Canadian Pipe Company,

 LIMITED

MACHINE WIRE WOUND WOODEN PIPE

IRON SPECIALS AND FITTINGS FOR WATERWORKS SYSTEMS

WATERWORKS CONTRACTORS
-0000000.000000000000.0000000000000000
Factory and Offices: BEATTY STREET
North End Cambic Street Bridge
VANCOUVER, B. C.

-1

WOOD PIPE AND WATER WORK SYSTEMS

In issuing our second catalogue we take the opportunity of thanking the public for the interest they have taken in this new Canadian industry. Since the death of Mr. Orchard the inventor of the Wire Wound Wood Stave Pipe) in August last, we are entirely a Canadian corporation, registered under the Joint Stock Companies Act (1862 Imperial).

In the following pages we will endeavour to give information and tables which will be of interest to those about to build new, or extend their present water works systems. Our factory is equipped with the most perfect machinery, thereby enabling us to manufacture and turn out expeditiously a perfect pipe in every respect.

The location of our factory affords us every facility to ship our products either by rail or water.

In thanking our patrons for their past orders, we can assure them that any future orders they entrust us with will have our utmost and prompt attention.

Those who contemplate using wood pipe in the future can rest assured that our experience is at their disposal, and by entrusting us with their orders we will strive to give such satisfaction as will be to our mutual benefit.

Enquiries are solicited, and all correspondence will have our prompt attention.

THE CANADIAN PIPE CO., LTD., Beatty Street, Cambie Street Bridge, Vancouver, B.C.

P.O. Box 915. Telephone 1642.

y

WATER SUPPLY AND PURITY

There is nothing more essential to the health of the community than a plentiful supply of pure water for the house, the farm, the ranch, the office, the work shop, the factory, the mine, and for fire protection; and the importance of having this supply conveyed in perfectly constructed pipes is most essential to the efficiency of the system. While we are anxious to give all the advice possible, yet we secognise that the outlining and and construction of water works should be directed by a competent hydraulic engineer. We have such an engineer in our employ whose services are always at the disposal of our patrons.

THE TEST FOR PURE WATER

The following tests for pure water issued by the New Jersey State book of health, will be found useful.

COLOR: Fill a clean long bottle, made of colorless glass, with the water; look through the water at some black object; the water should appear perfectly colorless and free from suspended matter. A muddy or turbid appearance indicates the presence of soluble organic matter or solid matter in suspension.

ODOR: Empty out some of the water, leaving the bottle half full; cork up the bottle and place it for a few hours in a warm place; shake up the water, remove the cork and critically smell the air contained in the bottle. If it has any smell, and especially if the odor is in the least repulsive, the water should be rejected for domestic use. By heating the water to boiling, an odor is sometimes evolved that otherwise does not appear.

CURVES

Where it is necessary to make short curves, we manufacture short lengths so that the variation in each joint is so slight that it is scarcely discernible.

In laying Machine Banded Wood Pipe, no other tools are required but a tompion and maul. We manufacture these and furnish at very reasonable prices.

ADVANTAGES OF OUR PIPE

It is more durable than wrought iron or steel pipe.
It is cheaper than cast iron, wrought iron or steel pipe.
It has greater carrying capacity than iron or steel pipe of many years' service.

Its carrying capácity is never decreased by rust.
It conveys water sweeter, more wholesome and cooler.
It is cheaply laid.
It is easily and safely tapped.
It needs no caulking.
It can be fitted to any connection.
No frost bursts.
No electrolysis.
No contraction.
No corrosion.
Freight saved.
Greater longevity.
All pipe built in conformity to strict engineering rules and calculations.

The simplicity of the coupling renders great speed in laying possible, and obviates the necessity for skilled labor. The use of wood pipe has been thoroughly investigated, and not only found cheaper, but more suitable and durable than steel or iron.

THE DURABILITY OF WOOD PIPE

Although the manufacture and use of Wire Wound Wood Stave Pipe is of comparatively recent date in Canada, it has been in use in the United States of America for the past fifteen years, and we have before us such a mass of favorable comments in the shape of letters from the users of this pipe, that we have no hesitation in recommending its use.

