IMAGE EVALUATION TESī TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.
\square Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.
\square Coloured pages/
Pages de couleur

Coloured plates/
Planches en couleur

Show through/
Transparence
\square Pages damaged/
Pages endommagées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

Additional comments/
Commentaires supplémentaires

Bibliographic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Bound with other material/
Relié avec d'autres documents

Cover vitle missing/
Le titre de couverture manque

Pagination incorrect/
Erreurs de pagination

Pages missing/
Des pages manquent

Maps missing/
Des cartes géographiques manquent

Plates missing/
Des planches manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition and legibility of tise original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowad from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure ars filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec la plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Caneda

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées á partir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

528905

REPORT OF COMMITTEE

 ...ON...
Topographical Surveying.

Orto J. Klotz, Chairman.

(Extract from the proceedings of the Asssociation of Ontario Land Surveyors for 1899.)

Report of Committee on TOPOGRAPHICAL SURVEYING.

Otro J. Kılotィ, Chairman.
(E.etract fiom the l'roccelings of the Associntion of Ontario Land Surveyons
for $15 \% 1 \%$)

Mr. Presindent,-Your Committee on Topographical Survey. ing beg to report as follows:

Athongh since the last report the inatgatation of active work camot be reported. yet matters of importance have taken place,
 toms has been brought forwated in a specifie matner. The Commitee refers to the paper by 11 . S. Iritchet.t. Superintendent of the U. S. Coast and Geodetic Survey, on " I lan for International Measurement of an Are of the ysith Meridian," read before the Royal Society of Camada, May 2711, sess, a cope of which, with his aceompanying charts, is herewith submitted, to be incorporated with this report.

Your Chairman was present at the reating of the paper, and took part in the diseussion: he also presented a cope of the Menorandmon prepared by the Committe of the Dominion Land Surreyors' Association in 1888, on the general seleme of a "Trigonometrical Survey of the Domimion," and read extracts of letters to him from ()r. (iill. Astronomer Royal at the Cape, earnestly advocating the latter.

The reading and discussion of Dr. Pritchett's paper was folfowed by a memorial from the Royal Socicty to the Federal Gov(rument supporting the scheme, to which the Mexican Gover:mment has already siven its support.

Yon will notice that the gSth meridian has been chosen on acconnt of its great length on land, and, therefore, available for measurement.

In our country it passes a little west of Wimipeg, through Lake Wimnipeg and on towards King William's Land, in the Aretic, together about 750 miles.
liom the geographical position of this meridian, it will be seen that its utilization for our practical purposes is rather circumseribed,
and a prolongation of the obligue are along the ithatic, extending to our borders, through New hrmewick, Nova Sontia, and Capm lireton, would serve more nsefol purposes for land surveys and acenate delancation of topographical features there than that offered by the gsth meridian. However, the latter as an internat tional work, and one of the highest importance from a scientific point of view. deserves onr hearty support, and we shonde take pride in taking part for the first tine in an matertaking of such import, toward which every civilized and proseressive nation of the world hats bent her energies in some way.

It mast be impressed that the inatugration of this work is a serions matertaking, for the work, in order to be valuable mast be done as well as ean be done anywhere, otherwise its value will be comparatively useless for the object mew. Vexperienced men foe such work we have not maty, and we would necessarily have "to feel otur way."

However, if the measurement abong the ofth meridian is inangratated, the seheme for a general miangulation of the Domiaiain would nocessarily and undoubtedly follow.

For this reason, too, we think that the support of the Association should be extended for the international measurement of thes meridian, and formally presented to the Dominion Government.

NIl of which is res ectfully submitted.
Отto J. Kıorz, (hairman.
Febrnary 27. 1899.
The necessite for a careful and aconate triangulation of ans combtry, as the basis of a systematic surver, is so well established. and the expense involved in such work so well justified on atilitarian gromds, that no defence for such expenditure on the part of any civilized combtry is now needed.

