IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic
Sciences

Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be blbliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurde et/ou pelliculbeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleve ou noire)
Coloured plates and/or illustrations/
Planches et/ou Illustrations en couleur
Bound with other material/
Relió avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Le re liure serŕé peut causer de l'ombre ou de la distortion le long de le marge intórieure

Blank leaves added during restoration may
appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apperaissent dans io texte. mals, lorsque cele était possible, ces pages n'ont pas áte filmées.

Additional comments:/
Commentaires supplómentaires:

L'Institut a microfilm' le melleur exemplaire qu'il lui a úte possible de se procurer. Les détails de cat exemplaire qui sont peut-stre uniques du point de vue blbliographique, qui peuvent modifier une image reprodulte, ou qui peuvent exiger une modification dans la méthode normale de filmage sont Indiqués ci-dessous.

Coloured pages/

Pages de coulaur
Pages damaged/
Peges endommagées
Pages restored and/or laminated/
Pages restaur'́es et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorbes, tachetdes ou piqubes
Pages detached/
Pages dd́tachées
Showthrough/
Transparence
Quality of print varies/
Qualit' indgale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire

Only edition avallable/
Seule édition disponible

Pages wholly or partially obscured by errata
slips, tiasues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiallemant obscurcies par un feuillet d'errata, une pelure, etc., ont óté filmees à nouveau de façon d obtenir la meilleure image possible.

This Item is filmed at the reduction ratio checked below/ Ce document est filmó au taux de réduction indiqu'́ ci-dessous.

The copy filmed here has been reproduced thanke to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichover applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, loft to right and top to bottom, as many frames as requirad. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grace d la gênérosité de:

Thomas Fisher Rare Book Library, University of Toronte Library

Les images suiventes ont bte reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmb, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencant par le promier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, solon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la promíre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitre sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit on un seul cliché, il est filméa partir de l'angle supérieur gauche. de gauche à droite. ot de haut en bas, en prenant le nombre d'images nócessaire. Les diagrammes suivants illustrent la móthode.

1.O.N. 4.

AN ABRIDGMENT

OF

SMITHS

ILLUSTRATED ASTRONOMY.

JUNIOR OLABEES

 PUBLIC OR COMMON SCHOOLS. PUBLIC OR COMMON SCHOOL
Sofonta:

WHLLAM WARWICK, WELLINGTON STREET, EAST: 1876.

Tare following treatise is intended to inolude a systematio exposition of the appearanoes and laws of the heavenly bodies, as far as is practicable without the aid of Geometry, Algebra, and the highor Mathematios.

Several diagrams are inserted, which will be aoceptable, both to teachers and pupils, in illustrating the general principles of Astronomy, which, without illustrations, are deprived of much that is pleasing to the eye, and instruative to the underntarding.

GEOMETRICAL DEFINITIONS.

The Teacher should require the Pupils to understand the following Geometrical Definitions, before they are allowed to proceed with the following Lessons :-
\angle Straight Iinc is the shorteit line that can be drewn between any two polinta.
4 Surface is that whioh has longth and breacith; but no thiclmesm.
4 Plane fis a straticht, ovon surfeco. The plene of a ofrele, is the murtheo contrined withinit, and continned out of it on all wides, indefinitely. The top of round conthe table, may be waid to ropresent the plane of elinalo.

Pavaltet zinct are lines continued in the tame diroetion, and at the game dith noe trom ceoth other. Thoy may be olther whimight or ourved lines.

4 Oirolo is a plano fluare, boundod by a curvedilno, every part of which If equally didenat trom the contre.

The Diamoler of a Cirols inge straight line, peading through the contre, and torminating both way by the olroumierence.

2Tho Oirewmingrence of a Oircle in the curved Une which bounds it.
The Oircumberemoe of every Oircle is supposed to be divided into 880° equal partim callod dogrces; eech degroe, into 60 equil parts, called minucti, and caoh minute into 00 equal parta, called esoonas.

The radiue of a Crrole if a etraight line, drawn from the contre to the cireumiternce.
4. Auadmant in a quarter of a circlo, and contain 90 degrees.

4 Acmi-eivets is the half of a circio, and containe 180 dejreet.
An Angie is formed by ono line, meotling another, at a point
Afratant Angto is an angio which containg 90 dogroes, or a quartor of a
As Coute Angit is an anglo whioh contains lewn than 90 dofrees.
Δn Obtuse Angle is an angle which contains more than 00 , and loss than 180, degrees.

Parailel, or Concentric Circles, are two or more circles drawn around the same centre.

\qquad

 s.ane diansem

\qquad
\qquad

ABRIDGMENT

07

Smith's ellustrated Extroumy

LESSON I.

Questiom. What is the body called upon which we live? Answer. It is called the Earth, or Wortd.
Q. What iden had the Ancrisnes respeoting the shape of the earth?
A. They believed it was an extensive plain, rendered uneven by hills and mountains.
Q. Why did thoy think it was an oxtended plain?
A. Because they formed their opinions from appearances only.
Q. Did they bolieve that the earth had any motion?
A. They did not; they believed that the earth reated on a solidi immovable foundation:
[Mieg very niturally came to this conclasion, ts they vere ontirely lgnorant of the law ol attrection or gravitation. They bolloved if the egrth were to turn over, that every thing wohld be provipitated from its surfine.]
0. Had thoy any definito idens respeoting what held the oarth up?
4 Their views were very yague and unsatisfactory.
[There have bowi matiy abosurd idear"edvaned, at aifierents ages of the world, as to what. nupported the earth. Some supB
posed it to be ahaped like a Caroz, and to float upon the wateris ; othern, that it rested upon the back of an Eripanary, or huge Toxans; while mocording to mythology, Azwis supportod it upon his ehouldere ; but, what kept the waters in their place, or tupoin what the clophant, Tuttio; or Atlas atood - this was a mystery they covid mivas souvi.]
Q. Did they believe the earth extended the same distance in all directions?
A. They believed it to extend much, farther

[They observed that in going east or weas, on the same parallel of latitude, no change took place in the appearance of the heavens ; but in going north or south, on the same meridian, every sixty miles caused a difference of one degree in the eleva: tion of the pole, and in the position of the cicles of daily motion of the sun and other heavenly bodies; therefore they concluded that the earth was very long from east to went, but comparatively narrow from north to south. From this originated the uise of the ravits longftrde and latitude; longitude meining length, and latitudes; bredidth.]
Q. What ideas had they respecting the motions of the suti, moon, and stars?

A They supposed that they: revolved around the earth, from east to west, every day.
Q. What was this systom called, that supposed the earth to be at reat in the centire, and all the leavenly bodien to revolve rovendit $\dot{9}$
A. The Ptolemaic system.

EPtolemy aemanted that the sun, moon, planetey; and tharerievolved around the garth, from east to west, evary 24 hours; and to incocuni for fioie not falling upon'the carth, when thiey pasied over it, he aupposed that they were each fized in a reppattion hollow crystalline globe, gne within the other. Thus the moon On in the first; Mereury in the second i, Venus in the third; ehe sin in the fourth; Mars in the fitth; Jupiter in the cirith; Saturn in the seventh; - (the planet Hersohel was not known at this time) -the fixed staris in the eighth. He mupposed the Ut tht to boin one spliere, as thiey ate Kopt in the mand powitionis with respect to each, other. To permit the light of the stars! to pass down to the earth, he supposed these spheres of plohes Were perfedfy deot or trangparent like glass. The yoffr which moved these spheres, he.supposed, was communtiond frome abore the mphare which contaned the atarn]

LESSON II.

Qussrion. Every one is conscious that the sun, whioh rises daily in the oast and sets in the west, is the same body; where does it go during the night ?

Answer. It appears to pass round under the earth.
Q. When we look out upon the stars, on successive evenings, they appear to have a definite position with respect to each other, and a westward movement like the sun ; what motiou do they appear to have from their setting to thoir rising ?
A. They appear to pass under the earth.
Q. From the north to the sothth point of the heavens, there. is a contipwous arc of etars, and in their passage under the earth they are not at all disarranged, what oan you infer from this fact?
A. That they pass completely around the earth, and every thing attached to it.
Q.' We nee no body at rest that does not tonoh some permanent support, but we see bodios in motion aupportod for difierent lengths of time without resting upon any other sur. face; if the earth is hung apon nothing, is it probably at rest?
A. It is more probable that it is in motion.
Q. If we throw a ball, does the same side always remain fontari?
A. It does not ; it turns over continuously.
Q. What do we oall the line round whioh it turns?
A. Its axis.
Q. If a fly were on the ball, would distant objeots appear. to hifin to be ettationery?
A. They would appear to revolve around the bell, ws of eh as it turned over.
Q. If tho earth is moving in spaoe, is it in scoordanoo with the known motion of brdinary bodies, to suippose that thie mare wida ropanins forwand?
A. It is not. It is more reasonable to suppose that it turns on its axis.

8

 ABRIDGMIATT OF SMITE'S:Q. If the earth turns, and we are carried round on its surfooe, what appearance must the sun and distant stars necesaarily present?
A. They must appear to move around the earth in the opposite direction.

LESSON III.

Quigrions. What other reason can you give for the earth's turning?

ANsWER. The stars are so distant, that their motion would be immensely swift, in comparison with the motion of the earth, to produce the same effect.
Q. But have wenot positive proof, and that too of different kinds, that the earth turns on its axis?
A. We have.-1. The shape of the oarth, elevated tot the equator and depressed at the poles, can be accounted for on no other supposition.
2. A body at the equator, dropped from a great height, falls eastward of the perpendicular.
3. The trade winds and ocean currents in the tropical regions are clearly traceable to the same cause.
Q. If the earth is moving in space, does it proceod in a straight line?
A. It does not; but it would do so, were it not attracted by other bodies.
Q. What is the attraction, by which all particlos of mettor; tend towards each other, oalled'?

A The attraction of gravitation.
Q. What large body, by its attraction, causes the earth to revolve mround it in a ourved line.
A. The sun.
Q. What othor nimilar bodies rovolve around the sun'?
A. The planeti.
Q. What may we call the earth, when comadiered with regard to its sise, mhape, motions, eto.
A. Orie of the planets.
Q. What soience describes these characteristios of the earth and other heaveniy bodies?
A. Astronomy.

LESSON IV. ASTRONOMY.

Question. What is Astronomy?
Asswer Astronomy is the science which treats of the heavenly bodies.
Q. What are the heavenly bodion?
A. The sun, mnon; planets, comets, and stars.
'Q. Are they all of the same magnitude, or size?
A. The sun and stars are much larger than the other bodies.
Q. Are they all at the same distance from the earth?
A. They are not; the moon is the nearest, and the stars the most distant.
Q. Do they all emit light of themselves?
A. They do not.
Q. How are they divided in this respect?
A. They are divided into two classes, luminous and opaque.
Q. What is a luminous body?
A. It is a body which shines by its own light.
Q. What is an opaque body?
A. It is a body which shines only by reflecting the light of e luminous body:
Q. Which are the luminous hodies in the hoavons?
A. The sun and fixed stars are luminqus tobdies.
nit Of. Which are the opaque bodies in the heavens 2
A. The moon, planets, and comets.
Q. Why do the mioon, planets, and comets appear luminous?
A. Because they reflect to us the light of the sun.
Q. What is the shape of the heavenly bodies?
A. They are round like a globe or ball.
Q. What do the sun, moon, planets, and comets conslitute?
A. They constitute the solar system.

LESSON \mathbf{V}.

THE SOLAR SYSTHM.

Quagrion. How are the bodiem constituting the solar system arranged ?

Answel. The sun is placed in the centre of the system, with the planets and comets revolving around it at unequal distances.
Q. How many planets are there in the solar systom? A. Thirty-six is the number known at present.
Q. How are they divided with respect to their motion?
A. They are divided into two classes, primary and secondary.
Q. What is a primary planet?

AIt is a planet which revolves around the sun only.
Q. What is a secondary planet?
A. Itise planet which revolves around its primary, and with it around the sun.
yning What are the geqondary plandts usually anllecil?
A. They are called satidlites ar moons. Inyil orf

Q. How many primary planets are there?
A. Sixteen; eight being asteroids or small planets.
Q. What are their names, beginning at the sun?
A. Mercury, Venus, the Earth, Mars, (Vestia, Astræa, Juno, Ceres, Pallas, Hebe, Iris, Flora,) Jupiter, Saturn, Herschel, or Uranus, and Leverrier, or Neptune.
Q. How many sccondary planets or moons are there?
A. Twenty.

