The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de fa marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutces lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces page \& n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a étê possible de se procurer, Les détails de cet exemplaire qui sont peut-ttre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagbes

Pages restored and/or laminated/
Pages restauróes et/cu pelliculćes

Pages discoloured, stained or foxed/
Pages dérolorées, tacheties ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inógale de l'impression
Continuous pagination/
Pagination continue

Inciudes index(es)/
Comprend un (des) index
a -a Title on header taken from:/
Le titre de l'en-tite provient:
Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Génórique (páriodiques) de la livraison

Additional comments:/
Pagination is as follows: p. 97-107, x.
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CoNDICTEID it
 OFアICHS:
Victoria Ohambers, 140 Wellington Street,

$$
\text { vol. XII. JUNE, } 1893 .
$$

No. 6.
THE OFFICIAL ORGAN

THE GOLE MINER'S ASSOCIATION OF NOVA SCOTIA.
THE UNITED KININO SOCIETY OF NOVA SCO-
THE ASBESTOS CLUB. QUEBEC.
THE OENESL MINING SSOCIATION OF OU EPIC

ThIIE following Resolutions of Cuancal indicate beyona 112 peradventure the status of Tar Review as the exponent of the Canadian Mineral Indur tise:-

The Gold Miners' Association of Nova Scotia.
"At the annual meeting of the Gold Minen A wuxation of Nova Scotia, held at Halifax ons Gth Mifarch, isso, Ithe Cavabian Mivisg
 (Signed), 1. C. Wiksos, frestident,
The Mining Society of Nova Scotia.
" Moved by Mr R G lechie, weonded by Mr. C. A. Dumock, That the shanks of the Sociecty be tendered to Nir. B. A. A. Bell for
 appointed the officiat ozann of the Suciety.: Pown Revisw is hetebs

(Signed). | (Signed), H. S. Poole, J'resitent, |
| :--- |

The Asbestos Club, (Quebec.)
"Recolved. 'Jhas Tins Cavabias Masat. Rabisn is by authorsy of the Members and Coumpit, hereby appointed she oficial otgan of the Asbestos Clutw
(Signed).
$\begin{aligned} & \text { D. A. 13kons, Prestident. }\end{aligned}$ A $3!$ Evivs, Saretar.
The General Miniag Association of the Province of Quebec.
At a mecting of Council held at Montreal on Fryday, Gith May, Sit, it was mowel by Gaptain Adans, seconded by Wir. ik. I:
 (*igned). B. T. A. MuAL, Stivetury:"

The Lake View Mining Syndicate Ltd.
Our aticie under the above heading in the May issue seems to have hit hard in an unex. pected direction.
The purpose of that article, as clearly stated, was to call the attention of the directors of the Syndicate to some matters that we thought should be looked into before asking the public to subscribe.
It seems, however, from articles which have appeared in the Halifax Chronith, Herald and Critic that a litute clique of interested partics with headquarters in Halifax, have taken great offence thereat, and consider themselves personally attacked. The statements published alt show such a similarity of thought and language as to warrant the belief that this clique is quite small, probably three or four in number.
We fancy we know the source of inspiration, and we know that the pecuniary interests and mining speculations of this clique are not likely to be benefited by having the Review's search liaht turned upon any of their schemes, or on the methods they mploy. The Review has no fear of, and asks no favors from the promoters oi any wild cat enterprise, and if the article referred to has made some such promoters uncasy,
it is because they have knowledge that their methods cannot stand impartial scrutins.

Any mining rompany or mine promoter that takes offence, and puhtishes angry paragraphs, full of vulgar adjectives, because we call attention to inconsistent and misleading statements, or make pertinent inquiries as to facts and methods, is accusing itself or hmmself of trying to foist upon the public that which will not bear investigation.

The Review believes in honest and legitmate mining, in promoting the mining industries of the Dominion in all lawful ways, and one ri those ways it conceives to be-fearless and impartial criticism, based on facts. In all that has been written on the Review's artucle, we note nowhere any attempt to contro eren its facts or to answer its questions.

The use of such words as " maltcous," "unfair," "jealous," "rval, \&e., ad lthtum, is easy, but it is neither refutation nor argument.

The public in Nova Scotia is so used to the vaporings of the Critte that anythung emanating from that source calls for to repls. The Herald had the grace to publish a retraction in its very neat issue, and to state that ats artucle should have appeared as the contribution of an interested party; it also had the manliness to say that it knew nothing whatever of the merits or demerits of the case and that the article might be published in the best merests of Nova Scotia mining for aught it knew. But we are surprised that a reputable journal like the Chronicie should endorse a scheme of wheh it knew nothing except (like the Herald) what had been communtcated to it by "an interested party."
We ask the Chronicle if it has carefully read the prospectus of this syndicate and compared it with the facts? . id if so if it is propared to approve the statements therein contained as truc, fair, and in nowse misleading?
Will it endorse such a scheme as one likely to prove a benefit in any way to the shareholder, the mining industry or the fair name of Niva Scotia?

Does it endorse the past management of the Lake Viers Co. as successful? as efficient? as economical?

Will it kindly say how, when or where the Review has in any way attacked the personal reputation of Mr. A. A. Hayward? and will it please say what there is in his record as a mine manager, or in the record of any mining property he has ever been connected with that any person cou'd be jealous of?
In view of the fact that the Review's aricle made no atlack whatever upon Mr. Hayward's personal character the remarkable unanimity and promptness with which these newspapers, without replying to our interrogatorics and without meeting or denying our statements, hastened to endorse his statements is, to say the least, significant.
From the general tenor of the Chronicle's article we infer that it considers Mr. Hayward responsible for the prospectus and its statements, we had supposed the directors and their mining experts were the responsible parties.

If the Chromile is disposed to look into this matter it will find overwhelmmg proof of the justice of the Rtabnis article, and should at not be satisfied we shall be found vers walling to give it additional and stronger evidence.

EN PASSANT.

To those of our readers conversant with the affairs of that colossal white elephant the General lhosphate Corporation Ltd., the amouncement of the insolvency of Knud Sando, its promoter and late managing director, will not come as a surprise. It will be remembered that ii.: Corporation was formed in London to acquire some 2,660 acres of undeveloped phosphate lands in the county of Ottawa, for $£ .98,000$ stg. The vendors received $£=0,000 \mathrm{suc}_{0}$ in cash, $£ 17,500$ by bills of exchange, and $£ 57,500$ on mortgages redeenable in five years. The nominal capital
 sequently borrowed upon debentures secured by the properties and uncalled capital. After some two years of unsuccessful work operations were suspended, and the affairs of the concern are now being investigated by a committee of sharc holders. As his share of the spoils, Sando actually received about $. S_{1} 5,000$ stg. promotion money, but be claims that out of that he paid $£ 9,000$ in respect of calls on his shares in the Corporation. He also collered some $£ 11,000$ stg. commission on the sale of the Stewart properties ot the Corporation, and received a salary and expenses in managing its affairs. Not withstanding he ascribes his insolvency to the Corporation and to loss of business (whether as wool-broker, gold miner, or commission agent is nut stated) owing to his absence in Canada.
Among Sandos's wild cat schemes it is bardly necessary to remind our readers of his projected line of railway up the Lievres river, for which he obtained a charter from the Dominion Government. He also endeavored to secure a grant of lands in the North-West territory, for a colonization company, and gained some newspaper notoriets as the philanthropic promoter of a cooperative scheme to benefit the Horiestead strikers. Doubtless we will hear more of him and his little ways when the shareholders present the report of their investigations to the Corporation.

The Leeds Copper Company; which is the new name of the Excelsior Copper Coinpany, (operating the old Harvey Hill mme at West Broughton, Que.) is already in difficulttes, although the reconstruction only took place in January, 189r. The report tersely states that "the whole of the works have been shut down and beyond the wages of the caretaker no expense is being incurred." We should think even the cost of a caretaker might be dispensed with; for between January 16, 1891, and November 30 , 1892, the company carned only $£ 542$ gross on a patd up capital of $\chi^{284,405}$, and the expenses incurred in earning
this immense income were over $\notin 17,000$ Under these circumstances, " 11 appears to your directors that the only course left open is to liquidate the company, with a view to reconstruction." That liquidation is necessary there is no doubt ; but what object will be gained by a second reconstruction, bey ond further loss to the shareholders and further fees to the directors, it is hard to see.

The slavering culogies of the Halifax Critic, whose endorsement of the notorious Dobson and others of like itk is well remembered must be very comforting to Mr. A. A. Hayward. He has our sympathy.
A contribution to the Halfax Herald thinks the Revinw made an "onshught on one of Wavertey's gold mining industries " in its article on the lake view Syndicate. We have made diligent inquiry and find this "industry" has been closed since April ISgz. We were not (and are not) aware that locked buildings and alsence of employees constituted an "industry." The same contributor imagines that the "criticism" is that of a "jealous rival." Did any one ever before hear of a rivat to a moribund failure :

The Halifax Chronicle is quite right in saying that the functions of the Review as an official organ of any Society cease with the publication of the official reports of that Society. No society, association, clique nor individual, excepting only the Editor, has any control zwhatso. ever over the opinions or statements of this journal, which will continue in the furure, as in the past, to be fearless in is exposure of what it believes to be wrong or detrimental to the mining interests of the country No single article pullished in the Review on a doubful mining scheme has ever before in so short a time found so complete a justification of its warning as is evidenced by these acrimonious articles in the Halifax papers, which seek to make the matter one of personalities rather than one of facts.

With that claracterstuc caddishness and utter disregard of truh wheh has earned for at the contempt of the minng men of Nova Scota, the Halfax Crutt publishes a statement to the effect that a well known Nova Scota mumng man has a heavy financial interest miterest in the Review and that its edror must pubtish what this gentle: men sends to him. Now we need not $41 /$ our readers-for the persomality of the Review is thoroughly well known throughour Canada-tiat suci a starement is a deliberate and malicoous lic. Mereover the Critic knows it.

Dr. A.R.C. Selwyn, Director of the Cama dian Geolugical Survey, again urges the opening of the muscum to the public on Sundays. Ye says:-"There will doubtless be strong objeczions urged against such action, based chictly, if not entirely on the very crroneovs, but unfortunately very prevaleat idea, that a museum is a place of amusement, wherens it is essentially a place of instruction as is the church and Sunday school ; and the principal difference between the
two, concisely stated, is, that in the muscum the zoork, and in the church and school the sword, of the Creater is expounded. This admitted, there seems no obvious or intelligible reasons why the onc establishment should be closed and the other opened on the Sabbati. Since the foregoing was written, I have sought opmions on this subject, and I have been much gratified to find such a large number of persons, including clergymen of various denominations, who regard the opening of the Museum on Sundiny afternoons favorably, and think that to do so could not prove otherwise than advanageous to the community, and especially to that very large class of person whose daily orcupations leave them no tume to whach they can avail themselves of the caluable mformation and instruction which the Muscum is designed to afford."
All of which we heartily agree with. But in the meantine, if Dr. Selwyn is sincere in his desire to be a henefactor to the working classes, why not open the Museum on public holidays, and extend the hours of admission on week days so that the working men can study the work of the Creator after fium riclock. It seems to us much can be accomplished by the Doctor before he infringes on the day of rest.

The Hardy Patent Pick Company Limited, of Sheffield, are introducing a new patent disintegrator called the "Multiple," for producing fine and impalpable powders. This disintegrator reduces material by percussion, and is so constructed that the sulbstances are subjected, as they progress through the machine, to the percussure action of several separate sets of beaters of increasing lengths and velocities, working in separate chambers. The whole circumference of each chamber is provided with serrated linings of excessively hard chilled iron, which are used as grinding surfaces, and this arrangement, it is claimed, gives about eight tumes the grinding surface of any other percussive dismtegrator of equal size. The chambers increase in diameter as they approach the outlet, and the fan action of the large beaters in drawing the air from the chambers of the smaller ones, produces a through current of air from the mlet to the outlet. The material enters the smallest beating chamber, and from thence passes through the others, being subject to repcated percussive action, increasing in irtensity m each successive chamber, and the current of air is continually carrying away the finished material. In the production of fine powders, this machine is not dependent upon grids or screens, as is the case with other percussive machnes; but provision is made for a screen if tis deemed destrablet to use one. This may be placed at the outlet, but it is not subjected to any beaung acton, and is only used when necessary to prevent any small pieces of unreduced materal from escaping. The special features of this machine are its large grinding surface, its adaptabilhty for fine grinding, producing a beautifully soft and even sample, and treating materals that cannot be dealt with in any other machine.

The total dividends paid by the Witwatersrand mining companies in 1892 amountedto $£ 833,212$, or about 16 per cent. of the gold output re ported for the district; the greatest amount paid by any one company, $£ 190,312$ by the Robinson, being at the rate of 7 per cent. Other companies paying a less amoumt made a better return to their stockholders. Thus the Ferreina paid $£ 56,250$, or at the rate of 125 per cent. ; the Crown Reef, $£ 63,000$, or at the rate of 55 per cent ; the Jubilec, $£ 17,502$, or at the rate of 60 per cent. The Birthday Mining Conpany, in the Klein Letaba district, paid $£^{22,150}$, or at the rate of 15 per cent. on its capital stock. The South African mines at present are making larger returns to English owners than these are receiving from their in vestments in any other country.

At the Rock Springs coal mine, Rock Springs, Wyoming, an alectric locomotive has been introduced to haul a number of trucks a distance of 6000 feet. The current is supplied by a dynamo located a mile distant from the mouth of the mine, the generating pressure being 55° volts. The loss in transmission from the power house to the mine is about to per cent., so that the current received at the mine has an electro. motive force of about 495 volts. The loconno. tive, which is of 60 horse power, is of 30 in . gruge, and it collects the current from an overhead wire, the rails forming the return. It hauls 30 trucks, which when filled weigh 40 tons.
How strangely one can sometime come acre ss the ancient and the modern in machine:tools still working side by side in some of the en-gincering-shops! "The other day" says the Iron monger, "I went through an engineering-works in Lancashire, and saw the larger hammer, "Thor," put down by Nasmyth to forge guns, about forty years ago, and, athough altered in the valuemotions, still rumning, and doing good work in forging cranks and shafts up to 10 tons weight. In the same works I observed several other of Nasmyth's tools, one a wheel-cutting machine made about forty years ago, and another the first slot-drill patented by Nasmyth forty-three years ago - both still doing excellent work, in company with simitrr tools made by the leading tool-makers of to day -whilst in other portions of the wrork were some of Nasmyth's original patent shaping-machines, working alongside witt others by Whitwork and Muir. Again, as illustrating how some so-called modern arrangements are very frequently anything but new, I noticed in one of the shops cast-iron coilcd piping fixed around the columns for warning the place with stean, this principle of coild piping, which has been applied as something new in recent years, having been fixed in these works for nearly half a century."

