

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.

Coloured pages/
 Pages de couleur

Coloured plates/
Planches en couleur

Show through/
Transparence

Pages damaged/
Pages endommagées

Only edition available/
Seule édition disponible
\square Pagination incorrect/
Erreurs de pagination

Bound with other material/
Relié avec d'autres documents \square Pages missing/
Des pages manquent

Cover title missing/
Le titre de couverture manque

Maps missing/
Des cartes géographiques manquent

Plates missing/
Des planches manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à partir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant iliustre la méthode :

Oi the bearing and resisting strength of structures and that of their compogent parts and materials.

Read before the Province of Quebec Association of Architects at their annual meeting - October 2 1895 - at the Chateau Frontenac - Quebec.

A PAPER READ BEFORE THE

Province of Quebec Association of Architects

At their anamal meeting, Detober 2 , 1895 , at the Frontenac Hotel, Quebec.

On the bearing and resisting strength of structures and of that of their component parts and materials.

Many failures have (of late years) occurred of various buildings or of portions thereof; due to faulty, hasty or unmatured construction ; and hardly a day passes but what the news-papers chronicle some catastrophe, some co'lapse of a building just finished, or even before it is finished; as evidently incapable of supporting its own weight; let alone that of the living or dead weight or both which it should have been made strong enough to bear. Such failures have occurred, in Canadian as well as in United States and European cities, and in most cases with the loss of one or more lives.

Much more attention should also be bestowed on the erection of temporay stages or platforms in cases of reviews, races, athlutic and other performances; but with this, which is of secondary importance, and where sufficient solidity of construction can be arrived at without subjecting the structure to abstruse calculations, or to any thing mor, than giving it due consideration, we do not intend al.

The engineering of architecture must be more closely attended to by architects, as the engineer will take the matter out of the architect's hands; and that would be a slur to the profession which should and must be avoided. Not that engineering structures in this respect are always seathless ; for there are also many cases on record of the failure of a bridge, a subaqueous tunnel or other such structure ; but these are comparatively few and far between, while architectural mishaps are of far more frequent occurrence.

Our friend Mortimer, publisher of the Canadian Architect and Builder, rehearses the fact at page 112 of his "Hand Book" that the ultimate strength of a wall or pier built of good hard burnt bricks in good lime mortar, as given by Kidder of Boston, is 1500 lbs to the square inch, say $216,000 \mathrm{lbs}$ or 108 tons to the square foot,-while the use of Portland cement with the best hard burned bricks, increase the resistance to 2500 lbs . the inch or 180 tons the footthough previous competent authorities have given results from 30 to 50 per cent less than these. Assuming therefore the known weights of mortar and cement brick work per cubic foot, it would require a wall or pier to be from 1600 to 2700 feet high to crush the bottom bricks; and since such extreme cases have not and can never occur in practice, and that walls do fall notwithstanding, which do not even reach to one tenth of the height ; it is evident that not only must the mere crushing elements be made factors of, but other important data of length, breadth, height and thickness, and these are the considerations
more ineer inds ; which ering : ; for 'ailure such nd far more radian ge 112 h of a a good s 1500 8 tons sement he re-
footgiven Asar and puire a igh to te cases id that n reach lat not made readth, rations
which apparently, from seldom or ever entering a builder's mind or that of a would-be architect, lead to the repeated accidents and fatalities of every day occurrence in some part or other of the civilized world.

Now, this knowledge is at hand and to be found at page 109 of the "Canadian Contractor's Handbook" which gives the proper thickness of brick walls for dewelling houses up to 100 ft . in height; though of course there are other considerations to be dealt with, such as the supporting, staying or stiffening ministry of the successive tiers of joists or beams, whether of wood or iron, which enter into the structural arrangements of the building; important among which is the nece sity that beams which would be otherwise of too lengthy a span and therefore liable to dangerous oscillation and destructive leverage on the walls, be supported at intermediate points by other walls and piers restorative of the necessary stiffness to insure stability.

When however a structure becomes very high and heavy, as with the present tall buildings lik. the Phi a elphia City Hall, the New-York World (22 story) printing establishment, the American Surety building (:07 ft. high above the sidewalk and may be 20 to 30 ft . below that level), the Manhattan and others in New-York and Chicago, and a beginning in that way in Montreal and others cities; it then behoves the architect charged with designing the structure to take crushing weights into consideration, and especially when the buildings are designed to be fire proof and that, to that end, the floors are beamed
with iron joists, brick or terra cotta archings or vaultings between and concrete haunch or spandril filling with tile or cement floors to boot; and which including weight of superincumbent partitions wals and colums of the floor or story next above or resting on and supported by the colu:ms next below, and with 90 lbs . live and dead weight addiaional for persons, furniture and fittings of all kinds, may be taken at 300 lbs . per foot sup. of floor space.