- Q. Which planets have moons?
A. The Earth has 1, Jupiter 4, Saturn 8, Herschel 6, and Leverrier 1.
Q. In what direction do all the planets revolve on their axis, and around the suin?
A. From west to east.
[Note-In examining the Solar System, an arrangement of extreordinary beauiy and harmony, presents itself. The Sun, which is 500 times larger than all the planetr, both ptimary and seoondary, combined, occupies the contre, diffuing light and heat in all directions. A curious and extreordingety lan serms to regulate the distances and motions of all the planets. The following are some of their peouliaritien, viz:-

1st. The Sun, which occupies the centre, revolves on its axis from west to cast.
2d: All the primary planets revolve around the Sun in the samie direotion, from west to east.
8d. The iecondary planets or moons, revolve around their primaries from west to east.

4th. All the planets, both primary and secondary, revolve on their axis from west to east.

5th. The orbits of all the planets, both primary and secondary, lie nearly in the same plane of the Sun's equator:

From this it will be seen that all the motions of the planets in our solar ajntem are in one direotion ; a circumatanoe which clearly demonstrates, that they originated from the same cause and are governed by the same lowe. To this remarkable harmony in the movements of our Solar Syatem, there is cupposed to be one exception, tif., the retrograde motion of the Satelites of Uranus But this fact has not been fully settled by Astronomers. For a more full description of the origin of the Solar Syatom, vee Illustrittod Aotronomy, page 47.]

LESSON VI.

Quesmion. How many revolutions has a primary planet?
ANswEr. Two; one on its axis, and another around the sun.
Q. What is the axis of \& planet?
A. It is a straight line, round which it turns.
Q. What is the path called, in which a planet revolves around the sun?
A. It is called its orbit.
Q. What is the plane of the earth'e orbit, extended to the heavens, called?
A. It is called the ecliptic.
Q. Why is it so called ?
A. Because eclipses take place only when the moon is in its plane.
Q. How many revolutions has a secondary planet?
A. Three. 1st, the revolution upon its axis; $2 d$, the revolution around its primary; 3 d , the revolution with its primary around the sun.
Q. How are the planets divided, with respeot to their distance from the sun?
A. Into inferior and superior, according as their distance from the sun is inferior or superior to that of the earth.
Q. Which are the inferior planets?
A. Mercury and Venus.
Q. Which are the superior?
A. Mars, the Asteroids, Jupiter, Saturn, Herschel, and Leverrier.
Q. How many kinds of conjunction are there?
A. Two; inferior and superior.
Q. When is a planet in inferior comjunction with the sun?
A. When it is between the carth and sun.
Q. What planets can be in inferior conjunction?
A. Mercury and Venus; also the moon.
Q. When is a planet in superior conjunction?
A. When the earth and planet are on opposite sides of the sun.
Q. What planets can be in superior conjunction with the sun?
A. All the planets except the earth and moon.
Q. When is a planet in opposition.
A. When the earth is between the sun and planet.
Q. What planets can have opposition?
A. The superior planets.

1 the
xis ; the
dis.
their that

LESSON VII.

Dinktereza.	$\begin{array}{\|c} \text { Magnituden ; } \\ \text { Earth boing } 1 \\ \hline \end{array}$	the fun.	$\begin{aligned} & \text { Revolution } \\ & \text { their aris. } \end{aligned}$	$\begin{aligned} & \text { Tevolution } \\ & \text { thound } \\ & \text { youn Sun. } \end{aligned}$
		Mileat	Dyn. hoars:	Ixs. Day
$\begin{array}{ll} \text { Sun, } & 886,952 \\ \text { Mercury, } & \mathbf{3 , 2 0 0} \end{array}$				
Venus, 7,700				
Earth, 7,912		95,000,000		1
Mars, 4,189		142,000,000	24	
Vesta, 270		225,000,000	Unknown	
Astrma, unkno	U	253,000,000		
Juno,		254,000,0		
Path, 1,100		268,000,0		4222
Pallias, $\quad 2,106$	U...... 8\%	268,000,000		
Hebe, unknown	Unknown.	Unknown.	0	
Tris,		' 11 It	O	
Tora		, ${ }^{\text {c }}$	6.	
Jupiter, '87,0u0	1,280	485,000,000	10	11.314
Saturn, $\quad 79,000$	1,000	890,000,000	103	2916
Hersohel, 85,00		1,800,000,		$84^{1 /}$
Leverrier, 35,000		2,85		166

[^0]
LESSON VIII.
 OENTRIPRTAL AND OENTRIFUGAL FOROE.

Quision. What is that force called with whioh all bodies attract each other in proportion to their mass?
Aill Aisswern-The attraction of gravitation.
Q. What is centripetal forco?
A. It is the force which draws a body towards the centre round which it is revolving.
Q. What large body, by its attraction, exerts a.centripetal force upon all the primary planets and comets?
A. The sun.
Q. What body exerts a centripotal force upon the moon?
A. The earth.
Q. What bodies exerta centripetal force upon the other moons?
A. The primary planets around which they revolve.
2 Q. What is the centrifugal force of a heavenly bjdy?
A. It is. that force which moves it forward in its orbit.
Q. Haw do these two forces cause the planets to move?
planets to move in regular ourves around the main, inctead of straight lines. If the attrection of the sum er centrinetal foroe shonld cease, the planets would ty of into speoe in straight lines; but if the centrifugal force should ceicse, pridit the conitipetal force continue, the planets would immedistely fall into the sun.]
Q. What is a circle?
A. It is a plane figure bounded by a curve line, all parts of which are equally distant from the centre.
Q. What is an ellipse ?
A. It is an oval figure, represented by an oblique view of a circle.
[Note-Teschers should be sure that the papils understand the definition of an ellipee, because in vipving , ofne of the diagrams they may receive a wrong impression. In the diagram representing the eeasons, the earth's orbit appears very elliptical : this would be well understeod by the pupil, should the teacher call his particular attention to it. Also, a plane of a cirole should be well understood.]
Q. What are the foci of an ellipse?
A. They are the two points; around which the ellipse is drawn, and are equally distant from the centre.
Q. Where is the sun sitnated within the orbit of each planet?
A. It is situated, not in the centre; but in the lower focus.
Q. What is the ahape of the orbits of all tho planets?
A. Elliptical, or longer one way than the other.

THE MEAN AND. TRUE PLAGE OF A PLANET.
Q. What is the mean place of the earth, or a planot in its orbit?

A-It is that point in its orloit where it would be if it moved in a circle, and with the mame velocity at all times.

1. Q. What is the true place of the carth or a planet? A. It is that point in its orbit where it really is at any given time.
Q. What is the aphelion?
A. It is that point in the orbit of the earth or planet farthest from the sun.
Q. When is the earth in the aphelion or farthest from the $\operatorname{sun} ?$
A. July 1st.
Q. What is the perihelion?
A. It is that point in the orbit of the earth or planet nearest to the sun.
an. When is the earth in the perihelion, or nearest to the sun'?
A. January 1st.

LESSON IX.

THE SUN.

Qusescion. What body is the centre of the solar system?
Answar. The sun.
Q. Deadribe the sun?
A. The sun is a large luminous body, which giyes light and heat to the whole solar system.
Q. What is the diameter of the sun?
A. 886,952 miles.
Q. How much larger is the sun than the earth ? A. It is $1,384,472$ times greater.

Q:. What is the pise of the sun compined with the planets? diA It is 500 times as great as the bulk of all the planets.

Q. What oan you say of its mase or weight ?
A. It is about 750 times the mass of all the planets.
Q. What is the distance of the san from the earth ?
A. It is about $95,000,000$ of miles.
Q. What did the ancient astronomers consider thie man to bo?
A. A large globe of fire.
Q. What do astronomoris at the present day constaer it to be ?
A. An opaque body like the earth, snrrounded by a luminous atmosphere.
Q. What motions has the sun?
A. It has three motions-1st, on its axis; 2d, around the centre of gravity of the solar system; 3d, around the centre of the universe.
[The term universe is used by Antronomens, though perhape impropecty, to denignate the great clumter or frmament of atpris in which our sun is situatod. This clustor inoluden all the single starn that can be ceon with the naked eye, and all thowe composing the galary or milly way. The number of marre or sumbin the clustor is eitimated at many millions; all whioh, like our sun, are tuppocid to revolve around the common eentre of gravity of the whole oloster. Geveral thousand other distinet clusters or nebule, nituated without our firmament, can be roen by the best telescopes, nearly all of which are invitible to the unasciated eje.]

LESSON X.

Quescron. What is the inclination of the sun's axis to that of the ealiptic?

ANswer. About $7 \frac{1}{5}$ degrees.
Q. In whet fime does it revolve on its axis?
A. In about 25 days and a half.
Q. How is the revolation of the sun on in arifr dotipomined ?
A. By spots on its surface, which first appear or -the east side, pass over, and disappear on the west side.
Q. What is the nature of tiose spots?
A. They are rupposed to be openings in thio luminous atmosphere, which enable us to see tho dark body of the sun.
 phore?
A. They have ibeen atteributed to storm and various other causes.
Q. Do these spotes undergo any changee?
14. They are eonstantly changing and aometimes very repidly. Some have appeared, others diamppeared suddenly.
O. On what partol the nun do they appoar?

At Wihin about thirty degrees of its equator:
Qui Io the atrfice of the mun, in the region of the equots,

A 14 is in α state of continual and violent agito-

LESSON XI.

EOLIPTIC AND ZODIAO.

Quesmion. What is the oliptio?
Amawne It is ther planie of the earth's orbit, extended to the heavens, and intersectes the equino tial at an angle of $23 \frac{1}{2}$ degregas $\left(28^{\circ}: 28\right)$.
[Nove-It, in the apparent path of the mon around the
 around the suni.]

ILLUSTRATED ASTRONOMY.
Q. What is the equinoctial?
A. It is a great circle in the heavens directly over the equator.
[Note-It is the plane of the earth's equator extended to the heavens.]
Q. What is the zodiac?
A. It is a circular belt in the heavens, 16 degrees wide; 8 degrees on each side of the ecliptic.
Q. What great circle is in the middle of the zodian?
A. The ecliptic or orbit of the earth.
Q. How is the zodiac divided?
A. It is divided into twelve equal parts, called signs or constellations of the zodiac.
Q. How is the ecliptic divided?
A. It is divided into twelve equal parts, called signs.
Q. How is each sign divided?
A. Each sign is divided into 30 degrees, each degree into 60 minutes, each minute into 60 seconds, \&c.
Q. What are the names of the constellations of the zodiac and the signs of the ecliptic?
A. Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricornus, Aquarius, and Pisces.
Q. Do the constollations of the zodiao, and the signs of the ecliptic, occupy the same places in the heavens?
A. They do not: the signs in the ecliptic have fallen back of the constellations about 31 degrees.
Q. Did the constellations of the zodiac and the signs of the ecliptic evter correspoind ?
A. They corresponded to each other about 22 centuries ago.
Q. What is the cause of the falling baok of the signs of the ecliptic among the constellations?
A. It is caused by the retrograde motion of the equinoxes.
[Note-This variation is cansed by the pole of the earth varying a little every year This motion of the pole of the earth is similar to that sometimes shown by a top, as it spins around on the point. The stem of the top will have a circular motion, describing a cone with the apez or top down. This circular motion of the pole of the earth is very slow, varying only $50^{\prime \prime}$ every year, and requires 25,868 years to complete a revolution-which is called the Platonic or great year. The pole of the earth is increasing its distance from the north star, and in 12,900 years it will be about 47° from it; and when the north star is on the meridian, it will be in the zenith of the northerm part of the United States: but in 25,800 years the pole' will have made a complete revolution-so that it will point again to the north star.]
Q. Upon what does the length of the year depend?
A. It depends upon the revolution of the earth from one equinox to the same again.
Q. Does the earth revolve around the sun in exaotly the same time that it moves from one equinox to the same equinox again?
A. It muves from either equinox to the same again seventeen miuutes sooner, than around the sun.

LESSON XIII.

Question. How are the signs of the ecliptic divided ?
Answer. They are divided into four divisions, corresponding to the seasons.
Q. Whiah are the opring signs ?
A. Aries, Taurus, Gemini.
Q. Which are the summer signs?
A. Cancer, Leo, Virgo.
Q. Which are the autumnal signs ?
A. Libra, Scorpio, Sagittarius.

0
Q. Which are the winter signs?
A. Capricornus, Aquarius, Pisces.
Q. In what time do the equinoxes fall baok through the whole oircle of the Zodiac?
A. 25,800 jears.
Q. What is this time called?
A. The Platonic, or great year.
Q.-How is this motion caused?
A. It is caused by a slow annual change in the direction of the earth's axis.
Q. What is longitude in the heavens?
A. It is the distance from the first degree of the sign Aries, reckoned eastward on the ecliptic, the whole circumference of the heavens.
Q. When the sun enters Aries, what is its longitude?
A. It has no longitude.
Q. What is the longitude of the earth at that time? time 270 degrees.
Q. When the sun enlers Libra, what is its longitude?
A. 180 degrees-the earth's lougitude 0 degrees.
Q. When the sun enters Capricomus, what is the longitude?
A. 270 degrees-the earth's longitude at the same time 90 degrees.

