

CIHM Microfiche Series (Monographs)

$\%$

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significiantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/ a
Cartes géographiques en couleur
$\%$
Coloured ink (i.e. other than blue of black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illusitrations/
Planches et/ou illusitrations en couleur
Bound with other material/
Relié avec d'aytres documents
Tight binding may cause shadows or distortion
along interior märgin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la inarge intérieure mot

Blank leaves added during restoration may appear within the text. Whenaver possible, these have been omitted from filming/
II se peut que certaines pages blancheś ajoutdes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

Additional comments://
Commehtaires supplémentaires:

This item is filmed at the reduction ratio checked below/

The copy filmed here has been reproduced thanks to the generosity of:

Library of the National
Archives of Canada

The images appearing here are the best quality possible considering. the condition and legibility of the original copy and in kdeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the firsti page with a printed or llluatrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfichë shall contain the symbol \rightarrow (meaning "CONTINUED"), sf the symbol ∇ (meaning "END"). whichevar applies.

Maps, plates, charts, otc., may be filmed at difforent reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many framies as required. The following diagrams illustrate the method:

L'exemplaire filmẹ fut reprodúit grâce à le générosité de:
. ."Là bibliothèque des Archives nationales du Canada

Les images suivantes ont dté reproduites avec le plus grand soin. compte tenu de la condition ot de la nettete_de l'exemplaire filmb, et en conformite avec loz conditions du cantrat de filmage.

Les exemplaires originaux dont la couverture on papier est-imprimóe sont filmds en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une emprainte d'impression ou d'illustration, soit par le second plat, selón le cas. Tous lea autres examplaires originaux sont filmds en commencapt par la promidre page qui comporite une empreinte d'impression ou d'illustration et en kerminant par la derniére page qui comporte une felle empreinte.

Un des aymboles suivants apparaître sur la derniére image de chaque microficha, selon le cas: le symbole \rightarrow signifie "A SUIVRE", Ie symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent àtre filmes à des taux de réduction différants. Lorsque le document est trop grand pour âtre reproduit en un soul cliché, il est filmo à partir de T'angle supérieur gauche, de gauche à droite ot de haut en bas, on prenant le nombre d'images ndcessaire. Les diagrammes suivants illustrent la méthode.

write at once saying just .iclss Porirepair, put your name retumed after repairing, (whetherby expres or freight,) giving post office, telegraiph office, and nearest express office
Always prepay Frzight or Expriss Charges to us, also all Telegrams, fige address and County and for what remitted. When or remititng moner, alwagh give name, poken pert, and as full County, and for what remitted. When ordering repairs, give usient, sead broken part; for although we description as everything as nearly as possible to a guage, we find it necessary to change irequently ahe styles of our machinery to keep abreast of the times. Don't expect us to remember what machinery you have. Give fall particlulars every time. Your order may be filled by a new clerk who doeg not know you.

WATEROUS ENOINE WORKE CO.,

er Canada, dson's Bay ell. It all unning toper year where our
ell made" then set the the price at mill men le and will hine said to usiness life esident has lard before e that we full operajeen closed this period rmer years,
approval of :xertions in
dily for the our giving ers can rely jacked and operly ship-

That it has tc., to oyerput we have

Our Nokth-west Branci Works, locatedat Wimnipeg, under the management of our President's sons; Mr. Fred L. Waterous and Mr. Frank?. Waterous, is well equipped with tools and plant to do the large trade springing up there. We have there the Home Works on a smaller scale, machine, pattern and wood-working shops, boiler, blacksmith and moulding shops, and have tools large enough to do the greatest variety of work.

The Winnipeg Branch gives special attention to Engine, Boiler and Mill Repairs of all kinds. The Works are easy of access, being within one block of the C.P.R. Station, in the City of Winnipeg:

As it is impossible in a short circular of this kind to more than outline our various machines, we shall be much pleased to answer any and all enquiries. When asking for descriptions, prices, etc., it is better to give all the particulars possible in regard to the nature of your wants and the material you want to manufacture, If a saw mill is wanted, the average and extreme diameter and length of logs, "into what sizes, etc., they are to be manufactured ; capacity of mill you wish per day; whether saving of timb is of more object than fast cutting; how often you expect to mô "the mill, if at all ; if brick or stone cản be conveniently procured; if you contemplate in a short time increasing your plant by the addition of more machinery ; position mill is to occupy, if it is salready located, i. e. if on level ground, at foot of gentle slope or incline, if on a sheet of water from which logs can be drawn; if a ground mill or an elevated mill is desired, etc.,, etc. The more information given us on these and other points of the work to be done, the better we are enabled to decide what will best answer your purpose and to send you estimates accordingly.

When ordering it is well to send a rough sketch of location if any special one is desired, showing the size of building; on which side or end engine and boiler is to be placed; where logs are to - enter, and where lumber to go out. This enables us to determine which hand saw irons and engine you require. It is well too, if the position is immaterial, to say so, especially if in a hurry for the
machinery, as we sometimes háve one hand of more adyanced than the other. In direct action mills use a left hand engine and right hand saw irons and in these mills this hand is the one we we usually have advanced state.

We solicit your enguires and orders which we nee shall have our best attention.

Address us at,

Australian © Office

Eastern Canadian Office $\left\{\begin{array}{c}154 \mathrm{sr} . J \\ J\end{array}\right.$

on Waterous Engine Works,
Brantford, C.
ave one hand of mill or engine In direct action mills we generally hand saw irons and saw, so that e we we usually have in the more ?
I orders which we need hardly say

> I6 Mark Iani, LONION, E. C.
E.
VIJAC;
\because OFlICL, 122 to 25 Cliarince St.; SYDNEY, N. S. W.
f WINNIPEC

O
FFICE $\left\{\begin{array}{l}154 \text { St. JAMIEST:, } \\ \text { MONTREAL }\end{array}\right.$
ine Works, Co.,
RANTFORD, CANADA.

BRANTFORD, ONTARIO, CANADA.
.
4 5

The following is a very fair description of our Champion Portable Saw Mills taken from the Aonerican Expogter of June, 1885. The description of the working of the Miil is taplicable to all our Portable Mills :-

A Complete Portable Saw Mill.

The cut shown on this page (see page to) represents a complete portable saw mill as used in America. It is complete withirf itself, capable of being taken into any timber tract or on any gentleman's estate, and cutting from the rough logs of any size from 30 inches in diameter duwnwards, of any length from 6 feet úp to 20 or 22 feet lone, or longer lengihs when the carriage is so arranged. This mill is placed on the ground in any convenient locality, oftentimes at the foot of a gentle slope ris ng say 6 feet in' 25 or 30 feet. On this slope the logs are piled, and a wooden tramway or track made of wooden rails is run slantwise gradually up the hill. Along this track, on upper side, skids are placed, with their outer end just the height of a log car. These skids hold thę logs back, and on them and behind them are piled all the logs that are to be cut in the mill." "A car is run out, and a man, with what are called cant hooks in America, rolls the log on the car, and the car ot its own weight then'uns into the mill. On arriving at the mill, the platform of the car is the same height as the skidway betore the carriage in the front part of the mill. Two or four or more logs can be placed this skidway, depending on its s ze. As the carriage is run down to the skidw ${ }^{(1)}$ 解e headblocks b:ing run back as far as necessary for the size of the log that is to be sawn, the log js rolled on and held. firmly to each upright by the Knight dogs shown in the cut, they, fur th's purpose, being run out further than the headblock as sh $\lrcorner w n$ in the headblock nearest the saw in cut, (see page io) and the sawyer, who stands in front of the carriage in.mediately at the frame, grasps the handle of the set works which extend; over the \log and sets the log-forward on the slides till it is sufficiently past the saw, that the saw will take off the proper thickness of slab. He then grasps the lever shown in the centre of the end of the frame, pulls it towards him, and the \log at once moves up to the saw and past it, the saw cutting off the slab. When the saw has made the entire cut, the lever referred to before is shoved the reverse way from the sawyer, and the carriage immediately starts bark. While it is running back, the sawyer puts his foot on a treadle, not shown, but which rises an inch or

WATEROUS ENǴINE WORKS, CO.,

two above the floor, which brings into play a friction arrangement on the back of the. carriage, which immediately recedes, the knees odr uprights of the darriage to which the log is attached pulling the log back with it, po that when the carriage refurns to its starting position all that has to be done is to lift the outer levers of the Knight dog shown with a ball, which spring into their catches above, not shown in cut, where they are held, thus withdrawing the dog from the log. The log is then rolled nver with its flat side on the \log seat, or against the upright as wished, dogged again as before, and the operation is again proceeded with, taking off another slab. If in either case the slab taken off does not expose suffient surface or width of face on the \log, a second or third board is taken off. The log is thus partly squared to the size desired. The dogs are again withdrawn and the log turned a second time with its square corner toward the uprights and the flat surfaces against them and on the \log seats.-The operation explained before is then continued until a slab and one or two boards áre taken off. Then if the \log is to be made into timbers of different thicknesses, the set roller and timber gauge shown on the front corner of the frame is brought into play, The round wheel on the top of the gauge is marked off in quarters of inches from one inch upwards, so that if a piece of timber $6 \dot{4} /$ inches thick is required to be cut from the log, the pin is dropped into the hole marked 61/4, and the handles shown on top of timber gauge are brought round to this pin. The sawyer then grasps the set handle again and sets the log up against this roller, and he knows that as soon as it strikes the roller it is set so that a piece $61 / 4$ inches thick will be sawn the full depth of what the log happens to be. He can as easily, of course, set it to any size desired. On the slides, to which uprights are attackred, (one to each of the slides) is \dot{a}_{0} lumber and timber rule and pointer, so arranged with the pointer that the sawyer at a-glance can tell what thickness, of \log he has remaining to be sawn, and can calculatereadily to what size it is best adepted to be sawn into, without any measuring whatever.