To this end, I have thought that on retiring from the presidency of the Association of Architects of the Province of Quebec, it might not be amiss for me to tabulate, as I have done herein-below ; and for the ordinary spans or inter-columniations of $10 \times 10 \mathrm{ft}$. centres, $10 \times 20 \mathrm{ft}$. centres and $20 \times 20 \mathrm{ft}$. centres, or for floor spaces of $100,200 \& 400 \mathrm{ft}$. area respectively ; and for each and every successive story of a building up to 20 stories high, which I have done : the sectional area in square inches of steel built-columns to support the weights, the thickness of their component plates, the weights in tons to be supported and in the three last vertical columns of the table the corresponding prices at a uniform rate of 5 cents to the pound - while if 6,7 or 8 or 10 cents to the pound or even more or less are to be allowed, as fluctuating with the market value of the metal to be put in place at any time; then can the whole, the total cost be added to or deducted from by a known percentage of 20 for one cent additional, 40% for 2 cents, 50% for $2 \frac{1}{2}, 60 \%$ for 3 and 100% fur 5 and so on ; for in addition to the possible price of iron or steel being greater

- 5 -

or less, there is also to be estimated the average cost of first raising the weights to the average height of the structure which, should the stories average 12 ft . in height, would be 120 ft . for a 20 story building, 60 ft . for a 10 story building and so on of other average heights.

To simplify, and speed me in the computation of the table-I have assumed one unique type of section or build of the supporting column of $12^{\prime \prime} \times 12^{\prime \prime}$ from out to out with central web, the whole put together with valley, or angle or flange iron, riveted together as shown in diagram in the margin or herein below ; but, as with this form and size of section, the plates for a 20 story structure reach to two inches in tickness or more, it is evident how by increasing the size of column to two ft . square instead of one, or four ft . bearing area ($2^{\prime} \times 2^{\prime}$) the plates would thus be reduced to $\frac{1}{2}$ an inch in thickness instead of $2^{\prime \prime}$ or to a thickness of one inch, by doubling the bearing area of column or making it $1.42 \times 1.42=2.0164$ square ftet, or simply $1.4 \times 1.4 .=1.96$ square feet which 1. near enough for all practical purposes, when the factor of safety as in this case is already on the safe side.

Or again, instead of the posts or columns being exactiy square, it might suit better to double the dimension one way, leaving the other as it is: for instance $1^{\prime} \times 2^{\prime}$ or $12^{\prime \prime} \times 24^{\prime \prime}$ for inch plates instead of $2^{\prime \prime}$, or for $t^{\prime \prime}$ plates $1^{\prime} .6^{\prime \prime}$ (18 inches) x $2^{\prime} .8^{\prime \prime}$ (32 inches) or any other form of section to suit, as round or oval, etc.

The tabular statement does not give weight of
column ; but taking item No. I, the sectional area in square inches is given as 10 sqr. inch. and the thickness of plates at $0.1^{\prime \prime}$ (one tenth of an inch). Now, how this is arrived at, will be immediately seen on refering to the diagram; for, as evident, there are futur plates each $12^{\prime \prime}$ wide, one web plate 6 inches, and 8 valleys of $3^{\prime \prime} \times 3^{\prime \prime}$ or each $6^{\prime \prime}$ in developed breadth, together 102 or say 100 inches in total horizontal girth. Now $100^{\prime \prime} \times 0.1^{\prime \prime}=10^{\prime \prime}$ or $5 / 6$ of a square ft . of inch thick iron per lineal ft of column. Again, wrot. iron being 480 bls to the cubic foot, gives 40 bls . to the square foot of inch thick plate, or for $5 / 6$ of a square foot $33 \frac{1}{3} \mathrm{lbs}$. per lineal ft . of column ; and this into 14 the assumed height or length of column gives 467 lbs . or with rivets say 480 lbs . which at 5 cts. the pound give the figures $\$ 24.00$ in the corresponding column opposite item No. I of table.

Or it may be plainer or easier to say that 102 inches total horizontal girth of plate and valley iron in the section, gives (dividing by 12) $8 \frac{1}{2}$ superficial ft . of iron or steel plate $1_{l} 10^{\prime \prime}$ thick, and as iron $0.1^{\prime \prime}$ thick $=4 \mathrm{lbs}$., therefore does the $8 \frac{1}{2} \mathrm{ft}$. give as before 34 lbs . or neglecting the 2 odd inches (more than allowed for in not deducting the twice computed ang'es of the valley irons) $331 / 3$ pounds.

