The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Converture restaurèe et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloureci ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le te:cte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peutétre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken trom:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Génėrique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

GONVENTION NUMBER

OLIH NERIES VOI NV,NO. 6.
NI, SL,RIES, VGL. V.NO.

W. A. JOHNSON ELECTRIC CO.

carimetilua hectric mexilefs. \qquad
 United Electric Improvement Co.'s MOHOPHASE MOTORS
 Walker Manufacturing Co.'s

DIREC GOMHECIED RALHAY GIHERATORS ARD SIEEL MOTORS. WAGNER TRANSFORMERS DUNCAN METERS. HMERICAN GARBON GO.'G GIIKBONS
 - - MOOR, HRC LAMPS, OR C COMPEIE PHANT • We can do better by you than any other firm All our Apparatus has been re-desorned thes year, and is fully up to date in every pathabat. Whe fulty a dat atee everything we manufacture, and our paces will satve you money. Write fut prave and puth ubirs.

The Thompson Electric Co., munarpen, oитaro

THE ROYAL ELECTRIC CO.

 MONTREAL, QOE. IFsitem opice. TORONTO, ONT. STANLEY TRANSFORMERS MONEY MFKERS FOR GENTRAL STATIONSTHE STANDARD ALL GOPY

NONE EQUFL
ificrease
STATION CAPACITY

SAFETY
EFFIGIENCY
REGULATION

DIMINSH
operating expenses

ELEGTRICAL ENGINEERS
GEO. WHITE-FRASER
 CONAOSTMAO
elegtrical engineer
Eloctric Rallways and gimctrit Ifent. if Impertal Loan Buldisz - TORONTO
E. GARL BREITHAUPT consulting Electrical Engineer
 Electric Lighting BERLIN, ONT.

DAVID A. STARR

 $\mathrm{E}^{\text {lectrical Engineer }}$ a and Contractor
Central Station Plants and Supplies

040ce, 431 Boxid of Trade Baildixs, Montratal
PATENTS PRocurad on

wr RIDOUT \& MAYEEE, 103 Muysi ., Tokaxto
A somplet on whents mans free.

G. B. W.

SPECINLTIEE:
Leclantile Cells
Anminneirators
Putent IElective Gongs D3rontre Pushles
THE GALVANIC BATTERY WORKS 145 Fellington St. Mest, TORONTO.

FIRSTBROOK BROS.
King St, Erast, - TOİONTO. mancpactiecsas or
TOPPINE,
81DE-BLOOKS AKN OROSE-ARRME. MxITE FOK PARTICULARE.

makuracturrrs of

ELECTRIC LICHT WIRE,

Magnot Wire, oflce and Annunclator Wiro, Rubber Covered Wire, Lead Encased Wire, telephone and moandescent cords.
FARADAY GABLES

RAILWAY FEEDER AND TROLLEY WIRE

OFFICE AND FACTORY:
Now York 0ffior: 10 Cortlandt strest.
frouldence R. 1.: Amerioan Eloclrical IVorks.
Montreal, Ganada.
CANADIAN ELECTRIC REPAIR CO. eas Lagarchetiere strect, - monrralal.
All kinds of Electrical Apparatus Armatures Relvound for all Sustems Promptly Repairfd . . T. \& H. Arc Armatures a SDeclaltu GLO. E MrTHEWS, Manager Late Foreana of the Ewyal Elociric Co; 's Winding Departoment.
-

G.C.robs Chief Engineer A.fraser Sec.tres

Head Office TORONTO

ELECTRIC

 WATERWHEEL GOYERHORPATEATED.
Variations in speed detecied by fast fucning Sensitive Gover ree Balls. Gate moveracont instanily set in operation by clec tric curremt. Qusick and powerful zetion.
Write for particulars.
WM. KENMEDY \& SOMS Dwan Sound, Ont,

W. N. LAZIER

Hox i+1, vicionila, B. C.

Pacitic Coast agent for

Reminatoin Machine 60.

Refrigerating and Ice Machmes. Complete llants Installed for all lurposes Robblingmeerng Co. Economic Boilers. figh Speed atul Corliss lingunes. Complete llan is lereted
ALL WORK GUARANEEED.

STEAMUSELS

 sober, fintelligent anif ralfuila nent, by applyisy to
camadian association STATIONARY ENCINEERS.
 mg. Montreal.

: FIRE PROOF
 B00714c Fincmutu MANUFACTURERS TORONTO

MONARCH ECONOMIC BOILERS

Require no brickwork and are guaranteed to save at least 10 per cent. in fuel over any brick set hoiler: in sume adses the saving has been as high as 30 per cent.

ROBB ENGINEERING GO., Ltd.
Amherst, N.s.
WM. McKAY, Seaforth, Ont., Travelling Agent.

DODGE PATENT Smill frition Gulucan and coupling

For any power 5 to 500 H. P.
The Latest and Most Efficient Clutch on the Marhet. Our Clutches save many times their cost to the purchaser owing to their being separable and in halves

Send for
Catalogne

Easy of Adjustment Economy of Shaft Space

Sole Manufacturers Dodge Wood Split
Pulley Co.

CITY OFFICE
68 King St. West, Toronto.

THE ROYAL ELECTRIC COMPANY

 mONTREAL, QUE.
Light and Power from the same Alternating Generator and Circuits.

TWO-PHASE GENERATORS

Entirely novel in construction and having

than any other Alternating Machine on the market.

SELF-STARTING TWO-PHASE MOTORS

Superior in many mays to Direct Current Hotors

TRANSFORMERS

THE BEST and MOST EFFICIENT ON THE MARKET

THE ROYAL ELECTRIC COMPANY моотван, еӧ.

 ARC DYNAMOS, ARC LAMPS,

 ARC DYNAMOS, ARC LAMPS, DIRECT CURRENT GENERATORS, DIREGT CURRENT MOTORS,

power cenerators for street rallways,

RAILWAY MOTORS AND EQUIPMENTS,
MINING LOCOMOTIVES, ELECTRIG PUMPS AND DRILLS,
WIRE-Weatherproof, Rubber-Covered, Cable, Flexible Cord.
Blectric Ligintings, Powex and Street Railway Supplies of all kinds.

INCANDESCENT LAMPS

As the result of many comparative tests and long experience, we have found the Incandescent Lamps made for us by the

Beacon Lamp Co., Boston, Mass. TO BE THE BEST

We have obtained the sole right for the sale in Canada of Incandescent Lamps made by that company, which are manufactured especially for us, and are known as
ROYAL BEACON
 WRITE FOR PRICES AND CATALOGUES.

ROBIN，SADLER \＆HAWORTH

MANUFACTURERS OF

OAK－TANNED LEATHER

BELTING

MONTREAL AND TORONTO

If you have had trouble with your belting，try one of our

．Dynamo Belts

AND BE HAPPY

AS WE ARE PREP Λ RED
 TO PROVE TO YOU.

Our Lamp

will maintain a better candle power, at a higher and more constant efficiency, and give better satisfaction in every way than any other lamp in existence. Try our new lamp and be convinced of its merits.

Our Transformer

has no equal in regulation, is unsurpassed in efficiency, and has an unrivalled record for durability, and is absolutely free of danger from lightning discharges.

WHILE THESE FACTS ARE FRESH IN YOUR MIND, SEND US IN A SAMPLE: ORDEK.

Packapd Eloctipic 00 . .ITI.

ST. CATHARINES, ONT.

STEAM PUMPS

NORTHEY MFG. GO., Ltd., TORONTO

The Laurie Engine Go., Montreal

- - - Sols aoents for province of quebec--in

Please mention the Ebectencal News when corresponding with Advertisers.

.... OUR SPECIALTY..
We also manufacture Horse and Trail Cars of every description.

PAGGERSON \& CORBIN

ST. GATHARINES, ONT.

Get our prices before buying
Repairs made quickly and at reasonable prices.

STEAM ENGINEERING JOURNAL.

Vul. V .
ELECTRICAL OTTAWA.
A Description of Some of tho Electrical Foaturos of
the Capltal Clty.

I- in selecting a place for their next annual convention the members of the Canadian Electrical Association had been in search of a city combining great natural beamy with unceasing electrical development, they could not lave made a more felicions choice than that of the City of Ottawa.
The sute of the Canadian copital is one of the most favored spots in the whole Dommon. Buit on a commandmg elesation on the right bank of the noble river fiom which it takes its name, the city spreads away to the south, east and west in regular and

Electric l.ight Company's multiple series system had been used but its many drawbacks prevented its general adoption for house lighting. In 1889 the introduction of the Westinghouse system of distribution gave a great impetus to the lightugg industry, and its subsequent growth may be fruged by the fact that the present installation is equivalent to $50,00016 \mathrm{c}$. p. lamps, or one lamp for each man, woman and child in Ottawa.

But the electrical feature which sives O:tawa special preeminence is undoubtedly its street raibay syotem. In this field, is in that of electsic lighting, Othawa was also a pioneer. When the project was first mentioned grave doubts were expressed on all sides as to the possibility of operating an electric road in Ottawa during the severe winter season, but the promoters of the undertaking had the courage of their convictions, and the uninterrupted service which they have given their patrons shows that their confidence was not misplaced. The electric roats now in operation in all the principal cities and towns in Camula

Vikiv of Cilaumitref Fable, Oftalia.
well built streets; while in the distance to the north, the Laturentian mountains form a beautiful and imposing background.
The great water power afforded by the Chaudiere and the Rideau Falls has long since made Ottava the chief lumbenngmill centre of the Dominion, and in addition to this distinction its people are now predicting that in the near future it will be a great manufacturing and railway centre as well. With its present industrial activity this article docs not propose to deal further, than to mention and briefly desctibe those features of special interest to the electrical world.

It is just ten years since Otawa took the lead of Canadian cities by introducing a complete system of eiectric strect lighting. Two years later, in 188\%, when incandescent lighting was a luxury enjoyed elsewhere almost solely by the owners of isolated plants, a local company was already supplying the stores and dwellings of the catizens of Ottawa with meandescent light. It was not until 1889, however, that the boom in incandescent lighting really took place. Up to this time the United States
are to it great extent the result ot Ottawa's foresight and enterprise.
The Ottawa electric railway has attracted so much attention that a shoit description of it will not be out of place. The power house is driven entirely by water and is situated close to the Chandicie Falls. The plant comprises 1.700 h . p., and 2.400 h. p. multipolar, and $1 \cdot 100 \mathrm{~h}$. p. bipolar Westinghouse generator. The latter machine is driven by a separate water wheel and is used during the day time to excite the fields of the multipolar machunes. At night it supplies current for running the mail cars, the wookshop motor and for lighting and heating the power house and car sheds. The multipolar generators are driven by six 66 inch turbines which are all belted to the same countershaft and are provided with friction clutches so that any or all of the wheels may be run together or separatelv as the requirements demand. One of the greatestficulties that had to be overcome it the power house was the regulation of the speed of the machinery. Several types of athomatic regulators were
tried, but the variations of load were so great and occurred so frequently that the regulators were discarded after a very short tral and the present system of hand regulation adopted instead. A voltmeter operated by pressure wres from the centre of the ctiy is placed on a smatl board at one end of the generator room and directly above the water wheels. The man in charge is seated in from of this voltmeter and convement to a lever attached by an eccentric bon to a friction pulley below. The sates are opened and closed and the speed thus controlled by

Stuhet kahlifay bowhr housk, Ottanita.
simpl; moving the lever backwards or forwards. The regula. tion of the speed by means of this arrangement alone was fairly satisfactory, but since the introduction last winter of a separately driver exciter, the valiations in voltage, due to speed variations, have been as small, if not less than those of ang closely regulated steam drwen plant. The switchboard is situated at the opposite end of the generator room from the pressure mdicator, and the entire caumment consists of Westinghouse apparatus, with the exception of a Weston total load ammeter, and a voltmeter of the same make. The generator panels are made up of a sheostat, triple-pole jaw switch, automatic circuit breaker and ammeter; and the feeder panels of a single pole jaw switch, ateomatic circuit breaker and the Wurts non-aretng lightning arrester. I he well known "Tank lyghting arrester " manulactuted by the Wesunghouse Co. has also been in use firt a long tume and no watent atributable to laghonag has orcurred sinie th introdution I sthors to the powet house sre apt to thonk that the methut employed of regulaung speed by hand is a very crude arrangenent. At first sight there seems to be some ground for this opmon, but when it is explained that the plant is never for a moment from uniler the eye of a watchful attendant and that it has run for more than four years without a single accident, the vistom will likely conclude that the managers are wise in contmening the present sjsiem.

The Street Ralwiay Companyis car sheds are situated on Albert street. between l.yon and Kent streets. The sheds are used both for the purposes of hams and repair shops. The offices of the company occupy the central portion of the sheds, fronting on albers stiet, and are divided into the offices of (ieneral Manager, Secretary- Treasurer, Supenntendent and Accountants offices In the rear of these oflices come in the order urentroned the lavatones, conductors and motormen's sooms, wonling room and machune shop. The remaning porzion of tiae buiding is fitted up with bits, switches, transfer sablen eite, for the convenient handing and repur of cars.
The manutacturing establishment of the Uliawa Car Co, an outcome of the Street Rallway Co., is quite close to the car sheds,
and the excellence of their work is attested to by the fact that they have supplied numerous cars to nearly all the street raitwavs in Canada.

In the winter the snow is removed from the street railway by the well-known I.ewis and Fowler sweepers and the Walkatway snow plows. The sweepers clean the tracks and the plows following force the snow back to the sidewalk where men shovel it into large box sleughs; it is then hauled to the river and dumped on the ice. During the winter season street car trave is just as popular in Ottawa as in the summer. The cars are heated by the famous Ahearn heater and are always wery com fortable. The same heater is also used to heat the power house, car sheis and offices of the company.

Of the many benefits conferred on the people of Ottawa by the street ratway there is none that they apprectate more than the extension of the line to Rockliff l'ark, whith is situated on the Utawa uver just below the stty. The nde to Rochliff is a charming one, the scenery being viried by pine woods and rocky bluffs which overhang the river and from whith the park derives us name. Eveiy evening during the summer the company provides an open air band concert for their patrons and the para is visuted daily by thousands of children for whom innocent amusements are provided.

The Ottawa Canne Club, whose headquarters are on the river bank at Rockliff, have a novel arrangement for hoisting their canoes out of the rtier, an electric motor supplied with current from the street car circult furnishes the monve power.

Next in importance and interest to the street railway, stands the electric lighting company. In 1885 street lighting was begun by the Ottawa Electric Light Co., and in ISS7 the Chandiere Electric l.ight \& Power Co. commenced supplying incandescent lamps and motors. Four years later the Standard Electric Co. entered the same field as the C. E. L. \& P. Co. Each of these companies carried on its business separately until a little more than a year ago when an amalgamated company was formed under the name of the Oltawa Electric Co. 13efore handing over the privileges enjoved by each of the companies the City prowded against any increase in the rates of supply and also for reduced rates when the earnings of the company exceecied a certain per cent on the capital stock. Some idea of the extensive nature of the lighting business in Otlawi may be had from a glance at the power houses now operated by the Ottawa Eleciric Co. The three companies had each their own water power stations, and one of them an auxiliary station driven by steam. The steam station is intended for use only in times of low water

Strekt Railway Car Sarims. Ottawa.
and during a portion of last winter when the river was unprecedentedly low it prevented the city from being plunged in almost total darkness. Two ($00 \mathrm{~h} . \mathrm{p}$. compound condensing engines, fed by six boilers, comprise the driving plant at the sicam power house, and the electrical plant consists of threc alternators of 2.40 K . W. each and three 50 arc light machines. In building this power house the company provided for future extensions, and among other amanements the chimney was made with ample draft capacity for double the present number of boilers; it stands on a cut stone base 24 ft . sq.; it is 120 feet high, is
hexagonal in shape, and 9 ft . in diameter at the botom and 7 ft . at the top. Water for the boiters and condensing purposes is drawn direct from the river, and there is also a connection with the city mains to provile against emergencies. Hard coal and mull wood are used for fuel, the former almost exclusively when the engines are ran for four hours or mone at a time. Coal is received by rail and dumped direct from the cars into a shed stuated alongside the ralway track; white the wood supply is purchased at the neighboring satv mills.
The largest and most unportant of the water stations is known

Power house No. i. Ottawa Electric Co.
same rapidity as the incandescint, still it has kept up a steady pace, and has now reached vely large proportions. Ottawa is perhaps the most thoroughly lighted city in America. Some of the principal streets are not as brilliantly illuminated as the cenesponding ones in other cities, but the general lighting of all the strects is more thorough and complete. The grouth of the city and the consequent extension of its limits has much more than offet any damage which may have been done to are lighting by the introduction of the incandercent.
The Ottawa Electric Co.'s motor business is represented by a constant day load of about $300 \mathrm{~h} . \mathrm{p}$. . distributed among mills, machine shops, printing offices, hotels, and stores. The most important motor installation is at Messrs. Martin \& Warnock's Dominion Roller Alills about a mile and a half from the power house. The mill was former. ly driven by at 100 h . p. steam engine, which has been replaced by a motor of similar capacity, and runs day and night all the year round except an occasional stop for repairs. For the belter regulation of the voltage on the motor circuits, a separately driven exciter is at present being set up at power honse No. 1 in a similar way to the installation at the railway power house.

The arc light station of the Ottawa Electric Co. is known as power house No. 2. The present building was erected about three years ago, and the premises adjoining, which were formerly the are station, are now used by the companv as a workshop. The are station also is driven by water power, the alrangement of the machinery being simitar to that at No. 1 power house, except that rope drives are used instend of belts between the main shafts and countershafts.

Yower houses Nos. 4 and $;$ are situated close to the are station and supply cuirent for incandescent light and motor work.
The total cquipment of the Ouawa Electric Co. in dynamo
as power house No. I. There are at present in this power house four $500 \mathrm{~h} . \mathrm{p}$. wheels in operation. The water wheels, crown wheels and pinions are in a building projecting from the power house proper, and much of the vibration usually felt in water driven stations is not transmitted to the dynarno room by reason of this isolation. Three-ply leather belts 50 inches wide and $1=0$ feet ing transmit the power from the main shafts to the countershafts in the power house proper. All pulleys on the countershaft are provided with friction clutches and the countershafts are so aranged that they may be driven from either one of two waterwheels. The dynamo capacity of this station is equal to $2000 \% . w$ in altematcrs, and the continuous cursent machines for motor work to 250 h . p., to which is being added a multi polar machice of 250 h . p. capacity

Probably the ninst interesting feature of this power house will be the switchboard now in course of erection. it is built after the model of the wellknown Westinghouse Company's Worlds Fair lighting plant board, modified to suit the requirements of the Otlawi Electric Co. It will consist of 35 panels, each 20° wide and in feet high, and will be divided into dynamo, feeder, and motor sections. The frame work is built of angic iron ($1 \%^{\prime \prime} \times 11^{*} \times$ x°) andi stands on rubber cushions, to ensure steady workng of the volimeiers and ammeters. The dynamos in all the other stations will be wired to the switchboard and distribution of the load among these other stations will be done by the switch board attendant. The circuits which formerly were regu. lated and operated fiom the power houses belonging in the different companes will all run direct to this board. Each circuit will be supplied with a Sillwell regulator so that its pressure may be varied considerably whout changirg the pressure of the dymamo at the other stations. A portion of this switchboard already in position presents a remarkably handsome appearance.

Although she arc lighting business has not increased with the

fower holse Nu $=$, Otrawa Electric Co.
capacity, including apparatus in course of installation, is as follows:

Arc lights, 2,	55
Incandescents, 16 c. p.	35,000
Motors.	(\times h.

Chief among the many isolated plants wonthy of mention in Otawa and vicinity are those of Mr. J. R. Booth and the E. B. Eddy Co. Mr. Booth has a lighting station built on the very edge of the Chaudiere Falls, and his plant of are and incandescent dynamos which are used in lighting his mammoth lum:
ber mills would meet the zequirement of many a gool-sized town. The Eidy Co. have also a latge outfit, and among ether interesting thangs in connection with the plant may be mentoned an electric welder for joming son hoops for their patent butter tubs.

The liell Telephone Compeny's business has grown with the caty, and they have recently moved into their new four-storey

LEGAL.

Ciketen v. Tht. Toronto Rah.win Compani. - A car of the defendents' electric strect railway was moving very quickly along a down grade on a street in a city where the phintiff, who was in the employnent of the city corporation, was enpaged in his duty of sweeping the roadbed. The motorman did not sound the gong on the car, as was customary, and tan into the

Stkas lower House. Ottawa Electikic Co.
building on Queen Sireet. The basement and lower floors are used for storage and office purposes, while the operating room is situated in the top storey. All wires enter the building through underground conduts which extend through the central portion of the city. Aetial cables connect with the underground cables at vanous places and carry the wires in still further distributing points on the poles. Metallic circuits ate used altogether, the Teleph ae Company having presented "the carth" to the Street Railuay.

The Otawa Porcelain \& Carbon Company, which is just cont-
defendant, injuing him. Held by the Court of Chancery that although the defendant had the right of way, the omission to sound the gong or give any warning of the approach of the car was actionable neglinence.

The Bannford Electric \& Power Company have appliced for an injunction to res:rain Messrs. Wood Bros. from using the canal water for their mill on the Power Company's water way.
Mr. Thomas Willson. the discoverer of the method of manufacturing acetylene gas, was in Ottawa recently. for the purpose of securing a Can.s.

mencin: busmestis another institution that owes its existence in the sucress that has anended the many electrical industries in thes sity. The company's wotks are sittated close to the canada sthantic katuay deport, and uth ther tall kilns and chamneys, present an appearance that is sure to atract the atientron of the arming tourss.
dian patent on his invention. Mr. Willson siates that he does net expeet the new gas to came largeiy into use untll elenticity for the production of the calcum cartude can be cheapened. He furthet states that when the poduct is ready for popelar use. it will be sold like coal; each hoase will have an apparatus in wheth by dropping pieces of carbide tato water. gas will be made. which will be conveyed through the house in pipes, and be avaiable for use in the same manner as ordinary gas is nor:

CORRESPONDENCE

A QUESTION OF PRIORITY OF INVENTION.
 Cutcaco, lit., August $26 t h, 1805$.

