IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the beat original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur
Covers demaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illt .crations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la merge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these haye been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le l.iilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibllographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquêes
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon é obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmié au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanke to the generosity of:

Library Division
Provincial Archives of British Columbia

The imagee appearing here are the best quality posaible considoring the condition and legibility of the original copy and in keeping with the filming contract apecifications.

Original copies in printed paper covers are filmad beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the beck cover when appropriate. All other original coples are filmed beginning on the first page with a printed or illustrated impresaion, and ending on the last page with a printed or illustrated imprassion.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the aymbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one expoaure are filmed beginnirg in the uppar laft hand corner, left to right and top to bottom, as many frames as required. The following diegrams illuatrate the method:

L'oxemplaire filmb fut reprodult grlce it is génerosité de:

Library Division
Provincial Archives of British Columbia

Les images suivantes ont sto reprodultes avec lo plus grand soin. compte tenu de la condition at de la netter' de l'oxemplaire filme, ot en conformito avec les conditions du contrat do filmage.

Les exemplaires originaux dont le couverture an papier cat imprimite sont filmés on commençant par lo premior plat ot en terminant aolt par la dernidre page qui comporte une empreinte d'impresaion ou d'illustration, solt par la second piat, selon lo cas. Tous les autres exemplairas originaux sont filmbes an commancant par la premidre page qui comporte une emprainte d'imprasion ou d'illustration at on torminant par la dernibra page qui comporte une tella ompreinte.

Un des symboles sulvants apparaitra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifia "FIN".

Les cartes, planches, tableaux, otc., peuvent estre filmbs des taux de réduction différents. Loraque le documant eat trop grand pour être reproduit on un seul clicho. il est filmód partir de l'angle superiaur gauche. de gauche troite. et de haut on bas. en prenant lo nombre d'images núcessaire. Les diagrammes suivants illustrent la móthode.

T. \mathbf{H} E
 BRITISH MAR
 CONTAININO

Several Schemes and Inventions,
To be Practifed by Land or Sxa
Againft the ENEMIES of Great-Britain: Shewing more plainly,
The great Advantage Britain has over other Nations, by being Masters at Sea. In TWOPARTS.

Part I. contains.

The Confruction of Boats both to ftow in lefs room in Ships, and go fwititly, is difcover an Enemy's Coaft, and to land and embark Troops with greater Safety; alfo to conftruet Veffels to lye nearer the Shore, to better protect the Troops in landing or embatking; alfo rolling Defences to be afed'as floating Batteries, or as Floats for landing Cannon, \&ec. and for making Defences and Batteries on Shore more expeditioully, and for filling up Ditches, \&ec.
Alfo contains a Method to fit old Ships of War god froall floating

Batteriet, to batter lanid Deferices with greater Force; and another Method to fit old Shlpg of $\mathbf{W a r}$ (that caninot be funk by Shot) to lye before Batteries and receive the Shot, while other Ships paft by with Remarks and Obfervations,

- 4 Part II. containg.

Methode to fortify dwelliag Honles; that even Women and Children may defand themielves from Indians with fmall Arme, defignea for our Settlementa in Americi and other Places,
Alfo a new Method of Fortification, and making Batteriet.

Containing a Scheme for Manning the Britisis Navy, with lefs Grievance to the Subject;
And a Scheme to employ Sramei. : Of a Coppriminz near Hudfon's Bay : And of difcovering the Noith-Wyst Passace, or determine there is no fuch Paflage; with Cautions and Directions.

By JOSEPH ROBSON, EngineEr

The whole Illuffrated by Eleven Plates.

> LONDON:

Printed for the Author ; and Sold by William Flexneg: near Grays-Iwn Gast, Holbern. Mpsce $\times 114$.

Nus 358. TR6676

$$
E R R A T A
$$

Page." Line. 106 - 16 for H. interior, read H. exterior. 107 - 22 - Fig. 2. r. Fig. 1.
104 -In the lati line of the N. B. for will that, r : that will.
123 - 34 read four, five, or fix Feet deep.
125 - 33 for bend r. bond.
134 - 15 - or $\%$ on.
149 - 24 - accure r. occur.
168 - 14 - wite r. twelve.
168 - 15 - ntenty r. twenty.
196 - 9 - 1 ft. 9 in. r. 1 ft. 7 in. In the N O T Es.
7-4- cover the from the Enemy's view, r. cover the Enemy from the Boat's Fire.
13 - 9 - Sea r. Shore.
69 - 2 - Battle r. Batter.
85- 12 - Muzzrling r. Muzzle Ring.
104 - 29 - ede r. render.

PREFACE.

WHILST England is bleffed with a naval Force fuperior to any. Nation in the World; whilt the is bleffed with every Material fufficient to improve that Force; whilft our naval Strength is the chief Defence of this Nation, and the only Means to humble the Pride and diftrefs the Trade of our inveterate Enemies; and whilft the is bleffed with a number of able and experienced Officers and Seamen, that have Courage and Refolution to undertake any Scheme that the Government finds neceffary to be executed for the Intereft of this Kingdom, ${ }^{i t}$ is furely the Duty of every Well-wihher to his Country to employ his leifure Hours in Thoughts that may be ufeful, efpecially in the Improvement of our naval Force, or on any other Means that may render Attacks at Sea or on the Enemy's Coaft, more probable of fucceeding, and with as little Rifque and Hazard as poffible of the Lives of fo many brave and ufeful Subjects.

It is from this Motive only, that I have ventured to fet my Hand to Paper to fhew a willingnefs at leaft to contribute to the Public Good;

$$
\begin{aligned}
& \text { a and } \\
& \text { Pac oN.V.HistoryO } \\
& \text { PRC IINEI:IL L BRARY } \\
& \text { VICTOHIA, B. ©. }
\end{aligned}
$$

$P \quad R \quad E \quad F A C E$.

and as our Royal Navy feems yet a little deficient, I have more particularly adopted for my Plan the Conftruction of fundry ufeful Veffels, as well as the Art of Fortification and Attacks by Sea and Land; which, tho incorrect as it is, yet I am in great Hopes fuch Improvement may be made upon it by our able and experienced Artifts, as may anfwer in great Meafure the End propofed : And tho' every new Plan or Scheme ' may, at firf View, feem difficult and impracticable to many People that are unacquainted with the Nature of it; yet I am fully perfuaded the ingenious Sort will find fomething in the following Sheets that will be thought worth their Study and Obfervation.

As our Mifcarriages on the French Coalt have been greatly owing to the want of a fufficient Number of fmall Craft and Boats, and that occafioned chiefly for want of Room in the Ships to ftow or carry more, I fhall firft treat of a reconnoitring Boat, and as fuch on their Duty run great Rifque and require the greatef Difpatch, every Art or Contrivance (that is but of any Advantage to make her row or fail the better) ought to be ufed. And then I hall treat of Boats to land or embark Troops on an Enemy's Coaft. As fuch Boats ufually made Ufe of have hitherto been found fo inconvenient to flow on board Ships, that but few have been provided (from hence our Attempts have mifcarried, and many a brave Soldier and Seaman have loft their Lives, for want of a fufficient Number to take off all the Troops at once.) I have contrived for a better convenience of Stowage, that they be built in fuch a Manner as to part in Halves, lengthways; fo that as many of them may be carried in one Ship upon any Expedition, as will land all her Men at once: And however odd it may appear at firft View by being built in Halves, an ingenious Carpenter or Boat-Builder, I am well perfuaded will foon render it practicable and eafy.

I next proceed to treat of different Veffels to cover the landing of Troops in hoal Water, and their Method of Defence for the better Security of their Men ; and as the greatef Part of it will confift of wooden Rowls in different Sizes, which I make no Doubt will be laughed at,at firf View, as well for the Oddity as the Expence, yet be affured, when they are duly confidered, they will be found to be of excellent Servicealmoft in every Action, not only by Way of Parapet, but will make exceeding good Floats to land Guns or Horfes, or any other great Weight or Lumber : Then after having given you a fhort Defcription of a fcaling Ladder, and of a Bridge to crofs a Ditch ; and referred to feveral practical Obfervations on landing Men; Defences when landed ; and on the Security and Advancement of Troops in the Face of an Enemy. I then proceed to hhow the Ufefulnefs of old Men of Warifiand a Method how to prepare and make them do good Service after they have been unfit for further Ufe in the common Way.

$\boldsymbol{P} \boldsymbol{R} \quad \boldsymbol{E} \quad \boldsymbol{F} \boldsymbol{A} \boldsymbol{C}$ E.

Then after treating of the Means Britain has to take the Enemy's Sea-Ports, and deftroy their Shipping, I fhall juft give a hort Sketch of the Method that was defigned for the better manning the Navy, which was not my own; but fince Mr. Hume's and Mr. Blake's Plan, have appeared, it will be needlefs to enlarge further on that Head, fo fhall conclude with fome Obfervations tending to fhow the great Advantages Britain has, and may keep if the pleafes, over all the Powers of Europe.

It appears to me fo very eafy (in fine Weather) to lay Bodies in the Sea (which the Enemy from the greateft Batteries cannot fink; indeed a chance Shell may do Mifchief to fome of fuch Bodies, but the Uncertainty of Shells hitting a Ship is fo great, that Shells in this Cafe need be little regarded) before Forts and Batteries, that will $e_{\text {, ually }}$ prevent the Cannon on Shore from doing any confiderable Damage to the Hulls of Ships which are running paft, that I cannot but think it fomething ftrange that Britain has not attempted fomething of this Kind to go into the French Harbours and deftroy their Ships.

It feems to me very practicable that old Ships of War, as before mentioned (or other Bodies made on Purpofe) may be laid before the Batteries at the Entrance of any Harbour, (or any Place I have feen) that Men of War may run into the Harbour under fuch Cover, with Safety as to their Hulls.

PREFACE.

The keeping a powerful Squadron before an Enemy's Port, is both dangerous and expenfive, efpecially in Winter, and often doth not anfwer the End; for there are many Difficulties and Difappointments attending a Fleet at Sea, whofe Bufinefs is to keep near an Enemy's Coaft : And Experience teaches that Ships may efcape out of Port, notwithftanding the greateft Diligence in a Fleet at Sea to keep them in ; I muft acknowledge I cannot help being fomewhat pofitive that Means may be ufed (by a Nation that is fo greatly fuperior at Sea as Britain is to France) to go into Breft, or any Port in the World, and deftroy the Ships there, at a much lefs Expence of Blood and Treafure than the keeping Fleets at Sea to block up Ports.

It is evident that Britain (at prefent) has the Means to protect any thing upon the Sea; and can, in fome Meafure, block up the Enemy's Fleets in their Harbours; but by many Years Experience it is known, their Ships have often found Opportunities to flip to Sea, notwithitanding a powerful Squadron imployed to block them up in the Port; and I think there are few Inftances of our Fleet intercepting the Enemy's Fleet, particularly the Breft Squadron.

If there was indeed a good Road where our Ships could lye fafely all Weathers, at the Entrance of the Enemy's Harbours, they might keep them blocked up; but, except in fine Weather

Weather, it is not practicable to reduce the blocking Ships up in a Harbour to any Certainty.

For if a Gale of Wind blow ftrong upon the Shore, the Fleet at Sea that muft not go for the Harbours, will ply to Windward: Nor can they be fafe or eafy till they have got a good Offing, perhaps feveral Leagues out of Sight of Land ; upon which the Wind may alter fo as to bring the blocked up Ships out of Harbour, and they may be at Sea three or four Days before the Ships that blocked them up can beat to Windward, and regain their Station off the Harbour's Mouth:

Or a Storm of Wind may blow the Ships from the Shore fo far, that when the Storm is abated, the blocked up Ships may have an Opportunity to put to Sea without much Hazard of being intercepted, except met at Sea by Chance, as any other Ships may. A dark Night or a Fog may give the blocked up Ships an Opportunity to gef to Sea unfeen. Befides, our Admirals and Captains are Men, and may be overcome with continually being expofed to Storms, \&c. upon a dangerous Shore poffeffed by an Enemy.

I hope the rifquing our Ships, and the great Expencc to keep fo many Ships fo long employed before the Ports of France, fometimes to little or no Advantage, will plead Excufe for my prefuming to give the few following Hints, where with fome Hope they may put Men of Capacity and Power
h
it
in
$\&$
mi
Ti
Fir
Sto
hav
Snc
ren
higl
get
Pill:
Pill
mad
dow.
pour

$\begin{array}{lllllll}P & \dot{R} & E & F & C\end{array}$

Power upon thinking of new Ways and Means to accomplifh the great End in View (i. e.) to humble our Enemies, that they may not be able to difturb the Repofe of Europe, fo much as they

In the fecond Place I have fhown how to build dwelling Houres, which Women and Children may defend againft a confiderable Party with fmall Arms; which Sort of Houfes may b= of great Security to our out Settlements in America, and for which Purpofe they are chiefly
defigned.

In treating of Building defenfible Houres, I have omitted to mention that in Countries where it Snows much, and the Wind blows the Snow in Quantities againft the Sides of Houres, Walls, \&c. the defenfible Houfes in fuch Countries muft be built upon Pillars of Stone, Brick or Timber, fecured as well as can be done from Fire with dead Sap, Plaiftering, \&c. if neither Stone nor Brick can be had; fo that the Wind have a free Paffage under the Houfe, that the Snow may not lye high againft the Walls, and render the Houre furprifeable in at the Windows, high Doors, \&cc. It may be faid Indians may get under the Houfe and cut down the wooden Pillars, or make Fires to burn them; and if the Pillars are Stone or Brick, large Fires may be made under the Houfe, which will burn it down. I anfwer, there may be made Places to pour Water down upon the Fire, and Places of Defence

$\begin{array}{llllllll}\mathrm{niii} & \boldsymbol{P} & \boldsymbol{R} & \boldsymbol{E} & \boldsymbol{F} & \boldsymbol{A} & \boldsymbol{C} & \boldsymbol{E} .\end{array}$

Defence (like clofe Quarters in a Ship) that any one may be inftantly killed that prefumes to came in under the Houfe; befides Palifadoes may be round the open Place under the Houfe, that a Man cannot get through between them, and yet be open to let Wind pafs fufficient to blow away the Snow.

- I was put upon this Sort of Fortification by reading the Account ot a Man's Wife and Children being carried away by the Indians, and some of them cruelly murdered. An Abftract of this Account is in the Appendix at the End of this Book.

I have deviated greatly from the common ufual Method of Forification ; being fomewhat pofitive better Methods may be adopted. How far I have fucceeded in my Search after better Methods of Fortification, the following Sheets will how.

The Manmer of Fortifying here propofed is fomewhat more expenfive to build than the Me thods hitherto ufed; but that is more than balanced by thefe new Works being much ftronger and defenfible with fmaller Garrions.

I have not given a Conftruction; by Words at length, of the Methods of Fortification contained in the following Sheets; thinking it fuperfluous; as the Plates are done by fo large a Scale that fvery Part may be exactly meafured; and as there

$\begin{array}{llllllll}P & R & E & F & A & C & E\end{array} \quad$ ix

there are Profiles to every Plate (that cannot be well underfood without them) the whole is eafy to be underftood.

That Fortification has not been much improved in many Years paft, is owing, I think, to found Theory and Practice being feldom found in Perfons of fuch Rank and Credit as are generally imployed to fortify Towns: And if fome ingenious Man, by great Application in a low Station of Life, does fometimes attain to found Theory along with Practice, he feldom has the Means to make his Abilities fufficiently known to the World; for all the Endeavours, 2 Man in low Circumftances can make Ufe of, to get into a Station where he can make Ufe of fuch Abilities as are here meant, are eafily baffled by fuperior judges.

What I have faid of Foundations and Walls, is deduced from the Practice and Experience of above Thirty Years, in almoft all Kinds of Foundations and Walls, both in the Sea and on dry Land. It inay feem to fome Readers almoft impracticable to confruct a Machine to lower Pieces of Mafonry of about forty Tons, which I have fpoken of in treating of laying Foundations in the Sea : But in the firf Place it ought to be confidered that it is much eafier to lower forty Tons, than to raife fo great a Weight ; and there cannot be fo much Difficulty and Expence in making a Machine to lower Forty Tons, as

* $\quad P \quad R E F A C E$.
would be requifite to confruct a Machine to raife Forty Tons.

With Regard to Arches, I have only endeavoured to fix their feveral Thickneffes or vertical Length of the Key or Arch Stones, in Proportion to their different Widths between their Springers.

At the End of this Book I have a written a few Pages upon a Queftion which has been much controverted (i. e.) Whether a large Receiver, fuch as Jarrow's Lake in the River Tyne, up a River a Mile or two, more or lefs, from the Sea, doth or doth not (caufe the Water to come into that River with fo much a greater Force than if the River was near of a Breadth all the Way to the End of the Flux as to). caufe the Water to raife higher ten or twelve Miles, more or lefs; up the River, than it would do if there was no fuch Receiver as above; and by this Receiver not only holding a great Quantity of the Flux itfelf ; but being alfo the Means of more Water being depofited ten or twelve Miles up the River; I fay if it is demonftrable, a large Receiver near the Mouths of Rivers, has thefe Effects, the Receivers are in Fact the Caufe of keeping the River's Mouths more open for Ships to fail into and out of fuch Rivers; and are alfo the Caufe of the River's being navigable further up into the Country; and confequently to leffen fuch Receivers muft be injurious to the Navigation of Rivers.

THE

THE

CONTENTS.

Chap. 1. ${ }^{\text {F the Conftrution of reconnoitring Boats }}$ Page f.
Chap. II. Of the ConftruEtion of Boats for landing and resiuarking Troops on an Enemy's Coaft Page 3 Chap. III. Of Veffels proper to protell Troops wbile landing

Page 5
Chap. IV. Of joining tbree Veffels togetber, ta be of a fufficient Force for carrying large Cannon, botb to annoy the Emeny and protect Troops in landing or embarking, when the Water is fmooth and Jhallow, as mentioned in the laft Cbapter Page 8
Chap. V. Of divers Inventions : and firft of rolling Breaft-Works ta ferve as Parapets,\&c. Page 10 A hort Account of tbefe rolling Breaft-Works Page 12 Of tbe praftical Conftruction of bigb Batteries made witb rolling Breaftrworks

Page 15
Chap VI. Of fcaling Ladders
Page 17
Chap. VII. Of a Bridge to crofs a Ditib, wobetber dry or full of Water

Page 19
Chap. VIII. Of the Adventage of Feints in landing Troops, 8cc.

Page 23
Chap. IX. Of real Attacks : And fitting old Sbips of War in a different Form, after they bave beens condemsed as unfit for Service in the common Way

Chap. X. Of the fitting old Ships of War to lye end on, and to batter Caftles, Forts and Batteries

Page 46
Chap. XI. Of fmall foating Batteries to batter an Enemy's Cafles, Forts, \&cc.

Page 49
Chap. XII. Of the Utility of old Sbips of War, when fitted as defribed in the IX and X Cbapters Page 54
Chap. XIII. Of the means Britain bas to take or demolifh an Eneny's Sea-Forts,' and deftroy their Sbips in Harbour. PARTII.

Page 6_{3}
Chap. I. Of Fortility
Page 73
Chap. II. Of new Metbods to fortify Places Page 79
Chap. III. Of a new Method to fortify re-entering Angles
Chap. IV. Of fortifying a Circle
Page 96 Chap. V. Of a new Method to make Covert-ways and Walls in fortifying Places

Page II5 Chap. VI. Of Foundations, and the Manner of laying them in Fortifications, Bridges, and Piers for Harbours

Page 122
Chap. VII. Of the Lengtb of Arcb-Stones Page 164 Chap. VIII. Of Rivers, Creeks and Harbours; and making proper Ufe of the Flux of the Sea Page 170 A P P E N D I X.
Chap. I. Of manning the Britih Nary witb lefs Grievance to the Subjects

Page 182 Chap. II Contains a Scheme to employ Seamen; and alfo treats of a Copper-mine near Hudion's Bay; and of a Scheme to difcover the Nortb-weft Paffage, or determine tbere is no fuch Pafage; with Cautions and Direations.

T H E
 British Mars.

C H A P. I.

Of the Conftruction of reconnoitring Boats:

OATS for this Service fhould have much the fame Length as a Man of War's twelve oar'd Barge ; but thould be at leaft a Foot broader, with a flatter Bottom, and of a very light built, fo as to carry Ballaft enough to make them bear a larger Sail than common, at a very fmall Draught of Water. The Thicknefs of the Keel Should be fuch as to admit of two Mortiffes through it, from the upper to the under Side, the one forward, the other aft, each about the quarter of he" ". ength from the Midhips; but the forward one rather more fo than the other. Thefe Openings to be each between three and four Feet long, and about an Inch and three quarters wide; and Thould be continued as high as the Thwarts, by making a ftrong Cafe, to contain a Plank or Lee board (well fecured with Iron) to be let down or hawled up at pleafure,

[2]

when the Boat is under Sail, in order to make her họld a good Wind.
In going about (when under Sail) the Lee-boards may be plucked up the Inftant the Helm is put a Lee, and let down again as foon as the Boat begins to pay off.

As it is a principal Point that fuch a Boat fhould be conftructed in the aptift Manner to row well in cafe of Purfuit, $\mathcal{E}^{2} c$. The Thowles or Rullocks muft be fo placed, that the Purchafe of the Oars may be taken at leaft a Foot without the Gunnel, for by this Means the Oars may be longer, and give the Boat better Way with lefs Forse.

Another Artifice for helping to make good Way, will be to form a Hole or two in her Stern, for letting through Poles of a convenient Length, with artificial Swan Feet at the outward Ends, to contract when hauled inward, and to expand when pufhed outward: by working thefe, as Occafion may require, a confiderable Degree of Velocity will be added to the Effect of the Oars.
And laftly, it may be of fome Advantage to raife a Standard in the after Part of the Boat, juft clear of the Oars; to the Top of which is to be faftened a Rope with a Hook at the lower End, on which may be readily hung a Weight of a Hundred or two, more or lefs, as may be found moft convenient in practice; and a Butt being fixed about the Height of the Thwarts, let a Man in the Stern hawl aft the Weight, and at every Stroke of the Oars, let him take good Care to dafh it againft the Butt, which will be found to quicken the Boat's Way.
N. B. It will be neceffary to cover both the Butt and friking Face of the Weight with fome proper Material, for preventing too great a Jars.

CHAP.

[3]

CHAP. II.

Of the Confruction of Boats for Landing or Embarking Troops on an Enemy's Coaff.

SUCH Boats hould be about thirty Feet long, and near twelve Feet broad, and flat Bottomed, built with a Flooring of pretty thick Boards, fo as to endure beating againft the Shore, but as light as pofible at Top, fo as not to draw above eighteen Inches or two Feet Water at the moft when loaded; both Ends thould be nearly a like, and a little rakeing. In the building they ought to be fo contrived as to part in two, length ways, and be united again with little Trouble or Lofs of Time; the Execution of which muft be left to the Builder's Difcretion, the Intention thereof being fur the Conveniency of Stowage on Shipboard. Thus by making three or four Sizes gradually diminifhing, they may be flowed in little room on each Side the Ship's Quarters, (jike Hambrougb Boxes cut in two length ways) one within another, one half on one Side, the other half on the other, fo that a Tranfport may carry as many as will land or imbark all her Soldiers at once*.
It will be eafily apprehended that the Hooks fore and aft, the Floor Timbers, and the Thwarts, are not to be faftened, but only fayed, till the Boats come to be put together; yet in order to do this, every Piece muft be bored off ready, and fitted with fkrew Bolts and Nuts, inftead of Nails and Treenails, with a Provifion of tarred Canvafs or Flannel, to llip between the two half Keels, Stern and Yoft, B 2 in

* Being able to land all the Troops at once will be of great Service in many Refpects, as will appear when Landing of Troops are treated of.

[4]

in order to make her Water tight upon being rejoined; I recommend both Ends to be formed alike, that either End may go foremoft to prevent winding, either in going afhore or coming off; the Thwarts ought to lie as low as poffible, and the Rullocks to be placed fifteen or eighteen Inches without the Boat's Side, as in the reconnoitring Boats, under which long Poles or Sets may be carried, to help to pufh the Boats a head in fhoal Water, when it blows too frefh for the Oars to do it.

Upon the End of the Boat which is to be next the Shore, or Enemy, there ought to be a Brealt Work of two Feet thick, or more, confifting of light Niaterials, in the manner of a Pack or Roll quilted ftrongly together, which, for the more convenient Stowage in the Bottom of the Boat when the Wind blows trefh a Head, may be made up in fhort Lengths, with feveral Loops or Noofes in each, to cord them faft together when they are to come in ufe. This Breaft Work, thus put together; and fixed in the Boat, will cover the Men from the Enemy's Fire, in advancing to, or retieating from the Shore. A more complear Defcription of thefe Packs or Rolls may be met with in Page 12.

For the common Defence of each Boat there fhould be provided ten or twelve Mufkets, with large Barrels of well forged Iron, fit to carry a fingle leaden Ball to a good Diftance, or fmall Grape Shot in cafe the Enemy be near. I prefer a leaden Bullet to an Iron one, on the following Account; one of lead of an Inch diameter being nuch heavier than an iron one of the fame Dimentions will confequently be driven with equal Force to a greater Diftance.

The Mufkets, in order to diftinguifh them from others, may be called Artillery Murkets; as each Boat will be near twelve Feet wide, five or fix of the Mufkets being fitted, each with a Swivel Marp point-

[5]

ed to nip readily into Holes made for that Purpofe on the Top near the Infide of the Breaft Work, may be fired at once, whilft the like Number are loading, to be nipt fo readily into the Places of thofe juft difcharged, that a conftant Fire may be kept from every Boat, fo as infallibly to annoy the Enemy, and keep them at a much greater Ditance than can polibly be done by the common Muskets.

C H A P. III.

Of Veffels proper to protect Troops wobilft Landing.

VESSE LS of fifty five or fixty Feet long, and very broad, muft be fo contrived in their Confruction, that with a very little Draught of Water they may be able to keep the Sea in bad Weather; and ferve as Tenders, $\mathcal{E}^{\circ} c$. when not otherwife employed; but if the ingenious Ship-builder fhould find himfelf at a Lofs to give a Veffel thefe two Properties, though fitted with Lee-boards like the reconoitering Buats, the common Conftruction may anfwer the End, by the Addittion of a counter Bottom, confifting of four Parts or Quarters, and to be provided whillt the Ship is building, occafionally to fit and take off from the Veffel's thin Parts, in the Nature of a Camel, forming a quite flat Bottom, like that of a Barge, when fitted on, to bring her to a fmall Draught of Water. Such counter Bottoms may be brought under Veffels, and faftened to them with eafe when the Water is tolerably fmooti, after the following Manner ; firft hawl the Veffel along fide fome Ship and lighten her as much as poffible; then heave out the Quarters of the counter Bottom, and faften them together two and two, with the frong Chains fix'd ready for that Purpofe; this being done,

[6]

fink them ${ }^{\bullet}$, till the Chains can pais under the Keels of the Veffels, either forward or aft, and hawl them to the proper Birth to which tiney were adapted, where faiten them with 1 krew Bolts or the like Contrivances for that Purpofe, fo that the Parts may meet and butt each other about the Midhips, and be fecured in that Pofition \dagger.

It is neceflary that fuch a Veffel hould have two Decks very well fupported, and at leaft five Feet and a half in h ight between Decks, that there may be convenient Room for Capftanes between Decks, and more efpecially for Oars to row in failure of Wind, and the better to keep her Head toward the Enemy, when within reach of their Shot.

As the Nature of the Service requires that thefe Veffels fhould be very ftiff, and draw but very little Water when they have their Guns and Men aboard,

* Thefe counter Bottoms may foon be cleared of Water, by means of a Tube about nine Inches or a Foot \{quare, and fifteen or twenty Feet long open at both Ends, made of Oak ar Fir Plank, about one Inch and half thick, with a corvenient Number of Valves in the upper Side, (this fort of Pump lying in an inclining Pofture when in ufe) with a light Frame of Brafs or Iron that fills the Tube, and has large Valves to fly open eafily, when the Frame touches the Water. This Frame fhould be faftned to 2 Pole about two Feet longer than the Pump, and one or two Men working the Pole pufh the Frame to the Bcttom of the Pump, the Valves open and let the Water continue in the Pump, as deep as the Pump is emerged, and as they attempt to hawl the Frame up the Valves ihuts, and they hawl all the Water up that is in the Pump above the Valves.

I made fome of thefe Pumps of fuch a Size, that every Inch in Depth contained a Gallon; one of them being emerged eleven Feet, fix Men made eight Strokes in a Minute, which drew up above four Tons of Water.

+ Veffels ordered after this Manner will endure a fwell or gentle Summer Sea, and lye near the Shore with Cannon to amoy the Enemy and keep them at a Diftance.

[7]

it will require a due Confideration to conftruct them; becaufe the Veffels muft be made able to carry their Cannon high, which may be fix in Number, pointing forward, or aft; but as the Breadth of the Vefel will not at the utmoft admit of more than three large Cannon to point forwards, it will be neceffary to plant them in two Tiers toward the Midihips, at a proper Diftance behind each other, and the fore Tier to be about four and a half or five Feet below the after Tier, that the after Cannon may fire clear of the fore ones.

For the better Security and Defence of the Men, ftrong Parapets of Junk and other Materials may be provided, ready framed in fhort Lengths for the better Conveniency of Stowage in the Hold when out of ufe, to be ready at any Time to be placed in their Births upon the Decks before the Guns, in a floping Pofition; whereby the Enemy's Balls, though fhot from a higher Battery, will ftrike the Parapet with only a fmall angle of Incidence, without taking any confiderable Hold of it, and confequently will glance and be reflected upwards*.

Thefe Veffels being to fight their Cannon lying with their Ends to the Shore, it may perhaps feem as a Matter of fome Difficulty to keep them from cafting a thwart, butthis may be effectually prevented, by ftrong Stakes fhod with Irot, fo contrived as to be let fall into the Ground on each Side the Veffel clofe aft, and to be taken up again at Pleafure; through Holes wrought

[^0]wrought in her Bottom for that Purpofe when building, on each Side near the Veffel's Quarters, and as far aft as can be *.

C H A P. IV.

Of joining tbree Veffels together, to be of \cdot fufficient Force for carrying large Cannon, both to annoy the Enemy and protect Troops in landing or embarking, woben the Water is finooth and Sallow, as mentioned in the laft Cbapter.

THE ingenious Shipwright is here again to be informed, that a third Property will be requifite in the Veffels treated of in the forgoing Chapter, in order to make them anfwer our furcher Purpofes; namely, that they be formed ftrait or Wall fided, in order to lye clofe along fide each other, when two or three of them are faftned together; but as I am fomewhat fufpicious that it will be farce practicable to conftruct Bodies which will anfwer all thefe feveral Ends thoroughly, I hould rather advife, confidering that the Expence will be trifling, when compared with the great Advantages refulting from them, that Veffels be built on purpose, of about the fame Dimenfions as thoie laft treated of : for example, fixty Feet

- It may be prefumed that it will feldon be attempted to land Troops in a Sea that will not admit of Boats full of Men to go afhore with Safety; in a moderate Sea the rifing of the Veffel will not lift the Stakes out of the Ground, but the Veffel will Ilip up and down the Stakes by the Action of the Swell, and an Anchor out to Sea will fecure her from thwarting. If on the ebb Tide the Vefiel be in danger of grounding, the Stakes may eafily be hove out of the Ground by the Captans and Pulleys fixed between Decks, and when the is hawled into deeper Water, the Stakes may be let down in a Moment.

[9]

Feet long by twenty broad, the fame Height between Decks, with Row-Ports, with counter Bottoms to make the Bottom flat, and a ftraight upright Sisie, efpecially from the light Water Mark; the Eads fore and aft fomewhat like the Society's Herring Buffes, and to be rigg'd with a light Maft, fomething after their Manner, or any other that fhall be juilg'd moft convenient to put in or take out at pleafure: Each of thefe Veffels ought to have fix Iquare Openings on each Side, nearly at equal Diftances, a very little above the light Water Mark, and fix more like Openings clofe below the upper Deck Beams, with Trunks to the low Openings, made tight to run from Side to Side, and firmly fecured, to as to be fit to receive ftrong Beams of Timber that fhall run thro' the two or three Veffels to faften them fecurely together, for the Ufe and Purpofes hereafter mentioned.

In order to put thefe Veffels together, in the firft Place, if threc are to be put together, let the middle one receive two of the aforefaid Beams, through the forward and the aft Openings, and next let the other two Veffels receive the Ends of the Beams, each in at their Sides; thefe two alone will be fufficient to keep the three Veffels in equal Motion, and to facilitate the Introduction of the reft of the Beams; after they are all fix'd right in their Places, unrigg and take our the Mafts, Sails, $\mathcal{E}^{2} c$. of the two outfide Veffels, leaving the middle one rigged, that fome Sail may be uled if Wind offers. Faften them altogether with Chains acrofs their Bottoms fixed for that Purpofe; thus they will be able to carry the heavieft Cannon on their upper Decks, eight or ten Feet high above the Water; and in cafe the Water be quite fmooth where the Veffels are to be employed, a higher commanding Battery may be raifed above the

[10]

the former*, fuppofing fuch to be at hand in the Veffel, ready framed to be put up and taken down ai pleafure ; inftead of a Parrapet upon thefe commanding Batteries, place fmall upright iron Stantions fix Feet long, upon which hang a Quilt of woolen Rags, or other Matter, Murket proof, with fmall Pieces to lift up and form Openings for the Cannon to fire through, and fall down again to ftop Mulket Shot from the Enemy whilft the Cannon are re-loading; the importance of thefe forts of Batteries will better appear when we come to explain the Manner of Landing \dagger.

C HAP. V.

Of divers Inventions; and firft of rolling BreaftWorks, to ferve as Parapets, \&cc.

THE rowling Breaft-Works here propofed, may be made of any fort of Materials proper to refiit or deaden the Motion of Shot ; fuch as old Quilts, Raggs, or woollen Cloths of any kind that will come cheap, which may be, for the better Convenience of folding together, wrought up into Plat or Cordage; take a Balk of Timber of the Length of each Para-
pet,
*Thefe commanding Batteries, in fmooth Water, will be of great Utility, as they will have a great Command over the Enemy's Situation and Works afhore.
t Two or three of thefe Veffels being fixed together, it may be eafily tried how high they will carry a Battery of any Number of Guns of given Sizes, by raifing feveral frong Sheers on the Decks, and heaving the Weight of the Platform, Guns, ${ }^{\circ} \mathrm{c}$. up a confiderable Height, making Trial at feveral Heights, after every Thing is well faftned, and then by Means of Ropes at the Top of the Sheers giving the Veffels the like Motion as in a moderate Sea : This hould be done before the commanding Batteries are framed.

II]

pet, at the Ends of which fix ftrong iron Gudgeons to receive a Frame convenient for the Men to convey it, either to hawl it after, or pulh it before them; this Frame may have Spikes fo hung to it as by their Ends trailing upon the Ground to hinder its running backwards, when pufhed or hawled up Hill, or its recoiling when fruck by Shot; at each End of the Timber Balk or Beam, fix Spoaks of Iron, like thofe of a Wheel, to keep the Wrapping regular ; then fold the woollen Rope or Plat round the Balk (which fhould be ftraig't for rolling Parrapets, but crooked and fmall for thofe 3t the Bows of Boats) taking Care to fix Skewers of Wood or Iron in many Places of the Roll, to keep the Wrapping well together, which for further Security, may be at laft covered with a ftrong Netting of hempen Rope.

Roiling Breaft-Works of different Forms and Sizes, thus compacted, will anfwer the different Purpofes of ftuff'd Gabions, Corbels, Fafcines, EarthBags, Mantlets, or any other Contrivances for covering the Men from the Enemy's Fire in attacking Fortreffes; as will better appear hereafter. They will alfo, with the help of a lig'.. Covering of Tarpaulin, Teather, or other durable Materials, make excellent Rafts, to carry and land any heavy Weight, às Cannon, Eis. and may be rendered very fit, if due Care be had to the Covering, for erecting floating Batteries upon them; for if they be kept dry, and not very hard worked, they will fwim more than half the Diameter above Water; but great Care muft be taken not to let them get thoroughly wet, becaufe then they will only float by the upper Surface, and if twifted or made very folid, will refift Cannon Ball better than any other Materials I know of that will fwim.

A fort Account of the Ufe of thefe rolling Breaft Works.

SU?POSE a Debarkation intended at a good and advantageous Landing-place, but where great Oppofition is expected, the Enemy having Cannon planted on Batteries, and Works thrown up, not only near the Shore to hinder the Landing, but alfo at a proper Diftance has formed Redoubts, with other Batteries, and a Line of Communication, fo that Cannon Shot from a Frigate or other fmall Veffel, lying at a common Diftance from the Shore, can do them but little Harm; Now though the Enemy's Cannon cannot reach the Frigate, no more than the Frigate's Guns can reach them, yet the Enemy's Guns may eafily reach the Water Side with fufficient Force to annoy the Troops, both in landing and when landed. Indeed, if fuch a Difpcfition be made by the Enemy, and they perform their Duty well, it is impractible to land, according to the common Method, without confiderable Liofs. But fuppofing rolling Breaft-Works provided, twenty Feet in lenyth, and fix Feet in diameter, as before defcribed; Rafts may be made of them by faftening five of them together to every Raft, which Rafts will confequently be thirty Feet long and twenty broad.

Acrofs the five Rolls fo lahed together, lay ftrong Planks, thirty Feet long, to make them bear alike in the 'Water, with other Planks twenty Fee: 'ong, and two or three Jnches thick, acrofs thefe; thus there will be formed a good Platform for Cannon to reft or recoil upon, fhould there be Orcafion for firing from the Raft; fome of thefe upper Planks thould have Irons fixed near their Ends, fitted to receive and hold faft other Rolls of fix Feet diameter, to lerve for a Parapet to cover the Men from the

$13]$

Enemy's Fire, whillt Landing, or firing their own Cannon*.

Being furnifhed with a fufficient Number of thefe Rafts, any Body of Troops may approach the Shore under a good Defence; having at all Events a fufficient Number of Cannon to anfwer thofe of the Enemy; but fhould there be no Need of firing the Cannon at Sea, the Rafts may be pufhed afhore about high Water, or upon the Ebb \dagger, and when the Fore-part is Jaid a-ground, fufficient Planks muft be laid from the Rafts to the Shore, and the Parrapet Rolls rolled off firft, and plac'd in proper order on the Shore or Beach, and the Cannon landed next and brought up to the Parrapets, all which may be fo quickly difpatched, fuppofing the Water fmooth, that in about half an Hour, from many fuch Rafts, an Hundred Cannon may be landed and made ready for Action, covered with the rolling Breaft-Works, under which the Troops may advance in tolerable Safety, to attack any Place or Enemy, with as many Cannon as may be judg'd proper, whereby fuch Advantages may be gained as will reafonably affure Succefs with very little L Lofs.

If a great mrny Cannon fhould be wanted afhore, each Raft will be able to carry four ready mounted, befides

[^1]
I4]

befides the two for immediate Service; and the Raft being taken afunder, and landed, will be refolved into four rolling Breaft-Works or Merlons, for the four Cannon, befides the two that were ready for Action upon the Raft. Thus each Raft will be able to land fix Guns, with all their Equipage, which when on Shore will make a Battery of fix Guns, with all requifite for Service in a very little Time; fo that ten Rafts will furnih Batteries for fixty Pieces of Cannon, and carry many other Neceffaries afhore befides; one Raft alone would carry the Weight of ten, but would furnifh Materials for no more than fix; and if it is apprehended that the Cannon on the Rafts will be much ufed in firing againft the Enemy, it will be proper to have two or three other Rafts to carry the Cannon, \mathcal{E}^{2}. on Shore, for Shore Service.

By thefe Helps, and a proper Ufe made of thefe Veffels as before directed, Troops may land at any Place in fine Weather, and even have the Advantage of the Enemy, though fuperior in Number; for thefe Rolls will form into Batteries fo very expeditioully, that an Army of three or four Thoufand Men, once landed, may advance with fifty Cannon in Order of Battery a Mile or two, in five or fix Hours from landing, the Rolls fufficiently covering their Front, fo that they will never be at a Lofs to fight their Cannon under Cover, hould they be fuddenly attacked on their Way by the Enemy.

High Batteries may alfo be raifed in a very fhort Time, by fetting a Number of large Rolls on End, and binding their upper Ends together with Ropes provided

[^2]
15]

provided for the Purpofe, throwing up Earth againf their lower Ends to make them ftand the fafter; at the fame Time fhorter Rolls of fix or feven Feet' Diameter thould be ready for a Parapet or Merlon, between every two Guns, with flat Pieces to form the Embrafure, and fill them to the Top if needful.

To make the Platform for working the Cannon upon in Time of Action, lay three Inch Planks, not very clofe to one another, the whole Length of the Batteries, and cover them with orhers about feventeen or eighteen Feet long, laid acrofs clofe to each other, and then the Cannon will recoil and traverfe eafily over them.

Of the practical Confruction of thefe bigh Bat: teries.

HAVING fixed upon the Spot of Ground roll a fufficient Number of Brealt-Works between it and the Enemy's Fire, to prevent their Shot from annoying the Men while at work; make the Ground plain, and, if it can be effected with a little Labour, let it lower away gently towards the Object that is to be battered, that the Top, on which the Cannon is to recoil, may have a Defcent towards the Embrafures; then fet a Number of Rolls on their Ends, to form a Rampart about twenty-eight Feet broad, upon the Top, for which four Rolls of feven Feet Diameter, fet on a Row, will fuffice; the Length muft be fuited to the Number of Cannon intended to be planted upon it; allowing about fixteen or feventeen Feet of Length, to each twenty-four Pounder.

Now as the Parapet is to be made of Rolls, it will be neceffary that the Rampart fhould be hallowed along the Front, to caufe it to lie firm upon it ; and this may be effected by making one Side of each of the outfice Kolls that are to make the Rampart,

[16]

a Foot horter than the other; for if the two fhorteft Sides be placed parallel to each other, and next the Front, a Hollow will be thereby formed in the Rampart, fo as to make it hold the Parapet Roll faft.

After the upper Ends of the Rampart Rolls are lafhed firmly together, a good Quantity of Earth muft be thrown up againft their Bottoms, to make them ftand faft, and then the Parapet Rolls muft be rolled up and properly placed, having about twenty Inches Opening between each two Rolls for an Embrafure, and fitting in the Madriers at the fame Time to prevent the Enemy's Shot from paffing through the Embrafures. The Madriers is fo well known as not to need any particular Explanation*.

When all Things are in readinefs for laying the Platforms, begin with laying three Inch Planks fretching along the Rampart made of Rolls, whofe Ents muft butt or meet in different Places upon the Rampart ; then lay other Planks, two Inches thick and eighteen Feet long, acrofs thofe already laid, for the Guns to recoil upon.

Another fingular Ufe of Rolls will be to roll along before Cannon that are advancing to cover or form an Attack; for it is eafy to conceive that by the Means of fuch rolling Breaft-Works, any Number of them may be puthed forwards under fufficient Cover as near an Enemy's Fortification as is neceffary.

When a Breach is not intended to be made, fix or nine Pounders, mounted on travelling Gun Carriages, will be fufficient, with rolling Breaft-Works well foaked in Water between each Cannon, and a fquare

[^3]
$17]$

fquare Madrier of the fame Materials to fill as high as the Cannon, the Space between the rolling BreantWorks in time of Action; on a March the Madriers are to be hung to the fore part of the Guns, to fecure the Carriage from the Enemy's Fire, upon which other Madriers are to be laid to fill the Openings between the Breaft-Works to the Top when needful, thus during the Advancing of the Cannon, the Men who work them will be covered with a good Breatt-Work.

When the Cannon are to be conducted a greater Diftance, they may be fitted in the Manner following: If there is any Apprehenfion of meeting an Enemy in the Field; let Iron be fixed to the Axletree of the Carriage, of Strength fufficient to fupport an Iron Bar of twenty Feet in length, lying acrots, a little before the Muzzle of the Gun, and about fix Feet in heiglit from the Ground, on which to hang a Mantlet, Mufket proof, with a fmall Piece of Mantlet to cover the Mouth of the Gun, which may be put afide when it is to be fired; the Mantlet extending about eight Feet on each fide the Carriage, will cover the Men that pufh the Cantion forwards, as well as the Mufqueteers that march with the Cannon. The Cannon, when marching in the Face of an Enemy, muft be puhhed torwards by means of Trails upon fimall Wheels fixed behird them, with Traces for the Men to hawl chem by; thus a number of Cannon may be made to advance and face an Enemy to fome Advantage, efpecially againft fmall Arms.

Since thefe rolling Breaft-Works muft be of great Importance to that Power which is Mafter of the Seas, in the whole Progrets of diftrefling an Enemy's Sea-Coafts; I would earneftly recommend them to my Reader's thorough Confideration, for it would be tedious where Brevity is intended, to
expatiate further on the many Purpofes to which they are capable of being applied.