LESSON XIV. MERCURT.

Qussition. Which planet is the smallest and nearest the. sun?

Answer. Mercury.
Q. What is the diameter of Meroury?
A. 3,200 miles.
Q. What is the distance from the sun?
A. 37 millions of miles.
Q. What is its magnitude, compared with the earth ?
A. It is in of the earth's magnitude.
Q. In what time does it xevolve on its axis, or perform its daily revolution?
A. In about 24 hours. (24 hours 5 minutes.)
Q. In what time does it revolve around the wan. ${ }^{\text {. }}$
A. In about 88 days. (87d. 23h. 14m. 33s.)

- Q. How fant does it move in its orbit around the sun?
A. It moves 112,000 miles an hour.
Q. What is the light or heat at Morcury compared with that of the earth?
A. It is about seven times as great.
Q. What is elongation?
A. It is the apparent distance of any planet from the sun.
Q." What is the greatest elongation of Meroury ? //
A. 30 degrees ; which may be either east or west of the sun.
Q. Why is Mercury never seen in superior conjungtion?

A: Because it is so much involved in the light of the sun.
0. Dage Meroury expexience any change of seagons?
A. It doew notr, because its axcis is perpendicular to ita orbit. W ithis cause the sun to be contimually vertical at the equator.

LESSQN XV.
 VENUS.

Quesion. What planet is next to Mercury? Answer. Venus.
Q. What is the diametes of Venus?
A. 7,700 miles.
Q. What is its distance from the wun?
A. 68 millions of miles.
Q. What is its magnitude compared with the earth?
A. It is about $\frac{10}{10}$ of the earth's magnitude.
Q. In what time does it revolve on its axis?
A. In about $23 \frac{1}{2}$ hours. ($23 \mathrm{~h}, 21 \mathrm{~m}$.)
Q. In what time does it revolve around the sun?
A. In 224, days $(294 \mathrm{~d}, 16 \mathrm{~h}, 41 \mathrm{~m} .27 \mathrm{~s}$)
Q. How fast does it move in its orbit apound the stun? ?
A. It moves 75,000 miles an hour.

1. I Whits is the comparative light or heat at Vonus?
A. It is about double that of the earth.
Q. What is the greatest elongation of Vonus?
A. About 47 degrees.
Q. When is Venus a morning star?
A. When it is west of the sun, and rises beforeit.
Q. When is it an ovening atar?
A. When it is east of the sun, and sets after it.
Q. How long is Vonus a morning or an evoning atar, allornatioly?
A. About 290 days.
Q. Why is Vohul morning of an evening star 66 days longer thith the time of iterevolution around the stan?
Innibecuuse the earth is woving ancind the gun the same way.

LESSON XVI.

Qutarior. How much is the axis of Venus inolined to that of its orbit?
ANSWER. 75 degrees.
Q. When the north pole of Venus inolines direotly towards the sun; how mapy dogrees will the axis point above the fun?
A. Only 15 degrees.
ii vermod alit Luntut
Q. How wide a torrid Zone doen this make?
A. 150 degrees- 75 degrees on each side of the equator.
Q. The tropics atre within how many degreen of thé poles?
A. Within 15 degrees.

- Q. Ino polar oirolos are within how many degreen of the equator?
A. 15 degrees.
Q. What in the diametar of the polar circles?

HA. 150 degrees.
Q. Has Venus any variation of seasonis?
A." She has two summers and two winters at the equator, and a summer and winter at each of the poles, during the year. .
Q. How does Venus appear, when viewed with a telescope?
A. She exhibits phases similar to those of the moon.
Q. What is the tradait of a henveply body?
A. It is its passage zeross the meridian.
Q. Whatis moant by the transit of Moroury and Ventis?
A. It is their passage across the zun's disc.
Q. What inthe dive of the aun or a planet ?
A. It is the circular illuminated surface vipible tolus.
Q. How do Meroury and Venus appear when passing across the sun's diso?
A. They appear like black spots moving across the sun.
Q. What proof have we that Meroury and Venian are not laminopu bodios?
II. When viewed with the telescope they appear horned like the moon.
Q. On whiok side of the sun does the traumit begin?
in A. On the east side, and terminates on the west side.
(1)
Q. What apparent motions have the planets?
A. Three; direct, stationery, and retrogrende. 9. O. Whem doen a planot's motion appoare to be dinaet?,
A. When it appears to move from west: to east among the stars.
Q. When ise it planat'r motion exid to be atallonery?
A. When it is moving directly towards or from the earth.

(Q. Whan is a phatet'e motion sidid to be rotrograte ? A A. When it appears to move backwards, or from

 LUA 7. LESSON XVII. EARTH, DRFINTTIONA, ETO. Quesrion. What is the shape of the euth?
Answer. It is round like a globe or ball, a little flattened th the polet.
Q. How do woiknow the oartb to bo rouna of taicyt Mini Ist Nuvigatom hato stifled round it, $b y$ a continued westerly or easterly course. 2d. The
top-mast of a ship coming in from the sea, alwaysappears first. 8d. The earth's shadow upon the moon, in a lunar eclipse, is circular.
Q. In what manner do the inhabitants stand upon the earth?
A. They stand with their feet directed towards the centre of the earth.
Q. What do jou understand by the tormas upward and downward?
A. Upwards is from the centre of the earth, downward is towards the centre of the earth.
Q. What keeps the inhabitants, ete, upon the surface of the earth?
A. The attraction of the earth.
Q. What is the axis of the earth?
A. It is the straight line round which it performs its daily revolution.
Q. What are the poles of the earth?
A. They are the extremities of its axis.
Q. How are the ciroles of the globes divided?
A. They are divided into great and small.
Q. What in a great oirole?
A. It is a circle whose plane divides the carth into two equal parts, called hemispheres.
Q. What are the poles of a great circle?
A. They are two opposite points in the heavens, equally distant from all parts of the circumference.
[Noce-Tho poles of the horizon are the Zenith and Nadir.
The poles of the equator; or equinoctial, are those points whare
the earth's axis, if produced each way, would meet the heavens.
The north atar is aituated in one of thewe pointw.] 党 at!
Q. What is a small circle?
A. It is a circle whose plane divides the earth into two unequal parts.
A. Whilh ate the great circles used in Aatronomy ?
A. Equator, Meridian, Horizon, Ecliptic, and Equinoctial.

> [Notc- The equator divides the earth into northern avid Eounthern hamispheres-the meridian divides it into cuntuxn and wentern hemipheres, and the horizon divides it into upper and low hemiepheren.]
Q. Which are the amall circles, used in Astronomy?
f A. The tropics aud polar circles, parallels of latitudes, altitude and declination.

- Try" [Note-Parallels of latitude are small cirolen parallel to the equator-parallels of altitude are amall cirole ruarallol to the horizon-parallels of declination are small uircles on the

1. colestial globe, pirallel to the equinootial, and coireppond to parallels of latitude on the earth; or if parallels of latitude on'. the earth should be exterided to the heavem, they would then become parallels of declination.]
Q. What is the equator?
A. It is a great circle, whose plane divides the earth into northern and southern hemispheres.
Q. To what is the plane of the equator perpendioular?
A. It is perpendicular to the earth's axis, and equi-distant from the poles:
Q. What ys the mexidian of a place on the earth?
A. It is a great circle passing through the place, and the poles of the earth.
Q. Into what does the plane of the meridian divide the earth?
A. Into eastern and western hemispheres.
Q. What is the latitude of a place on the enarth?

- A. It is its distance from the equator, north or sowth.
Q. On what is it moscured?
A. On a meridian,
Q. Hon faris latitude reckoned?
A. Ninety degrees.
ny 8 ge and M日! ! f ll thern Rud to canturan into upper
my?
3 of lati-

Hel to the llel to the 1, on the eppond to mitude on ould then
les the $\operatorname{lar} ?$ s, and place, ide the
Q. What placen have nimety degreen of latitude?
A. The poles.
Q. What are the tropios?
A. They are two small circles parallel to the equator at a distance of $23 \frac{1}{2}$ degrees north and south of $i t$.
Q. What are the polar circles?
A. They are two small circles one around each pole, at a distance of $28 \frac{1}{2}$ degrees from it.

LESSON XVIII.

Quastron. Which in the first meridian?
Answer. It is the meridian from which longitude is reckoned.
Q. Which meridian is generally used in this oountry as the first meridian ?
A. The meridian of London.
Q. What is the longitude of a place on the earth ?
A. It is its distance east or west of the first meridian.
Q. How far is terrestrial longitude reckoned?
A. It is reckoned 180 degrees, or half round the earth.
Q. What is the horizon?
A. It is a great circle which separates the visible heavens from the invisible.
Q. What are the gardinal points of the horizon?) at afis
A. North, Fast, South, and West.
Q. How many horicons are there?
A. Two; the visible and the rational.
Q. What in the vinible ar menailibe hoxison P, wnitl
A. It is that circle where the earth and sky appear to meet.
Q. What fe the rational harizon?
is A. It is a great circle, parallel to the visible horizon, whose plane passes through the centre of the earth.

1. Q. Into what does is divide the carth?
A. Into upper and lower hemispheres.
Q. Is the rational horizon above or below the visible horizon.
A. It is below the visible horizon.

LESSON XIX.

Quicrion Do all placen on the carth havo the imma hori201?
ANswre They do not if we change our place on the earth, the horizon changes.
Q. What are the cardinal poirity in the hoaventior the poles of the horison?
A. The zenith and nadir.
Q. What is the zenith?
A. It is that point in the heavens directly over our heads.
Q. DDo all places have the same zenith?
A. They do not; every place has a different zenith.
d. What if the nadir?
A. It is that point in the heavens which is opposite to the wenith or directily whidet our feeki " w.
Q. Are the zenith and nadir filded potite th the hoavens?
A. They are not; they miake a complete tevolution in the hewrein every (24 hodrs.
Q. What te the wivitudo of a hod verily boay?
A. It is ite height or distance from the horizon.
Q. What is the polar alatanoe of a hearionly boly?
A. It in it distance from the pole.
Q. Who aro the antifyodon?
A. Those who live on direetly opposite sides of the earth.
Q. Who aro the antroci?
A. Those who live in equal latitude, on directly opposito sides of the equator.
Q. Who are the periceoi?
A. Those who live in equal latitude, on opposite sides of the pole.

LESSON XX.
 zartirland bioasonvo.
 Quyarzoy. What is the ahape of the earth?
 Answar. It is round like a globe or baht, a little

 flattengd at the poles.Q. What is its ponition in the solne aystam?
A. It is the third planet from the sun.

Q: What is the mean diamotar of tho earth? ?
A. 7,192 miles. (Equatorial diameter 7,926 miles; polar diatheter 7,899 miles.)

Quf How much greatier is the equatorial than the polar
A. About 27 miles.
 the polar?
A. It is caused by the revolution of the edthion its axis.
[As the grenter portion of the surfice of the earth is oovered vith wator; and as the curth revolies on its aris ; the water
recedes from the polen townads the equantor, until its, tendency to run back towarde the poles, just balaroes the eileots of the centrifugal forob. This causes the equatorial diameter to be greater than the polar. If the earth should stop reveiving on its axis, the weter at the equator would sottle army towards the poles, until they had assurmed the form of a globe as mear as possible. Thus large portions of land in the toreid sone, which are now covered by the ocean, would be lett dry, and is nev continentry and islands would be formed.]
Q. What is the mean distance of the earth from the sun?
A. About $95,000,000$ miles.
[The mean distance of a planet, is the distance it wrould always be from the sun, if its orbit ahould be reduced to a true circle.]
Q. What is the specific gravity of the earth?
A. It is $5 \frac{1}{2}$ times the weight of water. (5.48.)
Q. In what time does the earth revolve on its axis, or perform its diurnal revolution?
A. In 24 hours (In 23 hours 56 minutes; as seen from the stars.