Editor Canaman flecthical Nime
DEAR SIR:-I tead with great interest an article in your issue of August, 1895, page 125, concerning a new method of Mr. Thos. Ahearn, of Ottawa, for preventing variation of E. M. F. occasioned by sudden withelrawal or addition of load in connec. tiun with dynamos driven by water power.
The methot is very good, but as I pointed out in other journals, Mr. Ahearn does not deserve the credit of being the first designer or inventor cíc this method.

In my paper: "Practical Notes on the Electrolytic Refining of Copper," read before the American Instutute of Electrical Engincers, June 6th, 1892, 1 say: "A few words as to electric generators maty not be out place. The author prefers separately excited machines for the reason that they cannot be reversed and other incidental advantages. When water is used as prome mover a good deal of trouble has been experienced in the regulation of the wheels. As a matter of fact, there is no water governor in existence which will regulate so perfectly as the governor of a modernatumatic engine under varying loads. By running all the exciters from an indepentent pime mover (enther water or steam) the strength of the fields of the generators will be unform at all tumes whether there are fluctuations in the extemal circtit or not; the strength of the field of the fenciators which, with selfeacating marhines, is subject to the fuctuations in the caternal circumt, and is a variable, becomes a constant. The author proposed this arrangement over three years ago for milway and power stations with the vers best results."

It wall readily be seen that what you please to term "The Ahearn Method" was sugsested and tried by me as early as 1889. At the time I first sughested this method, I discussed with my patent attorney the question, whether it was a patentable invention or not, and he stated most positively that it was not. I simply mention this as a matter of record.

You will greatly oblige me by publishing this communication in the next issue of your paper.

> Yours respectfully,

> J. 13. ВаDt.

Golveknel'r, N. Y., AUG. zoth, 1895.
Fdago Canatian flutctaical Nawx
Sik: - 1 beg to call your attention to a note on page 125 of you; August issue, in which Mr. Thos. Ahearn, of Ottawa, claims he has devised a method for preventing variation of E. M. F. ouaswned by sudden withdrawal or addition of load in connection with self excited water driven dynamos, ete I mstalled an Edison three wire system some two years agi, consisting of six djramos of differem sizes driven by water, and connected just as you describe in your article, so that one dynamo or any one; could excite the fields of all, or earh be selfexcting, or the fields of the dynamos on one or other side could be excited by one of thenselices.

My switchboand was so connected up ihat it was almost an impossibulity for any one to make a mistake, no matter what swithes they operated, as the dynamos, resistance boxes, am pere meters, volt meters and switches were all numbered in the most prominent places. A man standing in the centre of the board could see and operate every switch, field and main, and see every volt meter and ampere meter for the six dynamos.

1 trust sir you will see that credit is given where credit is due in this matter.

Yours truly,
J. Auc. Fariniciz.

The following note has been received from Mr Ahram, whose atiention was directed to the above commuaications.
"I am not awate that I have mare any claims in the matter of dynamo eegulation, but at the same time what has been accomplished here is the result of independent work and experience, and so far as I am concerned I have hat no knowledje of l'rof. Bad's suggestion in the sime direction. I have no desire to enter into a controversy over this matier. My only object in ststug what has been accomplished here in the matter of regnlating dynamos driven by water power, was to give the benefit
of our experienre to other water driven stations. I all not aw:are that any other station is using anything of this kind, and, as stated before, what has been done here hats not been borrowed from 'rof. Badt or any other person."

QUALIFICATIONS OF AN ELECTRICAL ENGINEER.

Tokonto, Alg. 26th, 1895.
Editor Rikctaical Nans.
Sik, - In your August issue you published some of Mr. Mc. l.can's opinions on the subject of the qualifications of an elec trical engineer. Mr. Mcl.eat will perhaps allow me to heatily endorse those opinions. It is precisely, because, as he says, "a young man who can handle a coil of wire and perform a few mechanical acts with an electrical plant, thinks himself a master of electrical engineering," that such a quantity of bud work is done in Canada. Any person with a little capital, who has run line wires, or served for a few montis in a machine shop, foes manufacturing electrical machinery, and starts into business as an electrical enginecr, or "expert," as some of these persons call themselves. The consequence is just what one might expect dynamos that certainly furnish currents; and that shate themseles to pieces before long; armatures that burn out ; instruments thot arecuriosities, and general wring that is : detision. I know one "mannfacturer," who, I believe is an electrical, mech.anical, mining, hydraulic, and every other kind of enpineer, besides architect and general scientist, who maties quite a decent living out of the repairs necessary on machinery of his own make. This speaks highly for his goods, equally highly for the public taste. Another "electrician," when it came to the fine point, couldn't calculate his wires, and these are the men who are responsible for the electricity of Canada. L.ord Kelvin has said that and electrical engineer is nine-tenths a mechanical engineer; he did not say that a working mechanic possessing not even a food education is, by virtue of his trade, an electrician.

Mr. Mclean is again right in saying that "much of the criticism levelled against mechanical engineers, who undertake to call themselves electrical experts, is clue to the fact that these men are no more mechanical than they are electrical engineers." The public will, perhaps, some day discover to their cost, that the man who shovels coal and wipes up the engine is not a me. chanical engineer, and the "expert," who juggles with the rheostat, and runs wires by guess work, is not a full-r educated electrical engineer. When it is properly understood that in the States and in Europe, some vears of scientific cducation and practical experience are necessary before a man may call himself an electrical enfineer, or can be considered competent to take charge of electrical enterprises, then periaps we shall find the "electrician" of to.day, relegated to his proper status as a kind of superior day litborer, who will mon bermatted to ex press an opimon on elecitical matters, or to sunk the whole science of electruty to the lesel of a trade.

Filectrical knowledse should be dissemanated loroabast clea trical men should co-operate and combine for the puspose of exclanging expenence, haemen, dynamo tenders, iamp trim iners, should be encouraged to read, ind everything done to specialize our profession, and to ruse the general tone of men following it. There should be exammations for wiremen, ien ders, supenmendents and the lihe, and certificites given, and a sure incans to atl the above ends is to diligently peruse electrital papers, and to strengthen the Canadian Electratal Association by lendores it whorous help. The more specialized the electri cal profession, the fewer quacks as deseribed by Mi. Mcl.ean, we shall have in it to displace it.

Yours,

George: Whate.friser, F. F.
It is seported that the hackmen on the Canadian sicte of the Niagata neer bave determinco to take irgat action agatast the Niagata I ails inth ana kiver kanmag co., with stic uige: of compelliag the compary io ceas operating therr road on Sunday. The true inwardness of this action on the patt of the haskmen is apparent on the sutface. The rectine roalthas been be means ot lesserung. to a large extert, the profitable business wheh Nixgara hackimen formetyy did. it is to le presumed that the presems action has teen taken by the men who have only entered the hack bersuneas in recent years, as those who were formesly engage: in 1t. at this point. maght reasonatily be supposed to have accumulated guch vast fortuncs as would make them indifictent whethet any further lmaness came their way or nol

Mn. І. А. (AKK,
Manaker Lomitun street Kaluay

IfR. JMW (ilNN,
supertitendat Juronto street Ralwav.

Vinger Niagur falls fouh \& Kiser R.utwav.

Manater Ugmitri: Steret Kaikav

\k. A. 1. Nif1ts. (ntinuly and imamavilic Eleciric Kailway

the canadian electrical association convention.

As the present mumber of the Electrical News goes to press, the finishing touches are being put th the arrangements for the annual convention of the Canadam Flectrical Association, which will spen at Ottawa on the 17 hh inst. The officers of the Association feel confident that this convention will poove to be the most pleasant and proftable, and in every particular the most successful of any which the Association has vet undertaken. The papers, as in former years, are instructive in character, and cover a vartety of topics, some of which have not been touched upon at any of the previous conventions.

The illustrated articie appearing on font puge of this paper will, it is hoped, prove an object le son to those members of the Association who may not be familiar with the many interesting electrical features of the Capial City. Certainly there is no more interesting place in Camada, from an electrical point of view.

It may be permissible to cmpliasize what was said in the Electrical News for August concerning the completeness of the arrangements which have been made by the local sommittee for the entertaimment of visitors to this convention. Nothing has been left undone which would enhance the enjoyment of the occasion, and it only remains for the members and their hady frieads to be on hand to participate in the pleasure and profit of the gathering.

The Canadian Dacific Railway is offering a return fare of $\$ 7.00$ to the Montreal Exposition, ou the 16 th and 18 th inst., good for return until the 23 rd inst., and it is understood that members of the Association resident in the vicintey of Toronto, who may wish to attend the Oltawa convention, can purchase a return ticket for Montreal at the price mentioned, and have it marked "via Ottawa." This will lower the fare by more than $\$ 3.00$ as compared with the rate previously arranged for by the As. sociation, and should render it unnecessary for any member to deny himself the pleasure of attending the convention on the ground of expense.

Following is the program of the convention:-
HEADQUARTERS-RUSSELL HOUSE.
BUSICESS PROGRAM.
SF:PTENBER 17 rm.
11:00 A. M. Formal opening of the Convention in the Railway Committe Room of the House of Parliament, when His Worship the Mayor will read an address of welcome.

At the conclusion of the address, members and ladies will be shown through the Senate, the llouse of Cornmons and l'arlianentary Library.
2:30 8. M. Opening of First Session at Board of Trade Rooms, Elnin Strect.

President's Address.
Reiding Minutes of last Mecting.
Secretary-Treasurer's Report.
Reception of Reports of Commitees
on: Constitution, Statistics, Legislation.
Giencral I3usiness.
l'resentation of l'apers.
Discussion.
Septrinuer iSti.
10:00 A. M. Consideration of Reports of Commitices.

Election of Standing Committees for the cnsuing year.

Selection of llace of next Mecting.
Election of Officers and Execilive Commitice.

General Business.
Presentation of l'apers.
Discussion.
Sh:TEMAER 19TH.
10:00 A. M. Presentation of Papers.
General Business.
I.IST OF PAPERS.
"Some Notes on the Consolidation of Two Systems of E!ectric Supply,"
A. A. Dion, Oltawa.
"The Telegraph in Canada,"
Chas. P. Dwight, Toronto.
"Suggested Forms for Electric Light Accounting," D. R. Sireet, Outawa.
"From the Coal lile to the Meter,"
Jas. Milne, Tomnto.
"Some Modern Alternating Current Apparatus,"

1. T. Hartman, Pelerborough.
"Non-Interference Diplex Relay,"
"A Dercentage Method for Circuit Measurements"
"—_____ D. 11. Kéeley, Ottawa.

SOCIAL FEATURES

SELTEMBER 17TH.
8.0 F. M. Members and ladies will be conveyed by special electric cars to view the Chandiere Falls, the I.umber Mills, and Electic Power Houses. This is a sight which for novelty and interest can searcely be duplicated outside of Ottawa.
seltember 18 TH .
8:00 P. M. Banquet to Members and Ladics at the Russell House.

SEITEMMER 19TH.
Immediately after the adjourninent, electric cars will be provided to carry members and ladies over the Street Railway Company's lines out to Rockliffe l'ark and return.

It is anticiputed that arrangements will be consummated for mem bersand ladies to run the water shicter on a raft of quare timiler. the disjout of members and ladiex.

RAllway and hotel. Akkancimitnis.
Arrabsements have leen made with all railways for a e educed rate of one and one-third fare for memiers and latier acconijninying elass tichet, obsaining frumntichet agent a Standard Certiticate, which
 the urual fare. This conceston is not olrainalle prior to $24 t h$ Sept. Special hotel rates have teen arranged for as follons; Kussell House, \$2.00 per day : ©irand Union, \$2.00: Windwor, \$t.go.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.
Note--Secretaries of the various Associattons are requested to forward to us matte: ror pullication in this Department not later than the joth of each month.

TORGNTO association no. I.
At a regular meeting of Toromo No. 1 C.A.S.E., held Aug. gth, the following resolutions of condolence were passed:
"Whereas, it has pleased Almighty (iod to remove from ous midst the beloved daus. hter of our esteemed lbrother, Edward Dunn, be it therefore resolved, that we do extend to Bro. Dunn and his family our heartfelt sympathy in this their hour of bereavement, and commend them to our all Wise and Supreme Ruler, who docth all things well, and be it furthermore resolved, that a copy of the above be placed on our minute book and the mechanical press be furnished with the same.
$\left.\begin{array}{l}\text { V. (i. Blackithove, } \\ \text { C. Fowi,tr, } \\ \text { T. Eversfielit, }\end{array}\right\}$ Cominittec.

Dfiggates to the ottalin convention.
The following delegates and alternatives have been appointed to the annual convention at Oltawa, by their respective Asso-ciations:-

London No. 5-13ro. F. G. Mitchell; Bro. R. Simmie, alternate.

Tommto No. 1-Bros. Fox, Huggett and Wickens; Bros. Lewis, Bain and Eversfield, alternates.

Kincardine No. I=-IBro. Jos. H. Walker.
Hamilton No. =-Bros. K. Mackie, C. Pettigrew and Win. Norris.

Peterborough No. 14-Bro. A. C. McCallum.
Kingston No. 10-Bros. Sandford Donnelly, Pres., and Iarvey Hoppins, vice-president: Frederick Simmon's, alternate.

Brockville No. 15-13ro. W. F. Chapman ; F. 13. Andrews, alemate.

Wiarton No. 13-13ro. John F. Cody.
Montreal No. 1-Bros. T. Kyan, J. G. Robertson, Flph. Valiquett.

The secrelaries of other associations from whom the mames of delegates were requested have failed io respond, for which reason we are unable to publish the complete list.

PUH,LSIIKI ON THE FIFTH OF RVKKY MONTII 』Y симs. .. могпиев,
Offick: Conrfideration Life Bumbing, Corner Yonge and Richmond Sircels.
TOFONTIO, Telephone 23 $\overline{2 \pi}$. OANN.ADA.
Nbiv York Lifk Insurancr Builidigg, Alontrbai. thell Telrphone 2299.
 reach the office of prubication not hater then the gsth day of the month immediately preceding date of hase. Changes in advertisements will be made whenever desired, Whthout cont to the advertiser, but to maure proper complianos with the instructions
of the edverticet, tequests for clange should reach the oftice as early as the aznd day of the adventice, equests for cluage should reach the
of the month.
The Flectuical Nawy will be mailed to sulecribers in the Dominion, or the United States, poot free. For $\$ 2.00$ per annum, so cents for six months. The price of subacription should be remitted by currency, in repistered letter, or by postalorder payable to C 1f. Mortimer. Hease do not send cheques on local banks unless zs cents is added fur cras of diccouns. Money sent in unfegistered letters will beat Uendert rikk. Subacripitions from foreign countrics embraced in the General Poatal dicontinued at expiration of term paid for if so stipulated by the subseriber, but -here no such understanding exip:s, will be continued unsil instructions to discontinue art received and all arrearages paid.
Subseribers may have the mailing addrexs changed as oftes as desired. Whew ondering chonge, aluagys cire shi ald as null as the new address.
prompty and segulat? be sothed of the falure of sulscribers to receive their papers promptly and zegulaily.

REDETOF'S ANAOTINCRYENTS.
Correspondence is invited upon all iogica lexitimately corang within the secpe of this ioumal.
TIIK "CANAIMAN RIRCTRICAL. NEWS" ILAS DREN APYOINTED THE ofpiciat. bajk of thr canadian rlectrical association.

Canadian Electrical association.

OFFICERS:

PKESIDNKT:
K. J. DUNTIAN, Local Manazer IBell Ielephone Company, Toronto 15t Vich-Presithent:
A. I3. SMiliti, Inspuctor Canadian lloard Fire Uiderwriters, Toronto.
C. IJERKELEEY POWELIL. Manager Otawa Electric Light Co., Ottawa. Skicketaky-TreAsurkh :
C. II. MORTIMER. Ihulisher Elfct RICAL News, Toronto. Exscutive Conalittak:

1. D. McFARIANE. Ikell Telephone Company. Nontreal.

GEU. HLACK, G. N. W. Triegraph Co. I Ianilton.
t. K. ROSEURCGIf. Izeturer in Etectncity, Schooi of fractical Science, Tonnto.
E. C. IREITHAUPI, Ikrlin. Ont.
;OIIN YUI,E. Manager Civelph lias and Electric Laght Company. Guciph. Ont.
D. A. STARR, Electrical Engineer. Montreat.
3. 1. WKIGlIT, Manager Toronto Ejectric Light Company. J. A. KAMBERER, Royal Eicetric Co., Toronta.
J. W. TAYIJOR. Manager Ecterboro Cartion Co. Peterboro. O. HigmaN. Inland Revenue Depariment, Oltawa.

MONTREAL ELECTRIC CLUB.

 OFFICEXS:
live-President. H. O. Enwakios,
Secy-Trma. Cecu. Doutke. - 8iA St. Famille St. Committer of Managenment. T, F. Pickett, W. Grailam, J. A. Duglase.

CANADIAN ASSOCIATION OF STATIUNARY ENGINEERS.

 EXECUTIVE JKARD:I'resident,]. J. YoRk, E Eand of Trade Bidz. Monureal. Yicerfesident, V. G. Blackcrovi, - Toranto. Ont. Treasurer. Duncas Rongktson, * . . Mingeton, Ont. Conductor E.J. Tilip. Toronto. Ont. Conductor E J. Thilip.

Tononto Mrascat No. 2.-Mects and and quh Finday each month in Room D. Shaftesbury liall. W Lewis, l'tesident: S Thominon. ViceI'resident: T. Everxfeld, Recoming secretary. University Crescent.

Monjusal. Jranct No, 1, -Asects ist and 3ad Thursdar each month. in lineincers' llall. Crats strech. President, Johin J. York. Ronnd of Trade Iluhding. fint vier.proident. I. Murphy; second vicepresident, W. Ware: ilubling, fint vior, praident. J. Murphy; second
secretary, R. A. York: ireasurer. Thos Ryan.
St. Latrint Bnaxicil No z-Merts every Afonday evening at 43 Lionsecours strvet, Nontrail. R. Drouin, Iresident; Alfred Latour, Secretary. 306 Delive sireet. St. Cunegonde.

Drandon, Man., Mrancif No. s.-Meets 1s! and 3rd Friday each goonth, in City liall. A. R. Crawford. President: Arthur Fleming, month, in
Secretary.

Hamilten branch No. 2-Afects ist athl 3 rd Friday each month. in Mnccabec's Mall. E: C. Johnson, l'resident: W. R. Curnish. Vice-l'res.: Wns. Norris, Corresponding Secretary, 221 Weilington Street North.
Staatrahd Brancil No. 3.-John Hoy, Iresidem; Simuel IH, Weir, Secretury.

Brantrurd Branch No. 4.-Micets and and 4 th Fididay each month. F. Jrane. Presidont: T: Pilgrint, Vice-Prutident: Joseph Ople. Secretary. Brantford Corlage Co.
Lonion Brancit No. s.-Meets in Sherwood Hall first Thursday ant l.ast Friday in each month. F. Mitchell, President: Willam Meaden. Secretary Treasurer, 333 Richmond Street.
Gukinit Bkancil No. 6-Meets ist and ard Wednesday each nomth at 7:30. p.m. J. Fordyer, President: J. Tuck, Vice-President: H. T. Flewelling. Rec -Secretary: i. Gerry, Fin.-Secretary; Treasurer, C. j. jorden.
Ottaiva lkancll, Na. 7. - Meets and and $4^{\text {th }}$ Tuesday, cach month, corner lank and Sparks streets; Frank Robert. Iresident; F. Aierrill, Secretary, 352 Welington Street.
Dresinn timancii No. 8.-Meets every and week in each month; Thos. Merrill, Siecretary.
Bkolin lbanch No, g-Mcets and and \&lis Suturday each month at
8 p. m. W. J. Rhodes, President: G. Steinmetz, Secretary, Betlin Ont.
KiNgStON Brancil No. io,-Meets ist and 3rd Tuestay in each month in Fraser Mall, King Street, at 8 p. m. President, S Donnelly; ViceYresident, Henry Hopkins: Secretary, J. W. Tandvin.
Winnilge Branch No. 1x.-President, G. M. Hezlett: Recording Secretary, J. Sutherhend; Fuancial Secretaty, A. Il. Jones.
Kincarditik Brancil No. 12.-Mects every Tuesday u 80°.lock, in the Eigineer's Hall. Waterworks. I'resident, Daniel Ikentt; Vice.President, Joieph Hall; Secretary, A. Scoti.
Wiarton Brancl No. 13-President. Wm, Craddock; Rec. Secretary, Ed. Dunham,
Phtermonovgit Iranch No. 14.-Meets and and qu Wednesdiy in eath month. S. Potter. Ptesident: C. Rolison, Vice-President: W. Sharp, engineer steam laundry. Charlotie Sirect. Secretary.
Brockville Brancia No. 15 -President. W. F. Chapman: VicePresident. A. Franklin: Recording Secretary, Wui. Robinson.
Cakleton l'lace Braifin No: 16.-Presideme, Jos. Mickiny: VicePresudent, Iienry Derter . Fin. Seerelary. A. At. Schofield.

ONIARIO ASSOCIAIION OF SIATIONARY ENGINEERS

BOARD OF EXAMINARS
F'resident, A. Aars, Brantford, Ont.
Vice.Psesident, F. G. Mirciesl. - london, Ont.
Registrar, A. E. Eukins
Treasurer R ACKIE
Treasurer, R. MackiE, -
Solictor, J. A. McANisknws. 339 Borden st., Toronto.
Solicitor, J. A. MCANDREWS. - Toronto.
Toronto-A. E. Edkine. A. Af, Wichens, E. J. Phillips, F. Donaldson.
Halit.ton-P. Stolt, R, Mackie, T. Eiliott.
Brantford-A. Ames, care Patterson \& Sons.
Ortaiva-Thomas Wesley.
Kingston-J. Devlin (Chef Engineer Penetentiary). J. Campbell.
London-F. Alitchell.
Niagaka Falis-W. Phillips.
Information regarding examinations will be furnished on application to any member of the Boarit.

With the aid of subscriptions received from outside sources, the members of the Montreal Association No. I. C. A. S. E. have the nucleus of an engineering library. This is directly in line with the avowed object of the Association, which is declared to be first and foremast an organization for the purpese of m proving by means of education the standard efficiency of engincers. If the Canadian Association of Stationary Engineers has come to stay, as no doubt it has, the officers of the various branch associations throughout the country could not do better than follow the example of their Montreal brethren in this particular.

