The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres docume.ıts

Tight binding may cause shadows or distortion along ir terior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

MARSHBANK'S PATEN'T FOUNDHY CUPOLA.

We illustrate, on the preceding page, what we considor to be a valunble improvement in Cupulas for multing iron. The impruvement consists in a peculiar construction and arrangement of the interior lining. This construction will be understoud by reference to the engraving, in which Fig. 1 is a front siew of the Cupoln, Fig. 2, a longitudinal section; Fig. 3, a plan view, showing the interior lining, and Fig. 4, a horizoutal section, taken through the line x, x, of Fig. 2 .

A, represents the outer shell of the Cupola, and B, the interior lining, whichlatter is made in oval oblong form, as shown, which form i, curried up or continucd to just beluw the chargedoor C. This is done fur the purpose of shortening the distance from the discharge of the tuyeres to the centre, requiring less pressure of the blast to carry it to that point than is required in uther forms of Cupolas. D, D, represent the tuyeres, which are arranged on opposite sides of the Cupula, so as to alternate, or, in other words, the blast from each tuyere comes directly opposite the space between tuyeres on the other side. By this arrangement of the tuyeres, the blasts from the..1 do not inturfere with each other; but a limited pressure wilh carry them into the centre of the charge on the coal-bed, thereby obtaining an uniform combustion of the fuel, and preventing the formation of a central core, which, in heavy heats, causes the rolling of the charges over on the tuyeres, and clo-ging of the same. Above the tuycres, the oval obiong lining B, is thrown back, making it of egg shape, wh ch accomplishes the following important resuits. First, it increases the area of melting surface at the best melting point over the tuyeres, aud where the blast is must eficient, second, by this form of lining it prevent - the blast from cutting it away, as is the case where the lining is straight, and, third, it prevents tue possibulity of the stock lodging or bridging, which is often a source of annoyance and expense, as a general thing, in other Cupolas, where they are worked up to their capacity, the only remedy for this, being, heretofore, to drop the bottom, and do the balance of the melting some other time. The lining B. is contracted at the top, at the charge door C, for the purpose of preventing the escape of the gases, and a too rapid ignition of the coal between the charges before it reaches the real melting point above the tuyeres, thereby economizing fuel. E, E, represent the oprnings to the tuyeres, and to the insido of ticc air-chamber G, constructed in such a manner than any obstructions to the tuy a can be readily removed at any time.

It is claimed that by the use of this Cupola, a given quantity os iron can be melted in a shorter space of time, with less fuel and less pressure of blast, than in any other 'upola; and, at the same time, that a softer iron will be p oduced.- American Artisan.

LIGHT-HÓUSES FOR TRINITY SHOALS AND TIMBALIER, GULF OF MEXICO.

On Nov. 15th, 1871, tho U. S. Treasury Department iscued a circular to iron manufacturers, infurming them that seale 1 proposals would be received at the office of the Light House Board, until the 4th of January, 1872, for furnishing the waterial, apparatus, tools, and labor, of all kinds necessary to construt first order Iron Light-Houses fur Trinity Shoals and Timbalier, Gulf of Mexico, in accordance with specifications and drawings which accompanied the circular. The Light House Buard, were, themselves, to furnish the glass for the lantern, the lenses, lamps and furniture. Upon receipt of the scaled proposals, the bidding of the Architectural Iron Works of New Yorls, was accepted. The proprietors at unce proceeded to the construction of the light-huuses, one of which is now completed, and the other is in process of completion. Both are alike, and the accompanying engraving for which we are in jebted to the columns of the American Artisan, is an excellent representation of the one the firm has recently built. (Prepared by their special artists.)

The light-house is supported upon nine wrought-iron piles, eight of which are disposed at squal distances around the ninth or centra! pile, from the axis of which the others measure each twenty feet. The structure has thos an octagonal jlan, each side of the octagon measuring a little less than fifteen feet three and cight-tenth inches. The piles penctrate fifteen feet into the shoal, each being, furnished at its lower
end with a cast-iron screw. The piles are held in position at the ground by adjustable chord links of wrought-iron.
Above the heads of the piles, the superstructure rises in the turm of the frustum of an octagonal pyramid, measuring vertically, ninety-three feet from the axes of the pile heal ties, to a horizontal plane, three and threc-quarter inches bolow the upper surface of the watch room floor, in which nlane the axes of the inclined columns at their extremo upper ends measure fuur feet six inches, horizontally, from the F 's of the tower. At the base of the pyramid, the radius f the circumsuribed circle is twenty feet, being the distance from the axis of the tower to the axes of the inclined columns. The inclination of the corner columns, is therefore, twelve inches in six feet, veitical measuro. The six sectiuns which comprise the frustum of the pyramid, have their heights as follows: The foundation series is twenty feet from the under side of the lower collars of the piles to the axes of the horizontal ties at the pile heads. The first series above the foundation has a height of fifteen feet from the axes of the pile head ties, to the top of the floor of the dwelling, or base of the second series. The second series has a height of eighteen feet from the surface of the first floor of the dwelling, to the under side of the cornice, frieze and roof girders.
The third series has a height of eighteen feet, measuring from the under side of roof girders, to the axes of the ties at the base of the fourth series. The fourth series has a height of fifteen feet six inches, measuring vertically between the ases of the horizontal ties. The fifth series has a height of fourteen fect. The sisth series has a beight of twelve fect six inches, from the axes of the hurizontal ties at the base of this series, to the $t\lrcorner p$ of the frastrum of the pyramid. The cclumus of the first series, are of wrought-iron, forged tapering. The columns of the other series are of hollow cast-iron, decreasin ${ }_{k}$ in diameter as they ascend with the successive series.

SOUTHBY'S ECONOMIC G.IS RANGES.

The principle of those economic gas ranges and roaster, as shown in the above illustration, differs from that of all other gas cooking apparatus, in that the gas is burnt in a chimney, the lower end of which is left freely open, while its upper end delivers a highly-heated current of air into the upper part of the vessel in which the articles to be cooled are placed ; this vessel having no escape for the heated air except below the level of the articles to be coosed. Many advantages are claimed for this arrangement. 1st. The gas being burnt ial a strong current of fresh air, the combustion is perfect. 2nd. The heated air escrping only at the bottom of the vessel instead of, as in other apparatus, at the top, it is that portion which has given out its heat to the articles in process of cooking that escapes instead of the hottest al: unused portion, thus producing a much greater economy of gas. 3rd. The meat always being cooler than the air by which it is cooked it is surrounded by a descending current which, the exit being at the bottom, escapes freely; whereas if the exit was at the top it could only eddy round and round. This secures that the great bulk of tan aic adraitted into the apparatus shall pass immediately over the surface of the meat, carrying away with it all the vapours given off as fast as they are produced, thus insuring the same perfect ventilation as before an open fire, and preventing any possibility of the disagreepble flavour of oven-cooked meat. An iacidental advantage of the even temperatue secured by having only a bottom exit for the air, is that all the space in the apparatus is available for cooking, and also makes it an unrivalled oven for baking pastry.

Much surpriso has been expressed at the makers of this gas cooking apparatus chosing illuminating jets in preference to the atmospheric burners, for which greater economy is usually claimed; but they maintain that the former have great advantages; at the same time for cooking purposes they are equally economical when properly used. Atmospheric burners of all kinds are liable to be lighted inside the mixing chsmber, producing aeroline smoke and varivus othe- noxious products of imperfect combustion. The simple uniol jet is frec from this objection; and, as they contend for thi economy, a given amount of gas burnt freely in air must p oduce exactly the same amount of heat, for as long as the u.timate products are water and carbonic acid, only the same a mount of oxygen can have been used, and the
same amount of heat developed, the only diffirence being that in the atmospheric burner the carbon and hydrugen aro both uxidised bimaltancously, whereas in the illuminating jet the hydrogen burns first, intensely heating the particles of carbon, which thus vecome luminous, and are then perfectly uxidised as they come in contact with the air at the nurface of the flamo. Who result of this is that the total hat developed is the same in both cases, for the same amonnt of gas consumed; iut whereas the hot gases produced bis the air burner will only radiate about one-tenth of their heat, the rest benug in the form of highly heated gaceous matter, in the other sbout one-half tho heat is developed in each form. If, therefore, the radiated heat is allowed frecly to dissipate rtself a larger portion is lost when illuminating jetsare used, but if, as in this apparatus, tho juts are surrounded by a climney, so that the radiated heat cannot excape, tho results would be the same in both cases in producing the comparativily moderate temperature required for cooking.
Tho pateutee is A. G. Southby, Esq., London, Eng.

THE SOUDAN RAILWAY EXPEDITION.

(Continued from page 135.)

Aiter quitting the Nile at Ambukol, about letitude 18 degrees, sad the northern limit of the tropical rains, the Bahiuda desert is reached. This tract of country is very unlike tho sterile and rocky districts further north and bhuls abuadaut signs of vegetation along the course of the proposed railway. Wadys, pastures of long, coarse grass, and many ulusters of trees are seen, whilst during the rainy season the ground is susceptible of profitable cultivation in some parts. Above Halfa, as we have previously remarked, was the point selected as the junction of the third and fourth divisions of the staff, the former working back to Ambukol, and the later from blendy the eouthern ferminus, to Abou Halfa. The junction of the railway centre line at this place is acto.s a large river bed, which in rainy seasons reccives the drainage of a large watershed from a range of granite, standstone, and porphyry hills lving towards the cast. About three miles east of Aloon Halfa are the wells of that name, consisting of holes made in the bed of the river, and varying srom 5 ft . to 10 ft . in depth, and 3 ft . or 4 ft . in diameter. Thz sketch on page 166 taken near the wells on the north side of the river, showing the manner in which the bunks are scoured bway, gives an idea of the velocity with which the water rushes down during the brief, but severe, rainy season. To a breadth of half a mile on each side of the river the mimosa trecs abound, and the Sabas grass is also beautiful; this, with the tress grass, forms the principal food of the florks and herds-gosts, camels and cattle-belonging to the Desert Arabs. For about 6 miles after leaving Abou Halfa the line falls, with easy gradients, in a south-easterly direction, passing for abour half the distance over a sandy desert with sandstone rocks cropulug up all round Then the line ricis with grades as easy, and enters a country woodec thickly with the mimosa, and covered with course grass. On the western side stand isolated rocks of sandstone, and on the east is seen the extemsion of the range from Abou Halfa, which vanishes with an absupt turn eastward. About 3 miles on the cast side of the line are the wells of Gakdool, which receive a part of tho same watershed that supplies Ahou Halfa, whilst in a south-easterly direction, and about $8 \frac{1}{2}$ miles from the line, the same range supplies the water for the El Faar wells, where large Wadys and river beds exist, ind cating the periodical flow of great bodies of water through these lines of natural drainage, but which is gradually evaporated or absorbed in the arid desert plaing.

On the western side of the line, in the valley of Gakdool, a range of sindstone rocks die out, disappearing with isolated fragments about 100 ft . in height, round which the line passes in tending more tovards the south. Just at the point when this change of direction takes place, one of the most picturesque portions of the country upon this section of the ling is fonnd It is situated at the foot of thege rock ranges; the Falley, as it gradually natrows up towards the wells of Gakdool being secu, and the range towards the south leading in the direction of the wells of El Faar, the valley being also broken up with isolated rocks whilst around, every species of
mimosn is found, and undigenoms shruios, graser a, and plants cuver the ground. We shall publish a sketh hof this fjut in our next number.

Quitting this fartile plare the lina continurs to arcond passing thruugh sandstone rock, quartz boulders and granite with nasses of conglomerate, but entirely devnid of vegetation. For about suven males further the lino follows the same southerly direction, rising with casy gradiants and passing through sandstone rocks, black ballast and conglomerate boulders, but for the most part the ground is covered with a mandy deposit producing Sabas grass and mimosa During the next wight males the railway runs throigh a rouewhat similar ground, partly covered with volcanir debris, and at first over soil just able to produce vegretation, but which afterwarde gives way to hard gravelly sand, sun-baked, and cracked in all directions by the weight of passing camels At the cal uf this eight miles-ther 494th mile from Wady Falfa-the remarkable conical rock of sandstono, nalled Jebol-cl-Noos, is first seen. This hill serves as a prominent and striking landmark, but the railway does not reach it until the sooth mile. Before this the line rises, and caters a tract where much drift-sand prevails, which, often obliteratiug all traces of the beaton camel tracks, renders Jubel-nlNoos an iuvaluable landmar's. On the western side, sandstone rocks crop up from the surface, forming continuous ridges 100 ft . high, and smaller isolated hills, close to which the line passes, and continues to rise pentiv until Jebel-elNoos is left behnd about half a male to the eaxt, and a valley is approuched in which drift-sand becomes heavier, but whero trees and grass grow abundanily; on either side, however, tho aspect of the ground is most forbidding, the rock surrounding the valley, seen from an elevation having the appearance of a troubled, stormy sea. The drift-sand coutinues in the valley only for a distance of about three miles. Some distance from Jebel-el-Noos, another remarkable desert beacon is seen, and is known to the desert Arabs as Jebel-el-Sergam, or Saddle hill. After deviating somewhat to the east and west through the valley, the line again follows the ruling course of a few degrees east of couth, eandstone cropping up all arnund while 3 number of black conical hills are seen with coarse grass growing in the lower levels. The summit level of the lin. is passed during the next $5 \frac{1}{2}$ miles, the exact point where it occurs being 507 miles from Wady Halfa, and the height ouly 79.30 ft . above rail level at that place. 'l'he stecpricigradients in this division occur at this spot, where, for short distances, 1 in 70 and 1 in 100 are employed. Atter crossing a grassyrown Wady that partially drans a range of hills on the west Jebel-el-Sergam, the lani'rark already mentioned, is passed the line leaving it about 8 quarter of a mile to the eastwand. The ranges of hills east an 1 west gradually disappear here, afforcing an opportuaity for the adoption of easy falling gradients, which are contil ued as far as $8 \frac{1}{2}$ miles from the summit level.

The valley around Jebel-el-Sergam is fertile, containing much grass and groups of trees; as it affords good pasturage for camels, it is always selected as a resting place when the traveller canuut reach the nearest wells A few mile. beyond the summit level another Wady is met, which the line crosses; this Wady draias the southern side of the range of hills just spoken of, and is about a mile in width, being well covered with trees and grass; the drainage runs, as in the one before mentioned, from west to cast, but the water is quickly evaporated und absorbed by the aand For the next 12 or 13 miles the line runs through the district of Omit Handll. On first entering this district the railway tuns slightly to the west, and passes round the foot of the southern rangr of hills, which after extending for several miles berr die out, leaving buyond them much broken sandstone and lonse rock. This is followed by another stretch of sand, over which the line runs in a straght line for 3 or a miles, until it enters a more agreesble country, in which grass and trees are plentiful, and reaches a Wady draining some extensive hills running east and west, which is the direction taken by the Wady itsclf. At thas part of the line gazelles are very uumerous, the country between Jebel-el-Sergam and the wells of Abou Doleah containing perhaps the greatest number After pas ing the Wady, the nature of the ground rendered it advisable to try several alternative routes for the line, but it was ultimately found that the camel track, with some few exteptions, offered the greatest advantages, and gradicats of 1 in 75 over the risiag, and 1 in 70 over the falling ground were

VIEW OF THE NILE FROM SOUNT FOGO.

GKETCH IN THE BAHICDA DESERT, NEAR THE WELLS OF EL FAAR
plateau of andiatone rock covered with large black boulders. On the west hew a Wady, which drains a part of the westorn side of the hille. This Wedy runs in a southorly direotion at the foot of tho platean, and is thickly cavered with grass, but not many trees. It is crossed by the proposed line in somowhat easterly direction, and it then runs parallel to it, and within a fow hundred pards on the west bank, over a sands doposit and black shingle. In the Wady bed are sltuated the wells of Abou Doleah, into the desert of which name the line now entera, near the course of a valloy well covered with grass and trees, but following the gidelong ground of come extensive granite and porpbyry hills, the lowest ridges of which afford easy rising gradients. Very careful examination at this point showed again that the camel track was the only available ronte, and this, which goes to EI Metemmeh, is followed with but fow deviations. At a polnt about 530 miles from Wady Halfa it was decided to ran straight for Shendy, passing for some distance over a plain very similar to those already described, covered with sand and black boulders, and succeeded by a more favourable district, which is, during the heavy raing; capable of cultivation; s little further occur the wells of Shebaet, about two miles to the west of the rallway, Fitich finally terminates its course in the west bank of the river Nile, opposite Shendy, 652 miles from the horthern terminns of Wudy Halfa. El Metemmeh, lying aboat 3 miles to the south, is the town where the caravan route ends, and atandiag near the west bank of the wile, is separated from the desert by a low line of hills. A considerable tract of fertile land, dividing the town from the river, is occasionally inundated during the season of floods. El Metemmeh contains about 3000 inhabitants, and owns a sheikh and dervish; although possessing a bazast, 4 market is held here trice a week, where an abondant supply of all netive products is to be obtained.

gODA WATER MACHINEBY AT THE VIENNA EXEIBITION.

Abounding as it does in objects of interest and usefulness, the Vienns Exhibition does not include many matter of greater interest, with the thermomoter at 900 in the shede than the soda water machinery shown. If proof of this essertion be needed, it is to be fonnd in the constantly thronged condition of the pavilions which ars met with at various points in the grounds of the Exhibition, where American iced drinks are dis' pensed, 28 well as the crowded state of the numeroas stands in the Exbibition devoted to the samo purpose. These parliions-one of which is constracted adopted; the sharpest curves (a quarter of a mile radius) upon this division wore here introduced in three places, elsewhere apon this length the sharpest belag halis mile radius.