In the western parts of Mongolia, there are such rapid alterations of temperature that ordinary bricks, and even the usual build'ing stones, disintegrate very rapidly. The inhabit
ants of that country have a process for making extremely hard bricks, having the appearance of trachyte. In an article by M. E. Blanc, in Dingler's Polytechnsches Journal, the process is described, but the writer does not inform us as to the exact constitution of the rlay. The brick kiln is in the shape of a vertical cylinder, surmounted by a dome. There is a rather large hole in the top of the dome, and during the first stage of the process the hole is left open. Three draught chimneys, built inside the furnace, open outwards at the height of the dome, and are kept closed with clay at the begmang of the operation. The kiln is heated for three days during the first part of the process, and then the hole at the centre of the dome is gradually reduced in size by means of blocks of moistened clay. The fire is allowed to die down, and the small hole remaining is covered with wet felt. The felt is covered with sand, which is continually kept moist. The three lateral chimneys are then opened, and the fire is lighted again The draught is thus reversed, and the second stage of the process thas commenced lasts four days. During this time the water from the felt is heated and fills the kiln with an atmosphere of superheated steam. At the beginning of the secoud part of the process the bricks have a light red colour, but this changes to uniform dark gray. At the end of four days the bricks are finished.

Thete appears to be some development of the mica mining industry in Australia. The Australian Mining Standard in a recent issue has , mmething to say editorially of a promising district, known as the McDonnell Ranges Mica field. Some iden of the difficulties under which the producers of mica labor in that country may he gathered from the fact that all package, have to be carried some 500 miles on camels to Oodnadatia station, the present terminal point of the great overland railway being constructed br the South Australia Government. Thence it is carried to Port Augusta and shipped to the most profitable markets. The Standard quotes values as follows:-Sheets of the size of 6 in . by 5 in. are worth about 5 s . per Ib ., and their value increases with the size of the article, sheets 8 in . br 9 in . being valued at ros. per lb., and those 12 in . by 12 in . being readily saleable at $£ \mathrm{I}$ per Ib . The great want of the field is a man who is accustomed to practical working of such deposits.

Here's a pointer for some of our local Governments. The Australian Government has made a grant this year of $\$ 100,000$ to aid partics in prospecting the resources of that county. Previously the vote was $\$ 200,000$, ($£, 40$, oco.) During the debate on this reductoun one of the speakers proposed that the salaries paid members of parliament should be reduced and the amount saved added to the prospecting vote. Needless to say this excellent supgestion involved too severe a strain upon the patriotism of the members to permit any strong hope of its being carricd.

The application of electricity for the purposes of power and lighting was, but a few years ago, looked upon as almost beyond the possibilitics; but to day there is scarcely a village that has not got its electric lighting plant, and the use of electric motors, for conveying power, where steam would be either impracticab:: or costly, is steadily increasing. The great advance in working metals with the aid of elecrricity began when it was shown that the process of welding could be gone through without subjecting the articles to the heart of the furnace, and now many operations are conducted with the electric current alone. One of the latest sieps in connection with metal working by electricity is that of the Electrical Forge Company of Bosten, U.S.A. They have brought out a machine for making round forgings by a rolling process, and the work accomplished by the apparatus is said to be simply marvellous. The machine can be :. orked at any speed, according to the class of work required, and it is readily adjusted in all its parts. It will successfully roll the highest grade of crucible steel or the open-hearth and Bessemer, as well as iron, copper, and brass, and it is claimed that all the work will be turned out solid. Among many other things of which the machine is capable of producing are steel handles of all sizes, and it is said that one hundred can be made in the same time that it takes to make one by the old lathe process. It turns out antifriction steel balls from $1 / 8$ in. to 2 in. diameter at a rapid rate, and the shape of each is perfect. They are cut from a steel bar which is inserted between the revolving dies, and each revolution of the machine forges a ball, the bar being kept heated by electricity. Hexagon bolts with head and thread are made in one operation, as are conical shells, shuttle tips, hinge tips, right and left hand threads, rolled steel cane, umbrella tips and bicycle spindles; in fact, any round-shaped article that will suit the size of the machine, of which ten sizes are made, ranging from ofor the smallest work, to 10 for the largest forgings. Heretofore such work was done at considerable expense, as the finishing on the lathe required very careful manipulation, but with the new system it is claimed that the articles can be produced with a degree of accuracy as to size and shape that could not be obtained by hand labour. In general appearance the machine is simple and compact, and is geared up so as to obtain very great power.

The following method of determining lead in galena has been devised by Herr Rudolph Benedikt. The pulverised mineral is covered with water in a porcelain capsule, and then decomposed h a few cubic centimetres of commercial hydriodic acid of 1.7 specific gravity.
If the moistening with water is omitted there ensues a violent effervescence. The capsule is covered with a "atch glass and heated on the water-bath, by which the lead sulphide is completely converted into lead iodide. When the change is complete, the whole is evaporated to drynes: The residue when cold is covered
with dilute nitric acid, the capsule is covered and heated on the water-bath. The nitric acid decomposes the lead iodide, with liberation of iodine. As soon as the oxidation is at an end the capsule is uncovered, the contents evaporated to dryness, the residue is moistened with dilute nitric acid, filtered, and washed out, when the entire lead is in solution as lead nitrate, and may be determined with sulphuric acid in the usual manner. Lead sulphate can be converted into lead nitrate in a similar manner.

Messrs. Qualter, Hall \& Co., Raihway Foundry, Barnsley, Enghand, have just completed for the Powell Duffryn Steam Coal Company a couple of screens with an endless travelling band of somewhat novel construction. The travelling belts, which work contimunusly, are 56 feet long and 5 feet 6 inches wide, made' of steel plates carricd on cast-iron standards, with angle iron slades and top and bottom rollers on each side of the band. The fixed screens consist of thirtytwo bars each, 12 feet long, and 6 feet wide, and $31 / 2$ inches deep. The shaking screens are 6 feet long, and about the same width, and will distribute the coal on to the belts, from which the impurities will be removed by persons on each side of the former. The bands are made of steel plates 14 inches wide, and are all secured by three chains, with a link patented by the managers, and are geared down to 16.1 , enabling them to travel at the rate of 40 feet per minute. The coal is taken from the screens from the ends of the belts by selfacting -rising and lowering shoots on to the waggons placed at right angles to the belts. The belts, and, indeed, the whole of the appliances, are driven by a pair of cylinder engines whicin makes 100 revolutions per minute. The whole of the machinery is mounted on cast-iron columus and rolled iron girders. The quantity of coal which wiil pass over each screen and belt will be 600 tons each, or 1,200 tons in the course of a day of ten hours. The whole of the structure, including the bands, screen, \&c., is about xoo feet long, and will weigh upwards of 100 tons.

Nickel steel for an experimental 8.inch breech loading rifle have arrived at the naval gun foundry Washington, and the manufacture of the gun will begin at once. Great interest will attend the construction and subsequent experiments with this gun. Nickel steel has never been used in the manufacture of guns, and it is thought that the non-corrodible quality of the alloy, coupled with other physical characteristics sucn as increeased elasticity and extraordinary clorgation, render it specially adapted for guns subjected to high pressures with mitro-powders. The forgings for this particular gun have 3.15 per cent. of nickel. The guns will be $3041 / 2$ inches long and will weigh 31,300 pounds.
The minimum physical characterstics o the gun will be, for the rube, tensile strength, 85,000 pounds; clastic limit, 42,000 pounds; elongation, 20 per cent. For the jackets the same characteristics will be, tensile strength, 90,000 pounds ; elastic limit, 45,000 pounds; enlgation

13 per cent. The gim will be of spectal destgn. It wall be composed of onl 3 prits-a tube, sacket and hoop -and wht be assembled by means proposed by Willam sellere, Phatadelphat.

It is clamed for this cliss of gums that thes can be dismometed atter consmedrable service, the corroded or damaged tule readily removed and a new tube substituted, the old jachet and hoop bengs used on the new tube. should the experment be found a practical success, nut only will the orgmal cost of the gin be con sderabily reduced, but it will be pussoble after extenswe we to make wirtually a mell gen by merels supply mother tulce, the wear and tear on the fachet and houp lours of no particular account in firing. Mr. Suithes cuntends that the jacket and hoop can readils be remored by a pracess of artuficial contration and expansion, smalat to that recenty dpplad to the 13 inch gun.

A most interesting showng of the causes, the cost and the results of strikes in (ireat britain is given in a report issued not long suce by the Labor Correspondent to the Board of Trade. This report coters the year $\mathbf{x S y}$, and starts out with the amouncement that the strikes during thes year were not so numerous as those of the year precedmg. During S 91 there were S_{93} strikes, affectung so far as known 4507 establishments, and there were 13 lock outs affecing $4 S$ establishments. Disputes as to wages were the chef causes of strikes, 54.2 per cem of the total arising thercfrom ; 30.23 per cent were due to demands for adyance of wages. In the 3 prevous gears the proportion of strikes due to wages disputes was, in isSS, $f:$, and $m i s S g, 67$ per cent on a rising market, the percentage of advance of wages strikes in 1 Syo was 42.4. The strokes agamst reduction of wages were $\mathbf{1}$.6, as against S per cent in iSgo. In a Sot the strikers won 45 per cent of the wage strikes and 23.4 per cent were partucularly successful. The number of persons engased m the unsuccessful wages strkes wa, however, much larger than in the case of the successful or partally successful strakes. One particularly meterestung feature of the report is that referrmy to strikes agamst nonunion workers. In isgi there were 47 strikes of this kind in (ireat Brtam, and 5^{1} per cent were total talures. A general review of all the results shows that 111676 of the chef cases $266,55_{5}$ work people were concerned. 369 out of $8_{9 j}$ strikes were known to be successfin, which is a proportion of 4 I- j^{2} per cent, in which 68,247 persons were engaged iS1, oi 20.27 per cent, with 98,117 persons affected, were but partially successful. 263 , of 29.45 per cent, with 92,763 persons movived, were enturely unsuccessful.

As to the loss . meurred by these strikes, the report preserts an estmate, and states that a total of $£ \mathrm{f}, 500,000 \mathrm{in}$ wages which might have been earned durmg the tame taken up in these strikes. Reports from 237 firms state that the actual outlay caused by stoppung and reopening
their works amounted to $£(92,238$. The trade untous spent $£_{1} 145,7$ S $_{5}$ in sustaining 261 strikes. Statstios ensen by the trade unions apparently show that the strikes entered upon were not a tutal luss, for in 234 strikes of the jear the wechls "ages prevous to these strikes were ESM, (667, and atier the strikes thes amunted to £. $9 \cdot 4,3=5$, an apparen: gain in wages per week of E.4.058. By fulluming out the calculation and tahing into account the loss of wages during the strikes it will ie seen that a long period of ad vanced wages must follow before the workers can catch up with the cost of their strikes.

The repurt mentioned contains some additiunal statistics showing the trend of opinion amoung the emplosers and workmen of Great Brata.i as to the best means of avoiding strikes. In answr to a question of this character 222 employers made replies and 77 were in favor of arbitration boards specially appointed as orcasion might demand. Out of 23 I trade unions, 65 were in favor of the same mode of settlement, 21 employers and 19 trade unions were in favor of State boards of conciliation and arbitration. Concliation, rather than arbitration was favored by 45 employers and 92 trade unions.

The gas trustees of Findlay; Ohio, after carefully gong over the accounts for the fiscal year ending April i , 1893 , the receipts for March beng now nearly all m , find that during the year the net profits of the gas office had been $\$ 56,500$. This amount does not include the receipts from the factories for the gas consumed durng the month of March, which will aggregate $\$ 5,500$. This is not received until next month, so does not come in as receipts during the present fiscal year. If this were included, the total pronts nould be $\$ 62,000$. During the past year the city has spent $\$ 20,000$ on new pipe lines and mains which will not have to be haid next jear, and this would indicate that the net profus of the plam next year will equal $\$ 52,000$.

As a play upon maning terms and phrases, the the following contribution on the "wants of the miner," fromalinted States contemporary, is very good:-"He wants a 'false set' of teeth for the 'mouthof the tumel,' 'stopping' for the old ones, and a girl of experience to paint and powder the 'tace of the drift.' Hewants a four in-hand tie for the 'collar of the shaft,' and a boot for the 'foot of the moline.' He needs a jockey who can ride a 'porphyry horse,' and use the 'spur of the ledge' on a 'bucking donkey' (pump), and 'drue a crosscut.' He wants an 'expert, burg' r to 'tap the ledge," a detective to 'follow the vein,' and a watchman to guard the 'silver plate." IIe wants a hat that will fit a 'head of water," and a man who can wear the 'cap of a tunnel-set.' He wants a solder who has been 'drilled' to handle a 'gun' and to 'shoot' and work a 'battery'; also a painter who can distinguish a 'color.' He wants a 'square set' of men to work for him, some feed for his 'giraff,' a brd for the 'cage,' a hunter to hunt a 'gopher,' and a 'grizziey' and a sprmter to 'run
a drift' ag. inst time. He wants a tidy man who will put an 'apron' on and 'clean up' the mill, sweep up the 'dust' and 'wash dirt.' He also would like to have the Government furnish him with stamps' free of charge. He wants the 'roof of the drift' shingled with twents dollar pieces. And when he 'dies' he wants to go to the 'upper level' and play on a silver 'hom,' and have his 'slap jacks' baked in a 'gold pan.'"

A most valuable addmon to mung literature is the very comprehensive review of the mineral mdustry, its statustics, technology and trade in the United States and other countries, presented in a handsome volume of some 600 pp . by our esteemed contemporary the Enyrueering and Mimus Journal of New lork. I'his volume covers so wide a field that we can do no more at present than recommend it most heartily to every reader of the Review who may desire a handy, serviceable, and reliable review of the minera mdustries of this continent. We bespeak a wide sale m Canada for this latest evidence of the snap and enterprise of our New York contemporary.

Mr. H. M. Wylde, secretary of the Mining Society, has issued his prospectus convening the June meeting of the Society, at Glasgow, on 29th and 3 oth insts. As intimated in a previous issue the proceedings promise to be of unusual interest. On arrival of the morning train (29th) from Halifax at Eureka Junction (Ferrona) members will ie taken to the Iron Works, thence on to Bridgeville, where they will visit the mines of the New Glasgow Iron, Coal \& Railway Co. who bave undertaken to conduct the excursion, and to lunch the party. An opportunity will also be given to inspect the now works of the Pictou Charcoai Works, recently erected at this point. The first session will be held in the evening, in Bell's Hall, New Glasgow, commencing at seven o'clock. Among the papers amounced are the tollowing: "Prospecting and Mining Magnetuc Iron Ores with the aid of Tiberg's Magnetic Inclination Scale," by E. Sjostedt, and a note on the "Occurrence of Manganese and Zinc Ores in Nova Sootia," from the pen of Dr. Gilpin, the Provincial Deputy Commissione: and Inspector of Mines. A Conversazione and Reception will be held in the same building at eight o'clock, when an address, on behalf of the local reception committee, will be made by the Hon. A.C. Bell ; to be followed by a short historical paper on "The Discovery of Coal and Iron Ore in Pictou County," from the Rev. Dr. lattersun (the histornan of Pictou County). The proceedinge will be enlivened by music, and refrehments will be served. On the following day (the 3oth) an opportunity will be given to participute in a visit to the stcel works and collierics of this district, as well as a geological excursion to the Pass of McLellan's Brook. Needless to say that this attractive programme should conduce to make this the most successful outing yet held by the members of this energetic and enterprising
society. While the Review unfortunately can not be present on this occasion, its July issue, as usual, will contain a full report of the proceedings.