After the timber is turned with its squared side to the uprights, the dogs shown in cut as holding the square timber are run back till they do not project more than half an inch from the face of the upright, so that the last board can be made as thin as I inch, or even $\frac{8}{2}$ inch or $3 / 4$ inch thick without removing the dogs. These dogs are worked in a very simple way. The inside small or short lever with the ball on the end, when raised, permits the dog to be raised up and down anywhere on the standard, and immediately theylever is released it falls of its weight and holds the dog in the position it is placed on the standard. If, therefore, it is left from the last \log near the top, all that has to be done to make it engage the log is to lift this lever and drop it; it falls till the point of the dog strikes the timber where it is
held firmly of the dog drives the p of the dow not only" be ed so that it backward to this descript sawmill dog holds the it out on the s

Returni arranged to friction' whe pinion' on it whe-ls of th centric box c the rear side mandrel. B transmits the friction whee or near side which the co referred to be the rag shaft mandrel is co When the lev the intermedi saw mandrel ; on rag shaft a

It will th backward is e frame is draw frame. It is returning too large friction of the carriag
held firmly to its position. Then by releasing the longer lever and ball on the back of the dog from the spring catch on the top of the upright, it falls and of its weight drives the point of the dog from $1 / 2$ inch to $11 / 2$ inch into the \log, depending on the force of the downward throw of the lever. "When this short lever is raised the dog can not only be raised up and down at will ont the standard; but the dog itself is relea;- ed so that itcan be moved forward and backward, forward to take a round log, and backward to hold square tímber for the last board. It will be seen, fherefore, from this description (and that with cut on page g) that this is an exceedingly handy sawmill dog, one not liable to get out of repair, one very strong/and one that always holds the log under atll.circumstances, and thus prevents accidents of the log struing out on the saw, while in operation and damaging the saw.

Returning to the saw frame it will be seen that the feed and gig works are arranged to work by frictions shown in the saw frame. There is a shaft with a large friction wheel fastened to it which runs through the frame and und der the track, with a pinion on its outer en l' engaging the segmont rail shown immediately behind the whe-ls of the \log seats of carriage. The outer ènd of this shaft is held in ah eccentric box operated by the lever, with weight attached, shown about the middle of the rear side of saw frame. There is also a friction wheel, as shown, on the saw mandrel. Between this and tha large friction wheel there is another friction which transmits the reverse motion from the friction wheel on the saw mandrel to the large friction wheel on what is' called the rag or pinion shaft of carriage. On the opposite or near side of the large wheel is a small ffiction wheel attached to the shaft $1, n$ which the cone pulley is shown in the forepart of the engraving. When the handle, referred to bef Jre, is pulled toward the sawyer, it throws the large friction wheel on the rag shaft against the small wheet on cone shaft, and thot motion from the saw mandrel is communicated to the carriage and drives it forward tow. d the saw. When the lever is reversed the large friction wheel on the rag shaft is moved against ${ }^{\circ}$ the intermediate friction, to which the motion is communicated byrth: fit: i,n in saw mandrel ; it in turn communica'es a reverse motion to the large friction whe. 1 on rag shaft andoruns the carriage back.

It will thus be seen that the operation of running the carriage forward and backward is extremly simple. The fever shown at the lower part of the front of frame is drawn too hish ; it really lies down nearly level with the lower pa t of the frame. It is comected with stop notion attachment, so that if the carriage is returning too fast the sawyer puts h/s foot on this and throws a brale by it on the large friction wheel on the rag shaft and thus instantly stops or checks the motion of the carriage. The remainder of the mill hardly needs an explanation, as the
engine is very clearly shown attached by belt to the pulley on the saw mandrel. It will. be noticed that there are three bearings under the saw mandrel, making it perfectly strong and rigid. This, coupled with the timber gauge explained before and the inserted tooth saws that are used, enables the mill to saw perfectly smooth and true lumber

One' other feature is very noticeable in this mill, namely the fire-proof qualities of the engine. Mills of this kind would no doubt be more freqúently used on large estates to cut up timber that is blown down by storms, or in forests that requite to have the timber thinned out from them, provided the owners were assured that there . would bemo danger in communicating fire to the remainder of the forest. This engine being perfectly fireproof, every spark or coal being thro on into water, obviates all danger of fixe, so that gentlemen can in'roduce it to their forests without any hesitation, resting assured that it will cut their timber perfectly true, and at the same time very expeditiously, and also in no way endangeri $1 g$ their property. The manufacturers assert that saws can be used on these mills as large as 52 inches in diameter, 10 gau e, which is $1 / 8$ inch full in thickness; and 54 inches in diameter, as thin as 9 gauge, which is scant in inch thi.k. It will be seen, therefore, that very little of the timber is wasted in sawdust. The manufacturers also ass ret that with the mill shown in the engraving four m in will cut of pine 7,000 feet board measure per day of ten or eleven hours, and of square timber a much larger amount. Of hard wood, such as English oak and other hard woods, 5000 feet per day would be a good day's work, although, no doubt, more than this could be done by expert men.

The manufacturers send us a letter from Mr. William Stoddart, (see page ro) contractor on the Canadian Pacific Railway, in which he states he has cut with one of their 16 h . p. mills as high as 15,000 feet of bridge timber in ten hours. We should imagine that this would be an invaluable plant for railway contractors and and others to be moved along new lines of railways as they are advanced to cut the ties or s.eepers, bridge timbcr, station house timber, etc., etc., as required.

The manufacturers do not confine themselves to the style of engine here shown. They also manufacture sectional upright bbilers readily taken apart; horizontal boilers of the locomotive style; or the return tubular fire box style; or return tubular.bilers to build in brick. In fact they state that they are prepared to furnish any style of boiler that customers may desire, and portable and stationary mills of all.capacities. As they are doing a very large export trade they feel confident that they can give good satisfaction to any who may entrust them with their ordens. They have lately issued a very large and comprehensive catalogue of their
: saw mandrel. It lrel, making it perplained btfore and fectly smooth and

fire-proof qualities

 ntly used on large sts that requite to assured that there the forest. This to water, obviates ests without any and at the same rty. The manuinches in diamemeter, as thin as very little of the t.with the mill neasure per day ount. Of hard day would be'a by expert men. t, (see page ro) as cut with one en hours. We ontractors and tvanced to cut required.f engine here n apart ; horityle ; or return red to furnish onary mills of confident that their ordens. gue of their

THE PATENT EXCELSIOR

THE GREAT SAVING OF TIME-VVery révolution SINGEtiog.
cutting, is a loss of time. With the Excelsior E.-Every révolution a saw makes, when not \log to be fastened, no matier how frocty or how he sawyer doe; not require to wait a moment for a CANNOT WORK LOOSE OR FAL
except bv hand of onerator. LESS LIABILITY hidden endangering the saw. TO DAMAGE SAW.-Dogs driven in on slant have points HÓLDS FOR CEN HOLDS FOR CENTRE RIPPING.-All sawyers. understand that in ripping a greatest weight being c.ff the carriag to hold the piece left on carriage square with the knee, the fimber when sawn diam nd shape. The Excelsior ines to tip outward towords the saw, making DURABILITY. - Mrde of male Excelsiar obviates the difficulty.
RANGE OF WORK.-Is of the largest; combined with a lifetime without repairs. rapidity of action. WORK.-Is of the largest; combined with simplicity, strength and

To Attach the Plain Excelsior to any Mill, it is only necessary to drill two one-half inch holes throigh the standard of knee, and b,it the digg firmly to the same, as shown in cut. They'should be set far enough back from the face of the knee to allow the frame of the dog to of the dog should be tw, inches from The Duplex Excelsior is used principally in seat.
suff. The lower attachment is bolted principally in sawing quarter stock or other irregular piece attached, anchean be readily disconned fast to the opposite side of the knee, from whinh the dog is are manufactured upon special orlers only, and the upper dog used alone, same as Excelsior. They attachment can be made. In giving dimensions dimensions of the knee mus be given before the give thickness of same four inches back of the finake a paper pattern of the knee, full size, and head block.

Since. excentric holding the Dogs of doutle-with, giving a much stronger and mome delects, making the

A; soon as we can procure steel the proper size we shall use it in place of wrought-iron through. out its construction.

Champion Portable Saw Mills.

 WE USE EVEN NUMBERS FOR PORTABLE SAW MILLS, ODD NUMBERS FOR. PORTABLE GRIST MILLS.

Note.-To prevent repetition we do not give all the possible changes that ca be suggested or desired in these mills. Where a larger engine is required for the same size mill, or where Saw-irons are to be changed for larger or smaller, the advance or reduction in price will be the difference in the list prices (which will be found elsewhere ${ }_{2}$) for the articles changed, except some slight addition, whers size of belt, pulleys, \&c., are increased.
No. 2.-12 Horse-power Mill consists of the 12 Horse-Power Patent Fire-Proof Champion Engine, or No. 7 Champion on wheels, connected by endless 8 -inch 4-ply belt and tightener to our No. A patent iron frame saw irons-using a 40 -inch inserted tooth sawcarriage has 3 iron log seats, and cuts 5 to 20 feet long. Capacity, 3,000 to $4, \mathrm{~d} 00$ feet per day. Price complete, put in operation on our usual conditions and terms; see cut on opposite page. Only.recommended for the very lightest work.