The City of Seattle, Washington, has between 30 and 40 miles of wood pipe in use under heads varying from 20 to 300 feet, and we are informed that further extensions, amounting to about 8 miles of 6 to 20 inch pipe, are contemplated in the near future. Our correspondent in Seattle states that the cost of . laying wood pipe is less than one half that of laying cast iron, and that the former is superior as regards répairs and facility of tapping.

Philipsburg, Montana, put in 10,000 feet of 8 and 10 inch and 2,800 feet of 6 inch wood pipe last year, and have just awarded a contract of 4,000 feet of 4 inch. The 12,800 feet now in use has a maximum head of 127 feet, but the 4,000 feet which will soon be laid will have a head of 400 feet.

About two years ago the City of Dayton, Washington, installed 2,500 feet of 10 inch wooden pipe. This city has decided upon improvements to its water system, which will require nearly 15,000 feet of 16 inch pipe. Wood pipe will be used throughout, as the city authorities will not even consider the purchase of iron pipe for extensions or improvements. The greater portion of their present system is composed of spiral steel pipe, laid thirteen years ago. It is now in bad condition, and will probably all have to be replaced within the next few years.

On the mountain division of the Canadian Pacific Railway 3,000 feet of 4 inch wooden pipe was laid in one day by a foreman and two men, and we are informed that the railway people are so pleased with it that they have discontinued the use of iron pipe altogether for their water supply.

The City of Tacoma, Washington, from April, 1900 to April, 1904, laid about 40 miles of wooden pipe, varying in size from 2 to 18 inches, which is giving every satisfiction, under pressure ranging from 90 to 130 lbs . per square inch. This city has practically abandoned the use of metal pipe since they have been able to procure first class wooden pipe.

The town of Kent, Washington, has installed over 6 miles of wood pipe in the last two years. Our correspondent there speaks very highly of wooden pipe, and draws our attention especially to its durability. He states that he has raised wooden pipe which has been in use for fourteen years and re-laid it, the pressure being changed from 45 lbs , to 82 lbs . per square inch. He also cites another case in which some wood piping has been in use on a farm near Kent for 28 years, and is still in excellent condition.

We also have a letter from W. Stokes, Cranbrook, dated November 11th, 1904.-"I have got the Cranbrook Water System all in, and it is all right. In the five and one half miles only four leaks showed up, all of which stopped in a short time when the wood had time to swell. I turned the water on and let it run out at the lower end for two days; then started and shut the valve and ran the pressure up to 100 lbs . and let it stand at that all day and found it all right. I might say that the Water Company are more than pleased with the pipe of the Canadian Pipe Company. I turned the first shovel of earth on the 15th of August, and had it all in on the 31st of Octoben, and the water in the town that night."
B.C the mac spac
whis
fectl
by thar
whi shot sam und
eva
grot
run can
whe
buil is r
dipF
aspl
ceiv
to n
well

HOW MADE

Our Pipe is built of absolutely clear, thoroughly kiln dried B.C. Douglas Fir, free from knots, splits, shakes, pitch seams, etc.; the staves are dressed into perfectly true segments and spirally machine wound under tension, with galvanized steel wire. The spacing and size of the wire is adapted to the pressure under which the pipe is to serve. The interior of the pipe being perfectly smooth frictional loss is almost eliminated, and pipe built by us discharges from 10 per cent, to 20 per cent. more water than metal pipe of equal dimensions.

IRRIGATION PIPE

We manufarture an exceptionally cheap irrigation pipe which possesses so many advantages over flumes that there should be no doubt or hesitancy about its use. It is built on the same principles as our pressure pipe. This pipe can be placed under ground, below plough dip, cuts off all waste of water by evaporation, and besides, saves right of way expense across ground owned by others.

It is adapted for all purposes of irrigation, as laterals can be run from main pipe and connected with taps, whereby water can be delivered to any point desired.

