BULLETINS

Aurial Exproment Asariatun

Bulletin No. XX

Issued MONDAY, NOV. 23, 1908

MR. MCCURDY'S COPY.

Beinn Bhrengh. Hear Baddeoks Hova Sookis.

gABHE OR COMTang

1. Uditorial Hotes and Coaryonts:-

Patent Muttera..
Haldwin* g Jxperimanta $2-3$
Hawnondmport Joperissents 3-4
clobular Connection Devices. 4-7
C. Haknondanort warki=
Tottera from Lembera.
Sov. 2 Curtisa to Mra. Bell 80e 8
jov.al Curtias to bell. $12-12$
Loasons of the Tright Dianster Nov. 10, ByG. H. Curtisa23-13
Tosaons of the Wright Dianster Yov. L1. ByJ.A.D. MeCurdy14-16
3. Bedin zuroanh Farge -
Leport of Beinn Hhreagh Laboratory by
3. Bedwin 17-21
Beinn Bhreagh Jxperinenta:- Report by Aasiatant BAitor $22=40$
Oot. 12 Hrparinonts uith sodel of Droce Yo. 5 flown as a xite.........................22-23
Oet.sl Zxpertnenta with Cygnet nodeland nodel of Drase Hito.5....................24-30Hov. 6 Zxperinonta with kitem...........31-34Hov. 3 Jxperivents with Dhonnas Beag.. 35 m 35Hov. 5 Joperizonts with Dhonma Beac.. $35-35$Hov. 7 Hoperizents with Dhonnas Baag.. 35 m 59Hov. 10 Reperinente with Dhormas Beago. $39-40$Hov. 13 Pxperisents $w 1$ th Dhomnas Reag. . $40-40$
4. Hagel2anoous Cournnicationg:-
Charlea J. Bell to Bell 41-61Chunute te Bedl... $42=42$A Tribute to Selfriage fron eqoven Falx ${ }^{*}$ Oct.3...43 43

> Zable of contents (Continued).
5. Outlook on Aviationteni Ausistant Baitor. 4s-48

> Iters gleanod fren the Hewepnpers.........................44-45 Leah, Thomsa, Kimbull, Yareman, "The Airatip" U.3. Havy, Colubla Univeraity, Aero Club of Aserica, ${ }^{\text {Villbur }}$ Wricht, Herring, Zorbe.
> L'Aerophile for Hoverber 1908............................... $45-48$ Fright Brethers, vilbur viight, Coluzbia, Coupy, Voisin, Casanier; BLeriof, Pelterie, Suntos Buziont, Detrble, Horvieux, Huches, yrench H2litary Aerodrone, Anglish 1111 tary Aerodrozae, Parseval, Internationad Contest.

1. Glodular Connection Device of aluatim ahowing the parts and the zothod of connecting ther together and wae a portion of a atrut of flah-shaped crossmevection with the ferrule for attwohing it to the globular connection device (upper pieture).5
2. Globular connection device. The one on the left ahowna wooden ball with aluainus tubes inserted. The oneon the right is rade wholly of aluninuen the bail boinetmrned on a lathe (lowor picture)...................................
3. Mode of attmohing the elobular comnection device to the atruts fornine the corner of a tetrahedral oall. In case shoun only three lugs are necossary on the clobular device 64. Photograph illustrating the procesa of casting theglobular connection device. The patterne are shownbelow and the sluminues castinga above...........................

- The silver-Dart'a first appearance at Hamonduport Hew York (upper). 10

6. The Silver-Dart'a ongin and brananisaion gear (eiddle) 10

- Lear view of the silver-Dart (lower) 20

6. Mr. Moturdy and Mr. Curtiss in the ailvor-Dart What it looka like with two on board" (upper) 11
7. Hr. MoCurdy in the silvormart (lewer) 11

Illuatrations (Continued).

10 Hodel of prozse 14.5 and model of the Ergnet both in the air at the saxse bime. The one with the open frane- werk in the body apsoe is noded of Droen 2\%o. 5 (upper) 30
12. Model of Drone Ho. 5 and Cygnet nodel both in the air at the aane tine (lower) 30
12. Wite Oionos kite forming the model of the aorial auper-atrueture of Droce Ho.6. Threemanter front view (upper) 33
13. Wite Oionos kite side view (lowor) 33
14. Wite Oionos Kite thresmquarter botton view (upper) 34
15. Wite Oionos kite in the air irmediately before it was anshed (lower) 34
16. The hydromsurfaces exployed in expardments Eov. 7 and the aide pleces to hold then togethor. 36
18. Set of hyazo-Birficees exployed in exper ments Hov. 7 attached to a truas on the Dhomnas Heag (upper) 37
13. Another vien of the hydromaurfinces orployed yov. 7. 37

Patont Mators.

Hoinn Bhroanhe Hov. 18. 2908:- I havo just received from Hauro, Cameron, Loens a Masaio 3 eoples of a proponed appiication for a patent on the Itwmondaport machines. One of thove
 Curdy and hiriself. Another has been placed in the hands of zr. Y. E. Baldwin and the third I rotain ryself. It now beco:os our duty to exarsine thia specification with eare and especially to study the clains; for the protection afforded by a U 5 Patent is limited to the mattar clatmed.

It is too soon to offer any opinion upon the specification as a male. but it is otvious that sone of the terzas ociployed need derinition. Menr2y sal of the claims aubritted are conbination clains, and one of the esaential elocaonts in zost of these combinations is
A plurality of auperposed auitably apaced aeroplanes each having a concave and a convex surface.

How the thought impediately occura how is it posaible for a plane to have a coneave or convex murfice. Stymologiculiy apoaking thia is an absurdity and a contradiotion of terza; for in plain ingliah it meanc a flat surface which is not rlat.

Fe are all accuatoned to the loase why in Finch the public amploy the term naoroplane"; but in a apecirication we must be specific. If one eloment of a combination elairsed is irapoasible the whole corsbination is imposaible and the clain null and vold.

Wo ahould not, in our apecification and olains, one ploy the word ameroplane" without a apecirie and well derined moaning. A derinition $\mathbf{3 s}$ ixporativo in order to clear our proposed elalsis fron abaurdity.