Nuw this unit of weight and cost of column opposite item I for a $20^{\prime} \times 20^{\prime}$ space or 400 ft . area, which at 300 lbs a foot of floor surface gives the 60 tons in the sixth column, must of course be hilf of itself when the supported area is only $10^{\prime} \times 20^{\prime}$, and $\frac{1}{2}$ of this last or $\frac{1}{4}$ of itself, where the supported area is
only 10×10 or 100 sup. ft., and so is also the thickness of iron reduced to $0.05^{\prime \prime}$ and to $0.025^{\prime \prime}$ respectively and the corresponding prices in the twe last columns to $\$ 12.00$ and $\$ 6.00$ respectively.

Again, as herein before stated, as to how to increase the area of bearing surface of column to reduce thickness of plates to inch or half inch; so in a converse manner, may the $12^{\prime \prime} \times 12^{\prime \prime}$ columns of the upper floors be reduced to half their size or to $6^{\prime \prime} \times 6^{\prime \prime}$ and the plates in column 4 of table made $0.4^{\prime \prime}$ thick instead of $0.1^{\prime \prime}$; or to $6^{\prime \prime} \times 12^{\prime \prime}$, and the plates increased to $0.1^{\prime \prime}$ for column 7 of table instead of $0.05{ }^{\prime \prime}$; and to $0.05^{\prime \prime}$ instead of $0.025^{\prime \prime}$ for column 10 of table.

It will likely be evident or at any rate there can be no harm in remarking that in computing by this table for a building of any number of stories the process must be from above downwards, and can not be from below upwards except in the case the table is made to suit to wit: a building 20 stories high; for the upper story supporting only the roof will remain invariable and if the total height of structure were, for instance, only nine stories, then wouid item No 9 represent the data for the first tier or story above street level with Nos. 10 and 11 for basement, and subbasement.

I herewith also give a table for a corresponding building with brick piers instead of iron, where the cost of brick work in cement at as high as $\$ 20.00$ per mil (taking its crushing strength at 180 tons the square foot with a factor of safety of 6 , or assuming the square foot of pier as capable only
of supporting 30 tons) just comes to half the corresponding prices of iron or steel at 5 cts. a pound or would be a quarter of the cost thereof if at 10 cts. the pound. Such piers as those given of a sectional area of only one square ft. opposite item $\mathrm{N}^{\circ} 1$ of
 of column $\mathrm{N}^{\circ} 10$ (the latter especially not being possible in practice) it would of course be necessary with such weights to bear, to have ... re of steel or iron or corresponding strength, or as in ticated at columns 7 and 10 of table $\mathrm{N}^{\circ} \mathrm{I}$; and it might moreover be prudent to do the same with the smaller or more delicate piers of items $\mathrm{N}^{\mathrm{os}} 2$ and 3 , or if not, to continue up these piers of undiminished size from items $\mathrm{N}^{\text {os }} 3$ or 4 or even 5 according to circumstances; as, though theoretically capable of bearing the weight, such light brick structures would be dangerous of overthrowal by a comparatively slight side thrust.

On the other hand, as seen by the table the corresponding sizes for the lower floors or stories become so great, that they would be altogether inadmissible on account of the space thereby lost to useful purposes; and the object of this second table is rather to show the inadmissibility altogether of brick work in the premises; as, even though the cost of structure might be thereby reduced, it would be false economy to lose so much useful space, to say nothing of the very awkward appear nce of such a structure, and again with most companies requiring such structures and with no want of funds to provide them, cost is generally a very secondary considera-
corres. und or 10 cts. ctional $\mathrm{N}^{\circ} 1$ of ne line ig poscessary teel or ited at t morealler or not, to fe from imstaning the dangeght side
ble the stories ther inlost to ad table ether of ugh the it would e, to say such a equiring , provide msidera-
tion, each insurance or other company or trust or syndicate striving to outvie its neighbours in magnificence and cost of structure. And this emulation exi-ts even amorg individuals as I am proof to, when on one of my visits to New-York on inspection of an ordinary sized 25 ft . brown-stone front dwelling house on fourth avenue, which with its marble stairs and skirtings, etc, had cost its proprietor $\$ 100,000$; the propietor of the neigboring lot with an old fashioned brick house thereon, seriously asked his architect if he could not build him one which would cost more money, to which of course, the architect immediately assented. We don't have such chances as that in poor old Quebec, where we are on the contrary always met with the demand to do things for half their value.

