The Institute has attempted to obtain the best original copy available for filming. Features of this ccpy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured niaps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPapes restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\square
Additionai comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiquué ci-dessous.

TEE

CANADIAN NATURALIST

$\triangle N D$
(equaterty Yournal of Sitierte,

WITH THE

PROCEEDINGS OF THE NATURAL HISTORY SOCIETY OF MONTREAL.

```
CONDUCTED BY A COMMIITTEE OF TME SOCIETY.
```

NEW SERIES.-Vol. $\boldsymbol{\sigma}$.

MONTREAL:
DAFSON BROTIIERS, 55 to 59 ST. JAMES STREET. 1870.

98454

new see.
v. 5

2af The Editors of this Jourual are responiiblo only for such communications as bear their namos or initials.

EDITING COMMITTEE.

Acting Editor: J. F. Whitares, F.G.S.
J. W. Darson, IJ.D., E.R.S.
t. Sterry Muent, hl.D., f.r.s. C. Smaniwood, M.D., LL.D. E. Bulings, F.G.S.
P. P. Campantrr, B.a., Pa. D.

David A. P. Watt.
J. B. Evwards, Ph.D., F.C.S., Chaiman.

CORRESPONDING EDITORS.
Maiffar, N.S.-Prof, (a. Lavson, Ph.D., TM.D. St. Jouns, N.B.-G. F. Mattnem, Esi. | LoNdox, Ont.-W. SacNders, Esq.

CONTENTS.

Page
Aquaria Studics. Part I. By A. S. Ritcme 1
On Laurentian Rocks in Eastern Massachusetts. By Dr.'T. Sterny Ilest,F.R.S. 7
Meteorologieal results for Montreal for the year 1s69. By C. Smalwood,M.D., Lh.D., D.C.L.10
On the Graphite of the Laurentian of Canada. By Prin. Damsox, LL.D., F.R.S. 13
Notes on the Genus Eophyton 20
Contributions to Camadian Metcorology. By C.Smad,wood, M.D.,LL.D.,D.C.L. 2
Notes on some of the Plants in the Herbaria of Linne and Michame. By Prof.
D. C. Eatos, M. A 24
On Norite or Labtadurite Rock. IBy Dr. 'I. Sterry IIunt, F.R.S. 31
Notes on the Birds of Newfoundland. By Ilewny Reers, F.L.S. 4
On the Origin and Classification of Original or Crsstalline liveks. Parts I and II. By dhomas Macenhlase. 47
The Plants of the West Const of Newfoundland. By Jour Bred, M. A., M.D. 54
Why are Insects attracted by artiticial lights? By A. S. Mitenie 61
Notes on Vegetable Productions. By G. E. Beloer, F.L.S.,F.R.G.S., 63
On Recent Spectroscopic Observations of tho Sun, and the Total Eclipses of 1sís and lisby. By James Dovglas, jun. 121
On Canadian Diatomacea. J3y W. Osler 142
Notes on the Birds of Newfoundlanc. IBy Hevry Rems, F.L.S. 151
On the Origin and Classification of Original or Crystalime Rocks. Part III. By Thenas Macfamlane. 159
Aquaria Studics. Part II. By A. S. Ritchis. 165
On Foraminifera from the Gulf and liver St. Lawrence. By G. M. Dawson. 172
Notes on the Structure of the Crinoidea and Blastoidea. ByE. Bhangs, F.G.S. 180
On the Geology of Eastern New England. By Dr. T. Sterny Huxt, F.R.S. $1: 3$
Canadian Phosphates considered with reference to their use in Agriculture. By Gordos Bruome, li.G.s. 417
Science Education Abroad. Extracts from a Lecture by Principal Dawsos, Lh. D., E.R.S 263
The Earthuake of October 20th, 1870. By Prineipal Darssox, LL.D., F R.S. 252
Notes on the Birds of Newfoundland. By Menry Reers, F. L.S. 283
On the Origin and Classitication of Original or Crsstatline Rocks. Part IV.
By 'thomas Macramane: 301
Notes on the Butany of a portion of the Counties of Ilastings and Aldington. By b. J. Mamingtgx, B. A. 312
A few hours at Cape Town. S. Africa, By G. E. Bewger, F.L.S., F.R.G.S. 365
On Spure Cases in Coals. By Principal Dawsos, LLD., F.R.S. 369
Bivalve Crustacens frpm the Gulf of St. Lawrence. Described by G. S. Brawr, C.M./.S.S 371
Extract from "Notes on Fossil" Ostracoda from the Post-Tcriary Deposits of Camada and New England." By (U.S. Brady, C.M.Z.S., and Rev. II. W. Chosstray, F.G.S 353
Notes on Granitic looks. By Dr. T. Stemey Ilent, F.R.S. $3 \div 8$
Notes on the Birds of Newfoundland. By llewny Reens, F.L.S. 406
'I'ho Correlation of Vital and Physicial Forces. By Prof. Darkerr. 416
The Amemean Assochation:-
Mecting at Troy 1:0
The Geological Society of London:-
Abstracts of the Proceedings 90
The Natural Mistory Society:-
The Month!y Meetings. 75, 437
The Ammual Mecting 200
The Sommerville Lectures. 80, 208
The Conversazione So
The Report of the Council. 214
'the 'Ireasurer's Account. 220
The Britisi Association :-
The Meeting of 1870 235
The Meeting at Liverpool 319
The President's Address. By Prof. Huxley, F.R.S. 319
Gemogy and Mineralogy :-
Notes on the structure of Sigillaria. 98
Notes on some noir Animal Remains from the Carboniforous and Devonian of Canada 98
Cephalaspis Dawsoni 222
Jimbryology of Limulus 223
Cope's Synopsis of American Fussil Batrachia and Reptilia. 225
Marine Crustaceans in Lakes. 226
Figures of British Fossils 227
Geological Discoverics in Brazil 342
Botary and Zoology:-
North American Laminariacere 99
The Diffusion of Plants. 101
Asiatic Geographical Botany 102
Notes on Canadian Birds 103, 230
Lower Camadian Land Mollusca. 103
Swiss Mammalia. 104
The Use of Birds and Worms 107
Uses of the Cockchafer 108
Tomato Worms not Poisonous 109
British Edible Fungi 227
the Gulls of Nova Scotia 231
Position of the Brachiopoda 232
Notice of Fucus serratus found in Pictou Harbour 349
Labrador Plants. 350
Saponaceous Plants. 352
The Vultures and Humming Birds 357
A Cruise in a Whitebait Boat 463
A New Species of Ersthronium 465
Chemistir and Physics:-
Hydrogeniam 110
Metallic Inydrogen. 111
Artiticial Ice. 112
The Pointing of Pins 113
A new Dye. 214
Cnderground Temperature 230
Microscory:
Butterfly Parasite 115
Examination of Dust. 116
The American Microscopic Society 117
Dr. Carpenter on Microscopic Stands 361
Miscrlianeots:-
On the Nipigon Territory 118
Scraps from Nature. 239
Deep Ser Explorations 458
On Astronomy and Geology. 460
Dredging of the Gulf Stream. 461
Revieks and Noticres of Books:-
Disinfectants and Disinfection. By R. A. Smith, Ph. D., F.R.S. 93
Prutoplasm ; or Life, Matter, and Mind. By Lionel S.Boale, M.D., F.R.S. 97
The Cell Doetrine: its Ifistory and Present State. By J. Tyson, M.D. 9
Lyell's Elements of Geology. 34
Mrs. Lsell's Mandbook of Ferns. 343
Indes and Contents

CANADIAN NATURALIST

AND

AQUARIA STUDIES.

Part I.
By A. S. Ritchie.
The rage for aquaria has somewhat subsided in the fashionable world; still fashion reigns to a certain extent, and exerts an influence even in the zoological world. There has been a furore for sponges such as the beautiful Venus' Flower Basket (Euplectella speciosa), from the Philippines, for novelties in shells or in insects, and at fashionable prices.

All are not votaries of fashion,- though, in the minds of some, the fickle goddess may fan some latent spark of "Nature's fire" into a flame. While aquaria, in countless numbers, are being sacrificed by the auctioncer, the student of nature watches with intense interest the various productions of animal and vegetable life in his minature fish-pond, and sees, with admiration, their perfect adaptation to their place in the ceonomy of nature.

A well-known naturalist writes: "The graceful fish, the brilliaut reptiles, the shining insects, that people this rare world, whilom hermetically sealed up from our yearning view, are now displayed in the aquarium:-sporting, feeding, slumbering-pursued and pursuing,-leaping into life, and falling into dissolution,-each in its natural haunts, and yet 'all at home in these crystal palaces." "

The fresh water aquarium with us, constructed and stocked on scientific principles, should represent faithfully a Canadian pond

No. 1.
or stream. Nothing mars the effect more than to see marine shells, gay corals, madrepores, and echinoderms, however beautiful and interesting in themselves, in a fresh water aquarium. Even gold-fish are out of place among our Canadian fishes there, and detract from the truthfulness of the representation of a local fauna. Our waters contain the beauties of the Creator's hand just as much as those of a foreign shore, and the object of all lovers of aquaria should be to correctly illustrate the habits of native species.

The bottom of the tank ought to resemble the bed of a pond or river, with pieces of rock-work here and there, having their tops standing out of the water, to allow those creatures which prefer out-door exercise to breathe the fresh air at pleasiure.

The principles on which an aquarium should be constructed are the following. The vessel should be either oblong or square, but not globe-shaped, on account of its distorting the image of whatever is contained in it. This should contain animal and vegetable life, in fresh or salt water, which, like the water of a river or sea, need never be changed. The vitalization of the water, without its being changed, constitutes the main principle of the aquarium; this principie we shall now endeavour to explain.

Living animals absorb oxygen, and give off carbonic acid gas. Plants, on the contrary, exhale oxygen, and inhale carbonic acid. What the one accepts the other rejects; that which would suffocate the one if it was not removed, the other would die from exhaustion if it could not obtain.

In stocking an aquarium, judgment and discretion are required, so as to have an equal proportion of animal and vegetable life. It should also be remembered that the more rock you introduce the fewer fish must be put in. A little experience in the keeping of aquaria will soon make people aware of any disproportion in the balance of animal and veretable life. If plants are in excess, this is shown by the particular clearness of the water and by the restlessness of the fish. Their motions are spasmodic; they swim backwards and forwards in darts and jerks, as if trying to escape from something. If, on the other hand, there is too little vegetation, the fish swim lazily, with their mouths out of the water, panting for oxygen.

Our aquarium is three feet six inches long, by two wide, and twenty inches in depth. It has a glass top or roof-shaped
covering; this is to keep out dust, and to prevent some of the inmates going from home, also for the purpose of fern growing. The bottom is covered with about two inches of sand or gravel, having rock-work at each end, with the tops of the stones standing out of the water. These last have cups cut in them for the receptiou of mosses and ferns, while the portion above water gives the reptiles and crustaceans the opportunity of a short stroll at pleasure.

We have grown Anacluris alsinastrum and Vallisneria spiralis with comparative success, the great enemy to their entire success being the cray-fishes, which browse on the plants, and destroy them after a time. We dispense with the larger plants altogether now. The aquarium stands in a darkish corner, aud the water istas clear, and smells as sweet, as when put in two ye:urs ago. A little water must be added now and then to compensate for evaporation. We never clean the glass on the side next the wall, which is covered and grown over with conferver and other lowly plants of various kinds. This, and not crowding too much animal life into the vessel, is the secret of success.

We shall now introduce the reader to some of our favourites, and first some odd fishes which possess many and varied traits of character.

- That dapper little fellow, with his coat shining with scarlet and green, and armed with spines, is the little Sticklebick (Gusterosteus*). He is the prince of gallants, and will fight for his ladylove to the death. A peculiarity in the economy of individuals of this species is, that they build a nest, the male watching and following the young until they can fish for themselves. We have had the nest built in the aquarium of several pieces of weeds that were introduced, but saw no young ones; if they ever had any the other fish must have devoured them. The female kept possession of the nest, which was in a corner of the tank, while the male kept watch outside. Woe to the unwary minnow, or sun fish, that comes near his domicile, -his coat becomes more brilliant, his little eyes redden and flash, and with spines crected, he rushes at his enemy and charges him with his numerous bayonets.

Our next example is rather a handsome fish, which always c swims along the bottom, moves by jerks, and darts to and fro; from

[^0]his peculiar: style of motion, he is named the Darter (Boleosoma tesselntum.) He is said to have no air bladder, which accounts for the difficulty he has in rising to the surface. He is a quiet retired character, but always manages to be on hand at feeding time.
The Striped Minnow (Rhinictly/s atronasus) is the dandy of the tribe,-always sporting himself in the fore-ground. He is a little forward at times, and sometimes makes mistakes, such as rushing at a fly that has alighted on the outside of the glass, and only knows his real position (a dandy in prison) when his nose comes in contact with the glass.

We have a tyrant in our colony, the common Sun-fish (Pomotis auritus.) He must be king, and his rule is despotic. None are allowed to eat until he has finished, and even after getting the lion's share he chases all who dare to attempt to help themselves. One day he nearly fell a victim in consequence of his bad temper. A fine Cray-fish (Astacus Bartonii) had his home in the corner of the aquarium; at the close of feeding time he would sally forth to pick up anything that was left; the sun-fish made a dash at the antenne of the cray-fish (which are always in motion when on a purveying expedition); like lightning the claws of the crustaccan were thrown up in self-defence. He caught our finny friend above the tail, and only our timely interposition saved the sun-fish's life. After this we made a close prisoner of him in one of the corners of the tank, by placing a square of glass against the side and end.
The most graceful fish in our family is the A merican Perch (Perca flavescens), his proportions are so elegant, and his shape is so well adanted for swimming. He has a powerful stroke-oar in his tail, and ferw can match him on a trip round his domain. His powers of cating are extraordinary. Many a poor minnow pays the penalty of being a little too small for his company. Still, when regularly fed, he behaves himself as well as a respectable perch ought to do.

A very pretty Black Basse (Centrarchus fasciatus), is our next friend; we were not long favoured with his company,-he was too good for such a station. The waters of the St. Lawrence or the Ottawa were his home, and he pined for their gravelly bottoms and rippling waves. His retiring manner was our admiration; he always loved the shade of the rock-work. Many a stray fly was quietly dropped into his corner, which he never took without
a look of recognition and thankfulness; but death!-inexorable death !!-called him away.

The Cat-fish (Aminrus catus) is one of the hardiest fishes we possess. His chief end is to eat,-which he does almost to suffocation. He refuses nothing. As he roots with whiskered mouth among the gravel at the bottom, he heeds neither the attacks of the stickleback, cray-fish, nor sun-fish. When annoyed he merely gives a shake of his head with the greatest nonchalance and keeps his nose at work, picking up all the rejected bits left by his patrician relations. He is of great use as a scavenger, and two or three specinens are a great acquisition to all aquaria.

The Pond Sucker (probably a small species of Catastomus) is a shy fish, and extremely reserved. In form, its body, from the dorsal fin to the tail, is rather tapering, and in swimming the body appears bent;-it is covered with beautiful silvery scales. He sometimes, though erroneously, gets the name of "Shiner." He has no teeth in the upper jaw, and is, therefore, unable to bite at his food, which is drawn into the mouth by suction, hence the name.

The Black Minnow (Umbra limi) is also of retiring habits, and is easily startled. He asserts his dignity, however, at feeding time, as he mores about with a graceful air, and is one of the first to help himself when there is anything in the way of meat to be had.

We have kept the Golden Carp, or Gold-fish (Cyprinus auratus) in the tank to please the ladies, but we objected to his presence on account of his being a stupid fish, and not indigenous (although introduced into yentlemen's ponds in Massachusetss, where it thrives well); besides, while along with the representative fishes of our waters, our aquarium carried a falschood on its face. This will never do for science, we suid, and were going to turn him out, but all we could find of him was the backbone and the eyeless head floating on the top of the water. The other fish knew he was a stranger,-perhaps they did not like the colour,-at any rate every one was against him, from the perch to the striped minnow. Whenever he attempted to come to the front to feed, there was a general charge at the poor gold-fish. Being thus prevented from feeding, he got so weak as to allow himself to be caught, and thus fell a victim to his cowardice and stupidity. We say cowardice, for he was as large as any fish in the tank,
and a great deal larger than most. The smallest minnow would make him beat a hasty retreat. The old-fashioned fish globe is the place for the golden earp.

This concludes our remarks on the fishes of our acquarium, which contains teu species. At the time we write there were thirty-one specimens in the tank.

We shall now pass on to annther class:-Reptiles. First in point of size comes our friend the Yainted Turtle (Chrysemys picta). He is about four inches long, and a very lively specimen,sporting now in the water, now ou the rocks. In the water he is at home, and like all the rest of our family, he loves good eating. He devours his food voraciously, and swallows it by a series of gulps. We kept him about six mouths. He died from disease, as a post-mortem examination proved; the viscera were overgrown with a black fungus, and now the shell is all that remains of the poor turtle.

The Water Newt (I'riton millepunctutus) is a great acquisition to the aquarium. At first we had a number of this species, but on account of the depredations of the fish our stock got reduced to two specimens. They liked the water, and would lie quietly on the top of it until the fish made war on their toes-biting a toe off this one, and part of a leg off another one, until oniy two remained unscathed. They took to the rocks and the moss in self-defence, taking an oceasional dip, which they accomplish as quickly as possible. They have cast their coats twice with us. Their motions and positions in the water are very grotesque, yet very graceful at times. No aquariam is complete without them. They weat the way of all newts, however, after a two years' sojourn with us. We always have them replaced by fresh ones.

The next in order is a veteran Frog (Rana halecinue). When first introduced into our tank he preferred the water; he would lic carelessly floating on the surface until some of his finny allies would make a dash at his toes with open mouth, to his great disgust and amnoyance. He bad the adrantage of them, however, and took up his residence on the moss in one of the cups of the rock-work at the edge of the water. He sometimes took a bath, which he only partially enjoyed, as he well remembered the propensity of his friends the fish. He is an adept at tly-catching, which he effects by his tongue as he lies on the moss.

Fancy his feelings as he lies under the influence of chloroform on the stage of the microseope, while we examine the circulation
of the blood in the membrane between his toes. At first he disliked thus being bandaged up like a mummy; but frogs, like ourselves, can accommodate themselves to circumstances. He has figured before the public, under the microscope, during two winters, but has since died.

We shall now glance at a creature of a different order and class-a crustacean-the American Cray-fish (Astacus Bartonii), and a curious creature he is; almost every thing suits his palate. He is very provident, and lays up what he is unable to eat in the holes under the rock-work. He is a good gymnast, and can stand on his head, or on his tail, or can walle as it suits him,-as fast the one way as the other,-backwards, forwards, or sideways,it matters not. He hid himself for a time, as his coat was getting shabby and too small for him. He came forth at last with a complete new suit; roamed about for some time, but has again vanished, with no ostensible reason. This is the first instance of this creature changing his shell in our aquarium.

With the exception of a few species of water beetles, dytiscus, acilius, and colymbetes, which the fish gradually mastered-notwithstanding the harduess of their elytra,-the curtain falls on the denizens of our aquarium.

We intend, in continuation of our aquaria studies, to lift the curtain once more, and, with the assistance of the microscope, to illustrate some forms of animal and vegetable life which cannot be well seeu by the unassisted eye.

ON LaURENTIAN ROCKS LN EASTERN MASSACHUSETTS.

By Dr. T. Strary Hunt, F.R.S.*
In a paper read before the American Association for the Advancement of Science at Washington in April, 1854, and published in this Journal for September in the same year, (vol. xvii, page 193,) I noticed the erystalline limestones of north-

[^1]eastern Massachusetts, which were described by the late Dr. Hitcheock as enclosed in the great gueissic and hornblendic formation stretching through that portion of the state. These limestones, which are met with at various points from Bolton by Chelmsford on to Newburyport, present a close mineralogical resemblance to those of the Adirondacks and Laurentides, and also to those of the Highlands of New York and New Jersey. a resemblance which extends to the greissic rocks which in these various regions accompany the crystalline limestones. I, at that time, accepted without examination the view maintained by Mather and H. D. Rogers, that these limestones in southern New York and New Jersey were altered Silurian strat:a, although mineralugically identical with those farther north of undoubted Laurentian age. Jed by this conclusion to attach comparatively little inportance to mineralogical and lithological resemblances, and guided by other considerations given in the paper just referred to, I then suggested that the crystalline limestones and their accompanying rocks in north-eastern Massachusetts might probably be of Devonian age. The subsequent investigations of Ifall, Logan and Cooke in the Highlands of New York and New Jersey have however left no doubt that these supposed altered Silurian rocks are really of laurentian age, and led me to suspect that the same might be the case with those of eastern Massachusetts. This view, which was shared by Prof. James Hall, I ventured to put furward at the meeting of the American Association for the Advancement of Science at Salem in August, 1869, when I showed that it was probable, not only on lithological grounds, but from the fict that the Laurentian rocks appear to the southward of the great palaozoic basin in New Brunswick amd Newfoundland. which are geologically but a north-eastern prolongation of New Englimd, and morenver from the cutcropping of the lowest Silurian strata at Braintree, near Boston. A few days later I visited Newburyport, and in company with Dr. Henry C. Perkins of that place, had, for the first time an opportunity of observing the greisses and limestones in question. Their afpect confirmed my suspicion of their haurentian age, and led me to suggest to him the propricty of searching for Eusuon Comadense in the limestone which there occurs mingled with serpentine. Specimens of it were thereupn placed in the hands of Mr. Bicknell of Salem, well known as a skilled mierose"pist, and shortly after it was announced by Dr. Perkins that Mr. Bickuell had discovered
in them the Fozoon. This notice, which appeared in September in a Newburyport journal, is reproduced in the American Naturalist for November. My own specimens collected in August last near Newburyport, at the locality known as the Devil's Den, did not, however. furnish any traces of Eozoon, and I may here remark that I had already, so long ago as 1864, caused slices to be made of a specimen of limestone from that locality, which were then examined by Dr. Dawson with negative results. In November, however, Mr. Bicknell visited Newburyport and got from a quarry, about a quarter of a mile distimt from the place just mentioned, specimens of a serpentinic limestone in which he again found Eozoon. Slices which he has kindly sent me have also been examined by Dr. Dawson, who confirms Mr. Bicknell's observation, and finds in them Ebsom Canedense, though fragmentary and not very well preserved. The tubuli, as in the specimens from Grenville, are injected with serpentine, and may be seen on etched surfaces as well as in tramsparent slices. A crystalline mineral is however abundantly disseminated in the limestone, and unskilled observers might have difficulty in recognizing the fossil.

Another locality, about twenty-eight miles to the south-westward of Newburyport, has however, afforded me much better specimens. In company with Mr. L. S. Burbank of Lowell, a zealous and successful teacher of geology and mineralogy, I visited in October last the limestone quarrins of Chelmsford, some five miles from Loweil. This limestone and its acenmpanying gnciss closely rescmble the Laurentian rocks of other regions, and scapolite, apatite and serpentine occur as associated mincrals, though the latter was rare in the quarries then visited. A few days afterward Mr. Burbank kindly sent me specimens of a mixture of limestone and yellowish-green serpentine from another quarry in the vicinity, which I had been unable to visit, and these have proved to be rich in Eozoon Canadense. The continuous and complete calcareous skeleton of the fossil does not appear in these specimens, which seem like some portions of the rock from Grenville, as described by Sir W. E. Logan, to be made up of fragments of the calcareous shell of Eozoon, mingled with grains of serpentine, and cemented by crystalline carbonate of lime. In the specimens from (irenville, and from most other localities, the mincral matter replacing the sareode and filling up the cavals and tubuli in the calcareous Eozoon skeleton, is generally serpentine
or some other silicate. Both Dawson and Carpenter, however, it will be recollected, found that in the fragmentary Eozoon from Madoc, and in some swall portions from Grenville, the injected mineral was, like the shell itself, pure carbonate of lime, though readily distinguishable by differences in texture and transparency from the shell. Such is also the case with all the Chelmsford specimens yet examined, which abound in fraguents of shell exhibiting in a very beautiful manner the cylindrical diverging and branching tubuli. The accompanying serpentine is disseminated in grains, but has no connection with the organic forms, so that, unlike the specimens in which it is the injecting mineral, the structure of these cannot be brought out by etching with acids.

These specimens from Chelmsford, it shouldbe said, have been examined and satisfactorily identified by Dr. Dawson. The argment from mineralagical resemblances in favor of the Laturentian age of the limestone in question is therefare now supported by the undoubted presence in them of Eozoon Cenatense. In this connection it should be said that the crystalline rocks of Newburyport and Salisbury, though separated in Hitchoock's geological map from the gneisses to the south-west, and united to the syenites of Gloucester and Rockport, seem to me very unlike the latter, and closely related lithologically to the gnciss of Chelmstord, which cucloses the crystalline limestone. The crystalline limestones occurring with gneissic rocks uear Providence, Khode Island, merit a carcful examination for Eozoon, inasmuch as from their lithological characters they may with probability be supposed to be of Laurentian age.

Montreal, Dec. $12,1870$.

Meteorological resulits for montreal FOR THE YEAR 1869.

By (. Smallwood, M.D., LeL.D., D.C.L.

The following Meteorological Report is condensed from the records of the Montreal Observatory, lat. $45^{\circ} 31$ N., long. 4 h. 54' $17^{\prime \prime}$ West of Greenwich. The cisterns of the barometers are 182 feet above the mean sea level.

The readings are corrected for any instrumental errors, and those of the barometer have been reduced to 32 F .

Atmospheric Pressure.-The highest reading of the barometer occurred at 7 A.M. 1st January, and indicated 30.390 inches. The lowest reading was at 6 A.M. on the 4 th February, and was 28.841 inches, giving an annual range of 1.549 inches.

The following table shows the highest and lowest reading for each month in inches:-

	January.	February.	March.	April.	May.	June.
Highest	30.390		30.201	29.967	29.812	30.20x
Lowest	29.129		29.100	29.042	23.842	29.298

Temperature of the Air F. ${ }^{\circ}$-The highest reading of the thermometer during the year was on the 26 th July, when it was $8 t^{\circ} 4$. The lowest reading was on the 1st March, and was - $9^{\circ} 9$ (below zero), giving a range or climatic difference of $9 t^{\circ} 3$, which shows a difference minus of $26^{\circ} 3$ compared with the observations of 1568.

The mean temperature for the year was $42^{\circ} 93$, which is nearly four-teuths of a degree higher than the mean annual temperature for Montreal.

Below is a table showing the monthly mean, also the highest and lowest temperature for each month, with the amount of rain and snow :-

Momhs.	$\begin{gathered} \text { Mean } \\ \text { Temper'ture } \\ \text { in } F . \end{gathered}$	Highest Temper'ture	Lowest Temper'ture	Rain. Depth in Inches.	Snow. Depth in Inches.
January ..	$20^{\circ} 13$	$45^{\circ} 9$	$-4^{\circ} \mathrm{O}$	0.233	28.07
February .	1944	$3{ }^{5}{ }^{\circ} 9$	-5.4	None	73.76
March..	2406	53°	$-9^{\circ} 9$	1.118	14.07
April	- $4{ }^{\text {coo }}$	$66^{\circ} 2$	$29^{\circ} \mathrm{O}$	x. 107	2.93
May.	$\cdots \quad 52^{2} 96$	789	$32^{\prime} 6$	2.855	3.14
Junc.	$5_{58} 5^{8} 3_{4}$	$\mathrm{Si}^{\circ} \mathrm{O}$	$45^{\circ} \mathrm{C}$	4.000	
Juiy.	68.51	$\mathrm{SH}_{4}{ }^{\circ} \mathrm{C}$	$52^{\circ} \mathrm{O}$	4.995	
Alligust...	65.66	$85^{\circ} 7$	$51^{\circ} \mathrm{O}$	3.675	inapp
September	$65^{6} 55$ $46^{6} 13$	\% ${ }^{68}$	$55^{\circ} 9$	4.096	Inapp.
November	$4{ }^{40} 23$	662	24 18 18	6.327 0.655	6.49 13.96
Decemb	$22<38$	$40^{\circ} 7$	$-2^{\text {r }}$	1.004	25.95

The following table shows the mean temperature and the amount of precipitation for cach quarter :-

Rain fell on 86 days, amounting to 35.545 inches. A very heavy storm, accompanied by loud thunder and vivid lightning, occurred on the night of the 19th-20th of August, and the large amount of $3-782$ inches of rain fell in 6 hours 15 minutes.

Show fell on 76 days, amounting to 167.37 inches. This large amount includes the heavy fall of February. The first snow of autumn fell on the 27 th September, in inappreciable quantity. Winter fairly set in on the 4 th of December.

Wind.-The most prevalent wind during the year was the N.E. The next in irequency, the W. The least prevalent wind was the S.E.

There were 128 clear nights suitable for astronomical purposes. This is about the usual average.

The Aurora Borealis was visible frequently during the year, but was not accompanied by any grand display.

The metcoric shower of 13th-14th November was rendered invisible by clondy weather.

The partial eclipse of the moon on the 27th January could not be well observed, owing to clouds and hazy weather.

The solar eclipse of the 7th August, which was only partial at Montreal, was visible, and furnished some interesting phenomena.

ON THE GRAPHITE OF THE LAURENTIAN OF CANADA.

By J. TV. Dawson, LI.D., F.R.S., F.G.S.
(From the Quarterly Journal of the Geological Society for Feb., 1870.)
In my paper of 1864, on the Organic Remains of the Laurentian Limestones of Canada, as a sequel to the description of Eozoon Canadense, I noticed, among other indications of organic matters in these limestones, the presence of films and fibres of graphitic matter, and insisted on the probability that at least some of the lower forms of plant life must have existed in the seas in which gigantic Foraminifera could flourish. Dr. Hunt had previously, on chemical evidence, inferred the existence of Laurentian vegetation*, and Dana had argued as to the proba-

[^2]bility of this on various grounds*; and my ubject in referring to these indications in 1864, as well as to the supposed burrows of annelid, subsequently described by me \dagger, was to show that the occurreuce of Enanom was not to be regarded as altogether isolated and unsupported by probabilities of the existence of organic remain. .. the Laurentian, deducible from other considerations.

