. amount to £230 5s. Bd., at 6 per cent.? Ans. In 1 year and 6 months.
59. When would £561 15 s. become £719 0 s. $9 \frac{3}{4} d$., at 6 por cent. ? Ans. In 4 years and 8 months.
60. When would £500 become £599 3s. 4 d., at 7 per cent. ? Ans. In 2 years and 10 months.
61. When will $\mathfrak{e} 4369 s$. $4 d$. become $£ 571$ 8s. $1 \frac{1}{4} d$., at 7 per cent.? Ans. In 4 years and 5 months.
62. Given the amount, principal, and time-to find the rate-

Rule.-Say, as the principal is to £100, so is the given interest, to the interest of £100-which will give the interest of $\mathfrak{£ 1 0 0}$, at the same rate, and for the same time. Divide this by the time, and the quotient will be the rate.

Example.-At what rate will $£ 350$ amount to $£ 402$ 10s in 5 years?
$£ 350: £ 100:: £ 5210 \mathrm{~s} .: \frac{£ 5210 \mathrm{~s} . \times 100}{350}=£ 15$, the in terest of $£ 100$ for the same time, and at the same rate Then $\frac{15}{5}=3$, is tha required number of years.

We have scen [14] that the time and rate being we same, $£ 100$: any other sum : : the interest of $£ 100$: interest of the other sum.

This becomes, by inversion [Sec. V. 20]-
Any sum : $£ 100::$ interest of the former : interest of 100 (for same number of years).

But the interest of $£ 100$ divided by the number of years which produced it, gives the interest of $£ 100$ for 1 yearnr , in other words, the rate.

EXERCISES.

62. At what rate will $£ 300$ amount in 4 years to £372 ? Ans. 6 per cent.
63. At what rate will $£ 248$ amount in 7 years to £334 16s.? Ans. 5 per cent.
64. At what rate will £976 14s. 7 d . amount in 2 years and 6 months to £109S 16s. $4 \frac{3}{4} d$.? Ans. 5 per cent.
Deducting the 5th part of the interest, will give the interest of $£ 07614 s .7 \mathrm{~d}$. for 2 years.
65. At what rate will £780 17s. 6 d . become $£ 937$ $1 s$. in 3 years and 4 months? $1 n s .6$ per cent.
66. At what rate will £843 5 s .9 d . become £1047 1 s . $7 \frac{3}{4} d$., in 4 years and 10 months? Aus. At 5 per cent.
67. At what rate will $£ 432 \mathrm{~s}$. $4 \frac{1}{2} d$. become $£ 60 \mathrm{Ts}$ $4 \frac{1}{2} d$., in 6 years and 8 months? Aus. At 6 per cent.
68. At what rate will £473 become $£ 900$ 13s. $6 \frac{1}{4} / l$ in 12 years and 11 months? Ans. At 7 per cent.

COMPOUND INTEREST.

19. Given the principal, rate, and time-to find the amount and interest-

Rule I.-Find the interest due at the first time of payment, and add it to the principal. Find the interest
of that sum, considered as a new principal, and ald it to what it would produce at the next payment. Consider that new sum as a principal, and proceed as before. Continue this proeess through all the times of payment.

Example.-What is the compound interest of $\mathfrak{L} 97$, for 4 years, at 4 per cent. half-ycurly?
${ }^{2}$ s. d.
9700
$317 \quad 7 \frac{1}{6}$ is the interest, at the end of 1st half-ycar.
1001771 is the amount, at end of 1st half-year. $40 \quad 8_{2}^{1}$ is the interest, at the end of 1st yearr.
10.183^{3} is the amount, at the end of 1st year. $4311 \frac{1}{1}$ is the interest, at the cod of 3 rd half-year.
10923 is the amount, at the ond of 3rd hallf-year. $47_{1} 3 \frac{1}{2}$ is the interest, at the end of 2 nd yoar.
$113 \quad 9 \quad 6 \frac{1}{2}$ is the amount, at the end of 2 nd year.
41091 is the interest, at the end of 5th half-year.
$118 \quad 0 \quad 4$ is the amount, at the end of 5 th half-year.
4145 is the interest, at the end of 3rd year.
122149 is the amonnt, at the end of 3rd yoar.
$4182 \frac{1}{1}$ is the interest, at the ond of 7 th half-year.
$1271211 \frac{1}{4}$ is the amount, at the end of 7 th half-year.
$5 \quad 21 \frac{1}{2}$ is the interest, at the end of 4th year.
1321500_{4}^{3} is the amount, at the enul of 4 the year.
9700 is the principal.
And $3515 \quad 0 \frac{3}{4}$ is the compound interest of $\mathfrak{£} 97$, in 4 years.
20. This is a tedions mode of proceeding, partioularly when the times of payment are numerous; it is, therefore, better to use the following rules, which will be found to produce the same result-

Rule II.-Find the interest of $\mathfrak{E 1}$ for ono of the payments at the given rate. Find the product of so many factors (each of then $\mathfrak{E l}+\mathrm{its}$ interest for one payment) as there are timos of payment; multiply this product by the given prineipal; and the result will bo the principal, plus its compound interest for the given
d add it . Concced as times of 97, for 4
year.
f-year.
year.
year.
year.
year.
year.
years.
icularly therewill be
of the t of so for one oly this will be g given
time. From this subtract the principal, and the remainder will be its compound interest.

Example 1.-What is the compound interest of $£ 237$ for 3 years, at 6 per cent.?
$\mathcal{L} \cdot 06$ is the interest of $£ 1$ for 1 year, at the given rate; and there are 3 payments. Therefore $£ 1 \cdot 06(£ 1+£ 0 \cdot \hat{v}$) is to be taken 3 times to form a product. Hence $1.06 \times 1.06 \times$ $1.06 \times \mathfrak{f} 237$ is the amount at the end of three years; and $1.06 \times 1.06 \times 1.06 \times \mathfrak{E} 237-£ 237$ is the compound interest.
The following is the process in full-
\mathcal{L}
1.06 the amount of $£ 1$, in one year.
1.06 the multiplier.
$\overline{1} 1236$ the gmount of $£ 1$, in two years 1.06 the multiplier.

1-191016 the amount of $£ 1$, in three years Multiplying by 237 , the principal,
we find that $282 \cdot 270792=2825.5$ is the amount . and subtracting 23700 , the principal,
we obtain $\overline{4555}$ as the compound interest.
Exampie 2.-What are the amount and compound interest of $£ 70$ for 6 years, at 5 per cent. ?

The amount of $£ 1$ for 1 year, at this rate would be $£ 1 \cdot 05$. Therefore $f 1.05 \times 1.05 \times 1.05 \times 1.05 \times 1.05 \times 1.05 \times 79$ is the amount, \&c. And the process in full will be-

Examples 3.- What are the amount, and compound interest of $£ 27$, fur 4 years, at $\dot{2} 210$ s, per cent. half-yearly.

The amount of $\mathcal{L L}$ for one payment is $\mathcal{L} 1 \cdot 025$. Therefore $£ 1.025 \times 1.025 \times 1.025 \times 1.025 \times 1.025 \times 1.025 \times 1.025 \times$ 1.025×27 is the amount, \&e. And the process in full will be

21. Rule IIL.-Find by tho interest table (at the end of the treatise) the amount of $\mathscr{L} 1$ at the given rate, and for the given number of payments; multiply this by the given principal, and the product will be the required anount. From this product subtract the principal, and the remainder will be the required compound interest.

Example.- What is the amount and compound interest of $£ 4710$ s. for 6 years, at 3 per cent, Lalf-yemly ?

$$
£ 4710 s=\mathcal{L} 47 \cdot 5
$$

We find by the table that
$\mathcal{L 1} 42: 376$ is the amount of $\mathcal{E} 1$, for the given time and rate.
47.5 is the oultiplier.
$\overline{67 \cdot 7236=} \quad \begin{array}{ccc}8 & s . & d . \\ 47 & 10 & 5_{i}^{3}\end{array}$ is the required amount.
And $\overline{20} \quad 4 \quad 53$ is the required interest.
22. Viule :. requires $n o$ explanation.
ilabon of Rule II.-When the time and rate are the same, two pri cipals aro proportional to their corresponding anionnts. Therefore
£1 (one principal) : £103 (its corresponding amount) : £1.00 (another principal) : £1.00 $\times 1.06$ (its corresponding nomount).

Hen or the for one Aga

Hence
or the £1 for

The ments.

The
the am the pr the am Rulo
23. proce We we re multip them
duct produ equal 1-1025

$$
1
$$

£91 f
$0 s .1$
pounc

$$
2 .
$$

£142
£227
comp
263
$\mathcal{L} 90$
comp
4.
© 44

Hence the amount of $£ 1$ for two years，is $£ 1.06 \times 1.06-$ or the product of two factors，each of them the amount of $£ 1$ for one yesr．
Again，for similar rensons，

$$
£ 1: £ 1 \cdot 06:: £ 1 \cdot 06 \times 1 \cdot 06: £ 1 \cdot 06 \times 1 \cdot 06 \times 1 \cdot 06
$$

Hence the amount of £1 for three years，is $£ 1.06 \times 1.06 \times 1.06$－ or the product of three factors，each of them the amount of £1 for one year．

The same reasoning would answer for any number of pay－ ments．

The amount of any principal will be as much greater than the amount of $£ 1$ ，at the same rate，and for the same time，as the principal itself is greater than £1．Hence we multiply the amount of £1，by the given principal．

Rule III．requires 10 explanation．
23．When the decimals besome numerous，we may proceed as already dirceted［Sec．II．58］．

We may also shorten the process，in many cases，if we remernber that the product of two of the factors multiplied by itself，is equal to the product of four of them；that the product of four multiplied by the pro－ duct of two is equal to the product of six；and that the product of four multiplied by the product of four，is equal to the produet of eight，\＆e．Thus，in example 2， $1.1025(=1.05 \times 1.05) \therefore 1.1025=1.05 \times 1.05 \times 1.05 \times 105$ ．

EXERCISES．

1．What are the amount and compound interest of $\mathscr{L} 91$ for 7 years，at 5 per cent．per annum？Ans．£128 $0 s .11 d$ ．is the amount；and £37 $0 s .11 d$ ．，the com－ pound interest．

2．What are the amount and compound interest of $£ 142$ for 8 years，at 3 per cent．half－yearly？Ans． $£^{2} 22717 \mathrm{~s} .4 \frac{1}{2} d$ ，is the amount；and $£ 8517 s .4 \frac{1}{2} d$ ．，the compound interest．

3．What are the amount and compound interest of 2635 s ． 4 ars，at 4 per cent．per annum？Ans． $£ 900 s .5 \frac{3}{4} h$ ．is the amount；and $£ 2615 s .5 \frac{3}{4} d$ ．，tho compound iuterest．

4．What are the amount and compound interest of C44 5s．9d．for 11 years，at 6 per cent．per aunum？

Aus. $£ 841 s .5 d$. is the amount; and $£ 39$ 15s. Sd., the compound interest.
j. What are the anount and compound interest of $\mathscr{L} 324 s .9 \frac{3}{4} d$. for 3 years, at $\mathfrak{C} 210 s$. per cent. halfyearly ? Aus. £ 37 7s. $8 \frac{1}{2} d$. is the anount; and $\mathfrak{L y}$ œs. $10 \frac{1}{2} d$ l., the compound interest.
6. What are the amount and compound interest of £971 $0 \%, 2 \frac{1}{4} l$. for 13 years, at 4 per cent. per ammum?
8.

5s. Sd., crest of t. haltand x crest of mum? 15 15s
nd the ny sum being s there ng the de this ycars,
pal.
hat the e sam that is. cipal \times
8. What principal, put to interest for 6 years, would amount to de26S Os. $4 \frac{1}{2} d$., at 5 per cent. per annum ? Ans. L200.
9. What sum wonld produce $£ 74219 \mathrm{~s}$. $11 \frac{1}{2} d$. in 14 years, at 6 per cent. per annum? Ans. £328 12s. 7 d .
10. What is ee495 19s. $11 \frac{3}{4} \%$., to be due in 18 years, at 3 per cent. half-yearly, worth at present. Ans. $\mathfrak{K} 1712$ s. $8_{4}^{\frac{3}{4}} d$.
26. Given the prineipal, rate, and amount-to find the time-

Rule I.-Divide the amount by the principal; and into the quotient divide the amomit of $£ 1$ for one payment (at the given rate) as often as possible-the number of times the amount of $\mathscr{E} 1$ has been used as a divisor, will be the required number of payments.
Example.-In what time will $£ 02$ amount to $£ 10613 s$. 0_{3}^{3} d., at 3 per cent. half-yearly?
$\mathscr{L} 100$ 13s. 0 ? $d . \div \mathbb{C} 92=1 \cdot 15927$. The amount of $£ 1$ for oue payment is $£ 1 \cdot 03$. But $1 \cdot 15927 \div 1 \cdot 03=1 \cdot 1255$; $1 \cdot 1205 \div 1.03=1.09272 ; 1.01272 \div 1.03=1.0600 ;$ and $1.0609 \div 1.03=1.03 ; 1.03 \div 1.03=1$. We have used and 1.03 as a divisor 5 times; therefore the time is 5 payments or 2.2 years. Sometimes there will be a remainder after dividing ly 1.03 , \&e., as often as possible.

In explaining the methol of finding the powers and roots of a giren quantity, we shall, hereafter, notice a shorter method of ascertaning how often the anount of one pound can be used as a divisor.
27. Rule II.-Divide the given principal by the given amount, and ascertain by the interest table in how many payments $\mathfrak{X} 1$ would be equal to a quantity nearest to the quotient-considered as pounds: this will be tho required time.

Fxample.-In what time will $£ 50$ become $£ 100$, at 6 per cent. per ammom compound interest?

$$
£ 100 \div 50=2 .
$$

We find by the tables that in 11 years $£ 1$ will becomo £1.8983, which is less ; mind in 12 years that it will become d2.0122, which is greater than 2 . The answer nearest to the truth, therefore, is 12 years.
28. Reason of Rule I.-The given amount is [20] equal to the given principal, multiplied by a product which contains as many factors as there are times of payment-each factor being the mount of $£ 1$, for one payment. Hence it is evident, that if we divide the given amount by the given principal, we must have the proluct of these fretors; and that, if we divide this product, and tho successive quotients by one of the factors, we shall ascertain their number.

Reason of liulee II. - We can find the required number of factors (each the amount of $\& 1$), by ascertaining how often the mount of £1 may bo considered as a factor, without forming a product much greater or less than the quotient obtained when we divide the given amount by the given principal. Instead, however, of ealculating for ourselves, we may have recoursc to tables constructed by those who have already made the necessary multiplications-which saves much trouble.
29. When the quotient [27] is greater than any amount of \mathfrak{L}, at the given rate, in the table, divide it by the greatest found in the table; and, if necessary, divide the resulting quotient in the same way. Continue the process until the quotiont obtained is not greater than the largest amount in the table. Ascertain what number of payments corresponds to the last quotiont, and add to it so many times the largest number of payments in the table, as the largest amount in the table has been used for a divisor

Example.-When would $£ 22$ become $£ 53512$ s. $0_{4}^{3}(l$. , at 3 per cent. per annum?
$£^{2} 5512$ s. 03 3 $d . \div 22=24 \cdot 34560$, which is greater than any amount of $\mathfrak{L 1}$, at the given rate, contained in the table. $24 \cdot 34560 \div 4 \cdot 3839$ (the greatest amount of $\mathfrak{E l} 1$, at 3 per cent., found in the table $)=5.55339$; but this latter, also, is greater than any amount of $x 1$ at the girm rate in the tables. $5 \cdot 55339 \div 4 \cdot 3839=1 \cdot 26677$, which is found to be the amount of $£ 1$, at 3 per eent. per payment, in 8 payments. We have divided by the highest amount for E 1 in the tables, or that corresponding to fifty payments, twice. Therefore, tho refuired time, is $50+50+8$ payments, or 108 years.

EXERCISES.
11. When would $£ 146$ is. $8 d$. amount to $\mathscr{L} 182 s .8 \frac{3}{4} d$. at 4 per cent. p^{cr} ammum, compound interest? $\Lambda n s$. In 6 years.
12. When would $£ 542 s .8 d$. amount to $£ 763 s .5 d$., at 5 per cent. per annum, compound interest? Ans. In 7 years.
13. In what time would $\mathfrak{L} 793$ 0s. $21 / l$. become $\mathscr{L} 1034$ 13s. $10 \frac{1}{\frac{1}{2}} l$., at 3 per cent. hall-yearly, compound interest ? Ans. In $4 \frac{1}{8}$ years.
14. When would $£ 100$ become £1639 7s. $9 d$., at 6 per ecrit. half-yearly, compound interest? Ans. In 24 rears.

QUESTIONS

1. What is interest? [1].
2. What is the differenee between simple and compound interest? [1].
3. What are the pincipal, rate, and amount? [1].
4. How is the simple interest of any sum, for 1 year, fonnd ? [2 \&c.].
5. How is the simple interest of any sum, for several years, found ? [5].
6. How is the interest found, when the rate consists of more than one denomination? [4].
7. How is the simple interest of any sum, for ycars, months, \&e., found? [6].
8. How is the simple interest of any sum, for any time, at 5 or 6 , sce. per cent, found ? [7].
9. How is the simple interest found, when the rate, number of yoars, or both are expressed by a mixod number? [9].
10. How is the simple interest for days, at 5 per cent., found? [10].
11. How is the simple interest for days, at any other rate, found? [11].
12. How is the simple interest of any sum, for months at 6 per cent., found! [12].
13. How is the interest of money, left after onc or more payments, found ? [13].
14. How is the prineipal found, when the amount, rate, and time are given ? [14].
15. How is the amount found, when the time, rate, and prineipal are given? [15].
16. Wow is the time found, when the amount, prin cipal, and rate are given? [16].
17. How is the rate found, when the amount, priuci pal, and time are given? [18].
18. How are the amount, and compound interest found, when the principal, rate, and time are given? [19].
19. Itow is the present worth of any sum, at compound interest for any time, at any rate, found? [34].
20. How is the time found, when the prineipal, rate of compound interest, and amotnt are given? [26].

DISCOUNT.

30. Discount is money allowed for a sum paid before it is due, and should be such as would be produced by what is paid, were it put to interest from the time the payment is, until the time it ought to be made.

The present worth of enny sum, is that which would, at the rate allowed as discount, produce it, if put to interest until the sum becomes due.
31. A bill is not payable until three days after the time mentioned in it; thess are called days of grace. Thus, if the time expires on the 11 th of the month, the bill will not be payable until the 14th-except the latter falls on a Sunday, in which case it becomes payable on the preeding Saturday. A bill at 91 days will not be due until the 94th day after date.
32. When goods are purchased, a_certain discount is often allowed for prompt (immediate) payment.

The discount gencrally taken is larger than is supposed. Thus, lat what is allowed for paying money one year befure it is due be 5 per cent.; in ordinary circuunstances $£ 95$ would be the payment for $£ 100$. But $£ 95$ would not in one year, at 5 per cent., produce more than $\mathfrak{C 9 9} 15 s$. , which is less than $£ 100$; the crror, however, is inconsiderable when the time or sum is small Hence to find the discount and present worth at any rate, we may generallu use the following-
33. Rule.- Find tho interest for the sum to be paid, at the discuunt allowed; consider this ns diseount, and deduct it from what is due ; the remainder will be tho required present worth.

Kxample- $£ f^{-2}$ will $\}$ duc in 3 months; what should be allowed on imme ato prymient, the discount being at the rate of 6 per cent. per annum?

The interest on $\mathfrak{E} 62$ for 1 year at 6 per cent. per annum is L^{3}. $1^{1} 4_{3}^{3} d$; and for 3 months it is $18 \mathrm{~s} .7 \frac{1}{4} d$. Therefore
 worth.
34. To find the present wortl: accurately-

Jute.-Say, as £ 100 plus its interast for the given time, is to $£ 100,{ }^{\circ}$, is the given sum to the required present worth.

Example.-What would, at present. pay a deht of efl42 to be due in 6 months, 5 per eent. per aumum discont being allowed ?

This is merely a question in a rule already given [14].

ExERCISES.

1. What is the present worth of $£ 85015 s$., payable in one year, at 6 per cent. discount? Ans. £SO2 11s. $10 \frac{3}{4} d$
2. What is the present worth of £240 10 s ., payable in one year, at 4 per cent. discount? Ans. £2315s.
3. What is the present worth of $£ 55010$ s., payable in 5 years and 9 months, at 6 per cent. per an. discount? Ans. $\mathfrak{E} 4095 s .10 \frac{1}{2} l$.
4. A debt of $£ 1090$ will be due in 1 year and 5 months, what is its present worth, allowing 6 per cent. per an. discount? Ans. $\mathfrak{f l 0 0 4}$ 12s. $2 d$.
5. What sum will discharge a debt of $£ 25017 \mathrm{~s}$. $6 d$., to be due in 8 months, allowing 6 per cent. per an. discount? Ans. £2414s. $6 \frac{1}{4} l$.
6. What sum will discharge a debt of $\mathfrak{£} 840$, to be due in 6 months, allowing 6 per cent. per an. discount? Ans. $\operatorname{C815} 10$ s. $8 \frac{1}{8}$ d

W
P

夫

Photographic Sciences
Corporation

7. What ready money now will pay a debt of £200, to bo due 127 days hence, discounting at 6 per cent. per an.? Ans. £195 18s. $2 \frac{1}{2} d$.
8. What ready money now will pay for $£ 1000$, to be due in 130 days, allowing 6 per cent. per an. discount? Aris. £979 1s. $7 d$.
9. A bill of £150 10 s. will become due in 70 days, What ready money will now pay it, allowing 5 per cent. per an. discount? Ans. $\mathscr{L} 140$ 1s. $5 d$.
10. A bill of £140 J_{s}. will be due in 76 days, what ready money will now pay it, allowing 5 per cent. per an. discount? $\Lambda n s$. £139 1s. $0 \frac{1}{2} l$.
11. A bill of $£ 300$ will be due in 91 days, what will now pay it, allowing 5 per cent. per an. discount? Ans. £296 bs. $1 \frac{1}{2} d$.
12. A bill of £39 5 s. will become due on the first of Septeinber, what ready money will pay it on the preceding 3rd of July, allowing 6 per cent. per an.? Ans. £38 18s. $7 \frac{1}{4} \mathrm{~d}$.
13. A bill of £21S $3 s$. $8 \frac{1}{4} d$. is drawn of the 14 th August at 4 months, and discounted on the 3rd of Oct. ; what is then its worth, allowing 4 per cent. per an. discount? Ans. £216 8s. $1 \frac{1}{3} d$.
14. A bill of $\& 48618 s$. $8 d$. is drawn of the 25 th March at 10 months, and discounted on the 19th June, what then is its worth, allowing 5 per cent. per an. discount? Ans. £472 9s. $11 \frac{3}{4} d$.
15. What is the present worth of $£ 700$, to be due in 9 months, discount being 5 per cent. per an.? Ains. $£^{2} 674$ 13s. $11 \frac{1}{2} d$.
16. What is the present worth of $£ 315$ 12s. $4 \frac{1}{5} d$., payable in 4 years, at 6 per cent. per an. discount? Ans. £254 10s. $7 \frac{1}{4} d$.
17. What is the present worth and discount of $£ 550$ 10s. for 9 months, at 5 per cent. per an.? Ans. £530 12s. $0 \frac{1}{2}$ d. is the present worth; and £19 17s. $11 \frac{1}{4} d$. s the discount.
18. Bought goods to the value of $£ 3513 s$. $8 d$. to be said in 294 days; what ready money are they now worth, 6 per cent. per an. discount being allowed? Ans. £34 Os. $9 \frac{1}{4} d$.

Rule.-Say, as $£ 100$ minus the rate per cent. is to $\mathcal{L} 100$, so is the value of the goods insured, to the required insurance.

Example.-What sum must I insure that if goods worth $£ 400$ are lost, I may receive both their value and the insurance paid, the latter being at the rate of 5 per cont.?

$$
\mathfrak{£} 95: £ 100:: £ 400: \frac{£ 100 \times 400}{95}=£ 4211 \mathrm{~s} .03 \mathrm{~d} .
$$

If $£ 100$ were insured, only $£ 95$ would be actually received, since $£ 5$ was paid for the $£ 100$. In the example, $£ 4211 \mathrm{~s}, 0 \frac{1}{2} d$. are received; but deducting $£ 211 \mathrm{~s}$. 01d., the insurance, $£ 400$ remains.

EXERCISES.

1. What premium must be paid fur insuring goods to the amount of \&900 15s., at $2 \frac{1}{2}$ per cont.? Ans. £22 10s. $4 \frac{1}{2} d$.
2. What premium must be paid for insuring goods to the amount of $£ 7000$, at 5 per cent. ? Ans. $£ 350$.
3. What is the brokerage on £976 17s. 6d., at 5 s . per cent. ? Ans. £2 $8 s . \cdot 10 \frac{1}{8} d$.
4. What is the premium of insurance on goods worth £2000, at $7 \frac{1}{2}$ per cent.? Ans. £150.
5. What is the commission on $£ 767$ 14s. $7 d$., at $2 \frac{1}{2}$ per cont.? Ans. £19 3s. $10 \frac{3}{8} d$.
6. How much is the commission on goods worth £971 $14 s$. $7 d$., at $5 s$ s. per cent. ? Ans. £2 $8 s .7 \frac{3}{6} d$.
7. What is the brokerage on $£ 3000$, at $2 s .6 d$. per cent.? Ans. セ3 15 s .

8 How much is to be insured at 5 per cent. on goods worth 2900 , so that, in case of loss, not only the value of the goods, but the premium of insurance also, may be repaill? Ans. £947 7s. T $_{\frac{8}{9} 9} d$.
9. Shipped off for Trinidad goods worth £2000, how much must be insured on them at 10 per cont., that in case of loss the premium of insurance, as well as their value, may be recovered ? Ans. £2222 $4 s .5 \frac{1}{3} d$.

QUESTIONS FOR TIIE PUPIL.

1. What is commission? [35].
2. What is insurance ? [35].
3. What is brokerage ? [35]

nt. is to

 to the
ds worth

 the inent. ?$0 \frac{3}{4} d$. received, 1s. $0 \frac{1}{2} d$. ce, $£ 400$
goods Ans. goods £350. , at $5 s$. worth , at $2 \frac{1}{2}$
worth $\frac{3}{60} d$.
id. per s their
4. How are commission, insurance, \&c., calculated ? [36].
5. How is insurance calculated, so that both the insurance and value of the goods may be received, if the latter are lost? [37].

PURCHASE OF STOCK.

33. Stock is moncy borrowed by Government from individuals, or contributed by merchants, \&.c., for the purpose of trade, and bearing interest at a fixed, or variable rate. It is transferable cither entirely, or in part, according to the pleasure of the owner.

If the price per eent. is more than $£ 100$, the stock in question is said to be above, if less than £100, Zelow "par."

Sometimes the shores of trading companies are only gaadually paid up; and in many cases the whole price of the share is not demanded at all-they may be $£ 50$, $£ 100$, \&ce., shares, while only $£ 5, £ 10$, \&c., may have been paid on each. One person may have many shares When the intesest per cent. on the money paid is considerable, stock often sells for more than what it originally eost; on the other hand, when money becomes more valuable, or the trade for which the stock was contributed is not prosperous, it sells for less.
39. To find the value of any amount of stock, at any rate per cent.-

Rule.-Multiply the amount by the value per cent., and divide the product by 100.

Exampie.-When $£ 69 \frac{1}{8}$ will purchase $£ 100$ of stock, what will purchase $£ 642$?

$$
\frac{£ 642 \times 69 \frac{1}{8}}{100}=£ 44315 \mathrm{~s} .77_{3}^{3} \mathrm{~d} .
$$

It is evident that $£ 100$ of stock is to any other amount of $i t$, as the price of the former is to that of the latiter. Thus -

$$
\mathcal{L} 100: \mathcal{L} 642:: £ 69 \frac{1}{3}: \frac{\mathcal{L} 642 \times 69 \frac{1}{3}}{100}
$$

EXERCISEs.

1. What must be given for $£ 75016 s$. in the 3 per cent. annuities, when £641 will purchase £100? Ans.

2. What must be given for $£ 1756$ 7s. $6 d$. India stock, when $\mathfrak{L} 196 \frac{1}{4}$ will purchase $\mathfrak{£ 1 0 0 : ~ A n s . ~ £ 3 4 4 6 ~ 1 7 s . ~} 8 \frac{5}{8} d$,
3. What is the purchase of $£ 9757$ bank stock, an $\mathfrak{£ 1 2 5 \frac { 5 } { 8 }}$ per cent. ? Aus. £122574s. $7 \frac{1}{2} d$.

QUESTIONS.

1. What is stock? [38].
2. When is it above, and when below "par"? [38].
3. How is the value of any amount of stock, at any rate per cent., found ? [39].

EQUATION OF PAYMENTS.

40. This is a process by which we discover a time, when scveral debts to be due at different periods may be paid, ai once, without loss cither to debtor or creditor.

Rule.-Multiply each payment by the time which should elapse before it would become due; then, add the products together, and divide their sum by the sum of the debts.

Exampie 1.-A person owes another $£ 20$, payable in 6 months; $£ 50$, payable in 8 nonths ; and $£ 90$, payable in 12 monthe. At what time may ali be paid together, without loss or gain to either party ?

$$
\begin{aligned}
& \text { よ £ } \\
& 20 \times 6=120 \\
& 50 \times 8=400 \\
& 90 \times 1.2=1080 \\
& \overline{160} \quad 160) \overline{160} \begin{array}{l}
160 \\
100
\end{array} \text { the required number of mo:' }{ }^{\prime 2} \text { s. }
\end{aligned}
$$

Example 2.-A debt of $£ 450$ is to be paid thus: $£ 100$ immediately, $£ 300$ in four, and the rest in six months. When should it be paid altogether?

$$
\begin{aligned}
& \overline{450}=1
\end{aligned}
$$

41. Wo have (according to a principle formerly used [13]) reduced each debt to a'sum which would bring the same interest, in one month. For 6 times $£ 20$, to be due in'1 month, should evidently produce the same as $\mathcal{L} 20$, to be due in 6 inonths-and so of the other debts. And the interest of $£ 1600$ for the smaller time, will just be equal to the interest of the smaller sum for the larger time.

EXERCISES.

1. A owes B $£ 600$, of which $£ 200$ is payable in 3 months, $£ 150$ in 4 months, and the rest in 6 months ; but it is agreed that the whole sum shall be paid at once. When should the payment be made? Ans. In $4 \frac{1}{2}$ months.
2. A debt is to be discharged in the foilowing nanner : $\frac{1}{4}$ at prouent, and $\frac{1}{4}$ every three months after antil all is paid. What is the equated time? Ans. $4 \frac{1}{2}$ months.
3. A debt of $£ 120$ will be due as follows : $£ 50$ in 2 months, $\mathscr{\&} 40$ in 5 , and the rest in 7 months. When may the whole be paid together ? Ans. In $4 \frac{1}{4}$ months.
4. A owes B £110, of whieh $£ 50$ is to be paid at the end of 2 years, $£ 40$ at the end of $3 \frac{1}{2}$, and $£ 20$ at the end of $4 \frac{1}{2}$ years. When should B receive all at once? Aus. In 3 years.
5. A debt is to be discharged by paying $\frac{1}{2}$ in 3 months, $\frac{1}{3}$ in 5 months, and the rest in 6 months. What is the equated time for the whole ? Ans. $4 \frac{1}{6}$ months.

QUESTIONS.

1. What is meant by the equation of payments? [40].
2. What is the rule for discovering when money, to be due at different times, may be paid at once? [40].

SECTION VIII.

EXCHANGE, \&c.

1. Exehange enables us to find what amount of the uroney of one country is equal to a given amount of the money of another.

Moncy is of two kinds, real-or coin, and imaginaryor money of exehange, for which there is no coin ; as, for example " one pound sterling."

The par of exchange is that amount of the money of one country actually equai to a given sum of the money of another; taking into aceount the value of the metals they contain. The course of exchange is that sum which, in point of faet, would be allowed for it.
2. When the course of exchange with any place is above "par," the balance of trade is against that place. Thus if Hamburgh reecives merchandise from London to the amount of $£ 100,000$, and ships off, in return, goods to the amount of but $£ 50,000$, it can pay only half what it owes by bills of exehange, and for the remainder must obtain bills of exchange from some place else, giving for then a premium-which is so much loot. But the exchange eannot be much above par, sinee, if the premium to be paid for bills of exchange is high, the merehant will export goods at less profit; or he will pay the expense of transmitting and insuring coin, or
3. The nominal value of commodities in these countries was from four to fourtecn times less formerly than at present ; that is, the same arrount of money would then buy much more than now. We may estimate the value of money, at any partieular period, from the amount of corn it would purchase at that time. The valuc of money fluctuates from the uature of the crops, the state of trade, \&o.

In exehange, a variable is given for a fixed sum; thus London receives different values for $£ 1$ from different countrics.

Agio is the difference which there is in some places bstween the current or cash moncy, and the exchanre or lanit money-which is finer.

The following tables of foreign eoins are to be mado fumiliar to the pupil.

FOREIGN MONEY.

MONEY OF AMSTERDAM.
Flemish Money.
Pennings

Hamburgh Money.

"Lab," from Lubec, where it was coined, was formerly used
for this purpose ; thus, " one mark Lub."
We exchange with Holland and Flanders by the pound
sterling.

FRENCH MONEY.
Accounts were furmerly kept in liveres, \&c.

Derniers

Accounts are now kept in francs and centimes.

Contimes

10			
100 or 81 livres $=80$ francs.decimes 10	.	.	make 1 decime.

PORTUGUESE MONEY.
Accounts are kept in milrees and rees.
Rees

SPANISH MONEY.
Spanish money is of two kinds, plate and vellon; the latter being to the former as 32 is to 17. Plate is used in exchange with us. Accounts are kept in piastres, and maravedi.

AMERICAN MONEY.

In some parts of the United States accounts are kept in dollars, dimes, and conts.

DANISH MONEX.

NEAPOLITAN MONEY.

make 1 carlin. 1 ducat $\mathrm{r} \epsilon_{\mathrm{g}} 12$
MONEY OF GFNOA.
Iire soldi
4 and 12 make 1 scudo di cambio, or crown of exchange. 10 and 141 scudo d'oro, or gol 1 crown. OF GENOA AND LEGHORN.
Denari di pezza

RUSSIAN MONEY.

Copecs			
100			moke 1 ru
		- ${ }^{-}$	
	EAST	INDIAN	MONEY.
Cowries			
2560	-		make 1 rupce.
linjees			
100,000		-	1 lae.
10,000,000		-	1 crore.

The cowrie is a sinall shell found at the Maldives, and near Anrola: in Africa about 5000 of them pass for a pound.

The rupeg has different values: at Caleutta it is 1 s .1141. the Sicca rupee is $2 s .0 .2 d$. ; and the current rupee $2 s$.-if we divide any number of these by 10 , we change them to pounds of gur money; the Bombay rupee is $2 s .3 \pi$, , \&c. Λ sum of Indian money is expressed as follows; $5 \cdot 88220$, which means 6 lacs and 88220 rupecs.
4. To reduce bank to current moncy-

Rele.-Say, as $£ 100$ is to $£ 100$ + the agio, so is the given amount of bank to the required amount of current money.
Example.-How many guilders, eurront money, are equal to 463 muilders, 3 stivers, and $13 \frac{64}{64}$ pennings banco, agio being 4 ?

And 485 g .0 st. 935957 p . is the amount sought. 5. We multiply the first and second terms by 7 , and and tho numerator of the fraction to one of the products. This is the same thing as reducing these terms to fractions having 7 for their denominator, and then multiplying them by 7 [Sec. V. 29].
For the same reason, and in the same way, we multiply the first and third terms h. 65, to banish the fraction, without dentroying the proportion.

The remainder of the process is necording to the rule of proportion [Sce. V. 81]. We reduce the answer to peanings, stivers, and guiders.

EXERCISES.

