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PREFACE

THESE notes have been written in the hope

that they may be of some assistance to the

returned men who are starting their first year in the

Faculty of Applied Science and Engineering or who

are resuming their studies in the higher years and

wish to review the subject of Statics.

C H. C. Wright.

Engineering Building,

Jan. 2, igxQ
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NOTES ON STATICS

GRAPHKAI. AND ANAI.YTICAI.

Statu* M that branch of MtrhaniiT. which tn-atw c.f Urnvn.

MKCHANirs
Statics Kinematics Dynamics
Treats „f Forces Treats of Motion Treats ..f Forces ami M„tio„

Force is the action l)etween two InKlies. either causi- ,r tendingto cause change m their relative rest or m«ition.
'^

nr »Srr 't''' *'^'u'' "'"X'^
<'r tends to move or which changesor tends u -hange the motion of a \xhW.

^"JnKes

The m<.t n of force is first obtained directly by sensation forthe forces exerted by the voluntary muscles can Ik- f7lt The

E'eXt ""'' ""'" '•'"" '""'^"'"^ ''"^'"" '*• '"^"^^ f"»m

«r,~^"J^!t'''.""'u'-
*'"' ^pr^'V"" "f »w> '" more forces which are «>

Force has magnitude, direction, sense anr: point of application

T
'-*'*. ^heinstrument for measuring forces Ik.- the standard sorini?To calibrate this mstrument. first, observe and mark the eK Sthe application of the pull of the standard pound. Then usc-^meother weight which will produce the same effect; add the stlndaTdpound and mark the effect of the two-pound pull Continue unUthe whole range of the spring is calibrated.

""unue until

pirection. The direction of a force is the direction of thostraight line along which the Ixxly tends to move irconsequeice

n \^^t"''%f-^' 't^
^'°"lo"ta' ««• vertical directions-theSSof C ollege Street, Yonge Street, etc.

uirecuon

AlJt"^' P^ distinction between up and down in the vertical



t

The direction of a force may be represented by the direction of
a straight hne and its sense by an arrow head placed on the line.

The point of application of a force is that point of the rigid body
upon which the force acts. During this course of lectures the
problems will be limited U those concerning forces acting in one
plane only. The trusses will be considered as ideal, i.e., those
whose members are perfectly rigid without weight and intersect
perfectly at the joints. The joints act without friction so that the
only force exerted by any member must have the direction of the
member.

Vector Polygon

^^* ^M ®"^ ^^ ^ **° known forces acting on a point as indi-
cated in Fig. 1.

y^

F,gZ.

A D T *"y P°*"5 ^ ('^'K- 2) draw the line ^5 parallel to the forceAB and on sonie chosen scale cut off the length AB to represent themagnitude of the force AB Place the arrow on the line to indicate
the sense c the force. From 5 draw the line BC parallel to the

tudJ5 the foS
"""* ^"^^^ ^^ *° represent the magni-

Thus AB and BC (Fig. 2) have been drawn to represent theknown forces in such a manner that the sense marks are continuous
from the initial point A to the final point C. The fieure ABC k
called a "Vector Polygon" and the line joining i and ?:winrepre!^nt the resultant of the forces AB and 5C; i.e., :he direction ofAC will represent the direction of the resultant; the length of ylC
will represent the magnitude of the resultant and its sense will befrom A towards C.

MAB and BC be hvo forces acting on a point as in Fig. 1. thevmay be removed and the single force represented by ^4 C substituted
as their equivalent.



The proof of thi8 statement is experimental.
Let AB and BC (Fig. 3) be two strings fastened together at the

point ABC and passing over pulleys D and E. Let the other ends
of the strmgs be fastened to 10 lb. weights. Let there be applied
a pull on the point ABC such that the strings assume the position
mdicated m Fig. 3; i.e., make angles of 30° with the horizontal.

^^n
^^J. rf44

A _^R!!f *'^^PO'nt-^^C'sactedonby three forces—i.e. (1) the string

Vn t.!^ fJt^'^^^ P"l' °" ^^^ P°'"t in the direction of the string of
10 lbs., (2) the stnng BC will exert a pull on the point in the
direction of the string of 10 ibs., (3) the pull AC \s unknown.

Consider first the known forces .45 and 5Cas indicated in Fig. 4
From any point A (Fig. 5) draw the line ^B parallel to the forceAB and cut off a length ^45 to represent 10 lbs.

From B draw BC parallel to the force BC and cut of! the length
.BC to represent 10 lbs. Then the figure ABC is a Vector Polygon
and the line A C will represent the resultant.

Now the side AB is equal in length to the side BC and the
angle ^£C IS 60°; therefore, the triangle ABC is an equilateral
tnangle and the angle BA C is equal to 60°.

But the side AB makes an angle of 30° with the horizontal,
therefore the line .4 C is vertical.

r ,^^r^^ ^^^ resultant of AB and BC is a vertically upward force
of 10 lbs., I.e.:

/n-^'lt
^"""j^^ ^^ ^"^ ^^ ""^y ^ removed from the point ABC

(hig. 3) and a single vertical force with a magnitude of 10 lbs and
an upward sense substituted instead.

Therefore, the unknown force AC must be vertical, have a
downward sense and a magnitude of 10 lbs.

• ^•JS^**'^''
''ords, if a weight of 10 lbs. be suspended from the

point ABC (Fig. 3) there will be equilibrium.
Try this experimentally and it will be found to be correct-

hence, in this case the closing line of the Vector Polyeon does
represent the resultant.



Many similar experiments have been performed with the same

jidirit£andS°" '"^ "''^^"^ ^'^ ^-""^^^ '" -^-^^^e.

Let ^5, 5Cand Cp (Fig. 6) represent three known forces actine

of"4Ts"an*d r«?nnlf T^'Tk^'
P""

°J ">• ^^a horSaTpul!
sLtch (Fig 6)^

° '" d'^^^t'°" indicated in the

It IS required to find their resultant. ^'^-^•

=.„/'''l'"ff"^ P^' u* .^ (•"'»• ^) d-'aw ^^ parallel to the force ABand cut off a length ^5 to represent 5 lbs. Place the sense mark on

ftrn'c the Ze'r^ '"^ ^ ^'"" f^/° ^^^^^^"^ the7o"rce BC anSirom c tne line CD to represent the force CD.

r«c u*"^".
"^^^^ '• "" y^'^*"'" Polygon, and AD must represent the

[Sn"^ffli^^J^'Jfr^^t'
"""'°" ^"' ^^"^^- ^^^ P«>-of%pHca-

indicatel^'l^'i';^? ""^i".^ ?'§• l^
''^''^"' ^""^ ^nov-n forces asmaicated. It is required to find their resultant.

From any point ^ (Fig. 9) draw the Vector Polygon ABCDEas pre^Iously described. Then AE will represent the resultant

8



Questions

Determine graphically the resultant of

1. Two horizontal forces 4 lbs. and 5 lbs. each with opposite
senses.

2. Two horizontal forces of 4 lbs. and 5 lbs. each having the same
senses.

3. A horizontal force of 5 lbs. with a sense towards the right and
a vertical force of 5 lbs. with an upward sense.

4. A horizontal force of 10 lbs. towards the left and a vertical
force of 10 lbs. with an upward sense.

5. A horizontal force of 5 lbs. towards the right, a force of 5 lbs.
acting upward and towards the right at an angle of 60° to
the horizontal and a horizontal force of (S-S-v/S) lbs.
acting towards th. left.