Now that the questions which have been raised regarding Enoon,a may be considered settled, not only by the adhesion of the greatest authorities in palæontology and zuology, but by the discovery of similar urganisms in rocks of the same age elsewhere, by specimens preserved in such a manuer as to aroid all the objections raised to the mineral cundition of the fussil \ddagger, and by the discovery of such modern analogies as that furnished by Buthybius, it may be proper to invite the attention of geologists more particularly to the evidence of vegetable life afforded by the deposits of graphite existing in the Iaurentian.

The graphite of the Laurentian of Canada occurs both in beds and in reins, and in such a manner as to show that its urigin and deposition are contemporancous with those of the contaniug rock. Dr. Sterry Hunt states \$ that " the deposits of plumbago generally occur in the limestones or in their immediate vicinity, and granular varieties of the rock often contain large crystalline plates of plumbaro. At other times this mincral is so finely disseminated as to give a bluish-gray colour to the limestune, and the distribution of bands thus coloured, seems to mark the stratification of the rock." He further states.-" The plumbago is not confined to the limestone; large crystalline scales of it are occasionally disseminated in pyroxene rock or pyrallulite, and

[^3]sometimes in quartzite and in feldspathic rocks, or even in magnetic oxide of iron." In addition to these bedded forms, there are also true veius in which graphite occurs associated with calcite, quartz, orthuclase, or pyrusene, and either in disseminated scales, in dutatched uasses, or in bands or layers "s separated from each other, and from the wall rock by feldspar, pyroxene, and quartz." Dr. Hunt also mentions the vecurrence of finely granular varieties, and of that peculiarly waved and currugated variety simulating fossil wood, though really a mere form of laminated structure, which also occurs at Warrensburgh, New York, and at the Marinski mine in Siberia. Many of the veins are not true fissures, but rather constitute a net-work of shrinkage cracks or segregation veins traversing in countless numbers the containing rock, and most irregular in their dimensions, so that they often resemble strings of nodular masses. It has been supposed that the graphite of the veins was originally introduced as a liquid hydru-carbon. Ir. Hunt, however, regards it as possible that it may have been in a state of aqueuns solution* at a heat approaching ignition; but in whatever way intruduced, the character of the veins indicates that in the case of the greater number of them the carbonaceous material must have been derived from the bedded rocks traversed by these veins, while there can be no doubt that the graphite found in the beds has been deposited along with the calcarcous matter or muddy and sandy sediment of which these beds were originally composed.

The quantity of graphite in the Lower Laurentian series is enormous. In a recent visit to the towuship of Buckingham, on the Ottawa River, I examined a band of limestone believed to be a continuation of that described by Sir W.E. Logan as the Green Lake Limestone. It was estimated to amount, with some thin interstratified bands of gaciss, to a thickness of 600 feet or more, and was found to be filled with disseminated crystals of graphite and veins of the mineral to such an extent as to constitute in some places one-fourth of the whole; and making every allowance for the poorer portions, this band cannot contain in all a less vertical thickness of pure graphite than from 20 to 30 feet. In the adjoining township of Lochaber Sir W. E. Logan nutices a baud from 25 to 30 feet thick, reticulated with graphite veins to such an extent as to be mined with profit for the mineral. At another

[^4]place in the same district a bed of graphite from 10 to 12 feet thick, and yielding 20 per cent. of the pure material. is worked. When it is considered that graphite occurs in similar abundance at several other horizons, in beds of limestone which have been ascertained by Sir W. E. Logran to have an aggreate thickness of 3500 feet, it is scarcely an exargeration to maintain that the quantity of carbon in the Jaurentian is equal to that in similar areas of the Carboniferous system. It is also to be observed that an immense area in Canada appears to be occupied by these graphitic and Euzuou-limestones, and that rich graphitic deposits exists in the continuation of this system in the state of New York, while in rocks believed to be of this age near St. John, New Brunswick, there is a very thick bed of graphitic limestone, and associated with it three regular beds of graphite, having an aggregate thickness of about five feet.*

It may fairly be assumed that in the present world and in those geological periuds with whose organic remains we are more faniliar than with those of the Laurentian, there is no other source of unoxidized carbon in rocks than that furnished by organic matter, and that this has obtained its carbon in all cases, in the first instance, from the deoxidation of carbonic acid by living plants. No other source of carbon can, I believe, be imagined in the Laurentian period. We may, however, suppose either that the graphitic matter of the Laurentian has been accumulated in beds like those of coal, or that it has consisted of diffused bituminous matter similar to that in more modern bituminous shales and bituminous and oil-bearing limestones. The beds of graphite near St. John, some of those in the gneiss at Ticonderoga in New York, and at Lochaber, Buckingham, and elsewhere in Canada are so pure and regular that one might fairly compare them with the graphitic coal of Rhode Island. These instances, however, are exceptional, and the greater part of the disseminated and vein graphite might rather be compared in its mode of occurrence to the bituminous matter in bituminous shales and limestones.

We may compare the disseminated graphite to that which we find in those districts of Canada in which Silurian and Devonian

[^5]bituminous shales and limestones have been metamorphosed and converted iuto graphitic rocks not dissimilar to those in the less altered portions of the Laurentian. \dagger In like manner it seems probable that the numerous reticulating veins of graphite may have been formed by the segregation of bituminous matter into fissures and planes of least resistance, in the manner in which such veins occur in the modern bituminous limestones and shales. Such bituminous veins occur in the Lower Carboniferous limestone and shate of Dorchester and Millsborough, New Brunswick, with an arrangement very similar to that of the veins of graphite; and in the Quebee rocks of Point Levi, veins attaining to a thickness of more than a foot, are filled with a coaly matter having a transverse columnar structure, and regarded by Logan and Hunt as an altered bitumen. These palacozoic analogies would lead us to infer that the larger part of the Laurentian graphite falls under the second class of deposits above mentioned, and that, if of vegetable origin, the organic matter must have been thoroughly disintegrated and bituminized before it was changed into graphite. This would also give a probability that the vegetation implied was aquatic, or at least that it was accumulated under water.

Dr. Hunt has, however, observed an indication of terrestrial vegetation, or at least of subaerial decay, in the great beds of Laurentian iron-ore. These, if formed in the same manner as more modern deposits of this kind would imply the reducing and solvent action of substances produced in the decay of plants. In this case such great ore beds as that of Hull, on the Ottawa, 70 feet thick, or that near Newborough, 200 feet thick *, must represent a corresponding quantity of vegetable matter which has totally disappeared. It may be added that similar demands on vegetable matter as a deoxidizing agent are made by the beds and veins of metallic sulphides of the Laurentian, though some of the latter are no doubt of later date than the Laurentian rocks themselves.

It would be very desirable to confirm such conclusions as those above deduced by the evidence of actual microscopic structure. It is to be observed, however, that when, in more modern sediments, Algæ have been converted into bituminous matter, we caunot ordinarily obtain any structural evidence of the origin of such bitumen, and in the graphitic slates and lime-

[^6]stones derived from the metamorphosis of such rocks no organic structure remains. It is true that, in certain bituminous shales and limestones of the Silurian system, shreds of orgamic issue can sometimes be detected, and in some cases, as in the Lower Silurian limestone of the La Cloche mountains in Canada, the pores of brachiopuduus shells and the cells of corals have been penetrated by black bituminous matter, forming what may be regarded as natural injections, sometimes of much beauty. In correspundence with this, while in some Laurentian graphitic rocks, as, for instance, in the compact graphite of Clarendon, the carbon presents a curdled appearance due to segregation, and precisely similar to that of the bitumen in more modern bituminous rocks, I can detect in the graphitic limestone occasional fibrous structures which may be remains of phauts, and in some specimens vermicular lines, which I believe to be tubes of Eu:ioun peuetrated by matter once bituminous, but now in the state of graphite.

When palaozoic land-plants have been converted into gruphite, they sumetimes perfectly retain their structure. Mineral charcoal, with structure, exists in the graphitic coal of Rhode Island. The fronds of ferns, with their minutest veins perfect, are preserved in the Devonian shales of St. John, in the state of graphite, and in the same formation there are trunks of Conifers (Duede, uplen onungondiunum) in which the material of the cell-walls has been converted into graphite, while their cavitics have keen filled with calcareous spar and quartz, the fincot structures being preserved quite as well as in comparatively unaltered specimens from the coal-furmation.* Nu structures so perfect have as yet been detected in the Laurentian, though in the largest of the three graphitic beds at St . Juhn there appear to be fibrous structures, which I believe may indicate the existence of land-plants. This graphite is compused of contorted and slickensided laminee, much like those of some bituminous shales and coarse coals; and in these there are occiasional small pyriteus masses which show hollow carbonaceous fibres, in some cases presenting ubscure indic.tions of lateral pores. I regard these indications, however, as uncertain, and it is not as yet fully ascertained that these beds at St. Jolm are on the same geological horizon with the Lower Laurentian of Canada, though they certainly underlie the Primordial series of the Acadian

[^7]group, and are separated from it by beds having the character of the Huronian.

There is thus no absolute impossibility that distinct organio tissues may be found in the Laurentian graphite, if formed from land-plants, more especially if any plants existed at that time having true woody or vascular tissues; but it cannot with certainty be affirmed that such tissues have been found. It is possible, however, that in the Laurentian period the vegetation of the land may have consisted wholly of cellular plants, as, for example, mosses and lichens; and if so, there would be comparatively little hope of the distinct preservation of the forms or tissues, or of our being able to distinguish the remains of land-plauts from those of Algæ.

We may sum up these facts and considerations in the following statements :-First, that somewhat ubscure traces of organic structure can be detected in the Laurentian graphite; secondly, that the general arrangement and microscopic structure of the substance corresponds with that of the carbonaceous and bituminous matters in marine formations of more modern date; thirdly, that if the Laurentian graphite has been derived from vegetable matter, it has only undergone a metanorphosis sinilar in kind to that which organic matter in metamorphosed sediment of later age has experienced; fourthly, that the association of graphitic matter with organic limestone, beds of iron ore, and metallic sulphides greatly strengthens the probability of its vegetable origin; fifthly, that when we consider the immense thickness and extent of the Eozoonal and graphitic limestones and iron-ore deposits of the Laurentian, if we admit the organic origin of the limestone and graphite, we must be prepared to believe that the life of that early period, though it may have existed under low forms, was most copiously developed, and that' it equalled, perhaps surpassed, in its results, in the way of geological accumulation, that of any subsequent period.

In conclusion, this subject opens up several interesting fields of chemical, physiological, and geological inquiry. One of these relates to the conclusion stated by Dr. Hunt as to the probable existence of a large amount of carbonic acid in the Laurentian atmosphere, and of much carbonate of lime in the seas of that period, and the possible relation of this to the abundance of certain low forms of plants and animals. Another is the comparison already instituted by Professor Huxley and Dr. Carpenter, between the conditions of the Laurentian and those of the deeper
parts of the modern ocean. Another is the possible occurrence of other forms of animal life than Eozoon and Annelids, which I have stated in my paper of 1864 , after extensive microscopic study of the Laurentian limestones, to be indicated by the occurrence of calcareous fragments, differing in structure from Eozoon, but at present of unknown nature. Another is the effort to bridge over, by further discoveries similar to that of the Eozoon bavaricam of Gümbel, the gap now existing between the life of the LowerLaurentian and that of the Primordial Silurian or Cambrian period. It is,scarcely too much to say that these inquires open up a new world of thought and investigation, and hold out the hope of bringing us into the presence of the actual origin of organic life on our planct, though this may perhaps be found to have been Prelaurentian. I would here take the opportunity of stating that, in proposing the name Eozoon for the tirst fossil of the Laurentian, and in suggesting for the period the name "Eozoic," I have by no means desired to exclude the possibility of forms of life which may have been precursors of what is now to us the dawn of organic existence. Should remains of still older organisms be found in those rocks now known to us only by pebbles in the Laurentian, these names will at least serve to mark an importan stage in geological investigation.

NOTE ON THE GENUS EOPHYTON.

Until within a fers years, the oldest known land plants were a few Lycopodiaceans, forms from the upper part of the Upper Silurian. Recently Barrande and Geinitz have announced land plants probably Lycopodiaceans from olden Silurian beds. Still more lately Torell has described, from Cambrian or Primordial rocks in Sweden, a plant, or supposed plant, which he has named Eophyton Linnceranum. The drawings and descriptions, however, render it very doubtful whether this is not merely a cast of seratches or workings of unknown origin, similar to those which are very abundant on Carboniferous and Silurian rocks in Eastern America, aud which have often been deseribed as fucoids. Mr. Hicks has, however, recently described in the Geol. Magazine, Dec., 1869, a fossil from the Lower Arenig rocks of Wales. This plant is a striated stem, showing it very coarse tubular tissue, comparable with that of Nematazla or Prototuxites of the

Devonian, and perhaps indicates a plant of somewhat high organization. Whether it has any affinity with the Eophyton of Torell is more than doubtful. It is thus described by Mr. Hicks :-
"As none of the figures hitherto given of the genus Eoplujton show either its internal structure or articulations of its stems, and as I am in p,ssession of a specimen from the Lower Arenig rocks of Rams' y Island, near St. David's, which resembles in some respects the Eophyton Linnaranum Torell, but which shows both articulations of the stem, and an internal vascular structure, a description of the species may probably be useful, and may tend to elucidate the true nature of Eophyton, concerning which so much doubt seems to exist at present.
"There can be no reasonable doubt of the vegetable nature of this fossil, and I think its affinity to the vascular Crgptogams is most clearly shewn.
"These Lower Arenig rocks, from wheuce the specimen was obtained, rest apparently quive conformable on Upper Lingulaflags,* and underlie the true Arenig or Skiddaw rocks. Nearly all the species obtained from these beds are new, and they indicate a fauna intermediate between Tremadoc rocks and the true Arenig rocks. Indeed, in the report to the British Association, by Mr. Salter and myself, in 1866, they were classed as Tremadoc rocks; but I have since thought it advisable to separate them and to place them in an intermediate position. The Brachiopoda from these rocks have been described by Mr. Davidson (Geol. Mag., Vol. V. p. 303), but all the other species are yet undescribed.
" Eophyton (?) crplanatum, n.sp.-A raised, moderately convex stem, about four lines in breadth; widening, ionever, and becoming somewhat compressed at the joints. The surface is ribbed, and furrowed along its whole length. At the lower joint the ribs bend outwards, evidently to form a branch. The joint is obliquely placed, widened out, and its course distinctly marked by a deep sulcus. The cortical substauce is very thin, and can ve removed to shew the internal structure. The internal

[^8]structure is made up of compressed columns, running the whole length from joint to joint, evidently of a tabular nature, and bound together by very thin tissue. At the base of the stem, the broken ends are visible.
"Unless Eophyton Linncranum is proved to have a jointed stem and an interual structure similar to our specimen, it will probably be necessary to make a generic distinction; but at present it is better to retain this under Dr. Torell's generic name."

CONTRLBUTIONS TO CANADIAN METEOROLOGY.

Compiled from the Records of the Isle Jesus and Ifontreal

 Observaturies. .By Cmarles Smalltood, M.D., LM.D., D.C.L., Professor of Meteorolugg in the University of McGill College, Montreal.

The following table has been drawn up for the purpose of showing the respective dates of the setting in and of the breaking up of our Canadian winters for the past twenty-one years, and for illustrating the climatology of Montreal and its vicinity.

The first column gives the years from 1849 to 1869 inclusive; The second shows the time of the first fall of snow in autumn in however small quantities. This amount, as a general rule, does not exceed a quarter of an inch in depth on the surface, and invariably disappears, lasting but a very short time, and, in some cases, only a few minutes. The third column shows the date, and the fourth the amount in inches of the heavier snow fall. This snow very seldom entirely disappears; traces may be seen in sheltered places and on the hills and mountains. The dates in the fifth and sixth columas shows the days of the first frost of autumn, and the carliest date that the thermometer marks $32^{\circ} \mathrm{F}$. These dates may seem somewhat anomalous, inasmuch as the descent of the thermometer to $32^{\circ} \mathrm{F}$., (the freezing point,) and the first frost of autumn, do not in all cases coincide. This difference is owing to several causes, such as terrestrial radiation, amount of clouds, direction and velocity of the wind, and the humid state of the atmosphere. The effect of the inist frost of autumn is generally perceived on the leaves and flowers of plants,
and although, in some cases, the thermometer has marked $32=$ F., frust has not perceptibly affected vegetation, owing to some of the causes above mentioned. The seventh column gives the date of the last fall of snow, without reference to quantity, which is sometimes very small. The eighth column shows the respective dites at which the thermometer stood at $32^{\circ} \mathrm{F}$. for the last time in spring, and is a near approximation to the last frost, but as vegetation is not so prolific in spring, the effects on flowers and plants are not so well marked as in the autumn, although occasionally late frosts have proved very injurious to fruit trees and carly vegetables. The ninth column is intended to show the dates when winter may be said to bave fairly set in, for the ground is then frozen to some depth, and may also be corered with some snow. The ditches are then full from the previous autumnal rains, and are frozen orer, as well as the small rivers, and loads are crossing on the ice, all out-loor work is, consequently, suspended. The tenth and last column gives the date at which the ice left the River St. Lawrence, in front of the city, the river being clear of ice. The arrival of steamers and suall sailing vessels generally occurs in a very short time afterwards, sometimes the same day.

NOTES ON SOME OF THE PLANTS IN THE herbarta of linne and michaux.

By Daniel C. Eaton, M.A., Professor of Botany in Yale College.
Prof. Eaton, of New Haven, U. S., the eminent American Pteridologist, when in Europe on a visit in 1866, examined many of the standard herbaria, and made notes on the American plants contained in them. He has most liberally placed a series of these notes on the North American Filices in my hands for perusal, has allowed me to take copies of them, and to print such selections from them as I might deem of sufficient interest: those relating to the collections of Linue, now in Loudon, and of Michaux, in Paris, are here given. The herbarium name of each plant is placed within quotation marks, as is also such notes (of habitat, ete.) as were deemed of sufficient interest to be copied from the sheets to which the respective specimens were attached. Mr. Eaton's observations follow. I have not printed these verlutim, as, not being intended for publication, they were: more or less, made up of indications and signs which I have attempted to write out with exactuess. One or two observations of my own are placed within brackets, and bear my initial. For convenience of reference I have arranged the species in the order of their occurrence in the Species Plantarum, and in the Flora Boreali-Americana.
D. A. Watt.

TIIE LINANEAN FLLICES.
Notes made in the hall of the Linnean Society, London, August 7, 1866:-
"Ovoclea sexsibilis"-one sterile frond and one fertile frond of the true plant.
" Osmunda Pensylv."-a short sterile leaf of perhaps Struthiopteris or probably of Osmunda Claytoniana; veinlets once and twice forked, segments broad and round, the lowest pinne long as any. (It cannot be Struthiopteris, and perhaps is not Osmunda, but some Aspidium. D.C.E., anno 1870.)
"Osmunda Lunarra"-consists of two fronds of our Botry. lumarinides and one frond B. rutafolium'(A. Braun)--the latter very much like the former, and (by its ticket) from Petropolis. There is no true Lunaria in the herbarium.
[It, must be borne in mind that the ancients were very careless about their plants, and very careful about their books.

The Lunaria of the Sp. P1. p. 1519 is unquestionably the species we now call by that name. It is, however, not a little singular that Linne should have had both the American and Europeau forms of the O. ternatum of Thunberg without recognizing them as distinct from his Lunaria.-W.]
"Osmunda virginiana"-is the true Butrychium virginianum, one frond from Kalm (being marked " K ") and one from Clayton (?) marked "Lunaria matricariæ-folio Clayt. n. 706."

Osmunda regalis-one unnamed frond from Kalm is put next to another that is marked O. regutis.
"Osmunda Claytoniana"-two fronds of this species in which the fructification is not terminal, but the upper sterile pinnæ are unexpanded, as noted by Dr. Gray long ago, and recently by Dr. Milde.
"Osmunda cinnamomea"-one fertile and one sterile frond from Kalm; very good.
"Acrostichum polypodioides"- is the Polypadium incamum of Swartz.
"Acrostichum aureom"-very good.
Acrostichum areolatum-Sp. Pl. p. 1526, not found; the Woodwardia angustifolia of Smith is the plant described.

Acrosticium platynedron-p. 1529, not found; the plant described is Asplenium cbeneun.
"Acrostichum ilvense"-is our North American Woodsia obtusa.
[Here Linné appears to have confounded our particularly distinct Wondsia obtusa with his Ilvense, and to have missed describing another good North American species. There is no doubt that the Ilvense of his writings is that of modern botanists.-W.]
"Acrostichum ebeneum"-is Gymnogramme calomelanos small form, or possibly G. tartarea; a West Indian fern.
"Pteris aquilina"-very good.
"Pteris caddata"-one frond, very delicate, is gond caudata; one with very broad segments is a caudate but not uncommon form of aquilina.
"Preris atropurpurea"-one frond from Kalm of our Pelloa atropurpurea.
"Asplenium Rhizophyllum"-is Camptosorus from Kalm; three fronds from one root, and one frond with auricles $1 \frac{1}{2}-2 \frac{1}{2}$ inches long.
"Asplenium Trichomanes"-very good.
"Asplenium Ruta muraria"-very good. Polypodiom virainicum-not found.
"Polyponius Lonciutis"-is Aspidium Lonchitis. Not a North American specimen, as indeed are not several of the following:
"Polypodium auriculatum"-three fronds, one of which may be Aspid. auriculutum of Asia, one marked " Pennsylvania" is certainly our Asplenium ebencum, and one marked " K " (Kalm) our Aspidium acrostichoides.
[Of all Prof. Eaton's notes this is the most remarkable, as showing a confusion of perfectly distinct species. The specimen of Aspl. ebeneun probably belongs to the Acros. platynearon above quoted, while the distinction between Aspid. auriculatum and A. acrostichoides is very clear, although Swartz said of the latter, " nimium affine precedenti."-W.]
"Polypodium Piegopteris"- three fionds of the true plant, and one of Aspidium Thtelypteris marked "Pennsilv."
"Fuiypodium fragrans"-is Aspidium fragrans; very good.
"Polypodium fontanda "-is Woodsia glabella, $1 \frac{1}{2}$ inches high.
[It is indeed remarkable that Linne should have possessed this little fern so interestiıg to American botanists, known as European (n'y within the last few years, and still more recently as Asiatic. In the Sp. Pl., p. 1550, he gives two localities:Siberia, where W. glabella occurs; and Provence, in the south of France, whence the Asplenium Halleri of continental botanists (to which species his P. fontanum is commonly referred) might well have come. Although Linne's description indicates an Asplenium, we may, perhaps, hereafter have to write Woodsia fontana! Asplenium Halleri is confined to south Europe; W. glabella is circumpolar, and, while it scarcely occurs south of latitude 45°; has been found in Baffin's Bay nearly thirty degrees further north.-W.]
"Polypodium cristatum"-is Aspidium cristatum, fruiting.
"Polyponiuss Finix mas"-is one frond of very good Aspidium Filix-mas, and one, not marked, of A. molle.
"Polypodidal Filix-femina"-is very good Asplenium Filix-fomina.
"Polypodium aculeatua" "-is very good Aspidium aculeatum.
"Polypodium noveboracense"- one frond having the lower part gone; it is not Thelypteris, but is probably our Aspid. noveboracense; it has simple veins, and is slightly pubescent.
"Polypodium marginale"-one frond of Aspid. marginale.
"Polypodiom bulbiferun""-one frond of Cyst. bulbifera marked "galley fer," a note quite inexplicable.
"Polypodium fragile" -is Cyst. fragilis.
"Adiantum pedatum"-two good fronds, " K " (Kalm).

micilaux's filices.

Notes made in Paris, May 22, 1866. The species are arranged in the order in which they occur in the Flora Bor:-Amer. vol. ii., pp. 260-280. The names in the Flora sometimes differ from those of the Herbarium :-
"Pteris lineata-sur les bords de la riv. Aisa-hatcha le 1er Avril lloride," is a Vittaria-the V. angustifrons of p. 261.
"Pteris atropurpurea-Am. septentrionale;" is our Pellooa atropurpurea.
"Pteris aracilis-Rochers pres la Malbaye" is our Pellcea gracilis.
"Pteris aquilina-Canada;" is the true plant. Adiantum pedatum-not noticed.
"Blechnum Banisterianum-Pluckn.tab. 179, fig. 2. Hab. in moutib. Carolinæ" is a fragment of a sterile frond of Osmunda cinilanwomea; it is the Woodwardia B. of page 263.
" Beecenum onocleoides-Osmunda caroliniana Walt. in Carolinæ, Georgiæ;" is Woodwardia angustifolia.

Blecenom serrulatum-not noticed.
"Asplenium Rhizophyllum-New Jersey" is Camptosorus rhizophy!lus.
"Asplenium trichomanes - Canada, Pennsylv. Caroline hautes montag;" three small fronds of the true plant.
"Asplenius trichomanoides-bautes montagnes de Caroline, Pluckn. t. 89, fig. 8 et t. 287, fig. 2 ;" is Aspl. ebencum.
"Aspleniusi angostifolium-Moris. iii., § 14, t. 2, fig. 25, ad ripas Ohio;". one fertile frond of the true plant.

Asplenius thelypterioides-not noticed.
"Asplenium Adianthum nigrum-an varietas? minor, in montium rupibus Caroline septentrionalis;" is Aspl. montanum.
"Asplenium Ruta muraria-in fissuris rupium montium excelsorum Carolinæ septentrionalis;" small specimens of the true plant.
" Polypodium acrostichoides - Pennsylvania, Carolina, Tennessee et Carol. maritim" is Aspidium acrostichoides.
" Polypodiom Thelypteriordes - montibus Allegeni a Canadâ; Hab. in Canada et ad Carolinanum; Lac Champlain;" is Aspid. Thelypteris; a very small sterile frond on same page is doubtful, it may be Asplenium Filix-feemina.
"Polypomum marginale-Kentucky, Pennsylvania, Nectoux;" is Aspidium marginale.
"Polyponium punotilobulum-Canada;" one frond of Diclesonia punctilobula.
"Polypodium bulbiferum-in Canada;" two fronds of Gyst. bulbifera.
" Polypodium Filid-fgmina ?-in Canadâ, a rapporter a son esp." is Asplenium Filix-fomina, and
"Polypodium asplenioides-a Novâ Angliâ ad Carolinam;" is the same species.
" Polypodium cristatum-Miontib. Carolinæ? et certe in Canada;" is one rather small frond of Aspidium spinulosum.
"Polypodium tenue-Quebec;" is one frond of Cyst. fragilis.
" Polypodium rufidulum-Hab. in rupibus Canadæ, Novæ Angliæ, et Novæ Cæsareæ;" is Woodsia llvensis.
"Polypodidm lanosum-Hab. in excelsis montibus saxosis Tennessee et Carolinæ septentrionalis;" is Cheilanthes vestita of Gray's Manual, five medium-sized fronds.
[Michaux's appears to be the earliest publication of this species; the next (with some doubt as to whether he does not refer to Ch. tomentosa) is that of K. Sprengel in Anleitung zur Kenntniss der Gewachse vol.iii. (1804) p. 122, who describes his species as follows:-
" Adiantum vestitum nenne ich eine Art, die Bose d'Antic in Carolina fand. Sie hat einen 3 -fath gefiederten Wedel, der über und über mit feinem wolligtem Haare bedeckt ist. Die Blättchen der iuiii. Ordnung sind eilanzettförmig, die der letzten Ordnung sind linienfömig gekerbt und schlagen sich um die Samenhäufchen zurück. Bose nannte diesen Farn Acrostichum hispidum." Where "Bosc named this fern" I have not been able to find out, nor can I see any reason why hispidum should have been changed into vestitum, for if Lamarek (the friend and biographer of Bose) and Swartz be right, Sprengel did not even alter the genus. Bosc botanized in the Southern States between 1798
and 1800 , Michaux more than ten years earlier, though his flora was not published until 1803. There is no good reason why the latter's name should not be restored, and the plant called Ch. lanosa (Michx), though long usage may justify a continuance of error.* It is remarkable that this somewhat common fern, which ranges from New York west to Illinois and south to the Carolinas and Georgia, should have been omitted from Sir Wm. Hooker's Species Filicum, the Ch. vestita of that work being the Ch. gracilis of Fee and Mettenius-the Ch. lanuginosa of Gray's Manual.-W.]
"Polypodum Dryopteris-juxta L'Assomption in Canada legi;" three fronds of the true plant.
" Polypodium vulgare-Moris. sect. 14, t. 2, f. 3, P. Virginiense minus, Hab. in arborib. a Canadâ ad Floridam;" one frond of the true plant.
" Acrostichum polypodioldes-Pluckn. t. 89, fig. 9, in arboribus Floride;" is the Polypodium incanum of Swartz, the Polyp. ceteraccinum of p. 271.
" Polypodium hexagonorserum-l'luckn. t. 284, fig. 2, Hab. in Virginiâ, Carolinâ, terrestre;" one good average-sized frond of our Phegopteris liexagonopteru.
" Polypodium connectile-Hab. in Canadâ ;" one good frond of Pheg. polypodioides with the lowest pinnæ free. [Polyp. Phegopteris Limn. Pheg. polypodioides F'ée, Pheg. vulgaris Metten. or more correctly Pheg. connectile (Michx).-W.]
"Acroştichum aureum-sur la riv. Aisa-hatcha Floride;" part of a fertile frond of the true plant.
" Onoclea sensibilis-Hab. a Novâ Angliâ ad
and on a second sheet "Onoclea an sensibilis ?-? Connecticut;" both are that species.
" Acrostichum? nodulosuji-Canada, juxta Montreal, legi ;" is Struthiopteris Germanica.

\footnotetext{

* The syuonyme of this plant is as follows :-

Polypodium lanosum Michax Herb. Nephrodum lanosum Michx Flora ii. p. 279.	Aspidium lanosum Swartz Synopsis Filicum, p. 58, et Cheilanthes vestita Swartz Syn. Fil. p.
Adianthum? hispidum Bosc ex Lamarck et Szuartz.	128 ; Sckikult Krypt. t. 124 ; Gray's Manual ed. 1st, p. 625 ;
Acrostichum? hispidum Bosc ex Sprengel.	Mettenius Cheilanthes No. 27
Adiantum vestitum Strengel Anleit. iii. p. 122 ?	Hooker and Baker Synopsis Filicum p. 134 ; etc.

