The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée

\squareCovers restored and/or laminated/ Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Refié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela étaił possible. ces pages n'ont pas été filmées.

L'institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
\square Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\square
Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

'IIIE

Canadian naturalist AND

Guaterly dimmat of Stirnte.

REVISION OT TIIE MAND SNAILS OF THE PALEOZOIC ERA, WITH DESCRIPTLONS OF NEW SPECLES.

By J. W. Dawson, LL.D., F.I.S.
(From the American Journal of Scicnce.)
The Gasteropods as a class occur as early as the Upper Cambriam, but all the carlier known types are marine. That portion of the group distinguished by the possession of air saes instead of gills (Pulmonifera) has not hitherto been found in any formation older than the Carboniferous, and only four Carboniferous species have been described. In the present paper I propose to state some additional facts respecting the species already known, to discuss their affinities, and to describe two additional species, making six in all from the Paleozoic rocks, including one from the Erian or Devonian. For reasons to be meutioned in the sequel, I do not admit the genus Paleorlis founded, by some German naturalists, on fossils which I believe to be tubes of Annelids.

It may be useful to premise that of the two leading subdivisions of the group of Pulmonifera, the Operculate and Inoperculate, the first has been traced no farther back than the Eocene. The second, or Inoperculate division, includes some genera that are aquatic and some that are terrestrial. Of the aquatic genera no representatives are known in formations older than the Wealden and Purbeck, and these only in Europe. The terrestrial group or the family of the Inelicida, which, singularly enough, is that which diverges farthest from the Vol. IX.
ordinary gill-bearing Gasteropods, is the one which has been traced farthest back, and includes the Paleozoic species. It is further remarkable that a very great gap exists in the geological history of this family. No species are known between the Carboniferous and the early Tertiary, though in the intervening formations there are many fresh-water and estuarine deposits in which such remains might be expected to occur. There is perhaps no reason to doubt the continuance of the Helicidx through this long portion of geological time, though it is probable that during the interval the family did not increase much in the number of its species, more especially as it seems certain that it has its culmination in the modern period, when it is represented by very many and large species, which are dispersed over nearly all parts of our continents.

The mode of occurrence of the Paleozoic Pulmonifera in the few localities where they have been found is characteristic. The carliest known species, Pupa vestuta, was found by Sir Charles Lyell and the writer, in the material filling the once hollow stem of a Sigillaria at the South Joggins in Nova Scotia, and many additional specimens have subsequently been obtained from similar repositories in the same locality, where they are associated with bones of Batrachians and remains of Millipedes. Other specimens, and also the species Zonites priscus, have been found in a thin, shaly layer, containing debris of plants and crusts of Cyprids, and which was probably deposited at the outlet of a small stream flowing through the coal-formation forest. The two species found in Illinois occur, according to Bradley, in an underclay or fossil soil which may have been the bed of a pond or estuary, and subsequently became a forest sub-soil. The Erian species occurs in shales charged with remains of land plants and which must conseçuently have received aboudant drainage from neighboring land. It is only in such deposits that remains of true land-suails can be expected to occur; though, had freshwater or brackish water Pulmonates abounded in Carboniferous age, their remains should have occurred in those bituminous and calcareo-bituminous shales which contain such rast quantities of debris of cyprids, lamellibranchs and fishes of the period, mixed with fossil plants.

With reference to their affinities, the Paleozoic land snails present no very remarkable peculiarity except their close resemblance to some modern forms. Of the known species, four be-
long to the genus $P^{\prime} u p a$ in its wider sense, and are very near to sub-gencric types still represented on the American continent and its islands. One is a small helicoid shell not separable from the modern genus Zonites, and the remaining one, though it has been placed in a new genus, is very near some small American snails of the present day (Stenotrema, etc.) Ail the species are of small size, though not smaller than some modern shells of the same types.

I shall now proceed to give the characters and descriptions of the several species, adding to the account of those previously known, such new facts as have occurred in my more recent explorations and examinations. I should state here that many of the new facts detailed have been obtained in the course of excavations for extraction of erect trees holding land animals, undertaken with the aid of a grant from the Government fund for aiding original researches, at the disposal of the Royal Society of London, and carricd ou within the past three years.

1. P'upa vetusta, Dawson. (Figs 1 to 4, and 14, a, l.)
[Sir C. Lyell and Dr. Dawson on Remains of Reptiles and a Land Shell from the South Jogrins in Nova Scotia, Journal of Geological Society of London, vol. ix, 1832 (figured but not named). Dawson's Acadian Geology, 1855, p. 160. Dawson's Air-breathers of the Conl Period, 1863. Acadian G colvoy', end and 3rd editions, p. 384, 1868 and 1879.]

Description.-Shell cyliudrical, somewhat abruptly conicai at the apex, in some specimens tending to diminish in diameter in the latter turns or whorls of the shell. Whorls uine in adult shells, slightly convex, in width equal to half the diameter of the shell. Suture impressed. Aperture evenly rounded, not continuous above, rather lunger than broad, destitute of teeth; peristome slightly reflected and smooth. Surface shining, marked with longitudinal smooth ridges, separated by spaces a little wider than the ridges; spaces about $\frac{1}{3}$ th inch in width. Shell calcareons, thin, prismatic in structure. Young specimens abruptly conical and helicoid in form. Nucleus round, smooth, the first turn below the nucleus marked with rows of little pits which gradually pas: into the continuous strix. The last whorl of the adult presents irregular lines of growth instead of the regular microscopic ribs of the middle turns. Mature ovum membranous, or so slightly calcareous that it can be compressed without breaking: the embryo shell sometimes visible
within. Length of adult shell rather less than 1 eentimeter, breadth in middle t millimeters.

Turiety tenuistriata.-Along with the ordinary form there are others of similar size and geperal stwucture, but with the apex less obtuse and a somewhat greater tendency to diminish in diameter in the later whorls. They have also the microscopio ridges in the shell about half as far apart as those of the ordinary form. This form I was at first disposed to regard as specifically distinct, but there seems to be a gradual transition from one to the other, and the two forms seem to accompany each other throughout the entire range of the species.

State of preservation.-The shells are usually entire, but often somewhat flattened, and cracked or distorted in the process. Many fragments of shells, however, occur with the entire specimens, and some of these have a whitened or bleached appearance like that of modern land shells after having been exposed to the weather. In one layer I found impressions of several flattened shells, the substance of the shell having been altogether removed. Ordinarily the shell remains in such a state as to show its structure, and the more perfect specimens found in the erect trees have a grayish brown color, like that of some modern Pupe.

The habitat of this species was in forests of the Coal-formation period, composed of Sigillaria, Calamites, Luepidophloios and Ferns. The ouly known locality is the South Joggins, Nova Scotia. At this place the shells have been obtained in considerable numbers, though perfect specimens which ean be disengaged from the matrix, are comparatively few. They have been found in erect Sigillarice and also in a bed of shale. The lowest and highest beds in which they occur are separated by 2,000 feet of vertical thickness of strata, including no less than thirty-five beds of coal and many underclays supporting erect trees, so that the species must have inhabited the locality for a very long time and must have survived many physical vicissitudes.