Stresses i\ the Members of .\ Cantilever

Ifaset fif iqrces acting on a body are in eq uilihrinm,
ibined action does not tend to produce any change iir7tsT(

combined
their

Test or
motwn.j.c., tjieir resultant is zero Hence the cloTingline oTthe

nTltej^tllput len'gtR, or "tHe Vector
Vector Polygon in such a case wiT. ,j_j,.,y..^„. .-..»..•., u. li.c yc^iui
Polygon is said to close. The final point must coincide with the
initial point. ^

'

If any body such as ^15 (Fig. 10) is acted on by a single force P
at A m Its own direction and is kept in equilibrium by a second
force F at B, then P' must have the same direction and magnitude
as F, but the opposite sense.

/

^ *-^
/>if/<a /y^.//.

s q:

Similarly jjAB (Fig. 11) is pulled at A by Q, it must also be
pulled on at B by Q' if equilibrium is to be maintained.

In the first case the member AB is said to be in a staLe_of com-
E^sionwheiijevery. particle is pushing on the adjoining partrcTes,
while in the second case the member is said to be in a state of tension
t.e., every particle is pulling on the adjoining particles.

9



« u!:? ?foS*Jr ^^^^^ ^T'?- ^2) represent a cantilever supportinga load of 1200 lbs. at the joint ABC. *

Consider first the action of the forces on the pin ABC.

/^gJZ.
There are three members in contact with this pin, and hencethere may be three forces acting on it, but no more (see Fig. 13)

A

clos^^
^^^^ ^""^"^^^ "^^ '" ^"'''''""'"' the Vector Polygon must

fnrZ'"^'^''*'^.P°i"* ^ ^^'i?-
^^^ ^'^^ **»^ ""« ^^ parallel to the

5^lh ' Z^ f °u * ^''°^" "^'^ t''^ '^"gth ^iTto .^present1200 lbs. and place the sense mark on it.
'

CA ^TT.fl,'^''^'!* ^'r^
P^'^"^' *° ^^ *"^ f''°'" ^ a "ne parallel to

th!",i: -ii^ ^° 'n^f
intersect at the point C. Then ^BC^ is

Jin3"^ ^^'*°'" ?°'y«^"'. *"^ -»<^ *"d CA will represent thetwo unknown forces m magnitude and sense.

10



1^ f^
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^'

j
_^-

Thus the member BC( Fig. 12) exerts a force on the pin that
' IS represented bytnelmeBC (Fig. 14), «.«., it pushes on the pin and

IS therefore in a state of compression-
—

The magnitude of the push is determined by scaling the length
of the hne BC (Fig. 14). It is apparent that this is 800^3 lbs.

Thus the compression in the member BC is 800^3 lbs.

From the Vector Polygon (Fig. 14) it will be seen that the forceLA acts towards the kft, i.e., the member CA (Fig. 12) tends to
move the pin towards the left and irEHerefore pulling on it; hence,
the member is in tension. The magnitude ofTlie ferisloh will be
given by scaling the Tine C^ (Fig. 14) or 400^3 lbs.

Consider the forces acting on the pin BDC.
The member BC is in compression, therefore it pushes on the

pin with a magnitude of 800V3 lbs. as indicated in Fig. 15, while
the forces BD and DC caused by the members BD and DC are
unknown except for their directions.

A^/fi

As these three forces are in equilibrium the Vector Polygon closes.

r
^'^'^

'^J'J
P*','?^* ^ ^""^^ *he line CB (Fig. 16) parallel to the

force CB (Fig. 15 and cut ofif the length CB to represent the
magnitude 800V3 lbs.

From 5 draw BD parallel to the force BD and through C, CD
parallel to the force CD; then CBDC is the Vector Polygon and the
force BB exerted by the member 5Z?_ (Fig. 12) is towards the right;
^ence, the member pjishes on the pmand is in a state of compression
to the extent of 800v/3Tbs. ~

The force ^has an upward sense; therefore, the member pulls

o-Ss^^S^"-^^ '^ '" * ^***^ ofjensionu the magnitude of whicfrii
oOOvS lbs.



Consider the forces acting on the pin A CDE.

with'*';;!! ouSolfa iii"
''"^""' ^'"^^"^^ '^ p""^ °" '""^ p°'"*

unklown""^^^^
^^ ^"^ '^'^ exerted by the members DE and £/l are

/y^./7

From any point ^ (Fig. 18) draw the line AC parallel to the
force A C and mark off a length ^ C to represent 400v^3 lbs. Fromdraw CD to represent the force CD. Through P draw a line DE
parallel to the direction of the unknown force DE and through Adraw AE parallel to the force AE intersecting DE at the point E
thJ^''"/^^^^^

is the Vector Polygon and DE and EA represent
the two forces completely. ^

«nn"/?^K
*^^

J"^^.*^' ^^ '^ i" compression to the extent of

1200V3 lbs
" '" ^^"^'°"' ^''^ magnitude of which is

i.e., the stresses in the members of the cantilever have been deter-mined. •

5C- compression-^ 800V3 lbs.
CZ?- tension -f SOOv/S lbs.
DE— compression - 800V 3 lbs.
Z?5 -compression- SOOVS lbs.
CA - tension - 400^3 lbs.
£^ -tension -i-1200V3 lbs.

It will be found convenient to use heavy lines in the truss dia-gram to represent members in compression, light lines those in
tenston; and in the Vector Polygon, to use heavy lines to represent
those forces exerted by members in compression, while light lines
represent those exerted by members in tension.

Place^sense^marks on the Hnes representing^utside forces.
Drawing the Vector Polygons 15r the" various points" of the

cantilever (Fig. 19) together will give Fig. 20.

12



Determine the stn ses in the members of a cantTlever similar

•*!» •/*«»»

asi^cfiSTn p'rS""'
'" ''' ''"'''"" ^^^'^"«* ^"^ '-^«'

r.fis '•"^'Tfif^mm

13
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Determine the stresses in the cantilever designed and loaded as
in Fig. 25.

/v^.«;r

Determine the stresses in the above cantilever.

14
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Determine the stresses in the above trusses (Figs. 28 and 29).

Resolved Parts

^..Irfi^'f^F/if'?•
^°^ ^ * ^"'*°'' Po'yg""' then ^C represents the

resultant of the forces represented hy AB and 3C.
The forces AB and 5C are called the components of AC.

Similarly the forces represented by AB' and B'C may be called
a pair of components of AC.

Thus there may be an infinite number of pairs of components.
When the angle.between the components is a right angle as atB then the forces are not called components but resolved parts.
Thus AB' is the resolved part of^C in the direction AB' and is

the efficiency of ^ C m the direction AB'.
TIw refolved part of any force such as AB (Fig. 31) in any

given direction such as C may be determined by marking off alongAB a length to represent the magnitude of AB, from A drawing a
Ime parallel to the given direction C and through B droDoine the
perpendicular BD on it.

^^
15



Then BD will repreaent the reaolved part of ^4J in the irtv»n

t'^oZ^rJS "rf^TR??"*r forSi of which iheVSuCnt
•• "P"**^**^ by ^B M ^^fl ig a Vector Polygon, and the ancle

._P*^!;^l\f**..P«.''* o^ a force P in the horizontal direction isspoken of a. the horizontal resolved part of the force P SJwrittenAp. Mmilarly the vertical resolved part of the force P is

written K_.

catid'^ffng^^a^!
^ ***' ^'"''^ ^"*' '" magnitude acting as indi.

Xp^P co3 30°.

/7JI.X.

These horizontal resolved [jarts are equal in magnitude, P cos 30°acting towards the nght and P' cos SO' acting toward; thfleftTo distinguish between those different senses, it is customary to
call one positive and the other negative. Generally that a<' Inetowards the right is assumed as +ve. Similarly vertical resolvedparts with upward senses are assumed to be positive and thtwedownward negative.