The construction of these high buildings is rendered possible only by the use of steel frame or skeleton work. The older type of buildings, whether of stone, brick or iron, depended for its strength upon its walls. The modern tall office building has a steel frame. This carries merely the whole weight, and the walls, solid and massive as they may appear, do not support the structure, but simply fill the intiss. tices. It is startling to think of the entire superstructure of a 20 story building resting only on some 30 or 40 columns ; yet, without this modern developement, without the use of steel, the walls would have to be so tick at the lower stories that there would be no room left for offices. The steel represents the osseous structure of the animal, while the enveloping masonry surrounding the same exem-
plifies the flesh or meat, which saves the skeleton from the extremes of temperature and thus from the exertion of contractive and expansive forces which might otherwise jeopardize the structure.

It becomes important also if not imperitive as a factor in the computation of the necessary bearing areas of the fotindations supporting structures of the kind, to consider as data for comparison, what weights, are permissible to the square foot of underlyiing piles or piers, or of the natural soil when of a nature to subserve the purpose ; some of the columns bearing weights varying between 600 and $I, 300$ tons in the American Surety building already alluded to.

The inequality of the weights borne by a square ft . of the foundations of the buildings mentioned in table III, may appear striking at first sight ; but they are due to the weights being distributed over greater or lesser areas of the supporting soil. For instance, in table I, item No. 21, we have 1,260 tons supported by a steel column a foot square, while in the Am. Surety bdg. some of the columns are loaded to 1,280 tons; but these are about two ft . square or of an area of 4 ft . which at once reduces the pressure per sup. foot to 320 tons; and if the foundation piers bearing these and transmitting their weight to the solid rock below were only 10 ft . square or 100 ft . area, the weight per ft . reduces to a little less than 13 tons; while if the pier be made 14 ft . square, its area is doubled and the 13 tons reduced to $6 \frac{1}{2}$ or 6 as setforth in table ; and as stated last year by the writer in his paper on the foundations of heavy structures,
leton n the which ights, piles re to aring n the
quare ed in ; but I over

For) tons sile in oaded are or essure piers to the 100 ft . s than re, its or 6 as writer stures,
the question is not so much the number of tons which one ft. of bearing surface is loaded with, as that (not to prevent settlement which is inevitable, but to render it equal throughout) the bearing surfaces of foundations be equally loaded; the whole front of the new Joliette church having to be rebuilt at a cost of some $\$ 10,000$ because while the side walls bear with only 2 tons weight or pressure on their footings, the tower and front wall bearing on their footings with a pressure of 4 tons or double the weight ; the tower, when I saw it three years ago had torn itself and th : portal away from the aisle walls and sank to a depth of more than 11 inches below the latter, completely dislocating and destroying this portion of the structure and requiring its entire demolition and reconstruction.

One would think at first sight; that is, the popular idea may be and is, that a solid structure or one of solid masonry like the pyramids, is that which with the same height and weight of material, bears heaviest on its foundations; but such is by no means the case, the greatest pressure being generally borne by the fiers of a domed church or other structure; each pier being loaded, in addition to its own weight and portion of dome bearing directly on it, with one quarter of such portions of the vaulted or arched structure as correspond to the archways or openings of the aisle and transept, an I which as in the case of St. Peter of Rome must be close upon 35 tons to every square ft . of the supporting pier.

Nor is there any thing extraordinary even in
this figure, as I beleive some of the so called chapter houses of churches in England, support weights even in excess of this, where one half the weight of the domed or stone groined vaulted cailing is borne by a single marble column of only a few inches in dian. at the centre of the structure. Another example of heavy weights borne by a small base is, where a 100 ton gun for instance or ponderons piecs of machinery supported by the jib or boom of a derrick, is thus transferred to and supported by the derrick mast or upright post, which if say of a 14 inches square piece of timber, giving a sectional area of only 2 ft . or less, loads the bearer with a weight of 50 tons together with the additional weigth of the derrick itself ; representative also, the derrick post or mast, of a column in any building and the boom or jib with its suspended weight, of the 100,200 or 400 ft . area of supported flooring with column at $10^{\prime}-10$ centre, $10^{\prime}-20^{\prime}$ or 20' 20^{\prime} distance apart, or (at 300 lbs the ft.$), 15,30$ and 60 tons respectively.