The first specimen, which was also the first known Palcozoio land shell, was found by Sir Charles Lyell and the writer in 1S51, in breaking up the contente of an crect tree holding reptilian bones. The specimens obtained from this tree having been taken by Sir Charles to Cambridge and submitted to tho late Prof. Jeffries Wyman, the shell in question was recognized by him and the late Dr. Gould, of Boston, as a land shell. It was subsequently examined by M. Deshayes and Mr. Gwyn

Fig. 1, Pupa vetusta, magnified 8 times lineally; 2, same, showing the aperture, $\times 8 ; 3$, same, nuclear whorl, $\times 25 ; 4$, same, mature egg and embryo shell, $\times 25$; 5, 6, Pupa Bigsbii, $\times 8$; 7, Pupra Vermilionensis $\times 8 ; 8$, same, showing aperture, $\times 8$, the small tooth on the columella somewhat exaggerated; 9 , same, section of aperture, showing tooth $\times 16 ; 10$, Zonites priscus, $\times 8 ; 11$, same, crushed specimen, showing aperture $\times 20$.

Jeffries, who concurred in this determination; and its microscopic structure was described by the late Prof. Quckett, of London, as similar to that of modern land shells. The single specimen obtained on this occasion was somewhat crushed and did not show the aperture. Hence the hesitation as to its nature, and the delay in naming it, though it was figured and described in the paper above cited in 185\%. Better specimens showing the aperture were afterward obtained by the writer, and it was named and described by him in his "Air-breathers of the Coal Period," in 1863. Prof. Owen, in his "Palæontology," subsequent'y proposed the generic name Dendropupa. This I have hesitated to accept, as expressing a generic distinction not. warranted by the facts; but, should the shell be considered to require a generic or sub-generic distinction, Owen's name should be adopted for it. There seems, however, nothing to prevent it from being placed in one of the modern sub-genera of simplelipped Pupæ. With regard to the form of its aperture, I may explain that some currency has been given to an incorrect representation of it, through an unfortunate accident. In the case of delicate shells like this, imbedded in a hard matrix, it is of course difficult to work out the aperture perfectly; and in my published figure in the "Air-breathers," I had to restore somewhat the broken specimens in my possession. This restoration, specimens subsequently found have shown to be very exact. Nevertheless it was criticised by some English conchologists, and when Sir Charles Lyell was about to publish his Student's Manual, he asked me to give him one of my best specimens to be figured. This I sent with micro photographs of others. It seems, however, that the artist or engraver mistook the form of the aperture and gave it an entirely unnatural appearance in the Student's Manual. That now given is taken from a photograph of the most perfect end least compressed specimens in my possession.

As already stated, this shell seems closely allied to some modern Pupx. Perhaps the modern species which approaches most nearly to it in form, markings and size, is Macrocheilus Gossei from the West Indies, specimens of which were sent to me some years ago by Mr. Bland, of New York, with the remark that they must be very near to my Carboniferous species. Such edentulous species, as Pupa (Leucochila) jallux of Eastern America very closely resemble it; and it was regarded by the
late Dr. Carpenter as probably a near ally of those species which are placed by some European conchologists in the genus P'upilla.

The lowest bed in which Pupa vetusta occurs belongs to group VIII of Division 4 of my section of South Joggins, and is between Coal 37 and Coal 38 of Logan's Section, being about 42 feet below Coal 37. The next horizon, and that in which the shell was first discovered, is 1217 feet of vertical thickness higher, in group XV of Division 4 of my section. The shells occur here in erect Sigillarice, standing on Coal 15 of Logan's section. The third horizon is in group XXVI of Division 4, about 800 feet higher than the last. Mere also the shells occurred in an crect Sigillariu.

In the lowest of these three horizons, the shells are found, as already stated, in a thin bed of coneretionary clay of dark gray color, though associated with reddish beds. It contains Zonites priscus as well, though this is very rare, and there are a few valves of Cythere and shells of Naiudites, as well as carbonaccous fragments, frouds of ferns, Trigonocarpa, etc. The Pupa are mostly adult, but many very young shells also vecur, as well as fragments of broken shells. The bed is evidently a layer of mud deposited in a pond or creck, or at the mouth of a small stream. In modern swamps, multitudes of fresh water shells occur in such places, and it is remarkable that in this case the only gasteropods are land shells, and these very plentiful, though only in one bed about an inch in thickness. This would seem to imply an absence of fresh-water Pulmonifera. In the erect Sigillarice of Group XV, the shells occur either in a sandy matrix, more or less darkened with vegetable matter, or in a carbonaceous mass composed mainly of vegetable débris. Except when crushed or flattened, the shells in these repositories are usually filled with brownish calcite. From this I infer that most of thew were alive when imbedded, or at least that they contained the bodies of the animals; and it is not improbable that they sheltered themselves in the hollow trees, as is the habit of many similar animals in modern forests. Their residence in these trees as well as the characters of their embryology are illustrated b_{v}. the occurrence of their mature ova. They may also have formed part of the food of the reptilian animals whose remains occur with them. In illustration of this, I have elsewhere stated that I have found as many as eleven unbroken shells of Physa heterostropha in the stomach of a modern Menobranchus. I think it certain, however,
that both the slulls and the reptiles occurring in these trees must have been strictly terrestrial in their habits, as they could not have found admission to the erect trees unless the ground had been sufficiently dry to allow several feet of the imbedded hollow trunks to be free from water. In the highest of the thiee horizons the shells occurred in an erect tree, but without any other fossils, and they had apparently been washed in along with a grayish mud.*

2. Pupa Bigshii s. n. (Figs. 5 6.)

L veription.-Shell half the size of P'upa vetusta, or between three and four millimeters in length, and one and five-tenths millimeters in breadth. Form loug, conical. Body whorl about one-third of the entire length, giving the shell a somewhat bulimoid form. Whorls five in the largest specimens found, tumid, suture much impressed. Surface smooth. Aperture apparently oval in form, but not perfectly known, as the body whorl is crushed in all the specimens.

A few specimens, none of them quite perfect, were found in the erect trees of group XV at the Joggins, along with Pupa vetusta. They differ from that species in smaller size, different form and absence of sculpture. The specimens do not show whether the aperture was toothed or simple, but it was probably the latter, as the lip is evidently very thin and delicate. From its form it is probable that it belongs to a different sub-genus from P. vetustu. It is very much more rare than that species in the erect trees, and has not been found elsewhere.

I dedicate it to my venerable and dear friend Dr. Bigsby, F.R.S., of London, a pioneer of American geology, and still an indefatigable worker in the science.
3. Pupu Vermilionensis Bradley. (Figs. S and 9, and 14c.)
[Bradley in Report of Geological Survey of Illinois, vol. ir, p. 254 Id. in Am. Jour. Sci., vol. is, p. 8i.]

Description. \dagger-Shell spindle-shaped, tapering to an obtuse apex, covered with microscopic ridges (25 to 30 in a millimeter) parallel to the lines of growth. Aperture oblique, oval. Outer lip thin, slightly reflesed. Columella lip reflexed, thickened;

[^0]furnished with a single central curved tooth, projecting nearly half way across the aperture. Junction of columella and outer lip somewhat augular and dentiform. In old individuals the columella tooth is often continuous through an entire turn or farther. It is not seen on shclls having less than three turns. The last turn forms nearly half the leugth of the shell. Wherls rounded. Suture impressed. Surface glossy. Color black or gray. Length three and six-tenths millimeters. Width two millimeters. Some individuals are smooth or destitute of the fine mieroscopic ridges, but whether this is a natural peculiarity or a result of injury to the outer surface, is not certain.

As compared with Pupa vetusta this shell is less than half the size, of a less cylindrical form, its whorls more rounded, and its body whorl much larger in proportion. Its sculpture is muoh finer. The conspicuous tooth in the aperture is of course a strong mark of distinction. The shell is thin, and from its black color and failure to show structure under the microscope, I infer that it must have been of a horny or corneous texture, with little calcareous watter. The matrix is light-cuored and concretionary, and somewhat hard and calcareous.