.



Ut i» and g be two known force* acting on the point A (Fig. 33).

Draw the Vector Polygon BCD for these forces (Fig. 34).
Then BD will represent their resultant R.
Through B dni-v the horizontal and vertical lines BE and BF.
From C and D drop the perpendiculars CG and DE on BE.
Then Xp^BG

and X^'GE
Xp \-X '.BG+GE

"BE

«.*., the sum of the horizontal resolved parts of two forces is equal
to the horizontal resolved part of their resultant. What is true for
two forces must be true for any number of forces. Hence ZX-X
Similarly by dropping perpendiculars on BF it ir ay be proved that

Let ABCD {Fig. 35) be a vector polygon, then AD represents
the resultant R of the forces AB, BC and CD.

From B, C and D drop perpendiculars BE, CG and DF on AX
^AB'^^BC'^^CD '+AE+EG-FG

-'AF
"XR

.: ^X'^XR
«.«., The algebraic sum of the horizontal resolved parts of any set
of forces is equal to the horizontal resolved part of their resultant.

Similarly, it may be proved that the algebraic sum of the
vertical resolved parts of any set of forces is equal to the vertical
resolved part of their resultant,

f.e., 2F=y^.

17



Thin it has been proved that

, . generally
(a) graphically

the cloiing line of the
Vector Pblygon represents the
resultant.

(k) analytically

(1)

(2) ZY'Y.
Again, if a «et of forces is in equilibrium their resulUnt is 0.
Hence in the special case of equilibrium
(a) Graphically (ft) Analytically

The Vector Polygon (1) XX^0
cloaes (2) 2F-0

To determine analytically the ttre ws in the members of the
cantilever (Fig. 36) supporting i load o 1200 lbs. at the outer end,
consider first the three forces ii -s; on the pin ABC (Fig. 37).

^jf.36.
/yjg.57.

""ab'^
^^^--1200

^BC " ^^ '^°* ^"^ ^^*

^BC "^^ *"' OC"-5C^
The sense of BC is unknown.
.•. the senses of its resolved parts are not known.
Assume that BC is a push, then its horizontal resolved part willbe +w and its vertical resolved part +ve.

X^^'CA

""CA-^-
The sense of CA is unknow i.

18



AiMime that X^^ » +»#,

becauK thew three forces are in equilitmum,
Then

it (1)

again (3)

0-H

2Y'

BC
3

-0

CA -0

^AB-^^BC-^^CA'^

-+800V3
Thi» positive sign means that the assumption that the force BCwas a push 18 correct; therefore the member BC which makes thispush 18 m compression.

From equation (1)

^/ + CA»0
400V3+Ci4-0

C.4- -400^3

^ 1^ negative sijn means that the assumption that the horizontal
rwolved part of ^^4 was posiUve is not correct; therefore the forceCA acts towards the left and the member CA must pull on the pin.Hence CA is in tension

.0C» compression 800^3 lbs.
Ci4 -tension 400^3 lbs.

Next consider the forces acting on the pin BDC (Fig. 38).

-^«9/Sr/^«

19
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The member BC is in compression ..the member pushes on the
pm.

These three forces are in equilibrium; therefore (1) SJ^-O and
(2) 2K=0.

Assume that BD pushes and DC pulls on the pin
-400y/S+BD-DC cos 60° =

- 1200+0+Z)C sin 60'=

-DC^= + 1200 or Z?C= +800 V3 lbs.

This positive sign means that the assumption that the vertical
resolved part of DC was positive is correct; hence the member DC
pulls on the pin and is in tension.

Substitutmg in equation (1)

-400y/S-\-BD-DC cos 60'' =
-400v/S+5D -400V3 =

BZ? = +800V3
Hence the member BD pushes on the pin and is in compression.

Consider the forces acting on the pin ACDE (Fig. 39)
^^^=+400>/3 1bs.

^AC=^
A'^P = +400>/3 1bs.

F^-,= -1200 lbs.

Assume ED to be a push
then ;^^^ = +£Z?cos60°

Fg^ = +£Z) sin 60°

Assume EA to be a push

EA
Ae these four forces a.e in equilibrium, then SF=0

O-1200+Z?£sin 60°+0 =

-1200+^Z)£ =

Z>£ = 4o 1200
v3

20

= +800V3
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The positive sign means that the member does push and is in
compression.

+400>/3+400>/3+Z)£ cos GO^+EA =0
+400v/3+400>/3+400>/3+£^ =0

therefore EA = - 1200v'3
This negative sign means that the member EA does not push

but pulls, and is in tension.

Hence
Members Stress

BC — Compression
CA — Tension
DC — Tension
BD — Compression
DE — Compression
EA — Tension

Amount

800V3 lbs.

400^3 lbs.

800^3 lbs.

800V3 lbs.

- 800^3^8.
-1200V3 1bs.

Questions

By the method of resolved parts determine the stresses in the
cantilevers illustrated in Figs. 21, 23, 25, and 27.

Law of Moments
Let P and Q(Fig. 40) be any two known forces and A any ooint

distant a units from P and b from Q.

/yjp.40.

The product of P and a, i.e., P.a is called the moment of the
force P about the point A , and Qb the moment of Q about A . To
distinguish between the sense of the moment of P which tends to
turn clockwise from the sense of the moment of Q which is anti-
clockwise It IS customary to call one positive and the other negative
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usually the sense of turning with the hands of the clock is con-
sidered positive

i.e., Mp=-\-Pa

Let P and Q (Fig. 41) be any two forces and A any point; then
Mp=^ +Pa

Draw the vector polygon BCD (Fig. 42). Then BD will repre-
sent in magnitude, direction and sense the resultant (R) of P and

Produce the lines of directions of P and Q (Fig. 41) until thev

rll'^i %'/ '^^ ^'"'^."* ^ ™"«t act'through this UintThrough E draw a line parallel to the direction of R and from A
I drop the perpendicular c on R. Then Af = +/?•<:.

Through ^ draw a line parallel to R intersecting P and O atA and G respectively and join AE.
Because the triangle GEF has its sides parallel to Q, P and R

It may be considered as a vector polygon for these forces, thusGE may represent the force Q, EF-P, and FG-R.
Then " ~ —

and

but

Jl/ +J?c=+Gf"c

EFa= 2 area of triangle £Fyl

and GFc = 2 CEF
therefore ^p+Af^ may be represented by 2 area of the triangles

EFA and GEA or 2 area of triangle GEF
but 2 area of triangle GEF represents Af

therefore

^p-^^Q^^R
22



Hence the sum of the moments of any two forces about any point
is equal to the moment of their resultant about the same point

».«., SJf=M

„

Suppose the point A were below the line of direction of Q as in
Fig. 43, then

Mp^ +Po= 2 triangle EFA

M_= -Qb=-2 triangle GEA.

Mp+M^^ 2 triangle GFE^M
or

Thus the general conditions far any set of forces are

(1) 2A'= X^
(2) 2r K^

(3) tM=M„
The special con'

are
"ons for a set of forces in a state of equilibrium

(1) ZX=Q
(2) 2;k=o
(3)2ilf=0

Analytical Methods

Let the adjoining Fig. 44 represent a simple truss resting on two
walls or abutments and carrying a load of 1,000 lbs. at the centre.

/g^-^4
Consider the forces acting on the whole truss. They are AB.