The question of the right of electric companies to operate their road on Sunday is likely to come to a test, and be decided at no distant date. In view of the present condition of the law on the subject, it is desirable that such a decision should be reached at as early a date as possible. It is certainly an anomalous state of affairs that street cars should be allowed to run on Sunday in Hamilton, while in Toronto, forty miles distant, they are prohibited from doing so. The matter is one which should be placed on a more consistent basis. The law should declare either that it is legal and proper that street railway lines should be operated on Sunday, or that it is illegal and improper that they should be so operated; this decision should apply everywhere throughout the Dominion. In answer to a deputation representing the Kingston Electric Railway Co., Mr. Harty, a member of the Ontario Government, made the sensible suggestion that the various sireet railway companies should get together and formulate and present to the goyemment their views on the question of the operation of electric roads on Sunday, when the government vould be in a position to consider the question intelligently and take some action in reference thereto.

Tue recent mishap to the conduit pipe of the Toronto Water Works should tend to popularize the electric elevator, resuiting as it did in stopping the operation of every hydraulic elevator in the rity.

Notwithistanding the rapid increase in the use of the bicycle the receipts of the Toronto Strect Railway Co. continue to grow. The total receipts for the month of August were \$90.285.78, of which the city's percentage amounts to $\$ 7,222.86$, as against $\$ 7,013.30$ for the corresponding month of hast year. This franchise is proving a very valuable one for both the company and the city.

At the time of this issue the Toronto Industrial Exhibition is in progress, and the same success which has marked it ever since its inception still attends it. The remark so frequently made that it is the same old thing from year to year is not correct, neither is it reasunable to suppose that it can be very different. Still there is marked progress, and every year shows some advance in every department of industry which the exhibition covers. This year, as usual, a large number of our electrical firms make creditable extibits, showing that the rapidly growing demand for appliances in this branch of science and industry can be fully met in our own country.

The Calumet Electric Railway Co., which was, we believe, the first to give trolley paties, now so popular, has introduced another new idea in the form of trolley funcral trains. A procession of this kind conveyed a funcral recently from West Pullman to Oakwoods cemetery. The forward part of the first car was appropriately draped, and formed the hearse, and the remainder of the train was occupied by the relatives and friends of the deceased. Mr. Farson, the general manager of the road, anticipates some difficulty in overcoming a not perhaps unnatural prefudice against such an innovation, but as our cities grow, and longer distances have to be traversed to the cemeteries, such a system must commend itself from the standpoint of both economy and convenience. Why, for instance, should not a funeral from Parkdale to the Necropolis proceed by trolley instead of with hearse and cabs? It would be a saving of both time and moncy.

An Act came into force in New York State on the ist of September which will tend to protect those who use the telephone for business purposes as fully as their interests are now guarded by the lav relating to the telegraph. The Act makes it punishable by a fine not exceeding $\$ 1,00$, or imprisonment for not more than six months, for any person to wrongfully obtain or attempt to obtan any knowledge of a telegraphic or telephonic message by connivance with a clerk, operator, messenger or other empioyce of a telegiaph or telephone company. The same punishment may be meted out to the operator or other employee of the telegraph or telephone company who wilfully divulges to any one but the person for whom it was intended the contents or nature of any message or despatch intrusted to hin for transmission or delivery. The same penalties attach to refusal or neglect of any employee to duly transmit or deliver such message, or the aiding or abetting of any unlawful business or trafic. Sumeone suggests that this law will setule the question whether a woman can keep a secret.

Volt-meters, or pressure indicators, are very important instruments in the operation of lights, and as they are liable to net out of adjustment from various causes, it would be well to have then frequently compared with a standard. A very slight cause may result in throwing a volt-meter out of adjustment. The writer knows of an instance where a small spider, having got into the case in some mysterious manner, left a blaread across the space within which the needle swings, which made a difference of about s volk in the reading. A litule dust will get in and clog the pivot; and more especially, the cheap instruments which are supplied with small plants, alhough quite good enough to run by, have not been, as a rule, carefully made, or calibrated, and so are quite seriously faulty somethines. It is the same thing as with a watch. A Waterbury $\$ 2.50$ will probably keep excel!ent time for several months, and then simply wear
out, because the materal, although worth the $\$ 2.50$, was cheap. Keep your plant up to the mark; spend a litte money on it, and the popularity of the light will repay the cost. Save a $\$ 5$ bill it small ways, by neglecting to keep it up, and your customers will become dissatisfied and put your lights away.

A successrul. lest was made a few days ago of a new engine, built at the Grand Trunk shops in Montreal, embodying umprovements which give greatly increased power with economy of fucl. There are ewo cylinders, one of in inches and the wher of 29 inches, so arranged that the stean is used in the larger one after it has done duty in the smaller. The steam is thus used :wice, and in such a way that very litte of its force is lost. In the test the new engine drew forty-six loaded cars from Montreal to Brockville, a distance of 125 miles, with a consumption of 4 多 tons of coal, an average of 1.66 pounds of coal per car per mile, on an up grade, which is considered by the ralway officials a reunarkable aclievement. An ordinary engine hauling hall the number of cars the same distance ustailly consumes at least five tons of coal. The engine, on the return trip, trok fifty-six cars. On us second trip the engine drew 41 and 50 cars respectively. A number of promment ofictals accompanied the engine on the trial trip. This compound principle, as applied to locomotives, is covered by patents secured thoughi sid ney Stevens, of lirockville, travelling representative of the Rhode Island Locomotive Works, of I'rovidence, R. I. It seems io promise a revolution in the construction of railway engines.

IT is of great mportance to electric lighting stations that the pressure all over the system should be sensibly the same, and equal at all loads. It is, of course, practically impossible to so arrange the system of prumary wires and transformers if ather nating currents be used, and the mains ant feeders if direct currents be used, as that there shall be exactly the same electrical pressure on the lamps, at every distributing point; but a carefut laying out of such a system can always result in obtainong a very small, and comparatively negligible difference. The wiring of a town or building is reaily a very potent factor in the future operation of the lights, and is deserving of quite as carefnl calculation as any other feature; in fact, possibly more money is wasted, and more setious faults made, in the -figuring of the mains, feeders, etc., than in almost any other way. This seems a rather bold statemeat, but a little consideration will shew its force. Consider a very simple case. Lamps placed around the circumference of a circle, with the generator at the center, and a man primary lealing from the generator to two poinrs on the circle, at opposite ends of a diameter. The lamps are 1 o volts, and the generator gives 125 volts, which allows a drop of 15 volts between generator and lamps. In this case, as the generator is equ-distant from the center of distribution, the mains in every direction may be the same size, to give the same resuleant pressure at the lamps; but taking another case, which more closely represents conditions practically obtaining, shews the necessity for careful calculation. Take a square with the co-ners A, B, C, D; the generator situated at A, and the lamps in bunches at B, C and D. Assume the same number of lamps in each bunch. Then the distance from A to C is almonst hall as long again as A to B, or A to D. Everybody knows that the size of wire to carry a certain current, with a certain initial pressure, has to be greater as the distance increases, and less as the distance diminishes; so that the wire between A and C should be larger than the wire between A and B, or A and D. Now, we have above 15 volis that we can drop between the gencrator and the lamps. Suppose we find that number o wire will carry all the current required, and drop is volts over the distance A 13; then it is evident that it will drop more than 15 volts between A and C, so that if we use o wire between A and C, our lamps at C will not act 110 volts, so that they will not be burning at proper canile power, and customers will kick. On the other thand if number 0 wire suffices to drop 15 volts between A and C, then it will not drop so much between A is or A D, and if we use No. o here, the lamps will bave more than 1 to volts-will burn quite brilliantly, bat will burn out before their time, resulting in another keck. It is quite usual to run a pair of mains direct from the senerator, along all the streets perhaps to a distance of three-fourths of a mile from the power house, and to tap transformers on to this wherever lights are required,
without any reference whatever to centers of distribution, or the many different pressures resulting at the lamps. Let us consider what this means. Take a line A, F, and divide it into cqual parts at the points $\mathrm{B}, \mathrm{C}, \mathrm{I}, \mathrm{E}$; let each of these parts be 200 feet long. The generator, giving 125 volts is at A, and at each of the points $1, C, D, E, F$ is situate. a bunch of lampo, requiring say to amperes altogether, at to valts. So that the generator hats to supply allogether 50 amperes. The usual mode of running this wire is as above described, to carry one size all the way from A to F, tapping off at intervals; and if any calculations at all are made, which is doubtful, they are made thus- What size of wire will carry 50 amperes over a distance of 1,000 feet (A to F) dropping 15 volls? The proper size on this basis is 35,000 circ. muls., or neariy No. 513 \& S gauge. Now, if this wire be run the results will be as follows-remembering that the wire has to carry 50 anperes between A, B; to between B, C; 30 between $C, 1$; 20 between D, E, and to between E, F. At any moment, when all the lamps are burning and the generator voltage is the proper 125 , (direct current is assumed, but the theory is just the same for alternating at a higher voltage), the pressure at the lamps at F will be 1 to, as it should; at E it will be 113; at D it will be 116 ; at C it will be 119, at 13122 volts. Thus the lamps everywhere but at F, will be burning at far too high pressure, and will burn out in a very short time. Some authorities state that every one per cent. too high voltage reduces :he life of the lamp is per cent. The above is certainly a rather exceptional case, but in a modified form actually occurred within the writer's experience. Suppose that the wire had been calculated to carry the 50 amperes as far as D , dropping the 15 volts; then the lamps at D would lave $1 t 0$ volts; those it E and F would have too litte; while those at B, C would have too much. E would have 108 ; F, 106; C, 112 and 13,114 volts. Here we have some not up to candle power, and the others buining out. There has been enough shewn to prove that the careful calculation of the wiring of a system is of the highest im. portance, and that slap-dash methods of guessing at wires are almost sure to be disastrous. It is too usual to conclude that No. 16 will be the proper size for inside wiring, irrespective of the outside pressure. A case came recently under tise notice of the writer, where the contractor, out of the honest intention to give good square work for his money, increase d the size of the wires all uround, thinking that nobody could complain if he put up No. 6 where he had contracted for No. S. His honesty, not to say his beautful ignorance, resulted in burning out lamps in all directions. The fact is that hundreds of dollarsare wasted by guessing at wires, and huncireds of lamps are burned out by excessive pressures. In quite a simall village the wiring system is as capable of scientific calculation as in a large town; and experience and care can save money in this way as in every other. It would certanly pay electrical men to have their systems overhauled ance put in order.

In view of the approaching convention of the Canadian Electrical association at Ottawa, and of the American Street Kailway Association at Montreal, the effort has been made to make the present number of the El.ECTRICAL News one of special character. A largely increased edition has been printed in order that coptes may be placed in the hands of every delegate to these conventions, as well as of manufacturing and other concerns who should be interested in acquainting thenselves of the progtess which is taktng place in the applications of steam and clectncity. It is hoped that the readers of this number, whether casual or regular, will find the contents of both reading and advertisement pages of more than usual interest. If you are not a subseriber, remember that for only one dollar per year you may enjoy that provilege. If you are not an advertiser, it will pay you to become one.

NOTES ON AN INTERESTING STEAM PLANT AT
 MONTREAL.

A representative of the El.ectrical. News recently called on the superntendent and chief engineer of the Board of Trade bulding, Montreal, Mr. J. J York, and it was with much pleasure he saw the neatness and brightness in the power and boiler rooms.
In the pumping rooms are two Davidson steam pumps, $24 \times$ $1 \notin x=\downarrow$ which run the three passenger elevators. These
elevators carry 4,000 passengers daily during the summer months. The pumps pump the water ovel and over again and only 60 gallons per week are wasted. Two feed pumps (Davidson) are in use and one Otis feed water heater, which receives water fron: the city mains and delivers it to the boilers at 210° Fr. The only eirculating hot water supply system used in the city is used here. It is so arranged that hot water may be had from any of the 170 hot water taps at once, white in other buildings you have to wait till the water arises from the basement. The temperature in the hot water tank is regulated by lower's temperature requlator.
The building is lighted by a private electric plam, supplying light to 1400 lights. The system is divided into ten sections, each connected to one switch board, and so arranged that, in case of an accident, light can be had by connecting to the Royal Electric Co.'s wires. The building is wired for 2% loss at 52 voles, and all wires are rubber covered cable lad in armored conduit.
In the power room are three engines and three generators. The engines are Rabb-Armstrong, Class A. $10 \% / 2 \times 12 \times 260$. The generators are Edison compound wound $30 \mathrm{k} . \mathrm{w}$. A new switch board has just been butt in the power ronm, having Weston volt metres and Edison ametres. New brass railings have just been put around the engines and generators giving them a nice appearance. A $10 \mathrm{~h} . \mathrm{p}$. Sprague motor drives a fan which supplies air to the boilers, where hard coal scieenings are used for fuel. The motor is controlled by a damper regulator connected with the starting box, so that when steam is up and no air is required the motot and fan will be at rest, and when steam goes down, needing more air for the fires, a weight slowly descends automatically, at the same time pulling a cord attached to the handle of the starting box, which sets the motors and fan again in motion till the required steam is up. This automatic invention does not sequire any attention from the fireman. This invention originated in the fertile brain of Mr. York and is one he may well feel proud of.
In the boiler room are three boilers, $i 8$ feet long by 5% fee: diameter. They are multitubar and have an average pressure of 90 lbs. Mr. Yook, after experiments with mixtures of hard and soft coal screenings, has decided in stick to hard coal screenings.
In the kitchen of the restaurant next to the power room is a $21_{2}^{\prime} \mathrm{h} . \mathrm{p}$. Ball moter which drives a 30° Blackman fan which can change the atmosphere of the kitchen three times a minute. The kitchen is the best ventilated in the city. The power of the fan was clearly demonstrated to the reporter by Mr. York. He closed all the windows and doors with the exception of one, and then speeded the motor to its utmost capacity. The air was drawn so quickly out of the kitchen that the reporter found it almost impossible to close the open door against the rush of air from outside.

Mr. York is experimenting on an electric heater for a teabroker of the city. He is making it of German silver insulated with mica and is pleased wath results. He says he can heat two quarts of water in ten minutes and not burn out the heater. Mr. York, as I'resident of the C. A. S. E. goes to Ottawa to the convention this month.

PERSONAL

Dr. MeMaster has leen appointed prineipal of the Toronto Technical School Board, at a salary of $\$ 700$ per year.
Mr. W. F. Clockenberg, electrician, of Niagaraon-the-Laike, was married recently at Toronto, to Miss Sberrin.
Mr. 3. I. Wught, manager of the Toronto Electric L'ght Co. has also assumed the management of the Hamitton Electric Light \& Power Co.
Mr. E. I Merrill, late prineipal of the Toromo Technical School, has entered the employ of the Westughouse Electric Manufacturing Co., Fittsburge lan.
Mr. E. L. Barr, brother to Mr. M. D. Barr, formerly manager of the Canadian Eduson Co., has recently been appointed secretary of the Wallace Electric Co., of Chicago.

Messrs. John W. Mackay. president of the Postal Telegraph Co., and C. R. Hosmer, superintendent of the Canadian Pacific Telegraph Co., have recently retumed frum a trip to Alaska.
At the recent convention of the Association for the Advancement of Science. held at Springfeld, Mask. Prof. Galbraith, principal of the School of Pract. cal Scrence. Toronto, was elected secretary of the Mechanical Seience and Engineering section.

LOCATION OF GROUNDS IN ARMATURES, FIELDS, ETC.*

 130 Ciankence E. Gifford.If the work can be performed in a very quict room, two or three cells of battery, a teleplione receiver and connecting wires, comprise the necessary apparatus. In some cases two "table binding posts" and a foot or two of No. 18 or No. $=0$ bright iron wire will be a convenient addition. Where noise will not permit of the use of a telephone, a dead-beat reflecting galwanometer, a milli-voltmeter, or some other form of delicate and rapid working visual indientor, must be used instead. If an armature is to be tested withou remoring it from the machine, connection with the battery may be made through the brushes, first making certain that the short-circuiting switch is open, if dealing with an are machine. The points of connection with the battery need not be diametrically opposite, and may be made by the wires being firmly pressed against the commutato: by an assistant, if more convenient.

Good electrical contact between metallic surfaces can better be sccured by cleaning the same thoroughly with kerosene, which removes foreign matter, and is so fuid that it will in no way interfere with perfect contact, when moderate pressure is applied. Especially when making measurement of resistance of armature sections, it is even adivisable to have the sulface of the commutator quite wet with kerosene during the: operation, as this avoids trouble from grease or dirt which might get on the surface from hand..ug, subsequent to cleaning, and it also prevents the contact points becoming oxidized by any sparks wheh may occur at the monent of breaking contact. True, the onl is an insulator, but we use it in this case as a detergent simply.

Connection being made between battery and commutator, first determine whether the armature circuit is complete throughout. It the carcuit is complete, a click will be heard in the telephone when the two terminals of the same are brought in contact with any two contiguous bars of the commutator, or when contact is broken. If an open circuit exists on cither side of the circuut, of course no sound will be heard in the telephone when used on that side, except when connection is made or broken by it between the bars lying on opposite sides of the break. See Fig. I.

Close any open circuit temporarily by bridging between the two bars with a drop of solder. Two or more breaks can evidently be located by suitably slifting the battery contacts and searching as before. Open circuits will, of course, when an armature coninues in work, soon cause burns between the bars

that will indicate umistakably their location. Having closed any open circuits, and the battery being connected to two points of the commutator, appro imately opposite each other, one terminal of the telephone is connected to the armature shaft, or frame of the machine, and the other terminal is drawn completely around over the surface of the commutator, while the telephone is held to the ear. If only one ground exists, two balancing points, or points giving the least noise in the telephone, will be found.
In an armature of ordinary construction, one of the point: so found will be on the bar nearest the real ground, while the other balancing point bears what might be termed a "bridge relation" to the first, being at practically the same potential; the arma. ture itself forming in reality a veritable Wheatstone bridge.

Now, shift the points of battery contact a few bats cither way,

[^0]and the tue ground, if but one exists, will he indicated in precisely the same position as before, whe the other balationg point will shift every tume the battery contacts are shifted. See Fig. 2.

If two grounds exist, wo balinemg pomts will be fomme, as before, but both points will shift more or less when the bitiery contacts are shifted, provided the grounds lie on opposite sides of the same bittery contact.

In the catse of one ground, having determincel its Incation approximately, fix it as closely as may be by making and breaking contact with the telebhone terminal on each of the more quiet bars, separately, until by comparison, the two giving the faintest clacks are determined. If your hearing has served you correctly these two bars lie nearest the trouble, the fainter one being the nearer. Prove the non-existence of a second ground by placing

one of the battery contacts on the first bar to the ight of the apparently permanent balancing point just found, and then oa the first bar to the left of sad point, the other contact being nearly diametrically opposite. This balaneing poome should still remain unclanged if no other ground exists.

The next step is to connect the battery to these two bars just fixed upon as lying nearest the trouble. The armature still forms a "bridge," the portion included between the two contiguous bars to which the battery is now connected forming the one side, and the remainder of the armature, the other side. See Fig. 3.

One of the telephone terminals is now connected to the shaft as before, and the other termanal agan drawn around the commutator. If the balancuing pomt is fouml, say one-sixib to onehalf, the long wity round from one battery contact to the other (these contacts being on two contiguous bars), the trouble lies in the coil between those two bars, and the point of trouble divides the coil in the same ratio as the balancin; poont divides the remander of the armature, the ground and the balancing point bemg respectively nearest the same battery contart. If the balancing point falls on the same bar as one of the battery contacts, the ground is located on that bar or on the lead between 4 and the armature, prowded the balancing point is found to be upon the same bar when the battery contacts are both shifted one bar to the right or the left of ther original position. See Fig. 4.

If the balancing point appears to be found within three or four bars from one of the contacts, the precatition should be taken to test its correctness by moving both battery contacts one bar toward the balancing point. If the trouble was between the battery contacts when in their prevous postion, this slifting of the contacts will now throw the balancing point clear around on to the contact which was, in the prevous postion, farthest away from the balancing point. If, on the contrary, the balaneing point remans unmoved by this shifung of the battery contacis, it shows that this balancing point is the point nearest the real ground, and that the car was deceived in its first supposed approximation, which, with due care, howeter, is not likely to occur.

If such error had been made, the new point, as indicated, together with first the bar on one side of i, and then on the other, mast be tied as pornts of battery contact; or much better, make a new start with the contacts nearly at opposite sides of the commutator and proceed as before. A sungle 20,000 ohm ground on a one ohm amature should be located accurately in not over three imnutes, in a yuict toum. High resistance
krounds require more battery and more care. Armatures of very low rejistance also offer kreater difficulty.

Where two grounds ale found to exiat, as indicated by the change of bocation of both balanemg points, under the conditions before stated, when the battery contacts are shifted, the following mode of procedure will answer the purpose sell, and is simple. Fix the battery contacts at any two points of the commutator nearly opposite each other, preferably at points to be determined by tral, that will cause the balancing points to fall nearly diametrically opposite to each other, and determine and mark the two balancing points, as then shown. Now place the batecry contacts on the balancing points just found. If ouly one ground exists, the two balancing points and one battery contact will all be coincident in one point. If two grounds exist, both balancing points will be shifted from their former postion. Open the armature curcuit by unsoldering one of the ends of a coll connecting wath the lead of the bar that is marked in the first part of this test, as one of the b.llancing points. Place one of the battery contacts on the armature shaft, and the orher on the marked balaneing poom that is farthest from the point where the circuit has been opened. Next place one telephone termmal on the first bar to the right of the opened wire, and draw the other terminal from the same point, toward the right, over the surface of the commutator. The telephone will be absolutely silent until the moving terminal has just passed the ground nearest to it, and strikes the first bar beyond the same, when it will click. This ground lies in the coil between this first bar giving a click and the one passed just previnusly, or else in the said previous bar.

The other ground is obviously to be located in a sumilar man. ner, by placing: one telephone terminal on the bar just to the left of the open wite, and from that point searching toward the left with the other terminal. Only in cases where one ground is of very low, and one of very high resistance, will any difficulty be experienced in lucating both accurately before either is removed.
The coils thus indicated may have their terminals unsoldered, when it can be readily ascertained with each, whether the ground be in the coil or in the bar just preceding it.