"Osmunda regalis-Hab. a Novà Anglià ad Carolinum, Pluckn. tab. 181, f. 4 ;" is the true plant.
"Osmunda cinnamomea-Baise Caroline;" is the true plant.
"Osmunda interrupta-Kentucky" and a second specimen with the same name marked "Camada;" are O. Claytoniuna.
"Obmunda Virginica-Moris. iii., sect. 14, tab. 4, fig. 5, a Canada ad Virginiam et in montibus Carolinæ;" is Botrychium virginianum.
"Osmend lanhmroides - in pascuis sabulosis juxta Charieston;" one specimen of the ordinary form Botry. lunarioides; a very small two-fronded specimen on another sheet is marked "Osmunda lunarivides? innominata au bord de monte a peine."
"Cteisium palmatum-Hab. in occidentalibus Virginiæ, Caroline septentrionalis ad Kentucky, Teunessee;" a grood specimen of Lygodium palmatum; a second specimen is marked "Sur Obed river, Dady's creek et plusi. creeks a 25 miles de West Point sur Clinch river."
"Ophioglossum velgatcm-New Jersey;" the true plant.
"Ophioglosscar blebosem-in sabulosis Carolina;" two small specimens slightly bulbous, one of them 2-3-fronded.

Polypodiem Plumcla-.One frond of this species is in the herbarium bearing no label.

These romprise all the Filices which are shewn as Michaux's, and kept separate from the general herbarium.

PURSH'S FILICES.

[I have Prof. Eaton's very full notes on the North Americom ferns contained in the Hookerian herbarium at Kew. from which I extract the following relating to one or two of Pursh: more obseure species. The references are to his Flora Americe "cpuntrionviivol. ii. London, 1814.-W.]
"Woodsia hyperborea"-(p. 660) is the nuanal fum of W. Ilvensis.
"Aspidium noveboracense"-(p. 661) is A. Thelypteris; it was contained in the species cover of Asplenium thclypteroides.
"Aspidium filix-mas"-(p. 662) was included in the species cover of Aspidium Goldicanum, and consisted of a mix. ture of that species and A. cristatum.
"Aspidium asplenioides"-(p. 664) is good Asplenizm Filix-fomina, and
"Aspidimm Filix-fe.mina"-is the same species mised with Cysst. buibifert.
"Woodwardia virginica"-(p. 670) is the true plant from New Jersey.
"Woodwardia thelypterioides"-(p. 670) consists of a smallish frond of W. Virginica, and one of Aspidium Thelypteris.

ON NORITE OR LABRADORITE ROCK.

By T. Sterry Hont, LL.D., F.R.S.
[Read before the American Association for the Advancement of Science, at Salem, August, 1869.]
(From Silliman's Journal for March, 1870.)

The various rocks composed essentially of a triclinic or anorthic feldspar, with an admisture of hornblende, pyroxene, hypersthene or diallage, have by lithologists been designated by the names of diorite, dolerite diabase, hypersthenite and gabbro, among others. The latter name has by many been regarded as synonymous with euphotide. I, however, pointed out many years since that the true euphotide is not a feldspathic rock, but consists of a mixture of diallage with saussurite, a white heary silicate apparently identical with zoisite. By an admisture of labradorite or an allied feldspar, however, euphotide passes into the so-called gabbro, which I have defined as a diallagic diabase, and which is closely related to norite. The name of hypersthene rock or hypersthenite (sometimes contracted into hyperite), was given by MacCulloch* to a rock consisting of labradorite, or a related feldspar, and hypersthene, found by him in the Western Islands of Scotland, and subsequently recognized by Emmo::s ia the Adirondack Mountains of Northern New York. By both of these observers it was regarded as an erupted rock. In 1851, I detected it among the Laurentide hills of Canada, where, as in New York, it extends over considerable areas. Farther examinations of this rock in place showed that though hypersthene, generally in very small proportion, is a frequent element, it is often replaced by a green granular pyrosene, and still more often both of these are wanting, so that we have a

[^9]rock composed almost entirely of a triclinic feldspar, whose composition is generally near that of labradorite, but varies in different examples from that of andesine to near that of anorthite. To these rocks I provisionally applied the name of anorthosites, the pure feldspathic type being regarded as normal anorthosite; associated with whieh, however, were to be found hypersthenic and pyroxenic varieties. Red garnet, epidote, a black mica, and more rarely dichroite and quartz, are all occasionally found sparingly disseminated in these anorthosites of New York and Canada, which cannot be distinguished from those first observed by MacCulloch in the T-le of Skye, as I have convinced myself by an examination of the specimens there collected by him, and now preserved in the collections of the Geological Society of London. Titaniferous iron ore (menaccanite) also occurs in grains and masses frequently in these roeks, both in Skye and in North America, where it sometimes forms beds or masses of considerable size. Details as to the chemical and mineralogical characters of these rocks, will be found in the L. E. \& D. Philos. Magazine for May, 1855, and in the Geology of Canada, 1863, pages 588-590.

The subsequent investigations of Sir William Logan have shown that these anorthosites in Canada belong to a great series of stratified crystalline rocks, which by the Geological Survey of Canada have been designated the Labrador or Upper Laurentian series, and which repose unconformably upon the older or true Laurentian gneiss and limestones. The area of the Labrador formation most examined lies in the counties of Argenteuil and Terrebonne, to the north and northwest of Montreal, and has a breadth of more than forty miles. It is, however, met with on the north-east shore of Lake Huron, according to Dr. Bigsby,* and at several points below Quebee, notably in the parish of Château-Richer, at Bay St. Paul and around Lake St. Juhn on the Saguenay, where it occupies a large area. Proceeding nurthcastward along the left bank of the St. Lawrence, Mr. Richardson has lately observed it at the mouth of Pentecost River, about 160 miles below the entrance of the Saguenay, and I have found it forming the shore of the Bay of Seven Islands, forty miles farther down. This area is probably connected with the wide extent of this rock observed by Prof. Hind on the River Moisic. In all of these regions it appears to be surrounded and limited by the

[^10]ordinary Laurentian gneiss. Bayfield, moreover, describes a rock with a base of labradorite as forming the coast for several miles toward Mingan. Finally, it is widely spread on the coast of Labrador, where its characteristic mineral was first found, and from whence it takes its name.

Prof. A. S. Packard, Jr., has given us valuable information with regard to the occurrence of labradorite rocks at some points on the Labrador coast.* One of its localities is at Square Island, just north of Cape St. Michel, were the rock, consists chiefly of crystalline labradorite, smoky-gray in color, translucent, and opalescent, with greenish reffections. This feldspar often shows cienvage planes two inches broad, and is associated with a little vitreous quartz, and with coarsely crystalline hypersthene, which appears in relief on the weathered surfaces. This labradorite rock, accorling to Prof. Packard, is surrounded by and probably rests upon Laurentian gneiss. At Domino Harbor he found domes or busses of a similar labradorite resting upon strata which consist iu great part of a slightly schistose quartzite, having for its base a granular vitreous quarta, and enclosing grains of black hornblende, or more rarely hypersthene, black mica, and red garnet. Feldspar is generally wauting, but in some parts these quartzites become gueissic, and they where nowhere seen in uncomfortable contact with the Laurentian gneiss of the vicinity. These quartzose strata Prof. Packard refers, with some doubt, to the Huronian system. The miuerals which they contain are not, however, met with, so far as known, in the Huronian quartzites; and, on the cuntrary, are very characteristic of the quartzites of the Laurentian system, which attain a great thickness in many parts of its distribution. The overlying domes of labradorite rock, which Prof. Packard was incliued to regard, in this case, as erupted through Huronian quartzites, are probably nothing more than outlying purtions of the newer Labrador formation resting upon the Laturentian strata, as already observed by him at Square Island. Alung the western coast of the island of Newfoundland Mr. Jukes observed, at Indian Head and at York Harbor, dark colored rocks conpused of labradorite and hypersthene aud others on albite (?) and hypersthene, which may probably be found to belong to the Labrador series.

[^11]Rocks composed chiefly of labradorite or a related feldspar greatly predominate in the Labrador series, but these, at least in the area near Montreal, which is the one best known, are interstratified with beds of a kind of diabase, in which dark green pyroxene prevails, with crystalline limestone similar in mincralogical character to that of the Laurentian system, and more rarely with quartzites and thin beds of orthoclase gneiss. I have mure than once insisted upon the rarity of free quartz, and the general basic character of the rocks of this series, an observation with which I am credited in Dana's Manual of Geology (p. 139), where it seems to be applied to the whole of the rocks there classed as Azoic, including the Laurentian, Labrador and Huronian systems. It is, in fact, remarkable that the silicated rocks of the latter two consist chiefly of labradorites, diorites and diabases, gneissic and granitic rock, being exceedingly rare among them, though quartzites abound in the Huronian. In the Laurutiam system, on the contrary, though basic silicated rucks are not wanting, orthoclase gneisses, often granitoid in structure, and aboundin: in quartz, predominate.

The anorthosite rocks of the Labrador series present great variations in texture, being sometimes cuarsely granitoid, and at other times fincly granular. They not unfrequently assume the banded structure of gneiss, lines of pyroxene, hypersthene, garnet, titanic iron-ore or mica marking the planes of stratafication. Probably threc fourths of the anorthosites of this series, in Canada, whether examined in place, or in the boulders which avound in the St Lawrence Valley, consist of pure or nearly pure feldspar rocks, in which the proportion of fureign minerals will not exceed five hundredths. Hence we have come to derignate them by the name of labradorite rock. The colors of this rock are very generally some shade of blue, from bluish black or violet to bluishgray, smoky-gray or lavender, more rarely purplish passing into flesh red, greenish-blue, and uceasioually greenish or bluish-white. The weathered surfaces of these labradorite rocks are opaque white. The anorthosites, which occupy a considerable area in the Adirondack region, as described by Emmons in his report on the Geology of the Northern District of New York, and as seen by me in hand-specimens, closely resemble the rocks of the Labrador series in Canada.

In all of these localities the coarse or granitoid varicties often hold large crystalline cleavable masses, generally polysynthetie:
wacles, and frequently exhibiting the peculiar opalescence which belungs to labradurite. Although rocks composed of labradorite or similar feldspars, with hornblende or pyrosene, oucur in various other geolugical furnations, both as indigenous greenstones and as erupted mascos, they uever, su far as my ubservation in North Aucrica gues, exhibit the peculiar character just described; mamely, that of a gramular or granitoid rock composed of nearly pure labradorite or some closely related feldspar, frequently opaleseent, and gencrally of a bluish color, often violet, smokybiue or lavender-blue. This type of rock seems in North America to chamacterize the Labrador series.

It may here be remarked as an interesting fact buaring on the distribution of the Labradur series, that two large boulders of labradurite rock, one of the beatitiful dark blue variety, are found on Marblchead Neck, on the coast of Massachusetts.* It does not seem prubable that these masess could have been derived from any of the far-uff lucalitics already mentioned, and the fact that the geeiss of cuastern Massachusetts is, as I have recently found, in part of Laurentian age, suggests that an outcrop of the Labrador serics may exist in some locality not far removed. In this connection it may be added that I have lately found characteristic labradurite and layperite rocks in suuthern New Brunswick, a few miles east of St. Joln, uccups ing a position betwe an the Laurentian aud the IIuronian or Cambrian rocks, which there make their appear:ance, accompanied by Lower Silurian strata, to the south of the great carbonifcrous basin of the region. This interesting locality was recently pointed out to me by Mr. G. F. Matthew of St. Juln, to whom we are indebted for a great part of our knowledge of the seolury of southern New Brunswick. Chester and Bucks counties, in Pensylvania, and the Wachita Mountains, in drkansas, are cited in Dama's Mineralogy as localities of labradorite, but as I huve never examined specimens from these places, I am unable to suy whether they resemble the characteristic anorthosites of the Labrador formation already described.

[^12]The name of norite, in allusion to Norway, was given by Esmark to a rock composed chiefly of labradorite, which is found in several localities in that country.* I had already remarked the close resemblance between two specimens of norite obtained from Krantz of Berlin, and the labradorite rocks of North America just noticed, when, in 1867, I had the opportunity of examining, at the Universal Exhibition at Paris, a collection of Norwesian rocks selected for ornamental purposes, exhibited by the Royal University of Christiania, Prominent among these was a series of the norites, which could not be distinguished from the labradorite rocks of the Upper Laurentian or Labrador series of this continent. In a printed note, accompamying this collection from the University, it is said that the numerous varieties of rucks consisting of labradorite with hypersthene, diallage and brouzite, have been, in the geological map of southern Norway published at Christiania in 1866, designated by the common name of \boldsymbol{g}, bbro. This note at the same time suggests that the "name of norite should be preserved for certain varietics of galbbro rich in labradorite, which varieties may in great part with justice be called labradorite rock, since labrador jeldspar is their predominent element." With this excellent suggestion I heartily concur, remarking, however, that the name of gabbro, as an ill defined synonym for certain anorthosite rocks, including in part diorite, diabase, hypurite, and even confounded with the num-feldspathic rock, euphotide, may very well be dispensed with in lithology.

By referring to the geolarical map just mentioned, it will be seen that these so-called gabbros occupy considerable areas in the Laurentian gneiss reginn of Norway. By the authors of the map, Messrs. Kjerulf and D:hl, the gabbros are regarded as cruptive, though they are described at the same rime as often assuming the character of stratified rocks. It should, however, be noticed that the geologists go so far as to regard the whole of the granitic gociss of the region as unstratilied and of plutovic origin.

The specimens of these norites exhibited in Pawis were in blocks, polished on one side, and as was observed in the note accompanying them, presented a curious resemblance to certain varictics of marble. It is worthy of remark that Emmons, in his report on the Geology of the Northera District of New York,

[^13]suggested the application of the labradorite rocks of Essex County as a substitute for marble (pages 29, 418). An ornamental vase of the same rock, turned in a lathe with the aid of a black diamond, has been in the Museum of the Geolugical Survey of Canada since 1856.

Of the collection of norites from Nurway the specimens from Sogudal and Egersund presented fine varicties of grayish or brownish violet tints, while a dark violet norite cane from Krageroë, and also from the islands of Langoë and Gomoë, and a white gramular variety from the gulf of Laterdal in the diocese of Bergen.

It is only in rare cases that the cleavable feldspar of these norites exhibits the peculiar opalescence which distinguishes the finer labradorite found in some parts of the coast of Labrador. Opalescent varieties of this feldspar are, however, occasionally met with in the area near to Montreal and in northern New York. In the Paris Jishibition of 1867 there were exhibited from Russia, large polished tables of a beautiful violet colored granitoid norite, portions of which exhibited a fine upalesecnce. This rock, I was informed, comes from a mountain mass in the Government of Kiew, but of its geognostical relations I am ignorant.

These peculiar labradorite rocks, preeenting a great similarity in mincralugical and lithulogical character, have now been observed in Essex County, New York, and through Canada, at intervals, from the shore of Lake Iluron to the coast of Yabrador. They are again met with in southern New Brunswick, in the Isle of Skye, in Norway, and in south-western Russia, and in nearly all of these localities are known to occur in contaet with and apparently reposing, like a newor formation, upon the ancient Laurentian gneiss. Geikie in his memoir on the geolary of a part of Skye,* appears to include the norites or hypersthenites of that island with certain syenites and greenstones, which he describes as not intrusive, though eruptive after the mamer of granites (loc. cit., p. 11-1t). The hypersthenites are represented in his map as occurring to the west of Loch Slapia. Specimens in my possession from Loch Scavis, a little further west, and others in MacCulloch's cullection from that vicinity, are, however, identical with the North American norites, whose stratified character is undoubted. I called attention to these resemblances in the Dublin

[^14]Quarterly Journal for July, $1863, *$ and Eaughton, who in $186 t$ visited Loch Scavis, has since described and analysed the rock of that locality, which consists of labradurite, often cuarse grained, with pyroxene and menaccanite, and is evidently, according to him, a bedded metamorphic rock (Dublin Quar. Jour., 1865, p. 94). He , it may be remarked, designates it as a syenite, a term which most litholugisto apply to rucks whose feldspar is orthoclase.

I desire to call the attentiven of buth American and European litholugists to this remarkable class of rucks, of which the norites may be regardel as the nurmal and typical furm, in the hope that they may be induced to examine still farther inte the question of the age and grognestical relations of these rocks in tarious regions, and to determine whether the mineralogital and litholugical characters which I have pointed out are geological constants.

NOTES ON THE BIRDS OF NEWFOUNDLAND.

By Mexry Reers, F.L.S., de.

The following artiche, on the Zoviogy of a part of British America as set but little explored, is taken from the "Zooloyist" (London, Euglaud,) for lif69. The close similarity between the birds of Newfomdland and those of the Province of (Quebee, will be very apparent to Camadian ornithologists.-ED.

Before commencing a systematic list of the avi-fauna of Newfoundland, it will perhaps be necessary to say a few words on the islaud itself. Newfoundland, as my readers are probably

* I, at the same time, called attention to the laumentian aspect of the crystalme hme tones of Iota, which I found in Mactulloh's colleretom. Limestones not unlike these occur in Shye, intermixed with serpentine, and are, according to Mrr. Geikie, associated with the protruded syenites of that region. With all deference to the anthority of that eminent geologist, I cannot help suggesting that a reexamination of the district would show that the highly-inciined metamorphic erystalline limestones, holdus serientine, and associated with os chitic ruchs, velonir to an older sy stem (probabls Laurentian), and are thus distinct from the nearly horizontal fossiliferous liassic limestones near by, which are only locally altered by intrusive rucks. American geologists will at ouce recall the misconception which led most of our best observers during many years to book upou the old Laurentian limestones of New York and New Jersey as altered portions of the ol enlying paleozoic strata.
aware, forms one of the valuable British colonial possessions on the coust of North America. Its geographical position lies between lat. $46^{\circ} 37^{\prime}$ and $51^{\circ} 40^{\prime}$ north, and long. $52^{\circ} 41^{\prime}$ and $59^{\circ} 31^{\prime}$ west: it is bounded on the north by the Straits of Labrador, on the mest by the Gulf of St. Lawrence, and on the south and cast by the Atlantic Occan, and has a seaboard of nearly two thousand miles. There is a chain of mountains, or rather in many places high table-land, running almost throughout the island in a N.E. and S.W. direction. The low land is made up of vast savannas, intersected by extensive woods, lakes and rivers-one inland lake alone being sisty-five miles long, and containing an island as large as the Isle of Wight, and which seems to have been the last stronghold of the Red Indians. Since the extermination of this persecuted race (which probably took place not more than thirty years ago) the whole of the interior of the country has been uninhabited. Several "histories" of Newfoundland have appeared from time to time, and among, the best of these I may mention one by Chicf Justice Reeves, published in 1793, another by Anspach in 1820, and the last by the Rev. C. Pedley in 1863; but, strange as it may appear, none of these authors give any reliable information on the natural history of this exteusive island, which, besides being rich in its fauna and flora, will, I have no doubt, prove equally so in minerals. In some places I have also seen as good a surface-show of petrolcum oil as in the well-known oil-regions of Pennsylvania. A two years' residence, under the most favourable circumstances, in a country nearly as large as England, and where the forests are still primitive and in many places almost interminable, is scarcely sufficient time to warrant anything like a correct list of the animals or plants; but when impeded by such a severe accident as I sustained from frost, which kept me a prisuner to the house for several months, no other apology is necessary for the incompleteness of these "Notes," which none can possibly regret more than the writer. There are few inhabited countries, perhaps, on the face of the globe, where the naturalist gets less assistance in the oological department than in Newfoundland. The whole and sole occupation of the settlers on the north-west coast is fishing and furring,--the former in summer and the latter in winter,and upon their success entirely depend the stock of provisions they will be enabled to obtain, by barter with the traders, for the long period of nine months, when no vessels visit the unsafe
harbour of Cow Head. Of course the postal arrangements there are not exactly A 1-never exceeding one delivery a day, and this at intervals of from one month to six weeks in June, July, and August, and usually not at all between the first of September and 1st of the following June. During the nesting season the assistance of a man worth anything could scarcely be obtained under a sovereign a day, and then, for want of knowledge of those birds not used as food, he may bring you a lot of eggs unknown and unidentified, and consequently worthless. My plan was probably better: I offered a fair reward for all eggs with which I was tolerably familiar; and although I got but few, I ran a far less risk of paying for worthless articles. Although I am answerable for all statements in these "Notes," except when otherwise expressly stated, my friend, Prof. Newton-than whom no one is more competent-has kindly undertaken to look through the list previously to pubiication, for the purpose of calling my attention to any passages which may require further verification or particularizing, and thereby enhance their value. I have much pleasure in addressing these "Notes" to Mr. Spencer F. Baird, of the Smithsonian Institution, and Mr. G. N. Lawrence, of New York, in remembrance of their kindness to me during my stay in the United States. The classification and nomenclature of the authors of "Birds of North America" has been adopted in the following list.

Falconide.

Pigeon Fruwh (Falco columbarius, Linn.) -This beautifullittle hawk, so closely resembling the merlin (F. Essalon), is a summer migrant to Newfoundland, and is tolerably common: its food consists chiefly of small birds, especially some of the smaller species of Tringe, which abound on the coast in the fall of the year. Since my return I have compared specimens of this species with others of F. Fsalon, and, although I cannot find any material or reliable difference in size, the species are easily separated by examining the tails. Both sexes in F. columbarius have four distinct black bars-three exposed, and one concealed by the upper tail-coverts. In F. Fsalon the female only has the tailbars distinct, aud they are six in number-five exposed and one concealed. The bars on the tail of the adult male F . Æsalon, although six in nu nener, are only partially defined, and consequently very indistinct. The bill of F. Aisalon is slightly more
compressed laterally, but not so much so horizontally as that of F. columbarius. The tibie in my adult male specimens of the American bird (F. columbarius) are darker ferruginous, with narrower longitudinal lines, than in my English specimens of F. Esalon; but this distinction may not be constant. I had almost forgotten to state that the inner webs of the tail-feathers of F. columbarius are white, exeept where crossed by the black bars -in this respect differing from F. Æsalon, which has scarcely any variation in cither web, both being bluish ash.

Greenland Falcon (F. candicans, Gmelin).-This is the "white hawk,' of the Newfoundland settlers. It is pretty regular in its periodical migrations, especially in the fall of the year. I was not successful in obtaining specimens; I do not think it breeds in any part of Newfoundland.

American Sparrow Hawz (F. sparverius, Limn.)-A summer migrant to Newfoundland, but not so common as F. columbarius.

The following species of Fulco may reasonably be expected to occur (and probably do so) in Newfoundland occasionally :-The duck hawk (F. Anatum) and the Iceland falcon (F. islandicus).

Americun Goshuwk (Astur atricapillus, Wilson).-1 have only the authority of the settlers for including the "goshawk" in my list of Newfoundland birds. I have no reason to doubt their accuracy, as the more enlightened on Ornithology recognised the plate of this species in Faun. Bor. Am., where the scientific name only is given.

Cooper's Hawh (Accipiter Cooperi, Bonap.)-A summer migrant; not uncommon.

Sharpshinned Hawk (A. fuscus, Gmelin).-A summer migrant, and about equally common with the preceding. I have not seen the young of this species, but the adult very closely resembles our sparrow hawk (H. Nisus) both in flight and plumage. I have not, however, compared specimens, but hope to do so before the conclusion of these "Notes," and give the result.

Redtailed Hawk (Buteo borealis, Gmelin).-A summer migrant, but not so common as on che mainland. I only cxamined one specimen, shot in Newfoundland.

The following species of Buteo probably occur on the island: The redshouldered hawk (B. linentus, Gmel.) and the broadwinged hawk (B. Pennsylvanicus, Wilson). I think I have seen the latter on wing, but obtained no specimen.

Black Hawh(Archibutco Sancti-Johanuis, Gmelin).--Common ;
more especially in the immature plumage, in which state some specimens so closely resemble A. hagopus that it is hard to distinguish between the species. I had an individual of the former species-A. Sancti-Johamuis-which agreed so well with descriptions of A. lagopus that I named it as such in my notebook. I kept this specimen alive for upwards of two months, and fed it almost entirely on trout (Sulmo fontinulis), to which it seemed particularly partial, but invariably refused smelts (Osmerus viridescens), cither dead or alive, and fresh from the water. I never tricd any other specimeus of fish, and canuot account for the bird's dislike to the smelt; it may have been the peculiar cucumber-smell-certainly not the taste-which this delicious little fish possesses. I do not think A. Sancti Johannis a "fisher" by nature; at least, I never saw it in the act of fishing. Infortunately I did not preserve the skin of this bird (the feathers got rather shabby during confinement); had I done so, I think it would have puzzled more than one good ornithologist to separate it from skins of the European A. lagopus, inasmuch as the under surface of the body was no darker than ordinary specimens of A. lagopus, although I never examined any afterwards but what were, as a rule, much darker. My bird was a female and measured twenty-three inches, wing sixteen and three-quarter inches, and, from the appearance of the ovary, would have laid the following year (1867). The black hawkor, rather it should be buzzard-is a summer migrant to Newfoundland, but, as a rule, remains later in the fall than most of the Falconide.

American Ifen Harrier (Circus Hudsonius, Linn.)—Although one of the most abundaut hawks in the Atlantic States of America, and said by my old friend Downs to be equally common in Nova Scotia, I did not, strange to say, obtain a single example in Newfoundland, although I found some of the settlers kvew the bird by its white rump, and distinguished it by the name of "hen hawk." I am almost certain of having seen it on the wing myself at Cow Head. Without specimens, it is impossible for me to say in what peculiarities of plumage (if any), \&c., this bird differs from the European C. cyancus.

Buld or Whitcheaded Eagle (Faliæëtus leucocephalus, Linn.) -This handsome bird is called the "grepe" in Newfoundland. It is tolerably common, but as the settlers increase, this noble bird gradually, but surely, decreases. Twenty years ago, or even less,
several cyries existed in the immediate neighbourhood of Cow Head, but at present the sites only remain; it is said to breed on a peculiar island-rock, called "The Prior," in the mouth of the Bay of Islands. I have, on more than one occasion, seen the "grepe" fishing at Cow Head and Bonne Bay, and obtained one egg from the latter place. The nest was built in a large pinetree, and contained two eggs-one addled: the egre is verysimilar to that of H . albicilla.* The bird is only a summer migrant to Newfoundland.

It is not improbable that Aquila canadensis may eventually be found to visit Newfoundland.

American Osprey, or Fish IIauk (Pandion carolinensis, Gmel.) -This fine species is common in Newfoundland : it is a summer migrant, coming in May and retiring in the early part of October. Often, on a calm summer's evening, as I lay on the grass smoking my pipe, have I watched two or three pairs of these birds fishing in the harbour. Suddenly the slow circling flight is stopped,the quick eye discerns its scaly prey, -the body assumes an almost vertical position; the wings for a moment vibrate rapidly, as if to give their owner impetus, and then with almost unerring aim, like an arrow from a bow, the osprey drops into the water. In a few seconds he reappears, and rising a few feet from the water, the rapid vibration of wings is again observable, but this time only to drive the claws more firmly into the sides of his finny morsel, with • which he slowly sails away to some high tree in the woods, where probably is a nest,-

> "Itself a burden for the tallest tree."

This beautiful hawk does not escape the ruthless "gunners" in Newfoundland, although utterly useless after death to the settlers. The osprey builds in trees in the extensive woods, either near the sea-coast or some inland lake. The eggs which I obtained from Bonne Bay cannot be distinguished from European specimens received from the late Mr. Wheelwright. Having no English specimens of the osprey by me, I am unable to point out any differences whereby they may be selected from American examples. The authors of 'Birds of North America' give none;

[^15]both Wilson and Audubon considered the European and Americau osprey of the same species.

Striaide.

American Burn Orel (Strix Pratincola, Bonup.)-Apparently rare in Newfondland: I ouly examined one specimen during my residence there, which, having only the first joint of the wing broken, was kept alive several days ky the children of the man who shot it: this occurred in August, 1866. It is probably a summer migrant.

Great Horned Orr, (Bubo Virginianus, Gmel.)—Visits Newfoundland for the purpose of nidification, and is not very uncommon during that season, and more especially later in the summer when the young leave the nests. It is called the "cat owl" by the settlers. The only nest which came under my observation was built on the ground, on a tussock of grass in the centre of a pond. The same nest had been previously occupied for several years by a pair of geese (Bermicla canadensis). I think it the more important to note this observation (which, however, may not be constant even in Newfoundland, as birds of prey are very varying in this respect) as Mr. D. A. Samuels, in the 'Birds of Massachusetts,' says it "nests in hollows of trees, and in high forks of pincs."

Mottled Owl, or American Screcell Owl, (Scops Asio Linn.) A summer migrant to Newfoundland, and tolerably common. As this is one of the commonest owls in North America, it seems strauge that Mr. Downs should not mect with it in Nova Scotia, especially as it frequents the States bordering on the Atlantic more than those inland.

American Long-eared Owl, (Otus Wilsonianus, Lessum.)-Not common : I only examined one specimen, which was killed near Cow Head. It appears to be a summer migrant.

American Short-earel Onl, (Brac̣hyotus Cassini, Brewer.) Not common, but I think rather more so than Otus Wilsonianus. It is a summer migrant.

Barred Owl, (Syrnium nebulosum Forster). Apparently a summer migrant, but not common; at least I only obtained one specimen, shot at Cow Head in September, 1866.

Saw-whet Owl, (Nyctale acadia Gmelin).-Not uncommon, and well known to the settlers as the "saw-whet." I only
obtained one specimen, which was picked up dead at Cow Head, and appeared to be uninjured. It is a summer migrant.
Spurrour Ourl, (Nyctale Richardsoni, Bomup.)—I include this specics on the authority of Mr. Downs, who states, in his "Notes on the Land Birds of Noya Scotia," that it is "abundant in Nerrfoundland;" but, strauge to say, I never met with a single specimen, neither were the settlers acquainted with the species: I have very little doubt, however, that it necurs on the island. It is this species which closely resembles the European Nyetea Tengmalui, but not having specimens I am unable to point out the distinctive characters.