1. Reduce 374 guilders, 12 stivers, bank money, to eurrent money, agio being 4多 per cent.? Aus. 392 g , 5 st., $31 \frac{1}{5} \mathrm{p}$.
2. Reduce 437 S guilders, Q stivers, bank money, to current money, agio boing $4 \frac{5}{6}$ per cent. ? Ans. 4577 g , 17 st., $37_{\frac{7}{2} 7} \mathrm{p}$.
3. Reduce 873 guilders, 11 stivers, bank money, to current money, agio being $4 \frac{7}{3}$ per cent.? Aus. 916 g , 2 st., $11 \frac{1}{\frac{9}{0}} \mathrm{p}$.
4. Roduce 1642 guilders, bank money, to current mioney, agio being $41 \frac{1}{2}$ per cent. ? Aus. 1722 g., 14st., $10 \frac{2}{15} \mathrm{p}$.
5. To reduce current to hank money-

Ruse.-Say, as $\mathscr{X} 100+$ the agio is to $\mathscr{L} 100$, so is the given amount of current to the required amount of bank money.

Exampis.-How much bank money is there in 485 guilders and $9 \frac{20957}{506}$ pennings agio being 47 ?

EXERCISES.

5. Reduce 58734 guilders, 9 stivers, 11 pennings, current money, to hank money, agio being $4 \frac{5}{6}$ per cent.? Ans. 56026 g., 10 st., $11 \frac{1}{6} \frac{1}{2} \mathrm{p}$ p.
6. Reduce 4326 guilders, 15 pennings, current money, to bank money, agio being $4 \frac{6}{7}$ per cent. ? Aus. 4125 g ., 13 st., $2 \frac{18}{36} \frac{0}{7} \mathrm{p}$.
7. Reduce 1186 guilders, 4 stivers, 8 pennings, current, to bank money, ario being $4 \frac{3}{8}$ per cent.? Aus 1136 g., 10 st., $0 \frac{188}{\frac{8}{8}} \frac{0}{7} \mathrm{p}$.
S. Reduce 8560 guilders, 8 stivers, 10 pennings, current, to bank money, agio being $4 \frac{3}{5}$ per cent. Ans. $8183 \mathrm{~g} ., 19$ st., $5 \frac{51}{5} \frac{3}{3} \mathrm{p}$.
8. To reduce foreign money to British, \&c.-

Rule.-Put the amount of British money considered in the rate of exchange as third term of the proportion, its value in foreign money as first, and the foreign money to be reduced as second term.

Example 1.-Tlemish Money.-How much British money is equal to 1054 guilders, 7 stivors, the exchange being 33 s. $4 d$. Flemish to $£ \downarrow$ British ?

$$
\begin{aligned}
& \text { 33s. } 4 i \text { : } 1054 \mathrm{~g} .7 \text { st. :: £1 : ? } \\
& \frac{12}{400} \text { pence. } \quad \frac{20}{21087} \text { stivers. } \\
& \text { 400) } \overline{4217 \frac{2}{4}} \text { Flemish pence. } \\
& \mathcal{£ 1 0 5} 435^{\circ}=£ 1058 \text { s. } 8 \frac{1}{2} d .
\end{aligned}
$$

£1, the amount of British money considered in the rate, is pus in the third term, 33 s .4 d ., its value in foreign money, in the first; and 1054 g . ? st., the money to be reduced, in the second.
9. How many pounds sterling in 1680 guilders, at 33s. 3d. Flemish per pound sterling? Ans. £165 8s.

10. Reduce 60,48 guilders, to British money, at $33 s$. 11d. Flemish per pound British? Aus. \&5 94 7s. $11 \frac{21}{4} \frac{1}{9} \frac{2}{9} d$.
11. Reduce 2048 guilders, io stivers, io British money, at 34s. 5d. Wlemish per pound sterling? Ans £198 8s. $6 \frac{1}{4} \frac{1}{1} \frac{4}{3} d$.

1 stiver Ans.

Exa money being

Mul redue
13. marks pound
14.

5 sch per po 15. schilli ling ? 16. Britis pound 15 s .0

Exa centin per

23
42 c
1 fran
17.
money Ans. 18.
mone Ans.

1\%. How many pounds sterling in 1000 guilders, 10 stivers, exchs.nge being at $33 s .4 d$. per pound sterling? Ans. £100 1s.

Example 2.-Hamburgh Money. - How much British money is equivalent to 476 marks, 9 skillings, the exchange being 33 s. 6 d. Flemish per pound British ?

Multiplying the schillings by 2, and the marks by 32 , reduces both to pence.
13. How much Britisk mouey is equivalent to 3083 marks, $12 \frac{3}{3}$ schillings Hambro', at 32s. 4 d . Flemish per pound sterling ? Ans. $\mathfrak{£ 2 5 4 6 s . 8 d .}$
14. How much English monev is equal to 5127 marks, 5 schillings, Hambro' exchange, at $36 s$. 2d. Flemish per pound sterling? Avs. £378 1 s .

15 . How many pounds sterling in 2443 marks, $9 \frac{1}{2}$ schillings, Hambro', at 32s. 6d. Flemish per pound sterling? Ans. £200 10 s.
16. Reduce 7854 marks, 7 schillings Hambro', to British money, exchange at 34s. 11d. Flemish per pound sterling, and agio at 21 per cent.? Ans. £495 $15 s$. $0 \frac{3}{4} d$

Example 3.-French Money.-Reduce 8654 francs, 42 centimes, to British moncy, the exchange being $23 f$., 50 c., per $£ 1$ British.

42 centimes are 0.42 of a franc, since 100 centimes make 1 franc.
17. Reduce 17969 francs, 85 centimes, to British moncy, at 23 franc", 49 centimes per pound sterling ? Ans. $\mathrm{e}^{2} 765$.
18. Reduce 7672 francs, 50 centimes, tó British money, at 23 francs, 25 centimes per pound sterling? Aus. £330.
19. Reduce 15547 franes, 36 centimes, to. British money, at 23 franes, 15 centimes per pound sterling? Aus. 2675 18s. $2_{4}^{3} d$.
20. Reduce 450 franes, $55_{\frac{1}{2}}$ centimes, to British money, at 25 francs, 5 centimes per pound sterling? Ans. £176 14 s .

Example 4.-Portuguese Money.-How much British money is equal to 540 milrees, 420 rees, exchange being at 5s. 6d. per milree?

$$
\begin{aligned}
& \text { m. m. r. s. } d \text {. } \\
& 1: 540 \cdot 420:: 5 \quad 6: 540 \cdot 420 \times 5 s .6 d .=£ 148 \text { 12s. } 33{ }_{4}^{3} d .
\end{aligned}
$$

In this case the British money is the variable quantity, and 5s: $6 d$. is that amount of it which is considered in the rate.
The rees are changed into the decimal of a milree by putting them to the right hand side of the decimal point, since one ree is the thousandth of a milree.
21. In 850 milrees, 500 rees, how much British money, at $5 s .4 d$. per milree ? Ans. £226 $16 s$.
22. Reduce 2060 milrees, 380 rees, to English money, at $5 s$. $6 \frac{3}{4} d$. per milree? Ans. £573 $0 s .10 \frac{1}{4} d$.
23. In 1785 milrees, 581 rees, how many pounds sterłing, exchange at $64 \frac{1}{2}$ per milree? Ans. £479 17s. $6 d$.
24. In 2000 milrees, at $5 s$. $8 \frac{1}{2} d$. per milree, how many pounds stcrling? Ans. $\mathfrak{£ 5 7 0} 16$ s. $8 d$.

Example 5.-Spanish Money.-Reduce 84 piastres, 6 reals, 19 maravedi, to British money, the exchange being $40 d$. the piastre.

EXERCISFS.

25. Reduce 2448 piastres to British money, exchange at 50 d . sterling per piastre? 1 ns . £510.
26. Reduce 30000 piastres to British money, at 40 d . per piastre? Ans. £5000.
27. Reduce 1,25 piastres, 6 reals, $22 \frac{1}{1} \frac{5}{3} \frac{0}{7}$ maravedi, to British money, at $39 \frac{1}{4} d$. per piastre? Ans. £167 15s. $4 d$.

Example 6.-Amcrican Money.-Reduce 3765 dollars to British money, at 4s. per dullar. $4 s=£ \frac{1}{5}$; therefore

$$
\text { 5) } 3765 \text { dol. dol. s. } £
$$

753 is the required sum. Or $1: 3765:: 4: 753$
28. Reduce £292 3s. $2 \frac{3}{5}$ d. American, to British money, at 66 pcr cent. ? Ans. £176.
29. Reduce 5611 dollars, 42 cents., to British money, at $4 s .5 \frac{1}{2} d$. per dolliar? Aus. £1250 17s. $7 d$.
30. Reduce 2746 dollars, 30 cents., to British money, at $4 s$. $3 \frac{1}{2} d$. per dollar? $\Lambda u s$. £5 $596 s$. $2 \frac{1}{2} d$.

From these example;s the pupil will very easily understand how any other kind of foreign, may be changed to British money.
8. To reduce British to foreign money-

Rule.-Put that anount of foreign money which is considered in the xate of exchange as the third term, its value in British money as the first, and the British money to be reduced as the second term.

Example 1.-Flemis', Money.-How many guilders, \&o., in $£ 23614$ s. $2 l$. British, the exchange being $345.2 d$. Flemish to fil British ?

We might take parts for the 34s. 2d.-

$$
\begin{aligned}
& 34 s .2 d .=£ 1+10 s+4 s .+2 d .
\end{aligned}
$$

EXERCISES.

31. In $£ 100$ 1s., how much Flemish moneyं, exchange at 33s. $4 d$. per pound sterling? Ans. 1000 guilders, 10 stivers.
32. Reduce $£ 168$ 8s. $5_{\frac{7}{3} \frac{7}{3}}$. British into Flemish, exchange being 33s. $3 d$. Flemish per pound sterling ? Ans. 1680 guilders.

33, In £199 11s. $10_{1 / 2 \frac{2}{39}} d$. British, how much Flemish money, exchange 34 s . $9 d$. per pound sterling? Ans. 2080 guilders, 15 stivers.
34. Reduce £198 8s. $6 \frac{1}{4} \frac{1}{3} \mathrm{~d}$. British to Flemish money, exchange being 34s. 5d. Flemish per pound sterling? Ans. 2048 guilders, 15 stivers.

Example 2.-Hamburgh Money.-How many marks, \&c., in $£ 246$ s. British, exohange being 33 s . 2 d . per £1 British ?

35. Reduce £254 6s. 8d. English to Hamburgh money, at $32 s .4 d$. per pound sterling? Hns. 3083 marks, $12 \frac{2}{3}$ stivers.
36. Reduce £378 1s. to Hamburg money, at 36 s 2d. Flemish per pound sterling? Ans. 5127 marks, 5 schillings.
37. Reduce $£ 536$ to Hamburgh money, at 36s. $4 d$. per pound sterling? Ans. 7303 marks.
38. Reduce £495 15s. $0{ }_{4}^{3} d$. to Hamburg currency, at 34s. 11d. per pound sterling; agio at 21 per cent. ? Ans. 7854 marks 7 schillings.

Example 3.-French Money.-How much French money is equal in value to $£ 83$ 2s. 2d., exchange being 23 francs 25 centimes per $£ 1$ British?

39. Reduce £274 5s. 9d. British to francs, \&c., exchange at 23 francs 57 centimes per pound sterling : Ans. 6464 francs 96 centimes.
40. In £765, how many francs, \&c., at 23 francs 49 centimes per pound sterling? Ans. 17969 francs 85 centimes.
41. Reduce $£ 330$ to francs, \&c., at 23 francs 25 centimes per pound sterling? Ans. 7672 francs 50 cents.
42. Reduce $£ 7344 s$. to French money, at 24 francs 1 centime per pound sterling? Ans. 1769 francs $42 \frac{1}{5}$ centimes.
Example 4.-Portuguese Money.-How many milrees and rees in $£ 326 \mathrm{~s}$. British, exchange being 5 s .9 d . British pe. milree?

, oquired sum.
43. Reduce $£ 22616$ s. to milrees, \&c., at $5 s$ s. $4 d$. per milree ? Ans. 850 milrees 500 rees.
44. Reduce $\mathscr{L 4 7 9} 17 s$. $6 d$. to milrees, \&c., at $64 \frac{1}{2} d$. pur milrce? Ans. 1785 milrees 581 rees.
45. Reduce £570 16s. 8d. to milrees, \&c., at 5 s . $8 \frac{1}{2} d$. per milree? Ans. 2000 milrees.
46. Reduce $£ 715$ to milrees, \&c., at 5 s . $8 d$. per milree ? Ans. 2523 milrees $529_{\frac{7}{7}}$ rees.
Example 5.-Spanish Money.-How many piastres, \&c., in $£ 62$ British, exchange being 50 d . per piastre?

$\begin{gathered} d . \\ 50 \\ 50 \\ \frac{62}{2}:: 1: ? \\ \hline 20 \end{gathered}$	
1240	p. r. m.
12	
$5 0 \longdiv { 1 4 8 8 0 }$	
$297 \cdot 6$8 piastres.	
$\overline{48}$ reals.	
34	
50 11632	
	${ }_{5}^{6}$ maravedis.

47. How many piastres, \&c., shall I receive for $£ 510$ sterling, exchange at 50d. sterling per piastre? Ans. 2448 piastres.
48. Reduce $£ 5000$ to piastres, at $40 d$. per piastre ? Ans. 30000 piastres.
49. Reduce $£ 167$ 15s. $4 d$. to piastres, \&c., at $39 \frac{1}{4} d$. per piastre ? $\Lambda n s .1025$ piastres, 6 reals, $22 \frac{15}{15} \frac{50}{7}$ maravedis.
50. Reduce £809 $9 \mathrm{~s} 8 d$. to piastres, \&c., at $40 \frac{3}{4} d$. per piastre ? Ans. 4767 piastres, 4 reals, $2 \frac{89}{163}$ maravedis.

Example 6.-American Money.-Reduce $£ 176$ British to American currency, at 66 per cent.

$$
\begin{aligned}
& \stackrel{\mathcal{E}}{100}: \stackrel{\mathcal{E}}{176}: \stackrel{\mathcal{E}}{160}: \\
& \begin{array}{r}
100 \lcm{29216}
\end{array} \\
& \mathfrak{f} 2923 s .2 \frac{1}{2} d . \text { is the required sum. }
\end{aligned}
$$

51. Reduce £753 to dollars, at 4 s . per dollar ? Ans. 3765 dollars.
52. Reduce £532 4s. 8d. British to American money, at 64 per eent. ? Ans. £872 17s. 3l.
53. Reduce £1250 17s. 7 d . sterling to dollars, at 4s. $5 \frac{1}{2} d$. per dollar ? Ans. 5611 dollars 42 eents.
54. Reduee £589 6s. $2 \frac{9}{20} d$. to dollars, at $4 s$. $3 \frac{1}{2} d$. per dollar? Ans. 2746 dollars 30 eents.
55. Reduee £437 British to American money, at 78 per eent. ? Ans. £777 17s. $2 \frac{1}{2} d$.
56. To reduee florins, \&c., to pounds, \&e., Flemish-

Rưe.-Divide the florins by 6 for pounds, andadding the remainder (reduced to stivers) to the stivers -divide the sum by 6 , for skillings, and double the remainder, for grotes.

Example.-How many pounds, skillings, and grotes, in 165 florins 19 stivers?

> | f. | st. |
| :---: | :---: |
| 6)165 | 19 |
| $£ 27$ | 13 s. |

6 will go into 165, 27 times-leaving 3 florins, or 60 stivers, which, with 19 , make 79 stivers ; 6 will go into 79,13 timesleaving 1 ; twice 1 are 2 .
10. Reason of the Rule.-There are 6 times as many florins as pounds; for we find by the table that 240 grotes make $£ 1$, and that $40(24.0)$ grotes make I florin. There are 6 times as many stivers as skillings; since 96 pennings make 1 skilling, and $16\left(\begin{array}{c}96 \\ 8 \\ 5\end{array}\right)$ pfennings nake one stiver. Also; sinco 2 grotes make one stiver, the remaining stivers are equal to twice as many grotes.

Multiplying by 20 and 2 would reduce the florins to grotes; nud dividing the grotes by 12 and 20 would reduce then to pounds. Thus, using the same example-

EXERCISES.

56. In 142 florins 17 stivers, how many pounds, \&c., Ans. £23 16s. $2 d$.
57. In 72 florins 14 stivers, how many pounds, \&c., Ans. £12 2s. 4d.
58. In 180 florins, how many pounds, \&c. ? Ans. £30
59. To reduce pounds, \&c., to florins, \&c.-

Rule.-Multiply the stivers by 6 ; add to the product half the number of grotes, then for every 20 contained in the sum carry 1 , and set down what remains above the twenties as stivers. Multiply the pounds by 6, and, adding to the product what is to be carried from the stivers, consider the sum as florins.

Example.-How many florins and stivers in 27 pounds, 13 skillings, and 2 grotes?

\pm	s.	d.
27	13	2
	6	

165fl. 19st., the required sum.
6 times 13 are 78 , which, with half the number ($\frac{3}{2}$) of grotes, make 79 stivers-or 3 florins and 19 stivers (3 twenties, and 19) ; putting down 19 we carry 3. 6 times 27 are 162, and the 3 to be carried are 165 florins.

This rule is merely the converse of the last. It is evident that multiplying by 20 and 12 , and dividing the product by 2 and 20 , would give the same result. Thus

59. How many florins and stivers in 30 pounds, 12 skillings, and 1 grote? Ans. 183 fl., 12 st., 1 g.
60. How many florins, \&ce., in 129 pounds, 7 skillings ? Ans. 776 fl .2 st.
61. In 97 pounds, 8 skillings, 2 grotes, how many florins, \&c.? Aus. 584 fl. 9 st.

QUESTIONS.

1. What is exchange ? [1].
2. What is the differenee between real and imaginary money ? [1].
3. What are the par and course of exchange? [1].
4. What is agio? [3].
5. What is the difference between current or cash money and exchange or bank money? [3].
6. How is bank reduced to current money? [4].
7. How is current reduced to bank meney? [6].
8. How is foreign reduced to British money ? [7].
9. How is British reduced to foreign money? [8].
10. How are florins, \&c., reduced to pounds Flemish, \&c. ? [9].
11. How are pounds Flemish, \&c., reduced to florins, \&c.? [11].

arbitration of exchanges.

12. In the rule of exchange only two places are coneerned; it may sometimes, however, be more beneficial eo the merehant to draw through one or more other places. The mode of estimating the value of the money of any place, not drawn directly, but through one or more other places, is called the arbitration of exchanges, and is either simple or compound. It is "simpile" when there is only one intermediate place, "compound" when there are more than one.

All questions in this rule may be solved by one or more proportions.
13. Simple Arbitration of Exchanges.-Given the course of exchange between each of two places and a third, to find the par of exchange between the former.

Rule.-Make the given sums of money belonging to the third place the first and second terms of the proportion; and put, as third term, the equivalent of what is in the first. The fourth proportional will be the value of what is in the second term, in the kind of money contained in the third term.

Example.-If Loudon erohanges with Paris at 10 d. per franc, and with Ansterdam at 34s. $8 d$. per $\mathcal{L 1}$ sterling, what ought to be tho course of exchange, betiveon Paris and Ansterdam, that a merchant may without loss inmit. from London to Amsterdan throngh Paris?
$\mathrm{L}^{\prime} 1: 10 \mathrm{~d}:: 3 \mathrm{~s}$ s. 8 l . (the equivalent, in Flemish money, of $\mathfrak{f l}$) : ? the equivalent of luid. British (or of a franc) in Flemish money.
Or $240: 10:: 34 \mathrm{~s} .8 \mathrm{cl} .: \frac{34 \mathrm{~s} .8 \mathrm{ll} . \times 10}{240}=17 \frac{1}{3}$ l., the required value of 10d. British, or of a franc, in Flemish money. £1 and 10il. are the two given sums of English money, or that which belongs to the third place ; and $34 s .8 l$. is the given equivalent of £1.
It is evident that, $17 \frac{1}{3} l$. (Flemish) being the value of 10 d., the equivalent in Britisl inoney of a friano, when more than 17 fl . Flemish is given for a franc, the merchant will gain it he remits through Paris, since he will thas indirectly receive more than $17 \frac{1}{d} d$. for 10 d . sterling-that is, more than its equivalent, in Flemish money, at the given course of exchange between London and Ainsterdam. On the other hand, if less than $17 \frac{1}{3} d$. Flemish is nllowed for a frane, he will lose by remitting though Paris ; since he will receive a franc for $10 d$. (British); but he will not receive $17 \frac{1}{3} d$. for the frane:-while, had he remitted 10d., the value of the franc, to Amsterdian directly, he would have been allowed $17 \frac{1}{s} d$.

exercises.

1. If the exchange between London and Amsterdam is 33 s. $9 d$. per pound sterling and the exchange between London and Paris $9 \frac{1}{2} d$. per frane, what is tho par of exchange between Amsterdan and Paris? Aus. Nearly 16d: Filemish por franc.
2. London is indebted to Petersburgh 5000 rubles; while the exchange between Petersburgh and London is at 50d. per ruble, but between Petersburgh and Holland it is at $90 d$. Flemish per ruble, and Holland and England at 36s. $4 d$. Flemish per pound sterling. Which will be the more advantageous method for London to be drawn upon-the direct or the indirect? Ans. London will gain $\mathscr{L} 911 \mathrm{~s}$. $1 \frac{83}{109} d$. if it makes payments by way of Holland.
5000 rubles $=£ 1041$ 13s. $4 d$. British. or $£ 1875$ Flemish, but $£ 1875$ Flemish $=£ 1032$ 2s. $2 \frac{+9}{100} d$. British.

10d. per ne, whit ris and nit. from is the
14. Compound Arbitration of Exchanges.-To find what should be the course of exchange between two places, through two or more others, that it may be on a par with the course of exchange between the same two places, directly-

Rule.-Having reduced monies of the same kind to the same denomination, eonsider caeh course of exchange as a ratio; set down the different ratios in a vertieal column, so that the antecedent of the second shall be of the same kind as the consequent of the first, and the antecedent of the third, of the same kind as the consequent of the second-putting down a note of interrogation for the unknown term of the imporfect ratio. Ther divide the product of the consequents by the product of the antecedents, and the quotient will be the value of the given sum if remitted through the intermediate places.

Compare with this its value as remitted by the direct exchange.
15. Example.- $£ 824$ Flemish being due to ne at Amsterdam, it is remitted to France at 16d. Flemish per frane; from France to Venice at 300 franes per 60 ducats: from Venice to Hamburgh at 100 d . per dueat; from Hamburgh to Lisbon at 50 d . per 400 rees ; and from Lisbon to England at 5 s . 8d. sterling per milree. Shall I gain or lose, and how much, the exchange between England and Amsterdam being 34s. $4 d$. per $£ 1$ sterling ?

15d. : 1 franc.
300 francs : 60 ducats.
1 ducat: 100 pence Flemish.
50 pence Flemish : 400 rees.
1000 rees : 68 pence British.
? : £824 Flemish.
$\frac{1 \times 60 \times 100 \times 400 \times 68 \times 824}{16 \times 300 \times 1 \times 50 \times 1000}=$ (if we reduce the terms [Sce. V. 47]) $\frac{17 \times 824}{25}=£ 5606 s .4 \frac{4}{5} d$.
But the exchange between England and Amsterdam fof £ 824 Flemish is $\mathcal{L} 480$ sterling.

$$
\text { Since } 34 s .4 d .: £ 824:: £ 1: \frac{£ 824}{34 s .4 d .}=£ 480 .
$$

I gain therefore by the circular exchange $\dot{x} 500$ os. $4 \frac{4}{3}$. minus $£ 480=£ 80$ Gs. $4 \frac{4}{5} d$.

If commission is charged in any of the places, it must be deducted from the value of the sum which can bo obtained in that place.
The process given for the compound arbitration of exchange may be proved to be correct, by putting down the different proportions, and solving them in suecession. Thus, if 1Gid. are equal to 1 frane, what will 300 franes ($=60$ dueats) be worth. If the quantity last found is the value of 60 ducats, what will be that of one ducat $(=100 \mathrm{~d}$.$) , \&ic. ?$

EXERCISES.

3. If London would remit $£ 1000$ sterling to Spain, the direct exchange being $42 \frac{1}{2} d$. per piastre of 272 maravedis; it is asked whether it will be more profitable to remit directly, or to remit first to Holland at 35s. per pound ; thence to France at $19 \frac{1}{3} d$. per frane ; thence to Venice at 300 franes per 60 dueats; and thened to Spain at 360 maravedis per dueat? Ans. The circular exchange is more advantageous by 103 piastres, 3 reals, $19 \frac{37}{2}$ maravedis.
4. Λ merelant at London has credit for 680 piastres at Leghorn, for which he can draw directly at 50 d . per piastre ; but choosing to try the circular way, they are by his orders remitted first to Venice at 94 piastres per 100 dueats; thenee to Cadiz at 320 maravedis per dueat ; thence to Lisbon at 630 rees per piastre of 272 maravedis; thence to Amsterdam at 5)d. per crusade of 400 rees; thence to Paris at $18 \frac{3}{3} l$. per frane; and thence to London at $10 \frac{1}{2} d$. per frane; how mueh is the circular -emittance better than the direct draft, reckoning $\frac{1}{2}$ per cent. for commission? Ans. £14 12s. $7 \frac{1}{4} d$
5. To estimate the gain or loss per cent.-

Rule.-Say, as the par of exchange is to the cuerso of exchange, so is £100 to a fourth proportional. Tros. this subtract $£ 100$.

Example.-The par of exchange is found to be $18 \frac{1}{3} d$. Flemish, but the course of exchinge is 19 d . per frane; what is the gain per cent.?

Thins Lt 7 s . 1
lf in paid, it i
5. Th but the eent. ?
6. Th course is 6 s. $11 \frac{1}{2}$ d
7. Th course of Aus. £1

1. W
2. W pound a
3. W
4. W
5. Hi any plae
6. H
7. ' gain or certain

Given gain or 1

Rule and at t or loss 0

Exami
6d., and
The to
The to
The to

This the gain per cent. $=£ 104$ 7s. 11d. minus $\mathcal{L 1 0 0 =}$ Lf 7s. 11d. if the merchant eemits through Puris.

If in remitting through Paris commission must bs paid, it is to be deducted from the gain.

ExERCISEs.

5. The par of exchange is found to be $18 \frac{3}{7} d$. Flemish, but the course of exchange is $19 \frac{1}{3} d$., what is the gain per cent. ? Ans. 24 18s. $2 \frac{1}{4} l$.
6. The par of exchange is $17 \frac{3}{9} d$. Flemish, but the course is $18 \frac{2}{3} d$., what is the gain per cent.? Ans. $\mathrm{e}^{2} 4$ $6 s .11 \frac{1}{3} d$.
7. The par of exchange is $18 \frac{1}{\gamma} d$. Flemish, but the course of exchange is $17 \frac{2}{2} \frac{2}{d} d$., what is the loss per cent. ? Aus. £1 16s. $2 d$.

QUESTIONS.

1. What is meant by arbitration of exchanges? [12].
2. What is the difference between simple and compound arbitration? [12].
3. What is the rule for simple arbitration ? [13].
4. What is the rule for compound arbitration ? [14].
5. How are we to act if commission is charged in any place? [15].
6. How is the gain or loss per cent. estinated ? [16].

PROFIT AND LOSS.

17. This rule enables us to discover how much we gain or lose in mercantile transactions, when we sell at certain prices.

Given the prime cost and selling price, to find the gain or loss in a certain quantity.

Rule.-Find the price of the goods at prime cost and at the selling price; the difference will be the gain or loss on a given quantity.

Example.-What do I gain, if I buy 460 lb of butter at ©d., and sell it at 7d. per it ?

The total prime cost is $460 \mathrm{~d} . \times 6=2760 \mathrm{~d}$.
The total selling price is $4 c 0 a . \times 7=3220 d$.
The total gain is 3220 d . minus $2760 \mathrm{l} .=460 \mathrm{~d} .=£ 1 \mathrm{l}$ s. 4 d .

EXERCISES.

1. Bought 140 Hb of butter. at 10 d . per mb , and sold it at $14 d$. por Hb ; what was gained? Ans. © 2 6s. 8 l .
2. Bought 5 ewt., 3 qrs., 14 lb of cheese, at $\mathfrak{E} 212 s$. per cwt., and sold it for £2 18s. per cwt. What was the gain upon the whole? Ans. £1 $15 s .3 \dot{a}$.
3. Bought 5 cwt., 3 qrs., 14 tb of bacon, at 34 s . per cwt., and sold it at $36 s .4 d$. per cwt. What was the gain on the whole? Ans. $13 s .8 \frac{1}{2} d$.
4. If a chest of tea, containing 144 lb is bought for $6 s .8 i$. per $\#$, what is the gain, the price received for the whole boing £57 10s.? Ans. £9 10 s .
5. 'I'o find the gain or loss per cent.-

Rule.--Say, as the cost is to the selling price, so is $£ 100$ to the required sum. The fourth proportional minus $£ 100$ will be the gain per cent.

Example 1.—What do I gain per cent. if I buy 1460 lb of beef at $3 d$., and sell it at $3 \frac{1}{2} d$. per to ?

$$
3 d . \times 1460=4380 \mathrm{~d} \text {., is the cost price. }
$$

And $3 \frac{1}{2} l . \times 1460=5110 d$., is the selling price.
Then $4380: 5110:: 100: \frac{5110 \times 100}{4380}=£ 110 \quad 13 \mathrm{~s} .4 \mathrm{~d}$. Ans. £116 13s. 4 d. minus $£ 100$ ($=£ 1613 s .4 d$.) is the gain per eent.

Reason of the Rule.-The price is to the price plus the gain in one case, as the price ($£ 100$) is to the price plus the gain ($£ 100$ the gain on $£ 100$) in another.

Or, the price is to the price plus the gain, as any multiple or part of the former ($£ 100$ for instance) is to an equimultiple of the latter ($£ 100+$ the gain on $£ 100$).

Example 2.-A person sells a horse for $£ 40$, and loses 9 per cent., while he should have made 20 per cent. What is his entire loss?
$£ 100$ minus the loss, per cent., is to $£ 100$ as $£ 40$ (what the horse cost, minus what he lost hy it) is to what it cost. $91: 100:: 40: \frac{100 \times 40}{91}=£ 4319 \mathrm{~s} .1 \frac{1}{2} d$. , what the horse cost.

But the person should have gained 20 per cent., or $\frac{1}{5}$ of the price; therefore his profit whould have been $\frac{\mathscr{L} 43-19 \mathrm{~s} .1 \frac{1}{9} d .}{5}=\mathcal{L} 815 \mathrm{~s} .9_{4}^{3} d$. And
£.
319
815
12141
5. 13 What
6. B What
7. If for $7 s$.
8. If and sol cent. ?
9. II sold for
10. them fo
11. sold it per cen
12. gained gained
13. per con 8s. 9.
7 s . 5 ! d.-£
19. price-

Rulı cent., s

Exam of cloth
gain 8

This
£s. d.
$319 \quad 1 \frac{1}{2}$ is the difference between enst and selling price.
$815 \quad 9_{4}^{3}$ is what he should have received above cost.
$121411_{4}^{\frac{1}{4}}$ is his total loss.

EXERCISES.

5. Bought becf at $6 d$. per fb , and sold it at $8 d$. What what was the gain per cent.? Aus. $33 \frac{1}{3}$.
6. Bought tea for $5 s$. per lb , and sold it for 3 s . What was the loss per cent.? Ans. 40.
7. If a pound of toa is bought for $6 s .6 d$. , and sold for $7 s .4 d$. , what is the gain per`cent.? Ans. $12 \frac{33}{3}$.
8. If 5 cwt ., 3 qrs., 26 it , are bought for $\mathfrak{e g} 8 \mathrm{~s}$., and sold for £11 18s. 11d., how much is gained per cent.? Ans. $27{ }_{5}^{467}$.
9. When wine is bought at 17 s . 6 d . per gallon, and sold for 27 s . $6 d$., what is the gain per cent. ? Aus. $57 \frac{1}{7}$.
10. Bought a quantity of goods for $\mathfrak{£} 60$, and sold them for £75; what was the gain per cent.? Ans. 25.
11. Bought a tua of wine for £50, ready money, and sold it for 25410 s , payable in 8 months. How much per cent. per anaum is gained by that rate? Ans. $13 \frac{1}{2}$.
12. Having sold 2 yards of cloth for $11 s$. $6 d$. ., I gained at the rate of 15 per cent. What would I have gained if I had sold it for 12 s .? Ans. 20 per cent.
13. If when I sell cloth at $7 s$. per yard, I gain 10 per cont. ; wh it will I gain per cent. when it is sold for 8s. $\operatorname{c} d$.? Ans. £33 11s. $5 \frac{1}{7}$ ll.
 $5!d .-£ 100=£ 33$ 11e. $5 \frac{1}{4} d$. , is the required gain.
14. Given the cost price and gain, to find the selling pricc-

Rule.-Say, as $\mathscr{C 1 0 0}$ is to $£ 100$ plus the gain per cent., so is the cost price to the required selling price.

Example.-At what price per yard must I sell 427 yards of cloth which I bouglit for 19 s . per yard, so that I may gain 8 per cent.?

$$
100: 108:: 19 s .: \frac{108 \times 19 s .}{100}=\kappa 1 \text { 0s. } 6 \frac{4}{4} d .
$$

This result may be proved by the last rule.

EXERCISES.

14. Bought velvet at $4 s$. $8 d$. per yard; at what price must I sell it, so as to gain $12 \frac{1}{2}$ per cent.? Ans. At 5s. 3 d .
15. Bought muslin at 5 s. per yard ; how nust it be sold, that I may lose 10 per cent. ? Ans. At $4 s .6 d$.
16. If a tun of brandy costs $£ 40$, how must it be sold, to gain $6 \frac{1}{4}$ per cent. ? Ans. For £ 4210 s .
17. Bought hops at £ $416 s$. per cwt. ; at what rate nust they be sold, to lose 15 per cent.? Ans. For £4 1s. $7 \frac{1}{5}$ d.
18. Λ merchant receives 180 easks of raisins, which stand him in 16 s . each, and trucks them against other merehandize at $28 s$. per cwt., by which he finds lie has gained 25 per cent. ; for what, on an average, did he sel! each cask? Aus. 80 1b, nearly.
19. Given the gain, or loss per cent., and the selling price, to find the cost price-

Rule.-Say, as $\mathfrak{£ 1 0 0}$ plus the gain (or as $\mathscr{L} 100$ minus the loss) is to $£ 100$, so is the selling to the cost price.

Example 1.-If I sell 72 ib of tea at $6 s$. per 1b, and gain 9 per cent., what did it eost per mb ?

$$
109: 100:: 6: \frac{£ 100 \times 6}{109}=5 \mathrm{~s} .6 \mathrm{ll} \text {. }
$$

What produces $\mathcal{L} 109$ eost $£ 100$; thercfore what produees 6 s . must, at the same rate, cost $5 \mathrm{~s} .6 \mathrm{r} \%$.

Example 2.-A merchant buys 97 easks of butter at 30 . each, and selling the butter at $£ 4$ per ewt., makes 20 per cent. ; for how much did he buy it per ewt.?

$$
30 s . \times 97=2910 s ., \text { is the total price. }
$$

Then $100: 120:: 2910: \frac{2910 \mathrm{~s} . \times 120}{100}=3492 \mathrm{~s}$., the selling priec. And $\frac{3492 \mathrm{~s}}{80 \mathrm{~s} .}\left(=\frac{3492 \mathrm{~s} .}{\mathcal{L}}\right)=43 \cdot 65$, is the number of cwt. ; and $\frac{43 \cdot 65}{97}=50_{4}^{19.95} 1 \mathrm{lb}$, is the average weight of each cask. 8d., the required cost price, per cowt.
19. 1 and lost $22 s .2 \frac{3}{3}$ 20.1 and gai 18 s. $2 \frac{2}{1}$
21. grained Ans. 8 22. sold for 8s. $1 \frac{1}{2} d$
23. I sold for £23 13

1. W
2. G the pro 3. 11
3. G price fo
4. G how do
5. are join profit o Fello pound) differen
It is dol - strocks
'This
bankri!