A. From west to east.
Q. What onuribet day and night?
A. The light of the sun causes day, and the shade of the earth causes night.
Q. How great a portion of the equrth is oontinualy in the light of the sun?
A. One half; the other half being in the ghade of the earth.
O. What doon the revolpation of the oarth upanitu axis canse?
\& flime 30
A. The ancceasion of day and night:

> ILLUSTRATED ASTRONOMY.
 4.3)

Queseron. As the earth turns upon its axis, what effect is produced?
ANSWER. The sun is continually rising to places in the west, and continually setting to places in the east.
Q. In what time does the earth revolve around the sun, or perform its annual revolution 9 , Fill
A. In 365 days 6 hours.
Q. How fast does it mave in its orbit around the sun?
A. 68,000 miles an hour.
Q. How are the changes of the seasons cansed?
A. They are caused by the earth's axis, being inclined to that of its orbit, and ita revolution around the sun.
(Q. How many degrees is the oarth's axis inclined to that of its orbit?
A. Twent-three degrees and a half (230 28^{i}.)
Q. Is the direction of the earth's axis ohanged during the year?
A. Its change is so slight that it may be condidered as pointing to the same place in the heavens, $\}$

1. . When doos the noth pole hon direotly towards the sun?
A. On the 21st of June, called the summer molstice.
Q. How many dognees dowa it lean to trarde the tith?
A. $23 \frac{1}{2}$ degrees ; and the sun is vextical dis degrees north of the equator.
Q. What sensops does this produce? "plisiny builoungyper An Semame inie the northern hemiophere, and winter in the southern. Mistapps n!f. Jilmilysv
Q. When does the north pole lean direotly from the sun?
A. On the 22d of Degember called the winter solstice.
D. Whon the north pole lonas from the sun, what are the seasons?
Ad. Winter in the nonthern hemisphere, and sum-

LESSON XXII

Quegrion. What are the cardinal points of the eoliptio?
ANswri. The equinoctial and solstitial points.
Q. At what points of the ediptio is the earat at the time of the solstiain ?
A. At the spletitial pointal frassmen
C. Throuigh how mailh of its onbit does the earth pases in moving from one solstitial point to the other?
fus arl! A. One; holf of ita orbit, or from one side of the sun to the other.
Q. Thet are thove two point called, halr way fietiteen the poletitial pointa?
A. The equinoctial points.

Tr QulWiy and theyrno callodits
"ังตร"
A. Because, when the carth in in these peints, the sup in vertical at the equation and the days and nights are every where equal.
-1g. T Whonif thbl aim det the varhal eqtimox 8 it nil is
A. On the 21st of March.
Q. Wherin it and the auttammal equinex ?

Q. Which way docii the pole lean whenthe edrth is th the

 vertical at the equator.
from the sun? the winter i, what are, the ?bo min re, and stumfrexand 18 n

He eoliptic? 1 points. bat the time
: worl fy
arth pass, in flle anl side of the - Julue eli f" ray betwoon जll al
peints, the
dags and asteroids.
Q. What is its diameter?
A. $\mathbf{4 , 1 8 9}$ miles.
Q. What is its dislance from the sun?
A. 142 milliphs of miles.

A. It is about one seventh of the size of the earcha

36

Q. In what time does it revolve on its axis?
A. In about $24 \frac{1}{2}$ hours. (24 h .39 m .22 s .)
Q. In what time does it revolve around the stin?
A. Th one year, 321 days.
Q. How fast does it move in its orbit?
A. 55,000 miles an hour.
Q. How miny degrees does the axis of Mars lean towards its orbit?
A. About 30 degrees, $\left(30^{\circ} 18^{\prime}\right.$.)
Q. Doen Mars hare any change of seasons?
A. The seasons are simila; to those of the earth, but nearly twice as long.
Q. inimy ares they longer?
A. Because Mars is nearly two of our years in revolving around the sun

Lig. What is the appearaince of Yars when feen with the
eje? naked eye?
A. It appears of a red fiery color.

LESSON XXIV.

Quaspion, How daes Mars appear, when viewod with a ANSWER. Outlines of apparent continents and sold dre digtinctly seen.
Q. What appearance have the continents?
A. They have a coninents? the nature of the soil.
Q. Of what color ate the seas?
A. They appear of a greenish color, caused no doubt by contrast with the red color of the conti-

Q. Does Mars present difforent phases?
A. It sometimes appears gibbous.
Q... When does a planet appear gibbous?
A. When we can see more than half, but not the whole, of the illuminated surface.
Q. Does Mars ever appear horned like the moon?
A. It does not, because it does not pass between us and the sun.
Q. What other appearances does Mars exhibit when viewed with a tolescope?
A. Bright spots are seen alternately at the poles.
Q. When do these spots appear?
A. When it is winter, or continual night at the poles.
Q. What is supposed to be the cause of these spots?
A. Snow and ice, which has accumulated at theise poles during the winter.
Q. Do theme spots continue through the year?
A. They ontirely disappear as the summer advances upon the poles.
Q. What amount of light and heat has Mars?
A. It has about half as much as the earth.

LESSON XXV.

JUPITRR.

Quismion. What is Jupiter?
ANsWER. Jupiter is the largest planet in the/solar system.
Q. How many times larger is Japiter than the earth?
A. It is 1,280 times greater.

D
Q. How far is Jupitar from the sun?
A. 485 millions of miles.
Q. What is its diameter?
A. 87,000 miles.
Q. Which diameter is the greater, the polar or equatorital ?
A. The equatorial diameter is 6,000 miles greatier thian the polar.
Q. What causes the equatorial diameter so much to exocod the polar?
A. The quick rotation of the planet on its axis.
Q. In what titme does it revolve upon its axis?
A. In about 10 hours. (9 h .55 m .50 s .)
Q. In what time does it revolve around the sun?
A. In eleven years, 314, days,
Q. Hign fant does it move in'its orbit around the sun?
A. 30,000 miles an hour.
Q. How many moons has Iupiter?
A. Founn
Q. Has Jupitar any ohange of secisone?
A. It has no change of seasonse-
Q. Why do its seasonis not chinge?
A. Because its axis is nearly perpendicular to the plane of its orbit, which causes the sun to be always vertical at the equator.
Q. How does Jupiter appear whon viewed with a tolescope?
A. Light and dark belts appear to sumround it. ace What are the lightroelta ?
A. They are supposed to be clouds, whichearg throwninto parallel lines by the quick rotation of the planet, upon its axis,
Q. What are the dark belts?
A. They are probably the body of the planet;seen' between the clouds.
Q. Do these belts always appear the same?
A. They change frequently; and sométimes the clouds break to pieces.
Q. What is the velocity of its equatorisil partis, in turning on its axis?
A. 25,000 miles an hour.
Q. What amount of light and heat has Jupiter?
A. It has 27 times less than the earth.

LESSON XXVI. SATURN.

Quesizon. What is Saturn? ${ }^{3}$
ANSWWRR It the largest plané except Jupiter.
Q. What is its magnitude gompared with the earth?

A It is about 1,000 times larger.
Q. What is the diameter of Saturn?
A. 79,000 miles.
Q. What is its distance from the sun?
A. 890 millions of miles.
Q. In what time does it revolve on its axits?
A. In about $10 \frac{1}{2}$ hours. (10 h .29 m .16 s)
Q. In what time does it revolve arocind the sur?
A. In 29 years and a half. (29y. 167d:)
Q. How fast does it move in ifts otbitt arotind the Etan?
A. 22,000 miles an hour.
Q. Is thare any ohange bf seasons witssaturin'?
A. There is; but it is very slow, as it takes
nearly thirty of our years, to complete a year at Saturn.
Q. How much does the axis of Saturn lean towards its orbit?
A. About 30 degrees. ($28^{\circ} 40^{\prime}$)
Q. How long is its day and night alternately at tho poles?
A. About 15 of our years.
Q. What has Saturn which surrounds it?
A. Two large rings of solid matter like the planet.
Q. What is their position around the planet?
A. They are directly over the equator.

LESSON XXVII.

Quearion. Do these rings revolve with the planet?
ANSWER. They do, and in nearly the same time as the planet.
Q. Are these rings conneoted with the planet, or separate?
A. They are separate from the planet, and from each other.
Q. What is the distance from the planet to the inner ting?

19,000 miles.
wide is the inner ring ?
4. 17,000 miles.
Q. How wide is the apace between the rings?
A. Ahout 1,800 miles.
Q. What is the width of the outer ring.
A. 10,000 miles.
Q. How thiak att these ringe? NAW Alyont 100 milear: (Soine say, 1,000 miles.)
leto a year at
lean towards its
in at the poles?

?

like the planet. net? tor.
he planet? pe same time as net, or separate? net, and from
: 8 sol lt
let to the inner

aA TURN

*)
(i)

- 5 (4)

,
Q. Are these ringe uniform?
A. They are rough and uneven.
Q. How many estellites or moon has Saturn?
A. Eight.
Q. What is the position of their orbits?
A. Their orbits, excepting one, are directly over the rings!
Q. Does the sun always shine on the same side of the rings?
A. It shines upon each side alternately for fifteen years.
Q. What amount of light and heat has stitumi?
A. It has 90 times less than the earth.
Q. What appearance has the disc of Saturn?
A. It has dark belts similar to those of Jupiter.

LESSON XXVIII.

HERSOHEL, OR URANUS.

Question: When was Herschel or Uranus discovered? Answer. In 1781.
Q. By whom?
A. By Sir William Herschel, who was a celebrated English Astronomer.
Q. In what part of the solar system is Hersohel situated \&
A. It is the fifteenth planet from the sun, and next to the farthest discovered.
Q. What is its magnitude?
A. It is 80 times larger than the earth.
Q. What is its distance from the sun?
A. 1800 millions of miles.
Q. In what time does it revolve on its \&xis?
A. It is not certninly known. 3 [It has been stated at 1 day 18, haurs, but there seaps to be no propf of it.-Professor Nichol.]
Q. In what time does it revolve around the spen?
A. In about 84 yers. $\left(84 y_{4} 6 \mathrm{~d}\right.$)
Q. How fast does it move in its orbit around thęgun?

A 15, 000 miles an hour.
Q. How will the light and heat at Hersohel compare with

A. They are 368 times less.
Q. How, thum, nelops has. Hersehel?
A. Six moons were seen by Sir Wm. Herschel, but only three have been seen by other astronomers.
Q. In, what direotion do these mogns mave in theiriorhits?
A. They move from east to west, contrary to the motions of all the other planets, both primary and socondary.

LESSON XXIX.

LEVERRIER, OR NERTONE.

Quiscion. When was Neptune discovered?
Angyme In 1846, by Dr. Galle, of Berlin.
Q. Who published the elements of this planet, snd di. rected astronomers to the point in the heavens where it mifght Do athedroved
A. Leverrier, a celebrated Irench mathematician.
Q. How near the point, where he directed astronomers to look, was it found?
A. Within ope degroe.
Q. What is the diameter of thim planet?
A. It is about 35,000 miles.
Q. What is its magnitude?
A. It is about 80 times larger than the earth.
Q. What is its distance from the sun?
A. About 2,850 millions of miles:
Q. In what time does it revolve on its axin?
A. It is not known.
Q. In what time does it revolve around the sun ?
A. In about 166 years.
Q. How many moons has Leverrier?
A. One; and another is supposed to have been seen.
Q. What amount of light and heat has this planet?
A. About 900 times less than that of the earth.
Q. Aro the primary planets inhabited?
A. They appearito be inhabitable.

ENaten-The premonce of alouds indicatingboth air and water; the recular aycoesaion of the seasons, as well as day mad night; the witublo mount of light recefved from the sun; the 20companiment of moons ; the gpedifo gravity of bodies at their surfioe; all seom to indicate that the primary planets are suititible rendernces for living beings. The ohly objection to this view is, the difference in the amount of heit received from the onn, suppoling it to be according to the in verse ritio of the squares of their distances from the san. But we see trom the difierence of temperature on the earth, at the base and iummit of hich mountains, that the motunl heat dopends much apon the modifying circumstances, as well as upon the diriect, rays of the sun. And we have reason to suppose that the temperature of the other planets does not diffor muoh from that of the Weth.
For instance the temperature of Marr, as indionted by the ampling of itm mow, and, that of Jupiter and Saturn, as indieffed hy the amount of vapor in thair atmouphere, appear, to be aimitar, to that of the earth. Mercury and Venus dre proteotedifrom the direet raye of tho siun liy denieoolondis Obuses unknown to us may, and probsbly do modify the tamporature of all the planets in a groater or lert dogree, Buffigenty yo, for is rappenen pficuimal hifo.]

LESSON XXX.

MOON.

Qurstion. What is the moon?
ANSWER. The moon is a secondary planet, revolving around the earth.
Q. Is the moon larger or smaller than the earth ?
A. It is 49 times less than the earth.
Q. What is the diameter of the moon?
A. 2,180 miles.
Q. What is the specific gravity of the moon?
A. It is $3 \frac{1}{2}$ times the weight of water, (3.37.)
Q. What-its mean distanoe from the earth ?
A. Two hundred and forty thousand miles.
Q. In what time does the moon revolve around the earth?
A. In about $27 \frac{1}{2}$ days, (27 d .7 h .43 m .11 s . 5.)
©. In what time does the moon revolve uponite exis?
A In about $27 \frac{1}{2}$ days, or in the same time that it revolves around the earth.

