Technicai and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Coisverture de couleur
Covers damaged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombıa ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pager n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur examplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed / Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de limpression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleur image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmad hare hee been raproducad thenks to the generosity of:

National Library uf Canada

Tha images eppeoring here are the beat quality possibla considaring the condition and lagibillty of the orlginal copy end in keeping with the filming contract specifications.

Original copies in printed paper covers ere fllmad beginning with the front covar and ending on the last page with a printed or illustrated impres. sion, or the beck cover whan eppropriate. All othar original copias are filmed beginning on the flrst page with a printed or lllustratod impres. sion, and ending on the lest pege with aprinted or illustrated impression.

The last racordad froma on aech microflche shall contain the aymbol - (maaning "CON. TINUED"), or the symbol ∇ (maaning "END"). whichover epplias.

Meps, platas, charts, atc., moy be filmad at different reduction retios. Those too lerge to be ensirely included in one exposura ere filmed beginning in tha uppar lats hand corner. left to right and top to bottom, as many fremas as raquired. The following diagrams illuotrete the merhod:

L'axempleire filmb fut reproduit grate al lo gónórosit'd de:

Bibliothèque nationale du Canada

Les imeges suiventes ont did raproduites evec le plus grand soin, compte tanu da la condition st da la nattatd da l'exemplaire filmd, at an conformitt avac les conditione du contrat de fllmaga.

Les examplalres origlnoux dont le couvarture en papior est Imprimde sont filmds an commancant par lo pramlar plat at an tarminant soiz per la dernidra pege qul comporta una amprainta d'imprassion ou d'illustretion, soir par la sacond plat, salon le cas. Tous les autres exemplairas orlgineux sont fllmes on commençant per le pramidra paga qui comporte una amprainte d'impression ou d'illustretion ot an terminent per le dernidre page qui comporte una talla emprointe.

Un des symbolee suivents apperoitre sur la darnidre imege de cheque microfiche. selon le cas: Is symbole \rightarrow signifia "A SUIVRE", is symbole ∇ signifia "FIN".

Les cortee, planches, toblaaux, otc., peuvent ètre filmds a das taux de reduction différents. Lorsque lo documant est trop grand pour atre raproduit an un soul clicht. il ast filmb à partir de l'engla suptriaur gauche, de gaucha a droize. at da hout an bas, on pranant to nombre d'imagee ndcessoire. Les diagrammes suivents llustrant la mbthoda.

MICROCOPY RESOLUTION TEST CHART

(ANSI and iSO TEST CHART No. 2)

APPLIED IMALSE Inc

> 1653 East Moin Street
> Rochester, New York 14609 USA
> (716) $482-0300$-Phane
> (716) $288-5989$ - Fcr
5

NOTES ON STATICS

AS ARRANGED FOR THE FIRST YEAR
in tile
FACULTY OF
APPLIED SCIENCE AND ENGINEERING

BY
C. H. C. WRIGHT

NOTES ON STATICS

AS ARRANGED FOR THE FIRST YEAR in THE
FACULTY OF
APPLIED SCIENCE AND ENGINEERING

BY
C. H. C. WRIGHT

$$
\begin{aligned}
& \text { TA351 } \\
& W 75
\end{aligned}
$$

PREFACE

THESE notes have been written in the hope that they may be of some assistance to the returned men who are starting their first year in the Faculty of Applied Science and Engincering or who are resuming their studies in the higher years and wish to review the subject of Statics.

C H. C. Wright.
Engineering Building, Jan. 2, 19.19

NOTES ON STATICS

GRAPHICAI AND ANAI.YTICAI.

Staties is that lranch of Mechanics which treats of forces.
Statics

Mechanies

Statics
Treats of Forces
Kinematics
Treats of Motion
Dynamics
Treats of Forces and Motiont
Force is the action between two lodies, either caus; or tending to cause change in their relative rest or motion.

Force is that which moves or tends to move or which changes or tends to hange the motion of a borlv.

The mot 7 of force is first obtained directly by sensation, for the forces exerted by the voluntary muscles can be felt. The existence of forces other than muscular tension is inferred from their effect.

Equilibrium is the condition of two or more forces which are so opposed that their combined action on a bocly produces no change in its rest or motion.

Force has magnitud?, direction, sense anri point of application.
Magnitude. Let the unit of magnitude be that force which is exerted by the earth on the standard pound of platinum ktpt in the Exchequer Office, London, England, when measured in the latitude of London at sea level.

Let the instrument for measuring forces be the standard spring. To calibrate this instrument, first, observe and mark the effect of the application of the pull of the standard pound. Then use some other weight which will produce the same effect; add the standard pound and mark the effect of the two-pound pull. Continue until the whole range of the spring is calibrated.

Direction. The direction of a force is the direction of the straight line along which the body tends to move in consequence of the force, e.g., the horizontal or vertical directions-the direction of College Street, Yonge Street, etc.

Sense. The distinction between up and down in the vertical direction or between north and south in the direction of the meridian is called sense.

The direction of a force may be represented by the direction of a straight line and its sense by an arrow head placed on the line.

The point of application of a force is that point of the rigid body upon which the force acts. During this course of lectures the problems will be limited t. those concerning forces acting in one plane only. The trusses will be considered as ideal, i.e., those whose members are perfectly rigid without weight and intersect perfectly at the jcints. The joints act without friction so that the only force exerted by any member must have the direction of the member.

Vector Polygon

Let $A B$ and $B C$ be two known forces acting on a point as indicated in Fig. 1.

From any point A (Fig. 2) draw the line $A B$ parallel to the force $A B$ and on some chosen scale cut off the length $A B$ to represent the magnitude of the force $A B$. Place the arrow on the line to indicate the sense i^{f} the force. From B draw the line $B C$ parallel to the force $B C$ and similarly cut off the length $B C$ to represent the magnitude of the force.

Thus $A B$ and $B C$ (Fig. 2) have been drawn to represent the known forces in such a manner that the sense marks are continuous from the initial point A to the final point C. The figure $A B C$ is called a "Vector Polygon" and the line joining A and C will represent the resultant of the forces $A B$ and $B C$; i.e., the direction of $A C$ will represent the direction of the resultant; the length of $A C$ will represent the magnitude of the resultant and its sense will be from A towards C.

If $A B$ and $B C$ be two forces acting on a point as in Fig. 1, they may be removed and the single force represented by $A C$ substituted as their equivalent.

The proof of this statement is experimental.
Let $A B$ and $B C$ (Fig. 3) be two strings fastened together at the point $A B C$ and passing over pulleys D and E. Let the other ends of the strings be fastened to 10 lb . weights. Let there be applied a pull on the point $A B C$ such that the strings assume the position indicated in Fig. 3; i.e., make angles of 30° with the horizontal.

Figs

Now the point $A B C$ is acted on by three forces-i.e. (1) the string $A B$ will exert a pull on the point in the direction of the string of 10 lbs., (2) the string $B C$ will exert a pull on the point in the direction of the string of 10 lbs ., (3) the pull $A C$ is unknown.

Consider first the known forces $A B$ and $B C$ as indicated in Fig. 4
From any point A (Fig. 5) draw the line $A B$ parallel to the force $A B$ and cut off a length $A B$ to represent 10 lbs .

From B draw $B C$ parallel to the force $B C$ and cut off the length $B C$ to represent 10 lbs . Then the figure $A B C$ is a Vector Polygon and the line $A C$ will represent the resultant.

Now the side $A B$ is equal in length to the side $B C$ and the angle $A B C$ is 60°; therefore, the triangle $A B C$ is an equilateral triangle and the angle $B A C$ is equal to 60°.

But the side $A B$ makes an angle of 30° with the horizontal, therefore the line $A C$ is vertical.

Hence the resultant of $A B$ and $B C$ is a vertically upward force of 10 lbs ., i.e.:

The forces $A B$ and $B C$ may be removed from the point $A B C$ (Fig. 3) and a single vertical force with a magnitude of 10 lbs and an upward sense substituted instead.

Therefore, the unknown force $A C$ must be vertical, have a downward sense and a magnitude of 10 lbs .

Or, in other words, if a weight of 10 lbs . be suspended from the point $A B C$ (Fig. 3) there will be equilibrium.

Try this experimentally and it will be found to be correct; hence, in this case the closing line of the Vector Polygon does represent the resultant.

Many similar experiments have been performed with the same result; therefore, the line which joins the initial to the final point of a Vector Polygon does represent the resultant in magnitude, direction and sense.

Let $A B, B C$ and $C D$ (Fig. 6) represent three known forces acting on a point where $C D$ is a vertical pull of 8 lbs ., $B C$ a horizontal pull of 4 lbs. and $A B$ a pull of 5 lbs . in the direction indicated in the sketch (Fig. 6).

Fig 6.

It is required to find their resultant.

From any point A (Fig. 7) draw $A B$ parallel to the force $A B$ and cut off a length $A B$ to represent 5 lbs. Place the sense mark on the line. Similarly from B draw $B C$ to represent the force $B C$ and from C the line $C D$ to represent the force $C D$.

Then $A B C D$ is a Vector Polygon, and $A D$ must represent the resultant in magnitude, direction and sense. Its point of applicaton is $A B C D$ (Fig. 6).

Let $A B, B C, C D$ and $D E$ (Fig. 8) represent four knovin forces as indicated. It is required to find their resultant.

From any point A (Fig. 9) draw the Vector Polygon $A B C D E$ as previously described. Then $A E$ will represent the resultant.

Questions

Determine graphically the resultant of

1. Two horizontal forces 4 lbs. and 5 lbs. each with opposite senses.
2. Two horizontal forces of 4 lbs . and 5 lbs . each having the same senses.
3. A horizontal force of 5 lbs . with a sense towards the right and a vertical force of 5 lbs . with an upward sense.
4. A horizontal force of 10 lbs . towards the left and a vertical force of 10 lbs . with an upward sense.
5. A horizontal force of 5 lbs. towards the right, a force of 5 lbs . acting upward and towards the right at an angle of 60° to the horizontal and a horizontal force of $(8-3 \sqrt{ } 3)$ lbs. acting towards th. left.