SODA WATER MACBINERY AT THE VIENNA EXIIBITION. congtrleted by mesbrs. dows, clabe amd co., london.
the sole concessionaires for supplying American Soda Drinks in the Exhibition and grounds. For the purpose of meeting the demand, thoy have in the grounds a neat-looking house of corrugated iron placed near the eastern extremity of the Industrial Hall, and which is their factory. Hero tho adrated water and syrups aro manufactured, and thence convoyed to the pavilions and marble stands beforo referred to.

From the first manufacture of aorated water at Geneva, by Gosso, towards the close of the last contury, and its subsequent introciuction into Paris by John Psul, a great araount of inventive talent has been expended upon the varlous apparatus for preparing and supplying tho boverago. In America this has been especially the case, where the enormous consumption has led to the introduction of apparatus for serving soda water on draught, which has to some extent superseded the bottled trado. Amongst the first to conceive and carry out in practice this novel idea was the firm of Dows, Clark, and Co., and their enterprise has not been confined to the United States. At the l'aris Exposition they had their stands, and they have established dopots in London, where their iced soda creams can be obtained. The apparatus for the manufacture of these beverages, as cxamined by us in the Exhibition at Vienna, consists firsi of the machine for making and bottling aerated waters, shown at Fig. 1 of our engraving. It :s a machine for generating the carbonic acid gas, and in it can be used either pulverised marble, whiting, or bicarbonate of soda, which is acted upon by sulphuric acid, the flow of which into the generator is regulated by the lever T. A is the body of the gencrator, B the reservoir for the acid, and D D the washers through which the gas passes, and is parified on its way to tho water. E is the pressure gauge for ascertaining the atrength of the soda water, and which indicates pressure in pounds per square inch. D is the opening through which the whiting or marble is introduced into the generator. P is the blow-off pipe, just above wh.ch is the handle for agitating the contents of the generator. The lower part, R, of the blow-off pipe leads to the waste tank. F is a safety valve, and H a pipe leading finm the generator to the acid reservoir to equalise the pressure.

The cylinders for holding the aetrated water are shown at CC, the pump, Q, being used to supply the water to either cylinder as desired In the first instance the two cylinders are filled nearly full of pure water, and then charged up to a sufficient pressure, when the cocks, K and L, are closed. The pipe J leads to the bottling machine, and when desired the acrated water is let on by turning either the cock N or M.

When either cylinder is empty the cock is closed, and a further supply of water pumped in with tho pump, \mathbf{Q}. The water is gauged in the cglinders by the small taps, OO. After filling with water, the carbonic acid gas is let on by turning the cock as before, and by agitatiag with the handles, soother charge of aerated water is made in a very few minutes, and with iittle trouble. The gas in all cases passes through the two washers, D D, and is thoroughly purified. The generator and cylinders are made of thick copper, the former being lined with lead, and the latter thickly tinned with pure metal.
This constitates the apparatus for manufacturing aẽrated water for bottling, but for supplying the stands where the iced drinks are dispensed from an apparatus, a modification of this arrangement is employed. In this case the machine for generating the carbonic acid gas is mounted on a frame by itself. a flexible pipe is attached to the washer, D, the other end being connected to a portable copper cylinder which holds about twelve gallons. Two discs are placed across the interior, having apertures in them, and the charging and discharging pipe extends from the top nearly to the bottom of the vessel. Two pins project from the sides of the cylinder by which it is suspended in an iron frame when being charged. When about to be charged the cylinder is first about two-tbirds filled with pure water ; if desired to have it strictly soda water a little carbonate of soda is dissolved in the water. The cylinder is then placed upon the agitating rack, and connected by the floxible pipe to the gas generator. The gas being let in, and the cylinder oscillated on the pins, the water striking against the discs is broken, and the particles separated, so as to allow the carbonic acid gas to unite very quickly and thoroughly with the wator. When sufficiently charged with the gas, which is determined by the pressure gauge, which ab suld stan 1 at 180 lb . after the water and gas have been thoroughly agitated, the tap is closed, and the
cylinder tranforred to the place whero tho water is to bo used.
The apparatus for disponsing the iced beverages is shown in section at Fig. 2. In tho contro is placed tho can, M, which holds the cream, and above which is the ico cutter, destined to reduce the block of ice, G, to the condition of snow. On each side are the coppor tanks, in which are placed the syrup cans, C O, and the cylinders, E E, all of which are euclosed in a marble oase, A A. Directly abovo the ice shaver is the cover, B, provided with silver-plated knobs, for convenience of removal to introduce the block of ice, G, and smallor pieces, tuto the compartments containing the cylinders E E, and the syrup cans, C C, as represented. The draught tubes, J, are connected with the cylinders by a plipe for dispensing the soda water, and below thom are the syrup taps connected with the syrup cans. Underneath are the pipes fernishing the suda water, and also for leading off the waste water. Fig. 3 is n central cross section of this apparatus which shows the ice cutter or shaver in position for working. A A is the marble case; B the cover to same; F is the ice-cutter box, which is made of galvanised iron. P is a vertical cylinder, open at the bottom, with knives projecting from its surface and openings in conjunction with the knives in the interior; G is a follower connected by a divided nut with the screw ; 0 , on the opposite side, 18 another screw with similar connexions; N is a fly-wheel ; ar represents the cream can, with the valve and a wire, by which it is worked. In operating the apparatus, the fly-wheel is turned and the follower presses the icu against the knives in the cylinder which shave it off like snow. The ice falls into the cup beneath, and cream is added at the same time from the cream can by pulling tbe handle. To the ice cream thus quickly formed, is added the syrup and soda water, the result being a very refreshing beverage, and one which has quickly become popular wherever introduced. This apparatus 18 enclosed in an exterior casing of polished Italian Marble, more or less elaborately wrought, according to requirement. At the front are arranged the silver plated syrup taps and soda water taps, as seen in Fig. 2. The draught tap, J, seen in section, is very simple in construction and operation. it dispenses with the bottlo or cap and draws the soda water with considerably more gas in it than when drawn in the usual way. After putting the ice cream, and syrup into the tumbler, the valve is opencd and the stream, escaping with full force, thoroughly mixes the compound. The edge of the tumbler is then brought against the under side of the projecting lever, tho valve is opened still wider, and a larger stream without force, will flow highly unpregnated with gas.

It is satisfactory to know that Messrs. Dows, Clark \& Co. have been awarded the Medal of Congrebs at Vieura for their intorestiag and useful apparatus.-Engineering.

Bent Srgar.-A correspondent of the N. Y. Trebune, describing a visit to a great farmer in Bohemia, says: - Herr Horsky had always been a firm advocate of the beet root sugar, and since his acquisition of the farm the number of sugar manufactories in Bobemia has raised from 50 to 180. His entensive establishment in Kolin was erceted aud fitted up at a cost of $\$ 250,000$, and it pays annually a large interest, although it must lie idle a good part of the year. The process of making the sugar as practised in this marufactory may be thus briefly described: The roots are washed and elevated to the upper story, where they are finely sliced and are macerated with water until the sugar is dissolved out, and the fibre is afturwards pressed to extract the liquid, to this lifuid is added lime, which forms with the sugar saccharate of lime, and all impurities fall to the bottom, ana are removed. Carbonic acid is next introduced, which frecipitates the lime, and the solution of sugar remaining is subje ted to the ordinary method of evaporation and bleaching.

Froy the statistical report of the United States National Association of Ironmasters, for 1872, wo gather that a solution of gum catechu has been most successfully used to provent incrustations of lime from lime-charged waters in steam boilers.

an american view of canadian progrers.

(From the Albany E'vening Times)

Ill-informed persons ignorant that the divided British proviners of the past and the Dominion of Canada of to-dny are very different affairs, are apt to under-estimate the 1 m portance of the progress of events north of the St. Lawrence in their bearing on the United States, and more especially on the northern and north-western portion of this country. The act of confederation has been successful in the object for which it was intended. The prospects of the annexation of Camada to the Union are far less than they were five or even three years ago A new nation has been brought into existence, and a national spirit fostercd, which is growing stronger year by year. Its effects am aiready apparent in the growth of commerce ; in the construction and enlargement of canals, in the increase of ocean transportation, and in the projected Canada Pacıfic rallroad. In support of our assertions as to the growth of commerce in Carada, we will cite the city of Moutreal as an illustration. The wonderful growth of that old French city and thr great improvements made there, force themselves on the attention of all persons who have recently paid it a visit, and know what it was a few years ago. Montreal has increased its population since 1850 , and mostly within the era of the Dominion, from 57,000 to 150,000 inhabitants. The city 18 admirably situated for commercial purposes, on the St. Lawrence, and when the canals are completed whll be able to recelve the largest vessels from our lake cities, and thus in great measure divert the grain trade from New York. There are now numerous steamers plying between Montreal and Great Britain, and as the railroad system of Canada is directly connected with that of Chicago, Montreal is as near the Pacific as the metropolis of the Hudson, and twenty-four hours nearer clasgow and Liverpool than New York Already four miles of stone docka have been built at Montreal, and ten miles additional are in course of construction; a large hydraulic dock is projected, and the river to Montreal has been dredged, so that vessels of twentyfour feet draught can approach the safe, handsome and convenient wharves of that cit.r. New York cannot compare with Montreal in some important respects; and in the next decade the Canadian emporium will inevitably divert much of our western trade unless vigorous means are speedily taken to prevent it.
The opening of Lake Erie to the largest class of lake steamers will immediately draw a large amount of the grain trade from the Erie canal and from the American ralways, if things are allowed to remain as at present. We have the advantage in climate-perhaps four or five weeks in the yearshall we not use it ? The Chicago Tribune says:-
Dcrina the last week it has been demonstrated that Chicago could receive 2,100 cars of grain and send back the empty cara to be re-filled in asingle day. It is also well understood that a daily arrival of 500 cars of grain exceeds the present haudling facilities of New York, and grain has to wait in that city until such time as the slow and round about mode of doing business there, will admit of its being transierred. Philadelphia and Baltimore are, in this particular, in advance of New York; they have provided elevators and warehouses into which grain can be received as fastas it arrives. In Now York it has to wait. At Montreal, the arrangements of docks and warehouses are so complete that, whether tho grain arrives there by rail; stt sail vessel, or canal, it can be handled instantly.
utreal, with the lakes, canal and river, has superior facilities for water transportation (which we have previously demonstrated to be.more expeditious and economical than land carriage). A lake propeller can hold as much grain as 200 cars, and for exportation purposes, the chenpest route is certain to be faroured by the producers of the North-West kurope seems to be depending moreand more on the western continent for her breadstuffs, and if they are to pass through Canadian instead of American iands it will furnish a very sensible item of loss. It seems to us a very bad time to sneer at Cansda and the Canadians, it would be better to be up and doing all that in possible to prevent them from gaining any commercial advantage over us.

PHILADELPHIA CENTENNIAL EXHIBITION.

The preparations for the Centennial Exhibition at Philadelphia in 1876 are gradually maturing, and the work of arrangoment intruste 1 to the several committeos is progressing. The executive rommissioner, Prof Blake, is at present at Vienna. making personal observation of the arrangeruont aud conduct of that gicat display Ho had carefully suvestignted the Paria Exposition of 1867, as shown by his work upon it : and such experience is imperatively demanded, to avoud the blunders and mistakes of previous efforts. The commission is now it daily sittings at their rooms, Walnut-street, near Nuth-strect Where they have employed two secretaries and three heads of bureaus, each of whom is entrusted with the managernent of some speciality. The necessity of pushing forward as rapidly as possible the prepasations for the expo-ation buldings is fully recognised The statement is made that the committee on plans and architecture have decided to make use of four buildings-a central main building, to be devoted to general exhibition purposes, and se pirste structures to contain the departments of fine arts, of insciinery, and of horticulture. It is further stated that the appoir tment of the architect will bo thrown opan to public competit! so, and that all architects will bo invited to contribute plans the authors of the ten movt approved designs to each receive a prize of $£ 200$. The decision upon the auccesisful plan will be made about July. The plan of classification adopted at the Paris Exibition of 1867 will bo carried oul, that is to say, each class of exhibits wrill have a space assigned to it, and ealh country exhibiting will have a portion of that space, so that the best opportuaty will be afforded for comparison The following are the divisions under which they will be arranged.-(1) Raw materialsmineral, vegetable, and animal (2) Materials and manufactures used for food or in the arts, the result of extractive or comlining processes (3) Textilo and felted fabries-apparel, costumes, and ornaments for the person. (4) Furniture and manufactures of general use in the cunstruction of dwellings. (5) Tools, implements, machines, and processes. (6) Mutors and transpoitation. (7) Apparatus and methods for the uncrease and diffusion of knowledge. (8) Engineering, public works, architecture, \&c. (9) Plastic and graphu arts. (10) Objects illustrating efforts for the improvement of tho physical, intellectual, and mural condition of man, \&c. The Centennial Commission for the inauguration and conduct of the great exhibition have already made most commendable progress. Committees from their number, having in charge special departments of this vast scueme, are in constant session, and the general outline of the work secmo to have been fully developed. The site for the buildings used for the occasion has already been secured in Philadelphia's beaatiful park, and the formal transfer of the ground by the city authorities to the contiol of the Centennial Commissioners took place, with suitable ceremonies, on July 4th. The decoration of the ground for the purpose, the planting of shade trees, \&c., is to be taken in hand at once.

DIVING DRESS LSED IN OBTAINING AMBER.

The Konlgsberger Muschinenbau Actien-gesellsch ft Valkan of Konigsberg, in Eastern P;ussia, exlibits amongst other things in the pavilion for the Prussian Iron and Mining Industry, at the Vienna Exhibition, bome interesting diving apparatus as used on the eastern coast of Prussia, for obtaining amber. This a 1 paratus, an illustration of which is given on page 270, and wh ch reccived a gold medal at the Moscow Exhibition of last year, is constructed on the system of MM Roux-quayrol-Denayroux, sume alterationsan I improvement, having however, bend introduced 50 as to give greater safety. The air is transmitted to the diver through long india-rubber tubes by means of an casily transportable air pump with two cylinders. These tubes, which are strengthened by apiral wires, conduct the air to a reguator carried on the diver's back. The completely air and water-tight dress of the diver is connected by an india-rubber ring with a copper helmet, or aleo with a mask, the helmet and mask being provided with strongly grated windows. The helmet is used for works under water in which the head of the diver has to bo kept upright (repairing ships for instance), whilst the mask is adopted for researches and examinations on the sea bottom.

A great advantage of this arrangement is that the diver has always a certain reserve quantily of air in the regulator, so

dIVING DRESS USED IN OBTAINING AMBER.
that a fallin, off in the supply of sir is nut connected with immediate canger or disa.ivantages for him. The supply of alr to the diver is regulated by a peculiarly constructed val by means of which the pressure ander which the air is supplied corresponds always with the depth of the bitis in which the diver is acting.

The air coming from the diver is not allowed to mix with the fresh supply of air, but escapes to the surlace through a side-port closed by an india-rubber valvo. The ciiver is able to increase or diminish his specific weight by simply altering the volume of air between his dress and body, and in this manner it is in his power to ascend or descend as he likes. The right-hand view of our illustration shows a diver equipped with the dress and mask we bave described, while on the left is a plan shoring the various details of the equipment, as exhibited by the Vulcan Company.

NEW STEAM MOTOR.

Many inventors are working at plans which aim at dispen. sing with as much as possible of the cumbrous machinery which at present serves to transmit power. Frederick Siemens, of Dresden, exhibils at Vienna a motor of this nature which dispenses entirely with pumps, valves, de., and operates through the rotation of the steam generator itself. The exertion of power begins instantly with the developmeat of steam, and is continued by the expansion of the steam until close to the vacuum, so that the greatest poesible amount of power is developed from the steam pressure and made useful.
Our engraving, from the Deutsche Induatrie Zoilung, reprosents such a motor, one-tenth the natural size. The machine consitts essontially of a rotating boiler placed in an inclined position. A, is the boiler or shell, inside of which there is a w.im or acrewr.s, made out of plates cut funnel shape, and at-

NEW STEAM MOTOR.
tached to A. At the Jower end the boiler A, is provided with a double bottom d, while the upper end is surrounded by a spiral tube c, its spiral being in reverse of those of the interior worm or screw s. The double bottom of the boiler forms a water space K, which cuamunicates through circular holes a, with the inner space of the shell A. The machine is mounter on a sloping axle-tree, which is stepped at t, aud supported above on the shaft l, and bar b. The motion of shaft l, is tammitted to the horizontal shaft h, by means of the flexibec comection. The lower part of the shell A, is surrounded bv a furnace of clay B, and fire is applied through an ofening at f. In this example a gas flame is employed. The productiof combustion rise from f, and surround the shell A, fimally escaping through the upright pipe, at tha upper end of B. The boiler A, is filled with water at $:$, and here a fusilile plug is used, which melts when the tenperatur. of the steam rises above that of a given pressure, and permits the escape of stean into the atmosphere, hans ensuring the safety of the apparatio. When the fire is kindled a! f, the steam which developes rises through the water and acts on the spirals s, causing the turning of the whole machine. The stenm continues to ri-e until it reaches and enter: the sifiral condensing pipe c, which surrounds the upper exterior portion of the shell A. In passing through the pipe c, the stean is condensed, and the water of condensation is screwed back by the rotation of the pipe c, down below the water level in the boiler A, near o, where the water enters the boiler, and is again converted into stenm. In starting the machine the stemn must first be allowed to escape at o, out of the spiral condenser, in order to drive out all the air ; then the opening o, is closed, and the steam, then risiag into the cooling pipes c, is condensed as before deocribed.

