

Photographic Sciences Corporation

CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Caı tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along in erior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cala ètait possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restauréos et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continue
Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:
Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de dèpart de la livraison
Masthead/
Gënérique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:
This rtem is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Department of Rare Books
and Special Collections, McGill University, Montreal.

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the fliming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. Ail other original copies are filmed beginning on the first page with a printed or iliustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on esch microfiche shall contain the symbol \rightarrow (meaning "CON TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper ieft hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exempiaire filme fut reproduit gràce à la générosité de:

Department of Rare Books
and Special Collections, McGill University, Montreal.

Les images suivantes ont été reproduites avec le pius grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec ins conditions du contrat de tilmage.

Les exemplaires originaux dont la couverture en papier eat imprimée sont filmés en commençant par lo promier plat et en terminant soit par la dernière page qui comporte une emprainte dimpression ou dililustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration ot en terminant par ia cerriare page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche. selon te cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Lee cartes, planches, tableaux, etc., peuvent ètre filmés à des taux de réduction diffórents. Lorsque ie document est trop grand pour dere reproduit on un seul clichd, il ast fiimé à partir de l'angle supérieur gauche, de gauche a droite. ot de haut on bas, on prenant le nombre d'images nécessaire. Les diagrammes suivants iliustrent la méthode.

perula
atice to
Fhed to
examın.
value, a
sund pu!
bation.

NEW AND MUCH ADMHRED SYSTEM

02

ARITHMETIC

AND

MENTAL CALCULATIONA.

REPRANTED FOR THE tSE OF THE CENTRAL ACADEMY, CHARLOTTETOWN, FROM THE FOURTH ENGLISH Fimtion, AND ENLARGED BY SEVERAL VALIVADIE ADDITIONS FROM RICHSON'S MENTAL ARITHMETIC.

EDITED BY REV. JAMES WADDELL master of the central academy.

Ihs novel and useifur Treatise contains a great variety of exceilent and illustrative ribes, b: which the student is enabled to make all the calcuiations necessary for every kind of. business, frequently in less than one tenth the time and figures usualiy employed. It is pecuharly adapted to Bankers, Merchants, Tradesmen, ac. and is oi the grestest unjort. aise in all clases, heing the mont sumple and easy System of Arithmetie, that could be deFived or the ase of all scholastic estabhihments. The publishers have submitted to to the exammation of such gentlemen as they considered most competent to judge of its real vahe, and they have thate trial of it by giving privite lectures to upwards of two thor sand pupils, athl irom alt they have received testmmials expressive of uaquahied approdation

PRINCE EDWARD ISLAND: PRINTED AND PC'BRISHED BY JAMES DOUGLAS HASZARD.
1837.

To
K. C. H \& C. B. Lientenant Goveraor and Commander in Chief, in end over His Majesty's Island Prince Edecard, anl iis Depondencies, Ctancellor, Vice Admiral cnal Oidinary of the same, \&c. \&c. \&c. Sir,

The deep interest which you have manifested in the cause of education, since your accession to the governmeat of this Colony-the judicious suggestions which you have made, for the improvement of the District Schools--the zeal with wisch you have cherished the infancy of the Central Academy-tho promptitude with which you have exerted your infuence, to extend its operations-and the kind condescension which you have displayed, in countenancing my feeble efforts for its advancement-all, incite me to submit for your approval the accompanying Mamual of Arithmetic, and to solicit your patronage, for a reprint, with additions, now in course of publication, for the use of this Institution.

> I have the honor to be, Sir, Your most abedient and

Most humble servant, James Waddela.

Central Acadeny,

 March 8th, 1837.> Govermment IIouse,
> March 15th, 1837.

Reverend S_{h},
ha
I have looked through the "Manual"' you sent me, illustrative of the process of "Mental Arithmetic"as more immediately applicable to Mercantile calcula-tions-with much interest. I certainly never before met with any publication, so well descrving the appellation of "Ready Reckoner," as this work. Its few and simple rules might well be denominated golden, as their perfect and easy acquisition cannot fail to confer upon the acquirer, as much facility and accuracy of calculation-so necessary for the successful management of business-as a whole life spent without the aid of such lights, as this little volume appears to me calculated to afford.

You have my free permission to use my name, in support of your 'reprint' or compilation, in any way which you may think proper-and, I avail myself of this occasion, to congratulate the Central Academy, upon the acquisition of a class book, put forth in so completc a shape, and upon such moderate terms-the merit of which, I am persuaded, only requires to be extensively known, to cause its general adoption throughout, not only this, but the surrounding Colonies. I remain, dear Sir, Your very faithful servant, J. Hirvey.

The Rev. James Waddell,

Central Academy.
in
du
"
re
W
tor
It
bot
afli
一
all
'I
this
tica
pres
hear
of $t h$
and rithmetic"intile calculanever before ng the appelork. Its few ed golden, as fuil to confer accuracy of fil managewithout the pears to me
y name, in way which fthis occa, upon the complete a c merit of be exten. a through ics.
\mathfrak{t},
IRVEY.

Centrif dcabemy, Charlottetowi, Jan. 6ht, 1837.

The Trustecs and Governors of he Central Academy having already wituessed with mucia pleasure the working of the system of Mcntal Arithmetic recently introduced into this lustitution, and having approved of "Colburn's First Lessons," as a valuable class-book, rejoice in the opportunity afforded them of alopting Willcolkes's and Fryer's admirable and practical systom of Arithmetic, as a serpuel to that initiatory work. It is therefore-

Ordered, That it be eutered as a standiug classbook in the Central Acalemy-that every facility be afforded to the publication of a reprint for that parpose -and that it be recommended for general adoption in all the District Schools.

> By orter of the Trustees, John Lawson, Vice President and Secratary.

The attention of the Roard of Education haring beco this day called to a new and improved system of pratetical Arithmetic, about to issne from Mr. Haszaril's press, for the nse of the Contral Academy-they most heartily concur in recommending it to the immediate use of the various District Schools throughont the country, and to the patronge of the public at large.

$$
\begin{aligned}
& \text { By Order of the Buard, } \\
& \text { Alex. Brows. Secretare. }
\end{aligned}
$$

Charlottetown, 7h March, 1837.

PREFACE.

To say that the genius of innovation has of late years encroached upon the most popular systems of education, and introduced, in many instances, entirely now arrangements into the best regulated Seminariesor, to state that new literary institutions have sprung into existence, threatening to eclipse the old, if not to cast them entirely into the shade-would be, to furnish no information to those who have given to the sulject the most cursory attention; and to excite little interest in ordinary minds. But, to tell that the march of improvement has extonded to oursolves-to munounce, from our own press, the publication of a class-book, for the special bonefit of so infantile and humble a Seminary as the "Central Academy," Charlottetownahove all, to pretend to something norel, in the mode of treating a subject so frequently and so thoroughly; illustratod, and so perfectly understood, as the first principles of Arithmetic have been long supposed to he-will, it is prosumed, arrest attention, if it do not nxcite surprise. That an institution of so unpretending a character, should, in this respect, so early, take the precedence of all other Seminarics is these Colonics, will be remarked as somowhat singular, and the inquiry will naturally be suggested: How has it oceurred: In reply, it is not necessary to furnish a histury of the origin nad progress of the Academy itself-nor to recount the biography of the authors of that systom "f Arithmetic which it has adopted. Of the former, it is sumbiont to remark, that its charter is limeral, and its terms moderate, that its curriculum of elementary
iastruction, is designed to bo conducted, as far as practicable, upon the most modern and improved plans; and of tho latter, that in their native country, they have reaped the reward of their labours, both in the way of emolmment and fune.

The study of Intellectual Arithmetic had attracted the Editor's attention, previous to his appointment to this institution. He had introduced it, several months before, into the grammar sehool under his charge, in his native villatre-Truro, Nova Scotia-where he lind tested its utility and proved its advantages over the ordinary routine of common arithmetical calculations, and whence he had been instrumental in extending it to other similar estaiblishments. After entering upon his present charge, no time was lost in bringing it inder the notice of the 'Trustees and Governors of the Central Academy. The first specinens of its practical operation, produced an effect which corresponded with the enlightened views and public spirit of that body, and a desire was expressed that it should be extensively cultivatod. "Colburn's first lessons in Intellectual Arithmetic'"-an adnirable initiatory work, which should always precede and prepare for the suecessful use of the present volume, was im:mediately confirmed, as an academical ed as-book; and it became a desideratum to have it suceecded by some approved British publication, in which the tables of money, weights and incasures, might correspond with our own; and in which clear and conciso rules for the solution of practical questions, adapted to our own inodes of business, might be expected to occur.

That desideratum was subsequently suphied by the kind agency of a literary friend, who had ironght with hinn recently from England, a copy of "Willoplios"s and Fryer's' adiabrable wark; and for it, the Editur
takes this opportunity to tender to him his cordial thanks.

The high price of that production, rendered an extensivo importation of it almost impracticable, while its intrinsic excellence made it exceedingly desirablo that its general use in the Academy should, if possible, be secured. Under thest circumstances, dependiag, in some masure, upon the merit of tho work itself-confiding in the influcutial patronage of our worthy Governor, His Exceliency Sir John Harvey, who had declared himself a warm friend to general edacation-and having the encouragement of all officially employed in directing the management of elementary instruction in the Island, Mr. Haszard was induced, with a degree of entermrise, which reflects upon him the highest eredit, to undertake, under the supervision of the A cadme, to furmish a reprint, not only for the use of that institution, but for more gencral circulation.

Torender the work still more complete, several valuable rules and examples upon the discenting scale, have been added from "Richsces's Mentel Arithme-tic"-a more claborate, but vory uscfal work-and thus is obtained, at a price far below the cost of either of the originals, perhaps the most fuli, yet concise systen of practical Arithmetic, which has yet appoared.
Were it necessary to advance more in favour of its merits, than the appended documents contain, many pages of laudatory testimonials might be supplied from the Eaglish copy. A slight examination, however, will suflice to secure for it the approbation of practical arithmeticians, and not only will Schools and public Semiarries profit by its adoption, but every man of busimess will ind it advantageous to introduce it to his offiec.

ix.

The rulos and illustrations are so pluin as to be easily comprehended,* and the modes of operation are admirably calculated to engrge the attention-stimulate the activity-and develope the resources of the juvenilo mind.

The design and plan of the original work are thus stated by the publishers themselves:-
" Part of the design of the following work is to supply what is principally wanted-an Arithmetic for Tradesmen. It appears evideat that youths who are completed in Arithmetio in the ordinary way, stand in need of a much shorter mothod to enable them to enter a bank, or a counting-house, or to fill a situation behind a counter, and oftentimes it happens that persons who are engared in trafic, experienee the want of previons instruction, and lind themselves obliged on oecasion to have reconrse to others, or to the tedious and uncertain operations of the school-boy's method. An acquaintance with this simple and admirable plan (which can be obtained in a very shott tinse) woald entirely remove the difficulties under which such persons labour."
"The Plan undertaken is to emprehend ia this one volume, the several Branches of Commercial Arithmetic, and to show the most compendious and ready methods of perfurming the calculation proper to each respectively."

[^0]e. several uling scale, Arithme-work-and st off either ncise syspeared.
vour of its in, many slied from however, practical nd public r man of ucc it to
"The Publishers flatter themselves, the Rules given, with the Examples for calculating ciots. qus. and lbs. at the various prices annex to them per $l b$. will give the same legres of satisfaction that it has in no case failed to do, to the vast numbers who have made a trial of it. They also trust that the peculiarly short and simple methrd for ascertaining the average prico and total amount of various goods, purchased at different prices, will be found extremely useful. By that method both are discovered with caso and simplicity; while in the ordinary way of working, such calculations are well known to occupy great leagth of time and a great number of figures-Interest is the next thing that presents itself to our notice; and the great satisfaction the Rules respecting it have given, and the value in which they are held by those who have tried the System, will be best found by referring to the numerous testimonials, in which the brevity and aceuracy of the method contained in those Rules are especially commended."
" This work differs in the following respect from most treatises on Arithmetic-they are generally printed in two books, the one containing the Questions, the other the Solutions or Key to them. We however have introduced into this one book the Questions and also Solutions and Explanations so clear and explicit that no one can have any difficulty in thoroughly comprehending them. It is hoped therefore that the price charged will be considered reasonable."

[^1]Rules given, res. and lbs. at will give the no case failrade a trial of hort and simrico and total ferent prices, method both while in the ions are well and a grent ing that presatisfaction the value in ied the Syste numerous turacy of the ecially com-
spect from erally printestions, the Te however lestions and and explicit ughly comat the price

ARITHNETICAL 'ABLES.

numeration.

Units .
Tens il
Humdreds 122
Thousands 1,234
'Tens of Thousands . . $12,3+5$
C. of Thousands . 123,456
Millions . . .1;234,567
X. ot Millions 12; ${ }^{\text {4 }}$ 5,678
C. of Millions 123;456,759

		$180 \cdot 60$
Cubrent money.	84 90	180: ${ }_{140}$: ${ }_{7} 10$
${ }_{12}{ }^{2}$ Farthings make . 1 Pemmy	96-8 ${ }^{96}$	150: 710
12 Pence 1 Sthilling	100 108 0 3 3 0	160 170 180
20 Shilling, 1 Pound, or Sovereign.	$120 \cdot 10{ }^{1}$	180: ${ }_{180}^{180} 90$

Tables of Weights and Measures.

ENLARGED MUL'TPLICATION TABLE.

UNPRE(CEDENTED SYSTEM OF

ARITHMETAC

AND

MENTAL. CAICCLATJONS.
 \rightarrow-1o-

FIRST GFNERAI. RULE.

To know the Ainount of any Number of yards, lbs. sullons, stones, ells, or any other article, requiring to be made up at any given pence, from del. to $11 \frac{3}{4}$ el. both inclusive.

Find the amount of the Number of yavels, lles. gallons, \&.c. S.c. at one penny, and multiply it by the price, when a farthing shall occur with any number of given pence (as $3 \frac{1}{4} \mathrm{~d} .4 \frac{1}{2} d$. or 93 d . \&ic.) add one quarter, or $\frac{1}{4}$, of what it anounts to at one penny. When a halfpenny shall occur with any given pence, add half the amount of what it comes to at one penny, and when 3 farthings shall oceur, add three quarters of what it amounts to at one penny, which may be done in one or two lines, as the Student shall think fit.

Tho cause of this Rule is so clearly demonstrated, that giving any further explanation than the Rule and Exumples themselves contain would be superfluous; the desire of the Publishers being to make the System; throughout, perfectly intelligible to persons of ordinary capacity, they trust will be sufficient apology for introducing at the beginning of each Rule, particularly the first, examples so very simple: they may rest assured thint every thing that can be useful shall present. itself as they proceed. All have not the same powers of comprehension.

A variety of examples solved by both methods are here laid down in the following

EXAMPLES.

What will 36 lbs. cost at 11 d . per 16 ?
36 at 1 penny equal to $3 s$. multiplicd by 11

What will 96 yurds of any article come to at $7 d$. pes yard?

96 at one penny $=8 s$.
multiplied by 7

$$
\text { £... } 16 \text { Ans, }
$$

What will 24 stones come to at 10 d . per stone? 94 at one penny $=2 s$. 10

$$
\text { £ } 1 \text { Ans. }
$$

What will 108 gallons come to at $5 d$. per gallon?

$$
\begin{aligned}
& 9 s . \text { at } 1 \text { penny. } \\
& 5
\end{aligned}
$$

£G.. 5 Ans.
What will 48 lbs . come to at 9 d . per lb ? 4s. at 1 penny. 9

$$
\text { El.. } 16 \text { Ans. }_{\text {Ans }}
$$

What will 190 ells conve to at $10 d$. per ell :
10s. at 1 penny.

- 10
$£_{5}$ Ans.
What will 60 yards come to at $8 d$. peryard? 5s. at I penny.
8

That will 132 gallons
What will 132 gallons come to at 11 d. per gallon $=$

What will 7 ? /hs. come to at $7 d$. per 16 ? 6s. at I penny. 7

$$
f: . .
$$

to at Td. pes
stone?
gallon:
allow =

OF ARITHMETIC

What will 144 quarts come to at $5 d$. per quart? 12s. at 1 penny.
$\mathcal{E}_{6} \mathrm{~A}_{n \mathrm{~s}}$.
What will 29 ounces come to at $9 d$. per ounce?
ss. $5 d$. at 1 penny. 9
fl.. 1.. 9 Ans.
What will 55 come to at $7 d$ each ?
4s. Td. at 1 penny. 7
£1.. 12.. 1 Ans.
What will 68 come to at 10d. each? 5s. id. at 1 penny. 10
£2.. 16.. 8 Ans.
What will 87 pints come to at $11 d$. per pint? Ts. 3d. at 1 penny. 11
43.. 19.. 9 Ans.

What will 99 stones come to at $8 d$. per stone?

> Bs. $3 d$. at 1 penny. 8

$$
\overline{£ 3 . .6 . .0} \mathrm{Ans} .
$$

What will 1 cut. $=112 \mathrm{lbs}$. come to at $9 d$. per $l b$? 9s. $4 d$. at 1 penny.

9

$$
\text { £4.. 4.. } 0 \text { Ans. }
$$

What will 119 lbs. come to at 7 d . per lb.?
Ms. 11 d . at 1 penny.
$\mathfrak{£ 3 . , ~ 9 . . 5}$ Ans.

NOVEL SYSTEM

What will 133 lbs. como to at 11 d . per ll.? lIs. Id. at 1 penny. 11

$$
\mathfrak{E} 6 \cdot 1 \cdot 11 \cdot 2 \mathrm{~ns} .
$$

What will a pipe $=126$ gal. come to at $9 d$. per gallon? 10s. bd. at 1 penny. 9

$$
£ 4 \cdot 14 \cdot 6 \cdot A \cdot s
$$

What will 15.1 yards come to at $5 d$. per yard ?
12s. 10 S . at 1 penny.
£3.4.2. Ans.

What will 171 yards come to at $8 d$. per yard: 14 s. $3 d$. at 1 penny. 8

$$
£_{5} \cdot 14 \cdot 0 \text { Ans. }
$$

What will 189 lbs . come to at 11 d . per ll.?
15s. Yd. at 1 penny

$$
£ 8 \cdot 13 \cdot 3 \text { Ans. }
$$

What will 199 come to at $7 d$. each? 16s. 7 dd. at 1 penny.
£5 • 16•1 Ans.
What will a tun $=\mathbf{2 5 2}$ gal. come to at $10 d$. per gallon: $\boldsymbol{f i}_{\mathrm{i}} \cdot 1 \cdot 0$ at 1 penny.

$$
\mathfrak{£} 10 \cdot 10 \cdot 0 \text { Ans }
$$

What will 40 weeks come to at $7 d$. per day?

$$
280=£ 1 \cdot 3 \cdot 4 \text { at } 1 \text { penny }
$$

$$
\mathfrak{f 8} \cdot 3 \cdot 4 \text { Ans. }
$$

What will 50 weeks = 350 days cone to at $10 d$. per dey ? £1-9. at 1 penny.

$$
£_{14 \cdot 11 \cdot 8} A_{n s}
$$

What will a leap year of 366 days come to at 11 d . per El $10 \cdot 6$ at 1 penny. 11

$$
£ 16 \cdot 15 \cdot 6 . \mathrm{Ans}_{\mathrm{s}}
$$

What will 560 lbs . of sugar cost at 7 d . per ll . fO. $6 \cdot 8$ at 1 penny.

$$
£_{16 \cdot 6 \cdot 8} \text { Ans. }
$$

What will 980 yards of calico cost at $10 d$. per yard?
f.4.1. 8 at 1 penny.

10
£40.16.8 Ans.
What will 999 gallons come to at $9 d$. per gallon:

$$
\begin{gathered}
\mathrm{E}_{4} \cdot 3 \cdot 3 \text { at } 1 \text { penny. } \\
9
\end{gathered}
$$

£37•9.3 Ans.

When quarters, halves, or three quarters, shall occur Tr the quantity, make them up with the yards, at the reckon $\frac{1}{4} d$., for half yard, add $\frac{1}{2} d$. \& quarter of a see yard (
EXAMPLES will $4 \mathcal{2} \frac{1}{2}$ yards cost at $4 d$ per yard?

> Ss. $6 \frac{1}{2} d$. at 1 penny.
> $\frac{4}{14.2} \mathrm{Ans}$.

What will $65 \frac{1}{1}$ come to at 8 d . each?
Es. $5 \frac{1}{8} d$ at 1 penny.

NOVEL SYSTEM

What will $87 \frac{?}{3}$ ounces come to at $3 \boldsymbol{l}$. per ounce?
7s. 3 3 ${ }_{3}$ d. at 1 penny.

$$
£ 1 \cdot 1 \cdot 11 \frac{1}{4} \text { Ans. }
$$

What will 993 come to at 8 d . each? 8s. $3_{3}^{3} d$. at 1 penuy.

$$
\underset{£ 3 \cdot 6 \cdot 6}{ } \text { Ans. }
$$

What will $112 \frac{1}{2}$ come to at 10 d . each ?
$98.4 \frac{1}{2} d$. at 1 penuy.
10

$$
\mathrm{L}_{4 \cdot 13 \cdot 9} \text { Ats. }
$$

What will 126.1 ounces come to at 7 l . per ounce :
10s. $6 \underset{d}{d}$. at 1 penny.
$\frac{7}{23 \cdot 13 \cdot 7 \frac{3}{4}}$ Ans.
What will $140 . \frac{3}{1}$ yards come to at 10 d . per yard:
$11 \mathrm{~s} .8 \frac{3}{4} d$. at 1 penny.
10

$$
\text { fj. } 17 \cdot 3 \frac{1}{2} \text { Ans. }
$$

What will 48 lbs come to at $7 \frac{1}{4} d$. per $l b$?
43 at 1 peuny $=4 s$.
Here we multiply the $4 s$. (what it comes to at $1 d$.) by 7 , and add in the £1.9.0 Ans. quarter of 4 s . what it comes to at $\frac{1}{1}$ (l.
What will $60 l l s$, eome to at $5 \frac{1}{2} d$. per $l b$? 60 at 1 penny $=5 s$.

$$
\frac{5 \frac{1}{2}}{£_{1 \cdot 7 \cdot 6} A_{n s} .}
$$

What will $72 l$ lbs. come to at $9 \frac{3}{4} d$. per $l l$?

$$
79 \text { at } 1 d .=6 s
$$

£2. 18.6Ans.

Here the 6s. what it comes to at I penny, is multiplied by 9 , and the 3 quarters at 6.s. added in, what it comes to at $\frac{3}{1} d$ equal to 4 s. $6 d$.

- оинсе
nay.
rounce:
any.
ny.
tiply the $4 s$. 3 to at $1(l$.) add in the s. what it
t comes to plied by 9 , t bs. added at $\frac{3}{1} d$, equal

of arithmetic.

What will 8.4 gallons como to at $11 \frac{1}{\mathrm{~g}} \mathrm{l}$. per gallon?
$11 \frac{1}{2}$
$\overline{£_{4} \cdot 0 \cdot 6} \mathrm{Ans}$.
What will 96 lbs. come to at $10 \frac{3}{4} d$ per $l b$?
96 at 1 penny $=8 \mathrm{~s}$.

$$
\frac{10 \frac{3}{4}}{£^{4} 6} \text { ais. }
$$

What will 108 lbs . come to at $2 \frac{3}{4} d$. per $l b$?
108 at 1 penny $=9 \mathrm{~s}$. \quad The 3 ?

What will 52 yards come to at $6 \frac{1}{2} d$. per yard:

$$
\begin{aligned}
& \text { Here in multiplying ts. } 4 d . \\
& \text { (what it comes to at ld.) } 2 s, 2 d . \\
& \text { what }
\end{aligned}
$$

$$
\begin{aligned}
& \text { what it comes to at } \frac{1}{2} d \text {. is } \\
& \text { brought in. }
\end{aligned}
$$

Or thus, in two lines, 52 at $1 d l .=4 s .4 d$.

The young pupil may find the very of cooing it in two lines, the easiest to be understood.
What will 144 stones cost at $7 \frac{3}{4} d$. per stone?
144 at 1 penny $=12 s$.

$$
\frac{7 \frac{3}{4}}{£ 4 \cdot 13 \cdot 0} \boldsymbol{A}_{n s} .
$$

What will $56 l b$. come to at $7 \frac{1}{4} d$. per $l l$?
56 at 1 penny $=4 \mathrm{~s} .3 d$.

$$
£_{1} \frac{71}{13 \cdot 10} A_{\text {ns. }} \quad \text { s. } 2 d . \text { at } \frac{1}{4} d \text { to bring in. }
$$

What will $64 l b s$. come to at $8 \frac{3}{4} d$. per $l l$?
64 at 1 penny $=5 s .4 d$.

$$
\frac{88}{£ 2 \cdot 6 \cdot 8} \text { Ans. } \quad \text { s. to bring in }
$$

$$
\begin{aligned}
& \frac{61}{1 \cdot 6 \cdot 0} \text { at } 6 d \text {. } \\
& \text { 2. }{ }^{2} \text { at } \frac{1}{2} d \text {. } \\
& \text { E1.8.9 Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \frac{3}{4} \quad \text { The } 2 \text { quarters gl } 9_{s} \text {. } \\
& \text { being } 6 s \text {. } 9 \text { d } \text {. is added } \\
& x_{1} \cdot 4 \cdot 9 A_{n s}
\end{aligned}
$$

What with 78 yards come to at 104 per yard?
78 at 1 penny $=6$. tic.

$$
\frac{10 \frac{1}{2}}{4 \cdot 6 \cdot 7 \frac{1}{2} \cdot \text { Ins. }} \quad \text { is. } 7 \frac{1}{2} d . \text { to bring in. }
$$

What will 90 yards come to at 113 ? per yard?
90) ut 1 penny $=-7$ s. Ed.

113 Es. $7 \frac{1}{2} \mathrm{ll}$ to bring in.

$$
\mathrm{E} 1 \cdot 3 \cdot 1 \frac{1}{2} \cdot \operatorname{lns}
$$

What will 99 yards come to at $8 \frac{1}{2} d$. per yard?
99 at 1 penny $=8 s .3 d$.
$8 \frac{1}{2}$
As. $1 \frac{1}{2} d$ to bring in.

$$
\mathfrak{£} 3 \cdot 10 \cdot 1 \frac{1}{2} \text { Ans. }
$$

What will $50 \frac{1}{2}$ yards come to at $4 \frac{1}{2} d$. per yard? $50 \frac{1}{2}$ at 1 penny $=48$. $9 \frac{1}{2} d$.

$$
4 \frac{1}{d} d . \quad \text { Ss. } 1 \frac{1}{4} d . \text { to bring in. }
$$

$$
\text { s. } 18 \cdot 11 \frac{1}{4} \text { Ans. }
$$

Or thus, in two lines :
As. $2 \frac{1}{2} d$ at $1 d$.
$\frac{4}{16 \cdot 10}$ at $4 d$.
$2 \cdot 1 \frac{1}{4} d$ at $\frac{1}{2} d$.
$18 \cdot 11 \frac{1}{4}$ Ans.

What will $52 \frac{3}{4}$ yards come to at $6 \frac{1}{2} d$. each?
$52 \frac{3}{4}$ at 1 penny $=4$. $4 \frac{3}{4} d$.
$2 \mathrm{~s} .2 \frac{3}{8} d$ to bring in, being the amount at $\frac{1}{2} d$.
£1.8.67 Ans.

$$
\text { Or thus: } \quad 4 s, 4 \frac{3}{4} d . \text { at } 1 d \text {. }
$$

$$
\begin{aligned}
& \frac{6 \frac{1}{2}}{1 \cdot 6 \cdot 4 \frac{1}{2}} \text { at } 6 d . \\
& 2 \cdot 2 \frac{3}{8}
\end{aligned} \text { at } \frac{1}{2} d .
$$

What will $64 \frac{1}{4}$ yards come to at 10 per yard:

$$
\begin{aligned}
& 5 s .4 \frac{1}{4} \text { d. } \\
& 10 \frac{3}{4} \\
& \text { 62•17•6 } 6_{16}^{11}
\end{aligned}
$$

ard?
d. to bring in.
yard?
d. to bring in.
ard?
d. to bring in.
yard?
d. to bring int.
l. to bring in, the amount
ard:
d. to bring in

OF ARITHMETIC:
What will 78 ? yards come to at 8 ? ${ }^{\frac{3}{4}}$ l. per yard?
78 it 1 perming $=6$ s. $6 \frac{3}{3} \mathrm{~d}$. s. d.

$$
\frac{-}{52 \cdot 17 \cdot 5_{16}^{1}} A_{118}^{4}
$$

What will 152 yards come to at $7 d_{8} d$. per yard?
12s. $8 \mathrm{c} /$.
$7 \frac{1}{5}$
Et. 10.3 Ans.
is. id. at $\frac{1}{8}$ to bring int.

What will 156 yards come to at $83 d$. per yard?
$13 s$.
83
for $8 \cdot 10 \frac{1}{2}$ Ans.
As. $10 \frac{1}{2} d$ at $3 d$. to bring in.

What will 168 yards come to at 9 gd. per yard?
143.

95

ss. 9 d . at ${ }_{5}^{5} d$. to bring in.
£6.14.9. Ans.
What will 360 yards come to at 107 d. per yard?

$$
\mathrm{E}_{1} \cdot 10
$$

£1G.6.3. Ans.
What will 960 gallons come to at 11 fd . per gallon:
f.

11 : 10s. at $\frac{1}{8} d$ to bring in.

$$
\mathfrak{E}+4 \cdot 10 \cdot A n s .
$$

What will $1919 \frac{1}{2}$ yards come to at $9 \frac{1}{2} d$. per yard?
£ . $10 \cdot 6 \frac{1}{4}$ at $\frac{1}{2}$ to bring in.
$\mathrm{f}: 47 \cdot 19 \cdot 10^{3} \mathrm{Ams}$.
What will $1,00 \frac{1}{2}$ yards come to at $8 \frac{1}{2} d$ per yard: $86 \cdot 5 \cdot 0^{1}$
$£_{3} \cdot 2 \cdot 64$ to bring in.

C53.9.10 1 Ans.

What will $1960 \frac{1}{2}$ yards come to at $11 \frac{1}{2} d$, per yard? t'8-3.4 $\frac{1}{2}$
£ $01 \cdot 17 \cdot 115$ Ins.
What will 2.10 yards cost at $3_{\text {lid }}^{1}$ d. per yard: $\mathbf{2 4 0}$ at l/l. per yard $=\mathbf{£ 1}$
$\frac{315}{ \pm 3 \cdot 1 \cdot 3}$.74s.

Note, The quantity at lde per yard is found to be El, which is multiplied by the pence of the price, aud the is of the price at $1 d$. being taken for the ${ }_{16}^{1}$.

What will 490 yards of cotion goods cost at 7 ic d. per yard:

犬
$7{ }_{16}^{16}$

7s. 6 cl. at ${ }_{10}^{3} d$. to bring in.

$$
\text { £14•7. } 6 \text {. Ins. }
$$

What will 963 yards cost at 810 in d. per yard?

$$
960 \text { at } 1 d=\mathfrak{e} 4
$$

Price of $960 \mathrm{y} \mathrm{d}_{\mathrm{e}} .=35 \cdot 5$

£35-7.9.9.7ns.

SECOND GENERAT, RULE.

A Ruset to know the Amount of any Number of yarde, clls, slones, ilss. gallons, quarts, $x \cdots \therefore$ any given shillings per yard, \&e. Sc.

Find the anount at one shilling and multiply it by the price.

Should 3 penee occur in the price, add one quarter of what it amounts to at a slilling; if 4 pence, add one third; if 0 pence add hali; if 9 pence, add three quarters at what it amounts to at a shilling.

Should the pence in the price not be an aliquot part of : silling, find for the shillings by this Rule, and for the pence by the Rule for pence, which ameunts add together.

OF ALITHMETIC.
EXAMPI.ES
to the foregoing Rules.
What will 31 yards come to at 3s. per yard?
31 at 1 shilling $=£ 1 \cdot 11$
multiplied by 3

$$
\mathfrak{E} 4 \cdot 13 \text { Ans. }
$$

What will 17 yards come to at 7 s. per yard?
47 at 1 shilling $=\mathbf{x} \boldsymbol{2} \cdot 7$ 7

$$
\mathfrak{L}_{16} \cdot 9 A_{n s}
$$

What will 55 yards cost at $9 s$. per yard?
55 at 1 shilling $=5 \& \cdot 15$
9

$$
\mathfrak{£ 2 4 \cdot 1 5} . \mathrm{Ans}_{\mathrm{s}}
$$

What will 71 gallons come to at 11 s . per gallon:

$$
71 \text { at } 1 \text { shilling }= \pm 3.11
$$

$$
\boldsymbol{\varepsilon} 39 \cdot 1 \text { Jns. }
$$

What will 89 yards come to at 128 s. per yard?
89 at $1 s=\mathbf{£ 4} 4$
This and others of a simila nature can be done by another method, which shall be ex£53. 8 Ans. plained as we proceed.