Stresses in the Members of a Cantilever

If a set of forces acting on a body are in equilibrium, their combined action does not tend to produce any change in its rest or motion, i.e., their resultant is zero. Hence the closing line of the Vector Polygon in such a case will be without length, or the Vector Polygon is said to close. The final point must coincide with the initial point.

If any body such as $A B$ (Fig. 10) is acted on by a single force P at A in its own direction and is kept in equilibrium by a second force P^{\prime} at B, then P^{\prime} must have the same direction and magnitude as P, but the opposite sense.

Similarly if $A B$ (Fig. 11) is pulled at A by Q, it must also be pulled on at B by Q^{\prime} if equilibrium is to be maintained.

In the first case the member $A B$ is said to be in a state of compression when every particle is pushing on the adjoining particles, while in the second case the member is said to be in a state of tension, i.e., every particle is pulling on the adjoining particles.

Let the above figure (Fig. 12) represent a cantilever supporting a load of 1200 lbs . at the joint $A B C$.

Consider first the action of the forces on the pin $A B C$.

There are three members in contact with this pin, and hence there may be three forces acting on it, but no more (see Fig. 13).

Of these forces $A B$ is known, while $B C$ and $C A$ are unknown except for their directions.

As these forces are in equilibrium, the Vector Polygon must close.

From any point A (Fig. 14) draw the line $A B$ parallel to the force $A B$, cut off on a chosen scale the length $A B$ to represent 1200 lbs . and place the sense mark on it.

From B draw a line parallel to $B C$ and from A a line parallel to $C A$. Let these two lines intersect at the point C. Then $A B C A$ is the required Vector Polygon, and $B C$ and $C A$ will represent the two unknown forces in magnitude and sense.

Thus the member $B C$ (Fig. 12) exerts a force on the pin that is represented by the line BC (Fig. 14), ie., it pushes on the pin and is therefore in a state of compression.

The magnitude of the push is determined by scaling the length of the line $B C$ (Fig. 14). It: is apparent: that this is $800 \sqrt{ } 3 \mathrm{lbs}$.

Thus the compression in the member $B C$ is $800 \sqrt{ } 3 \mathrm{lbs}$.
From the Vector Polygon (Fig. 14) it will be seen that the force $C A$ acts towards the lift, ie., the member CA (Fig. 12) tends to move the pin towards the left and is therefore pulling on it; hence, the member is in tension. The magnitude of the tension will be given by scaling the line $C A$ (Fig. 14) or $400 \sqrt{ } 3$ lbs.

Consider the forces acting on the pin BDC.
The member $B C$ is in compression, therefore it pushes on the pin with a magnitude of $800 \sqrt{ } 3$ lbs. as indicated in Fig. 15, while the forces $B D$ and $D C$ caused by the members $B D$ and $D C$ are unknown except for their directions.

As these three forces are in equilibrium the Vector Polygon closes.
From any point C draw the line $C B$ (Fig. 16) parallel to the force $C B$ (Fig. 15) and cut off the length $C B$ to represent the magnitude $800 \sqrt{ } 3 \mathrm{lbs}$.

From B draw $B D$ parallel to the force $B D$ and through $C, C D$ parallel to the force $C D$; then $C B D C$ is the Vector Polygon and the force $B D$ exerted by the member $B D$ (Fig. 12) is towards the right; hence, the member pushes on the pin and is in a state of compression to the extent of $800 \sqrt{3}$ lbs.

The force $D C$ has an upward sense; therefore, the member pulls on the pin and is in a state of tension, the magnitude of which is $800 \sqrt{ } 3 \mathrm{lbs}$.

Consider the forces acting on the pin $A C D E$.
The member $A C$ is in tension, therefore it pulls on the point with a pull of $400 \sqrt{ } 3 \mathrm{lbs}$.

The member $C D$ is also in tension and pulls on the point with a pull of $800 \sqrt{ } 3 \mathrm{lbs}$.

The forces $D E$ and $E A$ exerted by the members $D E$ and $E A$ are unknown.

Fig. 17.

From any point A (Fig. 18) draw the line $A C$ parallel to the force $A C$ and mark off a length $A C$ to represent $400 \sqrt{ } 3 \mathrm{lbs}$. From C draw $C D$ to represent the force $C D$. Through D draw a line $D E$ parallel to the direction of the unknown forse $D E$ and through A draw $A E$ parallel to the force $A E$ intersecting $D E$ at the point E.

Then $A C D E A$ is the Vector Polygon and $D E$ and $E A$ represent the two forces completely.

Hence the member $D E$ is in compression to the extent of $800 \sqrt{ } 3 \mathrm{lbs}$. and $E A$ is in tension, the magnitude of which is $1200 \sqrt{ } 3$ lbs.
i.e., the stresses in the members of the cantilever have been determined.

$$
\begin{aligned}
& { }^{B} B C \text {-compression }-800 \sqrt{ } 3 \mathrm{lbs} \text {. } \\
& C D-\text { tension }+800 \sqrt{ } 3 \text { lbs. } \\
& D E \text {-compression - } 800 \sqrt{ } 3 \text { lbs. } \\
& D B \text {-compression - } 800 \sqrt{ } 3 \text { lbs. } \\
& C A \text { - tension }+400 \sqrt{ } 3 \text { libs. } \\
& E A \text {-tension }+1200 \sqrt{ } 3 \text { lbs. }
\end{aligned}
$$

It will be found convenient to use heavy lines in the truss diagram to represent members in compression, light lines those in tension; and in the Vector Polygon, to use heavy lines to represent those forces exerted by members in compression, while light lines represent those exerted by members in tension.

Place sense marks on the lines representing outside forces.
Drawing the Vector Polygons for the various points of the cartilever (Fig. 19) together will give Fig. 20.

Determine the stre: ises in the members of a cantilever similar to Fig. 19, supporting three loads of 1200 lbs. each at the points $A B C, B E D C$ and $A C D F G$ (Fig. 21).

Determine the stresses in the cantilever designed and loaded as indicated in Fig. 23.

Determine the stresses in the cantilever designed and loaded as in Fig. 25.

Determine the stresses in the above cantilever.

Figea

Figst.

Determine the stresses in the above trusses (Figs. 28 and 29).

Resjlved Parts

Let $A B C$ (Fig. 30) be a Vector Polygon, then $A C$ represents the resultant of the forces represented by $A B$ and $B C$.

The forces $A B$ and $B C$ are called the components of $A C$.

Similarly the forces represented by $A B^{\prime}$ and $B^{\prime} C$ may be called a pair of components of $A C$.

Thus there may be an infinite number of pairs of components.
When the angle.between the components is a right angle as at B^{\prime} then the forces are not called components but resolved parts.

Thus $A B^{\prime}$ is the resolved part of $A C$ in the direction $A B^{\prime}$ and is the efficiency of $A C$ in the direction $A B^{\prime}$.

The resolved part of any force such as $A B$ (Fig. 31) in any given direction such as C may be determined by marking off along $A B$ a leng th to represent the magnitude of $A B$, from A drawing a line parallel to the given direction C and through B dropping the perpendicular $B D$ on it.

Then $B D$ will represent the resolved part of $A B$ in the given dirertion $C . A D$ and $D B$ represent two forces of which the resultant is represented by $A B$ as $A D B$ is a Vector Polygon, and the angle $A D B$ is a right angle. Hence by definition, $A D$ is the resolved part of $A B$ in the direction $A D$ or C.

Fig
The resolved part of a force P in the horizontal direction is spoken of as the horizontal resolved part of the force P arid written X_{P}. Similarly the vertical resolved part of the force P is written $\boldsymbol{Y}_{\boldsymbol{P}}$.

Let $1 P$ and P^{\prime} be two forces equal in magnitude acting as indicated in Fig. 32.

$$
\begin{aligned}
X_{P} & =P \cos 30^{\circ} \\
X_{P^{\prime}} & =P^{\prime} \cos 30^{\circ} .
\end{aligned}
$$

Fig. 32.

These horizontal resolved yarts are equal in magnitude, $P \cos 30^{\circ}$ acting towards the right and $P^{\prime} \cos 30^{\circ}$ acting towards the left. To distinguish between those different senses, it is customary to call one positive and the other negative. Generally that at ing towards the right is assumed as $+v e$. Similarly vertical resolved parts with upward senses are assumed to be positive and those downward negative. .

Let P and Q be two known forces acting on the point A (Fig. 33).

Draw the Vector Polygon $B C D$ for these forces (Fig. 34).
Then $B D$ will represent their resultant R.
Through B drip the horizontal and vertical lines $B E$ and $B F$.
From C and D drop the perpendiculars $C G$ and $D E$ on $B E$.
Then

$$
\begin{aligned}
X_{P} & =B G \\
\text { and } X_{Q} & =G E \\
X_{P}+X_{Q} & =B G+G E \\
& =B E \\
& =X_{R}
\end{aligned}
$$

i.e., the sum of the horizontal resolved parts of two forces is equal to the horizontal resolved part of their resultant. What is true for two forces must be true for any number of forces. Hence $\Sigma X=X_{R}$. Similarly by dropping perpendiculars on $B F$ it n ty be proved that $\boldsymbol{\Sigma} \boldsymbol{Y}=\boldsymbol{Y}_{\boldsymbol{R}}$

Let $A B C D$ (Fig. 35) be a vector polygon, then $A D$ represents the resultant R of the forces $A B, B C$ and $C D$.

From B, C and D drop perpendiculars $B E, C G$ and $D F$ on $A X$

$$
\begin{aligned}
X_{A B}+X_{B C}+X_{C D} & ==+A E+E G-F G \\
& =A F \\
& =X R
\end{aligned}
$$

$$
\therefore \Sigma X=X R
$$

ie., The algebraic sum of the horizontal resolved parts of any set of forces is equal to the horizontal resolved part of their resultant.