Suory Orrl, (Nyetea nivea Daulin).-Tolembly common, and probably remains in Newfoundland throughout the year, although very rarely seen during the summer months, but this may be owing to its following in the wake of its chief prey, the polar hare (Lapus gluciatis), and ptarmigan (Lagopus rupestris), which retire to the high land as soon as the snow partially disappears. The "white owl," as the setilers term this species, is a bold, rapacious bird, and not casily driven from its slaughtered prey. One of the specimens, which I obtained at Cow Head, was feeding on an eider duck-probably a wounded bird which it had killedand was twice knocked over with stones, the last time apparently killed, before it would relinquish the duck: it had, however, sufficient life and strength to force its claws into the arm of the man who picked it up, although protected with all the clothes he usually wore. A large Newfoundland dog, used for retrieving seals, \&c., refused to go near this bird after it was knocked down with stones: the men who were present assured me that the bird kept making a "hissing" noise, apparently at the sight of the dog. During my residence in Newfoundland I heard several amusing anecdotes of the snow owl, but, although I calt vouch for the truth of them, it is scarcely necessary to reproduce them all in the pages of the "Zoologist:" I will, however, relate one or two which I do not think have before appeared in print. William Youngs of Codroy (Newfoundland), having continually had the bait stolen from one of his fox traps, determined to watch the trap and shoot the robber: for this purpose he selected a fine moonlight night, with suow on the ground, and, with his gun in his hand, a white swan-skin frock on, and a white handberchief tied round his cap, he secreted himself in a small bush about
twenty yards from his trap, fully determined to shoot the first comer; but his determination proved fruitless, for a large white owl-probably the thief-seeing something white sticking up through the centre of the bush, and evidently mistaking it for a fiue plump willow grouse, instantly made a "stoop," and, at the same time, sending its claws almost to the man's brains, suddenly disappeared with the cap and white handkerchicf: the man was so startled for the moment that he was unable to shoot at the bird. The snowy owl is a frequent attendant-although generally unnoticed-of the sportsman, and often succeeds in carrying off a grouse or duck before the retriever gets to it. On one occasion some men were waiting in ice "gazes" for the purpose of shooting wild geese (Bernicla canadensis and B. brenta), when one of them, named James Carter, left his "gaze" to go and have a chat with his neighbour, incautiously leaving his new white swan-skin cuffs and gun behind him. He had scarcely left his "gare" when an unseen enemy, in the shape of a fine snowy owl, pounced in and succeeded in getting clear off again with both of the white cuffs. A fine adult bird of this species entered my host's house, vir the chimney, and fought so valiantly for its life that the man had to kill it with a "pew"-a piece of pointed iron tastened to a wooden handle about four feet long, and used tor throwing codfish from the boats. A good many snowy owls are annually caught in the fox-traps of the settlers; and when very fat, which they frequently are, are considered good eating by many, and I see no reason why they should not be so, but I could never sufficiently overcome my repugnance to birds of prey as food to taste one. None of the settlers appeared to know anything of the breeding of this bird, although Mr. Downs states that it "breeds in Newfoundland." Mr. Cordeaux has kindly examined parasites of Nyctea nivea from Newfundland, and informs me that they are identical with others from European specimens.

Ifrom Onl, (Survia ulula Liun.)-Perhaps the commonest owl in Newfoundland, or, from being a day-flying species, is more frequently seen than any other. It is a bold, familiar bird, generally found in the neighbourhood of houses, preying on chicken, tame pigcuns, \&e.,-remaining throughout the year, but not so abundant in the depth of winter as at other seasons. In the fall of the year, and probably at other times, the hawk owl has a habit of perching on the bare and dead top of high fir trees,
from which it commands a good view of the immediate neighbourhood, and suddenly drops upon any unfortunate object in the shape of food that may happen to pass within a convenient distance.
(I'o be continued.)

ON THE ORIGIN AND CLASSIFICATION OF ORIGINAL OR CRYSTALLINE RUCKS.

Br infoman Macfarlane.

> I.-INTRODUCTION.
"All attempts to separate sharply from each other the various "rocks or mineral aggregates of which the earth's crust is com" posed. and to arrange them systematically, have failed." "We "cannot consider the rocks as species, nor arrange them in a "system corresponding to their nature, nor even, in describing "them, treat them all in the same manner." *

So wrote Bernhard Von Cotta in 1862. On reading such sentences we are tempted to ask: Are species always sharply defined in other sciences? Are all systems perfect or natural? Why should lithology be an exception to other sciences, and its students be deprived of the advantages of a systematic arrangement of the objects to be studied? $\mathrm{A}^{\text {"natural" system is not }}$ demanded, even were such a thing possible, in this or any other science. The more rigid any method of classification, and the more marked and unbending its divisional lines are made, the more unnatural it becomes.

It is exceedingly gratifying to find that, undeterred by the difficulties of rock olassification, such lithologists as Von Hochstetter, Kjerulf and Zirkel, have been found willing to attenpt it. Their labours, and those of other workers in the same field, have shed a flood of light upon a previously obscure and uninteresting subject. Although a perfect system will, perhaps, never be attained, still each attempt at properly arranging our knowledge of the subject has its value. Chemical analysis and microscopical

[^16]examination of rocks have very much contributed towards rendering such attempts successful. In the present paper it is proposed to give a systematic view of the various classes and species of crystalline rocks, in arranging which it is intended that their chemical composition shall have greater prominence and weight than has been usual heretofore.

However much it may seem desirable in this department of science, where all the systems of classification have been confessedly imperfect, to invent a system independent altogether of the ideas, more or less well fuunded, which prevail as to their origin and age, and in which their physical and chemical charac. ters should only have consideration, it must not, on the other haud, be forgotten that what is still more desirabie in such a system is that it should re-arrange our knowledge of the subject in a clearer form, render it more easy of comprehension to the student, and be so dovetailed into the past of the science as to be useful for its advancement in the future. On this atecount it becomes impossible to neglect even the thenretical views of our forerumuers in this seience of petrology, far less their arduous and often underrated geognostic labours. It also beenmes requisite to give a proper value to all the considerations which may have influenced their views, and to build upon the foundation which they have left us, the results of the observations and research of the investigators of our own day.

Considerations as to the manner of formation, texture. chenical and mineralagical composition, age and loc:lities of rocks, have all, more or less, influenced geologists in uaming and classifying them. The well-known distinction between cruptive and sedimentary rocks will occur to every reider as an instance of classification according to origin. Hunt's division of crystalline rocks into indiyenous and exotic, and schecrer's distinction of plutonites and vulconites are both founded upon their real or supposed mavner of formation. Lava and Rhyolite are cexamples of special rocks similarly named. Then, with regard to texture, probably no other eharacter possessed by rocks has given rise to a greater number of gencric terms. Schist, slate, porphyry, trachyte, amygdaloid, conglomerate, and breccia, are examples of this, but of special names founded on texture only a few can be instanced, such as granite and aphimite. The influence of chemical composition on lithological nomenclature is not, as yet, very marked, for it is only reewntly that the amalysis of rocks has had much
attention. Quite lately, however, Cotta has proposed to distinguish as basites those eruptive rocks containing less, and as acidites those containing more than sixty per cent. of silica; and Schecrer, Kjerulf and Roth have each indicated methods of classification founded, to a very considerable extent, on general chemical composition. By far the greater number of special names in lithology are based upon mineralogical characters. 'this is the case with pyroxenite, hornblende schist, quartzite, and many simple rocks, while among those of a compound nature, where it was impossible to indicate their mincralogical composition in one word, recourse was had to special names, with definite ideas attached to them as to mineralogical constitution. Thus, diorite came to denote a rock composed of triclinic felspar and hornblende; granulite, a schistose compound of quartz, orthoclase and garnet; dolerite, a mixture of labradorite, augite and magnetite. As regards classification, the mineralogical nature of rocks has almays been abundantly considered. In this way we have Hunt's orthosites and anorthosites; Senft's labradorites and alabradorites, while Zirkel has made the nature of the different felspar species the corner-stone of his system of classification,-crystalline or origiual rocks being divided into orthoclase rocks, oligoclase rocks, labradorite rocks, anorthite rocks, and rocks void of felspar. The manner in which considerations as to geologital age influence the names of rocks may be illustrated by the following examples. Sometimes certain porphyries and trachytes are, in hand specimens, scarcely distinguishable from each other. When, however, such rocks occur among carboniferous or peraian strata, geologists have been inclined to term them porphyries; and, on the other hand, when they are of tertiary or recent age, the name trachyte is generally given them. Exactly the same mode of determination, if such it can be called, has been adopted in the case of greenstone and basalt, or rocks of such indistinct mincralogical composition as trap and aphanite. With reference to locality it has principally occasioned special names, such as syenite, dunite and andesite, or caused varieties of certain other species to be indicated by such
 tions it would appear that, generally speaking, origin has been allowed to determine the various divisions and sub-divisions among rocks; that the majority of the gencric names have reference to texture, while mineralogical composition and locality
have had the greatest share in originating the special names of rocks.

In striving to attend to what hats beeu indicated as desirable and necessary in any attempt at classifying rocks, it has appeared to us most judicious to attach greatest weight to their various characters in the following order: 1, origin; 2, texture; 3, chemical composition; t, mineralogical composition; and 5 , locality. If a system be required at all resembliug those of other branches of science, these characters might be allowed respectively to determine the classes, orders, families, species, and varieties of rocks.

> Ir.-CLASSES OF ROCKS.

If we, at the precent day, look around us, and ascertain, from actual experiener, what the methods are which nature employs in producing rocks, we find that they result from the operation of two very distiuct agencies. On the one hand we may see in different countries, widely separated from each other, streams of melted matter issuing from volcmoes and solidifying to rocks on their sides or at their feet, while on the other hand we may observe, on every sea beach or river delta, sand and clay, the debris of pre-existing crystalline masies or fragmentary strata being gradually consolidated to new rocks. Exactly parallel to these operations of uature are certain artificial processes at work around us, the products of which are entirely analogous to the two classes of rocks just indicated. We may stand befure an iron furnace and watch the steady stream of slay flowing from the hearth into a large irno wagon, and there solidifying to a miss of solid, sometimes crystalline rock; and we may also risit a stamp mill where valuable metallic particles are being extracted from poor vein-stones, and find, in the slime-pits of the establishment, banded layers of half solidified stratia, requining but a little time to effect their perfect consolidation.

These two means cmployed by nature in producing rocks have been steadily recognized by the majority of geologists, and the two classes which result have been indicated by a superabundance of names. TYnstratified and stratified: igncous and aqueous; cruptive and sedimentary; exotic and indigenous; primary and secondary; (protogene and denterogene;) crystalline and clastic ; massive and fragmentary; original and derivate, are all terms which have been used for distinguinhing these two great classes,
and the least objectionable among them would appear to be the two last mentioned. The first of these, original (Ursprüngliche,) was first adopted by Zirkel* for denoting igneous or eruptive rocks, while the term derivate was first suggested by David Forbes \dagger as equivalent to secondary or sedimentary rocks. The latter term we have ventured to modify, and in the following pages we shall use the names original and derived for indicating the two great classes. These names would seem to deserve the preference, for the following reasons. It is admitted by geologists, on all hands, that the material which constitutes the various sedimentary formations, consisting of limestone, hardened clay, or consolidated sand, although it may have been immediately derived from pre-existing rocks of a detrital nature, originally came from the decomposition and disintegration of crystalline rocks, of such as are known to constitute the oldest formations of the earth's crust, or to have broken through and deposited themselves on the outside of it. It is further an accepted theorem, universally acknowledged by scientific men, that our globe was originally in a state of igneous fusion, and that all the material which constitutes the rocks of our day existed in the form of a melted zone encircling the central part of the globe. It is evident that, before the conditions for the formation of sedimentary rocks could exist, the liquid globe must have become, to some extent, solid; a crust, at least, must have been formed upou it, from the disiutegration of which the material of such sedimentary rocks could have been derived, and upon which that material could have been deposited. This crust, and the rocks which from time to time after its solidification penetrated or were erupted through it, must, consequently, have been the first rocks, and they must have yielded the material for all those subsequently formed by aqueous agencies. It would, therefore, appear legitimate to name the former class original, and the latter, derived rocks.

Where, as in the case of the volcanic and sedimentary rocks which are being formed at the present day, we can observe the process of their formation, no doubt can arise as to their origin. These rocks, however, form but a very minute fraction of those which build up the carth's crust, and it becomes necessary, in order properly to discriminate among the latter, to point out the

[^17]distinguishing characters of original and derived rocks. The further we go back in geological time, and the older the rocks are which we are called on to classify, the greater is the difficulty of doing so, and the more divergent the opinions of geologists become as to their origin. The stratigraphical relations of rocks are most effective in determiniug this, but it will be necessary at present to confine ourselves to consideratious of a more purely petrological nature. This is the more easily done, since the lithological characters afford abundant means of recognizing origiual and derived rocks, and distinguishing them from each other.

Original rocks are made up of crystalline particles of one or more minerals, priucipally silicates. These are seldom perfect in crystalline form, are frequently more or less irregular or distorted, and are intimately bound together to a compact whole, without the intervention of auy foreign substance as a cementing material. They are thus mutually interlocked to a crystalline mass, which, however, possesses at the same time an average mineralogical and chemical composition. This would seem to indicate that the mass must have been originally liquid, and, to some extent, in the same condition during crystallization, otherwise it would have been impossible for the rarious chemical constituents to move toward the points where the minerals were being formed into whose composition they cuter. On the other hand, this liquidity must have been somewhat limited in degree, for the minerals seem to have pressed against each other, so as to have mutually interfered with tincir crystalline development, and so as also to have fitted perfectly into each other on complete solidification. The size of the crystalline particles varies from a foot or more in diameter down to that of microscopical minuteness. It is even the case that they become so minute as to occasion a perfectly vitreous structure which even the mieroscope is iucapable of resolving into distinct minerals. In all such cases, although the rock cau scarcely be termed crystalline, it remains, what its mode of occurrence plainly shows, an original rock.

Derived rocks are made up of the disintegrated fragments or particles, and the chemical constituents of previously existing rocks, abraded or dissolved away by water or other agents. These fragments or particles are sometimes angular, sometimes rounded off, and always bound together by means of an intervening cement, which is independent of, and may be altogether different in nature from, the enclosed fragments. They vary in their
dimensions cven more widely than the constituents of original rocks. There are sometimes found in them blocks of several cubic feet contents; and, on the other hand, they are frequently composed of the finest particles of dust. The cement which unites these particles is subject to great differences, both as regards its quantity and its nature. Sometimes it consists of the material of a newly erupted original rock which has happened to envelope and bind together fragments of a pre-existing crystalline or selimentary rock. Sometimes it consists of the finely divided detritus of the rock of which the larger fragments are composed. Sometimes the finely comminuted cement is from a different rock than the fragments. Sometimes it is of an infiltrated crystailine nature. In some cases the fragments, and in others the cement predominates. Apart from the finely divided sandstone or clay which sometimes fills the interstices between the fragments, carbonate of lime, silica and iron oxide are the substances which, more frequently than any others, form the cementing material in these frasmeutary rocks.

Recent investigations regarding the cinemical composition of rocks have rendered the distinction between the original and derived clases still more marked, and made it possible to point out another essential point of differeace between them. Original rocks possess a chemical composition in which a definite relation exists between the quantity of silica and that of the various bases which they contain. In.derived rocks this definite relation is not to be observed. This peculiarity of chemical composition possessed by original rocks was first pointed out by Bunsen, and has been quite recently insisted upon as a feature distinguishing them from derived rocks by Von Richthofen in his "Communications from the West Coast of North America." ${ }^{\text {s }}$

These two great divisions do not, however, exhaust all the classes into which reeks have been divided. It has long been supposed, and more recertly the belief has gained ground, that many of the rocks belongring to the divisions above indicated have experienced, since their solidifiation or deposition, certain changes in their chemicai and mineralogical composition, and in their physical characters, whereby they have been rendered quite unlike their originals, and this without their having been disintegrated or displaced. The influences to which these changes

[^18]have been ascribed are various. Heat, water holding different substances in solution, gases, atmospheric agencies acting separately or combined, have all played an important part in effecting these changes. The rocks thus modified have been called metamorphic, altered or hypogenous rocks, without very marked reference to the classes from which thry have resulted. In the following pages the name altered will be applied only to those original rocks, and the term metamorphic only to those derived rocks which have experienced, in situ, such changes as those here indicated. It is not, however, proposed in the present paper to discuss the relations of derived and metamorphic rocks, but, in endeavouring to classify those of the original class, the altered rocks sonetimes resulting from them will be noticed.
(To be Continued.)

THE PLANTS OF TIIE WEST COAST OF NEW. FOUNDLAND.

By Joun Behl, M.A., M.D.
The account of the plants of the west coast of Newfoundland, in a recent number of this journal, ended with my visit to St. George's Bay.

As we sailed south, from that locality to the harbour behind Cod Roy Island, I observed that the forests had in some places been burned by the devastating fires, which are so often carelessly originated in these parts, and that grass had sprung up in the areas thus cleared, on which large herds of cattle were pasturing. These cattle belong to the people of the island-harbour village, which is composed of about thirty or farty families, whose schoolmaster visited us on our arrival. Large patches of snow still lay glistening in the sun on the tops of this somewhat clevated range of hills.

On the following morning, July 6th, we started on an expedition up the Great Cod Roy River, which, like many of the smaller rivers entering the Gulf of St. Lawrence, has its stream level for a few miles inland, until it reaches the mountain region, when it becomes more rapid and less navigable. It resembles them, too, in the manner of its debouche. On nearing the place where the river secmed to empty, we could at first see
no entrance, but upon coming closer to the shore we found a deep narrow channel at the end of a long tongue of sand and gravel enclosing a lake or broad expanse of river, which at the time of our arrival was literally covered with gulls. Near this lake was a swamp overgrown with hoary alders, in and around which I found the Marsh Marigold (Caltha palustris), Spotted Touch-me-not (Impatiens fulva), Great Water and Curled Docks (Rumex hydroluputhum et crispus), Hemp-Nettle (Galeopsis tetralit), Chickweed (Stellaria media), two Plantains (Pluntago major et Virginica), Thyme-leaved Speedwell (Veronica serpylli- . folii), with some Clovers and Bedstraws.

After ascending the river for a short distance, we stopped on the north shore, at the house of a settler named James Ryan, in whose garden I was surprised to find a great variety of cultivated vegetables and flowers. At this place I found vegetation to be about a fortnight in advance of what it was in St. George's Bay, doubtless the result of its more sheltered position and southern exposure. With his great varicty of flowers and vegetables Ryan had also imported a great variety of European weeds, for at no place on the coast did I observe so many vegetable pests as at this settlement. Some of his cultivated and pasture fields presented as many imported weeds as thnse of some of the older farms of Canada. The Yellow-Rattle (Rhinanthus crista-galli), that pest of the maritime provinces, grew everywhere, and Ryan complained that it killed out all kinds of grass. It was accompanied by the Heal-all (Brunclla vulgaris), the common Dandelion (Turaxacum dens-leonis), and Canada Thistle (Cirsium urvense), which did not coufine itself to places under cultivation.

Along a boggy rill were growing, in flower, the American Brooklime (Veronica Americanu), the bristly and creeping Crowfoots (Ranunculus P'enusylvanicus et repens), Canadian Burnet (Sanguisorba Cumulensis), Ruund-leaved Dogwood (Cornus circinata), with other herbs and bushes already mentioned in my former paper. The view from this place was magnificent. The river, like a long uarrow lake, lay below the house and stretched away inland, here and there dotted with boats and salmon nets, or intersected by points on which were settlers' houses and out-buildings, whose sides and shingled roofs scemed like marble in the glistening rays of the sun, while separated from the river by a strip of low wooded laud, towered up the high, deep-gullied
mountains, with patches of snow near their bare heathy summits. As we paddled upwards above this place the scenery was very beautiful,--earh bend in the winding river presented some new and enchanting combination of water, meadow, wood, and mountain, in varying shades and colours. Along the river bank, which was bordered with green and hoary alders, beaked hazel, red dogwood (Cornus stolonifera), and other species of Cornus, I picked up the Water Horehound (Lycopus Europreus), Mouseear Chickweed (Cerastium vulgatum), and Small-flowered Crowfoot (Rununculus abortious).

About twelve miles from the mouth of the river the Balm-ofGilead Poplar (Populus bulsamifera), grew in clumps along the stream and in their shade the Cow parsnip attained an immense size. On the alluvial flats bordering the river the magnificent Ostrich and Cinnamon Ferns (Struthiopteris Germanica et Osmunda cinnamomea), spread out their lusuriant fronds in the form of great green vases ammg the high cranberry bushes (Viburnun opulus), and the water and straight yellow-leaved avens shot up their wiry stems amongst the grass and sedges. Quantities of several species of Pondweeds formed tangled masses in the quiet pools, on whose surface finated the round shining leaves and yellow flowers of the Spotted Dock. In some places along the river the ground in the wood was covered with a thick soft carpet of various mosese, (IIypmum Bosrii, crista-castrensis, splendens et delicatulum), and the trunks of the trees were matted with tufts of Neckerr permata. In these rich damp woods the sweet, little one-flowered Pyrolas (Moneses uniflura), hid their single white blossoms in the mossy carpet, aud the False Beech-drops (Monotropr hypropitys) pushed up their wax-like stems. Here, too, the smaller Lady's Slipper (Cypripedium parviforum) nodded its mocassin-like fiowers to its plainer cousins, the Dwarf and Northern green Orchids (Platanthera obtusata et dilatatu), and the many flowered Coral-root (Corallorrhiza multiflora). Among the many ferns observed were the Lady Fern (Asplenium filix-fomina) and the New York Shield.Fern (Aspidiun Novaboracense), with numerous bushes of the swamp Gooseberry (Ribes 7acustre). wild Red Currant (Ribes rubrum), Few-flowered Arrow wood (Viburnum paucitlorum), the Swamp Fly-honeysuckle (Tonicerce oblongifolium), Low and Alpine Birch (Betula pumila et nana), while the tall wild nettle gave a sharp reminder of its presence with its pungent hairs.

At about fourteen miles from the mouth of the Great Cod Roy River some of the party went four or five miles south to the summit of the mountain range runniag eist and west. At first our course lay through a hardwood bush and over several little streams, whose banks showed that they had been ragiug torrents earlier in the spring. In this bush I got the. Spring Beauty (Claytonic Curoliniana), and a Galium with four broad leaves and little white flowers. As we ascended the damp, chilly mountain side, the trees became smaller, and the white birch and fir trees more numerous, until near the top nothing remained but stunted spruces, with trunks not thicker than a man's arm, but as hard as horn and probably as old as their taller brothers below. In some places these dwarfs were growing so closely together, and their tops had become so flattened and matted with the weight of snow in winter, that I actually walked for a considerable distance upon them like on an elevated pavement. The very top of the mountain presented a bare, desulate appearance. Large patches of snow twenty or thir'ty feet deep remaiued in the shaded depressions, while others were filled with boggy lakes, on the little islands in which the sea gulls seemed to have their nests, from the wild manner in which these birds screamed and flew around as we approached the ponds. In some places the gueiss rocks were broken and bare, in others covered with lichens, mosses and heaths. Among these I found the Bearberry Willow (Salix uva-ursi), the Alpine Bearberry (Arctostuphylos alpina), with the Phyllodoce (P. taxifoliie), and other heaths already mentioned.

On returning to the schooner, a botanical survey of the little island of Cod Roy was rewarded by the discovery that the Cornus Suecicu grew everywhere in profusion with its Canadian sister. This Cornus I afterwards found to be quite as common as the Canadian bunchberry all along the western Newfoundlaud coast, and on the north shore nearly as far west as Pointe des Monts. The other plants worthy of note on the island were the Fall Dandelion (Leontulon untumunale), the common Amırican Cranberry (V'uccinium mucrocarpon), the Wood-Rush (Luzula campestris), the Cloudberry (Rubus chumamurus), the Mountain Cinquefoil, and a variety of the beach pea, so downy with short soft hairs as to look almost glaucous.

During the 11th and 12th July we ran up io Long Point, north of Cape St, George. In a boggy meadow near the end of
the point I found the Alpine Bistort in flower (Polygonum viviparum), the Arrowgrass (Triyluchin maritimum), and Mountain Fly-hnneysuckle (Lonicura cutculet). At West Bay, a little farther down the cast side of this long point, the shallows are studded with the Fall Butrush (Sicirpus lurustris), and near the shore the common Soft Rush (Juncus effiusus) grew in clumps in the mud. On the banks the Iledge Bindweed (Calystegit sepium) drew its trailing stems over the bushes, and from the rocks the eommon Bladder Feru (C'ystopteris jragilis) spread its fragile and varying fronds.

We next sailed north to the Bay of Islands, which is a long narrow inlet divided into two amms, a short distance from the sea. and, as its name indicates, it contains a number of small rocky islands. At its mouth is a round granite island, whose stecp sides dip perpendicularly into the deep channel on either side, through which the tide rushes with considerable rapidity as it rises and falls. On the south side of the entrance are several very high mountains, whose sides are nearly perpendicular, and form a bare wall, against which the waves perpetually lash, and against which we were almost wrecked on entering the bay, owing to the rapid flow of the tide and the strong shifting gusts of wind which blew around the crage, and to which I have no doubt these peaks owe thie not very cuphonious but expressive name of the Blow-medown Mountains. As the carly French navigators sailed along these newly discovered shores, they gencrally called the various points of interest after the name of the saint on whose day they arrived at the place, while the English names have too often been repetitions of those of some European place, or have been suggested by sume passing faney of the sailor. A fer miles up the Bay of Islands I found the common bitter Cress (Cardamine hirsuta), and the Marginal fruiting Shicld-Fern (Aspidium marginale), growing at the foot of a slaty cliff.

The Humber River enters at the head of the south arm of the Bay of Islands. This noble river is the outlet of Grand Pond, and with its tributaries winds through a large portion of Newfoundlavd. It is, or could easily be made navigable up to the main fork, a distance of about fortymiles, for flat-bottomed steamboats like those used on the Ohio. Along the river flats, in the valleys and on the "barren," when these are drained and the country is a little more cleared, there will be room for thousands of farms, and the hills will afford walks for immense flocks of sheep
and pasture for countless herds of cattle, the surplus of all which will find a ready market at the ports and fishing stations, at the lumbering, manufacturing and mining establishments, which ere long will make this old and neglected colony one vast scene of active and profitable industry. The climate of the island is favourable to the developement of its agricultural resources of every kind. Instead of the cold foggy atmosphere, which is generally supposed to hang over this island, quite the reverse is the case-the air is clear and warm, and the temperature during the year remarkably equable, the mercury in winter seldom falling below zero of Falrenheit's scale, or in summer rising above 90°, while the mean temperature of the year is about 44°. I never saw finer weather than during the two months I was on the island. It is only on the S.W. corner that fogs prevail to any extent, from the proximity of that part to the Gulf stream.

At half the distance between the sea and the main fork of the Humber, the river spreads out into a broad expanse of about fifteen miles in length, called Deer Lake, from which the mountains rise range after range, and stretch away into the dim distance. Along the banks of the river, before reaching Deer Lake, I observed the Black Ash (Fraxinus samZucifolia) to be quite abundant. The Aspen Poplar (Populus tremuloides) was not uncommon, and the Scarlet-fruited Thorn (Crutugus coccinea) here and there shewed its spring braaches along the rocky banks. A pretty little white composite flower grew on the damp rocks with the pinguicula and violets; but I was unable to get a specimen of it. In other places the green and hoary alders, red osier dogwood, sweet-gale and dwarf willows bordered the stream to the water's edge. The woods were principally composed of the following trees:-Black and white Spruce and Balsam-fir (Abies nigra, alba et bulsamea), Mountain Ash (Pyrus Americaina), Blach Ash, Choke and wild Red Cherries (Prumus Virginiana et Pennsylvanica), Cranberry trees and Sweet Viburnum (Viburnum opulus et lantago). On a little i:land on the north side of Deer Lake I found the Mountain Painted Cup (Castilleia septentrionalis) and one of the deciduous Equisetums. In the shallows of the lake the Water Milfoil (Myriophyllum spicutum) floated in abundance, with other weeds. On entering the Humber at the upper end of Deer Lake, our progress was often arrested by the oars becoming entanged in masses of Eel-grass and Pond-weeds, which filled the dark-brown waters at the sides of the slowly flowing stream. In
the neighbourhood of the fork no plants were observed different from those already mentioned; but one expedition to Grand Pond, in the centre of the islind, brought back specimeus of the Bastard Toad-flax (Comandrue livida.) Epilolium latifolium and angestifolium and ViLurnum "pulus. After spending a few days at the main fork of the Humber, we started down the river, and after a long pull of from ten in the moming till eleven at night, reached the schooner in safety. At the mouth of the river we passed several long salmon nets, some of which were stretched so far across the stream as to cender it almost impossible for any salmon to reach their spawning ground. In buying some salmon from one of the firlhermen, it was singular to find how very ignorant his was of the rilue of the various silver coins in con:mon use, so general is the system of obtaining by barter all goods imported to these stations.

For two nights after our arrival we had the rare oppritunity. of secing the woods on fire on a magniticent scale, on the north side of the south arm of the bay, This grand conflagration commenced from a "smudge," or smouldering, smoking fire of rotten wood, lighted by some woodmen at the head of the bay to keep away mosquitoes. The weather had been warm and dry for some time previously, and had prepared the firs, birches, fallen wood, and even the veretable mould for this terrifie bon-fire. As the fire spread along the ground, and from tree to tree, it sent immense clouds of smoke and wreaths of flame upwards to the sky, aud created a draught for itself, which added yet greater fierceness to the devouring element, and carried up ashes and burning cinders, which again fell to the ground only to be new foci of destruction. The crackle, roar and crash of the burning and falling trees could be heard fur miles; and as the fire, with almost the rapidity and violence of an explosion, ran up the immense fir and birch trees on the tops of the hills, it made a sight which, when once seen, can never be forgotten. As the fire travelled along the hills towards the fishing station, opposite w'ich the schooner was anchored, the ashes and cinders coverce the deck, and it required coustant watching to prevent the sails from catching fire, while the ship's crew were away helping to tear down fences to prevent the spread of the fire, and to save the houses of the settlers. A fall of rain on the morning of the 22nd of July quenched the ardour of the conflagration, and a smart easterly breeze springing up the same afternoon, gaily
c:rrrici us homervard-bound, through the imposing portals of the Bay of Islauds.