What w!ll 98 gallons come to at 11 s . per gallon:

$$
\text { f. } 4 \cdot 18
$$

$$
£_{53 \cdot 18} \text { Ans. }^{11}
$$

Iia introducing fractional parts of a yard, lb. \&c. in the quantity, when the price is shillings per yard, reckon the quarter as ? pence, the half as 6 pence, and the 3 quarters as 9 pence, as the following examples will explain.
What will $4 \% \frac{1}{4}$ yards cost at 5 s . per yard?
451 at 1 shilling $=£ 2 \cdot 7.3$

$$
£_{11 \cdot 16 \cdot 3} \text { Ins. }
$$

What will tiy! y urds cost int 11 s . per yard? $69]$ at 1 shitling $=\boldsymbol{2} 3 \cdot 9 \cdot 6$

$$
\frac{1 t}{538 \cdot 4 \cdot 6} \cdot 1 \mathrm{~ns}
$$

What will 35 gallons cost at 9 s. per gallon?
35 5^{4} at 1 shilling $=\mathbf{E} 4 \cdot 5 \cdot 9$

$$
\mathfrak{S} 38 \cdot 11 \cdot 9 \text { Ans. }
$$

What will $111+l 6 s$. come to at 8 s . per $l 6$?
at 1 shilling $=\mathfrak{x} 5 \cdot 11 \cdot 3$

$$
£_{14 \cdot 10 \cdot 0} \AA_{\text {nss }}
$$

What will 1292 oz. come to at 198 por oz:
at 1 shilling $=\boldsymbol{E} 6 \cdot 9 \cdot 6$

$$
f 77 \cdot 11 \cdot 0 \text { Ans. }
$$

What will $185 \frac{3}{4}$ st. come to at is. per st.? at 1 shilling $=£ 9 \cdot 5 \cdot 9$

$$
\text { £Q37 • } 11 \cdot 6 \text { Ans. }
$$

What will $540 \frac{3}{4}$ yards cost at $16 s$, per yard? at 1 shilling == £27•0.9
What will $365 \frac{1}{2} l b s$. come to at $13 s$. per $l 6$? $86.5 \frac{1}{2}$ at 1 shilliug $=\boldsymbol{X} 18 \cdot 5 \cdot 6$

What will $661 \frac{1}{s}$ yards come to at $6 s$. per yard: at $\begin{aligned} 1 \text { shilling }= & £ 33 \cdot 1 \cdot 1 \frac{1}{2} \quad \begin{array}{l}\frac{1}{8} \text { of a yard att } 1 \mathrm{~s} . \\ \text { per yard in } 1 \frac{1}{2} d .\end{array} \\ & =198 \cdot 6.9 \text { Ans. }\end{aligned}$

What will $664 \frac{5}{8}$ gallons come to at 7s. per gallon? at 1 shilling $=\mathbf{f} 33 \cdot 4 \cdot 7 \frac{1}{2}$

$$
£ 232 \cdot 12 \cdot 4 \frac{1}{2} \text { Ans. }
$$

What will 7202 yards come to at $8 s$. per yard ? at 1 shilling $=\mathfrak{£} 36 \cdot 2 \cdot 10 \frac{1}{8}$
£289.3.0 Ans.

What will 80 yards come to at $4 s .3 d$. per yard ? 60 at 1 shilling $=\boldsymbol{f} 4$

$$
\frac{44}{f_{17}} A_{11 s} .
$$

Here $3 d$. being the $\frac{1}{4}$ of a shilling, the quarter of $£ 4$, what it comes to at $3 d$, is added when multiplying by the price.
What will 100 gallons come to at 5 s . $6 d$. per gallon? 100 at 1 shilling $=£ 5$

$$
\frac{5 \frac{1}{2}}{£ 27 \cdot 10} \text { Ans. }
$$

What will 120 lbs . come to at 6 s .6 d . per lb ? 120 at 1 shilling $=£ 6$

$$
\frac{6 \frac{1}{2}}{£ 39} \text { Ans. }
$$

What will 140 yards cost at 11 s . 6 d . per yard? at 1 shillings $=£ 7$

$$
\frac{11 \frac{1}{2}}{£ 80 \cdot 10} A_{n s}
$$

What will 160 oz . come to at 5 s .3 d . per oz ? at 1 slilling $=\mathfrak{d} 8$

$$
\frac{5 \frac{1}{4}}{£ 12 .} \text { Ans. }
$$

What will 180 lbs . cost at 12 s . 9 d . por 16 ?
at $1 s=\mathscr{L} 9$

What will 900 gallons come to at $4 s$. Id per gallon? at $1 \mathrm{~s}=\mathrm{f} 10 \quad$ Here 4 l . being the third of a
 shilling, the third ol $£ 10$ is added in.

What will 220 gallons come to at 118.9 . per gallon : at 1 shilling $=\mathbf{£ 1 1} \cdot \mathbf{0}$

$$
\frac{11 \frac{1}{4}}{\mathcal{L}^{123 \cdot 15}} \text { Ans. }
$$

What will 240 yards come to at $11 s .9 d$, per yard?
240 at 1 shilling $=\boldsymbol{E} 19$
$\frac{11 \frac{3}{4}}{x 141} A_{n s}$.

What will $44 \frac{1}{2}$ yards come to at $8 s .6 d$. per yard? at 1 shilling $=\boldsymbol{£} \Omega \cdot 4 \cdot 6$

What will $69 \frac{3}{9}$ yards cost at $5 s .6 d$. per yard?
it 1 shilling $=£ 3 \cdot 9 \cdot 9$ bring in.

$$
\pm 19 \cdot 3 \cdot 7 \frac{1}{2} \text { Ans. }
$$

What will 38 y yards cost at 11 s .3 d . per yard? at 1 shilling = $\mathrm{e} 1 \cdot 8 \cdot 3$ 114

$$
\therefore 49 \cdot 12 \cdot 9 \frac{3}{4} \cdot A n s .
$$

What will $91 \frac{1}{2}$ yards cost at is. $9 d$ per yard : at 1 shilling $=\boldsymbol{£} 4 \cdot 11 \cdot{ }_{7}^{6} \quad \boldsymbol{2 3} \cdot 8 \cdot \mathbf{3} \frac{1}{2}$ to bring m

$$
635 \cdot 9 \cdot 1 \frac{1}{2} \cdot 1 n s
$$

What will $125 \frac{2}{4}$ gallons cost at 11 s .4 d . per gallon:

$$
\begin{aligned}
& \text { at } 1 s=\varepsilon 6 \cdot 5 \cdot 9 \quad x a \cdot 1 \cdot 11 \text { to bring in. } \\
& \frac{11 \frac{1}{3}}{£ 71 \text { - J.2.9ns. }}
\end{aligned}
$$

What will 44 yards cost at $4 s$. Id. per yard ?

11 at $1 \mathrm{~s} .=\mathrm{E}=4$
4. 1
+8.19.8 Ans.
What will $66 \mathrm{ll} s$. come to at iss. I d. per $l b$! at $1 \mathrm{~s} .=\mathbf{=} \mathbf{2} .6$ 5.1
$\therefore 16.15 .6 . / \mathrm{ns}$.
3 hat will 90 oz. come to at gs. $2 d$. per $o z$?
at $\mathrm{is}=\mathrm{E} 4.10$
6.9

Here lt y ards at $1 d$. being Ss. $8 d$. is brought in one line.

Od. per gallon ?
per yard?
per yard?
c1-2.3 to bring in.
yard?

1. $14 \cdot 10 \frac{1}{2}$ to ring in.
ry ard?
03 to bring in.
ard :
$7 \frac{1}{2}$ to bring m.
per gallon:
II to bring in.

What will 102 gallons come to at $7 \mathrm{~s}, \mathrm{Qd}$. per gallon ?
at 1 , Billing $=\boldsymbol{L} \boldsymbol{J} . \mathscr{O}$
10% at 9 d . being 17 s. to bring in.

$$
\mathfrak{L} 36.11 .0 \text { Ins. }
$$

What will $119 \frac{1}{2}$ yards cost at 9 s . $2 d$. per yard :
at $1 \mathrm{~s} .=\mathrm{LH}$. 12.6
9.2

$$
\pm 51.11 .3 \text { Anus. }
$$

What will $126 \frac{1}{4}$ gallons cost at 12 s. Id. per gallon?
at 1 shilling $=£_{6} 6.6$

$$
12,1
$$

18s. ad to bring in.

HOs. $6 \frac{1}{4} d$ to bring is

$$
\overline{x 6.5 .6 \frac{1}{4}} . \ln s
$$

What will 43 yards cost at Ss. 5rl. per yard ?
at $1 s==\mathfrak{E} 2.8$ 5

$$
c 13.0 .9 n s
$$

Such as the above may be done by another method. sthehshull br explained as we proceed.
What will 79 yards cost at 7 s .7 l . per yard:
527.6 Ans.

$$
\text { at } 1 s=£ 3.12
$$

$$
7
$$

Gs. at le l. 7
\mathbb{E}. a to bring in.

Novel, nysurtat

What will 8.1 gallons cost at $4 s$. od per gallon?

at Is. ed . 1

9

239. 11 Ins.

What will 96 oz. cost at is 10 d per oz? at $1 \mathrm{~s}=\mathrm{E}=\mathbf{E} .16$ 7

0:37. 1:2 sins.
is. at ld 5
et. 15 to bring in.

 it t ls. $=\boldsymbol{c o s} .8$

What will 120 gallons come to at Its. Tate. per gill on:
at $\mathrm{I} .=\boldsymbol{E} 6$

What will 14.4 yards cost at 13s. 103. ${ }^{\text {a }}$, per yard?
at $/ s .=57.4$
$\overline{£ 100.1}$ Aus.
What will $150 \frac{1}{2}$ gallons come to at $5 s$. Ed . per gallon?

$$
\text { at } 1 s=£ 7.10 .6
$$

5
12s. $6 \frac{1}{2} d$. at $1 d$. 5
Ans. \&40. 15.91
What is the price of $140 \frac{1}{2}$ gallons at $17 s .1 d$. per gallon:
at $1 s=\underset{\mathcal{E}}{ } \mathbf{7} .0 .6$
$1 / \mathrm{s} .8 \frac{1}{2}$ d. to bring iss.

$$
\mathbf{x}_{190.0 .9 \frac{1}{2}} \text { Ans. }
$$

What will 80 yards come to at 14 s . per yard: 80 at 19. $=\mathbf{y} 4$
per gallon?

is. at Id.
 5

e1. 1.5 to bring in.
$o z$?
3s. at lid.
10
et. 0 to loring in.
r lb?
Is at $1 d$.
51
-
9.6 to bring in.

7ade per gallon:
10s. at 1 l .
得
7.6 to bring in.
per yard:
19s. at $1 d$.
$10 \frac{3}{4}$
. 0 to bring in.
sd. per gallon? l. at $\mathrm{I} d$.
$\frac{1}{2}$ to bring in.
Id. per gallon : . to bring in.

of abitimetic:

In this and the follgwing Sums a great many figures may be saved, by multiplying the Shillings of the price by the number of \mathfrak{E}, that the guantity amount to at is. which brings out the Answer in \mathbf{C}.
What will 120 yards como to at 23s. per yard?
190 at $18=S 0$

$$
E 1.33 \text { Ans. }
$$

What will 140 yards come to at 978 . per yard: 140 at !s. $=57$
X'189 Ans.

What will 160 gallons come to at 333 . Gel. per frallon :

$$
\begin{aligned}
& 160 \text { at } \mathrm{s} s=\mathcal{L} 8 \\
& \mathcal{L} \Omega 63 \\
& \text { Ins. }
\end{aligned}
$$

In this (Question Gd. has been introduced, for which $\mathcal{C} 4$ is added in, because 160 at 6ℓ. amounts to $\mathcal{L} 4$. What will 180 yards come to at 37 s . 3 dl . per yard :
$180 \mathrm{at} 1 \mathrm{~s}=\mathrm{C} 9$

$$
\left\{335 \cdot \sigma \cdot I_{n 8} .\right.
$$

$$
\begin{aligned}
& \text { CQ a the } 1 \text { of de9 } \\
& \text { to brime in. }
\end{aligned}
$$

What will goo yards

$$
3(s .4 d .
$$

200 at $1 \mathrm{~s}=\boldsymbol{E}=10$

When the price is any even number of Shillings. Rule.-Multiply the quantity by half the Shillings, double the out side or unit figure for Shillings, and let the other stand for \mathfrak{x}. which will give the answer required.

EXAMPLES

What would 193 yards cost at 18s. per yard : 193 6 equal to half of 12.

```
£:3 - 16 .lns.
```


NOVEL SYSTEM

The canse of this Rule is, that instead of inultiplyugg by the number of Shillings, and dividing by ${ }^{2} 0$ (which is tho usual way) you multiply ly half the number of shillings and divide by 10 , which is in fact dome by the above and following operations. It becomes more advantageous when the price gets above 12 s .
Suppose 1.17 yards at 148 per yard.
147
$7=\frac{1}{2}$ of 1.1.

What will 3.47 yards como to at 168 . per yard? 347

8
£277. 12 Ans. $^{\text {ns. }}$

Here the $\frac{1}{2}$ of 16 is 8 , which being placed under the 3.17, say 8 times 7 are 56 , double the 6 , which makes 12, put it down for shillings and earry 5 ; then 8 times t are 32 , and 5 to carry are 37, put down 7 and carry 3; then 8 times 3 are 24, and 3 are 27, make £a77. $12 s$.

Should the price not be even, multiply $\frac{1}{2}$ the quantity by all the shillings, and double the unit figure as
as 342 at 17 s.
171
17

Or, multiply 349 by 8 , doubling the unit figure, which gives the price at $16 s$.; then for $1 s$. per yard difficrence, add $£ 8 \cdot 11 \mathrm{~s}$. the amount at Is . thus, 342

8	or, 456 at $2 \cdot 15$
273.12 at 16 s .	
17.2 at 1 s .	156
- - at 1s.	12
290. 14.1 ns	

(HF ARITIMETIC.

Another method, by which may bo found the amount of many articles in in short and simplo manner, as follows -Ruse. Consider the pence in the price of one Article as shillings, by which you linve tho price of twelve Articles, which being multiplied by the number of dozens in the quantity, gives the total nmonnt.

DEMONSTHATION.

When the pence in the price of one Article is converted into shillings, it is elear you then have the amonnt of twelve Articles; that being multiplied by the momber of twelves in the entire quantity, must give the total amonnt, and save much time, ligures ind trouble, besides giving the result with the most per-

EXAMPLSS.

What will 72 come to at 3s. 5d. each?
3s. 5ul. $=-41 \ell$. as shillings $=\mathscr{L} 9$. I the price of G one dozen.

$$
E 12 \cdot 6 \text { Als. }
$$

It is multiplied by 6 , because there are 6 doz. in 72 . What will 84 come to at 12 s . 10d. each :
$12 \mathrm{~s} .10 \mathrm{~d} .=15 \mathrm{~d}$. as shillings $=\boldsymbol{£ 7} \cdot 14$ for 1 doz.
7

$$
\pm 53 \cdot 18 \text { Aıs. }
$$

What will 108 come to at $9 s .5 \frac{1}{2} d$ each?
9s. $5 \frac{1}{2} d=113 \frac{1}{2} d$. as shillings $=£ 5 \cdot 13 \cdot 6$ for 1 do $\%$. 9

$$
\mathcal{L}_{5} 1 \cdot \overline{1} \cdot \mathrm{~A} \text { ns. }
$$

What will 126 come to at $15 \mathrm{~s} .8 \frac{3}{4} d$. each ?

$$
\mathrm{£} 99 \cdot 1 \cdot 10 \frac{1}{2} \cdot A_{n!}
$$

Here $\mathfrak{E} 9 \cdot 8 \cdot 9$ the price of one dozen, is multiplicd by $10 \frac{1}{2}$, because 196 are equal to $10 \frac{1}{2}$ dozen. What will 147 gallons come to at $17 s, 7 \frac{1}{4} \bar{l}$. per gallon:

$2(1)$
ت口"EL ststu:u

What will \therefore hats bo worth at 3 s. 7% each: B.s. $7 t=1$; l; us shillings $=4 . .3$ the price of 1 dor.
\&1.9.7.1ns.
 the ont ditarence between? 1 the quantity found when

If the ealculator prefer it, the overplas, ater unlei. plying by the proner ligure, may be atded. Thus: Suppose G $_{2}$ yatds of eloth at is. The per yard. is $\overline{i l l}=57 d^{2}$; as shillings- E; 7
5) dozen, giving the
$\overline{2(6.15}$
11.2 The adeticient
add, being lis.
$\because d$.

What will a chest of tea, contnining $8.3 / \mathrm{lbs}$., cost it $\cdot 1 \mathrm{~s}$. 2t 2 . per ll ? 1s. $2 \frac{1}{2} d=j()!d . ;$ as shillings $=\mathcal{L} 2 \cdot 10$.
ake in for $1 / l$ 7 Is. ${ }_{2}^{2} \frac{1}{2} d$. wheu

$$
\text { Ans, }\{17 \cdot 17.8!\text { miltiplying by }
$$

What will $9 t \frac{1}{2} l b s$. of tea come to at is. $6 \frac{3}{9} l$. per $l b$: is. 6 等 $d=90^{33^{2}} l$. : as shill. $=E 4 \cdot 10.938$ 93d to take 3 in for the $\frac{1}{2} 16$.

$$
\text { Ans. } £ 36,9.9: \text { above the } \mathrm{lb} \text { do }
$$

If the quantity be under a certain number of dozens adopt the sime system, observing to subtract the overplus. Thus:
Suppose it yards of cloth at is . $10 \frac{1}{4}$. l. per yard. is. $10 \frac{1}{4} d=94 \frac{1}{1} d$. as shill $=1 \cdot 1 \cdot 1 \cdot 1.3$

6 amount of 72.
98.5 .6
$7 \cdot 101$ deduct for 1 yd.

$$
\text { Ans. } £ 27.17 .7 \frac{3}{1} \text { the overplus. }
$$

What will $1 \cdot{ }^{4}$ yards come to at $118.2 \frac{1}{8} l$. per yard: $11 s .9 \frac{1}{8} d=134 \frac{1}{8} d==\boldsymbol{E} 6 \cdot 14 \cdot 1 \frac{1}{2}$ price of 19 yards.

What will 168 gallons of rum come to at 11 s .833 h . per gallon?

$$
\begin{aligned}
& 11 \mathrm{~s} .83_{8} d .=1.10 \frac{3}{4} \mathrm{~s} \text {. or } \mathrm{fy} \text {. } 0.42 \\
& \text { £98.5. } 3 \text { Aนя. }
\end{aligned}
$$

The simplicity, accuracy and expedition of the foregroing, does not stand in nced of comment, its practical utility being perfectly conspicuous

Rule for reducing cuts. qus. and lls. to lbs.-First place down the number of cwis, to the right of them put the number of $l b s$ s. contained in tise grss. and $l b s$., then add 12 lbs . for each cut and you will have the number of lbs. in the whole.

Should the price per $l b$. be pence, consider them as pence; if shillings, consider them as shillings, as filly explained in the following

EXAMPLES.

What will 6 cul. 1 gr. 20 lbs , cost at $\tilde{j} l$. per $l l$.? 648
72
720 lbs . as pence $=60 \mathrm{~s}$. or 23 . at 1 ld . per lh .

$$
\mathcal{L} 15 A_{n s}
$$

DEMONSTRATION.

The 6 to the left is the 6 cwt.; the 48 after it is the 28 lbs in the $9 r$. and the 20 lbs.; the placing of the 18 (or any two figrores) after the preceding figure, is well known to convert them into mumeral hundreds, thus, (100); but as each cml. contains $112 / \mathrm{bs} .$, it is clear that there are $12 l b s$. deficient for each cul.; hence the necessity for adding 12 lbs . for each cutl.

Huv ug discovered the number of $l b s$. in any given

Novel system

number of cuts. frs. and lbs, which is done by the foregoing rule and example, you then proceed to find what the article amounts to, at any given pence, by the First General lake, page 1: and at any given shitlings, by the Second General Rule, page 10: which it will be necessary for any person studying this Book to become well acquainted with.
What will 7 cult, a ais. 0 lbs. cost at 7 ll , per ll,: 7.56

31

1. $\sqrt[310]{16}$ s. considered as pence.
$70 s=£ 3.10$. at Id . per $l l$. 7
42.10 . 2 ns .

$$
\begin{aligned}
& 12\lceil 960 \text { lbs. as pence. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { £ } 23 \text { Ans. }
\end{aligned}
$$

Tho same example by Rule of Thees.

frothing $\overline{23} \quad \overline{34}$

$$
28
$$

980
63
960 lbs .
23
2390
1020

$$
\begin{aligned}
& \text { 4)23080 as farthings. } \\
& \text { 20520 as pence. } \\
& \text { (0) as shillings. } \\
& \text { ans. }
\end{aligned}
$$

in is done by the proceed to find en pence, by the any given shilge 10: which it ng this Book to per $l b$:
"3ch. per los?
ll.

OF ARHTHMETIC
2":
What will 9 cirl .2 qrs. 16 lbs . cost at $6 \frac{1}{2} d$. per $l 6$? 972 108
19) $\overline{1030}$
f. s.
$90 s=4 \cdot 10$ at $1 d$. per $l b$.
$\frac{6 \frac{1}{2}}{\text { L. } 99.5}$ Ans.
What will 10 crel .3 qrs 8 lbs . come to at 8 di . per $l 6$.?

$$
109 \%
$$

$$
120
$$

(27) $\overline{1219}$
$\overline{101 s}=\overline{5} \cdot \stackrel{s}{1}$ at $1 d$. per $l b$.

$$
\overline{L .40 .8} \text { Ans. }
$$

What is the price of $11 \mathrm{cut} .3 \mathrm{qrs}, 4 \mathrm{lbs}$. at $5 \frac{1}{2} \mathrm{l}$. per lb .? 1188
132
13) 1320

$$
=\quad \text { L. s. }
$$

$$
110 \mathrm{~s}=5.10 \text { at } 1 \mathrm{~d}
$$

$\frac{9 .}{\frac{91}{2}}$ L. 2.15. to bring in.

What will $12 \mathrm{cut} .3 \mathrm{qrs} .19 \mathrm{l6s}$. come to at $10 \frac{1}{1} \mathrm{~d}$. per 16 ? 1996
144

$$
\ldots
$$

$$
1440 d=6 \text { at } 1 d
$$

$$
\frac{10 \frac{1}{4}}{\text { L. } 61 \cdot 10} \text { Ins. }
$$

What will 12 cwl. 3 qrs. 2416 s . cost at $10 \frac{1}{2} d$. per 16 ? 1303 $14 i$
19) 1452

$$
\overline{121 \mathrm{~s} .}=\begin{gathered}
\text { L. s. } \\
6 \cdot \frac{1}{10 \frac{1}{2}} \text { at } 1 d . \text { per } l l . \\
\text { L. } 63 \cdot 10 \cdot 6 \\
\text { Ans. }
\end{gathered}
$$

It must be observed, that when the grs. and l6s. reduced to lbs. exceed 100, they must not bo placed after the cuils as heretofore, but added in, saying 3 qrs, and 24 lls . make 103, and 12 hundred are equal to 1308.
What will 10 cwt. 0 qrs. 0 lbs. cost at 103 d . yer $l \mathrm{l}$?

$$
\begin{aligned}
& \begin{array}{r}
1500 \\
180 \\
\overline{1680} \\
\overline{140 s}
\end{array}=\begin{array}{l}
\text { L. } \\
\frac{103}{2}
\end{array} \\
& \text { L. } \overline{75 \cdot 5} \text { Ans. }
\end{aligned}
$$

When there are no qus. or lls. two eiphers must be added, as the cut. must be reckoned as numerical hundreds, as 100, to which 12 lbs. must be added to make it 112 lls . the number of lbs. in a cicl.
What will 17 cut. 0 prs. 16 lbs . cost at $11 \frac{3}{1} d$. per $l l$? 1716
90.4
12)1920

$$
\overline{160 \mathrm{~s} .}=\frac{L}{8} \mathrm{at} 1 d .
$$

$$
L 94, I_{n} .
$$

It is hoped that the above examples, at pence per $l b$. will be found sufficient; we beg to introduce examples where the price is shillings per $l l$.
What will 18 cut .2 qrs. 12 lbs . come to at $2 s$. 6 d . per 1 l ?

$$
\text { 2s. } 6 d \text {. of a } L . \text { is } \frac{\left.\frac{1}{8}\right) \frac{1868}{216}}{\text { L. }-\frac{960 \cdot 10}{2084}}
$$

When the price is an aliquot part of a L. as the above is one-eighth, nothing can be slorter than to tako such part.
qis. and l6s. reot be placed after saying 3 qrs. and equal to 1308.
$103 d$, yer 16 ?
iphers must be numerical hunadded to make

13 d. per ll?
it pence perlb. luce examples

Qs. $6 d$. per $l b ?$
a L. as the r than to tako

What will $1 t 12 \mathrm{ckt}$. : grs. 8 lbs. come to at 14. dd per 16 ?

$$
\begin{aligned}
& 3202 \\
& 38.4 \\
& \text { 1s. 4d. of a } \mathcal{E} \text { is is } 3676 \\
& \text { L. 945 • 1-4 Nus. }
\end{aligned}
$$

What will 31.6 cet. 3 qis. $1416 s$. cost at 1 s .8 d . per $l h^{?}$? 6693
792
1s. 8 d. of a L. is 12$) 7490$

$$
\text { L. } 621 \cdot 3 \cdot 4 \cdot 2 n s
$$

 10.996 1260
L. s.
$118 \mathrm{j} 6 \mathrm{~s}=593 \cdot 16$ at 1 s . 3

$$
\text { L. } 1773 \cdot 8 \cdot 1 n s
$$

Calculations of cuts. iprs, and les. at pour's, shilling's and peace per cut may be done by the lillowanis ethods. What will 6 cmt. 2 qrs. come to al Gfis. $8: b$, pe: cut? L. $3 \cdot 6 \cdot 8$ price ol 1 crit.

6 $\frac{1}{2}$ cuct. L. 1. 13. 1 to tring in. L. $11 \cdot 13 \cdot 4$ Jus.

Many calculations of cwts, qres, and lbs. at porehds, qhitlings and pence per cot. may be much shortacd by find its the prico
per lb. as follows:

${ }^{1} \mathbf{d} .$		$\mathrm{P}_{\mathrm{i},(\mathrm{lib},}$					
is			E.s. 112 12	${ }^{\text {d }}$ 6 ${ }^{\text {a }}$	$\begin{array}{lll} 1: & 1 \\ 3 & 3 & 1 \end{array}$		Es. c
3 :	$\begin{array}{lll}0 & 4 \\ 0\end{array}$	33	1150	,	35	10.1	$\cdots 815$
1 '	$\begin{array}{llll}0 & 7 & 0 \\ 0 & 9 & 4\end{array}$	1)	117	7	37	'is	4 is 0
11	9119	1/	1 2 2 2 198	\%	3100	10.	[10
$1 \frac{1}{2}$	0110	4	$\begin{array}{llll}1 & 2 & 0 \\ 2 & 4 & 1\end{array}$	${ }_{8}$	3	11	52
13	0164	5	26	8	\%	11	55
2	0188	5.	29	${ }^{2}$	817	11	${ }^{5} 781$
21	110	$5 \frac{1}{2}$	2114	s	313 ${ }^{1} 1$	11.	5.3
$2 \frac{1}{2}$	34	54	213	${ }_{9}$	1 4 4 1	12	512
$2 *$	$b 8$	6	2160	9.	10		${ }_{5} 11{ }^{1}$
3 !	80	64	2184	9	1 4 4	${ }^{3}$	
34 '	104	61	308		4110		519 6

What will 6 cud. 3 gus. 20 lbs . cost at Lis $\cdot 6 \cdot 8$ per coot?

$$
\text { L. } 2 \cdot 6 \cdot 3 \text { per cut }
$$

\qquad
$16 \cdot 6 \cdot 8$ price of 7 cvt .
3.4 price of 8 lbs.
deduct
L $16 \cdot 3 \cdot 4$ Ans.
When the gre and lis come near a cut, calculate for the cols. above your quantity, from which deduct for as many lbs. as may be deficient, as per

EXAMPLES.

What will 11 cut. 3 gus. 24 lbs. cost at 8 ts . per cut?
L. 4.4 per cut.

12
30,8 price of 12 cut. 3 deduct for 4 lbs.

It will be seen by the foregoing table that L. $4 \cdot 4$ per cut. is 9 d. per $l b$.

$$
\overline{L 50 \cdot 5} \text { Ans. }
$$

What will 9 cwt. 3 gris. 27 les. come to at 93 s 4 . per cut?

L4. 13. 4 per cav l.
L. 4, 13.4 being 10 d . per $l 6$., for $1 / \bar{b}$. deduct $10 d$.

I. 46 . 12, 6 Ans.

What will 11 col 3 gus. S9 16 s , cost at 112 s . per cut ? L. 5.12 per cut.

12
L. 67.4 for 12 cut . 6 deduct for 6 lbs.

119s. per cut. is 19 . per 16 .

$$
\text { L. } 66.18 \text { Ans }
$$

What will 8 cot. 2 gre. come to at $110 \mathrm{~s}, 6 \mathrm{~d}$. per cut.

L. 9. 15.3 to bring in. 8 $\frac{1}{2}$

L 46.19.3 Ans.

Cwts. qres. and lbs. may be also done by the following much approved

RUIEE

Multiply the lbs, by $2 \frac{1}{5}$, and consider the product as pence; multiply the q ro by and consider the product as shillings; the curls. you are to consided as L

EKAMPLES.

What will 73 cut. 2 qus. 7 lbs. cost at L. 6.1 .8 per cut?
cwt. qrs. Uss.

$$
73.9
$$

万. 2 cot.qus. lus. L.
1s $8 \mathrm{~d} .=-173 \cdot 11,3$ price of $73: 9: 7$ at I per cout.

6.9. $7 \frac{1}{4}$ at 1 s .8 d . per cwl.
L. 447 . $10 \cdot 1 \frac{1}{1}$ Ans.

bemonstration.

The enuse of this Jule is evident ; as at $\boldsymbol{L} .1$ per cut. a $q r$. must cost \tilde{z}_{3}.; and a 16 . the 30 th part of that, which is $9 \frac{1}{7} d$.

What would 239 cwt .3 qus. 14 lbs . come to at L. 4 ©s. $6 d$. per cwl?
cul. qris.lles.

$$
\begin{array}{r}
239: 3: \\
5: \quad 14 \\
0: 93
\end{array}
$$

$1159: 10: 0$
36: 4:81 at \mathbf{Q}_{3}. 6d. per cot.

$$
1195: 14: 8 \frac{1}{4} \text { Ans. }
$$

By the above method, the trouble of taking parts for the qrs. and $l b s$, is entirely obviated.

In calculating acres, roorls and perches, the same method may be adopted with advantage.

Consider the ac'es as pounds, multiply the roods by 5, the product consider as shillings, and tho perches by $1 \frac{1}{2} d$. gives the amount ol the whole at $L .1$ per acre. which multiply by the number of pounds per acre.

EXAMPLES:
What will 60 a. $2 r .8$ p. come to at $L .3: 10$ per acre?
a. r. p.

60:2:3
$5: 1 \frac{1}{2}$
60:11:0 at L. 1 per acre
L. $211: 18: 6$ Ans. $L 30: 5: 6$ to bring in

DEMONSTRATION.
As a perch is the 40th part of a rood, and a rond at $L .1$ per acre $=5$ s. multiply the perches by $1 \frac{1}{2} d$, which gives in this case 1 s .; then 5 times 2 are 10 , and 1 to carry makes 11 s; bring down 60 at $L .1$ per acre, gives the total at $L .1$ per acre, which being multiplied by $3 \frac{1}{2}$ gives the answer.
What will 80 a. 3 r. $\mathfrak{\sim}^{4}$ p. come to at L.4. 6.3 per acre:

$$
\begin{aligned}
& \text { a. r. } p \text {. } \\
& \text { 30:3:24 } \\
& \text { z: } 1 \frac{1}{2} \\
& \text { 30:13:0 at L. } 1 \\
& 4 \frac{1}{3} \text { L. } 26: 19: 4 \text { to bring in. } \\
& \text { L. } 350: 11: 4 \text { Ans. }
\end{aligned}
$$

What will 196 a. 2 r. $30 p$ come to at L.5. 19. 10 per aere:

In this operation, the price being nearly $t 6$ per acre, it has been ealculated at that price, which being 2d. per acre more than the price, the number of acres, Sic. at $9 d$. have been deducted from it.
What will 575 a. $3 r 96 p$ come to at $£ 7 \cdot 1$ per acre?

$$
\begin{array}{r}
\begin{array}{r}
4031 \cdot 7 \cdot 9 \\
20 \cdot 15 \cdot 109
\end{array} \\
\begin{aligned}
\text { at } £ 7 \\
\text { at } 1 s .
\end{aligned} \\
\hline 1060 \cdot 3 \cdot 7 \frac{3}{8}
\end{array}
$$

In treating on this deseription of calculations, Troy Wcight, cousisting of llos. oz duts and gres. I shall give Fules for solving in a similar manner by the following simple Rut.

Consider the gr's. as halfpence, the dets. as shillings, and the oustces as poruds, which gives the amount of the whole at $\mathcal{L l}$ jer oz.

EXAMPLES.

