

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 STATE OF THE PARTY OF THE PARTY

CIHM/ICMH Microfiche Series. CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadian de microreproductions historiques

(C) 1986

Tachnicel end Bibliographic Notes/Notes techniques et bibliographiques

	12X	16X	20X		24X		28X		32X
This i Ce do 10X	tem is filmed at occument est filme	au taux de rédu	io checked belo ction indiqué ci 18X	w/ -dassous. 22X		26X		30X	
	Additional common Common taires s								
	Blank leaves addeppeer within the heve been omitted in the colors d'une restau	ded during restor le text. Whaneve led from filming/ irtalnes peges bla iration apparaisse la était possible,	ation may r possible, these inches ejoutées ent dans le texte		slips, tiss ensure th Les peges obscurcie	iues, atc., le best po s totalemo es par un été filmée	heva be ssible im ent ou pe fauillet d s à nouv	rtiellemer 'errata, un eeu de fac	d to it e peluie.
V	along intarlor m Le ra liure serrée	ny cause shadow argin/ peut causer de l g de le marge int	ombre ou de la		Seule éd	tion availa ition disp	onible		
	Bound with other Relie avec d'aut	res documents			includes Comprer	supplame Id du mat	entary ma ériel sup	aterial/ plémantai	re
	Planches et/ou	and/or illustratio illustrations en co	ons/ ouleur		Quality of Qualité i	of print va négale de	ries/ l'Impres	sion	
	Colourad ink (i.e Encre de couleu	e. other than blue r (i.e. autre que i	or black)/ piaue ou noire)	\square	Showthr Transpar	ough/ rance			
	Coloured maps/ Cartes géograph	niques an couleur				etached/ étachées			
	Cover title miss Le titre de couv		·		Pages di Peges de	scoloured écolorées,	l, stained tachetée	or foxed/ es ou piqu	, ėes
		and/or laminate aurée et/ou pellic			Pages re	stored an	id/or lam et/ou pel	inetad/ liculéas	
	Covars damage Couverture end				Pages d	amaged/ ndommeg	jées		
	Coloured covers Couverture de d					d pages/ e couleur			
origi copy which	Institute hes atta inal copy availab y which may be a ch mey alter any oduction, or whi usuel method of	le for filming. Fea piblicgrephically of the images in the may significan	itures of this unique, the itly change	qu' de poi une mo	stitut e m il lui a été cet examp nt de vue i image re dification t indiqués	possible plaire qui s bibliograp produlte, dans la m	de se pro sont peut phique, qui ou qui pe ethode n	curar. Les t-être uniq ul peuven suvent exi	détails ues du t modifie ger une

The to 1

The post of the film

Original bag that sion oth firs sion or I

The sha TiN whi

Maj diffe enti beg righ raqu mat The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the fliming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or Illustrated impression.

The last recorded frame on each microfiche shall contain the symbol → (meaning "CONTINUED"), or the symbol ▼ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les Images suivantes ont été reproduites avec le plus grand soln, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'iliustration, soit par le second plat, seion le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'iliustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra cur la dernière image de chaque microfiche, seion le cas: le symbole → signifie "A SUIVRE", le symbole ▼ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être fiimés à des taux de réduction différents.
Lorsque le document est trop grand pour être reproduit en un seul cliché, il est îlimé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3

1	
2	
3	

1	2	. 3
4	5	6

pelure, 1 à

rrata to

étails s du nodifier

r une

image

32X

)'

diver

ÉDI

A L'US

J. B. RC

ÉLÉMENTS

D'ALGÈBRE

THÉORIQUE ET PRATIQUE

Par EYSSÉRIC et PASCAL

Professeurs de Physique et de Mathématiques, Auteurs de divers ouvrages approuvés par le Conseil supérieur de l'Instruction publique en France.

ÉDITION ABRÉGÉE ET MODIFIÉE

A L'USAGE DES ÉCOLES DU CANADA

MONTRÉAL:

J. B. ROLLAND & FILS, LIBRAIRES-EDITEURS.
Nos. 12 et 14 rue st. vincent.

QA152 E975 1879

Enregistré conformément à l'Acte du Parlement du Canada, en l'année mil huit cent soixante-et-dix-huit, par J. B. Rolland & Fils, au Bureau du Ministre de l'Agriculture à Ottawa.

Les par bon de su peu nom avons er quelques daient no manière lucide.

La "the beaucoupelle n'est table.

La thée avec le p point de coit facile jet, des ex

On trou remplacés grâce aux mot-à-mo ser les él' métrique, tier la je sera bien qu'une de pos:

" Le_sy " déjà lég " terre, et

" des effo

AVANT-PROPOS.

Les passages d'Eysséric que nous avons trouvé bon de supprimer ou de modifier, sont en réalité peu nombreux. Pour ces modifications nous avons emprunté à divers ouvrages d'Algèbre quelques définitions, quelques passages qui rendaient notre pensée ou celle de l'auteur d'une manière plus complète, plus concise ou plus lucide.

La "théorie des signes" (chap. 1er), facilitera beaucoup l'intelligence de tous les cas possibles; elle n'est cependant pas la seule théorie acceptable.

La théorie de l'emploi de ces signes variant avec le point de vue auquel on se place, et ce point de vue étant en partie arbitraire, on conçoit facilement la possibilité de donner, à ce sujet, des explications différentes.

On trouvera çà et là les francs et les centimes remplacés par les piastres et les centins; mais, grâce aux autres problèmes que nous avons pris mot à-mot d'Eysséric, il sera facile de familiariser les élèves avec les dénominations du système métrique. Or, ne serait-il pas avantageux d'initier la jeunesse canadienne à un système qui sera bientôt d'un usage universel. Voici ce qu'une de nos Revues scientifiques dit à ce propos:

"Le système décimal est depuis longtemps "déjà légalisé aux Etats-Unis ainsi qu'en Augle-"terre, et la grande république fait actuellement "des efforts pour le rendre compulsoire. Ainsi,

rlement du ix-huit, par e l'Agricul-

"à l'hôpital de marine de Washington, son emploi est de rigueur, et nul doute qu'avec l'esprit de progrès que nous leur connaissons, le nouveau système ne remplace bientôt le systè. "me actuel chez nos voisins.

"Le système décimal est e usage dans pres que tout le monde civilisé, excepté en Amérique et en Angleterre, où il est permis de présumer qu'il le sera bientôt; en Russie, où il est opta tif depuis longtemps et sera obligatoire sous peu; et en Suède, où il sera optatif jusqu'en 1889 et obligatoire ensuite. A quand le Canada! "Tout le monde convient bien de la supério rité du système décimal qui, comme le di Sumner, a l'avantage d'être universel, unifor me, précis, expressif, bref et complet, un sys-

"tème de poids et mesures né de la philosophie plutôt que du hasard. — Mais il en coûte de "rompre avec les vieux péchés. Un jour ou l'autre nous serons bien forcés d'emboîter le pas, le plus tôt sera le mieux.—" Union Médicale de Canalla Sant ANTO

du Canada, Sept. 1878.

Notre auteur, dans la préface de l'édition française, s'exprime ainsi au sujet des logarithmes :

"Nous avons réservé pour ce dernier volume "la théorie des progressions et des logarithmes "dont il est impossible de donner une idée com "plète en arithméthique; nous avons surtou

" traité les logarithmes avec les développements que mérite leur importance dans les calculs."

Nous avons cru répondre aux vues de l'auteur lui-même en ajoutant à cette importante thé orie une table des logarithmes depuis 1 jusqu'i 10000 et quelques méthodes pratiques destinées à faciliter l'usage de cette table.

On peut voir, d'ailleurs, pour plus de détails la table analytique qui termine ce volume.

Depui.
publier,
traité d'.
samment
publiées
gèbre d'.
par un n

C'est a ouvrage, nous offre

Nous c collèges p principes science si

Les tab explication ment et l' de résoud solution, p gue que fa

Sous le typograph à désirer, cultés qu ouvrages d

PRÉFACE DES ÉDITEURS.

dans pres
Amérique
présumer
il est optatoire sous
if jusqu'en
e Canada!
la supério
me le di
sel, unifor
et, un syshilosophie
n jour ou
mboîter le

n, son em

l'avec l'eslaissons, le ôt le systè

ition franrithmes: er volume garithmes idée comes surtout oppements calculs."

n Médicale

e l'auteur tante thé 1 jusqu'l lestinées!

le détails, me. Depuis longtemps nous éprouvions le désir de publier, dans l'intérêt de la jeunesse canadienne, un traité d'Algèbre, qui fût à la fois élémentaire et suffisamment complet. Parmi les nombreuses Algèbres publiées à Paris depuis une dizaine d'années, l'Algèbre d'Eysséric et Pascal se recommandait à nous par un mérite exceptionnel.

C'est donc une édition canadienne de cet excellent ouvrage, arrivé en France à sa 15ème édition, que nous offrons aujourd'hui au public du pays.

Nous croyons que les élèves de nos écoles et de nos collèges pourront y puiser, avec la connaissance des principes de l'Algèbre, l'estime que mérite une science si utile et si belle.

Les tables, placées à la fin de notre livre, avec les explications qui les précèdent, faciliteront l'enseignement et l'usage des "Logarithmes" et permettront de résoudre une multitude de Problèmes dont la solution, par les méthodes ordinaires, est aussi longue que fastidieuse.

Sous le rapport de l'impression et des détails lypographiques, notre livre, croyons-nous, laisse peu à désirer, surtout quand l'on songe aux mille dificultés que présente toujours la publication des ouvrages de Mathématiques.

Page 28,

Page 41,

a2 - 5 ..

Page 54,

Page 56, cuperons,"

Page 109, emble 160

Page 112, $\sqrt{a^2} = \pm a$

Page 122,

 $isez \frac{3 \times -}{5}$

Page 131, Féométrique Page 171

Page 171, colonne.

Page 214,

Page 217, le 19 zéros.

Page 217, .00000000000

Page 217, 1

ll y a bien qu'il est inu une nouvelle

ERRATA.

Page 28, huitième ligns, au lieu de = 5a, lisez = - 5a.

Page 41, troisième ligne, au lieu de $\frac{a^2}{a^5} = a^2 - 3$, lisez $\frac{a^2}{a^5}$

Page 54, No. 92, au lieu de $\frac{55}{37}$ = 1,86186, lisez $\frac{55}{37}$ = 1,486486.

Page 56, au bas de la page, au lieu de "nous nous en ocsuperons," lisez nous nous occuperons.....

Page 109, quatrième ligne, au lieu de paysannes ont enemble 160 œufs, lisez paysannes ont ensemble 100 œufs.

Page 112, No. 164, 7ème ligne, au lieu de $\sqrt{a^2} = +a$, lisez $\sqrt{a^2} = +a$.

Page 122, qualorzième ligne, au lieu de $\frac{3 \times -5}{5} = \frac{15}{-5}$; isez $\frac{3 \times -5}{5} = \frac{-15}{5}$...

Page 131, septième ligne, le second titre interprétation séométrique des racines aurait dû être omis.

Page 171, dix-huilième ligne, au lieu de colonie, lisez

Page 214, No. 103, au lieu de x = 2, lisez $x = \pm 2,309$. Page 217, No. 137 au lieu de suivi de 17 zéros, lisez suivi le 19 zéros.

Page 217, No. 144, au lieu de 0.000000000 354 0765 lisez

Page 217, No. 145, au lieu de 9509.— lisez 0.98756.

ll y a bien encore quelques petites erreurs typographiques, qu'il est inutile de corriger ici. Elles disparaitront dans une nouvelle édition

TH

1. **But d** ui a pour résoluti ombres.

Pour cel i'en appel 2. **Défini**

nd par sig ont on est tés dans u

3. **Divisi**c stinguer c

1º Les sig 2º Les sig 3º Les sig 4º Les sig 5º Les sig

ÉLEMENTS

D'ALGÈBRE

THÉORIQUE ET PRATIQUE.

NOTIONS PRÉLIMINAIRES.

1. But de l'Algèbre. L'Algèbre est une science ni a pour but de simplifier et de généraliser résolution des questions proposées sur les ombres.

Pour cela, on fait usage de certains signes

l'en appelle signes algébriques.

2. Définition des signes algébriques. On ennd par signes algébriques des signes d'écriture ont on est convenu pour représenter les quanés dans une question du ressort des mathémati-^{1es}, et les opérations à faire avec ces quantités.

3. Division des signes algébriques. On peut stinguer cinq espèces de signes algébriques :

1º Les signes qui représentent les quantités.

2º Les signes d'opérations. 3º Les signes de relations.

4º Les signes de groupement.

5º Les signes de raisonnement.

SIGNES DES QUANTITÉS.

- 4. Lettres et chiffres. Les quantités se representent en algèbre par des chiffres et par les lettres de l'alphabet; par exemple: 2a, 3b, 5y, x,4, 11, 3t, 2z.....
- En général on emploie les premières lettres ajoutée de l'alphabet, a, b, c, d...... pour représenter les nombres connus ou les données, et les dernières, x, y, z, t, u, v, \dots pour les nombres cherchés ou les inconnuer.

Le signe 0 (zéro) indique l'absence de toute quantité, ou bien, dans certains cas, représente une quantité infiniment petite.

Pour représenter une quantité infiniment grande on fait usage du signe suivant ∞.

SIGNES D'OPÉRATIONS.

- 5. Définitions. Les signes d'opérations sont $+, -, \times, \div, {}^{2}, {}^{3}, {}^{4}, \dots \vee, {}^{8}, {}^{4}, {}^{5}$
- + (lisez plus) est le signe de l'addition; par exemple a + b indique l'addition des deux quantités a et b.
- (lisez moins) est le signe de la soustraction; par exemple a - b indique que la quantité bdoit être soustraite de la quantité a.
- X (lisez multiplié par) est le signe de la multiplication. La multiplication peut s'indiquer de trois manières; par exemple: $a \times i \times t$ ou a.i.t. ou simplement et plus ordinaire ment a i t (dans les deux premiers cas lisez a multiplié par i multiplié par t dans le troisième lisez a i t en séparant les lettres).

÷ (lise: La

> (lis par

> > par

6. Coe l'écriture +a+a

-bc, on ou plusi e nom d

Le coe dans l'ex

7. Exp ar une . dusieurs \mathbf{a} nom de polacé à di un peu e erit a3, e nombre rois, ou a

Quand 1 Térente on linsi, am rée à une tre m foi

On doit vec l'exp xemple, ar, en si = 18, tand Une let

÷ (lisez divisé par) est le signe de la division. La division s'indique encore par le signe : (lisez divisé par) ou bien h (lisez a divisé par b, ou a sur b, ou enfin le quotient de apar b.

6. Coefficient. Quand une quantité doit être eres lettres sajoutée plusieurs fois à elle-même, on abrège ésenter les l'écriture de la manière suivante : au lieu de a +a+a, on écrit 3a; de même, au lieu de bc+bc, on écrit 2bc. Le nombre placé devant une ou plusieurs lettres devient un facteur et prend e nom de coefficient.

Le coefficient peut être fractionnaire, comme dans l'expression 🖁 a qui signifie 🖁 🗙 a, ou bien

7. Exposant. Lorsqu'un nombre, représenté par une lettre ou par un chiffre, est multiplié dusieurs fois par lui-même, le produit prend le nom de puissance, et on l'indique par un signe placé à droite de cette lettre où de ce chiffre et in peu en haut; ainsi au lieu de $a \times a \times a$, on crit a^3 , au lieu de $2 \times 2 \times 2$, on écrit 2^3 : e nombre • s'appelle exposant (lisez a puissance rois, ou a trois.....)

Quand la puissance est indéterminée ou indiférente on la marque par une lettre en exposant; insi, am signifie que la quantité a doit être éleée à une puissance quelconque m, c'est-à-dire tre m fois facteur, et se prononce a puissance m.

On doit bien éviter de confondre le coefficient vec l'exposant. Les expressions 3a et as, par xemple, ont une signification bien différente; ar, en supposant a=6, on aura $3a=3\times6$ = 18, tandis que $a^5 = 6 \times 6 \times 6 = 216$.

Une lettre écrite seule est considérée comme

s se repreet par les , 3b, 5y, x,

dernières, cherchés

de toute représente

nent gran

ions sont

; par exdes deux

straction: ruantité b a.

multiplis'indiquer 👢 $a \times i \times t$ ordinaire cas lisez ns le troitres!

ayant l'unité pour coefficient et pour exposant; ainsi a équivaut à $1a^{1}$.

REMARQUE. On sait que la racine d'un nombre est un autre nombre, qui, élevé à une puissance indiquée, reproduit le premier nombre. Ex.: La racine 4^{ème} de 81 est un nombre qui, élevé à la quatrième puissance, reproduit 81. Cette racine est 3 parce que 3 × 3 × 3 × 3 ou 3⁴ égale 81.

L'opération par laquelle on cherche ainsi la racine d'un nombre s'appelle l'extraction de la

racine.

8. Signe radical. Enfin, pour indiquer l'extraction des racines, on fait usage du signe qu'on appelle radical, et l'on place sur l'ouverture le nombre qui marque le degré de la racine à

extraire; ainsi $\sqrt[5]{a}$, $\sqrt[5]{a}$ expriment la racine cubique et la racine cinquième de la quantité a. Ce nombre s'appelle l'indice de la racine.

Pour indiquer l'extraction de la racine carrée, on se dispense d'affecter le radical de l'indice 2,

et l'on écrit simplement a.

SIGNES DE RELATIONS.

9. Définitions. Les signes de relations sont, :, = ::, >, et <.

: (lisez est à) indique un rapport, (par quotient) entre deux quantités.

= (lisez égale) est le signe de l'égalité. Ex. a-b=x.

:: (lisez égale ou bien comme) indique l'égalité de deux rapports, (par quotient). Ex.: 6: 3:: 8: 4 (lisez 6 divisé par 3 égale 8 divisé par 4, ou bien 6 est à 3 comme 8 est à 4. (Autre Ex. a: b:: 0: d.)

La qu la point

10. **D**é ou } } (barre v

Ces sig tuer con non pas posent.

> Ainsi 3a 5b

indique of qui doit $5b + 7 \times 100$

S

11. Déf ploie quel es signes

Le pren quent, etc.

Le seco:

exposant;

n nombre puissance • Ex. : La élevé à la ette racine ale 81.

e ainsi la
ion de la

igne Viexigne Viertua racine à

la racine uantité a.

ne carrée, l'indice 2,

ns sont,

quotient)

ité. Ex.

l'égalité Ex.: 6 : ale 8 di-8 est à 4. Pour marquer l'inégalité on se sert des signes >, <; ainsi, a > b signifie et s'énonce a plus grand que b; m < n indique que m est plus petit que n.</p>

La quantité la plus petite est placée du côté de la pointe.

SIGNES DE GROUPEMENT.

10. **Définitions.** () (parenhèses). [] (crochets) ou { { (accolades). — (barre horizontale) et | (barre verticale).

Ces signes indiquent qu'une opération à effectuer concerne toute une expression composée, et non pas seulement un des nombres qui la composent.

Ainsi $(3a + 5b + 7) \times 8$ ou $\overline{3a + 5b + 7} \times 8$ $\begin{array}{c|c}
3a & 8 \\
5b & 7
\end{array}$ Cette manière d'écrire

indique que c'est toute la somme 3a + 5b + 7 qui doit être multipliée par 8 tandis que $3a + 5b + 7 \times 8$, sans parenthèses, indique que c'est le nombre 7 seul qui doit être multiplié par 8.

SIGNES DE RAISONNEMENT.

11. **Définitions.** Dans les problèmes on emploie quelquefois pour abréger le raisonnement es signes suivants : et : .

Le premier signe . veut dire donc, par consé-

Le second signe : veut dire parce que,

AUTRES NOTIONS INDISPENSABLES.

12. Expression algebrique. On appelle expression algébrique une lettre isolée ou un ensemble de nombres et de lettres représentant des quantités. Ainsi a, 3ab, 5ad—b, 8a3, 5a—b sont des expressions algébriques. On emploie aussi au lieu des mots "expression algébrique" les mots quantité littérale.

Une expression algébrique est entière quand elle ne renferme l'indication d'aucune division :

$$a^3 - 2ab + b^2$$
:

Une expression algébrique est fractionnaire si elle renferme l'indication d'une division :

$$\frac{a-b+8}{2}$$

Elle est rationnelle quand elle ne contient aucun radical:

$$a+b-c$$
; $\frac{a+b+x}{a^2-b^2}$

Elle est irrationnelle dans le cas contraire :

$$\sqrt[3]{a-b}$$
; $\sqrt{\frac{a^3}{b^2}}$

13. Formule algébrique. On appelle formule algébrique une égalité entre deux expressions algébriques.

Ex.:
$$I = \frac{a i t}{100}$$
; $x = \frac{a}{2} - \frac{b}{2}$; $x + b = \frac{a}{2} + \frac{b}{2}$.

14. Terme. ()n donne le nom de terme à toute quantité algébrique précédée du signe + ou du

+ le pr ainsi +

signe –

termes

 $-am^3$,

Tout avoir le que le t

sion alg

15. M

16. Po en géné brique c pelle en termes,

et $\frac{3a^2}{c}$

est un tr 17. De On appel

à une lett nôme.— Quand co garde co est du pr

On app

BLES.

ppelle exou un enorésentant —b, 8a3,

On em. n algébri.

re quand division :

ctionnaire ion:

contient

raire:

formule pressions

 $\frac{a}{2} + \frac{b}{2}$.

à toute

signe —. Le terme est dit positif quand le signe + le précède, et négatif lorsque c'est le signe —;

ainsi + $6a^2$, + a^3b , + $\frac{b}{c}$, + $\frac{c-d}{3-b}$ sont des

termes positifs, tandis que les termes -- 1b.

$$-am^3$$
, $-\frac{3c}{2d}$, $-\frac{6x+3}{11}$ sont négatifs.

Tout terme écrit sans aucun signe est censé avoir le signe +; ainsi $4ab^2$ est la même chose que le terme positif + $4ab^2$.

15. Monôme. On appelle monôme une expression algébrique qui n'a qu'un seul terme, telle que -3a, ou $\frac{b^n}{2}$, ou bien $\frac{a}{4}a^2bc$.

16. Polynôme. On donne le nom de polynôme en général à toute expression ou quantité algébrique composée de plusieurs termes, et l'on appelle en particulier binôme la réunion de deux termes, trinôme celle de trois termes ; ainsi a + b

et $\frac{3a^2}{c} - \frac{b^2}{4}$ sont des binômes, et $5a^2 - bc + b^2$

est un trinôme.

17. Degrê des Monômes et des Polynômes. On appelle degré d'un monôme entier par rapport à une lettre, l'exposant de cette lettre dans le monôme. — Ainsi $3a^2bx^4$ est du $4^{\rm ème}$ degré en x. Quand cette lettre n'a pas d'exposant on la regarde comme ayant l'exposant 1 et le monôme est du premier degré.

On appelle degré absolu, ou simplement degré d'un monôme entier la somme des exposants de

toutes les lettres qu'il renferme. Ainsi le monôme $3a^4bx^2$ est du degré 2+1+4 ou 7, c'est-à-dire du 7ème degré.

On appelle degré d'un polynôme le degré de celui de ses termes où il est le plus élevé. — Ainsi le polynôme $4x^3 - 7a^4x^2 + 5bx - 1$ est du 3^{2me} degré en x et absolument du 6^{2me} degré.

- 18. Termes semblables. On appelle termes semblables les termes composés des mêmes lettres affectées des mêmes exposants, quels que soient d'ailleurs leur signe et leur coefficient; par exemple: $5a^2b$, $-\frac{1}{2}a^2b$, $7a^2b$, sont trois termes semblables, de même $26a^3b^2x$, $8a^3b^2x$ et $-12a^3b^2x$ sont semblables.
- 19. Valeur numérique. Dans les expressions littérales les lettres représentent des valeurs quelconques, mais ces valeurs sont déterminées dans chaque cas particulier, de manière que si l'on remplace chaque lettre par sa valeur et qu'on effectue tous les calculs indiqués, l'expression algébrique sera traduite en un nombre, lequel est la valeur numérique de cette expression. Cette valeur numérique sera, selon le cas, entière ou fractionnaire, positive ou négative.

Par exemple, supposons que dans l'expression $4a^2b$ on fasse a=9 et b=2. La substitution de ces valeurs particulières donnera

$$4 \times 9^2 \times 2 = 4 \times 81 \times 2 = 648$$

et l'on dira que 648 est la valeur numérique de l'expression $4a^2b$ pour le cas déterminé.

Soit encore l'expression

$$x = \frac{24a^3 - 2c}{3b}$$

Si l'on

devien

ce qui

donc la unitės 4

Comme Définiss Combie Quels s A quoi phabet ? A quoi phabet (x Qu'indi

Quel es

Représe Comme Comme Comme Est-il to plié par) e Qu'est-c

Comme

Le coeff Quel no plusieurs f

Par que Emploie sance ? (7) Les exp

différente?
Quel estécrite seul
Qu'est-ce

monôme est-à-dire

degré de — Ainsi du 3ème

mes semettres after exemines seminates seminates 12a3b2x

ressions valeurs rminées que si et qu'on pression, lequel ression. Cas, enve.

ression ution de

que de

Si l'on suppose a=2, b=5, c=7, la formule

devient
$$x = \frac{24 \times 2^3 - 2 \times 7^2}{3 \times 5}$$
,

ce qui donne, en effectuant les calculs,

$$\frac{192-98}{15} = \frac{94}{15} = 6\frac{4}{15}$$
;

donc la valeur de l'inconnue x est dans ce cas 6 unités 4 quinzièmes.

QUESTIONNAIRE.

Quel est le but de l'Algèbre? (1)

Comment l'Algèbre parvient-elle à ce but ? (2)

Définissez les signes algébriques. (2)

Combien peut-on distinguer de signes algébriques? (3)
Quels signes emploie-t-on pour représenter les quantités?

A quoi servent généralement les premières lettres de l'Alphabet? (4)

A quoi servent généralement les dernières lettres de l'Alphabet (x, y, z,)? (4)

Qu'indique le signe 0 (zéro) ? (4).

Comment s'énonce le signe de l'addition? (5) Représentez sur le tableau le signe de l'addition? Comment s'énonce le signe de la soustraction? (5)

Comment s'énonce le signe de la multiplication ? (5)

Comment s'énonce le signe de la division? (5) Est-il toujours nécessaire de mettre le signe × (multiplié par) entre les lettres d'un produit? (5)

Qu'est-ce qu'un coefficient? (6)

Le coefficient est-il toujours un nombre entier? (6)

Quel nom donne-t-on au produit d'un nombre multiplié plusieurs fois par lui même ? (7)

Par quel signe indique-t-on la puissance? (7)

Emploie-t-on toujours un chiffre pour marquer la puissance? (7)

Les expressions 3a et a^3 ont-elles une signification bien différente? (7)

Quel est l'exposant et quel est le coefficient d'une lettre écrite seule; par exemple : a? (7)

Qu'est-ce que la racine d'un nombre? (7 — Remarque.)

Quelle est la racine 4 me de 81 ? (7 — Remarque.) Comment appelle-t-on l'opération pur laquelle on cherche la racine d'un nombre ? (7 — Remarque.)

Qu'appelle-t-on radical ? (8) Qu'appelle-t-on indice ? (8)

Qu'indique le signe de relation : ? (9)

Qu'indique le signe =? (9)

Comment lisez-vous l'expression a:b::c:d? (9)

Par quels signes marque-t-on l'inégalité entre deux quantités ? (9)

Comment appelez-vous les signes qui suivent,

(); { }; []; --; | ? (10)

A quoi servent-ils? (10)

Comment peut-on exprimer donc en Algèbre? (11)

Qu'appelle-t-on expression algébrique? (12) Qu'appelle-t-on formule algébrique? (13)

Qu'est-ce qu'un terme? (14)

Donnez quelques termes positifs. (14)

Qu'est-ce qu'un monôme? (15) Qu'est-ce qu'un polynôme? (16)

Qu'appelle-t-on degré d'un monôme par rapport à une lettre? (17)

Qu'appelle-t-on degré absolu d'un monôme entier? (17)

Qu'appelle-t-on degré d'un polynôme? (17) Qu'appelle-t-on termes semblables? (18)

Expliquez ce que l'on entend par la valeur numérique d'une expression algébrique. (19)

EXERCICES

SUR LES SIGNES ALGÉBRIQUES ET SUR LES VALEURS NUMÉRIQUES DES QUANTITÉS LITTÉRALES.

1. Exprimer le produit de la 5^{me} puissance de a par la 2^{me} puissance de b. R. a⁵b².

2. Indiquer le quotient de la somme des quantités a et b par 3. R. a + b.

3. Exprimer le produit du quintuple de a par la racine cubique de c. R. 5 a $\sqrt[3]{c}$.

4. Tı *§a²x*.

5. Qu

6. Or le cas d

7. Qu polynôn

 $7a^3b$ -

8. Y nôme 8

9. Tropa a^3b^4c ,

 $a^{2}-b^{2}$ p

11. Po la valeu

30

12. Si de son i quement

ue.) on cherche

? (9) deux quan•

? (11)

pport à une ntier ? (17)

numérique

VALEURS LES.

ssance de

des quan-

de a par

4. Traduire en langage ordinaire l'expression ξa^2x .

5. Que signifie $3m^2 > 5n^3$?

6. On demande la différence de 5a à a^5 dans le cas de a = 12.

7. Quels sont les termes semblables dans le polynôme suivant :

$$7a^3b + 2a^2c - 12a^3b - 6b^2 + 4a^2c + a^3b$$
?

8. Y a-t-il des termes semblables dans le trinôme $8a^3bc - 2a^3b^2c + 7abc$?

9. Trouver la valeur numérique du monôme $9a^3b^4c$, en supposant $a=8, b=3, c=\frac{1}{2}$.

10. Quelle est la valeur numérique du binôme a^2-b^2 pour a=23, b=15?

11. Pour a=1, b=3, c=5, d=6, quelle est la valeur numérique du polynôme

$$3a^2b - 2b^2c + 4c^2 - 4a^2d = R. -5$$

12. Si x représente l'âge d'un père et y celui de son fils, comment représentera-t-on algébriquement la somme de leur âge dans quinze ans?

CHAPITRE PREMIER.

Addition algébrique. — Soustraction algébrique. — Réduction des termes semblables. — Multiplication. — Division. — Fractions algébriques.

ADDITION ET SOUSTRACTION ALGÉ-BRIQUES.

20. Addition — Règle. Pour additionner les quantités algébriques, il suffit de les écrire les unes à la suite des autres, en conservant à chaque terme le signe qui le précède.

Soit, d'abord, à ajouter au monôme a le monôme (+b), on aura pour somme algébrique

$$a + b$$
.

Soit, en second lieu, à ajouter au monôme a le monôme (-b) l'on aura

a - b.

Soit, ensuite, à ajouter au monôme a le polynôme (b-c+d), on aura pour somme algébrique

$$a+b-c+d$$
.

21, S sõustrad la guan l'autre

Soit, monôm

Soit, a le mo gébriqu

Soit, lynôme brique

22. Callons net de la Soit

quantite
Il y a
distinct
absolue,
\$20; la
sera sor
signe p
auront
dérées c
une sor
au cont
\$20 pias

alors, to

un cara

21. Soustraction — Règle. Pour effectuer une soustraction algébrique, il faut changer les signes de la quantité à soustraire et l'écrire à la suite de l'autre quantité.

Soit, d'abord, à soustraire du monôme a le monôme (-b), on aura pour différence algébrique

$$a + b$$
.

Soit, en second lieu, à soustraire du monôme a le monôme (+b), on aura pour différence algébrique

a - b

Soit, ensuite, à sous raire du monôme a le polynôme b-c+d, on aura pour différence algébrique

a-b+c-d.

DÉMONSTRATION.

22. Caractère relatif d'une quantité. Nous allons maintenant justifier les règles de l'addition et de la soustraction algébriques.

Soit la quantité (b) qu'il s'agit d'ajouter à la

quantité (a), ou de retrancher de (a).

Il y a, dans cette quantité (b) deux choses bien distinctes à considérer: l'une est sa valeur absolue, l'autre son caractère relatif. Faisons b = \$20; la valeur absolue de b sera alors \$20. Quel sera son caractère relatif? Il faut voir quel signe précède (b); si c'est +, (+ b), ces \$20 auront un caractère positif; elles seront considérées comme augmentant ma fortuue, elles seront une somme que je possède ou qui m'est dûe; si, au contraire, (b) était précédé du signe —, les \$20 piastres, que la lettre b représente, auraient alors, tout en conservant la même valeur absolue, un caractère négatif; elles seraient considérées

lgébriqne. es. — Mul· s algébri·

ALGÉ-

ionner les re les unes ique terme

a le morique

onôme a

le polyme algécomme diminuani ma fortune : ce serait \$20 que je dois.

23. Ce que nous disons d'une somme d'argent peut généralement s'appliquer aux autres quantités: par exemple, si (+ b) désigne une distance comptée vers la droite, (- b) désignerait une distance comptée vers la gauche. De même encore

Si + désigne le Nord, — désignera le Sud " + " l'Est — " l'Ouest " + " le Haut — " le Bas. " + " le Passé — " •le Futur.

On voit par ce qui précède que les signes (+) et (—) remplissent deux fonctions bien distinctes : 1° celle déjà indiquée (N° 5) 2° celle que nous venons d'expliquer.

24. En quoi l'addition algébrique diffère de l'adition arithmétique. On comprendra maintenant, sans difficulté en quoi l'addition et la soustraction algébriques diffèrent de l'addition et de la soustraction arithmétiques.

Dans celles-ci les quantités à ajouter ensemble, ou à soustraire l'une de l'autre, ont toujours le même caractère relatif: j'ajouterai, par exemple, une somme qui m'est due à une autre somme qui m'est due, ou bien une somme que je dois à une autre somme que je dois à une autre somme que je dois à une somme qui m'est due; ce dernier problème exigerait pour l'arithméticien une soustraction. Les Algébristes, au contraire, ont donné aux deux opérations dont il s'agit une plus grande généralité. Voici comment.

25. Nature de l'addition et de la soustraction algébriques. On est convenu d'entendre par l'addition de la quantité b à a, l'union, la combinaison de b avec a, mais en la scent à la quantité b

qu'on u qu'elle a traire b binaison quantité prenne l

26. R

dentes, i dition e quantité détermination, et qui veut propose de cette addition

27. A Ces noti tion et d d'elles-m

A a a a, tout e Or, le c précède la suite (—) selor

Si à +

Pareill combine opposé à est indiq b de a, o selon le en +.

it \$20 que

e d'argent tres quane distance erait une De même

a le Sud l'Ouest le Bas, le Futur.

gnes (+) stinctes: [ue nous

iffère de la mainon et la addition

nsemble, njours le exemple, nme qui is à une e somme dernier en une tire, ont ane plus

raction par l'adbinaison antité b qu'on unit à la première a, le caractère, le sens qu'elle avait; tout au contraire demander à sous-raire b de a, ce sera demander l'union, la combinaison de b avec a, mais de telle sorte que b, la quantité que l'on combine avec la première, prenne le caractère opposé à celui qu'elle avait.

26. Remarque. Grâce aux conventions précédentes, il ne saurait y avoir de milieu entre l'addition et la soustraction : car, d'une part, toute quantité algébrique se prend avec un caractère déterminé, soit d'augmentation, soit de diminution, et d'une autre part, il faut bien que celui qui veut unir une quantité b à une quantité a se propose ou de maintenir ou de renverser le sens de cette quantité b. Or, dans le 1er cas c'est une addition; dans le 2me c'est une soustraction.

27. Application des notions précédentes. Ces notions bien comprises, les règles de l'addition et de la soustraction algébriques se justifient d'elles-mêmes.

A a ajouter b c'est unir, c'est combiner b avec a, tout en laissant à b le caractère qu'il possède. Or, le caractère est indiqué par le signe qui le précède: donc, pour ajouter b à a, on écrira b à la suite de a, en conservant à b le signe (+) ou (—) selon que (+) ou (—) le précède.

Si
$$a + a$$
, l'on ajoute $+ b$, l'on aura $a + b$

"" $+ a$ " " $- b$ l'on aura $a - b$

"" $- a$ " " $+ b$ " " $- a + b$

"" $- a - b$

Pareillement de a soustraire b, c'est unir, c'est combiner b avec a tout en donnant à b un caractère opposé à celui qu'il possédait : or, ce caractère de b est indiqué par son signe : donc, pour soustraire b de a, on écrira b à la suite de a, en changeant, selon le cas, son signe + en -- ou son signe - en +.

Si de +a l'on retranche +b l'on obtiendra a-b"" +a " " -b " " -a+b"" -a-b " " -a-b " " -a-b " " -a-b " -a+b "

28. Monômes Examinons plus en détail le second cas de la soustraction qui, plus que les autres, pourrait embarrasser ceux qui veulent se rendre compte des règles expliquées.

De +a, je suppose, on veut soustraire -b. Le résultat, disons-nous, sera (N°. 21).

$$a + b$$

Supposons que (a) représente ma fortune, \$1000, par exemple : alors (-b), à cause du signe négatif exprimera $(N^{\circ}. 23)$ une valeur dont le propre est de diminuer cette fortune : ce sera, si l'on veut, une dette de \$100.

Ceci posé, demander la soustraction de (— b) c'est demander que les \$100 représentées par (— b) ne soient plus comptées à mon désavantage, c'est-à-dire de manière à diminuer ma fortune, mais à mon avantage, c'est-à-dire de manière à l'augmenter, il est évident que ma fortune deviendra alors

$$\begin{array}{r}
 \$1000 + \$100 \\
 a + b
 \end{array}$$

ce qui justifie la règle.

ou

Un raisonnement analogue s'applique aux autres cas de la soustraction ou de l'addition.

29. **Polynômes.** Soit maintenant le cas où la quantité à ajouter ou à retrancher est un polynôme. Ainsi à a on veut ajouter b-c+d, en écrivant:

$$a + b - c + d$$

C'est-à-dire en conservant son signe à chaque te. me du trinòme, on conserve à chaque terme du trinô:

dans sa to tité a, s définition

30. De on veuill

En écriva

C'est-à-

terme de chaque te opposé au trinôme te comme qu'il s'un à celui qu'b — c + e

REDUC

31. Réd on rencon alors il y pelle *rédu* termes sen

Ainsi, p

De mên est égal à Enfin, s ax — 10a

On voit,

dra a-t t du trinôme son caractère relatif, donc le trinôme

$$b - c + d$$

dans sa totalité, conserve, en s'unissant à la quantité a, sen caractère relatif : donc, d'après les définitions, on l'ajoute à la quantité a.

30. De même, supposons que de la quantité a,

on veuille soustraire le trinôme

$$b-c+d$$

En écrivant:

$$a-b+c-d$$

C'est-à-dire en renversant le signe de chaque terme de la quantité à soustraire, on donne à chaque terme du trinôme un sens, un caractère opposé au sens, au caractère qu'il avait; donc le trinôme b-c+d, envisagé dans son ensemble et comme un seul tout, prend, en même temps qu'il s'unit à la quantité a, un caractère opposé à celui qu'îl avait : donc on retranche le trinôme b-c+d de la quantité a.

REDUCTION DES TERMES SEMBLABLES.

31. Réduction. Dans les calculs algébriques on rencontre souvent des termes semblables, et alors il y a lieu d'effectuer l'opération qu'on appelle réduction, laquelle consiste à réunir ces termes semblables en un seul.

Ainsi, par exemple, $5a^2b + 8a^2b$ revient évidemment à $13a^2b$.

De même, le polinôme $7ab^3 + 10ab^3 - 12ab^3$ est égal à $5ab^3$.

Enfin, 2ax - 9ax + 6ax - ax égale d'abord 6ax - 10ax, et se réduit ensuite à -2ax.

On voit, par ces exemples, que la réduction ne

ne, \$1000, one négale propre

a, si l'on

-a+t

-a-b -a+b

détail le

is que les eulent se

- b. Le

de (— b) tées par vantage, fortune, anière à

tune de-

ue aux

as où la polynó-+ d, en

chaque e terme porte que sur les signes et sur les coefficients; or peut donc énoncer ainsi la règle :

32. Rêgle. Pour opérer la réduction des ter mes semblables dans un polynôme, il faut d'un côté réunir en un seul tous ceux qui sont positifs, de l'autre tous les négatifs, ensuite retrancher le plus petit coefficient du plus grand numériquement, el donner au reste le signe du plus grand.

33. Remarque. L'ordre des termes dans un polynôme est indifférent; ainsi l'on peut écrire également $8a^2b + 4b^3 + 2a^3 - 5ab^2$, ou $2a^3 +$ $8a^2b - 5ab^2 + 4b^3$; cependant il vaut mieux dis poser les termes de manière que les exposants d'une même lettre aillent en croissant ou en dé croissant: c'est ce qu'on appelle ordonner le polynôme; quelquefois même c'est indispensable. Le polynôme ci-dessus, écrit de la manière suivante: $2a^3 + 8a^2b - 5ab^0 + 4ab^3$, est ordonné par rap port aux puissances décroissantes de a et d'après les puissances croissantes de b.

34. Remarque. Au lieu d'effectuer l'addition de plusieurs polynômes, on se borne quelquefois à l'indiquer en renfermant chacun d'eux entre deux parenthèses () ou entre deux crochets [], et en les réunissant les uns aux autres par le si-

gne +.

Ainsi l'addition des trois polynômes

$$12a^3 - 9b^2$$
, $-7a^3 + 5ab^2$, $3a^3 - 8b^3 + 4$

est indiquée comme il suit :

$$(12a^3 - 9b^2) + (-7a^3 + 5ab^2) + (3a^3 - 8b^3 + 4)$$

35. Remarque IV. Quand on écrit plusieurs polynômes dont on veut faire l'addition et qu'ils contiennent des termes semblables, il est avantageux de les disposer les uns au-dessous des autres, de manière que les termes semblables

oient da luction es trois a sorte:

Somm

36. Ren raction a de l'indiq entre deu nière par ner que ranchée

igne —, es terme remier to C'est ai nême cho n effectu De mêm

37. Les

Donnez la Si vous aj résultat? Si vous ajo résultat? Si vous ajo nel sera le 1 Donnez la Si vous soi

era le résult

Si du mone 1? (21)

cients; or

n des ter l faut d'ur positifs, de her le plur uement, e

dans un eut écrire ou 2a³ + nieux dis exposants ou en déer le polynsable. Le suivante: é par rapet d'après

l'addition relquefois eux entre hets [], et par le si-

 $b^3 + 4$

 $-8b^3+4).$

sieurs po et qu'ils est avanssous des emblables oient dans une même colonne, parce que la réluction est plus facile; ainsi pour additionner es trois polynômes suivants, on les disposera de a sorte:

 $\begin{array}{r}
12a^{3} - 9ab^{2} \\
-7a^{3} + 5ab^{2} + b^{3} \\
+ 3a^{3} - 6ab^{2} - 8b^{3} + 4
\end{array}$ Somme... $8a^{3} - 10ab^{2} - 7b^{3} + 4$

36. Remarque V. Au lieu d'effectuer la sousraction algébrique, on se contente quelquefois le l'indiquer en plaçant la quantité à soustraire entre deux parenthèses et faisant précéder la prenière parenthèse du signe —; ainsi, pour expriner que la quantité $a^2 - 2ab + b^2$ doit être reranchée du binôme m + n, on écrit:

$$m + n - (a^2 - 2ab + b^2).$$

37. Les élèves doivent bien se rappeler que le igne —, placé devant la parenthèse, affecte tous es termes qui y sont renfermés, et non pas le remier terme seulement.

C'est ainsi que l'expression a - (m - n) est la nême chose que a - (+ m - n) laque!le se réduit, n effectuant l'opération, à a - m + n.

De même a - (-x + y) donne a + x - y.

QUESTIONNAIRE.

Donnez la règle de l'addition algébrique. (20)

Si vous ajoutez au monôme a le monôme (+b) quel sera résultat? (20)

Si vous ajoutez au monôme a le monôme (-b) quel sera résultat? (20)

Si vous ajoutez au monôme a le polynôme b-c+d uel sera le résultat (20)

Donnez la règle de la soustraction algébrique. (21) Si vous soustrayez du monôme a ce monôme (— b) quel era le résultat ? (21)

Si du monôme a vous soustrayez (+b) quel sera le résul-

Si du monôme a vous soustrayez le polynôme (b-c+a) quel sera le résultat ? (21)

Quelles sont les deux choses distinctes à bien considére dans toute quantité, dans la quantité (b) par exemple? (2) Qu'est-ce que la valeur absolue d'une quantité? (22)

Qu'est-ce que la valeur relative ou le caractère relatif? (22 Si le signe (+) désigne le Nord que désignera le sign (-) ? etc., (23)

En quoi l'addition et la soustraction algébriques diffrent elles de l'addition et de la soustraction arithmétiques (24)

Quelle est la nature de l'addition et de la soustraction a

gébrique ? (25)

Appliquez les notions de l'additiou et de la soustraction aux différents cas, d'abord au cas où l'on doit ajouter +a la quantité +b ... ect. (27)

Cas des monômes. (28)

Cas des polynômes. (29) (30)

Quand y a-t-il lieu d'effectuer l'opération qu'on appell réduction des termes semblables? (31)

Donnez la règle de la réduction des termes semblable

(32).

Qu'appelle-t-on ordonner un polynôme? (33)

Comment peut-on disposer les polynômes avant de fair l'addition? (35)

Au lieu d'effectuer la soustraction que peut-on se conte

ter de faire? (36)

Le signe moins (—) placé devant une parenthèse affects t-il tous les termes qui y sont renfermes ? (37)

EXERCICES ET PROBLÈMES

sur l'addition algébrique.

13. Additionner les polynômes (7a - 6b) et $(5a^2 - b^3 + c)$.

14. Ajouter $13am^2 - 9a^2m + a^3$ avec $7a^2m^2 + 5am^2 - a^3b$.

15. 3ab + x - y. 4c - 2y + x. 5ab - 3c + d. $4y + x^{3} - 2y$. 16. Ad

17. On comme a ard on colors labeled

18. Un consécution de ; la les trois a une somma vait x situation de situation de

SU

E

19. Du - 5b.

20. Effe - (3a² —

21. De $-\frac{3}{4}$.

22 x e quel était

23. La petite x; ϵ

24. De ôter

25. 12*u* ôter

26. $5y^2$ ôter

(b-c+d)n considére xemple?(2) té? (22) relatif? (22

iera le sign riques diff thmétiques

straction all

soustraction oit ajouter

u'on appel semblable

ant de fair n se conten

hèse affects

6b) et (5a

 $ec 7 a^2 m$

16. Additionner $a + \sqrt{b}$ avec $a - \sqrt{b}$.

17. On met dans une bourse d'abord une omme a, ensuite une autre somme b, et plus ard on en retire une semme c; que reste-t-il lans la bourse?

18. Un négociant a gagné, pendant cinq années consécutives, une somme a pendant chaque année; la sixième année il perd une somme b; es trois années suivantes il gagne chaque année me somme c. Si en commençant les affaires il avait x piastres, comment exprimera-t-on sa ituation après les neuf années?

EXERCICES ET PROBLÈMES

SUR LA SOUSTRACTION ALGÉBRIQUE.

- 19. Du polynôme 9a + 3b c retrancher 7a -5b.
- 20. Effectuer la soustraction indiquée $5a^2 2a$ $-(3a^2-8a-4)$.
- 21. De $15m^3 8n^2 + 5$ ôter $9m^3 + 4n^2 7n$ - 3/4.
- 22 x exprimant l'âge actuel d'une personne, quel était son âge il y a 13 ans?
- 23. La somme de deux quantités est s, la plus petite x; exprimer la plus grande.
 - 24. De $7x^2 2x + 5$ $\hat{0}$ ter $3x^2 + 5x - 1$.
 - 25. $12a^2 3a + b 1$
 - 26. $5y^2 4y + 3a$

 $\frac{12a^{2}-3a+b-1}{\text{ôter } 6a^{2}+a-2b+3}$ $\frac{5y^{2}-4y+3a}{\text{ôter } 6y^{2}-4y-a}$

MULTIPLICATION.

Multiplication des monômes.

- 38. Monôme positif. Supposons d'abord que les facteurs monômes soient positifs, pour n'avoi pas encore à nous occuper des signes.
- 39. Règle des coefficients. Le coefficient du priduit se forme en multipliant entre eux les coefficient numériques des facteurs monomes, d'après les règle ordinaires de l'arithmétique.

Ainsi le produit de 6a par 4b sera 24ab; et effet $6a \times 4b$ revient à $6 \times a \times 4 \times b$; ou bien en changeant l'ordre des facteurs, $6 \times 4 \times a \times b = 24ab$.

Nous savons, de plus, que le produit de plusieurs facteurs reste le même dans quelque ordre qu'on effectue la multiplication, c'est-à-dire, que

$$a \times b \times c = b \times a \times c = b \times c \times a$$

40. Règle des lettres. Il faut écrire au produitoutes les lettres qui entrent dans chacun des facteurs monômes, et les placer les unes à la suite des autres dans un ordre quelconque.

Ainsi le produit de a^2b par mn sera a^2bmn ou bien mna^2b .

41. Règle des exposants. Quand une même lettre se trouve dans les divers facteurs, on ne l'écrit qu'une fois au produit, mais on lui donne pour exposant la somme des exposants qu'elle avait dans les facteurs réunis.

Soit à multiplier a^3b^2c par a^2bc , le produit sera $a^5b^3c^2$.

En eff abc, ou eurs, à ication evient à

42. Rð nómes, il numériqu ettres cor avoir ajo quelles les

D'après

12 et

43. Rès loutes les signe, il es contraires

44. Dêr règle sera mière, no cateur es conque, e négatif.

1º Dans ment si l'
b par exertiplicande le caractè d'autres randattion
b fois.

Ceci po

En effet, $a^3b^2c \times a^2bc$ est égal à $aaabbc \times$ abc, ou bien, en intervertissant l'ordre des faceurs, à aaaaa × bbb × cc; or, d'après la signiication des exposants, no 5, ce dernier produit evient à celui qui est indiqué ci dessus a⁵ b³c².

42. Règle générale. Pour multiplier deux moiomes, il faut d'abord faire le produit des coefficients umériques, écrire à sa suite, comme facteurs, les ettres communes aux deux monômes donnés, après voir ajouté leurs exposants, enfin mettre telles quelles les lettres qui sont dissérentes.

D'après cette règle on aura :

$$12a^{4}b^{2}c \times 3a^{8}bm^{2} = 36a^{7}b^{3}cm^{2},$$

et $\frac{2}{3}a^{2}b \times \frac{4}{5}am = \frac{8}{15}a^{3}bm.$

43. Règle des signes. Le produit est positif outes les fois que les deux facteurs ont le même signe, il est négatif quand les facteurs sont de signes contraires.

44. Démonstration. La démonstration de cette règle sera divisée en deux parties; dans la première, nous considèrerons le cas où le multiplicateur est positif, le multiplicande étant quela suite de conque, et ensuite le cas où le multiplicateur est négatif.

> 1º Dans le premier cas tout s'explique facilement si l'on admet qu'un multiplicateur positif, b par exemple, indique qu'il faut répéter le multiplicande b fois, en laissant à ce multiplicande le caractère, positif ou négatif, qu'il possède ; en d'autres mots, le multiplicateur positif indique l'addition (No 20) du multiplicande à lui-même b fois.

Ceci posé, soit +a à multiplier par +b: on

abord qu our n'avol

ent du pre s coefficient ės les rėgle

24ab; e ; ou bien $4 \times a \times a$

uit de plu lque ordre dire, qu

 $\times a.$

au produi in des fac

ra a2bm

ne même irs, on ne lui donne ts qu'elle

produit

aura, en supposant, pour fixer les idées, que b = a + a + a + a + a = 5 fois a = 5a = ba ou ab = 5a = ba

De même, multiplier — a par +b, c'est encor ajouter à elle-même la quantité négative — a autant de fois que l'indique la valeur absolue d multiplicateur b; donc, en faisant encore b = a

$$-a \times (+b) = -a - a - a - a - a = 5 \text{ fois} - a = -ba \text{ ou } -ab.$$

2º En second lieu, un multiplicateur négati — b par exemple, indique qu'il faut répéter l'multiplicande autant de fois qu'il y a d'unité dans la valeur absolue du multiplicateur, c'es à dire b fois, mais en changeant le caractère d'multiplicande de positif qu'il était en négatif, or de négatif en positif; en d'autres mots, le multiplicateur négatif — b indique qu'il faut soustrain (N° 21) le multiplicande b fois.

Ceci posé soit +a à multiplier par -b of

aura, faisant encore b = 5,

$$a \times (-b) = -a - a - a - a - a - a = 5$$
 fois $-a = -ab$

De même, multiplier — a par — b revient is soustraire — a autant de fois que l'indique b e l'on aura

$$-a \times -b = +a + a + a + a + a = 5$$
 foi
 $+a = 5$ $a = +ba = +ab$

45. Or, en s'attachant à ce principe, savoir maintenir ou renverser le caractère, c'est-à-dire, le signe du multiplicande, selon que le multiplicateur est positif ou négatif, on arrivera toujours à ce résultat que

on l'énor multipli r — ou -

46. Règle r un aut mes du n ultiplicate ensuite op e peuvent

Appliquo Itiplicande Itiplicateur

 $\begin{cases} 15a^5 - 15$

Pour forn

deux face nultiplié premier t nné 15a⁵ a fait le cande par l'on a co 32ab⁴, qu ne en fai es; de mé 3° terme ligne —

sée sous l

, que b = 1= ba ou al e'est encor ve - a a absolue d core b = 1

= 5 fois —

on l'énonce en disant: + multiplié par + ou multiplié par — donne +; et + multiplié r — où — multiplié par + donne—.

MULTIPLICATION

DES POLYNÔMES.

46. Règle. Pour faire le produit d'un polynôme r un autre, multipliez successivement tous les mes du multiplicande par chacun des termes du iltiplicateur, en observant la règle des monômes, ensuite opérez la réduction des termes semblables ractère de le peuvent rensermer les produits partiels.

Appliquons cette règle à l'exemple suivant :

Itiplicande
$$5a^2 - 7a^2b + 3ab^2 + 4b^3$$
Itiplicateur $3a^2 - 8ab - b^2$

$$= \begin{cases}
15a^5 - 21a^4b + 9a^3b^2 + 12a^2b^3 \\
- 40a^4b + 56a^3b^2 - 24a^2b^3 - 32ab^4 \\
- 5a^3b^2 + 7a^2b^3 - 3ab^4 - 4b^5
\end{cases}$$
al $15a^5 - 61a^4b + 60a^3b^2 - 5a^2b^3 - 35ub^4 - 4b^5$

Pour former ce produit on a d'abord ordonné deux facteurs par rapport à a, après quoi on nultiplié tous les termes du multiplicande par premier terme 3a2 du mu. our, ce qui a $a = \frac{3a^4b}{15a^5} + \frac{9a^3b^2}{15a^5}$, ensuite a fait le produit de tous les .. du multicande par le 2° terme - 8ab du multiplicateur l'on a obtenu — $40a^4b + 56a^3b^2 - 24a^2b^3$ $32ab^4$, qu'on a écrit au-dessous de la première ne en faisant correspondre les termes semblales; de même, le produit du multiplicande par 3º terme — b² du multiplicateur a fourni la ligne — $5a^3b^2 + 7a^2b^3 3ab^4 - 4b^5$ qu'on a sée sous les autres dans l'ordre indiqué 🗧 enfin,

ır négati répéter l a d'unité teur, c'es négatif, o , le multi soustrair

ar - b or

= 5 fois -

revient dique b e

=5 foi

, savoir -à-dire, le ultiplica toujours la réduction opérée sur tous les produits partiel en ayant soin de bâtonner les termes semblable a donné le produit demandé.

- 47. Démonstration. En effet de même qu'e arithmétique la multiplication, par exemple, à 3657 par 543 revient à répéter le multiplicande fois, plus 40 fois, ensuite 500 fois, ce qui dom trois produits partiels, de même en algèbre a fait le produit du multiplicande par chacun determes du multiplicateur.
- 48. Avant d'effectuer la multiplication, il e avantageux d'ordonner les deux polynômes parapport à la même lettre : ensuite on place le produits partiels de manière que les termes sen blables soient sur une même colonne; par là l'réduction est plus facile.
- 49. Remarque. Quand les deux facteurs sor ordonnés par rapport à la même lettre, le produit se trouve nécessairement ordonné de l'même manière; mais ce qu'il importe de remarquer, c'est que dans la multiplication de deu polynômes, ordonnés de la même manière, le promier et le dernier terme du produit sont sans rédution possible. En effet, le premier terme du produit provient de la multiplication du premie terme du multiplicateur. Or, l'exposant de lettre principale dans le premier terme du multiplicande, et l'exposant de la lettre principale dans le premier terme du multiplicateur, sont plus éle vés, chacun, par rapport à cette lettre que dans tous les autres termes.

Par conséquent l'exposant de la lettre principale dans le produit de ces deux termes ser plus élevé que dans tous les autres termes.