WHY ARF INSFCTS ATTRACTED BY ARTIFICIAL LIGH'CS?

By A. S. Ritchie.

This question has given rise to many speculative answers, none of which as yet are generally satisfactory.

Mr. Guyon writes thus in Science Gossip *: "If a room were thoroughly darkened, with the exception of a small opening, such as a key-hole, through which the outer daylight was allowed to enter, such an aperture would appear from within, by contrast, almost as bright as the flame of a candle, and any winged insects enclosed in such a room would be pretty certain to direct their flight to the opening. Moths in a room are probably under a sense of being lost and confined, and as bees hurry up and dorrn the window, so nocturnal lepidopteral knock against the ceiling, or dash into the candle flame, perhaps equally with the impulse to escape. lusects seem to be under a fixed impression that the direction of the light is the way out." The same author writes: "The idea has often occurred to me-though it may be rather a fanciful one,-that possibly the insects might regard the flame as light shining from an aperture through which they might make their escape,--snmewhat as children imagine the stars to be pinholes in the sky."

These remarks, so far as we understand them, do not tell us what brings insects from their rarious haunts into our rooms. They noly prove that these creatures prefer light to darkness, -a very natural conclusion, we think, seeing that nature has supplied them with well-developed eyes.

The second answer given to the question runs as follows:" Most of the night-loving insects are so affected by the sudden appearance of light, that when a candle is introluced, they rush madly into the flame as though they were deliberately inclined to commit suicide." . . . "The truc causc of this proceeding has not yet been satisfactorily explained. It has been suggested

[^19]that their eyes do not absorb (as in most insects), but aflect the light, -an organization which enables them to distinguisin objects in a state of partial darkness, but which leads to their destruction when the light is strong. Blinded, as it were, by excess of radiance they lose all diseernment in the blaze, and perish in the flame."

Our opinion with regard to the structure and office of the eyes of insects is in accordance with the above remarks; all that is answered, however, is the cause of their perishing in the flame, which we attribute to paralysis of the optic nerve by the excess of light.

The third answer to the question runs thus:-"We know," ('I have often seen it,' says the writer), "that certain flowers emit of an evening a strong phosphorescent light, visible at some some distance. How many do sy whose light is only visible to the keen eyes of insects we do not know; but I think it probable that many more do thau we are aware of. Is it too wild a suggestion that nature has supplied those storehouses of insect food, -the flowers,-with this phosphoric glow as a beacon light to these hungry night rovers, and responding to the invitatation, they make for our lighted windows as to a banquet hall?"

We venture to make the following remarks on the quotations cited :-If it be true that plants give off a preculiar light, this, to a certain extent, auswers the quescion, and goes far to prove that insects are attracted by the lighi to feed. Dr. W. B. Carpenter says on this subject: "It has been asserted that many plauts,especialiy those of an orange colour, such as I'roprotum majus (Nasturtium), Calendulux officinalis (Marigold), Ir lianthus annuus (Sunflower), - disengage light in serene and warm evenings, sometimes in the form of sparks, sometimes in a more uniform manner, and many physiologists are dieposed to question these assertions, from their not having been themselves able to witness the phenomenon." We have spoken on this subject to several botanists who have never witucssed this light-giving property in plants.

We shall now give our upinion on this subject, and will do so as fully and clearly as fussible by answering the following questions:-

First.-What species of insects are grenerally attracted to our open windows by artificial lights, such as lamps, dc. ?

Secondly. - What are the habits of these species, and for what purposes are they attracted?

Thirdly, and lastly.-Is it on dark or moonlight nights that insects are attracted to artificial lights?

In answering these questions, our opinions are based upon actual observation and experience.

To the first question, viz.: What species of insects are generally attracted to our open windows by artificial lights? we suggest the following reply: We have taken representatives of nearly all the orders of insects in our rooms by lamplight during the past ten years, -but mainly Lepidoptera (or moths). The following is a statement taken from notes of captures on an evening in July, 1869. Working with the microseope at an open window, with the lamp burning on the table, the following insects were attracted by the light:-First, a beetle (Harpulus Pernsylvanicus), rather a strange fellow to be about at this hour; next visitor, a water beetle (.lrilius fratorns), then followed several moths, principally small species; the mosquito also made its appearance, and some small Ephemero. They flew out and in at the window, and in the reflected light across the street, numbers of moths could be seen as they crossed the rays from the lamp. Comparatively few rushed into or against the lamp,-evidently finding the light too strong for them, they flew out of the window to join in the dance going on outside, where the greatest number appeared to be. This answers the question in regard to the species generally attracted.

We shall now consider the second question, riz.:-What are some of the habits of those species, and for what purposes are they attracted? Without going into particulars about the habits of the several species, we will confive ourselves to the several orders as regards their being attracted by lights. Nearly all the specimens we have seen are nocturnal.-these feed and seek their mates by night. There are exceptions to this, as to most other rules, for in the case of some of the insects named, c.g., Harpulus and Acilius,-both are diurnal species. The first named was abundant last summer, flying into lighted roms in numbers, perhaps awakened by the light shining from the window on the side-walk, under which it had recired for the night, and so got up a little ahead of time. The other, Arilues, has been found at fault before, its also some of the large species of the family Dytiscilde. They have been seen to pitch themselves on the glass roots of conservatories, probably taking the shining glass for the surface of a pool or pond.

The reason for the appearance of water beetles at such unseasonable hours may be accounted for thus:-In summer the little ponds and pools are dried up, when it becomes necessary for them to shift, and in their wanderings they are no doubt dazzled and attracted by the light.

The order Lepidoptera comprises the majority of our eveniug visitors, such as moths. There are three classes of these creatures, divided into diurnal, twilight and nocturnal flyers. The eyes of the nocturnal species are constructed something like the owls, that is they are incupable of bearing the bright light of the sun. Any one conversant with the habits of these creatures will have noticed on confining a moth in a small box or in a partially darkened room, how its eyes shine. This shews that a difference exists between moths' eyes and those of other insects,-for instance, in those of the dragon fly, which spends its day in the rays of the sun, placed in a like position, no such effect is observed. This bears out the suggestion that the visual organs of nocturnal Lepidoptera reffect, and do not absorb, light.

On the other hand, observe the appearance of some of the Splingidx and other nocturnal moths. In the day-time we have often observed them sticking to the trunk of a tree, or in the crevice or comer of a feace. Failing to secure then instantly, they would fly foolishly hither aud thither, evidently annoyed by the sunlight, darting among the brushrood aud bushes till at last they were captured,-none the better as cabinct specimens, on account of their wings being rubbed or autemae broken.

The purposes for which these creatures come out at night are two-fold,-I speak here of the typical night flyers of the order Lepidoptera.

The first of these purposes is for feeding. The following circumstance will corroborate this view : - Having sugared some trees on the mountain, I liuns a lantern about two feet above where the sugar was spread. The night was very suitable for mothing,-darl: and warm. We had not to wait loug with our nets before several moths made their appearance, and with ready mouth, licked the sugar. Specimens of diptera also congregated, attracted by the swell as well as the light. Few flew to the light, but reeted on or near the part rubbed with the sugar. The secoud purpose is with a riew to findiug their mates in order to perpetuate their species. It may be mentioned here that one of the chief aims of an insect's life seems to be to accomplish this
end. This is more particularly the case with regard to moths, as may be seen from the following circumstance, which happened four years ago:-Sitting, with the window open, and a lamp burning on the table, a large moth flew into the rom. I shut the window and captured it. It was a female of Ielea polyphemus. The window was scarcely closed when something flew against it; lnowing it to be another moth, the sash was again opened; in a very few seconds in the moth came, and flew up and down the eciling, when the inevitable net soon enclosed it. This moth was the male of the above species, and its visit was, no doubt, a clear case of love-making. I mention another circumstance with regard to the females of the larger moths in particular, which I have observed frequently. A female never dies without depositing her eggs in some way or other. I have pinned moths time and again on the trunk of a tree, and in every instance (if not at the time of piercing the creature on the tree) always in the box before she died, when they are ejected on the introduction of the pin; they are unformed and soft. The creature, apparently aware of some change coming over her, does her best for the continuation of her kind up to the latest moment of her cxistence. Insects, especially Lepidoptera, copulate on the winge, and sometimes at great heights. We had an opportunity of witnessing this at Beloil mountain on the uecasion of the fich meeting of this Society last summer.

Examples of P'tpillu, turmus were abundant, - flying higher than the trees,-and higher than the old ruin on the top of the mountain.

Fionessic cutiupor was also observed, evidently enjoying themselves, as they flew towards the sum,-away above trees and other whecets,-for diurnal Lepidoptera pair, and fulfil the end of their leing in the bright beams of the sun. May we not draw the same conclusion with regard to the noeturnal species?

On mononlight bights where are the moths? No doubt flying at great heights, seeking each others company for the purpose of prepetuating their kind; and ou moonless nights-as will be shewn further on, -thnee creatures are attracted by artificial lights for the same purpose. I would venture to offer the following suggestions: I have aiways found that moonlight nights were bad nights for mothing. On elea, moonlight nights these creatures find all they require in the broad expanse of field and forest. The journeys they take, and the enjoyment they have are uninterrupted on such occasions; but when a monless, warm, moist, but not wet,
evening comes, they are aroused by artificial lights, which to them, I believe, is their best substitute for moonlight. The conclusions I arrive at are, that nearly all insects which come out at night, come cither for the purpose of feeding, or of continuing their species. 'They cannot, on accomst of the structure of their eyes, serve one of the purposes for which they were made, during the bright sunshine. The pale, mellow beams of the moon is their Pharos, and suits them best. You may sit at your open window, with your lamp or lamps, on a bright, moonlight night, and the number of typical night flyers, or insects of any kind, will be few indeed; experience is the best teacher, and so it has been in the present instance. But on a moonless night, with your lamp, you may make many captures. Iusects on dark nights then seem to be attracted by lights, either in your ruoms or by lanterns in the woods, because such light come nearest to the light they love and enjoy, uamely, that of that

> "Orhed maidon, with white fie laden, Whom mortals call the moon."

NOTES ON VEGETABLE PRODUCTIONS. *

By Geo. E. Belger, f.L S., F.R.G.S., C.M.Z.S., ©e.

Seeds of the Wild Liguorice (Abrus prceatorius Lime.)These seeds are the produce of a twioing plant, which seems to have been brought originally from the West, Indies, though it is now common enough in India and other castern countrics. It belongs to the papilionaceous division of the natural order Leguminose. The English call it wild-liquorice, and the French liane ia réglisse. There are seceral varicties, and three differentlycoloured kinds of seeds are well known-black, white and scarlet. The last mentioned have a jet-black spot at one end, and, as they are very hard, glossy and brilliant, they are a grood deal in request as beads for necklaces and other ornaments amongst the Hin. doos. They are called retti-weights in India, and are used by jewellers and druggists, each seed being popularly supposed to be equivalent to one grain ; but Dr. Mason says he has weighed

[^20]many of them, and found them to vary from one to two grains. The native goldsmiths are said to make an adhesive compound from them, which is employed in the finer work of jewellery. Several parts of the plant are applied to various medicinal purposes. The root is used as a substitute for liquorice-hence the English name-and Lunan says that a decoction of the leaves is drunk in the West Indies instead of tea. According to Linnous the seeds are very deleterious, but, as the Egyptians use them for food, they can hardly be so injurious as the great botanist has led us to suppose. As a plant, the Abrus precatorius does not possess muck beauty, and the pale-purple flowers are neither gay nor striking. I have not seen it growing very abundantly in India, though I have found it pretty widely distributed in that country, as well as in Burmah. Mr. Gosse says it is a common hedge-climber in Jamaica, and it is doubtless equally plentiful in the other islands of the West Indies. The derivation of the generic name is from abros (pretty), in allusion, probably, to the beauty of the little seeds; and Loudon says the specitic designation, precatorius, is due to the fact of their being used as beads for rosaries.

Seed-pod of the Moreton-Bay Chestnut Tree (Castanospermum Australe Cunn.)-The Castanospermum Australe, as its English name imports, is an inhabitant of the forests near Moreton Bay, in Australia. It is a handsome tree, belonging to the nat. ord. Leguminesse, with an abundance of elegant foliage; and, in the season of bloom, the bright saffiron-orange papilionaceous flowers are very gay. The seeds are large, and, in some slight degree, resemble chestnuts in taste and appearance. They are enclosed in an inflated legume or pod, which is hard and woody in its texture, and of a pale, reddish-brown colour. They are nearly globular in shape, aud each pod coutains from two to five seeds. Is is said that they furnish an article of food to the matives of the country where they grow, and that Europeaus have been known to subsist upon them for some time without any injurious effects. The tree-the only one of its genus known to seience-is very ornamental, and has been successfully cultivated in East Indian gardens, including the famous Lal Baug at Bangalure. The generic name is compounded from castancra, a chestnut, and sprmue, a seed.

Nimkar Bermies (seeds of Guilamdina Zundue H. K.)Guiturlina bombur: is a thomy, climbing shrub of the nat. ord.

Leguminosa. It grows abundantly in India, and is also common in the West Indies and other tropical countries. Burton mentions it in his Abeokuta, and in Harvey and Sonder's Floru Capensis it is cnumerated as an inhabitant of South Africa. Two species are described under the names, respectively, of bondue and bonducella, but, if the latter is distinet, I have not seen it, and several botanical writers of repute ignore it entirely, excepting as a synonyme of bunduc.* The flowers of munduc are yellow, the leaves abruptly pinnated, and the whole plant is plentifully armed with ferocious spines. The prickly legumes usually contain two only of the grey and shiring seeds, which, being very hard, are used as beaus and marbles. They are extensively employed in medicine amongst the natives of the East, and are reputed, in Egypt, to be prized as charms agaiust sorcery. They are frequently called bonduc-nuts, and are so strongly coated with silex, that, Sir Emerson Tennent tells us, they are said to strike fire like a flint. Royle asserts that Guilurdinu londuc was the alkutmookt of Avicenna, and that there are grounds for supposing

[^21]it to have been one of the kinds of eagle-stone of the ancients. Ainslic identifies it with the caretti of Rheede, and describes the seeds as yellow, finely variegated with annular saffron-coloured zones, but these characters are not applicable to the common form, in which the sceds are of a uniform grey, with the annular markings very faint indeed. In Scotland they are often thrown upon the sea-shore, and are there known as molucca-beans. The genus was, according to Paxton, named in honour of Melchior Guilandina, of Prussia, a great traveller, and a Professor of Botany at Padua.

Eagle-Wood (Aquilaria agallocha Rox.)-It is now pretty generally thought that the far-famed lign-aloes of sacred history was the produce of a tree belonging to the genus Aquilaria of the nat. ord. Aquilariacea; and there are even grounds for supposing it to have been furnished by the Aquilaria agallocha of Roxburgh, from which is obtained at least one kind of the precious and fragrant resin known as calambac; but, until more accurate and precise information is fortheoming, the uncertainty that has hitherto enshrouded the identity of this delightful and glorious substance can scarcely be removed, or the halo of romance and mystery which hangs around it entirely dispelled.

Aquilaria agalloche is stated by Roxburgh to be a native of the mountainous parts of India, cast and south of Silhet, in about the latitude of 24° to 25° north; but, as there is abundant and reliable testimony to show that a fragrant heart-wood, similar in most respects to the produce of that tree, is brought from many other countries, including Malacea, Java, Siam, and Cochin-China, it is quite evident that either the species under consideration, or others possessing like qualities, are pretty widely distributed over the continent and islands of Asia. Indeed, in works on eastern botany two or three different kinds are recognized, but, so far as I can learn, they have never been compared with Roxburgh's agalloche, with a view towards ascertaining if they really are specifically distinct.

I have not seen the tree of Aquilaria agallocha, but it is stated to be of immense size, and to possess a white, soft, light and inodorous timber, the heart-wood alone being heavy, hard, dark coloured, and bighly fragrant. From the latter are extracted the rich essential oil known in Iudia as ugger, and the costly resin called calambac. Both of these are extensively used as perfumes, and in the manufacture of incense. There are said to be several
qualities of eagle-wood, and different kiuds of resin procurable from it, which vary in value as in name, but, although I carefully searched the bazaars of Madras, Calcutta, Benares, Delhi, Agra, and other large Indian cities, assisted by an interpreter, I failed in obtaining more than one variety of each, and I could not learn that any others were even known.

The multitude of synonymes, which seem to be the property of eagle-wood and its products, have added, in no small degree, to the confusion which exists regarding it, and the imperfect and often conflicting accounts of travellers have rather increased the mystery than otherwise, and thus have ahmost nullified the advantage of their rescarches. On the whole, this interesting subject requires clearing up, and it is to be hoped that, ere long, it will receive the attention it so well deserves.

I cannot credit the statement that the fragrant wood is only found in trees which are diseased and decaying, for all the specimens that I examined were apparently sound and in the most absolute health, with the cells full of the precious and sweetscented resin. The origin of the scientific names is obvious, but their relevancy is not so clear.

Carsule of mife Frangipanni-Tlower Tree (Plumicria alba Jacq.)-The history of this beautiful tree is very romantically associated with the visit of Columbus to the West India Islands, and with Mercutio Frangipanni, a botanist of the expedition. I find, in Notes and Queries, that Frangipanni lived in 1493, was a famous botanist and traveller, and belonged to a noble and celcbrated Italian family. When the great explorer's vessel approached Antigua, the sailors observed that a delicious fragrance pervaded the air, and, upon landing, they found the island abounding in plants of Plumieria alla, laden with blossoms, and rich in "odours of Paradise." From the circumstance of Mercutio Frangipanui having expressed his great admiration of this lovely plant, it is called, by the inhabitants of Antigua, the Frangipanni-flower, and from it is distilled the famous essence of the same name.

This tree was long ago introduced into India, and it is now very plentiful in that country. At Bangalore, in the Mysore territories, no garden is without it, and, although leafless for a considerable portion of the year, it appeared to me to be never entirely out of bloom. When destitute of its rich and elegant foliage, it is not very attractive, owing to the sumewhat peculiar
and rather ungraceful growth of the branches; but, about the middle of March, there are few more benutiful objects, and so abundant is the perfume, that it is literally wafted hither and thither by

> "- erery breeze that roams about."

The flowers are white, fleshy and bell-shaped, with a yellow tube; and the leaves are large, lanccolate and of a dark and glossy green.

The loveliness of the plants themselves, and the rich fragrance of their delightful blussoms, have attracted the attention of all travellers, and Gosse, in his most charming works on Jamaica, has more than once touched upon the beauty of the Spanish jasmines, as the two species, Plumicria alba et rubra, which grow there, seem to be called. Bates, in The Naturalist on the Amuzons, mentions Plumieric phagedonica as one of the most singular ornaments of the campos. Plamieria acuminata is called the pagoda-tree in India, and is included, as well as the other species, in the native pharmacopoia. The genus belongs to the nat. ord. Apocynacece, and was named in honour of Charles Plumier, author of Plante Americanca.

Gru-gro Nut (seed of Acrocomic sclcrocarpa, Martius.) These nuts, so-called, are the seeds of a noble South American: palm, which, owing to its great height and stately growth, is one of the most majestic representatives of the kingly race to which it belongs. The Journal of Morticulture says the fruit are about the size of Orleans plums, perfectly globular and smooth, and, when fresh, of an olivegreen colour. They have a thin, woody rind, beneath which is a layer of fibrous, gelatinous pulp surrounding the hard stone or gru-gru nut, and this again contains a single seed. The seeds of all the species of this genus contain hard stones, resembling in some degree those under notice; they are polished and carved by the natives of South America, and applied to many ornamental purposes. Both pulp and kernal are said to be catable-the latter being white and pleasantly tasted. The tree belongs to the nat. ord. Pulnacece, and the generic name is derived from akros, top, and leome, a tuft.

Seeds of tiee Perim-Kara Tree (Elcrocarpus oblongus, Gærtn.) -The Perim-kara is a noble tree, and a great ornament to the forests of the Neilgherries and Southern India, where it grows; especially at the end of the cold season, when the ellipticoblong leaves assume a most brilliant scarlet-crimson tint before
they fall. The blossoms are brown and white, and possess a very unpleasant odour; the fruit is a drupe, not unlike the olive in appearance, only larger, and it contains a rugose nut, which, after being polished, is applied to many ormamental uses. According to Royle, the fruit of at least one species is eateu like olives, and those of other kinds are pickled and used by the natives of India, in their curries. The nuts are strung and employed as sacred beads by the Brahmins, and Royle says they are set in gold, and even sold as ornaments in the shops of Europe. I am uaable to trace the origin of the native name, but the generic one is derived from claice, the olive tree, and kurpos, a fruit, in allusion to the resemblance between the fruits of the Perim-kara and the olive. Nat. ord. Elourarpacere.

Seeds of the Red-wood Tree (Adenantlera proonina, Linn.)-This is a large tree, and, amougst the natives of India, its timber is known as one of the red sandal-woods. The flowers are small, fragrant, and of a yellowish white; the seeds are scarlet, glossy and hard. Like those of Abrus precatorius, the latter are used by the Hindoo jewellers as weights - cach one being supposed to be equal to four grains; but, as they vary a good deal in size, they are, of course, not to be depended upon for this purpose. Bruised and beaten up with boras and water, we are informed that a cement is made from them, and their pulp, when mixed with honey, is used medicinally. The timber is very hard, of a deep red colour, and exceedingly durable; it affords a dye, which does not appear to be either very much used or very valuable. The tree was long since introduced from the East into the West Indies, and it has become very abuudant there. In Jamaica, according to the Journal of IIorticulture, the bi-convex seeds are known as Circassian beans, Lady Coote beans, and St. Vincent beans, and they are used for necklaces and other ornaments. Loudon, in his list of synonymes, quotes bastard flowerfence as the property of this tree. It belougs to the nat. ord. Leguminosa, and the seeds are produced in á twisted, sickle-shaped pod, which usually contains about ten or a dozen. The generic name is derived from the fact of the anthers being glaud-tippedfrom aden, a gland, and anthera, an anther.

Sandal-wood (Suntalunt allum, Linu.) -Sandal-wood, sometimes called Saunders-wood, is the produce of Santulum album of the nat. ord. Santalucece. It is a native of India and other countrics of the Last, and is a small, handsome tree, with
numerous little flowers, which are first straw-coloured, and afterwards of a deep purple. The fruit is a round, black berry. The outer timber is white and almost inodorous-the fragrant portion being only the yellow heart-wood, which is very hard and very handsome. The perfume extracted from sandal-wood is highly prized amongst the Easterns, and it is, perhaps, more extensively used than ony other. Medicinal qualities are attributed to the essential oil, as also to the powdered heart-wood. The Siutalum album is supposed, by some authors, to be identical with the almug or algum trees of Scripture. The name is derived from the Persian word seruclut.

Inthin Sifot (Canna Indica, Linn.) - This pretty little shrub, with its large leaves and bright scarlet flowers, is very ornamental, and, consequently, cultivated extensively in gardens. It is a native of the tropics in both hemispheres. The seeds are round, black and glossy, 1 esembling shot-hence the English name. The root-stalk of some of the species is edible, and, from one kind at least, is obtained the substance called tous les mois. The leaves are used as thateh, and from the seeds is prepared a beautiful purple dye ; the roots, seeds, etc., are employed in Hindoo medicine. Loudon says that, in America and the Brazils, the Ctura is called wild plantain, and that the leaves are used as envelopes for many articles of commerce,-hence, probably, the French name balisie,-loalija being Spanish for envelope. Francis Buchanan tells us (Asiatic Researches, vol. vi.) that this plant is peculiarly sacred to Bouddha, as it is supposed to have sprung from his blood, when, once on a time, he had cut his foot, by striking it against a stone ; and that, therefore, the Burmese value the seeds for rosaries. It belongs to the nat. ord. Murantacea, and its name is derived from a Celtic word signifying a cane or mat.

Great American Aloe (Agave Americama, Linn.)-The romance which made the so-called American Aloe a centennial flower has passed away, and it is now well known that the intervals between its periods of bloom are very much shorter than was supposed, and that they depend, when the plant is under cultivation, pretty much on the mode of treating it. It is a noble and striking object, especially when its long, stately flowerscape towers up to the height of 18 or 20 feet from the centre of its clustre of sword-like, succulent leaves. The various species are applied to many useful purposes in the different parts of the
world, where they are naturalized and abundant. They furnish au excellent fibre called pita, which is manufactured into a superior and durable rope of great strength and power. This rope is stated to have been subjected to a course of experiments in India, and found to have been strouger than the productions of coir, countryhemp and jute. Λ bundle of the agave-fibre bore 270 lbs. weight, and that of Russian hemp only 160 lbs . It is a famous hedgeplant, and is much used for that purpose at the Cape of Good Hope and in the East. Loudon informs us that it is either wild or acclimated in Sicily, the south of Spain and in Italy. It is abundant in the West Indies, and Humboldt says that it is common everywhere in equinoctial America, from the plaius even to elevations of 10,000 feet.

In Mesico, where it is sometimes called magucy, a liquor is obtained from its juice, which, when fermented, is known as pulque; and from this is distilled an ardent spirit named aguardiente de maguey. The leaves of one kind are, accoording to Mollhausen, baked and caten under the appellation of mezcal, and they are elsewhere used to make paper of, as also an excellent and impenetrable thatch. It is said that the juice possesses strong healing propertics, and, in Jamaica, Long tells us that a species of soap is prepared from it.

I have often employed strips of the dried flower-stem-which is a light, pith-like substance-instead of cork for the lining of insect cases; and Bennett records the same use of it in Australia. He also says that, owing to the minute particles of silica which it contains, razor-strops are made of it in that country; and I have possessed and used with great success several that were brought from the West Indies. Chapman, in his poem called Barbadocs, speaks of this plant as the May-pole.
> " Here, towering in its pride, the May-pole glows, Whose pointed top a bee swarmed circlet shers of waving yellow; whose high-branched stem Takes back the rapt thought to Jerusalem, Shewing the candlestick that stood of old In the first temple, chased in purest gold."

The Agave belongs to the nat. ord. Amaryllidacece, and the name is derived from agaus, regal.

Seeds of thie Gela (Entada purscetha, DeC.)-This is an enormous climbing plant of the nat. ord. Leguminoso. Its stem, which is thick, rope-like and very long, asceuds to the
highest trees, whence depend its beautiful foliage, small, yellow flowers and immense seed-pods, which Sir Emerson Tennent met with six inches wide and fully five feet in leugth. He says the Kandyans call it maha-pus-wael, meaning great hollow climber, and that probably the mountain region of Pusilawa, which he describes as very beautiful, and one of the finest coffee-districts in Ceylon, takes its name from this plant. The seeds, he adds, which are handsome brown beans of an immense size, furnish the natives of Ceylon with tinder-boxes, which they make by scooping out a portiou of the interior. They are also used in medicine and as a detergent. The plant seems widely distributed, and is included in the Cape Flora. The sceds, according to Harvey and Sonder, are the common sword-beans of the Elast and West Indies, and of the tropical Pacific. The generic name is of Indian origin -entade being the Malayalam designation.

NATURAL HISTORY SOCIETY.

MONTHLY MEETINGS.

(Proceedings from January 1st to April 30th, 1870.)
Third monthly meeting, January 31st, 1870; Rev. Dr. De Sola presiding.

DONATIONS TO THE LMBARY.

Reapparition du Genre Arethusina, Barrande; and Faune Silurienne des Environs de Hof, en Baviere-par Joachim Barrande. From the Author.

Bulletin of the Museum of Comparative Zoology it ㅍarvard College, Cambridge, Mass. (Nos. 9 to 13). From the Trustees.

PROCEEDINGS.

Prof. J. W. Marsh, of Pacific College, Forest Grove, Oregon, was elected a corresponding member of the Society.

The following resolutions, having been moved by Principal Dawson and seconded by Rev. Dr. De Sola, were carried unanimously :-
"That this Society, in presenting its medal to Sir W. E.

Logan, LL.D., F.R.S., \&c., although it cannot add appreciably to the many honours which he has reccived, desires to place on record, not merely on its own behalf, but on that of all the students of Natural Science in Canada, its high estimation of the value of his services in creating, as well as directing, the geological survey of this country, in promoting the development of its mincral resources, in stimulating and aiding the efforts of scientific iustitutions, and in extending throughout the world the name of Canadiau science.

We desire also to express our high appreciation of Sir Willia' 's admirable personal qualities, and our hope that he may iu spared for many years to Canada and to science, and that the relief from official cares may give him the opportunity to pursue to completion the researches in physical geology in which he is now engaged."

Mr. E. Billings read a paper "On tase occurrence of Gasteropoda in the Primordial Kone." He commenced by giving a short account of paimontological discoveries recently made in other countries, and then cexhibited a fossil that had been collected during the summer of 1869 by Mr. T. G. Weston, of the Geologrieal s-rvey, in the Primordial slates or se. John, N.B. The specimen was a small species of Ophileta, and its geological position was several thousand feet below the lowest beds in which any Gasteropoda had been heretofore found in America. The rocks were of the same age as the Lower Lingula Flags of Wales, the "Monevian sroup" of the late Mr. Salter. Another specins, but of a different genus has been found by Mr. Murray in \therefore.ewfrundland, in rocks which appear to be Primordial, but whose age camnot yet be determined with certainty for want of sufficient fossil cvidence.

Prof. R. Bell then read a paper "On the Intelligence of Aumals." He spoke of the reasoning powers in many of the higher and larger animal; as being too well established to require a plea, and devoted the greater part of his paper to the consideration of instances of what might be regarded as intelligence in such small creatures as insects. Many argiments were adduced, hased on the organization a ` development of these ersatures, and more cepecially on their habits, for regarding them as posstesed of sometining more than mere instinct. Amongst other proots of the nossession of a reasoning power, the fact was mentiouel, that insects, if batfed in oue means of accomplishing
their object, will generally try another ; and that we find them as prompt and skilful in overcoming exceptional and artificial difficulties, as in performing the ordinary duties of their lives. The habits of insects, like hose of the larger and higher animals, appear to be in a great measure the result of the accumulated experience of many generations. The term instinct, the writer said, bas too general and vague a signification, and is often used as a convenient way of accounting for what it is found difficult to explain.