EXERCISES.

19. Having sold 12 yards of cloth at 20 s . per yard, and lost 10 per cent., what was the prime cost? Ans. $22 s .233$.
20. IIaving sold 12 yards of cloth at 20 s . per yard, and gained 10 per cent., what was the prime cost ? Ans. 18s. $2 \frac{2}{1} \frac{2}{1} d$.
21. Having sold 12 yards of cloth for $\mathscr{5} 14 \mathrm{~s}$., and gained δ per cent., what was the prime cost per yard? Ans. 8s. 95 ${ }^{4}$ d.
22. For what did I buy 3 cwt. of sagar, which I sold for £6 $3 s$, and lost 4 per cent. ? Ans. For $£ 6$ 8s. $1 \frac{1}{2} d$.
23. For what did I buy 53 yards of cloth, which I sold for £25, and gained £5 10 s. per cent.? Ans. For £.2 13 s. $11 \frac{1}{4} d$.

QUESTIONS.

1. What is the object of the rule? [17].
2. Given the prime cost and selling price, how is the profit or loss found ? [17].
3. How do we find the profit or loss per cent? [18].
4. Given the prime cost and gain, how is the selling price found? [19].
5. Given the grain or loss per cent. and selling price, low do we find the cost price? [20].

FELLOWSHIP.

21. This rule euables us, when two or more persons are joined in partnership, to estimate the amount of profit or loss which belongs to the share of each.

Hellowship is either single (simple) or double (compound). It is single, or simple fellowship, when the different stocks have been in trade for the same time. It is double, or compound fellowship, when the different - stoms have becn cmployed for different times.

This rule also mables us to esti :ate how much of a bankrupt's stock is to be given to each ceditor.
22. Single Fellowship.-Rute.-Say, as the whole stock is to the whole gain or loss, so is each person's contribution to the gain $0:$ loss which belongs to him.

Example.-A put $£ 720$ into trade, B $£ 340$, and \mathbf{C} $\mathcal{E} 060$; and they gained $\mathfrak{E} 47$ by the traflic. What is 1 's share of it?

$$
\begin{gathered}
\neq 1 \\
720 \\
340 \\
\frac{960}{2020}: £ 47:: £ 340: \frac{\mathcal{L} 47 \times 340}{2020}=\mathcal{L} 7 \quad 18 s .2 \frac{1}{2} d
\end{gathered}
$$

Each person's gain or loss must evidently be proportiona to his contribution.

EXERCISES.

1. B and C buy certain merchandizes, amounting to £SO, of which B pays £30, and C $£ 50$; and they gain £20. How is it to be divided? Ans. B £ 7 10s., and C $£ 1210 s$.
2. B and C gain by trade $£ 182 ; \mathrm{B}$ put in $£ 300$, and $\left(£^{4} 400\right.$. What is the gain of cach? 'Ans. B £78, and C
3. 2 persons are to slare $\mathfrak{C} 100$ in the proportions of 2 to B and 1 to C. What is the share of each? Ans. B £663 ${ }^{2}$, C £3 $\frac{1}{3}$.
4. A merchant failing, owes to B £500, and to C $£ 900$; but has only £1100 to meet these demands. How much should each creditor receive? Ans. B £392権, and C $\mathrm{e}^{2} 707 \frac{1}{7}$.
5. Three merchants load a ship with butter; B gives 200 casks, C 300, and D 400 ; but when they are at sea it is found necessary to throw 180 casks overboard. How much of this loss should fall to the share of each merchant? Ans. B should lose 40 casks, C 60 , and D 80.
6. Three persons are to pay a tax of $£ 100$ according to their estates. B's yearly property is $£ S 00$, C's \&600, and D's 2400 . How much is each person's share?

7. Divide 120 into three such parts as shall be to cach other as 1,2 , and 3 ? Aus. 20, 40, and 60.
*. longei be the Ans.气. take d person $\mathfrak{£ 2 2 0 .}$
8.

have 1
receiv
11.
£150,
comes
and ho
Ans.
and D
12.
stock,
B tak in ; a in £S the pr 13.
£97 f
The each 14s. 7
23.
persor
trade
gain
the ga
Exa
11 mo
What
$30>$
84>
$96>$
24. Reason of the Rule -It is clear that $£ 30$ comtributed for 6 months are, as far as the gain or the loss to be derived from it is concerned, the same as 6 times $£ 30$-or $£ 180$ contributed for 1 month. Hence A'sicontribution may be taken as $£ 180$ for 1 month; and, for the same reason, B^{\prime} s as $£ 924$ for the same time; and C's as $£ 768$ also for the same time 'lis reduces the question to one in simple fellowship [22].

EXERCISES.

14. 'Three merchants enter into partnership; B puts in $£ 895 s$. for 5 months, C $£ 9215 s$. for 7 months, anu D £38 10s. for 11 months; and they gain £86 $16 s$. What should be each person's share of it? Aus. B's £25 10s., C's £37 2s., and D's £24 $4 s$.
15. B, C, and D pay $£ 40$ as the year's rent of a farm. B puts 40 cows on it for 6 months, $C 30$ for 5 months, and D) 50 for the rest of the time. How much of the rent should each person pay? Ans. $\mathrm{B} £ 21 \frac{{ }_{\mathrm{T}}^{2}}{}, \mathrm{C} £ 13_{\mathrm{T}}^{7}$? and D £ 4_{11}^{6}.
16. Three dealers, Λ, \mathcal{B}, and C, enter into partnership, and in a certain time make £291 13s. 4d. A's stock, $£ 150$, was in trade 6 months ; B 's, £200, 3 months; and C's, $\mathfrak{L 1 2 5}, 16$ months. What is each person's share of the gain ? Ans. A's is $£ 75, \mathrm{~B}$'s $£ 50$, and C's $£ 166$ 13s. $4 d$.
17. Three persons have reccived $£ 665$ interest ; B had put in $£ 4000$ for 12 months, $\mathrm{C} £ 3000$ for 15 months, and D £5000 for 8 months; how much is each person's part of the interest? Ans. B's £240, C's £225, and D's £200.
18. X, Y, and Z form a company. X 's stock is in trade 3 months, and he claims $\frac{1}{12}$ of the gain; Y 's stock is 9 months in trade ; and $\frac{K^{2}}{Z}$ advanced $£ 756$ for 4 months, and clains half the profit. How much did X and Y contribute ? Ans. $\mathrm{X} £ 168$, and Y £2s0.

It follows that Y 's gain was $\frac{5}{12}$. Then $\frac{1}{2}: \frac{1}{12}:: £ 756 \times 4$: $504=\mathrm{X}$'s product, which, being divided by his number of months, will give £168, as his contribution. Y's share of the stock may be found in the same way.
19. Three troops of horse rent a field, for which they pay $£ 80$; the first sent into it 56 horses for 12 days, tho
second What 10s., 20. the fir a sum for at receiv and C Ans.

If $£$ profit) months

Then months 80 (£1 its pro in the ense) $=$ differen receive
21.
during $\mathscr{E} 100$
of the
stocks
22.
£800 and C
A is
What B's
1.
2. 1 fellows names
3. ship?
second 64 for 15 days, and the third 80 for 18 days. What must each pay? Aus. The first must pay £17 $10 s .$, the second 225 , and the third 23710 s.
20. Three merchants are concerned in a steam vessel; the first, A, puts in $£ 240$ for 6 months ; the second, 13 , a sum unknown for 12 months; and the third, $\mathrm{C}, \mathfrak{e} 160$, for a time not known when the accounts were settled. A reecived $£ 300$ for his stock and profit, $\mathrm{B} £ 600$ for his, and C \&260 for his; what was B's stock, and C's time? Ans. B's stock was \& 800 ; and C's time was 15 months.
If $£ 300$ arise from $£ 240$ in 6 months, $£ 600$ (B's stock and profit) will be found to arise from $£ 400$ (B's stock) in 12 inonths.
Then $£ 400$: $£ 160$:: $£ 200$ (the profit on $£ 400$ in 12 months): $£ 80$ (the profit on $£ 160$ in 12 months). And $£ 160+$ 80 ($£ 160$ with its profit for 12 months) : $£ 260$ ($£ 160$ with its profit for some other time) :: 12 (the number of months in the one case) : $\frac{260 \times 12}{160+80}$ (the number of months in the other case $)=13$, the number of months required to produce the difference between $£ 160$, C's stock, and the $£ 260$, which he received.
21. In the foreroing question Λ 's gain was $£ 60$ diring 6 months, 1 's $x^{2} 200$ during 12 months, and C's el 100 during 13 months; and the sum of the products of their stocks and times is 8320 . What were their stocks? Ans. A's was £2 40,13 's $\mathscr{C} 400$, and C's £160.
22. In the same question the sum of the stocks is $£ 800 ; A^{*}$ stock was in trade 6 months, B 's 12 months, and C's 15 months; and at the settling of accounts, A is paid $£ 60$ of the gain, $\overline{3} £ 200$, and $C £ 100$. What was each person's stock? Ans. A's was $\mathfrak{L 2} 20$, B's $£ 400$, and C's $£ 160$.

QUESTIONS.

1. What is fellowship ? [21].
2. What is the difference between single and double fellowship; and are these ever called by any other names? [21].
3. What are the rules for single, and double fellowship? [22 and 23].

BARTER.

25. Barter enables the merchant to exchange one commodity for another, without cither loss or gain.

Rule.-Find the price of the given quantity of one kind of merchandise to be bartered ; and then ascertain how much of the other kind this price ought to purchase.

Examples 1.-How mueh tea, at 8 s . per 1b, ought to be given for 3 ewt. of tallow, at £1 16s. $8 d$. per cwt. ?

$$
\text { £ s. } \quad d .
$$

1168
$\overline{510} 0$ is the price of 3 cwt . of tallow.
And $£ 510 s \div 8 s=13 \frac{4}{8}$, is the number of pounds of tea Which $\mathcal{L} 510$ s., the price of the tallow, would purchase.
There must be so many pounds of tea, as will be equal to the number of times that $8 s$. is contained in the price of the tallow.

Examplef 2.-I desire to barter 96 mb of sugar, which cost me $8 d$. per 1b, but which I sell at $13 d$., giving 9 months' credit, for calico which another merchant sells for $17 d$. per yard, giving 6 monthis credit. How much calico ought I to receive?

I first find at what price I could sell my sugar, were I to give the same credit as he does-

If 9 months give me $5 d$. profit, what ought 6 months to give?

$$
9: 6:: 5: \frac{6 \times 5}{9}=\frac{30}{9}=3 \frac{1}{3} d .
$$

Hence, were I to give 6 months' credit, I should charge $11 \frac{1}{3} l$. per 1 b . Next-
As my selling, price is to my buying price, so ought his selling to be to his buying price, both giving the same credit.

$$
11_{\frac{1}{3}}: 8:: 17: \frac{8 \times 17}{11_{3}^{1}}=12 d .
$$

The price of my sugar, therefore, is $90 \times 8 d$. , or $768 l$; and of his calico, 12l. per yard.
Hence $\frac{7 \pi 3}{18}=64$, is the required number of yards.

EXERCISES.

1. A merchant has 1200 stones of tallow, at $2 s .3 \frac{1}{4} d$. the stone; 3 has 110 tanned hides, weight 3994 Hb , at 53.2 . the fb ; and they barter at these rates. How much money is A to receive of B , along with the hides? Aus. £40 11s. $2 \frac{1}{2} d$.
2. A has silk at $14 s$. per 1 lt ; B has cloth at $12 s .6 d$. which eost only 10 s. the yard. How much must A charge for his silk, to make his profit equal to that of B ? Ans. 17s. $6 d$.
3. A has coffee which he barters at 10 d . the 1 lb more than it cost him, against toa which stands B in 10 s ., but which he rates at 12 s .6 d . per. lb . How much did the coffee cost at first? Aus. 3s. $4 d$.
4. K and L barter. K has eloth worth $8 s$. the yard, which he barters at $9 s .3 d$. with I , for linen eloth at 3s. per yard, which is worth only $2 s .7 d$. Who has the advantage ; and how much linen does I give to K, for 70. yards of his eloth? Ans. L gives K $215 \frac{5}{6}$ yards; and L has the adrantage.
5. B has five tons of butter, at 29510 s . per ton, and $10 \frac{1}{2}$ tons of tallow, at $23315 s$. per ton, which he barters with O ; agrecing to receivo $\mathscr{C} 1501 \mathrm{~s} .6 d$. in ready money, and the rest in beef, at 21 s . per barrel. How many barrels is he to receive? Ans. 316.
6. I have eloth at $S d$. the yard, and in barter charge for it at 13 l ., and give 9 months' time for payment ; ano. lient has goods which cost him $12 d$. per lb , an . Wich he gives 6 months' time for payment. How hi he charge his goods to make an equal barter? At $17 d$.
7. I barter goods which cost $8 d$. per lb , but for which I charge 13 d ., giving 9 months' time, for goods which are charged at 17d., and with which 6 months' time are given. Required the cost of what I receive? Ans. 12d.
8. Two persons barter; Λ has sugar at $8 d$. per $1 b$, charges it at $13 d$., and gives 9 months time; B has at $12 d$. per 1b, and charges it at $17 d$. per ib. How time must \mathbf{B} give, to make the barter equal ? 6 months.

QUESTIONS.

1. What is barter ? [25].
2. What is the rule for barter? [25].

ALLIGATION.

.26. This rule enables us to find what mixture will be produced by the union of certain ingredients-and then it is called alligation medial ; or what ingredients will be required to produce a certain mixture-when it is termed alligation alternate; further division of the subject is unnecessary:-it is evident that any change in the amount of one ingredient of a given mixture must produce a proportional change in the amounts of the others, and of the entire quantity.
27. Alligation Medial.-Given the rates or kinds and quantities of certain ingredients, to find the mixture they will produce-
Ruses.-Multiply the rate or kind of each ingredient by its amomnt; divide the sum of the products by the number of the lowest denomination contained in the whole quantity, and the quotient will be the rate or kind of that denomination of the mixture. From this may be found the rate or kind of any other denomination.
Example 1.-What ought to be the price per 1b, of a

$$
\begin{aligned}
& \begin{array}{l}
d . \\
9 \times 98
\end{array}=882 \\
& 5 \times 87=435 \\
& 6 \times 34=204 \\
&\overline{219} 210) \overline{1521} \\
& \text { Ans. } 7 \mathrm{ll} . \text { per ib, nearly. }
\end{aligned}
$$

The price of each sugar, is the number of pence per pound multiplied by the number of pounds; and the price of the whole is the sum of the prices. But if 219 lb of sugar have cost 1621%, one 16 , or the $210 t h$ part of this, must cost the 219th part of $1021 d$, or $\frac{1591}{210}(l)=7 \mathrm{~d}$, nearly.
E.s
oonta jer ib

And
In reduce ounce,

- Exa and 2 mixtu

In t sented

1. gallon, gallons Ans. 1
2. 1
at $9 \frac{1}{2}$ a much
3. I
fine, 1 wish to Ans. 2
4.

mixtur
amount
Kul
given n
ill be then s will it is the ango xture ounts
kinds sture lient the the c or this tion.
of a bat

Example 2.-What will be the price per th of a mixture oontaining 9 lb 6 oz of tea at 5 s . 6 m . per $\mathrm{tb}, 18 \mathrm{lb}$ at 6 s. per 1b, and 46 ib 3 oz at $9 \mathrm{~s} .4 \mathrm{~d} d$. per 1 lb ?

$\overline{1177}$ ounces.
And $6 d . \times 16=8$ s., is the price per pound.
In this oase, the lowest denomination being ounces, we reduce the whole to ounces; and having found the price of an ounce, we muitiply it by 16 , to find that of a pound.
Example 3.-A goldsmith has 31 b of gold 22 carats fine, and 2 lb 21 carats tino. What will be the fineness of tho misture?
In this case the value of each kind of ingredienc is represented by a number of carats-

$$
\begin{aligned}
& \text { lbs } \\
& 3 \times 22=66 \\
& \frac{2}{5} \times 21=\frac{42}{5 \longdiv { 1 0 8 }}
\end{aligned}
$$

The misture is 213 carats fine.

ExERCISES.

1. A vintner mixed 2 gallons of wine, at 14 s . per gallon, with 1 gallou at $12 s ., 2$ gallons at $9 s$., and 4 gallons at $8 s$. What is one gallon of the mixture worth ? Ans. 10 s .
2. 17 gallons of ale, at $9 d$. per gallon, 14 at $7 \frac{1}{2} d$., 5 at $9 \frac{1}{2} d$, and 21 at $4 \frac{1}{2} d$, are mixed together. How muelh per gallon is the mixture worth? Ans. $7 \frac{1}{5} \frac{1}{7} d$.
3. Having melted together 7 oz . of gold 222^{5} carats fine, $12 \frac{1}{2}$ oz. 21 earats fine, and 17 oz .19 carats fine, I wish to know the fineness of each ounce of the mixture? Ans. $20 \frac{1}{7} \frac{9}{3}$ carats.
4. Alligation Alternate. - Given the nature of the mixture, and of the ingredients, to find the relative nmounts of the latter-

Rule.--Put down the quantitics greater than the given mean (each of them eonnected with the differenco
between it and the mean, by the sign -) in one column; put the differences between the remaining quantitics and the mean (connected with the quantities to which they belong, by the sign +) in a column to the right hand of tho former. Unite, by a line, each plus with some minus difference; and then cach difference will express how much of the quantity, with whose difference it is connected, should be taken to form the required mixture.

If any difference is conuected with more than one other difference, it is to bo considered as repeated for cach of the differences with which it is connected; and the sum of the differences with which it is connected is to be taken as the required amount of the quantity whose difference it is.

Example 1.-How many pounds of tea, at 5 s. and 8 s, per 1b, would form a misture worth 7s. per 1b ?

Price. Differences. Price.

1 is connected with 2 s., the difference between tho mean and 5 s . ; hence there must be 1 ib at $5 \% .2$ is connected with 1 , the difference between 8 s. and the mean; henco there must be 2 lb at 8 s . Then 1 lb of tea at 5 s . and 2 ib at 8 s . per th, will form a misture worth 7 s . per 1b-as may he proved by the last rule.

It is cvident that any equimultiples of these quantities would answer equally well; hence a great number of answers may be given to such a question.
Example 2.-How much sugar at $9 d ., 7 d ., 5 d$., and $10 d$, will produce sugar at $8 d$. per ib ?

$$
\begin{gathered}
\text { Prices. Differences. Prices. } \\
\text { The mean }=\left\{\begin{array}{cc}
d . & d . \\
9-1 & 1+7 \\
10-2 & 1+5
\end{array}\right\}=\text { the mean. }
\end{gathered}
$$

1 is connected with 1 , the difference between $7 d$. and the mean; henee there is to be 1 tb of sugar at 7 d. . per tb .2 is connected with 3 , the difference between $5 l$. and the mean; henee there is to be 2 sb at 5 d . 1 is connected with 1 , the difference between 9 d . and the mean; hence there is to be 1 lb at $9 d$. And 3 is connected with 2 , the differenco between 10 l . and the mean; hence there are to be 3 lb at 10 d . per ib.

Conse 1 lb at these wi

Exam $0 s$. per 11

T

3,1 , a 4s. and th of tea the diffic therefor and 1 ib

We fir neeted v be requi be, there

Exam
8s., 9s., ts. per 1

1 ib at 1b at 5 s ., form the
29. R_{k} nbove th wants of at $5 s$. pe 2s. exces.
In exa gives an of $1 d$. ex
Again, worth ju averago

Conserpently we are to take 1 lb at 7 il , and 2 tb at 5 l . 1 lb at $!(16$, and 3 lb at 10 d . If we examine what misture these will give [27], we shall find it to be the given mean.

Examples 3.-What quantities of tea at 4s., 6s., 8s., and 0 s . per Ib , will produce a misture worth 5 s .?

Prices. Difiorences. Prices.

$$
\text { The mean }= \begin{cases}5 . & s . \\ 8-3 & 1 \\ 6-1 & { }^{s} .4=\text { the mean. } \\ 9-4 & \end{cases}
$$

13, 1, and 4 are comnected with 1 ., the differece between 4 s and the mean ; therefore we are to take $3 \mathrm{ib}+1 \mathrm{lb}+4$ th of tea, at $4 s$. per 1 lb .1 is commected with $3 s ., 1 s$., and $4 s$., the differences betwoen 8 s., $6 s$., and $9 s$. , and the mean; therefore wo are to take 1 lb of tea at $8 \mathrm{~s} ., 1 \mathrm{lb}$ of tea at 6 s. , and 1 ib of tea at 9 s . per lo.

We find in this example that $8 \mathrm{~s} ., 6 \mathrm{~s}$., and 9 s . are all connected with the same 1 ; this shows that 1 lb of cach will be roquired. 4 s. is onnnocted with 3,1 , and 4 ; there must be, therefore, $3+1+4$ ib of tea at $4 s$.

Exampin 4.-How much of anything, nt $3 s ., 4 s ., 5 s ., 7 s$, 8 s ., $\mathrm{I}_{\mathrm{s} .,} 11 \mathrm{~s}$., and 12 s . per Hb , would form a mixture worth (is. per 16?

Prices. Differences. Prices.

1 lb at $3 \mathrm{~s} ., 2 \mathrm{lb}$ at $4 s ., 3 \mathrm{lb}$ at $7 s ., 2 \mathrm{lb}$ at $8 \mathrm{~s} ., 3+5+6$ (14) 1 tb at $5 s$., 1 lb at $9 s ., 1 \mathrm{ib}$ at $11 s$, and 1 lb at $12 s$. per 1 lb , will form the required mixturo.
29. Reason of the Rule.-The excess of one ingredient above the mean is made to counterbalance what the other wants of being equal to the mean. Thus in example $1,1 \mathrm{tb}$ at 5 s . per th gives a deficiency of 2 s . : but this is corrected by $2 s$. excess in the 2 Ib at 8 s . per 1 ib .
In example $2,1 \mathrm{ib}$ at $7 d$. gives a defficiency of $1 d$., 1 ib at $9 d$. gives an excess of $1 d$.; but the excoss of $1 d$. and the deficieney of 1 d . exnctly neutralize each other.
Aggin, it is evident that 2 ib at 5 d , and 3 tb at 10 d . are worth just as much as 5 ib at $8 d$.-that is, 8 d . will be tha averago price if we mir 2 ib at σd. wilh ö lb at $10 d$.

EXERCISES.

4. How much wine at $8 s$. $6 d$. and $9 s$. per gallon will make a mixture worth $8 s .10 d$. per gallon? Ans. 2 gallons at $8 s .6 d$., and 4 gallons at $9 s$. per gallon.

5 . How much tea at $6 s$. and at $3 s$. $8 d$. per 1 b , will make a mixture worth $4 s .4 d$. per 1 lb ? Ans. 8 fb at $6 s$., and 20 tb at $3 s .8 d$. per ib .
6. A merchant has sugar at $5 d ., 10 d$. , and $12 d$. per tib. How much of each kind, mixed together, will be worth $8 d$. per tb ? Ans. 6 tb at $5 d ., 3 \mathrm{lb}$ at $10 d$. , and 3 lb at 12 d .
7. A merchant has sugar at $5 d ., 10 d ., 12 d .$, and $16 d$ per th. How many it of each will form a mixture worth 11d. per tb ? Airs. 5 形 at $5 d ., 1$ th at 10d., 1 ib at $12 d$., and 6 tb at $16 d$.
8. A groser has sugar at $5 d ., 7 d ., 12 d$. , and $13 d$. per Ht . How much of each kind will form a mixture worth $10 d$. per fb ? Ans. 3 lb at $5 d ., 2 \mathrm{Hb}$ at $7 d ., 3 \mathrm{Hb}$ at $12 d$., and 5 lb at $13 d$.
30. When a given amount of the misture is required, to find the corresponding amounts of the ingredients-

Rule.- Find the amount of each ingredient by the last rule. Then add the amounts together, and say, as their sum is to the amount of any one of them, so is the required quantity of the mixture to the corresponding amount of that one.

Example 1.-What must be the amount of tea at $4 s$. per ib , in 736 lb of a mixture worth 5 s. per ib , and containing tea at $6 \mathrm{~s} ., 8 \mathrm{~s}$., and 9 s . per lb ?
To produce a mixture worth $5 s$. per tb, wo require 8 ib at. 4s., 1 at $8 s$., 1 at $6 s$., and 1 at $9 s$. per mb . [28]. But all of these, added together, will make 11 ilj ; in which there are 8 mb at 4 s . Therefore
 of tea at 4 s .
That is, in 736 mb of the mixture there will be 536 强 $4 \frac{4}{1}$ oz. at is. per 17. The amount of each of the other ingredients may be found in the same way.

Ex
qu:an Euspe Rul Arch ascer exten resea that Séin would tities found of go he fon there metal Nor which

Let
would displa dispha

Hence
The
produc
But
-060
$=669$
the qu
9. at 5 s .
worth
use fo
50
10.
quired

Example 2.--lliero, king of Syracuse, gave a certain quantity of gold to form a crown; but when he received it, Fuspecting that the goldsmith had taken some of the gold, and supplied its place by a baser metal, he commissioned Archinedes, the colebrated mathematician of Syracuse, to ascertain if his suspicion was well founded, and to what extent. Archimedes was for some time musuccessful in his researches, until one day, going into a bath, he remarked that he displaced a quantity of water equal to his orrn bulk. Sceinir at once that the same weight of diffurent bodies would, if immersed in water, displace very different quantities of the fluid, he exclained with delight that he had found the desired solution of the problem. Taking a mass of gold ecqual in weight to what was given to the roldsmith, he fonind that it displaced less water than the erown: which, therefure, was made of a lighter, hecanse a more bulky metal-and, consequently, was an alloy of gold.

Now supposing copper to have been the substance with which the crown was adnlterated, to find its amount-

Let the gold given by Hiero have weighed 1 1b, this would displace about 052 lb of water ; 1 lb of copper wonld displace about $\cdot 1124 \mathrm{lb}$ of water; but let the crown lave displaced only 072 lo . Then

Gold differs from $\cdot 072$, the mean, by - 020.
Copper differs from it by . . $+0+0 \%$
Hence, the mean $=1124-040 \cdot t-020+\cdot 052=$ ifferences. \quad Gold.
Therefore $\cdot 020 \mathrm{lb}$ of copper and $\cdot 0404 \mathrm{lb}$ of gold would produce the alloy in the crown.

But the crown was supposed to weigh 1 Ib ; therefore
$\cdot 0604 \mathrm{lb}(\cdot 020+\cdot 0404): \cdot 0404 \mathrm{db}:: 1 \mathrm{lb}: \frac{\cdot(0404+1 \mathrm{ib}}{.0604}$ $=660 \mathrm{lb}$, the quantity of gold. And $1-669=331 \mathrm{ib}$ is the quantity of copper.

EXERCISLS.

9. A druggist is desirous of producing, from medicine at 5 s ., 6s., s.s., and 9 s . por Ht , $1 \frac{1}{2}$ cirt. of a mixture worth 7 s . per tb . How much of each kind must he use for the purpose? Ans. 28 施 at $5 s ., 56 \mathrm{ib}$ at $6 s$,

10. 27 fb of a mixture worth 4 s .4 d . per ib are required. It is to contain tea at $5 s$. and at $3 s$. $6 d$. per
lb. How much of each must be used ? Ans. 15 tb at $5 s$., and 12 lb at $3 s$. $6 d$.
11. How much sugar, at $4 l l ., 6 d$. , and $8 d$. per ib, must there be in 1 cwt. of a mixture worth 7 d . per tb ? Ans. $18 \frac{3}{3} \mathrm{Hb}$ at $4 d ., 18 \frac{2}{3}$ ith at $6 d$., and $74 \frac{2}{3} \mathrm{ib}$ at $8 d$. per 1 lb .
12. How much brandy at $12 s$., $13 s ., 14 s$., and 14 s . $6 d$. per gallon, must there be in one hogshead of a mixture worth $13 s .6 d$. per gallon? A 4 s .18 gals. at $12 s$. , 9 gals. at 13s., 9 gals. at $14 s$., and 27 gals. at $14 s$. $6 d$. per gallon.
13. When the amount of one ingredient is given, to find that of any other-

Rule.-Say, as the amount of one ingredient (found by the rule) is to the given amount of the same ingredient, so is the amount of any other ingredient (found by tho rule) to the required quantity of that other.

Example 1.-29 lb of tea at 4 s . per mb is to be mixed with teas at $6 s ., 8 s$., and $9 s$. per 1b, so as to produce what will be vorth 5.s. per 1b. What quantities must be used?

8 lb of tea at $4 s$. , and 1 lb at $6 s ., 1 \mathrm{lb}$ at $8 s$. , and 1 mb at $9 s$., will make a mixture worth 5 s . per ib [27]. Therefore

8 mb (the quantity of tea at 4 s . per ib, as found by the rule). 20 ib (the given quantity of the same tea) $:: 1 \mathrm{lb}$ (the quantity of tea at $6 s$. per lb , as found by the rule) : $\frac{1 \times 29}{8} \mathrm{lb}$ (the quantity of tea at $6 s$., which corresponds with 20 lb at 4s. per 1 b$)=3_{8}^{5} \mathrm{mb}$.
We may in the same manner find what quantities of tea at 8s. and 9 s . per 1 ib correspond with 29 ib -or the given amount of tea at $4 s$. per lb .
Examise 2.-A refiner has 10 oz . of gold 20 carats fine and melts it with 16 oz .18 carats fine. What must be added to make the mixture 22 carats fine?

10 oz . of 20 carrats fine $=10 \times 20=200$ carats.
16 oz . of 18 carats fine $=16 \times 18=288$
fineness of the mixture.

$$
\overline{20}: 1:: \overline{488}: 1810 \text { carats, the }
$$

$24-22=2$ carats baser metal, in a mixture 22 carats fine. $24-18 \frac{10}{13}=\overline{5}_{\frac{13}{13}}$ carats baser metal, in a mixture $18 \frac{10}{13}$ carats fine.

Then 2 carats : 22 carats : : $5 \frac{3}{13}: 577_{13}$ carats of pure
mixtu
18_{13}^{11}
are to
26×38
24 cm
oz. of
contai

13. 12 H woith
14. $10 \frac{1}{2} d$. per it Ans. 5
15.
be mix ture of 23 . 16. 4s. $2 d$ 6s. 8 d. gallon 2d., an
1.
2. 1
3.
4. 1
5. 1 mixture
6. W of the i
mold-required to change 5 :3 carats baser metal, into a
per 1 l ,
 at $8 d$.
nd 14 s . a mixat 12 s ., 4s. $6 d$.
ven, to
(found edient, by the
ed with will be

1 mb cerefire rule). th (the $\times 29 \mathrm{~b}$ 29 lb at
f tea at amount its fine ust bo mixture 22 carats fine. But there are alrealy in the mixture
 are to be added to cvery ounce. There are 260%; therefore $26 \times 38,10=1008$ carats of gold are wanting. There are 24 carats (bage 5) in every oz.; therefore $\frac{{ }_{20} 0,3}{}$ carats $=12$ oz. of gold must be added. There will then be a misture containing

Oz. car.	car.	
$10 \times 6=$	200	
$16 \times 18=$	288	
$42 \times 24=$	1008	,

68: 1 oz		er

ExERCISEs.

13. How much tea at $6 s$. per th must be mixed with 12 Ho at $3 s$. $8 d$. per Ho, so that the mixture may be woith 4 s .4 d . per 觡? Ans. $4 \frac{4}{5} \mathrm{tb}$.
14. How much brass, at 14 d . per fb , and pewter, at $10 \frac{1}{2} d$. per lb , must I melt with 50 lb of copper, at 16 id . per Hb , so as to make the mixture worth 1 s . per tb ? Ans. 50 th of brass, and 200 ib of pewter.
15. How much gold of 21 and 23 carats fine must be mixed with 30 oz . of 20 carats fine, so that the mixture may be 22 carats fine? $A n s .30$ of 21 , and 90 of 23 .
16. How much wine at 7 s . $5 d$., at 5 s . $2 d$., and at $4 s .2 d$. per gallon, must be niered with 20 gallons at 6s. $8 d$. per gillon, to make the mixture worth $6 s$. per gallon? Aus. 44 gallons at 7 s . 5 ed., 16 gallons at 5 s $2 d$., and 34 gallons at 4 s. $2 d$.

QUESTIONS.

1. What is alligation modial ? [26].
2. What is the rule for alligation melial? [27].
3. What is alligation alteruate? [26).
4. What is the rule for alligition alternate? [28].
5. What is the rule, when a certain amount of $t / 0$ mixture is required? [30].
6. What is the rule, when the a vuu? of coo or moro of the ingredients is given? [31].

SEUTION IX.

INVOLUTION AND EVOLUTION, \&c.

1. Involution.-A quantity which is the product of 1 two or more factors, each of them the same number, is termed a power of that number; and the number, multiplied by itself, is said to be involeed. 'Jhus $5 \times 5 \times$ in ($=125$) is a " power of $5 ; "$ and 125, is 5 " involved." A power obtains its denomination fom the number of times the root (or quantity involved) is taken as a factor. Thus $25(=5 \times 5)$ is the second power of 5 .-The second power of any number is also called its square; because a square surface, one of whose sides is expressed by the given number, will have its area indicated by the second power of that number; thus a square, 5 inches every way, will contain 25 (the square of 5) square inches; a square 5 fect every way, will contain 25 square feet, \&c. $216(6 \times 6 \times 6)$ is the third power of 6.-The third power of any number is also termed its cube; because a cube, the length of one of whese sides is expressed by the given number, will have its solid contents indicated by the thire power of that number. Thus a cube 5 inches every way, will contain 125 (the cube of 5) cubic, or solid inches; a cube 5 feet every way, will contain 125 cubic feet, $8: c$.
2. In place of setting down all the factors, we put down only one of them, and mark how often they are supposed to be set down by a suall figure, which, since it points out the number of the factors, is called the inder, or exponent. Thus 5^{2} is the abbreviation for $5 \times 5:-$ and 2 is the index. 55 mems $5 \times 5 \times 5 \times 5 \times 5$, or 5 in the fifth power 3^{4} means $3 \times 3 \times 3 \times 3$, or 3 in the fourth power. 5^{7} moans $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$, or 8 in the seventh power, \&e.
3. Sometimes the vinculun! [Sce. II. 5] is used in conjunction with the inder ; thus $\overline{5+8^{2}}$ means that the sum of 5 and δ is to be raised to the second power-this
is very the squa is only 8
4. In as a spo how ofte 187×5 $187+18$ often 18 an abbre is, the " the " in
5. To

Rule index of factors b

Examp

Examp interest,

The an $1.06 x$ $\overline{1 \cdot 06}=1$
We, the proce obtained
6. Tc Rule that pow

Examp
To inv multiply its numer number
is very different from $5^{2}+8^{2}$, which means the sum of the squares of 5 and $8: \overline{5+8^{2}}$ being 169 ; while $5^{2}+8^{3}$ is only 89.
4. In multiplication the multiplicr may be considered as a species of index. Thus in $187 \times 5,5$ points out how often 187 should be set down as an addend; and 187×5 is merely an abbreviation for $187+187+187+$ $187+187$ [Sec. II. 41]. In $187^{5}, 5$ points out how often 187 should be set down as a factor; and 187^{5} is an abbreviation for $187 \times 187 \times 187 \times 187 \times 187$:-that is, the " multiplier" tells the number of the addends, and the "index" or "exponent," the number of the factors.

5. To raise a number to any power-

Rule. - Find the product of so many factors as the index of the proposed power contains units-each of the factors being the number which is to be involved.

Example 1.-What is the 5th power of 7 ?

$$
7^{5}=7 \times 7 \times 7 \times 7 \times 7=16807 .
$$

Example 2.-What is the amount of $£ 1$ at compound interest, for 6 yeurs, allowing 6 per cent. per annum?

The amount of $£ 1$ for 6 years, at 6 per cent. is-
$1.06 \times 1.06 \times 1.00 \times 1.06 \times 1.06 \times 1.06$ [Sec. VII. 20], or $\overline{1 \cdot 06}=1 \cdot 41852$.

We, as already mentioned [Sec. VII. 23], may abridge the process, by using one or more of the products, already obtained, as factors.