C H A P. VI.

Of fcaling Ladders.

PRocure the longeft Poles that can be got, of two Inches and three Quarters in diameter; Afh is the Wood which is moft eligible, but as tiney fhould be thirty, or five and thirty Feet in length, which Englijb Afh feldom runs to, clear of Knots, young Fir Trees may ferve the Purpofe, for Poles fawed out of Timber will not be fo proper, as not being fo tuff and frong. The middle Part of thefe Poles ought, as I obferved, to be two and three Quarters of an Inch in diameter, but they fhould be fomewhat tapering towards each End; when thefe Poles are to be converted into Ladders for fervice, two of them muft be fet parallel at a proper Diftance afunder, and kept fo by proper Iron Work that will not damage them ; round Loops or Sockets at each End of the Bars, to put on upon the Poles, feem likely to anfwer this Purpofe bett, and they may be faftened at the Ends by Skrews. The Steps of thefe Ladders fhould be fmall Ropes, ftretched tranfverfly berween the Poles, their Height one above another tho ld not exceed one Foot; they might indeed be eighteen Inches Diftance, but then a Man mult be obliged to give a Spring every Step that he afcends, and this would require a ftronger, and confequently a heavier Ladder.

Such a fcaling Ladder, wide enough to hold two Men a-breaft, and thirty or thirty five Feet long, will admit of fix Men upon it at a Time, and the Ladder not weigh much above one Hun.
dred and twenty Pounds : It might perhaps be expedient to have a fmall Pole fixed with its End about ten Feet from the Top of the Ladder, to be in readinefs to raife the Top when neceffary.

When the Ladders are out of ufe, the Poles will lie almoft as clofe together in a Ship as to many other Poles, for the fmall rope Steps will be a very inconfiderable Hindrance to their Stowage.

Another fort of Ladder may upon trial prove more ufeful in the open Attack of a Place by EfcaJade, in a new Manner hereafter defcribed.

This Ladder ought to be about forty Feet long, and made of good Rope, with a proper Chain about twenty or thirty Feet long, properly faftened to the End of the Ladder that is to be uppermont ; and to the other End of the Chain let a Ball of nine or twelve Pounds be well fecured, fo that the Ball may be fired out of a Gun and draw the Ladder after it acrofs the Ditch, and fix it to its Place by the Ball plunging a good Way into the Defences of the Place, drawing the Chain in after it.

Confidering the great Advantages that might accrue, efpecially to Britain, from a right and ready Manner of attacking Places by Efcalade, it may be worth while to exercife the Soldiers at home in time of Peace, in this important Part of Military Operation. It will require Experiments to difcover rightly how to make and ufe this Ladder.

C H A P. VII.

Of a Bridge to crofs a Ditch, whether dry or full of Water.

GREAT Ditches are ufually made from ninety to a hundred and iwenty Feet wide, more or lefs; thofe of Out-Works from about fifty to feven-

[20]

ty Feet, but as the precife Breadth cannot always be obtained, it will in this Cafe be neceffary to be provided with two Bridges, one longer than the other; the longent with folding Parts, to crofs from fifty to eighty-four Feet wide, and both Bridges together to lecure the Croffing from the Breadth of ninety to an hundred and thirty Feet; the Bodies of thefe Bridges are to go on a pair of Wheels, fixed at either End, each Wheel being about twenty Feet diameter, and to tread eighteen or twenty Fieet afunder.

Suppore the Body of the Bridge which is to be pulhed into the Ditch, to be thirty Feet long, from the fore Part of one Axle. Tree to the hinder Part of the other, which leaves the SemiDiameter of each Whee! without any Bridge; and as it may be impolible to know the Breadth of the Ditch to a certainty, it will be advifeable to have in readinels thirty-eight or forty Feet of fpare length of Bridge, t o be uied if neceffary, which may be eafily provided, by having a folding Part of thirty or thirty-five Feet long, fattened to the after Axle-Tree with ftrong Hinges, and its after End, (for the better Convenience of travelling) fupported by Wheels ten Feet high, fo that the Men appointed to convey it will have fufficient Room to hawl under the Biidge, and the Wheels may be taken away at plealure, as 100 n as the main Body of the Bridge is puihed into the Ditch; and inltead of the Wheels, the outer End of the folding Part may reft upon the covert Way, and by pufhing forward or hawhing backward the faid main Body, the Bridge may be made fuitable in length to the Breadth of the Ditch; and for the more convenient moving the fecond Bridge over it, (which fhould be narrower than the firit) it would be pioper to fix firlt a fold-

Plate.

[2i]

ing Part at the fore End of this fecond Bridge, of about twenty Feet long, to face the Ditch.

Suppofe the Ditch to be one hundred and thirty Feet wide, or a little more, though few exceed fuch a Breadth, and not many are to wide, firft pufh the Briage as above defcribed into the Ditch, till only two or three Feet of the after End remain upon the covert Way, which mult be fixed down with three or four Iron Stakes, or well faltned with Ropes to the remaining Parts of the Palitades of the covert Way*: This Bridge will advance fixty ol fixty-two Feet into the Ditch, and leave fixtyeight or feventy Feet of the Breadth of it, for the fecond Bridge to be pufhed along the firft already in the Ditch.

The main Body of the fecond Bridge, like that of the firft, is underftcod to be thirty Fert long, with folding Parts at the Ends, each twenty or thirty Feet long, that at the after End to be fupported by two Wheels, and the fore Part to be eievated to an Angle of about furty five Degrees, and kept fo fufpended with Chains till the Body be fo far advanced into the Dit:h, as that the after folding lart ruay reach abeitt two Feet, more or lefs, on the Body of the firf Bridge, which being already torwarded to the length of about fixty or fixtytwo Fett into the Ditch, the after folding Part of the fecond Bridge will make twenty Feet more, and with its Body, one hundred and tweive Feet in the whole, whereby the foremoft folding Part having no more than eighteen Feet of Ditch to cover, will reach a confiderable way up the Parapet, and fo be a Means of affording the Men aneafy Enirance into the Place

$$
\mathrm{C}_{3}
$$

*Thefe Wheels being twenty Feet high, will go over any Obftruction feven Feet high.

[22]

As Men are to be employed in drawing and pufhing forwards thefe Bridges, Traces muft be fixed under them (fo that the Men will in fome Degree be fecured againft fmall Shot) fufficient to cortain as many, or near as many as may be fufficiently a. bue to hawl the Bridge to the Edge of the Ditch; but as the Men cannot enter a deep Ditch full of Water, it will be neceffary to have a Trail behind the Briclges, where a requifire Number may hawl and aflift thofe under the Bridge, by which Trail alone the Bridge may be forced or pulhed acrofs the Bottom of the wet Ditch; for as the Bridge when emerged in the Water will be bucyed up almoft to float, a fmall Degree of Strength, compared with what is neceffery to puh it on the Ground, will fuffice to force it on when in a wei Ditch; and if the Ditch be diy the Men may do their Bufinefs in it.

In the Caie of a dry Ditch, a Trail will not be abfulutely neceffary, unlefs the Diftance the Bridge is to be advanced to, be very conficterable.

It may happen that the Hlace may be alarmed, therefore Quilts, Muket proof, ought to be provided, to hang on each Side the Bridge, to fecure the Men hawing under it from fmall Slot*. It is fuppofed the Barb Batteries are filenced before this Bridge advances near, if the Place is a!armed.

Alchough (as I have obferved) Ditches are of various Breadihs, two fuch Bridges as I have been detcribing will ferve for croling any Ditch from eighry four to one hundred and thirty Feet wide, for if it be no more than eighty Feet, it will admit of the Bodies of both Bridges between the Scarp and Counter-Scarp, and the folding Part forward will lie againtt the Parapet of the Place, and that behind

* Such Engines are fuppofed practicable to be brought againa Gea-Ports, but too cumberfame for in-land Service.

[23]

Jehind will reft on the Covert-Way; The long Bridge alone with its folding Parts will command the Crofing of any Ditch from fifty to eightyfour Feet over, and how thefe two Bridges are to be ufed together in croffing one of one hundred and thirty Feet over, has been already explained.

C H A P. VIII.

Of the Advantage of Feints in Landing Troops, \&c.

ALthough it be unqueftionable that it is in the Power of Britain to attack any Place upon an Enem'ys Coaft with the greatef Probatility of Succels, when common Prudence and Reafon encourage an Attempt ; yet as the ex cuting fuch Services with the leaft Lofs wili be the moft commendable, the proper Ufe of Feints ihoulu be fome Time had recourfe to, for attaining this defirable End.

For Inftance; fuppofe that it be determined to land in the Night Time, it w:11 (I think in the firt Place) be of Service to keep the Enemy ignorant of the Intention as long as pofible, by lying ar a good Diftance from the Shore, if the Wind is favour :ble, or by any other Means, till the Afternoon, and $w r_{2}$ difpatch reconoitring Boats to difcover the but Landing Places, $\mathcal{E c}$. (but it would be better if they were known before the Expedition tail from Britain) near the Place propofed to be attacked, attended by Frigates and Cutters, built on the beft Plan to fail and row, and followed by the whole Fleet *.

Thus
2 is his the Appearance of Negligence in the Britih Government not to be aequainted with the Landing Places upon

[24]

Thus the Landing Places will be difcovered for the Forces to make the earlieft Ufe of them; and as the Succets of a Surprize or fudden Attack is much facilitated by affaulting the Enemy unexpectedly, the La:ding fhould be conducted with the grealer Care and Expedition.

Having confidered the Landing Places with regard to the principal Object, it is natural to imagine the muft advantageous Landing Places are molt guarded, in order to prevent or obftruct a Landing there; agreeable to thefe Conceptions I think it would be right to chufe a Landing Place a good Way from the Object, there to make a Feint to Land*.

If it hould be th. . ht proper to land in a very dark Night, Veffels muft be laid in order to hang Lights out to direct Buats in cheir Courfe to the real

If two Lights, as is common, are placed to be kept i : one, in order to be a Direction to the Landing Place, the Enemy on the Shore will too eafily underfland it ; therefore I would recommend to have three
the Coaft of France, efpecially the moft particular Places. Thoushlam not well acquainted with the Behaviour of the French to 'Travellers along the Coaft, I am well affured the French may very cafily get good Information in regard to the Places of Advantage on the Britifh Coaft, where Troops may Land.

As reconnoiring Boats will be built fo as to go fafter than any Boat known in common Ufe, and having the Frigates to fly to in cafe of Purfuit, they may make bold with the Shore without Apprehenfion of Danger from any Purfuit the Enemy may make.

* Such Schemes are beft contrived on the Spot, when Winds and Weather, Efis. can be confidered, yet written Schemes may in oduce fome ufeful Hints, and a General huculd know how to ufe Cunning as well as Courage. The Place pitched upon for the Feint thould not be quite unconnected with a reafonable Scheme, if it is, the Enemy will difcover it to be a Feint, and too eafily guefs the Truth.

[25]

three Lights, two of which hung at the Main Top gallant Maft Head, to be on in the Line diretting to the Place where the Feint is propofed; the third Light to be hung low, advanced toward the real Landing Place, in a diftinguifhing Manner, fo that the three Lig'ts to a Perfon ftanding in a Line to, or at the real Landing Place, will appear in an equilateral 'I riangle; the Light advanced in its proper Place and hung low, will be a fufficient Direction to the Landing Place, and the Enemy on Shore will not readily undenftand it.

Every thing being ready for landing, the Boats defigned for the Feint ought to put cff from the Ships in Day Light, that the Enemy may perceive what Place they are difigned for; and there ought to be no more Men in the Boats than what are fufficient to row them a head, and

More effectually to deceivethe Enemy, I would have placed in the Boats a Number of Blocks with Hats on, that may appear like Men at a Diftance; I do not mean that every Boat is to carry a Number of thefe Blocks, but only as many as may be fufficient to deceive the Enemy at a Diftance, fuch as all the Roars in Front and Flank, with a few others diftributed amongtt the main Body, in the beft Manner to cover the empty Boats.

When the Boats has continued their Courfe-a proper Time, fo that the Enemy may eafily underftand what Place they are intended for, a Signal may be made, as betore muft be concerted, to make the Men lie upon their Oars, as if waiting for Orders, $E^{2} c$. fo fpend Time that it may be fomething dark before the Eoats approach near the Shore, to prevent the Enemy difcovering the Deception.

If the Shallownefs of the Water, near the Shore, will not admit of Frigates to lie near, to cover the Landing, or rather to make the Feint deceive the

Enemy more effectually, the Veffels with the counter Bottoms (defcribed in Chap. III.) ought to be fent before the Boats, and to take their Stations to compleat the Feint, fo that the Boats may lie with their Ends to the Shore, in a Line between thofe Veffels.

The Boats having up their Defence (defcribed in Chap. II.) may begin firing* upon the Enemy's Troops, if any appear; and if no Troops appear, I think it would not be amifs to expend a little Powder in firing after its quite 「ark, to amufe the Enemy; for in fuch Cafes every Party doth not exactly know where others may be drawn to and engaged in the Night, fuch Tham Firing may miflead the Enemy, and perhaps draw their Forces and Attention that Way, and faciliate the real Landingt.

1 hope to make it appear (in the Courfe of this Boats can produce no bad Confequeace.
\dagger The Advantage of having Boats appears by being enabled thereby not only to fend Divifions of Boats feveral Ways with Shams in fuch Numbers that the Enemy will not be able to know where the Landing is intended, but alfo to Land all the Troops togrether, who may gain Advantages while the Enemy in Par: ties are obferving the feveral Divifions of Boats with Shams.
my is looking on, may, in many Cafes, be of great T'tility, for Inftance,

Suppofe it is determined to attack a very ftrong Sea-Port, whofe Strength renders an Attack unfufpected, and Succefs depends wholly upon a Surprize, or fudden Affault, to furprize fuch a Place, let another Sea-Port be fix'd on to make a Feint. upon, about twenty-five Miles Diftance, ${ }^{*}$ more or lefs, trom the Place to be attacked.

Having both fix'd upon a Landing Place for the Feint, and the Plan of Execution, the Veffels with counterBottoms and Cannon(defcribed in Chap. III.) are to take their Stations near the Shore, that the Troops may land under their Cannon, and intrench before Night if neceffary; this may be done with little, perhaps no Lofs, as the Veffels with one hundred Carnon, if neceffary, may lie fo very near as to fight their Guns in five or fix Feet Water.

Intrenchments being thrown up (See Plate II) before Night, and every thing done in order to fecu re the Troops, it is natural to believe that Expreffes w'll be difpatch'd, and Forces put in motion, to fuccour the threatened Town: If the Wind is favovrable, proceed as foon as dark to furprize the Place intended; if the Wind is not favourable, let the Troops remain, a aid next Day fend more Troops afhore and proceed, that the Enemy may have no Sufpicion it is a Feint (Care muft be taken that none of the common Men, and very few Officers know what is intended

[^4]tended) thus a Day or two may be feent, in order to gain a fair Wind; but upon a powerful Enemy's Coaft, too much Time muit not be fpent, left they have Time to collect their Forces from far.

The fecond Night, as foon as it is dark, the Boats are to take off all the Men, and proceed to furprize the Place, if contrary Winds do not render it impracticable; for by this Time all their Troops defigned will be fent from that Place to where the Feint is made, and will not only be without fear of an immediate Attack, but will have fewer Troops to defend it ; and the Surprize is more likely to fücceed; than if it had been attempted without making the Feint abovementioned, confequenty affords a better Profpect of Succets.* The Enemy feeing fo many Veffels with Cannon lying fo near to defend the Troops, will fcarce venture to attack them, though greatly fuperior in Number, efpecially if thofe juft lan led are drawn up according to Plate II.

It is eafy to conceive that a Nation which undertakes to diftrefs an Enemy's Sea Coaft ought to be Mufters at Sea to do it fecurely and effectually.

C H A P.

* A Fleet having as many Boats as will either land or imbark all their Troops at once, need not be much atraid of the fudden change of Wind, to raife the Sea, that they cannot re-imbark their Men, efpecially in Summer; for in fine Weather it feldom happens that the Wind upon changing, from of Shore to blow out of the Sea upon the Shore, raifes a confiderable Sea in fo fmall a Time, as Boats will require to row a Mile or two, to ferch Troops off the Shore.

A P.

mbark fudden mbark feldom o blow ea in fo
(wo, to
\square

G

- Semporary works, to secure alketreatiand wheter Troophs

D. Shic Sirmune

- . Sor Cnampmenents Ko. Huk. Shith or IFels to flank the Bricau Hokts E attach fimpl the T but if havin!

Th
foon a and M be dor fifted fmoot is tr $t \cdot$ th
roming withou
Troop
\dagger lf
non, M
Hundre about th she firft
§ Th put into them he: are work get fuffic the Rolls
venients

[29]

C H A P. IX.

Of Real Altacks.

BEING arrived in fome convenient Road, or Bay, $\mathcal{E}^{2} c$. as near as pomble to the Place to be attack'd, if it is thought practicable to take it by a fimple Efcalade, no lime muft be loft in landing the Troops, and every neceffary for that Purpofe; but if that appear defperate and hopelefs, the Place having taken the Alarm, then-

The utmoft Endeavours muft be ufed to land, as foon as poffible, a great Number of light Cannon, and Moitars, with every Neceffary, which may foon be done by the Help of rolling Breaft-Works, \dagger affifted with Boats, provided the Sea is tolerably fmooth; the Troops may foon be Janded, if Care is t^{\prime} 'en to have a fufficient Number of Boats to land th. Il at one Time; the Cannon, Mortars, and romng Breaft-Works § being landed, they may, without lois of Time (having a fufficien Number of Troops on Shore) be moved forward, and placed upon
\dagger If the Shipping can deliver the rolling Breaft-Works, Cannon, Mortars, $\varepsilon^{\circ} c$. within a Mile and half of the Shore, one Hundred Cannon, mounted ready for Action, may be landed in about three Hours Time, after the Ships are brought up. See the firt Pages of Chap. V.
§ The Rolls that are defigned to refift Cannon Balls, muft be put into Water as foon as may be, to imbibe fufficient to make them heavy, and not to be burned by the Enemy : If the Rolls are work'd hard and clofe, they will take above twelve Hours to get fufficiently full of Water; but in a fudden Atttack wetting the Rolls may not be practicable, for nant of Time, or a conavenient Spot of Water.

[30]

upon the Glacis, \ddagger within twenty or thirty Yards, or Feet of the Palifades in the Covert-Way, as will appear more evident in the two or three following Pages.

Having every Neceflary on Shore, anfwerable to the Cannon and Mortars, with their rolling Parapets, that can be properly plarited in the Diftance between the Poincs of the two Ravelins on the right and left of the Front, cicfign'd to be attacked.

As the Barb Batteries will do moft Milchief in an Attack of this kind, a lufficient Number of propers Cannon and Mufqueteers, covered by rolling Parapets, muft be employed to beat the E:iemy from their Guns, or difmount them; and if all the Cannon that may be brought by the Britif Navy, againft a Place fituated near the Sea, are well ferved, affifted by the Mufquetry, and well covered by rolling Pa rapets, they will be able to maintain fuch a great and conftant Fire, that few of the Garrifon's Troops will venture to thew their Heads above the Parapets to oppofe the Efcalade. But

If it is known that the Ditch of the Place is broad and deep, and fuli of Water, " and has a Revetiment, a ftrong Garrifon well provided with large Batteries of Cannon in the Flanks, and every Thing proper
\ddagger When the Rolls are got to the Place affign'd, fet Struts to hold them, that they may better relift the Balls, till they can be fufficiently ftaked and earthed, by driving Stakes into the Ground piepared and thod with Iron for that Purpofe, and throwing Earth over them as falt as poflible, to make a ftronger Defence; but in a Surprize, or fudden Attack, the Rolls can perhaps only be ftaked. N. B. By Means of rolling Breaft Works, the covered Way of the frongeft Place may foon be taken.

* In furprifing Places in Summer, whofe Ditches are full of Water, every Man that is to crofs it Thould have a broad Belt round his Body, clofe under his Arm-pits, with part before and part behind, (fo large as not to hinder the Ule of his Arms) to
blow full

[3^{1}]

proper for a good Defence. The Barb Batteries, and the Glas in the Flanks of one or two Fronts at leaft mot be filenced, before an Efcalade is attempted; but, perhaps before the Guns in the Flanks can be filenced, the Ravelin, or other Works betore the Curtain muft be taken, which probably may foon be effected, by Means of the great Number of Cannon, Mortars, and rolling Brealt-Works, in the following Manner.

Every Neceflary being landed, and accompanied by at lealt three Times the Number of Troops that are in the Garrifon, and as many Sailors as can be fpared from the Fleet to affift in rolling the BreaftWorks, $\mathcal{E} c$. to the Place, advance in the Night (undifcovered of poffibie) with fo many light Cannon as can be planted in a proper Manner againft the whole Length of the Fronts to be attacked, and a good Number of Mortars, with a great Number of rolling Breaft-Works to be rolled in the Night as near the Defences of the Place as can be done fafely, without being difcovered; at the fame Time a fufficient Number of Cannon, of eighteen or twenty-four Pound Shot ought to be brought forward, covered with rolling Breatt-Works of about feven Feet diameter, to filence the Barb Batteries.

When it is near Morning move toward the Place in the following Order;

The Cannon, that are appointed to difmount the Cannon on the Barb Batteries, ought to move on firft, covered by rolling Breaft Works, in order to be
blow full of Wind upon Occafion, to prevent his Body from finking too low in the Water; when the Men are landed, the Wind is foon let out, and the Belt but fimall Incurbbrance; fuch Belts may be of great Service to Armies in croffing Rivers, छ"c. a Place upon, or near the Sca Coaft, without a Reveliment, may eafily be taken by Surprize. Something like Fins may be faftentd to the fmall Past of the Leigs, by which Means Men may go falier thso the Water.

[32]

be ready to fire upon the Barb Batteries as foon as it is Light,

In the fecond Place move forward with two Lines of Rolls, the firt Line in clofe Order, the fecond Line in open Order, leaving about two Feet O. pening between every Koll; thefe Lines extending the whule Length of the Fronts to be attacked, and alfo to extend to the Ravelins Points, or middle of the next Curtains; on the right and left of the Attack, to cover the Attack from the Fire of the Flanks and Ravelias on the right and left, at the Ends of the Lin s of Rolls, for the Fire from the Ravelins and Flank, will in tome Degree flank the Troops on the right and left of the Atrack, behind the fillt Line of Rolls, place three Ranks of Mufqueteers, one Rank to relieve another alternately, in rolling the Rolls forward, and two Ranks to ftand under cover of the Rolls, ready to fire upon any of the Garrifon that appears to obitruct the Defign ; proceed with thefe Rolls within about twenty or thirty Feet of the covered Way, where ftake and Earth them well, efpecially where the Guns in the Flanks, $\mathcal{E}^{c} c$. can play upon them. The Guns in the Barb Batteries perhaps are by this Time near filenced ; the Soldiers behind thefe Rolls are to continue to throw Grenades, Stones, $E^{2} c$. into the covered Way and Places of Arms, till the Soldiers there are driven out.

The light Guns, appointed to plow the Tops of the Parapets, Ejc. to prevent the Mufquetry in the Place from firing biikly upon the Troops, are to move forward under the Cover of the fecond Line of Rolls, (keeping a convenient Diftance behind the firit Line of Rolls) when both the Lines of Rolls are advanced to their proper Stations, and the front Line well itaked and earthed, alter the Pofition of every Roll in the fecond Line, by hawl-
ing at that th betwee Rolls, on higl no othe every R Piece to Embral penings hind wh the Can: two Lin Mortars roll Rol Way, ov naillons, ent Num Way, iM Order ; f and Muf be able to and the 1 into the co flow them along the ceedings.

When over, and Ravelins,
*The Mu \dagger If a with Wheels heavy Cann Mortars, and the Town, a
If Cannon be fo conftry good Purpofe.

[33]

ing about their Ends to an oblique Direction, fo that the Guns may have Room to be drawn through between them, to be placed under the firt Line of Rolls, where they are to perform their Service upon high and broad Wheel Carriages, that require no other Platform but the Ground; previous to this, every Roll in the Front ought to be fitted with a Piece to take off from each End, in order to make Embrafures, and thofe Pieces are to fill up the Openings between the Rolls in the fecond Line, behind which the Mufqueters * are to be placed after the Cannon is moved to the front Line \dagger. Thefe two Lines being compleated, and the Guns and Mortars ready to fire upon the Place, proceed to roll Rolls over the front Line, into the Covert Way, over againft the faliant Angles of the Tcnaillons, Ravelins, $\mathcal{E} c$. and when there is a fufficient Number of Rolls rolled over into the Covert Way, iMen may go amongft them and put them in Order; for in the mean Time, the Guns, Mortars, and Mufqueteers, behind the Lines of Rolls, will be able to maintain fo conftant and fo great a Fire, and the Troops throw fo man, diftructive Things into the covert Way, that very few will venture to flow themfelves to fire from the Place, or approach along the covert Way, in order to obftruct the Proceedings.
When there are a great Number of Rolls rolled over, and a Paffage made over the Ditch to the Ravelins, Tenaillons, \mathcal{E}_{c}. a great Number of D Mortars
*The Mufqueteers to be tall Men, and Cannoncers fhort Men.
t If a Number of Cannon were mounted upon Carriages with Wheels feven or eight Feet high, to form a rear Line of heavy Cannon and Mortars to fire over the light Cannon, Mortars, and Mufqueteers in the front Lines, it would greatly awe the Town, and contribute much toward a fpeedy Surrender.
If Cannon were mounted eight Feet high, the Carriage may be fo conftructed that the Gun could be loaded and fired to good Purpo!e.

Mortars muft continue to throw Stones, Shells, $\mathcal{E}^{2} c$. into the Tenaillons, Ravelins, $\mathcal{E}^{\circ} c$. while Miners are fent to make a Mine or Mines, to blow up the Ramparts, or Pioneers to dig a Paffage, throwing the Rubbilh into the Ditch; perhaps both Miners and Diggers may be employed at the fame Time to good Purpofe, in order to make a Paffage to roll Rolls into the Ravelin, both to cover the Men and to make Batteries expeditiounly, to flence the Guns in the Flanks, $E^{2} c$. being affifted by a great Number of Mortars placed oppofite every Flank, in order to throw Shells, Stones, $\mathcal{E}^{2} c$. into the Flanks and other Places. See Plate III.

While the Works before the Curtains are carrying on, and the Flanks filencing, collét great Numbers of Rolls before the Curtains, and alfo oppofite to the Faces of every Battion, in order to crofs the Ditch in three Places, on every Front attacked, (i.e.) a Paffage is to be made before every Curtain and Baftion Face that is defigned to be affaulted; when the Rolls that are to be rolled into the Water in the Ditch are at the Edge of the Water, faften a Bag of Earth to each End before you roll them in, otherwife they will fwim very buoyant at firf, if they have not before been laid in Water twelve or fourteen Hours to foak ; when the Rolls appears above Water, and every Paffage compleated, fend over each Paffage a Number of Men, with Iron Claws fixed to their Feet and Arms, to enable them to climb better in order to receive the Ends of Ropes or otherLadders, (from other Men fent over with them) and faften them, that Men in Arms may mount the Rampier, or Pioneers may be fent over the Ditch, to make thiee or four Places like Steps, horizontaly alongs the nope of the Rampire, that two, three, o: four Ranks of Grenadiers may ttand eafily, and pre pare to mount the Rampire while Troops are crofling

[35]

the Ditch, and ranging themfelves along the Berm or Faufs Bray, if any be, in order to fuftain them.

When the Troops are croffing the Ditch, and placing themfelves behind the Ranipire, $\mathcal{E}^{\circ} c$. the Cannon mut he made to graze on the Top of the Parapets, and the Miortars on the right and left keep a briik Ricochet Firing into the oppofite Baftions; the Cannon and Mortars being properly placed to fire a Ricochet along the lnfide of the Parapets of the Curtains and Baftions Faces that fronts the Attack, fo that few Troops of the Garrifon will be able to ftand upon the Rampire to oppofe the Affault.

If the Situation of the Town is fuch that it can be attacked by Sea and Jand at the fame Time, and that one of the Attacks by Land can be made near the Sea, where Veffels can come to affift, fuch an Attack will in all Probability fucceed fooner and better. Or
If the Situation is fuch that three or four Sides can be attacked at once, with a Force againtt every Side equal to that before mentioned, the Place will be more eafily maftered. I imagine it cannot be denied but a maratime Power, which is Mafter at Sea, and can fend a fufficient Number of Troops to matter for ten or twelve Days, fix or eight Days may perhaps anfwer the End, (as every thing may be landed at the moft convenient Landing by means of the floating Batteries defcribed in Chap. V.) a Part of the Enemy's Country near the Sea, may come fo very unexpectedly againft a Place in the prime of Summer, and land fo great a Force of Cannon and Mortars, and every Neceffary before mentioned, for taking a frong Sea-Port, that Succefs in deftroying the Town, Harbour, and Shipping, may with Reafon be depended on.

If there are Counter Guards before the Baftions, the Place muft be taken at the Curtains, while a great Number of Mortars are employed in throw-
ing into the Baftions, efpecially into the Flanks, Shells, Stones, Grenadoes, and every other deftroying Engine that can be invented, to hinder the Garrion from making their Defence; the Front attacked* muft at the fame Time be furioully enfaladed.

In the next Place let it be confidered what a well provided Town can do againft the Attack beforementioned: They will have little Time to raife Pallifadoes, or make Retrenchments, and their Cannon and Mortars will do them but little Service againft fo great a Number without, and the Attack will be fudden, by Reafon of the fudden Approach of a Fleet, ard che rolling Breaft. Works not only rendring the Covert-Way almoft ufelefs to the Place, in fo very little Time; but alfo in a great Meafure prevent the Sallies; and the Mines, the only Danger to be feared, will hardly be got loaded and fitted ready to fpring in the Surprize and little Time the Place will have to make its Defence; Suppofing

* As the Ricochet Batteries mult be nearly perpendicular to a Line, to enfilade it properly, it may, therefore, be proper to Shew how the Line of a Curtain may be found without the Place.

The Curtnin may always be fuppofed paralel to the exterior Side of the Polygon, therefore find the Line of the Battions Points, which is very eafily done by bringing the Baltions Points in a Line, if the Works before the Curtain do not hinder the Sight, and then confult how many Feet or Yards the Recefs of the Curtain is, and erect a Pole, at leaft Mufket Shot from the Place, of a fufficient Length as near the Line of the Curtain as you can guefs, and hoift a proper Man up to its Top, with a Clafs if its a good Diftance; the Man at the Top of the Pole will difsover fomething nearer where the Curtain Line falls. Erect another Pole and hoift an Engineer up to its Top; by this Manner of proceeding to place three or four Poles, the Line of the Curtain will be found exactly. There are other Methods to find the Line of a Curtain without the Place, but that above being as eafy and certain as any, I omit the o. there.

It is foon from b the bef vert-W hird the Advant the Rid Stones, ten or t and Plac Befiegers upward, in all pr four Ho foon follo If the filled with defcribed, Shells, will beft Works with light proper L ther Ends thot acrofs upper End End hang Troops in

[37]

Suppofing it as well prepared as Towns generally are that apprehend no fudden Attack. If the Towns attacked in the Manner here defcribed do not hold out after the Danger is become greater than the Danger Places were generally in that have lately furrendred, there will be no Occafion of lodging Troops on the Slope of the Rampire, $\mathcal{E} c$.' to form the Town: For

It is not improbable but the Place will furrender foon after the Cannon and Mortars begin to fire from behind the Lines of Rolls, as the Troops of the befieged will be at firft driven out of the Co-vert-Way, and Places of Arms, by the Troops behird the Lines of Rolls, they having fo much the Advantage of the befieged, by being fecured upon the Ridge of the Glacis, and can throw Shells, Stones, and every other deftroying Engine, under ten or twelve Pound weight, into the Covert-Way and Places of Arms, the Befieged cannot reach the Befiegers in the fame Manner, they having to throw upward, by which Advantages the Covert-Way, in all probaility, will be taken in the firt twentyfour Hours, and the Surrender of the Town will foon follow.

If the Place have a dry Ditch that cannot be filled with Water, proceed in the Manner already defrribed, and take the Covered-Way, and throw Shells, Grenades, Stones, and every Thing that will beft drive the Garrifon out of the Flanks and Works before the Curtains, and being prepared with light Rope Ladders, that have Chains of a proper Length fix'd to them, with Balis at the other Ends to be put into Cannon, in order to be fhot acrofs the Ditch into the Rampier, to hold the upper Ends of the Ladders faft, leaving the after End hanging down the Revetiment, fo that the Troops may go haftily acrofs the Ditch and mount

[3^{8}]

the Ladders * without being obliged to fop to fix them, by which Delay many are generally killed.

If the Place has a fecond Covert-Way, this Co-vert-Way muft be taken in the Manner already defcribed, and the Ditch may foon be made paffable with little Loos, by Means of the rolling Parapets; but if a Ditch is to be croffed before the Fire of the Place is filonced, advance to the Ditch with a fufficient Number of rolling Parapets in front, ftake and earth them, rlofe at the Edge of the Ditch, in order to keep off the Enemy's Shot, and lay ftiff Planks, with one End upon the Rolls that is ftaked and earched, to roll other Rolls up upon, in order to roll them over the front Rolls that are ftaked and earthed, fo that they may roll into the Ditch to fill it up: If it is not thought proper to take 'Time to make a Paffage over it with Earth, the Side next you will be firft full of Rolls, upon which begin to throw Earth over the rolling Parapets, that lie for a Defence, till you have thrown over a Quantity fufficient to make a Yain, to advance your rolling Parapets upon, in order to roll over more Rolls, to fill more of the Ditch; keep the firt Rolls where they were fixed at firft, and rol. other Rolls over them to an advanced Defence, over which roll more Rolls to fill up the other Part of the Fots, which being fufficiently full of Rolls, if a great Fiie is made from the Town, throw Earth over the fiuft fixed Rolls, then over the advanced Rolls, from Hand to Hand, and fo continue five or fix Cafts, or more, if Need be, from Hand to Hand, over the advanced Rolls, till the Ditch is fufficiently filled up for a Paflage over Thu

[^5]

A . Battries of 24 Pounders to siloncel the_CBiarbe ebutteries
B. Cine of Rovaling tBrease-1torks and light Cannon.
C. Nhmertimy SBrcust-71orked, \& Cannon? removed to thiseRidge of the Plaris in outer to trac the Conert-Way, and wilence the Hranks Liv.

Thus Tim ed in fuch crofs It thods great not b ving any the g in thi ders attach No Powe fuperi fome non a Bridg fideral Tro? by gi the R as mu and f on Sh Adva the ft Meth the v ons b Inftar
Frenc
Meth

[39]

Thus may as many Paffages be made at the fame Time as is neceffary; but if the Bridges (defcrbed in Chap. VII.) prove manageable, the Ufe of fuch Bridges will be much the quicker Way to crofs Ditches.

It will eafily be perceived that the foregoing Me thods of attacking Places of Strength, require a great Number of Rolls of fo great a Size as cannot be conveniently carried by Land, and the moving Bridges will be very cumberfome to hawl to any confiderable Diftance by land, not to mention the great Number of Cannon and Mortars propofed in this Manner of attacking Places; all which renders it farce practicable for an Army by land to attack Places in this Manner.

Nor will it be prudent, or advifeable, for any, Power that is liable to be attacked on the Sea by a fuperior Force to attempt thefe Methods, except in fome diftant Part, for the great Number of Cannon and Mortars to be employed on Shore, and the Bridges, rolling Parapets, $\mathcal{E}^{2} c$. will take up a confiderable Time to imbark them, notwithftanding the Troops can imbark in a very little Time, and thereby give a fuperior Power more Time to arrive, and the Rifque of lofing fuch a Number of Shipping as mult always be employed in fuch Enterprizes, and fo many Cannon, Mortars and other Materials on Shore, $\mathcal{E}^{2} c$. will be greater than the Profpect of Advantage; efpecially when it is confidered that the ftronger Power at Sea can, by the foregoing Methods, take the Place again in five or fix Days.

It doth not require great Penetration to perceive the valt Advantage Britain has over all other Nations by being Mafters at Sea: I fhall only give an Inftance in this one Cafe; let it be fuppofed the French, or any other Nation, fhould attempt the Methods here defcribed, would not they run a great Rifque

Rifque, and always be afraid of being furprized by our ftronger Squadrons? can they lie upon the Sea fecure and purfue their Operations as the Britains can? or can they, when they attack a Place belonging to Britain with Ships, promife themfelves, with any Degree of certainty, that they will not lofe their Ships and Troops, and every Thing they bring before the Place?

C H A P. IX.

Of fitting old Sbips of War in a different Form after they have becn conden:ned as unfit for Scruice in the common Way.

AS fuch Ships are efteemed but of fmall Value when condemned, the only Way to make them ufeful afterwards, will be to fit them up with fmaller Mafts and Rigging, and to contrive them fo within that they cannot fink, and by altering their Guns to a different Pofition, enable the Ships to carry them with greater Eafe and Safety, and make the Ships much more formidable to batter Forts and Caltles, which may be done by various Methods, of which take the following Example.

Bring on two or three very thick binding Strokes on the Outfide, about the Floor Heads, fore and aft, and fecure them well, which will ftrengthen the Bottom much ; and if it Chould fo happen that the Ship frould come on Ground, will allo keep her more upright and prevent Damage by her over heeling ; then bring on two or three Strokes more of Clagging, to round the Bulge fair; in the next Place proceed to fix reveral Rows of ftrong EyeBolts, fore and aft, through thie Keelfen and Keel, and through the binding Strokes on each Bulge, well clunk through Iron Plates, let in juit their

[40]

Rifque, and always be afraid of being furprized by our ftronger Squadrons? can they lie upon the Sea fecure and purfue their Operations as the Britains can? or can they, when they attack a Place belonging to Britain with Ships, promife themfelves, with any Degree of certainty, that they will not lofe their Ships and Troops, and every Thing they bring before the Place?

C H A P. IX.

Of fitting old Sbips of War in a different Form

E X P L A N A T I O N. Plate 4. [To face Page 40

A. Rolling Parapets fix'd on Shore, for a Battery of 4 Cannon.
B. Men rolling Parapets afhore to enlarge the Battery already made, or to ma other Batteries further on the Land.
C. Floating Batteries, or rolling Parapets, which may be taken afuoder placed on the Land, as A. B. or otherwife.
D. Flat-Bottom'd Veffels to protect the Landing.
E. Stores upon Floats of rolling Parapets.
F. Boats full of Men to be landed in the Face of the Enemy.
on the Outfide, about the Floor Heads, fore and aft, and fecure them well, which will ftrengthen the Bottom much; and if it fhould fo happen that the Ship fhould come on Ground, will alfo keep her more upright and prevent Damage by her over heeling; then bring on two or three Strokes more of Clagging, to round the Bulge fair ; in the next Place proceed to fix feveral Rows of ftrong EyeBolts, fore and aft, through the Keelfen and Keel, and through the binding Strokes on each Bulge, well clunk through Iron Plates, let in juft their Thicknefa

[41]

Thicknefs into the outfide of the binding Strokes; and there mult be as many of thefe Eye-Bolt as will be thought fufficient to bear the Weight the Ship will iwim at; to each of thefe Eye-Bolts fix three ftrong Chains of different Lengths, in Proportion to the Depth of the Ship, and to the Thicknefs of the Stratums of Materials that are to be put in to fwim her by; after which hang thefe Chains perpendicularly up, and ftop them tight faft; then clear the Hold, take out the Pumps, and afterwards take in as much clear worked Shingle for Ballaft, with fome Chalk Rubbifh to make it bed folid, to keep out as much Water as poffible, and as will be fufficient to ballaft her, refipect being had to the Weight of Rigging, Guns, $\mathcal{E}^{c} c$. that is to be above Water, after the Ballaft is in, which is to be laid fore and aft clofe down to the Cieling, in fuch a Manner as will anfwer her Trim for failing, when the has Ballaft fufficient for Sea; make the Ballaft very fmooth aed level, then cover it all over with good Fir Planks laid acrofs, that will join clofe to each Side of the Chains, that muft be fixed in exact Rows acrofs the Ship, to which they may be fecured, or kept down, by running ftrong fore Locks, \mathcal{E}° c. through the Links of the Chains; next proceed to lay a Stratum of Cork, or fome other light Materials, about fix Feet high, fo clofe packed together as to leave as little Vacuity as poffible; make the Cork plain at Top, and lay Balks of light Timber, fore and aft upon it, clofe to each other, taking Care that the Ends of thefe Balks always bute in a Line with the Chains, for the better Oportunity of the feveral crofs Balks that are to come upon theie fore and aft Balks, one on each Side the Chains, by which they are to be fafned down; which done, lay great Weights upon the Bed of Timber, as Cannon, E E_{6}. or force of Screws, and atter ftand-
ing to fettle fome Time, the Whole may be faften, ed down together, by the firft and fhorteft Chains.

The firft Bed or Stratum of Cork and Timber being thus fecured, proceed in the fame Manner to fix a fecond or third, faftened well down with their feperate Chains, taking particular Care that the Butts of the fore and att Pieces be well Mifted, and the crofs Pieces be fufficiently fecured, and every Tier of Balks made as tight as the Bufinefs will admit of, to prevent the Water fwelling too much in the Ship when it may happen to be let into her.

If the Cork lie in the Ships long, and thick muddy Water is often let in among it, in procefs of Time the Cork will grow too heavy, therefore it may be proper to atow in the middle of the Ship fore and aft, upon the firf Stratum of Corks, one Breadth of holiow Bodies, made like Cafks, but very ftrong; thefe hollow Bodies may be proper to aflift the Cork in fwimming the Ship, and Experience will fhew what is beft; and fhould it prove thas the Hold will be moftly taken up with the Courfes or Stratums of Cork, fo that there will be little Room left for the Stowage of Provifions, $\mathcal{E}^{2} c$. a Vacuity or Room in the Midhips may be made fore and aft, in the laft or upper Courfe, or Stratum of fourteen or fixteen Feet wide, water tight for that Purpofe, and the Space between which and the Ship's Sides may be filled with Cork as near as pofOble to the Water Line, that the Ship will fwim at when her lower Tier of Guns, which are all intended in thefe Ships, Stores, Provifions, EJc. are all on board, and a tight Deck laid over all, and the infide Cieling for three or four Feet above the tight Deck made alfo tight, to prevent the Water

[43]

fpanging up when the Ship heals by carrying fail, rolling, or otherwife*.

As fuch Ships are defigned to lie before Forts and Batteries, which will be more fully defcribed by and by, the next Care will be to contrive Defences for the Men on board them, which may be done in the following Manner, viz. contract the Breadth of every Gun Port nearly to the Diameter of the Gun, for as thefe Ships are chiefly defigned to lie before Batteries, in fuch Manner as to flop the Battery's Fire from other Ships paffing on their off Sides, there will be little Occafion for the Guns being laid in an oblique Direction. When got near the Place of Action, fix upon the Ship's Outfide, between every Gun Port, Quilts made of any cheap Matter that will not readily take fire, and will deaden a Ball much; I cannot at prefent think of a better Material for this Purpofe than the feathery Part of Quills, cut as long as may be, not to fpoil the Quilt, and Woollen as mentioned in Chap. V. which being wetted will hardly take fire; the Thicknefs of thefe Quilts to be fuch that two or three Thickneffes of them b as thick upon the Ship as to fill her Side out fo far as the Muzzles of the Guns reach, when run out in order to be fired: Their Meetings muft not be oppofite each other, fo that a Ball hitting upon the Joint on the outfide

[^6]
[44]

may find a Joint ftraight forward; the Length of thefe Quilts about feven Feet, the Breadth equal to any Meafure that three, four, or five, $\varepsilon^{2} c$. will exactly fill each Space between the Guns, as likewife below and above every Gun; and between every Gun on the infide, place a Number of thinner Quilts, one behind another, the Length of every one of thefe Quilts to reach nearly from Gun to Gun, and the Breadth nearly the Height between Decks ; let them be faitened loofely together at Bottom and Top, that every outermoft fingle Quilt may have I.iberty to be pufhed back, but the Sides made as ftrong together as the Quilts are in other Parts; at every Comer of the united Quilts make a ftrong Noole to fatten ftrong Ropes that are to hold the Ouilts near the Ship fide, by having a fufficient Weight hung at each Rope's End below the Gun Deck, io as to hawl up or let down at leafure, and yield to any great Force, fo that a Ball coming through the Ship's fide, with the Splinters, may be catched in thele Quilts, and if not confined there, may not do much Mifchief after. How this may appear to the underfanding Reader, I know nor, but as the Force of Cannon Balls are refiftable, their Force may be ftopped, and when a Ball has forced its Way through the Quilts on the outfide, and through the Ship's Side, its Force muft be greatly leilened when it meets the infide Quilt, which yields to its Force, and ftops it in a gradual Manner.

