The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/ Couverture de couleurCovers damaged/
Couverture endommagéCovers restored and/or laminated/
Couverture restaurbe et/ou pelliculbe

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches etjou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intéricure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas étéf filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-tre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damaged/
Pages endommagses

Pages restored and/oi laminated/
Pages restauries et/ou pelliculdes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tite provient:

Titie page of issue/
Page de titre de la livraison

Caption of issue/
Titre de dipart de la livraison

Masthead/
Générique (periodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filme au taux de reduction indiqui ci-dessous.

$10 x$	

THE PARMER AND MECPAMC,
 Deyoted to Agricultural, Horticultural, Mechanical, and Domestic Sbbjects.

Agriculture.

The best Period for Sowing Wheat.
Since the prevalence of the Hessian fly, early sown winter wheat has suffered more severely from the effects of that insect than late sown: hence, many have been induced to sow later than they were formerly in the habit of doing. The loss sustained by this practice has been equal, if not greater, from the influence of rust, and damage by winter frosts, than any advantage that might have been gained by the consequent evasion of the insect. The severity of a Canadian winter, especially when the ground has not been covered by snow, has proved the best preventive against the fly that has yet been discovered. This applies particularly to the Hessian, which deposits its larva in the autumn, upon the young wheat plonts.Warly sowing is clearly the most judicious course to pursue; and we would recommend, in all cases where it is practicable, that the business of sowing should begin as early as the 25 th of August, and not be continued at farthest later than ths lŏth of September. By sowing in August, some risk may be sustained by the plants throwing out stov before the setting in of winter, and also from the smothering influence of heavy falls of snow. But the damage thus sustained, in an average of cases, is trifling, when compared with the advantages attending early sowing, so that no one would be justified in protracting the period of sowing on those accounts beyond the above mentioned.

For a number of autumns past, winter wheat might have been safely sown as carly as the 15th of August. In sowing at so earily a period, the crop should be fed down with calves, colts, and other stock, that would not eat the plants so close to the ground as
to affect their vitality. Where this practice is observed, the stock must not be allowed to remain on the crop during the period of protracted rains, as there would be a danger of the land becoming poached with the feet of the cattle, whereby the crop would receive greater damage than any benefit that could be produced by early sowing.

It would be well for those who have been unfortunate in cultirating winter wheat to make an experiment in early sowing, and at the same time deposit the seed in rows, from eight to ten inches asunder, either by the ribbing or drilling process. The quentity of seed sown might also, on many soils, be at the rate of two bushels per acre, with advantage, bat this can only be decided by actual, practical experiment.

Early sowing, drilling, and thick sowing, after the manner described in the foregoing suggestions, descrre at the hands of every Canadian farmer a fair and impartial trial, especially those whose wheat crops have become more or less affected with rust, that great bane to nearly all American wheat growers.

Selection and Preparation of Seed Theat.

In examining the growing crops of wheat, about the middle of July, when the plants. are in full head, a careful observer must be struck at the vast difference in fields owned by different proprietors, with respect to the purity of the varieties sown; and also as to the presence or absence of chesa, rye, cockle, and other impuritics calculated to depreciate the marketable value of the article. If there is one point more than anothe: in the management of farming, that feguires close and vigilant attention, it is that of 89 ? lecting the best varieties of grain for seed; observing, at the same time, to keep each
variety distinct, and entirely free from other graius and noxious weeds. If care, in this respect; be observed, and the soil be in a tolerably clean state, the doctrine of transmutation of grains would very soon be disposed of at a great discount. A pretty certain means of avoiding an evil is, "to shun the very appearance of it." Now, this excellent rule will hold good as to the assorting and selecting pure varieties of grain for seed. It is quite certain, if an impure variety of wheat be sown, mixed with a pretty fair proportion of rye, chess, and cockle, that a similarly impure article will be harvested, combining, in the mixture, more than the farmer jargained for, of rye, chess, and cockle ; the reason for which may be obviously attributed to the fact, that these plants are more hardy and prolitic than wheat, and heace, where any considerable portion of the wheat plants are destroyed ky frost, or other causes, the inferior grain sown takes the place of them. Chess, as a plant, is as distinct in variety as are wheat, rye, and oats; and when it is sown with the seed wheat, or previously exists in the soil, an abundant yield may be confidentiy expected. Choss is as capable of enduring the rigour of a Canadian winter and spring as are the plants of timothy grass.
If eoed wheat bc entirely free from smut, it is scarcely necessary to wash in brine and lime it, to destroy this destructive fungus: in that case, simply mixing newly-slaked litie with the sced, before sowing, would answor the "required purpose. But as very bille of such pure seed is sown, it would be a judicious expenditure for our farmers to wash the entire quantity of wheat sown, in a brine sufficiently strong to bear upa fresh egg ; aflor which, the entire mass should be dried on the barn floor, mixing with it a sufficient quantity of fresh-slaked lime, to assist in drying the wheat that had been thus put thro ehi.the, purifying process. When the förego ng suggestions have been prudently
followed out, a pure sample of wheat, free from smut, may be confidently expected.

Farmers, save gour Straw.
It is a common practice to thrash out a large portion of a wheat crop directly after harvest, by those who live so convenient to market that thoy can speedily deliver it, so as not to seriously affect the autumn seeding, and other labour on the farm. By thrashing out a pretty large proportion of the wheat crop, sc as to push it into market during September and the early part of October, the exporting merchant will have no difficulty in being able to make his shipments and get returns, in the short period of from three to four months, and frequently this may be effected much sooner. When there is a certainty that business may be thus done with promptness, a respectable export merchant will find no difficulty in effecting a loan from our banks, to any reasonable amount, for the purchase of the leading articles of export. That class of customers, from the first establishment of janks in the Colony, have had the preference over all others. This, to some extent, has been an advantage to the rural population, who have been unfortunately, in other respects, shut out of the money market, owing to the peculiar genius of our banking institutions, and the existense of absurd and useless laws on our statute books affecting the legal rate of interest. But bankers, for their own purposes, have conceived it most advantageous to have the principal portion of their capital employed in the parchase of wheat, flour, pork, and lumber, and the farmers have, doubtless, derived benefit from such 2 policy. This has been, and will continae to be, a much greater advantage to them than at first sight might be supposed. The competition created in our markets, from the superior facilities for obtaining mosey to
speculate in wheat and flour, and the prospect of immediate returns, induce those engaged in the business to pay the outside value of the article. The farmers by this means are enabled to get for their whent full value, and not unfrequently more than it is worth. Besides, they derive an advantage from the use of their money at a much earlier period than if those facilities were not held out to them.
With all these advantages, it must not be forgotten that care should be taken to husband the straw made on the farm, as a means of keeping the cattle in comfort during winter, and for the purpose of increasing the manure heap. Although it may require some little time and trouble to carefully stock straw, yet no careful farmer will reglect this inportant matter.

IABOUR WEIL APPLIED IS PRODOOTIVE OEPROFIT.

Farmers should ever bear in mind that "well directed labour" will ensure its reward. Of all classes of men, there is none upon whom this truth needs to be enforced more than the farmer. How many of our farmers are year after year toiling on, overwhelmed with their business on an immense estate, and at the close of the year the accounts are about baianced, and again the same toil and vexation must be renewed. If right directed effort had been put forth, no more land farmed than could be done to perfection, what a saving of labour, what an increase of profit, what a reward in every point of view, would be received! In travelling through the best farming districts of this country, we often find illustrations of this trath most striking.
I have in my eye a farm of medium size, which, a few years since, was any thing but neat and in order, and which gave sad indications that labour had not been "well ap plied." But a change has come over this scone. A new occupant takes possession,
fixed in his principles-determined that he would carry out this great maxim, on which depends the prosperity and success of the farmer, that " What is worth doing, is worth doing well." Now how soon the farm begins to assume a new appearance. The fences are repaired, the land is drained where needed, the buildings are neatly repaired and arranged; manures are obtained best suited to the soil, and crops which are adapted to this region; a new and improved stock of cattle, sheep and swine are secured, and in short every thing characteristic of the good famer appears year after year, under the direction of him who knows how to apply labour. Instead of having, at the end of the year, to resort to loans to make up the deficiencies, this same farm yields a return that gladdens the heart of the farmer. As years roll on, each succeeding one finds a larger balance in favour of well directed labour; and now, in addition to the ordinary appendages of a farn, there is reared, out of the profits of this well-regulated concern, a neat and tasty cottage, in the midst of shrubbery the most tasty and luxuriant-all the work of him who started with the determination to do all things well. And this is not all, as the well regulated expense book is balanced a profit which would gladden even the hearts of some of our bankers on the capital invested, is found on hand, to be applied as may best conduce to the comfort and welfare of an intercsting family. There is no complaint of means to educate the children. They are brought up practically to appreciate the maxim that "What is worth doing, is worth doing well," and their education prepares them to carry ont in all the varied scenes of life this all important but too little practised truth.
Let me then arge upon the farmers who read this paper-and I am glad to know they are many, and among the mest intelligent in our land-to put in practice, if they have not already done so, this simple but eff.
fectual method of farm labour, which brings with it the most abundant reward, and without which they will in vain struggle on, never securing the end of their toil. Order is Heaven's first law-and let it be yours in every thing relating to your farm. Rememher you belong to a noble profession, and one that is destined to exert a mighty influence on the destinies of a world. As one man, then, let the American Farmers adopt as their motto, "All things relating to my farm shall be well done"-and no more should be undertaken than can be thus done-and soon he will be found to occupy that exalted position that will cause his influence to be felt the world over. Surely it cannot be necessary to urge upon the enlightened, the inteliggent, the hard working American Farmer, further considerations in support of a principle that must, on a moment's reflection, commend itself to every right-minded, reflecting man.

In the London Gardener's Chronicle I find the following anecdote which the celebrated Robert Bakewell used frequently to relatehe whose name is familiar to almo: . cvery one for his extraordinary success in breeding cattle and sheep, and to whom probably Great Britain as well as this country owes as much as to any one individual, for that system of breeding which has secured the choice breeds of animals which are now to be found. It is to our purpose, as it gives the history of an old farmer, and one cf olden times too, who was renewed by adopting the principle laid down as the heading of our article-"Labour well applied is productive of profit."

Mr. Bakewell said: "A farmer who owned and occupied 1000 acres of land, had three daughters. When his eldest daughter married, he gave her one-quarter of his land for her portion, but no money; and he found, by a little more speed and a little better management, the produce of his farm did not decrease. When his zecond daughter mar-
ried, he gave her one-third of the remaining land for her portion, but no money. He then set to work, and began to grub up his furze and fern, and ploughed up what he called his poor, dry, furze land, even where the furze covered, in some closes, nearly half the land. After giving half his land to two of his daughters, to his great surprise he found that the produce increased; he made more money, because his new broken up furze land brought excessive crops, and at the same time he farmed the whole of his land better, for he employed three times more labourers upon it ; he rose two hours sooner in the morning; had no more dead fallows once in three years-instead of which he got two green crops in one year, and ate them upon the land. A garden never requires a dead fallow. But the great advantage was, that he had got the same money to manage 500 acres as he had to manage 1000 acres; therefore, he laid out double the moncy upon the land.
" When his third and last daughter marred, he gave her 250 acres, or half that remained, for her portion, and no money. He then found that he had the same money to farm one-quarter of the land as he had at first to farm the whole. He brgan to ask himself a few questions, and set his wits to work how he : as to make as much of 250 as he had done of 1000 acres. He then paid off his bailiff; (who weighed 20 stone,) rose with the larks in the long days, and went to bed with the lambs; he got as much more work done for his money; he made his sirvants, labourers and horses move faster; broke them from their snail's pace; and found that the eye of the master quickened the pace of the servant. He saw the beginning and ending of every thing ; and to his servants and labourers, instead of saying, " Go and do it," he said to them, "Let us go and do it my boys." Between come and go he eoon found a great difference. He grubbed up the whole of his furze and his
ferns, ploughed the whole of ais poor grass land up, and converted a great deal of corn into meat for the sake of the manure, and. preserved his black water, (the essence of manure ;) cut his hedges down, which had not been plashed for 40 or 50 years ; straightened his zig-zag tences; cut his watercourses straight, and gained a great denl of land by doing so; made drains and sluices, and irrigated all the lands he could; he grubbed up many of his hedges and borders covered with bushes, in some places from ten ic fourteen yards in width, and threw three or more closes into one. He found out that instead of growing white-thorn hedges and haws to feed foreign birds in winter, he could grow food for man instead of birds.
"After all this improvement, he grew more and made more of 250 acres than he did from 1000 ; at the same time he found out that half of England at that time was not cultivated, from the want of means to cultivate it with. I let him rams, and sold him Long Horned bulls," said Mr. Bakewell, " and told him the real value cf labour, both indoors and out, and what ought to be done with a certain number of men, oxen, and horses within a given time. I taught them to sow less and plough better; that there were limits and measures to all things; and that the husbandman oughtto be stronger than the farmer. I told him how to make hot land colder, and cold land hotter, light land stiffer, and stiff land lighter. I soon caused him to shake off his old prejudices, and I grafted new ideas in their places. I told him not to breed inferior cattle, sheep, or horses, but the best of each kind, for the best consume no more than the woorst. My friend became a new man.in his old age, and died rich."