The machine, if once filled and made co.npletely tight, continues to work without r quaring any other attention, except to kecp the fire going No pumps to sumply water, or valves or other desces are required, but a constant use of the same water over andurer again takes place : the water being first con verted into vij or, which is then condensed, then again evaporated, and so on.

In licu of water other lifuids may be employed, and it has been suggested that quickstver might be advautageously used.

PHOSPHOK-BRONZE.

This new alloy, which has been recently brought before the public for obvious reason, is likely to be much patronised, especially in manufactures where stecl is u-eless or dangerous. The reasons hiven by the patentecare that it can be made, accolding to the wish of the operator, more ductile tl an copper, as tough us wrought-iron, or as hard as steel ; it ponesses great findity ; its homogencity is complete, and its grain is as fine as that of cast otecl. It may be perfectly controlled to suit any particular purpose for which it is intended it can be made cither hard or soft, tough or brittle, and its ductility, clasticity, or harduess can be regulated with the most perfect accuracy. Unlike other allo: is, it con be remelted without any material loss or alteration of its quality, while heavy steel castings, when worn out or broken, are comparatively worthless.

A great variety of objects hitherto worked in iron and steel may now be cast in the new alloy, and in many cases they require only a polish to make them ready for use ; beside which they do not corrode, as articles of iron or steel do. The great fuidity, compactness, and fine grain, as also the beaut ful colour of the metal, especially recommend it for decorative art, and the periection of the castings greatly relucethe cost of chasing and finishing. This alloy stretches more than copuer or auy of its ordmary compounds, and plates ha. e been reduced, by a single cold rolling, to one-fifth of their theckness, the edges remaining peifectly somod and whonot crack. IBut purhaps the greatest advaniage of phos-phor-bronze is itvincajacity to emit sparks. Tools, knives, scissors, anci other artich's, such as locks, heys, \&c., have therefore already been largely mado from it by gunpowder manufacturers. Bearinge, pit-ropes, telegraph-wire, tuydres, cannon, cartridge-ca-cs, pistols, bells, 太c., have also becn made of this metal.

By order of the Prussinn Miristry of Commerce, experi. ments have been made with the various hinds of phosphor
alloy, the object of which was to ascertain the resistance of the metal to repeatedly applled strains or pulls, and also to bends of a given force. Tho first bar fixed on the stretchic.; machine reaisted 408,230 palls of 10 tons per square inch, while a bar of ordinary bronzo broke before even the strain of 10 tons per fquare inch had been attained. Another bar withstood 147,850 pulls of 12 d tons per square inch. Stal! more favourable resulte havo been obtained on a machine by which the test bar was beat an ofien as 40,000 times per day In this instance it resivted 862,980 bends of 10 tons per rquare. inch, while the best kuli-metal broke after 102,650 bends of the same force. Anuther bis which was being tested with. stood $1,260,000$ beruds of 9 tons' force per ${ }^{\text {qu }}$ quare inch, without showing any sign - of werakners.

The foregoing remarks Hhow the great adaptability of phosphor-bronze for all articlas hatherto minufactured of ordinary bronze or ginn-metal, and although the primary cost may exceed that of other alloye, the ultimate result will be in its favour, owing to its "xtra durability, lightnes", and espability of reconveraion. In fact it may be said that what steel is to cast-iron, phonphor-bronze is to ordinary bronze The patentees have reccived diplomas and medals of ment and progress from the Vienua Exhilition.

WATER AS FUEL.

A patent for "An improved method or process and appara. tus for securing the combustion of fucl and the utilisation of the gases arising therefrom" has been obtained by Mr J. liansden, of Lightelifie His apparatus is now in operation, and is thus described by the Malifax Guardean:-Mr. Mamsden burns stcam, and tho means used to effect ite combustion ate very simple. As the appliances are so far merely for experimental purposes, they are of n miniature description. On a bed, about 5 ft . square, stande a small double-cylinder steamengine of ordinary construction. The boiler which supphes; the motive-power is a mere toy, being about 2 ft 6 in. loag, and 15 in . or 16 in . diameter, of the single-flued Cornish pattern, the flue being about 6 in. diameter. Instead of the ordinary furnace-fire bars for burning coal, there is a coil of small iron-piping which takes threo turns round the inside of the furnace or tiue. In this pipe gre drilled cighteen small holes of about one-sixtecnth of an inch diameter. These holes are so arrauged that when atcam is admitted to the conl it rushes out through them, forming a circle of jets whath mect in the centro of tho furnace. Across the front of the fire-hole or furnace runs another small pipe with two more jets directed into the !lue. Immedintely in front of these two latter jets are two brags nozzles, the orifices of which are scarcely discernible, connected with a vessel containing petroleum. There are cocks to resulate the supply of petroleum and steam. As the boller must necessarily be cold to begin with, and as steam is tho fuol to bo burued, recourse is had to a small auxiliary builer in which o litile stenm is generated by ordinary means. This generator is temporarily connected with the coil inside tho furnnce, a tap is turned, and the sterm rushes out of the jots. At the sanne time another tap is turned, and tho petroleum issues from the nozzles. A light is then applied to tho petroleum. and instantly the sucam is decomposed and ignited, and the furnace is a roaring hast of thame. In a few minuter stenm is up in the boiler, and becomes independent of the generator first used. The result is startling and wonderful. 'The effect of the rush of steam from the jets is to draw the petroleum through the nozales, and petroletim or any other hydro-carbon having the power to decompose steam, the interior of tho flue becomes a furnace of great heat. So intenso is this heast that, although sterm rushes through the coil, it becomes almost white hot in a verg few minutes. A not less important fuature of this invention is its adaptablity to illuminating pirposes. The large quantity of inflammablo kas genorated would, if not tercepied, escape unconsumed. To ntilise this waste Mr. Rums'en brings the steam-engine into operation, geared to a small rotary fan, sending it into a closed vessel containing petroleume. From this recentaclo it is conducted to a gasometer, and used exactly in the anme manner as ordinary gas. This gas has no smell, and literally no smoke. Its cost, adds our authority, is ridiculously small. Mir. Ramsden contends, and with a show of reason, that it cannot coat more than 9 d . a thousand.

ON ENERGY

Br Prof. Robert Statell Ball, A.M., Ll.D.

The gcience of Energy, which has been developed within tho last twenty-five years, appeas to have a grand future as intimately connected with astronomy, mechanics, light, heat, magnetisa, electricity, even with life itself : it leads us back through periods, compared with which, gcological titne is nothmy, and, looking forward, like a time telescope, points out the ultamate destiny of the untverse.

Energy is tho capacity of rasme weights. The distinction betwecn force and energy is that : Eatergy is the product of a force and a distance 'Lhe whit of encrisy is the energy requird to overcome the unit of force dhrough the umt of distance. Energy can be stored in a rupilly movang tly-wheel, as can we demonstrated by experiment. Energy is also stored in any budy moving rapidly, as, for example, a cannon ball; gnergy is thas kind is termed "kinctic enetgy." A steam-engine is a means of turning into mechanical work, a portion of the entrgy contained in the corl consumed in the furnace. Heat may be turned into mechanmal work in other ways: for example, by atherno-etectace battery. 'The energy store 'p in coal, guapowder, or a compressed spring, is denomin: a "potentrad entryg." Food and fuel are both forms of potei al ehergy; but the former has to rephace the wear and tear ot th. machine which consumes it, which the latter has not.

Enerey can be changed fiom one turm into anotider. The potintal eatrgy of the body may be converted into mechatical work by rasing it weight, into kanctic energy, by settiag a wheel m motion, hent, by friction matu electricity; heat and light, by Wild's electrical mathne.

A plece of eme may be burnad an a stream of wygen The potental encisy becomes faght and heat; but it might have been more slowly burnud in a bateery, it wombl thas develop clectrity, which might be turned moto kinctic energy by an electromagnethe englac, or into hght. bound, and hat by a Ruhmkortis coil.

Euergy is indestructible If it disappears in one form, it is only to reappear agam. A hammered nat on an amsil becomes hot ; the energy which moves the hammer is transformed into heat in the nabl; it is not lost. Faction apperars to consanne encrgy, but thas as not so, tor if proper applances are used, suthenent neat can be collected to boul etther, or ceen water. Sishart's appabatus 15 another instance; the kinethe energy of a rotaung twothed whed bemg, by it, transformed ato suland.
lerpetual motion is impossible, because some enerey is alnats usilesoly expended un trictoon in every machane. and cteroy cannot be created. jo water-whed could pump up subhurat water w supply itselt.

It has bean (iallawiously) proposed to work a maspeto-
 the clectricity, and sustam the actoon o: the stean-engane lig thent developed by bunamy the oxygen amilhydrogen mroduced of the decompositaon. It would be momessbie for the ricazaengiac to decompuse enough water for the purpose.
sance, therefure, energy cannot be destroyed, and cannot be created, the qumataty of energy in the umberse must reman constant. Jins is the pronctiple of the conservation of chergy.

Ab the different forms of energy in the carth. Whether denred frum feod, tuel, wind, or water, can be traced to the heat radated arom the sun. The hant is sustamed in the sun by the transormation of a potental energy now heat, due to the sun's contractoon. If the diancter of the sun dnmimshed 1-l0, wooth part, heat suticient wo supply the present loss by radianon for 2, vou years wonld be produced.

The leat of the stars represcuts the prodigious quantity of "reygy the earth has a shore ot potential energy due to its
disame trom the sun ; tho enery ts equmaleut to as mueh distance trom the sun; tho energy is equivalent io as much h at as would be produced by the combustion of 6,000 globes of coal, cult as litge as the carth Beyond this, it his an annunt of energy due to ats velocity in ats orbat equal to that Bheth would be produced by the combustion of fourteen globes of coal it its uwe size. To this must be added a quantaty of chergy due with rotation on the axis.

A period of rcsi, woverer, must at length come. The phacis, since they are uot rigid bodies, must ultimately fall - Dot the sun. Heat diffuses itself, but beast cannot be turned
into mechanical energy, excopt when transferred from a hot body to a cold body. When, therefore, by the diffusion of heat, the temperature is uniform throughout the universe, mechanical work must ceaso.

VELOCITX OF LIGH'T.

Recently, M. Fizean his communicated to Les . Hondes the results of a series of very elaborate experiments, made with a view to the most accurate determination of the velocity of light The distance between the two stations of observation, as found by triangulation, was 33,829 I feet (about six miles), with a probable error of 0001 . The souree of the ray was a jet of oxyhydric ges Six hundred and fifty satisfactory observations were made, the mean of which gave 185,368 miles per secoud as the required velocity. The experiments of 3 Foucault to determine this same velocity, give us a result of 185,177 miles.
The formerly accepted determination of the velocity of light was that of Olaf Rocmer, a Danish Astronomer, who deduced it from observations on Jupiter's satcllites. Tho earth's orbit being concentric with that of Jupiter, andinterior to it, the distance of these bodies is continually varying, the variation extending from the sum to the difference of the radii of the twe orbits, making the excess of the greatest over the least distance equal to the diameter of the earth's orbit. A comparison of the eclipses of Jupiter's satellites during many successive gears, showed that those which took place about opposition were observed eanliec, and those about conjunction later than an average or mean time of occurrence. Connecting the observed acceler. on in the one case, and retardation in the other, with the: sation of Jupiter's distsnce below and above its average val ee, the difference was fully and accuratcly accounted for by allowing 16 m .26 s . 6 for light to traverse the diameter of the earth's orbit. From these data, loomer found the velocity of light to be about 192,000 miles per second.

It seems at first sight as if the recent and very accurates determination of M. Fizenu had demonstrated a defect in the carlier method, indacating, perhaps, some cause, connected with the acceleration and retardation of the apparent occultations of Jupiter's satellites, other than the time required for light to traverse the earth's orbit. But ('aptain C. W. Raymond, U.S Engineer, at present issistant l'rofessor of Physice at West Ponat, calls attention to the curious fact that by substituting in Hoemer's calculation a more modern and more accurate value of the diameter of tho earth's orbit, the resultant measure of the velocity of light becomes 185,344 miles per second, which agrees astoustsingly with the tigures of M. Fizesu. Similar experiments conducted some time age by M. Foncault, indicated 185, iit miles per second ss the velocity. This is one of the questions which will bo affected by the thorough observatious, to bu made by trained astronomers of all nations, of the next transit of Venus. 'The dinmeter of the carth's orbit, which may be called our astronomical unit of distance, will be probably fually determined by those observations.-Engineering and Jinnng Journal.

The Rapid Growth of Thoct. - "Some gears since Prof. Agassiz suggested to George S. Pag. Esif, of New I'ork, I'resodeut of the Oquissoc Ang!ing Association, a meaus for determining apprexamatively lue a_c of the famous Rangelys trout which grow to the remarkable weight of seven, eight, and even ten pounds. The mode adopted was to take n small platinum wire, ponted at one cud and flattened at the other, and marked on the fat end with the weight and yenr. Thon insert thas wire in the dorsal fin, selecting a mark according with weight at the tane, anit return the fish to the rater. In 1870 , Mr. lage and others, marked and lilerated som. fifty trout in this way, and the pinctice has continued e.rch sca-on since. No marked fish has becu captured until this scason, when in a lot of trout brought bark by th artist Moran, who was one of a large party who visited these raters early this :onth, one fish wra found marked " 1870 , half pound, and weighing, when captured, nearly two pounds and is quarter, showing that the trout haid grown vearly one and three-quarter younds in threc gears."

RURAL COTtagE.

Fis low.

RURAL COTTAGE

In the accompanying illus. tration we present a plan fora plain house where abundance of rwom is more of an olject than elaborate ornamentatuon The decorations are ferm and simple, and in kerping with the general effect of the struture. The veranda at the entrance is very broad, and the eatrance hall large and roumy The dining roum has a liap windov and is convenumy situated as regards the kilh het The second stury wutahis lase chambers, and the att. mas be dinded of atu thret liga rooms lhe ctllar extends noder the whole house A tem vines may be trained wh chenv the walls, and some rustic vases and other ornaments ar ranged before the front will give a tasteful appearance to the building.

THE TURKISH TREASURE PAVILION AT VIENNA

Among the one hundred and forty special buildings, iu addition to the main cxhbition edifice, pertaining to the Fienna World's Fair is the Tressare Pavilion of the Sultan of Turkey, or King of the Ottomans. The pavilion which ne illustrate on page 175 , is in the form of an oriental kiosk The domed within ceiling is painted in araberques, and pendant from it are five lage golden malls. Here may be sead the history of the soblime Porto from the defs of the conqueror of Byzantium, Maboud II, to the present Padisheh Abd-al-Aziz. The golden throne of Nadr-Shah is here, which was renowned in the cast before the pescock throne of the Grest Mlogul at Delhi nas dreamed ot. It is marrelous in its workmenship large enough for a coach, and weighs four and a half hundrei weight. It is enameled in celadon, green and crimsen, and its patterns of arabes querie are in rubies, emeralds and pearls. Above it hang the tarban and armor of Sultay Mand, beary with gold and

Demiet M. Lamb, of Strathros, Canada, is the author of a method of producing gum from the milkweed plant, or other plants of the asclepis family, and flax and other seeds, which consists in macerating and fermenting the substances, and then by orspmation reducing the resplting liquid to a thict gummy mass. The gum thus obtained may be rbapls productul, and in nlleged to have many of the valuable qualitios of mhiter. It in ingolullen in mater, may be rulcanised with sulphur, sc. The price of pure rubber is now verg high, and the discovery of an coonomical substitute is a matter of the grestost importance in the arts.
gleaming with jewels. Nesr it are the horse caparisona of Sclim III, with tho hesigy Mameluke stirrupe and drab bit of solid gold, encrusted with diamonds. Scabbarde, where nothing but diamonds can be scen; cinctures of diamonds, borts of China porcelsin, their patterns marked out in gold and seset with rubies; clocks encased in diamonds and glistening fith croscent monens and atam; hookahe with golden bor!s, and chibruques whofe amber mouth-pieces are oncircled with rings of dinmonds, gleans and glisten overywhere.

The value of the Tarkish treasures contained in the pavilion is ostimsted at $\$ 27,500,000$.

4 $4 x+4 \times 4$
 phen

Mechanics' Magazine.

MUNTILEAL, SEPTEMBER, 1873.

hentistibations

Marbhbank's patent fountry cupola 16.3
Vhes of the Nile from Montht Fono \qquad 166
Skrteh in the Bathinda In sert, near the wells uf El Fiatr 166
Sixla watermachinery, at the Venna Exhibtion 167
Dlaing dress used in obtaining amber170

Soulthby's economle gas ramges171

\qquad
New steam motor. 171
fatal cot taxe 174Cho Turkish treasure pa-
vithon at the Viennavilton at the ViennaExbibition 175

Boiter feeding :apharatus 178
New Hght-house for Timbillier shoals, Gulf of Mealco..179

Facts and tigures connected with belting 152-183
A specitic grivity indicator
Davin" "steam strikcr.".................... 186-157
Fonters rallooal hamd brake ch.........190

Gill's cluteh drill........... 191
Improved plow attachment
Moretle patent highores-
sure engme and boter. I9:
Contents:
Marnhbank spatcnitoun-
dry cumola................. 164
Light-houces for Tri. mits shoalsamitimbalifr, finlf of Mexted..... 161
Southby's ecomomite nita ranges.
Soudan ramlwas expedi-
thon........................... 165
Sodat water machinery, at Vienma Exhibltion... 167
Beet sukir............. 165
An Americ:a) view of Candulan progress...... 169
Phlladelphia centenuial Exhbition.................
Diving drexs used the ob-
taining amber. 169

New steam motor
Phosphor-bronz 172
Water as fuel \qquad 172
On energs:
Ve loclty of light
17.5

Rapid growtho
of tront...
The Turkish treasure pabvillon athe vierast
Fxhtatton
Editurial, de. \qquad
Latke Superior districl.....
The Marmora gold mines 175
bonler feeding apparatus 178
New process for making steel dies
Prizes for electrical in. ventions.
analysis for
Qualitative amalysis for amateurs Rocley Mommatn. . 181 Preterviag eraswes, ferms and flowers Factsand thgures conneeted with belting......
A specitic gravity lndic. ator..