If scientifically inclined, or if otherwise preferable, the circuit may be openel at a point somewhere midway between the two indicated coils instead of disconnecting those coils, and the exact location of each ground determined as follows. Take a prece of "broom wire" about eighteen inches long, new and clean, sirew the ends firmly into two clean, brass table binding posts, and into the other holes of the same posts screw the battery terminals. Have an assistant press the corners of the bases of the binding posts into very firm contact with the two bars that lie at the ends of the indicated coil, observing the directions prewously given for securing clean contact. Place one telephone terminal in sontact with the shaft, and with the ollier find the balancing point on the wire. This point will indicate the relative position of the ground in the coil, or commutator bar, as the case may be. If more than two grounds were suspected, the two lving the farthest apart would be approximately located by the first part of the two.ground process, and if these coils were not disconnected before proceeding farther, it would be well to make two openings in the circuit, close to and lying between these outer grounds; then locate defintely these two extreme grounds, and prececd with the remaning section somewhat as with a complete armoture, except thit you would commence by connecting the battery to the terminals of this section, and would then bridge the telephone from the shaft to the different portions of the section, and would complete the process by applying the remainder of the two-ground test.

In dealing with a cross connected Gramune ring, an obvious change would be made in the points of application of the battery; and as many points of apparent trouble would be indicated as there were series of cross connections.
Afrer location of theie points it would be necessary to use the auxiliary wire loop, as before deseribed, between these points, 10 determine which is nearest the trouble. This fact being determined, $1 t$ would in case of a single ground indicated by the pennanency of the bal.ıncing point; become necessary to remove the cross-connections from two bars before proceeding further.

The anxiliary wire loop would properly be used to complete the process.

The ordmary "closed coil" ring or drum armatures are types to which these methods are directly applicable.

The sections of open coil armatures would receive the same treatment as field coils.

Whenever necessary to deal with wet grounds in testing, it is better tomake at least four tests, reversing the battery afier each test, and taking the mean of the four determinations.

Ficld coils, also any wires of uniform cross-section, the extremities of which are accessible, and within a reasonable distance of each other, can of course be easily tested for grounds by soldering or firmly clamping a bare wire of suitable size between the extremities of the conductor to be tested, applying a battery to the junctions, and bridging with a telephone between the bare wire and the object upon which the conductor is grounded. This will give only the location of a single ground, or the "resultant " of two grounds. A "T.. Il." rheostat should have the battery connected to the two extremities, and the point of apparent ground determined by bridging with a telephone be:ween the frame and the several contact plates. Then apply the battery to the frame and point of apparent ground, connect one terminal of the telephone with each extiemity successively, and search from it toward the center with the other temanal, as in the case of searching for two grounds in an armature.

In determining the location of grounds that are of very low resistance, a good induction coil similar to that used in the Blake tansmitter may be used with advantage in comnection with the telephone receiver. The receiver is placed in circult with the secondary of the coil, and the "bridging" is done with the primary. With high resistance grounds the best results are obtained by using the receiver only.

MOONLIGHT SCHEDULE FOR SEPTEMBER.

Day of Jonth.	Light.	Extinguish.	No. of Hours.
	H.M.	H.M.	H.3.
	A.31. 12.40	A. M. 4.30	3.50
こ......	11.10	114.30	2.50
3.....	11.30	11.4 .30	2.00
4......	No linht.	Nolipht.	.
5......	No light.	No light.	...
6......	No linht.	Nolight.	...
	P. M. 6.40	P. 3. S.40	2.00
8	116.40	119 9.20	2.40
9......	116.40	119.40	3.00
10......	116.40	1110.20	3.40
	116.40	111.00	4.20
12	" 6.40	$11 \quad 12.00$	5.30
13	" 6.30	A. M. 1.00	6.30
14	" 6.30	111.10	6.40
15.....	" 6.30	112.30	7.50
16......	11.6 .30	113.40	9.10
17......	116.20	" 4.50	10.30
18.	" 6.30	114.50	10.30
19.....	" 6.20	114.50	10.30
$20 . . .$.	116.20	114.50	10.30
21.	" 6.20	114.50	10.30
22......	116.20	114.50	10.30
23......	" 6.20	114.50	10.30
24.	118.00	115.00	9.00
$25 . . .$.	119.10	115.00	7.50
26.	110.30	115.00	6.30
27.....	111.00	11 5.00	6.00
25.	1111.30	115.00	5.30
20......		115.00	\} 4.20
		Total,	172.30

Since the publeation of the article relating to the Sault Ste Marie Canal. which appeared in our August issue, we have been informed that half the motors required for operating the canal gates nere supplied by Messr3. Ahearn \& Soper, of Ollawa.

Refernig to the artucle published in the Enhctrical. News for August, of the electrical apparatus employed in connection with the Sauli Ste. Maric Canal, a communication has been received from Mr. J. B. Spence. Government Enginecr, stating that he has visited the work since the publication of the article referred to, and by trial has found the valves and gates 10 ojen and c'ose (with all caution) in from 45 to so seconds. The lock filled in barely 7 munutes, and discharged an barely 5 minutes, being in less ume than the estimate made in Mr. Spence's report.

AN INGENIOUS ELECTRICAL DEVICE.

A novet. and interesting application of electric power has recently been made in Ottawa, Ont., in an elevator for boats, constructed by the Ottava Canue Club. This club has its headguarters in a prettily designed and well appointed boathouse, bult on a ledge of rock and against a high bluff well known as "Rockeliffe," situated on the Ottawa River, a short distance from the city and easily reached by the electric railway.

The Ottawa River rises every spring to a height of 10 to 15 feet above the average summer level, conseguently the club house had to be perched quite high up the hill. At this time the lower sills lie some eghteen feet above the water. Uuder these conditions the transfer of the skiffs and camoes between the boat-house and the water was a difficult, slow and laborious process, that offset to a large extent the many attractions of the place.

This season the Executive decided to overcome this difficulty by the installation of an elevator or "lift," operated by clectricity, an. 1 Mr. A. A. Dion, of the Ottawa Electric Co., who is the Honorary Treasurer of the club, designed and had constructed under his immediate supervision the apparatus which is now used. Its operation is perlect. The boats are handled quickly and safely, and are less strained than they were when carried by hand. In fact, the lift is a complete success.

The apparatus consists mainly of a framed gangway to feet wide by 32 feet long, a skeleton car, an ordinary worm geared hoisting drum, and a 3 K . W. 500 volt Edison motor. The gangway, which is made of two heavy timbers, with lateral ties and braces, forms an inclined plane extending from the lower platform of the boathouse to the water, into which it dips at an angle of about 45 de grees. On the inner face of the side timbers of this gangway, rails of 2 inch angle iron are fastened. The car which runs upon this track consists of an oblong bed frame, from two sides of which arms made of 2 inch by $1 / 2$ inch iron, looped, extend upwards at an angle of about 90 degrees from the bed-flame. Slings made of 3 inch rubber belting are suspended betueen the top corners of the bed-frame and the tops of the iron arms, forming two flexible, elastic sup. ports about 9 fect apart, intended to receive the boat. This carriage is mounted on four independent 4 inch cast iron wheels with one inch fanges. There are also two wheels running under the rails to prevent the car leaving the track.

The carriage is attached to the drum by a $3 /$ inch steel cable running over sheaves to the back of the building, where the hoisting apparatus is placed under the floor. The motor is belted to a countershaft, that is in turn belted to the shaft carrying the worm.

When a boat is to be raised or lowered, the motor is first started on a loose pulley. The drum is started to ratse or lower the car by means of a belt shiftung lever placed on the cdge of the boat-bouse platform. The car stops automatically at the top and bottom of its allotted course, the lower stop being adjustable to suit the water level.

When the ear is at the bottom, tis highest part stands about one foot under water, so that a boat may be foated on and off.

When at the top its highest part stands over and inside the edge of the platform, so that a boat may be lifted on and off easily. It will be understood that the boats are carried side on, or at right angles to the line of traction. The speed of the car is about 75 feet per minute. The construction and operation of the apparatus will be more clearly understood from the accompanying photograph, for which the writer is indebted to Mr. J. A. D. Halbrook, a talented amateur photographer and a member of the club.

The automatic stop devire is an ingenious modification of the well known arrangement of a mut moving along a screw extending from the drum shaf, and is very positive in tts actuon.
All the machine work was done by Mr. Geo. l.ow, and the carpenter work by Mi: A. Sparks.

FIRING STEAM BOILERS.

If all engineer must hire the fireman, let him look first for a sober man; next see that he is neat, careful and reliable; next ascertain if he wants to learn something new each day. If the man is a "know-it-all" it will not do to take him into the fire room. No matter what his other qualifications may be, le will not prove a financial success. His introduction to the conl pile will mean a considerable hole in the owner's pocket book. The new fireman, if he understands his business, and especially if he has a new boiler, will start a slow fire. lic will be easy on that boiler for a day or two ; he will start the fire with wood, if possible, as that fuel can be regulated closer than any other form.

For a medium sized boiler, say 3×16 feet, he will be very lazy in setiong up steam the first disy. Probably three or four hours will be consumed in setting up the pressure. White this is being done he will have a good look at every seam and every rivet that is within his reach. He will take pans to let the air out of the boiler as soon as the pressure begins to start. This is easily done by leaving a gauge cock or two open, or by raising the safety valve if the lever varicty is used.

After the new boiler has been gradually worked up to a pressure, he will let it stand an hour or two, then open the blow-offat surface, and give a chance for all the oil and light dirt to run out. After this the boiler may be put to work in carnest, and if the above directions be followed he will have very little trouble from leaky seams or tubes.--Tradesman.

BRITISH STREET RAILWAY STATISTICS.

An English paper gives the following statistics of the street railways of Cireat l3ntan: Atogether 37 civic authoritics and 1 to companies own tranways in the United Kingdom. On these tramways $30,52 S$ horses, 564 locomotives, and 4,179 cars are used. The number of aien employed is about 20,000 . The total number of passengers carried during the year 1804 was $610,87=830$. The sross recerpts were $\mathcal{L}, 6,615,837$, and the net profit 2758,781 , givms a return of $5^{1} 4$ per cent., or an increase of 1 per cent. on the previous year.

The Cumenneci alill Co., Truro, N. S., are puling in a 30 horse purker Rull . Irastrong engine.

CANADIAN ELECTRICAL ASSOCIATION.

We prunt by request of the Executive Commitiee the followmg copy of the constutuon of the above Association, as recemtly revised by the Commatiec on Constitution, in order that members of the Assoctation may be in a position to discuss intelligently its provisons at the approaching eonvention in Ottawa: Anticti: 1.
Nanle, - This organization shall be known as the Canadian Electrocal Association.

Articied ll.
chifrex. The object of thes Assuctation shall be to foster and encourage the science of electricty and to promote the interests of those engaged in any electrical enterprise and for dis. cussion and intecthange of opmions among is members.

Articlek 111.

Mr:milzatir. - The Association shall consist of active, associnte and honorary members. The term Active Members includes all members actually engabed in electrical business. The term Associate includes those interested or actively engaged in any electrical pursuit, and they shall be entited to attend all meetings of the Association, except those of the Executive, and take part in all discussions, but shall not be entitled to vote or be elgible for ofice. Honorary members shall be elected by a two thirds vote of the Association.

Artichelv.
Offictiks. - The officers shall consist of a President, ist and and Vire-Presidents, Secretary and Treasurer, and an Executuve Commuttee, consisting of ten members, five of whom shall act on the Commute for two consecutve years. The President and lice-presidents shall be ex-oficio members of the commitiec. Five shall form a quorum. The office of Sectetary and Teeasurer miy be held by one person.

Articles V.
Fefs.--The anmal fee shall be for active members $\$ 3.00$, associate members $\$ 2.00$, payable in advance.

Articies VI.

Eiliction of ofrichrs.-All officers shall be elected by ballot at a general meeting of the Association. The ballot shall be taken in the following manner:-The Secretary shall read the list of active members alphabetically, and each member shall deposit with the Secretary a slip of paper on which he has recorded his vote, the Secretary checking off his name on the list of voters. Two scrutineers named by the Chairman shall assist the Secretary in countung the votes, and the Chairman shall declare clected the person receiving the majority of the votes east. In case no one candidate receives such majority on first ballot, another ballot is to be taken, and so on until a clear majority is guen in favor of some one candilate. Officers shall hold office until the close of the session, at which their suecessors are elected, such successors to be elected on the second day of the first general session after the expiry of ten months from day of previous election.

Artiche VII.
Eiection of Exfcutive Cominttef-Members of the Executive Commilye shall be elected by ballot in the following manner, the vote beng taken immediately after the election of officers:- Ballot pafers containing the names of the ten members of the Executive Commitue, five of whom must be re-elected, shall be given the members. The Secretary shall read a list of those entitled to vote, and members, having first marked a cooss opposite the names of the five persons selected for reelection, shall deposit the ballots with the Secretary, who, assisted by the two scrutuncers named by the Chairman, shall count the vote, and the Chairman shall declare elected the five persons receiving the greatest number of votes. Members shall thrn proceed to elect the five other members of the Executive, the electuon beang by ballor and the Secretary reading the names as before. Each active member of the Association shall have the right to vole for an active member of the Association, including the retiring members of the Executive, and the vote being counted in the usual way, the Chairman shall declare elected the five persons receiving the greatest number of votes.

AkTICLE VIll.

Plide of Meftiso. - Place of next meeting shall be decided by ballot, taken in same manner as laid down for election of officers.

Article 18.
Vicancies in Officf - Yacancies in office, caused by death or iesignation, shall be filled by the Executive Committee to cover the term until the next general meeting of the Association, at which the oficers are elected.

Articies \mathcal{N}.
Nolick of Motion. - P'ermission to introduce any notice of amendment or amendments to this constitution must be granied by a majority of two-thirds of the active members present. l'ermission being gtanted, notice may be given and the proposed amendment moved at any subsequent siting. After discussion the amendment must be submitted to a Committee of five, named by the Chai,man. The report of said Committee cannot be considered on the same day on which it is introduced. A two-thirds vote of all active members present shall be necessary for its adoption.

Article Ni.
Notice of substantive motions is required, and no motion shall be discussed at the sitting at which the notice has been given, but this rule does not apply to merely formal motions, such as motions to adjoung. All reports of stmding Conmittees are to be discussed at a sitting subsequent to the one at which such teports have been received. This rule mily be suspended by a vote of two-thirds of the members present.

Artictis Nil.

All motions must be duly proposed and seconded, and shall, except those of a purely routine character, be in writing.

Artictiz: XIll.

No member shall speak mote thitn once, or at a greater length than five minutes, upon any question until all others have had an opportunty of doing so, nor more than twice on any one question without permission of the Chairman, or a majority of the members entitied to vote. The mover of a substantive motion has the additional right to reply.

Articife NIV.

Questions may be re-considered upon a motion to re-consider being made by a person who voted with the majority, provided such motion. is carried unanimously. No discussion of the sad question is allowed until the motion for re-consideration has been carried.

Articter XV.

Voting.-Every active member present must vote, but any person entermg the room after the question has been put by the Chairman may not vote. The Chairman shall not vote except in the case of a tic. Voting by proxy shall not be allowed.

Articie XVI.

Except where vote is by ballot the chairman will take the sense of the mectung by voice, or by asking members to stand, but on call of five members the Secretary shall read the list of persons entitled to vote, and record the yeas and nays.

Article XVII.
An appeal may be taken without debate against the ruling of the chair, a vote of two-thirds being required to reverse the decision.

Article XVIII.
The I'resident shall nominate a Committee of three to strike the Standing Committecs for the following year and define their respective duties, the report of the Committee being considered at a suosequent sitting to its introduction. The number of Standing Committees must be decided by the Association.

Article Nix.
The first person named on any Comnittee shall act as Chaitman until Committee is called together, when they will elect their own Chairman, but the President, in his absence the 1st or 2nd Vice. l'resident, shall be Chairman of the Executive Committee. In the event of the absence of ex-officio members, the Executive Committee shall proceed to elect a Chairman pro tem.

The general order of business at all sessions shall be as follows:

Reading Minutes of last meeting.
Report of Secretary-Treasurer.
Report of Standing Committecs.
Election of Standing Committees for following year.
Selection of place of next meeting.
Approximate date of next meeling.
Election of Officers and Executive Committe

Time being allowed for general business and sochal affars, it the discretion of Executive Commitece or Charman of meeting. Selection of next place of meeting and election of Officers and Executive Commitee must be on seconil day of meeting. Orier of business may be alicred only by unmmous vote of members present.

Antictic N.
Ten actwe members of the Assocmation shall be a quormin for business.

ARTICIE N.

Todd's l'arliamentary l'ractice shall be the governing liwe of the Association in all cases not provided for in its own rules Articies. .i.il.
Dutita of the l'rinaldent. It shall be the daty of the I'resident to preside at all mectings of the Association and in call meetings of the Executive Commitee, and when requested by the Exccutive Committee, to call a special meeting of the Association.

Artict.e NX'III

Duties of tur V'ice-lmesidents. -The 1 st, or in his absence, the and Vice-l'resident, shall act in the absence of the l'resident.

Articse dXIV

DUnes of the Secretrre.-The duties of the Secretary shall be to attend all meetings, take record of all proceedings, and shatl perform such other duties as the Executive Committee shall direct.

Article NNV.

Dutigh of the Thedsurf.k. - The duties of the Treasurer shall be to keep a correct account of all recelpts and disbursements in connection with the Assochation, All checks for dis bursements shall be signed by the I reasurer and countersticned by the I'resident, after being approsed by the Executive Conimitle.

Akricle N゙N゙M.

The Dutifs of tue Exfcuive Commithen-The Executive Committee shall be the governing body of the Association, shall manage its affars, pass upon all applications for membership, elggibility of representatives, subject to the constitution, and such spectal rules or regulations as may be adopted by the Association from time to time.

ARTICle: NXVII.
DUES. - Dues shall be payable amnually on the ist June, in advance. Members in arears for dues, other than those for current year, shall not exercise the privileges of membership.

Anticte XXVIII.
The permanent office of the Association shall be in Toronto.

STEPPED GRATES.

There is one story which comes up to me very often, and it has the special merit of being true, writes Robert Grimshaw, in Power and Transmission. A certain firm drew up plans and specifications for a bridge to cost about a million and a half dollars. When they were done, a certain engineer pointed out where, by a slighly different construction, equal strength, durability, convenience of erection, slightiness, etc., might be had, with a saving of two per cent. "Oh, bother the two per cent," said the designers, "do you suppose that we are going to overhaul and re-make all our calculations and strain-sheets and drawings for a measly two per cent ?" "Well," said the critic, considering that two per cent of a million and a half is thirty thousand dollars, I think you could very well overhaul the whole business"
This story is good for any latitude and in any business, and can be especially well applied or considered by large coal users.
What a lovely and useful thing the multiplication table is ! Say fifty tons of coal at four dollars a ton, and three hundred working days in the year; and figure up onlv two per cent on that: $50+\$ 4 \times 300 \times .02=\$ 1,200$.

How many coal users know or remember that, no matter how well their boilers are set and managed, they can not possibly get more than seventy-five per cent of the heating effect of the coal, and are not likely to get more than seventy-five per cent?
The manufacturer who gets six or seven pounds of dry steam at good pressure per pound of hard coal, is doing better than the average,-and that is not saying much. The little two per cents may be picked up by attention to details,-such for instance, as
grates, ash-pits amd dampers, and by finding out what combuntom rate pisy: best.

Many manufacturers hatve tricd all sorts of plain grates, and have even ventured into the fied of "patent" srates, with rocker arms, fingers and so on ; and those who have properly experimented with rockug grates, suitable to the conditions under which they are applied, have usually found a saving. But the stepped grate, although consulerably used and well liked in Europe, where coal costs money (and money is nated down $\left.\left.{ }^{(1 s t}\right)_{1}\right)$ is comparatively a stranger in the United States.

The grate should be from 36 to 42 inches long; and it is better, usually not to exceed 20 ine hes (or at most $2 . f$; in wideh, (i. c. in the length of the plates forming the sters). When a wider giate is repuired, there should be two sets of steps side by side. Underue,uh the slanting part of the grote should be an ash hole, leading to a masonry ash pit, and a sumbar hole umder the dead-plate or ash-plate at the lower or back end, leading to the same pit. The plates may be, if of wrought iron, only about one third inch to one half inch thick, and they may be so set that each is about three quarters inch to one inch below the other, between centers. As they are set flat, there is more risk of bellying than those bars in ordinary grates, which are set on edge, hence the precaution of lo.dviny a lengeth of 2.4 , of better yet, only 20 inches. About 45 degrees is a good angle for the grate considered as a whole, but 35 degrees with the horizontal is usually better,-this depending on the kind of coal, some coal sliding more frecly and requiring to be hela back, and some nee ling a good deep angle to keej, it from bonking up instead of moving backwards and downwatds. At the back and lower part there should be a slot contoolled b'a a sliding plate, for aslies to drop throwsh and for ars to rome up through shonld it be needed, and this may usually be kept open about an inch and a quarter, although it should be capable of opening six or eight incles to facilitate rapid cleanmg, re-making of the fire, cir.

The stepped grate has usually the advantage of requiring but little atteution on the part of the stoker. It generally works best when the principal combustion takes place on the lowet half: and the part requires the most slecug and poking from the front and raking from the back. The thickness of the bed depends, of course, on the kind of fuel and on the draft; the proper amount may be learned in a few days stoking. Usually it is best to have the thickness rather more than twice as great on the upper part of the steps as on the lower. as, for instance, two inches below and four and a half to five above, for hard coal ; usuallv thicker for soft.

The smaller the coal the better the stepped grate works; that is, it works with small coal better than with large ; also it makes a greater saving with small coal over large than the ordinays grate will. It is is not at all suitable for lumpand steamet coal, and por contria, it will burn stuft that other grates will utterly refuse to raise steam with ;-for example, such trash as is found for a depth of a fool or so under a coal pile which has been stinding for one or two years with constant changes, as on a shipping wharf, -this stuff consisting of from twenty in fifty per cent. of clay, sand, or other incombustible trash.

OBSTINATE THUMPING.

Sometians an eugine which usually runs well develops an obstinate pound or thump, which persists in spite of all the doctoring that can be done to the machine. In vain the engineer will go from the wrist pin to the cross head, and from eccentric to bearing. Even the fiy wheel and the manner in which it is keyed upon the shaft will be investigated, 10 see if the thump is located theren. After all these things have been tried in vain, just give the engine a tifle more compression and note the result. Probably it will cure or make it worse. In the latter case change the valve again and give at latle less compression than there was before. In nineteen cases out of twenty the change in compression will do the business. The philosophy of the business is this: The compression is too little or ton great to allow the engine to run smoothly over the centre; and at that point the piston gives a "yank," which causes wrist pin and connection and sometimes the main bearing to vibrate to the extent of the lost motion, forming the thump or pound, which is so objectionable to the grod engine runner.