EXERCISES.

1. $3^{5}=243$.
2. $20^{19}=10240000000000$.
3. $\mathrm{a}^{7}=2187$.
4. $105^{6}=1340095640825$.
5. $105^{6}=1 \cdot 440095640625$.
6. To raise a fraction to any power--

Rule.-Raise both numerator and denominator to that power.

$$
\text { Example- }\left(\frac{3}{1}\right)^{3}=\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{5}{67} .
$$

To involye a fraction is to multiply it by itschis. But to multiply it by itself any number of times, we must multiply its numerator by itself, and also its denominator by itself, that number of times [Sce. IV. 89].

7. To raise a mixed number to any power-

Rule.-Reduce it to an improper fraction [Sec. IV $24]$; ard then proceed as directed by the last role.

Example.- $\left(2 \frac{1}{2}\right)^{4}=\left(\frac{5}{2}\right)^{4}=\frac{645}{10}$.
EXERCISES.
10. $\left(11_{5}^{2}\right)^{3}=\frac{18.5193}{25}$.
11. $\left(3{ }^{3}\right)^{5}={ }^{6433^{23} 3^{4}}{ }^{6}$.

8. Evolution is a process exactly opposite to mnvolution; since, by means of it, we find what number, raised to a given power, would produce a given quantity-the number so fround is termed a root. Thus we "evolve" 25 when we take, for instance, its square root; that is, when we find what number, multiplied by itself, will produce 25. Roots, also, are expressed by exponents-but as these exponents are fractions, the roots are called "fractional powers." Thus $4^{\frac{1}{2}}$ means the square root of $4 ; 4^{\frac{1}{3}}$ the cube root of 4 ; and $4^{\frac{5}{5}}$ the seventh root of the fifth power of 4. Roots are also expressed by $\sqrt{ }$, called the radical sign. When used alone, it means the square root-thus $\sqrt{3}$, is the square root of 3 ; but other roots are indicated by a small figure placed within it-thus $\sqrt[3]{5}$; which means the cube root of $5 . \quad \sqrt[3]{7^{3}}\left(7^{\frac{2}{3}}\right)$, is the cube root of the square of 7 .
9. The fractional exponent, and radical sign are sometimes used in conjunction with the vinculun. Thus $\overline{4-3}{ }^{\frac{1}{2}}$, is the square root of the difference between 4 and $3 ; \sqrt[3]{5+7}$, or $\overline{5+7^{\frac{1}{3}}}$, is the cube root of the sum of 5 and 7 .
10. To find the square root of any number-

Rule-I. Point off the digits in pairs, by dots ; putting one dot over the units' place, and then another dot over every second digit both to the right and left of the units' place--if there are digits at loth sides of the decimal point.
II. will no that wl the firs square conside III. into tw dered produc and th after t from t IV. anothe proces. noar al
11.

22 is
does $1:$ or 16 f period,

We we ca 34 , wh

We
root)
20 , the
We the ro
The its squ
12. squaro
II. Find the highest number the square of which will not exceed the amount of the highest period, or that which is at the extreme left-this number will be the first digit in the required square root. Subtract its square from the highest period, and to the remainder, considered as hundreds, add the next period.
III. Find the highest digit, which being multipliod into twiec the part of the root already found (considered as so many tens), and into itself, the sum of the products will not execed the sum of the last remainder and the period added to it. Put this digit in the root after the onc last found, and subtract the former sum from the latter.
IV. To the remainder, last obtained, bring down another period, and proced as before. Continue this process until the exact square root, or a sufficiently near approximation to it is obtained.
11. Example.-What is the square root of 22420225^{2}
$2 \dot{2} 4 \dot{2} 02 \dot{5}(4735$, is the required root. 10
the number of digits in the root, since neither one nor two digits in the square can give more or less than one in the root; neither three nor four digits in the square can give more or less than two in the root, \&c.-which the pupil may easily ascertain by experiment. Thus 1 , the smallest single digit, will give one digit as its square root; and 99 , the largest pair of digits, can give ouly one-since 81, or the square of 9 , is the greatest square which does not exceed 99.
Pointing off the digits in pairs shows how many should be brought down successively, to obtain the successive digits of the root--since it will be necessary to bring down one period for each new digit; but more than one will not be required.
Reason of II.-We subtract from the highest period of the given number the highest square which does not exceed it, and consider the root of this square as the first or highest digit of the required root; because, if we separate any number into the parts indicated by its digits (568 , for instance, into 500,60 , and 3), its square will be found to contain the square of each of its parts.
Reason of III.-We divide twice the quantity already in the root (cousidered as expressing tens of the next denomination) into what is left after the preceding subtraction, \&co., to obtain a new digit of the root; because the square of any quantity contains (besides the square of each of its parts) twico the product of each part multiplied sy each of the other parts. Thus if 14 is divided into 1 ten and 4 units, its squaro will contain not only 10^{2} and 4^{2}, but also twice the product of 10 and 4. We subtract the square of the digit last put in the root, at the same time that we subtract twice the product obtained on multiplying it by the part of the root which precedes it. Thus in the example which illustrates the rule, when we subtract 87×7, we really subtract $2 \times 40 \times 7+7^{2}$.
It will be easily to show, that the square of any quantity contains the squares of the parts, along with twice the product of every two parts. Thus

$$
2 \times 4000 \times 700+\overline{700^{2}}=6090000
$$

$$
\begin{aligned}
& \overline{000}^{2}=\frac{22420225}{16000000} \\
& +\overline{4735}^{2}=\sqrt{64200+700+30+5} \\
& +\overline{7} 00^{2}
\end{aligned}
$$

$2 \times 4000 \times 30+2 \times 700 \times 30+30^{2}=$
$2 \times 4000 \times 5+2 \times 700 \times 5+2 \times 30 \times 5+5^{2}=47325$
Reason of IV.-Dividing twice the quantity already in the root (considered as expressing tens of the next denomination) into the remainder of the given number, \&ٔ., gives the next digit; because the square contains the sum of twice the products (or, what is the same thing, the product
of twis multip, 4735, $700+$ twice of its them (the su found t
If w not be time, n
13.

If a in the the re examp shall h

In thi and the

There number in tho s
inr two e root; dore or easily digit, st pair of 9 , is
uld be gits of period ed.
of the eed it, ighest umber e, into square
ady in minace., to f any parts) other quare oduct put in oduet prerule,
ntity pro.
of twice the sum) of the parts of the root alrearly found, multiplied by the new digit. Thus 22420225, the square of 4735, contains $4000^{2}+700^{2}+30^{2}+5^{3}$; and ilso twice $4000 \times$ $700+$ twice $4000 \times 80+$ twiee 4000×5; plus twiee $700 \times 30+$ twiee 700×5; plus twice 30×5 :-that is, the square of each of its parts, with the sum of twiee the product of every two of them (which is the same as each of them multiplied by twiee the sum of all the rest). This would, on examination, be found the case with the square of any other number.

If we examine the example given, we shall find that it will not be necessary to bring down more than one period at a time, nor to add cyphers to the quantities subtracted.
13. When the given square contains decimals-

If any of the periods conisist of decimals, the digits in the root obtained on bringing down these periods to the remainders will also be decimals. Thus, taking the example just given, but altering the decimal point, wo shall have $\sqrt{224202 \cdot 25}=473 \cdot 5 ; \sqrt{2242 \cdot 0225}=47 \cdot 35$; $\sqrt{22 \cdot 420225}=4.735 ; ~ \sqrt{22420225}=\cdot 4735 ;$ and $\sqrt{\cdot 0022420225}=04735$, \&c. : this is obvious. If there is an odd number of decimal places in the power, it must ke made even by the addition of a cypher. Using the same figures, $\sqrt{2242022 \cdot 5}=1497 \cdot 338$, \&c.

$$
\begin{aligned}
& \dot{2} \dot{4} 2 \dot{0} 2 \dot{2} \cdot 5 \dot{0}(1497 \cdot 338 \text {, \&c } \\
& \text { 24) } \frac{1}{124} \\
& \text { 289 } \xlongequal[28]{2820} \\
& 2601 \\
& \text { 2987 } \longdiv { 2 1 9 2 2 } \\
& 20309 \\
& 2 9 9 4 8 \longdiv { 1 0 1 8 5 0 } \\
& \text { 299463 } \frac{80829}{1152100} \\
& 898389 \\
& 2 9 0 4 6 6 8 \longdiv { 2 5 8 7 1 1 0 0 } \\
& 23957344
\end{aligned}
$$

1413756

In this case the highest period consists but of a single digit nind the given number is not a perfect square.
There must be an even number of decimal places; since ns number of decimals in the root will produce an odd number in the square [Sec. II. 48]-as may be proved by experiment

EXERCIGES.
14. $\sqrt{195364}=442$
15. $\sqrt{\overline{328839}}=573$
16. $\sqrt{\cdot 0676}=\cdot 26$
17. $\sqrt{87 \cdot 65}=9 \cdot 3622$
18. $\sqrt{861}=29 \cdot 3428$
19. $\sqrt{984064}=992$
20. $\sqrt{ } \sqrt{ }=2 \cdot 23607$
21. $\sqrt{ } \cdot 5=\cdot 707106$
22. $\sqrt{91 \cdot 9681}=9 \cdot 59$
23. $\sqrt{238144}=188$
24. $\sqrt{ } \cdot \sqrt{22 \cdot 8761}=5 \cdot 69$
25. $\sqrt{ } \cdot 331776=\cdot 576$
18.

Ruli !Sev I
18. Or, lastly-

Rule.-Reduce the given fraction to a decimal !Sev [V. 63], and extract its squile root [13]

EXERCLSES.
19. To extract the square root of a mixed number-

Rule.-Reduce it to an improper fraction, and then proceed as already directed [14, \&c.]

Example.- $\sqrt{2!}=\sqrt{\frac{9}{4}}=\frac{3}{3}=1 \frac{1}{2}$.
EXERCISES.

$$
\begin{array}{l|l}
\text { 32. } \sqrt{\frac{51 \frac{3}{2}}{5}}=7 \frac{1}{5} & 3 \\
\text { 33. } \sqrt{\frac{2}{2} \frac{1}{3}}=5 \frac{1}{4} & 3 \\
\text { 34. } \sqrt{1_{80}^{3}}=1 \cdot 01858 & 3
\end{array}
$$

29. $\left(\frac{5}{9}\right)^{\frac{1}{2}}=.745356$
30. $\left(\frac{9}{12}\right)^{\frac{1}{2}}=86660254$
31. $\left(\frac{5}{7}\right)^{\frac{1}{2}}=8.8451542$
$26\left(\frac{22}{37}\right)^{\frac{1}{2}}=\frac{28 \cdot 5306852}{37}$
$27\left(\frac{14}{16}\right)^{\frac{1}{2}}=\frac{14}{14 \cdot 9666205}$
32. $\left(\frac{3}{13}\right)^{\frac{1}{2}}=\frac{6 \cdot 244998}{13}$
33. To find the cube ront of any nwaber-

Rule-I. Point off the digits in threes, by dotsputting the first dot over the units' place, and then procceding both to the right and left hand, if there are digits at both sides of the decimal point.
II. Find the highest digit whose cube will not exceed the highest period, or that which is to the left hanc side-this will be the highest digit of the required root; subtract its cube, and bring down the next period to the remainder.
III. Find the highest digit, which, being multiplied by 300 times the square of that part of the root, already found-being squared and then multiplied by 30 times the part of the root already found-and being multiplied by its own square-the sum of all the products will not exceed the sum of the last remainder and the period brought down to it.--Put this digit in the root after what is already there, and subtract the former sum from the latter.
IV. To what now remains, bring down the next
period, and proceed as before. Continue this process until the cxact cube root, or a sufficiently near approximation to it, is obtained.

Example.-What is the cube root of 179597069288 ?
 125
$\left.\begin{array}{l}\left.\begin{array}{l}300 \times 5^{2} \times 6 \\ 30 \times 5 \times 6^{2} \\ 6^{2} \times 6 \\ 300 \times 56^{2} \times 4 \\ 30 \times 56 \times 4^{2} \\ 4 \times 4 \\ 300 \times 564^{2} \times 2 \\ 30 \times 564 \times 2^{2} \\ 2^{2} \times 2\end{array}\right\}=\frac{54597}{3981069} \\ 1\end{array}\right\}=\frac{3790144}{190925288}$

We find (by trial) that 5 is the first, 6 the second, 4 the third, and 2 the last digit of the root. And the given number is exactly a cube.
21. Reason of I.-We point off the digits in threes, for a reason similar to that which caused us to point them off in tfos, when extracting the square root [12].

Reason of II.-Each cube will be found to contain tho cube of each part of its cube root.

Reason of III.-The cube of a number divided into any two parts, will be found to contain, besides the sum of the cubes of its parts, the sum of 3 times the product of each part by the other part, and 3 times the product of each part by the square of the other part. This will appear from the following:-

5000^{3}	$=\frac{179597069288}{125000000000}$
$3 \times 5000^{2} \times 600+3 \times 5000 \times 600^{2}+600^{3}$	$=\frac{50616000000}{3981069288}$
$3 \times 5600^{2} \times 40+3 \times 5600 \times 40^{2}+40^{3}$	$=\frac{3790144000}{190925288}$
$3 \times 5640^{2} \times 2+3 \times 5640 \times 2^{2}+2^{3}$	$=190925288$

Hence, to find the second digit of the root, we must find $b y$ trial some number which-bcing multipiou by 3 times thio square of the part of the reot already found-its square being
multiplied by 3 times the part of the root already found-and leing multiplied by the square of itself- the sum of the prodhets whll not exceed what remains of the given number.

Instem of considering the purt of the root alremly found as en many tens [12] of the denomination next following (us it really is), which would and one cypher to it, and two cyphers to its square, we cousider it as so many units, und multiply it, not hy 3 , but by 30 , and its square, not by 8 , but by 300 . For $300 \times 5^{2} \times 6+80 \times 5 \times 6^{2}+6^{2} \times 6$ is the same thing as $8 \times 50^{2} \times 6+3 \times 50 \times 6^{2}+6^{2} \times 6 ;$ since wo only change the positimm of the finetors 100 and 10 , which dues not alter the product [Sect. 1I. 35].
lt is evidently unnecessary to bring down more than one period at a time; or to add eyphers to the subtrahends.
libason of IV.-The portion of the root ahready found may be treated as if it were a siuglo digit. Since into whatever two parts wo divide any number, its cube root will contaín the cube of each part, with 3 times the square of eneh multiplied into the other.
22. When there are decimals in the given cube-

If any of the periods consist of decimals, it is evident that the digits found on bringing down theso periods must be decinals. Thus $\sqrt[3]{ } 179597 \cdot 069288=56 \cdot 42$, \&c.

When the decimals do not form complete periods, the periods are to be eompleted by the addition of eyphers.

Example.-What is the cube rout of $\cdot 3$?

	$\begin{aligned} & \dot{0} \cdot 300 \\ & 216 \end{aligned}$
$300 \times 6{ }^{2} \times 6$	84000
$30 \times 6 \times 6^{2}$	$\}=71496$
6×6^{2}) 10504
$300 \times 66^{2} \times 9$) 12504000
$30 \times 66 \times 9^{2}$	$=11922309$
$0 \times 9{ }^{2}$	581691,

- $z^{7} \cdot 8=\cdot 669$, \&e. And 3 is not exretly a cube.

It is necessary, in this ease, to add eyphers; sinee one decimal in the root will give 3 decimal places in the eube; two decimal nlices in the root will give six in the cube, \&c. [Sec. 1I. 48.]

EXERCISES.
43. $\sqrt[3]{458314011}=771$
44. $\sqrt[3]{483 \cdot 736625}=7 \cdot 85$
45. $\sqrt[3]{\cdot 636056}=86$
46. $\sqrt[3]{209}=2 \cdot 996666$
47. $\sqrt[3]{\cdot 979146657}=\cdot 933$
23. To extract the cube root of a fraction-

Rule.-Having reduced the given fraetion to its
54. lowest terms, make the cube root of its numerator the numerator of the required fraction, and the cube root of its denominator, the denominator.
Exampie. $-\sqrt[3]{\frac{3}{1 \frac{3}{5}}}=\frac{\sqrt[3]{8}}{\sqrt[3]{125}}=\frac{3}{3}$.
24. Reason of the Rule. -The cube root of any number must be such as that, taken three times as a factor, it will produce that number. Therefore $\frac{2}{5}$ is the cube root of $\frac{3}{125}$; for $\frac{2}{2} \times \frac{3}{3} \times \frac{2}{5}=\frac{8}{125}$. The same thing might be shown by any other example.
Besides, to cube a fraction, we must cube both numerator and denominator; therefore, to take its cube root-that is to reduce it to what it was before-we must take the cube root of both.
$25 . \mathrm{Or}$, when the numerator and denominator are not eubes-

Ruse.-Multiply the numerator by the square of the denominator; and then divide the cube root of the produet by the given denominator; or divide the given numerator by the cube root of the product of the given denominator multiplied by the square of the given numerator.

Example.-What is the cube root of $\frac{3}{7}$?

$$
\left(\begin{array}{l}
\frac{3}{7}
\end{array}\right)^{\frac{1}{3}}=\sqrt[3]{\frac{3 \times 7^{2}}{7}} \text { or } \frac{3}{\sqrt[3]{7 \times 3^{2}}}=5.277632 \div 7=753047
$$ This rule depends on a principle already explained [16]. 26. Or, lastly-

Rule.-Reduce the given fiation to a decimal [Sce. IV. 63], and extraet its cube root [22].

EXERCISES.

48. $\left(\frac{8}{9}\right)^{\frac{1}{3}}=\frac{8 \cdot 653497}{9}$	51. $\left(\frac{5}{6}\right)^{\frac{1}{3}}=\cdot 941036$
49. $\left(\frac{4}{11}\right)^{\frac{1}{3}}=\frac{4}{5 \cdot 60 \cdot 479}$	52. $\left(\frac{8}{17}\right)^{\frac{1}{2}}=\cdot 560907$
50. $\left(\frac{7}{8}\right)^{\frac{1}{3}}=\frac{7 \cdot 6517.5}{8}$	53. $\left(\frac{2}{19}\right)^{\frac{1}{3}}=\cdot 472163$

27. To find the cube root of a mixed number-

Rule.- Reduce it to an improper fitaction; and then proeed as already directed [23, \&c.]

Example- $\sqrt[3]{\sqrt{82}}=\sqrt[3]{\sqrt{820}}=154$.

Exam
Since cube ro
29. Mathen

Rul to the will no as one given n multipl express index plus on the ass the inc nearer thus 0 was tr found. desirab

Exas
Let 2
$12 \times$
approx
2, in t which

EXERCISES.

54. $(283)^{\frac{1}{4}}=3.0635$	57. $\left(71 \frac{3}{4}\right)^{\frac{1}{4}}=4 \cdot 1553$
55. $\left(7 \frac{1}{5}\right)^{\text {f }}=1 \cdot 93098$	58. $\left(32 \frac{8}{\text { P }}\right)^{\frac{1}{3}}=3 \cdot 1987$
56. $\left(9{ }^{\text {d }}\right)^{\frac{1}{3}}=2 \cdot 0928$	59. $\left(5 \frac{4}{3}\right)^{1}=1.7502$

28. To extract any root whatever-

Rule.- When the index of the root is some power of 2 , extract the square root, when it is some power of 3 , extract the cube root of the given number so many times, successively, as that power of 2 , or 3 contains unity.

Example 1.-The 8th root of $65536=\sqrt{ } \sqrt{\sqrt{65536}}=4$.
Since 8 is the third power of 2 , we are to extract the square root three times, successively.

Example 2.-134217728 $8^{\frac{1}{9}}=\sqrt[3]{\sqrt[3]{13421772 \delta}}=8$.
Since 9 is the second power of 3 , we are to extract the cube root twice, successively.
29. In other cases we may use the following (Hutton Mathemat. Dict. vol. i. p. 135).

Rule.-Find, by trial, some number whieh, raised to the power indicated by the index of the given root, will not be far from the given number. Then say, as one less than the index of the root, multiplied by the given number-plus one more than the index of the root, multiplicd by the assumed number raised to the power expressed by the index of the root : one more than the index of the root, multiplied by the given numberplus one less than the index of the root, multiplied by the assumed number raised to the power indicated by the index of the root, :: the assumed root : a still nearer approximation. Treat the fourth proportional thus obtained in the same way as the assumed number was treated, and a still nearer approximation will be found. Proceed thus until an approximation as near as desirable is diseovered.

Example.-What is the 13th root of 923 ?
Let 2 be the assumed root, and the proportion will be
$12 \times 923+14 \times 2^{13}: 14 \times 923+12 \times 2^{13} \quad:: 2:$ a nearer approximation. Substituting this nearer approximation for 2. in the above proportion, we get another approximation, which we may treat in the same way.

EXERCISES.
60. $(96698)^{\frac{1}{8}=6.7749}$
61. $(66457)^{\frac{1}{11}}=2 \cdot 7442$
62. $(2365)^{\frac{4}{9}=31.585}$
63. $(87426){ }_{3}^{3}=5084 \cdot 29$
64. $(8.065)^{\frac{1}{2}}=1 \cdot 368$
65. $(\cdot 075426){ }_{14}^{13}=646088$

31 In we obtain table for which (th highest p process, a the table.

1. Wl
2. Wl
3. WI square a
4. W fractiona
5. H
6. W
7. W
8. Hi
of a mix
9. H
10. and cub
11. I
represe
along
which
ponding
merely
change:
The 10 ? which the bas corresp are me of som
12.

lation.
tion of

31 In finding the square and cube roots of larger numbers, we obtain their three highest digits at once, if we look in the table for the highest cube or square, the highest period of which (the required cyphers being added) does not exceed the highest period of the given number. The remainder of the process, also, may often be greatly abbreviated by means of the table.

QUESTIONS.

1. What are involution and evolution ? [1].
2. What are a power, index, and exponent ? [1 \& 2].
3. What is the meaning of square and cube, of the square and cube roots ? [1 and 8].
4. What is the difference between an integral and a fractional index? [2 and 8].
5. How is a number raised to any power ? [5].
6. What is the rule for finding the square root? [10].
7. What is the rule for finding the cube root? [20].
8. How is the square or cube root of a fraction or of a mixed number found ? [14, \&c., 19, 23, \&c., 27].
(1. How is any root found? [28 and 29].
9. How are the squares and cubes, the square roots and cube roots, of numbers found, by the table? [30].

LOGARTIHMS.

32. Jogarithms are a set of artificial numbers, which represent the ordinary or natural numbers. Taken along with what is called the base of the system to which they belong, they are the equals of the corresponding natural numbers, but without it, they are merely their representatices. Since the base is unchangeable, it is not written along with the logarithm. The logarithm of any number is that power of the base which is equal to it. Thus 10^{3} is equal to $100 ; 10$ is the base, 2 (the index) is the logarithm, and 100 is the corresponding natural number.-Logarithms, therefore, are merely the indices which designate certain powers of some base.
33. Logarithms afford peculiar facilities for calculation. For, as we shall see presently, the multiplication of numbers is performed by the addition of their
logarithms; one number is divided by another if we
34. subtract the logarithm of the divisor from that of the dividend; numbers are involved if we multiply their logarithms by the index of the proposed power ; and evolved if we divide their logarithms the index of the proposed root.-But it is evident that addition and subtraction are much easier than multiplication and division ; and that multiplication and division (particularly when the multipliers and divisors are very small) are much easier than involution and evolution.
35. To use the properties of logarithms, they must be exponents of the same base-that is, the quantities raised to those powers which they indicate must be the same. Thus $10^{4} \times 12^{3}$ is neither 10^{7} nor 12^{7}, the former being too small, the latter too great. If, therefore, we desire to multiply 10^{4} and 12^{3} by means of indices, we must find some power of 10 which will be equal to 12^{3}, or some power of 12 which will be equal to 10^{4}, or finally, two powers of some other number whioh will be equal rospectively to 10^{4} and 12^{3}, and then, adding these powers of the same number, we shall have that power of it whioh will represent the product of 10^{4} and 12^{3}. This explains the necessity for a table of logarithmswe are obliged to find the powers of some orie base which will be either equal to all possible numbers, or so nearly equal that the inaceuracy is not deserving of notice. The base of the ordinary system is 10 ; but it is clear that there may be as many different systems of logarithms as there are different bases, that is, as there are different numbers.
36. In the ordinary system-which has been caleulated with great care, and with enormous labour, 1 is the logarithm of $10 ; 2$ that of $100 ; 3$ that of 1000, \&e. And, since to divide numbers by means of these logarithms (as we shall find presently), we are to subtract the logarithm of the divisor from that of the dividend, 0 is the logarithm of 1 , for $1=\frac{10}{10}=10^{1-1}=10^{\circ} ;-1$ is the logarithm of $\cdot 1$, for $\cdot 1=\frac{1}{10} \stackrel{10}{100}=10^{0-1}=10^{-1}$; and for the same reason, -2 is the logarithm of $01 ;-3$ that of 001, \&e.
37. The logarithms of numbers between 1 and 10 , must " be more than 0 and less than 1 ; that is, must be some decimal. The logarithms of numbers between 10 ; and ex of on and n and articusmall) and 100 must be more than 1 , and less than 2 ; that is, unity with ome decimal, \&ec.; and the logarithms of numbers between $\cdot 1$ and 01 must be -1 and some decimal ; between 01 and $001,-2$ and some decimal, \&e. The decinal part of a logarithm is always positive.
38. As the integral part or characteristic of a positive logarithm is so easily found-being [35] one less than the number of integers in its corresponding number, and of a negative logarithm one more than tha number of cyphers prefixed in its natural number, it is not set down in the tables. Thus the logarithm corresponding to the digits 9872 (that is, its decimal part) is 994405 ; hence, the logarithm of 9872 is 3 $\cdot 994405$; that of $987 \cdot 2$ is 2.994405 ; that of 9.872 is 0.994405 ; that of 9872 is $-1 \cdot 994405$ (since there is no integer, nor prefixed eypher) ; of $009872-3 \cdot 994405$, \&c. :- The same digits, whatever may be their value, have the same decimals in their logarithms; since it is the integral part, only, which changes. Thus the logarithm of 57864000 is 7.762408 ; that of 57864 , is 4.762408 ; and that of $\cdot 0000057864$, is- 6.762408 .
39. To find the logurithm of a given number, by the table-

The integral part, or chatacteristic, of the logarithm. may be found at once, from what has been just said [37]-

When the number is not greater than 100 , it will be found in the column at the top of which is N, and the decimal part of its logarithm immediately opposite to it in the next columu to the right hand.

If the number is greator than 100 , and less than 1000 , it will also bo found in the column marked N , and the decimal part of its logarithm opposite to it, in the column at the top of which is 0 .
If the number coutains 4 digits, the first three of them will be found in the column under N, and the fourth at the top of the page ; and then its logarithm in die samo horizontal line as the three first digits of the given number, and in the same colum as its fourth

If the number contains more than 4 digits, find the logarithm of its first four, and also the difference between that and the logarithm of the next higher aumber, in the table; multiply this difference by the remaining digits, and cutting off from the product so many digits as were in the multiplier (but at the same time ndding unity if the highest cut off is not less than 5), add it to the logarithm corresponding to the four first digits.

Example 1.--The logarithm of 59 is 1.770852 (the characteristic being positive, and one less than the number of integers).

Example 2.-The logarithm of 338 is $2 \cdot 528917$.
Example 3.--The logarithm of 0004587 is -4661529 (the characteristic being negative, and one more than the number of prefixed cyphers).

Example 4.-The logarithm of 28434 is 4.453838.
For, the difference between 453777 the logarithno of 2843, the four first digits of the given number, and 453930 the logarithm of 2844 , the next number, is 153 ; which, multiplied by 4 , the remaining digit of the given number, produces 612 ; then cutting off one digit from this (since wo have multipliod by only one digit) it Jecomes 61 , which being. added to 453777 (the logarithm of 2344) makes 453838, and, with the characteristie, $4 \cdot 453838$, the required logarithm.

Example 5.-The logarithm of 873457 is 5.941242.
For, the difforonee between the logarithms of 8734 and 8735 is 50 , which, being multiplied by 57 , the remaining digits of the given number, makes 2850; from this we cut off two digits to the right (since we have multiplied by two digits), when it becomes 28 ; but as the highest digit cut off is 5 , we add unity, which makes 29 . Then $5 \cdot 941213$ (the logarithm of 8734) $+-29=5 \cdot 941242$, is the required logarithm.
39. Except when the logarithms increase very ra-pidly-that is, at the commencement of the takle-the differences may be taken from the right hand columm (and opposite the three first digits of the given number) where the mean differences will be found.

Iustead of multiplying the mean difference by the remaining digits (the fifth, \&e., to the right) of the given number, and cutting off so may places from the product as are equal to the number of digits in the multiplier, 1.) obtain the propurtional parl-or what is to be added
to the the pro maining hand sí division given n Exam
The Opprsit we find 5, 26. 924570
40. Tl what is arises f r ditferenc 100 :
the logi
differenc the give ting of of tigits multipli cause ml of their
The p have be tions an
41.

Rulı denomi
latter
Kxam We fine istic of sulitrac quotien

We another from th
42.

Rut ered as
to the logarithm of the first four digits, we may tako the proportional part correspouding to each of the remaining digits from that part of the column at the left hand side of the page, which is in the same horizontal division as that in which the first three digits of the given number have been found.

Exampla:-What is the logarithm of 839785 ?
The (decimal part of the) logarithm of 839700 is 924124. Opposite to 8 , in the same horizontal division of the page, we find 42, or rather, (since it is 80) 420 , and opposite to 5,26 . Hence the required logarithm is $024124+420+26=$ 924570 ; and, with the characteristic, $5 \cdot 924570$.
40. The method given for finding the proportional part-or what is to be added to the next lower logarithm, in the table arises from the difference of numbers being proportional to the difference of their logarithms. Henee, using the last example,
$100: 85:: 52(9: 417 h$, the logarithm of $839800-924124$, the logarithon of 839700) : $\frac{52 \times 85}{100}$, or the difference (the mean difference may generally be used) \times by the remaining digits of the given number -100 (the division being performed by eutting off two digits to the right). It is evident that the number of digits to be eut off depends on the number of digits in the multiplier. The logarithm found is not exactly correct, because numbers are not exactly proportional to the differences of their logarithms.

The proportional parts set down in the left hand column, have been ealculated by making the neeessary multiplications and divisions.

41. To find the logarithim of a fraction-

liule.-Find the logmithms of both numerator and denominator, and then subtract the furmer from the latter ; this will give the logarithm of the quotient.

Examue.-Lor. $\frac{4}{5} 7$ is $1 \cdot 672098-1.748187=-1.923910$. We find that 2 is to be subtracted from 1 (the characteristie of the numerator) ; hat 2 from 1 leaves 1 still to bo sulbtracted, or [Sect. II. 15] - 1 , the characteristic of tho quotient.

We shall find presently that to divide one quantity by another: wo have merely to subtract the logarithm of the litter from that of the former.
42. 'ito find the lagarithm of a mixed number-

Ruts--Reduce it to an improper fraction, and pro ered as direeted by the last rule.
43. To find the number which corresponds to a given logarithin-

If the logarithm itself is found in the table-
Rule.--'Iake from the table the number which correspouds to it, and place the decimal point so that there may be the requisite number of integral, or decimal plaees-according to the characteristic [37].

Example.-What number corresponds to the logarithm 4.214314?

We find 21 opposite the natural number 163 ; and look i. If along the horizontal line, we find the rest of the logarithm mider the figure 8 at the top of the page ; therefore the digits of the required number are 1638. But as the characteristic is 4 , there must in it be 5 places of integers. Hence the required number is 16380 .
44. If the given logarithm is not found in the table-

Rule.-Find that logarithm in the table which is next lower than the given one, and its digits will be the highest digits of the required number; find the difference between this logarithm and the given one, annex to it a rypher, and then divide it by that difference in the table, which corresponds to the four highest digits of the required number-the quotient will be the next digit; add another cypher, divide again by the tabular difference, and the quotient will be the next digit. Continue this process as long as necessary.

Example.-What number corresponds to the logarithm $5 \cdot 654329$?
654273 , which corresponds with the natural number 4511, is tho logarithm next less than the given one; therefore the first foer digits of the required number are 4511 . Adding a cypher to 56 , the difference between 654273 and the given logarithm, it becomes 560 , which, being divided by 96 , the lainder difference corresponding with 4511 , gives 5 as quotient, and 80 as remainder, Therefore, the first five digits of the required number are 45115 . Adding a eypher to 80 , it beemes 800 ; and, dividing this by 96 , we obtain 8 as the noxt digit of the required number, and 32 as remainder. The integers of the required number (one more than 5 , the characteristic) are, therefore, 451158. We may obtain the decimals, by continuing the addition of cyphers to the remainders, and the division by 90 .
45. from 0) the ne oxceed hand s sion w contill nothin

Exaz correst the gi same 67,77 48, wh with, requir a eyph pondir of the this, gers, 45115

Th given for fil

from

malt

this
(logit
45. We arrive at the same lesult, by subtracting from the difference between the given logarithm and the next less in the table, the highest (which does not oxeced it) of those proportional parts found at the right hand side of the page and in the same horizontal division with the first three digits of the given numbercontinuing the procoss by the addition of cyphers, until nothing, or almost nothing, remains.

Example.-Using the last, 4511 is the natural number corresponding to the logarithm 654273, which differs from the given logarithm by 50 . The proportional parts, in the same horizontal division as 4511 , are $10,19,29,38,48,58$, 67,77 , and 86 . The highest of these, contained in 56 , is 48, which we find opposite to, and therefore corresponding with, the natural number 5 ; hence 5 is the next of the required digits. 48 subtracted from 56 , leaves 8 ; this, when a cypher is added, becomes 80 , which contains 77 (corresponding to the natural number 8) ; therefore 8 is the next of the required digits. 77, subtracted from 80, leaves 3 ; this, when a cypher is added, becomes 30 , \&c. The integers, therefore, of the required number, are found to be 451158, the same as those obtaincd by the other metliod.

The rules for finding the numbers corresponding to given logarithms are merely the converse of those used for finding the logarithms of given numbers.

Use of Logarithms in Arithmetic.

46. To multiply numbers, by means of their loga-rithms-

Rule.-Add the logarithms of the factors; and the natural number corresponding to the result will be the required product.

Example. $-87 \times 24=1.939519$ (the \log. of 87) +1.380211 (the log. of 24) $=3.319730$; which is found to correspond with the natural number, 2088. Therofore $87 \times 24=2088$.
Reason of the Rule.-This mode of multiplication arises from the very nature of indices. Thus $5^{4} \times 5^{8}=5 \times 5 \times 5 \times 5$ multiplied $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$; and the abbreviation for this $[2]$ is 5^{12}. But 12 is equal to the sum of the indices (logarithms). The rule might, in the same way, be proved correet by any other eximple.
47. When the characteristies of the logarithens to be added are both positivo, it is evilent that their suin will be positive. When they are both negative, their sum (diminished by what is to be carried from the sum of the positive [36] decimal narts) will be negative. When one is negative, and the other positive, subtract the less from the greater, and prefix to the difference the sign belonging to the greater-bearing in mind what has been already said [Sec. II. 15] with reference to the subtraction of a greater from a less quantity.
48. To divide numbers, by means of their logarithms-

Ruie.-Subtract the logarithn of the divisor from that of the dividend; and the nutural number, corresponding to the result, will be the required quotient.

Example.- $1134 \div 42=3.054613$ (the log. of 1184) 1.623249 (the log. of 42) $=1.431364$, which is found to correspond with the natural number, 27 . Therefore $1134 \div$ $42=27$.