As compared with modern American species, P. Vermilionensis is very uear to several of the smaller forms with teeth in the aperture. In its form and aperture it approaches closely to P. (Leucochilu) corticaria of Say, or to the immature shell of P. rupicole. It has also some resemblance to the western species P. hordeacea Gabb, from Arizona.

This shell was discovered by the lace Mr. F. H. Bradley in 1869, in concretionary limestove accompanying the underclay of Coal No. 6, Wabash Valley Section, at Pelly's Fort, Vermilion River, Illinois. In the first notice, which appeared in the Report of the Geological Survey of Illinois, it was referred to Pupu vetusta, but was subsequently deseribed by Mr. Bradley in the American Journal of Science, under the name above cited.

I am indebted for specimens of this shell to Mr. John Collett, .of the Geological Survey of Indiana, and also to Mr. W. Gurley, of Danville, Illinois.
4. Zonites (Conutus) priscus Carpenter. (Figs. 10 and 11, and 14d.)
[Quarterly Journal of Geological Society of London, Nov. 1867. Acadian Geology, 2nd edition, 1868, p. 385.]

Description.*-Shell small, helicoid. Length two and fivotenths millimeters, width two and eight-teuths millimeters. Spire little elevated. Nucleus small. Whorls four, somewhat flattened, with the suture little impressed. Base somewhat excavated, with large umbilicus. Aperture oblique, suboval, somewhat regularly rounded. Jip simple. Surface marked with uneven strix and somerhat more conspicuous ridges of growth. Angle of divergence abont 130°. Shell thin and probably horny.

Fig. 12. Dansonella Meeki, $\times 8$; 13, same, section of aperture, $\times 16$: the outer edge of the lamelia is imperfect. J., Markings of surface $\times 100$: (a) I'upa retusta; (b) I'upa retusta var. temuistriata; (c) I'upa Vermilioncnsis; (d) Konitcs priscus. 15, Strephhites grandicto matural size, and magnificd S diameters.

This little shell was discovered in 1S66, in the bed aiready referred to as the lowest of those at the South Joggins in which Pupa vetusta has been found. Shortly after I had discovered this bed, being impressed with the probability that it might

[^1]hold other remains of land animals beside the Pupa, I had some excavations made in it, and a considerable quantity of material taken out. I found, however, that the thin layer containing the land shells was not continuous, but in limited patches, and was rewarded only by the discovery of a few specimens of Zonites priseus and a small and not determinable fragment of bone, in addition to specimens of l'upe netuste.
The specimens found at this time were submitted to the late Dr. P. P. Carpenter, by whom the species was named and described. One or two crushed specimens have been subsequently found in the erect trees holding P^{\prime} upu retusta in group XV , but the species is extremely rare in comparison. This may however, have depended on some difference in habitat or moue of life, rendering it less likely to be imbedded in the deposits in process of formation. It is also to be observed that the shell is much more delicate than that of Pupu vetusta, and therefore less likely to be preserved.

With regard to its affinities, it was compared by Dr. Carpenter with the African species Paryphanta Caffra Fer., "on an extremely small scale." Dr. Carpenter also compared it with IIygromia, and stated that it might well be ranked under lseudohyaline of Morse, with the living species minuscula and exigua. He thought it best, however, to place it in the subgenus Comulus of the genus Zonites, as defined by Messrs. Adams. With regard to the subgeneric name, Dr. Carpenter explained that the subgenus Conulus of Fits, 1S33, appears to be synonymous with Trochiscus Held, 1837, (non Sby.) ; also with Petasia Beck, 1837; and with Perforatella Schlütt.; and according to Adams is a subgenus of Zomites Montf. (non Leach, Gray). Those who do not care to enter into these subgencric distinctions, may designate the species as a Zonites, or cven, speaking loosely, as a IIclix. There seems nothing in its characters to separate it, more than specifically, from many of our smaller helicoid snails with thin sheills and simple aperture.
5. Darsonellu Mecki Bradlcy. (Fige. 12 and 13.)
[Report of Geological Survey of Illinois, vol. iv, p. 2j.4. Am. Jour. of Sci.: III, vol. iv; p. SS. Ibid. vol. vii, p. 15\%.]

Description.*—Shell broad, depressed, helicoid. Spire obtuse, consisting of three to three and one-half turns. Length three

[^2]and tro-tenths millimeters, width four millimeters. Surface smooth, but with microscopic lines of growth, about fifteen in a millimeter. Aperture oblique, oval, greatly contracted by a broad lamellar expansion of the columella, extending more than half way across, even in small individuals. Outer lip thickened, slightly reflexed. Suture little impressed, imperforate, but last turn slightly excavated in the umbilical region. The shell is usually black in color, and under the microscope shows no distinct structure, from which it may be inferred that it was corncous in testure. It is thicker than the shell of Zonites priscus.

This species is found along with Pupa Termilionensis, and was discovered by Bradley, who was, however, at first disposed to refer it to the genus Anomphalus of Meek; but subsequently, and with good reason, regarded it as distinct and as a land shell. In size and geveral form it resembles Zonites priscus, though expanding less rapidly and with rounder whorls; but it is at once distivguished by its want of the somewhat coarse sculpture of that species, and by the plate which partially covers its aperture. Its nearest modern allies in eastern America would seem to be such shells as Ifeli.c (I'riodopsis) pulliata, and Z. (Stcnotrema) monorton.

For specimens of this shell I am indebted to the per:ons above named as having furnished specimens of Pupa Vermilionensis.
6. Strophites grandeva, s. n. (Fig. 15.)

Description.-Shell cylindrical, with obtuse apes. Whorls four or more. Surface covered with sharp verticai ridges, separated by spaces three times as wide. The body whorl about four millimeters in diamcter, with about thirteen vertical ridges visible on one side. Length of specimen probably not quite perfect, about eight millimeters. The shell, which has disappeared, must have been very thin, and the surface remaining is smooth and shining. In general form, so far as can be ascertained from a very imperfect specimen, this shell must have closely resembled the modern Pupa of the genus Strophia of Albers.

The ouly specimen known is from the Erian (Devonian) plantbeds of St. John, New Brunswick, which, besides affordiug great numbers of remains of land plants, have produced the only Erian iusects as jet kuown. It was sent to me by Mr. G. F. Matherr, of St. John, along with specimens of fossil plants;
scveral years ago, but I hesitated to describe it, waiting in hope of additional specimens. As these have not occurred, and I have now carefully examined the whole of the material from these beds, to which I have been able to obtain access, I renture to name it as probably the oldest known land shell, the beds in which it is found being either middle or upper Erian.

If a land snail, it is larger in size, and probably of a higher type than any of those known from the Coal-formation. This would not be wonderful, when we consider the greater varicty of surface and the high character of the vegetation, which, as I have elsewhere endeavored to show: distinguished the later Erian age in north-eastern Americi.

Concluding Remarks.