Is it not true, that " Labour well applied isproductive of profit ?"-[Genesee Farmer.

Spoxen Agansst.-What if peopledo speak against you? Let them feel that you are able to bear it. What is there gained by stopping to correct every wond that is whis-
pered to your discredit? Lies will die, if left alone. Slander never kills a sterling character.

Plante and Seede.

Few things appear to me more curious than the fact, that the secds of various plants and flowers, which have lain dormant in the ground through a succession of ages, have vegetated on being exposed to the air, or have been brought into action by the application of some compost, or manure, agreeable to their nature.

This was shown in trenching for a plantation a past of Bushy Park, - 'hich, had probably been undisturbed by the spade or plough since the reign of Charles I., or still longer perhaps. The ground was turned up in the winter, and in the following summer it was covered with a profusion of the tree mignionette, pansies, and the wild raspberry, plants which are nowhere found in a wild state in the neighbourhood; and, in a plantation recently made in. Richmond Park, a great quantity of the foxglove came up after some deep trenching. I observeda few. years ago the same occurrence in a plantation in Devonshire, the surface of which was covered with the dark-blue columbine. A field also, which previously had little or no Dutch clover upon it, was covered with it after it had been much trampled upon and fed down by horses; and it is stated, from good authority, that if a pine forest in America were to be cut down, and the ground cultivated, and aftervards allowed to return to a state of nature, it would produce plants quite differed from those by which it had been previously occupied. The Hypecoum procumpens was lost in the Upsal garden for forty years, but was accidentally resuscitated by digging the ground in which it had formerly grown. A species of Lobelia, which had been missing for twenty years in the Amsterdam garden, was unexpectedly recovered in the same manner. There is a very curious
account in Monsons:s Preludia Botanica, of the appearance of a species of mustard, Sisymbrium Iris, after the fire of London, and another species, Sisymbrium Panumicum, made its appearance suldenly anong the ruins, after the fire of 3f scow, and continues abundant there ever since. A gentleman tells me that he saw a crop of barley where oats had been sown, in Glamorganshire, and the farmer assured lim that the ground had not been stirred before for thiriy years. A , ilar circumstance occurred in Scotland. J completely, indeed, is the ground impregnated with sceds, that if earth is brought to the surface, from the lowest depth at which it is found, some vegetable matter will spring from it. I have always considered this fact as one of the many surprising instances of the power and bounty of the Almighty, who has thus literally filled the earth with his goodness, by storing up a deposit of useful seeds in its depths, where they must have lain through a succession of ages, and which only require the energics of man to bring thom into action. In boring for water lately, at a spot near Kingston-onThames, some earth was brought up from a depth of three hundred and sisty feet; this earth was carcfully covered over with a hand-glass, to present the possiiility of any seeds being deposited upon it, yet in a short time plants vegetated from it. If quick-lime be put upon land which, from time immermorial has produced nothing but heather, the heather will be killed, and white clover spring up in its phec.
The care which is taken to supply the ground with those seeds which, being of a farinaceous nature, would not preserve their vital powers through a succession of ages, as other seeds do, is very curious. Many of them are deposittd b_{j} crows, and other birds and animals. The Rev. Mr. Robinson, in his Natural History of Westmoreland and Comberland, says, that "birds are natural planters of all sorts of trees, disseminat-
ing the kernels upon the earth, till they grow up to their natural strength and perfection." He tells us, that early one morning he observed "a great number of rooks verg busy at their work, upon a declining ground of a mossy surface, and that he weat out of his way on purpose to view their labour. He then found that they were planting a grove of oaks. The mamer of their planting was thus:-They first made little holes in the earth with their bills, going about and about till the hole was deep enough, and then they dropped in the acorn, and covered it with carth and moss." "The young plantation," Mr. Robinson adds, " is now growing up to a thick grove of oaks, fit for use, and of height for the rooks to build their nests in. The season was the latter end of autumn, when all seeds are fully ripe."
Mr. Edwards observes that even the droughts of the autumn contribute to increase and propagate seeds and plants; for, by causing decp chinks or chaps in the earth, the seeds of trees and larger plants that require depth are ludyed at proper depths for their growh, and at the same time secured from such animals as feed on them.
Mice bury a great number of seeds for their winter store, many of which vegetate: and some seeds are provided with a sort of down, by which they are carried, with the help of the wind, to great distances; others fix themoclves on the ground by means of a glutinous substance attached to them.
It is a curious fact, that more recent deposits of earth, such as peat, leaf-mould, \&c., produce litte or no vegetable substances, while, as has been shown, soil, from whatever depth it is brought, is impregnated with seeds, which grow freely on being exposed to the influence of light and air.
The coral reefs in the South Seas are first of all covercd with marine substances-then with the excrements of birds, in which are undigested seeds, that spring up and flourish in the deposits which have been formed on
the reefs. So various are the ways in which a beneficent Providence has enabled the earth to produce food for the benefit of his creatures, making a small migrating bird, or an insignificant insect, the instrument of his pover and goodness.

The influence which particular soils have on the colours of flowers is very curious.Whoever has attended to the growth of the better sort of tulips knows, that by planting them in too rich a soil, the colours will run; and urbroken tulips, that is, new varictics from seed, somer chtain their perfect colours by being removed from one soil to another. If a common wild primrose is taken u_{p}, and the root separated and planted in another suil, the blossom loses its brilliant yeilow huc, and becomes of a pale brown or light chocolate colour.

The tendency observed in plants to follow light, which is so necessary for them, makes then display a power approaching to real motion. The following exemplification of this tendency is taken from the Memoirs of the American Academy of Arts and Sciencs at Boston.
In the spring, a potato was left behind in a cellar, where some roots had been kept during the winter, and which had only a small aperture at the upper part of one of its sides. The potato, which lay in the opposite corner, shot out a runner, which first ran twenty feet along the ground, theu crept up along the wall, and so through the opening by which light was admitted.

Action of Lime.

Chemical investigation has led to the idea that one of the effects of lime, when applied to the soil, consists in its rendering soluble certain mineral substances which are essential to the growth and perfection of vegetation. Granite, trap, and slate contain potash, which is liberated by caustic lime. There is good reason to believe that this action of lime is of great importance, and that in mazy
instances it is one of the principal causes of the increased productiveness which the application of this substance imparts to the soil. The following remarks, from a valuable paper by Prolessor Johnston, serve eminently to illustrate this subject, and will be read with profit :-

The decalyiner vegretalle matter in the stems, ronts, and leaves of plants, which form the so-called humus of the soil, contain a large proporiion of the inorganic matter which was necessary to their existence in the living state. As they decompose, this innrganic matter is liberated. By promoting this drenmposition, therefore. lime sets free this mineral matter, and provides at once abuadant organic and inorganic food to the growing plant. The result of the action of lima is no l'ss important in reference to its fertilising quality than that by which it causes the production of those numerous changes in the purely organic matter of the soil to which I have alrcady adverted.

It the verctable matter decay rapidly, it will supply in abmondance all the materials, both organic and inorganic, which new races of plants require to form their entire substance. If it be in an inert state, or decompose slowly, the food it contains remains locked up, and comparatively useless to vegetation. In quickening the decay of this inert or slowly-decomposing matter, it is easy to see, therefore, how lime should render the land more fertile, and should do so more sensibly where vegetable matter is more abuadant.

The mineral and rocky fragments in the soil are acted upon in a similar manner.

Among the early constituents of soils, there often exists fragments of feldspar and other minerals, derived from the granitic and trap rocks, as well as portions of the slaty and other beds from which the soils have been formed, and which, as they crumble down, yield more and more of those inorganic substances on which plants live.

The decomposition of these minerals and rocks proceed more or less rapidly under the conjoined action of the oxygen, the carbonic acid, and the moisture of the atmosphere. But the presence of lime promotes this decomposition, and the consequent liberation of the inorganic substances which the rocks contain.

The silicates of potash and spoda are among
the most important compounds which these minerals and rocky fragments contain.These silicates, after being heated to redness with quick-lime, readily yield a portion of their potash or soda to water poured upon the mixture. The same result follows, but more slowly, when, without being heated, the silicates and the lime are mixed torether into a paste with water, and left for a length of tume at the ordinary temperature of the atmosphere. It is reasonable, therefore, to suppose, that in the soil of our fields a similar decomposition will slowly take place, when quick-lime is mixed with it. It will take place also, though still more slowly, when lime is added to it in the form of carbonate.

By some, the liberation of potash and soda in this way is supposed to be the most important action exercised by lime in rendering the land more productive. With this extreme opinion I do not agree, though it must be conceded, I think, that in numerous instances a certain amount of benefit must follow from the chemical action it is thus fitted to exercisc.

I have spolen of lime as liberating the inorganic constituents of the decaying matter of the soil. The stalks of the grasses, and the straw of our corn-bearing plants also coutain silicates of potash and soda, which lime sets free in hastening the decomposisition of the vegetable matter of which they form a part. Besides liberating, it further decomposes these silicates, as it does those of the minerals in the soil, and sets their potash and soda free to perlorm those important functions they are known to exercise in reference to the growth of plants. I am inclined to consider this part of the action of lime as of nearly equal importance to vegetation in many instances, with that which i. exercises upon the mineral silicates.

While the potash of seda is set free in a soluble state, the lime unites with a portion of silica, forming a silicate of lime of which traces are to be met with in nearly all soils. This silicate, again, is slowly decomposed by the agency of the carbonic acid of the atmosphere and of the soil, as I have already explained when speaking of this compound as one of the causes of the know fertility of soils formed from the decay of trap rocks.

Potash and soda exist sometimes in considerable quantity, in our stiff clay soils, in combination with the silica and alumina, of
which they chiefly consist. From their extreme tenacity, the air is in a great measure excluded from these soils, and hence chemical decomposition procecds in them very slowly. The addition of lime alters their physical character, and, by making them more open, admits the air, and thus promotes its decomposing action upon them. But it acts chemically also, in the same way as it does upon the silicates already spoken of, and thus compels them to give up more frecly to the roots of plants those mineral substances by which their growth is to be made more luxuriant.

Action of Lime on Salts of Iron, Magnesia and Alumnia.-Salts of Iron. -Lime, either in the mild or in the caustic state, possesses the property of decomposing the sulphate and other saline compounds of iron, which especially abound in moorish and peaty soils, and in many localities so :jaturate the subsoil, as to make it destructive to the roots of plants. Sprengel mentions a case in which the first year's clover always grew well, while in the second year it always died away. This, upon examination, was found to be owing to the ferruginous nature of the subsoil, which caused the death of the plants as soon as the roots began to enter into it.

When land is rendered unproductive oy the presence of salts of iron, a dressing with lime will bring the land into a wholesome state without other aid than those of the drain and the subsoil plow. If sulphate of iron be the cause of the cvil, the lime will combine with the acid and form gypsum, (sulphat of lime,) while the first oxide of iron which is set free will, by exposure to the air, be converted into the second or red oxide, in which state this metal is no longer hurtful to vegetation.

The drain and the subsoil plow are useful auxiliaries to the lime in lessening the injurious effects of the compounds of iron, because they allow the rains to descend and gradually to wash away the noxious matter which has accumulated in the under soilbecause they permit the descending water to carry with it portions of the lime in a state of solution, and thus to spread its good effects through the whole soil-and because they admit successive supplies of air as deep as the bottom of the drains, by which, while the action of the lime is promoted, those other good effects also are produced which the oxygen of the atmosphere can alone
accomplish. In fact, unless an outlet for the surface water be thus provided beneath, by which the lime may be enabled to descend, and the rains to wash away slowly the noxions sabstances from the subsoil, even the addition of a copious dose of lime will only produce a temporary improvement.