Vould it not be rell for un to ormplay the vord "acromartace as our poneral tomat and limit the word onerom plano" to a aubstantiolly rlat aurface, distinguahing "acroplathes" fron*aoromeurves". A.G.B.

 hydroplanes of the hayraite type at either ond of the outrigear truas to atendy the Dhonnes boag hon she rises out of the water upon her hydromeurfaces has doveloped the point that the rowiatnnee of the aubnerged hayrake eaupes a twiat in the outrigeer truws.

The apeed obtained by the Dhonuas Beag upon hor hydromaurfaces has net so far been rennarkeble but it is co be obaerved that the center of eravity of the noohine is as high that it becones alfficuat to preaorve the equilibriun of the boat when she is out of the water for a surficient length of tirne to develop the rall apoed. turrice it to my that up so the present mecyent tho speed of the Dhommas Beag has been egroater without the nydromaurfaces than with theme

On Hov. 13 a deelded advanee was made in this reapoct. The Dhon as Beag without wny hydromurfaces at all, making a apeed of 18.6 malos per hour, a sruly rownrkable performance for a boat ariven by an aerial propeller.

The unatable equilibriun manifested by tho Dhonnas Boag has lead (r. Baldain to design a new boat hull to be 30 Pt . long and is \mathbf{P} ficiontly wide and deep to Ellow both the ongine and the man to be placed within the boat. He has had made quite a fleet of anall wooden models dirfering alithtly from one another, and I notice in the acrodrone shed f fullealsed sodel in akeleton form. The boat is boing dosigned to hold the nev Curtiss angine now being used th Havinondiport on tho agilverDart* and the "Toon".

Harzondaport Jsoerivonts.

Heinn Bhreaghe Hov. 28. 1908:- The experinente with the "Silver-Dart" at Haxsondspert still hang fire. The trouble aems to be with the new witer-coolod Curtiss engine. Wile the power of the ongine is twiy surficiont for overy purpose (Mr. Curtios has raported a push of 300 Lbs) trouble has beon experionced with the wator-cooling arrangoment and with the nethod of belt tranamisaion.

Mr. Huldwin expressed the opinion that the ongine, With all 1 ts aypurtensnoes would woigh about 350 lbs . Iar. Mom Curdy now roporta, in a comunication deacribing the "gilverDarte which will nypear in a subsequent Bulletin, that the weight is 360 2bs.

Fingine, propeller, countershast etc 210 2bs Rndiator. 15
Water

Total. 565 2bs.
Trouble has been axporionced with the slipping of the belt and chain tranamiasion is now boing eried. According to 1 tr. Curtias this will onvolve anothar construction
throughout, including a different famtoning for the propellera. A balanee wheel and other paraphornalia for the choin trans213sion.

Of courae thia will atili Purther increase the weich of the engine, and what the final weight will be te one can toll. It beeorses obvious however that the ongine will be too hoavy to be tried on the tetrahedral aerodrome No. 5. A.G.H.

Grobutanl connmerixon divicas.

Beinn Bhrearhe love 20. 190gs- We huve tacon udvantage of the viait of 1 tr. W. S. Clive, photographer of the Department of Agriculture, to secure sorse good photographas of detallis of rpparatus. In this Bulletin I eive photorgrapha of the Aluan Inta globular conneetion devices both turned and cast and a photograyh showing the mode of attachmont to the moodon atruts. Vith thase zhobular connections we can buila tetrahe edral cella of Large aize and great atrongth. The other Bainn Bhroagh photographs that nppear in this Builatin were also taven by $1 t r$. Clime and still others will appear in subsequent Bulletins. Mr. Clime left for Woahington to-day (Hovember 20, 1908). A.0.3.

Gurtian to Mrs. Bown.

> To itrae Ae G. Bendeck, Bes.

Harmondzporks HoYes Hov. ze 1008:- We have beon graatly plonsed to hear of Casey and Hr . Bell's auccoss with hydroplanes. While we wore torquararily held up for the zotor for the "Silver-Drart", John and I made a couple of light bosts for the ald "June Bug" to see that we could do on the water here, Johnts theory being that we could lift by the seroplane as well as by the hydroplane. John has nweed the thing othe Loon*. It is all ready to try if we get an opportunity. The engine is Pinished and in the milver-Darte, nd we expect to try it sooday. Fie have $150 t$ ten a pull of 300 lbe direct fron the aschine reating on 1ta woelas. This would probably be fore were the ongine in a oving as wave ustally tried the propellers. We atere obliged to give up the Hew York trip, fich is perhaps just ns mell.
(signod) G. H. Curties.

Haynondsport. H. Vee Nov. 2he 190s:- We aro sending under ceparate cover by mail, seven each of five views of the "silvarmbart", which we truat alll be auitable for publication. Wo have apared no trouble or expense in getting the fitht size and quality of paper.

The experinents with the "Silver-Dart" have been held up tem orarily on account of two defects; one, the proper circulation of water for cooling the oneine; second, the slight alipping of the belt tranamiasion. Phese two belta work boautifully in overy way excopt that they are not quite ufficiont far the losd. Two or more belts would eliminate all poasibility of trouble on this seore. Ve have made another pair of pulleyafor two more belts, also a ohain tranemisaion which appeale to John as beat. It will take another construction, bhroughout including a different fastening for the prom pellars, but as the "gilvor-bart" ia built aecording to plans and specifications of J.A.D. JieCurdy, we do not want to use zoo kuch peramasion and are, therefore, getting up a balance whenl and the other paraphernalia for the chnin tranamiasion.

In the meantire, we are oxpocting to try the "Loon"a" ablility to riae fros the whter. The enoloand printe whow what sho looks like without the engine, but with a man's weicht in the aane poaition. Perhapa wo hive haken too unch 2iberty in trying thia axparimont, Dut we thoucht no time was being lost and it would be fine to know whit ohances there are of raia ing froen the bonts. Wo. will wire if anything atertling oocurs.

Cursiaa to ing. Bol2.

 To irs. A. A. Bell. Bulteck, 界.Havnongaport, HoYe. Hova 18, 190g:- I w Grestly aurprisod to find it Fov. 12 and we not in Maddeek. Tho Eailver-Dartw has been rendy for a week. John aid not wiant to launch it until we were satiaried it could stay in the sir an hour or more. Fhis led to a lot of teating wich developod faukty ciroulation and a leaky oyifnder. It has takon aome daya to correct these troubles.