Similarly, it may be proved that the algebraic sum of the vertical resolved parts of any set of forces is equal to the vertical resolved part of their resultant,

$$
\text { ie., } \Sigma Y=Y_{R}
$$

Thus it has been proved that
(a) graphically generally the closing line of the Vector Polygon represents the resultant.
(b) analytically
(1) $\Sigma X=X_{R}$
(2) $\Psi Y=Y_{R}$

Again, if a set of forces is in equilibrium their resultant is 0 . Hence in the special case of equilibrium
(a) Graphically
(b) Analytically
The Vector Polygon
(1) $\Sigma X=0$
closes
(2) $\Sigma Y=0$

To determine analytically the stre es in the members of the cantilever (Fig. 36) supporting a load o 1200 lbs. at the outer end, consider first the three forces a inc on the pin ABC (Fig. 37).

Fig. 37.

$$
\begin{aligned}
X_{A B} & =0 \\
Y_{A B} & =-1200 \\
X_{B C^{\prime}} & =B C \cos 60^{\circ}=B C \frac{1}{2} \\
Y_{B C} & =B C \sin 6 C^{\circ}=B C \frac{\sqrt{ } 3}{2}
\end{aligned}
$$

The sense of $B C$ is unknown.
\therefore the senses of its resolved parts are not known.
Assume that $B C$ is a push, then its horizontal resolved part will be $+v e$ and its vertical resolved part $+v$.

$$
\begin{aligned}
X_{C A} & =C A \\
Y_{C A} & =0 .
\end{aligned}
$$

The sense of $C A$ is unknow 1 .

Assume that $X_{C A}$ is +ie, because these three forces are in equilibrium,

Then
ie. (1)
again (2)

$$
\begin{aligned}
& \sum X=0 \\
& X_{A B}+X_{B C}+X_{C A}=0 \\
& 0+\frac{B C}{2}+C A \\
& \sum Y=0 \\
& Y_{A B}+Y_{B C}+Y_{C A}=0 \\
& -1200+\frac{\sqrt{3}}{2} B C+0=0 \\
& \therefore B C=+\frac{1200 \times 2}{\sqrt{3}} \\
& =+800 \sqrt{3}
\end{aligned}
$$

This positive sign means that the assumption that the force $B C$ was a push is correct; therefore the member $B C$ which makes this push is in compression.

From equation (1)

$$
\begin{aligned}
\frac{3 C}{2}+C A & =0 \\
400 \sqrt{ } 3+C A & =0 \\
C A & =-400 \sqrt{ } 3
\end{aligned}
$$

This negative sign means that the assumption that the horizontal resolved part of $C A$ was positive is not correct; therefore the force $C A$ acts towards the left and the member $\triangle A$ must pull on the pin. Hence $C A$ is in tension

$$
\begin{array}{ll}
B C=\text { compression } 800 \sqrt{ } 3 \mathrm{lbs} . \\
C A=\text { tension } & 490 \sqrt{ } 3 \mathrm{lbs} .
\end{array}
$$

Next consider the forces acting on the pin BDC (Fig. 38).

The member $B C$ is in compression \therefore the member pushes on the pin.

These three forces are in equilibrium; therefore (1) $\Sigma X=0$ and (2) $\Sigma Y=0$.
(1)

$$
X_{C B}+X_{B D}+X_{D C}=0
$$

Assume that $B D$ pushes and $D C$ pulls on the pin
(2)

$$
\begin{aligned}
& -400 \sqrt{ } 3+B D-D C \cos 60^{\circ}=0 \\
& Y_{C B}+Y_{B D}+Y_{D C}=0 \\
& -1200+O+D C \sin 60^{\circ}=0 \\
& D C \frac{\sqrt{ } 3}{2}=+1200 \text { or } D C=+800 \sqrt{ } 3 \mathrm{lbs} .
\end{aligned}
$$

This positive sign means that the assumption that the vertical resolved part of $D C$ was positive is correct; hence the member $D C$ pulls on the pin and is in tension.

Substituting in equation (1)

$$
\begin{gathered}
-400 \sqrt{ } 3+B D-D C \cos 60^{\circ}=0 \\
-400 \sqrt{ } 3+B D-400 \sqrt{ } 3=0 \\
B D=+800 \sqrt{ } 3
\end{gathered}
$$

Hence the member $B D$ pushes on the pin and is in compression.
Consider the forces acting on the pin ACDE (Fig. 39)

$$
\begin{aligned}
X_{A C} & =+400 \sqrt{ } 3 \mathrm{lbs} \\
Y_{A C} & =0 \\
X_{C D} & =+400 \sqrt{ } 3 \mathrm{lbs} \\
Y_{C D} & =-1200 \mathrm{lbs}
\end{aligned}
$$

Assume $E D$ to be a push
then

$$
\begin{aligned}
& X_{F D}=+E D \cos 60^{\circ} \\
& Y_{E D}=+E D \sin 60^{\circ}
\end{aligned}
$$

Assume $E A$ to be a push
the ?

$$
\begin{aligned}
X_{E A} & =+E A \\
Y_{E A} & =0
\end{aligned}
$$

As these four forces ace in equilibrium, then $\Sigma Y=0$

$$
\begin{aligned}
& Y_{A C}+Y_{C D}+Y_{D E}+Y_{E A}=0 \\
& O-1200+D E \sin 60^{\circ}+O=0 \\
&-1200+\frac{\sqrt{ } 3}{2} D E=0 \\
& D E=\frac{2}{\sqrt{ } 3} 1200 \\
&=+800 \sqrt{ } 3
\end{aligned}
$$

The positive sign means that the member does push and is in compression.
therefore

$$
\begin{aligned}
& \sum_{A C} X=0 \\
& +400 \sqrt{ }{ }_{C D}+X_{D E}+X_{E A}=0 \\
& +400 \sqrt{ } 3+400 \sqrt{ } 3+D E \cos 60^{\circ}+E A=0 \\
& E A=-1200 \sqrt{ } 3+400 \sqrt{ } 3+E A=0
\end{aligned}
$$

This negative sign means that the member $E A$ does not push but pulls, and is in tension.

Hence

Members	Stress	Am
$B C$ -	Compression	- $800 \sqrt{ } 3 \mathrm{lbs}$
CA	Tension	$-400 \sqrt{3} \mathrm{lbs}$.
DC	Tension	- $800 \sqrt{ } 3 \mathrm{lbs}$.
BD	Compression	$800 \sqrt{ } 3 \mathrm{lbs}$.
DE	Compression	$800 \sqrt{ } 3 \mathrm{lbs}$.
EA -	Tension	$-1200 \sqrt{ } 3 \mathrm{lbs}$.

Questions

By the method of resolved parts determine the stresses in the cantilevers illustrated in Figs. 21, 23, 25, and 27.

Law of Moments

Let P and Q (Fig. 40) be any two known forces and A any point distant a units from \mathbf{P} and b from \mathbf{Q}.

Fis. 40.

The product of P and a, i.e., $P . a$ is called the moment of the force P about the point A, and $Q b$ the moment of Q about A. To distinguish between the sense of the moment of P which tends to turn clockwise from the sense of the moment of Q which is anticlockwise it is customary to call one positive and the other negative,
usually the sense of turning with the hands of the clock is considered positive

$$
\begin{array}{ll}
\text { i.e., } & M_{P}=+P a \\
& M_{Q}=-Q b
\end{array}
$$

Let P and Q (Fig. 41) be any two forces and A any point; then

$$
\begin{aligned}
& M_{P}=+P a \\
& M_{Q}=+Q b
\end{aligned}
$$

Fig4

Draw the vector polygon $B C D$ (Fig. 42). Then $B D$ will repreent in magnitude, direction and sense the resultant (R) of P and Q.
Produce the lines of directions of P and Q (Fig. 41) until they intersect at E. The resultant R must act through this point. Through E draw a line parallel to the direction of R and from A drop the perpendicular c on R. Then $M_{R}=+R \cdot c$.

Through A draw a line parallel to R intersecting P and Q at F and G respectively and join $A E$.

Because the triangle $G E F$ has its sides parallel to Q, P and R, it may be considered as a vector polygon for these forces, thus $G E$ may represent the force $Q, E F-P$, and $F G-R$.
Then

$$
\begin{gathered}
M_{P}=+P \cdot a=+E F \cdot a \\
M_{Q}=+Q \cdot b=+G E \cdot b
\end{gathered}
$$

and

$$
M_{R}^{c}=+R \cdot c=+G F \cdot c
$$

but

$$
\begin{aligned}
& E F: a=2 \text { area of triangle } E F A \\
& G E \cdot b=2
\end{aligned}
$$

therefore $M_{P}+M_{Q}$ may be represented by 2 area of the triangles $E F A$ and GEA or 2 area of triangle GEF but 2 area of triangle $G E F$ represents M_{R}
therefore

$$
M_{P}+M_{Q}=M_{R}
$$

Hence the sum of the moments of any two forces about any point is equal to the moment of their resultant about the same point

$$
\text { i.e., } \Sigma M=M_{R}
$$

Suppose the point A were below the line of direction of Q as in Fig. 43, then
or

$$
\begin{gathered}
M_{P}=+P a=2 \text { triangle } E F A \\
M_{Q}=-Q b=-2 \text { triangle } G E A \\
M_{P}+M_{Q}=2 \text { triangle } G F E=M_{R} \\
\Sigma M=M_{R}
\end{gathered}
$$

Thus the general conditions for any set of forces are
(1) $\Sigma X=X_{R}$
(2) $\Sigma Y \cdot Y_{R}$
(3) $\Sigma{ }^{\prime} M=M_{R}$

The special con $\boldsymbol{\prime}^{\circ}$ ons for a set of forces in a state of equilibrium are
(1) $\Sigma X=0$
(2) $\Sigma Y=0$
(3) $\Sigma M=0$

Analytical Methods

Let the adjoining Fig. 44 represent a simple truss resting on two walls or abutments and carrying a load of $1,000 \mathrm{lbs}$. at the centre.