We can furnish our pipe for use as an Inverted Syphon where gulches are to be crossed, and save you the expense of building a ditch around the gulch or of building a flume, which is rendered useless in a short time.

THE COATING

For the further protection of the pipe the entire length is dipped on the outer surface in a hot bath of tar and refined asphelt, properly mixed to give best results. The coating received from the dipping is very heavy, and much more will adhere to wood pipe than to metal pipe-thus the wood of the pipe as well as the banding is protected.

SLEEVE COUPLINGS

We Furnish our Pipe with any Style of Coupling Desired. Wood Sleeve or Intersection Coupling.

Experience has proven-and we recommend the Wood Sieeve Coupling as, the most perfect and cheapest coupling that

foe st elect causi iron the c
of th wint
other wire stron have
sizes diam the steel
used to se
befo mad prop of O

ELECTROLYSIS DOES NOT AFFECT WOOD PIPE OR SERVICE PIPES CONNECTED WITH IT

In recent years iron pipe has found that it has a dangerous foe stretching along the streets and alleys with it; and this is the electric wire which carries the heavy voltage of electricity, thus causing what is called electrolysis action. Under this condition iron pipe is charged so thoroughly that the destructive effects of the current may be seen wherever such pipe is exposed.

FROST

On account of wood being a non-conductor, the temperature of the water passing through wooden pipe is very uniform in winter and summer.

Freezing will not cause our make of pipe to burst like iron or other makes of wooden pipe. The wood expands and the stee! wire embeds itself. This salient feature should commend it strongly in all Northern climates. Ice and frozen connections have been the cause of many disastrous fires.

SIZES

We manufacture the machine banded stave pipe in regular sizes of $2,3,4,5,6,8,10,12,14,16,18,20,22$ and 24 inches diameter, and in lengths of $8,10,12,14,16,18$ and 20 feet. When the size exceeds 24 inches we build the pipe in the trench, using steel rods to bind the staves together.

The spacing of the rod is governed by the size of rod to be used, the size of pipe to be made and the pressure head that it is to serve under.

INSPECTION

All pipe made by us is carefully inspected at our factory before coating or testing in the press. While no shipments are made without such inspection, we are ready to afford at all times proper facilities to inspectors sent to our works by the purchasers of our pipe.

COST

Our prices range from 25 to 65 per cent. lower than the price of metal pipe.

In addition to first cost per foot of metal pipe, is the expense of caulking each joint, and there is one joint every ten to 12 feet, adding the cost of the lead to the cost of labor, makes the expense per length of 12 feet over 9 'cents per foot for laying, and exclu. sive of earth.

There is no expense in laying our pipe except the driving together, which is nominal. The pipe is light to handle; four men (laborers) can lay in ditch 2,400 feet of 10 inch pipe in 10 hours.

In laying 10 inch cast iron pipe it would require 7 or 8 men at least to lay 300 feet in the same length of time.

The cost of taps for service connections is merely nominal, requiring simply the boring of a hole into the wood with a bit 1-32 of an inch smaller than the outside diameter of the pipe to be used, and in screwing the iron service pipe into the wood. The swelling of the wood with water in the pipe holds the tap like a vice; it will require a wrench to remove it.

Taps made in metal pipe require a saddle, an expense of from 75c. up, owing to size of pipe as well as the cost of the
pipe
lbs. t

PRICES

We will be pleased to furnish prices on application. They vary according to size of pipe, the pressure required, size of bands used in banding and the style of coupling desired.

In writing for prices, kindly state approximate quantities and sizes for the different pressure heads, whether for a gravity or pumping system, and such other data as will enable us to quote you intelligently.

Inside diameter of pipe is always given, and price quoted per foot includes the coupling.

We furnish estimates and put in water works system complete if desired.

Full instructions in regard to laying pipe, making connections, cutting pipe, etc., are furnished upon request, or we carf send an experienced man to superintend the laying of the pipe if desired.