In the meantime we have fitted the ongine in the "Loon" (the June Bug convertod into a "water bug"); howevor, 1: the wind abatee we will try this to-dav. We have already sent you pictures showing you thia oraft ationt. I hinte it alll settle for ance and all mether it is poonible to rise fron beats, as the engine is very powerful and wil, we beliove, five twioe the puah that vill be needed in the air If it will no: rise froe the water with this power, it Fild be up to cuscy and his hydroplanes.

$$
\text { (} 31_{\text {gnod }} \text {) O.H. Curtisa. }
$$

Ma mondsport. Y. Yo. Yov. 10. 1903:- In reforonce to the dise cuasion on the Fright accident, I will say that the miahay was due, as we know, to the wire oatching on one of the prom pellers. Just how this wire caught we will probably never know, but the faot that it did catch the propeller makes it the real cause of the accidont. Precautiona shovid be taken to prevent eatching the propaller.

The use of the single or concentric propeller would, of course, eraatly reduce the chances of accident in ease the propaller ahould eatoh or break. I do not see how it aould be posaible to handle an aeroplane of the Erift type after one propeller had broken unleas the power were shut off instantly and, oven then, the mozontua of the rovolving parts might give force enough to the reraining propeller to cause the operator to lose control.

Aalde from the above, the aingle propeller would be obviously advantageous in as truch as the area covered by the sweep of the blades would be but one-half that of tiro propellers, Wich mould lesson the chnnces of catching loose wires or other parts. G.H.c.

Harpondaporte. H. Xen Hove 12, 1903: Receivod your cormunication concerning the wright disaster at Fort Mayer O.K. You, Gascy, and Gardiner havo cortainly gone over the probable causes fros all sides and I don't see that there is much left for see to say.

Aa you atate in your article, the tryediate cause of this accident. was loas of headway, but how was this brought about? Cetsainky the breaking of a propellor would not eause sudden stoppage in the air and consequently loave the machine without motion of translation.

All the sye witneasea of the accident we talked oith argreed that the machine firat atarted on a fontle glide and as she gained apood, hor course was divarted into an upward elide. Then the rachine having lost her notion of translation turned upon end and dove.

The reason for her diving ia of course quite obvious, the center of preasure at the traveling apeed cocies far in advance of the geonetrical contor of tho surface, and the machine 1a balanced for its apeed by hiving the center of gravity of the machine as a whole coincident with this point (center of pressure).

As the mochine loase hoadway of courae the conter of preasure recedes till when the sachine has no motion of trange lation the center of pressure coincides with the geocetrical conter of aurface.

When the aerodrome ia flying in a normal manner the front control, no matter how large or how powerful has no offeet
of
on the poaition of the oenter preasure located in the main plane because the angle of incidence of the control variea. At one nomont it pregents a negative angie of attrek and the next moment it presonta perhups a positive amgie of ntwak. But when the aerodrome has loat ita motion of trandiation the front contral comes into play and influences the geometrical contar of aurface of the machine as whole. It has been found by Mr. Chnnute and others that two superposed planes aeparated from each other two thinds, or a diatance equivalent to tho depth of the planes, and falling so that the planes of the aurfaces are at richt anglas to the line of descent, the top plane has 0.7 times the supporting power of the botter plane. On thia besta I have Pigured out the effeet which would be produced in the Silvar-Dart. Buppose that for sone raamon or other motion of translation ahould be ontirely loat Whie in the air. The machine would turn on end as the tright Plyer did unleas the front control wha droping relatively to the eir at the rate of twonty to thirty miles por hour. In that oase the mornent produoed by the eocentric londing would be ontirely cocipansatod for.

This Felooity is much teo gront for safety and I would urge that a front control bo used which would be harge onough or out from the rain plune frr onough to thorouchly componaste for the eccontrieity of louding at a mend of from 10 to 15 milea par hour. I? such were the case a ranohine could not turn upon ita nose nand drop unless corpelled to do 30 by the oparator.
yy oginion of a rear horizontal tail is that it is a detriment in that it daribens the surning motion of the aerodrome and vhile it may tend to provent a buddon turning it tonds to dopress the ranchine as a whole, fhereas the bow Qontrel tends to support the muchine as at thole and seter the turning has taken place you would have to drop much faster than without the tail in oraer to ritht the machine.

I agree with Casay that it mould be well to have all the controle in front of the operater and in fact we considered putting the miniverwDart $^{\circ}{ }^{\circ}$ vertical rudcer in front but thought that to hove the anow turning effect it would have to be zach larger than if plsoed at the roar because it would not be affected by the drnft fron the propeller.

The Wricht disaster in ry private opinion mas enused either because itr. Frist pulled the Lever mich elevates the zuchine too far or he becarse excited an he naturally miftht and pulled the lever unintentionnily, honce losing his notion of translation. This is no rariection on jrr. Vrictht because he is, with his brother, beyond doubt the most akillful aviator we have. He is but huean however, and he haa been known to pull the wrong lever before.

In other words, I don't see how the breaking of one propeller providing the ongine was ahut orf instantly (coosparatively apeaking) could cause the aerodrose to lose its sotion of translation. J.A.D. MeC.
 Y. Bedvin, Buyt.

Aorodraze Eo.5.

Bome work has been come on Ho. 5 aince my late report. Ve are now at work on mone bank of cells to 1111 up part of the conter section, leaving a triangular hole for engine and man aupport.

Mosta Ror 170.5 .

Hevo rade a ladder 2 m 20 cm and Pastoned to it a rubber float inflated to 1.75×50 on the whole weighing 1950 ana. Several of these are to be attached to botton of nachine. Have also tried the experiment of inflating a rubber tube in the botton layer of colls of machine. This plan involves very little axtra weight to atructure but will not keep machinc elear out of mater.

Hew Boat Hodols.

We have made four models of a new boat for hydroplane experiments. The length over all in each model is 30 ft . Ho. 1 godel had a marimm beum at botton of 1"-6\%. Mo. 2 atane dimenaions with sdie chungea in shear and free board. Mo. 3 has zancinues bean at botton of 2 it. 6 inches with practically swne sheer and froe board as Nos. 1 \& 2. No. 4 has navinum been at botton of 2 ft .3 inohes with sano sheer and free board as Ho. 3.