Price. . \$1,365
The same with engine and boiler on skids, or engine stationsry and
No. $21 / 2$. The same as No. 1, but whethe tional safety boiler with Horizontal or Vertical Tubes; see pages 23 to 25 No. 133° Circular

No. 4.-16 Horse-Power Mill consists of the 16 Horse-Power Patent Fire-Proof Champion Engine or No. 8 Champion on wheels, attached to No. A saw irons, same as 12 h . p. but using 48 -inch inserted tooth saw, and Ewart chain sawdust carrier. 15 feet long. Capacity, 4,000 to 5,000 feet per day. Put in operation on our usual conditions and terms; see last page of price list. . Price. . \$ 1,575
The same wi.h Engine and Bniler on skids, or Engine Stationary and Boiler Keturn Tubular Fire Box; see page $13 \ldots .$. . Price. . $\$ \mathrm{I}, 500$
No. 41/2.-The same as No. 2, but with Sectional Safety Boiler with Horizontal or Vertical Tubes; see pages 23 to 25 No. 13 Circular. . Price $\$ 反, 700$
No. 6.-20 Horse-Power Mill consists of the 20 Horse-Power Patent Fire-Proof Champion Engine or No. 9 Champion, with iron whcels and springs under boiler, attarhed to our No. © iron frame saw irons by an end'ess rubber belt, 9 -inch 4 -ply, 50 feet long, using a 52 -inch inserted tooth saw. Carriage has 3 iron log seats, and cuts 5 to 20 or 23 feet long, with sawdust carrier as in No. 2. Capacity, 5,000 to 7,000 feet of lumber day.

PRICE. . $\$ 1,890$
The same with Engine and Boiler on Skids, or Engine Stationery and Boikr Return Tubular Fire Box, being No. 9 Champion, see page 13 .
. Price. . 1 ,Soo

Fire-Proó Champion
 WIII

The above cut represents Mills enumerated on page 15. Specially constructed for hard work. For over a quartar of a century the leading Pioneer Mill of the Ganadian Settlers. Owing to its freedom from repairs, can be used with safety in pineries situated lon from manufacturies or-machine shops.

In I so thats

DIRECT ACTION AND BELTED.
No. 10a.--The same Mill as No. 10, but using a 25 h. p Stationary Champion Engine, new pattern, and Returrmbubular Boiler to build in brick, including driving belt 40 feet of 12 inch 4 ply Gandy, tightner and pulleys, also millwright work
. Price.. \$2,100
No. 14.--Direct Action Clipper Saw Mill, 30 horse-power, with Return Tubular Boiler. Regular size 48 in. $\times 14$ feet long, with $31 / 2$ inch tubes. No. E Saw Irons, 8 in . face frictions, ordinary carriage, to cuty 5 to 20 feet long, 62 inch solid saw, Ewart Chain sawdust carrier, 25 feet long and No. 67 chain, including millwright work as in No. 4. Capacity, 9,000 to 13,000 feet per day....., Price.. 2,600
No. 14a.-The same Mill as No. 14, but using a 30 h. p. Stationary Champion Engine and with Return Tubular Boiler to build in brick. Engine connected to saw by 40 feet of 16 inch 4 ply Gandy belt and tightner.

Price..
2,400
No $14 \frac{1}{2}$.-Patent Direct Action Saw Mill, 30 horse-power, with Return Tubular Boiler, 5^{2} in. x_{1}, fect long, with $31 / 2 \mathrm{in}$. tubes. No. J Saw irons to cut 5 to 20 or 23 feett long, 66 in. solid saw, Ewart Chain Sawdust carrier 30 feet lohg, using No. 77 (hain, and millwright work as in No. 5. Capacity, ro,000 to ra, 000 feet per day. . Price. . No. 20.-Patent Direct Action Saw Mill. 35 horse-power consist of our new pattern 35 h . . p. engine with boiler 52 inch diameter, 14 feet long, $31 / 2$ inch tubés 14 feet long. New No. J iron frame without top saw rig, 3 block carriage new patten with independant knees, with 2 Knight patent dogs, heavy rack and pinion feed works, 12 inch face frictions, friction or ratchet set works, Sawdust carrier 30 feet, No. 77 chain and millwright work. . PRICE.. 3,400
In Direct Action Mills we furnish engines with Sawyer's Valve and connections, so that Sawyer controls the working of engine- We also furnish governors to be used when engine is doing any work other than sawing.

MILL

BRANTFORI, ONTARIO, CANADA.

DIRECr HCNION SHW MILLS WINH HIRẸ BOX BOILERS.

Na. 12.-Patent Direct Action Saw Mill, 25 horse-power, with Locomotive Boiler, (of which this cut is an exact illustration, or Return Tubular life Box Boiler, No. E Saw-irons with improved sawdust carrier 25 feet , including 60 inch solid saw, Ewart Chain 5 to 20 feet long, 3 iron log seats, and 57 chain, and carriage to cut Capacity, 8,000 to 12,000 per day....
\qquad Pricli: $\$ 2,650$
No. 16-Patent Direct Action Saw Mill, new pattern Engine, 30 horse-power with Locomotive Boiler. or Return Tubular Fire Box Boiler, new style No. J iron frame Sawirons, 12 inch face frictions, stop motion attachment, carriage has 3° iron \log seats, 2 Knightodogs, cuts 5 to 20 feet loñg, 66 inch solid saw, Ewart Chain sawdust carrier 25 feet long, using No. 67 chain
and millwright work as in No. 8

No. 18.-A Portable Belted Mill, ne屯́ páttern, 35 horse-power Engine with Locomotive Boiler or Return Tubular Fire Box Boller and otherwise the same as
pulleys .1..... 16 , including helt and

For Prices of Saws and Saw Furnishings when desired at a slight advance on cost.

WATEROUS ENGINE WORKS CO.

This mill has been invented and arranged to meet a long felt want in Canada. In many districts along new railroads are vast tracts of small timber, cedar, tamarac, hemlock, etc.; that will not pay to turn into ties if taken to a saw mill to be cut in the ordinary way. This mill is intended to be placed in the bush or alonides side a railway. The logs 8 to 14 inches diameter. 8 . feet long or more, are thrown on skids at bottom of trimmer frame, where one mans, adjusts them on the endless chain which carries them throrgli between the trimmer saws. These saws are 8 feet apart or length of tie ; if logs are long enough for two ties, the untrimmed piece rolls back on to the skids at bottom, is adjusted on the chains, and carried through the trimmers; from these saws the trimmed \log rolls down to a trough, with hinged sides worked by a lever, shown in cut. This'device cencres the logs for the main saws; it is then let down on to the endless and continually moving chain and carried through the main saws, there being two saws 6 inches or more (thickness of tie) apart. Endless carriers on each side of \log chain take away the refuse slabs, bark and sawdust. On arrival at the end $0 /$ carriage the tie is caught by an endless chain carrier and carried out as far as desired through a gang of men who take them off and pile for shipment on either side of carrier. The sawdust and refuse is,carried to the fireman. The larger slabs ate piled on one side to be made into shingles with Spalt machine or into lath.

The operation it will be seen is continuous, and the capacity 3 to 5 ties per minute. The engine is our 30 horse power. Larger or smaller engine-could be furnished if desired, though 30 h. p. is, we think, as śmall as should be used
edium
Size
Saw
Frame
In out No A or smallest size Saw Irons we use a much smaller and lower frame and althignts is sometimes used-still the frame is not designed for such heavyFor If all its details it is like the medium size. only smaller and lighter.

The "Medium Size Frame is used for C, E, and F Irons, using from $41 / 2$ lich face friction to 8 inch. It can also be arranged with wider ends to enable driving pulley to be placed inside of the frame where space or position of mill requires this. When nothing is said in order, we always send frame as shown in cut, with pulley outside of frame and 3 bearings under mandrel.

Saw Mandrels are Heavy Steel of Hammered Iron, forged specially for us. They are made with the greatest of care-to special templets- $s \rho$ that at any time saws can be ordered by telegraph and a sure fit guaranteed. The Mandrel is one of the most important parts of the mill, for if not properly made and fitted the saw will not hang or run true and uneven lumber is the result; either unsaleable, or if sold, at largely reduced prices. See remarks on this point.pages 3, 16 and 17 in No. 12 Circular on.Saws. The Mandrel boxes or bearings are adjustable either way so that saws can be readily lined in or out of the log and adjusted any way to overcome a tendency to run. See pages 8,9 and 10 in cireular 12.

Large Rollers on frame inside saw in front and behifid mandrel' to receive heavy slabs, timber, or boards, and prevent sagging or binding on the saw.

Timber Gauge is a special feature. The wheel or dial on top is brass faced, marked and drilled in $1 / 8$-inches from $1 / 8$ to 9 inches. To cut dimension stuff, it is on y necessary for sawyer to drop a pin into the hole marked the size desired and turn handle to it, this brings the rollers the êxact distance from the saw, so that when loges set up to it, th : exact'size wanted is cut.

Feed and Gig Lever shown in centre of front end of frame is easily oparated to run the carriage backward or forward.

Stop Motion Lever shown in cut of mill, page 10 , is about level with the floor, and in such a position that sawyer can slow up the motion of carriage if it is returning too fast ; this prevents excessive wear of frictions.

Receeding Lever is also near saxyers foot, being generally a small knob coming up through the floor. A slight pressure of the foot on this throws the edge of a plank properly hung against the pulley shown in 'cut, page 24 , attached to dog shaft by bevel gearing. Before however, it can reach the pulley it acts on 9 trip lever which throw's th: ratchet or set works.out of gear. As the carriage retimer its-motion causestherouthey to revolve by friction with the plank and this uns pe hear blocks back as far as desired by sawyer, to receiye the next log be it large or small.

Improved No. J Saw Frame.

We have made this new pattern of saw frame specially for heavy work, in "onnection with our new carriage for large logs that require a vory large saw. The mandrel is forged steel, very heavy and runs in three long adjustable reservoir oil boxes. The frame takes in any size saw to 72 inches and is amply strong and well braced, ac will be seen from the glimpse shown of the inside. to stand the st ain of so large a saw and the largest Top Saw Frame also. 'The engraving shows the frame arranged with No. 3 or medium s re top saw rig.