Salis of magnesior and alumina.-Lime decomposes also the sulphates of magnesia and alumina, both of which, but especially the former, are occasionally found in the soil in too large proportions, and, being very soluble salts, are liable to be taken up by the roots in such quantity as to be hurtful to growing plants. With the sulphuric acid of these salts the lime forms gypsum, as it does with the acid of sulphate of iron when this salt is present in a soil to which it is added: besides reinoving the evil effects of these very soluble sulphates, therefore, it exercises the beneficial action which gypsum is known to exhibit upon many of our cul. tivated crops.

Alumin: has the property of combining readily with many vegetable acids, and in the clay soils exercises a constant influence -though more freble in degree than that of lime-in persuading organic matter to those forms of decay in which acid compounds are more abundantly produced.Hence, clay soils almost always contain a portion of alumina in combintion with organic matter. These organic compounds decomposed by lime, and by the more energetic action of this substance, their constithents are sooner made available to the wants of the new races of plants.

Address delivered before the New York State Agricultural Society, by Prof. E. Emmons, M.D.

I know of no business or profession which has so much to do with the deep and profound principles of science, and which at the same time has made such shifts to get along without them, as Agriculture.

This fact, that it can get along without the direct aid of the principles of science is one cause that it has advanced so slowly, and that, considering its great age, it is so much behini other arts and professions. In this respect it furnishes a very curious example of the mutual dependance of the sciences and arts upon each other, for progress and advancement.
Famines have depopulated whole districts, and millions of the human race hove died of
starvation, and yet we have no evidence that all this suffering, and all the evils necessari:y connected with them, heve ever operated to the improvement of Agriculture, or have been instrumental in causing two blades of grass to grow where only one grew before. The arricultaral world has jogged along as if m, thing hs i happened, and as if nothing could be done to save men frum these widespreading calamities. When, however, the mind has been awakened by the light of science; when discoveries are announced, which, if they illuminate only a small part of bis field of labour, it usually happens that an impulse is given to his dormant powers, which propels him forward in a career of improvement. What, therefore, calamity fails to proluce-what the strongest incentives fail to do, is, in truth, effected by an agency the least expected, the gentle light of discovery, beaming from a kindred department of knowledge. The same things happen in morals. Earthquakes swallow up their thousands, and their continual shocks day by day startle the living, but they have never sreated, or even improved the religiolls sentiment: their frequent alarms, and the exposure to such imminent dangers and continual sufferings, have produced rather a recklessness of conduct, than a life of religion and charity.

It is not my purpose to stop here and inquire into the cause of such seeming anomalies in the human constitution : it is sufficient to allude to the facts. I pass on to say that agriculture had made only a feeble effort to improve its mechanical modes of tillage until the period when chemistry had so far advanced that it was an established truth that its principles stood in very intimate relationship to it. So Botany and Geology, which had been cultivated as independent systems, about the same time with chemistry, began also to be studied in their relations to other sciences; and hence these, together with physiology and other collateral branches, implanted clearer views of the wants of Agriculture, as well as to furnish striking illustrations of the true nature and import of the principles which lie at the foundation of its system. It is true that practical agriculture is not deeply interested in questions relating to life in the abstract or essence; but certainly much more so to those powers which modify or control its developments. These powers belong to the deep and profound inquiries which, in later times, are destined to achieve triamph for

290 Address delivered before the New York State Agricultural Society.

her, of a still more decided character than the world has yet witnessed. It is the peculiar province of the sciences to improve the outward condition of men. Literature had attained its highest state of excellence, and yet men were not discontented in hovels, nor with straw beds, nor coarse food sprcad out on rough barards. Literature was brilliant as well as solid in Queen Elizabelh's day, and yet labouring men were more poorly fed and cared for than cattle in the period in which they are perminted to live. 'Times have therefore changed: the necessities of men have incresised-the value of time is felt-the sipremacy of mind is achnow-ledged-the schemes of life are of a more exalted character-the destiny of the race begins to assume its importance; and now. awakened from slumber, man tames the wildest dem"nts, and compers them to speed his proqress towards an universal donimion over the powers of matter. light prints for him piecures trae to life: lightuing bears his commands. He imprisons the stam, and conpels it to roll his car over momntains and throngh vallies, and transport his products to the most distant part, ower water and over land. The mind, once aro:sed turns itsilf to find where it may stiil hare something more to do. Agricuitwre could not be overtooked-the art which makes all outher arts possible, :and which, perfected, is civilization itself. Agriculture is cirilization, and hence its progress is linked with the highest destiny of the nace. But regarded in a subordinate light, and in followisy out the practical requirements of the age, that of drawing from the carth greatcr suppires of bread, it was soon found that it might be oremtaxed. Such a result could not hail to open the whole field of imgury relating to production and celhanstion, and the relation in which they stood to each other. From exhaustion originated the analysis of productions, in which are locked up the elemen!s they have drawn from this storchouse ; the irst leads to a linowledge of what, and how much the soil contains: the latter of what, and how nuch has been taken fromit. So also the fact is brought out by inference, what mast be returned, to mantain it at least in its present state of fertility, or increase it to an indefinite extent.
The state of agrioultural knowledge nt the present time is charactorized by an accumulation of facts which are unclassified and unarranged. They are like the brick
and stone piled before and around the site of a great edifice about to be founded, and which are ready to be arranged in the walls of a spacious building. Many of these facts, it is true, have a definite signification, or, in other words, their rclations are well kinown, but as great majority of them have no known collocation, although they clearly belong to the cdifice. So, too, to keep up the similie, I may with truth remark, that the masterbuilder is yet to be found, whose sagacity and skill is equal to the task of putting together the discordant parts, and to constact from then a symmetrical whole.

Notwithstanding the illustration I have employed, fo show the view which I entertain of the state of agricultural science, it is still true that it requires on!y a moderate amome of information of Chemistry and the collateral sciences to understand many of the applications of the principles upon which the proctices of husbaurtry are based. When I speak, therefore, of the accumblation of facts, I mean to be understood that it is their relation to a system, and not to the meaning which they may have as individual facts. For cxample, the good effects of training may be explained on philosophical principles, though the theory of Agriculture is yet to be pat into form and shape. Draining operates beneficially in many wass; it may merely remove superfluous water, by the construction of artiticial underground chamals, or it may, in addition to this, carry of water charged with astringent salts, which are poisonous to the more valuable plans. In cither case, the principal result upoan which the grood effects depend, is the permanemt cleation of the temprature of the soil. Surfaces constanty bathed in water, and which are supplied with this clement from living springs, camot attain the temperature required for the better grasses, cercals, or c'sculents, so long as it is in this conuition. Evaporation, as you well know, is a source of cold; vapor camnot be formed without heat; and hence, the heat, instead of being expended in the elevation of the temperature of the carth, as it is in a dry phace, is wholly taken up by vaprons water, and carried off. Hence, in a hot day, the temperature is always low, rising scarcely above 50° of Faremheit, while the surrounding dry places are 70,80 , and even 120 degrees, when the soil is dark. The principles of draining, then, are perfectly un-
derstood, and this is the case with many other agricultural practices.
The practice of hoeing or stirring the soil is far more general than draining, but the principle upon which the practice is founded are not so well under
Generally farmers suppose that the object is to kill the weeds; so tar it is good; but the effect of hoeing is not contined to this single result; for hocing, when all the weed .t already extirpated is followed by the most decided adrantage to the crop; hence sume thing more than the destrucuon of the weeds comes to pass. One result undoubtedly arises from the absorisut powers of a fresh surtace. Nutritise matters, such as carbonic acid and ammonia dissolved in atmospheric air, are readily taken up in this state of the surface, but an old and indurated surfice becomes inert and inactivo. The power of surface alune is effectual in promoting absorption and decomporition of the most active bodies. The perfect combustion of vegetible and animal matter, takes place first upon the surface, upon which they rest. An impure ash exposed to heat, though just eleciat oi above redness, undergocs a p rfiect combuntion in contact with platina foil, while that part of the ash abowe the surfice is still impare or unburaed. So the power of suratice condenses the nutritice gaves and chemical changes take pare there more chergetically. than elsewhere. The surface of a loaf hats surface action, and becomes the seat of chemical combination through its phys. 1 powers ; for surfice action is at first all physical action, and precedes that of decom, m ition. What is here termed surface action may not be renaily apprelended; it is mndoubtedy amaioqus to the action of platinun black, or platiamm sponge in igniting hydrogen. If a jet is thrown upmin it, it takes fire, and has long been used as a means for prodncing instantaneous hght and combustion. The carth acts upon the , qaves when light and porous and fresh. as platinum sponge on hydrogen gas. Whatever way we may chonse to explain the good effictis of hoeing, there is mo doubth that a fresh surface is fregnently repuired if we desire a rapid and vigorous; growth.
There is probably no substance in use as a manure which as frequently disappoints the farmer, as plaster. In the cirst place, it may operate far more effectually chan is expected, and again it may have no offect whatever; and finally, when it has operated very
benficially for a time, it ceases to do so. This is what is called plaster sickness. Now these facts ought to be explained. On what principle does plaster ever promote vegetuion? Lielig says that it is by the absorption of ammonia ; sulphate of ammonia being the product of change. Were this ulways true, I can see in it reasons why it should always beneit crops. Sulphate of ammonia always does, but plaster does not. But there is another reason why plaster is iseful. Its sulphur is wanting in the nitrogrenous bodics-the protein compounds. It may, too, operate well in virtue of its lime, which is an clement of the highest importance to regetables. There may be therefore three reasons why plaster promotes vegeta-tion-the supply of ammonia for the nitrogenous bodie; the supply of sulphur for tho same, and finally, the supply of lime. But why it should cease to do good, is a question than has been answered only hypothetically. We may stippose that in the first place the soil requires, at the time, no additional matter which plaster itsolf can furnish ; it is in this case in negaive. When it ceases to do good at the culd of a few years, it may be from exhaustion ; that is ine soil originally iight may be deprived of phosphoric acid, of chlorine. of magnesia or soiuble silica and the aikaties particularly, at a much earlier period than if phasier had not been used. It has aited in ile removal of a larger quantity of inorganic mater, ditierent from itself, in less time than if it had not been employed. If a crop is increased one-third, it has taken up on-third more of the potash of the soil than would have been oitained without it If this is irun, we may see that the further use of platiter will be worse than useless.
There is mething plainer than this, that every element which is found in a plant in amalyscs: is necessary to its constitution, and is hiable to be removed in a series of croppingr. This leads to the necessity of supplying it directly ; but what element or elements may be wanting. can be known for a certainty only by amalysis. In plaster sickness, therefore, our remedies need not be hypothetical, if we pursue the method proposed; amalysis will reveal the cause of phastcrsicknoss, and probably any other sickness which follows from constant cultivation.

Blisd Bridles.-" Why are blinders injurious to the horse 3" Because they gatber
dirt and heat round the eycs. Dirt irritates the eye, and heat produces inflimmation. Eyes were placed in the corner of the head that the horse might have the advantage of looking in different directions. Men, in the abundance of their imaginary wisdom, concluced the horse had to much sight, and they wished to curtail it ; hence the origin of blind brides. These so cutrammel the cyes, that the horse is constanily compelled to straia them to see his way. This over exertion soon brings on disease.

From the American Agriculturist.

AGRICULTURAL CHEMISTRY.

When a field is kept under cultivation from year to year, without the application of manure, the crops continually decrease, until at length, the land refuses to yiehd a ruturn sufficient to repay the expenses of tillage. The reason of this deterioration is ohn ions. Plants, you know, extract a part of their nutriment from the soil, and bat a small proportion of the soil consists of those ingredient which are capable of ministering directly to the wants of regetation. Therefore, the land, in a few years, becomes so far cehausted as to be unable to furnish as much food as the crop requires, and it becomes necessary that it should receive a new supply of the matter that has been abstracted. This matter maybe directly returned in the form of manure, or the lost fertility, may, in a measure, be restored by allowing the land to lie idle for one or more years. This last method is termed fallowing, of this I now purpose to treat.