BOILER FEEDWATERS, THEIR TREATMENT.•

 H6W Jannw.Waras is a wondeful agent produced and given us by nature, and has its advantages and drawbacks; $t 1$ is the greatest solvent of all naturad or artificid liquals known to chemistry ; it becomes mpregnated with all dffetent elements, in one form or other, in wheh it comes in contact. and absorbs free carbonic act gas from the air and ammonia from the air and earth. Carbonic acid gas thus formed becomes the life of the water and enables it to take up the otherwise insoluble carbonates of lime, magnesia, ece., holding them in solution as bicarbonate of lime, magnesa, eec.; the colder the water and the heavier the pressure the more gas it contans; e menequently the larger the body of water or the deeper the well, the more heavily impregnated it is with the salts of hume, magnesia, etc.
All naumal waters are imbued with the salts of the following mune., 1 bases : hume, magnesia, sodum, potassum, iron, slica and aluminum, combined with carbonate, hydrochloric and sulphuric acids, and semetumes medicinal waters with phosphoric actd, or all of them to a more or less extent, according to the nature of the soll or the conduons in which the water percolates the soil.
The calcium, commonly termed time, is taken up in the forms of sulphate and becurbonate ; the mapnesia as bicarbonate, sulphate, and chlorde ; the sodum and potassium as chloride, sutphate and carbonate ; the iron as bicarbonate. Iron as well as copper is found in solution as a sulphate. The aluminum exists in the water as a sulphate or in suspension as an oxide: the shata as siltece acid. When we find a water contaning sulphate of rom or copper in solution, we senerally find free sulphuric arted aloe.
The salls of lane and mingesta, irun, sithea, oxide, etc., are scale formuns maredems; the sulphate of heme forms at vety hard compat incrustation, adhering sery tenaciously to the hot metal, is sery hard to break up, decompare or dissolve, and, tile all sulphates, it is a very staple salt ; it is conveyed into the boter by the water as a sulphate, and as such enters the seate tormanon, und as not even soluble in its oun acid, and it is inpractucal to dissolve 14 with hydrochloric acid earept in laboratory work.

The only subutances which can be successfully ued in the boiler to break up and convert sulphate of lime into a form in Which it can be re whly wished out, ate sugars properly blended, whe h, when ined under the high heat, and the extsting conditoons of the stean bouler, conicrt this sulphate of lime into a complex maxture of satcharates ind carbonate of hane, and this, in the presence of the tanmen matuers, is practically converted mot tannatev of lame.
Carbonater of lame and magneva enter into :he scale formaton as such, formmes a very compact incrustation, due to the great chemicul athinty they have for hot metal, which is alon the
 They can be ieadaly and successively conected into a complex mature of the tunates of hane and magnesta whout any contamumann to the steam or injur: as effects to the steam receptaile or theonnections.
Sillous enterv the seale formatoon of such, and also as silicate of magnenia. Sodum alts enter mon the seale formation only in small quantites. being very soluble they reman in solution unal the water in the loaler becomes supersatarated, and unable to hold a freater guanaty; thene salis then cake on the hotest parts of the lxoter, falling out of soltation : thes is sery dangetous, having been the wuve of the burning of a great many boters in locilues where the leed water is highly impren nated wath soda salts. They cause internal corcosion, wastug awiay of the iron, catome through the fonts and connections, and are the cause indree tly of one claw of cormonon of which I will speak hater under another hesad.

Chonder of hame anis marnesin, found on some feed waters, are very cermulie suents of mon. $\mathrm{Bem}_{\mathrm{b}}$ ter uns:able salts, they readily deciompmes wh the high heat moto onties of hime
 chatude combines with the helongen of the water as a hyirothone usal, and has a direct commas actaon on the ionn. The Not then of sulphate magnesia is very smular to that of the chloride under the miluence of bish heat. The sulphates of roon and
 Homes
copper are direct corrosive agents to the iron and boiler connectons, and will not enter the scale formation.

It is almost impossibl. to neutralize sulphates of iron, copper or mannesia in a practical manner. If you do it with soda, and convert the sulphuric acid into sulphate of soda, you get an excess of soda salts, which sets up galvanic action. If you use lime, converting the sulphuric acid into sulphate of lime, you get such large quamtitics of kypsum that in a short time your boilers will be so full of a hard incrustation that it will be impossible to run them. The only thing which has been half wey successful in the handling of soluble sulphates and free sulphuric acid, is a mixture of sugars and starchy maters of a complex organic nature, which have offset the action of the acid by breaking up the acid radical, taking the sulphur and incorporating it with the aid of some of its oxygen into its own organic compositions.
Speaking of sodium and potassium salts, I would ask if it does not look unreasonable to endeavor to treat water for the prevention of the scaling deposits by the use of sodium and potassium salts, yet these salts are, in of cases out of a 100 , the principal ingredient of the so-called boiler compounds and water purifiers, and it is these salts which cause most of the internal corrosion of steam boilers by their galvanic action.
lmernal corrosion is the eating and wasting away of the threads, plates and joints, causing leakase and also causing the boilers and their connections to assume unsafe conditions. Where the corrosion is due to chlorine, free hydrochloric or hydrofluoric acids in the water, we find the pumps and feed pipes eaten through, the submerged parts of the hoiler being free from such action on account of these acids readily passing off with the steam, and we pet a similar action again in the steam-exposed surfaces of the boiler and the steam pipme.
Free sulphuric acid has a very similar action, attacking the fed pipes a great deal more rapidly than the boller itself; its corrostve action in the boiter is more uniform and not so much of a pitting and grooving nature ; its action in the steam piping hating almost entirely a krooving appearance. Where the deleretious action is due to the presence of an acid, it is called a duect cortostive action, and is zenerally found prominent in the Iecd pipes (colder pipes) and in the steam exposed surfaces. Where the corrosion takes place mostly in the submerged parts of the boiler, it is generally an indirect action, due to an excess of satts or 100 pure a water, coming under the head of gatwanic action, termed by electricians electrolysis.
The beiler, as it is generating steam, is also generating a certain amount of palvanic current. The boiler is a galvanic battery in itself, the valves and their brass connectuons, composed of copper, babbitt, and other alloys, are negative, the iron being positive, forming the negature and positive poles, and under the high heat and other conditions exisung in the steam boiler we hase a galvanic batuery; not only is copper negative to iron's positive, but the very molecules of the iron in the plates and tubes are negative and positive to each other ; but electrovsis does not take phace in the plate because the impurities, or we might say, forcign matter, such as silicon, oxygen and carbon compound, are not and do not act as conductors between these nesative and postive poles; the water in the natural condition, that is, its chemical ofinities and solvent properties, being satisfied with lime and other natural salts, will not act as a conductor between these poles, consequently, having no condactor, the battery is not connected by water, but when using distilled water, mun water, or water with an excess of sodium salts, we then have a perfect conductor, the water assuming the position of a battery and of a battery solution, connecting our nesative and positue poles, and inciting and generating a galvanic current. We then have a true galvanic battery existing, due to the general make-up and influence in the steam boiler. The pures the water, or the greater the execss of sodum salts, the stronger our galianic current, the more pronounced our electrolysis.
You well undentand that water contains a very cormosive malical in the nature of a hydrate; the hydrate mdical is 110 . Water is composed of two atoms of hydrogen and one of oxjxen, Which ss a e ery strong chemical combination, not readily decomposed except with a soluote metallic base or red hot metal, bus in this case, under the influence of the galvanic current, the mositue metal, wheh is imn, evereises a chemical affinity over the water, chemically combining with its hydrate, forming ferric
hydrate, taking up the oxygen and part of the bydropen of the water, freeing part of the hyirogen, which soes off whth the steam. 'This ferric hydrate gradually converts into corresponding oxides, due to the high heat and boilng of the solution, gradually converting into the black magnetic oxide of uron, so named owing to the galvanic action in tis manufacture ; its physical properties are that of a black grity powder found at the bottom of the beiler when washed out, when electrolyss is going on. If you will take a boiler that is pittong from the cause, you generally find zigzatg pits and grooves conted over with a baked film, and by tapping these whth a hammer you tind a red. dish brown soft powder underneath, which is the more freshly formed ferric hydrate ; that of a lighter shade is the partly converted oxides, and the few handsful of black gritt; powder from the bottom of the bouler, which you can examme after rinsing the other oxides from your hand, you will find to be the black magnetic oxide of iron.
Speaking of electrolysis, which we, from our standpoint, term galvanic action, we believe it truly exists as such, and to prove it consider the large ncean-going vessels and think of the trouble they have from this cause and how and why they treat it. They use tons and tons of zinc to offset this very action, due partially to using ton pure a water on account of the hot well system, and further by what salt water they are compelled to use. We all know zine to be one of the most positive metals known in galvanic battery work; it is more positive than iron. The zine put into the boiler assumes the position of the positive pole, consequently it is destroyed in place of the iron by the battery solution in the steam boiler. Its reaction and conversion inte its axide are similar to tiat of the iron, it being destroyed under the same influences.
Of all the deleterious actions which take place in steam boiters this is the easiest to handle, for you simply need to satisfy that water with some veretable starch and saccharine matter, and in that way break up your conductor between tho negative and positive poles, whether they be brass connections (negative) and the boiler plate and flues (positive) or the molecules of the iron of the boiler plate. It is impossible to set up a galvanic action without the water assuming the position of the battery and acting as the conductor. This same saccharme incrt mater in conjunction with tannin extracts will cause these pits and grooves in the iron plate (where the case hardening protective surface of the plate and tube is broken and the raw steel or iron exposed) to heal over, assuming that same case hardening appearance as befote. Do not understand me to say that you can fill up the little holes, as that cannot be done, the iron being gone, but the surface of these littie zigzag holes and pits will heal over, serving as a protection against the water or the amospheric oxidation.

Scaling ingredients are converted from crystallizable scaleforming carbonates and sulphates, having a great affinity for hot metal, into non-crystallizable tannates and sacchorates of lime and magnesia, being a complex mixture of these with some carbonate, the sodium salts being readily handled in the same manner. This complex mixture of the saccharates, carbonates and partially converted tannates is of an inert nature, having the physical properties of a suft oozy mud, of the same specific gravity as the water, and no affinity for hot metals, neither has it the clay-like propertics, but it will readily wash out with the water when cleaning the boiler.

In conclusion I might say a few words relative to the deleterious action of oil in steam boilers. Wany of you to-day are running large condensing plants with your hot-well systems, and you are getting oil, with the condensation, into the boilers, possibly $;$ to 15 drops per gallon. These oil separators are a good thing, and do, possibly, 50 or 60 per cent. of the work. You often hear of the subes in a water-tube boiler buckling up and having to be taker out; you often hear of the bagging of the fire-shect in tubulas boilers. Why is this? The specific gravity of the gil is lighter than that of the water; the oll does not settle in its natural state. We explain it as follows: The oil coming into the boiler tloats on the water; there is just a sufficient quantity of fresh watet coming in to convey salts of lime, magnesia, ctc., which are thrown out of solution, chemically combining with the animai oil as insoluble oleates, and mechanically combining with the mineral nils as a heavy mass, both these chemical and mechanical combinations being of a greater spectic gravity than the water in the form of litile glob-
ules, sinking to the bottom, the great chemical afinisy and ad hesive properties of this minture causing them to athere to the loot metal, and they, being a perfect non-conductor, ictarding the transmossion of the heat units to the water, concentrationg heat in that part of the plate, catsing the iron to melt, and the pressure in the boiler forces it down.

Sodimin salts, so commonly found in water, or whete it is used to counteract this action, saponities the oil, cussing the boilers to foam and carry over into the engines, and should not be used. 'This defact can be succeşsfully handled with tamin extatets, the tannates forming complex organic compostions with the oils of an inert, light, powdery nature, having no chemical affinty or physical adhesive properties and readily washing out with the water at the opening of the boiler. To prove this go to the tannery and watch the tanner take the hides out of his wat after he is through with the tanning process, and when he lets the liquor run out of the vat you will find two or three scoop shovels full of an inert powder, which readily dries out and is termed pure tannin by the tanning experts. They claim that this is insoluble, and are m wint of a solvent so that they can successfully use it for its tanning properties. We do not believe this to be the case, as the tamnin in this mixture is, chemically speaking, part of the mixture, and the tannin is satisfied by the fatty matters contained in the hide. We aim to get this same reaction with the oil by pumping into the boiler a properly blended mixture of slippery elm, starches, sugars and tannin extracts.

We have found that we can successfully cope with most of the deleterious actions taking place in steam boilers with vegetable matters, and vegetabie matters only, sometimes using from 5 to to per cent. of carbonate of soda to partailly cut the starches and aid in the action of the sugars, but, correctly speak. ing, we are vegetarians on this subject. and do not beliete that perfect results can be obtained from any other methods known to science.

THE CARE OF BOILERS.

Tut: bniler being the vital part of the steam plant, which again is the center of all motion and life in a mill or factory dependent on that form of power, all the skill and attention possible should be directed to their preservation in good order, and at the smallest possible expense consistert with good iesults. To this end all means proposed should receive the carcful consideration of those interested, so that the best phan applicable may be chosen in each place. It is evident that the same method is not practicable under all circumstances, for white the general principles involved are in all cases the same, the working out of these prineiples necessarily varies. Thas all water derived from wells where the underlying rocks are anything except sranite or sandstone, contains a greater or less proportion of solid maticr, varying, according to one list in my possession, from as litte as 6.7 erains per gallon to as much as 35.3 .9 grouns per gallon. In the same localities the water of the streams is likely to partake to a considerable extent of the characterstics of that in the wells. So it may be said that ot er the greater part of the country is is impossible to procure even comparatively pure water. Fiven that which falls as min and snow in inhabited localities contains impurities washed from the air in its deseent, aldhough the proportion is se small as not to interfere with its use in boilers, provided it could be obtaned in sufficient quantity; but this, from the nature of the case, is imprarticable.

Of course not all the solid mather found in well water is of the kind which forms scale. Lime and magnesia are the pincopal ingredients of scale, with at times a combination of iron and some onganic matter, a muture of iron esperially forming a peculiarly hard and obstinate scale. The question of yreatest interest to a min in charge of stem boilers is: "How shall I get rid of the seale in my boilers?" The correct answer periaps smacks of the lishernian, but I believe it to be: "The best wiy to remove seale from boiless is not in let it in." After a dozen years of experience with water containing setenteen to twenty grams of solids per gallon, the greater part being of the incruting kind, I am satisfied that with a litte care and the useof moderately good exhoust steam heaters, no itenble need be lad wath scale in a boiler which is well taken care of.
One great trouble in this matter is shat ownerv ire unwillins to allow the firemen reasonable compensation for the extra ume
regured to properly do the work connected with keeping the boilers clean. Some only allow a quanter of a day's pay for the time necessary on Sumday to wash out and clean up generally: It is safe tosis that the fireman, unless made of sterner stuff thon the majority of the race, dows not, on an atvergee, put tu much mote time than he is paid for. Uther onners allow full pay for the day, depending on the engineer and fireman to keep the plant up to the hughes: condition possible. In one such plant with return tubular boilers, which has been run for tifteen ve.ars, with the kind of water just mentioned, no trouble has been had with scale on the boilers for ten years at least; and the he uters are not of the most recent construction either

Very much depends on the care taken of the heaters as to their efficiency, for if they are allowed to become foul, the accumulation of slushis hable to pass on to the boiler, at least, if the heater is one of the closed sariety. Whale it is a little more trouble to take care of an open lieater, as they are generally prowided with some kind of a tilter wheh requires some attention to keep in sood order, they are, I think, a litale more efficient in heathig the feed water, while the proportion of steat condensed in the process, bems, pure water, is also of some advantage. Where the plant is of sufficient size to warrant the expense, or where the water is so hard as to require it as a measure of safety, the atduon of a live steam licater of proper size will almost prevent sealing. The water teeing raised to the temperature of that in the boiler, practically all the incrustung matter is dropped by the water, which is then frequently tilee ed through a layer of inelyesround coke or similar substance, and so enters the boiler practically pure.-F. Ricdel, in American Miller.

SHAFTING, PULLEYS, ETC.

1.: destgning a mill or manufarturing plant, says C. R. Tompkins, M. V., ene of the most important features, aside from the arrangement for good and sufficient power, is the line of shafting and the necessaty pulleys for the purpose of trans. muting the power to the several machines to be used. Now, it is just as important that good judgmem be manifested in this part of the plant as an any other. The fact is that much needless expense is often caused in the first instance, besides : continuad loss of power in the second, by an injudicious selection of the shafting.
A line of shafting unnecessanly heavy, with pulleys and coupling's to match, not only involves a greater expense in the first place, whether it is purchased by the pound or foot, but the extra amount of fnction on the journals caused by that weisht is a factor that should aloo be taken into eonsideration. It is a well-known fuct that the factional resistance with all bodies in sliding contact is in direct proporion to the weight pressing them tosectier, so that the weight of a line of shafting wath heavy palleys, no matter what the speed mas be, will esert a constant fractional sesusance in proportion to the weight.
White there can be un question as to the econouly in all cases of uning a lighet shaft at preater speed than was formerly the case, sull it is not adisable under any condition to go to extremes in elther case. for the reason that, with alute forethought and calculation in the tirst instance, we may awoid either.

As a rule, in allmotern natls and factories, the tendency has been toward hibher shaftons and pulleys of small diameter, whth a correspondme higher speed, and there is no question but much more smafaciory yesult have been obsained. The shoness and mos: ichable rule that has been lound to obtain the tormonal st-ength of atl sizes of shafting, is to multiply the cube of the diameier be exo, and this prexduct by the number of revolumons per mante, and daide by 3.3000 for the horse. power. The ulmate torswanal sirength of a shaft is not the
 give $1 t$ a permanemt set.

Duw, acoordith io shos rulc, "hath has been vesitied in many cases, a shaft $;$ mibes in diameter at 200 recolutions per minute shouhd not be required in safely iransmit $3=$ hnose-power white by the maic ate a shaft of 2 ina hes diancter of the same qualuy of aun runnog at iow revolatoons will anfely transinit is homejower. Now, all mher thons being equal, it is ewdent that whese not owet is horse power wrepured, a 2 inch shate
 ample, the weight of a line of sinch thafing io fi. Iong, whout couphnss and pulleys is 055 pounds, whice a $=$ inch shaft of the
same length weighs 124 pounds, a difference in weight of 532 pounds. Now, the frirtional resistance, as before stated, is in proportion to the weight, and without any lubrication it is estimated that it amounts to 25 per cent., but with a good lubrication this may be reduced, accorting to the best athorities, to 8 per cent.

Now, taking 8 per cent. as the average, we find that with a . 3 -inch shaft we have a constant frictional resistance of 70.40 pounds to contend with, while on the contray, the frictional resistance upon a 2 -inch shaft amounts to but $3 \ddagger$ pounds. Here an impo:tant question arises which has been frequently discussed, and that is whether the speed has anything to do with the frictional resistance.

One athority says that "with hard substances and whthin the limits of abrasion, friction is as the pressure, without regard to surface, time or velocity." In another place the same author states as follows: "A regular velocity has no considerable influence on friction; if the velocity is increased the friction is sreater, but this depends on the secondary or incidental causes as the feneration of heat and the resistance of the air."
Now, without entering into a full discussion of this question, if we take the question of speed into consideration, the argument is still in favor of the lighter shaft. We found the frictional resistance in the 3 -inch shaft whthout taking the speed into consideration to be 76.40 pounds. Now, if we maltiply this by the speed, as some contend it should be, we have a total resistance of 15,2 So pounds per minute 0 overcome, while with the 2 -inch shaft by the same proposition we have 10,200 pounds per minute to overcome, showing a difference in frictional resistance in favor of the 2 -inch shaft of 5,050 pounds per minute.
Now, as to the question of pulleys. In order to obtain say 900 revolutions from a pulley driven from a 3 -inch shaft at 200 revolutions per minute, it will require a pultey 36 inches in diameter, white the same power and speed maty be obtained from the $2 \cdot$ inch shaft 3 a 300 revolations from a pulley $=4$ inches in diameter.
Now, in the foresoing argument in favor of lighter shafting and higher speed, the torstonal strength of the shaft has only been taken into consideration, and whele the torsional strength of a shaft of a certain diameter may be amply sufficient to tramsmit the required power with perfect safety, still the lateral strengeth must also be considered. A shaft, no matter what the size may be, in order to faltill all the conditions of practical use, must possess sufficient lateral strength to stand the pull of the belts, together with the sudden shocks which may be sustained when heavy machues are started suddenly, and for this reason, under pecular condations, it may be advisable to use a shaft : trine larger than the rule calls tor. But under ordinary condiions, if the distance between the boxes or hangers is in proportion to the size of the shaft, it will not be found necessary to vary much from the foregoing rule.
One of the most common faults in crecting a line of shafting; is in too great a distance between the beatines, and it is often the case that a shaft abundanily heavy is rendered ineffective from this cause, and when a machine is slated the shaft springs, so as to cause the belt to slip, untess the paliey happens to be close to the bearing.
While it is good practice in all cases where the conditions will admit to and all heavy pulleys as close to the bearing as possible, still it is not aluays praction in do so, consequently the size of the shaft and the distance between the bearings should be so calculated that there will be sufficient hateml strength to admit of placing the palleys upon any part of the shaft between the bearings.
There is ne question but as a general rule a shaft that possesses sufficient torsional strengith to perform the work, with a moderate allowance for contingencice, will, if the bearings are plared at a proper distance apant, also possess sufficient lateral strength for all practical purposes.

In practical experience it has been found that the most reliable rule for this purpose is to take three times the diameter of the shaft in inches for the distance from center io eenter of the bearings in feet Thus a shat of a inches in diameter should the 6 feet from center to eenter of its bearings. One of $2^{1 / 2}$ inches would rall for : feet ond 6 inrhes, while one of 3 inches may be $;$ fect, and so on.

THE STRATTON SEPARATOR.