Between the other Decks (for the higher thefe Ships are out of the Water, the better Muzzle or Defence they will afford to the Ships they are intend. ed to cover) fix two Rows of ftrong Stantions, fore and afr, fifteen or fixteen Feet apart, and fill the Space between them and the Ship's Sides with any cheap Stuff that will deaden the Force of a Ball, and
not
coa
wet
of
a fas
laft
extr
grea
into
towns
they
put
make Ship I wou as lor the gr the P

* If

fwimmir by takir up in th Water much V Proportic will carr tioned at rally are made, to into the S Wells wo the Ship,

[45]

not eafily take fire ; fuch as Bags of Hogs Hair, coarfe hairy woollen Raggs, E'c. which mult all be wetted in time of action, for the better preventing of fire ; and the upper Deck may likewife be made a fafe Place for Men, by being fitted in the Manner laft defribed.
A Ship thus fitted, will not only cover her Men extremely well in time of action, but has alfo this great Advantage, that, let never fo many Shot go into her Bottom fhe cannot fink; nor need the Bottons of fuch Ships be caulked, it being evident they will fwim* at all times alike, by the Materials put into them, and the Ballaft in their Bottoms will make them ftiff enough; however, to make the Ship more lively, and fail the better with a Fleet, I would recommend the Bottom to be kept tight as long as it can; and the more fo as it will have the great Advantage of being more wholefome for the People.

CHAP.

* If "any Diffidence fhould arife, in regard to the Ship's fwimming, (when fitted as here defcribed) a Proof may be made by taking any fmall Veffel, fitted with Mafts, \&c. and fit her up in the fame Manner as here defrribed; after which let the Water in, and try how low it will fink her; then put in as much Weight in proportion to her, as the Guns will be in Proportion to the Men of War fo fitted ; then try what fail fhe will carry, and 1 make no doubt (if the Ballan be well proportioned at firft) but fhe will be as fliff to carry fail, as Ships generally are ; and it would be neceffary fuch like Experiment be made, to find out a juft Proportion of Ballaft to be put at firft into the Ship's Hold; and would not be amifs, it two or more Wells were contrived, from the gun Deck, to the Bottom of the Ship, to putin, or take out, more Ballaft at pleafure.

CHAP. X.

'As the laft Cbapter batb treated on the making old Sbips of War proper Ships to lie Broadjide on, to muzzle Forts or fanking Batteries, and cover the otber Ships that pafs them, fo this will treat of fucb like old Ships of War, fitted up in a different Manner, to lye End on, and to batter Cafles, Forts and Batteries, in the following Manner, viz.

IN Place of carrying two or three Tiers of Guns at their Sides, they are now to carry four or five Guns in a Tier, athwart Ships, according to the Size and Breadth of the Ship that is to be fo prepared ; firf Rates may carry eight, fecond Rates feven, and third and fourth Rates fix of there Batteries, one above another, beginning the firf Battery platform, clofe forward upon the lower gunDeck; though periaps it may be found neceffary to lower the fore Battery, two or three Feet below the lower gun Deck; the Foot of the next Parapet ten Feet* farther back, towards the Ship's Stern, and about five Feet higher than the firt, and fo on till the Length and Height of the Ship above Water, are filled up with fucceeding Batteries, Here an Objection will immediately arife, How will the lower fore Batteries be able to fire, on account of the Ship's Bows, which muft be in the Way of the Guns? To which it is anfwered, the Ships

> Though ten Feet is only allowed between the Parapet fort Men to ftand and load the Guns, the Guns will have fufficient room to run under the Parapet next behind them, there being defigned fout Feet and a half in height, clear, between each Plat. form, and the under Side of the Beams that fuppors the Parape and Piafform next beliird it.

Shi the Fo it be Sta ple I the ten tery
Para
the n
can
and Sides inclir Bafe to the from fmall upwa the S hard

Th
may alway as to Gun Parap being being will gi

In throug

[47]

Ships, for this ufe, may be fo fited, that when they arrive near the Place of action, their Bows and Fore-parts may be taken down fufficiently low, and it will be neceffary the Fore-maft and Bow's-fprit be taken out, if the Ship can be brought to her Station without them; which may be re-placed at pleafure after the Action.

The next Thing to be contrived is a Defence for the Men, by having Parapets of about eight or ten Feet bate, and fix Feet high, before every Battery of Guns, and as the Top of each preceeding Parapet will cover two Feet at leaft of the Foot of the next fuceeding Parapet, few of the Enemies Balls can get under the Platforms to do mifchief there, and the Batteries cannot be enfiladed, as the Ship's Sides are not to lie to the Enemy; and the Parapet inclining aftward, fo as to make the Angle at the Bafe about thirty Degrees, will give fo great a Slope to the Parapet, that the Enemy's Balls (except fhot from a very high Battery) will fall upon it with a fmall Angle of incidence, and will confequently fly upward, without doing much Damage, efpecially if the Slope of the Paraper be faced with ftrong and hard Materials.

The Platform, or Gun-deck, of each Battery, may be laid in fuch a Manner that the Cannon may always nave room to traverfe, and to recoil fo far as to give room to load quickly, for though the Gun will have but about ten Feet clear behind the Parapets to ftand in, yet the Deck on which fhe ftands being run at pleafure under the next Gun-Deck, it being about four Feet and a half in height clear, will give room fufficient for the Guns to recoil.

In each of the Embrafures, which are to be through the Parapets, a Madrier or Ston may be

fixed,

[48]

fixed*, fo as to rife up by the recoil of the Gun, and fall down again when fhe is run out; fo that the Men on board may fight under very good Defences, which will be a great Means to lave the Lives of many brave Seamen.

It is not improbable that it may be found practicable for a firft Rate to carry, if neceffary, twenty or twenty five Guns on each Side, additional to the forty on the 'thwart hip Batteries; and that o. ther Ships in like Manner may carry a proportionate Number, according to the Size of the Ship; all which Guns, for the greater Eafe and Safety of thefe Ships, may be carried in Tranfports to the Place where they are to be fitted for action.

The Parapets here mentioned may be thought too heavy for the Ship, fo as to make her crank, but as the Guns are not be mounted at Sea, and there being no Top-mafts, Top-yards, $\mathcal{E}^{2} c$. when the Guns are all on board, and the Ship all right, will make fome amends for the Weight of the Parapets. Temporary, or falfe Decks, may be put over the Batteries on thefe ships, to make convenient Decks at Sea, and when they are not in action.

I do not endeavour to give a particular Account of every minute Part of preparing fuch Ships; I only aim at being fo far explicit, as to be underftood by Men of capacity and practice.

[^7]
C H A P. Xī.

Of fmall floating Batteries, to batter an Enemy's Cafles, Forts, Ėc.

TLOATING Batteries being fo eafily conveyed from place to piace, efpecially in the prime of Summer, and the French Coaft lying fo near to England, Britain may fend fo great a Force before any one place on the French Coaft, or any other neighbouring Coaft, that the greateft Force that: is upon any one Spot of ground fhall in no cafe be able to refife it; I do not mean that all this mighty Power is to confift of great Ships of War, but onby of a fufficient number of Sea fighting Ships, to corivoy and protect the floating Batteries at Sea; for many of them, efpecially thofe of the firft Line, will carry their Guns fo low, that they cannot be fought at Sea, except the Sea is almoft fmooth; neither are the Guns to be mounted upon th: fe low Batteries at Sea, except in fine Weather, when there may happen to be occafion for them to affift againft the Enemy's Ships, $\xi^{3} \mathrm{c}$. The Guns in the Veffels of the fecond and third Line, will be a fufficient Height above water, to be fought at Sea.
Floating Batteries may be conitructed in the following Manner.
To conftruci the low Batteries for the front Line, build Veffels with very flat Floors, and with proportionabic Lee-boards*, like the reconnoitring E Boats,

[^8]
[50]

Boats, (Chap I.) about forty Feet broad, and about feventy-five or eighty Feet long, and very 1 w; fo that their Gun-decks (which is all the Decks they are to have) may be fo low, that the Muzzles of the Guns be not more than one Foot above the Water t, when fitted for action; but when thefe floating Batteries are croffing the Sea, they will be a tollerable Height above the Water, having ne. ther their Guns on board, nor the Water let into the Well they are to have.

The Holds of thefe floating Batteries muft be ballafted and filled with Cork, or other light Ma. terial, in every refpect as the Ships mentioned in the Ninth and Tenth Chapters, except that thefe Veffels are to have a circular Well, the whole Breadth of the Veffel, and down to her Keeifon, to contain a circular Bory to fwim in it; upon which jwimming Body a proper number of eighten Pounders are to be planted, fuppofe eight, which will be moved round at pleafure, (the Body on which they are p.aced fwiming within the Ship) and fired through narrow Embrafures in a good Parapel fixed upon the Veffel's Deck, and the Men ftand fafe behind the fwimming Battery, to load the Gumb under its cover at one Side, while the Guns are firing on the oppofite Side toward the Enemy.

The Veffels which are to form the fecond Line of Battery, which is to lie behind the firft Line, and which are conftructed in the fame tnanner, fave

[^9]
[5^{1}]

 ove the en thefe y will be ing nei. let into muft be sht Ma. ioned in at thefe e whole eifon, to on which eighteen t, which Body on phip) and \ddagger Parapet Ien ftandhat they may be deeper in the Water than the reffels in the firft Line, ought to have larger Guns, nd their Gun-decks fo high above the Water, hat their Guns may fafely fhoot over the Veffels h the firlt Line.
A third Line of Battery, in like Manner, may e placed behind the fecond, and in fome Cafes a ourth Line of Battery may likewife lie behind the hird; for Inftance, when the firft Line of Veffels an lye fo very near the Enemy's Works or Deences as to admit of a good Space between every line of Battery, and the rear Line of Battery lie ufficiently near: Secondly, when the Enerv: y's Defnces are high, or upon a rifing Ground, fo that he Guns upon the Water muft point much above he level to batter them. When as many Lines of atteries are laid againft a place as can do good Serce, lay a good Number of Veffels with Mortars, a proper Diftance, behind all the Lines of Batteries. That Nation who are Maft:rs at Sea, may make fe of many Contrivances to overcome Places of efence upon an Enemy's Coaft, and deftray their hips in their Harbours; but at prefent I Arall only ive my Ideas of two other kinds of Sea-Batteries, thich upon trial may, in fome Cafes, prove very rviceable.
The larger of thefe two forts of Batteries are fo to confift of flat- floored Veffels, conftructed in pe fame Manner, length and breadth as thofe laft hentioned, fave that in place of Batteries fimimming pund within the other Veffels, here the whole Veflis to be turned round upon the Water, (alternatechanging Sides towards the Enemy) by means of ch a Contrivance in the Ends of the Veffels, that e Enemy can neither fee the Contrivance, nor oot the Men that work the Veffel round, and the me Contrrivance will force the Veffels to go ei

$$
\mathrm{E}_{2}
$$

ther
ther a head or a ftern, though but nowly, whith water is deep or fhallow.

To make this Contrivance, Openings on ead Side the Keel muft be in the Velfel's Bottom, near both the Ends as can be, and built up a litith higher than the Water line the Veffel will fwim at the 'thwart Openings to be fix or feven Feet long on each Side of the Keel, and a Foot, or mont wide ; there muft alfo be Openings lengthways, foo and aft, the Opening aft on the contrary Side of Keel to that forward; thefe Openings to be of fame Length and Breadth with the 'thwart Opening Hang two Lavers, or dipping Oars, of a conven ent Length, in each Opening, the lower Ends which muft be thin, fomething like a common 0 Blade, to be puiled edgeways through the Wate near the low End of the dipping Oars *, fix on Fir that by means of a Hinge will clofe together at t fetching of every Stroke like a thin Wedge, x extend directly, and hold much Water when t Stroke is given, the Ends of the Fins that ope and fhuis being well fayed to the Edge of the Car pofite the Hinges.

The Guns are to lie in an Embrafure without ny room to traverfe fideways, but at liberty to fhe high or low; it is fuppofed every Gun will fire wha the turning of the Veffel brings it right againt th Object ; each Gun is to have a Spring or Weigs fo as to recoile but a little Way; here is.to no Opening or Space between the Gun carriages, 2 are to be folid the whole Length of the Gunsat. Carriages, and alfo four or five Feet Space betwe

[^10]e Gun here M at Side a W eaches aph.
Betwe - Veffel he Side tr wide, of the emy's at lea re muft the Gu evel wit formed fell folid each S is mo s , with
Parape kl of fo carry fi , wish t out aft, ve four 1 h Action n away. he fmall foored, draw abo Batteri cy will b e, and it only the y can be

[53]

whith on eac ttom, ip a liter fwim at cet long or mop vays, fo: ide of be of t Opening conven r Ends nmon 0 se Wate x on Fir ther at Tedge, ad when that ope fit the Cat
without ty to floo 11 fire whe againft th
e Guns Muzzles, and the outfide of the Ship, here Men are to fland and load the Guns, when at Side is turned from the Enemy, being covered a Work raifed upon the Space between the eaches of the Guns mentioned in the next Paraaph.
Between the Breaches of the Guns on one Side of Veffel, and the Breaches of the Guns on the he Side, is to be a Space of about nine or ten et wide, fore and aft, clear between the Breachof the fore and aft Guns, well covered fiom the emy's Fire ; the Deck or Floor of this place beat leaft fix Feet below the Top of the Guns, re muft be a Step fet up to raife the Men who the Guns: The Top of the Guns muft lie nearevel with the Top of the Parapet, (this Parapet formed by making a Part of the Breadth of the fel folid) which is to be about fifteen Feet thick, each Side of the Veffel, ftuffed with Mattcr is moft proper to refift the Force of Cannonls, with a Contrivance to wet the Materials in Parapet, to prevent its taking fire. A low (ll of forty Feet broad, and eighty Feet long, carry five or fix twenty four Pounders on each , wish three pointing forward, and three pointout aft, with Amunition, E E^{c}. and not draw ve four Feet Water : Before thefe Veffels enter Action, their Mafts and Rigging ought to be n away.
he fmaller floating Batteries are likewife to be floored, and to mount only four Cannon each, draw about two Feet and a half Water. Thefe I Batteries may be ferviceable in many Cales, hey will be preper Veffels to go very near the e, and in fome places gret under the Defences, only the flanking C.mnon, if any be, and mufIf can bear upon them, which the floating Bat.

$$
\mathrm{E}_{3}
$$

teries

[54]

teries may foon filence, as they will be very greatly fuperior in Number of Guns; and their Balls flying much upward, will do great Damage to the Enemy's Defences; and if the Defences are Stone, will drive Splinters of ftone upward, which will do great Execution in the Place.

C H A P. XII.

HAVING in the foregoing Chapters briefly de. fcribed fevcralinventions, that I think may a prefent, or hereafter, be ufeful to my Country, and having in fome degree thewn the ufefulnefs of fome of theie Inventions, I fhall now proceed to fhem the Utility of old Ships of War, when fitted as de. fcribed in the Ninth and Tenth Chapters: The Ships defcribed in the Ninth Chapter are adapted to lay with their Broadfides on, to muzzle Forts or Ba: teries, that other Ships, not fo fitted, may pals by with greater Safety; they are alfo proper, if at any Time found neceffary, to muzzle flanking Batteries by laying between them and the other Ships, fitted as defcribed in Chap. X. whilft they are battering any flrong Fortification a head, and alfo to preferm Attacks by Sea, upon Batteries afhore, from being Alanked by Batteries erected for that Purpofe. Whe fuch Ships are well confidered in all thete Refpectis I think they will appear to be of fuch Confequend and Service to Britain, as will induce fome grea Men to benow a few 'Thoughts upon them; for fuch Ships cannot be funk by Cannon, nor by com ing aground, till they are dathed in Pieces; and the Men are well defended by the different Defences as mentioned in Chap. IX. befides, when the muz ling Ships are once laid in their Stations, all th Men, lave two or three to look out in their Turns may prefave themlelves where they think proper elpeciali

[55]

elpecially if it thould be found that the fighting of their Guns would be of little Service. It will be eafily conceived that all the Enemy's Fire cannot force thefe Ships from their Stations; and if they fhould attempt to burn, or cut fuch Ships adrift, there are fufficient Ways and Means to render thefe Attempts fruitlefs, by being moored with Chains, or having Frigates near, or other armed Ships; befides, each Ship may have a Tier of Guns and fmall Arms to defend her.
Damage in the Mafts and Rigging mult be expected; however, as much of thete as poffible may be taken away before they are fent to their Stations, and fhould their be a Neceffity to bring fome Ships off their Stations before the Bufinels be done, the' may be towed off with as little Rifque as they were brought on to their Stations, of which hereafter.

The Enemy's Batteries will be effectually muzzled all the Time fuch Ships lie before them; thefe muzzling Ships cannot effectually fecure the Rigging of Ships paffing under their Cover, as the Enemy's Shot may fly over their Hulls, unlefs the muzzling Ships can lay very near the Enemy's Batteries at high water, fo that their Guns mult be pointed very high to fire over them, or that a great Number of Mufqueteers, well fenced in the Ships, affifted by the Ships Cannon, can drive the Enemy from their Guns
In the next Place is fhewn the Utility of Ships fitted as defcribed in Chap. X. which will, in fome Meafure, illuftrate the Utility of the Ships defcribed in Chap. IX.

It will appear (when the Conftruction of thefe Ships is rightly underftood) that by having Ships fitted according to the Defcription in Chap. X. more than double the Force of what can be brought now by Sea, may, by this Method, be brought againft

[56]

gainit Cafles, Forts, and Batteries, that defend the Entrance into Harbours, $\mathcal{E}^{\circ} c$. for a Ship having all her Guns pointed forward, fo that as many Guns, to ten or twelve, can in the Breadth of the Ship be fired at once, againft an Object, (the Ship lying with her Head toward it) as can be fired at once if the Ship lay with her Broadfide to it; and as the Breadth of three Ships can lay in the Length of one Ship, and if the Length of the Bows-fprit be confidered, four Ships may lay in the Length of one, with Room to fpare; it is evident beyond Difpute, that more than double the Number of Guns can be fired from four Ships, lying with their Ends to the Object, (fitted according to Chap. X.) than can be fired by Ships lying with their Broadfides to the Object, admitting there are as many Ships to bring before the Place to lay End on, as there is Room for, clofe before the Caftle, Fort, or Battery.

The Number of Guns in the Length of a Ship's Side, will feldom be found in Fortification, above nine in one Tier, and in the Breadth of a Seventy Gun Ship, not above three, except there is in the Fort a high and low Tier of Guns, which indeed there are often, at the Entrances of Places of Importance; fuppofe there are two Tier, then there will be only eighteen Guns in the Length, and fix in the Breadth, of a feventy Gun Ship.

A feventy gun Ship, fitted according to Chap. X . will (lying End on) be able at leaft to bring twenty or twenty-two Guns to bear againft fix in a Battery on flure, fuppofing two Tiers in the Battery, which is four to one, againft the Fort or Battery. I am fenfible that many Objections may be made againft the Utility of the Ships fitted as defcribed in the Ninth and Tenth Chapters, yet I know of no Objection but what may eafily be anfivered.

[57]

fend tving suns, ip be lying ice if s the f one conone, pute, an be o the an be to the bring Room Ship's above venty n the ndeed f lm. there id fix

Chap. bring fix in n the ort or may ed as : yet ly be

Objection I. The Ships fitted as defcribed in Chap. X. will be crank, and will fcarce ftand upon their Legs, efpecially to carry fail, the after Batteries with many Cannon being fo very high above Water.

Anfwer. Thefe Ships are not to carry their Guns mounted at Sea, except in fine Weather, when going from a Road or Bay; perhaps two or three Miles, to filence Batteries, $\mathcal{E}^{3} c$. at the Entrance of Harbours, $E^{3} c$. and as fuch Ships will not carry above half the Number of Cannon they ufed to carry, before they were fitted in this Manner; and though the two after Batteries are high, the Batteries forward are lower, confequently has not above half the Weight to carry above Water they carried before, by which it appears, fuch Ships will not be much altered as to their failing, but will be as ftiff to carry fail, as other Ships of War, though moft of their Guns are mouted.

Objection II. The Batteries aft having to fire over all the other Batterits forward, above one hundred and fifty Feet in length, will greatly incomode the Men, and endanger the firing the Ships, as the Wadds will not Aly clear of them.

Anfwer. All the Wadds being made of woolling, and wetted properly for Service, will neither hurt the Men, nor fire the Ship.

Objection III. The Enemy's Fire will rake the Ship fore and aft, and do much Execution, having the whole Length of the Ship in a Line to fire along

Anfwer. The Slope of each Parapet takes its Rife about two Feet below the Level of the Top of the Parapet next before it, by which Means the Men are covered from the Enemy's Fire, fomewhat better than if there were only one Battery, and one Parapet to fire at, as the Enemy's Fire will be diverted

[5^{8}]

verted amongft fo many Batteries; and twenty Guns will deftroy one or two Parapets afhore before* fix Guns firing from a Fort can deftroy five or fix Parapets in a Ship, there being only five Feet in height of each Parapet, expofed to a level Shot, the fore Battery excepted; and as the great Talus, or Slope of the Parapets, will caufe the horizontal Balls that ftrikes on them to graze, and perhaps leap clear of the Ship; and if any Balls fhot from a high Battery go in below any of the Batteries Parapets, they muft go in amongt Cork and Water, or where they can do little or no Harm.

Objection IV. Though there are Breaft Works to cover the Men and Guns, if the Ships lie end on, there is nothing to cover their Broadfides againft the Enemy's flanking Batteries.

Anfwer. There is the fame Defence for thefe Ships Broadfides, as other Ships now have for their Broadfides; yet Ships are defcribed in Chap. IX. that are to cover with their Broadfide the Sides of the Ships that are to batter end on, by lying with their Broadfides againft thofe flanking Batteries, which may be fo filuate, that Ships cannot at that Time lay with their Heads toward them.

Objection V. In five Parapets, one behind another, there are fo many Embrafures, one behind another, that the Enemy's Shot cannot mifs of hitting fome

[^11]
[59]

one or more every Fire, and thereby do much Mifchief.

Anfwer. Though five Rows of Embrafures are one Row behind another, a Ball can do little more Harm by going through the formoft, or any other Embrafure, than if there were but a fingle Battery, for whatever Embrafure the Ball goes through, it will go under all the Men in the Batteries behind that Embrafure, where it can do little Harm ; befide, the Madrier contrived to fill the Embrafure by the Recoil of the Cannon, and to clear the Embrafure when the Cannon is run out, will add confideraby to the Safety of the Men; add to this the Unequality between twenty Guns in a Ship at Sea, againft fix, or perhaps but two or three Guns in a Fort afhore, and that the fix, or perhaps two or three Guns ahhore (as is before mentioned) have five Breaft-works or Parapets in the Ship to demolifh, while the twenty Guns in the Ship have only two, or perhaps but one Breaft-work or Parapet on fhore to fire at, and two or three Guns to filence. There are other great Advantages on the Side of the Ships fitted as above, (i.e.) no Time need be fpent or any Rifque run, in letting go Anchors to bring the Ships properly up; in going before Caftles, Forts Ecc. the Ships running in fhore to engage Forts or Batteries with their Heads toward them, there is nothing to be done but to begin firing as foon as the Ships are within Gun Shot; the Ships may run bump afhore (firft letting go an Anchor a ftern, where a Windlafs muft be fix'd below) on a rifing Tide with their Heads toward the Forts or Batteries if the Ground is good, and let fall from within their Quarters* itrong, Balks of Timber, well fhod

- A frong Cafe or Coffin muft be made a convenient Diftance from each Side of the Keel, and two or three Fees below the

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences
Corporation

[60]

Thod with Iron, to go into the Ground, to hinder the Ship's cafting athwart in a gentle fhore Swell, as mentioned in Chap. III.
Objection VI. So many Cannon firing fo near over Mens Heads will ftun the Men and make them unfit for action.

Anfwer. This Objection has feemingly fome Reafon in it, but I have obferved the Concuffion made by the Explofion of a Cannon diverges very little; a Cannon fired in a narrow Embrafure of Earth, whofe Sides were about a Foot and a half clear of the Gun's Bore, the Concuffion made but little Impreffion upon the Sides of the Embrafure, and what Impreffion appeared it was but a very fmall Diftance before the gun, and the Impreffion was lefs upon the Bottom of the Embrafure, though the Bottom was as near the Gun as the Sides. From thefe Ob fervati ns it may be imagined a man may ftand fafely ten or twelve Feet Diltance before a Cannon, provided the Crown of his Head is about two Feet below the pafing Ball; or the Men in the Batteries need only ftep under the Parapets next behind them, and flay there about half a minute, or the time the guns next behind them are firing, and no Harm can come to them from their own Guns.
A few Experiments upon the Head of a Dog or other Animal, will clear the Point, and fix exactly how near a Man's Head may be to the Muzzle of of a Gun when fired, and receive no uncommon Harm.

The Guns in Forts and Batteries afhore that lie low, are fuppofed to do the greateft Damage to Ships,
Ship's Heal; in which Cafes or Coffins muft be hung ftrong heavy Oak Balks, fhod with Iron, to let drop into the Ground as foon as the Ship touches forward.

Thele Balks may be cafily let down and hove out of the Ground when there is Occation, by a Purchafe fixed for that Purpofe See Chap. III.

[61]

Ships, but thofe Guns will be of little Service againft the Ships here defcribed, as doth appear in the Courfe of this Work, which is another great Advantage thefe Ships have over Batteries ahore, and it is, I think, very plain thefe Ships have double the Advantage of the Sea-fighting Ships againft the Forts and Batteries afhore, and when the Advantage fhipping has by this Method over Forts and Batteries afhore is known, the prefent Fort will not engage flipping upon fuch unequal Terms.

If I remember right, it has hitherto been allowed that Ships of War, getting within a Cable's Length of a Fort, have the Advantage of common Forts, if io, great Things may be hoped from Ships being able to carry double that Force in the fame Space, (i. e.) in the Length a feventy gun Ship takes up before the Fort (whofe Broadfide is only thirty-five Guns at moft) three feventy gun Ships, and if the Length of the Bowsfprit is confidered, four feventy gun Ships may lie end on, in the Length of one feventy gun Ship, each of which can fire at leaft twenty Guns as quickly, and with more fafety, than a Ship can fire her Broadfide; here is eighty Guns in the place of thirty-five, or perhaps but thirty-three; and Forts will be laid under greater Difadvantages, by this Scheme, againft eighty Guns, than they have hitherto been under againft thirty-five Guns; for inftance, the low Batteries afhore at the time the Tide is high will be of little Service againft thefe Ships; and as it is very evident that Ships have with their prefent Force often filenced Caftles and Forts, and then have gone into Harbours and deftroyed Shipping, ξ°. It cerrainly will be allowed that Ships which not only have more than double the Force they have hitherto had, but alfo have other confiderable Advan-
tages, will with reafon difregard and defpife the Force of Caftles and Forts jon chore *; and the Nation who are Mafters at Sea, will alfo be Mafters of all the Harbours in Europe, until every Power, who has Harbours and !Ships to fecure, has erected ftronger Defences, and is at a great Expence to maintain them

- It is allowed a firf Rate Man of War's prefent Force is about four or fix Guns to one that Common Batteries have in the fame compafs, but a Ship's Motion has been fpoken of by fome in a manner tending to infinuate a Belief that Ships always have fo great a Motion, they cannot hit a Battery, fave fome chance Shots, and therefore Batteries on the Shore has (through the Ship's Motion only) fo great an Advantage over Ships, they may fink every Ship that dare to come near them.

Now as there is only the Motion Ships has to object againft their having the Advantage of Batteries, there cannot be any Objection when Ships has not a Motion to hinder their hitting the Batteries, and it is known, beyond Contradietion, that in the generality of Summers, there are three or four Months in which Ships may, for the moft part, lay before Batteries at the Entrances of Harbours, E'c. and not have fo much Motion as will make a practical Gunner thoot uncommonly wide of his Mark.

As to keeping the Battery's Guns ready to pour all their Shot into the Ship when the comes near and oppofite, this the Ship may very eafily avoid, as Batteries may be deftroyed by oblique firing, and a Ship in many Cafes need not come where all the Battery's Guns can bear upon her.

There are many frong Batteries that two Ships in fine weather may deftroy with little Damage to themfelves, by oblique firing, the Ships lying at the extream Ends of the Battery, where tew of the Battery's Guns can bear upon them ; Ships has great Advantages when they are manageable, and can be laid in any Station.
From common Knowledge, and from what has been faid, it is felf-evident that if it can be contrived to confruet Ships that will carry double the Number of Guns in the fane Compafs, no Batteries, yet in being, can be able to withftand them.

[63]

C H A P. XIII.

Of the Means Britain has to take or demolifs an Enemy's Sea-ports, and deffroy their Sbips in Harbour.

HAVING in the foregoing Chapters treated of feveral Inventions that thofe who are Mafters at Sea may make ufe of, in order to mafter an Enemy's Sea-ports, and deftroy their naval Power, I will in this Chapter treat of the Application.

In order to make it appear in a proper Light, that Britain has the Means to demolifh an Enemy's Seaport Towns, Forts, and Batteries, and confequently be Mafter of the Harbours, and may deftroy the Enemy's Shipping, let it be fuppofed, a fufficient Number of Ships, with low floating Batteries, Ecc. are prepared according as defcribed in the foregoing Pages, and the Fleet ordered to go into Breft or Toulon, and take or deftroy the French Ships there.
If any Advantage is to be gained by unexpectedly and fuddenly attacking the interior Force at Sreff, Toulon, or any other Sea-port; I mean if any Advantage can be gained by fea fighting Ships running, at their firft appearance, directly paft the enemy's Forts and Batteries, into their Roads and Harbours, (being covered in their running paft the Forts and Batteries by muzzling Ships) and attacking their Ships in their Roads and Harbours; and the muzzling Ships, that covered the fea fighting Ships in running in, to lie before the Batteries that are within, if neceffary, while the fea fighting Ships take or deftroy the enemy's Ships.

The Ships that are to muzzle Batteries muft be well fenced; and when ordered to duty muft carry

[64]

as few Men as poffible, and have very little Rigging, with as many Chains inftead of Ropes as can be ufed; and if they are to lay before Batteries mult only have their lower Mafts and Sails, the Yards to be let down upon Deck when the Ships are got to their Stations.

Having a good Opportunity, the muzzling Ships and fea fighting Ships ought to fail forward in their proper Stations (i.e.) a clofe line of muzzling Ships on each Side the fea fighting Ships, if the Entrance is narrow, and Batteries on each Shore, in order to receive the Enemy's Fire from their Forts and Batteries, with a fufficient Number of muzzling Ships in the Van, to be ready to lay before the Batkeries that are fituated to rake the Lines of Ships while in the narrow Entrance; (for without doubt there are ftrong Fatteries to enfilade, as much as poffible, every Courfe and Channel leading into Breft Road, Toulon, and other principal Harbours in France) as the Ships whofe Holds are filled with Cork cannet be hurt by coming aground, unlefs upon a high fharp Rock, when it is falling water, or except there is a Sea to break them to pieces, the muzzling Ships may make bold, efpecially in a flowing Tide, and fteer near in fhore, and fo run clofe to the Bateries, which about the Time of high water will eftectally muzzle them ; and as by lofs of Mafts, EOc. it may be expected the Sails of many of the muzzling Ships will be rendered almoft ufelefs, therefore a ftout Towline muft be faftned from Ship to Ship, one Tow-line between every two Ships; the End paffing into each Ship about eight or nine Feet, or a fufficient Depth, under water, to be clear of the Enemy's Shot, near the Stern-poft, and at the fame Depth under water, as near the Ship's Cut water as may be; to each Ship has the End of
a T baft V with and be as Sea Ships and I in the and k Towl Hulls are a the ot tow, as the ries af the Ri ty pra muzzli pofe, pared, Ships difable things my's S in fpec anfwer
by ma ing Ma have on tar or ty neceffar wih Ch or Mort Ind of

[65]

a Towline Forward, and the End of a Towline a. baft, to flack out or hawl in at pleafure.

When muzzling Ships are either to fail along with other Ships to cover them while paffing Forts and Batteries, or to lie before Batteries, they mutt be as clofe ftem to ftern, as the finnocine:s of the Sea will permit them; and if any of the mozzling Ships are difabled, which can only be in their Mats and Rigging, the headmoft Ships not beng di/abled in their Rigging will both tow the ships a itern off, and keep them in their Stations; by Means of the Towlines before mentioned, for no Damage in the Hulls need be feared; but as the headmoft Ships are as liable to be difabled in their Rigging as the other Ships, they cannot be depended upon to tow, or any otherwife affift the Ships a itern;" and as the muzzling Ships muft get as near the Batteries afhore as poffible, otherwife they cannot cover the Rigging of the fea fighting Ships. It is not very practicable for the fea fighting Ships to tow the muzzling Ships, fo as to anfwer any very good Purpofe, whicix makes it abfolutely neceffary to be prepared, and able to make the headmoft muzzling Ships go a-head, and keep their Stations, though difabled in their Rigging; There may be feveral things contrived for this Purpofe, though the Enemy's Shot may render moft of chem unferviceable ; in fpeculation there appears a Contrivance which will aniwer this End; but Experience muft confirm it, by making an Experiment according to the following Manner : Let each of the headmoft muzlingShips have one or two very large Cannon, or a proper mortar or two pointing forward, (perhaps it may be found neceffary to caft Cannon for tivis particular Service) wtih Chains fix'd to Balls to be fired out of the Gun or Mortar, a proper Anchor being faftened to that Ind of the Chain which hangs out of the Gun or

[66]

Mortar, and a Towline bent to the Chain at the Anchor, and quoiled fo as not to entangle when the Anchor is thrown out a head by the Gun or Mortar being fired: Though it cannot be expected an Anchor of any confiderable weight can be thrown out to a ufeful Diftance by this Method, yet upon Trial it may be found that Anchor after Anchor, of a fmall weight may be thrown out, by which the Ships may be warped paft Forts and Batteries; but it the muzzling Ships are only to lay before Forts and Batteries till other Ships pafs, they may at any Time eafily be hawled off, either a head or a ftern, by Towlines bent together for this Purpofe, and the Ships having the End with them*.

Thus the Lines of Ships are to proceed in clofe order, always keeping, if poffible, the muzzling Ships againtt the Enemy's Cannon, while paffing within gun-fhot of the Enemy's Forts and Batteries; and when the Ships are got near the Enemy's Batteries in the Harbour, $E^{c} c$. the muzzling Ships are to lay before thofe Batteries, if need be, while the fea fighting Ships are engaged in deftroying the Shipping.

The Ships that are to batter with their Ends on, and the low floating Batteries, to follow clofe a ftern of the Ships that are running paft the Batteries, and begin firing upon the Forts and Batteries as foon as poffible; and if their is fufficient Room, the Forts and Batteries fhould be attacked at the fame time the fea fighting Ships are running paft, or rather fooner; but of this hereafter.

If it is apprehended little or no Advantage is to be gained by a fudden or unexpected Attack, the following

[^12]follow my's may f: Adt Harbo Batter vifeabl ing S muzzli Bein tion, nity of order t before before from th der:
The a half o form th are ftror draw no teries, fore the ftruct, confider Place to Line of teries, m Lines of ciently n Purpofe very nea

[^13]
[67]

following Method may be taken to filence the Enemy's Forts and Batteries, fo that fea fighting Ships may fafely run paft them into Harbours, Roads, E̛ic.
Admit a Defign is formed to deftroy Ships in Harbours whofe Entrances are welldelended by ftrong Batteries upon the Shores, and it is thought moft advifeable to filence thofe Batteries betore the lea fighting Ships attempt to enter (though covered by muzzling Ships) to perform that Service.

Being arrived conveniently near the place of Action, in the prime of Summer, take the Opportunity of low Water falling foon in the Morning, to order the floating Batteries, Bombs, Ejc. to get before the Place defigned to be attacked, a while before low Water, (if the Tide doth not ebb to far from the Batteries alhore) and in the following Order:

The fmall Batteries that draw about two Feet and a half of Water are to move forward in the Van, and form the Girt Line before the Place; and if there are ftrong flanking Batteries, muzzling Floats, that draw no more Water than the finall floating Batteries, prepared for that Purpofe, muft be laid before them; fuch muzzling Floats are fo eafy to confruct, if what is faid in the foregoing Chapter be confidered, that it would be fuperfluotis in this Place to give a Defcription of them. The firit Line of Battery, compofed of fimall floating Batteries, muft be followed in proper Order by as many Lines of larger floacing Batteries as can lay fufficiently near, and fafely fire over each other to grod Purpofe ; and as the fifft Line will probably get very near to the Batteries on fhore, it may be fup-

$$
\mathrm{E}_{2}
$$ poled

[^14]
[68]

pofed four Lines can bring their Guns to bear, and that every Line at each End is about a quarter of a Mile longer* than the Batteries on Shore, if the Situation will admit; thefe Lines of Battery to be followed by as many Bombs as can lay behind the rear Line of Battery, and play to good purpofe.

If, notwithftanding all this Force, the Batteries on fhore, by well directed Ralls, difable many of the floating Batteries, and oblige them to hawl off at about two Hours Flood, which is proper Time for battering Ships, defcribed in Chap. X. to advance, with Bombs under their Sterns, as before mentioned, and make a frefh Attack upon the Forts and Batteries, it being reafonable to imagine the floating low Batteries has not left the Forts on thore in a very grod Condition; I think the fhattered Batteries on fhore cannot long refift fo great a Force as the battering Ships, defcribed in Chap. X, but, for the fake of Illuftration, let it be fup‘d,
. The Batteries on fhore be wonderfully ftrong, and regularly fupplied with frefh Men, and alfo Guns as foon as any are difmounted, fo that after fome
by proper Men, it will be foond that the low floating Batteries here defcribed, may, in the laft Hour of the Ebb, and the firt of the Flood, do much Mifchief to the Defences, and the Forts and Batteries afhore cannot bring any confiderable Number of Guns to bear upon them; and low Veffels, properly filled with Mortars, Coe-horns, \&c. may alfo do much Mifchief with a good deal of Safety.

* The Lines of Battery here fpoken of, being confiderably longer than the Batteries they oppote, will by their Length have an Advantage, both in regard to their Number of Guns, and the oblique Direction of the Shots fired from the Ends of the Lines, for by an oblique Direction the Balls have a bettet Chance, not only to difinount the Enemy's Guns, but by croffing the Shots made from the Batteries in the Front will do grearor Damage to the Defences.

[69]

fome Hours battering the Ships* are allo obliged to hawl off; if this Chould be the Cafe, which is very improbable, feeing the Force of thefe Ships is fo great, the low floating Batteries by this Time (the Men being refrehhed, and the places of the difabled Batteries fupplied by others) will be ready to advance again as at the firlt, and begin a frefh Attack. Thus may the battering Ships, and alfo the low floating Batteries, alternately relieve each other, at a proper 'Time of tide, till no Defences on fhore, yet made or invented, can refilt them any longer. And

Veffels can arrive fo unexpectedly before places fituated by the Sea, that it cannoc be in the power of any Government to know with any degree of certainty, what Place will be attacked, and to provide every place with a Garrifon uncommonly nunrerous, and a double or treble number of Cannon, would be too great an extra Expence perhaps for any Nation to bear, even but for a few Years; therefore it is very improbable, if not impoffible, that any Place will make fo great a Defence as is here imagined; and if it is poffibic to make fo great a Defence as is here defcribed, yet they will be filenced after they have done all they can, as the floating Batteries can be fo eafily relieved, and new Batteries laid before the Place time after time, as often as there fhall be occafion.

This will be reducing our Opperations by Sea, againft an Enemy, to fome certainty at a fmall Expence, compared to the Expence and Rifque of keeping ftrong Squadrons on an Enemy's Coafts to watch their Motions, the Effect of which is fomwhat uncertain.

$$
F_{3}
$$

That
It is fhewn in Chap. XII that thefe battering Ships lying with their Ends on to batte, in the Length of a Ship are more than double the Force of a Ship's Broadfide.

[70]

That Britain has the Means to do any poffible Thing by Sea, is evident from the great Number of Seamen now in the royal Navy; and it is well attefted there are tull as many left for other Employments as can fiad entertainment in the Merchants Service; as for Ma: rials for building and repairing Shipping, Britain iffelf alfiords mucin good Timber and lron, \mathcal{E}^{c}. and has Money to purchafe any quantity of other Materials that can be wanted; and there need be no want of Shipwrights if every Ship. wright in his Majetty's Dock Yards were allowed a Servant.

I will not undertake to cnumerate the Advantages tilar will accrue to the Nation who is ftronget at Sea, by puting the schemes here laid down in. to practice, and by being Mafters, not only of all the Harbours in Europe, but in every other Part where any Advanrage appears; and not only deftroy the maval Power of France for the prefent, but limit that Power to a certain Number of Ships of War for the Time to come. This would be a Bieffing to ail Europe, if the Nation whom God has blefied with the ftrongeft naval Power continue to tear God and love their Neighbours, in taking away many of the Caufes of Contention, and confequently prevent the hedding of much clariftian Blood; for if the Accounts I have read and heard be true, there have been few blooody Wars in Europe, amongft Chriftians, in the two laft Centuries, that have not been either begun or prolonged by the Intrigues of Fiance; theretore if Britain at this Time* will enter heartily upon deftroying the naval Power of Fiance, and the other Powers of Europe countenance the Defign, to prevent France, as much as pofible, from ever being any confiderble maritime Power for the future. This would certain-

[^15]
[71]

offible umber is well r Em. chants pairing Timber fe any d ; and y Ship. owed a

Ivanta. rongeft own in. of all er Part ly derefent, t Ships ld be a m God ontinue taking nd conhriftian d heard s in $E u$ nturies, hged by p at this the naof $E u$ ance, as Ifderble certain-
ly be the greateft Good done to Mankind, by mor: tal Men, fince the World began.

There might be given a long Account of the reftlefs Spirit of the French Nation, and their breaking through all Treaties, not regarding Men's Lives, nor the Diftreffes of the Innocent, but obliging Nations to arm in their own Defence, which has been the Caufe of a great Effufion of chriftian Blood, and the Diftrefs of many Thoufands of innocent People; but as all that I can fay on this Head iswell known, it would be an ufelefs Digreffion to et.arge upon that Subject in this Place.

It being the Britif Trade that chiefly fupports and fupplies the Britif Power, therefore Britain ought always to look upon every Encroachment upon her Trade, by a powerful Rival, as greatly dangerous, not only to her Laws and Conftitution, Liberty, and Property, but to her being a Kingdom.

THE

[73]

T H E
 British Mars.

P A R T II.

CHAP. I.

Of Fortification.

AS the Art of fortifying Houfes is ufeful in many Cafes, efpecially in civilizing a favage People, and making Plantations amonglt them, I will in this Chapter fhew feveral Methods of building dwelling Houfes that cannot eafily be taken without Cannon ; the Art of fortifving fmall Places is called Fortility, and the Places fo fortified are callec. Eortlets, or Fortins.

Tiis fort of Fortification was much ufed in the North Parts of England, before the Union of the two Nations, for the Inhabitants upon the Borders frequently plundered each other, taking away Sheep, Cattle, Horfes, E'c. even in time of Peace; this made the People on the Borders think of fecuring their Property, by building ftrong Houfes, many

[74]

of which are yet flanding in the northern Parts of Nortbumberland. But,

As thofe People knew little of Fortification, they onyly built their Houfes of Defence a litile ftronger than common Houfes, with Spouts above the Doors, to convey hot Water, E'c. upon any one that fhould attempt to break or burn the Doors; fome of thefe Houfes has a Place at the Top of theGavel End, or Pitch of the Rcof, right above the Door, projected upon ftone Corbels, from where they probably threw Stones, $E^{2} c$. upon thofe who came near to break the Door; they alfo laid a Heap of large Stones, or built a fmall Houfe with ftrong Walls, a little Diftance from the Door, to prevent any Thing of the nature of a battering Ram from forceing the Door, Thefe Houfes are divided into a low and high Roon, by great Beams covered with Rice or fmall Wood laid acrofs them, over all which are laid a confiderable Thicknets of Earth, to make a Floor; they fecured themfelves in the upper Room, and there Cattle, $\mathcal{E}^{2} c$. almoft every Night in the lower Part, efpecially if any Tidings came of the Approach of thic Mofs-Troopers, for fo they called the Men who generally came to plunder. That thole Houtes were of great Service appears from the great Number of them, there being few old Villages near the Borders, that has not one or two, or more of fuch frong Houles; and if Fortility were well improved, and properly put in execution, it would prove a very confiderable Security to the Britif, Settlements in America, efpecially the Settemente mon liable to be attacked by Parties of Indians; for very little more Labour and Expence is required to build a Fortin, or Fortlet, than is required to build a common dwelling Houfe, and three of four Men may defend a proper con. Atructed

[75]

frructed Fortin, againft a confiderable Number of Indians, or even regular Troops, without Cannon.