The large systems of triangulation, which have been constructed be different commtries. have usmally been designed as the bases of sistematic survers. Their employment in the determination of an are, either of a meridian or of a paralled of latitude, has been ordinarily a secondary consideration, but the value of the data furnished by such triangulation schemes, for the final solution of the problem of the earth's spheroid, are of such high interest, that most nations have been glad to shape their plans for triangulation in such a way as to accomplish the latter end as well as the former. The necessity for an accurate triangulation across Canala, as the basis of a systematic map of the combtry, needs no argument from me. but I gladly avail myself of this opportmity to call to the attention of the Royal Socicty a plan by which, not only the ntilitarian object of a primary triangulation may be secured, but also, a plan by

Which, through the eo-operation of the three Governments in Noth immerica, an international geodetic work, of the highest value to this continent and to the work, may be carried out.
'The size and shape of the eath may be fomble either from two meridional ares or two longitudinal ares, or from a single obligue arc. The first method was exclasively emploged daring the hast centary, becanse it was possible to determine latitudes with far serater precision than longitudes; but, in recont times, the electric telegraph hats so simplified the determination of longitudes, that the last wo methods may now be applided with entire suceess.

All three are comparatively smple in the ir theory. althongh the problem, considered in detait, becomes an intricate and difficult one.

The process in each ease is as follows:- For the first ease, we have only to measure the length of two lines ramoing north and sontl!, and observe the latitutes of the extremities. from this data, the flatening is first foumb, and afterwards the absolnte lenget of the axis. This methor was that used up to the present time, and our knowledge of the figure of the earth, and of the eonstants of the spheroid. depends wholly on measurements of such ares of the meridian.

The second ease, that of determining the earthis figure by means of longitudinal ares, is rapidly coming into use, on account of the application of electricity to the determination of longitudes. The fundamental idea, like the preceding one, is simple. We measure the distance between two points lying neally, or exatly, east and west, determine their longitudes, and, also, their reciprocal directions. The latitudes need not be accurate when the observations are near the equator, and when the line is nearly east and west the azimuths do not need to be acemately kown. A second are gives similar relations, and by means of both we can determine the earth's compression and its absolute size.

A thitel way of getting at the constants of the spheroid is by an obligue are, such as has just been completed in the L'nited States, between the northern part of Mane and the sonthern part of Alabama. Here we have a case, where the directions between the extreme points are of much greater importance than in the last method. As usual, the latitude of the extreme points must be found, and with this data, and the reciprocal azimmths, the flattening of the earth may be deduced. The simple addition of the length of the line joining the two points, enables as also to find the size of the earth, and thus completely determine the figure. It is evident that the method is not applicable, when the line is nearly north and south, or east and west, or when the work lies near the equator. The most favorable conditions are when the are is quite obligue to the meridian, and above middle latitudes.

Two discussions of the form and size of the earth are in use in geodesy, and both depend entirely on the results obtained of
measmes and ares of the meridian．The first of these is that ob－ mated hy bessel，in $18+1$ ，front ten small ares，whose ageregate lengta amomed to 50.6 degrees．This disenssion gave ath equa－ torial value of the radits of $6,377,397$ meters，attel a polar semi－ axis of $6,356,079$ meters，and a value of the compression of $1-20 \% .15$. The ares employed in the disenssion are all short，and are now cons－ sidered of little importance．The restalt，however，was by far the most corred mp to this time ath was acopted miversally amoms
 a combination of five ares，having an atseresate kength of 76.5 degrees，be dedneed an equatorial radias of 6．378，zof meters．and a polat semi－ixis of 6，356．5欠t meters，giving a compression of 1－29f．ers．＇The ares inchuled in this result were the buglish，the
 Cobome（Clarke pablished amother disemssion of the problem of the carthes figure from a disenssion of sis ares，whose ageregate lengeth was 81.7 degrees，from which be deduced values slightly different from those just given．Firom the homolographic projection which acompanies this paper，the meagreness of the data is at once exi－ dent．See fig． 1.

I heg mow to call your attention to two ares which have been completed in the Coited States be the Const and beodetic Surver． and which，with the exception of the lerndian are，and a few small ares measmed years ago in the $($ onted States atal of bat little value， constitute the firs important comtributions to the determination of the figure of the eath mate in the western hemisphere．The first of these is an oblique are，extemling from Calais，Me．，to Nobile， Nia．，a distance of $22 . i$ degrees，or 1.525 stathte miles．The mbin－ ber of principal triangulation stations is 572 and the mamber of base lines 6：6i latitudes， 4^{8} azimuths and it longitudes，all tele－ graphic，constitute the astronomical data for the disenssion．The ease with which this are cond be extended from the Canalian bor－ der to Cape Breten is evident at once，from an inspection of the map of the region．This extension would increase the length of the are about 5 deg．．and would，at the same time．form an admir－ able foundation for a trigonometric survey of the Maritime pros－ vinces．