It may be proper to mention here the alleged Pulmonifera of the genus Paldeorlis described by some German naturalists. These I believe to be worm-tubes of the genus Spirorbis, aud in fact, to be nothing else than the common S. carbonarius or S. pusillus of the Coal-formation. The history of this error may be stated thus. The eminent paleobotanists Germar, Goeppert and Geinitz have referred the Spirorbis, so common in the Coalmeasures, to the fungi, under the name Gyromyces, and in this they have been followed by other naturalists; though as long ago as 1S6S I had shown that this little organism is not only a calcareous shell, attached by one side to vegetable matters and shells of moliusks, but that it has the microscopic structure characteristic of modern shells of this type.* More recently, Van Beneden, Cxenius and Goldenberg, pereciving that the fossil is really a calcareous shell, but apparently unaware of the observations made in this country by myself and Mr. Iesequereux, have held the Spirorlis to be a pulmonate mollusk allied to Plemorbis, and have supposed that its presence on fossil plants is confirmatory of this viev, though the shells are attached by a flatteued side to these plants, and are also found attached to shells of bivalves of the genus Nuiadites. Mr. R. Etheridge, Jr., of the Geological Surrey of Great Britain, has recently summed up the evidence as to the true nature of these shells, and has revised and added to the species, in a series of articles in the Geological Magazinc of Loudon, vol. viii.

[^3]If we exclude the alleged Palcoorbis above referred to, all the Palcozoic Pulmonifera hitherto found are American. Since, however, in the Carbonifcrous age, Batrachians, Arachnidans, Insects and Millipedes occur on both continents, it is not unlikely that ere long European species of land snails will he anoounced. The species hitherto found in eastern America, are in every way strangely isolated. In the plant-beds of St. Johu, about 9,000 feet in thickness, and in the Coal-formation of the South Joggins, more than $\mathbf{7 , 0 0 0}$ feet in thickness, no other Gasteropods occur, nor, I believe, do any occur in the beds holding land suails in Illinois. Nor, as already sta ${ }^{\circ}$ ed, are any of the aquatic Pulmonifera known in the Palcozoic. Thus, in so far as at present known, these Palcozoic snails are separated not only from any predecessors, if there were any, or successors, but from any contemporary animals allied to them.

It is probable that the land snails of the Erian or Carboniferous were weither numerous' nor important members of the faune of those periods. Had other species existed in any considerable number, there is no reason why they should not have been found in the erect trees, or in those shales which contain land plants. More especially would the discovery of any larger species, had they existed, been likely to have occurred. Further, what we know of the vegetation of the Paleozoic Period would lead us to infer that it did not abound in those succulent and nutritious leaves and fruits which are most congenial to land snails. It is to be observed, however, that we know little as yet of the upland life of the Jrian or Carboniferous. The animal life of the drier parts of the low country is indeed as yet very little known; and but for the revelations, in this respect, of the erect trees in one bed in the Coal-formation of Nora Scotia, our knowledge of the land snails and millipedes, and also of an eminently terrestrial group of reptiles, the Microsauric, would have been much more imperfect than it is. We may hope for still further revelations of this kind, and, in the mean time, it would be premature to speculate as to the affinities of our little group of land snails with animals either their contemporaries or belonging to earlicr or later formations, except to note the fact of the little clange of form or structure in this type of life in that vast interval of time which separates the Erian Period from the present day.

Note:-(Fed. 21, 1881.)-Since the above paper was written, ProfWhitfield of New York has amounced * the discovery of another species of land snail in the coal formation of Ohio. It is a small species, three and one-third millimeters in length, of that type of pupidae having the aperture nearly vertical and armed with several projecting teeth. It has besides the peculiar feature of a small nearly circular notch near the upper end of the lower lip. On account of this peculiarity it is placed in a new genus Anthracopupa, and the species is named A. ohioensis.

Prof. Whitfield also mentions that he has examined the aperture of Dawsonclla Meeki, and finds reason to believe, from the form of the callus in the aperture, and the peculiar thickening of the outer lip, that it may have been an opercuhated shell, though he admits that no trace of the opereulum has yet been found.

Note on Fossils from the Red Sandstone Sisteje of Prince Edward Island. By Mr. F. Ban.
(Read at the Meeting of the Natural IListory Society, January 31, 1SS1.)
In the course of some short geological excursions during the past summer, I obtained from the system of strata classified as Triassic in Dr. J. W. Darson's Report on the Geology of Prince Edward Island, the following fossil plants:

> Welchia gracilis, Dawson.
> Culamites gigus, Brongt.
> Culamites Suckovii, Brongt.
> Pecopteris rigidu, Dawson.
> Pecopteris arborescens (?), Schlothcim.

These were taken from various localities on the north side of the Hillsborough Bay and the south side of Lot 65, and occur through a depth of strata amounting to more than one thousand feet.

On the Island, two distinct systems of rocks are recognized: the Permo-carboniferous and the Triassic. In the first of these are a number of beds rich in remaius of plants. But the Triassic is characterised by an exceeding barrenness of wellpreserved orgauic remaius.

[^4]Fitherto the most characteristic species obtained from it have been the reptile Buthygnathus borectis and fossil wood of a type elsewhere found in the Mesozoic. These are, however, sufficient to distinguish it from the underlying Permiam. The fossils now referred to are species belonging to the latter, but found in beds heretofore referred to the 'Trias. The iuference would be that the Permo-carboniferous formation is more extensively distributed on the south side of Prince Edward Island than has been supposed.

The following section observed at Rice Point and vicinity, shows the nature and arrangement of the beds affording the fossils referred to :

SECTION IN DESCENDING ORDER.

Rocks. Fossils.

Fict.

1. Dark Red or Brown Sandstones, 15
2. Dark red Sandstone, irres. bed.,

50 Calumitcs Suckovii, Fnorria,
3. Shate, red...................... $50\{$ Pecopteris arborescens.
4. Dark red Sandstones, irregularly bedded, often calcarcous; many obscure remains of plants and bituminous markinss ; some thin beds of shate............ 325 Knorrta.
5. Red Sandstones, not often caleareous ; few markings of plants; a few feet of Cal. Conglomerate and ochre-colored heds
6. Alternate beds of Red Sandstone and Shale with grey indurated bands at their junction; more regularly bedded than 4 and $5 . .5 S 6$
7. Red Sindstone with indurated
Calcareous bands............ 40 Walchi: gracilis, Pecopteris
rigida.

THE SEQUOLAS OR GLANT TREES OF CALIFOMNIA.

By I'rof. O. Merm.

(Read before the Botanical Section of the Swiss Natural Ilistory Society.) [Tramslated by W. B. Dairson.],
The Sequoir belongs to that most beautiful and widespread tribe, the Conifers; and I therefore take the liberty of bringing before your notice a description of these giant trees.

The name itself deserves consideration. It is that of an Indian of the Chacrokec tribe, Sequo Yah, who invented an alphabet without any aid from the outside world of culture, and taught it to his tribe by writiug it upon leaves. This came into general use among the Cherokees, before the white man had any knowledge of it; and afterwards, in 1S2S, a periodical was published in this character by the missionaries. Sequo Yah was banished from his home in Alabama, with the rest of his tribe, and settled in New Mexico, where he died in $1 S t 3$.

When Endlicher was preparing his synopsis of the Conifers, in 1S.t6, and had established a number of new genera, Dr. Jaebon Tschudi, the present Swiss ambassador at Vicma, who was then living with Endlicher, brought before his notice this remarkable man, and asked him to dedicate this red-wooded tree to the memory of a literary genius so conspicuous amovg the red men of America. Endlicher consented to do so, and only endeavored to make the name pronounceable by changing two of its letters. The tribe of the Cherokees is dying out, and with it, its language ; but Secfuo Y 'ah's name will live as the designation of the giant trees of his country.