183
Smokug and thinking... isi
The central ratl ratway. 185
Davls' "steam striker." 185
Storing eggs 185
A - phatie puper 185
Corsespondence 185
Dommonnewh.............. 188
Sctentaic matters 149
Miscellanea......... 1
Inajoroved railrond hatad
brake
Improved plow attachmpit .. 190

190 . 191 Morell's patent high pressure conglon and boiler. 191 Mechanleal power of cual 192 Rallw:y acrident......... 102 Ginld mming In Eastorn
\qquad Expansion \& contraction of tube by heationd cold 193 Hablls of the fatamore
oi hter 1
Common scientitic lan-
झи!ge......................... 193
A new covering for steam
plpes.
193

TUE NORTH SHORE.

Junt in rear of the valley of the St. Lawrence there stretchen away the vast tract of country occupied by the Laurentinn hills. This extent cmbraces every description of land, fertile valley, lake and river shore, rocky hill an 1 undulatiog pasture land. There is muck land that is not ri,h, but there is but little that is not quite as fertile as the average land in the Eastern Towashijs This territory has gained slowly but steadily during the past ten ycars. One drawback has been a wrong syatem of farming. Most of the settlers went thither from the rich grain lands of the valley of the St. Lawrence and continue among tho hills the same sfstem of grain culture their fathers followed on the flat rich land. This the land is not adapted to, but its green valleys with numerous springs and extensive natural meadows offer splendid facelitics for dairy farming ; and when once the farmers have changed their cystern the effert must br at once apparent in increase i
prosperity and now and enlarged settloments. The other drawback has been the long distance to market. The latirr hindrance is about to be withdrawn by the construction of a line of railway from Montreal uorth-easterly through pait of this section of the country. A meeting was recently held in this city, and stock subscribed to a large amount for the purpose Dr. Legge, C E, was instructed to proceed immediat. ely with the preliminary burveys form St. Jerome vi. Stw Glasgow, to St. Lin, and report at as early a date as possible, to the permanent Board of Directors, to be appointed by the stochholders within a month. The traftic from this raluay will come into Montreal over the Northern Colonization lial. way from it. Jerome, and thus avoid the expense of constrict. ing additional bridges over the two branches of thu Ottana The country to be traversed by the proposed line is stated to ben fine agricultural one-and already a movement is on fout to carry the line from St. Lin to Industry, a place of some inportance, but, at present, during the winter season, conipletely isolated. A considerable amount of local aid has been pros. mised, as well as Government assistance. The friends of theenter, rise are sanguine of being able to let the contrats tharing the present year, for the first section to St. Lin.

This ecction of countiy besides dairy produce, grain, de, will also bc able to export vast quantities of wood, hard wood for lutl, and lumber ready worked up by its abundant water power into doors, sashes and numberless other articles which must command a steady and constantly increasing market.

We have to chronicle, with much pleasure the open:ng of another railway in this province. Weallude to the Montreal, Chambly and Sorel RR., which was formaily opened for traffic on the e5thinstant. The present terminus of the road in at St. Lambert's. 'The road is completed to Chambly and wall soon be available for traftic to Sorel. This will open up a section of country which is in a thriving conditiou but whab has hitherto, in winter, been entirely dependent on the common roads for traftic. The road, passing through the level valley of the St. Lawrence, is singularly favoured as to case of construction, there being but oue bridge of importance between St Lambert's and Chambly. 'This bridge wheh crosses the little Nontreal Rirer, is constructed on the Anderson patent truss principle. 'The span is one hundred feet. So far as the road is concerned commercially there is ample prospect of suceess. Chambly possesses an abundant supply of water power and has already established several manufacturing establiskments in the shape of woollen and cotton mills, a shovel factory, \&c. The furming commumty through which the road passes is also in a most proxperous condition.

PROVINCIAL EXHIBITIONS.

The annual Exhibitions of this Province and of Ontario hare just taken phace successfully aud almost simultancously. The industrial departments with which we are more specially concerned were at least as full of entries as usual. The nature of these was in the main satisfactory and the interest taken in them by visitors was very marked, indeed the industrial department at Montreal was alrays througed. The shuw of machinery at Montreal was not as satisfactory as it might have been. The agent for the Baxter Steam Engine exhibited one of those useful little engines at work. We noticed a tyre-setting machine, somewhat similar it aciple to West's tyre-setter which we described in our mamer for July last. Judging from specimens of its work shewn this must be a very useful tool. Strong's excelsior gate, invented and patented by J. C. Strong, of Newtonbrook, Untario, at. tracted a good deal of attention. It is opened readily from the waggon and does not seem likely to get out of order. Edion Fitch \& Co., shew some very well made splints
and friction matches from their factory near Quebec. another firm, also of Quebec, shewed a very fino assortment of steel and other springs. The display of agricultural implements was good. Mr. Willimm Evans, of Montreal, was the largest exhibitor in this department. Messrs. Vanvliet, of Lacolle, shewed some very fine wooden ploughs. One of the most interesting exaibits in this department was Vessot's combined sower, harrow and roller. This seems to be a very uscful implensent, it attracted a good deal of attention from practical farmers on the ground. We saw many other exhibits in this deparmment we should like to perticularize, such as the castings, carriages, sc., but must refrain now from want of space. We will endeavour to describe somo of them separately in a future issue.

The exhibition at London, Ontario, was also very successfal The l'resident of the dssociation in a very interesting address stated that it is belirved that no Exhibition on this continent precedes in importance that of Ontario, except that at St. Louis. In the cours of his remarks the President observed that there was neede. in Ontario an institution in which tuaching the bcience and practice of agriculture should be the leading feature. To secure this end the Government of that Province have engaged the valuable services of Prof. JicCandless, late of Cornell University. Under his direction it is proposed to conduct an Agricultural College and Model Farm which shall be of such a nature as to clam the contidence and patronage of the farmers of Ontario. I'he next exlibition will be held in Toronto.

LAKE SUPERIOR DISTRICT.

A tourist, who has lately returned from the North Shore of Lake Superior, describes inglowing colours the mineral resources on that side, and also states that when the navigation at Sault Ste. Maric is improved, mineral ores of great ralue, and vast quantities of lumber in that country, will find their way to the markets on the St. Lawrence, for shipment abroad. There is a fair proportion of arable land near the coast, ample to sustain the population engaged in mining and lumberng, and our informant is of opinion that ere many months elspse considerable suttlements will be established on the Canadian coast of the Lake, and to some extent inlend. The Dominion Government has recently caused to be erected a first-class lighthouse at Batchewana Bay, on the north shore of the lale. It has been placed on Carbay Point sud lights up the coast, and the bay, which is a well protected and safe harbour. Deing a first-class light it can bo seen for more than twenty miles distant on the Lake. The coast in the immediate vicinity, but for this lisht, would be extremely dangerous, numerous vessels having been wrecked dere in past years and many lives lost. The light-house is of wood, ballasted, however, with some sixty tons of stone. It is 80 fect bigh, of octagonal form, some 20 or 30 feet in diameter at the base, and 10 or 11 fect at the top, and is supplied with an excellent white light, obtained from Canadian oilfurnished by the London, Ontario, Refining Company. The tower projects from the keeper's house, which is twentyfire fect in height. The first storeys of the tower are substantially braced, and the entire structure is of the first class. It will cost between $\$ 12,000$ and $\$ 13,000$. Cerbay Point is abont fifty miles above Sault Ste. Maric. There is an Indian village on the Bay of about 200 souls all semi-civilized, Catholic aborigines who are visited once a ycar, and somelumes oftener by Missionary priests. They are civil, well disposed and industrious, and rubsist chicfiy by trapping and fishing. That cnterprising Scotch Canadian, J. A. (Cariboo) Cameron, has crected a saw mill on the Bay; and employs profitably some sixty labourers, chiefly French Canadians. The tourist predicts that the timo is not far distant when a thriving town will grow up on the Bay. The much talked of Canads Pacific Railway must, it is said, eventually pass near to such town, and will, probsbly, be coonected with it by ashort branch. The United States authoritics are conbtructing, on the south side of Sault Ste. Maric an additional cansl to the old one made by them some years ago, which is found to be insufficient for the commerco botween Lake

Superior and the lower lakes, two millions of dollars and moro have already been expended on these canals; when finished largo vessels can ply for seven months in the year betreen Lako Superior and Montreal, and other Lakes and St. Lawrence Ports. The trade, in small vessels, to and from Duluth, is a!ready very valuablc. During the past summer often 25 and 30 vessels (either propellers or schooners with steam tugs) have been waiting in one day to get through tho Sault. Miany cargoes of valuable ores, lumber from both shotes of Lake Superior and grain for ports on the Lake in the States of Michigan, Wisconsin and Minnesota, and return supplies and merchandise go by this route. The proposed improvements at these straits are also highly important to the United States as well as the Dominion unless the canal from Lake Michigan to Lake Erie, heretotore spoken of, is constructed; and even if the latter is made, the former should not be abandoned.

THE MIARMORA GOLD MINES.

(From the Belleuille Ontorto.)

l'rof, Bell, who has just returned from a visit to the Alarmora mining region, informs us that apparances have much improved since his last visit a year ago. In the Cook mine they have worked down to the level of the shaft bottom, and will have to deepen that to enable the miners to work the present slope. The ore is abundant, and is becoming richer as the depth increases, visible gold being much more frequently met with than formerly, while the body of the ore yields better in the pan. The great want in these mines has hitherto been a good furnace which will drive off the arsenie and sulphur rapidiy, effectually, and chearly, and this at last seems to lee upon the verge of completion. The revolving furnace put up under Mr. Dunstan's directions has been moditied so as much to improve its efficiency, and further improvements have been suggested, and are about to be made upon it, which will both increase its effect and diminish the expense of working it. Experimental workings are now being made upon the tailings thrown out from former crushings with eatiefactory results, shosing beyond a doubt that a larger amount is atill obtanable than that taken from them at first.

On the Gatling property but little additional work has been dosse. In the mining departurent two shafts have been put down, and a tew openings made, from one of which a few barrels of ore have been sent to Swansea, the returns from which are stated as very satisfactory. This property has been fully and very favourably reported on by Prof. Chapman, of Toronto. In sddition to the handsome and spacjous dwelling loonee and boarding house erected last year, Mr. Gatling has put up what may fairly be termed a magnificent mill building, consisting of a deep and spacious stone basement rurmounted by a wellfinished superstructure, lined with felt paper. Within are placed two very fine upright engines of abuut 40 horse power, capable of being worked either together or independently, and a large boiler capable of running them both when aecessary. Four batteries of five stamps each, making twenty in all, are also in their places ready to start work, and the hangers are up for the shafting. The flue for the roasting furnace is also more than half finished; but the furnace, pans, sluice boxes, \&c., are not nut in yet. We understand that the original plan comprehends the introduction of the chlorine process, which is perhaps the hest adapted of any for the truatment of the Narmora ores after roasting, as the gold is mostly in such a fine state of division as to be readily reduced by the chlorine gas. Taken altogether, the prospect is bealthy anci encouraging, and we trust that ere lons a monthly gold mining report will be a regular item in our commercial department.

At the Patent Office, Washington, every examiner is now favoured with the help of a lady clerk, who trikes charge wf the official correspondence and looks after the odds and ends if the examiner's business. There is one exception, however. The cxaminer of medical inventions is debarred from feminine assistance, and is compelled to keep a clerk of the masculine gender.

BOILER FEEDING APPARATUS.

We illustrate, on this page, an automatic boiler feeding apparatus devised by MM Loufosse. Houget, and Teston, of Verviers, nud cihibited at Vienna. By referenco to the drawin, it will b reen that it consists essentially of a cylindrical chamber, commumeating on one side with the boller, and out the other with a high-level reservoir. It untains two fluats of different dimensions, the sialler one shiding freely up and down a vertical rod, while the larg r one is imnersea in the water, and kept above its hat of flot uion alturnately. The water from the reservoir is led by a pue, c, through a valve, k, and falls into the chamber, b. In rising it carries up the suall float, d^{\prime} which slidin: along the rod, $e^{\prime \prime \prime}$, strikes againt the lever e^{\prime}, raises it, and thus disengages the lever e, held at the end by the small froge, i. The large float d, immetsed in the water ribes rapidly, and lifts the lever, e, to which it is attached. The risitig of the lever, e, opens the valve, h which al ows the entry of steam from the boiler, and closes the valve, k, thus stopping commanication between the chamber and the high-level re crvoir. The chamber and boiler are now in equilibrium, aad the water flows from the former minto the latter, passing through the valves, m and o. This valve, o, is moved by a flost, p, placed in the boiler, and which, acccording to the variation of water level, closes or opens the valie, 80 as to permit only the admission of the proper quantity of water The small flont, d ', followe the water as it descead, unthl it strikes on a stud fixed at the extremity of the gu do rod, e' ". By its weight it detaches the large floit. d, which in falling ggain closes the valve l, and reopens the valve k. The rteam in the receiver thene. capes in the reservoir, where it becomes a condensed and more water flows into the apparatis. The process just destribed then recummeoces In conncxion with the apparatus theip is also a counter which midicates the number of times the operation has buen repented, and this affords a means of knowing the exact quantity of water fed into the builer. Wi. believe that this apparatus has been tested largely, and has given good results. It will be seen from the drawing that the w' rhing parts are casily aucesblle.

The St. Gothard Rahimay -The seventh report of the progress of the St. Gothard Tunnel has just been published by the Federal Cuncil. From this it appears that the length of gallery driven up to 30th of Jan., was 427.40 metres; tength of tumal completely exravat $d, 29620$; l-ngth of arch, 14500 , length of side-walis (cast), $1 \mathrm{ml}-90$; do.west, i41 60 ; lungh of drain built, 9950 metres The average number of wo kimen employed during the month of Juse was 1,036 ; the ficatent number employed in one day vas 1,205 At Goes-- henten, 10 m tres of the tunnel in curve have been driven, and 1380 of arch bult Towards the end of the month trial will be made of two new boring machines (SIackeau). At Airolo the tumalling by mat hinery was commenred on the 21 st of June with the machines of Dubois and Françis.

PRIZES FOR ELECTRICAL INVENTIONS.

Among the geacral subjects for which prizes of gold and silver medals are offered by the Socicty of Arts, London, aro the following :

A galvanic element which shall combine tien constancy for the Daniell's cell with the low resistance and higin olectromotive force of a Grovo's cell.

An electric condenser which shall combine high capacity with small bulk and small residual chargo.

A sensitive pocket galvanometer. Tho size should not exceed that of a watch.

To which may be added, as of use in telegraphy :
A varnish or coating which can be applied to iron wires 80 as to protect them against rust, and which shall not be liable to chip off when the wire is bent or rubbed.

Electric weaviog. To the manufacturer who first practically applies electricity to the production commercially of figured fabrics in tho loom.

Telegraphs. For an economic and permanont means of telegraphjng through uninsulated wires, between places not less than 1,000 miles apart.

All communications and articles intended tor competition must be delivered addressed to the Secretary, at the Society's House, free of expense, either on or before the 3lst December, 1873 or 1874 , excopt where otherwise stated. In the first case they will be considered during the session $1873-74$; in the second case during the session 1874-75. Any communication rewarded by the Socioty, or any paper read at an ordinary meeting, will be considercd as the property of the Society.

QUALITATIVE ANALYSIS FOR AMATEUSS.-IV.

By E. J. Halloce, A.M., in the Boston Journal of Chemistry, continued from p. 136.

GROUP SSCOND. (Continued.)

Tin forms two distinct series of salts, whose reactions are quite dissimilar. Unlike all the other metals except gold and platinum, it is insoluble in nitric acid, but is converted by it into a white oxide. Metallic tin can be recognised in this way, and also separated from other metals with which it may be alloyed. When tin is dissolved in muriatic aci, t, tin being in excess, stannous chloride (SnCl 2) is formed. Thi-substance is used by dyers and known as "tinsalt." With $\mathrm{H}_{2} \mathrm{~S}$ this salt gives a dark brown or black precipitate, soluble in yellow ammonic sulninde, from which solution it is precipitated yellow, by hya chloric actd ; with corre sive sublimate (HgCl 2) it gives a white precipitate of $\mathrm{H}_{2} \mathrm{Cl}_{2}$ (calomel) if the former if in the cxcess, but if the SnCl 2 is in excess, Ω grey precipitate of metallic morcury is formed. With SnCly and chloride of gold a beantiful purple colour is produced, known as the purple of Cassius. Stannic chloride, SnClt, is formed by the direct action of chloride on tin, and was known to the alchemists as "Liquor fumans Libavii." This gives with excess of H 2 S a yellow precipitate (white if the SnCl4 is in excess). The precipitate is solubie ir ammonic sulphide. It gives no precipitate with HgCl_{2} or AuCl . Tho separation of tin from other metals of t is group, in the wet way, being rather tedious, we may be allo, ed to mention a few of its blow-pipe tests. When fused wit carbonate of sodium and cyanide of potassium on charcoal, tae compounds of tin give malleable globules of metallic tin. . in gives a white coating on charcoal with the oxidising fiame. If this costing is moistened with nitrate of cobalt and trated with the oxidising flame, a bluish-green colour is produced. Zinc oxide takes a fine yellowish-green colour. These reactions are very characteristic. A simple blow-pipe for this experiment is formed by drawing out a piece of glass tubing two inches long, and passing it through a cork, which fits into the bowl of a clay pipe.