In these days of bank smashes and other nnsettling events in the financial world, the feeling of distrust in monetary institutions which seems to be inherent among the more ignorant classes of the people is likely to gain strength and lead to a consideal': increase in private hoards, The Boers are notorious for making their waggons their banks, and some curious questionings have been provoked in the United States by the discrepancy between the amount of gold known to have been produced and imported, and the amount officially returned as being in the country. According to the best available data, the authorities calculate that there should be fourteen hundred millions of dollars in gold in the country, but the returns only account for about half that amount, and the question is, where is the balance? It is thought thiat it is very largely to be accounted for by the hoarding-up tendencies of Anerican farmers and others who either live at a distance too remote to enable them to avail of banks with advantage, or who have been unable to conquer their distrust of such institutions.

Further particulars of the new unfreezable explosive, 'Maximite,' are to hand. It appears that for four years the inventor, Mir Hudson Maxim, has been experimenting with smokeless ri? powders, making a specialty of nitro-compounds, and he has b. in successful in this direction. In the course of his experiments he found that the compound could be made so cheaply that it could compete with dynamite, and that he could, therefore, make with the guncotton a smokeless explosive for blasting. The material is now made by the Columbia Powder Manufacturing Company, of New York, and is said to cost no more for the same amount of work than dynamite. It is claimed that 10 ozs. of Maximite is equal in effect to 1 lb . of 40 per cent. dynamite. The products of combustion of Maxmite are mainly carbonic acid gas and water. A specialty of this explosive is that it is unfreezable. It is also claimed that one cartridge cannot be exploded by the explosion of another standing beside, but not touching the first, that the material is difficult to set fire to, and that it cannot be exploded by striking with a hammer, whilst a temperature of about 400 degrees Fahr. is required to explode it by direct heat. It can be used for quarrying by packing the cartridge lughtly so as to prevent the shattering effect required in mining and other ordinary blasting: The cartridges weigh about 140 oz , and are used in competition with the ordinary $1-\mathrm{lb}$. dynamite cartridges. It is claimed that Maximite is equal in power to pure nitro-gelatine, weight for weight. The comparative power of different explosives is as follows, the unit being black blasting powder: Black blasting powder, 1 ; dynamite, ordinary 40 per cent, 9 ; dypnamite, No. 1, 75 per cent. nitro-glycerine, 13 ; guncotton, 14 ; ntro-glycer-
ine, 16 ; blasting gelatine (nitro-glycerine), 17; Maximite, 17.

Irom the Broken Hill Mine (Australia) silver and lead of the value of over $\$ 40,000,000$ have been taken within seven years; and it continues to yield about 220,000 ounces silver and between 600 and 800 tons lead per week.

In the report of the British Commssion on Mining Royalties, not the least important portion is that which deals with what is called nationalization of minerals, which means, that all minerals should be national property directly under the control and management of the state. This feeling found expression in the evidence of some of the representative miners, especilly from Scotland, examined by the Commission. They advocated that the state should acquire the, whole of them inerals of the country, whether worked at the present time or not, and should hold them for the benefit of the community. Several of the witnesses supported this opinion by the expression of a conviction that if the minerals were made national property, the well-being of the miners wonld be more carefully attended to than under present circumstances, while a portion of the proceeds might be applied to their benefit in the shape of provision for disabled miners and their families, and superannuation allowances. It was further urged that mines could be worked more economically than at present, which we fail to see ; all past experience showing that private undertakings are far more economically managed than they could be by any department of Government.

A wide divergence of opinion, says the Iron and Coal Trades Reviezv, showed itself amongst the witnesses on the question of the terms and concixions on which minerals should be acquired by the state. The most extreme view represented was that the state should take the minerals from thelr present owners without giving any compensation whatever. The reasons given for a proposition, which advocates wholesale legalized rohk n ry, were that the mmerals originally belonged to the Crown, and now belong "to the people as a whole." Private property in minerals was considered an injustice which ought to be remedied, while the benefit which private owners and their predecessors had already enjoyed at the expense of the public ought to be set against any claim which they might advance for compensation. Arguments such as these are hardly of a nature to commend themselves to a civilized community. It passes ordinary comprehension why minerals, which are acquired property, should not receive the same protection that other kinds of property enjoy. But the great majority of witnesses recognized the right of the present proprietors to compensation. To bring the scheme of the acquisition of the minerals by the state into full operation, however, it would probably be necessary for the state not only to own the minerals, but to work them. As this would raise another claim for compensation, that of the coal owners or lessees,
.whose capital has been invested in the enterprise of working and winning the minerals, something like $£ 100,000,000$ would have to be found to compensate them. What the sum would amount to to pay out the present royalty owners may be left to imagination; but it would be appalling. The suggestion of the nationalization of minerals was not approved of by a good number of the miners' representatives, while lessees, the persons most nearly interested next to the royalty owners, much preferred the present condition of the law of mineral property to remain as it is. Under these conditions, the commission was perfectly right in declining to discuss the subject further, leaving its solution, if it can be solved satisfactorily, to the time when the larger question of the nationalization of the land comes up. But that time is far distant as yet.

In the January number of the North American Reviezv, the Hon. D. D. Field, a distinguished lawyer, has something to say of interest regarding the relationsbetween employers and workmen. Speaking of the possible remedies for industrial strife, Mifr. Ficld contends that compulsory arbitration is impossible because the state cannot fix the price of labor any more than that of corn or any other article. How then he asks "can the state as such aid in the reconciliation of capital and labor," and suggest that when capital applies for privileges the state may make the concession of them dependent upon an undertaking that labor shall also have a definite share in the accruing profits. As an illustration he gives the following example:-
"Let us imagine such an establishment as I suggest. Suppose a factory to be chartered, with a capital of $1,000,000$ dols., divided into 200,000 shares of 5 dols. each, three-fifths of them to be payable in cash or property as at present, and two-fifths in prospective labour; the former to be invested in land, buildings, machinery, and whatever else may be necessary for such an undertaking, and the latter reserved for such workmen as may be taken into the concern; the skilled workmen to be allowed wages, say, for illustration, at the highest rates of the market, 4 dols. a day or more, and the unskilled 2 dols. a day, and each one to be registered for 400 shares. If the earnings were 6 per cent. on the capital, each skilled workman would be credited in twelve months-that is to say, for 300 days' work-with 1,200 dols. for wages and 120 dols. for profit. Deducting 500 dols. for his supplies, including food, clothing, and lodging, there would be left to his credit at the end of the year 820 dols., which would pay for 160 shares of the stock. He would then have had his living and become the owner of 164 shares of the company. In the next year he would acquire 164 additional shares, and in less than three years would have more than paid for all the 400 . The rate of wages, the supplies furnished, the admission and dismissal of share. workers, and the discipline of the establishment should pe vested in all the shareholders, actual or expectant, while the financial department,
and the purchases and sales, hould be in the hands of the cash or property shareholders. Captal and labour would thus be brought into closer commumon, and made to lean on each other. To this end the requirement of a cash or property capital would be in part dispensed with, and mstead of an obligation to halour accepted. The share-workman must have the means of living whate be is earmang the price of the shares. He mus be enabled to live as cheaply as possible, by having his surplies furmished at the lowest price. He must hate fair wages, and withal reasomable maintenance, and the proppect of betterng his condtion by becoming a participant in the profits of the combined labour and capital. But all concerned should have the power of superintending the conduct of the workmen, choosing between applicants, and dismissugs the idfe or incompetent, recompensm: them, of course, for what they have already earned and saved."

To such of our readers who may be interested in this subject, we comme:ad a recent contribution by Mr. C. R. Ioms, to the Manchester Association of Engineer, in whach much interestug data is given.

In the matter of the relative cost of fuel for glass factories between coal in a coal country and gas at 5 cents per thousand feet, Secretary A. L. Strasburger, of the Model Cilass Company, at Findlay, O., states that his company was using 300,000 feet per das. in its $1 .+$ pot factory, which made the fuel cost $\$ 15$ per day. This was about 50 per cem. cheaper than oil, and about so per cent. cheaper thrn coal in the Oho Valiey. If they could secure a steady supply of gas. they would be enturely satsfied with the present rates as the: had made a carciul test and found that through a meter thes) were using less fuel than they had anticipated, and could make money under the present arraugement.

There is hardly a country on the face of the grote that does not produce ths samples of asbesto, and in newspapre, from tume to time, we see tems concernms thes and that fibre which has been found, all of which is stated to be very fine, but which upon investigation proves to be worthless to the manufacturer. Good asbestos requires four prime qualtues, mfusibility, tensile strengit, fineness and elastucty, and if one of these le lacking it is useless in a commercial sense. . Iuntraltan asbestos, for mstance, is very brittle, and camot be spun or woven. African asbestos lacks the promeipal requisite, the firc renstum, quality. Russan asbestos, wheh for a long tme was conside ed worthy of attention, had tu lee abandoned, and so on, until there are only two varieties which are practical, Italian and the Canadian. These are different in therr texture, but each has its uses. The Itahan varnety has a long coarse fibre, is a greyish brown, and is soapy, while the Canadian consists of fine somewhat elastic fibres in color, varymg from almost pure white to greyish and greensh tints, and in length
averaging from two to four inches with a soft silky aspect looking very much in fine specimens to floss sllk.

At the present time there are over one-hundred varisties of goods made from asbestos; twelve years ago there were no more than four, and twents-fice jears ago it was a curiosity of the laboratory. It is now found in almost every workshop where stem is employed and its use is constantly extending.

MINING NOTES.

Frove ole onn Corrhamonente. 1
Nova Stotia.

Caribou District.

It is reported that the ofd I ahe lode worhings are to The tunwatered and the high gromed on both wides of the deep shaft teoterl. Rumor has th that a working bond from the ouner, has been obtained, and that worh will begin in July.

The Truro company are confinng ther operations chielly to dead worh. The main shaft is whing towards the roll, and some work is doing in the ohd shaft.

Fifteen Mile Stream.

Rejurti from muers comme from the district is that a new amd high grade win has ineen cut anil is now leing opened. The repart lachs contrmation from lieadyuarters, but we hugr it otre.

Oldham.

On the night shift on the 1 th inst, a large open scam was cut by asthot in the haft of the Rhole Island Co. on the Duntirack lente. The water came in very fast, and on Thureday the 15 th, the shath was abondoned until machinery can be erected. The men were put to worh on a lrise ramning wet, amt the management hope oo keep the water at that leeel until pumps get ruming.

The Columba Mmang (o. have rearranged their thapmy machmery uader the directaon of 1 .. i. OShaugherey, formerly whth the Oldham Gold Co., and inder revelts are contidenty evpeted. Mr. Stephen has
replaced Mr. Whadden an the foreman of the coongany.

The tandard Gold Co, (Tayhor \& Hurdman), are whing a thaf uywnat new bente called the "Me Donell." The haff wom dema wer 40 feet and vowsa aeden or elsh wh y yarte wein corry mg copper, galema and gold.

Stormont.

The Nonh star Co. have found a new loole on the wevern emd of their property, which promises to become a buph grade pirentucer. The wein, when cut, was about wanalhe thinh, and the firy huchetful of yuartz naised "i.nproman bued 40 ut roch. Imater adsices say that the
 sumb yent leting wers rich, others peorer, but the whole mahing a high grade rock.

The Richardon Co. now have twenty stamps pobuting, and eypect a large bar for June. The quarty continues io beld from 7 to iodul- per ton, and bids fair to the the largent proflucer of the prosince for 1 Sg 3 .

Renfrew.

Kumor has it that 1). A. Macdonali, thnown famalsarly a ${ }^{\text {" }}$ (humms,", bas uncovered some pry quartz on the old New Hasen property. Mr. Macdonald is prospecturg the properts; for a Prictou organzation, and is contident of success.

Mt. Uniacke.
A new ten stamp, mall oto be buat oa the property annud ios Curren, I'rance anil others, forncerls the lritish and Colonalal Co. ' ground. It will be hulle near the mill torn dewn hy lohn Nichulls, and is desgned tu thor oughy test the ground alandoned by Capt. Nicholls. M. Thon. Irmee is in charge.

Mooseland.

During the past year much good work has been done at Dooseland on the property of the Monseland Gold Aining Co., Led., under the direction of II. G. Stemshorn. In the eleven monthe ending May 3 ist, alout 580 uts. have leen won, pincipally from guartz oltained in oprangh ap the mine. The main shati has leen sunk 112 feet and levels driven to the east and west for 100 feet each was. The pay chute runs eastetly and is cut by the
cast lewel. But little stoping has licen done, leaving a conviderable boty of reserves available. The mine has pad all exprenses of development and has somethong to the suoxt. The company is to be congratulated on the su.cess with which Mr. Stemshorn has managed the property.

Ontario.

The Matual (ans Company, of Port Collomer, Ont., Which supplies the Erie Glass Company with gas for manufacturmg purpones, and supplies many, local consum. er, fuand las wimter that it was unable to meet the demand, owing to the large drain made by the gla noiks. It therefore decided to put down a new well to get an adequate supply. The atte ppt was looked forward to an adequate smplip. The atte prewas looked forward th
with much engerness by the Provincial and the Erie with much engerness by the Provincial and the Erie
County companies, who subply Bufalo with gas. The revilt has been a great disppointment. The weli has proved a fallure. The drill was pulled at a depth of S_{54} feet, having pierced the second gas sand into the red shale.

Mr. J. R. (iordon, C. E., superintendent of the Creighton Gold Mining Co., (Itdi), operating in the Sudhury district, was in Ottawa the other day, attending a meeting of the directors of his company. lie reported that good pogress was being made with the work of opening up the company's mines; the machinery installed gate was well adyanced. Alout 20 men were emplos ed.

North-West Territory.

"We learn," -ays the Calgary Herah, " from a reliable source that a convelerable move in minugy in the Alberta slope of the Rockies is likely to take place shotly: Competent mining men asiert that . Ilserta is yute as rich in minerals as British Culumban. The only reasom why one rexureces in this direction-have not been deseloped secms to lee that they hase never been brought before the notice of capitalits. Ifforts are now leeing: made to call the attention of those interested in mining made to call the altention of those interested in miming
matters to the field which Allierta ofiers to enterprise and capital in the development of her mineral wealdh, which capital in the development of her mingeral wealeh, winch
will in all probability sir up our long neglected mining intereats considerable in the near future."