Fndlicher has founded the Genus on the Redwood of the Americans, 'lurodium sempervirens of Lamb; and has called the species Sequoia sempervirens. These trees form large forests in Califormia, which extend along the coast as far as Oregon. Trees are there met with of 300 feet in height and 20 feet in diameter. The seeds have been brought to Europe a number of years ago, and we already see in upper Italy and around the Lake of Geneva high trees; but, on the other hand, they have not proved successful around Kurich.

In 1S50, a second species of Secfuoia was diseovered in California, which, under the name of Bis Tree, soon attained a Vol. IX.
considerable celebrity. Lindley described it, in 1853, as Wellingtonia gigantea; and, in the following year, Decaisne and Dr. Torrey proved that it belonged to Sequoia, and that it accordingly should be called Scquoia gigantea. But lindlicher had already employed that name for another species, in 18.47, and the prodigious size which he ascribes to that tree makes it probable that he had in some way received information respecting this Californian giant before it was made known by Lindley. It therefore remains doubtful whether his Sequoia gigantea is identical with Wellingtonia gigantea or not.

While the Sequoia sempervirens, in spite of the destructiveness of the American lumbermen, still forms large forests along the coast, the Sequoia gigantea is confined to the isolated clumps which are met with inland at a height of 5,000 to 7,000 feet above sea level, and are much sought after by tourists as one of the wonders of the country. Reports came to Europe concerning the largest of them which were quite fabulous, but we have received accurate accounts of them from Prof. Whitney. The tallest tree measured by him has a height of 325 feet, and in the case of one of the trees the number of the rings of growth indicated an age of about 1300 years. It had a girth of 50 to 60 feet.

We know only two living species of Sequoia, both of which are confined to Califormia. The one (S. sempervirens) is clothed with erect leaves, arranged in two rows, very much like our yewtree, and bears small round cones; the other (S. giguntea) has smaller leaves, set closely against the branches, giving the tree more the appearance of the cypress. The cones are egre-shaped, and much larger. These two types are therefore sharply defined.

Both of these trees have an interesting history. If we go back into the Tertiary, this same genus meets us with a long array of species. Two of these species correspoud to those living at present: the S. Langsdorfii to the S. sempervirens, and the S. Sternbergii, to the S. gigantea. But whilst the living species are confiued to California, in the Tertiary they are spread over several quarters of the globe.

Let us first consider the Sequoia Langsdonfii. This was first discovered in the Lignite of Wetterau, and was described as Taxites Langsdonfi. I found it in the upper Rhone and in Monod, and there lay beside the twigs the remains of a cone, which showed me that the Taxites Langsiorfii of Brogn... be-
longed to the Californion genus Sequoia established by Endlicher. I afterrards found much better preserved cones, together with seeds, under the plants of Samland and Greenland which fully confirmed the determination. At Atanckerdzuk in Greenland (about $70^{\circ} \mathrm{N}$. Lat.) this tree is very common. I have recenved from this place hundreds of twigs with the leaves, and also the flowers and numerous cones, which leave no doubt that this tree stands very near to the Redwood. It differs from it, however, in having a much larger number of seales in the cone. The tree is also found in Spitzbergen at nearly 78° north latitude, where Nordenskiöd has collected, at Cape Lyell, wonderfully preserved branches. From this high latitude the species can be followed down through the whole of Europe as far as the middle of Italy (at Senegargia, Gulf of Speziia). In Asia also we can follow it to the steppes of Kirghisen, to Possiet, and to the coast of the Sea of Japan, and aeross to Alaska and Sitka. It is thus known in Europe, Asia and America, from 13° to 75° north latitude, whilst its most nearly related living species, perhaps even descended from it, is now confined to California.

With this S' Lengsedorfii, three other Miocene species are nearly related: (S. brevifolia, Hr., S. disticha, Hr., and Nordenskioldi, Hr.) These have been met with in Greenkand and Spitzbergen. and one of them has lately been found in the United States. Three other species, in addition to these, have been described by Leesquereux, which appear to belong to the group of the S. Langslorfii, viz., S. longifolic, Lesq., S. engustifolia and S. "cuminute, Lesq.

These species thus answer to the living Sequoia smpervirens; but we cam also point to a Tertiary representative in the Miocene) of the S. giguntra. It is the Sequoia Sternbergii, (Araucarites Sternbergii, Goepp.). The leaves are stiff and sharp-pointed, are thinly set round the branches, and lie forward in the same way: the egg-shaped cones have the same size. The species was first found in Austria, and was classed with the Araucaria; but the cones found by Massalongo show it to belong to Sequoia. I have specimens of the species from Oeningen, and also from Iceland and Greenland. The twigs are abundant in Surturbrand;* and the opinion may be expressed that the stumps and roots which Prof. Steenstrup has met with in the basaltic beds of Iceland belong to this tree.

Although this species i. not as widely distributed as the Scquoic Lungsdorfii, we can yet trace it from the middle of Italy to north Greenland, in latitude 70° north, and it is met with from the begimuing of the Mioceue to its close.

The S. Langstorfii and Sernlergii represent the two extreme forms of the genus Sequoia. It is therefore very noticeable that we have in the Miocene six species, which fill up the gap. They are the S. Couttsice, S. affinis, Lesq., S. imbricate: Hr., S. sibirica Hr., S. Ifeerii Lesq., and S. biformis Lesq. Of these, S. Conttsice, Hr., is the most common and most important species. It has short leaves, lying along the branch, like S. Sternbergii and gigantca, and small round cones, like S. Lengslorfii and sempervirens I have received from Bovey Tracey in Devonshire splendid specimens of cones, seeds and twigs, which I havo described in the Philosophical Transactions. More lately, Count Saporta has described specimens of cones and twigs from Armissau. Specimens of this species have also come to me from Samland and Greenland, and must therefore have had a wido range. It is very like to the American S. afinis, Lesq.

In the Tertiary there have been already found fourteen well marked species, which include representatives of the two living types, S. sempervirens and S. gigentec.

CRETACEOUS.

We can follow this genus still further back. If we go back to the Cretaccous age, we find ten species, of which five occur in the Urgon of the Lower Cretaccous, two in the Middle, and three in the Upper Cretaceous. Among these, the Lower Cretaceous exhibits the two types of the Sequoia sempervirens and S. gigantece. To the former the S. Smithiena answers, and to the latter, the Reichenbachii, Gein. The S'. Smithience stands indeed uncommonly near the S. Langsdorfii both in the appearance of the leaves on the twigs and in the shape of the cones. These are, however, smaller, and the leaves do not become narrower toward the base. The S. pectina, Hr., of the Upper Cretaccous has its leaves arranged in two rows and presents a similar appearance. The S. Reichenbuchii is a type more distinot from those now living and those in the Tertiary. It has indeed also stiff, pointed leaves, lying forward, but they are arcuate, and the cones are smaller. This tree is already known for a long time, and it serves, in the Cretaceous, as a guiding star, which
we can follow from the Urgon of the Lower Cretaceous up to the Cenomanian. It is known in France, Belgium, Bohemia, Saxony, Greenland and Spitzbergen. It has been placed in another genus-Geinitzia-but I can recognize, by the help of the cones, that it belongs to Sequoia.

Below this, therc is found in Greenland a nearly related species, the S. ambiguc, IIr., of which the leaves are shorter and broader, and the cones round and somewhat smaller.