Hnye aelected No. 3 as our model after sone very warn discusaions for and against between Mr. Baldwin and I. Have in atock all the rasterials necessary for the conotruction of this boat and have set up in aerodrone shed a rough sot of noulds and ahoer atreaks to full size of boat to chock up
our nodela lines. An now naking experinental piece of atock for ribs and atrings to test out so as to get the very light est sizea poasible. We purpose planking boat with Hasawood $3 / 16^{\circ}$ thiak. Double on botton and part way up aides with eanvas and varniah botween, and aingle plank on balance of sides and deck, I will be able in ny next report to eive aore definite detaila of this boat.

Oionos Kite.

The white Oionos nocel of aurfaces of Wo. 6 mach ine was corplated sorse time age on yriday MoJ 6. An atterpt was made to fly it in field but unfortunately we did not put on any tall for flrat trial and machine jueped round so ruch
 was coryletely manhed. Dimenaions of thia kite are given in my report (3uletin XIII p.19) for all parta axcopt body.

The body was spar-shaped, triangular in eroms aection 4 m Long naucimua section $50 \mathrm{~cm}, 2.5 \mathrm{~m}$ fron front end. Body wae securely fastened to wing piece and wired to the front and back edges of plane. Photos of this kite are appended.

Tydropranes.
Bince my report of 0ct. 6 we have made several aets of hydroplanoa to the Dhomnas Beag, and ittached thom, and I will try to give a list of sines etc. of different sets, leaving to lor. Baldwin the report of reaulta with aach.

First set tried in Bulletin XVr p. 29. Had planes 10 inch by $1 / 2$ ineh by $1 / 16$ inch thick made of steel and wore attached to boat as shovm with board nerosa botton of forward set. Board 48 inch by b inch by $5 / 16$ inch eypreas.

Second arrangement were of the save outrit with art set arranged swan as rerward and bonrds to $\times 5 \times 5 / 26$ inch acrose bottoa of both sets as show in Hulletin XVI p.ss.

Third aet was's coerbination of first and second arrangenent cougled fith a set of hytrometurvea. Angle of set back of these aprox. 20° curvod 1 in 15 , maximum eurvature $1 / 3$ bsek from front edge; aize of these surfaces 3 inchea Fide by 74 inch long neasured in front edge. There ware two auperposed surfacea on front edge in this part of arrangemont as show in Fulletin XVIII pp.24-26. These aurfices vere nade of galv. Iron. 26 gauge.

Yourth set was the now portion of third set and a duplicate of it as to shape, attached as shown in Bulletin XVIII p. 30. This set mossuring 3 inch by 56 inch on asus 1 inc Fifth as notad 都解.act. A coabination of aet back hydromourves made of atoel. Phetoe appended. Angle of aetmbeck 55°, curved in 10; naximum ourvature one third back fran front edge, neasuring

$$
\begin{aligned}
& \text { lat plane................. } 46 \times 2 \times 2 / 26 \\
& \text { 2nd plane................ } 361 / 3 \times 2 \times 1 / 16 \\
& \text { 3rd plane................. } 28 \text { 1/2 } \times 2 \text { ㅈ․ } 1 / 16 \\
& \text { 4th plane. } \\
& 20 \times 2 \times 2 / 16 \\
& \text { pihedrax..................... } 28 \times 2 \frac{1}{4} \times 1 / 6
\end{aligned}
$$

sixth set. Jtow boing attached are atriaght acroas hytromeurves; eurved 2 in 25 wth onds rounded back. These planes are 3 inch by 24 inch by $1 / 16$ inch made of ateel.

How Kites.

Wo have finished an now half sized nodel of Ho.5 serodrose, collular part, boaded ready to $51 y$ as a kite. Have put no body in it an yet. This kite is 32 cella on top and 8 cella hi h , hollow construction and contains 758 winged cells.

Bulletin Mo.xX

It welgh $421 / 2 \mathrm{lba}$.
Heve under ropaira the full construction hale-sise model of Ho. 5 merodroze mhich will be the meve outaide dirsentions as noted above, for hollow oonstruction modol.

Materials.

Wo have received into stock is axply of lunnot oopper elad ateal wire grade A. $3 i$ mes 9,24 and 20 mes gnuge. This is a nev wire on the naricet and the nanuracturars clains for it that it is nbaolutely nonmruatable ofioh will make it a very valuable wire for guying etc. in our ayparatua It'a tonaile strengthe are tabulated as followst-

These are breaking weights. Have reesived from Curtias a ahipasont of goods including sove large aime eable and turno buckie nipples, aone tools etc. ete.

Provelzarg.
Sone time ago we resurrected an old 4 bladed propelm Ler started about 3 yeara age bat never findshod. Wo had this Pinished up and zounted on Dhonnas Beag geared 0-24 and it gave us very matiafmetory results. Pulling 100 2bs. and eriving the boat 100 m in 12 seconds without any hydroplanes ater tached. Dinensions of propeller an, piteh 30° at tip, wiath at tip 25 cm , blades curved on puahing face.

We are now miking a pair of propollera which will be ready short2y. size dianeter 6 Pt .2 inch, pitch 15° at tip, width of balde at tip $95 / \mathrm{s}^{\oplus}$, curvature of slade 1 in 18 on
puahing Pace at tip.
Have on hand glued up blocke for the following aimes of propeliors.

These blocks oan of oourse be worked up Into Leas
I itch than noted above if deaired.
To have started shaping up tho pair of propellera
7 It. 3 inchea diurjeter; $22 \mathrm{~L} / 2^{0}$ pitch. V. 7. .3.

Haperiments Oet.12, 1908.

Beinn Bhreagn Oet. 12, 1903:- A half-sised model of aeredrome Yo. 5, thoum in an accompanying photograph, was flown tomay as a kitc, in a very guaty vind Proes the North. 6 aeries of obeervations were nnde. Breffalnd-velacity, so of altitude, and 80 of pull. Getal 108 obsorvations.