British Columbia.

The New Vancouver Coal co. made its "record" day's omput on the 3 oth May, when the vield was 2,300 beaten, when the Protection Island shaf is in full working order and No. 5 shaft is again opened.

The New Vancuaver Coal Company is still carrying furuard ths wery desirable scheme of providing of tive arre humestead for its worhers, on easy instalment terms of purchace. koad, are now leeing built and a large area of land laid out for this purpose at stark- Crosing, alnout S niles South of Namamo, near the Nio 5 mine shaft, and on the line of the I land Kailway.

The Kanaka Bar Gold Dredging Co., of whech notice of ancorporatuon appears tu our companies columb, intend by means of a patent centrifuget punp, to seeh the gold is ag under the water of the fracer kiwer, for a distance of mane three males at lanaha Bar, it the neightornood of I.ytion, B.C. The pump to be used Will, it is said, suck up 200 tons of river bottom dhily, catching up with other matter the particles of gold underlging the stream. The company thus hopes to make eveellemt money returns upon the capitas in vesmem, which the untertaking involves. Dr. Dawson, (Geological and Natural IIstory Surscy of Canada,) gives the data upon which the company lases its hopes of success, in the following pasage: "Gold has been giadually concentrated in the raver bottom by the action of the siream, white in many places payng deposits have Ixeen leff upon the surfaces of tbenches at varout levels. Thus when the work of 1 S 5 S and is S 9 . birgan,
lent the miners obtained with comparative case and in a short the a large quantuty of gold. How much gold has been tume a large quantuty of gotd. How much gold has been
ohained fron the liraser it is impossille to aseertain, but it may be stated that practically the entire output of the Province for 1857 and $185 S$ with the greater portion of 1859 was denved from this nwer, and by far the larger prition from that part of the Ifraser catending from Iope to (Juesnelfe. The aggregate yield for these carly years alone can not be phaced at less than $\$ 1.700,000$. The moie of working these gold deposits was comparatively a simple one. Then so-called 'lars' were nothing more than prottons of the ruverbed, which beang left bare at low water cauld the reached by the miner. They varied low water could we reached by the maner. They waried
in rechess not only in different parts of the length ot the river, but also in correspondence with the local relation of the current and set of the stream. They were worked generally to a very low hanted dep h, beeng often merely shmned over in consequence of the trouble from water, most of the work wasaccomplished with the primitive rocker. In the bed of the river itself at eacl scason of flood a,
partial rearrangement of material occurs, and additional
supplies of gold are brought in by the wearing away of supplies of
the banks."
More particularly referring to that portion of the river hat the Kanaka Bar Gold Dredging Company intends to dredge, Dr. Dawson, after referring to the fineness of the gold up to Yale: "From a point on the river, about 16 miles above Yale to Cisco Flat, a short way below Lytton, a distance of, 25 miles, rich deposits of 'heavy' gold were worked." In this 25 miles, are included the 3 miles eased by the Company, and, as in the case of Hill's Bar, referred to by Dr. Dawson, as having produced $\$ 2,000,000$
worth of gold in less than I-2 square mile, the Company's worth of gold in less than I-2 square mile, the Company's 3 miles commence at the food of a very rapid portion of the Fraser, where the river first frees itself from the canyon, and expands to a greater width with a slacker current over the Kanaka Bar, inducing the belief that for centuries gold has been washing through this gigantic ground sluice, the quantities on the Bar, now the Companys leasehold. Those interested the Company are sanguine of complete success, which it is to be hoped they may achieve by their somewhat novel, yet apparently thoroughly practical method of river gold mining.'

The question of sampling works for Kaslo is practically ettled and the Boston and Montana Mining and Smelt ing Company has deposited through its agent, C. H. Bartlett, $\$ 1,500$ with the Kaslo Townsite Company as a
guarantee guarantee for the completion of the works within four
months. months. The capacity of the plant will be 100 tons daily
and all the proved pattern. The plans call for a three story building to be built in a substantial manner. The ore will be delivered to a Blake crusher on the third floor and go from there to a Gates crusher on the second floor, after which it is quartered and then ground down and parted until the quantity is reduced to proper quantity for assaying.

According to the Outlook the Columbia mine on Mineral Hill in the Okanogan country is one of the most promising looking properties in that section and it appears as if the owners intended to do some systematic and extensive development on the property. Since the return of E. P. Wheeler from Bridgeport, Conn., where the major portion of the stock is held, he has been busy. A wagon road is being graded from the old shaft house to the new work-
ings, about 200 feet further up the hill, where Mr. Wheeler took out and shipped four tons of ore to Omaha which milled 146 ounces in silver, 22 per cent. lead, 15 per cent. copper and $\$ 8$ in gold to the ton, which would his time mean a total value per ton or $\$ 180$. So far three veins have been found on the property, and being within a space of fifty feet it will be surprising if they do not run together at no great depth and thus form one
great ore body. Two of these veins are eighteen inches great ore body. Two of these veins are eighteen inches and one a foot wide, all ore of high grade. As indicative their property they are buying up as many of the adjoin st in the B they can, having secured a two-thirds inter er interest in the Eureka one Franklin Boy, and a quar perty is owned by Nelson Clark of Spokane Two Bridgeperty is owned by Nelson Clark of Spokane Two Bridge-
port (Conn.) capitalists, Messrs. Horace Pigg and Dr, May, have purchased 50,000 shares of the company' capital stock from J. L. Spath and with Mr. Rodgers, one of the other large stockholders, these gentlemen will visit the property this season to determine upon the nature all extent of development to be done. The stock is now round by wealthy men who will thoroughly test the the ore bodies will push the work vigorousl day and night, erect a concentrator and put up substantial buildings for the accommodation of the large force of men 10 e put to work. W:th men of the capital and enterprise of those composing the Bridgeport Mining and Milling Company the Okanogan is sure to be an active district this season and we trust that many rich ore bod
exposed in addition to those already uncovered.

(From the Nelson Tribune.)

Ainsworth keeps forging ahead, and to-day it is one of he most active camps in the district in developmeut work. A very significant fact about the camp is that railway men are becoming active in pushing its claims to the front and making investments in it. Railway men, above all others,
know a good thing when they see it. J. V. Carroll, of the Baltimore \& Ohio railway, was here about ten days ago, and went over it very carefully, examining many prospects, and as a result he has bonded two claims for a mining company of which he is the president, and made arrangements with Messrs. Strobeck \& Hardy to build a wagon road from the end of the present Cedar Creek road to his claims (about 3000 feet) for $\$ 1000$. W. R. Busen-
back, general traffic manager of the Chicago \& Great Dack, general traffic manager of the Chicago a
Western railway has purchased an interest in the Spokane and Trinket, and is expected daily in the camp to meet John A. Wolgamo, the chief owner of these two claims. Spey will proceed at once to sink the present shaft in the put in a boiler and engine and the necessary machinery

Manager Johnson of the Schaffer company is knocking out six feet a day in the big tunnel, and is running night and day- So strong has his faith become in the value of to Seattle to induce his friends to buy and develop them.

The Highland has the call at present on everything in the camp, and to the average denizen of Ainsworth it is his pride to speak of it. Less than a month ago it was spoken of as a fair average prospect, but Messrs. Stevenspon \& Mikel have in that time worked a complete trans-
son formation. They have run two tunnels; one on the formation. They have run two the upper and slightly lower and larger ledge, the other on the upper and slight
smaller ledge. Besides this tunnel work they have sunk smaller ledge. Besides this tunnel work thing from these three shafts on three different veins running from these ledges and cutting the formation. They have 150 tons of ore on the dump ready for shipment as soon as the wagon road to the Cedar Creek bridge is completed. In the lower tunnel, they struck a large body of high-grade ore at thirty feet from the mouth. The ledge in the tunnel is eight feet wide; the vein is about five feet with a solid ore body of nearly three feet in width, and will assay 150 ounces silver to the ton. This has been done with an ounces expenditure of to the dignity of a mine. This experiment thus raised to the dignity of a mine. has shown what can easily be done with grit characterize pects in the camp when
the men in the enterprise.

CANADIAN COMPANIES.

The Kanaka Bar Gold Dredging Company, Itd. with a capital of $\$ 50,000$ in shares of $\$ 10.00$ is seeking charter of incorporation under the laws of British Colum bia, with the object of purchasing and acquiring the rights, concessions and privileges owned by Thos. J. Beatty, C. S. Bailey, W. H. Gallagher, and H. G. Neelands, known as the Kanaka Barture dated 3ist Jan., 1890, and pany, by virtue of an indenture dade as Gold Commissioner, made between Frederick the said parties as licensees; also to carry on the and the said parties as licensees; also to carry on the business of miners, submarine or otherwise, and to win, get, mine and work ores, minerals, metalic ; Bobert A. and precious metals of all kinds. Directors; Rabert A. Anderson, W. H. Goodwin and Charles S. Bailey, all of
V. Vancouver, B.C. The
be at Vancouver, B.C.

The Prince Albert Flat Hydraulic Mining Company, Ltd., is also seeking charter under the laws of British Columbia. Authorized caper, B.C. Directors, shares of $\$ 1$. Scott, W. J. McGunigan and Albert H. McNeill of Vancouver, B.C. Formed to take over and Neill of Vancouver, B.C. Formed the in the Province acquire mining leases of lands or claims ill the rights and of British Columbia, and to acquire all the rights and interest of all parties interested in such lands; toc
the business of hydraulic processes of nining, $\& \mathrm{c}$.

Quesnelle Forks Canal aud Hydraulic Mining Company, Ltd., is the name of aner and new British Columbia Company formed to take over and or canal to the tain water rights, and for bringing a ditch or canal to the bench lands in the neighborhood of the North and South Forks of the Quesnelle River, Cariboo District, in the Province of British Columbia; also to acquire mining leases of the company is authorized to carry on, or any business or transaction capable of being condand to take directly or indirectly to benefit this Company, and so or otherwise acquire and hold shares or stock in ons such rities of, and to subsidize or otherwise assist any such
company, and to sell, hold, re-issue, with or without uarantee, or otherwise deal with such shares or securi ies, \&c. Capital, $\$ 300,000$, in shares of $\$ 100$. Direc ors, J. Loewan, W.' P. Sayward, C. N.'Gowan, Wm Wilson and Frank S. Barnard. Head Office, Victoria, B.C.

Bridge River Gold Mining Company, Ltd., has been formed in British Columbia, with a capital of $\$ 25$, been, in shares of $\$ 100$, to carry on the business of smelt-
oon, in ers, refiners. founders, assayers, dealure and description and products of smelting of euyers and sellers of and deal to carry on the bus ors, minerals, gold dust, mineral subers in all kinds of ores, mineals, gold
stances and compounds, coal, timber, logs, lumber produce and merchandise of every description, negotiable paper, securities for money, and to do all kinds of com mercial business, except banking and insurance ; to carry on the business of miners of every description, and to procure by purchase or otherwise, mine and work, mining locations, mines, ores, minerals, gold dust and all other metallic substances and compounds of all kinds, \&c. metalic substors, George E. Bower, John Leatherdale, W. G. Directors, George E. Bower, Allen, J. A. Russell and Finlay R. M.
Vancouver. Head Office, Vancouver, B.C.

The Bothwell and London Crude Oil Company, Ltd., has applied for charter in Ontario for the purpose of purchasing, acquiring by lease or otherwise lands in the County of Kent and boring, digging and constructing petroleum and oil wells and punping thereof, and the storing, tanking, refining and dealing in petroleum oil and oil wells, etc. Capital, \$20,000, in shares of $\$ 10$.
Directors, W. T. Strong, J. D. Wilson, H. R. Abbott Directors, W. T. Strong, J. D. Wilson, H. R. Abbott,
P. W. D. Broderick and G. A. McGillivray. Head Office, Bothwell; Ont.

Kootenai Hydraulic Placer Mining Company.This company has 15 or 20 miles of claims, extending some distance back from the banks of the Pend Oreille River. The ditch has been completed, and the water will be turned on the gravel very shortly. The flume is 18 miles long, and is said to have cost $\$ 75,000$.

North American Mining Company.-The annual meeting was held in Montreal, May 15 th, and resulted in the election of G. N. Ducharme, F. Bayard, A. Montreuil, A. Renaud, A. Yale, A. Bayard and O. Henault as directors. At a subsequent meeting of the directors G. N. Ducharme was elected president and A. Bayard vice-president.

The Boston and Nova Scotia Coal Company.At a meeting of this new organization held this month in Halifax the following officers were elected:-President,
Hon. John Chandler, Boston ; Vice-President, John McKeen, Mabou, C.B.; Treasurer, W. J. Fraser, Mabou, McKeen, Mabou, C.B.; Treasurer, W. J. Fraser, Mabou,
C.B.; Secretary, A. C. Ross, North Sydney, C.B.; C.B.; Secretary, A. C. Ross, North Sydney, C.B.;
Directors, David S. Baker, John C. Cobb and R. P. Drectors, David S. Baker, John C. Cobb and R. P.
Fraser. The several properties at Broad Cove, Cape Breton which have been under offer to the company were taken over and their development was decided upon.

New Vancouver Coal Mining and Land Company, Ltd.-In their report for the half-year ended December last the directors of the New Vancouver Coal Mining and Land Company, Limited, state that the net output for the half-year was 195,318 tons, and the sales were 197,537 tons. "There was a slight improvement in prices as compared with the former half-year, but the market has, onents report the outlook as allthe At the present time our agents report he outlook as a to the more encouraging. A reference to the accounts will show hat a net profit of $£ 3,-$
0975 . Iod. was made during the half-year, but, as considerable amounts have in the course of the half-year been expended on capital account, the actual financial position has not improved; this fact, the prospective requirements of the company in respect of bunkers, and the payment for electric haulage in the East Field mine, preclude the payment of a dividend for the half-year." It is proposed in future to hold only annual meetings, although half-yearly accounts will be sent to the shareholders.