Gold is insoluble in any singlo acid. Aqua regia converts it into the chloride, which yields a black precipitate with $\mathrm{H}_{2} \mathrm{~S}_{\text {, }}$ soluble in yellow ammonic sulphide. With SnCl 2 and SnCl4 dilute gold solutions give a purple precipitate, 80 that gold and tin are each tests for the presence of the other. (See tests for tin above.) Sulphate of iron precipitates metallic gold as a fine brown powder. As gold is usually
mot with in a metallic stato, its colour and insolubility in any single acid usually suffice to identify it.
Platinum dissolves only in aqua eegia. in solutions of the chloride H2S yiolds a black precipitato aftor somo time, immediately if heated. Sal ammoniac ($\mathrm{NH}_{\mathrm{H}} \mathrm{Cl}$) produces a yellow crystalline precipitate, but this is not formed in dilute solutions until the fluid is ovaporated to dryness and the residue treated with a littlo water or dlluto spirits. The samo effect is produced by potassic chloride (KCl).
geparation of metals of arour groono.
gEOOND DIVIBION.
Into a solution contrining the five metals of this group pass a current of $\mathrm{H}_{2} \mathrm{~S}$. When tho motals havo all been preclpitated, filter carofully (somelimes the sulphide of tin passes through the illter, so that the operation needs repeating), and dissolve in yellow ammonic sulphide. If any residue remaing filter again. The sulphides are reprecipitated from this solution by hydrochloric acíd, washed, and dissolved in the least possible quantity of aqua regia. They are then introduced into a Marsh apparatus, as described last month. A suffioient quantity of zinc is placed in the generating flask to furnish hydrogen enough to carry aray all the arsenic and antimony. Dilute sulphuric acid is added until all the zinc is dissolved. During this operation the tin, gold, and platinum are reduced to the metellic state, and are filtered out of the zinc sulphate solution in the flask, and tested as follows: the tin is first dissolved out with HCl and tested with corrosive sublimate; the other metals are dissolved in hydrochloric and nitric acid and tested for separately in different portions of the solution.

EXAMPLES FOR PBAOTIOS.
Precipitated with H2S.

The student has become, by tris time, acquainted with the reactions of cleven metals, and is able to recognise them when separate, and to separate them when mixed. He may now vary the exercise, by putting his knowledge to the test. If he has a friend who will give him a solution of HgCl , or SnCl2 or CuSOt, without telling him which it is, he will soon learn to rely on himself, and will enjoy the pleasuro of finding out what was, to him, the unknown.
Analysis of Type-metal, -The composition used by varions type-founders varies enough to furnish an interesting example for practice. The type is cleaned and dissolved in nitric acid. If a white residne remain, it is probsbly tiu. To the solution, after filtering, add just enough hydrochloric acid to precipitate the lead. Filter cold, and test the filtrate with a drop of HCl for lead. To the filtrate add H2S as long as a precipitate is formed. Filter and wash thoroughly then digest with ammonic sulphide. Filter again, and label the filtrate, "Group II., 2d. Div." The insoluble residue probsbly contains traces of lead, and perbaps bismuth; it is

Abstract

diseolyed in nitric acid, and the lead precipitated with sulphuric acld. After filtering, the bismuth is precipitated by ammonia (ses p. 165). Antimony will probably bo found in the portion dissolved by (NHi)2S, and is recogalsed by the bright orange colour on reprecipitsting it with HCl Its presence is confirmed by the Jiarsh test.

Tho analysis of bronze is made in a similar manner, tin somaining as an oxido insoluble in nitric acid. The solution has 8 blue colour, which is intensified by the addition of ammonia, or gives a brown precipitate with H2S.

THIRD GBOUP.

This group embraces the metnls precipitated from nontrol or slkalino solutions by ammonic sulphide. Cobalt, nickel, iron, manganese, and zinc are precipitated as aulphides; aluminun, chromium, and uranium as oxides.

If the end of a piece of platinum wire be bent into an eye, then dipped in borax, and heated in a lamp or blow-pipe flame, the borax will fure to a colourless bead. On moistening this bead with any solation of cobalt and heating again, it becomes a beautiful blue. This is very characteristic and delicate test for cobalt. Cobait solutions give with ammonic salphide a black precipitate, insoluble in dilute hydrochloric acd, but easily soluble in aqua regia. Potassic nitrite (KNO-), followed by acctic acid, produces a yellow crystalline precipitato. Potassic cyanide precipitates the cyanide of cobalt, Fhich dissolves in axcess of the precipitant. If this solution is boiled with more potassic cyabide for half an hour, a drop of hydrochloric acid being added, the cobalticyanide of potassjum is formed (K3CycCo). This solution is not precipitated by acids, nor by boiling with sodic hypochlorite or Labarrague's solution.

Nickel 50 closely resembles cobalt as to be separated with difficulty from it. Ammonic sulphide produces a black precipitate, insoluble in dilute hydrochloric acid, soluble in aqua regia. Potassic nitrite with acetic acid gives no precipitate. Fotassic cyanide precipitates the cyanide of nickel, which is soluble in excess of precipitant. If bydrochloric acid is added to this solution, the cyanide is precipitated. It is not altered by boiling with HCy, When boiled with sodic bypochlorite, it gives a black precipitate. This enables us to separate cobalt and nickel Grcat care must be taken, When performing theso tests, to avoid inhaling any of the praseic acid so abundantly liberated. On this account, potassic nitrite is to be preferred, if it can bo obtained, for detecting nickel in the presence of cobalt.

Says the Sournal of the Franklin Institute:-A project no less gigantic than the picrcing of the locky Mountaius is announced as alout to be commenced. The projected tunnel will, if completed, be carried through the locky Mountains from a point pear Black Hawk, and will come out in the Middle Park. It is said that the project is fully inaugurated, and that its projecter is on the ground with ample means and labour at disposal to prosecute the work to completion. The tunnel will be aboat twelve miles long. Its greatest depth will be 6000ft, at James Park. It will make the Middle Park readily accessible from the eastern part of the territory, will indicate the nineral and geological character of the region, and will nol fall to attract atiention to the place, as the scene of an engineering enterprise nearly twice as difficult of accomplishment as the famous Mont Cenis Tunnel. It is stated that early next ycar work will be commenced from Middle Park. Already considerable work bas been done. The mountain hr s been graded down for the face of the tunnel; a flume, l300it, long, has been buiit from the creek, by which a fall of 25 ft . is obtained for the purpose of driving an overshoi wheel, by meaus of which the tunnel is to be supplied with air; a strong levee ?as been built, to prevent the waters in the creek from overfowing and embarrassing the operations in the tunnel. The main advan. tares to be derived from its construction are stated to be that it will be open up new lodes, and afford a thorough knowlidge of the course of mineral veins; that it will afford a menns of working the discovered mines cheaply and rapidily and that it will develop the resources of the ragion by the increased facilities for transportation which its construction mill afford.

PRESERVING GRASSES, FERNS AND FLOWERS.

Tho following details in the art of preserving flowers, $k=$, are given by a lady correspondent of the Farmer:-Grabbes should be gathered early in July, if we desuro them to retain their bright bues without the aid of art. Gathered than, tied up in large bunches, and hung away in a dark closet, they coms forth at our bidding, fresh and green as when plucked Now, by brook-side or in shady places, we can find graceful grasses, which will prove additions to our winter bouquets, but they will loose their colouring, and require a dip into "Judson's Qreen Dye." Dry them again, and they will last for years. Wild onts, feather-grass, and all their various species are very ornamental in winter, and mingled with the cverlasting flowers-Acrochinium, Xerabthomum, and the white, yellow, and crimson Hellchrysums-they vie with their more perishable sisters, whose glories are on the wane. Wo have just arranged two small vases for the coming winter. Tho brilliant pink and whito Acrochaiums add much to their benuty. The white Helichrysums can be dyed a brilliant purnle or scarlet with "Judson's Dyes," and esquisite bouquets can easily be manufactured. These "everlasting " flowers should be gathered as coon as the outer leaves open. Tie them up in bundles as you pick them, and bong up, flowers downwards, to dry Treated in this wny, the stems are straight and more easily used. I'hey can be heng to dry in one's chamber, not requinag a varkened place Most of these flowers are allowed to remain too long upon the bushes, and their beauty is spoiled. As they become dusty under the frequent swecpings of carpets, we dip them in cold water ; their petals close entirely. We dip the grasses also 'The running fern is a lovely decoration for walls and pictures. Its flowers add much to its grace and beauty, but it fades quickly, and by Christmas but a faint green remaius. Dip them in "Judson's Dye" (following the dirtctions given on the bottle for dyeing ribbous), and you will keep their lovely colour. After they have been thoroughly pressed in heavy books, then dye them, spread on paper to dry in the shade and then press again. Thus treated, they will last for years. Maidenhair, the most graceful of our ferns, soon loses its colour; but dyed, it is an addition to every collection of grasses or ferus.

Parsley fern is very beantiful; its soft, feathery leaves are always sought after. These, if gathered late in the autumn, will retain their colour mich better. The male fern, with its stiff stems, if well pressed, looks beautiful. We mingle it with the many-coloured leaves of autumn, or we pin it to the wall-paper, around pictures, or over lace or muslin cu:tains, and its effects are charming.

The branches of the Sumach, gathered soon after the frost has sppeared, or even before, press perfectly, and keep their colours finely. If varnished with map-varnish they never fade. Branches of this tree, interspersed with the ferns, are very ornamental. We have made excecdingly pretty crosses from its leaves, sewing each one separately over the other on a pastebosrd cross. Anchors and stars can also be made of its lance-shaped leaves. Thus suspended over engravings or curtains, they are very ornamental, and are easily dusted-an essential in the cyes of a good housewife.

Bunches of dyed mosses are to be purchased of all seedsmen in the cities; we dwellers in villages cannot arail ourselves of them if we wonld; but wo cam make them oren prettier than those exposed for sale Gather the mosses, pick out all the deb'ss, cleanse from dirt, and dry in the sun; then dip into "Judson's Dye," spread on papers to dry by fire or sunlight. We gathered last year a very finelyfibred moss, dyed it a lovely freen, and saved some of the original colour to mingle its jrown hues with it. Then we took the "hoops" from anold skirt, tied them together, and on the circlet tied wreaths, which city frieads said "surpassed those displayed at the chops."

Alludigg to the railmays of the Maritime Provinces, the St. John, N゙. B., Netos cays 702 miles are in operation. 838 miles are building, and 470 miles are chartered and mainly provided for. Total, 2,010 miles. The Eastera \& Maine Central liue forms the enclusive outletfof the system to the weat. As soon as the St. John bridge is built and the gauge of the European road reduced, a very great increase of traffic will be realized.

FACTS AND FIGORES CONNECTED WITH BELTING.

By Mr. J. H. Coorer, in the Jowrnal of the Franklin Intitute.

IMPARTING AND ARRABTING MOTION.

The dead stroke power hnmmer of Mr. T. Shaw, (Fig. 1) illustrates the application of the belt for giving to and taking motion from a shaft at the pleasure of the operator. The same devices can, however, by an casy transition, be applied to other machines. In this the driving pulley, carrying a looso bolt, is on a line shaft over the driven flanged pulley, which latter is on a shaft at the top of the hammer frame. This shaft carries a crank wheel actuating the hammer, as shown, and is partly invested by a leather band for arresting its motion. One end of this band is secured to a pin in the hammer frame under the crauk wheel ; the other end is fastened to the swinging lever to which also the tightener pulleg of the driving belt is applied The action of these belts is produced by opposite motions of the lever; thus, when the uperator pushes it, the arresting band releases the crank wheel, and the tightener pulley prosses upon the driving belt, which, bein's constantly in motion, applies its adhesion to the pulley on the crank shaft and propels the hammer, and it does this with a varging velocity,

according to the pressure upon the tightener. Withdrawing the lever relares the driving belt and tightens the arresting band. These motions are under the easy control of the operator, and such is the nature and action of the belt, in this application, that these motions can be repeated rapidly and effectively without destructive wear to any part of the machine.

TRANSMITTINQ MOTION

To transmit motion from one shaft to another at right angles theretto, by a belt, when the shafts are not in the same plane.Let E (Fig. 2) be the driving shaft with tight palley A, and loose pulfey B, and F the driven shaft with tight pulley D, and loose pulley C ; all the pulleys of the same size and with rounded face in the usual way.
Let the pulleys be arranged in a square on the plan, whoso side is the diameter of pulleys at centre of face, and let an endless belt be put on as shown and run in the direction of the arrow. It will be noticed the loose pulleys C and B run in opposite directions from that of the shafts on which they turn, but since they carry the slack fold of the belt, they are relieved of heary strain on the shafts. This is a good plan for wide belts when the shafts are a proper distance apart, say teu times tho breadth of the belt, and soives that sometimes difficult prob!em
of carrying considerable power around a corner by a belt. There is no loss of contact of the bolt on any of the pulleys of this system, and no lateral straining and tearing of the fibrea of the belt as in the usual quarter twist arrangement in which only two pulleys are used. The lower shaft may drive the upper one, as well, by changing the direction of motion, or changing the relative positions of the tight and loose pulleys.

FBAVEA's BELTLAG.

Tho object of this arrangement (Fig. 3) is to obtain high speed in a shaft directly from a driving pullay without the aid of intermediate counter pulleys or gears, and with reduced lateral stress on the bearings of the driven shaft.
A, B and C show three shafls parallel to one another. A and C carry straight-faced pulleys, upon which sun two belth

of equal length and width, separated to prevent contact mith each other while running. The lower fold of belt D is carriod orer shaft B, and the upper fold of belt E is carried under B, and each, in running, imparts motion to the driven shaft in the same direction, and at the same time balancing che lateral pressure on its journals. A is the driven shaft with large pulley; B the driven shaft of comparatively smsil diameter, and C, a counter shaft, with its pulley of any convenient dif meter, is placed in position to carry and return the belts, and may be moved and secured to and from B by screw adjustment or otherwise, to secure proper tension of belts.

CUKBESD FABT AND LOOSE FDLLET FOR FOUKD BELTS.

In the combined fast and loose pulley for round belta, by John Shnn, of Philadelphia, the round belt, f (Figs. 4 and 5). fis in a groove formed between two balf-pullegs, of which a

is fixed and A slides upon a fixed key on the shaft B; between A^{\prime} and A, and running loosely on the shaft, is a fist-faced pulley C; whon A is separated from A^{\prime} s short distance, the belt f will cease to turm them, and will run on and turn C instead. The belt drives the shaft B only when pinched between the half grooves of A^{\prime} and A. The lever D when moved in the drection indicated by the arrow, withdraws the half-sheave A, and permits the belt to run on the loose pulley. Simple and efficient means for holding the parts together and drawing one half from the other, are shown in the cuts.
It is nut proposed, of course, to drive very large and heavy machinery with round belts, such as are required for this description of shifting pulleys; but, as far as a round belt will go with advantage, these pulleys will be found of the greatest ervice. Thus, the rouad belt cuts off less light, occupies lesa 500 m , makea smaller holes in the floors, requires lighter driving

pulleys to carry it, and thus saver power.; while, as regands the diving power of round belts, we have seen one, of an inch dinmeter doing for yeara work which proved too much for a 8inch fat belt.

A SPECIFIC GRAVITY INDICITOR.

The following description of a simple apparatus for ascertaining specific gravities was recently read before the Chemical Soclety by Dr. H. Sprengel :--
"I have, for a numoer of years, avalled myself of pipette shaped vessels in proference to the usual specific gravity bottle, the following being a short description oí my mothod: -Tho form of my instrument, Fig. I, is that of an clongated U tube, the open ends of which terminate in two capiliary tubes, which are bent at right angles in opposite directions.