Par une raison analogue, le dernier produi monôme qui résulte des deux derniers termes de facteurs, sera le seul qui ne contienne pas la let

e princip ible expo Cette re: éorie de

50. Mett gle de l été mult ouve fac nit; ain onne 2a²

Réciproqu

eut considers commolynôme au. C'es us les to bm + b²/vera pour renfer après :

On trouv

nt les te

Enfin, on Effectuer mme en a 51. Quand lynôme, o

, et l'on p

its partiel semblable

ême qu'e exemple, d iplicande qui don algèbre d chacun d

tion, il e rnômes pa en place le ermes sen ; par là l

teurs son

tre, le pronné de la de rema non de deu ère, le prosans rédu ne du pronie sant de la du multipale dan et plus éla e que dans et plus éla e que dans en de la comparis de la

tre princi rmes ser mes. er produit

er produi termes de pas la let e principale, ou il la contiendra avec le plus ible exposant.

Cette remarque importante sert de base à la

éorie de la division.

50. Mettre en facteur commun. D'après la gle de la multiplication, quand un polynôme été multiplié par un monôme, ce monôme se ouve facteur dans chacun des termes du prouit; ainsi $2a^2 - 3ab + b^2$ multiplié par monne $2a^2m - 3abm + b^2m$.

Réciproquement, lorsque tous les termes d'un alynôme contiennent des facteurs communs, on ent considérer le monôme résultant de ces derers comme un multiplicateur introduit dans le plynôme et que l'on peut en séparer de nou-au. C'est ainsi qu'après avoir reconnu que us les termes du polynôme ci-dessus $2a^2m-bm+b^2m$ contiennent le facteur m, on l'envera pour l'écrire en dehors des parenthèses i renfermeront le polynôme restant, comme après :

$$m(2a^2 - 3ab + b^2).$$

On trouverait de même que le polynôme

$$5a^{2}x^{3} + 15a^{3}b^{4} - 10a^{4}x,$$

nt les termes contiennent le facteur commun², revient à

$$5a^2(x^3 + 3ab^2 - 2a^2x).$$

Enfin, on a évidemment $a^2x^4-x^4=x^2(a^2-1)$. Effectuer ces décompositions, c'est ce qu'on mme en algèbre mettre en facteur commun.

51. Quand on veut indiquer la puissance d'un lynôme, on le renferme entre deux parenthès, et l'on place l'exposant en dehors et en haut la dernière parenthèse; ainsi (a + b - c)*

indique le cube ou la 3e puissance du trinôme a + b - c.

QUELQUES FORMULES FRÉQUEMMENT EMPLOYÉES.

52. Multiplications importantes:

Ce résultat donne lieu à la formule :

$$(a_1 + b)^2 = a^2 + 2ab + b^2.$$

En langage ordinaire:

Le carré de la somme de deux nombres est éga au carré du premier, plus le double produit d premier par le second, plus le carré du second.

53. Carré de la différence de deux nombres

$$\begin{array}{c}
a - b \\
a - b \\
\hline
a^2 - ab \\
- ab + b^2 \\
\hline
a^2 - 2ab + b^2
\end{array}$$

Ce résultat donne lieu à la formule :

$$(a-b)^2 = a^2 - 2ab + b^2$$

En langue ordinaire.

Le carré de la différence de deux nombres est égo au carré du premier, moins le double produit de premier par le second, plus le carré du second, 54. Pro ar leur

Ce résu

En lang

Le prod ur différe s deux no Réciproq ourra tou ant du p

es deux n.

Donnez la se monômes Donnez la se la s

Est-il avant effectuer la i Qu'appelle-t Comment in du trinôm

EMMENT

54. Produit de la somme de deux nombres ar leur différence :

$$\begin{array}{c}
a + b \\
\underline{a - b} \\
a^2 + ab \\
\underline{-ab - b^2} \\
a^2 - b^2
\end{array}$$

Ce résultat donne lieu à la formule :

$$(a+b) (a-b) = a^2 - b^2,$$

En langage ordinaire:

Le produit de la somme de deux nombres par ur dissérence est égal à la dissérence des carrés de s deux nombres.

Réciproquement, la différence de deux carrés ourra toujours être considérée comme proveant du produit de la somme par la différence es deux racines; ainsi $m^2 - n^2 = (m + n)$ (m

res est éga produit d econd.

nombres

QUESTIONNAIRE.

Donnez la règle des coefficients dans la multiplication es monômes. (39)

Donnez la règle des lettres. (40)

Donnez la règle des exposants. (41) Donnez la règle générale. (42)

Donnez la règle des signes. (43)

En combien de parties se divise la démonstration de cette gle? (44)

Comment s'explique facilement le premier cas? (44, 1°)

Que considère-t-on dans le second cas? (44, 2°)

Comment énonce-t-on le résultat de toutes ces règles ? (45) Donnez la règle pour la multiplication des polynômes. (46)

Démontrez cette règle. (47)

Est-il avantageux d'ordonner les deux polynômes avant effectuer la multiplicatio:1? (48)

Qu'appelle-t-on mettre en facteur commun? (50)

Comment indique-t-on la puissance d'un polynôme? (51)

es est éga roduit d cond.

A quoi est égal le carré de la somme de deux non bres? (52)

A quoi est égal le carré de la différence de deux non

bres ? (53)

A quoi est égal le produit de la somme de deux nombre par leur différence? (54)

Comment peut-on considérer la différence de deux ca-

rés? (54)

EXERCICES ET PROBLÈMES

SUR LA MULTIPLICATION ALGÉBRIQUE.

27. Quel est le produit de $14a^{5}b^{2}c$ par 9abdm

28. Effectuer le produit de $8ab^3y$ par — $7a^2c$

29. Faire le produit de $-5ab^2x^2$ par -12am

30. Trouver le produit des trois facteurs (5al (-3bc) (+7ad).

Effectuer les opérations ci-après indiquées:

31. $(13ab) (-a^2)$, + $7a^2(ab)$.

32. (8a - 3b + 5c) 7a.

33. $2a (a^3 - 5a^2b + 3ab^2 - b^3)$.

34. $(a^2-1)(a^4-a^2b+b^2)$.

$$(3a^2 - 5a^2b - \frac{1}{2}ab^2) (-2a^2 + 3ab - b^2).$$
 $ab (a^5 + a^4b + a^3b^2 + a^2b^3 + ab^4 + b^5).$

35. Décomposer $x^2 - y^2$ en deux facteurs binômes.

36. Quels sont les deux facteurs binômes nu mériques qui ont donné le produit 100 — 16?

DIVISION ALGÉBRIQUE.

55. Division algébrique—But de la division Etant donnés le produit de deux facteurs et l'un de ces facteurs, trouver l'autre facteur. Donc pour arriver à la pratique et à la théorie de li

ivision a ue nous lication d

Exempl e pour qu

56. Dém ition ci-d uit du di r, d'aprè ienômes, es exposa eux facte n tirera l 1° Le pa acteurs q N° 43); d diviseur 66

era 3.

3º L'exprovient (Nu diviseuettre dans

2º Le co

Nº 39) de

liviseur p

e dernier

Par la m
² du divis = b.

4º Enfin.

e deux nom de deux nom leux nombre

de deux car

ES oue.

oar 9abdm

r — 12*amı* teurs (5al

iquées :

 $ab - b^2).$ $b^4 + b^5).$

acteurs bi

nômes nu — 16?

division rs et l'un Donc rie de la ivision algébrique, il faut se rappeler les lois ne nous avons établies ci-dessus dans la multilication algébrique.

Division des monômes.

Exemple. Divisez $18a^5b^3c$ par $6a^3b^2$; nous done pour quotient $3a^2bc$, ce qu'on exprime ainsi:

$$\frac{18a^5b^3c}{6a^3b^2} = 3a^2bc.$$

56. Démonstration. En effet, d'après la défiition ci-dessus, le dividende $18a^5b^3c$ est le prouit du diviseur $6a^3b^2$ par le quotient demandé; r, d'après les règles de la multiplication des conômes, le signe, le coefficient, les lettres et es exposants du produit dépendent de ceux des eux facteurs, et, en se rappelant ces règles, on n tirera les déductions suivantes:

1º Le produit $18a^5b^3c$ étant positif, les deux acteurs qui l'ont formé sont de même signe N^0 43); donc le quotient sera positif comme le diviseur $6a^3b^2$.

2º Le coefficient 18 du dividende étant formé Nº 39) de la multiplication du coefficient 6 du iviseur par le coefficient inconnu du quotient, e dernier s'obtiendra en divisant 18 par 6, et era 3.

3º L'exposant b de la lettre a dans le dividende rovient (Nº 41) de l'addition de l'exposant de a du diviseur à l'exposant inconnu de la même ettre dans le quotient; on aura donc 5-3=2 our l'exposant de a au quotient.

Par la même raison, b^3 du dividende, divisé par du diviseur, donnera au quotient $b^{3-2} = b^1$

4º Enfin, la lettre c (Nº 40), qui se trouve au

dividende sans être dans le diviseur, doit se trouver telle quelle au quotient.

Cette démonstration conduit aux rêgles suivantes pour la division des monômes.

- 57. Règle des signes. Quand le dividende et le diviseur ont même signe, le quotient est positif; si le dividende et le diviseur sont de signes contraires, le quotient est négatif.
- 58. Règle des coefficients. Le coefficient du quotient s'obtient en divisant le coefficient du dividende par celui du diviseur.
- 59. Règle des lettres. Il peut se présenter trois cas: 1° Une lettre est au dividende sans être au diviseur, on l'écrit alors telle quelle au quotient; 2° une lettre est au diviseur sans être au dividende, la division est alors impossible, (N° 62); 3° enfin une lettre se trouve au dividende et au diviseur, on se conforme alors à ce qui est dit dans la règle suivante.
- 60. Règle des exposants. Pour chaque lettre commune aux deux facteurs, on forme l'exposant du quotient en retranchant l'exposant du diviseur de celui du dividende. Nous verrons (No 64) quelques cas spéciaux.
- 61. Application de ces règles. Pour l'application de ces règles, divisons

$$54a^{6}b^{5}c^{2}mx^{2} \text{ par } -9a^{4}b^{2}c^{2}x;$$
nous aurons
$$\frac{54a^{6}b^{5}c^{2}mx^{2}}{-9a^{4}b^{2}cx^{2}} = -6a^{2}b^{3}mx.$$

(Voir les exercices nos 41, 42, 43, 44.)

62. **Division impossible.** Nous venons de dire (No 59, 20) que la division est impossible quand le diviseur contient une ou plusieurs lettres qui

e font pa n se bor expressionès:

mmuns étant co $\frac{a^2b}{ac}$, celle

On peu

63.—Div règle de ne le divi nnu soie croissant viseur pa nde; dor produit premier ouver le diviser l emier ter tranche l rme obter oduit du connus di rmes du c

ier reste p

dire perr

quotient

oit se trou.

egles sui.

vidende et it est posit de signes

ficient du ficient du

enter trois sans être e au quons être au ssible, (No dividende ce qui est

que lettre ne l'expoosant du s verrons

ır l'appli

s de dire le quand ttres qui e font pas partie du dividende; dans ces cas, n se borne à indiquer la division, en mettant expression sous forme fractionnaire, comme ciprès:

 $\frac{12a^2b}{3ac}$

On peut simplifier en supprimant les facteurs mmuns aux deux termes de la fraction : ainsi, étant commun aux deux termes de la fraction $\frac{a^2b}{ac}$, celle-ci se réduit à

 $\frac{4ab}{c}$

Division des polynômes.

63.—Division des Polynomes.-Pour trouver règle de la division des polynômes, supposons le le dividende, le diviseur et le quotient innnu soient ordonnés suivant les puissances croissantes d'une même lettre. Le produit du viseur par le quotient doit reproduire le divinde ; donc le premier terme du dividende égale produit du premier terme du diviseur par premier terme inconnu du quotient. Pour ouver le premier terme du quotient, il suffira diviser le premier terme du dividende par le emier terme du diviseur. Si du dividende on tranche le produit du diviseur par le premier rme obtenu du quotient, le reste contiendra le oduit du diviseur par tous les autres termes connus du quotient. Peur obtenir les autres rmes du quotient, il faut donc diviser ce preer reste par le diviseur; ce que nous venons dire permet de trouver le premier terme de quotient qui est le second du quotient cherché.

$24a^7b - 118a^5b^3c^2 + 44a^3b^5c^4 + 160a^2b^6c^5$ $4a^3 + 2a^2bc - 16ab^2c_2$	6a4b	•	2e Produit partiel $\pm 12a^6b^2c \pm 6a^5b^3c^2 \mp 48a^4b^4c^3$	$-16a^5b^3c^2 - 48a^4b^4c^3$	3e Produit partiel	$-40a^4b^4c^3-20a^3b^5c^4$	4e Produit partiel	Reste 0
	1 Troduit p		2e Produit p		3e Produit p		4e Produit p	

Dans la pratique de cette opération on adopune disposition analog à celle de la division d'nombres absolus et on dispense d'écrire sur ligne de chaque respartiel les termes du vidende qui n'ont pas d'altérés ou ne doivent l'être dans l'opératipartielle que l'on exécut

Pour faire la division des polynômes, ordona le dividende et le diviseu par rapport aux puissa ces décroissantes d'une m me lettre; diviser le p mier terme du divident par le premier diviseu ce qui donne le premi terme du quotient. Fai le produit du diviseur p le terme obtenu; l'écri sous le dividende ; chan les signes de ce produit réduire ses termes au ceux du dividende. Ord ner le reste, opérer com on vient de le faire sur dividende; et ainsi de sui jusqu'à ce qn'on obtien un reste nul, auquel on dit que la division fait exactement, ou reste d'un degré inférit à celui du diviseur, a

uel on e cas.

Quand of afficient ettre ordor of the produing the produing the produing the produing the product of the produc

Il n'est ération a mpossible ividende, nivant les nier term remier te u quotien produit ernier ter ar rappoi u dividen st possible ent une lus haut re respec viseur q aut ou au on s'appli Le degré ossible, é vidende e

est pas po

le divise

ratique 🛊 on on adop on analog division d crire sur aque res rmes du i'ont pasé doivent l'opérati

l'on exécul

la divisi es, ordonm le diviseu ux puissa tes d'une m viser le pr u dividen er diviseu le premi ient. Fai diviseur p nu ; l'écri de; chan ce produit ermes an ende. Orde erer com faire sur insi de sui on obtien auquel division ent, ou ré inférie viseur, a

uel on arrête ordinairement l'opération dans e cas.

Quand on arrive à un reste qni est d'un degré nferieur à celui du diviseur, par rapport à la olus et on pettre ordennatrice, la division est impossible, à e point de vue que le dividende n'est pas égal u produit du diviseur par le quotient; autrenent le premier terme de chaque reste serait ivisible par le premier du diviseur, ce qui n'a as lieu pour le reste que nous considérons. ouvent on complète le quotient par une fracon algébrique dont le numérateur est le reste, t dont le dénominateur est le diviseur.

Il n'est pas toujours nécessaire de mener l'oération aussi loin pour reconnaître qu'elle est mpossible. Quand la division est possible, et que ividende, diviseur et quotient, sont ordonnés nivant les puissances d'une même lettre, le prenier terme du dividende égale le produit du remier terme du diviseur par le premier terme u quotieni; le dernier terme du dividende est produit du dernier terme du diviseur par le ernier terme du quotient. Or, on peut ordonner ar rapport à une lettre quelconque commune u dividende et au diviseur; donc, si la division t possible, les termes du dividende qui contienent une lettre commune au plus haut ou au us haut ou au plus faible exposant doivent re respectivement divisibles par les termes du viseur qui contiennent cette lettre au plus aut ou au plus faible exposant. Cette observaon s'applique aux dividendes partiels.

Le degré du quotient, quand la division est ossible, égale la différence entre le degré du vidende et le degré du diviseur. Si la division est pas possible, et si on ordonne le dividende le diviseur par rapport aux puissances croisntes, on verra qu'en continuant indéfiniment

les opérations, le degré du quotient par rapport à cette lettre croît indéfiniment.

De l'exposant zero et de l'exposant négatif.

64. $a^0 = 1$. La division algébrique donne nais sance à certaines quantités qui ont besoin d'une interprétation particulière : ce sont les expressions a^0 et a = 1, que nous allons examiner.

1º Toute quantité affectée de l'exposant zéro re présente l'unité, c'est-à-dire qu'on aura toujours

$$a^{\circ} = 1$$

Nous pouvons supposer que l'expression a provient d'une division dans laquelle l'exposant du diviseur était égal à l'exposant du dividende. C'est ainsi que a peut être considéré comme le quotient de

$$\frac{a}{a}$$
 ou de $\frac{a^2}{a^2}$, $\frac{a^3}{a^3}$, $\frac{a^4}{a^4}$, $\frac{a^5}{a^5}$,ect..... $\frac{a^m}{a^m}$.

Ceci est une conséquence de la règle des exposants (N° 60).

Or, on sait, d'un autre côté, que toute quantité divisée par elle-même a l'unité pour quotient.

Ainsi
$$\frac{a^2}{a^2} = 1$$
, $\frac{a^3}{a^3} = \frac{a^4}{a^4} = 1$; $\frac{a^m}{a^m} = 1$

Il suit évidemment de là que

$$a^{0} = 1$$

65.
$$a^{-n} = \frac{1}{a^n}$$
 20 Toute quantité affectée d'un ex

posant négatif représente une fraction dont le numérateur est l'unité, et qui a pour dénominateur cette même lettre avec son exposant positif; ainsi!

$$a^{-s} = \frac{1}{a^s}$$
, et en général $a^{-s} = \frac{1}{a^s}$

Démor appliqué

$$\frac{a^2}{a^5} = a^2$$

termes (

on trouv

Remarq ment, 10 $\frac{a^2}{a^2}$ peut s'

 $\frac{a^3}{a^5} \text{ peut s}$

Quel est la Donnez un Démontre Donnez la Donnez la Donnez la Donnez la Quand la

Donnez la

Que repré (64) Que repré gatif? (65) r rapport

régatif.

nne nais oin d'une s expres

iner. *t zėro r* toujours

ession ao 'exposant ividende, comme le

 $\frac{a^{\mathrm{m}}}{a^{\mathrm{m}}}$:

des expo-

quantité otient.

= 1

d'un ex

nt le numinateur ; ainsi: Démonstration. La règle des exposants (N° 60) appliquée, par exemple, à $\frac{a^2}{a^5}$ nous montre que $\frac{a^2}{a^5} = a^2 - \frac{a^{-2}}{a^5} = a^{-3}$. Or, en divisant les deux termes de la fraction $\frac{a^2}{a^5}$ par le numérateur a^2

on trouve
$$\frac{a^2}{a^3} = \frac{1}{a^3}$$

$$\therefore a - \frac{1}{a^3} = \frac{1}{a^3}. \text{ et en général}$$

$$a^{-n} = \frac{1}{a^n}$$

Remarque.—De ce qui précède on voit clairement, 1° que le quotient, par exemple, de $\frac{a^2}{a^2}$ peut s'écrire a° , ou bien simplement 1;

2º Que le quotient, par exemple, de $\frac{a^3}{a^5}$ peut s'écrire a-2 ou simplement $\frac{1}{a^2}$.

QUESTIONNAIRE.

Quel est le but de la division algébrique? (55)
Donnez un exemple. (55)
Démontrez cette règle. (56).
Donnez la règle des signes. (57)
Donnez la règle des coefficients. (58)
Donnez la règle des exposants. (60)
Donnez la règle des lettres. (59)
Quand la division est-elle impossible? (62)
Donnez la règle de la division des polynômes. (63)
Que représente une quantité affectee de l'exposant zéro?

Que représente une quantité affectée d'un exposant né-

EXERCICES ET PROBLÈMES

SUR LA DIVISION ALGÉBRIQUE. .

37. Diviser $72a^5b^3$ par $9a^3b$.

38. Diviser $35a^3b^2c$ par — $7a^2c$.

39. Diviser — $48a^7b^5c^2x$ par $12a^4b^3x$.

40. Diviser — $56a^9b^7c^3x^2$ par — $8a^5b^3c^3$.

41. Diviser $12x^5 - 13x^4 - 34x^3 + 39x^2$ par $4x^2 - 7x$.

42. Diviser $x^4 - \frac{5}{4}x^3 + \frac{11}{8}x^2 - \frac{1}{2}x$ par $x^2 - \frac{1}{2}x$.

43. Diviser $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ par a + b.

44. A quoi sont équivalentes les expressions a° , b° ?

45. A quoi se réduit l'expression $\frac{a^0 + b^0 + x^2}{3}$?

46. Trouver la valeur de a^{-2} pour a=8.

FRACTIONS ALGÉBRIQUES.

66. Définition. On donne le nom de fraction algébrique ou fraction littérale à l'indication, entre deux monômes ou entre deux polynômes, d'une division, qui, en général, ne peut s'effectuer exactement; telles sont les expressions

$$\frac{a}{b}$$
, $\frac{a^2-b^2}{m+n}$, $\frac{3x^2}{x^3-2x+2}$.

Tous les principes et toutes les règles propres aux fractions numériques sont applicables communs aux fractions littérales et reposent sur cette raient d'ol

même protoujours of fraction of valeur de

On déc fractions plusieurs

67. Sim ser les d facteurs q

par la sup

De même, que

donne, par + 2b,

68. Réd
effectuera de les des produit de la ne faut communs

même proposition fondamentale : que l'on peut toujours multiplier ou diviser les deux termes d'une fraction par une même quantité sans altérer la valeur de cette fraction, c'est-à-dire qu'on a toujours

$$\frac{am}{bm} = q$$
, ou bien $\frac{am}{bm} = \frac{a}{b}$.

On déduit de ce principe la simplification des fractions algébriques, ainsi que la réduction de plusieurs fractions au même dénominateur.

67. Simplification. Elle consiste à débarrasser les deux termes d'une fraction de tous les facteurs qui leur sont communs. Ainsi, on aura

$$\frac{15a^5cx^3}{20a^3x^4} = \frac{3.5.a^3.a^2.c.x^3}{4.5.a^3.x^3.x} = \frac{3a^2c}{4x}$$

par la suppression de $5a^3x^3$.

De même, $\frac{a^2-4b^2}{2a+4b}$, qui est la même chose (nº 54)

que

$$\frac{(a+2b) (a-2b)}{2 (a+2b)},$$

donne, par la suppression du facteur commun a +2b,

$$\frac{a^2 - 4b^2}{2a + 4b} = \frac{a - 2b}{2}.$$

68. Réduction au même dênominateur. On effectuera cette réduction en multipliant en généal les deux termes de chaque fraction par le roduit des dénominateurs de toutes les autres. les pro- l ne faut pas négliger le cas où des facteurs plicables communs aux divers dénominateurs permetur cette raient d'obtenir un dénominateur commun plus

b3c3.

 $39x^2$ par $\frac{1}{2} x$ par

 $+b^4$ par

pressions

 $\frac{b^{0}+x^{2}}{3}$

fraction lication, ynômes, t s'effecons

simple en prenant le plus petit multiple. Alors le dénominateur commun à plusieurs fraction se composera de tous les facteurs qui entrent dans les dénominateurs des fractions données, pris une seule fois, mais avec l'exposant le plus élevé. Ainsi, soit à réduire au même dénominateur les fractions suivantes:

$$\frac{m}{3a^3c^2}$$
 $\frac{x}{4a^2b^2}$ $\frac{n^2}{12bc^4}$

Pour former le plus petit multiple qui soit divisible par chacun des trois dénominateurs ci-dessus, nous prendrons tous les facteurs différents que contiennent ces dénominateurs, lesquels sont 3, 4, a, b, c, et nous leur donnerons l'exposant qu'ils ont dans le terme où cet exposant est le plus élevé pour chacun d'eux, ce qui fournira le produit suivant pour le dénominateur commun aux fractions proposées:

$$3 \times 4 \times a^3 \times b^2 \times c^4 = 12a^3b^2c^4$$
.

Maintenant, pour effectuer la réduction démandée, il suffira de multiplier les deux termes de chaque fraction par le quotient qui existe entre le dénominateur commun $12a^3b^2c^4$ et son dénominateur propre, c'est-à-dire qu'on multipliera les deux termes de la première par $4b^2c$, les deux termes de la seconde par $3ac^4$, et les deux termes de la troisième par a^3b .

Alors les fractions proposées deviendront

$$\frac{4b^2c^2m}{12a^3b^2c^4} \qquad \frac{3ac^4x}{12a^3b^2c^4} \qquad \frac{a^3bn^2}{12a^3b^2c^4}$$

69. Addition des fractions. Pour ajouter des fractions entre elles, il faut les réduire d'abord au même dénominateur, faire ensuite la somme des

numérate teur com

 $\frac{a}{b} + \frac{m}{n}$

70. So tion ne toutefois même de

71. Mi produit e numérate eux.

Soient la valeur par q, et

ce qui do

Mais si vement of duit des of des deux ce qui re visant pa

Soit à r

 $\begin{array}{ccc}
2x \times 4x = \\
7 \times 9 = \\
\end{array}$

e. Alors action se t dans les une seule insi, soit fractions

soit divirs ci-deslifférents uels sont ant qu'ils plus éleproduit aux frac-

démandres de ste entre on dénolitipliera 4b²c, les les deux

ont

outer des abord au nme des numérateurs et donner à cette somme le dénominateur commun; ainsi:

$$\frac{a}{b} + \frac{m}{n} + \frac{x}{y} = \frac{any}{bny} + \frac{bmy}{bny} + \frac{bnx}{bny} = \frac{any}{bny} + \frac{bmy}{bny} + \frac{bnx}{bny}$$

70. Soustraction des fractions. La soustraction ne peut s'opérer par les numérateurs qu'après toutefois que les deux fractions ont été réduites au même dénominateur; on aura donc

$$\frac{a}{b} - \frac{m}{n} = \frac{an}{bn} - \frac{bm}{bn} = \frac{an - bm}{bn}.$$

71. Multiplication des fractions. On fait le produit de plusieurs fractions en multipliant les numérateurs entre eux et les dénominateurs entre eux.

Soient les deux fractions $\frac{a}{b}$ et $\frac{m}{n}$; représentons la valeur de la première par p, celle de la seconde par q, et posons $\frac{a}{b} = p$, $\frac{m}{n} = q$, ce qui donne a = bp et m = nq.

Mais si les deux quantités a et m sont respectivement égales aux deux autres bp et nq, le produit des deux premières égalera aussi le produit des deux autres, et l'on aura $a \times m = bp \times nq$, ce qui revient à $am = bn \times pq$; et enfin, en divisant par la quantité bn, on aura

$$\frac{am}{bn} = pq$$
; donc $\frac{a}{b} \times \frac{m}{n} = \frac{am}{bn}$.

Ex.

Soit à multiplier
$$\frac{2x}{7}$$
 par $\frac{4x}{9}$

$$2x \times 4x = 8x^{2}$$

$$7 \times 9 = 63$$
: la fraction demandée = $\frac{8x^{2}}{63}$

72. Division des fractions. On effectue la division d'une fraction par une autre en multipliant la fraction dividende par la fraction diviseur renversée,

Soit à diviser $\frac{a}{b}$ par $\frac{m}{n}$, et représentons le quotient par q; nous aurons :

$$\frac{a}{b}$$
: $\frac{m}{n} = q$, ou bien $\frac{a}{b} = \frac{m}{n} \times q$.

En réduisant au même dénominateur, on tire de là,

$$\frac{an}{bn} = \frac{bm}{bn} \times q;$$

en supprimant le dénominateur commun bn, on ne troublera pas l'égalité, et l'on aura $an = bm \times q$; enfin, cette dernière égalité, divisée de part et d'autre par bm, donne

$$\frac{an}{bm} = q$$
, ou bien $q = \frac{a}{b} \times \frac{n}{m}$,

ce qui prouve la règle énoncée.

Soit à diviser
$$\frac{14x^2}{9}$$
 par $\frac{2x}{3}$

La fraction diviseur renversée devient $\frac{3}{2x}$; d'où

$$\frac{14x^2}{9} \times \frac{3}{2x} = \frac{42x^2}{18x} = \frac{7x}{3}.$$

73. Il est important de rappeler que la valeur absolue d'une fraction algébrique est indépendante des signes de ses termes, et que, de plus, cette valeur est positive si les deux termes ont le

même si traires,

$$\frac{+a}{+b} = \frac{-a}{-b}$$

ce qui pr deux tern

> Commen Donnez Donnez Donnez Donnez Peut-on

tion sans a

Qu'appe Quel est

47. Ré

tions

48. Retions $\frac{2x}{3}$,

49. Ré tions $\frac{2x}{x}$

lue la diviltipliant la renversée.

ns le quo

r, on tire

q.

un bn, on an = bm de de part

 $\frac{3}{2x}$; d'où

a valeur indépende plus, es ont le même signe, et négative s'ils ont des signes contraires, c'est-à dire qu'on aura, nº 57,

$$\frac{+a}{+b} = \frac{-a}{-b} = +q$$
, et $\frac{+a}{-b} = \frac{-a}{+b} = -q$,

ce qui prouve que l'on peut changer les signes des deux termes d'une fraction sans altérer sa valeur.

QUESTIONNAIRE.

Qu'appelle-t-on fraction algébrique? (66)
Quel est le but de la simplification? (67)
Comment réduit-on au même dénominateur? (68)
Donnez la règle de l'addition des fractions. (69)
Donnez la règle de la soustraction des fractions. (70)
Donnez la règle de la multiplication des fractions. (71)
Donnez la règle de la division des fractions. (72)
Peut-on changer les signes des deux termes d'une fraction sans altérer sa valeur? (73)

EXERCICES

SUR LES FRACTIONS ALGÉBRIQUES.

47. Réduire au même dénominateur les frac-

tions

$$\frac{a}{b}$$
 $\frac{m}{n}$ $\frac{x}{p}$.

- 48. Réduire au même dénominateur les fractions $\frac{2x}{3}$, $\frac{5x}{b}$, et $\frac{4a}{5}$.
- 49. Réduire au même dénominateur les fractions $\frac{2x+1}{5}$, et $\frac{3x}{4}$.

- 50. Simplifier la fraction suivante (voir No 67) $\frac{14x^3 + 7ax + 21x^2}{35x^2}$
 - 51. Ajouter les fractions $\frac{a}{b}$, $\frac{2a}{3b}$ et $\frac{5b}{4a}$.
 - 52. Quelle est la différence de $\frac{a}{b}$ à -x?
 - 53. Quel est le produit de 7 par $-\frac{c}{d}$?
 - **54.** Faire le produit de $-\frac{a}{bc}$ par $-\frac{c}{d}$.
 - 55. Multiplier $\frac{3x^2-5x}{14}$ par $\frac{7a}{2x^3-3x}$.
 - **56.** Diviser $\frac{(a^4-5)}{c-d}$ par $\frac{(a^3+5)}{d-c}$.

ÉQUAT

74. Eg tés, algél appelle u

la partie membre o b + c, co

75. Ide pour tou les renfe

 (a^2+b^2)

sont des prennent ques non (voir No

- x?

CHAPITRE II.

DES ÉQUATIONS.

ÉQUATIONS ET PROBLÈMES DU PREMIER DEGRÉ A UNE SEULE INCONNUE,

DÉFINITIONS.

74. Egalité. Quand en écrit que deux quantités, algébriques ou non, sont égales on a ce qu'on appelle une égalité:

$$a = b + c$$

la partie a qui précède le signe = est le premier membre de l'égalité, et tout ce qui suit ce signe, b+c, compose le second membre.

75. Identité. On appelle ainsi une égalité vraie pour toutes les valeurs possibles des lettres qu'elles renferment : ainsi

$$(a-b) (a+b) = a^2 - b^2$$

 $(a^2 + b^2) (c^2 + d^2) = (ac + bd)^2 + (ad \times bc)^4$

sont des identités, parce que les deux membres prennent toujours les mêmes valeurs, par quelques nombres qu'on remplace les lettres. 76. Equation. On donne ce nom à une égalité dont les deux membres ne deviennent égaux que pour certaines valeurs convenables des lettres qu'elles renferment; ainsi, si l'on pose

$$x-3=7$$
, $5x=\frac{x+3}{3}$, $\frac{x}{a}-mx=a^2$

on aura formé trois équations, parce que les membres ne deviennent égaux que pour des valeurs déterminées. La lettre x est l'inconnue de l'équation.

- 77. Equation numérique. C'est une équation qui ne contient pas d'autres lettres que les inconnues.
- 78. Equation littérale. C'est une équation ou les quantités connues sont représentées par des lettres.
- 79. Classification des équations. Une équation, en général, peut renfermer une ou plusieurs inconnues, et ces inconnues peuvent y entrer à des puissances diverses et quelconques. De là, la classification des équations; ainsi on les divise en équations à une seule inconnue, à deux inconnues, à trois inconnues, etc..., et pour le même nombre d'inconnues, en équation du premier degré, du 2e degré, du 3e degré, etc..., du me degré, selon que les inconnues y sont à la 1re puissance, à la 2e, à la 3e, etc..., à la me puis sance.
- 80. Degré de l'équation.—Quand une équation algébrique est rationnelle et entière (No 13) on appelle degré de l'équation le degré le plus élevé parmi les degrés de ses différents termes, par rapport à toutes les inconnues. Quand les inconnues se rencontrent dans le même terme, le degré de l'équation est marqué par la somme

des expo

1º Equ

seule in

 2° Equal nue: 5x

 $x^6 - 7x$

4º Equ connues

81. **Do** tous prol tés connution, et trouver.

L'énonce tions qui nues et faire ces calculate blème.

82. So problème valeurs de condition le problè

83. Pro ainsi les tions du

84. So

ne égalité gaux que es lettres

- a2

les mem. leurs dé équation,

équation e les in.

ation où par des

ne équaplusieurs entrer à De là,

n les die, à deux pour le du pretc..., du ont à la me puis

(No 13) le plus termes, and les terme, somme des exposants des inconnues, prise dans le terme ou cette somme est la plus forte.

1º Equation numérique du 1er degré à une seule inconnue : $3x = \frac{x}{2} - 5$

2º Equation du 2me degré à une seule inconnue: $5x^2 - 3x = 35$.

3º Equation du 3^{me} degré à une seule inconnue: $x^6 - 7x^4 + x = 2x^3 + 9$.

4º Equation littérale du 1er degré à deux inconnues: ax + by = c.

81. Données.—Enoncé d'un problème.—Dans tous problèmes il existe, en général, des quantités connues qu'on nomme les données de la question, et des quantités inconnues qu'il s'agit de trouver.

L'inoncé du problème fait connaître les relations qui lient les quantités connues ou inconnues et les conditions auxquelles doivent satisfaire ces inconnues; c'est de cet ensemble que le calculateur déduit ensuite la solution du problème.

82. Solution d'un problème.—Résoudre un problème, c'est parvenir à la détermination des valeurs des inconnues qui satisfont à toutes les conditions de l'énoncé, ou bien c'est prouver que le problème est impossible.

83. Problèmes du premier degré.—On appelle ainsi les problèmes qui conduisent à des équations du premier degré.

84. Solution.—Pour résoudre complètement

un problème, il y a ordinairement quatre choses à faire.

1º Mettre les problèmes en équations.

2º Résoudre les équations trouvées.3º Généraliser le problème.

4º Discuter le problème.

85. Résolution des Équations.—Nous commencerons par la résolution des équations, opération qui est soumise à des règles fixes et déterminées.

Résoudre une équation, c'est chercher quelles sont les valeurs numériques qui, mises à la place des inconnues dans cette équation, rendent les deux membres égaux entre eux. Ces valeurs se nomment les solutions du problème, et l'on dit que l'équation est vérifiée ou satisfaite par ces valeurs.

86. Remarques importantes.—1° Dans toute équation on peut ajouter une même quantité aux deux membres à la fois sans altèrer cette équation de même que l'on peut toujours en retrancher des quantités égales.

Soit, par exemple, l'équation x = a - b; il est évident qu'on aura aussi x + m = a - b + m, et x - m = a - b - m.

20 On peut toujours multiplier ou diviser à la fois les deux membres d'une équation par une même quantité sans altérer l'équation.

Ainsi l'équation x = a - b donnera mx = am - b

bm ou bien $\frac{x}{m} = \frac{a}{m} - \frac{b}{m}$.

La quantité par laquelle on multiplie ou par laquelle on divise les deux membres d'une équation ne doit être ni nulle, ni infinie. De plus, si cette quantité contenait l'inconnue, il pourrait arriver, d tion ne de valeurs qu

RÉSOLU'. DEG

87. Règ

1º On co

30 On formes qui conservations

4º On r tiennent l' des termes facieur con

50 On d de cette in

1er exen

88. Cha

Règle.
minateurs
de cette é
l'on multi
commun.

15 (

89. 2º J

e choses à

arriver, dans certains cas, que la nouvelle équation ne donnât pas pour l'inconnue les mêmes valeurs que la première.

RÉSOLUTION DES ÉQUATIONS DU PREMIER DEGRÉ A UNE SEULE INCONNUE.

- 87. Règle. Cette résolution se résume dans les cinq opérations suivantes :
 - 1º On chasse les dénominateurs, s'il y en a.
 - 20 On effectue, s'il y a lieu, les calculs indiqués.
- 3º On fait passer dans un membre tous les termes qui contiennent l'inconnue; et dans l'autre tous les termes qui ne la contiennent point.
- 4º On réunit en un seul tous les termes qui contiennent l'inconnue (soit en effectuant la réduction des termes semblables, soit en mettant l'inconnue en facteur commun).
- 5º On divise les deux membres par le coefficient de cette inconnue.

1er exemple. — Soit l'équation

$$\frac{5(x-3)}{4}-1=\frac{x-1}{6}-2\ x.$$

88. Chassons les dénominateurs:

Règle. Pour chasser ou faire évanouir les dénominateurs d'une équation on réduit tous les termes de cette équation au même dénominateur (N° 6), et l'on multiplie les deux membres par le dénominateur commun. Notre fraction devient par là

$$15(x-3)-12=2(x-1)-24x$$

89. 2º Effectuons les calculs indiqués. — Les

ous comions, opéfixes et

r quelles à la place dent les aleurs se l'on dit par ces

is toute attité aux équation cher des

b; il est b + m,

er à la ne même

=am-

ou par e équade plus, ourrait parenthèses indiquant une multiplication (N° 10), nous aurons 15x - 45 - 12 = 2x - 2 - 24x.

90. 3º Transposons:

Règle. Pour faire passer un terme d'un membre d'une équation dans l'autre, on l'efface dans le membre où il se trouve, et on l'écrit dans l'autre avec un signe contraire. Ce faisant nous avons

$$15x - 2x + 24x = -2 + 45 + 12.$$

91. 4º Réduisons. — Ici nous n'avons qu'à effectuer la réduction des termes semblables (Nº 31). Cela nous donne :

$$37x = 55$$
.

92. 5º Divisons les deux membres par le coefficient 37:

$$x = \frac{55}{37} = 1.46646.6...$$

93. IIeme exemple. Soit l'équation

$$\frac{2x}{3} - 8 = \frac{x}{4} + \frac{2}{5}$$

en chassant les dénominateurs elle se tranforme en 40x - 480 = 15x + 24,

et en réunissant les termes en x dans le premier membre et les termes tout connus dans le second, nous aurons 40x - 15x = 24 + 480,

ou, en simplifiant, 25x = 504,

et enfin
$$x = \frac{504}{25} = 20,16.$$

Vérification. Pour s'assurer qu'on a bien opéré, il faut vérifier la valeur trouvée : or, la substi-

tution donne

en chas

 20×2

et, en e

94. II résoudr

La réc minateu

ou bien mun,

ensuite, premier

et, en m

d'où l'or

25. Vé la place n (No 10), — 24x.

n membre is le mem. utre avec

qu'à efables (Nº

12.

le coeffi-

anforme

premier second,

n opéré, substitution de cette valeur, dans l'équation proposée, donne

$$\frac{2 \times 20,16}{3} - 8 = \frac{20,16}{4} + \frac{2}{5};$$

en chassant les dénominateurs, on a

$$20 \times 2 \times 20,16 - 8 \times 60 = 15 \times 20,16 + 2 \times 12,$$
 et, en effectuant les calculs, $326,40 = 326,40.$

94. III exemple. Proposons-nous encore de résoudre l'équation littérale

$$\frac{ax}{b} - m = n - \frac{x}{c}.$$

La réduction de tous les termes au même dénominateur donnera

$$\frac{acx}{bc} - \frac{bcm}{bc} = \frac{bcn}{bc} - \frac{bx}{bc}$$

ou bien, si l'on supprime ce dénominateur commun,

$$acx - bcm = bcn - bx$$
;

ensuite, si l'on réunit les termes en x dans le premier membre, l'équation devient

$$acx + bx = bcm + bcn$$

et, en mettant en facteur commun x et bc, on aura

$$(ac + b) x = bc (m + n);$$

d'où l'on tire enfin, pour la valeur de x,

$$x = \frac{bc (m+n)}{ac+b}.$$

35. Vérification. Si l'on substitue cette valeur à la place de x dans l'équation primitive, on verra

que celle-ci est satisfaite, puisqu'elle se réduit à une identité, et que, par conséquent, la formule ci dessus est la véritable expression de l'inconnue x pour toutes les valeurs numériques qu'on pourrait donner aux lettres a, b, c, m, n. On obtient, en effet, successivement;

$$\frac{abc (m+n)}{b (ac+b)} - m = n - \frac{bc (m+n)}{c (ac+b)},$$

$$\frac{ac (m+n)}{ac+b} - m = n - \frac{b (m+n)}{ac+b},$$

acm + acn - acm - bm = acn + bn - bm - bn, ou enfin acn - bm = acn - bm.

QUESTIONNAIRE.

Qu'appelle-t-on égalité? (74)
Qu'appelle-t-on identité? (75)
Qu'est-ce qu'une équation? (76)
Définissez une équation numérique. (77)
Qu'est-ce qu'une équation littérale? (78)
Comment classifie-t-on les équations? (79)
Qu'appelle-t-on degré d'une équation? (80)
Qu'est-ce que l'énoncé d'un problème? (81)
Qu'appelle-t-on les données d'une question? (82)
Qu'est-ce que résoudre un problème? (82)
Définissez les problèmes du premier degré. (83)
Quelles sont les quatre choses à faire pour résoudre les problèmes du premier degré? (84)

Qu'est-ce que résoudre une équation? (85)
Dans toute équation peut-on ajouter une même quantité
aux deux membres ou en retrancher une même quantité

aux deux membres ou en retrancher une même quantité sans altérer cette équation? (86 10)

Peut-on toujours multiplier ou diviser à la fois les deux membres d'une équation, sans pour cela l'altérer? (861 20) Indiquer les cinq opérations à faire pour résoudre une équation. (87)

Donnez un exemple. (87)

Comment chasse-t-on les dénominateurs? (88)

Donnez des exemples des opérations à faire pour résoudre une équation. (87, 88, 89)

DU :

57. S

58. 8 59. 1

60. 5

61. 6

62. $\frac{2}{3}$

MISE :

96. **M**i

d'un prob boles alge entre les e

97. Règ résolu, et sur les qu nombres, inconnues raisonnem tuer pour valeur éta

Quand 1

e réduit la EXERCICES le l'incon.

SUR LA RÉSOLUTION DES ÉQUATIONS DU PREMIER DEGRÉ A UNE SEULE INCONNUE.

57. Soit à résoudre l'équation
$$5x-7=3x+9$$
.

$$58. \ 8x - 5x + 4x - 2x = 25.$$

$$59. \ 12x - 3x - 4x - x = 24.$$

60.
$$5x - (3 + 3x) = 8 - (-x - 1)$$
.

61.
$$6(4-x)-4(6-2x)-12=0$$
.

$$62. \ \frac{2x}{3} + \frac{x}{4} = 22$$

63.
$$\frac{2x}{5} - \frac{x}{6} + \frac{x}{2} = 44$$
.

MISE EN ÉQUATIONS DES PROBLÈMES DU PREMIER DEGRÉ.

96. Mise en équation. La mise en équation d'un problème consiste à exprimer, à l'aide de symboles algébriques, les relations que l'énoncé établit entre les données et les inconnues.

97. Règle. Il faut regarder le problème comme résolu, et indiquer, à l'aide des signes algébriques, sur les quantités connues représentées soit par des nombres, soit par des lettres, et sur les quantités inconnues représentées toujours par des lettres, les raisonnements et les opérations qu'il faudrait effectuer pour vérifier la valeur de l'inconnue, si cette valeur était donnée.

Quand les élèves auront appliqué cette règle à

ues qu'on

bm - bn,

n, n,

soudre les

quantité quantité

les deux (861 20) idre une

rėsoudre

un grand nombre d'exemples, ils en saistront bien toute la portée.

98. Problème I. Trouver un nombre dont le quintuple diminué de 17 soit égal au triple augmenté de 41.

Si l'on représente par x le nombre cherché, et qu'on exprime, à l'aide des signes algébriques, les conditions du problème, on aura sur le champ

$$5x - 17 = 3x + 41$$

d'où l'on tire 5x - 3x = 41 + 17, ou bien 2x = 58, et enfin x = 29.

Vérification. Le nombre demandé est bien 29, car $5 \times 29 - 17 = 3 \times 29 + 41$, ou bien 128 = 128.

99. Problème II. Une personne laisse en mourant $\frac{1}{3}$ de sa fortune à son neveu, $\frac{1}{6}$ à sa nièce et les 1500 francs restant aux pauvres de sa commune: trouver l'héritage total ainsi que les lots du neveu et de la nièce.

Représentons par x le bien du défunt, et, conformément à la règle (No. 97), indiquons les opérations qu'il faudrait effectuer sur la valeur de x pour la vérifier; nous aurons

pour la part du neveu $\frac{x}{3}$

pour la part de la nièce $\frac{x}{5}$

et ces deux lots, ajoutés aux 1500 fr. restant, doivent égaler la succession totale x; nous aurons donc l'équation

$$\frac{x}{3} + \frac{x}{5} + 1500 = x.$$

En . équati

et cell

et

Le nev

la nièce

les pau

marchar qu'il ne pour cen prix d'a

Si l'or on aura qu'on do le bénéfi on aura

ou ou bien

d'où

Vérifica

n saistront

ont le quin augmenti

e cherché, gébriques, r le champ

bien 29, en 128 =

e en mouvièce et les commune: du neveu

t, et, conruons les la valeur

restant, is aurons En faisant disparaître les dénominateurs, cette équation devient

$$5x + 3x + 22500 = 15x;$$
 et celle-ci donne $22500 = 15x - 8x,$ ou bien $7x = 22500,$ et $x = \frac{22500}{7} = 3214 \text{ fr. } 285.$

Le neveu aura donc
$$\frac{3214,285}{3} = 1071 \text{ fr. } 428$$
 la nièce $\frac{3214,285}{5} = 642 \text{ fr. } 857$

les pauvres 1500 fr. Total... 3214 fr. 285

100. Problème III.—Un négociant achète des marchandises qu'il revend ensuite 753 fr. de plus qu'il ne les avait payées, et à ce marché il gagne 15 pour cent sur le prix de la vente. On demande le prix d'achat des marchandises.

Si l'on représente par x le prix d'achat inconnu, on aura pour le prix de vente x + 753, Or, puisqu'on doit gagner 15% sur la vente, il faut que le bénéfice connu 753 fr. soit le 15% de x + 753; on aura donc pour l'équation du problème.

$$\frac{(x + 753) \times 15}{100} = 753.$$
ou
$$15x + 15 \times 753 = 75300,$$
ou bien
$$15x = 64005.$$
d'où
$$x = \frac{64005}{15} = 4267 \text{ fr. prix d'achat.}$$

Vérification. Les marchandises ont coûté 4267 fr.

on les a revendues 4267 + 753 = 5020 fr.; pour que la solution soit exacte, il faut que 753 soit les $\frac{15}{100}$ de 5020, ce qui est vrai, car $\frac{5020 \times 15}{100} = 753$.

QUESTIONNAIRE.

En quoi consiste la mise en équation ? (96) Donnez la règle de la mise en équation. (97) Appliquez cette règle à des exemples. (100...)

EXERCICES ET PROBLÈMES

SUR LA MISE EN ÉQUATION.

64. La garnison d'une place se compose de 2600 hommes, parmi lesquels il y a 9 fois autant de fantassins et trois fois autant d'artilleurs que de cavaliers. Combien de chaque arme?

65. Un maître promet à son domestique 200 piastres par an et un habit. Ce domestique est renvoyé au bout de dix mois, et on lui donne 160 piastres, plus l'habit pour ses gages: quel est le prix de cet habit?

66. On veut partager 1300 piastres entre trois personnes de manière que la première ait 48 piastres de plus que la seconde, et celle-ci 20 piastres de plus que la troisième. Que revient-il à chacun?

67. Un père a 49 ans et son fils 11; dans combien d'années l'âge du père ne sera-t-il plus que le triple de celui du fils?

68. Un père laisse son héritage à partager entre ses enfants de la manière suivante : l'aîné aura 100 piastres plus le 10e du reste; le second 200 piastres plus le 10e du reste; le troisième 300 piastres plus le 10e du reste, et ainsi de suite;

néanm enfants demand nombre

101. un prob par des possible tous les

prenons

La so

102.

Désig

Le plu Le plu Leur

Mais c

Par su

d'où

 $\begin{array}{c} \text{Le plus} \\ x + 8 = \end{array}$

103. C

Ce prol de toute s par S la s fr.; pour 53 soit les $\frac{5}{2}$ = 753.

néanmoins, le partage fait, il se trouve que les enfants ont reçu chacun la même somme : on demande 1º quel est l'héritage, 2º quel est le nombre des enfants.

Généraliser un problème.

101. Généralisation. Il suffit, pour généraliser un problème, de remplacer les données numériques par des lettres pouvant recevoir toutes les valeurs possibles: on a alors d'un seul coup la solution de tous les problèmes semblables.

102. Cas particulier. Comme cas particulier prenons le problème suivant:

La somme de deux nombres est 72; leur différence est 8. Trouver ces deux nombres?

Désignons le plus petit nombre par x.

Le plus petit nombre étant x.

Le plus grand est x + 8.

Leur somme est 2x + 8.

Mais cette somme est égale à 72.

$$2x + 8 = 72$$

Par suite 2 x seul = 72 - 8 = 64.

d'où
$$x = \frac{64}{2} = 32$$

Le plus petit nombre x valant 32, le plus grand x + 8 = 40.

103. Cas général. Problème. Trouver deux nombres dont on connaît la somme et la disférence.

Ce problème ainsi généralisé est indépendant de toute valeur particulière. Représentons donc par S la somme des deux nombres demandés, par

npose de is autant leurs que

tique 200 stique est ui donne quel est

tre trois re ait 48 lle-ci 20 revient-il

ans complus que

partager e: l'aîné e second roisième le suite; d leur différence donnée, et soit x le plus petit des deux nombres: il est évident que le plus grand sera x + d, et que l'équation du problème est

$$x + x + d = S,$$

laquelle devient successivement

$$2x + d = S$$
, $2x = S - d$, $x = \frac{S - d}{2}$,

ou bien $x = \frac{S}{2} - \frac{d}{2}$

Cette formule nous apprend qu'en général, quand on connaît la somme de deux nombres et leur différence, on obtient le plus petit de ces nombres en retranchant de la moitié de la somme la moitié de la différence donnée.

En second lieu, si, à la valeur de x, $\frac{S}{2} - \frac{d}{2}$,

on ajoute la différence d, on aura pour le plus grand des deux nombres demandés

$$\frac{S}{2} - \frac{d}{2} + d$$
, ou bien $\frac{S}{2} - \frac{d}{2} + \frac{2d}{2}$,

ce qui revient à $\frac{S}{2} + \frac{d}{2}$.

Cette dernière expression prouve ce second principe: que la moitié de la somme de deux nombres, ajoutée à la moitié de leur différence, donne le plus grand de ces nombres.

Comme cas particulier, supposons que l'on demande deux nombres dont la somme est 34 et la différence 8; d'après ce qui précède, on aura:

pour le plus petit
$$\frac{34}{2} - \frac{8}{2} = 17 - 4 = 13$$
,

pour le

Verific

104. I temps po bleau: l sccond 8 de Paris que Font

Pour doit com il est ind précises

Lorsqu qu'il par égaux, or vement u exemple, le mouv l'espace p seconde,

Cela posignifie in l'heure, a d'une aut parcouru etc., ou di et réciproque dans parcourus

Ces noti problème plus petit 1e le plus problème

pour le plus grand
$$\frac{34}{2} + \frac{8}{2} = 17 + 4 = 21$$
.

Verification. En effet,

$$13 + 21 = 34$$
 et $21 - 13 = 8$,

104. Problème. Deux courriers partent en même temps pour Lyon, l'un de Paris, l'autre de Fontainebleau: le premier fait 11 kilomètres par heure et le second 8 kilomètres. On demande à quelle distance de Paris ces deux courriers se rencontreront, sachant que Fontainebleau est à 59 kilomètres de Paris.

Pour traiter ce genre de problèmes, où l'on doit comparer des espaces parcourus à des vitesses, il est ind:spensable que les élèves aient des idées précises sur la valeur de ces expressions.

Lorsqu'un voyageur marche d'un pas réglé et qu'il parcourt le même chemin dans des temps égaux, on dit que cet homme se meut d'un mouvement uniforme. Une aiguille de montre, par exemple, a un mouvement uniforme. Or, dans le mouvement uniforme, on appelle vitesse l'espace parcouru dans l'unité de temps : une seconde, une minute, une heure.

Cela posé, on comprend facilement ce que signifie une vitesse de 15, 20, 30 kilomètres à l'heure, ainsi qu'une vitesse double, triple, etc., d'une autre; c'est-à-dire que lorsque l'espace parcouru dans l'unité de temps est double, triple, etc., on dit que la vitesse est double, triple, etc., et réciproquement. Cette loi s'énonce en disant que dans le mouvement uniforme, les espaces parcourus sont proportionnels aux vitesses.

Ces notions comprises, passons à la solution du problème proposé.

général, ombres et e ces nomsomme la

 $\frac{3}{2}-\frac{a}{2}$

ir le plus

 $+\frac{2d}{2}$

e second eux nemere, donne

que l'on est 34 et on aura:

13,

59k

P $x^{\mathtt{k}}$. R Soient P Paris, F Fontainebleau, R le point de rencontre. La distance connue PF est de 59 kilomètres, et appelons x le nombre de kilomè tres FR, de Fontainebleau au point de rencontre inconnu R.

F

D'après les données du problème, le premier courrier parcourera PR, c'est-à-dire 59 + x kilo mètres, pendant que le second courrier parcourt FR ou x kilomètres; et ces chemins, faits dans le même temps, seront parcourus avec les vitesses données 11 et 8.

Mais, en vertu du principe posé ci-dessus, que les espaces sont dans le même rapport que les vitesses, on aura l'équation

$$\frac{59+x}{x}=\frac{11}{8},$$

ou bien 11x = 472 + 8x ou 3x = 472,

et enfin
$$x = \frac{472}{3} = 157,333$$
;

c'est-à-dire que la distance FR sera de 157 kilo mètres 333 mètres, laquelle, ajoutée à PF ou I kilomètres, donnera 157,333 + 59 = 216 kilo mètres 333 mètres pour la distance de Paris au point où les courriers se rencontreront.

Généralisons ce problème.

105. Problème. Deux courriers partent en mémi temps, l'un du point A, l'autre du point B, et von dans le même sens AR; la distance qui les sépar

est d, représe point 1 point A

Nous courue tance A mais en paces s l'équati

Vxd'où la f

Cette ver le po ront, il f. en partar et diviser de ces co

Observa lequel on donne lie développe

Que faut-i Donnez ur Donnez la 04, 105),

est d, la vitesse du courrier parti du point A est représentée par V, celle du courrier qui part du point B par v. On demande à quelle distance du point A les deux courriers se rencontreront.

 $\frac{d}{A}$ $\frac{x}{B}$ $\frac{x}{R}$

Nous représenterons par x la distance BR par courue par le second courrier, et alors la distance AR que parcourera le premier sera d+x; mais en vertu du principe précédent, que les espaces sont proportionnels aux vitesses, on aura l'équation

 $\frac{d+x}{x} = \frac{V}{v},$

et Vx = dv + vx ou (V - v) x = dv;

d'où la formule $x = \frac{dv}{V - v}$

Cette valeur générale indique que, pour trouver le point où les deux courriers se rencontreront, il faut multiplier la distance qui les sépare en partant par la vitesse de celui qui est en avant, et diviser ce produit par la différence des vitesses de ces courriers.

Observation. Le problème des courriers, dans lequel on peut varier les conditions de l'énoncé, donne lieu à une discussion importante que nous développerons au chap. IV.

QUESTIONNAIRE.

Que faut-il faire pour généraliser un problème? (101)
Donnez un cas particulier. (10?)
Donnez la généralisation de quelques problèmes. (103, 105),

le point de est de 59 de kilomè

le premier 0 + x kiloer parcourt, faits dans

rencontre

lessus, que que les vi-

les vitesses

2,

e 157 kilo
PF ou 51
216 kilo
Paris au
t.

nt en mémi B, et voni les sépars

EXERCICES ET PROBLÈMES.