Reason of the Rule.-This mode of division arises from the nature of indices. Thus $4^{5} \div 4^{3}=[2] 4 \times 4 \times 4 \times 4 \times 4 \div 4 \times$ $4 \times 4=\frac{4 \times 4 \times 4 \times 4 \times 4}{4 \times 4 \times 4}=4 \times 4 \times \frac{4 \times 4 \times 4}{4 \times 4 \times 4}=4 \times 4$, the abbreviation for which is $4^{2}: B u^{4}, 2$ is equal to the index (logarithm) of the dividend minus 'hat of the divisor. The rule might, in the same way, be prov. 1 correct by any other example.
49. In subtracting the logarithm of the divisor, if it is negative, change the sign of its characteristic or integral part, and then proceed as if this were to be added to the characteristic of the dividend; but before making the characteristic of the divisor positive, subtract what was borrowed (if any thing), in subtracting its decimal part. For, since the decimal part of a logarithm is positive, what is borrowed, in order to make it possible to suitract the decimal part of the logarithm of the divisor from that of the dividend, must be so much taken away from what is positive, or added to what 's negative in the remainder.

We chauge the sign of the negative charactoristic, and then udd it; for, adding a positive, is the same as taking away a negative quantity.
50. itt \log

1 ui the in respon ExA
'Che gives power kea mavare by $5 x$ by $5 x$ for wh of the rute m examp
a nege is ne multi to be
52. rillim

Ru
by th and t be th

Ex
Th
the 1 of 7.

Re
the 1
numb
a fact
faetor equal

5
the
char
50. To "aise a quantity to any powor, by means of it logarithın-

Ruie. - Multiply the logarithm of the quanity by the index of the power; and the natural number corresponding to the result will be the required power.

Example.-Raise 5 to the 5 th power.
The hequithm of 5 is 0.69897 , which, multiplied by 5 , gives $3 \cdot 49 \cdot 485$, the logurithm of 3125 . Therefore, the 5 th ${ }^{1 / w w e r ~ o f ~} 5^{3}$ is 3125.
krason of the Rule.-This rule also follows from the nadre of indices. 5 raised to the 5 th power is 5×5 multiplied by 5×0 maltiplied by 0×5 multiplied by 5×5 multiplied by 5×5, or $5 \times 5 \times 0$, the abbreviation for which is [2] 5^{10}. But 10 is equal to 2 , the index (logarithm) of the quantity, multiplied by 5 , that of the power. The rale might, in the same way, be proved correct by any other example.
51. It follows from what lias been said [47] that when a negative characteristic is to be multiplied, the prodnct is negative; and that what is to be carried from the multidication of the decimal part (always positive) is to be sublracted from this negative resuit.
52. To evolve any quantity, by means of its loga-rithm-

Rule.-Divide the logarithm of the given quantity by that number which expresses the root to be taken'; and the natural number corresponding to the result will be the required root.

Ex. Prem.-What is the 4 th root of 2401.
The logarithm of 2401 is 3380392 , which, divided by 4 , the number expressing the root, gives $\cdot 845098$, the logaritlim of 7 . Therefore, the fourth root of 2401 is 7 .
Reason of the Rule.- This cule follows, likewise, from the nature of indices. Thus the 5 th root of 16^{10} is such a number as, raised to the 5 th power-that is, taken 5 timés as a factor-would produce 16^{10}. But $16^{10} 5$, takeu 5 times as a factor, would produce 16^{10}. The rule might be proved correct, equally well, by any other example.
53. When a negative characteristic is to be divided-

Rol:: I. -If the characteristie is c.cactly divisible by the divisor, divide in the ordinary way, but mate tho characteristic of the quotient negative.
II.-If the ne.rative charaeteristic is not exactly divisible, add what will make it so, both to it and to the lecimal part of the logarithm. Then proceed with the division.

Example.-Divide the logarithm - 4.837564 by 5.
4 wants 1 of being divisible by 5 ; then $-4.837564 \div 5$ = $-5+1 \cdot 837564 \div 5=1 \cdot 367513$, the required logarithm.

Reason of I.-The quotient multiplied by the divisor must give the dividend; but [51] a negative quotient multiplied by a positive divisor will give a negative dividend.

Reason of II. - In example 2, we have merely added +1 and - 1 to the same quantity-which, of course, does not. alter it.

QUESTIONS.

1. What are logarithms? [32-.
2. How do they facilitate ealculation ? [33].
3. Why is a table of logarithms neeessary? [34].
4. What is the eharacteristic of a logarithon; and how is it found ? [37].
5. How is the logarithm of a number found by the table ? [38].
6. How are the "differences," given in the tablo used ? [39].
7. What is the use of "nroportional parts ?" [39].
8. How is the logarithm of : fraction found ? [41].
9. How do we find the logarithm of a mixed number ? [42].
10. How is the number corresponding to a given lng:urithm found ? [43].
11. How is a number found when its corresponding logarithm is not in the table? [44].
12. How are multiplication, division, involution and evolution effected, by means of logarithms ? $[46,48$, 50 , and 52].
13. When regative characteristies are added, what is the sign of their sum ? [47].
14. What is the process for division, when the characteristic of the divisor is negative ? [49].
15. How is a negative characteristic multiplied? [51]. 16. How is a negative eharactoristic divided? [53]
16. Λ mereasi what at terms 0 be all the left
17. In quantiti 'Thus 5, $\& c$. , is The col latter 3 of such
$5: 7$ 9: 6, \& $15: 12$
18. In quantiti 'l'hus 5 , are geo case is the lat left. such a
$5: 1$ 1000 : 40 :: 8
19. T its extr
20.

series
Rul the nu

SECTION X.

PROGRESSION, \&c.

1. A progression consists of a number of quantities mereasing, or decreasing by a certain law, and forming what are called continued proportionals. When the terms of the series constantly increase, it is said to be ann ascending, but when they deercase (increase to the left), a descending series.
2. In an equidifferent or arithmetical progression, the quantitios increase, or decrease by a common difference. Thus $5,7,9,11$, \&e., is an ascending, and $15,12,9,6$, \&e., is a lescending arithmetical series or progression. The common difference in the former is 2 , and in the latter 3. A contimed proportion may be formed out of such a series. Thus-
$5: 7: 7: 9:: 9: 11$, \&c.; nad $15: 12:: 12: 9:$: $9: 6$, \&c. Or we may say $5: 7:: 9: 11::$ \&c.; and 15:12:: $9: 6$:: \&e.
3. In a geometrical or equirational progression, the quantities increase by a common ralio or multiplier. I'hus $5,10,20,40, \& c . ;$ and $10000,1000,100,10$, \&c., are geometrical series. The common ratio in the former case is 2, and the quantitics increase to the righl; in the latter it is 10 , and the quantities increase to the left. A continued proportion may be formed out of such a series. Thus-
$5: 10:: 10: 20:: 20: 40$, \&ce; ; and $10000: 1000:$: $1000: 100:: 100: 10, \& c$. Or we may say $5: 10:: 20:$ $40:: \& c$. ; and $10000: 1000:: 100: 10:: \& c$.
4. The first and last terms of a progression are called its extremes, and all the intermediate terms its means.
5. Arithmetical Progression.-'To find the sum of a serics of terms in arithmetical progression-

Rule.- Chintiply the sum of the extacmes by half the number of terms.

Exampie.-What is the sum of a series of 10 terms, the first being 2, and last 20 ? Ans. $2+20 \times \frac{10}{2}=110$.
6. Reason of the Rule.-This rule can be easily proved. For this purpose, set down the progression twice over-but in such a way as that the last term of one shall be under the first terin of the other series.

$$
\text { Then, } \begin{aligned}
24+21+18+15+12+9 & =\text { the sum. } \\
9+12+15+18+21+24 & =\text { the sum. And, }
\end{aligned}
$$

adhing the equals, $33+33+33+33+33+33=$ twice the sum.
That is, twice the sum of the series will be equal to the sum of as many quantities as there are terms in the series-each of the quantities being equal to the sum of the extremes. And the sum of the series itself will be equal to half as much, or to the sum of the extremes taken half as many times as there are terms in the series. The rule might be proved correct by any other example, and, therefore, is gencral.

EXERCISES.

1. One cxtreme is 3 , the other 15 , and the number of termis is 7. What is the sum of the series? Ans. 63.
2. One extreme is 5 , the other 93 , and the number of terms is 49. What is the sum? Ans. 2401.
3. One extreme is 147 , the other $\frac{3}{4}$, and the number of terms is 97 . What is the sum? Ans. 7165.875.
4. One extreme is $4 \frac{3}{8}$, the other 143 , and the num ber of terms is $5^{2} 2$. What is the sum? Ans. $3094 \cdot 875$
5. Given the extremes, and number of terms-to find
6. Th and 497, coumon
7. Th and $9 \frac{1}{7}$, common
8. Th and $\frac{3}{4}$, a common
9. To two give

Rule cording it to, or term; a the thiro ing term

We n termes is

Exam
21. 21
the serit
6
Еxam
10. 30
the seri
S. I

Ans. 4
9.

Ans. 1 10
Alrs. 6

EXERCISES.

5. The extremes of an arithmetical series are 21 and 497, and the number of terms is 41 . What is the common difference? Ans. 11.9.
6. The extremes of an arithmetical series are $127 \frac{2}{2} \frac{5}{8}$ and $9 \frac{1}{7}$, and the, number of terms is 26 . What is the common difference? Ans. $4 \frac{3}{4}$.
7. The extremes of an arithmetical series are 772 $\frac{3}{2}$ and $\frac{3}{4}$, and the number of terms is 84 . What is the common difference? Ans. $\frac{13}{14}$.
8. To find any number of arithmetical means between two given numbers-
Rule.-Find the common difference [7] ; and, according as it is an ascending or a deseending series, add it to, or subtraot it from the first, to form the second term; add it to, or subtract it from the second, to form the third. Proceed in the same way with the remaining terms.

We must remember that one less than the number of terms is one more than the number of means.
Example 1.-Find 4 arithmetical means betweon 6 and 21. $21-6=15 . \frac{15}{4+1}=3$, the common. difference. And the series is-

$$
\begin{aligned}
& \text { eries is }-6+2 \times 3 \cdot 6+3 \times 3 \cdot 6+4 \times 3 \cdot 6+5 \times 3 . \\
& \quad 6+3 \cdot 9 \cdot 12 \cdot 15 \cdot 18: 21 .
\end{aligned}
$$

Example 2.-Find 4 arithmetical means between 30 and 10. $30-10=20 \cdot \frac{20}{4+1}=4$, the common difference. And the series is-

$$
\begin{aligned}
& 30 \text {. } 20 \text {. } 22 \text {. } 18 \text {. } 14 \text {. } 10 \\
& \text { This rule is evident. }
\end{aligned}
$$

EXERCISES.

8. Find 11 arithmetical means between 2 and 20 Ans. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24.
9. Find 7 arithmetical means between 8 and 32 Ans. 11, 14, 17, 20, 23, 26, 29.

10 Find 6 arithmetical means between $4 \frac{1}{2}$, and $13 \frac{1}{2}$ Ans. $6,7 \frac{1}{2}, 9,10 \frac{1}{2}, 12$.
10. Given the extremes, and the number of termsto find any term of an arithmetical progression-

Rule.-Find the common difference by the last rule, and if it is an ascending series, the required term will be the lesser extreme plus-if a descending series, the greater extreme minus the common difference multiplied by one less than the number of the term.

Example 1.-What is the 5 th term of a series containing 9 torms, the first being 4 , and the last 28 ?
$\frac{28-4}{8}=3$, is the common difference. And $4+3 \times 5-1=$ 16 , is the required term.
Example: 2.-What is the 7th term of a series of 10 terms, the extremes being 20 and 2 ?

20-2
$\frac{9}{9}=2$, is the common difference. $20-2 \times \overline{7-1}=8$, is the required term.
11. Reason of the Rule.-In an ascending series the required term is greater than the given lesser extreme to the amount of all the differences found in it. But the number of differences it contains is equal only to the number of terms which precede it-since the common difference is not found in the first term.

In a descending series the required term is less than tho given greater extreme, to the amount of the differences subtracted from the greater extreme-but one has been subtracted from it, for each of the terms which precede tho required term.

EXERCISES.

11. In an arithnctical progression the extremes are 14 and 86 , and the number of terms is 19 . What is the 11th term? Ans. 54.
12. In an arithmetical series the extremes are 22 and 4, and the number of terms is 7 . What is the 4th term? Ans. 13.
13. In an arithmetieal series 49 and $\frac{3}{4}$ are the extremes, and 106 is the number of terms. What is the 94th term? Ans. 6:2643.
14. Given the extrenes, and common difference-to find the number of terms-

Rule.-Divide the difference between the given extremes by the common difference, and the quotiont plus unity will be the number of terms.

- Examp which th ence 3? $\frac{20}{3}$

13. Re lesser ext terms. I except th the extre will be ex
14. I and 12 , number
15. I and 32 , number
16. I is $\frac{5}{9}$, an number
17. and one

Rule terms, The diff

Exam the num What is
15. R sum $=s$ divide we slanll
$2 \times$
the num
Or th tracting have

Example.- How many terms in an arithmetical series of which the extremes are 5 and 20 , and tho common differ ence 3?

$$
\frac{26-5}{3}=7 . \quad \text { And } 7+1=8, \text { is the number of terms. }
$$

13. Reasen of the Ruie.-The greater differs from tho lesser extreme to the anount of the differences found in all the terms. But the common difference is tound in all the terms except the lesser extreme. Therefore the difference between the extremes contains the common difference once less than will be expressed by the number of terms.

EXERCISES.

14. In an arithmetical series, the extremes arc 96 and 12 , and the common difference is 6 . What is tho number of terms? Ans, 15.
15. In an arithmetical series, the extremes are 14 and 32 , and the common difference is 3 . What is the number of terms? Ans. 7.
16. In an arithmetical series, the common difference is $\frac{5}{9}$, and the extremes are $14 \frac{8}{9}$ and 11 . What is the number of terms? Ans. 8.
17. Given the sum of the series, the number of terms, and one extreme-to find the other-

Rule.-Divide twice the sum by the number of terms, and take the given extreme from the quotient The difference will be the required extreme.

Example.-One extreme of an arithmetical series is 10 the number of terms is 6 , and the sum of the series is 42 What is the other extrome?
$\frac{2 \times 42}{6}-10=4$, is the required extremc.
15. Reason of the Rule.-We have seen [5] that $2 \times$ the sum $=$ sum of the extremes X the number of terms. But if we divide each of these equal quantities by the number of terms, we shall have
$2 \times$ the sum $=$ sum of extremes X the number of terms the number of terms the number of terms
$2 \times$ the sum $=$ sum of the extremes. And sub-
Or the number of terms $=$ sum of the extremes. And subtracting the same extreme from each of these equals, wo shall have
$2 \times$ the sum - onecxtreme $=$ the sum of the extremes the number of terms the same extreme.
Or $\frac{\text { twice the sum }}{\text { the number of termis }}$ minus one extreme $=$ the other exteme.

exercises.

17. One extreme is 4 , the number of terms is 17 , and the sum of the scries is 884 . What is the other extreme? Aus. 100.
18. One extreme is 3 , the number of terms is 63 , and the sum of the series is 252 . What is the other extrome? Ans. 5.
19. One extreme is 27 , the number of terms is 26 , and the sum of the scries is 1924. What is the other extreme? Ans. 121.
20. Geometrical Progression.-Given the extremes and common ratio-to find the sum of the series-

Rule.-Subtract the lesser extreme from the product of the greater and the common ratio; and divide the difference by one less than the common ratio.

Example.-In a geometrical progression, 4 and 312 are the extremes, and the common ratio is 2 . What is the sum of the series.

$$
\frac{312 \times 2-4}{2-1}=620, \text { the required number. }
$$

17. Reason of the Rule.-The rule may be proved by setting down the series, and placing over it (but in a reverse order) the product of each of the terms and the common ratio. Then
Sum \times common rakio $=8+16+32,8 \mathrm{c} . .+312+624$
Sum $=.4+8+16+32$, \&c..+312 .
And, subtracting the lower from the upper line, we shall hare Sum \times common ratio - Sum $=624-4 . ~ O r$ Common ratio--1 \times Sum $=624--4$.
And, dividing each of the equal quantities by the common ratio minus 1

$$
\text { Sum }=\frac{642 \text { (last term } \times \text { common ratio })-4 \text { (the first term) }}{\text { common ratio }-1}
$$

Which is the rule.
20. The 2 , and th Ans. 682.
21. Tho 175692, an Ans. 1932
22. Tho are $\frac{1}{10}$ anc the sum?

Since the
23. Tho $937 \cdot 5$, and Ans. 1171
18. Giv grometric:

Rule.by the les is indicate bo the red

Exampia progression mon ratio $8 \cdot$
$\overline{5}=16$.
19. Rma to the lesse the commor since the e is, the gre power indic tiplied hy t by the less is indicate obtain the
24. Th and 3 , common 25. Tl

EXERCISES.

20. The extremes of a geometrical scries are 512 and 2 , and the coumon ratio is 4 . What is the sum: Ans. 682.
21. The extremes of a geometrical series are 12 and 175692 , and the common ratio is 11 . What is the sum? Ans. 193260.
22. The extremes of an infinite geometrical series are $\frac{1}{10}$ and 0 , and $\frac{1}{10}$ is the common ratio. What is the sum? Ans. $\frac{1}{9}$. [Sec. IV. 74.]
Since the saries is infinite, the lesser extreme= $=0$.
23. The extremes of a geometrical series are 3 and 937.5 , and the common ratio is 5 . What is the sum? Aus. $1171 \cdot 875$.
24. Given the extremes, and number of terms in a geometrical semes-to find the common ratio--

Rule.-Divide the greater of the given extremes by the lesser ; and take that root of the quotient which is indicated by the number of terms minus 1 . This will bo the required number.

Exampie. - 5 and 80 are the extremes of a geometrical progression, in which there are 5 terms. What is the commum ratio?
$\left.8{ }^{3}\right)$
$\frac{5}{5}=16$. And $3 / 16=$, the requircd common ratio.
19. Reason ot the Rule.-The greater extreme is efual to the lesser multiplied by a product which has for its factors the common ratio taken once less than the number of termssince the commom ratio is not found in the first term. That is, the greater extreme contains the common ratio raised to n power inticated by 1 less than the number of terms, and multipliel by the lesser extreme. Consequently if, atter dividing by the lesser extreme, we take that root of the quotient, which is indicated by one less than the number of terms, we shall obtain the common ratio itself.

EXERCISES
24. The extremes of a geometrical series are 49152 and 3 , and the number of terms is 8 . What is tho common ratio? Aus. 4.
25. The extremes of a geometrical series are 1 aud

15625 , and the number of terms is 7 What is the common ratio ? Ans. 5.
26. The extremes of a geometrical series are 201768035 and 5 , and the number of terms is 10 What is the common ratio? Ans. 7.
20. To find any number of geometrical means be troen two quantities-

Rule.-Find the common ratio (by the last rule). and-according as the series is ascending, or descend-ing-multiply or divide it into the first term to obtain the second; multiply or divide it into the second to obtain the third; and so on with the remaining terms.

We must remember that one less than the number of terms is one more than the number of means.

Exampar 1.-Find 3 geometrical means between 1 and 81.
$\sqrt[2]{ } \overline{1}=3$, the common ratio. And $3,9,27$, are the required means.

Example 2.-Find 3 geometrical meams between 12:5 and 2.

$$
\frac{1250}{2}=5 . \quad \text { And } \frac{1250}{5} \quad \frac{1250}{5 \times 5} \quad \frac{1250}{5 \times 5 \times 5} \text {, or } 250,50,1
$$ are the required means. This rule refuires no exphanation.

EXERCISES.

27. Find 7 geometrical means between 3 and 19663 Ans. 9, 27, 81, 243, 729, 2187, 6561.
28. Find 8 geometrical means between 4096 and 8 : \ns. 2048, 1024, 512, 256, 128, 64, 32, and 16.
29. Find 7 geometrical means between 14 and 23514624? Ans. 84, 504, 3024, 18144, 108864, 653184, and 3919104.
30. Given the first and last term, and the number of terms-to find any term of a geometrical series-

Rule.-If it be an ascending serics, multiply, if a descending series, divide the first term by that power of the common ratio which is indicated by the number of the term minus 1 .

Exan of whis of term

The
term is
Exas extrem

The is the
$22 . \mathrm{R}$ term is as a firc it is 110

In a divicled so 11:1ny but that constitu
30. 58593 $937 \bar{\circ}$.
31.
laving
32. having
23. the nu

Rus and of con requirs

Exaz extrem
$\frac{256}{2}=$
Whe the gie number

Exampla 1.-Find the 3rd term of a geometrical series, of which the first term is 6 , the last 1.158 , and the number of terms 6 .
The common ratio is $\sqrt{\sqrt{1458}} \frac{158}{6}=3$. Therefore the required term is $6 \times 3^{2}=54$.

Exampie 2.-Find the 5th term of in series, of which tha extremes are 52.4288 and 2 , and the number of terms is 10 .
The common ratio $\sqrt[5]{\frac{524288}{2}}=4$. And $\frac{524288}{4}=20+8$. is the required term.
22. Reason of the Rulf.-In an ascenling series, any term is the proluct of the first and the common ratio taken as a factor so many times as there are preeeding terms--since it is not found in the first term.
In a de cending series, may terin is equal to the first tem, diviled by a product containing the common ratio as a factor so many times as there are precoling terms-since every term but that which is required adds it one to the factors which constitute the divisor.

EXERCISES.

30. What is the 6th term of a series haring 3 and 5859375 as extremes, and containing 10 terms? Ans. 937.
31. Given 39366 and 2 as the extremes of a series laving 10 terms. What is the sth term? Ans. 18.
32. Given 1959552 and 7 as the extremes of a series having 8 torms. What is the 6th term? Ans. 252.
33. Given the extremes and common ratio-to find the number of terms-

Rule.-Divide the greater by the lesser extreme, and one more than the number expressing what power of common ratio is equal to the quotient, will be tho recquired quantity.

Example.-How many terms in a series of which tho extremes are 2 and $2 \boldsymbol{i} G$, and the common ratio is 2 !
$\frac{256}{2}=128$. But $2=128$. There are, therefore, 3 terms.
The common ratio is found as a factor (in the quotient of the greater divided by the lesser extreme) once less than the number of teriss.

EXERCISES.

33. Tow many terms in a series of which the first is 78732 and the last 12 , and the common ratio is 9 ? Ans. 5.
34. How many terms in a serics of which the extremes and common ratio are 4, 470590, and 7? Ans. 7.
35. How many terms in a series of which the extremes and common ratio, are 196608, 6, and 8:'Ans. 6.
36. Given the common ratio, number of terms, and one extreme-to find the other-
liule.-If the lesser extreme is given, multiply, if the greater, divide it by the common ratio raised to a power indieated by one less than the number of terms.

Example 1.-In a geometrical series, the lesser extreme is 8 , the number of terms is 5 , and the common ratio is 6 ; what is the other extrene? Ans. $8 \times 6^{6-1}=10368$.

Exampie 2.-In a geometrical series, the greater extreme is 6561 , the number of terms is $\overline{7}$, and the common ratio is 3 ; what is the other extreme? Ans. $6561 \div 3^{3^{-1}=}=9$.

This rule does not require any explanation.

EXERCISES.

36. The eommon ration is 3 , the number of terms is 7 , and one extrome is 9 ; what is the other? Ans. 6.561.
37. The common ratio is 4 , the number of terms is 6 , and one extreme is 1000 ; what is the other ? Aus. 1024000.
38. The common ratio is 8 , the number of terms is 10 , and one extreme is 402653184 ; what is the other? Ans. 3.

In progression, as in many othe rules, the application of algebra to the reasoning would greatly simplify it.

MISCELLANEOUS EXERCISES IN PROGRESSION.

1. The clocks in Venice, and some other plaees strike the 24 hours, not begimeng again, as ours do, after 10. How many strokes lo they give in a day? Ams. 300.

2 A butcher bought 100 sheep; for the first he gave $1 s$, and for the last sed 19s. What did he pay for
all, supp Ans. $\mathrm{L}_{\mathrm{L}}^{\mathrm{L}}$
3. A yard he price of 4. A the first on, until did he tr 5. A
that the and that year.
6. Fi Ans. $\frac{1}{2}$.
7. Of
8. W
payment being $\mathfrak{£}$ common the ratio
9. W thing fo second, shoe?
10. A queathe gave next, $1 \frac{1}{2}$ was the of the ceived

1. W series?
2. W
trical pi names?
3. W
ratio?
all, supposing their prices to form an arithmetical scries ? Ans. L'500.
4. A person bought 17 yards of cloth; for the first yard he gave $2 s$., and for the last 10 s. What was the price of all? Ans. £5 $2 s$.
5. A person travelling into the country went 3 miles the first day, 8 miles the second, 13 the third, and so on, until he went 58 miles in one day. How many days did he travel? Ans. 12.
6. A man being asked how many sons he had, said that the youngest was 4 years old, and the eldest 32, and that he had added one to his family every fourth year. How many had he? Ans. 8.
7. Find the sum of an infinite scrics, $\frac{1}{3}, \frac{1}{9}, \frac{1}{2}$, \&c. Ans. $\frac{1}{2}$.
8. Of what value is the decimal 463^{\prime} ? Aus. $\frac{663}{8} \frac{3}{9}$.
9. What debt can be discharged in a year by monthly payments in geometrical progression, the first term being $\mathfrak{£ 1}$, and the last $£ 2048$; and what will be the common ratio? Ans. The debt will be $£ 4095$; and the ratio 2.

9 . What will be the price of a horse sold for 1 farthing for the first nail in his shoes, 2 farthings for the second, 4 for the third, \&c., allowing 8 nails in each shoc ? Ans. £4473924 5 s. $3 \frac{3}{4} d$.
10. A nobleman dying left 11 sons, to whom he bequeathed his property follows; to the youngest he gave 21024 ; to the next, as much and a half; to the next, $1 \frac{1}{2}$ of the preceding son's share; and so on. What was the eldest son's fortunc ; and what was the amount of the nobleman's property? Aus. The eldest son received $£ 59049$, and the father was worth $£ 175099$.

QUESTIONS.

1. What is meant by ascending and descending serics? [1].
2. What is meant by an arithmetical and geometrical progression ; and are they designated by any other names? [2 and 3].
3. What are the common difference and common ratio ? [2 and 37.

4 Bhiow that a continued proportion may be formed frem a series of either kind: [2 and 3].
6). What are means and extremes ? [4].
6. How is the sur in an aritmetical or a geome. trical series found? [5 aud 16].
7. Llow is the common difference or common ratio found? ['7 and 18].
8. How is any number of arithmetical or geometrical means found ? [9 and 20].
9. How is any particular arithmetival or geometrical mean found ? [10 and 21].
10. How is the number of terms in an arithmetical or geometrinal series found? [12 and 2:3].
11. How is one cxtrenic of an arithmetical or geometrical series found? [14 and 24].

ANNUITIES.

25. An annuity is an income to be paid at stated times, yearly, half-yearly, \&c. It is either in possession, that is, entered upon already, or to be entered upon immediately; or it is in reversion, that is, not to commence until after some period, or after something has oecurred. An anmuity is cerlain when its cominencement and termination are assigned to definite periods, contingent when its beginning, or end, or both are uncertain; is in arrears when one, or more payments are retained after they have become duc. The amount of an annuity is the sum of the payments forborne (in arrears), and the interest due upon them.

When an anmuity is paid off at once, the price given for it is called its present worlh, or value-which ought to be such as would-if left at compound interest until the annuity ceases-produce a sum equal to what would be due from the annuity left unpaid until that time. This value is said to ke so many yeurs' purchase; that is, so many annual payments of the income as would be just equivalent to it.
26. To find the amount of a certain number of payments in arrears, and the interest due on them-

Ror.e. the sum of be tho requ

Rxample mpaid for 0

The last, them, furm 4 . . $11 x$ $2=22+£$

Example is unpaid per cont. p

In this c with its in multiplied with its in ly the give

The amo the treati the series
dis 4066
The am same as yeurs, whi sirl, is eq む1; that
the requi
It woul
ammity
2.527

05
to bo 60
Ilenc
payment them-

Subtr
number
interest
tiont by

Rus.e.-Find the interest due on oach payment; then the sum of the payments and interest dic on them, will be tho required amount.
Example 1.-What will be the amount of $\mathfrak{L 1}$ per annum, mpaid for 6 years, 5 per cent. simple interest being allowed?

The last, and preceding payments, with the interest due on them, furm the arthmetical series $\mathcal{L} 1+£ \cdot 05 \times 5$. $£ 1+\mathcal{L} \cdot 05 \times$ 4 .. £1×む.05 L 1 . And its sum is $\overline{\mathcal{E} 1+\mathcal{L} 1+\mathcal{E} 05 \times 5 \times}$ $\mathscr{S}=\sqrt{2}+\mathcal{E} \cdot 25 \times 3=£ 0.75=\mathfrak{E} 615$ s., the required amount.

Example: 2.-If the rent of a farm worth $\mathcal{L} 60$ per annum is unpaid for 19 years, how much does it amount to, at 5 per cent. per an. compound interest?
In this case the series is genmetrical; and the last payments with its interest is the rmount of $\delta 1$ for $18(19-1)$ years multiplied by the given annuity, the preceding payment with its interest is the amount of $\& 1$ for 17 jears multiplied by the given ammity, \&e.
The amomet of dil (as we find by the table at the ond of the treatise) fur 18 year's is $£ 040652$. Then the sum of the series is-
$\frac{x: 40662 \times 1.05 \times 00-C 0}{1.05-1}[16]=15324$, the required amount.
The amount of 51 for 18 years multiplied by 1.05 is the salme as the amount of $\mathfrak{L f}$ for 19 , or the given number of yeurs, which is found to be $£ 2.527$. And $1.05-1$, the divisirr, is equal to the amome of $\$ 1$ for one payment minus むl; that is, to the interest of el for one payment. Hence the required sum will be $\frac{x \cdot 527 \div 60-60}{05}=£ 18394$.

It wonld evidently be the same thing to consider the ammity as $f 1$, and then multiply the resalt by CO . Than
$\frac{2527-1}{05} \times 60=\mathcal{L} 18324$. For an amuity of $\mathcal{L}, 00$ ought to be 60 times as productive as one of only $£ 1$.

Ilence, briefly, 4 find the amount of any number of payments in arrears, and the compmand interest date on thent-

Subtract \mathscr{E} from the armount of $\mathcal{E} 1$ for the given number of payments, and divide the difference by tha interest of $\mathfrak{X l}$ for one payment ; then multiply the emotiont by the given 4 min.

ANNUITIES,

27. Ricabon of the: Lule, - Wach payment, with its intorest, evidently constitute asparate amount; anl the sum due unst be the sum of these amounts--which form a decreasing series, becnuse of the decreasing interest, arising from the decrensing nuinber of times of payment.

When simple interest is allowed, it is evident that what is due will be the sum of an arithmetical series, one extreme of which is the first payment plus the interest due upon it at the

Bn
woul

Th ns wo tim3. difference last, the other the last payment ; and its common difference the interest on one payment due at the next.
But when componall interest is allowed, what is due will bo the sum of a geometrical series, one extreme of which is "the first pnyment plus the interest due on it at the last, the other the last paynent; and its common ratio $£ 1$ plus jits interest for the interval between two payments. And in each case the interest due on the first payment at the time of the last will be the interest due for one less than tho number of payments, since interest is not due on the first until the time of the second
payment.

EXERCISES.

1. What is the amount of $£ 37$ per annum unpaid for 11 years, at 5 per cent. per an. simple interest? Ans. £508 $15 s$.
2. What is the amount of in annuity of $£ 100$, to continue 5 years at 6 per cent. per in. compound interest? Ans. £563 14s. $2 \frac{1}{4} d$.
3. What is the amount of an annuity of £356, to continue 9 years, at 6 per cent. per an. simple interest? Ans. £3972 19s. $2 \frac{1}{2} d$.
4. What is the amount of $£ 49$ per aunum unpaid for 7 years, 6 per cent. compound interest being allowed ? Ans. £411 5s. $11 \frac{1}{2} d$.
5. To find the present value of an annuity-

Rule.-Find (by the last rule) the amount of the given annuity if not paid up to the time it will cease. Then ascertain how often this sum contains the amount of \mathscr{l} up to the same time, at the interest allowsd.

Example.- What is the present worth of an amuity of $£ 12$ per annum, to bo paid for 18 years, 5 per cent. compound interest being allowed?
An annuity of $£ 12$ unpaid for 18 years would amount to
$\mathcal{L} 28.13238 \times 12=£ 337.58850$.
its inte. sum due creasing rom the
what is rente of it at the common
will bo h is "tho e other interest case the ast will yments, second
unpaid crest ?

00 , to l inte-

56, to
erest ?
mpaid wed?

But SL put to interest for 18 years at the same rato would smonat to destoties. Therefore

$$
\frac{\mathcal{L} 337 \cdot 58856}{240662}=\mathcal{L} 1405 \text { s. } 6 \mathrm{l} l . \text { is the required value. }
$$

The sum to be paid for the aunuity should ovidently be such as would produce the same as the annuity itself, in the same tims.

ExERCISES.

5. What is the present wortl of an annuity of £27, to be paid for 13 yoars, 5 per cent. compornd interest being allowed? Ans. $\mathfrak{l}^{2} 53$ 12s. $6 \frac{1}{4} d$.
6. What is the present worth of an annuity of £324, to be paid for 12 years, 5 per cent. compound interest loigg allowed? Ans. La881 13s. $10 \frac{1}{4} d$.
7. What is the present worth of an annuity of £22, to be paid for 21 years, 4 per cent. compound interest being allowed? Ans. £308 12s. 10 d .
8. 'Io tind the present value, when the annuity is in perpetuity -

Rule.-Divide the interest which $£ 1$ would produce in perpetuity into \mathscr{L}, and the quotient will be the sum required to produce an annuity of $\mathfrak{L l}$ per annum in perpetuity. Multiply the quotient by the number of pounds in the given annuity, and the product will be the required present worth.

Example.-Whatis the value of in income of $£ 17$ for ever?
Let us suppose that $£ 100$ would produce $£ 5$ per cent. per an. for ever:-then $£ 1$ would produce $£ \cdot 05$. Thurefore, to produce £1, we require as many pounds as will be equal to the number of times $\mathcal{L} \cdot 05$ is contained in $£ 1$. Eut $\frac{\mathscr{C 1} \overline{5}=}{}$ £20, therefore $£ 20$ would produce an annuity of $£ 1$ for ever. And 17 times as mueh, or $£ 20 \times 17=340$, which would prodnce an annuity of $£ 17$ for ever, is the required present value.

EXERCISES.

8. Λ small cstate brings $\mathscr{e}^{2} 5$ per annum ; what is its present worth, allowing 4 per cent. per annum interest ? Ans. £625.
9. What is the present worth of an income of $£ 347$
in perpetuity, allowing 6 per cent. interest? Ans £5783 6s. $8 d$.
10. What is the value of a perpetual annuity of $£ 46$, allowing 5 per cent. interest? Ans. £920.
11. 'To find the present value of an annuity in rever-sion-

Rule.-Find the amount of the annuity as if it were forborne until it should eease. Then fird-what sum, put to interest now, would at that time produce the same amount.
Example.-What is the value of an annuity of $£ 10$ per annum, to continue for 6 , but not to commerno for 12 years, 5 per cent. compound interest being allowed?
An annuity of $£ 10$ for 6 years if left unpaid, would bo worth $£ 68 \cdot 0191$; and $£ 1$ would, in 18 years. be worth £ $11 \cdot 68959$. Therefore

$$
\frac{£(68 \cdot 0191}{11 \cdot 68959}=£ 285 s .3 d ., \text { is the required present worth. }
$$

EXERCISES

11. what is the present worth of $£ 55$ per annum, which is not to commence for 10 years, but will continue 7 years after, at 6 per cent. compound interest? Ans. £155 9s. $7 \frac{3}{4} d$.
12. The reversion of an annuity of $£ 175$ per annum, to continue 11 ycars, and eommence 9 years hence, is to be sold; what is its present worth, allowing 6 per cent. per annuin compound intercst? Ans. \& $4307 s .1 d$.
13. What is the peesent worth of a rent of $£ 45$ per annum, to commence in 8, and last for 12 years, 6 per cent. compound interest, payable half-yearly, being allowed? Aus. £ 117 2s. $8_{\frac{1}{2}} d$.

31 When the annuity is eontingent, its value depends on the probability of the contingent circumstance, or eireumstances.