Fig 44

Consider the forces acting on the whole truss. They are $A B$, $B C$ and $C A$.

As these three forces are in equilibrium, the laws of equilibrium must hold, viz.,

$$
\begin{aligned}
& \text { (1) } \Sigma X=0 \\
& \text { (2) } \Sigma Y=0 \\
& \text { and } \text { (3) } \Sigma M=0
\end{aligned}
$$

From equation (3) we have

$$
M_{A B}+M_{B C}+M_{C A}
$$ about any point is equal to 0 .

Take moments abol:t any point in the line of direction of $A C$ then
again therefore

$$
\begin{aligned}
& M_{A B}=+A B \cdot l \\
& M_{B C}=-1000 \cdot \frac{l}{2} \\
& M_{C A}=0 \\
& \Sigma M=0 \\
& +A B \cdot l-1000 \cdot \frac{l}{2}+0=0 \\
& A B=+\frac{1000 \times l}{l \times 2}=+500 \mathrm{lbs} \\
& \Sigma Y=0 \\
& Y_{A B}+Y_{B C}+Y C A=0 \\
& +500-1000+C A=0 \\
& C A=500 \mathrm{lbs}
\end{aligned}
$$

To determine analytically the stresses in a Warren Girder loacied as indicated in Fig. 45.

First consider the forces acting on the whole truss. They are $A B, B E, E F, F M, M K, K J$ and $J A$.
-As these forces are in equilibrium the laws of equilibrium hold, viz., (1) $\Sigma X=0$, (2) $\Sigma Y=0$, and (3) $\Sigma M=0$.

- Make the usual assumptions for the $+v e$ and -ve senses for resolved parts and moments.

Take moments about a point in the line of direction of $M K$; then $M_{A B^{+}} M_{B E}+M_{E F}+M_{F M}{ }^{+M} M_{M}{ }^{+M} M_{K}+M_{J A}=0$

$$
\text { i.e., }+A B \times 30-600 \times 25-1200 \times 15-1800 \times 5+0-1200 \times 10
$$

$3610-15,000-18,000-9,000-12,000-18,000=0 \quad-900 \times 20=0$ $30 A B=+72,000$ $A B=+2400 \mathrm{lbs}$.
$\therefore \quad Y_{A B}+Y_{B E}+Y_{E F}+Y_{F M}+Y_{M K}+Y_{K J}+Y_{J A}=0$

$$
+2400-600-1200-1800+M K-1200-900=0
$$

$\therefore \quad M K=+57 \mathrm{C},-2400=3300 \mathrm{lbs}$.
Next consider the forces acting on tire pin $A B C$. They are $A B$, $B C$ and $C A$ and are in equilibrium
\therefore (1) $\Sigma X=0$, (2) $\Sigma Y=0$, (3) $\Sigma M=0$
(2) $Y_{A B}+Y_{B C}+Y_{C A}=0$
$+2400+B C \sin 60^{\circ}+O=0$
$B C \stackrel{\sqrt{ } 3}{2}=-2400$
$B C=-1600 \sqrt{ } 3 \mathrm{lbs}$.
Hence the member $B C$ is in compression to the extent of $1600 \sqrt{ } 3$ lbs.
(2) $\Sigma X=0$

$$
\begin{aligned}
& X_{A B}+X_{B C}+X_{C A}=0 \\
& O-1600 \sqrt{ } 3 \cos 60^{\circ}+C A=0 \\
& C A=+800 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the tension in $C A$ is $800 \sqrt{ } 3 \mathrm{lbs}$.
Consider the forces acting on the pin CBED

$$
\begin{aligned}
& \Sigma Y=0 \\
& Y_{C B}+Y_{B E}+Y_{E D}+Y_{D C}=0 \\
& +1600 \sqrt{ } 3 \sin 60^{\circ}-600+O+D C \sin 60^{\circ}=0 \\
& \times 2400-600+D C \frac{\sqrt{ } 3}{2}=0 \\
& D C=-1200 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the tension in $D C$ is $1200 \sqrt{ } 3$ lbs.

$$
\begin{aligned}
& \Sigma X_{X=0} \\
& X_{C B}+X_{B E}+X_{E D}+X_{D C}=0 \\
& 1600 \sqrt{ } 3 \times \cos 60^{\circ}+O+E \cap+1200 \sqrt{ } 3 \cos 60^{\circ}=0 \\
& E D=-1400 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the compression in $E D$ is $1400 \sqrt{ } 3 \mathrm{lbs}$.
Consider the forces acting on the pin JACDII

$$
\begin{aligned}
& \Sigma_{J A} Y=0 \\
& Y_{A C}+Y_{C D}+Y_{D I I}+Y_{I I J}=0 \\
& -900+O+1200 \sqrt{ } 3 \sin 60^{\circ}+D I I \sin 60^{\circ}+O=0 \\
& -900+1800+D I I \frac{\sqrt{ } 3}{2}=0 \\
& D H=-\frac{900 \times 2}{\sqrt{ } 3} 3^{2}=-600 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the compression in $D H$ is $600 \sqrt{ } 3 \mathrm{lbs}$.

$$
\stackrel{X}{X}_{J A}^{\Sigma X=0}+X_{A C}+X_{C D}+X_{D I I}+X_{H J}=0
$$

$$
0-800 \sqrt{ } 3-1200 \sqrt{ } 3 \cos 60^{\circ}-600 \sqrt{ } 3 \cos 60^{\circ}+H J=0
$$

$$
-800 \sqrt{ } 3-600 \sqrt{ } 3-300 \sqrt{ } B+H J=0
$$

$$
I I J=+1700 \sqrt{ } 3
$$

$\therefore \quad$ the tension in $11 J$ is $1700 \sqrt{ } 3 \mathrm{lbs}$.

Consider the forces acting on the pin IIDEFE

$$
\begin{aligned}
& \sum_{H D} Y=0 \\
& +Y_{D F}+Y_{E F}+Y_{F G}+Y_{G I I}=0 \\
& +600 \sqrt{ } 3 \sin 60^{\circ}+O-1200+O+G I I \sin 60^{\circ}=0 \\
& +900-1200+G H \frac{\sqrt{ } 3}{2}=0 \\
& G H=+\frac{300 \times 2}{\sqrt{ } 3}=+200 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the compression in $G I I$ is $200 \sqrt{ } 3 \mathrm{lbs}$.

$$
\begin{aligned}
& \Sigma_{X=0} \\
& X_{H D}+X_{D E}+X_{E F}+X_{F G}+X_{G I I}=0 \\
& 600 \sqrt{ } 3 \cos 60^{\circ}+1400 \sqrt{ } 3+O+F G-200 \sqrt{ } 3 \cos 60^{\circ}=0 \\
& +300 \sqrt{ } 3+1400 \sqrt{ } 3+F G-100 \sqrt{ } 3=0 \\
& \quad F G=-1600 \sqrt{ } 3
\end{aligned}
$$

$\therefore \quad$ the compression in $F G$ is $1600 \sqrt{ } 3 \mathrm{lbs}$.
Consider the forces acting on the pin KJIIGL

$$
\stackrel{Y}{K J}^{\Sigma Y=0}+Y_{J I I}+Y_{G I I}+Y_{G L}+Y_{L K}=0
$$

$$
\begin{gathered}
-1200+0-200 \sqrt{ } 3 \sin 60^{\circ}+G L \sin 60^{\circ}+0=0 \\
-1200-300+G L \frac{\sqrt{ } 3}{2}=0 \\
G L=+\frac{1500 \times 2}{\sqrt{ }}=+1000 \sqrt{ } 3
\end{gathered}
$$

\therefore the tension in $G L$ is $1000 \sqrt{ } 3$ lbs.

$$
\Sigma X=0
$$

$$
X_{K J}+X_{J H}+X_{H G}+X_{G L}+X_{L K}=0
$$

$$
0-1700 \sqrt{ } 3+200 \sqrt{ } 3 \cos 60^{\circ}+1000 \sqrt{ } 3 \cos 60^{\circ}+L K=0
$$

$$
-1700 \sqrt{ } 3+100 \sqrt{ } 3+500 \sqrt{ } 3+L K=0
$$

$$
L K=+1100 \sqrt{3} \text { lbs. }
$$

$\therefore \quad$ the tension in the member $L K$ is $1100 \sqrt{ } 3$ lbs.
Consider the forces acting on the point $L G F M$

$\Sigma Y=0$

$Y_{L G}+Y_{G F}+Y_{F M}+Y_{M L}=0$
$-1000 \sqrt{ } 3 \sin 60^{\circ}+0-1800+M L \sin 60^{\circ}=0$
$-1500-1800+M L \frac{\sqrt{ } 3}{2}=0$

$$
M L=+\frac{3300 \times 2}{\sqrt{\prime}^{\prime} 3}=+2200 \sqrt{ } 3
$$

$\therefore \quad$ the compression in the member $M L$ is $2200 \sqrt{ } 3 \mathrm{lbs}$.
Consider the forces acting on the point $K L M$
$\Sigma Y=0$
$Y_{K L}+Y_{L M}+Y_{M K}=0$
$0-2200 \sqrt{ } 3 \sin 60^{\circ}+3300=0$
$-3300+3300=0$ which is true
$\Sigma \mathbf{\Sigma}=0$
$X_{K L}+X_{L M}+X_{M K}=0$
$-1100 \sqrt{ } 3+2200 \sqrt{ } 3 \cos 60^{\circ}+0=0$
$-1100 \sqrt{ } 3+1100 \sqrt{ } 3=0$ which is true.