- 69. Quel est le nombre qui, diminué de 18, donne 56 moins ce nombre ?
- 70. Le triple d'un nombre est égal au quintuple du même nombre moins 27 : quel est ce nombre ?
- 71. Trouver un nombre dont le tiers augmenté de 7 donne 62.
- 72. Trouver un nombre dont la moitié, le tiers, le quart, augmentés de 45, donnent pour somme 448.
- 73. Le double d'un nombre, augmenté de 7et de ses trois demis, donne pour résultat 6 fois le nombre moins 23; quel est-il?
- 74. Partager 77 en deux parties, telles que la somme des quotients de l'une par 8 et de l'autre par 5 soit égale à 13.
- 75. Traiter le problème précédent d'une ma nière générale et trouver la formule.
- 76. Un commandant de place fait partir m courrier qui parcourt 23 milles en 2 heures : 9 heures après, il expédie un contre-ordre par un second courrier qui fait 49 milles en trois heures; on demande à quelle distance de la place œ dernier atteindra le premier courrier.
- 77. Un renard, poursuivi par un lévrier, a \emptyset sauts d'avance. Ce renard fait 9 sauts pendant que le lévrier n'en fait que 6; mais 3 sauts du lévrier valent 7 sauts du renard. On demand quel nombre de sauts doit faire le lévrier pour atteindre le renard.
- N. B. Nous nous a occuperons plus tard (chap. IV) de la "discussion des problèmes."

DU PREM

- 106. Pexiste de inconnue dantes le telles qu'i de ce ge occuper.
- 107. 10 est dit de nombre s. donner li-connues: trouve un nue.
- 108. 20 : me est in moins d'éq parce que e valeurs au trouver ce solutions e infinité de

ES.

inué de 18,

au quintuquel est ce

augmenté

moitié, le ment pour

nté de 7 et at 6 fois le

lles que la de l'autre

d'une ma-

partir un heures : 9 lre par un is heures; a place ce

vrier, a 60 ts pendant 3 sauts du 5 demande vrier pour

ard (chap)

CHAPITRE III.

RÉSOLUTION DES ÉQUATIONS DU PREMIER DEGRÉ A PLUSIEURS INCONNUES.

- 106. Problèmes à plusieurs inconnues. Il existe des problèmes qui contiennent plusieurs inconnues distinctes, lesquelles, quoique dépendantes les unes des autres, ne sont pourtant pas telles qu'il suffise d'en calculer une seule. C'est de ce genre de questions que nous allons nous occuper.
- 107. 1º Problèmes déterminés. Un problème est dit déterminé quand son énoncé contient un nombre suffisant de conditions distinctes pour donner lieu à autant d'équations qu'il y a d'inconnues: on le nomme ainsi, parce qu'alors on trouve une valeur unique pour chaque inconnue.
- 108. 20 Problèmes indéterminés. Un problème est indéterminé quand son énoncé fournit moins d'équations qu'il ne renferme d'inconnues, parce que dans ce cas on est obligé de donner des valeurs arbitraires à certaines inconnues pour trouver celles des autres, ce qui conduit à des solutions diverses et quelquefois même à une infinité de solutions.

PROBLÈMES DÉTERMINÉS A DEUX INCONNUES.

109. Problème I. Trouver deux nombres tels que le quadruple du premier, augmenté du triple du second, donne pour somme 26, et que sept fois le premier, moins huit fois le second, aient pour disserence 19.

En représentant le premier des nombres demandés par x, le second par y, on verra que l'énoncé du problème donne les deux équations suivantes:

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \begin{array}{l} 4x + 3y = 26, \\ 7x - 8y = 19. \end{array}$$

Ges équations sont liées par la condition que les valeurs des inconnues x et y sont les mêmes pour les deux équations. Cette condition de rigueur, qui découle naturellement de l'énoncé de tous les problèmes à plusieurs inconnues, s'énonce en disant que les équations existent ensemble ou bien qu'elles forment un système.

Il s'agit maintenant de résoudre le système des deux équations [1] et [2], c'est-à-dire de trouver les valeurs de x et de y qui conviennent à ces équations. Pour y parvenir, il existe plusieurs méthodes qui portent le nom de méthodes d'élimination.

1ere MÉTHODE.

110. Elimination par substitution. Cette méthode consiste à prendre, dans l'une des équations, la valeur d'une inconnue en fonction de l'autre, et à substituer cette valeur dans la se conde équation.

Appliquons cette règle aux deux équations de problème précédent; prenons dans la premième [1] la valeur de x:

$$x = \frac{26 - 3y}{4}$$

et subs alors l'a

La ré cessiver

182 —

Enfin, sion de a

Les de én effet, [2] et sati

111. EI rer l'élim leux équa orendre l chaque éq ormer u onnue.

Ainsi le connent s

équation

équation

t ces valer on: INNUES.

res tels que u triple du sept fois le pour diffé

res deman le l'énoncé suivantes:

dition que les mêmes ition de ri-'énoncé de inues, s'étent ensem

e système re de trouviennent à existe plue méthodu

Cette médes équadonction de lans la se

uations du premièm et substituons-la dans l'équation [2], qui devient alors l'équation à une seule inconnue

$$7 \times \frac{26 - 3y}{4} - 8y = 19$$

La résolution de cette dernière donnera successivement

$$182 - 21y - 32y = 76$$
, $53y = 106$ et $y = 2$.

Enfin, la valeur de y, substituée dans l'expression de x donnera

$$x = \frac{26 - 6}{4} = 5.$$

Les deux nombres demandés sont donc 2 et 5; én effet, cette solution vérifie les équations [1] et 2] et satisfait aux conditions du problème.

2eme MÉTHODE.

111. Elimination par comparaison. Pour opérer l'élimination d'une des inconnues entre les leux équations sus-mentionnées [1] et [2], on peut prendre la valeur de la même inconnue dans haque équation, et égaler ces deux valeurs pour ormer une nouvelle équation à une seule inconnue.

Ainsi les deux équations du problème nº 109 lonnent séparément

$$^{\text{'equation [1]}} \quad x = \frac{26 - 3y}{4},$$

Zéquation [2]
$$x = \frac{19 + 8y}{7}$$
;

t ces valeurs égales fournissent cette autre équaon :

$$\frac{19+8y}{7}=\frac{26-3y}{4};$$

celle-ci donne

76 + 32y = 182 - 21y, 53y = 106, y = 2; ensuite on trouve x = 5.

3ème MÉTHODE.

112. Élimination par réduction. Quand l'une des inconnues a le même coefficient dans les deux équations, il suffit pour éliminer cette inconnue, d'ajouter ou de retrancher ces équations membre à membre, selon que les termes qui contiennent cette inconnue ont des signes contraires ou le même signe.

Par exemple, si l'on avait à traiter les deur équations

$$4x + 5y = 43,
6x - 5y = 27,$$

il est évident que l'addition, membre à membre, fera disparaître y, et qu'on aura sur le champ

$$10x = 70 \text{ ou } x = 7;$$

cette valeur donne à son tour y = 3.

Si les termes en y avaient eu le même signe, on aurait retranché membre à membre.

113. L'égalité des coefficients d'une même in connue ne se rencontre pas ordinairement dans les équations, mais nous pourrons toujours remener des équations données à avoir même coefficient pour l'une des inconnues: il suffira de multiplier tous les termes de chaque équation par le coefficient qui affecte cette inconnue dans l'autre équation. C'est ce qui constitue la méthode par réduction.

R prin

term
de y
la se
re, e

Ma bre,

et cet

ficien des m fracti Soi

On : la pres suppre sur les

dans 1 même mière Reprenons donc, pour exemple, les équations primitives [1] et [2]:

$$\begin{array}{ccc} 4x + 3y &=& 26, \\ 7x - 8y &=& 19. \end{array}$$

Si l'on veut éliminer y, on multipliera tous les termes de la première équation par 8, coefficient de y dans la seconde, ensuite tous les termes de la seconde par 3, coefficient de y dans la première, et l'on aura

$$\begin{array}{rcl}
32x + 24y &=& 208, \\
21x - 24y &=& 57,
\end{array}$$

Maintenant, si l'on additionne membre à membre, on obtient

$$53x = 265$$
, d'où $x = 5$,

et cette valeur, substituée dans l'une des équations [1] ou [2], donnera y=2.

114. Remarque. La réduction au même coefficient de l'inconnue à éliminer est susceptible des mêmes simplifications que la réduction des fractions au même dénominateur.

Soit, par exemple, à réduire les deux équations

$$\begin{array}{ccc}
15x + 6y &=& 132, \\
3x + 8y &=& 74.
\end{array}$$

On remarquera d'abord que tous les termes de la première sont divisibles par 3, et que, par la suppression de ce facteur commun, on a à opérer sur les deux équations

$$5x + 2y = 44,$$

 $3x + 8y = 74,$

dans lesquelles on voit que, pour réduire au même coefficient, il suffit de multiplier la pre mière équation par 4, on a alors

6, y = 2;

Quand l'une ont dans les ner cette in es équations nes qui conces contraires

e à membre,

e champ

ter les deur

nême signe,

e même inement dans
toujours ramême coefl suffira de
e équation
onnue dans

itue la mé-

Maintenant, pour éliminer y il faut retrancher membre à membre, à cause du signe commun, et comme le second membre 74 est plus petit que 176, on retranchera la seconde équation de la première, ce qui donnera

$$20x - 3x = 176 - 71$$

ou bien 17x = 102, d'où x = 6;

enfin, cette valeur de x, substituée dans l'une des équations primitives, donne y = 7.

PROBLÈMES DÉTERMINÉS A PLUS DE DEUX INCONNUES.

115. Définition. Lorsqu'un problème contient trois, quatre, ou un plus grand nombre d'inconnues, il faut, pour qu'il soit déterminé, que son énoncé fournisse un pareil nombre d'équations. Dans tous les cas, la résolution des équations s'effectue par l'une des méthodes d'élimination que nous venons de faire connaître; seulement l'opération est d'autant plus laborieuse qu'il y a un plus grand nombre d'équations, parce que l'on ne peut éliminer les inconnues que l'une après l'autre.

116. Exemple. Supposons d'abord que l'énoncé d'un problème ait donné lieu aux trois équations suivantes :

[1]
$$5x + 6y - z = 23,$$

 $4x - 3y + 2z = 9,$
 $7x + y - 3z = 2.$

Pour traiter ces équations par la méthode de substitution, nous commencerons par éliminer z entre la première et la seconde, ensuite entre la première et la troisième.

Or, l'équation [1] donne z = 5x + 6y - 23, et pette valeur, substituée dans les équations [2] et

[3], con équatio

Maint dernière

a second

Cette v le y, don

Enfin, la a valeur

La solut

En effet roposées.

117. Règ aconnues en utres, ce q aconnue et ouvelles éq s, c'est-à-d trancher commun, lus petit ation de

ns l'une

connues.

d'inconque son quations. quations nination ulement qu'il y a rce que le l'une

l'énoncé [uations

hode de miner z entre la

- 23, et ns [2] et [3], conduira, toutes réductions faites, aux deux équations à deux inconnues

$$\begin{array}{l}
14x + 9y = 55, \\
8x + 17y = 67.
\end{array}$$

Maintenant nous éliminerons y entre ces deux dernières équations, et comme la première donne

$$y=\frac{55-14x}{9},$$

a seconde deviendra successivement

$$8x + \frac{17 (55 - 14x)}{9} = 67,$$

$$72x + \frac{935 - 238x}{332 = 166x},$$
et $x = 2$.

Cette valeur de x, substituée dans l'expression le y, donnera

$$y = \frac{55 - 28}{9} = 3.$$

Enfin, la substitution de x = 2 et y = 3 dans a valeur de z conduit à

$$z = 10 + 18 - 23 = 5$$
.

La solution du problème est donc

$$x = 2, y = 3, z = 5.$$

En effet, ces valeurs vérifient les équations roposées.

117. Règle. Il faut d'abord éliminer l'une des aconnues entre la première équation et chacune des utres, ce qui fait disparaître en même temps une connue et une équation; opérer ensuite sur les ouvelles équations obtenues comme sur les premiès, c'est-à-dire éliminer une autre inconnue entre

l'une de ces équations et chacune des autres, pour se débarrasser d'une seconde inconnue et d'une seconde équation; enfin, continuer ainsi jusqu'à ce qu'on parvienne à une scule et dernière équation qui ne contienne plus qu'une seule inconnue. Alors on tire la valeur de cette dernière inconnue, et en remontant successivement aux diverses expressions obtenues, on calcule aisémenl les valeurs de toutes les autres inconnues du problème.

118. Remarque. Les trois équations du nº 116 ont été traitées par la méthode de substitution; mais on eût pu en employer une autre : ainsi, par exemple, si l'on avait voulu adopter la méthode de comparaison, on aurait tiré de chaque équation la valeur de la même inconnue

$$z = 5x + 6y - 23, z = \frac{9 - 4x + 3y}{2}, z = \frac{7x + y - 2}{3}$$

et, en égalant deux à deux ces trois valeurs, on en aurait déduit les deux équations à deur inconnues

$$5x + 6y - 23 = \frac{9 - 4x + 3y}{2},$$
$$5x + 6y - 23 = \frac{7x + y - 2}{3}.$$

En traitant ensuite ces dernières, on serali arrivé à la même solution.

119. Observation. Il se présente des problèmes où les inconnues n'entrent pas toutes à la fois dans chaque équation; alors l'élimination, quoique basée sur les mêmes règles, est plus rapide et susceptible de simplification.

Admettons que l'énoncé d'un problème al fourni les quatre équations suivantes :

[2]

[3] [4]

A l'ir naître (ment, il premièr Or, l'é

cette val disparaît

> [5] D'un a

et cette vation [4], d

[6]

Il ne red des deux é nues x et a

A cet eff la dernière

ous trans 5], qui dev

u bien

utres, pour ue et d'une i jusqu'à ce ere equation nue. Alors onnue, et en expressions rs de toutes

s du nº 116 bstitution; tre : ainsi, adopter la it tiré de e inconnue

$$\frac{7x+y-2}{3};$$

valeurs, on ns à deux

on serail

les problè toutes à la imination, st plus ra

blème all

5x + 4y - 8z = 29,171 [2] 7x - 3y = 26[3] 2z + 9u = 38[4] 11x - 6u = 31.

A l'inspection seule on ne tarde pas à reconnaître que, pour effectuer l'élimination rapidement, il faut éliminer d'abord y entre les deux premières équations et u entre les deux dernières.

Or, l'équation [2] donne

$$y = \frac{7x - 26}{3};$$

cette valeur, substituée dans l'équation [1], fait disparaître y, et fournit cette autre équation

$$[5] 43x - 24z = 191.$$

D'un autre côté, on tire de l'équation [3]

$$u=\frac{38-2z}{9},$$

et cette valeur, mise à la place de u dans l'équation [4], donne, après réduction,

$$[6] 33x + 4z = 169.$$

Il ne restera donc plus à traiter que le système des deux équations [5] et [6] entre les deux incon-

A cet effet, nous prendrons la valeur de z dans la dernière équation, et nous aurons

$$z = \frac{169 - 33x}{4}$$
;

lous transporterons cette valeur dans l'équation 5], qui deviendra

bu bien
$$43x - 6 (169 - 33x) = 191,$$

 $241x = 1205, \text{ d'où } x = 5.$

Maintenant que x est connue, nous substituerons sa valeur dans l'expression de z et dans celle de y, ce qui donnera z = 1 et y = 3; enfin l'expression de u fournira u = 4.

En conséquence, on aura pour la solution du problème les quatre valeurs x = 5, y = 3, z = 1

et u == 4.

120. Problème. Une personne rencontre 15 hommes, 24 femmes, 31 enfants, et leur distribue 75 fr.

Une autre fois, elle distribue de la même manière une somme de 103 fr. 80 entre 30 hommes, 18 femmes et 40 enfants.

Enfin, dans une troisième rencontre, cette personne donne encore 64 fr. à 12 hommes, 26 femmes et 19 enfants.

On demande ce que cette personne charitable a donné par tête, aux hommes, aux femmes et aux enfants.

En représentant par x, y, z le don respectif reçu par chaque homme, chaque femme et chaque enfant, on aura les trois équations:

$$15x + 24y \div 31z = 75,$$

 $30x + 18y + 40z = 103,8,$
 $12x + 26y + 19z = 64;$

et, en appliquant à ces équations la méthode exposée nº 116, on trouvera

$$x = 2$$
 fr., $y = 1$ fr. 10, $z = 0$ fr. 60.

FORMULES GÉNÉRALES.

121. Les équations générales pour tous les problèmes du premier degré à deux inconnues pour ront être ramenées à la forme suivante:

[1]
$$ax + by = c, a'x + b'y = c'.$$

Dans e représe vent, se

En r les mé général

[2]

Les for les ques nues, et les calcu exemple, ait condu

En con générales

 \boldsymbol{a}

en consé neront

$$y = \frac{5.2 - 5.4}{5.4}$$

Qu'entende nues ? (106) Quand estsubstituedans celle enfin l'ex-

olution du = 3, z = 1

re 15 hombue 75 fr. se manière ommes, 18

e personne imes et 19

aritable a nes et aux

ectif reçu t chaque

méthode

60.

is les proues pour Dans ces équations, les lettres a, b, c, a', b', c', représentent des nombres entiers, mais qui peuvent, selon le cas, être positifs, nuls ou négatifs.

En résolvant ce système d'équations, d'après les méthodes connues, on arrive aux formules générales:

[2]
$$x = \frac{cb' - bc'}{ab' - ba'},$$
$$y = \frac{ac' - ca'}{ab' - ba'}.$$

Les formules générales [2] conviennent à toutes les questions du premier degré à deux inconnues, et dispensent dans chaque cas d'effectuer les calculs d'élimination; pour en donner un exemple, admettons que l'énoncé d'un problème ait conduit aux deux équations numériques

$$5x - 3y = 15, \quad 2y - x = 4.$$

En comparant ces équations aux équations générales [1], on voit qu'il faut, dans ce cas, faire

$$a = 5, b = -3, c = 15, a' = -1,$$

 $b' = 2, c' = 4;$

en conséquence, les formules générales]2] donneront

$$x = \frac{15.2 - (-3) \ 4}{5.2 - (-3) \ (-1)} = \frac{30 + 12}{10 - 3} = \frac{42}{7} = 6.$$

$$y = \frac{5.4 - 15 \ (-1)}{5.2 - (-3) \ (-1)} = \frac{20 + 15}{10 - 3} = \frac{35}{7} = 5.$$

QUESTIONNAIRE.

Qu'entendez-vous par les problèmes à plusieurs incon-

Quand est-ce qu'un problème est dit déterminé ? (107)

Quand est-ce qu'un problème est dit indéterminé? (108) Donnez un exemple d'un problème determine à deux inconnues. (109)

En quoi consiste l'élimination par substitution ? (11º) En quoi consiste l'élimination par comparaison ? (11)

En quoi consiste l'élimination par réduction ? (112)
La réduction au même coefficient de l'inconnue est-elle

susceptible de quelques simplifications? (114)
Comment pont-on effectuer la résolution des équations dans les problèmes déterminés à plus de deux inconnues?

(115) Donnez la règle. (117)

L'élimination peut-elle être quelquefois plus rapide? (113)
Donnez les formules générales pour tous les problèmes
du premier degré? (121)

EXERCICES ET PROBLÈMES

SUR LES ÉQUATIONS DU PREMIER DEGRÉ A PLUSIEUR INCONNUES.

78. Traiter par substitution les deux équations

Solution.

$$11x - 10y = 14,$$
 $x = 4,$ $y = 3.$

- 79. Résoudre les équations précédentes par la méthode de comparaison.
 - 80. Les résoudre par réduction.
 - 81. Résoudre les deux équations littérales:

	Solution.
ax + by = m,	$x = \frac{dm - bn}{ad - bc}$
cx + dy = n.	$y = \frac{an - cm}{ad - bc}$
	ad - bc

82.

(x + 5)

83.

x + x + x + x

x -- 84. T

 $\frac{1}{x}$ $\frac{1}{x}$

85. Ré tes suivar

3x 5x

 $\frac{4z}{6x}$

83. La ple de leur bres ?

(Rép. 15

87. Tro

erminé ? (108) rmine à deux

ion ? (110) ison ? (111) n ? (112) onnue est-elle

des équations x inconques?

rapide? (119) les problèmes

ES

A PLUSIEURS

leux équa

lution.

= 4, = 3.

entes par la

ttérales :

lution.

 $\frac{-bn}{-bc}$

-cm

-bc

82. Résoudre les deux équations

Solution.

$$(x + 5) (y + 7) = (x + 1) (y - 9) + 112, x = 3, 2x + 10 = 3y + 1.$$
 $y = 5$

83. Résoudre les équations

Solution.

$$x + y + z = 29,25,$$
 $x = 16,$ $y = 7,75,$ $x - y + z = 13,75.$ $z = 5,5.$

84. Traiter les équations littérales

Solution.

$$\frac{1}{x} + \frac{1}{y} = a, x = \frac{2}{a + b - c},$$

$$\frac{1}{x} + \frac{1}{z} = b, y = \frac{2}{a + c - b},$$

$$\frac{1}{y} + \frac{1}{z} = c. z = \frac{2}{b + c - a}.$$

85. Résoudre les quatre équations incomplètes suivantes :

Solution.

$$3x + 4z = 20,$$
 $x = 4,$ $5x - 2u = 18,$ $y = 3,$ $z = 2,$ $6x - 7u = 17.$ $z = 1,$

83. La somme de deux nombres est 23, le tripie de leur différence est 21 ; quels sont ces nomtres ?

(Rép. 15 et 8.)

87. Trois frères ont acheté une terre au prix

de 2000 piastres. Le troisième pourrait la payer seul si le second lui donnait la moitié de son argent; le second dit que lui aussi il la paierait seul si l'aîné lui donnait le tiers de ce qu'il possède; enfin l'aîné aurait besoin du quart de l'angent du plus jeune pour payer cette terre à lui seul. On demande quelle somme possédait cha cun de ces trois frères.

(Rép. l'aîné \$1680; le 2e \$1440; le 3e \$1280.)

INTER QUE EQU.

122.

blème ses su enfin que da ment n caractè étudier

123. $\begin{array}{c}
\text{équatio} \\
\text{coit que} \\
\text{fectées} \\
\text{dire que} \\
\text{connue} \\
x = + \\
\end{array}$

 $x = \frac{\text{Or, qu}}{x}$

Pour ble, trait

rait la payer ontié de son il la paierail ce qu'il posquart de l'ar e terre à lui ossédait cha

3e \$1280.)

CHAPITRE IV.

INTERPRÉTATION DES DIVERS RESULTATS AUX-QUELS PEUT CONDUIRE LA RÉSOLUTION DES EQUATIONS. — DISCUSSION DES PROBLÈMES.

122. Observation. Il peut se faire qu'un problème soit mal énoncé, qu'il contienne de fausses suppositions, des conditions incompatibles, enfin qu'il soit *impossible*, absurde. On conçoit que dans ces divers cas l'algèbre doit nécessairement nous avertir de ces particularités par des caractères spéciaux. C'est ce que nous allons étudier dans ce chapitre.

Des solutions négatives.

123. Solution négative. Quand on traite les équations par les méthodes indiquées, on conçoit que les solutions obtenues peuvent être affectées du signe + comme du signe -, c'est-à-dire qu'on peut trouver pour la valeur d'une inconnue x=5 ou bien x=-5, et en général x=+a ou bien x=-a.

Or, quel sens attacher à une solution négative x = -a?

Pour rendre une pareille expression intelligible, traitons quelques problèmes.

124. PROBLÈME Ier. Un père a 40 ans et son fils 16; dans combien d'années l'âge du père sera-t-il le double de celui du fils?

En représentant par x le nombre d'années cherché, l'âge du père sera à cette époque 40 + x, et celui du fils 16 + x; on aura donc l'équation

$$2 (16 + x) = 40 + x,$$
ou bien $32 + 2x = 40 + x$, d'où $x = 8$.

Cette solution positive satisfait à l'équation ainsi qu'au sens direct de l'énoncé du problème, puisque dans 8 ans le fils aura 8 + 16 ou 24 ans, et le père 40 + 8 = 48, ou le double de l'âge du fils.

Mais modifions un peu les conditions du problème, et formulons-le comme il suit:

125. Problème II. Un père a 40 ans, son fils en a 16; dans combien d'années l'âge du père sera-t-il le triple de celui du fils?

x représentant toujours le temps demandé, on aura l'équation

$$3 (16 + x) = 40 + x,$$

laquelle donne $2x=40-48=-8,$
ou bien $x=-4;$

c'est-à-dire que la réponse à la question est moins 4 ans,

Cette valeur négative x = -4 satisfait bien à l'équation, car on a 3(16-4) = 40-4, ou bien 36 = 36; mais quelle interprétation lui donner en présence des conditions du problème?

Si l'on considère que le signe — rappelle à l'esprit une idée opposee à celle du signe +, on concevra aisément sous quel point de vue nouveau il faut comparer ce résultat négatif à l'énoncé du problème. En effet, dans ce problè-

me, c ché u la pr répon devor négat passé.

Ain dition effet, ans, et à l'éno

ce résitions i que les tion de

Au r l'on cl l'équat tions q

126. I attache droite

d'un por de M en naître I pour av le sens d distance qu'on pr

être nég

t son fils era-t-il le

d'années e 40 + x, équation

équation roblème, a 24 ans, l'âge du

du pro-

on fils en e sera-t-il

andé, on

est moins

t bien à ou bien donner

ppelie à +, on ue nouégatif à e problème, comme dans le précédent, nous avons attaché un sens d'avenir à la valeur de x; et si, dans la première question, une solution positive a répondu directement à notre prévision, nous devons ici attacher un sens contraire à la valeur négative, c'est-à-dire la prendre pour un temps passé.

Ainsi la solution x=-4 indiquera que la condition du problème était remplie il y a 4 ans; en effet, le père avait à cette époque 40-4 ou 36 ans, et le fils 16-4 ou 12; ce qui est conforme à l'énoncé.

Cette discussion et l'interprétation plausible de ce résultat négatif nous prouvent que les solutions négatives ont une existence aussi réelle que les solutions positives, mais que leur acception doit être prise en sens opposé.

Au reste, dans le cas des valeurs négatives, si l'on change les signes des termes en x dans l'équation du problème, on verra les modifications qu'il faudra introduire dans son énoncé.

126. Pour expliquer davantage le sens qu'il faut attacher aux valeurs négatives, supposons une droite AB, et admettons qu'un mobile M parte

d'un point donné zéro et qu'il puisse se mouvoir de M en B ou de M en A, il ne suffit pas de connaître la valeur absolue du chemin parcouru pour avoir le point d'arrivée, il faut encore fixer le sens de la course. Si donc on admet que les distances comptées de M en B sont positives, celles qu'on prendra en sens inverse de M en A devront être négatives. De cette sorte, la position du mobile sera déterminée, dans tous les cas, par la valeur numérique de l'inconnue et par son signe.

Ainsi, quand on trouvera les solutions x = +45 kilomètres et x = -45 kilomètres, on en com

prendra clairement la signification.

127. Zéro-limite. Il est important de remarquer à ce sujet, que l'on n'arrive des valeurs positives aux valeurs négatives qu'en passant par zéro, et alors les quantités négatives sont considérées comme plus petites que zéro; d'ailleurs, ces valeurs négatives sont d'autant plus petites que leur valeur absolue est numériquement plus grande. On écrira donc

$$5 > 0, 0 > -2, \text{ et } -3 > -7.$$

Par conséquent l'expression zéro prend ici une acception nouvelle et ne signifie plus l'absence de toute grandeur; mais ce zéro-limite indique le point de départ de deux séries opposées qui s'étendent indéfiniment, l'une vers l'infini positif, l'autre vers l'infini négatif.

Des solutions absurdes.

128. Solutions absurdes. L'interprétation que nous venons de faire des valeurs négatives, pour donner à certains problèmes une signification réelle et convenable, n'est pas admissible dans tous les cas: on conçoit, en effet, que s'il s'agissait de déterminer la distance de deux villes, le rayon d'un cercle, la surface d'un triangle, par exemple, une solution négative n'aurait aucun sens et indiquerait l'impossibilité du problème.

Mais, en outre, la résolution des équations que peuvent fournir les problèmes algébriques ne conduit pas uniquement à des valeurs positiyes ou négatives; il est d'autres résultats qu'il impor quelq

dans de cel

Cet

laquel

on bie

résulta que zé et au père, 5

130. $\frac{3}{4}$ augmines $\frac{2}{21}$ o

La tr

laquelle ou bien

Cette est facil du prob

Observede, par fraction que des

eur numé.

ons x = + on en com-

le remareurs posissant par ont consil'ailleurs, us petites ment plus

l ici une l'absence ndique le qui s'éni positif,

ation que ves, pour rification ible dans 'il s'agisvilles, le ngle, par it aucun oblème.

ions que iques ne es posititats qu'il importe d'examiner. A cet effet, traitons encore quelques questions.

129. PROBLÈME 1er. Un père a 57 ans, son fils 19; dans combien de temps l'âge du père sera-t-il triple de celui du fils?

Cet énoncé donne évidemment l'équation

$$3(19+x)=57+x,$$

laquelle revient à

$$57 + 3x = 57 + x,$$
$$3x = x,$$

ou bien

résultat *impossible* pour toute valeur de x autre que zéro. D'ailleurs, zéro satisfait à l'équation et au problème, puisque actuellement l'âge du père, 57, est triple de 19, âge du fils.

130. PROBLÈME II. Trouver un nombre dont les $\frac{1}{4}$ augmentés de 4 donnent une somme égale à 7 fois les $\frac{2}{21}$ de ce nombre plus un.

La traduction de cet énoncé fournit l'équation

$$\frac{2x}{3} + 4 = 7 \times \frac{2x}{21} + 1,$$

laquelle donne 14x + 84 = 14x + 21, ou bien 84 = 21, ou 4 = 1, ou enfin 3 = 0.

Cette solution est évidemment absurde, et cela est facile à comprendre, puisque l'énoncé même du problème contient une absurdité.

Observation. Un problème serait encore absurde, par exemple, s'il conduisait à une solution fractionnaire, tandis que son énoncé ne comporte que des nombres entiers.

131. PROBLÈME III. Trouver un nombre dont le triple plus un soit égal à l'excès plus un des ½ sur les ½ de ce nombre.

Appelons x le nombre demandé, et, en traduisant l'énoncé du problème, nous aurons l'équation

$$3x + 1 = \frac{9x}{2} - \frac{9x}{6} + 1;$$

en chassant les dénominateurs, nous obtiendrons

équation identique, qui est satisfaite quelle que soit la valeur qu'on attribue arbitrairement à x. Dans ce cas, on dit que l'équation et le problème sont indéterminés, puisqu'il y a une infinité de solutions.

Des solutions incompatibles.

132. Solutions incompatibles. Dans les problèmes à plusieurs inconnues, comme dans ceux à une seule, on peut rencontrer des solutions impossibles, absurdes ou indéterminées; mais il peut se faire en outre que, dans certains cas, les valeurs trouvées pour ces inconnues diverses soient contradictoires, incompatibles. Donnons-en un exemple.

133. Problème. Trouver trois nombres x, y, z, qui aient entre eux les rapports suivants:

$$\frac{x}{y} = \frac{2}{3}, \frac{y}{z} = \frac{3}{7}, \frac{x}{z} = \frac{5}{8}.$$

Ces

La p

la seco

et la de

Ce ré

dictoire admettr tisfait a serait d donc er les cond

En eftelle sortroisièm aux autril il arrive

Peut-il contienne tibles? (12 Parlez-n Donnez

Explique tives au m Qu'enter Parlez-n Donnez

Parlez-n Donnezbre dont le n des ½ sur

en traduions l'équa,

tiendrons

quelle que ment à x. problème nfinité de

les proans ceux solutions ; mais il s cas, les diverses mons-en

x, y, z,

Ces rapports fournissent les trois équations

$$3x = 2y,$$

$$3z = 7y,$$

$$5z = 8x.$$

La première de ces équations donne

$$y = \frac{3x}{2},$$

la seconde devient $z = \frac{21x}{6}$,

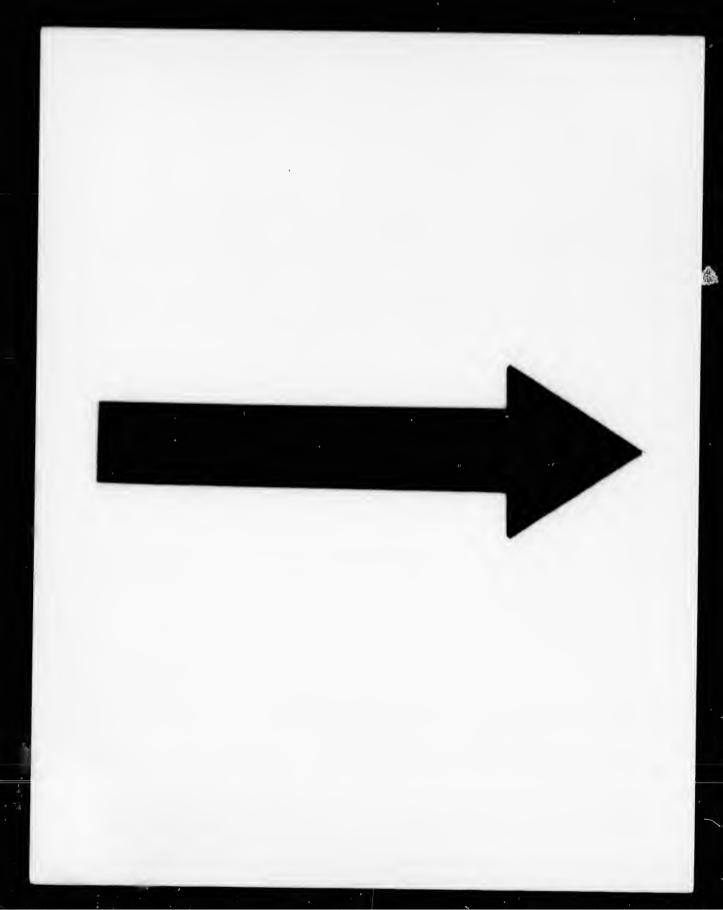
et la dernière prend alors la forme 105x = 48x.

Ce résultat est d'autant plus absurde et contradictoire, qu'on ne peut pas, comme au no 129, admettre même la supposition de x=0, qui satisfait algébriquement à l'équation, parce que ce serait dénaturer le problème proposé. Il faut donc en conclure qu'il y a incompatibilité dans les conditions du problème et dans les équations.

En effet, les trois rapports donnés sont liés de telle sorte que deux d'entre eux déterminent le troisième; ainsi ce troisième est contradictoire aux autres, s'il n'en est pas une déduction, comme il arrive dans l'exemple proposé.

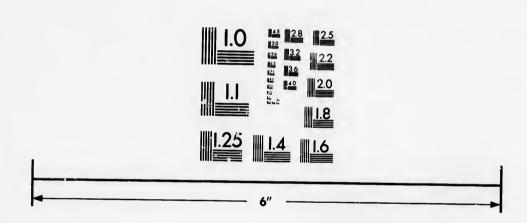
QUESTIONNAIRE.

Peut-il se faire qu'un problème soit mal énoncé, qu'il contienne de fausses suppositions, des conditions incompatibles? (122)


Parlez-nous des solutions négatives. (123) Donnez des exemples. (124, 125, 126)

Expliquez davantage le sens attaché aux valeurs négatives au moyen d'une droite. (126)

Qu'entendez-vous par zéro-limite? (127) Parlez-nous des solutions absurdes. (128)


Donnez des exemples. (129, 130, 131) Parlez-nous des solutions incompatibles. (132)

Donnez-nous des exemples. (133)

MI.25 MI.4 MI.8

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

STATE OF THE STATE

EXERCICES ET PROBLEMES

SUR LES CAS D'IMPOSSIBILITÉ, D'INDÉTERMINATION, ET SUR LES INTERPRÉTATIONS DES VALEURS DANS LES PROBLÈMES DU PREMIER DEGRÉ.

88.
$$\frac{3(2x+1)}{4} - 5 - \frac{3x+2}{10} = \frac{2(3x-1)}{5}$$
.
89. $\frac{3x-8}{6} = \frac{x}{2} + 1$.

90. De quel nombre faut-il augmenter les deux termes de la fraction 5 pour qu'elle se réduise à 3?

91. Un père a actuellement 30 ans et son fils 10 ans. Il arrive dans leur vie une époque où l'âge du père est le quintuple de celui du fils. Quelle est cette époque?

92. En 1809, l'âge d'un père était 4 fois celui de son fils, et en 1813 il n'en était plus que le triple. Quel âge avaient le père et le fils en 1800.

93. Trouver un nombre tel que ses \(\frac{2}{3}\) diminués de 5 soient égaux à 3 fois les \(\frac{2}{3}\) de ce nombre plus 5.

Discussion des problèmes et des formules algébriques.

134. Définition. Lorsqu'on a résolu un problème dans lequel les quantités données sont représentées par des lettres, la valeur de l'inconnue est exprimée par une formule qui indique les opérations à effectuer sur les données. Supposer que ces données reçoivent toutes les valeurs possibles, et examiner s'il en résulte, pour la ques-

tio c'e

no pre ral

rier peci le si on c rier

X_

sens prés trou

press dans la di circo que peuve bles;

137
dire
que o
v — v
soluti

MES

GRÉ.

ERMINATION, EURS DANS

 $\frac{2(3x-1)}{5}$

menter les l'elle se ré.

et son fils époque où lui du fils.

4 fois celui lus que le ls en 1800.

diminués ce nombre

lgébriques.

in problèont reprél'inconnue dique les Supposer leurs posla question, quelques cas particuliers remarquables, c'est ce qu'on appelle discuter le problème.

135. Exemple. Pour éclaircir cette définition, nous allons donner des exemples. A cet effet, reprenons d'abord le problème du nº 105, en généralisant un peu plus son énoncé.

PROBLÈME. Sur une ligne indéfinie XY, deux courriers vont dans le même sens avec des vitesses respectives v et v'; le premier arrive au point A quand le second est en B, et la distance connue AB est d; on demande le point de rencontre de ces deux courriers.

En supposant que la course ait lieu dans le sens BY, que la rencontre se fait en R, et en représentant par x la distance cherchée BR, nous trouverons comme au numéro cité, la formule

$$x = \frac{dv'}{v - v'}$$

136. Discussion. Le numérateur de cette expression fractionnaire est nécessairement positif dans tous les cas, mais le dénominateur, qui est la différence de deux quantités, peut, selon les circonstances, être positif, nul ou négatif, parce que les deux vitesses v et v' des deux courriers peuvent recevoir toutes les modifications possibles; de là trois cas à examiner.

137. 1er cas. Supposons d'abord v > v', c'est-à-dire que le courrier arrivé en A aille plus vite que celui qui est en B; alors le dénominateur v - v' sera positif, ainsi que la valeur de x, et la solution du problème, réelle et positive, indique-

ra que la rencontre a lieu dans le sens désigné en R et conformément aux données de la question; car si le courrier A poursuit le courrier B avec une plus grande vitesse, il l'atteindra nécessairement dans la direction de la course BY.

On voit, de plus, que x sera d'autant plus grand que d sera plus grand lui même, et v - v' plus petit, c'est-à-dire que le point de rencontre R sera d'autant plus éloigné que l'intervalle AB, qui sépare les courriers, sera plus considérable et la différence de leur vitesse moindre.

138. 2^e cas. Si v = v', c'est-à-dire si les courriers vont avec la même vitesse, le dénominateur de la formule est zéro et la valeur de x devient

$$x = \frac{dv'}{0},$$

expression qu'on représente en général par le symbole

$$\frac{m}{0}$$

Mais quelle signification peut avoir un pareil symbole, autrement dit, quel peut être le quotient d'une quantité divisée par zéro ?

Pour l'interpréter, on se rappellera que, dans une division dont le dividende reste constant tandis que le diviseur diminue sans cesse, le quotient est d'autant plus grand que le diviseur est plus petit; c'est-à-dire que si le diviseur se réduit successivement à 0,1 à 0,01 à 0,001, etc., de sa valeur primitive, le quotient devient dix fois, cent fois, mille fois, etc., plus grand qu'il n'était d'abord; en sorte que le diviseur, diminuant indéfiniment, le quotient augmenterait jusqu'à l'infini,

 $\frac{\text{tend}}{\text{pend}}$ $\frac{m}{0}$ de to the pend of the

bole

sign

Ce l'hyp form les d En e serve ve A

signe

On v

Ma aussi duira

Ce plicat seur r conqu zéro de de x, o

dans l

ns désigné
e la quescourrier B
eindra nécourse BY,
plus grand
v' plus
tre R sera
e AB, qui
cable et la

les courminateur devient

al par le

in pareil e le quo-

ue, dans constant cesse, le' diviseur se 1001, etc., ient dix nd qu'il r, dimienterait

Mais, dans ces deux séries inverses, le diviseur tend vers la limite zéro sans jama s l'atteindre, pendant que le quotient va en s'élevant au-dessus de toute grandeur assignable : donc l'expression

 $\frac{m}{0}$ dépasse en grandeur tout ce que l'imagination

peut se représenter, autrement dit, c'est le symbole de l'infiniment grand, qu'on indique par le signe ∞ . (n° 4).

Cela posé, nous devons conclure que dans l'hypothèse v = v', la valeur de x donnée par la formule est infiniment grande, c'est-à-dire que les deux courriers ne se rencontreront jamais. En effet, puisqu'ils vont également vite, ils conserveront toujours entre eux la distance primitive AB ou d qui les sépare au début.

On voit par là que le symbole $\frac{m}{0}$ est aussi le signe de l'impossibilité.

Mais pendant qu'on suppose v = v', si l'on avait aussi la distance d = v, alors la formule se réduirait à

$$x = \frac{0}{0}.$$

Ce nouveau symbole demande aussi son explication. Nous avons un dividende et un diviseur nuls; en conséquence, le quotient est quelconque, parce que tout nombre multiplié par zéro donne zéro pour produit: donc la valeur de x, dans ce cas, reste arbitraire, indéterminée,

et $\frac{0}{0}$ est le symbole de l'indétermination. En effet,

dans la double hypothèse ci-dessus, les deux courriers ont la même vitesse, même direction,

On

à tou

nous

prese

tibilit

tion,

Qu'es

Donn

Discu

Ensui

Enfin

En

et à un instant donné ils arrivent en même temps au même point A ou B; il faut donc qu'ils aient été et qu'ils soient toujours ensemble, c'est à-dire que leur rencontre ait lieu sur tous les points de la route XY.

139. 3° cas. Supposons maintenant v < v'; dans cette hypothèse, le dénominateur de la formule aura le signe —, et la valeur de x sera négative. Nous conclurons alors, d'après les considérations du n° 126, que la rencontre des deux courriers doit avoir lieu, non pas dans le sens indiqué, mais dans une direction opposée, c'està-dire qu'ils se rencontreront en un point R' situé sur AX et non pas en R sur BY.

Ce résultat s'accorde encore parfaitement avec les circonstances. En effet, si le courrier qui arrive en A va moins vite que le courrier B qui est en avant, il est évident qu'ils ne pourront se joindre dans la direction BY, mais qu'au contraire leur rencontre a dû précéder leur arrivée respective en A et B, et avoir eu lieu en arrière du point A.

140. Enfin, pour compléter cette discussion, nous devons examiner encore ce que devient la formule primitive, dans le 1er et le 3e cas, lors-qu'on suppose nul l'intervalle AB ou d, pendant que les vitesses sont inégales. Alors, en faisant d=0, la valeur de x prend la forme

$$x=\frac{0}{m}$$
, ou bien $mx=0$;

et comme m est un nombre positif ou négatif, il faut nécessairement que x soit zéro.

La rencontre a donc lieu au point de départ A; et, en effet, deux courriers qui à un instant donné, sont en un même point A et vont avec des vitesses inégales, se séparent pour ne plus se rencontrer jamais.

en même donc qu'ils mble, c'estur tous les

t v < v';
r de la for
x sera né
s les consic des deux
ens le sens
osée, c'estpoint R'

ment avec ier qui arrier B qui ourront se qu'au conir arrivée en arrière

iscussion, levient la cas, lors-, pendant en faisant

légatif, il

épart A; ant donc des vis se renOn pourra appliquer une discussion analogue à toute autre formule, et c'est pour cela que nous nous bornons à cet exemple,

En résumé, les trois symboles $\frac{m}{0}$, $\frac{0}{0}$, $\frac{0}{m}$, re-

présentent le premier, l'impossibilité, l'incompatibilité ou l'infini ; le deuxième, l'indétermination, et le troisième, une valeur nulle ou absurde.

QUESTIONNAIRE.

Qu'est-ce que discuter un problème ? (134) Donnez-nous un problème à discuter. (135) Discutez ce problème dans le cas de v > v'. (137) Ensuite dans le cas de v = v'. (134) Enfin dans le cas de v < v'. (139)

EXERCICE

SUR LA DISCUSSION DES FORMULES.

94. Résoudre et discuter l'équation ax + b = a'x + b'.

CHAPITRE V.

ANALYSE INDÉTERMINÉE DU PREMIER DEGRE.

141. Définition. Nous avons appelé problèmes indéterminés (nº 108) ceux qui contiennent plus d'inconnues que leur énoncé ne peut fournir d'équations, et nous avons vu (nº 123) que, par les méthodes d'élimination, avec chaque inconnue qu'on élimine on fait disparaître aussi une équation; en sorte que si l'on a moins d'équations que d'inconnues, l'équation finale contiendra nécessairement plusieurs inconnues, et sera impuissante à en faire connaître les valeurs.

En effet, le cas le plus simple, c'est qu'après l'élimination l'équation dernière contienne encore deux inconnues et soit de la forme

$$ax + by = c$$
.

Il est évident que cette équation ne peut donner la valeur de l'une des inconnues qu'en attribuant une valeur à l'autre; si, par exemple, on pose

$$x = \frac{c - by}{a}$$
;

on voit que, pour avoir la valeur de x, il faut prendre pour y une valeur qui reste arbitraire;

et c en c tout de s tion

les p qu'il cela conn cas, l

142

tions
nés p
infini
tions
ainsi,
nature
et posi
ver to
problè
indéter

Pour propose 143.

on paye

En re

et c'est l qu'il re problèm

Gette d'où l'on

et comme, d'ailleurs, chaque valeur prise pour y en donnera une correspondante pour x, il est de toute évidence que le problème aura une infinité de solutions, lesquelles seront entières ou fractionnaires, positives ou négatives.

Cette conclusion s'applique forcément à tous les problèmes qui donnent moins d'équations qu'ils ne contiennent d'inconnues, et c'est pour cela qu'on les nomme indéterminés. Les inconnues x, y, z, prennent elles-mêmes, dans ce cas, le nom d'indéterminées.

142. Analyse indéterminée. Mais si les équations que fournissent les problèmes indéterminés peuvent algébriquement être satisfaites d'une infinité de manières, il y a des cas où les conditions de l'énoncé imposent certaines restrictions; ainsi, par exemple, certaines questions, par leur nature, ne comportent que des solutions entières et positives; or, la méthode employée pour trouver toutes les solutions entières et positives d'un problème indéterminé, porte le nom d'analyse indéterminée. C'est la matière de ce chapitre.

Pour commencer par le cas le plus simple, proposons-nous le problème suivant :

143. Problème 1er. De combién de manières peuton payer la somme de 21 fr. avec des pièces de 1 fr. et de 5 fr.

En représentant par x les pièces de 1 fr. et par y celles de 5 fr., nous aurons l'équation

$$x + 5y = 21,$$

et c'est la seule que fournit ce problème, bien qu'il renferme deux inconnues distinctes : le problème est donc indéterminé.

Cette équation donne x = 21 - 5y; d'où l'on voit que, pour connaître la valeur de x,

R DEGRE.

problèmes anent plus ut fournir 3) que, par chaque in aître aussi moins d'éfinale conconnues, et les valeurs. et qu'après tienne en-

peut donqu'en attrixemple, on

x, il faut arbitraire;

il faut donner une valeur arbitraire à y; mais, puisque x et y doivent être entiers et positifs par la nature du problème, il est naturel de supposer y successivement égal aux nombres entiers consécutifs 1, 2, 3, etc.....

Or,
$$y = 1$$
 donne $x = 16$,
 $y = 2$ $x = 11$,
 $y = 3$ $x = 6$,
 $y = 4$ $x = 1$,

et y = 5 rendrait x négatif: le problème admet donc les quatre solutions ci-dessus, et pas davantage.

Vérification. Il est facile, d'ailleurs, de se convaincre que ces solutions satisfont également au problème proposé. En effet, une pièce de 5 fr. et 16 pièces de 1 fr. font 21 fr.; de même 2 pièces de 5 fr. et 11 pièces de 1 fr. font aussi 21 fr., et ainsi des autres.

144. PROBLÈME II. Dans un repas on a bu pour 31 fr. de vins, bordeaux et champagne; le premier a coûté 3 fr. la bouteille et le second 5 fr. Combien a-t-on pris de bouteilles de chaque espèce?

x et y représentant les nombres de bouteilles de bordeaux et de champagne, on aura l'équation

$$3x + 5y = 31,$$
laquelle donne
$$x = \frac{31 - 5y}{3}.$$

Ici la valeur de x est sous forme fractionnaire, parce que cette inconnue a dans l'équation un coefficient autre que l'unité; en sorte que si, comme dans le problème précédent, nous prenions immédiatement pour y les nombres naturels 1, 2, 3, etc., la plupart d'entre eux donne

raient faudra bres a positiv

Pour signer solutio ploie u tuer au l'expres une for sieurs i

D'apr

eviend

t sous cour que des non e 1 — 2

 $\frac{6-3}{3}$

n représ linée en

[1]

l'on aur

Pour of leur de l ccessiver

1-2y=

y; mais, ositifs par e supposer atiers con-

me admet pas davan-

le se conlement au de 5 fr. et le 2 pièces 21 fr., et

a bu pour premier a Combien

bouteilles l'équation

tionnaire,
nation un
te que si,
nous prenbres naux donne-

raient pour x des valeurs fractionnaires, et il faudrait essayer inutilement beaucoup de nombres avant d'arriver aux solutions entières et positives du problème.

Pour éviter ces essais infructueux, on doit assigner les limites entre lesquelles tombent les solutions véritables, et pour les trouver on emploie un procédé qui consiste en général à effectuer autant que possible la division indiquée par l'expression fractionnaire, et à donner au reste une forme entière, en introduisant une ou plusieurs indéterminées auxiliaires.

D'après cela la valeur
$$x = \frac{31 - 5y}{3}$$

leviendra
$$x = 10 - y + \frac{1 - 2y}{3}$$
,

t sous cette forme on verra immédiatement que, our que x et y soient entiers, il faut choisir pour des nombres entiers qui rendent entière la par-

$$e^{\frac{1-2y}{3}}.$$

n représentant donc cette partie par l'indéterlinée entière z, on posera

$$\frac{1-2y}{3}=z,$$

l'on aura pour æ la forme entière

$$x = 10 - y + z.$$

Pour obtenir l'expression de y, on tirera sa leur de l'équation de condition [1], et l'on aura ccessivement :

$$1-2y=3z$$
, $2y=1-3z$, et $y=\frac{1-3z}{2}$.

En effectuant encore la division, cette valeur devient

$$y = -z + \frac{1-z}{2};$$

et, pour donner à cette expression une forme en tière, on représentera le reste $\frac{1-z}{2}$ par une nouvelle indéterminée entière t, et l'on aura à la fois

[2]
$$\frac{1-z}{2} = t$$
, et $y = -z + t$.

Ensuite pour obtenir l'expression de z, on traitera l'équation de condition [2] comme on a traité l'équation [1] et on posera

$$1-z=2t$$
, d'où $z=1-2t$

Maintenant que nous n'avons plus de dénominateur, il est évident que tout nombre entier, mis à la place de l'indéterminée t, donners de valeurs entières pour les autres; mais, comme nous ne devons tenir compte que des solutions entières et positives, il nous importe en outre de trouver les limites qui les renferment.

A cet effet, nous combinerons par voie d'élimination les trois expressions entières trouvés ci-dessus

$$x = 10 - y + z,$$

 $y = -z + t,$
 $z = 1 - 2t,$

lesquelles donnent successivement

$$y = -1 + 2t + t = 3t - 1,$$

 $y = 10 - 3t + 1 + 1 - 2t = 12 - 5i;$

et nou me, le

Sous gner le soient l'indéte à la do

ou bien

En co

1 ou *t* = mais et

Le pro davanta

Vérific aurait b bouteille en tout 3

D'aprè de borde 25 fr., ou

145. E de tracer entières (consiste

99

, cette valeur

ine forme en

par une nou-

aura à la fois

et nous aurons enfin, pour la solution du problème, les deux formules

$$x = 12 - 5t$$

 $x = 3t - 1$.

Sous cette forme rien n'est si facile que d'assigner les limites demandées, car, pour que x et y soient entiers et positifs, il faut prendre pour l'indéterminée t les nombres entiers qui satisfont à la double condition

ou bien
$$5t < 12 \text{ et } 3t > 1,$$
$$t < \frac{12}{5} \text{ et } t > \frac{1}{3}.$$

En conséquence, puisque t doit être entier et

comprise ntre $\frac{1}{3}$ et $\frac{12}{5}$ on ne pourra avoir que t =

1 ou
$$t=2$$
.

mais
$$t = 1$$
 donne $x = 7$ et $y = 2$,
et $t = 2$ $x = 2$ $y = 5$.

Le problème offre donc deux solutions et pas davantage.

Vérification. D'après la première solution, on aurait bu 7 bouteilles de bordeaux à 3 fr. et 2 bouteilles de champagne à 5 fr., ce qui fait bien en tout 31 fr.

D'après la seconde, il y aurait eu 2 bouteilles de bordeaux, 6 fr., et 5 bouteilles de champagne, 25 fr., ou soit encore 31 fr.

145. En résumant la marche que nous venons de tracer, on voit que la recherche des solutions entières et positives d'un problème indéterminé consiste à tirer de l'équation du problème la

- 2t

on de z, on comme on a

s de dénomimbre entier, donnera de mais, comme des solutions e en outre de nt.

voie d'élimieres trouvés

- 1, 12 - 51;

valour de l'inconnue qui a le plus petit coefficient; à opérer des divisions successives qui font diminuer les coefficients jusqu'à ce que l'un d'eux soit ramené à l'unité; à introduire de nouvelles indéterminées, pour donner une expression entière aux valeurs de toutes les inconnues, et à éliminer ensuite entre ces expressions le plus grand nombre possible des indéterminées introduites.

146. Mais hâtons nous de dire qu'avant d'appliquer cette règle à une équation donnée, il faut classer ses dénominateurs si elle en a, et la débarrasser des facteurs qui pourraient être communs à tous ses termes. En outre, il est possible de connaître à l'avance si le problème proposé aura ou non des solutions entières. ce sujet le principe suivant:

147. Pour qu'une équation à plusieurs inconnues admette des solutions entières, il faut et il sussit que les coefficients entiers de ces inconnues soient premiers entre eux, ou bien, s'ils ont un facieur commun, que ce facteur divise également le terme tout connu.

Remarquons d'abord que, si tous les termes de l'équation avaient un facteur commun, il faudrait l'en débarrasser dans teus les cas, en sorte qu'on peut toujours supposer que le terme tout connu est premier avec les coefficients; mais il faut, de plus, que les coefficients soient premiers entre eux, car la méthode appliquée ci-dessus à l'équation 3x + 5y = 31 consiste à diviser le plus grand coefficient 5 par le plus petit, ensuite ce dernier par le reste de leur division, ce premier reste par le second reste, et ainsi de suite jusqu'à ce qu'on obtienne l'unité pour le dernier reste, c'est-à dire qu'on pratique sur les coefficients des deux inconnues la recherche du plus grand commun diviseur. Par conséquent, pour arriver à mire eux

l'uni entre

Si,

dans ! teur c avoir par ce

et que: ne peu tière, a y donn membr

tout con

naire; moins s

148. E

qui en a on aurai facteur 3 nues, div quation s

ans laqu

l'unité, il faut que ces coefficients soient premiers entre eux, comme dans l'équation proposée. Si, au contraire, on avait l'équation

$$12x + 15y = 50$$
,

dans laquelle les coefficients 12 et 15 ont un facteur commun 3 qui ne divise pas 50, on ne saurait avoir des solutions entières, parce qu'en divisant par ce facteur l'équation devient

$$4x + 5y = \frac{50}{3}$$

et que sous cette forme on voit évidemment qu'elle ne peut être satisfaite par aucune solution entière, attendu que toute valeur entière pour x et y donnerait un nombre entier dans le premier membre et ne pourrait pas être égal au terme

tout connu $\frac{50}{3}$, qui est nécessairement fraction-

naire ; il faut donc que l'une des inconnues au moins soit fractionnaire elle-même.

148. En second liev, si l'on prenait l'équation

$$12x + 15y = 51$$
,

qui en apparence, diffère peu de la précédente, on aurait des solutions entières, parce que le facteur 3, commun aux coefficients des inconnues, divise le terme tout connu 51, et que l'équation se réduit à

$$4x + 5y = 17$$

dans laquelle les coefficients 4 et 5 sont premiers entre eux.

vant d'apnée, il faut , et la déêtre comest possible ne proposé Il existe à

etit coeffi-

es qui font

l'un d'eux

nouvelles ression en-

nues, et à ns le plus

nées intro-

s inconnues
il suffit que
soient preacteur comterme tout

termes de in, il faus, en sorte terme tout s; mais il t premiers ei-dessus à ser le plus en suite ce premier ite jusqu'à nier reste, icients des grand comarriver à

En effet, cette dernière équation donne le calcul suivant:

$$x = \frac{17 - 5y}{4} = 4 - y + \frac{1 - y}{4},$$

des

et 2 ma

elle

la n dan le p indi

Mair

z, v or

rons pa aurons

ou bien

$$x = 4 - y + z,$$

$$\frac{1-y}{4} = z$$
, d'où $y = 1 - 4z$;

et, en substituant cette valeur de y dans celle de x, on aura les deux formules

$$x = 3 + 5z$$
 et $y = 1 - 4z$.