A life annuity is equal to its amount multiplied by ${ }^{\prime}$ the value of an annuity of $£ 1$ (found by tables) for the given age. The tables used for the purpose are caleulated on principles derived from the doctrine of chanees, ohservations on the duration of life in different eircumstanees, the rates of compound interest, \&e.
1.
2. certain
3. unity ?
4. in arr compo 5. 1 sion fo
6. I petuity
7. I sion fo
32. which, numbe it we we col

Wh positio to be or is t given contair single yuanti wiseincreas is not propos tained two n proces evolve tity re

QUESTIONS.

1. What is an amuity? [25j.
2. What is an annuity in possession-in reversion-certain-contingent-or in arrears? [25].
3. What is meant by the present worth of an annuity ? [25].
4. How is the amount of any number of payments in arrears found, the interest allowed being simple or compound ? [26].
5. How is the present value of an amuity in possession found ? [28].
6. How is the present value of an amuity in perpetuity found? [29].
7. How is the present value of an annuity in reversion found? [30].

POSITION.

32. Position, ealled also the "rule of false," is a rule which, by the use of one or more assumed, but false numbers, emables us to find the true one. By means of it we ean obitain the answers to certain questions, which we could not resolve by the ordinary direct rules.

When the results are really proportional to the sup-position-as, for instance, when the number sought is to be multiplied or divided by some proposed number ; or is to be increased or diminished by itself, or by some given mulliple or part of itself-and when the question contains only onc proposition, we use what is called single position, assuming only one number; and the quantity found is exaclly that whieh is required. Other-wise-as, for instance, when the number sought is to be inereased or diminished loy some absolute number, which is not a known maltiple, or part of it-or when two propositions, neither of which can be banished, are contained in the problem, we use double position, assuming two numbers. If the number sought is, during the process indicated by the question, to be involved or evolved, we obtain only an approximation to the quantity required.
33. Single Pasition.-Rule. Assume a number, and perform with it the operations described in the question; then say, as the result obtained is to the number used, so is the true or given result to the number required.

Example.-What number is that which, being multiplied by 5 , by 7 , and by 9 , the sum of the results shall be 231?
Let us assume 4 as the quantity sought. $4 \times 5+4 \times 7+$ $4 \times 9=84$. And $84: 4:: 231: \frac{4 \times 231}{84}=11$, the required number.
34. Reason of the Rule.-It is evident that two numbers, multiphed or divided by the same, should produce proportionate results.-It is otherwise, however, when the same quantity is added to, or subtracted from them. Thus let the given question be changed into the following. What number is that which being multiplied by 5 , by 7 , and by 9 , the sum of the products, plus 8 , shall be equal to 239 ?

Asstiming 4, the result will be 92 . Then we cannot say $92(34+8): 4:: 239(231+8): 11$.
For though $84: 4:: 231: 11$, it does not follow that $84+8: 4:: 231+8: 11$. Since, while [Sec. V. 29] we may multiply or divide the first and third terms of a geometrical proportion by the sume number, we cannot, without destroying the proportion, add the same number to, or subtract it from them. The question in this latter form belongs to tho rule of double pcsition.

ExERCISES.

1. A teacher being asked how many pupils he had, replied, if you add $\frac{1}{3}, \frac{1}{4}$, and $\frac{1}{6}$ of the number together, the sum will be 18 ; what was their number? Ans. 24.
2. What number is it, which, being increased by $\frac{1}{2}$, $\frac{1}{3}$, and $\frac{1}{4}$ of itself, shall be 125? Ans. 60 .
3. A gentleman distributed 78 pence among a number of poor persons, consisting of men, women, and children; to each man he gave $6 c^{2}$., to each woman, $4 d$., and to each child, $2 d$.; there were twice as many women as men, and three times as many children as women. How many were there of each? Ans. 3 men, 6 women, and 18 children.
4. A person bought a chaise, horse, and harness, for fi60; the horse came to twice the price of the harness, and the chaise to twice the price of the horse and har-
aess.
the h: and fo 5. of C 's the ag
5. the re linst?
6.

same ull of
8. by hi lo it ? 9. all th opene opene all the
10.
taken
11.
corn i
4, the
five
In 25
12.
in 12
which
it be
35.
venie
suppo
trom
excess
the
are bo
produ
a plu
aess. What did he give for each? $\Lambda u s$. He gave for the harness, $\mathfrak{L 6} 13 \mathrm{~s} .4 \mathrm{~d}$. ; for the horse, $\mathfrak{L} 136 \mathrm{~s} .8 \mathrm{~d}$. ; aud for the chaise, $\mathfrak{E} 40$.
5. A's age is double that of 13's; 13's is treble that of C's; and the sum of all their ages is 140 . What is the age of each ? Ans. A's is 84, 13's 42, and C's 14.
6. After paying away $\frac{1}{4}$ of iny money, and then $\frac{1}{5}$ of the remainder, I had 72 guineas left. What had I at lirst? Ans. 120 guineas.
7. A can do a piece of work in 7 days; B can do the same in 5 days; and C in 6 days. In what time will wll of them execute it? Ans. in $1 \frac{1}{1} \frac{03}{7}$ days.
8. A and B can do a piece of work in 10 days; A by himself can do it in 15 days. In what time will 13 do it? Ans. In 30 days.
9. A cistern has three cocks; when the first is opened all the water runs out in one hour; when the second is opened, it runs out in two hours; and when the third is opened, in three hours. In what time will it run out, if all the cocks are kept open together? Aus. In $\frac{6}{1 T}$ hours.
10. What is thit number whose $\frac{1}{3}, \frac{1}{6}$, and $\frac{1}{7}$ parts, taken together, make 27? Ans. 48.
11. There are 5 mills; the first grinds 7 bushels of corn in 1 hour, the second 5 in the same time, the third 4 , the fourth 3 , and the fifth 1. In what time will the five grind 500 bushels, if they work together? Ans. In 25 hours.
12. There is a cistern which can be filled by a cock in 12 hours; it has another cock in the bottom, by which it can be emptied in 18 hours. In what time will it be filled, if both are left open? Ans. In 36 hours.
35. Doulle Posilion.--Thele I. Assume two convenient numbers, and pe:form upon them the processes supposed by the question, marking the error derived from each with + or - , according as it is an error of excess, or of defect. Multiply each assumed number into the error which belongs to the other ; and, if the errors are both plus, or both minus, divide the difference of the products by the difference of the errors. But, if one is a plus, and the other is a minus error, divide the sum of

POSITION.

the products by the sum of the errors. In either cass the result will be the number sought, or an approxi mation to it.

- Examper 1.-If to 4 times the price of my horse $\mathcal{L} 10$ is added, the sum will be £100. What did it cost ?
Assuming numbers which give two errors of excess-
First, let 28 be one of them,
Multiply by 4
112
Add 10
From $\overline{122}$, the result obtained, subtriact 100, the result required,
and the remainder, +22 , is an error of excess.
Multiply by 31 , the other assumed number
and 682 will be the prodact.
Next, let the assumed number be 31
Multiply by 4

$$
\overline{12 t}
$$

Add 10
From 13.f, the result ontuined, subtract 100 , the result required, and the remainder, +3 t, is an error of excess.

Multiply by 23 , the other assimed num.
and 952 will be the produet. From this subtract 682, the product found :thove, divide by $1 2 \longdiv { 2 7 0 }$ and the required quantity is $22.5=\mathcal{L} 2210 \mathrm{~s}$.
Difference of errors $=34-2=12$, the number by which we have divided.
86. Reason of the Rule.- - When in cxample 1, we multiply 28 ind 31 by 4, wemuitiply the error belonging to each by 4. ITence $12: 2$ and 131 are, respechively, equal to the true resnlt, phus 4 times one of the errors. Subtracting to0, the true result, from each of thom. we obtain $2: 3$ (4 tines 1 ?e errur in 28) anl 34 (4 times the error in 31).
But, as numbers are propurtional to their equin ultiples the error in 98 : the error in 31: 22 (a multiple of the for. mer) : 34 (an equimultiple of the latter).

And from the nature of proporliun [Śec. V. 21]-

The error in $28 \times 84=$ the error in 31×22.
But $682=$ the error in 31 the rechilired number $\times 22$.
And $952=$ the error in 28 the required namber $\times 34$. Or, since to multiply quantities under the vinculum [Seo [I. 84], we are to multiply each of them-
$682=22$ times the error in $31+22$ times the required number.
$952=34$ times the error in $28+34$ times the required aumber.
Subcracting the upper from the lower line, we shall have $952-68^{2}=34$ times the error in $28-22$ times the error in $31+84$ times the required number- 22 times the required number.

But, 23 we have seen above, 34 times the error in $28=2 \%$ times the error in 31 . Therefore, 34 times the error in $28-22$ times the error in $31=0$; that is, the two quantities cancel each other, and may be onitted. We shall then have
$952-682=34$ times the required number--22 tines the required number ; or $270=34-22(=12)$ times the required number. And, [See. V. 6] dividing both the equal quantities by 12 ,
$\frac{270}{12}(22 \cdot 5)=\frac{34-22}{12}$ times (once) the required number.
37. Example 2.-Using the same example, and assuming numbers which give two errors of defect.

Let them be 14, and 1.6-

14	16
4	4
50	-64
10	10
66, the result obtained,	$\overline{74}$, the result obtained,
100 , the resuit required,	100, the result required,
-34 , an error of defect. 16	-26 , an error of defet. 14
544	364
364 Differe	errors $=3 t-20=8$.

8)180
$22.5=£ 2210 s .$, is the required quantity.
In this example $34=$ four times the error (of defeet) in 14; and $26=$ four times the error (of defect) in 16. And, since numbers are proportion to their eqnimultiples,

The error in $14:$ the eror in $16:: 34: \% 6$. Therefore The error in $: 1 \times 26=$ the error in 10×34.
But $544=$ the requiret numberthe error in 16×8.
And $304=$ the required in umber- the error in 14×0
(2 ${ }^{2}$

If we subtract tho lower fion the upper line, we shall havo $544-364=$ (remoring the vinculam, and changing the sign [sec. 11. 16i]) 3.4 times the required number- 26 times the required number- $3 \pm$ times the error in $16+26$ times the error in 14.

But we found above that 84 times the error in $16=26$ times the error in 14. 'Xherefore--81 times the error in 10, and 十 2 ; tinaes the error in $14=0$, and may be onitted. We will then have $644-364=8.4$ times the required number-- 26 times the required number; or $180=8$ times the required number; and, dividing both these equal yuantitios by 8 ,

$$
\frac{180}{8}(225)=\frac{8}{8} \text { times (once) the requted number. }
$$

38. Rxampe 3.-Using still the same example, and assuming numbers which will give an error of caccess, and an error of deject.

Let them be 15 , and $23-$

15
4
(6)

10
70, the result ubtained.
100, the result required.

- 30 , an crror of defect. 23

600
30
Sum of errors $=30+2=32$.
$32) 720$
$2 \mathrm{~J}=\mathrm{L}_{2} 210$., the required quantity.
In this example 80 is 4 times the error (of defect) in 15 ; and 2,4 times the error (of excess) in 23. And, since numbers are proportioned to the equimultiples,

The error in $23:$ the error in $15:: 2: 80$. Therefore
The error in $23 \times 80=$ the error in 15×2.
But $840=$ the required number the error in 23×80.
And $20=$ the required number-lhe error in 15×2.
If we suld these two lines together, we shall have $60+80=$ (removing the vinculam) 30 times the required number t twice the required mumber +80 times the error in $28-$-twice the crior in 15.

But we found above that $30 \times$ the error in $23=2 \times$ bite error in 15. Therefore 308 the error in $2--2 \times$ the error in $15=0$.
and may be omitted. We shall then have $690+30=$ the required number $\times 30$ t the required number $\times 2$; or $720=32$ times the required number. And dividiag each of these equal quantities by 32.
$\frac{720}{32}(22 \cdot 5)=\frac{32}{32}$ times (once) the required number.
The given questions might be changed into one belonging to single position, thus-

Four times the price of my horse is equal to $£ 100-£ 10$; or four times the price of my horse is equal to $£ 90$. What did it cost? This change, however, supposes an effort of the mind not required when the question is solved by double position.
39. Example 4.-What is that number which is equal to 4 times its square root +21 ?

Assume 64 ond S1-$\sqrt{ } 64=8$
$\frac{4}{32}$
$\sqrt{ } 81=9$
$-\frac{4}{36}$
21
53 , reanlt obtained. 64, result required.

57, result obtained
81, result required
-11
81
891

$$
\begin{array}{r}
-24 \\
64 \\
\hline 1536 \\
891
\end{array}
$$

$$
1 3 \longdiv { 6 4 5 }
$$

The first approximation is $\frac{45}{4} \cdot 6154$
It is evident that 11 and 24 are not the errens in the assumen numbers muitiplied or divided by the samo quantity, and therefore, as the reason upon which the rule is founded, does not apply, we obtain ouly an approximation. Substituting this, however, for one of the assumed numbers, we obtain a still nearer approximation.
40. Rule-II. Find the errors by the last rule ; then divide thicir difference (if they are both of the same kind), or their sum (if they are of different kinds), into the product of the difference of the numbers and one of the errors. The quotient will be the correction of that exror which has been used as multiplior.

Example.-Taking the same as in the last rule, and a suming 10 and $2 ;$ as the required number.

19	25
4	4
76	100
10	10
86 the result obtained.	110 the result obtainml
100 the result required.	100 the result required.
-14, is error of defect.	+10, is error of excess.

The errors are of different kinds; and their sum is $14+$ $i U=2 \frac{4}{4}$; and the difference of the assumed numbers is 25 $19=6$. Therefore

$$
14 \text { one of the errors, }
$$ is multiplied by 6 , by the difference of the numbers. Then divide by $2 t \overline{8 t}$

and 3.5 is the correction for 19 , the number which gave an error of 14.
$19+$ (the error being one of defect, the correction is to be added) $3 \cdot 5=22 \cdot 5=£ 2 \cdot 10$ s. is the required quantity.
41. Reason of the Rule.-'The difference of the results arising from the use of the different assumed numbers (the difference of the errors) : the difference between the result obtained by using one of the assumed numbers and that obtained by using the true number (one of the errors) :: the difference between the numbers in the former case (the difference between the assumed numbers) : the difference between the numbers in the latter case (the difference between the true number, and that assumed number which producel the error placed in the third term-that is the correction required by that assumed number).

It is elear that the difference between the numbers used produces a proportional difference in the results. For the results are different, only because the difference between the assumed numbers has been multiplied, or divided, or bothin aceordanee with the conditions of the question. Thus, in the present iustance, 25 produces a greater result than 19, because 6 , the difference berween 19 and 25 , has been multiplied by 4. For $25 \times 4=19 \times 4+6 \times 4$. And it is this 6×4 which makes up 24, the real difference of the errors. - The difference between a negative and positive resuit being the sum of the differences between each of them and no result. Thus, if I gain $10 s .$, I am richer to the amount of 24 s . than if 1 luse 14. trequircd. of excess.
cm is $14+$ ers is 25 -
ers. Then
the results mbers (the result oblat obtained e difference ace between au numbers umber, and aced in the at assumed
mbers used s. For the etrreen the , or bothThus, in It thim 19 , been multiis this 6×4 rors. -The being the no result. 24s. thas if

ExERCISES.

13. What number is it which, being multiplied by 3 , the product being inereased by 4 , and the sum divided by 8 , the quotient will he $33^{?}$? Ans. 84.
14. Aeon asked his father how old he was, and reecived the following answer. Your age is now $\frac{1}{4}$ of mine, but 5 years ago it was only $\frac{1}{5}$. What are their ages? Ans. 80 and 20
15. A workman was hired for 30 days at $2 s$. 6 l . for every day lie worked, but with this condition, that for every day he did not work, he should forfeit a shilling. At the end of the time he reccived $£ 214 s$, how many days did he work? Ans. 24.
16. Required what number it is from which, if 34 be taken, 3 times the remainder will exeeed it by $\frac{1}{4}$ of itself: Ams. $58 \frac{2}{7}$.
17. A and 13 go ont of a town by the same road. A gees 8 miles each day; 3 gos 1 mile the finst day, 2 the second, 3 the third, \&e. When will .3 overtake A?

Supnose $\frac{\text { A. }}{5}$	13. 1	Suppose ${ }_{\text {A }}$ A	B 1
$\cdots 8$	2	- 8	2
,	3		3
410	4	50	4
15	5	28	5
5) $\overline{25}$	$\overline{15}$	7) 28	6 7
$-\overline{5}$		-4	
7		5	§ 8
35		20	
29)			
15		$5-4=1$	
1) 10			

We divide the entire erm by the number of days in each case, which gives the error in one day.
18. A gentleman hires two labourers ; to the one ho gives $9 d$. each day; to the other, on the first day, $2 d$., on the second day, 4 ll., on the third day, $6 d$. , \&e. In how many days will they cam an equal sum? Aus. In R. 19. What are those numbers which, when added,
make 25 ; but when one is halved and the other doubled, give equal results? Aus. 20 aud 5.
20. I'wo contractors, \mathbf{A} and B , are each to huild a wall of equal dimensions; Λ employs as many men as finish $22 \frac{1}{3}$ perches in a day; 13 employs the first day as many as finish 6 perches, the sccoud as many as finish 9 , the third as many as finish $12, \& \mathrm{c}$. In what time will they have built an equal number of perches? Ans. In 12 days.
21. What is that number whose $\frac{1}{2}, \frac{1}{4}$, and $\frac{3}{6}$, multiplied together, make 24?

Suppose 12
$\frac{1}{2}=6$
$\frac{1}{3}=3$
$\frac{1}{3}=3$
Product=18
$\frac{3}{3}=4 \frac{1}{2}$
$\overline{81}$ result obtained. 24 result required.
$+57$
64, the cube of 4.
3648 , product.
$57+21=78$ $57-21=78$.

Suppose 4
$\frac{1}{2}=2$
$\frac{1}{1}=1$
4
Product $=2$
$\frac{3}{8}=1 \frac{1}{2}$
$\overline{3}$ result obtainel.
24 result required.
-21
1728, the cube of 12.

> 36288 To this product
> 3648 is added.
$7 8 \longdiv { 3 9 9 3 0 }$ is the sum. And 512 the quotient.
$\sqrt[3]{512}=8$, is the required number.
We multiply the alternate error by the cube of the supposer number, beeanse the errors belong to the $\begin{gathered}3 \\ 6\end{gathered}+$ th part of the cule of the assumed numbers, and not to the numbers themselves; for, in reality, it is the cube of some number that is required -since, 8 being assumed, according to the question we have $\frac{8}{2} \times \frac{8}{4} \times \frac{3 \times 8}{8}=24$, or $\frac{3}{64} \times 8^{3}=24$.
22. What namber is it whose $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$, and $\frac{1}{6}$, multiplicd together, will produce $6998 \frac{3}{3}$? Ans. 36 .
23. \AA said to B, give me one of your shillings, and I shall have twice as many as you will have left. B answered, if you give me 1s., I shall have as many as you. How many lad cach !' Ans. A 7, and 135.
24. There are two numbers which, when added toghther, make 30 ; but the $\frac{1}{3}, \frac{1}{3}$, and $\frac{1}{4}$, of the greater ar anal to $\frac{1}{2}, \frac{3}{4}$, and $\frac{1}{4}$, of the lesser. What are they? Ans. 12 and 18 .
2- A gentloman lias 2 horses and a saddle worth S50. The satdle, if set on the back of the first horse, will make his value doukse that of the second; but if set on the back of the second horse, it will make his value treble that of the first. What is the value of each horse? ; © $\mathfrak{C J}$ and $\mathfrak{E x} 0$.
20. A gentleman finding several beggars at his door, grave to each $4 d$. and had $6 d$. left, but if he had given bid. to each, he would have had $12 d$. too little. How many beggars were there? Ans. 9.

It is so likely that those , are desirous of studying this subjeet further will be aequainted with the method of treating algebraic equations-whieh in many case: affords a so much simpler and easier mode of solving fuestions belonging to position--that we do not deem it neeessary to enter further into it.

QUESTIONS.

1. What is the difference between single and double position? [32].
2. In what cases may we expect an exaet answer by these rules ! [32].
3. What is the rule for single position ? [33].
4. What are the rules for double position? [35 and $40]$.

MISCEL孔ANEOUS EXERCISES.

1. A father being asked by his son how old he was; roplied, your age is now $\frac{1}{5}$ of mine; but 4 years ago it was only $\frac{1}{7}$ of what mine is now ; what is the age of each? Ans. 70 and 14.
2. Find two numbers, the difference of whieh is 30 , and the relation between them as $7 \frac{1}{4}$ is to $3 \frac{1}{2}$? Ans. 58 and 23.
3. Find two numbers whose suin and product are equal, neither of them being 2? Ans. 10 and 11.

4. A.person being asked the hour of the day, answered, It is between 5 and 6 , and both the hour and minuto hands are together. Required what it was? Ans. $27 \frac{3}{1}-1$ minutes past 5.
5. What is the sum of the series $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$, \&c.? $\Lambda u s .1$.
6. What is the suin of the series $\frac{3}{5}, \frac{4}{15}, \frac{8}{45}, \frac{16}{13} 5$, \&cc. ? Ans. $1 \frac{1}{5}$.
7. A person had a salary of $£ 75$ a year, and let it remain unpaid for 17 years. How mneh lad he to receive at the end of that time, allowing 6 per eent. per aunnm compound interest, payable half-yearly? Ans. £204 17s. $10 \frac{1}{4} d$.
8. Divide 20 into two sueh paris as that, when the greater is divided by the less, and the less by the greater, and the greater quotiont is multiplied by 4 , and the less by 64 , the produets shall be equal? Ans. 4 and 16.
9. Divide 21 into two such parts, as that when the less is divided by the greater, and the greater by the lows, and the greater quotient is multiplied by 5 , and tier less by 125, the products shall be equal? Ans. $3 \frac{1}{2}$ and $17 \frac{1}{2}$.
j": A, B, and C , can finish a piece of work in 10 days; B and C will do it in 16 days. In what time will Λ do it by limself? Ans. $26 \frac{2}{3}$ days.
10. A can trench a garden in 10 days, B in 12 , and C in 14. In what time will it be done by the three if they work together? Ans. In $3 \frac{99}{107}$ days.
11. What number is it which, divided by 16 , will leave 3 ; but which, divided by 9 , will leave 4 ? Aus. 67
12. What number is it which, divided by 7, will leave 4 ; but divided by 4 , will leave 2 ? Ans. 18 .
13. If $£ 100$, put to interest at a certain rate, wil, at the end of 3 years, be augmented to $£ 115.7625$ (compound interest being allowed), what principal and interest will be due at the end of the first year? Miss. £105.
14. An elderly person in trade, desirous of a little respite, proposes to admit a sober, and indnstrious young person to a share in the bnsiness; and to encourage him, he offers, that if hix ciremmstances allow him to
advance $£ 100$, his salary shall be $£ 40$ a year ; that if he is able to advance £200, he shall have $£ 55$; but that if he can advance $£ 300$, he shall receive $£ 70$ annually. In this proposal, what was allowed for his attendanee simply? Ans. £25 a year.
15. If 6 apples and 7 pears eost 33 pence, and 10 apples and 8 pears 44 penee, what is the price of one apple and one pear ?- Ans. $2 d$. is the price of an apple, and $3 d$. of a pear.
16. Find three such numbers as that the first and $\frac{1}{2}$ the sum of the other two, the seeond and $\frac{1}{3}$ the sum of the other two, the third and $\frac{1}{4}$ the sum of the other two will make 34 ? Ans. 10, 22, 26.
17. Find a number, to which, if you add 1 , the sum will be divisible by 3 ; but if you add 3 , the sum will be divisibie by 4 ? Ans. 17.
18. A market woman brught a certain number of eggs, at two a penny, and is many more at 3 a penny; and having sold them all at the rate of five for $2 d$., she found she had lost fourpenee. How many eggs did she buy? Ans. 240.
19. A person was desirous of giving $3 d$. a piece to some beggars, but found he had $8 d$. too little; he therefore gave each of them $2 d$., and had then $3 d$. remaining. Required the number of beggars? Ans. 11.
20. A servant agreed to live with his master for $£ 8$ a year, and a suit of elothes. But being turned out at the end of 7 months, he received only $\mathfrak{£ 2} 13 \mathrm{~s} .4 \mathrm{~d}$. and the suit of elothes; what was its value? Ans. e4 16s.
21. There is a number, eonsisting of two places of figures, which is equal to four times the sum of its digits, and if 18 be added to it, its digits will be inverted. What is the number? Ans. 24.
22. Divide the number 10 into three such parts, that if the first is multiplied by 2 , the second by 3 , and the third by 4 , the three products will be equal? Ans. $4 \frac{3}{13}, 3 \frac{1}{13}, 2 \frac{4}{13}$.
23. Divide the number 90 into four such parts that, if the first is increased by 2 , the second diminished by 2 , the third multiplied by 2 , and the fourth divided by

2, the sum, difference, product, and quotient will be equal: Ans. 18, 22, 10, 40.
25. What fraction is that, to the numerator of which, If 1 is added, its value will be $\frac{1}{3}$; but if 1 be added to the denominator, its value will be $\frac{1}{4}$? Ans. $\frac{4}{15}$.
215. 21 gallons were drawn out of a cask of wine, which had leaked away a third part, and the cask being then guaged, was found to be half full. How much did it hold? Ans. 126 gallons.
27. There is a number, $\frac{1}{2}$ of which, being divided by $6, \frac{1}{3}$ of it by 4 , and $\frac{1}{4}$ of it by 3 , each quotient will be 9 ? Ans. 103.
28. Having counted my books, I found that when I multiplied together $\frac{1}{2}, \frac{1}{4}$, and $\frac{3}{4}$ of their number, the product was 162000 . How many had I ? Ans. 120.
29. Find the sum of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}, \& c$? Ans. 2.
30. A can build a wall in 12 days, by getting 2 days' assistance from B; and B can build it in 8 days, by getting 4 days' assistance from A . In what time will both together build it? Ans. In $6 \frac{2}{7}$ days.
31. A and B can perform a pisce of work in 8 days, when the days are 12 hours long; A, by himself, can do it in 12 days, of 16 hours each. In how many days of 14 hours long will B do it ? Ans. $13 \frac{5}{7}$.
32. In a mixture of spirits and water, $\frac{1}{2}$ of the whole plus 25 gallons was spirits, but $\frac{1}{3}$ of the whole minus 5 . gallons was water. How many gallons were there of each? Ans. 85 of spirits, and 35 of water.
33. A person passed $\frac{1}{6}$ of his age in childhood, $\frac{1}{12}$ of it in youth, $\frac{1}{4}$ of it +5 years in matrimony; he had then a son whom he survived 4 years, and who reached only $\frac{1}{2}$ the age of his father. At what age did this person die? Ans. At the age of 84 .
34. What number is that whose $\frac{1}{3}$ excecds its $\frac{1}{3}$ by 72? Ans. 540.
3.) A vintner has a vessel of wine containing 500 gallons; drawing 50 gallons, he then fills up the cask with water. After doing this five times, how much wine and how much water are in the cask? Ans $295 \frac{-4}{2} \frac{9}{00}$ gallons of wine, and $204 \frac{1}{2} \frac{5}{6} \frac{1}{0}$ gallons of water.

4．Λ mother and two daughters working together tas spin 3 㕵 of flax in one day；the mother，by herself， san do it in $2 \frac{1}{2}$ days；and the eldest daughter in $2 \frac{1}{3}$ days．In what time can the youngest do it？Ans． In $6 \frac{3}{7}$ days．
37．A merchant loads iwo vessels， A and B ；into A he puts 150 hogrsheads of wine，and into 13240 hogs－ heads．The ships，having to pay toll，A gives 1 hogs－ head，and receives 12s．； 13 gives 1 hogshead and 368 ． besiles．At how much was each hogshead valued？ Ans．£4 12s．

35．Three morchants traffic in company，and their stock is $£ 400$ ；the money of A continued in trade 5 months，that of B six months，and that of C wine months；and they grained £375，which they divided equally．What stock did each prit in？Ans．A £167⿺辶 $\frac{1}{3}$ ，

39．A fountain has 4 cocks，A, B, C ，and D ，and under it stands a cistern，which can be filled by Λ in 6 ， by B in 8 ，by C in 10 ，and by D in 12 hours；the cistern has 4 cocks， $\mathrm{E}, \mathrm{F}, \mathrm{G}$ ，and II ；and can be empticd by E in 6 ，by F in 5 ，by G in 4 ，and by H in 3 hours．Suppose the cistern is full of water，and that the S cocks are all open，in what time will it be emptiod？ Ans．In $2 \frac{2}{10}$ hous．

40．What is the value of＇ $219 z^{\prime}$ ？Ans．$\frac{11}{3}$ ．
41．What is the value of $\cdot 5416$ ？ ？$n s$ ．$\frac{1}{2} \frac{3}{4}$ ．
42．What is the value of $0^{\prime} 76923^{\prime}$ ？A $n \mathrm{~s}$ ．$\frac{1}{13}$ ．
43．There are three fishermen，Λ, B ，and C ，who have each caught a certain number of fish；when A＇s fish and B＇s are put together，they make 110 ；when B＇s and C＇s are put together，they make 130 ；and when A＇s and C＇s are put together，they make 120．If the fish is divided equally among them，what will be each man＇s share；and how many fish did each of them catch？Ans．Wach man had 60 for his share ；A caught $50, \mathrm{~B} 60$ ，and C 70.

44．There is a golden cup valued at 70 crowns，and two heaps of erowns．The cup and first heap，are worth 4 times the value of the second hoap；but the cup and second heap，are worth double the value of the first
heap. IIow many crowns are there in each heap? Ans 50 in one, and 30 in another.
4.5. A certain number of horse and foot soldiers are to be ferricd over a river ; and they agree to pay $2 \frac{1}{2} d$. for two horse, and $3 \frac{1}{2} d$. for seven foot soldiers; seven foot always followed two horse soldiers; and when they were all over, the ferryman received $£ 25$. How many horse and foot soldiers were there? Ans. 2000 horse, and 7000 foot.
46. The hour and minute hands of a watch are together at 12 ; when will they be together again? Ans. at $5 \frac{5}{17}$ minutes past 1 o'clock.
47. A and B are at opposite sides of a wood 135 fathoms in compass. They begin to go round it, in the same direction, and at the same time; 1 goes at the rate of 11 fathoms in 2 minutes, and \mathbf{B} at that of 17 in 3 minutes. How many rounds will each make, before one overtakes the other? Ans. A will go 17 , and \mathbf{B} $16 \frac{1}{2}$.
48. Λ, B, and C, start at the same time, from the same point, and in the same direction, round an island 73 miles in circumference; A goes at the rate of 6 , B at the rate of 10 , and C at the rate of 16 miles per day In what time will they be all together again? Ans. in $36 \frac{1}{2}$ days

MATHEMATICAL TABLES.

L.OGARITHMS OF NUMBERS FROM 1 TO 10,000 , WITH DIFFHRENCES AND PROPORTIONAL PARTS.