History of Tin.*

Translated from the work of E. Rever by brenton Symons,
M. Inst., C.E.
In ancient Hindu tin was called Naga, in Persia Aonya, in Hebrew Anak, and in Ethiopian Naak, The similarity of these diverse appellations proves that this metal proceeded from the same centre of production, presumedly, the inexhaustible stream works of the East Indies. There can be little hesitation in believing that here originated the name by which it was afterwards known throughout Asia and the east of Africa. Besides these very old names, from a thousand years before Christ to the early centuries which followed his advent, the term Kassiteros was habitually used in the countries which bordered the Mediterranean Sea; Homer knew it by this name, as did also the Romans. Where tin first received
this designation is yet unknown, but it is far from improbable that the Phoenicians, who during this period controlled the world's commerce, extended its use afar ; they were merchants or pirates, according to circumstances, and exchanged the treasures of Europe for those of Asia. From time to time they made voyages to Spain and England in search of the metal, and it thus appears likely that it was the Phœenicians themselves who introduced the term Kassiteros to the Indies. However this may be, it is certain that in the last centuries preceding Christ, this name was found in the Hindu writings corrupted to Kastira, whilst anteriorly it was always the native term Naga that was employed.
The tin from the Indies was, without question, the most important for commerce in olden times, and the quantity of this metal absorbed by the civilized states of Asia in the preparation of bronze must have been very considerable. China supplied herself partly from the same source, but also from the mines which she possessed in the provinces bordering on the Indies. The Chinese
bronze industry flourished between 1800 and 1500 b. . bronze industry flourished between 1800 and 1500 b.c. not more ancient. Money, vases, bells, mirrors, and other objects of art were manufactured in such large quantities, and the employment of tin for plating kitchen utensils was so general, that one may reasonably conclude that the production of that metal was colossal. Probably at this time Europe consumed only English and Spanish tin, and as the uses for it were very limited, the industry was in an almost barbarous state.

It is to be regretted that no statistics with respect to the production of tin in the Indies at those remote periods are available, and with respect to Europe the following paragraphs contain about all the information which has the Phœenicians, who possessed the commerce of Europe, obtained tin from Spain and England. Their principal ontrepot was the town of Cadiz in Spain, which, founded entrepot was the town of Cadiz in Spain, which, founded
about 1000 b.c., had rapidly acquired a great importance.

They mut ako have vuppled legep whth im, becanse
 commerce. The metals wheh bighp alisorlad were,
from the mont rmote dmes, furnished by Avatic merchats, and it was only durng the earher centumes after the Christion era that the Equphians tregan t" nate-through the ked sea-direct relatoons whth the Indes. The rospernty of the Ethoppan Empure, and trade relations w.ee therefore commenced and connaned through the
 bans used the llindu word Nitak, whist the Aralsused the Medterranean term hester. . Nfter the conguest of
Spann by the Roman, the fhemenans loot the tin trade. Concurrenty with span, one of the pranepal pros. ducers of fin was Linghand: Ciour veaks of the "white lead" that was mpurted from Eaghand and Diowhers The smelted metal "ase transpurted min lane by way of Nects the lale of ${ }^{\text {Ngi }}$ ') acrows baul, on the bachs of horese, to konte. Sar illes secame the Remand empcodir enjoged the fharmecans. She metal was almose exclusacly cobsumed in phating copper for the manmfacture of sanes, cask, ete., and oceavonally for mumug.
The alloo or tmand copper were ued to cast vatues, to make weapon, murror and coma. There seeme every reason to belhe e that anceretly alloys were not ottanmed taneous metallutgral treatment of the two monerals. They probably smelted copper py rte with atamped un ore, junt as they producedzac bronre by smeltang calanate with tin ore.

As a proof that the tun of Span was, durmg the dawn of the Chr-tian era, dommated by that of Cornwall, it
 allhem, the galie word thath, or Steat inCormsh, became
prevalent. The names 2 mn , tun, etan, are of smilar derivation.
Marsealles became a flourishang commercial town and even added a new branch of indivity - 1 hat of casting bells. The ancient lindu custom of using bells soon extended to liyzantmm, and in the tenth century had al. ready reached laty, where it was appled to the sernices
of the chrothan religion. later on, the tise of leell increased more and more, until villages, as well a coments, took a prade in possessing the largest. The first large
church bell was founded in the Campagne hence the latin church bell was
word ampana.)
The great increase of this andustry fawors the supposition that the production of, and commerce in tin, recesed a remarhable inpube during the moddle ages. Gradually Marsefles was disposessed of the tin trade by whet coll
 and whing the twelfih and thinteenth centurnes Iruge acguized the controt of the eastern liuropean mathets, and consequently of the trade in tin.

At the begunning of the muddle ages it would appear that Devonhtre may have furmothed ine greatest anmont of tin, fim the rich stream-worhs ensing there. Alout
1200 A .). the productum of the Cormish worhing, was still inferior to that of ths sister county, but in the cein. turies momediately succecding, the production of the mines of Cornuall surpassed that of the stream-worhs of Devonshre: the former county hav presersed us supen-
acy to the prevent das, whist the stream-worh, of the acy to the prevent day, whist the stream-norh, of the
latter have lecome suecessucly eabatisted and now gute to commerce but inspignticant quantuties.
Towards 1300 A.D. the wuncrs and smetters of cornwall ceded to the lord of the soll as royalty, 21 nuti 40 .
of the raw produce, in 1.480 they yided up 20 , to the of the raw produce, in 1480 they yedded t1p 20 to the
lord and 20% to the occupuer of the land, in 17506^{6}, to the lord and 11 ; to the occupmer whilst in 1830 the royalty dimmshed to $4 \frac{1}{2} \%$ to the lurd and $6 . c$ to the urface proprictor.
burng the latter part of the muddle ages, the tun phys were exported to Bruges, to wheh place the Italian and
German dealers came to purchase them. The ordmary route by which the tun was exported, was by land towards Italy, but from the teyenning of the fourteenth century, half the bulk was transported by sea in Italian bottoms, which then supplied the coasts of the Meditersanean and partictiarly the East (Constantmople, Alexandria, etc.)
It was alout this time that tun, produced from the mines of Granpen in Bohema, legan to appear in the Continental markets, and it may be conceded that English tin was, to a bery consmerable extent, replaced throughout
Germany by ts youthful nwal. The munes of Granpen have been known sunce the twelfth century, and during the thistecnth, Schonfield, another nuning district in Bohenna, also produced much tom, and it is protalife that Cologne-which at that epoch was possessed of the Boheman trade-threw a large aggregate of tin from these mines on the marhet. The mines of Granpen and schonfield produced abundantly during the whole of the fourteenth century, and the tin not exported in lars to Germany was consumed in the country itself. At the Tembof works on Prague they employed expernenced smelters from Vemice and lombardy. The prin-
cipal objects manufactured were table services, and untensils for religious ceremones. Towards the conclusion of the modale ages, the proxluction of tin must have consticrably aug niented, on account of the general prac-
tice of making bronze cannons, and because the use of tin for table services was comnon amongst the people of Italy and Germany.

During the first half of the sixteenth century so much capital was engaged in the opening of numerous mines in

Bobemia, that the pronluction of tis: was soon much increased. The dttenterg mines were working during the
latter half of the siveenth century, and during the first ten years its wavhings returned 500 to 750 tons of tin anmuall: The ancient mines of Giranpen, schonfield. sehlachenwald, lihrenfuederstorf, and (ieyer, have been reworked several tume, and new washimps installed at Dilenstoch, Ihatten, wottergab, Alertam, liengsterertern,太c. lery soon afterwards, mines were also opened in various plases in these dintricts. Al out 1546 A. D). welve drewing lloms, were put up at liatten for the theatment of
the tin ures, and at the same periond the districts of Attenberg and Elarenfriederstorf in Savony were conspicnous
The mineraliged roch, or tintone, was every where extracted in Bohemin and Savony by the aid of wedges
and be fire. Toward the eermimatoon of the fifteenth and by dire. Toward the cermimaton of the fifteenth mills, and the revulting pulp washed on frames. Stamps dad not appear until the earlient years of the sixtecnih century ; the concentratior. was made on sleeping tables century; the concentratior. was mate on sleeping tables
and in slime pist the slimes were roasted and the iunpure tin was subjected to liguatuon.
In the snteenth cemtury the Italians invented new ways for the application of tin, viz: - tin leaf was employed to coat murrors, and to giate majulica and cooking utenols, and to enamel uon. Then, sery soon, tin lecame indispenable to the dye-hatse, on account of the discovery of the valuable propertien of it -alis as a mordant. Lilavilus tirst made un charale, but it was Dribible who first dhscosered. by accident, its value for fixing dyes, and the use of this mpertant moriant speedily eatended to cermans, England and I rance.
The early years of the seventeenth century are of great momportance mathe hatory of tin. In Bohemia and Saxony,
the muning districts of Schlachenwald, Itaten, and Altenleerg, propluced tin ahundantly until the outbreah of the thity years war, wheh caused the suspension of all the mones for at least tify zears. At the same epoch the broke all the ore by use of the wedge. In Bohemia and savony the sceence of mming was more advanced, and some German worhmen who were invited to England, much mproved the methoul of draining the mines, breahing the ores, and smelung them. Becher instructed the Curbsh smelters how to reduce the tin ore in reverberators furnaces wah charcoal, and the improvements made hail a sensible influence on the English production. During the tiurty years war the English tin industry gained what that of Germany lost. The Indics and China contunued to profluce and to absorb immense guantities of tin. The Dutch, who in the serenteenth century repulsed the spanards and Portuguese from the Fast Indies, seized on a portoon of the tin trade. Despite the great increase in the proluction of limghsh tin, it mast le admitted, that even early in the setenteenth century, the aggregate production of the criblizen countries of Asia exceeded ten tomes that of Europe. Durng the eighteenth century the
returns of tu from Bohemin and Saxony were nuch inreturns of tin from Bohemin and Saxony were much in-
creaved, and the trade contunued in a flourishing condition, but modern tumes have seen the chesing of nearly all the im manes in the centre of Europe.
Towards the maddle of the present century the system of contract (tutworh and tribute) was generally adopted.

The Newcomen stean engme replaced the hurse engines ant water wheels for the drainage of the mines, but
between 1770 and 17 So, thene engines gave place to those between 177 o and 1780 , these engines gave place to those
of 11 att. At the end of the eighteenth century, Cornwall sold more than 3000 tum of tin annually. In i 828 stamps were first used in that counts. Near tSoo A.D. Siam and Malacea produced alout 1500 tuns yearly, and Junh, in (ey lon added 200 to 500 ammall). From 1820 to 1860, Malacca sold alvout 2000 tons, lint from 1860 to 1870 the protuction was much increased

The first man-engine was laid daun in Cornwall in 1S42, and in the same year romnd hadales came into use. In 1840 the tin ore was relieted of its impuritics, and
produce rased, by treating te with hydruchoric acid.
legenning from the end of the lasi century, the proporuon of copper ore in the Cornich mines, increased with
the depth, but from 1850 , on the contrary, the percentage of un ore has agan increased. The production of in since then has leen about Sooo tons yearly. Between I 850 and 1860 trommels were introduced in the Schlack. enwald dosinct, for the classifying of the "roughs," and the slames were roasted with salt. In England they followed the same method in certain nines. In 1550 angstente ores were first treated by Dr. Oxhand (at Drake-
walls mine wath soch, and the wolfraun transformed into tungstate of soda, was sold as a hy-product. This salt i employed in dyemg, and for the impregnation of substances to be made fireproof.
Banca proxluced, during the last century, more than 3000 tons of tin, but durng the early decales of the pre-
sent, thas decreased liy one-half. In 1850 it attained its sent, thas decreased liy one-half. In 1850 it attained its maamuum output -5000 tons yearly. Aher 1860 the production fell to 1000 toms, but this amount increased to
alout 4000 tons after 1870 . Between 1850 and 1880 , Peru, Chili, Bolivia and java, have each exported from 50 10200 tons of tin annualty to England. In the United States, tin ore has been found in many localitics, but up to now rarely in worhable quantity. Since 1853 tin has
heen produced in Victurna and New South Wales, and in Tasmania since $\mathbf{1 8 7 2}$. Important improvements in the preparatuon of the ores have been lately introduced in Australia. Long droughts compel the mines to establish numerous reservors, and to employ with the utmost
economy the storage water. The European workmen have been pushed aste by the heathen Chinee to such an have been pushed astle by the heathen Chince to such an
extent, that the government, to place a limit on the

Chinese immigration, has established n heavy polt-tas
The production in Australia, between 1874 and i 777 , wa The production in dustralia, between
from to,000 to 15,000 tons annually

from the,000 to 15,000 tons annually.

The uses of tin have considerably multiplied and grown during the past 200 years. From 1700 a. 15 . tin lias been widely applied in Bohemia and Savony to the plating of
iron Agricola was aware of the methot of coating iron iron Agricola was awnare of the methot of conting iren
with tin, though, in his time, litule use was made of the knowledge. Phaing was introduced into Emgland in 1670, and afterwaris into France. But both before and after the intention of plating, numerous articles of com merse were manufactired cecle. ively from tin, and this branch of the trade was developed in an extraordinats manner during the eighteenth century in Germany, France
and Engli ad. Salmon describes, in bis ylendil and Engla nd. Salmon describes, in his splentlid volune on tin smelting, the methols of working and the objectmambactured, and in his woordetes, we fitad table service, knives and fork, jurs, candelabra, lamps, chemical anit surgical instruments, boilers, etc., in the most varied
forms. There exitel in Enghand in the last, and even in the present, century, a crowd of miseralle litile tin worh shops, many of a very inferior class. which wete occupied in the making of tin ware, and in the plating of coppor and iron frods. It is only during the last three or four
decades that the spirit of enterprise intuenced copithe decarles that the spirit of enterprise influenced capitalists
to embark in this kind of industry IS50 A.11. Graffith perfect industry. Between 1840 and utensi人 in one piece, and this branch of the of timned especially developed in France, between iS50 and IS60 $A \mathrm{~B}$. Instead of compression by a blow, which caused much waste, a slow continuous pressure was applied Since then, pressed articles in phated iron have overcome all competition, as they unite the stiength and cheamess
of iron with the valuable properties of tin. The United States sustained the compelition successfully by contriving in IS66, a methot of manufacturing impermeable boxes from a cingle piece without soldering. England has, firs a long time, produced large quantities of tin phates, and two thirds of its colossal production have been exported, most of which between IS50 and IS60 found a market in the U'nited States.
An interesting detail in the history of tin is the recovery of that metal from the waste. In the workshops using tin plates and notably in those making cans and butons,
sis per cent. of loss occurs. sin per cent. of loss occurs. Many attempts, more or less
sucessful, have leen made to recover this loss. Schmuch successful, have leen made to recover this loss. Schmuch ollained a patent for the following way: solution in hydrochloric acid (with a little salepetre) and precipita tion hy means of lime. Phillip's process for purifyin the tin of leru was employed later tos extract tin from tin phate cuttings, viz :- the impure metal was granulated, and clissolved in hydrochloric acid, then, provided the tin "as in eveess, the wolfram, antimony, and arsenic, up th fise or ten per cent. would not he athacked; the tin wat
deposited on zine plates, and the zine this placed in solution was precipitated in the form of white eine, hy th addition of milk of lime. Jacobson used soxla lye, and Parks concentrated sulphuric acid, to put the tin in so'stion, and the salt obtained was in each case employed in dyeing. Kunzel boiled the tin plate clippings in water acidulated by nitric acid; the tin was then thrown down by zinc, dissolved in hydrochloric acid, and the resultin: salt was sold as a mordant; be treated in this manner during 1869, over 400 tons of waste olta ned from the manuacturers of canned preserves at Nantes and Pari This method is somewhat varied ly substituting for liqui hydrochloric acill the s-me acid in a gaseous state.
Tin is used for the preparation of phosphor
In the fusion of that alloy, the absorption of bronze very prejudical to its guality, the formation of oxygen is in rendeting the alioy britte. Formerly they endeavored to hinder oxulation by stirring the mass with wook, or 1 . adding a little zinc, but for the last ciozen years this object has leen much more efficaciously atzained by the addition of a little phosphorus: this augments in a ro markanle degree, the compactness, resistance and elast city of the product, be'ides giving it a beautiful golden cast in phosphor bronze with the greatest success, am the sale is day by day increasing.
If we combline the information relative to the produr tion of tin, we obtain the following resume (1851):

> Australia
> 10,000-15,000
> Englane
> 10,000
> Banaca and Billiton $7,000-9,000$
> Tasmania
> $\begin{array}{r}3,000-5,000 \\ 5,0 \infty\end{array}$
or for the whole world, say, from 40,000 to 50,000 tons annually.
The largest consumers of tin are China, the Eart, United States, England and France. The most import. ant use in Asia is for plating copper, whilst in Europe and America, tin is almost solely employed in the tin-plate
trade; the manufacture of bronze and white netal, absorbing in comparison, only feeble quantities.