The following is a letter from l'rof. R. C. Carpenter, of Sibley College, lthaca, N. Y., reporting a test made of the Stratton Improved Separator this year :
"I send you with this letter a short summary of the test wheh we have inade on the Stratton Separator. The results show that the separator is practically perfect, and removes all the moisture which can possibly be taken out by mechanical means. Ithink we will make another test in which we inject water into the steam pipe, thus increasing the percentase considerably of water in the steam supplied. This latter will not be of grett practucal interest, but will bring out, of course, the capacity of the separator for extraordinary conditions. If you hatse no objection I will publish a copy of this report in the next number of the Sibley Journal, and for that purpose would be pleased to have you loan us an electrotype showing vertical section.

Tile Stratton Skpakator.
"Test of Stratton Improved Sepakator.-For this iest the steam pipe leading to the separator was surrounded for a portion of its length with a jacket which could be filled with water to any desired height, the puspose of the water jacket being to condense as great a per cent of the steam as possible. The discharge of steam from the separator was led to a surface condenser, where it was condensed and the annount carefully weighed. The drip of water discharged from the separator was led to a bairel standing on a pair of scales, and accurate weighings were made of the water taken out from the steam by the separator. \& throtting calorimeter was placed in the steam pipe directly after the steam left the separator. Pressure sauges were placed cither side of the separator. Observalions were taken and the results reduced by Messrs. Collins, Hubbara and Thomas of the class of '94, The following is the general summary of the resules: The stean supplied to the separator contaned mossture, the percentage of which varied from a luile over 530 nearly 21. That discharged from the separator was in every case nearly dry; it containing in evely insiance less than 1 per cent. of moisture. The separator was worked up to its full capacity, and there was no appreciable reduction of pressure The summary of the results of different runs is given in the
appended table. During these runs the water was kept at a constant height in the separator:

The Civubert Manufacturing Company, New l'ork city, who are sole manufacturers of the Stratton Improved Separator, are represented in Canada by Wm. T. Bonner, 415 Board of Trade Building, Montre:sl.

PATENT WATER TUBE HEATER AND PURIFIER.

IVE herewith illustrate a patent water tube heater and purifier, manufactured by Laurie Bros., of Montreal. The manufacturers claim for these heaters that when applied as rated they will raise the temperature of feed water to from 210° to 212°, and that the mpurites in the feed water that precipitate at boiling point will be deposited at the bottom of the heater, where provision is made for blowing it off.
As will be seen from the cut, the upper tube plate is entirely

Patent Watkr Tunk lieathr ann Purifiek.
separate from shell or body of heater, thus providing for free ex pansion of tubes independent of any other materials used in construction. They are constucted entirely of cast iron and brass, making them almost indestructible.
The water entering at bottom (and being distributed by deflector; passes slowly up the tubes absorbing heat in its passage, to upper chambers, where it is still surrounded by exhaust steam till discharged.
The dischange pipe projects downward into chamber to avoid carrying scum from surface of water into boiler. A scum blowoffis provided, with discharge at bottom of heater as shown in cut.

ELECTRICITY FOR MINING.

AN important application of the three-phase system of long distance transmission of power has recently been installed and put in operation at the Silver Lake Mines, near Silverton, Col, where power is transmitted a distance of three miles through some of the roughest comntry in Colorado. It is attracting con-

Fig. 2.-Thker-Piask genekatok fok Long-Distance Thans. mishion at Silitheton. Col..
siderable attention among mining men, as it is the first threephase plant established in the Rocky Mountain region.

The success of direct current transmission has been thoroughly demonstrated by transmission plants operating, not only in Colorado, but clsewhere all over the world. The expense, however. inseparable from direct current transmission, precludes the uthation of thin aystem in inovi plares where the distane e eneedva, ectin himiled number of feet This will be redily understued whet it is stited that if ive itis wan be irinsmitied by direct current one mile at 500 volis, 10: being allowed for loss in the line, the copper wire necessary will cost tbout $\$ 2,00$, while for the same horse power transmitted by the same system for ten miles at all cost about $\$ 200,000$. If, however, the threephase current at 5,000 volts be employed to transmit the 100 11.P. ien miles, the cost will not be more than $\$ 2,00$. In other words, a given horse power can be eransmitted by the threcphase system at 5.000 volts, ten times further than a similar horse power by the direct current system at $j 00$ volts for the sime expenditure in cop.er. As, therefore, the question of dollars and cents is a most prominent factor in all transmission installations, the three-phase system, where long distance transmusston is concerned, is the most practical system because the most cconomical, commercially speaking, and the installation at Silverton is a stiking example of this fact.

The Silver lake group of mines lies about four miles southeast of Silserton, and is situated at an altatuice of 12,300 feet above the sea level. They are owned by Edward G. Stniber, The ore mined carries both gold and silver, is of a comparatively low graile and requires concentration.

I'revors to the installation of electricity, the mill, which is situated on the shores of the lake, near the inouth of the mine tunnel, was run by steam. Coal was brought to the steam engine by the zigrag puth up the mountain shown in fgure 3, ind by the time it reached the furnace cost $\$ \$.75$ aton. This represented a monthly expenditure of almost a thousand dollars, and the expense proved a burden which went far to eat up the profits of the mine. Keform, therefore became imperative.

The plans is now operated by water power, which is brought from the Animas River, above Silverton, through a 3×4 foot thume, 2750 fect in length, which earrics 2,350 cubic feet of water per ninute. Flume and vestic are shown in figure \&. One of
the great advantages of electrical utilization is here demonstrated, for it was found less expensive to build this costly two mile flume, running from above Silverton to a spot where the necessatry head could be utilized, and then to transmit the electricity back to the mine, lather than to continue to burn coal at the price which it brought at the mouth of the Silver Lake Mines.
The head of water obtained is about 180 feet ; this develops on the water wheel shaft 640 H.P. The plant consists of two fous foot double nozzle I'elton water wheels, with special buckets, belt connected to two 150 K.W. (200 H.1.) General Electric three phase senerators.
The current from these machines is given out at 2,500 volts and is transmitted over a distance of a little more than three miles to the Silver Lake Mill and Mine.

The conductors are No. $313 \& 5$ bare copper wires, one for each branch of the three-phase circuits. These are strung from the power house, shown in figure 2 , up the mountain passes and through the rugged forbidding country shown in the illustrations. In one place where a chasm has to be spanned the wires leap from pole to pole a distance of 275 feet. They have been strung with especial care, as befitted the abnormal conditions. At each insulator the wire is run through a short piece of rubber tube, as an extra precabtion against leakage. Lightning arresters are placed at each end of the line, and an additional safeguard aganst possible damage by lightning is provided in the shape of a barbed iron wire, which extends the entire distance of the line along the tops of the poles, ano is grounded at every second pole. In this country, where the storms tre frequent and the lightning disastrous in its effects, every precaution is taken to frustrate possible damage from atmospheric discharges. The most effective lightning arresters which have been found for this work are those which the General Electric Company itself manufactures.

In the winter time the snow lies thickly on the ground and all intercourse between the mine and civilization is almost cut off. Some idea of the difficulties of the road may be gathered by referring to fipure 3 , where the eigzag route up the mountain is shown.

Arriving at the mine, the current is supplied to a 100 n.p.

three-phase induction mntor, run directh from the primary circuit. Another 100 H.P. mntor, as well as one of 75 1i.p., are located beneath the ground, and current is supplied to these at a pressure of 220 volis, the reduction in pressure being effected by step-down transfomers. In addition, a i5 11.2. motor runs a pump, raising water from the lake to the mill, and one small 1 u.r. motor operates a blower and the lights for a bunk, office
and other buildings, both being ronnerted to the secondarics
The induction inntor used is an excellent representation of the latest type of alternating current motor built by the General Electric Co. There are no commutators, rollector rings or brushes; the field winding is conected to the circuit, but there is no connection between the armature and any external souce of current. The three-phase currents rising and falling in the field windings induce correspending currents in the armature wonding, and the armature revolves. The field armature cores are 50 completely laminated that all loss from eddy currents is practically eliminated. The speed of the motor is at all loads practically constant. The starting resistance for preventing any excessive current in the armature winding, while gaining speed, is contained in the armature itself, and the handle shown in the cut serves to cut out the resistance when the motor is fully up to speed.

The interest in this mine centres, of course, upon the economy induced by the electrical installation. The power used in the mill and the mines at the present time is mote than three times as much as was used when generated by the steam engine previously emploved. If, therefore, $\$ 1, \infty 0$ a month or $\$ 12,000$ per year would be economized by using the same power, an economy of not less than $\$ 36,0 \infty$ a year is effected by the operation of the mine by electricity, and at greater power is available. This has allowed of the operation of machinery inside the mine for the first time.

Before such figures as these any question as to the economy

EDITOR V. SUBSCRIBER.

 in some callstic comments concerning those subscribers who expect everything, and give nothing. It declares that a trade paper is expected to supply information very often outside of its sphere and field ; that it must inform manufacturers of the particulars of its own business, even to the extent of showing them how to reduce expenses; must, in fact, be a general advertiseron all subjects within the commercial doman. If, says this paper, the editor should isk where he must get the information, the subscriber is apt to reply, " It is none of your business." The editor thereupon shows pre cisely what are the duties of the subscriber in relation to the journal he takes, and berates the reader for not supplying him with such facts as may come within his notice, and which, when developed, would probably prove to the mutual advantage of editor and subscriber. There is much force in this. Sub. scribers have it in their power to extend the usefulness of their trade paper by making suggestions and submitting facts; and he wouk, indeed, be an indifferent editor who refuses to consider them. Newspaperdon perhaps, puts it in the best possible light by saying that a man who subscribes for a trade paper does so, not only because he is alive to the interests of his trade in general, but because he expects to find in it-and generally does-information and suggestions of value in the conduct of his own business. Such a man reads his papes from end to end, advertisements and all, commenting as he goes along. Many things

Fig. 4.-Tine flune. Silverton. Col.
of an electrical installation, when coal is anywhere near the price it is in this case, becomes irrational.
loseph Brisbois, ol Guelph, Ont., in the empioy of the G. N. W. Tele. graph Co as repairet, was run over and killed by a Gmod Trunk tran recently.
are jotted down on his memo pad, for creryday use, and for enquiring further into on lis first visit to the market. And 35 it is necessary for a man to be wide awake nowadays in order to suceced in business, these are the men who subscribe to their trade journal, and are the advertisers' best patrons. - The Effertive Advertiser.

IMPROVED CORLISS AUTOMATIC ENGINE.

The accompanying illustration represents a Corliss amtomatic engine, as manufactured by Laurie Bros., of Montreal, for electical purposes, with extra heivy fly wheel.

The general design is a modification of what is known as the pirder frame engine. The cylinders, frame and pillow block are cast separate and bolted together. The guides (being circular) are bored and end of frime faced at one operation, thus securing perfect algnment with the cylinder. The frame at outer end of guides forms a complete circle, at which point a pedestal is placed, thas forming a very rigid arrangement. The steam cylinder has four valves, two for steam and two for exhaust, independent of each other in action, and placed so close to the bore of the cylinder as to leave the least possible amount of clearance. The steall valves are operated by means of bronze spindles or stens; the exhaust by steel spindles or stems. linther of the four valves may be removed by unscrewing the cap screws that hold the back end bonnet in place. The exhaust valves are located below the cylinder, thereby securing perfect drainage.

These engines are build from extra heavy patterns, and every possible precatation taken to prevent the possibulity of accident or derangement.

muCh information in a small space.

Drobring a steel magnet, or vibrating it in other ways, diminishes its magnetism.

It is said that steel containing 12 per cent. of manganese cannot be magnetized.

Flanes and currents of very hot air are gond conductors of electricity. An electrified body placed near a flame soon loses ats clarge.

In charging a secondary battery, the charging electro-motive force should not exceed the electromotive force of the batlery more than 5 per cent.
l.ightning has an electro-motive force of $3,500,000$ volts and a current of 14,000 , $\infty \infty$: anperes. The
 duration of the discharge of lightning is $:-200,000$ of a second.
The resistance of copper rises about 0.21 per cent. for each degree of Fahrenheit, or about 0.38 for each degree Centigrade.

A lightning rod is the seat of a contintrous current so long as the earth at its base and the air at its apex are of different potentials.
The rate of transmission on Atlantic cables is eighteen words of five letters each per ninute. With the "duplex" this rate of transmission is nearly doubled.

I he effect of axe and of strong currents on German silver is to render it bitule. A similar change takes place in an alloy of gold and silver.

- A est for the porosity of porous cells consists in filling the cell with clean water and taking the per cent. of leakage. The correct amount of leakage is 15 per cent. in iwenty-four hours.

If the nir had been as good a conductor of electricity as' copper, says l'rof. Alfred Daniell, we would probably never have khown ang thing about eleuthuty, for our attention would never lave been directed to any electrical phenomena.

A perfect vacuum is a perfect insulator. It is possible to exhaust a tube so perfectly that no electric marhine can send a spark throukit the vacuous space even when the space is only one ecntumeter.

For resistance coils, for moderately heavy cirrents, hoop iron, bent into zigras shape, answers very well. One yard of hoop iron. 2 -inch wide and 1.32 inch shick, measures about $1-100$ of an ohm: consequently, one hundred yards will be required to measure an ohm.

Comptession of air increases its dielectric strength. Cailletet found that dry air compressed to a pressure of forty or fifty atmospheres resisted the passage through it of a spark from a powerful induction coil, while the discharge points were only 0.05 centimeter apart.

An accumulator with seventeen plates, ten by twelve inches, is reckoned in horse power hours, equal to about i horse power hour. Taking this as a basis, it will require six cells for 1 horse power for six hours, or thirty cells for 5 horse power for the same length of time.
The voltage of a secondary battery must always be equal to or slightly in excess of the voltage of the lamp to be burned. For example, a twenty volt lamp will require ten secondary cells, but ten cells will support more than twenty lamps.

To obtain the length of wire on an electro magnet, add the thickness of the coils to the diameter of the core outside of the insulation, multiply by 3.14, again by the length, and again by the thickness of the coils, and divide by the diameter of the wire squared.

Blotting paper, saturated with a solution of iodide potassium, to which a little starch paste has been added, forms a chemical test paper for testing weak currents. When thic paper (slightly damp) is placed between the terminals of a battery, a blue stain appears at the anode, or wire connected with the carbon or positive pole of the battery.-Boston Journal of Commerce.

PUBLICATIONS.

Mr. Street of the Gutawa Electric Company, is introducing a new meter ledger and system ot keeping electric light meter accounts with customers, which appears to be much superior to the methods generally used. It effects a saving of time and book space. A customer's account, occupying from 3 to 4 page, shows the meter readings, debits and credits for a number of years, so that the riole history of the account can be seen at a glance is well as the balance owing to the company at any time.
The publishers have favored us with a copy of the Stationary Engineer's Garener of Illinois. being a directory of chief engineers, and enginerrs in charge, owners if steam plant, etc., etc., within the boundaries of said State.
The September number of the Review of Reviews contains two articles Which will be of special interest to electric:ans, as well as readable by all who watch the world's prokress. One is "Nikola Tesla and the Electrical Outlook." the other "Industrial Niagara." Both are extremely interesting.

The Parry Sound Electric Light, Heat and Power Ca are applying for a charter. The company have been granted a five years franchise by the Town Council of Parry Scund, and have agreed to furnish incandescent street lamps of 50 C p. at $\$ 17$ per lamp per annum, and to supply lamps for residences at the following prices:--first five, 30 cents each; five additional, 25 cents each; all over ien, 20 cents each. For stores, first two 50 cents each; two additional, 40 cents each; all over six, 25 cents each, with special rates for churcbes and public hails.
The tender will probably be acceptrd of the St. Thomas Street Railway Company to light the streets of the city for eight years, from January 6 h. 1896, with go electric are lights, 2,000 randle-power, cedar poles on a moon light schedule of 305 nights a year, at $25 \frac{1}{2}$ cents per lamp per night. The annual cost of loghtugg under this scheme will be $\mathbf{\$ 7 . 0 0 0}$. The presert cost of 3^{1} electric lamps of 1,200 candle-poucr, and 88 gas lamps, is 95,226 . and the cost of their continuance under a proposition from the gas company for a renewal of their contract would be $\$ 3,820$.
An order bas been placed bv the Michigan Central Railway Company. with the General Electic Co., of the United States, for two powerful search lights, which will be used to illuminate Niagara Falls. These lights will esch have a brilliancy of 300,000 candles, and will be operated with different colored lens. The power to generate the current will be taken from the Nizgara river. The effect is expected to surpuss anything of the kind to be seen in the world. The only similar attempt at illuminating water falls is that to be scen at the Rhine Schlosy, Laufen. Germany.

SPARKS．

There are female locomotive engineers in Colorado and Kansas．
The project of a Pacific cable is likely to be much advanced by the visit of Mr．Hosmer of the C．D．R，telegmph，and Mr．John W．Mackay，the American millionaire，to the Pacific const．
The telephone，it is said，is not making much progress in Russin．And no wonder！Fancy a man going to the＂phone and shouting，＂Hollon， is that you，Divsostkivchsmant oiczski？＂No，us Zoilemschouskaflir－ nocknstiffsgowoff，who＇s speaking？＂＂Sezmochockiertrjunksmzyskischo－ henoff．I want toknow if Xliferomanskefliskillmajunchzvastowsksweibierski is still stopping with Dvisostkivehsmartvoictski．＂－The Katipo．
The first electric boat on the Rideau cana！made the trip from Oltawa a few days ago，in charge of Mr．O．Higman，chief electrician of the in－ land revenue department of Camada．The Minosee，an Indian word signi－ fying beautiful baat，is thirty－seven feet in length with a beam of seven feet． carrying fifty－two storage battenes，with a four horse－power motor，and when charged she will run about seventy．five nuiles．The wheels and rudderare altached to the same shaft and so armaged that one man cin manage the motor and stee．．Her avemge speed is eight miles an hour． She will accommodate thinty persons conifortably．

Messrs．Wm．Kennedy \＆Sons，Owen Sound，have an order from the Sault Ste．Maric Water，Light and Power Co．for eighteen water wheels of the latest＂New American＂type．The wheels are to be 57 inches in diameter and aggregate $5,86 \mathrm{~S}$ ．p．They ate to be used in driving the machinery of the large wood－pulp mill being erected by the above company at the Sault Ste．Marie，Ont．

TENDERS

Electric Lighting Plant

Tenders are invited at once for a plant of to00 light eapacity by the undersisned．Information，specifica． ions，\＆c．，can be obtained from the undersigned，or from Mr．Gea．White－Fraser，Consuling Engincer，im－ perial Loun Building，Toronto．Tenders must be on forms furnished on application． D．GRAHAM，SCNS A CO．

Inglewood，Or．，

O＂ACME＂automatic rallway coach and STREET GAR CURTAINS

For cither Open or Closed Cars，made to fit any window，are the Best in the World．
Wg also manufacture a New．Special Material for Excursion or Open Strect Cars， which is perfectly waterproof，will not fade，nattier in appearance，any＂wideh without a seam，stronger and cheaper than any diaile now upon the market．Can be seeth on new cirs hately erected by the Toronto Railway．Ca，We alo carry in stockevers description of Kailway Coach and Street Kailway Shade Cloth，Gools，Fixtures，ate． Whith fok Pakticulars and Samilers
MENZIE，TURMER \＆CO．Shade sataciurers－TORONTO

The John Abell Engine \＆Machine Works Co．，Ltd． ELECTRICAL DEPT．：EASTON SYSTEM．

EASTON CONSTANT－CURRENT DYNAMO．

EASTON綵

GONSTANT－GURRENT絲澲 DYNAMO

This Machine，wht the Eiaston Iamps， delighted those who saw them at our display at the Toronto Industrial Exhibition，this present momh ．．of September， 1895 ．．

MOTORS，DYMAMDS， ALTERNATING MACHINES， LAMPS
 \qquad

．．．OK ．．．
General Lighting Plants， Arc or Incandescent．

ELEGTRIG RAILWAY DEPARTMENT.

CANADIAN ELECTRIC RAILWAYS.

Whust speaking needed words of caution to the Canadian Eilectrical Assnciation at its annual convention in Toronto in 1893, President J. J. Wright took no optimistic view of electrical possibilities when he referred to the wonderful futture aliead of the electric railway. The events of the past two jears have furnished much evidence in this ditection.
The Canabian Electrical. News placed itself in communucation some time since with the managers of the various elec. trical railways in Canada, with the purpose of ascertaining what progress had been made in this direction. We have to thank a constderable number of these for the ready response made to our ingurries, and foom the data thus secured we are able to present a fairly full statement of the extent of the electric railways of the Dominion.
Altogether there are about 30 street and suburban milways in Canatha. The large majority of these itre operated by electric power, though a few still hold to animal power.
Nearly $\$ 10,000,000$ capital, or to sive the exact figures, $\$ 0,905,000$, is represented in the 12 railways of which we give statistics below. 255 miles of road is covered by these com panies, who operate together 387 motors and 144 trailers.

To a larue extent a uniform fare is charged by the different street ralways of the country. Except in the case of suburban roads, where the fare must be regulated by the lenkth and conditions of travel, five cents is the usual fare, or 6 tickets for 25 cents, 25 for $\$ 1.00$, with 3 tickets for 25 cents at certain hours of the day, and childiren's tickets to for 25 cents. ${ }^{\text {- }}$
The franchise of the different roads varies from 20 to 50 years. The Galt, Preston and Hespeler road, as also Hamilon, have a 20 years' frameluse, whth Toronto 30 , and London, the highest, 50 years.
The most important malluay from which an answer to our enquiries was not received at the time of writing, was Montreal, where there is about 70 miles of road, and which, since the adoption of electric power, has attained to remarkable success. The stuck of the Montreal Street Railway is viewed in financial circles as one of the best investments on the market, and has been grong up with leaps and bounds. No report is received from lisush Columbia, where there is a road of about 7.3 mites rength in Viaticouser, and another of nearly double that length at Dictoria. Asule from the Winnipen Electric Street Railway, of which full paniculars were received from the manager, Mr. 6. 11. Campbell, there is also a tailway about 5 miles lengith operated by horse power. St. John, N. B, has quite a successful electnc railway, and in Halifax and Yarmouth, N. S., there are two toads under operation. Of other roads that have failed to report may be named lielleville, Brantford, Kingston, Peterboro, l'on Arthur, St. Cathalines, St. Thomas, Waterloo and Uuebec. With some of these animal power is still used, and with others, as Kingston, electric power has recently been brouglit into force. Approximating the mileage of these several roads at 187 miles, which is close to the figure, and adding this to the 255 mileage already noted, it may be said that there is 442 mules of street and suburban railways in Canada, or perhaps in round figures 500 miles.