Of fallowing, there are two systems-one called naked fallowinur, consis ting in ploughing the fallow land repeatedly, without cropping, thus leaving a naked, and expnsed to the full influence of the sun, air, and moisture, until it is supposed to be sufficiently recruited to produce a remmerating crop. The other method is to sow on the ground a fallow crop, (1sually clover or buckwheat.) which is afterwards plouged into thn soil. If buckwheat be sowed, it is ploughed in when in blossom, and left to form a bed of humus. This mode is sometimes called green manuring. But the more common, and in most cases the more judicious way, is to put clover on the field, which needs fallowing, and leave it for two or three years in pasture. By this means, the field, instend of lajing ide, yields a proficuble return; all the
bencfit ordinarly derived from fatlowing is obtained; a firm sod is made, which, when turned over with the plough, forms a fine bed of humus, and the fertility of the soil is restored to a remarkable degree.
This method has almost entirely supersedrd the old one of naked fallowing, and is decidediy preferable, in most cases, though circumstances may ncc:ur where the nther can be more judicionsly practiced. Thus, stiff, agrillaceons, (clayey,) soils, are often very materially benefited by repeated plonghings wlile lying fallow, as by this moans the hard humpos berone divited, air and mosisture are fret lyadunitted, ar.d the land thus becomes well prepared for sustaining a vigorons growth of vegettation.
While all are willing to admit the advantage of a fallow, all are not agreed as to the manuer inwhicht these adsantages sare brouglit alvut. The explanation ustially given by the unlatroed is, that land, atter producing everal crupsin succession, requires rest, and like a wcaried aninal, is recruted by repose. But this explanation conreys an erroneous impression, and shows how easily the minds of many are satisfied by substitutugg a comparisun, or a sume for a reason. The term rest is cortainly very improperly employed when applied to land in the same sense in which it is used with referunce to animals. I will endeavour to explain to you, in accordance with the views of some of our best modern chemists, the process which Nature adopts to reinvigorate an exhausted soil.
I told you in a former number, that soils were originally formed by the degradation and decomposition, (crumbling and wasting away,) of rocky masses, and that the solid structures were originally composed of the same inorganic constituents as are found in the ssuil. Now the agency which reduces rocks to the form of powder, does not cease its operations when the change is effected, but contimics acting upon the mineral par. ticles until those portions essential to vegetable life are brought to such a state as to be soluble in water, when the roots of plants can readily imbibe and appropriate them, as needed.

The progress of this decomposition is slow, and when a field is required to furnish food for a crop cevery year, for a succession of years, it cannot be furnished as fast as it is needed; the sapply is inadequate to the demand; and time is required to allow a new accumulation, or freah supply. Al-
though the mecessary ingredients, or food, may be in the soil, yet it is not in such a form to be available, and Nature refuses to change her laws, or to act more vigorously than she is wont, merely to gratify the inordinate cravings of her creature, man.

And now another question arises-Can a field alucays be kept in a state of fertility by careful fallowing? I reply, it cannot. The soil does not contain an exhaustless supply of those ingredients which our crops require, and though land can be induced, by tallowing alone, to produce abundant harvests for a limited period, yet the time must arrive, when, unless manure be sunplied, larrenness will ensue. There are, as I have previously informed you, sixteen clements belonging to plants, twelye of which must be furnished by the soil, and if any one of these which is required, be absent, the plant cannot mature though all other circumstances be farourable. Now, as by far the greater portion of all soils consists of matter which cannot contribute to the growth of plants, and as nearly every soil is lacking in a full supply of cerery ingredient which our crops require, it is unreasonable to expect perpetual fertility withont returning, occasionally, to our fields a portion of those conslituents which hare been taken from them.

Before closing this article, I will add a few more remarlis on the subject of fallow crops, and green manuring. As the crop ploughed into the soil can only return to it the same inorganic ingredients which were drawn from it, we naturally inquire, what benefit can be derived from this source. The question is well worthy of consideration; for it would seem that if land can be thas enriched, it must disprove the theory that the fertility of the soil can only be preserved by returning to it , occasionally, new supplies of the matter which has been withdrawn. But the advantages of this system are only temporary, and may be thus accounted for:-

1. The bed of humus thus formed, improves the texture of the soil; allowing air and moisture to gain admittance, and these agents hasten that final decomposition of mineral particles which fits them for entering the circulation of plants.
2. The green, or iallow crop, draws nutritive principles from the air, especially carbon, and (indirectly) nitrogen, and these, becoming incorporated with the soil, are ready to aid in promoting the growth of the succeeding crap. (For farther particulars on this
point, I would refer. you to what I said on the subject of humus in my tenth number.)
3. The roots of the green crop, having penetrated for a considerable depth in the soil, lower than the plough has ever reached, have drawn from below such nutritive ingredieuts as had become deficient near the surface.

These constituents, after contributing to the formation of the stalks, leaves, \&c., of the fallow crop, are again disengaged and left near the surface when this crop is buried in the soil, and are now within the immediate reach of the roots of the succeeding crop. Clover and buckwheat are well adapted for fallow crops on account of their roots extending to a much greater depth than those of most other cultivated plants.

The effect, thus produced, may be compared to that of a very deep or trench ploughing, as in both cases these ingredients, which lie below the reach of most plants, are brought near the surface. The roots also render the hard and compact soil beneath, into which they penctrate, more loose and porous, and thus, as in deep ploughing, the texture is improved to a considerable depth. When, after sowing a fallow crop, the land is left for several ycars undisturbed, we must attribute much of the benefit afterwards observed, to the decomposition of mineral portions, as above mentioned.
J. Mc Kinstry.

Greenport, N. \mathbf{I}^{\prime}., April 1, 1849.

REARLNG, KEEPING AND FATTENING DOMESTIO ANLMALS.

The science of breeding, keeping and fattening domestic animals is too much neglected in the United States. Few practical farmers have the courage to take hold of the somewhat forbidding subjects of comparative anatemy, physiology, and organic chemistry, with a resolute purpose to understand the living organism by which grass, hay, grain and roots are transformed into beef, matton, pork, butter, cheese and wool. The natual machincry for effecting these important changes of vegetable into animal substances, deserves to be studied with great care, in order to make the most of the food consumed by every animal kept on the farm. There is noclass that has reachedperfection in yielding the largest product in flesh, milk or wool, for the aliment consumed in thecourse of its life time. All are fed unequally-
sometimes too much, and somntimes too little; and, again, they suffer from food more defective in quality than deficient in quantity. One often sees store pigs eat the dung of over-fed fatting hogs; and in this city, half-starved cows voracionsly devour the solid excretions of corn-fed carriage horses. In rearing swine they are commonily underfed about threc-fonths of their lives, and over-fed the other fourth; so that in the argregate not more than one-half as much meat is elaborated from the food taken into the stomach of pigs as might have been formed.

All animals demand a certain quantity of nutritive matter to preserve them ia a normal condition, or to prevent their losiner weight and becoming poor and poorer. la all cases where the object is to form meat, it is bad economy to keep animals for weeks and months, as thonsands of farmors do, without gaining a pound of flesh, although they necessarily consume a large anoum of food. This forms the manare; i. c. loths. of solid matter taken into the stomach yichd 40 in dry yard dung and urine, and no more. If we feed much above the point of normal nutrition, a portion of aliment fitils to enter the lacteal vessels which suround the alimentary canal, and through which digested natter presses into the blood remsels to nourish the system. This excess oil food, whether partially digested or not, pasies on through the bowels and apporar is feces or dung. There is always an immense loss in seeking to make animalisexcessively fat. Of course, when two or three prices ate realized for such beef, muton, or porle, the lons in the waste of food, is paid by the consumer. Our object is to develope the true comomy of making meat, regaidless of the fact whether it is sold or consumed by the producer. This consists in providinga reliable supply of suitable food, so that the animal from is birth to the day of its boing slanghtered, should stcadily gain in wright. So long as it is adding to the lengthand size of its bones and muscles-growing-its system will be little inclined to take on fat, if not over-fed. Excessive stuffing and no exprcise, bring the development of bone and rusicle to a premature ripeness. They cease to expand, and you have a fat lap-dog or a pocket china pig. Habitual starving will also bring the carcass to maturity before it attains to its proper size. Skilful feeding ifriplies that one never gives too much nor too
little; and hes the food well adapted to the constitution and habits of the animal, whether a horse, sheep, cow or swine.

This sytem of feeding is not so easy as some may imagine; for the quanity of grass that will grow on a given mumber of acres in pasture and meadow in a dry or wet season is very unequal. IIence, in the one case the firmer will have more feed than stock; and in the other more stock than feed. If one must err in the matter, it is usually betfir to have an excess, rather than a deficiciency in forage. Grass left to rot on the around in a pasture or meadow is far from being lost. It improves the soil.

Ater having taken all due pains to make two blades of rrass and corn grow were only one of cither grew before, the stock grower shoukd study clusely the business of breeding domestic animals. The lading idea in this art and science is, to select the best maler; and females from which to propagate and improve the race. This rule applies alike to the equine, bovine, ovine and swine families. In cach genus there are several yiecies, in each species there are numerous hreeds, and in the several breeds not a few varieties. It is no part of our duty to atimpt te write up one species or breed of animals, whether of cattle, horses, hogs, or sheep, and to write down another. Practical farmers know best what kind of stock will suit their lan:l and markets. Our advice, if offered, would be quite as likely to miss as to hit the wants of the reader. There is more difference in the value of breeds than many are willing to admit, and less than some breeders of improted races claim. A yearling of the short horn stock, less than 13 months old, was woighed in this city a few days since, and bronghi down 675 los. This heifer, which was not fat, is the offspring of Mr. Clay's importation. Another lieifer of the same family weighed 718 lbs . When 15 months old. The mother of the calf first named belongs to the lady with whom the writer boards, and this valuable cow gives some twenty quarts of rich milk per day. There are Devons near here from the herd of L. F. Allen, Esq., which are machadmired for their beauty.

The Texas Telegraph of May 24, published at Honston, says that wool grown in that State, and sent to New York market has brought $\$ 1.25$ a fleece this season. Men are buying large flocks in Mexican States, Missouri, Tennessee and elsewhere, todrive
into the northern parts of Texas. Sheep husbandry is beginning to excite considerable attention at the south and south-west.
Believing as we do, that this Republic is likely to enjoy great prosperity during, the next ten years, and receive large accessions to its population and wealth from Europe, the demand for good-breeding animals will be steady and at quite remunerating prices. Whoever will take due pains to improve his cows, sheep, horses and swine, cannot fail to be well paid for his tr.uuble.-[Genesee Far.

LIIIESTONE SOILS.

Every month's experience and observation increasc our esteem of limestone lands. We have studied the growth of wheat and other crop; on granitic and sandstone soils, and compared them with the products of lime lands, with which we have long been familiar. The latter not only contain more lime, but more potash, soda, magnesia, chlorine, phosphorus and sulphur-more of all the earthy elements of cul.ivated plants. Having become satusied that such is the fact, we were for a time at a loss to account for the circumstance that, lime rocks yield other minerals on their disintegration as well as the one that forms the main bulk of this product of nature. The remains of animals with which they abound, that once lived in the ocean, furnish urmistakable evidence that all, or nearly all ordinary lime rocks were slowly built up in the bed of an ancient sea. The same min rrals which makes the stoncy covering of an oyster, serves under favourable conditions to form many strata of precipitated line rocks in which to embed the oyster, and a thousand other animals and plints.
These depositions carry down and fix permanently in the growing rock, not only the carbonate of lime, hut an appreciahle quantity of all the minerals dissolved in the water of the occan. A moment's reflection will satisfy the reader that this water must abound in all the constituents of regetables and animals, or they could not flourish in such prodigious numbers in this medium. By analyzing water taken from the ocean, we find that it contains every substance necessary to organize either a whale, a tree, or a man. It abounds in potash, sodo, magnesia, iron, chlorine, bone earth, gypsum, and compounds of carbon and azote.
When the bed of the occan is elvated by
volcanic action into islands and continents, and dry land is formed, we find the best soils for the support of terrestrial animals where marine dep posits were most abundant. And these vegetable and minal remains are most abundant where sedimentary rocks were slowest in forming. Most sand rocks appear to have been deposited rapidly; for they usually contain little beside mere traces of lime, potashi, sola, and other minerals dissolved in sea water. Shades, such as may ive seen along the terraces above Genesse in Livingston comty; and most limestones appear to have been buiit up very slowly. There are some fresh water deposits of lime, both ancient and modern, that contain little brside the pure carbonate of that mineral. There are nie or two deposits of this character in Caltaraugus comety, and one on Zencral Ifarmon's firmin Wheatland. Prof. Peter of K mentucky, gives the following as the composition of the limestone near Lexington, remarkable for the excellent soil which it forms in that vicinity. He says :-
During the past month or two, in my teisure monents, I have submitted to analyses, several specimens of the Kentucky Blue limestone, and have been much gratified to find my anticipations realized in relation to its agricultural ralue, as will be seen by reference to the results given below.
Specimen No. 1, is of the hardy gray limestone; it was dug out of a well in the city of Lexington; it contains geodes lined with brown spar, pearl spar, cale spar, and fluor spar and the usual tossils; its specific gravity 2.45 in a dry specimen. On analysis, it was found to be composed of the following materials, viz :

Carbonic acid	36.675
Phosphoric acid	1.850
Sulphoric acid	807
Lime	47.046
Magncsia	900
Alamin and oxide of iron	9.880
Fine simd a d silicates	1.790
Moisture and loss	1,552
	100.000

Specimen No. 2, from the hard thin layers which are more superficial than the first in this locality, yiclded:
Carbonic acid
40.53

Phosphoric acid ${ }_{36}$
Sulphuric acid not estimated.
Lime
50.97

Magnesia
86

In addition fo these ingredients, potash and soda were obtained from the limestone, whenever the proper processcs were employed; in one cave as much as 0.0487 per cent of potash ; in anviuer, 0.0058 per cent.