Members	Condition of Stresses	Value of Stress
$B C$	Compression	$1600 \sqrt{ } 3$ lbs.
$C D$	Tension	$1200 \sqrt{ } 3$
$D H$	Compression	$600 \sqrt{ } 3$
$H G$	Compression	$200 \sqrt{ } 3$
$G L$	Tension	$1000 \sqrt{ } 3$
$L M$	Compression	$2200 \sqrt{ } 3$
$F D$	Compression	$1400 \sqrt{3}$
$F G$	Compression	$1600 \sqrt{3}$
FG	Tension	$800 \sqrt{ } 3$
$H A$	Tension	$1700 \sqrt{ } 3$
$H J$	Tension	$1100 \sqrt{ } 3$
$L K$	27	

Examples

Determine analytically the stresses in the Howe Truss loaded as in Fig. 46.

Determine analytically the stresses in the Pratt Truss loaded as in Fig. 47.

Determine analytically the stresses in the Warren Girder loaded as in Fig. 48.

Method of Sections

To find the stress in the member $N P$ of the Howe Truss represented in Fig. 49 supporting loads of 600 lbs. each at the joints of the upper chord and of 1200 lbs . each at the joints of the lower chord.

First consider the whole truss as a rigid body. The forces acting on it are in equilibrium; therefore $\Sigma M=0$. Take monients about any point in the line of action of the force GH.

$$
\begin{gathered}
+A B \times 6 \times 6-1800 \times 5 \times 6-1800 \times 4 \times 6-1800 \times 3 \times 6 \\
-1800 \times 2 \times 6-1800 \times 1 \times 6=0 \\
A B \times 6 \times 6=+1800 \times 6(5+4+3+2+1) \\
A B=\frac{1800 \times 15}{6}=4500 \mathrm{lbs} .
\end{gathered}
$$

Next consider the portion of the truss to the left of the plane $a \beta$ as a rigid body.

The forces acting on it are indicated in Fig. 50. As this portion of the truss is in equilibrium the forces acting on it are also in equilibrium

$$
\begin{gathered}
\therefore \begin{array}{c}
\text { (1) } \sum X=0 \\
\text { (2) } \\
\text { (3) } \\
\text { (3) } \\
\sum M=0
\end{array} \\
Y_{A B}+Y_{B C}+Y_{C D}+Y_{D N}+Y_{N P}+Y_{P L}+Y_{L M}+Y_{M A}=0 \\
+4500-600-600+0+N P \times \frac{4}{5}+0-1200-1200=0 \\
\frac{4}{5} N P=-900 \\
N P=-.1125
\end{gathered}
$$

The negative sign means that the force $N P$ exerted by the right hand part of the member NP on the left is not a pull but a push; therefore, the compression in the member $N P$ is 1125 lbs .

To find the stress in the member $L P$ pruduce the directions of the forces $P N$ and $N D$ (Fig. 50) until they intersect, and take moments about the intersection.

$$
M_{A B}+M_{B C}+M_{C D}+M_{D N}+M_{N P}+M_{P L}+M_{L M}+M_{M A}=0
$$

$$
+4500 \times 3 \times 6-600 \times 2 \times 6-600 \times 1 \times 6+0+u+L P \times 8
$$

$$
-1200 \times 1 \times 6-1200 \times 2 \times 6=0
$$

$$
4500 \times 3-600 \times 2-600 \times 1+\frac{L P \times 8}{6}-1200 \times 1-1200 \times 2=0
$$

$$
13500-5400+\frac{L P \times 8}{6}=0
$$

$$
L P=-\frac{8100 \times 6}{8}=-6075 \mathrm{lbs} .
$$

This negative sign means that the moment of the force $L P$ about the point is negative; hence, the force $L P$ is a pull and the member $L P$ is in tension.

Questions

Use the method of sections to determine the stresses in two or more members of similarly loaded Pratt and Warren Girders; also use this method to check over the calculations made in previous exercises.

Determine by method of sections the stress in the main horizontal tie of a Fink Roof Truss supporting loads of 1000 lbs. at each joint. The span of the truss is 80 ft . and the height 20 feet.

The Fink Roof. Truss

Let the annexed diagram, Fig. 51, represent a Fink roof truss supporting the loads $A B, B C, C D, D E$, etc., and let the reaction of the left wall be MA.

Consider first the forces acting on the sint $A B L M$. There are two known forces $M A$ and $A B$ and two unknown- $B L$ and $M L$ exerted by the members $B L$ and $M L$ on the point as in Fig. 52.

From any point M, Fig. 53, draw the lines $M A$ and $A B$ to represent the wall reaction $M A$ and the load $A B$. Through B and M draw the line $B L$ and $M L$ parallel to the directions of the forces $B L$ and $M L$. 'et these lines intersect at L. Then $M A B L M$ is the vector diagram for the point, and the lengths of $B L$ and $L M$ represent the magnitudes of the forces $B L$ and $L M$ acting on the point. The force $B L$ being a push and $L M$ a pull, hence the member $B L$ is in compression and $L M$ in tension.

Proceeding to the point $B C K L$, the known forces acting are $L B$ and $B C$ and the unknown $C K$ and $K L$ as in Fig. 54.

From any point L, Fig. 55 , draw the line $L B$ parallel to the force $L E$ i and from it cut off the length $L B$ to represent the magnitude of the force, and from B draw $B C$ to represent the force $B C$.

Through C draw $C K$ parallel to the force $C K$ and through L draw $L K$ parallel to the force $L K$ intersecting $C K$ in the point K.

Then $L B C K L$ is the vector diagram for the point, and $C K$ and $K L$ represent the forces $C K$ and $K L$. These are botel pushes on the point, and therefore the members $C K$ and $K L$ are both in compression.

Considering the forces acting on the point $J K L M$ there are two known forces $M L$ and $L K$ and two unknown $K J$ and $J M$ as in Fig. 56.

Fig. 56.

Fig. 57.

The vector diagram being MLKGM. Fig. 57, where $K J$ and $J M$ represent the forces $K J$ and $J M$. As they are both pulls on the point the members $K J$ and $J M$ are in tension.

Now examine the conditions existing at the point DEFG. There is one known iorce $D E$ and three unknown, $E F, E G$ and $G D$, as indicated in Fig. 58.

Two of these forces $D G$ and $E F$ act in the same direction and will have a resultant acting in this same direction. Substitute for these two forces their resultant R, making the set acting on the point DE, GF and R, Fig. 50.

Draw the vector diagram, Fig. 60, for these three forces. The lines $D E, G 1$ and R will represent the forces $D E, G F$ and R, and as $G F$ is a push on the point th member $G F$ is in compression.

Fig 58.

Fig. 59.

At the point FGHN there are four forces acting, one of which $F G$ is known and the others $F N, N H$ and $H G$ are unknown and act as in Fig. 61.

Of the unknown forces $F N$ and $N H$ act in the same direction and will have a resultant acting in that direction. Substituting this resultant for the two forces the set of forces becomes $G F, G I, R_{2}$, Resultant of FN and NH (Fig. 62).

Fig. 61

Fig63.

Draw the vector diagram $r_{3} F, G H, R_{2}$, Fig. 63, and the length of the line GHI gives the mag., itude of the tension in the member GIT.

Combine these four vector diagrams in one, Fig. 64.

The diagram, Fig. 65, represents the condition existing at the point CDGHIJK. There are two unknown forces $D G$ and $I I J$.

Fig 65.

Fg. 66.

Draw the vector diagram $J K C D, G I I, D G, I I J$. Fig. 66, and the length of $D G$ and $H J$ will give the magnitude of the unknown forces.
\rightarrow

The vector diagrams for the points MJHN, NHCF and DEFG are given in Figs. 67, 68 and 69 respectively.

Adding these four vector diagrams to Fig. 64, completes the combined diagram as in Fig. 70.

Suppose the loads $A B, B C, C D, D E$ and $E F$ are unequal, that their total is equal to the load on the right hand principle and that

the lengths of the members $B L, C K, D G$ and $E F$ are unequal as in Fig. 71. Proceed as in the above problem and construct the vector diagram, Fig. 72.

Questions

Determine the stresses in the members of a French roof truss. It is customary to give the lower chord of the Fink triss ? camber to improve its appearance.

Suppose the member NA, Fig. 73, is 1 foot abc 'e the horizont: line joining the ends of the principal rafters, deter aire the stres:as in the members.

The Funicular Polygon
To determine graphically the position of the resultant of a set of forces acting on a rigid body.

Let $A B, B C$ and $C D$ be any three forces acting on a rigid body as indicated in Fig. 74.

Draw the Vector Polygon $A B C D$, Fig. 75. Then $A D$ will represent the resultant in magnitude, direction and sense.

Select any point E and join E with A, B, C and D. At any point F, Jig. 74, replace the force $A B$ by a pair of components represented by $A E$ and $E B$. Produce $E B$ until it intersects the direction of the force $B C$ at G, and at G replace the force by its components $B E$ and $E C$. At H where $E C$ intersects $C D$ replace $C D$ by components $C E$ and $E D$. Then the original forces have been replaced by $A E$ and $E B$ acting at $F, B E$ and $E C$ acting at G and $C E$ and $E D$ at H. Of these six forces $E B$ acting at F and $B E$ at G are equal in magnitude, opposite in sense, and act in the same straight line; therefore their resultant is 0 . Similarly $E C$ and $C E$ act in the same straight line with equal magnitude and opposite senses.

Thus the original forces $A B, B C$ and $C D$ may be replaced by $E D$ acting at H and $A E$ at F.
Produce these directions until they intersect at J. At J replace $A E$ and $E D$ by their resultant $A D$, Fig. 75.

Thus the resultant of $A B, B C$ and $C D$ is $A D$ and acts through the point J.

The figure $F G I I J$ is called a funicular polygon.