P L A TE V. Fig. 1. Conftruction of an equilateral Triangle Fortin.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$, the ground Plan, which may be raifed any convenient Height above the Level of the Ground, fuppofe eight Feet, or one Room in height, fixteen Feet, or two Rooms high, $\mathcal{E}^{\circ} c$.

1, 2, 3, 4, 5, 6, the Plan of the upper Part, which well defends the Triangle under it, through the Places marked G, H, I; Care muft be taken to raife the Points A B C that Men cannot get upon thefe Points; the Entrance to be through G, H, or I, in Time of Danger, with a Ladder, as mentioned in the Defcription of Fig. 2.

Fig. 2. Conftruction of a Square Fortin. A, B, C, D, the Plan on the Ground, E, F, G, H, a Parapet, Mufquet proof, fix Feet high, its Bafe fupported by Timber, as I I I I, ten Feet nigh from the Ground; but if it is required to have the Houfe three Rooms high, the Wall A B C D to be the Height of two Rooms; 1, 2, 3, 4, the Place where the ground Plan is defended; the Door to enter the Houfe to be about feven or eight Feet high from the Ground, having a broad ftep Ladder, in manner like a Draw-Bridge, to be drawn up every Night, or when any Danger is apprehended; K L. M N the Walls of the upper Room or upper Story, on which the Roof is built; the Roof and the Space, A B C D, to be covered with Earth, that Hand-Granadoes, or Fire, may do no Mifchief there, if thrown by an Enemy.

The Wall of the lower Part of there Fortins ought to be from four to fix Feet thick, according to the ftrength of the Material they are built with, and

[76]

and if it be poffible they mult be built with Materials that cannot be fet on fire, as alfo fhould every other Part of the Outfide, if the Materials are to be had at a reafonable Expence; if fuch Materials are hard to be got, the upper Parts may be built of Timber, cafed with Boards or Slabs of dead Sap, for dead Sap will not burn itfelf; but if Lime can conveniently be got to cafe the upright timber Work with a ftrong Coat of Plaiftering, that will preferve the Timber from fire, and alio endure the Weather, it will do better; if the Roofs of fuch Buildings are covered with Boards or Shingles, they may be well turfed, when any Danger is apprehended, but the Turf thould be thrown off when there is no Danger of an Attack, for if the Turf is continued upon the Roof, and Water get through, the Boards or Shingles under the Turf will rot very foon.

Fig. 3. A fecond Method to conftruel a Square Fortin. A, B, the ground Plan, conftructed in all Refyects as A BCD in Fig. 2; C, D, a Parapet with Angles, projected over the middle of the Walls, upon the ground Plan, which Angles form the Spaces E, F, G, H, through which the Faces of the Walls may be well defended; K, I, the upper Story, or Seat of the Roof; as to the Door or Entrance, fee the Defcription of Fig. 2.

Fig. 4. Confrution of a Fortin Star.
The Parapet, C, D, make a Defence to every Front of the Star, as E, that there is no need of Openings in the lower Wall to fire through; the Door or Entrance is through the Opening E, in Time of Danger, with a Ladder to let down and hawl up at difcretion: See the Defciption of Fig.

[77]

2. L, M, N, O, the Walls of the upper Story, and Seat of the Roof.

The principal Part in making Settlements, are, firt and above all, to fix upon a proper Spot of Ground for a Plantation, near a River or Brook, or at leaft where is a fufficiency of Water; and if the Situation is near a treacherous Neighbnur, a particular Regard muft be had to place the Fortin or dwelling Houfe, as far as poffible from any Hill or other Place, behind which Men may approach the Fortin unfeen, and conceal themfelves till a proper Opportunity offer, to furprize it; and if the Fortin or dwelling Houfe is by a River, as G, Fig. 5, it fhould be to placed that as great a Diftance upon the River as can be, both upward and downward, is feen from the Fortin; and it may be proper to erect a tall Pole upon the Top of the Fortin, to hoift a Flag, or a Light upon, with a Convenience to get up to its Top, to look out, $\mathcal{E} c$.
Fig. 5. Shews how any of the Figures, 123 4, in Plate V. may be adapted to defend a Plantation, or Space of Ground, and alfo fecure the C vner and Family, from almoft any Number of Men without Cannon.

Suppofe G and H, Fig. 5, are Fortins upon the Brink of a River, it is evident H commands the River no further than I and K , but G commands the River from L to M , therefore G is the better Situation in refpect to commanding the River, and as Mufquets will kill Men at the Diftance of three hundred Yards, the Fortin G will defend a Piece of Ground fix hundred Yards fquare, ard if the Fortin is properly confructed, and defended by eight or ten active Men, it is hardly ponible to take it without Cannon, while Victuals and Amunition laft in the Fortin.

Admit four, fix, or more Families agree to have their Plantations lie together, and build Fortins that will not only defend each other, but can alfo defend their Plantations.

Fortins for four Families, as A, B, C, D, Fig. 5. placed three hundred Yards apart, fo that they can well defend each other, will have near one hundred and fixty-eight Acres of Plantation, within Mufquet fhot, which they can well defend; and if it is thought each Fortin has a fufficient Defence for itfelf, they may be placed fix hundred Yards apart, and have near two hundred ninety-eight Acres within Mufquet flot.
Fortins for fix Families, as A, E, B, and D, F, G, Fig. 5. being placed three hundred Yards apart, will have near two hundred and twenty-four Acres within Murket fhot, which the Fortins can well defend, and likewife will defend each other ; and if it is thought proper to place fix Fortins fix hundred Yards afunder, they will have near four hundred forty-fix Acres of Ground within Mufquet fhot, and fo on in proportion, as more or fewer Families have their Plantations lie together.

In any Place where it may be neceffary for many Families to dwell together, a Fortification againft fmall Arms may be formed, by building Houfes with their Angles meeting together, as A, B, C, D, \mathcal{E}°. Fig. 6. fo that the other Angles form Redans all the way round the Town; in Time of Danger the Horles, Cattle, Sheep, $\mathcal{E}^{\circ} c$. may be fecured in the Space of Ground inclofed and defended by the Houles.

The Roofs of thefe Houfes being one continued Roof round the whole Town, io as the Roof will hang or project a good way over the re-entering Angles or Coyns of the Houfes that meet together,
and
An of
thr the the

[79]

and 'fo form a good Defence for the re-eutering Angles, and add much to the Defence of this fore of Fortification.

There may be as many Gates or Entrances through the meeting of the Angles or Coyns of the Houfes as is neceffary; and the entering into the Houfes, turfing the Roof, $\mathcal{E}^{c} c$. in Time of Danger, to be as mentioned in the Defcription of Fig. 2.

It will be fuperfluous to trouble the Reader with Arguments to prove that Houfes, built in the Order as Fig. 6, will not colt more than if fuch Houfes were built in any other Order or Situation ; neither need any thing be faid to prove the Ad. vantages of fuch a Difpofition of Houfes, the Advantages being evident, efpecially in fuch Countries as America, where the Planters are not fafe with refpect to their Neighbours.

C H A P. II.

EXperience has fully proved that the prefent Fortifications cannot long preferve Cities and Towns, againft a numerous and well provided Army; nor fop its Progrefs, fo as the Advantages of fuch Fortifications are fuperior, or even equal, in many Cafes, to the Expence of building and maintaining them, a few Places of particular Situation excepted. And,

As fo many eminent Men of great Experience, in fo many Ages, have endeavoured in vain to render the Advantages of a Fortification equal to thofe of the Attack; I think it may with reafon be imagined impoffible, without adapting an entire new Method of Fortification: But whether a new Method of greater Advantages can be invented is a

Queftion not eafily determined; for fo long as the Befiegers have it in their Power to bring as great Numbers of Cannon, Mortars, छc. againft a Place, as they pleafe, and can erect Barteries with as refifting Matterials as the Batteries of the Place are of, no Fortification, that a rearonable Man will be at the Expence of, can be built by the common Methods of Fortification, and in a common Situation, but what may foon be taken.

Having confidered that the firf great Step toward taking a fortified Place, is the filencing the Befieged's Fire to fuch a Degree, that the Befiegers can carry on their Works with tolerable fafety, and erect their Batteries fufficiently near the Defences of the Place. And

Having alfo confidered, that notwithftanding the Befiegers has the Advantage of a much fuperior Fire to that of the Befieged, if any practicable Method can be found to prevent the Befiegers from difmounting the Befieged's Guns, Mortars, \mathcal{E}° c. Places may hold out much longer than they generally do at prefent, and coft much more Time and Expence to get Poffeffion of a fortified Place.

It doth not appear to me impoffible to erect Batteries whofe Guns the Befiegers cannot difmount any other way but by Mines, which in a watery Situation may alfo be prevented; and fuch Batteries may likewife be built in a dry Situation, that the Befiegers will find extremely difficult to blow up, efpecially thofe erected in the Body of the Place.

In order to gain thefe Advantages, Embrafures, Guns, Carriages, $\underbrace{\circ} c$. muft be made of a new Confruction; and I hope I am able to demonftrate that by aliering or making new Batteries in the Fortifications already built, tome confiderable Advantages

(8i)

Advantages will be obtained, on the Side of the prefent Methods of fortifying.

As to the new Method of fortifying, herein attempred, the Ideas are very much different from any that have yet been publifh'd, or put in Practice, that I know of; the Largenefs of the Baftions, Flanks, \&c. or the Number of Outworks, are but little depended on in this Method, for Defence; it is here attempted to Ihow how a Fortification may be built that will not require fo many Troops to defend a Place, as the prefent Fortifications require, and yet make a better Defence; and that a fmall Place, defended by a Hundred, or two Hundred Men, fhall coft an Enemy, either many Men, or much Time to take it ; and notwithftanding I have fpent much Time in making Models and confulting Enquiries on the Subject of Fortification, I can fay with much Truth, that I have no particular Intereft of my own to ferve, by the Improvement of Fortification; fave the Satisfaction I may have in being inftrumental in procuring to thofe who are peaceably inclined, a Security againft the ambitious.Views of the Difturbers of Peace.

As the Materials here propofed are expenfive, the Batteries muft be as fmall as poffible, to anfwer the Purpofe; a Surface, or Plan, about equal to feventy Feet fquare is fufficient to make a ftrong Battery, if built with the Materials here propofed, andcontain feveral Tiers of Guns.

What appears the worft to overcome, in the Manner of fortifying here propofed, is, the Smoke of the Guns in the cover'd Batteries, which not only hinders the People in the Batteries from feeing round them, but renders it impoffible for Men to continue in clofe Batteries, to fire the Guns any confiderable Time; but the Batteries here propofed, are in a Degree open behind, and may have frefh

Air injected, to prevent the Smoke from becoming intolerable to thofe who are appointed to work the Guns.

A Town has generally many Perfons in it who are of little Ufe in its Defence, but by different Contrivances every Perfon that can do any thing, may find Employment in the Defence of a fortified Place; admit a fquare Battery (of fix Guns on each Front) erected according to the Plans נ. 2. 3. Plate VI, with the Materials before mentioned; the Imbrafures little wider on the Outfide, than the Guns Muzzles will go through ; Bomb-proof above, and Vents, or Openings, in proper Places, efpecially one in the Middle behind the Guns, of thirty, or forty Feet fquale; the Guns, (in fuch a Battery as this,) being fired but a few Times, will fill the Place with Smoke, notwithftanding the Vents and Opening in its Middle of thirty or forty Feet Square; fo that no more firing can be there till a confiderable Space of Time after; in which Time an Enemy may gain great Advantages : This being the only Reafon Cafe-matted Flanks are not made in late built Fortifications, tho' they are of the greateft Utility, if they could be kept clear of Smoke; and it appearing to me very practicable that the Perfons, who are otherways ufelefs in the Defence of a Place, may inject Air into any Battery that has proper Vents for the Smoke to fly out; fo that the Guns in fuch Batteries, as mention'd above, may be fired with as little Difficulty, from the Smoke, as the Guns in an open Battery can be fired in calm Weather.

In order to keep a clofe Cafe-matted Battery tolerably clear of Smoke, make a Bomb-proof Place under Ground, or in fuch a Situation that the Bebefiegers Guns and Mortars cannot demolifh it ; this Place mut have Rooms one above another, as many

Bars
Arriva liftenir Miner:
as are fufficient to hold and work fo many Bellows as will blow a Blaft fufficient to drive the Smoke out of the Battery; the Bellows to be placed with their Muzzels in the Center of the Rnom, with Ropes to go from the Levers that work them through the Arch or Floor into a Room below, where Men unfit for Arms, Women, great Boys, \&c. are to pull at the Ropes and work the Bellows, all the Muzzels of the Bellows to have Valves in them, and be fix'd into one Tube in the Middle of the Room from which a Conduit of brick or ftone fhould be made into the Middle of the Battery, (if the Diftance between the Bellows and the Battery is fomething long it matters not) and proportionable Tube, or Conduits, to be branched to, and blow under the Breach of each Gun. I imagine two Bellows to each Gun in a clofe Cafe-matted Battery will be fufficient, but Experience is the beft Inftructor.
The Defription of a Battery, according to Plans in Plate 6, Fig. 1, 2, 3.
In a dry Situation (I imagine the Capital of the Battion a proper Place for thofe Batteries;) lay the Foundation as low as the Bottom or the Ditch, and to prevent, as much as poffible, fuch Batteries being blown up by an Enemy, drive or place Piles quite round the Battery, a proper Diftance from the Foundation, about fix or nine Inches apart from each other; each Pile to be bored like a Pump, that the Miners Approach may be heard, and plainly difcovered, and their Progrefs ftop'd at the Piles, by putting Gunpowder down thofe Piles which the Miners have either cut or dug under, and Fire after it; or thofe pierced Piles may be clofe together and long iron Bars drop'd down to ftop the Miners ; for their Arrival at the Piles will be eafly difcovered, by liftening at the Top of them. It appears to me, Miners will find it extremely difficulty to pars fuch

84)

Piles if they are very deep in the Ground as their Galleries may, at all times, may be pierc'd from the Top through the Yiles, and Gun-powder or fuffocating Matter continually put down, and the Vent 'hrough the Piles foped above ; nor can the Cannon or Bombs of an Enemy prevent this, for the Heads of the Piles may be any Depth under Ground, and arch'd over, not leaving fufficient Height for Miners to make Galleries over the Arch undifcovered, fuch Piles may in fome other Refpects be of Service in the Defence of the Place, as will be hown hereafter.

As this Battery will be a very great Weight, the Foundation muft be broad, and very good, and built with Stone or Brick within about two Feet of the Height of the Rampire, or Terra-plain of the Baftion, to have a ftrong Pier for each Coin, and a fmaller Pier in the Middle on each Side, and each Side to have two Openings arched, but not fo high as the Surface of the Ground by fix or feven Feet; and a fufficient fquare Opening in the Middle from the Foundation to the Top, but arched over, and made Bomb-proof at the Height of the low Platform, under which Arch the Bellows are to work to blow the Smoke away ; this fquare Opening in the Middle to be thirty, or forty Feet fquare in Fig. 1, 2,3 , and open from the low Plat-forms upward, for the Smoke to go out.

When the Battery is raifed within about two Feet of the Surface of the Ground, begin to build the catfide of thofe Fronts, that Befiegers cat. place Guns to bear upon, with Blocks of Pebble Stones run together with Metal of old Guns, or any other cheap Sort of caft Iron; thefe Blocks naade of Iron and Pebbles, to be of a fufficient Thicknefs in the Wall, and well back'd with Mafonry, and built to the Height of the Plat-forms on which the firf Tier of Cannon are to be planted.

(85)

At the Height of thefe lower Plat-forms, begin to build the Outfide of thode Fronts of the Battery, which an Enemy can bring Cannon to bear direet upon, with folid caft Iron, fufficiently ftrong to refiit and break the heavieft Cannon Balls; the Iron is to be well back'd with Mafonry between the Guns, which Mafonry is to bear the Arches, but no Maronry is to be where the Muzzles of the Guns lie through ; the Thicknefs of the Iron is all the Guns Muzzles are to lie through, by this Means there need not be fo much open Space between the Muzzrling of the Gun, and the Embraffure, (or rather round Port-hole that holds the Gun's Muzzle) as to admit a Six-pound Ball : How the Guns are to be worked in this Sort of Battery will be fhewn hereafter.
Having finifhed the low Battery, Fig. 2. and carried up the Piers that fupport the upper Battery, Fig. 3. whofe Fronts are fquare on the Diagonal of the low Battery, fee the Plans Fig. 2 and 3. Plate VI. this upper Battery to be the fame in all Refpects as the low Battery, only its Fronts are not fo long as the Fronts of the low Battery.

The Fronts of the upper Battery being fquare with the Diagonals of the low Battery, give fo great Advantage, that twelve Guns at leaft, will not only bear upe- an Object, in any Part without the Works, but alfo will command a Breach in any Part of the Works, though there are only a Battery in every fecond Battion. See the Batteries \mathbf{E} and F Plate VI. in the Baftions G and H .
Of Guns, Gun-Carriages, and Plat-forms proper for the Improvements here propofed.
The Guns to be made with two additional Trunnions at the Extremity of the Breach, and a ftrong Pivot on the under Side of the Muzzle, projected
one Inch and an half below the Superfices of the Metal, to fit into a Place on the under or low Side of the Embraffure or Port-hole made for that Purpofe, to hold the Muzzle of the Gun in the Middle of the Port-hole, when the Gun is moved Side-ways; but the Muzzle of the Gun to be raifed from this Hoid when fired. This is all the Alteration I propofe in the Guns, except it hereafter be found practicable, to make Guns to be loaded.at the Breech, by a Contrivance proper for that Purpofe.

The Gun-carriages to have fixed in them, ftrong purchafing Hand-fcrews, one under each Trunnion, and one under the Breech or Pammel, five in Number, to lay the Gun to fhoot high or low at Pleafure, without raifing or lowering the Muzzle; by this Means, and by what follows concerning Platforms, the Out-fide of Embraffures or Port-holes need ke little bigger than to receive the Muzzle of the Gun, fuppofing the Embraffure or Port-hole to be made of Caft-iron or other ftrong Metal.

The Plat-forms to have a ftrong Plank circular Edgeways, to lie under the fore Wheels of the Guncarriage, when the Gun is run out ; this Plank to lie flat upon proper Rolls, and make a Part of the Plat-form, fo that thefe Rolls will eafily run the Plank to either Side of the Plat-form, and carry the Gun with it, and traverfe the Gun with little Trouble; there may be another fuch Plank under the hind Wheels, but I think a Wheel may be contrived to be under the Middle of the hind Axle-tree to anfwer better.

By what is faid above, it is enfy to undertand by the Methods here propofed, that the whole Body of the Gun is to be moved to give Direction to the Shots, this perhaps will appear prepotterous, but I make no doubt if a Trial is made, according to the Method here propofed, the Difference of Time and Labour

(87)

f the w Side irpofe, Idle of ways ; m this I pro. prac. reech,

Labour in fighting Cannon by this or the Method now ufed will be tound inconfiderable, for in Service where the Object is generally fix'd, the Direction of Guns doth not want much altering, but the Advantage of having Embraffures, that in a great Meafure lecures the Guns from being difmounted, and alfo covers the Men fo effectually, that but few can be killed, being fo very interefting will I hope induce fome able Perfons to promote the Defign.

I have propofed to build with large Pebble-ftones, run together with the Metal of old Guns for cheapnefs; but fmall Pebble-ftones run together with Lead, I think in fome Cafes are preferable, as Splinters will rairly fly from this Material; nor will a Ball be reflected from it with fo great a Force, as from caft Iron.

The Expence of the Materials here recommended, will be different almoft in every other Place; but in moft Places where there is a Navigation from the Sea, the Expence will be fomething near the following Calculation.

It will take near one hundred and fifty Cube Feet of Lead and fmall Pebbles run together to make one Embraffure; every fuch Cube Foot will require near two hundred Weight of Lead * at fifteen Shillings a hundred Weight, by Suppofition the Pebbles for one Embraffure may coft five Pounds in fome Places; which together with twenty Pounds for Workmanfhip, and ten Pounds to make a Bomb-proof-arch over the Gun, amounts to two hundred and fixty Pounds.

It will take near one hundred Cube Feet of cart Iron to make one Embraffure ; a Cube Foot of caft Iron weighs upwards or about four hundred Pounds Averdupoife, a courfe fort of caft Iron and old Guns, \&xc. may be had in England, for about eight or G 4
nine

[^16]nine Shillings at moft, the hundred Weight Freight included; one hundred Cube Feet of which will coft, at eight fhillings the hundred Weight, one hundred and fixty Pounds; which with twenty Pounds for Workmanfhip, and ten Pounds to make a Bomb-proof-arch over the Gun, amounts to one hundred and ninety Pounds: If proper Pieces of caft Iron for Building can be conveniently form'd from the fmelting Furnace will fave much Expence.

If Pebbles run together with caft Iron will anfwer the End propofed, one hundred and fifty Cube Feet of this Material, will much fecure the Men and Gun; about one hundred and half of caft Iron will (ftrongly) run a Cube Foot of Pebbles together; the Expence of which for the whole Embraffure is ninety Pounds, which with twenty Pounds for Workmanfhip, and ten Pounds to make a Bomb-proof-arch over the Gun, and five Pounds for the Pebbles, amounts to one hundred and twenty-five Pounds,
In the above Eftimate, I do not mean that the Pebbles are to be run together no larger than Foot Cubes; on the contrary, I would have the fmallef Piece in the Work fixty hundred, and upwards to four, fix, and eight Tuns in one Piece; the Front of thefe Embraffures to be flop'd about fortyfive Degrees, that Balls may glance freely off.

Tho' thefe Embraffures are very expenfive, (it appears to me) they will be of a fignal Advantage, efpecially in Places of Confequence; for it is eafy to conceive that the Fire of atrong Batteries, whofe Guns it is next to impoffible to difinount, or deftroy the Men that fight them, will greatly retard the Siege, and to befiege any confiderable Town will coft at leaft two thoufand Pounds every Day the Siege continues, (including the Army's pay) accorling to the Accounts of thofe experienced in Sieges, and by lengthening the Siege a few Days, a Place is

(89)

fometimes faved; if not, a few Days will coft the Enemy, as much more to take the Place, as the Batteries that lengthened the Siege coft building.

The above Expence of a Siege is coarfely taken from Marhal Vauban's Account, of Stores required for a Month's Siege, as inferted in Mr. Fobn Muller's Attack and Defence, Viz.

Stores required for a Montb's Siege.
$\left.\begin{array}{l}\text { Powder as the Garrifon is more } \\ \text { or lefs ftrong }\end{array}\right\} 8$ or $900,000 \mathrm{lb}$. Shor for Battering Pieces - - 6,000
Shot of a leffer Sort - - - 20,000
Battering Cannon - - - 80

Cannon of a leffer Sort - - - 40
Small Field Pieces for defending the Lines - 20
Mortars for throwing Shells - - 24
Ditto for throwing Stones - - - 24
Shells for Mortars - - - $\quad 15$ or 16,000
Hand Granadoes
40,000

Lead Bullets - - - - 180,000
Matches - - - - 10,000 Brace
Flints for Mufkets beft Sort - - 100,000
Plat-forms compleat for Guns - - 100
Plat-forms for Mortars - - - 60
Spare Carriages for Guns - - - 60
Spare Mortar Beds - - - 30 Spare Sponges, Rammers, and Ladles -- 20 Sets Tools to work in Trenches - - 40,000 Several Hand Jacks, Gins, Sling Carts, Traveling Forges, and other Engines proper to raire and carry heavy Burdens; as likewife fome to carry Water to extinguifh Fire; feveral Parcels of fpare Timber for Bridges, Wheel Wrights, Carpenters, \&c.
There are befides feveral other Things neceffary, as Miners Tools, Mantelets, Ituffed Gabions, Pickets, and Gabions in great Quantities, Tools for Smiths, Carpenters, and Wheel Wrights, a Num-
ber of Horfes for the Artillery ; Carts and Waggons fuch as can be procured in the Country are alfo ufed upan Occafion; I think the Defence of the CovertWay may be greatly encreafed by the different Method fhown in Plate .VI. but as that Scale is too fmall to fhow the Method clearly, fee Plate VII.

By Plate VI. it appears that the Baftions that have the Capital Batteries in them, are more eafily maftered than the Baftion between them, that has no Batteries in it but the Flanks, for the Befiegers cannot erect any Battery to make a Breach in the Baftion L, but twelve Guns at leaft will bear upon it from the Batteries in the Baftions G and H, which twelve Guns will do more Execution againft the Enemy's Batteries, than any Number of the Befiegers Guns can do againft the Batteries E F, whofe Guns alfo commands the Baftion L fo greatly, that it is almoft impoffible to take it and make Lodgments there ; but if the Baftion G is attacked, the Battery F, in the Baftion H is too far off to do any great Execution, againft the Batteries the Befiegers will raife to make a Breach in the Baftion G, and the Battery in the Baftion oppofite the Baftion \mathbf{L}, on the other fide of the Town, is aifo too far off, and the Height of the Works will prevent thofe diftant Batteries from feeing the Enemy's Batteries, tho' the upper Tier of Guns in the capital Batteries are defigned to be about fifteen Feet higher than the Pa rapet: Therefore hollow Piles muft be driven and counter Guards, and Mines made before the Baftions that has the Batteries in them, to make thofe Battion as hard to take as Baftion L ; but if the Place is of fo great Impartance, that the Expence of making fuch a Battery in each Baftion as is here propofed can be complied with, and hollow Piles made a proper Ufe of, the Befiegers Batteries, and Mines, will meet fo great Obftructions, that it will be next
to impoffible to take the Place, without a much greater Expence than the Place is worth, and,

Suppofing a watery Situation, where the Befiegers cannol make Galleries under the Ditch, nor dif. mount the Guns in the capital Batteries; I think in this Cafe, it will be impoffible to make a Paffage over the Ditch; for, in my Opinion, no Manwill attempt to make a Yaffage over a Ditch againft the Fire of at leaft eighteen large Cannon; and admit a Paffage is compleated a crofs a Ditch, at the Expence of the Lives of ten or fifteen thoufand Men, and a Breach made in the Rampier by Mines; for I imagine the capital Batteries will not fuffer the Befiegers Cannon to make a Breach. There will be twelve, or eighteen large Cannon to fire into the Breach; and and if (notwithftanding all this Defence) the Beinegers make their Way through the Breach, they will be ftop'd upon the Rampier, in the Middle of a Fire from twenty-four or thirty Cannon, (if there is a Battery in each Baftion, and twelve or fifteen having only Batteries in each other Baftion; according to Plate 6,) by a Wall of Mafonry built on the infide, at a proper Diftance from the Rampier, and a deep narrow Ditch faced with Matonry, with hollow Piles drove it its Bottom if the Ditch is dry, to hinder the Miners making a Gallery through the Rampier, and under the Wall, to blow it up; thisWall and Ditch will at leaft give the Place an Opportunity to capitulate at laft ; for the Fire of the capital Batteries will prevent Lodgments being made by an Enemy, either in the Baftions or on the Rampier. See the Wall and Ditch mark'd M Fig. 4. Plate VI.

The Piles need not be driven in the Bottom of this Ditch till after it is known what Front will be attack'd ; and if the Ground is not Sand nor Gravel, the Piles need not be driven much above feven or eight Feet below the Bottom of the Ditch, for the Ground

Ground being frong Earth, Loom, or Clay, may be bored through t_{1} : Piles, to a fufficient Depth for difcovering the Approach of the Miners piercing their Gallerys, \&c.
It is prefumed the Rampier of moft Places have a Slope on the Infide, near equal to the Height of the Rampier, which Slope I would take away, and make 2 Wall of Mafonry, to gain more Room for the Ditch, and Wall, M. Plate 6. before mentioned.

There are fufficient Room againft, and partly in the Gorge of each Battion, which is at every Corner of this Wall and Ditch, mark'd M. Plate 6. (which Wall and Ditch, may be call'd the capitulating Defence,) to make Places for Mufquetry and Cannon, if neceffary for the Defence of the Wall and Ditch, fufficient to oblige the Befiegers tc make a Breach in the Wall by Cannon or Mines, either of which will be attended with a good deal of Difficulty, and Danger ; the Wall being defended from Cannon by the Height and Thicknefs of the Rampier; and, the Walls own Defence, joined with the Defence of the capital Batteries, will make an Efcalade dangerous, and imprudent, and if it is a dry Situation where Galleries can be made under the Ditches, the hollow Piles in the Bottom of the Ditches made a proper Ufe of, will much retard making Mines under the Ditches, Rampier, or infide Wall, if not wholly prevent their effect.

ObjeEtion. A Breach may be made in this Wall, with the fame Battery that make a Breach in the Rampier, and the Rubbinh will fill up the narrow Ditch between this Wall and the Rampire.

Anfwer. If fo, the Breach muft be made in the Courtain contrary to Art, and as this Wall may be lower than the Rampier, it will require much Time to make a Breach, fo low in the Rampier as to come at the Wall; befides the capital Batteries will all the

(93)

Time do much Execution, againft the Befiegers Batteries; as to the Rubbilh (filling up the Ditch,) it may be taken away as faft as it comes in, for nothing can difturb the Befieged in this Work, but Shells and Stones, both of which are very uncertain in hitting fuch a narrow Place as this Ditch will be.

This interiour Ditch and Wall, may be of greater Defence than is yet imagin'd, by all that is faid; for the fmall arch'd inner Battions mark'd O, at the Corners, may very conveniently be open towards the Place, Bomb-proof, and funk low ; for the Ditch is defigned to be very deep at the Gorge of each Battion, and the Bottom of the Ditch rife towards the Middle, and the fmall inner Battions-Tops or Terra-plain are to rife towards the Middle, fo that the Cannon planted below, will graze along the Bottom of the Ditch, and the Top of the next fmaller inner Baftion half way over it, and the Mufquetry and fmall Cannon planted in Bomb-proof Places, above thefe Cannon that are planted at the Bottom of the Ditch; will alfo defend the Faces, and Tops of the fmall inner Battions, mark'd $\mathbf{O} ; \mathbf{P}$ Stairs down to an under ground Communication \mathbf{Q}, where the Ditch is dry.

RECAPITULATION.

$A^{\text {LL }}$ the additional Strength here propofed to A Places fortified according to the prefent Methods of Fortifying, depend chiefly upon making Batteries in a Fortification, whofe Fires cannot be filenced by the numerous Batteries of Befiegers; and as the weaker Material cannot perpetually reft the Strokes of the Stronger, a Battery muft be made of a Material equal in Strength to Cannon Balls, to effectually refift their Force; for this Reafon, I have chofe caft Iron to build thofe Fronts of the Batteries, againft
againft which an Enemy can bring a great Number of Guns to bear direct; and thofe Fronts which an Enemy can only batter in an oblique Direction, to be built with Pebbles run together with caft Iron; which will refift oblique battering a Time fufficient to tire Befiegers ; and by giving the Fronts of thofe Batteries a great Slope, (about 45 Degrees;) Pebbles run together with caft Iron niay be fufficient, to rerefift any Battering, and will be much cheaper than folid cart Iron, only having the Holes in which the Guns Muzzcls lie to fire through, of ftrong folid Metal.
The Muzzles of the Cannon in thefe Batteries, are to lie nearly fair with the Face of the metal Wall, fo the Befiegers cannot difmount them nor kill any Man in the Battery, excepting a direct Shot hitting the Face of the Muzzel can difmount a Gun; which being admitted, yet the Difficulty of hitting fo fmall an Object is fo great, but few Guns will be difmounted in that Manner; and the Enemy's Guns and Batteries will fuffer greatly all the Time, and I cannot conceive it poffible for the Befiegers to bring fufficient Metal Batteries to a Siege; therefore a Place defended by a few fuch Batteries, as are here propofed, will have great Advantages over the Befiegers Batteries and Approaches.

Thefe Metal Batterics can only be deftroyed by Mines, and that only wher in a dry Situation; but if proper practicable Means are made Ufe of, to obftruct the Enemy Miners, it will be next to impoffible they can be blow'd up; for as thefe Batteries are of a fmall Extent, they may be well guarded with Mines, and Galleries; which hollow Mines and Galleries, being properly guarded with hollow Piles, in the Manner already defcribed, will give an Enemy almoft endlefs Trouble to get under the Batteries.

(95)

mber ch an to be Iron; icient thofe bbles to re-- thari h the folid
teries, Wall, ill any itting Gun; itting will be Guns and I bring fore a e here e Be -
ed by ; but to oboffible re of a Mines, s , be-Mant end-

The

The greateft Objection I can conceive againf Metal Batteries in a Fortification, (the Expence expected) is the Mifchief Balls will do by rebounding, which in a large Place may prove confiderable; but in Places of a middle Extent, Balls generally will fly clear of all; as the Cannon mult be planted very near if they hope to do any Execution, and confequently the Balls will ftrike the Slope of theBattery very ftrongly, with an up. ward Direction, fo as to rebound over the higheft Buildings in a Place of midling Extent.

It the metal Batteries according to the Plans 1.2. 3. Plate VI, are too expenfive for Places of common Importance, Batteries of Metal lefs expenfive, may be made that will add confiderably towards rendering the Advantages of Fortification equal to thofe of the Attack.

I would make thefe Batteries circular, with Gunports about nine Feet afunder, that more Guns may bear to an Object, and every fecond Gun to be prepared and fired, while the next Gun on each Side (being run in by the Recoyle in firing) are loading, by this Method almoft a conftant Fire may be kept up, and near double the Number of Guns will bear upon an Object (and half fire at a time) as can be brought to bear upon an Object, through a thick Parapet, where there are but one Gun in every feventeen or eighteen Feet length of Parapet; and tha: the Guns may recoyle furthe to give Room, the Plat-forms may be laid level, or if need be inftead of the Platforms Ends toward which the Gun recoyls, being higherthan the other End, they may be lower if Neceffary.

If a Place is of no great Importance, and of a fmall Extent, one circular metal top'd Battery raifed in the Centre of the Town, to fire (on every Side) over the * Tops of the Buildings, will confiderably annoy

[^17]
(. 96)

annoy the Befiegers; while at forme considerable Distance beyond the Works; the exceffive Height of this Battery, with Guns the Enemy cannot difmount, (till they have battered away the olid Masonry below the Metal Top, fo as to throw it down; but this will both require much Time, and colt the Enemy \dagger dear, if the Battery is built as it should be,) will be a great Annoyance to the Befiegers Batteries, and will well defend a Breach on any Side of the Town; the many Rooms under this Battery, being Bomb-proof, will be exseeding useful; nor need this Battery have any Barftons to defend it when the Town is taken, nor cover more Ground than is neceffary to fupport the Supertructure \ddagger, if in a wet Situation, and yet be defenceable to hold out a confiderable Time after the Town is taken, as the new Method of fortifying contained in the next two Chapters will frow ; fee Fig. 10. Plate VIII.

C HAP. III.

Explanation of Fig. i., Plate VII.
A new Method to fortify a Re-eniering Angle,
AA The Ditch at the Foot of the Efcarpe. BA The loping Heigth of the Body of the Place.

+ This Battery will much annoy the Befiegers in their Approaches, and ruin their Batteries till they get near the Body of the Place, and are covered by the Works of the Town.
\ddagger If the Situation is dry, the Bottom of this Battery, being of a fall Extent, may be well fecured with Mines, and hollow Piles, at a little Expence; and the Bottom being very: thick of folid Mafonry, with a great Thiciknefs of Earth round it, will require a very confiderable Time to make a fufficient Breach with Cannun.

ie.

ace.

$C D$

eir Ape Body n.
being Ind holkg ves h round afficient

CD The Breadch of the Rampier, exclufive of the Slopes and Parapet.
E The inward Slope.
F. Traverfes

G Places of Can on and Mortars.
H Lodgments covered Bomb-proof.
II Paflage round the Body of the Place.
KK Section through FGH.
L A Recefs or Slope from MM equal to the Parapet q , where at L is an Opening up behind the Parapet for to fire Mufquets or Piftols, or to throw Granadoes down to MM, or any Spot clofe along the Bottom of the Wall AA ; and to a confiderable Diftance from the Wall into the Ditch.
NN The Profile of a new Method of Fortification.
0 The Ditch.
P A Covert Way round the Foot of the Efcarpe.
R Paffages under the Rampart to S a fecure Place for Mufquetry to defend the Covert Ways, Ditch, \& 8 .
7. 8. 9. 10. 11 . Profile of the Covert Ways.
8. The great Covert Way.
9. Paffage round the Covert Way at the Top of the Steps up which the Mufquetry mount to fire.
10. II. Earth to fecure the Men from Shells, Stones \&c.
13. A Gallery round the Place below the Covert-way,

Explanation of Fig. 2.
A Method to make a Covirt Way of greater Defence.
T A Stone or Brick Redoubt, in the Place of Arms.
UU Arches Boom-proof.
WW A clear Paflage, quite round under the Arches UU.
X A Ditch ending at the Traverfes ZZ .
Y Piers of Brick, or Stone, over which a Platform Thicknefs of Earth, in Time of a Siege. Z Traverfes.
I Paffage round the great Covert-way.
2 Steps up, from under the timber Platform made Bomb-proof with Earth, to fire over, and upon the Glacis.
3 The great Covert-way.
${ }_{4}$ The little Covert-way.
5. Paffages through the Traverfes under Arches. 6 Stairs of Communication.

As all, or as many as poffible of the Cannon, which can play upon the Glacis are generally filenced, before the Befiegers attempt to make Lodgements on the Covert-way, or plant Batteries upon the Ridge of the Glacis ; and Batteries on the Right and Left of the Attack, can play upon the Top of the Parapet of the Body of the Place, and Ravelin, and leffen the Fire of the Mufquetry, all the while the Befiegers are raifing Batteries, upon the Ridge of the Glacis ; fo that the Flanks are almoft the only. Defence the Befiegers have left; (after the Outwarks are taken) whofe Defence can annoy the Befiegers but very little upon the Ridge of the Glacis, or on the Covert-way; fo that Places generally capitulate foon after the Befiegers are Mafters of the Co-vert-way, and have begun to batter in Breach; for the numerous Batteries of the Befiegers, having in a great Meafure filenced the Befieged's Fire, the making Breaches, and croffing the Ditch, have feldom met with many Difficulties of late, but what were eafily furmounted, by the fuperiour Strength of the Befiegers; therefore, to render Fortification in this, and other Refpects, more equal to the Attack, the Profile 7, 8, 9, 13, Fig. 1, and the Plan Fig. 2, Plate 7, fhews that a Covert-way may be made of fo great a Defence, without augmenting the fth of the on in this, track, the an Fig. 2 , be made nting the Garrifon

Garrifo: as to coft the Befiegers more than double the hithertc common Expence of taking Covert-ways.

Remarks on Fig. I and 2 ; Plate VII.
It appears to me the Troops cannot be drove out of this new Covert-Way, Fig. 2, Plate VII, by Sword in Hand only, let the Befiegers be ever fo ftrong, without lofing five Hundred Men, or more, for every Hundred that defends the CovertWay; as I think will appear to any one who underftandsAttack and Defence, by infpectingPlateVII.

Nor can they be drove out of this Covert-Way by Shells and Stones, till all, or the greateft Part of the Platform covered with fix or feven Feet Thicknefs of Earth, IO, 11, Fig. ' I, are beat down by Bombs ; which will coft the Befiegers much Time, as many of their Bombs will mifs the Parapet ; it being too nice a Point to throw every Bomb to a certain Length,or alway's within twenty or forty Feet of a certain Length. If the Befiegers attempt to take this Covert-Way by Mines, the Gallery I3, and a proper Ufe made of hollow Piles and ftinking Matter (mentioned before) will enable :he Befieged to greatly obftruct the Befieger's Mines; and many Mines muft be fprung before this Covert-Way, the whole Length of the Front attacked, is rendered Defencelefs; for a Breach alone in the Parapet N , will be of fmall Advantage to the Befiegers.

Neither can the Befiegers raife Batteries upon the Ridge of the Glacis, without much Lofs, till the Covert-Way is in their Poffeffion; for notwithftanding the Befiegers may from a Sap, on the Ridge of the Glacis N, ply the great Covert-Way 8, 9 , with Granadoes fo as to drive the Troops out of it, for a time; the Troops in the little Covert-Way 7, will prevent the Befiegers from making Lodgements in the great Covert-Way, till both the Covert-Ways are taken, as will appear hereafter; and Troops

(100)

placed at 12, will do much Execution in Care of an Enemy's March upon the Glacis, to attack the Covert-Way before the Parapet 11 is deftroyed; and the Mufquetry at S and P will alfo do much Execution on the Covert-Ways, and prevent the Befiegers making Lodgements there, even fuppofing the Troops are drove out of both the Covert-Ways, to do which will coft the Befiegers dear; for till the Parapet II on the Covert-Way is deftroyed, the Defence at *S cannot well be ruined, it being Bomb Proof above, and covered from Cannon by the Parapet II ; the Covert-Way P at the Bottom of the Efcatpe will likewife help to defend thefe CovertWays ; fo there muft be four Defences deftroyed before the Enemy can maintain their Ground on the Covert-Way; and as two of thofe Defences caininot be filericed, till the Parapet 11 is thrown down, and Batteries raifed upon the Ridge of the Glacis, thofe two Defences will te a confiderable Obftruction to the Befieger's, all the Time they are raifing Batteries on the Ridge of the Glacis to filence them; and by infpecting Fig. r. it is evident the Covert-way can not be taken till the Defences P and S are ruined, which cannot well be done (as I faid before) till the greateft Part of the Parapet is is thrown down; and Parapet 11 may be made fo large a Body of Earth, as to coft the Befiegers much Time to deftroy it, even in a dry Situation where Mines can be made; but if there is Water to fill the Ditch, fo that Mines cannot be made, fuch a Parapet will very much retard the Siege.

The Plates VI and VII being well undertood, it (in my Opinion) will appear that Ricochers and Stones will have but little Effeet upon the additional new

[^18]

new Works; Shells and Cannons will in Time deftroy thefe Defences, and the ftrongeft Works cannot refift Mines properly made, yet notwithftanding which, it appears to me the Methods here propofed to Itrengthen. Places already fortified, are not wholly chimerical.

CHAP. IV.

Explanation of Plateq.

IN this Plate is fhown how a Circle may be fortified, which I think is an entire new Invention, Fig. 1. The Plan, and Fig. 2. The Profile, which being connected by dotted Lines, their Relation are eafily undertood, and Fig. 2. (The Profile) being explained, Fig. 1. (the Plan) need little explaining.
Fig; 2. A. The Glacis.
B. The great Ditch.

- Murquetoon, Piftol, and Granadoe Defence; for the Foot of the Scarp, and Bottom of the Ditch.
D Paffage under the Rampier to \mathbf{C}.
E The Entrance into the round Lodgings, G. Fig. ${ }^{1}$.
F Store Rooms, and Bomb-proof Lodgings, for Men, alfo a Paffage round the Place under cover Bomb-proof.
G. Fig. 2. Bomb-proof Places quite round under F.

H The Ditch round the Keep or Cartle.
I A wide Place to give Light to the Windows of the Keep or Caftle, (there are to be no Windows on the Outfide in the Time of a Siege,) and to.give Light alfo to the Stair-cafe.
M The Stair-cafe.

N The Mettle-top, a ftrong Battery of Cannon, Bomb-proof, and open behind.
O Where ftrong Beams are to be laid, and cover'd with a fufficient Thicknefs of Earth, wher the Place is befieged.
Fig. 3. The Elevation from the Cordon downward of the Mufquettoon, Piftol, and Granadoe Defence, to a Quarter of the Keep, A A Fig, i. Fig. 4. The Elevation of the Line B B Fig. 1. where are Store-rooms, and Lodgings for Men, and a Paffage round the Place Bomb-proof.
Fig. 5. Elevation of the Line CC fhewing the Entrances of the Paflages that leads to the Mufquettoon, Piftol, and Granadoe Defence C, for the Font of the Scarp, and Bottom of the Ditch.
Fig. 6. Elevation of the Scarp.
Fig. 7. A Plan, or rather Section of the Mufquettoon, Piftcl, and Granadoe Defence at the dotted Line in Fig. 6: thewing the Length, and Depth of rhe Receffes at that Place.
Fig. 8. Plan of the Mufquettoon, \&c. Defence, at the Cordon IE in Fig. 6.
The Seat of the Parapet covers the fmall Openings FF fo far as the black Line GG, fo that a fmall Part of the Openings FF are within the Parapet; where Murquettoons, Piftols, \&c. are fired down, and Hand Granadoes thrown down upon the En my at the Foot of the Scarp and Bottom of the Ditch. Figures, 9, 10, 11, 12, are Copies of Figures 2, 3, 6, Plate 8, by a larger Scale; which fhews the Parts more diftinctly; therefore the Figures 9, 10, 11, 12 , being explained, the Figures 2, 3,6 , are alfo explained.
Plate S. As Figure 9, and Fig. 10, are a Copy of Protile, I explain Fig. 2, by explaining Fig. 9, and io.