The siae and weight of this instrnment should be adapled to the size and capability of the balance ia which it is to bo weighed. The instrument which served for my determinations had a length of 7 inches, and was made of a glass tube, the outer diameter of which was $7-16 \mathrm{th}$ of an inch. It hardly need be mentioned that the U shape is adopted for the sake of presenting a large surface, and on readering the instrument sensitive to changes of temper 'ure. The point, however, which I wish to notice more particularly (for reasons explained below) is the different calibres of the two capillary tubes. The shorter one is a good deal narrower (at least towards the end) than the longer one, the inner diameter of which is about 02 of an inch. The horizontal part of this wide tube is marked near the bend with a delicate line, b. This line and the extremity of the opposite capillary tube, a, are the marks which limit the volume of tho liquid to be weighed.
"The filling of the instrument is easily effected by suction, provided that the little bulb apparatus (Fig. 2) has previously been attached to the narrow capillary tube by means of a per-

forated stopper, that is, a bit of india rubber tube, tightly fitting the conical tubulus of bulb. On dipping the wider and langer cajillary tube intu a liquid, suctio a applied to the open end of the india rublur tube will produce a partial vacuum in th apyaratus, causing the liquid to enter the U tube. As this partial vacumm maint,ins itself fur sume iome (on account of the bulb, whithacts as an air chamber), it is not necessary to continue the suction, if the end of the india rabber tube be timely clased by compression l" twe nther fingers. Whenthe bulb and \mathbb{C} tube have abont equal capacity, it is hardly necess ry, during the filling, to repent the exhaustion more than once. Without such a bulb, the filling of the U tube through these fine (apillary tubes is funal sumewhat tiresome. The pmptying of the \mathcal{L}^{-}tule is afiected $b_{\text {g }}$ revarsing the action anl so compressing the ain.
"After the \mathbb{L} tulue his been filled, it is detrulied from the bulb, placed in water of the standard temperature a. aost up to the bents in the apillary tuber, left there until it has assumed this temperatme, and after a careful ndjustment of the volume, it is taksen unt, dried, and weighed. Particular care must be taken to insure the correctness of the standaril temperature, for a mistake of 01° contse's an error in the fifth decimal, mahine $100,0 m$ parta 100,0014 parts. a pecnlua fuature of ny instrument is the ease and precision with whel the meanurement of the liguid can be adj sted at the moment it has tahta the standarid temperature, for it will be fuund that the liquiderpands and contracts only in the wider eapillary tube, namely, in the dircction of the least resistance. 'The narrow ca, illary tube remans always completely filled. Supposing the liquid rarkes begond the mak b, it may be reduced through capilary furce by tuching the point a with a little roll of filter paper. Supponing, however, that in so doing too much huquid is abstrated, capillary force will redress the fandt, if point a lee tomehed with a drup of the liqu d under examination, for this gentle force acts instantly thoough the whule mass ot the liquid, causing it to move forward again to or beyond the mark.

As the instrument itself pusse -a the properties of a delicate thermon+eter, the lime when it ha- renched the standard temparature of the bath may be learned f om the stability of the thread of liguid ins de the witer capillary tube. The length If this thread remains constant after the lapse of about live minutes In wiping the instrument (atier its removal from the bath), care ehonld be taken not to tonch p int, a, as capillanity might extract ome of the liquid; otherwise the handhang of the inctument requies no espreial plecaution. The nicety attainable by this method is vety satisfictory."

S.HOKING AND THINKING.

Dr. Richardson lias so clearly explained the influence of smoking upon the blood, that it will be best to quote his graphac account. Ilis scientilic emmence entitles his evidence to respect, and lovers of the weed must recollect that it is a smoker to whom they are histening :-" On the blood the prolonged inhalation of tobaceo produces changes which are very marked in chameter. The fluid is thinmut than is natural, and in extreme cases paler. In such instances the detictent color of the blood is communicated to the body altugether, radering the extirnal surface yellowish, white, and puffy. 'The lilood being thin, also cxules freely, and a sut surface blerds for a long time, and may continue to bleed inconveniently, even in opposition to remedies. Bist the most important change is exerted on those little bodies which float in myriads in the blood, and are known as the red globules. These globules have naturally a double concave surface, and at their edges a perfectly smooth outline. They are very soluble in alkalies, and are subject to change of shape and character, when the quality of the fluid in which they float is modified in respect to density. 'The absorption, therefote, of the fumes of tobacco necessarily leads to rapid changes in the m, they lose their round shape, they become oval and irregular nt their edges, and instead o having a matual attraction for each other, and runving to gether, a good sign of their physical health, they lie loosely scattered before the eye and indicate to the learned obEerver, as clearly as though they spoke to him, and said the words, that the mat from whom they were taken is phy sically depressed and depolorably deficiont both in muscular and mental power."
robncen modifles the circulation in the brain, as in other portions of the body. Hence, it would be romarkable indeed if it did not exerciso some inflatnce upon the mechanism of thought. "A sincere, self-observing smoker cannot fail," says M. Meunier, " to recognise that tobacco creates a new nature, muro disposed to dreaming than action.' Although agreat smoker himself, he considered the habit was inimical to t^{\prime} e national mind. His frequent diatribes agaust this mort aux peuples excited much raillery; but the habit of trenty years was long too strong for him. So close was the connection between work and smoke with M. Meunier, that the amount of intellectual labor ho had performed was chronicled by the extent of his consumption of tobacco. When, at last, after many fruitless attempts, he put his conduct in harmony with his opinions, it required several weeks of undivided attention to break the chains of habit which bound him. The mode by which nicotine acts upon the bloodvessels explains the apparont contradiction that it should be able to excite into momentary activity an organ which it has enferbled and stupified. The excitement and oviractivity, which it canses in the contractile apparatus of the walls ot the blood-vessels, are quickly followed by a general fatigne which is only a modntied paralysis. Thinking, as we have seen, is closely related with the ccrebral circulation. When, by continual usage, the muscular thssue of t'se blood-vessels has become gradually benumbed, the blood, i_{1} place of its natural rapid flow circulates slowly, and slug. g shly, and the functional energy of the brain is diminished. But with a new exlibition of the stimulant, the muscular concractility is again stimulated, the circulation becomes quicker, the brain, abundantly and regularly bathed by the life-blood, takes up again its functions, the brain-power increases, ideas thow with greater rapidity; but the activity thus produced canr ast. With this stimulation disappear the brilliant results which it had produced, and the organ falls iuto a relaxed condition, from which only 1ucreased doses can temporarily rescue it.

One of the results upon the brain is the loss of memory. Many authors hare noticed this fact.
The case of l'dble Moigno, the celebrated editor of Les Mondes, is curious. He had often heen in the habit of taking snuff, which had always led to prejudicial results. After various temporary renunciations, he had returned to its use. In 1861, whilst engaged in some mathematical labors, he took from twenty to twenty-five grammes daly, and found himself continually having recourse to the snutfbox. The effect was a rapid extinction of tho faculty of memory. He had learned several language: by their root words, of which he knew from 1,200 to 1,500 of each tongue, but he found that his power of recalling these words was gradually diminishing, and recourse to the dictionary became each day more necessary. Struck with this fact, he resolved to abandon the tabatiere and cigar. Writmg after six years' experien n as a non-smoker, he says-" It has been for us the commencement of a veritable resurrection of health, mind, and memory ; our ideas have become more lucid, our imagination more vivid, our work easter, our pen quicker, and we have seen gradually return that arms of words which had run way. Our memory, in a word, has recovered all its riches, all its sensibility.
That tobacco, especially in the form of snuff, is a personal enemy of memory, which it has destroyed little by little, and sometimes very promptly, cannot be doubted. Many persous with whom we are a g ainted-M. Dubrunfaut, the celcbrated chemist, for example-have run the same dangers, and escaped them in the same fashion, by renouncing tobacco, which we do not hesitate to say harms the greatest part of those who employ it, since for one smoker or suluffer who uses it there are ninety-nine who abuse it."

Jemory deperds upon the vigor and health of the nervous system; it is likely to be impaired by whatever causes unhealthy exיitement and nervous waste. ILence, if the smoker's memory fail, it may be considered as one symptum fof general injury of the nervous centers, from whicn arse -other ills. The perceptive faculties become coarser, and this leads to hallueinations. Blatin quotes frum forbart some curious cases of this nature. II. X., firty-six stars old, nervo-sanguine temperament, and ia apparent good--health, had ofte.s experienced embarrassment in speech and motion after indulgence in tobacco. Une fino day in the country, when the air was calm, and the sun was ehining
brighi: , he was astonished to sec A heavy rain-shownt whicli appeared to be driven towards him by a violent wind He extended his hand. No drops were falling, his clothes were quite dry, but at the same moment he was strack with violent palpitation. INo threw oway his cigar, the violent beatings of his heart ceased, and the vision disappeared. Many times this phenomenon recurred. Ife abandjued tolaren, and the accitents quickly disappeared. Thanking himself perfectly cured, ho commenced again to smoke, but the palpitations and visions reappeared. Complete abstinonce was his orij; safety.

The step from temporary hallucination to chronic lunary is not very grent, and we find on record the case of a min who became insane, anil whose recovery was due to a lucky accident, which barred him from access to his usual indul. gence Druhen narmete nnother note-worthy case. A middleagec: man, in good health and of steady babits, was sent by bis e uployer to Paris, charged with papers of considerable value. The importance of the trust preyed very much upon his imagination, and led to an attack of melancholy monia. He was under medical treatment about threo weeks, during which time his usual desire for tobacco disuppeared. On his recovery he again commenced smoking moderately. A tew months after another attack commenced, and he began to talk once more of the (imaginary) risks and dangers he had encountered in his journey to Paris. Druhen saw that he was upon the brink of insanity, and his first prescription was "No tobacco" Under this regome the man has smee enjoved the best health.*

These facts, although curious, are not entirely decisive, for, in judging by individual cases, there is always a riak of mistaking the exception fur the rule. There are, howover, data of a more absolutely convincing nature which we commend to the careful consideration of young smokers and their parents.

In 1855, ML. Bertillon divided the $16{ }^{\prime \prime}$ pupils of the Paris Ecole Polgtechnique into smokers and non-smokers, with a view of testing this question. The results in the exalliuations of the twenty who stood highest, and thos next to them, have been thus stated:

Smokers.	Non-smokers.
6	. 14
10	. 10
11	9
14	. 6
13	7
15	5
16	4
17	. 3
102	58

An exsmination of this table will show that whilst the nonsmoking pupils exhibit a steady upward tende: cy, the contrary is the case with the smokers. Althoug' the majority in numbers, they were the minority in intellectual attainments The contrast is most instructive, aud demonstrates conclusively the deadening influence of this popular narcotic upon the functional activity of the brain. If tobacco were, as it; apologists sometimes ciaion, the handmad of thought, a very different result must have ensued. Dr. Murray, of Newcastle, Who is at an opponent, but a defender of smoking, says: "My own personal experience and observation among medical students, is sapported by che results of examinations for law and divinity, surokers having been found behind non-smokers in menta' calibre. So long ago as 1606 , a medical writer sa tobacco is not safe for the young, and should be called ouths bane." Sir Benjamin Brodie, from the result of exp eriments upon animals, aftirms that the oil of tobacco acts by destroying the function of the brain. Tnis, of course, refers to its administration as a poison; but who can think with coolness upon our youth, voluntarily sapping the vigor of their brains - the only organ ia which we excel (?) the brute creationand thus wearing out their nervous systems cre they have fairly entered upon the important duties of life?
It will be scen that medical ecience and statistics contirm, ' by a posteriori ovidence, that which physiology would lead us

Io expect on aprors grounds. It woild ba folly to auppose that the brain, with nill its minutely wond rful mrchanism, should not be injured by continual contact with bliond wenk. ened and deteriorated-poisoned-by contart with |cadly prin ciples evulved in swohing tobaceo.

Smoking is now so common amongat pursona of unformed constitutions, that the facts here detailed acquire ngrave in portance. If guvemhe smoking continues niw! extonds, we mas lonk far genel tions endowed with weaker brama nud doller intellects in a continued neries of degradation Litt therer who
 into a race of dyspeptic dullards, warn them, as they wish fur the fall exercise of that power to think, which ix their greatest privilege and glors, as they hope for clear hads mad unclonded brains, to resist the dreamy seductions of tobncco. The Builder.

THE CENTRAL RAIL RAILWAY.

We have no sooner concluded that human invention ha attained its limit in this, or that, special direction, than all at once we are startled by some announcement which shows that what we supposed to be its ultimate form was only a stage in development. Who would have thought till a few months simet, nutwithstanding the "pannier" railway proposed last year, that trains would ever ron upon other than two rails? And now such a project is before the world, which, its promoters assert, will probably revolutionize the present sy stem. In this groject, the inventor utilises the principle by which the bicyclu rider travels balanced and stendy above two narrow whecels. In the proposed siogle line of rail system the carriages and engine will have a single row of central and double-llanged wheels striding or anddling the single central rail.

The recollection of mishaps nad upsets to bicycle ridurs in starting will probably excite the reader's smile as soon as the project is proposed to him. But the inventor does not intend that hisengines and carriages shall struggle into steadiness like the bicycle rider: he provides balance-rails and wheels. The balance-rails are provided for some distance in and out of stations. The carriagus and engines will be brought very much nearer the ground, and many other sources of danger in our present railway eystem will be initigat. ed,-as ieast so says the inventor, who proposes lighter trains and engines, and that trains shall run more frequently. Existing lines would be able to accommodate three or four "ways" of the new style within the compass of the usual "up" and "down" lines.

The inventor suggests several forms in which, under different circumstances, the system may be worted.

DAVIS' \cdot.'TEAM STRIKER"

The machinery repesented in the engrivings on pages 186, and 187, which is exhbited at Vienna by the patentee, Mr 1 Davies, of Vialucts Works, Crumlin, Newport, Monmouthshire, is unque of its kind, and has deservedly attracted a good deal of attention in the Exhibition. It is intended for all kinds of satall forging work about a smithy, for which the steam hammer is scarcely suitable, but an exammation of our engravings will show better than any lungthened statement of ours the kind of work for which it is must adiap ted The macinine may be described hortly as a tilt hammer worked direct by a steam cylinder (the blows being controllei iy a foot lever, and capable of being turned round by a simple. sppiratus so as to deliver the blows at any angle to the anvil.

In our engrivings Fig $l, i=$ a fiont elevati, n of the wachine; Fig. 2, is a Vertical section through the hane A, A, in Fig. 3; Fig. 3, is a sectional plan on the line B, B, in Fig. 2, Fig. 4 , is a vertical section through the valve-chest and turumg gean and Fig. 5. is a sect, on at 1 , in Fig. 2. The rest of the figures show a side elevation and olk-ide plan of the machine The arrangement of the striking gear is as follows: The hammer shatt itself, which works on a fixed pin, $2 t$ inches in diameter, is connected at its hinder en 1 with a pan in the lower end of a short connecting rod. This rod is fres to vibrate in a large slot made in what may be cailed the piston

[^0]
longitudinal section in Figs. 2 and 3. From Fig. 2, it will be seen that the valve spindlo has attached to it a slottled head, through which the abovementioned frame can work. Through this flotted head a pin is fastened, passing through the slot in the moving frme, and the curved sides of thio slot, pressing upon the pin in one or the other direction, gire the required motion to the valve. The construction of the valve, and the arrangement of the parts, are clearly shown on the drawilg, from which also it will be seen that one pipe, divided into two by a partition, and placed like a trunnion is the certre of motation, serves for both stcam and exbaust. The stesm is alwaye pressing on fhe two internal surfaces of the pistons, so that the ralve is in equilibrium, and is admitied to the two ends of the cylinder slternately, the hammer being double-acting, while the oxhaust passes out past tho outs:des dides of the pistons, and through the other half of the truanion pipe.
The machine consiste of 1 wo principal castings, of which one, which carries the hammer, and contains the cylinder and the whol. of the workiag parts, reste in two learinge in the other, which is the frame. Thest: bearings are respectively 2 fret aud 1 feet diameter, a size which is necessary as well to admit the proper play of the hammer, and room for the valve, as t, gecare steadiness to the whole machino ; and the object of arranging the nachune in this way is to allow the hammet to strike at any desired angle. For turning the hammer round, worm gear Fig. 3, worked by a hand wheel, is provided, and in consequence of the steam and exhaust pipes being both admitted through the contre of rotation, the distribution of the steam is not in auy way affected by the position of the valve, which must of course turn round along with the rest of the casting abore referred to. The hammer is set in motion or stopped by a fout lever Fig. 3, which works a stop-valve. (shown in dotted lines) placed below ground in a convenient position for the man working at the anvil. The striker can be worked with a pressure of 35 lb . steam, but 60 lb . or 70 lb . is more advantayeous; it can also be arranged to work either with water or compressed arr in situations shere these agents are preferable to steaw. It can deliver from 300 to $\$ 40$ blows per minute.

Mr. Richardson, of the Canadian Geological Survey, sags that the Taxada iron ore turns out to be of the richest quality, and the quantity it unlimited. He is making furthe. researches for ore. lle also came apod 8 marble vein. It is approscheo through a grotto, the entrance to which is 2,000 feet long, and 100 feet wide ; the ceiling is covered thoughout with stalactites. Mr. Richardsod was at Nanaimo when the stcamer left

Mn. J. H. Devereux, General Manager of the Atlantic und Great Weste:a Railroad, has given the followlag fassuction to enployds of the road: "Treat perple as if you appreciated and were willing to acknowiged their custom. Try to accommodate and please. In snort, act as any good basincss man would toward his customers. Don't treat peoplo as if you were confering a favont on them br letting them ride. Rather seek to make the like popular, because ite business is dependent on the good will of the people. You need not be asbame to let pcople understand that you scknowledge this. If a passanger refases to pay, or is rough and abusive, treat him with courtesy but firmness "

STORING EGGS.