Summary

general conditions for any set of forces.
Graphical (a) The Vector Polygon gives the magnitude, direction and sense of the resultant.
(b) The Funicular Polygon gives the position of the resultant.
Analytical (a) (1) $\Sigma X=X_{R}$
(2) $\Sigma Y=Y_{R}$
(b)

$$
\Sigma M=M_{R}
$$

CONDITIONS FOR A SET OF FORCES IN EQUILIBRIUM.
Graphical (a) The Vector Polygon closes.
(b) The Funicular Polygon closes.

Analytical (a) (1) $\Sigma X=0$
(2) $\Sigma Y=0$

$$
\text { (b) } \quad \Sigma M=0
$$

Graphical Statement
Closing line of $\left.\begin{array}{l}\text { Vector Polygon } \\ \text { gives } R\end{array}\right\}$
Intersection of final lines of Funicular Polygon gives $\}$ position of R

Corresponding Analytical Statement

$$
\left\{\begin{array}{l}
\Sigma X=X_{R} \\
\Sigma Y=Y_{R}
\end{array} \quad R=\sqrt{(\Sigma X)^{2}+(\Sigma Y)^{2}}\right.
$$

$$
\left\{\Sigma M=M_{R} \text { hence position of } R\right.
$$

Couple

Let P and P_{1} be two forces whose magnitudes are equal, directions parallel and senses opposite, and act as indicated in Fig. 76. Draw the Vector Polygon $A B, B A$, Fig. 77. Select any point C and join $C A$ and $C B$.

Fig. 76.

Fig. 77.

At any point D in the line of direction of P replace P by components $A C$ and $C B$. Produce $A C$ to intersect P_{1} at E and at E replace P_{1} by $B C$ and $C A$.
P and P_{1} are thus equivalent to $C B$ and / ig at D and $C A$ and $B C$ at E. Of these four forces $A C$ anc: twith equal magnitude and oppnsite senses along the same st ugnt line, so that their resultant is zero.

Thus P and P_{1} are equivalent to $C B$ acting at D and $B C$ at $E f$
The Vector Polygon $A B, B A$ closing gives the appearance ol equilibrium; but, the Funicular Polygon shows that a pair of paralle. forces can be replaced only by another pair of parallel forces, or can be kept in equilibrium only by a second pair of para'lel forces.

Such a pair of parallel forces as P and P_{1} is called a couple.
Thus when the Vector Polygon closes and the Funicular Polygon remains open, it is proof that the set of forces is equivalent to a couple and equilibrium can only be maintained by introducing a couple with the opposite turning effect.

Avalytical Analysis

$$
\begin{aligned}
& X_{P}=+P \cos a \\
& X_{P_{1}}=-P_{1} \cos a \\
& X_{P}+X_{P_{1}}=0
\end{aligned}
$$

$$
\begin{aligned}
& Y_{P}=+P \sin a \\
& Y_{P_{1}}=-P_{1} \sin a \\
& Y_{P}+Y_{P_{1}}=0
\end{aligned}
$$

Take moments about any point F distant x from P.
Then $\Sigma M=M_{P}+M_{P_{1}}=-P \cdot x+P_{1}(x+a)=+P a$, i.e., the algeb:aic sum of the moments of a couple about any point is constant and equal to the product of one of the forces and the distance between the forces.

Analytical Condilions of a Couple

(1) $\Sigma X=0$
(2) $\Sigma Y=0$
(3) $\Sigma M=C$

The conditions for equilibrium are
(1) $\Sigma X=0$
(2) $\Sigma Y=0$
(3) $\Sigma M=0$

Therefore a couple can be balanced by a second couple only, the conditions of the balancing couple being
(1) $\Sigma X=0$
(2) $\Sigma Y=0$
(3) $\Sigma M=-C$

Examples

Determine the resultant of three forces of 10 lbs . each acting continuously around the sides of an equilateral triangle whose sides are 10 feet long.

Beam

Let the adjoining Fig. 78 represent a simple horizontal beam resting on two supports A and B and carrying a load of W lbs. at its centre.

Consider the beam as a rigid body. The forces acting on it are the two abutment reactions A and B and the load W. Take moments about B. Then

$$
\begin{gathered}
M_{A}+M_{W}+M_{B}=0 \\
+A 1-W+0=0 \\
A=\frac{W}{2} \\
B=\frac{W}{2}
\end{gathered}
$$

Similarly
Let $\alpha \beta$ be any plane distant x from A.
The forces acting on the section of the beam to the left of $\alpha \beta$ are the abutment reaction A and the action of the right hand portions of the different fibres of the ieam on the left hand portions which may be represented by Fig 79.

These unknown forces may each be replaced by its horizontal and vertical resolved parts as in Fig. 80.

As the original forces were in equilibrium, this set must also be in equilibrium.

$$
\therefore \Sigma X=0, \Sigma Y=0 \text { and } \Sigma M=0 .
$$

Hence the sum of the vertical resolved parts must be $-\frac{W}{2}$ and this form with A a couple whose moment is $+\frac{W}{2} x$. Therefore the horizontal resolved parts must form a couple whose moment is $-\frac{W}{2}$ as sugges $:+1$ in Fig. 81.

Let the adjoining Fig. 82 represent a beam supporting loads of 400 lbs., 800 lbs. and 1200 lbs. as indicated.

By taking moments, the abutment reactions may be determined as

$$
\begin{aligned}
& A B=1,000 \mathrm{lbs} . \\
& E A=1,400 \mathrm{lbs} .
\end{aligned}
$$

For Vertical loading the Vertical Shearing Force at any plane a β is the algebraic sum of the forces acting on the beam to the left of the plane, $i . e$. ., when x is less than 5^{\prime} V.S.F. $=+1000$
when x is >5 and < 10 V.S.F. $=+1000-400=+600$ when x is >10 and <15 V.S.F. $=+1000-400-800=-200$
when x is >15 and <20 V.S.F. $=+1000-400-800-1200=-1400$
i.e., as \boldsymbol{x} varies from 0 to 20^{\prime} the V.S.F. changes as the ordinates to the line $F G H J-N$, Fig. 83.

The Bending Moment at any plane a β is the algebraic sum of the moments of all the forces acting on the part of the beam to the left of $a \beta$ about any point in the plane.

When $x<5^{\prime}$ B.M. $=1000 x x$
Let y represent B.M.
Then $y=1000 \cdot x$
i.e., equation to the straight line $P Q$, Fig. 83.

Similarly when

$$
x>5^{\prime}<10^{\prime} \text { B.M. }=1000 \times x-400(x-5) \text {. }
$$

Hence B.M. may be represented by the ordinates to the straight line $Q S$.

When $x>10$ and <15, B.M. $=1000 \times x-400(x-5)-800(x-10)$ and is represented by ordinates to line $S T$.

When $x>15$ and <20
B.M. $=1000 \times x-400(x-5)-800(x-10)-1200(x-15)$.

When $x=0$ B.M. $=0$.
Thus the B.M. at any plane $\alpha \beta$ is represented by the diagram PQSTV, Fig. 83.

Let the adjoining Fig. 84 represent a simple horizontal beam supporting a load of W lbs. uniformly distributed over its length.

Fis 84.

Fig os.

Hence the straight line $C D E$.
The B.M. at $a \beta=A x+-\frac{W}{l} x \times \frac{x}{2}=A x-\frac{W}{2 l} x^{2}$.
Let y represent B.M.
Then $y=A x-\frac{W}{2 l} x^{2}=\frac{W}{2} x-\frac{W}{2 l} x^{2}$, i.e., a parabola.
When $x=0 y=0$
When $x=\frac{l}{2} y=\frac{W l}{8}$
When $x=l y=0$.
Hence the curve $F G H$
The V.S.F. at any plane is the resultant of the forces to the left of the plane and the B.M. is the moment of that resultant about a point in the plane.

Let the adjoining Fig. 85 represent a simple horizontal beam supporting a load of W lbs. uniformly distributed over the first half of its length and a load of W lbs. concentrated at a point threequarters of length from the first abutment A.

When x is not $>\frac{l}{2}$

$$
\text { V.S.F. }=+A-\frac{L}{i} x=W-\frac{W}{l} x
$$

When $x=0$ V.S.F. $=+W^{\prime}$
When $x=\frac{l}{2}$ V.S.F. $=0$
When x is $>\frac{l}{2}$ and $<\frac{3}{4} l$

$$
\text { V.S.F. }=+A-W=0
$$

When x is $>1 l$

$$
\text { V.S.F. }=+A-W-W=-W
$$

Hence the V.S.F. is represented by the ordinates to the line . $C D E F G$

When x is not $>\frac{l}{2}$

$$
\text { B.M. }=+A x-\frac{2 W x}{l} \cdot \frac{x}{2}=W x-\frac{W}{l} x^{2} \text { a parabola. }
$$

When $x=0$ B.M. $=0$
When $x=\frac{l}{2}$ B.M. $=\frac{W l}{4}$
When x is $>\frac{l}{2}$ and $<\frac{3}{2} l$

$$
\text { B.M. }=A x-W\left(x-\frac{l}{4}\right)=W x-W x+\frac{W l}{4}=+\frac{W l}{4}
$$

i.e., the B.M. is corstant as x varies between the limits

$$
x=\frac{l}{2} \text { and } x=\frac{3 l}{}
$$

When x is $>=1$

$$
\begin{aligned}
& \text { B.M. }=A x-W\left(x-\frac{l}{4}\right)-W\left(x-\frac{1}{l}\right) . \\
& =W x-W x+\frac{W l}{4}-W x+W l=W l-W r
\end{aligned}
$$

A straight line
When $x=3 l \quad$ B.M. $=\frac{W l}{4}$
When $x=l$
B.M. $=0$

Hence the B.M. at any plane $\alpha \beta$ is represented by the ordinate to the line $H J K L$.