BCanACA.
23
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,^

musUidJ^v!'*'^^
^^"^^ ^'^ '" ^*'"'''^""'"' **»« •a'^s of equilibrium

(1) ZX^O
(2) 2F=0

and (3) 2il/=0
From equation (3) we have

about any point is equal to 0.
Take moments abort any point in the line of direction of ACthen MAB +ABI

I

again

therefore

M^C- -1000-2

2JI/=0

+i45/-1000|+O =

^B=+10^L+5001bs.

2F=0

=+500-1000+C/l=0 ,.V

^ , .
C^ =500 lbs. A^*^'

as ilSSriig" 45.''""^ ''' '*''"'' '" " '^^'"" ^'^^^^ ''^^«'

^^V
•I

f'/



I

Make the usual assumptions for the +»« and -ve senses for
resolved parts and moments.

-—-Take moments about a point in the hne of direction of MK;
then M^B-^M^^+M^p+M^j^j+M^j^+Mj^j+Mj^^O
».«.. +>15X30-600X25- 1200X 15-1800X5+0- 1200X 10

'UA5 -15.000-18,000-9.000-12.000-18,000= "^^^^0=0
30/15= +72.000
^5= +2400 lbs.

•••

^^^+^B£+^£/r+^;.M+^AfX+^i.y+ 1^7^ =

+2400-600- 1200-1800+M/i:- 1200-900=0
.-. MK = -ir5m 2400=3300 lbs.

n/^^^j*^^"®'^?'' ^^^. ^"""^^^ ^*^*'"K on tiie pin ABC. They are AB,HL and CA and are m equilibrium
.-. (1) 2;t=0, (2) 2F=0, (3) ZM^Q

+2400+5Csin 60°+0=

'^
' 5C=-1600A/3 1bs.

,fin?^o*^fu
^''^ member BC is in compression to the extent of

Io00v3 lbs. ^

(2) 2A'=0

O-1600v'3 cos eO^+C/l =0
Cyl = +800v/3

the tension in CA is 800>/3 lbs.

Consider the forces acting on the pin CBED
2F=0

+ 1600v'3 sin 60° - 600+O+i5C sin 60° =

X 2400- 600+Z)C ^^=

Z?C=-1200-\/3
the tension in DC is 1200V3 lbs.
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2A'-0

leOpVSXcos 60°+O+£^+ 1200-^/3 cos 60»-0
£Z>-- 1400^3

the compression in ED is 1400\/3 lbs.

Consider the forces acting on the pin JACDH

-900+O+1200V3 sin 60°+/)// sin 60'+O-0
-900+1800+Z>/7^=

j,„ 900X2^"
V3 '

-600V3

the compression in DH is BOO-s/S lbs.

SAr =

O-800>/3- 1200v/3 cos GO^-SOOVS cos BO'+^/^O
-800V3- 600\/3 - 300>/«+i/y=

7/7= + 1700V3
the tension in HJ is 1700^3 lbs.

Consider the forces acting on the pin HDEFC

+600v/3 cin 60''+O-1200+O+G// sin 60° =

+900- 1200+G/7 "^-=0

GH= 300X2
V3

= +200^3

the compression in GH is 200^3 lbs.

2^=

600V3 cos 60°+1400v/3+O+FG-200>/3 cos 60° =
+300V3+ 1400v/3+ FG- 100^3 =

FG=-1600v'3
the compression in FG is lOOOVS lbs.

Consider the forces acting on the pin KJHGL
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I

-1200+O-200V3 sin dOf+CL sin 60'+0-0
-1200-300+GZ, ^-0

GL. 1500X 2

V3 + 1000-V/3

the tension in GL is 1000^3 lbs.

0- 1700>/3+200v/3 cos BO'+lOOOv/S cos 60°+Lit-0
-1700-v/3+100v'3+500V3+LA^-0

Z,^ = + 1100v'3 lbs.
the tension in the member LK is 1100V3 lbs.

Consider the forces acting on the point LGFM

-1000V3 sin 60°+0-1800+MZ, sin 60''=
- 1500-1800+ML^

,,T I 3300X2ML = + ^=+2200^3
the compression in the member ML is 2200^3 lbs.

Consider the forces acting on the point KLM

- 2200V3 sin 60°+3300=
-3300+3300=0 which is true
2A' =

^iCL+^LM+^Mi^ =

-1 100v'3+ 2200v/3 cos 60°+0=0
-1100V3+1100V3 = which is true.

Members Condition of Stresses
SC Compression
CD Tension
DH Compression
HG Compression
GL Tension
LM Compression
RD Compression
FG Compression
CA Tension
HJ Tension
LK Tension

27

Value of Stress

1600-V/3 lbs.

1200^3 "

600>/3 "

200V3 "

10001/3 "

2200V3 "

1400V3 "

1600V3 "

800v/3 "

1700^3 "

llOOv'3 "



Examples

Determine analytically the stresses in the Howe Truss loaded as
in Fig. 46.

Determine analytically the stresses in the Pratt Truss loaded asm Fig. 47.

Determine analytically the stresses in the Warren Girder loaded
as in Fig. 48.

@)©®©© ©©©©a ©© a©

/if.** /^•«a

Method of Sections

To find the stress in the member NP of the Howe Truss repre-
sented m Fig. 49 supporting loads of 600 lbs. each at the joints of
the upper chord and of 1200 lbs. each at the joints of the lower chord.

JbsJ \JlieJ

f^'g^9. fig SO.

First consider the whole truss as a rigid body. The forces
acting on it are in equilibrium; therefore 2M=0. Take moments
about any point in the line of action of the force GH.

+^5X6X6-1800X5X6-1800X4X6-1800X3X6
-1800X2X6-1800X1X6=0

^5X6X6= + 1800X6(5+4+3+2+1)

^5=180^5=4500 lbs.
6
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Next consider the portion of the truss to the left of the plane
a0 as a rigid body.

The forces acting on it are indicated in Fig. 50. As this portion
of the truss is in efiuilibrium the forces acting on it are also in
equilibrium

.-. (1) 2A'-0
I (2) 2K-0
^ (3) 2A/-0

? ^^B+ ^BC+ ''CD^ ^DN^ ^NP-^ ypL+ yLM+ "^MA'^
+4o00-600-600+0+iVPxt+0- 1200- 1200-0

V ATP- - 900
o

A^P=-1125
The negative sign means that the fprre NP exerted hv the right

hand part of the membeTiVi' on the left is not a pull hut AjJUah

;

therefore, the compression in the member NP is 1125 lbs.

_

To find the stress in the member LP prcxluce the directions of
,
the forces PN and ND (Fig. 50) until they intersect, and take

' moments about the intersection.

=^ab-^^bc'^^cd+^dn+^np-^^pl^^lm'^Mma

•.'» '

^'t^ ^

+4500X3X6-600X2X6-600X 1X6+0+v^+LPX8
-1200X1X6-1200X2X6-

4500X3-600X2-600X1 +—/*- 1200X1-1200X2=0

-3.

13500-5400+^^*=
6

=

^ LP=-«1^= -6075 lbs.

This negative sign means that the moment of the force LP about
the point IS negative; hence, the force LP is a pull and the memberLP is in tension.

li

Questions

Use the method of sections to determine the stresses in two or
more members of similarly loaded Pratt and Warren Girders;
also use this method to check over the calculations made in previous
exercises.

Determine by method of sections the stress in the main hori-
zontal tie of a Fink Roof Truss supporting loads of 1000 lbs. at
each joint. The span of the truss is 80 ft. and the height 20 feet.
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The Fink Roor Ttuss

Let the annexed diagram, Fig. 81. represent a Fink roof truM
supporting the loads AB, BC, CD, DE, etc., and let the reaction of
the left wall be MA.