Now even 60 tons or 160 to a :quare foot of a solid stone pier, not monolithic, but made up of monolithic or large and closely fitting cut stones, is in no way excessive, since good cement brick work will bear 180 tons; while good ordinary cement stone masonry will bear twice that weight or 360 tons and up to twice that figure or even more; for the experiments made on a brick pier for instance, are so made on one of only a foot square, and those on piers of masonry have also been made on comparatively small based areas, where there was no la-
teral support or resistance round about to prevent the giving away by lateral failure.

Again the strength of piers of stone masonry may be made to approximate almost indefinitly to that of the stone itself, as given in the ensuing table IV where crushing pressures are recorded of, as much as 1200 tons and over to the square ft . or rather, equivalent thereto and which would be much greater if it were possible, which it practically is not, to test a foot of stone in the same manner instead of only a small cube of an inch or an inch and a half square and then reduced to inch; for the small cube, as would also be the case with a larger one, must necessarily fail first at the angles or corners and along the edges; while if the same weight or pressure were applied to an equal area at the centre of a 12 inch stone or more; it is evident it would produce no effect, the tendency to crush and crack being counteracted by the lateral supsort given to the central portion by the strength and resistance of the outlying margin of the material experimented on.

And not only would the crushing weight of masonry approximate to that of the solid stone, as determind by experiments upon the tiny cubes thus treated ; but, there can be no doubt of it, go far beyond such data and indefinitely so ; for even if the nucleus of the earth be fluid, and the crust only 40 miles in tickness as geologists pretend, and if the crust be stone and even if no heavier than granite, then would we have on each square foot of the inner rim or area of base thereof, more than 200,000 cubic
feet of stone and at 160 bls. to the foot, a crushing pressure of 16,000 tons; but which, were it ten times greater, a huadred or a thousand times, could never crush the stone, supperted on all sides as is every foot of the crust or solid component masonry thereof, by the equally resisting power of every other foot hemming it in on all sides and preventing the possibility of its ceding or giving away to any other force than the disrupting seismic action of the interior.

I must, gentlemen, insist again, as I did in my last years' paper on foundations in deep and unreliable soils, on the necessity of a consideration, not of absolute, but of comparative stresses to secure uniformity or prevent inequality of sttlement - that being the all important desideratum.

The very term " the engineering portion of architecture " or rather the necessity for such a term is a slur on the profession, an insult so to say to any architect who pretends he knows his business; for if we are to call in the superior scientific acquisitions of the engineer in dealing with the foundations, then, a fortiori, shall we have to do so in dealing with the stresses much more difficult of calculation of a domed structure for instance ; and surely it never shall be said that the architect has cone down from the high pedestal on which, long before the days of engineering science, stood and stand to this day the Bramante's and the Michael Angelo's, the Perrault's and the Mansards', the Jones (Inigo) and the Wren's. Well may we hide our head-, if ever that should come to passs ; for, without the aid of the engineer,

We architests cin do as they do and thus make themselves appear more scientific than they really are. Can we not also call in the aid of mathematics, and direct a professor or expert at that science, to calculate a stress of any kind whether of direct weight, lateral pressure or resistance to overthrowal by a cyclonic wind or hurricane.

If the profession would have that standing which it had of yore and still lays claim to in other countries, I must tell you and I do so squarely we must hear of no more such failures as those at Ni. olet, St. Basile, Joliet, Cornwall and elsewhere, nor should there be any more roof failures whether from rain saturated snow or due to faulty construction. Montreal must not in respect to falling buildings enulate New York, where such accidents are the order of the day, which are to the disgrace of the profession.

But though or while giving you a table for calculating the component weights, and strengths and costs of a building up to 20 stories in height, I hope none of you will ever be called on to design such an ungainly, unaesthetic piece of construction, and at any rate that you will set your face against any thing of the kind elsewhere than in but a purely manufacturing or suburban district and not where its presence would mar the landscape and architectural effect of surrounding common sense structures; and I here transcribe a most pertinent article from the " London Surveyor." It reads as follows:
"A propos of a monstrous "sky-scraper" apart-
ment house recently erected at Washington, the American Architectural Record has a deservedlysevere article on "Architectural Aberrations," and puts forward the plea that city authorities should be allowed to veto plans for new buidings, not only if they sin against sanitary laws, but it they outrage the canons of art. As it pertinently remarks, "There is a patent absurdity in taking thought and spending vast sums of money for the purpose of making a harmonious city and then permitting any promiscuous private person who can get posession of a piece of ground, and raise money enough, to put a building on it, to nullify all your dispositions and vulgarise your town." There is much in the protest, and though we do not suffer so badly as our cousins do from the piled-up monuments of bad taste und cupidity, still even London suffers from the tallhouse mania, not to mention other hideous forms of architectural aberrations. Edinburgh, too, will note the timely protest with interest. But the task of acting as censor would be full of difficulties where mutable aste rather than positive science would have to be the guide."