The second are is that which is just nearing completion．an are of the parallel in latitude 39 deg．The character of the triangula－ tion thronghout the extent of this are varies greatly，on account of the difference in the character of the combtry．The terminal points of the are are Cape May，N．J．，and Point Arena，Cal．The length of the arc measured on the parallel is 48 deg． 46 min ．，equal to 2620 statute miles．The number of base lines is ro，the length of the sliortest being 2.4 statute miles，and of the longest 7.9 statute miles， or an average of 5.3 miles．The average number of conditional
equations, subsisting in the triangles of the base net, is between 20 and 21. A number of different kinds of apparatus were employed in the base measures. They all depend on the committee meter as the unit of length. This iron meter is one of the original standards introdued by the Fiench committee in 1879, compared an different times and by different means.

The distance between adjacent base lines varies from 108 miles to 531 miles. This long chain of triangles is characteristic, as compared with similar undertakings, by its strength of composition. The chain consists of quadrilaterals, central figures, or other strong combinations of triangles. The size of the triangles, where they cross the central valley is of necessity of ordinary character; but in crossing the Rocky Mountains their utmost development has deen reached. The longest side of a triangle, from Mount Ellen to Lincompaghre, was 182.1 statute miles. The highest trigonometric station was 14,396 feet, and the spherical excess of the adiusted triangle was 73.8 seconds, the triangle having an area of 5.600 scuare miles. The observation of this gigantic are was begun 27 years ago, and the last observations which remain to complete the work are now in progress. They will be finished during the present summer, and as the discussion of this vast amount of material is already well advanced, it seems possible that we shall have the results of the completed work ready for publication within the next eighteen months. A preliminary discussion of these results points to certain interesting conclusions relative to the form of the ellipsoid which will best represent this portion of the globe.

The results of the discussion point in the same direction with the preliminary discussion of the are of the 52nd parallet in Europe, namely, that the curvature is greater than would be required in an oblate spheroid of the dimensions of our earth.

Without, however, attempting to give in detail these preliminary results, I beg to call your attention to the inanguration of the measurement of an are of the 98 th meridian, which has already been begun in the United States, and which, if it could be extended along its whole length throughout Canada and Mexico, would make by far the longest are of the meridian which has ever been measured, and would, taken in connection with the are of the parallel, and the are which I have just mentioned, give data for a most excellent definitive discussion of the spheroid which would best fit the continent of North America. This are, as is seen from the attached sketch, extends throughout the United States, north and south, and from the southern limit of Canada to the Frozen ocean, and from the sonthern limit of the United States to the Pacific at Acapulco. The southern end of the are is in latitude 17 deg., and the northern limit of the are may very well be extended to 67 deg.,
making a total length of 50 deg. The lengest ares of the meridian heretofore measured are the following:
The Anglo-French arc................... 22 deg. 10 min.
The Russian arc................. 25 ". 20 ".
The Indian arc.................. 23 ".
49

It will thus be seen that the are here proposed is double the longe: are of the meridian which has up to this time been measured. The value of this are, as compared to the part lying in the United States, alone would be emormons. Dr. (iill has cald 1 attention, in the report on the Geodetic Survey of South Airica, 18831892, pp. 157-159, to the great advantages to geodesy, which accrue from the measurement of long arcs.

The length of the are in the three comutries is as follows: In Canada, to latitude 67 deg.. 760 miles; in the Linited States, 1.590 miles; and in Mexico, Gyo miles: in all, 3.040 miles. The character of the country through which the triangulation would need to be carried is such that it would be comparatively inexpensive, unles in Canada the forests should ' 11 to the expense. A very close estimate of the cost of this wr can be gained from the cost of similar work in the measurement of the 39 th parallel, since more than a thousand miles of this are passed through a region which was entirely similar to that contained in the are of the e8th meridian. I find, after a careful investigation, that the entire cost of this work. including salaries, expenses of travel, instrmments, and crection of sigmals, subsistence of parties, and all expenses comnected with the work, was at the rate of $\$$ I20 a mile. At the present time it could doubtless be done for less; probably at the rate of $\$ 100$ a mile. The sides of the triangles would be from ten to thirty miles, and the work would be in every way analogus to that which has alrealy been carried on along the 39 th parallel, through the States of Indiana, Illinois, Missouri, Kansas, an! portions of Colorado. Part of this line, at the time when the observations were made, was heavily wooded; and reguired the cutting out of long and expensive lines, the removal of obstructions, and the building of signals, which made that work quite as expensive, if not more so, than the work of the 98th meridian would be. At this estimate. the cost to the three countries would he as follows: To Canala, $\$ 76,000$; to thי: United States, $\$ 159,000$: and to Mexico, $\$ 69,000$. The rapidity with which this work could be carried out, would depend on the number of parties that can be put in the field. It is expected that the part of the triangulation lying in the United States will be finished in from six to eight years.