Testing Station for Explosives at the Produits
The olject of this testing station-due to the manager to the managing director of the Clermont Powder Mi'ls

From Explosifs de Surete, by A. Macquet, director of
and the Malagne Dynamite Factory, Liege-is to prove
that under i.lentical conditions, the varions aplusives that under infentical conditions, the various explusives
now weel in mining, are far from affording the sme goarantece of securty; to compare them one with another, in "rder to find out which is the safest and which are unsife ; to determine whether these guarantees persist under the most dangerous comditions; nnd, lasty, to recommend, to those engaged in mining, an explosive absolutely she in the most unfavourable caves, where prumence may be conspicunus by its absence: an well as In afford the opportmity, to all interested in the subject,
of julgeng for themselves as to the correctuess of the results obtained.
The troduts Testing. Sation was lait down on the plan of that at Neunkirchen, with the moditicatuens
dictated thy erperience, or the devire to reproduce as faith fully as puonble the dangere actually encountered in funderground workings; and as a shaty of the part played l.e. coal dust did but enter into the question, lut omly a cur parison of the explosites
to simplify the arrangements.
The French Firedamp Commission practicall! lavs down as a principle that, to make absolutely sure of the degree of safety which may be depended upon in a given crplosive, it roust be tested by explowion in the open ait,
and under the most favourable conditions for incomplete and under the most favourable conditions for incomplete
explosion, because "it may always happen accidentally, eyplosion, hecause it may always hapere accinemialy, other c.use, that the explosion of substances employed in the underghond workings may be determined before they are safely charget into the iottom of a shos hole," and that "the danger presented by exploion in the open air
is therrefore not purej) imaginars." The accilent which is ther-fore unt purci) imaginars." The accilent which
would provoke explosion in the open air "is duabtess would provake explosion in the open air "is doubtless
very dificult to inagine, hut it is not quite imporsible, and should be r^{r} wided against."
These protectations against foreseen objections are not
ennwincing. Givet an explosive which requires the wolennvincing. Given an explosise which requires the wol-
ent effect of a detonator to explode, it is difficult to ent efine how it can be accidently elposed io so energetic a shock in underground workings. The French regulaamps require that explosives be always kept in a safe tinns require that explosives be always kept in a safe
phace, protected from accident. They are to be shut up in loves, in such a manner that a fall of the roof would
he powerless so explode then, the detonators leing kept he powerless to explode them, the detonators leing kejt
separate from the explosives. The following is the tevt separate from the explosives. The followin
of the Belgian regulations on the subject:-
Art. 53-" lowder, dynanite and detonators munt be
ismated from onr another and kept in separate bags or isolated
jones."
Art. 56-" Up to the time of using them the cartrialges and fuses intended for blasting are of be deposited in a Ase phace, to to thosen deliberate use of As to magine the deltherate use of explosises but olstacle to be shattered, where has such a risk ever leeen
un at defiance of the nost ordinary dictates of comuon unn at defiance of the most ordinary dictates of emmmon
sense ; where could such waste take place, in any case sense ; where coukd such waste take place, in any case
and under any pretext? If there were reason to fear the explosion of a substance through fall of the roof, meas ures of safety would be sought rather in requiring a munimum of resistance to shock than a minimum of explosion
temperature. In fact, on acenumt of the complevity and temperature. In fact, on account of the complevily and
the slight stalitity of the phenomena which may take phace during explosion in the open air, one cam never le vare that a method of incomplete explosicn, unforeseen and not tried in experineents calculated to estahlh
afety of an evplosive, way not occur at any time.

 mpperfect mixture, explode sepinately on the surface of
the cartridge, and this ellment might be that of the two ropalle of giving oat dangerous thames. It should not, however, be assigned a tou high value, as that might in, ture annther dinger. The men, knowing that they had t. deal with a resisting (stable) explosive, bight lic m prutent in the stemming, whice the inventors, knowing
that their explosive requires a strong tamping in orfer ti Hat their explosive requires a strong tamping in orter tu
at effectually, might go so far as to alvise that stemmang her performed with the hammer, in defiance of all thought .f prudence: and the shot might be fired during the vemming It is for these reasons that no arrangements
have leent made at the l'soluits Testing Statrin for cous ing epplosions in the open air.
What are the most dangerous conditions of eyplomion
that may be met with in practical mining 2 To realaze wething similar in our boiler," says the french Com mission, at page $7 \pm$ of its Report, "in the case of a shot which is not hown out, but under conditions certainly more dangerous than any which mas; Inappen in practice, "e suspended, so as to be surrounded by firediamp, the "yplosives enclosed in a metal tule (lead or tin) closerd at
1ntom and open at top. In this tule :he explosive rested .n 5 cm . to 6 cm . (2 in . to $23 / \mathrm{in}$.) of clay or sand, and "as covered hy: a tamping of clay, sand, nr even, ins same cases, coaldust 10 cm . to 12 cm . (4 in . 104 M in.) thick.
The explosion burst, and projected in the state of dust, that portion of the tube where the explosion occurred. the upper and lower portions generally remaining intact at the bottom of the boiler. The nature of the metal, and especially its thickness, might he varied ; but no ohservations have been made in this connection, nor was
thére any interest in making thent, except in the case of explossives which ignite firedamp in the open air.
As the tube burst, the hot gases certainly came more ommediately into contact with the surround ${ }^{\prime}$ ing explosive atmosphere than in the case of a shot vhich does its work; and they are so much the hotter as the energy
taken up by the lursting of the tube is less. Tl.e tubes used by the French Commission required an expenditure
of dynamic force ergul, on an average, to one thire the total energy of the explowe ; and the forec of shocks in rock is much greater. But the danger of these tificial cases is far from equalling thas of a blow...ont shot, all the hot gases of which are impelled forward in one direchon, and at a high temperature, the work accomplished beng insignificant as compared with the total effort of the
charge. It is evident that the conditions are in the light. est degree dangerous if the shot be blown out whle it is being tamped, and still meare so if this oceur while the charge is being inserted. Seleral acculents of the kind have happened. A shoon go en to the detonator while
the cartridges are being placed in the hote, or while the the cartridges are being placed in the hole, or while the
charge is being witherawn in the ease of a mis.fire, may charge is being withdrawn in the case of a misffire, may
occasion ignition white the explosive os not covered by any amping; and thene are evdently the mont mifasomeabie circumstances.
In the Proluits Testing station, attention "as only tumed to reproduce, easily that withont dauger, an unbunited number of blown out shots; and it was whia this view that the testing station was establiwhed in pharge
oprn space, surfomuled by walls, behind the wothes oprn. Shace, surfoumbed by walls, behind the wrtaes
luiblings of pit No. 25, at Flimu. The shothote was reproduced by a Krupp cannos of cracible mild steel,

 cortespends with an erternal di.meter of 50 cim. (20 in.$)$; the oults de length of the breech is 70 cm . (20 in.), leaving 20 cm . (Sin .) Sor the thickness of steel at the breech cad.
The mine drift or heading as represented by an old hoiler 1.5 ml (5 ft .) in diameter, and $10.9 \mathrm{~ms}(36 \mathrm{ft}$.) lont. One
end is open and the other closed, over a lench of 30 cm . end is open and the other closed, orer a lengh of 30 cm .
(12 in.), hy a solid mass of masultry in which the cannon (12 in .), by a solid mass of masutry in which the cannon
is laid parallel with the boiler, but 20 cm . (8 in.) below its centre line. The cannon is pointed strghly upwards, so that the issuing flames may strike the rool of the "heading" (lwiter) at the end of the gas chamber, which stops at 4.55 m . (15 f.) from the face of the lach wall,
flush with the muzate. In this way the flames tracese he misture of mazze. In this way the hames traverse thoroughly mingled) in their most inflammable rones. In orider to give greater stability to the "heading" the toiler is sunk 60 cm . (2 f. .) lelow the ground level; and woiter is sunk 60 cm . (2 ft .) Leelow the ground leve ; and
earth is piled up over the mass of masonry, against which carth is piled up over the mass of masonry, against which
the looiler abuts. Besides, to deaden the effects of recoll, the boiler has been strengithened by comectung 4 , through an angle-irol, with a healy ring or collar lechded in the masomry. The outer wall bears on the boiler, projecting by 40 cm . (16 in .) beyond the inner hack wall. The ap. paremt length of the "heading" is therefore 10.2 m . ($331 / 2 \mathrm{ft}$.) outside, and 10.6 m . (35 ft) 1 nside , a trench theing made in front of the builer for taling of the gases and smoke of the explosions. At first, this trench was wiml $21 / 2 \mathrm{~m}$. long; but gradually its length was increased to 12 m . (39 f.) for favouring the expansion of the gaves.
In this manner the effects, in the case of an explosion, In this manner the effects, in the case of an explosion,
"ere contined as much as posible, whle the vacilation "ere contined as much as posible, whte th
of the accompanying thames were facilinated.
The total capacity of the "heading" is 15.73 cubic metres (625 cubic feet); and an impermeable screen stretched transversely 455 m . (15 ft.) from the ent, serves to isolate from the shot a gas chamber of S culnc metres ($2 \mathrm{~S} 21 / 2$ cubic feet) capacity. The worhing of the apparatus is very simple, the operation leing accomplished in less than a minute. At the right distance a double channel irwn hoop is riseted insite the circumference of the "heading," forming a groote rf about 2 cth . (1) in.) A Sheet of japer soaked in paraftin, the edges of which are
bent into the groove, is file, to it by an elastic bandage, bent into the groove, is finer to it hy an elastic bandage,
ihe later being short enurgh for it, tension to ensure tightness of the joint. The scam letween the channel irun and the boiler was alw, remdered tight by caulking with hemp and red lead, or wth anetallic lead.
For the cyplosine ga, lightning gas was used, the apinatus being placeal in commameation with the gas main supplymg the surlace hailhars of the colleres. A meter in the pipe pernits of rapedily introducing the devired proportion of gas; and the gav pine cermmates on
a line with the cannon and 50 cm . 11 ff . S ta. 1 m front of a line with the camun and 50 cm . 11 ff . S an. 1 in front of asixanded from the roof of the heading, lreing worhed fram the outside of a copper wre, the edges of the hole hrugh which the wire pasies beong rounted off. The tirring is sufficient for the urject in view, although it mas happen sometimes that the mistare is not quite homogencrits. To evactly fulfil the cunc'ittuns wheh occur in practice, it would hase been beter to hate eyperimented the amhor sees no reasun why formene should he enploy. ed, as fire damp is nom pnre formene Srmetimes the hyitrogen which it contains makes 't more antlamnable than formene, while, rendered impure by carionic anhy-
dride and nitrogen, it loses much of its sensitiveness dride and nitrogen, it loses much of its sensitiveness;
besides, it is proved that, with lightning gas of medium composition, mixures are obtained, the explosibulity of which is not less than that of mest samples of fire-damp. Morcover, it has been proved that air containing $101 / 2$ per cent. of this gas is practically as dangerous as the most explosive.
To introluce dust into the phenomena, two methods were employed. Sometimes form 8 to 10 litres were strewed upon a hoard within reach of the flame from a
shot. The loard was laid upon two bricks placed on shot. The board was hial upon two bricks phaced on
end, one of its ends resting on the cannon 12 centinetres (5 in.) below the centre line of the hole. With this arrangement the flames only licked the dust near the hole, drove them forward and brought them into a state of suspension in the surrounding atmosphere. Whatever
was done and whatever might le the composition and degrec of fineness, more cr less dust was always floating.
in the air; and the finer portions remained permanently suppended in the "hending." At other "mes-for in-
stance, if it was deved to constitute at " thlammathe atmosphere by the aid of dust 'one and without gasa rag was hung to the agitator so as to drag over the dust an the lonard. It should atso be noted that the draughts due to the working of the agitator were sufticient to raise enoug', dust. Lastly, to c_{c}. ae clouds of dust outside the scope of the agitator a broom was brought into requisilion.

Ample measures were taken for observing "hat passed mside the " heading" and for avoiding nay dangerous
eflects of a gas explosion. In a casemated chatuler which contains the gas-meter and the electric liting apparatus, the charges are prepared. Of course there could be no yuestuon of any other than the electrical method of firing, which is the only safe one. The Belgian liredarap Con:misson, appointed in 1888, gave preference to induced currents, the sparks wheh they may prokluee being easily currents, the sparks whech they may prokluce being easty
avoidable, and their drawbacks leing less than those of avoitable, and their crawbacks meing less banmardt or Batteres. A statuc inducton machine of with bornhard detonators, charged with $0^{\circ} 54$ gramme of fulminade, were used for firing; and Notel detonators, containagg a gramme of fulminate No, 5 ,
vere cxploded by a Scola and Ruggieri contact-maker. The lfornhardt or siolel detonators were sufticiently to ensure complete detonation, even with grie ,utite; and 11 shoukd be remarked that it is not oimpontant that the detonators contan a large charge as that there be a great density of charging, both as
shock and the degtee of safety.
In researches which have hitherto been made as to the propertues of explosive mixtures, with or without conlduust, and of the comparison of various explosives as
regards safety, too little attention lias been directed to the regards safety, too little attention has been directed to the temperature of the place where the explosion occurs. It is not that there was any doubt a- to the influence which this temperature mght evert on the evplosibility of these mintures ; but no through investigations have loeen made in connection with this sthbject, so that they still remain to be carried out. Galloway, in a study of the infuence exerted by climacteric cot litions on firedamp explosions has onty consudered the question of temperature, so far as varations of the thermometer (in the atmosphere at the surface of the colliery) mays be repeated in the underground worhugs, while causing cons derable variations of solume, and outbursts of gas simitar to those brought about hy lanometric thectuations; but, as regards the influence of the tenperature of arrcurrents in the mine itself, there is scarcely any question. It would appear That the special commussions whicia have made investighans nio mine accidents, and esjecang as to the than of expermentung under conditions comparable with than of experamenting under cos.
The author remarks that Hall and Clark, in their investugations as to the explosibility of conldust, arrived as their conclusions only in the case of dry mines a a high temperature. With respect to Sir Frederick Abel's xperments, the author quotes from the report of the anglesh Firedamp Commussion as to heating the air, in order to obtain such results as are produced by coaldust tur. is relatively high. As dry mines are precisely hot mines, and zue zersh, at any rate generally, he thanks it posisible that, in studying the influence of dust on explospossible that, in studying the influence of dust on explos-
ions, the effects of dryness of the dust may have been sometimes confounded with those of their temperature.