In all the experimonta the kite vos Paven by a onew quarter inch Manilla rope, 100 meters long, attnched at the Iront odge of the kite atrueture at a point +200 on from the center of the knel stiok.

Exp. 5 Find Alt Pull Yase. G. Wind Alt Pull

13.95	31°	100
30°	100	
30°	50	
33°	100	
33°	75	
36°	170	
35°	120	
35°	120	
35°	75	
	32°	110
	330°	1030

10.95	30°	100
31°	40	
31°	90	
32°	105	
32°	90	
31°	00	
23°	50	
33°	40	
27°	30	
	25°	115
	300°	750

Bre 7 Inind	Alt	Pull	3ase. - Vind	ALt	Pull
10.25	32°	80	14.05	26°	120
	320	85		33°	${ }_{60} 90$
	31°	75		20°	150
	25°	20		29°	100
	22°	50		30°	175
	22°	30		33°	200
	20°	20		29°	90
	190	15		36°	80
	24°	30		36°	35
	260°	475		310°	1020

Exp.	Find		Alt		Puil	
	Obs	H1100	Obs	Angle	Obs	$2 \mathrm{bs}$.
1	1	14.26	10	3 $36{ }^{\circ}$	10	840
2	1	14.32	10	351°	10	1070
3	2	12.61	10	350°	10	955
4	1	14.40	10	320°	10	1030
5	1	13.95	10	300°	10	750
6	1	10.95	10	260°	10	475
8	1	14.05	10	310°	10	1020
8				$\begin{aligned} & 2567^{\circ} \\ & 32^{\circ} .09 \end{aligned}$	80	$\begin{aligned} & 7540 \\ & 94.25 \end{aligned}$
Sumation Average	8	104.77	80			
		13.10				

G.H.B.
(approved A.G.B).

einn Bhreagh, October 32 dy0g:-itr. Bedurin rejuorta kite xjoriventa made thig marning in a hich wind averuging 23.34
 Etruction as in the kite Cygnet and weighs 42 Lbs.

The hale-sizud nodel or drase Vo. 5 weishs 42 lone 4.0 observationis were sade; 200 of sititude, 200 of pull na 20 of wind velecity. Photographa of heoo kitea are shom in this sulletin.

Alraa Larsediately after the conclusion of the axperimonts a aquall atruck both kites athle they werc in the ir, and broze shem. Ur. Uudain took the wind velocity ine ediately after the acoldent and found it to be 32.4 niles per hour. The velocity during the aquall was very muon greato er and may have boen as high as SO nilad an howr.

In the case of the Cygnet model of full canstruction the kula atiek wai rippod out of the tite wich then fell, zradusily drisith , wish tha vind, 5111 it touehed the Eround. the dantage can be repaired.

In the case of sho yygreb model of holios construek1on the keel stick was not fipyed out in the air but the isi be broke 1ta back and it consido abie portion of tho strueture Wias blom away, the rest of the kite continued flying stoad$11 y$ and came doun gradumliy sidemays to the ground. After it landod tho keel atick was ripped ont by tho force of the aind. The dwrage so the atructure is much frouter than in tho cuse of the Cygnet model. The folloaing report hunged in by Mr. Beduin givea the expotimenta in detsil:*
 0ct. $32,1908$.

Gymet Mode2.
Ex2•2.
vind rut Pual Ban. 2. Wind Alt Pull 17.30

32	70
33	65
35	80
34	75
35	70
36	75
38	30
38	60
33	55
$\frac{43}{362}$	$\frac{60}{690}$

16.20

36	60
40	55
38	60
37	30
35	35
37	70
41	55
42	50
44	55
46	30
50	540

Deswras:- is ibe vory abady. Good aboudy breeace.
20.423 Oden.

Kxp. E Wind Alt pull Exe.

15.20	27	65
	23	50
	28	30
	26	55
	26	55
	29	60
	30	35
	30	65
	37	80
	36	65

Tind Alt Pull 16.45

38	65
39	45
38	55
33	55
36	78
62	.60
37	70
40	90
37	95
37	00
377	690

C. rnat Moded.

30820	Find	A. 6	Tul1	B.2. G.	Find	Alt	Pul2
	12.75	58	85		19.60	36	90 110
		87	90			\%8	120
		57	30			32	125
		36	70			30	120
		60	80			35	110
		37	30			32	115
		35	90			34	110
		35	315			34	210
		56	220			36	110
		3	70			355	120
		367	350	is			

프 . 5 Hode2.
San. 7. Wind A1t Pull

22.90	35	110
	35	115
	35	120
	35	125
	34	120
	34	100
	34	110
35	115	
	35	105
	32	90
	344	1110

Nax. E Wind Alt Pull

25.60	30	90
32	90	
32	30	
35	30	
37	110	
36	110	
36	115	
35	120	
37	100	
35	110	
		1010

Cymat Model.
3xac. 9. \#ind Ait Puil Eag. 20. Tind Alt Pull

22.75	32	150	22.65	34	135
36	140	35	130		
33	160	35	120		
33	140	34	140		
35	150	34	130		
38	130	34	120		
27	125	35	110		
36	140	37	100		
35	140	35	140		
33	110	36	150		
387	1365		352	1275	

Bormarks:- Both xises atsuted sliding off wind to starjonard. $1 f 0110 \mathrm{kite}$ on lower cleat did net reeover 1 tapll and come to the ground. salid kite on upper cleat rocovered itaelf juat before consing to the ground.

Ko. 2 Madg2.

$$
27.20
$$

35	170
35	180
35	150
35	170
36	170
36	135
36	140
33	130
35	170
33	170
347	1535

27.05	32	160
	34	160
34	200	
30	170	
34	150	
35	120	
33	150	
33	150	
30	170	
222	150	
	317	2530

Cymet Yodez.

3xe. 13. Find alt Pual

31.00	30	200
31	275	
31	200	
30	220	
29	220	
34	160	
33	190	
34	190	
30	225	
34	200	
	215	2990

Hoge 14. Find Alt Puil
$\begin{array}{lll}30.00 & 34 & 150 \\ & 31 & 260\end{array}$
$30 \quad 260$
50165
32200
30210
31200
$\begin{array}{ll}29 & 220 \\ 30 & 190\end{array}$
30100
307 2835

E22. 23. Find Alt Puil

26.90	34	150
34	150	
34	240	
33	140	
34	130	
34	130	
34	230	
35	120	
35	120	
28	130	
	335	2340

运栕- 16. Wind ALt Pu11

25.70	32	110
33	100	
33	120	
34	120	
36	180	
37	110	
37	120	
40	135	
41	120	
41	130	
364	2185	

Cymet Yode2.