After the reading of this paper, a discussion ensued, in which Drs. De Sola and Evans, and Messrs. Billings, Ritchic, Whiteaves aud other members took part.

Fourth monthly meeting, February 28th, 1S70; Rev. Dr. De Sola in the chair.

DONATIONS TO TIIE LIBRARY.

Geology of Tennessec, Safford. Presented by Dr. A. Gottingen, State Librarian, Nashville, Tenn.

On the Chemical and Mincralogical composition of the Dhurmsalli: Meter : Stone, by Rev. S. Haughton, M.D., F.R.S., \&c. From the Author.

The Principles of Wsthetic Medicine, by Dr. J. B. Catlow. From the Author.

Le Glacier de Boium, en Juillet, 1868, par S. A. Sexe; and two other 4 to papphlets. From the Royal Socicty of Christiania.

proceedings.

Mr. A. S. Ritehie read a paper entitled "Why are inseets attracted to artificial ligint," which will be found entire at page 61 of the present volume.

Prof. R. Bell gave a verbal account of the zoology and botany of the Nipigon country. Principal Dawson made some remarks on this communication, and said that it was much to be regretted that, when parties were sent by the Geological Survey to explore distant and comparatively unknown parts of the Dominion, no competent naturalist formed part of the expedition. Much practieal kuewledge as to the agricultural capabilities, \&-e, of the region explored was thus lost to the community.

Fifth monthly meeting, March 28 th, 1870 ; the Presideni, Rev. Dr. De Sola, in the chair.

DONATIONS TO THE IIBRARY.

North American Oulogy, by Thomas Brewer, M. D. Part I. Quarto. Plates, uncoloured.

Zoology of HI. M. S. Samerang. Fishes. By Sir John Richardson. Quarto. Plates. Both from G. Barnston.

PROCEEDINGS.

The two following resolutions, having been moved by D_{r}. Smallwood, seconded by Dr. Carpenter, (in the absence of Principal Dawson, were unanimously adopted:

1. "That as Mr. Whiteaves has liberally offered to place his private collectivas of recent shells and British Jurassic fossils in the Museum of the Society, and to make them accessible to members and others, for the purpuse of study, so lung as he shall remain in Montreal, and under the rules applicable to the collections of the Society, the Treasurer be authorized to expend a sum not esceeding one hundred dullars, in providing the necessary cabinets and materials for mounting and preserving the collectionsit being understood that Mr. Whiteaves will himself mount and label the specimens; also, that the Treasurer be authorized and requested to insure this collection for a sum of not less than one thousand dollars, but not to exceed two thousand, so long at it remains within the building of the Society."
2. "That whereas, it is important to the cause of science, and conducive to the interests and reputation of this Dowinion, that researches, by dredging, should be prosecuted in the Gulf and River St. Lawrence ${ }^{\circ}$ in order to ascertain the character of marine life in the greater depths, and at the conflucuce of the fresh and salt waters of the river; and whereas this Society, and individual members thereof, have so far entered upon such researches as to prove their feasibility and importance, but have not the means of continuing them effectually, it is the opinion of the Sucicty that aid should be afforded to such operations by the Government, in the manner in which this has been done in Great Britain, and other countries, especially by riving, for a short time in summer, facilities on board government vessels, to a prarty to be furnished and fitted out by this Sueicty, which would undertake to provide obscrver:, and scientific apparatus, and to make reports upon such
results as might be obtained; that Drs. Smallwood and P. P. Carpenter, also Messrs. E. Hartley aud J. F. Whiteaves be a committce to correspond with the Dominion government, through the Hon. the Minister of Marine, with the view of effecting the desired results; that Principal Dawson be requested, when in London, to obtaiu information as to the best methors of making such subsidiary observations on the temperature, chemical constitution, ete., of the waters at great depths, as have been made in the recent dredging operations under the auspices of the British government, and, if possible, to procure specimens of the necessary apparatus."

The two following papers were read by Dr. P. P. Carpenter:

1. On some Peculiaritics in Local Faune, eshibited in the Dredgings, by Mr. McAndrew, in the Red Sea; by Captain Pedersen, in the Gulf of California, and by Mr. Dall, in Alaska.
2. On the Vital Statistics of Muntreal for 1869, with special reference to the great disproportion in death-rate between the Freach, the Irish, and the Euglish portions of the population.

Sixth monthly meetiag, April 25 th, 1870 ; Rev. Dr. De Sola presiding.

DONATIONS TO TIIE LIBRARY.

Hooker's Icones Plantarum. Octavo. London. Half Moroceo. Presented by E. Hartley, Esq.

Reliquix Aquitanicx. Part 10. From the executors of the late Henry Christy, Asq.

Température de la mer entre l'Irlande, l'Ecosse, et la Norvege. Avee cing cartes, par H. Mohn, Christiania; from the Royal Socicty of Christiania.

A flora and fauna within living animals, by Joseph Iecidy, M.D., 4to, Washington; from G. Baraston, Esq.

progeenings.

John Thomas Molson was elected a life member.
Gordon Broome, F.G.S., aud James Dakers were elected ordinary members.

Alfred Bell (of London, England) was elected a corresponding member.

The fullowing resulutions having been moved by A. S. Ritchie, and seconded by G. Baruston, were unanimously adopted :-
"That the nembers of this suciety regret deeply the resignation
of their janitor and taxidermist, Mr. W. Munter, who has so satisfactorily filled the joint situation for a number of years. They also sympathize with him in his bereavemut, and in his continued ill health, the immediate cause of his resignation. It is hereby recommended to the society that steps be taken to present Mr. Inunter with a suitable testimunial in cousideration of his long and valuable services."

Messrs. G. Barnston, John B. Goode, and the mover, were appointed a committee to carry out these resolutions.

Dr. Smallwoud read a paper "On some phenomena of the Solar Eclipse of August, 1869."

Mr. A. S. Ritchie read an essay entitled: "Aquaria Studies, No. 1." This will be found at page 1 of the present volume.

SOMERVILIE IEOTURES.

The six lectures of this course were delivered as follows:-

1. February 10th, 1870. "Explorations in the Nipigon country," by Professor R. Bell, C.E., F.G.S.
2. February 17 th. "Recent discoveries in Solar Physics, and the total eclipse of August 7th, 1869," by James Douglas, jr., President of the Literary and Mistorical Society, Quebec.
3. February 2tth. "The chemistry of Iron and Steel," by Dr. T. Sterry Hunt, F.R.S.
4. March 10th. "On Deep Sea Dredging," by Principal Dawsou, LLI.D., F.R.S.
5. March 17th. "On Gold:" by Dr. G. P. Girdwood.
6. March 24th. "On Economic Mineral Deposits," by G. Broome, Esiq, F.G.S.

ANNUAL CONVERSAZIONE.

The eighth amual conversazione was held at the rooms on the evening of Weduesday, March 9th, 1870.

The whole of the ground floor was tastefully decorated with evergreens, under the superintendence of Mr. D. MeCord. Fine geolugical maps and sections were kindly lent for the occasion by the officers of the Geological Survey of Camada. Messrs. Theodore Hart and Hugh . Illan also hindly contributed bouquets of choice cut flowers from their reppective greenhouses. A number of microscopes, with objects, were placed in the library, this department being under the special superintendence of the Nontreal Microscopic Club. Mr. J. M. Young sent one of

Powell \& Lealand's large binocular instruments, with all the newest accessories. This is probably the finest microscope ever import 2 d into Canada. Other instruments were contributed by Dr. J. B. Edwards, Messrs. James Ferricr, jr., A. S. Ritchie, D. B. Scott, R. McLachlan, and J. F. Whiteaves. Mr. Scott shewed the circulation of the blood in the web of the foot of the Shad Frog, also beautiful living examples of Vorticelle campanularia, V. nebulifera, Stentor carruleus, and other infusoria from hisown aquarium. Mr. A. S. Ritchie illustrated details of insect structure, especially elytra of exotic beetles, and wings of tropical butterflies and moths. He also exhibited some good diatom slides, and a photograph, of microscopic animals and plants from a pond at Ieytonstone (near london, England) by H. C. Richter. Mr. R. Mclachlan shewed German examples of trichina spiralis, and Mr. Whiteaves some choice polariscope objects, while Messrs. Young aud Ferrier contributed a number of fine slides by English preparers. The string band of the P.C.O. Rifle Brigade was in attendance and performed a choice selection of music during the evening. A little after 8 o'clock, IH. R. H. Prince Arthur, attended by Lieut. Picard, entered the building, where he was received by a deputation of tho senior officers of the society. The following address to H. R. H. was then read by the acting president, Rev. Dr. De Sola :-
Tr, Mis Royal Mighness Prince Arthur Patricl William Albert, Kuight of the most ancient and most noble order of the Thistle, Knight of the most illustrious order of Saint Patrick, dec., de.

Miy it please Your Royal Higheess.

We, the officers and members of the Natural History of Montreal, beg leave to approach your Royal Highness with our most respectful salutations, and to teader you a very cordial welcome on this occasion, when we are honoured with your presence amongst us.

We beg to assure your Royal Highness of the reverence and regard in which we hold the exalted rirtues and beneafeent rule of Her Most Gracious: Majesty the Queen.

Our Society has cxisted as a corporate body for $3 S$ years, during whieh time it has ever had as its chief object the advancement of the study of Natural History in this city and throughout Canada. It has erected this building, in which we have collected and arrauged a museum which is attaining a magnitude that will bear
favorable comparison with ordinary public muscums in England, and is essentially valuable for its exhibition of local specimens. It has created the nucleus of a useful library of refercnce on scientific subjects. It has sought to promote original investigation and to foster a taste for the study of nature by its lectures, its papers regularly read, and by its organ the "Cauadian Naturalist" which spreads the best attainable information on the natural productions of Canada, not merely among students in the Dominion, but throughout the scientific world where it is favorably known. We believe that the aims and labors of such an association as ours will enlist the fullest approval of your Royal Highness as they did that of your honoured and lamented father, whose name is revered wherever science is cultivated, as one of its most earnest friends and efficient promoters.

To which His Royal Highness read the following reply :
To the Officers and Members of the Nutural History Socicty of Montreal.
Gentlemen,-It is to me a source of great satisfaction to receive this address of welcome at the hands of a Corporation so learned and distinguished, many of whose meubers have battled so bravely in the cause of science.

Their achievements in the field of Geology and Organic Chemistry are well-known, not only to Cauadians, but to the scientific world at large, and the meritorious literary contributions in other branches of science afford clear indications of the ability and of the attainments of the variuus members. The establishment of this excellent muscum, so full of objects of deep interest, reflects great credit upon this Society. Most praiseworthy are the efforts of the members to popularise the natural sciences, and most sincerely do I offer to them my congratulations on the suceess that has attended their undertaking.

ARTHUR.

Dr. De Sola said:

May it phease your Royal Miginess; Ladizs and Gentlemen:

The annual conversazione of the Natural History Society, always a gala scason for its members, becomes especially so this evening, when we are privileged to welcome to it the honored son of our highly revered and dearly beloved Queen, on whom may God bestow many years of happiness and blessing. On so
memorable an occasion in the history of this society, there devolves upon me a duty that could have been more worthily and ably discharged by another-the pleasant duty of extending to you, ladies and gentlemen, on behalf of the society, a very cordial welcome to the entertainment we are enabled to offer you. I beg to assure you that we experience a very high degree of gratification in believing that your presence on this and other occasions is intended to evince your sympathies with the objects of our society. May we be permitted to hope that these sympathies will lead you to become, instead of mere annual visitors, permanent, earnest colabourers with us. I at least propose in a few remarks on some of the intellectual and utilitarian aspects of the study that engages us here, to show you that we have some warrant for the invitation we give you to labor with us in its great and glorious cause.

In its most extended sense Natural Science means an investi_ gation into the laws governing, and the elements composing, the whole of God's material works; the heaveus above, and the earth bencath. The boundlessness of such a ficld of inquiry, I could not on this occasion, more forcibly and, I trust, more appropriatrly, impress on you, than by quoting the words of that excellent and lamentcu Prince, whose like in respect to his extensive attainments in literature and science, and his judicious and successful efforts to promote them, Britain has never yet seen; who, in his life, afforded us a noble illustration of all that dignifies humanity, and in his death, left us a precious example how the time and talents God bestows on us may be most bencicially employed for the best interests of mankind. Need I say I refer to Albert the good? These are his words addressed to the British Association at Aberdeen, in 1859 :-
"But in gaining new centres of ligitt from which to direct our rescarches, and new and powerful means of adding to its ever increasing treasures, science approaches no nearer to the limits of its range, although travelling further and further from its original point of departure. For God's world is infinite, and the boundlessness of the universe, whose confines appear ever to retreat before our finite minds, strikes us no less with awe when, frying into the starry crowd of Heaven, we find new worlds revealed to us by every increase of the telescope, than when the microscope dicloses to us in a drop of water or an atom of dust, new worlds of life and animation, or the remains of such as have pased away."

A society such as ours has to regard Natural Science in its more limited sense. It is only from a feew salient points that we can hope to penetrate a field which is not more distinguished by its boundlessness than by its variety. But in its immense variety we discover the more we advance in the study, a prevailing uniformity that speaks of plan and system. And as the astronomer has shown that the slight deviations and perturbations of the spheres in their course are, equally with the regularity of their movements, the result of fixed laws, so the scientific naturalist holds it as one of his highest duties to discover and exhibit the principle governing not merely the uniformity of structure and habits of living nature, but all those deviations from it, that at first sight seem so unaccountable and perplexing. If this be so, then, all persons of all degrees, stations and occupations, should aid in some way or other a Natural History Society. For the scientific naturalist wauts facts and results of observations; and he frequently wants those facts which may appear trivial and unimportant, but which he is akle by his powers of generalization to show, when connected with other facts already obtained, possess a very great value in comuecting what is vague, contradictory or erroneous in his former deductions. And the contributor of these facts need not to be a scientific one. Every one with ordinary powers of observation may make important additions to the stores of scientific knowledge. Some of the most valuable contributions to Natural History have been made by unscientific travellers, who simply but faithfully described what they sarw and collected. But we need not go to foreign countries to pursue our investigations; there is quite enough room for them in this Canada of ours. For not to speak of the speciaily interesting field we have for geological and mincralogical research, there is ample scope for observation and enquiry into the structure and vital actions of even our lowest plants and auimals, not by any means thoroughly investigated; and it may be safely promised the diligent collectors among our insects and marine tribes, that their labors will not always remain unrewarded by the discovery of some species hitherto unknown, and thus valuable contributions made to an important denartment of uatural history - the geograph ical distribution of animals.

The duty of acquiring and imparting knowledge from observation, though a very evident one, inasmuch as it advantages society as well as the individual, is yet one very generally neglected. We
have heard of a pedagogue in a small village, who having joined a crowd anxiously engaged in watching an eclipse of the sun, and who having been asked in deference to his superior learning what was the cause of this extraordinary appearance, replied, "It is only a phenumenon." The truth secms too evident to repeat that if, when we behold anything extraordinary in nature, we check our instinctive curiosity by saying to ourselves: " It is only a phenomenon;" we shall not be one step nearer any rational knowledge of the appearance than if we had never observed it. "How many singular phenomena," exclaims the zealous naturalist, in accents of bitter regret, "how many rare and precious fossils have been lost to the world, seen by blind eyes. How many gas lamps might have trembled at sounds before a Lecomte observed under what conditions the ball-room lights responded to the tones of a violoncello."

But the study of Natural History is not merely valuable as a means of cultivating the powers of observation, but of educating all the faculties of the mind. Advancing as it does from the study of the simple to the analysis of the complex it must necessarily bring into play all those mental powers that men are called upon to excrecise in all the engagements of life. "The process by which truth is attaincd" says Mill, "reasoning and observation, have been carried to their greatest known perfection in the physical sciences." Natural History being concerned rather with the knowledge of things than of words, can lay claim to an exactness which is not the least of its merits. Another of its advantages is, that it supplies us with great ideas of natural law and harmonious adjustment. Finally, it bestows on us a general quickncss of perception, for the habits of observation it necessitates, gives to the intellect a superior aptitude of understanding and enjoying the thing observed.

Were this the occasion to dwell on the utilitarian aspects of the study, we might refer to the countless blessings it has bestowed on man in the shape of all those things essential to his wants and comforts. We might point to an improved agriculture and horti-culture-to the protection of crops from the devastions of insects, to the multiplication of the ores, the coal, the useful and precious stones and metals; we might poinl to the wondrous triumphs of science applicd to the arts; to the labour-saving processes which enable all to possess so cheaply the comforts and elegancies of life
formerly attainable only by the very few. Especially might we point to these in the mother country, but they are not entirely abseat in this Dominion, even with a sparse population of compararatively scant leisure and opportunities. For where first stood the primeval forest in which roamed only savage man and wild beasts, now rise large cities, important centres of commerce, pleasant villages and smiling hamlets; where formerly prevailed unbroken stillness and soltude is now heard the busy hum of industry, the checrful sound of civilized man's laburur in his work shops and in his factories, with his labour saving implements andmachines and engines, and his countless devices for multiplying force and velocity, all originating in science and directed by science, the frieud of art and the guide of industry. Where the Indian canoe slowly bore its untutored wecupant in his short journeys on the bosom of onr noble streams, now rides the majestic steamboat carrying its huudreds of passengers hundreds of miles, even through a night's sleep, on their crrands of business, pleasure and duty; where on the bauks of these streams could only be seen a fen rude wigwams approached by the narrow bridle path or painful trail, now staud thousands of commodious houses and palatial mansions, everywhere comnected with broad and easy roads or well furnished railways, along which rushes the mighty locomotive, so feartul in its cnergy and power, with its freight of human beings, and all that ministers to their wants in distant settlements, speediug on its way through tunnelled hills and mountains, over the marvellous tubular and suspension bridges that hang over gorges of dizzy depths; following the telegraph wire, along which the lightaing with its proper rapidity conveys man's messages, wishes and behests; over the canals that seience has substituted for rivers not navigable; along rich corn fields and beautiful gardens replete with lovely flowers, luscious fruits and perfumed exotics, all multiplied and improved by scientific culture; such are some of the results which science, applied to the arts, has obtained for us in Canadal ; and there is not one of her sons or daughters who may not yet aid in further developing these blessed results.

But, it is no mere material, grovelling earthly science that we laud and advocate in this Institution, but a science whose eye alternates between earth and heaven;-below, seeking the advancement and good of humanity ; above, finding communiou with the (Great Creator and Architect of all, acyuiring the fuller
knowledge of wisdom and design, and adaptation and harmony everywhere displayed.
"To see in part
That all, as in some piece of art, Is toil co-operant to an ond,"
-and that end the clevation and felicity of man. Yes, the benevolence, the wisdom and the omniputence of Him, who formed all and maintains all, are made more and more manifest to us as we advance step after step in the study of natural science. We hear the voice of God on the mighty waters, when He thundereth and when He flasheth the flames of fire that shiver the mighty cedars. We raise our eyes and we see his infinite and unapproachable wisdom displayed in the delicate adjustments and felicitous arrangements of the varied forces that astronomy reveals. We see it in the mechanical, chemical and physical properties of the atmosphere, in the effects of light and leat, in developing and fostering all the varied beautiful animal and vegetable life ; in the production of cooling winds and fructifying showers. We read this testimony in the towering rocks and giant trees as in the grains of sand and petals of the flowers; in the nerves and veins and arteries which permeate this wondrous frame of ours, as in the vessels that convey the sap from the root to the leaf in the vegetable world, in short in all the countless adaptations and modifications everywhere visible, everywhere nceded. And when we pass from the known to the unknown; from the revealed to the unrevealed; from the study of the stupendous and inimitable organisms, it is given us to understand, to the contemplation of the mysterious powers and qualities and forces in nature which seem almost for ever destined to baffe man's puny efforts to resolve them, we caunot fail to carry away a sentiment of the most profound humility, a deep seated conviction of the utter weakness and insignificance of our powers. Yes, from the study of nature, from this house in which it is specially cultivated, we should and we must carry into the active occupations of our lives, in our daily intercourse with our fellow beings, an earnest desire to emulate, as far as we may, the attributes of the Creator, as revealed to us by nature; to select the most comprehensive of these attributes,-benevolenec, as the main spring of all our thoughts and actions; so that we may look upon all men, no - matter what their origin, color or creed, as equally the objects of the oue Creator's care and the one Crcator's love and so that we
may learn to practice that toleration for each other's cherished opinions, political or religious, that shall ever banish from amongst us the bitter wrangling of dogmatism and the rancour of sectarian strife, and shall secure among us the rule of that harmony everywhere prevalent in nature, and everywhere taught by her,-the harmony that shall prove

> "The chain of lore,
> Combining all below and all above."

Principal Darsom, in a short address, rapidly epitomized the work done by the Society since its estabhshment, more than thirty years ago, in gethering and recording facts in Canadian natural hitory ; also in promoting the origination of the Geulogical Survey, and, incidentilly, in being instrumental in the founding of the Somerville course of lectures. Ine also pointed out in detail the peculiar functions of the suciety as being, to compare small things with great, in one respect at least, somewhat analogrous to those of the British assuciation,-at least, in so far as either of them might urge on the attention of the public and the Government any opening of new paths of scientific local enquiry. It gathered facts and preserved a record of them in the "Canadian Naturalist,"-ficts, which would otherwise have been lost, or retained no scientifie ralue. It had one of the most important muscums in the city; and outside of its more proper sphere, it had lent its countenance and assistance to obtaining the passage of the Act for the protection of insectionous birds, to the promotion of city samitary effurt, and to the formation of the Socicty for the Prevention of Cruelty to Animals. It was, however, to be regretted that Canada did not show herself more disposed to take part amonart the nations in some departments of scientific investigation; likewise, that competent zoulogists and botanists were not invited to accompary the expeditions sent out by the Genlogical Surrey, as they might do with great advantage and at a light expense.

The Chairmau called on Dr. J. Baker Edwards, F.C.S., to make some remarks on

APPLIED SCIENCE, AS MLLTSTRATED IN THF USEFUL PRODECTS OMTAINED FROM COAL.

Dr. Edwards stated that the direction of his remarks would not be towards a chemical demonstration of the misecllaneous products derived from coal, but, by the cnumeration of their character and
importance, to derive an encouragement for the spread of scientific knowledge throughout all classes of the community. Canada, being a country full of mincral wealth, might look to the education of the industrious classes as one of the great sources of her future wealth and importance; and although coal was not one of her mineral treasures, yet we should not fail to see that we are as much interested as consumers of its products, as if we were producers of it as a mineral. The different varieties of coal-anthracite, cannel, albertite, \&c.,-were then described, and the production of coal-gas illustrated by a large diagram showing the interior of a gas works. The first product of coal, illuminating gas, being illustrated by a photometer, by which the Montreal gas was declared to be equal to 21 sperm candles, which, he believed, was superior to any in Canada, and equal to most of the large towns of the north of England, the "applied science" was to be found in the choice of suitable admixtures of coal to form the best coke as well as the best and purest gas. The use of gas as fuel, by Siemann's Regenerative Furnaces, was next described; and this mode was recommended as the most cconomical for any coal containing much gas; by its aid a new process for the production of soda ash was now being worked with much success in Liverpool. In the necessary purification of gas for illuminating purposes, quantities of tar and ammoniacal liquor are produced; and by the chemical treatment of the tar especially, new and valuable products are obtained. The benzole so largely employed for the solution and manufacture of rubber compounds is derived from this source, as also the asphalt of our pavements, roofing and tarpaulings. In cookery and perfumery we meet with nitro-benzole under the name of almond flavour, from which is derived aniline, the base of that beautiful series of colours well known as the aniline dyes. Important as these are in a commercial point of view, they are surpassed in social importance by the production of carbolic acid, which now stands at the head of our disinfecting agents. From this substance is also obtained a yellow dye, picric acid, which is said to possess explosive properties rivalling gun-cotton and nitro-glycerine. Finally, from the ammonia and sulphur recovered from the process, we have valuable fertilizing agents which, when returned to the soil, complete the great cycle of vegetable existence. From this bricf review of the value of applied science to conl, $D:$ Edwards urged the importance of the establishment of schoo's of technical science
to supply an existing want in this community, and to euable the coming generation to develop the immense mineral resources of this rich country.

Illustrations of the luminous and chromatic properties of flame were shown after the lecture by the aid of the photometer, the electric light, the sodium light, \&c.; also, the process of dyeing silk by Aniline colours.

His Royal lighness then proceeded to examine with some care the various objects in the museum, the curator pointing out any of special interest. He paid particular attention to the collection of mammals and birds, also to the series of Canadian insects, the study of entomology, particularly of the lepidoptera, seeming to have had special attractions to His Royal Highuess. The company separated a little after eleven o'clock.
J. F. W.

ABSTRACTS OF THE PROCEEDINGS OF THE GEOLOGICAI SOCIETY OF LONDON.

At a recent meeting of the Geolegical Society of London, the following communications were made, of which we present abstracts to our readers:
"Notes on some specimens of Lower-Silurian 'Trilobites." By D. Billings, Esq., F.G.S., Palaontologist of the Geological Survey of Cauada.

The author first described a specimen of issaphus platycephatus, in which the hypostome was not only preserved in situ, but also the remains (more or less well preserved) of eight pairs of legs, corresponding with the eight segments of the thorax, to the underside of which they had been attached. The appendages take their rise close to the central axis of each segment, and all curve forwards, and are thus most probably ambulatory rather than natatory feet. They appear to have had four or five articulations in cach leg.

Three small ovate tubercles on the pygidium may, perhaps, indicate the processes by which the respiratory feet were attached.

Mr. Billings referred to the large number of Trilobites which have been examined, and cxpressed his belicf that only the most perfectly preserved specimens are likely to have the organs on the underside preserved.

Mr. Billings next described the doublure or pleura in the Trilubites, comparing it to that of Limulus. He then proceeded to describe a row of small scars and tubercles on the underside of the pleurex, to which both Dr. Volborth and Dr. Eichwald believed soft swimming feet or hard horny legs had been attached. As these were first seen by Dr. Pander in a Russian Trilobite, Mr. Billings has called them "Panderian organs." He thinks, soft natatory appendages may have been attached to these scars.

Mr. Billings directed attention to the Protichnites and Climactichnites, which he thinks may now be referred to Crustacea, belonging to the division Trilodita.

Finally, Mr. Billings described a section of a rolled-up Cymene senaria, the interior cavity of which appears to be full of minute ovate bodies, from 1-S0th to 1-100th of an inch in diameter.These small ovate bodies the author believes to be eggs.
"Note on the palpus and other appendages of Asaphus, from the Trenton Limestone, in the British Museum." By Henry Woodward, Esq., F.G.S., F.Z.S.

Mr. Woodward, when comparing the Trilobite sent over by Mr. Billings with specimens in the British Muscum, presented by Dr. J. J. Bigsby, F.R.S., discovered upon the eroded upper surface of one of these, not only the hypostome exposed to view, but also three pairs of appendages, and what he believes to be the palpus of one of the maxille. This furnishes an additional fact to Mr. Billings's most interesting discovery, besides confirming its correctuess.

Mr. Woodward considers the socalled "Panderian organs" to be only the fulcral points upon which the pleure move, and showed that such structures exist in most recent Crustacea.

He considered that the evidence tended to place the Trilobita near to, if not in, the Isopoda Normalia.

He remarked that the prominence of the hypostome reminded one strougly of that organ in Apus, and suggested that we might fairly expect to find that the Trilobita represented a more geue. ralized type of structure than their representatives at the present day, the modern Isopoda.

Discussion.

Mr. Woodward had carefully examined Mr. Billings's specimen, and agreed with him in considering that there was undoubted evidence of the presence of walkius-appendages under the thorax.

The presence of such limbs might ì priori have been expected; and the nature of the test suggested that Trilobites were walking rather than swimming forms of Isopods. The branchis had probably been under the telson; and this would account for its large development. It was not more surprising to find highly organized Trilobites than it was to find such highly organized crustaceans as Pterygotus, Euryptorus and Slimonia in the same beds.

Prof. Rupert Jones, Principal Dawson, and Sir Wm. Logan made some remarks, more especially on Protichnites and Climactichites, the latter having been explained as galleries of Crustacea by Prof. Jones, when first exhibited in England.
"Notes on the Geology of Arisaig, Nova Scotia." By the Rev. D. Honeyman, D.C.I., F.G.S.

The author referred to a previous paper on the C ${ }^{\top}$ pper Silurian Rocks of Nova Scotia, which he stated appeared to him now to be generally repetitions of his Arisaig series. He noticed the occurrence of fossils in one of the beds previously supposed to be almost destitute of organic remains, and described the occurrence, in Arisaig township, of a band of crystalline rocke which appeared to contain Euzoon and were probably of Laurentian age. A note from Prof. Rupert Jones, giving an account of the fossils referred to by Dr. Honcyman, was also read.

Discussion.

Sir W. Logan said that Dr. Hunt had seen the specimens of serpentinous limestone, and considered that they might be Laurentian. Sections of them appeared to Dr. Dawson to show tubulation rather different from that found in Laurentian Eozoon. They might, therefore, belong to a different age.

The following among other spccimens were exhibited to the Meeting:--

Specimens of Sigillaria, Calamites, ete.; exhibited by Principal Dawson.

Specimens of Trilobites; cxhibited by E. Billings, Esq.

REVIEWS AND NOTICES OF BGOKS.

Disinfectants and Disinfection, by R. A. Smitif, Pif.D., F.R.S.-(Continut from IVu. 2, page 228.)- A large portion of the experimental and original iuvestigations of our author were made by Royal Commission, in conjunetion with Professor Crookes, F.R.S., in an enquiry into the nature of and remedy for the Cattle Plague of 1865-66.