Saw Guide is arranged so that outer arm turns up and permits saw to be taket: off without disarranging guide. This is an improvement old gawyers will appreciate, as they know the trouble sometimes exp ?ienced to get the guide adjusted properly:

It is also : djustable: The hand wheel shown in front of frame adjusts to a ni: ty the guide either way, so that while saw is running it can be controlled without stopping by the sawyer. This is another impro. ment sawyers will appreciate.

New drising arrangement for upper saw, answers for an adjustable tightener by connection with the lever andstop attached in front of the top saw frame, and also reverses the motion running top saw agains the \log in place of with it as lower side of under saw runs. By running this saw in this way the dirt, gravel or grit is thrown out , cut by saw in place of into it, as would be the case with reverse notion, \therefore.

Top Saw Frame, dearly shown in cut, is strong and well braced, makin: it very stiff.' By means of the turned uprights it is adjustable by ::crews, to line with lower saw or to take up the wear in the saws. guide.

It is furnished with self-oiling boxes and an adjustable saw

RECENT IMPROVEMENTS.

Recognizing the fact that nothing is perfect, we are constantly devoting time and energy to improve our machinery. In A, C \& E Carriages we have strengthened the LOG SEATS, making them heavier and stronger to enable them to withstand careless handling.

New Reservoir Solid Brass Boxes take the place of the old half box for axles of V wheels. These boxes are dust proof and have in the reservoir a simple self-oiling deviee, and will hold enough oil for a week's run.

Our." Knight" Dog, fully shown in cuts of new carriage, is another feature added to and used on all our large carriages. It is very strong, quick working and reliable, with it a round log can be instantly dogged firmly, although frozen hard, and in a kecond the log can be undogged and the dog put in pósition to hold last board whit is being sawn I inch or $3 / 4$ thick. Its use intcreases the capacity of a Mil fully 10 to 20 rer cent.

Self-Receding Attachment, also clearly shown, has been şimplified and improved and is now placed on all our Carriages.

Friction Set Works are more reliable, less inclined to wear andet out of order than the old ratchet set works. They are very durable, do not slip ; held all they take and set the log accurately.

They can be arranged to set from behind as well as in front. We make all our Carriages to set from the front side by handle over the log, as shown in our cuts, unless specially ordered to set from behind.'

The advantage we claim for this is the position given the sawyer. He stands in front of the log, secs the last board as it drops, and at a glance can tell as the \log is returning into what thicknt ss of board it is best to put the next cut. If clear a two or thre e inch plank is much more valuable than one inch, etc., etc. The instant the log stops he grasps the set lever and sits for the next board while log is stopping ind returning to the saw. With an expert sawyer the \log never stops, and 7 boards 14 inches wide, 1 inch thick, i6, feet long have been easily dropped in one minute with our No. 8 and No. 12 Direct Action Mills.

These Set Works are also arranged so that one pull of the set lever as far as it will go sets for $1 / 2$ inch, 1 or $11 / 2$ or. 2 inches as case may be. That is it can be set for any of these thickhesses so that if set for r inch, one pull is r inch, two pulls make 2 inches, etc., or if $s=t$ only $1 / 2$ inch, 3 pulls will make $11 / 2$ inches.

Log and Board Rules placed on frort main log seat cover are great conveniences. By noticing the pointers it can be instantly seen without measuring or calculating just what width of \log remains on the log seats, and enables sawyer to decide into what sizes it is best to saw the cant or log.

Steel " $\wedge^{" 1}$ Track uncer log seats. This track is steel, planed perfectly true, and makes a very stiff, strong, accurate track. . It is in 10 feet sections, double the length of our old cast track. It is the only. Steel track in the market.

Improved J Garriage with Independant and
 simultaneous standards.

The improvements in our new Carriage, shown in opposite cut, when compared with Carriage on page 24 , are readily seen. First, the Log Seats are made very heapy, having been heavily ribbed throughout where the strain is greatest. The front has been ribbed and braced to support the increased size of wheel axles both in length and diameter.

The" Reservoir Solid IUst-proof Brass Boxes are clearly shown, and when compared with cut on page 24 . of old carriage, the difference in size and style will be seen.
V Wheels arė increased to 14 inches in diameter, and made solid to prevent flanges splitting off.

Back Wheels have had a tlange placed on the inner edge to assist in keeping the Carriage on the track when log is being rolled on from skids.

Rubber Cushions can be seen in cut placed over the brass boxes. These relieve the log seat of any very heavy jar that may occur from the rolling on, or lifting up and dropping of a heavy log by the careless handling of the log turner.

Simultaneous and Independant Standards. This improvement does away with the wedge that was advanced from the centre of the old standard by lever and pawl to take up the crook and faper in a log, and fills its place very much better.

Straightening small crooked logs. In sawing long logs these standards can be advanced 4 inches to a crooked end of the log, fastened to it, and if the log is not too stiff, it can be drawn back to its former position bringing the \log with it, and if this is not enough to straighten the log, 'the other standard can be shoved out any portion of the four inches and held there.

The Rack is made heavier, square toothed, with webbed sides, which strengthen and support it, so that pinion cannot bottom and catch. The carriage shown may be arranged for steam'fied.

All our Carriages are wooded with seasoned timber before shipment, and are very strong and rigid, being firmly braced.

Saw Mill Machinery.

Different Sizes of Saw Frames and Carriages, made either right or left hand.

When ordering always state if right or left hand carriage is ${ }^{\circ}$ required, see remarks page 3. See pages $5,6,7$ and 8 for discription of the mode of operation. No. \mathbf{A} (originally No. $31 / 2$),-Smallest Size of Saw Irons we make, has improved iron frame, $3^{1 / 2}$-inch face friction, 2 -inch double leather feed belt, timber guage, improved Gauley friction set works arranged so as to run knees forward or back, 3 feed speeds, adjustable guide, lumber rollers on frame, pulley 24×10 outside of frame with outer journal. Carriage will take anys ze log up to 24 inches diameter; has $3 \log$ seats, 2 mains and I intermediate 5 feet apart, square edge dogs that grip top and bott m of square side of timber or lumber, enabling last board to be cut $3 / 4$ inch thirk if desired, adjustable lever wedges: for crooked and taper logs, 27 feet segment rail, 50 feet V and flattrack; cuts 5 to 20 feet logs, takes any size saw up to 48 inches. Carriage is wo ded, marked, knocked down ready for ship̆ment. Without saw

No. \mathbf{O} (originally No. 3).-Medium Iron Frame, $41 / 2$-inch face friction, $21 / 2$ inch duuble leather feed belt, timber gauge, friction set'works, 3 speeds, adjustable guide, large lumber rollers on frame; pully 24×13 outside of trame, ${ }^{5}$ with outer journal ; carriage the same as A, with small segments; takes any size saw up to 52 irches., Without saw..
No. D.-The same Saw Irons as C, but 6 inch face friction, 3 -inch double leather feed belt, ${ }^{1} \mathbf{4 x} \mathbf{2 4}$ pulley, wider segment, larger mandrel; made for fast speed as a pony or stock mill for large mills; has stop motion and , self-receeding attachments ; will take up to 54 -inch saw. Without saw . Price..
No. \mathbf{E} (originally No. 2).-Medium Iron Frame-Can be made wide for pulley to go inside of frame, when so ordered, otherwise made narrow and pulley placed outside, with extra journal, thu; placing 3 bearings under mandrel and taking all jar off saw, uses 15×24 to 30 inch pulley, 6 -inch face friction. 3 -inch double leather feed belt, 3 speeds for feef, adjustable guide, 4 -inch.lumber rollers on frame, timber gauge, friction set works, stop motion altachment; carriage has 3 ironlog seats, 2 mains and I intermediate, taking in a 30 or 36 inch \log; «cuts;5 to 23 feet long, 27 fect segment, 50 feet heavy V and takes any size saw to 60 inches. Without saw double leather feed belt, heavier mandrel, 16×24 or 26 -inch pulley, 3 -inch segments; larger bearings containing ol-reservoir ; otherwise the same as No. E but strengthened, with different cones for faster cutting; made strong for heavy work...... Price.. .
No. G.-The same as No. F, but with New Pattern Carriage, one size

No. H.-New Pattern Iron Frame, with 10 -inch face frictions. The carriage is one size larger, orlginal style, with 2 mains and one intermediate, suitable for $\log 5$ to 23 ft . long, 54 -inch in diameter, 4 -inch segment: 'Last board dogs that grip top and bottom of square side of timber or lumber or Knight's patent dogs enabling last board to be $3 / 4$ inch thick, adjustable lever wedgesifor crooked logs, log seats arranged to prevent a "Nigger" or under floor log roller from shoving carriage off the track; has selt-receding head block attachment, takes up to 62 -inch saw. Without saw. Prige.: No. J (originally No. 1). -Netw Pattern Iron Frame, (see page ${ }_{2}$ 2), heary and strong, with 4 -irch mandrel, pilley $17 \times 30 \mathrm{inch}$, webbed and turned inside and out. Takes in any size saw up to 72 -inch, has 12 -inch face frictions, the one on mandrel webbed and turned inside and out, feeds 4 to 8 in . per revolution if power permits, or proper feed for power used, 6 -inch double leather feed belt, timber and lumber gauge, nèw adjustable guide, large and improved mandrel bearings with oil reservoir, and new pattern carriage the same as
 No. L-The sqme Improved Saw Irons as J, but frame enlarged and webbed pulley, 17×30, placed inside of frame, friction pulley taken off, mandrel (which is thus relieved of its strain) and placed on a counter shaft belowframie, on this shaft is a 17×30 pulley around which the main driving belt laps, driving the feed works, and in its turn acts as a tightner to main belt.
No. M.-Same as J. but frame arranged for 4 win engine Peam feed without friction feed works, but in their place Twin engines (See page 30) arranged to be placed in engine room with connections to carriage and connections to sawyer's lever, carriage as shown in cut page 32 with double segments. Engines and evergthing complete for carriage to cut 5 to 23 fietlogs; no saw and no top saw rig. . Price.. 1,350 Siw thandrels are invariably either hammered (forged) iron or steel. No common roll، d iron mandrels are used.