Individualizing the reports received we take the leading cities firs, and the statistics are as follows-

Tornarto,-Capital stock: $\$ 6,000,000$. Officers: President, Willam McKenzic; superintendent, James Gunn; secretary, J. C. Ciace ; comptroller, J. M. Smith. Mileage, 8:\%. System in use: General Electric, Westinghouse, and Thomson-Houston. Motors, 166 , tralers, 70 . Power plant: two 1,600 h. p. engines with mulupolar generators coupled direct, 300 K. W. each, working up to 2,000 amperes each at 560 volts; four 620 h . p. and one $430 \mathrm{~h} . \mathrm{p}$. enprnes, with 10 geacrators driven by beht, 200 K . VI. each; output, 4,000 amperes at 360 volts. Capacity of total output, 7,000 amperes at 560 volts. Indicated hurse power, 6,110. Periond of franchise. 30 years from Sepl. 1, 1891.

Otraws-Capital stock authorized $\$ 1,000,000$; paid up \$S: ${ }_{1}$ Soo. Officers. J. W. Mckac, president: W. Y. Soper, vice-president; T. Ahearn, managing director; James D. Fraser,
secretary-treasurer ; J. E. Hutchinson, superintendent. Mileage, 23. System in use: Westinghouse. 60 motors. Power plant : one $700 \mathrm{~h} . \mathrm{p}$. generator ; two $400 \mathrm{~h} . \mathrm{p}$. generators; three $100 \mathrm{~h} . \mathrm{p}$. genctators. Franchise: 30 years from 3 3th Aug., 1893.
Hamilton,-Capital stock: $\$ 205,000$. Officers: B. E. Chirlton, president; E. Martin, Q.C., vice-president; J. 13. Griffith, secretary-treasurer and manager. Mileage, 22. System in use: Westonghouse. 35 motors and 14 trailers. Power plant: 3 Wheelock, 260 h . p., and one Corliss $260 \mathrm{~h} . \mathrm{p}$. engine. Franchise, 20 years.
LONDON.-Capital stnck: $\$ 250,000$ Officers H. A. Everett, president ; E. W. Moore, vice-president; C E. A. Carr, manager and treasuler; S. R. I3reak, secretary; Charles Currie, assistant secretary; D. L. D. Dellart, superintendent. Mileage, 25. (x molors and trailers. Franchise, 50 years.

Winnipel. Capital stock. \$300,000. Officers James Ross, president; W. Whyte, vice-president: William Arckenzie, treasurer, F. Morion Morse, secretary; G. H Camphell, manager. Atileage, 16. Systent. Edison. 24 motors and 12 trailers. Power plant, one $900 \mathrm{~h} . \mathrm{p}$. Corliss engine (Laurie type), one Wheclock 250 h.p. engine, and three Edison generators. Franchise, 35 years.
Winisor, Ont. Capital stock: $\$ 500,000$. Officers. John Coventry, M. I), president, Geo. M. Hendrie, vice-president ; Willam J. [ulling, treasuler, James Anderson, secretary Mileage, 10. System in use. Westinghouse. 25 motors and trater cars. Power plant. two Rubt. Arınstrong engines, 200 h. p. each, and one Brown-Corliss, 125 h. p. Franchise: 20 years from March, 1893.

Sarnia, Ont.-Capital stock: \$50,000. Officers. J S. Symington, presilent, H. W. Mills, secretary and manager Mileage, 4. System, animal power. 9 cars and $2 t$ horses. Eranchise, 30 years.

Niacara Faith, Ont. Nagara Falls, Wesley Park and Clifton Tramway Co. Capital stock $\$ 50,000$. Animal power in use; abnut changing to electric. Mileage, 4 Plant- 8 cars, 20 horses. Franchise, 20 years.
Niagara Falls, Ont. - Niagara Falls, Park and River Rail way. Captal stock. $\$ 1,000,000$. Officers. E. B. Osler, presi dent; Wilham Hendrie, vice-president, R. A. Smith, secretary treasurer; W. Phillips, electrician, H. Rathery, superintendent; Ross Mackenzie, manager. Mileage, $131 / 2$; 12 miles double track. System in use: Can.tdian General Electric. 14 motors, one luggage van with motors, 16 trailers, and 10 observation cars with double trucks, motors, (41 in all). Jower plant. one water power station with two $1,000 \mathrm{~h} . \mathrm{p}$. wheels, and three 250 h . p. dynamos; large steam station with two 150 h . p. engines, and two 125 h.p. dynamos. Franchise, 40 years. Charter admits of about 27 miles more line being constructed, viz: to Fart Erie and Nagara-on-the-Lake, and also a railroad on the water's edge from the Falls to Queenston.

Hamiston, Ont.-Hamilton, Grimsby and Heamsville Electric Railway. Capital stock, $\$=\infty, 0 \infty$. Officers: C. J. Myles, president: T. W. Lister, vice-president; Adam Rutherford, sec.-treas.; A. J. Nelles, manager; C. K. Green, electrician. Mileage, 25. 7 motor cars, 1 trailer, 1 motor freight car, 3 trailer fruit cars. Power plant : 2 Inglis engines, $150 \mathrm{~h} . \mathrm{p}$. each, 3 boilers, 2 Westinghouse generators; Westinghouse electrical equipment.

Galt, Ont.-Galt, Preston and Hespeler Street Railway Co., Lid. Capital stock, $\$ 100, \infty \infty$. Officers: Thomas Todd, president ; R. G. Cox, vice-president ; W. H. Lu־ц sec.-treas.; W. A. Lee, manager. Mileage, 9. System : Westinghouse and Canadian General Electric. 5 motor and 3 :atilers. Power plant: 2 Wheelock engines, 125 h. p. each; 2 generators-1 Westinghouse 85 K . W., 1 General Electric 100 K . W. Power house is located at Preston, being about the centre of the line. Franchise, 20 years. The company have further in the way of equipment a Baldwin steam motor, hauling eapacity, $j \infty$ tons, with which fretght is carried between Preston and Hespeler and the: C. P. R. at Galt. The tracks connect with the C. P. R. and
are the same guage. There is also an electric freight car, equipped with 2 Canadian General Electric 1200 motors, and also a freight trailer for carrying less than car load lots. The tracks from Galt to Preston are on the highway, and between Preston and Hespeler a private right of way is held. The average freight amounts to about 600 tons per month, and passengers about 20,000 per month. Sidings are run into all the factory yarts in Preston and Hespeler, so that freight can be loaded at their own doors. 30 passenger trains are run every day. The freight work is all done at night after 10 o'clock. This is the pioneer Canadian road, combining freight and passenger traffic, and has reached very marked success.
Toronto Junction, Ont.-Toronto Suburban Street Railway Co. Capital stock, $\$ 250,000$. Officers: R. Wilson Smith, president ; E. P. Heaton, vice-president ; R. H. Fraser, sectetary and manager. Mileage, 10. System: Edison, General Electric and Westinghouse. 5 motors and unilers. Power plant . $1100 \mathrm{~K} . \mathrm{W} . \mathrm{B} . \mathrm{P}$. Edison generator, $1150 \mathrm{l} . \mathrm{p}$. engine. Franchise, 20 years.

THE COMING STREET RAILWAY CONVENTION.

The convenuon of the American Street Ralway Association, which assembles at Montreal in October, is exciting much attention from ralway men, who look upon it as one of more than usual importance, on account of the questions which are likely to come before it. The association comprises not only the officials but also the electrical and nechanical experts of the leading railway companies of Canada and the United States, and therefore wields great influence, as well as containing the concentrated experience of a large number of able men. There are nearly 1,000 companies in existence, operating 13,000 miles of track, and representung a capital of something like $\$ 1,200,000,000$, with a yearly earning capacity of from $\$ 125,000$, 000 to $\$ 140,000,000$.

Referring to the questions likely to come before the convention, a writer in the St. Louis Globe Democrat says:-

Considerable speculation is being indulged in by the street railway men of this and other cities concerning the proposed action of the fourteenth annual meeting of the American Street Railway association, which is shortly to be held at Montreal. It was given out some tume ago that the scope of the organization is to be enlarged and uts character somewhat changed. At the last annual meeting formal steps were taken to bring about the change. The executive coinmittee was instructed to elaborate plans. This, it is understood, has been done. The committee has not given out what kind of a report it is going to make. However, among some of the propositions to be presented is the establishing of a central bureau of information, which shall be charged with the duty of answering all questions propounded by members on problems affecting their interest. Questions of operating methods, of patents, of legislation, of franchuse, etc., etc. The bureau is to be in charge of men well versed in law, patents, msurance and the like. To run a bureau of this kind, the promoters say, will require a great deal of money, that can only be obtained by subscription and by putting up of the dues. Upinion is divided as to the value of the bureau, in relation to uts great cost to maintain. The large companies are, it is said, in favor of the scheme, and will insist on its establishment, whtle the small companies will object thereto for the reason of the large yearly assessment they will be called upon to pay. The annual dues at present are $\$ 25$, when, under the new arrangements, the dues, it is expected, will be at least ten times that anoant. This and the other equally radical changes contemplated is what has started the talk and the discussion in raitway circles. Another change that will be made is holding of more exccutive sessions, and that, hereafter, the proceedings, aside from the reading and discussion of papers, will be secret. Heretofore the annual gatherings have been regarded more as a pleasure outing than a business assembly. The thoughtful ones are begining to see that more unity and a great deal more action is needed on account of the magnitude of the interests at stake, and the complications that are on the increase. There are many troubles and difficulties arising during the course of the year that bother many roads in different parts of the country. In other words, many roads are afficted with the same annoyances at the same time. If all the troubles were referred to the bureau, much worry and expense would be avoided. This is the
illustation given by the friends of the burent. They say that the propasition for its establishment will be carried by a large majority, and that half of the benefits to be derived theiefrom have not been told, and can only be known by those on the inside. They further state, that once started, its merits will be highly appreciated by all and voted a grand affair and ackno:vledged that it fills a long felt want.

the berlin and waterloo street railway.

Tuts milway has been in operation for many years as a horse-car road. It is two and one-half miles in length, connecting the two thriving towns of Berlin and Waterloo, and has also a short spur line runnugg to the Grand Trunk depot in Berlin.

The management bis for some years been desirous of changing the road to ue operated by electricity, but various ubstacies have so far hindered the project. The road was originally built for light horse-car traffic: in the main part of hoth towns the old style of flat rals, weighing about 27 pounds per yard, were put down, white over the remainder of the line a 30 pound steel tee anil was lad. The road-bed was well graded and ballasted and is still in good condition. No very heavy grades are met with, the steepest being $4 /$, about 300 feet long, and the general being $=\frac{1}{2} \%$.

The closed cars in use weie of a 12 foot body, and \downarrow number of 16 foot open cars were kept for summer use.

To change the road into an electric one, according to the most modern practice, would therefure hase necesstated the discarding of all the old material and stock in fact, building and equipping an entircly new road. The company had for some time past not been making more than expenses, and the necessary funds for such a complete overhauling were not available.

In view of these circumstances, it was decided last winter, on the advice of the Company's consulting engineer, Mr. E.. Carl Breithaupt, to utilize the old material in so far as possible and undertake the work of making the change.

The cars were in good condition. Three of the closed cars were altered and equipped as motor cars, a $4 \nless 6$ foot closed vestibule being built on at each end, thus making the car 21 feet over all. One of these was equipped with two Canadian General Electric " 800 " motors, using series parallel controllers, and the other two were each equipped "ith one 25 l' Westinghouse motor. The two latter are used in the general service and the double motor car is kept as a spare and for special occasions, when one or two trailers can be used with it. Peckham trucks are employed throughout and give excellent satisfaction. The wheel base being 11 ft .6 in . from centre to centre brings the main part of the car body, which carries the main part of the load, directly over it. The cars thus ride very easy and entirely without any rocking motion.

The road-bed was re-ballasled and re graded where necessary, but it required very lit 'e work, since the road bed was in good order and the ties were mostly sound and firmly imbedied. The old tracks were used throughout ; at rat joints particular attention was given to secure a solid foundation and a ribill joint, and the track was double boncled throughout.

The track construction was the chief point of difficulty. It was feared by the management that the old rails would be 100 light for the heavier traffic, and to put down a new track using 52 pound mils would have involved $t 00$ great an expenditure. As they are now used, the engineer expects that the old rails will serve for two or three years at least; at the end of that time it can reasonably be expected that the Company will be able to put down a new track. In the present work the bond wires were made somewhat larger than actually required, so that they can be cut off and used again. The only extra item of expense incurred in the complete reconstruction of the road. bed will therefore be the labor of bonding on the present track -a comparatively sinall item. The cost of operation will be somewhat increased, for a larger eo efficient of traction must be allowed for with these rails, and the cost of taack maintenance will also be slightly greatcr. In these respects this road will furnish some interesting data. It is Mr. Breithaupt's intention to make a series of experiments with special reference to track resistance.
Power is supplied from the electric station of the Berlin Gas Co., a 100 K . W. Edison bi-polar generator being used.

The new road has been in operation since May 18, and so far
the expectations as to increased traffic have been more than realized, and everything has worked well, though the system has already had some severe tests. On the occasion of the annual bicycle mect, July t and a, the trafic was very heavy. A ten minute service was mantained and five thousind passengers wele carried on the first day without any serious mishap.

The case furnishes a grod example of what can be done in the way of improving street railway moperties, which have depreciated somewhut, chicfly from the fact of their being out of date. Horse car traffic is at the present time ton slow in any c.ase, and particularly so in suburban and kindred work. It is not claimed that the Beilin and Waterloo road is a model one, embodying all the latest improvements in strect railway work, but it has been put on a firm footing and is thoroughly well equipped; moreover, the work has been done cheaply and no money has been expended in utilizing old material, which will be wasted when this material is replaced.

the coming street rallway convention at montreal.

Wre had hoped to be able to print in this number of the El.ictrical. News the program of the convention of the American Street Railway Association to be held in Montreal from the 1 gth to the 18 th of October. This cannot be done, however, owing to the arrangements being as yet incomplete, in consequence of wheh the progran cannot be issued for perhaps a fortnight. A recting of the Executive to further the arrangements was lacld in Montreal on the gth inst., but nothing of importance was done. lt is probable that a luncheon and drive will be given the visitors by the ctty council. Montreal can be depended upon to maintan on this occasion the enviable reputation it has gained for hospitalty. We present herewith a portrait of the gentleman who wall preside over the deliberations of the assembly.

SPARKS.

Arrangements are side to have lxyn completed for the amalgama. tion of the Sit. Thomas Suret Railway Co. aod the Radtal Electric Kulway Co.

The Pierry Sound Eltecric l,iwh, Heat and Power Co. has commenced the comsuruction of is puant. Wi is expecied to be in operation thy the ast Nuvember.
Negotiations ate in progress for an electric rand between Renfrew and fortage duFots. The distunce is eqkht males, and witer power will generate the riectictity.
The promoters of the Aylmer Electice Raluay will be compelted to seek an extension of time for the construction of flecir roatd, as their chanet will expure storily.

Messrs. Howard, Ifaniy \& Murphy, contractnrs for the section of the belt hine malnny extending tom Hochelaga to Bout de Lilsle, expect to lave the nork completed in three months.
It is protable that the Hambion and Dundas Railway will bechanged into an electre raid on the termuation of the present lease in nine noonths zime. It curties 250,000 paskeigets a year.

Electric power for manulacturing purposes is now being transmitted frems the power house of the Calamet Company at Niagam Falls, to the alumsnum works of the Piesture Reduction Company.
Mr. F. G. Mtuchell will rerresent No. 5. London, at the convention of the Canalian Assoclation of Statronnty Engincers. Ottawa, zyth lo zith Sept. with Mr. Senme, of the waterworks, as ailernate.
The Kinechtel Furniture Company, of Hanever. Ont., have purchased a water power us Maple 1hill, and are said to be considering tbe question of transmitting elfectic power to manufactorics at Hanoves.

The prospect of the electric railway being built in Hull this year nee not very pood, through want of eapital. It is expected, however, that the electric light setvice, for which the sme contractor, Mr. Vaiu holds the franchlse, will be complred.
The Village Counct of Ifintonburg are negotiating for the securing of the necessary right of way for the extension of the Ouawa Electric Rnilway Co's lines to that place, and as soon as these negoliations are successfully completed, the extension will be nade.
It is reported that Scotcli capitalists have seat a representative to Schomberg. Ont., 12 report ns to the business prospects for a ralirond, to the operated either by steant of electicity. The locality in question is one of the richest grain growing districts in Ontario.
The earnings of the Montreal strect raitway for August were $\$ 109.316 .30$ In the correspondlug month of 1894 they were $\$ 90,20266$, showing in incrase of $\$ 19,11366$. The largest receipts for any single day wire on Satur. day, the 17 th , when they anounted to $\$ \mathbf{S} .404 .04$.
The Toronto R.ilway Company has issued C3a3.000 of first mortgage th per cent. sterling bonds. Of this nmount $£ 250,000$ was issued in Cinada and the remainter in London. The subscription lists closed in Toronto August 2, when about $\boldsymbol{L}^{25}, 000$ liad been subscribed.

Chas. MeLeod, a lineman eniployed by the Windsor, Sandwich \& Amberstburg Sireet Railway, was budly injured hy coming in centact with a loose wite, one end of which was lying on the trolley wire and the other touching the ground. The strength of the current he received was 500 voils. It hedoctor says he will recover.

A cepres-ntative of the Canadian General Electric Co. has been in Kalso, D. C., in connection with a project to sujply the city with water by' a somenhat novel plan. It is proposed to take water from the lake and force: 14 into the mains by means of an electric pump, the power for which is generated by water on the river a short distance above the city.
Mr. E. Franklin Clements, of the Standard Telephone Co., of New York, is said to be endeavoring to obtain the consent of the Prince Ed. ward Islind Government to the construction of a transcontuneatal telephone system in that province. Mr. Clements is said to be also negotiat. ing for the establishment of an elec. tric street milway to be constructed by American capitalists in the City of Charlottetown.
The Lachne Rapids Hydmulic Companyare proceeding with the construction of a dam 4,000 feet in length. for the purpose of generating electric power to be transmitted to the city of Montreal. It is expected that when the work is completed, the company will have 8.000 horse power at its d sposial. and the contractors guvranter that the work will be completed, and thit the company will be in a position to supply power thy the 3rd of May, 1897.
It is proposed to form a company to supply Asherof, B. C., with water and clectriclight. Water is to be broughe from the mountains to serve for household purposes and to furnish motive power lor the electric plant.
Steps are being taken to incorporate a company to build an electric railway for both freight and pussengers between Detroit and Port Huron. The road will run close to the river and lake St. Clair, through a territory not t-ibntary to the Grand Trunk. Much of the rixht of way, it is said, has already been s-cured, and surveys made. The distance is 65 mites, and the cost of the road. power houses and equipments is put at six hundred thousand dullars.
The work of constructing the new electric railway at London, Ont., is being vigorously pushed forward. On one bmach of the system a car has already been successfully operated, and an effort with be made to provide electric transit for the visitors to the approachung Western Fair. The construction ot a substantial power station from which the system will be operated has been commenced. The line to Springlank has teen completed and is in operation.
The Montreal and Toronto Street Railway Companies have recently inaugurnted a new inea in the shape of excursion traias, which are handsomely fited up, and are used for the purpose of conveying social parties and strangers visting these citues, over the most interesting of the company's tines. This method of secing the interesting features of cities has become popular in the United States, and it is believed will in time become equally so here. It has the adrantage of being very inexpensive as compared wilt hiting carriages.

SPARKS.

The Aurora electric light plat has been sold by the Royal Electric Co., to the Metropolitan Lighting Co.. who will introduce some radial changes.
R. S. Willison, who clains to lave been injured last January by a motor car at Sherbourne ani: Cation streets, has filed suit agannst the Toronto Railwny Company for $\$ 2,000$ damages.
The work of erecting the trunk line for the IEll Telephone Company between Toronto and Montrall is progressing mpidly. It is within a few miles of completion Letween Toronto and Belleville, and is tinished tretween Kingston and Mallorytown.
W. O. Ogilvic, the great miller, has presented the Winnipeg General Hospital with a pair of steam boilers with fittings, for the purpose of es. tablishing an electric light plame in the hosputal, and for other purposes for which stean is required.
The Royal Electric Company have contmeted with the City Council of Charlottetown, P.E.I.. to supply that city with 65 are lights of 2,260 candle power each for $\$ 73$ per lamp per annum. The company also agree to nllow the corporation 50 cents per light when the lights are out.
The town of St. Marys recemty advertised for tenders for electric light. The only tender received was that of Mr. HI. L. Keesor, the pressent contmetor. Mr. Reesor made two offers as follows: to supply 32 are lights at $\$ 4500$ per light, and 24 incandescent lights at $\$ 87.00$ per year; or to supply 13 arc lights of 1000 c. p. at $\$ \mathbf{3} 2.00$ per light, and 55 incandescent lights of 30 c . p at $\$ 15.00$ per light per year. It was decided not to accept either of these offers, but to call a public meeting to discuss the best methorl of lighting the town.

SITUATION WANTED

A DVERTISER HAS HAD SIX YEARS EX. A perience in managesenent of rail and tramway traf. fic (passenger and commodity) and would sake clarge tric line ; energetic and capable ; ane 32 ; understands tow to work un business; lest of references loth as to ability and character. Address Box 24, Elxctilcal. News.

0пинынім
 of latest desigis

Straigitt Link IAniskr.

Dounle Pelleoty
ELECTRICAL DEPT.
MGERSOLL ROCK DRILL CO. 184 St. James St. MONTREAL

ENCINEERS aro aivo uacovered Bollets or steam Pipes. as oy having sem covered with our Sectional Covering it is not only a great saving to your employers as egarda tue. to get up steam in one-half the time on the cold est day.
EUREKA MINERAL WOOL \& ASBESTOS CO.
Dealers in Pipe and Boiler Covenngs,
Asbestos Goods, Bngine Packings, etc.

- 124 I3a St., 'TORONTO.

(Gencral Electric Co., Beilln, Germany.)

. . Alamufactuteroos .