Ces expressions donnent à x et y des valeurs entières pour tous les nombres entiers qu'on peut mettre à la place de z; mais il n'y a que la supposition z = 0 qui rende ces valeurs positives: le problème dont l'équation proposée serait la traduction ne comporterait donc que la seule solution entière et positive

$$x = 3 \text{ et } y = 1.$$

149. Comme application de tout ce qui précède, proposons-nous de résoudre l'équation suivante:

$$\frac{5x}{12} - \frac{2y}{7} = \frac{1}{4}$$

c'est-à-dire de trouver toutes les solutions entières et positives qu'elle comporte.

Nous chasserons d'abord les dénominateurs et nous aurons

$$140x - 96y = 84;$$

en divisant ensuite par le facteur commun 4, nous obtiendrons

$$35x - 24y = 21$$
.

onne le cal-

$$\frac{-y}{4}$$

ans celle de

des valeurs tiers qu'on n'y a que aleurs posiroposée seonc que la

qui précè uation sui

lutions en-

inateurs et

commun 4,

Sous cette forme nous reconnaissons que l'équation et le problème qui l'a fournie auront des solutions entières, puisque les coefficients 35 et 24 des indéterminées sont premiers entre eu.; mais y en aura-t-il de positives et quelles sont-elles? Voilà ce qu'il faut rechercher.

A cet effet, nous appliquerons à cette équation la méthode tracée n° 146, et, en prenant d'abord dans l'équation la valeur de y qui a le coefficient le plus petit, nous aurons la série des calculs indiqués dans le tableau suivant:

$$y = \frac{35x - 21}{24} = x + \frac{11x - 21}{24}.$$

$$y = x + z; \qquad \frac{11x - 21}{24} = z;$$

$$x = \frac{24z + 21}{11} = 2z + 1 + \frac{2z + 10}{11};$$

$$x = 2z + 1 + v; \qquad \frac{2z + 10}{11} = v;$$

$$z = \frac{11v - 10}{2} = 5v - 5 + \frac{v}{2}; z = 5v - 5 + t,$$
et $\frac{v}{2} = t$, d'où $v = 2t$.

Maintenant que toutes les indéterminées y, x, z, v ont une expression entière, nous remonterons par substitution de l'une à l'autre, et nous aurons successivement

$$z = 10t - 5 + t = 11t - 5,$$

 $x = 22t - 10 + 1 + 2t = 24t - 9,$
 $y = 24t - 9 + 11t - 5 = 35t - 14,$

Les deux formules du problème, dépendant de l'indéterminée t, sont donc

$$x = 24t - 9$$
 et $y = 35t - 14$.

D'après la nature de ces expressions, on voit que tous les nombres entiers et positifs depuis +1 jusqu'à $+\infty$ donneront des valeurs entières et positives pour x et pour y, en sorte que l'équation proposée admet une infinité de solutions. En effet, suivant que

on a t = 1, 2, 3, 4, 5, etc., x = 15, 39, 63, 87, 111, etc.,y = 21, 56, 91, 126, 161, etc.

et toutes ces solutions vérifient l'équation proposée.

150. Remarque I. C'est ici le moment de faire une observation importante : dans tous les problèmes indéterminés, les diverses valeurs de la même inconnue forment toujours une progression arithmétique, et dans le cas de deux inconnues et par conséquent d'une seule équation, la progression formée par les valeurs de x a pour raison le coefficient de y dans l'équation, tandis que le coefficient de x devient la raison arithmétique des valeurs de y. On trouve la vérification de ce fait dans les trois problèmes traités ci-dessus n $^{\circ}$ 143, 144, 149.

151. Remarque II. D'après ces exemples, nous voyons que certains problèmes indéterminés donnent un nombre fort restreint de solutions, tandis que d'autres en admettent une infinité. Ce double résultat est également facile à prévoir, à l'inspection seule de l'équation du problème et en vertu de ce principe: que, dans toute équation dont les deux termes, contenant les deux inconnues, ont le même signe, les solutions entières et positives

sor bre fer

où prenenti au t

de va

où le res,] nomh

tion i 146, o tions coeffic les cal

Soit

qui do

il se pro du fact rateur :

et rema

pendant de

14.

ns, on voit itifs depuis ers entières que l'équasolutions.

ation pro-

at de faire

us les proeurs de la e progreseux inconquation, la e x a pour on, tandis n arithméérification tés ci-des-

ples, nous ainés donns, tandis Ce double r, à l'insme et en équation nconnues, to positives sont limitées; tandis que ces solutions sont en nombre infini quand ces inconnues ont des sigues différents.

En effet, dans les équations

$$3x + 5y = 31$$
 (no 144), et $x + 5y = 21$ (no 143),

où les inconnues x et y ont le même signe, le premier membre se compose de deux nombres entiers et positifs dont la somme doit être égale au terme tout connu, et alors les indéterminées x et y ne peuvent prendre qu'un nombre limité de valeurs différentes; tandis que dans l'équation

$$35x - 24y = 21$$
 (no 149),

où les indéterminées x, y ont des signes contraires, la différence 35x - 24y pourra égaler le nombre entier 21 dans une infinité de cas.

152. Remarque III. Quand on traite une équation indéterminée par le procédé indiqué nos 145, 146, on a quelquefois une longue série d'opérations à effectuer avant d'arriver à l'unité pour coefficient; mais souvent aussi on peut abréger les calculs comme nous allons le faire voir.

Soit à résoudre l'équation

qui donne
$$65x - 7y = 30$$
$$y = \frac{65x - 30}{7};$$

il se présente une première simplification, à cause du facteur 5 commun aux deux termes du numérateur : car on peut écrire

$$y = \frac{5(13x - 6)}{7}$$

et remarquer que, pour rendre y entier, il suffit

de déterminer x de manière que 13x - 6 soit divisible par 7, c'est-à-dire de poser

$$\frac{13x-6}{7}=z, \text{ ce qui donne } y=5z.$$

Ainsi la question est ramenée à traiter une équation plus simple que la proposée; mais ce n'est pas tout: une nouvelle simplification est encore praticable.

Pour traiter l'équation

$$z=\frac{13x-6}{7},$$

il faudrait diviser 13 par 7, ensuite 7 par le reste, et ainsi de suite, ce qui introduirait cinq à six indéterminées accessoires avant d'arriver à l'unité, tandis que, avec une petite modification, on n'aura besoin que d'une seule indéterminée nouvelle. En effet, il suffit d'augmenter d'une unité les coefficients 13 et 6 du numérateur pour les rendre divisibles par le dénominateur 7 et on peut opérer cette modification sans changer la valeur de z, en ajoutant et retranchant à la fois x-1 à ce numérateur, c'est-à dire en posant

$$z = \frac{13x - 6 + x - 1 - x + 1}{7} = \frac{14x - 7 + 1 - x}{7},$$

ce qui donne alors

$$z = 2x - 1 + \frac{1 - x}{7};$$

et, en faisant
$$\frac{1-x}{7} = t$$
, d'où $x = 1 - 7t$,

on a sur-le-champ
$$z = 2x - 1 + t$$
,
ou bien $z = 1 - 13t$, et ensuite $y = 5 - 65t$

tre sio doi leu est des astr que nue et d

tes toute

x et à

et no

progr

154. blème renfer fourni

ra de d

155.
il faut
plus qu
finale l
coefficie
et remo
antéries

-6 soit di-

5z.

traiter une e; mais ce tion est en-

par le reste, a cinq à six river à l'a-leation, on minée nou-d'une uni-ur pour les ur 7 et on changer la nt à la fois posant

 $\frac{7+1-x}{7},$

7t,

- 65h

153. Observation. Cot exemple fournit une autre observation que nous n'avions pas eu occasion de faire encore : c'est que l'indéterminée t doit être prise ici négativement pour que les valeurs de x et de y soient positives. Cela d'ailleurs est tout à fait permis, car, dans les méthodes cidessus, les indéterminées accessoires ne sont astreintes qu'à la condition d'être entières, quels que soient leurs signes. Il n'y a que les inconnues, qui figurent dans l'énoncé du problème et dans l'équation primitive, qui doivent être entières et positives.

Cela posé, puisque dans les formules précédentes

$$x = 1 - 7t$$
 et $y = 5 - 65t$

toute valeur entière et positive de t donnerait à x et à y des valeurs négatives inadmissibles, nous supposons successivement

$$t = 0, -1, -2, -3, -$$
 etc.,

et nous aurons pour valeurs correspondantes les progressions indéfinies

$$x = 1, 8, 15, 22...$$

 $y = 5, 70, 135, 200...$

154. Jusqu'ici nous n'avons traité que des problèmes à deux inconnues; quant à ceux qui en renferment un plus grand nombre, soit qu'ils fournissent une ou plusieurs équations, il suffira de donner la règle suivante:

155. Règle. Quel que soit le nombre des équations il faut opérer l'élimination jusqu'à ce qu'on n'ait plus qu'une seule équation; tirer de cette équation finale la valeur de l'inconnue qui a le plus petit coefficient; ramener cette valeur à la forme entière et remonter par substitution à toutes les expressions antérieures, afin d'obtenir pour chaque inconnue

une formule en fonction de la même ou des mêmes indéterminées.

 $L\epsilon$

ph rh

L'u

par

rép

ai a

d'œ

QUESTIONNAIRE.

Donnez la formule dans le cas le plus simple des problèmes indéterminés du 1er degré. (141)

Qu'appelle-t-on analyse indéterminée? (142)

Donnez des exemples. (148, 144)

En quoi consistent, en résumé, les solutions entières et positives d'un problème indéterminé? (145)

Donnez le principe qui facilite la recherche de ces solu-

tions. (146)

Faites l'application de ces règles. (148)

Par quel principe peut-on prévoir le nombre de solutions? (150)

Peut-on quelquefois simplifier les opérations, et com-

ment? (151)

Queile est la règle pour les problèmes indéterminés à plusieurs inconnues? (154)

EXERCICES ET PROBLEMES

SUR L'ANALYSE INDÉTERMINÉE DU PREMIER DEGRÉ.

- 95. On veut former la longueur du mètre en alignant des pièces d'or de 20 fr. et de 40 fr., dont les diamètres respectifs sont de 21 et de 26 millimètres. De combien de manières peut-on le faire?
- 96. Sachant que le diamètre d'une pièce de 5 fr. est de 37 millimètres, celui des pièces de 2 fr. de 27 millimètres, et celui des pièces d'un franc de 23 millimètres, on demande de combien de manières on pourrait obtenir la longueur du mètre, en alignant des pièces d'argent de ces trois espèces.
- 97. Une société d'élèves rhétoriciens et philosophes dépensent dans une promenade 75 fr

des mêmes

ple des pro-

s entières et

de ces solu-

le solutions?

ns, et com-

éterminés à

.

R DEGRÉ.

mètre en de 40 fr., 1 et de 26 es peut-on

pièce de 5 es de 2 fr. l'un franc mbien de gueur du at de ces

et philo: de 75 fr Les rhétoriciens ont payé chacun 2 fr. 10c. et les philosophes 2 fr. 40c. Combien y avait-il de rhétoriciens et de philosophes?

98. Deux paysannesont ensemble 160 œufs. L'une dit à l'autre: Quand je compte mes œufs par huitaine, il y a un surplus de 7. La seconde répond: Si je compte les miens par dizaines, j'en ai aussi 7 de surplus. Combien chacune a-t-elle d'œufs?

CHAPITRE VI.

CARRÉ ET RACINE CARRÉE DES QUANTITÉS : ALGÉBRIQUES.

Formation du carré des quantités littérales.

156. Observation. On sait que le carré ou la seconde puissance d'une quantité est le produit de cette quantité par elle-même.

Ainsi le carré de a est $a \times a$ ou a^2 ; Le carré de $4a^2b$ sera $4a^2b \times 4a^2b = 16a^4b^2$; Celui de -3b est $-3b \times -3b = +9b^2$.

De même le carré d'une fraction $\frac{a}{b}$ s'obtiendra

en élevant au carré chacun de ses termes ; car

$$\frac{a}{b} \times \frac{a}{b} = \frac{a^2}{b^2}.$$

157. Carré d'un monôme. Nous savons déjà que le carré d'un monôme se forme en élevant au carré chacun de ses facteurs, c'est-à-dire en faisant le carré de son coefficient numérique, en doublant les exposants de toutes les lettres, et en

car cel car

que nou du p du seco

d'un dont mes posit

 $\mathbf{E}\mathbf{x}$

160 (nº 7

sance 161 quant effects

cette comm

162. peut t sa pui donnant toujours au résultat le signe +. Ainsi le carré de 5a4b3c est 25a5bc2; celui de — 5a4b3c est également 25a5bc2, car, d'après la règle du no 42,

$$+ a \times + a = -a \times -a = a^2.$$

158. Carré d'un binôme. Nous savons aussi que le carré d'un binôme se compose, comme nous l'avons dit (n° 53) de trois parties: du carré du premier terme de ce binôme, du double produit du premier terme par le second, et du carré du second terme.

159. Carré d'une fraction. Enfin, le carré d'une fraction quelconque est une autre fraction dont les termes sont les carrés respectifs des termes de la fraction donnée; ce carré est toujours positif.

Ex.
$$\frac{a}{b} \times \frac{a}{b} = \frac{a^2}{b^2}$$

Extraction de la racine carrée des quantités algébriques.

160. Definitions. Nous avons appelé racine (nº 7 Rem.) la quantité qui sert à former la puissance.

161. L'extraction de la racine carrée d'une quantité algébrique est l'opération qu'il faut effectuer sur le carré pour retrouver la racine; cette opération s'indique par le signe comme nous l'avons dit nº 8.

162. Toute quantité est racine, parce qu'on peut toujours, par des multiplications, former sa puissance; mais toute quantité n'est pas puis-

NTITÉS

érales.

rré ou la le produit

 $ba^4b^2;$

obtiendra

es; car

vons déjà n élevant à-dire en rique, en es, et en

lit

ca

né

sai

n'e

qu բ!ջ

bes

bor

rad

car

rac.

par

nell

moi

qua

veu

quai l'im

sont

nom

posit bien

l'en

mult

néga

169

naire

sance: au contraire, dans les quantités algébriques, comme dans les nombres, les puissances exactes sont peu nombreuses. Cela posé:

163. On nomme rationnelles toutes les quantités qui forment une puissance exacte et qui, par conséquent, ont une racine; et, par opposition, on appelle irrationnelles celles qui ne sont pas des puissances exactes; ainsi \square 81 est une quantité rationnelle, et \square 7 une quantité irrationnelle.

164. Double signe. Racine ambigue. Hâtonsnous de remarquer que la racine carrée d'une quantité quelconque doit toujours être affectée du double signe, parce que, d'après la loi de formation des carrés, le changement de signe dans la racine ne change en rien le signe du carré.

On écrira donc $\sqrt{a^2} = \pm a$; et, en effet, a^2 est aussi bien le carré de + a que de -a. On exprime cette particularité en disant que la racine carrée d'une quantité algébrique est ambiguë.

165. Racine carrée des monômes. Pour extraire la racine carrée d'un monôme, il faut opérer sur chaque facteur en particulier, c'est à dire extraire d'abord celle de son coefficient numérique (Arith), diviser par 2 les exposants de toutes les lettres, et affecter le résultat du double signe ±. Ainsi on aura

$$\sqrt{25a^6b^4c^2} = +5a^3b^2c.$$

166. Remarque I. Il suit de cette règle qu'à l'inspection seule d'un monôme on reconnaîtra s'il est ou s'il n'est pas un carré parfait, c'est-à-dire que:

1º Tout monôme positif, dont le coefficient numérique est un sur 5 et dont les facteurs tés algébripuissances osé:

les quantiet qui, par opposition, ne sont pas

une quané irration.

ë. Hâtonsrrée d'une re affectée loi de forsigne dans du carré.

ffet, a² est a. On exe la racine mbiguë.

Pour exl faut opéc'est à-dire numérique utes les let-±. Ainsi

règle qu'à connaîtra fait, c'est-

coefficient facteurs littéraux sont affectés d'exposants pairs, est un carré parfait;

2º Tout monôme ne peut être un carré s'il est négatif, ou bien si, étant positif, l'un des exposants est impair, ou si le coefficient numérique n'est pas un carré parfait.

167. Comment indiquer la racine d'un carré qui n'est point parfait. Quoiqu'une quantité elgébrique ne soit pas un carré parfait, on a besoin souvent d'exprimer sa racine, et l'on se borne alors à placer cette quantité sous le signe radical sans oublier le double signe; ainsi la racine carrée de $12a^3b^2$ sera $\pm \sqrt{12a^3b^2}$; de même, la racine incomplète du binôme $a^2 + b$ s'indiquera par

 $\pm \sqrt{a^2+b}$.

168. Remarque II. Si les quantités irrationnelles n'ont pas de racines exactes, on peut du moins calculer ces racines par approximation, quand ces quantités sont positives; mais si l'on veut se faire une idée de la racine carrée d'une quantité négative, eût-elle un aspect rationnel, l'imagination se perd; ainsi

$$\sqrt{-4}$$
, $\sqrt{-a^2}$, $\sqrt{-3}b$

sont des expressions qui n'ont aucun sens et qu'on nomme *imaginaires*, par opposition aux quantités positives et négatives qui ont une signification bien établie et qu'on appelle *réelles*. En effet, l'en no saurait se représenter une quantité qui, multipliée par elle-même, donne un produit négatif

 $-4, -a^2, -3b.$

169. Racine carrêe des quantités fractionnaires. Pour extraire la racine carrée d'une expression fractionnaire, on extrait séparément celle du numérateur et celle du dénominateur: cette règle découle de la règle n° 159, 3°. Ainsi on aura

$$\sqrt{\frac{4a^4b^3}{9m^2x^6}} = \sqrt{\frac{4a^4b^3}{9m^2x^6}} = \frac{2a^2b}{3mx^8}.$$

Les caractères indiqués plus haut pour les monômes nous serviront à reconnaître également si une fraction donnée est un carré parfait ou non.

170. D'après ce qui précède (nos 154, 155), le carré d'un monòme est un monôme, et le carré d'un binôme est un trinôme; par conséquent, une quantité composée de deux termes ne peut jamais être un carré parfait, et il n'y a pas lieu de chercher sa racine. Mais un trinôme pouvant être un carré, on doit se demander quels sont les caractères auxquels on reconnaîtra qu'un trinôme donné est un carré parfait et comment on treuvera sa racine.

Pour résoudre cette double question, il faut se rappeler (nºs 53 et 158) la loi de formation du carré d'un binôme, c'est-à-dire que

$$(a + b)^2 = a^2 + 2ab + b^2,$$

 $(a - b)^2 = a^2 - 2ab + b^2,$

et l'on en conclura:

1º Que pour qu'un trinôme soit un carré parfait, il faut qu'il contienne deux termes positifs qui soient et v-mêmes des carrés monômes, et un troisième terme positif ou négatif, mais formé du double produit des racines des deux autres;

2º Que lorsqu'un trinôme est un carré, sa racine est nécessairement un binôme;

3º Que, pour extraire la racine carrée d'un trinôme, il suffit d'opérer l'extraction sur les deux monômes qui sont des carrés parfaits, en do co ou

pri

par les troi 3a²

sera
3a²
sign
posi
+ 2

3x +carr
et de
doul
les e

cette

173 trinô

on re parfa soien rément celle :: cette rè. isi on aura

 $\frac{b}{b}$.

calement si tit ou non.
4, 155), le et le carré onséquent, es ne peut a pas lieu e pouvant quels sont qu'un trimment on

il faut se nation du

carré pares positifs es, et un formé du 5;

rée d'un sur les faits, en

ré, sa ra-

donnant aux racines le même signe ou des signes contraires, selon que le double produit est positif ou négatif.

171. ler Exemple. Pour application de ces principes, soit proposé le trinôme

$$9a^4x^2 + 12a^2bx + 4b^2$$

On voit de suite que ce trinôme est un carré parfait, car les termes extrêmes $9a^4x^2$ et $4b^2$ sont les carrés monômes de $3a^2x$ et 2b, tandis que le troisième terme $12a^2bx$ est le double du produit $3a^2x \times 2b$ des racines des deux autres.

On voit de plus que la racine de ce trinôme sera le binôme formé des deux racines monômes $3a^2x$ et 2b, lesquelles seront prises avec le même signe, attendu que le double produit $12a^2bx$ est positif, c'est-à-dire que cette racine est $+ 3a^2x + 2b$, ou bien $- 3a^2x - 2b$. On écrira donc:

$$\sqrt{9a^4x^2 + 12a^2bx + 4b^2} = \pm (3a^2x + 2b).$$

172. 2e Exemple. Soit encore le trinôme $x^2 - 3x + \frac{3}{4}$; on reconnaîtra pareillement que c'est un carré parfait, puisque x^2 et $\frac{9}{4}$ sont les carrés de x et de $\frac{3}{2}$, et que $2 \times x \times \frac{3}{2} = 3x$; mais comme ce double produit est négatif dans le trinôme donné, les deux termes de la racine seront de signes contraires, et l'on aura $x - \frac{3}{2}$ ou bien $\frac{3}{2} - x$ pour cette racine, c'est-à-dire que

$$\sqrt{x^2 - 3x + \frac{9}{4}} = \pm (x - \frac{3}{2}).$$

173. 3e Exemple. Enfin, si l'on proposait le trinôme

$$4x^2 + 5 ax + a^2$$

on reconnaîtrait bientôt que ce n'est pas un carré parfait, bien que les deux termes extrêmes le soient, car le troisième terme 5x n'est point

égal au double produit des racines 2x et a des deux autres.

leg

arı

doi

on

qua

pou

le c

S

E

 \mathbf{E}_{1}

du (

obti carr

Con

Les

Peu

De o

Com nôme :

Qu'a

tionnel Com

quantii Com

 $(170)_{-}$

irratio

que do

d'un l

des dé Les

l'on

1

De même — $x^2 + 2ax - a^2$ ne saurait être carré, à cause des signes négatifs qui affectent les monômes carrés x^2 et a^2 .

174. Compléter le carré. Nous avons dit qu'un binôme ne peut jamais être un carré; mais on comprend aussi que quelquefois les deux termes d'un binôme donné doivent être composés de telle sorte qu'ils pourraient faire partie d'un trinôme carré, c'est-à-dire qu'il suffirait d'ajouter à ce binôme un troisième terme convenable pour le transformer en carré parfait. Quand on a opéré cette transformation, on dit qu'on a complété le carré.

175. Soit le binôme $x^2 + a^2$ composé de deux termes carrés; il est évident qu'il peut faire partie d'un carré parfait, car si l'on ajoute à la somme de ces deux carrés le double produit de leurs racines 2ax, soit avec le signe +, soit avec le signe -, on aura le trinôme carré

$$x^2 \pm 2ax + a^2,$$

lequel a pour racine $x \pm a$.

176. En second lieu, soit un binôme dont les deux termes contiennent, l'un le carré (x^2) de l'inconnue et l'autre, la 1^{re} puissance (x) de cette même inconnue.

177. Si le coefficient de x^2 est l'unité, il suffira, pour compléter le carré, d'ajouter au binôme pour troisième terme le carré de la moitié du coefficient de x. Si l'on avait, par exemple, le binôme $x^2 + 6x$ on y ajouterait pour troisième terme le carré de 3, moitié du coefficient du terme 6x. On aurait ainsi

$$x^2 + 6x + 9$$

dont la racine carrée est x + 3.

2x et a des

aurait être ui affectent

ns dit qu'un ; mais on eux termes mposés de ie d'un trid'ajouter à nable pour nand on a i'on a com-

sé de deux t faire parà la somit de leurs it avec le

e dont les x^2) de l'inc) de cette

il suffira, ı binôme moitié du emple, le troisième nt du ter-

178. Si l'on avait eu le binôme $x^2 - 6x$ dans lequel x fait partie d'un terme négatif, on serait arrivé, en complétant le carré, au trinôme

$$x^2 - 6x + 9,$$

dont la racine carrée est x - 3.

179. Si le coefficient était autre que l'unité, on multiplierait les deux termes du binôme par quatre fois le coefficient de x2 et l'on ajouterait, pour troisième terme, au binôme ainsi modifié, le carré du coefficient primitif de x.

Soit le binôme $3x^2 + 5x$.

En multipliant les deux termes par $3 \times 4 = 12$ l'on obtiendra

$$36 x^2 + 60.$$

En ajoutant au binôme ainsi modifié le carré du coefficient primitif de x, c'est-à-dire 25, l'on obtient le trinôme $36x^2 + 60x + 25$, lequel est un carré parfait, dont la racine est 6 x + 5.

QUESTIONNAIRE.

Comment se forme le carré d'un monôme? (157-10) d'un binome? (158-2°) — d'une fraction? (159-3°)

Les quantités entières contiennent-elles des radicaux et des dénominateurs? (163)

Les quantités rationnelles ont-elles un radical?

Peut-on faire disparaitre le radical dans les quantités irrationnelles ? (163)

De quel signe la racine carrée d'une quantité quelconque doit-elle toujours être affectée? (164)

Comment fait-on pour extraire la racine carrée d'un monome? (165)

Qu'avez-vous à remarquer au sujet des quantités irrationnelles? (168)

Comment fait-on pour extraire la racine carrée d'une quantité fractionnaire? (169)

Comment reconnaître qu'un trinôme est un carré parfait? (170).

Comment trouver la racine d'un trinôme? (170...) Que faut-il entendre par ces mots "compléter le carré"! (174).

Quelle est la première méthode pour compléter le carré?

Quelle est la seconde? (179...)

RÉS DU

équa vale pour pelle Or

18 tion l'éva duct pèces conn

en é

à la 1 Co équa

ficien

on pe du se 182

compl secon (170...) ter le carré";

léter le carré?

CHAPITRE VII.

RÉSOLUTION DES ÉQUATIONS ET DES PROBLÈMES DU DEUXIÈME DEGRÉ A UNE SEULE INCONNUE.

180. Racines de l'équation. Résoudre une équation du deuxième degré, c'est déterminer les valeurs qu'il faut mettre à la place de l'inconnue pour satisfaire à cette équation. Ces valeurs s'appellent les racines de l'équation.

On distingue les équations du deuxième degré en équations incomplètes et en équations complètes.

181. Equation incomplète. On nomme équation incomplète, ou à deux termes, celle qui, après l'évanouissement des dénominateurs et les réductions opérées, ne contient plus que deux espèces de termes, les uns en x^2 , les autres tout connus, et qui, par conséquent, peut se ramener à la forme générale $ax^2 = b$.

Comme, d'ailleurs, on peut toujours, dans cette équation, diviser les deux membres par le coef-

ficient de x^2 et représenter le quotient $\frac{b}{a}$ par m,

on peut poser $x^2 = m$ pour l'équation générale du second degré à deux termes.

182. Equation complète. On appelle équation complète, ou à trois termes, toute équation du second degré qui, après l'expulsion des dénomi-

nateurs et les réductions, renferme des termes en x^2 , des termes en x et des termes tout connus, c'est-à-dire celle qui peut prendre la forme

$$ax^n + bx = c$$
.

Comme on pourra toujours rendre le premier terme en x^2 positif et diviser l'équation par le coefficient a de ce premier terme, on aura

$$x^2 + \frac{b}{a} x = \frac{c}{a}.$$

Enfin, en faisant $\frac{b}{a} = p$ et $\frac{c}{a} = q$, l'équation

générale du second degré à trois termes sera

$$x^2 + px = q,$$

c'est-à-dire que toute équation complète du deuxième degré à une seule inconnue peut toujours être ramenée à n'avoir dans le premier membre que deux termes contenant l'inconnue, le premier, toujours positif, formé de la seconde puissance de l'inconnue sans autre coefficient que l'unité; l'autre, composé de la première puissance de l'inconnue, laquelle sera affectée d'un coefficient quelconque, positif ou négatif, entier ou fractionnaire; enfin le second membre de cette équation sera un terme tout connu ayant un signe et une valeur quelconques.

Résolution des équations incomplètes du deuxième degré.

183. Résolution des équations incomplètes. Puisque toute équation du second degré à deux termes se ramène à $x^2 = m$, dans laquelle l'inconnue x forme un carré positif n'ayant jamais

d'a qu' pou

164 au car on

de s et q mei

cin

E para 10

c'est

 2°

deux Ai term de si ces r

Ce tout ginai cas,

pour

e des termes tout connus, forme

re le premier ation par le 1 aura

y, l'équation

nes sera

mplète du le peut toule premier l'inconnue, la seconde coefficient a première era affectée ou négatif, id membre out connuques.

u deuxième

complètes gré à deux quelle l'inant jamais d'autre coefficient que l'unité, il est bien évident qu'une seule extraction de racine carrée suffit pour résoudre ce genre d'équation.

En effet, $x^2 = m$ donne $x = \sqrt{m}$ ou bien (note 164) $x = + \sqrt{m}$. D'après ce que nous avons dit au not 165, il semblerait qu'en extrayant la racine carrée des deux membres de l'équation $x^2 = m$, on devrait affecter du double signe les deux racines et écrire $+ x = + \sqrt{m}$; mais il est facile de se convaincre que ce double emploi est inutile, et qu'il suffit de donner le double signe au second membre.

En effet, $\pm x = \pm \sqrt{m}$ deviendrait en séparant les signes,

10 +
$$x = \pm \sqrt{m}$$
 ou $x = \sqrt{m}$ et $x = -\sqrt{m}$;
20 - $x = \pm \sqrt{m}$, ou $x = \pm \sqrt{m}$,

ce qui donne $x = -\sqrt{m}$, $x = +\sqrt{m}$;

c'est-à dire qu'on a les mêmes valeurs dans les deux cas.

Ainsi, une équation du second degré à deux termes donne deux valeurs ou racines égales et de signes contraires. Ordinairement on désigne ces racines par x', x'', et l'on pose

$$x' = + \sqrt{m}, x'' = -\sqrt{m}.$$

Ces deux racines sont réclles quand le terme tout connu m est positif; mais elles seraient imaginaires si m devenait négatif. Dans ce dernier cas, l'équation serait impossible.

184. Equation numérique. Proposons-nous, pour exemple, de résoudre l'équation numérique

$$\frac{3x}{5} = \frac{15}{x}$$

En chassant les dénominateurs, nous aurons successivement

$$3x^2 = 75, \ x^2 = \frac{75}{3}, x^2 = 25;$$

et, en extrayant la racine carrée des deux membres, on aura

$$x = \pm \sqrt{25}$$

ce qui donne les deux racines égales et de signes contraires

$$x' = +5, x'' = -5.$$

Vérification. Ces valeurs vérifient également l'équation proposée, car la première donne

$$\frac{3^{1} \times 5}{5} = \frac{15}{5}$$
 ou bien $3 = 3$,

et la seconde

$$\frac{3 \times -5}{5} = \frac{-15}{-15}$$
 ou $-3 = -3$,

185. Equation littérale. Enfin, pour dernier exemple, proposons-nous de résoudre l'équation littérale

$$3x^2 = \frac{2x^2}{a} + 5b.$$

Si l'on chasse les dénominateurs, cette équation devient d'abord

$$3ax^2 = 2x^2 + 5ab$$

et, en mettant x^2 en facteur commun,

$$(3a-2) x^2 = 5ab$$
;

d'où l'on tire successivement

ce d

Q: (180)

Qu Co du 2

R

10

10

10

Résol

Nous

nous aurons

s deux mem.

t également donne

our dernier l'équation

cette équa-

$$x^2 = \frac{5ab}{3a - 2}$$
 et $x = \pm \sqrt{\frac{5ab}{3a - 2}}$

ce qui donne deux racines qui satisfont à l'équa-

QUESTIONNAIRE.

Qu'est-ce que résoudre une équation du deuxième degré? (180).

Qu'appelle-t-on équation incomplète? (181). Qu'appelle-t-on équation complète? (182).

Comment s'opère la résolution des équations incomplètes du 2ème degré? (183).

Donnez des exemples. (184, 185).

EXERCICES

SUR LES ÉQUATIONS A DEUX TERMES

Résoudre les équations suivantes:

101.
$$5x^2 - 1 = 244$$
.

102,
$$7x^2 + 9 = 3x^2 + 63$$
.

103.
$$\sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{x+2}{x+2}} = 4$$

104.
$$(x + a)^2 = 2$$

105.
$$\left(a + \frac{a}{x}\right)\left(a - \frac{a}{x}\right) = (a + b)(a - b)$$

Résolution des équations complètes du second degré.

186. Résolution des équations complètes. Nous savons (nº 182) que l'équation complète du second degré à une seule inconnue peut toujours prendre la forme

$$[1] x^2 + px = q.$$

Or, d'après ce que nous avons dit (n° 174), on voit que le premier membre $x^2 + px$ fait partie du carré d'un binôme, puisque x^2 est un carré parfait et que px contient la racine x de ce carré ; on pourra donc toujours compléter le carré en considérant px comme le double produit des deux termes de ce binôme.

Puisque ce binôme a pour premier terme connux, il faut que p soit le double du second terme in-

connu: donc $\frac{p}{2}$ est le second terme du binôme,

et $\frac{p^2}{4}$ en est le carré.

En conséquence, pour compléter le carré dont $x^2 + px$ font partie, il suffit d'ajouter $\frac{p^2}{4}$ à ces deux termes; mais pour ne pas altérer l'équation [1], on fera subir au second membre la même addition qu'au premier, et cette équation deviendra alors

[2]
$$x^2 + px + \frac{p^2}{4} = q + \frac{p^2}{4}$$
.

En conséquence, l'équation proposée [1] pourra toujours être transformée en une autre [2] dont le membre qui contient l'inconnue est un trinôme carré parfait, et dont l'autre membre est une quantité toute connue.

Avant d'aller plus loin, appliquons ceci à quelques exemples numériques.

18 blèn

laqu

 S_0

fait
prem
coeff
l'on
un c
conn
mier
pour
posée

Par l'équa un tr pour carrétion degré deux donné

ou bie En de l'éq

En e

eut toujours

(nº 174), on r fait partie st un carré le ce carré; le carré en produit des

erme connu d terme inlu binôme,

carré dont $\frac{p^2}{4}$ à ces

rer l'équae la même on devien-

[1] pourra re [2] dont st un triembre est

ns ceci à

187. Supposons d'abord que l'énoncé d'un problème ait donné l'équation du second degré

$$(x-6) x = 55,$$

laquelle devient, en effectuant le calcul indiqué,

$$x^2 - 6x = 55$$
.

Sous cette forme, on reconnaît que $x^2 - 6x$ fait partie du carré d'un binôme dont x est le premier terme et dont le second est la moitié du coefficient -6, ou bien -3, c'est-à-dire que, si l'on ajoute 9, carré de -3, à $x^2 - 6x$, on aura un carré parfait $x^2 - 6x + 9$, dont la racine connue est x - 3. Mais l'addition faite au premier membre doit être faite aussi au second pour conserver l'égalité, et alors l'équation proposée devient

$$x^2 - 6x + 9 = 55 + 9 = 64.$$

Par cette transformation, nous avons ramené l'équation donnée à avoir pour premier membre un trinôme carré dont la racine est connue, et pour second membre un nombre dont la racine carrée est facile à trouver; en sorte que l'équation du second degré sera réduite au premier degré par l'extraction de la racine carrée de ses deux membres. Cette équation transformée donne en effet,

$$\sqrt{x^2 - 6x + 9} = \sqrt{64},$$

ou bien $x - 3 = \pm 8$, d'où $x = 3 \pm 8$.

En représentant par x' et x'' les deux racines de l'équation, on trouvera pour ces deux valeurs

$$x' = 3 + 8 = 11,$$

 $x'' = 3 - 8 = -5.$

En effet, la substitution des valeurs + 11 et

- 5 à la place de x satisfait également à l'équation donnée.

188. Pour second exemple, soit à résoudre l'équation

$$3x^2 + 2x = 56$$
.

Le terme du second degré ayant un coefficient autre que l'unité, il faudra diviser tous les termes de cette équation par ce coefficient $3 de x^2$, afin de la ramener à la forme générale $x^2 + px = q$, et l'équation donnée deviendra

$$x^2 + \frac{2}{3}x = \frac{56}{3}$$

Maintenant, pour compléter le carré dans le premier membre, nous prendrons, comme cidessus, la moitié du coefficient $\frac{2}{3}$ de x, laquelle

moitié est $\frac{1}{3}$; nous en ferons le carré $\frac{1}{9}$, et nous ajouterons ce carré à chaque membre de l'équation, qui deviendra alors

$$x^{3} + \frac{2}{3}x + \frac{1}{9} = \frac{56}{3} + \frac{1}{9}$$

Il ne reste plus qu'à extraire la racine carrée de chaque membre pour ramener l'équation au premier degré, et nous aurons

$$x + \frac{1}{3} = \pm \sqrt{\frac{56}{3} + \frac{1}{9}},$$

ou bien $x + \frac{1}{3} = \pm \sqrt{\frac{169}{9}};$

d'où

les

lesqu née.

Re secon pitre

Ai

devie ou

En coeffi

Ext de l'é

d'où et par ent à l'équa.

à résoudre

n coefficient tous les terient $3 \text{ de } x^2$, ale $x^2 + px$

arré dans le comme ci-

x, laquelle

 $\frac{1}{9}$, et nous

e de l'équa-

cine carrée quation au d'où l'on tire $x = -\frac{1}{3} + \frac{13}{3}$;

les deux racines de l'équation sont donc

$$x' = -\frac{1}{3} + \frac{13}{3} = \frac{12}{3} = 4,$$

$$x'' = -\frac{1}{3} - \frac{13}{3} = -\frac{14}{3},$$

lesquelles satisfont également à l'équation donnée.

Remarque. On pourrait encore appliquer ici la seconde méthode que nous avons donnée au chapitre précédent pour compléter le carré (nº 179). Ainsi l'équation donnée

 $3x^2 + 2x = 56$

devient
$$3x^2 \times 12 + 2x \times 12 = 56 \times 12$$
,
ou $36x^2 + 24x = 672$.

En ajoutant au premier membre le carré du coefficient primitif de x nous avons

$$36x^2 + 24x + 4 = 676.$$

Extrayant la racine carrée de chaque membre de l'équation, il vient

$$6x + 2 = \pm \sqrt{676} = \pm 26,$$

d'où $6x = \pm 26 - 2,$

et par conséquent

$$x' = \frac{26 - 2}{6} = 4,$$

$$x'' = \frac{-26 - 2}{6} = \frac{-28}{6} = -\frac{14}{3}.$$

189. Ces deux exemples numériques suffisent pour faire comprendre comment la résolution d'une équation du second degré se ramène à celle d'une équation du premier degré. On voit que, pour abaisser l'équation du second au premier degré, il faut opérer une transformation par laquelle le premier membre de cette équation devient un carré parfait, et le second membre un nombre tout connu, comme nous l'avons in diqué nº 182.

Donc, en général, toute équation du second degré, représentée par $ax^2 + bx = c$, devra passer par les modifications successives qu'on voit dans

le tableau suivant:

$$x^{2} + px = q,$$

$$x^{2} + px + \frac{p^{2}}{4} = q + \frac{p^{2}}{4}.$$

$$x + \frac{p}{2} = \pm \sqrt{q} \quad \frac{2}{4}.$$

$$x = -\frac{p}{2} \pm \sqrt{q + \frac{p^{2}}{4}},$$

$$x' = -\frac{p}{2} + \sqrt{q + \frac{p^{2}}{4}},$$

$$x'' = -\frac{p}{2} - \sqrt{q + \frac{p^{2}}{4}}.$$

190. Simplification. Si l'on a bien compris cette théorie, qui n'est que l'application de celle du nº (174,), on verra qu'il n'est même pas néces saire d'effectuer tous les calculs ci-dessus; en effet, la moitié $\frac{p}{s}$ du coefficient de x, dont on

dev sec teri ava du

nég. écri

côté

est :

le se

trou qu'a tive. pour degre

191 blème indig teurs, terme. donné

Alo de l'ir coeffici traire, qu'on cient le qu'il a

Il es

ues suffisent a résolution se ramène à gré. On voit econd au preansformation ette équation ond membre is l'avons in

n du second devra passer on voit dans fait le carré pour l'ajouter aux deux membres, devient, après l'extraction de la racine carrée, le second terme d'un binôme dont x est le premier terme, et ce second terme conserve le signe qu'il avait dans l'équation, c'est-à-dire que la racine du premier membre de l'équation complétée

est $x + \frac{p}{2}$ ou $x - \frac{p}{2}$, suivant que p est positif ou

négatif dans l'équation proposée. On peut donc écrire immédiatement cette racine. D'un autre côté, quand on tire la valeur de x, qui est

$$x = -\frac{p}{2} + \sqrt{q + \frac{p^2}{4}}$$
, cette moitié $\frac{p}{2}$ passe dans

le second membre en changeant de signe, et s'y trouve alors avec un signe contraire à celui qu'avait le coefficient p dans l'équation primitive. De là résulte la règle générale suivante pour résoudre les équations complètes du second degré.

191. Règle, Quand on a mis en équation un problème du second degré, il faut effectuer les calculs indiqués dans cette équation, chasser ses dénominateurs, réduire, simplifier, et enfin diviser tous les termes par le coefficient de x^2 , pour que l'équation donnée prenne la forme générale

$$x^2 + px = q.$$

Alors on aura sur-le-champ la double valeur de l'inconnue x en posant : x égale la moitié du coefficient au second terme, pris avec un signe contraire, plus ou moins la racine carrée de la somme qu'on obtient en ajoutant au carré de ce demi-coefficient le terme tout connu de l'équation, avec le signe qu'il a dans le second membre.

Il est important que les élèves retiennent cette

en compris ion de celle ie pas nécesci-dessus;

e w, dont on

règle, et, pour la bien fixer dans leur mémoire, nous allons traiter quelques exemples.

192. Exemple Proposons-nous l'équation

$$\frac{(x+2)(x-1)}{3x} = \frac{x-1}{5}$$

En effectuant les calculs, chassant les dénominateurs et réduisant, on a successivement

$$5(x^{2} + x - 2) = 3x(x - 1),$$

$$5x^{2} + 5x - 10 = 3x^{2} - 3x,$$

$$2x^{2} + 8x = 10,$$

$$x^{2} + 4x = 5;$$

et cette dernière donne enfin, d'après la règle nº 183

d'où l'on tire
$$x = -2 \pm \sqrt{5 + 4}$$
;
 $x' = -2 + 3 = 1$,
 $x'' = -2 - 3 = -5$.

Ces deux racines de signes contraires satisfont à l'équation proposée.

193 Aure exemple. Soit enfin l'équation

$$\frac{x}{x+6} = \frac{7}{5-3x_1}$$

laquelle donne successivement

$$5x - 3x^{2} = 7x + 42,$$

$$3x^{2} + 2x = -42,$$

$$x^{2} + \frac{2}{3}x = -14;$$

et, en vertu de la règle citée,

$$\alpha = -\frac{1}{3} \pm \sqrt{\frac{1}{9} - 14}$$

ro de va les

de_i

qu

de que les

s'ol hau gle

face

laqı

et x

La sign que eur mémoire, oles. équation

ant les dénossivement

- 1), 3x

près la règle

aires satisfont

F 12

'équation

Il est facile de reconnaître ici que nous n'aurons pas de racines, car le radical renfermant deux nombres dont le plus grand est négatif, la valeur de ce radical est imaginaire, et, par suite, les racines cherchées le sont aussi.

> Problèmes du second degré. Interprétation géométrique des recines.

194. Mise en équation des problèmes du second degré. La mise en équation des problèmes du second degré est basée sur les mêmes principes que pour le premier degré (96).

195. Problème 1er.—Un triangle a une surface de 58 mètres carrés 2 décimètres carrés; on sait que sa base est triple de sa hauteur; quelles sont les dimensions du triangle?

On se rappellera que la surface d'un triangle s'obtient en multipliant la base par la demihauteur; or, si x représente la hauteur du trian-

gle demandé, 3x sera la base et $3x \times \frac{x}{9}$ la surface; on aura donc l'équation

$$3x \times \frac{x}{2} = 58,02$$

laquelle donne successivement

$$3x^2 = 116,04$$
$$x^2 = \frac{116,04}{3} = 38,68$$

et $x = \pm \sqrt{38,68}$ ou bien $x = 6^{m},219$.

La nature de la question n'admet pas le double signe, en sorte que nous ne devons tenir compte que de la solution positive qui répond au sens direct de l'énoncé. Par conséquent, la hauteur du triangle est de 6 mètres 219 millimètres, à moins d'un millimètre près, et la base de ce triangle $3 \times 6,219 = 18^{m},657$.

Q

le c

équa

(189)

Qu dans

Do

Su

Ré

10

10'

108

109

110

111.

plus 7.

32 pou

d'un ce

14 déci

de la pe

113.

112. cercle

du 2 Do

196. Problème II. On a acheté un meuble que l'on a revendu à perte pour le prix de \$24; à ce compte, le taux de la perte et le prix d'achat sont exprimés par le même nombre; quel est le prix d'achat?

Si x représente le prix d'achat, la perte effectuée sera le x pour cent de x, ou bien $\frac{x^2}{400}$.

D'un autre côté, x — 24 est une seconde expression de cette perte ; on aura donc l'équation

$$\frac{x^2}{100} = x - 24,$$

laquelle donne $x^2 - 100x = -2400$,

$$x = 50 \pm \sqrt{2500 - 2400}$$

$$x = 50 \pm 10$$
, d'où $x' = 60$ et $x'' = 40$.

Ces deux racines positives satisfont à l'équation et indiquent que le problème est susceptible de deux solutions dans le sens direct de son énoncé.

En effet, si le prix d'achat est 60 \$ la perte sera 60 — 24 = 36 \$.; or, 36 est précisément le 60 pour cent de 60.

De même, si le meuble a coûté 40 \$., la perte a été de 40 — 24 = 16; or, 16 est bien le 40 pour cent de 40.

QUESTIONNAIRE.

Quelle forme une équation complète du second degré peut-elle toujours prendre ? (186)

Qu'y a-t-il à faire tout d'abord pour résoudre ces équations? (186)

Donnez quelques exemples. (187)

, la hauteur illimètres, à base de ce

meuble que le \$24 ; à ce d'achat sont est le prix

perte effection $\frac{x^2}{100}.$

seconde exc l'équation

' = 40.

d l'équation ceptible de son énoncé. \$ la perte sisément le

\$., la perte le 40 pour

econd degré

Quelle méthode peut-on encore employer pour compléter le carré dans le cas du n° 188? (188—Rem.)

Quelles sont les modifications par lesquelles passe une équation du second degré représentée par $ax^2 + bx = c$.

Que faut-il faire pour obtenir la valeur de l'inconnue x dans un problème du 2e degré? (191)

Donnez des exemples. (192, 193)
Sur quels principes la mise en opération des problèmes du 2e degré est-elle basée? (194)
Donnez des exemples. (195)

EXERCICES ET PROBLÈMES.

Résoudre les équations suivantes:

106.
$$\frac{3x^2 - x}{4 - x} - 1 = 0$$

107.
$$mx^2 - \frac{a}{b} = nx^2$$
.

108.
$$x^2 - 5\frac{3}{4}x = 18.$$

109.
$$x(3x-2) = 65.$$

110.
$$\frac{x}{2} + \frac{3}{x} = \frac{x+13}{3x}.$$

111. On dem**a**nde un nombre dont la moitié plus 7, multipliée par la moitié moins 7, donne 32 pour produit.

112. La formule qui exprime la surface d'un cercle est πR^2 ; on demande de retrouver le rayon d'un cercle dont la surface est de 38 mètres carrés 14 décimètres carrés.

113. On sait qu'un corps, abandonné à l'action de la pesanteur parcourt des espaces proportion-

riels aux carrés des temps. D'après cela, quel temps mettrait une pierre pour tomber du sommet de la flèche de Strasbourg, situé à 142 mètres au-dessus du sol, sachant que, pendant la première seconde de sa chute, le corps parcourt 4m,9?

114. D'après le principe du problème précédent, on demande la profondeur d'une problème précédent, alors qu'on sait qu'une pierre met 6 secondes et demie pour arriver au fond.

Des équations bi-carrées.

197. Equations bi-carrèes. Bien que nous n'ayons pas à nous occuper des équations d'un degré supérieur au second, nous ne pouvons passer sous silence les équations du quatrième degré, appelées bi-carrées, c'est-à-dire celles qui sont de la forme $x^4 = a$, ou bien $x^4 + px^2 = q$, parce que leur résolution dépend de celle des équations du second degré.

1º Soit, en effet, à résoudre l'équation à deux termes $x^4 = a$; on fera d'abord $x^2 = z$, et l'équation deviendra $z^2 = a$, laquelle donne (nº 183)

$$z = \pm \sqrt{a};$$

et comme on a déjà $x = \pm \sqrt{z}$,

on aura enfin
$$x = \pm \sqrt{\pm \sqrt{a}}$$
;

c'est à-dire que la valeur de x s'obtiendra par deux extractions successives de racines carrées.

2º Si l'on avait l'équation à trois termes

$$x^4 + px^2 = q.$$

on ferait encore $x^2 = z$, et l'équation proposée

dev dor

et c

on p

ce qu l'équ Tra

198

Si l devier

et cette

d'où l'o

 $\alpha' =$

ès cela, quel nber du somè à 142 mètres ndant la prerps parcourt

blème précéd'ura dise, 6 seconne el

en que nous quations d'un ne pouvons lu quatrième re celles qui $+ px^2 = q$, de celle des

ation à deux = z, et l'équanne (nº 183)

ndra par dew arrées. ermes

ion proposée

deviendrait $z^2 + pz = q$; mais cette dernière donne (n° 191)

$$z = -\frac{p}{2} \pm \sqrt{q + \frac{p^2}{4}};$$

et comme, d'après l'équation accessoire $x^2 = z$,

$$x = \pm \sqrt{z}$$

on posera enfin, pour les valeurs de x,

$$x = \pm \sqrt{-\frac{p}{2} \pm \sqrt{q + \frac{p_2}{4}}},$$

ce qui donnera en général quatre racines pour l'équation proposée.

Traitons un exemple.

198. Proposons-nous l'équation

$$\frac{x^4}{2} - x^2 = \frac{3x^2}{2} - \frac{9 - x^4}{4}.$$

Si l'on chasse les dénominateurs, l'équation

$$2x^4 - 4x^2 = 6x^2 - 9 + x^4,$$

et cette dernière donne successivement

$$x^4 - 10x^2 = -9$$

$$x^2 = 5 \pm \sqrt{25 - 9}$$

$$x = \pm \sqrt{5 \pm \sqrt{16};}$$

d'où l'on tire les quatre racines

$$\alpha' = 3$$
, $\alpha'' = -3$, $\alpha''' = 1$, $\alpha'''' = -1$,

lesquelles sont réelles, égales deux à deux et de signes contraires.

Des questions de maximum et de minimum qui peuvent se résoudre par les équations du second degré.

199. Questions de maximum et de minimum. Les problèmes à solutions multiples offrent de l'intérêt par les conditions que doivent remplir ces solutions et par la recherche des limites entre lesquelles elles se trouvent ordinairement renfermées. Nous en avons vu des exemples dans l'analyse indéterminée (Chap. V).

Mais, dans les problèmes indéterminés du les degré, ces limites ne dépendent que de l'énoncé seul, tandis que, dans les problèmes du 2º degré, elles sont subordonnées aux radicaux qu'amène

la résolution des équations.

La discussion des quantités radicales est d'une grande importance dans les questions de maximum et de minimum dont nous allons nous

occuper ici.

200. Définition. Une expression algébrique contenant des quantités constantes et d'autres variables peut, en général, prendre des valeurs diverses par les attributions successives de ces variables; mais les accroissements et les décroissements de ces valeurs trouvent des limites en ce que ces expressions deviennent absurdes, impossibles ou contradictoires, au delà ou en deça de ces limites. Or, on nomme maximum la plus grande valeur que puisse atteindre une expression algébrique dépendant d'une variable, et minimum la plus petite de ces valeurs.

La détermination des maxima et des minima joue un grand rôle dans la haute analyse; mais pous n'avons à traiter que les équations du ? deg suiv

que repr la ve prop équa l'équ cines satis

Ap ques

ou ui

tangle 4a ?

tant of truire mètre teur of sente teur,

Enf **m**um

laquel

Cela

radical x ne so passe m = a le radide x es

à deux et de

mum qui peuns du second

de minimum.
es offrent de
vent remplir
limites entre
irement renkemples dans

minés du 1er e de l'énoncé du 2º degré, ux qu'amène

ales est d'une ons de maxiallons nous

gébrique concautres variades valeurs ssives de ces et les décroises limites en bsurdes, imà ou en deça imum la plus une expresvariable, et

des minima nalyse; mais ations du % degré à une seule variable, et voici la marche à suivre.

201. Règle. Etant donnée une expression algébrique du 2º degré dans laquelle x est variable, on représente par une lettre étrangère (m par exemple) la valeur maximum ou minimum que l'expression proposée est susceptible de prendre; on forme une équation en égalant cette expression à m; on résout l'équation par rapport à x, et la discussion des racines fait connaître les conditions auxquelles doit satisfaire m pour que l'expression soit un maximum ou un minimum, s'il y a lieu.

Appliquons cette règle à la solution de quelques problèmes.

202.—Problème I. Quel est le plus grand rectangle que l'on puisse former avec une ligne donnée 4a?

Puisque la droite 4a exprime le périmètre constant de tous les rectangles que l'on peut construire avec cette droite, 2a sera le demi-périmètre ou bien la somme de la base et de la hauteur de chaque rectangle: donc, si l'on représente par x la base, on aura 2a - x pour la hauteur, et x (2a-x) sera l'expression de la surface.

Enfin, sì l'on représente par m la surface maximum cherchée, on aura l'équation

$$x (2a - x) = m,$$

laquelle donne $x = \pm \sqrt{a^2 - m}$.

Cela posé, afin que la valeur placée sous le radical ne soit pas négative et que les valeurs de x ne soient pas imaginaires, il faut que m ne surpasse pas a^2 , mais il peut lui être égal : donc $m = a^2$ est le maximum cherché. Dans ce cas, le radical disparaît et la valeur correspondante de x est x = a,

Donc, le plus grand rectangle que l'on puisse former avec une droite donnée est le carré qui a pour côté le quart de cette ligne.

203. Problème II. Partager un nombre ou une longueur donnée 2a en deux parties telles que la somme des carrés de ces parties soit un maximum ou un minimum.

Appelons x l'une des parties demandées, l'autre sera (2a - x), nous aurons $x^2 + (2a - x)^2$ pour la somme de leurs carrés.

Maintenant, représentons par m la plus grande ou la plus petite valeur que peut acquérir ce polynôme, sous les variations arbitraires de l'inconnue x, et posons l'équation

$$x^2 + (2a - x)^2 = m.$$

Cette équation devient $x^2 - 2ax = \frac{m - 4a^2}{2}$ et donne les deux solutions

$$x = a + \sqrt{\frac{m - 2a^2}{2}}$$

Ces deux valeurs expriment les parties de mandées

$$a+\sqrt{\frac{m-2a^2}{2}}$$
 et $a-\sqrt{\frac{m-2a^2}{2}}$, car x re-

présente indifféremment l'une ou l'autre.

Le binôme placé sous le radical doit rester positif pour que ce radical et les racines ne soient pas imaginaires; il faut donc qu'on ait $m>2a^2$ ou tout au plus $m=2a^2$. Ainsi $2a^2$ est la valeur minimum du polynôme donné par l'énoncé du problème, et ce minimum correspond à x=6 pour chacune des parties demandées; en d'autres

term les ca droit sont cette

les de nité supér le rad valeur nature

il suit

sous d

cines e ximum d'être d'un se 204.

le minir

Confe énoncée

nous en

que l'on puisse le carré qui a

ombre ou une s telles que la un maximum

indées, l'autre $(a-x)^2$ pour

a plus grande quérir ce poaires de l'in-

s parties de-

-, car x re-

autre.

loit rester pones ne soient ait $m > 2a^2$ est la valeur l'énoncé du ond à x = a; en d'autres

et

termes, la plus petite somme que puissent faire les carrés construits sur les deux segments d'une droite donnée est obtenue lorsque ces segments sont égaux entre eux et égaux à la moitié de cette ligne.

Ce résultat n'est pas le seul. Algébriquement, les deux racines trouvées admettraient une infinité de solutions pour toutes les valeurs de m supérieures à $2a^2$, mais le signe — qui précède le radical dans la seconde racine entraînerait des valeurs négatives qui ne peuvent convenir à la nature du problème proposé;

il suit de là que $\sqrt{\frac{m-2a^2}{2}}$ doit rester au-des-

sous de a ou tout au plus lui être égal; mais

 $x = \frac{m - 4a^2}{2}$ cette égalité $\sqrt{\frac{m - 2a^2}{2}} = a$ annule une des ra-

cines et donne pour maximum $m=4a^2$. Ce maximum a donc lieu lorsque la droite donnée cesse d'être partagée et devient tout entière le côté d'un seul carré.