The above extract is copied from the May number of the Albany Cuitivator. In the June number of the Ainerican Agriculturist a gentleman in Winchester, Va., says that he raised cighty-three bushels of corn per acre, without manure, on a piece of ground which had been irrigated for several years by a " limestone spring."
The rivers Euphrates and Nile, not less than the Genesee in New York, and the Cumberland in Tennessee, run over lime rocks. These valleys are remarkablo for their fertility. On the contrary, all granite regions are characterized by comparative sterility. Granite, unlike sedimentary rocks, have been melted by intense heat deep in the earth, and crystalized on cooling, under great pressure. All this class of rocks decompose slowly, and form comparatively thin, poor soils. They usually lack lime and all the other minerals held in solution by the waters of the ocean. Granitic formations show no signs of organic beings, cither animal or regetable.

The fair inference fron the above remarks would seem to be, that salts of lime, potash, soda and magnesia are indispensable to the growh of crops. Every farmer whose soil lacks lime, should take measures to remedy the defect in the cheapest way possible. In many places gypsum, common salt and wood ashes can be had on such terms as will warrant their use for agricultural purposes far more extensively than is now done. The salt which can be obtained by evaporating sea water, will some day be extensively consumed as a fertilizer. Nor will the salts extracted from the soil and wasted in the liquid excretions of domestic amimals be always regarded of so little valuc.-[Genesee Farmer.

THE HORSE.-IMPROVEMENT IN BREED. ing.

Although the improvement in the modes of traveling, resulting from the application of
steam, may in many sections of our country, diminish the use and value of fine horses, still the horse will always be of incalculable importance to us. Any thing therefore, that may tend to enhance his worth, by improving his character, will be thought useful.

The intrinsic value of the horse, consists in his power, speed, and endurance. And as he is, to a great extent, the subject of taste and fancy, his highest value is attained, when he unites beauty of form, with these three requisites. But every farmer knows, he is not to expect the pear from the thorn bush, nor the pippin from the wild crabapple. But then these stocks will produce the pear and the pippin, if such scions are introduced. Since, then, the same expense of care, culture, feed, and time. is needed to sustain and rear a four years old horse worth $\$ 60$, and one worth $\$ 100$, is it not astonishing that farmers, who spare no expense to obtain the best quality of grains, grasses, and roots for seed, should still employ as sires, the low bred dung-hill at twenty shillings, instead of the brave and noble blood horse worth twenty dollars. The result in such a case, as a general rule, must necessarily be, the colt will be a twenty shilling colt, instead of a twenty dollar colt, if nature proves true to her principles.
Many farmers do not reflect sufficiently, or judge correctly on this subject. They seem to think, a half blood sire, derived from a blood horse and common dam, may produce as fine stock, as the full blood horse himself; whereas, he cannot be half so good. Being only a half blood himself, he can irfuse into his progeny only one fourth of the good qualities of his sire. His stock his only quarter bloods. No farmer, desirous of making the greatest gain in perfecting his stock, will use any horse as a sire, who cannot claim to inherit, in the line of his dam, as well as of his sire, Power, Speed, and Endurance; the three items which give value to the horse. Hence it is, that the pedigree of our blood horses is given in the line of the dam, instead of the sire. It is to show, that the valuable blood af the horse, derived from his sire, is not deteriorated by any impure, low blood, derived from the mother. A little reffection therefore, will satisfy the former, not to breed from a horse, (allhough his sire may have been good,) in the hope of greatly improving his stock, if he cannot claim excellence also, from the blood of his dam, as
well as of his sire. In this particular, American Eclipse excelled any horse of his day; and to this source was he indebted, in a great degree, for his matchless powers. His dam was got by "Messenger," whose stock, for power and endurance, has proved equal, and often superior, to that of any horse ever brought to this country. Her dam, by a son of "English Eclipse;" next to "Childers," the flectest horse ever known. His sire, "Duroc," was by "Diomed;" the best horse of his day-deriving his excellence from judicious crosses, blending the best strains of English and Arabian blood.

It is perfectly idle for a farmer, who has a mare of good size, of fine qualities and blood, to raise a colt from a common horse worth only $\$ 65$ to $\$ 80$, at four years old; when he can, with the same expense of care and feed, rear one worth $\$ 120$ to $\$ 150$, by resorting to a better sire, at a cost of a few dollars more. And even if his mare is in some respects inferior, he should still resort to horses of high and celebrated blood,-of large size, just proportions, and fine speed,horses, superior in those very particulars in which his mare is deficient. A half blood filly from such a cross, would probably make a valuable stock mare, producing colts of great worth, if bred from a superior blood horse.

Every farmer should have one or two gond brood mares. We have the experience and testimony of intelligent men, that brood mares may be steadily and safely used until within a few days of foaling; and very soon after. They should not be improperly used and abused, by extreme, sudden, and violent efforts. But it will not injure them nor their foals, to do constant, reasonable labor. In addition therefore, to accomplishing the ordinary service of a span of horses on the farm, they may produce the farmer annually, a pair of colts.

It should here be remarked, that much of the value of our colts depends on the care and keeping we give them. We err greatly on this point. Colts generally, are neglected the first winter. Their growth is retarded, and their forms are injured thereby. They should be kept in the best manner, the first year; should be kept constantly thriving. Their forms will then be properly sustained, and their points and proportions be finelydeveloped. Nor should they be fed on the ground, but in racks 80 situated, as to require them to extend and elevate the neck and

Dutches County, in this State, has derived a large revenue for half a century, from the sale of her valuable horses. Spans of horses bred there, have been sold in New York, from five hundred to one thousand dollars.and multitudes of single horses from fifty pounds, to one nundred pounds each. They secured these results at an early period, by perfecting their stock of brood mares, in the use of such impurted horses as Messenger, Ilighlander, Paymaster, Drone, Babjazette, and others: not hesitating to pay $\$ 20$ or more, to horses of such character and blood.

As "like produces like," the brave and noble blood hurse is expected to give the is dex of his character to his progeny. To decide whether he has "power. speed, and endurance," he is put to trial on the race course. In a greater or less degree, his courare, resolution, temper, and constitution, as well as his form and proportions, are imparted to his stock. The farmer who would make gain by brecding colts, should look to these things. His colts will always sell, if they have size and speed, even if less perfect and beautiful in form. By blending the Arabian blood, with that of the English race horse, the product has been considered, as having attained the highest degree of perfection. It has united to the size and bone of the English race horse, the round, smooth, beautiful form of the Arabian, together with his hardiness, tleetness, and ability to endure fatigue. IBy such crosses, the fleetest and best horses have been produced, that have been ever known. And in the use of such horses can our stock be soon perfected; but it camnot be done, by a resort to low bred horses, who have no blood on the side of the dam, and who are removed to the third and fourth cross, from the pure blood sire.

There are two leading purposes for which we rear colts. One is for the plow, and one for the road. For the plow, stout, heavy, compact built horses are needed, with no special regard to fleetness. For the road, as for stages, pleasure carriages an! the saddle, in addition to size, power, and form, ${ }^{1}$ rh courage, and jleetness or speed, are indispensible. If the farmer therefore, designs to rear a colt for market, he must resort to a sire either colebrated himself, or, in the line of his immediate ancestry, for fine action, and great speed as roadsters; in the hope that he will impart these properties to his stack. If for the plow, he will look for a sire possessing a kind, docile, gentle temper;
of good size, large bone, and great muscular powers. As the stock will be, in a good mensure, characterised by the sire, he will look for suh qualities in the sire, as are especially adapted to the uses and purposes hee has in view. If these few hints should influence the farmer to reflect on this subject, and the means of induciug correct impressions, my purposes will have been answered. -[Rochester, N. I'. July, 18:9.

CANADA THISTLES.

Mr. Editoin,-Believing in the fact that the root is as much dependent for prosperity on the branch as the imanch is on the root, I take a hoe, in the sprug of the year, when they first make their appearance, and just crop them off at the surface winh nue stroke, which a man can do and walk right along. I repeat the operation as often as the thistles appear, which may be three or four times in the season. I have irequently killed them m this way the first seation, so that they have not appeared again in the same place ; but if they should appear the next scason they will look sickly, and ly repeating tie same process the second year they will be entirely subdued. Batt if, unturturiately, you have neightbors less fathenl than yourselt, you will be constantly amoyed with new cases which will require attention.
I have pursured this practice of cutting thistles with a hoe for nearly forly years: and although my neighther's tarm is now filled with them in every fimh, there has never been on mine in any ome year more than a man could cut up wih a hios ia ten minutes, provided they were standing in one spot. But they will spriug up in some new places every year or two. requiring, like the maintenance of liberty, "cternal vigilance."-[An Old Farmer.

on fattentng cattle.

P_{1} :suming that the object of the Council of the Royail Agricultural Sociey of En. gland, in offering frizis for cseays on varions subjects, is that the farmers them elves may be induced to comust their practice and experience to paper, I trust that iny humble attempt to describe what I have found to be the best method of fattening bullocks, if considered unworthy of a prize, may at least be criticised with lenity, as it is the bona fiue production of a practical farmer.

The first point I wish to impress upon my readers is, to have a good sort of bullock to begin upon; not that I wish to recommend one particular breed, to the depreciation of all others, for I am sure tha difterent localities require different descriptiurs of animals; but to caution them that it is righat to select the characteristic marks of the breed they intend purclasing-to warn them particnlarly never to buy a coarse, ill-made, bad-bred animal, because they may fancy it cheap. A man bas never got so bad a bargain, as when lie has, as the saying is, "got too much for his money."
The first criterion for judging of the disposition of the beast to fatten quicklyo in my opinion, is that peculiar soft, supple feel of the skin which is commonly called handling well; this is generally accompanied by hair of a soft, fine quality, in great plenty; the cye should be full and clear, and the head well-formed, the shoulders not upright, but lying well back, the chest full, the ribs deep and well arched out, the flanks well down, the hips nearly level with the backbone, and in proportion to the rest of the carcass as to width, thie rumps wide, and not too low down, appearing as if when fat the tail and rumps' ends would be level, (but this the butchers in my neighbourlood are in the habit of calline ihe fool's point,) the purse shoutd be of a full size, and soft to the touch, (this I consider a material poimt,) the twist good, and the legs short and small in proportion to the carcase, as the offal will be light in proportion to the leg-bone.
Next olserve the temper of the animal: in selecting from a considerable drove you will often find beasts possessing many of these gool points, vet in lower condition than some of the amimals of a worse appearance; consider well whether this may not arise from the masterful disposition of the ill-made one; and whether, when put to fatten where every beat may eat his share of feed without disturbance, the good-bred one will not soon surpass his motre masterful neighbor. If you observe a least that is constantly watching an opportunity of goring any other that comes in his way, leave hinn behind, cven it he is much havier than those you select ; he may be a great troubie to you: and allhough the jobber may think you have sellected them badly, he will sell them according to what they are worth at the time, and the present weight is the great point with nim. For this reason always select the
On Fattening Cattle.
animals before purchasing, rather ihan ngree to give a certain price per head to pick where you like from the drove.

I think the quality of an animal is of more consequence :han his form, for common fattening purposes, but have both goul if you can. But if you are thinking of fattening an animal to show for a prize, be sure to have his form as perfect as possible; for all the flesh you may lay on him will not hide any great defect in his form: also ascertain, if possible, how the animal is descended; ten to one but the progeny becomes similar to the progenitor. But this is generally a most unprofitable affair, and I strongly recommend all young farmers to leave it in the hands of those gentry who can afford the loss, many of whom there are in the conntry, and they deserve our bes. thanks for their patriotism, for it certainily shows the capabilities of different breeds, and thereby enables the observing farmer to profit by the experience of others. Never buy any animuls that are excessively poor; they will consume a great deal of food before they are got into health enough to fatten.
I fear I have been rather prolix in these remarks, but have thought it necessary; for, depend upon it, unless your animals are woll bought, fattin. cattle will never pay enongh to leave the manure clear profit, which it ought to do, althourh, I fear, with the majority of farmers, it is far otherwise.