In all the larger mills in the lumbering centres the "Gun Shot" steam feed as it is frequently called is being replaced with the Twin Engine Feed for many reasons, viz. : $+$

Cheapen in first cost, and more economical in steam. The engines being * only 10 to 12 h, p, take very much less steam than the long cylinder (it having to be full length of carriage) which it was necessary to fill for each movement of the carriage ; requiring in some instances several extra boilers.

More Sensitive, and still more easily controlled by the sawyer ; much less liability to accidents.

Being in Engine Room, it is under the supetvision and control of enginter as well as the control of the Sawyer.

Advantages over friction or power feeds is its great and instantaneous range of speed. The carriage can be slowed up till it bearly moves a'ong, and next moment speed can be increased till it fairly seems to fly. The variations being under control of sawyer can be exercised at will without stopping carriage or mill to change. In the cone, feed you have two or at the most three feeds, these are changed by moving belt on the cone pulleys so that iced is not often changed.

Speed of Cutting is therefore much increased provided there is plenty of power behind to drive the mill in unison with the carriage.

The Engine shaft runs level with the flopr and on its other end are the pinions working in the racks on carriage barrel for Rope Feed.

The valve shaft runs to a convenient position and terminates in a lever so arranged as to instantly bring the lever back plumb on the centre no matter where it is when Sawyer releases it, and thus shut off steam and stop the carriage. The ball valve is worked by a cam attached to shaft, hidden in cut behind the brace, which raises it "admiting steam no matter which' way shaft is turned, but only lets in steam in proportion to the amount shaft is turned by sawyer's lever.

TOP SAW RIG.

No. 1 and 2 can be added when desired to all the Saw Frames. $\dot{N}_{(1,} 3$ and 4 can only be added to E and larger Saw Frames.

No. 1.-Consists of Mandrel, Adjustable Bozes and Pulley,
arranged to hang on beams of mill immediately over large saw min-
drel, with pulley on large saw mandrel and bilt. For saws up to 30 inches. Without saw Price... \$ 150
No. 2.-The same, but much heavier, for saws up to 40 inches.
Without saw Price. .
No. 3.-Medium rig for saws up to 30 in., to attach to saw frame, including all fitungs and belt, also the necessary change in fame to attach the rig; including the improvements illustrated on' page 22 toreverse the motion of saw. Without saw Price...

Inserted Tooth Saws furnished with our Large Portable Mills at an advance in price.

Saw mills; of all capacities, estimated tor on application; plans for belled Mills given when contract is made, Plan of foundation for-Portable-Mills-given if
purchaser wishes it.

If interested see that you get cur new 62 page circular devoted exclusively to Saws and Saw Furnishings, and valuable hints on the management of saws.

YATEROUS FNGINE WORKS, CO.,

SAW MILL

2, cross bars to lift feed rotlers; 3, rollers to shove over lumber not nceding to be edged 44, rod's working saws with hand wheel at out end, or can be arranged to be worked with levers by the knees; $5-5$, feed pulleys; 6 . arms, carrying upper toothed feed roller, can lle thrown back to clear the saw in filing; $7-7$, driving pulleys on either end of mandrel; comnter shaft to drive feed
under the floor not shown, but furnished. under the foor not shown, but furnished.

Double Edger, complete, as shown."-No belts. Three 16 -in. 9 -guage saws, two to move with hand wheels and third stationary, including dials and pointer........... PRICE.. $\$ 300$
The same, with 18 -in solid saws, 9 -guage
that two men can edge atg Edger, 3 to move by hand wheels, arranged with guides so one end of in andrel is carried by bridge tree in, furnished with tables, froit and reari; bolts, and saws can be drawn off mandrel when required, and replaced by sharp saws saws...................

The same, with 18-in. Lumberman's Clipper Saw, in place of solid saws.... Price. Single Edger, with countershaft 26 feet long, 2 pulleys the driven and the driver to edger, with 40 feet ro-in. belt from power to cointer and 35 feet 6 -in. belt to edger, and Mill-
wright work..
\qquad
New Brunswick Edger, suitable for edging long tim \quad..................Price.. commershaft, driven and driving pulleys, 40 feet 12 -in. belt, 35 feet inchuditg 26 feet all very.heavy. Includes 30 -ing saw....................... 35 feet $10-\mathrm{in}$. belt, rollers,

NERY.

eding to be enged ; worked with levers :an 'le thrown back r shaft to drive feed
wo to move
... Price.. \$ 300
-Price. 310
eeth in saw,
... Price. 350
th guides so t and rear; dge tree un sharp saws 18 -in. solid

Price.
er to edger, , and Mill...Price. elt, rollers,
\checkmark

BRANTFORD, ONTARIO, CANADA.

No. 1.-Friction Log Turner or Canter, to work over head in mill; F will turn logs either war, or completely around on cariage, shaft, projects a foot, with Sprocket Wheel (ás shown in cut), pulley, or coupling, to drive log turner
No. 2.-The same arranged at right angles to saw, with shaft extended and a sccond shaft 8 feet long, connegted with a pair of iron bevel wheels to log turner. .. Either put in a mill including pulley on power shaft, with belt and 95 millwright work, extra

No. 3.-Double Friction Log Tưrner-Irons complete, as shown in cut, ready to attach power.
No. 4.-Plain, square face Friction Turner with shaft 20 feet long pulley and friction, pinion on same in ith 3 boxes and lever, barrel shaft and boxes, fricticn wheel chain and hook

No. 1.-Endless Giant Chain Log Jack Irons, as per above cut, weight abqut $2,400 \mathrm{lbs}$., includes tail shaft and boxes, and sprocket wheel or sheive pulley, as desired.
Capacity with 1075 chain, 80 to 100 m . per day (Can be speeded to a great- Capacity " 1 $\$ 50$ " 50 to ' 80 m . ". (er capacity if desired.) No. 1075 Giant Chain, including log special, every 5 feet, per foot 150 No. 1050 " " " . " . " 40 .
No. 2. Endless Chain Log Jack, similar to above, but with toothed wheels for wrought chain.
-Wrought Chain, per foot, no speci. Is ; hnoks' with short chains are driven into logs, and hooked into chains as it pisses.
Capacity 20 m. per day, chain. per`foot
No. 3.-Friction Bull-Wheel, with lever and excentric box to throw it in and out of gear, including two shafts, winding barrel and pulley to receive power

14000
No. 4.-The Same Irons as No. 1 , without' cast frame, using spool or barrel for wrought iron chain. Price, without chain
No: 5.-Medium Heavig Geared Log Jack, with barrel for chain
to wind on, including 100 feet of $\frac{1}{18}$ straight link proved chain.... 10000
No. 6. - Light Log Jack, same style as No. 5, includes 100 fect $3 / 8$ chain 9000
Sawdust Carrier Irons, 3 shafts, boxes, driven pulley from mandrel, I pair gears, 2 chain wheels for 57 chain and larger. See pages 46 and 47
The same Irons for No. 45 chain
No. 45 chain, pet foot, 16 c .; SI link with 6 in. iron scrapers, usually placed every 16 or 18 inches, roc.; 8 in . longri2e;, 10 in long $=4 \mathrm{c}$. No. 57, chain including special link every 16 to 18 inches, ready to attach wooden scraper, 26c. The same No. 67 chain, 32 c .

WATEROUS ENGINE WORKS, CO.,

BRANTFORD', ONTARIO, CANADA.

WATEROUS ENGINE WORKS CO., BRANTFORD, CANADA,
Sole Manufacturers and Proprietors of Canadian Patent.
Send us full particulars of your requirements in conveyers; what you wish to convey-if sawdust, slabs, edgings, tanbark, shingle blocks, corn in ear, straw, grain, ice, stave bolts, or anything else that can be moved; give distances between centre's -where you wish fo drive from, if level quinclined, and how much-speed of driying shaft, if it runs parallel or at right angles to conveyers, \&c. The more intormation we receive, t le better we can advise and estimate cost.
IORD'S GOIEEP GOJXTOTIND A Rots'and Décomposes Scale in
ually keeps them clean. Boilers, and when-used cọntin-
 DOSE.-Or.e-quarter of a pouñ" per horse-powe، evéry 2 " weeks before blowing off.

WATEROUS ENGINE WORKS, CO.,

DISCRIPTION OF ENGINE.

We describe our New Pattern Engine as follows :

 FRAME.By reference to cut the shape of frame is seen. It is very strong and rigid, and will resist successtully the different strains that are brought to bear upon the frame of a fast running engine working under a high pressure of steam. There are no sharp angles, the design is handsome and susceptible of high finish.

The cylinder is made of special Salisbury iron, is bolted to head by means of Lowmoor iron bolts and nuts. The flanges are extra heavy and no part of bolting the frame to the bed comes upon the cylinder. The front head carries the stuffing box, which is

PISTON ROD. STUFFING BONES - screwed in and has a brass gland and brass nut.

The lower half of Guides are cast to frame, are planed true with cylinder, and can never afterwards get out of line.

The Piston Rod and Valve Spindle are of sifel, running through afīply deep stuffing boxes, and are proportioned th their work. Our Stuffing Boxes, Clands and Caps are made of brass, the cap screws over glend, so that by turning cap the packing is forced up to rod perfectly even. Being brass they do not corrode and stick fast.

The piston of engines over 12 inch cs linders will be made of three dings and set springs, unless otherwise ordered.