204. Problème III. Déterminer le maximum ou

le minimum de la fraction $\frac{18}{x(3-x)}$

Conformément à la règle générale ci-dessus énoncée, posons

$$\frac{18}{x(3-x)}=m,$$

nous en déduirons $x^2 - 3x = -\frac{18}{3}$

$$x = \frac{3}{2} + \sqrt{\frac{9m - 72}{4m}}.$$

Ce radical sera réel pour toutes les valeurs de m supérieures à 9m = 72 ou pour m = 8, mais imaginaire pour m < 8; ainsi la valeur minimum de la fraction proposée est égale à 8 unités. Quant au maximum, c'est l'infini. Le minimum m = 8 donne pour la variable x la valeur $x = \frac{3}{4}$; en effet, la substitution de cette valeur de x réduit l'expression proposée à 8 entiers.

QUESTIONNAIRE.

Qu'appelle-t-on équations bi-carrées ? (197) Donnez un exemple. (198)

Que nomme-t-on "maximum," et que nomme-ton "minimum"? (200)

Quello est la marche à suivre dans la détermination des "maxima" et des "minima"? (201)
Donnez des exemples. (202....)

EXERCICES ET PROBLÈMES

SUR LES QUESTIONS DE MAXIMUM ET DE MINIMUM.

- 115. Décomposer un nombre donné a en deur facteurs dont la somme soit un minimum.
- 116. Partager un nombre donné 2a en deux parties telles que la somme de leurs carrés soit un minimum.
- 117. Partager un nombre donné a en deur parties dont le produit soit le plus grand possible
- 118. Inscrire dans un cercle le rectangle maximum.

RA

205 le rés mais peuve 1º pou

2º con Dar moyer

cela r tique.

d'une tient or Ains

des qu

gne lev Dans

Les de le conter

les valeurs de r m = 8, mais a valeur minigale à 8 unités. Le minimum valeur $x = \frac{3}{2}$;

valeur de x ré-

197)

ers.

que nomme-t-on

létermination des

ÈMES

DE MINIMUM.

nné a en deux nimum.

é 2a en deux urs carrés soit

né a en deux rand possible. le rectangle

CHAPITRE VIII.

RAPPORTS, PROPORTIONS ET PROGRESSIONS.

Des rapports.

205. Définition. En général, on appelle rapport le résultat de la comparaison de deux quantités; mais deux quantités mathématiques, a et b, ne peuvent être comparées que de deux manières: 1º pour savoir de combien l'une surpasse l'autre; 2º combien de fois l'une contient l'autre.

Dans le premier cas, on obtient le rapport au moyen d'une soustraction, et on le nomme pour cela rapport par différence ou rapport arithmétique.

Dans le second cas, le rapport est le quotient d'une division, et on l'appelle rapport par quo-

tient ou rapport géométrique.

Ainsi, a - b exprime le rapport arithmétique

des quantités a et b; tandis que $\frac{a}{b}$ ou a:b désigne leur rapport géométrique.

Dans les deux cas, les quantités que l'on compare, a et b, se nomment les termes du rapport.

Les deux termes d'un rapport doivent représenter des quantités de la même espèce ou être

pris dans un sens abstrait, sans quoi le rapport n'aurait pas de signification.

Des proportions.

206. Proportion. On donne le nom de proportion à l'expression de deux rapports égaux. La proportion est arithmétique ou géométrique, selon que les rapports que l'on compare sont par différence ou par quotient. La proportion arithmétique s'appelle aussi équi-différence, tandis que le mot proportion tout seul désigne une proportion géométrique.

On indique la proportion arithmétique comme

il suit:

$$a \cdot b : c \cdot d,$$

$$a - b = c - d.$$

ou bien

La proportion géométrique s'écrit ainsi:

ou mieux encore $\frac{a}{b} = \frac{c}{d}$.

$$\frac{a}{b} = \frac{c}{d}.$$

Dans le premier cas, on prononce a estàb comme c est à d, et dans le second, a divisé par b égale c divisé par d, ou plus brièvement, a sur b égale c sur d. (No 9.)

Dans toute proportion, le premier terme a et le dernier d se nomment les extrêmes, tandis que les intermédiaires b et c s'appellent les moyens.

Une proportion dans laquelle les deux termes moyens sont égaux, se nomme proportion continue; ainsi

$$a \cdot m : m \cdot d \text{ et } p : n :: n : q$$

sont des proportions continues. Dans ce cas, la quantité m est une moyenne proportionnelle arith muatre

meti prop et q.

20 tion à la : la dé prim sant, Ce

des c trois c. x;x = b

Si 1 on au

prouv quanti

208. portion egal au

Soie a, b, c,

si l'on (qui dén

Récip lacteurs uoi le rapport

om de propor-

rts egaux. La

netrique, selon

sont par diffe-

ion arithméti-

tandis que le

ne proportion

métique entre a et d, tandis que n est moyenne proportionnelle géométrique entre les extrêmes p et q.

Propriétés des équi-différences.

207. Principe fondamental. Dans toute proportion arithmétique, la somme des extrêmes est égale à la somme des moyens. Ce principe découle de la définition; en effet, poser a. b: c. d c'est exprimer que a-b=c-d, ou bien, en transposant, que a + d = b + c.

Ce théorème donne le moyen de retrouver un des quatre termes d'une équi-différence dont les trois autres sont donnés: soit, par exemple, a. b: c. x; puisqu'on doit avoir a + x = b + c, on aura

x=b+c-a.

Si la proportion était continue : $a \cdot x \cdot x \cdot b$,

on aurait 2x = a + b, ca bien $x = \frac{a+b}{9}$, ce qui

prouve que la moyenne arithmétique entre deux quantités est la moilie de leur somme.

Propriétés des Proportions.

208. Propriété fondamentale. Dans toute proportion géométrique, le produit des extrêmes est ègal au produit des moyens.

Soient les quatre quantités proportionnelles a, b, c, d qui donnent les rapports égaux $\frac{a}{b} = \frac{c}{d}$; si l'on chasse les dénominateurs, on a ad=bc, ce qui démontre le principe énoncé.

Réciproquement. Quand le produit de deux facteurs est égal au produit de deux autres, ces tionnelle arith quatre facteurs forment une proportion,

étique comme

it ainsi:

once a estàb l, a divisé par vement, a sur

r terme a et le es, tandis que les moyens. s deux termes oportion conti-

ans ce cas, la

En effet, soit l'égalité $m \times n = p \times q$; si l'on divise les deux membres par le produit $n \times p$, on aura

$$\frac{m \times n}{n \times p} = \frac{p \times q}{n \times p}$$
, et par conséquent $\frac{m}{p} = \frac{q}{n}$.

On voit donc que quatre quantités forment une proportion dans deux circonstances distinctes, selon que, prises deux à deux, elles donnent des quotients ou des produits égaux; or, pour fixer les idées, on dit que deux quantités a et b sont directement proportionnelles à deux autres c et d,

quand on a $\frac{a}{b} = \frac{c}{d}$; et que deux quantités m et

n sont inversement ou réciproquement proportion nelles à deux autres p et q, quand on a mn = pq.

209. Quatrième proportionnelle. La propriété fondamentale d'une proportion géométrique fournit le moyen de retrouver un quatrième terme dans une proportion dont les trois autres sont

n

connus; en effet, les deux rapports égaux $\frac{a}{b} = \frac{c}{x}$

donnent ax = bc et $x = \frac{bc}{a}$. Dans ce cas, x s'ap-

pelle une quatrième proportionnelle entre les trois quantités a, b, c.

Si la proportion donnée était continue telle que

$$\frac{a}{x} = \frac{x}{c}$$
, on aurait $x^2 = ac$ et $x = \sqrt{ac}$; alors

x se nomme une moyenne proportionnelle géométrique entre les deux quantités a et c.

Une moyenne géométrique entre deux quantilés est donc la racine carrée du produit de ces deux quantités.

 $\times q$; si l'on diit $n \times p$, on aura

$$t \frac{m}{p} = \frac{q}{n}.$$

tés forment une nces distinctes, es donnent des ; or, pour fixer ités a et b sont x autres c et d.

quantités m et

nent proportion on a mn = pq. La propriété ométrique fouratrième terme vis autres sont

 $\operatorname{égaux} \frac{a}{b} = \frac{c}{x}$

ce cas, x s'ap-

entre les trois

tinue telle que

 $= \sqrt{ac}$; alors

ionnelle géomé.

deux quantités it de ces deux 210. La propriété fondamentale et sa réciproque servent à démontrer toutes les propriétés des proportions.

En effet, la proportion $\frac{a}{b} = \frac{c}{d}$ donne les suivantes :

$$\frac{ma}{mb} = \frac{mc}{md}, \quad \frac{ma}{b} = \frac{mc}{d}, \quad \frac{a+b}{b} = \frac{c+d}{d};$$

ce qui prouve que dans toute proportion on peut, sans la détruire,

1º Multiplier les quatre termes par un même nombre;

2º Multiplier les deux numérateurs par us même nombre;

3º Augmenter chaque numérateur de son dénominateur.

Ce que nous disons pour la multiplication et l'addition est vrai aussi pour la division et la soustraction.

211. Quand on multiplie deux proportions, terme à terme, les produits sont en proportion.

En effet, les deux égalités

$$\frac{a}{b} = \frac{c}{d} \operatorname{et} \frac{m}{n} = \frac{p}{q}$$

donnent évidemment cette nouvelle égalité $\frac{am}{bn} = \frac{cp}{dq}$; il en serait de même si l'on divisait terme à terme, les deux proportions données.

De là, découlent ces deux autres principes :

212. Dans toute proportion, on peut élever les quatre termes à une même puissance, ou bien en

extraire une racine du même degré, sans détruire la proportion.

Ainsi
$$\frac{a}{b} = \frac{c}{d}$$
 donne $\frac{a^{m}}{b^{m}} = \frac{c^{m}}{d^{m}}$,
$$\frac{\sqrt[m]{a}}{\sqrt[m]{b}} = \frac{\sqrt[m]{c}}{\sqrt[m]{d}}$$

213. Dans une suite de rapports égaux, la somme des numérateurs et la somme des dénominateurs ont entre elles un rapport égal aux rapports donnés.

01

esi

sio

que d'a

lui

dor la d

Supposons qu'on ait
$$\frac{a}{b} = \frac{c}{d} = \frac{m}{n} = \text{etc...}$$
:

représentons ce rapport commun par q et posons

$$\frac{a}{b} = q, \frac{c}{d} = q, \frac{m}{n} = q.....,$$

ce qui donne a = bq, c = dq, m = nq.....; ajoutons ensuite, membre à membre, et mettons q en facteur commun pour avoir l'égalité

$$a + c + m = (b + d + n) q;$$

donc enfin

$$\frac{a+c+m}{b+d+n} = q = \frac{a}{b} = \frac{c}{d} = \text{etc...}$$

Des progressions.

214. Progression. On donne le nom de progression à une suite indéfinie de termes tels que le rapport qui existe entre deux termes consécutifs est constamment le même dans toute la série. sans détruire

Ce rapport constant s'appelle la raison de la progression, et celle-ci est arithmétique ou géométrique, selon que le rapport est une différence ou un quotient : ainsi, quand on écrit

÷ 4.7.10.13.16.19.etc.....,

on forme une progression arithmétique dont la raison est 3;

tandis que si l'on écrivait

....1:2:4:8:16:32:64.etc......

on aurait une progression géométrique dont 2 est la raison.

Les progressions sont dites croissantes ou décroissantes, selon que les termes vont en augmentant ou en diminuant.

Propriélés des progressions arithmétiques ou par différence.

215. Principe fondamental. Dans toute progression arithmétique croissante, un terme d'un rang quelconque est égal au premier terme, augmenté d'autant de fois la raison qu'il y a de termes avant lui.

Soit en général la progression croissante

 $\div a \cdot b \cdot c \cdot e \cdot f \cdot g \dots$

dont nous représenterons la raison par d. D'après la définition même, il est évident qu'on aura

b = a + d, c = b + d = a + 2d, e = c + d = a + 3d;etc.....

ux, la somme minateurs ont ets donnés.

 $\frac{n}{n} = \text{etc....}$:

r q et posons

et mettons q

q;

= etc...

om de prones tels que nes consécucute la série. c'est à-dire que la progression pourra être écrite ainsi:

30

CO

et

de

rai

qu

por

tiq

une

on

gre

la r

tées

d'ui

$$\div a \cdot a + d \cdot a + 2d \cdot a + 3d \cdot a + 4d ..;$$

ce qui démontre le principe énoncé. En conséquence, si l'on désigne par l un terme quelconque et par n le rang qu'il occupe, ce terme en aura alors n-1 avant lui, et sa valeur sera exprimée par la formule

$$[a] \qquad l = a + (n - 1)d.$$

Comme application, si l'on demandait le 15e terme de la progression par différence écrite cidessus (n° 214), dont le premier terme est 4 et la raison 3, ou aurait

$$l = 4 + 14 \times 3 = 46.$$

D'après ce principe, on peut résoudre le problème suivant:

216. Problème Ier. Insérer entre deux termes donnés un nombre quelconque de moyens arithmétiques ou différentiels, c'est-à-dire, former une progression par différence dont le premier terme et le dernier sont ronnus.

Supposons qu'on veuille insérer m moyens différentiels entre a et l; alors le dernier terme l en aura m+1 avant lui, et la formule [a] donnera

$$l = a + (m + 1) d;$$

et comme la seule inconnue ici est la raison d, on tirera sa valeur qui est

$$[b] d = \frac{l-a}{m+1}.$$

Proposons-nous, par exemple, d'insérer sept moyens différentiels entre les deux nombres 6 et ra être écrite

$$a + 4d ..;$$

e En consée quelconque erme en aura era exprimée

andait le 15¢ ace écrite ciae est 4 et la

udre le pro-

deux termes ns arithmétiter une proier terme et

m moyens rnier terme tule [a] don-

a raison d,

nsérer sept ombres 6 et 30; la formule [b] donnera pour la raison inconnue

$$d = \frac{30 - 6}{8} = 3,$$

et la progression demandée sera

$$\div$$
 6 . 9 . 12 . 15 . 18 . 21 . 24 . 27 . 30.

Remarque. Si l'on insérait un même nombre de moyens différentiels entre tous les termes consécutifs d'une progression donnée, on formerait ainsi une seule et même progression, parce que la formule [b] donnerait la même raison pour toutes les insertions.

217. Théorème. Dans toute progression arithmétique, les termes à égale distance des extrêmes font une somme constante.

Soit la progression arithmétique croissante

$$\div a \cdot b \cdot c \cdot \dots \cdot h \cdot k \cdot l$$

On sait que la raison étant représentée par d, on a

$$b = a + d$$
, $c = a + 2d$ etc.....

Si l'on renverse les termes pour former la progression décroissante

$$\div l \cdot k \cdot h \cdot \cdot \cdot \cdot \cdot \cdot c \cdot b \cdot a$$

la raison n'aura pas changé, et l'on aura

$$k = l - d$$
, $h = l - 2d$, etc.....

En conséquence, ces deux progressions, ajoutées terme à terme, donneront

$$a + l = b + k = c + h = \text{etc.....}$$

218. Problème II. Trouver la somme des termes d'une progression par disserence.

Appelons S la somme des termes de la progression

$$\div a \cdot b \cdot c \cdot \cdot \cdot \cdot \cdot \cdot h \cdot k \cdot l;$$

nous aurons évidemment

$$S = a + b + c + \dots + h + k + l,$$

 $S = l + k + h + \dots + c + b + a;$

en ajoutant terme à terme et en désignant par n le nombre des termes, nous obtiendrons

$$2S = (a + l)n$$
, d'où $S = \frac{(a + l)n}{2}$ [c];

par conséquent, la somme des termes d'une progression par dissérence quelconque est égale à la demi-somme des deux termes extrêmes, multipliée par le nombre des termes de cette progression.

ra

al

la

me

dor

que

Proposons-nous quelques applications.

219. PROBLÈME III. Trouver la somme des cent premiers nombres entiers depuis 1 jusqu'à 100.

Nous avons ici une progression arithmétique dont la raison est 1; ainsi la formule [c] deviendra

$$S = \frac{1 + 100}{2} \times 100 = 101 \times 50 = 5050$$

220. PROBLÈME IV. Exprimer la somme des n premiers nombres impairs.

Les nombres impairs font une progression par différence dont la raison est 2; on aura donc a = 1, d = 2, l = 1 + 2 (n - 1) = 2n - 1, et la

formule [c] donnera
$$S = \frac{(1 + 2n - 1)n}{2} = n^2$$
;

le la progres.

. .

k + l, b + a;

ignant par n

 $\frac{n}{c}$ [c];

es d'une prot égale à la s, multipliée vession.

ons. me des cent u'à 100. rithmétique e [c] devien-

= 5050

mme des n

ression par aura donc.
—1, et la

 $\frac{)n}{}=n^{2};$

ainsi la somme des n premiers nombres impairs est égale au carré de n.

Les formules [a] et [c] résolvent toutes les questions relatives aux progressions par différence.

Propriétés des progressions géométriques ou par quotient.

221. Principe fondamental. Dans toute progression géométrique croissante, un terme d'un rang quelconque est égal au premier multiplié par la raison élevée à la puissance marquée par le nombre des termes qui précèdent.

Soit progression par quotient

D'après la définition, si l'on représente la raison par q, on pourra écrire ainsi cette progression

et si l'on désigne par n le rang du terme l, qui alors aura n-1 termes avant lui, on aura

$$l = aq^{n-1} \qquad [d].$$

Cette formule démontre le principe énoncé. Proposons-nous, par exemple, de calculer le 7e terme de la progression

la formule [d] donnera $l = 4 \times 26 = 256$.

Ce principe nous servira à résoudre le problème suivant.

222. PROBLÈME Ier. Insérer entre deux termes donnés un nombre quelconque de moyens géométriques ou proportionnels.

Supposons qu'on veuille insérer m moyens

géométriques entre a et l: alors le dernier terme l en aura m+1 avant lui, et la formule [d] deviendra

$$l=aq^{m}+1;$$

et comme l'inconnue, ici, est la raison q, on aura

$$q^{m+1} = \frac{l}{a} \text{ et } q = \sqrt{\frac{l}{a}} \qquad [e]$$

c'est-à-dire qu'on obtiendra la raison cherchée en divisant le dernier terme par le premier, et en extrayant du quotient la racine dont le degré est marqué par le nombre plus un des moyens à insérer. Cette raison sera rarement entière; mais dans le cas où elle est moindre que l'unité, la progression est décroissante.

Prenons un exemple dans la progression numérique précédente, et proposons-nous d'insérer 5 moyens géométriques entre les deux nombres 4 et 256; la règle et la formule [e] donneront pour la raison cherchée

$$q = \sqrt{\frac{256}{4}} = \sqrt[2]{\frac{3}{4}} = \sqrt[4]{4} = 2,$$

et nous aurons

$$\frac{...}{...}$$
 4 : 8 : 16 : 32 : 64 : 128 : 256.

Remarque. Si l'on insérait entre les termes consécutifs d'une progression donnée un même nombre de moyens géométriques on formerait une seule et même progression, parce que la raison serait la même partout.

223. PROBLÈME II. Trouver la somme des termes d'une progression géométrique.

dernier terme [d] de

on q, on aura

[e]

on cherchée premier, et en le degré est ens à insérer. mais dans le progression

ression nuus d'insérer ux nombres neront pour

= 2,

: 256.

termes conmême nommerait une e la raison

e des termes

Soit la progression par quotient

$$\vdots$$
 a : b : c : d.....

qu'on écrit aussi de cette manière

$$\stackrel{\cdots}{\cdots} a: aq: aq^2: aq^3..... aq^{n-1};$$

en nommant S la somme cherchée on aura

$$S = a + aq + aq^{2} + \dots + aq^{n-2} + aq^{n-1}.$$

Si l'on multiplie tous les termes de cette égalité par la raison q, on obtient

$$Sq = aq + aq^2 + aq^3 + \dots + aq^{n-1} + aq^n$$
; et en retranchant la première de celle-ci, on aura $Sq - S = aq^n - a$, ou $S(q-1) = a(q^n-1)$; d'où enfin $[f] S = \frac{a(q^n-1)}{q-1}$.

Soit, par exemple, à calculer la somme des 10 premiers termes de la progression

nous aurons
$$S = \frac{3(2^{10} - 1)}{1} = 3(1024 - 1) = 3069$$

Les formules [d], [e] et [f] résolvent toutes les questions relatives aux progressions par quotient.

224. Quand la progression géométrique est décroissante, c'est-à-dire quand la raison q est une fraction, il y a lieu de modifier la formule [f] en changeant les signes des termes, parce que le dénominateur q-1 devient négatif par la suppo-

sition de q < 1. Cette formule est donc, dans ce cas,

$$[g] \qquad S = \frac{a(1-q^n)}{1-q},$$

ou bien
$$S = \frac{a}{1-q} - \frac{aq^n}{1-q}$$
.

Sous cette forme on voit que la somme S se compose de deux parties : la première $\frac{a}{1-q}$, cons-

tante; la seconde $\frac{aq^n}{1-q}$, susceptible de deve-

nir d'autant plus petite que n sera plus grand; car les puissances successives de q < 1 diminueront rapidement. On peut donc prendre un assez

grand nombre de termes pour que $\frac{aq^n}{1-q}$ devienne

moindre que toute quantité assignable, et que la valeur de S se rapproche autant qu'on le voudra

de la constante $\frac{a}{1-q}$. En conséquence, la LIMITE

vers laquelle tend la somme des termes d'une progression géomètrique décroissante, prolongée indéfiniment, est égale au premier terme divisé par l'unité diminuée de la raison.

Enfin, à l'infini on a rigoureusement $S = \frac{a}{1-q}$.

Ainsi, dans la progression indéfinie \vdots 1 : $\frac{1}{3}$: $\frac{1}{3}$: $\frac{1}{3}$: etc...

on aura
$$S = \frac{a}{1 - q} = \frac{1}{1 - \frac{1}{3}} = 1 \frac{1}{2}$$
.

donc, dans

somme S se $\frac{a}{1-q}$, cons-

e de deve-

grand; car diminuere un assez

- devienne

, et que la le voudra

e, la LIMITE

d'une prorgée indéfipar l'unité

 $S = \frac{a}{1-a}$

QUESTIONNAIRE.

Qu'appelle-t-on rapport ? (205) Qu'appelle-t-on proportion ? (205)

Comment indique-t-on la proportion arithmétique? (206) Comment indique-t-on la proportion géométrique? (206)

A quoi est égale la sommo des extrêmes dans toute proportion arithmétique? (207)

A quoi ost égal le produit des extrêmes dans toute pro-

portion géométrique? (208) Expliquez-nous ce quo l'on entend par " quatrième proportionnello "et par moyenne proportionnelle géométrique. (209)

Qu'est-ce qui sert à démontrer toutes les propriétés des

proportions? (210)

Les produits sont-ils en proportion quand on multiplie

deux proportions terme à terme ? (211)

Peut-on élever les quatre termes d'une proportion à une même puissanco, ou en extraire une racine du même degré sans detruire la proportion ? (212)

A quoi est égal le rapport do la somme des numérateurs et des dénominateurs dans une suite de rapports ègaux?

(213)

Qu'appelle-t-on progression ? (214)

Donnez le principe fondamental des progressions arithmétiques ? (215)

Donnez le principe fondamental des progressions géométriques ? (221)

EXERCICES ET PROBLÈMES

SUR LES PROGRESSIONS.

119. Quel est le 12° terme d'une progression arithmétique dont la raison est 4 et le premier terme 2?

120. Quel serait le 12º terme si la raison était 🛂 ? 121. On demande d'insérer 5 moyens différentiels entre 2 et 20.

122. Etant donnée la progression

 $\div 3 . 10 . 17 . 24.....$

on se propose d'insérer quatre moyens différen-

tiels entre chaque terme: quelle sera la nouvelle progression?

123. Quel est le 18e nombre pair dans la série des nombres entiers?

124. Insérer 2 moyens géométriques entre 3 et 375.

125. Faire la somme des termes de la progression $\div 2.5.8...$ 29.

126. On demande la somme des termes de la progression

 $\frac{11}{11}$ 2 : 4 : 8 : 256.

127. On propose d'insérer 8 moyens géométriques entre les nombres 3 et 4.

128. On donne à un mineur, pour creuser un puits de 15 mètres de profondeur, 2 fr. 75 c. pour le premier mètre, et une augmentation de 0 fr. 60 c. pour chaque mètre suivant. Combien coûtera 1° le 15° mètre, 2° le travail entier?

129. On a vendu un cheval, à condition qu'on le payerait 1 centime pour le premier clou de ses fers, 2 centimes pour le second clou, 4 centimes pour le troisième, et ainsi de suite en doublant jusqu'au trente-deuxième clou; quel est le prix du cheval?

130. Combien faut-il prendre de nombres entiers dans la suite des nombres naturels

 $1 + 2 + 3 + \dots$

O.

CO

CC

3,

CC

pour que la somme soit 55 ?

131. Discuter la valeur négative — 11 trouvée dans le problème précédent.

132. Insérer 8 moyens proportionnels géométriques entre chacun des termes de la progression 1:2:4:8.....

la nouvelle

ns la série

es entre 3

la progres.

rmes de la

as géomé-

reuser un 75 c. pour n de 0 fr. ibien coû-

ion qu'on er clou de 1, 4 centice en douquel est le

nbres en-

trouvée

s géoméprogres-

CHAPITRE IX.

DES LOGARITHMES.

225. Vers le commencement du xviie siècle, un savant écossais, Néper, en cherchant le moyen d'abréger les calculs numériques, souvent trèslaborieux, fut conduit à la découverte des logarithmes. Nous allons exposer ici leur théorie.

226. Quand on écrit une progression géométrique quelconque, mais dont le premier terme est l'unité, et qu'au-dessous on place une progression arithmétique commençant par zéro, on forme ce qu'on nomme une table de logarithmes. Telle est la suivante:

$$[a] \begin{cases} \vdots & 1:3:9:27:81:243:729:2187.....\\ \div & 0.2.4.6.8.10.12.14...... \end{cases}$$

Pour montrer ce que ce rapprochement peut offrir de remarquable, faisons observer que la condition, pour la progression géométrique, de commencer par l'unité, donne pour ses termes successifs la 1^{re}, la 2^e, la 3^e puissance, etc...., c'est-à-dire les puissances naturelles de la raison 3, tandis que la progression arithmétique, qui commence par zéro est formée des multiples naturels de la raison 2,

227. Cette double propriété se manifeste encore mieux en écrivant les deux progressions sous une forme générale, ce qui d'ailleurs est préférable, puisque, dans la définition des logarithmes, on ne tient nullement compte des valeurs particulières des raisons employées. Ainsi nous prendrons la table ci-après:

$$[b] \begin{cases} \vdots 1 : q : q^2 : q^3 : q^4 : q^5 : q^6 : q^7 : q^8 : q^9 ... \\ \vdots 0 . d . 2d . 3d . 4d . 5d . 6d . 7d . 8d . 9d ... \end{cases}$$

Par là, on voit que dans tous les termes de même rang, la raison q de la progression par quotient a pour exposant le nombre qui sert de coefficient à la raison d dans la progression par différence; ainsi le 4e terme q^3 correspond au 4e 3d, le 7e q^6 au 7e 6d, et en général le $(n+1)^{me}$ terme q^n sera au même rang que nd.

· b

d

br

br

sio

rit

rei

log

que

5éc

fair

228. C'est là l'idée qui frappa Néper, en lui révélant l'usage et l'utilité d'une pareille table. En effet, si l'on multiplie entre eux deux termes quelconques de la progression par quotient, leur produit sera un terme subséquent de la même progression, puisque celle-ci contient toutes les puissances de la raison; mais si, d'un autre côté, on ajoute les deux termes correspondants de la progression par différence, leur somme formera dans cette progression un autre terme, situé au même rang que le produit ci-dessus dans la première; ainsi l'un de ces résultats fera connaître l'autre. On voit, par exemple, qu'il y a correspondance entre

 $q^{8} \times q^{5} = q^{8}$, 9^{me} terme de la 1^{re} progression et 3d + 5d = 8d, 9^{me} terme de la 2^{e} progression.

De même, dans la table [a], si l'on multiplie le 3e terme par le 5e de la 1re progression, et qu'on ajoute les termes correspondants de la seconde, nifeste enrogressions nilleurs est n des logapte des vavées. Ainsi

 $q^{8}: q^{8}: q^{9}..$ $q^{8}: q^{9}..$

termes de ression par qui sert de ession par pond au 4° e $(n + 1)^{m \circ}$

er, en lui ille table. ux termes tient, leur la même toutes les cutre côté, ants de la e formera e, situé au ns la preconnaître a corres-

ogression gression.

ltiplie le et qu'on seconde, on aura des résultats placés au même rang, comme on le voit ci-après:

$$9 \times 81 = 729$$

 $4 + 8 = 12$

Ainsi, pour connaître le produit 9 × 81, il suffirait d'effectuer l'addition 4 + 8 des termes correspondants, et de chercher au-dessus de leur somme 12 le produit 729 demandé.

De même, le quotient du 8e terme 2187 par le 5e 81 se trouve sans division, en retranchant du 8e terme 14 le 5e 8, et en prenant au-dessus du reste 6 le terme correspondant 27.

229. Voilà le principe fondamental qui sert de base à la théorie de Néper. Il appela les termes de la progression par différence les logarithmes des termes correspondants de la progression par quotient; ainsi 4 est le logarithme de 9; de même, 12 est le logarithme de 729, et l'on écrit:

 $\log 9 = 4$, $\log 729 = 12$, $\log q^n = nd$.

C'estpourquoi l'on dit : les logarithmes des nombres sont les termes d'une progression arithmétique commençant par zéro, qui correspondent à ces nombres, considérés comme faisant partie d'une progression géométrique dont le premier terme est l'unité.

230. Il existe une infinité de tables de logarithmes formant tout autant de systèmes différents; mais dans tous l'unité a toujours pour logarithme zéro.

On appelle base du système le nombre qui a pour logarithme l'unité.

231. La première réflexion qui se présente, c'est que les lacunes qui existent entre les termes consécutifs d'une progression géométrique semblent faire craindre que tous les nombres n'aient pas

leurs logarithmes; mais nous allons voir comment on y a suppléé.

D'abord, quelles que soient les progressions qu'on ait choisies, on pourra toujours, par les procédés des nos 216 et 222, insérer un certain nombre de moyens géométriques entre les termes consécutifs de la progression par quotient, et un pareil nombre de moyens différentiels entre ceux de la progression par différence; on conçoit de plus que cette double insertion peut être poussée assez loin pour comprendre toutes les nuances de grandeur, depuis 1 jusqu'à l'infini.

Quant aux nombres plus petits que l'unité, pour avoir leurs logarithmes, il faudra prolonger en arrière les deux progressions en écrivant: do

ra

 $\mathbf{R}\mathbf{e}$

50T

ver

loga

cett

en e

log.

= 5

$$\frac{1}{27}:\frac{1}{9}:\frac{1}{3}:1:3:9:27:81...$$

$$+ \dots -6.-4.-2.0.2.4.6.8.\dots$$

d'où l'on voit que les fractions proprement dites ont des logarithmes négatifs.

Propriétés des logarithmes.

232. Le logarithme du produit de plusieurs facteurs est égal à la somme des logarithmes de ces facteurs.

Cette propriété n'est que la traduction du principe fondamental (n° 228). Nous avons, en effet,

$$q^{8} \times q^{6} \times q^{7} = q^{16},$$

 $3d + 5d + 7d = 15d....$

Mais 3d est le logarithme de q^3 , 5d est le logarithme de q^4 , 7d est le logarithme de q^4 , de même que 15d est le logarithme de q^{10} ; donc

ns voir com-

progressions purs, par les r un certain re les termes otient, et un ls entre ceux n conçoit de être poussée les nuances

que l'unité, dra prolonen écrivant :

81.. ,.....

8

ement dites

lusieurs faohmes de ces

duction du s avons, en

est le logade q^{t} , de ; donc log. $(q^3 \times q^5 \times q^7) = \log_1 q^3 + \log_1 q^5 + \log_1 q^7$; et en général $\log_1 (q^n \times q^m) = \log_1 q^n + \log_1 q^m$; car on a $q^n \times q^m = q^m + n$, et nd + md = (m + n)d.

Au reste, on comprend de suite que le produit $q^n \times q^m$ donne le terme q^{m+n} de la progression géométrique qui a m+n termes avant lui, et que la somme des logarithmes nd+md ou (m+n)d donne également le terme de la progression arithmétique qui en a aussi m+n avant lui: donc, ces deux résultats se trouvent au même rang, et par conséquent la somme des logarithmes des facteurs donne le logarithme du produit.

233. 2º Le logarithme d'un quotient est égal au logarithme du dividende moins le logarithme du diviseur.

Je dis, en effet, qu'on a log. $\frac{a}{b} = \log a - \log b$.

Représentons le quotient $\frac{a}{b}$ par x ou bien po-

sons $x = \frac{a}{b}$: alors on aura bx = a; mais, en

vertu du nº précédent, cette égalité donne

 $\log_a b + \log_a x = \log_a a,$ $\log_a x = \log_a a - \log_a b.$

234. 3° Le logarithme d'une puissance est égal au logarithme de la racine multiplié par l'exposant de cette puissance.

Soit a^5 ; je dis qu'on aura $\log a^5 = 5 \log a$; en effet, $a^6 = aaaaa$; donc (n° 232), $\log a^5 = \log a + \log a$.

5 $\log a$; et en général $\log a^m = m \log a$.

235. 4° Le logarithme d'une racine est égal au logarithme de la puissance divisé par l'indice de cette racine.

Je dis que log. $\sqrt[5]{a} = \frac{\log a}{5}$; en effet, repré-

sentons cette racine par x et posons $x = \sqrt{a}$, d'où $a = x^s$; d'après le cas précédent, on a log. $a = 5 \log_a x$; et de là on tire log. $a = \log_a a$

5 log. x; et de là on tire log. $x = \frac{\log a}{5}$.

donc, en général, $\log \sqrt[n]{a} = \frac{\log a}{n}$

Des logarithmes vulgaires.

il

po

et

gr

de.

tio fin

ľu

inf

ère

tro

ent

Il e

236. Les principes que nous venons de développer s'appliquent à tous les systèmes de logarithmes; mais il est temps de s'occuper des logarithmes qu'on a adoptés dans l'usage ordinaire des calculs et qu'on nomme logarithmes vulgaires ou logarithmes de Briggs, du nom de l'auteur qui en a publié les premières tables. On a dû prendre le système le plus avantageux, c'ést-àdire celui qui concorde le mieux avec notre système de numération décimale. Voici en quoi il consiste.

237. On a pris d'abord pour raison de la progression géométrique la base 10 de notre numération, et pour raison de la progression arithmétique l'unité; en partant ainsi des premiers termes 1 et 0, on écrit deux séries indéfinies dans les deux sens, comme on voit ci-après:

....: 0,001: 0,01: 0,1: 1:10: 100: 1000: 10000: - 3. - 2. - 1. 0. 1. 2. 3. 4

Ceci établit 1º que les puissances successives

ne est égal au lo. l'indice de cette

en effet, repré.

 $x = \sqrt[5]{a}$, d'où on a log. a =

 $\frac{\log a}{5}$

5 _a____

es.

enons de déveèmes de logauper des logasage ordinaire hmes vulgaires m de l'auteur bles. On a dû ageux, c'est-àvec notre sysici en quoi il

on de la pronotre numésion arithmépremiers terdéfinies dans ès:

00:10000:...

s successive

de 10, c'est-à dire les nombres 10, 100, 1000, etc..., ont pour logarithmes respectifs les nombres en tiers naturels 1, 2, 3, etc...; autrement dit, qu'un nombre composé de l'unité suivie d'un zéro, de deux zéros, de trois zéros, etc., de n zéros, a pour logarithme 1, 2, 3.... n.

2º Que les fractions décimales $\frac{1}{10}$, $\frac{1}{100}$, $\frac{1}{1000}$, etc.,

ont pour logarithmes les mêmes nombres naturels pris négativement, c'est-à-dire — 1, — 2, — 3, etc.

238. Dans cette table, le nombre 10. ayant pour logarithme l'unité, sera la base du système de logarithmes comme il est la base du système de numération.

239. Au reste, ce n'est encore là que le cadre d'une table de logarithmes, et, pour la compléter, il faut recourir aux insertions de moyens proportionnels entre les termes successifs des deux progressions ci-dessus, par les procédés indiqués nos 216, 222. Voici comment on procède:

On insère d'abord un certain nombre de moyens géométriques entre les deux premiers termes 1 et 10, un pareil nombre entre 10 et 100, entre 100 et 1000, etc..., ce qui donnera une nouvelle progression géométrique. Ensuite on recommence les insertions entre les termes successifs de cette dernière, et l'on renouvelle cette série d'opérations un grand nombre de fois, jusqu'à ce qu'enfin la raison q, qui est toujours plus grande que l'unité, n'excède plus l'unité que d'une quantité infiniment petite. Alors les termes de la dernière progression géométrique obtenue ne croîtront que par degrés insensibles, et la différence entre deux termes consécutifs quelconques pourra devenir moindre que toute quantité assignable. Il est donc certain qu'au nombre des termes de

cette progression limite on rencontrera les nombres entiers 2, 3, 4, etc..., ou bien des nombres qui en diffèreront infiniment peu et qu'on pourra confondre avec eux.

En conséquence, dans notre progression les nombres 2, 3, 4, 5 9 seront compris entre le premier terme 1 et le terme 10; les nombres 11, 12, 13... 99 se trouveront entre 10 et 100, et ainsi de suite pour tous les nombres entiers.

D'un autre côté, si dans la progression arithmétique on insère également entre 0 et 1, entre 1 et 2, entre 2 et 3, etc., un nombre de moyens différentiels égal au nombre des moyens géométriques qu'on aura insérés entre 1 et 10, entre 10 et 100, etc., les termes de cette seconde série arithmétique seront toujours les logarithmes respectifs des termes du même rang dans la progression géométrique; en conséquence, tous les nombres naturels 2, 3, 4, etc., qui font partie de la progression géométrique, auront leurs logarithmes dans la progression arithmétique.

Cela posé, si l'on ne tient compte, dans la progression par quotient que des nombres entiers dans la progression par différence que des termes correspondants, on aura la table de logarithmes vulgaires dont on se sert dans la pratique.

 $c \epsilon$

ai

zé de

no

en

ra

un

240. D'après cette exposition, il est évident que tout nombre entier ou fractionnaire, compris entre 1 et 10, a pour logarithme une fraction comprise entre 0 et 1; que les nombres compris entre 10 et 100 ont des logarithmes entre 1 et 2; qu'entre 100 et 1000, les nombres ont des logarithmes entre 2 et 3, et ainsi de suite.

D'un autre côté, les nombres plus petits que l'unité ont des logarithmes négatifs : ainsi les

fractions comprises entre 1 et $\frac{1}{10}$ ont des loga-

ntrera les nomn des nombres et qu'on pour-

progression les seront compris ne 10; les nom. entre 10 et 100, nbres entiers. gression arithre 0 et 1, entre ore de moyens noyens géoméet 10, entre 10 conde série arigarithmes resig dans la prouence, tous les font partie de

étique. te, dans la proombres entiers ce que des tertable de logadans la prati-

nt leurs logari-

est évident que naire, compris e une fraction mbres compris entre 1 et 2; ont des logaite.

lus petits que tifs: ainsi les

ont des loga-

rithmes compris entre 0 et -1; les fractions comprises entre $\frac{1}{10}$ et $\frac{1}{100}$ ont des logarithmes entre - 1 et - 2, et ainsi de suite.

241. Il résulte de là que les nombres réciproques 10 et $\frac{1}{10}$, 100 et $\frac{1}{100}$, etc..., ont des logarith-

mes égaux et de signes contraires, et qu'il en est ainsi pour tous les nombres réciproques; ainsi le lo-

garithme de $\frac{3}{5}$ est égal et de signe contraire à

celui de $\frac{5}{3}$; et en général, $\log \frac{m}{n} = -\log \frac{n}{m}$.

Ceci d'ailleurs est conforme au principe du nº 232; car, deux nombres réciproques ayant pour produit l'unité, il faut que la somme de leurs logarithmes soit zéro, ce qui exige que ces logarithmes soient égaux et de signes contraires.

242. Caractéristique. On donne le nom de caracteristique à la partie entière d'un logarithme; ainsi les nombres compris entre 1 et 10 auront zéro pour caractéristique de leurs logarithmes; de 10 à 100 les nombres ont des logarithmes dont la caractéristique est l'unité; de 100 à 1000 les nombres ont 2 pour caractéristique de leurs logarithmes, etc.; et, en général, les nombres compris entre 10ⁿ et 10ⁿ + 1 ont des logarithmes dont la caractéristique est n, c'est-à-dire que la coractéristique d'un logarithme quelconque, augmentée d'une unité, donne le rang des plus haules unités du nombre correspondant, et réciproquement.

Ainsi le nombre 87542 aura un logarithme dont la caractéristique est 4; et le logarithme

3,558948 correspondra à un nombre de quatre chiffres aux entiers, c'est-à-dire contenant des unités de mille.

243. Partie décimale. La partie fractionnaire des logarithmes calculés d'après la méthode indiquée nº 239 ne sera pas décimale; mais, en ad mettant qu'elle ait été transformée en décimale, comme on le pratique en effet dans les tables en usage, nous ferons observer que cette partie décimale ne peut être obtenue que par approximation.

Cela posé, démontrons le théorème fondamental ci-après.

THÉORÈME.

244. Lorsque deux nombres entiers ou décimaux sont exprimés par les mêmes chistres significatifs, et qu'ils ne dissèrent que par la nature de leurs plus hautes unités, leurs logarithmes ont même partie décimale et ne dissèrent entre eux que par la caractéristique.

Ce théorème découle de la première propriété (n° 232), où nous avons démontré que log. $ab = \log a + \log b$. En effet, si l'on prend les nombres décuples a 10a, 100a, etc., on aura

log.
$$10a = \log a + \log 10$$
, $\log 100a = \log a + \log 100$, etc....

Mais les logarithmes de 10, 100, 1000, etc., étant 1, 2, 3, etc....., quel que soit le logarithme de a, il suffira d'ajouter 1, ou 2, ou 3 unités entières à sa caractéristique pour avoir les loga-

0

riti

ces

mu

donc parti

245 s'éten colon tient intitu turels

Ren les de tent, d lieu de

ou de

bre de quatre contenant des

e fractionnaire la méthode ine; mais, en ad e en décimale, es les tables en cette partie dée par approxi-

me fondamen-

rs ou décimaux significatifs, et e de leurs plus nt même partie de par la carac-

ière propriété ntré que log. l'on prend les on aura

g. 10, g. 100,

00, 1000, etc., le logarithme u 3 unités entvoir les loga-

ou de

rithmes de 10a, 100a, 1000a, etc....., donc tous ces derniers auront leur partie décimale commune; aussi l'on trouve dans les tables

log.
$$32 = 1,505150$$

log. $320 = 2,505150$
log. $3200 = 3,505150$
etc....

On aura de même, d'après le principe no 233,

log.
$$\frac{a}{10} = \log a - \log 10$$
,
 $\log \frac{a}{100} = \log a - \log 100$,
etc.....

donc ces logarithmes auront encore la même partie décimale.

DISPOSITION DES TABLES.

245. Des tables. Les tables que nous publions s'étendent depuis 1 jusqu'à 10000. La première colonne, au haut de laquelle on voit PP, contient les parties proportionnelles. La seconde intitulée N contient la suite des nombres naturels depuis 1 jusqu'à 999.

Remarquons ici qu'on a jugé supe: flu, quand les deux premiers chistres d'un nombre se répètent, d'écrire ce nombre tout au long; ainsi au lieu de

101, 102, 103..... etc....

131, 132, 133..... etc.,

on s'est contenté de mettre

 $\begin{array}{rcl}
 100 \\
 1 & = 101 \\
 2 & = 102 \\
 3.... & = 103..... etc.,
 \end{array}$

ou encore

130.... 1 = 131 2.... = 132....

fr

ga

de C'

dé

di.

de

10

ple

on ég

me

en

sio

(0,0)

rer

dif

2

D q

ma à-vi

ma

mu

ren

me

246. La colonne N est suivie de la colonne marquée O, placée immédiatement à droite. On trouve dans cette colonne les logarithmes des nombres inscrits dans la colonne marquée N.

N.-B. — On n'a pas mis de caractéristique aux logarithmes parce qu'on la connaît aisément à la seule inspection du nombre.

247. Dans cette colonne, marquée 0, ainsi que dans les neuf colonnes suivantes, intitulées, 1, 2, 3, 4, 9, on remarquera certains nombres de quatre chiffres chacun. Il faut sous-entendre en montant à gauche de ces quatre chiffres, les deux chiffres isolés les plus prochains. C'est ainsi que

2034 équivant à 332034 4051 " à 334051 etc

248. Nous venons de voir comment l'on trouve les nombres naturels depuis 1 jusqu'à 999, comment trouver les nombres de quatre chiffres? À l'aide des colonnes marquées 0, 1, 2, 3, 4, 5, 6, 7, 8, 9?

1º Cherchons, par exemple, le nombre 1000; je trouve dans la colonne marquée N le nombre 100, qui contient les trois premiers chiffres de 1000, puis je regarde au haut de la colonne suivante, et j'aperçois 0, qui est le dernier chiffre de 1000. C'est dans cette colonne que se trouvera la partie décimale du logarithme de 1000.

2º Pour second exemple, soit à trouver le nombre 1028, je prends encore les trois premiers chiffres 102 dans la colonne marquée N, puis je regarde au haut de la page, et, sans faire attention aux colonnes 1, 2, 3, 4, 5, 6, 7, je trouve le dernier chiffre, 8, au haut de la 8me colonne. C'est dans cette colonne que se trouve la partie décimale du logarithme de 1028.

249. La dernière colonne intitulée *D*, contient les différences qui existent entre les logarithmes de deux nombres entiers consécutifs, compris entre 1000 et 10000. Si l'on compare entre eux, par exemple, les logarithmes de 1000, 1001, 1002...1009...., on observera que le second de ces logarithmes égale le premier plus 434 (c. a. d, 434 millionièmes), que le troisième égale le second plus 434que le dizième égale le neuvième plus 430 : en un mot ces logarithmes forment une progression arithmétique ayant pour raison moyenne 432 (0,000432). Or, ce sont ces augmentations ou différences successives que contient la colonne *D*. Ces différences tabulaires sont d'autant plus faibles que les nombres comparés sont plus grands.

250. Une liaison étroite existe entre la colonne D que nous venons de considérer, et la colonne marquée P.P. Cette dernière colonne contient, visàvis des chiffres 1, 2, 3,.....9, de la colonne marquée N, les produits que l'on obtiendrait en multipliant par 0.1, 0.2, 0.3, 0.9, la différence tabulaire qui se trouve vis-à-vis le logarithme du nombre considéré, ou plutôt une différence tabulaire qui se trouve vis-à-vis le logarithme.

a colonne mar à droite. On ogarithmes des marquée *N*.

ctéristique aux t aisément à la

ée 0, ainsi que, intitulées, 1, certains noml faut sous-enes quatre chiflus prochains.

ent l'on trouve qu'à 999, comre chiffres ! A

2, 3, 4, 8, 6,

34

51

rence tabulaire moyenne entre les différences tabulaires qui précèdent, et celles qui suivent le nombre considéré. Par exemple, la différence tabulaire qui correspond au nombre 2.845 est 153: or, 153 multiplié par 0.1, 0.2, 0.3,.....jusqu'à 0,9 devient successivement. 15, 31, 46, 61, 77, 92, 107, 122, 138, nombres- qu'on trouve dans la colonne PP.

On est arrivé à ces produits en s'appuyant sur ce principe, qui n'est vrai qu'approximativement, que les différences entre les nombres sont proportionnelles aux différences entre les logarithmes correspondants. En effet cette proportionalité une fois admise, on peut raisonner ainsi : l'unité, différence entre 2845 et 2846, par exemple, est à 0,1, différence entre 2845 et 2845,1, comme 153, différence entre le log. de 2845 et celui de 2846, est à x, qui sera la différence entre le log. de 2845

et celui de 2845,1; donc $\frac{1}{0.1} = \frac{153}{x}$. En faisant su-

cessivement le conséquent du premier rapport égal à (0.2) à (0.3)... (0.9), x donnera les nombres qu'il faut ajouter au log. de 2845 pour en faire successivement le log. de 2845,1, 2845,2, 2845,3..... 2845,9. Or, ces valeurs successives de x, 15, 31, 46, 71....., sont précisément les nombres que contient la colonne PP.

251. Si l'on veut savoir de combien le log de 2845 s'accroît, lorsque 2845 devient 2845,01, 2845,02, 2845.03.... 2845,09, on n'a qu'à multiplier les parties proportionnelles par 0.1, ce qui revient à multiplier la diff. tab. par 0.01, ou encore, ce qui revient à résoudre les équations suivantes:

$$\frac{1}{0.01} = \frac{153}{x},$$

$$\frac{1}{0.02} = \frac{153}{x} \dots \text{ etc.}$$

De pa: mi

me sier mer

que trou nati Le 1 mên

de t.
O.
N, e
suiv.
de f
mêm
parti
l'on
dern
trous

y a à espacet le donn

trouv colon partie plus o es différences qui suivent le la différence bre 2.845 est .3,.....jusqu'à 46, 61, 77, 92, ouve dans la

'appuyant sur kimativement, s sont proporgarithmes cortionalité une insi: l'unité, exemple, est à , comme 153, celui de 2846, le log. de 2845

er rapportégal nombres qu'ii 1 faire succes-,2, 2845,3..... s de x, 15, 31, nombres que

En faisant suc-

ien le log. de ient 2845,01, u'à multiplier ce qui revient ou encore, ce s suivantes:

De même multiplier les parties proportionnelles par 0.01, 002,... 0.09, serait la même chose que multiplier la diff. tab. par 0.001, 0.002..... 0.009.

USAGE DES TABLES

PROBLÈME 1er.

252. Un nombre étant donné, trouver son logarithme à l'aide des tables. Ce problème offre plusieurs cas qui nous allons examiner successive-

1º. Si le nombre proposé est entier et moindre que 100, point de difficulté ni de calul: On le trouve dans la première page, parmi les nombres naturels qui sont dans les colonnes marquées N. Le nombre que l'on trouvera à sa droite et sur la même ligne, sera son logarithme.

253. 2º Le nombre proposé est entier et formé

de trois chiffres seulement.

On trouve ce nombre dans la colonn itulée N, et l'ayant trouvé, on consultera la colonne suivante, marquée O. Si l'on y voit six chiffres de front à droite du nombre cherché et sur la même ligne que lui, on a tout d'un coup la partie décimale du logarithme désiré. Mais si l'on ne trouve que quatre chiffres, on n'a que les derniers chiffres de la partie décimale. Pour trouver les deux premiers, on remarquera qu'il y a à la gauche des quatre chiffres une marge ou espace blanc; on suivra cette marge en montant et le premier nombre isolé que l'on rencontre donne les deux premiers chiffres cherchés. -

1er Ex: On demande le logarithme de 209 je trouve 320146 sur la même ligne et dans la colonne marquée 0; j'ai donc tout d'un coup la partie décimale du logarithme; il ne me reste

plus qu'à y joindre la caractéristique 2.

2º Ex. On demande le logarithme de 218. A côté de 218, dans la colonne marquée O je ne trouve que 8456. Mais je suis la marge en montant, et le premier nombre que je rencontre à gauche est 33; La partie décimale du log. est donc: 338456, et, en y joignant la caractéristique voulue, j'ai le logarithme complet, 2.338456:

254. 3°. Soit à chercher le logarithme d'un nombre entier inférieur à 10000; le cas n'est

guère plus difficile.

1er. Ex: On demande le logarithme de 4449. Je cherche d'abord les trois premiers chiffres 444 dans la colonne marquée N, je regarde ensuite au haut de la page et, à la tête de l'une des colonnes je trouve le chiffre 9. Je descends dans cette colonne et je trouve le nombre 8262. Ecrivant à la gauche les 2 premiers chiffres, 64, qui sont au haut de la marge j'ai toute la partie décimale du logarithme, c'est 648262. Sachant d'ailleurs (242) que la caracteristique est 3 j'ai pour le log. complet 3, 648262.

255. 2º Mais si ie nombre donné n'est pas dans les tables, c'est à-dire s'il est fractionnaire ou supérieur à 1000c, il faut alors avoir recours au

calcul suivant :

Pour bien comprendre ce qui va suivre, on doit se rappeler les principes des nos 242, 244. Supposons d'abord qu'on demande le logarithme du nombre 8245658 plus grand que 10000.

Avant tout, nous devons chercher quelle sera la caractéristique du logarithme, et nous dirons: puisque ce nombre entier a sept chiffres, son logarithme aura pour caractéristique (6); quant à la partie décimale, elle sera la même que celle du logarithme d'un nombre 10 fois, 100 fois, 1000 fois plus petit que le nombre proposé; si nous la determinons pour un de ces cas, elle sera connue pour le logarithme demandé.

dorrie ma me 3.9 est por le s fero ont qu'i équ non tatio

nn

mer

etc.

A 0,65 huit done lion et la men

En prope fois p male ristiq nous en montant, et ontre à gauche los. est donc; istique voulue, 6: garithme d'un; le cas n'est

e de 218. A côté

O je ne trouve

thme de 4449. ers chiffres 444 egarde ensuite e de l'une des

Je descends nombre 8262. rs chiffres, 64, toute la partie 262. Sachant tique est 3 j'ai

n'est pas dans ctionnaire ou oir recours au

va suivre, on s nos 242, 244. le logarithme e 10000.

er quelle sera et nous dirons: t chiffres, son que (6); quant nême que celle 1, 100 fois, 100 osé; si nous la le sera connue

A cet effet, séparons sur la droite du nombre donné assez de décimales pour le rendre inférieur à 10000, et posons 8245,658. Cherchons maintenant le log. du nombre entier immédiatement inférieur, c'est-à-dire de 8245. Ce log est 3.916191. Or, nous savons que le log. de 8245.658 est égal au log. de 8245 plus une fraction correspoudant à l'excès 0.658 du premier nombre sur le second. Pour trouver cette augmentation nous ferons le raisonnement suivant : la différence entre le log. de 8245 et celui de 8246 (différence qu'indique le colonne D) est égale à 53 : cela équivaut à dire que l'addition d'une unité au nombre 3245 entraine pour son log, une augmentation de 0,000053, donc pour un demi, un tiers, un quart d'unité ajouté à 8245, il faudrait augmenter son log. de la moitié, du tiers, du quart, etc..., de la différence 0,000053.

Aiusi pour trouver l'augmentation relative à 0,658 il faudra prendre les six cent cinquante huit millièmes de cette différence. Multipliant donc 53 par 0,658 on trouve 34.874 ou 35 milionièmes. On ajoute ce produit au log. de 8245, et la somme est le log. de 8245,658. Voici comment on dispose le calcul:

log. 8248	j,							3,916191
pour 0.658	3.		•	•	•	٠	•	35

 $\log.8245,658 = 3,916226$

Ensuite nous nous rappellerons que le nombre proposé n'est pas 8245,658, mais le nombre mille fois plus fort 8245658, et que, si la partie décimale du logarithme reste la même, la caractéristique pour 8245658 est 6 et non pas 3; alors nous aurons enfin

 $\log.8245658 = 6,916226$

256. Remarque. On peut, au moyen de la colonne PP, obtenir, d'une autre manière. l'augmentation relative à 0,658. En effet, 0,658 équivaut à 0.6 + 0,05 + 0,008. Or, l'augmentation relative à 0,6 est fournie immédiatement par les tables: c'est 32. Quant à l'augmentation qu'exigent les 0,05, on prendra dans les tables l'augmentation relative à 0,5, et on l'éloignera de la virgule décimale d'un rang vers la droite, c'est-à-dire qu'on la divisera par 10. De même l'augmentation relative à 0,8, laquelle est donnée par les tables, deviendra, si on l'avance de deux rangs vers la droite l'augmentation relative à 0,008. On aura ainsi:

1

p

b

lo

pa

q

or

le tiq

10

do

me

tou

ren

sep

ron

non

prei bre

ensi

0,38

P

log. 8245						3,916191
pour 0,6	•	•				32
pour 0.05						27
0 000	•					42

 $\log.8245,658 = 3,916226|12$

N. B. Dans la pratique, l'augmentation dont nous venons de parler se trouve encore plus rapidement. On se demande entre quels nombres simples (1, 2, 3, 4, 5...9) de dizièmes tombe l'excès du nombre sur le nombre entier immédiatement inférieur. Dans l'exemple que nous venons de traiter, la fraction 0,658 tombe entre 0,6 et 0,7, on prendra dans la table l'augmentation relative à 0,6, qui est 32, et celle relative à 0,7, qui est 37, et l'on ajoutera au log. de 8245 une augmentation moyenne entre 32 et 37, comme ci-après:

log.	8245							3,916191
pour	0,658	,	7	•				34

donc $\log.8245,658 = 3,916225$

moyen de la comanière, l'augeffet, 0,658 équil'augmentation édiatement par l'augmentation dans les tables on l'éloignera g vers la droite, 10. De même nelle est donnée avance de deux tion relative à

3,916191 32

 $\frac{27}{42}$

,916226|12

entation dont e encore plus quels nombres zièmes tombe entier imméaple que nous 8 tombe entre le l'augmentaelle relative à 1 log. de 8245 cre 32 et 37,

,916191 34

,916225

avec une exactitude suffisante pour les cas ordinaires.