The connecting link between S. Smithiana and Reichenbachii is formed by S. subuluta Hr., and S. rigider, Inr., and three species (S. gracilis, Hr:, S'. fustigiatu and S. Gurdneriuna, Carr.) with leares lying closely along the branch, and which come very near to the I'ertiary species S. Couttsiee. We have therefore in the Cretaceous quite an array of species, which fill up the gap between the S. sempereirens and gigentce and show us that the geuus Sequoia had already att.ined a great development in the Cretaceous. This was still greater in the Tertiary, in which it also reached its maximum of geographical distribution. Into the present world the two extremes of the genus have alone continued; the numerous species forming its main body have fallen out in the Tertiary.

jurassic.

If we look still further back, we find in the Jura a great number of conifers, and, among them, we meet in the genus Pinus with a type which is highly developed and which still survives; but for Sequoia we have till now looked in vain, so that for the present we camot place the rise of the genus lower than the Urgon of the Cretaccous, however remarkable we may think it that in that period it should have developel into so many species; and it is still more surprising that two spocies already make their appearance which fapproach so new to the living Sequoit sempervirens and S. giguntec..

Altogether, we have become acquainted, up to the present time, with 26 species of Secpuoia. The 14 spicies of the Aretic zoue I have described and figured in my "Fossil Flora of the Arctic Regions."

THE HORNED CORYDALIS.

By the Rev. 'T. W. Fyles.
Corydalis cormutus is the monarch of the water-flies. I car well recall the admiration with which I first looked upon the weird beauty of this remarkable insect. The undulating bodyr dark and glabrous; the plated choras ; the square head, and powerful mandibulæ; the projecting eyes, black and bead-like; the long setaceous antenne; the wanderful wings, clouded, yet transparent, flecked with white, nerred and barred, and measuring five inches from tip to tip,-presented, tout ensemble, an appearance beth grim and fasciuating. Behoiding it, one could not but desire to know more of the creature's history.

In June and July of last year, this desire, as regards myself, was in a measure gratified. I had the pleasure of watching the insect through its changes, from its larval to its perfect condition. The circumstaness were these:

On the 12th of June, a friend brought me a strimge creature, which he had captured as it was crawling up the bauk of the Yamaska River. It was four inches loug, and about half aninch broad. Its color was dark-sepia. It had twelve segments besides the head. The first three of these were evidently thoracic, for the legs were attached to them, a pair to a segment. Each of the nive abdominal segments carried two remarkable ap-pendages-one on each side-inclosing, I suppose, the branchix or gills. They were about a quarter of an inch in leugth, and gave the insect a fringed appearance. On the last segment they approached and overlapped the anal sete. The square head of the insect was suggestive ; and I said to myself: "This is the larva of the Horned Corydalis," and accordingly took measures for its safety.

I procured a large flower pot, and lalf filled it with carth. In this earth I sank, to the rim, a glass saucer, full of water. I then put in the lava, and covered the pot with a pane of glass. The creature buried itself on the second day. I left it undisturbed for a week, and then thought I would remove the earth carefully until I came to it; but, on lifting the glass saucer, I found that I had no need to do more, for the larva lay exposed before me-
it had formed a cist immediately under the saucer. In this cist it remained, inactive, until the 28 th of the month, when it underwent a change. The skin of the three segments next the liead divided down the back, and the pupa made its début through the opening. 'lhe metamorphosis was very striking. Instead of the dark muddy larva, with all its grotesfue appendages, there lay the bright, clem, yellow pupa, with rudimentary wings and antenne, and cyes showing blue through the wasen skin. Spiraeles, of the usual form, appeared aloug the sides, where the branchio had been cast off; and the six legs were drawn up under the body. The creature was very sensitive, cither to the light, or to the slight jar oceasioned by the removal of the glass, for it became uneasy; aud, although it could use neither wings nor legs, it worked itself out of its cist, and made a complete tour of its prison yard, drawing itself along by its formidable jaws, which, at this stage, elosely resembled those of the female inago. In a few days a change of color began to show itself. The abdomen became mottled with olive-green ; and gradually the whole body of the insect darkened with the same hue.

The change to the imago took place in the aftervoon of the 12th of July. The skin was rent in the same way as that of the larvia had been; and the perfect insect crept from its ruptured envelope. It crawled up a slight frame-work which I had placed for its convenience, shook out its wings, and, in a few minutes, assumed its full proportious. Oue thing surprised me greatly. I had expected to see a femule insect appear from the case ; for the mandibles of the pupa had been, as I have said, of the exact size and shape of those of the female imago; but the creature, on makiog its appearance, presented the preposterously long and seythe-shaped mandibula of the malc. These frightful appendages are doubtless weapons of offense; for the creature showed its vim by striking with them, viciously, at my finger. So eager was it for a fray, that, in following my hand with repeated snaps, it drove the weapons through its own extended wings. I noticed that the sharp tips of the "horns" were red, as if they contained a colored fluid. And I dare say it would be interesting to allow the creature to iuflict a wound, for the sake of noting the effects. I was very unwilling, however, to deprive some one else of the satisfaction of being the first to try the experiment.

Although the mandibles of the male C. comutus are of use to
the inseet for athaching a foe, I doubt whether this is the only, or the chicf $\mathrm{l}^{\text {mpme }}$ fin which they ate intended. I imasine that, in the muptial flight, they are used for grasping the welldefended neek of the female.
C. cormuths lays its eqess on the stones and piles projecting from the river, where they are som submerged. The aquarium would afford opportunities for studying the habits of the larrat in its native clement.

PROCEEDLAGS OR TME NATURAK IISTORL SOCLETL OV NONTRPAS.

The third meeting of the Society for the Session 1SS0-1SS1 was held on Mond:y evening Jam. 21st. The President occupied the chair. The Secetary read the minutes of last meetine, and amounced the subjects of the Somerville lectures, tegether with the names of the lecturers.

Dr. Dawson then delivered an address on "New Deronian plants and other Camadim fossils."

Ife first deseribed a new species of l'ilnceras. a romarkabie chambered shell fomd by Mr. Macpherson in one of Dr. Dawson's exemsions with his class in Geologry in the neighborhoud of tachate, and which, as he cxplaned, throws much !ight on the sthacture of this ancient and curions wroup of shells.

He noxt noticed a globuhar oremis:m fond in areat numbers in the Cornifernas limestnae of Kellys Tsland, near S:mdusky, and which he had described, some years aton, as a forminiferal shell, under the name of Siecommine Firinur. He mentioned some new ficts repecting it, and save rensons for adhering to his fomer determination. The specimens deseribed had been sent to him by Prof. Perre, of New Xork, and by Mr. Walker, of Ilamilton.

IIe then proceeded to describe sereral ferns and other plimes collected by Mr. Foord and Mr. Weston, of the Geological Surver; in the Devonian rocks of the Bay de Chalew. 'lwo of them,
 known elsewhere as uppr Dewnizu forms lather, A, wheroperris Geripionsis is mew. These ame from the loc.lite of the remak:able fossil fishes recenty deseribed by Mr. White:res.

From another locality, and probably somewhat lower horizon, are abundant specimens of I 'siluphyton and Corduites ungustifulia, as well as a lycopodiaceous cone, probably new.

Lastly, he noticed the discovery, by Mr. F. Bain, of North River, Prince Edward Island, of several species of certain fossil plants in portions of the Red Sandstone formation of that Island considerably higher in stratigraphical position tham that in which they were previously known to occur. The effect of this would be to require us to recognise portions of the sandstone hitherto regurded as Jriasic, as being really Permian. We thus have apparently both in Prince Eduard Tsland; and in Virginia true Permian beds holding the fossil phants characteristic of that formation.