Q What is the result of the moon's revolving upon its axis and around the oarth in the same time?
A. The same side of the moon is always presented to the earth.
Q. Heve we ever seen the opposite side of the moon?
A. We have not.
Q. What cauties the moon al mays to present the game ride to the oarth?
A. It is supposed that one side of the moon is more dense than the other, consequently the centre of gravity is not in the centre of the moon
Q. What is a lanation, or lunar month?
A. It is the time from one new moon, to another.
Q. What is the length of a lunation?
A. About $29 \frac{1}{2}$ days. (29 d .12 h .44 m .)
Q. Why is a lunation longer than the time it takes the moon to revolve around the earth ?
A. Because the earth is revolving around the sun at the same time.

LESSON XXXI.

Qumation. Wha is the length of the days or nights at the moon?

ANSWER. About 15 of our days.
Q. Which way does the moon revolve around the earth ?
A. From west to east.
Q. If the moon revolves from west to east, what causes it to rise in the east?
A. It is caused by the earth's revolving on its axis the same way.
Q. Does the moon rise the same hour every evening ?
A. It rises about 50 minutes later every day.
Q. What is the cause of its rising 50 minutes later every day?
A. It is caused by the moon's daily progress in its orbit from west to east.
4. What causes the phases of the moon, from new moon to now moon again?
A. It is caused by the moon's revolving around the earth.
Q. When is it new moon?
A. When the moon is between the earth and sun, and the dark side is presented to us.
Q. When is it full moon?
A. When the moon is upan the opposite side of the
earth from the sun, and the illuminated side is presented to us.

- Q. 4 How much greater is the light of the sun than that of the full moon? ifle $.800,000$ times greater.
Q. When are the sun and moon in quadrature?
A. When they are ninety degrees distant from each other.
Q. How much of the illuminated side of the moon is visible to us when it is in quadrature?
A. One-half.
Q. How much larger is the sun than the moon?

A 7,0 millions of times groater.
Q. Why does the moon appear as large as thes aun ?
A. Because it is four hundred,times noaror to us than the sun.

LESSON XXXII.

Qugarys. Has the moon an atmosphere?
ANswme. Very little, if any.
Q. What is the appearance of the moan, when viawed with a tolespope?

A It appears coyered with lightand dark spots of various shapes.
10. WWhat in the carse of this appearances?
A. It is caused by the mountains, plains andi valleys in the moon.
(م. What ans the light spotis?
A. Mountains and elovated land.
Q. What are the dark apots?
A. Plains, ixalleyo, atc.

1 side is preon thas that of

PrMIIt
listant from
the moon is
ron?
re:sun?
trarer to us
hen viawed
dark spots
and val-
Q. Has the monn any ocean, seas, or large hodies of waton?
A. Not upon the side towards the earth.
Q. If you were living upon this side of the mosn, what wpuld be the sppegrance of the earth?
A. The earth would appear like o large statipnany moon.
Q. How mpoh lyrgor than the mopn Rpphars to us?
A. Thirteen times groater.
Q. In what time would the heavenly bodies appear to revolve around the mgor?
A. The stars would appear to revolve in $27 \frac{1}{2}$ ideys, the sun in $29 \frac{1}{2}$ days.
Q. What is the shape of the moon's prbit?
A. Elliptical, or one diameter greater than the other.
Q. What is apogee?
A. It is the point in the orbit of the maon, farthest from the earth.
Q. What is perigee?
A. It is the point in the orbit of the mon, nearest to the earth.
Q. When is the moon in apogee?
A. When it is at its greatest distance from the earth.
Q. When is the mopn in perigee?
A. When it is nearest to the earth.
Q. Hes the moon any change of seasons?
A. None, except those changes which teke place every lunar month.
0. What is the harvest mpon?
L. When the moon is full in Septembor and Ootober, it rises only a few minutes later for severgl quegepiye oFrenings, and thus nffords light for, col-
lecting the harvest; it is therefore called the ciarvest moon.
do Q. What is the cause of the harvest moon?
A. It is caused by the moon's orbit being very oblique to the horizon.
Q. Is the moon inhabited?
A. The want of air and water render it uninhabitable by beings like ourselves.

PHYSICAL CONSTITUTION OF THE MOON.

In viewing the moon with the nated eye, her dise appears diversified with dark and hright spots, which, on being examined with a powerful telescope, are discovered to be mountains and valleys. The whole surface of the moon is oovered with these spots, which is evident from the fact that the line of separation between the illuminated and dark hemispheres, is, at all times, extremely ragged and uneven.

The mountains on, or near, this line, cast behind them long black ahadown, like those of the mountains of the Earth, when the sun is tining or setting. The moon is a much more mountainous body than the earth, and the mountains are vastly higher, comparea with its size, than those of the earth. One of the mountains, (named Tycho,) situated in the south-east part of the Moon, is apparently a voleanic crater 50 miles in diameter, and 16,000 feet deep, with a contral mountain rising to the height of 5,000 feet. The height of ten of the principal mountains, according to the recent measurement of Mepder, is from 31 to $4 \frac{4}{2}$ miles. The meuntains of the moon do not run in ranges, like those of the earth; bat are single peaks soattered over nearly the whole surface of the moon, and are generally of a oircular form, shaped Hike a oup. These facts substantially pro, the mountains of the moon to be of voleanic origin ; and, in sor st the prinoipal onen, decisive marlis of volcanic stratification. ag from sucoessive deposits of ejected matter, may be distir , oly th ceed with powerful telescopes.
The moon contains no le ge bodies of water, suah as oceans, seas, eto. ; at least, not upo - wie side visible to us. If there are any, thes' must' be upon the opposite side of the moon, which is never presented to us. The moon also has very little, if any, atmosphere; at least, none of sufficient density to refract the rays of light in their passage through it: owing to these two oircumetances, there are no alonds flonting around the moon; if there were any, they would at times be visible to us, but none have been observed.
 tuase of regetstion or change of neasonia has been obnerved; every
no jarvest
eing very
\%your
ninhabit-

MOON. ears diversiined with and valleys. piots, whioh between the mely ragged
a long black hen the sun ainous body r, compareal monntains, he Moon, is 16,000 feet (5,000 feet. ding to the iiles. The 10se of the ole surface aped like a t the moon es, decisive re doposits telesoopes. as oceans, re are any, h is never mosphere; light in loes, there any, they obyerved. 180 ; $n 0$ ed; overy
thing appears solid, desolate, and un. Io. suppoit of animal or vegetable life.

Whether the materials, of which the moon is composed, are os the same nature as the earth, we have no means of linowing. It has, however, been ascertained that its density; comparied with the density of the earth, is .615, or a little more than one-half; consequently, the materials of which the moon is composed, are about one-half as heary as the same bulk of the earth.

There being little or no atmosphere about the moon, the heavens, during its daytime, have the appearance of night to the inhabitants of the moon, when they turn their backs to the sun; and the atars then appear, as bright to them, as they do in the night to us; for it is entirely on account of the light whioh our atmosphere reflects, that the heavens appear luminous about us in the daytime. If our atmosphere were removed, only that part of the heavens would be light, in whioh the sun is situated; and, it we turned our backe to the suin, the heavens would appear as dark as night.
The light which the fall moon affords us is very small, when oompared with the light of the sun ; it being 800,000 times less. It has also been demonstrated, that the light reffected by the moo:produces no heat; as its raya, when colleoted by the aid of the mont powertul glasses, have not been perceived to produce the alightest effect upon the thermometer.

IS THE MOON INHABITED?

Frox the physicial constitution of the moon, it is evident that the moon is not inhabited; at least, by beinge constituted like ourselves.
The moon having little, or no atmosphere, we could not exist upon its surfece for a single hour, even though provided with the other necensary meanis for our existence : neverthelens, this is not positive evidence that the moon is not inhabited. The same power that called the moon into existence, could an easily constitute beings fitted to inhabit its surface, and enjoy an existence, Whiah is produotive of as much happiness to them, as ours is to ns.

It may be very properly asked-if the moon in not a habitable. body, for what purpose was it oreated? This is a queetion which in more eacily acked than answered. We might as well ank, why the greater portion of the surface of the earth is not larid instead of water! why is Afrios a candy desert; or why are the polar regions unfitted for the habitation of man?

Locording to goologists, the Earth was; for a long period of time, in a state unfit for animal life, and that it has undergone many successive changes, extending through a long period of fimo, before it vas fitted for the abode of menkind. It may be that the moon is in a transition state, and hes not arrived at a state pifitablo for acimal lite.

1. Wro frow bat few of the numetrous parponde the moon may serve, in the economy of nature. We do know that it ezerta a poryerfal influence in raising the tides. Its mill bearha teand to ditpel the gloom of night; egpecially in the dreary winter of the polar rogions. It furniahee the natigations at mos, the mont cortain meane krown; of defermining their longitude. In the eatlient periods of the world, its ohangen furnished the ancients with a convenient mode of yeokoning time. It is also thought by many to exart an 'important influenof upon the ariimal and vegetable kingdom; but this is dented by others equally entitled to credit.

LESSON XXXI

ECLIPSES:

Qumgrion. What is an eclipse?
Answith It is the interception of the sun's rays by:some opaque body.
$Q_{\mathrm{c}}^{\text {In }}$ How axe oolipges divided, with respect to the body oclipsed?
A. Into two kinds; solar and lunar.
Q. What is a solar eclipse ?
A. It is an eclipse of the sun.

- Q. What is the cause of an eclipse of the sun?
A. It is caused by the moon's passing between the earth and sun, and casting its shadow upon the earth.
Q. Whon mutst an edipose of the san tale place?

A It can happen only at new moon.
Q. Whatlo turite oolifpe? ${ }^{2}$
A.It is an eclipse of the moon!
Q. What oanses an eolipes of the moon?

A Fif is chassed by the moon's passing through the edtut khdow:
Qte Wrien midt an cochipfo of the moon take place?
A. It can happen only at full moon.
ECIIPSES xCl.

1

1

4
4

0
θ

n
Q) Eow ace -eligrea tivided, with revpeot to tho rmount colipuod?
A. Into total and partial.
Q. What is a total eclipse?
A. It is an eclipse of the whole of the sun or moon.
Q. What is a partical eolipse?
A. It is an eclipse of only a part of the sun or moon.
Q. What is ancarinulat eclipie?

A, It is an eclipse of the central pant of the sun, when the moon is so far from the earth, that the sun can be soen like a bright ring around it.
Q. Do we have an eolipse of the sun at every now moon f
A. We do not.
Q. Why do we not have an oolipge of the suin at every new moon?

At Because at new moon, the moon is generally too high, or too low, for its shadow to fall uponithe: earth...
Q. Do we have an eolipse of the mooni itteveny fill moconay
A. We do not; at full moon', the monn gerierally passes above or below the earth's shadow.
Q. Wituristhe length of the earth's thadow?
A. About 600,000 miles. [NOTE-This is the mean or everaga, length.]
Q. Witctertho longth or the moon's ahado ov?

An About 234,000 miles. [NOTE. This is the mean, or average length.]
Q. Whit is acuitern
A. It is the twelfth part of the apparent diameter of thereve or moon's dilse?
 placoin ajeter:
A. Seven; five of the sun, and two of the moon.

ABRDCMENT OF ALATE's

Q. What in the least number of eolipees that oand take place in a year?
A. Two : and both must be of the sun.

LESSON XXXIV.

THE MOON'S NODES.

Qussmon. What are nodes?
ANSWER. They are two opposite points, where the orbit of the moon, or any other planet, intersects the plane of the earth's orbit, or ecliptic.
Q. What angle does the moon's orbit make with the plane of the earth's orbit, or eoliptio.
A. About 54 degrees. ($5^{\circ} 8^{\prime} 48^{\prime \prime}$.)
Q. What part of the moon's orbit is above, or north of the plane of the earth's orbit ? :
A. One-half ; the other half being below, or south, of the earth's orbit.
Q. What in the asconding node?
A. It is that point, where the moon passes the plane of the earth's orbit from south to north.
Q. What is the desoending node?
A. It is that point, where the moon passes the: plane of the earth's orbit from north to south.?
Q. Do the nodes olhange their position, as regardis af fixd point in the heavens?
A. They have a retrograde motion of about 19 degreas in a year.
Q. When is the moon in north latitude in the heavenci?
A. When it is north of the earth's orbit or ecliptjc.
Q. When is the moon in sonth latitude in the heavenis 9 A. When it is south of the earth's orbit, or ecliptic,

(and
Q. What is the greatest latitude of the moon?
A. 54 degrees north or south of the earth's orbit or ecliptic.
Q. What is the greatest declination of the moon. or its distance north or south of the equinoctial, or equator?
A. About $28 \frac{1}{2}$ degrees;

LESSON XXXV.