257. 3º Proposons-nous maintenant de trouver le logarithme d'un nombre décimal, et soit, pour premier cas, le nombre 47,8 dont on demande le logarithme. Les plus hautes unités de ce nombre étant ues dizaines, la caractéristique de son logarithme sera 1, et nous savons de plus que la partie décimale de ce logarithme sera la même que celle du logarithme de 478 (nº 240). Mais ce dernier est dans les tables, où l'on trouve

 $\log.478 = 2,679428$

on aura donc

donc

 $\log.47.8 = 1,679428$

Soit encore le nombre 4,518 dont on demande le logarithme, lequel aura zéro pour caractéristique, puisque ce nombre est compris entre 1 et 10 : les tables donnent

> log. 4518 = 3,654946log. 4,518 = 0,654946

258. 4º Eu second lieu, cherchons le logarithme du nombre 3154386,75. Nous commencerons toujours par déterminer la caractéristique, en remarquant que les plus hautes unités étant au septième rang, cette caractéristique sera 6.

Pour trouver la partie décimale, nous reculerons la virgule de trois rangs pour obtenir le nombre 3154,38675 inférieur à 10000, et nous prendrons dans les tables le nombre 3154, nombre entier immédiatement inférieur. On trouve

 $\log.3154 = 3,498862 \text{ diff. tab. } 138;$

ensuite on dira (256, N. B) la partie fractionnaire 0,38675 tombe entre 0,3 et 0,4, mais beaucoup

plus près de 0,4. Or, à 0,3 correspond la partie proportionnelle 41 et à 0,4 correspond la partie proportionnelle 55, on ajoutera donc au log. de 3154 une augmentation placée entre 41 et 55, mais beaucoup plus près de 55, c-à-d., 51 ou 52 et. l'on écrira

log. 3154 = 3.498862 pour0, 38 . . . 52

 $\log.3154,38675 = 3.498914$

Par conséquent,

 $\log.3154386,75 = 6.498914$

259. 5º Occupons-nous maintenant des fractions décimales et proposons-nous de trouver le logarithme de la fraction 0,04178.

La première idée qui se présente est de multiplier ce nombre par une puissance de 10 qui amène un ou plusieurs chiffres significatifs à gauche de la virgule, de calculer le logarithme de ce nombre transformé et de diminuer la caractéristique de ce logarithme d'un nombre d'unités égal au degré de la puissance de 10 employée.

Ainsi, multiplions, par exemple, la fraction proposée par 1000 et cherchons le logarithme de 41,78: les tables donnent log. 41,78 = 1,620068 Remarquons ensuite que la fraction donnée étant 1000 fois plus petite, son logarithme doit avoir une caractéristique moindre de 3 unités. Nous poserons donc

n

d

log. 0.04178 = -3 + 1.620968 = -2 + 0.620968 ce qui se réduit au nombre entièrement négatif -1.379032.

260. Nous savions bien que les logarithmes des fractions sont négatifs; mais l'introduction

espond la partie espond la partie donc au log. de entre 41 et 55, c-à-d., 51 ou 52

3914 nant des fracs de trouver le

te est de multince de 10 qui significatifs à

le logarithme liminuer la cad'un nombre ance de 10 em-

le, la fraction logarithme de 78 = 1,620068. action donnée garithme doit re de 3 unités

-2 + 0,620968

ement négatif

s logarithmes

dans les calculs, des décimales logarithmiques négatives aurait de grands inconvénients et diminuerait les avantages qu'offre l'emploi des logarithmes; aussi est-on convenu de conserver aux logarithmes des fractions leurs décimales positives et de n'affecter que leur caractéristique du signe —; pour rappeler cette convention, on met le signe — au-dessus de la caractéristique, et l'on écrit

 $\log 0.04178 = 2.620968$

sans oublier que cette expression est équivalente à

-2 + 0.620968 ou à -1.379032;

Afin de mieux préciser la marche à suivre dans ce cas, cherchons le logarithme de 0,00395. On a d'abord log. 395 = 2,596597; on aura donc

 $\log_{10} 0,00395 = -5 + 2,596597 = 3,596597$

Par un procédé analogue, les élèves trouveront que

 $\log.$ 0,732 = $\overline{1,864511}$

 $\log 0.04178 = \overline{2.620968}$

 $\log 0.00235 = \overline{3.371068}$

 $\log. \quad 0,000725 = \overline{4,860338}$

 $\log 0.0000805 = \overline{5.905796}$

Ce tableau révèle la règle suivante qui est générale:

Dans les logarithmes des fractions décimales à caractéristique seule négative, cette caractéristique indique numériquement le rang qu'occupe, à droite de la virgule, le premier chissre significatif de la fraction décimale correspondant à ce logarithme.

Supposons, en effet, qu'on transporte la virgule après le premier chiffre significatif d'une frac-

h

d

le

Cŧ

da

di di

aı

le

re

qι

br

né

dé

28

le do

tri

tion décimale (ce qui est toujours possible), on obtient par cette opération un nombre décimal nécessairement compris entre 1 et 10 et dont le logarithme a zéro pour caractéristique; d'un autre côté, on a, dans cette transformation, multiplié la fraction donnée par une puissance de 10 précisément égale au rang occupé par ce premier chiffre significatif, c'est-à-dire qu'on a multiplié par 10¹, 10²...... 10ⁿ, si le premier chiffre significatif est au 1^{er}, au 2^e..... au n^{me} rang après la virgule. Or, comme après la recherche du logarithme provisoire il faut diminuer la caractéristique zèro de 1, 2...... n unités, il est évident que la caractéristique du logarithme défini-

tif sera -1, -2......-n ou $\overline{1}$, $\overline{2}$ \overline{n}

261. Cette règle fournit un procédé simple et général pour calculer les logarithmes des fractions décimales: en voici l'énoncé: faites abstraction de la virgule; prenez le nombre entier que forment les chissres significatifs; cherchez, dans les tables, la partie décimale seulement du logarithme de ce nombre transformé; donnez pour caractéristique à ces décimales le nombre exprimant le rang qu'occnpe le premier chissre significatif de la fraction proposée et affectez cette caractéristique du signe—supérieur.

262. 6° Enfin, quel est le logarithme d'une fraction ordinaire? Cette question sera traitée dans la division par les logarithmes, pour le cas où le dividende est ples petit que le diviseur (n° 268).

PROBLÈME II.

263. Un logarithme étant donné, trouver le nombre auquel il appartient.

La caractéristique d'un logarithme donné nous

mbre décimal t 10 et dont le ristique; d'un rmation, mulpuissance de pé par ce pree qu'on a mulremier chiffre nme rang après recherche du nuer la carac-

rithme défini- $\frac{1}{n}$

tés, il est évi-

edé simple et mes des fracfaites abstracentier que forhez, dans les du logarithme pur caractérisimant le rang de la fraction ue du signe —

ithme d'une n sera traitée s, pour le cas e le diviseur

uver le nom-

donné nous

fait connaître (nºs 242 et 262) le rang des plus hautes unités du nombre qui lui correspond; ainsi, nous n'aurons à nous préoccuper que de la partie décimale qui peut se trouver ou non dans les tables. De là, deux cas à examiner.

Premier cas. Supposons d'abord qu'on donne le log. 2,549003; en ouvrant les tables, on voit ce log. en face du nombre 354, on pose donc

 $\log. 2,549003 = 354.$

Si le log. proposé était 4,567379, on trouverait dans les tables sa partie décimale à côté du nombre 3693; mais comme sa caractéristique 4 exige que le nombre correspondant ait 5 chiffres aux entiers, on écrira

 $\log. 4,567379 = 36930$

Cherchons, pour troisième exemple, le nombre auquel appartient le log. 1,859439. En feuilletant les tables, on voit les décimales de ce log. en regard du nombre 7235; mais la caractéristique 1 ne comportant que des dizaines, on aura (nº 244)

 $\log \cdot 1,859439 = 72,35$

Enfin, admettons qu'on ait à calculer le nombre correspondant à un log. à caractéristique négative; log. 4,456670, par exemple. La partie décimale de ce log. est en face du nombre entier 2862 et comme la caractéristique 4 indique, pour le nombre correspondant, une fraction décimale dont le premier chiffre significatif est au quatrième rang, à droite de la virgule, on aura

 $\log \overline{4,456670} = 0,0002862.$

264. Second cas. Quand les tables ne contiennent pas la partie décimale du log., on est obligé-

de recourir à un petit calcul pour résoudre le problème.

Soit, par exemple, le log. 2,734591 dont on demande le nombre correspondant. Après s'être assuré que sa partie décimale n'est pas tout entière dans les tables, on cherchera deux log. consécutifs entre lesquels tombe le log. proposé. Ces limites se rencontrent en général en plusieurs points des tables; ainsi on trouve que la fraction 0,734591 tombe entre les log. de 54 et de 55 (offrant à la vérité une grande différence); on trouve encore qu'elle tombe entre les log.des nombres 542 et 543; enfin, plus loin, entre ceux de5 427 ét 5428 dont la différence 80 (colonne D) nous permettra de nous arrêter.

Nous noterons cette différence tabulaire, 0,000080, et nous prendrons aussi l'excès 0,000031, dont les décimales du logarithme donné surpassent celles du nombre 5427: nous ferons ensuite ce raisonnement: le nombre provisoire qui convient aux décimales du logarithme donné est nécessairement compris entre 5427 et 5428, c'est-à-dire qu'il est égal à 5427 plus une fraction; or, si l'addition de 0,000080 au log. de 5427 fait agmenter ce nombre d'une unité, l'addition de 0,000031 entraî-

eı

pl

aı

à

no

dε

d'i

su

be

nera une augmentation de $\frac{31}{80}$ et comme $\frac{31}{80}$ =

03875, on aura le nombre 5427,3875, lequel n'exige plus qu'un déplacement de virgule pour devenir le nombre demandé; celui-ci, en effet, à cause de la caractéristique 2, ne doit avoir que trois chiffres aux entiers; on écrira donc

 $\log. 2,734591 = 542,73875.$

Cet exemple suffit pour faire ressortir l'avantage qu'il y a à chercher les logarithmes limites dans la partie la plus élevée des tables.

were the same

soudre le pro-

Après s'être est pas tout era deux log. le log. pron général en trouve que es log. de 54 grande diffénbe entre les plus loin, lifférence 80

ire, 0,000080, 031, dont les assent celles te ce raison-convient aux nécessaire-t-à-dire qu'il si l'addition gmenter ce 00031 entraî-

arrêter.

omme $\frac{31}{80}$ = quel n'exige our devenir fet, à cause

r que trois

ortir l'avant mes limites s. Il indique encore la marche à suivre daus tous les cas. Elle peut se résumer ainsi :

1º Chercher dans le tables les deux log. consécutifs qui se rapprochent le plus, l'un en plus l'autre en moins, du log. proposé, et prendre note du nombre de quatre chiffres qui correpond dans les tables au plus petit de ces deux log. limites;

2º Retrancher le plus petit de ce deux log. du

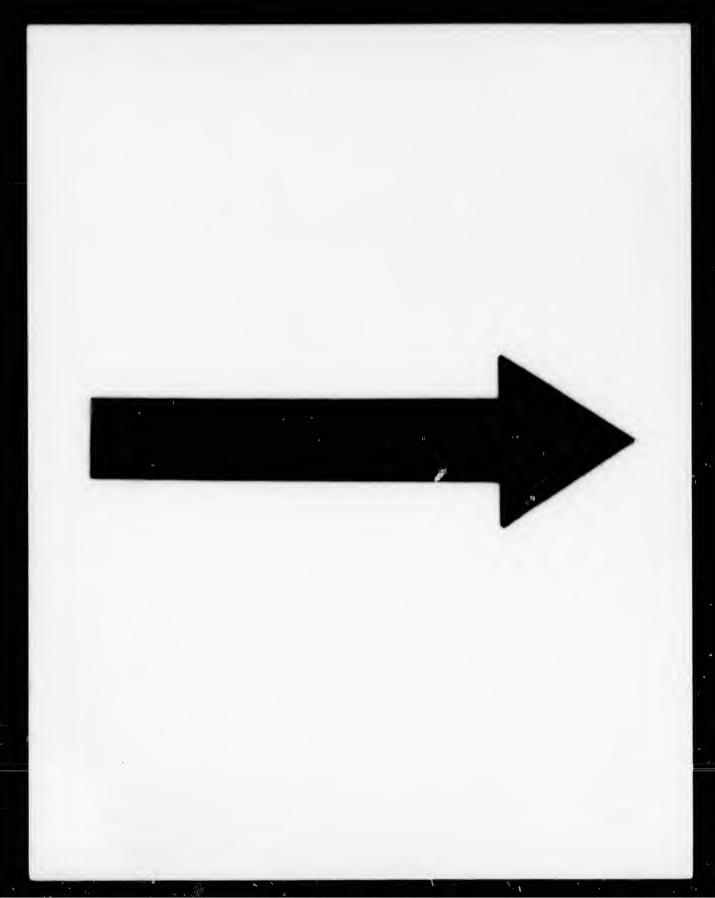
log. proposé;

3º Diviser la différence obtenue par la diff.

tab. correspondante (colome D).

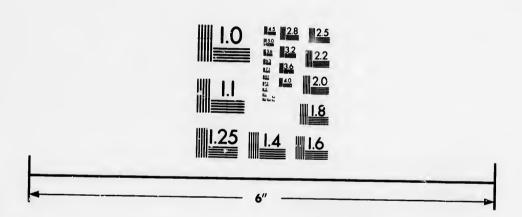
4º Ecrire les décimales du quotient à la suite du nombre de quatre chiffres dont on a pris note précédemment.

5º Donner à la virgule décimale la place


qu'exige la caractéristique. (242)

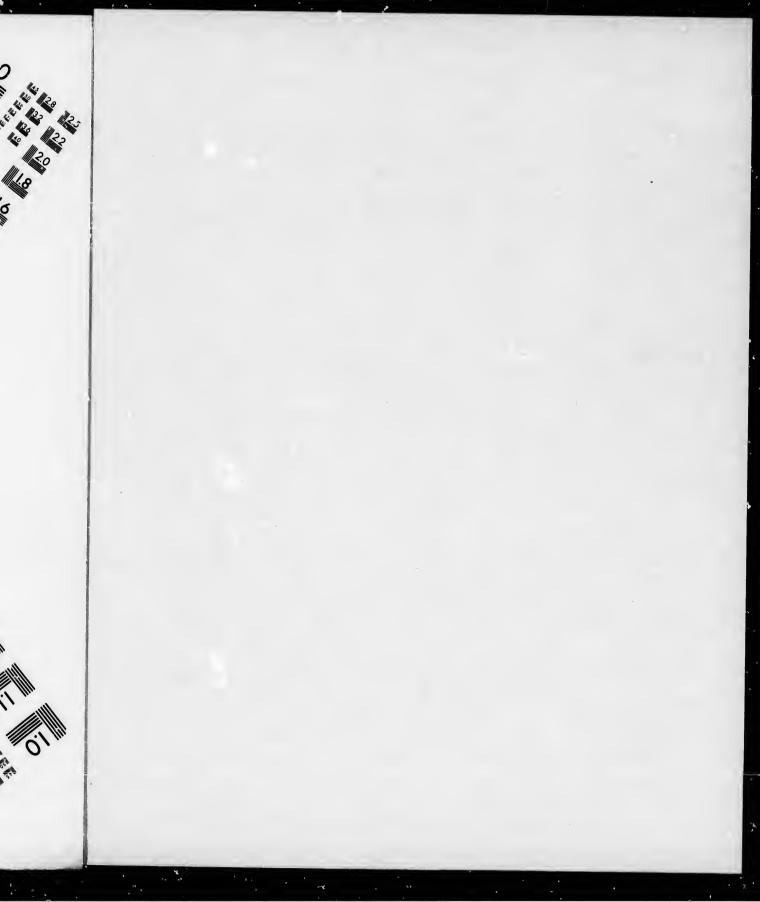
Donnons un 2d exemple. Soit le log. 1, 456982. Ce log. (c'est-à-dire la partie décimale) tombe entre les deux log. tabulaires 456973 et 457125; en d'autres termes, le log. tab. qui approche le plus en moins du logarithme proposé est 456973, auquel correspond dans les tables le nombre 2864. Or, 456982 — 456973 == 9. La division de 9 par la diff. tab. 152 donne le quotient 0,06 qu'on écrit à la suite du nombre 2864. On obtient ainsi le nombre 286406, sur la gauche duquel on sépare deux chiffres, comme l'exige la caractéristique 1, et le nombre demandé est 28,6406.

Dans la pratique, lorsqu'on n'a besoin que d'une approximation ordinaire, les chiffres qui suivent le quatrième se trouvent d'une manière


beaucoup plus expéditive.

Ainsi dans l'exemple du nº 265, on dirait: 31 étant un peu plus du tiers de la diff. tal. 80, il faut écrire à la suite de 5427 des chiffres qui, placés immédiatement à la droite d'une virgule

MI.25 MI.4 MI.8


IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

SIM SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE STA

décimale, donneraient un peu plus du tiers de l'unité, c'est-à-dire quelque chose comme 0,345 ou 0,355..... ou 0,36555..... etc..... Donc

log. 734560 5427

pour $734591 - 734560 = 31 \dots$

donc log. 134591 = 5427,355

Dans ce dernier nombre on peut compter sur l'exactitude des quatre ou même des cinq premiers chiffres. Or, c'est là une approximation dont on se contente souvent (No 266).

QUESTIONNAIRE.

Donnez la théorie des logarithmes? (225..... 231) Quelles sont les propriétés des logarithmes? (232..... 235) Comment a-t-on formé les logarithmes vulgaires ? (236.....

Qu'est-ce que la caractéristique? (242)

Q'avez-vous à remarquer au sujet de la partie décimale? (243)

En quoi différent les logarithmes de deux nombres entiers ou décimaux qui sont exprimés par les mêmes chisfres significatifs....? (244)

Expliquez la disposition des tables? (245..... 250)

Comment trouve-t-on le log. d'un nombre quelconque à l'aide des tables? (252.... 263)

Un logarithme étant donné, comment trouve-t-on le nombre auquel il appartient? (264..... 265)

EXERCICES

SUR L'USAGE DES TABLES DE LOGARITHMES.

133. Calculer les logarithmes des nombres entiers

48000; 31456; 4789536; 30047589500us du tiers de comme 0,345 etc.... Donc

. 5427

0,355

== 5427,355

t compter sur des cinq preapproximation 36).

.... 231) es ? (232.... 235) Igaires ? (236....

artie décimale?

x nombres enmêmes chiffres

.... 250) e quelconque à

ive-t-on le nom-

RITHMES.

es nombres

134. Trouver les logarithmes des nombres fractionnaires

53,2; 377,45; 1,00007.

135. Chercher les logarithmes des fractions ordinaires

$$\frac{5}{8}$$
; $\frac{115}{3845}$; $\frac{3}{111}$; $\frac{111}{9999}$.

136. Trouver les logarithmes des nombres réciproques

$$\frac{11}{7}$$
 et $\frac{7}{11}$; $\frac{156}{36}$ et $\frac{12}{52}$.

Approximation dans les calculs des logarithmes.

265. Les calculs logarithmiques entraînent des erreurs inévitables qui proviennent de plusieurs sources.

1º Les logarithmes étant incommensurables, on ne peut d'abord avoir le logarithme d'un nombre qu'avec approximation, et puisque nos tables donnent six décimales, l'erreur (en plus ou en moins) sera moindre qu'une demi-unité du 6me ordre décimal, ou que 0,0000005. En effet, conformément aux règles d'approximation données en arithmétique, ceux qui ont calculé ces logarithmes ont d'abord cherché 7 décimales, puis supprimant la 7me, ont forcé la 6me (c'est-à-dire l'ont augmentée de 1), ou l'ont gardée telle quelle, suivant que la décimale rejetée surpassait 4 ou non. Il s'en suit que 0,0000005 est l'extrême limite de l'écart qui résulte de cette suppression.

2º Les parties proportionnelles dont nous avons fait usage au nºs 257 et 255 ne sont pas rigoureuses, parce qu'elles supposent que les logarithmes sont proportionnels aux nombres correspondants,

ce qui n'est pas exact; mais l'erreur est peu importante et d'autant plus faible que les nombres

sont plus grands.

3º L'insuffisance des logarithmes est surtout manifeste dans les questions où l'on cherche le nombre correspondant à un logarithme dont la caractéristique est fort élevée. S'il s'agissait, par exemple, de trouver le nombre correspondant au log. 9,626956, on verrait sa partie décimale tout entière en face du nombre 4236; mais la caractéristique 9 annonçant que le nombre demandé contient dix chiffres aux entiers, on serait obligé d'ajouter six zéros au nombre des ta bles, à défaut d'autres chiffres significatifs, et l'on écrirait

 $\log 9,626956 = 4236000000.$

D'ailleurs, on se contente ordinairement de cette approximation, car dans les nombres considérables les chiffres des plus hautes unités donnent seuls une idée de ces nombres.

Emploi des logarithmes dans les calculs.

266. 1re QUESTION. Trouver le produit de plusieurs facteurs au moyen des logarithmes.
Soit proposé d'effectuer le produit suivant:

 $51370 \times 0,517 \times 0,004735 \times 28,5$.

Le principe du nº 232 nous apprend que le logarithme de ce produit est égal à la somme des logarithmes des facteurs, on posera donc

 $\begin{array}{rcl}
\log. 51370 & = 4,710710 \\
\log. 0,517 & = \overline{1,713491} \\
\log. 0,004735 = \overline{3,675320}
\end{array}$

 $\log. 28,5 = 1,454845$

Somme...... 3,554366 log. du produit,

ur est peu im. ie les nombres

es est surtout on cherche le rithme dont la S'il s'agissait, correspondant artie décimale 4236; mais la le nombre desentiers, on seombre des taificatifs, et l'on

00.

nairement de ombres consies unités dons.

s calculs.

roduit de plumes. t suîvant :

28,5.

end que le lola somme des donc

du produit,

Pour faire cette somme, on se rappellera que les décimales étant toutes positives, on doit les additionner ensemble par le procédé arithmétique; quant aux caractéristiques, qui sont les unes positives, les autres négatives, on en fait la somme algébrique, en tenant compte des retenues positives provenant des décimales, et l'on a 7-4=3.

Pour achever la solution de la question proposée, il reste encore à trouver, par le procédé du n° 264, le nombre auquel appartient le logarithme total 3, 554366, et comme l'on obtient 3583,98, ce nombre est le produit demandé.

267. 2º QUESTION. Effectuer une division par les logarithmes.

Supposons d'abord que le diviseur soit plus grand que l'unité, et proposons-nous de trouver le quotient de 93745,241 par 753,9. Le principe du n° 233 donne, pour le quotient demandé q,

log. $q = \log$. 93745,241 — log. 753, 9; ou bien log. 93745,241 = 4,971925 log. 753,9 = 2,877314

Différence..... $2,094641 = \log_{10} q$.

Ce dernier donne ensuite q = 124,35 pour le quotient cherché.

Ce procéde par soustraction, bien simple dans ce cas, devient très-compliqué si le diviseur est supérieur au dividende, parce qu'il conduit aux logarithmes négatifs dont l'emploi est très-embarrassant lorsqu'il y a des diviseurs multiples. Pour éviter ces inconvénients, on a cherché à remplacer, dans tous les cas, la soustraction par une seule addition dont la somme est le logarithme direct du quotient demandé.

On atteint ce but, en substituant au logarithme du diviseur un logarithme équivalent qu'on obtient par la théorie du complément à l'unité.

On nomme complément a l'unité d'une fraction décimale la partie qui lui manque pour faire une unité entière. Ainsi, 0,3 est le complément à l'unité de 0,7, de même que 0,176 est celui de la fraction 0,824, etc.

Hâtons-nous de faire observer qu'on écrit à vue un pareil complément en retranchant de 10 le dernier chissre significatif de la fraction donnée, et de 9

tous les autres chiffres.

Cela compris, reprenons l'opération précédente: le logarithme du diviseur 753,9 étant 2,877314 a pour complément à l'unité de sa partie décimale 0,122686; or, si l'on ajoute et si l'on retranche à la fois ce complément au logarithme du diviseur, ou aura évidemment l'égali-

 $\log.753.9 = 2.877314$ ou bien $\log .753.9 = 2 + 0.877314 + 0.122686 - 0.122686$; mais 0,877314 + 0,122686 = + 1donc log. 753.9 = 2.877314 = 3 - 0.122686;

ce dernier log. +3 - 0,122686 est le logarithme équivalent cherché. Employé sous cette forme, le logarithme du diviseur, devant être retranché de celui du dividende, n'aura qu'à changer de signe, et la soustraction des deux parties décimales sera ramenée à une addition, comme on le voit ci-dessous

 $\log. 93745,241 = 4,971949$

 $\log.753,9 = 3 - 0.122686 \text{ donne} - \log.753,9 = 3.122686$

 $\log q$. . Somme = 2,094635

résultat conforme au précédent,

au logarithme lent qu'on ob. à l'unité.

É d'une fraction pour faire une complément à est celui de la

'on Écrit à vue nt de 10 le derdonnée, et de 9

ration précé-753,9 étant unité de sa n ajoute et si ent au logament l'égali.

ien — 0.122686 ;

,122686;

logarithme cette forme, re retranché changer de parties décicomme on

41 = 4,9719499 = 3,122686

268. Traitons un exemple dans lequel le diviseur est moindre que l'unité. Soit à calculer le

quotient $q = \frac{53,726}{0,0405}$.

D'après le nº 233 on a

 $\log q = \log .53,726 - \log .0,0405$;

et les procédés des nos 259 et 262 nous feront trouver, au moyen des tables, $\log .53,726 = 1,730185$ et $\log .0,0405 = 2,607455$.

Mais le logarithme à soustraire doit subir une modification basée sur le principe établi plus haut, pour rendre additive la partie décimale, c'est-àdire qu'il faut augmenter et diminuer, comme ci-dessus, le logarithme du diviseur du complément à l'unité de sa partie décimale, ce qui donne l'égalité

 $\begin{array}{c} \log 0.0405 = \overline{2.607455} \text{ ou bien} \\ \log 0.0405 = -2 + 0.607455 + 0.392545 - 0.392545; \\ \text{mais} \qquad 0.607455 + 0.392545 = +1; \\ \text{donc le diviseur aura pour logarithme équivalent} \end{array}$

$$\overline{2,607455} = -1 - 0,392545;$$

enfin, ce dernier logarithme, devant être soustrait, change de signe et devient positif, ; il n'y a plus alors qu'a opérer l'addition suivante:

$$-\log. 53,726 = 1,730185$$

 $-\log. 0,0405 = 1,392545$

 $\log q \ldots = 3,122730 \text{ et } q = 1326,57.$

269. De ces deux exemples, résulte une règlebien simple pour effectuer une division par logarithmes, sans prendre la peine d'écrire la transformation précitée.

Règle. Lorsqu'un logarithme doit être soustrait ajoutez algébriquement + 1 à sa caractéristique, écrivez cette caractéristique, ainsi modifiée, avec un signe contraire, et, à la suite de la virgule, mettez le complément à l'unité d' la partie décimale primitive. Il ne reste plus à faire que la somme algé. brique, comme pour la multiplication.

Pour indiquer qu'un logarithme soustractif a subi cette modification, on le fait précéder du signe -, ainsi qu'on l'a vu dans les deux exem-

ples précédents.

Appliquons cette règle à quelques nouveaux exemples.

270. 10 Convertir par logarithmes la fraction vulgaire $\frac{3}{47}$ en fraction décimale.

Les tables donnent $\log. 3 = 0,477121$ $\log 47 = 1,672098 \text{ d'où } - \log 47 = \overline{2},327902$ $\log \frac{3}{47} = \bar{2},805023$

et par suite $\frac{3}{47} = 0.06383$.

271. 20 Trouver le quotient de 56976,348 par 0,000063.

Le calcul tabulaire donne log. 56976,348 = 4,755695 $\log 0.000063 = 5,799341 \text{ d'où} - \log 0.000063 = 4,200659$

 $\log q = 8,956354$

Le quotient demandé est donc q = 904380000.

272. Enfin, pour dernier exemple, traitons une expression fractionnaire telle que

 $q = \frac{0.0831 \times 61.075}{3.14159 \times 0.000682 \times 0.9015}.$

t étre soustrait aractéristique, odifiée, avec un virgule, mettez lécimale primia somme algéion.

e soustractif a précéder du s deux exem-

ies nouveaux

a fraction vul-

3 = 0,477121 $7 = \overline{2},327902$

 $\frac{3}{7} = \bar{2},805023$

59**76,348** par

8 = 4,755695 3 = 4,200659

q = 8,956354

904380000.

traitons une

015

Voici la disposition que l'on donne ordinairement au calcul:

> log. $0,0831 = \overline{2},919601$ log. 61,075 = 1,785864

 $-\log. 3,14159 = \overline{1},502851$

 $-\log 0,000682 = 3,166216$ $-\log 0,9015 = 0,045034$

 $\log q = 3,419566$

Donc le quotient demandé est 2627,642.

273. 3e QUESTION. Élever un nombre à une puissance quelconque par les logarithmes.

Soit le nombre 8,35 qu'on veut élever à la cinquième puissance. D'après la règle du nº 234, il suffira de multiplier par l'exposant 5 le logarithme de 8,35 pour avoir le logarithme de la puissance demandée.

Mais log. 8,35 = 0,921686; donc log. $(8,35)^5 = 5 \times 0,921686 = 4,608430$; et comme ce dernier correspond au nombre 40591,02 on aura enfin $(8,35)^5 = 40591,02$ à $\frac{1}{100}$ près.

274. Proposons-nous de trouver le cube de la fraction décimale 0,0512. Nous aurons

log. $0,0512 = \overline{2},709270$ log. $(0,0512)^2 = 3 \times \overline{2},709270,$ = 3 (-2 + 0,709270),= -6 + 2,127810, $= \overline{4},127810,$

ou bien log. $(0,0512)^3 = 4,127810$, lequel appartient au nombre 0,000134218 qui est le cube demandé.

On voit qu'ici, pour multiplier par 3 le logarithme de 0,0512, il faut opérer séparément sur sa partie positive et sur sa partie négative.

275. 4° QUESTION. Extraire une racine quelconque par les logarithmes.

On demande d'extraire la racine 7e du nombre 2749640; la règle du no 235 indique qu'il faut diviser le logarithme de la puissance par l'indice pour avoir le logarithme de la racine; nous aurons donc

$$\log 2749640 = 6,439276,$$

$$\log \frac{7}{2749640} = \frac{6,439276}{7} = 0,919897;$$

ce dernier correspond au nombre 8,31567... racine demandée.

276. En second lieu, extrayons la racine cubique de 2: nous aurons

$$\log. \sqrt[3]{2} = \frac{1}{3} \log. ? = \frac{0.301030}{3} = 0.100343;$$

lequel appartient à 1,25992... racine cherchée.

277. Soit, pour troisième exemple, $\sqrt[5]{0,00149}$; on a

$$\log 0.00149 = \overline{3.173186}$$

et pour le diviser par 5, il faut poser

$$\frac{-3+0,173186}{5}$$
;

mais pour que cette division soit praticable, il faut que la caractéristique soit un multiple du diviseur. Quand il n'en est pas ainsi, on doit rendre la division possible en ajoutant et en retran-

r par 3 le logaséparément sur négative.

racine quelcon-

e 7° du nombre ne qu'il faut dice par l'indice cine; nous au-

,919897 ;

76,

8,31567... ra-

a racine cubi-

 $\frac{0}{0} = 0,100343;$

e cherchée.

e, $\sqrt[5]{0,00149}$;

praticable, il ultiple du di-, on doit renet en retranchant à la fois assez d'unités entières à cette caractéristique, comme on le voit ci-après:

$$\frac{-3+0,173186}{5}=\frac{-5+2,173186}{5}.$$

On obtient alors pour quotient

$$-1 + 0,434637 = \overline{1,434637}$$
.

Mais ce dernier logarithme correspond au nombre 0,272043; ainsi on aura

$$\sqrt[5]{0,00149} = 0,272043.$$

QUESTIONNAIRE.

Dans les calculs logarithmiques de quelles sources les erreurs proviennent-elles ? (265,1°,2°,3°)

Quel emploi fait-on des logarithmes dans les calculs ?

Qu'appelle-t-on complément à l'unité ? (267) Comment obtient-on ce complément à l'unité ? (267).

EXERCICES

SUR LES CALCULS LOGARITHMIQUES.

Effectuer les opérations suivantes au moyen des logarithmes :

137. $7356945 \times 49857325 \times 6450695000$.

138. $16567,45675 \times 0,0078564 \times 0,4765$.

139.
$$\frac{185426 \times 12567965 \times 769}{75482 \times 9647345}$$

140. $\frac{1865000 \times 1,0000596 \times 8065}{0,09035 \times 0,0000005}.$

141. $(3756825)^{13}$. **144.** $\left(\frac{1}{3}\right)^{3}$

142. $\sqrt{475894359432}$.

143. $3^{\circ} \times (124)^{\circ} \times (9725)^{\circ}$. 145. $\sqrt[3]{\frac{1}{2}}$

\times 8065 0005

144.

145.

CHAPITRE X.

INTÉRÊTS COMPOSÉS.

Intérêts composés.

278. Définition. On dit en général qu'une somme est placée à intérêts composés, lorsque chaque année l'intérêt s'ajoute au capital pour porter intérêt l'année suivante.

Cela posé, cherchons ce que devient, au bout d'un certain nombre d'années n, un capital C pla-

cé à intérêts composés.

Représentons par r l'intérêt annuel d'un franc; 1 fr., placé au commencement d'une année, vaut 1 + r à la fin de cette année, et 2, 3, 4 fr..... vaudront dans un an 2 fois, 3 fois, 4 fois, 1+r; par conséquent, le capital C'deviendra dans un an C(1 + r).

En d'autres termes, il faut multiplier le capital proposé par 1+r pour savoir ce qu'il vaut au bout de l'année, capital et intérêts compris.

Il suit de là que le capital C vaut :

à la fin de la 1^{re} année
and the annee \dots
et à la fin de la n e année

c'est-à-dire que si l'on appelle C' la somme à la quelle s'élève un capital C, placé à intérêts composés pendant n années, on aura la formule

[1]
$$C(1+r)^n = C'$$
.

279. Cette formule des intérêts composés montre que les questions de ce genre renferment toujours quatre quantités: 1° le capital primitif, C; 2° l'intérêt annuel d'un franc, r; 3° la durée du placement, n; 4° enfin le capital définitif, C'.

Chacune des quatre quantités, C, r, n, C', peut être prise tour à tour pour inconnue, de là qua-

tre questions différentes.

280. 1^{re} QUESTION. (C' inconnu.) — On a placé 2000 fr. à intérêts composés au taux de 5 pour 0/0; que devient la créance au bout de la 8^{me} année?

En faisant, dans la formule [1], C = 2000; r = 0.05; n = 8, on aura le capital définitif:

 $C' = 2000 (1,05)^8$ d'où $\log C' = \log .2000 + 8 \log .1,05$ Les tables donnent log. 2060 . . 3,3010308 log. $105 = 8 \times 0,021189$ 0,169512

 $\log \cdot G' = 3,470542$

et par suite C' = 2954 fr. 90.

281. 2me question. (C inconnu.) — On demande quelle somme C il faudrait placer pour produire un capital définitif C' dans n années, au faux r et à intérêts composés.

En d'autres termes, que vaut aujourd'hui une somme C qui n'est payable que dans n années?

La formule [1] devient, dans ce cas,

$$C = \frac{C'}{(1+r)^n}$$

d'où l'on tire log. $C = \log_{10} C' - n \log_{10} (1+r)$,

la somme à laà intérêts comla formule

composés monrenferment touital primitif, C; 3º la durée du léfinitif, C'.

 \mathbf{C} , r, n, \mathbf{C}' , peut nue, de là qua-

o — On a place a de 5 pour 0/0; a 8me année?

1], C = 2000; al définitif:

2000 + 8 log.1,05 060 . . 3,301030 . . . 0,169512

C' = 3,470542

— On demande your produire un yu saux r et à in-

ujourd'hui une s n années? cas.

log. (1+r).

EXEMPLE. Quelle somme faut-il placer à intérêts composés et à 5 0/0 pour qu'elle produise 10000 fr. à la fin de la 15me année?

On substituera, dans la formule précédente, les données C' = 10000; r = 0.05; n = 15; les logarithmes donneront alors

Donc la somme demandée C = 4810 fr. 20.

282. 3^{me} QUESTION. (n inconnue.)—Dans combien d'années une somme C aura-t-elle acquis une valeur C'par l'accumulation des intérêts composés, au taux r?

La formule [1], traitée par les logarithmes, dont l'emploi est ici indispensable, devient

 $\log C' = \log C + n \log (1 + r)$; d'où l'on tire

$$[3] n = \frac{\log \cdot \mathbf{C}' - \log \cdot \mathbf{C}}{\log \cdot (1+r)}.$$

Exemple. En combien d'années un placement de 4810 fr. 20 s'élèvera-t-il à 10000 fr. par les intérêts composés, à raison de 5 0/0?

On aura C = 4810,20; C' = 10000; r = 0,05; et la formule [3] donnera

$$n = \frac{\log. 10000 - \log. 4810,20}{\log. 1,05} = \frac{4 - 3,682165}{0,021189}.$$
ou bien
$$\frac{0,317835}{0,021189} = \frac{317835}{2119} = 15 \text{ ans.}$$

283. Proposons-nous, comme second exemple, de calculer le temps nécessaire pour qu'un capital

place au taux de 5 0/0 et à intérêts composés, se trouve doublé, triplé... décuplé.

Pour simplifier et généraliser la question, prenons pour type le capital un franc, en faisant dans la formule [1] C=1; r=0.05 et successivement C' égal à 2,3... 10, nous aurons pour les diverses suppositions.

 $(1 + r)^n = 2$ pour le double, ou bien

$$n = \frac{\log.2}{\log.1,05} = \frac{0,301030}{0,021189} = 14,206$$

 $(1 + r)^n = 3$ pour le triple, ou

$$n = \frac{\log.3}{\log.1,05} = \frac{0.477121}{0.021189} = 22.517,$$

$$(1+r)^{\circ}=10$$
 pour le décuple, ou

$$n = \frac{\log. 10}{\log. 1,05} = \frac{1}{0,021189} = 47,193.$$

Ainsi, au taux de 5 0/0, une somme est doublée dans 14 ans, 2 mois, 14 jours;

elle est triplée dans 22 ans, 6 mois, 7 jours;

elle se trouve décuplée dans 47 ans, 2 mois, 9 jours.

284 4me QUESTION. (r inconnue.)—A quel taux faut-il placer une somme de 4810 fr. 20 à intérêts composés, pour qu'elle constitue au bout de 15 ans un capital de 10000 fr.?

La formule [1], traitée par les logarithmes, donne

ď

omposės, se troy

a question, preanc, en faisant 0.05 et succesaurons pour les

ien

= 14,206

=22,517,

: 47,193.

me est doublée

, 7 jours;

ans, 2 mois, 9

-A quel taux fr. 20 à intérêts bout de 15 ans

s logarithmes,

 $n \log (1 + r) = \log C' - \log C$ d'où l'on tire log. $(1 + r) = \frac{\log \cdot C' - \log \cdot C}{r}$

et si, dans cette dernière expression, on fait 0'= 10000, C = 4810,20 et n = 15, on aura enfin

 $\log (1+r) = \frac{\log 10000 - \log 4810,20}{15} = \frac{4 - 3,682165}{15}$ $\log_{10}(1+r) = \frac{0.317835}{15} = 0.021189$ ou'bien

d'où 1 + r = 1,05 ou r (intérêt d'un franc) = 0,05.

Le capital primitif a donc été placé au 5 0/0.

285. Remarque. Dans les problèmes qui précèdent, la quantité n représente un nombre entier d'années; il peut arriver cependant que la durée du placement soit fractionnaire, il faut alors remplacer,

dans la formule, n par $\frac{m}{49}$ si le temps est exprimé

en mois, et par $\frac{j}{360}$ s'il est exprimé en jours.

Exemple.—Un cultivateur achète une propriété au prix de 5500 fr., payable dans 4 ans 7 mois, à la condition de tenir compte des intérêts composés à 5 0/0. Quelle somme devra-t-il à l'expiration du délai?

La formule [1] donne

 $C' = 6500 (1.05)^{\frac{5}{12}}$ $\log C' = \log 6500 + \frac{55}{12} \log 1,05$ $\log.6500 = 3,812913$ $\frac{55}{12}$ log. 1,05 = 0,097116

total. . . . 3,910029

d'où C' = 8128 fr. 85,

On doit remarquer ici que, pour les intérêts composés, le temps entrant comme exposant dans la formule, les fractions de temps ne sont pas proportionnelles aux mêmes fractions du taux, comme cela a lieu pour les intérêts simples.

QUESTIONNAIRE.

Qu'appelle-t-on intérêt composé? (278) Quelle est la formule de l'intérêt composé? (278) Donnez des exemples, 1° quand C' est inconnu (280); 2° quand C est inconnu (281); 3° quand n est inconnue (282); 4° quand r est inconnue. (284)

§ I. DES COMBINAISONS.

286. Quand on a un certain nombre d'objets, tels que des boules de diverses couleurs, des lettres, des cartes, des chiffres, etc., il est utile de connaître les divers groupes qu'on obtiendraiten les disposant de toutes les manières possibles. Ces divers groupes se réduisent à trois classes que l'on désigne sous les noms de permutations, arrangements et combinaisons.

1º Permutations.

287. On appelle permutations toutes les dispositions relatives que prend un nombre n d'objets alignés ou réunis en cercle.

288. Ainsi, deux lettres a et b donnent les deux

permutations ab, ba.

Si nous prenons une troisième lettre c et que nous l'écrivions successivement à toutes les places possibles dans les deux permutations précédentes, nous formerons les six permutations de trois lettres, qui suivent:

ra

abc, acb, cab, bac, bca, cba.

De même, l'introduction d'une quatrième let tre d dans ces six permutations de 3 lettres don

pour les intérêts ne exposant dans mps ne sont pas actions du taux, rêts simples.

E.

(8) aposé? (278)

est inconnu (280); and n est inconnue

SONS.

nombre d'objets, ouleurs, des let ..., il est utile de on obtiendraiten nières possibles. It à trois classes de permutations,

outes les disposiombre n d'objets

lonnent les deux

le lettre c et que à toutes les planutations précépermutations de

, cba.

e quatrième letde 3 lettres donhera $6 \times 4 = 24$ permutations de 4 lettres, parce que d pourra occuper quatre places successives dans chaque groupe de trois lettres.

En continuant ainsi, on trouvera que le nombre des permutations de 5 lettres s'obtient en multipliant par 5 le nombre des permutations de 4 lettres, et ainsi de suite. On a donc en général

 1×2 pour le nombre des permutations de 2 objets, $1 \times 2 \times 3$ pour les permutations de 3

 $1 \times 2 \times 3 \times 4$ pour 4

et pour n objets

1. 2. 3. 4. 5 \dots [1]

c'est-à dire que, pour avoir le nombre total des permutations dont n objets sont susceptibles, il faut faire le produit de tous les nombres entiers depuis 1 jusqu'à ce nombre n.

2º Arrangements.

289. Quand on a sous la main un tas m d'objets et qu'on le subdivise en groupes de 2, de 3, de 4... de n objets, et cela de toutes les manières possibles, on forme les assemblages appelés arrangements 2 à 2, arrangements 3 à 3... arrangements n a n.

290. Prenons les 25 lettres de l'alphabet et, à la suite de chacune d'elles, écrivons alternativement chacune des 24 autres pour obtenir les arrangements suivants:

ab,	ac,	ad,	ae.			•			az;
ou,	oc,	ou,	be.						bz:
ca,	co,	cd,	ce.	•	•	•	•	•	cz;

Nous obtiendrons ainsi 25 lignes horizontales contenant chacune 24 groupes de 2 lettres et nous aurons formé les $25 \times 24 = 600$ arrangements 2 à 2 que peuvent fournir ces 25 lettres; nous en conclurons que m objets groupés 2 à 2 donnent un nombre d'arrangements exprimé par le produit m (m-1).

Pour obtenir les arrangements 3 à 3 de 25 lettres données, il faudrait écrire alternativement à la suite des arrangements 2 à 2 chacune des 23 lettres restantes, ce qui fournirait le nombre 25 \times 24 \times 23 = 13800 arrangements 3 à 3; ainsi, le produit m(m-1) (m-2) exprime en général le nombre d'arrangements 3 à 3 que peuvent donner m objets.

Nous trouverions de même la formule m(m-1) (m-2) (m-3) pour le nombre des arrangements 4 à 4 que fournit un nombre m d'objets, et

ainsi de suite.

Enfin nous aurons la formule générale

$$m(m-1) (m-2) \dots (m-n+1)$$
 [2]

pour calculer le nombre d'arrangements n à n dont m objets sont susceptibles.

291. Arrangements avec répétition. Il est quelquefois utile de considérer les arrangements faits avec répétition, c'est-à-dire, en réunissant chaque objet à lui-même, comme on le réunit aux autres; dans ce cas, la formule n'est plus la même.

Reprenons les 25 lettres de l'alphabet et assemblons-les 2 à 2, comme on le voit ci-après :

$$aa$$
, ab , ac , ad ba , bb , bc , bd

chaque ligne horizontale comprendra 25 arrangements 2 à 2, à cause des répétitions aa, bb...... et nous aurons en tout 25 \times 25 = 625. Ainsi m ob-

nes horizontales
2 lettres et nous
arrangements 2
lettres; nous en
és 2 à 2 donnent
né par le produit

s 3 à 3 de 25 letternativement à chacune des 23 tit le nombre 25 ts 3 à 3; ainsi, ime en général ue peuvent don-

ormule m(m-1) re des arrangere m d'objets, et

générale

-n+1) [2]

gements n à n

Il est quelquengements faits nissant chaque init aux autres; a même.

habet et assemci-après :

• • •

dra 25 arrange is aa, bb...... et 25. Ainsi m objets forment m^2 arrangements 2 à 2 avec répétition.

Pour les arrangements 3 à 3, nous aurons des groupes tels que

aaa, aab, aac......bba, bbb, bbc......

c'est-à-dire que chaque arrangement 2 à 2 nous donnera 25 arrangements 3 à 3, à cause de la répétition aaa, bbb...... et le total s'élèvera au cube de 25 ou à $25 \times 25 \times 25 = 15625$. Ainsi, m objets forment un nombre d'arrangements 3 à 3 avec répétition exprimée par la 3^{me} puissance de m ou m^3 ; et, en général, m^n exprime le nombre d'arrangements n à n que peuvent fournir m obj ts groupés avec répétition.

3º Combinaisons.

292. Parmi les divers arrangements qu'on peut former avec m objets, groupés n a n, on nomme spécialement combinaisons ceux de ces assemblages qui diffèrent les uns des autres par un, au moins, de ces objets.

293. Si nous voulons former les combinaisons 2 à 2 des lettres de l'alphabet, nous prendrons d'abord la première lettre a et nous écrirons alternativement à la suite les autres 24 lettres

ab, ac, ad, ae. az,

ce qui nous donnera 24 combinaisons 2 à 2. Ensute, nous prendrons la seconde lettre b et nous placerons alternativement à la suite les 23 lettres restantes, pour obtenir les 23 combinaisons bc, bd, be...... bz.

Nous prendrons de même la 3^{mc} lettre c et nous écrirons, alternativement après, chacune des 22

lettres qui la suivent, pour obtenir les 22 combinaisons

et ainsi de suite, en ayant soin de ne placer auprès de chaque lettre que celles qui sont après elle dans l'ordre alphabétique, sans revenir jamais en arrière. Par ce moyen, on évite la formation des groupes qui constituent les permutations de deux mêmes lettres, et, par cela même, on obtient un nombre de combinaisons 2 à 2 deux fois moindre que le nombre des arrangements.

Ainsi, 25 lettres donnent $\frac{25 \times 24}{2}$ = 300 combi-

naisons 2 à 2; et, en général, le nombre de combinaisons binaires qu'on peut obtenir avec m objets est exprimé par la formule

$$\frac{m(m-1)}{2}$$

294. Passons aux combinaisons 3 à 3 ou ternaires. Pour les former, il faut prendre les combinaisons binaires, et écrire à leur suite, alternativement, chacune des 23 lettres qui, dans l'ordre alphabétique, occupent les rangs inférieurs à celui de la dernière lettre du groupe binaire dont on s'occupe; on évite ain i de comprendre les permutations qu'on ne manqueraît pas de former si l'on revenait en arrière. Mais 3 lettres donnent (n° 288) six permutations; donc le nombre des combinaisons 3 à 3 est six fois moindre que celui des arrangements, et nous

aurons $\frac{25 \times 24 \times 23}{2 \cdot 3} = 2300$ pour le nombre des

combinaisons ternaires que donnent les 25 lettres,

les 22 combi-

. cz;

ne placer aujui sont après ns revenir jan évite la fort les permutatr cela même, ons 2 à 2 deux arrangements.

= 300 combi-

mbre de comnir avec m ob-

3 à 3 ou tert prendre les
leur suite, altres qui, dans
s rangs infére du groupe
ain i de come manqueraît
arrière. Mais
atations; donc
3 est six fois
ents, et nous

le nombre des

les 25 lettres,

Ainsi, la formule $\frac{m(m-1)(m-2)}{2 \cdot 3}$ exprime

le nombre de combinaisons 3 à 3 dont m objets sont succeptibles.

295. Sans aller plus loin et par induction, nous voyons que la formule générale donnant le no:nbre des combinaisons n à n qu'on peut former avec m objets est

$$\frac{m (m-1) (m-2) (m-3) (m-n+1)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot n}$$
 [3]

En d'autres termes, le nombre des combinaisons de m objets, pris n à n, est égal au quotient qu'on obtient en divisant le nombre des arrangements n à n par le nombre des permutations que

comporte l'un de ces arrangements n à n.

206. Nous devons faire observer que le facteur 1 écrit au dénominateur n'est là que pour donner une forme symétrique à la formule et que les lettres, employées dans les démonstrations précédentes, représentant indifféremment des chances, des événements, des données quelconques, la soule importance de ces formules consiste dans les nombres et les rapports qu'elles fournissent.

Appliquons cette théorie à quelques exemples. 297. Problème I. De combien de manières différentes huit personnes peuvent-elles se placer autour d'une table?

Cette question revient à demander quelles sont les permutations dont 8 objets sont susceptibles. Il faut donc employer la formule [1] dans laquelle on fera n=8, et l'on aura

1.2.3.4.5.6.7.8 = 40320;

donc 8 personnes pourront diner ensemble 40320

fois pour épuiser toutes les positions diverses qu'elles peuvent prendre les unes relativement aux autres.

298. PROBLÈME II. Au jeu de whist ou de boston, on donne à chaque joueur 13 cartes sur 52; combien a-t-on de combinaisons?

Chaque joueur aura une des combinaisons 13 à 13 des 52 cartes; la formule [3] donne

$$\frac{52 \cdot 51 \cdot 50 \cdot \dots \cdot 41 \cdot 40}{1 \cdot 2 \cdot 3 \cdot \dots \cdot 12 \cdot 13} = 635 \cdot 013 \cdot 559 \cdot 600.$$

299. PROBLÈME III. Un coffre-fort est fermé par une serrure à combinaisons à deux ou trois boutons. On demande combien de mots on peut former avec l'un ou avec l'autre système.

On nomme serrure à combinaisons une serrure dont le mécanisme est en rapport avec deux ou trois boutons extérieurs, mobiles sur leur axe, ayant chacun sur la circonférence les 25 lettres de l'alphabet. Or, pour que la clé fonctionne, il faut que la lettre choisie à chaque bouton soit amenée sur un point de repère; les lettres ainsi disposées forment alors un mot qu'on appelle le secret de la serrure Ce mot, composé de 2 ou 3 lettres, peut être changé à volonté au moyen d'une opération très-simple.

Cela posé, la solution du problème n'est plus qu'une application du nº 293, dans lequel nous avons donné la formule des arrangements avec répétition.

En effet, les deux boutons fournissent (25)² = 625 groupes de 2 lettres; avec 3 boutons on aura (25)³ = 15625 groupes de 3 lettres. Parmi ces groupes, il est facile de trouver un grand nombre de mots ou d'initiales de noms propres.

300. PROBLÈME IV. Au jeu de piquet, on a 32 cartes; on en donne 12 à chaque joueur et on en laisse

tions diverses relativement

st ou de boston, ur 52; combien

mbinaisons 13 lonne

35 013 559 600.

t est fermé par u trois boutons. eut former avec

as une serrure avec deux ou sur leur axe, e les 25 lettres lé fonctionne, ue bouton soit es lettres ainsi qu'on appelle mposé de 2 ou onté au moyen

eme n'est plus ns lequel nous ngements avec

3 boutons on ettres. Parmi ever un grand coms propres. Let, on a 32 carcet on en laisse

8 au talon; on demande les jeux dissérents que l'on peut ainsi obtenir.

La distribution indiquée fournit en réalité 3 tas; le premier tas, de 12 cartes, est une des combinaisons 12 à 12 des 32 cartes; il reste 20 cartes. Les deux autres tas appartiennent à l'une des combinaisons 12 à 12 ou 8 à 8 (ce qui revient au même) des 20 cartes restantes; or, chacune de ces dernières combinaisons peut se combiner avec toutes les combinaisons du premier tas, d'où il suit que pour avoir les jeux différents demandés, il faut multiplier le nombre des combinaisons du premier groupe par le nombre des combinaisons du second; on posera donc

 $\frac{32.31.30.29...23.22.21}{1.2.3.4...10.11.12} \times \frac{20.19.18...14.13}{1.2.3...7.8};$

ce qui donne le nombre 28443124054800.

QUESTIONNAIRE.

Qu'entend-on par "Combinaisons"? (287) Qu'appelle-t-on "Permutations"? (288) Donnez la formule générale ? (888) Qu'appel e-t-on "Arrangements"? 289—291) Donnez la formule générale. (292) Qu'appelle-t-on spécialement "Combinaisons"? (294) Quelle est la formule générale? (297) Donnez quelques exemples. (299... 301)

EXERCICES ET PROBLÈMES

SUR LES COMBINAISONS.

146. De combien de manières peut-on distribuer 21 objets en tas de 6 et de 15?

147. On demande le nombre total des combinaisons 2 à 2, 3 à 3, etc..., 6 à 6 qu'on peut for-

mer avec les 7 couleurs primitives du spectre solaire (sans avoir égard aux nuances infinies qu'on obtient, en faisant varier les proportions relatives de ces couleurs).

148. Calculer le nombre de coups différents qu'on peut amener au jeu de dés: 1° avec un dé; 2° avec deux dés; 3° avec trois dés, etc..., et, en général, aveé n dés.

149. Quels sont les mots français qu'on peut former avec les cinq lettres qui composent le nom de MARIE?

es du spectre soes infinies qu'on oportions relati-

coups différents: 1º avec un dé; lés, etc..., et, en

içais qu'on peut i composent le

SOLUTIONS DES EXERCICES ET PRO-BLÈMES D'ALGEBRE.

ADDITION.

13.
$$(7a-6b)+(5a^2-b^2+c)$$
.

$$\frac{14. \ 13am^3 - 9a^2m + a^2 + 7a^2m^2 + 5am^2}{-a^3b}$$

Pois faisant la réduction des termes semblables $18a m^2 - 9a^2m + a^2 + 7a^2m^2 - a^3b$.

15. Disposant les termes semblables les uns au-dessous des autres : (nº 35).

$$\begin{array}{c}
4y + 3 & ab + 4c + x + x^2 + d \\
-2y + 5ab - 3c + x \\
-2y \\
- y
\end{array}$$

Somme
$$-\overline{y+8ab+c+2x+x^2+d}$$
.

16.
$$(a + \sqrt{b}) + (a - \sqrt{b})$$
 ou bien 2a.

17. La somme algébrique de ce qui reste dans la bourse est a + b - c.

18.
$$x + 5a - b + 3c$$
.

SOUSTRACTION.

19. On change les signes de la quantité à soustraire; la quantité 7a - 5b devient -7a + 5b et l'on a

$$9a + 3b - c$$

$$-7a + 5b$$

Différence algébrique 2a + 8b - c

20. $5a^{\circ} - 2a - 3a^{2} + 8a + 4$, et après réduction des termes semblables, l'on a $2a^{\circ} + 6a + 4$.

21.
$$6m^3 - 12n^2 + 7n + 5 \frac{5}{4}$$
.

22.
$$x - 13$$

23.
$$s-x$$

24.
$$4x^3 - 7x + 6$$

25.
$$6a^2-4a+3b-4$$

26.
$$-y^2 - 0 + 4a$$

MULTIPLICATION.