25.60	33	150
30	220	
30	150	
28	150	
29	150	
35	100	
33	105	
32	200	
30	200	
20	160	

25.20	31	170
30	200	
29	210	
31	160	
34	140	
34	150	
38	150	
32	140	
34	130	
33	160	
320	1610	

3xg. 29. Vind Alt Pull 2e2. 20. Vind alt Puil

26.75 | 34 | 170 | |
| ---: | ---: | ---: |
| 33 | 120 | |
| 33 | 130 | |
| 32 | 130 | |
| 33 | 120 | |
| 34 | 120 | |
| 32 | 140 | |
| 33 | 130 | |
| 35 | 120 | |
| 36 | 140 | |
| 335 | | |
| | 1310 | |

25.50	35	120
35	130	
37	140	
31	240	
32	120	
31	100	
25	170	
20	2200	
30	200	
23	170	
30	1600	

Herseriks: - Juut fter the lint rouding blure came th terrifte squall und is airmpy ripped the Ilylng lines right 0:t of botilkites. Fo: low kite want Pirat. Velocity of wind takon just sftcr mash. $39.40 \% \mathrm{ph}$.
 30.5 15028T, Oct. .1, 1903.

Syenot rosiel.

Exic	Alt		Pu11		vind		
	0 bs	Anele	Obs	2bs.		, 1108	
1	10	262	10	690	1	17.00	
2	20	398	10	640	1	16.20	
5	10	367	10	d.so	1	19.75	
6	10	355	10	1180	1	19.60	
9	20	337	10	15 35	1	22.75	-
20	20	352	10	12\%76	1	22.05	
13	10	516	10	1890	1	32.00	
14	10	307	10	1835	1	30.00	
17	10	306	10	1695	1	25.60	
18	20	320	10	1620	1	25.20	
3wamatio	100	22	100	1299		250.55	
Average		$4^{\circ} \cdot 22$	129	.90		3.055	niles

Efficiency 1.1

是 0.5 . Hadel .

Nap.	A2t		PuL1		vind	
	Obs	Angle		1ba.	Obs	142es
3	10	302	20	800	1	15.20
4	20	377	10	690	1	16.45
7	20	344	10	2110	1	22.90
8	10	346	10	1010	1	22.60
12	10	347	10	2565	1	27.20
12	10	317	10	1560	1	27.05
15	10	835	20	1340	2	26.90
16	10	364	10	2185	2	25.70
1.9	10	335	10	1310	2	26.75
20	10	308	10	1600	1	25.50
Stumbtion 200 3544 100 22010 10-236.25						
Aversa		${ }^{\circ} .74$		130.10	1ba	23.625

EfPiciancy $\mathbf{2 . L}$

In nal the wbove oxi oricvente the kite whe flown by a ono-quartor inch manilla rope, 200 m long attached at the front adge of the kite Etructure (100 cm).

The Cygnet aodel veiched 42 2bs or 29068 gns and contained 984 vinged eella having a total silk murconee of 53.2590 seq. Ratio 558 gna per aq 3.

The model of 30.5 weithed 42 lbs, or 18614 gras and contained 630 ringed celle having a total silk aurfnee of

(approved A.O.B.).

选误 3hreanh Hov. 6, 1908:- Bxporinents wore nude this morning with the alte $010 n o s$ kite which 20 ms the nodel for the aerial auper-structure of droze No.6.faee builetin XIII D.25).

It was expoctod that tho icite would be subgect to longttudinal oscisiations without thtoatying fesi, nen no 3 basl mas providod. It was unfortunatoly dooidod to try it firat without the tail.

Ferg. 2. The itite without any tail man raisod by a bow-line in a atrong and उtorzy vind. Longituaind oneillatm fons book place. The suddon changes of tension snepped the line, and the kite was broken oorine dovm. The succen term nination of this experinent is Groatiy to be regrotted as it had boen hoped to obtain data that would hove a boaring upon the bohavior of droce $\$ 0.6$ In the air. Shis kite mas tho noo Inished structure jot producod at Boinn 1hroagh. The darnge ia considerable, and it will probably pay bettor to construct anothor aite upon the ause model made in m routh and ready Why rather than take the tine to repair this leite aroopting as a model.

Ere. 2. Pilot kito fioun by atout line fron point 37.5 cm.
(ovor).

3xp. 3. Pilot kite flown by stout line from point 50 cm.

Zog. 1. Old rod Oionoa icito tried on bov-line would not f2y.
sage. 5. 0ld red 0ionen kite flown by atout line atm tached to point 50 cm . Find 10.06 nilen per hour. Flew avay off wind and had to be brought down. Exasilnation ghowed that kite atrueture was alifontly twisted.

Expe. G. The kite structure was stralghtened out by hand and the old rod Oionos kite was tried again by stout line attached 25 cm . Find 10.75 mph . Yiew mell and was raisod by line mere than 300 m long. Alt. and pull not neasured. G.H.B.

248 Tamen hor art is *ing

Boinn Bhreaphe Jove S. 1909s- Dhonnas Beag wan tried towdny with an aerial rudder ist ago, thich acts when the hydrom rudder conea out of water. Both ruddara are operated on the anne rudder post. Hoat ateared rory well beth in and out of whter. The hayrakes wore not ueed in this experisent as they bent too much on former oceasions. It was plainly seon that aome zort of steadier from port to afarboard iz needed, na boat lurchea ovar on her aide when the rises. G.H.B.

Beinn Bhreanh Hove Se 1903:- Fised Dhonnas Bewg under her own motive power using hayrakes to ateady her.

Dhormas Beag went murd aground on moving the turn at the lower end of ceurse.

3tr. Baldwin is not satiaried with the sotion of the hayrekea. They seen to manifest a tendency to twist the trusses subroveging the outriggor floats bow downunards. G.H.B.