For storing egge a very good plan is to have a large board pierced with holes in regular rows. Many breeders keep them in bran; and this latter method is, perhaps, best for those meant ouly to be caten, but for setting hens the pierced board has many obvious conveniences. They should be always kept with the large end downwards. This direction being exactly contrary to that usually given, we (Furmer) should state that our attention was first called specially to the subject by a most intelligent lady, who advocaten this plan, alleging as the probable reasos of its superiority, "Keeping eggs on the small end appears to me to cause the air-bubble to spread, detaching it iron the shell, or rather from its membranous lining; and after being so kept fur a fortnight the air-lubble will be found to be much spread, and the eggs to have lost much vitality, though still very good for eating" She then described her success the other way, adding, "owing to this method of storing, such a thing as a stale egg has never b. en hnown in my house ; and as regards success in hatching, for several seasons when I was able to attend to my poulery myself, of many broods set every "gg produced a chich." We were by no means hasty in adopting or recommending this plan, but after careful observation and comparison for two seasons, have proved indisputably that both for cating or setting, eggs do keep much better the large end down. There is alter a week a marked difference in eggs hept in the two positions as regards the spreading of the air-bubble-which is well known to affect boilh the freshness for eating and vitality for setting of stored eggs-and after three weeks the difference can be discerned even by the taste alone It will. of course, matter little which mode is adopted, provided the egrs are used for cither purpose within a short time; but the longer kept, the more the difference from the two positions increases, and while eggs stored with the small ead down cannot be depended upon after a tortnight to produce more than as proportion of chickens, those kept in the way we now advocate will keep perfectly good for hatching a month, or even more. We have sent thirty dark Brahma eggs to Ohio, U. S., which were twenty-two dnys on the road; yet they produced cighteen strong, lively caickens, or sixty per cent., though the eges must have been nearly a month old. We ought, however, to add that, as already observed, we base our change of plan not on any single instance, however triking, but on systematic tial for two seasons. During each of these seasons we sent out abbout forty sittings (of ten each) dark Brahma egge, and we satisfice ourselves most fully that. with the ordinary age of ergs thus sold by English fanciers -say from three to thirteen days-the difference in favour of egge tored the large end down amunated to nearly 5 per cent. This may not be much; but, as already remarked with age it increases, and we have proved as conclusively, by actual trial, that eggs may be set and successfully hatched with remarkable uniformity, at ages which, kept in the usual method, would be nearly bopeless. We have known eggs kept a month hatch fairly, even on the old system; but we are now speaking of usual and average resuite, and so simply place at the service of fanciers in general the results patient trial, which have abundantly satisfied ourselves that there is a real difference in the product of the two positions. With regard to packang, so far as actual injury is concerned, we believe there is no difference whiterer in the two ways; but if the journey occupy any time, the same position should b. maintained for similar reavons.

Asphalts Paper.-Asphalte paper is likely to become of great use in many ways. In thin shects it is ust ful for wmpping silks or other fabrics that need protection from moisture, for lining casen, or packing boxes for pianos, \&e., or rolled up into pipes for conves iug water. Aspbalte tubes are only onefith the weight of iron, will not rust, and are quite tough and strong The tubes are simply sher ts of paper, of a peculiar quality, dipped in melted asphalte, and then rolled upon a cy-। linder a machine for preparing the asphalte trapping paper consists of a hollow cylinder, heated by steam, and at wedgeshaped box, containing the bot asphalte. The box has a narrow slit, the width of the paper, and as the paper passes, a thin layer of asphalte is distributed on the aper just beforc it passes the cylinder.

CORRESPONDENCE.

[Wo do not hold ourselves accountable for the opinions of our Corresjondents.]

Too the Editor of the Mechanics' Magazine.

Sis,-A great deal has been said by geologists about the geological formation of North America, the many formations, their different ages and how formed. Most of these scientific men say that the quartz rocks was formed by infiltrationsilica held in solution and altered into the chasms of rock when the beds were under water, as I understand it. But I should like to ask those gentlemen how these veins of quarty could be formed by infiltration, when we find so many of them only very narrow at the top or surface and very wide as you go down, all the formation veins and all showing that this quartz came up from below at some time.

Anotherquestion.
How is it we never or rarely find a horizontal bed of quartz, and how is it we never find them without their showing some communication from below? If they were formed by filtration would they always have signs of communication from below? If quartz was formed by filtration, how is it we do not find veins of quartz forming now?

1 belicve they are formed by quite a different agency altogether; and were formed in sections of country at one time. These are all the queries I will ask space for this timeHoping some scientific man will answer me,

I remain,
AN INQUIRER.

DOMINION.

TuE Paris unt sud bolt factory has commenced operntions.

Aboct six hundred tons of iron ore is shipped daily from Cobourg.
In Pullman cars are to be placed on the Intercolonial Railway this ycar.
Tus breakwater for the protection of the light-house at Goderich is completed.

Bertin has at length decided upon purchasing a stesm fire engine at a cust of 55,600 .

Some agitation is reported frum Five Islands on the subject of a railway from Parrsbors' to connect with the Parrsboro' and Spring Hill road, for the purpose of carrying coal to the proposed iron works at the first mentioned place.-Oxford Sentinel.

Thase waggon loads of iron arrived recently at Bolicaygeon, from the mine just opened on the Monk-road. The ore is being sent to Pittsburg by Toronto parties. The ore is asid to be the best y et diecovered in Canada.

A mauufacturer in Saxous claims to have discovered a methed by which certain alloys of aluminium may be advantagenusly used in the manufacture of hair springs for clocks and watches. IIstherto the man difficulty in effecting this was that the rolling and drawing of the metal deatrosers its elasticity, and it is in overcoming this obstacle that the novelty of the discovery consists. To effect this the wire or band, after having been drawn or rolled to a proper size, is subuattcd to the action of a plane of pecular construction, and afterwards trimmed to the proper size by griading. The superiority of these springs orer those of steel consists an their being less likely to oxidise, free from the action of magnetism, and less brittle.

SCIENTIFIC MATCERS.

Tae use of peat as a fuel is mentioned by Pliny.
Tas reverberatory furnace for baking porcelain is said to have beea introduced from China.

Tur liability of safety valves to stick, in consequence of corrosion, is obviated by nickel plating both the valve and the seat.
At the recent General Assembly of French papermakers, M.M. Jourdeuil, Parizot and Gresse, the well-known French firm of paper manufucturers, submitted some samples of anew textile fabric, namely-the sheath of the hop-stalk. By removing the outer skin, and subjecting it to a certain chemical process, a tertile substance possessing the qualitiee which make rags so valuable in papermaking-namely, length, suppleness, and delicacy of texture, has been produced. The invention has been patented.
The abbé Plessis gives, in Les Mondes, some curious facte rlative to the muscular strength of insects. He placed a stag-bectle, weighing 3gr. 20, on a pece of wood, and balanced on its back a case, in which he put weights, gradually increasing to 1 kilogramine. On being incited somewhat, the animal moved forward with this enormous load, about 315 times its own weight. An ordinary men is cerrainly 100 times less strong. An clephant, pruportionally eadoved, might 'arry the obelisk of Tongior, 230,000 kilogrammes in weight The common tlea can leap more than 500 times its height, while man can rarely leap even once his.

Tue seeds of bects, when germination takes place very slowly, often become the prey of a species of small subterrineous myriopoda. M. Pagnoul has recently made experiments on the effects of immersitg the seeds for a short time in various solutions previous to sowing. He finds that a solution of sulphate of magnesia gives the best result, and among other beneficial substances are (in order), phenic acid, arseniate of potassium, chlorhydric achd, and sulphate of zinc.
Yower of Explosires.-Some experiments have been made recently in a German ion mine at Hamm, to ascertain the rilative efliciency of powder and some of the nitro-glycerine compotinds for blasting purposes. The following were the results obtained:-Ordanary saltpetre gunporder, one unit of force ; extra best powder, with excess of saltpetre and cherry tree charcoal, made by L. Ritter at Hamm, tree units; dualin, ointained from Her Dittmar, lientenant of artillery, Charlottwhburg, five units, hithofracteur, from Krebs, co, Denta five unts, colonia powder (a sort of powder saturated with thirty to tharty-five per cent nitro-glycerine), five to six units; dynamite, six to seven units. It will be seen that dynamite far exceeds the others in power, and its use is displacing theirs in German mines.

Avinteresting paper was communiwated, at the recent meeting of the French Academy, by Gin. Morin, on the cubic space and the volume of air necessary to insure healthiness in inhabited places. He constructs a mathematical formula expressing the amount of air necessary to berenewed hourly, so that the noxious gases (CO 2, , \&c.) emitted may not accumulate beyond a certain proportion not far from that in normal pure air, thich contains about 0.0005 c 0 . The following numbers are obtained :-

> cub. m. cm. cm. cm. cm. cm. cm.
$\left.\left.\begin{array}{c}\left.\begin{array}{c}\text { E } \begin{array}{c}\text { (Cubic spaco } \\ \text { per individual.) }\end{array} \\ \begin{array}{c}\text { (amount of air } \\ \text { to be renewed } \\ \text { bourly foreach.) }\end{array}\end{array}\right\}\end{array}\right\} \begin{array}{lllllllll}\end{array}\right\}$

The formula and results aro of much practical value Tbus, n bedroom 60 cubic metres capacity is gencrally thought sufficient for one person; but there should bo an hourly circulation of 40 cubic metres in it, so that the CO may not excecd 00003 . The ventilation of an amphith atre at the Surbonne, and other public buildings, is shown bs the auther to be enormously defective. In hospitals an allowance of 50 cm . to each bed, with an hourly renerral of 60 cco . gives good results.

MISCELLANEA.

Polishing Wood in tife Lathe. - After sand papering a very little preparation is required. Fill up the grain with oil and plaster of Paris, wipe off clean, polisin with French polish, and finish off with alcohol.-Samuel Smither, London.

An Indelinle Rev Inf.-Dr. Elsner states that an indelible red ink can be prepared as follows : Equal parts, by weight, of copperas and cinmabar, both in fine powder and sifted, are rubbed up with linseed oll with a nuller, and finally squeezed through cloth The thick paste can be employed for writiug, or stamping woolen or cotton goods, and the color remains fast after the goods have been bleached the reds usually employed are not fast colors, and do not resist the action of bleaching agents.

Shapina Soft Rebber mitu a File.-President Morton, of the Steven's Institute; states that be finds the ordinary thick sheet rubber, used m making up lantern tanks, and for many similar purposes, may be readily dressed into exant shape with a file, if only it is supported by lining clamped between phates of wood or metal in the vise. The file is used dry, and in all reepects as in working on wood or metal.

A Good Cement.-A verv adhesive cement, and one particularly useful for fastening the brass mountings on glass lamps, as it is unaffected by petroleum, may be prepared by bolmy three parts of rosin with one part of canstic soda. and five parts of water, thus making a kind of suap, which is mixed with one-half its weight of plaster of Paris. Zine white, white lead, or precipitated chatk may be used instead of the phaster, but when they are used the cement will be longer in hardening.

To Cot and Bore Inda Rubber Stoppers.-Dip the knife, or cork-borer, in solution of calustic potash or soda. The strength is of very little consequence, but it should not be weaker than the ordinary re-agent solution. Alcohol is generally recommended, and it works well until it evaporates, which is gencrally long before the cork is cut or bored through, and more has to be applied ; water acts just as well as alcohol, and lasts longer. When, however, a wherably sharp knife is moistened with soila lye, it goes thruugh the mada rubter quite as casily as through common cork; and the same may be said of a corh-borer of whatever size. We have irequently bored inch holes in large caontchonc stoppers, persectly smooth and cylindrical, by this method. In ordel to fimsh the hole without the usual contraction of its diameter, the stopper should be held firmly against a liat surface of common cork till the borer passes into the latter.

Warbrproof Glez- lied chromate of potasiz has the attributc of rendermg certain organic matters insoluble, such as gum, glyceniac, and gelatine, especially with the ad of hight. If a sliect of paper, coated with gum maxed with the red chromate is cxposed to the light, the coating becomes perfectly msoluble, cinin b ilug water. This property sis appled in photography in the so-called carbon process. Strong glue becomes insoluble more rapidly than gum, the action going on slowly even in the dark. A concentrated solution of the red chromate is prepared and kept in a dark place. When required, a little of it is added to some dissolved glue. Articles glued with this preparation may, after the lapse of some time, be washed without inconvenience either in cold or boiling water. ऐaper prepared with this glue becomes a kind of parchment, and serves for the coters of the pea-snusages (Erbswurst) used in the Germany army.

Ahnomical Preserves.-A (ierman technological paper makes the fllowing frightful suggestion :-"Very satistactory experiments have been made in using ammoma to lessen the amount of sugar required in preserving acid frunts. In the course of the operation a small quantity of sugar is to be stirred in and its'fferts carefully nuted. The alkah of the amenonia, combining, with the acd of the frut, produces a neuiral artion, which primits the sugar to have its full flect. An rxcess of ammonia ran te retredied by the introduction of a littie rinctar" The ammonianal salts which would ve formed by this proces., especially the acetate, have, in addition to certain undesirable medicinal qualitics, a taste which can best be described as strongly urinous:

IMPROVED RAILROAD HAND BRAKE.

We illustrate herewith an improved furm of railway hand brako, which, it is claimed, saves fully two thirds in distanco run and timo occupied while netting brakes. It is also stated to be much safer in use than the ordinary "twist up" arrangement, as it is placed from three and a half to fonr feet from the ond of the car roof, so that, in case of accident, there is le-s danger of the brakeman being thrown between the train.

The device is quite simple, and consists of a bed plate, to which is pivated in lugs, a segront, A. On the batter is formod a hook, to which the brake chain is attached, and also a fork, B, for guiding the same C is a wrought iron lever, connected with the segment and provided with a steel lip to engave in the tee.h of the rack, D The brake chain pasaen from the hook on the sugment over a pulley, journated in suitable bearings cas، with the bed plate, and thence down under another pilley, sucured as shown under the car, and so to the brakes. The arrang meat 0.1 the roof of the car is secured by but two bolts, and having merely a singlo motion, can necessarily be naickly opirated

The inventor informs us that on the occasion of a competitive trial between his device aud the ordmary brake, which took place on the Lattle Sirami railroad, while the latter -topped four cars and an engise in 1,130 feer, actual meascrement, his invention performed the same up ration withi 425 feet, thus gaining 705 feet ; and this although the cars in both cases were of the same weight and running as nearly as possible at the same speed.

From our engraving, giving two porspective views of th- apparatus, and slso showing how it is applied, a clear idea of ite constraction will be obtained It appes.s strong and durable, and, accurding to th. inventor, it is not expenc-ive-mesientific American.

FOSTER'S RAILROAD HAND BRAKE.

There have arrived in Nevt York 20,000 tons of iron ore direct from Bona, in Algetia. 10,000 tons go to the works at Buthlehem, and 10,000 tons to the TrentonSteel Works. This ore is waranted to yidid 60 per cent. of manguese. It is especially adapted to the Bessemer steel process. A year ago this ore was offered to be delivered in Pittsburg, at $\$ 16$ per ton. The cost in New York is about $\$ 12$. There is much interest manifested among Arecricau iron manufecturers as to bow this ore will work.

A suw motor has recently been patented in the U States, the operation of which is as follows:-Oil is sprayed iuto the cy liz己er behind the piston, and being mixed with air, is iguited at the proper time by an electric sttachment. The consequent expansion drives the piston forward, the momentum of the fly wheel returning it to its former position. An ejector supplies the oil from the tank to the spr yer, the injector being connected to a piston blower driven by a crauk att ,ched to the main shaft. Street patented much the same thing in England many yearg ago, using turpentine instead of oil.

It is estimated that it will take two yoars and a half to complete the :ong tunnel under the Lehigh mountains, on the Perkiomen Railroad. Operations aro to be commenced in 3 few days.

IMPROVED PLOW ATTACHMENT.

(From the Scientific American.)

The invention herewith illustrated is an attachment to the ordinary plow, and is designed to open furrows or channels in the soil of suitable dopth to receive potaiocs, and afterwards to cover the latter with earth. The device con. siste simply in a plate C, pivoted and secured by a screw and nut to an elbowed arm. The vertical pobition of the support drops into a socket, as shown on the rear of the mold board when in use, or, when not employed, is carried by the staple represented on the plow beam. It will be onderstood that the furrow left by the plow is too deep for potato planting, and hence the yrimary object of the attachment is to pattially fill the channel with the loose carth thrown up by the share. A bed of friable soil is thus prepared, excellently suitable for the germination of the seed. To cover the latter, it is simply necessary to use the plow without the attachment the ground being thrown up and over the potatoes by the moldboard in the ordinary way.

The devico can be placed in the socket with the end of the vertical part of the arm either up or down, it being suitably secured wbile in the latter position, so that the downard reach of the plate can be edjusted to plow in grain, eto., to any desired depth. Properly arranged, it is atated, the im-
plement is well adapted for putting in manure or plowing grass ground.
The seed potatocs aro of course deposited by a suitaole dropper or other convenient means. It is also claimed that a result of using the invention is that the digging of the hille, when the vegotables sre ripe, is attended with much less labor than ordinarily. The apparatus is simple, very quickly attached or removed, and readily adapted to the plow. Tho patentee is a practical farmor, and iuforms us that be has found it in operation a useful and valcable tool.