Herr Wullmer and Herr L-ohmann, in their report on the experiments made at the physicial hatmatory of the Ax-la-Chapelle Unicersty, state that they made no expermments with respect to the relation between the temperature of igmition and the tenplerature and pressure of the explosive gas. Its easy ignition in contact with large incandescent striaces leads to the supposition that the temperature of unition consder that, practically, there
but those author donot consuler is any appreciable connection between these variations. The statistics of the (jerman Commission and its experiments whth explosives are not more instructive. Nor has the French Commission on explosive substances determined what might be the inllusnce of temperature of the
atmosphere, where a mine shot is fired, upon its infiammaliilty. lut it was, in the opinion of the author, during the experiments at Schlebusch, at the manufactory of the Dynamite Actiengesellschaft, that this infuet.ce was clearly manifested.
It was at the time when experiments were made for arriving at the lest composition for grisoutite. Various mo tores hat leen compared, with charges varying from So to ${ }^{2}$ g granmes, without tamping, or with coaldust
tamping, and in mixtures impregnated with coaldust and tamping, and in mixtures impregnated with coaldust and containing o to 16 iker cent. of gas The temperature
had not evceeded 30 degs. Cent. (86 degs. Fahr.), and no igntion had taken olace; lut at the thirteenth experiment, with a temperature of 35 degs. Cent. 195 degs Fahr.) an explosion occurred. After a great deal of discussion, it was determined to nutribute the cause to the temperature. Two more experiments fwere made at 30 degs., under the same conditions; but no explosion ensued. When, however, the temperature was again raiscd to 35
degs., explosion again occurred. Therc was no degs., explosion again occurred. There was no more
room for doubt ; to avoud a fresh ignition the room for doubt; to avoid a fresh ignition the gases of
detonation must be cooled down. In principle it was prossible to arrive at this result by charging a portion of volatilisible salt on the top of the explosive; and two experiments in this direction confrmed this. \because nposition. The result might be still better attained by increasing the proportion of hydrated salt, incorporated in the explosive,
for the same quantuty of explosive substances. Thus,
three charges of 200 granmes $\left(62_{3}\right.$ oz.), tambed with coaldust and blown out anto a dusts atumphere contanang 12 fer cent of gas, gave race to nenher ymutun nor exjplosun, although the temperature was raised to 35 deg.

It was thus proved that the proportion of dydrated sale for puesenting ispition must increase with the temperature
of the evplonse atnoophere, the harmbessues of which of the evplone atmophlere the harmbessness of which
it was desired to enstre. What can this le but that the "apparent temperature of igmoton," as detimed hy M. Mallard and M. I.e Chateluer mereases wath the temperature; $1 t$ would, therefore, x a function of the pressure
of explosion and of the surrounding temperature. It follows that the degrees of safety ponesesied by the sarious evplowses cas in reality ondy le relled tyon, subject to itg temperature; because mate wath an expuat surfound. schetmaseh expenments-the tumt of temperature where safey ceases to exist, may; be such as is met with in the
undergroudd working of a collery umdergrovad workings of a colliery. Wuha vamation of 2 or 2 degs. m tempenture, any explosite normally harm.
less, may become dangerous, or, at any rate, lose us gualuy of safety. Deep and thot mines are therelore noure dangerous than other, ; and in this case agann the first remedy tur the exhl is munerful and abundant ventilation.

As the Schlebush resule must leare doult on the sub. Commeren tuntes, from the rejon of the rench plosive itself is highly sensitive to the intluence of tenterature. The alowe cemmeston atso deals with the question in a special chapter as to the posstble mfluence
everted on the minammanhty ot meetamp ty the quanuty of steam contained in the air, in the course of which the following olservation occurs:-"It is possible that if the quantuty of watery vapour contained in the atmosphere le increased, the inflammabhity of turedany may not be so much reduced as it would otherwise be." The report then quotes Sif. Inans deductions, that carbome onde clectric sparh, when the gasen, under the inmuence of the that a similar fact as regards gay mextures would te of great importance in collierises where the air is generally report terminates in the follouing words:--" Laloratory experiments have not permitted of noticing any appreciable diterence in the minammabinty of matures centaming more or less humidity:
Considern ; the mpartance atached ly this author to
the influence of the influence of temperature, he has recorded fractions of degrees, the thernometer ued in the lroduits experiSuypended alrout the middle of the zas chamber, it recorded the mean temperature of that chamber; and a was introduced, so as to avoid any escape of gas. The reason why the thermometer only marked a mean of the tenyperature was on accoum of the heating apparatus, which consisted of a steam coil of five sparals of equal diameter, held by flanges ngams the wall, behind the
hooler. The temperature was therefore nocesenty huthe tooler. The temperaute was therefore neceessanity hugher
near the cannon's mouth : and the products of the cpplonear the cannon's mouth: and the products of the explothe mont dange:ous point of the atmosphere first of alf In the tope of tha poim of the almospace first of all. the gas chamber, three man holes had leen cut : and the covers which coosed them resed simply on india-rublier round bron, attach them to much stronger range racted to the tooler plates. The covers were wedl lated with clay every time that gas was introluced into the ajparatus; and in this way the covers formet! safeyy valves, while they ako acted. to a certan exient, as dynamometers, ir which these covers were lifted up, and thrown forward or torn off: One explow:on, with forcite, threw one of the corers a distance of to m . over the wall of the enclosure ; another, wub Favier caphosire, threw a cover to alment the same spot ; and another, 45 m . distance over a double span of coal-shed roofs, smilar effects heing oltatned with
the same explosives in other cyeriments

Spontaneous Combustion in Coal Mines. *

In submituing the fullowing uaper on ${ }^{-}$spontancous, Combastion in Conal . Wines, the nuthor does sor rather in
the hape of eliciting voluhthe information in the tis cussing, than withanycapectation of conveying knowledise o those members whose experience has been gained in mintes hable to this species of catassophe. The few
remarks sulmited are the rexult of knowlelge gleaned in remarks submitted are the result of knowledge gleaned in
his experience and traveis in districts nast liathe Warwiclaneous combuston, such as l, cicestershite, Warwickshire, Staffordshire, and in other districts where it is less frequent, such as Yorkhire, Derbyshire, and adiughamshise. Ile is, however. also indehted to the proceadingers and writinge of others, publisherl in the private correspondence with mining enginecrs and hemists, whose ascistance he gratefully ack nowledges. minc, can lee overcome in certan well-known ways; water can be raised by jumpingengines: gas can be carried away br ventilation, and the danger olvinted by
safty lamps; faults can be passed through by sufficient expenhiture of mones; but spontracous comimstion can thmes inppossibie to stop it, excent by some process that thets impossibse to stop it, excent by so
involves the entire closing of the colliery.

Spontancous comiustion of coal or as it is sometimes, and perhaps more correctly called sponanneous ignition,
means the tiring of conl, without the direct application of means the liring of cona, withour
a lighted masch or other ilame.
In some cases the cause of spontancous ignition is obvious. Take for instance a ventiating furnace built in a seam of coal. The heat from the fire makes the brickshate work hot, and raises the temperature of the coal or conl adjoining to the poimt necessary for iginition, which is leetween jooand Soo deg. Fahr. The remedy tor thiskind of
 and that is to sepnatate the coal or coal shate from the furnace bo a passage collseymg a current of coush at: It
is not easily heated as any wher substance; th is necessary, to provile a constant cuarent so that there may be always
cool air letween the arch containing the furnace and the arch suppertung the cual ur other strata.
But spentaneous ghation often takes place under conditons where there is no tire or any: apparent sumze of heat equal to 700 or Soo dugs. $1: \mathrm{hr}$. Any large heap of ondinary lntuminous coal is liable to spontaneous com-hastoon-say, one, to feet thich and 30 or 40 feet square. The larger the heap and the smaller the coal, the greater the lability of ture. Thus, a heap of coal halt up of large blocks of hard coal 15 feet high will probably not take fire, but a heap of slach of equal herght from the same sean If a probleably artificial fire
If a little artificial heat is applied to a very small heap of slach, of as, 2 or 3 tons, it is hable to fire. Suppose,
for instance, there s a lirck flue carrying the hot gases from a fire to a chimney and 3 or 4 tons of slack are upped aganst thas flue, it is very lihely to tahe fire. The reason of thrs again is very obvious. The outside of the toiler-flue fecls cool, because it is exprosed to the wind, degs. Fahr., or more in temperature. When the slack degs. Fahr., or more in temperature. Wo hen the slack
colets the external wall the heat is no longer carried away, and the outside of the brichwork in a few days will become nearly as hot as the interior, whose heat is guate suftecrent to set hre to coal.

There are, however, other cases less easily understoxd. For instance, if a heap of coal he laid over a steam pipe it will soon tahe fite, though the tenperature of the steam and the pipe never eaceeds 330 degs. Fahr., which is less than half the temperature requirel for the ignition of coal. Bur this is not so carious as the iginition of coal
Coal if not the only sulstance that will inflame without the application of a matcl. If newly burmt charcoal is ground up, 18 will take fire. Kags or waste soaked with
icgetable oul and put in a heap wall take fire. Very finely divited iron or lead will also burn. Phosphotus tahe ture wath the warmth of the hand. The com-
pressun of aur, by means of a piston in a syruge, will pressum of au, by means of a piston in a symage, will
give heat sufficent to ignite cther or tinder soaked in a solution of nitre.
In coal nines there is a general liability to spontaneous combuntion in the majority of the coal fields of Great Bratain in some districts it is encecolingly rare, and in others it is excedingly common. Experience shous that it is very rare in than seanis and very common in thich seams: and that in seams of equal thickness it is mure lihely to occur where a large proportion of the
scam is left in the mine, either as shack or as roof coal. In fact, yontancous combustion, as a general rale. occurs in those mines wherea geat deal of sunall and broken coal is left in the goaf, and is hardly, if at all, known in these manes where all the coal is sent out, and where there as no coal in the mine except the solid uncu: seam or large and uncreshed pillars.
The districts where gohbires are most coummon in Great Britain are South Staffordshire, West Leicestershise, and Warwackshre.
In South Staffordshize, the Ten-yard coal is worked pillar and stall. It is got in panels. locally termed there would be sixiten or twenty pill: s alout to atea there would be sixteen or tuenty gill: s alout 10 yards
spuare. The whole of the coal tetwe n the pillars and squares. The whole of the coal betwe n the pillars and
the sils separating the sides or panels is got, with the execption of the roof conal, say a yard in thickness, which is left liecause of the danger of rying to get it. A good deal of slack and of coal mixel with dirt is alco left in as lxing valueless. in course of time the roof falls and a Froil deal of coal no douht breaks of the sides of the pilars. Thus cons:detable heaps of coal, dirt, and slack are formed, and in a short time these heaps frequently get very hol, and unless precautions are taken they woatd burst into flames.
The usual incthod of preventing this is to put stoppings in all the roads leading into the " side" so as to prevent any fresh air having access; thus any combustion that bregins speedily exhauste the oxygen, and further com. bustion is so prevented. The slow combustion, however, so far as it takes place, has the effect of making the mine in that part caccedingly hol. In some places air diaws through cracks in the ribs, so that a more rapid Combustion can take place and great heat is produced. The arched with listch work, to assist in the caclusion of the air and to mantain a good road. Sometimes the brickwork gess so hot that it cannot be touehed. As a general rulc, however, the exclusion of the air stops the comloustion. After the whole-of the mine has been worked
the sides are often re-opened to get the pillars and ribs.

In Leicestershire the coal is worked in two ways; sometimes by long-wall and pached gates, and cometunes in heading vut and working bach. Where the packed gates are wed, the packs are made impervious to air by means of wax walls. These wax walls are made of clay, which has been worked to the proper consistency for making bricks, and is sem down in large lumps aloun 9 inches square and is inches long, and is buile up into walts on each sude of the gate road, while small dirt is packed on each side of the wax walls. These walts being soft have no strength to support the roof, and the pack. are made to a great extent of wool. The wood used is the small branches of trees cut into lengths of about a yard and buile into square piles: It is commonly called
" brattice wool." These timber pachs are placed about 4 feet anart, and the space between them is filled ap with stone made for the ripping of the gate roads. In this way the gonf leetween the gate roads is hept from the ain current; the only place where the air comes in contact
with the goaf is close to the working face. In onder to presem the air from getting lanck into the guaf near the working face, the ventiation is keph as slach as is con sistent with safets. The face is moved forward pretty fast, say, 2 or 3 yards a week, and consecfuently the goaf hear the face has not time to heat. II, however, there shoutd be a stop!page, owing to slachness of trade or a strike, the goaf would thie fire at the face; and to face from sate road to gate road.
Mr. Alfred Eily, in a valuable paper tead before the Chesterfield and Derbyshire Institute, in pril, 1877, descnites anuther methue of excluding the ar from the
goof at the face. He packs a lank of dirt all the way along the face on a slope from the roof to the floor. The face of this slope he then covers with a layer of sand 6
inches thick, which has the same effect as a clay wall in kecping out air.
Where the system of heading out and working lack is employed; no wax walls are required, except during a stoppage, and then a wax wall is run along the gace from the the
In some collieries, the manager arranges as far as possitle to finish off a district lefore the summer when rade is slack, and then he opens out a new district zeady for the ensuing winter; the point to be aimed at being
that the air cutrent must never pass over or through heaps of slack or broken coal as in a genf.
In Warwichshire the liability to sjontaneous combustion is met hy working the face as quickly as prossible. For this purpose a number of coal-getsers are concentrated in a small area. Where ever practicable, the mine is norked by heading out in the solid, and then bringing the coal lanck.

In many Warwickshire mines, the bulk of the coal lies to the din of the shaft; in this case the headings ate driven down to the dip ly undary, and then the coal is
lroughs back, the goaf being allowed to fill with water.