/^ig.5l

Consider first the force- acting on the AntABLM. There are
two known forces MA and AB and two unknown—5L and ML
exerted by the members BL and ML on the point as in Fig 52

\ t 3

\

AT

fygSZ. /=>g.SS.

From any point Af, Fig. 53, draw the lines MA and ABXa repre-
sent the wail reaction MA and the load AB. Through B and M
draw the line BL and ML parallel to the directions of the forces
BL and ML. '.et these lines intersect at L. Then MABLM is the
vector diagram for the point, and the lengths of BL and LM repre-
sent the magnitudes of the forces BL and LM acting on the point.
The force BL being a push and LM a pull, hence the member BL
is in compression and LM in tension.

30
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Proceeding to the point BCKL the known forces acting are LB
and BC and the unknown CK and iCA a» in Fig. 54.

Froir any point L, Fig. 55. draw the line LB parallel to the foice
Lli and from it cut off the length LB to represent the magnitude <if
the force, and from B draw BC to represent the force BC.

IJ

Ffg.SS.

Through C draw CK parallel to the force CK and through L
draw LK parallel to the force LK intersecting CK in the point K.

Then LBCKL is the vector diagram for the point, and CK andKL represent tho forces CK and KL. These are both pushes on the
pomt, and therefore the members CK and KL are both in com-
pression.

Considering tne forces acting on the point JKLM there are two
known forces ML and LK and two unknown KJ and JM as in
Fig. 56.

y /^

^'g-r.SZ

The vector diagram being MLKGM, Fig. .57. where KJ andJM represent the forces KJ and JM. As they are both pulls on
the point the members KJ and JM are in tension.
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Now examine the randitions existing at the point DEFG. Thrre
is one known force DE and three unknown, EF, EG and CD, at
indicated in Fig. 58.

Two of these forces DG and EF act in the same direction and
will have a resultant acting in this same direction. Substitute for

these two forces their resultant R, making the set acting on the

point DE, GF and R, Fig. 50.

Draw the vector diagram, Fig. 60, for these three forces. The
lines DE, Gi and R will represent the forces DE, OF and R, and
as CF is u push on the point th member GF is in compression.

J^^se. rjg.59.

1

At the point FGIIN there are four forces acting, one of which
FG is known a-'d the others FN, NH and HG are unknown and act

as in Fig. 61.

Of the unknown forces FN and NH act in the same direction

and will have a resultant acting in that direction. Substituting this

resultant for the two forces the set of forces becomes GF, GH, Rt,

Resultant of FN and NH (Fig. 62).

/^^M

/vjr65.

Draw the vector diagram GF, GH, Rt, Fig. 63, and the length

of the line GH gives the magnitude of the tension in the member
GH.
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i > ...

Combine thew four vector diagram^ in one, Fig. 64.

VouH'cDgSjk' ^^ ^' ^^P^nf.the condition existing at thepoint LDGHJK. There are two unknown f<»rce« DG and IIJ

^^6S ^gee.

The vector diagrams fnr the points MJUN. NHCF and DEFGare given in Figs. 67, 68 and 69 Vespectively.

33



Adding these four vector diagrams to Fig. 64, completes the

combined diagram as in Fig. 70.

J'

'3.

I'

Suppose the loads AB, BC, CD, DE and EF are unequal, that

their total is equal to the load on the right hand principle and that

^^v^ \A;<s|
/y

/•» 7f

(

- ^ the lengths of the members BL, CK, DG and EF are unequal as in

/ Fig. 71. Proceed as in the above problem and construct the vector

(
diagram, Fig. 72.^ 34
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Questions
Determine the stresses in the members of a French roof truss.

It IS customary to give the lower chord of the Fink tr-,s. -> camberto improve its appearance.
Suppose the member NA, Fig. 73, is 1 foot abt c the hoi iron t,-.me joimng the ends of the principal rafters, detc -ili c the sties esin tne members. /

/-^7S.
The Funicular Polygon

of fI°cetSL":n'T??^^^^^^^^^
'-^•^°" "^ ^^^ -"'^-^ °f a set

as indicftfdfn'^Fig'T? ^ '"^ ^''"^ '"''^^^ ^^*'"« «" ^ "«'d body

Draw the Vector Polygon ABCD, Fig. 75. Then AD will reore-sent the resultant in magnitude, direction and sense
^
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Select any point E and join E with A, B, C and D. At any
point F, )'"ig. 74, replace the force /IS by a pair of components
represented by AE and EB. Produce EB until it intersects the

direction of the force BC at G, and at G replace the force by its

components ^E and £C, At H where EC intersects CD replace

CD by components CE and ED. Then the original forces have
been replaced by i4£ and EB acting at F, BE and EC acting at G
and CE and ED at H. Of these six forces Exacting at F andJLGL
at G are equal in magnitude, opposite in sellseT and act in the sSRIC

straight line; therefore their resultant is 0. Similarly EC and CE
act in the same straight line with equal magnitude and opposite

senses.

Thus the original forces AB, BC and CD may be_j«placed by
£D acting at //and i4£ at F._

— Produce these directions until they intersect at /. At / replace

AE and ED by their resultant AD, Fig. 75.

Thus the resultant of AB, BC and CD is AD and acts through
the point /.

The figure FGIIJ is called a funicular polygon.

Summary

general conditions for any set of forces.

Graphical (a) The Vector Polygon gives the magnitude, direction

and sense of the resultant.

{b) The Funicular Polygon gives the position of the

resultant.

Analytical (a) (1) 2Z =A"^

(2) ^Y^^Y^

(b) K

Graphical

CONDITIONS FOR A SET OF FORCES IN EQUILIBRIUM.

(a) The Vector Polygon closes.

(b) The Funicular Polygon closes.

Analytical (a) (1) 2Z =0
(2) 2F=0

2M=0.
Corresponding Analytical Statement

ib)

Graphical Statement

Closing line of "j

Vector Polygon >

gives R j

Intersection of final lines ofl

Funicular Polygon gives >

position of i? J

i

M„ hence position of RllM=
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Couple

tiotifo^Xtfr^J^
^^"^ fortes whose magnitudes are equal, direc-

D-5w hi
?,"d,«^"!f« oPPos«te and act as indicated in Fig. 76.

, ,

Ca^^^'^;^'cS''«°"^^-^^-^'«-77- Select any Ut ^1

C\ ~

//^7tf.

At any point ^ in the line of direction of P replace P by com-

tS"Sta%"?.rer' """^ ^'""^ ^•^^ ^^'"^ ^^ -'^"^ "-• -'''^*

Thus P and P. are equivalent to CB acting at D and 5C at £f

ennrnhn-.y^r.^f^^i?" •^^' ^^.^^'o^i'^g g'ves the appearance olequilibrium; but, the Funicular Polygon shows that a paiTof paralle

i^'J^T ^ '•^P'^.Sfd only by another pair of parallel forces oi^can be kept in equilibrium only by a second pair of par?'lel forces.buch a pair of parallel forces as P and P, is called a couple.Thus when the Vector Polygon closes and the Funicular Polygonremains open, it js proof that the set of forces is equivalent to a

rZ^u
and equilibrium can only be maintained by introducing acouple with the opposite turning effect.

^p=+P cos o

^p = —Pi cos a

AVALYTICAL A.VALYSIS

87

Jp=+Psina
Yp = —Pi sin a

yp+Yp-o



Take moments about any point F distant * from P.

Then Si»f= Jlf_+M_ = -Px+Pi(x+c)= +Po, i.e., the alge-

braic sum of the moments of a couple about any point is constant
and equal to the product of one of the forces and the distance
between the forces.