Expla-
annon, cover'd ten the
jnward je DeFig, 1. where n, and he Enufquet for the itch.
ufquetdotted Depth efence, a fmall arapet; down, En $\quad \mathrm{my}$ Ditch. ares 2, fhews Figures ures 2, Explanation of Fig. 9, and io. PP The Glacis.
$Q Q$ 'The Ditch and Covert-way.
K The Recefles for the Mufquetoon, Piftol, and Granadoe Defence.
S Place for the Troops to defend the Foot of the Scarp, and the Ditch, with Mufquettoons, Piftols, Granadoes, \&c.
T Pafiage under the Rampier into S .
${ }^{1}$ ' Door into the Store-rooms mark'd G Fig. I.
W Store-rooms, and a Bomb-proof Paffage round the Place.
X Lodging-rooms and Store-rooms, quite round the Ditch, Bomb-proof.
Y The Ditch.
Z The Recefs through which the Foot of the Caftle and the Ditch are defended by Mufquettoons, Piftols and Granadoes, \&c.
I The Place to hold the Troops that are to defend the Ditch, and Foot of the Caftle.
2 A frong Battery of Cannon, defended by a metal Parapet; and the Outfide of the Caftle-top to be metal, five or fix Feet below the Plat-forms.
3. Strong Beams to be laid upon the Roof, and cover'd with Earth Bomb-proof, in Time of a Siege.
4 An open Place to give Light into the Caftle and Stair-cafe (there being no Windows in the Outfide of the Caftle in time of Danger.)
5 A circular Stair-cafe.
6 A Place for Mortars, Cannón, and Mufquetry.
7 A Paffage under Ground, into the Ditch and Covert-way, Q.
89 Galleries round the Place, with hollow Piles to ftop the Enemies Mines.

Explanation of Fig. il and 12.
AB A thort Length of the Elevation of Fig, 10 at Z.
CC The Foot of the Caftle-wall, and alfo the Wall of Fig. 9 at Q_{2} defended down through DDD, from behind the Parapet EE.
FF The Top of the Parapet, wherein is an Arch behind quite round the Place to lodge Mufqueteers.
GG Spaces through which the Murqueteers are to fire.
HH Strong Pieces of Metal well fixed, to fupport the Supertructure, and thee Arch behind the Parapet EE.
Fig. 12. Is a fhort Length of the Elevation of Fig. 9 at R, and is in all Refpects in its Defence the fame as Fig. 1f, fo the Explanation of Fig. if is alfo an Explanation of Fig. 12.
The Method of building a Fort according to Plate 8, is fo plain and eafy by Infpection, that to give a Conftruction of it here, would be giving the Reader unneceffary Trquble,
Remarks on Platc 8. Fig. 1, Fig. 9, and Fig. io.
The Plan this Fort is built upon, being a Circle the Ricochet Batteries are of little or no Service againft it.

The metal Battery 2 Fig. 10, upon the Caftle, ficonded by the Cannon and Motars, that may be planted at G Fig. 9, will ende it difficult for an Enemy to do much againft the Place with Cannon; and as every Part is in a great Degree Bomb-proof, it will take a long Time to reduce the Place by Boinbs only.
Figure 9. Is a very thick Parapet, it being eleven Fathoms thick, will coft a long Time to make a fufficient Breach, and Cannon planted at a Diftance cannot fire upon this Parapet; the Direction of the

(105)

Glacis PP being near two Fathoms higher, effectually covers it. - The metal Battery is the only Objeet an Enemy can batter, till they advance their Batteries upon the Edge of the Ditch, to do this will coft them dear, as the metal Battery, and all the Mortars in the Place will inceffantly play upon them, as alfo will the Cannon planted at G, as foon as they appear upon the Edge of the Ditch.

This Fortification being Bomb-proof in every Part, will greatly fecure the Troops, and as the Befiegers in their Approaches cannot fecure themfelves fo well from Bombs, as they do from Cannon, I would advife a good Number of Mortars, Cohorns, \&c. in every fortified Place, when in Danger of being befieged.

If an Enemy attempt to take this Fort by Mineing, the Galleries 8. g, with hollow Piles ma dea proper Ufe of, will veiy much obftruct their Approach, and when the Galleries can no longer be defended, fuffocating Smoke may be introduced to fill the Gallerie:, thro' Places prepared before for that Purpofe, and fo murh ftinking Smoke may be injected by Beliows, as to render it almoft inipoffible for the Miners to proceed farther.

Admit the Miners by much Induftry make a fufficent number of Openings to the Day, and by that Means, in fome Degree, clear away the Smoke, and make Mines under Fig. 9. It will require fome coniderable Time to make fecure Lodgments in Fig. 9, the Caitle being to near, and capable of a good Defence.

If Plenty of Water is to be had (by Springs or otherwife) in the Caftle, the Enemy, in Fig. 9 may be very much incommoded, by throwing Water into their Works, and make their Lodgments very uncomforfable,' if not intolerable, efpecially in cold Weather.

(106)

As it is my Opinion, this Place cannot be taken by Efcalade, I fay nothing on that Heäd.
The metal-top'd Caftle, Fig. ro, Plate 8, here Spoken of, may well ferye (with fome fmall Alteration) for a grand Battery in the Middle of a Town, as fpoken of in the End of the fecond Chapter.

Explanation of Fig. i. Plate 9.
The Side AB 328 Fathoms and a half, the longeft Diftance between the Defences CC, at each End of the Ditch LI 133 Fathoms.
D The interior Slope.
E Terre-plain of the Rampier.
F Steps to raife the Mufqueteers a fufficient Height to fire over the Parapet.
G The Top of the Parapet.
H Interior Slope.
I A little Ditch at the Foot of the Scarp:
K The Covert-way in the great Ditch.
L. Glacis in the great Ditch.

M A narrow Covert'way,
N Broad Covert-Way.
0 Steps up for the Murquetry to fire upon the Glacis.
P The Glacis.
Q A Second Glacis.
R The lower Tier of Guns in the metal Batteries, the Corners Rarch'd Bomb-proof, and the Arches continued under the upper metal Battery S to the Opening T.
S The upper metal Battery raifed above the metal R, See the Plans, Fig. I, 2, 3. in Plate 6. T A fquare Opening quite down to the Foundation; the whole Height confifts of three Heights of Arches, the firt. Height of Arches being very high, will be two Heights of Rooms for to hold Bellows and People to blow away the Smoke: There may be many more Vents thian the Opening T.

The

Fig. 5.

Fig. 4

पफप्य

Fig. 3.

A.

The white Places are the Embraffures for the Cannon, and are reverle to the Embraffures generally made, the Nature of working Cannon in thefe Batteries are fhown in the fecond Chapter, Page 85 . Explanation of Fig. 2, Plate 9.
Fig. 5. The Profile of Fig. 2, along the Line XY, Z a Covert-way, the fame in all Refpects as N in Fig. 1.
a Where Troops are to lie to reft under Bombproof covering, while others are on Duty at \mathbf{z}.
b A fmall Redoubt to defend the Salient Angle.
c A Glacis before the Redoubt.
d Arches Bomb-proof to form a Terre-plain and Parapet for a Glacis.
e Steps down to under-ground Communications with the great Ditch L, and to come out at f.
f Doors in the Counter-fcarpe to under-ground Paffages into Fig. 2.
g Traverfes to cover the Troops from the Enfilades; while they defend Fig. 2.
The Explanation of the Works cut by the Line, U. W. Fig. 2.

Fig. 4. Is the Profile along the Lines, U W by a larger Scale, therefore I will explain by the Profile, and the correfponding Figures 1, 2, 3, \&c. in the Plans of the Works Figure 1, will make thofe Plans underftood.
U The Coyn of the Scarp of the Body of the Place.
1 A Ditch at the Bottom of the Scarp.
The Space between I and 2, a Covert-way.
2 A Parapet to fire over to defend the Ditch I, and the Foot of the Scarp, Fig. 1.
The Lines between 2 and 3 reprefents Steps, up which the Troops afcend to fire over the Parapet 2.

3 Is arch'd under and to be cover'd Bomb-proof. 4 A deep narrow Ditch, into which the Shells will roll, that falls upon 3 and 5 .
5 A fecond Parapet. The Lines between 5 and 6 reprefents Steps, up which the Troops afcend from under the Covering 6 to defend the Ditch and Glacis L.
6 Is arch'd under, and the Arches covered Bomb. proof.
7 A deep narrow Ditch, into which the Shells will roll that fall upon 6 and 8.
8 Is arch'd under, and the Arches covered Bombproof.
The Space between 8 and 9, reprefents Steps, up which the Troops afcend to defend the oppofite Part of the Covert-way.
9 A Parapet behind which Troops defend a Part of the Covert-way MN.
10 A Part of the great Ditch and Glacis L.
It may be proper to mention, that the Works cut by the Line U h W, and mark'd c, defend the great Ditch and Glacis, i k, the fame is to be underfood of the Works under the metal Battery B.
1 A Place to defend M, and prevent an Enemy being in Safety at M , in cafe Poffeftion be got of that Place by underground Works; more need not be faid by Way of Explanation, all the Works in this Plate being plain and eafy to undertand, (by any one who have but taken a little Trouble to qualify themfelves for fuch Works) except the metal Batteries, and their Conftructions may eafily be undertood, by any one who is a Judge of Buildings of this Sort; by carefully infpecting the Plans 1, 2, 3, Plate 6 , and attending carefully to what is written in Chap. 2, concerning metal Batteries.
Fig. 3. A Profile a long the Line, p. q. Fig. 1. Re-
fafe B, The 2, al If Fig. meta great fence wher Ufe

(109) Remarks on Plate 9.

The detached Works Fig. 2. may be omitted, but as the principal Part of this Work is only a Covert-way, if the Parapet of Earth fupported by Piers to cover the Troops from Shells, Stones, \&\&c. are not made, the Expence of making fuch Works is inconfiderable, and they will confiderably obftruct the Befiegers in approaching the Place, for,
The Befiegers cannot make a Parallel fo near the Covert-way, by feventy or eighty Fathoms, till Fig. 2 is taken, as they can if thefe Works are omitted, and, thefe Works give the Befieged an Advantage of fallying and retreating with the fame Safety when the Enemy is two hundred and twenty Fathoms from the Covert-way, as they could have without thofe Works, when the Enemy is within one hundred and forty Fathoms of the Covert-way.
When the Befiegers are two hundred and twenty Fathoms from the Covert-way, they will be obliged to keep as ftrong a Guard in the Trenches; and Parallel, as, they need keep at the Diftance of one hundred and forty Fathoms, if thefe Works are omitted, and confequently muft from that Diftance make their Works larger towards the Place, which will coft more Labour and Time.
The Communication is fo fafe and eafy between the Body of the Place and Fig. 2, the Troops will well defend that Work ; and the Redoubt being a lafe Retreat under the Fire of the Batteries, A and B , and the fmall Arms in the Covert-way, \&c. The Befiegers will fuffer greatly if they attack Fig. 2, above Ground, and make Lodgments in it.
If the Befiegers pafs by the detach'd Redoubt, Fig. 2, and make their Efforts between it and the metal Batteries A and B, the Befieged will have great Advantages over the Enemy, they being in Defences fo near on each fide the Befiegers Trenches, where the Befiegers have not fufficient Room to make Ufe of their fuperior Strength. Fig. 1.

Fig. 1. The Length of the Front AB being \dagger ${ }_{32} 8$ Fathoms, is a greater Defence, and will coft more Labour to approach it, than a fhorter Front; here is notining in any Part between Fig. 2 and this Front, to afford the Befiegers any Cover, till they make it ; fo th. whole Fire of the Front can fall upon any one Spot of the Glacis P beyond the Covertway, and the Glac is L in the great Ditch; and the Works c and IC, will contain 140 Mufqueteers at each Angle of the Square, to defend the Ditch; that is, 140 Mufquetcers can fire all together for the Defence of each Front and Ditch; and, thefe Works are fo well cover'd by the metal Batteries, and Covert-way, that they cannot be Enfiladed from any Part; and are in a great Meafure fecured from Bombs, fee the Profile Fig. 4, Plate 9. The Utility of this new improved Covert-way is fhown in the Remarks on Fig. 1 and 2, Plate 7, Chap. 3 .

Some of the Advantages the metal Batteries will bring on the Side of fortified Places, are fpoken of in explaining Plate 6, Chap. 2. Therefore I will only in this Place fpeak of them with Regard to their Situation in Fig. r, Plate 9.

It appears by Fig 1 , that a Square having fuch a Battery as A or B at each Angle, will be well defended by Cannon, and the Batteries will alfo well defend each other, and there is no Spot within the Reach of thofe Batterics but twelve Cannon, at leaft, can bear upon it; and as the upper Tier of Guns in thefe Batteries will be about fifteen or eighteen Feet higher, than the Parapet of the Place, will greatly aninoy
\dagger The Front fhould not much exceed $j=3$ Fathoms, becaufe the Ditch L will be too long between the Works C and IC, to be well defended by the Mufquet ; but if a Place is of fo great Extent as to require a Square whofe fide is above 360 Fathoms, and under 700 Fathoms, Works may be made in the Middle of the Front for Mufquetry to defend the Ditch.
annoy the Befiegers in their Trenches, and as fix Guns at leaft and often eight or ten from each Battery, that cannot be difmounted, will bear upon the Enemy's Works ; I do not conce:ive how the Befiegers can advance their Works fo near as to take the Covert-way, againft fuch a ftrong Cannonade as may be kept up by thofe Batteries.
It is eafy to perceive that the Covert-way cannot be enfiladed, nor doth it need any Traverfes, altho' it were a common Covert-way, the metal Batteries effectually covers both the Covert-way, and the fmall Arms that defends the Ditch from Ricochet firing.
I would have the Rampire of the Body of the Place arch'd behind the Parapet, like the Covertway to fecure the Troops from the Ricochets Shells, Stones, \&c. but if it is not arch'd, the Ricochet Batteries that enfilades it, as there muft be one on each fide of the Place to enfilade the whole Length of the Front, it will be expos'd to the Fire of all the metal Batteries, which I think will be more than fufficient to filence all the Batteries the Befiegers can raife againft the Place.

Thefe metal Batteries are of a finall Circumference, and may at a fmall Expence be guarded well with Galleries, and Mines, and hollow Piles, and fmall Pipes laid when the Place is built, to fill the diftant Galleries with fuffocating Smoak, when neceffary, and maintain them full; but thefe Pipes muft be arfully laid, that the Enemy cannot eafily find them to fop them up.
The Reader will eafily obferve here is a great Dependance upon the metal Batteries; it being taken for granted, the metal Batteries (being high and ftrong, , will fo much obftruct the Enemy's Batteries, as to render their Cannon of little or no Effect againft this Sort of Fortification, and reduce the Methods of Attack to Bombs, Mines, and the old Cuftom

Cuttom of Rolling-Banks, in a dry Situation; and in a wet Situation, to Bombs and Rolling-Banks only, and confequently render good Fortifications whofe Ditches are full of Water, and carnot be drained dry, in a great Meafure impregnable.

Tho' the Expence of metal Batteries will be very confiderable, yet, when it is confidered that few other Works need be made (except it be thought neceffary to have Steccadces ro prevent the Town's being infulted or furprized in the Night, or a Rampier of Earth to defend the Buildings in the Town from Cannon;) it is not improbable but a Place may be fortified as cheap with metal Eitteries, as with Mafonry and Earth, efpecially where ftrong Fortifications are made.

With refpect to the Number of Troops to defend a Fortification according to Plate IX. As there are only four Sides or Fronts to defend 4800 Men, I think, is a good and fufficient Garrifon for a Place fo fortified; and there is about as much Ground contained within this Square, as is within M. Vauban's Hexagon, whofe Side is 180^{*} Toifes; and as an Hexagon has fix Sides to be defended, and every Side of no eafier Defence than the Side A B, Fig. i, Plate IX, it appears the Hexagon Mould have a Garrifon of above 6000 Men, to defend it as well as Fig. I. Plate IX, can be defended by 4800 Men. And whither a Hexagon of the prefent Fortfication, with a Garrifon of 6000 Men, can make fo good a Defence as a Square fortified according to Plate IX, with a Garrion of 4800 Men , I leave to the Judg. ment of Engineers who are well acquainted with the Methods of attacking and defending Places.

It being at prefent univerfally believed, that nothing can be built with a tolerable Expence to defend

[^19]on; and g-Hanks fications arnot be \pm. be very tr few oght newn's beRampier vin from may be rith Ma-rtificati-
d defend here are Men, I a Place Ground M. Vauand as nd every Fig. 1, have a s well as o Men. fication, good a late IX, e Judg. with the
hat noo defend
a Place, but Cannon will beat it down; therefore it may be proper to give a more particular Account of my Ideas, relating to the Conitruction of Batteries, that carnot be beat down by Cannon nor Bombs.
A few Experiments are neceffary to fix the Thicknefs of caft Iron, and Pebbles run together with caft Iron, \&cc. fufficient to long refift, and break the heavieft Balls, but not having an Opportunity to make fuch Experiments, and altho' no Theory that I know of gives any Light to this Cafe, I will take it as a Thing certain, that lefs than thirty Inches thicknefs of cait Iron, will long reift and break the heavieft Balls.
That Cannon-Balls will break, is beyond Difpute with me, I having feen two Pounds and half Balls fly in Pieces, when thrown by a Man upon a fmooth fix'd large Pebble Stune.

There are feveral Ways to ufe Stone and Metal in making Batteries, whofe Guns will be made the more difficult to difmount, according to the Importance of the Place, and the Expence thought proper to beftow upon it.
There are large Stones of the Pebble Kind, in many Places where I have been, that will make very ftrong Batteries; they are indeed very hard to work, but a Machine may be made that will work them tolerably cheap. This Sort of Stone will not fly in Splinters near fo much as the Stone commonly ufed in making Batteries; and it is by much the ftrongeft Stone I know (and I have dealt with Stones this Thirty Years laft paft,) and when in a large Body, not many Degrees weaker than caft Iron; and will ftand longer againft Time and Weather than any Sort of Iron : In the North of England this Stone is called whin Stonc.
In building a Battery with this Sort of Stone, I would reconmend a Piece of ftrong Metal to have
the Hole through it for the Guns Muzzle \dagger to lie in; and that the Wall have a Slope of 35 or 40 Degrees, efpecially from five or fix Feet below the Top.

Batteries may be made that has only Metal extending four or five Feet on each Side the Gun, to put the Gun's Muzzle in to fire through, and an Arch over the Gun, Bomb-Proof; the other Part of the Merlons may be of Mafonry or Earth. This Sort of Battery will much better fecure the Men and Guns, than any Battery yet built, according to the Accounts I have had from Authors, and by what I have feen. The Expence of planting Guns in this Sort of Batteries are mentioned in the fecond Chapter.
Batteries being faced with a fufficient Thicknefs of Metal,'that is at leaft equal in Strength to the Metal Cannon-Balls are made of, there can be no Doubt that the Balls fired directly againft fuch Batteries will break in Pieces, without making any confiderable Impreffion upon the Battery, as may be eatily proved, by taking a Ball, or if they pleafe, one Hundred or more Balls of Stone, if a real Trial with caft Iron be thought too expenfive, and throw them with a fufficient Force, or fire them out of a Gun againft a Stone of the Kind, that is but three or four times the Ball's Diameter in Thicknefs, and well back'd with Mafonry, and the Balls will all break, without making any great Impreffion on the Stone that broke them.

Having fufficiently explained (to thofe who are acquainted with Fortification) what Sort of Batteries I think is the beft for Defence; I will in the next Place defcribe the Methods I would take in a wet Situation

+ It is neceffary to remember what is faid in the foregoing Pages Chap. 2, concerning working Guns in thefe Sort of Batteries, where it is reprefented that the Muzzles of Guns are to lie in their Port-Holes, fomething like a Ball in a Socket, will that turn any Way and noi make any Opening.
lie in; egrees, etal exjun, to and an er Part
This Ien and f to the what I in this fecond
icknefs he Me Doubt ries will derable y provundred ift Iron with a gainft a r times back'd without at broke
who are 3atteries he next in a wet ituation foregoing Sort of Guns are a Socket,

Situation, to fortify Places (withoint metal Batteries) fomewhat different to the prefent ufual Methods.

C H A P. V

IT is pre-fuppofed there is always Plenty of Water to fill the Ditches of the Place, fpoken of in this Chapter, to a proper Height; and alfo Sand, Stones and every other Material neceffary for the Work, and to be had in fufficient Quantities.

In the firf Place, I would have the Covert-Way upon the Surface of the Ground, fuppofing the Ground not above four Feet above the Surface of the Water ; and if the Place is of Importance enough for the Expence, raife Piers upon the CovertWay about five Feet high, let their Diagonals be nearly perpendicular to the Sides of the Place, Faces of the Ravelins, \&cc. Lay fufficient Aiches upon thefe Piers, take Earth from where the Covert-way is to be; and from a narrow Covert-way that I would make (within a Foot or lefs of the Surface of the Water) round the Infide of the arch'd Covert-way, to make a fufficient Parapet upon thefe Arches over the Covert-way; and make the Glacis with Sand, all to within eighreen or twenty Feet of the Covertway, and cover the Sand with about a Foot thicknefs of Earth : There mult be Steps up from under thefe Arches, to within about four Feet of the Top of the Glacis. See the Plan and Profile of the Covertway, Plate VII.

The Ditch to be dug and taced in the ufual Manner; but in raifing the Works, I would proceed in the Manner following:

Having lined the Side of the Ditch, next the Body of the Place, nearly as high as the Ground; fet oif from the Infide of the Wall, fix or feven Fa. thoms inward, and there dig a Foundation about

(116)

eight Feet broad, and about two Feet below the Surface of the Water in the Ditch; upon this Foundation make a Wall roind the Place as high as the Works are to be, and make an Arch againft the Bottom of the Outfide of this Wall, for a Gallery quite round the Place, and raife the Earth behind the Wall as ufual, for the Rampire and Parapet; then raife a ftrong Wall upon the Lineing of the Ditch, fo high that the Top of the Parapet have a proper Direction towards the Glacis; and make an Arch againft the Bottom-of the Infide of this Wall, alfo for a Gallery quite round the Place. Thefe Arches to be made without Mortar, that Water may run freely through them. When this Wall is fufficiently dry, fill the Space between the Walls with Sand; the fame is to be done in raifing the Outworks.

I would make the Infides of the Outworks of Stones, as much as poffible, fo that the Befiegers may not find Earth in the Outworks to raife fufficient Batteries.

The Flanks to have as much Room in them as poffibly can be made; I would cafemat two Tier of Guns in the Flanks next the Ditch, the low Tier not more than three Feet above the Water in the Ditch; and if the Height of the Works will admit of it, make a large retired Flank, to fire over the cafemated Batteries mentioned above. The Method to clear cafemated Batteries of Smoke, is fpoken of in Chap. II.

To defend a Covert-way with Steccadoes or Palifadoes, I would make vertical Openings at the Bottom of the Breaft-work or Parapet of the Glacis, in which the Steccadoes is to ftand, and be capable of lowering or raifing at Pleafure ; or fix Stocks or fhort Steccadoes about three Feet and an Half high, or their Tops to be about fifteen Inches below the Ridge

(117)

w the Founas the ft the Sallery sehind rapet ; of the have a ake an Wall, fe Aror may s fuffiIs with e Outorks of fiegers fficient
hem as Tier of ier not Ditch; , make emated b clear of in or Palie Bot. cis, in able of br fhort igh, or ow the Ridge

Ridgre of the Glacis, and made fo as to receive a Top of about three Feet and an Half long, fomething of the Nature of Bayonets upon Mufquets, or they may have a Joint near the Ground, by which Means they may be laid declining one upon another (fomewhat like the Stalks of Corn blowed down by a ftrong Wind) that their Tops may lie below the Kidge of the Glacis, and yet be capable of being raifed in two Minutes that their Tops fhall be two Foot above the Ridge of the Glacis. It would be Madnefs to the higheit Degree for Troops to leap over thefe Steccadoes, as there are a Flight of fteep Steps on the Infide; it would be ten to one againft every Man that he will either be killed, or hurt fo much as to be unable to do any Thing againft the Befieged.

Remarks on tbis Method.

If the Sand that forms the Glacis, were laid at the Foot of the Glacis, as low as the Surface of the Water in the Ditch, it would be better; but as the digging and carrying away fo great a Quantity of Earth, will, perhaps, be a greater Expence than the Advantage arifing from it, therefore I have not propofed it, tho' I know the Earth will be of great Service in making Approaches upon a Glacis of Sand.

The Glacis being a Body of Sand, will coft the Befiegers much Labour to make their Approaches (efpecially in a dry Seafon, and confiderable Places are generally befieged in a dry Seafon) for the Sides of the Trenches will run together in fuch Manner, as to render it almoft impoffible to make deep Trenches, and deep they muft be or the Befiegers will fuffer extremely; and the continual fhaking of the Air by the Cannon and Mortars will make the Sides of the Trenches flide in more.

I am not unacquainted that much may be done in this Cafe, with Sand-Bags, Fafcines, Stakes, and

118)

other Inventions; but which Way foever a Trench of fix or feven Feet deep is made in Sand, it will coft much more Time than in Earth, for no Man can calt a Shovel of Sand, let the Shovel be ever fo fmall, from the Bottom of a Trench fix Feet deep upon its Side, (as much Sand mult be thrown up there before) but the Sand will return into the Trench, except the Befiegers carry all the Sand firft taken out of the Trenches to fome diftant Places, and heave little upon the Sides of the Trenches.

The Beliegers may ufe Means to wet the Sand a little, which will make the Sides of the Trenches ftand up better than when il Sand is dry, but the wet Sand cannot be thrown any c: Piderable Diftance by Shovels; and a Man cannot ftar, in the Bottom of a Trench of fix Feet deep, and throw the wet Sand fo far out of the Trench but it will llide into the Trench again, except as-is faid before the Sand that is taken away at the firft to make thefe Trenches be removed along the Trenches to fome other Place. To make Saps, Galleries and Mines in Sand will be attended with ftill greater Difficulties.

The Obftructions the Parapet upon the Arches on the Covert-way will be to the Befiegers, and the Defence the Covert-way is capable of making, are mentioned in Chap. III.

The Befiegers having taken the Ravelin, will endeavour to raife Batteries in the Ravelins, or in the Places of Arms, to filence the Fire of the Flanks, (but if the Infide of the Ravelins and Places of Arms are chiefly Stones, covered only with a Thicknefs of Earth fufficient to prevent the Befiegers Bombs doing too much Mifchief with the Stones, which Earth the Befieged may endeavour to throw into the Ditch before they quit the Work) the Cannon from the Place will do much Execution, by making the Stones Hy

(119)

 an can fmall, pon its before) ept the of the e upon
Sand a

 enches the wet nce by m of a and fo Trench taken moved make tendedhes on and the g , are will enin the lanks, Arms nefs of sdoing rth the ch be: Place nes fly nongit
amongtt the Befiegers all the time they are fetching Earth to raife a Battery.
M. Belidor and others have, in my Opinion, given fufficient Directions concerning the Ditches of Places.

When the Befiegers attempt to make a Breach in the Body of the Place, they will probably endeavour with their Cannon to lodge Miners in the Foot of the Rampier, which they may effect in the Wall of Mafonry ; but when the Wall is pierced, and the Miners are got into the Sand, the Water and Sand will fall in upon them and prevent their compleating a Mine there: But

There is a confiderable Cohefion in almoft all Sorts of Sand, when it is a little wet or humid, and a round Hole of a confiderable Diameter may be dug a great Way into many Sorts of Sand, and the Sand hang like an Arch.

The fhaking of the Wall in piercing it with Cannon, will alfo fhake the Sand and weaken its Cohefion, and the two Galleries at the Bottom of the Walls will greatly obftruct the Miners, in their making Mines under the Sand, if it fhould be found at all practicable; where thefe Galleries are made; many Stratagems may be ufed to obftruct the Befiegers Miners, fome of which will be mentioned hereafter.

When the Befiegers are preparing to batter the Body of the Place in Breach, employ (by Turns) all the Men unfit for Arms, great Boys, Women, \&cc to pour Water upon the Sand between the Walls till the Sand is moderately wet; there are various Me thods by which Water may be poured upon the Top of Parapets (over which it wili run and fink into the Sand between the Walls) but I think we need not look for any other Method than the common Fire Engines placed in a Wellor Wells made Bomb-Proof on the Capital of each Baftion, rather near the flank'd

I 4 Angle
(120)
Angle, with a Leathern Hofe of a fufficient Length; it may not be amifs to have alfo a Well or Wells in the middle of each Curtain, by way of Caution, it not being impoffible to make a Breach in the Curtain by which the Place may be taken.

When the Sand all along the Front or Fronts attacked is moderately wetted, and the Place known where the Breach is defigned, the Water need only be continued pouring upon the Parapet perpendicular over that Spot, and if Stones are to be had reafonably cheap, have a fufficient Number of large Blocks of Stones ready in the Gallery behind the Wall, to fill the Gallery oppofite to where the Cannon is to pierce the Wall, and where the Miners are defigned to be lodged. If large Stones cannot convenientiy be had, large Pieces of Timber armed with Iron will anfwer the Purpofe, for the Water running continually upon them will prevent their being burned; and the Iron will a great while hinder their being cut in Pieces; and when the Befiegers Miners come to clear the Place, in order to make Mines there, they will not be able to move the large Stones, nor the large Timber, till they have a Number of Men and a good deal of Room, which will take a confiderable Time; and the Water running continually upon them, if the Weather is cold, the Men will not be able to endure, and even in a warm Seafon the under-Ground Places where Water is continually dropping upon Men, will be very troublefome and difcouraging.

Admit they get the Stones, or the Wood, tumbled into a Ditch, I cannot conceive how they can make any Mines, or get through the Sand, the Water continually running upon them, and the Befieged ufeing every Means to deftroy them.

It may be faid the Befiegers will beat the Wall down from the Bottom to the Top, and then the Water

Water poured upon the Sand will wafh it into the Ditch; but

The Wall cannot be beat down without the Be fieged's knowledge, and they will ceafe to throw Water upon the Sand, and the Sand being a little wet will form a fteep Afcent, up which a Man cannot climb till the Top of the Sand is lowered; and before the Befiegers can come at the inner Wall to make a Breach, the Sand muft be cleared away, and then the Beliegers have to begin afrefh to make a Breach; all which will require a confiderable Time.

If the Befiegers have not a particular Regard to the Galleries at the Foot of the Walls, they will not clear the Sand fo low as the Gallery, for to do that will coft confiderable Time, as the Stones and Rubbinh of the Wall and the Six or feven Fathoms Thicknefs of Sand cannot but make much Rubbilh, which will lye a great Height before the fecond Wall, and the Befiegers may probably only endeavour to pierce the inner Wall at that Height ; if fo, the Be eged may eafily make Mines in the arch'd Gallery at the Foot of the outer Wall, and blow up the Breach there; and alfo make Mines in the Gallery at the Foot of the Inner Wall, and blow up the Breach a fecond Time. The Contrivances that may be made ufe of to defend a Breach are too many to be mentioned here ; if the Reader is curious in this Refpect, he may fee much faid on this Head in Mr. Muller's Attack and Defence.

When every particular of thefe Remarks and Works are confidered, I think it will appear that the Glacis of Sand, the Parapet upon the Arches over the Covert-Way, the- inner Parts of the Ravelins, and other Outworks, \&c. being made of Stones, and the Sand and Water between the Walls of the Body of the Place, will (altogether) caufe a greater Lots than common to the Befiegers, and oblige them
to fpend much more time before a Place, than have been fpent of late in taking the ftrongef.

Much more may be faid, and fevetal more Plans added, to endeavour to thew more clearly the Advantages of this new Method (of ufing Metal, \&cc. to fave the Cannon and Troops in a fortified Place) has over the prefent Methods of Fortifying; but I leave the further Improvements that may be made in this Sort of Fortification, to fome abler Engineer, who will make a proper Ufe of what is in the foregoing Ideas here hunted, if there be any Thing in them worthNotice.

C H A P. VI.

Of the Foundations, and the Manner of laying tbem.

MR. Muller has, in his practical Fortification, treated of the Foundations a d the Manner of laying them, to good Purpofe (in many Cafes;) and as I have had practicable Knowledge, in, almoft all Manner of Foundations, for above thirty Years laft paft, I hope my tranfcribing Mr. Muller's Account of Foundations will not be taken amifs, as my Intention by making Additions to Mr. Muller's Account, are to improve the Methods in that ufeful Branch,

In order to the better underftanding the whole, I have inferted what I fay upon each Cafe, at the End of what is faid upon each Cafe in Mr. Muller's Practical Fortification. This Method I imagined the beft; and what I tranfcribed is diftinguifhed, fo that the Reader will fee each Part at one View, which being put together, doth probably make the beft Account of Foundations that is to be met with in any Book now extant.

(123)

Plate X. "As the Foundations of all Buildings " in general, are of the greateft Importance, in re" Spect to the Strength and Duration of the Work, " we fhall enter into all the moft material Particu" lars which may happen in different Soils, in order " to execute Works with all the Security pofible;
" becaufe many great Buildings have been rent into "Pieces, and fome fallen down, for want of having " taken proper Care in laying the Foundation; and " for a further Explanation we Thall join here Plans " and Profiles, adapted to the moft material Situa" tions that can be found."

A Defire to fee the Structure appear, joined with fome other Motives, has fometimes contributed toward making not only the Overfeers, but alfo the Workmen in fome Degree, endeavour to get much Foundation done, rather than do it well; fo that the Engineer fhould be very careful to have his Orders ftrictly followed in the making Foundations.
" Firft. It is neceffary to examine very carefully " the Nature of the Soil, upon which the Foundations " are to be built: For doing this, proper Augurs " are ufed to bore in feveral Places 10, 12, to 15 "Feet deep, in order to difcover the Nature of the "Soil, and its hardnefs or if it is made of feveral " Layers or Strates, which is commonly the Cafe, " the Difference of their Nature and Goodnets; this " is known by their Colour, or the Difficulty of " piercing through them.
"If the Soil be of a good Confiftence, for a cer" tain Depth, without any Water or foft Ground, " and this holds fo all round the Foundation, there " need no other Precaution be taken then to lay the " Foundation four, five, or fix Feet ; only obferv" ing to enlarge its Breadth, in Proportion to the " Height of the Walls to be built upon them, fince "the Higher the Wall is, the more Weight the * Foundation
" Foundation munt fupport: Although this is felf" evident, yet Engineers do not feem to mind it,
" becaule they make commonly the Bate of the Wail
" in Proportion to the Depth of the Foundation, and " not to the Height of the Wall.
" If the Soil be hard Gravel for about ten or " twelve Feet deep, the Foundation may be built " upon it, without any Danger of its finking; or " if the Soil be a ftiff Clay, it will likewife be good;
" the firt and fecond Figures reprefent the Plan of
" fuch a Foundation, where there are two or three
"Courfes of large Stones to be put at the Bottom,
" and the Foundation projects by two or three Feet
" before, divided into as many Retreats, but not
"above a Foot behind, becaufe there is no Danger
" of the Wall falling backwards: This is the Cuf-
" tom; but as for my Part, I think there is no Oc-
" cafion for any Projection at all backwards, fince
" the Counterforts are fufficient to fupport the Wall;
" and this Projection might be of greater Advan-
" tage before, if added to thofe already mentioned."
The Braadih of the Bottoms of Walls in Fortification, are generally fomething near a Third of their Height; and the Thicknefs of the 'Top of the Wall, is, for the moft Part, about half as thick as the Wall's Bottom at the Level of the Bottom of the Ditch. By Mr. Muller's 'Tables, a Wall 3^{6} Eeet high (Slope $\frac{1}{6}$) is 11 Feet 6 Inches thick at the Botom, and 5 Feet 6 Inches thick at the Top; the Solidity required in Fortification, makes it neceffary the Walls fhould be itrong, but there is no Neceflity to have the Wall this Thicknets at the Bottom only, we nable the Earth (if clear of quick Sand) to fuftain the Weight of a Wall 36 Feet high, as any one may underftand by infpecting Stone and Brick Walls, whole Height are more than 36 Feet, and their Foundations not 6 Feet thick, and many not above of the Wall tation, and
put ten or be built aking; or be good; ce Plan of or chree Bottom, hree Feet but not o Danger the Cufis no Oc ds, fince he Wall; - Advanationed." n FortiThird of p of the thick as ottom of Nall 36 k at the op; the eceflary Jeceflity m only, fuftain ne may Walls, d their above fous
four Feet thick; and fuch Walls very rarely Mrink by the Ground yielding under them. By many Obfervations and Facts, I am convinced that there are generally much more Expence beftowed upon the Foundations in Fortifications than is neceffary; which I will endeavour to thew in the Courfe of this Work.
In a Situation where Water prevents Trenches being made by the Befiegers in the Ditch, and the Earth is of a common Texture, there can be no Neceflity tn dig and lay the Foundation 6 Feet below the Level of the Bottom of the Ditch; but if the Ditch is dry, I would lay the Foundation 6 or 7 Feet below the Bottom of the Ditch ; but the whole Thicknefs of the Wall need not to be funk fo low, oniy about 5 or fix Feet Thick, with Retreats, to bring the Wall to about three or four Feet thick, at about a Foot and half (more or lefs according to the Nature of the Ground) below the Bottom of the Ditch, where I would dig the Foundation to its proper Width, allowing for proper Retreats up to the Height of the Ditch Bottom, fee Fig. 9 and 10. This Foundation being properly executed will fave a confiderable Expence, and anfwer the End propofed, as well as if the whole Breadth had been laid fix or feven Feet deep.
I would lay the Foundation with the broadeft and thinneft Stones that can be got; taking Care the Joints of every fucceeding Courfe is at or near the Middle of the Stones in the Courfe next below, not only in the Face of the Wall lengthways, but more particularly crofs-ways in the Wall: This is called by Workmen making good Bend, or Breaking the Joints well. I would build three or four Feet high in this Manner.
" If the Soil be not very fr.n or hard to a fufficient " Depth, o: when fome Parts are fofter than others,
" it will be neceffary to lay a Grate of Timber firft
"crofsways, and then longways; or fome lay them firt longways, and then crofsways, which feems
" to be beft ; and well bolted together with wooden
"Tunnels, as is reprefented in the third and fourth
"Figures: Sometimes, thefe Grates are boarded
" over with three Inch Planks, as is marked in the
" Profile; at others, large Stones are laid between " the Timbers of the Grate, and laid even with " them, upon which the Foundation is afterwards " raifed.
" Some Engineers chofe to raife the fore Part of
" the Grate of about a Twenty-fourth Part of its
" Breadth, in order to prevent the Wall from being
" overfet by the Preffure of the Earth, as it has
" fometimes happened. This Precaution feems to
" me to be very neceffary, efpecially when the
" Rampart is pretty high; and the Courfes of Stone " in the Foundation Thould have the fame Inclinati-
" on, excepting the laft; or the Bare of the Wall " ought to be level, if thofe of the Wall are fo. I " am fenfible, that fome Engineers ridicule this " Practice, and fay, that all Beds of Stone or Brick " fhould be exactly in a Level; but M. Coehor n, who " knew more of this Matter than moft, if not all our " modern Engineers, has not only laid his Founda" tions in this Manner, but likewife the Walls quite * up to the Top. This is confirmed by l'Abbé " Dedier, in his perfect French Engineer, where he " fays, that in repairing the Works of Manbeim, " which were built under the Direction of M. Coe" born, they found that the Courfes of Mafonry " were perpendicular to the outward Slope, whofe "Bare is one fixth Part of the Height, and the " Walls were only about three Feet thick above, " without any Counterforts. This being the Cafe, " and the Walls being ftrong enough to refift the
mber firft lay them ch feems h wooden nd fourth boarded zed in the between ven with fterwards
e Part of 'art of its om being as it has feems to then the of Stone Inclinatithe W all e fo. I cule this or Brick orin, who t all our FoundaIls quite l'Abbé where he Ianbeim, M. CoeMafonry whofe and the above, e Cafe, efift the Preifure
" Preffure of the Earth, this Manner of laying Bricks " and Stones has greatly the Advantage over that " commonly ufed.
"If the Soil be Sand, and of no hard Confiftence, " the Grateing the Foundation is abfolutely neceffa" ry ; or if the Soil be a foft Loom or common "Earth, it is alfo neceffary to take this Precaution; and in general when the Soil is doubtful, though not ablolutely bad, a Grating fuch as this cannot but be very ufeful in preventing the Walls from finking ; and I muft repeat it again, when the Wall or Rampart is very high, particular Care fhould be taken to fecure the Foundation in the * beft Maniner poffibles for it is better to do this " though fomewhat more expenfive, than to run " the Chance of making bad Work at an eafier Rate which might prove more burthenfome at the End " It is neceffary to obferve, that when there is any Timber under the Foundation, the firft " Courfe of Stones fhould be made wthout Mortar, " becaufe its Corofivenefs deftroys the Wood; and " in general, where any Beams or Timber are laid " into the Mafonry, inftead of Mortar, ftiff Clay " is ufed round it ; and fome Carpenters make thin Cafes of Wood round the parts which enter into the Wall.
"When the Foundations are fo very bad, that the "Grate of Timber mentioned before, is not fuffici" ent, but is hard after a certain Depth; upon fuch " an Occalion, it is proper to drive Piles, and then " lay a Grate over them, fuch as is reprefented by " the fifti and fixth Figures: Thefe Piles are to be " placed exactly under the Croffings of the Timber, " is which they are faftened with Trunnels, and " are to be drove into the Ground as far as they will " go.
" As this Method of laying Foundations happens
" moft frequently in the Works of a Fortrefs, and
" is very expeniive, Care muft be taken not to make
" any more than what is neceffary. In order $t \mathrm{t}$ find
" the proper Length of the Piles, one or two are
" drove as deep as they will go, and then cut a certain Number of the fame Length, and when
thefe are drove, and the Depth of the Foundation remains the fame, more are cut of the fame Length; but if the Foundation changes, the reft muft be made accordingly. By this Method a good deal of Timber may be faved; whereas, if the Piles are all cut at once, fome may happen to be long, and perhaps fome too fhort; which waftes a great deal of Timber to no Manner of Purpofe. " Some Engineers drive Piles into every Corner " of the Squares formed by the Timbers, and none " under the Frame, as is reprefented here; but this " Method muft appear to every judicious Reader, " not fo good as the former, becaufe the Frame is fupported by nothing but the Earth, which being but foft, muit give way to the great Weight of the Wall preffing upon the Frame.
" Others drive not only Piles under the Grate, as " we have faid above, but likewife two in every " Square; that is, in the oppofite Angles: But it " feems to me not worth while to make fuch expen" five Work without an abfolute Necefity, and " when no other Method is practicable.
"Befides the Piles under the Grating, others are " to be drove at the Outfide next to the Ditch, as " is reprefented in the Plan by the Letter a, their " Number is uncertain, and ought to be regulated " by the Goodnefs or Badnefs of the Foundation. " In both Foundations, reprefented by the third and " fifth Profiles, the outfide Timber next to the " Ditch, ought to be cut in fuch a Manner that the

(129)

happens refs, and to make er to find r two are ren cut a ad when undation he fame the reft 1ethod a iereas, if appen to oh waftes Purpofe. y Comer ind none but this Reader, Frame is ch being ht of the pitch, as a, their egulated ndation. hird and
to the that the " Wall
" Wall may reft upon Part of it, and tne other Part " prevent it from fliding into the Ditch; or elfe-a " finaller Timber fhould be faftened with Bolts upon " the larger. M. Belidor gives an Example of a "Wall fliding in the Ditch, at Bergue St. Vinoc in " Flanders, which was the Face of a Ravelin; the " fame Thing happened fome Years ago, at our "Wharf here, at Wooiwich, for the middle Part " of it hid five or fix Feet into the Thames, becaufe " the Foundation was only Clay rammed even with "" the Bed of the River, and which would have been " fufficient, had the Precaution abovementioned " been taken.
" We have mentioned before, that fometimes " Planks are ufed to cover the Grating, and fome" times not; where there is Plenty of Stones, thefe "Planks may be faved; but in Walls made of Brick " they are abfolutely neceffary; for they being but " of a fmall Size, thofe which reft upon the Timber " will not be able to fuftain thofe which are between " them.

If the Ground be not very firm to a fufficient Depth, or when fome Parts are fofter than others, I would (the Foundation being dug) drive a Row of dove-Tail Piles, as far as they will go, before the Front of the Foundation, their Heads ftanding about 6 Inches above the Bottom of the Wall; (which is built clofe againft the Infide of the Piles) where the foft Places are, put a String of Oak about 8 Inches by 6 againtt the Outfide of the Piles, about ro or 11 Inches below where the Bottom of the Stone or Brick Work is to be; cut Openings in the Pile Heads as low as the upper Edge of the String of Oak that is faftened to the Outfide of the Piles, thefe Openings may be 10 or 15 Feet afunder, (more or lefs according to the Hardnefs of the Ground ;) fit into each of the above mentioned Openings a ftrong Piece of

$$
\mathrm{K} \text { Timber }
$$

Timber with its End about 20 Inches without the Piles, having either a Notch cut, or a Piece of grod Timber about four or five Inches thick, faflened with good Tree-Nails upon the under Sile at the End, to take good Hold of the String of Timber mentioned above ; thefe Timbers or Sleepers nuft be at leaft two Feet longer than the Breadth of the Foundation, and have Pieces 5 or 6 Feet long a-crofs the inner Ends, to affift the Dove-Tail Piles in preventing the Foundation flipping forward, and let the outer Ends of the Timbers lie a little higher than their inner Ends, if the Earth-work is carried upalong with the Wall.