Dr. Osler presented some notes supplementing his paper on the Camadim Fresh-water Polyzoa read before the Society in Jamany 1SiT. He directel attention to the following points:

1st. Lhe occurvence of a species of Cristatelle which was found in great abundance in the small lakes damed by the livière du Loup (en huat), Quebec. This is the most highly orgamized of all the Polyzoa and is capable of a slow, snail-like movement.

2nd. The oceurrence of an additional species of P'umatellide, J. difïusic of lecidy.

3rd. A winter orum or statoblast presenting certain peculiarities in structure and in the form and arrangement of the amular spines, which serve to separate it from the ova of the l'ectimetelle or Cristatella. It probably belones to a new specics.
dith. Whe Rev. Thomas Hincks, l. R. S., described, in the "Amads and Magazine of Natural History;" a supposed Pterobranchiate l'olyzoon from Canad:, sent to him by the hate Prof. Ilincks, of Univ. College, 'loronto. The general description of this corresponds to the l'ectinetellio mergnificu, except in the arrangement of the tentacles, which were borne on two distinct crect lobes, and not disposed in at horse-shoe figure. Dr. Osler was of opinion that there had been a slight error in observation, aud that the species was the I'ectinatellu. If was confirmed in this by the fact that he hat himself taken the specimen to Prof. Hinks, when a member of his Botany clase, and so far as ho remembers, it presented the characteristics which he afterwards learned were peenliar to the lectinatelle.

The fourth meeting was held on Monday Evening February 28th. Principal Dawson occupied the Chair.

Mr. Kemeth R. Macphersou was proposed for elcetion as anordinary member. The cabinet-keeper, Mr. Wm. Muir eshibited. a number of birds that had been recently added to the Museum.

Dr. G. M. Dawson then addressed the meeting on "The Geology of the Peace River region."

Ile remarked that absolutely nothing was known of the geology of the great region through which the Peace River flows till. 1S75. In that year Mr. Selwyn, the director of the Geological Survey, visited the district, exploring the Peace River as far down as the confluence of the Smoky River. The results of this survey were published in the Geological Survey report, and constitute the basis of subseçuent work. In 1579 it was considered desirable to obtain definite information of the Peace River district in comnection with the projected line of the Camadian Pacific Railway. The geological and geographical results of this expedition in conjunction with those before obtained now enable a clear general view to be taken of the region. The Rocky Moumtains formed a shore line during the deposition of the eretaceous rocks, which, stretching castward over a distance of at least 350 miles, imply the existence of a sea of that width. Near the mountains these rocks are almost altogether represented by sandstones and conglomerates, while to the eastward, shales are more abundint, till on the Smoky River the formation resolves itself into the following subdivisions, named from the highest downward: Upper Sandstone, Upper Shales, Lower Sandstonc, Lower Shales. These represent in a genemal way the Fox Hill, Pierre, Niobrara and Benton subdivisions of the United States geologists. A large number of fossils have been obtained from the "Upper Shales," which are definitely correlated with the Pierre ga sup, while an interesting estuarine and fresh-water fauna, with phant remains, characterises the Lower Sindstones. The economic importance of these rocks is found in the fact that coal scams occur on two separate horizons, viz., the Upper and Lower Sandstones. The coals of the former, near the mountains, are of very grood quality and resemble true bituminous coals. Those of the latter must be chased as liguites, but still have a high calorific value. It cannot be doubted that these fucls will before loug be exteusively mined, for the portion of the Peace liver Valley cmbraced in the exploration of 1570 is estimated to contain about 23,000
square miles of good soil, which should the climate be as favor. able for the growth of wheat as we have reason to believe, would produce over $300,000,000$ bushels annually.

Mr. Whiteaves made some remarks concerning the fossils which Dr. G. MI. Dawson had exhibited to illustrate his address.

It was moved by Mr. G. I. Marler, seconded by Mr. T. C. Brainerd, and unanimously resolved. "That this Socicty, in view of the contemplated removal of the Geological Survey from the city, would earnestly deprecate any departure from the pledge given on behalf of the Govermment by the Hon. Mr. Masson in his letter to the Board of Trade, of December 20th, 1S79, that the muscum accumulated under the late Sir W. E. Logan should be maintained in Montreal, and would express the hope that regard to the promise made, as well as the respect due to the expressed wish of Sir W. E. Logan, to the important educational and individual interests represented in this city, and to what we believe would be the unanimous wish of scientific men throughout the world were they cousulted in the matter, may lead to the adoption of such measures as will leave undisturbed the collection made by our late lamented colleagues Logan aud Billings'"

Priucipal Dawson said a definite pledge had been given in an autograph letter from Hon. Mr. Masson to the Board of Trade that the Museum would be maintained. So the matter remained till a few weeks ago, when the rumor spread that the Muscum building had been rented and that the Survey had been requested to pack up and leave by the first of May. To his mind the destruction of the Muscum was an act of the grossest vaudalism. The Museum, the work of men like Sir William Logau and the late Mr. Billings, was a kiud of sacred inheritance to Canada, and he fully believed that if it were known to scientific men throughout the world that it was being so removed, there would be an unamimous cry of indignation against it from every scientific man worthy the name.

MISCELIANEOUS.

On new Erian (Devonan) Plants. By J. W. Dawson: III.D., Fi.R.S., F.G.S. [Abstract of a paper read before the Geological Society of London, Junc 23d. 1SS0.]

The paper first referred to recent publications bearing on tho Brian (Devoniam) flora of N.E. America, and then proceeded to describe new species from New York and New Brunswick, and tonotice others from (Queensland, Australia, and Scothad.

The first and most interesting is a small Tree-fern, Asteropteris novelorucensis, chameterised by an axial cylinder composed of radiating sertical plates of scalariform tissue, imbedded in parenchyma, and surrounded by an outer cylinder penctrated with leafbundles with dumb-bell-shaped vascular bundles. The specimen was collected by Mr. 13. Wright, in the Upper Deronian of New York.

Another new fern from New York is a species of Equisetites (E. IVrightienus), showing a hairy or bristly surface, and sheaths of about twelve, short, acuminate leaves.

A new and particular form of wood, obtained by Prof. Clarke, of Amherst College, Massachusetts, from the Devonian of New York, was described under the name Ccllulowijlon primuevom. It presents some amalogies with Prototacites and with Aphyllum puradoxum of Unger.

Several new ferns were deseribed from the well-known Middle Devonian plant-beds of St. John, New Brunswick; and new facts were mentioned as confirmatory of the age assigued to these beds, as showing the harmony of their floma with that of the Erian of New York, and as illustrating the fact that the fiona of the Middle and Upper Devonian was eminently distinguished by the number and variety of its species of ferns, both herbaceous and arborescent. It will probably be found eventually that in ferns, equisetaceous plants and conifers, the Devonian was relatively richer than the Carboniferous.

Reference was also made to a seed of the genus AEtheotestro of Chates Brongniart, found by the Rev. II. Brown in the Old hed Samdstone of l'erthshire, Scotland, and to a species of the genus Dierenophyllum of Grand'- Bury, discovered by Mr. J. L. Jack, Li.G.S., in the Deronian of Quecnsland.

In all, this paper added six or seren new types to the flora of the lirim period. Several of them belong to generic forms not previously traced further back than the Carboniferous.

The author uses the term "Erian" for that great system of formations intervening in America between the Upper Silurian and the Lower Carboniferous, and which, in the present uncertainty as to formations of this age in Great Britain, should be regarded as the type of the formations of the period. It is the "Erie Division" of the original Survey of New York, and is spread around the shores of lake Erie, and to a great distance to the somthward.