To this I would add that there should be no foolish rivalry in such matters, as it is as easy for one architect to outdo another in hight as for a naval arct. to beat the record in point of length and strength or for an artillerist to design a target that will resist a shot, a shot to pierce it, another target to resist the latter and again another shot to hole it and ss on, without end; but though there may be a reason for this when a nation redly" and ald be mly if atrage There spendking a romis. m of a put a is and rotest, :ousins te and a tallrms of ll note ask of where would
be no asy for ; for a th and target t, anomother though nation
wishes to retain its prestige over its neighboor ; and though engineers are forced into long and still longer spans for bridges due to the widths and depths of rivers to be traversed and to conditions imposed by the authorities, as in the 1,700 feet twin spans over the Firth of Forth in Scotland, the Brookiyn suspension bridge and now the 3,200 feet span structure about to be thrown over the Hudson between New York and Jersey City; no similar necessity exists for structures of the Eiffel tower type, which all Paris is clamorous to have demolished, though it certainly is not an outrage to artistic taste and merit in any way approaching the superposed box-like piles which are now in a fair way to disgrace our neighbors in the eyes of European nations.

Gentlemen, let us also be severe in architecture, to the extent at least of not allowing it to assume, as it is bidding fair to do in Ottawa, the phase of what may be called " bed post architecture" ; and in truth though there are hundreds of otherwise very pretty villas and cottages in the new 'apital, quite a number of their verandas and entrance porches are rendered hurtful to the eye of good taste, by being supported on bed posts, for they certainly can not be called columns; and to cap the climax, in some of the twin dwelling houses or where there are two doors side by side, with a veranda or portico in common, the separation between the doors is for all you can imagine, of the exact shape of a parti. tion between two horse stalls.

- 18 -

Type of steel-built-column on which calculations of stresses, weights and prices are based, for computation of data in table I.

Scale $\frac{1}{4}$ inch to one inch.

$-19-$
 I

TABLE of steel thicknesses and sectional areas, box built columns to support fire proof or iron, brick and concrete floorings in buildings from 1 to 20 stories hish. Weight per sup, or square foot of roofing and flooring, partition walls, ete., 300 lbs . including 90 lbs . live load. Factor of safety $=5$ or 1,5 of crushing load.

- 20 -

II

COMPAR.ITIVE TABLE of sizes or sectional areas of brick piers to support fire proof or iron, brick and concrete flooring- in buildings from I to 20 stories high Weight per sup. f., of ooting, flooring, partition walls, etc. 300 lb s. including 90 lb s. live load.

III

Weights per square or superficial foot borne by piers and foundations of certain buildings, bridges and others structures.
Says professor Butler, as given by Mortimer at page 104-5 of his " Hand book."

> Per square foot.
"The load on the monalithic piers support- ing the large churches in Europe does not exceed (Early builders using much more massive masonry, proportionally to the load to be carried than at pre- sent) 30 tons.
" The Toff bridge in France 21 "
" Former bridge at same place said to have failed at. 64
" Rennie subjected good 4 ft . rubble piers to 22
" Granite piers Saltask bridge England... 9
"Brooklyn bridge piers. 29
" St. Louis bridge piers before completion. 38
" The same after completion. 19
" Niagara suspension bridge limestone tow-ers failed under36 "
" Maximum pressure on rubble masonryand cement mortar of some of the largemasonry damsI4 "
${ }^{6}$ Proposed Quaker bridge dam - 270 ft .high.17 "

The following are from the writer and others :
At centre of the Cheops pyramid say..... 40 tons.
Piers of the dome at St. Peters (the great thickness of these piers say 20 to 30 renders the confined centre as resisting, so to say, as solid rock.) say about.... 35
Weight on foot side walls Joliette church. 2 "
Weight under tower (causing failure by sinking or settlement).... 4
Strasbourg Cathedral tower say.......... 40
Washington Monument 555 feet high..... 45
Tower of Babel or of Belus 650 ft . high say 52
Central piers Britannia bridge............ 33
" Manhattan Life" building 353 ft . high.. 15 "
The " Equitable" bdg. and Union Trust built with wide footings load the foundations, it is said, only to............. 3
Proposed Hudson river bridge 3,200 ' ft, span piers
The Stock Exchange Chicago is said to load the foundation soil at
Allowed by New York City regulations... 15
Load per foot square of foundation brick piers of Am. Surety bdg. say........ 6 "
The authors design for the proposed London Eiffel tower (see fig. 5, page 18 of the 68 designs sent in, printed and published for "The Tower Company limited," by "Industries" 358 Strand

Per :quare foot.