Qusstion. How near one of the nodes must the moon be, at new moon to cause an eclipse of the sun?

ANswer. Within seventeen degrees. ($\left.16^{\circ} 59^{\prime \prime}.\right)$
Q. How near one of the nodes must the moon be, at full moon, to cause an eclipae the moon?
A. About 12 degrees. $\left(11^{\circ} 25^{\prime} 4^{\prime \prime}\right.$.)
Q. If the moon is exactly in one of her nodes at new or full moon, what kind of an eclipse will it cause?
A. It will cause a great eclipse of the sun, or moon.
Q. What is the extent of the solar ecliptic limit, in which an cclipse of the sun oan take place?
A. Thirty-four degrees, seventeen degrees on each side of either node.
Q. What is the extent of the lunar ecliptic limit, in which an eolipse of the moon can take place?
A. Twenty-four degrees; twelve on each side of either node.

EHLIOORNTRIO AND GEOOENTRIO LATITUDE AND LONGITUDE.

Q. What is the Heliocentric latitude and longitude of a planet?
A. It is its latitude and longitude, as seen from the siun.
Q. What is the Geocentric latitude sud longitude of a plamet?
A. It is its latitude and longitude, as seen from the earth.
Q. Does a planet, seen from the earth, appear to have thie same longitude as it would have, if seen from the sun at thè same time?
A. It does not, unless the earth is between the sun and planet.

LESSON XXXVI.

TIDES.

Question. What motion have the earth and moon, besides revolving around the sun?

ANSWER. They revolve around their cotmmon centre of gravity.
Q. In what part of a straight line, joining their centres, is the centre of gravity situated?
A. About 3,200 miles from the centre of the earth.
Q. What effect has the oentrifugal force upon the wrater on the opposite side of the earth from the moon?
A. It causes it to recede from the centre of gravity, and to rise on that part of the earth.
Q. What effect has this upon the shape of the earth?
A. Its digmeter is lengthened in the line of the moon's attraction, and shortened at right angles to it.
Q. What tends to increase this oval shape of the earth?
A. The inequality of the attraction of the moon? at the different sides of the earth.
i. [The wivater apon the side of the earth nearest tol the intoog, is more attracted than the centre of the earth; the water, nyom the opponite side, is less attracted.]
Q. What effect does the turning of the earth from wepmto 1 eant, on its axis, produce on these elevations or tide weres?

 A from
Q.
A.
ocea

ILLUSTRATED ASTHOAYOIKY.

A. It causes these elevations, or tide waves, to pass from east to west around the earth:
Q. What is tide?
A. It is the rising-and falling of the waters of the ocean.
Q. How are the tiden divided, with respect to the rising and falling of the water?
A. Into flood and ebb.
Q. What is flood tide ?
A. It is the rising of the water:
Q. What term designates the greatest elevation of the flood tide?
A. High water.
Q. What is ebb tide?
A. It is the falling of the water.
Q. How often do flood and ebb tide occur?
A. Twice in about 25 hours.
Q. Do the tides rise at the same hour every day?
A. ' hey rise about an hour later each day.
Q. Why do the tides rise later?
A. Becaiuse the moon passes the meridian about an hour later each day.
Q. What onuses the moon to be later at the meridian?
A. It is caused by its daily progress eastward in its orbit.
Q. Does the attraction of the sun produce an effeot similar to that of the moon?
A. It tends to raise a tide two-fifths as high.
Q. When the sun and moon are on the same or opposite sides of the earth, what is the effect of their atheretive forcen?
A. They raise a tide equal to the sum of their separate tides.
Q. When they are in quadrature, what is the effeet of their counteracting foroes?
A. They raise a tide equal to the difference of their tides.

LESSON XXXVII.

Qumstion. How are tides divided, with respect to their comparative height?

ANsWER. Ints spring, and neap.
Q. What is spring tide?
A. It is the greatest flood and abb tide.
Q. What is neap tide ?
A. It is the least flood and ebb tide.
Q. What proportion do these tides bear to each other?
A. The neap tide is about three-sevenths as great as the spring tide.
Q. When do spring tides ocour?
A. Twice in each lunar month, at new and full moon.
Q. Whon do neap tides ocour?
A. Twice in each lunar month, at the quarters.
Q. What effect have the continents upon the tide waves, when passing round the earth?
A. They subject them to great irregularities.
Q. Which side of the continents have the highest tides; the eastern, or the western?
A. The eastern side.
Q. Doos the water remain permanently higher on the east, than on the west, side of the continents?
A. The gulf of Mexico is 20 feet higher than the Pacific Ocean, and the Red Sea is 30 feet higher than the Mediterranegn.
Q. Where the tide wave is least obstructed, as in the Pacific Ocean, how much behind the moon is it?
A. It is two or three hours behind it.
Q. How long after the moon passes the meridian, is it high water at New York?
A. About $8 \frac{1}{2}$ hours.
Q. If the earth were uniformly covered with water, how high would the tide rise?
A. Not more than two or three feet. (The tide at the small islands in the Pacific Ocean is usually less.)
Q. What produces the greatest effect in causing high tides?
A. The shape of the land, and the position of the shores.
Q. Where are the highest fiucs in the world?
A. In the Bay of Fundy.
Q. What, besides the position of the shores, tends to raise a high tide at that place?
A. The meeting of the tide wave from the North Atlantic Ocean, with the main one from the South Atlantic.
Q. How high are the average spring tides at Oumberland, near the head of the Bay of Fundy?
A. About 71 feet.
Q. How high are they at Boston?
A. About 11 feet.
Q. At New York?
A. About 5 feet.
Q. At Charleston, South Carolina ?
A. About 6 feet.
Q. When do we have the highest tides in the northern homisphere?
A. During the day time in summer, and during the night in the winter.

LESSON XXXVIII.

ORBITS OF THE PLANETS AND COMETA.

Qusarton. What is the orbit of a primary planet?
ANswer. It is the path in which it revolves around the sun.
Q. What is the orbit of a secondary plane!?
A. It is the path in which it revolves around its primary.
Q. What is the form of the orbits of all the planets?
A. Elliptical, or longer one way than the other.
Q. Are all the orbits elliptical in the same proportion?
I. They are not; some are more elongated than others.
Q. What is the position of the orbits of all the planets?
A. They extend from west to east in the heavens.
Q. Do the planes of their orbits interseot the eoliptic, or corbit of the earth?
A. They do, at small angles.

Do they all intersect the plane of the earth's orbit at one point?
(1) They do not; but intersect it at different points.
Q. Through what point does the plane of the orbit, of -very primary planet and comet in the eolar systam, pass?
A. Through the centre of the sun.
Q. Are the planets at nearly the eame distenoe from the sun?
A. They are not; but at very different distances.
Q. Are their orbits all contained within the zodine?
A. They are,except those of a part of the asteroids. TM. Quom wide is the sodiac?
A. Sixteen degrees wide ; eight degrees on each side of the ecliptic.

TTS. 3t?
ound its
nets? other. prtion? ted than 2.14
plapets ? heavens. cliptio, or
bit at one t points. orbit, of , pass ?
from the stances.
teroids.
Q. Do all the plapets revolve around the sun in the same direction?
A. They do; from west to east.
Q. Do they all move with the same velocity?
A. The velocity decreases as the distance from the sun increases.
Q. Which planet moves in its orbit with the greatest velocity?
A. Mercury.
Q. Whioh move with the least?
A. Leverrier, or Neptune.
Q. When does a planet have north latitude?
A. When it is above, or north, of the earth's orbit.
Q. When does a planet have south latitude?
A. When it is below, or south, of the earth's orbit.

LESSON XXXIX.

COMETS.

Quishion. What are comets?
ANSWER. They are bodies, which revolve around the sun in very elongated orbits.
Q. How are comats nsually distinguished from the planet?
A. By a luminous train, or tail, on the opposite side from the sun.
Q. Is this luminous train always on the opposite side from the sun?
A. Not always; a few have been observed to have a different direction.
Q. Do comets ever appear withont a luminous train? Ax A. Some are entirely destitute of any such appendage.
Q. What is tho number of comets?
A. The number is not known; about 500 have been seen at different times.
Q. Are comets solid bodies like the planets?
A. They generally are not; although some have been observed to have a dense nucleus, or head.
Q. What is the nature of comets?
A. They are supposed to be gaseous matter, in the form of smoke, fog, or clouds.
Q. Do comets shine by their own, or by reflected light?
A. They shine by reflected light.
Q. Do they all, like the planets, revolve in the same direotion around the sun?
A. They donot; they revolvein different directions.
Q. Are all their orbits within the zodiao?
A. They are not; their orbits are in all directions in the heavens.
Q. How do many of them move when first seen?
A. They appear to move in almost a direct line towards the sun.
Q. Does their velocity increase as they appronch the mun?
A. It does; and, when near it, they move with immense velocity.
2. How fast has a comet been known to move?
A. 880,000 miles an hour.

LESSON XL.
 ATMOSPHERE.

Quxstion. What is air?
ANSWRR. It is an elastic, invisible fluid, which surrounds the earth.
me have ead.
r, in the
d light?
same directions.
irections
rect line
the sun? ve with
which
Q. Of what, benides air, is the atmosphere composed?
A. Of vapor, carbonic acid, and other gases.
Q. Is the atmosphere of the same density as we ascend from the earth?
A. It grows thinner or less dense.
Q. What is the estimated height of the atmosphere?
A. About forty-five miles.
Q. What is the pressure of the atmosphere upon the earth?
A. Nearly fifteen pounds to the square inch. (14.6.)
Q. What is the weight of air compared with water?
A. It is 816 times lighter than water.
Q. The pressure of the atmosphere is equal to the weight of a column of water, of what height?
A. Thirty-three feet.
Q. Of what is air composed ?
A. Of oxygen and nitorgen gases.
Q. In what proportions?
A. I'wenty parts of oxygen, to eighty parts of uitrogen.

LESSON XLI.

REFRAOTION.
Questrion. What is refruction?
A. It is the deviation of the rays of light from a straight line.
Q. What is astronomical refraction?
A. It is the deviation of the rays of light in their passage through the atmosphere.
Q. What is the cause of this refraction?
A. It is caused by the increase of the density of the atmosphere towards the earth.

5Q. In what part of the heavens is the light of a body most refracted?
A. In the horizon.
Q. What effect does this refraction have upon tho aun; at its rising and setting?
A. It makes the sun appear above the horizon, when it is actually below it.
Q. Does this affeot the length of the day?
A. It makes the day from six to ten minutes longer, from sunrise to sunset.
Q. Is the light of a body refracted when it is in the zenith ?
A. It is not.
Q. What is twilight?
A. It is that faint light, seen before the sun rises and after it sets.
Q. What is the oause of twilight?
A. It is caused by the atmosphere's reflecting the light of the sun.
Q. Twilight oeases when the sun is, how far below the horion?
A. Eighteen degrees.

LESSON XLII.

PARALLAX.

Qumatron. What is parallax?
ANSWER. It is the difference between the apparent and true place of a heavenly body.
$\Omega_{\text {a }}$ What is the apparent place of a plapet?
A. It is the place where it appears, to be, when seen from the surface of the earth.
D. What is the true place of applanet?
A. It is the place where it would appear ivo bof if

seen moti
A.
seen from the centre of the earth, or centre of motion.
Q. Where is the parallax of a heavenly body the greatest?
A. At the horizon, and decreases to the zenith.
Q. How are parallazes divided?
A. They are divided into two kinds; diurnal and annual parailax.
Q. What is diurnal parallax?
A. It is the apparent difference in the situation of a heavenly body, when seen in the zenith and horizon of two places, at the same time. (See parallax of Mars and Moon.)
Q. What is annual parallax?
A. It is the apparent difference in the situation of a star, as seen from the earth in opposite points of its orbit.
Q. Have the stars been obseryed to have any sensible parallax?
A. A few have been observed to have a small parallax of a part of a second. (Note.-No parallax has been discovered in more than 30 or 40 of them.)
Q. What is the cause of their having no appreciable parallax?
A. Because they are at such an immense distanice from us:
Q. If the earth's orbit were a solid ring, how large would it appear when viewed from the nearent fixed star?
A. No larger than a lady's finger ring.

LESSONXLIII. LIGHT $\triangle N D$ HEAT.