Beinn Bhronch. Mloy. 7e 1908:- Ivo aets of reefing hydro-aurfaces (hydromeurves net hydroplanes) havo beon corpleted. (see photographe in thio Bulletin).

Whon the Dhonnas Beag ilfts olour of the water and begina to apeed up on her hydromurfaces, the larger surfaces will first come out of water so that as sthe riaen there will

be leas and lass anberergod surfisees to be propelled through the water. The lowast aurfaces are the mallest.

Mr. Baldwin propoaes to use three meta; two very wifgtiy behind the eenter of gravity, and one very far forward. Only two were ready for trial to-day. Theso were arrangod on either aide of the boat about midahips, and one of the setn ahown in Bullatin XVIII p. 30 was used in front. A.2 of thesa hydro-aurfaces have cutting odges. That is, they are V shaped in plan. The angle of the V in the forward set (Bulletin XVIII p. 30) was very obtuse. On the new aeta the angle is very much sumbler.

By2. 2. Mr. Baldwin took the Thonnas Beag down the course under her own power. She developed good speed (not -oasured) cocing olear of the witor on hor hydromarfaces and keoping on an even keol. On the why down a water-loged piece of wood of considerable aize wan onoountered. The oollision distortod the forward aet of hydromurfacea badky and the log showed marks of the cuteing eides by linos cut an though aith a knife. After encountering the formurd hydromaurfaces the 106 was eaught by one of the rear acta and hold. Thone hydromurPaces were uninjured.

3mp. 2. The boat was then towed baok to the shed, and the front hydromarfaces were stradehtenod out and then put back. It was found during this experinent that the resiatm ance was vory great whon the boat did net rise out of the water, probably on sceount of the aluninus fraciovork above the new hydro-aurfaces.

解g. 3. A horimontal aluainut atart was rokoved on oither side and the resistanee of the boat wis conelderably reduced. G.H.B.

6

Beinn Bhreagh, Hova 10, 2908t* The Dhonnas Beag was bried tomday with anme outpit as used Hor 7. Jop. 3. In the Pirat Pour axpertments and the last, whe was propolled by her own tative power, ohile in he rest of the days experirsents she was towed by the mgidioo the engine and plant atill being on board.

Eog. 2. Got only half-way dow course when engine had to be atopped and boat towed bock to ahed.
kog. 2. Ono hundred metera in 25 seconds up.
\#gn. 3. Onw hundred metora in 20 aeconds dom. Boas cane out of watar about aix Inches.

Zag. 1. One hundrad moters in 26 soconds up. Boat did not corve out of whter.

Bro. 5. Dhonnas Beag was thon towod by wgitidoow with Bedwin on bourd in order to nacortain pull, which we found to be 75 1bs.

3yp. S. yithout anyone on board. Pull 55 lbs. Boat did net lipt chenr in either oase. iine 100 neters in so see.

Fge. 7 Dhonnas Beag whas again towod with man on board. 100 metera in 32 see down. Pull 50 2bs. Boat did not lift out of water.

Bege. B. Hatromy up courae Bodivin 60 t aboard Dhonnas Beag and har engine was atarted up, running her back under her
onn motive power. Boat did not clenr herself. G.H.B.

Boinn 3hreaph. Hov. 23, 2908:- Mr. Baldwin reports an axperi. ment tomay with the Dhonnas Heag without any hydro-aurfaces at all. Curtisa Moo.2 ongine was uaed with a four-bladed prom poller 2 meters in diwneter, 30° at the tip, gearing 3:1, giving a puath of about 105 lbe. The propeller was driven indirectiy. The monnas Beag made 100 m in 12 seconda. This is 30 kiloneters (or $181 / 2$ nilen)por hour. G.H.3.

Chanute To Bell.

To Dr. A.G. Bell, Baddeck \mathbb{N}.S.

Chicago, Ill. Oct. 13, 1908:- Three days of diligent search among my numerous clippings have failed to find those from which I drew up the account of the Copenhagen experiments on screws; but, fortunately H.C. Vogt is still there and gives his address in a letter to London "Engineering", which I enclose herewith. I also enclose his paper on the "Air Propeller" which was published in the proceedings of the Conference on Aerial Navigation in 1893. Please accept it. I have a letter from St. Petersburg, Sept. 14, 1908, stating that Col. Ochtchewny Krouglin has discovered a new form of screw propeller with stiff front edge and thin rear edge,

concaved on the under side $1 / 12$ of width and of parabolic section, which is said to give results twenty times greater than flat bladed screws, at a speed of 400 meters per second. I have sent for more particulars. At my suggestion kerrill of Boston made some experiments of this form some years ago, but got no such results.

> (Signed) 0. Chanute.
(Note:- Mr. H.C. Vogt's address is, 108 Osterbrogade, Copenhagen. A.G.B.).

With the tragic Pate that befell Lieut. Tho F . z . Belfridge, there has been lost to uee one of the noblest of young men. A sam in the prine and flower of youth, he stood poised upon the threwhold of fane, and in the very inatrue ment that mould huve won him thia fane he ret hia death. A moat glorious cauae we say, one that would serve his country In time of nar; but that coes not reconcile us to his ond that casse only two soon. Belovod by sil wo knew him, by his brother officors and hid mon, a cevoted son, a cood brother and a most loyad, true frienc. His loss will be felt by all of those who had the priviege to know him and even by those whe knew him only be roputation, for ho had andeared him self to all by his manly conduct. Ho wha one of those

Btrong men ranged on HI 值 Who did his work, who hold his peace And had no fear to die".
(Frow Fown Talk, Tha paeific beakly, fon Yrancisoo, Oct. 3, 1908).

Itens Glenned fron the Movapnpers.

Mr. Leah, whe was towed ovor the 3t. Tawrence last year in a gliding nachine fioum at a kite, made an exchibition at Xorria Park with is new glider having coneavomonvex aursaces. The machine was raised into the air by being towed by a enotor car. The toving rope was then let go and wr. Lesh attenypted to ghide to the ground. Ho mudo two or three succosaful flighta and then fell froes a height of 50 ft . and broke his lag.

Another unfortunnte accident ocourred at Morria Park fhen the avind Zagon" of pr. Thoense, driven by an aerial propeller wha overturned in trying to avoia a notor cyele, and Dr. Thonas was injured.