A subject of so great national and world-wide importance demanded the closest scientific scrutiny ;-and whilst, on the one haud, the microscope was made the instrument of valuable information as to the cause of the discase, (viz: the existence of organie spores in the atmosphere which attended the outbreak and marked the duration of the disease) ; the materials of disinfuetion which proved most valuable, after a lung series of experiments, were, as already indicated, the Tar Acids-in the form of Carbolic Acid, and as Carbolate of Lime.*
In referring to tar and its accompanying products, our author treats us to a very learned and interesting historic review, (pp. 817) and enters into the chemical history of "tar acids," (page 59). By the distillation of wood tar, we obtain creosote and acetic acid (vinegar). By the distillation of coal tar, we produce carbolic and cresylic acids.

- Of creosote we know-that it kills and preserves from decay, insects, fishes, and animals, that it stops the flow of blood in man, and preserves flesh from decay.
In the coal tar acids-we find some diffurences. Carbolic acid is poisonous, but less so than creosote. It coagulates, but does not stop bleeding. It exercises preserving and antiputrescent powers in wonderfully dilute solutions. The action of the tar acids our author thus explains (page 62) :-"'There is neither "life nor decay without motion. Tar acids arrest that motion " which takes place in decay. They are, therefore, antise ${ }_{2}$ tic"they autisept. As soon as the decay ceas"s, the putrid gases " cease to arise. The acids are, therefore, disinfectant. They

[^22]" prevent oxidation of organic, but not of inorganic substances; " they will not prevent iron from rusting."

Pettenkofer states that "they arrest, but do not destroy fermentation." This seems, however, to depend greatly on the strength of the acids used, and the conclusion drawn by the author is that all vital action may be destroyed by strong acids, and that in various degrees of dilution they are more or less potent on the lower organisms-both animal and vegetable. Experiments made by Mr. Crookes showed that a solution containing 1 per cent of carbolic acid:-1" preserved meat with fresh odour; 2° preserved gut skin, size, and glue; 3" stopped the fermentation of yeast in a saccharine solution; $4^{\prime \prime}$ killed checes-mites, infusoria fish, caterpillars, beetles, and gnats.

Cresylic acid, which accompanies carbulic acid, is also a powerful antiseptic, and has much less coagulating power over albumen, than carbulic acid. It has a stronger smell, bears greater dilution, and is probably a more porerful disinfectant than carbolic acid, and better adapted fur injection into the veins of diseased animals-a process which was found of great service during the Cattle Plaguc.
" P'ctroleum is a very poor disinfectant compared to tar acids. " Probably it contains a little either of carbolic acid or of some " allied compound, to which it owes all its disiufecting power. " Tar oils which most reemble petroleum have also a weak disin"fecting power; but, when the acids are washed out by water, " there is no disinfecting power remaining."

Lime is a good disinfectint, but very weak. As it is, however, cheap and abundant, it is an excellent auxilliary, especially applied as lime-wash to the walls of buildings. It is, certainly, greatly raised in value by admixture with carbolic acid, which is thus retained in contact with large surfaces of air which it completely disinfects. The process, however, needs frequent repetition, if the generation of air poisons be continuous, as in stables, cattle sheds, or slaughter-houses.

After consideration of the several metallic salts, which have been recommended as disinfectants, (of which our author forms a less favourable opinion than of the tar acids, attention is called to the necessary removal of manure and refuse by water-closets and sewers, earth closets and middens. Of the first he says:"The water-closet system is a great luxury, unquestionably, but " like all other lusuries, it is taxed. * * * It is the very
" symbol of abundance and extravagance. The mechanism must " be very excellent, and, with the best, a little chemical assistance " from disinfeetants is often needful. Water-closets which are " not carefully attended to are unsafe. It is an immense advance " upon the old cess-pools, which were found after much loss of " life to be manufactures of disease of the most active nature. "But unless we get good sewers, we have similar evils from the " water system. 'There are sewers and sewers.' 'The liyuid " matter, when neither removed rapidly, nor disinfected, is our " old enemy, the cess-pool, with a territory extending miles long " instead of feet. 'The midden is better than the bad sewer. I "beliere we shall never see the extinction of either middens or " water-closets; we may remedy some of the cvils. To allow " bad air to form in the sewers, and then draw it into the houses, " or permit it to rush into the streets, is bad engineering. The " sewers may be ventilated, and filtered through charcoal; or the " formation of bad air may be prevented by a proper use of disin" fectants." On the earth closet question, our author remarks:"One may very correctly look upon the soil as the greatest agent " for purinying and disiufecting. Disinfection by its means is per" fect so long as the decomposing matter can be perfectly dried " up by it; but, should moisture be in excess, a dangerous " condition of malaria is apt to ensue." Admitting the conditions which Mr. Moule lays down, viz., two ewt. of dry earth per week for six persons, he says:-"Nobody can doubt the disinfecting " power of the soil, and certainly, Mr. Moule has found a mode " of applying it in many cases."

The author's treatise is rendered especially valuable by a series of original experiments on the comparative power of disinfectants, which are expressed in a tabular form, for which our space is too limited. The objects of the experiments, however, may be thus stated:-

1st. To show the amount of gas evolved when the disinfectants act on organic substances in water.

2nd. To show the amount of certain disinfectants required to prevent the evolution of sulphuretted hydrogen.

3rd. Amount of certaiu disinfectants required to remove putrid smells.

4th. Influence of volatile substances in preventing putrefaction.
5th. Comparative power of autiseptics in preserving meat.
6 th. The antiseptic effects of certain gases on flesh.

The value of air and water are then considered, as the great natural disinfectants. Air, especially ozonized air, is a most powerful disinfectant; and the use of water in the bath is advocated and lauded in the following quotation from Martial, "The Joys of a Life in the Water":
"Bame, the priuce of watering-places, Somehow the weather's always tine; The light is long, and tho day's decline Is very slow, and 'groing away' Are words one nerer thinks to say. Rocks with all beaties there abound Cut out of many a distant ground; Warm breathing onyx fat and fine, And rarious-coloured serpentine. If hot Laconian rapours please, Here lie, though melting, at your case; Two streams supply you all you crave, The Yirgo and the Marcian wave, Water so bright and clear and fair, Yon think no liquid can be there."

The comparative value of disinfectants to prevent decomposition of organic matter, i.e., as antiseptics, is thus given:

> cost.

$$
100^{\prime \prime} \text { Comnion Salt................................ } 1.0
$$

7" Cresylic Acid......................... 4.9
23". 2 Chloride of Lime......................... 7.0
$9^{\prime \prime} .3$ Carbolic Acid.............................. 14. 0
Special directions are given for the best mode of preserving cottle skins, horn tips, salted and dry cattle-gut, melted tallow in casks, cows' hair, piss' bristles, sheep's wool, fresh bones, skins and guts, raw flesh, wagons, platforms, cattle-pens, and ships.
On the general subject of disinfection our author wisely remarks:-"It is a very complicated problem. Disinfection is " not a magic act, pe:formed by a small piece of a substance, " which removes all evils at once. There are many evils in various " conditions, and each must be attacked in its own peculiar mode. " People must use their reason. Everyone must pick out the " cheapest and most convenient disinfectant, according to the " circumstances of the case. Chloride of lime destroys smells " rapidly; Condy's fluid, ditto, and is itself" without smell. Tar " acids (carbolic and cresylic) are good for continuous action,
"especially for closets and the open air. Burnett's fluid, for " preserving moist bodies long."-(pp. 133-134).

The work is eminently practical and suggestive. Perhaps it would be more acceptable to the public if it had been more dogmatic and positive in its generalizations. It is a valuable accumulation of facts carefully chronicled, and we may hope that some Liebig will arise to give us the great deluctions whech are involved in this most important subject-which are still "desiderata."
J. 13. E.

Protoplasm; or, Life, Matter, and Mind. By Liouel S. Beale, M.D., F.R.S. 2nd Edition. London: Churchill, 1870. - We have only to state in refcrence to this the second edition of Dr. Beale's interesting book, that it is nuch enlarged and contains a new section on the Mind. It is an able display of the author's well-:nown views in reference to the early development of the tissues, and cmbraces an attempt to apply these views to some of the problems, half physical, half metaphysical, which of late years have attracted the attention of thinking biologist. Whatever opinions may be held as to the dispute between Dr. Beale and Mr. Huxley, it is certain that the volume itself is full of interest both to the microscopist and the ordinary educated man.-Mfonthly Microscopical Journal.

Tile Cell-Doctrine: Its History and Present State, de. Jy James Tyson, M.D., Leeturer on Micruscopy in the University of Pennsylvania. Philadelphia: Lyndsay \& Blakiston, 1870.-It is surprising how very little is known by medical men generally of the arguments for and against the cell-doctrine of Schwann and Schleiden. Notwithstanding the admirable essay published by Professor Insley many years since in the 'MedicoChirurgical heview,' and the numerous fine memois which Dr. Beale has given from time to time, it is still a fact that very few know how the question as to the mode of origin of the tissues now stands. It was to meet this want, and, at the same time, to help to promulgate Dr. Bcale's vicws, that the author of the present volume prepared this trcatise.-Monthly Micro. Journal.
Vol. V .
G
No. 1.

GEOLOGY AND MINERALOGY.

At a meeting of the Geological Society of Loudon, held Deecmber 22 nd, $186^{\prime \prime}$, the following papers were read:

Notes un the Sthectere of Shinhmali, by Principal Dawson, F.R.S., F.(i.S., Muntreal.-In this paper the author eriticised the statements of Mr. ('arruthers on the structure of Sgillaria (see (Q.J. (i.S. xav. p.244). In remake that Sisillaria, as evidenced by his apecimen, is nut comiferous; that the coniferous trunks foum in the coal-formation of Nera Scotia do not present discigerous tisoue of the ame type as that of Sigillaria; that uo Conilier has a sender woody axis surrounded by an enormously thich larh; that Calumedendron was probably a Gymnosperm, and allied to Sixillaria; that althouth Stigmaria may not always show medullary x.cys, the distinct se paration of the wood into wedges is an eridence of the having existed ; that the difference in minute stheture between Sigillaria and Stigmaria iuvolves nu serions difficulty if the firmer be regarded as allied to Cycadacear ; and further, that we do not know how many of the Stigmaria belong to Sigillaria proper, or F.avulatia, or to such forms as Clathraria and Leimherma, which may have been more nearly allied to Lepidephlion; that the fruit figured by Goldenberg as that of Sigillaria is more probahly that of Lapidnphloins, or may be a mate cathin with puilen; and that he has found 'Trigonocarpa scattered around the trunks of Siwillaria, and on the surface of the mil on which they grew. Me agreed with Mr. Carruthers in regarding Mr. Binuey's Sigillaria vaseularis as allied to Lepidodendrou.

Discussion-Professor Momris thought that Clathraria and Lepidophloios ought to be diceriminated from the Sigillarix, as being rather more nearly allied with eycadaceous plants, especially the former. He pointed out the mamer in which certain vascular bundles communicating between the centre of the stem of Sigillaria and allied genera and their bark might be mistaken for medullary rays.

Note on some New Animal Remans from the Carboniferous and Defonian of Canada, by Principal Dawson, F.R.S., F.G.S., Montreal,-The author described the characters
presented by the lower jaw of an Amphibian, of which a cast had occurred in the course sandstone of the coal-formation betrreen Ragged Reef and the Joggins Coal-mine. It measured 6 inches in length; its surface was marked on the lower and posterior part with a network of ridges inclosing rounded depressions. The anterior part of the jaw had contained about 16 teeth, some of which remained in the matrix. These were slout, conical, and blunt, with large pulp-cavities, and about 32 longitudinal strie, corresponding to the same number of folds of dentine. The author stated that this jav resembled most closely those of Baphetes and Dendrerpeton, but more especially the furmer. He regarded it as distinct from Baphetes planiceps, and proposed for it the name of B. minor. If distinct, this raises the number of species of Amphibia from the Coal-measure of Nova Scotia to nine. The author also noticed some insect remains found by him in slabs containing Sphenophyllum. They were referred by Mr. Scudder to the Blattariæ. From the Devonian beds of Garpe the author stated that he had obtained a small species of Cephalaspis, the first yet detected in America. With it were spines of Machairacanthus and remains of some other fishes. At Gaspé he had also obtained a new species or variety of Psilophyton, several trunks of Prototaxites, and a species of Cyclostigma.

Discussion.-The president objected to the term Reptiles being applied to Amphibia, from which they were totally distinct. He questioned the safety of attributing the jaw to Baphetes, of which no lower jaw had been previously found. Mr. Etheridge remarked that the Cephalaspis differed materially in its proportions from any in either the Russian or British rocks.

BOTANY AND ZOOLOGY.

Nortif American Laminabiaces.-At a late meeting of the Nova Scotian Institute, Prof. Lawson read a short paper on this group of sea weeds, of which we give an abstract. He commenced by stating that although many subjects interesting to science had been the objects of study to members of the Institute, yet that the Iaminariacee of our coast and harbors had
been entirely neglected; and he expressed a hope that some of them would quailify to suppiy the omission. The study had long engaged the carnest attention of eclehrated naturalists. He enumerated the following -1ecies, which are fully deseribed in Dr. Marvey's Nemeis Boreali-Americama.

Aluriu (srultuta-()n rocks : abnut low water mark, extending south to ('inge Cod.
A. P!/aii- - () m rocks moar low water mark, Nowfoundland.

Lumeinurin Fuscir. - A very small and delicate phant, only a few inches in length, foum in Halifax harher, on rocks and stones near low water mark by Prof. Ifarvey-widely distributedoccurring not only at Halifis and on the New lork coast, but also on the Athantic and Alediteramean shores of Europe, and at the Falkland hlands. sipecimens of the allied L. dedilis were shown fiom Kutziag.

L. dormutolnt.-On rocks at and bulow low water mark, Newfoundland.
L. sachurint.-At and holow low water mark. Mawey gives it as common on rochy shore from Groenland to New York, and cast up from derper water on the New Jorery coast. Prof. Lamson has a siecimoln collected by Dr. liae at Montreal Island.
L. Lomgicurris-Abumidnt lelow low water mark along the shores of Halifax harbor, at loint lloasant and around the wharves at the eity. 'lle sureies ahounds alomer the shores from Greenland to Ciqn Cenl, amb owems in Newfindland. It necurs Jikewise in Eurow, hut there the ranse is quite northern as it seareely extends heyom the limits of the Aretic Sea, whence ragged fragments are sumetimes driftel unom the Northern coasts of Scothand and Ircland. It. repurted uecurence in the Bahama Islands is probally a mistake.
L. triltmimth.- Finurd thating near Namaransett, Rhode Island; it is prohally an athomal firm of L. strecherriur.
L. digitutr.-On rock at and hlow low water mark, common as far at Cape Cod. Dr. Marwys improvion that prsibly more than one specite: is confounder umber this name should induce ohservers to examine the numerons forms with much care.

Agrrum Turu ri.-The species of Agraum differ notably from Laminaria in the flat froud being piereed throughout with holes,
hence the common name, Seal Colander, by which they are known. This species grows below low water mark, and is thrown up in quantities by southern gales at Point Pleasant. It extends from Greenland to Cape Cod, and has likewise been collected on the coast of Russian America, but it is unknown on the European shores.
A. prrtusum.-Newfoundland. This plime is distinguished by its less regularly shaped and watler and fewer perforations..
('horde filun.-The fromd is of great length attached by a small dise and very slender at the hase, thickening towards the middle, and again attenuating. It is often so long that when taken out of the water it resembles a fishing line. It aecurs between tide marks and extends into deep water, and is often abundant.
C. Lementuriu.-Lixtends from our coast south to Charleston, S. C .

Dr. Lawson, in conclusion, read a letter from Dr. A. F. LeJolis, of Cherbourg, France, in which he states-that he is engaged in a monograph of the whole group of the Laminariacea, that for such a study materials are never too numerous, and that he would be happy to reccive a fresh supply of specimens from North America. He awk Hr. hawson's help, and that he would interest his friends in his firmur. It is not necessary that the specimens be prepared for the herbaium. On the contrary, he had rather they were comely dried. without being washed in fresh water or eompresed. The parech may be addressed to him, and sent by any rensel sailing for framec, or, if convenient, through the stem packets from New lork to Hamburg, which stop at Cherbourg on their return from America.-Nerspaper li purt.

The Difection of Plants.-Prof. Delpino, of Florence, has published some interesting researeles on the relation between the diffusion of plants and ammals. The life of every phant has three principal whiects: its nourislment, its reproduction and the distributuon of its sereds; for uach of these three objects special bio logical conditims being rernuisite. The fertilisation of mavy plants can be cfficeted only ly some particular mimal : as Arum
 different suecies of (?mipes (or sall-fly); Arum deacuronfus, Stapelia, and Renflesisi, byy hue-hutle flies; many others by different kinds of flics or bee-like insects (Hymermptera), and some even
by small birds belonging to the family of Trochilita, or humminesbirds; Rusict, laumiu, and Magnolia, graudiflora, by beetles of the chafer tribe ; others agrain by small slugs. If in any particular locality the animal necessary for the fertilisation of a particular plant is absent, it is certain that the plant camunt spread; and thus the conditions fior the diffusion of phants are dependent on the geographical distribution of amimals. A remarkalle illustration is furnished by two plants helonging to the same gellus, grown in the botanic gardens in Italy, Lorlulien spphilition and L. fulyous; the flowers of the former are abmantly visited by Bomberis terrestris and italious, and freely produce seeds; the latter, notwithstanding its beauty and its great sure of honey, is uever visited by insects in the neigroburhoud of Florence, and never bears seeds spontaneonsly, but can be readily fertilized by artificial impregnation. Prof. Delpiue conjectures that it is naturally fertilised by humming-birds. He believes that the scarlet colour of the corolla, so common in the tropies, but comparatively rare with us, is eppecially attractive to mall birds, but offensive rather than otherwise to Dlymonoptora. As a rule, scarlet flowers are large, bag-like in form, horizontal in pusition, and with the nectar completely seprazated, which would of itedf perfectly prevent their fertilisation by insects. The largest Eurupean flowers, such as
 by sphinses and rose-chaters.-Botamishe Zatung.
N.dionil Mremer of Bohemid, Nor. 24, 1869.-M. T. Palacky explaned his views of the butanical weagraphy of Asia. M. Grisebach has recently divided Asia into four boarical provinces: (1) Western, or that of the Steppes; (2) Eastern, or Chinese; (3) Bural, or Siberian ; and (4) Suuthern, or that of India. II. lalachy admits only two provinces-the one Southern. the cother Bureal-including in the latter the whole of Asia beyond the Himalayas, because the first thee provinces of M. Grivebach do not appear to him to differ more from one another in regard to their flom than the sub-provinces of each do. The authur lays special stress upon the tropical species inhabitiug China-where they are not arrested by the steppesas far north as Pekin, and even as the Amonr. According to M. Palachy, the existing flom of Central Asia is an invasion of the Mediterranean flora which took phace after the elevation of the Tureomm phatean in place of the :meient pist-tertiary sea
between Europe and Asia. The principal obstacle in the way of researches connected with botanical geography, is the diversity of the views allopted by various botanists; wae species of Hooker, Wallich and others being equivalent to at least twenty-five species of Maximowica, Ruprecht and most of the German butanists.Neture, No. 9.

Notes on Cavadan Bubis.--The necurrene of the following rare hirds in lawor Ganda dererve placing on reard.

Fifleo Cumdicuns, Gmelin. The American Jer liaken.-The Rev. D. Anderson, M.A., of looint Levis, an acute minthologist, informs the writer that he has in his collection an adult specimen of this rare species, which was shut on the north shore of the St. Lawrence, near the Bay of Sown Istands.

Mr. Hancock has shern that there are two speries of Gyrfalcon, both of which are now included in the list of American birds. It is just pmsible that the spemems deeribed by the late Dr. Mall an Paha, Dharsumis (this Journal, Vol. 7, page 62), are the yomme of the Amerian Jer fakem.

Nyctale, ollifirnus, shaw. The White fromed or Kirtland's Owh-A specimen of this acolee yuecies was procured by the Rev. D. Anderion. which wan shot at a place called Breakey's Mills, about six miles from the munth of the Chaudiere river, near (lucbec.

Cardimhis Virginionus, Bunaparte. The Summer Red Bird. -In the carly prart of buen lisie, Mr. Wr. Hunter saw two individuals of this opecies on Montreal mountain. one of which is now in his poresem. It aroms to le of rate weurence, at least in Lower Camada.
J. F. W゚.
 -Since the pullicatiou of my pare on the ahove subject, a few additional species have heen temen in Lower Camada, as follows:

Bithiain tentaculato, Limm. This common European species has been found liring in the hachine camal, by Mr. (ix. I. henuedy. Accordiug to Mr. (i. W. Bimney, this shell has been taken in tireenland.

Ileli.r Morsei (?), Tryon. Montreal mountain. Mr. R.J. Fowler.

Helix (Psculduyalizu) ariga, Stimpron. West Farnham, P. U. Mr. I. J. Fuwler.

Helix. (Punctum) minutissimum, Lea. Same locality and collector as for the preceding species.

Notes on orier Species.- Volvutu humerolis (?), Say. (Can. Nint., Vol. s', page luz.) Though this may not be the true Innmerelis of Say, in my judgment the shells in question are perfectly distinct from any varietien of I. tsionsinata, or of V. siucero. Mr. Bimey refers them to the former, and the late Dr. Gould, to whom I sent specimens, to the latter species. Dr. lea referred them doubtiully to I: hamortis. Our shells are covered with a thickish olivaceons cpidermis, and are strougly transwersely ribled.

Planorl, is macrostomus. Probably it would be better to unite this form, tugether with the Pl. trisulvis, lentus and corpulentus of Say, muder the sencral name of Il. trivolvis, Siay.

Heli.e coroletin, Say, sur fas an aware, does not oceur in Lomer Camada. Prof. Bell's suremens, said by him to have been determined by Mr. Bime y, are all IX. dentifera, Bimey.

I'upre simplax, fould. The shells catalogued under this name, are all I'upu lundia, C. B. Adams.
J. F. W.

Lower Conamin Mamise Mohmech- Since the appearance of my paper on dredging in Gaspe, in rol. iv., p. 270 of the new series of this journal, a few species of shells, which I had no mems of identifying in Mmireal, have heren sent to Mr. J. G. Jeffreys, F.R.s., ette, hor identification. Itaving been compared with specimens named by Moller, Mr. Jeffreys recognizes the following species. which must now be added to our list of Lower Canatiam marine molluses:-

The shell sulpued by me to lne I'hilia limelifta, Gouth., Mr. Jeffreys infurns me, is lhiliar limer, Brown. In like mamer, the Margarita I refereed to Guuld: . IV. wgentitu, is M. Glauca,
 is arobably CHiculns liyntinus.
J. F. W.

Swis: Mumutit.-M. Fitio gives the mumber of mammals inhahiting Switzerland in the wild state-that is, excluding the cat, dug, horse, ass, ox, shecep, and wat-an fifty-cight, of as sixtyone, if the rabhit (which is not imilisernets, hut has been imported
of late years) be reckoned, and the two minute forms, Sorex pygmoers and Mus minutus, which have been said to occur, but which M. Fatio has not himself' succeeded in finding. 'This list does not include the ibex, the stag, or the Muss agrarius, which have become extinct. Some mammals which occur in adjoining countries are remarkable for their absence in Switzerlard: thus, the tivo bats, Rhinoliphius cli:osiss and R. Euryoll, which occur in Lombardy, Mus agrertius, necurring near the Rhine on the north, and by Como to the south, 1 iricule sulterraneus, also found near the Rhine, and A. Strcii, found in Lombardy, are not met with in Switzerland.
M. Fatio has increased the catalogue of Swiss mammals, as given by some of his predecessors, by the addition of nine species of bats, two insectivora, and four rodents, one of which is considered a new species altogether.

This new species of M. Fatio, is a little black mouse, very much like the common house mouse (Hus musculus). but having a very dark black-coloured fur; the two presenting much the same contrast as do the lHus sattus and Mus Alexamdrinus, which M. Fatio agrees with M. Arthur de l'tsle in considering one and the same species. The new mouse, however, which is called Mus Poschiavimus, from the locality where it was observed, presents more important differences when compared with Mus musculus than those of colour and proportion only. The palatine ridges in M. Poschianinus are four in number, in place of fice in the common species, and the anterior simple ridges are of a different form.

The strange thing about this little black mouse, which is found at Poschiavo in the Grisons, is that it lives on tobacco. It was first noticed in a tobaceo-factory, and was found to make great ravages among the stores of the nicotian weed. When first caught, M. Fatio thought he had possibly got hold of young specimens of the black rat, but subserpuently he obtained specimens bearing evident sigus of maturity. It does not appear to have suggested itself to M. Fatio's mind, that his Mus Paschecuinus may be only a sample of the deleterious effect of indulgence in the noxious herb to which these rodents are addicted. What if this new black mouse is but a stunted race of the black rat? It would furnish au invaluable argument to the anti-tobacconists.

A very pretty coloured plate, representing two Poschiavinian mice belping themselves to cigars, illustrates the description of this species. It is not a little remarkable that an animal should
normally feed on tubacco. Monkeys, as is well known to the frequenters of menageries, are exceedingly fond of the end of a cigar, and an elephant has heen seen gravely to accept such an offering; but one would have supposed that the amount of nicotine in a pinch of suuff was enough to make a mouse unwell. The indifference of these mive to the toxic action of tobace, calls to mind the similar indifference on the part of pigeoms (rodents are like birds in many things) to the toxic action of opium in the largest doses, as lately nutieed by Dr. Weir Michell.

Among the rarer and more interesting forms moticed by M. Fatio as still existing, or as haring existed-for he notices the contents of the quaternary deposits in Switzerland-are the Bear (Visus arctus), the Wolf (Comis lupus), the Wild Cat (Felis autus), the Lyux (Filis l!m,x), the Bouquetin or Ibes (Capra ilex), the Chamois (Caprllar rufricitpret), and the Stag (Cervus cluphus). With regard to this last, it appears that, eighty years since, very fine apecimens inhabited the swiss valleys; now it ouly appears when driven from the German forests lying to the north; its remains are found in quatemary deposits. The fallow-deer is represented ucither in the present nor in the quaternary fauna; the Roebuck, or Cherreuil, is the ouly cerviue species still inhabiting the country. Wolves, lynces, and wild cats are not uncommon in the forests of the Jura; but the lyux has not been found in the quaternary deposits, which is noteworthy, since Dr. Rausom, of Nottingham, has found it in England in snch beds.

The bear is commonest in the Grisons; every year there is some bear-huuting to be done in these wild and elevated valleys. The ibex, though no longer found in the Swiss Alps, occurs in the immediately adjacent territory of Lombardy; where, however, it is now strictly preserved. The ibex of the Alps, of the Pyrences, of Siberia, and of Crete, each have very distinctive characters, in the direction and length of their horns, but are bardly to be considered as distinct species. Some naturalists, however, distinguish a second species in Spain, as Egyceros Hispanicus, occurring farther south than the so-called EDy/feros Pyremaicus. The domesticated Cripra hircus, has no doubt largely taken the place of the indigenous ibex; natural hybrids between the tro are nut uncommon. The industrious Swiss have sometimes exhibited to curious tourists an eccentric specimen of the common goat as a living idex. M. Fatio mentions such an
instance, which may put naturalist travellers on their guard. A specimen presented by the King of Italy may be seen in the Zoological Gardens, Regent's Park. The chamois are still very numerous in Switzerland, though the large herds of eighty and a hundred, which used to be seen in past times, are not now met with. A certain amount of care is exercised now in regard to the time of hunting, and the animals are allowed to breed in security, so that they are on the increase in lucalities where they had become scarce. M. Fatio mentions an old hunter who boasted of having killed as many as 3,000 chamois.

The Alpine marmot, which is so common and so well known to Alpine tourists, is not the mammal which attains the highest elevation of habitat in Switzerland; another little rodent, the Arvicola niectis, has that distinguished honour, living at a greater altitude than any other European mammal.

Both this species and the marmot live amoug tho oases of rock and herbage which stand out amidst the vast masses of mountain ice. The Bobac marmot does not occur in Switzerland, being confined to the north-eastern districts of Europe. The Alpive marmot inhabits the Carpathians and the Pyrences, as well as the Alps.-From "Revicw of Dr. V.. Fatio's Faune des Vertelres de la Suisse. Part I. Mammals. By Dr. E. Ray Lankester; in "Nature."

The Use of Burds and Worms.-Worms and birds are great friends to grass-turf. Where there are plenty of blackbirds and thrushes you will generally find the grass to thrive. No doubt the reason is that these cheerful creatures, like other cheerful creatures, have a desire to be useful. They know they cannot live upon song, and they camot live by singing, for no one cver thinks of paying them for their merry minstrelsy; so they work for their crust, and on the grass find wireworms, slugs, snails and leather-jackets; the last named being the destructive grub, or the "Daddy Long-legs," the most outrageous destroyer of grass in the world. As to earth-worms, if you drive them out of your lawn, you must expect the grass to die. They are the cultivators of it. For any other crop we dig and manure constantly. For grass, we, as a rule, do ncither. But we cut down a crop of it now and then, and carry it away. Now the worms dig and mauure; that is to say, they bore holes and throw up common
soil in little heaps, and in time will reverse the order of all the articles of the top crust.-Gurdener's Magazine.

Uses of the Cockchafer.-" Through the columns of the Moniteur Scientifique we learn that nothing can be better to grease machinery with, and prepare salad, than cockehafer oil. In Prussia the people have reached the advanced stage of making cockchafer flour, which, at present, is only used for the purpose of making cakes for young pheasants, partridges, and quails. In this country (France) an attempt has been made to introduce the white worm or larva of the cockechafer into the kitchen, as a substitute for the snail; but gentlemen who are voracious when Helix pomatia is concerned, turn up their noses at the grub of Melolontha vulgaris. A servant of the name of Jonglet, proposes to extract from the cockchafer colouring matter, which, it is said, will make rapid strides in industry, and create a small revolution in the commercial world. He states that he can get yellow out of the olnoxivus insect of a colour between chromium and gold,-and that each insect yields a ferv centigrammes. Several specimens of silk, dyed with this new colour, have been exhibited and much admired. Taken all in all, the cockchafer, what with the amount of manure he furnishes when slain in proper quantities, and the unes above mentioned, stands a fair chance of being classed as a valuable insect, and some day we may hear philanthropic persons calling uut against its wanton destruction."-Laud and Wuter.