I shall say but little witi: respect to sum-mer-grazing, as the wording of the Society's advertisement appears to apply more partic. wharly to winter fattoning; merely remarking that the fences should always be liept thoroughly good, a weak place being strengthenod before it becomes a gap, prevention in this case, like many others, being better than cure; that the bullocks shonld be well supplied with water, and have plenty of shade: never allow them to be frightened by dogs, \&c.; treat them kindly, and they will soon cease to fear your presenen; do not let a day pass, if you can help it, without seeing them. There is an old saying, which ought to be impressed on every farmrr's memory-it has been of great service to me in the course of my life-it is, "The master's eye grazeth the ox." A friend of mine has lately adopted a plan which, under the same circumstances, I should strongly recommend; it is that of giving a small quantity of oil-cake to animals grazing, for the sake of improving an ordinary pasture, and its effects are aston-
ishing. The pastures I allude to are small, and one or two bullocks more than they are calculated to carry are put into each ; the lot are then allowed 4 lbv . of cake par lay per head; this, at a cost of about 2 s . (50 cents) per head per week-which, I believe, the stock well paid for-has entirely altered the face of pastures from what they were three years age, when the plan was first adopted by him: and, I believe, without any loss to himself.

I now come to the point of winter feeding. First, as to the place in which they are kept, I unhesitatingly give my opinion in favor of stall-teeding, for all the common purposes of grazing; but not for young beasts that are to be summered again, or for prize oxen: the former should have small, woll-sheltered yards, with good sheds, (if the fences are so high that they cannot see over, it is much better:) and the latter, loose boxes, with plenty of room for them to walk about, because they have to be kept uy for such a long period, that if no exercise were taken the health might suffer. It is the abuse of stall-feeding that has got it into disrepute with some people, and the not treading down straw enongh with others. This last I hold to be an adrantage, intead of a disadvantage; for, depend upon it, it is not the size of the dunghill, but the guality of the manure that causes the farmer's stock-yard to be well filled. If managed well, I contend that there is no plan so good as stall-feeding. The fattening-house may be of any size or shape, but it is necessary that there should be underground drains, with gratings, to carry of the urine into the laduid-manure tanl; ; shutters behind the bullocks to regulate the beat, and a wide passage at their heads to feed them aad clean their mangers. The advantages I conceive to be the quantity of litter required heing smaller, therefore the muck being male better; the temperature being more easily regulated, and every bullock being aliowed to cat his share in peace. The disadvantage of the amimal not being able to rub hamself so well, I consider fully done away with by the rough brush which you wiil observel recommend using; and although theorists may fanc; the health of the animal likely to sullir, Hhave never found it so in practice.

Now, with reapect to their food, so much does this vary, (from the plan pursued by some people with an ox intended to be shown, at Smithfield, in a class restricted Irom corn,
cake, pulse, \&c., which has the cream from sereral cows given him, by way of a compensation, to that by the man wino endeavors to fatten his animals on turnips and barelystraw,) that it would take up far to much of the Society's valuable jonrnal even to enumerate them ; I shall therefore simply give the plan I recommond, leaving my reader to follow it if they like, and improve upon it whenever they can.
I think, in many instances, stall-feeding is not commenced carly enough in the autumn: as soon as the waither becomes damp, and the day; shorten much-say sone time in October-the grass in my neighbourhood loses its feeding properties, and then the sooner your bullocks are put up the better; for this purpose I recommend hrving some of the large, forward descriptions of turnips provided, perpaps the ' ' red taukard," although watery, and soon becoming of little value, are at this very carly scason the best of any, from their early maturity : these are sown in April, at the rats of an acre to every eight bullocks, which will hast them three or four weeks, according to the crop, and leave a light fold to begin the shrep upon ; at the end of which time the forward swedes are ready to begin. During this period I give them little or no oil-cake, if they are only in moderate condition; but they have half a stone of pollard a day, mixed wih an equal quantity of hay or straw-chaff: Sounc persons may fancy this fooll is of too loosening a nature, but I can assure them, from several years' experience, that although pollard is loosening of itenff, yet it has the effect of prevening the watery white turnips from purging too much. Althnugh the bullocks do not gain mucin in weight during this time, yet I am satistined they go \quad on faster afterwards; the reason of which, I suspect, is that their bodies are more prepared for the arlificial state they have to live in for the next few months. Early in November the food must be changed to swedes, cake, \&c.; the quantities of each must vary according to circumstances: the following I consider a goxd allowance were swedes are not scarce, if they are, more oil-c, k ke mast he given jastead of a part of them; or, it very plenififul, they may be allowed even more. The morning's bait, 1 bushel of swedes, well cleaned from dirt, and cut small, given a few at a time, (I always use Gardener's sheep turnipcutter in preferenco to any other;) then, the refuse pieces being well cleaned out, a dry
bait, consisting of 2 lbs of oil-cake, 3 lbs . of pollard, and a little hay-chafi. While they are feeding, the manure and wet litter must be well cleared away, and any which may be on the bullocks taken off, the floor swept clean, and plenty of fresh litter put in; then have every bullock well brushed with what is called a dandy-brush, (being a brush made with whalebone, for taking the rough dirt of horses.) Let not any slovenly farmer fancy this to be a whim of mine; depend upon it, the bullocks are kept in much better health and greater comfort for it. They must now be left quiet ; thry will soon lie down and rest, and chew the cud till after dinmer, when another bushel of swedes is given as before, in small $\mathrm{c}_{\mathrm{i}}{ }^{\text {rantiuies, followed }}$ by a similar dry bait of cake, pollard, and hay-chaff, but with thr addition of 3 lbs of hean-meal ; this is left with them at night. Be careful that the shutters are opened or closed, according to the weather, so as to maintain an even, warm temperature, but not hot enough to make them perspire, if it can be avoided. Be also careful that the mangers are well cleaned out between every bait. I have mine cleaned at the commencement of the season, and as often afterwards as I think necessary, with scalding water and the scrubbing-brush.
After a month or so the cake may be increased; and, if it is thought more convenient, the swedes may be changed for mangoldwurtzel. Many persons object to using mangold until the spring; they certainly are more valuable than swedes in the spring, and therefore should always be used last. Never change from mangold-wurtzel to swedes atter you have once begun them, or the bullocks will not go on so fast; but if from having a badd crop of swedes, or from any other cause, you want to begin mangold early, you have only to lay them exposed to the air for a week or two to wither, and they may be used as carly in the season as is required.

It will be observed that cleanliness, warmih, and quiet are the great points I insist upon; of coursc coupled with good leeding: but very many tons of oil-cake are annually wasted, because the comfort of the animals is not more attended to. It will also be observed that I have introduced a cheap article of food, which I think does the beasts more good, in proportion to its cost, than any thing I give them; I allude to pollard, or millers' offal, as some call it. This I can
generally purchase at $4 l .15 \mathrm{~s}$. a ton. I have used it extensively for some years, and like it much; some of my neighbours are now following my example.

Before I conclude, I wish to give these recommendations respecting selling the bullocks when fat. Do not determine upon parting with them exactly at any given time; but if a butcher wants to buy a part of them, a few weeks before you think them ready, calculate how they are paying for what they eat ; and, if you feel satisfied on that head, do not run the hazard of getting a bad sale by refusing a good offer, or perchance the opportunity may not return. Sell them to butchers at home, if you can. Always estimate the weight and value of your bullocks the day before any one is comiag to buy them; and, after letting the butcher handle and examine them well, let them out into a yard for him to see; they will always show better than when tied up.- [From the Journal of the Royal Agricultural Society of England, a Prize Essay, by George Dobito.

FEEDING AND MANAGING MILCH COWS.
The grasses, particularly the clovers: are the best summer food. When these begin to fail, the deficiency may be supplied by green corn, which is very sweet, and produces a large quantity of milk, of excellent quality. The tops of beets, carrots, parsnips, and cabbage and turnip leaves, are good. Pumpkins, apples, and roots, may be given as the feed fuils. Give only a few at first, especially apples, and gradually increase.

Roots are of great importance when cows are kept on dry fodder. Potatocs, carrots, beets, turnips, parsnips, artichokes, and vegetable oysters, are good. The last three and cabbage and turnips bonp good in the ground through the winter, and are fresh and fine in the spring, before the grass starts.

Potatoes produce a great flow of milh, but it is not very rich. A little Indian meal is good with them, to keep up the flesh and give richness to the milk; and this is the case with beets and most kinds of turnips, as they tend largely to milk. A little oil meal or flaxseed is excellant, in addition to the Indian meal, to keep up a fine, healthy condition, and impart a rich quality to the milk, and give a lively gloss to the hair of cattle, and softness and pliancy to the skin.

In all cases of high feeding in winter, particularly when cows have but few roots,
shorts or bran are excellant to promote digestion and keep the bowels open. Three pints each of oil and Indian meal, or two quarts of one and one quart of the other, is as high feed in these articles, as cows should ever have. On shorts, bran and roots, they may be fed liberally. Four quarts of indian meal, in a long run, will dry $n p$ and spail the best cows, so that they will never recover.

Carrots are among the very best roots for milch cows, producing a good but not very great mess of rich milk, and keeping the cow in good health. Parsnips are nearly the same. Ruta-bagas are rather rich, and keep u p the condition. To prevent any unpleasant taste in the milk from feeding turnips, use salt freely on them, and milk night and morning before feeding with turnips. Cabbage turnip, (or turnip-rooted-cabbage-below-ground,) has no such effect. It resembles ruta-baga, is raised in the same way, and yields as much or more.

Some keep cows in the barn, by night, in a warm season. They are saved from storms, and more manure is saved. There should be good ventilation in hot weather. Cows are much better for being kept in the barn nearly all the time in cold weather. To drink freely of cold water, and then stand half chilled to death, is highly injurious. But they should go out a litile' while daily, in favourable weather, and be driven around gently, for exercise. Inaction is death to all the animal race.

Cows and other cattle are badly managed. They are not watered, in short days, until ten o'clock in the morning and their last chanae for drinking is about four in the evening. Thusthey go sixteen hours without drink, and during that time they take nearly all their food, which is as dry as husk. They suffer to a great degree from thirst, and then drink to excess. As a remedy, give cattle a part of their brealifast, and then water them, and water arain after finishing their morning meal ; and if kept up, water at noon, and at night. If it be too much trouble to take good care of stock, then keep less, and they will be as productive and more profitable if well managed. We have fed sheep that had constant access to water within eight or nine rods, and after eating thirty or forty minutes in the moraing, they would all go and drink.

Milch cows are injured by boing driven far to pasture, especially in hot weather, and. still more if hurried by thoughtless boys.[Cole's American Veterinarian.

Manegement of Bees.

Mr. Eition:-In thll the numbers of the Farmer which I have read, I do not recollect of having seen a single article in regard to that very uselul insect, the honey bee. This is a litte remarkable, especially when we consider how great a share of our farmers keep bees, and how few manage here successfnily. That bees when they " do well," as the saying is, are very productive capital, is an indisputable fact; and that they will "do weil" almost every sea*on, with proper mamacenont, is equally cortain. 'That our climate is not such a one as an experienced apiariam would select, in which to raise bees with the least trouble and the fairest pros. pect of success is roadily admitted; yet, at the same time, it is belinved that a little attention to the subject will rnable every farmer, aul, in fact, erery family, to supply themselves, at a trithins expensi, with an abmance of good homey, our of the greatest luxuries that our comery affords.

There is not, probably, more than one in five of those that try their hands at benkeepiag, that are really succesful. Their bees swarm and go to the wond, or they "melt down" on a sultry summer day, or perish with cold in wiater. Sow most misfortunes of this nature arise from carelessness, or want of skill on the part of the apiarian, aid may, with a litide care, be easily avoided.