The valves are circular, the same as $\mathbb{T} 2$ have so successfully used for very many years. These as well as cylinders are made of a special mixture of Salisbury iron and will withstand the greatest wear.

Exhaust is below steam chest and can be taken out of either side. The valve and'steam chest being below cylinder, no cflinder cocks are needed as there is no danger of water accumulating in cylinder.

CROSS HEAD. CRANK. CRANK"PIN.

The Cross-head is heavy, and wrist pin is a solid portion of it.
The Crank is a counterbalanced disk, nicely polished and adds much to appearance of engine. It is forced on shaft by power press and keyed.

The Crank Pin is of cast steel, fitted tapering into corank and ground in and held with a draw key. It cannot become loose, and can be readily, repaired if necessary.

The shaft is of steel or hammered iron, amply large and runs in heavy brass boxes in pillar blocks on bedplate; the boxes are so fitted that all wear can be taken up.
FINALLY
Our engines are made thyoughout in a strictly first-class_man. manner of first-class material. Steel and Lowmoor iron and brass being freely used and all the joints that permit of itareground joints.

The Pickering Spring Governor,

Which we use on all our, Engines.

 the tension of the springs', the valve is not carried past the desired point by the momentum of heavy balls, as is generally the case. when sudden variations take place in the amount of work being done by an engine supplied with the old style

By the peculiar construction we can use steel so thin that all liability to break, or tendency to " set " or lose its elasticity is avoided, while by using several strips in each set we can obtain the

By the peculiar curve the springs work freely. and independent, without any tendency
through work. rass, the is forced rode and be made cessfully re made and the of either. der, no ater ac-
on of it. ed and haft by c̄rank jecome ad rưns xes are
sman d brass joints.

BOILERS

Our boiler shop is thowioughly equiped with special tools and machinery for acurate and rapid work, and ourir customers can rely on securing the best work at the lowest possible figure consistent with the use of strictly first-class material and the employment of the most skilled labor.

We import our iron from standard makers whose iron we have used for years; and can rely on, in as large sheets as is consistent with pröper rolling so as to have as few joints in boiler as possible.

We give some of the standard sizes of our Tubular Boiler, but are prepared to furnish on short notice any size or style of boiler, Upright, Return Tubular, Fire-Box, or Return Tubular Fire-Box or any special style desired.

We prefer iron and generally use it when not otherwise ordered although it is more expenive than steel. When parties wish steel boilers we can furnish them equally as well as iron. We test all our stationary and portable boilers with a cold water pressure of $i 25 \mathrm{lbs}$. to the square inch, and ofr portable, boilers to 100 lbs steam pressure. Our upright boilers are tested to 160 lbs . cold water and 1 IO lbs. steam pressure. We givena certificate of test, discription of boiler, etc., with all of the large boilers. We furnish with our boilers, when desired; plans and specifications, showing an improved construction of furnace of. our own design, which we have had in use for several years to the entire satisfaction of our customers.

Tubular Boilers.

Where space is' valuable the 'Tubular' Boiler with a suitable number of $21 / 2,3,31 / 2$ or 4 -inch tubes, presents many advantages. It gives the largest capacity with the least first cost, and involves considerable less after-cost in the construction of the furnace from its shorter length than flue boilers. But a ubular boiler should never be run without using a good. lime-extracting heater,
ools and cañ rely nsistent loyment:
we have nsisteńt ossible.
iler, but boiler, $\mathrm{ire}_{7} \mathrm{Box}$
herwise parties s iron. water ilers to 60 lbs. cate of We ations, design, atisfac-

Very small and long tubes are insufficient, because they caninot be traversed by flame, or even by very lightly heated air, most of the heat being given up in the first few feet of length. We do not recommend the use of anything under $21 / 2$ inches, and where 3 inch tubes are selected, they should not be longer than I2 feet.

Mud Pire.--When we sell boiler alone and mud pipe is not specially orderes we will put blow off cock in end of boiler and lugs on the side to support it, doing away with stand and mud pipe castings to enable us to compete with others who use this cheaper style of setting. In the care of a tubular boiler it is very important that the tubes are kept constantly cleaned and free from soot.

Locomotive and Return; Tubular Fife-box and Upright Boilers.

We build our Locomotive Boilers of the most approved patterns. The Fire-box is made of No. 1 Krupp or Lowmoor iron, heads the same, with water front, all most thoroughly stay: ed with Lowmoor iron stay bolts, screwed through both sheets and then riveted over at each end making a most durable stay, one offering the least resistance to the water or cleaning out, and the least lodging place for mud and scale to accumulate. In our smaller boilers the steam dome is of cast iron and joined to the lower section with a planed flange and thoroughly bolted. "The lower section is riveted to boiler with a caulking ring between.

The Return Tubular Fire-box Boilers are of mewest design with large flue extending about two thirds the length of the boiler and ending in small tubes for the remainder of the distance with a corresponding number of return tubes surrounding the fire flue to return smoke, \&c., to stack.. They are thoroughly built and stayed and furnished with every means of obtaining access to inside for cleaning purposes.

The Chatnpion Upright Boiler is made in tliree styles, plain, sectional with horizontal tubes entirely covered with water, or sectional with upright tubes. Full description of these upright boilers will be found on pages 23 " 24 and 25 of No. 13 Circular. These boilers are made any size desired, and cin be placed on wheels whe: desired, making the boiler still more portable and the engine on timber beside it.
e they canheated air, of length. nches, and han 12 feet.
pipe is not boiler and mud pipe is cheaper important soot.
bular
ers.
oved pat-
Lowmoor
ghly stay: heets and stay, one and the
In our ed to the ed. The
tween.
newest length of f the disrounding oroughly obtaining
es, plain, water, or upright Circular. aced on able and

Stationary Engines.

20 Horse-power, single valve, with Retürn Tubular Boiler, saw mill Engine. . $\$ 1,1,00$
20 'Horse-power, single valve, double crank same as engine on page 58 , with locomotive boiler, engine arranged to sit oh top of boiler, or on foundation at one side, changeable from one position to the other

I, 250 20 Horse-power, single valve, combined portable and stationary, with locomotive boiler, with water front, similar to cut on page 17

1,350
25. Horse-power, Single valvé, saw mill Engine with tubular boiler........ 1,250

25 ." "Two valve, adjustable cut off Engine, with tubular boiler.: 1,350
25 "" Single valve, saw mill Engine, with locomotive boiler 1,500
25 ". Two valve, adjustable cut off Engine, with locomotive boiler 1,600
30 "، Single;valve-saw mill Engine, with tubular boiler 1,500
30 " " "Two valve, adjustable dut off Engine, with tubular boiler.. r,600
30 ". "Single valve, saw mill Engine, with locomotive boiler 1,750
35 ". Single valve, saw mill Engine, with tubular boiler 1,750
35 " ". Two valve, adjustable cut off"Engiqe, with tubular boiler. ., 850
35 "" Single valve, saw-mill Engine, with locomotive bゆiler $\quad 2,000$
40. " . Two"valve adjustable cut off Engine 2,000

60 . 4 Steam pumps furnished with all Engines of 40 horse- 2,700
70 ." " . power and over and all have
85 " $\quad \begin{aligned} & \text { power and over, and all have tubular boilers, unless } \\ & \text { otherwise mentioned. } \\ & 5,500\end{aligned}$
100

Boilers complete of ample size to develop the power rated are included in the above prices.

1
 Waterous Patent Moveable Case Heater and Lime Extractor.

No. 1, Small Size, for 25 Horse-power Engine :........................ $\$$
No. 2, Medium"Size, tor Enginés up to 45 Horse ower . . $\therefore . . .$.
No. 3, Largest Size, 'for Engines up to 80 or 100 Horse-power, with wrought
150
INJEOTORSIsupplied in place of power pumps at same price or stiam pumps at slight advance in price.

For Shingle Factories, Planing, Sash and ion
Stationary or Portable Champion Eng, Sash and Door Factorics, Brick Vards, use the Fire-box, or plain Return Tubular Boiler. We are prepared to quote prices or from 6 horse power up.

Vards, use the Return Tubular
engine or boiler

The Fire-Proof Champion on Wheels, Upright and Horizontal Return Tubular Fire-Box Boilers.

 No 1 Speo llustrated and Described in No. 13 Circuiar. No. 1. 6 Horse-power "Fire-Proof" Champion Engine on Wheels, arranged with shafts for one horse, \&c., all complete, likeour 12 and 16 Horse-powers for driving Separators up to 24 in. cylin-
 No. 3.-12 Horse-power "Fire-Proof, Champion Price... $\$ 1$ Engine,
standard size, suitable to drive, with ample power any size cylinder,
i8 in. diameter to 40 in. long, with wheels, axles, clamps, and usual No. 3.-12 Horse-power "Fire-Proof, Champion Price... $\$ 1$ Engine,
standard size, suitable to drive, with ample power any size cylinder,
i8 in. diameter to 40 in. long, with wheels, axles, clamps, and usual fittings. Weight about 5,000 lbs. No. 3a.-The same, with sectional safety boiler, either style..................... No. 4.-16 Horse-power "Fire-proof". Champion Engine on wheels, our standard size, for No. 3 portable Saw Mills and No. 1.5 Flouring Mills. Weight, about 5,5000 Price. .
Nó. 4a. -The same, with sectional safety boiler, either style Price. No. 5. 20 , Horse-power "Fire-Proof." Chandpion Engine on for Portable Saw Mills and Grist Mills. With this engine we use iron No. 5a.-The same, with sectional safety boiler, either style... Price. . Self-Propelling or Traction attachment, with reversing and stearing arıangements, added to 12, 16 or 20 Horse-power Engines, at an A Cross-Cut Wood Saw can be attached to the boiler of No. 3,4 and 5 Engines, driven by bett from pullex on 'Crank shaft outside of fly wheel, at an adyance, including belt, 24 in . saw and pulley. Champion Engiine, occupies about 3 ft., $6 \mathrm{in}, \mathrm{x}_{4} \mathrm{ft}$. 4 in., five feet high. Other sixes in proportion. It is a "self-contained machine," ready to drop down and run immediately. Boiler and engine set on cone casting, being in shape of large pan under boiler to catch all ashes, B-- 6 coal, water, etc., obviating danger of fire from these causes. . Price. $\$$ - Arrester, for use about same as above, but w th Patent Spark wood, ar d for use in driving light steaming and cutting feed, sawing L. -12 Horse-Power No. 3 Champion Engine on skids in place of wheels, Upright or Retum Tubular Fire-box boiler; if not stated which hoiler, will send upright. $\because \ldots . .$. M. -12 Horse-power No. 3 Champion Engine, with sectional safety boiler, either style, on skids. PRice.
N.-16 Horse-power Nó 4 Champion Engine, on skids in place of wheels, Up ight or Return Tubular Fire-box boiler ; it not stated
which boiler, will send upright. PRICE. O.-16 Horse-power No. 4 Champion Engine, with sectional safety boiler, either style, on skids........................ . Price. P.-20 Horse-power No. 5 Champion Engine, on skids in place