The Melolontha vulgaris of Europe is reprenented in Canada by Lachnosternu fusca, commonly called the May bug. In reference to the appearance of this creature, we may state, that it occurs in immense numbers every three years; at least, such is our experience since 1855. The years 1858, 1861, 186.t, and 1867, are those when this insect appeared in greatest numbers, and in 1870 we shall probably have another visitation of cockchafers. It must not be inferred from the above statement that no examples of these insects occurred in the intervening years, for it is always a common species in Canada. But there are years when certain species prevail in such numbers as to be noticed by everybody. One reason why the cockchafer should be tri-yearly may be owing to the circumstance that it remains in the larva state for three years. Here, then, an opportunity occurs for testing some of the alleged practical uses to which these insects may be put.
A. S. R.

Tovato-Worms not Porsonous.-The 'lomato-worm belongs to an extensive group (the Sphinx family), almost all of which have a stiff pointed horn growing out of their tails-a merely oramental appendage, such as those which are distributed in considerable numbers over the body of another magnificent larva which we illustrated ome time since. Why or wherefore it is impossible to say, but this poor unfortunate Tomato-worm has been selected by the popular voice, out of about fifty others belonging to the same family, and found within the limits of the Onited States-all of which have a similar horn growing out of their tails,- to be falsely accused of using this horn as a sting. The Tomato-worm and the Tobaceo-worm are as like as two peas, and produce moths which resemble each other so closely, that entomolngists for a long time confounded them together. Each has exactly the same kind of horn growing on the hinder extremity of its body; yet while the Tomatu-worm is generally accused of stinging folks with his horn, noborly, so fir as we are aware, ever yet said that the Tobacen-worm would or could do so. The real truth of the matter is that neither of them can sting, either with his tail or with his head, or with any part of its body. Yet not a season clapses but the newspapers publish horrible accounts of people being stung to death by Tomato-worms, and earnestly recommended those whe gather tomatoes to wear heavy buckskin gloves. These stories, however, have been contradicted so flatly and so often, that latterly the penny-a-liners have struck off upon another tack. Tomato-worms, it appears, do not sting with the horn that grows on their tails, but they " eject with great violence a green caustic fluid from their mouths to a distance of from 3 to 15 in." ! Now, what is the real truth about this matter? Tomatoworms do really discharge from their mouths, when roughly handled, a greenish fluid, and so do the larva of almost all moths, and so does every species of grasshopper with which we are acquainted, and so do many different kinds of beetles. But it is not true that they can spit out this fluid even to the distance of a quarter of an inch, much less to the distance of 15 or even of 3 in. ; and especially. it is not true that the fluid is poisonous. If it were so, we slould have been in our graves long ago; for we have had it repeatedly daubed over our fingers, but without the least ill effects therefrom, and so have scores of other entomologists in this country. The strangest thing of all is, that of two worms almost exactly alike, one of which eats tomato-leaves, and the
other eats tobacco-leaves, the tomato-chewer should be accused of spitting, and the tobacco-chewer should be held to be guiltless of this offensive practice. Now, then, gentlemen of the public press, if tomato-worms neither sting nor spit, what is the next charge that you are going to bring aquanst them? Why not assert that they can leap a distance of from 10 to 20 ft., having taken deadly aim at the human eyes, which they forthwith proceed to gouge out with their rough rapp-like pro-legs? Of course you would follow this up by recommending everybody never to go near a tomato patch, without a large pair of green goggles to protect the eyes from being destroyed.-American Entomologist.

CHEMISTRY AND PEYSICS.

Hydrocienium.-The last researches of the late lamented Prof. Graham, the Master of the Mint, were devoted to the study of a new condition of hydrogen antithecal to that of oxygen in the form of ozone; and to this condition of the element he gave the name of Hydrogenium. By all analogy the new substance should be considered metallic, but like ozone, it has not been isolated. The details of Prof. Graham's researches, communicated to the Ruyal suciety, were devoted to the relations of hydrogen to palladium. He had also observed hydrogenium in meteoric iron. Concluding an account of his researches to the Royal Suciety, Prof. Graham thus remarks on the chemical propertics of hydrogenium which distinguish it from ordinary hydrogen:-
"The palladium alloy precipitates mercury and calomel from a solution of the chloride of mercury without anydisengagement of hydrogen; that is, hydrogenium decomposes chloride of mercury, while hydrogen dues not. This explains why Mr. Stanislas Meunier failed in discovering the accluded hydrogen of meteoric iron, by dissor ing the latter in a solution of chloride of mercury; for the bydrogen would be consumed, like the iron itself, in precipitating mercury. Hydrogen (associated with palladium) unites with chlorine and iodine in the dark, reduces a persalt of iron to the state of protosalt, converts red prussiate of potash into yellew
prussiate, and has considerable deoxidizing powers. It appears to be the active form of hydrogen, as ozone is of oxygen.
"The general conclusions which appear to flow from this inquiry are, that in palladium fully charged with bydrogen, as in the portion of palladium wire now submitted to the Royal Society, there exists a compound of palladium and hydrogen in a proportion which may approach to equal equivalents.: That both substances are solid, metallic, and of a white aspect. That the alloy contains about 20 volumes of palladium united with a rolume of hydrogenium; and that the density of the latter is about 2, a little higher than magnesium, to which hydrogenium may be supposed to bear some analogy. That hydrogenium has a certain amount of tenacity, and possesses the electrical conductivity of a metal. And finally, that hydrogenium takes its place among maguetic metals. The latter fact may have its bearing upon the appearance of hydrogenium in meteoric iron, in association with certain other magnetic elements."

Metallec Hybrngen.-At a receut meeting of the Lyceum of Natural History in New York, a paper was read by Dr. Loew, Assistant in the College of New York, "On the Preparation of Hydrogen Amalgam." The researches of (iraham went to show that hydrogen could be alloyed with palladium, and that it was also contained in meteoric iron. He condensed the hydrogen in the palladium, and came nearer proving its metallic character than any other person had done. Schoenbein, in his sarch for ozone, found a method for making the feroxide of inydrogen which brought him to the very threshold of discovering hydrogenium. Schoenbein's experiment was this:-An amalgam of zine and mercury is violently agitated in water; the water is then filtered, and, on being examined with iodide of starch and protosulphate of iron, will be found to contain peroxide of hydrogen or oxygenated water. Dr. leow has carriced the investigation further, and has, instrad of oxidizing the hydruyen, succeeded in combining it with the mercury.

He takes an amalgane composed of no more than three or four per cent. of zine, and shakes it with a solution of bichloride of platinum ; the lifuid beconees black, and a dark powder settles to the bottom. The contents of the Hask are then thrown into

[^23]water, and hydrochloric acid added to dissolve the excess of zinc. The amalgam of bydrogen and mercury at once forms in a brilliant voluminous mass, resembling in every way the well-known ammonium amalgam. It is soft and spongy, and rapidly decomposes, but without any smell of armmonia. The hydrogen escapes, and soon nothing but pure mercury is left in the dish. The experiment appears to show couclusively that an amalgam of hydrogen and mercury can be formed, and that hydrogen is really a metal. It would also throw some doubt upon the existence of the amalgam of ammonium and mercury, and offer an explanation of that compound on the basis of its being the same amalgam of hydrogen and mercury that is prepared in the way now pointed out by Dr. Loew. The smell of escaping ammonia must be traced to some other source than the existence of that radical in combiartion with mercury.- Scientific American.'

Artificlal Production of Ice. By P. H. Vander Weyde, M.D. Calculation of the amount urhich can be procluced from a given amount of coal in the modern ice machine. -The amount of ice produced by an ice machine, worked by means of an exhaust or condensing air-pump, driven by steam power, is easily determined, theoretically, from the amount of coal burned in the furnace of the steam boiler. It has been proved that the combustion of one pound of anthracite coal produces, in round numbers, 14,000 units of heat, and that in order to freeze water of 72° Fahr., it is necessary to abstract, besides 40° of sensible heat, 140° of latent heat-together 180-which for one pound of water is, of course, equivalent to 180 units of heat. As this number of the units is the eightieth part of the 14,000 units produced by the combustion of one pound of coal, it is clear that the heat produced by the combustion of one ton of coal is equivalent to the heat to be abstracted from 80 tons of water of 72°, in order to change it into ice.

But in practice we find here exactly the same state of affairs as is the case with the steam engine. Theoretically, a steam engine ought to produce at least 700 units of force (foot-pounds) for every unit of heat consumed; in practice, good machinery only produces from about 70 to 100 foot-pounds, from about one-tenth to one-seventh part of the theoretical amount. In the best ice machines thus far constructed, instead of freezing 80 tons of water for every ton of coal consumed, only from about 8 to 11 tons of
ice are produced also, from one-tenth to oneseventh part of the theoretical amount, proving, thus, the remarkable fact, that in both the steam engine and the iee machine, exactly the same relation exists between the theoretically calculated effects and the practical results.

As, howerer, all the best iee machines accomplish the conversion of the heat of the fuel into the freezing operation by the intervention of a steam engine, the fact that they practically produce only from one-tenth to one-seventh of the amount of the cold they theoretically should produce, is solely due to the other fact, that the steam engine itself practically produces only from one-tenth to one-seventh of the amount of power which would be strictly equivalent to the number of heat mits consumed. It must not be lost sight of that it is only the power of the stem engine which generates the cold in the freezing machines, and that, therefore, improvements in the stem engine, which bring its practical results nearer to the theoretical standard, will at once exert their influence on the amount of ice the ice machines can produce, and, consequently, also on the cost of the iee manulactured in these machines.

Moreover, it appears that the kind of freczing machines in question, which convert power into cold, notwithstanding they are yet in their infancy, have already attained such a degree of excellence, that they are ahead of that class of machines which convert heat into power, either by steam, hot air, or any other posible mems, as it is proved that they produce the full theoretical cyuivalent of cold (negative heat) for the number of foot-pounds employed; namely, cooliug one pound of water one degree for a power equivalent to 700 pounds, descending one foot, which, expresed in the adopted scientific mamer, is one unit of negative heat for every 700 foot-pounds consumed.-S'ientific Americun.

Pins pointen by Electricty.-A recent diseovery has been made by M. Cadery, telegraph iuspector on the Western Swiss railroad, and is now applied with success at Aix la Chapelle (Belgiom), whence needles and pins are shipped to all parts of the world. On passing a metallic wire (brass, copper, irou or steel), comnected with the negative pole of a Bunsen's battery, through the bottom of a ghass tube, closed in such a way as to hold an acidulated liguid, and leading the other wire of the positive pole through the superior opening of the glass tube, closed in such a
way as to allow the positive wire to plunge into this acidulated licuid, takinge care to leave a suall intersal between the extremities of the wires; the eleetric current thus entablishad through the acidulated Huid as a conductor, produces the following phenomena. Very som the extremity of the positive wire takes a conical point of more or less sharpness, depending on the free distamee existing between the two wires plunging into the acidulated liguid. During this phenomenm, which takes from 5 to 15 minutes, according to the acid used, its stremgth, the composition of the wire, its degree of thickness, and also the intensity of the electric current, very fine sections of the wire are sern to separate from the wire. Water, acidulated with sulphurie acid, appears to be unore efficacious, especially for iron and steel wires. Nitric acid is used in preference for brass and copper wires. The same effect will take place if to the positive pole (superior) an indefinite number of wires are tied tugether and dipped in the acidulated water, instead of the single wire, care being always to keep this positive wire at a little distance from the negative wire. I have seen a hundred brass wires after having been submitted to this operation, present points as sharp as the best English pins, although the electric surrent was produced by a very small Buasen's battery. It appears to me very desirable that this new method should receive proper encouragement, and everything should be tried to bring it into general use. 'The operation of' making the points of needles and pins in their manufacture is a dangerous and costly one. Medical men in large manufacturing cities have long recognized the dangerous effects produced by the line metallic dust resulting from it, on the health of the workmen. The remedies for this evil are very imperfect, little used, and very impracticable; inhaling apparatus enmmunicating with the outside air has been tried, but every danger would be suppered by the method above described.-Srientific inerrican.

Anouner New Dye.-The aniline dyes, it seems, have now a rival which not only ries with them in brilliancy and variety, but is of a less flecting or more fixing character. The new colouring mattex, according to the Mh, luenis' Mugezine, is a purely vegetable extract, the phant from which it is obtained being imported from the western part of Africa, and also from the West Indies. The colouring matter is variously treated, according to
the colnurs recquired and the dyes to be prepared from it. The process of production is carried on with machinery of a npecial character, which has been designed by the patentees, Messris. Walker \&i Co., for this manufacture.-Buildir.
 An amalysis of extract of meat by Herr Reichardt is given in Dingler's Polytecknisches Journut. The sample was prepared by a private firm, and yielded, on analysis, the following results:Portion soluble in alcohol (of 83 per cent. strength), $80-76$ per cent.; water, 16 per cent.; fatty matter, $0-2$ per cent.; nitrogen, $9-99$ per cent.; ash, $21-36$ per cent. (containing potassa, $9-0$ per (ent.;) soda, $2-3$ per cent.; phosphoric acid, $6-1$ per ceut. These results, as compared with Liebig's and the Fra Bentos extracts, are stated by the author to be in favour of the extract tested by him for MM. Buschenthal \& Co.

MICROSCOPY.

Butterfly Parasire.- In the March number of this Journal, attention was drawn to the existence of a vegetable puresite on the legs of the dark Swallow-tail Butterfly (l'upilio usterias). The facts are as follows:-

At a mecting of the Montreal Microscopic Club some time ago, the subject for illustration and examination was "ParasiteAnimal and Vegetable."

Looking over my collection previous to the meeting, for example of the subject, I had oceasion to open a small box containing four specimens of Papilin asterias, and observing something attached to the legs of one of the butterflies, it was subjected to microscopic exanination, and I concluded it would suit the subject for investigation at the meeting of the club.

One leg with the purrasite was mounted in balsam-the cover being secured with sealing wax varish, a very useful cement when an object is wanted for immediate use, as it dries quickly.

Members differed in opinion as to the objects-the general impression that it was a vegrethle parasite, funguid in its nature,
remained. Not being thoroughly persuaded in my own mind as to its nature, from the peculiar situation of the orgamism-it being attached not to the leg, but impaled on the spines of the tibiee and turise, also on the tips of the imgucs,-it appeared to me as if the creature, in feeding or flying over some plant, had brushed off something like seeds or flowers, or some fungoid growth. With a view to find out its real character, I sent a momoted side to Mr. M. C. Cooke, the Editor of Science Gossip, and author of "An account of the British Tungi," also of " Nicroseopic Fungi," for his opinion. He very kindly returned me the following answer in the pages of the Sricuer Giossip: "The supposed fungus on the legs of l'apilio asterius is not a fungus at all, but pollen masese from some species of ()rchis."

Befine receiving this answer, however, I had determined for myself what the supposed fungus was. A friend having remarked that he had captured some large flies with their legs covered with a preculiar looking substance, I dusired him to let me have a few specimens, together with a specimen of the plant on which he had taken them. The latter proved to be the milk weed, or wild cotton Axceprius cornuti. On examination, I found the pollen masses to be identical with those on the legs of the butterfly, and that they (the pollen masses) belong to a species of the genus A.clepins, and not to a member of the family Orchiducerr.

This is another instance of the uses of insects as fertilizers of plants.
A. s. R.

Microscopic Eximination of Dést.-An ingenious apparatus is figured in the monthly Microscopir .Jomomel for collecting atmospheric particles, contrived by Dr. Maddox; the results are also figured from microphotographs. Dr. Axaddox says:-
"Dr. Tyudall has shown us that organic matter may escape destruction to a great extent when air is drawn somewhat slowly ' over fragments of glass, wetted with concentrated sulphuric acid,' also 'over framents of' marble. wetted with a strong solution of' caustic potash,' or when 'permitted to bubble through the liquid acid and through the solution of putash,' and likewise when rapidly frased through a red-hot phatinum tube, containing a roll of phatinum gamze. Yaluable as these observations are in themedves, we are but little nearer the chief question, which is left open as to the vitality of such organic particles, or their relition to diseave.
"It is not pretended that this form is the only useful one or the most convenient that can be adopted, but as it has now been in use some days, I fiud it answers its chicf purpose very well, and is exceedingly casy to manipulate. The advantages claimed are, really application at any spot, the collection of the atmospheric particles inter a smull sputer in such a mamer as to be at ouce microscopically examined with a i_{10} th or ${ }_{2, n}^{1,}$ th objective, placed on a growing slide, or some form of cultivating apparatus for further observation, or mounted permanently. The difficulty is to select the best cultivating medium. Hitherto I have found besides (dél,ris) organic and mineral matter:, pollen grains, minute germs of various fungi or protophytes, and execssively minute bodies, 'molecules,' 'globules,' de.; none were seen in motion. All seem to vary in abundance with the force of the wind and dryness of the ground.
" This apparatus is deficient as regards crucial tests, but for general use it is efficient, and may, by continued employment, be of service, If any doubt exist as to the medium furnishing the spores, it can be treated as though it had been exposed; hence thus far we iave farness in the results.
"I believe it will be only by constant, varied, and multiplied research, we shall ever clbtain any answer to the important question of 'dust and disease;' hence my excuse for trespassing on the pages of this Journal, in the hope others may be induced to give the apparatus a fair trial or suggest something more useful.
"The examination of the collections made over forty days has shown that in this immediate locality, at this period, the air camnot be considered as lemerdel with microseopic germs; the largest number visible and counted as such on one cover being twenty-one (uot including bacteroid bodies). A few only have germinated; they are under observation."

The American Mimoncomichl Societx.-At the last ammal meeting of the American Mierospical Society the following officers were ciected :-President, Dr. J. H. Hinton; 1st vicepresident, Mr. Robert Dinwiddie; Ond vice president, Mr. T. F. Harrison; comresponding secretary, Dr. S. (t. Perry ; recordiag secretary. Dr. J. S. Latimer ; treasurer, Mr. E. C. Bogert; libravian, Dr. John Frey; curator, Mr. S. Jacksou. Committec on nominations:-Dr. D. II. Goodwillie; Mr. R. A. Witthaus, Mr. J. W. s. Aruold.

A New American Naterbl Mistory and Microscop al Socherr.-There has just been started in the city of Baltimore a society of tifty members, called the " Naryland Academy of Sciences." It is intended to pay speceial attention to microscopy. The following list of the officers may be useful to those societies which desire to correspond with the new Academy:-Philip II. Tyson, President; John G. Morris, D.D., Vive-President; Edwin A. Dalrymple, D.D., Corresponding Secretary.

MsCLhLLANEOUS.

Prof. Belf on the Niphon Territory.-The Camadian shore of Lake Superior simply varied according to its geological structure, and the prevalence of Laurentian rocks and gneiss of ${ }^{\prime}$ of Huronian rocks. Not ouly the shore of Lake Superior varied in respect to its physical character, but the country behind it varied also in the same respect. The whole of the Camadian side of Lake Superior could not be called the North Shore, for we had an east side as well; but at the present time the North Shore was the most important. The basin of Lake Superior was eituated a thousand miles from the sea, its surface being six hundred feet above the sea level, or a hundred feet lower than the Moutreal mountain. The bottom of the lake was four hundred feet below the sea level, its depth being four times the height of an ordinary church spire. The waters of this basin were kept from flowing over by a rocky rim which enclosed them; but in speaking of this basin, that of Lake Nipigon should be inciuded at the same time. The Nipigon river was a feeder of Lake Superior, but could not be classified with the smaller feeders of the lake, for it was vastly larger than the other tributaries, and was the only clear water river entering it, and proceeding from a lake which deserved to be considered one of the great lakes, being supplied by sisteen tributaries. The party had left Fort William on the th of July last year, and in two or three days arrived at Red Rock at the mouth of the Nipigon River; and in four days and a half reached the lake, the distance being about 30 miles, in which there were seven portages, some of them about a mile long. The seenery along the Nipigon River was very fine; Red Rock, at its mouth, being thought by some to be one of the prettiest places in Camada, the river itself being umrivalled for trout fishing. Steamboats might pass up the river as far as about ten
miles from its mouth, but above that point its navigation was interrupted by rapids. On arrining at the lake, the view was found to be very gramd. Owing to the existence of magnetie rocks the surveying larty could make but litlle use of their compasses; the angles, however, were taken and its distances measured by a micrometer ; the latitudes were also taken by various observations of the sum and polesstar, and meridian lines were also laid down. Lake Nipigon lies directly north of the northern extremity of Lake Superior, and is more thim half the size of Lake Ontario; its general outline is elliptical. Its area was 3,700 square miles, or about four-sevenths of the size of Lake Ontario; its length 70, and its breadth 50 miles. As an illustration of the size of Lake Nipigon, there are nine lakes in Canada-amongst them, Jake St. John, Jake Metapedia, Lake Temiscouta, Lake Megantic, Lake St. Francis and Lake Memphremagog-but Lake Nipigon is four times as large as the whole nine put together. Lake Nipigon is by far the most beautiful of all the great lakes, and is studded throughout its whole extent by islands, large and small, and high and low, some rocky and some thickly wooded. They could not, of course, survey the whole of these during one season; but, in connection with their triangulations of the coast, they managed to located 460 of these with tolerable accuracy, and more roughly over 100 others. Some of these islands were large enough to form whole townships. One of them was eight miles in diameter, several were from five to six miles across, while those from two to three miles in breath were quite common. They were all covered with good soil and well timbered, and some day will. no doubt, be converted into well-cultivated farms. The conat line of the lake measures 580 miles, or, perhaps, cousiderably more than the coast line of Lake Ontario, and, therefore, a great deal of the country round the lake is accessible from the water. Sisteen rivers, with unpronounceable Indian names, flow ;ato the lake, and the average size of these streams is as lar: \Rightarrow as the Grand River of Ontario. The Gull River is much larger. As far as these rivers were examincd, the country through whech they flow was found to be level, with clayey soil, and a licht surface of sand. like all rivers flowing through level countris, the feeders are very crooked, and when the water is low they resemble great winding ditehes with muddy banks. On one river which they ascended they met no rapids for ten miles up, and that was but a small onc. Some distance up this same river they
found an upen margin, very firtile and conered with an abundance of good grass. Ife did not mean by this " bearer hay," but a very superiur hind of arase, which was fund by experience to be very valuable as fieder fire cattle and hores. The country is rery free from richs, and at one place they could not find stones large enough to sinh the lower cdge of their net. Thure is evidence in the Nipipen country, as well do in the Thumder Bay region, that the finrests hate been frepuently awept by fires in past times, and the Indians told him that these fiven often uriginated from lightnins. It was likely that prairies were formed in this way. ILe leliered there was a tradition among the Indians that the parimes onec cxtended cantwad an far in lathe Nipigon, but all the country cost of the Lathe of the Wouds has since been overgrom with forest. They sometines left the stores and struck away inte the wouds and geaenally found the comitry lovel. Although the soil was good the trees were small, and stood so far apart that the party could carry their canve without underbrushin's a road any where. After having prosecuted their survey for seren wechs, they arrived at the Nipigon Mouse, a Hudson Bay post, on the north-west shore of the Lake. This was one of the three posts maintained by the Company on the lake shore. The Nipigon Mouse is surrounded with a farm and garden, which have been cultivated for about 100 years. During the eally purt of the present century the station was called Fort Dunc.m, and then, at now, it surplied the acighbouring country. The appearence of the fied and garden eneps indieated that the suil was well suitcd fur arricultural purpusen. The latitude of that part of the comentry was alout the same as at the mouth of the St. Lawrunce-between $49=$ and $50=$ north latitude, hut it was well known that in that part of the country the isothermal lines bend to the Nurth-West. The sure ey resealed the encouraving fact that we have an cany route for the construction of a railway to the North West.-Gucerte.

Americin Ansoclation for the Adfincenent of Scrence.-The next meeting will be held at Troy, (N. Y.), on the 17th duant next. Members desiring the usual faceilities for travel, \&c., will obtain the required information on application to II. B. Nason, Esp., Currenquadent Suerctary, 'Troy, N. Y.

[^0]: * The scientific names of the fishes mentioned in this article, have been altered in accordance with the latest nomenclature.-J.F.W,

[^1]: * From Silliman's Journal for January, 1870.

[^2]: * "American Journal of Science" (2), xxxi. p. 395. From this article, written in 1861, after the announcement of the existence of laminated forms suppsed to be organic in the Laurentian, by Sir W. E. Logan, but before their structure aud affinities had been ascertained, I quote the following sentences:-"We see in the Laurentian series beds and veius of metallic sulphurets, precisely as in more recent formations; and the extensive beds of iron-ore, hundreds of fect thick, which abound in that ancient system, correspond not only to great volumes of strata deprived of that metal, but, as we may suppose, to organic matters which, but for the then great diffusion of iron-oxyd in conditions favourable for their oxydation, might have formed deposits of mineral carbon far more extensive than those beds of plumbago which wo actually meet in the Laurentian strata. All these conditions lead us then to conclude the existence of an abumdant regetation during the Laurentian period."

 Since the above note was printed in the Quarterly Journal, I have ascertained that it is innacurate as to dates: Dr. Hunt having, in May 1858, before the discovery of Eozoon Canadense, asserted, in an article in the Amer. Journal of Scionce (xxr. 436), that "the presonce of iron ores, not less than that of graphite, points to the existence of organic life eren during the Laurentian or so-called Azoic period." The same argument will be found in more detailed form, in his papers Quar. Jour.

[^3]: Geol. Socicty, 1859, p. 493, Amer. Jour. Science, July 1860 (xxx., 134, as well as in the last-named Journal for May 1866, as quoted above. J. W. D.

 * Manual of Geology. I may also be permitted to refer to my orn work " Archaia," p. 168, and Appendix D, 1860.
 \dagger Quart. Journ. Geol. Suc. vol. sxii. p. 608.
 \ddagger I cannot, after examiaation of the specimen, and of others subsequently obtained by Sir W. E. Logan, attach any value to the supposition of Messrs. Rowney and King, that the Tulor specimen bas been produced by infiltration of carbonate of lime into veins. The mechanical arrangement of the lamine and their microscopic structure forbid such a supposition, as well as the comparison of them with the actual calcareous veins occurring in the same rock.
 § "Geology of Cauada," I863, p, 529; and Report for 1866, pp. 218-243.

[^4]: * " Report of the Geological Surrej of Canada,' 1866, p. $\times 33$.

[^5]: *Matthew in "Quart. Journ. Geol. Soc.," rol. xxi. p. 423. "Acadian Geology, p. 662."
 \dagger Granly, Melbourne, Owl's Head, \&c., "Geology of Canada," 1863, p. 529.

[^6]: * "Gcology of Canada," 1863.

[^7]: - ". Acadian Geology," p. $\mathbf{6} 35$. In calcified specimens the structures remain in the graphite after decalcification by an acid.

[^8]: * So marked in the Geological Survey Maps. I am iuclined, however, to think that they are representatives of the Tremadoc rocks, for Ling. Davisii, which is the ouly fossil present, is equally characteristic of Tremadoc rocks, and reaches here also into these Lower Arenig rocks.

[^9]: * MacCulloch, Geology of the Western Islands, i. 385-390.

[^10]: * Geology of Canada, 1863, page 480.

[^11]: * On the Glacial Phenomena of Labrador aud Maine. Mem. Bost. Acad. Nat. Hist., vol. I., part ii. pl. 214-217.

[^12]: "Specimens of these rochs, correctly determined and labelled, are found in the eollections of the Esisex Institute at Salem. To these my attention was called at the time of the meeting, in Alugust last, by Prof. (. Hitchoock, atter which, in company with Dr. G. B. Loring and Prof. Pachard, I visited the locality at Marblehead Neek, and collected farthen revecimetus of the characterintic labradorite rock.

[^13]: * See, farther, Zirhel, Petrographie III., 131.

[^14]: * (Uuar. Jour Geol. Soc , xiv., p). 1.

[^15]: * In the Proc."Zool. Soc. for 1863 (p. 252) Dr. Sclater recorded H. albicilla as a Newfoundland bird, an error which he corrected in the ' Proceedings' of the same Suciety for 1865 (p. 701).

[^16]: * Cotta; Die Gesteinslehre, pp. 1, 4.

[^17]: * Petrographic I., p. 173.
 \dagger The Microscope in Geology, p. 6.

[^18]: * Zeitschxift der Deutschen Geologischen Gesellschaft, vols. xix and xx.

[^19]: * Vol. for 1869, page 57.

[^20]: * Part of a small collection receutly presented to the Museum of the Natural History Society of Montreal.

[^21]: * Since the above was written, Mr. Whiteares has drawn my attention to a paragraph in the Tretswry of Botur!, wherein, on the authority of Mr. A. Smith, Guilandina bonduc is described as having solitary prickles on the leaves, and producing yellow seeds, whereas bomducelle is stated to have prickles in pais, and lomb-0houred nereds. Mry. Whiteares has also shewn me specimens from the Went Indies of both kinds of seeds, which are certainly very distinct in coloration. I am unalle to solve the problem, or to decide whether the wiferently-coloured seeds belong to the same species or not; but I nerer saw the yeliow ones in India, where I gathered, with my own hands, many huwired specimens of the grey hind; and I have the high authority of Wight nd Arnott to support me in my opinion that the su-called species of bondue and bomincella are identical. I quote from the I'rothomus llorice Peninsilla Indice Orientalis, as follows: "It might be thought preferable to adopt the name Bonducella, as it was of that form only that Limeths had seen specimens, Bonduc haring been taken up from Plunkenet's figure; but the two being identucal, not even varieties, wo have preferred that which is simpler, and not a derivative of the other." I suspect that many of the less important characters of the species are very inconstant, and hence the confusion which has arisen. Indeed I find in Sir William Jones' Botanical Observations on Solcet Indian Plants, which appeared in the Asiatic Rescarches, vol. iv, the following statement regarding (iuilindina: " The species of this genus vary in a singular mamer; on veveral plants, with the oblong leaflets and domble prickles of the Bomducelle, I could only see male flowers as Rhecre has deseribed them: they were yellow, with an aromatic fragrance: others, with similar leares and prickles, were clearly polygamows,"

[^22]: * Misprinted "Carbonic Acid" and "Carbonate of Lime" in tho former notice.

[^23]: * Procecdings of the Royal Societs: 1868, p. 425,