Questions

Draw the V.S.F. and B.M. diagrams for a simple horizontal beam supporting two loads of W lbs. each situated on points $\&$ and $\frac{3}{8}$ of the span from the left hand abutment respectively.

Draw the V.S.F. and B.M. diagrams for a simple horizontal beam supporting a load of W lbs. distributed uniformly over $\frac{1}{2}$ of its length commencing at a point $\frac{2}{2}$ of length from the left hand abutment.

Let the adjoining Fig. 86 represent a simple horizontal cantilever supporting a load of W lbs. at its outer end.

The V.S.F. at $a \beta=-W$ a straight line parallel to the axis of x. Hence V.S.F. diagram
The B.M. $=-W \boldsymbol{x}$

A straight line passing through the origin and when $x=l$

$$
\text { B.M. }=-W l
$$

Hence the B.M. Diagram.

Let the adjoining Fig. 87 represent a simple horizontal cantilever supporting a load of W lbs. uniformly distributed over its length.

$$
\begin{aligned}
& \text { V.S.F. }=-\frac{W}{l} x \\
& \text { B.M. }=-\frac{W}{l} x \cdot \frac{x}{2}=-\frac{W}{2 l} x^{2}
\end{aligned}
$$

The area of the vertical shearing force diagram represents the bending moment.
Let the diagram, Fig. 88, represent a beam supporting a uniformly distributed load The vertical shearing force at any plane ap is the algebraic sum ot the forces to the left of the plane, i.e.:

$$
\text { V.S.F. }=+\frac{W}{2}-\frac{W}{l} x
$$

When $x=0$, V.S.F. $=\frac{W}{2}$, and V.S.F. $=0$ when $x=\frac{l}{2}$; hence the ordinate to the straight line $C D E$ at any pline represents the V.S.F. at that plane. Now the bending moment at the plane $\alpha \beta$ is the algebraic sum of the moments of the forces to the left of the plane about any point in the plane, i.e.: B.M. $=+\frac{W}{2} \cdot x-\frac{W}{l} x \cdot \frac{x}{2}$.

But in the V.S.F. diagram $O C$ and $C H$ represent $\frac{W}{2}$ and x respectively, therefore $\frac{W}{2} x$ may be represented to the area of the rectangle OCHF .

Again because $F G$ represents the V.S.F. at $\alpha \beta$ it represents, the difference between $\frac{W}{2}$ and $\frac{W}{l} x$ and as $F H$ represents $\frac{W}{2}$ therefore $H G$ represents $\frac{W}{l} x$.

Hence $\frac{W}{l} x \cdot \frac{x}{2}$ may be represented by HG $\frac{C H}{2}$, i.e., by the area of the triangle CHG.

But B.M. $=+\frac{W}{2} x-\frac{W}{l} x \cdot \frac{x}{2}$ and may be represented by area of the rectangle $O H$ less the area of the triangle $C H G$, or the area of the figure $O C G F$.

Hence the bending moment at any plane as is representel by the area of the V.S.F. diagram to the left of the plane.

The V.S.F. is the resultant of the forcess acting on the left of the plane and the 8.M. is the moment of that resultant about a point in the plane.

Let Fig. 89 represent : 'supporting three known loads $A B$, $B C$ and $C D$ as indicate!. polygon must close (as there is equilibrium) by the lines $D E$ and $E A$ where the point E is at present unknown. Select any point O and join it with the points A, B, C and D of the Vector Polygon. At any point G in the line of direction of the force $A B$ replace it by its components $A O$ and $O B$ and produce the directions of these until they intersect the directions of $E A$ and $B C$ in F and $I I$.

At the point F replace $E A$ by its components $E O$ and $O A$ (the direction and magnitude of $E O$ being unknown).

At $I I$ replace $B C$ by components $B O$ and $O C$
and at $K \quad$ " $D E$ " ". $C O$ and $O D$
$D O$ and $O E$
($O E$ being unknown).
Thus the original five forces acting on the beam have been replaced by ten, and of these $O A$ and $A O$ act with equal magnitude and opposite senses in the same straight line. $O A$ and $A O$ are therefore in equilibrium.

Moving Load

Let the diagram below, Fig. 90, represent a beam over which a load of W lbs. is to pass.

Fig 90
When the load is a distance x from the left abutment A the V.S.F. at every point to the left of the load will be $+A$ and

$$
i T=\frac{x-l}{l} \text { of } W . \quad \text { a june... }
$$

To the right of the load V.S.F. $=-\frac{x}{l} W$.
Now as the load moves the $+v e$ value of the V.S.F. behind it changes and the negative value in front also changes as follows:
V.S.F. $=+\frac{x-l}{l} W$ and $-\frac{x}{l} W$
when $x=0$ V.S F. $=+W$ and -0
when $x=\mathbb{C}$ V.S. $1=+0$ and $-W$.
Thus as the load passes A the V.S.F. behind it is $+W$ and as it continues to move this value changes according to the equation to a straight line and becomes 0 when it reaches the abutment B. Hence the line $C D$ in Fig. 90. Similarly the ordinates to the line $E F$ must represent the changing values of the V.S.F. in front of the load.

When the load is at a point distant x from A the B.M. for the beam is represented in the diagram by the dotted line, the maximum value being directly under the load. What is true for this position is true for every other position of the load.

$$
\begin{aligned}
\text { B.M. } \max . & +A x=+\frac{x-l}{l} W x=\frac{W}{l}\left(l x-x^{2}\right) \\
& 47
\end{aligned}
$$

Similarly $O B$ and $B O, O C$ and $C O$, and $O D$ and $D O$ are in equilibrium.

The forces $E A, A B, B C, C D$ and $D E$ are in equilibrium; therefore the forces
and

$$
\begin{aligned}
& E O \text { and } O A \text { acting at } F \\
& A O \text { and } O B \\
& B O \text { and } O C \\
& C O \\
& C O \text { and } O D \\
& D O \text { and } O E
\end{aligned} / . / . " H
$$

are in equilibrium.

Hence $F O$ acting at F and $O E$ acting at K are in equilibrium. Therefore, they must act in the same straight line $K F$.

Through O draw $O E$ parallel to $K F$; then E is the point required to complete the Vector Polygon.

Let as lee any vertical plane intersecting the Funicular Polygon at L and M.

Consider the forces to the !eft of aB, i.e., EA and AB. These may be replaced by the component $E O$ and $O A$ acting at F and $A O$ and $O B$ at G. As $O A$ and $A O$ are equal in magnitude and opposite in sense, their resultant is 0 . Then $E A$ and $A B$ are equivalent to $E O$ acting at F and $O B$ acting at G and their resultant must act through their intersection N. From the Vector Polygon it will be seen that the resultant of $E O$ and $O B$ is $E B$. Therefore the resultant of $E A$ and $A B$ is $E B$ and acts at N.

The Bending Moment at $\alpha \beta$ is the algebraic sum of the moments of $E A$ and $A B$ about any point in the plane and is therefore equivalent to the moment of their resultant $E B$ about a point in a α.

Let the distance of $E B$ from a a be a then B.M. $=E B \times a$

The sides of the triangle NLM are parallel to those of the triangle $O E B$

$$
\begin{aligned}
& \therefore L M \times b=E B \times a \\
& B u t E B \times a=\text { BM. } \\
& \therefore \quad \text { BM. }
\end{aligned}
$$

ie., the ordinate of the funicular polygon at $\alpha \beta$ is proportional to the bending moment and may represent it.

To obtain from the figure the value of the bending moment measure the length a in inches and multiply by the scale of length used in drawing the diagram and measure $E B$ in inches and multiply it by the scale of forces used in drawing the Vector Polygon. Thus
B. M $=E B \times a \times$ scale of length \times scale of forces

$$
\begin{aligned}
& =L M \times b \times \text { scale of length } \times \text { scale of forces } \\
& =L M \times(b \times \text { scale of length } \times \text { scale of forces })
\end{aligned}
$$

hence the scale of B.M. for the Funicular Polygon is
b (measured in inches) \times scale of length \times scale of forces.

Thus the maximum value of the B.M. changes as the load moves from A to B from zero to zero according to the parabola

$$
y=\frac{W}{l}\left(l x-x^{2}\right)
$$

Draw the V.S.F. diagram (Fig. 91) for the moving load W as before and join $C F$, cutting the lines $G J$ and $J K$ at the points H and K respectively.

The V.S.F. behind the load is $+A$.
The B.M. at x is $+A x$ and may be represented by $G E \times G J$, i.e., by the area of the rectangle $E J$.

But the triangle $C G H=$ triangle $K J H$
Hence the area of the figure ECIIKL represents the B.M., i.e., the area of the figure between the line $C F$ and the axis of X to the left of the load represents the value of the maximum B.M. which occurs directly under the load.

Let Fig. 92 represent a Howe truss over which a load of W lbs. is to move. Consider the truss as a whole and draw the diagram of V.S.F., i.e., QR and SX.

Next consider the member $B C$. The stress in this member depends on the amount of the shear it is called upon to resist and will therefore vary as the V.S.F. varies. When the load is at joint 1 the stress in $B C$ is 0 ; when at 2 the vertical resolved part of the stress will be represented by the ordinate of the line $Q R$ directly below 2. As the load moves from joint 1 to 2 the member $A B$ acts as a beam and places part of W on 1 and the remainder on 2, i.e., when the load is $1 / 4$ of the way, $1 / 4$ of the W will be placed at 2 , and when $1 / n$ of the way, $1 / n$th of W will act at 2 . The part of W acting at 1 will not cause stress in any member of the truss other than the vertical member at the abutment.

Thus when the load is at 2 the vertical resolved part of the stress in $B C$ is represented by the ordinate of $Q R$ directly below 2 ; hence
when W is $1 n$th of the way from 1 to 2 the vertical resolved part of the stress in $B C$ will be represented by 1 inth of this ordinate. \therefore that part of the shear to be resisted by the member $B C$ is represented by the ordinate to the straight lines $S V$ and $V R$. Similarly the ordinates to the lines $S T, T Y, Y R$, represent the changes in the stress in $D E$.