! 1

Analytical Condiiions of a Couple

(1) 2A-=0
(2) 2;f=o
(3) Silf^C

The conditions for equilibrium are

(1) 2A'=0
(2) SF=0
(3) SM=0

Therefore a couple can be balanced by a second couple only, the
conditions of the balancing couple being

(1) 2;;^:=o

(2) 2F=0
(3) SJW=-C

Examples

Determine the resultant of three forces of 10 lbs. each acting
continuously around the sides of an equilateral triangle whose sides
are 10 feet long.

t \

'r

Beam

Let the adjoining Fig. 78 represent a simple horizontal beam
resting on two supports A and B and carrying a load of W lbs. at
its centre.

y^^'^///////A mj^

r,g7B.

(Mtnomi ^H F
r,g79 ng.ao

wrr%,

Kg.6l
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fK-S^Sl"''*'*!.'' ?^ '**'" ^^ .^ "K'^ '^'^y- The forces acting on it arethe two abutment reactions A and B and the load IV. Takemoments about B. Then

+^i-»ri+o=o

Similarly

Let a|3 be any plane distant jc from A.

-f
The forces actmg on the section of the beam to the left of oB

are the abutment reaction A and the action of the right hand
portio IS of the different fibres of the beam on the left hand portfonswhich may be represented by Fig 79.

portions

nnnTil?,-
""•'"°7"Jo'-c'>s may each be replaceu by its horizontaland vertical resolved parts as in Fig. 80.

in equilibrium
'"^' ^^''^^ ^^"^^ '" equilibrium, this set must also be

2A'=0. 2r=0and2il/=0.
W

as

Hence the sum of the veriical resolved parts must be -— and
this form with A a couple whose moment is +^ ar. Therefore
the horizontal resolved parts must form a couple whose moment
is -"2" as suggest -1 n Fig. 81.

By taking moments, the abutment reactions may be determined

^S= 1,000 lbs.

£/l = 1,400 lbs.

• ^f°'"
Vertical loading the Veriical Shearing Force at any plane a3

.8 the algebraic sum of the foTHiilHrng on the beam-fo the left ofthe plane, i.e., when x is less than 5' V.S.F. = + 1000

whenxis> 5 and <10 V.S.F. = + 1000-400= +600
when X is> 10 and < 16 V.S.F. = + 1000-400-800= -200
when * is> 15 and <20 V.S.F. = +1000-400-800- 1200= - 1400
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«.e., as X varies from to 20' the V.S.F. changes as the ordinates to

the line FGHJ-N, F\g. S3.

l|

iH

\\]

ihl

{ii-i
I !

The Bending Moment at any plane aft is the algebraic sum of

the moments of all the forces acting on the part of the beam to the

left of a/3 about any point in the plane.
'—=^hen x<5' B.M.= lOOOxJC

Let y represent B.M.
Then y= 1000 x

».«., equation to the straight line PQ, Fig. 83.

Similarly when
x>5'<10' B.M.= 1000Xx-400(*-5).

Hence B.M. may be represented by the ordinates to the straight

line OS.^
40



\yhenac> lOand <15. B.M.= 1000X;c-400(x-5)-800(x-10)
and IS represented by ordinates to line 5r.

'

When x> 15 and <20
B.M.- 1000X*-400(x-5) -800(;c- 10) - 1200(x- 15).When x = OB.M. = 0.

PQSTV. Fig.
^83^" "** ^"^ '''^"^ "^ '^ represented by the diagram

Let the adjoining Fig. 84 represent a simple horizontal beamsupportmg a load of W lbs. uniformly distributed over Us length

Fig, as.

The abutment reactions A and B will each be ^ lbs.

The V.S.F. at any plane a/3= +.4 -— *
Let y represent V.S.F.

1 W
then y=A—j-«

W
when «=2^ y= 0.
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Hence the straight line CDE.

The B.M. at afi~Ax%-j xy.^'Ax-^^x\

Let y represent B.M.WWW
Then y-i4*-s^je*--2-«-27**' *•'•• * parabola.

Whena: = Oy=

Whenx-2y"'8~

When*-/y-0.
Hence the curve FGH
The V.S.F. at any plane is the resultant of the forces to the left

of the plane and the B.M. is the moment of that resultant about a
point in the plane.

Let the adjoining Fig. 85 represent a simple horizontal beam
supporting a load of W lbs. uniformly distributed over the first half

of its length and a load of W IJbs. concentrated at a point three-

quarters of length from the first abutment A.

When * is not> o

^W

When*= OV.S.F.= + K'

When * = ^ V.S.F. =

When X is>2 and <| /

v.s.F.=+^-ir=o
Whena;i8>i/

V.S.F.='+A-W-W'--W
Hence the V.S.F. is represented by the ordinates to the line

,CDEFG
I

When X IS not> 5

B.M. = +^x-
When* =OB.M. =

When *

W-j-x

2Wx
2

Wx W— -7-x' a parabola.

2B.M.=^
When * is>2 and<} I

B.M.=i4*-ir(*-0= Wx-Wx+^^''+^
42



».«., the B.M. IS corstant as x varies between the limits

When * is > j/

- Wx- Wx+'^^- Wx+lWl" Wl- Wx
A straight ''ne

When*-}/ B.M.-^^

Whenx«/ B.M.-O

to theThfe^H/lL*'
** *"^ **'*"* '^ ''^ represented by the ordinate

Questions
Draw the V.S.F. and B.M. diagrams for a simple horizontalbeam supporting two loads of W lbs. each situated on points J and

i of the span from the left hand abutment respectively.
Draw the V.S.F and B.M. diagrams for a simple horizontalbeam supportmg a load of W lbs. distributed uniformly over * of

abutmlit
*^°'"'"^"""« ** * P**'"* i o^ 'e"gth from the left hand

Let the adjoining Fig. 86 represent a simple horizontal canti-
lever supportmg a load of W lbs. at its outer end.

A/
O

I i

The V.S F. at a^= -W a straight line parallel to the axis of x.Hence V.S.h. diagram
The B.M." -Wx
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A straight line passing through the origin and when x-/
B.M.--W/

Hence the B.M. Diagram.

Let the adjoining Fig. 87 represent a simple horizontal canti-

lever supporting a load of W lbs. uniformly distributed over its

length.

W
V.S.F.--y*

The area of the vertical shearing force diagram represents

the bending moment.

Let the diagram, Fig. 88, represent a beam supporting a uni-

formly distributed load '" The vertical shearing force at any plane
a/9 isjthe algebraic sum ot the forces to the left of the plane, i.e.:

V.S.F.-.^f-^x
W I

When x-O, V.S.F.--^-, and V.S.F.-O when x^^'t hence the

ordinate to the straight line CDE at any pi; ne r represents the
V.S.F. at that plane. Now the bending moment at the plane o^ is

the algebraic sum of the moments of the forces to the left of the plane
W W X

about any point in the plane, i.e.: B.M.« +-^ '^~T * ' 2'

W
But in the V.S.F. diagram OC and CH represent -^ and x

W
respectively, therefore -^ x may be represented to the area of the

rectangle OCHF.

Again because FG represents the V.S.F. at a/9 it represents theWW W
difference between -5- and -r x and as FH represents -^ therefore

WHG represents -v- x.

W X CH
Hence -j x n may be represented by HG • -s-, i.e., by the

area of the triangle CHG.
>

W W X
But B.M." H—s" X—Y * • o 3"*^ '"ay be represented by area

of the rectangle OH less the area of the triangle CHG, or the area of

the figure OCGF.
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Tk V c r
V-S-f* • fl'agram to the left of tht- plane.