Wirat will 11 oz. 8 deets. 1 gis. cost at $3 s$. Ad. per ounce?

$$
0 \approx \text { chuts grs. }
$$

$$
11 \cdot 8 \cdot 4
$$

$$
1 \cdot 0_{2}^{1}
$$

3s. $4 \boldsymbol{d} .=\mathfrak{E}_{6}^{\prime}$.) $11 \cdot 3 \cdot 9$ at $f 1$ per ounce.

$$
\left\{1 \cdot 18 \cdot 0 \frac{1}{3} \quad\right. \text { ans. }
$$

DEMONSTRATION.

The 8 dets are considered as shillings, because there are 90 duts. in the oz. and the ounces at fl per oz. would give 1 shilling for each that, ; the gro. are conssidered as $\frac{1}{2} l$, each, on account of there being $2 f$ duts. to the grain, consequently each grain at $\frac{1}{2} l$. cach, and dut. at is. each, will give the amount of the entire quantity at $£ 1$ per oz, which you must multiply or divide, as the price will require, and as the following examples more fully explain.

NOVEL SYSTEM

The $870 \cdot 0 \cdot 10$ being the amount of the following quantity at $£_{1}$ per oz it is divided by 20 , which gives the amount at 1 shilling per oz. and that is multiplied by $8 \frac{1}{2}$ as the price is $8 \frac{1}{2}$ shillings, or $8 s .6 d$. per oz: What will $5 \mathrm{ll} .10 \mathrm{oz} .0 \mathrm{dicts}^{2} 20 \mathrm{grs}$. come to at $8 \mathrm{~s}, 6 \mathrm{~d}$ per ounce?

$$
\begin{aligned}
& \boldsymbol{f} \quad s . \quad d \text {. } \\
& \text { 70, 0. } 10 \\
& \text { 3. } 10 \cdot 0 \frac{1}{2} \text { at } 1 \mathrm{~s} \text {. } \\
& \text { £29. } 15 \cdot 4 \frac{1}{2}
\end{aligned}
$$

$147 \mathrm{oz} .16 \mathrm{dm} / \mathrm{s}$ and 18 grs . of gold at $£ 3$ per oz. £ $147 \cdot 16 \cdot 9$ at fl per oz. 3
$54 \overline{13} \cdot 10 \cdot 3$ Jus.
181 oz. 15 dits 0 gre at $\mathcal{L} 4 \cdot 0 \cdot 1$ per oz.

$$
£ 181 \cdot 15 \cdot 0 \text { at } £ 1 \text { per oz. }
$$

$15 \mathrm{~s} .1 \frac{?}{1} \mathrm{~d}$. at 1 dto £727. 15. $1 \frac{3}{4}$ Ans. bring in.

AVERAGE CALCULATIONS.

The following average calculations have afforded the greatest satisfaction to all who have studied them for the singularly short method by which they have been worked, and the perfect accuracy of the answers.

EXAMPLES.

What will 6 pieces of ribandeome to, each piece contraining 36 yards, at the following prices, and what is the average price of each yard?

1 piece at $4 l l$ per yard.

1 $5 d$.
1 $6 d$.
1 $7 d$.
1 $8 d$.
1ied.
6) 421.

Ans. Til. per yard average.

DEMONSTHATION

In this and the following Calculations the prices are added together, wheli hemir divided by the number of prices gives the averitge price per yard, tho amount of the whole beins made "ip at one penny, and multiplied by the average price, gives the total amount.

What will 100 lambs come to, purchased at the fol-
lowing prices?
s. d.
O) lam!s at a . 4 each.

90 4. . 8
90 (\quad. 0
Q0 © . :
$90 \cdot . \cdot$.... $11 \cdot 10$

Ans. is. the average price.
100 lambs at 1 s . equal to és

$$
\frac{7}{f 33} \text { total. }
$$

500 yards of silk at the following prices: What is the total amount and atrenage price of each yard ?

100 yards at iss 3 de per yard.

100
15.7
total $\mathrm{X} 212 \cdot 10$
5) $12 \cdot 6$
s. $8 \cdot 6$ average per yard.

What is the averace price, and total amour of a case of 200 hats, at the following pices?

50 hats at $158.3 \frac{1}{2} d$. each. 50 1.) • $8 \frac{1}{2}$ 50 17 • 6 50 19 . 10
4) 63 •4
s. $17 \cdot 1$ average.

200 at $18 .=f 10 \cdot 0 \quad 200$ at $1 d==16 \mathrm{~s} .8 \mathrm{~d}$. $17 \cdot 1$ to bring in.

NOVEL sYSTEM

What is the average price, and total anount, of 9.0 lambe, at the followius prices?

s. 11.3 average

900 at $1 s$. each $=8.45$.

$$
\frac{11!}{E, O K .5} \text { total. }
$$

What will 12 pieces of riband eome to, each piece averagmer 18 yads, and what is tue arerage price of cach yard at the hillowing prices?

7l. a yard average.
A library containing 100 books at the following prices; required to find tha average price of each book, and total amount.

Twenty-two casks of prunes, the average weight of each cask supposing to be $31 \% \mathrm{bs}$, at the following
anount, of 90
to, each picee verage priee ot

3 yards each, $\mathrm{rd}==s^{s} 2 . B .0$ 7
otal 616.16 .0
the following price of each
ks at
$\begin{array}{r}\boldsymbol{f} 5 \cdot 0 \cdot 0 \\ 7 \cdot 0 \frac{1}{2} \\ \hline\end{array}$
11 £35. 4. .
cofeachbook.
erage weight the following
prices, required to find the average puice of each $t 6$. and the total amount.

22 casks.
7s. price of 1 cask at $1 d$ per 16 .
$154 s .=\{7 \cdot 14$. Obeing the amomet oil all at Id. Multip. by Sd. being the average price.

E61.12. 0 total amount. Ans.

The above caleulation takes more than five hundred firures to do it in the ordinary method, either by the Rule of Three, or by Practice, the feov figures taken by this system are comparatively trifling.

110 gross of butons at the followine prices, required to find the averase price of each gross, and the total amount.

As the persons who waty prespes this boole wonld probably be ancions to lintie lion lo tronli culculations of a similar nature to the foressines, when the quantities are not
 varicty of calculations forlithedescription:
'Twelve dozen pair of sotokines purchased at the following prises, ragiansl lind the average pice ot each pair and the total amm:ant.

13)3.3-0 price of 12 par.
s. 9.9 average pr pair

12 dozon pair at is per pair= $\mathbf{E T} .4 .0$
23
\&13.16. ototalanount.
By the foreroing callolation (and the following to be done in like manner) it will be seen that the different pairs of stockings stated in the question, have been calculated at the prices stated per pair, which being acded up gives the anomat of twelve pair, and heing divided by 12, gives the amomot of each pair, which averages "s. Gil. Then 12 cumen beiner 144 at $1 s$ g. gives \&'? 4. and which, heimer multiphed by the average price, 9s. Od. or ${ }_{\sim}^{3}$ s. gives the total amomet.

A lihrary contaning ion Books at the folloning prices; required to know the average prire, and totel nonount.

12 pieces of riband, each piece of 30 yards, at the following prices; requied to know the average price and total amount.

12 pieces at $1 d$. per yard $=£ 1 \cdot 16$

$$
\frac{\mathrm{t}}{\mathrm{Ei} 0 \cdot 16} \text { Avs. }
$$

5 pieces of silk at the following lengths and prices; required to know the average price of each yard, and the total amount.

20 easks of raisins, each cask averaging ${ }^{2}$ grs. $16 l^{2}$ s. sold in the following lots, and at the underwitten prices:

$$
90 \text { firkins, } 9 \text { qrs. } 16 \mathrm{lbs} . \text { each at } 1 \mathrm{~d} .
$$

£ 25 total. erage price.

90 firkins, ${ }^{2}$ qrs. 16 lbs . each at $1 \mathrm{~d} .=\boldsymbol{f} 6$

22 cases of is. each ease averinging 3 qra. 15 lbs . sold in luts as follow, and at the following prices: raquired to know the average price per ib. and total amount

22 cases of 3 ars. $15!/ \mathrm{s}$ each 3_{1} averago price per $l b$.

$$
6 \text { at } 1 d .
$$

 to bring int. total amount $57-1 \cdot 17 \cdot 4 \frac{1}{2}$
100 sik shawls, purchased in the following lots, and at the undermentinued priees:

A cargu of coals, containing l20 tons, as follow:
First cost per ton 3s. Ocl.
Freight....... 90
Duty

- ~ 0
s. 190 perton.

120 tons at ls. per ton $£ 6$

£114 total amount.

A cargo of coals, containing 300 tons, as follow :
Prime eost perton 7.s. Gd.
Freight 8 6
Duty

300 tons at 18.176 perton.
300 tons at $1 s .=£ 15$
52210 Ans.

OF ARITHMETIC.
A ship containing 1000 tons of coal, ne follow :
Prime cost Bs. Gd.
Freight - 8. 1
Duty - 2.6
1000 tons at $1 \mathrm{~s}=\mathbf{L} 50 \cdot 0$
s. 19 . 1 1000 at 1 d. $=£ 4$. 3.4 total amount $£_{954 \cdot 3 \cdot 4}$ to bring in.

5 puncheons of rum, as follow:
No 1 containing 118 gallons:
2 119

| 3 | \ldots | \ldots | 120 |
| :--- | :--- | :--- | :--- | :--- |
| 4 | \ldots | \ldots | 121 |$\quad 600$ gallons at $1 \mathrm{~s} .=£ 30$

900 gallons.
total $£ 390$
Prime cost per gallon $4 s$.
Freight
Duty
gr 3 gus. 15 lbs . sold gig prices: required and total amount
ge price per $l b$. - 6 at $1 d$.
$8.15 .5 \cdot 1 \frac{1}{2}$
to bring in.
$.4 \frac{1}{2}$
wing lots, and at
£23 15 total.
verge price. is follow:

In measuring liquids in the king's stores, the broken parts of a gallon are divided into tenths, and which accounts for the tenths being introduced into the preceding and following Questions:
What will 1 C butts of Geneva come to as follow?
No. 1 containing 1131 gallons

£901 $13 \quad 0$
stands in s. 15 o per gallon. Aus.
Note, Tenths are added up like other fractions, by adding up the Numerators, or figures above the line, and dividing their product by 10 the Denominator; the thes. make 32 , divided by 10 goes 3 times and leaves Ω, which are $\frac{8}{10}$ or of a gallon, at 1 s . per gatlon, is ! of a shilling or \mathcal{Z}_{3}^{2} pence.

INTEREST.

Ifiterest is the profit allowed by the borrower to the lender, for the loan of any sum of money, for a determined space of time.

The Principal is the money lent, for which Interest 1s to be reccived.

The rate per Cent. is a certain sum agreed on between the borrower and the lender, to be paid for the use of every $£ 100$. of the Principal twelve months.
The interest may be found alone, or the amount, by anding the Interest and I'rincipal together.
tores, the broken nths, and which ced into the pre-
as follow?
$9 \quad 24$ at 18. 15

130

1. Ans.
: fractions, by above the line, Denominator: es 3 times and at 1 s . per gal-
arower to the y, for a deter-
which Interest
greed on bee paid for the te months.
e amount, by

We shall here introduce two Rules for Interest at $\boldsymbol{c}_{\mathrm{j}}$ per Cent. both of which have given the grentest satisfaction in all instances.

First Rule.
Multiply the Principal by the Months, and the Product in Pounds Sterling taken as Pence, will be the Answer.

Or thus, the Interest of canh Pound fir one Month at 5 per Cert. is one penny, and so in proportion for any part of a Pound, therefore, find the Interest for ono Month, and Multiply it !y the Number of Monthe, the Product will be the Answer at 5 per cent.

EXAMPIES.

What is the interest of e3g for three months?
£36 3
$£ 108$ taken as pence $=9$ s. Ans. Or thus, $\mathcal{L} 36$ for one month $=3 \mathrm{~s}$. multiplied by 3 monthy
!s. Ans.

Tho second rule being the shortest, and both equally accurate, it will be found insst advantageous to adopt it. What is the interest of $\varepsilon 18$ for $\&$ months at 5 per cent ?
f48 for 1 month $=4 \mathrm{~s}$. multiplied by isonths.

16s. Ans.

DEMONSTRATION,

To prove, by the Double Rulde of Three, that the interest of each £. for one Month at £5. per cent. is one Penny. £. £.
 1200) 1200(1 prany.

It will be seen by those acquainted with the double Rule of Three, that this is the operation necessary to prove that the Intercst of each L. for ono month at 5 per Cent. is $1 d$. and having established that fact, the propriety of finding the interest of money by either method given by us will appcar clear and simple. Such as are not acquainted with the foregoing demonstration, may prove the truth of its being so, by this:

The Interest of $L .100$ for 12 months at $L .5$ per Cent. is allowed by all who know any thing of the subject to be $\boldsymbol{L} .5$ therefore the Interest of $\boldsymbol{L} 100$ for 1 month is the $\frac{1}{5}$ of $L 5$ equal to $8 s .4 d$. consequently the Interest of $L .1$ Cor a month must be the of 8s. 4d. which is $1 d$.

What is the interest of $L .96$ for 7 months at 5 per cent.? interest for 1 month 8 s . 7

What is the interest of $L .108$ for 2 months ? interest for 1 month $=9 \mathrm{~s}$.
18s. Ans.

Find the interest of $L .132$ for 8 months.
L. 132 for 1 month $=11 \mathrm{~s}$.

8

$$
\overline{L .4 .8} \mathrm{Ans} .
$$

Find the interest of $\boldsymbol{L} .33$ for 7 months.

$$
L 33 \text { for } 1 \text { month }=2 \mathrm{~s}, 9 \mathrm{~d} .
$$

7

$$
\text { : } 19.3 A_{178}
$$

What is the interest of $L .65$ for 11 months? $L .65$ for 1 month $=5$ s. $5 d$.
d with the double tion necessary to - ono month at 5 ed that fact, the money by either ear and simple. regoing demoneing so, by this:
at L. 5 per Cent. of the subject to for 1 month is tly the Interest f 8 s. 4 d. which
sat 5 per cent.?
hs ?

OF ARITHMETIC.
What is the interest of $L .126$ for 10 months ?
10s. 6d. for 1 month.
10
L.5.5.0 Ans.

What is the interest of $L .148$ for 7 months? 12s. 4 d . for 1 month.

7

$$
\overline{L .4 .6 .4} \text { ans. }
$$

What is the interest of L. $28 \cdot 10$ for three months?
Qs. $4 \frac{1}{3} d$. for 1 month.
3
s. 7 - $1 \frac{1}{2}$ Ins.

Here $\mathcal{L} 28$ for 1 month is 28 pence, or $2 s$. $4 l$, and $10 s$. being half a pound is reckoned as $\frac{1}{2}$ a penny, gives the interest for 1 month, which being multiplied by 3 (the number of months) gives 7s. $1 \frac{1}{2} \frac{1}{d}$. the answer required.
What is the interest of L.122 • 10 for 5 months?
$10 s .2 \frac{1}{5} d$. for 1 month.

$$
L .2 \cdot 11 \cdot 0 \frac{1}{2} \text { Ans. }
$$

'Tell me the interest of $\mathfrak{£} 150.5$ for 11 months. 12s. $6 \frac{1}{4} d$. for 1 month.

C6. 17.83 Ans.
Here the interest of $u s$. for 1 month at 5 per cent, is $\frac{d}{}$ of a penny.
What is the interest of $£ 185.5$ for 4 months ?

$$
\text { 15s. } \frac{5}{4} \frac{1}{4} d \text {. for } 1 \text { month. }
$$

$$
53 \cdot 1.9 \text { Sins. }
$$

What is the interest of $I_{1} 365 \cdot 15$ for 8 montlis? c1. $10 \cdot 5 \frac{3}{1}$ for 1 month. 8
12.3.10 Ans.

Here fir 15 allow $\frac{\hat{4}}{1}$ ed being tho 3 quarters of

What is the interest of $L .420 \cdot 15$ for 10 months?
L $1.15 \cdot 0 \frac{3}{4}$ for 1 month ?
10
L 17.10.71 Ans.
What is the interest of $L 526$. 2 . 6 for 7 months : L.2, 3. $10 \frac{1}{8}$ for 1 month.
L.15.6. 107 Ans.

In this question $9 s .6 d$. being the $\frac{1}{5}$ of a L. the $\frac{1}{8}$ of a penny is allowed for it.
What is the interest of $L .195$ $10 s .5 \frac{3}{8} d$. for 1 month.

L. 1. O . 10 $\frac{3}{4}$ Ans.

7. 6 for 2 months? As 7s. 6d, is $\frac{3}{8}$ of a L. 3 of $1 d$, are allowed
for it.

What is the interest of $L .147,12.6$ for 9 months: 12 s .38 d . for 1 month. 12 s .6 d . being 咅 of a pound, $\frac{5}{8}$ of a penny

$$
L 5 \cdot 10 \cdot 85 \cdot \text { ths. }
$$ are allowed for it.

What is the interest of $L .1002,17.6$ for 11 months ? L 4.3 . $6 \frac{7}{7}$ for 1 month.
$\frac{7}{5}$ are multiplied like farthings or other Fractions, saying 11 times 7 are 77 , and 3 into 77 poes 9 times (which is 9 pence) and leaves 5 which is 5 of a penny. Calculations in Interest can be brought sulficiently near for business by taking the nearest aliquot parts of a pound, that the shillings and ponee in the question are of a pound, but if found necessary to bring the solutions to the greatest niecty, do them by the first Kule, considering the pounds as pence, and the pence
 bllowing
EXAMPLES.

Brinat is the interest of L.68 , 7 . 11 for 8 months? K.68. - . 1 i

L517.3.4 = £: 5.7 Ans.

The $£ 547$ as pence are equal to $£ 2 \cdot 5 \cdot 7$ and tho 3s $4 d$. being the $\frac{1}{6}$ of a pound is to be considered the is of a peuny, consequently the auswer is $£ 2 \cdot 5 \cdot 7!$, which in business would be considered as $£ 2 \cdot 5 \cdot 7$.

Or by Second Rule, 7s. 11 d . being a little above is Gel. which is $\frac{3}{8}$ of a pound, consider it the $\frac{3}{8}$ of a penny, thus,

> 5s. $8 d \frac{3}{8}$ for 1 month.
> 3

£2.5.7 Ans.

What is the interest of $233 \cdot 10$ - G for 7 months?

$$
\therefore \frac{10 \cdot 6}{13 \cdot 6}=x 9 \cdot 17 \cdot \pi_{2}^{2} \cdot \text { ans. }
$$

The 689 1: $: ~$ co $=29.17$. 5 and the 13 s . Cd. contain 162 pence, and as there are 210 pence in a pound,

As it is generally linown that $\subseteq 100$ at interest for 12 months at jer cent produces es we shall prove the aceuracy of the Rule by the following

EXAMPLE.

Wuar is the interest of $£ 100$ for 12 months ? ± 100. for 1 month is $8 \mathrm{~s}, 4 \mathrm{l}$.

$$
£ 5.0 .0
$$

This sum has been worked on the same principle as the preceding, which clearly proves their accuracy.

IIaving explained Interest at es per cent. for months, we shall now introduce $\boldsymbol{£} 5$ per cent for years.

As the interest of each cl for a month is $1 d$, the interest of $\& 1$ for a ycar will consequently be 1 s .

Therefore multiply the principal by the years, and the proflact in pounds, taken as shillings, will be the answer, taking care to allow for the shillings und pence over such part o! a shalling as they are of a pound.

Or , the interest of each pound for a year at es per cent. is is. and so in proportion for uny part of a pound.

NOVEL SYSTEM

EXAMPLES.

What is the interest of $£ 30$ for 3 years at $£ 5$ per cent : E:30

$$
3
$$

90 as shillings =\{4. 10 Ans.
Or, $\mathcal{L} 30$ for 1 year $=\boldsymbol{E}_{1} \cdot 10$
multiply by

$$
3 \text { years. }
$$

$$
\text { £4 • } 10 \AA_{n s .}
$$

What is the interest of $\mathcal{E} 15$ for 6 years at $\mathcal{f} 5$ per cent ? £2. 5 for 1 year.

$$
£ 13 \cdot 10 \text { Ans. }
$$

What is the interest of $£ 126$ for $3!$ years?
$\notin 6$ - 6 for 1 year.

$$
3 \frac{1}{2}
$$

$$
\text { £92 •1 Ans. } \quad \text { £3 . } 3 \text { to bring in. }
$$

$£ 126$ for 1 year being $\boldsymbol{x} 6 \cdot 6$ it is multiplied by $3 \frac{1}{2}$, the time for which the interest is required.
What is the interest of $£ 90$ for 4 years and three months? e4 - 10 for 1 year. 44

$$
£_{19 \cdot \Omega \cdot 6} \text { Ans. }
$$

What is the interest of $£ 128$ for 5 years and 9 months ?
£6. 8 for 1 year. 5

$$
\mathfrak{£} 36 \cdot 16 \quad \text { Ans. }
$$

What is the interest of $£ 150 \cdot 10$ for 7 years?

$$
\curvearrowright 7 \cdot 10 \cdot \frac{6}{7} \text { for } 1 \text { year. }
$$

$$
\pm \overline{£ 5 \cdot 13 \cdot 6} \cdot \operatorname{Ans}
$$

10 s. being $\frac{1}{2}$ of a $£$ and the interest of $f 1$ for a year being a shilling, $G d$. is allowed for the interest of $10 s$. for a year.
's at $\mathscr{L} 5$ per cent :
ears.
ns.
at $\mathrm{f} \boldsymbol{5}$ per cent ?
ars ?

- 3 to bring in.
ultiplied by $3 \frac{1}{2}$, d.
lthree months?
and 9 months?
rears?
el for a year terest of $10 s$.

OF ARITHMETHC.

What is the interest of $£ 165.5$ for 8 years ?

$$
\begin{aligned}
& \text { \& . } 5.3 \text { for } 1 \text { year } \\
& 8 \\
& \text { £66.9.0 Ans }
\end{aligned}
$$

What is tho interest of $£ 137,15$ for 9 years?

$$
\begin{aligned}
& \text { £9.7.9 for } 1 \text { year. } \\
& \text { Ans. }
\end{aligned}
$$

What is the interest of L. 190.2 .6 for 2 ycars?
L. $9.10 .1 \frac{1}{2}$ for 1 year. As 2 s. 6 d. is the $\frac{1}{8}$ of a L. the $\frac{1}{8}$ of a shilling, $1 \frac{1}{2}$. i* alluwed.
L. 28 . 10 . $4 \frac{1}{2}$ Ans.

What is the interest of L. 245 , 7, 6 for 9 years and 4 months?
L. 12 . 5 . $4 \frac{1}{2}$ for 1 ycar.
$9 \frac{2}{3}$ I. $4.1 .9 \frac{1}{2}$ to bring in.
L. 114 . 10. 2 Anを.

7s. $6 d$ being the $\frac{3}{8}$ of a L. the $\frac{3}{3}$ of a shilling $=4 \frac{1}{2} d$. is allowed, tho inierest for 1 year being L. 12.5 .41 the $\frac{1}{3}$ of it is added in for 4 months, which is the third of a year.

Another very short and simple Rute for Interest at L 5 per cent. for years, or years and months, is this :
Rule.-Consider the years as sbillings and the months as pence, and take such part of the principal as those shillings and pence are of a $L_{\text {. }}$, which will be the Answer.

Required the interest of L, 347. 10. 6 for 5 years. 5 years as 53 . is of a L. $\frac{1}{4}$) $347 \cdot 10.6$

$$
\text { L. } 86.17 .7 \frac{1}{2} \text { Ans. }
$$

What is the interest of $L .827 .10 .8$ for 2 years and 6 montlis?
$9 \mathrm{yrs} .6 \mathrm{~m} .=2 \mathrm{~s} 6 \mathrm{~d}$. is $\left.\frac{1}{8}\right) 827.10 .8$

$$
L \text { 103. 8. } 10 \text { Ans. }
$$

What is the interest of $L 60$ for 3 years ond 4 months: $3 \mathrm{yrs} .4 \mathrm{~m} .=3 \mathrm{~s} .4 \mathrm{~d}$. is $\frac{1}{6} \frac{60}{L \cdot 10}$ Ans.

What is the interest of L 128. 16.8 for 1 year and 3 months?

In
he tha is cili
mo
alte
sidt
For
For

Th the c with addins differe the sa for a month them t dividin done ten, an and re

£6 PER CENT.

As $f 6$ per cent. is a most useful rate, being the legal Interest in Ircland, Scotland, and other countries, wo here introduce the shortest and most admired Rule for that rate per cent. that has ever been discovered, and is not only valuable as a Rule for 6 per cent., but facilitates the mode of calculating various other rates.

Ruie.-Multiply the principal by the number of ${ }^{*}$ months, and the product in pounds, taken as shillings, after cutting off the unit figure, which is to be considered as pence, and as many fifths will be the Answer.
For $5 s$. add $\frac{1}{4} d$. For $15 s$. add $\frac{3}{4} d$.
For $10 s$. add $\frac{1}{2} d$. For 16s. ed . and above add $1 d$.
6.3管 Ans.
for 6 years aud
$12 \cdot 6$
$10 \cdot 10$ Ans.
7 years and 6

for $\begin{gathered}\text { yrs. } \\ \text { for } \\ 0\end{gathered}$		
for	7	6

again by 20 , and dividing by both of which is equal to dividing by 200 in the first instance. The cause of dividing by 200 is, that $2001_{5}^{\prime d} d$. are equal to a pound; it will be seen by the Rule that a proportionate allowance is made for any shillings and pence that may be produced, by multiplying together the prineipal and months.

The Authors are particularly anxious that those who possess their work, should make themselves well acquainted with 5 and 6 per cent., so as to perform the operations with facility, as by obtaining that advantage they can with little trouble, ascertain the interest of any sum for any length of time, and at any rate per cent; all the other rates being founded on 5 and 6 per cent.; knowing how very important they are, more examples and explanations, \&c. have been given on each of the foregoing methods than on any of the following, and which they trust will be allowed to be extremely simplifed, and rendered perfectly easy of acquirement.

EXAMPLES.

What is the interest of $£ 30$ for 3 months at $£ 6$ per cent. 3

$$
9 ; 0=9 \mathrm{~s} . \text { od. Ans. }
$$

Here the principal, $£ 30$, is multiplicd by 3, which produces $\mathbf{x} 90$ of which the unit figure is cut off, leaving $9 s$. which is the Answer, the unit figure to be reckoned as peace.
What is the interest of $£ 40$ for 9 months at $\mathfrak{f} 6$ per cent?
£40
9
$3690=51 \cdot 16$ Ans.
What is the interest of $£ 50$ for 7 months?
e50
7
$350=21 \cdot 15 \mathrm{Ans}$.
What is the interest of evo for 8 months ?
$\mathfrak{c} 70$
8
$5610=t 2 \cdot 16 \cdot A n$.

OF ARITHMETIC.

What is the interest of $£ 95$ for 8 months?
495
$76 引=$ E3. $16 . \quad$ Ath.
What is the interest of $£ 73$ for 7 months? £73

7

S1| $1=£ 2 \cdot 11$. 1_{3}^{\prime}. Ans.
Here the unit figure cut off is by the Rule considered as $1_{0}^{\prime} d$. which with 51 s . give the Answer $\boldsymbol{f} 9.11 .1_{5}^{1}$. What is the interest of $£ 87$ for 6 months?
£87

$$
\frac{6}{52 / 2}=£ 2 \cdot 12 \cdot 2_{3 .}^{2} \quad \text { Ans }
$$

What is the interest of $\mathfrak{x} 97$ for 9 months?

$$
£^{97}
$$

9

$$
\overline{87 \beta}=£ 4.7 .9^{\prime} . \quad A_{n s}
$$

What is the intorest of $£ 108$ for 8 months?

$$
\notin 108
$$

$$
\frac{8}{86 \mid 4}=\mathfrak{£ 4 . 6 . 4 3 . \quad \text { Anc. }}
$$

Find the interest of $£ 125$ for 9 months. $£ 125$

$$
\frac{9}{112 \mid 5}=£ 5.12 .6 . \quad \text { Ans. }
$$

Here the unit figure cut off is 5 , which is to be considered as $5{ }_{5}^{5} l$. and as ${ }_{5}^{5}$ are equal to $1 d$. the pence are 6, which with 112 s, give fi_{5}. 12.6. What is the interest of $£ 137$ for 8 months?

$$
£ 137
$$

$$
\frac{3}{109 \mid 6}=£ 5.9 .7_{3}^{1} . \quad \text { Ans. }
$$

In this question the figure cut off is 6 , which is $6{ }_{5}^{6} d$. and as 5 fifths are $1 d .6$ fiflhs are $1{ }_{3} d$. with the $6 d$. is ${ }^{\prime}$ 'd. and 109 s. added give $£ 5.9$. 7_{s}^{1}. Find the interest of $\mathbb{E} 146.6 .8$ for 9 months.
£146.6.3

$$
6_{6} \quad \overline{131 / 7.0 .0}=66 \cdot 11.8_{5}^{2} \text {. Ins. }
$$

There is $6 s 8 d$. in this question, which by adhering to the Rule must be multiplied, and the unit figure of the pounds cut off, which is 73_{3}^{3} or $8 \frac{2}{2}$.
What is the interest of $£ 149.10$ for 8 months?
£148.10
8
118|8.0=25.18.99. Ans.
What is the interest of $£ 207.13 .4$ fur 9 months?

$$
£ 207.13 .4
$$

$$
186 \mid 9.0 .0=£ 9.6 \cdot 10_{5}^{4} \quad \text { Ins. }
$$

The highest unit figure has now been arrived at, which is 9 , that is $9 d$. and 9 fifths equal to $1_{5} d$. give 10!d.
What is the interest of $£ 125.10$ for 11 months?
£ 125.10 11
$138 \left\lvert\, 0.10=£ 6.13 .0 \frac{1}{2}\right.$. Ans.
Ater multiplying the principal by 11 there are 10 s. for which $\frac{1}{2} d$. is allowed, which is sufficiently near for business, though in reality it may be reckoned as $\frac{3}{5}$.
What is the interest of $£ 285 \cdot 3 \cdot 9$ for 12 months?
E285-8.9 12
$34215 \cdot 5 \cdot 0=£ 17 \cdot 2 \cdot 6 \frac{1}{4} . \quad . / n s$
What is the inferest of $8990 \cdot 1 \cdot 3$ for 12 months? f990.1.3.

12

$$
348 \left\lvert\, 0.15=\mathfrak{£} 17 \cdot 3 \cdot 0 \frac{5}{4} . \quad\right. \text { Ans. }
$$

The 348 are shillings, the cipher cut off is pence, and for the 15 shillings $\frac{3}{4} d$, have been allowed, making

What is the interest of $£ 357 \cdot 4 \cdot 2$ for 4 months?

$$
\mathfrak{L 3 5 7} \cdot 4 \cdot 2
$$

$$
1: 1218 \cdot 16 \cdot 8=\mathbb{e} 7 \cdot 9 \cdot 10_{3}^{\prime} . \quad \text { dus. }
$$

The 3 cut off is 8_{8}^{8} or 9_{5}^{3} with a penny allowed for the !6s. 3 d gives 103 .
hich by adhering the unit figure of
months?
$.9_{3}^{7}$. Ans.
r 9 months?
$\therefore 10 \frac{4}{4}$. Ans.
een arrived at, qund to $l_{s}^{\prime} d$. give
months?
$0 \frac{1}{2}$. Ans.
1 there are 108 . ficiently near for eckoned as ${ }_{3}^{3}$.
12 months?
$7 \cdot \Omega \cdot 6 \frac{1}{4} . \quad$ Ins. 12 months?

- $3 \cdot 0 \frac{7}{4}$. Ans. cut off is pence, allowed, making
r 4 months?
. 2. 10 $0_{3}^{\prime} \quad$ Ins. enny allowed for

OF ARITHMETIC.
What is the interest of $£ 365 \cdot 8 \cdot 10$ for 13 months?

$$
£ 365 \cdot 8 \cdot 10
$$

13
$475 \left\lvert\, 0 \cdot 14 \cdot 10=223 \cdot 15 \cdot 0 \frac{3}{5}\right.$. Ans.
As any thing above 19s. $6 d$ is $\frac{8}{4} d$. there need be no hesitation in allowing $\frac{3}{4} d$. in this instance, although t" simplify the method the Rule directs for 15 s . add $\frac{?}{i} d$.
What is the interest of $£ 325.9$. a for 14 months? £925.9.9
$115516 \cdot 8 \cdot 4=657 \cdot 15.7 \frac{1}{2}$. Ans.
Here the 6 cut off is $7 \frac{1}{3}$, and the 8s. 4d. is a halfpenny, but as it is not $\frac{3}{4} d$. put down a half-penny.

Interest for years and months may be done in the same manner by reducing both into months, by the following

EXAMPLES.