INDEX.

Page:Adulterants in Baking Powder 410
Agassiz Prof. Alex., on palcontologieal and embryological development $3: 1$
American Association for Advancement of Seience 355
American Gcography 420
American Indian Tribes, origin of some (6, 193
Anthracite, origin of 435
Bars Mr. E., on Fossile from Red Sandstone of Prince Edward Island 463
Baking Powders and their Adulterants $+10$
Barker Prof. G. F., on modern aspects of the life question 356
Bay of Fundy, tidal crosion in 365
Beli, Mr. A. G. on the Photophone 337
British Columbia, distribution of trees of. 321
British Columbia, glaciation of 32
British Columbia, stetch of geology of 445
Cabinet-keeper's report on museum of Natural Mistory Society 412
Califormia, giant trees of. 465
Candrbel. Rev. J., on Hittites in America. 275,315
" 4 origin of American Indians 65, 193
Canadian Ferns, notes on 49, 90
Ceplualopods, ink-gland of 414
Charing Cross, geological discovery at 191
Chemical industry, a new 192
Chlorophyll, function of 315
Chrome garnet, notes on 305
Claspore: Prof. E. W., on preghacial formation of beds of great imerican lakes 213
('onularice of Niagara gronp) 62
Concalute Sclutlzii 190
Corydalis, the horned 470
Crystalline rocks of Canada, stratigraphy of 17
DaNa, Prof. J. D., on lithology. 40, 80
Dawsu: Dr. J. W., on papers on geology of Nova Scotia 1
" 4 a Canadian J'terugotus 103
" " Mübius on Eozöon Canulense 105
". \quad recent controversies respecting Eozüon Cuncilense 23

* " fossils of Silurian ores of Pictort, N. S 332
" " plants from Lignite 'lertiary 447
page
Dawson Dr. J. W., on land snails of Palcozoic ora 449
" " on New Erian (Devonian) plants. 475
Dawsos Dr. G. M., on flaciation of British Columbia 32
" " Indians of Canada 129
" " distribution of trees of British Columbia 321
" " geology of British Columbia 445
Development of Filariu sanguinis hominis. (6)
" paleontological and embryological 39L
Dosald Mr. J. 'I., on elephant remains 53
" " lielderberg rocks of Canada. 302
" " bakin: powders 410
Early races in Jaman 62
EDw.ans Dr. J. I.., on water supply of Montreal 116
Elephant remains from IV: ishington territory 53
Lozëon Cuntedense, Mabius on 105
" recent controversics respecting 23
Erosion, tidal, in Bay of Fundy 315
Faitiden Mr. H. W. on interglacial epochs. 126
Ferns, Motes on Canadian 49, 297
Frilerian sentuinis lominis. 63
Fish. chemical composition and nutritive values of 467
Fossils from Red Sandstone of l'rinee Bdward Lsland 463
* \quad : Silurian Ores of Pieton, N. S. 332
Firmes Rev. 'I. IV., on Ciorytulis cornutus. 40
Gencsis ol certain iron ores 431
Gcography, American 420
Geolugs of British Columbia 415
Geolopical discovery at Charing Cross 191
Glaciation of British Columbia 32
Goove, Mr. J. B., on Canadian ferns $49,2: 4$
Hakmingros, Dr. B. J., on Canadian rocks and minerals 212
" " Chrome garnet. 305
" " Pyrrhotite 307
" " 'litaniferous iron ore 309
Hemr, Prof. O, on Sequoias 465
Helderberg rocks of St. Helen's island. 302
Hittites in Americ:a $.275,345$
Horned Corydalis 470
LIust Dr. 'T. S., on history of Pre-Cambrian rocks. 257
" " Taconic system. 429
" " genesis of certain iron ores 431
" " orizin of anthracite. - 34
" " formation of quartz and silicification in California 435
Indians of Canada 129
Indian tribes, or:gin of. 65, 193
PAGF.
'Ink-gland of dibranchiato cephalopods 414
Interglacial epochs 15
Iron, process for conversion of, into steol. 191
Iron ores. genesis of certain. 431
" ore, titaniferous 309
Japan, traces of an carly race in 62
Lakes, pre-chlacial formation of beds of 213
Land snails of paleozoie era 419
Lefnor Sir J. 11., on Ameriean gegraphy 420
Life question, some modern aspeets of. 356
limuite 'Hertiary, liants from 417
Lithology, Prot. J. D. Dana on 40, S0
Locust. the Roeky Momntain 125
Lomdon (ieolowical Socicty, extract from procedings of 159
Macfant.ase Mr. 'I'. on Camadian stratigraphy 91
Matrmew Mr. G. F., on tidal erosion in Bay of Fundy 305
Menolranchus mueulutus 160
Metcorological abstialet for 1979. 316
Mineral of the Scapolite family, a peculiar. 437
Möbucs on Eaぇ̈̈on C'tumelense 105
Mostaomenr Mr. H., on Menebrancius mesulutus 160
Montreal, water suply of 116
Mosguito as a nurse (63
Mound-builders of the west. 69
Natural selection, Dr. Robins on 114
Niagara group, Comularie from 62
Natural Ilistory Suciety procedings . $\mathbf{6} 6,121,164,211,310,373.420$, 42
" " cabinct-leeper's report $4+2$
Notes on Canadian ferms. 49, 297
" 4 rocks and muerals 242
Nova Scotia, Dr. J. W. Dawson on geology of 1
Nurse, mosquito as 63
Nutritive values of fish 407
Origin of anthracite 434
" of some American Indian tribes (5, 193
Palcozoic land snails. 449
Photophone, the 397
Plants from Liguite Tertiary 447
" New Erian (Devonian) 475
Pre-Cambrian rocks, history of 257
Pre-slacial formation of beds of American lakes 213
Proceedings Natural History Socicty 50, 124, 164, 241, 310, 373, 433, 172
Peryootur, a Camadian 103
Pursh Frederick, monument to 184
PAGE
Pyrrhotite, notes on 307
Quartz, formation of 435
Quebee group. stratigraphy of. 17
Rain and snow fall of 1579 317
Red sandstone of Prince Edward Island, fossils from. 463
Report of Committee on monument to Frederick Pursh 154
Romas Dr., on natural selection and ink-gland of dibranchiate cephatopods. 414
Rocks and minerals, notes on Camadian 212
Rocky Mountain locust 125
Scapolite family, peculiar mineral of the. 437
Science, American Association for Advancement of. 355
Selwri Mr. A. R. C., on Quebee group. 17
Sequoias, Prof. O. Heer on. 465
Smerard Mr. C. U., on peculiar mineral of Scapolite family 437
Silicification in California 435
Silurian ores of Pictou, N. S. 332
Sketches of Indians of Canadia 129
Snow fall of 1579 317
Stratigraphy of Quebee groun 17
-6 Canadian 91
St. Ifelen's Island, Helderberg rocks of. 302
Taconic system in geology 429
Tidal crosion in Bay of Fundy 365
Titaniferous iron ore 309
Traces of an early race in Japan 62
Trees of British Columbia, distribution of 321
Washington Territory, elephant remains from 53
Water supply of Montreal 116

[^0]: * The discovery of the shells in this tree was made by Albert I. Hill, C. E.
 \dagger Slightly modified from Bradley.

[^1]: - Slightly modified from Carpenter.

[^2]: - Modificd from Mradley.

[^3]: - Acadian Geolosy; 2nd edition, p. 205.

[^4]: - American Journal of Science, Vol. AXI, No. 122.