Both in Warwickshire and I.ecestershire, a considerable portion of the coal in the scam worked is not got, being of slightly inferior quality to the coal that is got. Also a good deal of slack is lef in the mine, so that there are great heaps of slack and broken coal.
but the question now axises, fow can this coal tahe fire concidering that the natural temperature of the carth in these mines is, syy, from 60 degs to 65 degs. Fhr?
The explanation formerly given was that the iron pyrites, that is, disulphide of iron (te 5), which is often found in the coal and in the shales, is decompored by the oygen of the air, and that this decomposition is accon-
panied with heat. It has been fonnd by experiment that panied with heat. It has been found by experiment hat percentage of iron pyrites, have taken fire through the decomposition of the pyrites. But the amount of pyrites in the coal mines is too slight to hase any appreciable effect in heating the coal, and this theory is now given up by thue who have most studied the question.
Irof. Vivian B. Lewes, has made some valuable contributions to the knowledge of this sulyect in papers read to the British Association, in Sg t, and sulseguently to the Society of Arts. He states that it has been demon-
 oxygen; some coal alkorling $11 / 4$
and other coal 3 time its own lualk.
How the oxygen gets in and is compressed into the very small space it must occupy is another question, but there is no doubt that it does go in, and that active chemical decomposition of the coal takes place, formins caflonic acid gas and wa.cr, and that this decemposition is accompanicel with considerable heat.

The hoter the mine the more rapul the decomposition. so that the process of heating when once legun goes on at an accelerating antio, or in geometrial progression provided there is a sufficiency of oxygen to keep up the the combustion

In mines where the air is suceessfully kept from the goaf however, the heat rises up to a certain point suffi cient to make the mine very warm, but does not exceed
that point, and then cools down again, beceuse there $i-$ not enough air for further slow combustion.

The telurn air of a mine, the natural tennperature of which is ahout 62 or 63 degrees Fahr., will prolably be 7o degrecs, and in some places warmer still.
In order that the heat may get up to the point of com bustion, it is necessary that the coal or slack should havi no opportunity of cooling. In the case of a very large heap of slack the heat which is generated in the cenar cannot escape, and in the case of 2 small heap of slach,
which is buried in the goaf of a mine, the heal there also which is buried in the goaf of a mine, the heat there also
is kept in ly the cover of shale and rcoof. - But while the
cover keeps in the heat it also excludes the oxygen, which is necessary; for combustion; therefore, the heating will arise from the oxygen which is taken into the coal before it is finally covered up liy other coal or by falls of roof, and the heating proceeds from the centre of the heap out. wards. But if, when the heat from the centre has reached the outside of the heap, there is a supply of fresh oxygen the outside of the heap, there is a supply of fresh
at the outside, the heap will rapidly tahe fire.
Where the workings in a long' watl face are being moved Where the workings in a long wall face are being moved
mpitly forward, the outside of the heap never gets hot mpitlly forward, the outsite of the heap never gets hot
enough to fire, because the heap is leing continualiy lengthened and the old part of the heap is kept from the air by the wax walls on each side and the new stuff in front:
It is sometimes recommendel, as a way of preventing yontane us combustion, that 'hs goaf shouhd te couled by strong vertilation.
There is no doubt that this cooling ly ventilatun will present a gol fire, if it is thetoughly efficient. That it may be efficient it is necessaty that there should be no large heaps of broken coal, because the wind cannot lee foreed through these heaps, and, as a general zule, it is forced impough impossible to prevent combustion gen cooling, so it has to lev prevented by the exclusion of the air. The arr roads would have to he within a few, say 15 , feet of each roads would have to be within a
oher to ensure effective cooling.
When every precaution has been taken it will happen, however, that the mine will catch fire in places, and unless these fires are immediately extinguished, the flames may rapidly extend to the whole mine. It is therefore necessary that the mine should be contintally teaversed and examined for any signs of combustion, which is usually detected by the condensation of moisture of the pungent odor from the heating mass.
In many cases, as soon as heating is discovered it is put out by simply digging out the hot part and sending it out of the pit, and in some cases, tilling up the place with sund. It sometimes happens, however, that the mass of sund. It sometimes happens, however, that the mass of hot naterial is too large to be dug ont, and a sort of hand
fire engine has been used to pump water on to the fire, fite engine has been used to pump water on to the fire,
after which the combustible material is dug out and the after which the combus
phace filled with sand.
In some mines water is laid on all over the mite under pressure, and is ready for extinguishing a fire from whatver cause it may arise.
In a great many cases the only way of extinguishing a fire is to build off the district in which it eccurs. In this case, the stoppings are generally made hy building a.brick wall with moriar, this wall is sometimes faced with a clay wall, which is kept damp and constantly smeared to close all the openings and so prevent air from drying it. Several stoppings are built a few yards apatt, so as to reduce the chance of leakinge past the walls. The burning coal in the enclosed area soon exhausts the oxygen, and then the fire goes out.
IC, however, there should be any tendency due to the ventilating pressure of the mine for air to pass through this distact, it 's exceedingly likely that some air may find its was in and keep the fire swouldering, ready to relight as soon as the stoppings are palled down. Sometumes such a fire may smoulder for thirty yearsi, and there are cases of underground fires that have lasted a longer jeriod.
The only certain way of extinguishing a large fire is to sulmerge the mine or district of the mine under water; this is never resorted to until every other plan has failed.
Cases have happened where goh fires have not leen ceen strldued by the stoppings built, but owing to air drasing through cracks in the coal pillars, the fire has gone through the pillars.
In one mine known to the writer he has been told that the pillars of soliti coal fired spontancously not far from the upeast shaft, and before the fire was discovered it had teached proportions which made it hopeless to extinguish If. It was therefore necessary to close the pit, and the shafts were stopped by hanging scaffolds alpout 20 yards down by means of chains, and on to these seaffolds was fat carth and clay, filling up the shaft completely to the toy The air leing thus entirely excluded, the fire ex. inguiched itself the ourning up the oxygen, and sulxe. fuently the mine was re-opened.
Sometimes, the exclusion of the air from a district in a mine which has taken fire involves the luyilding of a great kesght of brick wall, owing to the joints in the roof and coal permiuing the air to jass; but by building all round the district a lirick wall, which is dug into a trench in the feor and into a nick in the roof, the air is excluded to a sufficient exten: to permit of the working of the colliery. Where a main road has to be taken through a district which is hot it is often best to arch it with brick-work, the arch leing surrouneded with sand. In otder toprevent the air diawing through cracks in the fioor, the archway
is inverted, the invert also being laid on sand. The object of the sand is to cover ub all small holes in the brickwork, or any cracks that may subsequently occur therein, and so prevent air drawing through. It must, herein, and so prevent air drawing through, It must,
therefore, te very carefully rammed into position. The inside of the wall may be lime washed from time to time, inside of the wall may the lime w
to fill up the cracks in the wall.

If a fire in a mine once gets fairly hold of the coal in a place where there is a sulticient supply of air, the heat produces a great deal of gas from the coal which may form an explosive mixture wath the air, and thus a serious explosion may result.
A. Good Canadian Oil Well. - λ few weeks ago a large syndicate of London capinalists purchased 45 acres and bonded several uther pats of the jbuthwell onl territory for the purpose of testing same for the oleagencous. No. t well was tinisbed a tew, las, ago and drilied to the depth of 400 fect and only a few hundred yards from the old Nash and Townsend well drilled many years ago. The result was very gratifying, and one of uar of experts from Petrolia estimates the froduction at from 15 to 20 barrels per day. The great truuble is that the company is testing its well with an old 2 -inch pump and the well has quite a supply of water. When the well is ironed off there is not nuch doubt but that the protuction will be increased.

Kingston (Canada) School of Mining.

The Professorship of Geology, Petrography and Ore Deposits; also the Professorship of Mining Engineering and Ore Dressing, in this school
Applications for these positions will be received up to September 15 th, by
geo. S. CHOWN. B.A.
(Board of Governors) Secretary, Kingston, Ontario.
 3000 MOBSE VIIVE
Reseating Machines

1N USE.

This machine will reface in prosition any valve, flat or taper scat, from $1 / 4$ inch to 4 meh inclusive, and make them perfectly steam-tight.

DARLING BROS.

lelianee Works,
UONTHEASL, Sole Nanutasureses for Canadx.

The Science and Art of Mining
Published Fortaighty. Price 3d.
Has the Largest Circulattinn of any Mining Joumal in the United Kingtom.

Specially Interestiog io ill Persons Conacted wilh 3linas.
The Publishers will send a Specimen Copy to any Miner on receipt of Pors Cand.

2'ublinhers:
THOS. WALL \& SONS, 27 Walgate, Wigan, Eogland, Eiltor: C. M. PERCY, Wigan School of Mines.

Ceologieal Survey of Canada.

Annual Report, 1888-89,

VOI. IV.

With Accomparying Geological Maps, Plans of Mine Workings, and other Illustrations; also a Complete Alphabetical Index.

NOW PUBLISHED AND ON SALE.

PRICE, COMPLETE, TWO DOLLARS.

Part A.-Summary Reports of Operations 1888 and t $\$ S 9$, by the Director.

Price to cents,
Part B-West Kwotante District, B.C., by Dr. G. M. Dawson.

Price 25 cents.
Part D. -The lukon and Mackenzie Basins, with maps, by R. G. McConnell.

Price 25 cents.
Part E.-Lake Agassiz in Manitola, by Warren Upham.
Price 25 cents.
Part F.-The Sudbury Mining District, by Robert Bell, B.A., Sc., LL. D. $\frac{1}{}$

Part K.-Mineral Kesources, Quebec, by Dr. R. W. Ells. Price 25 cents.
Part N.-Surface Geology; New Brunswick, by R. Chalmers.

Price 30 cents.
Part R.-Chemical Contrilutions, by G. Christian Hofimann. Price 25 cents.
Part S (a).-Mining and Mineral Statistics, 1888, by H. P. Brumell. Out of print. Part S (b).-Mincral Statistics and Mines, 1889, by E. D. Ingall and II. P. Brumell. Price 25 cents.

Part T.-Annotated List of Minerals occurring in Canada, by G. Christian Hoffmann. Price 25 cents.

Note-These and all other Publications of the Survey, if not out of print, may be purchased from or ordered through
W. Foster Brows: \& Co., Montreal.

Durie \& Son, Outaw, Ont.
Wililamson \& Co., Toronto, Ont.
McGregor \& Knight, Malifax, N.S.
I. A. McMillan; St. John, N.B.
J. N. Hhares \& Co., Victoria, B.C.
R. D. Richarnsone Wianipeg, Man.

Moir \& Minis, Port Arthur, Ont.
Thomrson Bros., Calgary, Alta.
Thompson Bros., Vancouver, B.C.
Edward Stanford, 26 and 27 Cocksput Strect, Charing Cross, London.
Sampson, Low \& Co., iSS Flect Street, London.
F. A. Brockitaus, Leipzic.
B. Westermans: \& Co., S38 Broadway N. Y:
or on appheation to
DR. JOHN THORBURN,
Librarian,
Geological Survey, Ottawa
N.B.-Catalogue and Frice List can be obtained from any of the above.

F。 CIRKEI,
MINING:ENGINEER.
(Graduate, Acedemy of Mines, Axchen, Germany.)
Reports on Ilica Deposits, Asbestos, Phosphate
78 QUEEN STREET,

STANDARD POWDER CO'Y,

BIROCKVIIIE, ONT,
—_MANUFACTUnNRS or:_

ALI RINDS of GLTCERINE EXPLOSIVES

DID 1R 5 8
 W. H. harrison, - Manager.

ALFRED WOODHOUSE \& LUCIUS J. BOYD, minina and consultina engineers.

All matters relating to Mines, Mashinery, Reports, llans and laying out of work. Special Reports given on Gold properties. Specifications for all classes of machinery. Eistimates and Assays made on every description of Mineral.

CAMLEADDJESS:
Winze, London. - Winze, Halifax. P. O. Box, 525.

SOLD OUT!!

Readers of the Review are notified that the Third Edition
ov the
canadian mining mantal
AND
mining companies directory For 1893,
is now entirely out of print.

STAMPS !

PRITCEARD \& ANDREWS, 173 \& 175 SPARKS STREET.

GENERAL ENGRAVER8, Rubber Stamp Manufacturers,
scale makers and brass workers.
Brands, Stee! Stamps, Time Checles and Tags.
Stencils and Enic, Scales and Weights.

RUBBER STAMPS FOR OFFICE WORK.

ACBESTOS FOR SALE.

 orverom nesureximossNOS. I. 2 AND 3 QUALITIES, JEFFERY ASBESTOS MINES At DANVILI.E, P.Q., Is offered for sale in lots to suit purchasers.

The guality of the Asbestos produced from these mines is the lest in the marker; the system of grading pursued leing superior to that in vogue elsewhere. As the supply is practically unhmited, coniracts will be entered into for a large or small quantity as desired.

For Prices and other particulars apply to
W. H. JEFFERY, WINDSOR HOTEL, MONTREAL, Sole Owner and Manager.
> E. J. RAINBOTH \& C0., -DOMINION AND PROVINCIAL-
> LAND - SURVEYORS,
> CIVIL AND MINING ENCINEERS. $\Rightarrow 三$
> Reports, Surveys (surface and undergronnd), and maps exected of Mines and Mineral Properties.
> $\Longrightarrow-$
> $\overline{=1}=$
> 48 Sparks Street, - Scottish Ontario Chambers. OTTAWA, ONT.

J. LAINSOII WILLS, F.C.S.

Member of the Instiution of Mining and Metallurgy (Eng.), and of the American Institute of Mining Engineers, \&c.

REPORTS ON MINES IND MINERAL PROPERTIES. Advico on Chemical and Motalurgical Procenses.
sPmorATTITES =
Phosphates in all their Development or Application, and Gold Extraction or Reduction.
206 ALBERT STREET, OTTAMA. Cable Address: "PIOSPEATES," Ottaws.

Home Study of MINING PROSPECTME.
For FREE Circular send to Tho correspondence

Assayers' Supplies,

 chemichls and chemical apparatus.Beat Goods, Low Prices, Prompt Shipment, Garefal Pucking BICFARDS \& COMPANZ, 41 Barclay Street, New York, Agents for Beckers Sons' Balances and Weights of Pro cision, of Rotterdam, Holland.
Morgan Cpucible Co., BATTERSEA, ENGLAND, Manuficturers of
Crucibles, Furnaces, Mufiles, AND sCORIFIERS Of Superior Quality.
LEONARD RICHARDS, Agent, 41 Barclay St., New Yort

OTTAWA POWDFR CO., IIMITBD.
ESTABLISHED 1891.
MANUFACTURERS OF DYNAMITE AND TRIOLINE.
Dealers in Safety Fuse, Platinum Fuses, Detonators, and all Blasting Supplie PRINCIPAL OFFICE: BUCKINGHAM, QUEBEC.