$W_{\text {Hint }}$ is the interest of $£ 70$ for 1 year and 9 montin:
t70

$$
20 \text { months }=1 \mathrm{yr} .8 \mathrm{~m} .
$$

$$
140 \mid 0=\mathscr{L}
$$

What is the interest of $\boldsymbol{£} 85$ for 2 ycars and 6 months:
£8:5

$$
30=9 \mathrm{yrs.} 6 \mathrm{~m} .
$$

$$
2550=£ 12 \cdot 15 . \quad \text { Ans. }
$$

What is the interest of $£ 30$ for 3 years and 1 months: £30

40 months.

$$
120 \mid 0=£ 6 . \quad \text { Ans }
$$

What is the interest of $£ 147$ for 4 years and 2 months? $£ 147$

50 months.
$7350=£ 36.15$. Ans.
What is the interest of $£ 880$ for 10 years?
£289
120 months.

$$
3468 \mid 0=£_{173.8 .} \text { Ans. }
$$

What is the interest of $£ 165$ for 5 years and 5 months: £165

$$
65
$$

$$
\frac{\begin{array}{c}
825 \\
990
\end{array}}{10725}=£ 53 \cdot 12.6 . \text { Ans. }
$$

What is the interest of $£ 187$ for 8 years and 6 months: £187
102

$$
1907 \mid 4=£ 95 \cdot 7 \cdot 4_{5}^{4} \text { Alis. }
$$

Having given various examples at 6 per cent. which are not only simple and accurate in the extreme, but being so easy of division, can be made applicable to numerous other rates of Interest. We shall now give a Rule for $4 \frac{1}{2}$ per cent.

Rule.-Calculate at 6 per cent, and deduct a puarter from that amount.

Or, multiply the principal by three quarters of the time, and proceed as in 6 per cent. when the months are even.

EXAMPLES.

$W_{\text {hat }}$ is the interest of $\mathscr{£} 30$ for 3 months at $4 \frac{1}{2}$ per cent. £ 30

$$
\begin{aligned}
\frac{3}{9 \mid 0}= & 4 \text { 4) } 0 d . \text { at } 6 \text { per cent. } \\
& \frac{2.3}{} \quad \overline{s .6 \cdot 9 d} \text { at } 4 \frac{1}{2} \text { per cent. Ins. }
\end{aligned}
$$

Herc we proceed as at 6 per cent. and having found the amount take off $\frac{1}{4}$, leaving $\frac{3}{4}$ of 6 , which is $4 \frac{1}{2}$, the answer.
What is the interest of $£ 145$ for 5 months:

$$
£ 14 \overline{0}
$$

$$
5
$$

$$
\begin{array}{r}
\overline{795}=\{3 \cdot 12 \cdot 6 \text { at } 6 \text { per cent. } \\
18 \cdot 1 \frac{1}{2} \text { deduct. }
\end{array}
$$

$$
f\left(14 \cdot 4 \frac{1}{2} \quad\right. \text { Ans. }
$$

OF ARITIMETHC.

What is the interest of $L, 100 \cdot 10 \cdot 6$ for 7 months ?
L $150 \cdot 10 \cdot 6$
7
$105!3 \cdot 13 \cdot 6=\boldsymbol{L} .5 \cdot 5 \cdot 44$ at 6 percent. 1.6.4 deduct.
L. 3.19.04 Ris.

Find the interest of $L \cdot 347 \cdot 13 \cdot 10$ f $n: 8$ tur men :
L. 347 . $18 \cdot 10$

7

$$
\begin{array}{r}
243 \mid 5 \cdot 11 \cdot 10
\end{array}=\begin{array}{r}
4) \\
3 \cdot 32 \cdot 6 \cdot 10 \frac{1}{2} \text { leduct. }
\end{array}
$$

L.9 . ㄴ . 8 Ans.

What is the intor. $10 d$, not being $\frac{3}{4} d$. allow $\frac{1}{2} d$. tor it_{1} L. 490.11 .7 11
quarters of the hen the months
s at $4 \frac{1}{2}$ per cent.

1t. Ans.
d having found hich is $4 \frac{1}{2}$, the

1s:
per eent. duct.

In this instance the 2_{3}^{2} and the allowance made for the $13 s$ s. $3 d$. give fully 3 pence.
What is the interest of $L .298 .17 .8 \frac{1}{1}$ for 1 yr .4 no. L.298 . 17 . $8 \frac{1}{4}$
$12=\frac{3}{4}$ of 16 months.

$$
274 \left\lvert\, 6 \cdot 12.3=L .13 \cdot 14 \cdot 7 \frac{3}{1}\right. \text { Ans. }
$$

What is the interest of L.380.1.4 for 1 year and 8 months?
L. 380 . 1 . 4
$15=\frac{3}{4}$ of 20 months.

$$
570 \mid 1 \cdot 0.0=L .28 \cdot 10.1!\text { Ans. }
$$

What is the interest of $L .100$ for 12 months?

$$
\text { L. } 100
$$

$$
9=\frac{3}{4} \text { of } 12 \text { months. }
$$

$$
900=L .4 \cdot 10 \text { Ans. and Proof. }
$$ into 6 per cent.

EXAMPLES.

$W_{\text {Hat }}$ is the interest of L.55. 3 for 5 months?
L.55. 3

5
3)
$27 \left\lvert\, 5.15=L .1 .7 .6 \frac{3}{4}\right.$ at 6 percent. 9 . $2 \frac{1}{4}$ deduct.
s.18. $4 \frac{1}{2}$ at 4 per cent. Ans.

What is the interest of L.126. 10 for 7 months ?
L. 126 . 10

7
$88 \cdot 5 \cdot 10=L \cdot 4 \cdot 8 \cdot 6 \frac{1}{2}$ at 6 per cent. deduct $\frac{1}{3} 1.9 .6$
L.Q.19.012 nearly. Ans.

What is the interest of $L .158 .9 .8 \frac{1}{4}$ for 11 months？ L． 158 ．${ }^{\text {S．}} 8 \frac{1}{4}$ 11

The following will be much shortened by multiplying by $\frac{2}{3}$ of the time．

What is the interest of $L 286$ ．9．2 for 3 months at 4 por cent？

$$
\begin{aligned}
L .286 \cdot 9 \cdot \stackrel{\Im}{9} & =\frac{2}{3} \text { of } 3 \text { months. } \\
\overline{5 \pi \mid \Omega \cdot 18 \cdot 4} & =L .2 \cdot 17.3 \frac{1}{2} \quad \text { Ans. }
\end{aligned}
$$

What is the interest of $L .320 .17 .6$ for 6 months ？ L． 320 ． 17 ． 6 $4=\frac{2}{3}$ of 6 months． 128｜3．10．0 $=$ L．6． $8.4_{5}^{\text {！}}$ ．Ans．
What is the interest of L． 497 ． $18.9 \frac{1}{4}$ for 9 montlis ？

$$
\text { L. } 427.18 .9 \frac{1}{4}
$$

$$
6^{4}=\frac{2}{3} \text { of } 9 \text { months. }
$$

$$
90677.12 \cdot 7 \frac{1}{2}=L \cdot 12 \cdot 16 \cdot 9 \text { Ans. }
$$

What is the interest of $L .583 .0 .8$ for 15 months：

$$
\text { L.583 . } 0.8
$$

$$
10=\frac{2}{3} \text { of } 15 \text { months. }
$$

$$
583 \left\lvert\, 0 \cdot 6 \cdot 8=L .99 .3 .0 \frac{1}{4}\right. \text { or }_{5}^{2} . \text { Ins. }
$$

What is the interest of L．580．19．8年 for 1 year 6 months？

$$
\begin{aligned}
& L .580 \cdot 19.8 \frac{3}{4} \\
& \frac{12}{697 \mid 1 \cdot 16 \cdot 9}=\frac{2}{3} \text { of } 18 \text { months. } \\
& \text { L.3:.17.94 dns. }
\end{aligned}
$$

What is the interest of $L .100$ for 12 months？

$$
\text { L. } 100
$$

$$
8=\frac{2}{3} \text { of } 12 \text { months. }
$$

$$
\overline{80 \mid 0}=L .4 \quad \text { Ans }
$$

$$
\begin{aligned}
& \text { 173,9.9.63 }=\text { L. } 8 \cdot 13 \cdot 11 \frac{4}{4} \\
& \text { deduct } \frac{1}{3} \text { - . 17. } 11 \frac{4}{4} \\
& \text { L5.15. 11衣 Ans. }
\end{aligned}
$$

Rute for Interest at $3 \frac{1}{2}$ per cent.-Calculate at 6 per cent. and take half the amount when it becomes 3 per cent. to which amount add!. Or, by multiplying by half the number of inonths, it saves the trouble of going into 6 per cent.

EXAMPLES.

Wiat is the interest of $\mathfrak{x} 30$ for 4 months :
£30
$\frac{9}{2}$ add of 4 is 2 months.
$\left.\frac{1}{2}\right)^{6}$ at 2 per ecnt.
$1 \cdot 0$
s. $7 \overline{-0}$ at $3 \frac{1}{2}$ per cent.

What is the interest of $£ 45$ for 6 inonths:
£45
3
$\overline{13 \mid 5}=13$)
$13 \mid 5=13 \mathrm{~s}$. 6 d . at 3 per cent.
2.3
s.15.9 at $3 \frac{1}{2}$ per cent.

What is the interest of $£ 85$ for 8 months ?
£85
$4 \frac{1}{2}$ of 3 is 4 months.
6) 3410 at 3 per cent.
$5 \cdot 3$
£ 1.19.8 at $3 \frac{1}{2}$ per cent. Ans. What is the interest of $\mathbf{x} 90$ for 7 months :

$\begin{array}{r} \Varangle 90 \\ 7 \end{array}$	
1) ${ }_{2}$ 63 10	at 6 per cent.
$\text { i) } \begin{array}{rl} 31 & 6 \\ 5 & 6 \\ \hline \end{array}$	at 3 per cent.

£1.16-9 at $3 \frac{1}{2}$ per cent. Aus.
What is the interest of $\mathbf{f l} 155$ for 10 months ?
$£ 195 \quad \frac{1}{2}$ of 10 months is 5 months.

$$
\overline{62 / 5}=\underset{10}{\left.\frac{(1}{6}\right)} \underset{10 \cdot 5}{2 \cdot 6} \text { at } 3 \text { per cent }
$$

£3.12.11 Ans.

OF ARITHMETIC.

What is the interest of $£ 140.10$ for 12 months ?
\& $145.10 \quad \frac{1}{2}$ of 12 months is 6 months.

$$
\begin{aligned}
& \overline{87 / 3.0}= \\
& 87 \left\lvert\, 3 \cdot 0=£ 4 \cdot 7 \cdot 3 \frac{1}{2}\right. \text { at } 3 \text { per cenic. } \\
& \frac{14 \cdot 6 \frac{1}{2}}{2 \pi \cdot 1 \cdot 10} \text { Ins. }
\end{aligned}
$$

What is the interest of $£ 365$ for 3 month ? £365
$4 \frac{1}{2}$ of 8 is 4 months.
$\begin{aligned} & \text { 6) } 14610 \\ & \frac{\mathbf{9 4} \cdot 4}{}\end{aligned}$ at 3 per cent.
$\overline{\mathcal{E} 8 \cdot 10 \cdot 4}$ at 38 per cent. Alns.
he interest $£ 50$ for 9 months?
What is the interest $£ 040$ lor 9 months?

$$
£ 540
$$

$\left.\frac{1}{2}\right) \frac{9}{48610}$
(i) $\longdiv { 9 4 3 \cdot 0 }$ at 3 per cent.

$$
\frac{40 \cdot 6}{237 \cdot 6}
$$

What is $=\mathbf{£ 1 4 . 7 . 6}$ at $3 \frac{1}{2}$ per cont. .Ins.
What is the interest of $£ 650$ for 11 montlis ?
$£ 650$
(1) $\frac{11}{71510}$

1) $357 \cdot 6$ at 3 per cent. 59.7
$417 \cdot 1=\mathbb{E} 20 \cdot 17 \cdot 1$ at 32 per cent. Ins.
What is the interest of $£ 1225$ for 8 months? 21925
$4 \frac{1}{2}$ of 8 is 4 months.

$$
\begin{aligned}
& \text { 8) } 49010 \text { at } 3 \text { per cont. } \\
& 81 \cdot 8
\end{aligned}
$$

$571 \cdot 3=£ 28 \cdot 11 \cdot 8$ at $3 \frac{1}{2}$ per cent. . Ins. 2. What is the interest of $£ 575$ for . yr, and 4 month: :
$3 \frac{1}{2}$ of 16 is 8 months

$$
\begin{aligned}
& \text { 1) } 46010 \text { at } 3 \text { per cent. } \\
& 76 \cdot 8
\end{aligned}
$$

$$
536 \cdot 8=x 26 \cdot 16 \cdot 8 \text { at } 3 \frac{1}{2} \text { per cent. .2ns. }
$$

NOVEL SYSTEM

What is the interest of $£ 475$ for 1 year and 8 months : £475
$10 \frac{1}{2}$ of 20 is 10 months.
6) 47.510 at 3 per cent. 79.2
$554 \cdot 2=\left\{27 \cdot 14.2\right.$ at $3 \frac{1}{2}$ per cent. . Ins.
What is the interest of $£ 100$ for 12 months at $3 \frac{1}{2}$ per

Rele for interest at 3 per cent.-Threc per cent. being the half of 6 per cent. calculate at 6 per cent. and take half the amount.

Or, whon the months are even, multiply the princ:pal by half the minths, which saves the trouble of going into 6 per cent.

EXAMPLES.

$W_{\text {hat }}$ is the interest of $£ 40$ for \mathfrak{Z} months ?
L. 40

1 being $\frac{1}{2}$ of 2 months.
s. $4 \mid 0$ Ans

What is the interest of $\boldsymbol{L} .45 \cdot 10$ for 4 months: L. $15 \cdot 10$

2 the $\frac{1}{2}$ of 4 months.
s. $9 \mid 1 l_{i} d$. Ans.

What is the interest of $L 55.10$ for 8 months: L.5.5. 10

4 the $\frac{1}{2}$ of 3 months.

What is the interest of $L 91.10$ for 10 months ?
L. 91 . 10

5 the $\frac{1}{2}$ of 10 months.

$$
45 \cdot 17 \cdot 10=L \stackrel{5}{9} .9 . \quad \text { Ans. }
$$

What is the interest oí $£ 125 \cdot 10$ for 12 inonths? E195. 10

6 the $\frac{1}{2}$ of 12 months.

$$
75 \left\lvert\, 3_{5}^{\prime}=£ 3 \cdot 15 \cdot 3 \frac{1}{2} . \quad\right. \text { Ans }
$$

What is the interest of $£ 130$ for 7 months? £130

7
2)911)

$$
45.6=\approx \odot .5 .6 . \quad \text { Ans. }
$$

What is the interest of $£ 15 \tilde{5}, 6.8$ for 9 months?

$$
\mathfrak{£ 1 5 5 \cdot 6 \cdot 8}
$$

$$
9
$$

1.) $139 \mid 030$
$69 \cdot 10_{5}^{4}=£ 3 \cdot 9 \cdot 10_{5}^{4} . \quad$ Ins.
What is the interest of $£ 225$ for 5 months: £255 5

$$
\overline{11215}=\frac{\left.\frac{1}{2}\right)}{L .5 \cdot 12,6} \text { at } 6 \text { per cent. }
$$

L.S. 16.3 at 3 per cont.

What is the interest of $L .395$ for 11 months?

$$
L .395
$$

11

$$
\cdot \overline{13415}=\frac{\left.\frac{1}{2}\right)}{L} 21 \cdot 14 \cdot 6 \text { at } 6 \text { per cent. }
$$

L. 10.17. 3 at 3 per cent.

What is the interest of $L .550$ for 7 months?

$$
L .5 .50
$$

$$
\left.\frac{1}{2}\right) \overline{39.510}
$$

192. $6=$ L.9.1 . 6. Ans.

What is the interest of $L 651.10$ for 1 year 2 months? L. $651 \cdot 10$ 7 the $\frac{1}{2}$ of 14 months.

$$
\overline{456 \mid 0 \cdot 10}=L .92 \cdot 16 \cdot 0 \frac{1}{2} . \text { or }{ }_{3}^{3} d . \text { Ans. }
$$

What is the interest of $£ 650 \cdot 5$ for 1 year 6 enonths?

9 is $\frac{1}{2}$ of 18 months

$$
58512.5=£ 29.5 \cdot 2 \frac{1}{2}, \quad \mathscr{I n s} .
$$

What is the interest of 2703.16 for 1 year and 8
months? . 5728 . 1.6 10 is of 90 months.

$$
728 \left\lvert\, 0 \cdot 15 \cdot 0=\mathfrak{e} 36 \cdot 8 \cdot 0 \frac{3}{4} . \quad .2 \mathrm{as} .\right.
$$

What is the interest of $\mathfrak{f} 100$ for 12 inonths? $\because 100$

Sis $\frac{1}{2}$ of 10 months.

$$
0=£ 3 . \quad .1 n s
$$

Reif: for Interest at $\frac{3}{4}$ per cent.-Calenlate at 3 per cent (sce Rule for 3 per cent.) to which add onetourth of its amount.

EXAMPLES.

What is the interest of $£ 40$ for 8 months at $3 \frac{3}{4}$ per £40

4 the $\frac{1}{2}$ of 8 months.
add $\left.\frac{1}{4}\right) 166_{4}^{\prime} 0$ at 3 per cent.
£1. 0.0 at $3 \frac{3}{4}$ per cent. Ans.
What is the interest of $£ 30$ for 6 months: £80

3 the $\frac{1}{2}$ of 6 months.
add $\frac{1}{4} \underset{6}{4} 0$ at 3 per cent.
6
$30=£ 1.10$ at $3 \frac{3}{4}$ per cent. Ahs.
What is the interest of $£ 90$ for 10 months? £98

5 the $\frac{1}{2}$ of 10 months.

$$
\begin{aligned}
& \text { (1) } \frac{1}{4)} 49,0 \text { at } 3 \text { per cent. } \\
& 12.3
\end{aligned}
$$

$$
61,3=£ 3.1,3 \text { at } 3 \text { perernt. .Ins }
$$

1 year 6 months? lis.
$\frac{1}{2}$. Sins.
for 1 year and 8
months.
. $0 \frac{3}{4}: \quad 2 n$.
months:

Pofthe accuracy 'the Rule.
-Calculate at 3 which add one-
onths at $3 \frac{3}{1}$ per

What is the interest of $L .206,13.4$ for 9 months ?
L 206 . 13 . 4 9

$116,3=I .5,16.3$ at 3 委 per cent. Ans.
What is the interest of L.345.9.14 for 11 months ? L. 345 . 9.1_{1}^{1} 11

$$
\left.\frac{1}{2}\right) 38010 \cdot 0 \cdot 1 \frac{8}{4} \text { at } 6 \text { per cent. }
$$

add $\cdot \frac{1}{4}$)190 \quad at 3 per cent. 47.6
$237.6=L .11 \cdot 17 \cdot 6$ at $3 \frac{3}{4}$ per cent. Ais.
What is the interest of $L 405.10$ for I year 8 months? L. $405 \cdot 10$

10

$$
\overline{405 \mid 5 \cdot 0}=\begin{array}{r}
\frac{4}{4} \cdot 20.5 \cdot 6 \\
5.1 \cdot 4 \frac{1}{2}
\end{array} \text { at } 3 \text { per cent. }
$$

L. $25 \cdot 6 \cdot 10 \frac{1}{2}$ at $3 \frac{3}{4}$ per cent. Ans.

What is the interest of $L .560$ for 1 yr. and 10 months ?
L. 560

11 is $\frac{1}{2}$ of 22 months.
add $\left.\frac{1}{4}\right) 616 \mid 0$ at 3 per cent.
154

$$
\mathbf{7 7 0}=\boldsymbol{L} .38 \cdot 10 \quad \text { Ans. }
$$

What is the interest of $L .100$ for 12 months? L 100

$$
6 \text { is } \frac{1}{2} \text { of } 12 \text { months. }
$$

$$
\begin{aligned}
& \text { add } \sqrt[4]{40 \mid 0} \text { at } 3 \text { per cent. } \\
& \sqrt{15} \\
& \overline{75}=\text { L.3.1.5. Proof. }
\end{aligned}
$$

Ruik for Interest at $3 \frac{1}{3}$ per cent. (the rate in general used in Savings' Banks)-Calculate at 5 per cent. and deduct $\frac{1}{3}$ from that amount, the remainder will be the answer.

Or, multiply the interest for 1 month at 5 per cent. by of the months when found convenient.

EXAMPILES

What is the interest of $L 36$ for 9 months at $3 \frac{1}{3}$ per
cont?
L. 36 for i month at 5 per cent. $=3 \mathrm{~s}$.
deduct $\overline{3} \overline{3} \overline{6} s$ at 5 per cent
Ans. 4 s. at $3 \frac{1}{3}$ per cent.
What is the interest of $L .126$ for 5 months ?
$1 C_{s}$. $6 d$. 5
deduct $\left.\frac{1}{3}\right) 2 \cdot 12 \cdot 6$ at 5 per. cent.
17.6
L.1.15.0 at 3 per cent. Ans.

What is the interest of $L .132$ for 8 months?
$11 s$.
:

$$
\begin{aligned}
& \left.\frac{1}{3}\right) 4 \cdot 8 \\
& \frac{1 \cdot 9 \cdot 4}{2.2 \cdot 18 \cdot 8}
\end{aligned} \text { at } \text { at } 3 \frac{1}{3} \text { per cer cent. Ans. }
$$

What is the interest of $L 150$ for 9 months ?
12s. 6d. for 1 month at 5 per cent.
6 the $\frac{2}{3}$ of 9 months.

$$
L .3 \cdot 15 \cdot 0 \quad \text { Ans. }
$$

Whinat is the mercst of L. 245.5 for 12 months?
L. 1.0 .54 for 1 month at 5 per cent. 8 the $\frac{2}{3}$ of 12 months.
$L, B, 3.6 \mathrm{dms}$.
of alitilmetic.
63
What is the interest of $L 365.15$ for 1 yr .3 months?
L. 1.10 . $5 \frac{3}{4}$ for 1 month at 5 per cent.

10 the $\frac{2}{3}$ of 15 months.
L. $15.4 .9 \frac{1}{2}$ Ans.

What is the interest of $L 100$ for 12 months ?
$8 s .4 d$. for 1 month at 5 pet cellt. 8 the $\frac{2}{3}$ of 12 months.
L. 3.6.8 Proof.

Role for Interest at $9 \frac{1}{2}$ per cent.-Calculate at is per cent and take half that amount.

Or, multiply the interest for 1 month at is per cent. by $\frac{1}{2}$ the months, when found convenient.

EXAMPLES

Wiat is the interest of L. 36 for 3 months :

$$
\begin{aligned}
& \left.\frac{3 s}{} \frac{3}{} \text { take } \frac{1}{2}\right) \text { 9s } \text {. } 5 \text { per cent. }
\end{aligned}
$$

4s. $6 d$. at $2 \frac{1}{2}$ per cent. Ans.
What is the interest of $L .43$ for 4 months ?
4 s . for 1 month at 5 per cent.
2 the $\frac{1}{2}$ of 4 months.
$\overline{8 s}$. at $2 \frac{1}{2}$ per cent. Ans.
What is the interest of $L .120$ for 7 months ?
108.

7 or, 10s. for 1 month.
$3 \frac{1}{2}$ is $\frac{1}{2}$ of 7 months.
take $\frac{1}{2}$) $L .3 .10$ at 5 per cent. -
L. 1.15 . Ins.
L. 1.15 at $2 \frac{1}{2}$ per cent.

What is the interest of L. 145.10 for 8 months :
12s. $1 \frac{1}{2} d$. for 1 month at 5 per cent.
4 the $\frac{1}{2}$ of 8 months.

$$
\text { L.2.8.6 at } \frac{1}{2} \text { per cent. Aus. }
$$

What is the interest of L. 240 for 15 months.
L. 1 for 1 month at 5 per cent.
$7 \frac{1}{2}$ the $\frac{1}{2}$ of 15 months.
L. 7.10 Ans.

WYat is wic interest of L. 490.5 for 1 yr . and 4 months:
L.2.(). $10 \underset{4}{ }$ for 1 month at \bar{j} per cent. 3 the $\frac{1}{2}$ of 16 inonths.
L.16.6.io at $2 \frac{1}{4}$ por cent. Ins.

What is the interest of 2 acce . 3.6 for 1 year and 10 L. $1.10 .3 \frac{1}{8}$ for 1 month at 5 per cent.
L.16.17.5筞 Ans.

What is the interest of $\boldsymbol{L} .963$. 10 fur 2 years I month? L.4. $0.8 \frac{1}{2}$ 12 ${ }^{2}$ the $\frac{1}{2}$ of 95 inontis.
L.53.8. 104 Ans.

What is the interest of $L .1000 .10$ for $2 y$ ys. 4 months?
L.4.3.43 for 1 month at 5 per cent.
L.58.7.3 Ans.

What is the interest of $L 100$ for 12 months?
8s. $4 d$. for 1 month at 5 per cent. 6 the $\frac{1}{2}$ of 12 months.
L.2.10.0 Proof.

Rule for interest at 2 per cent.-Calculate at 63 per cent. and take f, which will be the answer.
Or, maltiply the principal by $\frac{1}{3}$ of the inonths, which saves the trouble of finding the interest at 6 per cent.

EXAMPLES.

What is the interest of $L .50$ for 3 inonths at $\&$ per cent :
J. 50

1 the $\frac{1}{3}$ of 3 months.

What is the interest $\boldsymbol{L} 5, \boldsymbol{L}, 0 \cup$ for 4 months :
take $\left.\frac{1}{3}\right) \underline{220} 0$ at 6 per cent.

$$
\text { s.7.4 at } 2 \text { per cent. Als. }
$$

What is the interest of L 70. 10 for 5 months?
L. 70 . 10

5
-10 3)
$\left.35\right|^{2} \cdot 10=L .1 \cdot 15.3$ at 6 per cent.
1! 9 at 2 per cent. Als.
What is the interest of $\boldsymbol{L} 80$. 15 for 6 months :
L. $80 \quad 1.5$

2 tho $\frac{1}{3}$ of 6 months.
$16 \mid 1 \quad 10=16 \mathrm{~s}$. $1 \frac{3}{4} l$ or ${ }^{1} \quad$ Ans.
What is the interest of $L, 16$). 12.0 fur 8 months:
$\boldsymbol{L} 160 \quad 196$
8
$\left.\overline{12315} 0.0=\frac{1}{3}\right)$
Ans L\& 2. 10 at 2 percent.
What is the interest of $L \stackrel{1}{2} \cdot 10$ for 9 months?
$L: 247.10$
3 the $\frac{1}{3}$ of 9 months
$7412 \cdot 10=L .3 \cdot 14.3{ }^{\circ}$ Ans.
What is the interest of $L, 345 \quad 1.6$ for 10 months ?

$$
\begin{equation*}
\text { L. } 3 \div 1.6 \tag{10}
\end{equation*}
$$

What is the interest of $L 356.7$ for 1 year 3 months :
1.356 .7

5 the $\frac{1}{3}$ of 15 months.
178|1.15=L.8-18. (2 Ans.
What is the interest of $L 125$ for 1 year and 9 months:
L. 425

7 the $\frac{1}{3}$ of 21 monats
$\overline{397}=\boldsymbol{L} 14.17 .6$ thrs
What is the interest of $\boldsymbol{L} 480.3$. 4 for years and monthe?

$$
\begin{aligned}
& \text { L.480.3.4 } \\
& \frac{9}{43211 \cdot 10 \cdot 0}
\end{aligned} \text { the } \frac{1}{3} \text { ci'27 months. }
$$

What is the interest of L.655.12.6 for 2 years at ? per cent?
L.655, 12. 6

8 the $\frac{1}{3}$ of 24 months.
524|5.0.0 $=L .26$. 4.6. Ans.
What is the interest of $L .100$ for 12 months?
L. 100

4 the $\frac{1}{3}$ of 12 months.
$40{ }^{0}=$ L. $2 \quad$ Proof:
Rule for interest at $1 \frac{1}{2}$ per cent.-Calculate at ${ }^{6}$ per cent., and take f, which will be the answer.

Or, multiply the prineipal by 4 of the months (when found convenient) which gives the answer without going into 6 per cent.

EXAMPLES.

What is the interest of $\boldsymbol{L} .30$ for 4 months :
L. 30

1 the 4 of 4 months.
s. 310 Ans.

What is the interest of $L .50$ for 5 months ? L. 50 5
take $\left.\frac{1}{4}\right) \mathbf{2 5} \mid 0$ at 6 per cent.
3.6. 3 Ans.

What is the interest of $L .70$ for 7 months :

$$
\text { L. } 70
$$

7
take $\left.\frac{1}{4}\right) 49 \mid 0$ at 6 per cent.
s. 12.3 at $1 \frac{1}{2}$ per cent. . $9 n s$.

What is the interest of L. 75.10 for 8 inontis:
L.75. 10

2 the $\frac{1}{4}$ of 8 months.
s.15. 1! Aus.
W hat is the interest of L.125.6.9 for 9 months? L.125.6.8 9

$$
\overline{11918.0 .0}=\frac{1.5 .12 .9}{} \quad \text { at } 6 \text { per cent. }
$$

What is the interest of $£ 165.13 .4$ for 12 months: £ $165 \cdot 13.4$

$$
3 \text { the } \frac{1}{4} \text { of } 12 \text { month. }
$$

$$
\cdot 19 \mid 7 \cdot 0 \cdot 0=£ 2 \cdot 9 \cdot 88_{3} . \quad \text { Ans. }
$$

What is the interest of $£ 245.10$ fur 1 yr. 8 months : £245. 10

$$
5 \text { the } 1 \text { of } 20 \text { months. }
$$

$$
122 \mid 7 \cdot 10=£ 6.2 \cdot 9 . \quad \text { Ans. }
$$

What is the interest of $£ 365$ for 2 years : £365

6 the $\frac{1}{}$ of 21 months.
$219\}=$ E10.19. Slns.
What is the interest of $\mathbf{£ . 4 7 5}$ for 2 years 4 months : £475

7 the $\frac{1}{4}$ of 28 months.
$332 \mid 5=\boldsymbol{E} 16 \cdot 12.6$. Ais
What is the interest of $£ 575$ for 3 years :
2575
9 the $\frac{1}{4}$ of 36 menths.
517 $5=\mathfrak{£} 25.17 .6$. Ans.
What is the interest of $£ 840 \cdot 10$ for 3 years 4 months: £840. 10 10 the $\frac{1}{4}$ of 10 months.

$$
84015 \cdot \dot{0}=£ 42 \cdot 0 \cdot 6 . \quad \text { Ins. }
$$

What is the interest of $£ 951$ for 3 years 8 months? £051

11 the $\frac{1}{4}$ of 44 months.
$1046 \mid 1==$ E52.6.1 $\frac{1}{5}$. SAns.
What is the intercst of $£ 100$ for 12 months :
$\Varangle 100$
3 the $\frac{4}{4}$ of 12 months.

$$
30!0=£_{1} \cdot 10 . \quad \text { Proof. }
$$

Rule for Interest at $1 \frac{1}{4}$ per cent.-Calculate at 5 per cent. and take $\frac{1}{4}$, or multiply the interest for one month at $\bar{\sigma}$ per cent. by $\frac{1}{4}$ of the months

What is the interest of E 48 lin 4 months:
4s fur imonth at sperceat
1 the $\frac{1}{1}$ of 1 montios.
4s. Ans.
What is the interest of e9: for \boldsymbol{j} month:
fis.
j
$\left.\frac{1}{i}\right) \geq .0 .0$ at juer cent.
104 . 7 ns

8s $3 \frac{3}{4}$ t ful 1 manth at 5 per cent
3 the a be I Bmathe
£1.4.111 rime
What is the interest of : !: : : 10 an $: 1$ months:
12s. $0 \frac{1}{2} d$
11

$$
\text { f1. 13. } 1 \frac{1}{8} \text {, ths. }
$$

What is the interest of elths. 15 for 1 year 1 mometh :
1 Gs 7 㖇! tor 1 manth at 5 per con! t the $\frac{1}{7}$ of $1 f$ months.

$$
\text { £ } 3.6
$$

Ef for i month at \tilde{j} per cont.
5 the of of months.
E.5 ans

What is the interest of 265.9 .6 for 2 yerrs andi: months?

$$
£ 1 \cdot 10.5 \text { wonth at } 5 \text { per cent }
$$ 8 the $\frac{1}{2}$ of 32 wonths.

£!!.3.5 Ans.

What is the interest of $t: 390.15$ fin 3 years: $£ 2.0 .0 \frac{8}{1}$ for 1 barnath at 5 per cent 9 is $\frac{1}{4} 0^{2} 36$ nontha.

$$
18.0 .6 .3 \text {. } 1 \mathrm{nc}
$$

$-1 i v$
cent.
:ot c
sider shilli $\ddot{i} l$ a give
is a
$1: 2 \mathrm{no}$
whicl
What

Hc 82 sh

What

Th
the is
What

Fort
What

What is the interest of 2100 for 12 months:

3s. 4 d . for 1 month

 "3 the $\frac{1}{1}$ ol' 12 montins.$$
\text { £1 ij. } 0 \text { Ins. }
$$

- Ruce for Intergst, Discount, or Commission at foper cent.-Cut of the unit's figure of the $£$. consider those rot cut ofe as shillings, and the mit's ligure cut off consider as pence and as many fiths, for 4 or 0 in the shilings add $\frac{1}{4} d$ for 8 or 10 add $\frac{1}{2} d$. For 12 or 14 add Yil and for 16 s. 86 . and upwards add $1 d$. which will give th. answer required.