Without going into any longer discussion of this matter, one may say. briefly, that the completion of this measurement of the

08th meridian would, combined with the measurement of the $3 y$ th paralle alreaty completed, make an epoch in our knowledge of the earth's figure and size, and would furnish data which conld probably never be improved upon. so far as the North American continent is concerned. See fig. 2.

In suggesting this co-operation in a great international work. it seems fitting to call attention to the history of the laternational Geodetic Association for the measurement of the carth. The first plan for co-operation in geodetic measurements on a large scale seems to have come from General bayer. In 186 he wrote to the Prussian Minister of War recommending that the nations of middle Europe should combine forces, and devote themselves to the solation of this problem: and calling attention to the fact that France had undertaken the work on a large scale in the eighteenth century, England and Russia in the nineteenth, and that the eastern and western parts of the continent were mach farther advanced in this work than his own comentry. At this time only three ares of the meridian had been measured in Europe, and the anomalies in the deffection of the pimmb line had not been explained. The first and most natural proposition was that these anomalies were due to the attraction of the monntains, but when deflections of the plamb, line were found on extended plains, and when, as they then supposed, the great Himilayas exercised no appreciable effect, they were led to suppose great changes of density in the earth's surface. Perhaps this phase of the fuestion stimulated, as much as anything else, the co-operation of the different Govermments: and in October, 1864 , there was effected an organization for the measurement of ares in middle Earope. Nincteen States gave support to the project. This general plan remained unchanged until 1887. when the middle Enropean association was merged into an international one, and nations from all parts of the world became parties to the convention. The organization was contimed for a period of ten years. In 1896 new powers were assumed by the organization, and a new convention to last for ten years, or intil 1906. was drawn up. The following conntries have joined this convention:

Germany,	Spain,	Japan,	Roumania,
Austria-Hungary,	United States,	Mexico,	Russia,
Belgium,	France,	Norway,	Servia.
Chile,	Greece,	Holland,	Sweden,
Denmark,	Italy,	Portugal,	Switzerland,

It is with very great pleasure that I am able to add that, within the last month, Great Britain has also given her adherence to this, convention, and has named as delegate and representative on the permanent committee Professor George Darwin.

This is. in brief, the origin and growth of the present inter-

Fig.II.
national organization. An outline of the methods of the work, and the results attained, will show what is being done by concerted national action to determine the size and the figure of the earth. From the begimning of the work 11 , to 888 , the results were largely of local importance. Each State Government reported on the operation; within its horders, and which were intended primarily to serve as bases of maps for the varions countries. The triangulation, meastre of hase lines, astronomical observations, prectise levels, and tidal observations, found their greatest use locally, but in the last ten yeats (questions have been taken up) which are of the greatest interest to each individual comntry, and to the world as a whole.

As illustrating the methorls which are now being pursued, I may mention that the last molertaking on the part of the lnternational (ieodetic Association contemplates a final and definite solution of the variation of latitude. The association proposes to establish four stations, as nearly as possible at equal distances around the carth, and all within half a mile of the same parallel of latitule. The character of latitude variation from season to season is now comparatively well known, and the fact that we are sixty feet nearer the equator at one season of the year than at another no longer appears startling, but the results so far have been to a certain extent vitiated by the fact that the star places are uncertain: and althongh by an ingenious method of combining the observations this defect to a large extent disappeared, nevertheless the observations do not yield the desired precision. The method proposed by the Internattional Association, and now in progress of being put into practice, will be free of any errors in the accepted position or proper motions of the stars. This can be accomplished by locating the points on the same parallel of latitude, and as nearly as possible equally distant. Four stations have been chosen, all on the paralle! of 39 deg .8 min . Two stations are taken in the United States, one on the Athantic coast, and one on the l'acific coast: one station in Japan, and one in Italy. At the present time, a most careful examination of the topography of the various regions in which stations are to be established is being made, in order that all the conditions may be comparable and well determined. It is proposed to carry on latitude observations with precision at these four stations, for a period of seven, possibly ten, years: at the end of which time sufficient data will be at hand to prediet the position of the pole with all the precision necessary for the most refined astronomical calculations for at least a century to come.