Numbers from 1 to 100.									
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No. ${ }^{-1}$	Log.
	$0 \cdot 000000$	21	1-322219	41	$1 \cdot 61278.1$	61	1.785330	81	$1 \cdot 908485$
2	$0 \cdot 301030$	22	$1 \cdot 342423$	42	$1 \cdot 623.49$	62	1-792392	82	1.913814
2	0.301030 0.4751 .21	22 23	$1 \cdot 361798$	43	1-633488	63	$1 \cdot 799341$	83	$1 \cdot 919078$
3	$0 \cdot 473121$	23	1-361728	4	$1 \cdot 643+53$	6.1	1.806180	84	1-924279
4	0•602060	21	1.330211	4	1.6434 .93 1.053 .213	6	1-812913	85	1-929.119
5	$0 \cdot 693970$	25	$1 \cdot 3978.40$	45	1-6532.13	O5	1.312913		
6	0.778151	26	$1 \cdot 414973$	46	1-662758	66	$1 \cdot 8195.41$	86	1-9:4498
7	$0 \cdot 515093$	27	1-431364	47	1-672093	67	1-826075	87	$1 \cdot 939519$
8	$0 \cdot 903090$	28	1-417158	48	$1 \cdot 681941$	6.3	1-832509	83	$1 \cdot 944183$
9	0.951243	29	1-46:393	49	1-690106	69	1.838949	59	$1 \cdot 949390$
10	$1 \cdot 000000$	30	$1 \cdot 477121$	50	1-693970	70	$1 \cdot 845098$	90	1.9542.13
11	1.0.41393	31	1.491362	51	1-707570	71	$1 \cdot 851258$	91	$1 \cdot 959041$
12	1.079181	32	1-505150	5.2	$1 \cdot 716003$	72	1-857332	92	$1 \cdot 963788$
13	1-113943	33	1-518514	53	1-724276	73	1 -563323	93	$1 \cdot n 68453$
14	1-146128	31	$1 \cdot 531479$	54	1.732304	74	1-869232	94	1.973128
15	$1 \cdot 176091$	35	1-541068	05	1-7.10363	75	$1 \cdot 875061$	95	$1 \cdot 977724$
16	$1 \cdot 204120$	36	1-556303	56	1.743188	76	$1 \cdot 880314$	96	1.982271
17	1-230.49	37	$1 \cdot 563202$	57	1-7053\%	77	$1 \cdot 886491$	97	$1 \cdot 986772$
13	$1 \cdot 255273$	39	$1 \cdot 539734$	58	$1 \cdot 763123$	78	1-89:095	98	1-991226
	$1 \cdot 278751$	39	$1 \cdot 591065$	59	1-7\%0352	79	1.892627	99	1.995635
19 20	$1 \cdot 2601030$		1-602060	C0	$1 \cdot 773151$	81	1.903090	100	$2 \cdot 000000$
20			,						

		0		2	3	4	5	6	7	8	9	1.
		000000	000131	00086.	001301	001731	002166	002598	8003029	003161	003891	2：
11		43：1	4751	8181	6609	60：15：	6．166	6894	7321	7748	8171	128
83		Bu00，	90：6	9131	9676	010300	01072．	011147	011570	011993	012.115	121
121		124370	013359	On3680	014100	4.521	4910	－ 6360	5779	6197	6610	320
		7033	7451	7868	8：284	8700	9116	－9．332	99.17	020361	020776	116
		1189	$02160: 3$	2.2916	023．128	022811	023252	023664	021075	4486	4896	112
	6	5.306	5716	618.5	6133	694	7350	i\％，7\％	8161	8571	3978	108
	3	宗1	$978: 9$	030195	030600	03100．4	$031 \cdot 108$	031812	032216	032619	033021	101
$3: 31$			＋33326	$42: 7$	4628	6029	5430	6830	6230	－6629	7028	101
373	9	$\because 146$	7825	82： 23	8620	9017	9.414	9311	040：07	0.40602	04099：	397
		析	01178.10	－		9	0.13362	04375	04		04193：	， 3
		63：3	5714	610.5	6195	688.5	7275	7664	80531	8.142	8330	90
	2	218	9066	0993	050330	050766	051153	051538	0 ± 1924	052309	05.2993	$3{ }^{3}$
113		53078	053163	053.316	． 1230	1613	4900°	¢378	． 5760	6142	6.283	18：3
151		00	7236	7660	8040	8.126	880.	9185	9563	99.2	0603：${ }^{1}$	379
$13: 4$		06\％sio	06107.5	06149	061829	062ent	065：582	062958	063333	063709	1083	$37 i$
？ 2 i		4 lis	4332	5206	－irs0	5：15：1	6328	（6699	7071	74．43	7815	173
		St	800.	89.23	9293	9668	070035	070107	070776	071145	071514	70
308		1821	（172250	072610	072985	1073362	3718	4083	1451	4816	5182	166
	9	50.17	6912	6276	6610	7004	7368	7731	8094	8457	8819	163
				079001	080	0806080	080937	081318	081707	082067	08.	0
3.		0827850	0s：114．4	683003	3861	4219］	｜ 4.70	4931	5291	0647	60	57
70	$\stackrel{3}{2}$	（634日）	6716	7071	7426	7781	8136	8490	8813	9198	9552	5
10.1	3	9905	090：58	090613	090963	091335	091616	092018	09：370	092721	093071	352
139		0936	3才）	$412:$	4471	4.90	5169	5.318	5366	6215	656：	19
		6910	720%	7601	3931	8293	8041	8990	9335	9681	100026	3.16
		100371	1007171	101689	101.103	101717	102091	10243．4	102777	103119	3162	3.13
	$\stackrel{7}{7}$	3810.4	4143	4189	$48: 3$	5169	5.330	5351	6391	6531	6871	－11
	8	7210	70．19	75	8027	5	8903	9241	9579	9916	11035	38
31.3	91	10590	1109	11120：1	111.596	11194.4	112：20	$11260 \dot{5}$	1129.10	113275	360	35
				114631	111944	115278	11561	11：0943	116.76	116608	116940	3
35_{2}		7×71	7603	293：	$8: 665$	8.505	89.6	9256	9586	9910		3.30
63	2	120．731	120903	121231	121560	121888	122216	122514	122871	123193	3525	Se3
01	3	30，${ }^{2}$	4178	150.1	$45: 10$	5156	5181	5800	6131	6454	6781	0
		7100	7129	7753	8.876	8399	8722	9015	9368	9690	1300	23
161		13033.11	1306.51	130997	131298	131819	31939	132260	132580	132900	321	31
	0	353？	34.08	4171	4193	4814	5183	5.451	5763	6036	d	18
	－	21	7037	733.	7671	7987.	8303	S615	8934	92.19	0.564	16
	8	98391	1403941	140503	1403\％2	141136	141450	141763	142076	1423：3	42702	314
290	9	143015	$33: 7$	3639	39.51	4.263	457.	4883	5196	5507	！	311
	1.10	1461：3 1		14074	147058	117397		1479	148：94	14	911	309
30	1	9：219	9527	9335	$1501+2$	150.119	150756	151063	151370	151676	15198.	307
60	$\frac{2}{9} 1$	$152 \cdot 28$	1535041	152900	3205	3510	3815	4120	412.1	4728	5032	305
90		${ }^{5336}$	56 5640	¢943	62.46	6549	6852	7151	7457	7759	8061	303
）	3	83＊2	8664	8965	92866	9567	9848	160163	160469	160769	161068	301
	6	361563	1616671	161497	162206	16：56．1	162863	3161	3460	3758	4055	9
	6	43：3	4650	49.17	52.44	5541	58	6134	6.130	61	70	397
210	7	7317	7613	7803	8.203	8.497	8792	9036	9350	9674	：	3：9，
270	4	1702621	170．535 1	170818	171141	171431	171796	132019	$17: 2311$	172603	17289	43
270		33 cti	3178	3663	4060	43.1	46.41	4932	52	5512	$580:$	291
			176383				11.5		188	178101	17	289
24	1	8：977	9264		9839	150120°	180.413	180699	180956	181：72	18150%	S．
50	$\stackrel{1}{3}$	121844	15.2129	182135	182700	2935	3270	3055	3×39	4123	4404	8．
	3	40.12	4975	0.259	654	$53: 5$	6108	68591	667.1	6958	723	83
	－	7503	$750: 3$	sos：	83361	8647	39.93	9209	9490	$97 \% 1$	1900．）！	24
140	5	1903328	190612	190892	191171	191451	191730	192010	192289	192．367	231	\％9
168	${ }^{6}$	312.20	310%	3601	39.3	1237	4511	4792	5869	6， 315	6tas：	\because
	i	6.900	6136	65.53	6\％：29	7005	7241	7 T 56	783	8107	5	\％
284	${ }^{8}$	8657	89932	920］	2．4．31	9756	20009	200303	209575	2003：0	2611	12.4
2	9\％	203：39i，	SOLOFO	201：	2：16	203488	2761	－ 3023	－3305	｜3077｜	\mid il	20

				2	3				7	8	9	
		1	20	3.12817	313	13212						
18		392	4589	4785	4931	1 6178	5374	5370	5768	5982	6157	196
39		6353	6519	6744	6939	7135	7330	75\%5	7720	7915	8110	95,
68		8305	8500	869.1	8889	9083	0.78	9172	0086	0860	350051	91
77		150218	350412	350636	$3508: 29$	351023	351214	351410	351003	31796	1989	93
97		2183	2375	2508	2761	2054	3147	3339	3.332	3724	3916	93
116		4108	4301	4193	4685	4876	5068	5200	5.152	06.13	$593!$	02
13		600218	6217	6108	6.999	6790	998	717	736:3	75.54	7711	91
15		9:35	81.5	8316	8506	-8696	8886	9076	,	1-t		(1)
174	9	9835	360026	360215	360401	360593	360783	360972	361161	361330	30133!	139
	230	3617	361917	362105								
1		3612	3800	3988	4176	4363	4351	4739	4926	6113	5301	1384
37	2	5488	5675	5862	60.19	6:36	6123	6610	6706	6933		37
5		7350	7542	7729	7915	101	8.287	8473	84.53	8815	9030	186
74		9216	9401	9587	9772	9958	370113	370328	370.18	370698	703)
93		371068	1253	371437	3716:2	371806	1991	2175	2360	2514	27	1
111		2912	3096	3280	3164	36.17	3831	4015	4193	4397	$4{ }^{4} \mathrm{t}$	81
13		4748	4932	5115	5298	5481	6.4	16	29	212	6391	:
		577	59	12	124	306	$748{ }^{\circ}$	670	852	U131	8216	2
167	9	8398	8580		943	9124	9306	9.187	9668	S. 19	3804130	1
		380	38	380573		380				381656		
		2017	2197	377	25.57	2737	2917	97				
3	2	16	3995	4174		4533	4718	4891	070	21		7.9
		60	5785	64	42	321	$49 ?$	6677	6isio	031		\%
		90	7568	7746	023	101	8:79	8156	8634	8811	8089	8
		9166	$93+3$	0520	9698	9875	390051	390:2:	390405	390582	3907 as)	178
106		390935	391112	391238	391161	391641	1817	1993	2169	2315	21	6
12		2697	2873	3018	3:24	3100	3.7	3751	3920	4101	77	76
16		4452	4627	02	4977	5150	323	501	5076	5850		76
159	9	6199	6374	6548	6722		7071	72.15	19	7592		174
	250	39	39									
1		9671	9817	1000:	400192	$40036{ }^{\text {a }}$	400538	100711	10088:3	40105 t	012:5	7:1
		101401	401573	1745	1917.	2049	2261	2433	2605	2772	2949	72
	3	3121	3292	3164	3613	3807	3978	4149	$43: 0$	419	4363	71
		483	5005	5176	5346	5017	638	585	60.29	619		71
		6540	10	6881	70.01	7231	391	61	7731	001		70
10		40	8410	8579	8749	8918	9087	92.57	9129	9595		6
11	7	9233	41010:	410271	410140	110609	410777	1109.4i	11111	411:891	41145	69
136		1116:0	1788	19.76	21.1	2293	2461	2639	9796	2964	313	63
153	9	3300	3467		3803	3970	4137	430.	4.172	4639	450	167
	26	414973	415140	415307	415174	15641	15808		116141	6308		
16		6641	6807	6973	7139	$730{ }^{\circ}$	7.172	7633	7304	7970		㬉
33		8301	8167	8633	5798	896.1	91.29	9295	9460	9625	9791	\%
	3	9056	420121	-120:246	120151	420016	420781	420915	121110	121275	42143	6.5
		121601	1768	1933	2097	2261	2126	2590	27.54	2918	305:	(6)
82		3246	3410	3.574	3737	3301	$406 i$	42:28	439	55.	71	61
	6	4582	5015	08	371	5534	697	5 S 60	023	186	3	163
11	7	6511	74	6836	6999	161	3.24	186		811	97 \%	162
131	8	8135	8297	8459	8621	8783.	89.14	9106	9268	9429	9891	2
148	9	9752	991.1		430236	430398	430559	4307:20	130881	431042	431203	61
	270	13136	,	431685	131846	43:007	432167	13:328	(1248	-		1
	1	2969	3130	32.90	3400	610	\%\%	3930	4090	434!		160
32	$\stackrel{2}{2}$	4.609	729	4838	5018	297	367	526	6 B	58.11	0.1	159
	3	6163	6332	131	66.10	799	$6 \% 37$	7116	275	7433	17	159
	4	77.51	7909	8067	8226	:384	854	8701	$88: 9$	9017	917	158
79	5	9333	9491	0648	9306	9.361	$4401 \% 2$	440379	440437	410594	44075	158
95	6	440909	441066	$4.12 \cdot 24$	441381	4151538	1695	1852	2009	216	2323	in
	7	2480	2637	2793	2950	3106	3263	3419	3576	㖪	3899	15
126	8	4045	4.01	4357	4513	4069	4825	4981	51.37	52	5149	156
142	9	5604	676	5915	6071	6	638	633	669	6848	7003	

				2	3	1			7),
	260	142	$1:$	417448	14\% 12	$11: 3$	1.17983	418	18\% 12	(1)		105
15		-	8861	9013	8170	03:21	0.178	96.12	\$188	9911		15.4
31		150249	15010:1	-150357	450711	4.00363	451018	43117	4511126	31470	$143:$	3.1
46		1766	1910	2091	22.17	$\because 400$	2553	2:06	28:9	3012	3165	103
61		3318	3471	36.21	3777	3930	4952	4:23:3	4387	45.10	6:12	153
78		4845	1997	51.0	$530:$	515.1	0606	5758	6910	6162	21.1	152
0		6206	6518	6670	2821	69\%	7120	7276	128	679	731	152
107		354	03:3	18.1	$83: 16$	8487	$86: 18$	8789	10	091	9.212	151
12%		9312	9513	06:1	9815	0993	460146	1602? 176	-160417	460597	1607	131
138	,	160898	461018	461198	161348	461499	1649	1790	19.18	2098	22.15	160
	296	16239		2697	28.17	$46: 997$	1431.46	463.36	463	46:1594		(1)
15		3893	12	4191	43.40	4	4639	4780	$4!36$	5045	62:11	1.19
29		333	532	5680	3:39	6977	61.26	62%	6.123	6571	6719	49
41		168	016	7161	312	7.160	7603	77.	9901	80.52	8.250	48
69		83.17	195	8613	8790	8918	11083	0238	9330	9527	967	48
74	${ }^{5}$	9822	9969	470116	470263	170.110	170.57	47070	470851	470998	471145	17
88	6	171292	471438	1085	173*	1878	2025	2171	2318	2461	2610	1.16
103	7	2756	2903	30.19	3195	33.11	3487	36.33	3779	39.25	4071	146
13.	8	4216	36:	08	653	99	9.14	09	5235	5381	5.56	146
132	!	n6\%1		962	6107	252	6337	6542	6857	6832	6976	145
		177		17	47			477989	478133	47	2	5
14		85	8711	55	8999	01.43	1288	9431	9.575	9710	9863	144
99		180007	150151	+8029.4	18013	15058:	4807:5	180869	181012	481156	481299	144
43		1413	1586	17×9	1872	2016	2109	23302	2145	2588	2731	143
		23	016	3159	3302	31.45	3587	3730	387.2	4015	41097	14:
		4300	4.442	4585	27	4369	011	515	6:20	5.137	5379	14
		3721	里	600.5	147	6289	6130	6.77	6711	6855	6997	142
		7138	7280	7421	756	7701	2815	99	8127	S? 69	8410	1.41
		1	8692	8833	8971	114	9355	9396	9537	9677	9818	141
129		9958	190093	490:39	190330	190:50	490661	190801	4909.11	191081	4912	140
	310		49150:	191612	491782	191192	19:2062	92201	49:23.41	492181	492621	1.10
	1	2	2900	3010	3179	3319	3.158	3597	3737	3876	4015	139
		4150	4294	4133	4502	4711	4850	4939	512	5267	. 11	139
4		53.11	66633	63:	6900	6099	$6: 38$	6376	6515	6603	79	139
		69131	706	7206	$7: 114$	7.183	7621	7758	7897	803	17	13 \%
	5	8311	8418	8580	87.24	8562	8099	9137	9275	9112	95.	133
		9687	9524	9762	500099	5)0:3t	5001374	500511	500648	búrs5	500922	137
		201059	501196	5013;:3	1470	1607	1741	1880	2017	2154	2:291	137
				2700	28337	$2: 973$	3109	3216	$3.38{ }^{\circ}$	351	,	186
124	0	37	3927	40	4199	4335	4471	4607	4743	487	01	136
		50.5100	505286	5054:1	505057	505693	505828	50596.4	506099	06234	506370	136
1	1	6505	6410	6776	6911	70.16	7181	7316	7431	7586	7\%21	135
27		925	79	81.26	8260	8395	8530.	8664	8799	8934	906	135
40	3	9203	9337	9.71	960	9740	9874	510009	510143	510:277	510.111	134
		510545	510679	510813	510947	311031	511215	1349	1482	1616	1750	134
		1883	2017	2151	2281	2418	2551	2684	9818	2951	3034	13:
80 94		$3 \cdot 18$	435	3484 4813	3617	3750	3383	4016	4149	4282	441	13
107					4976	5079	521	53.4	S.176	609	$5{ }^{5} 4$	13:1
121	9	7196	73	7460	6271 7592	6403 7824	6.3	668	S00	6932	064	132
			\%18	18	518							
13	1	10:28	99.9	220u90	520					-		131
										20876	52100	131
39	3	24.4	,			00	1.9	4	2003	2133	2311	131
5	4	37.16	3376	4006	4136		309	3226	3356	318	361	130
6	6	$0 \cdot 15$	5174	5:304	543.1	5563		4026	4656	4785	4915	130
78	(i)	6339	6469	6598	6727	08.5			5951	6081	6210	189
91	\%	7630	7759	7838	8016				7243	7372	7501	20
	8	8917	9045	9174	9302	9130	95		8531	8600	8788	99
117	9	0200			.802	9 H	530810	-96878	$\begin{array}{r}9815 \\ 531096\end{array}$	9943 531223	[530072 1351	28

						-
						15

												O.
		765	7635037	763			,	\%88:				75
7		4176	42631	$43: 6$	4 ${ }^{\text {a }}$	4175	4550	4624	4, 3.39	5iJ4	4818	75
15		4923	4993	5072	5147	5221	3200	5370	54.45	5529	H	75
2	3	56 ta	6713	H14	5845	596\%	6041	611.	190	6:94	38	74
30	4	6413	$6 \cdot 437$	6.65	666313	6710	678.5	6 C .59	933	7007	70 ± 2	7
37	5	7156	7250	7304	7379	$71 ; 3$	30127	7601	(i75	7740	78.23	74
4	6	393	72	046	$1: 0$	191	268	+1.	116	8490	8564	74
5	7	333	12	86	60	31	18	032	158	9230	9303	74
5		9375	9151	9535	9.393	9633	974	98?	36	9968	00 2	74
67		770115	770183	770263	7703:3ن	770410	770431	770557	7706331	77070\%	0778	71
		,							71303			1
7		1387	1661	1734	1803	1881	19.50	2026	2102	2176		73
15		23.2	395	2163	2542	2615	98	2762	2335	90	2931	73
\cdots		3050	28	3201	327.1	318	421	3.134	3563	36.10	3713	73
29		3736	$6{ }^{6}$	3933	4096	4079	152	4285	4293	4371	41	73
37		4517	90,	4603	4736	30.	33	403.2	50.3	10	73	73
4	6	216	(9)	5332	546.5	5538	610	563	5756	$58: 9$	902	73
51	7	7.1	17	61.20	193		633.	11	6433	650	620	73
58		01	6774		919	69\%	7061	37	209	28.2		73
66	9		7499	75.	76.11	7517	7789	785:2	931	8006	8079	72
	600	778151	77	778.93	778363	7	778	77858.2	778653			72
		5 4	8917	9019	9391		'0	930.3	9330	94		72
14		9596	9669	9711	9813	-	9937	$7500: 29$	7801017	780173	78024	72
22		780317	7803397	780.461	780533	780605	$780 ¢ 77$	07.	08.21	0893	0965	72
$29)$		1037	1109	1131	1233	1824	1396	1.15 s	1510	161.3	1684	72
36		755	18.27	599	1971	2012	2114	2146	22.5	23.9	2401	72
43		2473	2514	16	635	259	31	290	297	30.16	17	72
50		89	3260	32	3403	17	+			61	332	71
58		3901	3975	16	18		21			Ti		71
6.	9	4617	4639	4760	4831	490:	4974	20.1:	5116	51	5259	71
	31	78		785	8	73	785686	- 23750	735			71
1		6011	6112	6183	620.1	63	$6: 395$		6.	0		71
1		6751	63:2	6493:	151	703 s	7106	17	2	319		71
21		7.460	7531	760 :	673	7711	7315		906	30.2i		71
28			339	10	381	4.1	8.52		86fi	8734		71
31			-	16	087	(1)	2:28	02.29	936:	9.110	9.	71
		9531	9 B 51	$95 \cdot 2$	9792	9863	99:33	790009	790074	790144	7002	70
50		90285	790356	790120	750496	790547	790637	110	0778	0 0 48		70
51		098	105	1129	119	1269	13.11	141	1430	13.50	1620	70
64	9	16.		31	190	1971	20	21	2181	22.52		70
	1320	79:39	79316	792032	792602	792672	-9.27.12	79:312	792382	79:935		70
		-	3162	$3: 31$	-3301	3371	3111	3.3	3.381	3651		70
1		,	3560	3930	4000	4070	413:	420	4270	4349		70
		4.	4038	(27	697	4767	45	490	4976 :	5045		70
28		5183	20.	53.24	为	促	5.5.3:	56	5672	5741		70
3 j		5830	9	6019	608	61.8	62	6297	63 i 8	6436	6505	69
42		6)	664.4	6713	6752	68.3	6321	$6: 90$	7060	71.29	1	69
49	7	72	7337	7404	7470	7545	7314	7683	7352	78.21	7890	69
6		796	8029	809	8167	8236	8303	833.	8443	8513	-	69
$6:$	9	86	$87: 0$	8780	83.5	89:27	8305	906	9134	9:03	9.272	69
	63	79931	790409		799.)4?	799	7996	,	7993	9989	799961	69
		300029	800095	800167	500:236	300305	800373	$30011:$	-00511	1800530	80064	69
1		0717	$00^{8} 8$	08iod	0923	0992	10031	1121	1198	1266	1335	69
21	3	1404	147	15.11	1603	1070	1717	151	158.	$19 \% 2$	$2{ }^{2}$	69
¢		2089	215	226	4395	2363	2.132	2500	2568	2637	2705	69
35		2774	28.12	2910	2979	3047	3116	318	32.52	33.21	3389	68
A	6	34 ¢ ${ }^{\text {a }}$	352.	3594	366:	3730	3793	3867	3335	4003	4071	68
45	7	4139	4208	4276	4344	4.112	4.180	4548	4616	6 468	4753	63
5	8	4821	4889	43 ai	5025	0093	5161	522 ?	6297	5365	5433	68
62		5301	5569	$56:$	5703	57	584		5970	68	61	6

P 1 ${ }^{\prime}$ N.	0	1	2	3	4	5	6	7	8	9	
940	973128	9731	$973240{ }^{6}$	732669	9733139	773350.9	9734059	9734.51 9	97.349797	173543	46
51	3590	3636	3682	3798	3774	3920	3806	3913	3959	4005	46
02	4051	4097	4143	4189	4230	4281	4327	4374	4420	4466	46
$4{ }^{4}$	45121	45 D 8	4604	4650	4696	4742	4788	483.4	4880	4926	46
184	4972	5018	6064	5110	5156	6202	6248	$5 \cdot 29.4$	5340	5356	46
2818	5432	5478	5 5) 4	5570	5616	5662	5707	6763	5799	5845	46
6	5891	6937	5983	6029	6075	6121	6167	6212	6258	6304	46
7	6360	6396	6442	6488	6533	6579	6625	60171	6717	3763	46
378	6803	6854	6900	6946	6992	7037	7083	7129	7175	6 \% 20	46
41.9	7266	7312	7358	7403	74.49	7405	7541	7586	7632	7678	46
950	9777240	977769	9778159	97*S619	977906	779529	9770989	978043	978059	978135	4
$6) 1$	8181	8226	8272	8317	8363	8.409	8434	8500	8546	8591	46
92	5637	8633	8728	8774	8819	8865	8011	8956	9002	9047	46
143	9093	9138	9184	9230	275	9321	9366	9412	9457	503	46
184	0543	95\%4	96:39	9685	9730	9776	9821	387	9912	958	46
23.5	980003	980049	9500949	980140	980185	980231	9802769	980322	9803679	980412	45
7 : 6	0458	0503	0549	0594	0610	0685	0730	0776	$08 \% 1$	0867	45
27	0912	0957	1003	1048	1093	1139	1184	1229	1275	320	45
368	1366	1411	1456	1501	1547	1592	1637	1683	1728	3	45
1	1819	1864	- 1909	1954	2000	2045	2090	2135	2181	6	45
960	13.2771	982316	98:2362	98.2078	982452	824979	982543	98.588	982633	982678	45
51	2723	2769	2814	2859	2904	2049	2994	3040	3085	3130	45
9	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	45
13	$36 \div 6$	3671	3716	3762	3807	3852	3897	3942	3987	4032	45
4	4077	4122	4167	4212	4257	4302	4317	4392	4487	4482	45
23	4527	4572	4617	4692	4707	4752	4797	412	4887	932	45
76	4974	5022	5067	112	6157	2021	247	2	5337	382	45
327	5426	5471	5516	5561	5606	5651	646	5741	5786	5830	45 45
8	5875	59:20	5908	6010	6050	6100	6144 6593	6159	6234	6279 6727	45 45
41 U	6324	6369	6413	6458	6503	6543	6593	6637	6063	6727	45
9\%	386772	286817	936361	986906	956951	986996	-0,10	087095	$93 \% 130$	987175	45
0	7219	7264	7309	7353	7398	7443	7488	$753 z$	7577	d 22	45
9	7666	7711	7756	7800	$784 \dot{5}$	7840	7138	7979	302.4	8068	45
1	113	S157	8.202	5247	8291	$8: 380$	8331	8425	$7{ }^{\text {(}}$	514	5
184	8559	8604	86.18	8698	6737	8782	8426	8371	6	8960 9105	45
93	9005	9049	9094	9138 $9-83$	9153	967.2	9717	9316	9361 9806		45
27	9450	949.4	589	9583	9628	967.2	9717	9761	9806 090.250	9800 99029	44
32	9892	0939	0983	990028	900072	990117	980161	990206	990260	990294	4
36	990339	$9903 \cup 3$	990488	0472	0516	0061	0605	0650	-0694	0738	4
41	0783	\| 08.27	0871	0916	- 0960	1004	1049	1093	1137	1182	44
		17	991313	991359	991403	991448	991492	991536	991580	991625	44
4	1669	1713	17.58	1802	1846	1890	1935	1979) $20: 23$	2067	44
$9 \quad 2$	2111	2156	2200	$2 \cdot 241$	12285	2333	23i7	24:1	2165	2509	44
19	2504	4 259	261-2	2686	- 2730	$27 \% 4$	4.2819	2363	2907	2931	44
-18	2995	303!	- 308.	3127	3172	3216	- 8260	3394	43348	3392	44
- $\underbrace{4}$	3136	3 3 Su	35:4	3.568	3613	3637	$3 \% 01$	1 3745	3789	9	44
	$327 i$	$1{ }^{3} 821$	396.5	4009	4053	4037	7141	4185	4229) 427	44
1	4317	7 4361	4405	4.149	4493	45:37	7481	14625	4669	471	44
$3 \cdot$	47%	- 4801	4S4 5	4389	4933	4977	75021	15065	5108	- 5152	44
41.	5196	$65 \% 40$	6284	5328	\| 5372	2.5416	$3 \quad 5460$	5504	45347	5591	44
090	099.5635	51995679	905723	995757	995811	1995554	995898	93594:	295986	996030	44
$4) 1$	$160 \div 4$	46117	76161	6205	5 6249	- 6293	633\%	(6380	6424	46468	44
9	6.15	- 6.55	65!99	6643) 6637	7) 6731	1 16774	46818	3 6862	26906	44
13	6.49	96993	7037	$70 \leq 0$	- 7124	17168	7212	27255	57299	7343	44
$1 *$	7.936	67130	7474	7517	- 7061	1) 7603	3764	37692	2736	\% 773	44
22	7323	37567	7910	7954	47998	88041	18085	5 8129	817%	8216	44
96	8259	9 S303	38347	8390	08434	18477	$7 \quad 8521$	18564	48608	8 8652	44
31	8695	58789	1. 8732	$88: 26$	68869	98913	38956	69000	09043	$3 \quad 9057$	44
\$3	9131	19174	$4{ }^{4} 18$	9:61	1.9305	5 9348	$8 \quad 9392$	29435	59479	9 9522	44
40	9.763	59609	919652	\$696	69739	99783	3 0826	6987	991	995	43

9 D	D.
973543	46
4005	46
4466	46
4926	46
5386	46
5845	46
6304	46
6763	46
7920	46
7678	46
978135	46
8591	46
9047	46
9503	46
9958	46
950412	45
0867	45
1320	45
1773	45
2226	45
982678	45
3130	45
3581	45
4032	45
4482	45
4932	45
5382	45
5830	45
6279	45
6727	45
937175	45
7 71322	43
1 8068	45
) 8514	45
68980	45
19405	45
69350	44
0990994	44
0738	44
1182	44
991625	44
2067	44
$5 \quad 2509$	44
2951	44
83392	44
3833	44
4273	44
$9 \quad 4713$	44
\% 5152	44
75591	44
996030	44
6468	44
6906	44
. 7343	44
7778	-44
8216	44
8652	44
9087	44
9522	44
) 9957	43

No.	square.	culue.	t.	01	8quare.	Cube	Sq. Inot .	not
12	16129	2018	$11 \cdot 26$	1190	36100	68:90000		6.748897
123	1634.4	2097152	$11 \cdot 31370-4515$	$5 \cdot 033681191$	36181	$69678{ }^{\circ} 11$	$13 \cdot 8202750$	5-7539015
129	1665	2140 is ${ }^{2}$	11-3578167	5-0.527711 192	36854	70778881	$13 \cdot 8561065$	98
130	16900	2197009	11-4017.43	- 065797193	37:49	71890 方 ${ }^{\text {d }}$	$13 \cdot 8921410$	778996
131	17161	2.213091	11-4.455231	5-048753 19.4	37636	73013811	$13 \cdot 0283853$	5•784960
132	17.12.1	2289968	$11 \cdot 4591263$	5.09131319.5	$330: 25$	741437513	13-9642400	98890
133	17689	23.20837	$11 \cdot 5326626$	3-10 169196	35416	75.99536	$14 \cdot 00000005$	786
131	17956	2406104	11-5758369	5-117230 197	3>409	76151731	$14 \cdot 035668$	18
135	182:25	21150376	11-6189500	- -1204281193	39:04	$7 \% 6239231$	$14 \cdot 07121$	176
136	18.114	2515106	11-6019038	5-112563199	39601	7830.599	11-1067360	834272
13	1876.9	$\underline{9} 971463$	$11 \cdot 7046999$	$5 \cdot 15.3137 \% 00$	40000	8000000	$14 \cdot 1121356$	818033°
13	1904	9628072	11-7473414	- 167649201	40.301	$8120 t 011$	$14 \cdot 17714$	857766
139	193:1	263519	11-78982bi	$5 \cdot 180101202$	4) 304	82.121081	14212670	867.16 .1
110	19000	27.11000	$11 \cdot 8.3213^{1} 96$	-5.192.194 203	41209	83654971	14217806	77130
141	19830	2800.3211^{\prime}	111 8713121	5 $20.18: 28-205$	41616	8489661	14-28:28.569	96765
142	20153	240.3.32:38	$11-9163753$	5-217103 20.3	42025	8615125	$14 \cdot 3178211$	-896368
143	20.11\%	2921200	$11 \cdot 938.669$	$5 \cdot 2293 \cdot 11208$	$4 \cdot 138$	87418161	$14 \cdot 3527001$	-906941
1.4	20736	293.9981	$1 \cdot 2 \cdot 000000$	$5 \cdot 211133807$	$4: 3.19$	8869743	$11 \cdot 38749.16$	-915153
	21025	3013632.	$12 \cdot 0415946$	$5 \cdot 263588.208$	$4: 3264$	6998912	$14 \cdot 4 \pm 220.51$	5-921993
	21316	$311: 136$	$12 \cdot 03 \% 0.160$	5-26363i 209	43681	912332991	$14 \cdot 4568323$	93-1473
	21609	3176323	$\mathrm{i} 2 \cdot 12+35507$	10.27703:1210	43100	9261000	14-4913767	13921
1	21004	3211792	$12 \cdot 16.5051$	5-28935:2,11	44521	9303931	14-5233390	933341
	22:201	3207949	12-2063.556	$5 \cdot 3014.9821 .2$	4491.1	9328128	$14 \cdot 560: 2198$	$5 \cdot 962751$
	22,00	337:000	$1 \cdot 2 \cdot 2 \cdot 17+187$	5-313:293 213	45369	9663597	14-5945195	091
151	22501	314295 !	$12 \cdot 258: 0.5$	5-32,5074 214	45796	98903111	$14 \cdot 6 \cdot 28$	d
15.2	$2: 1103$	3.511808	$12 \cdot 3.233280$	5-334303 215	46225	9938375	$14 \cdot 6628983$	-0907.27
153	2340	3.98157\%	12.3693169	5-318131 216	$460^{\circ} 56$	10077690	14-6960385	10
154	2371	365220.1	$112 \cdot 1096736$	5•360104 217	47089	10218313	11	244
155	210\%	3723575	12-4198996	5.371685 218	47524	1036023.2	14	3
156		3796116	$12 \cdot 4393960$	5-383213 219	47961	10503159	11	0
1.	24649	$336: 1939$	$12 \cdot 599641$	$\cdots \cdot 3,4691220$	48100	$106 t 3000$	$14 \cdot 832$	1
15	21964	3941312	$12 \cdot 5638051$	- -406120 2:1	43311	10793561	14•86606	13
1.	20.281	4019679	$12 \cdot 6095202$	$5 \cdot+175012$	49231	10941048	$14 \cdot 89966$	8
16	22600	409 tivou	12.0491106	$5 \cdot 423835$	49729	11089567	$14 \cdot 933$	6
16	25921	$4173: 31$	136853775	$5 \cdot 44012220$	50176	11.23912 .1	14-960 5295	76
16	$26: 244$	4251528	$12 \cdot 727!2 \cdot 11$	$15 \cdot 4513622.25$	5002.5	1139062.5	$15 \cdot 0000009$	201
16	20368	4330717	112-7671.453	-5 - -102555 $2: 26$	51070	1154!3176	$15 \cdot 033$	193
1.	26396	$43109+4$	1:3-8062.435	- $-123700^{2} 27$	51529	116970 s3	$15 \cdot 06$	171
16.5	27225	$413 \cdot 2125$	$12 \cdot 8152326$	$15 \cdot 1340661228$	5193.1	118523.52	15	
166	27036	$45712: 36$	12-881093i		52141	12008339	15.	33:
1	2783:	46.57 .163	1-3 - 5228480	5-3063761230	52900	12167000		1995
168	25924	+741639	$12 \cdot 9014514$	$15 \cdot 5173341221$	533361	123.26391		
169 170	2-5661 28000	4826839 4913000	$13 \cdot 0000000$ 13 - 013304		53324 51289	$1 \geq 187163$		
170	28000	491:3000	$013 \cdot 0,33304 \text { r. }$	$50 \cdot 5396.3233$	51259	$1: 2630337$	$\left\lvert\, \begin{aligned} & 15 \cdot 2613375 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 153439 \\ & 162239 \end{aligned}$
17	29241	5000211	$113 \cdot 0: 660^{\circ} 063$, $5 \cdot 50019,4231$	54% 5b	$\begin{aligned} & 12512904 \\ & 12097375 \end{aligned}$	$15 \cdot 2970.545$	$\begin{gathered} 6 \cdot 16: 239 \\ 6 \cdot 170105 \end{gathered}$
172	29:84	$50 \leq 3+43$	$313 \cdot 1148760$	$0.56121+233$	55925	12917375	$15 \cdot 32970$	171005
173	29429	5173717	$713 \cdot 1529 \cdot 464$	(j-5720.50) 236	5.5696	$131+1256$	$15 \cdot 30 \cdot 2$	7974 63. 163
174	31276	5263024	$113 \cdot 1909640$	$00 \cdot 55 \cdot 271)(237$	56169	1331:21.53	$15 \cdot 3 a 130$	183.163 97154 154
175	306:5	5335373	313-25-5056	$63-54312 \mathrm{l} 288$	20643	13431.272	$15 \cdot 4272$	10715.4
	34130	515176	[13-664902	25.6040791239	57121	13651919	$15 \cdot 459$	$5 \cdot 2058 \cdot 21$
	313:9	504.jes	$313 \cdot 3041347$	$75.61 \cdot 16731210$	57600	$138: 21600$	$15 \cdot 491933$	$6 \cdot 21+464$ - $\cdot 2 \cdot 2308$
	3163:	Eti39702	$2,13 \cdot 3-1165 \cdot 11$	1502529.41	5 Ste 1	13997531	$15 \cdot 524174$	$6 \cdot 22305$
	3:011	¢330:439	918.35:4088.2	$25 \cdot 63.5711+42$	535.0.1	1.1172 .388	$15 \cdot 5.6343$	$15 \cdot 92167:$
	3:400	E\%33 1000	$013 \cdot 1161079$	$95 \cdot 646 \geq 16.243$	5!00.19	14348907	119.5851573	$6 \cdot 231251$ $6 \cdot 245300$
	32i61	$5920{ }^{111}$	$113 \cdot 4530310$	$05 \cdot 696651 / 24$	59536	14520689	$15 \cdot 620.499 .1$	(6-543500
1	331:	C0? 5 \%	-13-4907376	$6 \cdot 5667031{ }^{24,}$	60025	$147061 \% \cdot$	$15 \cdot 6594764$	$6 \cdot 23732.1$ $6 \cdot 2658.26$ $0 \cdot 22$
183	3:4	6125387	$7113 \cdot 527-493$	$35 \cdot 677111246$	60516	14886436	$15 \cdot 6813871$	\| $\begin{aligned} & 6 \cdot 2658.26 \\ & 6 \cdot 27+305\end{aligned}$
18.	33is	62:3501	113-5646640	$015 \cdot 637734+247$	61003	150692223	$10^{\circ} \cdot 7162336$	$6 \cdot 274303$
18	3+2:3	6:31310\%5	$513 \cdot 601400$	$5 \cdot 5 \%$-6019 ${ }^{\text {a }}$	61504	152.2992	[10-7430157	$6 \cdot 23860$ 6.29119 .1
	3-1.46	6434350	$613 \cdot 6351817$	$7\|5 \cdot 00 \leq 67\| 249$	62001	15433249	$15 \cdot 7797338$	$6 \cdot 291194$ $6 \cdot 299604$ 1
	319:9	(6, 3) ${ }^{\text {a }}$	$313 \cdot 6749.13$	$35 \cdot 718179250$	62500	15622000	$[15 \cdot 8113883$	-6.299604
	3 30341	60.465	213-7113092	$25^{-72865.4}{ }^{25}$	6300	15813251	$\left\lvert\, \begin{aligned} & 15 \cdot 8429795 \\ & 15 \cdot 8745079\end{aligned}\right.$	$6 \cdot 307993$ $6 \cdot 316359$
	$35 \pi 21$	126 6	$\left.\right\|^{13 \cdot 7477271 ~}$	$1\|5 \cdot 738791\| 25$	6350	16003008	$15 \cdot 8745079$	6-316359