Diane anHtKo' « M*'^'u'''''''
"^ ^^''

I""'''
''^^'"^ "" 'h^' "^'^t "^ the

.n the p"anl
" """"'"' "' '''''' "^^'""^'"^ ^'^*"' - I-""*

l/ec^ R>/y^

nr'^^P^n
^^ represent

;

- supporting three known loads A B,-tfC and C£> as indicated. -v the Vector Polygon /1 5C/) This
polygon must close (as there is equilibrium) bv the lines DE andt.A where the point E is at present unknown. Select any point Oand jom it with the p<>.nts .i, B. C and D of the Vector' Polygon.At any point 6 in the line of direction of the force ^5 replace it bv
Its components .j40 and OB and produce the directions of these untHthey intersect the directions of EA and BC in F and //

At the point F replace EA by its components EO and OA (the
direction and magnitude of EO being unknown).

At // replace BC by components BO and OCAt/ " CD" " COamlOD
and at K " DE " " DO and OE

(OE being unknown).
Ihus the original fiye forces acting on the beam haye l>een re-

placed by ten, and of these OA and AO act with equal magnitudeand opposite senses in the same straight line. OA and .40 are there-
tore in equilibrium.
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Moving Load

Let the diagram below, Fig. 90, represent a beam over which a

load of W lbs. is to pass.

I

A

''
'

^ i .

_(SI1M

VAF Di^r*^

When the load is a distance x from the left abutment A

V.S.F. at every point to the left of the load will be+i4 and

the

x-l

To the right of the load V.S.F.

f)f W.

I

tai-Jwc .-•^j

W.

Now as the load moves the +r« value of the V.S.F. behind it

changes and the negative value in front also changes as follows:

V.S.F. - +--y-^ W and -* W
when x = V.S P.= + W'and -0

whenjc = C V.S.i =+0 and -PT.

Thus as the load passes A the V.S.F. l)ehind it is +1^^ and as

it continues to move this value changes according to the equation

to a straight line and becomes when it reaches the abutment B.

Hence the line CD in Fig. 90. Similarly the ordinates to the line

EF must represent the changing values of the V.S.F. in front of the

When the load is at a point distant x from A the B.M. for the

beam is represented in the diagram by the dotted line, the maximum
value being direcdy under the load. What is true for this position

is true for every other position of the load.

x—l W
B.M. max. = +/l.t: = +'^

^
* JTac-y (Ix-x*)



Similarly OB and BO, OC and CO, and OD and DO are in
equilibnuni.

The forces EA. AB, BC, CD and DE are in equilibrium; there-
lore the force*

EO and OA acting at
i40andOfl "

BO and OC
CO and OD
DO and 0£

G
H
J
Kand

are in equilibrium.

Hence fiO acting at F and 0£ acting at K are in equilibrium.
Therefore, they must act in the same straight line KF.— Through O draw 0£ parallel to KF; then E is the point required
to complete the Vector Polygon.

Let a^ lie any vertical plane intersecting the Funicular Polygon
at L and M.

Consider the forces to 'he left of a^. i.e., EA and AB. These
•"ay he replaced by the component EO and OA acting at F and AO
and OB at C. As OA and AO are equal in magnitude and opposite
in sense, their resultant is 0. Then EA and AB are equivalent toEO acting at F and OB acting at G and their resultant must act
through their intersection N. From the Vector Polygon it will be
seen that the resultant of EO and OB is EB. Therefore the resultant
of EA and .4^ is EB and acts at N.

Ja^
Bending Moment at a/3 is the algebraic sum of the moments

of EA and AB about any point in the plane and is therefore equiva-
lent to the moment of their resultant EB alxmt a point in a/3

Let the distance of EB from a/3 be a
then B.M. =£BXo

The sides of the triangle NLM are parallel to those of the
triangle OEB . ;

.-. LMXh = EBXa -

But i5;5Xc = B.M.
.-. B.M. =LMXb ,

*-*'iil£4?i?iill3te of the funicular polygon at a^ is proportional to
jnejoending rnoment and may represent it.

To obtain from the figure the value of the trending moment
""^sure the length a in inches and multiply by the scale of length
used in drawing the diagram and measure EB in inches and multiply
It by the scale of forces used in drawing the Vector Polygon. Thus

B.M =£5 XoX scale of length X scale of forces
=LM X6 X scale of length X scale of forces
=LM X (6 X scale of length X scale of forces)

hence the scale of B.M. for the Funicular Polygon is

b '^measured in inches) X scale of length v scale of forces.
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Thus the maximum value of the B.M. changes as the load moves

from A to B from zero to zero according to the parabola

Draw the V.S.F. diagram (Fig. 91) for the moving load W as

before and join CF, cutting the lines GJ and JK at the pomts /f and

K respectively.

The V.S.F. behinfl the load is +A.
The B.M. at .v is +Ax and may be represented by GEXGJ, i.e.,

by the area of the rectangle EJ.
But the triangle CG// = triangle AV//
Hence the area of the figure ECIIKL represents the B.M.,

i.e., the area of the figure between the line CF and the axis of X to

the left of the load represents the value of the maximum B.M.

which occurs directly under the load.

r>M,.9E

Let Fig. 92 represent a Howe truss over which a load of W lbs.

is to move. Consider the truss as a whole and draw the diagram of

V.S.F., i.e., QR and SX. ^ ^. ... u
Next consider the member BC. The stress m this member

depends on the amount of the shear it is called upon to resist and

will therefore vary as the V.S.F. vanes. When the load is at joint 1

the stress in BC is 0; when at 2 the vertical reso yed part of the

stress will be represented by the ordinate of the line QR directly

below 2. As the load moves from joint 1 to 2 the member ylS acts

as a beam and places part of W on 1 and the remainder on 2

i.e.. when the load is 1/4 of the way. 1,4 o the W^ will be placed at

2. and when l/n of the way. 1, nth of W will act at 2. The part of

W acting at 1 will not cause stress in any member of the truss

other than the vertical member at the abutment.

Thus when the load is at 2 the vertical resolved part of the stress

in BC is represented by the ordinate of QR directly below 2; hence
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JtheTtilsiln Sr'^-I.*;i^
^'""^ ^ *° 2 the vertical resolved part

/ that Da?t of t^e S ^ -l^Pr""*^-^ ^y ^"'^ °f *»"« ordinate.

reoriSntS? hv th^ 5-^'.*° ^"^ ^^'^^^ ^y ^^e member BC isrepresented by the ordmate to the straight lines SV anH VP&m.larly the ordinates to the lines ST, TV YR renresent ttchanges m the stress in Z)£
represent the

SnVo'mp^sL:''^^^
*^^ ""^ ^^ -^^ ^'^ -'^- af;:?i«'irS

is J^^'^nTfu}^
maximum tension will occur in DE when the loadIS at 2 and the maximum compression when at 3 Similarlv^Pmaximum tension in FG occurs when W is at 3 and thrmaximun?compression when at 4. Thus the member 5C wi I h^ve to^

whTS^ wilY'i^'^'n^r^''''
compression than either ^£ of FG

TeS t^wie^'his'tenS
°" " ^^"'"^"^ ^"'^ ^--" -^ '^^ -

If in Fig. 92 Q and .Y were joined by a straight line the areas

^iToVtte 'b" m"' '".h"';-^ °f
'^ "°"'^ represeTt'rcSnge'fn

value of the B.M. as the load crosses the truss: therefore the

ThT^^n72
"" '"'"' '" '^' "''"'^'' ^^ ''^'^ ^he load' is at

With the load at 2 imagine a plane through the area. ADCPTake moments about the point ABCD, considering the length of

2^= +P^ 14-0+0+0+ CP// =

or CP=-P^
-J
«

Hence the tension in the member CP.
Again take moments about CDEP

I^M=+PAl+0+ADI,+0+0 =

ad=-pa\
n

:. the compression in the member AD is equal to the tension in CP
1 hus when JT is at 2 the maximum tension occurs in CP and themaximum compression in AD.
Similarly when JT is ai 3, the maximum tension will occur in themember hP and the maximum compression in FA
^^'"--d''^"

^^' '^ ""^ *• ^^^ maximum tension will occur in themember OP.
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The stress in the member CD will vary as giat in DE and be

equal to its vertical resolved part. i.e., when DE is m compression

CD must be in tension and vice versa.