Lay the Foundation (between the Timbers) upon the Ground with the broadeft and thinneft Stones that can be got, and carry up the Foundation 3 or 4 Feet high, with thefe broad Stones as mentioned before, but if broad Stones are not to be had, nor Bricks fufficiently broad, and the Ground is very foft, Planks, or fomething near equal to Planks, muft be laid longways upon the Timber; but in this Cafe, when the flat Stones are not to be had, the upper Sides of the Sleepers muft be laid near 8 Inches below the Top of the Dove-Tail Piles, and the Earth ramd firm and clofe, and as high as the Sleepers : If every Sort of Materials are not to be had, the Engineer muft adapt his Methods of executing the Works to the Materials he can get ; but to give a full Account of all the Methods of proceeding, in all the Cafes that can happen in Practice, will take more time than I have in my Power at prefent. When it is neceffary to cover the whole Foundation with Plank, (and Pileing may be omitted) I would only lay Sleepers in the Manner mentioned above, and lay Planks longways, well tree-nailed upon the Sleepers; this will be a lefs Expence, and not lefs good than a Frame covered with Plank: In Order to underftand aflened at the Cimber rs muft of the ; a-crofs in preand let ner than ed upa
s) upon Stones on 3 or entioned ad, nor ery foft, muft be his Cafe, e upper es below th ramd If every Ingineer jorks to Account e Cafes ore time hen it is ${ }^{1}$ Plank, only lay and lay leepers; d than a derftand this,
this, it is neceffary to confider that the principal Ufes of Timber and Plank under Walls (that Scas nor Streans doth not run againft) is to make the Weight of their Foundations lye equally upon the Ground in every Part, and fecure the Bottom of the Wall that it do not Part, nor nip from its Place; now I think every one of Judgment will allow there is little or no Danger that a Wall back'd to its Height with Earth, will fail any Way fo foon as forward. Therefore

The principal Care is to have the Forepart of the Foundation well fecured, which may be done at a finall Expence when the Foundation is making, fee the Method Fig. 9 and ıo. As the Walls cannot fail lengthways (except at an outward Angle) I would lay no Timber lengthways in the Foundations (Plank laid lengthways being very fufficient) except where the Ground is to very bad, that Piling is neceffary the whole Breadth of the Foundation.

When an outward Angle mult be upon a foft Spot of Ground, particular Care is required in making the Foundation, and the more efpecially fo, if it is the Epaul or Shoulder of a Baftion; In this Cafe, the Foundation may be made broader (forward) than the other Parts of the Wall, for twenty or thirty Feet each Way from the Coyn or Angle, and have broader Retreats to bring the Wall ftraight at the Bottom of the Ditch. If the Ground is very foft to a Depth that Piles cannot be of much Service, the Neceffity is greater to make the Foundation very broad, and lay long Sleepers well covered with Plank, and one or two good Rows of Dove-tail Piles on each Side along the Fronts with broad Planks laid flat upon the Ground, one without and one within the DoveTail Piles lengthways all along; upon which Planks the Ends of the Sleepers are to iie a-crofs and be well faftened to them with good Tree-nails, but if the

Earth

(132)

Earth Works are raifed with the Wall, there need not be Dove-Tail Piles in the Infide: I would lay this Foundation level, for I think all Foundations fhould be laid level where the Ground is very foft to a great Depth; my Reafons for thinking fo are chefe following :

The Inficte of Walls that have outward Slopes, are heavieft upon the Foundation; and, the Walls whofe ontfide Slope is but ${ }^{\prime}$ when built to their Height, and left to dry fome Months before any Earth is put behinl them, if their Bottoms are laid lower behind than before, in a foft Soil will fettle backwards, notwithitanding the Counterforts; and if the Soil is fo foft as to rife or bulge up as the Wall fettles, the Bottom of the Wall will prefs forward, and the Top incline backward, perhaps too far before the Earth can be raifed to hinder it; befides, the laying Earth againft the Bottom behind the Wall in this Cafe, will add to the Freffure forward at the Bottom, and make the Top incline backward in Proportion.

If a Row or two of good Dove-Tail Piles are driven a fufficient Depth at the Front of a Wall, and their Heads fecured from prefling outward, the Ground mult be very foft that will not fupport the Walls without the Expence of piling and laying Frames of Timber in the Foundation ; but as nothing but Practice, joined with Art, can make an Engineer a good Jusige of Foundations, I would advife young Architects to take every Opportunity of feeing Foundations of all Kinds: When any very confiderable heavy Piece of Work is undertaken, I would fpare no reafonable Expence to be well informed of the Foundation, efpecially by confulting feveral of the moft practical Engineers, tho' fome of them are fetched five Hundred Miles or more.
" If the Foundation is either all Rock, or only " partly fo, the Bed of the Wall is to be funk about

(133)

re need ould lay adations y foft to fo are
pes, are lls whote ght, and put bebehind rds, notoill is fo tles, the the Top e Earth g Earth Cafe, will om, and ion.
re driven and their : Ground he Walls rames of out Pracer a good 1 g Archi-Toundatiable heafpare no of the ral of the them are ink about
" fix Inches or fomething more into it, in the Manner reprefented in the leventh Figure, to prevent the Wall from niding, which otherwife might hap" pen, becaufe Mafonry feldom binds fo well with " the Rock as to make it firm and durable. When " the Bed is made, Care muft be taken to fweep it " very clean, in order that no Rubbifh or Duft re" mains in it, and after this, it muft be wet as the "W Wall is made ; by doing to, the Mortar will en" ter better into the Pores and fmall Cavities, " the Mafonry will likewife bind with the Rock " in a more eafy Manner, and form in time but one
" continued folid Stone.
" Although Rock is the ftrongeft Foundation
" that can be built upon; neverthelefs, Engineers
" look upon it as one of the moft difficult Pieces of
" Work to be met with; their Reafon for thinking " fo is, that they are feldom level, buit rife and fall "c continually, by which the Work changes its Pro-
" file at every fmall Diftance; and to raife the Foun-
" dation to to a proper Level, and bind the Mafon-
" ry to the Rock in a ftrong and firm Manner, meets "s with the greatett Difficulty.
" The fecurelt Manner of proceeding in fuch a
"Cafe, is, to clear the Rock as well as can be, from
" all Duft and Rubbifh, in the Manner obferved be-
" fore, and to fink from four to fix Inches into it; then
" raife the lower Parts with good Mafonry made of
" very thin but ftrong Mortar, fo as to be in the
" fame Level with the higher ones. This Work
" muft be left fome time to dry and fettle, otherwife
" that Part of the Wall which ftands upon the made
" Foundation will fink and break off from the Parts " which ftand upon the Rock.
"Sometimes the Rock will rife at one End nearly " as high as the Wall itfelf; in this Cafe, the Work " muft be raifed to a evel of about 6 Feet from the K 3
" Bottom

Photographic Sciences Corporation

"Bottom, and then left to dry and fettle for fome " time; after that, it may be raifed to the fame Height again till fuch Time as the whole Wall is ". finifhed; and to prevent the Workmen from ftanding ftill, feveral Parts may be undertaken at the " fame Time and carried on alternately.
" Sometimes it happens, that the Rock rifes gradually behind, nearly as high as the Wall, or ". which is the fame, that a Wall is to be built a". gainft the Rock ; in this Cafe, the Rock muft be
" well cleared from all Dirt and Rubbifh; and if it " is too fmooth, it muft be pickt, or fmall Cavities ". made in it, that the Mortar may lay hold of, and ". bind it with the Mafonry ; and the Work muft be "carried or gradually and nowly, otherwife the " Mafonry will naturally fink and tear off from the " Rock.
"M. Belidor propofes a Method for Building " Walls in this Cafe, which, he fays, has often been " practiced by fome Frencb Engineers with good "S Succefs; that is, inftead of ufing common Mor" tar and Stone in the ufual Manner, they prepare " what is called Stone Mortar; which is made of " thin but ftrong Mortar mixt with Stones, about " the Size of a Wallnut; a little more or lefs; " then they fet a kind of Coffer without a Bottom, "cut underneath, fo as to agree nearly with the un" evennefs of the Rock; then this Coffer is fil" led with Mortar, and let ftand till it is dry and " pretty hard.; then they take the Coffer away in " order to place it elfewhere. The Reader may ea" fily perceive, that the Surface of this Mortar is " laid fmooth and level, and that, when it is well " fettled, will ftick much better to the Rock than " any other Kind of Work whatfoever ; thefe Kinds c. of Walls become in time as hard as Stone itfelf,

(135)

or fome e fame Wall is ftandat the
es graall, or uilt auft be d if it avities and uft be Ce the m the
" as appears by the Remains of fuch as have been " found here, in France, and in Germany. " In fome Parts of Scotland, in Ireland, at Gib"raitar, and Mabon, the Rocks are generally of " Lime-Stone ; in fuch a Cafe, no better Work can " be made, than to mix the Stones of the fame Rock " with the Lime; this will, by the Likenefs of the " Parts, form a Work that will join to the Rock, " and in time become as one continued Stone.
" It happens fometimes that under a Bed of " Gravel, Clay or any other hard Confiftence, there " is a foft watery Soil or Sand to a great Depth; " where it would be dangerous to drive Piles, on " Account of the Sources or Springs, which are " generally under thefe Places, which when they " once get a Vent or Opening, fill the Trench made " for the Foundation in a fhort Time full of Wa" ter, in fuch a Manner, as there is no Poflibility to " build there. When this happens, a Gutter muft " be made to lead the Water out of the Trench into " fome Well made for that Purpofe, if none is found " near enough, and Engines fet to work to draw the "Water out of it into fome lower Place or Ditch. " It may happen, that the Water comes fo faft " into the Trench as not to be drawn off; in both " Cafes, a ftrong Grate of Timber mult be made, " and plank'd over, which being laid over the Foun" dation, and faftened in fuch a Manner as not to " Phift its Place; then the Mafonry is built upon it ; " by which it will fink gradually till it comes to the "Ground, and when the Foundation is raifed above "Water, it is left to dry and fettle before the Wall " is continued.
", I have been affured by People of Veracity, and "Judges of thefe Works, that many fuch Inftances " happen in Ruflia, as well as in Flanders, and yet " when the Walls are finifhed, they ftand neverthe-

(:36)

" lefs as firm as if they where built upon a ftrong "Foundation; it is certain that thefe Walls will " fink, but then the Bufinefs is to make the whole "go together without Clinks or Breakings; which
" Notwithftanding that no Water appears above
" Ground, and that there is only a hard Cruft of
" five or fix Feet deep over a fwampy Soil, yet it is
" neceffiry to lay a ftrong large Grate under the
"Foundation, by taking Care to fink the Trench
"' as little as can be done, for the Safety of the
" Work; and the Foundation muft be carried all " round alike by horizontal Courfes, and no new one " begun before the laft be quite finifhed; fo that if " the Ground' underneath gives Way, it may be " preffed alike every whére, and fink together. " This Method of carrying on the Foundation " alike all round the Work, fhould be obferved " every where, excepting on Rocks, or fuch a hard "Subftance that cannot give way; where it may be " done by Parts one after another, only obferving " to join them well together, and by Steps, that no " two Joints may be over one another.
"There are fome Situations, which befides being " 'fwampy, the Trench dug for the Foundation fills " in a flort time with Water; the Method ufed upon " thefe Occafions, is, to open only as much of it as " can be made in a Day, and the Stones are laid, i" without any other Precaution, on the Ground, and " the Work is carried on as fatt as poffible, till the " Walls is above the Height to which the Water " rifes; but this Foundation muft be made very " broad and by Retreats, and the Stones laid in " Tarras-Mortar, that it may foon grow hard ; when "this is done all round, and the Work fettled, the "r reft is built in the ufual Manner.

137)

a ftrong alls will e whole which ry good above ruft of yet it is the the Trench of the ried all ew one that if tay be r. dation rerved a hard nay be erving hat no
"Thefe Kind of Foundations are very common " in Flanders; and M. Vauban was very much puz" zled at firft how to proceed, till fome Workmen " of the Country, which had been ufed to them, put " him in a Method of it. I have feen the fame at " Douay, where they dug a Trench of about 140 " Yards, and three Feet deep; and as faft as it was " opened, the Mafons worked at the Foundation, " which was raifed 6 Feet high; though the next " Day half of it was under Water, yet the Work " ftood as well as if it had been built upon a folid " Foundation.
"As the different Situations and Soils require " different Precautions, it is impoffible to give par" ticular Methods for every one; the moft fecure and " probable by which an Engineer may fucceed, is, " to confult the Workmen, who either live upon " the Spot or near it, and who have been employed " in fuch Foundations; for they generally know beft " what Method will moft likely fucceed ; by con" fulting feveral upon the fame Subject, if they dif" fer in their Opinion, which is often the Cafe, it is "" the Engineer's Bufinefs to judge what is beft to be " done, and from his own Experience, joined to that "" of the Workmen, deduce the Method by which " he is to carry on his Work : But notwithttanding " all hurinn Precautions that can be taken, yet Ac"c cidents will happen, which are to be repaired as " foon as poflible, and whereby the Engineer will " learn how to avoid them afterwards, in the Re" mainder of his Works.
" We have endeavoured to give here moft of the " feveral Cafes which commonly happen in all " Foundations made upon the Land; and which, " if ftudied with Care, I do not doubt but an Engi${ }^{\text {'s }}$. neer with a moderate Share of Practice and " Knowledge, will be enabled to perform fuch " Works
" Works: But the Manner of laying the Foundati" ons in Water for Bridges, Sluices, Moles and " Piers for Harbours, will be treated of feperately in " the latter Parts of this Work, i. e. The latter Part of Muller's Practical Fortification.

When every Part of the Foundation is Rock, there cannot be any Danger of Sctlement, nor Difficulty in laying the Foundation; but when there are high Pieces of Rocks which ferve for Part of the Wall, and in feveral Places the Ends of the Wall not only joins the Rock and fets on upon it lengthways, but fome Part or Parts of the Wall muft be built againft the Face of the Rock; in fuch Cafes, it is fomewhat difficult (without good practical Knowledge) to make the Work join the Rock fo as not to fhew, at the Rock and Wall's Meetings fome Shrinkings of the new Work. The Form of the Rock muft in a great Meafure determine the Butting of the Wall againft it. I would chufe to make the higheft Buttings, and confequently the feweft the Rock will admit of, without too much Labour ; cut the End of the Rock where the Wall is to join it vertical, making the Coyn of the Rock about 75 or 80 Degrees, fo the Back Part of the Front Stones will be longer than the Forepart (in Nature of a Dove-Tail) and confine the Wall that it cannot fettle forward; and to prevent the Wall from lowering by the drying of thick Beds of Mortar, the Stones mult be laid fo clofe as the Nature of the Work will admit, without beftowing too much time. The 'Wall being raifed fo high as the Butting, and, where it muft be made longer by being fet upon the Rock at one or both Ends, if Circumftances will admit, let it dry at the Height of every Butting, beiore more is built upon it ; but,
If there is any great Neceffity, the wall may be built to its Height in many Calés without letting it
ftand nt, nor n there Part of e Wall length nuft be Cafes, Knownot to Shrink: Rock ting of ke the eft the r; cut join it 75 cr Stones of a ot fet-lowerar, the of the 1 time. , and, on the s will ttting, nay be ting it ftand

(139)

ftand to dry, and without any confiderable Detriment if the Foundation be upos the Rock, and the Weather dry and warm, by obferving the following Directions:

Let the Stones be dry ; but wet their Outfides when they are put into the Mortar, and make all the Beds of the Stones good, and lay thin Beds of Mortar ; when the Wall is extended over a Butting, upon the Rock, lay a thick Bed of Mortar under the firft Stones that lye upon the Rock over the Butt or Joint, that the Wall may not hang upon the Rock by its upper Parts, and fo not ftand with its whole Weight upon its Foundation, by which the lower Part of the Wall will be eafy to pull out, not having the Weight of the Wall above to hold it faft ; if the Wall doth not extend over the Butt or Joint upon the Rock too far, lay long Stones to hang in the Wall and reach the next Butting, and be about half an Inch clear above the Rock, that the Wall is extended upon; put no Mortar between the Rock and this Stone, and the whole Weight, of the Wall will be upon the Foundation, and the Wall will fettle properiy.

To build upon a fofi Foundation, and the End or Ends of the Wall Butt againft a Rock; follow the above Directions till you come to extend the Wall upon the Rock above the firft Butting of the Wall and Rock ; taking particular Care no Part of the Wall be built to hang upon the Rock, fo as to hinder its fettling all together; and when you extend the Wall upon the Rock, let each Courfe overfet lengthways the whole Breadth of the Wall, like the under-fide of a Flight of Steps, leaving a Space between the Rock and the Wall, that a Man can go in (when the Wall is fufficiently fettled) and begin at the Backfide of the Wall, to clofe the Wall to the Rock, working outward; taking time and Pains to
do the Work well, making well faft every Height to the Work above, with good hard flat Stones and Oyfter-Shells, which is called pining among Workmen. There muft be good Bond made, efpecially from the back Side of the Wall to the Front: Every good practical Mafon knows how to do this Work to anfwer the End, as well as if the Wall had been carried up altogether.
It is' not difficult to build a Wall to ftand firm againft the Face of a Rock, if the Rock can be cut in the common Way, let the Face of it be ever fo irregular and nopeing; I could mention feveral Methods, but at prefent I will only explain one Method, which I will adapt to the moft difficult Cafe I can think of, where the Rock can be eafily cut by the common Methods.
Admit the Face of a Rock is to be built againt, whofe Bottom is nearly upon a Line with the ForePart of the Foundation, and nopes 6,8 or 10 Inches in every Foot in height, for any Number of Feet, fuppofe 6 or 8 Feet high; and at that Height over: hangs, or goes upright, or ever fo irregular 3 or 4 Feet, more or lefs in Height, and the Bottom of the Rock at or above the Surface, flopes backward, downward, fo that no Hold can be got of the Rock for a Foundation; if it is only a Rock of eight or ten Feet bread or thereabouts, an Arch may be fprung from the Foundation, on each Side, to build the Wall upon before the Rock; but if the Rock is large, the Ground nuit be dagg fromits Face, and a Foundation made, and if the Rock below is almoft as far out as the Foundation on each Side, fo that there is rot a fufficient Breadth for a Foundation to keep ftrait with the other Foundation; the Foundation before the Rock muft be laid out farther than the other Foundation a fufficient Breadth, with broad

Retreats

(141)

Retreats to bring the Wall ftrait at the Surface or Foot of the Rock.

The next Thing to be done is to cut vertical Dove-tail Grooves in the Rock, about a Foot deep, 18 Inches broad at the Bottom, 16 at the Top or Surface of the Rock that is to be built againtt, and about 8 or 10 Feet afunder; in carrying up the Wall fit long Stones into thefe Grooves (but not clofe to the Botton of the Groove,) and let every fecond Stone reach the Front of the Wall (when you can) and lýe upon a Stretcher, till the Wall becomes too thick for one Stone to reach, then lay two or three Stones to reach the Front, taking Care to make very good Bond from the Dove-tails; and if every third Courle is cramp'd together with Lead, it will greatly add to the Security of the Work. Thefe Dove-Tail Courfes cannot fail of holding the Wall faft to the Rock ; and if Care is taken to keep the Rock very clean, and ufe good Mortar properly againft the Rock, and pour thin Mortar againit the Dove-Tails, there cannot be any Doubt of the Wall ftanding firm againft the Rock.

Some Rocks are to hard that it will coft much Time and Labour to cut Dove-Tail Grooves; but as they are the beft Contrivance that I know, I would cut them tho' the Rock be as hard as Marble; but if the Rock be of the Pebble Kind, Drills may be ufed to good Purpofe to make Taggle-holes in the Rock, to hold the Wall; for I cannot think that even the beft Mortar will always, and in all Cares, hold a Wall to a Rock that has a gradual Slope; but Dove-Tail Grooves and Taggles will always anfwer the End if properly executed.

As to the Building Walls formed in Cafes, or Coffers, with thin ftrong Mortar and fmall Stones, I can only approve of fuch Work where good Stone is not to be had at a reafonable Price. I have obferved
ferved old Buildings fome Part of whofe Walls are of this Sort of run-Work, and the other Part of common Stone and Mortar built in the ufual Manner; and that Fartendures much better that is built with Stone and Mortar in the ufual Manner, as appeared to me upon infpecting the Walls of Porichefter Caftle near Portfmouth; and the Walls of the City of Norwich, and other Places. Much may be faid on this Subject; but as I do not in this Place intend to treat of all the Methods of building Walls, I will only fay, had I a Wall to build with fmall Stones and thin ftrong Mortar, I would firft mould the Materials like Bricks, but much larger, and let them dry, and with them build the Wall in the common Way, as with fquared Stones and Mortar.

Of Foundations fcr Piers and Bridges.

Mr. Muller in his practical Fortification, has collected Methods ufed in making the Foundations of Piers for Bridges and Harbours, and I hoping to be ufeful herein have made Additions; but as a full Defcription of all the Methods that are and may be practiced in Foundations, would alone make a confiderable Volume, I will here only endeavour to fhow how Foundations may be made in the moft difficult Cafes; fome of which Cafes I have extracted out of Mr. Mullar's Praftical Fortification, on Purpofe to fhew they arc looked upon as the moft difficult Cafes, and fome of them thought impracticable; but I hope what I shall add, will make the moft difficult Cafes mentioned by Mr. Mullar, appear practicable.

$$
\text { Case } 1 \text {. }
$$

After a fhort Defcription of the Building of Wef-minfer-Bridge, Mr. Mullar fays, "This Method " of building Bridges is certainly the eafieft and " cheapeft that can be thought of, but cannot be ufed

(143)

Walls are er Part of ual Manat is built er, as aporlclofter the City y be faid ce intend lls, I will tones and Materials 1 dry , and Way, as
es.
tion, has undations hoping to t as a full d may be ke a conar to Show t difficult ed out of urpofe to ult Cafes, ut I hope difficult practica-
of Weft
Method fieft and annot be ufed
" ufed in many Cafes : When the Foundation is " fo bad as not to be depended upon without being " piled, or the Depth of Water is very great, with
" a ftrong Current and no Tide, I do not fee how " it can then be practifed. For if Piles are to be " ufed, it will be next to impofible to cut them off " in the fame Level five or fix Feet below the Bed
" of the River, notwithftanding that Saws have been " invented for that Purpofe ; becaufe if they are cut " off feparately, it will be a hard Matter to do it fo " nicely that the one fhall not exceed the other in " Height, and if this is not done, the Grating or " Bottom of the Coffer will not be equally fupport" ed, whereby the Foundation becomes precarious:
" Neither can they be cut off altogether; for Piles
"، are to be driven as far as the Bottom of the Coffer
" extends, which at W efminffer-Bridge was 27 Feet; " the Saw muft have three Feet play, which makes " the total Length of the Saw 30 Feet; now if ei" ther the Water is deeper than it is there, or the " Arches are wider, the Saw muft ftill be longer; " fo that I leave the Reader to judge whether this " Method be practicable or not, in any fuch like " Cafes.

Case II.

" In a great Depth of Water that has a ffrong " Current and no Tide, the Coffers muft reach a" bove the Water, which makes them very expen-
" five, and unweildy to manage, as well as very " difficult to be fecured in their Placcs, and kept " fteady : So that there is no Probability of ufing " them in fuch a Cafe.
"In fome Cafes when there is a great Depth of "Water, and the Red of the River is tolerably level, " or can be made fo by any Contrivance, a very " ftrong Frame of Timber about four Times as
" large as the Bafe of the Piers, may be let down " with
" with Stones upon it round the Edges to make it " fink : After fixing it level, Piles muft be driven ic about it to keep it in its Place; and then the Foun" dation may be laid in Coffers as before, which are " to be kept fteady by means of Ropes tied to the " Piles.
"This Method has frequently been ufed in " Rufia, as I have been affured by a Gentleman who " has feen it. Though the Bed of the River is not " very folid, yet fuch a Grate, when once well fet" tled with the Weight of the Pier upon it, will be " as firm as if Piles had been driven under the Foun" dation; but to prevent the Water from gulling " under the Foundation, and to fecure it againftall " Accidents, a Row of Dove-Tail Piles muft be " driven quite round the Grating ; this Precaution " being taken, the Foundation will be as fecure as " any that can be made.
" The French Engineers make Ufe of:another " Method in raifing the Foundations of Mafonry " under Water, which is, to drive a Row of Piles " round the intended Place, nearer to, or farther " from each other, according as the Water is more " deep or fhallow; thefe Piles being ftrongly bound " together in feveral Places with horizontal Tie" Beams, ferve to fupport a Row of Dove-Tail Piles " driven within them ; when this is done, and all " well fecured according to the Nature of the Situ" ation and Circumftances, they dig the Foundation " by Means of a Machine with Scoops, invented " for that Purpofe, until they come to a folid Bed of " Gravel or Clay ; or if the Eed of the River is of a " foft Confiftence to a greath Depth, it is dug only " to about 6 Feet, and a Grate of Timber is laid " upon it, which is well fecured with Piles driven " into the oppofite Corners of each Square, not " minding
" minding whether they exceed the upper Surface of " the Graie, much or little.
" When the Foundation is thus prepared, they " make a Kind of Mortar called Beton, which con" fifts of twelve Parts of Pozolano or Dutch'ferras,
" fix of good Sand, nine of unfaked Lime the beft " that can be hai, thirteen of Stone Splinters, not
" exceeding the bigness of an Cge, and three \mathbf{i} arts " of Tile-Dufl, or Cinders, or elfe Scales of Iron
" out of a Forge: This being well worked together
" muft be lefit tanding for abont 2 \%hours, or till it
" becomes fo hard as not to be leparated without a
". Pick-axe.
" This Mortar being thus prepared, they. throw
" into the Cofier a bica of ruble Stone not very large
" and spread them all oucr the Bottom as nearly
" level as they can; then they fink a Box full of
" this hard Mortar, broken inio Pieces, till it comes
" within a little of the Bottom. The Box is io con-
" trived as to be overfet or turned upfide down at " any Depth, which being done, the Pieces of " Mortar foften and fo fill up the vacant Spaces " between the Stones; by thefe Means, they fink " as much of it as will form a Bed ofabout 12 Inches " deep all over: Then they throw in another Bed " of Stone, and continue alternately to throw one " of Mortar and one of Stone till the Work approa"ches near the Surface of the Water where it is " levelled, and then the reft is finifhed with Stones " in the ufual Manner. " M. Belidor fays in the fecond Part of his Hy" draulics, Vol. II. Page 188, That M. Milet de
" Montville having filled a Coffer, containing 27
" Cubic Feet, with Mafonry made of this Mortar,
" and funk it into the Sea, it was there left ftanding
" for two Months, and when it was taken out again
" it was harder than Stone itfelf. Where fuch Mor-

(146)

" tar can be made, this Method has certainly the
" Advantage over all the others, not only in Build-
" ing the Piers of Bridges over deep Rivers, but
" likewife for making Piers for Harbours, and in all
" other Aquatic Works: But before it is made ufe
" of, I would advife the Engineer to make firft a
" Trial of his Mortar; fince Works of this Nature are of too great Confequence to be carried on without an abloiute Certainty of Succefs.

$$
C A S E 3 .
$$

"We have hitherto mentioned fuch Situations only where the Ground is of a foft Nature; but where it is rocky and uneven all the former Methods prove uneffectual ; nor indeed has there yet been any one propofed that I know of, which might be ufed upon fuch an Occafion, efpecially in a great Depth of Water; but as an Engineer ought to know how to proceed upon all Occafions, we fhall therefore mention fome few Obfervations under this Head. When the Water is not fo deep but the Uneavenefs of the Rock can be perceived by the Eye, Piles ftrongiy fhod with Iron, may be raifed and let fall down by Means of a Machine, upon the higher Parts, fo as to break them off Piece by Piece, till the Foundation is tolerably even, efpecially when the Rock is not very hard; which being done either this or any other Way that can be thought of, a Coffer is made without any Bottom, which is let down and well fecured fo as not to move from its Place; to make it fink, heavy Stones fhould be fixed on the Outfide ; then ftrong Mortar and Stones muft be thrown into it ; and if the Foundation is once brought to a Level, large hewn Stones may be let down fo as to lye flat and even; by thefe Means the Work may be carried on quite up to the Surface of the Water.

(147)
 Case 4.

inly the Build. ers, but od in all ade ufe firft a Nature on withcan be od with Means o as to oundatiRock is this or offer is t down Place; ixed on es muft is once y be let Means he Sur-
"But when the Water is fo deep, or the Pock fo " harlias not to be leveliec!, the loundation muft " be founded, fo as to get nearly the Rifings and " lailings ; then the lower s'art of the Coffer muft " be cur nearly in the fame Manner, and the reft fi" nifhed as betore. It muit however be oblierved, " that we fuppofe a l'olitility of firking a Cofer, " but where this cannot be done, no Method that " I know of will aniwer; and thercfore I leave it " to the Judgementand Knowledge of the Engineer " employed upon ited an Occailion, in what Man" ner he is to proceed."
By the firl Cale Page 142, it is citeemed impracticable to make a good Foundation in a coniiderable Depth of Water, where the Ground is fo bad as not to be depended on without being piled. In crder to make a Foundation where it muft be piled, and the Water is fourteen or eighteen Feet detp; the Place being levelled, drive two Piles at each End, and one Yile about the Middile of each of the Place where the Fonndation is to be, as far as they will go ; by this Means you'll know the Length of the l'iles, and whether there is any confiderable Difference of the Ground; then prepare Piles and make a Frame or Mould of Timber, whofe Infide is made to fit the out Edges of the ilatform of Timber you intend to fink to build upon; fink this Mould with Iron Piles to its under fide, like Harrow Teeth about twe Eeet long, to keep it exactly in the Place where your Pier is to be, which Mould will be a fufficient Guide to drive your outer Piles; prepare two Mandrels to each Gin of ftrait grown Oak ; each Mianjrel muft have a Socket of Iron to fit exactly the Heads of the Files; it is eafy to confine the Socket upon the Pile Flead fo as to take it off under Water, when the Pile is drove; with thefe Mandrells

L 2

Piles

Piles may be drove in any common Depth of Water, fo as their Heads fhell not exceed each other in Height much above a Quarter of an Inch, which is futicicintly true in Practice, as thofe Pile Heads that are fomewhat higher than the others will fqueeze into the Plattorm of Timber that is lain upon them; (I have often feen Timber taken of Piles, and tome of the Pile-Heads were fqueezed near an Inch into the Timber above them; but this was where the Piles were drove in very hard Ground:) Having every Thing ready, fink the Mould in its proper Place, and drive a Pile into each Corner, to help to keep it in its true Polition, Places being made clear of the inide Angles of the Mould for that Purpofe.
It muft be obferved, that the Piles drove in the Angles of the Mould, are to be fo thick as to have their Heads made fmaller than the Body of the Pile, to admit the Mandrel Socket on it, and the Pile below the Socket to be at leaft as large as the Outfide of the Socket, fo that the Sccket of the Mandrel do not Atrike the Mould, when the Pile is drove to its proper Lownefs ; the fane is to be obferved all along the Sides of the Mould; but this need not be obferved in other Places within the Mculd. The Mould being rightly laid, fix a Pile into the Maidrel-Socket, and fiving the Mandrel perpendicular in Sheers erested for that Purpote, and direct the Point of the Piic againft the Inlide of the Mould near an Angle; then move the Top of the Shers fo as to thate the Pile Point along the Side of the Mould, till the Angle ftop the Pile Point; then bring the Top of the Mandrel vertical over the fixed Point, and drive the Pile down ; previous to this there muft be made an exact Mark on the Mandirel to how when the Pile is properly drove down. The firlt Pile being properly drove, let the Mandrel ftand upon it, and Irive a fmall Pile near it till its Head or Top is level with
the Mark upon the Mandrel, (this Pile will ferve to direct the driving of all the other Piles by th:e Mark upon the Mandrels;) proceed, and drive a Row of Piles quite round the Mould, and you will have the outer Row of Pile's finithed in the true Form, and fize of the Platform that is to lye upon them; then drive as' many Piles within thele Piles as is neceffary; then take up the Mould, and drive a few Piles clofe to the Outfide of the outer Piles, to direct the finking of the Platform you are to build upon with Coffers, or otherwife. I think more need not be faid to make an ingenious Engineer underftand how he Should proceed to drive Piles under Water, that their Heads thall be futficiently near a Level.

In order to make a Foundation to a Pier in a great Depth of Water, where there is a ftrong Current and no Tide (as mentioned in Cafe 2. Page 143) I would in the firft Place, fink a Body fufficiently large to thirn the Current off the Place where the Work is to be done; if the Bodies of old Ships cannot be had, a Break-water muft be made, with an Angle to part the Current; and the Sides of a fufficient Length to keep the Current off the Foundation : It will naturaily accrue to an ingenious Man how this BreakWater is to be conftructed, funk, and held faft; wherefore I nced only fay, the Faces of this BreakWater muft flance out pretty much near the Bottom, to divert the encreafed Velocity and Weight of the Current, fo as the Water doth not gull, and fcower the Bed of the River from the Break-Water's Sides and get under it, and do much Damage. By Way of Precaution, I would put a great Quantity of Stones againft the Iniddes of the Faces of the Break-Water; when one Pier is raifed above the Water, remove the Break-Water to the next Pier, \&c. A BreakWater well fixed, will not only prevent the great Infonveniences the Stream would caufe in the Works,
but make the Water fomewhai fhallower there, efpecially at the upper End of the Pier; and a Coffer may be ufed it the fame Mianner as if there where little or no Current: As to the Conftuction of Coffers and ine Muthod of Building in Water with them, I refer the Reader to Mr. Nulller's, Practical Fortification, Page 266.

When the Red of the River is Rock, as mentioned in Caf 3 , Page i40, and the Water tor deep to dry the Rock, and the kock is very uneven and hard, propare a large Lrill Stock whofe End is capable to rec: 've a Number of Drills (each about two Inches fquare) to form altogether a large Drill of about two Feet fquare, or more, according to the Depth of the Water, and Length of the Stone, that is to be fet in the Place made level by the Drill; (a Machine being fixed to work this Drill.) Let the Drill down upon the Rock in the Middie of the Spot where the Foundation is to be, and let it ftand upon its Face, letting the Top incline which Way it will, and you will difcover by its Top whether that Spot is level; if it is level, the Drill need not be ufed on that Spot; but a Stone muft be let down, whofe End is two Feet fquare, or the Size of the Drill, and length to reach the Surface of the Water; then move the Drill a Foot and half or two Feet from that Stone, and in a Line with it, a-crofs the Work, and the Drill not ftanding vertical, work the Drill (at firt gently) till it ftand vertical; then take the Drill away and let down a Stone as beforementioned: Continue to do fo till you have got a Row of Stones placed a-crofs the Pier; and the two outfide Stones of each Row is to make the Breadth of the Pier, and Places muft be drilled in the Rock for each of the outfide Stones, to have fix Inches hold of the Rock or thereabouts; proieed and place other Rows of Stones in like Manner, about one Foot and Half, or two Feet diftant, from

(151)

from the firt Row, and from each other, only obferve that the Stones which form the Outfide of the Pier, are to ftand as clofe to each other as can be, and their Ends let into the Rock about fix Inches, as I faid before: The Picr bcing formed as high as the Surface of the Water by this Method, fill the Diftances between the Stones with good terras Mortar, and fmall Stones (it is not in the leaft material to have the Diftances between the Stones equal ;) then lay a binding horizontal Courfe of large thick Stones, let in five or iix Inches, and well cramped upon the Tops of the Stones, that flands with their lower Ends upon the Rock in the Bed of the River; you may either fpring the Arches from this Courfe, or raife the Piers higher : The above Deicription may be too concife for fome Capacities, but a Perfon fit to undertake fuch Works as are here fpoken of, will eafily underftand it. This Method will anfiwer in both the 3d and 4th Cafes; for there is no Rock fo hard, at leaft that I have feen or heard of, but a Drill may be made to pierce it. In this Method there is no need of a Coffer ; but in a ftrong Current a Breakwater muft be ufed.

The Machine to work the Drill I mentioned above, muft have four Iron Legs whofe Length muft be according to the Depth of Water, with a Contrivance to lengthen or fhorten any Leg, according to the Unevenefs of the Place the Legs ftands upon; the Feet of the Legs to ftand eight or twelve Feet afunder at the Bottom, according to the Depth of the Water, and about three Feet and an Half afunder at the Top, or Surface of the Water, where they go into a Frame of Wood, whofe Top is between four and five Feet above the Surface of the Water, and has a fquare Opening within, where Lavers are fixcd to work the Drill; (in Nature of a ringing Gin to drive Piles, but that Lavers are -added to encreafe the
the Purchafe) and which Openings alfo directs the placing the Stones exactly upon the Place the Drill has prepared: Thefe large long Stones are placed by a Crane fixed in a Veffel for the Purpofe; where large long Stones cannot be got, feveral Stones may be put together to anfwer the Purpofe of one large Stone.

As to the Method of finking a Coffer withouta Bottom, and making a Pier within it under-Water with Beton Mortar and fmall Stones, I muft acknowledge I do not well know what to think of it, it appearing to me a precarious Method: I have been employed to demolifh aquatic Works built with Beton or Terras-Mortar, and, fome Parts were cemented together fo as the Mortar grew upon the Face of the Wall one Inch or two Thick, and covered all the Joints of the Stones, fo as the Face of the Wall appeared as one Stone; but again in fome Places the Mortar had not this Effect, for the Wall was no better in fome Places than if it had been built with good common Mortar, and, I have often experienced that Beton or Terras-Mortar, tho' made by the fame Man, took Effect in fome Places and in other Places mifcarried; as to their being certain Rules to make Mortar that will in all Cafes become hard as Stone, I think there is no fuch Thing, except a very foft Stoic is meant ; indeed (where the Work is kept dry) fome Mortar will become hard on the Outfide, like a Skin, not much inferior in hardnefs to fome common Stone, but this is occafioned chiefly by being well compacted with the Trowel; but if it is broke into, but an Inch deep, it will be found nothing near fo ftrong as common Stone; a fmall Piece of Mortar may tometimes be found, that being compared to a fmall Piece of Stone, the Mortar will appear ftrongeft; this may have drawn Men into the Miftake ; and to a meer Theorift it will appear felk
evident, which confidered along with the Defire People have for the Marvellous, and the great Opportunity a Gentleman Theoritl has above a Mechanick to propogate a Belief, and that too amongft the upper Clafs of People, I do not wonder ar this Notion gaining alnoft univerfal Credit. I would not have the Reader to underttand that I think it impoffible to find out a Compofition that will petrifie, and be hard as a Stone, Nature plainly declares for it; and I have obferved Petrification, in feveral Degrees, both in Clay and Gravel: But I would perfiuade againft a too eafy Belief of the Strength of Mortar, I having been upwards of thirty Years converiant in all Sorts of Building with Stone and Mortar ; and I have feen Beton and Terras-Mortar made various Ways, and upon-Trial, have not difcovered any Compofition that I would depend upon, to form a Foundation under Water for any Yier, though mixed up with fmall Splinters of Stones, and thrown into a Coffer upon Beds of Ruble Stone.

Of the Foundations of Piers for Harbours.

I have here, as before, tranfcribed the moft material of what Mr. Mullar has collected upon this Head; and fubjoyned the practical Methods which I would practice, were I employed to lay Foundations of Piers for Harbours, under Water.
" The Manner of laying the Foundation in differ" ent Depths of Water, and in various Soils, re" quires particular Methods to be followed: When " the Water is very deep, the French throw in a " great Quantity of Stones at Random, fo as to form " a much larger Bafe than would be required upon " dry Land; this they continue till within three or " fuur Feet of the surface of the Water, where they " lay the Stones in a regular Manner, tiil the Founis dation is raifed above the Water ; they then lay
"a a great Weight of Stones upon it, and let it ftand " during the Winter to fettle, as likewife to fice " whether it is firm, and refifts the Force of the " Waves and Winds; after that they finilh the "Supertructure in the ufual Manner.
" As this Method requires a great Quantity of "Stones, it can be practiced but in a few Places " where Stones are in Plenty, and therefore the " following one is much preferable. A Coffer is " made with Dovetail Piles of about thirty Yards " long, and as wide as the Thicknes of the Foun"dacion ought to be; then the Ground is dug and " levelled in the Manner defcribed in the laft Secticc on ; and the Wall is built with Beton Mortar, as " has been defcribed in the fame Section.
"As foon as the Mortar is tolerably dry, thofe
"Piles at the End of the Wall are drawn out, the
" side Rows are continued to about thirty Yards
" farther, and the End inclofed, then the Foundati-
co on is cleared, and the Stones laid as before. But
c. it muft be obferved, that the End of the Foun"dation finifhed is left rough, in Order that the
" Part next to it may incorporate with it in a proper

* Manner; but if it is not very dry, it will incline
" that Way of icfelf, and bind with the Mortar that " is thrown in next to it ; this Method is continued " till the whole Pier is intirely finifhed.
" It muft likewife be obferved, that the Piers are " not made of one continued folid Wall; becaufe in " deep Water it would be too expenfive ; for which " Reafon, two Walls are built parallel to each other, " and the Interval between them is filled up with " hingle, Chalk and Stone: As thefe Walls are " in Danger of being thrown out or overfet, by the "Corps in the Middle, together with the great " Weight laid at Times on the Pier, they are tied
" together by crofs-Walls at every thirty or forty © Yards

(155)

to fee of the Ih the
" Yards Diftance, by which they will fupport each "c orher in a firm and ftrong Manner. For want of "t theic Crofs-Walls it has happened, not many " Years ago, that the Walls of a Work were over" fet for the space of fome hundred Yards.
" If fuch Mortar can be made as what the French "call Beton, there can fcarcely be found a better " Method than that above, for laying Ioundations " 6 in deep W'ater, and it may be ufed upon all "Occafions; but as fuch Mortar is not every where " to be had without great Expences, I imagine that "common Terras-iViortar, mixt with fmall Stones " and fome Cinders, if to be had, will anfwer the "، Yurpofe as well; but the Engineer, who is to " carry on the Work, ought to make Trial of it "c before he ufes it.
" If the Foundation be bad to a great Depth, I " would fink it only about four Feet below the " Bed of the River; and lay a ftrong Grate of "T imber, as in thofe of the Piers of a Bridge ; but " if it fhould be rocky, a Coffer muft be made "6 without a Bottom, and the under Part cut nearly. " with the fame Rifings and Fallings, according to " the Manner mentioned in the lait Section.
" In a Country where there is a great Plenty of " Stones, Piles may be driven in as deep as they will " go, at about two or three Feet Diftance, and " when the Foundation is funk and leveiled, large "Stones may be let down, which will bed them" felves; but Care muft be taken to lay them clofe, " and fo as to have no two Joints over each othei, "* and when the Wall is come within Reach, the " Stones muft be cramp'd together. " Another Methen practiced, is to build in " Coffers, much after the faine Manner as has been " done in Building the Piers of Weftminfter-Bridge; " but as in this Cafe the Ends of the Coffers are left * in

(156)

st in the Wall, and prevent their Joining fo well as
"t to be Water-Tight, the Water that penetrates

* through and enters into the Corps, may occation
" the Wall to buift and tumble down. Another In-
* conveniency arifing from this Manner of Building
" is, that as there are but few Hlaces without
" Worms, which will deftroy Wood wherever they
"can find it ; by their Means the Water is let into
"* the Pier, and confequently makes the Work liable
"6 to the fame Accident as has been mentioned
" above.
"To prevent the Inconvenieinces of this Method,
" I would take the Wood away, and joggrle the
"Ends of the Wall together with larges stones, and
" pour Terras-Mortar into the Joints; when this is
" done, the Water between the two Walls may be
"pump'd out, and the void Space filled up with
"Stone and Shingle as ufual: Or if thefe Joggles
" cannot be made. Water-tight, fome Dove-Tail
"Piles mult be driven at each End as clofe to the
"Wall as can be done, and a ftrong fail-Cloth put * on the Outfide of them, which, where the Water " is pumpt out, will ftick fo clofe to the Piles and "Wall, that no Water can come in. This Method " is commonly ufed in Ruffia, as I have been inform" ed."

Before an Engineer forms his Method of proceeding in Foundations, it is abfolutely neceffary he know the Depth of Water, the Nature of the Ground, and what Materials he has to vie, and what Trouble he is like to meet with from the Agitation of the Water; whether the Seas run fquare or oblique to the Direction the Pier is to be built in, \&c.