DEMONSTRST10N

Haif per cout being the 200th part of the whole amount, the said amount is divided by 200 , which is more fully explained in the Demonstration for Interest fur 6 per cent. for Months. Sce Page 17.

EXAMPLES.

Wiat is the commissiou on $£ 120$ at $\frac{1}{2}$ per cent.? $\mathfrak{f} 120=12 s$. Ans.

Here as by the Rulo the unit's figure is cut off, which is a cipher, and is to be considered as pence, and the 1 : not cut offis directed to be considered as shillings, which gires 12s.

What is the discount on $£ 321$ at $\frac{1}{2}$ per cent :

$$
\mathfrak{x} 32 \mathrm{I}= \pm 1 \cdot 12,1!\text { Ans. }
$$

Here the figure cut off is 1 d. the 32 not cut off are 22 shillings

What is the interest of $£ 425$ at $\frac{1}{2}$ per cent : £ 19: $==\mathfrak{L}$ - $2.6 . \quad$ Ans.

The 5 cut off is 5 . equal to (id. This is of course the interest for 12 monthis.

What is the commission on $\mathcal{\mathcal { L }} 125.5$, 5 at $\frac{1}{2}$ per cent.:

For the 5 shiltings, $\frac{1}{1} l$, is to be a lowed, see Rule
What is the brokerage on $\mathcal{E} 1450 \cdot 12.6$ at $\frac{1}{2}$ per cent:

Rule for Interest for days at $£ 6$ per cent. per annum-Multiply the principal by the days; for each 100 they produce, allow 4 pence, but for each 6 shillings of Interest found out deduct or take of one penny, and so in proportion; the remainder will be the answe:.

DEMONSTRATION,

It will be found that the interest of ± 100 for one day at 6 per cent. will produce $3_{3 \text { asis }}^{33}$ d., which being nearly $4 d$. wo consider it as such, and then the dedaction of 1 ll . for cach $6 s$. corrects the error.

It may also be considered as counting the year as 360 days, instead of 365 , consequently the difierence must be deducted, namely, the same part of the amount, as the 5 days are of 365 which is or a penny for each fs. will give an answer sufficiently accurate.

Note, Any sums for any number of days, when multiplied together and producing 100, would give the same result, that is. $£ 20$ for 5 days, $£ 25$ for 4 days, cach when multiphied together, would be the same as $\mathfrak{f} 100$ for 1 day, or $£ 1$ for 100 days. Hence the cause of adopting the above method, which has been allowed by the most competent judges to be perfectly necurate, and in a high degree to combine ingenuity and simplicity.

EXAMPLES

$W_{\text {Hat }}$ is the interest of $£ 10$ for 10 days, at 6 per cent.? 110

$$
100=\text { to } \cdot \mathrm{td} . \quad \text { Ans. }
$$ thothing can be well taken of

What is the interest of ± 20 for 20 days, at 6 per cent ? fog
20 1. Id being neurly the quarter of

$$
100=1 \mathrm{~s} .4 d .
$$

$$
0 \frac{1}{4} \text { deduct }
$$

$$
8.1 .3 \$ \quad \lambda_{n s} .
$$

What is the interest of $£ \mathfrak{f} 0$ for 30 days at 6 per cent : £ 30 30

$$
\overrightarrow{9(1)}=3 s \quad 0 \mathrm{~d} .
$$

$0 \frac{1}{\text { ded }}$ deduct for 3 . $\overline{s .2 \cdot 1 \frac{1}{2}}$ dns.
Vote, As 100 is $4 d .300$ must be 18 therefore dividing by 300 gives shillings, observing to allow th. tor every 100 over, after dividing by 300 , as the following Examples more clearly explain.
What is the interest of $£ 30$ for 30 days?
\& 30
30
$3 \mid 00) 9 \mid 00$
s. 3 minus $\frac{1}{2} d$. Ans. $9 s$ s. $11 \frac{1}{2} d$ by 3.

What is the interest of $\boldsymbol{£} 40$ for 40 days ${ }^{\text {a }}$ £40

$$
\frac{40}{3(00) 16 \mid 00} \quad 100 \text { over }=\text { to } 4 d
$$

By cancelling 2 figures at each side, it reduces the operation to simply dividing
s.5.4 minus $1 d$.

5s. 4d. being nearly 6 s. Ans. 5s. 3d. What is the interest of $£ 45$ for 40 days ? £45

$$
: 3 \mid 00) 18 \mid 00
$$

$s \in$ minus $1 d$. Ans. 5s. 11 d . What is the interest of $£ 50$ for 50 days? £ 50
$50 \quad 100$ over, for which allow $4 d$.

$$
3|00\rangle 25 \mid 00
$$

s.3.4 minus $1 \frac{1}{2}$ d. Ans. 8s. $2 \frac{1}{2} \mathrm{~d}$. What is the interest of f60 for so days ? © 60

60 $3 \mid 00): 36 \mid 00$

What is the interest of $L .65$ for 70 days?
L. 65

70
50 over, for which allow $2 d$.
3100) 15150
s.15. 2 minus $2 \frac{1}{2} d$. Ans. 14s. $11 \frac{1}{2} d$.

What is the interest of $L .85$ for 80 days ?
L. 85

80
$3 \mid 00) 68 \mid 00$
s.22.9 minus $3 \frac{3}{1} d$. Ans. L.1.2. $4 \frac{1}{4} d$.

What is the interest of $£ 95$ for 50 days ?

$$
L .95
$$

$50 \quad 950$ over at $4 l l$. per 100 comes to
 10 pence.
3|00)47|50

$$
\text { s. } 15 \cdot 10 \text { minus } 2 \frac{1}{2} d \text {. Ans. } 15 \text { s. } 7 \frac{1}{2} \mathrm{~d} \text {. }
$$

What is the interest of $\boldsymbol{L} .125$ for 95 days ?
L. 125
$95 \quad 175$ over, being $1 \frac{3}{4}$ of a 100 ,
695
1125
$3 \mid 00) 118 \mid 75$

$$
\text { s.39.7 minus } 6 \frac{1}{2} d . \quad \text { Ans. } £ 1 \cdot 19 \cdot 0 \frac{1}{2}
$$

What is the interest of $£ 155$ for 110 days? L. 155
$110 \quad 250$ over, at $4 d$. a 100 , comes

$$
3 \mid 00) 170 \mid 50
$$

$$
\text { to } 10 \text { pence. }
$$

56.10 minus $9 \frac{1}{2} d$. .Ans. 2.16.01

What is the interest of $£ 3405$ for 5 days ? 23405

$$
56.9 \text { minus } 9 \frac{1}{2} d \text {. ans. } 2 \cdot 15 \cdot 11 \frac{1}{2} \text {. }
$$

What is the interest of $£ 975$ for 130 days? £975 $130 \quad 150$ over, allow 6d. $3(00) 1267150$
423.6 minus 58 10d. . Ans. I.20. 10.9

What is the interest of $£ 1845.10$ for 20 days ? f1945. 10
9) (1) over, allow $\frac{1}{2} d$ for.
$3 (0 0) \longdiv { 2 4 9 1 1 0 }$

What is the interest of $£ 163.10$ for 30 days ? £ 1680.10

30
15 over, allow $\frac{1}{2} d$.
$3 \mid 00) 504 \mid 15$
168.0 $\frac{1}{2}$ minus §s $_{3} 3 \frac{1}{2} d$. Ans. £8.5.9

What is the interest of $L 100$ for 365 days at 6 per cent : 365
$100 \quad 200$ over, allow 8d. $3(0 0 \longdiv { 3 6 5 1 0 0 }$
121. 8 minus 1s. 8d. Proof E_{6}.

It appears that for 1 s .8 d . nothing has been allowed, which could be only $\frac{1}{4}$, but for all transections in business the above Rule has been considered sufficiently accurate.

Any person desirous of bringing out the exact fraction (which no person in business would deem worth the trouble) by taking a $\frac{1}{3}$ off, instead of $\frac{1}{2}$, which is a penny for every six shillings. will find it calculated to a mathematical nicety.

To calculate Interest at 5 per cent. for days.-Find the interest at 6 per eent. agreeably to the Rule for 6 per cent. and deduct ${ }_{6}$ th of that amotint.

What

The
shew h 6 per have b tive an

EXAMPIES:

What is the interest of $\boldsymbol{L} 45$ for 40 days at 5 per cent.: L. 45
$3 \mid 00) 18100$
s. 6 minus $\left.1 d . \quad \frac{1}{6}\right) 5 s .11 d$. at 6 per cent.

114 deduct.
Ans. $\overline{34 \cdot 11_{4}^{1}}$ at 5 percent. What is the interest of $£ 30$ for 30 days:
£30
$3 1 0 0 \longdiv { 9 / 0 0 }$

3 minus $\frac{1}{2} d$. ${ }_{6}^{6}$) 2 s. $11 \frac{1}{2} d$. at 6 per cent. 6 nearly. Ins. s. $9.5 \frac{1}{2}$ at 5 per cont.
What is the interest of $L .60$ for 60 days?

$$
\mathfrak{f} 60
$$

s. 12 minus $2 d$. at 6 per cent 118 . 10 d . deduct ${ }_{5}^{1} \quad 8.1 \cdot 11 \frac{3}{4}$
$s 9 \cdot 10 \frac{1}{4}$ Ans.
What is the interest of $£ 90$ for 95 days?

The foregoing few examples may be sufficient to shew how 5 per cent may be done, by taking $\frac{1}{6}$ th from 6 per cent. and by taking ${ }_{6}$ th from the Interest, which have been calculated at 6 per cent. gives the respective answers at 5 per cent.

We now introduce calculations for Interest for duys at 5 per cent. independent of finding at 6 per cent.

Rulet. - Multiply the principal by $\frac{1}{3}$ of the days, or the days by $\frac{1}{3}$ of the principal, cut off the unit figure of the $£$ from that product, consider those not cut off as rence, deduct $1 d$. for each $6 s$. contained therein, the remainder will be the answer.

DEMONSTRATION.

In the Demonstration of Interest for Months, at is per cent. page 39, it was cloarly proved that the interest of each f_{2} for a month is one penny, and on that fact is founded this method for Days.

Note, If the principal and days are multiplied together, and the prorluct divided by the number of days in a month, the quotient will doubtless be pence: but as the average month (by dividing 365 by is months) sion) we procoed as if there were but 30 days in the month-consequently, only 360 in the year; and as dividing any sum by 360 , instead of 365 , would give a greater quotient, the difierence must be deducted; so that the quotient will be the same as if it really had been divided by 365 , which will be done offectually by taking such part of as the $\overline{5}$ remaining days are of a year, viz. a 73rd.; but 1 d . for each 6 s., or a 72nd., will be found near enough for use.

Now by the following examples the above dividing is materially abridged; for by mulliplying by $\frac{1}{3}$ of the days it is only necessary to divide hy $\frac{1}{3}$ of 30 , which is done by cutting off the unit figure of the $£$ s. of the product, which, as before laid down, is dividing by 10 ; and by that means a very tiresome operation is entirely dispensed with, and the interest of any sum, at any rate of interest, discovered by persons totally unacquainted with the rudiments of Arithmetic; and who perhaps, from their habits and constitution, \&c. are unqualified for ever acquiring that useful hnowledge by the ordinary method.

EXAMPLES.
What is the interest of $£ 20$ for 6 days ?

$$
\begin{aligned}
& \frac{L .20}{2} \text { is } \frac{1}{3} \text { of } 6 . \\
& \frac{1 \mid 0}{10}=4 d . \quad \text { Ans. }
\end{aligned}
$$

Here the $\frac{1}{3}$ of 6 is 2,90 multiplied by 2 produces 10, tho unit figure cut off leaves 4 , which is $4 d$, and as only $1 d$. for 6.3 . is to be deducted, $4 d$. being so tri . tling a part of $6 s$, we do not take any thing off.
What is the interest of $L .40$ for 9 days?

$$
\begin{aligned}
& \text { L. } 40 \\
& 3
\end{aligned} \text { is } \frac{1}{3} \text { of } 9 \text { days. }
$$

$$
\text { d. } 1910 \text {. } 7 \mathrm{~ns} .1 \mathrm{~s} .
$$

What is the interest of $L .15$ for 16 days ?
16 Hero $\frac{1}{3}$ of 15 being easier taken than $\frac{1}{3}$ of 16, it 5 is better to multiply 16 by 5 .
$\overline{810}=3 \mathrm{~d}$. Ans.
What is the interest of $L 25$ for 24 days:

$$
1.25
$$

$$
8=\frac{1}{3} \text { of } 24 \text { days. }
$$

d. $2010=1 \mathrm{~s}, 8 \mathrm{~d}$. minus $\frac{1}{4}$ d. Ans. Is. $7 \frac{3}{4}$

What is the interest of $L .60$ for 18 days?

$$
\begin{aligned}
& \text { L. } 60 \\
& \qquad 6=\frac{1}{3} \text { ol } 18 \text { days }!
\end{aligned}
$$

$d .3610=3 s$, minus $\frac{1}{2} d$. Ans. 2s. $11 \frac{1}{2} d$.
What is the interest of L. 4.5 for 10 days?
40
$15=\frac{1}{3}$ of 45.
d.6010 $=5 \mathrm{~s}$. minus $1 \mathrm{~d} . \quad$ Ans. 4s. 1 ld.

Find the interent of $\mathrm{L}, 30$ for 70 days.
70
$10=\frac{1}{3}$ of 30.

$$
\begin{array}{rl}
3^{*} & 7010 \\
\approx 5 s .10 d . \text { minus } 1 d . \text {.Ims. } 5 . s . \text { ?d }
\end{array}
$$

What is the interest of $L .65$ for 60 days?
L. 65

$$
20=\frac{1}{3} \text { of } 60 \text { days. }
$$

$130 \mid 0=10$ s. 10 d . minus $2 d .=10 \mathrm{~s} 8 \mathrm{~d}$. . dins.
Note, such part as the figure cut off is of 10 , allow such part of a 1 ld .

What is the interest of $L .75$ for 33 days ? L. 75
$11=\frac{1}{3}$ of 33 days.
$\overline{3215}=6 s .10 \frac{1}{2} d$. minus $1 d$. Ins. 6s. 914 6 .
Here the 5 being $\frac{1}{2}$ of 10 , and dividing by 10 aillow $\frac{1}{2} \ell$.
What is the interest of $\boldsymbol{L} .125$ for 36 days ?
L. 125
$12=\frac{1}{3}$ of 36 days.
$150 \mid 0=12 s .6 d$. minus $2 d$. Ans. 129 4ll.
What is the interest of $L .145$ for $3 \dot{7}$ days ?
L. 145

$12 \frac{1}{3}$
1740
43

Here $12 \frac{1}{3}$ being $\frac{1}{3}$ of 37 , multiply by $12 \frac{1}{3}$, and the 8 over being $\frac{1}{4}$ of 10 , allow for it $\frac{3}{4} l$.

Find the interest of Le 185 for 61 days.
\&185 61 to bring in, being the $\frac{1}{3}$ of 185 , the frac$20 \frac{1}{5}$ tion over being of no consequence is rejected.
$376 \mid 1=£_{1.11 .4}$ deduct $5 \frac{1}{2} d$. Ais. $£ 1 \cdot 10 \cdot 10 \frac{3}{1}$.
liere the figure is cut off; being only one and the tenth of a peany, being of no consequence in business, it is rejected.

> What is the interest of $\mathfrak{L} 950$ for 150 days ? So 00 $\frac{50}{50}$ is $\frac{1}{3}$ of 150 .
> $195010=L .5 \cdot 4.9$ minus $1 \mathrm{~s} .5 d .=L .5 .2 .9 . \quad$ Ins.
H_{1} quest Wha L 9 9

Hering given sufficient cxamples, tre shall introduce a question to prove the accuracy of the rule.
What is the interest of $\ell 2.40$ for 73 days?
L 2.10 tor 1 year at \bar{z} per cent. is $L .12 \cdot 0 \cdot 0$

$$
73 \text { days are's of a year }=0.8 \cdot 0 \text { d } 4 \mathrm{~s}
$$

As the interest of L. 240 for 1 year is 210 s whi is $L 12$ and 73 days being the! of a year, the interest tor 73 days must he the ! of $L .12$ which is L. $2 \cdot 8$.

$$
£ 73
$$

31 is $\frac{1}{3}$ of $£ 2$.

$$
\begin{aligned}
58410= & 53.4 b_{s}= \\
\text { minus } & \left\{\begin{array}{l}
0.0 .8 \\
\\
\\
\text { £.2.8.\% Proof. }
\end{array}\right.
\end{aligned}
$$

Rule for interest for days at $4 \frac{1}{2}$ per cent.-Calculate at 6 per cent. and take $\frac{1}{4}$ from the amount, the same as the Rule given for mosthe at $4 \frac{1}{2}$ per cent.

> EXAMPHES.

What is the interest of $£ 15$ for 40 days.

$$
\text { L. } 45
$$

40
ns. $143,8 \frac{1}{4} d$. $\frac{1}{3}$, and the 8

35, the fracc is rejected.
£1.10.10 $\frac{3}{1}$. one and the in business,

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic

23 WEST MAIN STREET
WEBSTER, N.Y. 14580

(716) 872 -4503

What is the interest of $E 190$ for 120 days?

C1OD	fof 120 is 30 , from 120 leaves 90
31091100.90	
s. 36 m	£

The abore examples will be found sufficient at $4 \frac{1}{2}$ per cent. for by taking trom any of the examples it 6 perecent. you have at once the interest at $1 \frac{1}{2}$ per cent

Ruse for interest at 4 per cent.-Calculate by the Rule for 6 perceat. for days, and take $\frac{1}{3}$ from that atmount.

EXAMPLES.

Wutr is the interest of ext for 60 days? d:40

$$
3 ; 00) \frac{60}{2 \cdot 100} \text { days. }
$$

(as minus ${ }^{\frac{1}{3}}$) 8s. minus $1 \frac{1}{8}$ l. s. $7 \cdot 10 \frac{1}{2}$ at 6 per cent. $\frac{9 \cdot 7 \frac{2}{2}}{8.5 \cdot 3}$ deduct.

What is the iuterest of for for 65 days?
GJ days
5)
$3 1 0 0 \longdiv { 3 . 5 0 }$
A. $10 \cdot 10 \mathrm{~d}$. minus $1 \frac{3}{1} d$. s. $10.8 \frac{1}{1}$ d. at 6 per cent.

Ans. $\frac{3.6 \frac{1}{4} \text { deduct. }}{\text { s. } 11}$ at 4 per cent.
What is the interest of $£ 75$ for 70 days?
ع75

$$
70 \text { days. }
$$

3005050

$$
\overline{s .17 .6} \text { minus } 3 d . \frac{1}{3} \stackrel{s .}{3} .17 .3 \text { at } 6 \text { per cent. }
$$

$$
\text { 8.11. } 6 \text { Ans. }
$$

The above calculations may be shortened, by either taking $\frac{1}{8}$ ofl'the amount, or of the number of days, like the following

EXAMPLE.

What is the interest of $\mathfrak{\&} 9 \boldsymbol{f}$ for 90 days: L. 90 deduct $\frac{1}{s}$ of 90 , leaves 60 . 60 days.

$$
3 \mid 00) 54,00
$$

8. 18 minus 3 d. . Ins. 17 s. 9 d. at 4 per cent By taking the $\frac{1}{3}$ from the answers of any of the calcutations at 6 per eent. for days, you have the amoumt at 4 per cent.

Rule for interest at threo per cent. for days - © alculate at 6 per cent. and take half. Or, Multiply the principal by half the days, or the days by half the principal, and proceed as in o per cent.

What is the interest of $L .80$ for 80 days? L. 30

40 days, the $\frac{1}{2}$ of 80 .
$3 \mid 00) 32 \mid 00$

What is the interest of $L .95$ for 90 days:
L. 85

$$
45=\frac{1}{2} 90 \text { days. }
$$

$$
3 \mid 00) \div 2 \mid 75
$$

s. 14.3 minus $2 \frac{1}{2} d$: Ans. 14 s. $0 \frac{1}{2} d$.

What is the interest of $£ 109$ for 81 days, at 3 per cent? $L 199$ 1941 over, at $4 d$. the 100 , allow Jd . $40 \frac{1}{3}$ days.

$$
3 \mid 00) \overline{52 \left\lvert\, 24 \frac{1}{2}\right.}
$$

s.17. 5 minus 3d. Ans. 17s. $2 d$.

Rule for interest at $3 \frac{1}{2}$ per cent. for days - Mu!tiply the principal by the days, for each 100 they produce allow two-pence, which gives the interest at 3 per cent. to which add $\frac{1}{i}$ th. and you have the interest at $9 \frac{1}{2}$ per cent. observing to deduct $1 d$. for each 6 s. ats the other Rulos.

What is the interest of $\mathbb{E} 30$ for 20 days ?
$L 30$

$$
\begin{aligned}
& \frac{9 C}{d a y s .} \\
& 600 \text { at } 9 d . \text { per } \underset{\text { add } 100}{100} \text { 1s. } 0 d \text { at } 3 \text { per cent. }
\end{aligned}
$$

Ans. 31.2 at $3 \frac{1}{2}$ per cent.
By dividing the product of the Multiplication by coo, it gives shillings, as the following EXAMPLES.
Wiat is the interest of $\mathbf{x} 60$ for 60 days, at $3 \frac{1}{2}$ per cent: \&60
$6,0 0 \longdiv { 3 6 0 0 }$ days
add ${ }_{6}$) 6 s. at 3 per cent.
$1 s$.
Ans. 79. minus $1 \frac{1}{4} d$. interest $6 s .10 \frac{3}{4} d$. at $3 \frac{3}{2}$ per cent. What is the interest of $\boldsymbol{L} .90$ for 80 days?
$\boldsymbol{L} 90$

\qquad
14s. minus $2 \frac{1}{2} d$. interest 13s. $9 \frac{1}{2} d$. at $3 \frac{1}{2}$ per cent.
What is the interest of $L \mathbf{L} \mathbf{L} 5$ for 70 days?
L. 125

$$
70 \text { days. }
$$

$600) 87 / 50$
350 over at $8 d$. per $100=\tau d$.
add ${ }_{6}$) 14 . 7
$3 \frac{1}{2}$ perccut L 365

What is the interest of $L .100$ for 265 days, at $3 \frac{1}{2}$ per cent.? 365 days. $100 L$. $6 1 0 0 \longdiv { 3 6 5 0 0 }$ add $\left.{ }_{6}^{1}\right) 6 \overline{60 \cdot 10}$

500 at $\mathrm{Pd} . \mathrm{p} 2 \mathrm{r} 100=10 \mathrm{c}$.
$10 \quad 1 \frac{3}{4}$
s. $70.11 \frac{3}{4}$ minus $11 \frac{3}{4}$ d. interest $£ 3.10$ at $\boldsymbol{2} \frac{1}{2}$. Proof.

Rui.f fir interest for days, at $2 \frac{1}{2}$ per ceit. - ? $a l-$ culate at 5 percent. (see Rule) and take half, which will be the answer.

EXAMPLES.

What in the interest of 1.60 for 60 days, at $2 \frac{1}{2}$ percent
L. 60

90 is $\frac{1}{3}$ of 60 days.
$\left.d .120 ;=\frac{1}{2}\right) 10 s$. at 5 per cent. minus $2 d$.

What is the interest of 505 for 33 days, hit $\frac{1}{2}$ percent.? £ 95

$$
1 \mathrm{i} \text { is }=\frac{1}{3} \text { of } 3: 3
$$

$$
10415=\frac{\left.\frac{1}{2}\right) 8 s .8 \frac{1}{2} d}{4.4 \frac{1}{4} \text { minus } \frac{3}{1} \text { d. Ans. } 4 \text { s. } 3 \frac{1}{2} d .}
$$

What is the interest of $£_{18.3 \text { for } 150 \text { days? }}^{\text {W }}$
£185
50 is $\frac{1}{3}$ of 150.

$$
\begin{aligned}
925,0= & £ 3 \cdot 17: 1 \\
& \frac{1.1 \text { minus. }}{} \begin{aligned}
\left.\frac{1}{2}\right) 3 \cdot 16 \cdot 0 & \text { at } 5 \text { per cent } \\
& \left(1 \cdot 18 \cdot 0 \text { at } 2 \frac{1}{2}\right. \text { per cent }
\end{aligned}
\end{aligned}
$$

It is immaterial whether the penny for every fis. is taken off when at 5 per cent. or at $2 \frac{1}{2}$ per cent.

What is the interest of 2360 for 240 days?
€ 360
30 is $\frac{1}{3}$ of 210.

$$
d \operatorname{sg80} 0=\frac{\left.\frac{1}{2}\right) £ 12.0 .0}{6 \cdot 0.0} \quad \underset{\text { minus } 1.8 \quad \text { t5.18.4. ans. }}{ }
$$

NOVEL SYSTEA

What is the interest of $£ 395$ for $\mathbf{3 7}$ days: E39.5
nuer
leis bea

If the figure cut off were 5 , the allowance for it would be $\frac{1}{2} d$. consequently $1 \frac{2}{3}$ can be of no value.

What is the interest of $£ 100$ for 365 days? 365 days.
$33 \frac{1}{3}$
12045
$\left.\frac{121 \frac{2}{3}}{1216 \mid 6}==\frac{1}{2}\right) £ 5 \cdot 1 \cdot 4 \frac{1}{2 \cdot 10 \cdot 8 \frac{1}{4}}$ minus.
£2.10. Proof.
When thicre is a large sum for many days, the interest may be found more advantagecusly by the following

Rue for Interest for days at 5 per cent.- Multiply the principal by the days. The product divided by 7300 gives pounds, the remainder divided by 365 gives shillings, and that remainder divided by 30 , gives pence.

DEMONSTRATIOX.

If any principal be multiplied by the days for which you wish to find the interest, and the product divided by 365 , the quotient, taken as shillings, will give the answer at 5 per cent. And though that method is often adopted in schools, \&c. we here give an improvement on, and an explenation of the same. By dividing the product by 7.300 , which is 20 times 365 , it will produce pounds; the remainder, divided by 365 , will produee shillings; and that remainder by 30 (nearly) the days in a month, will give pence; observing if the 30 soes into, or measures the dividend without leaving a remainder, to put down a farthing less, by which you allow for dividing by only 30 instcad of 30_{13}^{5}, the
average days of a month: should it not go exactly, but leave 's or 6 , they will compensate, and nothing need be allowed.
.Vote, Though this method possesses a decided advantage over any other way we have seen practised, yet it is superseded by the other method for 5 per cent. in page 76. You may convince yourself of the truth by inspecting $£ 120$ for 95 days (just following) dune by lioth methods.

EXAMPLES.

What is the interest of \boldsymbol{L}_{100} for 365 days ?

$$
: 65 \text { days }
$$ 100

7300)36500(£5 Ans.

What is the interest of $£ 120$ for 95 days? 95 days, 120

$$
\begin{aligned}
& 3 \mid 0) 8 \mid 5
\end{aligned}
$$

The above $£_{120}$ for 95 days at $\overline{5}$ per cent. by the Rule laid down heretofore, by multiplying by $\frac{1}{3}$ of the principal.

$$
\begin{aligned}
& 95 \text { days. } \\
& 40 \text { is } \frac{1}{3} \text { of } £ 120 \text {. } \\
& \text { d } 380 \mid 0=£ 1.11 .8 \text {. } \\
& \text { minus } 5 \frac{1}{4} d \text {. Interest } £ 1 \cdot 11 \cdot 2 \frac{3}{4}
\end{aligned}
$$

Rliee for Interest at $£ \mathfrak{£}$ per eent. for days.-Calculate by the Rule for days at 6 per cent. (already given) and take $\frac{1}{3}$ of the amount.

Or, multiply the principal by $\frac{1}{3}$ of the days, or the days by $\frac{1}{3}$ of the principal, and divide by 300 , gives the anount without the trouble of going into 6 per cent.

EXAMPLES.

What is the interest of $£ 30$ for 30 days : L.30 10 is $\frac{1}{3}$ of 30 .
$3 \mid 00) 3 \mid 00$
s. 1 Ans. at 2 per cent.

What is the interest of $L .75$ for 84 days, at 2 per cent. : 84
95 is $\frac{1}{3}$ of 75.

$$
3 \mid 00) \longdiv { 2 1 | 0 0 }
$$

s. 7 minus $1 \frac{1}{4} d$. Ans. Gs. $10 \frac{3}{7} d$. What is the interest of $L .95$ for 120 days : $\mathfrak{£} 5$

$$
40 \text { is } \frac{1}{3} \text { of } 120 .
$$

s.12.8d. minus $9 d$. Ans. 12s. Gil. What is the interest of $£ 110$ for 99 days: $£ 110$

33

$$
? \mid 00) 36 \mid 30
$$

$$
30 \text { over }=1 d
$$

s.12-1 minus $2 d$. Ans. 11 s . 1 ld .

What is the materest of $L 130$ for 13) days :
L. 130

130

$$
3 / 0 0 \longdiv { 1 6 3 1 0 0 }
$$

$\left.\frac{1}{3}\right) 56.4$ at 6 per cent.
s.18. $9 \frac{1}{4}$ minus 3 d. Ans. 18 s .6 f d,

What is the interest of $£ 195$ for 150 days ?

$$
£ 195
$$

50 is $\frac{1}{3}$ of 150 .

$$
3 \mid 00) \longdiv { 9 7 | 5 0 }
$$

$$
\text { . } 32.6 \text { minus } 5 \frac{1}{2} d \text { Ans. } f_{1} \cdot 12 \cdot 0 \text { f }
$$

Who

Whoa

Sh

by ta ans takin it be per c days As to kn est, shew to th the y

What is the interest of $L .395$ for 240 days: L. 39.5 30 is $\frac{1}{3}$ of 240 . $3 \mid 00) 316 \mid 00$
s.105. 4 minus 1s. $5 \frac{1}{2} d$. Ans. $55 \cdot 3 \cdot 10 \frac{1}{2}$. What is the interest of $£ 100$ for 365 days? 365 days.

$$
100
$$

$$
3!00) 365[00
$$

$$
\stackrel{121.8}{1.8 \text { minus }=} \frac{L}{\left.\frac{1}{3}\right) 6.0 .0} \frac{\text { at } 6 \text { per cent. }}{\text { L.2.0.0 Proof. }}
$$

Should Interest at $1 \frac{1}{2}$ per cent. for days be required,', by taking the quarter of 6 per cent. you havethe answer: or if the Interest for days, at 1 per cent. by taking the $\frac{1}{6}$ of 6 per cent. you have the answer: or if it be found necessary to find the Interest for days at $\frac{1}{2}$ per cent. by taking ${ }_{12}$ of the amount of the Interest for days at 6 per cent. you have the answer.

As it is necessary in Calculating Interest for days, to know the number of days the suin has been at Interest, the following table will be found useful; which shews the number of days, from any day in one month, to the corresponding day in another month, through the year.

To find the number of days by the above table. Find
the month in the left-hand column of months, and
Fi 17th Fr founc time maki
w and 9 occur, it wi'l be necessary to add one day more to the number discovered by the table.

EXAMPLES.

How many days from the 1st of $A_{\text {pril }}$ to the 1st of March ?
He:e opposito 1 pril and under March you find 33.1, which are the number of days fromi the list of April to the ist of March.

Find the number of days from the Sth of January to the Eth of July.

See opposite January and under July the figures are 181, which are the days from tho Sth of January to the 5th of July.

Find the number of days from the \boldsymbol{T} th of May to the 15 th of Deceraber.

You find the figures in the column opposite May and under December are 914, which gives the number of days from the 7th of May to the 7th of December, but as it is required to know till the 1 th of December you add the difference 3 days, making it 292 days, the answer.

Find the number of days from the $\overline{5}$ th of November to the 3rd of May.

Here from the Dth of November to the 5th of May is found to be (by the table) 181 days, but as it is only required to find to the 3rd. of May, days must be deducted, leaving 179 days, the answer.

How many days from the 4th of June to the 1st of December ?

By the table it appears to be 183 days from the 4 th of June to the 4th of December, but the time required being only to the 1 st of December, leaves 3 days less. Ans. 180 days.

Find the number of days from the 11 th of April to the 17th of December.

From the lith of April to the 1th of December, is found to be 24.4 days, which being 6 days less than the time required, you add the differenee, which is 6 days, making the tote! 050 days, the answer.

What is the interest of f 65 for 3 years, 4 months, and 20 days, at 6 per cent.?

$$
\begin{aligned}
& \text { £65 yrs.mo. } \\
& 40 \mathrm{mo}=\text { to } 3.4 \\
& 260 \mid 0=£ 13 \cdot 0 \text {. } 0 \\
& \text { 4.34 } \\
& \text { £13.4.3. }{ }^{2} \text {. } \mathrm{Ans} \text {. } \\
& \text { £65 } \\
& 20 \text { days. } \\
& 3 \mid 00) 13 \mid 00 \\
& 4.4 \text { minus } \frac{3}{4} d .
\end{aligned}
$$

What is the interest of $£ 85$ for 4 years, 2 months, and 94 days, at 4 per cent.?

for 4 pe. 7. 3.11 at 2 per ct. being $\frac{1}{3}$ of 6 per cent. $\varepsilon_{14 .} 7.9 \frac{1}{2}$ at 4 percent.
What is the interest of $£ 90.7 .6$ for 6 years, 9 months and 24 days at 5 per cent.?

$$
\begin{aligned}
& \text { yrs.mo. s.d. fes. } \\
& 6 \cdot 8 \text { as } 6.8 \text { is } \frac{1}{3} \text {) } 90.7 \cdot 6 \\
& \text { interest for } 6 \text { yrs. } 8 \mathrm{mo} \text {. 30.9. } 6 \quad 90.7 .6 \\
& \text { interest for } 24 \text { days } \quad 5.11+\quad 8 \\
& \overline{£ 30.8 .51} \overline{723.0 .0}=\stackrel{\text { s. }}{6} \text {. } \quad \text {. }
\end{aligned}
$$

It will be seen that the three preceding sums at 6,4 , and 5 per cent. have been done by the Rules already laid down.