The Kimbsil helicoptor, nlao exhibitod thore, failed to work.

It may be interesting to note that a sommont is to be erected for Henri Parrann at the place of his landing at Hheims in cormonoration of the first orose-oountry risght on record of a heavier-thanmair smehine from Moumelon to rheims, a distance of 20 riles.

The newapapern report the appearance of a new journtl "The Airahip" in ingland. It la intereating to note that the Anerican Havy in looking into saronauticul amttera in view of using heavior-khan-air machines to reconnoitre in tine of arffare. It is roported they have eniled for bids.

It is reported that the interest in the subject of aeronautice anong the studenta of Colienbla Univeraity has
been 30 much uroused thet the atudents have organized an Aero Club.

The Aero Club of Anserica is roported to have ordered one of the Frifit machines for the use or the meribers and have nequired a tract of land of several hundred acrea to be used as a Perk for meronautieal experinents. The Club proposes to arect a gaa plant chore for balloons and place the Park it the diaposal of the members for experiments With both bailoona and heavior-thanmar flying mohinea.

Wilbur Fridht had a alight nccident at Le Mans at the tase off of the atarting apparatus when the vertical rudder dragged on he ground and mas dianblod.

It aema that Herring wanta the Oovermoont to give hin another axtenaion of tirse.

Prof. Zerbe of Los Angeles, Callfornia has an soroplane with 12 suataining andfacea arranged in aeparately moveable groupa. The idea or the minchine is alow sifght. To Aerophile for Noyember 1908:- Lo Aorophile for Noveraber 1908 contains a translation from the Wright Brothera article In the Century Lagasine for Bop terber. Pages 420m829 eivea a record of the flights of wilbur wright fron sept. 16, to Oetober 15 with the nazes of the paasengers carried. Pago 429 contuins a note concorning the meronautiond course at Columbia Univeraity. Aviation, Paras 434m437:- In Yrance.

Goupy's aeroplane.
Ye Gebriel Voisin: linde aucceasarul flifht Oct. 29, at 60 kilenotera por hour. A new propeller was used having
leas diaseter and errester pitch than the one Porrserly onployed.

Gasnier:- Photograph of Gaanier mohine in the air taken Sept. 17 Just berore ita deatruction.

Bleriot:- Oot. 9 made several flights with his monoplane "The Antoinette". On Oct. 21 a Plight or $7 \mathrm{kilo-}$ neters was nade againat a violent wind in aix minutea and forty seconds at the height of 20 meters. On Oct. 22 he made another R1icht againat a atill asronger wind; but the notor auddonly stopped in the air, and the machine made a bad fall after a flight of 550 moters in 30 seconds.

In his Plight of Oct. 9 the Antoinette wich was conatructed upon the nodel of the old Gasternbide-ltengin raised itvelf easily fron the ground and flew a considerabl diztance when the oil feed became diaconnected and the oil caucht fire. The aviator however, exporienced nore fear thaw danage. With grest presence of mind he shut off the oil and case dow. The landing was lesa hard than exp octed; one wheel whe broken. The experinenta Oct. 22 alae ended badly a bean waa broken on landing wich obliged the intrepid aviater to postpone further experinents.

ZanquitePeltrie:- He has cocpleted his new aorodrane Hop. Ho. 2 bla, a photograph of thich 13 ahoum on page 435. Bantos puzong:- He continues to whow an interest in Aviation and is constructing a new aeroplane wich is a copy of the Deasiselle with which he experinented at Isay-lesSoulineaux.

Detable:-is going to try a monoplane having a aurface of aix aquare neters furniahed with a motor of $21 / 2$ horae power welghing 3 kilograma corplote in lworking order.

There is nothing now about the aeroplene but it is autonatieni$1 y$ atable without tail or "equilibreur".

Herviauxt- M. Leon Herviewx, a native of Havre is at work upon a monoplane. The apparatus has a wiath of 10 metara. It is furnished with a noter of froc 18 to 24 horse power. and will weifh only 100 kiles. He hopes to corzsence hls axperimonta in a fow days.

Huphes:- 10R. Geerige and Rene Hughes have constructod a tribiplane aoropiane, which thoy huve acturlly tried on the plains of Coubillion. It has a surface of 32 aq. m. The propeller is les neterm in diuneter; woicht as kiles; wiath is only six metera and length 7.45 motera; uith a ten horse power ongine they expect to leave the ground at a apeed or 36 kllometera per hour.

Fronch Llilitary Aerophana:- France possesses, conatructed and raady to fly a military neroplane. It is at the ailitary Cand Satory under the vigilant ganard of seldiers of the Artillery and Ingineera. Its form is that of a triplane: The propeller is placed in front of the aviator' a meat. The firat experiment weak nade Oct. 20.

Foreim Gountrias:- Pirst experiments of "do Caters" the Baron de Caters oomenced on the 17 th of Oct. at Sgravenwesel experdnents aith his trieplane. The machines aeens to have been tried upon the ground and no attorpt wae made to rise inte the air.

Zhicht of the Bopliah Hilltary Aoroplang:- Arter weveral weeks of alnost daily experimente at the cenp at Aldershot the aeroplane genilen constructed for the Wur office under the orders of its inventer, Col. Cody appeared
baolutely gt frult. On the 25 th of Oct. the reaviute aviator ateryted at last his firat illght. Aftep huving run along the round for sove metera the apparatus lipted itsolf and
 round, a diatance of shout 500 fietera in a etraithtine。 Jui Col. Cody in order to avoid a clum of crees tried to turn too quickly and the aeroplane lost ita belance rund fell heavily. Tho seroplane has been corplotely destrayed. Col. Cody eacaped uninjured. Photograph of tho Ingl ah M111tary serorlane is given on Page 436.

Parseval:- Major von Parseval has constructed several models of aeroplanes sose of which follow the monoplane type like mleriot. The Society for the atudy of aerial navigation by motive pover vill soon rake experivonta vith those aeroplanas. This Bociety is alzo occupying itacif aith rat meroplane imvonted by Prof. Prandt of cootingen.

The town of Broacla has organizod for Septerabor 1909 a "Concour Internstional d"Aviation". About the ame date
 The aviacors will find it posaible to attond both Italian