1 Quesrion. What bodies produce ight?
ANsWmR Luminous bodies.
Q. Is light a substance thrown off from a luminous body, or is it caused by a vibratory motion?
A. It is probably caused by the undulations of an extremely subtle fluid.
Q. In what direction are the rays of light thrown off from a luminous body?
A. In straight lines, and in all directions.
Q. With what velocity does light move?
A. About 192,000 miles a second: (192,500.)
Q. How is this amazing velocity ascertained?
A. By observing the eclipses of Jupiter's moons.
Q. In what proportion do the light and heat of the planets increase or decrease ?
A. In inverse proportion to the squares of their distances from the sun.
Q. Which planet has the most light and heat, and which the least?
A. Mercury has the most, and Leverrier the least.
Q. If a board a foot square be placed one foot from a lighted candle, how many feet square would the shadow be upon the wall, nine feet from the candle?
A. Nine feet square, or eighty-one square feet.
Q. What amount of light and heat would fall upon the one foot and upon the 81 feet?
A. The same amount of light and heat would fall. upon each.

LESSON XLIV.

TERRESSTRIAL AND OELESTIAL GLOBES.
Queskion. What is a gloke?
ANSWER. A globe is a round body or sphere.
Q. How many kinds of globes are there used in Astronomy?
A. Two; terrestrial and celestial globes.

Q. What does the terrestrial globe represent?
A. It represents the earth.
Q. What wre drawn upon the surface of the terrestrial globe?
A. Continunts, islands, mountains, oceans, seas, rivers, republics, kingdoms, empires, etc.
Q. What does the celestial globe represent?
A. It represents the heavens as seen from the earth.
Q. What are usually drawn on the celestial globe?
A. The constellations of stars, galaxy or milky way, and the figures of various animals and objects from which the constellations are named.
Q. What is a constellation?
A. It is a group of stars, to which is applied the name of some animal or object.
Q. What is the number of constellations?
A. Ninety-three.
Q. In viewing the terrectinal globe, whexe is the observer supposed to be placed?
A. On its surface.
Q. In viewing the celestial globe, where must the observer suppose himself to be placed?
A. In the centre, looking towards the heavens. (Inside, looking out.)
Q. What is the galaxy or milky way?
A. It is a luminous belt forming a complete circle in the heavens.
Q. Of what is the galaxy or milky wey composed?
A. It is a vast number of stars, so far distant from us, and situated so nearly in the same direction, as to appear like a thin cloud.
Q. What is the position of the millky way in the heavens?
A. It extends from nortieast to southwest through the whole circumference of the heavens.
Q. What are the colestial poles, or poles of the heavens?
A. They are the points where the earth's axis, if exterded; would meet the heavens.

LESSON XLV.

Quastion. What does the plane of the equator form, when extended to the heavens?

ANswer. The equinoctial, or celestial equatof. 1
Q. At what angle do the ecliptic and equinoctial intersect each other?
A. At an angle of $23 \frac{1}{2}$ degrees. $\left(23^{\circ} 28^{\prime}\right.$)
Q. What does the plane of a meridian form, whon extended to the heavens?
A. A celestial meridian, or circle of declination:
Q. What are measured on celestial meridinns ?
A. Declination and polar distance.
Q. What is the declination of a heavenly body?
A. It is its distance rom the equinoctial, north or south.
Q. To what are the declination and polar distance always equal?
A. They are equal to 90 degrees, or a quarter of a circle.
Q. What is the right ascension of a heavenly body?
A. It is its distance east of the first point of Aries, measured on the equinoctial.
19. What angle expromess the rightemesnaion?
A. The angle between the meridian passing through the body; and the one pasidng through the first point of Δ ries.]
Q. How far is eight asconion reokonod?
A. 360 degrees, or quite round the heavens.
Q.
A. T poles ol
Q. ∇

A: I
measul
Q. ∇
A. I
measu
[Q.
A. througt of Arie
Q.
A. tude in
Q.
A.

QuI
An throv zon a
Q.
A. the

LESSON XLVI.

Quesmion. What is a vertical circle?
ANSWER. It is a great circle in the heavens, passing through the zenith and nadir, and cutting the horizon at right angles.
Q. What vertical circle is the meridian?
A. It is that vertical circle which passes through the north and south points of the horizon.
Q. Which is the prime vertical?
A. The vertical circle which passes through the east and west points of the horizon:
Q. What are soosured on the vertieal circles?
A. Altitude ar d rexith distance.
Q. What is the zenith distance of a heavenly body?
A. It is its distance from the zenith.
Q. To what are the altitude and zenith distance always equal?
A. They are equal to 90 degrees.
Q. What is the azimuth of a heavenly body?
A. It is its distance east or west of the meridian.
[Q. What angle exproscos the aximuth?
The angle between the meridian and the vertical circle puining through the body.
.Q. What is the amplitude of a heavenly body?
A. It is its distance north or south of the prime vertical.
Q. What angle exprempen the amplitude.
A. The angle between the prime vertical, and the vertioal cirole passing through the body.
Q. Where are the angles expresuing asimuth and amplitade formed.
A. At the zenith where the vertioal oircles interseot each other.
Q. On what oircle are thone anglen measured?
A. On the horizon.
Q. To wiunt are asimuth and amplitude always equal?
A. They are equal to 90 degrees.]
[The diagram can be used to illustrate asimuth, amplitude, altitude, and zenith distance, by supposing the eoliptic to reprement the celestial horizon, and the oircles of colestial latitude to ropresent vertical ciroles.]

LESSONXLVII.

THE FIXED STARS.
Queserion. What are those stars called which alwaye appear to be in the same situation with respeot to ench other?

Answar. They are called the fired stars.
Q. What are the fized stars supposed to be?
A. They are supposed to be suns like our own, with planets revolving around them.
ody?
ace always
meridian.
tical circle
e vertical.
he vertionl
ade formed. rseot each
amplitude, iptic to reestial lati.
weys ap. other ?
ir own,
Q. Are the stars luminous or opaque bodies?
A. They are luminnus bodies. (Astronomers have no doubt on this point.)
Q. Are all the stars of the same magnitude as the sun?
A. They are not; some are larger, and others no doubt smaller than the sun.
[Astronomers, until recently, considered all the stars to be of about the same magnitude, and prohably as large as the sun; and that the stars of the first magnitude owed their brillinnoy to their being nearer to us; but it has been trund that the brightest star (Sirivs) in the whole heavens, and which was considered to be the nearest fixed star, is at a much greater distance than some of the smaller stars. This clearly demonstrates that they are of very unequal magnitude.]
Q. What is the distance of the nearest fired star, a (Alpha) Centauri?
A. It is so far distant that a cannon ball going 500 miles an hour, would take four millions of years to reach it.
Q. What is the number of stars whose distance is imperfectily known to us?
A. About 35 ; seven of which have their distances. determined with considerable certainty.
Q. Do all tho stars remain of the same brilliancy?
A. They do not; some exhibit a periodical change in their light.
Q. What is supposed to be the eause of this change in thoir light?
A. The revolution on their axes is supposed to present alternately to us, sides of different brightneas.
Q. What are those etars called, whioh appear to be surrounded by a thin atreonphere?
A. Nebulous stara.
Q. Do mtarever cimppear, or now onen bocome viaihto

ABRIDGMENT OF SMITH'S

A. Thirteen stars have disappeared, and ten new ones become visible, during the last contury.
[There are now seven or eight well-attested cases of fixed stars guddenly glowing for a time with such brillianoy as to be visible in the day time, through the intensity of their light: then gradually fading away, and becoming ontirely extinot. Luphaly thinks that some great conflagrations, produced by extraordinary causes, have taken place on their surface.
Q. What is supposed to be the cause of their disappearanoe?
A. They have probably ccased to be luminous.
Q. How do astronomors account for the appearance of new stars?
A. Opaque bodies may have become luminous, or new suns may hove been created.

LESSON XLVIII.

Question. What do the milky way and the single stars that are visible to the naked eye, including our sun, oonstitute?
ANsWER They constituto an immense cluster, or firmament, entirely distinct from the other clusters or nebule of the heavens.
Q. What is the shape of this great cluster cr firmament?
A. It has the form of a wheel or burning-glass.
[The star's extend much farther in the direction of the plane of the milky way, than they do at right "angles to 'tt. San Duapiri]
Q. What if the number of atare in our cluotar.?
A. They have been variously estimated, from 10 to 100 millions:
Q. By wiat term do somo astronomers mato oús claster or firmament?
A. They call it the universe
[The term universe, was unfil recently, used to denote theo whole creation of God, and was never uned in the plural num.
nd ten new ry.
cases of fixed lianoy as to be of their light: tirely extinet. , produced by urface.
ir disappear-
minous.
pearance of
minous, or
single stars ur sun, con-
cluster, or r clusters rmament?
y-glass.
stion of the
angles to th.
W 1
from 10
तथा,
cuate out
सT.
denote thio
lural num.

PHASES ()F THK M()ON

Photographic Sciences

Corporation

ber; but astronomers use the term to denote an immense firmament or oluster of stars, entirely distinot from other clusters-of which there are many thourands visible with the telescope-and are at an immense distance from each other. Hence, in speaking of these clusters, they call them aniverses. -Pror. Mitohincr.]
Q. Do the fixed stars have añ apparent motion?
A. They do, but it is so slight as not to be easily detected.
Q. Around what, are all the stars in our cluster, including the sun, supposed to revolve?
A. Around the common centre of gravity of the cluster.
9. What group of stars is thought to be near the centre of the cluster?
A. The Pleiades, or seven stars-(Dr. MaedLer.)
Q. In what part of the cluster is the solar syatam situated?
A. It is comparatively near the centre.
Q. How far from us is the centre of the oluster supposed to be.?
A. About 150 times the distance of the nearest fixed star.
[Light is about 8 minates in coming from the sum; about 31 years in coming from the nearest fized star, a Continuri; about 500 yeari in coming from the appposed centre of the olustar; and about 5,000 years in coming from the most remoto istars in the olúster.]
Q. How long will it take the sun to revolve around this centre of gravity?
A. About twelve millions of years.
Q. What other motion have nome of the stars, beaides around the centre of the cluster?
A. Multiple stars, consisting of two or more, revolve likewise around their common centre of gravity.
Q. What is the number of these mpitiple stars?
A. About 6,000 have heen observed.
Q. Do these stars appear double to the naked eje?

1. They do not; the moat, require a good tele scope to separate them.
Q. When multiple atam consint of but two, what aro they. usually oalled?
A. Double stars, or binary systems.

LESSONXLIX. NHBULAR.

Quxarion. What appearance has a nebula?
ANswer. A nebula appears like a spot of pale
cor
tel

Cr
A. Some of them are said to be so far digtant, that light, travelling 192 thousand miles a second, would not reach us in less than 30 millions of years.[Pror. Mitchicl.]

Q. Axp they virible to the nakod eye?

A Only a few are seen without a telescope.
a. How large do they appear whon vieviod with a telecone?

1. Some of them fppear as large as one-tenth of the dise of the moon.
Q. Are thiom nubut soun in all part of tho heprens?
A. They are, although they are more numerous in a narrow zone, circumscribing the heavens, at right angles to the milky way.

Q* Into how many olasses may nebule be divided?
A. Into five classes; viz, resolved nebulen, resolvable nebule, stellar nebulæ, irresolvable and planetary nebule.
Q. What are resolved nebule?
A. They are those, which have been discovered with the telescope to be clusters of stars.
Q. What are resolvable nebule ?
A. They are those, which are considered to be composed of stars, but are so far distant that the telescopes have not as yet resolved them.
Q. What are stellar nebulae?
A. They are those of an oval or round shape, increasing in density towards the centre.
[Note-They sometimes present the appearance of having

- dim star in the centre.]
Q. What are irresolvable nebuly?
A. They are those, which are considered to be luminous metter in an atmospheric state, condensing into solid bodies like the sun and planets:
Q. What are the planetary nebule?
A. They are those, which resemble the disc of a planet, and are considered to be in an uncondensed :state.
Q. Are all nebule beyond our cluster?
A. They are, except the milky way; and nebulous stars.
Q. By what general term do astronomers designate each nebula or cluster?

A They call each nebula a Univeirse, or FirmaMENT.
[Q. What can you say of the groet nebula in the Ganyizouxds?
A. It rewrmblen our oluster, or firmament of stars.
Q. What din you tay or tho great r sbalia in OMon?
A. This nebule was considered to be luminous matter inan uncondensed state; but it has lately been discovered to be stari by Lord Rosse, with his yowerful telescope.

Note-This pebria is visible to the naked eye.
Q. What in the probablo ceace of many of the nobulie appoarting elluptioni or olongatod! (SIE DINOMAX.)
A. It is probably caused by the edge of the nebula being: turned more or less towards us.
\qquad

PROBLEMS

PERFORMED WITH THE TERRESTRIAL GLOBE.