PRESSURE

Owing to the class of material we use our machine banded pipe can be manufactured to safely withstand a pressure of 285 lbs. to the square inch.

```
16 CaNADIAN PIPE COMPANY, LTD., VANCOUVER, B, C.
```

A

CONTINUOUS STAVE PIPE

We build continuous stave pipe of any dimension, and according to any specifications furnished, us. We contract for this work everywhere. We will be pleased to quote prices on this work upon application and receipt of specifications, with data necessary to intelligently understand the requirements.

40 inch Irrigation Pipe at
Brandon, Man.

> For Power Plants
> Water Companies and Irrigation Systems

AMOUNT IN CAR LOADS

Approximate number of feet of Wood Pressure Pipe contained in a 36 foot car.

Diameter	lbs. Weight per ft.		Number of feet in car.
2 inches	$21 / 2 \mathrm{lbs}$.		18000 ft .
3 "	37/8 "		10500 ft .
4 "	41/4 "		7000 ft .
5 "	$7{ }^{4}$	*	5700 ft .
$6 \quad 4$	8 "		3800 ft .
8	10 "		2500 ft .
10	121/2 "		1500 ft .
12 "	$141 / 2$ "		1050 ft .
14 "	17 "	Flat Cars	850 ft .
16 "	22 "		700 ft .
18 "	26 *		650 ft .
20 "	33 '		500 ft .
22 "	35 "		500 ft .
24 "	38		500 ft .

When ordering, so as to take advantage of the minimum freight rates, it is well where possible to order so that the pipe can be nested thus :

$2^{\prime \prime}$ in $5^{\prime \prime}$	$5^{\prime \prime}$ in $10^{\prime \prime}$	$10^{\prime \prime}$ in $14^{\prime \prime}$
$3^{\prime \prime}$ in $6^{\prime \prime}$	$6^{\prime \prime}$ in $10^{\prime \prime}$	$12^{\prime \prime}$ in $16^{\prime \prime}$
$4^{\prime \prime}$ in $8^{\prime \prime}$	$8^{\prime \prime}$ in $12^{\prime \prime}$	$14^{\prime \prime}$ in $18^{\prime \prime}$
so on.		

TEES

Manufactured by the Canadian Pipe Company, Ltd. Vancouver, B. C.

OUR CAST IRON FITTINGS AND CAST IRON SPECIALS FOR WOOD PIPE

Our machine-banded pipe can be fitted to standard cast iron fittings " bell or hub" ends, but we make them according to our own patterns and can furnish our fittings of lighter weight, with stencil strength greater than that of the pipe. All our fittings are made smoother and better finish in the "bell or hub " ends and at less cost. We manufacture everything in cast iron "specials" in connection with Wood Pipe.

We give herewith approximate weights of the smaller fittings. Weights of larger and different special fittings will be given on application.

Prices quoted on application.
$2 \times 2 \times 2 \times 2 \ldots \ldots \ldots \ldots \ldots .$.
$3 \times 3 \times 3 \times 3 \ldots \ldots \ldots \ldots \ldots . . .54$
$4 \times 4 \times 3 \times 3 \ldots \ldots \ldots \ldots$.
$4 \times 4 \times 4 \times 4 \ldots \ldots$.
$6 \times 6 \times 4 \times 4 \ldots121$
$6 \times 6 \times 6 \times 4 \ldots \ldots \ldots \ldots \ldots$.
$6 \times 6 \times 6 \times 6 \ldots \ldots133$
$8 \times 8 \times 4 \times 4 \ldots \ldots \ldots \ldots \ldots$.
$8 \times 4 \times 8 \times 4 \ldots \ldots \ldots \ldots \ldots164$
$8 \times 8 \times 6 \times 4 \ldots \ldots \ldots \ldots \ldots$.
$8 \times 8 \times 6 \times 6 \ldots \ldots \ldots \ldots \ldots \ldots$.
$8 \times 8 \times 8 \times 8 \ldots197$

ELLS

2 inch................................ 14
3 inch............................... 23
4 inch............................... 44
6 inch................................ 62
8 inch................................ 82