As it may be found necessary in the purchasing of property to know at what rate per cent. mioney may be laid out, if can be easily discovered by the following simple

Rule.-Divide the number of years' purchase into $£ 100$ and the result will be the per centage at which your money is laid out.

EXAMPLES.

If 13 years' purchase is given for an estate, the rental of which is $£ 100$ per annum, what per cent. do 1 get for my money?

the

 whic give:Ir I giv 13) $£_{100}$
£7.13.10:3 Ans. which is nearly 7量 per cent.
If 15 years' purchase is given for $£ 150$ per annum, at what rate per cent is the money laid out?
15) $€ 100$

Ans. $£_{6}^{2}$ per cent. and the purchase money is $£ 2250$.
If 16 years' purchase money is given for $£ \mathscr{5}$ per annum, ut what rate per cent. was the purchase?
16) $£ 100$

Ans. $£_{6} 6$ per cent. and the purchase money is $£ 2000$.
If 21 years' purchase money is given fer $\mathfrak{£} 190$ per annum, what per cent. has the purchaser for his inoney: 21) $£ 100$

Ans. $\mathcal{C 4} \cdot 15 \cdot 2{ }_{7}^{6}$ per cent. and the purchase money is L 3990.
If 28 years' purchase money is given for an estato of $£ 100$ per annum, what per cent. has the purchaser for his money?
98) $\mathbb{E} 100$

Ans. $£_{3} \cdot 11 \cdot 5$ per cent. and the purchase money is £2800.

Toprove the aceuracy of the above, multiply the per centage by the number of years' purchase, which gives the annual rent.

In order to find out hovo money should be laid out in a purchase, so as to ascertain any given rate per cent.

Rule.-Divide the annual rental by the per centago. the quotient will he the number of years' purchase, which number of years' purchase multiplied by 10 , gives the whole purchase money.

EXAMPLES.

Ir the annual rental of an estate be $L .100$ what must I give for it, that I may lay out my money at 4 per cent.?
4) $£ 100$

4:5 the number of years' purchase. 100 the annual rent.

LQ500 the purchase money.
If the annual rental of an estate be fooper annum, what number of years' purchase must be given in order to lay out the money at 3 per cent?

3) $\mathfrak{\text { ²0 }} 0$

16 the number of years' purchase. 100
£1600.13.4 the purchase money.
Suppose the annual rent to bo $\boldsymbol{\Sigma}_{60}$ what number of years' purchase must be given, so that the noney may be laid out at 2 per cent.?
2) 60 e
${ }^{30}$ years' purchase.
\&3000 to be paid for the cstate.
If I purchase an estate, the annual rent of which is Lij0 how many years' purchase should be given that my money be laid out at $3 \frac{1}{2}$ per cent.?
$3 \frac{1}{2} 10 \mathscr{L}$
$9 \quad 2$
7) 300
42_{7}^{6} years' purchase. 100
£4285 ${ }_{7}^{5}$ to be paid for the estate.

If the annual rent of an estate be $£ 500$, how many
years' purchase should be given for it, that of per cent. may be gained by the money laid onts

$2 \frac{1}{2}$	$500 £$
2	2

Б) 1000

200 years' purchase to be given.
100
$\mathscr{2} 20,00$, the purchase money.
The above calculations prove thenselves, by finding what the interest of the purchase moncy is at the same rate as the above sums are stated.

Thus: The purchase money of the last question is $\mathcal{£} 20,000$, being at interest at $\mathfrak{t} 9 \frac{1}{2}$ per cent. per annum, produces $£ 500$, being the annual rent of the estatc.

To compute in one operation the interest of several sums, advanced at different times, for the account of another iperson.

Bankers and merchants frequently advance sums of money for their correspondents, the intercst whereof they charge on settling accounts with , them.

The method of computing nnd stating an account of Intercst, without the assistance of Interest tables.

1st. Find the sums due to you at each date of the necount, begimuing where you are at first in advance for your correspondent, thus:
The first disbursement, or payment, made by you out of your own cash, is the first sum dwe; the following sums due, at the several dates, are found by ndding the payments made by you, or subtracting the receipts to or from the sum duc at the last foregoing date respectively.

Ind In a line with each sum due, write the days from the date theroof to the date which follows next in order of time, whether the article be a payment or a receipt.
3rd. Multiply each sum due by its respective days, and write the product in the same line, a little farther to the right.
as if purs as la
$4 t$

Feb.
....

4th. Add the several product;, and with the total, as il it were a single prodnct of principal and days, pursue the directions for calculatiag Interent for days, as laid down just before.

A banker and merchant open an account current the 1 st of January, 18331, the banker advancing the sum of $£ 100$ and procecding as folluws:

El . $9 \cdot 10$ at 6 percent.
If required to be foum at jper cent. deduct :, th. from the ammunt of 6 per cent.

Clearer demonstration of the above calculation 1834.

Jan. 1, due £ 100 ; from the tat to the toth of Jan. 15 days, multiplied hy $100=1.5: \mathrm{M}$
 from 16th Jin. to 1 st Feb. 16 days, multiplied by 150.
Feb. 1, recd \mathfrak{f} go deducted from $\mathfrak{i} 150$ leave fio; from Ist Feb. to gid March 30 days, maltiplied by 70. Mar. 2 , paid 2190; from the ond to the Sht of Mar 2? days, multiphicd by $120=260$
$\ldots . .21$, recd Eso: dedincted from $£ 120$ leave \& 10 ; from eth March to 4 th ot April, 11 days, multiplied by $40=110$ ()! 130

The products divided hy 300 give 30 s . 3 d., liom which iot. being dedneted, there being ò times fis, in 30, leave the answer L. 9.10 at 6 per cent.

Another example of an Interest account, cominencing the 15 th of January and ending 4th of May, 1834, at 6 percent.

IIcre we shall give the explanation previous to the form, which, like the former, is divided into five colamns. The first contains the dates of the several sums paid or received: the second the sums paid or received on the respective days: the third contains the sums due at each date, which sums are found by adding the payment to the last sum due and by subtracting the receipts from the last sum duc respectively: the fourth contains the numbers ot the days from the date of the respective articles, to the date next following; and the fifih contains the products of each sum due multiplied by its respective days.
1834.

Jin. is, adra 193 from Jan. 15 th $31 \mathrm{st} 16=1963$ i31, reced. $7 \overline{5}$

Felı. 10 due paid $\quad 90$ from Jan. 31 to Feh. $10 \quad 10=490$
due 138 from F'eb. 10 to $29, \quad 12=10.5$?: paid 47

Mar. 3 due recd. 185 from Fcb. 22 to Mar. $310=1350$
due 85
85 from March 3 to $23 \quad 20=1700$
...23, paid 50
due 140 from Mar. 23 to Apr. $4 \quad 12=-1630$ April 1 , rech. 100
due $\quad 40$ from Apr. 4 to May $1 \quad 30=1200$ Say 4 , recd. 40

Wh
int, commencof May, 1834,
revious to the ided into live of the several sums paid or d contains the found by addad by subtruct. respectively: days from the te next follow; of cach sum
D.rys. Proob. st $16=1963$
$1010=490$
$12=10.5$
r. $310=1350$
$23 \quad 20=1700$
$8.412=-1630$
$4.30=1200$ $3 \mid 00) 105 \mid 3 \cdot 4$
35.14
duct 5
£1.14.7 ${ }^{3}$
5.94
f1. $8 \cdot 10 \frac{1}{8}$

OF ARITHMETIC.
183.4.

Jan. 15, paid 123 31, recd. 75
Feb. 10, paid 90 Mar. 3 , paid 47 Mar. 3, recd. 100 93, paid 55 April 4, recd. 100
f
$\left.\frac{1}{3}\right) 35 \cdot 1 \frac{1}{2}$ at 6 per cent. $11.8 \frac{1}{2}$ at 4 per cent.

L1.3.5 at 4 per cent.
By deducting $\frac{1}{3}$ from 6 per cent you have 4 per ent. and by taking the $\frac{1}{3}$ of 6 you have ${ }^{2}$ per cent. bserving to tuke one penny for cach six shillings off cach amount.
An interest account at 5 per cent. opened February 4, 1833, and closed November 18, of the same year. 1833.

Fel. 4, paid 300
… 29 , paid 100
Mar. 10, reed. 950
$\cdots \cdot 30$, paid 100
April 12, reed. 220
June 5, paid 450 Aug. 7, recd. 300

Nor. 18, settled aecount $\quad \mathbf{7 3 0 0}) \mathbf{7 1 8 5 0}(9 \cdot 16.10$ Ans,

$$
\begin{array}{r}
3 6 5 \longdiv { 6 1 5 0 } \\
9500 \\
\hline 3 \mid 0) 3110
\end{array}
$$

When the addition of the products is found, the second Rule for interest of days at $\boldsymbol{£}_{5}$ per cent. is best applied; that is, dividing by 7300 gives pounds for the quotient; the remainder by 365 give shillings for the quotient; and that remainder by 30 , rejecting uny fraction over, gives pence, which pounds, shillings and pence is the answer required, not being subject to
a deduction of a penny for each shilling；consequently the correct answer is $£ 0.16 \cdot 10$ ．Il preferred，the interest may be found at 6 per cent．as in the proceed－ ing examples，and fth deducted from that sim leaves the answer at jer cent．

DIS（＇OUNT＇．

Ir being customary for manufacturers to take olla ecrtain discount extending from $2 \frac{1}{2}$ to 75 per cent． from the price of articles purchased，the following methods will，we trust，be found useful．

Rene－If the Discount to be taken off is any ah－ quot part of a 100 ，take that part of the gross sum which will be the discount，which being subtracted from the gross sum laves the net money，or the money to be paid after taking of the discount．

EXAMPLES

where the discount is an even part of 100 ．
What discount should be taken off $£ 145 \cdot 3.4$ at $2 \frac{1}{2} \mathrm{pet}$ cent．？
$2 \frac{1}{2}$ of 100 is ${ }^{\prime}$ ．
3．12．7 disc．taken of at $\frac{1}{2}$ per cent．
El＋1．10．9 net money to be paid．
Take the discount off $£ 203 \cdot 7 \cdot 10$ at \bar{J} per cent．
$\overline{5}$ of 100 is ${ }_{2}$ ）$£ 203 \cdot 7 \cdot 10$
10．3． $4{ }_{10}^{7}$ discount．
£193．4． 3_{i}^{3} net money．
As jer cent is $1 s$ ，in the L ．\＆e．\＆e．we shall give as we proceed more simple Rules when applicable； hut such sums as the preceding，to be perfectly accu－ rate，should be done by the foregoing methods．

What discount should be taken of L．572．9．2 at 10 per cent．

37．4．11 discount．
£335．4． 3 net money．
; consequently preferred, the in the preceedhat sum leares
s to take ofl: : o 75 per cent. the following
off is any allthe gross sum ing subtracted , or the mone?
rt of 100.
j.3.4at $2 \frac{1}{2}$ per at $\frac{1}{2}$ per cent. be paid. per cent. rey.
we shall give en applicable; perfectly accuethods.
$37 \% .9 .2$ at 10

OF ARITHMETIC.
Take the discount off $£ 160 \cdot 17.8$ at $12 \frac{1}{2}$ per cent. $12 \frac{1}{2}$ of 100 is $\frac{1}{8}$) $£ 160 \cdot 17 \cdot 3$

$$
\frac{20 \cdot 9 \cdot 2 \frac{1}{2}}{£_{1} \cdot 40 \cdot 15 \cdot 5 \frac{1}{2}} \text { discount. }
$$

Find the discount on $£ 6530 \cdot 0 \cdot 10$ at 20 per eent.
20 of 100 is !) \& 6530.0. 10

$$
\frac{1316 \cdot 0 \cdot \Omega \text { discount. }}{85964 \cdot 0.3} \text { nct morey. }
$$

What is the discount on $\operatorname{s17} \cdot \cdots . \Omega$ at ? 5 er cent.?
 4.7.0: discoum.

$$
\text { \& } 13.1 .1!\text { nct moncy. }
$$

What is the discoment on $7 \mathrm{~s} 10!2$. ut 30 por cent?
50 of 100 is $\frac{1}{2}$) Ts. $10 \frac{1}{4} d$.

$$
\text { s.3. } 11 \mathrm{~T} \text { discount or ant money }
$$

Find the ai con: on $813 \cdot 9 \cdot 10$ at 7.5 per cent.

$$
4 . i_{2} \text {. } 5 \frac{1}{2} \text { net money. }
$$

£13.17. l! disecunt.

Ithe disoont \quad bo fourd is not an even part of 100, divide the sum by oo, the atrient is the disconnt at boe cout. Whith berag moltmicd by as many ha there are 5 thme, contaned it the discomat you wish 1o Lind, givas the anser.

EXAMPTEG.

Tace the disenunt of siz32j-8.3 at in per cont. $20 \times 535.4 .3$
 multipion 3^{2} as thereare 3 times in 1.5

$$
\text { Et8.16.2, or 领d. disc. at } 15 \text { per ceat. }
$$

By thas mothod the esact fraction is liseopered which evory person is at liberiy to follow the they wish.

What is the discount on $4 s .10 \mathrm{~d}$. at 35 per cent.?

$$
\frac{4 s .10 d}{2_{7}^{29}} \text { at } 5 \text { per cent. }
$$

s.1.8 ${ }_{30}^{3}$ at 35 per cent.

Or thus: Multiply the sum on which the discount is to be discovered by as many as there are 5's in the discount to be taken off.* Consider the pounds produced as shillings, and allow for the shillings, if any, the same part of a shilling as they are of a pound.

EXAMPLES:

E7.8.4 The $\mathfrak{c g Q}$ as shillings are $=£ 1.2$, 3 and the 5 in the shillings being $\frac{1}{4}$ of con.5.0 a f allow 3d. the $\frac{1}{4}$ of a shilling. sㅇ.5.0 Ans. £1.2.3.

Find the discount on $627 \cdot 3 \cdot 10$ at $17 \frac{1}{2}$ per cent.
207.3.10

$3 \frac{1}{2}$ | The $\boldsymbol{L} .95$ as shillings $=\boldsymbol{L} .4 \cdot 15$ |
| :--- |
| and as $3.4 d$. is just of a pound, |

The

[^2]The following Table of discounts will be found useful.

\%' cent. in the 2	$\boldsymbol{W}^{\prime \prime}$ cent in the \mathcal{E}	4^{4} cent.	
$\frac{1}{8}$ is Os: $0_{10}{ }^{1} d$	$16 \frac{1}{\text { i }} 38.3 \mathrm{~d}$.	371 is	78. 6
$\frac{1}{1}$ is 00_{3}^{3}	$17 \frac{1}{2}$ is 36	38 莈	79
\% is 0 l!	18 is 39	40 i	?
$\frac{3}{4}$ is 0 1t	20 is 40	411	83
is $0 \quad{ }_{3}^{2}$	211 is 43	121	3 C
$1 \frac{1}{4}$ is 03	$29 \frac{1}{2}$ is 46	43\%	89
$2 \frac{1}{2}$ is 0 6	$23 \frac{3}{4}$ is 49	45°	9 (1)
$3 \frac{3}{4}$ is $0 \quad 9$	25 is 50	46.	93
5 is 10	261 is 53	$47 \frac{1}{2}$	96
68 is 13	$27 \frac{1}{2}$ is 5	$48^{\frac{3}{4}}$ is	93
$7 \frac{1}{2}$ is 16	23 \% $\frac{5}{4}$ is 9	$50{ }^{2}$ is	100
$3 \stackrel{3}{9}$ is 19	30° is 60	5.5 is	110
10 is 20	$31 \frac{1}{4}$ is 63	60 is	120
$11 \frac{1}{1}$ is 23	$32 \frac{1}{2}$ is 66	65 is	130
$12 \frac{1}{2}$ is ${ }^{(1)} 6$	$33 . \frac{3}{2}$ is 69	70 is	14
$13 \frac{3}{4}$ is ${ }_{2} 9$	35^{-2} is 70	75 is	$15 \quad 1$
15 is 30	361 is 73	30 is,	160

By the foregoing table the discount may be found by finding first at 5 per cent. and multiplying as the case may require.

What is the discount on $L .125$ at 30 per cent.?

$$
\underset{6}{L .6 .5} \text { at } 5 \text { per eent. }
$$

L.37. 10 at 30 per cent.

What is the discount on $L .28 \cdot 10$ at 45 per cent.

$$
\text { L. 1.8.6 at } 5 \text { per cent. }
$$

$$
9
$$

L.12.16.6 at 45 per cent.

What is the discount on $L .120 .2 .6$ at 70 per cent.?
$\frac{L .6 \cdot 8 \cdot 1 \frac{1}{4}}{L .89 \cdot 13.9}$ at 5 per cent. 70 per cent.

By the above Rules and Examples, calculations may be made to any extent.

BRITISH AND FRENCH CURRENCY.

We are indebted to a gentleman, who has resided a considerable time in France, for the following short method of bringing French currency into British, and British currency into French currency or francs.

Rule to bring francs into British pound sterling.-Cut off the last two figures and multiply the remainde: by 4 , the product will be the answer in pounds.

Note, 25 franes are L. 1 British.
EXAMPLES.
In 2500 francs how many pounds storling ?

$$
\begin{gathered}
90100 \text { franes } \\
4
\end{gathered}
$$

Ans. L. 100 British.
In 9600 francs how many pounds ?
$26 \mid 00$ francs.
4
Ans. L. 104 British.
In 2790 francs how many pounds?
$27 \mid 20$ francs.
4
$L .108$ and 20 francs over $=L .103 \cdot 16$. $I_{n s}$ In 810 francs how many pounds ? 8|10 francs.

4
L. 32 and 10 francs over $=L 32.8$. Ins.

In 3500 francs how many pounds ?
$35 \mid 00$ francs.
4
L. 140 British. Ans.

In 5624 francs how many pounds ?

$$
56 \mid 24 \text { francs. }
$$

4

To
L. 224 and 94 francs $=L .294 \cdot 19.92$. Ins.

RRENCY.

has resided n following short to British, and or francs.
nds sterling.; the remainder pounds.
r.108.16.. $q_{n s}$
32.8. Ins.

In 1805 francs how many pounds :
18 |05 francs.

4

L.72 and 5 francs $=L .72 \cdot 4$. Ans.

A franc being $9_{3}^{3} d$. English, 5 must be $4 s$
In 2026 francs how many pounds? $20 \mid 26$ franes.
4
L. 80 and 26 francs.

26 francs $=1.0 .9{ }_{s}^{3}$
L. $81.0 .9_{3}^{3}$ English. Ans.

In 20000 francs how many pounds? $200 \mid 00$ francs.
4
L. 300 British. A_{1} s.
in 1000000 francs how many pounds? $10000 \mid 00$ francs.

4
L. 40000 British. Ans.

To bring British pounds to francs. Rus.e-Divide by 4 and add two ciphers.

EXAMPLES.

In L. 100 British how many francs ?
4) $L .100$

2500 francs. Ins.
In L. 104 how many franes :
4) L. 104

2600 francs. Ans.
In $L .3$. 8 how many franes?
4) L. 3 . 8

800 francs.
8s. over $=$
10 francs.
310 trancs. Ans.
$\operatorname{In} L .140$ how many francs :
4) $L .1: 10$

3500 fraucs. Ans.

In L. 2こ4.19. 2\% how many francs?
4) $£ 294$

> J600

$$
\text { 19s. } 2_{5}^{2} d .=94 \text { froncs. }
$$

5624 francs. Ans.
In $\boldsymbol{£ 7 2 \cdot 4}$ how many francs?

$$
\text { 4) } £ 72 \cdot 4
$$

$4 \mathrm{~s} .=\quad 5$ francs.

180 j francs. Ans.
In f81. $0.9{ }_{6}^{3}$. how many francs?
4) $\mathcal{L} 81.0 .9{ }_{s}^{3}$.
$L .1 .0 .9{ }_{3 .}=\begin{array}{r}2000 \\ 26 \text { francs. } \\ 2026 \\ \text { francs. Ans. }\end{array}$
In L. 800 British how many francs?
4) L. 800

20000 francs. Ans.
In L. 40000 how many francs?
4) $L .40000$

1000000 francs. Ans.
It will be seen, by inspecting the foregoing calculalations, that each of these Rules has been proved by the other.

A shont method for bringing boards, \&c. \&c. of various lengths, breadths, and thickness into feet.

Rule.-Consider the feet as pence, which reduce to shillings, or shillings and pence (mentally) which multiply by the inches.

EXAMPIES.

Is a board e4 ft. long and 11 in . broad, how many foet?

$$
24 \mathrm{ft} \text {. as } 24 \mathrm{~d} .=2 \mathrm{c} \text {. }
$$

22 feet. Ans.

A board 16 ft. long, 10 in. broad and 1 in. thick, how many feet?

$$
\begin{gathered}
\text { 1 fl. } 4 \\
10
\end{gathered}
$$

Ans. en proved by
, \&c. \&c. of nto feet.
which reduce ntally) which
ft. 13.4 in. Ans.
A board $23 \frac{1}{2}$ ft. long, 11 in. broad and 1 in, thick, hew many feet?

$$
\begin{aligned}
& 1 \mathrm{ft} .11 \frac{1}{2} \mathrm{in} . \\
& \frac{11}{\text { fl. } 21.6 \frac{1}{2}} \mathrm{in.} \mathrm{Ans.}
\end{aligned}
$$

A board 29? fl long, 8 in . broad and 1 in. thick, how many feet?

$$
\begin{aligned}
& 9 \text { ft. } 5 \frac{3}{4} \mathrm{in} \text {. } \\
& 8 \\
& \text { fl. } \overline{19.10} \mathrm{in} \text {. Ans. }
\end{aligned}
$$

A plank measuring 30 ft . long, 9 in . broad and 2 in . thick, how many tect?

$$
\begin{aligned}
& \begin{array}{c}
2 f t \\
9
\end{array} \mathrm{an}^{\mathrm{in}} . \\
& 9 \\
& \text { ft. } 29.6 \text { in. if } 1 \text { in. thick. } \\
& 2
\end{aligned}
$$

ft. 45.0 in. Ans.
Three planks, 29 ft . long each, $7 \frac{1}{2}$ in, broad and 2 in thick, how many feet?

7 fl. 3 in.
15
ft. 103.9 in. Ans. by 2 .
Four planks, each 15 ft . long, $9 \frac{1}{2} \mathrm{in}$. broad and 3 in . thick, how many feet?

MENTAL CALCULATIONS.

In calculating mentally the same method is to be adopted as when the figures are employed; that is when the price is pence.

Rote. - Find the amount at one penny, and muttiply by the price, which we shall illustrate by the for lowing

EXAMPLES

> Whir would 24 lbs. cost at $2 d$ per $l l . ?$ Say, mentally, ot at $1 d .=$?s. multiply by the price $\frac{2}{4 s .}$

What would 24 yards cost at $5 d$. per yard ? Say, 24 at $1 d$ amount to $2 s$. multiply by the price 5

10 s . Ins.
What would 36 gallons cost at $4 d$. per gallon : 36 at $1 d$. amount to S_{s}.
multiplied by $4 d$. the price.
$\overline{12}_{s}$. Ins.
What would 43 yards cost at 7d. per yard :
43 at Id . amount to 4 s . inultiplied by $7 d$. the price.

$$
\mathcal{E} 1.8 \text { Ans. }
$$

What would 43 lbs . cost at 8 dl . per $l b$? 43 at $1 d$. amount to $4 s$.
multiply by $8 d$. the price.

$$
\text { £1.12 . } \mathrm{Mns} .
$$

What would 48 stones cost at $9 d$. per stone: - 18 at $1 d$. amount to $4 s$. multiply by $9 d$, the price.
21.16 : Ans.
-ina. we cid 48 lbs , cost at 10 d . per 16 .? 48 at $1 d$. amount to $4 s$. multiply by 10d. the price.
£2.0 Ans.

OF ARIJIIMFTTI
What will 60 gallons cost iat $11 / \mathrm{d}$ per gallon ?
60 at $1 d$. amount to is.
multiply ly 11:6 the price.

What wonld 6) articles cost at $3 . l$, each ?
(i) at 1 ll amount to ios.
matiply by 30 the price.
153. Ans.

What would 72 yards come to at 7 al. per yard?
72 at $1 d$. amonat to $6 s$.
multiply by 76 the price.
CO.: .lus.

What would $i=$ lus. cost at od. per li.?
78 at 1 l . amount to 6 s .
multiply by 9 d the price.

$$
x^{2} .14 \cdot \ln s .
$$

What would 72 articles cost at $11 d$. each ? 72 articles at $1 d$. amount to 6 is. multiply by $11 d$. the prico.

$$
\text { £3. } 6 \text { Ans. }
$$

What would 94 gallons cost at $3 d$. cach ?
84 at $1 d$. amount to $7 s$.
multiply by 3d. the price.
E1.1 S.

What would 34 yards cost at $4 d$. per yard ?
34 at 1 d . amount to 7 s . multiply by $4 l l$ the price.

$$
f!=3 \quad \text { Ans. }
$$

What would 84 ounces cost at $5 d$, per ounce? 84 ounces at $1 d$ amount to 7 s. multiply by $5 d$. the price.

$$
£ 1.15 \text { Ans. }
$$

What would 84 ounces cost at $6 d$. per ounce ? 84 ounces at 1 d . amount to 7 s . multiplied by $6 d$. the price.

$$
\text { £〇. } \mathfrak{Q} \text {. lns. }
$$

What will 96 gallons come to at $7 d$. per gallon ? 96 gallons at ! d. amount to $3 s$. multiplied by $7 d$. the price.

$$
\varepsilon 2.16 \quad . l_{n \mathrm{~s}} .
$$

Notc, Should $\frac{1}{2} d$. occur in the price when ealculating mentally, take $\frac{1}{2}$ of what it comes to at Id. which ad! in as in the following

EXAMPLES.

Suprose $48 l_{3}$. at $5 \frac{1}{2} d$. per $l b$. $48 \mathrm{lbs}_{\mathrm{s}}$ at 1 d . amount to 4 s . multiplied by $5 \frac{1}{2}$

$$
\overline{£_{1 \cdot 2}} \text { Ans. }
$$

Here we say 43 yards or lls. \&c. at $1 d$. amount to 4 s . being multiplied by 5 gives 20 shillings, the price at 5 pence, and the half of 4 s . (what it comes to at 1 d .) being $\stackrel{2}{2}$, what it comes to at $\frac{1}{2} d$. by adding both you have the amount at $5 \frac{1}{2} d$.
What would 72 yards cost at $6 \frac{1}{2} d$ per yard ? 72 yards at $1 d .=6 s$.
multiplied by $6 \frac{1}{2}$

$$
£ 1.19 \text { Ans. }
$$

What will 96 yarde cost at $7 \frac{1}{2} d$. per yard ?
96 yards at $1 d$. amomit to $3 s$. multiplied by 7!

$$
\text { s. } 60 \text { Ans. }
$$

What would 120 gallons cost at $10 \frac{1}{2} d$ per gallon? 120 gallons at $1 d$ amount to $10 s$. multiply by $10 \frac{1}{2}$
£5.5 Ans.
.Vote, Should $\frac{1}{4}$ occur in the price when calculating
sicntally, take the what it comes to at $1 d$. which add in as the following

ENAMPLES.

What would 96 ounces cost nt $8 \frac{1}{6} d$. per ounce ? 9 at $1 d$ amount to $8 s$.
multiply by 8 a
s.3.6 .Ins.

Here we say 96 at 1 ld comes to 3 s. which being multiplied by the 8 gives 64 shillings, and tho quarter of 8 shillings being 9 , what it comes to at $\frac{1}{4} d$. gives 66

What would 103 ounces cost at 9 d d. per ounce ? 103 ounces at 1 d . amount to $9 s$. multiply by 9 :

$$
\text { £ } 1.3 .3 \text {. Ins. }
$$

What wonld $1: 20$ gallons cost at $10 \frac{1}{4} d$. per gallon ?
120 gallons at $1 d$. amount to 10 s . multiply by $10 .{ }_{4}^{1}$
£5.!.G Ans.

Vote, Should $\frac{3}{4} d$. occur in the price when calculatine mentally, take 3 quarters of what it comes to at $1 d$. which add as in the following

> ENAMPLES.

Suppose 96 gallons at $27 d$ per gallon.
96 gallons at $1 d$. amount to 8 s . multiply by "3

$$
\text { £1.Q . } 7 n s
$$

Note, In this question 96 at a $1 d$. amount to $8 s$. which bemg multiplied by 9 , gives 16 s. then tho 3 quarters of \because shillings being 6 , which you add (being the price at 3 (arthings) it gives g_{2} shillings, the amount of 96 at 236.

What will $111 / b s$. cost at $\sigma_{i}^{3} d$. per $l b$.?
111 lhs at $1 d$. amount to les.

$$
\text { multiply by } 5_{1}
$$

$$
\text { E } 3.0 .0 \mathrm{~d} . \mathrm{ns}
$$

What will 84 gallons cost at 7 f d．per gallon．
34 at 1 d announs to is． multiply by ist
L2.10.9 Ans.

What will 132 ganes enst at 10 d d per ounce： 13：at id monnt to 1 ts．
maltiply by $10 \frac{1}{2}$
$\{5.15 .6$ Aus．
Suppose 108 yards at $10{ }_{3}^{3} d$ per yard ：
103 at $1 d$ amount to ${ }^{6} \mathrm{~s}$ ． multiply by 103

上1．16．9 Ans．
Having diven many examples in Mrental Calcula－ tions，with explanatory notes，we think a table of that description may be aceeptable to Prineipals of Scmi－ naries，as also the IIeads of Families to exercise tho young Pupil in，they boing calculated to strengtl on the memory，and much facilitate their power of solving Questions in the mind．

Table of Calculations to be answered Meutelly．

	moryl．	Ansucray	per ${ }^{\text {di }}$ ．	Ans：ress
$1 / d s$	s．d．	f s． d	lbs．s． 1.	f．$\quad \therefore$.
It at	03	060	$3080{ }^{3} \mathrm{l}$	1711
21 nt	（1） 1	0 3	36 at 010	110
？1 at	（） 5	$010 \cdot$	26 at 0 11	1 1：
12 it	06	$01 \% 0$		
$\because 1 \mathrm{at}$	0 \％	0110	Focla pro eral．	
$\cdots 1$ at	0 \％	（） $16 \quad 0$	37 at（） 1	03
21 at	0 ！	（）18 0	35 at 0 a	0 － 6
$2:$ it	0 11）	100	35 at 0） 3	0 9
2% at	0 il	120	37 at 0	（）12
lhs．	per ${ }^{\text {d }}$ 。		378 at 0 3	015
做 at	03	$\begin{array}{llll}1 & 3 & 0\end{array}$	37 nt 0	018
36 at	$0-1$	0120	37 at 0 ＇7	11
36 at	（1）is	0150	37 it $0 \quad 3$	4
3it at	0 i	（） 180	37 at 0 9	17
3 ti at	0 \％	110	37 at 0 10	11010
36 at	08	110	37 at U 11	11311

$\mathrm{In} \mathrm{t}_{\mathrm{t}}$ half the

15s．
48

$$
48
$$

48
48
48
48
48
48
． 48
49
.48
.18
48
43
48
48
48
43
48
stones
60
60
60
60
60
60
fio
60 a
60 a
（6）
60
$6{ }^{6}$
60 a
fo a
60）a
EU
60 a
60 at

In the following table a pergal Ansuer.

 43 at $0 \quad 9 \quad 1 \quad 16 \quad 0$ slones. per stoune. | 48 | at | 0 | 9 | $\frac{1}{2}$ | 1 | 18 | 0 | 84 | at | 0 | 1 | 0 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | at | 0 | 10 | \because | 0 | 0 | 81 | at | 0 | 3 | 1 | 1 | 0 |
| 48 | at | 0 | 10 | $\frac{1}{2}$ | 2 | 0 | 0 | 8.1 | at | 0 | 31 | 1 | 4 |
| 43 | at | 0 | 11 | 2 | 4 | 0 | 84 | at | 0 | 1 | 1 | 8 | 0 | 48 at $011 \frac{1}{2} \quad 6 \quad 0$ stoncs. por stone.

at 0		4 at 0	15
60 at 0 a	0 15	3 at 0 b ${ }^{1}$	18
60 at 0 3?	0 \%	$\begin{array}{lll}84 & \text { at } & 0\end{array}$	9 ?
60 at 0 a	100	01 at 0 ct	3
60 at 0 4 $\frac{1}{2}$	$1 \sim 9$	8	$\begin{array}{lll}2 & 5 & 6 \\ 9 & 9 & 0\end{array}$
co at 0 o	$15 \cdot 0$	$8!$ at 0	210
60 at 0 5,	176	$8 \cdot 1$ at 088	
60 at $0 \quad 6$	1100	81 at 09^{1}	:3 30
60 at 0	1126	8 tat 0 O 9	3
60 at $0 \quad 7 \frac{1}{2}$	$!17 \quad 0$	$81 \mathrm{nt} 0{ }^{1} 0^{2}$	310
60 at 08	9	81 at 0 10t	319
60 at $0 \quad 83$	$\begin{array}{lll}9 & - & 6\end{array}$	at at $011{ }^{2}$	${ }^{3} 17$
60 at $0 \quad 9$	$\begin{array}{llll}9 & 5 & 0\end{array}$	81 at 011%	10
60 at 0) 93			
60 at 0×10	$\begin{array}{lll}2 & 10 & 0\end{array}$	06 nt 0	$0 \quad 30$
60 at 0104	$\begin{array}{lll}9 & 12 & 6\end{array}$	96 at 0 is	$\begin{array}{lll}1 & 1 \\ 1\end{array}$
0 at 0) 111	9 l	$36 \mathrm{at} 0 \quad 31$	
at $011 \frac{1}{4}$	$\because 176$	96 at 0 3 3	180

pirga. Answers. perlb. Ansucers.