It will be noticed that the line SVR lies entirely above the axis of X and hence the ordinate is always positive; therefore the member $B C$ will always be in a state of compression. On the other hand part of the line STYR lies below the axis and therefore the member $D E$ will be in a state of tension while the load is moving from the point 1 to that point between 2 and 3 which lies directly above the point where the line $T Y$ cuts the axis, after which it will be in compression.

Therefore, the maximum tension will occur in $D E$ when the load is at 2 and the maximum compression when at 3 . Similarly the maximum tension in $F G$ occurs when W is at 3 and the maximum compression when at 4 . Thus the member $B C$ will have to be designed to withstand more compression than either $D E$ or $F G$ while $D E$ will be called on to withstand some tension and $F G$ to resist twice this tension.

If in Fig. $92 Q$ and X were joined by a straight line the areas between this line and the axis of X would represent the changes in value of the B.M. as the load crosses the truss: therefore, the maximum tension will occur in the member $C P$ when the load is at the point 2.

With the load at 2 imagine a plane through the area. $A D C P$. Take moments about the point $A B C D$, considering the length of each panel 1 and its height h. Also consider moments with clockwise sense positive; then

$$
\begin{aligned}
& \Sigma M=+P A 1+0+0+0+C P h=0 \\
& \text { or } C P=-P A \frac{1}{h}
\end{aligned}
$$

Hence the tension in the member $C P$.
Again take moments about $C D E P$

$$
\begin{aligned}
& \Sigma M=+P A 1+0+A D h+0+0=0 \\
& A D=-P A \frac{1}{h}
\end{aligned}
$$

\therefore the compression in the member $A D$ is equal to the tension in $C P$. Thus when W is at 2 the maximum tension occurs in $C P$ and the maximum compression in $A D$.

Similarly when W is at 3 , the maximum tension will occur in the member $E P$ and the maximum compression in $F A$.

Again when W is at 4 , the maximum tension will occur in the member GP.

The stress in the member $C D$ will vary as that in $D E$ and be equal to its vertical resolved part, i.e., when $D E$ is in compression CD must be in tension and vice versa.

Summary

When W is at point 2 the following maximum stresses occur:
$B C$-compression
CP - tension
CD - compression
DE - tension
DA -compression.
When W is at 3 the maximum stresses are compression $D E$, tension $E P$, compression $E F$, tension $F G$, compression $F A$.

When W is at 4 the maximum stresses are compression $F G$, tension GP.

The member $G H$ will not be stresses as the load moves over the truss because ΣY must equal 0 for the point GHP at all times.

Quéstions

1. Determine the maximum stresses in the members of a Howe Truss of six panels when l is 6 ft . and $h 10 \mathrm{ft}$. for a moving load of 12,000 lbs.
2. Determine the stresses in the same truss supporting dead loads of $1,000 \mathrm{lbs}$. at each joint along the upper chord.
3. Determine the maximum stresses in the same Howe Truss supporting both the live and dead loads given in questions 1 and 2.
4. If the diagonal members of the Howe truss considered in question 3 were designed to take compression only, where would counter braces become necessary and what compression would they be required to withstand?

Wind Pressure

$v=\sqrt{2 g h}$ or $h=\frac{v^{2}}{2 g}$
$p=h \times w t$. of a unit of volume
$p=\frac{\nu^{2}}{2 \mathrm{~g}} \times w t$. of unit of volume
when the units are the ft . and sec.
The velocity of the wind is generally given in miles per hour.
Let V represent the velocity of wind in miles per hour
Then $v=\frac{V \times 5280}{60 \times 60}$
Hence $p=\frac{V^{2} \times 5280^{2}}{60^{4}} \times w t$. of cubic ft . of air

The weight of 1 cubic foot of air at 60° and 760 mm . is .078 :
Using as a maximum $1 p=.0033 \mathrm{~V}^{2}{ }^{\circ}$
Prof. C. F. Marvin (U.S.A. Signal Service) from experiments gives $p=.004 V^{2}$.

Mr. S. P. Langley from experiment found $p=.00315 \mathrm{~V}^{2}$.
Thus the pressure per sq. ft . (p) caused by the wind on a plane at right angles to its direction is probably somewhere between the above values, say $p=.0035 \mathrm{~V}^{2}$.

Thus a light wind of 10 miles per hour gives a pressure of .35 lbs . per sq. ft.
gives
gives
while a gale of 50 miles per hour
$p=8.75 \mathrm{lbs}$. per sq. ft .
and a hurricane of 80 miles per hour
$p=22.4 \mathrm{lbs}$. per sq. ft.
For a smooth plane inclined to the direction of the wind the pressure caused will be normal to the plane and probably given by $p^{\prime}=p \sin a$ when a is the angle between the normal to the plane and the direction of the wind.

Let Fig. 93 represent a Fink truss ninged at the right wall, mounted on rollers at the left, and supporting known loads $D E$, $F G$ and $G H$ and at the same time resisting known wind pressures $B C, C D$ and $E F$.

Construct the Vector Polygon except for the closing line IIA, the direction of which is unknown.

Starting at the hinge H draw the Funicular Polygon and through O draw OA paraller to the closing line of the Funicular Polygon intersecting the line $A B$ at A.

Join HA. HA then represents the right wall reaction in direction, magnitude and sense.

Inclined Plane

Let Fig. 94 represent a body resting on a perfectly smooth plane inclined to the horizontal at an angle a and kept in equilibrium by a pull of P lbs.

The forces acting on the body are its weight W, the pull P, and the pressure of the plane R which must be normal to its surfaces.

These forces must be in equilibrium; hence $R=W \cos a$ and $P=W \sin a$ as they must be equal to the resolved parts of W in the directions of R and P.

Suppose the balancing force P^{\prime} to be applied in a horizontal direction as indicated in Fig. 95. Then $R^{\prime}=\frac{W}{\cos a}$ and $P^{\prime}=W \tan a$

Olis Stion

Draw the Vector Polygons for the forces in Figs. 94, 95 and 96.

Friction

The sliding friction between two surfaces depends on the nature of the surfaces and on the pressure between them; but, is independent of the area.

The proof of this statement is experimental.
It has been determined that when a body rests on a horizontal plane a definite horizontal force must be applied to cause it to move. If a weight equal to that of the body is placed on it, the pull required to move it will have to be doubled.

Again, when the area exposed to friction is reduced it has been found that while the weight remains constant, the pull necessary to overcome friction remains constant.

The direction and sense of the friction will be opposite to that of the motion or the tendency towards motion. Thus, if a body is resting on an inclined plane, Fig. 96, the friction will act up:ward while if an attempt is made to move the body up grade friction will act downward.

Thus if a body rests in equilibrium on a plane inclined to the horizontal at an angle a the amount of friction F must equal W $\sin a$. Now if a is increased until the body is just on the point of
sliding down, a is called the limiting angle of friction or the angle of repose $F=W \sin a R=W \cos a$ or $W=\frac{R}{\cos a}$

$$
\therefore \quad F=\frac{R}{\cos } \sin a=R \tan a
$$

i.e., the friction between the surfaces is equal to the pressure between them multiplied by the fraction tan a. Such a fraction is called the coefficient of friction.

Thus the tangent of the angle of repose is equal to the coefficient of friction.

The mechanical screw is an inclined plane wrapped around a cylinder and the inclination of the plane is given by the pitch of the screw.

Questron

What pressure applied horizontally on the outer end of the wrench or handle of a screw jack will be necessary to lift a weight of one ton when the leverage of the handle is 5 . The diameter of the screw is 2 inches with four threads per inch. The co-efficient of friction between the nut and the screw is 0.1 .

Pulleys

With a single puiley used as in Fig. 97 it would assume some such position as that indicated. The sheave is acted on by three forces W vertically downwards, P in the direction of the rope and T the pull of the fastening. Suppose these forces to be in equilibrium.

The magnitude, direction and sense of W are known; the magnitube and direction of T are unknown, while the magnitude of P is also unknown.

Produce the lines of direction of P and W until they intersect at D.

The resultant of W and P must act through D; therefore the balancing force or T must act through D; but, it also acts through the point A; therefore $A D$ is the direction of T.

Join $B C$. Then triangle $A B C$ is isosceles; and therefore, triangle $B D C$ is isosceles; hence $D A$ bisects triangle $B D C$ and the angle $B D A=$ angle $C D A$.

Consider the resolved parts of P, W and T in the direction at right angles to $A D$. The resolved part of T in this direction is nothing; therefore the resolved parts of W and P must be equal; and as the angles $B D A$ and $C D A$ are equal, the force P must be equal to W.

Thus when a line passes over a pulley, the tension of the portion to the right of the sheave must be equal to that on the left.

It is apparent that the mechanical efficiency in the above cases, Fig. 98, are 4, 4 and 3.

In the Weston differential pulley the double block at the top has the small and large sheaves cast as one and the chain passing over both cannot slip.

Consider first the single pulley at the bottom $W=2 Q$.
Let r_{1} be the radius of the large sheave of the upper pulley and r_{2} the radius of the smaller.

Take moments about the centre of the pulley

$$
\begin{aligned}
& \Sigma M=0 \\
& \therefore \quad-Q r_{1}+0+Q r_{2}+P \cdot r_{1}=0 \\
& \therefore \quad P r_{1}=Q\left(r_{1}-r_{2}\right) \\
& \\
& P=\frac{W}{2} \frac{\left(r_{1}-r_{2}\right)}{r_{1}} \\
& 54
\end{aligned}
$$

The mechanical advantage is therefore $\frac{r_{1}-r_{2}}{2 r_{1}}$

Fig 90
Hence the smaller the difference between r_{1} and r_{2}, the greater the advantage and the slower the pulley will act.

This is sometimes called the differential chain block.