Admit a Pier is to be built in Water twenty Feet dcep, and the Ground is foft, prepare a Machine that will lower any Weight under forty Tuns; and waen the Pier is carried out from the Shore to where
o well as netrates occalion other InBuilding without er they let into rk liable entioned Method, ggle the nes, and n this is may be up with Joggles ove-Tail e to the loth put e Water iles and Method inform-
roceedfiary he Fround, Trouation of oblique ty Feet Aachine is; and hore to where
where the Water is too deep to build any farther in the common Manner, make the End of the Pier flope, or fall back about one Font and an Half in every two Feet in height, then place your Machine fair to this Slope, in order to lower a Pile of Mafonry, which is to nide down againft the flopeing End of the Pier, till it ftand upon the Ground (at the Bottom of the Water.) It is to be oblerved that this Pile of Maionry is to lay Part of its Weight againit the flopeing End of the Pier, as well as upon the Bottom, I think every Pile of Matonry may add three Feet to the Length of one Side of the Pier, and another fuch Pile of Miafonry, add three Feet of Length to the other Side of the Pier; and each Pile of Mafonry make ten Feet Thicknefs of Pier at the Bottom, and five Feet at the Top, or Surface of the Water, (where a new Foundation about ten or twelve Feet broad mult be made on each Side upon the Tops of thofe funk Piers of Mafonry ;) i. e. Every Pile of Mafonry funk for a Foundation, to be three Feet thick, ten Feet long at the Bottom, and Eve Feet long at the Top, and as high as the Water is deep, which here is fuppofed twenty Feet. This Pile of Mafonry with the 'Timber under it, fuppofing fixteen cube Feet to a Tun, will weigh near Twenty Eight Tuns: It is eafy to faften Hooks to the Bottom of the Piles (to lower it) that may be hawled loofe when the Pile is at the Bottom; I would have thick Pieces of Timber put a-crols under the forepart of the Timber that is under each Pile of Mafonry, to keep the forepart of the Work well up.

When Pieces of Timber are put upon the Bottom of the Frame (if neceflary to make it fit the Ground; but the Bottom of the Pile covers fo little Ground, the Ground mult be very uneven to require levelling) and every Thing is ready, fix the Frame of Timber on the Hooks, and place its Edge to the

Top of the Slope, againft which it is to be lowered to inde down to the Bottom. When one Courfe of Stone is laid, lower it till the upper Side of that Courfe is a proper Height to receive another Courfe upon it, and fo continue to lower the Pile of Mafonry into the Water, as you build it ; (the Friction in lliding down againft the flopeing Sto:e-Work, and what the Water bears, will take off a confiderable Quantity of Weight.) Care muft be taken to lower it equally, and which ever End touches the Ground firft, that Chain or Rope muft be nacked away, and the other held faft, till that End of the Pile is fuak into the Ground as far as it will ; a Row of Dove tail Piles muft be driven along each Side of the i'ier by Mandrils, in the Manner mentioned before, Page 148, where the Foundations of BridgePiers are treated of.

I have faid the Piles of Mafonry are to make ten Feet Thicknefs of Picr at the Bottom, on each Side, but I would not have the Reader underftand that the Timber under the Mafonry fhould be only ten Feet long, I would have the Timber under the Piers of Mafonry about eighteen Feet long, and a crofsPiece of Timber ftrongly faftened upon the upper Part, near the Enits of the Balks, that the Ruble Stone, or other Matter that makes the middle Part of the Pier, may lie heavy upon the inner Ends of the Timber, and in lome Mealure fecure the Foundation from niping forward; (as neceffary Helps will occur to e:ery ingenious Man.) It is fcarce worth mentioning that I would lay a large Hull of an oid Ship, ortwo, before the Work, to keep the Water fmooth when it is working Weather; bu: when the Water is much agitated (and the Foundation is in the Sea) the Foundation cannot be worked 2.

159)

owered urle of of that Courfe f Mariction Work, fideraken to tes the lacked of the a Row Side of ed be-3ridgeke ten 1 Side, d that aly ten Piers crofsupper Ruble le Part nds of FounHelps fcarce full of ep the ; bu: sundavorked

To fink or dig a Foundation for an Harbour-Pier three, four, or fix Feet below the Surface of the Ground, in lix or eight Feet or more Depth of Water, muft be attended with a more confiderable Expence than two Rows of Dove-tail Piles; and I thank two gocd Rows of Dove-Tail Piles, are a greater fecurity to the Foundation, than its being laid three or four Feet below the Surface of the Ground; for the Digging a foundation below the Surface, can anfwer only two Purpofes for the Good of the Pier, i.e. prevent the Water from undermining the Pier, and hinder the Foundation from nlideing from its Place, both which Purpoíes will be anfwered as well, by driving a good Row of Dove- Tail Piles on each Side the Fortification; and in the Cafe of prcventing the Water undermining the Pier, will anfwer better: As to the Ground bearing the Pier better, when the Foundation is let three or four Feet into it, is little better than a fuperficial Piece of underftanding; for, Pier Foundations are generally confiderably broader than the Height of the Pier, and fome Piers are twice as broad as high : The Ground is very foftindeed that will not bear a Wall whole Bafe or Foundation is about 40 Feet broad, and Height only about 25 Feet at moft ; I therefore conclude, That the principal in laying Foundations of Harbour-Piers, is, to acure the Foundations from being undermined by the Water. This Method of finking Stone-Piers, can only be practiced where Plenty of good Stones can be had.

I have dwelt the longer upon this Head, becaufe I have feen great Expence beftowed in Foundations which might have been faved, without any Prejudice to the Building : I beg leave to mention one Cafe:

Upwards of thirty Years ago, I was employed as a Workman, in Building a Stone Pier, which Pier is about forty-two Feet thick at Bottom, and about twenty
twenty Feet high, and ftands upon very hard ftony Ground ; the Engineer ordered five Rows of Piles to be driven under the Foundation, on each Side the Piers, near the Fronts, and about two Feet apart, and Oak Sleepers (at firt) from fourteen to twenty Inches broad, laid Lengthways upon the Heads of thole ten Rows of Piles; the Space between the Sleepers were well filled with flat large Stones; then ftrong Balks from fifteen to twenty Feet long, laid on each Side the Pier, clofe together (like a Platform) crofswife upon the Sleepers, and well tree-mailed down to the Sleepers : Little or nothing more could be done, fave driving two Rows of Dove-Tail Piles, and binding the Timber together in the Middle, to have a Foundation upon the fofieft Ground that ever was built upon.

There was more than double the Expence beftowed, that would make a fufficient Foundation uvon that Ground, and yet this Foundation, notwithftanding all the Expence, was not fufficient, as has appeared fince; for the front Piles, as well as the others, ftood about two Feet apart, fome more, fome a little lefs; and when the Channel by the Pier foowered deep, the Stream being very ftrong, and getting in among the Piles, where meeting Obftructions, fcowered away the Ground and liles, and a Part of the Pier, fell into the River; for many of the Piles (tho' well thod with Iron) bruifed below, and had not drove three Feet. The Ground is very ftrong, but very Subject to fower away, being a Body of great and finall tones, but chiefly Stones like Pebbles, made folid by Sand and Gravel being wained in amongft them, fo that it formed a Body almoft as ftrong as Rock to bear a Burchen, but eafily undermined by a ftrong Stream; fo the only Care required was to keep the Stream from getting under the Pier, which a fingle Row of good Piles driven clofe
clofe together along the Forefide of the Pier would affected; and as there was Plenty of excellent flat broad Stones to lay the Foundation, there was no need of a ftrong Platform of Timber.

Some Years after, I had the Direction of making a Foundation upon the fame Ground, and adjoining this Foundation abovementioned; and becaufe I did not drive Rows of Piles under the Pier, as above, a Perfon, who pretended to be an Engineer, advifed my l'rincipals I was making an unfufficient Foundation, (tho' I had drove a Row of Piles clole to each other along the Front of the Pier, fo that the Pier could not be undermined there by any Force of Water;) but when I had given my Reafons, for faving fo much Expence, the Majority of my Prins cipals were on my Side, and the Work went for-. ward.

I have inferted this Account, with an Intent to to perfuade whom it concerns, not to truft to any one who pretends to be an Engineer, but make a ftrict Enquiry into his Character as an Engineer, efpecially in Places where he has been employed; and as moft Men have two Characters, do not believe the firft Account of him till you have had feveral Accounts: And as there are fome who thro' Favour jump into a Character, if there are feveral Engineers of good Character, chufe him who has had the greateft and longeft Practice; for there are but few Men who are capable to judge of an Engineer's Abilities, and confequently but few who can give a true Character of him.

If a Pier is to be built where the Bottom is Rock, and the Rocks very uneven at the Top, and the Depth of the Wate: from three Feet deep to twenty; the high Tops of the Rocks may be lowered by Drills, as mentioned in Page 150 (where the Foundations of Bridge-Piers treated of;) but it will be M
be impracticable, as well as unneceffary, to make the whole Bottom level by Drills, or otherways; for the Bottom, where every fingle Piece of Mafonry is to be placed, need only to be made level fingly one after another; for which Purpofe they mult be founded, and the Platform of Timber made to fit the Bottom of each as near as poffible, which is the more practicable as every Piece of Mafonry covers only about three Feet of Founclation lengthways; fo that one Piece of Mafonry may ftand upon a high Place, and the next let down to a lower Place, if it fo happen: The greateft Difficulty is to make the Pieces of Mafonry find a proper Seat in the Crofsway in the Pier, from the Front inward; but the Pieces of Malonry being a confiderable Length crofs-ways, the Bottom may be founded, and the higheft Places lowered by a Drill or otherwife; and a Body of Timber prepared and funk under the Mafonry, that will make a Bed level enough for the Mafonry tolye upon.
If a Pier muft be built in eight or ten Feet Water, and Stones can be had any Length to twelve or thirteen: Feet; I would as before, fee Page 156, make a proper Slope, and Ilip the Stones down to the Bottom one upon another, not too upright, nor too much reclining, but lying a fufficient Weight upon the Stones undernoft ; (if stones cannot be had of one Le:gth to reach the Bottom, two may be cramped together to anfiver the Purpofe) with a Groove on the upper Bed of each Stone, to receive Toggals let into the inder Bed of each fucceeding Stone; fo that the Toggals will gide down the Grooves, and keep each Stone faft in its Fofition; the upper Ends to be made tolye well back from the Front, that the Material, put into the Middle of the Pier do not force them forward. Upon the upper Ends of thefe Stones nuit be dai! drong binding Courtes a-crofs the Pier, to

(163)

keep the Pier together; and a Row of Dove-tail Piles muft be driven on each Side the Foundation, to keep the Sea from undermining the Pier.

When Stones cannot be had without too great Expence, make Bricks 15 Inches long, $7 \frac{1}{2}$ Inches broad, and $2 \frac{1}{2}$ thick when burned; put two, $2 \frac{1}{2}$, three or more of thefe Bricks together, with the ftrongett Mortar, and let them be thoroughly dried before you ufe them; with thefe Bodies of Bricks, make Pieces of Mafonry, and fink them as directed before in finking Stone Piers, or Pieces of Mafonry, Page 159, But a Difficulty will arife in lowering the Brick Piers the upper Part of the Side next the Slope it flides down againt, will lift up by the Friction more than large Stones, To prevent this, put two hard Oak Boards againft the Siope; one near the Forepart, and one near the Back Part to nide down with the Pier ; the Space between thefe Brick Piers occafioned by the Oak Boards, to be filled up by the runing Terras-mortar and frall Stones into it : If Worms deftroy the Boards, the Terras-Mortar will keep the Work firm.
It might prove very ufeful to young Practitioners, if the minute Actions, in the Execution of Schemes for Foundations, \&c. were explained : For the executing fuch Schemes are the moof difficult Part; it being eafy to fay do this, or do that; and the fcheming Theorift would generally make a poor Figure, were his Plans to be executed in all its material and minute Parts by his particular Orders. But, to explain all the minute Actions neceffary in the practical Part, exceeds my prefent Defign; I. not haviing time to fpare for fuch a Work.

C HAP.

C HAP. VI.

Of the Length of Arcb-Stone.

AsS there are no Rules, 1 know of, that determine the Length of Arch-Stones, proportional to the different Spans or Widths of Arches, I will give the Reader what I have gathered from Practice and Obfervation upon this Head; but it may be proper, firft, to give an Account of what M. Belidor, an eminent French Engineer, and M. Gauticr, have faid on this Subject, as collected by M. Mullar, who fays in his PraEtical Fortification, Page 253, as follows :
" The Thicknefs of Arch-Stones, I muft confefs, " is not to be determined by Theory, at leaft that "I know of; nor to thofe Authors who have written " on the Subject agree among themfelves. M. "G Gauticr, an experienced Engineer, in his Works, " makes the length of the Arch-Stones, of an
"Arch 24 Feet wide, 2 Feet; of an Arch 45, 60, " 75,90 wide, to be $3,4,5,6$ Feet long refpec" tively; when they are hard and durable, and " fomething longer when they are of a foft Nature. " On the contrary, M. Belidor fays they ought to " be always one i'wenty-fourth Part of the Width " of the Arch, whether the Stone be hard or foft; " becaule; if they are foft, they weigh not fo much. "c. But that the Length of the Arch-Stones fhould
" be but a Foot in an Arch of 24 Feet wide, 2, 3, " 4 , in Arches of $48,72,96$ Feet, it appears to be "، impofiible; becaufe the great Weight of the " Arches would; as I imagine, crufh them to Pie" ces, by the Preffure againft one another; and "c. therefore M. Gautier's Rule feems to be much " preferable: As he made the Length of the Arch " Stone

($1{ }^{6} 5$)

"Stone to encreafe in a flower Proportion, from io " to 45 Feet wide, than in thofe above that Width, " whether they are great or little: Theretore in the " following Computation, we fhall fuppofe the " Length of the Arch Stones of 30 Feet in width " to be two Feet, and to increafe one Foot in fifteen, " that is 3 Feet in an Arch of 45 Feet, 4, 5, 6 in " an Arch of 60, 75, and 90 Feet; and fo the reft " in the fame Proportion."

The moft ufeful Knowledge, in any Action where Expences are required, is, to know how to bring the Affair to a good Conclufion with the leaft Expence; and he is the beft Artift in Building that is capable of erecting a Houfe, Fort, Bridge, \&c. that will anfwer the End for which it is built, with. out any unneceffary Expence; but fuch a Man muft not only have a good Genius, but be alfo a thorough Practitioner both in Practice and Theory: There are few fuch Men compared to the great Number that know only a little of each, and yet are often intrufted with Works of the greatelt Confequence; fo that it is more than twenty to one againft your happening to get a Perfon that can execute a Work with the leaft Expence, to anfwer the End propofed.

I have oblerved the different Extremes, and Expence mifapplied in many Places; and it will generally be fo till Men of Fortune and Intereft take the Trouble to qualify themfelves to difcover and encourage Men of proper Talents.

It appears to me the length of Arch-Stones depends on too many Circumftances to fix any certain Rule to go by ; for, a half Circle Arch doth not require fo great a Length of Arch-Stone, as a Segment Arch of equal Span or Width; and the flatter Arches are, the longer Arch-Stones they requịe in Proportion to their Width ; and the great Difference in the Quality of Stone and Mortar, may induce a M 3

166)

good Judge to make the Arch Stones a little fhorter, or longer; and if an Arch has more rife or pitch than half its width, as fome Gothich Arches have, fuch Arches or Openings may be made with Spanderals, without Arch Stones, fee Fig. 2. in Plate IX. which would fave the Expence of the Center.

I made an Arch in Sunderiland Pier, of 40 Feet 8 Inches wide between the Springers. The Archftones are, in general, only one Foot three Inches long; but, the Arch Stones that make the Face of the Arch or Pier, are irregula: Lengths ; the fhorteft is one Foot eleven Inches long. This Arch is built chiefly without Mortar, and Works are not yet built, as intended, to keep the Sea from beating againft it; and yet there is no Danger of the Arch falling : Indeed there is no heavy Carriages goes over this Arch r

There is a Bridge (of two Segment Circle Arches) over the River Wear, at Bi/hop-Atckland, in the County of Durbam, whofe North Arch is 100 Feet ${ }_{5}$ Inches wide, its rife 22 Feet $;$ Here is three Arches laid one upan another; but the uppermoft appears a very bad Arch, being irregular Stones, as if built only to help to fupport the Battlement; the firft and undermoft Arch is 14 Feet 6 Inches broad; the $2 d$ Arch lies over the Arch under it near 3 Inches on each Side ; the third and uppermof Arch fets over the fecond Arch in like Manner; and the Battlement allo fets over about three Inches; thus about eight or nine Inches breadth on each fide is gained, to make more Room for Paffage on the Bridge.: The Length of the Arch Stones of this Arch (of Ico Feet, 5 Inches wide) is no more than two Feet, and the Stones of the Firft Arch doth not appear to have hold of, or even Connection with the fecond Arch, which is turned clofe upon it ; but as the Stones of the firt Arch appears longeft at the Crown, or Middle of that Arch, and as there appears a confider- or pitch s have, 4 Span n Plate nter. ch, Arches) in the is 100 s three jermoft mes, as it ; the broad; Inches ts over lement © eight o make ength eet, 5 nd the have Arch, nes of wh, or nfiderable
able wide Joint of Mortar, between the Crown of the firft Arch, and the underfide of the fecond or Counter Arch over it, I am induced to believe the Crown of the lower Arch has come down an Inch or more from the Arch above it ; and that low Arch hangs by its Abutments clear and independant of the Arch above it, (tho' the Arch Stones are only two Feet long, and the Arch 100 Feet 5 Inches wide, and rifes but 22 Feet, as I faid before;) which with the bad irregular Arch over that again, fupports the Superftructure, and the Weight of Carriages that go along the Bridge.

The South Arch is 91 Fect 5 Inches wide, and 20 Feet Rife or Pitch, with 3 Arches one over another, in every Refpect as the North Arch, fave that the Arch Stones is only one Foot ten Inches long. I meafured the Length of thefe Arch Stones, but the Length of the North Arch Stones was given me, and as I could not difcern (tho' I ftood very near) the North Arch-ftones, to be longer than the South Arch Stones, I am fatisfied the Meafure is right ; the Crown of this lower Arch, has alfo dropped from thofe above it, about an Inch, and hangs independantly between its Abutments; the fecond, or counier Arch, affifted by the third Arch, bears the Superftructure. This third Arch appears a much better Arch than the North third Arch; the Arch Stones in all the three Arches are near of a Length.

The Pier between the Arches is 19 Feet 5 Inches thick, and built in the ufual Manner; the upper Part of this Bridge is of very irregular bad Stones, the whole Breadth on the Top Battlements included, is no more than 15 Feet 10 Inches.
This Bridge was built by Wilfre or Wilfred Sbirley in 1338.
I could mention other Pridges, whofe Arches appeared to me fo very llender, that I would not, 20

Years ago, ventured along then, if I had not known Carriages, \&c. had gone over before me; and I believe there are very few Inftances of Arches failing, but there was fome other Defect than the Arch Stones being too fhort ; and with Refpect to M, Belidar's and M. Gauticr's Rules fordetermining the Length of Arch-Stones, I cannot help thinking that better Rules may be found, for, M. elidor's Rules for the Length of Arch Stones, is one twenty fourth of the Width of the Arch, but by this Rule, the Arch Stones in fmall Arches, i. e. from ten Feet wide to thirty, would be too fhort to bear heavy Carriages; for the Arch Stones in an Arch of wte Feet wide, would only be five Inches; and ntenty Feet wide ten Inches; and in an Arch of thirty Feet wide fifteen Inches, \&c But from forty Feet width to eighty fiye, M. Belidor's Rule will do indifferently well; and from eighty five upwards, one Twenty fourch Part of the Width of the Arch makes the Arch Stones too long. See the following Table.

of Duthamiscale 15 Feet in an Truth: Pbult hy Wiffee Shirley/1388.

(169)

A Table fhewing the Length of Arch Stones for Circular Arches to bear heavy Carriages, from io Feet width to 120.

Part of the Width of the Arch.

Length of the Arch Stones in Feet and Inches.

Thefe Arch Stones are of a fufficient Length efpecially where there is good Mortar and good flat rough Stones to form a Counter Arch, to keep the Shaking of heavy Carriages from the Arch below? and as a good Thicknefs of Mortar and rough Stones, are, or ought to be, generally laid upoas

(170)

the Crown of every Arch. It may be ordered fo that the rough Matonry upon the Arch fhall, when dry, form almoft as ftrong an Arch, as that below it, and the Difference of Labour in building the rough Mafonry archways, is fcarce worth mentioning.
As to M. Gautier's Rule, it makes the ArchStones much too long, as is plainly demonftrated by all the Arches I have feen, and in particular by the Bridge at Bi/hop-Auckland, in the County of Durbam, above mentioned, the Arch Stones in the Arch thereof 9_{1} Feet 5 Inches wide, is no more than one Foot ten Inches long, which by M. Gautier's Rule fhould be fix Feet long, befic he Expence fuch an Arch will coft, it will require " arge Quantity of Timber to make a Center to fupport lo great a Weight, fuch an Arch as this will be very expenfive without a Ne ceffity ; for if the Length of the Arch Stones are only fufficient to fupport its own Weight, and a Quarter more, by building upon this Arch in the Manner above mentioned, will make the Briage fufficiently ftrong to anfwer the End.

C H A P VII.

THE Art of making Rivers, Creeks, Harbours, \& c. more fafe and commodious for receiving Ships and other Veffels, and the making the beft Ufe of the Fluxes of the Sea towards making Rivers navigable, as far up within the Land as poffible, and to get a trong Reflux to keep Rivers Mouths clear of Obftruction, is an Art of confiderable Confequence in many Places of Europe, effecially in fome Places of Britain; therefore I will endeavour to cloar up a Point or two; the acting upon the wrong Side of which, has been very injupious to the Navigation of many Rivess and Flar-
dered fo when tt below ling the ention-
e Archrated by - by the Durbam, h therene Foot le fhould an Arch Timber ht, fuch ut a Ne tones are t , and a h in the Bricuge ds makLand as p Rivers confiderpe, cfrere I will ne acting ery injuind Har bours
bours, and the Caufe of feveral ufeful Harbours being entirely lof.

The firf Point in Queftion I fhall examine, is, whether large Receivers in Rivers a Mile or two or more or lefs up the River from the Sea, (fuch as Farrows Lake in the River Tyne,) doth, or doth not caufe the Flux of Water to come into Rivers with greater Force than if the Rivers were nearly of a Breadth, from the Sea to the End of the Flux. In order to fet this Point in as fair a Light as I can, I will imagine two Rivers of equal Breadth and Depth, from the Sea for a Mile up within the Land, fo that the Entrance of each Rive: will admit an equai Quantity of Water, and each River has the fame Turnings, and upon a Level ten or twelve Miles up ; but one of them is no wider than at its Entrance all the Way up to the End of the Flux; and the other River from about a Mile from the Sea, is very broad, and continues broad for a Mile or two further upward; and then narrows to near the fame Breadth of the other River; and the Flux of the Sea rifing to the fame Height at the Mouth of each River, I think I may venture to fay, it is natural to conclude that more Water will go into the River that has the greateft Receiver; and the Stream will run into and out of that River with greater Swift, nefs and greater Force, than it will run into and out of the River that hath the finall Receiver.
Tho' I think the Conclufion I juft now made is felf-evident, but, by way of Illuftration, give me Leave to fuppofe two Tubes of equal Dimenfions, (each three Inches broad, and eighteen Inches high) placed for Water to run through them, to fill two Spaces each eighteen Inches deep, which is the Height of the Tubes or Openings, and one hundred Feet long, more or lefs ; but one Spare or Recciver to be three Times as broad as the other, and confequently
fequently will hold three times as much Water. Having Things properly fixed, make a Body of Water, like the Flowing of the Sea, come gradually againft and run through thefe Openings, to fill the $S_{\text {paces or Reccivers (mentioned above;) and I make }}$ no Doubt (when the Spaces or Receivers is about 3 full) but there will be a perceptable Difference between the Stizans in the two Receivers, flowing at the further Ends above the Level of the Openings where the Water comes in, or what we may call the Sea : And the Stream in the large Receiver, orlarger River, will when the Receiver or River is $\frac{3}{4}$ full, rife more above the Level in the Receiver at the further End, than the Stream in the fmall River or Receiver. This is the fecond Point to be proved; and if the Water is raifed gradually (like the flowing of the Sea) to the Tops of the Openings, both Receivers or Rivers will be filled to the fame Height, by the fame Flow of Water without ; tho' one holds three Times as much Water as the other, confequently the Water muft run with three Times the Velocity in at the Openings that is to fill the great Receiver, or River, than it doth in at the Opening that fills the fmall Receiver or River; and if you let the Water come out again at thefe Openings, by making the Water without receed, like the Ebbing of the Sea, it will run out at the Opening in the large Receiver or River, with much inore Force than from the Opening to the fmall Receiver ; and is the third Point to be proved, which I think mult appear evident to every one that knows any Thing of the Nature of Fluids.

The Reafon of large Receivers, or large Rivers, being filled to the fame Height, that fmall Rivers or Receivers is filled to with the Flux of the Sea, through Openings or Inlets of equal Dimenfions, are, The fmall Receivers or Rivers, fill fafter than the large Receivers or Rivers, till near high Water without;

173)

without; by which the Velocity of the Water, thro' the Inlet to the fmall Receivers, is retarded that is cannot run into the fmall Rivers or Receivers, fo faft as into the great Rivers or Receivers ; and the Sea when flowed to its Height, keeps up at its Height a fufficient Time for large Receivers to take in much Water after the fmall Receivers or Rivers are full, confequently the Streams doth run with a confiderable Force a confiderable time into the large Receivers, after it has done running, or runs but very flowly, into the fmall ones.

The Reader, I imagine, is now of Opinion that the Tides run with greater Velocity into thofe Rivers that have large Receivers, than into the Rivers that have fmall Receivers. The Entrance being of equal Depth and Breadth, and confequently the enlargeing or leffening the Receptacle for Water in a River, augments or diminifhes the Force of the Strean into that River. This Maxim in Hydraulics, I think, is clear and well founded: This is the firft Point I propofed to examine; and have in few Words fet it in as fair a Light as I can.

It now being ev:dent, and I fuppofe acknowledged, that the larger a Recciver is in a River, the Stream will come into that River with a proportional greater Force. This being admitted, it cannot be denied, that,

The large Receivers in Rivers, are alfo the Caufe of the Stream running farther up the River than it ,would do if the Receivers are much leffened, or quite filled up. This is plainly proved, by the Tides not running fo far up the Rivers, after the Receivers have been leffened, as has been attefted by feveral who have taken Notice of thefe Matters : An an old Man, of good Credit, faid he learned at a School near the River Tyne, and he, when a Boy, often faw the Tide cover a particular large Stone
that lay in the River, near where they ufed to play ; but now the Tide doth not flow up fo far by about a Mile and an Half. And a Gentleman who lives upon the River Wear, in the Neighbourhood of Nerv-Bridge, affirmed in my Hearing, that he, when a Boy, faw Straw driven upward through NewBridge, with the Tide; and now the Tide doth not flow fo high at Nerv-Bridge by about two Feet perpendicular ; and I know the Receiver of the River Wear has been much leffened, and many Keys built in the River fince that time. Here it may be replied, The Sea may, in fixty Years, have receeded from the Shore fo much where the Tyne and Wear are, as to caufe the Difference of the Tides up thefe Rivershere mentioned. I know the Sea has receeded from Shores which I have feen; but as I never. heard that any Perfon has taken Notice of any fuch Difference of the Tide in Sbields or Sunderland Hiarbour ; nd there being no Token nor vifible Marks to be teen at either Place, whereon to ground the leaft Sufpicion of fuch Difference of Tides in thefe Harbours, it may be faid without Fear of Contradiction (that is founded in reafon) that the Tides now not flowing fo high up the Tyne and Wear, is entirely owing to building Keys, and leffening the Receptacles in thefe Rivers. This is the fecond Point I propofed to examine; and it is evident that the Water runs fartheft up the Sand, on the Sea Shore, and in greater Quantities when the Waves pulh it with the greatelt Force; and it is alfo evident a Ball will run fartheft up a Hill, and return back with the greateft Force, when thrown up a Hill with the greateft Velocity : So will the Water run ftrongeft into, and out of thofe Rivers that have the largeft Receivers. This is the fecond and third Points with refpect to the Utility of large Receivers in Rivers, propofed to be examined. Thefe foregoing Maxims

(175)

being clear and evident, it muft be highly criminal to fill up the Receivers in a River, or Stop the Tide from flowing up a River, by Building Dams, \&cc. efpecially in Rivers where the Tide did not, before fuch Encroachments, flow far enough up for the Trade carried on in that River, nor the Reflux fufficiently ftrong, before fuch Encroachments was made, to keep the River's Mouth effectually open, for Ships to fail out and into the Harbour. I think more need not to be faid to prove that the filling up the Receivers in Rivers, both ftops the Stream of the Tide from getting to far up inland as to enable fmall Craft to Trade better up and down the River ; and alfo deprives the River of its antient neceffary Stock of back Water, which is abfolutely requifite, and was not anciently quite iufficient, and mult be lefs fufficient to keep the River's Mouth fufficiently open, when much of the antient Receiver is filled up.

So little has the Art of improving navigable Rivers, Harbours, \&c. been attended to or undertood by my Countrymen, that in the latter Part of March, or Beginning of April. in 1759, an Engli/h Engineer, (looked upon by Gentlemen as a very ingenious underftanding Engineer) afferted before a Number of Gentlemen (tise Place and Gentlemen's Names I could mention,). That if a Dam was made acrofs the River Wear, to ftop the Tide at the Low Key (which is only about a Quarter of a Mile from the Sea) it would in noShape injure the Port.

To underftand how far the above Affertion proves the Gentleman that made it an ingenious underftanding Man, in the Affairs of improving navigable Rivers, Harbours, \&c. the Reader muft be acquainted that the frefh or land Stream, that comes down the River Wear in Surmer, is little more than
than fufficient to make two Mills work. Gredt Land Floods generally happen only once in 3, 4 , or 5 Years; and there are many Thoufands of Tuns of Sand and Gravel caft into the Sea every Summer, within about three Quarters of a Mile off from Sunderland-Bar; a great Part of which the Sea throws a-Shore upon, and near to, the Entrance of the River Wear, and Port of Sunderland; fo that the prefent Reflux (though the Spring Tides flow near Twelve Miles up the River) is barely fufficient to drive the Sand away, and maintain an indifferent Entrance ; but if the Tide was ftopped, (by a Dam as above) from coming up the River but for three Months, the Sand and Gravel would be thrown by the Sea, as high upon Sunderland Bar, as any other Parts of the Shore, fave a very fmall Shallow Gut made by the upland frefh Stream, which would not receive a loaden Keel (much lefs a Ship) to fall into or out of Sunderland Harbour, except for about two Hours on the Top of Spring Tides. For,

It is evident the Flux and Reflux of the Sea, near the Land, make but a very weak Current direcily toward the Land, or directly off to Sea, fave where the re is a confiderable Receiver within the Land, like Portfmouth Harbour, Soutbampton River, \&c. and the greater the Indraft, the greater Diftarce from the Shore doth it begin at. And if a Dam is made a-crofs a River Six Miles up from the Sea, and ftop the Indraft or Tide there, which ufually flowed 10 or 12 Miles up the River; by this Dam the End of the Flux Stream would be only fix miles from the Sea, inftead of twelve; confequently fix Miles length of Stream will not only be loft to the Navigation, but the Indraft or Infett and Outfet will be will be much weakened, fo that Veifels will lofe the great Advantage of a flrong Infett to carry them into the Harbour againt ftrong off-Shore Winds,
which is a material Point, and being wanting, renders the Entrance lefs navigable; and many Ships will be obliged to keep the Sea; which would have got the Harbour if the Dam had not ftopt the Tide, ard weaken'd the Infett ; to fay more on this Head, would be fuperfluous, I having in the foregoing Pages prov'd that the lelfening the Receivers of Rivers is greatly injurious, and may quite ruin the Navigation and Trade of a River, and totally ftop the Tide with Dams from going up fuch Rivers, as the Wear ; is ruining the Navigation to all Intents and Purpofes at once ; if Power had been obtained and a Lock made at Biddock-Ford, or Mr. Lambtons bigh Staitb, or at either Place, the Navigation of the River Wear, and Port of Sunderland, would have been greatly injured, and the Public Lofs would have been greater by ftopping the Tide at Biddock Ford, than the greateft Advantage that could be hoped for, from the upper Navigation would make amends for; for great Tides fills the River two Miles and a half above Biddoc Ford, and two Miles above Mr. Lambton's bigb Staith, which part of the River holds a very ufeful Stock of back Water; without which, the Trade could not be carried fo well on at the Staitbs, nor could the lattter part of the Tide run to Sea with a fufficient Force, to maintain fo good a Channel to Sea, as is now, \&c. all which put together (in my Opinion) would injure the Public more than ten thoufand Pounds a Year ; for the Value of a Foot depth of Water, loft or gained in the Entrance of the Port of Sumderland, is more than four thoufand Pounds a Year loft or gained to the Public, as is clearly proved by an Eftimate lately made, this being a Digreflion, I have not inferied the Eftimate abovementioned.

It may be proper in this Place, to obviate an Argument that has been made ule of, to fupport an \mathbf{O}. pinion that large Receivers in navigable Rivers, Ports and Havens, are of no Confequence with regard to keeping the Entrances clear of Obftructions, \&c. For fay fuch fuperficial Reafoners, If the Outfet is Arong, the Infet is alfo ftrong, and brings Matter into the River to make Obftructions, in a Degree equai to the Streingth of the Ouffet : Therefore the Serength of the Out and Infet of the Tide, is not of fuch Value as is imagined; nor are large Reccivers of any Confequence in maintaining a good Channel to Sea. Such Reafoners and fuch Reafons as to themfelves doth not deferve an Anfwer, but as they fometimes do much Mifchief, I will fow the Fallability of this Manner of arguing.

Aavigable Rivers generally have a confiderable Stream of treh Water, which runs from the Land, and impedes the Infet from the Sea, proportionally to the Quantity and Velocity of the freth Water Strean in that River; but when the Flux of the Sea receeds, and the Stream of the. River returns back again towards the Sea, it meets no Hindrance from the Counter-Stream; but the Outfet increafes in Force, as the Surface of the Sea lowers, and the Water that has been depofited by the Flux of the Sea far up the River, returns toward the Sea along with the natural Stream of the River, when the Sea has recseded fofar as to give no Obftruction to the Dutfet; but that the whole Weight of the Stream fcowers the Bottom of the Channel or Bed of the River, and in many Rivers augments the Force of the Outfet, to double the Force of the Infet; not to mention the Advantrige the Ouffer has, by the Deficent the River's Bed has towards the Sea : And to prove that this is clearly agreeable to the Nature of Things, I muft acquaint the Reader, that more

(179)

A Aro Oivers, th reAtions, Outbrings , in 8 FhereTide, : large a good leafons but as ow the of the returns ndrance acreades Ind the x of the along the Sea to the Stream of the Porce of tr ; not by the : And Nature at more
Water

Water goes out with the Reflux, than comes in with the Flux ; for all the time the Flux of the Sea repels the freh Stream, the frefh Stream is filling the River jointly with the Flux of the Sea; and what ever Quantity of Water came down the River in the time of the Flowing of the Sea, to much greater Quantity goes out with the Reflux, than comes in with the Flux. This is one Reafon why the Stream of the Tide runs ftronger out of than into Rivers. There is another Reafon why a ftrong Infet doth not carry much Sand and Gravel into a River, and is this, The greateft Force where the Stream is not obftructed (but can run ftrait) is near the Middle of the River, and this Force gradually diminifhes toward the Shore, where is little or no Stream ; fo that what Sand, Gravel, \&zc. is raifed by the Stream, it fubfides towards the Shores, and in Eddies of Points, \&cc. till the Reflux remove it downwards toward the Sea; and the Reflux being ftronger than
e Flux, it forces the Sand, Gravel,' \&cc. further yownwards than the Flux can carry it upward: This is the principal Reafon why Rivers keep fo well open where much Ballaft is caft.

We, are not without Inftances of there being very good Harbours, that have little or no Land Water to affit the Reflux in keeping the Entrances open ; and yet the Entrances are fufficiently deep for the largeft Ship of War to fail into or out of fuch Harbours, but then the Receiver within is very large : Portfmoutb Harbour is an Inftance and Proof of this ; it receives very little Land Water, and is a good Harbour for our largeft Ships of War, notwithitanding the large Sands that lye before that Harbour's Mouth. I think this cannot be accounted for any better Way, than the Reflux is not impeded fo much in its Courle to Sea, as the Flux is in running inte the Harbour; therefore the Re-

180)

flux runs out of he Harbour with a Force fufficient to keep the Entrance clear c ${ }^{5}$ Sands, Gravel, \&c. Portfinouth Harbour plainly proves that a large Receiver will maintain a good Harbour, without the Aflitance of Land Water: This appeais' to me another plain Proof of the Ufefulnefs of large Receivers in Ports, Havens and nav:gable Rivers ; and that the leffening Receivers in Ports, Havens and navigable Rivers, are injierious to Navigation.

Before I leave this uieful Subject, I will endear vour to fhow the Reafons why much Expence has been beftowed to little Purpofe, in deepening fhallow Places in Rivers. I am the more induced to this by a Relation from a Perfon who was a principal Dicetor in attempting to deepen a Shallow Part of a River in Yorkfire. He faid a Body of Gentlemen of York, expended above $£, 10,000$ in this Attempt, and was at laft obliged to make a Lock, to make that Part of the River navigable.

In attempting the deepening a faallow Part of a River, the firt Thing proper to be known is, whethe Bed of the River above this fhallow Place, is low enough to have a fufficient Depth of Water upon it for the Navigation, when the fhallow Place is deepaned; for where there is a Stream o: fharpe in a River the Surface of the Water below that Stream is lower than the Surface of the Water above it; and when the Bed of the Stream is lowerd to the Level of the Bed of the River above ir, the Waier's Surface upward will become lower than it was before, confequently fhallower. If the Water is fufficiently deep upward, a fhallow Part below may be deepened to anfwer the Purpofe, by employing as many Men as will in all Probability effectually remove the Ob firuetor before any Flood can bring freh Mater there I mean as many Men fhould be employed in a proper setifoin, as carr to any Service; for no Man

APPENDIX.

Of maming the Britilh Navy witb lefs Grievance ta the Subject.

THIS great Object, I may venture to fay, hath long taken up the Attention of feveral abie and judicious Gentlemen, from whom different interefting Schemes and Plans have been produced; one of which, in a late Seffions of Parliament, made a confiderable Progrefs. But as Affairs of fuch high Importance carry with them their bad as well as good Effects, the above named Plan, after paffing the Examination of the honourable Houfe of Commons, two or three times, was found to Bear too hard upon the Liberties of the Subject, and therefore was not carried into a Law. But the Gentleman who was Parent of it , had the private Thanks of feseral of the Members, whu urgently preffed him to continue his good Offices towards the perfecting fa defirable a Scheme, which the whole Houfe feemed to have in much at Heart.

As this happened, fince the firt Advertifement of the Brifish Mars, to the Plan of fo able a Gentleman, it cannot be expected any Productions of my Pea would deferve Notice; and I was once al. moft determined to forbear touching on that Subjeft : Butwhen I reflected on the ilmon Impoanibility of any one Perfon being able to form a Plan of that Kind; clear of Objections; and that ir is yet probable from many propofed Schemes, a good one may be adopted. I have from a hearty Defire to be ufeful to the Public, at laft ventured to offer the following

(183)

lowing to their Confideration; and thall endeavour in the firt Place to give an Anfwer to the general Complaint, That Seamen are worle treated than any other of his Majefty's Subjetts.

Ift. As the prefent Manner of raifing Seamen to man his Majefty's Fleet, is well known to moft People in the Nation ; therefore Parents who bind their Children to the Sea Service, or others of adult Years who betake themfelves to that Employ, fhould never complain whenever it falls to their Lot to be taken into his Majefty's Service, becaufe they knew beforehand they were by the Cuftom of their Employ fubject to it : And it is on that Account the Wages of Seamen in the Merchant's Service even in Time of Peace, are much higher than other labouring Peoples, and in time of War are carried to great Excravagancies; therefore if the Expectation of fuch Gain draw them to Sea, they voluntarily bring upon themfelves the Hardfhips complained of ; and the trading Part of the Nation, who pay fich extravagant Wages, have a Right to their Service in the Piavy, ac ording to Cuftom prefriptiveIy eftablifhed.

IId. If there is any Injuftice in the Cafe, itcan only be in this, That Seamen are not taken in their Turns to ferve in the Navy, and this fall chiefly among themfelves, becaufe of the great Difference between the Pay of the Navy and the MerchantsService: Each one ftriving as much as poffible to avoid the firft, and obtain the latter. Now to bring the Wages in the two Services to near an Equality, will be bringing the Matter nearer to Juftice ; and to which Purpofe, the following Scheme, which if it could be brought about, would be a great Means to man the Navy with lefs Grievance to the Subjects. Tho' all poffible Care has been taken by the different Aets of Parliament for the Encourage-
ment of Seamen to enter into his Majefty's Service, yet the great Difference of the Pay ot Merchant Ships in time of War, from 3 or 4 l. per Month to that of the Navy, being only 225 . per Month, makes them very backward to enter, and even when on board to perform their Duty with great Reluctance. Now I would humbly propofe that a Tax be laid upon every Seaman in the Merchant Service in tume of War only, at fo much per Month, as will be a Mean between the Pay in the Navy and the Merchantmen. This may be done by getting the Knowledge of the Wages paid by the Merchants in time of this and the two laft Wars; and whatever the general Wages appear to have been more han the Pay in the Navy, the half of it fhould be the Tax laid on thefe in the Merchant Service, to raife a Fund for the Increafe of thefe Seaman's Pay which ferve in the Navy.
Suppofe the Difference be zos. only the half 15 s, for the Tax to be paid by the Seamen in the Merchants Service, and carried to the general Fund; out of which fhould be paid 5, 6, 8 or ios. per Month, as it would raife to every able Seanian in the Navy, and in Proportion to the rated ordinary, the Mafters, Commanders, Apfrentices, not liable to be impreffed, excepted from paying any Tax, for the better Encouragement of raifing Seamen by Indenture for three Years. For Example, Suppofe fifteen Thoufand Seamen liable to be impreffed in conftant Pay in the Merchant Service, and home Trade, their Tax at 15 . . per Month, would raife 71250% per Month, the yearly Amount will be $135 ; 000$. which would give to 45.000 Men , employed in the Navy, 5s. a Calendar Month, over and above their common Wages. And if 8 s . a Month, more or lefs, according to the Seaman's Will, out of their common Pay were added to that Sum, and fuppofing

(185)

rvice, chant nth to nakes en on tance. e laid time 1 be a Mer-nowtime or the an the Tax raife a which ; out Ionth, Navy, afters, nprefbetter re for Chout Pay their l. per which Navy, comr lefs, comoofing 135.
135. a Month remitted conitantly every half Year, after the firtt fix Months, to their Wives and Families, it furely would have a very good Effect, and Bring Men more chearfully to ferve in his Majefty's Navy.

In Ships which fail Coaft-ways by the Voyage, as they are feldom above a Month one Voyage with another, the Seamen may be taxed by the Voyage ; and it would not be a difficult Matter to collect the Sum, if the Mafters and Owners whe pay the Seamen's Wages, are under fevere Penalties for not paying into a roper Office, erected for that Purpofe, the Sums becoming due for every fuch Seaman on board his Ship, for the Voyage or Month, every time the Voyage is finifhed and the Wages paid.

Something to this Purpofe, joined with feveral good Propofals, mentioned in Capt, Blake's Scheme for manning the Navy, cannot fail of producing the following good Effects, viz. Seamen when impreffed will not think it fo great a Grievance to ferve, becaufe, in the firft Place, their Pay will become nearer to Equality to thofe in the Merchant Service who pay fo much back of their great Wages, to make their's the better ; befides the Sum thus raifed proceeding from the extravagant Wages in the Merchant's Service, will hardly effect other Individuals than the Tavern-keepers and Bawds of Wapping, and the principal Sea-Port Towns, who generally fleece the honeft failors of the greateft Part of their Wages, and leave them rotten Conftitutions into the Bargain; add to thefe, the great Expence that may be faved by keeping a leffer Number of Tenders for the preffing Service, nor will fo many Seamen be fo cruelly confined in the Tender's Holds.