$0 \quad 33$	1100	190 at 0	29
at $0 \quad 11 \frac{1}{4}$	1110	120 at 05	10
$0 \quad 5 \frac{3}{3}$	2660	120 at $0 \quad 5 \frac{1}{4}$	219
6 at 0 6 $\frac{1}{4}$	$\bigcirc 100$	120 at $0 \quad 6 \frac{1}{2}$	
6 at 0 6 $\frac{1}{2}$	$\bigcirc 120$	120 at $0 \quad 6 \frac{3}{4}$	3
0 6 ${ }^{3}$	$\bigcirc 140$	120 at $0 \quad 7$	310
0 7 7	$\bigcirc 180$	190 at 0	319
96 at $0 \quad 7 \frac{1}{3}$	3000	190 at 0	315
0 3 ${ }^{3}$	$\begin{array}{llll}3 & 10 & 0\end{array}$	120 at $0 \quad 7 \frac{3}{1}$	317
6 at 009	3190	120 at $0 \quad 8$	4
96 at 0 91	3140	120 at 0 81	4
96 at 0 9 $9 \frac{3}{4}$	3180	190 at $0 \quad 8 \frac{1}{2}$	4
96 at $010 \frac{1}{4}$	$4 \% 0$	120 at $088 \frac{3}{4}$	47
96 at $010 \frac{3}{4}$	460	120 at 09	410
95 at 011	480	120 at 0 912	415
at at 0 111 $\frac{1}{2}$	4180	190 at 0 103 ${ }^{3}$	57
6 at $011 \frac{3}{4}$	4140	120 at 011	510
cals. per gal.		120 at 0113	

0	$0 \begin{array}{lll}0 & 9 & 0\end{array}$		
108 at $0 \quad 3$	170	132 at 0	011
108 at 0 - $3 \frac{1}{2}$	1116	132 at 03	$\therefore 130$
108 at 0 4 4	1183	132 at 0 32	118
108 at 05	$\bigcirc \quad 96$	132 at $003 \frac{3}{4}$	213
103 at 06	- 14 0	132 at 04	94
108 at 0 6早	$\bigcirc 163$	132 at 044	2 6
103 at 0 \% $\%$	$3{ }_{3} 76$	132 at 05	~ 15
108 at $088 \frac{3}{4}$	$\begin{array}{llll}3 & 13 & 9\end{array}$	132 at 0 51	30
108 at $0 \quad 9$	$4 \begin{array}{lll}4 & 1 & 0\end{array}$	13% at 0 5 ${ }^{\frac{3}{4}}$	33
103 at 098	$4 \quad 5 \quad 6$	132 at 07	317
108 at 010	$410 \quad 0$	13% at 07	319
108 at $010 \frac{1}{2}$	41146	13% at $08 \frac{1}{2}$	413
H:3 at 0103	$416 \quad 9$	132 at 09^{2}	4190
108 at 011	1 190	132 at 091	$\begin{array}{llll}5 & 1 & 9\end{array}$
108 at $011!$	$\begin{array}{lll}5 & 3 & 6\end{array}$	132 at 010	510
lls. per ll.		132 at $010 \frac{3}{1}$	5183
120 at 01	$010 \quad 0$	132 at 011	610
120 at $0 \quad 3$	1100	132 at $011 \frac{1}{2}$	66
$1: 0$ at 0 3 ${ }^{1}$	1126	oz. peroz.	
120 at 0 3it	1150	1.44 at 0	012
1:20 at 0 33	1176	144 at $0 \quad 3$	116
109) at $0 \cdot 1$	$\bigcirc 00$	14.1 ar 0 3	119

ibs.
141 :
144
144
144
144
144
144
144
141
144
144
144
144 :
144 :
141
144
141 :
141
144
Th Teac youth the e be do not t know have

Ha
penny tions

Shi
Shi
Shi
$y / i s$.
60 at
60 at
60 at
60 at
60 at

.	Aluguers
d.	£ s.d.
41	2 2 \%
5	$\underline{\square 10} 0$
51	219
$6 \frac{1}{2}$	3) i) 1
$6{ }^{4}$	37
7	310
71	310
$7 \frac{1}{6}$	3150
$7 \frac{3}{1}$	317
8	40011
81	4 9 i
$8 \frac{1}{2}$	45
$8{ }^{3}$	47
9	410
$9 \frac{1}{2}$	415
10.2	57
11	5100
11:	5150
1	0110
3	$: 130$
$3 \frac{1}{2}$	118
$3 \frac{3}{4}$	91
4	240
$4 \frac{1}{4}$	$\because 6$
5	ㄴ 15
5.	30
$5 \frac{3}{4}$	33
7	317
7.1	319
$8 \frac{1}{2}$	413
9	419
$9 \frac{1}{4}$	- 1
10	510
$10 \frac{3}{1}$	518
11	61
111	66

eroz.
$\begin{array}{llll}1 & 0 & 12 & 0 \\ 3 & 1 & 16 & 0 \\ 34 & 1 & 19 & 0\end{array}$

The foregoiag tables have been inserted, to give 'Teachers and Pirents an opportunity of interrogating youth of both sexes, in Mental Calculations, and frome the explandions given, we flatter ourselves they can be done with ease to all partiee The Answers are not to be got by rote, but should be given from a knowledge of the method, for which reason answers have not been attached to the last column.

Having laid down a varicty of calculations from 1 penny to 113 等d. we shall now introduce some calculations to be solved Mentally, where the price is shillinge.

Shillings and 3 pence.

Shillings and 6 pence.
Shillings and 9 pence.

per yd.		Answers.!		per yd.		Ansuers.	
y/ds.	s. d.	£.	s. d.	yils. s.		£.	
60 at	0	3	$0 \quad 0$	60 at 6	,	18	0
at	20	6	$0 \quad 0$	60 at	0	21	0
at	30	9	$0 \quad 0$	co at	0	2.	0
at	0	12	0	go at	0	27	
at	5	15	$0 \quad 0$	60 at 10	0		0

* Here 80 at $13 .=£ 4$.
multiplied by 3 条 gives tho Als £ t3.
yis.
130 130 a 130 130 130 a
130 a
130 a
130 a
140 at
140 a
140 a
140 al
140 at
160 at 160 at
160 at
160 at
160 at
160 at
160 at
160 at
sio at

Ausuers.
E. s. d.
$\begin{array}{lll}20 & 0 & 0\end{array}$ $27 \quad 10 \quad 0$ $30 \quad 0 \quad 0$ 30884 31 5 0 $35 \quad 0 \quad 0$ $41 \quad 5 \quad 0$ $4210 \quad 0$ $\begin{array}{lll}45 & 8 & 4\end{array}$ 50168 $5210 \quad 0$ 50 50 $60 \quad 0 \quad 1)$
6016 g
63150
1800
2100
$2510 \quad 0$
$2810 \quad 0$
$30 \quad 0 \quad 0$
$3110 \quad 0$
39 ()
4200
$4310 \quad 0$
5210 u
$54 \quad 0 \quad 0$
$5510 \quad 0$
$6410 \quad 1$
$6610 \quad 1$
6900
790
$75 \quad 0 \quad 0$
6100
$1910 \quad 0$
$20 \quad 0 \quad 0$

Feryil. Answers. peryd. Answers.

 130 at $5 \cdot 0 \quad 32 \quad 10 \quad 0 \quad 1(\mathrm{n})$ at 6 130 at $6 \quad 0 \quad 39 \quad 0 \quad 0 \quad 10: \begin{array}{llllll}13 & 7 & 0\end{array}$ \begin{tabular}{rrrrrr|llll}
130 \& at \& 7 \& 0 \& 45 \& 10 \& 0 \& 160 \& at \& 7

130 \& 1

 130 at $8 \cdot 0 \quad 52$

130 \& at \& 9 \& 0 \& 58 \& 10 \& 0 \& 160 \& at \& 7

 $\mathbf{6}$

130 \& at \& 10 \& 0 \& 65 \& 0 \& 0 \& 160 \& at \& 9

$)$
\end{tabular} 130 at $1110031 \quad 10 \quad 0 \quad 160$ at $10 \quad 9$ 130 at $12 \quad 0 \quad 73 \quad 0 \quad 0 \quad 190$ at $10 \quad 6$ 160 at 10 ?

1.10 at $\mathrm{s}_{3} 0$ 140 at $3 \quad 6$

210 $2410 \quad 0$ 160 at
160

16 $\frac{1}{1} 1$ 140 at $4 \quad 0 \quad 98 \quad 0 \quad 0 \quad 160$ at $11 \quad 3$ 140 at 43 140 at 48 140 at 5 3 140 at $6 \quad 6$ $140 \mathrm{at} \quad 7 \quad 3 \quad 5015 \quad 0$ 140 at $8 \quad 0 \quad 56 \quad 0 \quad 0$ 110 at 31 110 at 36 140 at $9 \quad 0$ 140 at $9 \quad 1$ 140 at 93 140 at 96 140 at $10 \quad 3$ 140 at $10 \quad 9$ 140 at 110 770 | 140 | at | 11 | 1 | 77 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | 140 at $1166080 \quad 10$ 140 at $12 \quad 0 \quad 84 \quad 0 \quad 0$ 140 at $12 \begin{array}{lllll}12 & 67 & 10 & 0\end{array}$

160 at $3 \quad 0 \quad 2.4000$ 160 at $3 \quad 6 \quad 99 \quad 0 \quad 0$ 160 at $4 \quad 0 \quad 32 \quad 0 \quad 0$ 160 at 41132134
 $\begin{array}{llllllllllll}160 & \text { at } & 4 & 6 & 36 & 0 & 0 & 180 & \text { at } & 9 & 6 & 85 \\ 10 & 10 & 0\end{array}$

160 at	100	0	47	0	0	180	at	11	0	39	0	11

Having givenextensive lists of Mental Caleulations, with the answers amexed, that persons wishing it can and impzove thomselves; and ahso, that Principals of Semimariss, or Heads of Fimilies, can adopt the method, employed by the anthors, in exercising their Pupils in calculations of the same description: a ferv have been added, where the price is both shillings und pence, without the answers, which can be solved with the same case as those to which the answors are attached.

W'e shall now add some questions to exereise all the forecong Rules: only a few of which shall be worked in full.

TXANPLEG.
What will 20 yards cost at isl. per yard?
Ails. 10s. 10d.

Tis. E1.0.14

What will 5.5 gallons cost at 8 d . per gallon:
Ahs. $x 1.16 .10$.
What will $126 \frac{7}{7}$ stone cost at $9 d$, per stone?

What will $118 \frac{1}{5}$ ounces eost at 10 d . per ounce?
What will 96 yards cost at itd per yard? 5 ? $6 \cdot 3.5$.
What will 100 the Ahs. £a.18.0.
Ans. E:3.16.6.
What will 2.10 gallons cost at ofl per gallon:
. Ins. E9.15.0.
What will 960 gards cost at 10 is t, per yard?
Ans. \&11.10.0.
What will $152 \frac{1}{2}$ lis cost at 8 ? d. por 16 ?
Lis. fj. $4.10 \frac{1}{8}$.
What will 160 a gallons cost at $10 \frac{3}{4} l$. per gallon?

$$
\text { Sins, } x^{2} \cdot 3 \cdot 6_{11}^{\prime \prime \prime} \text {, or } \frac{1}{2} d \text {. }
$$

Note, The price of all the above is to be found at $1 d$. and multiplied by the price.

EXAMPLES.

'Tue price of each of the following is to be found at 1 s . and multiplied by the price.

What will $4 t$ gallons cost at 11 s . per gallon? Aht. Equ.4.O. What will 96 yards cost at $9 s$. per yard?

Ans, 13 -1.
What will 97 yards cost at 7 s . per yard?
Ans. £33.19.0.
Whit will 3 ? $\frac{1}{4}$ gallons cost at 8 s . per gallon?
Ans, £35.14.0.
What will 91 ouncos cost at 9 s. per ounce?
What will $03 \frac{s^{2}}{3}$ yards cost at τ_{s}. per yard?
Ans. 232.16.5.
What will 1011 ounces cost at 10 s. per ounce?
Ans. fi2.1.3.
What will 41 yards cost at 4 s . $1 d$. per yard?
Ans. £9.19.8.
What will CC yards cost at \%s. ad. per yard?
Ahs. $£ 17.1 .0$.
What will 013 gall as cost at $8 s$. Id per gallon:
An3. $£ 35 \cdot 19 \cdot 7 \frac{1}{2}$.

What will 1104 ounces cost at $8 s .9 d$. per ounce? $\mathfrak{L}_{5}^{5} 10.3$ at 1 s .
$8 \div \quad 18 \mathrm{~s} .4 \frac{1}{2} d$ to bring in.
(dit. $0.4 \frac{1}{2}$. Ans.
All the above should be done in one line, by the abore nethod.

What would 60 yards cost at $3 s$. 3 l , per yard?

E4
31
103

What wonld 8.4 gallons cost at eys fd. per gallon?
A14s. £23.2.

What would 90 yards cost at 6 . 9 . . per yard?
Alus. $8: 30.7 .8$. What will 192 gallons cost at 10 s . 3 ll . per gollon?
A, £63.11.

What will $145 \frac{1}{2}$ ounces cost at $11 s .34 . l$. per runce?

$$
\text { Ails. } x_{61 \cdot 10.10 \frac{1}{2} .}
$$

What will 163 y yards cost at $12 s$. 6 d . per yard?

$$
\begin{aligned}
& \text { £8.3.9 } \\
& \text { £102.6.101 } \text { Ans. }
\end{aligned}
$$

What will $181 \frac{1}{2}$ yards cost at 11 s . 3 d . per yard?
Ans. $2102.1 \cdot 101$.
What will $204 \frac{3}{4}$ stones cost at 7 s. 9 d . per stone?

$$
\text { dus. } 579 \cdot 6.9 \frac{7}{4} .
$$

The following calculations being similar to the foregoing, may be done by the Rulo laid down: viz. By taking the pence, of the price of one article, as shillings, by which you have the price of a dozen articles, which being multiplied by the number of dozens in the quantity, you have the answer.

EXAMPLES

What will 94 articles cost at 7s. 3.l. each?

$$
\ddot{2} 4 \cdot 7
$$

What will 132 articlus cost at 0.3.9.4. each?
£う.
$-\frac{11}{250.0 .6}$ das.

What will 103 articles cast at 1.5 s . afill each?
flas 犬31.9.9.
What will 7 ? articles cost at 33 . 10 2 2 . cach?
A: 13. $£ 13 \cdot 19$.

dhas. $5: 33 \cdot 16 \cdot 10$.
What will 102 articles cost at 123.8 fl each? 27.12. 6 the price of 1 dosen. $8 \frac{1}{3}$ dozen, being $=5102$.
215.1.16 . 3 Ans.

What will $1 \cdot 47$ articles cost at 17 s . $10_{\mathrm{f}}^{2} \mathrm{l}$. each? £10.14.9
$12 \frac{1}{8}$ E. 13 . 3l to bring in.
L.131.10.8.3 Ans.

What will 131 articles eost at 1 ifs. 8 fach each LiO. 0.9

15 ICs. $0 \frac{3}{4} t$, price of 1 to bring in.
L. 151. 7.113 A: 28.

MSCELLANBOUS EXAMPLES.

 $3 \mathrm{cwt} .3 \mathrm{qrs}$.12 lbs at $6 \frac{\mathrm{c}}{} \mathrm{d}$. per ll. Ais, $£!11.10$
 4 cut. 2 qus. 20 llss at $7 \frac{1}{2}$ d. per lb. Ans. $x 16$ ' 7 5 catb. 2 prs 16 lbs. at $8 d$. per th. Ans. $k 2114$ 6 cut. 1 qr. go los. at 8 ad. per lb. Ans. eqa 150 7 cut. 2 qra. 20 lbs . at $8 \frac{1}{2} \mathrm{l}$. per lb . 8 cret. 9 gre. 17 los. at 9 d . per 16 . 3 cut. 3 q's. 20 l6s. at 9 id per $l b$. 9 cut. 2 grs. 16 liss. at 10 de pur 115 . 9 cect .2 g's. 20 lbs , at $10 \frac{\mathrm{~d}}{2} \mathrm{l}$. per lb . 10 cmt .2 qrs .24 lb , at 10 J d. per lb . 19 cul. 0 grs 19 lis. nt $11 / d$, per $l b$.

 Note, 1s. 8 d. is one-twelfth of a \dot{d}.
 11 rut. 3 grs. $96 / 6 s$ at 84 s . per crut. Ans. fi50 6 G
 11 ciet. 3 qrs. 26 lbs. at $£ 5.12$. per cuth. Ans, $\mathcal{L} 67$ 2 1
 75 cill 3 qus. 7 lbs. at $26 \cdot 1.8$ per cult.

Ins. $\mathcal{E} 46131014$. 200 cut .3 grs .14 lbs at $\mathbf{E} 4.2 \cdot 6$ per cwt.

Ans. £1109 17 94. 61 acres 9 roods 8 perches at $£ 3.10$ per acre
shas. E2J.; 86.
76 acres 3 roods 24 perches at $\mathcal{C} 1.6 .8$ per acro.
thes. tisi33 48.
576 acres 3 roods 36 perches at $\mathbb{C 7} .1$ per acre.
Ans. $£ 1076$ + $7 \frac{3}{1}$. 15 nz. 8 dids. 4 grvs at S3. 4 d per 0 . .
. Ans. \& 1141 1.16 oz. 16 dwis. 18 gris. at $£_{3} .10$ per oz.

Ans. КЈ17 87 竞.
 luterest of $£ 20$ for 5 months at 5 per cont.

Ins. Es. 4 d. Interest of $22 \boldsymbol{f}$ for 7 months at jer cent.

Ilis. 12s. 10t'. Interest of 807 for 8 months at \bar{j} per cent.

Ans. 18*.
Interest of $£ 33$ for 11 months at 5 per cent.
Ans. £1 103. Interest of $£ 36 \cdot 10$ s. for 6 months at 5 per cent. Ans. 18 s .3 l . Iuterest of $£ 39 \cdot 15 \mathrm{~s}$. for 4 months at 5 per cent. Alus. 13s. 3ll Interest of $£ 17.5 \mathrm{~s}$. for \in months at 5 per cent. Ans. $\mathbb{E}_{1} 3$ 7 $\frac{1}{2}$. Interest of 5.55 .10 s. for 10 months at 5 per cent. Ans. £ 63. Interest of $£ 30.15 s$. for 3 months at 5 per cent.
fits. :36. 6.
luterest of $\mathcal{f} 12 \mathrm{G}$ © Ed. for 8 months at 5 per cent.
Ans. £4 41.
Interest of $£ 13315$ s. for 11 months at 5 per cent.
Ans. £6 $27 \frac{1}{4}$. [nterest of E999 15s. for 8 months at 5 per cent.

Ans. $£ 3366$.

Inte

Inte
Int
Inte
Inte
Into
Inte
Inte
Inte
Inte
Inte
Int
Inte
Int
Int
Inte
Int
Int

. Ans. 12s. 7 '. d.
Interest ol e $^{3} 31$ for 7 months at 6 per cent.
Ins. £1 18_{8}^{\prime}.
Interest of Lit 10 s. for 6 months at 6 per cent.
Ans. fl 710 :
Interest of $£ 66$ lōs. for $I f$ months at 6 per cent.
Ans. £1 68_{3}^{2}.
Interest of $\boldsymbol{L}^{7.5} 158$. for 8 months at 6 per cent.
slus. t: $307!$.
Interest of $59510 s$. for 10 inomith at 6 per cent.

Interest of $£ 135$ for 11 months at 6 per cent.
Ans. £6 176.
Interest of $£ 1751 \mathrm{Cs}$. for 10 months at 6 per cent.
2us. 48 15 6
Interest of $\mathfrak{s} \subseteq 1010 s$. for 11 months at 6 per cent.
Jhs. $\boldsymbol{E} 13$ 42 Interest of $\boldsymbol{\varepsilon} 4 \overline{5}$ for 6 months at 4 per cent.

Ans. 18s. Od.
Interest of $£ 60$ for 3 months at 4 per cent.
Ans. $\mathrm{E:}_{12} 0$.
Interest of $\mathbf{£ 7 0} 10 \mathrm{~s} . \mathrm{G} l$, for 9 months at 4 per cent.
Ans. fo 2 3:
Interest of $\mathfrak{L} 3 \dot{5} 15 \mathrm{~s}$. for 4 months at 4 per cent.
Ans. $\mathfrak{E} 1$ - 10°.
Interest of $£ 40$ for 6 months at $4 \frac{1}{2}$ per cent.
Ans. 13s. Od.
Interest of $£ 50$ for 7 months at $4 \frac{1}{2}$ per cent.
Ais. £163.
Interest of $£ 60$ for 11 months at $4 \frac{1}{2}$ per cent.

$$
\text { Aus. } \mathfrak{E} 96 \text {. }
$$

Interest cf $\boldsymbol{f} \boldsymbol{7} \boldsymbol{5} 10$ s. for 9 months at $4 \frac{1}{2}$ per cent.
Ans. \&2 5 3 ${ }_{3}^{3}$.
Interest of $£ 8510 \mathrm{~s}$. for 12 months at $4 \frac{1}{2}$ per cent.
Ans, L3 $16 \quad 11$ 古.
Interest of $£ 9569.8 d$. for 1 year and 4 months at $4 \frac{1}{2}$ percent.
Interest of $£ 135$ for 1 ycar and 8 months at $4 \frac{1}{2}$ per cent.

Ans. L. $10^{2} 96$.
Interest of 57510 s. for 1 year and 10 rnonths at $4 \frac{1}{2}$ percent.

Ans. L. $63 \quad 19 \quad 6 \frac{3}{3}$.
luterest of $L 325$ for 1 month at 3 per cent - Ins. ICs. 3l.

Interest of $L .47$ 1Os. for \tilde{U} mouths at \hat{S} per cent.
. 1 res. $11 \mathrm{~s} .10 \frac{1}{2}$!
Interest of I. 123 is. for 6 monthes at 3 per cent.
Ans. LI 18 512.
Interest of $L .207$ for 7 monthz at 3 percent.
Ans. L. 3 12 5_{3}^{2}.
Interest of $L \mathbb{L} 10 \mathrm{~s}$. for 10 months at 3 per cent. Ans. 8s. 9b.
Interest of $L .1406$ for 12 months at 3 per cent.
.Ins. L 42 3 7!.
Interest of $L .7$ (is. 86 . for 14 months at 3 per cent.
Ans 5s, 1 stu.
Interest of L. 19317 s . 6 d . for 9 months at 3 per cent.
. Ans. L. 2159.
Interest of $L 14 \overline{5} 103$. fo: 11 months at 3 per cent.
. Lus. L. $4000 \frac{1}{4} d$.
Interest of $L 165$ us for 3 months at 3 per cent.
Ans. L. 3 6 ${ }_{6}^{1} d$.
Interest of \quad L. 175 Gs .8 d . for 12 months at 3 per ceni.
Ans. L. $5 .{\underset{5}{8}}_{8} d$.
Interest of $L .49$ for 4 months at $2 \frac{1}{2}$ per cent.
.Ans. 8 s . ad.
Interest of $L .661$ Ss for 3 months at $2 \frac{1}{2}$ per cent. Ans. 8s. $4 \frac{1}{8} d$.
Interest of $L .9915$ for 8 months at $2 \frac{1}{2}$ per cent.
Ans. L. 113 3.
Interest of $L .2 .10$ for 11 months at $2 \frac{1}{2}$ per cent.
.Ins. L.ड̃ 10.
Interest of $\boldsymbol{L} 360$ for 8 unonths at $2 \frac{1}{2}$ per cent.
Ans. E. 60.
Interest of $L 365$ for 1 year 8 mouths at $2 \frac{2}{2}$ per cent. (Ins. I.15 12.
Interest of L. 65 for \mathcal{E} dits af a per cent.
Ais. Ss. Od.

Sus L. 1) 7.
 Interest of L :2\% for

Amount of 17 yards of calico at $11 d$. per yard.
Ans. 15s. 7d.
Amount of $19 \frac{1}{2}$ yards at 10 d . per yard.
Ans. 16s. $3 d$. Amount of $22 \frac{3}{4}$ lbs. of sugar at $3 d$ per $l b$.

Ans. 15s. $2 d$. Amount of $27 \frac{1}{2}$ lbs. of lump sugar at 11 d . per $l \mathrm{l}$.

Ans. £1 5 2 2 . Amount of 39 条 liss. of stareh at $8 d$, per $l 6$.

Ans. £1 66. Amount of $45 \frac{1}{1} o z$ of tea at $10 d$. per oz.

Ans. £1 17 8t Amount of $66 \frac{3}{3} \mathrm{lbs}$. of lamb at $8 d$. per l.

Ans. £2 46
Amount of $99 \frac{1}{4} \mathrm{lbs}$, of bacon at 10 d . per $l \mathrm{lb}$.
Ans. £4 2 88 Amount of 120 yards of muslin at $10 \frac{3}{4} I l$ per yard.
Amount of 133 yards of stuff at $1 \frac{1}{2} d$. per yard.
Ans. eff $75 \frac{1}{2} d$. Amount of $144 \frac{1}{2}$ yards of riband at $8 \frac{1}{4}$ d per yard.

Ans. © 419 41 Amount of $365 \frac{1}{2}$ yards of lace at $10 \frac{1}{2} d$ per yard.

Ans. t15 19 9気.
Ainount of 241 pair of gloves at $113, l$. per pair. Ans. $\mathrm{E}_{11} 85$ 88.
Amount of 961 pair of gloves at $7 \bar{g}-l$. per pair.

Ans. \&77 18. Amount of 24 yards of sills at $2 s$. $3 d$. per yard.

Ans. ©2 140. Amount of 26 yards of silk at $3 s .5 d$. per yard.

Inns. f4 810.
Amount of 31 ll s . of tea at 4 s .2 l per ll .

 Amount of $66 l b s$. of tea at $\delta s 6 d$. per $l b$.

Ahs. L. 1830. Amount of 81 lbs . of tea at $\mathrm{G}_{8} .9 \mathrm{l}$. per $l \mathrm{lb}$. Ans. 5.876%.

Amount of 121 lbs . of tea at 6 s .102 d . per lb . Ans. L. 41 II 10s
Amount of 161 gallons of gin at 11 s. 3 ll . per gallon. Ans. L. 90118.
Amount of 940 tons of coal at 11 s. $11 \frac{3}{4} d$. per ton. Ans. L. 143150.
Amount of 180 tons of coal at 16 s .9 d . perton.

$$
\text { Ans. L. } 150 \quad 150 .
$$

Amount of $27 \frac{1}{2}$ cut. of cheese at $12 s$. per cwt.
Ans. L. 16100
Amount of 122 cwl . at 17 s .9 d . per cwt.
Ans. L. 10856.
Amount of 142 cwl . 2 qus. at 19 s . 6 d . per cut.
Ans. L. 138189.
Amount of 162 cwt . 1 qr . at 7s. 6 d . per cwl.
Ans. L. $601610 \frac{1}{2}$.
Amount of 2421 of any thing at 12 s .9 d . each.
Ans. $£ 15471$.

GAIN PER CENT.

In estimating a profit as a rate per cent. persons are not agreed, and the practice of some traders, and the theory of the schools, nre at variance.

Suppose we buy at 4 and sell at 5 , the Arithmetician reckons this a gain of 1 on 4 , or 25 per cent. while the Trader, counting on the selling price, makes it a gaia of only 1 on 5 , or 20 per cent.; as every person is at liberty to adopt which method he considers correct, we shall here introduce Rules to discover the rate per cent. gained, applicable to both on either method.

To find the gain por cent counting on the cost price.
Rule.-Find what part the gain is of the first cost, and divide $£ 100$ by the same, the product is four gain pise cent.

To find the gain per cent. counting on the selling price.

Rula.-Find what part the gain is of the selling
price, your g
E.

Bot 5y. 10

The article would L. 16 .

Bor is the

Th price, $8 d$. of
per
Bo
is the

Bo
what

Bo
per 13 .
L. $411110 \frac{1}{2}$. d. per gallon. Ins. L. 90118. de. per ton. ts. L. 143150. perton.
4s. L. 150150. er cut. 9ns. L. 16100
ins. L. 10856. per cut.
ns. $L .138189$. er cwd.
L. $601610 \frac{1}{2}$. l. each.

Ans. $£ 15471$.
nt. persons are raders, and the

Arithmetician - cent. while the makes it a gain ery person is at ders correct, we er the rate per her method.
on the cost price. of the first cost, luct is your gain
ag on the selling
is of the selling
price, and divide $£ 100$ by the same, the product is your gain per cent.

EXAMPLES. Calculating on first cost price.
Bought silk handkerchiefs at 5s. and sold them for 5s. 10d. each, what is the gain per cent?

$$
\left.10 \mathrm{~d} . \text { of } 5 s . \text { is } \frac{1}{6}\right) 100
$$

> £16.13.4 gain per cent.

That is, if you had laid out $\boldsymbol{L} 100$ in the purchase of articles at 5 s each, and soldtiem at 5 s . 10d. each, you would on the expenditure of $L 100$ have gained L.16.13.4 or $16 \frac{9}{3}$ per cent.

Bought tea at 5 s .4 d . per $l \mathrm{lb}$. and sold it at 6 s . whint is the gain per cent ?

The difference letween 5s. 4ll. cost, and 6s. selling price, is 8 Cl .
$8 d$. of $5 \mathrm{~s} .4 d$. is $\frac{1}{8}$. 8 divided into $L 100$ gives 19 per cent.
Bought cheese at $8 d$. per $l b$. and sold at $10 d$. what is the gain per cent.?

2d. gain, is of cost price $\left.\frac{1}{d}\right) 100$
L. 25 gain per cent.

Bought mustard at $10 d$. per $l b$. and sold it at $11 \frac{1}{2} d$. what is the gain per cent.?
$1 d$. of $10 d$ is $\left.{ }_{10}^{1}\right) 100$

L. 15 gain per cent.

Bought at $2 s 6 d$. and sold at $38.0 \frac{1}{2} \%$, what is the gain per cent.?
$6 d$. of ${ }_{2 s} 6 \mathrm{Gd}$. is $\left.{ }_{3}^{1}\right) 100$

$$
20
$$

$$
\frac{1}{2} d \text { of } 6 \text { is } \frac{1 \cdot 13.4}{L ~ 21 \cdot 13.4} \text { gain per cent. }
$$

Bought at 1s. and sold at 1 s . $\mathrm{U}_{\frac{1}{2} l} l$. what is the gain per cent ?

$$
\left.\frac{1}{2} l l \text { of } 1 \mathrm{~s} \text { is } \frac{1}{4}\right) 100
$$

$$
\text { L. } 4 \cdot 3 \cdot 4 \text { gain per cent. }
$$

EXAMPLES. Calculating on the selling price.

Bougat gunpowder at 2s. 6d. per 16 . and sold it at 3s. what is the gain per cent.?
38. gain 6d. which is of part 6,100
L.16.13.4 gain per cent.

Bought malrogany at $19 d$ the foot, and sold it at W. what is the gain per cent.?

$$
\text { 20d. gained, } 1 \mathrm{~d} . \frac{8)}{\mathrm{L} 5} \text { gain per cent. }
$$

Bought at $8 d$ and sold at $9 \frac{1}{2} d$ what is the gain per cent.? $9 \frac{1}{2} d$. gained $1 \frac{1}{2} d$.直d. of $9 \frac{1}{4} d$. is ${ }_{1}^{1}$) 100
$5{ }^{5}$

3
$\overline{L .1519}$ gain per cent. or L.15.15-9\% being about $15 \frac{3}{4}$ per cent.
When the gain is an uwkward part of either tho cost or selling price, the following method can be resorted to with advantage:

Bought chocolate at $15 \frac{1}{d} d$ and sold it at $17 \frac{1}{8} d$. required the rate per cent. estimating on the selling price.
$17 \frac{1}{2} d$. gained $2 \frac{1}{4} d$. being the difference between the two prices.