$88.5 \cdot 718897$ $505 \cdot 753965$ $65^{5 \cdot 768994}$ $105 \cdot 778946$ $335 \cdot 788960$ $005 \cdot 788890$ $005 \cdot 808786$ $885 \cdot 8181318$ $735 \cdot 828.176$ $605 \cdot 83+27=$ $565 \cdot 818035$ $69.5 \cdot 857706$ $0.15 \cdot 867.161$ $168^{\dagger} 5 \cdot 877130$ $69{ }^{5} \cdot 886765$ $115 \cdot 896364$ $0115 \cdot 905!1+1$ $1165 \cdot 915183$ 51 5•921903 $1235 \cdot 934473$ 6% 5-9.13921 190 Ј • 933341 98 5-9627:31 $05[5 \cdot 9720.91$ $1885 \cdot 991426$ 83 $5 \cdot 0907 \cdot 27$ $1856 \cdot 000000$ $1996 \cdot 0099244$ $3316 \cdot 013433$ $1566 \cdot 0.276 .90$ $706 \cdot 036811$ ssi $t \cdot 045913$ $3.146 \cdot 055048$ $+15(6 \cdot 061126$ $2956 \cdot 075178$ $0096 \cdot 082201$ $9616 \cdot 091193$ $192(6 \cdot 100170$ js! $i=10911 i$ $1606 \cdot 11303 ? ?$ $5096 \cdot 12693$ $4126 \cdot 135992$ $1626 \cdot 14163.1$ $3756 \cdot 153410$ 24: $46 \cdot 16: 2239$ $997 \mid 6 \cdot 171005$ (1) $(6 \cdot 170747$ $3136 \cdot 183.163$ 186 ij $\cdot 197154$ $248,4 \cdot 20.38 .21$ $3.3 \cdot 6 \cdot 21416!$ $7576 \cdot 223081$ 423 (分 $2: 3167:$ $5736 \cdot 210.31$ $9916 \cdot 248500$ $7546 \cdot 2 \pi 73 \cdot 1$ $871 \mid 6 \cdot 26.58 \cdot 6$ 33 ; $6 \cdot 2 \pi 4303$ 157 $6 \cdot 033760$ $3386 \cdot 291194$ $8836 \cdot 299604$ $7956 \cdot 307993$ 079 6-316359

$3155419617 \cdot 77639486 \cdot 811281$ $3185.5013,17 \cdot 50119938,6 \cdot 818.862$ $32157 \cdot 13217 \cdot 8: 33354510 \cdot 325021$ $3246175917 \cdot 86057146 \cdot 83 \cdot 2771$ $32763000 \quad 17 \cdot 8: 3451356^{6} \cdot 839901$ $3: 1076161$ 17-91617:29 6-817021
 $3360326717 \cdot 97 \cdot 2200416 \cdot 861212$ $3101222413 \cdot 00900006 \cdot 868285$ $31324123 / 13 \cdot 02775616 \cdot 875311$ 3461597618 - 05a34701 $6 \cdot 88238$ $319 t 5789118 \cdot 0831113$ 6-889. 119 3.52475.2. $18 \cdot 1107703$ (6-896135 3.611289 18-1234351 $6 \cdot 903436$ $3593700018 \cdot 16.99021 \quad 6 \cdot 910423$ $36264691 \quad 14 \cdot 19310.516 \cdot 917396$ 36594368,18-2204672, 16 -9243e5 369-260137118-244237666-931301 $372597(14 \mid 8 \cdot 187566596 \cdot 934232$ $37595375 \quad 18 \cdot 30300.22,6 \cdot 945149$ 379330.56 เs - $33030296 \cdot 552053$ $3327.2750118 \cdot 3.375593,6 \cdot 958943$ $34614172 \cdot 18 \cdot 38477636 \cdot 965819$ 3.9958:19 18-41195266-972683 39304000 18-4390889 $6 \cdot 97953 \%$ $396518: 1 \quad 18 \cdot 46618: 336 \cdot 986368$ $40001638 \quad 18 \cdot 43324206 \cdot 993191$ $10: 153607 / 18 \cdot 5 \cdot 20259: 7 \cdot 000000$ $40707581113 \cdot 547 \cdot 23707 \cdot 006796$ $41063825(18 \cdot 574175677 \cdot 01357!$ $41 \cdot 1: 173418 \cdot 6010752,7 \cdot 020349$ $4178192318 \cdot 62793607 \cdot 027106$ $42144192 \quad 18 \cdot 6.547 .5817 \cdot 033850$ $42.503549 \quad 18 \cdot 631541717 \cdot 010581$ +2375000 18-7032 6917•017298 $432 \cdot 4351118 \cdot 73499407 \cdot 0.54004$ $4361 \cdot 1: 0318 \cdot 76166307 \cdot 060696$ $4398697718 \cdot 78520427 \cdot 067376$ $44361864113 \cdot 8143577 / 7 \cdot 07 \cdot 1041$ $4473587513 \cdot 8111437 \quad 7 \cdot 030699$ $4511801615 \cdot 85796237 \cdot 057341$ $4519929318 \cdot 8!141367 \cdot 093971$ $4585 \cdot 2712118 \cdot 92088597 \cdot 100583$ 46263279 1s-947:99.53 7-107194 $4665600918 \cdot 97366507 \cdot 113786$ $476 \cdot 15831 \mid 19 \cdot 00000007 \cdot 120367$ $47437928 \quad 19 \cdot 0 \cdot 2629767 \cdot 126036$ $47832147 / 10 \cdot 0525.5897 \cdot 133492$ $432 \cdot 255419 \cdot 07878107 \cdot 140037$ $48627125119 \cdot 10497327 \cdot 146569$ 49027 s: $6 \cdot 19 \cdot 131126 ; 7 \cdot 153090$ 4:430363 19• 157.24117-159599 $49836032,19 \cdot 18332617$-166096 $50243409 / 19 \cdot 20937277$-172580 $5065300019 \cdot 23.533117$-179054 $51064311119 \cdot 26136037 \cdot 185516$ $5147834819 \cdot 2373015 / 7 \cdot 191966$ $5137511719 \cdot 31320797 \cdot 198405$ $523136 \cdot 4 \quad 19 \cdot 33907967 \cdot 204832$ $5273437519 \cdot 36491677 \cdot 211: 48$ $5315737619 \cdot 39071947 \cdot 217652$ $5358263319 \cdot 41648787 \cdot 22404$ 5 $5101015219 \cdot 4422221$ 7•230427

 350141100 $3811-15101$ $41.921458=1$ 3．4．4 146tisit 3541474303 3651482.25 3813 1－18946 387 14078： 388 150．5：4 389 1513：21 390 132110 1391152481 $: 102 / 153 t i t) 1$ 393154119 $394150^{2} 23 t i$ 195 15602．3 396156813 3971507609 298815840t 300109201 400160036 ． 401160801 402161604 403 16：24：3 404163216 40516.1025 406161834 4071 6̄́6．49 408166461 409167281 410168100 4111689.21 41：2 169744 41317056.9 414 171：196 415 172425 416173056 4171782×4 418 1747．2 419175061 $4: 0 \mid 176300$ $+21177241$ ＋2：2 178051 423 178929！ ＋211797313 $425 \quad 180625$ 426181476 $427 \quad 1823: 29$ $128 \mid 183154$ 4：29 184011 430 184900 431 1853151 132 186 c 24 4：13 1874 434184.234 435.18% 436 190じッ 437 1909 438191844 1． 19 ｜19：3721 $+40,19360 \mathrm{C}$
441 194481

 की $56162310418 \cdot 690917!4-2684 x^{2}$ stof662．） 19 －fi： $111697 \cdot 27.1781$ 67ओ2 $2.561^{19} \cdot 6 \cdot 4084 \cdot 27 \mid 7 \cdot 281177!$ 57060603 19 $67 \cdot 24156$ 7 $7 \cdot 287311$ ！ 58：111072 10－697710f $7 \cdot 293633$ 58863349 $15 \cdot 7 \cdot 230 *: 297 \cdot 294819-1$ $64119000 \quad 19 \cdot 748.11777 \cdot 306143$ $69776171 \mid 16 \cdot 77371999 \cdot 312383$

 $61164134159 \cdot 849133227 \cdot 35!037$ $61629470 \quad 19 \cdot 874691397 \cdot 337284$ $6: 04913613 \cdot \operatorname{s997487} 7 \cdot 313420$

 $633+21199 \cdot 19 \cdot 9749844 \cdot 361916$ 64）00000－20 0000000 $7 \cdot 3680 t 3$ $61131201 \cdot 20 \cdot 024934.17 \cdot 374198$ $6.1901508 \cdot 20 \cdot 0499377 \mid 7 \cdot 334322$ $654.50427 \times 2 \cdot 07+854977 \cdot 386437$ $65939264-29 \cdot 09475127 \cdot 3925 \mathrm{~L}$ $664301 \cdot 25 \cdot 20 \cdot 1 \div 461187 \cdot 398636$ $669 \cdot 23316 ; 50 \cdot 14914177$－ 40.4720 $67+19143 \cdot 20 \cdot 17424107 \cdot 410795$ $67917319 \cdot 20 \cdot 19900947 \cdot 416859$ $68-1179299-20 \cdot 2 \cdot 2331847 \cdot 42 \cdot 2414$ $68!21000 \mid 20 \cdot 24815677 \cdot+2895 ?$ $6942633420 \cdot 273134417 \cdot 434991$ $6913.4528 \cdot 20 \cdot 29778317 \cdot 4+1019$ $70+44997 \cdot 20 \cdot 32 \cdot 2401+7 \cdot 44703.4$ $70557914 \cdot 20 \cdot 34608997 \cdot 431040$ $7143337520 \cdot 371548317 \cdot 459030$ $71991 \cdot 296 \cdot 20 \cdot 39607517 \cdot 4650 \div 2$ 72511713 20－42057597－4i099！ $73034632 \cdot 20 \cdot 4450 \cdot 1837$－ 476966 $733600 ; 9 \cdot 20 \cdot 469+3957 \cdot 432612.1$ $740 \times 300020 \cdot 49390157 \cdot 488872$ $74618461 \cdot 21 \cdot 5!5 \cdot 28457 \cdot 404811$ $75151448 \cdot 20 \cdot 5426: 1867 \cdot 500711$ 75656967 $20 \cdot 5609634 \mid 7-c 06661$ $76225024 \cdot 20 \cdot 591 \div 6037 \cdot 512571$ $7676.5625 \cdot 26 \cdot 6155 \div 2847 \cdot 518473$ $77303776 \cdot 20 \cdot 63976747 \cdot 524360$ $71854483 \cdot 20 \cdot 661197833 \cdot 7 \cdot 30245$ 7810275：20－6881609 7－636121 $78953539 \quad 20 \cdot 71231527 \cdot 541956$ $79307000 \cdot 20 \cdot 73541477 \cdot 547842$ $80064991 \cdot 20 \cdot 76053937 \cdot 553688$ 80ti21568 $20 \cdot 781$ tiv97 7－ออ 29526 ह！ $1 \times \% 37: 20 \cdot 80365207 \cdot 565355$

 51，is $20 \cdot 84061307 \cdot 582756$ 82，4． $453: 20 \cdot 90454507 \cdot 583570$ $84027672 \cdot 20 \cdot 92844957 \cdot 594363$
$84604519 \cdot 20 \cdot 95232687$
7 $84184000 \cdot 20 \cdot 976177077 \cdot 600133502 \cdot 2520041126506008 \cdot 2 \cdot 2 \cdot 4053565 \cdot 7 \cdot 047504$ $85766121 \cdot 21 \cdot 0000000$－ 61605503 253009 1 127263527 $2 \cdot 2 \cdot 42766167 \cdot 952848$ $85766121|21 \cdot 00000007 \cdot 611662| 504|254016| 128024064 \mid 22 \cdot 449944377958114$
1.1210 .330 .8 803．30485 $21 \cdot 0237.3607 \cdot 61711 \cdot$
 $141107135^{\prime}+87548: 141$ \＆ $1 \cdot 07130757 \cdot 608350$ ！

 149201601 1502023000115500001 － $21320: 117$－Biti3a994
 4382058209 451206116 $155,20702.3$ 156207036 1670108540 $158 \cdot 09764$ 159.210831
150.211600

151 150211601 | 1611_{2}^{212521} |
| :--- |
| 16.221344 | 163 214369 164216296

 $466217156101194696 \cdot 21 \cdot 58903317 \cdot 752461$ $467218089101817563 \cdot 21 \cdot 610182887 \cdot 758102$

 $170220900103823 \mathrm{c} 00-11$－（i49．4834 $7 \cdot 7743 \times 1$ $171 \mid 221841104137111 \cdot 21 \cdot 70253417 \cdot 780490$
 173 2237：29 $10.48 \cdot 23517 \cdot 21 \cdot 71856327 \cdot 791437$ $174 \mid 22467010619(4+21 \cdot 21 \cdot 77351117 \cdot 796971$ $1752256251107171874 \cdot 21 \cdot 791.544777 \cdot 80: 5104$

 $78 \cdot 228484109215352 \mid 24 \cdot 863: 211177 \cdot 818846$ 179 229．411 1093022239－21－88006867－82：1291 480 230400 $110592009 \cdot 21 \cdot 9089023$－ 8223835 $184 \cdot 231361 \quad 11128.1641 \cdot 21 \cdot 93171227 \cdot 8321$ di $182 \cdot 232334111930163-24 \cdot 951493+7 \cdot \varepsilon 10413$, 188 233289 112678587 12－97726107－34601：3 $184234256113379901 \cdot 2 \cdot 00000007 \cdot 831421$
 $18623619611479120662 \cdot 2 \cdot 0,204575-268224$ 15723716911 15012303 3－2 0680% $188 \cdot 238144116214272 \cdot 5 \cdot 0$ 0． 1
169 $23012111693016902 \cdot 111$ $490 \cdot 24040117649000 \cdot 22 \cdot 1359676 \div \cdot 85323$ $491 \cdot 24108111837077122 \cdot 15852747 \cdot 88373$ $192 \cdot 2420611190951835 \cdot 2: 18107.58 / 7 \cdot 89444$ $493 \cdot 4304911982315722 \cdot 20366 \div 17 \cdot 999602$ $191 \cdot 244036|120503784| 2 \cdot 2261405 /-905145$
 $498 \cdot 2 \cdot 160161200239360^{202} \cdot 2710575 \div \cdot 915753$ $197 \cdot 247009$ 122763473 222－2934963： 921400 $198 \mid 245004$ 12350599．2 $2 \cdot 2 \cdot 3159136 \div \cdot 926 \cdot 10$ त $929.5677-26 \cdot 2 \times 37967 \div \cdot 680080$
 $0419037521 \cdot: 33072907 \cdot 69133^{2}$ $9181831621 \cdot 33456507$－ 64100 ．
 $960711912 \mid 21-40093487-7042215$ $9470250781 \cdot 24125537 \cdot 71421$. $97336000 \mid+11-47761047 \cdot 714112$ $9797.2181 \cdot 21 \cdot 47091067 \cdot 725032$ $98611124 \mid 21$－44．41453 $7 \cdot 7110611$ $252847 \cdot 21 \cdot 61743187 \cdot 736184$

Hent．｜＇ube 1 len．
$1297: 1007 \cdot 61711$ ． $1730.527 \cdot 6231.50$ 7130707．6！3：30 $95032317-63150 \%$ $1871217 \cdot 61015:$ $42.1 i 457 \cdot 6160 \% i$ $0(1010317$－ 65172 $89620) 7 \cdot 6.67+11$ 13.20317 － Be33a！ 3 $0029167 \cdot 137.134$ N370tit－ $88008 i$ 0727587 －68．5ずロ： $107290,7 \cdot 69131$ i－11865 $7 \cdot 6!9$（60： $7755837 \cdot 70 \pm 10 \div 6^{\prime}$ 0093167 • $70: 433!$
 1761043 • $71311=1$ $7091067 \cdot 72503: 2$ 41 4is3 7－730611 $1743187 \cdot 736154$ 10609.27 － 7.1175% $638.5877 \cdot 717311$ $8703317 \cdot 752461$
 3330777 － 763430 $56 \cdot 1078,7-769452$ －9．1834．7－774．730 $0: 25341 / 7 \cdot 780494$ $2556107 \cdot 7$ 大n！ 3 3 1856．327 $7 \cdot 791457$ 7154117 － 711697 91．14（1） $7 \cdot 30) \cdot 21$ in 4 $1742427 \cdot 8079: 5$ $103: 2977 \cdot 81333$ $63: 21117 \cdot 818310$ 3606867 －82 129 $38902: 7-324735$ $3171227 \cdot 83 \mathrm{j} 1 \mathrm{~b}$
 $72610 \cdot 7 \cdot 346013$ $10000077 \cdot 8 \dot{j} 1421$
 en－ 80 2ご 8io．30 $1594367 \cdot 86333$. 85 ？ 107.3 ¢ $7 \cdot 894+1$ $366: 27 \cdot 89970$ $61105: 905125$ $18595 t_{6} 7 \cdot 910400$ $10575 \div-915738$ 1349687 9：3 J 06 $69136 \div \cdot 92610$ d
 067987 9300． $302937 \cdot 912 \cdot 243$ $535657 \cdot 047571$ $766167 \cdot 952818$ $994437 \cdot 958114$

No．	Square．	（＇ube．	8\％．Inot．	Cuse llom	Na_{0}	Syiarm	Culue．		Cube livot

 $50925008: 131872 \cdot 299 \cdot 22 \cdot 56102837 \cdot 984311 / 572.3271811871 \cdot 192 \cdot 18 \cdot 23 \cdot 0165 \cdot 215 \cdot 4 \cdot 3010: 10$

 $514 / 26119013570674 \cdot 1 \cdot 22 \cdot 67156818 \cdot 010403 / 577332929192100633 \cdot 21 \cdot 0208 \cdot 243 / 8 \cdot 3161 \cdot 17$ 516．265．25 $136590875 \cdot 2 \cdot 2 \cdot 69361148 \cdot 015595.578331084|193100552 \cdot 21 \cdot 0 \cdot 1163068 \cdot 3299.5|$

 531 281961 $149721291 \cdot 23 \cdot 043 \cdot 137 \cdot \mid 8 \cdot 097759.59 \cdot 1352436 \cdot 209584.51 / 24 \cdot 37211528 \cdot 400113$ 532 283024 $160588703 \cdot 23 \cdot 06512528 \cdot 102839.595354025 \cdot 21061.1875 / 24 \cdot 39 \cdot 26218$ 8 416833

 $535|286225| 153136375 \cdot 23 \cdot 1300670 \mid 8 \cdot 118041$（598 $35760+213847192 \cdot 24 \cdot 4510385 \mid 8 \cdot 4249.45$ $53628729615399065623 \cdot 15167338 \cdot 123096 \mid 599358301 \cdot 214921799 \cdot 24 \cdot 47447654 \cdot 429634$ $537 \cdot 288369 \cdot 15.185 \cdot 1153 \cdot 23 \cdot 17326058 \cdot 128145(500360000 \mid 210000000 \cdot 21 \cdot 49489748 \cdot 4313: 37$

 $549301401165469149 \cdot 23 \cdot 4307490 \cdot 8 \cdot 184 \cdot 214$ 512 $374544 \cdot 2 \cdot 29220928 \cdot 24 \cdot 73363388 \cdot 490185$ $550|302500| 166375000 \cdot 23 \cdot 4.20788|8 \cdot 193 \cdot 213| 013375769|230346397| 24 \cdot 7588368 \mid 8 \cdot 494806$

 $554|306916| 170031 \cdot 164 \cdot 23 \cdot 537: 2046|8 \cdot 2130 \cdot 7| 617|380639|-231885113|24 \cdot 8394847| 8 \cdot 513243$

 $567|321489| 182284263|23 \cdot 8117618| 8 \cdot 286773|630| 396900|250047000| 25 \cdot 0998008 \mid 8 \cdot 872619$

$31394161 \cdot 2.193959125 \cdot 11971344-577152$
 63:3 400689 253636137 25-1231413 3-55620s $634+401956254401042 \pi \cdot 179356 t i 8 \cdot 590728$
 $150(040419645725945625 \cdot 21902018 \cdot 599747$
 $344070149969.107225 \cdot 2536619 / 5 \cdot 601553$

 34.3 $4151414 \cdot 36547707 \cdot 25 \cdot 3571145 \mid 3 \cdot 631153$: 11 - 11 1736 $267089984 \cdot 25 \cdot 3771551 \mathrm{~s} \cdot 63.366$ 4454160.25 263336125 25-3968502 $5 \cdot 610123$
 $317118609 \cdot 2708400 \cdot 23$ 45-43619.4718-6.1904

 $5+5+25104 \mid 277167808 \cdot 25 \cdot 531290714 \cdot 671266$ $453126109 \cdot 278445075 \cdot 25 \cdot 53886575 \cdot 675697$
 $655400336 \cdot 282300416 \cdot 25 \cdot 6121909 / 8 \cdot 643963$

 $464110296292751991 \cdot 25 \cdot 76810758 \cdot 7.21141$

 $070115000130963000.25 \cdot 8.1: 3532 \cdot 3 \cdot 750314$
 $\therefore 12151541303161448.25 \cdot 92296283 \cdot 703030$
 $67+151274300182021,55 \cdot 9616100,8 \cdot 767193$

$26 \cdot 17640468 \cdot 883266$
$7034912093474 \because 3122 \cdot 26 \cdot 51411728 \cdot-391706$
$04 \cdot 195016 \cdot 313913664 \cdot 26 \cdot 53299338 \cdot 895920$
$0.512702535040: 5525 ; 26 \cdot 0518361 / 8 \cdot 000130$
(v) 418435 351805S16 $06 \cdot 5706305-4 \cdot 01336$

$08,211264354594912 \cdot 26 \cdot 6052634 \cdot 5 \cdot 912737$

$10504100,35791100026 \cdot 64542028 \cdot 921121$
$115055313.5912 .13126 \cdot 664534318 \cdot 925308$
$12506914360914124,26 \cdot 6833231 / 8 \cdot 024190$
$7135023+9362167097^{2}$ 25. $7020393 / \mathrm{s} \cdot 933668$
$711509796363091341 \cdot 2 \cdot 7207818 \cdot 037843$
$165126.56365065875 \cdot 26 \cdot 73918398 \cdot 942014$
$165126.5635061691 \% \times 6 \cdot 758176338 \cdot 946181$
$18,01505137614623026 \cdot 766550 / 5 \cdot 9503 \mathrm{~J} 1$

$\because 1.115+13150.33146 \cdot 8.14123 \cdot 966957$

$7: 33$ 022729,375933065 26-88465493 $8 \cdot 975210$
$21024176379503+21 \cdot 6 \cdot 0172181 \mid 3 \cdot 979376$ $2503625381078125 \cdot 26 \cdot 9.25840 .8 \cdot 933503$

 $28,52981335823352 \cdot 26 \cdot 98117513 \cdot 095 i 33$ $-2933141335420459 \cdot 27 \cdot 00000019 \cdot 000000$ $30.332900 \cdot 3590!7000 \cdot 2 \cdot 01851222 \cdot 004113$ $31 \mid 531861330517391 \cdot 27 \cdot 037011719 \cdot 008223$ $32133332 \cdot 13924233163 \cdot 27 \cdot 0654193.219 \cdot 012329$ $33,232289,393833537 \cdot 27 \cdot 02337270 \cdot 016.131$ $7310337.5630544690425 \cdot 09213443 \cdot 020522 n$
 85 $5 \cdot 11696 \cdot 305658256627 \cdot 12931999 \cdot 028715$
 $79 \mathrm{~F} 51414401947 \cdot 26 \cdot 27 \cdot 16615549 \cdot 036886$ 40 4tib00, $405 \% 2100027 \cdot 20 \cdot 291109 \cdot 045041$ $11519031406809021 ; 7 \cdot 2: 1315.29 \cdot 019114$ 1250061 100518.183.27•2:29676990053183 $7.13502019+10172107127 \cdot 268026339 \cdot 05724 \mathrm{~s}$

No.

757
758
759 760
761
762
763
764
766
767
768
7
${ }_{769}^{768}$
7 70
7715

772
773

7735_{5}^{5}
7756
7766
7776
7786
7796
$780 \mid 6$
7826
7836
7846
7856
i86 8
7876
7886
78992
790162
79162
79262
79362
79463
79: 63
79663
79763
79363
79963
$800 \mid 6$
80164
S0.2 64
80364
80464
80564
806649
$807 / 651$
80865
809 (654
810656
811657
812659
813660
814.602

815664
816.665

817|667
818669
819670

SqUARES, CUBES, AN) ROOTS.

Sq. Rost. Cube Root
757 573049 $433798093 \cdot 27 \cdot 5136330 \cdot 9 \cdot 113781$ $758[574564435519512 \cdot 27 \cdot 53179989 \cdot 117793$
 $760|577600| 438976000|27 \cdot 5680975| 9 \cdot 125805$ 761579121 440711081 $27 \cdot 58622849 \cdot 129806$

 $775600625|465484375 \cdot 27 \cdot 83882189 \cdot 185453| 838700569586376203|28 \cdot 9309523| 9 \cdot 424142$

 $782611524|478211763 \cdot 27 \cdot 96426299 \cdot 213025| 844712336601211584 \mid 29 \cdot 05167819 \cdot 450341$
 $784614656|481890344| 28 \cdot 0000000 \quad 9 \cdot 2 \cdot 20873|847| 71740$

 7936288.19 195677 $257 \cdot 23 \cdot 1602557(9 \cdot 25602 \cdot 2$ $79.4630436500566184|28 \cdot 1780056| 9 \cdot 259911$ 79 © $6320 \cdot 50502459875 \cdot 28 \cdot 1967444 \mid 9 \cdot 263797$

 $800640000|512000000| 28 \cdot 284: 712 \cdot 9 \cdot 28317 S$

 $804|646.116| 519718464|28 \cdot 3548938| 9 \cdot 298624|867| 751650|65171436| 29 \cdot 4278779.9 \cdot 531749$

 $812659344|53538732828 \cdot 4956137| 9 \cdot 329363|875 / 765625569921875| 29 \cdot 58039899 \cdot 564656$

 $819|670761| 549353259|28 \cdot 6181760| 0 \cdot 360095|882 / 777924| 686128968|29 \cdot 6984848| 9 \cdot 590094$

	Square.	Cuba	Sq. Root.	Cube R	No.	Square	Cubo.	Sq. Hout.	Cuhe koot
$\checkmark 93$	779659	688.65383	-29-7153159	9-5937	94	887364	835996888		
, 8	781456	690807104	$29 \cdot 7321375$	$9 \cdot 5973$	943	889249	838561807	$30 \cdot 6920185$ $30 \cdot 7083051$	$\begin{aligned} & 9 \cdot 80 \cdot 2904 \\ & 9 \cdot 806 \cdot 271 \end{aligned}$
-	783225	693154125	$29 \cdot 7489496$		944	891136	841232384	30•7245830	$\begin{aligned} & 9 \cdot 806.271 \\ & 9 \cdot 809736 \end{aligned}$
	78.1996	695506456	29-7657521	9•60457	945	893025	8439086	08523	$9 \cdot 809736$ 9.813199
			29-7825452	$9 \cdot 608182$	946	894916	846590536	30-7571130	$9 \cdot 816655$
	790			-6117	947	896809	849278123	$30 \cdot 7733651$	9-820117
390	792100	7049			948	898704	851971392	$30 \cdot 7896086$	9.823572
391	793881	7073		9-6226	949 950	900601 902500	854670349	30-8058436	$9 \cdot 827035$
892	795661	7097322	$29 \cdot 8663690$	- 22	950 951		857375000	$30 \cdot 8320700$	$9 \cdot 830476$
893	797449	7121219			951		860085351	$30 \cdot 8382879$	$9 \cdot 833924$
994	799236	714516984	29-8998328	9	953			$30 \cdot 8544972$	9-837369
395	301025	716917375	$29 \cdot 9165506$	$9 \cdot 6369$	954			$30 \cdot 8706981$	9-840813
896	802816	719323136	$29 \cdot 9332591$	-640569	955	9120:25	870983875	$30 \cdot 8868904$	$9 \cdot 844254$
897	804609	721734273	$29 \cdot 9499583$	-640569	956	912025 913936	870983875 87372.216	30-9030743	9-847692
898	806404	724150792	$29 \cdot 966648$		957			$30 \cdot \mathrm{P} 192497$	9-851128
899	$8(18201$	726572699	29.9833287	$9 \cdot 651317$	958	917764		3 9354166	9-854562
900	810000	729000000	$30 \cdot 0000000$	-651317	958	917764	879217912	$30 \cdot 9515751$	9.857993
901	811801	731431701	30 - 1166620	9-658468			881974079	30-9677251	9-861422
902	813604	733870808	$30 \cdot 0333148$	$9 \cdot 662040$	961			30-9838668	9-864848
903	815409	736314327	$30 \cdot 0499584$	9-665609	962	925444		$31 \cdot 0000000$	9-8682:2
904	817216	738763261	30-0665928	-669176	963	927369		8	9-871694
905	810095	741217625	$30 \cdot 0832179$	-672740	964	929296	893056347	3	$9 \cdot 875113$
9068	820836	743677416	$30 \cdot 0998339$	9.676302	965	931225		94	$9 \cdot 878530$ 9.881945
907	8226.19	746142643	$30 \cdot 116440$	679860	966	933156	901428696	31-0644491	$\begin{aligned} & 9 \cdot 881945 \\ & 9 \cdot 885357 \end{aligned}$
	824464	748613312	$30 \cdot 1330383$	683416	967	935089	90.4231063	31-0966:236	$\begin{aligned} & 9.885357 \\ & 0.800767 \end{aligned}$
	826281	751089429	$30^{\circ} \cdot 1496269$	686970	968	937024	907039232	31-1126984	$\begin{aligned} & 9 \cdot 888767 \\ & 9 \cdot 892175 \end{aligned}$
			$30 \cdot 1662063$	-690521	969	938961	909853 4+9	31-1287648	$\begin{aligned} & 9 \cdot 892175 \\ & 9 \cdot 895580 \end{aligned}$
			$30 \cdot 1827765$	-694069	970	940900	9126731×0	$31 \cdot 1448230$	$9 \cdot 898983$
			$30 \cdot 1993377$	-697615	971	$94: 2841$	9154986. 1	$31 \cdot 1608729$	$9 \cdot 90.2383$
914	835396	610.18.197	$30 \cdot 2158899$ $30 \cdot 2324329$	01158	972	944784	918330648	31-1769145	9-905782
915	837225	7660608			973	9	921167317	31-1929479	9-909178
916	839056	68 7\%	$30 \cdot 2654919$		975		924010424	31-2089731	9-912571
9178	840389	771095213	$30-28200$		976	952		900	9-915962
9188	842724	773620632	$30 \cdot 2985148$	18835	977	954529			9-919351
9198	344561	776151559	$30 \cdot 3150128$		8	956484			9-922738
920	346400	778688000	$30 \cdot 33$	725888	979	958441		15	9•9.26122
9218	315241	781299961	$30 \cdot 3479813$	729411	980	960400		7	9-929504
32.25	550081	783777443	$30 \cdot 3644599$	732931	981	962361			9-932884
9238	851929	786350.167	$30 \cdot 38091$ ¢1	736448	982	962361		195	9-936261
9218	853776	788889024	30-3973683	739963	983	966		2	$9 \cdot 939636$
925	855625	791453125	- 4138127	9-743476	983 984	968256			9-943009
9268	857476	4022776	$30 \cdot 4302481$	746986	985	970225			$9 \cdot 946380$
9278	$8593: 29$	96597983	$30 \cdot 4466747$	93	986	97022		097	9-949748
9238	861184	99178752	$30 \cdot 4630024$	753998	987	97			$9 \cdot 953114$
0298	863011	01765089	$30 \cdot 4795013$	757500		976144			9.956477
3308	864900	504357000	$30 \cdot 4959014$	761000	988	976144 978121	96443 9673	$1 \cdot 4324673$	9-959839
9318	866\%61	806954491	$30 \cdot 5122926$	764497	990	980100		0.4	9.963198
9.228	868621	809557568	$30 \cdot 5286750$	767992	991	982081		4	$9 \cdot 966.555$
933 S	570489	8121662n7	$30 \cdot 5150487$	771484	992	984061		31-4801520	9-969909
9318	872356	4780504	$0 \cdot 5614136$	4974	993			$31 \cdot 4960315$	9-973262
935	874225	17400375	. 5777697	78462	994	9888036		025	9.976612
0368	876096	200:25856	$30 \cdot 6941171$	78.29 .46	${ }^{995}$	99002		277655	9.979960
9378	87969	$2: 656953$	$30 \cdot 6104557$	785429	996	$99 \cdot 2016$. 55982	9-983305
9388	879814	825:293672	$30 \cdot 6267857$	788909	997	952016		- 5594677	9-98664)
9398	4817218	827936019	$30 \cdot 6431069$	792386	998			- 1753068	9-989990
40 B	883600	830581000	$30 \cdot 6594194$	79 7861	998	9968001	994011992 997002999	$1 \cdot 5911380$	9-993329
418	8854818	$833237621 / 3$	$30 \cdot 6757233$	799334	${ }_{1000}^{999}$	998001 100000	997002999 900000000	$1 \cdot 6227766$	$\cdot 996666$ $\cdot 000000$

table of tife amounts of $£ 1$ at compound interest.
$30 \cdot 7408523$
$30 \cdot 7671130$
$30 \cdot 7671130$
$30 \cdot 7733651$
$30 \cdot 7896086$
$30 \cdot 8058.436$
$30 \cdot 8920700$
$30 \cdot 8389970$
$30 \cdot 8382879$
$30 \cdot 8544972$
$30 \cdot 8706981$
$30 \cdot 8868904$
$30 \cdot 9030743$
$30 \cdot$ • 192497
3. 9354166
$30 \cdot 9677251$
$30 \cdot 9833668$
$31 \cdot 0000000$
$31 \cdot 0322413$
$31 \cdot 0483494$
$31 \cdot 0644491$
31 - 0805405
$31 \cdot 0966236$
$31 \cdot 1126984$
$31 \cdot 1287648$
$31 \cdot 1448230$
$31 \cdot 1608729$
$31 \cdot 1769145$ $31 \cdot 19.29479$ 31 - 2089731 $31 \cdot 2249900$ $1 \cdot 2569992$ 1-2729915 - 2889757
$1 \cdot 3049517$ $11 \cdot 3209195$ $11 \cdot 3368792$ 1 - 3687743 1-3847097 $1 \cdot 4006369$ - 4324673 $1 \cdot 4483704$ $\begin{array}{ll}1 \cdot 4801525 & \mathbf{9} \cdot 969909\end{array}$ 1-4960315 1-5119025 $9 \cdot 976612$ 1-5277655 $1 \cdot 5436206$ $1 \cdot 6594677$ $1 \cdot 1753068$ 1-5911350 $\begin{array}{ll}1 \cdot 6069613 & 9 \cdot 996666\end{array}$ $1 \cdot 6227766,10 \cdot 000000$

TABLF OF THE PRESENT VALUFS OF AN ANNUITY OF £

IRISH CONVERTED INTO STATUTE ACRES.

Value of foreign money in british,

Silver being 5s. per ounce

TY OF 天.

5 per cent	6 per cout
14.37518	$13 \cdot 00316$
$14 \cdot 64303$	$13 \cdot 21053$
14.89812	$13 \cdot 40616$
15.14107	$13 \cdot 59072$
$10 \cdot 37245$	$13 \cdot 76.183$
$15 \cdot 69281$	$13 \cdot 92908$
$15 \cdot 80267$	$14 \cdot 08404$
$16 \cdot 00255$	$14 \cdot 23023$
16.19:290	14-36814
16-37418	$14 \cdot 49824$
16.54685	$14 \cdot 62094$
16.71128	14-73678
$16 \cdot 86789$	14-84602
17-01704	1.1-94907
17•15908	15-04630
$17 \cdot 29436$	15-13801
17-42320	$15 \cdot 22454$
17-54591	$15 \cdot 30617$
17-66277	$15 \cdot 38318$
$17 \cdot 77407$	$15 \cdot 45583$
$17 \cdot 88006$	$15 \cdot 52437$
17-98101	$15 \cdot 58903$
$18 \cdot 07715$	$15 \cdot 65002$
18•16872	$15 \cdot 70757$
$18 \cdot 25592$	$15 \cdot 76186$

Statute.

1.	R.	P.	r
32	1	23	14
48	2	15	6
64	3	6	29
80	3	38	204
161	3	37	10
923	3	34	214
485	3	32	2
647	3	29	123
809	3	26	23
1619	3	13	163

$$
\sigma
$$

[^0]: $18524 \times 1=0$ from which the remainder is 0 . 2315

 From 25002 the remainder is 0 .