A. E. G. IMCAMDESCENT LAMPS

Bare and Insulated Wires, Rubber Goods, Blectrical Supples and Rallway Equipments, Instruments, Dynamos
\qquad
Long Distance Transmision a Sireladity.

Above all Competitors

Coal, is money, why not save it by using the . . .
T. J. C. INJECTOR
the most economical boiler ferder in the world.
20 pef cent.
satved in coal over any other make. Absolutcly automatic. Easily attached. Applicable to all kinds of boilers.

NOT EXPENSIVE

Will outwear any other make and is simple in construction. It is easy to operate, and is the most powerful feeder in the world.

TheT.J.G.Injectop
is the best because you cannot possibly go wrong with it. With ligh or low steam the result is equally satisfactory. It combines the utmost simplicity with perfect efficiency, and any boy can operate it.

PRICE LIST

Nis.	Pricr.	Howsk lower.
7	\$700	4 to 8
so	700	8 \% 36
15	1050	16 to 40
20	1500	40 to 72
25	3250	72 to 170
15	3000	1010220 200 to 200
45	4500	20010300

Hamilton Bpass Mito. 60.

(LIMITED)
HҒMILTON, ONT.

GANADIAN GENERAL ELEETRIC 00.
 (LIMITED)

Authorized Capital, $\$ 2,000,000.00$.
Paid up Capital, $\$ 1,500,000.00$.
hEAD OFFICE:

65 FRONT STREET WEST, - - TORONTO, ONT.

PRANCFI OFPIOES:

Pethrborough Works Part of Main Floor, Machine Shop.

STANDARD
\#IECTRICA工
APPARATUS
AND
SUPPIIES FOR

> RAILWAY LIGHTING POWER and MINING PLANTS

canadian general elegtric co.
 (LIMITED)

METERS

THOMSON RECORDING WATT-METER

The only meter which measures both current and voltage and is perfectly accurate from one lamp to full load

Suited for Direct and Alternating Circuits, Are Lighting, Railway and Stationary Motor Service.

TRANSFORMERS

of our Standard Types
for Lighting and Power Service possess important advantages in mechanical construction, such as oil-insulation, separate switch and fuse boxes, and double secondary coils, which, together with Superior Electrical Design, have caused them to be recognized by the leading Central Station Managers as far in the lead of all others for

Durability
 Efficiency
 Regulation

which means saving in repairs and reliability of service.
which means saving in power and plant capacity.
which means saving in Lamps and steadiness in lighting service.

TRADE NOTES.

1:. S. Stephenwo As Co., St. John, N. B., lave ordered a 50 horsepower Monareh l:conome toiter from the Robb Engineeting Co.
The Dominion Coal Co. has placed an order with the Robb Engineering Co, for a (xo horse-power engine to run their machine shop at (ilace liay.

It of the atenton of the Maca Imiler fonering Co, of 2 bay street,
 street.
The Italifax Electric Railway Ca have ordered two 300 horse power Roblb-Atmetrong engines, in addition to two of the same kind now under construction for them.

Mesors latterson © Corloin, of Si. Cathatines, are furnishing iwentyfive cars for the lamion electric steet railway, and four for the Montreal latk and lsland railwas.
The Canadian Ciencral lilectric Co. are installing a direct conneeted engine and djuamo in the Iadies' College at Whithy. The engine is a so horse ןkwer ! (nobl-Armstrong.
The Donge Woxal Split l'ulley Co., of Toronto, have leen given lie contract for supplying the split pulleys, and split friction clutch pulleys for the Ottawa Porcelain \& Cartoon Con's extensive new works at Oltana.
The North Sydnes Electric Co. have decided to enlarge their plant and have ondered two dynamos from the Canadian Ceneral I:lectric Co., and a 100 honse.jxower Kohb-Armstrong eugine and Monarch Economic lxiter from the Robls Engineering Co.
The recently orkanized firm of Sulwell, Ralston N. Co., at Hamilton, Ont., has laen succeeded by Means. Sitwell \& Co., who propose to manufactute incandescent lamps and other electric specialties. The adcettisement of the new company appears in the present number.
The Iholge Wikal Sphit Pulley Cu., of Toronto, have supplied R. Thacherny, of Ottawa, with a very neally designed rope drive for the transmession of the prowes required in the new extension just erected to his cxtenstice planang malls. They have also supplied the required belt pulleys

The Halcox \& Wilcox Company report business as excellent, their orders for June alone exceerling 25,000 h. 1 L Of this amount they have oders for $6,000 \mathrm{~h}$. p . of their water tuke marine boilers from the Jlant Steamship Company. All the lwilers buift by the kalrook \& Witcox Company at their belleville shops are of wrought steel construction, having a capacity for 200 ll s. working pressure.
In the descripion published in the Eleectrical. Nfws for August, of the fire.jrotection plant of the (iooderham \& Worts Co., Ldd., Toronto, mentuon was omitted of the fact that the pumping engines were supplied liy the Nothey Manufacturing Co. Lad., Toronto, and are of theit hasest type of compound condensing pumps of the "Undernriter" panern. These pumps are to lefefinely finished, and will deliver ten or tuelve fite streams of much greater efficiency than can le furnished by the ordinary city pressure.

The Royal Electric Company have in operation, in Machinery Hall, at the Toronto Industrial lixhibition, their S. K. C. iwo phase alternat. ing curent systen, and from their two-phase aldernating dynamo, are supplying current at the same time for lighting incandescent lamps, are lamps, and operating inotors.
The Dodge Wood Split I'ulley Co., of Toronto, have in hand iwo manmoth rope drives, for the 1.. 13. Eiddy Co., of Hull, ()uc., each drave to have a guaranted capacty of 700 h . p. The drives ate used in the tranmussion of pouer from new McComack water wheels, Iximg installed for the purpose of increasing the pulp eranding capacity of the company. The 1:. B. liddy Co. are of the opinion that therope drive is a long way ahead of any other means of transmission, especially for heavy nork.
The l'ackard Lamp Co, Lid., have recently issued a circular announcing that their new factory at St. Catharines is now in full operalion, manufacturing iamps and transformers, and is equipped through. out with new and inproved machinery, by means of which the proluct will in the future le of the most superint descriphon. Mr. W. D. Packard has assumed the gencral managership of the company, with Mr. A. G. l'owell as assistant. I'rof. Thomas, of the Ohio University, who was claimman of the World's Fair Committee on incandescent lamps, has recently conducted a seties of tests of l'ackard lamps, and concludes his report with the following satement: "Taking econony, maintenance of candle power, and freedom from blackening into account, the results obtained from these lamps are much supericr to any herctofore published."
The Canadian Electric Repair Co., has recently been organized under very favorable auspices, and has begun business at No. 623 Iagauchetiere strect, Montreal, with Mr. Gen. E. Mathews as manager. Mr. Matthews is well known in the electrical field, he having spent some 20 years in the mechanical and electrical business. Ife has had the advantage of being an eatly beginner with the Royal Electric Co., and succeeded in working himself up to le superintendent of the winding department, which position he held for eight years. He was also assocated with Mr. David A. Start, Montreal, for about cight months in a repar business. The alove concern uill undertake the rewinding of arm. ature fields and transformers, also all other electrical and mechanical repairs required for electrical machinery and apparatus.
We take pleasure in announcing to our readers that the boudreaux dynanio brush which has met with marked success in the United States and abroad, is now being introxluced into Canada, the Iloudrcaux Dynamo lrush Co. having piaced the agency for Canada with K. E. T. Pringle, of Montreal, who is now ready to fill all oders for brushes ranging in thickness from $5 / 6$ to $\%$ inch, and in width from $\$ / 5$ inch to 3 inches. The Boudreaux "Foliated" brush, it will be rememiered, is made of anti-friction metal rolled into sheets ; inch thick, and folded and tefolded until the dessred thickness is attained. It differs essential1y, therefore, not only in the material, but also in the manner of its ap. plication from the old "laminated" brushes. Besides its anti-friction propertues, the lioudreaux brush also possesses in an eminent degree the non-sparking property, so that it preserves the commutator from wear, leaving it with a smooth and polished surface. It might be advantage. ous to consumers to make furither enguiries regarding these brushes.

Wet Steam is Dangerous! RTL IHE STRATION SEPARATOR Exincts all entrained water, oil, or grit from the steam, and furnishes
 DRY STEAM
 so the engine, or pumps; incre.ises the power and removes all danger of water hammer.
 Over 500,000 H. P. in use
 Send for book on "Dry Steam."
 SAVE FUEL! THE GOUBEERT WATER TUBE FEED WATER HEATER
 Heats the feed water to the highest point, relieves back pressure on engine, is casily cleaned, and
 HEATS THE WORI.I ror
 Durability, Efficiency, and Low Price
 SEND FOR CATAIOG.

SPARKS.

The Treasurer of Mtorireal Association. No. 1. C.A.S.E., acknowledges through the press a large number of subserptions to the Association's Mechunteal Library.
Mr. Jeule Behm, an employee of the Montmorency Electric lower and Light Co.. of Quebec, had his hands severely burned while working it a new switch board.
Several aceidents have recently taken place in connection whth the operaton of the Ustaina Eletitic Kotilway, une leing the burning ult of the cots of the generator armature, and another the iblowing out of the cylinder head of the engine at the power station.
At the annual neeeting nf stockhoiders of the New Brunswick Electric Telegraph Ca. held on the 32 th of August, the old bandd of directors was re-elected as follows - C. W. Weldon, president; D. C. Dawson, secretarytreasurer: L. J. Almon. J. J. Tucker and D. M. Suhterland.
On the occasion of the civic holiday of the town of Gall, the Galt. Ireston and Hespeler Electric Kailway carned $\mathbf{x}, 300$ passengers, and this number. it is said, would have been considerably increased had the weather not proved unfavorable durang the early part of the day. Regular trips are now being made to Hespeler every half hour.
An invitation has been tecerved to attend the observance of the twenty. fifth anniversary of the founding of the business of the American Electrical Works, Providence, R. I.. and in connection therewith the 27th Annual Rhode 1sland Clam Dinner, tendered to the electrical fraternity at Haute Rieve, on Aug. ${ }^{2}$ th. It was a matter of regret that we were unable to par. ticipate in the pletsur of the occaston.
The Town Council of Trenton. Ont., have awarded to the Brush Electric Co., of Cleveland, Ohio. a contract for lighting the town for the period of ten years. The compkany will, in addition to supplying incandescest light. also distribute power for manufacturing purposes throughout the town, having at its disposal one of the finest water powers in the Dominion, situated immediately north of the town, and capabie of producing $12,000 \mathrm{H} .1$.
Une of the largest shoc manufacturers in the city of Quebec has given in writug to the Alontmorency Electric Power Co., his testimony to the ad vantage which he has obtaned by the use in his factory of electric motors. as compared with the steam phant formetly employed. He states that apart from the fact that the motors are instantaneous in operation, smooth running, free from danger, oceupy but little space and are less expensive to maintrin. he has been enabled since puting them in to manufacture, with the same amount of machinery, from 200 to 300 pairs of boots more than formesly.

The Bell Telephone Co'y

OF CANADA, LTD. MONTIRERL
MANLYACTUKES AND HAS YOK SALK EVEXY bKICKIPTION OY

\section*{TELEPHONIC | and |
| :---: |
| other | ELECTRICAL APPARATUS} LINE MATERIAL AND SUPPLIES.

Will furnsh tenders forsupplying Warehouses, I'ublic Buldings, Ilotels and Dwellings with

IRIVATE AND I.OCAI TEI.EPHONE SYSIEMS.
HURGI.AR AI.ARMS, HOIEEI, ELEVAIOR ANI
OIHEK ANNUNCIATORS HOIIEI ROOM ANI
FIRE CALI. BET.LS ELECCTRIC BET.IS. IUSII BUTIONS, ETC.
Will also furnish tenders to Cities. Towns and Villages for Fike Atakat anis Polick Patkol Systims.

Sales Depratuent:
MONTREAL.
Bell Telephone Bulating.
367 Aqueduct Sitret.
TORONTO:
isell Telephone Huildaz.
37 Trmperance Street.
HAMIl.ION:
lell Telephone Building. Hughson Strect.
OTrAws:
Bell Telephone Bualding. Quren Strect.

Quenec.
Bell Telephone Building. St. John and Palace Sirects.

WINNIIEG:
Forrest Block, Main Street.

VULCANZED FIBRE CO. евтлиияниед ата. HARD VULCANIZED FIBRE

In Shects, Tubes, Rods, Sticks and special shapes to order. Colors, IRed, Black amal Grey. SEND FOR CATALOGUE AND PRICES.
THE STANDARD ELECTRICAL INSULATING MATERIAL OF THE WORLD. Fagtoru: Wilmington, Del.

Offige: 14 Dey St., New York.

LAURIE ENGINE CO. St streaterane MONTREAL Sole deents in Province of Quebec for

 NORTEFEY CO., Etd. RNGINBERS and CONTRACTORS
manalacturers of all kunds of

Complete Motive Plants, etc.
$H^{\text {igh Pressurg, Condensing }}$ and Compound . . .
feec water heaters AND PUn!rizers.
Hew Hy Whocko a Sandy:

SPARKS.

A pair of 250 II. V wrought steel boilers are buing phaced in the lell Ielephone Co.'s new buildink in Montreal. By the Bitreeck \& Wiscux Co.
Chates Mictsed, Ineman of the Windsor, Sindwich is Ambersthurg Electric Ralway, was injured by coman in contact with a live wite on Aug. aznd.
It in said to te the atamion of the Kingston Electric Ralway to secure pet mission of the City Conncil to construct al ledt line on the eastern stite of the city, situitar to the one now in operimon on the westetn side.
A test of the magnetic motor invented by A_{f}. Brintnell. of Ioronto. deseriled in a recent nember of the Elif(Trkical. News, was recently made at the Hubleil I'romary lhatery C 0 .'s works at Ot:aw.a. The test is satd to have leen so suceessful that it has been deeided to commence inmednately the manufacture of the machune.

Some of the leading citizens of the village of Cesaire have purchased a Water power with the object of providing the mumapalaty with electrec light.
A satisfactory understanding has recently been reached at Ottawa, under which the Berlin and Watertoo Street Ratway Co.'s ears will eross the Grand l'runk Railway on King street, Berhn.
Mi. I1. Pim, the representative of the Canadian General Electre Co. at Sancouver, IB. C.. is enkaget in promotang the installation of an electric light phant at Neison. 1. C. It is proposed to utize the power from Kilso Creck.
It is reported that owing to what was considered to be an unreasonable demand on the part of some of the promoters of the Windsor.Selkirk Electic Ratway, the conference which was to have taken place between the promoters of the raad and St. Pathl capitalists has ireen declared of for the present at least.

SAKE NONEY, TYME and THOUELE

The Boudreaux Dynamo Brush

No Cutting
No Scratching
No Sputtering
No Sparking需

No Copper
No Gauze
No Woven Wire
No Carbon

SOLE AGEMT FOR CANADA, R. E. T. PRINGLE, Hooms 57 and 58 , Imparial Building, MONTREAL

OUR 25 K. W. DIRECT CURREMT CEMERATOR and motor.

WACMER TRAMSFORMERS-Sole Agents.

Sole Agents for DUKCAN METER. Americian yo wavas Garbons

We manufacture and supply only
STAMDARD ELECTRICAL APPABATUS

SPARKS.

The inght committee of the Windsor Council have awarted to the Thomp. son Electric Co., a contact for dynamos, and to l.conard id Sons, a contract for engine and loiter.
The charter has twen grimedt to a local com, nny, with a capital sto e of $\$ 2,000$, to build and operate a telephone line in the countes of St. Mnurice. Champhain, and Three Revers, Que.
A lineman named Alfred Sarizen came in contact with a live wire while at the top of a selephone pole in Ottana recently, anit fell from the pole: fortunately a store awning intervened and broke the fall, thussaving his life.
Mr. D. H. Keely, superintendent of the Government Telegroph lines, is superintending the laying of the new telegraph cathe for the Grosse bshand quarantine service. The cable extends from the Quarantine Station to lsle Alex Relux.
Mr. Fraser, Secretary of the Toronto Suburlxin Street Railway Co., has recently held conferences with the Reeves of the townships of Etohicoke, Markham and York, and with the warden of the County of York regarding the extension of the company's line to the village of Islington.
The Nuw Westniituster and Burrard Inlet Telephone Co., has purchased the interest of the local telephone company at Kiunloops. B. C., and is about to reluild and pus in good order the system. The arrangements were car. ried out on behalf of the purchasers by Mr. H. W. Kent. Mamager.
In view of the application of the Merchants' Telephone Co. to the Monsreal Cisy Council, for exemption from taxes, the Bell Telephone Co. have reguested a similar concession, urgeng the fact that they have been giving a cood service at a cost averaging only in eents per day to each subseriber. while the average number of calls tor each subscriber is tweive, as a reason why their petition should receive consideration.
The control of the Dunclas Telephone Co.'s business has recently passed into the hands of the liell Telephone Co., and new officers have been elected as follows:-W. C. Scott. Toronto. president: W. J. Gilmour, Brock ville, secretary: W. G.irdener. Winchester, treasurer: directors, W. J. Gilmour, Brockville: S. S. Reveller. Winchester: J. E. Mictarhane, Mfunteal: 11. N. Horton, Montreal: W. Gardener. Winchester.
Messrs. French \& Hardill, of Stratord. Ont., are said to have invented an improved stenmengane. in which the utilization of the steans in the cylinder is effected on a new pronciple. The most novel feature of the invention is, that there are two piston rods working in opposite directions in the cylinder, the stroke commencing at the centre. i small model of this type of engine has been tested wih a 3 \%. r. dynamo with satisfactory results.

METER REGISTER

 and ACCOUNT BOOK For the Use of . . .ELECTRIC LIGHT . AN』. .

POYYER COMPANIES

Copyright 1894, by D. R. STREET.

(At.t. RIchts RESERVEI.)
Address: Corner Sparks and Elgin Sts., Ottawa.

Sizes and Prices

No. 1. Deiny "Scotch Linen I.edger," 28 lb . paper, bound in $1 / 2 \mathrm{~K}$. Calf C.S., l.ettered, 300 pages, holding 1,200 accounts, each page ruled for four iccounts, allowing sufficient space in each account for registration of Meter Keadings and 1'ayments for Three Years. Jrice by Express, \$12.
No. 2. Same make as No. 1, but 700 pages, and will hold 1,600 accounts. 600 pages ruled 2 accounts each pase, and will last Six Years; the batance, 100 pages, ruled same as No. 1. Irice by Express, $\$ 17$.

Price is not high, when the time that a book
. . . . will last is considered
the chaudirre blectric liget a power co., ltd.
I). K. Stapint, Fiv., Oltana, Ortawa, July 3ist, 8899. Dear Sir, -1 have much pleasure in (edifying to the many adtantages of the
 in my opinion, far aliend of any other i haie xeen. A maii, account eovering a

 1 mm uire any Flectac light and lower Co. trying one of your tooms will continue so use them. Yours truls.
A. A. DION, General Suge.

The Bryan-Marsh Co.
 mank.loro, wass

The only Lamp with definite guarantees
The only Lamp with sustained brilliancy
The only Lamp that gives perfect satisfaction
The only Lamp that can be returned to the maker when burned out and receive a rebate.

Examine our rebaic plan and note the saving it will make . . in lamp bills . . .

PORCEIAIN

We are Agents for the Porcelain made by the R. THOMAS \& SONS CO., East Liverpool, Ohio. None superior; prices right. WIRT DYMAMO BRUSHES \quad INGAKDESCENT ARC LAMPS

Revidencer.
Public Buildinns
How

WIRED AND EQUIPPED

For Elcitric Lisht and Bells

Electrical

 Engineer

Telephone 801

AGENT FOR PATRTCOK \& GaRIER RO.S chebrafid NEEDIE AMNMOARORS

ELECTRICAL SUPPLIES

AHEARN \& SOPER OTMAWA, ONTI.

camadian representatives of the

Westimehouse Electrice \& Mre. Co.

locandescent Lamps, Arc Lamps and Motors.

然

Our Railway Apparatus is not
Equalled by any other
$=2 \mathrm{H}^{-}$

The National Electric Co．wis wame

500 light Alternator．

百覀 GOLDIE \＆MㄷCULLOCH Co．

 ［LIMITED．MAIIUEACTYFERS OF

Improved Steam Engines and Boilers

※ EIOURING MIIILS
And the Erection of same in the most Complete Style of Modern Improvement．

Fine and Eunglax Proof Safes and Yault Dooxs．
Special attention called to the＂WHEELOCK＂IMPROVED STEAM ENGINE as being unequalled for simplicity，efficiency and economy in working，and especially adapted for Electric Lighting，Street Railways，etc．
\rightarrow GALT，ONTARIO．

๑～ROBERT GRAHAM～ー

Iron Foundex and Mrachinist
Water Wheels，Engines and MIll Machinery a Specialty．

OTTAWA，ONT．

C. W. HENDERSON Manfaturear and contrador ELECTRICAL SUPPLIES

. EAIIMAItS FURNISHED FOR

Wiring and Installing Complete Electric Plants

44 Blenty Btreet

 Ferentic Fis Motoms.

THE OTTAWA PORCELAIN \& CARBON CO., Ltd. ortana,
MANUFACTURERS OF

Carbon Points and solid carbon for incandescent circuits.

Motor Brushes and Specialties in Carbon For Telegraph, Telephone and Electric Light Supplies . . .

(O)orcelain Insulators, Cleats, Door Knobs, and all kinds of Pressed Porcelain for Electrical and Hardware Lines ALIS GOODS GUARANTEED TO GIVE SATISFAGTION

hancriktuked m
THE BRYAN-MARSH CO.
Marlboro, Matas.

○~Stilwell \& Con

ELECTRIC SPEQIALTIES
33 King William St., HAMILTON, ONT.

ACENTS FOR
The R. Thomas \& Sors CO.
Bast Liverpool, Onio.
PRPEEAHI MSUMRORSS. Qienfle El.

TOREONTO 22 FRONT STRREET EAST

THE J. C. MCLAREN BELTING CO. montreal

THE BABCOCK \& WILCOX

WIatex Tube
 STEAM
 BOILERS

HEAD OFFICE:
415. Board of Trade Bnilding, Montreal.

WM. T. BONNER, Gehega Agent for Candoa Shops ar Eclleville, Ontario.

[^0]: Niagara fall, june $2(-30$, ; 2) s.