Summary

When W is at point 2 the following maximum stresses occur:

BC —compression
CP —tension

CD —compression
DE —tension

DA —compression.

When W^ is at 3 the maximum stresses are compression DE,

tension £P, compression EF, tension FG, compression FA.

When W^ is at 4 the maximum stresses are compression FO.

*^"
The member GH will not be stresses as the load moves over the

truss l^Suse SF must equal for the point GHP at all times.

Questions

1 Determine the maximum stresses in the members of a Howe

Truss of six panels when / is 6 ft. and h 10 ft. for a moving load of

^^'^Determine the stresses in the same truss supporting dead

loads of 1,000 lbs. at each joint along the upper chord.

3 Determine the maximum stresses in the same Howe Truss

supporting both the live and dead loads given in questions 1 and ?.

T If the diagonal members of the Howe truss considered n

Question 3 were designed to take compression only, where would

caunUr braces become necessary and what compression would they

be required to withstand?

Wind Pressure

p=hXvt. of a unit of volume

A=^ Xwt. of unit of volume
2g

when the units are the ft. and sec.

The velocity of the wind is generally given in miles per hour.

Let V represent the velocity of wind in miles per hour

FX5280

Hence p-
^^^^"' xwt. of cubic ft. of air

60*
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The weight of 1 cubic foot of air at 60° and 760 mm. is .078.Usmg as a maximum .1 p= .0033K» "

•
^'^^' S:.fi^**^'" (U.S.A. Signal Service) from experiments

gives ^= .004 P.
Mr. S. P. Langley f-om experiment found />= .00315 K«.
rhus the pressure per sq. ft. {p) caused by the wind on a plane

at right angles to its direction is probably somewhere between the
above values, say />=.0035F».

Thus a light wind of 10 miles per hour gives a pressure of .35 lbs.
per sCj> I la

while a gale of 50 miles per hour
Pves p=S.75 lbs. per sq. ft.

and a hurricane of 80 miles per hour
Pves p = 22.41bs. persq. ft.

For a smooth plane inclined to the direction of the wind the
pre^ure caused will be normal to the plane and probably givenbyp =/> sin a when a is the angle between the normal to the plane
and the direction of the wind.

Let Fig. 93 represent a Fink truss ninged at the right wall,
mounted on rollers at the left, and supporting known loads DE,
D^^^f. -.^Ill**

the same time resisting known wind pressures
JSC, LU and EF.

^/95.

Construct the Vector Polygon except for the closing line HA
the direction of which is unknown.

K— **^^fefl *te«-il?i^^^ ^^^7" *'**^ Funicular Polygon andthrouginrrhaw Qjt^raTTerto the closing line of the Funicular
Polygon intersecting the line AB ax A.

Join HA. HA then represents the right wall reaction in direc-
tion, magnitude and sense.
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Inxlined Plane

^9A /yg9S:

Let Fig. 94 represent a body resting on a perfectly smooth plane

inclined to the horizontal at an angle o and kept in equilibrium by

a pull of P lbs.

The forces acting on the body are its weight W, the pull P,

and the pressure of the plane R which must be normal to its surfaces.

These forces must be in equilibrium; hence R=W cos a and

P = W sin o as they must be equal to the resolved parts of W in

the directions of R and P.
Suppose the balancing force P' to be applied in a horizontal

direction as indicated in Fig. 93. Then R' = and P' = W tan a" cos a

Ql -STIOX

Draw the Vector Polygons for the forces in Figs. 94, 95 and 96.

1

*

Friction

The sliding friction between two surfaces depends on the nature

of the surfaces and on the pressure between them; but, is indepen-

dent of the area.

The proof of this statement is experimental.

It has been determined that when a body rests on a horizontal

plane a definite horizontal force must be applied to cause it to move.

If a weight equal to that of the body is placed on it, the pull required

to move it will have to be doubled.

Again, when the area exposed to friction is reduced it has been

found that while the weight remains constant, the pull necessary

to overcome friction remains constant.

The direction and sense of the friction will be opposite to that

of the motion or the tendency towards motion. Thus, if a body is

resting on an inclined plane, Fig. 96, the friction will act upv/ard

while if an attempt is made to move the body up grade friction will

act downward.
Thus if a body rests in equilibrium on a plane inclined to the

horizontal at an angle o the amount of friction F must equal W
sin a. Now if o is increased until the body is just on the point of
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sliding down, a is called the limiting angle of friction or the angle
of repose F- Wsin a R= Wcos a or W'—^

cos a

" '^"^ »'"«='? tan a

called the coefficient of friction
"'''' ° '"""'" '*

efficSrof'wcitoT"' °' "" "«'' °' "P"^ » """' '» "« CO-

cj,.5;Tnt?rtSL\T.L-Xtt7veTr^^^^^^^^^^

QuESTrON

What pressure applied horizoi: rally on the outer end of thpwrench or handle of a screw jack will be neces^rv to lift a weight

lTrew"isthrc£whh"r l*^handle is "'^Vhe'diameTefo

fttforbJ^li-nt^Tu^^nrutT^^^^^^^^

Pulleys

/yv\
^SQP- !ti¥-

.«/

With a single puiley used as in Fig. 97 it would assume. «;nmpsuch po«.t.on as that indicated. The fheave is a? edTnTv t^r^e

rth!fn^lT.K"^i'y
downwards. P in the direction of the ro^ andr the pull of the fastenmg. Suppose these forces to be in eJuSium
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The magnitude, direction and sense of Ware known; the mami-

tude and direction of T are unknown, while the magnitude of P is

3.1so unknown*
Produce the lines of direction of P anJ W until they mtersect

'^

The resultant of W and P must act through D; therefore the

balancing force or T must act through D; but, it also acts through

the Doint A ; therefore AD \a the direction of T.

loin BC. Then triangle ABC is isosceles; and therefore, triange

BDC is isosceles; hence DA bisects triangle BDC and the angle

^^cJ^sid?r%he resolved parts of P, W and T in the direction at

right angles to AD. The resolved part of T in this direction is

nothing; therefore the resolved parts of IF and P must be equal; and

as the angles BDA and CDA are equal, the force P must be equal

°
Thus when a line passes over a pulley, the tension of the portion

to the right of the sheave must be equal to that on the left.

W'4P

It is apparent that the mechanical efficiency in the above cases,

^'^irthTwesto^n" differential pulley the double block at the top

has the small and large sheaves cast as one and the chain passing

over both cannot slip.
, . .. ti/ on

Consider first the single pulley at the bottom iy=2y.

Let n be the radius of the large sheave of the upper pulley and

n the radius of the smaller.

Take moments about the centre of the pulley

SAf=
-Or,+0+(?r,+P-r,=0

(ri-rj)
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The mechanical advantage is therefore ~—

^

2r,

/v^.S&.
Hence the smaller the difference between r, and rj, the greater

the advantage and the slower the pulley will act.
This is sometimes called the differential chain block
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