TEES

Approximate Weight in Pounds

$2 \times 2 \times 2$. 25
$3 \times 3 \times 3$. 43
$3 \times 3 \times 2$. 57
$4 \times 2 \times 2$. 55
$4 \times 3 \times 3$. 58
$4 \times 4 \times 3$ 57
$4 \times 4 \times 4$ 71
$6 \times 2 \times 4$ 87
$6 \times 4 \times 4$ 91
$6 \times 6 \times 4$ 100
$6 \times 6 \times 6$ 113
$6 \times 6 \times 8$ 133
$8 \times 8 \times 4$ 122
$8 \times 8 \times 6$ 135
$8 \times 8 \times 8$ 155
BENDS
4 inch, 45 deg 37
6 inch, 30 deg 48
6 inch, 45 deg 52
6 inch, 20 deg 46
8 inch, 20 deg 51
8 inch, 30 deg 62

HYDRANTS, GATE VALVES, AIR VALVES, RELIEF VALVES, ETC.

Directions for Ordering Hydrants:
1st. Give size of valve opening or inside diameter of Standard Pipe.

2nd. Give length from surface of ground to bottom of connection Pipe.

3rd. Give size of bottom connecting. Pipe Hydrants for Wood Pipe have Hub or Bell Ends.

These rules govern in ordering any make of Hydrants.

In Ordering Valves:

Always give number pounds pressure, or head under which Valves are to work.

We can furnish any make of Standard Hydrant desired, and can be shipped with orders for

OF WATER.

FLOW OF WATER.

FLOW OF WATER.

Head in ft . per 1000 ft . for friction	DIAMETER OF PIPE IN INCHES								
	30			32			34		
	Velocity in feet per second	Cubic Feet per second	Miner's Inches	Velocity in feet per second	Cubic Feet per second	Miner's Inches	Velocity in feet second	Cubic Feet per second	Miner's Inches
05	231	11340	56700	240	13404	67020	251	15825	79125
06	253	12420	62100	263	14688	73440	2.75	17339	86695
07	273	13401	67005	285	15817	79085	296	18663	93315
08	292	14334	71670	305	17034	85170	317	19987	99935
09	309	15169	75845	322	17984	89929	338	21311	106555
10	326	16003	80015	340	18989	94945	356	22446	112230
15	399	19587	97935	410	23234	116170	435	27426	137130
20	463	22828	114140	482	26920	134600	503	31714	158570
30	565	27736	138680	588	32840	164200	616	38839	194195
40	652	31907	159535	682	38090	190450	710	44765	223825
50	729	35786	188930	765	42725	213625	795	50125	250625
60	797	39125	195625	835	46635	233175	868	54727	273625
70	863	42365	211825	902	50376	251880	937	59078	295390
80	923	45310	226550	964	53839	269195	1003	63239	316195
90	978	48010	240050	1024	57190	285950	1066	67211	336055
100	1032	50661	253305	1077	60150	300750	1123	70805	354025
120	1130	55472	277360	1181	65959	329795	1230	77551	387755
140	1220	59890	290450	1278	71376	356880	1330	83856	419280
160	1303	63964	319820	1362	76068	380340	1419	89468	447340
180	1378	67646	338230	1445	80703	403515	1508	95079	475395
200	1460	71671	358355	1524	85115	425575	1590	100249	501245