London, under title of "The Great Tower for London. Height of tower $1,600 \mathrm{ft}$., diam. at base 280 ft ., total weight 14,303 tons, $20^{\text { }}$ wide offset balconies at every 200 ft . of total height, greatest weight on lower column at centre

```
117 tons.
```

Average weight on the 312 first tier columns
Total weight distributed by inverts or footings over the $61,600 \mathrm{ft}$. area, less than Weight at centre distributed by inverts or footings over the 100 ft . sup of bearing to each coltimn at centre of tower.... $1^{1} 1_{6}$. Brunel (Paris), design for proposed London Eiffel tower, 500 ft . square, $2,296 \mathrm{ft}$. high, of granite, weight 196,902 tons, weight per foot square supported by bottom piers....... 160
Weight per square ft. distributed over soil area of 250,000 , say ${ }^{4} / 5$

TABLE IV.

CRUSHING TESTS OF BUILDING STONE.

For many years the resistance to crushing force shown by a building stone has been considered high evidence of its homogeneousness and durability.

The following table gives the resistance to crashing
per square inch, shown by various stones, graiites and marbles, and is compiled from General Q. A. Gillmore's report to the Chief of Engineers, United States Army; from Haswell's Engineers Pocket Book; from "Stones for Building and Decoration," by Dr. George P. Merrill, of the Department of Geo$\log y$ Smithsonian Institution, and from tests made by Mr. Ira H. Woolson, C. E.. at the request of the Professor of Geology of Columbia College School of Mines, on the Emery testing machine belonging to the College. Where tests have been made on a number of specimens, the highest result is given.

Paving brick should stand $10,000.00$ to inch crush. ing force and absorb not over 2 to 3% water.

Crushing Weight per Square.

	$\begin{array}{ll} \text { Inch } & \text { Foot } \\ \text { in lbs. } & \text { in tons. } \end{array}$
Aberdeen, Scotland, Granite............ Ha-well,	10760... 774.7
Albion, New York, Sandstone.......... Gillmore	13500... 972.0
Altamount, California, Sandstone......Merrill,	$1149 .$.
Arbroath, England, Sandstone...........Haswell,	$7850 \ldots 460.2$
Aquia Creek, - Sandstone......... Haswell,	5340... 389.5
Bardstown, Kentucky, Limestone... . Gillmore,	16250... 1170.0
Bay of Fundy, Cinada, Granite.........Gillmore,	2020...865.5
Bedford, Indiana, Oolitic, Limestone... Merrill,	10125... 729.0
Belleville, New Jersey, Sindstone......Gillmor	11700... 842.4
Berea, Ohio, Sandstone......... Gillmore,	0250... 738.0
Billingsville, Missouri, Limestone Gilhnore,	7250... 522.0
Caen, Franc, LimestoneGillmore,	$3650 \ldots .262 .8$
City Point, Maine, Granite.............. Gillmore,	5093...1086.7
Cleveland, Ohio, Sandstone..............Gillmore,	7910... 569.5
Connecticut, Freestone................... Haswell,	$3319 . . .238 . y$
Cornish, Wales, GraniteHaswell,	$6339 \ldots 456.4$

3s, granites neral Q. A. ers, United ers Pocket lecoration,' sent of Geotests made yuest of the 3 School of elonging to made on a ; given.
inch crush.
$3 r$.

$60 \ldots 774.7$
00... 972.0
$49 . . . \quad 82.7$
$50 \ldots 460.2$
40... 389.5
$50 \ldots 1170.0$
20... 865.5
$35 . .789 .0$
10 ... 842.4
;0... 738.0
0... 522.0
0... 262.8
3...1086.7
0... 569.5
9... 238.y
$9 . . .456 .4$