If 70 gain 9 , what will 100 gain.

$$
100
$$

$$
\begin{aligned}
& \text { 70) } \begin{array}{l}
\frac{9}{900(12 \%} \text {, nearly } 13 \text { per cent. } \\
10\left\{\frac{900}{\left.\frac{60}{70}\right\}}\right.
\end{array} .\left\{\begin{array}{l}
\text { in }
\end{array}\right.
\end{aligned}
$$

The same, estimating on the cost price.
15: d. gained $9 \frac{1}{4} d$ being the difference between what is given and what is recuived for the artielo.

If 61 gain 9 , what will 100 gain.
100
61) $900(\overline{14 \cdot 18} \cdot 4$ ii nearly 15 per cont. 290
ling price.
ad sold it at
ill per cent. nd sold i: at
ent.
the gain per
$15 \cdot 15 \cdot 99$ cent.
f either tho l can be re-
at $17 \frac{1}{2} d$. reselling prico. between the

The preceding show the difference between estimating on the cost and stlling price.

An abbreviated method of gividing sums of money by 100 and 2.0, and by subdivision, fincilitating the operation of dividing by any number of hundreds.

Rute for dividing by 100 in one line of figures, or at a glance-Cut of \geq figures to the right (he unita and tens) consider those not cut off ins pounds, and those cut off, divided by 5 give the shilliners.

EXAMPLES.

Mivide L 1495 by 100.

$$
14 \mid 95=L .14 \cdot 19 . \quad A_{n s}
$$

Thas, 100 into 1495 goes 14 times, the 95 left is usually multiplied by go, and the product again divided by 100 to give the shillings, but we divide the shillings cut offby 5 , because 20 imto 100 , goes 5 times.

Divide $L .1 \mid 65$ by 100 . Ans. L 1.13.
Note, If there are any pounds remaining after dividing by $\mathrm{b}_{\text {, annex }}$ a cipher, and consider them as farthings, obsernag to reject 1 at 25.

Thus, the 19 cut off are pounds; 5 int 32 went $1 G$ times, leaving 2, with a cipher, made 20, rojecting 1 teft 19 farthings or $4 \frac{7}{4} d$.

Divide L $4 \mid 43$ by 100. Ans. L.4-8-7.
If there should be any shillings, instead of adding a cipher, add half the shillings, and procced as before.

Divide L.34|53.19 by 100 . Ans L. $34 \cdot 10 \cdot 9 \frac{1}{2}$.
Thus, the 3 left by adding 9 ($\frac{1}{2}$ the $19 s$.) gave 39 farthings, one rejected left 38 farthings, or $9 \frac{1}{2} d$.

The above will be sufficient, as Examples are eapable of being multiplied to any extent.

Rule to divide L. s d. by 200, in a line of figures, or at a glance.-Cut off the unit figure of the pounds. consider those not cut of as shillings, the unit figure cut off consider as pence, and as many fifths; for 4 or 5 in the shillings, allow $\frac{1}{4} l$. for 8 or 10 allow $\frac{1}{2} d$. for 13 or 15 allow $\frac{3}{4} d$. and for $16 s .8 d$. or upwards, allow a penny.

Note, The same operation is performed in culculating interest at $L .6$ per cent., and discount, \&e at $\frac{1}{2}$ per cent., sce page 47.

EXAMPLES.

Ye

As by the Fiule the unit figure is cut off, and those not cut off are shillings.

$$
\begin{aligned}
& \text { Divido } £ 142 \text { by } 200 \\
& 14!2 \text { Sns. } 14 s .2_{s}^{2} d .
\end{aligned}
$$

As by the Rule, the unit figure is to be considered as pence, and as many fifths.

What is the price of one silk shawl, if 200 cost £260 126.

Here the cipher is cut off, leaving $26 \mid 0$ equal to C1.6. the cipher is pence, and for 12s. $6 d$. $\frac{3}{4} d$. are allowed. see Rule. Ans. $\mathbb{E} \cdot 6 \cdot 0 \frac{3}{4} d$. each.

What will I cut. of iron cost, if for 200 cul. are paid £385.4.34. Ans. \&1.18.6 $\frac{1}{4}$. see Rule.

Note, The cause of the above is explained on page 70, sce Interest, Comnission, or Discount, at $\frac{1}{2}$ per cent.

The same method can be applicd to dividing by any number of hundreds, by subdividing the Answers produced by this plan.

The very great use of a Table for calculating the Wages of Servants, \&c. is the only apology necessary for so far deviating from our plan as to introduce any thing into our work in the shape of a Table, that can be arrived at, by a short and simple operation.

a TABLE OF Wages.

Showing what any sum from $£_{2}$ to $£ 30$ per annum, is per calendar month, week, or day.

Year.	Month.	Week.	Day .
c \% d.	¢ s. d.	E. $\mathrm{s}_{\text {c }}$ d.	£. \%. d.
i 156	0 9 7 1	0221	0 0 3i
600	0100	0233	$1) 04$
(i) 60	0106	025	0 0 4
(i) 10	01010	$0 \quad 26$	0 0 0 4
6166	0114.1	027 7.	0 0 4t
700	0118	0 2 3t	0 0 1
750	0121	0293	0 0 0 4.
$7 \quad 70$	0123	0210	0 0 0 43
710	0126	$0 \geq 10 \frac{1}{2}$	0 0 5
7176	013112	0304	00051
300	0134	0 0 51	0 0 51
B $\quad 00$	0139	$0 \quad 3 \quad 2$	005
-8 80	01140	0321	0 0 $5 \frac{1}{2}$
8 15 0	0147	03 if	0057
$\times 18$	014101_{2}	0364	0 0 5
-9 00	0150	$035 \frac{1}{2}$	$0 \quad 0 \quad 6$
950	0155	0363	$0 \quad 0 \quad$ i
990	0159	0371	0 0 0 61
9 ij 0	0) 163	$\begin{array}{llll}0 & 3 & 9\end{array}$	0 0) 6占
1000	$0: 68$	0310	0063
1) 50	1) 171	03114	0061
10100	0176	$040 \frac{1}{2}$	0 0 7
10150	01711	0413	0 0 0
1100	0184	043	0 0 7t
11110	$\begin{array}{llll}0 & 19 & 3\end{array}$	$0 \quad 4 \quad 54$	$\begin{array}{llll}0 & 0 & 7\end{array}$
1200	100	$047 \frac{1}{2}$	0 0 0 8
12100	1010	0 ¢ 912	0 0 81
1:12 0	110	0410	$0 \quad 0 \quad 8$
1300	118	050	0088
13100	136	0512	0 0 8*
13130	129	0 ¢ 3	$0 \quad 0 \quad 0$
1400	134	05412	0 0) 9.1
14140	146	$\begin{array}{lll}0 & 5 & \end{array}$	0093
1500	150	$\begin{array}{lll}0 & 5 & 9\end{array}$	0010
15100	1510	05113	$0 \quad 0 \quad 10 \frac{1}{4}$
15150	163	$060 \frac{1}{2}$	0 O 0 101
1600	168	062	0 0 10 $0^{\frac{1}{2}}$
16100	176	064	0011
$1616 \quad 0$	180	065	0 0 011
1700	18.	0663	0 0 111
17100	192	06884	00111
$17 \quad 170$	199	$0610 \frac{1}{6}$	$\bigcirc 0119$
1300	1100	0611	0114
18100	11010	0714	$010 . \pm$
1818 0	1116	073	0 - $0 \ddagger$
1900	1118	0731	0111
19100	1126	075	016
19190	1133	078	011
2000	1134	078	011
2100	1150	$\begin{array}{llll}0 & 8 & 3\end{array}$	0118
2200	1168	085	0127
2300	1184	0810	013
2400	200	0921	$\begin{array}{llll}0 & 1 & 3\end{array}$
2500	218	$097 \frac{1}{2}$	0145

N., e, As the exact sumper day or weck cannot be arrived at wit's sut introducing a useless fraction, we have given tho price per day the advantage of the fraction in some instances.

FROA RICIISON'S

MENTALARITHMETIC,

> DND

EXPEDITIOUS CALCULATIO:S.

EXFRCISE I.

How many twelves in 81 ?
How many twelves in 94 ?
How many twelves in 60?
How many twelves in`108?
How many twelves in 144?
How many twelves in 36?
How many twelves in 48?
How many twelves in 79?
How many twelves in 120?
How many twelves in 96 :

EXERCISE II.

Rule.

As many pence as one thing is worthso many shillings are twelve worth.

12 papers of nails at $8 d$. each.
One paper being worth................. 3 pence, 12 papers are worth. 8 shillings

12 pounds of twax candles al 2s. 7d. per pound. One pound being worth 2s. 7 d ., that is ...31 pence, 12 pounds are worth....................31 shiminas.

12 yards of cotton print at cel per yard?
En
12 yards of riband at $11 d$. per yard?
12 yards of Holland at $10 d$. per yard?
12 yards of calico at $4 d$. per yard?
12 yards of baize at 14d. per yard?
12 yards of long-cloth at 1s. Sd. per yard?
12 lbs . of butter at $16 a$. per pound?
12 pairs of gloves at 1s. $4 l$, per pair:
12 bushels of pollard at $20 d$ per bushol:
12 logs of wood at 1 s. 8.l. per log?
10 fowls at $30 d$. each?
12 books at is. 6.l. each?
12 pairs of shoes at 5 s. per pair?
12 pairs of chiddrea's socks at $1 s .3 d$. per pair?
19 caps at 33.6 c . each?
12 lbs of cheese at $10 . \mathrm{l}$. per pound?
12 pecks of peas at $1 s .5 \mathrm{l}$. per peck?
12 Ibs. of salmon at 1 s . 11 d . per pound?
I2 yards of red baize at $2 s$. Id. per yard?
1: trusses of hay at is $4 d$. per truss?
12 trusses of straw at $3 s .8 \mathrm{~d}$. per truss?
i? gallons of ginger wine at $8 s$. per gallon:

1) firkins of table ale at 9s. 6il. per firkin?'

I have bought 12 pigoons at 1s. 3.l. each; the bill delivered is $163.3 l$; is that correct?

I wish to know how much money I need put into iny pursa to purchase a dozen buckles at 4 s .9 d . each?

I see the price of a flannel waistcoat is marked 2s. $9 d$, what should I pay for 12?

Seat half a sovereiern to purchase a leg of mutton weighing 12 punnds, at $8 . l$. per pound, how much change shoulti I have?

The baker's bill this week inchudes 19 peck loaves, at i_{9} 8, . each. INehismade the amount $£_{1} 11 \mathrm{~s}$, 6 , . is that correct?

Employed a man in my garden 12 diys at 3s. $6 d$. per day, how much must I pay him?

Saw 12 turkeys hanging in a poulterer's shop, how much would be thoir worth supposing they average 93. $6 d$. cach?

EXERCISE III.

Rule.

As many shillings as tivelve articles are worthso many pence is one worth.

If I pay 8s. for 12 pigeons, how much will one cost?

Suppose 12 maps cost 163 ., what was the charge for one?

For how much may I purehase a mackarel, when a dozen are worth 7s.?

If 12 pairs of shoes cost 48 s ., what was that per pair?

What must 1 pay for a bible, when 12 are sold for 50s.?

Bought 12 gallons of cider for a pound, how much is that per gallon?

Received 3s. for a dozen glass bottles, bow much was that for each ?

NOVEL SYSTEM

Paid el 10s, for a dozen guitar strings, what wad that for each?

Gavo $£ 2$ 14s. for 12 pine-npples, how much wad the cost of one?

A dozen barrels of oystery cost $\mathcal{C 3}$, how much was that for one?

12 geeso cost $£ 3$ 123, what was the prico of one?
12 ducks were bought for $\mathcal{E} 16$ s., what was the charge for one?

Paid 56 for a dozen hats, how much is that each?
If I pay 10s. for 12 yards of Holland, what is that per yard?
A dozen rose-trees were bought for two guineas, how much did each cost?

If I am charged 53. fir a foot of gilding, what is the estimation per inch?

A dozen lamps are worth $£ 3$ 10s., what is the value of one?

If I pay f1 19s. for 12 stocks, how much is that each?
How inuch must I pay for a pair of sills stockings, when a dozen pairs are sold for $£ \mathbf{£} 14 \mathrm{~s}$.

What should I be charged for a silk handkerchicf, when twelve are worth $£ 2$ 16s.?

Suppose 12 loads of gravel cost £7 4s., what is that per load?
Bought 12 eaps for $f!7 s$, what was the charge for ono?

Tell me the value of a pound of mutton, when a leg weighing 12 lb . cost 9 s .?

Suppose 12 blinds were estimated at 84 18s, what was considered the value of one?

Bought 12 curtains for $£ 3$ 19s., how much was paid for one?

Sold 12 baskets for $£ 1$ 15s, how much was charged for each:

To fi kno

1. Asc art
2. Brin n!
3. Call

If 72 one?

79
Theref by t

Take th

If n gro guine

A
Therefo divid
Conside
the at

Paid that per

A fil that cos

If 8. value of

If an
paper si

EXERCISE IV.

To find the price of one article, when the value is known of any number, which is a mullipic of 12.

Rule.

1. Ascertain how 1 ny twelves are in the number of articles.
2. Bring the value into shillings, and divide it by the number of twelves.
3. Call the result pence.

> tilus,

If 72 wine-glasses cost $\mathfrak{£ 2} 8 \mathrm{~s}$., what is the value of one?

79 equals 6 times 1Ω,
Therefore the $£ 28$ 8. or 49 s. must be divided ? by the 6............................ 0 . 488.
Take the 8s. as rence, you have the answer. $\overline{8 d}$.

If a gross of papers of pins be bought for 4 guineas, what was the charge per paper?
A gross equals 12 times 12,
Therefore the 4 guineas or 8.1 s . must be divided by $12 \ldots . .$. 12$)_{843 .}$

Paid £) 4s. for 48 pairs of scissors, how much was that per pais?

A fishmoner paid fo es for to lubsters, what dic that cost hime each?

If 84 bodkin-cases are worth $£ 115 \mathrm{~s}$, what is the value of one?

If a news-vender demands 36 s. for the use of a dnily paper six months, how much does he charge per week? 13

Paid 12 s. for a box of mould candles; there were 18 pounds, and four candles to the pound; what was tho value of one?

For 48 chair covers I paid $£ 1$ 168., I desire to know the cost of each?

Bought half a gross of wine-bottles for 18 s . what was that each?

Paid $\mathfrak{f 7}$ 10s. for 60 brass finger-plates, I wish to know the charge for one?

For 120 flower-pots I paid £2, what did one cost?
Bought 36 work-boxes for £13 10s., what is the cost of each?
Sold 132 old books for $£ 4$ 19s., what did they average each?

Bought a dinner service of 108 pieces, for which I paid £2 5s., how much was that per piece?

A violent shower of hail destroyed 96 glass frames, the estimated damage was $£ 43 \mathrm{Bs}$., how much was that per frame?

At Christmas last a stage-coach brought into London 84 packages, valued at $\mathbf{E 2 3} \mathbf{2 s}$, I desire to know the average?

A stand of 72 fowers in Covent-garden market was estimated at $£ 1610$ s., I wish to know the average?

If I pay one of my servants after the rate of $£ 10$ per annum, and she quit my establishment at the end of one month, how much may she demand?

Suppose an under-gardener is paid after the rate of £14 per annum; if he leave his situation at the end of two months, what wages are due to him?

What may a footman demand as a month's wages when his salary is $£ 20$ per annum?

If a butler's wages be $\mathscr{L} 34$ a-year, how much will be due to him at the end of a month?
cre were 18 at was tho
ire to know
s. what was

I wish to
one cost? t is the cost lid they avefor which I
lass frames, uch was that
t into Lonsiro to know
market was average?
c of $£ 10$ per the end of er the rate of at the end of
onth's wages

EXERCISE V.

The value of any number of articles, not an exact multiple of 12 , being given; to find the value of ane.

Rule.
1 Reckon the number of articles pence.
9. If these pence amount to shillings and pence, divide the shillings of the given value by the shillings; ant the pence also by the pence.
3. If both the pence and shillings give the same product, that number is the value of one article ia pence.

Tllus,
If 85 lamp-glasses be bought for $£ 93$. 7 . 2 , what 1 s the cost of one?

Take the glasses as rence, then....85d. are 7s. $1 d *$ ’ £! 9 s. $7 d$. are $49 s .7 d$.
Divide the 49 s . by the 7 s .
Divide the $7 d$. by the $1 d$. as follows:-
7) 49

1) 7
7

7

Here observe tine product of both divisione is 7 . therefore the value of one lamp-glass is $7 d$.
 what was the cost of one?
The pieces as pence-10id. are 8s. Ild.? £. es. 3d, are $80 s, 3 . l$.) 3s. 11 d .) 20 s . 3 l .

> 93. 9 d. Therefore $9 l$ is the value of one.

[^3]Remark here that the eiguts in 80 are exactly 10 ; but then the 11 could not be divided into 3 . I an therefore obliged to make the product of the first division one less, in order to carry tho surplus shitlings to the pence and produce a number, into which 11 may divide.

Bought at a sale a lot of tumblers, for which I paid fl 18s. 6 d . On counting them I discovered there were 42 glasses, what did each cost?

42d. are 3s. 6d.\}
fl 18s. 6d. are 38s. 6d. $\}$
3s. $6 d$.).38s. $6 d$.
1111 Therefore 11d. each
I am here also obliged to reduce the product of the first division-otherwise

Dividing by 3 into 38 would produce 12s. and rwo over.

The division of 6 into $2 s .6 d$. or 30 d . would produce $5 d$.

But as both shillings and pence must produce the same number to be correct, this can be effected only by the reduction just stated.

Obscrue,

By a littlo attention, the value of one article may be nearly ascertained on inspection.
thes,

If 42 tumblers be bought for $£ 118 \mathrm{~s} .6 \mathrm{~d}$., what is the price of one?

$$
\text { 42d. or3s 6d. } 38 \mathrm{s.} \text { 6d. }
$$

38s. $6 d$.

Paid
exactly 10 ; o 3. I ain of the first urplus shilinto which
hich I paid ered there
ch
duct of tho
s. and rwo Ild produce rroduce the ted only by
cle may be
what is the

By inspection I see the $3 s$. is contained 12 times in 38.

But making allowance for the division of the six pence, I take 11 as the supposed quotient.

Multiplying the 3s. 6d. by 11, I find it produces $38 s .6 d$., therefore I know that $11 d$. is the value of one article.

How much was paid tor a sheet of card board, when 61 were bought for $£ 1$ Os. $4 d$.?

If I purchase 98 lemons for $£ 14 \mathrm{~s}$. 6 d ., what do I pay for one?

Paid fil 5 . 5d. f , i. linives, what was the cost of one?

If I pay 8 s .4 d . tor 50 flower-pots, how much does one cost ?

Suppose 97 hand screens cost $\mathfrak{£ 3} 19$ s. 9 d, how much was that each:

If $£ 113 \mathrm{~s}$. 11 d . will purchase 37 drawing copies, how much must I pay for one?

What is the worth of a square of glass for a hotheuse supposing 63 cost 15 s . 9 d .?

How much must be paid for a turkey's egg, when £1. Os. 10 d , will buy 50 ?

I wish to know the cost of a rabbit when I pay $\mathcal{L} 1$. 13s. 11d. for 37?

Paid 13s. 6d. for 87 yards of box, what was that per yard?

A bill for 58 quarts of milk is $19 s .4 \pi$., what is that per quart?

How much am I charged per ton for cartage if the carriage of 107 tons of stonc cost £3. 2s. $5 d$.?

Suppose a man contract to lay 91 feet of railway for C3. Os. 8d, how much is that per foot?

What do I pay for a gooseberry-bush if 115 cost me £4 1ös. 10d.?

If 33 pickled tongues cost $£ 3$ 2s. 3 d., how muc.i is that each?

EXERCISE VI.

To find the value of one article, when the price is known of any number, not a multiple of 12.

Rule.

1. Taike the number of articles as pence, and bring them into shillings for a divisor.
2. If the divisor, thus produced, be contained any number of times less than 12 , in the shillings of the given value, proceed as directed in the Observation under Exercise V., and you have tho answer in pence.

Renark,

If the multiplier do not produce the exact amount,
Consider, for a moment, whether it is deficient about a quarter, a half, or three quarters of the line multiplied, and make an addition accordingly for the farthings.

TIIUS,

If 17 s . $2 \frac{1}{2}$ d. will purchase 59 pounds of brass, how much is that per pound?

$$
59 d=4 \mathrm{~s} .11 d .) 17 \mathrm{~s} .9 \frac{1}{2} d .
$$

3 the multiplier to be counted

$$
149
$$

$\frac{1}{2}$ of $4 s . \quad 11 d . \cdots 25 \frac{1}{2}$
17 21
In this example, I first write the number of articles, taken as pence, by the side of the given value.

On inspection, I perceive $4 s$, will divide 4 times into 17s.; but allowing for the division by 11 d ., I tako 3 instoud and multiply thereby.

Atterthis multiplication, I see there is a difference of nearly 3 s . between 14 s .9 d . and 17 s . $2 \frac{1}{2} \mathrm{~d}$.

I may suppose the difference is about half 4s $11 d$.
I accordingly take the half, and on adding the product to $14 s .9 i i$ I find the exact amount
'Therefore, the price of 1 pound is $3 \frac{1}{2} d$.

If I can purchase 107 pounds of rice for $\mathbb{E} 2118,3 \frac{1}{4} d$. how much is that per pound?

$$
\begin{aligned}
& 107 d=8 \mathrm{~s} .11 \mathrm{~d} \text {.) } 51 \mathrm{~s} \text {. } 3 \frac{1}{4} \text { d. or } £ 211 \mathrm{~s} .3 \frac{1}{4} d \text {. } \\
& 5 \text { the multiplier to bereckoned } \\
& \text { - } 50 \text {. in the answer. } \\
& 947 \\
& \left.\left.\begin{array}{ll}
4 & 5 \frac{1}{2} \\
2 & 9 \\
9
\end{array}\right\}=\begin{array}{l}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right\} \text { of } 8 s .11 d . \\
& \text { £2 } 11 \text { 3 } \frac{1}{4} \text { Ans. } 5 \frac{3}{4} d \text {. }
\end{aligned}
$$

Here again I see, on inspection, that 3 would divide 6 times into $51 s$; ; but allowing for the division by 11 , I take only 5 for the multiplier.

The product is $£ \subseteq 4 s .7 d$., and I perceive I want nearly $7 s$. to make x ll $11 \mathrm{~s} 3 \frac{1}{4} d$.

I may therefore fairly calculate that the price will be $\frac{3}{4}$ more than 5 pence, and proceed accordingly.

I take half of the top line for a halfpenny-and the half of that product for a furthing.

Adding these three products together, I find the amounts coincide,-and consequently conclude that the price of 1 pound is 5 总d.

Both thesc examples might be worked by subtracting the product of the pence from the given value, and then examining the proportion existing between the remainder and the divioor.

> THUS,

$\underset{3}{4 s .} 11 d .$	$\begin{aligned} & 17 s .2 \frac{1}{2} d . \\ & 14 \mathrm{~g} \end{aligned}$	The product of the pence.
149	$25_{2}^{1} \mathrm{Th}$	remainder is $\frac{8}{2}$ of 4s. 1 Id Ans. 312d.

The advantage of this method is, that by comparing Qs. $5 \frac{1}{2} d$. with 4s. 11 d ., I see immediately the tormer is $\frac{1}{3}$ of the latter.

The operation may therefore be performed aentally, when requisite-or if by written figures, with greater certainty.

Here I can see that $6 s .8 \frac{1}{1} l$ must be about $\frac{3}{7}$ of 8s. 11d.-as it is evidently more than $\frac{1}{2}$.
'To satisfy myself I take the half of 8s. 11d, which is
And again the haf of that anount, viz....
Producing togctiner the required sum $6 \quad 3 \frac{1}{1}$

Observe,

If the number of arlicles be less than the number of shillings in the given value,

First, divide into the stillings by the uhole number of articles-the quotient is the shillings of the answer.

Then proceed with the remainder, as directed under the last rule, and you have the remaining answer in pence and farthings.

THUS,

If 76 packing-cases cost $\mathcal{L} 38$ 8. Ed., how much was paid for one?
 152

$$
\text { if as pence }=6 s .41 .) \begin{array}{rr}
36 & 5 \\
31 & 3 \\
-\quad & 4
\end{array}
$$

$\left.\begin{array}{lll}\frac{1}{2} & 3 & 2 \\ 1 & 1 & 7 \\ \hline\end{array}\right\}$ I can readily suppose $4 ; 9 d$. to be about $\frac{3}{4}$ of 5 Je .6 c ., but merely put down the work for satisfaction.

Her article

I the tient is

Sub
Brin
into its before

Bough

di

$54 d$.

Div shillin

The produ

If is the

Sur ginge

If must

If and t the If much
comparing the tormer
i.nentally, ith greater
about $\frac{3}{3}$ ut

- $4 s .5 \frac{1}{2} \mathrm{~d}$.
- 29
- $63 \frac{1}{4}$
ic number
ole number ie answer. cted under answer in
much was
$l .\left(93.5 \frac{3}{4} d\right.$.
$9 d$, to be nerely put faction.

Hero 188s. are evidently more than the namber of artieles, which is 76 .

I therefore divide by if for the shillings-tho quatient is $2 s$.

Subtracting 152 from 183, I have 36 remainder.
Bringing down the 5ll, and reducing 7 t , as pence, into its corresponding value in shillings, I proeced as before for the pence and farthings.

Bought 54 brenst-pins for $\mathfrak{f 8} 12$ s. $1 \frac{1}{2} d$., how mach did each cost?

$\left.\begin{array}{l|l|}\hline 1 & 6 \\ \hline\end{array}\right\}$ I put this division down only for satisfaction, as I can immediate1 1 $\frac{1}{2}$ ly perceive $1 s .1 \frac{1}{2} d$. is $\frac{1}{4}$ of $4 s .6 d$.
Dividing by 54, the number of articles, I find the shillings are 3 .

The remainder 10 s. $1 \frac{1}{2} d$, divided by 54 , as ponce, produce the pence and furthings.

If 47 pounds of sugar be worth $£ 1$ 1s. $6 \frac{1}{2} d$., what is the value of a pound?

Suppose I am charged $\mathrm{fl} \mathscr{2}_{3}$. $2 \frac{1}{2} d$. for 82 ounces of ginger, how much is that per ounce:

If 13 s . $0 \frac{1}{4} d$. will buy 25 pounds of figs, how much must be paid for 1 pound?

If a grocer import 62 pounds of Portugal grapes, and the net invoice amount to $£ 214 s .3 d$, what ia the cost of a pound?

If 12s. $9 \frac{3}{4} d$ will purchase 41 pen-holders, how much wou'l one cost at the same rate?

If I order 37 pounds of currants and find my; bill amounts to $\mathscr{L} 1$ Gs, $\operatorname{Cl} \mathscr{L}$, how much am I charged per pound?
If a hosior desire to sell 71 pairs of gloves for Z. 173. 8t 4 ., how much must be charged per pair?

What is the worth of a pound of loaf sugar, if 49 pounds cost La Os. 10 l .

Paid f_{1} 1s. $3 \frac{?}{} l$. for 31 drawing-pencils, how much was that cach?

If I may purchase 63 pounds of cheese for $£ 212 \mathrm{~s}$. Sd., how much would that be per pound?

Bought a quatity of hans weighing 73 ponnds, I am eharged for the whole $£ 27$ 7. $13_{1}^{3} l$, I desire to know the cost per pound?

Bought 30 pounds of fresh butter for $\left\{115 s .7 \frac{1}{2} d\right.$, how much is that per pound?

How much is the worth of a pound of Normandy pippins, if $f 163.3 t$. be paid for 40 pounds?

Paid $\mathrm{El}_{1} 4 \mathrm{~s} . \mathrm{O}_{3} d$. for 91 pounds of cocoa, what is the cost of a pound?

At what rate per pound do I purchase coflee, when T5 pounds cost L 84 4 . $0 \frac{3}{4} \mathrm{~d}$.

If $£ 11$ 17s $6 d$. will purchase 37 silk handkerchiefs, what is the price of one?

What must I pay for a hone supposiag 55 are worth E: 17s. $4 \frac{3}{2} l$?
If 46 pounds of lard cost $E 1$ 10.3. El., how much would that be per pound?

Suppose ©8 17s. 42 4 . will parchase 66 pockethandkerehiefs, how much mast pay for one?

At what ratn per pound do I purchase glue, if fur 32 pounds I Pay 13s.

If a boat of samon, comtaning 101 fish, be valued at $E C$ S. $0 \frac{1}{2} d$, what is that each?

Ifa arocer wish to obtain 566 s . $2 \frac{1}{4} d$. for 83 pounds of candied lemon-peel, how much must he charge per pound?
ad my" bill 1arged per
gloves for y pair? gar, if 49 how much £ $£ 12 s$. pounds, I desire to

15s. $7 \frac{1}{3} d .$,
Vormandy :?
a, what is
lee, when kerchicfs, are worth ow much pocket1c, if fur se valued

What am I charged for a pane of glass, if the cost of 41 panes be fe 9 s. $1 \frac{3}{4} d$?

For how much per pound should a pork-butcher sell sausages to realize $\mathbf{x}^{\prime} 23$. $0 \frac{1}{4} d$. by 59 pounds?

If, at an auction, I bid $\mathfrak{f}_{6} 7_{s}$. $10 \frac{1}{2}$. for 03 padlocks, what wonld be the individual cost?

What is stone-blue per pound, if 126 pounds are bought for $£ 1517 \mathrm{~s}$. $7 \frac{1}{2} d$.

How much is a hammer worth, if for $£ 316 s .4 \frac{1}{2} d$. I canbuy 78?

Taking the value of a silk stock nt $4 s$, I wish to know how much I have saved individually by purchasing 63 stocks for 59 1/5s. $6 \frac{7}{4} d$?

If a poultercr purchase 30 pigeons for $\mathcal{C 2} 10$ s., how much docs he gain individually by selling them at $8 d$. each?

What does a work-box cost if $\mathcal{X} 1 \sim 4$ s. $8 \frac{1}{4} d$, be paid for 81 ?

Bought 29 dozen of ivory counters for $16 s .33 \mathrm{a} d$, how mach was that per dozen?

If a chest of hyson tea, co .ining 107 pounds, be sold for $\mathrm{E} 37 \mathrm{17s}$. H1d.: how much is that per pound?

Suppose a cabinet-maker charge $\mathcal{E} 11$ 1s. 4d. for 6t foot-stools, how much is that each?

If a pedtar buy 113 shaving-boses for $£ 5510$ s. $7 \frac{1}{2} d$. and sell them at 1 s . per box, what is the gain on ach?

How much does a bird-trap cost if $\mathrm{f} 3 \mathrm{19s}$. 61 $\frac{1}{2} \mathrm{~d}$. be paid for 46?

For how much may I buy a half-pint mug, if 54 are worth 1os 9d.?

Paid £10 16s. 11d. for 76 cigar-cases, how much was that each?

What is the cost of a peck of oats, if £4 11s. $0 \frac{1}{2} d$. be paid for 95 pecks?

What are slippers per pair, when 86 pairs cost £ 8 19s.?

When tho value of 44 trusses of hay is $\mathfrak{£ 8 1 7 s}$. 10d, how much is the worth of a truss?

If 39 sheets of engraved " lines" cost 13s. $9 \frac{3}{4} d$, what is that per sheet?
If an iron-monger purchase 74 rakes for $£ 6$ 15s. $8 \mathbf{d}$. and sell them again for 2s. each, how much is tho individual gain?

What is a publican's profit on a quart of vinegar, supposing he sells that quantity for 1 s ., when 110 quarts cost him $\mathfrak{E} 49$ s. $4 \frac{1}{2} d$.?
If $£ 13$ 6s. $6 d$. be paid for 52 pounds of mixed tea, how much is that per pound?
What are almonds per pound, if $£ 3$ 1s. $2 \frac{1}{2} d$. are paid for 26 pounds?

If I pay $£ 33 \mathrm{~s}$. $3 \frac{1}{2} d$. for 98 pounds of soap, how much is that per pound?

If a milliner pay $\mathrm{f7}$ 5s. 10 d . for 70 yards of silk, how much is she charged per yard:
What is becf per pound, if 113 pounds are worth £ 3 18. $2 \frac{1}{2}$ d.
s. $9 \frac{3}{4} d$,

5s. $8 d$. the in-
inegar,
en 110
ed tea, $\frac{1}{2} d$, are p, how of silk, worth

[^0]: *iertaps the exposition of the rule fior the calculation of Interest at Six per ennt. page 17, might he rendered more intelligible. The interest of a pound for a month having been shawn to be a pemiy and a firth, the ponds of the principle mutiplited by the number of why and the pomeds been at interest, will yield a product cor of monthe, daring which is las so many fifthe of a pean: Than, corresponting to s.a many pence and a shithing, to divite by ton (cut of ate prony and a hiftare one tenth of corresponding to shillings, and at unit figure) will obtaia at puetiont tembs of a shilling, or, so meny timetainder (if any) (yimal to so many

[^1]: Central Academy, 18th March, 1837.

[^2]: * 'linetiv, if the discomit to be found is $\mathbf{1 5}$ per cent., muliply by $\mathbf{3}$, as thes are ? ; in lo.

[^3]: * Inspection of the above, where the amounts are placed over our iom. har, readers the calculation wabecsary, as it com be seen at onee thas ; is the product of both.