Head in ft. per 1000 ft . for friction	DIAMETER OF PIPE IN INCHES								
	42			44			48		
	Velocity in feet per second	Cubic Feet per second	Miner's Inches	Velocity in feet per second	Cubic Feet per second	Miner's Inches	Velocity in feet per second	Cubic Feet per second	Miner's Inches
05	291	27997	139985	298	31469	157345	316	39708	198540
06	318	30594	152970	327	34531	172555	346	43478	217390
07	346	33288	166440	353	37277	186375	374	46996	234980
08	367	35309	176545	378	39917	199585	400	50264	251320
09	390	37522	187610	401	42345	211725	423	53154	265770
10	412	39638	198190	423	44669	223345	447	56170	280850
15	504	48490	242450	518	54701	273505	547	68736	343680
20	582	55994	279970	597	63043	315215	631	79291	396455
30	714	68694	343470	733^{*}	77405	387025	775	97386	486930
40	824	79277	396375	846	89337	446675	894	112340	551700
50	920	88513	442565	946	99897	499485	999	125534	627670
60	1007	96883	484415	1036	109401	547005	1094	137472	688360
70	1090	104868	524340	1117	117955	589775	1182	148530	742650
80	1165	112085	560425	1197	126403	632015	1264	158834	794170
90	1235	118819	594095	1269	134006	670030	1340	168384	841920
100	1302	125265	626325	1338	141293	706465	1412	177432	887160
120	1427	137291	686455	1465	154704	773520	1545	194145	970725
140	1540	148163	740815	1584	167270	836350	1670	209852	1049260
160	1646	158361	791805	1693	178781	893905	1787	224554	1122770
180	1747	168079	840395	1795	189552	947760	1895	238125	1190625
200	1843	177315	886575	1892	199795	998975	1997	250943	1254715

Showing our 14 inch Machine Banded Pressure Pipe being laid.

USEFUL INFORMATION

To find area of a circle multiply square of diameter by .7854.
To find diameter of a circle multiply circumference by . 31831 .

To find circumference of a circle multiply diameter by 3.1416.

To determine approximately the number of gallons in reservoir, multiply the length, width and depth in feet. This by 7.48 .

To find pressure of water where head is given, multiply the head by 433 .

To find the head when pressure is given, divide the pressure by .433.

Doubling the diameter of a pipe ificreases its capacity four times.

One cubic foot equals 7.48 gallons and weighs 62.4 .
A miner's inch of water is equal to nine gallons per minute.
Theoretically water can be raised by suction 33 feet, but practically only 26 to 29 feet.

To find capacity in cubic feet: square diameter of bottom in feet, multiply by .7854 and by inside height of tank in feet.

Height of tank being known, to find diameter of tank needed for any capacity: divide quantity desired by . 0034 , divide remainder by height in inches and obtain square root. The value thus obtained is the diameter in inches, divide by 12 to obtain diameter in feet.

To find capacity of tank in gallons: square diameter in inches, multiply by height in inches, multiply by .0034, the product is the capacity in gallons.

30" Built at Nanaimo by the Canadian Pipe Co., Ltd.

Loss of Head caused by Friction in Long Wooden Pipe.

Diameter of Pipe Inches	Volumeof Water Cu . Ft. per min.	Velocity of Flow Feet per Second	Fractional Head per 1000 Feet
4	5	. 9	1.13
	8	1.4	2.36
	10	1.9	411
	13	2.3	6.25
6	18	1.5	1.69
	23	1.6	2.75
	28	2.3	3.95
	30	2.5	4.66
8	35	1.7	1.51
	45	2.1	2.42
	55	2.6	3.55
	23	1.9	2.75
	65	3.1	4.86
	75	3.6	636
10	¢80	2.4	2.37
	90	2.8	2.96
	100	3.1	3.62
	110	- 3.3	4.34
	120	3.7	5.11

Amount of Water in gallons per minute that will discharge through
a Wooden Pipe 1,000 feet or longer for given sizes under different heads:

Head in Feet	DIAMETER OF PIPE INCHES						
	3 in.	4 in.	6 in.	8 in.	10 in.	12 in.	16 in .
	117	258			2660°		9, 119
60	139	288	816	-1689	2975	4.398	10, 195
80	174	364	1032	2190	3876	6,196	12,896
100	195	407	1177	2448	4334	6,9a7	14.419
125	218	464	1315	2737	4845	7,645	16,124
150	239	508	1441	2998	5308	8,484	17,660
175	264	550	1556	3239	5733	9,164	19,076
200	282	587	1664	3462	6129	9,796	20,39a
225	299	622	${ }^{1765}$	3672	6501	10,391	21,630
250	315	656	1860	3870	6853	10,953	32,800
300	345	719	2038	4273	7506	11,998	24.976