28.
$$56a^2 b^3 c x y$$
 31.—91 $a^4 b^2$

33.
$$2a^4 - 10a^3b + 6a^2b^2 - 2ab^3$$

34.
$$a^6 - a^4b + a^2b^2 - a^4 + a^2b - b^2$$
.

$$6a^{4} + 10a^{4}b + a^{3}b - 14a^{3}b^{2} + 9a^{3}b + 3\frac{1}{2}a^{2}b^{3} + \frac{1}{3}ab^{4}.$$

$$a^{6}b + a^{5}6^{2} + a^{4}b^{3} + a^{3}b^{4} + a^{2}b^{4} + ab^{6}$$

35.
$$(x-y)(x+y)$$
.

36.
$$(10-4)(10+4.)$$

DIVISION.

38.
$$-5ab^2$$
 ou $-5ab^2c^0$.

39.
$$-4a^3b^2c^3$$
 on $4a^3b^2c^3x^6$,

4, et après ré, l'on a 2a* + 6a

N.

 $\begin{array}{ccc}
2a & b^3 \\
a^2b & --- b^2 \\
a^3b & + 3\frac{1}{2}a^2b^3
\end{array}$

 $+ab^6$

caxe,

40. $7a^4b^4x^2$ ou $7a^4b^4c^0x^2$.

41.
$$\frac{12x^{5} - 13x^{4} - 34x^{3} + 39x^{2}}{12x^{5} - 21x^{4}} \left(\frac{4x^{2} - 7x}{3x^{2} + 2x^{2} - 5x + \frac{4x^{2}}{4x^{2} - 7x}} \right) \\
+ \frac{8x^{4} - 34x^{3}}{6 + 8x^{4} - 14x^{3}} \\
- \frac{20x^{3} + 39x^{4}}{6 + 4x^{2}}$$

42.
$$x^4 - \frac{1}{4}x^3 + \frac{1}{4}x^2 - \frac{1}{4}x \left(\frac{x^2 - \frac{1}{2}x}{x^2 - \frac{1}{4}x + \frac{1}{4}} \right)^2 - \frac{1}{4}x^3 + \frac{1}{4}x^2 - \frac{1}{4}x + \frac{1}{4}x^2 -$$

43. $a^3 + 3a^2b + 3ab^2 + b^3$.

44. — à l'unité, $a^0 = 1, b^0 = 1^-$

45. $\frac{2+x^2}{3}$

46. 1

FRACTIONS.

47. $\frac{a n p}{b n p}$ $\frac{b m p}{b n p}$ $\frac{b n x}{b n p}$

48. Réduire $\frac{2x}{3}$ $\frac{5x}{b}$ et $\frac{4a}{5}$ à un dénominateur commun.

$$\begin{array}{l} 2x \times b \times 5 = 10bx \\ 5x \times 9 \times 5 = 75x \\ 4a \times 3 \times b = 12ab \\ \hline 3 \times 5 \times 5 = 15b \end{array} \begin{array}{l} \text{nonveaux} \\ \text{numérateurs} ; \\ \hline 3 \end{array} \begin{array}{l} \text{D'où les fractions} \\ \text{demandées sont} \\ \hline 10bx & 75x \\ \hline 15b \end{array} \begin{array}{l} 12ab \\ \hline 15b \end{array} ,$$

49. Soit $\frac{2x+1}{5}$ et $\frac{3x}{4}$, à réduire à un com. déno. minateur.

Ici
$$(2x + 1) \times 4 = 8x + 4$$
 nouveaux numérateurs; $5 \times 4 = 20$ com. dénominateur;

D'où
$$\frac{8x + 4}{20}$$
 et $\frac{15x}{20}$.

50. Soit
$$\frac{14x^3 + 7ax + 21x^2}{35x^2}$$
 à réduire à sa

plus simple expression.

Le coefficient de chaque terme du numérateur et du dénominateur de cette fraction est divisible par 7, et la lettre x se rencontre aussi dans chaque terme; donc 7x divisera le numérateur et le dénominateur sans reste.

D'où la fraction réduite à sa plus simple ex-

pression est
$$\frac{2x^2 + a + 3x}{5x}$$
.

51. Ajouter les fractions
$$\frac{a}{b}$$
, $\frac{2a}{3b}$, $\frac{5b}{4a}$

$$\frac{a \times 3b \times 4a = 12a^{2}b}{2a \times b \times 4a = 8a^{2}b} \cdot \frac{12a^{2}b + 8a^{2}b + 15b^{3}}{12ab^{2}} = \frac{20a^{2}b + 15b^{3}}{12ab^{2}}$$

$$\frac{5b \times b \times 3b = 15b^{3}}{b \times 3b \times 4a = 12ab^{2}}$$

$$= (\text{divisant par } b) \frac{20a^{2} + 15b^{3}}{12ab} \quad \text{la}$$

somme demandée.

52.
$$\frac{a + bx}{b}$$
54. $\frac{a c}{b c d}$
53. $\frac{7c}{d}$
55. $\frac{3ax - 5a}{4x^2 - 6}$

ire à un com. déno.

nouveaux numérateurs; lénominateur;

à réduire à sa

ne du numérateur raction est divisicontre aussi dans era le numérateur

a plus simple ex-

$$\frac{2a}{3b}, \frac{5b}{4a}.$$

$$\frac{15b^3}{12ab^2} = \frac{20a^2b + 15b^3}{12ab^2}$$

$$\frac{20a^2 + 15b^3}{12ab}$$

 $\frac{a \ c}{b \ c \ d}$ 3ax - 5a

mandée.

 $\frac{3ax-5a}{4x^2-6}$

56. $\frac{5a^4d - 25d - 5a^4c + 25c}{5a^3c + 25c - 5a^3d + 25d}$

Ou
$$\frac{(d-c)(5a^4-25)}{(c-d)(5a^3+25)}$$

ÉQUATIONS (1er degré).

57. En transposant les termes — 7 et 3x, on obtient d'abord

$$5x - 3x = 9 + 7$$

et en simplifiant cette dernière, on aura

$$2x = 16$$
, d'où $x = \frac{16}{2} = 8$.

Vérification. En substituant à la place de x sa valeur 8 dans l'équation proposée, on obtient

5.8-7=3.8+9, ou 40-7=24+9 ou enfin, 33=33, identité qui prouve la vérité de la solution trouvée x=8.

58. x = 5. 61. x = 6.

59. x = 6. 62. x = 24.

60. x = 12. 63. x = 60.

MISE EN ÉQUATION.

64. Il convient de représenter par α le nombre des cavaliers, et alors le nombre des artilleurs sera 3x, et celui des fantassins, etc. (Rép. 200 cav, 600 art., 1800 fant.)

65. x représentant le prix de l'habit, 200 + x sont les gages de l'année ou de 12 mois, 160 + x

ceux de 10 mois; on aura donc, etc. (Rép. 40 piastres.)

66. (404, 424, 472 piastres).

67. Dans x années le père aura 49+x, et le fils 11 + x; donc, etc. (Rép. 8 ans.)

68. 8100 piastres et 9 enfants.

GÉNÉRALISATION.

69.	37 .	72.	372.
7 0.	13,5.	73.	12.
71.	165.	74.	32 et 45.

75. On représente par n le nombre proposé, par a et b les diviseurs et par c la somme des quotients; alors, en désignant par x l'une des parties, l'autre sera n-x, et l'on posera l'équation du problème. Cette équation résolue donnera, pour les parties demandées, les expressions suivantes:

Rép.
$$\frac{a(bc-n)}{b-a}$$
 et $\frac{b(n-ac)}{b-a}$.

76. Remarquons ici que la vitesse du premier courrier est $\frac{23}{3}$, celle du second $\frac{42}{3}$, et que le premier est en avance de $\frac{23}{3} \times 9 = 103 \frac{1}{2}$ milles. (Rép. 349 m. $\frac{3}{4}$.)

77. Dans ce genre de problèmes il y a deux espèces d'unités, et les nombres qui s'y rapportent ne peuvent entrer dans une équation qu'après avoir été ramenés à une même espèce. En conséquence nous représenterons par x les sauts du lévrier demandés, nous chercherons le nombre de sauts du renard, et nous comparerons ensuite ces deux nombres à leur valeur respec-

onc, etc. (Rép. 40

ra 49 + x, et le fils

ON.

372.

12.

32 et 45.

nombre proposé,
c la somme des
par x l'une des
l'on posera l'ééquation résolue
ndées, les expres-

tesse du premier 42, et que le pre-= 103 1, milles.

mes il y a deux qui s'y rappore équation qu'aème espèce. En s par x les sauts cherons le nomcomparerons en valeur respective Or, puisque le renard fait neuf sauts pendam que le lévrier en fait six, lorsque ce dernier en fait x le renard en fera un nombre marqué par

$\frac{9}{6}x$, ou bien $\frac{3}{2}x$;

mais le renard avait 60 sauts d'avance, ainsi il fera en tout $60 + \frac{3}{2}x$ sauts pour parcourir l'espace que le lévrier fait en x sauts. Ces deux nombres de sauts, bien que mesurant la même distance, sont rapportés à des unités différentes et ne peuvent ainsi fournir une équation; mais si l'on se rappelle que 3 sauts du lévrier valent 7 sauts du renard, on verra que le nombre x doit être les $\frac{3}{4}$ du nombre $60 + \frac{3}{2}x$, et l'on en déduira l'équation du problème. (Rép. x = 72.)

CAS D'IMPOSSIBILITÉ, ETC.

88. (Absurde)

89. (Absurde)

90. De — 1, c'est-à-dire qu'il faut diminuer chaque terme de 1.

91. C'était il y a cinq ans.

92. Le père avait 23 ans et le fils devait naître dans un an, (1801).

93. (Absurde).

DISCUSSION DES FORMULES ALGÉBRIQUES.

94. Pour la discussion de cette formule, on prend pour modèle la discussion du chapitre IV (134...) et on développe la formule...

ANALYSE INDÉTERMINÉE (1er degré)

95. De deux manières: pièces de 20 francs,, 34 ou 8; pièces de 40 fr., 11 ou 32.

96. De o manières.

97. Il y avait 30 Rhétoriciens et 5 Philosophes, ou 22 R. et 12 P., ou 14 R. et 19 P. ou enfin 6 R. et 26 P.

98. Nombre des œufs de la 1ère: 63, || 23 2de: 37, || 79.

EQUATIONS A DEUX TERMES

101. $x = \pm 7$.

102. $x^2 = 13,5...$ et $x = \pm 3.6722$.

103. == ± 2.309

104. $x = \pm \sqrt{6-a^2}$.

105. $x = \pm \frac{a}{b}$

EQUATIONS DU 2º DEGRE.

106.
$$x = \frac{2}{\sqrt{3}}$$
107. $x = \pm \sqrt{\frac{a}{b(m-n)}}$

7, 10, 13, 16.

7, 8, 9, 10.

24, 18, 12, 6. 6, 9, 1, 4

2, 23, 28, 29. 3, 2, 9, 3.

et 5 Philosophes, 19 P. ou enfin 6

1ère: 63, || 23 2de: 37, || 79.

TERMES

722.

1

EGRE.

108. x' = 8; x'' = -2,25.

109. x' = 5; x'' = -41.

110. x' = 2; $x'' = -\frac{4}{3}$

111. 48. 112. 3m, 48.

113. 5 secondes, 2 tierces.

114. 207 mêtres.

QUESTIONS DE MAXIMUM ET DE MINIMUM.

115. $x = \sqrt{a}$ 116. x = a

117. $\frac{a}{2} \times \frac{a}{2} = \frac{a^2}{4}$

118. Le carré inscrit.

PROGRESSIONS.

119. 46. 120. 7½.

121. $\div 2.5.8.11.14.17.20$.

122. $\div 3.4,4.5,8.7,2.8,6.10,0.11,4.$ 12,8.14,2.15,6.17,0... etc.

123. 36.

124. $\therefore \div 3 \cdot 15 \cdot 75 \cdot 375$.

125. 155. **126.** 510.

127. La raison est 1,011,

128. Le 15me mètre 11 fr. 15, le tout 104 fr. 25.

129. 42949672 fr. 95.

130. 10 ou bien — 11.

131. Voici le sens que l'on doit attacher à la valeur négative — 11: comme pour obtenir le nombre 55, il faut prendre, en allant, vers la droite, 10 termes (dont le premier est + 1) ainsi, pour obtenir cette même somme absolue 55 en allant vers la gauche, il faut prendre, non plus 10, mais 11 termes de la progression. Le premier de ces 11 termes sera 0.

$$-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2$$

-1...0...1+2+3+4+5+6+7+8+9+10.

132. Il suffit de calculer la raison qui sera la même partout et qui est

$$q = \sqrt[3]{2} = \sqrt[3]{2} = 1,08...$$

SUR L'USAGE DES TABLES DE LOGARITHMES.

133. 4,681241; 4,497704; 6,680294; 10,477700.

134. 1,725912; 2,576860; 5,410674; 0,000029.

135. 1,795880; 2,475802; 2,431798; 2,045366.

136.
$$\log \frac{11}{7} = 0,196295$$
; $\log \frac{156}{36} = 0,636822$.

$$\log \frac{7}{11} = \overline{1,803704}$$
; $\log \frac{12}{52} = \overline{1,363177}$.

, le tout 194 fr. 25.

doit attacher à la pour obtenir le en allant, vers la tier est + 1) ainsi, me absolue 55 en prendre, non plus ssion. Le premier

$$5 - 4 - 3 - 2$$

 $7 + 8 + 9 + 10$.

raison qui sera la

1,08...

BLES DE

3.

30294; 10,477700.

10674; 0,000029.

31798; $\overline{2}$,045366.

 $\frac{156}{36} = 0,636822.$

 $\frac{12}{52}$ - $\overline{1,363177}$.

CALCULS LOGARITHMIQUES.

137. On trouvera le nombre 236608 suivi de 17 zéros.

138. 62.02.

139. 2461.

140. 332974600000000.

141. On trouvera le nombre 296942 suivi de 80 zéros.

142. 19,838.

143. On trouvera le nombre 979957 suivi de 27 zéros.

144. 0.000000000003729765.

145. 5. 0. 98 756

COMBINAISONS.

146. de 54 264 manières.

147, 126,

148. En général le nombre de coups possibles lest exprimé par le nombre 6 des faces de puissance marquée par le vés. Ainsi on aura, avec 1 dé ... 6 chances, to 63 ... avec 1 dés ... 65.

149. On fera tous les arrangements 1 à 1, 2 à 2, 3 à 3... de ces cinq lettres, et l'on trouvera dans le nombre les mots suivants a, ai, mi, me, ri, rie, mai, mer, mie, ami, ame, air, are, ire, ira, aire, mare, mari, mai, mire, amie, aime. arme, mira, rame, raie, rime, Remi, èmir, maire, aimer.

N. B. On voit par cet exemple que la théorie des combinaisons sert encore à la formation des anagrammes et des logogriphes.

N The same of the sa

TABLES DE LOGARITHMES.

LOGARITHMES DES NOMBRES ENTIERS DEPUIS 1 JUSQU'A 10,000, AVEC DIFFÉRENCES TABULAIRES ET PARTIES PROPORTIONNELLES.

			Non	nbre	de 1 à	100.			
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
1	0.000000	21	1-322219	41	1.612784	61	1.785330	81	1.90848
2	0:301030	22	1:342423	42	1.623210	62	1.792392	82	1.91381
3	0.177321	23	1:361723	43	1:633168	60	1.799341	83	1.91907
4	0.602060	21	1:380211	41	1:043353	64	1.806180	84	1.924279
5	0.698970	25	1:397910	45	1:653213	65	1.812913	85	1-929410
6	0 778151	20	1.414973	46	1:662758	66	1.819544	86	1.934498
7	0.845093	27	1:431364	47	1:672008	67	1.826075	87	1.939519
8	0:903090	28	1:437358	48	1:681241	68	1:832509	88	1.94448
9	0.953213	29	1:462398	49	1.690396	69	1:838849	89	1.949396
10	1.000000	30	1:477121	60	1.698970	70	1.845098	90	1.95424
В	1:041393	31	1:491362	51	1.707570	71	1:851258	-	
32	3-079191	32	1.505150	52	1.716003	72	1.857332	91	1.959041
3.2	3 133943	33	1.618514	63	1.724276	73	1.863323	92	1.963788
14	3/3/46128	31	1.631479	54	1.732394	74	1.869232	94	1:968485
15	3 · 176093	35	1.644068	65	1.740363	75	1.875061	95	1·973128 1·977724
10	3:204120	36	1.556303	50	1 m (0 4 0 c)		-		
17	1:230119	37	1.568202		1.748188	76	1.880814	96	1.982271
13	1.255273	39	1:679783	67	1.755 75	77	1.886491	97	1.986772
19	1:278731	39	1:591065	68	1.763423	78	1.892095	98	1.991226
20	1.301030	40		69	1.770852	79	1.897627	99	1.995638
	2 4010.47	21)	1 002060	do	1.778151	80	1.903090	100	2.000000

PP	N.	0	1	2	3	4	5	6	7	8	9	D
41	100	000000			001301			002598	003029	003461	00339	1 43
83	1 2	4321 8600								7745		12
124	3	012837										42
166	4	7033	7451				4940 9116		5779 9947	6197 020361	661	
207	- 5	021189	021603	022016					024075	4486		416
243 290	6	5306					7350	7757	8164	8571	8978	
331	8	9384 033424	9789 033826	030195 4227					032216	032619	[033021	404
373	9	7426				5029 9017	5430 9414		6230	6629 040602	702	400
•	110	041393				042069	043362	043755	044148	044540	-	-
38	1 2	5323	5714			6885	7275	7664	8053	8442	883	
$\frac{76}{113}$	3	9218 053078	9606 053463		0503S0 4230				051924		052691	3.6
151	4	6905				4613 8426	4996 8805		5760	5142	6521	35
189	5	060698				062206			9563 063333		060320 4083	
227	6	4458			5580	5953	6326		7071	7443	7815	
265 302	7 8	8186		8928	9298			070407	070776		071514	
340	9	071882 5547	5912	072617 6276			3718 7368	4085 7731	4451 8094	4816 8457	5182 8819	366
	120	079181	079543	079904	080266	080626	080987		081707	082067	082426	-
35 70	1	082785 6360	083144	083503		4219	4576	4934	5291	5647	6004	
70	2				7426	7781	8136	8490	8845	9198	9552	355
104 139	3	9905 093422	090258 3772	090611			091667		092370	092721	093071	352
174	5	6910	7257	4122 7604	4471 7951	4820 8298	5169 8644	5518	5866	6215	6562	349
2 09	6	100371	100715				102091	8990 102434	9335 102777	9681	100026	
244	7	3804	4146	4487	4828	5169	5510	5851	6191	103119 6531	3462 6871	343 341
278 313	8	7210	7549	7888	8227	8565	8903	9241	9579	9916	110253	330
313		110590	110926	111263	111599	111934	112270	112605	112940	113275	36 09	335
32	130	113943 7271	114277 7603	114611 7934	114944 8265	115278 8595	115611 8926	115943	116276	116608	116940	333
64	2	120574	120903	121231	121560	121888	122216	9256 122544	9586 122871	9915		330
97	3	3852	4178	4504	4830	5156	5481	5806	6131	123198 6456	3525 6781	328 325
129	4	7105	7429	7753	8076	8399	8722	9045	9368	9690	130012	323
161 193	6	130334 3539	130655 3358	130977	131298	131619	131939	132260	132580	132900	3219	321
225	7	6721	7037	4177 7354	4496 7671	4814 7987	5133 8303	5451	5769	6086	6403	318
258	8	9879	140194	140508	140822	141136	141450	8618 141763	8934 142076	9249 142389	9564 142702	316 314
290	9	143015	3327	3639	3951	4263	4574	4885	5196	5507	£818	311
30	140 1	146128	146438	146748	147058	147367	147676	147985	148294	148603	148911	309
60	2	9219 152288	9527 152594	9835 152900	150142 3205	150449	150756	151063	151370		151982	307
90	3	5336	5640	5943	6246	3510 6549	3815 6852	4120 7154	4424	4728	5032	303
20	4	8362	8664	8965	9266	9567	9868	160168	7457 160469	7759 160769	8061 161068	30 3 301
50	5	161368	161667	161967	162266	162564	162863	3161	3460	3758	4055	299
80 10	6	4353	4650	4947	5244	5541	5838	6134	6430	6726	7022	297
40	8	7317 170262	7613 170555	7908 170848	8203 171141	8497	8792	9086	9380	9674	9968	295
70	ğ	3186	3478	3769	4060	171434 4351	171726 4641	172019 4932	172311 5222	172603 5512	172895 5802	293 291
	150	176091	176381	176670	176959	177248	177536	177825	178113		178689	289
28	1	8977	9264	9552	9839	180126	180413	180699	180986	181272	181558	237
56 84	2	181844	182129	182415	182700	2985	3270	3555	3839	4123	4407	285 283
12	4	4691 7521	4975 7803	5259 8084	5542 8366	5825	6108	6391	6674	6956	7239	283
40	5	190332	190612	190892	191171	8647 191451	8928 191730	9209 192010	9490 192289	9771 192567	190051 2846	281 279
68	6	3125	3403	3681	3959	4237	4514	4792	192289 5069	5346	5623	278
96	7	5900	6176	6453	6729	7005	7281	7556	7832	8107	8382	276
24	8	8657	8932	9206	9481	9755	200029	200303	200577	200850	201124	274
52		201397	201670	201943	202216	202488	2761	3033	3305	3577	3848	272