Probley I.-To find the Latitude of any given placo.
Rolus.-Bring the given place to the gradnated side of the brass meridian, and the degree on the brass meridian over the place is the latitude, which is either north or sonth:
Q. What is the latitude of New York?
A. About 41 degrees north.
Q. What places have no latitude?
A. All places on the equator.
Q. Find the latitude of the following places:-

London, Philadelphia, Boston,
Edinburgh, Rome, Dublin,
Moscow. Stockholm,
Algiers, Astoria, Norfolk, Aleppo, Madras, Madrid, Prague, Dantzic, Tripoli,

Paris,
Quito,
Washington,
$10 g$ ing:

Quio, Mexico,
Cape of Good Hope, Haliax, Ispahan, Athens, Cape Horn, Tenariffe, Lima,

Cairo, Lisbon, Vienna.

Problem 2.-To find the Longitude of any given placo.
Rune:-Bring the given place to the brass meridian, and the degree on the equator under the brass meridian, is the longitude.
[Note-Longitude is reckoned from the meridian of Greenwich, 180 degrees east and went.]
i听. What is the longitude of New York?
A. 74 degrees west.
Q. What is the longitude of Pekin?
A. 116 degrees east.
Q. Find the longitude of the following places :Waghington, Hartford, SandwichIslands,Gibraltar, Quebec. Rhodes, Calcutta. Constantinople Canton, Pekin, Astoria,

Havana, Jerusalem, St.Petersburgh,Venice,! Cape Horn, Now Orleans, Rio Janciro.

Paosuen 8.-To find any placo whose latitude and longitude are given.

Rous.-Bring the given longitude to the brass meridian, and under the given intitude is the pliceo required.
Q. What placo is situated in seventy-four degrees west longitude, and forty: one north latitude?
A. New York.
Q. What places have the following latitudes and longitudes?
Lat. 42° north, Lon. 71° wost. Lat. 84° sonth, Lon. 18° east. Lat. 68° north, Lon. 6° west. Latit 41° north, Lon. 72° west. Lat. 88° north, Lon. 9° wost. Lat. 39° north, Lon. 75° west. Lat. 46° north, Lon. 75° west. Lat. 82° north, Lon. 81° west.

Problex 4.-To find all those places that are in the same latitude or longitide at a given place.
Rocil-Bring the given point to the brass meriaian; then all the places urider the meridian have the same longitude; turn the globe round, and all places whidh pans under the latitude of the place have the same latitude.
Q. What places have nearly the same longitude as New York?
A. Albany, Montreal, Bogota.
Q. What places are in the same latitude?
A. Boston, Madrid, Naples, Constantinople.
Q. What plices have the same longitude and latitude as the following places :-
Washington, London, St. Petersburgh, Rome, Cairo, New Orleans, Mexico, Oanton, Caloutte, Dublin?

Probley 5.-To find the difformee of latitiwate betweon any two places.

RoLe. -Find the latitude of each place, and note it down; then if both places are on the same side of the equator, subtract the less latitude fiom the greater: if they are on the opponite vides of the equator, ed dhe Iatitudes.
Q. What is the differene of latitude between New. York and London?
A. New York 41° north, Liondon 51° north; difference, 10 degrees.
Q. What is the difforence of latitude between Weahington and Cape Eorn?
A. Washington 87° north, Cape Horm, 56° south. -Sum 93 degrees.
Q. Find the difference of latitudo between the following places:-
Now Orleans and Quebeo. Morico and Rio Jarieiro. Madrid and Cairo, Pelin and Botany Bay, St. Potorsburgh and Romo, Oape of Good HopedC ispe Eiorn

Proziny 6.-To find the difforenoe of longitudo between ainy two places.

Notho-Find the longitude of enoh place, and note it down; then, if both places are east or west of the meridian, subtruct the lem longitude from the greater; but if one is east and the oth west add the longitudes.
Q. What is the difference of longitude between Now York and New Orleans?
A. New York 74°; New Orleans, 90° westdifference 16 degrees.
Q. What is the difference in longitude between Boston and Rome?
A. Boston 71° west; Rome 12° east-sum, 83 degrees.

If the sum of the longitudes ercoed 180 degrees, subtract it from 360 degrees; the femainder: will be the difference in
longitude; as, Astoria 124°. west; Pakin 116° east $=240: 360$ $240=120^{\circ}$ diflerence in longitude.
Proburay 7.-The how of the day at any place boing giver, to find what o'olook it is at any other placo.

Huvis.-Bring the place at which tho time is given to the brass meridian; set the index to the given hour, then turn the globe till the proposed place comes to the meridian; the inder will point to the hour required. If the place required is osst of the given place, it is later; il to the west, it is earlier.
Q. When it is noon in Now York, what is the time in London?
A. 4 o'clock, 56 minutes.
Q. When it is noon at Washington, what is the hour at Now Orleans, Mexioo, Guobec, Boston, Astoria; Pekin, Cape Horn, Rome, Ift. Potersbargh, Moscow, Canton, Dablin?
Q. When it is midnight at New York, what is tho hour at Paria, Cairo, Oaloutta Bt. Holona, Gibraltar, Havana, Constantinople, Mexioo, Astoria, Nankin, Tunis, Cadiz?
Problaze 8.-Tho hour of the day boing givon at any place, to find all places on the globe where it is thow noon, or any other given hour.

RuLe.-Bring the place to the brace Meridian; set the indez to the hour of that plece; turn the globe till the index pointe to the other given hour; then all placen under the brase merdainn will be the places required.

- Probley 9.-To find tho Antocoi of any place.

Bole.- Bring the place to the brass meridian, and find its latitude, thion, under the same degree of latitude, on the opposite side of the equator will be the Antocci.
Pronlitit 10.-To jind the Periocoi of any place.
Rown.-Bring the given place to the brass meridian, and set the index to twelve; turn the globe till the index points 'to the ofher tivelve; und under the same degree of latitude will be the Perioeoi.

Problat 11.-To find the Antipodes of any place.
RoLs.-Bring the place to the brass meridian, and find its latitnde; tet the index to twelve, and turn the globe till the index potnts to the othier twelve; then under the same degree of latitude, on the other side of the equator, will be the Antipodes.

Problen 12.-To fina the distanco in miloe betweon any two places on the globe.
Runs: Lay the quadirant of altitude over the two places, so that the division maried 0 will be on one of the pleces, and it show. the trumber of degreen between them; which, multiplied by 697, Will give the dietanco in miles.
ORbBLEM 18. To find the Sun's Longitude or place in the Ecliptio, and his doclination, in any given month or day.
if Rowit- Look for the given day in the circle of montlis on the wooden horizen, and opposite to It , in the circle of sigus, are thd sign and degree in which the sun is for that day. Find, the ymo
sign a the de the de

P and the de Ro situat latitui meria easter rising and t the the had.
\mathbf{P}_{1} est d \mathbf{R} north gree gree san' easte the the 1 the this plac sont first
nig
4 m
not
13)
the
on
the
otb set
sign and degree in the ecliptic on the surface of the globe; bring the desree of the eoliptic, thus found, to the brase meridien, anid the degree of the meridian will be the declination.

Problex 14.-To find the time at which the Sun rises and sote at any placo, the day in the yoar and the longth of the day, and night at that place.

Rovis.-Raise the pole (of the hemisphere in whigh the place is situated) as many degrees above the horizon as are equal to the latitude of the place; bring the sun'e pleoe on the given day; to the meridian, and wet the index to 12: bring the sun's place to the eastern horizon, and the index will show the time of the sun's rising; bring the mun's place to the weatern edge of the horizon, and the index will show the hour of setting. Double the time of the sun's setting, and the length of the day will be had; doublethe time of the sun's rising, and the length of the night will be had.

Problex 15.-To find the length of the longest and ohortest days and nights at any place on the earth.

Rove.-If the place is in the northern hemisphere, elevate the north pole till the horizon cuts the brase meridian in the degree corresponding to the latitude of the place; bring the first degree of Cameer to the meridian, and cet the index to 12; find the sun's plece in the eoliptic, (by problem 18), and bring it to the eastern edge of the horizon, and the index will show the hour of the sun's rising; double this time, and it will give the length of the longest night. Bring the sun's place to the western edge of the horizon, and the index will show the hour of setting; double this time, and you will have the length of the longest day at that place. If the place is in the sonthern hemisphere, elevate the month pole to correspond with the latitude of the pleoe; bring the firnt degree of Capricorn to the meridian, and proceed as above.
Q. What is the length of the longest day and shortest night at Now York?
A. Longest day, 14 h .56 m ; shortest night, 9 h . 4 m .

Problex 16.-To find those places where the sun a se not rise or set on a given day.

Row.- Find the sun's deolination on the given day, (by prob. 13), raise the 'pole (nearest the sun's place), as many degrees above the horizon as are equal to the deolination; furn the globe round on its axis, and at all places that do not come above the horisori .the sun does not rise on that day; and at all places around the other pole that do not pass below the horizon, the sun does not sot on that day.

yer :
 PROBLEMS
 PERFORMED WITH THE OELESTIAL GLQBE.

Al tude,

\mathbf{P}_{1}

Arctarus, in Bootes, Caprolls, in Autiga,
Regulus, in Leo.

Prositir 2.-To find tho Latitudo and Longitude of a Star.

Rone,-Place the end of the quadrant of altitude, which is matked 90°, on the north or south pole of the ediiptio, acoordink as the star is north or south of the eoliptio ; then move the other cad till tho graduated edige of the quitdrant comeis to the staty. The number of degreen on the quadrint, butween the coliptic and the fitary is the latitule; and the mumber of degrees on the ecliptio, reotoned sithtward; from the firit point of Arios to the quadrant, is the longitude.

EXAMPLe- Required, the latitudes and longitudes of the following stars :-

Aldebaran, in Taurus. Ans. Latitude $5^{\circ} 28^{\prime}$ S.; longitude, 2 signs $6^{\circ} 58$ ', or $6^{\circ} 58^{\prime}$ in Gemini.

Deneb, in the Swan, | Altair, in the Eagle; Antares, in Scorpio, Fomalhant, in the S.Fish.

> Rigel, in Orion,

Pollux, in Gemini.
Pboblem 3.-The declination and right ascension of a Star, the Moon, a Planet, or a Comet, being given, to find its place on the globe.

Rows.-Bring the given degrees of right ascension to that part of the brass meridian which is numbered from the equinoctial towards the poles; then under the given declination on the brass meridian you will find the star or planet.
Q. What stars have the following right ascensions and declinations?
Right Ascension. Declination.

76°	14^{\prime}		8°	27^{\prime}	\mathbf{S}.
83	6		34	11	\mathbf{S}.
25	54		19	50	\mathbf{N}.
53	54		23	29	\mathbf{N}.

Bight Ascension. Declination.

86°	13^{\prime}	44°	55^{\prime}	N.
99	5	16	26	S.
11	11	59	38	N.
46	32	9	34	$\mathbf{8}$.

Problex 4.-The latitude and longitude of the Moon, a Star, or a Planet, being given, to find its place on the Globe.

Rolis.-Screw the quadrant of altitude on the pole of the ecliptic, and place the other end on the given degree of longitude in the ecliptic; then, under the given latitude, on the graduated edge of the quadrant, you will find the star, or place of the moon or planet.
2. What stars have the following latitudes and longitudes?

tu	L	Latita	Longitudes.
	$2 \mathrm{~s} 25^{\circ} 51{ }^{\prime}$	$10^{\circ} 4^{\prime} \mathrm{N}$.	3s $17^{\circ} 21^{\prime}$
2252 N.	$18 \quad 57$	216 s .	11056
$529 \mathrm{S}$.	2653	12 B 8.	111.25
4420 N.	7. 922	027 N.	426.

Problem 5.-The latitude of a place, the day and hour being given to place the Globe in such a manner as to represont the heavens at that time in order to point out the situctions of the constellations and remarkable stars.

Rum. - Elevate the pole for the latitude of the plaoe, and set the globe due north and south by a meridian line; find the sun's place in the eoliptio, bring it to the brass meridian, and set the index to 12. If the time be afternoon, turn the globe westward; if in the forencon, turn the globe easitward, till the inder points to the given hour. The surface of the globe then represents the appearance of the heavens at that time and place.

Probley 6.-To find the distance of the Stars from cach other, in degrees.

RoLs:- Lay the quedirant of altitude over any two stars, to that the division marked 0 may be on one of the stars; the degrees between them will show their distance, or the ax jle which these stars subtend, as seen from the barth.

Example.-What is the distance, in degrees, between the two stars, Vege and Altair $?$
A. 34 degrees.

Also, between Regalus and Procyon,
6 A Aldebaran and Sirius,
c. ". Arcturus and Spica,
"Ary Ospelle and the North Star?

[^0]: * Herrahel entimated the diameter of emoh of the estamoids to be rinder 200 mile, Thoir great distance, extrome mallnome and nebulous
 cournoz.