A Miner's Inch

The definition of a miner's inch in different mining regions does not always agree. Usually, however, one square inch openirg under a 6 -inch head is taken as a standard measure. The amount of water that will discharge through this orifice in one minute will equal $\mathbf{5} / 1 / 2$ cubic feet, or 1 x .a2 gallons.
ipe.
al Head
o Feet

25
39
5
15
5
12
$\begin{array}{r}12 \\ 15 \\ \hline 15\end{array}$
'5
16
16
17
6
2
4
1
hrough

16 in.
9, 119 10, 195 -12,896
14.419

16,124
17,660
19,076
20,392 21,630 22,800
24.976
:always s taken gh this

FLOW OF WATER

Diam. Pipe in Inches	Area in Square Feet	Hydrauli? Mean Depth in Feet	Coeff. of Formula Velocity	Friction Head in Feet	
				Per 1000 ft .	Per Mile
3	0049	0063	100	05	264
4	0087	0084	101	06	317
5	0136	0104	102	07	370
6	0196	0125	103	08	422
8	0349	0167	104	09	475
10	0545	0208	105	10	528
12	0785	0250	106	15	792
14	1069	0292	109	20	1056
16	1396	0333	112	30	1584
18	1767	0375	115	40	2112
20	2182	0417	118	50	2640
22	2640	0458	120	60	3168
24	3142	0500	122	70	3696
26	3687	0542	1235	80	4224
28	4276	0583	1255	90	4752
30	4909	0625	127	100	5280
32	5585	0667	1285	120	6336
34	6305	0708	130	140	7392
36	7068	0750	1315	160	8448
$38-$	7875	0792	133	180	9504
40	8726	0833	134	200	10530
42	9621	0875	1355	220	11616
44	10560	0917	136	240	12672
48	12566	1000	1375	260	13728
54	15904	1125	139	280	14784
60	19635	1250	141	300	15840

Pressure of Water at Different Elevations.

Head in Feet	Pressure per Sq. In.	Head in Feet	Pressure per Sq. In.	Head inFFet	Pressure per Sq. In.
1	0.43	130	56.31	260	112.60
5	2.16	135	58.48	265	114.79
10	4.33	140	60.64	270	116.96
15	6.49	145	62.81	275	119.12
20	8.66	150	64.97	280	121.29
25	10.82	155	67.14	285	123.45
30	12.99	160	69.31	290	125.62
35	15.16	165	71.47	295	127.78
40	17.32	170	73.64	300	129.95
45	19.49	175	75.80	310	134.28
50	21.65	180	77.97	320	138.62
55	23.82	185	80.14	330	142.95
60	25.99	190	82.30	340	147.28
65	28.15	195	84.47	350	151.61
70	30.32	200	86.63	360	155.94
75	32.48	205	88.80	370	160.27
80	34.65	210	90.96	380	164.61
85	36.82	215	93.14	390	168.94
90	38.98	220	95.30	400	173.27
95	41.15	225	97.49	500	216.58
100	43.31	239	99.63	600	259.90
105	45.48	235	101.79		
110	47.64	240	103.96		
115	49.81	245	106.13		
120	51.98	250	108.29		
125	54.15	255	110.46		

Miner's Inch
The miner's inch given in the tables is the statutory miner's inch of Cal., and is as follows :

1 Miner's inch \qquad 0.02
cubic feet per second
1 Miner's inch....................... 1.20
1 Miner's inch........................ 72.
1 Miner's inch \qquad 1728.
$\times \quad 0.1496$
$\begin{array}{lll}1 \text { Miner's inch......................... } & 0.1496 \\ 1 \text { Miner's inch.................... } \\ 8.976\end{array}$
1 Miner's inch........................ 538.56
1 Miner's inch
h.
12925.44 cubic feet per minute cubic feet per hour cubic feet per day
gallons per second gallons per minute gallons per hour gallons per day 0
A miner's inch will flood to acres 1.45 teet in depth in one year; or $\mathbf{1 4 . 4 9}$ acres one foot deep; or 18.11 acres 9 in . deep.