6	7	8	9	D	1	PP	N.	0
)2598 6894			00339 817			-	160	20112
1147	011570	011993	01241	1 100		26	1	682
5360 9532	5779 9947	6197 020361	020773	420		53 79	3	951 21248
3664 7757	024075	4486	4 39			105	-4	451
$\begin{array}{c} 7757 \\ 1812 \end{array}$	8164 032216		8978			132 153	5 8	748 22010
5830	6230	6629	702	400		184	- 7	271
9811	010207	040602	040998	397		210 237	8 9	530 788
3755	044148		041932		3	-		
7664 1538 5378	8053 051924		883 052694			25	170	23044
5378		6142	652			50	3	5528
9185 2958	9563 063333	9942	060320 4083			7-1 99	3	8040 240519
6699	7071	7443	7815			124	5	303:
0407 4085	070776 4451		071514	370		149 174	6	551: 797:
7731	8094	4816 8457	5182 8819	363		198 223	8 9	250 120 2853
1347	081707	082067	082420	360		aint)	-	
4934 8490	5291 8845	5647	6004	357		24	180	255273
2018	092370	9198 092721	9552 093071	355 352		47	2	255273 7679 260071
5518 8990	5866	6215	6562	349		71	3	2451 4818
2434	9335 102777	9681 103119	100026 3462	346 343		118	5	7172 9513
5851 9241	6191	6531	6871 110253	341		441 465	5	9513
$\frac{9241}{2605}$	9579 112940	9916 113275	110253 3609	339 335		188	7 8	271842 4158
5943	116276					212	9	6462
9256	9586	116608 9915	116940 120245	333 330	- 11		190	278754 281033
9256 2544	122871	123198	3525	328	- 44	22 45	1 2	$\frac{281033}{3301}$
5806 9045	6131 9368	6456 9690	6781 130012	325 323		67	3	3557
2260	132580	132900	3219	321		89 112	4	7802 290035
5451 8618	5769 8934	6086 9249	6403 9564	318 316		134	5 6	2256
1763	142076	142389	142702	314		156	- 7	4466
4885	5196	5507	A818	311	- 14	178 201	8	6665 8853
7985	148294		148911	309			200	301030
1063 4120	151370 4424	151676 4728	151982 5032	307 303	- 10	21	- 1	3196
7154	7457	7759	8061	303	48	64	2 3	5351
0168 3161	160469 3460	160769 3758	161068	301 299	- 60	85	4	7496 9630
6134	6430	6726	4055 7022 9968	297	-	106 127	5	311754
9086	9380 172311	9674	9968 172895	295 293		143	6	3867 5970
2019 4932	5222	172603 5512	5802	291 291	78	170 191	- 81	8063 320146
7825	178113	178401	178689	289				
0699	180986		181558	287	15	20	210	322219 4282
3555 3391	3839 6674	4123 6956	4407 7200	285 283		40	3	5336
9209	9490	9771	190051	284	1 19	61 81	3	8380 333414
2010 1792	192289 5069	192567 5346	2846 5623	279 278	19	101	51	2438
75561	7832	8107	8382	276	1	121 141	6	4454 6460
303 3033	200577 3305	200850 3 3577	201124 3848	274 272	-	162	7	8456
~~~	0000	0011	00.20	414	100	182	9 .	340111

	T		T	T	T	_	_	F -				_
PI	N.	0	1	2	3	4	5	6	7	8	9	D.
	160						4 20547	5 20574	6 20601	6 20629	6 20055	6 271
26 53		051						3 841	1 871	0 897	9 924	269
79	3	121218	3 21245	4 272	0 298				1 2113s 3 404	8 21165 9 431		267 266
105	1	451	1 5109	537	3 563	8 590	2 616	643	0 669			1 264
132 153				7 8010 22063				8 906	0 932	3 955	984	262
184	7		2976	3236						6 222190	22245	
210	. 8	5309	556	5826	608	4 634	2 660	0 685	8 711		2 505. 7630	259 258
237	9	-	-			7 891	3 917	0 942	6 968		23019	256
25	170	230449								4 232488		
50	2	5528	5781			653				0 5023 2 7544		253 252
71	3	8040			879	904	9 929	9 955	980	240050		250
99 124	5	240549 303s			24129 378	7 241540 2 403	24179	5 24204		3 2541	2790	249
149	6	5513	5759	6006	625					2 5019 7 7482	5260 772:	248 246
174	7	7973	8219	8464	1 8709	895	4 919	8 944	968	9932	250176	245
193 223	8 9	250420 2853				251398 3823			1 25212	5 252368	2610	243
	-		-	-	-		-	-	-	4790	5031	242
21	180	255273 7679	255514 7918				25647 887	7 256718				241
47	2	260071	260310	260548	260787	26102	26126		9355			239 238
71	3	2451				3399	363	3873	4109			237
$\frac{94}{118}$	5	4818 7172						6232	6467		6937	235
111	6	9513	9746	9980		270446	270679	8578 270912	8812 271144		9279 271609	234 233
$\frac{165}{188}$	7	271842		272306	2538	2770	300	3233	3464	3696	3927	232
212	8	4158 6462		4620 6921	4850 7151	5081 7380		5542 7838		6002	6232	230
-	190	278751	-		-			-			8525	229
22	1:0	281033	281261	279211 281488	279439 281715	279667 281942	279895 282169			280578	280806	228
45	2	3301	3527	3753	3979	4205	4431			2849 5107	3075 5332	227 226
67 80	3	5557 7802	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
113	5	290035	8026 290257	8249 290480	8473 290702	8696 290925	8920 291147				9812	223
134	6	2256	2478	2699	2920	3141	3363		291591 3804	291813 4025	292034 4246	222 221
156 178	7	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
01	8	6665 8853	6884 9071	7104 9289	7323 9507	7542 9725	7761 9943	7979 300161	8198	8416	8635	219
	200								300378	300595	300813	218
21	1	301030 3196	301247 3412	301464 3628	301681 3844	301898 4059	302114 4275		392547 4706	302764 4921	302980 5136	217
42 64	2	5351	5566	5781	5996	6211	6425	6639	6854	7068	<b>72</b> 82	$\frac{216}{215}$
85	3	7496 9630	7710 9843	7924 310056	8137 310268	8351 310481	8564	8778	8991	9204	9417	213
106	5	311754	311966	2177	2389	2600	310693 2812	310906 3023	311118 3234	311330 3445	311542	212
27	6	3867	4078	4289	4499	4710	4920	5130	5340	5551	3650 5760	$\frac{241}{210}$
143. 170	8	5970 8063	6180 8272	6390	6599	6809	7018	7227	7436	7646	7854	209
9Ĭ	9	320146	320354	8481 320562	8689 320769	8898 320977	9106 321184	9314 321391	9522 321598	9730 321805	993S 322012	$\frac{208}{207}$
	210	322219	322426	322633	322839	323046	323252	323458	323665			-
20	1	2.282	4488	4694	4899	5105	5310	5516	5721	323871 5926	324077 6131	206 205
40 61	3	3336 8380	6541 8583	6745	6950	7155	7359	7563	7767	7972	8176	204
81	4	333414	330617	8787 330319	8991 331022	9194 331225	9398 331427	9601 331630	9805 331832	330008	330211	203
$\frac{01}{21}$	5	2438	2640	2842	3044	3246	3447	3649	3850	2034 4051	2236 4253	202 202
41	6	4454 6460	4655	4856	5057	5257	5458	5658	5859	6059	6260	201
62	8	8456	6660 8656	· 6860 8855	7060 9054	7260 9253	7459 9451	7659 9650	7858	8058	8257	200
82	9				341039	341237	341435		9849 341830	340047 2028	340246 2225	199 198
!									-11000	2020	2220	.00

PI	PF	٧.	0	1	1		3	1		5		8	7		8	9	
	2	34	2123	3426	20 342	817 3	4301	343	919	34310	00 240	cou	0.400				_
32		2 3	1393	4.%	19 4	786	4931	6	178	5:17		570	34380 570		3999 1982	34119	
54	1		1353 1105	65 850		744	6939 8839		135	733	10 7.	525	772	0 2	915	615; 811;	7
77		1 350	218	35011	2 350	336 3	201500 1995-01	3516	183	927 35121	8 9 9 1 351	172	966	6 9	860	35005.	ıl
97 116			183	237	5 2	568,	2761	20	154	314		3:19	35160 353		796 724	198	1
135			108	430 621		193	4635		70	506	8 51	200	545		643	3916 5834	1
154	1	8 7	135	812		16	6599 8500		90	698 888		72	736.	3 7	554	7744	
174		9 9	335	36002		15 30	0404	3605		6078		7(1)	926 6116		156	9640	Ш
-	23	361	728	36191	-	-	-	-			-		0110	361	300 3	61539	ľ
19		1 3	612	380			$\frac{2294}{4176}$	3624		62671		59 3	63048		230 3	63126	i
37			488	5673	5 58		6049	623	38	4551 6423			4920		13	5301	1
56 74			356	7542		29	7915	816		8287			6790 8659		83 45	7169	
93	1		1015	9401 371255		17	$\frac{9772}{1622}$	994	58 3	70143	3703		70543	370	98 3	9030 70883	
1,11	(	29	112	3090		10 37	3464	37180	16	1991		75	2360	25	14	2728	i
130	7	47	48	4932	51		298	304 545		3831 5664			4198		82	4565	1
148   167	- 5		77	67.59	69-	12 2	124	730		7488			6029 7852				18
-01		- 80	98	8680	870	11	943	912		9306		37	9668		34) 49 38		18
	210	3802	11 3	80392	38057	3 39	754	38093	4 90	31115	20100	-	-	-	-	-	10
18	1		17	2197	237	7 1	557	273	7 00	2917	38129		1476	3816			18
35 53	3	38		3995	417	4 4	353	453	31	4712	489		3277 5070	34: 62			19
71	4	56 73		5785 7568	590		142	632	1	6499	667	7	6856	70:			$\frac{17!}{17!}$
89	5	91	66	9343	774 952		923 698	810 987		8279	845	6	8034	881	1 1	398911	178
06	6	3909;		11112	39128	8 391	164 5	39164		0051	39022 199		0405	3905		759 1	177
24 42	7	269 443		2873	304	3	224	3100	) [	3575	375		2149 392 <b>6</b>	234 410		2521 1	176
50	9	619		4627 6374	480: 654:		)77	5152	2 1	6326	550	11	5676	585	0 2		75
	-	-	-	CON THE	004	0.	722	6890	1 3	7071	724		7419	759	2 7		74
	250	39794		8114	398287	308	161 3	98634	309	3908	398981	900	0154	00000	-	_/_	-
17	2	967 40140		9847 1573	400030		92 4	00365	401	0538	400711			39932 40105		50′ 17 22′ 17	13
51	3	312		3292	1745 3464		35	2089 3807		2261	2433	2	2605	277	7 2	19 17	3
33	4	483	4	5005	5176		40	5517		1978 1638	4149		320	4493	4	363 17	П
35	6	654		0710	6881	70	51	7221		391	5858 7501		029 731	6199 7901		370 17	
9	7	824 993		$\frac{8410}{0102}$	8579 $410271$		49	8918	9	0.37	9257		426	9598		70 17 64 16	
6	8	41162		1788	1950	4104	40 4	$\frac{10609}{2293}$			110946	411	114 4	11283			
3	9	330		3167	3635	38		3970		137	2629 4305		798	2504		32 169	
19	60	11.407	1			-			-	107	2000	4	172	4639	48	06 167	1
6 "	ï	41497: 664:		5140 4 1807	H5307 6973	4154	74 41	5641	415		15974	416	141 4	16303	4164	74 167	7
3	2	8304	1 8	167	8633	713 879		7308 8964	7.	172	7638	7	304i	7970		35 166	
5	3	9956	420	121 4	20286	4204		0616	4207		9295 20945	4211	160	9625	97		
2	5	121604 3216		768	1933	209	7	2261		126	2590		54	$\frac{21275}{2918}$	4214		
3	ŏ	4382		410 045	3574 5208	373 537	7	3901		165	4228	45	392	4555		8 164	
5	7	6511		674	6836	699		5534 7161		597	5860		23	6186	63	9 163	
	8	8135	8	297	8459	862	1	8783		24	7436		48 68	7811 9429		3 162	
1_	١.	9752	9	914 4	30075	43023	6 43		4305			4308			959 43120		
27	0 4	31364	431	525 4	31685	43184	8 404										
	1	2969	3	130	3290	345		3010	4321 37	70 4	12329	4324			43280		
	2	4569	47	29	4888	504		207	53	67	3930 5526	40 56		4219 5844	440		
	3	6163 7751		322	6481	664	) (	799	69.		7116	72	75	7433	600 759		
1		9333		91	8067 9648	980	8 8	384	85	42	8701	72 88		9017	917		
1	6 14	0909	4410			9800 14133		964 4 538	14015		0279	1404	37 44	0594	14075	2 158	
7		2480	26	37	2793	2950	3	106	326		1852 3419	200 357		2166	232	157	1
8		4045   5604			4357	4513	4	669	482	25	4981	515		3732 5293		157	-
		0003	57	00	5915	6071	6	226	638		6537	669		3848		156	ш

-	-	
d	3	
	_	

6	7	8	9	D.	1	PP —	N.	0	1		2	3	1	1	5	-	3	7	8	1	0	1)
34360	6 343802	343999	311196	100		15	360	14715 870			7468 9015			7778	4479.	33 448	088 4	18242	4483	97 448	559	1/2
857	0 5780	5982	6157	196		31	2	15024	9 450	103 45	0557	1)17 45071		)324 )865	91 4510	78 9	633	9787	99	11 450	095	11
752 947	2 9660		8110 350051	195	1	46 61	3	$\frac{178}{331}$			2093 3624	22	17 2	2400	253	53 2	172 48 706	51326 2859	45147 301		633 165	11
35141	0 351603	351796	1989	193		77	- 5	481	5 49	197 1	5150	377 530		3930 5154	40) 50t	12 4	235	4387	45	10 4		15
333 526		3721 5643	3916	193		92 107	- 6 7	636 788			5670	682	1 0	973	712		$\frac{758}{276}$	5910 7428	60t		214	15
717:	7363	7554	5834 7744	192		122	- 8	939	2 9/	13 1	3184 1694	833 984	8 8	995	863	8 8	789	8940	900	1 9:		15
360972		9456 361350	9646	190	a .	13≤	9	160898	3 4610			46134	8 461		46014 164			0147 1948	46059	7 4607	748	15
-	-	301330	361539	189			290	162398	3 4625	18 462	697	46284	7 400	·			_	חויטו	209	5 22	48	15
362850 4739			363424	180		15 29	1 2	3895	10	42 4	191	4310	) 4	190	46314 463	- 0.75			46359			150
6610	6798	5113 6983	5301 7169	188 187		41	3	5389			680 164	5829	5	77	612	6 6		4936 6423	508. 657			14
8473 370328	8659	8845		186		59	4	8347	81	95 8	643	731: 8790		160 )38	760	8 77	756 7	7904	805	2 82		4
2175	370513 2360	370698 E	370883	185		74 88	6	9822 $171292$				170263	470	110 4	17055			)380 )851 4	9527 170998			4
4015	4198	4382		184 184		03	7	2756			585   049	$\frac{1732}{3195}$		378	202/	5 21	71 2	2318	2464	1 26		14
5846 7670	6029 7852	6212	6394	183		18 32	8	4216	430	62 4	308	4653	47	99	3487 4944			3779 3235	3922	40	71 1	46
9487	9668	8034 9849_3		182 181				5671	- 58	10 6	)62	6107			6397			687	5381 6832			46
201000				.01			00 1	77121	47720		111 4	77555	4777	00 4	77814	4770	-			-		
381296 3097	381176 3277	381656 3: 3456		81		29	21,	8566 8000 <b>7</b>	871 48013	1 49	355	8999	91	43	0287	94		133 4 575	$78278 \\ 9719$			45
4891	5070	6219		80 79	1 4	13	3	1113	18013		29 4	80438 1872	4805		80725	4808	69 481	012 4	81156			44 44
6677 8456	6856 8631	7034	7212 1	78		$\frac{7}{2}$	5	2874	301	6 31	59	3302	34		2159 3587	230		145	2588	273	1 1	43
90228	390405			78		6	6	4300 5721	586			4727	480		5011	610		872 295	4015 5437	415 557		1.5
1993	2169	2345		6	10		7	7138	728			6147 7563	628 770	39	6430 7845	657	2 6	71-1	6855	699		
3751 5501	3926 5676	4101 5850	4277 17 6025 17		111		8	8551 9958	40000			8974	911	4	9255	798 939		127 537	8269 9677	841	0 14	11
7245	7419		6025 17 7766 17			-		0000	49009	9 4902	39 49	0380	49052	20 49	)0661	49080			01081	981 49122	$\frac{8}{2}$ 14	
98981	399151 3			-11	H,	4 31	0 49		49150			1782	49192	2 49	2062	49220	4005		20.404	-	-	_
			950° 17. 1220 17.		2		2	2760 1155	290 429			3179	831	9	3458	359		37	)2481 3876	49262 4013		
2433	2605	2777 1	29 19 17:	2	4.			55-44	5683	582		4572 5960	471 609		4850 6238	498	9 51	28	5267	5400		
4149 5858	4320 6029		1663 171		53 69			6930 8341	70.38		6	7344	748	3	7621	637 775			6653 8035	679		
7561	7731		3370   171 3070   170	- 4	83	3	6]	9687	9824			8724 0099 1	880; 50023	2   4	8990	913	7 92	75	9412	817) 9550	3   13 1   13	
9257 9946 4	9426		764 169		97 110			1059	501196	50133	3	1470	160	_	$0374 \\ 1741$	50051 1880	1   5006	18 50	0785	500922	13	7
2629	2796		451 169 132 168		124			$\frac{2127}{3791}$	2564 3927	270 406		2837	2973	3 3	3109	3240			2154 3518	2291 3655		
4305			806 167	-	-	20	-	-	-	-	-	1199	433	1	1-171	4607			1878	5014	130 130	
5971 4	16141 41	6308 416	174 167		13	32		5150   5 5505	05286		- 00.		50569;		828	505964	50609	10 50	6234		-	-
7638	7804		174 1167 135 166		27		1 7	7856	6640 7991	677 812		3260	7046	3 7	1181	7316	74	31	7586	506370 7721	136	
9295 9945 4		9625 97	791 165		10 51	1		203	9337	947	1 9	606	8395 9740		3530 1874 <i>t</i>	8664 810009		191 8	3931	9068	135	
2590	2751 3	1275   4214 2918   30	$\frac{139}{082}$ $\frac{165}{164}$		67	1		883 5	$\frac{10679}{2017}$	510813 215	3 510	947 5	11081	511	215	1349			$\frac{0277}{616}$	1750	134 134	
1228	4392	1555 47	18 164		80 94	1 7	3	218	3351	3484		284 617	2418 3750		551 883	2684	281	8 2	951	3084	133	
5860   748 <b>6</b>			349 163 73 162		107	8	1	548 874	4681 6006	4813	4	946	5079		211	4016 5344	414 547		282 609	4415	133	1
106	9268 9	129 95	91 162		121	9		196	7328	6139 7460		271 592	6403	6	535	6668	680	0 6	932	5741 7064	133 132	
720 48	0881 431	042 4312	03 161		_	330	310	514 51		-	_		7724	78	855	7987	811		251	8382	132	1
	2488 432	649 4328	09 161		13	ī	9	828	8646 1959	518777 520090			19040	5191		19303	51943	4 519	566 A	19697	131	
	4090 4	249 44	09 160	13	26 39	3	521	138 55	1269	1400		530	20353 1661	5204	184 5: 792	20615	52074	5 520	876 5	21007	131	
116	5685 5 7275 7	844 600 433 759		1 1	52	4		114	2575 3876	2705	25	35	2966	30	96	1922 3226	2053 3350		183 186		181	
701	8859 9	017 917	75 158	1 4	65 78	5	50	045	5174	4006 5304		36	4266 5563	43	196	4526	4656	47	785		130 130	
	0437 440. 2009 2	594   1407; 166   23.	52 158	1	91	6 7		339 530	6469	6598	67	27	6856		93 85	5822 7114	5951 7243	60	180	6210	129	
4191	3576 3	732 38	23 157 39 157	1 1	104	8	. 89	17	7759 9045	7888 9174	80 93	16	8145	82	74	8402	8531		372 360	7501 8788	129	
981	5137 6	293 644	19 156	13	117	ŷ	5302				5305		9430 0712	95 8808		9687	9815	-90	43 53	0072	128 (	
21	0002 6	348 700	3 156	3	-	-	-	-	_			-		-UV0	*U 03	10968	631096	6312	23	1351	128	
				The second									-		-		-	Service	1.	-	-	

PP	N.	0	1	2	3	4	5	6	7	8	9	D
	340			7 53173	4 53186	2 53199	0 53211	7 53224	5 53237	2 53250	0 5326	27 12
13						6 326	4 339	1 351	8 364	5 377	21 38	
25 38	3	402						1 478		4 504	F 516	
50	1 4				7 567	580	0 592	7 605			643	32 126
63	3				1 693 1 819		3 718 2 844					3 120
76	1 6			932	945	2 957	8 970					
88	7			5 540580	54070	5 54083	0 54095	5 54108		4 54007 5 133		
101	8		9 170	1 1829	1953			3 232		2 257		
113	9	282	5 295	3074	3199	332	3 344	7 357	369		394	1 124
12	350 1	54.406	8 54419	2 544310			1 54468					3 124
21	2	530 654		6789	6913		592	604		2 629		9 124
37	3	777	7898	8021			7159 7 8389	728		5 7529		
49	I 4	900	912	9249					2 863 986			1 123
61	5	55022	55035	550473				55096	55108			
73	6	1450	1572	1694			2060	218	230	3 2125		199
85	7	266		2911	3033	3155	3276	3398 <b>3</b> 398	3519		376	121
93 [10	8	388			4247					1 4852		
10	9	509		5336	5457	5578	5699	5820	5940	6061	618.	121
	360	55630:					556905			557267	557387	120
$\frac{12}{24}$	1 2	7507	7627		7868			8228	834	8459	858	120
36	3	8709 9907								9667	9787	120
48	4	561101								560863	<b>5</b> 60982	119
60	5	2293				1578 2769				2055	2174	110
71	6	3481		3718	3837	3955	4074			3244 4429	336.	119
83	7	4666	4784		5021	5139		5376		5612	454° 5730	119 113
95	8	5848			6202	6320	6437	6555	6673	6791	6909	118
07	9	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	118
,,	370	568202		568436	568554	568671	568788	568905	569023		569257	117
12	1	9374		9608	9725	9842		570076	570193		570420	117
23 35	3	570543 1709			570893			1243	1359		1592	117
46	4	2872	2988	1942 3104	2058 3220	2174 3336	2291 3452	2407	2523		2755	116
58	5	4031	4147	4263	4379	4494	4610	3568 4726	3684 4841		391	116
70	6	5188		5419	5534	5650	5765	5880	5996	6111	507:	116
81	7	6341	6457	6572	6687	6802	6917	7032	7147		7377	115
93	8	7492	7607	7722	7836	7951	8066	8181	8295	8410	852	115
04	9	8639	8754	8868	8983	9097	9212	9326	9441	9555		114
	<b>3</b> 80	579784		580012	580126	580241	580355	580469	580583			114
11 23	1	58092 <b>5</b> <b>2063</b>	581039 2177	1153 2291	1267 2404	1381	1495	1608	1722	1836	1950	114
31	3	3199	3312	3426	3539	2518 3652	2631	2745	2858	2972		114
45	4	4331	4444	4557	4670	4783	3765 4896	3879 5009	3992 5122	4105 5235		113
57 68	5	5461	5574	5686	5799	5912	6024	6137	6250	6362		113
68	6	6587	6700	6812	6925	7037	7149	7262	7374	7486		112
79	7	7711	7823	7935	8047	8160	8272	8384	8496	8608	3720	12
90	8	8832	8944	9056	9167	9279	9391	9503	9615	9726		12
)2	9	9950	590061	590173	590284	590396	590507	590619	590730	590842	590953	12
		591065	591176		591399	591510	591621	591732	591843	591955	592066	il
11	1 2	2177 3286	2288 3397	2399	2510	2621	2732	2843	2954	3064	3175	!!  /
22 33	3	4393	4503	3508 4614	3618 4724	3729 4834	3840 4945	3950 5055	4061	4171		11
ü	4	5496	5606	5717	5827	5937	6047	6157	5165 6267	5276 6377		10 10
5	5	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	10
88	A	7695	7805 8900	7914	8024	7037 8134	8243	8353	8462	8572	8681 1	16
78	7	8791	8900	9009	9119	9228	9337	9446	9556	9665	977111	04
8	8	9883	2992				600428	600537			0086411	09
99	9	000973	601082	1191	1299	1408	1517	1025	1734	#1843	1951 1	
			- with the	CONT. CO. Co.	1					-		

0		6					T		T		1	T	,				
6	7	8	9	D.	P	PN.	0	1	2	3	4	5	6	7	s	9	D.
2327 3571	3645 4914 6180 7441 8699 9954 541205 2452 3696	3772 5041 6306 7567 8825 540079 1330 2576 3820	532627 3899 5167 6432 7693 8951 540204 1454 2701 3944	128 127 127 126 126 126 125 125 124	1 2 3 4 5 6 7. 8 9	1 2 2 3 3 4 4 5 4 6 7 8	502060 3144 4226 5305 6381 7455 8526 9594 510660 1723	3253 4334 5413 6489 7562 8633 9701	602277 3361 4442 5521 6596 7669 8740 9808 610873 1936	602386 3169 4550 5628 6704 7777 8847 9914 610979 2042		4766 5844 6919 7991 9061	4874 5951 7026 8098 9167	602819 3902 4982 6059 7133 8205 9274 610341 1405 2466	4010 5089 6166 7241 8312 9381	4118 5197 6274 7348 8419 9488 610554 1617	108 108 108 107 107 107 107 106
544812 6049 7282 8512 9739 550962 2181 3398 4610 5820	6172 7405 8635 9861 551084 2303 3519 4731 5940	6296 7529 8758 9984	4973	124 124 123 123 123 123 122 121 121 121	11 21 32 42 53 63 74 84 95	2 3 4 5 6	612784 3842 4897 5950 7000 8048 9093 520136 1176 2214	3947 5003 6055 7105 8153 9198	4053 5108 6160 7210 8257 9302	4159 5213 6265 7315 8362 9406	613207 4264 5319 6370 7420 8466 9511 620552 1592 2628	613313 4370 5424 6476 7525 8571 9615	513419 4475 5529 6581 7629 8676 9719	513525 4581 5634 6686 7734 8780 9824	613630 4686 5740 6790 7839 0884	6895 7943 8989 320032 1072 2110	106 106 103 105 105 105 104 104 104
557026 8228 9428 560624 1817 3006 4192 5376 6555 7732	557146 8349 9548 560743 1936 3125 4311 5494 6673 7849	8459 9667	9787 560982 2174 3361 4548 5730 6909	120 120 120 119 119 119 119 118 118 118	10 20 31 41 51 61 71 82 92	1 2 3 4 5 6	23249 4282 5312 6340 7366 8389 9410 30428 1444 2457	4385 5415 6443 7468 8491 9512	4488 5518 6546 7571 8593 9613	4591 5621 6648 7673 8695 9715	4695 5724 6751 7775 8797 9817	4798 5827 6853 7878 8900 9919 630936 1951	23869 4901 5929 6956 7980 9002 0021 1033 2052	23973 65 5004 6032 7058 8082 9104 0123 63 1139 2153	24076 6 5107 6135 7161 8185 9206 90224 6 1241 2255	24179 1 5210 1 6238 1 7263 1 8287 1 9308 1 80326 1 1342 1 2356 1	104 103 103 103 103 103 102 102 102 102 101
570076 1243 2407 3568 4726 5880 7032 8181 9326	570193 1359 2523 3684 4841 5996 7147 8295 9441	570309 5 1476 2639 3800 4957 6111 7262 8410 9555	70420 1 1592 1	16 15 15 15	10 20 30 40 50 60 70 80 90	1 2 3 4 5 6 7 31 8	4477 5484 6488 7490 8489 9486 0481 1474	4578 5584 6588 7590 8589 9586 0581 1573	4679 5685 6688 7690 8689 9686 0680 1672	3771 4779 5785 6789 7790 8789 9785 0779 64	33872 4880 5886 6889 7890 8888 9885 0879 64	33973 4981 5986 6989 7990 8988 9984 640 1970	4074 63- 5081 63- 5087 7089 8 6090 8 6088 9 6084 640 077 1 6069 2	4175 63 5182 5187 7289 8190 9188 9183 640 177 168, 2	5283 6287 7290 3290 9287 9283 64 1276	4376 16 5383 16 6388 16 7390 16 8389 16 9387 16 9382 9 1375 9 2366 9	01 ( 00   00   00   9   9
1608 2745 3879 5009 6137 7262 8384 9503 590619	1722 2858 3992 5122 6250 7374 8496 9615 590730	1836 2972 4105 5235 6362 7486 8608 9726 590842	50811 11 1950 11 3080 11 421: 11 534: 11 6475 11 7590 11: 8720 11: 983* 11: 983* 11: 100953 11:	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 20 29 39 49 59 69 78 88	1 2 3 4 5 6 7 6 5 8 9	4439 5422 5404 7383 3360 3335 9308 650 278 1 246 2	4537 4 5521 5 5502 6 7481 7 3458 8 9432 9 9405 650 375 1 343 2	636	1734 1717 1698 1676 1653 1627 1650 1750 1850 1850 1850 1850 1850 1850 1850 18	1832 5815 5796 774 750 724 696 666	3946 644 4931 5 5913 6 6894 6 7872 7 8848 8 9821 659 0793 03 1762 18	044 644 029 5 011 6 992 70 969 80 945 90 019 6500 6890 09 359 19	143 644 127 5 110 6 089 7 067 8 016 650 087 10	242 644 226 6 208 6 187 7 165 8 140 9 113 650 084 1 053 2	340 9: 324 9: 306 9: 285 9: 262 9: 237 9:	888888888888888888888888888888888888888
2843 3950 5055 6157 7256 8353 9446	2954 4061 5165 6267 7366 8462 9556 500646	3064 4171 5276 6377 7476 8572 9665 00755 60	3175 111 4282 111 5386 110 6487 110 7586 110 8681 110 9774 100 0864 100 1951 107		19 19 29 38 48 58 67 77 86	1 4 2 5 3 6 4 7 5 8 6 8 7 99 8 6608	138 5 098 6 056 7 011 8 065 90 016 6600	273 43 235 53 194 62 152 72 107 82 060 91	369 44 331 54 290 63 247 73 202 82 55 92 06 6602 55 11	165 44 127 53 186 64 143 74 198 85 150 93 101 6602 12	562 4 523 5 182 6 138 7 193 8 146 9 196 6603	619 57 577 66 534 76 488 85 441 95	54 48 115 58 73 67 229 77: 84 86 36 96: 36 6605:	56 49 10 59 69 68 25 78 79 87 31 97 31 6606	984 6544 96 66 664 69 90 79 74 88 98 76 6607	080 96 042 96 002 96 060 96 16 96 70 95 21 95 71 95 18 95	

,1,	N.	0	1	2	3	4	5	6	7	s	9	
	460	562758		662947	663041	663135	663230	663324	663418	663512	66330	Ì
9	1	3701	3795	3539	3983	4078	4172	4266	4360	4454	454	
19	2	1642	4736	4830	4924	6018	5112	5206	5299	5393		
28 38	3	5531 6518	5675 6612	5769 6705	5862 6799	5956 6892	6050	6143	6237	6334		
47	5	7453	7546	7610	7733	7826	6986 7920	7079 8043	7173 8106	7266 8199	73 × 82%	
56	6	8386	8179	8572	8665	8759	8852	8915	9038	9131	922	1
66	7	9317	9410	9503	9596	9689	9782	9875	9937	670060	670153	i
75	- 8	370246	670339	670131	670524	670617	670710	670802	670895	0988		
85	9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	ı
9	470	$\frac{372098}{3021}$	672190 3113	672283 3205	672375	672467	672560	672652	672744	672836	672929	1
18	2	3912	4034	4126	3297 4218	3390 4310	3482 4402	3574 4494	3666 4586	3758	3459	
23	3	4861	4953	5045	6137	5228	5320	5412	5503	4677 5595	4759 5687	t
37	4	5778	5870	5962	6053	6145	6236	6328	6419	6511	6602	1
46	5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516	
55	6	7607	7698	7789	7881	7972	8063	8154	8245	8336	8127	ı
64	7	8518 9428	8609	8700	8794	8882	8973	9064	9155	9246	9337	ł
74 83	8	680336	9519 680426	9610 680517	9700 680607	9791 680698	9882 680789	9973 680879	680063	680151		ı
_									0970	1060	4151	
9	480	381241	681332	681422	681513	681603	681693	681784	681874	681964	682055	ı
18	1 2	2145 3047	2235 3137	2026 3227	2416 3317	2506 3407	2596 3497	2686 3587	2777	2867	2957	L
27	3	3947	4037	4127	4217	4307	4396	4486	3677 4576	3767 4666	3857 4756	L
27 36	4	4845	4935	5025	5114	5204	5294	5383	5473	5563	5652	
45	- 5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	
54	6	6636	6726	6815	6904	6994	7083	7172	7261	7351	7 1 10	
63	7	7529	7618	7707 8598	7796	7886	7975	8064	8153	8212	8331	U
72 81	8 9	8420 9309	8509 9398	9486	8687 9575	8776 9664	8865 9753	8953 9841	9042 9930	9131 690019	9220 690107	8
-	490	520196	690235	690373	690462	690520	690639	690728	690816	690905	690993	-
9	1	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877	8
18	2	1965	2053	2142	2230	2348	2406	2494	2583	2671	2759	8
26	3	2847	2935	3023	3414	3199	3287	3375	3463	3551	3639	8
35 44	4	3727 4605	3815	3903	3994	4078	4166	4254	4342	4430	4517	8
53	5	5482	4693 5569	4784 5657	4868 5744	4956 5832	5044 5919	6007	5219 6094	5307	6391	00 00 00 00
62	7	6356	6444	6531	6618	6706	6793	6880	6968	6182 7055	6269 7142	0
70	- 8	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014	×
79	9	8101	8188	8275	8362	8449	8535	8622	8709	8796	8883	8
	500	398970			699231	699317	699404		599578		699751	8
9	1	9838				700184			700141	700531	700347	8
7 23	3	700704 1568	700790	0877	0963	1050	1136 1999	1222	1309	1395	1482	8
34	4	2431	2517	1741 2603	1827 2689	1913 2775	2861	2086 2947	2172 3033	2258 3119	2314 3205	8
13	- 5	3291	3377	3463	3549	3635	3721	3807	3898	3979	4065	8
52	6	4151	4236	4322	4408	4494	4579	4665	4751	4837	4922	8
i)	7	5008	5094	5179	5265	5350	5436	5522	5607	5693	5778	8
39	- 8	5864	5949	6035	6120	6206	6291	6376	6462	6547	6632	8
7	9	6718	6803	6888	6974	7059	7144	7229	7315	7400	7485	8
؞	510	707570							708166		708336	8
8 17	1 2	8421 9270	8506 9355	8591 9440	8676 9524	8761 9609	8846 9694	8931	9015	9100	9185 710033	8
25	3	10117						9779 710625	9863 710710	9948 710794	0879	85
34 I	4	0963	1048	1132	1217	1301	1385	1470	1554	1639	1723	84
9	- 5	1897	1892	1976	2060	2144	2229	2313	2397	2481	2566	84
50	6	2650	2734 3575	2818	2902	2986	3070	8154	3238	3323	3107	84
59	7	3491	3575	8659	8742	8826	8910	3994	4078	4162	4246	84
7 6	8	4330 5167	4414 5251	4497 5335	4581 5418	4665 5502	4749 5586	4833 5669	4916 5753	5000 5836	5084 5920	84
rv i	2.	arnt	trens.	SOUTH !	2270	0002	9000	2002	0100	6030	DORO	٠.

# LOGARITHMES.

6	7	8	9	10.	1						_	_							~.~
63324 4266		663512	663507	91		PP	N.	0	1	2	3		1	5	ß	7	8	9	D.
5206 6143 7079 8013 8915 9875 70802 1728	6299 6237 7173 8106 9038 9967 676895	5393 6331 7266 8199 9131 670060		91 91 91		8 17 25 33 41 50 58 66	52) 1 2 3 4 5 6 7 8	716003 6838 7671 8502 9331 720459 0986 1811 2634	6921 7754 8585 9414	716170 7004 7837 8668 9497 720325 1151 1975	70/ 79: 876 959 72040 123 205	88 7 20 8 51 8 60 9 7 720 13 1 13 2	171 003 831 663 490 7	76421 7254 8086 8917 9745 20573 1398 2222	7338 8169 9000 9828	716538 7421 8253 9083 9911 720738 1563	7501 8336 9165 9994 720821 1646	7587 8449 9248 720077 0903 1728	83 83 83 83 83 82
72652 3574 4491 5412 6328 7242 8151 9064 9973 80879	3666 4586 5503 6419 7333 8245 9155	4677 5595 6511 7424 8336 9216	672929 3-59 47-69 5687 6602 7516 8427 9337 680245 1151	3333355555		75 8 16 24 32 41 49 57	9 539 1 2 3 4 5 6	3156 724276 7 5095 5012 6727 7541 8354 9165 9974 73	3538	2798 3620 724440 5258 6075 6890 7704 8516 9327 30136	288 370 72452: 5346 6156 697: 7787 8597 9 108 730217	2 7240 54 62 70 58 62 70 78 86	22 38 63 66 78 89	3045 3866 24685 5503 6320 7134 7948 8759 9570	3127 3948 24767 5585 6101 7216 8029 8841 9651	5667 6483 7297 8110 8922 9732	2169 3291 4112 724931 5748 6564 7379 8191 9003 9813	2552 3374 4194 725013 5830 6646 7460 8273 9084 9893	82 82 82 82 82 82 81 81 81
81784 2686 3587 4186 5383 6279 7172 8064 8953 9841	681874 2777 3677 4576 5173 6368 7261 8153 9042 9930	681964 2867 3767 4666 5563 6458 7351 8242 9131 690019	682055 2057 3857 4756 5652 6547 7440 8331 9220 690107	90 90 90 90 90 90 90 90 90 90 90 90 90 9		8 16 21 32 40 43 56 611		3197 3999 4800 5599 6397 7193 7987	0863 1669 32174 3278 4079 4880 5679 6476 7272 8067	0944 1750 32555 7 3358 4160 4960 5759 6556 7352 8146	1021 1830 32335 3138 4240 5040 5838 6635 7431 8225	110 19	05 11 15, 733 18 18 18 18 18 18 18 18 18 18 18 18 18	1186 1991 2793 7: 3598 1400 3200 998 795 590	1266 2072 32876 7: 3679 4180 5279 6078 6874 7670	2152	730621 1428 2233 33037 3839 4640 5439 6237 7034 7829	730702 1508 2313 33117 3919 4720 5519 6317 7113 7908	81 81 80 80 80 80 80 80 80
00728 1612 2494 3375 4254 5131 6007 6880 7752 8622	690816 1700 2583 3463 4342 5219 6094 6968 7839 8709 699578	1789 2671 3551 4430 5307 6182 7055 7926 8796	690993 1877 2759 3639 4517 5394 6269 7142 8014 8883	28 28 28 28 28 28 28 28 28 28 28 28 28 2		72 8 1 23 31 30 47 53 62	9 -7: 123 456 778	9572 9 10363 740 1152 1 1939 2 2725 2 3510 3 4293 4 5075 5 5855 5 6634 6	742 74 1230 2018 1804 1588 371 153 933 712	1309 2096 2882 3667 4149 5231 5011 5790	1388 2175 2961 3745 4528 5309 6089 6868	909 988 740678 1467 2254 3030 3823 4606 5387 6167 6915	7 9 9 9 9 11 22 31 39 46 54 62 70	177 968 746 1332 118 302 384 65 45 65 77	9256 0047 74 9836 746 624 2411 2 196 3 1980 4 762 4 513 5 323 6	9335 0126 74 0915 74 1703 2489 3275 4058 1840 6621	0994 1782 2568 3353 4136 4919 5699 6479	1860 2647 3431 4215 4997 5777	79 79 79 79 79 79 78 78 78 78
0358 1222 2086 2947 3807 4665 5522 6376 7229	700144 1309 2172 3033 3893 4751 5607 6462 7315 708166	700531 1395 2258 3119 3979 4837 5693 6517 7400	700617 1482 2314 3205 4065 4922 5778 6632 7485	87 86 86 86 86 86 86 88 85 85	78	8 15 23 31 39 46 65 69 9	743 1 82 2 93 750 1 1 1 5 2 2 3 4 4	\$183 748 5.063 90 9736 98 9508 7503 1279 13 2048 21 2816 28 1583 36	236 748 210 9 214 9 25 750 25 2 25 2 25 4	313 743 118 9 118 9 891 9 663 750 433 1 202 2 970 3 736 3 501 4	$\frac{0195}{0968}$	7722 48498 9272 50045 0817 1587 2356 3123 3889 4654 5417	78 7485 93 75012 089 166 243 320 396 473 549	76 7486 50 9.23 7502 34 09.34 17.33 25 66 40 60 48	553 748 553 748 527 9 500 750 750 741 18 609 25 777 33 442 41 607 48	955   8 731 748 504 9 277 750 048 1 318 1 586 2 353 3 119 4 383 4	3808 741 3808 741 3582 5 354 750 125 1 895 1 663 2 430 3 195 4 560 5	3110 7 3885 7 9659 7 9431 7 202 7 740 7 506 7 272 7 936 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8931 9779 10625 1470 2313 8154 3994 4833 5669	9015 9863 710710 1554 2397 8238 4078 4916 5753	9100 9948 710794 1639 2481 33:23 4162 5000 5836	710033 0879 1723 2566 3107 4246 5084	85 85 85 84 84 84		8 570 15 223 3 30 4 38 5 46 6 53 7 51 8	6 7, 8, 8, 9, 760, 11	875 7559 636 67 396 74 155 82 9012 898 668 97- 422 76049 125 200 275	12 67 72 75 30 83 38 90 13 98 7605 1 13	88 6, 48 7, 06 8, 63 9, 19 98 73 7606 26 14 78 21	864 624 382 139 894 649 76	6180 6940 7700 8458 9214	75625 7011 7773 8533 9290 760044 0799 1552 2303 3053	7563 70: 78: 86: 93: 7601: 087 162 237	32 7564 92 71 51 79 99 86 66 94 7601 75 09 77 170 78 246	08 7564 68 72 80 87 85 87 95 7602 10 17 53 25	184 756 244 756 161 88 117 99 72 760 25 11 78 18 29 26	799 76 560 76 320 76 079 76 336 76 592 76	5

PP	N.	0	1	2	3	4	5	6	7	8	9	D
	580	763428	763503	763578	763653	763727	763802	763877	763952	764027	764101	7
7	1	4176	4251	4326	4400	4475	4550	4624	4699	4774	4848	7777
15	3	4923	4998	5072	5147	5221	5296	5370	5445 6190	5520 6264	5594	7
22 30	4	5669 6413	5743 6487	5818 6562	5892 6636	5966 6710	6041 6785	6115 6859	6933	7007	633× 7032	!
37	5	7156	7230	7304	7379	7453	7527	7601	7675	7749	7823	7777
44	6	7898	7972	SOAR	8120	8194	8268	8342	8416	8490	8564	li
52	7	8638	8712	8786	8860	8934	9008	9082	9156	9230	9303	1
59	8	9377	945	9525	9599	9673	9746	9820	9894	9968	770042	
67	9	770115	770189	770263	770336	770410	770484	770557	7 3.4.	77070%	9170	1_3
7	590 1	770852 1587	770926 1661	770999 1734	771073 1808	771146	771220	771293	21.2	.0	771514 2248	7
15	2	2322	2395	2468	2542	1881 2615	1955 2688	2028 2762	28.	2908	2981	1
22	3	2055	2395 3128	2468 3201	2542 3274 4006 4736	3348	3421	3494	3567	3640	3713	13
29	4	3786	3860	3033	4006	4079	4152	4225	4298	4371	4411	1
37	5	4517	4590	4663	4736	4809	4882	4955	5028	5100	<b>517</b> 3	7
44	6	5246	5319	5392	0400	5538 6265	5610 6338	5683	5756	0849	5902	707777777777777777777777777777777777777
51 58	7 8	5974 6701	6047 6774	6120 6846	6193 6919	6992	7064	6411 7137	6483 7209	5829 6556 7282	6629 7354	1
66	9	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079	1
_	600	778151	778224	778296	778368	778441	778513	778585	778658	778730	778802	7
7	1	8874	8947	9019	9091	9163	9236	9308	9380	9452	9524	7
14	2	9596	9669	9741	9813	9885	9957	780029	780101	780173	780245	777777
22	3	780317	780389	780461	780523	780605	780677	0749	0821	0893	0965	7
29	4	1037	1109	1181	1253 1971	1324 2042	1396 2114	1468 2186	1540 2258	1612 2329	1684	7
36 43	5	1755 2473	1827 2544	1899 2616	2688	2759	2831	2902	2974	3046	2401 3117	7
50	7	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	7
58	8	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546	7
65	9	4617	3975 4689	4760	4831	4902	4974	5045	5116	5187	5259	7
	610	785330	785401	785472	785513	785615	785686	785757	785828	785899	785970	7
.7	1	6041	6112	6183	8254	6325	6396	6467	6538	6609	6680	7
14	3	6751 7460	6822 7531	6893 7602	6964 7673	7035 7744	7106 7815	7177 7885	7248 7956	7319 8027	7390 8098	7
21 28	4	8168	8239	8310	8381	8451	8522	8593	8663	8734	8804	7
36	5	8875	8946	9016	9087	9157	9228	9299	9369	9440	9510	7
43	5	9581	9651	9722	9792	9863	9933	790004	790074	790144	790215	
50	7 8	790285	790356	790426	790496	790567 1269	790637	0707	0778 1480	0848	0918	777
57	8	0988	1059	1129 1831	1199	1269	1340	1410	1480	1550	1620	7
64	9	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	7
_	620	792392	792462	792532	792602	792672 3371	792742	792812	792882 3581	792952	793022	7
7	1 2	3092 3790	3162 3860	3231 3930	3301 4000	4070	3441 4139	3511 4209	4279	3651	3721 4418	7
21	3	4488	4558	4627	4697	4767	4836	4906	4976	4349 5045	5115	7
23	4	5185	5254	5324	5393	4767 5463	5532	4906 5602	4976 5672 6366	5741	5811	7
35	5	5185 5889	5949	6019	6088	6158	6227	6297 6990	6366	6436	65051	6
42	6	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	6
49	7	7268	7337	7406	7475	7545	7614	7683 8374	7752	7821	7890	6
56 63	8 9	7960 8651	8029 8720	8098 8789	8167 8858	8236 8927	8305 8996	9065	8443 9134	8513 9203	8582 9272	6
-	630	799341	799409	700 479	700547	799616	799685	799754	799823	799892	799961	6
7	0.50	800029	800098	799478 800167	799547	800305	800373	800442	800511	800580	800648	6
14	2	0717	0786	0854	800236 0923	0992	1061	1129	1198	1266	1335	6
21	3	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	888666666
28	4	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	6
35	5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	6
41	. 6	3457	3525	3594	3662	3730 4412	3798	3867	3935	4003	4071	0
48	7 8	4139 4821	4208 4889	4276	4344 5025	5093	4480 5161	4548 5229	4616	4685 5365	4753 5433	6
55 62	9	5501	5569	4957 5637	5705	5773	5841	5908	5297 5976	6044	6112	5
U44		OOV.	0000	1000	1 0100		I SOUTH	1 0000	DALA	00.22	V440	

9 D.

				-														
6	7	8	0	E.	1	P	PIN	. 0	1	2	3			3 6	,	8		,
63877 4624 5370 6115 6859 7601 8342 9082 9820 70557	763952 4699 5445 6190 6933 7675 8416 9156 9894	764027 4774 5520 6264 7007 7749 8490 9230 9968	764101 4848 5594 633- 7082 7823 8564 9303 770042 6770	75 75 75 74 74 74 74 74 74 74		1. 24 2. 3. 4. 4. 5. 6.	7	10 8061 1 68 2 75 3 82 4 88 5 95 6 8102 7 09 15 9 22	53 69 35 76 11 82 86 89 60 96 33 8103 04 095 75 16	26 69 76 79 83 53 90 27 96 00 8103	94 7. 70 7 46 8 21 9 94 9 67 810 30 11	061 7738 77414 8 988 9 9 9 134 810 176 1176	129 7 806 7 481 8 156 9 829 9 501 810 173 1	873 75 549 86 223 95 896 99 569 8106 240 11	264 73 941 80 516 86 290 93 964 8100	32 74 80 81 87 88 87 88 81 81 81 81 81 81 81 81 81	00 74 76 81 51 82 25 94 98 8101 08 41 15 11 21	167 143 318 192 165 37 08 78
71293 2028 2762 3494 4225 4955 5683 6411 7137 7862	28.2 28.2 3567 4298 5028 5756 6483 7209 7934 778658	2908 3640 4371 5100 5829 6556 7282 8006	771514 2248 2981 3713 4444 5173 5902 6629 7354 8079 778802	74 73 73 73 73 73 73 73 73 73 72		7 13 20 26 33 40 46 63 59	207.00	1 358 2 424 3 491 4 557 5 624 6 690 7 756 8 822	31 364 431 33 498 564 61 630 44 697 55 763 66 829	8 37 4 428 0 50 4 57 8 637 703 1 769 2 835	14 37 31 44 16 51 11 57 4 64 66 71 88 77 8 84	81 38 47 45 13 51 77 58 40 65 02 71 64 78 24 84	48 39 14 42 79 52 43 59 06 65 69 72 30 78 90 85	014 39 881 46 46 53 010 59 673 66 35 73 96 79 56 86	81 40 47 47 12 53 76 60 39 670 01 736 62 802 22 868	81 81344 48 411 14 478 78 544 42 610 05 677 743 28 809 88 875	8135 41 41 30 48 55 61 61 68 74 4 81 4 81 4 88	14 81 47 11 75 38 99 60 20
9308 80029 0749 1468 2186 2902 3618 4332 5045	9380 780101 0821 1540 2258 2974 3689 4403 5116	9452 780173 0893 1612 2329 3046 3761 4475 5187	9524 780245 0965 1684 2401 3117 3832 4546 5259	72 72 72 72 72 72 71 71		7 13 20 26 33 39 46 52 59	660 1 2 3 4 5 6 7 8 9	82020 085 151 216 282 347- 412	1 82026; 8 0924 4 1579 8 2233 2 2887 4 3539 5 4191 6 4841	82033 098 164 229 295	3 82039 9 103 171 9 236 2 301 5 867 432 497	99 8204 55 11: 00 17: 44 24: 8 30: 0 87: 11 43: 1 50:	54 8205 20 11 75 18 30 24 33 31 35 38 66 44 66 51	30 8205 86 12 41 190 05 256 48 321 00 386 51 451 01 516	95 066 51 131 96 197 90 262 3 327 5 398 6 458 6 523	1 072 7 138 2 203 6 269 9 334 0 899 1 464 1 529	7 079 22 144 7 210 1 275 4 340 5 406 3 471 5 536	12 18 13 16 11 11
85757 6467 7177 7885 8593 9299 90004 0707 1410 2111	785828 6538 7248 7956 8663 9369 790074 0778 1480 2181	785899 6609 7319 8027 8734 9440 790144 0848 1550 2252	785970 6680 7390 8098 8804 9510 790215 0918 1620 2322	71 71 71 71 71 70 70 70		6 13 19 26 32 38 45 51 58	670 1 2 3 4 5 6 7 8	826072 6723 7369 8015 8660 9304 9947 830589 1230 1870	6787 7434	826204 6852 7499 8144 8789 9432 830078 0717 1358 1998	691 756 820 885 949	7 698 762 9 827 3 891 9 956 0 83020 0 84 1 148	704 8 769 3 833 8 898 1 962 4 83026 5 090 155	6 711 775 8 840 2 904 5 969 8 83033 9 097 0 161	717 782 846 911 975 830396 1037	826593 7240 7886 8531 9175 9818 830460 1102	826654 7304 795 8594 9231 9882	851
92812 3511 4209 4906 5602 6297 6990 7683 8374 9065	792882 3581 4279 4976 5672 6366 7060 7752 8443 9134	792952 3651 4349 5045 5741 6436 7129 7821 8513 9203	793022 3721 4418 5115 5811 6505 7198 7890 8582 9272	70 70 70 70 70 69 69 69	and the second sections	6 13 19 25 32 38 44 50 57	680 1 2 8 4 5 6 7 8 9	832509 3147 8784 4421 5056 5691 6324 6957 7588 8219	832573 3211 3848 4484 5120 5754 6387 7020 7652 8282	832637 8275 8912 4548 5183 5817 6451 7083 7715 8345	832700 8333 8972 4611 5247 5881 6514 7146 7778 8408	8403 403 467 5310 594 6577 7210	83282 846 410 473 537 600 664 727	8 83289: 8 8530 8 8530 4160 9 4802 8 6071 6704 7336 7967	832956 3593 4230 4866 5500 6134 6767	833020 3657 4294	833082 8721 4357 4993 5627 6261 6894 7525 8156 8786	000000000000000000000000000000000000000
99754 00442 1129 1815 2500 3184 3867 4548 5229 5903	799823 800511 1198 1884 2568 3252 3935 4616 5297 5076	799892 800580 1266 1952 2637 3321 4003 4685 5365 6044	799961 800648 1335 2021 2705 3389 4071 4753 5433 6112	1 82222223		6 13 19 25 82 88 44 80 87	690 1 2 8 4 5 6 7 8	838849 9478 840106 0733 1359 1985 2609 3233 9855 4477	9541	838975 9604 840232 0869 1485 2110 2784 8357 5980 4601	839038 9667 840294 0921 1547 2172 2796 8420 4042 4664	839101 9729 840357 0984 1610 2235 2859 8482 4104 4726	839164 9792 840420	839227 9855 840482 1109	839289 9918 840545 1172 1797 2422 3046 3669 4291 4912	839352 9981 840608 1234 1860 2484 3108 3731 4353 4974	839415 840043 0671 1297 1922 2547 8170 8793 4415 6036	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

## LOGARITHMES.

PP	N.	0	1	2	3	4	5	6	7	8	9	I
	700	84509	8 84516	84522	845284	845346	845418	845470	94550	10,000	1 04405	+
6	1	571	8 578									
12	2	633	7 639	6461	6523			6708				9
19	3						7264	7326	738			
25 31	4						7831	7943	800	1 806	8 912	
37	5			8312				8559	862		2 874	
43	7						9112		923	929	9359	3
60	8			850156	850217			9788 850401		991	9972	
56	9	064		0769			0952			850524 1136	850584 1197	
6	710	85125	851320				851564		851686	851747	851809	-
12	2	1870	1931 2541			2114	2175	2236	2297	2358	2419	
18	8	<b>24</b> 80	3150		2663	2724 3333	2785	2846	2907		3029	1
24	4	8698			3272 3881	3941	8394 4002		3516		3637	
31	5			4428	4488	4549	4610		4124 4731		4245	ı
37	6	4913	4974	5034	5095	5156	5216		6337			L
43 49	7	5519			5701	5761	5822		5943		6064	
85 85	8	6124		6245	6306	6366	6427	6487	6548	6608	6668	ı,
~		6729			6910	6970	7031	7091	7152	7212		
6	720	357332 7935	857393 7995	857453 8056	857513 8116	857574	857634	857694	857755	857815		7
12	2	8537	8597	8657	8718	8176 8778	8236 8838	8297 8898	8357	8417	8477	. (
18	3	9138	9198	9258	9318	9379	9439	9499	8958 9559	9018 9619		
24 30	4	9739	9799	9859	9918	9978	860038	860098	860153	860218		. 6
36	6	860338 0937			860518	860578	0637	0697	0757	0817	0877	lé
42	7	1634	0996 1594	1056	1116	1176	1236	1295	1355	1415	1475	ě
48	8	2131	2191	1654 2251	1714 2310	1773	1833	1893	1952	2012	2072	. 6
54	9	2728	2787	2847	2906	2370 2966	2430 3025	2489 3085	2549 5144	2608 3204	2668 3263	6
	730	863323	863382	863442	863501	863561	863620	863680	863739	863799		_
6	1	3917	3977	4036	4096	4155	4214	4274	4333	4392	863868 4452	5
8	3	4511 5104	4570	4630	4689 5282	4748	4808	4867	4926	4985	5045	5
4	4	5696	5163 5755	5222 5814	5874	5341	5400	5459	5519	5578	5637	5
10	5	6287	6346	6405	6465	5933 6524	5992	6051	6110	6169	6228	5
10 35	6	6878	6937	6996		7114	6583 7173	6642 7232	6701	6760	6819	ð
	7	7467	7526	7585	7055 7644	7703	7762	7821	7291 7880	7350 7939	7409	5
7	8	8056	8115	8174	8233	8292	8350	8409	8468	8527	7998 8586	5
3	9	8644	8703	8762	8821	8879	8938	8997	9056	9114	9173	5
6 7	40	869232 9818	869290 9877	869349					869642	869701	869760	5
2	2	870404	870462	9935 870521	9994	870053	870111	870170	870228		870345	59
71	-3	0989	1047	1106	870579 1164	0638 1223	0696 1281	0755	0813	0872	0930	58
3	4	1573	1631	1690	1748	1806	1865	1339 1923	1398	1456	1515	58
9	5	2156	2215	2273	2331	2389	2448	2506	1981 2564	2040	2098	58 58
5	6	2739	2797	2855	2913	2972	8030	3088	3146	2622 3204	2681 3262	58
1	7	3321	3379	3437	3495	3553	3611	3669	3727	3785	3844	58
	8	3902 4482	<b>3</b> 960 <b>4</b> 540	4018 4508	4076	4134	4192	4250	4308	4366	4424	58
						4714	4772	4830	4888	4945	5003	58
51	50	5640	875119 5698	875177 5756	875235 5813	875293 8 5871	575351 5929	875409 5987	875466		875582	58
2	2	6218	6276	6333	6391	6149	6507	6564	6045 6622	6102	6160	58 58
	8	6795	6853	6910	6968	7026	7083	7141	7199	6680 7256	6737 7314	58
3	5	7371	7429	7487	7544	7602	7659	7717	7774	7832	7889	58
	6	7947 8522	8004 8579	8062	8119	8177	8234	8292	8349	8407	8464	57
	7	9096	9153	8637	8694	8752	8809	8866	8924	8981	9039	57
6	8	9669	2726	9211 9784	9268 9841	9325 9898	9383	9440	9497	9555		57
2	9 8	190242					9956 8 80528	880013   8 0585	380070 0642			57 57
								UKACHI)	INPAG!	0699		.26

	·					1										- 1000	- A - A -					Z
6	7	8	9	D			PP	N.	0	1		2	3	T	4	5	1		,	8		9 1
5470 5090 5708 7326 7943 3559 174 1788 1401 014	615 6770 7380 800- 8620 9231 9849 9849	1 621 683 8 744 8 866 1 868 9 99 9 991 2 85052 113	33 6277 6894 7511 6 8128 8743 7 9358 1 9972 4 850585 1 197	62 62 62 62 62 61 61			6 11 17 23 29 34 40 46 51	76) 1 2 3 4 5 6 7 8	88081 138 195 232 309 3661 422 4795 5361 5926	5 14 5 20 5 25 31 31 37 42 48 5 48	12 12 12 13 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	0928 1499 2069 2638 3207 3775 1342 909 474 039	88098 155 212 269 326 383 439 496 553 6096	66 16 26 26 15 22 14 33 19 44 10 5	1042 1613 1752 1321 1888 455 022 587	88109 167 224 280 337 394 451 5073 564 6209	7 34 5 40 2 45 8 51 4 57	156 881 127 1 197 2 166 2 34 3 102 4 69 4 35 5		8812 18: 24: 29: 35: 411 468 524 581	71 881: 41 18 11 2: 30 30 18 30 15 41 12 47 18 53 3 58	328 398 468 337 805 805 872 505 805 805 805 805 805 805 805 805 805
625 236 846 455 063 670 277 882 487 091	851686 2297 2907 3516 4124 4731 5337 5943 6548 7152	2350 2960 3577 4180 4792 5398 6003 6608 7212	3 2419 3029 7 3637 4245 4852 5459 6064 6668 7272	61 61 61 61 61 61 61 60 60			6 11 17 22 28 14	770 1 2 3 4 5 6 7 8 9	886491 7054 7617 8179 8741 9302 9862 990421 0980 1537	88654 711 767 823 879 935 991 89047 103 1593	7 7 7 7 7 7 7 8 8 8 8 9 9 8 9 0 5 1 0	167 730 292 353 114 774 8	886666 7223 7786 8348 8909 9470 90030 0589 1147 1705	7: 7: 8: 8: 8: 9: 89:00	280 342 104 965 526 86 8 45	86773 7336 7898 8460 9021 9582 90141 0700 1259 1816	88683 738 792 851 907 963 89019	29 8868 92 74 55 80 6 85 7 91 8 96 7 8902 6 08 4 13	385 8 149 111 173 34 194 53 8 12	637 750 806; 862; 9190 9750 90309 0868 1426	2 8869 756 7 812 868 92- 980 980 89030 092 148	98 56 61 56 85 56 46 56 15 56 15 56 15 56
97 95 93 89 85	857755 8357 8958 9559 860158 0757 1355 1952 2549 8144	9018 9619	8477 9078 9679 860278 0877 1475 2072	60 60 60 60 60 60 60 60		1 1 1 2 2 2 3 4 4	617273384	80 8 1 2 3 4 5 6 7 8 9	92095 2651 3207 3762 4316 4870 5423 5975 6526 7077	892150 2707 3262 3317 4371 4925 5478 6030 6581 7132	27 33 38 44 498 553	62 18 73 27 30 33 35	92262 2818 3373 3928 4482 5036 5588 6140 6692 7242	8923 28 34: 39: 453 509 564 619 674 729	17 81 73 29 34 38 11 14	2373 2929 3484 4039 4593 5146 5699 6251 6802	89242 298 354 409 4648 5201 5754 6306 6857	9 89248 304 353 412 470 525 580 636 691	84 89 89 89 89 89 89 89 89 89 89 89 89 89	1983 3096 3651 4205 4759 5312 5864 6416 6967	89259	5 56 1 56 6 56 1 55 4 55 7 55 5 55 1 55
80 74 67 59 51 42 32 21 09	863739 4333 4926 5519 6110 6701 7291 7880 8468 9056	863799 4392 4985 5578 6169 6760 7350 7939 8527 9114	863868 4452 5045 5637 6228 6819 7409 7998 8586 9173	59 59 59 59 59 59 59 59 59		22 27 33 38 44 49		1 2 8 4 5 90	8176 8725 9273 9821	897682 8231 8780 9328 9875 00422 0968 1513 2057 2601	89773 828 883 938 99047 102: 156; 211: 2656	7 89 6 5 3 0 6 90 2 7	7792 8341 8890 9437	89784 839 894 949 90003 0586 113 1676 2221 2764	7 893 6 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8999 0547 0094 610 186 731 275	7407 897957 8506 9054 9602 900149 0695 1240 1785 2329	746 89801 856 910 9650 900203 0743 1292 1840 2384	22 898 1 898 6 8 3 900 5 1 1 1 2	8615 9164 9711	7572 898122 8670 9218 9766 900312 0859 1404 1948 2492	55 55 55 55 55 55 55 55 55
70 55 39 23 06 88 69 50	0813 1398 1981 2564 3146 3727 4308 4838	869701 870287 0872 1456 2040 2622 3204 3785 4366 4945	<b>5</b> 003	59 58 58 58 58 58 58 58 58 58	4 2	5 11 16 22 27 32 38 43 49	800	1 3 4 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3633 1174 1716 5256 1796 1335 1874 411	03144 3687 4229 4770 5310 5850 6389 6927 7465 8002	903199 3741 4283 4824 5364 5904 6443 6981 7519 8056	903 8 4 4 5 5 6 7 7		03307 3849 4391 4932 5472 6012 6551 7089 7626 8163	903 34 49 56 66 66 71	904 445 986 526 966 604 43	2873 03416 3958 4499 5040 5580 6119 6658 7196 7734 8270	2927 903470 4012 4553 5094 5634 6173 6712 7250 7789	903 4 4 5 5 6 6 6 7 7	066 607 148 688 227 766 304 341	3036 903578 4120 4661 5202 5742 6281 6820 7358 7895	54 54 54 54 54 54 54 54 54
87 64 41 17 92 66 40	6045 6622 7199 7774 8349 8924 9497	6102 6680 7256 7832 8407 8981 9555	6160 6737 7314 7889 8464 9039 9612 880185	58 58 58 58 58 58 57 57		5 11 16 21 27 32 37 42 48	810 1 2 3 4 5 6 7 8 9	9 9 9 9 10 1 10 2	021 556 091 91 624 158 690 222	9074 9010	08592 9128 9663 10197 0731 1264 1797 2328 2859 3390	9102 07 13 18 23 29	181 716 251 91 84 117 150 181	9235 9770 0304 0838 1371 1903 2435 2966 3496	9087 92 98 9103 08 14 19 24 30 35	53 90 89 23 58 91 24 56 89 19	9807 9342 9877	8324 908860 9396 9930 10464 0998 1530 2063 2594 3125 3655	9089 94	184 51 84 16 47 78	8431 08967 9503 10037 0571 1104 1637 2169 2700 3231 8761	54 54 54 53 53 53 53 53

PP	N.	0	1	2	3	4	5	6	7	8	9	D
8 11 16 21 27 32 37 42 48	820 1 2 3 4 5 6 7 8 9	\$13814 4343 4872 5400 5927 6454 6980 7506 8030 8555	913867 4396 4925 5453 5980 6507 7033 7558 8083 8607	913920 4449 4977 5505 6033 6559 7085 7611 8135 8659	913973 4502 5030 5558 6085 6612 7138 7663 8188 8712	914026 4555 5083 5611 6138 6664 7190 7716 8240 8764	914079 4608 5136 5664 6191 6717 7243 7768 8293 8816	914132 4660 5189 5716 6243 6770 7295 7820 8345 8869	914184 4713 5241 5769 6296 6822 7348 7873 8397 8921	914237 4766 5294 5822 6349 6875 7400 7925 8450 8973	914290 4819 5347 5875 6401 6927 7453 7978 8502 9026	50 50 50 50 50 50 50 50 50 50 50 50 50 5
5 10 16 21 26 31 86 42 47	830 1 2 3 4 5 6 7 8 9	919078 9601 920123 0645 1166 1686 2206 2725 3244 3762	919130 9653 920176 0697 1218 1738 2258 2777 3296 3814	919183 9706 920228 0749 1270 1790 2310 2829 3348 3865	919235 9758 920280 0801 1322 1842 2362 2881 3399 8917	919287 9810 920332 0853 1374 1894 2414 2933 3451 3969	919340 9862 920384 0906 1426 1946 2466 2985 3503 4021	919392 9914 920436 0958 1478 1998 2518 3037 8555 4072	919444 9967 920489 1010 1530 2050 2570 3089 3607 4124	919496 920019 0541 1062 1582 2102 2622 3140 3658 4176	919549 920071 0593 1114 1634 2154 2674 3192 3710 4228	50 50 50 50 50 50 50 50 50 50 50 50 50 5
5 10 15 20 26 31 36 41 46	840 1 2 3 4 5 6 7 8 9	924279 4796 5312 5828 6342 6857 7370 7883 8396 8908	924331 4848 5364 5879 6394 6908 7422 7935 8447 8959	924383 4899 5415 5931 6445 6959 7473 7986 8498 9010	924434 4951 5467 5982 6497 7011 7524 8037 8549 9061	924486 5003 5518 6034 6548 7062 7576 8088 8601 9112	924538 5054 5570 6085 6600 7114 7627 8140 8652 9163	924539 5106 5621 6137 6651 7165 7678 8191 8703 9215	924641 5157 5673 6188 6702 7216 7730 8242 8754 9266	924693 5209 5725 6240 6754 7268 7781 8293 8805 9317	924744 5261 5776 6291 6805 7319 7832 8345 8857 9368	52 52 52 51 51 51 51 51 51
5 10 15 20 26 31 36 41 46	850 1 2 3 4 5 6 7 8 9	929419 9930 930440 0949 1458 1966 2474 2981 3487 3993	929470 9981 930491 1000 1509 2017 2524 3031 3538 4044	929521 930032 0542 1051 1560 2068 2575 3082 3589 4094	929572 930083 0592 1102 1610 2118 2626 3133 3639 4145	929623 930134 0643 1153 1661 2169 2677 3183 3690 4195	929674 930185 0694 1204 1712 2220 2727 3234 3740 4246	929725 930236 0745 1254 1763 2271 2778 3285 3791 4296	929776 930287 0796 1305 1814 2322 2829 8335 3841 4347	929827 930338 0847 1356 1865 2372 2879 3386 3892 4397	929879 930389 0898 1407 1915 2423 2930 3137 3943 4418	51 51 51 51 51 51 51 51
5 10 15 20 25 30 35 40 45	860 1 2 3 4 5 6 7 8 9	934498 5003 5507 6011 6514 7016 7518 8019 8520 9020	934549 5054 5558 6061 6564 7066 7568 8069 8570 9070	934599 5104 5608 6111 6614 7117 7618 8119 8620 9120	934650 5154 5658 6162 6665 7167 7668 8169 8670 9170	934700 5205 5709 6212 6715 7217 7718 8219 8720 9220	934751 5255 5759 6262 6765 7267 7769 8269 8770 9270	934801 5306 5809 6313 6815 7317 7819 8320 8820 9320	934852 5356 5860 6363 6865 7567 7869 8370 8870 9369	934902 5406 5910 6413 6916 7418 7919 8420 8920 9419	934953 5457 5960 6463 6966 7468 7969 8470 8970 9469	8888888888
5 10 15 20 25 30 35 40 45	870 1 2 3 4 5 6 7 8	939519 940018 0516 1014 1511 2008 2504 3000 3495 3989	939569 940068 0566 1064 1561 2058 2554 8049 3544 4038	939619 940118 0616 1114 1611 2107 2603 8099 8593 4089	939669 940168 0666 1163 1660 2157 2653 3149 3643 4137	939719 940218 0716 1213 1710 2207 2702 8198 8692 4186	939769 940267 0765 1263 1760 2256 2752 3247 8742 4236	939819 940317 0815 1313 1809 2306 2801 8297 8792 4285	939869 940367 0865 1362 1859 2355 2851 3346 8841 4335		939968 940167 0964 1462 1958 2455 2950 3445 8939 4433	50 50 50 50 50 50 50 50 50 50 50 50 50 5

9 D.	56 4819 53 5347 53 52 5875 53 19 6401 53 55 6927 53 7453 53 25 7978 52 60 8502 52	9 920071 52 1 0593 52 2 1114 52 2 1634 52 2 2154 52 2 2674 52 0 8192 52	9 5261 52	4 6805 51 8 7319 51 1 7832 51 3 8345 51 5 8857 51	4 6805 51 8 7319 51 1 7832 51 3 8345 51 7 9368 51 7 929879 51 8 930339 61 7 929879 51 8 930339 61 7 929879 51 8 930339 61 7 1915 51 9 2930 51
8 9	4766 4819 5294 5347 5822 5875 6349 6401 6875 6927 7400 7453 7925 7978 8450 8502	0019 920071 0541 0593 1062 1114 1582 1634 2102 2154 2622 2674 3140 3192	5209 5261 5725 5776 6240 6291 6754 6805 7268 7319 7781 7832 8293 8345 8805 8857		0338 930389 0847 0898 1356 1407 1865 1915 2372 2423 2879 2930 3386 3437 3892 3943
1			9:		9:
7	14184 4713 5241 5769 6296 6822 7348 7873 8397 8921	19444 9967 20489 1010 1530 2050 2570 3089 3607 4124	24641 5157 5673 6188 6702 7216 7730 8242 8754 9266		9776 30287 0796 1305 1814 2322 2829 3335 3841 4347
6	4132 9 4660 5189 5716 6243 6770 7295 7820 8345 8869	9914	4539 9 5106 5621 6137 6651 7165 7678 8191 8703 9215		9725 9 0236 9 0745 1254 1763 2271 2778 3285 3791 4296

PP	N.	0	1	2	3	4	5	6	7	8	9	D.
3 10 15 20 25 29 34 39 44	380 1 2 3 4 5 6 7 8 9	944483 4976 5469 5961 6452 6943 7434 7924 8413 8902	5025 5518 6010 6501 6992 7483 7973 8462	5074 556 6059 6551 7041 7532 8022	512 7 5616 9 6100 1 6600 7090 758: 8070 8560	6 566 8 615 0 664 714 763 8 811 8 860	522 5 571 7 620 0 669 7 718 0 767 9 816 9 865	5 576 7 625 8 674 9 723 9 772 8 821 7 870	2 532 4 581 6 630 7 679 8 728 8 777 7 826 8 875	1 5376 585 5 635- 6842 7 7336 7 7826 8315 8304	5419 5912 6403 6 6894 7385 7875 8 8364 8853	49 49 49 49
5 10 15 20 24 29 34 89 44	890 1 2 3 4 5 6 7 8	949390 9878 950365 0851 1338 1823 2308 2792 3276 3760	9926 950414 0900 1386 1872	949488 9975 950462 0949 1435 1920 4405 \$889 \$373 \$856	950024 0511 0997	950073 0560 1046 1532 2017 2502 2986 3470	95012 0608 1090 1580 2060 2550 3034 3518	1 950170 8 0657 5 1142 1620 2114 2599 4 3083 8 3566	950219 0706 1192 1677 2163 2647 3131 3615	950267 0754 1240 1726 2211 2696 3180	950316 0803 1289 1775 2260 2744 3228	49 49 49 49 48 48 48 48 48
5 10 14 19 24 29 34 38 43	900 1 2 3 4 5 6 7 8	954243 4725 5207 5688 6168 6649 7128 7607 8086 8564	954291 4773 5255 5736 6216 6697 7176 7655 8134 8612	954339 4821 5303 5784 6265 6745 7224 7703 8181 8659	954387 4869 5351 5832 6313 6793 7272 7751 8229 8707	954435 4918 5399 5880 6361 6840 7320 7799 8277 8755	954484 4966 5447 5928 6109 6888 7368 7847 8325 8803	5014 5495 5976 6457 6936 7416 7894 8373	5062 5543	954628 5110 5592 6072 6553 7032 7512 7990 8468 8946	954677 5158 5640 6120 6601 7080 7559 8038 8516 8994	48 48 48 48 48 48 48 48 48
5 9 14 19 24 28 33 38 42	1 2	959041 9518 9995 960471 0946 1421 1895 2369 2843 3316	9566	959137 9614 960090 0566 1041 1516 1990 2464 2937 3410	959185 9661 960138 0613 1089 1563 2038 2511 2985 3457	959232 9709 960185 0661 1136 1611 2085 2559 3032 3504	959280 9757 960233 0709 1184 1658 2132 2606 3079 3552	959328 9804 960281 0756 1231 1706 2180 2653 3126 3599	959375 9852 960323 0804 1279 1753 2227 2701 3174 3646	959423 9900 960376 0851 1326 1801 2275 2748 3221 3693	959471 9947 960423 0899 1374 1848 2322 2795 3268 3741	48 48 48 48 47 47 47 47 47
5 9 14 19 23 28 33 38 42	920 1 2 3 4 5 6 7 8	963788 4260 4731 5202 5672 6142 6611 7080 7548 8016	963835 4307 4778 5249 5719 6189 6658 7127 7595 8062	963882 4354 4825 5296 5766 6236 6705 7173 7642 8109	963929 4401 4872 5343 6813 6283 6752 7220 7688 8156	963977 4448 4919 5390 5860 6329 6799 7267 7735 8203	964024 4495 4966 5437 5907 6376 6845 7314 7782 8249	964071 4542 5013 5484 5954 6423 6892 7361 7829 8296	964118 4590 5061 5531 6001 6470 6939 7408 7875 8343	964165 4637 5108 5578 6048 6517 6986 7454 7922 8390	964212 4684 5155 5625 6095 6564 7033 7501 7969 8436	47 47 47 47 47 47 47 47 47
5 9 14 18 23 28 32 37 41	1 2 3	8950 9416 9882	8996 9463 9928	9043 9509	9090 9556	9136 9602	968716 9183 9649 970114 0579 1044 1508 1971 2434 2897	968763 9229 9695 970161 0626 1090 1554 2018 2481 2943	9276 9742	9323 9789	968903 9369 9835 970300 0765 1229 1693 2157 2019 3082	47 47 47 47 46 46 46 46 46 46 46

PP	N	. 0	1	2	3	4	5	8	7	8	1	Ð
	94	9731	28 97317	4 97322	0 97326	6 97331	3 97335	9734	05 9734	51 9734	07 072	- 10
8		359	0 363	16 368	2 372	8 377	4 882	20 38	66 39	13 80		005
9	1				3 418	9 429	5 428	31 43	27 43	74 44		166
14	1						6 474	2 47	38 48	34 48	80 4	126
23	1 8							2 52	18 52			3.96
28	i					9 <b>561</b> 9 <b>607</b>			77 67. 62			345
32	7	635	0 639			8 653	3 657		5 66	71 67		63
23 28 32 87 41	8			4 690	0 694	6 699	2 703	7 708	3 71	29 71	75 72	20
-	-	-	-	-	-	-	-	_		_	-	78
5	950	97772 818	4 97776 1 822						8 9780	13 9780		
9	2	863	7 868	3 872	8 877				4 850 1 890	00 85 6 90	16 85 02 90	
14	3	909	3 913		4 923	927	932	1 936	6 911	2 94		03
18	4	951				9730	9770	8 982	1 996	7 99	12 99	
23 27	6	98000 045	3 98004	98009			98023		6 98032			
32	7	091		3 0549 7 1003				118	0 077	6 082		67
32 36	8	136								9 127	5 13: 8 17:	20
41	9	181	186		1954							
	960	98227	982316							8 98263	3 98267	-
5	2	272 317	3 2769 3 3220	2814	2859						5 313	U 4
14	3	3626	3671	3265 3716	3310 3762		3401 3852				6 353	
18	4	4077	4122		4212		4302	434	394 439		7 403 7 448	
23	5	4527	4572	4617	4662	4707		479		2 488	7 493	2 6
23 27 32 36	6	4977				5157	5202	5247	520	2 833	7 538	2 4
38	8	5426 5875				5606				1 578	6 883	0 6
41	9	6324				6055 6503	6100 6548		618	9 <b>623 668</b> :	627	0 6
7	970	986772	986817	986861	986906	986951	986996	987040	-	-		-
5	ĭ	7219	7264		7353	7398	7443		753			6
9	2	7666	7711	7756	7800	7845	7890	7934	7979		8069	6
14	3	8113	8157	8202	8247	8291	8336	8381	842!	8470	8514	1 6
18 23 27 32 36	5	8559 9005	8604 9049	8648 9094	8693 9138	8737	8782	8826		8916	8960	
27	6	9450	9494	9539	9583	9183 9628	9227 9672	9272 9717	9316			
32	7	9895	9939	9983	990028	990072	990117	990161	9761 990200	9806 990250		
36	8	990339	990383	990428	0472	0516	0561	0605	0650		0738	44
41	9	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182	41
1	980	991226 1669	991270	991315	991359	991403	991448	991492	991536			44
9	2	2111	1713 2156	1758 2200	1802 2244	1846 2288	1890 2333	1935	1979	2023	2007	# 4
13	3	2554	2598	2642	2686	2730	2774	2377 2819	2421 2863	2465 2907	2509 2951	4
18	4	2995	3039	3083	3127	2730 3172	3216	3260	3304	1 2333	3392	
22 26 31	5	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833	4
60	6	3877 4317	3921 4361	. 3965	4009	4053	4097	4141	4185	4229	4273	44
35	8	4757	4801	4405 4845	4449 4889	4493 4933	4537	4581 5021	4625	4669	4713	4
ĬÕ.	9	5196	5240	5284	5328	5372	4977 5416	5460	5065 5504	5108 5547	5152 5591	4
9	90	95635	995679	995723	995767	995811	995854	995898	995942	995986	996030	4
4	11	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	
9	2	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	4
3	3	6949 7386	6993	7037	7080	7124	7163	7212	7255	7299	7343	****
2	4	7386 7823	7430	7474	7517	7561	7605	7648	7692	7736	7779]	#
8	6	8259	7867 8803	7910 8347	7954 8390	7998 8434	8041	8085 8521	8129	8172	8216 8652	4
i	7	8695	8739	8782	8825	8869	8477 8913	8956	8564 9000	8608 9043	9087	4
8 2 6 1 5	8	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522	ii l
* *	ĝi	9000	9609	2652	9696	9739	9783	9826	9870	9913	99671	

#### 3913 4374 4834 5294 5753 6212 6671 7129 7586 3866 4327 4788 5248 5707 6167 6625 7083 7541 4420 4880 8340 8799 6258 6717 7175 7632 4466 4926 5386 5845 6304 6763 7220 7678 8500 8956 9412 9867 980322 8454 8911 9366 9821 980276 0730 1184 1637 2090 8591 9047 9503 9958 980412 0867 1320 1773 2226 8546 9002 9457 9912 980367 1229 1683 2135 1275 1728 2181 3040 3491 3942 4392 4842 6202 5741 6189 6637 2994 3416 3897 4347 4797 5247 5696 6144 6593 3085 3536 8987 4437 4887 5337 5786 6234 6682 3130 3581 4032 4482 4932 5332 5830 6279 6727 7532 7979 8425 8871 9316 9761 990206 0650 1093 7488 7934 8381 8826 9272 9717 990161 0605 1049 7622 8068 8514 8960 9405 9850 990294 0738 1182 8024 8470 8916 9361 1137 1935 2377 2819 3260 3701 4141 4581 5021 5460 1979 2421 2863 3304 3745 4185 4625 5065 5504 2067 2509 2951 3392 3833 4273 4713 5152 5591 2465 2907 3348 3789 4229 4669 5108 5547 6337 6774 7212 7648 8085 8521 8956 9892 9826 6380 6818 7255 7692 8129 8564 9000 9435 6424 6468 6906 7343 7779 8216 8652 9087 9522 9967 7299 7736 8172 8608 9043 9479 9913

# TABLE DES MATIÈRES.

N. B. Les chiffres qui ne sont pas entre parenthèses, renvoient au paragraphe et non à la page.

Notions préliminaires   VII		
Signes de Relations.   10	Prejace des Editeurs	v
But de l'algèbre         1           Définition des signes algébriques         2           Signes des quantités         2           Lettres et chiffres         4           Signes d'opérations         5           Coefficient         6           Exposant         7           Radical         8           Signes de Relations         9           Définitions         10           Signes de groupement         10           Définitions         11           Autres notions indispensables         Expression algébrique         12           Formule algébrique         12           Formule algébrique         13           Termes algébriques         13	Notions préliminaires.	
Signes des quantités.   Lettres et chiffres   Lettres et chiffre	(page 5)	
Signes d'opérations.   5   5   6   6   6   6   6   6   6   6	Delinition des signes algébriques	
Signes d'opérations.   5   5   6   6   Exposant   7   7   8   8   8   8   8   8   8   8	Signes des quantités.	
Définitions         5           Coefficient         6           Exposant         7           Radical         8           Signes de Relations           Définitions         9           Signes de groupement           Définitions         10           Signes de raisonnement           Définitions         11           Autres notions indispensables           Expression algébrique         12           Formule algébrique         13           Termes algébriques         13		4
Définitions         5           Coefficient         6           Exposant         7           Radical         8           Signes de Relations           Définitions         9           Signes de groupement           Définitions         10           Signes de raisonnement           Définitions         11           Autres notions indispensables           Expression algébrique         12           Formule algébrique         13           Termes algébriques         13	Signes d'opérations.	
Signes de groupement.  Définitions	Définitions	6 7
Signes de groupement.  Définitions	Signes de Relations.	
Définitions		9
Signes de raisonnement.  Définitions		
Définitions	Delinitions	10
Autres notions indispensables.  Expression algébrique		
Expression algébrique	Définitions	11
Expression algébrique	· Autres notions indispensables.	
	Expression algébrique	13 14

# TABLE DES MATIÈRES.

Polynôme
Chapitre premier Addition Soustraction.
. (page 16)
Addition—Règle
Réduction des termes semblables
(page 21)
Réduction des termes scmblables
Multiplication
(page 26)
Multiplication des monômes, — Monône positif

ES.	•	TABLE DES MATIÈRES.	237
	16 17 18	De la mise en facteur commun	50 51
(page 13) (page 14)	iğ	Quelques formules fréquemment employées (page 32)	3
Soustraction.		Multiplications importantes	3, 54
	20	Division algébrique	
	22	(page 34)	
au signe— e et l'addition n Algébriques n et sur la sous- 28,29 mblables	23 24 25	Division algébrique, — But de la division algébrique. Division des monônes. Démonstration Règle des signes Règle des coefficients. Règle des lettres Règle des exposants Applications des règles de la division algébrique. Division impossible. Division des polynèmes.  De l'exposant zéro et de l'exposani négatif	55 55 56 57 58 59 60 61 62 63
des termes sem-	0.0	(page 40)	
une paranthèse.	37	De l'exposant zéro (a° == 1)	64
23)		De l'exposant négatif $(a^{-n} = \frac{1}{n})$	65
ge 24) ue (page 25)		Démonstration	65
		Fractions Algébriques.	
e positif	38	(page 42)	
44,	46	Définition Simplification Réduction au même dénominateur Addition de fractions Soustraction des fractions. Multiplication des fractions Division des fractions De la valeur absolue d'une fraction Questionnaire	66 67 68 69 70 71 72 73
manière	49	Questionnaire (page 47)  Exercices sur les fractions (page 47)	~,

# Chapitre II — Des équations — Equation du premier degré à une seule inconnue.

(page 49)

Egalité
Résolution des équations du ler degrê à une
seule inconnue.
V
(page 53)
Règle
Mise en équation.
(page 57)
Mise en équation
Généralisation d'un problème.
Sénéralisation

***************************************	ı
ons — Equation du seule inconnue.	
74 75 76 77 78 79 80 81 90 90 90 90 90 90 90 90 90 90 90 90 90	
87 88 88 89 90 efficient de X91(page 56) uations du nu(page (57)	
96 97 98,99,100 problème. 101 6ral. 102,103,104 (page 65) (page 66)	

Chapitre III.—Résolution des équations du pre-
mier degré à plusieurs inconnues.
(page 67)
Problèmes à plusieurs inconnues
Problèmes déterminés à plus de deux inconnues.
(page 72)
Problèmes déterminés à plus de donn :
nition, Exemple. 115,116 Règle. 115,116 Simplification. 117 Problème. 120
Formules générales pour les problèmes du ler degré à deux inconnues.
(page 76.)
Formules
Chapitre IV — Interpretation des di-
auxquels peut conduire la résolution des équations.—Discussion des problèmes.
(page 81)
Observation preliminaire

Discussion des problèmes et des fi	ormules alg
briques	
(page 88)	
Définition. Exemple	134, 136, 136, 13
Chapitre V, — Alanyse indéterminé	e du premie
degrð	
(page 94)	
Définition Analyse indéterminée Problèmes Manière de connaître à l'avance si le problè aura ou non des solutions entières Quelques remarques importantes. Quelles formules il faut suivre dans le cas blèmes renferment plusieurs inconnues Questionnaire (page 108) Exercices sur l'analyse indéterminée du prem	143, 14 me proposé
Chapitre VI, — Carrê et racine ce	arrée des
quantités algébriques	
(page 110)	
Observation Carré d'un monôme Carré d'un binôme Carré d'une fraction	158
Extraction de la racine car	rêe
(page 111)	•
Définitions.  Quantités rationnelles — Quantités irrationne Double signe — Racine ambiguë.  Racine carrée des monônes.  Comment indiquer la racine d'un carré qui parfait.  Racine carrée des quantités fractionnaires — reconnaître qu'un trinôme donné est un fait.  Comment compléter le Carré.  Questionnaire	164 165 167 167 167 167 167 167 167 167 167 167

135 137 137
137
141 142 144 147 152 155
156 157 158 159
61 162 64 65 67

# Chapitre VII. — Résolution des équations et des problèmes du deuxième degré à une seule inconnue.

seule inconnue.	
(page 119.)	
Racines de l'équation.  Equation incomplète.  Equation complète.  Résolution des équations incomplètes.  Equation numérique  Equation littérale  Questionnaire. (page 123)  Exercices sur les équations à deux termes (page 123)	181 181 181 181 181
Résolution des équations complètes du second	đ
degré.	
(page 123.)	
Résolution des équations complètes	89 90
Problèmes du 2d degré.	-
(pages 131)	
Mise en équation des problèmes du second degré — Problèmes	6
Des équations bi-carrées.	
(page 134)	
Equations bi-carrées, — Exemples 197, 198	8.
Questions de Maximum et Minimum.	_
(page 136)	
Maximum et Minimum, — Définition	0

# Chapitre VIII.—Rapports, proportions, progressions.

(page 141)

(page 141)
Définition:
Définition
Propriété des équi-différences 206
Propriété des Proportions. 207 Quatrième proportionnelle. 208
Comment demontre-t-on toutes les proposités
tions to bround the property
les produits contact proportions, terme à terme
Daus toute proportion of many (1)
à une même puissance, ou bien en extraire une
Dans une suite de service detruire la proportion 219
rateurs et celle des attentes sume des numés
un rapport égal aux rapports donnés
Des progressions.
(page 146)
Propriétée des 214
Propriétés des promissions 214
Propriétés des progressions arithmétiques.
(DOMA 1/7)
Problem :
Principe fondamental
Propriétés des progressions géométriques.
(page 151)
Principe fondamental
Principe fondamental
(Juestionnaine
Exercices sur les progressions(page 155)
Chanitro TT
Chapitre IX.—Des Logarithmes.
Considérations préliminaires
Propriétés des logarithmes.
operations des logarithmes.
(page 160)
Le logarithme du produit de plusieurs facteurs est égal à la somme des logarithmes de ses facteurs
à la somme des logarithmes de ses facteurs est égal
404

#### Chapitre X.—Intérêts composés.

(page 193)

Définition—Formule	278.2	79
ière Question. (c' inconnu)	2	80
2eme Question (c inconnu)	2	81
Sème Question (n inconnue)	282.2	83
dème Question (r inconnue)	25	84
Remarque et Exemple	28	85

## Chapitre XI.—Des Combinaisons.

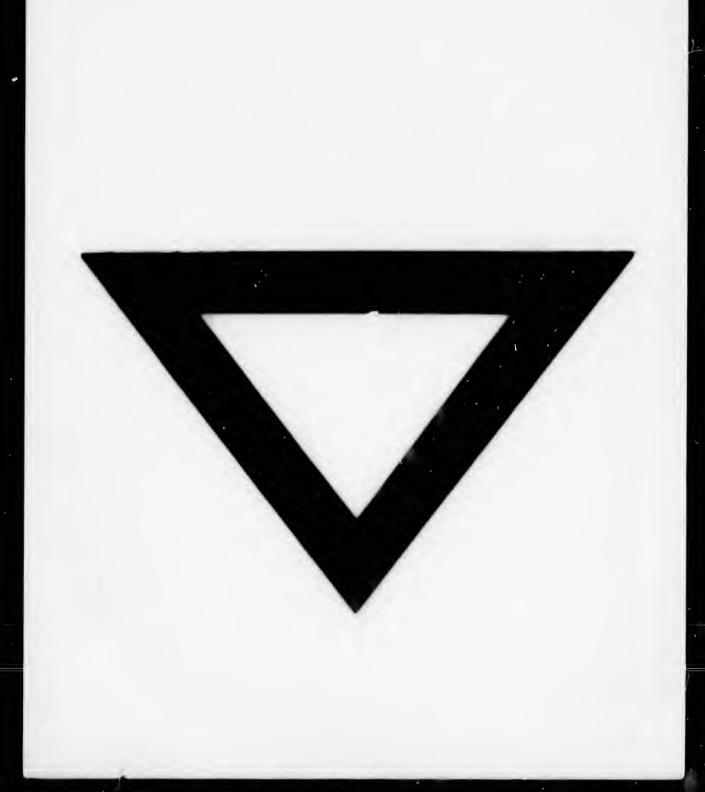
(page 200)

Des combinaisons	286
Permutations	287288
Arrangements	
Arrangements avec répétition	291
Combinaisons — Formules	292296
Problèmes	
Questionnaire	)
Exercices sur les combinaisons (page 205	

#### Solution des exercices et problèmes.

(page 207)

RES.


# composés.

278	279
• • • • • • • • • • • • • • • • • • • •	
•• •••• ••• • • • • • • • • • • • • • •	
282	
	284

## inaisons.

	286
287.	. 288
289.	.290
	291
292.	. 296
297.	. 299
(page 205)	
(page 205)	
16/12/20 200)	

t problèmes.