IMPROVED CLUTCI DRILL.

bittle explanation, in addition to our illustration for wbich ve are indebted to the Scientific American, is needed to show the action of this invention. By communicating the motion of the lever to the drill spindle by means of a friction clutch, the strain is distributed all around the spindle, and the liability of the drill, when acted upon on one side ouly, to swerve from the perpendicular is prevented. The merest possible motion of the lever moves the drill; and it will be seen that the clutch can be slid lengthwise on the spindle, allowing the latter and the lever to work clear of obst-uctione. The invedtor, Mr. Geo. W. Gill, of Pbiladelphia, c sims tiat, by using cast stect as a material, he has produced the best and cheapest drill stock now in market, and the only one wbich uses friction as a means of communicating the motion, and which bas, consequently, the advantages above mentioned.
horell's patent high pressure engine and BOILI:R

We illustrate on page 194, a ittle engine - whth has at least the merit of novelty - of which the patentee. Ar. B. Morell, exbibits a drawing at the Vienua Exhilition. The inrentor claimas that the engine itself is the simplest that can be made, aud w.ll be, in consumption of fuel, the most cconomical form of er gine for runnjigg at hish specds, and that in the boiler he bas obviated tro great objections to venic al builers, Damely the liability to prime, and the hibeliheod of leakage at the bottom of the tubes and the cracking of the tube plate. The engine is compound, fith cyliuders 3 is. and 6 in. in diametar respectively, and 9 in strike. The boiler is 3 ft . in diameter ($3 \mathrm{ft}, 6$ in. over the steam casing), and 5 ft . high, and
contains 28 tubes $3 \ddagger \mathrm{in}$. in diamcter, besides one centre tube 87 in . In dinmeter. The total heating surface, not including the feed hentere, is 200 square feet, and the grath surface is 8 equare fect. The boiler pressure is 90 lb . per square inch, and the engine is intended to work at 10 effective horse power with 350 revolutions per minate.
The two cylinders are cast together ; they have no slide valves, but the distribution of steam is eflectod by the ports passing openings in the too of a semi-circular box on which the cylinder oscillates. It is expected that the face of this box and that of the cylinder will be kept steam-tight by serewing down the two lovers which encircle the hatter. The cut off in the high pressure cylinder takes phace at $\frac{3}{4} \mathrm{in}$. stroko but this entails the dieadvantage that the port is not opened till the piston is nearly at quarter rtroke, rather a rough way of working expansively.
The boller is set on a large brick furnace, the products of combuntion passing through an opening in its roof, the bricks of which will be of course red-hot, before touching the boiler. This is an old method of preventing smoke, but we think it doubtful whether by it the gases can be freed from all materials whit will exercisc a deleterious influence in the bottom tube plate, as the patentee seens to expect. The fornace door has a hopper cast on it through which the fael can be introduced and pushed into the furnace by a crosy which can be qurued round by hand. As this cross does nothng whatever in the way of divtributing the fuel on the grate, the door would have to be opened every time fresh fuel was put on, in order that it might be arranged by a pokir or shove in the usual way so that the use of the cross i not vary obvious There is no menns of admitting air above the level of the grate bars withont opening the furnace door, a defect that ought certainly to ber medled The boiler is a simple vertical cylinder travered throughout its length by the tubes before men. tioned. The centre tube is made larger so that the draught may be regulated by a damper over its upper end. The other tubes hre ferruled at the the, the size of the holes in the ferrules depend ivg on the rature of the fuel used. The way in which priming is prevented is by rivetting round the whole upper bali. if the boiler an outer chell, leaving between it and the boiler proper a space of aloout $2 \frac{1}{2}$ in. A number of small holes rou id the top of the shell communicate with th's ann $1+1$ steam chest, a:d any wacer that paseesethrough

IMPROVED PLOW ATTACHMENT
them will, it is expected, be evaporated before it reaches the steam pipe. The whole boiler is enclosed in a castiron casing or smoke box, and the products of combustion pass down this casing - enveloping the boiler - on their way to the chimney. In the thes just behind the furnace, through which the gases pass after leaving by an inclined pipe Both of them coammicate direct by vertical pipes with the boiler. The feed water is introduced into the bottom of one of them, and a circulation is expected to be kept up through the inclined tuve, upinto the briler, and down again, so vigorously that all deposit is to be br ught down into one of the boxes, from which it can be easily blown off. It is easy to see how the feed water will rise but how a downward enrrent is to be induced from the hottest part of the boiler intos these comparatively cool ves is (from which at the same time the feed 1 ust continually ase end), is not so comprehensible.

In spite of the ingenuity of this engime, and of some giol points about the bonler, it has several obvious oljections which will - we are afraid - be sufficient to prevent it comiug into general use Ont advantage of a vertical boiler of the usual kind is that it is self-cont ined, and requires very little setting, while this one requires a lage firebrits furnace and flues. The exbaust steam will not make a very efficient blast if it is only admitted into the base of the chimney at a considerable distance from the boiler, and there does not seem any way of using it sooner. It will, therefore, be necessary to have a highet and more expensive chimmey than is generally the cave with vertical boilers. In addition to this the defective distrlbution of the stean in the cylinders will make itrelf felt unless the engine runs it a higher speed than 525 ft . per minute, which although high, has been reached even by engines of the ordinary coustruction, and much exceeded by some constructed like this one, specially for driving fans, \&e., direct. With 8 ft of grate and 200 ft . of heating surf wee no doubt much more than the 10 effective horse power named by Mr. Morell would be obtained, and there is no reason why the boiler should not rather work at ten or twelve atmospheres than at six. We are indeluted to Engineering for the above description and drawings.

Acconding to the calculations of Professor Rogers, each acre a coal seam 4ft. in thickness, aud yielding one yard net of pure coal, is equivalent to about 5000 tons, and possesses, therefore, a seserve of mechenical strength in its ruel equal to the life-labour of more than 1600 men. Each square mile of one such single coal bed contains $3,000,000$ tons of fuel, equivalent to $1,000,000$ men labouring through twenty years of their ripe strength. Assuming, for calculation, that 10 , 000,000 of tons out of the annual produce of British cosl mines are ppplied to the production of mechasical power, then England anuually summons to her aid the equivalent of 3,300,000 tesh men pledged to exert their fullest strength through twenty years. Reducing this to one year, we find that England's actual expenditure of power generated by coal is represented by that of $66,000,000$ able-bodied labourers. This is a representation of what really exists in another form; but if we proceed so far as to convert the entire latent strength resident in the whole annual produce of our coal mines into its equivalent in human labour, then, by the same process of calculation, we shall find it to be more than the labour of $400,000,000$ strong men, or more than double the number of adult males now upon the globe. In alluding to these facts Mr. Leifchild, in his excellent little work on Coal at Home and Abroad, oliserves that there is a most humiliating clement in the calculation. Thus, if we estimate a lifetmene of hard human work at twenty years, giving to each year 300 working days, then we have for a man's total dynamic efforts 6000 days In coal this is represented by three tons; so that a man may stand at his own door, while an ordinary quantity of coals is being delivered, and say to himself, "Thero, in that waggon, lies the mineral representative of my whole working life's strength.'

As exchange says : "Why cannot our railroad cars be made of paper, inste id of iron, as proposed, so as to prevent the danger of splinteri 1 and burning, in case of accident ?" A pertinent inquiry.

It is commonly assumed that accidonts on American railroadvare far more common and more fatal than on those of Grent Britain The following comparativo statements do not appear to justify this opinion. Let us take Great Britain and Ireland first. The parliamentary return for 1872 has just been issued, from it wo learn that the total number of passengers, servants of companies, or of contractors and other, killed by railway acci leats in 1872, was 930 in England aud Wales, 168 in Scolland, and 47 in Ireland; while the number injured was in Eugland and Wales, 2617 ; in scotl ind, 383 , and in Treland 38. Total killed, 1145 , injured, 3038. Of the paskengers the number of killed throughout the year in the linited Kingdim was 127 ; tne number of injured, 1462 ; while the number of companies' and cuntractorn' servants killed was 632 ; the number injured 1395 . The third class included in the report consists of trespassers, suiciles, persous pe-sing over rablways at level cr ssiug, tec. Of these the number killed was 268 : the number injured 181 ; 19 persons were killed, and 1233 injured from accidents to tonins, \&c, as colligions, train- leaviug ra ls , \&e., 48 persons killed and 53 injured from falling between carriages and platforms, 10 killed and 117 injured trom fulling on to the platform when getling into or out of trains; 39 killed and 16 injured while crossing the line at stestions; and 6 billed and 20 injured from falling ont of carriages during the travelling of trains. Among ralway servants and workmen on the lane 117 were killed and 378 injured during shuntinu "perations; 100 wre killed and 52 injured whilst working on the permanent way or in sidings, 118 were kalled and 95 injured whilst crovsing or ntanding on the littes; 54 were killed and 106 were injured whilst getting on or off trains, engines, se.; 42 werekilled and 214 injused from aceident, to trains cullisions, \&c.; 44 were killed and 84 mjured from falling of engines, vaus, wagons: \&c.; 27 were killed and the same number injured whilst passing between vehicles; and 18 were killed and 33 injured from falling or bei g caught between vehicles and platforms. 132 railway accidents, involving the death of nine and the injury of 462 pers ans, arose from collisions between passenger trains and goods or mincral trains; 124 ac cidents from broken rails; 99 accidents for traius runnaing over cattle or other obstructions on the line; 77 accidents from the giving way of axles; 75 accidents from passenger trains; or part of them, leaving the rails; 51 accidents from the giving way of tires ; 47 accidents from collisions between passenge tains; 25 accidents from trains running through gates at level crossings; 24 accidents from slipsin cuttings and embankmenter and 29 accidents from trains or engines travelliug in the wrong direction shrough points being set improperly. The report ou American accidents is not made up with the same elaborate care. The world is mainly indcbted for it, indeed, to our able contemporary, the American Ratlroad Gazette-an enterprisibs and well managed journal, in which a record is kept ot all railway accidents from year to year. From this we learn that in the year uding July lst, 1873 , the casualties were as follows :-In July 1872, there were 31 accidents, 35 per-ons were killed, and 66 injured; in Augus., 63 accidents, 15 killed, 49 injured ; in September, 71 accidents, 24 killed, 104 injured; in October, 90 accidents, 29 killed, 102 iujured; in stovember, 103 accidents, 37 killed, 114 injured; in Vecember, 112 accidents, 42 killed, 133 injured ; in January, 1873, 178 wrejdents, 10 killed, 199 injured; in February, 133 accidents, 25 killed, 126 injured ; in March, 112 accidents, 18 killed, 92 i jured; tu April, 101 secidents, 23 killed, 88 injured; in lay, 75 acecents, 10 killed, 113 injured; in Junc, 90 ictidents, 12 killed, 104 injured. Total, 1163 accidents, 310 persons killed, zud 1290 injured.

A Pacific ('able.-The Unit d states war steamer " 'rinscarom," which has been detailed to make surveys and soundmes preparatory to the Iaying of a telegraph cable from San Franciso to Japan and the Asiatic (outinent, has made an ex,emmental trip for the purpose of testing different apparatus for the pur-po-e of taking ocean soundrags. The result was the adoution of some nachinery invented by Lieutenant Brooks, with a recent improvement by Captain Belsnap Eleven attempts at sounding were made in all, two only being failures. 'The greatest dejth reached was 1949 fathoms, in latitude 37 degrees, 24 minutes and 50 seconds north; longetude 123 degress, 33 minutes and 25 secunds west. The "Tuscarora" is nus awaiting orders to proceed in sounding the line of the cable to the coast of Japan.

GOLD MINLNG IN THE EASTERN TOWNSHIPS.

A correspondent to the Sherbrooko Gazelte, describes a visit paid to the gold mines at Ditton in the Eastern Townshipe. He saye :-We reached the mines at noen, the mine proper covers nearly fifty acres of land, which has been thrown into mounds and otherwise disfigured by the miners, in the hasto to secure the pri- ious metal, and to-day scarcely one acro of its former even surface can be found. Sluices nearly half a male in length are kept constantly running during the summer months, emptying the tons of earth and broken slate on some place already worked, or on a neighbouring group of standing trees, and when the mound has reached a height considered dangerous, the stream is aimed at some vacant lots and another mountain not on the map of Litton appears. In many places groups of standing trees have been covered, leaving only the tops alone visible, and it is with the greatest difficulty that the stranger makes his way over the different mounds and through excavations, water courses, sc. In and around the mine we were $n x^{\prime}$, nished to find gold in the different sluices in abundaner go. 1 in the sands and for nearly two miles higher up the rivet, the bed rock seems to be covered with gold, and enough to furnish constant and profitable employment to many hundreds of Canadinns for centuries. An active man canwith pick, pan and shovel earn $\$ 3.00$ per day's work of ten hours. Skilled labor, together with the necessary mining appliances, have produced results sufficiently encouraging to induce the proprietor to contripe aud extend his business, and now at the end of ten years he finds his boarding houses, barns, \&c., too small, and insumicient for the wants of this rapidly increasing colony, and now and larger buildings are in course of construction.

Tus connecting tubes of the first arch of the St. Louis Bridge havo been successfully placed in porition. The St. Louls Republican, of September 17th, says: - "At present the weight of the superstructure is supported by the cables, and while that is the case the expansion and contraction of the tubes by heat and cold is of no consequence, but when it comes to putting in the last tubes, expansion and contraction cuta pretty big figure. When the connectioni-once made and the supports removed, so that the arch is self-sustaining, a new element comes into cari- the contraction from pressure When the cables are slackened, the arch at the centre will from this cause settle about 3 in . Provision has been made for this by increased length in the tubes, all the calculations being based on a trmperature of cinty degrees. At that temperature it is known to the sixtieth of an inch what would be the intervening pace between the approaching tuber, and the last joints have been dimensioned accordingly. Unly once, suce the workmen have been ready to put in these last tulies, has the temperature been favourable On Sunday morning at 5 o'clock, the conditions were all right, but owing to some unexpected tardiness the workmen did not get there till eight One tube was put in and it fitted to a nicety. In the meantime the sun shone on the bridge, and when they came to put in the other tabe it would not go entirely to its place, being about a thirtieth of an inch too long on account of the expansion of the tubes in place An attempt was made to drive it in place with sledges, but without effect. In consequence of not being able to put in the second tube, the first one had to be taken out agan and a more favourable opportunity wated for On Monday morning, the expansion was still greater, being $\frac{8}{8}$ in, and on Tucsday morning 28 in., owing to the warmth of the day before. Thi prospect being that a delay of several days would occur before the exact temperature required would be obtained, it was determined to try a little strategy in the case by reducing the temperature artificially. About two o'clock yesterday morning forty-five tons of ice were applied to the tubes, and bound on by many yards of gunny bagging, which formed perhaps the most extensive ice poultice ever used. At three o'clock yesterday afternoon the expansion had been reduced about 2 in., and it was calculated that at five oclock in the morning it would be sufficiently 60 to admit of the tubes being put in place." The application of the ice proved entirely successful, and on the following day the connecting tubes were put in and the first arch completed.

IIABITS OF THE BALIMMORE OYSTER.

In a conversation with a prominent oyster packer, says the Baltomore American, some curious and interesting features of the oyster tra le were related. As is well known, the habits of this bivaive are an entire mystery, what it eats and how it lives are questions not yet understood. The spawn of the oyster loats around with the action of the waves and tude, and adheres to whatever it may come into contact with. Oysters iaken from a rucky bed are of uperior quality; those taken from a soft bettom are comparatively poor in quality. Thousands of "poor innocent" oysters die annually from resting on a soft bottom, a fact which should arouse the rympathies of all tender hearted people.

The weight of the ofster, as it gradually matures, sinks it beneath the surface; and as soon as it is covered with sed.ment or mud, it dirs. Many people suppose that tne oyster really eats, and kand hearted people, buying oysters in the shell sometimes throw corn mealover them thinking to feed them. The pecular noise emanating from them has been sujposed vo be groduced by feeding. All shellhish at times have their shells open, and when touched will instantly close them. The noiso thus produced has been mistaken for mastication, when, us reality, it is from fright.

Most of the Baltimore dealers in raw oysters during the summer months transact their bisiness at Fair Haven, Conn., whith-r large beds of baltimore oysters have been thansplanted.' The bed are so arranged that, on the receding of the salt water tide, fresh water from a small stream covers the oysters; it is said that this fattens oysters better than any other method. Gder are received for the article in question during the summer months, and they are taken from the beds and shipped with the greatect possible dispatch, and many eat them with appar.nt relish, notwithstanding the warmth of the season. Altogether the oyst"r packing trade of Baltimore is an enormous one, and, in connection with fruit and vigetable paching busin-se, cmploys a capital of about $\$ 25,000,000$, a fact which sufticiently capresses the great importance of this interest to Baltimore.

Commos Scientific Language - The Athencum natices, as worthy of remark, that Prof. 'I'. Thorell, of Lpeala, has lately adrocated the introduction of a common scientific language ; add, as in these days a return to Latin is neither to be expected nor desired, he considers it not impro! able that English may at some time succeed to this poition. This he believes, not ouly because Enylish is far more widely diffused than any other tongue, but also because it can by most Europeans, we more easily acquired than any other language Prof. Thorell has given us an earnest of his belief by writing his recent work, "Remarks on Synonyms of European Spuders," entirely in English-in sucal English, too, that (says the same autbority) none of our cou urymen need be ashamed to own it.

A New Corering; for Steay Pipes. - A new method of covering steam pipe- is being applied in different mines of the Saarbrucken district, which has proved very efficient. A coat of thin loam wash is first given to the pipes, whichserves to increase the adhesion of the mass with which they are to be covered. The composition consists of equal parts of loam or clay, free from sand and brick dust, with an addition of cow hair. This is well mised up and put round the pipes in a hot state. Hor better securing this coating, wood splints, 0.26 metre long, 13 m . broad, and 22 m . thick, are laid along the the whole leagth of the pipes and fast ned by thin iron wire After applying the loam-wash again to the dried mass till all the cracks have disappeared, the pipes receive another coating of the mass, until they feel quite cool, which will be attained after the mass has been laid on to the thickness of from 124 m. to 140 m . A coat of linseed oil and cement is finally given. This method answers at present all requirements, the covering being perfectly air-tight and free from cracks. The mass is not hygroscopic, a property making it all the more suitable for pipee in the open air. The cost of the covering per foot of 8 -inch pipe is $6 d$., while the expense of the old procecding amounted to nearly 8 d . The inventor, Herr Wiess, has take nout a patent for his method.

[^0]: - Druhen, du Tabac," 1867, p. 56