The first difficulty-that of bees seeking a new home in the wonds-i; less easty overcome than the others, yet I believe there is seldom any necessity of suffering a loss of this kind. This evil is certainly avoided when the patent hive is used, and new swarms are manufactural instead of being permitted to come forth in the usial way. I have also used successfully a donble hive, or hive made in two parts, so that it could be separated and a new part attached to each-thus dividing the swarm without risk. Yet alter all I prefer letting them swarm-it seems most natural-and besides, is a kind of pastime, of which it appars wrong to deprive them. Hw, then, shond biיs b: muaged when thry swarm, to prevent them from leaving for the wouls? But fow directions need be given. As a general thing the less management the better. Above all, do not enrage your bees, nor frighten your neighbors, by jingling bells, or drumming on tin pans, or firing guns. Throw no dirt or
water among them. Be quiet, and let them have their own way until they alight, which they will be sure to do in a few minutes, nsually at a distance of from two to ten rods from the old hive. 'Shen is the time, and the proper time, to commence operations. Place under the tree upon which the swarm hangs, a table, or something to answer the purpose. Place the hive upon it, each corner being raised from half to threc-fourts of an inch from the table by blocks placed under them. Then gently shake the bough or tree upon which the bees hang, so a3 to precipate them upon the rable near the hive. It the hive is clean they will most assuredly enter. Many invert the hive and shake the bees directly into it. This may be sometimes destrable-many consider it indispensable, but it is not. If the hive is new and clean do not attempt to render it more agrecable to the bees by washing with sugar and water, whiskey, or any nostrums. If it is not perfectly swect, and a better cannot be had without too great delay, I know of no other better way of preparing it than by rubbing thoronghly with hickory leaves dipped in strong, clean brine.

Sonnctines when a swarm has been hived and comes forth dissatistied with their new home, it is found necessary to use means to make them alight. They will, it is true, generally do so of their own accord, but this camot be as certainly depended on as when they first issue from the old stock. Hence, if they manifest a dispostion to abscond, throwing sand or water among them or firing a gun will generally bring them to a halt. In all such cases, when they are again hived, the queen should be sought out and one of her wing; clipped, so that she cannot fly. Then the swarm will not go, or, if they do, will return as soon as her majesty is missed. One of my neighbors had a swarm leave after the queen's wings had been clipped. They went to the woods, were grone over half an hour, when, missing their queen, withont whom they scem to know full well they must soon perish, they again returned. Finally, it is always well, when hiving a swarm, to watch closely the queen, and, if discovered, clip one of her wings, which prevents the possibility of losing the swarm unless there happen to be more than one queen, a thing that seldom happens in carly swarms.

If the new swarm comes out in a hot sunny day, the hive in which they are putstould
be well shaded. This, doubtless, will often prevent their leaving it.
All hives should also be shaded, and so situated that air can circulate frecly around them. Many fine swarms are lost cevery summer through negligence in this particuhar. It has gencrally been supposed that hives should frout the east or south, but I am convinced that there is less philusophy than fancy in this idea. The north or west, upper or lower side of the hive, answers just as well, and some of them, perhaps, better for the entrance, than the south or cast.
I intended in this communication to say a few words in regard to the size of hives; the superiority of the patent over the common hive; the proper management of bees in winter; the diseases of bees, \&c., \&c. But fearing, Mr. Editor, that I have alrcady tired your own and your readers patience, I will drop the subject for the present, promising to resume it at some future time, should this prove acceptible. In the meantime I should like to hear from others on this subject, whose age andexperience render them much better qualified than myself to intercst the readers of the Farmer. Respectfully,
D.W.C.L.
-Michigan Farmer.

Flax Cultivation and Manufacture.
Flax and hemp are now grown to a considerable extert in some of the Western States. In 1847, there were imported into New Orleans from the interior States: 2654 tierces of flasseed, and 1090 barrels of linseed oil. At Cincinnati there arrived by the Miami canal, in the same year, above 43,000 bushels of seed and 1400 barrels of oil. At Portsmouth there arrived 4600 bushels of seed, and at many other cities in the central and western States, the arrival of flaxseed or oil was proporionately great. The American produce of flax fibre varies from 300 to 1000 pounds per acre ; the Irish produce in scutched flax varies from 500 to 900 lbs. the acre. Perhaps the great benefit of flax growing to any country is, that it is a profitable crop agriculturally, and a great source of manufacturing industry. In this point of view, it is a crop far superior to any food crop which could be raised. Flax crop is a source of industry, of skillful labour, oi manufacture.
American farmers generally sow their flax too thin. They have a strong stalk and
a coarse one, therefore, the flax prodaced is not so fine.
It has been found that 1680 pounds of dressed flax, when converted into cambric cotton handkerchiefs, spun by hand, employ constantly for ty de months 158 women in spinning, 18 ,5cavers. during the same period, in weaving it, 40 women in hemstitching or veining the handkerchiefs. Thus giving in all, cmployment to 210 persons the year roma, arising out of the growth of three acres of one plant useful in manufactures. This does not include the hands that are supported in raising the raw article. What a field for employment in a home market. At present, we could in no shape compete in price with the linen made in Ireland. French embroidered linen collars and linen cambric handkerchiefs are the beauideal of grandeur to our fair and gay ones, but the most of these articles come from the North of Ireland, which sell under a French name, and by giving "honor to whom honor is due," we say that they surpass the French goods. Much as has been said of Irish linen, and the fame it has conferred upon Ireland, it was the banished Huguenots of France that first introduced the manufacture into that country. This is one good that religious persecution in another country, did to Ireland.
A very valuable improvement has recently been invented in this State in the preparation and manufacture of flax. The flax is prepared, drawn in a certain state upon the common drawing frame, and it is spun like cotton, and on the same machinery. In short, the flax is so prepared as to ie drawn and finished on cotton machinery ; producing yarn far surpassing in beauty any ever produced in the common way, and at a great deal less cost, as it dispenses with the use of the Hetchell Gill Frame, except merely for spreading the flax into strakes. The linen trade will yet be prosecuted vigorously in the Northern States, for it is not likely that in the cotton manufacture, the North will be able to compete with ths South, in thirty years hence.-[Scientific American.

Mulled Wine.-One pint of wine and one pint of water.
Beat eight eggs and add to the above, while boiling, stirring rapidly. As soon as it begins to boil it is done.

Tamarind Whex.-Mix an ounce cf, tamarind pulp with a pint of milk, strainith and add a little whito sugar to the whey

304 Experiment in Wire Fence Making-Sale of Short Horn Cattle.

EXPERIMENT IN WIRE FENOE MAKING.

BY D. KINGMAN.

Messrs. Editors :-Belicving that my brothor farmers feel an interest in whatever experiments others may try, whether useful or otherwise in themselves consideredespecially if facts are stated, so that they can practice, throw away, or improve upon them, as their judgments may direct-I have been induced to send you my exparience in making wire fences.

During the last fall I constructed 104 rods of wire fence in the following manner:-I placed red cedar posts one rod apart, the posts being sawed about $3 . \frac{1}{2}$ inches square at the bottom, and $3 \frac{1}{2}$ by 2 inches at the top, and set firmly in the ground to the depth of 21 feet. I then bored holes through the posts with a $\frac{1}{4}$ inch bit-the upper one $4 \frac{1}{2}$ feet from the ground, and then $9,8 \frac{1}{2}, 7 \frac{1}{2}$ and six inches below, using five wires. Five inches below the lower wire I placed a board 14 inches wide, (with a short post in the centre to which I nailed the board,) which comes near enough to the ground. I then drew the wires through the posts and strained them by means of a lever, one end of which I stuck into the ground. I then looped the end of the wirc around the lever near the ground, and while one is drawning upon the top of the lever, I plug the holes tight with pins of red cedar, previonsly prepared, I usually strained the wires 15 or 20 rods at a time, and then spliced the wires by looping and twisting the ends, and proceeded in like manner again. After the wires are in and the boards on, I take pieces of wire of the right length and make one end fast to the upper wire, and then wind it round the wires below till I come to the board, through which I bore a hole and fasten the lower end of the wire; three of these wires between exich two posts, thus fastening it altogectier.

The upper and lower wires are No. 10, and the others No 11. I buaght my wire of Messrs. Pratt \& Co., of Buthilo, at $\$ 7.50$ per handred. The five wires weighed 35.5 pounds. The wire that I used to weave in up and down was No. 16, and cost 10 ceats, per pound: it took 25 pounds. My posts I bought in the \log (pretly largi ones) at $\$ 12$ per cord; one cord made 10.5 post; the namber used. It took 2000 fect of hemlock boards, which I reckon at $\$ 7$ a thousand. The sawing of the posts was $\$ 2.25$. The cont foods up as followe:-
355 pounds of wire, at $2 \frac{1}{2}$ cents $\$ 25.02$
15 pounds of wire at 10 cents 2.50
One cord red cedar posts 12.00
2000 feet boards, at 87 14.00
Sawing posts. 2.25
Making the cost of materials $\$ 55.77$
Which being divided by 104, the numberof rods of fence made, gives $53 \frac{1}{2}$ cents asthe cost per rod-aside from nails, of whichI kept no account.

Some of your numerons readers may be anxious to know whether such fence will answer the purpose in all cases. I can only say that mine is a road fence, and that when it was built, there was a good crop of pumpkins lying in the field along side, where they grew, and that notwithstanding many cattle and hogs made the attempt at them, they did not succeed; and my short experience goes far to convince me that no cattle, hogr, or fowls will get over or through it.

Ridgeway, N. Y., January, 1849.

Mr. Vail's Sale of Short Hora Oatlle.

A part of the stock of George Vail, Esq., of Troy, was offered for sale at public anction, at his farm, rear Lansingburgh, on the 13th ult. There was a large attendance ot gentlemen at the sale. Among others, we noticed R. I. Allen, Esq., one of the Editors of the American Agriculturist, and A. Stevens, Esq., of New York city; L. G. Morris, Morrisinia; Hon. A. Van Bergen, Coxsackic; Messrs. Prentice, Tucker, Howard, McIntyre, and B. P. Johnson, Esq., Secretary of State Ag. Society, Albany; Messrs. Kirtland and McCullock. Gresubush ; T. Hillhouse, Watervilet; Mr. Ogden, Quebec; Mr. Jem, Lewis County; Messrs. Jessu:p and Drinker, Penn. ; Col. D. D. Campbell, Schennctady; Mr. Starkweather, Maine; Gra. Wool, U. S. Army ; Gen. J. J. Viele, Troy; Amos Briggs, Eisq., Schaghticoke.

Mr. Vail gave, at his cotiage latoly erected on his Jarm, a fine collation during the progress of the sale, where everything was in the best style, and the gentemen in attendance were highly pleased with the arrangements, and all seemed gratified. The sales were at fair prices, and such as wo presume will be deemed encoureging ta breeders. We give a list of sales and parchasers, 80 far as obtained. There may be
one or two omissions. The nubers are from the catalogue :-
No. Cows \& Heifers \& Purchasers.

1. Sally, red and white, 9 years old, Mr. Niles, Washington co. N.Y. \$110.00 Her calf, 2 weeks old, Mr. Percival, Waterville
2. Judy 2 d , white, 3 years, Drinker, Jessup \& Co., Penn.
3. Queen 3d, roan, 4 years old, Col.
D. D. Campbell, Shenectady . . . 135.00
4. Countess 18th, roan, 3 years old,

Mr. Jean, Carthage Jefferson co.,
Her calf, Red Lady, No. 17, 2 months old, Mr. Jean, Carthage, Jefferson county
25.00
6. Victoria 2 d , light roan, 5 years old

Messrs. Drinker \& Co., Pemn. . . 105.00
7. Famy 2d, red and white, 3 years old. Mr. Jean, Lewis Co.
90.00
8. Ariadue 4 th, red and white, 2 years old, Mr. Burguyn, North Carolina . 105.00
9. Sophia 3d, red and white, 2 years old, Mr. Burguyn, North Carolina . 105.00
13. Charlotte 2 d , principally red, 2 years old, Mr. Ogden, Quebec . . 100.00
16. Queen 5 th, roan heifer calf, 2 months old, Mr. Burguyn, North Carolina
6 heifers were sold to Mr. Stark-weather,-at what price nol ascratained.

> Bulls.
18. Beppo, white, 3 years old, Mr. Holton, Vt.
19. Brutus, red, 2 years old, Col. D.
D. Campbell, Sclionectady 135.00

20 . Belvidere, roan, $1 \frac{1}{2}$ year old, Mr.
Remington. Philadelphia 150.00
22. Victor, white, 2 pears old, Drinker
\& Co. Pennsylvania
23. Nimrod, roan, 12 year old, Mr. Starkweather147.50

25 . Minpa, red and white, 12 year old, Mr. Harrington, Troy
26. Albion, red and white, 1 year old,
'I. Hillhouse, Watervilet
75.00

2s. Essex, red and white. 1 year old,
II. R. Burguyn, North Carolina . 80.00
29. henox, white, 1 year old, H. R.

Burguyn 85.00
White bull calf, Mr. Jean, LewisCo. 30.00
-Genesee Farmer.
Industrx.-"There is more pleasure in sweating an hour than in yawnidy a century."

COST OF FENOES IN THE UNITED STATES.
BY J. S. SKINNER.
The cost of building and repoiring the Fences in the United Sates, is enormous, almost beyond the power of calculation, and forces the inquiry, whether Legislatures ought not to be catled upon to compel every man to keep his stock to himself. Then no man, who did not chouse to do it, would be forced to enclose his land against the ravages of his neighbor's stock.