Wheels,

 x Boilers. ular.gine on
plete, like in. cylin-
Price. . $\$$
Engine, cylĭnder, nd usual Price:.
Price: gine on Jills and Price.. : 950 Price. $1,08_{5}$ rine on adapted use iron Price. . I, 20̈OC
Price.
es, at an
790

is.

zontal five feet chine," set on 1 ashes, RICE. . \$ 'Spark sawing RICE . 1 place stated RICE.
ctional RICE. place stated रICE. ctional RICE. . I,040
3, 4 and
le of fly
C. 6 Horss-power Champion Engine with Return Tubular Boiler, to build in brick, with front plate, back plate, smoke-stack 25 feet long, an 1 all the usual fittings Price: . $\$$ D.-The same Engine, 6 Horse-Fower. Stationairy Champion, with 8 Horse-power Retura Tubular Boiler. . . - Price..
E. -10 H Hree-power Stationary Champion Engine, with 10 Horse-power Return Tubular Boiler, 30 feet smoke-stack, and all usual Atting
F.-12 Horse-power Stationary Ohampion Engine, with Return Tubular Boiler of 12 Horse-power, 30 feet of smokepipe and all the usual fittings.................................
G. - 12 Horse-power Stationary Champion Engine, with Return Tubular Boiler of 14 Horse-power, 30 feet of smokepipe and all the usual fittings.
H. - 16 Horse-power Stationary, Ohampion Engine, with Return Tubular Boiler of 18 Horse-power..........PRICE.
H1.-The same, with Return Tubular Fire-Box Boiler 16 Horse-power..
K.-20 Horse-power Stationary Ohampion Engine, with Return Tubular Boiler, complete with all fixtures and
K1.-The same, with Return Tubular Fire-Box Boiler $20^{*} 975$ Horse-power. 20
S.-20 Horse-pewer Stationary Champion Engine, with Re: turn Tubular Boiler No. 3, complete with fixtures, fittings

S1:-The same, with Return Tubular Fire-box Boiler 25 Horse-powerPrice.!
T.-25 Horse-power Stationary Champion Engine with , 150 Boiler No. 3, complete with fittings, fixtures and stack.. PRICE.. U. -25 Horse-power Stationary Champion Engine with Boiler No. 4, complete with fittings, fixtures and stack.. PRICE.. V.- 30 Horse-power Stationary Champion Engine with
 Boiler No. 5 , complete with fittings, fixtures and stack.. PRICE.. 1,400

Stationary Champion Engines.

 given, be changed to Stationary Champions to be placed on foundation on one side of beiler ; when in the case of Upright Boilers an iron bottom plate is furnished. When ordering state which style of boiler. is wanted; if no mention is made, regular Upright Boiler sent.62
'WATEROUS ENGINE WORKS CO.,

The Worthington Steam Pump.

Ordinary pattern, for boiler feeding, fire and general service, having two double-acting Plungers. Water valves of rubber or metal as required. The stated capacities of the pumps given below are based upon a piston speed of from 50 to 84 feet per min-

INJEGTORS AND INSPIRATORS FURNISHED AT MANUFAGTURERS' PRIGES.

BRANTYORD, ONTARIO, CANADÁ.

BLAKES STEAM PUMPS,

 FOR FEEDING BOILERS, \&c., \&c.wo double-acting ted capacities of 84^{\prime} feet per minerably increased.

Each pump has suction and delivery openings on both sides, consequently connections can be made on either side desired.

When ordering a pump please answer the following questions :
ist. Whether fur hot or cold water?
2nd. To what height is water to be lifted by suction, and what is the length of suction pipe?

3rd. Against what pressure is water to be foreed?
4th. What is the greatest quantity of water needed per hour ?
Hand Lever works Pump when Steam is down,

We Furnish Pumps of all sizes and for all purposes.

These l'umps are substantially constructed, having all working parts made extra strong and of lasting material. The water pistons, piston rods, stuffing akes, jinings, valve seats, valve bolis, re made of the best composition. rts being interchangreable, can be emovè and duplicated in case dental breakage or unusual wear. The improved water piston (secured by letters patent) is suitably packed for hot or cold water or other licuids, adjustable to any pressure, and 'alway's. t'ght.

RE-SAWING MACHINE

The machine, shown by the accompanying engraving, is intended for sawing siding or weather-boards, and ré-sawing thin lumber. "It has fouk 6 -inch diameter feed-rolls, all strongly geared, and so arranged as to saw in the centre of the lumber; or the rolls on one side can be set rigid. They can be att tipped to saw beveling by turning one screw. The saw runs close to the rolls, and can be moved forward as the saw wears. The saw can be taken off without disturbing the mandrel. The movement of one screw adjusts the rolls on either side, position by weight and lever. We build they are held ins and one with 30 -inch. The 24 -inch two sizes of this pattern one with 24 -in saw, inches. Size of pully, 8 -inct diam will saw nine inches wide; the 30 -inch twelve adapted for the Australian 1

WATEROUS ENGINE WORKS ©CO.

$$
\begin{aligned}
& \text { certys } \\
& \text { - }-
\end{aligned}
$$

WATEROUS ENGINE WORKS, GO.,

Canadian Economist Ṗlaner, Matcher

and Moulder.为 A THOROUGHLY GOOD, CHEAP MACHINE.

The cut on opposite page gives a very good representation of our Canadian Economist Planer and Matcher. This machine is of new and improved design aṇed can be used for rapid matching, surfacing or fine panel work, on either hard or soft wood. The cylinder head is solid forged stéel, the journals six inches long and of large djameter. * The pressure bar swings in a circle around the cutter head, the bar working on trunnions, receives lumber of varying thicknesses, and does not check the feed, the pressure bar keeping the same relative distance from knives on cutter head at all points of the cut. The matcher spindles are of steel, and to change from matohing to surfacing simply unscrew the head and top of the spindles leaving the main arbors in their place. The matcher heads are the ordinary brass heads with two slots, unless otherwise ordered. "It has two speeds for feeding; the feed is started and stopped by an entirely new arrangement, doing away with all belt tighteners. The cut shows feed pulley in position. If requiring to stop or slow "feed: for a rough or knotty board, you simply take hold of handle attached to counter-shaft and lower pulley which has gear pinion in centre and which turn in a true circle around gear wheel, reliexing belt from small flangulley on counter-shaft, allowing feed stop or slow up as desired.

This machine will, plane 24 mohes wide and $\frac{1}{10}$ to 7 inches thick, and match 14 inches wide, anderas short as 4 inches, and not. clip the ends of work:

Tight and loose puilleys are ro inchesdiameter, and $61 / 2 \mathrm{face}$. and should run 900 revolutions per minute. Weight of machine, 2, 180 lbs .

Price of Machine complete as a Planer and Matcher, without Belts

No. 1 Log Roller, to roll logs to to 16 op 20 feet long, folding knees being placed 8 feet apart, all iron work, ready to set up and attach power.

Price. . \$ 275 .
No. 2 Log Roller, for logs up to 30 or 34 feet long, 3 folding knees, 24 . 275 .
No. 3 Log Roller, for logs up to 40 or 45 Price.. 375
as desired.................. 40 or 45 ft ., 5 foldıng knees, spaiced
 as desired. 50 feet, 5 folding knees, spaced The above Log Ro........................ 600 being placed within his reach; he grasps it the saryyer, the handle shown in cut ing down to pass under log, but immediately/ regainins back under log, they bendpassing it. The motion is then instantly reversed aining their upright position on on to carriage. When used in connection with aur \log rolled as fast as desired is as follows: When last board is taken off sawyer improved carriage the operation places his foot on receding lever, and as carriayer starts carriage back to log skids, log seats are automatically receded and carriage comes back the knees or slides on ways, While this is being doned and are ready to receive, \log on reaching skid, foller lever, and a log is being slowly rolled free hand, sawyer has worked the log stops it is on the log seits. - One motion of the and almost before carriage lever dogs ${ }^{\circ}$ it, and carriage meantime motion of the tail- sawyer's. Kinight Dog well 'placed that carriage hardly makes any for saw, the log oftentimes being so
. occasioned by size of log not being well gauged, and too much setting up required.

Duplex, per pairy $\quad \therefore \because \ldots .8_{5} \mathrm{cts}$.

Illustrated-andedescribed page 70 and 7 I. Price with two 36 inch saws

Pricomist of Ohain.

All chains are tes̀ted at"two and one-half tind the working strains given above
 wheel sprocket.

Attichment Price List. per Roôt.