The result of this international effort at co-operation scems so striking, and the ends to be aceomplished are so well worthy the efforts of the best thought and the best energy of any nation, that
it seems a fitting example to envourage an effort of similar cooperation annong the nations of the North Anerican continent.

Nome-Since this paper was read, the Govermment of Dexien hats amonnced, through the secretary of the lnterior, its readiness to mudertake its part of the work here proposed.

[cors.]

To II is E.rechlency the Gozernor in Comncil, ctc.:
The Royal Society of Canada has the honor to bring to the notice of Your Excellency a proposal by Dr. Pritehett. Superin. tendent of the United States Coast and Geodetic Surver, to measure an are along the g8th meridian from . Xeapuleo, Mexion, the the shore of the Aretic Sea in Camata. Dr. Dritehett's views are explained in a paper read bey him at the last meeting of the Society. i copy of this paper, with explatory maps, is appended.

The measurement of the g8th meridian has been in proseres for some time as part of the gencral survey of the Conted States. 'The object of Dr. Pritehett in urging its extension through (anata annd Mexico is to provide data for the determination of the figure and dimensions of the earth and while from this point of view the work would be purely scientific, the Canadian portion of it would also be of great practical utility in forming the basis of a thorough geographical survey for this Dominion.

White it is true that the promotion of science is mainly clue to a few of the most adranced and wealthy nations and that these nations have frefuently sent experlitions, or established stations, abroad when information had to be obtained in semi-civilized or wild and minhabited conntries, it is also a faet that the least favored of the civilized nations have not minfeguently assumed th. tats of assisting science to the extent of collecting data obtamable within their own borders.

In the present instance the starvey is in proseress within the limits of the United States and quite recently the Govermment of Mexico has announced its readiness to molertake its part of the work. The successful execution of the project as a whole. therefore, now entirely depends on the co-operation of Canada. It is respectfully sugested, therefore, that a limited gratht for this purpose would be regarded as a contribution to aid in the general researches of the nations of the world. while at the same time it would serve to inatugurate a very much needed work and one of great practical importance to the future of the Dominion.

Extensive triangulations have seklom been molertaken upon
sciemific gromds alone; their prinary object has been militarian and to provide a hasis for systmatio survers. Withous such a basis there is no tinality in results; the same sromed is being surreyed ower and ower agath, as is the case in the Dominion, by the land surveror, the geologist, the rathay and canal emgineer, the lodrographer. Fior every new project a bew surver has to be made. The lalour and expenditure on these surveys would be considerably reduced and oiten entiody monecessary if we had a systematio triangulation carried ont ats in other commtios. This fact has tong been recognized in Enrope, where every comtry has been accurately mapped. Outside of Europe may be cited the United States, whose triangulation is well advanced: India, which offers a striking instance of extensive and well conducted survers: the Cape of Good Hepe and Natah, which have exeented a joint triangulat tion of South \backslash frica: New Zealand, where triangulation has preceded atl other survers. It must but be suppoed that there were no objections raised in these combries whe ine peption of the work: on the contraty, it wats frepuchtly opposed by those who did not modersiand its practical value. but their opinions changed after these had been in a position tw aprectate its mefuluess. Of the surve
 (:ape, siys:
 raising the whole tone of surver operations in sonth \backslash fricia Strongly as it wats at first opmosed and spmbingly as it was main-
 more warmly than the Surver- (ienerals of the Cape Colony and liechmanaland."

The triangulation of the ostlo meridian would be for Camala the first step in the right direction, to be followed be others, as the resomeses of the combry would allow. It is levieved that an apporpriation of say soooo for a few years would be sufficient to carry to completion the measmement of the usth meridian. The Rowal Society of Canala strongly reommends such a gram, and believes that the work will be of great benefit to Canala, not omly ly immediate practical resnlts. Dut also in placine the combtry in a more favorahle light before the seientific work.

And your memoralists manbly pray that Cour Excellency will bake the foregoing facts into your favorable consuleration.