Mr. Biddle, a few years since, in an address before the Phinadelphia Agricultural Society, s:ated that the cost of the fences in Pennsylvania amounted to $\$ 100,000,000$, and their anmual expenses he estimated at $\$ 10,000,000$. A distinguished writer on National Vealth, says: "Strange as it may seem, the greatest investment in this country, the most costly production of human industry, is the common fentes which enclose and divide the fields. No man dreams that when compared to the outlay of these unpretending monuments of human art, our cities and our towns, with all their wealth, are left far behind. In many places the fences have cost more than the fences and farms are worth. It is this enormons burden which keeps down the agricultural interest of this country, causing an untold expenditure, besides the loss of the land the fences occupy."

Estimating a chesnut post and rail fence to last 18 years, and including inside fencing and repairs, the aunual tax to the farmer holding 150 acres, will be $\$ 130$ to $\$ 140$, and judging from the present appearances, the tax is perpetmal, and there seems but little hope of cscape from it.

Did the intelligent farmer refiecta inoment, and estimate the annual tax which his fences impose upon him, he would not rest till the system was abolished, or else the live hedge took the place of the present expensive fence of timber.

The system of compelling every landholder to enclosa his property, is peculiar to the United States, with only the exception of England, where the fence nuisance ap:pears again under the form of the hedge; and although these hawthorn hedges, when they are well tended-and not more than half of them are so-aro beautiful objects, and answer all the purposes of protection against the inrods of calle, still the ipablic: voice is beginning to ẹty out agimitis
because of the enormons amount of land required to support them. Each hedge is five or six feet wide at its base, and taking into account the amount of land they exhaust on either side, the whole space cannot be less than twelve or fourteen feet wide. When it is recollected that the divisions and sub-divisions of land in England are very numerous, the amount of arable land abstracted from the purposes of agriculture, is very great. It has been estimated at several million bushels of grain.-[Plough, Loom and Anvil.

Joctrn.

Singing Bidd's Petition to Spoartsmen.
Wouldst thon have me fall, or fly?
Hear me sing, or hear me die?
If thy heart is cold and dull,
Knowing nothing beautiful-
If thy proud cye never glows;
With the light love only knows-
If the loss of triends or home,
Ne'er hath made life wearisome-
If thy check has never known
Tcars that fall from sorrow's moan-
If a hopeless moiher's sigh
Brings no tear-drop from thine eye,
Thou may'st smile to see me dic?
But if thon canst luve the lay,
Welcoming the birth of May-
Or summer's song, or autumn's dirge,
Cheering winter's dreary verge-
If thou lovest beauty's hues,
Decked with light or gemmed with dews-
If, all meaner thoughts above,
Thou canst hope, and truss and love-
If, from all dishonour free,
Thou canst Nature's lover be-
Spare her minstrels,-pity me?
M.

Philadelphia, May, 18.49 - [Horticulturist.

forticultural.

Cleansing tho Bark of Fruit Trees.

This operation should be performed in early spring, as well as in midsummer. The rough, loose parts of the bark should be scraped off, as well as moss and other parasites. The bark should then be covered with the following mixture, as high as the operator can reach, with an ordinary longbandted white-wash brush:-Five pounds soup, ome pound fine salt, one pound sand,
two pounds potash, two pounds nitrate of soda, dissolved or mixed with water to the consistency of cream, and thoroughly rubbed. upon the bark.

Many kinds of insects are kept from the trees by a solution of whale oil soap alone, and manysuch as are resident in the crevices of the bark are destroyod by salt. The fine sand is intended, during the rubbing, to scratch the outer coating of the bark, and thus assist the other ingredients for more perfect action. The potash and nitrate of soda will decompose or soften the dead parts of the bark, so that during the summer they will be thrown off by the healthy action of the growing bark. If the above mixture be applied in dry weather, it will become so hard as to remain during several showers, and thus have time to perform its office. Trees with smooth bark, such as the plumb, many of the cherries, \&cc., should be rubbed with a wet, rough, woollen cloth, in a few hours after applying the mixture; fok rabbing will cause the sand to clean the ehrace so perfectly as to give the bark an iofroyed and more healthy surface. Trees somoletat sed are not so likely to be revisited byingecte as those left with their natural surfaces, nor: are they as likely to become bark-bound: Indeed we have never known a tree to exhibit the disease called bark-bound, the surfacc of the trunk of which had been softened by a soap-wash in early spring. The cherry, apricot, peach, and nectarine are aubject, when left to their natural state, to this disease, and it has usually been attributed to too rich or too moist a soil; and ur lerdraining and slitting the bark lengthwi- with the knife are the usual remedies. 'The one is expensive, and often impossible where choice trees are planted, and the other is barbarous and unsightly, causing exhalation of igum and consequent canker. In any case, afew applications of soap to the surface of the part hide-bound will remove the difficulty, and the mixture before recommended my be applied, slightly warmed, when required to soften the bark of a hide-bound tree.

Woring Farmer.

Freservation of the Tomato.

Mr. R. B. Morrell gives us the follow-ing:-
"The tomato, which has come into universal use, and is deemed a luxury by almost every one, may be preserved for printer use
in the following manner. When ripe, let them be prepared by stewing as for the table, and to the liking; put them in small jars (1 quart) with covers. Over the top put a piece of llnen or cotton cloth, which well cover, and press the cover on; then pour into the cavity melted mutton tallow, and keep them in a cool and dry place in the cellar until required for use. They need only tobe warmed to serve them for the table. I use small jars for the reason, that when exposed to the air they soon ferment."-[Albany Cult.

Aliscellancous.

Assaying Motals.

The assaying is the most curious and scientific of all the business in the mint. The melters take the gold dust, melt it, and cast it into a bar, when it is weighed accurately, ind a piece is cut oft for the assayer. He takes it, melts it with twice its weight of silver. ind several times its weight of lead. It is melted in small cups made of bone ashes which absorb all the lead; a large part of the silver is extracted byanother process, and the sample is then rolled out to a thin shaving, coiled up, and put in a sort of a glass vial called matrasses, with some nitric acid. The matrasses are put in a furnace, and the acid is boiled some time, poured off, a new supply putin and boiled again. This is done several times, till the acid has extracted all the silver and other mineral substances leaving the sample pure gold. The sample is then weighed, and by the difference between the weight before assaying and after, the true value is found. All the silver over and above five pennyweights for each lot, is paid for by the mint as its true value. The gold, after it has been assayed, is melted, refined, and being mixed with its due proportion of alloy is drawn into long strips (not unlike an iron hoop for a cask) the round fieces cut out with a sort of punch, each piece weighed and brought to right size and put into a stamping press, whence it comes fortha perfect coin. -Scientific American.

Utility of Nettes.

The Medical Times says it is a singular fact that steel dipped in the juice of the nettie becotaes flexible. Dr. Thornton, who has made the medical properties of our wild
plants his peculiar stady, states that lint dipped in nettle juice and put up the nostril, has been known to stay the bleeding of the nose, when all other remedies have failedand adds that fourteen or fifteen of the seeds ground into powder, and taken daily, will cure the swellings in the neck known by the name of goitre, without in any way injuring the general habit.-[Scientific Amer-ican.

> Maternal Influence.

The mental fountain is unsealed to the eye of a mother, ere it has chosen a channel, or breathed a murmur. She may tinge with sweetness or bitterness the whole stream of future life. Other teachers have to contend with unhappy combinations of ideas. She rules the simple and plastic elements. Of her, we may say, she " hath entered into the magazine of now, and seen the treasure of the hail." In the moral field she is a privileged labouren. Ere the dews of morning begin to exhale she is there. She breaks up a soil which the root of crror, and the thorms of prejudice have not pre-occupied. She plants germs whose fruit is for eternity. While she feels that she is required to educate not merely a virtuous member of socety, but a Christian, an angel, a servant of the Most High, how does so holy a charge quicken piety, by teaching the heart its own insufficiency!
"The soul of her infant is uncovered before her. She knows that the images which she enshrines in that unoccupied sanctuary must rise before her at the bar of doom.Trembling at such tremendous responsibility she teaches the little being, whose life is her dearest care, of the God who made him ; and who can measure the extent of a mother's lessons of piety, unless his hand might remove the veil which deivides terrestrial things?
"When I was a little child, said a gond man, my mother used to bid me kneel beside her, and place hes hand upon my head while she prayed. Ere I was old enough to know her worth, she died, and I was left too much to my own guidance. Like others, I was inclined to evil passions, bit often felt myself checked, and as it were, drawn back, by a soft hand upon my head. When a young man I travelled in foreign lands and: was exposed to many tomptations. But when I would have yielded, that same hand wastymern
my head, and I was saved. I seemed to feel its pressure as in days of my happy infancy, and sometimes there came with it a voice, to my heart a voice that must be obeyed- 0 ! do not this wickedness, my son, nor sin against thy God.'"

Beauty.

Some are more susceptible to the beauty of the face, and implicit homage is rendered to it; oftentines to such a degreee, that those who are destitute of this giff, are viewed with apathy or disgust ; while their minds are erroneously imagined to correspond with their uninviting exterior. Pleasant is it to gaze upon lovely features, catching ${ }^{\circ}$ e almost heavenly expressions, which irradiate them; but how soon are we tanght their evanescence! Sickness, afflictions, age, and a multitude of lesser ills will cventually imprint upon that delicate brow, Time's fatal seal; and how often concealed 'neath this pleasing guise, exists a heart cold, uncultivated, and actuated by no motive save selfishness. True, we happily find it is not always so; and how transcendently charming does it appear, when the countenance is the beamingindex to a mind and soul, sanctified and adorned with holiness and love :Boston Cultivator.

$$
\overline{\operatorname{siander}}
$$

Yes, pass it along, whether you believe it or not-that one-sidad whisper against the character of a virtuous female. You say you don't believe it, but you will use your influence to bear up the false report and pass it on the current. Strange creatures are mankind! How many reputations have been lost by a surmise ! How many hearts have been bled by a whisper! How many benevolent deeds have been chilled by the shrug of a shoulder! How many individuals have been shunned by a mysterious hint! How many chaste bosoms have been wrung with grief by a single nod! How many graves have been dug by a false report! Yet you will pass the slander along; you will keep it above the waters by a wag of your tongue when jou might sink it forever. Destroy the passion for telling a tale we pray you. Lisp not a word that may injure the character of another. Be determined to listen to no story that is repeated to the injury of another, and as far as you are concerned the glapiere will die. But tell it once, and it
may go as on wings of the wind, increasing with each breath until it has circulated through the state, and brought to the grave one who might have lived and been a blessing to the world.

Never go Back-Never go back-never. What you attempt, dowith all your strength. Determination is omnipotent. If the prospect is somewhat darkened, put the fire of resolution to your soul, and kindle a flame that nothing but the strong arm of death can extinguish. Energy and porseverance are more potent than the gold of drones.
Moral Character. - There is nothing which adds so much to the beauty and power of man as a good character. It is his wealth, his influence-his life. It dignifies hina ia every condition and glorifies him at every period of his life. Such a character is more to be desired than every thing else on earth. No servile tool, no crouching cycophant, no treacherous honor seekerwill be such a character. The pure joys of righteousness never spring in such a persou. If young men but knew how much a good character would dignify and exalt them, how glorious it would make their prospects, even in this life, never should we find them yielding to the groveling and baseborn purposes of human nature.

True glory consists in doing what deserves to be written, writing what deserves to be read, and making the world the happier and the better for having lived in it.

Cure for a Horse Pulung at the Haiter.-Fold one ear under a small strong cord which fastens him. He will give one jerk but never a second.-[Boston Cult.

Eflarkets, ©it.

Liverpoos, July 9.-The corn marke ${ }^{\text {t }}$ has been dull throughout the week. American flour 24s. to 25 s . 6 d . per barrel. Indian corn has further declined 6d. to 1s. Bacon has been in good demand, at a reduction of 2s. per cwt. Ashes have also declined 1s. per cwt.

Toronto, Angust 1.-Flour 17s. 6d. to 21s. 3d. Uatmeal 15s. to 18s. Wheat, per bushel, 3s. 6d. to 4s. Rye 2s. 6d. to 3s. 2d. Barley 1s. 6d. to 1s. 9d. Oats 1s. to 1s. 3d. Peas 1s. 4d. to 1s. 8d. Potatoes, new, 53. Onions bs_{s}. Batter 6d. to 7 fd .Eggs, per dozen, 6d. to 7d.