See above list for number of tifts per fogt

Waṭekots engine works, Co., \qquad
\square

 N
\qquad

至

 .15

BEANTFORD, ONTARIO, CANADA.

WATEROUS ENGINE WORKS ©CU.
Price List of Turbine Water Wheels,
Fiur further particulars send for Illnstnatity II ícer IIheel-Cirrular.

BRANHFORD, ONTARIO, CANADA.
heels cular.
\qquad
\qquad
TABLE OF DIMENSIONS
of James Leffels improvis Turine Water-W.beels.
All' Mcasurements below are in inches or factions of an ittch, Larger sized, Wheeds" on app:ication.

 sizes over that the cases when crdered are made with flat top and bottom "and vertical sides of Boiler Iron.

In ordering whee's don't fill to state"-ytheh why they must run, WITH or A(E. WNST the sun, right or left harided.

Fivith sun RKGHT HAMOED \qquad

Whes ion 1. lfina is the heal of water when at rest : or the verticle distance from surface of thend-water to surface of atil - ater:

Question * If the stre, m is small wha quantity of watarcan be telied tipon?
Question 3. What knd of machinery ob you wish to rin ? stating all the particulars yout can.

Question +4 . State kind ot work to be done, and daily or hourly, amotint, or

No. O Saw Irons. ©Simple,

When not in use guage roller can be, by releâsing catch, be turned down out of the ${ }^{\text {way }}$.

Timber Gauge Roller Turned down 9 instantly adjusted

The grooved "topls turned Yiandlé up as in lower 'cut. Moved' to any desired size to be cut, turne 1 down there, gauge roller . seized by handle, and brought up to stop,

IMAGE EVALUATION TEST TARGET (MT-3)

0

\qquad

New Pattery No. 0 Saw Irons.

A Strictly First-Class Mill in every particuiar. Takes any Saw to 50 inches Diameter.

No. O Irons complete as shown in cut, wooden frame, patent saw guifle, patent timber gauge, 2 feeds, feed bilt, pulley 24×10 with tightener, carriage with log seats 10 feet apart, with res rvoir dust proof oil boxes, solid knees, 2 peel dogs that grab a round log on ton or a square log top) and bottom, patent friction stt works setting over log, working carriage either way, extra pinion on dog shaft for cutting shorter stuff, wo d-work of carriage, 26 feet of rack stick, 35 feet of stecl V track 1 ron and flat track and screws.: No main belt, no saw, and no frame wo k under track iron. .

Track ribbon and sills as shown in cut, framed in 12 foot sections with splicing plates arranged to be taken up and readily reset, 75 cts p . r foot 27 -00

Extra for Saws.

Diameter of saws	40 in.	42 in.	44 in .	46 in .	$48 \mathrm{in} .$	50 in.
Canadian Solid	\$25	\$30	\$36	\$42	\$50	\$55
American ${ }^{\text {S Solid }}$	30	35 *	$4{ }^{2}$	50	55	65
Emerson's Clipper	50	57	62	70	80	
Emerson's Planer.	75 *	80	85	95	105	115
Hoe Chisel Tooth	85	90	95	105	. 120	140
American Brooke Bit.	60	65	70	75	90	100
Disston Chisel Tooth.	75	. 80	85	95	100	110

Extra length of Carriage costs as follows :
Each extra log seat, knee piece and slide, wheels, boxes and pinion\$3500
Peel Dog, complete, each one, smallest size
Segment, each 3 feet long by $13 / 4$ wide round tooth; and bolts 225
Track, V steel track planed true in 10 lengths, per foot and screws.,..... 75
Flat track, drilled and counter sunk with screpw, per foot.................. 10
Woodwork of carriage for each extra foot in length........................... I 00
Dog' Shaft, turned, includes couplings, per foot............................ 75
Patent Timber Gauge, small size same as used on No. O Irons 2500
Patent Tìmber Gauge, same style, large size 3500
Patent Saw G tuge, adjustable as shown onptige $89 \ldots \ldots \ldots$.
\because NO RACK OR GEAR FEED, BUT PATENT Lever TePC, Slow Feed to Saw, Quick Return.
.\$400 00
at, saw guigle, th tightener, oof oil boxes, quare log top king carriage ff, wo d-work iron and flat wo k under
sections with ; crs pror foot 27.00

48 in.	50 in.
$\$ 50$	$\$ 55$
55	65
80	88
105	115
120	140
90	100
100	110

$\$ 3500$.1500	
	275
	ews 75
	$\cdots \cdots .10$
 1 - 00
 75
	$\cdots \cdots 2500$
	3500

No. 1 Machine uses 36 and 38 inch saws. Cuts 14 to 18 inches long by 14 wide; weight, including jointer, 2,200 , as shown in cut...... Pulley, $12 \times 81 / 2$; should run 1,400 to 1,600 revolutions per minute.
No. 2 Machine uses 40 to 42 inch saws; cuts 14 to 20 inches long then 40 inch siw, and 14 to 22 inches with 42 inch saw, by 24 inch ${ }^{\circ}$ wide Weight, including Jointer, 2,800 , as shown in cut.
Pulley, $12 \times 81 / 2$, should run 1,400 to 1,700 revolutions per minute.
New Attachment-To stop and start carriage, a friction clutch is attached to cone pulley, which obviates throwing feed wheel and pinion in and out of gear, saves wear and breakage.
Smaliwo.od's No. 1 (Small Size) Patent Selt-acting Lever Feed Shingle Mill, with jointer attached. Cost of machine complete, with jointer and belt to jointer as shown in cut, with 36 in. saw capacity 10,000 to 20,000 per day, weight $2,200 \mathrm{lbs}$
No. 1 "Machine with 38 inch ssw, including jointer and jointer belt.. 240 oo
Smallwhod's No. 2 (Large Size) Patent Self-acting Lever Feed Shingle Mill, with jointer attached, same as No. 1 , but much larger, heaver, and with larger blocks of much greater capacity, 15,000 to 30,000 per day. Uses 40 inch saw, taper ground to 14, 15 or 16 guage at rim. roo.teeth. Includes belt to jointer, weight 2,800 libs. 28500
No. 2 Machine wihh 42 inch saw; including jointer and jointer belt,, . 30000
"The Boss," or House's Patent Shingle Mill using 40 inch saw. The principle of this machine is much the same as "the "Smallwood" except that carriage is fed to siw by rack and pinion (to many a very objectionable feature) and returned by weights. Its special advantages are, first, to instantly shorten the travel of carriage to suit width of shingle block to be cut: sccond, an arrangement to enable several butts or points to be cutscontinuously at either end as desired to escape defecis in the timber. Weight of machine only 2,006 ; speed, 1,400 to $\mathrm{r} ; 600$; pulley, $12 \times 81 \%$: l'rice including jointer.... $\$ 3.3000$ Capacity of machine, 15 to 40,000 per day.
Smallwood "Jointer, illustritted page 91 ; Iron frame, Wood braces, weight, +00 , Used with House machine alo.
Single Knot Saw Jointer; two it.inch saws. One carriage and one saw. Preferred by many to knife jointer
Double Knot Saw Jointer. T'wo carriages and Saws, including 4 saws
Shingle Packers, $18,20,22$ or 25 inches dide

Champion Drag Saw, two saws $61 / 2$ f et x_{12} inch and tightner, wih. out carriage. See illustration opposite

14000
Jaçk Works, or Carriage, for champion Drag Saw. With plain straight linked chain. See.lliustration orposite.....er. 90.00
The same with No. 600 (Giant Chain. 12000
The Waterous Drag Saw Rig, with carriage and fast and loose joulley
The Bruce Drag Saw, includes carriage and fast and loose pulley, 5 10 r $1 / 2$ "foot saw

Using best French Burr Stones.
 I:xira'cost of the $!$ moulble lilevit:r at achume 375 as shown in cat. .

Requiring 2 to 20 Horse Power.

 This cut sows 2 a inch Mill tally for work, with
IMPROVED ELEVAT'OR ATTAGHMENT.

Grain is emptied from bags into hopper on the right, eleyated to the mill hopper, ground, dischárged into second devatur, elevaled and bagged, bag leing hung frous spout.
This convenient and labor saving attachment will be readily appreciated by purchasets.

We generally have these mills in stock ready for immediate shipment.

Roller and Drive

Roller re luderon $\$ 1+00 \$ 15.00 \$ 16.00 \$ 16.001 \$ 18.00 \$ 22.00 \$ 28.00 \$ 34.00 \$ 40.00$ King oulorivedix-

When ordering give thickness of tube sheet. Tubes put in with Drive Expanderare expanded both sides of plate, and serve as braces of most efficient kind.
When in want of any particular machinery send tor special circulars .:
No. 9.-Belting Circular.
No. 10.-Grist and Chopping Mills.
No. 11.--Wood-working Machinery.
No. 12. Saw and Saw Mill lurnishings.
No. 13.-l'ire-l'roof Champion Enginé.
No. .14.-This Saw Mill Circular.
No. 15.-(In press) Ewart Chain, Elevating and Conveying.
No. 16.-(In press), Water Wheel Circular.

CO.;
 Milis,

 nnch Burr Stones.
MADE.

20 Horse Pówer.

Mill rady for work, wiah

THOR ATTAGHMENT.

is bups into hopper on the will hopper, ground, disat ir, ele vated and bagged, cult:
lalur saving attachment ed ly purchasers.
ese mills in stock ready for

xpanders

$11 / 2$	4	$41 / 2$

$\$ 28.00 \$ 34.00 \$ 40.00$ 39.00
43.00

When ordering give ickness of tube sheet. ubes put in with Drive xpanderare expanded th sides of plate, and rve as braces of most icient kind.

1 circulars .:

$$
\nabla
$$

2.

i
a变

48


```
\(0 \because 0\)
```