I don't pretend to fay the above Scheme is free from Objections, no doubt, but feveral will be found
found in the eftablifhing of it, but the greateft that occurs to me at prefent, will be, that Seamen knowing they have to pay fuch a Tax, will not go to Sea without having fomuch more Wages in Proportion to the Tax, and fo it will fall upon the Trade. To this I anfwer, if that was the Cafe, it would become a greater Grievance than that intended to be removed; but I look upon our trading Gentlemen in whofe Hands the whole of that will depend, to be better Managers; for if Seamen could have what Wages they pleafe, they may as well infift on rol. a Month, as three Pounds; and there would be no End to their Extortions. But as few of them cares to go to Sea whilft their Money lafts, it will be greatly the Merchant's Interefts to keep the Wages low, for by that Means they may be able to trade with a fmaller Capital to fuppiy their Correfpondents with cheaper Goods, and get their Ships the fooner and cafier to Market.

1 do not pretend to be capable of reprefenting the Benefit of the above Scheme in all its Advantages. Its from a hearty Defire to do good to my Country I have publifhed thefe few Hints (the firft of which I had from a neighbouring Gentleman, viz. that of the Tax) expecting no more from them than that fomething may be gathered that may prove ufeful to an able Hand, towards the promoting any Scheme for manning the Royal Navy with lefs Gricvance to the Subject.

C HAP.

It that knowto Sea ortion To Id beto be lemen to be what on 10 . be no cares greats low, with a s with er and

C H A P. II.

WHEN we are bleffed with a Peace, our Sea. men will be too numerous to be all employed in the Trade Britain at prefent poffeffes: By think. ing on this Matter, it appears to be the Duty of every Briton to publifh any Plan he conceives carries a Probability of encreafing our Trade, and employing more Seamen. Thefe Thoughts led me to re-confider the Nature and Trade of Hudfon's Bay; and the twenty Thoufand Pounds allotted by Parliament, as Part of the Reward for difcovering the Northweft-Paffage from Hudfon's Bay to the Pacific Ocean, and great South Sea; upon a thorough Recollection it appeared fomething more confiderable might be done in that Part of the World, for which Purpofe I formed the following Plan :

In the firft Place, an Application muft be made to Parliament, for an Act to enable his Majefty's Subjects to fettle, and people Places in the Countries adjoining to Hudfon'sBay, in order to carry on a Fifhery all round the Bay, and in every River, Inlet, Creek, or Bay, without being obftructed by the Hudfon's Bay Company ; giving proper Security not to interfere in the Fur-Trade.

Powers being obtained to people and cultivate any Part of the Countries adjoining Hudfan's-Bay, at a proper Diftance from the Company's Factories, in order to carry on a Fifhery: Places mult be erected where Seamen may dwell, in'a proper Part for Cultivation, near a navigable River, where Families when they could not filh, might find it worth their Trouble to cultivate the Land; firlt for Greens and Roots, and after for Corn: There being already Plenty of Grafs for Cattle, Horfes, Sheep, Goats, offc, which cannot fail to increafe, and yield, Profit

(188)

in the fouthern Parts of the Bay, in about 5 I , or near the Latitude of London; Swine and Beafts of all Sorts, has nearly as good a Chance there to be pro. fitable as in England or Scotland.

The Rivers are clear of Ice fooner, by near a Month or fix Weeks, in the fouthern than in the nothern Parts of the Bay, coniequently the fifhing Seafon begins fooner there than to the Northward, by at leaft a Month or five Weeks. This Advantage, among many others of the Situation, not only gives the Fifhers time when all together to prove any new Invention for killing more Whale; but alfo gives the Fifhers an Opportunity to get to the northerly fifhing Places in good time,

The principal Colony of Fifhers being fixed in a Patt of the Country that is capable of producing every Ncceffary of Life, the Fifhery may be eafily extended to every River on the fouthweft Coaft, and the Faft Main where the $E_{\text {Kimaur }}$ doth not frequent for Fear of the other Indians.

It may be proper to oblerve, that by keeping a Net or two, let at the Mouth of every River, where Men are employed to kill Whales, as many Solmon and other good Fifh may be taken, and falted, as will be a confiderable Part of their Winter Subfiftance.

The Veffel that is to collect the F/kimaux Trade, ought, the firft Year, to proceed round the Bay, as foon as the Ice is gone off Shore, fo as a fmall Veffel can fail between the Ice and the Shore. And at every Place where E/Rimaux frequent, and can be fpoke to, give them fome Line, a light Harpoon, or two, a Cafk; \&cc. and make them underftand you as you can, by Signs, or otherways, that you will come next Year and trade for Whalebone, Oil, Sea-Horfe-Teeth, Seal-Skins, \&cc. This do at every Place where you find any E/kimaux; but be fure and
, or near s of all be pro. which is, not to truft the $E /$ kimaux (let their Appearance be ever fo friendly) when they have Reafon to think themfelves too ftrong for you; by many Accounts which I know to be true, joined to many other well attefted Accounts, they are the moft fubtle, treacherous and cruel Savages in the known World; therefore it fhould be long ere I would make any. Settlements among them, but vifit them yearly, and encourage them to kill Whales, \&c. by giving them in Trade good fuitable Fifhing Tackle, and other moft ufeful Things, to enable them to encreafe their Trade. By this, and fuch like Treatment, they would in time become tractable Fifhers, without any Danger from them; for if they were affured of our coming yearly, they will procure all the Trade they can and yearly look out for our Ships, and come off in their Canoes, as they do in the Straits to the Company's Ships. See what I fay of the Fifheries, in my Account of Hudfon's Bay, Page 63, of which the following is an Abftract:
"The E/kimaux, who are the profeffed Fifhers, " ufed to inhabit the Country on the Eaft Main, be" tween the Straits and the Bottom of the Bay: "But they are fince driven away to the Northward, " by the other Indians who are rendered much fu" perior to them, on Account of the Supply of "Arms and Ammunition, which they receive from " the Englifh: So that a Tract of Land of more " than three Hundred Miles extent from North to "South, lies almoft wafte, without Trade and ic without Inhabitants. Cburcbil River was much s inhabited by the E/kimaux, before we fettled "s there; the Point on which the Fort is built, being "called Efkimaux Point: Upon digging for the Fort " many Traces were difcovered of their abode here, "i fuch as the Pit in which they fecured their Provi-
" fions, Pjeces of Stone Pots, Spears, Arrows, 8cc.
"This Point they kept fome time after they were
"driven from the adjacent Country, becaule as it " lies far into the open Sea, they could difcover the "diftant Approaches of their Enemies, and repair " in time to their Canoes, in the Management of " which they are peculiarly dexterous: But they " were at length forced to go farther northward to Cape E/Rimaux and Whale-cove; and are now to" tally difpoffeffed of their Retreat, by our making " a Settlement here, and drawing down the North" ern upland Indians to trade, whom alio we have " fupplied with Arms. But as People do not eafily " lofe their charecteriftic Virtues, that Art and In"duftry for which the E/Rimaux are diftinguifhed, " they ftill retain, even in a State of Flight and " Difperfion; and thofe that are fcattered about the "Straits, kill Whales, Sea Horfes, Seals, Bears, " \&rc. not only for common Subfirtance, but tor " Trade, which they are very eager to carry on with " our Ships, as often as they go by in their Paffage " to the Bay.
"A Sioop is fometimes fent to Whale-cove for a " few Days in a Seafon, and fometimes not fent at " all ; the People, therefore, having no Dependance " upon our coming to trade with them, take very " little Care to provide a Supply larger than is necei" fary for their own Subfiftance.
"In thofe Years in which the Sloop was not fent " to Whale-cove, viz. 1745, 1746, and 1747, all " the Whale-Finns that the Company brought to "England, was procured in the Straits; the firft " Year ${ }_{303}$ Pounds; , the fecond 1314 Pounds, and " the third 226 Pounds, in all 1843 Pounds, as " appea s from the Account of their public Sales. " But in the feven preceeding Years, when the "Sloop was fent to Whale-cove, the Account of their Sales

Arrows, \&8c. they were ecaufe as it difcover the and repair gement of : But they thward to pre now tour making he Northto we have p not eafily rt and Intinguifhed, Flight and labout the als, Bears, , but tor ry on with eir Paffage cove for a not fent at ependance take very n is necef:
as not fent 1747, all rought to the firft unds, and ounds, as blic Sales. when the nt of their Sales

(.191)

"Sales ftands thus: 1738, Finn 20 Pounds; 1739 "Finn 518 Pounds; 1740, Finn 630 Pounds, "Oil 123 Gallons; 1741, Finn 149 Pounds; 1742 " Finn 679 Pounds, Oil one Tun at 181. i3s. " 1743 , Finn 496 Pounds, Oil and Blubber 5 " Tons, 234 Gallons at 14l. 8s. per Ton; 1744, "Finns 302 Pounds, Oil and Blubber 3 Tons, 218 "Gallons at iol. ins. per Ton : fo that upon an " Average, the Trade in Finns thofe Years in which " the Sloop was fent to Whale-cove, does not equal " the Trade when the Sloop was not fent; therefore " the greater Part muft have been procured in the " Straits, which as I faid before, is done curforily " as the Ships pafs into the Bay. But if fo much ". can be gained without any Efforts, what muft the " Produce be from a profelfed Defign, and vigo" rous Endeavour to bring thofe Fihheries to Per" fection? "The previous Step to this, is the re-eftablifhment " of the E/kimaux in the quiet Poffeffion of their " Properties and Lives; fuffering them to extend at " Pleafure towards the Bottom of the Bay, where " they would find a milder Climate and better Coun" try ; which abounds with Wood and good Har". bours; and taking Care to inform the Indians " upon the Eaftern Main, that the E/kimaux are " defirous to live at Peace with them; that they ** will not interfere in the Fur-Trade, and that " they are Friends to the Englifh and under their " Protection, who, if Hoftilities are continued, " will fupply them with Arms and Ammunition for "their Defence: Which impartial Diftribution of " Kindnefs and good Offices would effectually diffi" pate that Malignity we have given way to by the " oppofite Conduct, to the Deftruction of both Peo" ple, and the Ruin of the Trade. And if the " fame pacific Meafures were taken alfo on the " Weftern
"Weftern Coaft, Southward of Whale-cove, for " the Protection and Encouragement of thofe Eski-
" maux who lie fcattered thereabout, the Foundati-
" on of a moft ext - nfive Fifhery would be effectually
" laid.
" Thefe laft E/k:naux fubfift in Winter upon the
"Stock they raife in Summer, which is fuppofed to " be Oil, Blubber, an' the like ; and yet the Sea" fon of the Whale-Fifhery there feldom lafts above " nine Weeks; in which time they mult kill a pro"d digious Quantity to be able not only to lay up a "Store for a long Winter, but to make a Referve of "Tuns of Oil tor the Company's annual Sloop: "And if this poor People can in their one Man "Canoes, with fuch Tackling as their little Skill " enables them to make of Ivory, Wood and Lea" ther, kill fo many Whales in fo fhort a Time, and " in fo finall a Part of the Bay, there is no fixing "Bounds to the Proportion, if a Fihery was carri" ed on at the Rivers, under proper Directions and " Encouragement, and the Natives furnifhed with "Harpoons, Nets, Hooks, and other Tackling " madie in England ; and prompted befides to exact " their utmoft Art and Induftry, by a kind and ge" nerous Treatment.
" The Circumference of the Bay is at. leait 2500 " Miles, with fo many Rivers and Inlets all round, " that a confiderable River or Inlett may be allowed " to every hundred Miles.r In the Rivers where "I refided, as much Oil, \&xc. might be procured, "as would be fufficiefit to load 150 Tons of Ship" ping annually; confequently by the fame Com" putation, the whole Bay would employ 1250 " Tons; and in a fhort time I dare fay, many Hun". dreds more; but the firt Attempt mult be made "b bitho who are pofeffed of Judgement, Spirit, " and
le-cove, fot thofe Eski-Foundatieffectually
r upon the uppofed to et the Sealafts above kill a proto lay up a Referve of aal Sloop : one Man Dittle Skill 4 and LeaTime, and : no fixing was carrictions and ifhed with Tackling s to exact id and ge-
leáft 2500 all round, ee allowed ers where procured, s of Shipme Comloy 1250 any Hunbe made tt, Spirit, " and
" and Integrity, or no plan however excellent, " would infure Succefs.
"It fhould be objected, that fince the wefterly " Rivers in the Bay are not clear of Ice till the Begin" ning of 'yune, and the Fiihery is over by the mid"dle of Auguft, the Seafon would laft only ten " Weeks, which would be too fhort to kill Whales " enough to defray the Expence: I anfwer firt, " that the Fifheries of Greenland and Davis's " Streights do not laft longer ; and fecondly, that " the Expence in a great Meafure might be faved, " if as the Bay Fiihery does not begin till the "Davis's Fifhery is over, the fame Ships were em" ployed in both. It is to be further objected, " that Ships cannot get into the Bay by the Begin" ning of Fune, and therefore a great Expence " would he incurred by fo many Englifh being "obliged to winter there. I anfwer farther, that " few Englifhmen need be kept in the Bay, fince the " Natives may be hired upon very reafonable terms, " to attend the whole Time of the Finhery. The " home Indians even now kill Geefe for the Com" pany for very low Wages, and a much greater " Nu:nber offer themfelves for this Service than " can be employed, and the Seafon of killing Geefe " is generally over a Week before the Fifhery Sea" fon comes on: Indeed thefe home Indians are ten" der, dull and inactive, but they need only be em" ployed in the Fifhery whilft in its infant State ; for " upon making Peace between them and the E/ki" maux, thofe native Fifhers would carry on the " Bufinefs alone, without any affitance from the " home Iidians, or even from the Englifh, who " need only act as Superviors; but fhould it be at " laft objected, that the Company long before this " would have fet fuch a Fihery on foot, if it was
"6 near fo beneficial as is now reprefented; the An" fwer may be eafily drawn from their while Con"s duct for many Years pait." As I was fix Years in Hucijon's Bay, I am acquainted with their Policy and Manner of Acting there, and the Reafons why the Company lave not made any confiderable Progrefs in the Fifheries and other Improvements.

Beforc I difmifs this Head, it may be proper to give it as my Opinion, that Methods may be taken, whereby fix or feven Men canno- fail (it they ufe their utmoft Endeavours) to kill as many Whales in a Week, as vill yield feven Tons of Oil, and perhaps a great deal more; and if an Act could be obtained to fettle a Colony in the fouthern Parts of the Bay, in order to carry on the Fifhery or other Trade, and make Difcoveries that the Company doth not look after ; and if a paoper Number of Merchants or Gentlemen, form themfeives into a Company for that Purpofe, I will not only be glad to forward the Affair with all the Information I can give; but to prove I have the greateft Hopes of Succefs, I will fubfcribe above one Hundred Pound out of my fimall Fortune.

Of a Cepper Mine near Hudion's Bay.

In the Courfe of carrying on the Fifhery and other Alfairs, perhaps better Information may be got, for this Copper Mine for the Space of forty or fifty Years laft paft, has been much talked of in the Bay: and thole who underftand the Country Language beft, have long ago been throughly convinced of the Exiftence of this Mine, and alfo of the Practicability of getting at it. I have feen of the Copper (that the Indians faid that they brought from the Mine) about the Indians Wrifts for Ornament, and alfo fome Pieces, fome of which I brought to Eng-
d; the Anwhile Convas fix Years their Policy Reafons why terable Pronents.
je proper to ay be taken, (it they ufe any Whales Oil, and percould be obParts of the other Trade, ny doth not Merchants Company for forward the ve ; but to ccefs, I will out of my

Bay.
fhery and 0 may be got, forty or fifty in the Bay : y Language Convinced of the Practithe Copper ht from the nament, and iglit to England:

(195)

land; and in the Year 1718, when the Company firtt dettled a Factory at Cburcbill River, and before the northern Indians had any Iron Utenfils from the Englifh, fome Indians that came from the Northward (called Copper Indians) had Ice Chifels and other Things of Copper, which the Iadians faid they got at the Side of the Sea, a Creek or Streight; and thefe Accounts have not been contraditted, at leaft not as I have heard of. See my Account of HudJon's Bay, Page 69.

As I do not believe every Thing I hear as true, fo I do not wholly rely upon every Information I have had by the Linguifts; for in the firft Place, the Indians Accounts are not always to be depended on as true, for when they find you are fo pleafed with their Story, as to give them fomething, and defire they will inform themfelves better, and give you an Account the next Time they come; whether they get any better Information or not, they'll prepare a Tale they think will pleafe you: And in the fecond Place, the Linguifts in the Bay are not fo underttanding in the Indian Languages, efpecially the northern Indiaus Language, as to be able to crofs examine them, and confequently may not rightly underitand the Meaning of every Word the Indian fpeaks; and alfo the Linguift thinking thereby to pleafe his Superior, may be fufpected of faying at one Time or other more in favour of a Difcovery, than he has fufficient Grounds or Authority from the Indians for.

After giving proper Allowances for the falfe Accounts, and the Difficulty of coming at the Truth as abovementioned, I am, from many corroborating Accounts, as well affured there is a Copper Mine ai the Place the Indians fpeak of, as I am affured of the being a Place called Siberia in Rufia, or the being O 2 of

(196)

of any other Place I have not feen. That Englifhm on may go to this Mine is evident by the Indians bein g able to go to it, who have their fubfiftance to procure Day by Day upon the Spot, which need not be the Cafe of the Engli/hmen; and if it is not a tolerable Place, and fomething to be got there to fubfift on, I think the Indians would not go there: But if they go to this Mine only for the Sake of getting Copper to make Ornaments for their Wrifts, $\xi^{2} c$. when they can have the fame Sort of Ornaments (and more beautiful) for a Trifle at the Engli/h Factory, where they alfo vifit every Year; and as the Indians are more $f_{\text {taring }}$ of Labour than Englifhmen are, it is not unreafonable to conclude, that the Indians would not go to the Copper Mine if it is far out of their Hunting Grounds, and in a defolate Country; nor will they take much Trouble to procure what they can procure readily with little Trouble, from all which I think it is not unatual to infer that the Copper Mine is in or near the Indians Hunting Ground: And as it is found by Experience, that Englifhencn can travel in thofe Countries as well as the Indians, there cannot be in the difcovering this Mine any Dificulty equal to the Importance of the Difcovery.

Of the North-Weft Paffage.

In order to difcover the Exittence and Situation of the North-Weft Paffiage (iuppofed to be from Hudfon's Bay to the Pacific (ceecn and South Sea) I would build five Boats with Bend-leather in the Place of Flank, light and well conftructed for Defence againt the Eijkimaux, and feven Men in each Boat, each Man armed with a flort Gun, Piftols and Sword, each iscat to have two Swivel Blunderbuffes; tivo of thefe Boats ought to fail from the Bottom of
hat Englifhthe Indians ibfiftance to which need (if it is not got there to ot go there: he Sake of heir Wrifts, rtt of Ornaat the Eng. Year ; and abour than - conciude, opper Mine nds, and in uch Trouble ly with little not unatual near the I_{n} ound by Exthofe Counnot be in the equal to the
nd Situation to be from South Sea) I r in the Place or Defence ain each Boat, Pittols and lunderbuffes; he Bottom of the
the Bay, and three from Cburcbill as foon as there is any Probability of a Paffage along Shore, between the Shore and the Ice; one of the Boats from the Bottom of the Bay, to lye at Anchor in the Mouth of HudJon's Streights, the other in about fixty-five on the eaft Coaft; one of the Boats from Cburcbill to anchor near the weft Shore in about 62, another to anchor near Cape Fry in 64. 40 . and the third to proceed to 6% or 68 , if not obftructed by the Ice, or as far to the Northward as pofible, without too great a Rifque. The Boats that do not proceed fo far to cruife about, and make what Difooveries they can till they fuppofe the northermoft Boat has got to her Station; every Boat muft obferve the Winds, and be very exact as to the Time of Flood, the Direction and Strength of the Stream, both Flood and Ebb, the Time of High Water, and the Heighth it flows in Feet and Inches, $\mathcal{E} c$. and at what Time of the Flood and Ebb the Stream runs ftrongeft, \mathcal{E}^{c}.

Caution and Direfion.

The Boats to lye as clear from Inands as poffible, that they may not lye in a counter Stream; one Half the Crew watch at a Time in the Night, and twc in the Day, and keep a good Look out; fuffer no E/kimaux upon any Pretence to board your Boat; look with your Glais very often all round, efpecialiy upon the Land, to fee if you can difcover any living Creature: This may prevent your being furprifed by the Eskimaux; keep your Firearms clean, loaded and ready, try to catch Fih, $\mathrm{E}^{\circ} c$.

Set up a Pole mariced with Feet and Inches at the loweft Low-water Mark, to fhew when it is Lowwater, when Flood, when High-water, and the Time the Water keeps up at its Heighth, and whether
ereth is a fudden Rife of the Water when young Flood, or when near High-water, or if there are two High-waters; that is, whether the Water rife a fecond Time in three Quarters of an Hour, or one Hour and an Half after the Tide has been at its Highth and Ebb for a confiderable Time. About Half an Hour or an Hour before Low-water, put your Boat near the Shore that you may plainly fee the Water rife or fall upon the Shore and Pole; when you plainly perceive the Water rife, allow fix or eight Minutes out of the Time the Water neither fell or rofe, for its Beginning to rife before you could be fure that the Flood made it rife; then put off to your Station, and obferve the Stream till about one Hour before High:water, when put your Boat near the Pole again, to obferve the Rifing of the Flood and Time of High-water, $\mathcal{E} c$.

A Leather Boat of about four Feet and a Half long may be made, to have a Bag of Leather at her Botom, to take up through the Bottom into the Boat or let down thro' the Bottom, and filled with fmail Stones or Sand fo as the the Weight of a Man cannot overfet her: This Boat will ferve to go near the Shore, and obferve by the Pole the Rife and Fall of the Water; if you are difturbed by the Eskimaux, remove twenty or thirty Miles either Way you chufe along Shore, only know the Latitude you make your Remarks in.

The Scheme is the more practicable, as there is little or no Night in the Latitudes the Boats are to lye in all the Time the Boats nced be upon this Service, and the Ice in the Bay provents there being any Sea, let the Wind blow ever fo ftrong.

The above Remarks being made by the Boats at their feveral Stations upon one and the fame Day, and upon one and the fame Tide, there can be no doubt of being directed to the right Place where Hour, or one s been at its ime. About w-water, put y plainly fee - and Pole; r rife, allow e the Water to rife before it rife ; then e Stream till hen put your the Rifing of $\sigma^{2} c$.
t and a Half eather at her om into the id filled with cht of a Man e to go near the Rife and rbed by the Miles either ow the Lati-
as there is Boats are to pon this Serthere being ng. the Boats at fame Day, e can be no Place where you

199)

you cannot mifs of further Information, and if the Paffage is practicable, you cannot fail of finding it.

I think my giving any Directions how to make ufe of the above Remarks cannot be neceffary, as every expert Seaman is better able to form a proper Judgment of fuch Affair.

As I have worte much concerning the Trade of and Difcoveries in Hudfon's Bay, and in 1752 publifhed a Book in which are many Fats that refort no Honour on the Hudfon's Bay Company ; fr e may think I write out of Rancour, Envy, or 1evenge; therefore, to obviate Cenfure, I thinl: t proper to declare, that if I were convinced of the Hudfon's Bay Company ufing their utmoft Endeavours to obtain all the Trade that is to be had in the Bay, Streights, \mathcal{E}_{c}. I wouid explain the Methods by which I think much more Trade may be obtained to the HudJon's Bay Company, with as muft Pleafure as I would to any other Set of Gentlemen, for I want no Profit out of Hudfon's Bay, and it will be equal to me who increafe the Trade and employ our Seamen, fo it is but done to the utmof Extent.

An Abfract of an Account of the Captivity of the Wife and Children of JOHN HANSON.

ON the 27th of the fixth Month called $A u g u f$, 1725 , my Hubsud and all our Men Servants being abroad, eleven Isdians armed with Tomahawks and Ciuns, who hat fome Time before been fruking about the Field, an watching an Opportunity of our Miens bfence, 2 ne furioully into the Houle. No fooner were they entered, than they niurdered one of my Childern on the Spot, interding no doubt by this Act of Cruelty, to frike the greater Degree of Terror into the Minds of us who furvived; after they had thus done, their Captain came towards me with all the Appearance of Rage and Fury it is poffible to imagine, neverthelefs upon my earneft Requeft for Quarter, I prevailed with him to grant it.

I had with me a Servant Maid and fix Children, but two of my little ones were at that Time playing in the Orchard; my youngett Child was but fourieen Days old, and mytelf of Conefequence in a ppor weak Condition, and very unfit to endure the Hardifh:ps I afterwards meet with, as by the Sequel will appear.

The next Step they took was to rifle the Houre, which they did with much Hury and Precipitation, being apprehenfive in all Probability of a Surprite; and as it was late in the Afternoon, they packed up what Linen, Woollen, and other Things they liked, and forthwith turned us out of the Houfe.

Being

Being now at the Door, my two Children who ha been playing in the Orchard (the one f:x and the o ther four Years of Age) came in Sight, and being terrified at the Appearance of the naked Indians, they cried aloud, on which one of the Indians ran up to them, and taking one under each Arm brought them to us; my Maid prevailed with the biggeft to be tilll, but the other would not be pacified by any Means, but fhricking and crying very much; whereupon to eafe themelves of the Noife, and prevent the Danger of a Difcovery that might arife from it, they made no more to do but knocked out its Brains before my Face.

The Indians having now killed two of my Children, the next Thing they did was to Scalp them, a Practice common with them whenever they kill any Engli/h People; this they do by cutting off the Skin from the Csown of the Head, which they take with them as an Evidence of the Number they have flain; and it has been currently reported, that the French in their Wars with the Englifh, have given the Indians a pecuniary Reward for every Scalp they brought to them.

This being done, they prepared to leave the Houte in great hafte, without committing any other Violence than taking what they had packed up, together with myfeif and little Babe fourteen Days. old, my little Boy of fix Years, one Daughter about Sixteen, another about Forteen, and my Maid Servant.

It was, as I faid before, but fourteen Days fince my Lying-in, and theing very tender and weakiy, and turned out from my warm Room with every Thing fuitable to my Circumftances, it inccreafed the Severity of the Hardidips I underwent exceedingly ; neverthelefs I found the Cafe was fuch, that I muft either go or die, for I could make no Refiftance neither Being would any Perfuafions avail.

Accordingly

> Dopt.

(202)

Accordingly we began our Journey, each having fome of the I'lunder to carry, and I my Infant : the other three were now able to travel alone. But my new Malter, the Indian Captain, was fometimes humane enough to carry my Babe in his Arms; which I looked upon as a fingular Favour, becaule he had betides a vrey heavy Burden, and confiderably more than he could take up without the Help of his Men.

We paffed through feveral Swamps and Brooks, carefully avoiding all beaten Paths, and every Track that looked like a Road, left we fhould be furprized by our Footiteps.
e travelled that Night, I fuppofe, near ten Miles, in a direct Line, and then we halted. The Indians kindled a Fire, and we took up our Qua-r ters by it. They took it in Turn to reft themfelves, vhile a Party of them kept Watch, in Order to prewent a iurprize.

Thus did we travel for twenty-fix Days fucceffively, and, in general, very hard; though fometimes we were helped a little, by Water, over Lakes and Ponds.

Next to the Difficulty of croffing the Rivers, were the prodigious wamps and Thickets, which were very hard to pafs through. But here alfo my Mafter would fometimes lend me his Hand; and, as they paffed through quickly, one after another, it became pretty tolerable for the hindmoft. But the greatelt Difficulty of all, and which deferves firft to be named, was our Want of proper Suftenance: for we were now reduced to very great Extremity; having often nothing to eat but Pieces of old BeaverIkin Watch-coats, which the Indians, in their Journey to our Settlement, had concealed, (for they came to us naked, as I faid before) but now, in their Return, took along with them. They were ufed more for Food than Raiment; being cut out in long, nar-
row Straps, of which they gave us fome little Pieces. Thefe, afier their Example, we laid upon the Fire till the Fur was finged off, and then ate them as dainty Morfels ; experimentally knowing, that, to the Hungrey every bitter Thing is fweet.
Of this Diet, mean as it was, we had but a fcanty Allowance. And, what ftill further increafed my Affliction: was, the Comilaints and Moans of my poor Children. Sometimes indeed the Indians caught a Sqirrel, or a Beaver; at others, we met with Nuts, Berries, and Roots; and fometimes we ate the Bark of Trees; but had no Corn for a long while, till a Party of the younger Indians went back, and brought fome from the Englif/ Inhabitants, of which they gave us a very fhort Allowance. But, when they killed a Beaver, we lived high while it lafted; as their Cuftom was to allow me the Guts and Garbage for myfelf and Children; but they would by no means fuffer us to wafh and cleanfe them; which occafioned this Kind of Diet to be very loathfome: and indeed nothing but pining Hunger would have made it in the leait Degree tolerable.

When we were pretty far advanced in our Journey, the Indians divided; and, to our great Sorrow, divided us amongft them. My eldeft Daughter was taken away firtt ; and carried to another Part, far diftant from us; and we had not travelled far, before they parted again, and took from me my fecond Daughter, and my Servant Maid; fo that I had only the Babe at my Breaf, and my little Boy of fix Years old; we three remained with the Captain : but my Daughter and Servant underwent very great Sufferings after they were taken from us; travelling very hard for three Days together, without any Suftenance but cold Water, and, on the third Day, the Servant fell down in a Swoon, as dead; at which the Indians feemed furprized, and began to fhow fome $S_{S i g}$

204)

Signs of Tendernefs, not being willing to lofe any of their Captives ly Death, after they had brought them fo near their own Home; hoping no Doubt, in Cate they lived, to obtain a coniderable Price for their Ranfom. Accordingly, in a few Days after this, they drew near their Journey's End, where they found greater illenty of Corn, and other Food; but Flelh often fell very fhort, as they had no other Way of procuring it but Hunting.

It was not long before my Daughter and Servant were parted alfo; and my Daughter's Mafter falling fick, he was thereon dilabled from hunting. All their Corn was likewile fpent; and fo great were their Diftreffes, that they were compelled to feed upon the Bark of Trees for a whole Week, being almoft famifhed to Death.

At Length we arrived at the Indian Fort, where many of the People came to vifit my Maiter, and his Family, and congratulate him on his fafe Return, and the Succefs of his Expedition. Public Rejoicings were made upon it (which, in their Way, perhaps were a Kind of Thankfigiving); and thele were attended with Dancing, Firing of Guns, Beating on hollow Trees, inftead of Drums, Shouting, Drinking, and Featting for feveral Days, together with much Excefs.
We had not long been arrived before my Mafter went abroad to hunt for Provifions tor the Family, and was abfent about a Week. Before he fet out, he ordered me to procure Wood, and gather Nuts: In doing which I was very diligent, during the Time of his Abfence, in cutting the Wood, and putting it up in Order. But no fooner was he returned, than I quickly perceived he was very much difpleafed; for he had met with no Succefs in his hunting Expedition ; and fo ftrongly did his Dilappointment work upon him, that he began to revenge it on us his Captives.

Captives. He allowed me however a little boiled Corn for myfelf and Child; but looking upon us with a very angry Countenance. he threw a Stick at me, with fuch Violence as plainly demonflrated, that he grudged us the Food we had received from him.

The poor old Squaw, his Mother in-law, was very kind and tender to me, and, all that Night, would not leave me; but came and laid down at my Feet, fignifying her Intention to ufe her Endeavours to appeafe his Wrath. For my own Part, I got but little Reft that Night; though my Babe nept fweetly by my Side : but I dreaded the tragical Defign of my Mafter, and looked every Hour when he would enter the Wigwam, to execute his bloody Purpofe. But here again kind Providence interpofed. For, being weary with hunting, and having toiled in the Woods without Succefs, he went to Reft, and forgot to put in Ptactice the horrid Purpofe he had formed.

When Flefh was fcarce, we were only allowed the Guts and Garbage ; but were not permitted to cleanfe them any other Way than juft by emptying the Dung out of them, and afterwards boiling them together with the Broth of Fowls; which would have been extremely naufeous, had not Hunger compelled us to eat; but in Time this Kind of Food, which often fell to our Lot, became pretty tolerable to a keen Appetite; though, at another Time, I could by no Means have difpenfed with it. And this led me to confider, that none are able to fay what Hardfhips they can fuffer till the Trial comes upon them For that, which in Time paft I had thought not fit. for Food in my own Family, I fhould now have efteemed a fweet Morfel, and a dainty Difh.

By this Time I was reduced fo low, through Fatigue of Spirits, hard Labcur, mean Diet, and the

206)

frequent Want of natural Reft; that my Milk was intirely dried up again, and my helplefs Babe very poor and weak, appearing to be little more than Skin and Bones; for I could perceive every Joiat of it, from one End of its Back to the other; and how to procure any Thing that might fuit its weak Appetite, I was at a very great Lofs. Whereupon one of the Indian Squaws, perceiving my Uneafinefg, began Difcourfe with me, and withal advifed me to take the Kernels of Walnuts, and after I had cleanfed them, to beat them up with a little Water, which accordingly I did, and the Water looked like Milk; then fhe bade me add to this Water a little of the fineft Indian Corn-meal, and juft boil it up together: I did fo, and found it very palatable ; and foon perceived that it nourifhed my Babe, for it quickly began to thrive, and look well; which gave me great Comfort. I afterwards underfood, that with this Kind of Diet the Indian Children were often fed.

But the Comfort I received, on my dear Child's Recovery from the Brink of Death, was foon mixed with Bitternefs and Trouble; for my Mafter, obferving its thriving Condition, ufed often to look upon it, and fay, that, when it was fat enough, he would have it killed and eaten. Purfuant to this Threat, he obliged me to fetch a Stick, which he faid he had prepared to roaft my Babe upon. And, as foon as I had brought it, he made me fit down by him, and undrefs the Infant. The Child now being naked, he began to feel its Arms, Legs, and Thighs; and having paffed this Examination upon it, he informed me, as it was not yet fat enough, I mult drefs it again till it was in better Cafe. But, notwithftanding he thus acted, I could not perfuade myfelf he was in earneft, but that he did it with a View to afflict and aggravate me : neither could I think but that our Lives would be preferved from

(207)

his barbarous Hands, by the over-ruling Power of him, in whofe Providence I pat my Truft both Night and Day.
A few Weeks after this, my Mafter made another Remove; which was the longeft he ever made, being two Days Journey, and moftly over the Ice. The firt Day the Ice was bare ; but fome Snow falling on the Second, it made it very difficult to travel over. I received much Hurt by frequent salls: having befides the Care of my Infant, whict increafed my Trouble not a little. It was Night when we arrived at our Camp, and I was ordered to go and fetch Water; but having fat a while on the cold Ground, I could neither ftand nor go, by Reafon that my Limbs were fo benumbed with cold. Yet I dared not refufe; and therefore attempted it by crawling on my Hands and Knees; but a young $I n$ dian Squaw, belonging to another Family, being come to fee our People, fhe, in Compafion, took the Kettle, and knowing where to go, which I did not, fetched the Water for me; which I took as a great Favour, in that her Heart was inclined to do me this Service.

I now faw the Defign of this Journey. My Mafter, being weary of keeping us, was willing to make what Ranfom he could of us; and therefore went farther towards the Frencb Settlements, leaving his Family at this Place; where they had a great Dance, feveral other Indians coming to our People. This held fome Time; and, while they were employed in it, I got out of their Way, as far as I could, into a Corner of the Wigwam : But every Time they came by me in their Dancing, they would Bow my Head towards the Ground, and frequently kick me with great Fury. Divers of them were barefooted, and the reft had only Mockfans on. The Dance lafted fome

(208)

fome Time ; and they made, in their Manner, great Rejoicing and Noife.

It was not many Liys before my Mafter returned from the French; but, in fuch an ill Humour, that he would not fuffer me to abide in his Prefence. I had a little Shelter, made with Boughs; having firft digged through the Snow, quite to the Ground. In this Hole I and my poor Children were put to lodge; and, as the Weather was then very hharp, and the Frofts very hard (it being then the Month called fanuary) our Lodging was extremely bad. But our Stay was not long in this wretched Place, before my Mafter took me and my Children to the French, in Order to get a Chapman for us: when we came among them, I was expofed to Sale, and the Price my Mafter put upon me was 800 Livres. But, nobody appearing difpofed to comply with his Demands, and a Frenchman offering no more than 600 Livres, it threw him into fuch a Rage that he faid in his Paffion, if he could not have his Price he would burn me and the Babe in the View of the City of Port Royal. The Frenchman bade him make the Fire; and added, I will help you, if you think that will do you more good than 600 Livres; "calling him Fool, and roughly bidding him be gone :" but, at the fame Time, he was very civil to me; and, for my Encouragement, bade me be of good cheer, for I hould be redeemed, and not go back with the Indian again. I was obliged however to retire with my ivaiter that Night; but, the next Morning I was redeemed for 600 Livres.

In driving the Bargain with my Mafter, the Frenclunan afked him why he demanded fo much for the little Babe's Ranfon; urging, that when it came to have its Belly full it would die. The Indian laici, No, it would not die; having already lived twenty-fix Diys on nothing but Water; and
ner, great
returned nour, that efence. I aving firft : Ground. ere put to ery harp, he Month nely bad. ed Place, ren to the us: when Sale, and oo Livres. y with his more than ge that he is Price he ew of the him make you think es ; "callbe gone:"
1 to me; pe of good r go back owever to the next
lafter, the d fo much t when it

The $I n$ g already ater; and that
that he believed it was a Devil. The Frenchman faid no, but the Child is ordered for longer Life; and it hath pleafed God to preferve it to Admiration. My Mafter anfwered, No, that was not the Cafe; but that it was a Devil, and he believed it would not die, unlefs they took a Hatchet and knocked out its Brains.

I had then been about five Months among the Indians, and one Month with the French, when my dear Hufband, to my unfpeakable Joy and Comfort, came to me. He was much concern'd for the Redemption of his Children; two of our Daughters, and the Servant-maid, being ftill in the Hands of the Indians; and only myfelf and the two little ones redeemed.

Accordingly, after much Difficulty and Trouble, he recovered our younger Daughter, and the Maid; but we could by no Means obtain our eldeft from them. For the Squaw to whom fhe was given, had a Son; and fhe intended a Match between my Daughter and him, hoping in Time to prevail upon her to comply: for the Indiuizs are feldom guilty of any indecent Carriage towards their captive Women, unlefs much overtaken in Liquor. The Affection they had for my Daughter made them refufe all Offers and Terms of Ranfom; fo that, after my Hufband had waited, and ufed his urmoft Endeavours to obtain our Child, we were obliged to depart homewards, and leave our Daughter, to our great Grief, amongft the Indians.

We accordingly fet forward over the Lake, with three of our Chiidren and Servant, in Company with feveral others ; and, by the Kindnefs of Providence, got well home, on the firft of the feventh Month, called September, in the Year 1725 , from which it appears, that I had been from home, amongft the

Indians, and French, and upon my Journey, twelve Months and twenty-fix Days.

But my dear Hufband could not enjoy himfelf with Satisfaction, our eldeft Daughter being yet in the Hands of the Indians; he therefore began a Second Journey, about the 19th of the fecond Month 1727, in Order to redeem her, in Company with a Kiniman and his Wife, who went to redeem fome of their Children, and were fuccefsful to their Defire; but my dear Hubband died in the Woods, -about half Way between Albany and Canada, in my Kinfman's Arms.
N. B. The Subftance of the foregoing Account was taken from her own Mouth by Samuel Bowinas. And, in the feventh Month, called September, 1741, Samuel Hojwood was with her, and received the Relation much 1.0 the fame Purpofe; at which Time he faw the Child (then grown a young Woman) who was fucking at her Breaft when fhe was carried ition Captivity.
ney, twelve joy himfelf eing yet in jegan a Seond Month pany with a deem fome to their De he Woods, rada, in my ng Account l by Samuel onth, called rd was with nuch 1.0 the he faw the in) who was carried into

[^0]: * The higher a Veffel carries her Guns. the greater Advantage has fhe in annoying the Enemy's Troops, as fhe has a better Command of rifing Beaches, which frequently at low Water cover the Boats from the Enemy's View. And if the Water is fmooth where the Troops are defigned to be landed, fuch Veffels may be of excellent Service, by two or three of them being faftened together, as fhall be explained in the next Chapter.

[^1]: * Rolls of fix Feet diameter, and not too hard work'd, will float near three Feet and a half out of Water before any Thing is laid upon them, and twenty Tons will fink them about twenty-three Inches more; wherefore each Raft will carry about twenty Tons, and at the fame Time bear the mounting a Battery of two Guns in front, in fmooth Water, or when there is only a moderate Swell.
 + The Re-action of the Sea will prevent their taking the Ground where the Sea has a confiderable Declevity, therefore frong Ponies like them ufed to cramp and manage Weft Country Barges upon the Thames, muft be ready upon the Rafts to confine them to the Shore.

[^2]: - I make no Mention of Horfes, becaufe all or moft of thefe Rolls will be too cumberfome to be drawn by them from Place to Place to any great Diftance, they being chiefly adapted to Coaft Fighting (where Shipping can carry them near to the place of Action) where many Horfes for that Ufe would be inconvenient.

[^3]: *The Ends of the Rolls which are to form the Parapet, ought to be beveling, in order to make the Embrafure wideft on the Side next the Object intended to be battered.

[^4]: * Twenty or thirty Miles, or as far as Beats can row in a Night to furprize a Place betore Morning, appears a proper Diftance, as there is an Adrantage in the greatnefs of the Diftance, fo that a Flect of Boats can but run it to furprize the Place before Morning, having no Time to fpare, for the greater the Diftance, the lefs will the Place be alarnied, and a Surprize will the more eafly fucceed, and the greater the Diftance, the longer will Troops be in marching frem one Place ts reinforce the other.

[^5]: * This Manner of fixing Ladders has not been tryed that know of, but if it carry the fame Face to Engineers, wh are practiced in thofe Arts, as it doth to me, it is worth b flowing an Experiment upon.

[^6]: * As fuch Ships will be lightly rigged, and need no more Men on board than will be able to navigate them, it is prefum. ed that by the Help of fuch a Room and other Contrivances, fix Weeks or two lifionths Provifions may be fowed at once, and as they are only defigned to go along with Fleets upon fome Enterprize, they may be at every Opportuuity replenifhed from the Flect.
 \dagger The Tops of all forts of Quills are very ftrong; if a Quilt were well made of them it would be very ftrong; this Material may be had cheap, it being generally thrown away as not fit for any Service.

[^7]: * Thefe Madriers may be fo balanced by Weights, \&e. that the recoiling of the Guns will eafily hawl them up, having Pullies, \&ic. fixed for that lurpofe, fo that by this Contrivance the Men cannot be hurt by Mußket Shot; and it is poffible to make them foftrong, and to fix it with fuch a Slope, as to make the Dall that itrikes it glance upward, clear of the Men.

[^8]: - According to the Idea I have of thefe Lee.boards, they will not onlymake Veffels fail well ufon a Wind, tu: alfo in fome meafure prevent their roliing.

[^9]: - There Veffels being deigned to carry a round floating Battery within them, they muft be as broad as poffible, in a moderate Length, to be able to keep the Sea, and containa fufficient quantity of Cork, or other light Material, to fwim them, like the Ships defcribed in the Ninth and Tenth Chap. ters.
 \dagger Other Veffels being to fhoot Balls over thefe Veffels, it will be proper to have them as low as poffible, that the other Vefiels may not be too high.

[^10]: * The dipping Oars in the 'thwart Openings will turn Veffel round, and the dipping Oars in the lengthway Openiry will give the Veffel head or flem Way, when there is not bone fifteen Feet Water, long Poles put to the Ground, throw thice Opeangs, will have more Force than dipping Oars.

[^11]: - If there fhould be excecding great Batteries ahore, as feveral Tiers of Guns, and Parapet behind Parapet, to the Number of five or ixx, or more, as is very poffible to have them fo in fome Places, the battering Ships may be relieved as often as is neceffary, by others taking their Place; but the low floating Batteries will, I think, be found propereft to attack fuch Batteries, as the proper Direction of their Shot flying upward will grase, and leap from one Battery to another, and do much more Mifchief than Balls Aying in a horrizontal Direction; befides, the imall floating Batteries drawing fo little Waier, will very probably get under the Batteries, that their Guns cannot bear upon them, efpecially the high Battery's Guns.

[^12]: * It is fcarce worth mentioning that Ships may carry the End of a Towline any Diftance, by having the Coil on board, and letting the rope go properly out, as the Ships move forward.

[^13]: * I am Forts and but if the

[^14]: * I am little acquainted with the Frencb Manner of making Forts and Batteries to defend the Entrances into their Ports, but if the Forts and Batteries I have feen at home are examined

[^15]: * Written iu the Year 175 8.

[^16]: * In many places the Lead only coft 14 s. an Hundred Weight.

[^17]: - Where a Battery of this kind is, the Buildings next the Rampiers muft be low.

[^18]: * The Defence at S is nearly anfwering the Defence of a Faufe Bray, but is not liable to be enfiladed; nor are the Troops placed there, liable to be drove out by Shells and Stones, as in 2 Faure Bray.

[^19]: * A Toife contains 6 French Feet; and 2 French Foot is to he Eing lifh Foos as 86 to 15 , nearly.