Inch Foot
Craigleith, Scotland, Sandstone Gillmore, $12000 \ldots 864.0$
Dix Island, Maine, Granite Gillmore, $15000 \ldots 1080.0$
Dorset, Vermont, Marble Gïllmore, $8670 \ldots 624.2$
Jorchester, New Brunswick, S. S......Gillmore, 9412... 677.6
Dublin, Ireland, Granite Haswell, 10450 737.4
Duluth, Minnesota, Granite Gillmore, 19000 1368.0
Edinburg, Scotland, Sandstone Mervill 12000... 864.0
English Magnesian Limestone. Haswell 3130 225.3
English Anglesa Limestone Haswell, 3600 259.2
Fairhaven, Vermont, Slate Merrill, 12870. 926.6
Fond du Lac, Wisconsin, Sandstone. .Gillmore, 6250... 450.0
Fox Island, Maine, Granite Gillmore, 15062... 1084.4
Glencoe, Colorado, Sandstone. Merrill, $12752 \ldots 918.1$
Glens Falls, New York, Limestone... Gillmore, 11475 ... 826.2
Greenwich, Connecticut, Granite. Gillmore, 11700 842.4
Harbor Quarry, Maine, Granite Gil!more, 16837... 1212.3
Haverstraw, New York, Sandstone... Gillmore, $4350 \ldots 313.2$
Hummelstown, Pensylvauia, S. S. Merrill, 13610 979.9
Huron Island, Michigan, Granite Merrill, 206E0 1486 S
Hurricane Islani, Maine, Granite.. .Gillmore, $14937 . . .1075 .4$
Italian Marble Merrill, 12156 875.2
Joliet, Illinois, Limestone Gillmore, 16900 1216 .8
Jordan, Minnesota, Sandstone. Merrill, 3750 270.0
Kasota, Minnesota, Sandstone. Gillmore, 11675 840.6
Keene, New Ham;shire, Granite. Merrill, 10375 747.0
Little Falls, New York, Sandstone. Gillmore, 9850 709.2
Long Meadow, Massachusetts, S. S... Merrill, 8812. 634.4
Manitou, Colorado, Sundstone. Merrill, 13046 939.3
Marquette, Michigan, Limestone. Gillmore, 8050 579.6
Marquette, Michigan, Sandstone. Gillmore, 7450 536.4
Marblehead, Ohio, Limc-tone Gillmore, 12600 907.:
Massillon, Ohio, Saudstone. Gillmore, 8750 630.0Medina, New York, Sandstone
\qquadGillmore, 17725... 1276.2
Inch in lbs. in tons.
Michigan Sandstone. Merrill, 6323.. 4552
Middletown, Connecticut, Sandstone... Gillmore, 6950 500.2
Mount Raymond, California, Granite...Merrill, 5970 429.8
Monson, Massachusetts, Granite........Merrill, 15390...1108.0
New Gunnison, Colorado, Sandstone Merrill, 9903 713.0
New Haven, Connecticut, Granite. Gillmore, 9750 702.0
New London, Connecticut, Granite.....Merrill, $12500 \ldots 900 .{ }^{0}$
Newry, England, Granite Haswell, 12850 $925 .^{2}$
North Amherst, Ohio, Sandstone. Gillmore, 6650.. 478.8
North River, Limestone Gillmore, 13425 966.6
Oswego, New Yotk, Sandstone Merrill, 6220. 447.8
Patapsco, Maryland, Granite Haswell, 5340.. 384.5
Port Deposit, Maryland, Granite.. .Gillmore, 19755... 1422.3
Potsdam, New York, Sandstone from a Quarry of the Potsdam Red Sandstone Co., (Not crushed.)Woolson, 428043081.8
Guincy, Massachusetts, Granite Gillmore, 17750... 1278.0
Quincy, Illinois, Marble Gillmore, $9787 \ldots 704.0$
Rawlins, Wyoming, Sandstone Merrïll, 10833 779.9
Richmond, Virginia, Granite. Merril, 19104.. 1375.5
Rockport, Massachusetts, Granite. Gillmore, 19750... 1422.0
Scotch Whinstone Haswell, 8300... 547.6
Seneca, Ohio, Sandstone Gillmore, 10500 756.0
Stony Creek, Connectic t, Granite. 1206.0
Stockbridge, Massachusetts, Marble. Haswell, 10382... 747.5
Merrill, 5500 ... Taylor's Falls, Minnesota, Sandstone. 396.0
Tuckahoe, New York, Marble Gillmore, 13594... 978.7
Vermillion, Ohio, Sandstone Gillmore, 8850 637.2
Vermont Marble Merrill, $13400 \ldots 964.8$
Vinalhaven, Maine, Granite Gillmore, 16750 1206 .0
Warrensburg, Missouri, Sandstone. Gillmore, 5000 360.0
Westerly, Rhode Island, Granite Giilmore, $17750 . . .1278 .0$
Williamsville, New York, Limestone...Gillmore, 12375 891.0
Yorkshire, England, Sandstone Haswell, 5710... 411.1

3081.8

1278.0
704.0
779.9
1375.5
1422.0
547.6
756.0
1206.0
747.5
396.0
978.7
637.2
964.8
1206.0
360.0
1278.0
891.0
411.1

$$
\nabla
$$

